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ABSTRACT 

EXPRESSION QUANTITATIVE TRAIT LOCI AND ALLELE-SPECIFIC EXPRESSION  

EXHIBITING JOINT ASSOCIATION WITH POLYGENIC TRAIT PHENOTYPES IN PIGS 

By 

Deborah Velez-Irizarry 

Significant genetic gain in pork production has been achieved in the past 30 years. 

Advancements in sequencing technology, improvements in the annotation of the pig genome, 

and development of quantitative genetic models were instrumental in the these efforts. Several 

quantitative trait locus (QTL) have been identified for growth, meat quality and carcass 

composition phenotypes, however, the biological mechanisms underlying most QTL remain 

unknown. Functional genomic analysis can reveal insights on the genetic architecture of complex 

traits, and transcriptomic profiling of skeletal muscle during the initial steps leading to the 

conversion of muscle to meat can identify key regulators of meat quality and carcass phenotypes. 

In this study, we aimed to identify potential candidate genes and molecular markers regulating 

phenotypic traits using an F2 Duroc x Pietrain pig resource population. Gene transcripts obtained 

with RNA-seq of longissimus dorsi muscle from 168 F2 animals were used to estimate gene 

expression variation subject to genetic control by mapping expression QTL (eQTL), and 

identifying allele-specific expression (ASE). A total of 334 eQTL were mapped (FDR ≤ 0.01) 

with 187 exhibiting local acting regulation. Joint association of eQTL with phenotypic QTL 

(pQTL) segregating in our population revealed 16 genes significantly associated with 21 pQTL 

for meat quality, carcass composition and growth traits. Ten of these pQTL were for meat quality 

phenotypes that co-localized with one eQTL on SSC2 (8.8Mb region) and a putative hotspot 

associated with 11 gene transcripts on SSC15 (121Mb region). Biological processes identified 

for co-localized eQTL genes associated with meat quality traits included calcium signaling 



(MRLN, PKP2 and CHRNA9), energy metabolism (SUCLG2 and PFKFB3) and redox 

hemostasis (NQO1 and CEP128). 

Allele specific expression (ASE) analysis facilitates the identification of cis-acting 

regulation of transcript abundance, which can be associated with a measurable phenotypic 

difference. In this study, we tested for ASE in 69,502 coding SNP (cSNP) called directly from 

longissimus dorsi transcriptomes. A total of 18,234 cSNP with significant ASE were identified 

(FDR ≤ 0.01). A meta-analysis merging cSNP p-values per gene identified 4,170 genes with 

significant allele-specific effects (FDR ≤ 0.01). A gene-wise conditional analysis fitting all ASE 

cSNP per gene for each phenotype identified 60 genes associated with growth, carcass 

composition and meat quality phenotypes. Ring finger and Zinc finger transcription factors were 

associated with 45-min pH, drip loss and 10th-rib backfat, and allelic expression bias for these 

genes was confirmed with pyrosequencing. Six genes exhibiting significant cis-acting effects and 

two genes associated with both cis and trans action were key regulators of the PI3K-Akt-mTOR 

signaling pathway. PI3K-Akt-mTOR plays an important role in skeletal muscle response to acute 

hypoxia, regulates cellular hypertrophy, and has been implicated in glycolytic metabolism. 

Results support an important role for activation of the PI3K-Akt-mTOR signaling pathway 

during the initial conversion of muscle to meat. 

Key words: eQTL, ASE, skeletal muscle, pig 
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CHAPTER ONE 

Introduction 

The use of genomic improvement techniques by swine breeders has significantly 

advanced pork production1. Genomic regions harboring single nucleotide polymorphisms (SNP) 

contributing significant portions of phenotypic variation have been observed for economically 

important trait phenotypes in swine populations. These genomic regions are known as 

quantitative trait locus (QTL). Our group has used an F2 pig resource population over the past 

decade to identify QTL for growth, body composition and meat quality traits2–9. The Michigan 

State University Pig Resource Population (MSUPRP) was developed from an outcross between 

Duroc and Pietrain to detect candidate variants associated with quantitative traits. These breeds 

were selected for their tendency to differ in growth, leanness and meat quality phenotypes10. 

QTL have been identified in this population using linkage mapping2–5 and a high density SNP 

panel (ProcineSNP60 bead chip)6–8. Efforts to fine map the identified QTL genomic regions have 

been pursued using different approaches, such as increasing the number of microsatellite markers 

surrounding QTL4,5, performing meta-analysis combining independent genome wide association 

(GWA) studies6,7 and restricting analysis to 2 Mb regions surrounding the QTL marker with the 

lowest p-value8,9.  

The extent of LD11 and small effective population size in pigs12,13 limits the resolution to 

identify candidate variants. Large effect QTL under selection tend to cluster among LD blocks, 

usually spanning large genomic regions14. Because the MSUPRP is an F2 cross, the number of 

recombination events is reduced, which consequently limits the resolution of QTL intervals 

resulting in large QTL regions encompassing numerous SNP in close linkage disequilibrium 

(LD) with a causative variant. This LD structure while beneficial for genomic selection 
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complicates the identification of candidate gene influencing QTL regions. Expression QTL 

(eQTL) analysis aims to identify genes whose expression is subject to genetic control by 

modeling gene expression as a response variable. A gene’s function can be defined by its product 

and pattern of expression, which is regulated by a large number of functional elements at a given 

developmental period and environmental condition15. The goal of eQTL studies is to prioritize 

variants with functional relevance in biological processes conferring measurable fitness in 

economically important trait phenotypes. The joint association of eQTL regions with phenotypic 

QTL (pQTL) regions in a single population can aid in the identification of candidate genes 

whose expression is transcriptionally regulated by SNP associated with phenotypic variation. 

Early eQTL maps of the swine genome were constructed with microarray gene 

expression data and microsatellite markers16–21. These early studies reduced the number of 

candidate genes obtained through QTL mapping by identifying positional candidate cis-acting 

eQTL coinciding with QTL regions. Cis-acting regulators of gene expression identify candidate 

locus directly influencing the expression of the associated gene, and thus infer direct cause of 

variation in gene expression. In contrast trans-acting regulators and regulatory hotspots may 

affect the expression of distant genes through gene-gene interactions. Initial eQTL studies were 

of low resolution due to the limited coverage of few microsatellite markers across the genome 

(typically 115 – 170 markers)16–21. Our group has previously mapped eQTL for the MSUPRP 21 

using microarray gene expressions for longuissimus dorsi (l. dorsi) tissue and 124 microsatellite 

markers. 

Microarrays are known to have technical issues with hybridization and quantification of 

genes with low transcript abundance22,23. The application of next generation sequencing 

technologies overcomes these limitations, and RNA-seq data has been shown to outperform 
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microarrays for evaluating both known and novel genes, and allows better quantification of 

lowly expressed transcripts22,23. In this project, we build on our previous work21,24 to increase the 

resolution of our eQTL map for the l. dorsi transcriptome using high density SNP genotypes and 

RNA-seq data to increase the genome-wide coverage of gene expression regulation. The 

integration of pQTL and eQTL analysis for the same population increases our scope of inference 

to elucidate the biological architecture driving differences between divergent trait phenotypes. 

Such approaches have identified candidate genes and gene networks regulating meat quality 

traits18,19,21,25–31, disease resistance20,32–36 and stress response17,37 in swine populations (Table 

1.1). 

The overall goal of this dissertation research is to elucidate functional variants and 

candidate genes associated with variation in polygenic traits in pigs by identifying positional 

candidate eQTL and cis-acting regulators of gene expression associated with pQTL regions. We 

have implemented two approaches to meet this goal. One approach is to map eQTL using 

statistically proven QTL models adapted to fit gene expressions as response variables. The extent 

of LD, however, limits the differentiation between cis and trans action, specifically for eQTL 

mapping to the same chromosome as the associated gene position. Due to this limitation we 

define cis-action as ‘local’ and trans-action as ‘distant’ when referring to our eQTL analysis. Co-

localization of identified eQTL with known pQTL for the same population identify not only local 

regulators of gene expression, but also distant factors influencing transcriptional variation. The 

second approach is to identify cis-acting regulators of gene expression through allele-specific 

expression analyses (ASE) using RNA-seq data38–40. Different functional categories are involved 

in transcriptional regulation including enhancers, silencers, insulators, and promoters, among 

other architectural elements15,41. A cis-acting variant could be located within any one of these 
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functional elements affecting transcription factor binding sites, mRNA stability or microRNA 

binding sites42. For instance, a regulatory sequence in the DNA containing a SNP may affect the 

affinity of trans-acting regulators causing allele-specific expression because it only affects the 

allele containing the variant. Distant acting variants indirectly affect transcription by altering a 

gene that regulates the expression of a target gene such as transcription factors or microRNA, 

and therefore affects the expression of both copies of the target gene in a diploid organism. In 

order to detect allelic imbalance for cis-acting variants we must quantify the allele-specific 

expression of polymorphic locus by studying heterozygous samples38,40,43–45.  

Accurately quantifying ASE from RNA-seq data is challenging because such data is 

prone to technical artifacts including genotyping error and mapping bias, which lead to 

inaccurate estimates of ASE and inflated false positive determinations of allelic imbalance46–49. 

To address this issue, we have implemented a robust unbiased allele-specific read mapping 

protocol46 to control for technical bias when estimating allelic imbalance. Only a few studies of 

allelic imbalance have been performed in livestock species34,39,40,50–52. The ASE analyses 

reported to date for pigs have been limited to small sample sizes (only 4 animals in Wu et al.40, 

12 in Oczkowicz et al.52 , and 38 in Maroilley et al.34). However, these studies have increased 

our understanding of cis-regulatory elements influencing immune capacity34, prenatal skeletal 

muscle growth51 and the adult brain transcriptome52 in pigs. The ASE analysis reported in this 

dissertation utilized transcriptomic data from l. dorsi muscle for 168 F2 MSUPRP animals. This 

represents a considerably larger sample size than any previous reports of ASE in pigs, allowing 

detection of a higher number of heterozygous coding SNP with low read coverage, and providing 

novel cis-acting variants regulating mRNA transcript abundance. In addition, we assessed the 

effect of cis-acting variants on trait phenotypes, since SNP called directly from transcriptomic 
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data provide increased marker coverage of coding regions. We also applied pyrosequencing to 

verify selected polymorphic locus that exhibited significant allelic imbalance and that explained 

a portion of phenotypic variance. 

This dissertation research has two important implications: (1) The discovery of genomic 

regions directly influencing expression of single genes (local and distant acting variants), and 

multiple genes (regulatory hotspots) to reveal the functional significance of pQTL within the 

swine genome. (2) The localization of cis-acting regulators of gene expression that account for a 

significant portion of phenotypic variation providing insights into potential architectural 

elements regulating economically important traits in pigs. 

The aims of this dissertation research include:  

1. Identify potential candidate genes and molecular markers regulating phenotypic traits 

using an F2 Duroc x Pietrain pig resource population. 

a. Map eQTL for the MSUPRP using RNA-seq of l. dorsi to identify local and 

distant regulators of transcript abundance. 

b. Identify eQTL co-localizing with pQTL and estimate peak pQTL SNP effect on 

eQTL significance using a conditional analysis.  

2. Perform an ASE analysis to confirm cis acting variants found with the previous eQTL 

analysis and identify novel polymorphic sites with allelic imbalance.  

a. Estimate the effect of ASE cSNP on growth, body composition and meat quality 

trait phenotypes. 

b. Confirm select ASE markers associated with phenotypic traits using 

pyrosequencing. 
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Table 1.1 Review of eQTL studies conducted in pig populations. 

Phenotype  Tissuea Animals Breedb Platform eQTL Year 

Water holding  

capacity 
l. dorsi 74 D x P Microarray 897 200818 

Meat Quality l. dorsi 74 D x P Microarray 9,180 201019 

Cellular stress 
l. 

lumborun 
57 

Multiple 

breeds 
Microarray 272 201117 

Obesity liver 150 
P x  

(LW x L) 
Microarray 4,727 201133 

Meat quality and 

carcass merit 
l. dorsi 176 D x P Microarray 62 201121 

Lipid metabolism g. medius 105 D Microarray 613 201216 

Sense and antisense 

transcript expression 

liver 497 
D x E DGE  

370 
201253 

l. dorsi 589 399 

Plasma cortisol level l. dorsi 207 
P x  

(LW x L) 
Microarray 593 201237 

Serum lipids liver 497 D x E DGE 643 201336 

Drip loss l. dorsi 132 D x P Microarray 30 201325 

Fatty acid 

composition 
l. dorsi 102 I x L Microarray 13 201326 

Glycolytic potential l. dorsi 497 D x E DGE 7 201427 

Meat quality l. dorsi 207 
P x  

(LW x L) 
Microarray 7 201428 

Response to 

Actinobacillus 

infection 

lung 100 H x L Microarray 193 201420 

Obesity adipose 36 Da x G RNAseq 1,060 201532 

Fat deposition and 

muscularity 
l. dorsi 176 D x P Microarray 7 201524 

Meat quality l. dorsi 114 I x L Dynamic Array  19 201629 

Meat quality g. medius 104 D Microarray 3 201730 

PRRSV infection blood 44 
LW x L 

D x L/Y 
RNAseq 869 201735 

Fatness and Yield l. dorsi 102 I x L Microarray 63 201731 

Immune capacity blood 243 LW Microarray 1,901 201734 
a longuissimus dorsi (l. dorsi), longuissimus lumborun (l. lumborun), glutes medius (g. medius) bDuroc (D), P 

(Pietrain), Large White (LW), Landrace (L), Erhualian (E), Iberian (I), Hampshire (H), Danish (Da), Göttingen (G), 

Yorkshire (Y) cDigital gene expression (DGE)  
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CHAPTER TWO 

Genetic control of longissimus dorsi muscle gene expression variation and joint 

association with phenotypic quantitative trait locus in pigs 

Vélez-Irizarry, D., S. Casiro, R.O. Bates, N.E. Raney, J.P. Steibel and C.W. Ernst 

ABSTRACT 

Economically important growth and meat quality traits in pigs are controlled by cascading 

molecular events occurring during development and continuing throughout the conversion of 

muscle to meat. Evaluating transcriptomic profiles of skeletal muscle during the initial steps 

leading to the conversion of muscle to meat can identify key regulators of polygenic phenotypes. 

In this study, we aim to identify potential candidate genes and molecular markers regulating 

phenotypic traits using an F2 Duroc x Pietrain pig resource population. Gene transcripts obtained 

with RNA-seq of longissimus dorsi muscle from 168 F2 animals were used to estimate gene 

expression variation subject to genetic control by mapping expression QTL (eQTL). A total of 

334 eQTL were mapped (FDR ≤ 0.01) with 188 exhibiting local acting regulation. Joint 

association of eQTL with phenotypic QTL (pQTL) segregating in our population revealed 16 

genes significantly associated with 21 pQTL for meat quality, carcass composition and growth 

traits. Ten of these pQTL were for meat quality phenotypes that co-localized with one eQTL on 

SSC2 (8.8Mb region) and 11 on SSC15 (121Mb region). Biological processes identified for co-

localized eQTL genes include calcium signaling (FERM, MRLN, PKP2 and CHRNA9), energy 

metabolism (SUCLG2 and PFKFB3) and redox hemostasis (NQO1 and CEP128), and results 

support an important role for activation of the PI3K-Akt-mTOR signaling pathway during the 

initial conversion of muscle to meat. 

Keywords: expression QTL, skeletal muscle, RNA-seq, pig 
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INTRODUCTION 

Applications of genomic improvement techniques have significantly advanced livestock 

breeding. Genomic regions harboring single nucleotide polymorphisms (SNP) accounting for a 

significant portion of phenotypic variation for economically important traits have been identified 

and implemented in marker assisted selection1–3. In pigs, these efforts have identified candidate 

genes affecting meat quality (e.g. CRC1, PRKAG3, CAST), weight gain (e.g. MC4R) and litter 

size (e.g. ESR)4. However, we still do not fully understand the molecular mechanisms underlying 

the variability observed in pork traits. For meat quality traits, cascading molecular events starting 

before exsanguination and continuing throughout the conversion of muscle to meat play a critical 

role in determining the eating quality of pork. By studying the transcriptomic profile of the initial 

steps leading to the conversion of muscle to meat we can elucidate key regulators of polygenetic 

trait phenotypes. Specifically, we can identify gene transcripts subject to genetic control that 

potentially regulate complex traits by mapping expression QTL (eQTL), and testing their co-

localization with phenotypic QTL (pQTL). In this study, we use an F2 Duroc x Pietrain resource 

population developed at Michigan State University5,6 (the MSUPRP) to identify eQTL 

significantly associated with pQTL for meat quality, carcass composition and growth traits.  

Meat quality traits are highly correlated. During the conversion of muscle to meat, Ca2+ 

ions are released from the sarcoplasmic reticulum and the anaerobic production of ATP leads to 

the accumulation of lactic acid that reduces muscle pH7. The rate of pH decline and release of 

Ca2+ directly influences water holding capacity, meat color and the rate of proteolytic activity 

that leads to meat tenderization7. While these molecular processes have been extensively studied 

with numerous QTL identified for tenderness, drip loss, pH, meat color and enzyme activity 8, 

we know little of the genetic architecture regulating these traits. This is likely due to the high 
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variability of meat quality traits that are known to be heavily influenced by both genetic and 

environmental factors such as antemortem handling9–11. Regulators of gene expression have been 

used to study the molecular bases of polygenetic phenotypic differences in swine populations12–

15. Expression QTL maps provide a foundation to study divergent molecular processes in 

livestock species2,16. This approach has been successful in identifying candidate genes, causative 

variants and molecular networks regulating phenotypic traits in swine, including back fat17, drip 

loss18, glycolytic potential15, plasma cortisol levels12 and lipid metabolism19.  

In this study we use a GBLUP-based GWA model to map eQTL. With this model, we 

can elucidate both local and distant acting regulators of gene expression, and narrow sense 

heritability (h2) can be estimated for each gene. Joint analysis of pQTL and eQTL can identify 

potential genetic regulators of phenotypic traits and give insights into the genetic architecture of 

complex traits. Putative hotspots are of particular interest where a single marker is associated 

with the expression of multiple genes, serving as a potential master regulator that can account for 

a significant portion of phenotypic variation. In this study, we aim to map eQTL for longissimus 

dorsi muscle of the well characterized MSUPRP to identify local and distant regulators of 

transcript abundance. A joint-association of eQTL with pQTL may reveal novel insights into the 

genetic architecture of meat quality, carcass composition and growth traits.  

MATERIALS AND METHODS 

Pig population and phenotype collection 

Animal housing and care protocols were evaluated and approved by the Michigan State 

University All University Committee on Animal Use and Care (AUF # 09/03-114-00). The 

MSUPRP was developed from 4 Duroc boars and 15 Pietrain sows5,6. From the F1 progeny, 56 

animals (6 males and 50 females) were retained to produce the F2 generation, which included 
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1,259 animals from 142 litters. A total of 67 phenotypic traits were collected for the F2 

generation 5,6. A subset of the F2 pigs were selected for this study using a selective profiling 

scheme based on extremes in loin muscle area and backfat thickness phenotypes within litter (44 

litters) and sex20. Summary statistics for the 67 phenotypic traits (29 growth traits, 20 carcass 

composition traits and 18 meat quality traits) in the F2 population, and the subset of animals used 

for this study are shown in Supplementary Table 2.S1. 

Genotyping 

SNP genotypes for the MSUPRP were available from prior studies21,22. Genotyping was 

performed by Neogen Corporation - GeneSeek Operations (Lincoln NE) using the Illumina 

PorcineSNP60 BeadChip23 for the F0, F1 and ~1/3 of the F2 population and the GeneSeek 

Genomic Profiler for Porcine Low Density (GGP-Porcine LD) for the remaining F2 pigs21,22. 

Missing genotypes were imputed with an accuracy of 0.9721,22. Monomorphic markers and non-

autosomal markers were eliminated from further analysis, as were those showing divergence 

from Mendelian inheritance rules. An updated genomic map for SNPs on the Sscrofa11.1 

genome assembly was obtained from Neogen (Lincoln NE). Additional filtering was performed 

to exclude markers with a minor allele frequency lower than 0.01 and reduce the degree of 

correlation between adjacent markers (i.e. if a pair of neighboring markers had a correlation of 

allelic dosage greater than 0.95, one of the two markers was eliminated; this filtering was 

performed only for the eQTL analysis). Filtering resulted in 38,679 markers for the eQTL 

analysis and 43,130 for the pQTL analysis. Two coding SNPs in the protein kinase AMP-

activated non-catalytic subunit gamma 3 (PRKAG3) gene, I199V and T30N24,25, were also 

genotyped in the MSUPRP as previously described in Casiro et al.26. 
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RNA extraction and RNA sequencing 

Tissue samples were taken immediately post mortem from the longuissimus dorsi muscle, 

flash frozen in liquid nitrogen and stored at -80°C until processing. RNA extraction was 

performed with the miRNeasy Mini Kit (Qiagen, Germantown, MD) following the 

manufacturer’s protocol. Quality and quantity of extracted total RNA were determined using the 

Agilent 2100 Bioanalyzer (RIN ≥ 7). Sequencing was performed at the Michigan State 

University Research Technology Support Facility. Libraries for 24 samples were prepared using 

the Illumina TruSeq RNA Library Prep Kit v2, and sequenced on the Illumina HiSeq 2000 

platform (2 x 100bp paired-end reads). The remaining 152 libraries were prepared using the 

Illumina TrueSeq Stranded mRNA Kit, and sequenced on the Illumina HiSeq 2500 platform (2 x 

125bp, paired-end reads). Base calling was performed with the Illumina Real Time Analysis 

v1.18.61 software, and the Illumina Bc12fastq v1.8.4 was used for conversion to FastQ format. 

A total of 96 sequence files (741Gb) consisting of ~63 million short-reads per library were 

obtained from the HiSeq 2000 platform and 1,218 sequence files (~2Tb) of ~23 million short-

reads per library were obtained from the HiSeq 2500 platform. Eight samples were removed 

from further analysis due to low sequence quality, leaving a total of 168 samples for subsequent 

analyses. Sequence data has been deposited in the NCBI Sequence Read Archive accession 

number PRJNA403969. 

Raw RNA sequence reads were first filtered for adapter sequences using Trimmomatic27 

followed by quality trimming using Condetri where the first 6 bases at the 3’ end and low quality 

reads were filtered out retaining reads with a minimum length of 75 bases. The quality of each 

sequenced nucleotide was evaluated on adapter filtered and quality trimmed RNA-seq reads 

using the FASTX toolkit28 and a mean Phred quality score of 37.01  0.99 was obtained. After 



 18 

adapter and quality filtering, RNA-seq reads were mapped to the reference genome assembly Sus 

scrofa 11.1 using the splice aware aligner Tophat229. Sample-specific transcriptomes were 

assembled using Cufflinks and merged with the reference genome to create a set of known and 

novel isoforms using Cuffmerge30. A total of 30,723 full length transfrags were identified. 

Alignment statistics and base coverage were obtained with SAMtools31. Samples showed on 

average 92.4% of sequencing reads mapping to the reference genome and 73.3% were unique 

and properly paired with their complementary sequence. Total gene expression abundance was 

quantified using unique and properly paired reads using HTseq32. Genes with total count 

abundance less than 168 were removed from further analysis to reduce the number of genes with 

low expression, leaving 16,121 gene transcripts for eQTL analysis.  

RNA-seq count normalization and transformation 

Expressed gene counts were normalized using the trimmed mean of M-values (TMM) to 

reduce systematic technical biases of sequenced transcripts33. TMM normalization has been 

shown to control false positive associations34. The normalized gene counts were then 

transformed to follow an approximately Gaussian distribution by calculating the log counts per 

million (log-cpm) as described in Law et. al.35. Briefly, a linear model was fit to obtain the 

expected log-cpm for each gene, 𝐸(𝑦) = 𝑥𝛽, where y are the log-cpm, 𝑥 is a vector of ones and 

𝛽 is a vector of estimated regression coefficients. The residual standard deviations for each gene 

and their calculated average log-cpm were used to estimate the mean variance trend, 𝑤̂, by fitting 

a LOWESS curve35. Variance coefficients were standardized to keep similar scales for residual 

variance and additive variance: 
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where, 𝒘𝒔𝒕𝒅̂ are the variance coefficients, 𝑛 the total number of animals, and 𝒘̂, the estimated 

mean variance trend. The normalized log-cpm were used as the response variable, 𝒚, and the 

variance coefficients, 𝒘𝒔𝒕𝒅̂, to model heterogeneity of error variance in the eQTL scan. This 

approach accounts for the mean variance relationship of each gene expression instead of 

assuming equal variance for all observations. 

Heritability of phenotype and gene expression 

A genomic best-linear unbiased prediction (GBLUP) model21,22 was used to estimate the 

heritability of each phenotype and gene expression by fitting the following equation:  

 𝒚 = 𝑋𝒃 + 𝒂 + 𝒆, (2) 

where, 𝒚 is a vector with measurements of a phenotype for each animal when estimating 

phenotypic heritability, and a vector with normalized log-cpm gene expression when estimating 

the heritability of gene expression. 𝑋 is an incidence matrix of fixed effects including sex and 

additional covariates unique to each phenotype26,36, and includes the transcriptional profiling 

selection scheme (i.e. within litter and sex extreme for loin muscle area or back fat thickness) 

when analyzing gene expression. The vector 𝒃 contains the estimated fixed effect, 𝒂 is a vector 

of random additive genetic effects and 𝒆 is a vector of random residual errors. The additive 

genetic effects are assumed 𝒂~𝑁(0, 𝐺𝜎𝑎
2) with the genomic relationship matrix37, 𝐺 = 𝑍𝑍′. 𝑍 is 

a matrix of normalized SNP genotypes, with elements: 

 
𝑍 =

𝑀−2𝑝

√∑(2𝒑(1−𝒑))

, 
(3) 
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where, 𝑴 is the matrix of SNP genotypes and 𝒑 is a vector with the frequency of each reference 

allele. The error term is 𝒆~𝑁(0, 𝜎𝑒
2 𝑑𝑖𝑎𝑔(𝒘𝒔𝒕𝒅̂) ) with a variance inversely proportional to the 

variance coefficients, 𝒘𝒔𝒕𝒅̂. These variance coefficients account for the heteroskedasticity across 

genes with different expression. The heritability of gene expressions were calculated by taking 

the ratio of the variance of the additive genetic effects to the total phenotypic variance, ℎ2 =

𝜎𝑎
2  (𝜎𝑎

2 +  𝜎𝑒
2)⁄ .  

Statistical significance of heritability was determined using a likelihood ratio test, 𝐿𝑅 =

2[𝑙𝑜𝑔𝐿(𝜃) − 𝑙𝑜𝑔𝐿(𝜃0̂)], comparing the likelihood of the model represented in Eq. 1 (𝐿(𝜃)) and 

the likelihood of a null model that does not include the genetic additive effect (𝐿(𝜃0̂)). Testing 

the null hypothesis 𝜎𝑎
2 = 0 is equivalent to testing ℎ2 = 0. The likelihood ratios were compared 

to a chi-squared distribution with one degree of freedom and the resulting p-value divided by 2 to 

account for the asymptotic distribution of the likelihood ratios that tend to follow a mixture of 

chi-square distributions with different degrees of freedom38. Multiple test corrections were 

performed using a FDR of 0.0139. Differences in heritability between local and distant eQTL 

were determined with Wilcoxon rank sum test40.  

Genome wide association 

The SNP effects, 𝒈̂, and their variances 𝑉𝑎𝑟(𝒈̂) were estimated as a linear transformation 

of the BLUP breeding values, 𝒂̂, from Eq. 241,42. A test statistic for the association of each 

marker with each phenotype or gene expression measure is computed by standardizing the SNP 

effects: 

 𝑻 =
𝒈̂

√𝑉𝑎𝑟(𝒈̂)
 , (4) 
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The p-values associated with this 𝑻 test statistic were calculated using the Gaussian cumulative 

distribution function, Φ, as follows: 

 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2[1 − 𝛷(|𝑻|)], (5) 

and subject to multiple test corrections per each gene expression (FDR  0.01)39.   

 It has been demonstrated41,42 that the 𝑻 test statistics and p-values resulting from Eq. 4 

and 5 are equivalent to those obtained from fitting a single marker model, specifically the 

Efficient Mixed-Model Association (EMMA) model43. 

Local and distant regulators 

 Due to low SNP density and long-range linkage disequilibrium in this pig population, 

distinguishing local versus distant regulation of gene expression is difficult. We applied the 

following algorithm to classify putative eQTL as local or distant regulators of a gene’s 

expression: 

1) An eQTL was defined as any gene with at least one marker association surpassing the 

significance threshold (FDR  0.01). 

2) The plausible position range of each eQTL was defined by the position of the first 

significant marker at the beginning of the QTL and last significant marker at the end of 

the QTL. If the eQTL had only one marker association the position of the marker was 

used. 

3) Given the mapped position of the gene profile (start and end position of the transcript) 

there are several possibilities 

a. The associated eQTL plausible position range overlaps totally or partially: Local 

eQTL 
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b. The associated eQTL is on a different chromosome: Distant eQTL 

c. The associated eQTL is on the same chromosome but does not overlap: 

i. There are non-significant SNP (FDR ≥ 0.01). between the mapped 

position of the gene profile and its associated eQTL range: Distant eQTL 

ii. There are no SNP between gene and eQTL range (including the filtered 

SNP due to high LD): Plausible Local 

Co-localization analysis 

 The genomic positions of the mapped eQTL were co-localized with pQTL previously 

identified for the F2 MSUPRP for growth, carcass composition and meat quality traits. An eQTL 

was considered co-localized if its QTL position overlapped the mapped position of a pQTL. The 

statistical significance of each co-localized eQTL with pQTL was determined through a 

conditional analysis that tested the effect of the most significant marker associated with the 

pQTL on the co-localized eQTL gene expression, as follows:  

 𝒚 = 𝑋𝑏 + 𝒁𝑺𝑵𝑷𝑏𝑆𝑁𝑃  +  𝒂 + 𝒆, (6) 

where, 𝒚 is the expression of the co-localized eQTL gene. The 𝑋, 𝒃, 𝒂 𝑎𝑛𝑑 𝒆 were previously 

described in Eq. 2. 𝒁𝑺𝑵𝑷 is a vector of standardized marker genotypes for the pQTL peak 

marker, co-localized with eQTL gene, and 𝑏𝑆𝑁𝑃 the estimated marker effect. Type I error rate of 

0.05 and Bonferroni p-value cutoff based on the number of tests performed (p-value ≤ 5.952e-

04) was used to determine SNP effect significance. We also considered the effect the peak pQTL 

marker had on the eQTL peak by performing a linear transformation of the BLUP breeding 

values from Eq. 6 to estimate the individual SNP effects and tested their significance as 

described in Eq. 4 and 5. Multiple test corrections were performed using an FDR  0.0139. If 
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fitting the top pQTL marker completely eliminated the eQTL peak, the two QTL were 

considered to be significantly co-localized. The proportion of variance explained by the peak 

pQTL markers for each co-localized eQTL was estimated as described in Casiro et al.26. Briefly, 

the variance associated with the co-localized peak pQTL marker, 𝜎𝑆𝑁𝑃
2 , was estimated as: 

 𝜎𝑆𝑁𝑃
2̂ =  𝑏2 𝑣𝑎𝑟(𝑍𝑆𝑁𝑃), (7) 

where, 𝑏2 is the calculated peak pQTL marker effect from Eq. 6, and the proportion of gene 

expression variance accounted for by the co-localized pQTL peak SNP is 

𝜎𝑆𝑁𝑃
2̂ (𝜎𝑆𝑁𝑃

2̂ + 𝜎𝑎
2̂ +  𝜎𝑒

2̂) ⁄ . The estimated additive genetic variance, 𝜎𝑎
2, and error variance, 𝜎𝑒

2, 

is obtained after fitting equation 6. Equations 6 and 7 were also used to estimate the proportion 

of gene expression variance explained by the PRKAG3 T30N SNP for all identified eQTL to 

uncover eQTL significantly associated with PRKAG3 and the proportion of phenotypic variance 

explained for meat quality phenotypes with an associated pQTL on SSC15.  

RT-qPCR  

To verify the expression of CHRNA9, 28 animals were selected based on the genotypes 

of the peak eQTL SNP (10 animals per genotype equally weighted by sex except for the AA 

genotype that had only 8 animals, 4 per sex). Total RNA was extracted from the longissimus 

muscle samples as described above, and 2µg was reverse transcribed using the High Capacity 

cDNA Reverse Transcriptase Kit with RNase inhibitor (Applied Biosystems, Foster City, CA). A 

custom Taqman Gene Expression Assay (ThermoFisher Scientific, Waltham, MA) was designed 

for CHRNA9 using pig RNA sequence to span exons 4 and 5 (determined based on the structure 

of the human CHRNA9 gene, Accession No. AC118275). The GeNorm44 algorithm was used to 

select two reference genes, PPIA (ThermoFisher Scientific Assay No. Ss03394781_g1) and 
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SDHA (ThermoFisher Scientific Assay No. Ss03376909_u1), with the highest gene-stabilizing 

measure to normalize the expression of CHRNA9. RT-qPCR was performed in triplicate using 50 

ng cDNA and TaqMan Gene Expression Master Mix for a final volume of 20 µl. Assays were 

run on a StepOnePlus Real-Time PCR System (Applied Biosystems). The cycling conditions 

were 52ºC for 2 min, 95ºC for 10 min followed by 50 cycles of 95ºC for 15 s and 60ºC for 1 s. 

∆Ct values were calculated as the mean difference between the geometric mean of the reference 

genes and the target genes. To verify the RNA-seq results, the effect of the peak eQTL marker 

for CHRNA9 was measured using Eq. 6 with the response variable being the ∆Ct transcript 

abundance. Analysis of variance with a type I error rate of 0.05 was used to determine significant 

additive and dominance effects of the peak CHRNA9 SNP. 

RESULTS 

Identification of eQTL 

A genome wide association study (GWAS) was conducted using 23,162 SNP markers 

and 15,223 transcript abundance profiles for 168 F2 pigs. The GWAS identified 334 eQTL 

(3,094 significant gene marker associations; whole genome FDR  0.01 per gene, p-value  

2.04e-04 ± 3.86e-04) for 321 gene transcripts and 2,523 molecular markers (Supplementary 

Table 2.S2). The number of SNP associated with variation in transcript abundance was on 

average 9.26 ± 15.14, and the size of each eQTL peak was on average 12.04 ± 22.90 Mb (Table 

2.1).  

All autosomes had associated eQTL, with SSC9 containing the most associations (42 

eQTL). Two chromosomes contained a putative hotspot; SSC9 (ASGA0044684; SSC9:125.0 

Mb) and SSC15 (H3GA0052416; SSC15:121.8 Mb). A putative hotspot is defined as a single 

marker associated with multiple gene expressions, and we considered a single marker associated 
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with more than ten genes to be a putative hotspot. ASGA0044684 was associated with 25 

transcripts, and H3GA0052416 with 11 transcripts (FDR  0.01). Both putative hotspots mapped 

to non-coding regions, an intron variant of the ral guanine nucleotide dissociation stimulator like 

1 (RGL1) gene on SSC9, and an intergenic variant on SSC15.  

Table 2.1. eQTL summary among regulator types. 

 Gene Regulator N1 Min2 Max3 Mean4 SD5 

Average length of eQTL plausible position rangea 

 All regulators 334 0 175.20 12.04 22.90 

 Local 166 0 175.20 22.51 28.19 

 Plausible Local 22 0 11.44 1.43 2.82 

 Distant Same Chromosome 59 0 25.55 2.10 5.40 

 Distant 87 0 69.76 1.47 7.92 

Average distance from eQTL to gene transcript positiona 

 All regulators 334 1.75e-3 104.80 3.64 12.23 

 Local 166 1.75e-3 25.12 1.92 3.88 

 Plausible Local 22 5.70e-3 1.52 0.24 0.41 

 Distant Same 

Chromosome 

59 
8.23e-3 104.80 9.78 23.25 

 Distant 87 - - - - 

Number of SNP associations 

 All regulators 334 1 105 9.26 15.14 

 Local 166 1 105 16.77 18.60 

 Plausible Local 22 1 14 2.95 3.12 

 Distant Same 

Chromosome 

59 
1 17 2.01 2.37 

 Distant 87 1 5 1.46 0.97 

Heritability       

 All regulators 334 5.47e-10 0.97 0.32 0.23 

 Local 166 5.47e-10 0.97 0.419 0.22 

 Plausible Local 22 0.04 0.63 0.32 0.17 

 Distant Same 

Chromosome 

59 
1.19e-09 0.74 0.27 0.22 

 Distant 87 1.34e-09 0.76 0.17 0.17 
aValues shown in mega bases. 1Number of eQTL. 2Minimum value. 3Maximum value. 
4Average value. 5Standard deviation of value. 
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Local versus distant regulators of gene expression 

For each of the eQTL peaks, a plausible position range delimited by the first and last 

significant marker (FDR  0.01) was identified and compared to the mapped position of the 

associated gene transcript to distinguish between local and distant regulators of gene expression 

(Figures 2.1 and 2.2). A classification of local acting regulator of gene expression was 

determined if the position of the associated gene transcript overlapped the eQTL plausible 

position range (Figure 2.1). We identified 166 local regulators of gene expression (Figure 2.2, 

black associations) 

The average distance from the mid gene position and peak eQTL SNP for local regulators 

was 1.92 ± 3.88 Mb, however, due to the large plausible position range for some local eQTL (up 

to 175 Mb) the maximum distance for a local regulator was 25 Mb (Table 2.1). If the gene 

mapped to the same chromosome but fell outside the range of its associated eQTL with markers 

below the significance threshold between the gene and eQTL positions, the eQTL was 

considered to be a distant regulator on the same chromosome as the associated gene (Figure 2.1). 

A total of 59 distant regulators on the same chromosome as the associated gene were identified 

(Figure 2.2, green associations) with their eQTL peak at an average distance of 9.78 ± 23.25 Mb 

from the associated gene position (Table 2.1). However, in situations where the area between the 

eQTL range and the associated gene transcript was found to be devoid of markers, the eQTL was 

considered to be a plausible local regulator (Figure 2.1). Under this classification, 22 plausibly 

local regulators of gene expression were identified (Figure 2.2, yellow associations) with their 

eQTL peak at an average distance of  0.24 ± 0.41 Mb from the associated gene position (Table 

2.1). An eQTL mapped to a different chromosome than its associated gene transcript was 

classified as a distant regulator (Figure 2.1). We observed 87 distant regulators of gene 
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expression (Figure 2.2, blue associations). A non-parametric test showed local eQTL had 

significantly higher numbers of associated SNP than distant eQTL (p-value  2.20e-16).  

 

Figure 2.1 Manhattan plots illustrating the classification of different types of gene expression 

regulation based on eQTL position. The x-axis represents the absolute genomic position of the 

marker and the y-axis the significance of the association with the gene transcript, -log10 q-value. 

The two blue vertical dotted lines delimit the eQTL plausible position range (eQTL-PPR), and 

the vertical red dotted line indicates the absolute position of the gene transcript. Local-acting 

regulator: the position of the gene transcript falls within or overlaps the eQTL-PPR. Plausible 

local regulator: the eQTL-PPR does not contain or overlap the gene transcript and the density of 

SNP in the region separating the two is zero. Distant-acting regulator on the same chromosome: 

the position of the gene transcript falls outside the specified eQTL-PPR but on the same 

chromosome and the SNPs between the genomic position of the gene and the eQTL-PPR do not 

surpassing the significance threshold. Distant-acting regulator: the eQTL-PPR is on a different 

chromosome than the genomic position of the associated gene transcript. 
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Figure 2.2 eQTL map. The y-axis represents the absolute genomic position of the gene and the 

x-axis represents the absolute genomic position of its associated SNP marker. Associations 

aligning on the diagonal are eQTL found on the same chromosome as the gene. A plausible 

position range was identified for each eQTL peak based on the peak’s flanking markers, and 

local regulation determined when the gene position overlapped this range, shown in black. 

Plausible local regulators of gene expression (described in Figure 2.1) are shown in yellow. The 

eQTL peaks shown in green are distant regulators that map to the same chromosome as their 

associated gene. Distant regulators mapping to a different chromosome than the associated gene 

are shown in blue. The eQTL shown in red are potential putative hotspots on SSC9 and SSC15. 

 

Heritability of gene expression 

 

Heritability (h2) was estimated for all gene transcripts with 344 exhibiting significantly 

heritable expression (FDR  0.01, p-value  2.27e-04). The mean h2 for significantly heritable 

transcripts was 0.51 ± 0.13, whereas the mean h2 for other transcripts was 0.09 ± 0.12 (Table 

2.2).  The relationship between the estimated h2 of gene expression and its significance is shown 

in Figure 2.3. A significant enrichment of genes associated with an eQTL was observed for the 

significantly heritable gene transcripts (p-value  2.2e-16; shown in red, Figure 2.3). The h2 of 

genes with an associated eQTL that were not significantly heritable was on average 0.21 ± 0.16 
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(shown in yellow, Figure 2.3 and summarized in Table 2.2), whereas the group of significantly 

heritable genes associated with an eQTL had a mean h2 of 0.57 ± 0.15 (Table 2.2). Mean 

heritability among the different regulator types was higher in the group of eQTL associated with 

local acting regulation, 0.42 ± 0.22, and lowest in eQTL with distant acting regulation, 0.17 ± 

0.17 (Table 2.1). Non-parametric test showed a significant difference between local and distant 

heritabilities (p-value  1.08e-14).  

 

Figure 2.3 Heritability of transcript profiles. Heritability of genes is shown on the x-axis and p-

values from the likelihood ratio test (LRT) for significant heritable expression are on the y-axis. 

A total of 344 gene expression transcripts were found to be heritable (shown in blue and red, 

FDR < 0.01). A significant enrichment of genes with associated eQTL was observed among the 

heritable genes (103 genes; p-value  2.2e-16; shown in red).  The 218 genes associated with an 

eQTL that did not surpass the threshold for significant heritability are shown in yellow. 
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Phenotypic QTL 

Genomic regions significantly associated with growth36, meat quality and carcass 

composition26 traits have been previously identified in our MSUPRP. However, these analyses 

used an earlier assembly of the pig genome (Sscrofa10.2), therefore, we reanalyzed the 67 

phenotypic traits for the F2 population (960 animals) following previous methods21,22 to generate 

an updated QTL map using the most current genome assembly (Sscrofa 11.1).  Our QTL analysis 

of 29 growth traits identified 14 pQTL (Supplementary Table 2.S3, FDR  0.05, p-value  2.50e-

04) for which seven were confirmed from Duarte et al.36 and five exhibited a different peak SNP, 

in part because one of the SNP on SSC6 (ALGA0122657) did not have a genomic position in the 

new genome build. We were unable to confirm two pQTL on SSC2 for 10th rib backfat at 16-

weeks and last rib backfat at 19-weeks, and one pQTL on SSC3 for birth weight that were 

reported in Duarte et al.36. However, we identified two new pQTL for loin muscle area at 16-

weeks on SSC6 and last rib backfat at 10-weeks on SSC12. Our QTL analysis for carcass 

composition and meat quality traits identified 29 pQTL (Supplementary Table 2.S3, FDR  

Table 2.2. Heritability summary for all genes and genes with an associated eQTL. 

 
Significant h2 N 

Heritability (h2) 

 Min Max Mean SD 

All Genes 

 Yes1 344 0.184 0.968 0.508 0.133 

 No 14,879 2.210e-19 0.785 0.091 0.123 

eQTL Genes 

 Yes1 103 0.184 0.968 0.574 0.147 

 No 218 5.475e-10 0.745 0.206 0.165 

1FDR  0.01 
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0.05). Fourteen pQTL were confirmed from Casiro et al.26 and eight exhibited a different peak 

SNP, in part because three SNP (SSC6: ALGA0122657, SSC11: M1GA0015491 and SSC15: 

MARC0047188) did not have genomic positions in the new genome build. Seven new pQTL 

were identified for cook yield (SSC5 and SSC8), last lumbar backfat (SSC4, SSC9 and SSC10), 

dressing percent (SSC11) and loin weight (SSC11; Supplementary Table 2.S3, FDR  0.05). In 

total, 43 pQTL were mapped using the Sscrofa11.1 genome assembly, including six QTL for 10th 

rib backfat from 13 to 22 weeks of age, seven QTL for last rib backfat from 13 to 22 weeks of 

age, one QTL for loin muscle area at 16 weeks of age, 13 QTL for carcass composition traits and 

16 QTL for meat quality traits. 

Co-localization of phenotypic QTL with expression QTL  

The association of eQTL co-localized with pQTL was performed through conditional 

analysis of transcript abundance, which fixed the peak pQTL SNP, to elucidate eQTL 

significantly associated with phenotypic traits. Manhattan plots of eQTL co-localized with pQTL 

are shown in Figure 2.4 for meat quality and carcass composition traits, and Figure 2.5 for 

growth traits. The conditional analysis tested 53 eQTL (orange associations) co-localized with 34 

pQTL (blue associations) for ten growth and 11 meat quality and carcass composition traits 

(Figures 2.4 and 2.5, Table 2.3 and Supplementary Table 2.S4). A total of 16 eQTL were 

significantly associated with 21 pQTL, where conditioning upon the peak pQTL marker resulted 

in the complete removal of eQTL significance (p-value  5.95e-04 for SNP effect and FDR  

0.01 for eQTL significance; black associations in Figures 2.4 and 2.5; Table 2.4 and 

Supplementary Table 2.S4). Three pQTL regions common among correlated phenotypes co-

localized with eQTL, resulting in eQTL significantly associated with variation for multiple 

phenotypes. 
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Table 2.3 Phenotypic QTL co-localized with expression QTL. 

 

1Phenotypes associated with pQTL. BF is backfat. SP Tenderness includes sensory panel tenderness and overall 

tenderness. Growth BF includes ultrasound last-rib backfat at 10, 13 and 22 weeks and Carcass BF includes carcass 

10th-rib and last-rib backfat. Meat Quality includes  the phenotypes for sensory panel juiciness, tenderness and 

overall tenderness, Warner Bratzler Shear Force, Cook Yield, Drip Loss and 24-hour pH. Protein is protein percent. 
2Peak pQTL SNP (FDR  0.05) 3Effect of B allele for peak pQTL SNP on phenotype, positive increases phenotypic 

trait. 4Proportion of phenotypic variance explained by peak SNP. 5Number of eQTL co-localized with the pQTL; 
*Contains at least one eQTL significantly associated with the phenotype.  

  

Phenotype1 SSC Peak SNP2 E3 VS4 h2 N5 

10th-Rib BF 1 ALGA0010839 + 0.03 0.45 1 

WBS 2 M1GA0002229 - 0.04 0.26 1* 

SP Tenderness 2 H3GA0005676 - 0.05 0.28-0.29 1* 

Last Lumbar BF 4 ASGA0092651 - 0.04 0.41 4 

Last-Rib BF 16-wk 5 ALGA0031990 + 0.03 0.47 1 

Cook Yield 5 MARC0036560 + 0.03 0.31 1 

Loin Muscle Area 16-wk 6 ASGA0105067 + 0.04 0.29 4* 

Growth and Carcass BF 6 ALGA0104402 - 0.04-0.07 0.35-0.57 6* 

10th-Rib BF 6 M1GA0008917 - 0.12 0.45 6* 

Loin Weight, Growth BF 6 ASGA0029651 -/+ 0.06 0.30-0.41 4* 

Number of Ribs 7 ALGA0043983 + 0.12 0.36 10 

Cook Yield 8 DRGA0008986 - 0.03 0.31 1 

Dressing % 11 M1GA0014839 + 0.03 0.24 2 

Loin Weight 11 ALGA0060368 - 0.03 0.30 2* 

Last-Rib BF10-wk 12 ASGA0054658 - 0.02 0.35 2 

Meat Quality, Protein 15 MARC0093624 -/+ 0.06-0.21 0.19-0.38 22* 

Meat Quality 15 H3GA0052416 + 0.04-0.07 0.07-0.29 16* 
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Table 2.4 Expression QTL significantly associated with phenotypic traits. 

 

Gene 
SSC 

Gene 

SSC 

eQTL 
Regulator2 E3 Phenotype4 

TEX9 1 15 Distant + Meat Quality, Protein 

FRMD8 2 2 Local − Tenderness 

PKP2 5 15 Distant − Meat Quality, Protein 

NQO1 6 15 Distant + Meat Quality, Protein 

HPN 6 6 Local + Loin Muscle Area 16-wk 

SSC6:104.081 6 6 Local − 
Carcass and Growth BF, 

Loin Weight 

SSX2IP 6 6 Local + Carcass BF, Loin Weight 

CEP128 7 15 Distant + 
Meat Quality, Protein 

Percent 

CHRNA9 8 15 Distant - Meat Quality, Protein 

PFKFB3 10 15 Distant − Meat Quality, Protein 

SSC11:2.191 11 11 Local − Loin Weight 

SUCLG2 13 15 Distant − Meat Quality, Protein 

CIT 14 15 Distant + Meat Quality, Protein 

CCDC60 14 15 Distant + Meat Quality, Protein 

MRLN 14 15 Distant − Meat Quality, Protein 

SSC15:48.941 15 15 Distant Same SSC + Meat Quality, Protein 
1Novel gene transcripts: Sus Scrofa chromosome and start position. 2Regulator type for eQTL, local is for eQTL 

containing mapped position of gene transcript, distant is for eQTL on a different SSC than associated transcript 

position and distant same SSC are eQTL on the same SSC as associated eQTL but not contained (Figure 2.1). 
3Effect of B allele for peak eQTL marker on the gene’s expression: positive increases and negative decreases the 

gene expression. 4Phenotypes significantly associated with the gene’s expression. Tenderness includes WBS and 

sensory panel tenderness and overall tenderness. Meat Quality includes  the phenotypes for sensory panel juiciness, 

tenderness and overall tenderness, Warner Bratzler Shear Force, Cook Yield, Drip Loss and 24-hour pH. Protein is 

protein percent. Growth BF includes ultrasound last-rib backfat at 10, 13 and 22 weeks and Carcass BF includes 

carcass 10th-rib and last-rib backfat. 
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Figure 2.4 Manhattan plots of meat quality and carcass composition pQTL co-localized with 

eQTL. The x-axis is the absolute genome position in mega bases. The y-axis is the negative base 

10 logarithm of q-values, with the red line representing the significance threshold. Manhattan 

plots in shades of blue are for the pQTL (FDR ≤ 0.05) and those in shades of orange are for the 

eQTL (FDR ≤ 0.01). SNP associated with an eQTL co-localizing with a pQTL, and whose 

association is no longer significant after performing the conditional analysis are shown in black. 
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Fig 2.5 Manhattan plots of growth pQTL co-localized with eQTL. The x-axis is the absolute 

genome position in mega bases. The y-axis is the negative base 10 logarithm of q-values, with 

the red line representing the significance threshold. Manhattan plots in shades of blue are for the 

pQTL (FDR ≤ 0.05) and those in shades of orange are for the eQTL (FDR ≤ 0.01). SNP 

associated with an eQTL co-localizing with a pQTL, and whose association is no longer 

significant after performing the conditional analysis are shown in black. 
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Meat quality traits exhibited phenotypic correlations as expected for these traits. WBS 

was negatively correlated with sensory panel scores (i.e.  juiciness, tenderness and overall-

tenderness) and cook yield, and positively correlated with protein percent (p-value  8e-05, 

Figure 2.6). Cook yield was negatively correlated with drip loss and positively correlated with 

24-hour pH and protein percent (p-value  8e-05, Figure 2.6). Phenotypes related to tenderness 

were associated with QTL on SSC2, and all eight of the aforementioned correlated meat quality 

phenotypes were associated with QTL mapped to SSC15 (Figure 2.4). A similar trend was 

observed for growth and carcass composition traits related to fat deposition and muscle weight 

where serial ultrasound measures for 10th and last rib backfat were positively correlated with 

carcass 10th-rib and last lumbar backfat, and negatively correlated with loin weight (p-value  

8e-05, Figure 2.6), and these traits were associated with QTL on SSC6 (Figures 2.4 and 2.5). 

Phenotypic QTL for growth and carcass composition traits associated with eQTL on 

SSC6 revealed two genomic regions. A 28.82 Mb region (SSC6:43.819-72.625 Mb) was 

associated with the hepsin gene (HSN) and loin muscle area at 16 weeks. A 53.33 Mb region 

(SSC6:99.932-153.261 Mb) was associated with a novel transcript (SSC6:104.08) and serial 

ultrasound measures of last rib backfat (at 10, 13, 16 and 22 weeks of age), 10th rib backfat at 13 

weeks of age, and carcass last lumbar backfat. The peak pQTL marker for loin muscle area at 16 

weeks of age, ASGA0105067, accounted for 4% of the phenotypic variance and 13.5% of the 

gene expression variance with increased loin muscle area associated with decreased expression 

of the HPN gene (Figure 2.7). The pQTL marker for backfat deposition, ALGA0104402, 

accounted for 5-7.1% of the phenotypic variance, and 10.1% of the gene expression variance, 

with increased expression of the novel transcript SSC6:104.08 associated with reduced backfat 

deposition (Figure 2.7). 
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Figure 2.6. Pearson correlations among phenotypic traits with an associated pQTL. Significant 

correlations are shaded in color, p-value  8e-05, with shades of red depicting negative 

correlations and shades of blue depicting positive correlations. 

Two additional pQTL for carcass composition phenotypes (carcass 10th rib backfat and 

loin weight) also mapped to the 53.33 Mb region on SSC6 and were significantly associated with 

SSC6:104.08 and SSX2IP. The peak pQTL marker for carcass 10th rib backfat (M1GA0008917) 
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accounted for 12.2% of the phenotypic variance with increased expression of SSC6:104.08 and 

SSX2IP associated with reduced 10th rib backfat. For loin weight, the peak pQTL marker 

(ASGA0029651) was associated with reduced loin weight and reduced expression of 

SSC6:104.08 and SSX2IP, accounting for 6.4% of the phenotypic variance and up to 12.7% of 

the transcript expression variance (Figure 2.7). A second pQTL for loin weight was mapped on 

SSC11 and was significantly associated with a novel transcript (SSC11:2.19), which coincides 

with the uncharacterized locus LOC110255792. The peak pQTL marker for loin weight on 

SSC11 (ALGA0060368) accounted for 2.7% of the phenotypic variance and 10.7% of the gene 

expression variance. Reduced loin weight was associated with reduced expression of the 

SSC11:2.19 transcript (Figure 2.7). 

 

Figure 2.7. Proportion of variance explained by peak pQTL SNP for phenotypes (blue) and gene 

transcript abundance (green). Traits are shown on the x-axis, and the proportion of phenotypic 

variance explained by the SNP marker is shown on the y-axis. Directionality of bar plots 

indicates SNP effect on phenotype or gene expression (i.e., increase or decrease). 
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Considering the pQTL for meat quality and carcass composition traits with their 

associated eQTL reveals two genomic regions of particular note. A 7.90 Mb region on 

SSC2:4.341-12.242 Mb was associated with the FERM domain-containing 8 gene (FRMD8) and 

WBS, sensory panel tenderness and overall tenderness phenotypes, and a 110.21 Mb region on 

SSC15:27.666-137.874 Mb was associated with 11 genes and eight meat quality or carcass 

composition phenotypes (Tables 2.3 and 2.4). Significant negative correlations were observed 

between WBS and all three sensory panel phenotypes as expected for these traits (r = -0.44  

0.14, p-value  8e-05, Figure 2.7); more force needed to break myofibers (i.e., higher shear force 

values) was correlated with lower meat tenderness based on subjective scores evaluated by a 

trained sensory panel. The peak pQTL markers, M1GA0002229 and H3GA0005676, for meat 

quality traits on SSC2 accounted for approximately five percent of the phenotypic variance and 

eight percent of FRMD8 gene expression variance (Figure 2.7) with increased expression of 

FRMD8 associated with increased sensory panel tenderness and overall tenderness scores and 

decreased WBS. High LD was observed between the two SNP (r = 0.64).  

Eleven of the eQTL significantly associated with phenotypes were distant regulators of 

gene expression, and all of these were also associated with the putative hotspot within the 110.21 

Mb region on SSC15. The SSC15 putative hotspot marker H3GA0052416 was the peak pQTL 

marker for sensory panel juiciness, tenderness and overall tenderness (Tables 2.3), as well as the 

peak eQTL marker for seven gene transcripts (Tables 2.4). The peak pQTL marker for WBS, 24-

hour pH, cook yield, drip loss and protein percent on SSC15 (MARC0093624) is in high LD 

with the putative hotspot marker (Pearson correlation 0.89). These results suggest a potential 

candidate variant(s) on SSC15 accounting for a significant portion of phenotypic variation for 

meat quality and carcass composition phenotypes, as well as individual gene expression 
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variation. Since these two markers are in high LD, the proportion of phenotypic and gene 

expression variance was estimated for the putative hotspot marker for all eight phenotypes and 

eleven gene transcripts including CCDC60, CEP128, CHRNA9, CIT, MRLN, NQO1, PFKFB3, 

PKP2, SUCLG2, TEX9, and a novel transcript SSC15:48.94 Mb (mapped to the uncharacterized 

locus LOC110257028). The H3GA0052416 marker accounted for 4-16% of the phenotypic 

variance and approximately 23% of the gene expression variance (Figure 2.7). Increased 

expression of the eleven genes associated with the B allele of the putative hotspot was also 

associated with an increase in sensory panel scores and drip loss, and a decrease in WBS, 24-

hour pH, cook yield and protein percent (Figure 2.7).  

The gene protein kinase AMP-activated non-catalytic subunit gamma 3 (PRKAG3) maps 

to this region of SSC15, and variants of PRKAG3 have been implicated as affecting meat quality 

phenotypes24,25. We genotyped all F2 animals for two PRKAG3 coding SNP26 and included these 

SNP in our GWAS, however, the eQTL scan did not reveal associations with either of the 

PRKAG3 markers. To further asses the effect of PRKAG3, we performed a conditional analysis 

to estimate the significance of these markers on identified eQTL (Supplementary Table 2.S5). 

One gene, NQO1,was significantly associated with the PRKAG3 T30N SNP (FDR  0.01), 

where T30N accounted for up to 12% of the gene expression variance. Given the high signal of 

the putative hotspot on SSC15 for various genes and meat quality traits, we estimated the 

proportion of phenotypic variance explained by both the putative hotspot and the PRKAG3 T30N 

marker for meat quality and carcass composition traits (Figure 2.8). The PRKAG3 T30N marker 

accounted for 0.1-2% of phenotypic variance for meat quality traits, whereas the putative hotspot 

marker accounted for 2-14%. This analysis shows the putative hotspot accounts for a greater 

proportion of phenotypic variance than the PRKAG3 T30N SNP.  
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Figure 2.8 Proportion of phenotypic variance explained by PRKAG3 T30N SNP and putative 

hotspot SNP H3GA0052416 for meat quality traits mapped to SSC15. Traits are shown on the x-

axis, and the proportion of phenotypic variance explained by the SNP marker is shown on the y-

axis. Directionality of bar plots indicates the SNP effect on the phenotype. 

RT-qPCR confirmation of CHRNA9 

The GBLUP-based GWA model identified 24 eQTL mapped to a 125 Mb region on 

SSC15. Eleven of these eQTL co-localized with pQTL for meat quality and carcass composition 

traits, and among these the CHRNA9 gene was selected for verification using RT-qPCR (Figure 

2.7). CHRNA9, is implicated in catecholamine secretion and the adaptive response to chronic 

stress45, and is essential for muscle contraction46. The genomic position of the CHRNA9 gene is 

on SSC8: 31.44-31.51Mb, and the eQTL associated with this gene mapped to SSC15, therefore 

exhibiting distant acting regulation of CHRNA9 gene expression. RT-qPCR was performed to 

confirm the expression pattern of the CHRNA9 gene in longissimus dorsi muscle. Pearson 

correlations between the ∆Ct and RNA-seq log-cpm for CHRNA9 transcript abundance was -

0.58. The marker DIAS0000678 was significantly associated with both RNA-seq and ∆Ct for 
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CHRNA9 (p-value  4.23e-06), exhibiting a significant dominant effect with the B allele 

associated with increased CHRNA9 transcript abundance (p-value  0.05, Table 2.5). 

Table 2.5 Comparison of RT-qPCR and RNA-seq for CHRNA9 gene expression. 

 Estimate 
Standard 

Error 

Test 

Statistic 
p-value 

RT-qPCR1     

DIAS0000678 150.89 30.63 4.93 8.37e-07 

Contrasts     

A vs B 2.19 0.67 3.26 1.12e-03 

AA vs AB 0.86 0.68 1.26 2.08-e01 

AA vs BB 3.32 0.71 4.69 2.66e-06 

AB vs BB 2.46 0.73 3.37 7.60e-04 

RNA-seq2     

DIAS0000678 -141.55 30.77 -4.60 4.23e-06 

Contrasts     

A vs B -135 0.66 -2.03 4.27e-02 

AA vs AB -0.89 0.56 -1.58 1.13-e01 

AA vs BB -3.07 0.70 -4.07 1.05e-05 

AB vs BB -2.17 0.63 -3.46 5.38e-04 
1∆Ct values for CHRNA9 gene expression obtained with RT-qPCR. 2Log-cpm for CHRNA9 gene expression 

obtained with RNA-seq. 

DISCUSSION 

For this study, we identified 334 eQTL for longissimus dorsi muscle transcripts from pigs 

in an F2 resource population. We declared local versus distant eQTL effects based on LD 

stucture, identifying 188 local and 146 distant regulators of gene expression. Heritability of gene 

expression was estimated in this study with 344 gene transcripts exhibiting significant heritable 

expression. A joint analysis of eQTL with pQTL showed four genomic regions associated with 

variation in gene transcript abundance (N=16) and variation in phenotypes for growth (SSC6), 

carcass composition (SSC6, SSC11 and SSC15) and meat quality traits (SSC2 and SSC15). Most 

eQTL assocated with pQTL were distant regulators of gene expression (69%). These distant 

regulators mapped to a putative hotspot on SSC15 associated with meat quality and carcass 
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composition traits. The remaining three genomic regions associated with variation in gene 

transcript abundance and trait phenotypes contained local regulators of gene expression. 

When an eQTL and the associated gene are located on the same chromosome, the low 

resolution of the swine genome due to long range linkage disequilibrium47,48 limits the ability to 

distinguish between cis-acting and trans-acting eQTL. Most eQTL association studies use a fixed 

distance threshold between the position of the eQTL peak and the gene transcript to define cis-

acting (i.e., local) versus trans-acting (i.e., distant) regulation. For instance, distance thresholds 

between 1 Mb and 10 Mb have been used in recent pig eQTL maps12,15,49–52. Human eQTL scans 

have used more conservative distance thresholds of 100kb - 500kb between gene position and 

eQTL to declare local regulation53,54. A shorter local threshold is logical for human eQTL studies 

because they typically show higher resolution due to increased SNP density (millions of 

genotyped markers53), and the extent of LD is much more limited than in livestock populations 

due to greater genetic diversity in human populations54. In this study, we present an alternative to 

the use of a fixed distance for declaring local versus distant eQTL effects. This is important 

because the range of a mapped eQTL will depend on the LD pattern at the QTL genomic 

position. Building upon previous approaches to determine local regulation13,17,55,56 in eQTL 

linkage maps, this study considered the significance of each individual marker surrounding the 

plausible position range of the eQTL peak to distinguish between local and distant modes of 

action. In cases where there are no genotyped markers between the plausible position of the 

eQTL peak and the position of the associated gene, there is not sufficient information to 

determine local versus distant; here we consider this scenario as plausible local regulation. We 

note that in our study the median distance between plausible local eQTL regulators and their 

associated gene was 24kb, which is a shorter distance than eQTL designated as local for other 
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pig eQTL mapping studies12,15,49–52. Therefore, it is feasible that most of these regulators may be 

acting locally, since cis-acting transcription factor binding sites have been found located ~100kb 

from the mapped position of a gene transcript57. However, without a more dense SNP set and/or 

a larger population size, we cannot definitively identify the mode of action of these eQTL. A 

potential way to further investigate if these eQTL are acting locally or distantly would be 

through allele-specific expression analyses16.  

Heritability of gene expression contributes to our understanding of the inheritance of 

gene expression regulation. Estimating the heritability of gene expression is common in human 

eQTL studies to elucidate the genetic contribution of gene expression variation and its influence 

on the divergence of complex traits53,54,58,59. Human studies have shown higher heritability 

estimates for housekeeping genes and genes with local eQTL, whereas genes with distant eQTL 

tend to exhibit lower heritability53,58,59. Bryois et al.58 suggested a fraction of missing heritability 

may be due to common variants with both local and distant effects on gene expression, with the 

latter being of small effect size. Examples of local eQTL with large distant effects in human 

studies include variants influencing expression of transcription factor genes or histone 

methyltransferase genes58. Heritability of gene expression has not been emphasized in pig eQTL 

studies, with the exception of one report where heritability was used as a filtering criteria to 

prioritize genes56. In this study, we estimated narrow sense heritability for all gene expression 

profiles and determined significance with likelihood ratio tests. Among all transcripts, only 2% 

exhibited significant heritable expression (FDR  0.01). However, the significantly heritable 

transcripts were enriched among eQTL, with 35% of eQTL exhibiting significantly heritable 

expression. Consistent with previous studies in humans, the observed heritabilities for genes with 

distant eQTL were significantly lower than for locally regulated genes53. This trend is consistent 
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with previous findings where genes influenced by many distant factors of small effect tend to 

exhibit lower heritability than genes with local regulation. Testing for significant additive genetic 

effects of transcript abundance in outbred animal populations requires large sample size to 

increase power to detect smaller effects. In our GWA scan, we were able to capture the variance 

associated with gene transcripts subject to genetic control with low heritability. A previous eQTL 

scan performed with 57 muscle tissue samples from an F2 swine population observed an average 

heritability of 0.45 for eQTL genes56 . While this value is greater than the average heritability 

observed in our study (0.32), Liaubet et al.56 limited the eQTL scan to gene transcripts with 

heritability greater than 0.05. The use of a heritability threshold to filter genes in eQTL studies 

may miss potential associations, especially those of low effect such as distant eQTL, which we 

show to have lower average heritability estimates.  

We identified three gene transcripts that were associated with pQTL for fat deposition 

and carcass composition traits on SSC6. One of these eQTL genes, synovial sarcoma X 

breakpoint 2 interacting protein (SSX2IP), was significantly associated with pQTL for carcass 

10th rib backfat and loin weight. An eQTL was previously identified for this gene on SSC6 using 

microarray data from the same animals used in this study, and consistent with our results 

Peñagaricano et al.60 reported a negative causal effect of increased expression of SSX2IP on 

backfat thickness60. Interestingly, SSX2IP has been associated with waist to hip ratio, a common 

measure of body fat distribution, in women of African descent61.  

Genes associated with pQTL for tenderness phenotypes on SSC2 or meat quality 

phenotypes on SSC15 share biological processes known to directly influence the organoleptic 

properties of meat, including calcium signaling (FRMD8, MRLN, PKP2 and CHRNA9), energy 

metabolism (SUCLG2 and PFKFB3), redox hemostasis (NQO1 and CEP128) and cytoskeletal 
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structure (CIT and CCDC60). One of the genes related to calcium signaling is the FERM domain 

containing 8 (FRMD8) gene associated with pQTL for WBS, and sensory panel tenderness and 

overall tenderness on SSC2. Two independent GWAS, one in a crossbred commercial pig 

population62 and another in a multigenerational Landrace-Duroc-Yorkshire composite 

population63, reported QTL for slice shear force (a procedure similar to WBS) in the same 

genomic region as this study. Zhang et al., 62 identified FRMD8 to be one of four genes in the 

region to play a role in pork tenderization and the peak SNP reported by Nonneman et al. 63, was 

the same peak SNP identified in our analysis (H3GA0005672). We showed with our conditional 

analysis that increased expression of FRMD8 was associated with improvements in pork 

tenderness. FRMD8 is a member of the FERM (Four-point-one, Ezrin, Radixin, Meosin) protein 

superfamily known to possess both structural and signaling functions including numerous 

protein-binding interactions mainly in the cytoskeleton of cells 64. This includes interactions with 

transmembrane ion channels and membrane lipids including the phosphatidylinositol 4,5-

bisphosphate (PIP2). PIP2 is the precursor of inositol 1,4,5-triphosphate (IP3) involved in  Ca2+ 

signaling65–67 and IP3 has been suggested as a potential indicator of meat tenderness in beef 

cattle68. The activation of the PIP2 Ca2+ signaling system controls diverse cellular processes in 

numerous tissues69. In skeletal muscle the sarcoplasmic reticulum ryanodine receptor is the Ca2+ 

release channel, however PIP2 has been localized to the transverse tubular membrane and IP3 

receptors have been found in differentiated muscle fibers, and implicated in excitation-

contraction coupling (for review see Csernoch et al.70). FRMD8  may play a role in Ca2+ 

signaling and excitation-contraction coupling of skeletal muscles through interactions with PIP2.  

Similar to FRMD8, the MRLN gene is also implicated in muscle contraction. MRLN 

encodes myoregulin, a micropeptide inhibitor of the sarco/endoplasmic reticulum Ca+2 ATPase 
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(SERCA). SERCA regulates relaxation after muscle contraction, specifically, it pumps Ca+2 back 

to the sarcoplasmic reticulum. Binding myoregulin to SERCA lowers its affinity to Ca+2, 

reducing the rate of Ca+2 reuptake into the sarcoplasmic reticulum71. Increased expression of 

MRLN was associated with improvements in pork tenderization, decreased 24-hour pH and 

increased drip loss in our study. The observed effect of MRLN gene expression on meat quality 

phenotypes may be due to its involvement in regulating muscle contractility and calcium 

signaling which have a direct effect on postmortem proteolysis.  

Additional genes implicated in calcium signaling and associated with meat quality 

phenotypes and the putative hotspot were the PKP2 and CHRNA9 genes. PKP2 encodes a 

plakophilin protein known to localize to cell desmosomes and nuclei and play a role in linking 

cadherins to intermediate filaments in the cytoskeleton. In mouse cardiac muscle, PKP2 has been 

shown to regulate the transcription of genes controlling intercellular calcium homeostasis, and 

reduced expression of PKP2 decreases the expression of several calcium signaling genes 

including the cardiac muscle ryanodine receptor72. In this study, increased expression of PKP2 

was associated with improvements in pork tenderization and decreases in 24-hour pH, protein 

percent and cook yield suggesting a role for this gene in modulating skeletal muscle calcium 

signaling during the conversion of muscle to meat. The CHRNA9 gene is one of sixteen subunits 

of the nicotinic acetylcholine receptor (AChR). These ligand-gated ion channels permit the 

transmission of presynaptic acetylcholine release and postsynaptic excitatory potential. Found 

only in neuronal tissue, CHRNA9 is one of three AChR containing only α subunits46 (α9-AChR), 

and in neuromuscular junctions AChR are essential for muscle contraction 46. Since α9-AChR 

possess higher calcium permeability, they play an important role in catecholamine secretion and 

the adaptive response to chronic stress 45. In this study, increased expression of CHRNA9 was 
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associated with improved tenderness scores, increased drip loss, and decreased cook yield, 

protein percent and 24-hour pH. In addition, we verified the expression of CHRNA9 in skeletal 

muscle with RT-qPCR and confirmed a significant dominance effect of the peak eQTL SNP 

(DIAS0000678) on CHRNA9 gene expression. Changes in the expression of CHRNA9 may 

potentially regulate the postsynaptic excitatory potential during the conversion of muscle to meat 

thereby influencing Ca2+ release to the cytoplasm, apoptotic mitochondrial changes and 

proteolytic enzymatic activity.  

Additional genes associated with meat quality traits on SSC15 (PFKFB3, CEP128, 

NQO1 and SUCLG2) were implicated in biological processes related to redox homeostasis and 

energy metabolism. The PFKFB3 gene regulates the synthesis and degradation of fructose-2, 6-

bisphosphate and fructose-6-phosphate in the process of glucose metabolism. The promoter of 

the PRKFB3 gene contains hypoxia-inducible factor-1 (HIF-1) binding sites73. The transcription 

factor HIF-1 is a master regulator of oxygen homeostasis by activating several downstream 

pathways including the mitogen-activated protein kinase (MAPK), mammalian target of 

rapamycin (mTOR), phosphoinositide 3-kinase-protein kinase B (PI3K-Akt), vascular 

endothelial growth factor (VEGF) and calcium signaling pathways as well as anaerobic 

metabolism. PFKFB3 is consistently overexpressed in many tumor cells and knockdown of 

PFKFB3 promotes apoptosis of tumor cells73. Rapidly proliferating tumor cells have the ability 

to increase glucose uptake by using anaerobic glycolysis as the primary source of energy, known 

as the Warburg effect. Taken together PFKFB3 is critical for cell proliferation and survival by 

regulating glucose metabolism and prevents apoptosis through the activation of cyclin-dependent 

kinases73,74. No reports have suggested a role for PRKFB3 in meat quality. However, in our 
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study, increased expression of PRKFB3 was associated with increased pork tenderness. Thus, 

PRKFB3 may be involved in postmortem glycolytic potential similar to PRKAG3.  

The CEP128 gene is related to the PI3K-Akt-mTOR signaling pathway. Centrosomal 

protein 128 (CEP128) is part of the centrosomal protein family including CEP55 which have 

been implicated in cancer progression75. Mutations within CEP128 have been associated with an 

aggressive type of lymphoma, the diffuse large B-cell lymphoma (DLBCL)76. Functional gene 

studies have not been performed for CEP128, however mutations identified in refractory 

DLBCL patients, including those in CEP128, were associated with PI3K-Akt-mTOR signaling 

pathways and increased mitochondrial oxidative phosphorylation, and play an important role in 

treatment resistance76. The PI3K-Akt-mTOR pathway is upregulated in cancer cells, controlling 

the survival and proliferation of these cells. In our study, increased expression of CEP128 was 

associated with improved tenderness scores and may play a role in PI3K/Akt/mTOR signaling. 

In addition, the Edomucin (EMCN) gene associated with a local acting eQTL on SSC8 plays a 

critical role in angiogenesis. Angiogenesis is the process of new blood vessel formation with its 

key regulator, vascular endothelial growth factor (VEGF),  triggering downstream signaling 

cascades including MAPK-ERK1/2, PI3k/Akt and p38-MAPK pathways77. These signaling 

pathways promote endothelial cell migration, proliferation, and survival and are activated by 

HIF-1 which induces VEGF expression78. While this eQTL is not directly associated with a 

phenotype in our population, it is connected to the pathways regulated by the genes associated 

with the putative hotspot on SSC15.  

The remaining two genes, NQO1 and SUCLG2, were associated with improvements in 

meat tenderization and pH decline.  The nuclear erythroid-2-p45-related factor-2 (Nrf2) is a 

transcription factor known to regulate redox homeostasis and anti-inflammatory response by 
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controlling the expression of Phase I and Phase II anti-oxidant enzymes containing the 

antioxidant response element (ARE; cis-acting regulatory or enhancer sequence) in their 

promoter region. NQO1 (NADPH quinone oxidoreductase-1) is one of these enzymes whose 

expression is induced by Nrf2 in several tissues79–82. Consequently, knockdown of Nrf2 has been 

reported to significantly decrease expression of NQO1 in both mouse skeletal muscle81 and 

C2C12 mouse myotubes82. In early postmortem muscle, the antioxidant defense system is 

speculated to influence proteolysis and thereby meat tenderization7. Increased expression of 

NQO1 in this study was associated with several meat quality traits including tenderness, pH and 

drip loss phenotypes implying a significant role in post-mortem proteolysis. The succinate-CoA 

ligase GDP-forming beta subunit (SUCLG2) has been implicated in the SUCLG1-related 

mitochondrial DNA depletion syndrome affecting brain and skeletal muscle tissues. Individuals 

affected by this syndrome present an array of symptoms including spasmodic muscle 

contractions, contracture or destruction of muscle cells and hypoglycemia83. Knockdown of the 

SUCLG2 gene in fibroblasts was reported to decrease mitochondrial DNA, mitochondrial 

nucleoside diphosphate kinase and cytochrome c oxidase activities84. These results highlight the 

critical role SUCLG2 plays in mitochondrial DNA maintenance and ATP production. In our 

study, increased expression of SUCLG2 was associated with improvements in meat quality traits 

suggesting a potential role in regulating ATP production and postmortem pH decline. 

In addition to genes involved in specific biological functions, genes encoding structural 

proteins were also observed to be associated with the putative hotspot on SSC15 (CIT and 

CCDC60). CIT, citron Rho-interacting serine/threonine kinase, is considered to be a scaffold 

protein that binds to several mitotic proteins, and knockout of CIT leads to cytokinetic defects. 

One such protein-protein interaction involves the two-pore channel 1 (TPC1) which Horton et. 
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al,85 reported to cause disruption in myosin light chain phosphorylation (pMLC). In skeletal 

muscle pMLC has been associated with age related muscle dysfunction86, and decreased pMLC 

is associated with reduced fraction of myosin heads interacting with thin filaments86. Thus, 

increased expression of CIT could potentially increase muscle breakdown, which is consistent 

with our findings where higher expression of CIT was associated with improvements in pork 

tenderization, and reduced protein content and cook yield. CCDC60 is a coil-coil domain protein, 

which are believed to act as “cellular velcro” holding together molecules, cellular structures and 

tissues87. The biological function of CCDC60 is unknown, but recent GWAS have associated 

this gene with the neurological disorder schizophrenia in humans88. A proteomic analysis of 

post-mortem pre-frontal cortex of schizophrenia patients and non-schizophrenia individuals 

identified differentially expressed proteins involved in calcium homeostasis, cytoskeleton 

assembly and energy metabolism89. It is feasible that similar functions may occur in skeletal 

muscle tissue. In this study increased expression of CCDC60 was associated with tenderness, 

pH, cook yield and drip loss phenotypes implicating the role of this gene in the conversion of 

muscle to meat. 

Eleven eQTL genes were enriched in pQTL for meat quality traits on SSC15; PFKFB3, 

SUCLG2, CIT, CCDC60, MRLN, PKP2, NQO1, CEP128, CHRNA9, TEX9 and a novel transcript 

SSC15:48.94. The novel transcript mapped to an uncharacterized locus, LOC110257028, on 

SSC15. The other ten gene transcripts mapped to different chromosomes than their associated 

eQTL. These results illustrate the advantage of the joint association of gene expression profiles 

and trait phenotypes to uncover the genetic architecture of polygenic traits. In this study, 

increased expression of the 11 genes was associated with improvements in meat quality 

phenotypes. Moreover, this QTL region harbors a putative hotspot (H3GA0052416) regulating 
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the expression of all 11 gene transcripts. Breitling et al. reported the high false positive rate 

associated with hotspot discovery, in order to mitigate this we used a higher threshold of 

significance to detect eQTL. The hotspot discovered on SSC15 was also associated with the most 

significant marker for multiple meat quality phenotypes. The high correlation observed between 

the 11 gene expressions, and between the eight meat quality phenotypes raises the question if 

these associations are due to a master regulator on SSC15. The PRKAG3 gene has been 

suggested as such a regulator of meat quality traits in pigs. PRKAG3 regulates glycogen 

potential, which has a cascading effect in postmortem metabolism. The SNP map used in this 

study does not have sufficient coverage of the PRKAG3 gene. To address this our F2 population 

was genotyped for two known PRKAG3 SNPs, I199V and T30N26, however, PRKAG3 did not 

explain the relationship observed in the putative hotpot. A missense polymorphism within the 

PRKAG3 gene, T30N SSC15:120.865 Mb, was significantly associated with just one of the 11 

genes, NQO1, despite showing significant association with all eight meat quality phenotypes in 

this population26.  

CONCLUSION 

In summary, the joint analysis of pQTL with eQTL from our well characterized pig 

resource population identified molecular markers significantly associated with both 

economically important phenotypes and gene transcript abundance. This approach revealed both 

local and distant acting regulators of gene expression influencing meat quality, carcass 

composition and growth traits. These phenotypic traits are correlated, and we show how 

correlated phenotypes exhibit correlated gene expression measured through a putative hotspot 

contained within QTL regions for both expression and phenotypic traits. We highlight novel 

candidate genes with specific roles in cytoskeletal structure and signaling pathways regulating 
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meat quality phenotypes including redox hemostasis (NQO1 and CEP128), energy metabolism 

(SUCLG2 and PRKFB3), Ca2+ signaling (FRMD8, MRLN, PKP2 and CHRNA9) and cytoskeletal 

structure (CIT and CCDC60) during the initial conversion of muscle to meat. Taken together the 

identified genes and their associated functions and pathways increase our knowledge of the 

genomic architecture of meat quality phenotypes. 

  



 54 

SUPPLEMENTARY MATERIALS 

Supplementary tables available at https://velezdeb84.wixsite.com/deborahvelezirizarry 

Supplementary Table 2.S1 Summary statistics for phenotypic traits for the MSUPRP F2 

population and the subsample used in this study. 

Supplementary Table 2.S2 Expression quantitative trait locus (eQTL) mapped for longissimus 

dorsi muscle transcripts from the MSUPRP (n=168). 

Supplementary Table 2.S3 Phenotypic QTL identified in the F2 MSUPRP. 

Supplementary Table 2.S4 Results of conditional analysis for expression QTL co-localized 

with phenotypic QTL. 

Supplementary Table 2.S5 Conditional Analysis: PRKAG3 SNP effect on eQTL genes 

expression. 
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CHAPTER THREE 

Allele-specific expression in longuissimus dorsi muscle transcriptomes associated with 

phenotypic traits in pigs 

Vélez-Irizarry, D., S. Casiro, R.O. Bates, N.E. Raney, H. Cheng, J.P. Steibel and C.W. Ernst 

ABSTRACT 

Advancements in sequencing technology, improvements in the annotation of the pig 

genome, and development of quantitative genetic models have contributed to an increased rate of 

genetic gain for economically important pig production traits. Several quantitative trait locus 

(QTL) have been identified, however, the biological mechanisms underlying most QTL remain 

unknown. Allele-specific expression (ASE) analysis facilitates the identification of cis-acting 

regulation of transcript abundance, which can be associated with a measurable phenotypic 

difference. In this study, we tested for ASE in 69,502 longissimus dorsi coding SNP (cSNP), 

which were called directly from RNA-seq data. A total of 18,234 cSNP with significant ASE 

were identified (FDR ≤ 0.01) using a Quasibinomial model. A meta-analysis merging cSNP p-

values per gene identified 4,170 genes with significant allele-specific effects (FDR ≤ 0.01). A 

gene-wise conditional analysis fitting all ASE cSNP per gene for each phenotype identified 60 

genes associated with growth, carcass composition and meat quality phenotypes. Ring finger and 

Zinc finger transcription factors were associated with 45-min pH, drip loss and 10th-rib backfat, 

and allelic expression bias for these genes was confirmed with pyrosequencing. Results support 

an important role for the activation of the PI3K-Akt-mTOR signaling pathway on meat quality 

traits. 

Key Words: ASE, skeletal muscle, RNA-seq, pig 
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INTRODUCTION 

Genes exhibit specific patterns of expression finely modulated by spatial and temporal 

specificity, environmental conditions and allelic variation. A series of architectural elements 

cause this modulating effect. At the transcriptional level these include promoters, enhancers, 

silencers, and insulators, among others, and are collectively known as cis regulatory elements1,2. 

Polymorphism residing in cis regulatory elements can directly affect the transcription of a gene. 

For instance, a sequence motif containing a single nucleotide polymorphism (SNP) may affect 

the affinity of trans-acting regulators resulting in allele-specific expression because it affects 

only one of the alleles. Cis regulatory elements within coding regions are thus susceptible to 

nonsynonymous, synonymous and splice junction mutations that can lead to phenotypic 

consequences. For instance, an intergenic enhancer containing a variant associated with HIV-1 

acquisition produces a shift in promotor use resulting in allele-specific isoform expression 

conferring susceptibility to HIV infection3. Imprinting occurs when methylation status of the 

parental copy of a gene is passed on to the offspring and can produce mono-allelic expression, 

where only one allele is expressed. For example, the IGF2 gene is regulated by an imprinting 

control region and the expression of IGF2 is transcribed mainly from the maternal allele 

regulating fetal development and postnatal growth4. Knowledge of cis-regulatory elements is 

expected to improve our understanding of phenotypic diversity in livestock species. Through 

allele-specific expression (ASE) analysis we can identify cis-acting variants by estimating the 

relative transcript abundance of each allele at a single heterozygous locus, and test for bias in 

allelic expression. This bias is observed as a departure from the expected equal expression ratio. 



 65 

High-throughput sequencing provides in-depth coverage of polymorphic locus allowing 

estimation of allele-specific transcript abundance.  

In pigs, numerous QTL have been identified for growth, carcass composition and meat 

quality traits5–13, however, the biological mechanisms regulating these QTL are largely unknown. 

Through functional genomic studies such as ASE analysis, the genetic architecture of important 

phenotypes can be evaluated. Previous ASE studies in pigs have used blood14, prenatal skeletal 

muscle15 and brain 16 to elucidate locus exhibiting ASE and overlapping known QTL regions for 

growth and  immune-related phenotypes. These studies have identified biomarkers for immune 

capacity14, chimeric RNA16 and imprinted genes16. The aim of this study is to 1) elucidate ASE 

in the longissimus dorsi muscle transcriptome, and 2) identify genes with cis-acting effects 

associated with growth, carcass composition and meat quality traits. This work contributes 

toward unraveling the genetic architecture driving variation in economically important 

phenotypes.  

MATERIALS AND METHODS 

RNA extraction and RNA-seq bioinformatic pipeline 

Tissue samples were collected post mortem from the longuissimus dorsi muscle, flash 

frozen in liquid nitrogen and stored at -80°C until processing. Total RNA extraction was 

performed with the miRNeasy Mini Kit (Qiagen, Germantown, MD) following the 

manufacture’s protocol. RNA quality and quantity were determined using the Agilent 2100 

Bioanalyzer (RIN ≥ 7).  

Sequencing was performed at the Michigan State University Research Technology 

Support Facility. Libraries for 24 samples were prepared using the Illumina TrueSeq RNA 

Library Prep Kit v2, and sequenced on the Illumina HiSeq 2000 platform (2 x 100bp paired-end 
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reads). The remaining 152 libraries were prepared using the Illumina TrueSeq Stranded mRNA 

Kit, and sequenced on the Illumina HiSeq 2500 platform (2 x 125bp, paired-end reads). Base 

calling was performed with the Illumina Real Time Analysis v1.18.61 software, and the Illumina 

Bc12fastq v1.8.4 was used for conversion to FastQ format. A total of 96 sequence files (741Gb) 

consisting of ~63 million short-reads per library were obtained from the HiSeq 2000 platform 

and 1,218 sequence files (~2Tb) of ~23 million short-reads per library were obtained from the 

HiSeq 2500 platform.  

The bioinformatic pipeline used in this study first filtered RNA-seq reads for adapter 

sequences using Trimmomatic17 followed by quality trimming using CondDeTri18 where the first 

6 bases at the 3’ end, low quality reads (reads with 20% base quality scores < 25) and low quality 

bases (quality scores < 10) were filtered out retaining reads with a minimum length of 75 bases. 

This step is critical to remove sequencing errors with low quality scores18.The quality of each 

sequenced nucleotide was evaluated on adapter filtered and quality trimmed RNA-seq reads 

using the FASTX toolkit19. A mean Phred quality score of 37.01  0.99 was observed for 

sequenced nucleotides. The percentage of retained reads from each step in the bioinformatics 

pipeline is represented in Figure 3.1. On average 87% of reads were retained after adapter and 

quality filtering, eight samples were removed from further analysis due to low sequence quality, 

leaving a total of 168 samples for subsequent analyses. After adapter and quality filtering, RNA-

seq reads were mapped to the reference genome assembly Sus scrofa 11.1 using the splice aware 

aligner Tophat220, on average 92% (45.3  24.9 million short reads) mapped to the reference 

genome Sus scrofa 11.1. Sequence reads not mapping uniquely to the reference genome were 

removed from further analysis to eliminate duplicate read counts when calling cSNP 21, on 

average 73% of mapped reads (32.8  16.7 million short reads) were unique and properly paired 
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with its complementary sequence (Figure 3.1). Uniquely mapped reads were obtained with 

SAMtools22. Unfiltered sequence files for 168 animals has been deposited in the NCBI Sequence 

Read Archive accession number PRJNA403969. 

 

Figure 3.1 RNA-seq bioinformatics pipeline for cSNP calling. 

cSNP calling and unbiased allele-specific read mapping 

Allele-specific read counts were determined with a two-step procedure. First cSNP were 

called using SAMTools22 mpileup to obtain the sequence of individual bases from each aligned 

transcript and bcftools to call the cSNP and genotypes for each animal23. Approximately 59% of 

sequence reads were retained for variant calling, Figure 3.1. Twenty VCF files (variant call 

format), one for each chromosome (18 autosomes and two sex chromosomes) were obtained. 

The genomic coordinates and observed nucleotides for each called cSNP were identified using 

an R package developed by our group, editTools24, https://github.com/funkhou9/editTools. The 

genomic coordinates and observed nucleotides for each called cSNP, excluding multiallelic 

cSNP and insertion deletions (INDEL), were used as input for WASP, an unbiased allele-specific 

https://github.com/funkhou9/editTools
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read mapper 25,26. Briefly, sequence reads aligning with a polymorphic site are copied and 

modified so that the polymorphic site is switched to contain the alternative nucleotide in the 

position. The modified reads are then remapped to the reference genome using the same 

procedure described above. Modified reads are retained only if they map to exactly the same 

genomic position as the original read. The output of WASP are alignment files containing all 

reads correctly mapping to the genome. cSNP are called once more using the same procedure 

described above.  

Additional filters were applied to ensure the removal of potentially erroneous SNP calls 

(Figure 3.2). Two filtering steps were performed. The first filter eliminates cSNP that are INDEL 

or multiallelic, since allelic imbalance cannot be accurately determined. cSNP with low read 

coverage, < 10 reads overlapping the polymorphic site, and low heterozygous genotype 

frequency, < 6 heterozygous samples were discarded from the analysis (Figure 3.2). The second 

filter ensures that monoallelic cSNP called heterozygous are removed from further analysis. This 

is achieved by flagging sites with low or inconsistent genotype likelihoods (Figure 3.2). The 

probability of erroneous ascertainment of variant allele was used to retain only high-quality 

variants. Sensitivity, accuracy and type I error rate of called cSNP from RNA-seq was estimated 

for heterozygous genotypes by comparing the overlap of cSNPs and SNPs ascertained from the 

Porcine SNP60 BeadChip13, assuming the genotypes for chip SNPs as the true genotype. 

Sensitivity of called cSNP was estimated as the ratio of true heterozygous calls from RNA-seq 

and total heterozygous genotypes from the Porcine SNP60 chip for overlapping SNP. Accuracy 

was estimated as the ratio of true heterozygous calls and total heterozygous calls from RNA-seq. 

Type I error rate is the ratio of total missed heterozygous calls and total heterozygous genotypes 

from the Porcine SNP60 chip.   



 69 

 

 

Figure 3.2 Filtering pipeline to remove potentially erroneous cSNP calls. 

Allele-specific expression analysis 

 To test for significant allelic imbalance of cSNPs, a Quasibinomial model27,28 was fit on a 

SNP by SNP basis for heterozygous samples as follows: 

𝑃(𝑋 = 𝑘𝑖 ) = (
𝑛

𝑘
)  𝑝𝑖(𝑝𝑖 + 𝑘𝑖𝜙)𝑘𝑖−1(1 − 𝑝𝑖 − 𝑘𝑖𝜙)𝑛𝑖−𝑘𝑖 

(8) 

 

where, 𝑘𝑖  is the number of reads mapping back to the non-reference allele of the cSNP in 

question for sample , 𝑝𝑖 is the probability of observing a read for the non-reference allele given 

𝑛 total number of reads found mapping to the cSNP for sample , 𝑝𝑖̂ = 𝑘𝑖 𝑛𝑖⁄ . The variance of 𝑝𝑖̂ 

is 𝑉𝑎𝑟(𝑝𝑖̂) = 𝜙𝑛𝑖𝑝𝑖̂(1 − 𝑝𝑖̂). Lastly, 𝜙 is the overdispertion parameter calculated as: 
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 ∑
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where, 𝑟 are the degrees of freedom. The overall allelic (population-average) expression ratio, 

𝐴𝑅, for the cSNP is denoted as 𝐴𝑅 =  ℎ(𝑝) = 𝑒𝑝 1 + 𝑒𝑝⁄ , where ℎ is the inverse of the log link 

function. The logit scale was used to ensure the allelic expression ratio is 0 < 𝑝 < 1. A t-test was 

used to test the hypothesis of significant ASE, 𝐻𝑜: 𝑝 = 0.5 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝑝 ≠ 0.5, and genome-

wide multiple test correction was performed29 with FDR ≤ 0.01 considered significant.  

Each ASE cSNP was mapped to gene transcripts using the pig genome assembly Sus 

Scrofa 11.1, in order to summarize gene-wise allele-specific expression. A potential limitation to 

this approach is gene-wise heterogeneity of ASE ratios and significance. For instance, alternative 

splicing, cis-trans interactions and antagonistic relationships between gene-wise ASE cSNP can 

make the interpretation of ASE difficult30. To circumvent this problem, a meta-analysis of gene-

wise p-values was used to combine p-values from all cSNP mapping to a gene into a single 

significance measure. A robust approach to meta-analysis is the Simes method31, which adjusts 

all p-values on a gene-wise basis so that the minimum p-value can be selected for each gene, and 

multiple test correction performed (FDR ≤ 0.01). 

Confirmation of ASE cSNP 

To further assess ASE of cSNP, we selected nine cis-acting variants with empirical 

evidence of phenotypic regulation to confirm the observed allelic imbalance using 

pyrosequencing. The protocol used for the pyrosequencing assay is described in Kwok et al. 32. 

Briefly, primers were designed to amplify the genomic region surrounding each of the nine cSNP 

using PyroMark Assay Design Software 2.5.8, including forward and reverse primers for 

polymerase chain reaction (PCR) and a sequencing primer for allele quantification 

(Supplementary Table 3.S1). Either the forward or reverse primer was biotinylated using Biotin-

TEG and HPLC purification (IDT, Coralville, IA). PCR was performed for pigs exhibiting 
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heterozygous genotypes for each cSNP using total longuissimus dorsi muscle RNA (described 

above). Three negative controls were run for each cSNP, a no template control PCR reaction 

(examines primer heteroduplexing), a sequencing primer control (no PCR reaction, examines 

duplexing with sequencing primer) and template only control (no sequencing primer, examines 

self-priming of biotinylated primer). The positive controls were prepared from pools of total 

RNA from four homozygous animals for the AA and BB genotypes for each cSNP. A total of six 

positive controls were prepared for each cSNP as ratios of homozygous AA and BB pools 

(AA:BB = 0:100, 20:80, 40:60, 60:40, 80:20 and100:0). The PyroMark OneStep RT-PCR Kit 

was used following the manufacturer’s protocol and amplification was performed in a DNA 

Engine Peltier Thermal Cycler (Bio-Rad, Hercules, CA). Cycling conditions were 50ºC for 30 

min for reverse transcription and 95ºC for 15 min for initial PCR activation, followed by 45 

cycles of 94ºC for 30 s, 60ºC for 30 s and 72ºC for 30 s, with a final extension of 72ºC for 10 

min. PCR products, 25ul, were diluted in 11ul of 18.2 mΩ dd H2O and mixed with 40ul of the 

master mix containing 4ul of streptavidin-coated sepharose beads and 40ul of binding buffer 

(10mM Tris-HCL, 2M NaCl, 1mM EDTA and 0.1% TweenTM 20 pH 7.6) for a total volume of 

80ul. This solution was agitated on a Monoshaker for at least five minutes. Immobilized PCR 

products were captured using a vacuum prep tool, washed and denatured to remove unbound 

primers and unbiotinylated strands using three solutions (i.e. 70% ethanol, denaturing solution 

containing 0.2M NaOH and wash buffer containing 10mM Tris-Acetate pH 7.6). Only the 

template strands remained bound after the washing steps. Sepharose beads with bound strands 

were diluted in a solution containing 0.2ul of sequencing primer and 38.8ul annealing buffer (20 

mM Tris-Acetate, 5 mM MgAc2 pH 7.6) and placed on a 96 sample thermoplate at 80ºC for 2 

minutes for annealing before samples were placed in the pyrosequencer PSQ 96MA machine. 
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PyroMark Gold Q96 reagents containing the enzymes, substrate and dNTPs for pyrosequencing 

were used in quantities recommended by the PyroMark AQ 2.5.8 software for each 

pyrosequencing assay analyzed. Relative levels of allele-specific expression were determined by 

the differing number of nucleotides incorporated at the cSNP site with the PyroMark AQ 2.5.8 

software 32. 

Kegg pathway and gene ontology enrichment 

Biological pathways and processes enriched with genes exhibiting significant ASE 

effects provide insights into gene expression networks regulated by genetic variation in our study 

population. Genes found with significant cis-acting effects were subjected to pathway analysis 

using the R package clusterProfiler33,34. The background gene list used in enrichment analysis 

consisted of all autosomal gene transcripts found expressed in longissimus dorsi for our 

population (15,249 transcripts). The gene symbols were converted to ENTREZ IDs using the 

human annotation35, and gene ontology for biological processes and Kegg pathway enrichment 

performed and significance determined after multiple test correction (FDR ≤ 0.05). 

 Effects of ASE cSNP on trait phenotypes 

 We selected cSNP with significant ASE for each of the genes identified through the 

meta-analysis as having significant cis-acting effects and tested their effects on variation in trait 

phenotypes.  A gene-wise conditional analysis was performed for 67 phenotypes including 

growth, carcass composition and meat quality traits to estimate cSNP effects on phenotypic 

variation. A GBLUP model13,36,37 was fit on a gene-by-gene basis for each phenotype as follows:  

𝑦𝑖 = 𝑋𝑏 + ∑ 𝑅𝑖𝑙𝑠𝑙

𝑙

𝑖=1
 + 𝑎𝑖 +  𝑒𝑖 , (3) 

where, 𝑦𝑖 is the phenotypic data for sample 𝑖, Xb the estimated fixed effects of overall mean and 

additional covariates specific to each phenotype7,13, 𝑠𝑙 is the estimated cSNP effect for genotype 
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𝑙 and 𝑅𝑖𝑙 is the standardized allelic dosage of cSNP 𝑙 for animal 𝑖. The R matrix was calculated 

as 𝑅 = 𝑈 √∑(2𝒑(1 − 𝒑))⁄  , where U is a matrix of cSNP genotypes and p a vector with the 

frequency of non-reference allele. The additive genetic effects, 𝒂, were assumed to be 

𝒂 ~𝑁(0, 𝐺𝜎𝑎
2) and the residual errors, 𝒆, were assumed to be 𝒆 ~𝑁(0, 𝐼𝜎𝑒

2). The genomic 

relationship matrix, 𝑮, was previously calculated for our eQTL analysis using genotypes 

obtained for the 168 animals from the PorcineSNP60 BeadChip38. Multiple test correction was 

performed with a false discovery rate of 0.10 to determine significant cSNP effect. We estimated 

the proportion of variance explained by cis-acting variants for a single trait phenotype using 

methods described in Casiro et al.13. Briefly, the variance associated with each cSNP, 𝜎𝑆𝑙

2̂ , was 

estimated as 𝜎𝑆𝑙

2̂ = 𝑠𝑙
2𝑣𝑎𝑟(𝑍𝑙), where,  𝑠𝑙

2 is the estimated effect of cSNP 𝑙 and 𝑣𝑎𝑟(𝑍𝑙) the 

variance associated with the standardized allelic dosage of cSNP 𝑙. The proportion of phenotypic 

variance accounted for by each cSNP was 𝜎𝑆𝑙

2̂ (∑ 𝜎𝑆𝑙

2̂ + 𝜎𝑎
2̂ + 𝜎𝑒

2̂) ⁄ . The estimated additive 

genetic variance, 𝜎𝑎
2, and error variance, 𝜎𝑒

2, was obtained after fitting equation 3. 

Phenotypic QTL mapped with cSNP 

Calling cSNP directly from the longuissimus dorsi transcriptomes of the 168 animals 

increases genetic coverage to identify potential QTL segregating in our population, and 

distinguishes cSNP with ASE significantly associated with a phenotypic trait. First, we selected 

cSNP with less than 5% missing call rate and minor allele frequency greater than 0.01, resulting 

in 46,428 cSNP including 11,947 exhibiting significant ASE. Missing genotypes were imputed 

using BEAGLE 4.139, a hidden Markov model that finds the most likely haplotype pairs to 

reconstruct missing genotypes, using the codeGeno function in the R package synbreed40. QTL 

were identified first using the GBLUP model described in equation 3 excluding fixed effects of 

individual cSNP,  ∑ 𝑍𝑖𝑙𝑠𝑙
𝑙
𝑖=1 , to estimate the individual animal effects, 𝒂̂. This was followed by a 
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genome wide association analysis (GWA) as described in Duarte et al.36. Briefly, the individual 

cSNP effects, 𝒈̂, and their variances, 𝜎𝑔
2̂, were estimated as a linear transformation of the 

GBLUP animal effects, 𝒂̂, from equation 3. A test statistic for the association of each cSNP with 

phenotype was computed by standardizing the SNP effects, = 𝒈̂ √𝜎𝑔
2⁄  , and p-values associated 

with this T test statistic calculated using the Gaussian cumulative distribution function, p-value 

= 2[1 − 𝛷(|𝑻|)]. Significant cSNP effects were determined after multiple test corrections using 

a threshold of FDR ≤ 0.05. 

RESULTS 

Identification of cSNP 

RNA sequencing of longuissimus dorsi muscle for 168 F2 animals generated a total of 

3,606,267 identifiable polymorphic sites, less than 1% were multialleleic (5,800) and 9.2% were 

INDEL (313,776). The WASP algorithm corrects for bias towards the reference genome and 

genotyping errors when calling cSNP from RNA-seq in order to reduce bias in the estimation of 

allelic abundance25,26. The WASP algorithm identified 11.3  5.7 million reads overlapping a 

polymorphic site, from which 29.4% were considered biased towards the reference allele and 

16.4% were duplicate reads resulting from amplification. cSNP were subsequently called after 

removing biased reads and quality filtered for heterozygous cSNP with sufficient coverage (10 

reads) and number of heterozygous animals (> 6), resulting in the retention of 69,502 cSNP for 

ASE analysis (Supplementary Table 3.S2). The allelic ration (AR) of the non-reference allele 

increased from 0.45  0.16 to 0.48  0.14 after applying the WASP algorithm (Figure 3.3). A 

comparison of overlapping cSNP and SNP ascertained with the Porcine SNP60 BeadChip for the 

same population identified 609 common SNP (Figure 3.3). Assuming the chip SNP as the true 

genotype, the sensitivity to detect a heterozygous genotype from RNA-seq was estimated as 0.99 
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 0.05 and accuracy was 0.99  0.02. The type 1 error rate of called heterozygous sites was 

0.005.  

Allele-specific expression 

The 69,502 cSNP were evaluated for ASE using a Quasibinomial logistic regression with 

overdispersion, followed by a meta-analysis to summarize gene-wise ASE. The ASE analysis 

identified 18,234 cSNP with significant allelic imbalance (FDR ≤ 0.01, Supplementary Table 

3.S2) and the meta-analysis identified 4,151 genes exhibiting cis-acting effects (FDR ≤ 0.01, 

Supplementary Table 3.S3) from the 7,535 genes containing cSNP. On average 10.92  12.96 

cSNP mapped per gene and the 4,151 genes exhibiting cis-acting effects contained on average 

5.20  6.97 cSNP with ASE (Supplementary Table 3.S3). A subset of ASE cSNP (2,705) showed 

a narrow allelic bias falling within  5% contained within 2,705 of ASE cSNPand 176 of the 

genes with cis-acting effects.  

An eQTL study previously performed for the same population identified 188 local acting 

regulators of gene transcript abundance (Chapter 2). In this study, 91 transcripts with local eQTL 

contained ASE cSNP. Correlations between the most significant cSNP for an ASE gene and the 

peak eQTL marker indicates the extent of LD for the two candidate markers. Pearson 

correlations for the extent of LD were significant for 70 of the 91 genes (FDR ≤ 0.01), where 

correlations between the associated markers averaged R = 0.71  0.22 (Figure 3.4). For the 

eQTL analysis, 59 genes were determined to be distant regulators residing on the same 

chromosome as the position of the associated gene transcript. Twenty-six of these eQTL genes 

were also associated with significant ASE, with 77% exhibiting significant LD between the ASE 

cSNP and the eQTL marker (R = 0.70  0.21, Pearson correlation FDR ≤ 0.01). Finally, 24 genes 

exhibiting ASE were associated with a distant eQTL (Figure 3.4).  
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Figure 3.3 Number of cSNP called from RNA-seq and allelic ratios. Histograms of the allelic 

ratios of non-reference alleles are shown before (left) and after (right) applying the WASP 

algorithm. The Venn diagram illustrates comparison of called cSNP from RNA-seq before and 

after correcting for bias in genotype calls (yellow and green, respectively) with genotypes 

obtained using the Porcine SNP60 BeadChip for the 168 F2 animals.  

 

A putative hotspot on SSC15 associated with meat quality traits was identified in the eQTL 

analysis (Chapter 2). Two of the genes associated with the hotpot also exhibited ASE, PFKFB3 

(AR = 0.20, 10-64777250-A-G) and NQO1 (AR = 0.70, 6-17299064-G-T). Another gene, 

OSBL1, contained a cSNP in high LD with the putative hotspot (R = 0.78, 15-121563981-T-C), 

however, this cSNP did not exhibit ASE. Another OSBL1 cSNP that did show ASE (AR=0.43, 
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15-121571895-C-A) mapped 234 Kb upstream of the putative hotspot and was significantly 

correlated with the hotspot SNP (R = 0.24; p-value ≤ 0.001). 

 

Figure 3.4 Comparison of gene transcripts exhibiting significant ASE and associated with an 

eQTL. The x-axis represents the absolute position of the peak eQTL marker in Mb and the y-axis 

the absolute position of the cSNP with the most extreme allelic bias for each gene. Correlations 

among eQTL and ASE marker are color coded with a light gray color indicating low correlation, 

and the color intensifying to a darker blue for higher correlations. Markers aligning with the 

diagonal exhibit cis-acting effects and those on the off-diagonal are markers aligning to genes 

associated with both cis-acting and distant effects on transcript abundance. 

 

Pyrosequencing to confirm cSNP with allele-specific expression 

A total of nine cSNP exhibiting both ASE and an association with a phenotypic trait were 

selected for confirmation using pyrosequencing (Table 3.1). Six of these genes were confirmed 

to show similar allelic imbalances (Pearson correlation R = 0.81) as was observed using RNA-

seq (Figure 3.5). Four genes selected for confirmation showed higher frequency of the non-

reference allele (ZNF79, RNF141, RNF150, and TYW3). Three of these genes were confirmed 

with pyrosequencing, ZNF79 (RNA-seq AR=0.61, Pyrosequencing AR=0.59), RNF141 (RNA-

seq AR=0.64, Pyrosequencing AR=0.79) and RNA150 (RNA-seq AR=0.66, Pyrosequencing 

AR=0.62). The AR of TYW3 was 0.55 with RNA-seq, however, pyrosequencing of the TYW3 

cSNP indicated an AR of 0.51 for the non-reference allele, therefore not confirming ASE for this 
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cSNP. TYW3 was one of the three cSNP exhibiting a narrow bias (AR of 0.5  0.05), but still 

considered significant in the RNA-seq ASE analysis. The other two cSNP exhibiting a narrow 

bias were the NUDT3 and NAMPT cSNP, NUDT3 was confirmed as exhibiting ASE with 

pyrosequencing (RNA-seq AR=0.47, Pyrosequencing AR=0.44), whereas NAMPT was not 

confirmed (RNA-seq AR = 0.47, Pyrosequencing AR = 0.51). While the direction of apparent 

allelic bias for the PPARGC1B cSNP was the same on both platforms (RNA-seq AR=0.30, 

Pyrosequencing AR=0.46), the ASE observed by RNA-seq was not confirmed by 

pyrosequencing.  

Table 3.1 cSNP selected for pyrosequencing confirmation.  

Phenotype SSC Pos.1 Genes Het.2 cSNP3 AR4 PV5 q-value6 

45-min pH 1 267.9 ZNF79 32 9 0.61 0.15 8.75E-03 

Drip Loss 2 49.0 RNF141 59 9 0.64 0.52 9.34E-03 

10th-Rib Backfat 8 86.3 RNF150 60 31 0.66 0.47 7.18E-02 

Protein Percent 15 25.4 BIN1 75 99 0.24 -0.41 2.16E-03 

Protein Percent 15 120.9 PRKAG3 60 145 0.44 -0.80 8.01E-04 

Carcass Length 7 30.3 NUDT3 66 27 0.47* -0.14 2.41E-02 

10th-Rib Backfat 6 138.4 TYW3 66 3 0.55* 0.13 6.81E-02 

Last-Lumbar Backfat 6 - TYW3 - - - 0.13 9.60E-03 

Marbling 6 - TYW3 - - -  0.13 4.67E-02 

WBS 9 106.1 NAMPT 78 75 0.47* -0.83 6.36E-04 

Loin Muscle Area 2 150.8 PPARGC1B 13 26 0.30 -0.20 7.99E-02 
1Position of cSNP in Mb. 2Number of heterozygous animals analyzed. 3Number of cSNP mapped to the gene. 
4Allelic ratio for cSNP. 5Proportion of phenotypic variance accounted for by cSNP. 6Estimated q-value for 

conditional analysis. *cSNP with narrow bias, within 0.5  0.05.  

 

 

Gene ontology and Kegg pathway enrichment 

 Genes showing significant cis-acting effects were enriched in five Kegg pathways related 

to energy metabolism, protein processing, focal adhesion and fatty acid degradation (FDR ≤ 

0.05, Table 3.2).  Gene set enrichment for biological processes showed 219 enriched gene 

ontology (GO) terms (Table 3.3, top 12 GO terms; Supplementary Table 3.S4). Several muscle 

specific GO terms were enriched including terms associated with energy depravation and 
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anaerobic respiration consistent with what is expected for the tissue (i.e., skeletal muscle) and 

time point of collection (i.e., immediately postmortem). 

 

 
Figure 3.5 Histograms of ARs obtained with pyrosequencing for nine ASE cSNP. The x-axis 

represents the AR of the alternative allele for the ASE cSNP, and the y-axis the frequency 

observed for the ratio. Displayed within the graph for each gene are the average AR of the 

alternative allele obtained from the two sequencing platforms (i.e. RNAseq and Pyrosequencing). 
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Table 3.2 ASE genes enriched in Kegg pathways. 

Kegg ID Description Genes1 Background2 p-value q-value 

hsa01200 Carbon metabolism 46 81 9.05e-06 0.002 

hsa00020 Citrate cycle 16 22 1.67e-04 0.024 

hsa04141 
Protein processing in 

endoplasmic reticulum 
58 121 4.60e-04 0.035 

hsa04510 Focal adhesion 71 155 6.00e-04 0.035 

hsa00071 Fatty acid degradation 20 32 6.19e-04 0.035 

Total number of genes 1409 4244 - - 
1Number of genes exhibiting ASE enriched in Kegg pathway compared to background genes. 
2Number of genes expressed in our skeletal muscle samples (background) connected to Kegg pathway. 

 

Effects of cSNP on trait phenotypes 

We tested the effects of cSNP on phenotypic traits using two approaches. For both 

analyses only cSNP with less than five percent missing genotypes were considered, resulting in 

28,328 cSNP with 6,293 showing significant ASE mapping to 3,352 genes. The first approach 

consisted of a GWAS to map phenotypic QTL using called cSNP. This cSNP-GWAS identified 

108 cSNP associated with 5 phenotypic QTL for backfat, carcass length, number of ribs and 

protein percent (FDR ≤ 0.05;Table 3.4, Figure 3.6 and Supplementary Table 3.S5). The cSNP 

associated with QTL mapped to 35 gene transcripts showing significant cis-acting effects as 

determined by the gene-wise meta-analysis of ASE cSNP for 33 genes. A total of 33 ASE cSNP 

were associated with QTL for 10th-rib backfat, carcass length or protein percent.  

The second approach estimated the genotypic effect of cSNP with ASE (i.e. 6,293 cSNP) 

on phenotypic variation by performing a gene-wise ASE conditional analysis (i.e. 3,352 genes) 

for all 67 trait phenotypes. This conditional analysis identified 57 cSNP associated with 25 

phenotypes and 60 gene transcripts (FDR ≤ 0.1, p-value ≤ 6.49e-05; Table 3.5 and 

Supplementary Table 3.S6).  
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Table 3.3 ASE genes enriched in GO terms for biological processes. 

GO ID1 Description Genes2 Background3 p-value q-value 

0003012 Muscle system process 145 291 2.80E-11 1.30E-07 

0010608 Posttranscriptional regulation of 

gene expression 

170 377 1.07E-08 8.16E-06 

0006936 Muscle contraction 113 230 1.23E-08 8.16E-06 

0022613 Ribonucleoprotein complex 

biogenesis 

149 324 1.86E-08 1.08E-05 

0015980 Energy derivation by oxidation 

of organic compounds 

90 175 2.46E-08 1.14E-05 

0010927 Cellular component assembly 

involved in morphogenesis 

47 76 4.32E-08 1.83E-05 

1903311 Regulation of mRNA metabolic 

process 

97 195 6.12E-08 2.37E-05 

0009060 Aerobic respiration 31 44 1.18E-07 4.21E-05 

0006091 Generation of precursor 

metabolites and energy 

140 309 1.54E-07 5.10E-05 

0031032 Actomyosin structure 

organization 

69 132 4.72E-07 1.46E-04 

0006099 Tricarboxylic acid cycle 17 20 1.12E-06 3.06E-04 

0042692 Muscle cell differentiation 118 261 1.65E-06 3.84E-04 

     

Total number of genes 3071 9762 - - 

1Top 12 enriched GO terms are presented, for the complete list of 255 GO terms refer to Supplementary Table 3.S4 
2Number of genes exhibiting ASE enriched in GO term compared to background genes. 
3Number of genes expressed in our skeletal muscle samples (background) connected to GO term. 

 

 

Six cSNP with ASE mapped to five genes were observed to be associated with 

phenotypic traits in both the cSNP GWAS and conditional analysis for carcass 10th-rib backfat 

(TYW3), carcass length (BRD2, DST and NUTD3) and protein percent (PRKAG3). The TYW3 

gene was significantly associated with carcass 10th rib backfat, marbling scores and last lumbar 

backfat with the ASE cSNP exhibiting an AR of 0.55 for the non-reference allele on 

SSC6:138.43 Mb accounting for 13% of phenotypic variance. The cSNP SSC15:120858205-A/G 

mapped to the PRKAG3 gene showed an AR of 0.52 (non-reference allele) and accounted for 
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79% of protein percent variance. Three genes observed with both the cSNP GWAS and the gene-

wise conditional analysis were significantly associated with variation in carcass length, 

exhibiting an AR of 0.58, 0.55 and 0.47 for BRD2, DST and NUDT3, respectively. The three 

cSNP mapped to a 5Mb region on SSC7 and accounted for 13, 22 and 14 percent of phenotypic 

variance for BRD2, DST and NUDT3, respectively. 

 

Table 3.4 Phenotypic QTL mapped with cSNP. 

 

Phenotype SSC 
Range Peak 

Mb 
cSNP1 ASE  

cSNP2 
Genes3 

Genes 

Meta 

Aanalysis4 

10th-Rib Backfat 6 94.90 - 141.94 30 11 10 7 

Carcass Length 7 24.09 - 34.55 59 20 25 19 

Number of Ribs 7 96.45 - 98.24 4 0 4 0 

Last-Rib Backfat  

22-wk 
12 39.80 1 0 1 1 

Protein % 15 120.45 - 121.56 14 2 11 8 
1Number of associated cSNP (FDR ≤ 0.05). 2Number of associated cSNP with significant ASE (FDR ≤ 0.01). 
3Number of gene transcripts containing cSNP associated with QTL. 5Number of gene transcripts containing cSNP 

associated with QTL and showing significant cis-acting effects (Meta-analysis FDR ≤ 0.01). 

 

 

Table 3.5 Gene-wise conditional analysis of ASE cSNP. 

Category Phenotypes cSNP Genes 
Proportion Phenotypic  

Variance 

Growth Weight 1 2 2 0.11-0.27 

Growth Backfat 5 8 10 0.07-0.46 

Growth Loin Muscle Area 2 5 7 0.09-0.43 

Backfat 5 13 13 0.10-0.79 

Carcass 6 11 13 0.10-0.51 

Meat Quality 6 19 17 0.10-0.83 

Total 25 57 60 - 
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Figure 3.6 Manhattan plots for pQTL mapped using cSNP called directly from the longissimus 

dorsi transcriptomes of 168 animals. The x-axis represents the absolute position of each cSNP, 

alternating blue tones highlight each chromosome. The y-axis illustrates the negative logarithm 

of the calculated q-values from the GWAS. Red circles highlight cSNP for ASE genes 

significantly associated with a phenotypic trait; determined through a conditional analysis testing 

the effect of cSNP with ASE per gene on phenotypic variation (FDR ≤ 0.1).  

 

 

DISCUSSION 

ASE analysis facilitates the identification of functional genomic regions regulated by cis-

acting effects, and through joint association of ASE sites with phenotypic traits we can elucidate 

the genetic architecture of the trait.  In this study, we observed 26% (18,234) of called cSNP 

showing significant allelic bias resulting in 55% (4,151) of genes expressed in longuissimus 

dorsi muscle exhibiting allele-specific expression (FDR ≤ 0.01). A study performed in brain 

tissue of pigs looking at genes showing ASE found 52% of genes biased in their allelic 

expression16 consistent with the results observed in this study. A subset of ASE cSNP (15%) did, 

however, show a narrow allelic bias falling within  5%. This observation had a minimal impact 
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on the number of genes exhibiting significant cis-acting effects because frequently additional 

ASE cSNP within a gene showed more extreme allelic bias.  

A comparison of our previous eQTL study (Chapter 2) with the ASE analysis showed an 

overlap of 136 genes with associated eQTL and ASE (42% of eQTL genes). From the 188 eQTL 

classified as either local or plausible local, 48% (91 eQTL) showed ASE. The correlation 

between the peak eQTL SNP and top significant ASE cSNP corresponding to the gene for the 91 

local eQTL was significant for 70 of these (R = 0.71  0.22), suggesting the peak eQTL is in 

high LD with the ASE cSNP. The ASE analysis showed more precision in the identification of 

cis-acting effects than the genome-wide eQTL analysis, however, both approaches provide 

valuable information on the regulation of transcript abundance. For instance, we observed 24 

genes associated with distant eQTL (trans effects) and exhibiting ASE. Two of these genes 

(SUCLG2 and NQO1) were associated with a putative hotspot on SSC15:121.8Mb and may play 

a role in meat quality and carcass phenotypic diversity.  

Biological processes enriched among ASE cSNP related to SUCLG2 and NQO1 and 

other genes associated with both eQTL and ASE include energy derivation by oxidation of 

organic compounds (SUCLG2, ACO1, PPP1CB and UQCRC2) and regulation of cellular ketone 

metabolic process (NQO1 and PSMC1). Both of these processes are related to mitochondrial 

oxidative phosphorylation postmortem and ATP production for maintaining cellular homeostasis 

in anaerobic conditions, and have been implicated in the development of pale, soft and exudative 

meat41.  Additional biological processes related to genes associated with eQTL and containing 

cSNP with ASE include cytoskeleton organization (TBCD, RND3, and LIMK1), muscle 

hypertrophy in response to stress (CAMTA2), ATP metabolic process (PFKFB3) and 

proteasome-mediated ubiquitin-dependent protein catabolic process (FBXW7).  
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A recent study of longuissiumus dorsi transcriptome differences between Duroc and 

Pietrain breeds have shown several genes differentially expressed between these breeds42. The 

FBXW7 (F-box and WD repeat domain containing 7) and SUCLG2 (succinate-COA ligase) were 

reported as differentially expressed and upregulated in Duroc pigs42. The FBXW7 is one of four 

subunits of an E3 ubiquitin protein ligase complex involved in the proteasomal degradation of 

target proteins43. Expression of one isoform for this gene (FBXW7) has been implicated in 

muscle atrophy by upregulating MYOG (myogenin), FBXO32 (F-box protein 32) and TRIM63 

(tripartite motif containing 63) 44,45. In this study, the FBXW7 gene contained two cSNP with 

ASE (AR = 0.43; SSC8:76637796-G/T and SSC8:76637801-A/G), and was associated with a 

trans-acting eQTL on SSC9:125.04 and a putative hotspot marker (ASGA0044684). Two of the 

muscle specific atrogenes regulated by FBXW7 were not only expressed in our samples, but also 

showed ASE. The TRIM63 gene is a muscle specific RING finger protein. This gene contained 

11 cSNP with ASE and AR ranging from 0.18 to 0.63 for the non-reference allele. The FBXO32 

gene contained 42 cSNP with ASE, and AR ranging from 0.18 to 0.70 for the non-reference 

alleles. The high genetic diversity observed for TRIM63 and FBXO32, and the different ASE 

effects suggest large variability in the expression of these genes, and indicate that these genes 

may play an important role in meat quality through proteasomal degradation of myofibrils. The 

SUCLG2 gene contains a cSNP (SSC13:48824575-T/C) showing significant ASE with an AR of 

0.59. This gene plays an important role in mitochondrial DNA maintenance and ATP production 

and has been implicated in human disorders related to muscle atrophy and infantile lactic 

acidosis46. While none of these ASE genes were found to be associated with meat quality 

phenotypes in the conditional analysis, these results suggest cis-acting, and to some degree trans-
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acting, effects may regulate the expression of these genes during the conversion of muscle to 

meat. 

A gene-wise conditional analysis aimed to estimate the effects of ASE cSNP on variation 

at the phenotypic level. Significant associations were observed for 25 phenotypes including 

growth, carcass composition and meat quality traits. Meat quality traits associated with ASE 

cSNP included WBS (NAMPT), drip loss (RNF141), pH at 45-min (ZNF79 and TOR1B) and 

marbling score (TYW3). The NAMPT (nicotinamide phosphoribosyltransferase) gene plays an 

important role in oxidative stress and mitochondrial biogenesis and is required for the metabolic 

adaptation associated with calorie restriction47. In pigs this gene is highly expressed in 

intramuscular fat48. In this study, a cSNP mapped to NAMPT (SSC9:106120529-G/A) showed 

significant ASE with a narrow bias of 0.47 for the non-reference allele. This cSNP was 

significantly associated with WBS, with the non-reference allele accounting for 83% of the 

phenotypic variance and associated with a reduction in WBS. While this allele appears to be 

strongly associated with WBS, a pyrosequencing assay for this NAMPT cSNP did not confirm 

significant allelic expression bias. NAMPT was one of 61 ASE genes enriched in the 

oxidoreduction coenzyme metabolic process along with IGF1, PRKAG2 and PRKAA2. In this 

study IGF1 (insulin like growth factor 1) showed an extreme allelic bias for cSNP 

SSC5:81853529-G/A (AR = 0.15). IGF1 is known for its hypertrophic activity through the 

activation of the phosphoinositide 3-kinase (PIK3)/Akt signaling pathway which can block 

mediators of skeletal muscle atrophy49 such as TRIM63 and FBXO32. Similarly, PRKAA2 

(protein kinase AMP-activated catalytic subunit alpha 2) has been previously associated with the 

PI3K/Akt signaling pathway in longuissimus dorsi of pigs50. The activity of these genes may 

regulate the rate of postmortem metabolism during the initial conversion of muscle to meat. 
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Drip loss is a measure of the water holding capacity of meat affected by pH decline. Four 

genes were significantly associated with drip loss in this study (AMPD3, ITGB1, SDC4 and 

RNF141). The RNF141 (ring finger protein 141) gene has previously been shown to be 

upregulated in Duroc pigs compared to Pietrain pigs42. In this study, the non-reference allele of 

the RNF141 cSNP, SSC2-49033433-G/A, was associated with an increase in drip loss 

accounting for 51% of the phenotypic variance and a significant allelic imbalance was confirmed 

by pyrosequencing (AR=0.79). The SDC4 (syndecan 4) gene was enriched in actin cytoskeleton 

organization pathway along with NF2 (neurofibromin 2) and OBSL1 (obscurin like 1), all 

showing significant cis-acting effects. Interestingly, NF2 is a transcription factor implicated in 

sensing environmental stress, and increased expression of this gene activates the 

PI3K/Akt/mTOR pathway51. The insulin-like growth factor binding protein 2 (IGFBP2) on 

SSC15 has been previously associated with growth, carcass composition and meat quality traits 

in our pig population52. The OBSL1 gene interacts with protein anchoring myosin filaments, and 

mutations within this gene modulate the expression of IGFBP2 and IGFBP553. In this study, the 

OSBL1 cSNP, SSC15:121567503-C/G, showed significant ASE with an AR of 0.21. ASE cSNP 

of OBSL1 were not directly associated with meat quality traits in the conditional analysis, 

however, another cSNP within OBSL1 showed high correlation with the putative hotspot 

(R=0.78, 15-121563981-T-C) and this cSNP was associated with protein percent in the cSNP 

GWAS. One of the OSBL1 ASE cSNP (AR=0.43, 15-121571895-C-A) was significantly 

correlated with the putative hotspot (R = 0.24, p-value ≤ 0.001). These results support OBSL1 as 

a candidate gene for meat quality traits on SSC15. 

In this study, five cSNP were associated with pH at 45-min postmortem. Two of these 

mapped to genes on SSC1 (ZNF79 and TOR1B). ZNF79 (zinc finger protein 79) is involved in 
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nucleic acid binding, and TOR1B (torsin B) is an ATPase found in the endoplasmic reticulum54. 

The cSNP (SSC1:267942146-G/T) for ZNF79 accounted for 12% of the phenotypic variance for 

45-min pH with the non-reference allele associated with increased pH. Significant allelic bias for 

the non-reference allele was confirmed with pyrosequencing (AR=0.59). The cSNP for TOR1B 

(SSC:1-269972250-G/C) is in high LD with the ZNF79 cSNP (R = 0.76) and showed an AR of 

0.40 for the non-reference allele. TOR1B expression has previously been shown to be 

upregulated in Pietrian versus Duroc42. The enrichment analysis of genes with cis-regulation 

showed TOR1B to be involved in chaperone-mediated protein folding along with several other 

genes in the heat shock protein (HSP) family (HSPH1, HSPB1, HSPB6 and HSPA8). Hsp70 

chaperons (HSPH1 and HSPA8) have been known to regulate protein folding and protein 

degradation via ATP dependent reaction during stressful conditions to maintain homeostasis55. 

ZNF79, TOR1B and the HSP genes may therefore play a role in post-mortem pH decline by 

maintaining protein stability. 

Carcass composition traits and fatness traits associated with allelic imbalance include 

protein percent (BIN1 and PRKAG3), loin muscle area (PPARGC1B) and carcass 10th-rib backfat 

(TYW3). The non-reference alleles of cSNP in BIN1 (bridging integrator 1) and PRKAG3 

(protein kinase AMP-activated non-catalytic subunit gamma 3) on SSC15 were associated with 

reduced protein percent. The PRKAG3 gene regulates glycogen potential and is associated with 

meat quality traits in pigs8,13,56. BIN1 was enriched in the muscle cell differentiation pathway 

along with the proteases CAPN2 (calpain 2, SSC10) and CAPN3 (calpain 3, SSC1). The calpain 

system is an endogenous proteolysis system involved in protein degradation, and that plays an 

important role in meat tenderization41,57. BIN1 activates a caspase-independent apoptotic process 

and promotes synaptic vesicle endocytosis for synaptic vesicle recycling58.  Interestingly, 
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CALPN3 was previously shown to be upregulated in Pietrain42 lougissiums dorsi muscle, and 

both BIN1 and CAPN3 were shown to be highly expressed in intramuscular adipose tissue48. In 

this study, the allelic bias of BIN1 and PRKAG3 was confirmed with pyrosequencing.  

The PPARGC1B (PPARG coactivator 1 beta) gene on SSC2 contained a cSNP with ASE, 

with the non-reference allele associated with a reduction in loin muscle area. An important 

paralog of this gene is PPARGC1A previously suggested to play a role in energy metabolism 

specific to muscle fiber type, and shown to be up-regulated in longissimus dorsi of Duroc 

compared to Pietrain pigs42. In this study, PPARGC1B allelic expression bias was not confirmed 

with pyrosequencing, however, only a small number of pigs in our population were heterozygous 

for this cSNP. 

The TYW3 (TRNA-YW synthesizing protein 3 homolog) gene contained two cSNP with 

ASE showing a narrow bias of 0.55. This gene was significantly associated with 10th-rib backfat, 

last-lumbar backfat and marbling score accounting for 13% of phenotypic variance for all three 

phenotypes. Pyrosequencing of the TWY3 cSNP, SSC6:138435089-A/G, did not confirm 

significant allelic bias. The CRYZ gene also showed significant ASE in our analysis with an AR 

of 0.57 (SSC6:138460416-G/A). Both TWY3 and CRYZ are associated with resistin gene 

expression, and circulating resistin levels have been implicated in insulin resistance and 

obesity59. CRYZ has NADPH-dependent quinone reductase activity and encodes a protein that 

binds to adenine-uracil rich elements in 3’-UTR of mRNA, acting as a trans-acting factor60. The 

CRYZ gene was not associated with fatness traits in the conditional analysis, but five cSNP 

mapping to this gene (including 6-138460416-G-A) were associated with 10th-rib backfat in the 

cSNP pQTL analysis. These results suggest CRYZ and TWY3 may play an important role in 

subcutaneous fatness traits through the regulation of resistin levels. Two additional genes, 
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ACSL3 and RNF150, with allelic imbalance were associated with 10th-rib backfat. ACSL3 (long-

chain acyl-COa synthetase 3) on SSC15 was associated with 22wk 10th-rib backfat, and this gene 

plays a role in mitochondrial oxidation of fatty acids42. RNF150 (ring finger protein 150) is 

associated with carcass 10th-rib backfat accounting for 47% of the phenotypic variance with the 

non-reference allele associated with increased backfat. The allelic imbalance observed for 

RNF150 was confirmed by pyrosequencing.  

CONCLUSION       

This study provides new information on the complex regulation of the pig longissimus 

muscle transcriptome, and direct or indirect relationships with economically important 

phenotypic traits. Several genes identified in this study are involved in the PI3K/Akt/mTOR 

signaling pathway, regulating postmortem metabolism, apoptosis, calcium homeostasis, and 

insulin signaling. We observed several genes with ASE within this pathway suggesting a 

potential role for PI3K/Akt/mTOR signaling on meat quality and carcass composition traits. A 

high degree of overlap was observed for genes and pathways identified through the ASE analysis 

of our F2 Duroc x Pietrain population, and differentially expressed genes reported between the 

parental breeds42. These results suggest phenotypic divergence between breeds can be attributed 

to cis-acting effects regulating important biological processes. 
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SUPPLEMENTARY MATERIALS 

Supplementary tables available at https://velezdeb84.wixsite.com/deborahvelezirizarry. 

Supplementary Table 3.S1 Primer sequences for pyrosequencing array. 

Supplementary Table 3.S2 cSNP retained for ASE analysis. 

 

Supplementary Table 3.S3 Gene-wise meta-analysis of cSNP mapping to a gene transcript. 

Supplementary Table 3.S4 Gene ontology terms enriched for genes with significant ASE. 

 

Supplementary Table 3.S5 Phenotypic QTL using cSNP. 

 

Supplementary Table 3.S6 Gene-wise conditional analysis of cSNP with ASE. 

  

https://velezdeb84.wixsite.com/deborahvelezirizarry
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CHAPTER FOUR 

 

Conclusions 

 

 

The overall goal of this dissertation research is to reduce the number of candidate genes 

obtained through QTL mapping by identifying positional candidate eQTL associated with pQTL 

regions. In particular, we aimed to characterize the prevalence of local and distant acting variants 

of gene expression, by conducting expression QTL (eQTL) and allele specific expression (ASE) 

analyses using mRNA extracted from the longuissimus dorsi muscle of pigs from our F2 Duroc x 

Pietrain resource population (MSUPRP) and estimate their effect on phenotype. Transcription is 

a spatially and temporally controlled process regulating mRNA production, with mRNA 

transcripts subsequently translated into protein, the central dogma of molecular biology. Several 

cis-acting elements and trans-acting factors, including epigenetic markers, and environmental 

influences impact transcription1,2. eQTL maps reveal gene networks that can increase our 

knowledge of the genetic architecture of complex traits. In a well-characterized and phenotyped 

population like our MSUPRP, querying the co-localization of such eQTL with pQTL reveals 

candidate genes affecting multiple trait phenotypes. Genetic variation in the form of ASE is 

observed when one allele is preferentially expressed at a higher degree relative to the alternative 

allele, deviating from the 1:1 allelic ratio expected in biallelic expression of heterozygous locus. 

ASE analysis provides a means of confirming cis acting regulators, and ASE coding SNP (cSNP) 

associations with phenotype identify candidate markers with functional relevance.  

Our eQTL scans for variants associated with total transcript abundance shed light on both 

local and distant regulators of gene expression. The latter include regulatory hotspots regarded as 

a single marker associated with variation in multiple gene transcripts. In our study, a putative 

hotspot on SSC15 (intergenic variant, H3GA0052416) was associated with eight meat quality 
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and carcass composition phenotypes, and eleven genes expressions. This genomic region being 

associated with variation at the transcriptional and phenotypic level (i.e. eQTL co-localized with 

pQTL) reveals functional variation influencing phenotypic divergence. The majority of genes 

associated with the putative hotspot (10) were associated with trans-acting regulation, and the 

other gene was a novel transcript mapped 73Mb upstream of the putative hotspot. The 

association of this genomic region with multiple meat quality traits has been demonstrated in 

GWAS performed by our group3,4 and in independent studies5,6.  

The PRKAG3 (protein kinase AMP-activated gamma 3 non-catalytic subunit) gene has 

been implicated as the candidate gene in this genomic region7–9, however, our studies show that 

variants within this gene and previously implicated in regulating meat quality traits and 

glycolytic potential3,10,11 do not account for a significant portion of phenotypic variance for meat 

quality traits, suggesting another gene or group of genes may be involved. Our ASE analysis 

identified two candidate gene in this region, the IGFBP5 (insulin-like growth factor binding 

protein 5; 3Mb upstream of the putative hotspot) gene, and a modulator of IGFBP5 expression12, 

OBSL1 (obscurin like 1; 234 Kb upstream), both exhibiting significant cis-effects. Mutations 

identified in OBSL1 have previously been associated with abnormal IGFBP2 and IGFBP5 

expression and suggested to be a disease locus associated with heterogeneity in the 3-M growth 

retardation syndrome in humans12. Our findings suggest OBSL1 as a candidate gene for the 

putative hotspot on SSC15 associated with meat quality traits. While ASE cSNP of OBSL1 were 

not directly associated with meat quality traits in the conditional analysis, a cSNP within OBSL1 

showed high correlation with the putative hotspot (R=0.78, 15-121563981-T-C) and was 

associated with protein percent in the cSNP GWAS. In addition, the ASE cSNP of OSBL1 
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(AR=0.43, 15-121571895-C-A) was significantly correlated with the putative hotspot (R = 0.24, 

p-value ≤ 0.001).  

Insulin-like growth factor 1 (IGF1) is the upstream regulator of the phosphatidylinositol-

3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and IGFBP5 

is a strong inhibitor of IGF1 signaling13. MTOR (mechanistic target of rapamycin kinase) has 

been shown to regulate a feedback inhibition of IGF1 signaling through HIF1A (hypoxia-

inducible factor 1-alpha) dependent expression of IGFBP513. This is an important finding since 

the conversion of muscle to meat is governed by anaerobic processes that control postmortem 

energy metabolism, mainly the degradation of glycogen and accumulation of lactate14. Lactate 

accumulation in turn reduces pH, causing dysregulation of calcium homeostasis leading to 

increased Ca2+ release from the sarcoplasmic reticulum compromising mitochondrial integrity 

and increasing pro-apoptotic factors15. The rate of postmortem energy metabolism is the major 

factor influencing meat quality development, therefore, knowing IGFBP5 and OBSL1 exhibit 

significant cis-acting effects, are in close proximity to the putative hotspot on SSC15, and are 

important mediators of PI3K signaling, it is reasonable to assume these genes play an important 

role in post mortem metabolism. For instance, HIF1A is an important transcriptional regulator of 

the glycolytic pathway during hypoxic stress16–18 and it is influenced by high fat diets in pigs18. 

HIF1A dependent expression of IGFBP5 promotes IGF1 inhibition with a feedback loop 

involving various genes found to exhibit cis-acting effects in our study including IRS1, GRB10, 

MTOR, IGF1, IGFBP513 and NRF219. Therefore, by merging results from our eQTL, pQTL and 

ASE analyses we provide new insights on the complex architecture driving variation in 

important pig production traits.  
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In this study, we aimed to characterize ASE in the longuissimus dorsi transcriptome in 

pigs. Overall, 55% of expressed genes exhibited ASE, and over 50 cSNP accounted for a 

significant portion of phenotypic variance for growth, carcass composition and meat quality 

phenotypes in our MSUPRP. A 36% overlap was observed between genes exhibiting significant 

ASE in our study, and differentially expressed genes reported for an independent study 

evaluating differences in longuissimus dorsi transcript abundance between Duroc and Pietrain 

breeds20. These results suggest phenotypic divergence between breeds can be attributed to cis-

acting effects regulating important production traits. Duroc breed pigs are known for their fast 

growth and backfat deposition, whereas Pietrain breed pigs are characterized for their leaness21.  

The PI3K/Akt/mTOR signaling pathway contained several genes exhibiting significant allelic 

imbalance with some showing extreme allelic ratios of the non-reference allele (< 0.20; IGF1, 

IGFBP5, HIF1AN, TRIM63 and FBXO32) and others exhibiting both cis and trans acting effects 

(NQO1 and PFKFB3). PI3K/Akt/mTOR plays an important role in skeletal muscle response to 

acute hypoxia22, regulates cellular hypertrophy by blocking transcriptional mediators of 

atrophy23 (i.e. TRIM63 and FBXO32), and has been implicated in intramuscular fatty acid 

content in pork24. The transcriptional regulation of genes implicated in this pathway may explain 

some of the phenotypic differences observed between Pietrain and Duroc breeds. For example, 

both PRKAA2 (protein kinase AMP-activated catalytic subunit alpha 2) and PPARGC1A 

(PPARG coactivator 1 alpha) genes were upregulated in Duroc longuissimus dorsi20. PRKAA2 

activates the PI3K/Akt pathway implicated in intramuscular fatty acid content24 and PPARGC1A 

increases mitochondriogenesis via activation of AMPK that blocks mTOR25, consequently, 

MTOR gene expression was upregulated in Pietrain longuissimus dorsi20. PPARGC1A has also 

been implicated in fiber type conversion through increased mitochondrial respiration25 consistent 
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with the higher number of slow oxidative fibers in Duroc breed pigs20. Both PRKAA2 and MTOR 

genes exhibited significant ASE in our study. An important paralog of PPARGC1A is 

PPARGC1B found to be significantly associated with loin muscle area in our study, however, the 

allelic bias for this gene was not confirmed with pyrosequencing.  

Candidate markers identified through eQTL and ASE analyses that are associated with 

phenotypic variation for economically important pig production traits or implicated in signaling 

pathways known to play an important role in postmortem metabolism improve our understanding 

of the genetic architecture of these traits. Through this study, we shed light on potential cis-

acting effects for several genes implicated in the activation of the PI3K/Akt/mTOR signaling 

pathway in response to hypoxic stress and suggest this pathway plays a crucial role in regulating 

postmortem energy metabolism of the longuisimus dorsi muscle, resulting in divergence of 

important phenotypic traits in pigs. The cSNP identified in this study provide valuable 

information on gene networks implicated in the regulation of meat quality and growth traits. Of 

more importance are candidate markers with ASE not found in commercial SNP arrays since 

they may have functional relevance for phenotypic variation and breed divergence.  

FUTURE RESEARCH DIRECTIONS 

An application for results obtained in this study is the use of cSNP associated with 

growth, carcass composition and meat quality phenotypes, or implicated in influential gene 

networks, in SNP arrays for genomic selection or for genome-wide association studies to 

estimate individual SNP effects in resource and commercial populations. Targeted research on 

genes identified in this study may demonstrate mechanisms driving phenotypic variability and 

breed divergence with potential for biotechnological applications to meet breeding challenges 

and consumer needs. Of particular importance is the assessment of genes with ASE within the 
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PIK3/Akt/mTOR pathway and how variation in the expression of these genes alter phenotypic 

divergence. While this study suggests IGFBP5 and OBSL1 play an important role in postmortem 

metabolism and PIK3/Akt/mTOR signaling, several questions arise. For instance, how does ASE 

affect protein production for the key mediators of the pathway (IGF1, MTOR, IGFBP5 and 

OBSL1)? What is the driver of ASE, is it the methylation pattern of these genes or is imprinting a 

contributing factor? Are other epigenetic regulators involved such as long-non coding or micro 

RNA (miRNA)? Is ASE influencing transcription factor binding since HIF-1 is an important 

transcription factor for this pathway?  

Several approaches can be taken to address these questions. ELISA (enzyme-linked 

immunosorbent assays) assays can quantify protein expression for IGF1, MTOR and IGFBP5 

and transcription factor activity for HIF-1 in animals genotyped for the ASE cSNP and 

exhibiting extreme phenotypic differences in meat quality, carcass composition and/or growth 

phenotypes. With these assays, we can test the hypothesis that ASE alters protein production or 

HIF-1 transcription factor binding leading to variation at the phenotypic level. Methylation 

patterns can be assessed with relative ease (since we know the genes of interest) using bisulfite 

conversion and pyrosequencing26 of genes exhibiting ASE and implicated in the 

PIK3/Akt/mTOR pathway to identify differentially methylated regions (DMR) and test the 

hypothesis that ASE is a result of DMR. Imprinting effects can be assessed within our population 

by genotyping the F1 generation for the ASE cSNP of interest and testing the hypothesis that 

ASE results from parent of origin effects. Furthermore, ASE cSNP influencing variation in genes 

implicated in the PIK3/Akt/mTOR pathway can be characterized across breeds and populations 

of pigs, in order to test the hypothesis that breed differences arise from cis-acting effects. Our 

group is currently characterizing miRNA expression and its influence in phenotypic divergence 
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using the same tissue and population that we used for this study. Several miRNA have been 

implicated in regulating hypoxia-inducible factors like HIF-1 via the RNA interference 

pathway27. A closer examination of correlations between the expression of miRNA and genes 

exhibiting ASE could reveal important insights into the regulation of postmortem metabolism.  

The data generated through this analysis can be used to elucidate longuissimus dorsi 

transcriptome complexity and its influence on phenotypic divergence. For instance, our data has 

the potential to facilitate study of alternative splicing events through exon-specific expression to 

identify differential exon usage such as exon skipping and intron retention rates per gene. 

Combined with the ASE results (Chapter Three) we can gain insights on ASE induced alternative 

splicing and potential ASE isoforms. Similar to our eQTL analysis we can also map splice QTL 

to discover variants influencing alternative splicing patterns and provide deeper insights into 

functional and regulatory roles these variants exert on variations observed among gene 

expression profiles. This has been shown before in kidney renal clear cell carcinomas where a 

genome wide association analysis of alternative splicing patterns identified 915 cis and trans 

acting sQTL, some of which were previously associated with susceptibility locus for cancer28. 

Given that alternative splicing increases transcriptome complexity significantly, it has the 

potential to account for a greater amount of variability in gene expressions which can translate to 

variability in phenotypes. Merging eQTL, pQTL. ASE and sQTL can reveal potential insights on 

the genetic architecture of important phenotypes for pig production and reveal functional variants 

with commercial application. 

In the past 30 years advancements in sequencing technology, improvements in the 

annotation of the pig genome, and development of quantitative genetic models has driven 

significant genetic gain in the pork industry. This dissertation research enhances our 
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understanding of the genetic architecture of pig production traits by identifying potential drivers 

and biological mechanisms controlling phenotypic variation.  
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