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ABSTRACT

EXPRESSION QUANTITATIVE TRAIT LOCI AND ALLELE-SPECIFIC EXPRESSION
EXHIBITING JOINT ASSOCIATION WITH POLYGENIC TRAIT PHENOTYPES IN PIGS

By
Deborah Velez-Irizarry
Significant genetic gain in pork production has been achieved in the past 30 years.
Advancements in sequencing technology, improvements in the annotation of the pig genome,
and development of quantitative genetic models were instrumental in the these efforts. Several
quantitative trait locus (QTL) have been identified for growth, meat quality and carcass
composition phenotypes, however, the biological mechanisms underlying most QTL remain
unknown. Functional genomic analysis can reveal insights on the genetic architecture of complex
traits, and transcriptomic profiling of skeletal muscle during the initial steps leading to the
conversion of muscle to meat can identify key regulators of meat quality and carcass phenotypes.
In this study, we aimed to identify potential candidate genes and molecular markers regulating
phenotypic traits using an F2 Duroc X Pietrain pig resource population. Gene transcripts obtained
with RNA-seq of longissimus dorsi muscle from 168 F2 animals were used to estimate gene
expression variation subject to genetic control by mapping expression QTL (eQTL), and
identifying allele-specific expression (ASE). A total of 334 eQTL were mapped (FDR <0.01)
with 187 exhibiting local acting regulation. Joint association of eQTL with phenotypic QTL
(pQTL) segregating in our population revealed 16 genes significantly associated with 21 pQTL
for meat quality, carcass composition and growth traits. Ten of these pQTL were for meat quality
phenotypes that co-localized with one eQTL on SSC2 (8.8Mb region) and a putative hotspot
associated with 11 gene transcripts on SSC15 (121Mb region). Biological processes identified

for co-localized eQTL genes associated with meat quality traits included calcium signaling



(MRLN, PKP2 and CHRNA9), energy metabolism (SUCLG2 and PFKFB3) and redox
hemostasis (NQO1 and CEP128).

Allele specific expression (ASE) analysis facilitates the identification of cis-acting
regulation of transcript abundance, which can be associated with a measurable phenotypic
difference. In this study, we tested for ASE in 69,502 coding SNP (cSNP) called directly from
longissimus dorsi transcriptomes. A total of 18,234 cSNP with significant ASE were identified
(FDR <0.01). A meta-analysis merging cSNP p-values per gene identified 4,170 genes with
significant allele-specific effects (FDR < 0.01). A gene-wise conditional analysis fitting all ASE
cSNP per gene for each phenotype identified 60 genes associated with growth, carcass
composition and meat quality phenotypes. Ring finger and Zinc finger transcription factors were
associated with 45-min pH, drip loss and 10™-rib backfat, and allelic expression bias for these
genes was confirmed with pyrosequencing. Six genes exhibiting significant cis-acting effects and
two genes associated with both cis and trans action were key regulators of the PI3K-Akt-mTOR
signaling pathway. PI3K-Akt-mTOR plays an important role in skeletal muscle response to acute
hypoxia, regulates cellular hypertrophy, and has been implicated in glycolytic metabolism.
Results support an important role for activation of the PI3K-Akt-mTOR signaling pathway
during the initial conversion of muscle to meat.
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CHAPTER ONE
Introduction

The use of genomic improvement techniques by swine breeders has significantly
advanced pork productiont. Genomic regions harboring single nucleotide polymorphisms (SNP)
contributing significant portions of phenotypic variation have been observed for economically
important trait phenotypes in swine populations. These genomic regions are known as
quantitative trait locus (QTL). Our group has used an F2 pig resource population over the past
decade to identify QTL for growth, body composition and meat quality traits>°. The Michigan
State University Pig Resource Population (MSUPRP) was developed from an outcross between
Duroc and Pietrain to detect candidate variants associated with quantitative traits. These breeds
were selected for their tendency to differ in growth, leanness and meat quality phenotypes?®.
QTL have been identified in this population using linkage mapping?® and a high density SNP
panel (ProcineSNP60 bead chip)®-8. Efforts to fine map the identified QTL genomic regions have
been pursued using different approaches, such as increasing the number of microsatellite markers
surrounding QTL*%, performing meta-analysis combining independent genome wide association
(GWA) studies®’ and restricting analysis to 2 Mb regions surrounding the QTL marker with the
lowest p-value®®.

The extent of LD*! and small effective population size in pigst>*? limits the resolution to
identify candidate variants. Large effect QTL under selection tend to cluster among LD blocks,
usually spanning large genomic regions**. Because the MSUPRP is an F2 cross, the number of
recombination events is reduced, which consequently limits the resolution of QTL intervals
resulting in large QTL regions encompassing numerous SNP in close linkage disequilibrium

(LD) with a causative variant. This LD structure while beneficial for genomic selection



complicates the identification of candidate gene influencing QTL regions. Expression QTL
(eQTL) analysis aims to identify genes whose expression is subject to genetic control by
modeling gene expression as a response variable. A gene’s function can be defined by its product
and pattern of expression, which is regulated by a large number of functional elements at a given
developmental period and environmental condition®®. The goal of eQTL studies is to prioritize
variants with functional relevance in biological processes conferring measurable fitness in
economically important trait phenotypes. The joint association of eQTL regions with phenotypic
QTL (pQTL) regions in a single population can aid in the identification of candidate genes
whose expression is transcriptionally regulated by SNP associated with phenotypic variation.

Early eQTL maps of the swine genome were constructed with microarray gene
expression data and microsatellite markers'¢-2%. These early studies reduced the number of
candidate genes obtained through QTL mapping by identifying positional candidate cis-acting
eQTL coinciding with QTL regions. Cis-acting regulators of gene expression identify candidate
locus directly influencing the expression of the associated gene, and thus infer direct cause of
variation in gene expression. In contrast trans-acting regulators and regulatory hotspots may
affect the expression of distant genes through gene-gene interactions. Initial eQTL studies were
of low resolution due to the limited coverage of few microsatellite markers across the genome
(typically 115 — 170 markers)'¢-21, Our group has previously mapped eQTL for the MSUPRP 2!
using microarray gene expressions for longuissimus dorsi (l. dorsi) tissue and 124 microsatellite
markers.

Microarrays are known to have technical issues with hybridization and quantification of
genes with low transcript abundance??23, The application of next generation sequencing

technologies overcomes these limitations, and RNA-seq data has been shown to outperform



microarrays for evaluating both known and novel genes, and allows better quantification of
lowly expressed transcripts?223, In this project, we build on our previous work?%:24 to increase the
resolution of our eQTL map for the |. dorsi transcriptome using high density SNP genotypes and
RNA-seq data to increase the genome-wide coverage of gene expression regulation. The
integration of pQTL and eQTL analysis for the same population increases our scope of inference
to elucidate the biological architecture driving differences between divergent trait phenotypes.
Such approaches have identified candidate genes and gene networks regulating meat quality
traits'®19.2125-31 disease resistance?®32-3¢ and stress response!’-¥’ in swine populations (Table
1.1).

The overall goal of this dissertation research is to elucidate functional variants and
candidate genes associated with variation in polygenic traits in pigs by identifying positional
candidate eQTL and cis-acting regulators of gene expression associated with pQTL regions. We
have implemented two approaches to meet this goal. One approach is to map eQTL using
statistically proven QTL models adapted to fit gene expressions as response variables. The extent
of LD, however, limits the differentiation between cis and trans action, specifically for eQTL
mapping to the same chromosome as the associated gene position. Due to this limitation we
define cis-action as ‘local’ and trans-action as ‘distant” when referring to our eQTL analysis. Co-
localization of identified eQTL with known pQTL for the same population identify not only local
regulators of gene expression, but also distant factors influencing transcriptional variation. The
second approach is to identify cis-acting regulators of gene expression through allele-specific
expression analyses (ASE) using RNA-seq data®®4°, Different functional categories are involved
in transcriptional regulation including enhancers, silencers, insulators, and promoters, among

other architectural elements'®>*, A cis-acting variant could be located within any one of these



functional elements affecting transcription factor binding sites, mMRNA stability or microRNA
binding sites*?. For instance, a regulatory sequence in the DNA containing a SNP may affect the
affinity of trans-acting regulators causing allele-specific expression because it only affects the
allele containing the variant. Distant acting variants indirectly affect transcription by altering a
gene that regulates the expression of a target gene such as transcription factors or microRNA,
and therefore affects the expression of both copies of the target gene in a diploid organism. In
order to detect allelic imbalance for cis-acting variants we must quantify the allele-specific
expression of polymorphic locus by studying heterozygous samples3840:43-45,

Accurately quantifying ASE from RNA-seq data is challenging because such data is
prone to technical artifacts including genotyping error and mapping bias, which lead to
inaccurate estimates of ASE and inflated false positive determinations of allelic imbalance*t°.
To address this issue, we have implemented a robust unbiased allele-specific read mapping
protocol*® to control for technical bias when estimating allelic imbalance. Only a few studies of
allelic imbalance have been performed in livestock species3+3°40.50-52 The ASE analyses
reported to date for pigs have been limited to small sample sizes (only 4 animals in Wu et al.*°,
12 in Oczkowicz et al.>? , and 38 in Maroilley et al.3*). However, these studies have increased
our understanding of cis-regulatory elements influencing immune capacity3, prenatal skeletal
muscle growth®! and the adult brain transcriptome®? in pigs. The ASE analysis reported in this
dissertation utilized transcriptomic data from I. dorsi muscle for 168 F2 MSUPRP animals. This
represents a considerably larger sample size than any previous reports of ASE in pigs, allowing
detection of a higher number of heterozygous coding SNP with low read coverage, and providing
novel cis-acting variants regulating mRNA transcript abundance. In addition, we assessed the

effect of cis-acting variants on trait phenotypes, since SNP called directly from transcriptomic



data provide increased marker coverage of coding regions. We also applied pyrosequencing to
verify selected polymorphic locus that exhibited significant allelic imbalance and that explained
a portion of phenotypic variance.

This dissertation research has two important implications: (1) The discovery of genomic
regions directly influencing expression of single genes (local and distant acting variants), and
multiple genes (regulatory hotspots) to reveal the functional significance of pQTL within the
swine genome. (2) The localization of cis-acting regulators of gene expression that account for a
significant portion of phenotypic variation providing insights into potential architectural
elements regulating economically important traits in pigs.

The aims of this dissertation research include:

1. Identify potential candidate genes and molecular markers regulating phenotypic traits
using an F2 Duroc x Pietrain pig resource population.
a. Map eQTL for the MSUPRP using RNA-seq of I. dorsi to identify local and
distant regulators of transcript abundance.
b. Identify eQTL co-localizing with pQTL and estimate peak pQTL SNP effect on
eQTL significance using a conditional analysis.
2. Perform an ASE analysis to confirm cis acting variants found with the previous eQTL
analysis and identify novel polymorphic sites with allelic imbalance.
a. Estimate the effect of ASE cSNP on growth, body composition and meat quality
trait phenotypes.
b. Confirm select ASE markers associated with phenotypic traits using

pyrosequencing.



Table 1.1 Review of eQTL studies conducted in pig populations.

Phenotype Tissue?  Animals BreedP Platform eQTL Year
Water holding l. dorsi 74 DxP Microarray 897  2008%
capacity
Meat Quality l. dorsi 74 DxP Microarray 9,180 2010%°
Cellular stress . 57 Multiple Microarray 272 2011Y

lumborun breeds

. . P X . 33
Obesity liver 150 (LW x L) Microarray 4,727 2011
Meat quality and l. dorsi 176 DxP Microarray 62 20117
carcass merit
Lipid metabolism g. medius 105 D Microarray 613 2012

i liver 497 370
Sense and antisense DxE DGE 901253
transcript expression | dorsi 589 399
. . P X . 37
Plasma cortisol level |. dorsi 207 (LW x L) Microarray 593 2012
Serum lipids liver 497 DxE DGE 643 2013%
Drip loss l. dorsi 132 DxP Microarray 30 2013%
Fatty acid l. dorsi 102 IxL Microarray 13 2013%
composition
Glycolytic potential 1. dorsi 497 DxE DGE 7 2014%
. . P x . 28
Meat quality . dorsi 207 (LW x L) Microarray 7 2014
Response to
Actinobacillus lung 100 HxL Microarray 193 20142
infection
Obesity adipose 36 Dax G RNAseq 1,060 2015%
Fat depositionand dorsi 176  DxP Microarray 7 2015%
muscularity
Meat quality l. dorsi 114 IxL Dynamic Array 19  2016%®
Meat quality g. medius 104 D Microarray 3 2017%
o LW x L 55
PRRSV infection blood 44 D x L/Y RNAseq 869 2017
Fatness and Yield l. dorsi 102 IxL Microarray 63  2017*
Immune capacity blood 243 LW Microarray 1,901 2017

2 Jonguissimus dorsi (I. dorsi), longuissimus lumborun (I. lumborun), glutes medius (g. medius) "Duroc (D), P
(Pietrain), Large White (LW), Landrace (L), Erhualian (E), Iberian (1), Hampshire (H), Danish (Da), Géttingen (G),

Yorkshire () °Digital gene expression (DGE)



REFERENCES



10.

11.

12.

13.

14.

REFERENCES

Steen, H. A. M. Van Der, Prall, G. F. W. & Plastow, G. S. Application of genomics to the
pork industry. J. Anim. Sci. 83, E1-E8 (2005).

Edwards, D. B. et al. Quantitative trait loci mapping in an F2 Duroc x Pietrain resource
population: I. Growth traits. J. Anim. Sci. 86, 241-253 (2008).

Edwards, D. B. et al. Quantitative trait locus mapping in an F2 Duroc x Pietrain resource
population: Il. Carcass and meat quality traits. J. Anim. Sci. 86, 254-66 (2008).

Choi, I. et al. Application of alternative models to identify QTL for growth traits in an F2
Duroc x Pietrain pig resource population. BMC Genet. 11, 97 (2010).

Choi, I. et al. Identification of carcass and meat quality QTL inan F2 Duroc x Pietrain pig
resource population using different least-squares analysis models. Front. Genet. 2, 18
(2011).

Bernal Rubio, Y. L. et al. Implementing meta-analysis from genome-wide association
studies for pork quality traits 1. J. Anim. Sci. 93, 5607-5617 (2015).

Bernal Rubio, Y. L. et al. Meta-analysis of genome-wide association from genomic
prediction models. Anim. Genet. 47, 36-48 (2016).

Gualdrén Duarte, J. L. et al. Refining genomewide association for growth and fat
deposition traits in an F 2 pig population. J. Anim. Sci. 94, 1387-97 (2016).

Casirg, S. et al. Genome-wide association study in an F2 Duroc x Pietrain resource
population for economically important meat quality and carcass traits. J. Anim. Sci. 95,
554-558 (2017).

Edwards, D. B., Bates, R. O. & Osburn, W. N. Evaluation of Duroc- vs . Pietrain-sired
pigs for carcass and meat quality measures. J. Anim. Sci. 81, 1895-1899 (2003).

Badke, Y. M., Bates, R. O., Ernst, C. W., Schwab, C. & Steibel, J. P. Estimation of
linkage disequilibrium in four US pig breeds. BMC Genomics 13, 24 (2012).

Uimari, P. & Tapio, M. Extent of linkage disequilibrium and effective population size in
finnish landrace and finnish yorkshire pig breeds. J. Anim. Sci. 89, 609-614 (2011).

Zhang, C. & Plastow, G. Genomic diversity in pig (Sus scrofa) and its comparison with
human and other livestock. Curr. Genomics 12, 138-146 (2011).

Dekkers, J. C. M. & Hospital, F. The use of molecular genetics in the improvement of
agricultural populations. Nat. Rev. Genet. 3, 22-32 (2002).



15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

Spitz, F. Gene regulation at a distance : From remote enhancers to 3D regulatory
ensembles. Semin. Cell Dev. Biol. 57, 57-67 (2016).

Cénovas, A. et al. Segregation of regulatory polymorphisms with effects on the gluteus
medius transcriptome in a purebred pig population. PLoS One 7, e35583 (2012).

Liaubet, L. et al. Genetic variability of transcript abundance in pig peri-mortem skeletal
muscle: eQTL localized genes involved in stress response, cell death, muscle disorders
and metabolism. BMC Genomics 12, 548 (2011).

Ponsuksili, S. et al. Trait correlated expression combined with expression QTL analysis
reveals biological pathways and candidate genes affecting water holding capacity of
muscle. BMC Genomics 9, 367 (2008).

Ponsuksili, S., Murani, E., Schwerin, M., Schellander, K. & Wimmers, K. Identification of
expression QTL (eQTL) of genes expressed in porcine M. longissimus dorsi and
associated with meat quality traits. BMC Genomics 11, 572 (2010).

Reiner, G. et al. Pathway deregulation and expression QTLs in response to Actinobacillus
pleuropneumoniae infection in swine. Mamm. Genome 25, 600-617 (2014).

Steibel, J. P. et al. Genome-Wide linkage analysis of global gene expression in loin
muscle tissue identifies candidate genes in pigs. PLoS One 6, €16766 (2011).

Kratz, A. & Carninci, P. The devil in the details of RNA-seq. Nat. Biotechnol. 32, 882—
884 (2014).

Zhao, S., Fung-Leung, W.-P., Bittner, A., Ngo, K. & Liu, X. Comparison of RNA-Seq and
microarray in transcriptome profiling of activated T cells. PLoS One 9, e78644 (2014).

Pefiagaricano, F. et al. Exploring causal networks underlying fat deposition and
muscularity in pigs through the integration of phenotypic, genotypic and transcriptomic
data. BMC Syst. Biol. 9, 58 (2015).

Heidt, H. et al. A genetical genomics approach reveals new candidates and confirms
known candidate genes for drip loss in a porcine resource population. Mamm. Genome 24,
416-426 (2013).

Mufioz, M. et al. Genome-wide analysis of porcine backfat and intramuscular fat fatty
acid composition using high-density genotyping and expression data. BMC Genomics 14,
845 (2013).

Ma, J. et al. A splice mutation in the PHKG1 gene causes high glycogen content and low
meat quality in pig skeletal muscle. PLoS Biol. 10, e1004710 (2014).



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Ponsuksili, S., Murani, E., Trakooljul, N., Schwerin, M. & Wimmers, K. Discovery of
candidate genes for muscle traits based on GWAS supported by eQTL-analysis. Int. J.
Biol. Sci. 10, 327-337 (2014).

Puig-Oliveras, A. et al. Expression-based GWAS identifies variants, gene interactions and
key regulators affecting intramuscular fatty acid content and composition in porcine meat.
Sci. Rep. 6, 31803 (2016).

Gonzalez-Prendes, R. et al. Joint QTL mapping and gene expression analysis identify
positional candidate genes influencing pork quality traits. Sci. Rep. 7, 39830 (2017).

Martinez-Montes, A. M. et al. Deciphering the regulation of porcine genes influencing
growth, fatness and yield-related traits through genetical genomics. Mamm. Genome 28,
130-142 (2017).

Kogelman, L. J. A., Zhernakova, D. V, Westra, H., Cirera, S. & Fredholm, M. An
integrative systems genetics approach reveals potential causal genes and pathways related
to obesity. Genome Med. 7, 105 (2015).

Ponsuksili, S., Murani, E., Brand, B., Schwerin, M. & Wimmers, K. Integrating
expression profiling and whole-genome association for dissection of fat traits in a porcine
model. J. Lipid Res. 52, 668-678 (2011).

Maroilley, T. et al. Deciphering the genetic regulation of peripheral blood transcriptome
in pigs through expression genome-wide association study and allele-specific expression
analysis. BMC Genomics 18, 967 (2017).

Kommadath, A. et al. Genetic architecture of gene expression underlying variation in host
response to porcine reproductive and respiratory syndrome virus infection. Sci. Rep. 7,
46203 (2017).

Chen, C. et al. Genetic dissection of blood lipid traits by integrating genome-wide
association study and gene expression profiling in a porcine model. BMC Genomics 14,
848 (2013).

Ponsuksili, S., Du, Y., Murani, E., Schwerin, M. & Wimmers, K. Elucidating molecular
networks that either affect or respond to plasma cortisol concentration in target tissues of
liver and muscle. Genetics 192, 1109-1122 (2012).

MacEachern, S., Muir, W. M., Croshy, S. D. & Cheng, H. H. Genome-wide identification

and quantification of cis - and trans -regulated genes responding to Marek ’ s disease virus
infection via analysis of allele-specific expression. Front Genet 2, 113 (2012).

10



39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49,

50.

Cheng, H. H. et al. Fine mapping of QTL and genomic prediction using allele-specific
expression SNPs demonstrates that the complex trait of genetic resistance to Marek ’ s
disease is predominantly determined by transcriptional regulation. BMC Genomics 16, 816
(2016).

Wu, H., Gaur, U., Mekchay, S., Peng, X. & Li, L. Genome-wide identification of allele-
specific expression in response to Streptococcus suis 2 infection in two differentially
susceptible pig breeds. Anim. Genet. 56, 481-491 (2015).

Mora, A., Sandve, G. K. & Gabrielsen, O. S. In the loop : promoter — enhancer
interactions and bioinformatics. Brief. Bioinform. 17, 980-995 (2015).

Wang, X. & Clark, A. G. Using next-generation RNA sequencing to identify imprinted
genes. Heredity (Edinb). 113, 156-166 (2014).

Ernst, C. W. & Steibel, J. P. Molecular advances in QTL discovery and application in pig
breeding. Trends Genet. 29, 215-224 (2013).

MacEachern, S. et al. Genome-wide identification of allele-specific expression ( ASE ) in
response to Marek ’ s disease virus infection using next generation sequencing. BMC
Proc. 5, S14 (2011).

Maceachern, S., Muir, W. M., Crosby, S. D. & Cheng, H. H. Genome-Wide Identification
and Quantification of cis- and trans-Regulated Genes Responding to Marek’s Disease
Virus Infection via Analysis of Allele-Specific Expression. Front. Genet. 2, 113 (2011).

Geijn, B. Van De, Mcvicker, G., Gilad, Y. & Pritchard, J. K. WASP : allele-specific
software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061—
1063 (2015).

Degner, J. F. et al. Effect of read-mapping biases on detecting allele-specific expression
from RNA-sequencing data. 25, 3207-3212 (2009).

Satya, R. V., Zavaljevski, N. & Reifman, J. A new strategy to reduce allelic bias in RNA-
Seq readmapping. Nucleic Acids Res. 40, e12 (2012).

Castel, S. E., Levy-moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools
and best practices for data processing in allelic expression analysis. Genome Biol. 16, 195
(2015).

Perumbakkam, S., Muir, W. M., Black-pyrkosz, A., Okimoto, R. & Cheng, H. H.
Comparison and contrast of genes and biological pathways responding to Marek ’ s
disease virus infection using allele-specific expression and differential expression in
broiler and layer chickens. BMC Genomics 14, 64 (2013).

11



51.

52.

53.

Yang, Y. et al. Transcriptome analysis revealed chimeric RNAs, single nucleotide
polymorphisms and allele-specific expression in porcine prenatal skeletal muscle. Sci.
Rep. 6, 29039 (2016).

Oczkowicz, M., Szmatota, T., Piorkowska, K. & Ropka-Molik, K. Variant calling from
RNA-seq data of the brain transcriptome of pigs and its application for allele-specific
expression and imprinting analysis. Gene 641, 367-375 (2018).

Chen, C. et al. A genome-wide investigation of expression characteristics of natural
antisense transcripts in liver and muscle samples of pigs. PLoS One 7, €52433 (2012).

12



CHAPTER TWO

Genetic control of longissimus dorsi muscle gene expression variation and joint
association with phenotypic quantitative trait locus in pigs

Vélez-Irizarry, D., S. Casiro, R.O. Bates, N.E. Raney, J.P. Steibel and C.W. Ernst

ABSTRACT

Economically important growth and meat quality traits in pigs are controlled by cascading
molecular events occurring during development and continuing throughout the conversion of
muscle to meat. Evaluating transcriptomic profiles of skeletal muscle during the initial steps
leading to the conversion of muscle to meat can identify key regulators of polygenic phenotypes.
In this study, we aim to identify potential candidate genes and molecular markers regulating
phenotypic traits using an F2 Duroc X Pietrain pig resource population. Gene transcripts obtained
with RNA-seq of longissimus dorsi muscle from 168 F2 animals were used to estimate gene
expression variation subject to genetic control by mapping expression QTL (eQTL). A total of
334 eQTL were mapped (FDR < 0.01) with 188 exhibiting local acting regulation. Joint
association of eQTL with phenotypic QTL (pQTL) segregating in our population revealed 16
genes significantly associated with 21 pQTL for meat quality, carcass composition and growth
traits. Ten of these pQTL were for meat quality phenotypes that co-localized with one eQTL on
SSC2 (8.8Mb region) and 11 on SSC15 (121Mb region). Biological processes identified for co-
localized eQTL genes include calcium signaling (FERM, MRLN, PKP2 and CHRNADY), energy
metabolism (SUCLG2 and PFKFB3) and redox hemostasis (NQO1 and CEP128), and results
support an important role for activation of the PI3K-Akt-mTOR signaling pathway during the
initial conversion of muscle to meat.

Keywords: expression QTL, skeletal muscle, RNA-seq, pig
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INTRODUCTION

Applications of genomic improvement techniques have significantly advanced livestock
breeding. Genomic regions harboring single nucleotide polymorphisms (SNP) accounting for a
significant portion of phenotypic variation for economically important traits have been identified
and implemented in marker assisted selection'=3. In pigs, these efforts have identified candidate
genes affecting meat quality (e.g. CRC1, PRKAG3, CAST), weight gain (e.g. MC4R) and litter
size (e.g. ESR)*. However, we still do not fully understand the molecular mechanisms underlying
the variability observed in pork traits. For meat quality traits, cascading molecular events starting
before exsanguination and continuing throughout the conversion of muscle to meat play a critical
role in determining the eating quality of pork. By studying the transcriptomic profile of the initial
steps leading to the conversion of muscle to meat we can elucidate key regulators of polygenetic
trait phenotypes. Specifically, we can identify gene transcripts subject to genetic control that
potentially regulate complex traits by mapping expression QTL (eQTL), and testing their co-
localization with phenotypic QTL (pQTL). In this study, we use an F2 Duroc x Pietrain resource
population developed at Michigan State University>® (the MSUPRP) to identify eQTL

significantly associated with pQTL for meat quality, carcass composition and growth traits.

Meat quality traits are highly correlated. During the conversion of muscle to meat, Ca?*
ions are released from the sarcoplasmic reticulum and the anaerobic production of ATP leads to
the accumulation of lactic acid that reduces muscle pH’. The rate of pH decline and release of
Ca?* directly influences water holding capacity, meat color and the rate of proteolytic activity
that leads to meat tenderization’. While these molecular processes have been extensively studied
with numerous QTL identified for tenderness, drip loss, pH, meat color and enzyme activity &,

we know little of the genetic architecture regulating these traits. This is likely due to the high
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variability of meat quality traits that are known to be heavily influenced by both genetic and
environmental factors such as antemortem handling®*. Regulators of gene expression have been
used to study the molecular bases of polygenetic phenotypic differences in swine populations*?-
15 Expression QTL maps provide a foundation to study divergent molecular processes in
livestock species?16. This approach has been successful in identifying candidate genes, causative
variants and molecular networks regulating phenotypic traits in swine, including back fat'’, drip

loss®®, glycolytic potential'®, plasma cortisol levels'? and lipid metabolism?°.

In this study we use a GBLUP-based GWA model to map eQTL. With this model, we
can elucidate both local and distant acting regulators of gene expression, and narrow sense
heritability (h?) can be estimated for each gene. Joint analysis of pQTL and eQTL can identify
potential genetic regulators of phenotypic traits and give insights into the genetic architecture of
complex traits. Putative hotspots are of particular interest where a single marker is associated
with the expression of multiple genes, serving as a potential master regulator that can account for
a significant portion of phenotypic variation. In this study, we aim to map eQTL for longissimus
dorsi muscle of the well characterized MSUPRP to identify local and distant regulators of
transcript abundance. A joint-association of eQTL with pQTL may reveal novel insights into the
genetic architecture of meat quality, carcass composition and growth traits.

MATERIALS AND METHODS
Pig population and phenotype collection

Animal housing and care protocols were evaluated and approved by the Michigan State
University All University Committee on Animal Use and Care (AUF # 09/03-114-00). The
MSUPRP was developed from 4 Duroc boars and 15 Pietrain sows>®. From the F1 progeny, 56

animals (6 males and 50 females) were retained to produce the F2 generation, which included
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1,259 animals from 142 litters. A total of 67 phenotypic traits were collected for the F2
generation 8, A subset of the F2 pigs were selected for this study using a selective profiling
scheme based on extremes in loin muscle area and backfat thickness phenotypes within litter (44
litters) and sex?°. Summary statistics for the 67 phenotypic traits (29 growth traits, 20 carcass
composition traits and 18 meat quality traits) in the F2 population, and the subset of animals used

for this study are shown in Supplementary Table 2.S51.
Genotyping

SNP genotypes for the MSUPRP were available from prior studies?!?2. Genotyping was
performed by Neogen Corporation - GeneSeek Operations (Lincoln NE) using the Illumina
PorcineSNP60 BeadChip? for the FO, F1 and ~1/3 of the F2 population and the GeneSeek
Genomic Profiler for Porcine Low Density (GGP-Porcine LD) for the remaining F2 pigs?.22.
Missing genotypes were imputed with an accuracy of 0.97%122, Monomorphic markers and non-
autosomal markers were eliminated from further analysis, as were those showing divergence
from Mendelian inheritance rules. An updated genomic map for SNPs on the Sscrofall.l
genome assembly was obtained from Neogen (Lincoln NE). Additional filtering was performed
to exclude markers with a minor allele frequency lower than 0.01 and reduce the degree of
correlation between adjacent markers (i.e. if a pair of neighboring markers had a correlation of
allelic dosage greater than 0.95, one of the two markers was eliminated; this filtering was
performed only for the eQTL analysis). Filtering resulted in 38,679 markers for the eQTL
analysis and 43,130 for the pQTL analysis. Two coding SNPs in the protein kinase AMP-
activated non-catalytic subunit gamma 3 (PRKAG3) gene, 1199V and T30N?425, were also

genotyped in the MSUPRP as previously described in Casiro et al.?6.
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RNA extraction and RNA sequencing

Tissue samples were taken immediately post mortem from the longuissimus dorsi muscle,
flash frozen in liquid nitrogen and stored at -80°C until processing. RNA extraction was
performed with the miRNeasy Mini Kit (Qiagen, Germantown, MD) following the
manufacturer’s protocol. Quality and quantity of extracted total RNA were determined using the
Agilent 2100 Bioanalyzer (RIN > 7). Sequencing was performed at the Michigan State
University Research Technology Support Facility. Libraries for 24 samples were prepared using
the Illumina TruSeq RNA Library Prep Kit v2, and sequenced on the Illumina HiSeq 2000
platform (2 x 100bp paired-end reads). The remaining 152 libraries were prepared using the
[llumina TrueSeq Stranded MRNA Kit, and sequenced on the IHlumina HiSeq 2500 platform (2 x
125bp, paired-end reads). Base calling was performed with the Illumina Real Time Analysis
v1.18.61 software, and the Illumina Bcl2fastq v1.8.4 was used for conversion to FastQ format.
A total of 96 sequence files (741Gb) consisting of ~63 million short-reads per library were
obtained from the HiSeq 2000 platform and 1,218 sequence files (~2Tb) of ~23 million short-
reads per library were obtained from the HiSeq 2500 platform. Eight samples were removed
from further analysis due to low sequence quality, leaving a total of 168 samples for subsequent
analyses. Sequence data has been deposited in the NCBI Sequence Read Archive accession

number PRINA403969.

Raw RNA sequence reads were first filtered for adapter sequences using Trimmomatic?’
followed by quality trimming using Condetri where the first 6 bases at the 3’ end and low quality
reads were filtered out retaining reads with a minimum length of 75 bases. The quality of each
sequenced nucleotide was evaluated on adapter filtered and quality trimmed RNA-seq reads

using the FASTX toolkit?® and a mean Phred quality score of 37.01 + 0.99 was obtained. After
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adapter and quality filtering, RNA-seq reads were mapped to the reference genome assembly Sus
scrofa 11.1 using the splice aware aligner Tophat2%°. Sample-specific transcriptomes were
assembled using Cufflinks and merged with the reference genome to create a set of known and
novel isoforms using Cuffmerge®. A total of 30,723 full length transfrags were identified.
Alignment statistics and base coverage were obtained with SAMtools3. Samples showed on
average 92.4% of sequencing reads mapping to the reference genome and 73.3% were unique
and properly paired with their complementary sequence. Total gene expression abundance was
quantified using unique and properly paired reads using HTseq®. Genes with total count
abundance less than 168 were removed from further analysis to reduce the number of genes with

low expression, leaving 16,121 gene transcripts for eQTL analysis.
RNA-seq count normalization and transformation

Expressed gene counts were normalized using the trimmed mean of M-values (TMM) to
reduce systematic technical biases of sequenced transcripts33. TMM normalization has been
shown to control false positive associations4. The normalized gene counts were then
transformed to follow an approximately Gaussian distribution by calculating the log counts per
million (log-cpm) as described in Law et. al.®. Briefly, a linear model was fit to obtain the
expected log-cpm for each gene, E(y) = xf8, where y are the log-cpm, x is a vector of ones and
B is a vector of estimated regression coefficients. The residual standard deviations for each gene
and their calculated average log-cpm were used to estimate the mean variance trend, w, by fitting
a LOWESS curve®®. Variance coefficients were standardized to keep similar scales for residual

variance and additive variance:
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where, w4 are the variance coefficients, n the total number of animals, and w, the estimated
mean variance trend. The normalized log-cpm were used as the response variable, y, and the
variance coefficients, wg.4, to model heterogeneity of error variance in the eQTL scan. This
approach accounts for the mean variance relationship of each gene expression instead of

assuming equal variance for all observations.
Heritability of phenotype and gene expression

A genomic best-linear unbiased prediction (GBLUP) model?*?? was used to estimate the

heritability of each phenotype and gene expression by fitting the following equation:

y=Xb+a+e, (2)
where, y is a vector with measurements of a phenotype for each animal when estimating
phenotypic heritability, and a vector with normalized log-cpm gene expression when estimating
the heritability of gene expression. X is an incidence matrix of fixed effects including sex and
additional covariates unique to each phenotype?®3, and includes the transcriptional profiling
selection scheme (i.e. within litter and sex extreme for loin muscle area or back fat thickness)
when analyzing gene expression. The vector b contains the estimated fixed effect, a is a vector
of random additive genetic effects and e is a vector of random residual errors. The additive
genetic effects are assumed a~N (0, Go2) with the genomic relationship matrix®’, G = ZZ'. Z is
a matrix of normalized SNP genotypes, with elements:

M-2p

/Z(Zp(l—p))’ (3)

/=
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where, M is the matrix of SNP genotypes and p is a vector with the frequency of each reference
allele. The error term is e~N (0, 62 diag(Wgg) ) with a variance inversely proportional to the
variance coefficients, wg,4. These variance coefficients account for the heteroskedasticity across
genes with different expression. The heritability of gene expressions were calculated by taking
the ratio of the variance of the additive genetic effects to the total phenotypic variance, h? =

ai / (6Z + a?).
Statistical significance of heritability was determined using a likelihood ratio test, LR =

2[logL(8) — logL(8,)], comparing the likelihood of the model represented in Eq. 1 (L(@)) and

the likelihood of a null model that does not include the genetic additive effect (L(@E)) Testing

the null hypothesis 62 = 0 is equivalent to testing h? = 0. The likelihood ratios were compared
to a chi-squared distribution with one degree of freedom and the resulting p-value divided by 2 to
account for the asymptotic distribution of the likelihood ratios that tend to follow a mixture of
chi-square distributions with different degrees of freedom38. Multiple test corrections were
performed using a FDR of 0.01%°. Differences in heritability between local and distant eQTL

were determined with Wilcoxon rank sum test*°.
Genome wide association

The SNP effects, g, and their variances Var(g) were estimated as a linear transformation
of the BLUP breeding values, @, from Eq. 24242, A test statistic for the association of each
marker with each phenotype or gene expression measure is computed by standardizing the SNP

effects:

sz, (4)
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The p-values associated with this T test statistic were calculated using the Gaussian cumulative

distribution function, @, as follows:
p — value = 2[1 — &(|T])], ()
and subject to multiple test corrections per each gene expression (FDR < 0.01)%.

It has been demonstrated*!#? that the T test statistics and p-values resulting from Eq. 4
and 5 are equivalent to those obtained from fitting a single marker model, specifically the

Efficient Mixed-Model Association (EMMA) model*.
Local and distant regulators

Due to low SNP density and long-range linkage disequilibrium in this pig population,
distinguishing local versus distant regulation of gene expression is difficult. We applied the
following algorithm to classify putative eQTL as local or distant regulators of a gene’s

expression:

1) AneQTL was defined as any gene with at least one marker association surpassing the
significance threshold (FDR < 0.01).

2) The plausible position range of each eQTL was defined by the position of the first
significant marker at the beginning of the QTL and last significant marker at the end of
the QTL. If the eQTL had only one marker association the position of the marker was
used.

3) Given the mapped position of the gene profile (start and end position of the transcript)
there are several possibilities

a. The associated eQTL plausible position range overlaps totally or partially: Local

eQTL
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b. The associated eQTL is on a different chromosome: Distant eQTL
c. The associated eQTL is on the same chromosome but does not overlap:
I. There are non-significant SNP (FDR > 0.01). between the mapped
position of the gene profile and its associated eQTL range: Distant eQTL
ii. There are no SNP between gene and eQTL range (including the filtered

SNP due to high LD): Plausible Local
Co-localization analysis

The genomic positions of the mapped eQTL were co-localized with pQTL previously
identified for the F2 MSUPRP for growth, carcass composition and meat quality traits. An eQTL
was considered co-localized if its QTL position overlapped the mapped position of a pQTL. The
statistical significance of each co-localized eQTL with pQTL was determined through a
conditional analysis that tested the effect of the most significant marker associated with the

pQTL on the co-localized eQTL gene expression, as follows:
y=Xb+ZSpr5Np + a+ e, (6)

where, y is the expression of the co-localized eQTL gene. The X, b, a and e were previously
described in Eq. 2. Zgyp is a vector of standardized marker genotypes for the pQTL peak
marker, co-localized with eQTL gene, and bgy» the estimated marker effect. Type | error rate of
0.05 and Bonferroni p-value cutoff based on the number of tests performed (p-value < 5.952¢-
04) was used to determine SNP effect significance. We also considered the effect the peak pQTL
marker had on the eQTL peak by performing a linear transformation of the BLUP breeding
values from Eq. 6 to estimate the individual SNP effects and tested their significance as

described in Eq. 4 and 5. Multiple test corrections were performed using an FDR < 0.01%, If
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fitting the top pQTL marker completely eliminated the eQTL peak, the two QTL were
considered to be significantly co-localized. The proportion of variance explained by the peak
PQTL markers for each co-localized eQTL was estimated as described in Casiro et al.?. Briefly,

the variance associated with the co-localized peak pQTL marker, o, was estimated as:
O?; = bZ var(ZSNp), (7)

where, b? is the calculated peak pQTL marker effect from Eq. 6, and the proportion of gene
expression variance accounted for by the co-localized pQTL peak SNP is

Eg%V\P / (0/52—,\; + o2 + EZ) . The estimated additive genetic variance, 2, and error variance, o2,
is obtained after fitting equation 6. Equations 6 and 7 were also used to estimate the proportion
of gene expression variance explained by the PRKAG3 T30N SNP for all identified eQTL to
uncover eQTL significantly associated with PRKAG3 and the proportion of phenotypic variance

explained for meat quality phenotypes with an associated pQTL on SSC15.
RT-gqPCR

To verify the expression of CHRNA9, 28 animals were selected based on the genotypes
of the peak eQTL SNP (10 animals per genotype equally weighted by sex except for the AA
genotype that had only 8 animals, 4 per sex). Total RNA was extracted from the longissimus
muscle samples as described above, and 2jug was reverse transcribed using the High Capacity
cDNA Reverse Transcriptase Kit with RNase inhibitor (Applied Biosystems, Foster City, CA). A
custom Tagman Gene Expression Assay (ThermoFisher Scientific, Waltham, MA) was designed
for CHRNAO using pig RNA sequence to span exons 4 and 5 (determined based on the structure
of the human CHRNA9 gene, Accession No. AC118275). The GeNorm#* algorithm was used to

select two reference genes, PPIA (ThermoFisher Scientific Assay No. Ss03394781 g1) and

23



SDHA (ThermoFisher Scientific Assay No. Ss03376909_u1l), with the highest gene-stabilizing
measure to normalize the expression of CHRNA9. RT-qPCR was performed in triplicate using 50
ng cDNA and TagMan Gene Expression Master Mix for a final volume of 20 pl. Assays were
run on a StepOnePlus Real-Time PCR System (Applied Biosystems). The cycling conditions
were 52°C for 2 min, 95°C for 10 min followed by 50 cycles of 95°C for 15 s and 60°C for 1 s.
ACt values were calculated as the mean difference between the geometric mean of the reference
genes and the target genes. To verify the RNA-seq results, the effect of the peak eQTL marker
for CHRNA9 was measured using Eq. 6 with the response variable being the ACt transcript
abundance. Analysis of variance with a type | error rate of 0.05 was used to determine significant

additive and dominance effects of the peak CHRNA9 SNP.
RESULTS

Identification of eQTL

A genome wide association study (GWAS) was conducted using 23,162 SNP markers
and 15,223 transcript abundance profiles for 168 F2 pigs. The GWAS identified 334 eQTL
(3,094 significant gene marker associations; whole genome FDR < 0.01 per gene, p-value <
2.04e-04 + 3.86e-04) for 321 gene transcripts and 2,523 molecular markers (Supplementary
Table 2.S2). The number of SNP associated with variation in transcript abundance was on
average 9.26 + 15.14, and the size of each eQTL peak was on average 12.04 + 22.90 Mb (Table

2.1).

All autosomes had associated eQTL, with SSC9 containing the most associations (42
eQTL). Two chromosomes contained a putative hotspot; SSC9 (ASGA0044684; SSC9:125.0
Mb) and SSC15 (H3GA0052416; SSC15:121.8 Mb). A putative hotspot is defined as a single

marker associated with multiple gene expressions, and we considered a single marker associated
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with more than ten genes to be a putative hotspot. ASGA0044684 was associated with 25
transcripts, and H3GA0052416 with 11 transcripts (FDR < 0.01). Both putative hotspots mapped
to non-coding regions, an intron variant of the ral guanine nucleotide dissociation stimulator like

1 (RGL1) gene on SSC9, and an intergenic variant on SSC15.

Table 2.1. eQTL summary among regulator types.

Gene Regulator N? Min? Max®  Mean* SD°

Average length of eQTL plausible position range?

All regulators 334 0 17520 12.04 2290
Local 166 0 175.20 2251 28.19
Plausible Local 22 0 11.44 1.43 2.82
Distant Same Chromosome 59 0 25.55 2.10 5.40
Distant 87 0 69.76 1.47 7.92
Average distance from eQTL to gene transcript position?

All regulators 334  1.75e-3 104.80 3.64 12.23
Local 166  1.75e-3 25.12 1.92 3.88
Plausible Local 22 5.70e-3 1.52 0.24 0.41
Distant Same 9 g23e3 10480 978  23.25
Chromosome

Distant 87 - - - -

Number of SNP associations

All regulators 334 1 105 9.26 15.14
Local 166 1 105 16.77 18.60
Plausible Local 22 1 14 2.95 3.12

Distant Same 59 1 17 201 237

Chromosome

Distant 87 1 5 1.46 0.97

Heritability

All regulators 334 5.47e-10 0.97 0.32 0.23

Local 166 5.47e-10 0.97 0.419 0.22

Plausible Local 22 0.04 0.63 0.32 0.17

Distant Same % 119609 074 027 022

Chromosome

Distant 87 1.34e-09 0.76 0.17 0.17

a\/alues shown in mega bases. *Number of eQTL. 2Minimum value. 3Maximum value.
“Average value. 5Standard deviation of value.
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Local versus distant regulators of gene expression

For each of the eQTL peaks, a plausible position range delimited by the first and last
significant marker (FDR < 0.01) was identified and compared to the mapped position of the
associated gene transcript to distinguish between local and distant regulators of gene expression
(Figures 2.1 and 2.2). A classification of local acting regulator of gene expression was
determined if the position of the associated gene transcript overlapped the eQTL plausible
position range (Figure 2.1). We identified 166 local regulators of gene expression (Figure 2.2,

black associations)

The average distance from the mid gene position and peak eQTL SNP for local regulators
was 1.92 + 3.88 Mb, however, due to the large plausible position range for some local eQTL (up
to 175 Mb) the maximum distance for a local regulator was 25 Mb (Table 2.1). If the gene
mapped to the same chromosome but fell outside the range of its associated eQTL with markers
below the significance threshold between the gene and eQTL positions, the eQTL was
considered to be a distant regulator on the same chromosome as the associated gene (Figure 2.1).
A total of 59 distant regulators on the same chromosome as the associated gene were identified
(Figure 2.2, green associations) with their eQTL peak at an average distance of 9.78 + 23.25 Mb
from the associated gene position (Table 2.1). However, in situations where the area between the
eQTL range and the associated gene transcript was found to be devoid of markers, the eQTL was
considered to be a plausible local regulator (Figure 2.1). Under this classification, 22 plausibly
local regulators of gene expression were identified (Figure 2.2, yellow associations) with their
eQTL peak at an average distance of 0.24 +0.41 Mb from the associated gene position (Table
2.1). An eQTL mapped to a different chromosome than its associated gene transcript was

classified as a distant regulator (Figure 2.1). We observed 87 distant regulators of gene
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expression (Figure 2.2, blue associations). A non-parametric test showed local eQTL had

significantly higher numbers of associated SNP than distant eQTL (p-value < 2.20e-16).
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Figure 2.1 Manhattan plots illustrating the classification of different types of gene expression
regulation based on eQTL position. The x-axis represents the absolute genomic position of the
marker and the y-axis the significance of the association with the gene transcript, -log10 g-value.
The two blue vertical dotted lines delimit the eQTL plausible position range (eQTL-PPR), and
the vertical red dotted line indicates the absolute position of the gene transcript. Local-acting
regulator: the position of the gene transcript falls within or overlaps the eQTL-PPR. Plausible
local regulator: the eQTL-PPR does not contain or overlap the gene transcript and the density of
SNP in the region separating the two is zero. Distant-acting regulator on the same chromosome:
the position of the gene transcript falls outside the specified eQTL-PPR but on the same
chromosome and the SNPs between the genomic position of the gene and the eQTL-PPR do not
surpassing the significance threshold. Distant-acting regulator: the eQTL-PPR is on a different
chromosome than the genomic position of the associated gene transcript.
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Figure 2.2 eQTL map. The y-axis represents the absolute genomic position of the gene and the
x-axis represents the absolute genomic position of its associated SNP marker. Associations
aligning on the diagonal are eQTL found on the same chromosome as the gene. A plausible
position range was identified for each eQTL peak based on the peak’s flanking markers, and
local regulation determined when the gene position overlapped this range, shown in black.
Plausible local regulators of gene expression (described in Figure 2.1) are shown in yellow. The
eQTL peaks shown in green are distant regulators that map to the same chromosome as their
associated gene. Distant regulators mapping to a different chromosome than the associated gene
are shown in blue. The eQTL shown in red are potential putative hotspots on SSC9 and SSC15.

Heritability of gene expression

Heritability (h?) was estimated for all gene transcripts with 344 exhibiting significantly
heritable expression (FDR < 0.01, p-value < 2.27e-04). The mean h? for significantly heritable
transcripts was 0.51 + 0.13, whereas the mean h? for other transcripts was 0.09 + 0.12 (Table
2.2). The relationship between the estimated h? of gene expression and its significance is shown
in Figure 2.3. A significant enrichment of genes associated with an eQTL was observed for the
significantly heritable gene transcripts (p-value < 2.2e-16; shown in red, Figure 2.3). The h? of

genes with an associated eQTL that were not significantly heritable was on average 0.21 £ 0.16
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(shown in yellow, Figure 2.3 and summarized in Table 2.2), whereas the group of significantly
heritable genes associated with an eQTL had a mean h? of 0.57 + 0.15 (Table 2.2). Mean
heritability among the different regulator types was higher in the group of eQTL associated with
local acting regulation, 0.42 + 0.22, and lowest in eQTL with distant acting regulation, 0.17 +

0.17 (Table 2.1). Non-parametric test showed a significant difference between local and distant

heritabilities (p-value < 1.08e-14).

-log10 p-value

heritability

@ Heritable LRT O Expression QTL @ Heritable eQTL

Figure 2.3 Heritability of transcript profiles. Heritability of genes is shown on the x-axis and p-
values from the likelihood ratio test (LRT) for significant heritable expression are on the y-axis.
A total of 344 gene expression transcripts were found to be heritable (shown in blue and red,
FDR < 0.01). A significant enrichment of genes with associated eQTL was observed among the
heritable genes (103 genes; p-value < 2.2e-16; shown in red). The 218 genes associated with an
eQTL that did not surpass the threshold for significant heritability are shown in yellow.
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Table 2.2. Heritability summary for all genes and genes with an associated eQTL.

Heritability (h?)

Significant h? N
Min Max Mean SD
All Genes
Yes! 344 0.184 0.968 0.508 0.133
No 14,879 2.210e-19 0.785 0.091 0.123
eQTL Genes
Yes? 103 0.184 0.968 0.574 0.147
No 218 5.475e-10 0.745 0.206 0.165
IFDR <0.01

Phenotypic QTL

Genomic regions significantly associated with growth36, meat quality and carcass
composition?® traits have been previously identified in our MSUPRP. However, these analyses
used an earlier assembly of the pig genome (Sscrofal0.2), therefore, we reanalyzed the 67
phenotypic traits for the F2 population (960 animals) following previous methods?'?? to generate
an updated QTL map using the most current genome assembly (Sscrofa 11.1). Our QTL analysis
of 29 growth traits identified 14 pQTL (Supplementary Table 2.S3, FDR < 0.05, p-value < 2.50e-
04) for which seven were confirmed from Duarte et al.3¢ and five exhibited a different peak SNP,
in part because one of the SNP on SSC6 (ALGA0122657) did not have a genomic position in the
new genome build. We were unable to confirm two pQTL on SSC2 for 10" rib backfat at 16-
weeks and last rib backfat at 19-weeks, and one pQTL on SSC3 for birth weight that were
reported in Duarte et al.>6. However, we identified two new pQTL for loin muscle area at 16-
weeks on SSC6 and last rib backfat at 10-weeks on SSC12. Our QTL analysis for carcass

composition and meat quality traits identified 29 pQTL (Supplementary Table 2.S3, FDR <
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0.05). Fourteen pQTL were confirmed from Casiro et al.?® and eight exhibited a different peak
SNP, in part because three SNP (SSC6: ALGA0122657, SSC11: M1GA0015491 and SSC15:
MARCO0047188) did not have genomic positions in the new genome build. Seven new pQTL
were identified for cook yield (SSC5 and SSC8), last lumbar backfat (SSC4, SSC9 and SSC10),
dressing percent (SSC11) and loin weight (SSC11; Supplementary Table 2.S3, FDR < 0.05). In
total, 43 pQTL were mapped using the Sscrofall.1 genome assembly, including six QTL for 10t
rib backfat from 13 to 22 weeks of age, seven QTL for last rib backfat from 13 to 22 weeks of
age, one QTL for loin muscle area at 16 weeks of age, 13 QTL for carcass composition traits and

16 QTL for meat quality traits.

Co-localization of phenotypic QTL with expression QTL

The association of eQTL co-localized with pQTL was performed through conditional
analysis of transcript abundance, which fixed the peak pQTL SNP, to elucidate eQTL
significantly associated with phenotypic traits. Manhattan plots of eQTL co-localized with pQTL
are shown in Figure 2.4 for meat quality and carcass composition traits, and Figure 2.5 for
growth traits. The conditional analysis tested 53 eQTL (orange associations) co-localized with 34
pQTL (blue associations) for ten growth and 11 meat quality and carcass composition traits
(Figures 2.4 and 2.5, Table 2.3 and Supplementary Table 2.54). A total of 16 eQTL were
significantly associated with 21 pQTL, where conditioning upon the peak pQTL marker resulted
in the complete removal of eQTL significance (p-value < 5.95e-04 for SNP effect and FDR <
0.01 for eQTL significance; black associations in Figures 2.4 and 2.5; Table 2.4 and
Supplementary Table 2.54). Three pQTL regions common among correlated phenotypes co-
localized with eQTL, resulting in eQTL significantly associated with variation for multiple

phenotypes.
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Table 2.3 Phenotypic QTL co-localized with expression QTL.

Phenotype! SSC  Peak SNP? ES A h? N°®
10th-Rib BF 1 ALGA0010839 + 0.03 0.45 1
WBS 2 MI1GA0002229 - 0.04 0.26 1
SP Tenderness 2  H3GA0005676 - 0.05 0.28-0.29 1"
Last Lumbar BF 4  ASGA0092651 - 0.04 0.41 4
Last-Rib BF 16-wk 5 ALGA0031990 + 0.03 0.47 1
Cook Yield 5 MARC0036560 + 0.03 0.31 1
Loin Muscle Area 16-wk 6 ASGA0105067 + 0.04 0.29 4
Growth and Carcass BF 6 ALGA0104402 -  0.04-0.07 0.35-0.57 6"
10th-Rib BF 6 MIL1GA0008917 - 0.12 0.45 6"
Loin Weight, Growth BF 6  ASGA0029651 -/+ 0.06 0.30-0.41 4
Number of Ribs 7  ALGA0043983 + 0.12 0.36 10
Cook Yield 8 DRGAO0008986 - 0.03 0.31 1
Dressing % 11 M1GAO0014839 + 0.03 0.24
Loin Weight 11  ALGAO0060368 - 0.03 0.30 2"
Last-Rib BF10-wk 12 ASGA0054658 - 0.02 0.35
Meat Quality, Protein 15 MARC0093624 -/+ 0.06-0.21 0.19-0.38 22"

Meat Quality 15 H3GA0052416 + 0.04-0.07 0.07-0.29 16"

IPhenotypes associated with pQTL. BF is backfat. SP Tenderness includes sensory panel tenderness and overall
tenderness. Growth BF includes ultrasound last-rib backfat at 10, 13 and 22 weeks and Carcass BF includes carcass
10™-rib and last-rib backfat. Meat Quality includes the phenotypes for sensory panel juiciness, tenderness and
overall tenderness, Warner Bratzler Shear Force, Cook Yield, Drip Loss and 24-hour pH. Protein is protein percent.
2Peak pQTL SNP (FDR < 0.05) 2Effect of B allele for peak pQTL SNP on phenotype, positive increases phenotypic
trait. “Proportion of phenotypic variance explained by peak SNP. SNumber of eQTL co-localized with the pQTL;
*Contains at least one eQTL significantly associated with the phenotype.
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Table 2.4 Expression QTL significantly associated with phenotypic traits.

SSC SSC

Gene Gene  eQTL Regulator? E3 Phenotype*
TEX9 1 15 Distant +  Meat Quality, Protein
FRMD8 2 2 Local —  Tenderness
PKP2 5 15 Distant —  Meat Quality, Protein
NQO1 6 15 Distant +  Meat Quality, Protein
HPN 6 6 Local +  Loin Muscle Area 16-wk
SSC6:104.080 6 6 Local - Eg'{ga\jje"i‘gﬂtem"vth BF,
SSX2IP 6 6 Local +  Carcass BF, Loin Weight
CEP128 7 15 Distant ¥ F'\,’é?ggr%”a"ty’ Protein
CHRNA9 8 15 Distant - Meat Quality, Protein
PFKFB3 10 15 Distant —  Meat Quality, Protein
SSC11:2.19* 11 11 Local —  Loin Weight
SUCLG2 13 15 Distant —  Meat Quality, Protein
CIT 14 15 Distant +  Meat Quality, Protein
CCDC60 14 15 Distant +  Meat Quality, Protein
MRLN 14 15 Distant —  Meat Quality, Protein
SSC15:48.941 15 15 Distant Same SSC ~ +  Meat Quality, Protein

Novel gene transcripts: Sus Scrofa chromosome and start position. 2Regulator type for eQTL, local is for eQTL
containing mapped position of gene transcript, distant is for eQTL on a different SSC than associated transcript
position and distant same SSC are eQTL on the same SSC as associated eQTL but not contained (Figure 2.1).
SEffect of B allele for peak eQTL marker on the gene’s expression: positive increases and negative decreases the
gene expression. “Phenotypes significantly associated with the gene’s expression. Tenderness includes WBS and
sensory panel tenderness and overall tenderness. Meat Quality includes the phenotypes for sensory panel juiciness,
tenderness and overall tenderness, Warner Bratzler Shear Force, Cook Yield, Drip Loss and 24-hour pH. Protein is
protein percent. Growth BF includes ultrasound last-rib backfat at 10, 13 and 22 weeks and Carcass BF includes
carcass 10"-rib and last-rib backfat.
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Figure 2.4 Manhattan plots of meat quality and carcass composition pQTL co-localized with
eQTL. The x-axis is the absolute genome position in mega bases. The y-axis is the negative base
10 logarithm of g-values, with the red line representing the significance threshold. Manhattan
plots in shades of blue are for the pQTL (FDR < 0.05) and those in shades of orange are for the
e¢QTL (FDR <0.01). SNP associated with an eQTL co-localizing with a pQTL, and whose
association is no longer significant after performing the conditional analysis are shown in black.
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Fig 2.5 Manhattan plots of growth pQTL co-localized with eQTL. The x-axis is the absolute
genome position in mega bases. The y-axis is the negative base 10 logarithm of g-values, with
the red line representing the significance threshold. Manhattan plots in shades of blue are for the
pQTL (FDR < 0.05) and those in shades of orange are for the eQTL (FDR <0.01). SNP
associated with an eQTL co-localizing with a pQTL, and whose association is no longer
significant after performing the conditional analysis are shown in black.
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Meat quality traits exhibited phenotypic correlations as expected for these traits. WBS
was negatively correlated with sensory panel scores (i.e. juiciness, tenderness and overall-
tenderness) and cook yield, and positively correlated with protein percent (p-value < 8e-05,
Figure 2.6). Cook yield was negatively correlated with drip loss and positively correlated with
24-hour pH and protein percent (p-value < 8e-05, Figure 2.6). Phenotypes related to tenderness
were associated with QTL on SSC2, and all eight of the aforementioned correlated meat quality
phenotypes were associated with QTL mapped to SSC15 (Figure 2.4). A similar trend was
observed for growth and carcass composition traits related to fat deposition and muscle weight
where serial ultrasound measures for 101" and last rib backfat were positively correlated with
carcass 10™"-rib and last lumbar backfat, and negatively correlated with loin weight (p-value <
8e-05, Figure 2.6), and these traits were associated with QTL on SSC6 (Figures 2.4 and 2.5).

Phenotypic QTL for growth and carcass composition traits associated with eQTL on
SSC6 revealed two genomic regions. A 28.82 Mb region (SSC6:43.819-72.625 Mb) was
associated with the hepsin gene (HSN) and loin muscle area at 16 weeks. A 53.33 Mb region
(5SC6:99.932-153.261 Mb) was associated with a novel transcript (SSC6:104.08) and serial
ultrasound measures of last rib backfat (at 10, 13, 16 and 22 weeks of age), 10'" rib backfat at 13
weeks of age, and carcass last lumbar backfat. The peak pQTL marker for loin muscle area at 16
weeks of age, ASGA0105067, accounted for 4% of the phenotypic variance and 13.5% of the
gene expression variance with increased loin muscle area associated with decreased expression
of the HPN gene (Figure 2.7). The pQTL marker for backfat deposition, ALGA0104402,
accounted for 5-7.1% of the phenotypic variance, and 10.1% of the gene expression variance,
with increased expression of the novel transcript SSC6:104.08 associated with reduced backfat

deposition (Figure 2.7).
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Figure 2.6. Pearson correlations among phenotypic traits with an associated pQTL. Significant
correlations are shaded in color, p-value < 8e-05, with shades of red depicting negative
correlations and shades of blue depicting positive correlations.

Two additional pQTL for carcass composition phenotypes (carcass 10 rib backfat and

loin weight) also mapped to the 53.33 Mb region on SSC6 and were significantly associated with

SSC6:104.08 and SSX2IP. The peak pQTL marker for carcass 10" rib backfat (M1GA0008917)
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accounted for 12.2% of the phenotypic variance with increased expression of SSC6:104.08 and
SSX2IP associated with reduced 10" rib backfat. For loin weight, the peak pQTL marker
(ASGA0029651) was associated with reduced loin weight and reduced expression of
SSC6:104.08 and SSX2IP, accounting for 6.4% of the phenotypic variance and up to 12.7% of
the transcript expression variance (Figure 2.7). A second pQTL for loin weight was mapped on
SSC11 and was significantly associated with a novel transcript (SSC11:2.19), which coincides
with the uncharacterized locus LOC110255792. The peak pQTL marker for loin weight on
SSC11 (ALGA0060368) accounted for 2.7% of the phenotypic variance and 10.7% of the gene
expression variance. Reduced loin weight was associated with reduced expression of the

SSC11:2.19 transcript (Figure 2.7).
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Figure 2.7. Proportion of variance explained by peak pQTL SNP for phenotypes (blue) and gene
transcript abundance (green). Traits are shown on the x-axis, and the proportion of phenotypic
variance explained by the SNP marker is shown on the y-axis. Directionality of bar plots
indicates SNP effect on phenotype or gene expression (i.e., increase or decrease).
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Considering the pQTL for meat quality and carcass composition traits with their
associated eQTL reveals two genomic regions of particular note. A 7.90 Mb region on
SSC2:4.341-12.242 Mb was associated with the FERM domain-containing 8 gene (FRMD8) and
WABS, sensory panel tenderness and overall tenderness phenotypes, and a 110.21 Mb region on
SSC15:27.666-137.874 Mb was associated with 11 genes and eight meat quality or carcass
composition phenotypes (Tables 2.3 and 2.4). Significant negative correlations were observed
between WBS and all three sensory panel phenotypes as expected for these traits (r = -0.44 +
0.14, p-value < 8e-05, Figure 2.7); more force needed to break myofibers (i.e., higher shear force
values) was correlated with lower meat tenderness based on subjective scores evaluated by a
trained sensory panel. The peak pQTL markers, M1GA0002229 and H3GA0005676, for meat
quality traits on SSC2 accounted for approximately five percent of the phenotypic variance and
eight percent of FRMD8 gene expression variance (Figure 2.7) with increased expression of
FRMD8 associated with increased sensory panel tenderness and overall tenderness scores and
decreased WBS. High LD was observed between the two SNP (r = 0.64).

Eleven of the eQTL significantly associated with phenotypes were distant regulators of
gene expression, and all of these were also associated with the putative hotspot within the 110.21
Mb region on SSC15. The SSC15 putative hotspot marker H3GA0052416 was the peak pQTL
marker for sensory panel juiciness, tenderness and overall tenderness (Tables 2.3), as well as the
peak eQTL marker for seven gene transcripts (Tables 2.4). The peak pQTL marker for WBS, 24-
hour pH, cook yield, drip loss and protein percent on SSC15 (MARC0093624) is in high LD
with the putative hotspot marker (Pearson correlation 0.89). These results suggest a potential
candidate variant(s) on SSC15 accounting for a significant portion of phenotypic variation for

meat quality and carcass composition phenotypes, as well as individual gene expression
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variation. Since these two markers are in high LD, the proportion of phenotypic and gene
expression variance was estimated for the putative hotspot marker for all eight phenotypes and
eleven gene transcripts including CCDC60, CEP128, CHRNA9, CIT, MRLN, NQO1, PFKFB3,
PKP2, SUCLG2, TEX9, and a novel transcript SSC15:48.94 Mb (mapped to the uncharacterized
locus LOC110257028). The H3GA0052416 marker accounted for 4-16% of the phenotypic
variance and approximately 23% of the gene expression variance (Figure 2.7). Increased
expression of the eleven genes associated with the B allele of the putative hotspot was also
associated with an increase in sensory panel scores and drip loss, and a decrease in WBS, 24-
hour pH, cook yield and protein percent (Figure 2.7).

The gene protein kinase AMP-activated non-catalytic subunit gamma 3 (PRKAG3) maps
to this region of SSC15, and variants of PRKAG3 have been implicated as affecting meat quality
phenotypes?+25. We genotyped all F2 animals for two PRKAG3 coding SNP?% and included these
SNP in our GWAS, however, the eQTL scan did not reveal associations with either of the
PRKAG3 markers. To further asses the effect of PRKAG3, we performed a conditional analysis
to estimate the significance of these markers on identified eQTL (Supplementary Table 2.S5).
One gene, NQO1,was significantly associated with the PRKAG3 T30N SNP (FDR <0.01),
where T30N accounted for up to 12% of the gene expression variance. Given the high signal of
the putative hotspot on SSC15 for various genes and meat quality traits, we estimated the
proportion of phenotypic variance explained by both the putative hotspot and the PRKAG3 T30N
marker for meat quality and carcass composition traits (Figure 2.8). The PRKAG3 T30N marker
accounted for 0.1-2% of phenotypic variance for meat quality traits, whereas the putative hotspot
marker accounted for 2-14%. This analysis shows the putative hotspot accounts for a greater

proportion of phenotypic variance than the PRKAG3 T30N SNP.
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Figure 2.8 Proportion of phenotypic variance explained by PRKAG3 T30N SNP and putative
hotspot SNP H3GA0052416 for meat quality traits mapped to SSC15. Traits are shown on the x-
axis, and the proportion of phenotypic variance explained by the SNP marker is shown on the y-
axis. Directionality of bar plots indicates the SNP effect on the phenotype.

RT-gPCR confirmation of CHRNA9

The GBLUP-based GWA model identified 24 eQTL mapped to a 125 Mb region on
SSC15. Eleven of these eQTL co-localized with pQTL for meat quality and carcass composition
traits, and among these the CHRNA9 gene was selected for verification using RT-gPCR (Figure
2.7). CHRNA®Y, is implicated in catecholamine secretion and the adaptive response to chronic
stress*, and is essential for muscle contraction®®. The genomic position of the CHRNA9 gene is
on SSC8: 31.44-31.51Mb, and the eQTL associated with this gene mapped to SSC15, therefore
exhibiting distant acting regulation of CHRNA9 gene expression. RT-qPCR was performed to
confirm the expression pattern of the CHRNA9 gene in longissimus dorsi muscle. Pearson
correlations between the ACt and RNA-seq log-cpm for CHRNA9 transcript abundance was -

0.58. The marker DIAS0000678 was significantly associated with both RNA-seq and ACt for
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CHRNAQ9 (p-value < 4.23e-06), exhibiting a significant dominant effect with the B allele
associated with increased CHRNAQ9 transcript abundance (p-value < 0.05, Table 2.5).

Table 2.5 Comparison of RT-qPCR and RNA-seq for CHRNAS9 gene expression.

Estimate Standard Te_st_ p-value
Error Statistic
RT-qPCR?
DIAS0000678 150.89 30.63 4.93 8.37e-07
Contrasts
AvsB 2.19 0.67 3.26 1.12e-03
AA vs AB 0.86 0.68 1.26 2.08-e01
AA vs BB 3.32 0.71 4.69 2.66e-06
AB vs BB 2.46 0.73 3.37 7.60e-04
RNA-seq?
DIAS0000678 -141.55 30.77 -4.60 4.23e-06
Contrasts
AvsB -135 0.66 -2.03 4.27e-02
AA vs AB -0.89 0.56 -1.58 1.13-e01
AA vs BB -3.07 0.70 -4.07 1.05e-05
AB vs BB -2.17 0.63 -3.46 5.38e-04

IACt values for CHRNAY gene expression obtained with RT-qPCR. 2Log-cpm for CHRNAQ gene expression
obtained with RNA-seq.

DISCUSSION

For this study, we identified 334 eQTL for longissimus dorsi muscle transcripts from pigs
in an F2 resource population. We declared local versus distant eQTL effects based on LD
stucture, identifying 188 local and 146 distant regulators of gene expression. Heritability of gene
expression was estimated in this study with 344 gene transcripts exhibiting significant heritable
expression. A joint analysis of eQTL with pQTL showed four genomic regions associated with
variation in gene transcript abundance (N=16) and variation in phenotypes for growth (SSC6),
carcass composition (SSC6, SSC11 and SSC15) and meat quality traits (SSC2 and SSC15). Most
eQTL assocated with pQTL were distant regulators of gene expression (69%). These distant

regulators mapped to a putative hotspot on SSC15 associated with meat quality and carcass
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composition traits. The remaining three genomic regions associated with variation in gene

transcript abundance and trait phenotypes contained local regulators of gene expression.

When an eQTL and the associated gene are located on the same chromosome, the low
resolution of the swine genome due to long range linkage disequilibrium*”48 limits the ability to
distinguish between cis-acting and trans-acting eQTL. Most eQTL association studies use a fixed
distance threshold between the position of the eQTL peak and the gene transcript to define cis-
acting (i.e., local) versus trans-acting (i.e., distant) regulation. For instance, distance thresholds
between 1 Mb and 10 Mb have been used in recent pig eQTL maps*?154%-52 Human eQTL scans
have used more conservative distance thresholds of 100kb - 500kb between gene position and
eQTL to declare local regulation3354. A shorter local threshold is logical for human eQTL studies
because they typically show higher resolution due to increased SNP density (millions of
genotyped markers®3), and the extent of LD is much more limited than in livestock populations
due to greater genetic diversity in human populations®. In this study, we present an alternative to
the use of a fixed distance for declaring local versus distant eQTL effects. This is important
because the range of a mapped eQTL will depend on the LD pattern at the QTL genomic
position. Building upon previous approaches to determine local regulation'17555 jn eQTL
linkage maps, this study considered the significance of each individual marker surrounding the
plausible position range of the eQTL peak to distinguish between local and distant modes of
action. In cases where there are no genotyped markers between the plausible position of the
eQTL peak and the position of the associated gene, there is not sufficient information to
determine local versus distant; here we consider this scenario as plausible local regulation. We
note that in our study the median distance between plausible local eQTL regulators and their

associated gene was 24kb, which is a shorter distance than eQTL designated as local for other
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pig eQTL mapping studies'?154%-52 Therefore, it is feasible that most of these regulators may be
acting locally, since cis-acting transcription factor binding sites have been found located ~100kb
from the mapped position of a gene transcript®’. However, without a more dense SNP set and/or
a larger population size, we cannot definitively identify the mode of action of these eQTL. A
potential way to further investigate if these eQTL are acting locally or distantly would be

through allele-specific expression analyses?e.

Heritability of gene expression contributes to our understanding of the inheritance of
gene expression regulation. Estimating the heritability of gene expression is common in human
eQTL studies to elucidate the genetic contribution of gene expression variation and its influence
on the divergence of complex traits®3545859, Human studies have shown higher heritability
estimates for housekeeping genes and genes with local eQTL, whereas genes with distant eQTL
tend to exhibit lower heritability®3585°, Bryois et al.® suggested a fraction of missing heritability
may be due to common variants with both local and distant effects on gene expression, with the
latter being of small effect size. Examples of local eQTL with large distant effects in human
studies include variants influencing expression of transcription factor genes or histone
methyltransferase genes®®. Heritability of gene expression has not been emphasized in pig eQTL
studies, with the exception of one report where heritability was used as a filtering criteria to
prioritize genes®®. In this study, we estimated narrow sense heritability for all gene expression
profiles and determined significance with likelihood ratio tests. Among all transcripts, only 2%
exhibited significant heritable expression (FDR < 0.01). However, the significantly heritable
transcripts were enriched among eQTL, with 35% of eQTL exhibiting significantly heritable
expression. Consistent with previous studies in humans, the observed heritabilities for genes with

distant eQTL were significantly lower than for locally regulated genes®3. This trend is consistent
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with previous findings where genes influenced by many distant factors of small effect tend to
exhibit lower heritability than genes with local regulation. Testing for significant additive genetic
effects of transcript abundance in outbred animal populations requires large sample size to
increase power to detect smaller effects. In our GWA scan, we were able to capture the variance
associated with gene transcripts subject to genetic control with low heritability. A previous eQTL
scan performed with 57 muscle tissue samples from an F2 swine population observed an average
heritability of 0.45 for eQTL genes® . While this value is greater than the average heritability
observed in our study (0.32), Liaubet et al.%® limited the eQTL scan to gene transcripts with
heritability greater than 0.05. The use of a heritability threshold to filter genes in eQTL studies
may miss potential associations, especially those of low effect such as distant eQTL, which we
show to have lower average heritability estimates.

We identified three gene transcripts that were associated with pQTL for fat deposition
and carcass composition traits on SSC6. One of these eQTL genes, synovial sarcoma X
breakpoint 2 interacting protein (SSX2IP), was significantly associated with pQTL for carcass
10™ rib backfat and loin weight. An eQTL was previously identified for this gene on SSC6 using
microarray data from the same animals used in this study, and consistent with our results
Pefiagaricano et al.%° reported a negative causal effect of increased expression of SSX2IP on
backfat thickness®. Interestingly, SSX2IP has been associated with waist to hip ratio, a common
measure of body fat distribution, in women of African descent®.,

Genes associated with pQTL for tenderness phenotypes on SSC2 or meat quality
phenotypes on SSC15 share biological processes known to directly influence the organoleptic
properties of meat, including calcium signaling (FRMD8, MRLN, PKP2 and CHRNA9), energy

metabolism (SUCLG2 and PFKFB3), redox hemostasis (NQO1 and CEP128) and cytoskeletal
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structure (CIT and CCDCG60). One of the genes related to calcium signaling is the FERM domain
containing 8 (FRMD8) gene associated with pQTL for WBS, and sensory panel tenderness and
overall tenderness on SSC2. Two independent GWAS, one in a crossbred commercial pig
population®? and another in a multigenerational Landrace-Duroc-Y orkshire composite
population®?, reported QTL for slice shear force (a procedure similar to WBS) in the same
genomic region as this study. Zhang et al., 82 identified FRMDS to be one of four genes in the
region to play a role in pork tenderization and the peak SNP reported by Nonneman et al. 83, was
the same peak SNP identified in our analysis (H3GA0005672). We showed with our conditional
analysis that increased expression of FRMD8 was associated with improvements in pork
tenderness. FRMD8 is a member of the FERM (Four-point-one, Ezrin, Radixin, Meosin) protein
superfamily known to possess both structural and signaling functions including numerous
protein-binding interactions mainly in the cytoskeleton of cells . This includes interactions with
transmembrane ion channels and membrane lipids including the phosphatidylinositol 4,5-
bisphosphate (PIP2). PIP is the precursor of inositol 1,4,5-triphosphate (IP3) involved in Ca®*
signaling®-%7 and IP3 has been suggested as a potential indicator of meat tenderness in beef
cattle®®. The activation of the PIP2 Ca?* signaling system controls diverse cellular processes in
numerous tissues®. In skeletal muscle the sarcoplasmic reticulum ryanodine receptor is the Ca?*
release channel, however PIP2 has been localized to the transverse tubular membrane and IP3
receptors have been found in differentiated muscle fibers, and implicated in excitation-
contraction coupling (for review see Csernoch et al.”®). FRMD8 may play a role in Ca?*
signaling and excitation-contraction coupling of skeletal muscles through interactions with PIP-.
Similar to FRMDS, the MRLN gene is also implicated in muscle contraction. MRLN

encodes myoregulin, a micropeptide inhibitor of the sarco/endoplasmic reticulum Ca*?> ATPase
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(SERCA). SERCA regulates relaxation after muscle contraction, specifically, it pumps Ca*? back
to the sarcoplasmic reticulum. Binding myoregulin to SERCA lowers its affinity to Ca*?,
reducing the rate of Ca*? reuptake into the sarcoplasmic reticulum™. Increased expression of
MRLN was associated with improvements in pork tenderization, decreased 24-hour pH and
increased drip loss in our study. The observed effect of MRLN gene expression on meat quality
phenotypes may be due to its involvement in regulating muscle contractility and calcium
signaling which have a direct effect on postmortem proteolysis.

Additional genes implicated in calcium signaling and associated with meat quality
phenotypes and the putative hotspot were the PKP2 and CHRNA9 genes. PKP2 encodes a
plakophilin protein known to localize to cell desmosomes and nuclei and play a role in linking
cadherins to intermediate filaments in the cytoskeleton. In mouse cardiac muscle, PKP2 has been
shown to regulate the transcription of genes controlling intercellular calcium homeostasis, and
reduced expression of PKP2 decreases the expression of several calcium signaling genes
including the cardiac muscle ryanodine receptor’2. In this study, increased expression of PKP2
was associated with improvements in pork tenderization and decreases in 24-hour pH, protein
percent and cook yield suggesting a role for this gene in modulating skeletal muscle calcium
signaling during the conversion of muscle to meat. The CHRNA9 gene is one of sixteen subunits
of the nicotinic acetylcholine receptor (AChR). These ligand-gated ion channels permit the
transmission of presynaptic acetylcholine release and postsynaptic excitatory potential. Found
only in neuronal tissue, CHRNAGQ is one of three AChR containing only a subunits* (a9-AChR),
and in neuromuscular junctions AChR are essential for muscle contraction 46, Since a9-AChR
possess higher calcium permeability, they play an important role in catecholamine secretion and

the adaptive response to chronic stress “°. In this study, increased expression of CHRNA9 was
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associated with improved tenderness scores, increased drip loss, and decreased cook yield,
protein percent and 24-hour pH. In addition, we verified the expression of CHRNA9 in skeletal
muscle with RT-gPCR and confirmed a significant dominance effect of the peak eQTL SNP
(DIAS0000678) on CHRNAQ9 gene expression. Changes in the expression of CHRNA9 may
potentially regulate the postsynaptic excitatory potential during the conversion of muscle to meat
thereby influencing Ca?* release to the cytoplasm, apoptotic mitochondrial changes and
proteolytic enzymatic activity.

Additional genes associated with meat quality traits on SSC15 (PFKFB3, CEP128,
NQO1 and SUCLG2) were implicated in biological processes related to redox homeostasis and
energy metabolism. The PFKFB3 gene regulates the synthesis and degradation of fructose-2, 6-
bisphosphate and fructose-6-phosphate in the process of glucose metabolism. The promoter of
the PRKFB3 gene contains hypoxia-inducible factor-1 (HIF-1) binding sites’®. The transcription
factor HIF-1 is a master regulator of oxygen homeostasis by activating several downstream
pathways including the mitogen-activated protein kinase (MAPK), mammalian target of
rapamycin (mTOR), phosphoinositide 3-kinase-protein kinase B (PI3K-Akt), vascular
endothelial growth factor (VEGF) and calcium signaling pathways as well as anaerobic
metabolism. PFKFB3 is consistently overexpressed in many tumor cells and knockdown of
PFKFB3 promotes apoptosis of tumor cells”®. Rapidly proliferating tumor cells have the ability
to increase glucose uptake by using anaerobic glycolysis as the primary source of energy, known
as the Warburg effect. Taken together PFKFB3 is critical for cell proliferation and survival by
regulating glucose metabolism and prevents apoptosis through the activation of cyclin-dependent

kinases’®"4. No reports have suggested a role for PRKFB3 in meat quality. However, in our
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study, increased expression of PRKFB3 was associated with increased pork tenderness. Thus,
PRKFB3 may be involved in postmortem glycolytic potential similar to PRKAGS3.

The CEP128 gene is related to the PI3K-Akt-mTOR signaling pathway. Centrosomal
protein 128 (CEP128) is part of the centrosomal protein family including CEP55 which have
been implicated in cancer progression”. Mutations within CEP128 have been associated with an
aggressive type of lymphoma, the diffuse large B-cell lymphoma (DLBCL)6. Functional gene
studies have not been performed for CEP128, however mutations identified in refractory
DLBCL patients, including those in CEP128, were associated with PI3K-Akt-mTOR signaling
pathways and increased mitochondrial oxidative phosphorylation, and play an important role in
treatment resistance’®. The PI3K-Akt-mTOR pathway is upregulated in cancer cells, controlling
the survival and proliferation of these cells. In our study, increased expression of CEP128 was
associated with improved tenderness scores and may play a role in PI3K/Akt/mTOR signaling.
In addition, the Edomucin (EMCN) gene associated with a local acting eQTL on SSC8 plays a
critical role in angiogenesis. Angiogenesis is the process of new blood vessel formation with its
key regulator, vascular endothelial growth factor (VEGF), triggering downstream signaling
cascades including MAPK-ERK1/2, PI3k/Akt and p38-MAPK pathways’’. These signaling
pathways promote endothelial cell migration, proliferation, and survival and are activated by
HIF-1 which induces VEGF expression’®. While this eQTL is not directly associated with a
phenotype in our population, it is connected to the pathways regulated by the genes associated
with the putative hotspot on SSC15.

The remaining two genes, NQO1 and SUCLG2, were associated with improvements in
meat tenderization and pH decline. The nuclear erythroid-2-p45-related factor-2 (Nrf2) is a

transcription factor known to regulate redox homeostasis and anti-inflammatory response by
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controlling the expression of Phase | and Phase Il anti-oxidant enzymes containing the
antioxidant response element (ARE; cis-acting regulatory or enhancer sequence) in their
promoter region. NQO1 (NADPH quinone oxidoreductase-1) is one of these enzymes whose
expression is induced by Nrf2 in several tissues’®-82, Consequently, knockdown of Nrf2 has been
reported to significantly decrease expression of NQO1 in both mouse skeletal muscle®! and
C2C12 mouse myotubes®?. In early postmortem muscle, the antioxidant defense system is
speculated to influence proteolysis and thereby meat tenderization’. Increased expression of
NQOL1 in this study was associated with several meat quality traits including tenderness, pH and
drip loss phenotypes implying a significant role in post-mortem proteolysis. The succinate-CoA
ligase GDP-forming beta subunit (SUCLG2) has been implicated in the SUCLG1-related
mitochondrial DNA depletion syndrome affecting brain and skeletal muscle tissues. Individuals
affected by this syndrome present an array of symptoms including spasmodic muscle
contractions, contracture or destruction of muscle cells and hypoglycemia®. Knockdown of the
SUCLG2 gene in fibroblasts was reported to decrease mitochondrial DNA, mitochondrial
nucleoside diphosphate kinase and cytochrome ¢ oxidase activities®. These results highlight the
critical role SUCLG2 plays in mitochondrial DNA maintenance and ATP production. In our
study, increased expression of SUCLG2 was associated with improvements in meat quality traits
suggesting a potential role in regulating ATP production and postmortem pH decline.

In addition to genes involved in specific biological functions, genes encoding structural
proteins were also observed to be associated with the putative hotspot on SSC15 (CIT and
CCDC60). CIT, citron Rho-interacting serine/threonine kinase, is considered to be a scaffold
protein that binds to several mitotic proteins, and knockout of CIT leads to cytokinetic defects.

One such protein-protein interaction involves the two-pore channel 1 (TPC1) which Horton et.
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al,®® reported to cause disruption in myosin light chain phosphorylation (pMLC). In skeletal
muscle pMLC has been associated with age related muscle dysfunction®, and decreased pMLC
is associated with reduced fraction of myosin heads interacting with thin filaments®. Thus,
increased expression of CIT could potentially increase muscle breakdown, which is consistent
with our findings where higher expression of CIT was associated with improvements in pork
tenderization, and reduced protein content and cook yield. CCDC60 is a coil-coil domain protein,
which are believed to act as “cellular velcro” holding together molecules, cellular structures and
tissues®”. The biological function of CCDC60 is unknown, but recent GWAS have associated
this gene with the neurological disorder schizophrenia in humans®. A proteomic analysis of
post-mortem pre-frontal cortex of schizophrenia patients and non-schizophrenia individuals
identified differentially expressed proteins involved in calcium homeostasis, cytoskeleton
assembly and energy metabolism®. It is feasible that similar functions may occur in skeletal
muscle tissue. In this study increased expression of CCDC60 was associated with tenderness,
pH, cook yield and drip loss phenotypes implicating the role of this gene in the conversion of
muscle to meat.

Eleven eQTL genes were enriched in pQTL for meat quality traits on SSC15; PFKFB3,
SUCLG2, CIT, CCDC60, MRLN, PKP2, NQO1, CEP128, CHRNAY, TEX9 and a novel transcript
SSC15:48.94. The novel transcript mapped to an uncharacterized locus, LOC110257028, on
SSC15. The other ten gene transcripts mapped to different chromosomes than their associated
eQTL. These results illustrate the advantage of the joint association of gene expression profiles
and trait phenotypes to uncover the genetic architecture of polygenic traits. In this study,
increased expression of the 11 genes was associated with improvements in meat quality

phenotypes. Moreover, this QTL region harbors a putative hotspot (H3GA0052416) regulating
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the expression of all 11 gene transcripts. Breitling et al. reported the high false positive rate
associated with hotspot discovery, in order to mitigate this we used a higher threshold of
significance to detect eQTL. The hotspot discovered on SSC15 was also associated with the most
significant marker for multiple meat quality phenotypes. The high correlation observed between
the 11 gene expressions, and between the eight meat quality phenotypes raises the question if
these associations are due to a master regulator on SSC15. The PRKAG3 gene has been
suggested as such a regulator of meat quality traits in pigs. PRKAG3 regulates glycogen
potential, which has a cascading effect in postmortem metabolism. The SNP map used in this
study does not have sufficient coverage of the PRKAG3 gene. To address this our F2 population
was genotyped for two known PRKAG3 SNPs, 1199V and T30N?25, however, PRKAG3 did not
explain the relationship observed in the putative hotpot. A missense polymorphism within the
PRKAG3 gene, T30N SSC15:120.865 Mb, was significantly associated with just one of the 11
genes, NQO1, despite showing significant association with all eight meat quality phenotypes in
this population?®.
CONCLUSION

In summary, the joint analysis of pQTL with eQTL from our well characterized pig
resource population identified molecular markers significantly associated with both
economically important phenotypes and gene transcript abundance. This approach revealed both
local and distant acting regulators of gene expression influencing meat quality, carcass
composition and growth traits. These phenotypic traits are correlated, and we show how
correlated phenotypes exhibit correlated gene expression measured through a putative hotspot
contained within QTL regions for both expression and phenotypic traits. We highlight novel

candidate genes with specific roles in cytoskeletal structure and signaling pathways regulating
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meat quality phenotypes including redox hemostasis (NQO1 and CEP128), energy metabolism
(SUCLG2 and PRKFB3), Ca?* signaling (FRMD8, MRLN, PKP2 and CHRNA9) and cytoskeletal
structure (CIT and CCDC60) during the initial conversion of muscle to meat. Taken together the
identified genes and their associated functions and pathways increase our knowledge of the

genomic architecture of meat quality phenotypes.
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SUPPLEMENTARY MATERIALS

Supplementary tables available at https://velezdeb84.wixsite.com/deborahvelezirizarry

Supplementary Table 2.S1 Summary statistics for phenotypic traits for the MSUPRP F2
population and the subsample used in this study.

Supplementary Table 2.S2 Expression quantitative trait locus (eQTL) mapped for longissimus
dorsi muscle transcripts from the MSUPRP (n=168).

Supplementary Table 2.S3 Phenotypic QTL identified in the F2 MSUPRP.

Supplementary Table 2.S4 Results of conditional analysis for expression QTL co-localized
with phenotypic QTL.

Supplementary Table 2.S5 Conditional Analysis: PRKAG3 SNP effect on eQTL genes
expression.
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CHAPTER THREE

Allele-specific expression in longuissimus dorsi muscle transcriptomes associated with
phenotypic traits in pigs

Vélez-Irizarry, D., S. Casiro, R.O. Bates, N.E. Raney, H. Cheng, J.P. Steibel and C.W. Ernst

ABSTRACT

Advancements in sequencing technology, improvements in the annotation of the pig
genome, and development of quantitative genetic models have contributed to an increased rate of
genetic gain for economically important pig production traits. Several quantitative trait locus
(QTL) have been identified, however, the biological mechanisms underlying most QTL remain
unknown. Allele-specific expression (ASE) analysis facilitates the identification of cis-acting
regulation of transcript abundance, which can be associated with a measurable phenotypic
difference. In this study, we tested for ASE in 69,502 longissimus dorsi coding SNP (cSNP),
which were called directly from RNA-seq data. A total of 18,234 cSNP with significant ASE
were identified (FDR < 0.01) using a Quasibinomial model. A meta-analysis merging cSNP p-
values per gene identified 4,170 genes with significant allele-specific effects (FDR <0.01). A
gene-wise conditional analysis fitting all ASE cSNP per gene for each phenotype identified 60
genes associated with growth, carcass composition and meat quality phenotypes. Ring finger and
Zinc finger transcription factors were associated with 45-min pH, drip loss and 10t-rib backfat,
and allelic expression bias for these genes was confirmed with pyrosequencing. Results support
an important role for the activation of the PI3K-Akt-mTOR signaling pathway on meat quality
traits.

Key Words: ASE, skeletal muscle, RNA-seq, pig
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INTRODUCTION

Genes exhibit specific patterns of expression finely modulated by spatial and temporal
specificity, environmental conditions and allelic variation. A series of architectural elements
cause this modulating effect. At the transcriptional level these include promoters, enhancers,
silencers, and insulators, among others, and are collectively known as cis regulatory elements*2,
Polymorphism residing in cis regulatory elements can directly affect the transcription of a gene.
For instance, a sequence motif containing a single nucleotide polymorphism (SNP) may affect
the affinity of trans-acting regulators resulting in allele-specific expression because it affects
only one of the alleles. Cis regulatory elements within coding regions are thus susceptible to
nonsynonymous, synonymous and splice junction mutations that can lead to phenotypic
consequences. For instance, an intergenic enhancer containing a variant associated with HIV-1
acquisition produces a shift in promotor use resulting in allele-specific isoform expression
conferring susceptibility to HIV infection®. Imprinting occurs when methylation status of the
parental copy of a gene is passed on to the offspring and can produce mono-allelic expression,
where only one allele is expressed. For example, the IGF2 gene is regulated by an imprinting
control region and the expression of IGF2 is transcribed mainly from the maternal allele
regulating fetal development and postnatal growth*. Knowledge of cis-regulatory elements is
expected to improve our understanding of phenotypic diversity in livestock species. Through
allele-specific expression (ASE) analysis we can identify cis-acting variants by estimating the
relative transcript abundance of each allele at a single heterozygous locus, and test for bias in

allelic expression. This bias is observed as a departure from the expected equal expression ratio.

64



High-throughput sequencing provides in-depth coverage of polymorphic locus allowing
estimation of allele-specific transcript abundance.

In pigs, numerous QTL have been identified for growth, carcass composition and meat
quality traits®>3, however, the biological mechanisms regulating these QTL are largely unknown.
Through functional genomic studies such as ASE analysis, the genetic architecture of important
phenotypes can be evaluated. Previous ASE studies in pigs have used blood!4, prenatal skeletal
muscle®® and brain 6 to elucidate locus exhibiting ASE and overlapping known QTL regions for
growth and immune-related phenotypes. These studies have identified biomarkers for immune
capacity4, chimeric RNA and imprinted genes®®. The aim of this study is to 1) elucidate ASE
in the longissimus dorsi muscle transcriptome, and 2) identify genes with cis-acting effects
associated with growth, carcass composition and meat quality traits. This work contributes
toward unraveling the genetic architecture driving variation in economically important
phenotypes.

MATERIALS AND METHODS
RNA extraction and RNA-seq bioinformatic pipeline

Tissue samples were collected post mortem from the longuissimus dorsi muscle, flash
frozen in liquid nitrogen and stored at -80°C until processing. Total RNA extraction was
performed with the miRNeasy Mini Kit (Qiagen, Germantown, MD) following the
manufacture’s protocol. RNA quality and quantity were determined using the Agilent 2100

Bioanalyzer (RIN > 7).

Sequencing was performed at the Michigan State University Research Technology
Support Facility. Libraries for 24 samples were prepared using the Illumina TrueSeq RNA

Library Prep Kit v2, and sequenced on the Illumina HiSeq 2000 platform (2 x 100bp paired-end
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reads). The remaining 152 libraries were prepared using the Illumina TrueSeq Stranded mMRNA
Kit, and sequenced on the Illumina HiSeq 2500 platform (2 x 125bp, paired-end reads). Base
calling was performed with the Illumina Real Time Analysis v1.18.61 software, and the Illumina
Bcl2fastq v1.8.4 was used for conversion to FastQ format. A total of 96 sequence files (741Gb)
consisting of ~63 million short-reads per library were obtained from the HiSeq 2000 platform
and 1,218 sequence files (~2Tb) of ~23 million short-reads per library were obtained from the

HiSeq 2500 platform.

The bioinformatic pipeline used in this study first filtered RNA-seq reads for adapter
sequences using Trimmomatic!’ followed by quality trimming using CondDeTri'® where the first
6 bases at the 3’ end, low quality reads (reads with 20% base quality scores < 25) and low quality
bases (quality scores < 10) were filtered out retaining reads with a minimum length of 75 bases.
This step is critical to remove sequencing errors with low quality scores!®. The quality of each
sequenced nucleotide was evaluated on adapter filtered and quality trimmed RNA-seq reads
using the FASTX toolkit'®. A mean Phred quality score of 37.01 + 0.99 was observed for
sequenced nucleotides. The percentage of retained reads from each step in the bioinformatics
pipeline is represented in Figure 3.1. On average 87% of reads were retained after adapter and
quality filtering, eight samples were removed from further analysis due to low sequence quality,
leaving a total of 168 samples for subsequent analyses. After adapter and quality filtering, RNA-
seq reads were mapped to the reference genome assembly Sus scrofa 11.1 using the splice aware
aligner Tophat22°, on average 92% (45.3 + 24.9 million short reads) mapped to the reference
genome Sus scrofa 11.1. Sequence reads not mapping uniquely to the reference genome were
removed from further analysis to eliminate duplicate read counts when calling cSNP 2%, on

average 73% of mapped reads (32.8 + 16.7 million short reads) were unique and properly paired
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with its complementary sequence (Figure 3.1). Uniquely mapped reads were obtained with
SAMtools??. Unfiltered sequence files for 168 animals has been deposited in the NCBI Sequence

Read Archive accession number PRINA403969.

RNA-seq:

Three sequence runs for T‘rlmmomat‘lc: ) C.Olldetn: .
168 animals Total Input: Filter adapter sequences | Total Input: Filter low quality reads
57.2+33.5 54.8 + 33.1 Total Input:
100% 95.1% 488+ 26.3
86.6%
Called ¢SNP: Samtools: Tophat:

Number of ¢SNP obtained

Retain only properly paired Map reads to the

from mpileup and bcftools Total Input: |and unique sequence reads Total Input: reference genome
328+ 16.7 453 +24.9
Total ¢SNP: Total Input 58.7% 79.9%
3,606,267 !
100% cSNP:
3,267,399
90.6%
WASP: Called ¢SNP WASP: ¢SNP Quality Filter:
Remove reads with Number of cSNP after Number of ¢cSNP retained
mapping bias Total Input: correcting mapping bias Total Input for ASE analysis
2754145 c¢SNP:
48.1% 3,082,603
85.5%

Figure 3.1 RNA-seq bioinformatics pipeline for cSNP calling.
cSNP calling and unbiased allele-specific read mapping

Allele-specific read counts were determined with a two-step procedure. First cCSNP were
called using SAMTools?? mpileup to obtain the sequence of individual bases from each aligned
transcript and bcftools to call the cSNP and genotypes for each animal®3. Approximately 59% of
sequence reads were retained for variant calling, Figure 3.1. Twenty VCF files (variant call
format), one for each chromosome (18 autosomes and two sex chromosomes) were obtained.
The genomic coordinates and observed nucleotides for each called cSNP were identified using

an R package developed by our group, editTools?*, https://github.com/funkhou9/editTools. The

genomic coordinates and observed nucleotides for each called cSNP, excluding multiallelic

cSNP and insertion deletions (INDEL), were used as input for WASP, an unbiased allele-specific
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read mapper 2>2%, Briefly, sequence reads aligning with a polymorphic site are copied and
modified so that the polymorphic site is switched to contain the alternative nucleotide in the
position. The modified reads are then remapped to the reference genome using the same
procedure described above. Modified reads are retained only if they map to exactly the same
genomic position as the original read. The output of WASP are alignment files containing all
reads correctly mapping to the genome. cSNP are called once more using the same procedure
described above.

Additional filters were applied to ensure the removal of potentially erroneous SNP calls
(Figure 3.2). Two filtering steps were performed. The first filter eliminates cSNP that are INDEL
or multiallelic, since allelic imbalance cannot be accurately determined. cSNP with low read
coverage, < 10 reads overlapping the polymorphic site, and low heterozygous genotype
frequency, < 6 heterozygous samples were discarded from the analysis (Figure 3.2). The second
filter ensures that monoallelic cSNP called heterozygous are removed from further analysis. This
is achieved by flagging sites with low or inconsistent genotype likelihoods (Figure 3.2). The
probability of erroneous ascertainment of variant allele was used to retain only high-quality
variants. Sensitivity, accuracy and type | error rate of called cSNP from RNA-seq was estimated
for heterozygous genotypes by comparing the overlap of cSNPs and SNPs ascertained from the
Porcine SNP60 BeadChip®3, assuming the genotypes for chip SNPs as the true genotype.
Sensitivity of called cSNP was estimated as the ratio of true heterozygous calls from RNA-seq
and total heterozygous genotypes from the Porcine SNP60 chip for overlapping SNP. Accuracy
was estimated as the ratio of true heterozygous calls and total heterozygous calls from RNA-seq.
Type | error rate is the ratio of total missed heterozygous calls and total heterozygous genotypes

from the Porcine SNP60 chip.
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SNP by SNP basis for heterozygous samples as follows:

Second Filter
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for Heterozygous Sites
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Remove
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Remove SNP

Retain for
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Figure 3.2 Filtering pipeline to remove potentially erroneous cSNP calls.

To test for significant allelic imbalance of cSNPs, a Quasibinomial model?”28 was fit on a

(8)

where, k; is the number of reads mapping back to the non-reference allele of the cSNP in
question for sample i, p; is the probability of observing a read for the non-reference allele given
n total number of reads found mapping to the cSNP for sample i, p, = k;/n;. The variance of p,

is Var(p,) = ¢n;p,(1 — p,). Lastly, ¢ is the overdispertion parameter calculated as:

(9)



where, r are the degrees of freedom. The overall allelic (population-average) expression ratio,
AR, for the cSNP is denoted as AR = h(p) = eP/1+ eP, where h is the inverse of the log link
function. The logit scale was used to ensure the allelic expression ratio is 0 < p < 1. A t-test was
used to test the hypothesis of significant ASE, H,: p = 0.5 versus H,: p # 0.5, and genome-
wide multiple test correction was performed?® with FDR < 0.01 considered significant.

Each ASE cSNP was mapped to gene transcripts using the pig genome assembly Sus
Scrofa 11.1, in order to summarize gene-wise allele-specific expression. A potential limitation to
this approach is gene-wise heterogeneity of ASE ratios and significance. For instance, alternative
splicing, cis-trans interactions and antagonistic relationships between gene-wise ASE cSNP can
make the interpretation of ASE difficult®. To circumvent this problem, a meta-analysis of gene-
wise p-values was used to combine p-values from all cSNP mapping to a gene into a single
significance measure. A robust approach to meta-analysis is the Simes method3!, which adjusts
all p-values on a gene-wise basis so that the minimum p-value can be selected for each gene, and
multiple test correction performed (FDR <0.01).
Confirmation of ASE cSNP

To further assess ASE of cSNP, we selected nine cis-acting variants with empirical
evidence of phenotypic regulation to confirm the observed allelic imbalance using
pyrosequencing. The protocol used for the pyrosequencing assay is described in Kwok et al. 2.
Briefly, primers were designed to amplify the genomic region surrounding each of the nine cSNP
using PyroMark Assay Design Software 2.5.8, including forward and reverse primers for
polymerase chain reaction (PCR) and a sequencing primer for allele quantification
(Supplementary Table 3.S1). Either the forward or reverse primer was biotinylated using Biotin-

TEG and HPLC purification (IDT, Coralville, IA). PCR was performed for pigs exhibiting
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heterozygous genotypes for each cSNP using total longuissimus dorsi muscle RNA (described
above). Three negative controls were run for each cSNP, a no template control PCR reaction
(examines primer heteroduplexing), a sequencing primer control (no PCR reaction, examines
duplexing with sequencing primer) and template only control (no sequencing primer, examines
self-priming of biotinylated primer). The positive controls were prepared from pools of total
RNA from four homozygous animals for the AA and BB genotypes for each cSNP. A total of six
positive controls were prepared for each cSNP as ratios of homozygous AA and BB pools
(AA:BB =0:100, 20:80, 40:60, 60:40, 80:20 and100:0). The PyroMark OneStep RT-PCR Kit
was used following the manufacturer’s protocol and amplification was performed in a DNA
Engine Peltier Thermal Cycler (Bio-Rad, Hercules, CA). Cycling conditions were 50°C for 30
min for reverse transcription and 95°C for 15 min for initial PCR activation, followed by 45
cycles of 94°C for 30 s, 60°C for 30 s and 72°C for 30 s, with a final extension of 72°C for 10
min. PCR products, 25ul, were diluted in 11ul of 18.2 mQ dd H20 and mixed with 40ul of the
master mix containing 4ul of streptavidin-coated sepharose beads and 40ul of binding buffer
(10mM Tris-HCL, 2M NaCl, 1mM EDTA and 0.1% Tween™ 20 pH 7.6) for a total volume of
80ul. This solution was agitated on a Monoshaker for at least five minutes. Immobilized PCR
products were captured using a vacuum prep tool, washed and denatured to remove unbound
primers and unbiotinylated strands using three solutions (i.e. 70% ethanol, denaturing solution
containing 0.2M NaOH and wash buffer containing 10mM Tris-Acetate pH 7.6). Only the
template strands remained bound after the washing steps. Sepharose beads with bound strands
were diluted in a solution containing 0.2ul of sequencing primer and 38.8ul annealing buffer (20
mM Tris-Acetate, 5 mM MgAc:2 pH 7.6) and placed on a 96 sample thermoplate at 80°C for 2

minutes for annealing before samples were placed in the pyrosequencer PSQ 96MA machine.
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PyroMark Gold Q96 reagents containing the enzymes, substrate and dNTPs for pyrosequencing
were used in quantities recommended by the PyroMark AQ 2.5.8 software for each
pyrosequencing assay analyzed. Relative levels of allele-specific expression were determined by
the differing number of nucleotides incorporated at the cSNP site with the PyroMark AQ 2.5.8
software 2.
Kegg pathway and gene ontology enrichment

Biological pathways and processes enriched with genes exhibiting significant ASE
effects provide insights into gene expression networks regulated by genetic variation in our study
population. Genes found with significant cis-acting effects were subjected to pathway analysis
using the R package clusterProfiler3324, The background gene list used in enrichment analysis
consisted of all autosomal gene transcripts found expressed in longissimus dorsi for our
population (15,249 transcripts). The gene symbols were converted to ENTREZ IDs using the
human annotation®, and gene ontology for biological processes and Kegg pathway enrichment
performed and significance determined after multiple test correction (FDR < 0.05).
Effects of ASE cSNP on trait phenotypes

We selected cSNP with significant ASE for each of the genes identified through the
meta-analysis as having significant cis-acting effects and tested their effects on variation in trait
phenotypes. A gene-wise conditional analysis was performed for 67 phenotypes including
growth, carcass composition and meat quality traits to estimate cSNP effects on phenotypic

variation. A GBLUP model*336:37 was fit on a gene-by-gene basis for each phenotype as follows:
l
Vi =Xb+z Rilsl +ai+ e, (3)
i=1

where, y; is the phenotypic data for sample i, Xb the estimated fixed effects of overall mean and

additional covariates specific to each phenotype”3, s, is the estimated cSNP effect for genotype
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[ and R;; is the standardized allelic dosage of cSNP [ for animal i. The R matrix was calculated

asR =U/\/X(2p(1— p)), where U is a matrix of cSNP genotypes and p a vector with the
frequency of non-reference allele. The additive genetic effects, a, were assumed to be

a ~N(0,Ga?2) and the residual errors, e, were assumed to be e ~N(0,102). The genomic
relationship matrix, G, was previously calculated for our eQTL analysis using genotypes
obtained for the 168 animals from the PorcineSNP60 BeadChip2®. Multiple test correction was
performed with a false discovery rate of 0.10 to determine significant cSNP effect. We estimated

the proportion of variance explained by cis-acting variants for a single trait phenotype using

methods described in Casiro et al.*®. Briefly, the variance associated with each cSNP, ‘;s?z’ was

estimated as EEI = sfvar(Z;), where, s? is the estimated effect of cSNP [ and var(Z,) the
variance associated with the standardized allelic dosage of cSNP [. The proportion of phenotypic
variance accounted for by each cCSNP was UASZZ /(Z JASZI + 02 + 02) . The estimated additive

genetic variance, o2, and error variance, a2, was obtained after fitting equation 3.
Phenotypic QTL mapped with cSNP

Calling cSNP directly from the longuissimus dorsi transcriptomes of the 168 animals
increases genetic coverage to identify potential QTL segregating in our population, and
distinguishes cSNP with ASE significantly associated with a phenotypic trait. First, we selected
cSNP with less than 5% missing call rate and minor allele frequency greater than 0.01, resulting
in 46,428 cSNP including 11,947 exhibiting significant ASE. Missing genotypes were imputed
using BEAGLE 4.1%, a hidden Markov model that finds the most likely haplotype pairs to
reconstruct missing genotypes, using the codeGeno function in the R package synbreed*°, QTL
were identified first using the GBLUP model described in equation 3 excluding fixed effects of

individual cSNP, ¥!_, Z;s,, to estimate the individual animal effects, @. This was followed by a
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genome wide association analysis (GWA) as described in Duarte et al.2¢. Briefly, the individual
cSNP effects, g, and their variances, 5}, were estimated as a linear transformation of the
GBLUP animal effects, @, from equation 3. A test statistic for the association of each cSNP with
phenotype was computed by standardizing the SNP effects, = g/\/? , and p-values associated
with this T test statistic calculated using the Gaussian cumulative distribution function, p-value
= 2[1 — ®(|T])]. Significant cSNP effects were determined after multiple test corrections using
a threshold of FDR < 0.05.
RESULTS
Identification of cSNP

RNA sequencing of longuissimus dorsi muscle for 168 F2 animals generated a total of
3,606,267 identifiable polymorphic sites, less than 1% were multialleleic (5,800) and 9.2% were
INDEL (313,776). The WASP algorithm corrects for bias towards the reference genome and
genotyping errors when calling cSNP from RNA-seq in order to reduce bias in the estimation of
allelic abundance?®>26. The WASP algorithm identified 11.3 + 5.7 million reads overlapping a
polymorphic site, from which 29.4% were considered biased towards the reference allele and
16.4% were duplicate reads resulting from amplification. cSNP were subsequently called after
removing biased reads and quality filtered for heterozygous cSNP with sufficient coverage (10
reads) and number of heterozygous animals (> 6), resulting in the retention of 69,502 cSNP for
ASE analysis (Supplementary Table 3.S2). The allelic ration (AR) of the non-reference allele
increased from 0.45 + 0.16 to 0.48 + 0.14 after applying the WASP algorithm (Figure 3.3). A
comparison of overlapping cSNP and SNP ascertained with the Porcine SNP60 BeadChip for the
same population identified 609 common SNP (Figure 3.3). Assuming the chip SNP as the true

genotype, the sensitivity to detect a heterozygous genotype from RNA-seq was estimated as 0.99
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+ 0.05 and accuracy was 0.99 + 0.02. The type 1 error rate of called heterozygous sites was

0.005.

Allele-specific expression

The 69,502 cSNP were evaluated for ASE using a Quasibinomial logistic regression with
overdispersion, followed by a meta-analysis to summarize gene-wise ASE. The ASE analysis
identified 18,234 cSNP with significant allelic imbalance (FDR < 0.01, Supplementary Table
3.52) and the meta-analysis identified 4,151 genes exhibiting cis-acting effects (FDR < 0.01,
Supplementary Table 3.S3) from the 7,535 genes containing cSNP. On average 10.92 + 12.96
cSNP mapped per gene and the 4,151 genes exhibiting cis-acting effects contained on average

5.20 + 6.97 cSNP with ASE (Supplementary Table 3.S3). A subset of ASE cSNP (2,705) showed
a narrow allelic bias falling within + 5% contained within 2,705 of ASE cSNPand 176 of the

genes with cis-acting effects.

An eQTL study previously performed for the same population identified 188 local acting
regulators of gene transcript abundance (Chapter 2). In this study, 91 transcripts with local eQTL
contained ASE cSNP. Correlations between the most significant cSNP for an ASE gene and the
peak eQTL marker indicates the extent of LD for the two candidate markers. Pearson
correlations for the extent of LD were significant for 70 of the 91 genes (FDR <0.01), where
correlations between the associated markers averaged R = 0.71 + 0.22 (Figure 3.4). For the
eQTL analysis, 59 genes were determined to be distant regulators residing on the same
chromosome as the position of the associated gene transcript. Twenty-six of these eQTL genes
were also associated with significant ASE, with 77% exhibiting significant LD between the ASE
cSNP and the eQTL marker (R =0.70 £ 0.21, Pearson correlation FDR < 0.01). Finally, 24 genes

exhibiting ASE were associated with a distant eQTL (Figure 3.4).
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Figure 3.3 Number of cSNP called from RNA-seq and allelic ratios. Histograms of the allelic
ratios of non-reference alleles are shown before (left) and after (right) applying the WASP
algorithm. The Venn diagram illustrates comparison of called cSNP from RNA-seq before and
after correcting for bias in genotype calls (yellow and green, respectively) with genotypes
obtained using the Porcine SNP60 BeadChip for the 168 F2 animals.

A putative hotspot on SSC15 associated with meat quality traits was identified in the eQTL
analysis (Chapter 2). Two of the genes associated with the hotpot also exhibited ASE, PFKFB3
(AR =0.20, 10-64777250-A-G) and NQO1 (AR =0.70, 6-17299064-G-T). Another gene,
OSBL1, contained a cSNP in high LD with the putative hotspot (R = 0.78, 15-121563981-T-C),

however, this cSNP did not exhibit ASE. Another OSBL1 cSNP that did show ASE (AR=0.43,
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15-121571895-C-A) mapped 234 Kb upstream of the putative hotspot and was significantly

correlated with the hotspot SNP (R = 0.24; p-value < 0.001).

ASE SNP Absolute Pasition Mb

T T T T
500 1000 1600 2000

eQTL SNP Absolute Position Mb

o

Figure 3.4 Comparison of gene transcripts exhibiting significant ASE and associated with an
eQTL. The x-axis represents the absolute position of the peak eQTL marker in Mb and the y-axis
the absolute position of the cSNP with the most extreme allelic bias for each gene. Correlations
among eQTL and ASE marker are color coded with a light gray color indicating low correlation,
and the color intensifying to a darker blue for higher correlations. Markers aligning with the
diagonal exhibit cis-acting effects and those on the off-diagonal are markers aligning to genes
associated with both cis-acting and distant effects on transcript abundance.
Pyrosequencing to confirm cSNP with allele-specific expression

A total of nine cSNP exhibiting both ASE and an association with a phenotypic trait were
selected for confirmation using pyrosequencing (Table 3.1). Six of these genes were confirmed
to show similar allelic imbalances (Pearson correlation R = 0.81) as was observed using RNA-
seq (Figure 3.5). Four genes selected for confirmation showed higher frequency of the non-
reference allele (ZNF79, RNF141, RNF150, and TYW3). Three of these genes were confirmed
with pyrosequencing, ZNF79 (RNA-seq AR=0.61, Pyrosequencing AR=0.59), RNF141 (RNA-
seq AR=0.64, Pyrosequencing AR=0.79) and RNA150 (RNA-seq AR=0.66, Pyrosequencing
AR=0.62). The AR of TYW3 was 0.55 with RNA-seq, however, pyrosequencing of the TYW3

cSNP indicated an AR of 0.51 for the non-reference allele, therefore not confirming ASE for this
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cSNP. TYW3 was one of the three cSNP exhibiting a narrow bias (AR of 0.5 £+ 0.05), but still

considered significant in the RNA-seq ASE analysis. The other two cSNP exhibiting a narrow

bias were the NUDT3 and NAMPT cSNP, NUDT3 was confirmed as exhibiting ASE with

pyrosequencing (RNA-seq AR=0.47, Pyrosequencing AR=0.44), whereas NAMPT was not

confirmed (RNA-seq AR = 0.47, Pyrosequencing AR = 0.51). While the direction of apparent

allelic bias for the PPARGC1B cSNP was the same on both platforms (RNA-seq AR=0.30,

Pyrosequencing AR=0.46), the ASE observed by RNA-seq was not confirmed by

pyrosequencing.

Table 3.1 cSNP selected for pyrosequencing confirmation.

Phenotype SSC Pos.! Genes Het? cSNP® AR* PV® g-value®
45-min pH 1 267.9 ZNF79 32 9 0.61 0.15 8.75E-03
Drip Loss 2 49.0 RNF141 59 9 0.64 0.52 9.34E-03
10th-Rib Backfat 8 86.3 RNF150 60 31 0.66 0.47 7.18E-02
Protein Percent 15 254 BIN1 75 99 0.24 -041 2.16E-03
Protein Percent 15 1209 PRKAG3 60 145  0.44 -0.80 8.01E-04
Carcass Length 7 303 NUDTS3 66 27 047" -0.14 2.41E-02
10th-Rib Backfat 6 1384 TYW3 66 3 0.55° 0.13 6.81E-02
Last-Lumbar Backfat 6 - TYW3 - - - 0.13 9.60E-03
Marbling 6 - TYW3 - - - 0.13 4.67E-02
WBS 9 106.1 NAMPT 78 75 0.47" -0.83 6.36E-04
Loin Muscle Area 2 150.8 PPARGC1B 13 26 0.30 -0.20 7.99E-02

Position of cSNP in Mb. 2Number of heterozygous animals analyzed. *Number of cSNP mapped to the gene.
“Allelic ratio for cSNP. 5Proportion of phenotypic variance accounted for by cSNP. SEstimated g-value for

conditional analysis. "cSNP with narrow bias, within 0.5 + 0.05.

Gene ontology and Kegg pathway enrichment

Genes showing significant cis-acting effects were enriched in five Kegg pathways related

to energy metabolism, protein processing, focal adhesion and fatty acid degradation (FDR <

0.05, Table 3.2). Gene set enrichment for biological processes showed 219 enriched gene

ontology (GO) terms (Table 3.3, top 12 GO terms; Supplementary Table 3.54). Several muscle

specific GO terms were enriched including terms associated with energy depravation and
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anaerobic respiration consistent with what is expected for the tissue (i.e., skeletal muscle) and

time point of collection (i.e., immediately postmortem).
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Figure 3.5 Histograms of ARs obtained with pyrosequencing for nine ASE cSNP. The x-axis
represents the AR of the alternative allele for the ASE cSNP, and the y-axis the frequency
observed for the ratio. Displayed within the graph for each gene are the average AR of the
alternative allele obtained from the two sequencing platforms (i.e. RNAseq and Pyrosequencing).
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Table 3.2 ASE genes enriched in Kegg pathways.

Kegg ID Description Genes? Background?  p-value g-value
hsa01200 Carbon metabolism 46 81 9.05e-06 0.002
hsa00020 Citrate cycle 16 22 1.67e-04 0.024
hsa04141 rotein processing in 58 121 4.60e-04  0.035
endoplasmic reticulum

hsa04510 Focal adhesion 71 155 6.00e-04 0.035
hsa00071 Fatty acid degradation 20 32 6.19e-04 0.035
Total number of genes 1409 4244 - -

Number of genes exhibiting ASE enriched in Kegg pathway compared to background genes.
2Number of genes expressed in our skeletal muscle samples (background) connected to Kegg pathway.

Effects of cCSNP on trait phenotypes

We tested the effects of cSNP on phenotypic traits using two approaches. For both
analyses only cSNP with less than five percent missing genotypes were considered, resulting in
28,328 cSNP with 6,293 showing significant ASE mapping to 3,352 genes. The first approach
consisted of a GWAS to map phenotypic QTL using called cSNP. This cSNP-GWAS identified
108 cSNP associated with 5 phenotypic QTL for backfat, carcass length, number of ribs and
protein percent (FDR < 0.05;Table 3.4, Figure 3.6 and Supplementary Table 3.S5). The cSNP
associated with QTL mapped to 35 gene transcripts showing significant cis-acting effects as
determined by the gene-wise meta-analysis of ASE cSNP for 33 genes. A total of 33 ASE cSNP
were associated with QTL for 10t"-rib backfat, carcass length or protein percent.

The second approach estimated the genotypic effect of cSNP with ASE (i.e. 6,293 cSNP)
on phenotypic variation by performing a gene-wise ASE conditional analysis (i.e. 3,352 genes)
for all 67 trait phenotypes. This conditional analysis identified 57 cSNP associated with 25
phenotypes and 60 gene transcripts (FDR < 0.1, p-value < 6.49¢-05; Table 3.5 and

Supplementary Table 3.56).
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Table 3.3 ASE genes enriched in GO terms for biological processes.

GO ID? Description Genes? Background® p-value  g-value

0003012 Muscle system process 145 291 2.80E-11 1.30E-07

0010608 Posttranscriptional regulation of 170 377 1.07E-08 8.16E-06
gene expression

0006936 Muscle contraction 113 230 1.23E-08 8.16E-06

0022613 Ribonucleoprotein complex 149 324 1.86E-08 1.08E-05
biogenesis

0015980 Energy derivation by oxidation 90 175 2.46E-08 1.14E-05
of organic compounds

0010927 Cellular component assembly 47 76 4.32E-08  1.83E-05
involved in morphogenesis

1903311 Regulation of MRNA metabolic 97 195 6.12E-08  2.37E-05
process

0009060 Aerobic respiration 31 44 1.18E-07 4.21E-05

0006091 Generation of precursor 140 309 1.54E-07 5.10E-05
metabolites and energy

0031032 Actomyosin structure 69 132 4.72E-07 1.46E-04
organization

0006099 Tricarboxylic acid cycle 17 20 1.12E-06 3.06E-04

0042692 Muscle cell differentiation 118 261 1.65E-06  3.84E-04

Total number of genes 3071 9762 - -

Top 12 enriched GO terms are presented, for the complete list of 255 GO terms refer to Supplementary Table 3.54
2Number of genes exhibiting ASE enriched in GO term compared to background genes.
3Number of genes expressed in our skeletal muscle samples (background) connected to GO term.

Six cSNP with ASE mapped to five genes were observed to be associated with
phenotypic traits in both the cSNP GWAS and conditional analysis for carcass 10"-rib backfat
(TYWS3), carcass length (BRD2, DST and NUTD3) and protein percent (PRKAG3). The TYW3
gene was significantly associated with carcass 10" rib backfat, marbling scores and last lumbar
backfat with the ASE cSNP exhibiting an AR of 0.55 for the non-reference allele on
SSC6:138.43 Mb accounting for 13% of phenotypic variance. The cSNP SSC15:120858205-A/G

mapped to the PRKAG3 gene showed an AR of 0.52 (non-reference allele) and accounted for
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79% of protein percent variance. Three genes observed with both the cSNP GWAS and the gene-
wise conditional analysis were significantly associated with variation in carcass length,
exhibiting an AR of 0.58, 0.55 and 0.47 for BRD2, DST and NUDT3, respectively. The three
cSNP mapped to a 5Mb region on SSC7 and accounted for 13, 22 and 14 percent of phenotypic

variance for BRD2, DST and NUDTS3, respectively.

Table 3.4 Phenotypic QTL mapped with cSNP.

Genes
Phenotype SSC Range Peak cSNP? ASE2 Genes?® Meta
Mb cSNP -
Aanalysis
10"-Rib Backfat 6 94.90 - 141.94 30 11 10 7
Carcass Length 7 24.09 - 34.55 59 20 25 19
Number of Ribs 7 96.45 - 98.24 4 0 4 0
Last-Rib Backfat 12 39.80 1 0 1 1
22-wk
Protein % 15 120.45-121.56 14 2 11 8

INumber of associated cSNP (FDR < 0.05). 2Number of associated cSNP with significant ASE (FDR < 0.01).
3Number of gene transcripts containing cSNP associated with QTL. SNumber of gene transcripts containing cSNP
associated with QTL and showing significant cis-acting effects (Meta-analysis FDR < 0.01).

Table 3.5 Gene-wise conditional analysis of ASE cSNP.

Proportion Phenotypic

Category Phenotypes cSNP  Genes Variance
Growth Weight 1 2 2 0.11-0.27
Growth Backfat 5 8 10 0.07-0.46
Growth Loin Muscle Area 2 5 7 0.09-0.43
Backfat 5 13 13 0.10-0.79
Carcass 6 11 13 0.10-0.51
Meat Quality 6 19 17 0.10-0.83
Total 25 57 60 -
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Figure 3.6 Manhattan plots for pQTL mapped using cSNP called directly from the longissimus
dorsi transcriptomes of 168 animals. The x-axis represents the absolute position of each cSNP,
alternating blue tones highlight each chromosome. The y-axis illustrates the negative logarithm
of the calculated g-values from the GWAS. Red circles highlight cSNP for ASE genes
significantly associated with a phenotypic trait; determined through a conditional analysis testing
the effect of cSNP with ASE per gene on phenotypic variation (FDR <0.1).
DISCUSSION

ASE analysis facilitates the identification of functional genomic regions regulated by cis-
acting effects, and through joint association of ASE sites with phenotypic traits we can elucidate
the genetic architecture of the trait. In this study, we observed 26% (18,234) of called cSNP
showing significant allelic bias resulting in 55% (4,151) of genes expressed in longuissimus
dorsi muscle exhibiting allele-specific expression (FDR < 0.01). A study performed in brain
tissue of pigs looking at genes showing ASE found 52% of genes biased in their allelic

expression’® consistent with the results observed in this study. A subset of ASE cSNP (15%) did,

however, show a narrow allelic bias falling within + 5%. This observation had a minimal impact
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on the number of genes exhibiting significant cis-acting effects because frequently additional
ASE cSNP within a gene showed more extreme allelic bias.

A comparison of our previous eQTL study (Chapter 2) with the ASE analysis showed an
overlap of 136 genes with associated eQTL and ASE (42% of eQTL genes). From the 188 eQTL
classified as either local or plausible local, 48% (91 eQTL) showed ASE. The correlation
between the peak eQTL SNP and top significant ASE cSNP corresponding to the gene for the 91
local eQTL was significant for 70 of these (R = 0.71 + 0.22), suggesting the peak eQTL is in
high LD with the ASE cSNP. The ASE analysis showed more precision in the identification of
cis-acting effects than the genome-wide eQTL analysis, however, both approaches provide
valuable information on the regulation of transcript abundance. For instance, we observed 24
genes associated with distant eQTL (trans effects) and exhibiting ASE. Two of these genes
(SUCLGZ2 and NQO1) were associated with a putative hotspot on SSC15:121.8Mb and may play
a role in meat quality and carcass phenotypic diversity.

Biological processes enriched among ASE cSNP related to SUCLG2 and NQO1 and
other genes associated with both eQTL and ASE include energy derivation by oxidation of
organic compounds (SUCLG2, ACO1, PPP1CB and UQCRC2) and regulation of cellular ketone
metabolic process (NQO1 and PSMC1). Both of these processes are related to mitochondrial
oxidative phosphorylation postmortem and ATP production for maintaining cellular homeostasis
in anaerobic conditions, and have been implicated in the development of pale, soft and exudative
meat*’. Additional biological processes related to genes associated with eQTL and containing
cSNP with ASE include cytoskeleton organization (TBCD, RND3, and LIMK1), muscle
hypertrophy in response to stress (CAMTAZ2), ATP metabolic process (PFKFB3) and

proteasome-mediated ubiquitin-dependent protein catabolic process (FBXW7).
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A recent study of longuissiumus dorsi transcriptome differences between Duroc and
Pietrain breeds have shown several genes differentially expressed between these breeds*2. The
FBXW?7 (F-box and WD repeat domain containing 7) and SUCLG2 (succinate-COA ligase) were
reported as differentially expressed and upregulated in Duroc pigs*?. The FBXW?7 is one of four
subunits of an E3 ubiquitin protein ligase complex involved in the proteasomal degradation of
target proteins*3. Expression of one isoform for this gene (FBXW7 /) has been implicated in
muscle atrophy by upregulating MYOG (myogenin), FBX0O32 (F-box protein 32) and TRIM63
(tripartite motif containing 63) 44°. In this study, the FBXW?7 gene contained two cSNP with
ASE (AR =0.43; SSC8:76637796-G/T and SSC8:76637801-A/G), and was associated with a
trans-acting eQTL on SSC9:125.04 and a putative hotspot marker (ASGA0044684). Two of the
muscle specific atrogenes regulated by FBXW7 were not only expressed in our samples, but also
showed ASE. The TRIM63 gene is a muscle specific RING finger protein. This gene contained
11 ¢SNP with ASE and AR ranging from 0.18 to 0.63 for the non-reference allele. The FBX032
gene contained 42 cSNP with ASE, and AR ranging from 0.18 to 0.70 for the non-reference
alleles. The high genetic diversity observed for TRIM63 and FBX032, and the different ASE
effects suggest large variability in the expression of these genes, and indicate that these genes
may play an important role in meat quality through proteasomal degradation of myofibrils. The
SUCLG2 gene contains a cCSNP (SSC13:48824575-T/C) showing significant ASE with an AR of
0.59. This gene plays an important role in mitochondrial DNA maintenance and ATP production
and has been implicated in human disorders related to muscle atrophy and infantile lactic
acidosis*®. While none of these ASE genes were found to be associated with meat quality

phenotypes in the conditional analysis, these results suggest cis-acting, and to some degree trans-

85



acting, effects may regulate the expression of these genes during the conversion of muscle to
meat.

A gene-wise conditional analysis aimed to estimate the effects of ASE cSNP on variation
at the phenotypic level. Significant associations were observed for 25 phenotypes including
growth, carcass composition and meat quality traits. Meat quality traits associated with ASE
cSNP included WBS (NAMPT), drip loss (RNF141), pH at 45-min (ZNF79 and TOR1B) and
marbling score (TYW3). The NAMPT (nicotinamide phosphoribosyltransferase) gene plays an
important role in oxidative stress and mitochondrial biogenesis and is required for the metabolic
adaptation associated with calorie restriction*’. In pigs this gene is highly expressed in
intramuscular fat*®. In this study, a cSNP mapped to NAMPT (SSC9:106120529-G/A) showed
significant ASE with a narrow bias of 0.47 for the non-reference allele. This cSNP was
significantly associated with WBS, with the non-reference allele accounting for 83% of the
phenotypic variance and associated with a reduction in WBS. While this allele appears to be
strongly associated with WBS, a pyrosequencing assay for this NAMPT ¢cSNP did not confirm
significant allelic expression bias. NAMPT was one of 61 ASE genes enriched in the
oxidoreduction coenzyme metabolic process along with IGF1, PRKAG2 and PRKAA2. In this
study IGF1 (insulin like growth factor 1) showed an extreme allelic bias for cSNP
SSC5:81853529-G/A (AR = 0.15). IGF1 is known for its hypertrophic activity through the
activation of the phosphoinositide 3-kinase (P1K3)/Akt signaling pathway which can block
mediators of skeletal muscle atrophy*® such as TRIM63 and FBXO32. Similarly, PRKAA2
(protein kinase AMP-activated catalytic subunit alpha 2) has been previously associated with the
PI3K/Akt signaling pathway in longuissimus dorsi of pigs®. The activity of these genes may

regulate the rate of postmortem metabolism during the initial conversion of muscle to meat.
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Drip loss is a measure of the water holding capacity of meat affected by pH decline. Four
genes were significantly associated with drip loss in this study (AMPD3, ITGB1, SDC4 and
RNF141). The RNF141 (ring finger protein 141) gene has previously been shown to be
upregulated in Duroc pigs compared to Pietrain pigs*2. In this study, the non-reference allele of
the RNF141 cSNP, SSC2-49033433-G/A, was associated with an increase in drip loss
accounting for 51% of the phenotypic variance and a significant allelic imbalance was confirmed
by pyrosequencing (AR=0.79). The SDC4 (syndecan 4) gene was enriched in actin cytoskeleton
organization pathway along with NF2 (neurofibromin 2) and OBSL1 (obscurin like 1), all
showing significant cis-acting effects. Interestingly, NF2 is a transcription factor implicated in
sensing environmental stress, and increased expression of this gene activates the
PI3K/Akt/mTOR pathway®!. The insulin-like growth factor binding protein 2 (IGFBP2) on
SSC15 has been previously associated with growth, carcass composition and meat quality traits
in our pig population®?. The OBSL1 gene interacts with protein anchoring myosin filaments, and
mutations within this gene modulate the expression of IGFBP2 and IGFBP5%. In this study, the
OSBL1 cSNP, SSC15:121567503-C/G, showed significant ASE with an AR of 0.21. ASE cSNP
of OBSL1 were not directly associated with meat quality traits in the conditional analysis,
however, another cSNP within OBSL1 showed high correlation with the putative hotspot
(R=0.78, 15-121563981-T-C) and this cSNP was associated with protein percent in the cSNP
GWAS. One of the OSBL1 ASE cSNP (AR=0.43, 15-121571895-C-A) was significantly
correlated with the putative hotspot (R = 0.24, p-value < 0.001). These results support OBSL1 as
a candidate gene for meat quality traits on SSC15.

In this study, five cSNP were associated with pH at 45-min postmortem. Two of these

mapped to genes on SSC1 (ZNF79 and TOR1B). ZNF79 (zinc finger protein 79) is involved in
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nucleic acid binding, and TOR1B (torsin B) is an ATPase found in the endoplasmic reticulum®.
The cSNP (SSC1:267942146-G/T) for ZNF79 accounted for 12% of the phenotypic variance for
45-min pH with the non-reference allele associated with increased pH. Significant allelic bias for
the non-reference allele was confirmed with pyrosequencing (AR=0.59). The cSNP for TOR1B
(SSC:1-269972250-G/C) is in high LD with the ZNF79 cSNP (R = 0.76) and showed an AR of
0.40 for the non-reference allele. TOR1B expression has previously been shown to be
upregulated in Pietrian versus Duroc*?. The enrichment analysis of genes with cis-regulation
showed TOR1B to be involved in chaperone-mediated protein folding along with several other
genes in the heat shock protein (HSP) family (HSPH1, HSPB1, HSPB6 and HSPAS). Hsp70
chaperons (HSPH1 and HSPAS8) have been known to regulate protein folding and protein
degradation via ATP dependent reaction during stressful conditions to maintain homeostasis®.
ZNF79, TOR1B and the HSP genes may therefore play a role in post-mortem pH decline by
maintaining protein stability.

Carcass composition traits and fatness traits associated with allelic imbalance include
protein percent (BIN1 and PRKAG3), loin muscle area (PPARGC1B) and carcass 10"-rib backfat
(TYWS3). The non-reference alleles of cSNP in BIN1 (bridging integrator 1) and PRKAG3
(protein kinase AMP-activated non-catalytic subunit gamma 3) on SSC15 were associated with
reduced protein percent. The PRKAG3 gene regulates glycogen potential and is associated with
meat quality traits in pigs®1356. BIN1 was enriched in the muscle cell differentiation pathway
along with the proteases CAPN2 (calpain 2, SSC10) and CAPNS3 (calpain 3, SSC1). The calpain
system is an endogenous proteolysis system involved in protein degradation, and that plays an
important role in meat tenderization*"->’. BIN1 activates a caspase-independent apoptotic process

and promotes synaptic vesicle endocytosis for synaptic vesicle recycling®®. Interestingly,
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CALPN3 was previously shown to be upregulated in Pietrain*? lougissiums dorsi muscle, and
both BIN1 and CAPN3 were shown to be highly expressed in intramuscular adipose tissue*®. In
this study, the allelic bias of BIN1 and PRKAG3 was confirmed with pyrosequencing.

The PPARGC1B (PPARG coactivator 1 beta) gene on SSC2 contained a cSNP with ASE,
with the non-reference allele associated with a reduction in loin muscle area. An important
paralog of this gene is PPARGC1A previously suggested to play a role in energy metabolism
specific to muscle fiber type, and shown to be up-regulated in longissimus dorsi of Duroc
compared to Pietrain pigs*2. In this study, PPARGC1B allelic expression bias was not confirmed
with pyrosequencing, however, only a small number of pigs in our population were heterozygous
for this cSNP.

The TYW3 (TRNA-YW synthesizing protein 3 homolog) gene contained two cSNP with
ASE showing a narrow bias of 0.55. This gene was significantly associated with 10!"-rib backfat,
last-lumbar backfat and marbling score accounting for 13% of phenotypic variance for all three
phenotypes. Pyrosequencing of the TWY3 cSNP, SSC6:138435089-A/G, did not confirm
significant allelic bias. The CRYZ gene also showed significant ASE in our analysis with an AR
of 0.57 (SSC6:138460416-G/A). Both TWY3 and CRYZ are associated with resistin gene
expression, and circulating resistin levels have been implicated in insulin resistance and
obesity®®. CRYZ has NADPH-dependent quinone reductase activity and encodes a protein that
binds to adenine-uracil rich elements in 3°-UTR of mRNA, acting as a trans-acting factor®®. The
CRYZ gene was not associated with fatness traits in the conditional analysis, but five cSNP
mapping to this gene (including 6-138460416-G-A) were associated with 10™-rib backfat in the
cSNP pQTL analysis. These results suggest CRYZ and TWY3 may play an important role in

subcutaneous fatness traits through the regulation of resistin levels. Two additional genes,
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ACSL3 and RNF150, with allelic imbalance were associated with 10"-rib backfat. ACSL3 (long-
chain acyl-COa synthetase 3) on SSC15 was associated with 22wk 10™"-rib backfat, and this gene
plays a role in mitochondrial oxidation of fatty acids*2. RNF150 (ring finger protein 150) is
associated with carcass 10™-rib backfat accounting for 47% of the phenotypic variance with the
non-reference allele associated with increased backfat. The allelic imbalance observed for
RNF150 was confirmed by pyrosequencing.
CONCLUSION

This study provides new information on the complex regulation of the pig longissimus
muscle transcriptome, and direct or indirect relationships with economically important
phenotypic traits. Several genes identified in this study are involved in the PISBK/Akt/mTOR
signaling pathway, regulating postmortem metabolism, apoptosis, calcium homeostasis, and
insulin signaling. We observed several genes with ASE within this pathway suggesting a
potential role for PI3K/Akt/mTOR signaling on meat quality and carcass composition traits. A
high degree of overlap was observed for genes and pathways identified through the ASE analysis
of our F2 Duroc x Pietrain population, and differentially expressed genes reported between the
parental breeds*?. These results suggest phenotypic divergence between breeds can be attributed

to cis-acting effects regulating important biological processes.
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SUPPLEMENTARY MATERIALS

Supplementary tables available at https://velezdeb84.wixsite.com/deborahvelezirizarry.

Supplementary Table 3.S1 Primer sequences for pyrosequencing array.

Supplementary Table 3.S2 cSNP retained for ASE analysis.

Supplementary Table 3.S3 Gene-wise meta-analysis of cSNP mapping to a gene transcript.
Supplementary Table 3.S4 Gene ontology terms enriched for genes with significant ASE.
Supplementary Table 3.S5 Phenotypic QTL using cSNP.

Supplementary Table 3.S6 Gene-wise conditional analysis of cSNP with ASE.
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CHAPTER FOUR

Conclusions

The overall goal of this dissertation research is to reduce the number of candidate genes
obtained through QTL mapping by identifying positional candidate eQTL associated with pQTL
regions. In particular, we aimed to characterize the prevalence of local and distant acting variants
of gene expression, by conducting expression QTL (eQTL) and allele specific expression (ASE)
analyses using mMRNA extracted from the longuissimus dorsi muscle of pigs from our F2 Duroc x
Pietrain resource population (MSUPRP) and estimate their effect on phenotype. Transcription is
a spatially and temporally controlled process regulating mRNA production, with mRNA
transcripts subsequently translated into protein, the central dogma of molecular biology. Several
cis-acting elements and trans-acting factors, including epigenetic markers, and environmental
influences impact transcription>2. eQTL maps reveal gene networks that can increase our
knowledge of the genetic architecture of complex traits. In a well-characterized and phenotyped
population like our MSUPRP, querying the co-localization of such eQTL with pQTL reveals
candidate genes affecting multiple trait phenotypes. Genetic variation in the form of ASE is
observed when one allele is preferentially expressed at a higher degree relative to the alternative
allele, deviating from the 1:1 allelic ratio expected in biallelic expression of heterozygous locus.
ASE analysis provides a means of confirming cis acting regulators, and ASE coding SNP (cSNP)
associations with phenotype identify candidate markers with functional relevance.

Our eQTL scans for variants associated with total transcript abundance shed light on both
local and distant regulators of gene expression. The latter include regulatory hotspots regarded as
a single marker associated with variation in multiple gene transcripts. In our study, a putative

hotspot on SSC15 (intergenic variant, H3GA0052416) was associated with eight meat quality
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and carcass composition phenotypes, and eleven genes expressions. This genomic region being
associated with variation at the transcriptional and phenotypic level (i.e. eQTL co-localized with
pQTL) reveals functional variation influencing phenotypic divergence. The majority of genes
associated with the putative hotspot (10) were associated with trans-acting regulation, and the
other gene was a novel transcript mapped 73Mb upstream of the putative hotspot. The
association of this genomic region with multiple meat quality traits has been demonstrated in
GWAS performed by our group®#* and in independent studies®®.

The PRKAG3 (protein kinase AMP-activated gamma 3 non-catalytic subunit) gene has
been implicated as the candidate gene in this genomic region’-°, however, our studies show that
variants within this gene and previously implicated in regulating meat quality traits and
glycolytic potential®*'%!! do not account for a significant portion of phenotypic variance for meat
quality traits, suggesting another gene or group of genes may be involved. Our ASE analysis
identified two candidate gene in this region, the IGFBP5 (insulin-like growth factor binding
protein 5; 3Mb upstream of the putative hotspot) gene, and a modulator of IGFBP5 expression'?,
OBSL1 (obscurin like 1; 234 Kb upstream), both exhibiting significant cis-effects. Mutations
identified in OBSL1 have previously been associated with abnormal IGFBP2 and IGFBP5
expression and suggested to be a disease locus associated with heterogeneity in the 3-M growth
retardation syndrome in humans®?. Our findings suggest OBSL1 as a candidate gene for the
putative hotspot on SSC15 associated with meat quality traits. While ASE cSNP of OBSL1 were
not directly associated with meat quality traits in the conditional analysis, a cSNP within OBSL1
showed high correlation with the putative hotspot (R=0.78, 15-121563981-T-C) and was

associated with protein percent in the cSNP GWAS. In addition, the ASE cSNP of OSBL1
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(AR=0.43, 15-121571895-C-A) was significantly correlated with the putative hotspot (R = 0.24,
p-value <0.001).

Insulin-like growth factor 1 (IGF1) is the upstream regulator of the phosphatidylinositol-
3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and IGFBP5
is a strong inhibitor of IGF1 signaling®®. MTOR (mechanistic target of rapamycin kinase) has
been shown to regulate a feedback inhibition of IGF1 signaling through HIF1A (hypoxia-
inducible factor 1-alpha) dependent expression of IGFBP5*3, This is an important finding since
the conversion of muscle to meat is governed by anaerobic processes that control postmortem
energy metabolism, mainly the degradation of glycogen and accumulation of lactate'*. Lactate
accumulation in turn reduces pH, causing dysregulation of calcium homeostasis leading to
increased Ca?* release from the sarcoplasmic reticulum compromising mitochondrial integrity
and increasing pro-apoptotic factors®®. The rate of postmortem energy metabolism is the major
factor influencing meat quality development, therefore, knowing IGFBP5 and OBSL1 exhibit
significant cis-acting effects, are in close proximity to the putative hotspot on SSC15, and are
important mediators of PI3K signaling, it is reasonable to assume these genes play an important
role in post mortem metabolism. For instance, HIF1A is an important transcriptional regulator of
the glycolytic pathway during hypoxic stress¢-18 and it is influenced by high fat diets in pigs*®.
HIF1A dependent expression of IGFBP5 promotes IGF1 inhibition with a feedback loop
involving various genes found to exhibit cis-acting effects in our study including IRS1, GRB10,
MTOR, IGF1, IGFBP5*% and NRF2'°. Therefore, by merging results from our eQTL, pQTL and
ASE analyses we provide new insights on the complex architecture driving variation in

important pig production traits.
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In this study, we aimed to characterize ASE in the longuissimus dorsi transcriptome in
pigs. Overall, 55% of expressed genes exhibited ASE, and over 50 cSNP accounted for a
significant portion of phenotypic variance for growth, carcass composition and meat quality
phenotypes in our MSUPRP. A 36% overlap was observed between genes exhibiting significant
ASE in our study, and differentially expressed genes reported for an independent study
evaluating differences in longuissimus dorsi transcript abundance between Duroc and Pietrain
breeds?°. These results suggest phenotypic divergence between breeds can be attributed to cis-
acting effects regulating important production traits. Duroc breed pigs are known for their fast
growth and backfat deposition, whereas Pietrain breed pigs are characterized for their leaness??.
The PI3K/Akt/mTOR signaling pathway contained several genes exhibiting significant allelic
imbalance with some showing extreme allelic ratios of the non-reference allele (< 0.20; IGF1,
IGFBP5, HIF1AN, TRIM63 and FBX032) and others exhibiting both cis and trans acting effects
(NQO1 and PFKFB3). PI3K/Akt/mTOR plays an important role in skeletal muscle response to
acute hypoxia??, regulates cellular hypertrophy by blocking transcriptional mediators of
atrophy?2 (i.e. TRIM63 and FBX032), and has been implicated in intramuscular fatty acid
content in pork?*. The transcriptional regulation of genes implicated in this pathway may explain
some of the phenotypic differences observed between Pietrain and Duroc breeds. For example,
both PRKAA2 (protein kinase AMP-activated catalytic subunit alpha 2) and PPARGC1A
(PPARG coactivator 1 alpha) genes were upregulated in Duroc longuissimus dorsi?®. PRKAA2
activates the PI3K/Akt pathway implicated in intramuscular fatty acid content®* and PPARGC1A
increases mitochondriogenesis via activation of AMPK that blocks mTOR?®, consequently,
MTOR gene expression was upregulated in Pietrain longuissimus dorsi?’. PPARGC1A has also

been implicated in fiber type conversion through increased mitochondrial respiration® consistent
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with the higher number of slow oxidative fibers in Duroc breed pigs®. Both PRKAA2 and MTOR
genes exhibited significant ASE in our study. An important paralog of PPARGC1A is
PPARGCI1B found to be significantly associated with loin muscle area in our study, however, the
allelic bias for this gene was not confirmed with pyrosequencing.

Candidate markers identified through eQTL and ASE analyses that are associated with
phenotypic variation for economically important pig production traits or implicated in signaling
pathways known to play an important role in postmortem metabolism improve our understanding
of the genetic architecture of these traits. Through this study, we shed light on potential cis-
acting effects for several genes implicated in the activation of the PI3K/Akt/mTOR signaling
pathway in response to hypoxic stress and suggest this pathway plays a crucial role in regulating
postmortem energy metabolism of the longuisimus dorsi muscle, resulting in divergence of
important phenotypic traits in pigs. The cSNP identified in this study provide valuable
information on gene networks implicated in the regulation of meat quality and growth traits. Of
more importance are candidate markers with ASE not found in commercial SNP arrays since
they may have functional relevance for phenotypic variation and breed divergence.

FUTURE RESEARCH DIRECTIONS

An application for results obtained in this study is the use of cSNP associated with
growth, carcass composition and meat quality phenotypes, or implicated in influential gene
networks, in SNP arrays for genomic selection or for genome-wide association studies to
estimate individual SNP effects in resource and commercial populations. Targeted research on
genes identified in this study may demonstrate mechanisms driving phenotypic variability and
breed divergence with potential for biotechnological applications to meet breeding challenges

and consumer needs. Of particular importance is the assessment of genes with ASE within the
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PIK3/Akt/mTOR pathway and how variation in the expression of these genes alter phenotypic
divergence. While this study suggests IGFBP5 and OBSL1 play an important role in postmortem
metabolism and PIK3/Akt/mTOR signaling, several questions arise. For instance, how does ASE
affect protein production for the key mediators of the pathway (IGF1, MTOR, IGFBP5 and
OBSL1)? What is the driver of ASE, is it the methylation pattern of these genes or is imprinting a
contributing factor? Are other epigenetic regulators involved such as long-non coding or micro
RNA (miRNA)? Is ASE influencing transcription factor binding since HIF-1 is an important
transcription factor for this pathway?

Several approaches can be taken to address these questions. ELISA (enzyme-linked
immunosorbent assays) assays can quantify protein expression for IGF1, MTOR and IGFBP5
and transcription factor activity for HIF-1 in animals genotyped for the ASE cSNP and
exhibiting extreme phenotypic differences in meat quality, carcass composition and/or growth
phenotypes. With these assays, we can test the hypothesis that ASE alters protein production or
HIF-1 transcription factor binding leading to variation at the phenotypic level. Methylation
patterns can be assessed with relative ease (since we know the genes of interest) using bisulfite
conversion and pyrosequencing?® of genes exhibiting ASE and implicated in the
PIK3/Akt/mTOR pathway to identify differentially methylated regions (DMR) and test the
hypothesis that ASE is a result of DMR. Imprinting effects can be assessed within our population
by genotyping the F1 generation for the ASE cSNP of interest and testing the hypothesis that
ASE results from parent of origin effects. Furthermore, ASE cSNP influencing variation in genes
implicated in the PIK3/Akt/mTOR pathway can be characterized across breeds and populations
of pigs, in order to test the hypothesis that breed differences arise from cis-acting effects. Our

group is currently characterizing miRNA expression and its influence in phenotypic divergence
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using the same tissue and population that we used for this study. Several miRNA have been
implicated in regulating hypoxia-inducible factors like HIF-1 via the RNA interference
pathway?’. A closer examination of correlations between the expression of miRNA and genes
exhibiting ASE could reveal important insights into the regulation of postmortem metabolism.

The data generated through this analysis can be used to elucidate longuissimus dorsi
transcriptome complexity and its influence on phenotypic divergence. For instance, our data has
the potential to facilitate study of alternative splicing events through exon-specific expression to
identify differential exon usage such as exon skipping and intron retention rates per gene.
Combined with the ASE results (Chapter Three) we can gain insights on ASE induced alternative
splicing and potential ASE isoforms. Similar to our eQTL analysis we can also map splice QTL
to discover variants influencing alternative splicing patterns and provide deeper insights into
functional and regulatory roles these variants exert on variations observed among gene
expression profiles. This has been shown before in kidney renal clear cell carcinomas where a
genome wide association analysis of alternative splicing patterns identified 915 cis and trans
acting sQTL, some of which were previously associated with susceptibility locus for cancer?.
Given that alternative splicing increases transcriptome complexity significantly, it has the
potential to account for a greater amount of variability in gene expressions which can translate to
variability in phenotypes. Merging eQTL, pQTL. ASE and sQTL can reveal potential insights on
the genetic architecture of important phenotypes for pig production and reveal functional variants
with commercial application.

In the past 30 years advancements in sequencing technology, improvements in the
annotation of the pig genome, and development of quantitative genetic models has driven

significant genetic gain in the pork industry. This dissertation research enhances our
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understanding of the genetic architecture of pig production traits by identifying potential drivers

and biological mechanisms controlling phenotypic variation.
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