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ABSTRACT

TOWARDS LIGNIN VALORIZATION: PYROLYTIC AND ELECTROCHEMICAL UPGRADING OF LIGNINS
EXTRACTED FROM PRETREATED BIOMASS TO VALUABLE INTERMEDIATES

By
Mahlet Garedew

Hydrocarbons, made from fossil petroleum, currently remain the most practical energy
sources for transportation. But with current energy crisis and the implication of burning fossil
fuels as one of the major contributors to climate change, the production of fuels from biomass
has become a possible alternative to displace fossil-based fuels. Unfortunately, biomass suffers
from two flaws: (1) Inefficiency: at best, plants only capture and store about 1% of the sun’s
energy in chemical form; and (2) Energy density: biomass has about one third of the energy that
of hydrocarbons. So, deriving value from all components of biomass including lignin, optimizing
conversion processes that can harness the chemical energy stored in biomasses efficiently, and
converting biomass to fuels that are energy dense is essential.

To this end, conventional biomass to ethanol conversion strategies utilize pretreatment
methods such as extractive ammonia pretreatment (EA) and alkaline hydrogen peroxide
pretreatment (AHP), to improve the rates and extents of subsequent hydrolysis of sugars and
maximize biofuel yields. As part of the pretreatment method, EA and AHP also enable the
recovery of lignin which is often combusted for heat and power production. Lignin however
accounts for 40% of the energy of biomass and is one of the largest natural sources of renewable
aromatic compounds so it can be an ideal candidate for the production of higher-value products
that would otherwise be derived from petrochemical feedstocks. The challenges in lignin

valorization however come from lignin’s complex structure that is naturally designed to be



resistant to biological degradation. Thermochemical conversion processes such as fast pyrolysis
offer a strategy for lignin depolymerization.

During fast pyrolysis the feedstock (biomass, lignin, etc.) is liquefied by heating in an oxygen
free environment to form biochar, combustible gas and bio-oil. The biochar co-product has
potential for use in soil amendment and carbon sequestration. The combustible gas is often
burned for heat and power production. The major product, bio-oil, has the potential to displace
liquid hydrocarbon fuels. However, bio-oil’s reactive and corrosive nature along with its low
energy content are major barriers for the adaption of this system. Classical catalytic upgrading is
usually used to hydrogenate and deoxygenate bio-oil, often at high temperature and very high
pressure. These severe conditions can result in barriers, such as catalyst deactivation. To avoid
these conditions, electrocatalytic hydrogenation (ECH) can be used to stabilize bio-oil via
hydrogenation and deoxygenation of reactive components under mild conditions (25-80 °C and
1 atm).

As lignin is converted to phenolic monomers, dimers, and oligomers upon pyrolysis, the
transformation of lignin model compounds exhibiting similar bonding arrangements indicates the
potential for lignin valorization using ECH. In this study, conversion, yield, and faradaic efficiency
of ECH of model compounds derived from pyrolysis of lignins extracted from pretreated biomass
are examined. ECH of these compounds is carried out using an activated carbon cloth supported
ruthenium cathode. Having uncovered surprisingly easy aryl ether cleavages, the outcome of this
research will provide understanding to further integrate biomass pretreatment, pyrolysis, and

electrocatalysis systems for bio-oil stabilization and lignin valorization.
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Chapter 1 : Introduction and Background

Introduction

Since the industrial revolution, petroleum and other fossil-based fuels have powered human
activities by providing raw materials for fuel and chemical manufacture.® Currently, these non-
renewable, fossil-based resources continue to be the primary source of energy and chemicals.
However, global fossil resource consumption comes at great cost to the environment as reported
by the Intergovernmental Panel on Climate Change (IPCC).! Rising levels of greenhouse gases
(GHG) in the atmosphere contribute to global warming and severe weather patterns along with
ocean acidification, and sea level rise which further lead to loss of biodiversity and disruption of
the oceanic ecosystems.! Furthermore, energy dependence and limited access to fossil fuels can
lead to economic and political conflicts. Addressing these concerns requires the development of

sustainable technologies that can displace fossil-based fuels with renewable alternatives.

On the energy front, although solar and wind are very attractive, their intermittent nature
and their inability to produce liquid transportation fuels introduces a barrier.® The use of non-
edible biomass and waste sources derived from agricultural, forestry and food waste is
considered a viable alternative.” Biomass, formed by photosynthesis, incorporates carbon from
the atmosphere and stores solar energy in the form of chemical bonds making it a renewable
source of hydrocarbons. Biomass conversion simply recycles existing carbon from the biosphere
instead of releasing carbon sequestered for millennia (as in the case of fossil-derived fuels).
Additionally, new plant growth can capture CO2 and help offset the impacts of its emission on

the environment.”® To this end, biomass conversion technologies have experienced rapid



advancement in recent decades.’ Biomass and waste streams composed of polysaccharides,
lignins, lipids and proteins can be converted to valuable chemical and fuel intermediates via
processes such as hydrolysis, thermochemical conversion, transesterification, and anaerobic
digestion (Figure 1.1). These intermediates, often composed of monosaccharides, aromatics,
triglycerides, methane, hydrogen gas, and CO have potential for energy storage and production

of value-added products by further upgrading strategies such as fermentation and catalysis.*°

Source Polymers Intermediates Valuable Products

Figure 1.1. Conversion of Biomass and waste components to valuable products.

Biomass/Waste

Such technologies have enabled the use of biomass as fuel sources in recent decades. For
example, per the U.S. Energy Information Administration, 95% of the 143.37 billion gallons
(highest ever recorded) of the fuel consumed in motor vehicles in the U.S. in 2016 was 10%
ethanol blended.!! However, even typical biofuel production systems can access and effectively
utilize only a fraction of the biomass carbon and can provide only a fraction of the energy

produced from petroleum. As shown in Figure 1.2, the billion ton study projects that about 1



billion dry tonnes of biomass could be sustainably produced without impacting the food/feed
markets by 2030.1? This amount is comparable to the 0.86 billion tonnes of petroleum that is
projected to be consumed by the year 2030 (this projection is made using amount of petroleum
consumed in the U.S. in 2017 and assuming minimal change in consumption by 2030).13 However,
even assuming the best-case scenario, only 0.4 billion tonnes of carbon and 21 EJ/kg of energy
can be derived from the 1 billion tonnes of biomass. This falls short of displacing the 0.7 billion

tonnes of carbon and 41 EJ of energy that can be derived from petroleum.*
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Figure 1.2. Comparison of mass, carbon content, and energy content of petroleum and biomass-
derived fuel based on 0.9 billion tonnes/year of petroleum and 1 billion tonnes/yr of biomass.
Carbon mass calculated assuming an empirical formula of CH; (Mcarbon = 86% of mass 14) for
petroleum and CH20 (Mcarbon = 40% of mass 30) for biomass-derived fuels. Energy calculated
based on specific energy of petroleum (48 MJ/kg) and biomass (20.6 MJ/kg) (adapted from Lam
et al.’®).
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This carbon and energy deficiency of biofuels can be attributed to the fact that when
converting biomass to fuels such as ethanol using fermentation, a third of the carbon is lost as
CO; during the fermentation process.* Furthermore, in most cases, lignin, one of the three major
components of biomass, is often burned for process heat or used as a component of animal feed.

Lignin, however, is the largest natural source of renewable aromatic compounds and is ideal for



producing higher-value aromatics that would otherwise be derived from petrochemical
feedstock.1? But the complex structure of lignin and its resistance to biological degradation is a
major barrier for both sugar hydrolysis and its own valorization. The key to deriving value from
lignin lies in the effective cleavage of its ether linkages, so conversion processes that achieve such
cleavage are needed to fully valorize all components of biomass.4 1617

Biomass fast pyrolysis is one such alternative biomass conversion process whereby heat (400-
600 °C) is used in the absence of oxygen to convert biomass into three major products: bio-oil,
biochar and combustible gas. Although bio-oil has potential to produce liquid transportation
fuels, its reactive properties during storage, corrosive properties due to its acidity, high water
content and low higher heating value (HHV) make is undesirable, incompatible with current
infrastructure, and not ready for end use as a transportation fuel. Before bio-oil can be used as
a viable fuel, stability and energy upgrading is needed. With further upgrading, bio-oil can be
hydrogenated and deoxygenated and used to produce liquid transportation fuels and value-
added products. Electrochemical upgrading of bio-oil offers a way whereby mild conditions (low
temperature and atmospheric pressure) can be used to achieve hydrogenation and
deoxygenation.'® This method offers certain advantages over other methods such as catalytic
hydrogenation; as the hydrogen needed for reduction is produced in situ in ECH, avoiding the
kinetic barrier related to hydrogen dissociation and hydrogen gas mass transport.'® Even catalyst
poisoning is avoided due to the cathodic potential that can prevent the adsorption of poisons.*®

Furthermore, ECH also can facilitate product selectivity by controlling the charge supplied to the

cathodic electrode.® 20



By combining pyrolysis with electrocatalytic hydrogenation, liquid fuels and value-added
products result from biomass. The production of biofuels and bio-based chemicals from bio-oil
could have the potential to help reduce petroleum use in the U.S.%! Biochar and the combustible
gas, on the other hand, can be used for heat and power production. Land application of biochar
can sequester carbon, enhance soil water holding capacity, reduce fertilizer use and increase crop
yields.?! The carbon sequestration properties of biochar, carbon dioxide capture by plant growth
and displacement of fossil fuels by biofuels can reduce fossil fuel related GHG emissions by up to
10% and deter the impacts of fossil fuel use on the environment.?! By using pyrolysis and
electrocatalysis, to fully valorize all components of biomass at centralized biorefineries, carbon

and energy efficiencies of the biomass conversion process can be improved.

Project Description and Objectives

To solve the problems of low energy and carbon efficiencies, we propose deconstructing
lignin using pyrolysis and further valorizing the depolymerization products of lignin pyrolysis
using electrocatalysis. This project aims to investigate a combined system that utilizes lignins
derived from pretreatment and extraction methods such as extractive ammonia (EA) and copper
catalyzed alkaline hydrogen peroxide pretreatment (Cu-AHP) as feedstock for a pyrolysis system
that effectively depolymerizes the lignin to produce bio-oil. This can further be upgraded using
electrocatalytic hydrogenation and deoxygenation (ECH) to improve both the energy content and
stability at centralized facilities. The upgraded stable bio-oil can then be hydroprocessed to
hydrocarbon fuels (Figure 1.3). The combustible gas typically heats the pyrolysis system while
biochar can be used as a soil amendment, for carbon sequestration, or burned for producing heat

and power.
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Figure 1.3. Herbaceous and woody biomass pretreatment and lignin extraction using extractive
ammonia process or copper catalyzed alkaline hydrogen peroxide processes, conversion using
pyrolysis, and upgrading electrocatalysis (adapted from Garedew, 2014).%?

Previous work by Li et al. and Lam et al., demonstrate the scheme presented in Figure 1.3. Li
et al. used ruthenium loaded on activated carbon cloth (Ru/ACC) as a catalyst to transform model
monomers derived from lignin pyrolysis such as guaiacol, phenol and syringol to cyclohexanol.?3
Additionally, Li et al. studied the effect of different ruthenium salt precursors, loadings, operating
temperatures and current density effects on the conversion of guaiacol and electrochemical
efficiencies of the system. Instead of Ru/ACC, Lam et al. investigated the effectiveness of Raney
nickel catalysts on guaiacol conversion in addition to investigating the effect of alkoxy position
and length on alkoxyphenol conversions. Li et al. further studied the effectiveness of ECH using
Ru/ACC to stabilize water-soluble bio-0il.?* In this current study, we expand further in this area
to more completely ascertain the potential for the pretreatment-pyrolysis-ECH system according

to the objectives outlined next.

1. Obtain and characterize lignin streams extracted via EA and AHP processes.

I.  Use elemental content and higher heating value to determine which lignin

streams form the most viable feedstock.



Investigate the thermal degradation properties of the feedstock (using
thermogravimetric analysis)
Compile a list of lignin-derived pyrolysis products for ECH upgrading (using

pyrolysis GC/MS).

2. Perform ECH on lignin model monomers using ruthenium on activated carbon cloth

catalysts.

a. Test high temperature/pressure reduced ruthenium on activated carbon cloth

(Ru/ACC) for ECH various substrates.

Based on results obtained from microscale pyrolysis of EA lignins and AHP
lignins, compile a list of monomers, and subject them to ECH using Ru/ACC.
Phenol, p-cresol, 4-ethylphenol, 4-propylphenol, guaiacol, cr