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ABSTRACT 

HYPERELASTIC SWELLING OF SPHERES AND CYLINDERS AND ITS 

GENERALIZATION TO ELASTIC INTERNALLY BALANCED MATERIALS 

By  

Vahid Zamani 

Swelling as a notion of free volume change is typically due to some added mass 

procedures. We use modified constitutive laws that incorporate swelling into a continuum 

mechanics treatment. By incorporating local volume change (swelling) as a parametric 

constraint into the conventional theory of hyperelasticity it is possible to model a variety 

of swelling effects. We consider these effects in the study of certain boundary value 

problems for spherical and cylindrical finite deformations. In addition to the traditional 

hyperelastic model, we also employ a relatively new type of constitutive treatment, 

termed internal balance. The theory of internally balanced materials employs energy 

minimization to obtain an additional balance principle to treat more complex behaviors. 

This is useful when conventional elastic behavior is modified by substructural 

reconfiguration. Hence, we also formulate our problems in the context of the internally 

balanced material theory for the case of cylindrical deformation where the results are 

compared to that of the conventional hyperelastic model. 

     For thick spherical shells, the incompressible hyperelastic Mooney-Rivlin  

constitutive model allows for response to pressure-inflation that could  either be globally 

stable (a monotonic pressure-radius graph) or could instead involve instability jumps of 

various kinds as pressurization proceeds. The latter occurs when the pressure-radius 

graph is not monotonic, allowing for a snap-through bifurcation that gives a sudden burst 



of inflation. Internal swelling of the material that makes up the shell wall will generally 

change the response. Not only does it alter the quantitative pressure-inflation relation but 

it can also change the qualitative stability response, allowing burst phenomena for certain 

ranges of swelling and preventing burst phenomena for other ranges of swelling. These 

issues are examined both for the case of uniform swelling for the case of a spatially 

varying swelling field. 

     For cylindrical deformations, we examine the finite strain swelling of a soft solid plug 

within a rigid tube of circular cross section. The eventual channel wall contact as the 

swelling proceeds generates a confinement pressure that increases as the plug expands.   

We consider plug geometries that incorporate an internal channel as well as a simpler 

case of a solid plug. For the case of a plug with a channel, the wall contact now gives a 

deformation in which swelling combines axial lengthening with internal channel 

narrowing. Of particular interest is the closing behavior as the swelling proceeds and we 

treat the problem using asymptotic expansions. Finally, the same problem is examined in 

the context of the internal balance constitutive theory. 
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PREFACE 

 

"What we observe is not nature in itself, 

but nature exposed to our method of questioning." 

W. Heisenberg 
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CHAPTER I

Introduction

Swelling can be viewed as a general phenomena that represents free volume change,

typically due to mass addition resulting from some diffusive or transport mechanism.

It is seen that many biological tissues and cells exhibit this type of volume and shape

change as a result of biological growth, hydration and mass exchange. In many cases

osmotic pressure is the causal agent that drives water and other mass transport across

bio-membranes such as those surrounding red blood cells and inter-cellular vesicles

and lipids Graf et al. (1995); Vinod Kumar and Demeke (2011); Li et al. (2013). For

our purposes, swelling is regarded as a general process that encompasses free-volume

change at the microscopic level. This would typically be due to mass addition but

other fine scale processes of a mechanical or chemical nature can also be regarded as

contributing to volume change. Polymers, elastomers and hydrogels naturally swell

when exposed to liquid or when subject to high humidity Treloar (1975); Stuart et al.

(2010); Drozdov (2013). Biological tissues and cells exhibit volume and shape change

under similar processes of hydration and mass exchange Van der Sman (2015), but

also more generally as a result of biological growth Goriely et al. (2010); Sadik et al.

(2016).

The scientific literature on swelling is vast, and can be approached from a vari-

ety of perspectives: material science, physical chemistry, continuum mechanics, etc.

We focus on continuum mechanics in which case the literature is still extensive (and
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overlapping): mixture theory, biphasic theory, transport theory, poroelasticity, large

strain at the outset, small strain on top of a base swollen state, etc, as described for

example by a variety of related approaches (see e.g., Bowen (1980); Wineman and

Rajagopal (1992); Ateshian (2007); Hong et al. (2008); Markert et al. (2008); Duda

et al. (2010); Chester and Anand (2010); Pence (2012); Drozdov et al. (2013); Sel-

vadurai and Suvorov (2016)). The treatment given in this thesis is of a generalized

hyperelastic nature. By this we mean it specifically does not seek to model the mi-

crostructural mechanisms associated with the swelling process, although, as discussed

for example in Baek and Pence (2011), with suitable modification it could be related

to the broader frameworks mentioned above .

The mechanical consequences of these swelling-involved processes are significant.

Swelling can lead to qualitative changes in the material’s mechanical properties such

as the deformability, stability of the overall structure (possibly triggering various

bifurcation phenomena associated with localization, buckling and other forms of non-

uniqueness), maximum stretch and rupture of membranes and also the capacitance of

cells. These are mainly because of the fact that material properties and structure of

the solid may be altered as a result of the mass exchanges, leading to associated re-

configurations in stresses and deformations and in some cases instabilities. Hence, the

significant impacts on the mechanical properties of the materials require attentions

in the study of the interaction between swelling and other mechanical effects. This

has been a major issue in many recent studies. This includes the study of Li et al.

(2013) where an impulsive-like forcing is employed to quantify the yield strain thresh-

old of red blood cell’s membranes before rupture. Vinod Kumar and Demeke (2011)

uses spherically symmetric deformation with neo-Hookean model to analyze infected

red blood cell’s membrane stress-stretch behavior. Nagel et al. (2009) investigates

the effects of cellular stiffening and changes in material properties on the damage
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evolution in deep tissue pressure-induced injury. The effect of osmotic swelling on

the conductance and capacitance of hepatocytes’ membrane is studied in Graf et al.

(1995). Van der Sman (2015) represents a hyperelastic neo-Hookean model for hy-

dration of cellular tissue under pressurization of the internal cavity where an elastic

shell undergoes inhomogeneous deformation. Other related studies include those of

Gibbons and Klug (2008) and Evans et al. (2003).

The interaction of mechanical responses and absorption of a swelling agent arises

in a variety of contexts that go beyond biology. In particular, it associates with many

important phenomena in porous absorbent or polymeric solids, elastomers and hydro-

gels exposed to any surrounding liquid. Among those, hydrogels play an increasingly

important role in a wide range of applications, such as in tissue engineering and

smart optical systems Stuart et al. (2010). With regards to this kind of interaction,

many continuum theories and methods have been developed over the years. In par-

ticular Deng and Pence (2010); Baek and Pence (2011); Ben Amar and Ciarletta

(2010); Duda et al. (2010); Chester and Anand (2010); Duda et al. (2011); McMa-

hon et al. (2010); Goriely et al. (2010); Van der Sman (2015) treat the emerging

problems and capture new behaviors in mechanical responses. Theoretical analysis of

residual stresses in growing elastic bodies have shown that swelling-induced stresses

can initiate mechanical instabilities such as elastic cavitation Pence and Tsai (2006);

McMahon et al. (2010). The possible role of mechanical stress in the opening of

cavities in elastic cylindrical model of aerenchyma tissue has also been considered

in Goriely et al. (2010). As an another recent example Baek and Pence (2011) em-

ployed a variational method to obtain governing equations of large deformations of

elastomeric gels. Their model was employed to treat both saturated and unsaturated

gels in equilibrium and subject to loading at the gel interface. Similar treatments

on this kind of gels is found in Deng and Pence (2010). Also swelling instability of
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surface-attached gels has been studied in Ben Amar and Ciarletta (2010) as a model

of soft tissue growth. They have proposed a theoretical framework for the mechanical

treatment of the growth of soft materials under geometrical constraints.

In the rest of this chapter we review the formulation of swelling in a hyperelas-

tic framework and its implementation in isotropic materials. In this context we also

introduce a somewhat broader framework (see Eq. (1.5)) and some new material

models (see Eq. (1.12)) to incorporate swelling which involves a straightforward gen-

eralization of the conventional hyperelastic theory (Pence and Tsai (2005b); Tsai

et al. (2004)). In this regard, chapters II to V constitute the new contributions of

this research.

In Chapter II we focus attention on a class of swellable hyperelastic materials

in order to examine how the constitutive theory affects the spherically symmetric

expansion of a pressurized hollow sphere. The inflation response of a hyperelastic

sphere in the absence of swelling is a classical problem in finite deformation contin-

uum mechanics. As is well known, the resulting pressure-expansion response is not

always given by a monotonically increasing graph. The sphere may be thick or thin.

The thin wall limit corresponds to a hyperelastic swellable membrane. In the absence

of swelling the class of materials corresponds to a classical Mooney-Rivlin material.

The inflation response for a hollow sphere composed of the classical Mooney-Rivlin

material has been extensively studied. We especially focus on a detailed characteri-

zation by Carroll (1987) that provides conditions that determine when the inflation

response is monotone versus when it is not. We use this characterization to describe

the non-swelling response of the sphere problem under consideration here. We then

generalize the analysis so as to determine how swelling affects the outcome. In par-

ticular, we exhibit swelling induced transitions between monotone and non-monotone

4



inflation curves. When this happens, various inflation jump events can be triggered.

We provide a systematic framework for understanding and predicting these transi-

tions, and we discuss the ramifications of these transitions in terms of a snap-through

type bifurcation (a swelling induced burst).

In Chapter III, we again consider a spherical inflation but now under a nonuni-

form swelling distribution. A family of swelling distributions is defined such that

each member of the family has the same added swelling mass. We then examine the

stability behavior within a family with common added mass but different spatial dis-

tributions of that mass. Numerical analysis of several examples support a hypothesis

that the qualitative behavior is independent of the distribution so long as the amount

of added mass remains fixed. Numerical analysis of several examples that support

this hypothesis are presented. Finally, an inflation instability is demonstrated within

a certain range of material parameters.

In Chapter IV we continue to employ a conventional hyperelastic model that con-

siders the impact of swelling for the different geometry of cylindrical deformation. In

this regard we obtain the responses of both a solid plug, and of a plug with an internal

channel, both of which are confined by a rigid outer wall. Sufficiently large swelling

leads to deformation with wall contact in which case the confinement pressure is de-

termined. For the case of a plug with a channel, asymptotic analysis is employed to

investigate the channel closure.

It is also the purpose of this thesis to explore the theory of internally balanced elas-

tic materials for describing complex deformational response in solids that are subject

to swelling. Hence, in Chapter V , we study the boundary value problem of cylindrical

deformation that is laid out in Chapter IV but in the context of internally balanced
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material theory. As such, we review the internal balance theory and the incorporation

of swelling in order to formulate the problem and investigate the aspects of the theory

that accounts for swelling.

In order to plot a picture of the structure of the formulations in this study we

should note that the ground framework of this study is in the context of hypere-

lasticity. The equations are obtained by minimizing the energy functional involving

the elastic energy density and thus our framework is based on the equilibrium defor-

mations that are governed by the stress equations of equilibrium. These equations

associated with unknown parameters and specific boundary conditions can sometimes

be solved analytically and in other cases are solved with the help of numerical treat-

ments although we mainly seek to explore analytical solutions and explanations rather

than studying numerical procedures.
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1.1 Hyperelastic swelling

As is standard in finite deformation continuum mechanics, let X be a generic position

vector in a reference configuration ΩX that is regarded as the state of an unloaded

body prior to swelling. The deformation under consideration maps the coordinates of

the reference configuration to the coordinates x in the current deformed configuration

denoted by Ωx. The gradient of the map x = χ(X) is the tensor

F = ∂x/∂X.

The loading is described in the standard way in terms of boundary tractions and

body forces. In addition the material expands and contracts, and this is described

in terms of change in its natural free volume. This volume change is referred to as

swelling in this study, and can vary from point to point in the form of a swelling

field v = v(X) with v > 1 for swelling expansion and 0 < v < 1 for deswelling.

Throughout this thesis, v is treated as a prescribed quantity. In other words it can

be viewed as a control parameter. It follows that the appropriate volume constraint

on the deformation is

detF = v, (with v > 0). (1.1)

A theory that uses (1.1) provides a generalization of the conventional theory for in-

compressible materials. In the context of hyperelasticity such a framework is demon-

strated in Pence and Tsai (2005b, 2006); Tsai et al. (2004); Zamani and Pence (2017)

for isotropic material behavior and in Demirkoparan and Pence (2007a,b, 2015a,b,

2017) for anisotropic materials. This framework has been utilized to guide the design

of actuators Fang et al. (2011) and to analyze the behavior of biological soft tissue

Gou and Pence (2016).

The generality of the condition (1.1) permits the phenomenological modeling of a
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variety of physical swelling processes. More specificity as regards the precise swelling

mechanism will generally lead to additional conditions on the physical model ex-

pressed in terms of additional constraints and equations. For example, an elastomer

in a solvent bath that swells due to solvent uptake might take v in (1.1) in the form

v = 1 + ϑmol cref where cref is the concentration of solvent molecules within the elas-

tomer network (per unit reference volume) and ϑmol is the molecular volume of an

individual solvent molecule. In this case our treatment can apply, but subject to

v ≥ 1. Additional equations beyond those that we present here will then enter for

the purpose of determining cref on the basis of poroelastic diffusion. In addition, such

a description presumes a completely dry (fully dessicated) reference configuration for

the elastomeric constituent (which would in general differ from a natural (stress-free)

configuration). Whether or not such a reference configuration description is useful

may then be highly problem dependent. For additional discussion on this and other

issues with respect to such more specific solute/solvent systems we defer to expert

sources such as Drozdov and Christiansen (2013).

Complete detail on the general hyperelastic modeling treatment employed here is

provided and specialized in Section 1.2 to the case of isotropic solid materials that

swell. Generalizations of conventional hyperelastic models, such as the neo-Hookean

model, so as to incorporate swelling are given.

The hyperelastic treatment of swelling is based on an elastic energy density Was

a function of both F and v. The hyperelastic energy density is frame-invariant and

this requires W to depend on F only through the right Cauchy-Green deformation

tensor C = FTF. Thus W = W (C, v). In the absence of body forces the equilibrium

equation is div T = 0 where T is the Cauchy stress tensor,

T =
2

v
F
∂W

∂C
FT − pI. (1.2)
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Here p is the hydrostatic pressure associated with the volume constraint (1.1). It is

to be emphasized that p in (1.2) arises as a Lagrange multiplier associated with the

constraint (1.1). In particular, it is not simply related to the type of pore pressure

variable that is present in say hyperelastic mixture theory.

In using (1.2) it is important to realize that W gives the stored energy density with

respect to a reference frame that is unswollen. Alternatively, one could consider a

reference configuration in which the material is uniformly expanded. Such a uniform

expansion would have deformation gradient F∗ = v1/3I. Thus the mapping from the

unswollen reference configuration to the current configuration that passes through

the uniformly swollen reference configuration is given by

F = F̂F∗, (1.3)

with

F∗ = v1/3I. (1.4)

This makes

F̂ = v−1/3F and detF̂ = 1.

Analysis can now proceed with respect to the deformation gradient F̂ measured from

the uniformly swollen reference configuration, and so one can similarly define Ĉ =

F̂T F̂ and hence Ĉ = v−2/3C. Let Ŵ (Ĉ, v) be the stored energy density per unit

volume with respect to this uniformly swollen reference configuration. The overall

stored energy calculated by integrating Ŵ using the swollen reference frame must be

equal to the overall stored energy calculated by integrating W using the unswollen

reference frame. This means that W = vŴ . The material is incompressible with

respect to the uniformly swollen reference configuration, and so the Cauchy stress
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calculated using Ŵ is

T = 2F̂
∂Ŵ

∂Ĉ
F̂T − p̂I (1.5)

where p̂ is the hydrostatic pressure associated with the constraint detF̂ = 1. This

constraint can now be interpreted as the standard incompressibility constraint that

the deformation (as measured from the uniformly swollen reference configuration) is

isochoric.

Consistency of these different procedures demands that (1.5) and (1.2) yield the

same result for T. This is immediately verified by examining the derivative expression

on the right side of (1.2) using F = v1/3F̂, C = v2/3Ĉ, W (C, v) = v Ŵ (Ĉ, v) and

invoking the chain rule:

2

v
F
∂W

∂C
FT =

2

v

(
v1/3F̂

) ∂

∂Ĉ

(
v Ŵ (Ĉ, v)

) ∂Ĉ

∂C︸︷︷︸
v−2/3I�I︸ ︷︷ ︸

v1/3 ∂Ŵ

∂Ĉ

(
v1/3F̂

)T
= 2F̂

∂Ŵ

∂Ĉ
F̂T . (1.6)

From this1 it follows that taking p̂ = p causes (1.5) and (1.2) to yield the same result

for T.

As the reader is probably aware, a multiplicative decomposition of the form

F = F̂F∗ from (1.3) is commonly used in continuum mechanics to describe a va-

riety of physical processes. Having invoked it here to describe swelling by taking the

special case F∗ = v1/3I and requiring detF̂ = 1 retrieves the well known formulation

attributed to Flory (see e.g., the discussion in Chester and Anand (2010)). In addi-

tion, one can now contemplate other descriptions for swelling that invoke F = F̂F∗

with detF̂ = 1 but which weakens the condition F∗ = v1/3I to something less restric-

tive, such as detF∗ = v. This could offer a route to the consideration of swelling

processes in which a uniform expansion in all directions is not energetically preferred,

such as might be the case if there are microstructural processes that would serve to

1 I� I in (1.6) is the fourth order identity tensor, i.e., (I� I)ijkl = δikδjl .
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favor a non equi-axial expansion. Such considerations are formulated in and explained

by the internal balance theory in chapter V.
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1.2 Isotropic material behavior subject to swelling

The equivalent equations (1.2) and (1.5) apply to both isotropic and anisotropic

behavior. The latter includes fiber reinforced materials, in which case especially

designed patterns of fiber stiffening can elicit specialized deformation modes as the

material swells. This study focuses solely on isotropic behavior, in which case the

dependence of W on C can only be through the invariants of C,

I1 = C : I = tr C, I2 = 1
2

(
(C : I)(C : I)−C : C

)
= 1

2

(
(tr C)2 − tr C2

)
. (1.7)

The third invariant I3 = det C is equal to v2 by virtue of (1.1) and thus W =

W (I1, I2, v). This causes the Cauchy stress tensor in (1.2) to take the form

T =
2

v

(
∂W

∂I1

+ I1
∂W

∂I2

)
B− 2

v

∂W

∂I2

B2 − pI (1.8)

where B is the left Cauchy-Green deformation tensor B = FFT . The tensor B is

symmetric positive definite and so has positive eigenvalues, say λ2
1, λ2

2 and λ2
3. Then

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 are the principal stretches as measured from the unswollen

reference configuration. The tensors B and C have the same eigenvalues and it there-

fore follows from (1.7) that I1 = λ2
1 +λ2

2 +λ2
3, I2 = λ2

1λ
2
2 +λ2

2λ
2
3 +λ2

3λ
2
1 and λ1λ2λ3 = v.

For a general isotropic hyperelastic material subject to the swelling constraint (1.1),

the stored energy density can equivalently be taken as a function of these stretches.

In this case we shall write W = W̄ (λ1, λ2, λ3, v).

The Cauchy stress tensor T is symmetric and its eigenvalues are the principle

stresses, denoted by T1, T2 and T3. In the absence of swelling a standard requirement

on any isotropic hyperelastic constitutive model is the well known Baker-Ericksen
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inequality

(Ti − Tj)(λi − λj) > 0, (i 6= j, λi 6= λj, no sum). (1.9)

This is a requirement that the maximum (minimum) principle stress direction cor-

relates with the maximum (minimum) stretch direction. For a swellable isotropic

material the same logic continues to apply and so we presume that (1.9) holds for the

materials under consideration here.

The corresponding result that follows from (1.5) is that Ŵ = Ŵ (Î1, Î2, v) with

T = 2

(
∂Ŵ

∂Î1

+ Î1
∂Ŵ

∂Î2

)
B̂− 2

∂Ŵ

∂Î2

B̂2 − pI (1.10)

and B̂ = F̂F̂T = v−2/3B, Î1 = v−2/3I1, Î2 = v−4/3I2. Note in particular, that there is

no obvious concept here of needing to place a ˆ over the T since the Cauchy traction

is uniquely defined irrespective of reference configuration.

As will be discussed in what follows, the use of the unswollen reference configura-

tion is often preferred when dealing with complex geometry, loads or swelling fields,

which argues for a development based on (1.8). On the other hand, use of (1.10)

corresponds more directly to the classical incompressible theory (because detF̂ = 1),

with its familiar hyperelastic models (corresponding now to Ŵ ). Such familiar models

can be pulled back to the unswollen reference configuration using W = v Ŵ . Thus

for a familiar form Ŵ = Ŵ (Î1, Î2, v) it becomes natural to consider

W (I1, I2, v) = vŴ (v−2/3I1, v
−4/3I2, v), (1.11)

where also any material parameters in the familiar Ŵ are allowed to become de-

pendent upon v. For example, the conventional Mooney-Rivlin form Ŵ (Î1, Î2) =

a1(Î1 − 3) + a2(Î2 − 3) with non-negative a1 and a2 becomes, under this transforma-
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tion,

W (I1, I2, v) = v a1(v)

(
I1

v2/3
− 3

)
+ v a2(v)

(
I2

v4/3
− 3

)
(1.12)

where the notation a1(v) and a2(v) is because these parameters can now be depen-

dent upon v. Constitutive laws similar to (1.12) have previously been used to study a

variety of boundary value problems involving mass addition and volumetric change.

This includes the studies of Pence and Tsai on swelling induced cavity formation in

tubes Pence and Tsai (2005a) and spheres Pence and Tsai (2006). Amar and Goriely

Ben Amar and Goriely (2005) make use of a constant material parameter version of

(1.12) in the context of more generalized processes of growth to investigate insta-

bilities in the inflation response of spherical shells when the shell wall experiences

anisotropic growth. The study Demirkoparan and Pence (2008) analyzes swelling in-

duced twist in fiber reinforced composites for materials where the matrix constituent

swells (and is described by (1.12)) but the fibrous constituent does not swell and so

admits to an alternative constitutive law. In the current and next chapter we will

ultimately make use of (1.12) to study the interaction of swelling and a mechanical

response when the material parameters d2 and d2 are also swelling dependent. Specif-

ically, this model is considered in the next chapter and in Zamani and Pence (2017)

for the case a1(v) = c1v
m0 and a2(v) = c2v

n0 with fixed values c1 ≥ 0, c2 ≥ 0, m0 and

n0.

The mathematical equivalent to the constitutive law (1.12) can be expressed in

the form

W (I1, I2, v) =
1

2
µoαv

m

(
I1

v2/3
− 3

)
+

1

2
µo(1− α)vn

(
I2

v4/3
− 3

)
,

with µo > 0 and 0 ≤ α ≤ 1. Here, m and n are the material parameters and identified

empirically. In this way µo becomes the infinitesimal shear modulus in the unswollen
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reference configuration. The focus in the next chapter will be on the influence of m

and n in various instability phenomena in balloons and pressurized spherical shells as

such a material swells. The pure I1 special case is found by taking α = 1, yielding

W (I1, v) = 1
2
µov

(m−2/3)(I1 − 3v2/3), T = µov
(m−5/3)B− pI. (1.14)

The no-swelling case (v = 1) then retrieves a neo-Hookean treatment. For later

purposes of numerical demonstration we shall consider m = 2/3 in (1.14), giving

W (I1, v) = 1
2
µo(I1 − 3v2/3), T =

µo
v

B− pI. (1.15)

The particular constitutive model that will be used for specific examples in next

chapter is motivated by the well known Mooney-Rivlin model

WMR(I1, I2) = d1(I1 − 3) + d2(I2 − 3), (1.16)

in the classical incompressible theory where the positive constants d1 and d2 are em-

pirically determined material parameters. The generalization of the Mooney-Rivlin

model for swelling is to keep the basic form (1.16) while now letting d1 and d2 de-

pend upon v. For this purpose we shall in what follows consider examples using the

constitutive model (1.12)

W (I1, I2, v) = d1

(
I1

v2/3
− 3

)
+ d2

(
I2

v4/3
− 3

)
, d1 = va1(v), d2 = va2(v), (1.17)

with d1 ≥ 0, d2 ≥ 0 and d1 + d2 > 0. Recall that the reason for the scaling I1/v
2/3

and I2/v
4/3 in (1.17) is that I1/v

2/3 = I2/v
4/3 = 3 for an equiaxial free expansion

F = v1/3I. This enables certain algebraic simplifications. When (1.17) holds the
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Cauchy stress tensor (1.2) becomes

T = 2

(
d1

v5/3
+ I1

d2

v7/3

)
B− 2

d2

v7/3
B2 − pI, B = FFT . (1.18)

Calculating Ti and Tj from (1.18) one then obtains

Ti = 2

(
d1

v5/3
+ (λ2

j + λ2
k)
d2

v7/3

)
λ2
i − p, (i 6= j 6= k 6= i). (1.19)

Using this result it follows for the material model (1.17) that

(Ti − Tj)(λi − λj) = 2

(
d1

v5/3
+ λ2

k

d2

v7/3

)
(λi − λj)2(λi + λj) (1.20)

Thus the Baker-Ericksen type condition (1.9) is automatically satisfied when W is

given by (1.17) because d1 ≥ 0 and d2 ≥ 0.
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CHAPTER II

Burst Instability in Uniform Swelling of

Hyperelastic Spherical Shells

In chapters II and III we consider spherical symmetric deformation in a general

Mooney-Rivlin type material in which swelling is taken into account. The types

of Mooney-Rivlin materials that are distinguished with respect to the response to

applied internal and external pressure (inflation) is central to this study. In the clas-

sical hyperelastic setting (no swelling) a basic classification of materials with regard

to their qualitative pressure-inflation behavior is given in Carroll (1987). Pence and

Tsai (2006) generalize Carroll’s procedure so as to account for swelling and show that

when swelling is uniform the basic qualitative response is preserved. I briefly review

those results and then make use of the literature as a base to generalize the classifi-

cation for the material types that were given by Carroll. Consequently, in this thesis,

the more general type of materials are studied for which even homogeneous swelling

field can cause instability to the type of behavior that they exhibit in response to the

pressure-swelling interaction. Then in chapter III the effects of a non-homogeneous

swelling field are investigated where it is shown that the precise way in which an over-

all fixed amount of swelling is distributed spatially can alter the quantitative response

while preserving key features of the qualitative response.
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2.1 Kinematics for radial inflation of a spherical shell

Using the framework just described in Section 1.1 we consider a finite thickness spher-

ical shell with inner radius Ri > 0 and outer radius Ro > Ri prior to any loading

or any swelling. Attention is restricted to radially symmetric swelling v = v(R).

The loading is taken to consist of applied pressures Pi and Po on the inner and outer

boundaries. These symmetric conditions motivate the consideration of the symmetric

deformation for radial inflation

r = r(R), θ = Θ, φ = Φ (2.1)

on Ri ≤ R ≤ Ro, 0 ≤ Θ < 2π, 0 ≤ Φ ≤ π where the radial inflation function r(R) is

to be determined. Thus (2.1) is a map from reference spherical coordinates (R,Θ,Φ)

to deformed spherical coordinates (r, θ, φ). Let {eR, eΘ, eΦ} represent the unit basis

vectors in the reference configuration and let {er, eθ, eφ} represent the unit basis

vectors in the deformed configuration. It follows from (2.1) that the deformation

gradient is given by

F = λr(er ⊗ eR) + λθeθ ⊗ eΘ + λφeφ ⊗ eΦ (2.2)

with λr = r
′

and λθ = λφ = r/R in which prime ′ denotes the differentiation with

respect to R (r
′
= dr/dR). Hence

C = FTF = λ2
r(eR ⊗ eR) + λ2

θ(eΘ ⊗ eΘ + eΦ ⊗ eΦ), (2.3)

B = FFT = λ2
r(er ⊗ er) + λ2

θ(eθ ⊗ eθ + eφ ⊗ eφ), (2.4)

and we observe that λr and λθ = λφ are the principal stretches.

in which prime ′ denotes the differentiation with respect to R (r
′

= dr/dR). The
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swelling constraint (1.1) is

v =
r2r

′

R2
, (2.5)

Integrating (2.5) from the inner radius Ri to a generic radial value R gives

r3 = r3
i + 3

R∫
Ri

v(ξ)ξ2dξ (2.6)

where ri = r(Ri). More generally (2.6) provides the map r = r(R) in terms of the

single parameter ri which still needs to be determined. The Cauchy stress tensor

takes the form

T = Trr(er ⊗ er) + Tθθ(eθ ⊗ eθ + eφ ⊗ eφ) (2.7)

with

Trr =
2

v

∂W

∂I1

λ2
r +

4

v

∂W

∂I2

λ2
rλ

2
θ − p,

Tθθ =
2

v

∂W

∂I1

λ2
θ +

2

v

∂W

∂I2

(λ2
r + λ2

θ)λ
2
θ − p.

(2.8)

The equilibrium equations divT = 0 gives that p = p(R) along with the requirement

dTrr
dr

+
2

r
(Trr − Tθθ) = 0. (2.9)

The specified pressures Pi and Po at the inner and outer surfaces yield the boundary

conditions

Trr
∣∣
ri

= −Pi, Trr
∣∣
ro

= −Po, (2.10)

where ro = r(Ro).

Using (2.5) and (2.8) the equilibrium equation (2.9) provides an ordinary differen-

tial equation for p(R) which can be integrated. The two boundary conditions (2.10)

determine the integration constant that emerges from this integration as well as the
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scalar ri. Once ri is so determined the whole kinematics r = r(R) then follows from

(2.6) and consequently the deformation gradient tensor F is fully known. This consti-

tutes the most obvious solution procedure for determining the output response r(R)

as a function of the input swelling field v(R) and the input pressure values Pi and Po.

There is however a shortcut that gets to the same result by making direct use

of the stored energy density in terms of the principle stretches W̄ (λr, λθ, λφ, v). It is

based on a straight forward adaptation of a well known procedure from hyperelasticity

when no swelling is present. This earlier procedure corresponds to the special case

v ≡ 1 in the present treatment. Because W (I1, I2, v) = W̄ (λr, λθ, λφ, v) with λθ = λφ

one may employ the chain rule for the differentiation in (2.8) in the form

∂W

∂I1

=
∂W̄

∂λr

∂λr
∂I1

+ 2
∂W̄

∂λθ

∂λθ
∂I1

, (2.11)

with

∂λr
∂I1

=
λ2
r + λ2

θ

2λr(λ2
r − λ2

θ)
,

∂λθ
∂I1

=
λθ

2(λ2
θ − λ2

r)
. (2.12)

A similar differentiation applies with respect to I2 and on this basis one confirms that

Trr =
λr
v

∂W̄

∂λr
− p, Tθθ = Tφφ =

λθ
v

∂W̄

∂λθ
− p. (2.13)

Introduce the variable

s = r/R, (2.14)

which, in view of (2.2), is the biaxial stretch λθ = λφ. Also let si = ri/Ri and

so = ro/Ro and note that (2.6) gives

s3
o =

(
Ri

Ro

)3

s3
i +

3

R3
o

Ro∫
Ri

v(R)R2dR. (2.15)

In this regard, the following derivation will be useful for the formulations in the next
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section

ds

dr
=
ds/dR

dr/dR
=
Rr
′ − r
R2r′

=
v − s3

Rv
, (2.16)

where the last step from the above chain of equations is due to (2.5). The relation

(2.16) together with (2.5) gives

λr = r
′
= v/s2, λθ = λφ = r/R = s, (2.17)

and hence W̄ (λr, λθ, λφ, v) = W̄ (v/s2, s, s, v). Now define

w(s, v) = W̄ (v/s2, s, s, v) (2.18)

and calculate the derivative

∂w(s, v)

∂s
=
∂W̄

∂λr

∂λr
∂s

+ 2
∂W̄

∂λθ

∂λθ
∂s

= −2v

s3

∂W̄

∂λr
+ 2

∂W̄

∂λθ
. (2.19)

The combination of (2.17), (2.19) and (2.13) gives Trr−Tθθ = −(s/2v)∂w(s, v)/∂s so

that the equilibrium equation (2.9) can be expressed as

dTrr
dr

=
s

rv

∂w(s, v)

∂s
. (2.20)

This is now integrated with the aid of (2.10) and (2.16) to yield

∆P ≡ Pi − Po =

so∫
si

1

v − s3

∂w(s, v)

∂s
ds. (2.21)

Because so is determined by si from (2.15) it follows that ∆P from (2.21) is indeed

a function of si. In the absence of swelling, meaning that v = 1 identically, (2.21)

retrieves a standard expression from conventional incompressible, isotropic hypere-

lasticity (see (7.18) of Green and Shield (1950) and (5.3.21) of Ogden (1997)). The
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above swelling generalization is equivalent to that given in (22) of Pence and Tsai

(2006).

In general the swelling field v could depend on position within the shell wall, i.e.,

v = v(R). This would then require v to be treated as a function of s for the purpose

of the integration in (2.21), say v(R) = v̂(s). Such a treatment will be developed

later in chapter III but not do so in this chapter. In this chapter we restrict atten-

tion to homogeneous swelling in the shell wall. This means that v is constant as a

function of R, however such a v could vary with time in a quasi-static fashion. Thus

in this chapter we now restrict attention to homogeneous swelling where v is a time-

dependent parameter. However, note that throughout this work, ∆P and v serve as

independent control variables in both cases of uniform and varying swelling fields.

It now follows from (2.6) that

r =
(
r3
i + v(R3 −R3

i )
)1/3

. (2.22)

For the case of material model (1.17), one obtains that

w(s, v) =

(
v2/s4 + 2s2

v2/3
− 3

)
d1 +

(
s4 + 2v2/s2

v4/3
− 3

)
d2 (2.23)

and this in turn puts (2.21) in the form

∆P =

so∫
si

4

v − s3

[(
s

v2/3
− v4/3

s5

)
d1 +

(
s3

v4/3
− v2/3

s3

)
d2

]
ds. (2.24)

Note that (2.24) continues to allow for the possibility of d1 = d1(v) and d2 = d2(v).

Equation (2.24) in conjunction with

so =
1

Ro

(
R3
i s

3
i + v(R3

o −R3
i )
)1/3

(2.25)
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provides the general relation between: amount of swelling v, applied pressure ∆P ,

and inner radius expansion ri = si Ri for a material with swelling dependent stored

energy density (1.17). Although the integration associated with (2.24) could certainly

be performed, the resulting lengthy analytical expression does not provide much in-

sight. Instead, we obtain results by generalizing ideas put forward by Carroll in the

context of the incompressible theory (in which there is no swelling concept).
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2.2 The role of swelling in the pressure-inflation relation

In the absence of swelling, the inflation of a pressurized spherical shell is a classi-

cal problem that has been widely studied within the theory of incompressible finite

hyperelasticity, i.e., with the constraint detF = 1. As first discussed in detail by

Green and Shield (1950), a radially symmetric spherical inflation is possible in every

isotropic homogeneous incompressible hyperelastic material. Ultimately, it is given by

the v = 1 version of (2.21) and (2.23). This permits the construction of an inflation

graph, which is a plot of ∆P as a function of ri. A basic discussion on different qual-

itative forms for the inflation graph is given by Carroll (1987). This in turn allows

one to identify different material classes. As we now show, these concepts readily

generalize so as to provide similarly useful organizing concepts when swelling takes

place.

2.2.1 Uniform expansion occurs for homogeneous swelling in the absence

of pressure

While the discussion in Carroll (1987) made no reference to the swelling concept,

the concept is easily introduced into the treatment. Namely, there is now a separate

inflation graph for each value of v. As v is increased continuously, it generates a

family of inflation graphs in a continuous fashion. We consider the basic features of

this family of graphs for a material obeying the Baker-Ericksen type condition (1.9).

Using (2.17) this condition, henceforth referred to as the B-E condition, becomes

(Trr − Tθθ)(λr − λθ) =
s3 − v
2v s

∂w

∂s
= −(v − s3)2

2vs︸ ︷︷ ︸
≤ 0

1

v − s3

∂w

∂s︸ ︷︷ ︸
integrand of (2.21)

. (2.26)

Thus the B-E condition (1.9) gives that the integrand in (2.21) is negative at all

locations where λr 6= λθ. What happens if λr = λθ? Isolated locations where λr and

λθ coincide have no effect on the overall integral. This leaves a case in which λr and
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λθ coincide on some interval in s. In that case r
′

= r/R = v1/3 on that interval.

Then, because s = r/R = v1/3 which is a single value, the interval is in fact just a

single point. We conclude that (1.9) ensures that the integrand of (2.21) is negative

except at possible isolated locations that do not effect the evaluation of the integral.

It is useful to remark upon the special case for which λr = λθ for all R within the

shell wall. This corresponds to r
′

= r/R = v1/3 for all R, i.e., r3 = vR3 throughout

the spherical shell. This represents a uniform expansion. For a uniform expansion it

follows that s = r/R = v1/3 for all R so that so = si = v1/3. Consequently the limits

of integration in (2.21) are identical and thus ∆P = 0. This gives the baseline result:

• In the absence of pressurization (∆P = 0), homogeneous swelling causes the

sphere to undergo uniform expansion (r3 = vR3). This gives λθ = λr and

Trr = Tθθ for all R.

Such a homogeneous swelling expansion is represented by the point (si,∆P ) =

(v1/3, 0) on the inflation graph.

Suppose now that r3 > vR3, i.e., an amount of inflation that exceeds uniform

expansion. This will be the case if ri > v1/3Ri. Then s3 = r3/R3 > v and it

follows from (2.16) that ds/dr < 0 and hence so < si. Thus the integral in (2.21),

because the integrand is negative, gives ∆P > 0. Furthermore λθ = r/R > v1/3,

λr = r′ = vR2/r2 < v1/3 and hence Tθθ > Trr for all R. Consequently one obtains

another useful result, the first part of which is also intuitive:

• A positive pressurization ∆P > 0 causes the inflation to exceed that of the

uniform expansion due to the swelling alone. Then λr < v1/3 < λθ and Trr < Tθθ

for all R.

In a similar fashion, it follows that ∆P < 0 gives an inflation that is less than that of

a swelling induced uniform expansion. In such a case one might also expect various
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wrinkling type instabilities that break the spherical symmetry. For this reason we

restrict attention to ∆P ≥ 0. For the same reason we also avoid the consideration of

de-swelling (0 < v < 1).

2.2.2 Qualitative behavior in the absence of swelling

For a specified value of v the form of the pressure-inflation graph is determined

by the stored energy density W using (2.21). The resulting relation between ∆P

and si = ri/Ri is dependent on the shell thickness. This shell thickness will be

characterized by the thickness ratio parameter

ξ
def
= Ri/Ro, 0 < ξ < 1. (2.27)

The thin shell limit is then ξ → 1. The other limit of ξ → 0 can be viewed either as

a microvoid in a finite body or as a spherical hole in an infinite body.

If v = 1, i.e. no swelling at all, then we are in the domain of conventional incom-

pressible hyperelasticity and the problem reduces to one that has been extensively

studied. In this conventional incompressible hyperelastic context, Carroll (1987) iden-

tifies three different types of behavior which he names type (a), type (b) and type (c).

These three types are diagrammed in Figure 2.1 and are described as follows:

• type (a) behavior: ∆P increases monotonically with increasing ri;

• type (b) behavior: ∆P increases to a maximum value and then decreases to a

nonnegative asymptotic value;

• type (c) behavior: ∆P first increases to a local maximum, then decreases to a

local positive minimum before again monotonically increasing.

In the hyperelastic theory without swelling, certain stored energy forms W always

give an inflation graph with type (a) behavior. The Mooney-Rivlin material (1.16)

specialized to d1 = 0 and d2 > 0 is such a material.
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Other stored energy forms always give an inflation graph with type (b) behavior;

the neo-Hookean material, meaning a Mooney-Rivlin material (1.16) with d2 = 0 and

d1 > 0, is such a material.

Finally there are certain stored energy forms that give type (a) behavior if ξ is

relatively small but give type (c) behavior if ξ is relatively large (close to one). The

Mooney-Rivlin material (1.16) with d1 = 10d2 is such a material. For these materials

there is a transitional value of the thickness ratio Ri/Ro = ξ, say ξa/c, such that

ξ < ξa/c implies type (a) behavior and ξ > ξa/c implies type (c) behavior. Alterna-

tively stated, these materials have a type (c) inflation graph for thin shell geometries

but have a type (a) inflation graph for thick shell geometries. While the above clas-

sification framework was established by Carroll (1987) for the incompressible theory

(v ≡ 1) we now use it to describe the swelling materials under consideration.

type (c) 

type (a)

type (b) 

local minimum

local maximum

si=1; DP=0

2 4 6 8 10
-0.5

0.0

0.5

1.0

si=ri�Ri

D
P
�Μ

Figure 2.1 Inflation graphs showing three qualitatively different types of behavior
(a)-(c) in the absence of swelling. These particular graphs correspond to W given by
(1.16), all with thickness ratio ξ = 0.5. The differences are due to the values of d1

and d2. Here: d1 = 4d2 (top); d1 = 9d2 (middle); and d2 = 0 (bottom).
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2.2.3 Quantitative determination of the inflation behavior type

For any fixed value v > 1 the inflation graph will continue to display one of the various

behaviors shown in Figure 2.1. However changes in v could cause a transition from

one behavior type to another. For this reason it is useful to obtain a more quantitative

characterization of the conditions that distinguish the different graph behaviors. The

presence of either a local maximum or a local minimum in the inflation graph is

dependent on whether the derivative
d

dsi
(∆P ) vanishes for some value of si. It follows

from (2.21) that this derivative is given by

d

dsi
(∆P ) =

s2
i

v − s3
i

(
1

s2
o

∂w

∂s

∣∣∣∣
so

− 1

s2
i

∂w

∂s

∣∣∣∣
si

)
, (2.28)

where use has been made of (2.6) and the connections

s3
o = s3

i ξ
3 + v(1− ξ3),

dso
dsi

= ξ3 s
2
i

s2
o

. (2.29)

Equation (2.28) shows that the inflation graph will have a zero slope location only if

the following condition is met:

d

dsi
(∆P ) = 0 ⇔ 1

s2
o

∂w

∂s

∣∣∣∣
so

=
1

s2
i

∂w

∂s

∣∣∣∣
si

. (2.30)

To make use of this condition let η be the similarity variable v/s3. Because we restrict

attention to ∆P ≥ 0 it then follows that r ≥ v1/3R and hence

0 < η = v/s3 ≤ 1. (2.31)

Next define the auxiliary function

G(η, v)
def
= 1

2
v1/3η2/3∂w(s, v)

∂s

∣∣∣∣
s=(η/v)

−1/3
. (2.32)
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Using (2.32) it follows that condition (2.30) is equivalently expressed as

d

dsi
(∆P ) = 0 ⇔ G(ηi, v) = G(ηo, v), (2.33)

with

ηi = v/s3
i , ηo = v/s3

o. (2.34)

Conditions (2.13), (2.19) and (2.32) enable a physical interpretation for the function

G in terms of swelling v, stretch s = λθ, and stresses Tθθ, Trr, namely

G(η, v)
∣∣∣
η=vR3/r3

=
v2

λ3
θ

(Tθθ − Trr). (2.35)

Now for any fixed value v, the development in Section (2.2.2) showed that a

uniform expansion takes place if ∆P = 0. This means that s = r/R = v1/3 for all

R so that, in particular, so = si = v1/3 and hence ηi = ηo = 1. Because all of the

principle stretches are then coincident one also obtains from (2.13) that Tθθ = Trr.

Consequently (2.35) indicates that

G(1, v) = 0. (2.36)

Conversely, ∆P > 0 gives si > so > v1/3 which in turn implies s3
i > s3

o > v and

hence 0 < v/s3
i < v/s3

o < 1. It follows that the first arguments of G in (2.33) are

ordered

0 < ηi < ηo < 1 when ∆P > 0. (2.37)

Also in this case the B-E inequality (1.9) gives Tθθ > 0 > Trr at each location R of

the nonuniform spherical expansion. Hence (2.35) yields

G(η, v) > 0 for 0 < η < 1. (2.38)
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Figure 2.2 Graphs for G(η, v) corresponding to the three inflation curves in Figure
2.1. The function G(η, v) is computed on the basis of (2.32) using (1.17) and taking
v = 1. This is equivalent to using (1.16) and ultimately gives the expression (2.43)
that we examine in more detail later.

Figure 2.2 shows graphs for G(η, v) corresponding to each of the three inflation

curves displayed in Figure 2.1 computed on the basis of (2.32) taking v = 1. The

three graphs are ordered from top to bottom in the same way as the graphs in Figure

2.1. Note that each of the three graphs in Fig. 2.2 obey both of the conditions (2.36)

and (2.38). The two top curves tend to ∞ as η → 0 while the bottom curve goes to

zero at η = 0. The top curve is monotone decreasing, the middle curve is decreasing-

increasing-decreasing, and the bottom curve is increasing-decreasing. As we discuss

next, these behaviors correlate with the type (a), type (c) and type (b) behaviors

exhibited in Figure 2.1.

To make direct contact with condition (2.33) we define the function that maps

ηi to ηo for the specific thickness ratio ξ under consideration. In view of (2.29) this

function is

η̂o(ηi, ξ)
def
=

ηi
ξ3 + ηi(1− ξ3)

. (2.39)
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The function η̂o is now used to define the composite function H
def
= {G ◦ η̂o}, i.e.,

H(η, v, ξ)
def
= G

(
η̂o(η, ξ), v

)
. (2.40)

We now have two functions: G(η, v) defined in (2.32) and H(η, v, ξ) defined in (2.40).

In general these are different functions of their first argument η. An exception occurs

when ξ = 1. This is because (2.39) gives η̂o(ηi, 1) = ηi which in turn provides

G(ηi, v) = H(ηi, v, 1).

The stationary value characterization (2.33) is now expressed as

d

dsi
(∆P ) = 0 ⇔ G(ηi, v) = H(ηi, v, ξ). (2.41)

We seek to determine under what circumstances, namely for what values (ηi, v, ξ),

the condition (2.41) is met. For this reason we now, for the rest of this section, use ηi

for the first argument of both G and H. The previous result (2.38) establishes that

G(ηi, v) is a strictly positive function of ηi on 0 < ηi < 1. The function H(ηi, v, ξ) is

similarly strictly positive on 0 < ηi < 1. Also (2.36) gives that H(1, v, ξ) = G(1, v) =

0.

Fix the value v and consider the graphs of G(ηi, v) and H(ηi, v, ξ) as a function of

ηi on the interval 0 < ηi ≤ 1 for different values of ξ. Because G(1, v) = H(1, v, ξ) = 0

these graphs meet at the endpoint ηi = 1. However because of inequality (2.37):

The graph of H is shifted to the left of the graph of G on the interval 0 < ηi < 1.

The amount of this shift is nonuniform in ηi and is dependent upon ξ.

In the thin shell limit ξ → 1 this shift becomes vanishingly small. Figure 2.3 shows

such a leftward shift for each of the three G graphs from Figure 2.2. In particular,

each of the Fig. 2.2 graphs is redisplayed as solid curve. The left shifted graphs are

displayed as dashed curves of the same color. We take ξ = 0.5 because this gives the
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thickness ratio associated with the curves from Figure 2.1. Because ξ = 0.5 is not

close to one (i.e., the shell is thick) the amount of leftward shift is large and this causes

the H curves to become distorted relative to the original G curves. However, what is

not changed for each same color pair is the monotonicity properties: decreasing for

the blue pair, decreasing-increasing-decreasing for the red pair, increasing-decreasing

for the green pair. In other words the monotonicity properties of H as a function of

ηi do not vary with ξ and so can be regarded as inherited from the original function

G.
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0.0
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Ηi

G
,
H

Figure 2.3 G graphs from Fig. 2.2 (solid) along with the corresponding H graphs
(dashed) for thickness ratio ξ = 0.5. Each point on a G graph is shifted to the left
to give a corresponding point on the H graph. This shift is small if ξ is close to one
(a thin shell). Here, because ξ is not very close to one, the nonuniform shift distorts
the curves, however the basic monotonicity properties do not change.

Condition (2.41) holds if and only if the graph of G intersects the graph of H

somewhere on the interval 0 < ηi < 1. If such an intersection occurs, then the

associated value of ηi locates either a maximum or a minimum in the corresponding

inflation graph. We now consider the consequences of this observation for each of the
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three different forms of G shown in Figure 2.2:

The first and simplest G graph form is one that is monotonically decreasing as

a function of ηi. In this case the graph of G cannot intersect its shifted image H.

Consequently,

• forms for W that generate a monotonically decreasing G as a function of ηi

always give a type (a) inflation graph.

This case is represented by the pair of blue curves in Figure 2.3. The solid and dashed

blue curves do not intersect, and consequently the corresponding inflation graph in

Figure 2.1 is monotone.

The second graph form for G is one in which it is decreasing-increasing-decreasing

as a function of ηi as represented by the red curve of Figure 2.2. It then follows that

a small shift to the left of this graph will result in two intersections of the original

graph with its shifted image. The associated inflation graph will then have a local

maximum followed by a local minimum, in other words type (c) behavior. In this

graphical construction the amount of shift increases as ξ decreases from ξ = 1, i.e.,

as the shell gets thicker. This is represented by the pair of red curves in Figure 2.3.

There are two points of intersection, and these correspond to the local maximum and

local minimum of the middle curve in Figure 2.1.

Eventually however, the amount of shift will be sufficient to cause the shifted

graph to clear itself of any intersection with the original graph. The specific shift

associated with just losing this intersection involves the two intersection points com-

ing together at a single special intersection point where the two graphs now have a

common tangent. At this special shift, not only does (2.41) hold, but also

∂

∂ηi
G(ηi, v) =

∂

∂ηi
H(ηi, v, ξ). (2.42)

This now becomes an equation for the value of ξ associated with a transition from
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type (c) behavior to type (a) behavior. Consequently:

• forms for W that generate a G function that is decreasing-increasing-decreasing

on 0 < ηi < 1 give type (c) inflation behavior for thin shells and type (a)

inflation behavior for thick shells. The special transition value ξ = ξa/c is found

by simultaneous solution of (2.41) and (2.42) for ηi and ξ.

The third and final graph form for G is one that obeys G = 0 at ηi = 0 and

which then increases with ηi before decreasing back to zero at ηi = 1. In this case all

left shifted curves for H will have exactly one intersection with the original G curve.

Hence there will be a type (b) inflation graph for all values of ξ. Consequently:

• forms for W that generate a G function that is increasing-decreasing on 0 <

ηi < 1 always give a type (b) inflation graph.

It is important to realize that the above inflation graph characterization in terms

of G has focused on the effect of ηi and ξ irrespective of the value of v. In other

words the homogeneous swelling value v has been regarded as a fixed parameter in

all of the above discussion. However, for a given stored energy density W (I1, I2, v)

the conclusions based on the above G graph treatment for one value of v could differ

from the conclusions obtained for a different value of v. For example, the graph of

G could be monotonically decreasing with ηi for values of v at and near v = 1, but

could be decreasing-increasing-decreasing for relatively larger values of v. In such a

case, if the shell is sufficiently thin, such a W would lead to a type (a) inflation graph

when the material is unswollen but would give a type (c) inflation graph when the

material is swollen. It is this issue of swelling induced changes in qualitative behavior

to which we now turn our attention.
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2.3 The swellable Mooney-Rivlin material

We illustrate the effect of a changing amount of swelling using the material consti-

tutive law (1.17). Thus for v = 1 this retrieves the familiar Mooney-Rivlin form

(1.16).

2.3.1 Inflation behavior prior to swelling

Setting v = 1 inG(η, v) gives a function that shall be denoted by g(η), i.e., g(η)
def
=G(η, 1).

This removes v from consideration and effectively reduces the analysis procedure to

that described by Carroll (1987) for conventional incompressible isotropic hyperelas-

tic materials (i.e., no volume change). For the conventional Mooney-Rivlin material

(1.16) this function is given by

g(η) = 2d1(η1/3 − η7/3) + 2d2(η−1/3 − η5/3). (2.43)

Note that g(1) = 0. Also g(η) → ∞ as η → 0 provided that d2 > 0. However if

d2 = 0 then g(0) = 0. Indeed the cases used in generating the graphs in Figures 2.1

- 2.3 all corresponded to this specific example.

By considering the equivalent of the derivative of g, Carroll (1987) shows how the

monotonicity of this g is dependent upon the parameter ratio d2/d1. In particular,

the following critical value

(d2/d1)|cr
def
= max

0<η<1

[
η−2/3 − 7η4/3

5η2/3 + η−4/3

]
≈ 0.215 (2.44)

has special significance. Carroll shows that if d2/d1 is greater than this critical value

then g(η) is monotone decreasing on 0 < η ≤ 1, but if d2/d1 is less than this critical

value then g(η) is decreasing-increasing-decreasing.

For our purposes it is convenient to examine the resulting consequences after
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expressing d1 and d2 in the form

d1 = 1
2
αµ, d2 = 1

2
(1− α)µ (2.45)

which in turn gives

d2

d1

=
1− α
α

, α =
d1

d1 + d2

. (2.46)

The reason for introducing (2.45) and (2.46) is that it makes µ > 0 the shear modulus.

Indeed using (2.45) in (1.16) gives an alternative standard way of writing the Mooney-

Rivlin energy form. The parameter α is in the interval 0 ≤ α ≤ 1. The special ratio

of d2/d1 given in (2.44) corresponds to the critical value

αcr =
d1

d1 + d2

∣∣∣∣
cr

=
1

1 + (d2/d1)

∣∣∣∣
cr

≈ 0.823. (2.47)

The derivative dg/dη = g
′
(η) that is computed from (2.43) has two roots if α is in the

range αcr < α < 1 and has no roots if α is in the range 0 ≤ α < αcr. This identifies

the behavior of the inflation graph as follows:

• If 0 ≤ α < αcr then the function g is monotonically decreasing with η. The

inflation graph has no stationary value and so gives type (a) behavior for all ξ.

• If αcr < α < 1 then the function g is decreasing-increasing-decreasing. The

behavior is either type (a) or type (c) depending on whether ξ is greater or less

than a transitional value ξa/c = ξa/c(α). If ξ > ξa/c then the behavior is type

(c). If ξ < ξa/c then the behavior is type (a).

• If α = 1 then d2 = 0 and g(0) = 0. This is the neo-Hookean special case and

the function g has only one stationary value. The behavior is then type (b) for

all ξ.

As described in the discussion following (2.42), the transition value of ξ when αcr <
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α < 1 can be obtained by simultaneous solution of (2.41) and (2.42). This gives

a value ξa/c = ξa/c(α) for each value of α in the range αcr < α < 1 when v = 1.

The curve ξ = ξa/c(α) is plotted in Figure 2.4. Any ordered pair (ξ,α) that is above

the curve ξ = ξa/c corresponds to a structure (characterized by ξ) composed of a

material (characterized by α) that gives an inflation graph having type (c) behavior.

Conversely, ordered pairs (ξ,α) below the curve ξ = ξa/c correspond to a structure-

material combination with a type (a) inflation graph. All of this follows directly from

Carroll’s work in Carroll (1987).

Αcr = 0.823
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Figure 2.4 Qualitative behavior of the inflation graph for the Mooney-Rivlin model
W = d1(I1− 3) + d2(I2− 3) as a function of material parameter α = d1/(d1 + d2) and
thickness ratio ξ = Ri/Ro. The curve ξ = ξa/c provides a transition between type (c)
and type (a)-behavior.
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2.3.2 Inflation graph sequences for increasing swelling

When swelling is present we consider the generalization of (1.16) that is given by

(1.17). Then g as given by (2.43) generalizes to

G(η, v) = 2(η1/3 − η7/3)d1(v) + 2(η−1/3 − η5/3)d2(v). (2.48)

The direct correspondence between (2.48) and (2.43) is due to the scalings I1/v
2/3

and I2/v
4/3 in (1.17). This allows the analysis of G in (2.48) to proceed in a similar

fashion to the previous analysis of (2.43). The main difference is that now we must

account for the possible dependence of the ratio d2/d1 upon v.
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Figure 2.5 Inflation graphs for the Mooney-Rivlin-type model (1.17) using (2.45) with
α = 0.85, and thickness ratio ξ = Ri/Ro = 0.3. All the inflation graphs exhibit type
(a) behavior.

We begin by considering the case where d1 and d2 are independent of v. According

to (2.46) this is equivalent to α being independent of v. In this case homogeneous

swelling has no effect on the type of inflation graph. Such a result is consistent with
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remarks given in Pence and Tsai (2006). As a first example, consider the material

parameter α = 0.85. Then, because α = 0.85 > αcr, there is a transition value of ξa/c

which, according to Figure 2.4, is given by ξa/c = 0.47. We now separately consider

ξ = 0.3 < ξa/c (a relatively thick walled structure) and ξ = 0.7 > ξa/c (a relatively

thin walled structure). The pair (ξ, α) = (0.3, 0.85) is in the type (a) behavior region

of Figure 2.4, and so the v = 1 inflation graph for ξ = 0.3 displays type (a) behavior.

This inflation graph is shown in Figure 2.5 along with the inflation graphs for an

increasing sequence of v values. Because d2/d1 is independent of v all of the inflation

graphs are monotonic. Turning to the pair (ξ, α) = (0.7, 0.85), which is in the type

(c) behavior region of Figure 2.4, it follows that the v = 1 inflation graph for ξ = 0.7

displays type (c) behavior. Figure 2.6 shows this inflation graph along with those for a

similarly increasing sequence of swelling values v. Because d2/d1 is again independent

of v all of these graphs exhibit type (c) behavior.
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Figure 2.6 Inflation graphs for the same material as in Fig. 2.5 (i.e., (1.17) and (2.45)
with α = 0.85), but now the thickness ratio ξ = 0.7. This corresponds to a relatively
thinner walled structure. All the inflation graphs now exhibit type (c) behavior.
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2.3.3 Swelling dependent material stiffness parameters

More generally the parameters d1 and d2 may be swelling dependent, i.e., d1 = d1(v)

and d2 = d2(v). It then follows that the ratio d1(v)/d2(v) changes with the amount of

swelling. This can lead to the inflation graph behavior changing its type as v increases.

To demonstrate consider materials for which the Mooney-Rivlin parameters d1(v) and

d2(v) in (1.17) have the form

d1 = 1
2
µα vm and d2 = 1

2
µ(1− α) vn, (2.49)

where µ > 0 and 0 ≤ α ≤ 1 are fixed material constants. This is consistent with

(2.45) as can be seen by taking v = 1. Equation (2.49) introduces the additional

exponent parameters m and n. The choice m = 0 and n = 0 then formally retrieves

the case that was just examined in Section 2.3.2 with both d1 and d2 independent of

v.

For m 6= 0 and n 6= 0 the material behavior remains dependent on the ratio

d2

d1

=
1− α
α

vn−m. (2.50)

Thus if m = n then the ratio d2/d1 is independent of v and the inflation graph

behavior does not change with v. However if m 6= n then the behavior of the function

G, which is now determined by d2/d1, depends on the amount of swelling v.

The critical value of (d2/d1)cr = 0.215 from (2.44) continues to distinguish be-

tween monotonic and non-monotonic graphs G. In this regard, for any fixed ma-

terial parameter α, one may solve (2.50) for the special swelling value v that is

associated with (d2/d1)cr. Define this special value of v as vA↔C . Making the re-

placements d2/d1 → (d2/d1)cr and v → vA↔C in (2.50) and solving for vA↔C yields
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vA↔C = vA↔C(m− n, α) with

vA↔C(m− n, α)
def
=

(
α

1− α
(d2/d1)cr

) 1
n−m

= (0.215)
1

n−m
( α

1− α
) 1
n−m . (2.51)

Now working through the various possibilities it follows that:

if m < n then the graph of G is


monotone whenever v > vA↔C ,

non-monotone whenever v < vA↔C ,

(2.52)

and:

if m > n then the graph of G is


monotone whenever v < vA↔C ,

non-monotone whenever v > vA↔C .

(2.53)

For the case of a non-monotone G graph, as discussed in Sections 2.2.2 and 2.3.1,

there is a special value ξa/c of the thickness ratio ξ that gives the transition between

type (a) and type (c) behavior. It is obtained by solving simultaneously the two

equations (2.41) and (2.42). For given α, m and n, this value is a function of the

swelling amount, hence we can write ξa/c = ξa/c(v). Such a function is directly useful

if one seeks to determine the effect of a fixed amount of swelling as applied to a range

of different structures, each with a different shell thickness.

However the more practical problem involves a fixed structure that is subject to a

changing amount of swelling. This motivates an inverting of the relation ξ = ξa/c(v)
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to obtain v = va/c(ξ). The value of swelling va/c = va/c(ξ) demarcates the transition

between type (a) behavior and type (c) behavior for the given shell geometry. From

the material perspective, va/c(ξ) will depend on α,m and n. In fact, like vA↔C as

given in (2.51), the dependence of va/c upon m and n will be in terms of m− n, i.e.,

va/c = va/c(ξ,m − n, α). However, unlike vA↔C which is independent of ξ and given

by the simple form (2.51), the function va/c is dependent upon ξ and not given by a

similarly simple expression. In fact the connection between these two is that

va/c(ξ,m− n, α)

∣∣∣∣
ξ=1

= vA↔C(m− n, α). (2.54)

The qualitative form of the curves va/c as a function of ξ depends on whether m > n

or m < n. This is thoroughly discussed in the next section 2.3.4. In particular, it

explains why (2.54) holds, and how this leads to the conclusions (2.52) and (2.53).

This allows a detailed accounting for how the inflation graph varies with v beginning

from the originally unswollen value v = 1 and then predicting if and when the inflation

graph changes its behavior type as v increases.

2.3.4 Effect of the constitutive exponents m and n on the transitional

swelling value va/c

The inflation graph of ∆P vs. si for the Mooney-Rivlin swelling model that combines

(1.17) with (2.49) displays either type (a) or type (c) behavior depending on the

thickness ratio ξ = Ri/Ro and the swelling value v. If for fixed ξ it is possible that v

alone can cause such a transition, then this transition happens when v = va/c. The

transition value va/c is sensitive to the constitutive parameters α, m and n in (2.49),

however it is not sensitive to µ.

In (2.54) it is stated that the connection between the function va/c and the function
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vA↔C is

va/c(ξ,m− n, α)

∣∣∣∣
ξ=1

= vA↔C(m− n, α). (2.54)

This can be understood as follows: type (c) behavior is associated with a graph for

G that is not monotonic. Any transition from a monotonic graph to a nonmonotonic

graph for G must take place at a value of v for which the graph develops an inflection

point with zero slope. The condition for this determines vA↔C . On the other hand for

a finite thickness shell the condition that determines va/c is the simultaneous solution

of (2.41) and (2.42). The conditions (2.41) and (2.42) depend on the thickness ratio

ξ because this dictates the amount that the graph of G shifts to the left in order to

generate the H graph. This shift becomes vanishingly small in the thin shell limit

ξ → 1. In order for the match condition (2.41) to hold under a vanishingly small

shift it is required that any such location is one at which the graph of G has zero

slope. Similarly, for the matching slope condition (2.42) to hold under a vanishingly

small shift requires a zero curvature location. A location with both zero slope and

zero curvature is the defining condition for vA↔C . Consequently, vA↔C is the same as

va/c in the thin shell limit ξ = 1.

For a finite thickness shell (ξ < 1) the values of vA↔C and va/c will no longer be

the same. Here it is useful to recall the diagram in Figure 2.4 which, for v = 1, served

to determine the specific thickness ratio ξ associated with the (a) to (c) behavior

transition for values of α that were in the special range permitting both behaviors.

When swelling is present any such transition is sensitive to both ξ and v. It is then

useful to construct curves of va/c as a function of the structural parameter ξ for fixed

material parameters α, m, n. Given a particular shell geometry constructed of a

specific material, one can then locate the appropriate point on such a va/c curve for

the purpose of determining the transitional swelling value. The form of these curves

are qualitatively different depending on whether m > n or m < n. We now describe

in more detail these two separate cases.
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2.3.4.1 Dependence of va/c on ξ for m > n

If m > n then the Mooney-Rivlin swelling model (1.17) with (2.49) gives va/c > vA↔C .

The sphere exhibits type (a) behavior for v < va/c and type (c) behavior for v > va/c.

For fixed constitutive parameters α, m, n the difference |va/c − vA↔C | decreases for

relatively thinner shells (i.e., as ξ = Ri/Ro increases). In particular, va/c → vA↔C as

ξ → 1.

These features are apparent in Figure 2.7 which plots the dependence of va/c upon

ξ for exponent choices m = 2/3 and n = 0. Because va/c depends on m and n only

through their difference, the Fig. 2.7 plots apply more generally to any m and n

values obeying m − n = 2/3. The different curves correspond to different values of

α. Each curve is monotonically decreasing from infinity (as ξ → 0) to the value of

vA↔C at ξ = 1. Curves for values of α > 0.823 are everywhere above the line va/c = 1.

This is because vA↔C > 1 when α > 0.823. In contrast, because α < 0.823 makes

vA↔C < 1 it follows that the curves for α < 0.823 cut the line v = 1. Because we

limit attention to v ≥ 1 the portions that continue into v < 1 are shown as dashed.

The α value of 0.823 is the value of αcr that was first introduced in (2.47) in the

context of the standard neo-Hookean model. By virtue of (2.54) it also serves to make

vA↔C(m−n, αcr) = 1 because of the direct way in which the standard incompressible

model ((1.16) with (2.45)) was generalized to the swelling model ((1.17) with (2.49)).

The curves shown in Figure 2.7 correspond to m− n = 2/3. Curves with similar

qualitative behavior are obtained provided that m > n. In particular, the α value of

0.823 is always associated with vA↔C = 1. Spherical shells with m > n and α > 0.823

have va/c > 1. They exhibit type (a) behavior for 1 ≤ v < va/c and exhibit type (c)

behavior for for v > va/c.
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Figure 2.7 Transitional swelling value va/c versus ξ = Ri/Ro for the Mooney-Rivlin-
type model (1.17) with parameters µ, α, m and n in (2.49). The transitional swelling
value va/c is independent of µ and is dependent on n and m only via the difference
m − n. These plots are for m − n = 2/3. For a given α-curve the inflation graph
exhibits type (c) behavior if (ξ, v) is in the region above the curve and type (a)
behavior if (ξ, v) is in the region below the curve.
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2.3.4.2 Dependence of va/c on ξ for m < n

One may similarly construct curves of va/c vs. ξ for the case in which m < n. Now the

curves are increasing with ξ instead of decreasing. Each curve continues to approach

the value vA↔C as ξ → 1, however now they increase from the value zero at ξ = 0.

The other major difference is in the significance of these curves. Namely, the spherical

shells now have a type (a) behavior in the region above the curves (v > va/c) and have

a type (c) behavior in the region below the curves (v < va/c).
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Figure 2.8 Transitional values for swelling va/c versus ξ = Ri/Ro for Mooney-Rivlin-
type model (1.17) with parameters µ, α, m and n in (2.49). The transitional swelling
value va/c is dependent on α as shown but is independent of µ. The curves are
dependent on m and n only via the difference m−n. This figure is for m−n = −2/3.
For a given α-curve the inflation graph exhibits type (c) behavior when (ξ, v) is in
the region that is below the curve and type (a) behavior in the region that is above
the curve.

Such curves are displayed in Figure 2.8 which plots the dependence of va/c upon

ξ for exponent choices m = 0 and n = 2/3. More generally this figure also applies

to any m and n values obeying m− n = −2/3. Qualitatively similar curves hold for
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any m and n obeying m < n. The value α = 0.823 continues to retain its special

significance because of its continued association with the condition vA↔C = 1. It is

now the case that curves for α < 0.823 are always confined to the region va/c < 1.

Because the condition v < 1 is not being considered, the α < 0.823 curves are shown

as dashed over their entire length. Thus if α < 0.823 (and m < n) then any spherical

shell has type (a) behavior for v ≥ 1.

Conversely curves for α > 0.823 cut the line v = 1. The portions of these curves

that are below the value v = 1 are again shown as dashed. If α > 0.823 and the shell

is sufficiently thick then it has a type (a) inflation graph for all v ≥ 1; this is because

va/c < 1. However if the shell is sufficiently thin then va/c > 1; this means that it

has a type (c) inflation graph for 1 ≤ v < va/c and a type (a) inflation graph for

v > va/c. Consequently in such a case a quasi-static increase in v from the unswollen

state v = 1 will generate a transition from type (c) to type (a) behavior as v passes

through the special value va/c.

2.3.5 Numerical illustration with swelling-dependent material stiffness

parameters

The inflation behavior of the sphere with swelling dependent material stiffness can be

illustrated by considering the same α and ξ values associated with Figures 2.5 and 2.6

but now allowing for m 6= 0 and n 6= 0. For this purpose we first consider the case m <

n that is obtained by taking m = 0 and n = 2/3. In particular, consider two subcases

corresponding respectively to a thick shell (ξ = 0.3) and to a relatively thinner shell

(ξ = 0.7). Thus the two subcases correspond to (ξ, α,m, n) = (0.3, 0.85, 0, 2/3) and

to (ξ, α,m, n) = (0.7, 0.85, 0, 2/3). The v = 1 curve for the first subcase is identical

to the v = 1 type (a) curve from Figure 2.5. Similarly, the v = 1 curve in the second

subcase matches the v = 1 type (c) curve from Figure 2.6. However the curves for

v > 1 will no longer match the curves shown in these respective figures. One finds
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for the first subcase, that with ξ = 0.3, the type (a) inflation graph that is present

for v = 1 persists for all increasing v. This aspect mirrors the situation in Figure

2.5 even though the individual curves for v > 1 are different. In the second subcase

of ξ = 0.7 one finds that the inflation graph is originally type (c) for v = 1 but it

eventually transitions to type (a) behavior as v increases. This transition occurs at

v = 1.27, a result that can be predicted on the basis of the procedure for determining

va/c that is described in the appendix.

The case m > n can be handled similarly. For this purpose consider m = 2/3 and

n = 0, again for the respective thick and thin shell values ξ = 0.3 and ξ = 0.7. Once

again the v = 1 curves match the v = 1 curves from Figures 2.5 and 2.6 respectively.

Once again the v > 1 curves do not match the curves in these two figures. In fact,

Figures 2.9 and 2.10 show a v > 1 curve sequence for these two respective cases.

For the subcase of ξ = 0.7 one finds that the original type (c) behavior at v = 1

will persist as v increases (Fig. 2.10). In contrast, for the case of ξ = 0.3 one finds

that the original type (a) behavior at v = 1 will transition to type (c) behavior as v

increases (Fig. 2.9). This transition occurs at v = 1.54, where, again, such a result

can be understood in detail on the basis of the treatment given in the appendix.
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Figure 2.9 Inflation graphs for the Mooney-Rivlin-type model (1.17) using (2.49) with
α = 0.85,m = 2/3, n = 0, and thickness ratio ξ = 0.3. The inflation graphs exhibit
the type (a) behavior for 1 ≤ v < 1.54 and type (c) behavior for v > 1.54.

2.4 Swelling induced burst

Each of the previous Figures 2.5 - 2.10 shows a sequence of inflation graphs for a given

shell thickness ratio ξ composed of a given model material (α, m, n). Such a figure

can be used to gauge how the sphere expands as a function of increasing swelling

v. If the pressurization is fixed during the swelling, then a quasi-static increase in v

corresponds to moving between different curves on the same figure along the horizontal

line determined by the stipulated ∆P . For continuously increasing v the associated

increase in si will also be continuous so long as all of the curves in the sequence are

monotonically increasing. However if the curves are not all monotone increasing then

there is clearly the possibility of a discontinuity in si.

For example, consider again Figure 2.6. The inflation graphs for all v are non-

monotone (type (c)) and the si interval of graphical decrease varies with v. Figure 2.11
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Figure 2.10 Inflation graphs for the Mooney-Rivlin-type model (1.17) using (2.49)
with α = 0.85,m = 2/3, n = 0, and thickness ratio ξ = 0.7. The inflation graphs
exhibit type (c) behavior for all v ≥ 1.

identifies the specific pressurization ∆P that corresponds to the local maximum for

v = 2. Its value is ∆P = 0.258µ. Starting with an unswollen and unpressurized sphere

(v = 1,∆P = 0) consider first an increase in pressure from ∆P = 0 to ∆P = 0.258µ

while the sphere remains unswollen. The inflation response corresponds to climbing

the v = 1 curve to ∆P = 0.258µ with a relatively small increase in si from si = 1 to

si = 1.14.

Now holding this pressurization fixed let v increase. Then one may proceed in se-

quence through all of the curves from the original v = 1 curve to the curve for v = 2.

During this sequence there is a corresponding continuous increase in si. However,

increasing v beyond v = 2 cannot proceed with a continuous increase in si because

the local maximum signals the onset of an interval in si corresponding to v < 2. This

interval proceeds from si = 2.37 to si = 4.32. While this interval precludes a continu-

ous increase in si as v increases through v = 2 it does permit a discontinuous increase
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Figure 2.11 Inflation burst caused by increasing v at fixed ∆P = 0.258µ for the
inflation graphs from Fig. 2.6. Prior to swelling the pressurization ∆P = 0.258µ has
given a mild radial increase (from si = ri/Ri = 1 to si = ri/Ri = 1.14 on the v = 1
curve). Now increasing v at this fixed ∆P gives a continuous increase of si with v
(dashed red line) until encountering the inflation graph for v = 2 where there is a
local maximum. Further increase of v requires a jump across to the other increasing
branch of the v = 2 curve (solid red segment). This corresponds to an inflation burst
with radial increase from si = 2.37 to si = 4.32.

from si = 2.37 to si = 4.32 at v = 2. After such a jump in si it is then again possible

for si to increase continuously because the inflation graphs again become ordered so

as permit si to increase with v. Figure 2.12 shows directly the corresponding radial

increase with swelling (si as a function of v).

The jump in si corresponds to a “burst of inflation” of limited extent (it concludes

at si = 4.32). Such a burst, which can also be described as a snap-through, is due

to the presence of a local maximum in the sequence of inflation graphs. This gives

multi-valued choices for si when an inflation graph exhibits two increasing branches

separated by a decreasing branch.
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Figure 2.12 Inflation burst showing si = ri/Ri vs. v at ∆P = 0.258µ caused by an
increase in the swelling parameter v. Locations denoted by • provide correlation with
the inflation graphs depicted in Figure 2.11.

Under such circumstances some kind of burst is inherent in the mechanical de-

scription. However, the description is potentially ambiguous as regards the value of v

at which the jump occurs. For example, we have just described a jump from si = 2.37

to si = 4.32 when both ∆P = 0.258µ and v = 2. However, for ∆P = 0.258µ the

inflation graphs become multi-valued in si for values of v < 2 and so the question

arises, “why not jump before v = 2?”. In other words, while v = 2 is the maximum

value of v that permits one to avoid a discontinuity, there is always the possibility of

executing an earlier jump.

Such issues have been extensively studied in conventional hyperelasticity Müller

and Strehlow (2004) (i.e., no swelling). Then for a single type (c) inflation graph

an increase in ∆P eventually provokes a jump to the second increasing branch for

the simple reason that the first increasing branch has a maximum permissible ∆P
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value. This jump could occur at the local maximum or it could occur before the local

maximum. Viewing such jumps as a type of phase transition it can be shown that

an energy minimal quasi-static process of ∆P increase predicts that the transition

occurs prior to attaining the maximum. Specifically it occurs at the value of ∆P

associated with the “Maxwell line” construction Ericksen (1975). On the other hand,

a transition that occurs at the local maximum upon loading (and at the local minimum

upon unloading) is consistent with a notion that the prevailing phase can, under

carefully controlled conditions, be preserved even though distantly related states of

deformation may now lower the system free energy. In other words, if the system is

not subject to large disturbances then jumps will occur at extrema of the inflation

graph because it is only then that the inevitable small disturbances provoke a jump

to a more energetically favorable configuration.

Such considerations continue to apply to the notion of swelling induced burst that

we have been describing. In particular, the sequence of inflation graphs depicted in

Figure 2.6 leads to a situation where, at fixed ∆P , a continuous increase in v will give

some kind of abrupt change in inflation. Whether this occurs at the local maximum

of an inflation graph or whether it occurs prior to such a local maximum is then to be

answered on the basis of a more refined treatment. This includes energetic stability

analysis such as that described in Ericksen (1975) as well as the consideration of less

symmetric deformations (such as those with new modes of localized deformation Kyri-

akides and Chang (1990)). More generally, one can employ a broader thermodynamic

framework that allows for supplemental physical considerations (e.g., an additional

kinetic relation), as well as additional theoretical considerations from the outset (e.g.,

inertial dynamics, finer scale physics, a statistical physics treatment of fluctuations).

Finally, it is worth remarking that the notion of pressure control is itself likely to be

an idealization, and that other forms of control, such as one based on controlling a

set mass of sealed in gas Alexander (1971), can lead to different predictions on how
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transitions occur between different points on an inflation graph.

The inflation burst illustrated in Figure 2.11 was based on the inflation graphs for

the case that was presented in Figure 2.6. In that case all of the inflation graphs for

v ≥ 1 involved type (c) behavior. Thus one could possibly argue that the swelling

induced burst could have been anticipated on the basis of the original unswollen v = 1

inflation graph. However, in general it would be premature to draw conclusions on

either the presence or absence of swelling induced burst just on the basis of the v = 1

inflation graph.

For example, the unswollen v = 1 inflation graph in Figure 2.9 exhibits type

(a) behavior. Thus if v = 1 then a continuous increase in pressure will result in a

continuous expansion and so by itself provides no indication of a burst possibility.

However swelling induced inflation burst can still occur. This is shown in Figure 2.13

for the example of Figure 2.9. Starting on the v = 1 inflation graph with ∆P = 1.16µ

we consider a subsequent increase in v. The value ∆P = 1.16µ is chosen for this

discussion because it gives the local maximum on the v = 2 inflation graph (other

values could similarly be considered). Holding ∆P at this fixed value, an inflation

burst is triggered at v = 2 in a manner similar to that previously depicted in the

example of Figures 2.11 and 2.12. In that previous example the inflation graph

behavior was type (c) for all values of ∆P prior to the burst. In the present example,

the swelling induced burst involves inflation graphs that transition from “benign”

type (a) graphs to “burstible” type (c) graphs as the swelling proceeds.

A converse phenomena is also possible if the v = 1 unswollen graph is type (c)

and which then transitions to type (a) as the swelling proceeds. This was the case for

(ξ, α, p, q) = (0.7, 0.85, 0, 2/3) that was discussed in Section 2.3.3 right after equation

(2.54). In such a case it is found that certain loading sequences which alternate pres-

surization with strategically placed episodes of swelling and deswelling enable burst

avoidance. This contrasts with the inevitability of burst if all of the pressurization
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Figure 2.13 Inflation burst caused by increasing v at fixed ∆P = 1.16µ for the inflation
graphs from Fig. 2.9. Initially, the radius increases continuously, first with v = 1 as
∆P increases from zero to 1.16µ and then at this fixed ∆P as v increases to v = 2
(dashed red segment). At v = 2 there is a jump from the first increasing branch to
the second increasing branch after which a continuous increase is again the case.

takes place at fixed v.
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CHAPTER III

Non-Uniform Swelling Field of Hyperelastic

Spherical Shells

As it was mentioned in chapter II, the swelling field v could in general depend on

position within the shell wall, i.e., v = v(R). Such a treatment is developed in this

Chapter. In order to make a distinction between the varying (non-uniform) and uni-

form swelling fields we use the notation vuni for the uniform swelling field in this

Chapter. It was shown that for the Mooney-Rivlin-type model (1.17) while the uni-

form swelling field is present and the material parameters are independent of swelling,

only the constant ratio κ = d2/d1 and the thickness ratio ξ = Ri/Ro identify the clas-

sification of the inflation behavior (a), (b) or (c) and the material types A, B or

C. This is for example presented in Figure 3.29 wherein it is shown that different

amounts of uniform swelling field value vuni has no effect on the material and behavior

type. Conversely, the uniform swelling field value vuni > 1 can change the behavior

of the inflation response only when the material parameters d1 and d2 are dependent

on swelling amount vuni (in the form of different power laws). The question then

arises as to how to determine the type of the behavior when the swelling field v is

no longer distributed uniformly and varying with R. In this chapter we study the

inflation behavior of such fields when the material parameters of the model (1.17)

are independent of local volume change v(R). In such an event where v = v(R), it is

required to invert the relation s = r(R)/R and write R = R̂(s) and hence v = v̂(s)

for the purpose of the integration in (2.21). Additionally, in order to characterize
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specific non-uniform swelling fields we introduce a new variable which is the overall

added volume or equivalently absorbed mass due to the swelling process. This will

allow us to describe family of swelling fields with the same added mass. This in turn

enables us to study as how such nonuniform swelling fields will affect the inflation

behavior.
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3.1 A family of swelling fields with the same added mass

To investigate the characteristics of varying swelling fields we introduce the overall

added swelling volume ∆V

∆V = 4π

Ro∫
Ri

(v(R)− 1)R2dR, (3.1)

which is the total amount of volume change due to the mass absorption during the

swelling. We limit our attention to consider only swelling fields that are motivated by

observation of steady state distributions of liquids in porous media. For such swelling

fields, the distribution of v(R) is governed by Laplace’s equation that in the reference

configuration is

∇2v(R) =
1

R2

∂

∂R

(
R2∂v(R)

∂R

)
≡ 0. (3.2)

The general distribution of the swelling field that satisfies (3.2) has the form

v(R) =
A

R
+B (3.3)

in which A and B are constants. Let

vi ≡ v(Ri) =
A

Ri

+B, vo ≡ v(Ro) =
A

Ro

+B (3.4)

where vi is the amount of swelling at R = Ri and vo is the amount of swelling at

R = Ro. It then follows that

A =
vo − vi

1/Ro − 1/Ri

, B =
voRo − viRi

Ro −Ri

. (3.5)

Entering (3.1) with (3.3) one obtains

∆V

R3
i

=
2π

Ri

(ξ−2 − 1)A+
4π

3
(ξ−3 − 1)(B − 1). (3.6)
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Note that for any fixed ∆V and fixed geometry (Ri and ξ) in (3.6), it is seen a linear

relation between the parameters A and B. Now imagine any two different mass

distributions represented by (Ap,Bp) and (Aq,Bq) but with the same ∆V . The linear

relation (3.6) requires that

Ap − Aq
Bp −Bq

= − 4π(ξ−3 − 1)/3

2π(ξ−2 − 1)/Ri

. (3.7)

After some simplification

Ap − Aq
Bp −Bq

= −2(ξ−3 − 1)

3(ξ−2 − 1)
Ri. (3.8)

Now define the radial location Rm as

Rm :=
2(ξ−3 − 1)

3(ξ−2 − 1)
Ri =

2(ξ3 − 1)

3(ξ2 − 1)
Ro (3.9)

where it can be easily shown that since 0 < ξ < 1 then Ri < Rm < Ro. It then follows

from rearranging (3.8) with (3.9) that

Ap
Rm

+Bp =
Aq
Rm

+Bq (3.10)

This is in fact the amount of swelling at the radius Rm where according to (3.3)

is v(Rm) for both distributions. This means that both distribution have the same

amount of swelling at the same radial location Rm. Since the choice of distributions

was otherwise arbitrary it is concluded that all swelling distributions v(R) given by

(3.3) that absorb the same fixed added mass ∆V have the same amount of swelling

at location Rm.

In order to characterize the distributions (3.3) in terms of vi and vo instead of A

59



and B note that plugging (3.5) into (3.6) and solving for vo gives

vo =
3∆V

2πR3
i

(
ξ3

2− ξ

)
+
ξ(ξ − 1)(2ξ + 1)

2− ξ
vi +

2(1− ξ3)

2− ξ
. (3.11)

It follows that

A =

(
3∆V

2πR3
i

( ξ3

−ξ3 + 3ξ − 2

)
+ vi

( 2ξ3 − 2

−ξ3 + 3ξ − 2

)
+

2(1− ξ3)

−ξ3 + 3ξ − 2

)
Ri

B =
3∆V

2πR3
i

( ξ3

ξ3 − 3ξ + 2

)
+ vi

( 3ξ − 3ξ3

ξ3 − 3ξ + 2

)
+

2(1− ξ3)

ξ3 − 3ξ + 2

(3.12)

Thus for a given ∆V > 0, Ri, and Ro = Riξ
−1 we may view (3.3) with A and B

given by (3.12) as a family of swelling fields for the same added mass but different

distributions with tuning parameter vi. As vi changes, the same overall added mass

∆V is distributed through the spherical shell in different ways.

We restrict considerations to swelling fields (3.3) such that v(R) ≥ 1 at all loca-

tions. This will be the case if both vi ≥ 1 and vo ≥ 1. Setting vo = 1 in either (3.6)

or (3.11) and solving for vi we obtain

vi
∣∣
vo=1

= 1 +
3∆V

2πR3
i

(
ξ3(1− ξ)

2ξ4 − 3ξ3 + ξ

)
≡ vmaxi (3.13)

Thus (3.3) with A and B given by (3.12) is parameterized by vi on the interval

1 ≤ vi ≤ vmaxi .

If vo = vi then A = 0 and we retrieve a uniform distribution of the kind studied in

Chapter II. For a given ∆V the uniform distribution is associated with the vi value

that is found by substituting vi = vo = vuni in (3.11) and solving for the special value
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vuni. This gives

vuni = 1 +
3∆V

4πR3
i

( ξ3

1− ξ3

)
. (3.14)

If vi = vuni as given by (3.14) then all of the results from Chapter II apply for the

given added mass ∆V . If 1 ≤ vi ≤ vuni then the added mass is more concentrated

near the outer surface. If vuni ≤ vi ≤ vmaxi then the added mass is more concentrated

at the inner surface. Conversely, (3.14) shows that the added mass associated with

this uniform distribution is

∆V

R3
i

=
4

3
π(vuni − 1)

1− ξ3

ξ3
, (3.15)

For any fixed amount of ∆V , the amount of vo is identified from (3.11) in terms

of vi and this defines a family of swelling fields v(R) from (3.3) that can be param-

eterized only by the amount vi. One example that will also be used for numerical

showcase in the next section is shown in Figure 3.1. The figure shows a family of

swelling distributions where they all have the same overall added mass, say 30 per-

cent of the original volume and thus vuni = 1.3. In the following section the inflation

behavior of such distribution families is studied.
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Figure 3.1 The family of swelling distributions (3.3) with constants (3.12) for ξ = 0.5
that are parameterized with respect to vi such that v(R) ≥ 1. All distributions have
the same amount of overall added mass associated with vuni = 1.3.

3.2 Kinematics of the spherical deformation with non-uniform

swelling field

The symmetric spherical deformation that is described in (2.1) is assumed here as

a response to radial inflation that is also subject to the non-uniform swelling field

(3.3). In fact, the deformation map (2.6) is now considered with the radial dependent

v = v(R). It then follows that

r3 = r3
i + 3

R∫
Ri

(
A

ζ
+B

)
ζ2dζ, (3.16)

and this simplifies to

r3 = r3
i +

3

2
A(R2 −R2

i ) +B(R3 −R3
i ) (3.17)
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wit A and B given by (3.12).
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3.3 Behavior type independent of distribution for fixed added

mass

The inflation behavior for varying swelling fields is considered in this section. This

makes the use of (2.21) in the form

∆P =

so∫
si

1

v̂(s)− s3

∂w(s, v)

∂s
ds. (3.18)

This relation can also be verified by an alternative proof with energy argument to

confirm that this relation indeed holds even in the case of non-uniform swelling. The

deformation field (2.1) in the absence of body forces is determined by the minimization

of the total potential energy

E = Estore − Eload, (3.19)

where Estore is the stored energy with respect to reference configuration that includes

the effect of elastic deformations and is expressed as

Estore = 4π

Ro∫
Ri

W̄R2dR (3.20)

where W̄ is the local strain energy density as defined before (2.11). The work func-

tional associated with the prescribed surface tractions is denoted by Eload. Hence the

work due to the internal pressure loading is given by

Eload = 4
3
π(r3

i −R3
i )Pi − 4

3
π(r3

o −R3
o)Po (3.21)

The requirement of stationary total potential energy E with respect to the only un-
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known ri provides

∂

∂ri
(Estore − Eload) = 0. (3.22)

Thus it follows that because the radial position R is independent of ri then

∂

∂ri
Estore = 4π

Ro∫
Ri

∂W̄

∂ri
R2dR (3.23)

and from (3.21)

∂

∂ri
Eload = 4πr2

i (Pi − Po). (3.24)

Equating the two relations (3.23) and (5.61) one obtains

∆P ≡ Pi − Po =
1

r2
i

Ro∫
Ri

∂W̄

∂ri
R2dR. (3.25)

By recalling (2.16) and using the connections from

dR

Rs2
=

ds

v − s3
,

∂s

∂ri
=

r2
i

Rr2
, (3.26)

we convert the relation (3.25) to (3.18). In the event that the relation s = r(R)/R is

not explicitly invertible, that is R = R̂(s) is not available, it is required to use (3.18)

in the reference configuration and perform the integration with respect to R. For

convenience we use this integration in this Chapter. Moreover, instead of converting

(3.25) into (3.18) we use the connections (2.5) and (3.26) to rewrite (3.25) with the

more convenient derivations of W̄ with respect to s that uses the definition (2.18). It
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follows that

∆P =

Ro∫
Ri

R

r2

∂w(s, v)

∂s

∣∣∣∣
s=r/R

dR (3.27)

Note that from (2.6) we know the map r = r(R; ri). This provides the integrand in

(3.27) in terms of R and the parameter ri. This in turn makes (3.27) be indeed a

relation for the applied pressure and inner deformed radius. In order to employ the

inflation relation (3.27) we use the Mooney-Rivlin-type model (1.17) with (2.46). It

follows that

∂w(s, v)

∂s

∣∣∣∣
s=r/R

= 2αµ

(
r

Rv2/3
− R5v4/3

r5

)
+ 2(1− α)µ

(
r3

R3v4/3
− R3v2/3

r3

)
(3.28)

and thus the inflation relation (3.27) becomes

∆P/µ = 2

Ro∫
Ri

R

r2

(
α
( r

Rv(R)2/3
− R5v(R)4/3

r5

)
+ (1− α)

( r3

R3v(R)4/3
− R3v(R)2/3

r3

))
dR

(3.29)

where r = r(R) is from (3.17), v = v(R) is given by the swelling field (3.3) and A

and B are according to (3.12). This provides the relation between the applied pres-

sure ∆P and the inner radius ri. The closed form solution to this integration is not

available, however the numerical integration is performed for special cases that are

presented in the following.

The varying swelling fields for numerical integration (3.29) will be selected such

that they all have one fixed overall added mass ∆V . The choice of swelling fields is

the same as was shown in Figure 3.1. As for the first set of numerical result, the other

parameters in the integration are set to (ξ, α)=(0.5, 0.86). This is chosen such that,
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Figure 3.2 Type (c) behavior in response to pressure-inflation for the six different
swelling fields in figure 3.1; using fixed properties (ξ, α) = (0.5, 0.86) in the Mooney-
Rivlin-type material model (1.17) and (2.46).

with respect to vuni = 1.3, type (c) behavior is expected from the results plotted in

Figure 2.4. Also note that this is associated with the added mass of (∆V/R3
i ) ' 8.8

given by (3.15). This set is considered in Figure 3.2 in which the solution to (3.29) for

the material model (1.17) with (2.46) is plotted. As it is presented in this figure, all of

the family of different distributions with fixed added mass showing type (c) behavior

consistent with the type (c) behavior that is identified for the uniform swelling of this

family with vuni = 1.3. For the same family of swelling distribution represented in

Figure 3.1 we now consider the second set of parameters of (ξ, α) = (0.5, 0.83) such

that type (a) behavior is expected for the uniform swelling vuni = 1.3 according to

Figure 2.4. As it is seen in Figure 3.3 the solution shows type (a) behavior for the

whole distribution family.

The two above numerical examples show that the distribution family of the fixed
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Figure 3.3 Type (a) behavior in response to pressure-inflation for the six different
swelling fields in figure 3.1; using fixed properties (ξ, α) = (0.5, 0.83) in the Mooney-
Rivlin-type material model (1.17) and (2.46).

added volume with the representative uniform swelling vuni = 1.3 followed the same

behavior type as the uniform swelling field depicted, depending on the parameters

(ξ, α). The latter case was proved in Chapter II to be identified from Figure 2.4. Our

hypothesis is that the same type of behavior occurs for all (A,B)-pairs that forms

a family of yielding same added volume ∆V and the type of behavior of the family

is identified based on the behavior of vuni with (ξ, α). To test this hypothesis we

consider 18 additional cases chosen so as to be close to transition curve shown in

Figure 3.4. In each case we calculated the response for vi = 1 and vi = vi,max. The

numerical results of the inflation curves with the two circled dots in the middle of

this figure have been already shown in Figs. 3.2 and 3.3. The numerical results of the

inflation curves are showcasing in Figs. 3.5 and 3.6 with four other circled dots from

Figure 3.4 as additional examples. For any parameter-point that was chosen above

the transition curve both of the representative distributions (vi = 1 and vi = vi,max)
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Figure 3.4 Qualitative behavior of the inflation graph for the Mooney-Rivlin model
with uniform swelling fields, previously shown in Figure 2.4. Here 18 points are chosen
along the transition curve (red dots) to be used in (3.29) for numerical integration.
The inflation graphs with the circled parameter choices are shown in Figs. 3.2, 3.3,
3.5 and 3.6.

show type (c) behavior. In contrast, for any parameters chosen below the transition

curve both distributions (vi = 1 and vi = vi,max) show type (a) behavior. It is seen

that at least these numerical cases support our hypothesis.
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Figure 3.5 Inflation behavior for the two limits of swelling distribution (vi,min, vi,max)
in figure 3.1; using fixed parameters chosen from Figure 3.4 with (ξ, α) = (0.1, 0.94)
(on the left) showing type (a) behavior and (ξ, α) = (0.1, 0.96) (on the right) showing
type (c) behavior. The Mooney-Rivlin-type material model is based on (1.17) and
(2.46).

3.4 Inflation behavior instability due to mass redistribution

The inflation response (3.29) is numerically obtained for the swelling distributions

family (3.3) and A and B given by (3.12) with fixed added mass corresponding to

vuni = 1.3 (Figure 3.1), in which the family is parameterized by inner amount of

swelling according to 1 ≤ vi ≤ vmaxi = 2.05. For the material model (1.17) with

constant parameters, the inflation graphs of this solution to (3.29) show behavior of

type (c) for the set ξ = 0.5 and α = 0.86 and this is graphed in Figure 3.2. Hence

the family shows type (c) behavior for the range from vi = 1, where the added mass

is more concentrated on the outer layer of shell, to vi = vmaxi = 2.05 where the added

mass is more absorbed toward the inner layer of the shell. Thus for all of these dis-

tributions the inflation graph shows type (c) behavior independent of the swelling

field. Here, the possibility of an inflation instability in inner radius can be captured

of the same kind that was illustrated in Figure 2.11 for the case of uniform swelling.

However, in the current case the redistribution of the swelling field can cause the

burst. For the case of uniform swelling with constant material parameters the quasi-

static increase in swelling amount led to the movement of the inflation curves of type

(c) behavior such that for a fixed applied pressure it provided the jump in the inner
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Figure 3.6 Inflation behavior for the two limits of swelling distribution (vi,min, vi,max)
in figure 3.1; using fixed parameters chosen from Figure 3.4 with (ξ, α) = (0.9, 0.82)
(on the left) showing type (a) behavior and (ξ, α) = (0.9, 0.83) (on the right) showing
type (c) behavior. The Mooney-Rivlin-type material model is based on (1.17) and
(2.46).

radius. Similarly, for the case of a nonuniform swelling fields that generate a family

of type (c) behavior it is the redistribution of the field that provides the movements

of the inflation curves and this can causes the inflation jump.

The procedure of the inflation instability is represented numerically where one

aspect of Figure 3.2 is plotted in Figure 3.7. It is seen that the maximum pres-

sure associated with the branch vi = 1 is ∆P/µ = 0.74 and the maximum pressure

reached on the curve for vi = 2.05 is ∆P/µ = 0.67. Remaining on the branch vi = 1,

the increase of pressure from ∆P = 0 to slightly higher pressures cause the radius

to increase continuously. Now the pressure continues to increase and then remains

fixed at some value between 0.67 < ∆P/µ < 0.74 and here we choose ∆P/µ = 0.71

for showing the example of inner radius jump. At this fixed pressure if the total

added mass starts to redistribute such that it is more absorbed towards the inner

layer it means that inner amount of swelling increases from vi = 1 to some amount

vi > 1. This increase in vi moves the corresponding inflation graph to the right and

down at the fixed pressure. This in turns moves the solution to si = ri/Ri closer

to the top of the corresponding curve until it eventually reaches to the top of the
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inflation graph where vi = 1.25 which corresponds to the maximum value for the

pressure ∆P = 0.71. At this point spherical shell experiences a sudden expansion

burst and a rapid jump in the inner radius. It follows that, at a fixed pressure, the

redistribution of a fixed added mass can cause a shell expansion instability that is

similar to that which was previously displayed in Figure 2.11. The important point is

that now the overall amount of swelling does not change, just the way it is distributed.
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Figure 3.7 Inflation burst due to redistribution of the fixed added mass in type (c) be-
haviors; using fixed properties (ξ, α) = (0.5, 0.86) in the Mooney-Rivlin-type material
model (1.17).
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CHAPTER IV

Channel Confinement Swelling of Hyperelastic

Plugs and Tubes

4.1 Introduction

The swelling of highly deformable gels and other soft rubbery materials within a con-

fined space will exert forces on the walls of their container. Conversely, the confining

walls will act on the soft solid, causing it to distort as it continues to expand. Under-

standing these effects are important for the design of soft material actuation devices.

Similarly, certain biological processes, either of long term growth, or of short term

swelling, give rise to tissue distortion as organs and vessels impinge.

In this chapter we model this type of process in a simple setting where the contain-

ment is due to an open ended rigid cylinder with circular cross-section – an open tube

– within which an initially unswollen soft solid expands. As one might anticipate,

this leads to a formulation in cylindrical coordinates (unlike the spherical coordinate

considered in chapters II and III). Free swelling, which is a simple homogeneous

deformation, takes place until the solid makes contact with the confining tube wall.

After contact, we seek to determine the shape of the expanding solid as it continues

to swell while being confined. At the same time we also seek to determine the traction

forces that this expanding solid exerts on the confining tube.
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The expansion of a solid cylindrical plug of original radius Ro within a rigid

cylindrical tube of radius Rc > Ro is studied in Section 4.2 where pressure-swelling

response graphs are obtained for a conventional hyperelastic model. In Section 4.3

we consider the effect of a plug that has an internal channel, i.e., an annular plug.

Now the deformation after wall contact is no longer one of homogeneous deforma-

tion. The associated boundary value problem is formulated, and in Section 4.4 this

boundary value problem is solved for the case of a neo-Hookean type swelling model.

Wall contact now gives a deformation in which swelling combines axial lengthen-

ing with internal channel narrowing. Of particular interest is the closing behavior

of the internal channel as the swelling proceeds. Treating the associated boundary

value problem provides asymptotic expressions for the channel radius closing and the

contact pressure in the large swelling regime.
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4.2 The homogeneous deformation of laterally confined swelling

We first examine the case in which the swelling material is a solid cylindrical plug

prior to swelling. Subsequent expansion takes place freely inside a rigid pipe until it

makes contact with the pipe wall (Figure 4.1). After so plugging the pipe all further

expansion is necessarily along the pipe axis, whereupon the associated wall contact

pressure is of particular interest.

With respect to a common origin, take circular cylindrical coordinates (R,Θ, Z) in

the reference configuration and (r, θ, z) in the current configuration. Let {eR, eΘ, eZ}

and {er, eθ, ez} denote unit basis vectors in the reference and deformed configurations,

respectively. Consider a circular disk of the material with original (i.e. unswollen)

radius Ro and original length L when v = 1. Swelling is then described by an increase

in v. In this chapter we restrict attention to spatially uniform swelling, so that v is

independent of X.

Free swelling F = v1/3I can then be expressed in the above radial coordinates as

r = v1/3R, θ = Θ, z = v1/3Z. Moreover, I1 = 3v2/3, I2 = 3v4/3, B = v2/3I so that

(1.8) gives

T =

(
2v−1/3∂W

∂I1

∣∣∣∣
v1/3I

+ 4v1/3∂W

∂I2

∣∣∣∣
v1/3I

− p
)

I

where the notation |v1/3I denotes evaluation at the above values for F = v1/3I. By

taking p = 2v−1/3∂W

∂I1

∣∣∣∣
v1/3I

+4v1/3∂W

∂I2

∣∣∣∣
v1/3I

, the stress tensor T = 0 and so all surfaces

are traction free.

We now suppose that an original unswollen disk is placed in a rigid pipe with an

inner channel radius Rc > Ro. Then free swelling may proceed so long as v < R3
c/R

3
o.

However for v > R3
c/R

3
o the pipe provides a lateral confinement and all subsequent

volume change must be accommodated by lengthening of the disk in the Z-direction

because the disk plugs the pipe as shown in Figures 4.1 and 4.2.
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Figure 4.1 Solid cylinder with the radius Ro and the confinement pipe with radius
Rc > Ro.

Figure 4.2 Representation of the plug swelling within a rigid pipe. For v < λ3
lat

the plug has yet to make contact with the pipe wall. Contact first occurs when
v = R3

c/R
3
o = λ3

lat. For v > λ3
lat all further swelling is directed into Z-direction

extension. This generates the pressure Plat between the plug and the pipe wall.

If the contact between the plug and the pipe is frictionless then for v > R3
c/R

3
o it

follows that

T = −Plat(er ⊗ er + eθ ⊗ eθ), F = λlat(er ⊗ eR + eθ ⊗ eΘ) +
v

λ2
lat

ez ⊗ eZ , (4.1)

where we have defined the fixed constant

λlat ≡ Rc/Ro. (4.2)

This λlat is the free swelling stretch that just causes all-around contact of the swollen

specimen with the pipe’s inner wall. This fixed constant (4.2) will appear often in

what follows.
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Consequently, the condition v > R3
c/R

3
o will be written as v > λ3

lat when the

contact condition is met. The Plat appearing in (4.1)1 is the lateral confining pressure.

In contrast to the known and fixed λlat, the lateral confining pressure Plat is as yet

unknown. Consistency with free swelling ensures that Plat = 0 when v = λ3
lat (free-

swelling that has just made contact with the wall). Our interest is in determining the

dependence of Plat upon v for v > λ3
lat (see the Fig. 4.2 schematic).

It is useful to note that the problem can also be described with respect to fixed

Cartesian coordinates with an orthonormal basis {e1, e2, e3}. Letting the e3 direc-

tion coincide with the Z-direction of the cylindrical geometry it follows that (4.1) is

equivalent to

T = −Plat(e1 ⊗ e1 + e2 ⊗ e2), F = λlat(e1 ⊗ e1 + e2 ⊗ e2) +
v

λ2
lat

e3 ⊗ e3.

This form for F makes B = λ2
lat(e1 ⊗ e1 + e2 ⊗ e2) + v2/λ4

late3 ⊗ e3 so that I1 =

2λ2
lat + v2/λ4

lat ≡ Ĩ1(v) and I2 = 2v2/λ2
lat + λ4

lat ≡ Ĩ2(v). Thus (1.8) gives T =

T11(e1 ⊗ e1 + e2 ⊗ e2) + T33e3 ⊗ e3 with

T11 = 2
∂W

∂I1

∣∣∣∣
Ĩ1,Ĩ2

λ2
lat

v
+ 2

∂W

∂I2

∣∣∣∣
Ĩ1,Ĩ2

(
λ4
lat

v
+

v

λ2
lat

)
− p,

T33 = 2
∂W

∂I1

∣∣∣∣
Ĩ1,Ĩ2

v

λ4
lat

+ 4
∂W

∂I2

∣∣∣∣
Ĩ1,Ĩ2

v

λ2
lat

− p.

In polar coordinates Trr = Tθθ = T11 and Tzz = T33. Invoking −Plat = T11 and T33 = 0

to eliminate p gives

Plat = 2

(
∂W

∂I1

∣∣∣∣
Ĩ1,Ĩ2

+ λ2
lat

∂W

∂I2

∣∣∣∣
Ĩ1,Ĩ2

)(
v

λ4
lat

− λ2
lat

v

)
.

This is the relation of the lateral confining pressure exerted on the solid cylinder due
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Figure 4.3 Confinement Pressure Plat as a function of swelling v in a solid cylinder
taking the outer radius Ro = 1 (so that λlat = Rc). The graphs are for the pipe radii
Rc = 1.51/3 on the left and Rc = 21/3 on the right. Here Plat is normalized by the
material modulus µ.

to the all-around contact after the cylinder has plugged the pipe (v > λ3
lat = R3

c/R
3
o).

Turning to the specific material model introduced in Section 1.2 this now gives the

result of using (1.15) directly, namely,

Plat = µo

(
v

λ4
lat

− λ2
lat

v

)
. (4.3)

We note that for v = λ3
lat the lateral pressure (4.3) gives Plat = 0 which is consistent

with the fact that the cylinder has no lateral pressure when it has just made contact

with the surrounding pipe.

Graphs of the confining pressure Plat (normalized by µo) as a function of the

swelling v for this material model is shown in Figure 4.3. For this figure we take

Ro = 1 and the two different values Rc = 1.51/3 and Rc = 21/3 so as to initiate

contact either at v = 1.5 or v = 2 (equivalently, we consider λlat = 1.51/3 and 21/3).
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4.3 The confinement boundary value problem for an annular

plug

The problem for laterally confined swelling as just considered in Section 4.2 is a prob-

lem for homogeneous deformation. Thus all of the various scalar and tensor quantities:

F, T, p, while varying with v in a parametric fashion, were always independent of

spatial position x. As such, the equilibrium equation div T = 0 was automatically

satisfied.

The situation changes if we replace the originally unswollen solid disk of radius

Ro with an annular disk of outer radius Ro and inner radius Ri > 0. This originally

unswollen annular disk is again placed in a channel of radius Rc > Ro and allowed to

swell. Under these circumstances there will once again be a period of free swelling,

specifically as v increases from its initial value v = 1 to the value v = R3
c/R

3
o = λ3

lat

during which the deformation gradient is F = v1/3I and this free swelling with the

homogeneous deformation generates no stresses and hence T = 0. Note that this free

swelling period of deformation is again expressed as r = v1/3R, θ = Θ and z = v1/3Z.

The outer radius attains the value r(Ro) = Rc when v = λ3
lat and it is again at this

point that the solid cylinder makes contact with the pipe wall. Further swelling can

now be accommodated not only by axial lengthening but also by continued change in

the inner radius of the disk. The resulting inhomogeneous deformation will no longer

render div T = 0 in a trivial fashion. It is to this issue that we now turn our attention.

We consider the following somewhat more general symmetric deformation

r = r(R), θ = Θ, z = λzZ, (4.4)

for Ri ≤ R ≤ Ro, 0 ≤ Θ < 2π, −1
2
L ≤ Z ≤ 1

2
L. With respect to this
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deformation define ri = r(Ri) and ro = r(Ro). The deformation gradient is given by

F = r′(er ⊗ eR) +
r

R
(eθ ⊗ eΘ) + λz(ez ⊗ eZ) (4.5)

in which prime (′) denotes the derivative with respect to R, i.e., r′ = dr/dR.

Both C and B are diagonal with respect to their polar basis sets. The principal

stretch are clearly λr = r′, λθ = r/R and λz. Because the swelling is prescribed in

the amount v it follows from (1.1) that

v =
rr
′
λz
R

, (4.6)

and because the swelling v is spatially constant, this can be integrated to give

r2 = r2
i +

v

λz
(R2 −R2

i ). (4.7)

Once contact is made with the rigid pipe wall the outer radius of the plug stays

fixed at the radius Rc. Thus once v ≥ λ3
lat it follows that

ro = r(Ro) = λlatRo = Rc. (4.8)

The inner radius is then determined from (4.7) and (4.8) in terms of λz as

ri =

(
R2
c −

v

λz
R2
o +

v

λz
R2
i

)1/2

. (4.9)

The condition ri ≥ 0 gives the lower bound

λz ≥
R2
o −R2

i

R2
c

v. (4.10)

The symmetry of the deformation (4.4) makes the stress tensor take the form
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T = Trrer ⊗ er + Tθθeθ ⊗ eθ + Tzzez ⊗ ez. The contact pressure at the rigid channel

wall R = Rc will still be denoted by Plat, giving Trr|r=Rc = −Plat where again Plat

needs to be determined. Unlike the spatially constant swelling characterized by (4.1)

when no channel is present, it will now be the case that all three quantities Trr, Tθθ,

Tzz are functions of r, or, equivalently, of R. It will also generally be the case that

Trr is no longer equal to Tθθ.

The stress equations of equilibrium then give that the hydrostatic pressure p is a

function of r (or R), and that Trr and Tθθ relate to each other via

∂Trr
∂r

+
1

r
(Trr − Tθθ) = 0. (4.11)

The boundary conditions for this problem are (4.8) at the contact surface in conjunc-

tion with the traction free conditions on the remaining free surfaces. On the inner

radius this gives Trr = 0. However there is the possibility that the inner channel

completely closes in which case this surface collapses to a line segment and ceases to

provide a boundary condition. Thus the original reference inner radius at R = Ri is

subject to the condition

Trr|ri = 0 if ri > 0. (4.12)

The remaining boundaries are the annular caps at z = −1
2
λzL and z = 1

2
λzL. The

traction free condition associated with such a surface then formally requires the van-

ishing of Tzz for all R obeying Ri < R < Ro (equivalently all r obeying ri < r < Rc).

However because Tzz is no longer constant, such a pointwise condition cannot be met.

This reflects the fact that z = λzZ in (4.4) is too simplistic of an assumption on the

detailed nature of the inhomogeneous deformation. We invoke the usual remedy of

St. Venant’s principle in which (4.4) approximates the deformation away from the

caps (in a long cylinder approximation). Consequently, we abandon the point-wise

condition Tzz = 0 and replace it with a condition that the resultant axial force must
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vanish i.e.,

Rc∫
ri

TzzdA = 0 =⇒ 2π

Rc∫
ri

Tzzrdr = 0. (4.13)

We proceed to investigate this boundary value problem for the case in which W =

W (I4, v) as is the case for the material model (1.15). We then have from (1.8), (4.5)

and (4.6) that the polar coordinate stress components are

Trr =
2

v

∂W

∂I1

∣∣∣
Ilat1

v2R2

λ2
zr

2
− p, (4.14)

Tθθ =
2

v

∂W

∂I1

∣∣∣
Ilat1

r2

R2
− p, (4.15)

Tzz =
2

v

∂W

∂I1

∣∣∣
Ilat1

λ2
z − p. (4.16)

The notation is to indicate that I1 is evaluated at the value I lat1 = I lat1 (R, ri, λz, v)

with

I lat1 (R, ri, λz, v) = (r′)2 +
r2

R2
+ λ2

z =
v2R4 + (vR2 − vR2

i + λzr
2
i )

2

λzR2(vR2 − vR2
i + λzr2

i )
+ λ2

z

where use has been made of (4.6) and (4.7) in arriving at the final expression.

We now integrate the equation of equilibrium (4.11) in the form

r∫
ri

∂Trr
∂r

dr

︸ ︷︷ ︸
Trr(r)−Trr(ri)

= −
r∫

ri

1

r
(Trr − Tθθ) dr.

Making use of (4.12), (4.14), (4.15) then gives

Trr(r) = −
r∫

ri

2

v

∂W

∂I1

∣∣∣
Ilat1

(
(r′)2 − r2

R2

)
dr

r
. (4.17)
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The integration can be performed with the aid of (4.6), giving Trr as a function of

the parameters λz, ri and v. In particular, evaluating this expression at r = ro = Rc

gives Plat, which at this stage is a function of λz, ri and v.

To render everything as a function of v it is necessary to determine ri and λz

as functions of v. One equation for this purpose is given by (4.9), however another

equation is also needed. This additional equation is provided by (4.13). For this

purpose, Tzz follows from (4.16) where p = p(r) follows from (4.14) using the explicit

form for Trr that has already been obtained from (4.17). In the next section we

demonstrate these procedures for the case of material model (1.15).
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4.4 Annulus contact for the neo-Hookean type swelling model

The derivative ∂W/∂I1 = 1
2
µo for the material model (1.15) so that (4.17) becomes

Trr(R) = −µo
v

r∫
ri

(r′)2 dr

r︸ ︷︷ ︸
Ja

+
µo
v

r∫
ri

r2

R2

dr

r︸ ︷︷ ︸
Jb

=
µo
v

(−Ja + Jb) . (4.18)

Examining each integral Ja and Jb separately using (4.6) and (4.7) we have that

Ja =

r∫
ri

(
vR

rλz

)2
dr

r
=
v2

λ2
z

r∫
ri

R2

r3
dr =

v2

λ2
z

r∫
ri

(
λz
v

(r2 − r2
i ) +R2

i

)
dr

r3

=
v

λz

r∫
ri

dr

r
+
v2

λ2
z

(
− r2

i λz
v

+R2
i

) r∫
ri

dr

r3

=
v

λz
ln

[
r

ri

]
+

v2

2λ2
z

(
− r2

i λz
v

+R2
i

)(
1

r2
i

− 1

r2

)
=

v

λz
ln

[
r

ri

]
+

v2

2λ2
z

(
− R2

r2
+
R2
i

r2
i

)
(4.19)

and

Jb =

r∫
ri

1

R2

(vR/λz) dR︷︸︸︷
r dr =

v

λz

R∫
Ri

dR

R
=

v

λz
ln

[
R

Ri

]
. (4.20)

Combining the previous results (4.18), (4.19), (4.20) now yields

Trr(R) =
µo
λz

ln

[
riR

rRi

]
+
µov

2λ2
z

(
R2

r2
− R2

i

r2
i

)
. (4.21)

The hydrostatic pressure p now follows from (4.14) and (4.21), whereupon the other
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stress components from (4.15) and (4.16) become

Tθθ(R) =
µo
v

(
r2

R2

)
− µov

λ2
z

(
R2

r2

)
+
µo
λz

ln

[
riR

rRi

]
+
µov

2λ2
z

(
R2

r2
− R2

i

r2
i

)
,

Tzz(R) =
µo
v
λ2
z −

µov

λ2
z

(
R2

r2

)
+
µo
λz

ln

[
riR

rRi

]
+
µov

2λ2
z

(
R2

r2
− R2

i

r2
i

)
. (4.22)

It remains to determine ri and λz in terms of v.

The axial stress expression (4.22) enables one to express the zero axial load con-

dition (4.13) in the form

(
1

v
λ2
z −

v

2λ2
z

R2
i

r2
i

) Rc∫
ri

rdr

︸ ︷︷ ︸
Jc

− v

2λ2
z

Rc∫
ri

(
R2

r2

)
rdr

︸ ︷︷ ︸
Jd

− 1

λz

Rc∫
ri

(
ln

[
rRi

riR

])
rdr

︸ ︷︷ ︸
Je

= 0. (4.23)

Here we have defined

Jc =

Rc∫
ri

rdr =
1

2

(
R2
c − r2

i

)
,

and

Jd =

Rc∫
ri

R2 dr

r
=

Rc∫
ri

(
λz
v

(r2 − r2
i ) +R2

i

)
dr

r

=
λz
v
Jc +

(
R2
i −

λz
v
r2
i

)
ln

[
Rc

ri

]
=
λz
2v

(
R2
c − r2

i

)
+

1

2

(
R2
i −

λz
v
r2
i

)
ln

[
R2
c

r2
i

]
,
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and

Je =

Rc∫
ri

(
ln

[
rRi

riR

])
r dr =

Rc∫
ri

(
ln

[
r

ri

])
r dr −

Rc∫
ri

(
ln

[
R

Ri

]) (vR/λz) dR︷︸︸︷
r dr

=

Rc∫
ri

(
ln

[
r

ri

])
r dr − v

λz

Ro∫
Ri

(
ln

[
R

Ri

])
RdR

=

{
−1

4

(
R2
c − r2

i

)
+

1

2
R2
c ln

[
Rc

ri

]}
− v

λz

{
−1

4

(
R2
o −R2

i

)
+

1

2
R2
o ln

[
Ro

Ri

]}
=

1

4

(
−R2

c + r2
i +

v

λz
(R2

o −R2
i )︸ ︷︷ ︸

R2
c

+R2
c ln

[
R2
c

r2
i

]
− v

λz
R2
o ln

[
R2
o

R2
i

])
,

so that

Je =
1

4
R2
c ln

[
R2
c

r2
i

]
− v

4λz
R2
o ln

[
R2
o

R2
i

]
.

The axial force balance (4.23) thus contains terms either with or without ln[·] func-

tions. Using the expressions for Jc and Jd in the right side of (4.23) one finds that

the terms that do not contain logarithm factors sum to

1

2
( R2

c − r2
i︸ ︷︷ ︸

v(R2
o−R2

i )/λz

)

(
λ2
z

v
− v

2λ2
z

R2
i

r2
i

− 1

2λz

)
=

v

4λ2
z

(R2
o −R2

i )

(
2λ3

z

v
− v

λz

R2
i

r2
i

− 1

)
.

Using the expressions for Jd and Je in the right side of (4.23) one finds that the terms

that contain the logarithm factors sum to

1

4λz

(
− v

λz
R2
i + r2

i −R2
c︸ ︷︷ ︸

−vR2
o/λz

)
ln

[
R2
c

r2
i

]
+

v

4λ2
z

R2
o ln

[
R2
o

R2
i

]
=

v

4λ2
z

R2
o ln

[
r2
iR

2
o

R2
cR

2
i

]
.

Combining these results and dividing by vR2
o/4λ

2
z puts the zero axial load condition
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into the form

ln

[
r2
iR

2
o

R2
cR

2
i

]
+

(
1− R2

i

R2
o

)(
2λ3

z

v
− vR2

i

λzr2
i

− 1

)
= 0.

We now eliminate ri in this equation by substituting from (4.9). The various radial

distances can be normalized out by introducing the initial thickness ratio ζ ≡ Ri/Ro <

1 and recalling that λlat = Rc/Ro.

The result of this long string of calculations that began with (4.23) is:

ln

[
1

ζ2
− v

λzλ2
lat

(1− ζ2

ζ2

)]
− (1− ζ2)

(
1− 2λ3

z

v
+

vζ2

λzλ2
lat + v(ζ2 − 1)

)
= 0. (4.24)

Equation (4.24) is a single equation for the determination of λz = λz(v) at any

swelling value v ≥ λ3
lat associated with wall contact.

In terms of these normalizations the restriction (4.10) on λz now writes itself as

λz ≥ (1− ζ2)v/λ2
lat. (4.25)

Once λz is known then ri follows from (4.9). Finally, with the two primary unknowns

ri and λz so determined, the lateral confinement pressure Plat follows from the evalu-

ation of (4.21) at R = Ro. Specifically, Plat = Plat(v, ζ, λlat) is found to take the form

Plat =
µo
2λz

ln

[
λzλ

2
latζ

2

λzλ2
lat − v(1− ζ2)

]
+
µov

2λ2
z

(
λzζ

2

λzλ2
lat − v(1− ζ2)

− 1

λ2
lat

)
, (4.26)

using λz = λz(v).

The initial contact value v = λ3
lat causes (4.24) to be satisfied with λz = λlat for

all ζ. These values then make Plat = 0 thus confirming consistency with all of the

conditions associated with first wall contact.
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4.4.1 Existence and uniqueness

The natural question that arises is whether (4.24) has a unique solution for λz obeying

(4.25) for all v > λ3
lat. For this purpose we define

G(λz; v, ζ, λlat) ≡ ln

[
1

ζ2
− v

λzλ2
lat

(1− ζ2

ζ2

)]
, (4.27)

H(λz; v, ζ, λlat) ≡ (1− ζ2)

(
1− 2λ3

z

v
+

vζ2

λzλ2
lat − v(1− ζ2)

)
. (4.28)

Now the solution to (4.24) for λz is equivalent to the solution of G = H. Note that at

first wall contact, where v = λ3
lat and λz = λlat, one finds that both G and H vanish,

i.e.,

G(λlat;λ
3
lat, ζ, λlat) = 0, H(λlat;λ

3
lat, ζ, λlat) = 0,

confirming that G = H at the first wall contact.

The following two lemmas will be used to establish the existence of a solution.

Lemma 1. If λz ↓ (1− ζ2)
v

λ2
lat

then G < H.

Proof. The notation ↓ means that the approach is from above. We do not simply

evaluate λz at (1− ζ2)v/λ2
lat because

λz ↓ (1− ζ2)v/λ2
lat ⇒ G→ −∞, and H →∞,

which will be sufficient to establish the result.

To see that indeed G → −∞ take λz = (1 − ζ2 + δ1)v/λ2
lat whereupon G =

ln[δ1/(ζ
2(1− ζ2 + δ1))]→ −∞ as δ1 ↓ 0.

To see that indeed H →∞ take λz = δ2 + (1− ζ2)v/λ2
lat whereupon

H = (1−ζ2)

(
v2ζ2λ4

lat + δ2vλ
6
lat − 2δ2(v − vζ2 + δ2λ

2
lat)

3

δ2vλ6
lat

)
→ (1−ζ2)

(
v2ζ2λ4

lat

δ2vλ6
lat

)
→∞
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as δ2 ↓ 0. �

Lemma 2. If λz →∞ then G > H.

Proof. It follows that

lim
λz→∞

G(λz; v, ζ, λlat) = ln

[
1

ζ2

]
> 0,

since 0 < ζ < 1. Also

lim
λz→∞

H(λz; v, ζ, λlat)→ (1− ζ2)

(
−2λ3

z

v

)
→ −∞,

thus confirming the result. �

Thus by continuity the graphs of G and H must intersect on λz > (1− ζ2)v/λ2
lat

thereby ensuring existence. Furthermore, if it is also the case that G is increasing

and H is decreasing everywhere on this range, then the intersection will be unique.

This is ensured by the next lemma.

Lemma 3. For fixed v > 0, 0 < ζ < 1, λlat > 0 it follows that

dG

dλz
> 0,

dH

dλz
< 0 for all λz > (1− ζ2)

v

λ2
lat

.

Proof. The derivative of (4.27) is

dG

dλz
=

v (1− ζ2)

λz (λ2
latλz − v (1− ζ2))

. (4.29)

On the right hand side of this equation the numerator v(1−ζ2) is positive. The factor

in the denominator (λ2
latλz − v(1− ζ2)) is positive because λz > (1− ζ2)v/λ2

lat. Thus

this derivative is positive and the first condition is confirmed.
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Figure 4.4 Axial elongation λz as a function of swelling v for the expanding annular
plug with inner radius Ri = 1/2 and outer radius Ro = 1 (so that λlat = Rc and
ζ = 1/2). Wall contact occurs when v = λ3

lat. The graphs are for two separate cases
of outer pipe radius: Rc = 1.145 and Rc = 1.260, which are chosen so as to give
contact v values of 1.5 and 2, respectively. The slope of the curves immediately after
contact are given by (4.31).

The derivative of (4.28) is

dH

dλz
= −

[
1− ζ2

]([6λz
2

v

]
+

[
vλ2

latζ
2

(λ2
latλz − v (1− ζ2))

2

])
, (4.30)

where all of the terms in brackets [·] are positive. Hence this derivative is negative

and the lemma is proved. �

4.4.2 Numerical demonstrations

As an example, consider the axial stretch λz as determined by (4.24) for a case

where Ri = 1/2 and Ro = 1 (making ζ = 0.5). Figure 4.4 plots λz as a function of

v for the two different pipe confinement radii considered previously in Section 4.2:
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Figure 4.5 Deformed inner radius ri as a function of swelling v for the wall contact
cases from Fig. 4.4. Prior to wall contact the swelling v < λ3

lat and the homogeneous
deformation causes ri to increase. After contact, when v > λ3

lat, the inner radius is
monotonically decreasing with swelling.

Rc = 1.51/3 = 1.145 and Rc = 21/3 = 1.260. Consequently, λlat = Rc/Ro = Rc.

Wall contact takes place when v = λ3
lat = R3

c and hence either v = 1.5 or v = 2.

These aspects all mirror the situation considered previously with respect to Figure

4.3, although of course there was no channel in that case (formally Ri = 0) whereas

now we are taking Ri = 0.5.

Prior to wall contact (v < λ3
lat) the homogeneous free-swelling deformation gives

λz = v1/3 and this relation is the first part of the graphs in Figure 4.4. At wall con-

tact the axial elongation noticibly increases. By implicitly differentiating (4.24) with

respect to v and evaluating the result at v = λ3
lat one obtains the slope immediately

after first contact

dλz
dv

∣∣∣
fc

=

(
1 + ζ2

1 + 3ζ2

)
1

λ2
lat

>
1

3λ2
lat

, (4.31)

where the value 1
3
λ−2
lat is the slope of the free-swelling part of the curve just before

contact with the wall.
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Figure 4.6 Confinement pressure Plat as a function of swelling v for the wall contact
cases from Figs. 4.4 and 4.5. Here Plat is normalized by the material modulus µo.
The slope at first contact is given by (4.32).
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Prior to wall contact the inner radius ri is increasing with v according to the

simple homogeneous deformation rule ri = v1/3Ri. At wall contact this increase is

reversed so that after wall contact ri is decreasing with v. These decreasing values

are found by using the previously obtained λz = λz(v) in the kinematic condition

(4.9). Hence the channel achieves a maximum of ri given by λlatRi = RcRi/Ro at

first wall contact when v = (Rc/Ro)
3. This is shown in Figure 4.5 for the same cases

considered in Fig. 4.4. Differentiating (4.9) and using (4.31) gives the decreasing

slope immediately after first contact

dri
dv

∣∣∣
fc

= −
(

1− ζ2

1 + 3ζ2

)
Ri

λ2
lat

< 0,

thus showing the abrupt turn-around in the radial deformation.

As was the case for the plug without a channel (Section 4.2) the surface R = Ro is

traction free until wall contact. After becoming confined by the wall at Rc the contact

pressure is given by (4.26). The monotonic increase of this Plat with v is shown in

Figure 4.6 for the same cases as considered in Figs. 4.4 and 4.5. Differentiating (4.26)

and using (4.31) it is found that the slope of these curves just after contact is given

by

dPlat
dv

∣∣∣
fc

=

(
1− ζ2

1 + 3ζ2

)
2µ

λ4
lat

> 0. (4.32)

This can be compared to the slope of Plat at first contact for the plug without a

channel that is obtained by differentiation of (4.3) and evaluation at v = λ3
lat yielding

2µo/λ
4
lat. As one might have anticipated, this matches (4.32) in the ζ → 0 limit

corresponding to zero channel radius. More generally, the initial slope (4.32) of the

contact pressure is decreasing with ζ. This is consistent with the expectation that the

contact force generated by the expanding annulus would decrease as its wall becomes

thinner. One would similarly anticipate that the pressure curves would exhibit this
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Figure 4.7 Confinement pressure Plat for a solid plug (Ri = 0) and for tubes (annulus
plugs with Ri = 1/10, 1/4, 1/2, 3/4) as a function of swelling v. In all cases Ro = 1 (so
that λlat = Rc). The confining radius is Rc = 1.51/3 so as to be consistent with one of
the cases shown previously in Figs. 4.4, 4.5 and 4.6. Plat is again normalized by the
material modulus µo. The zero channel radius limit (ζ = 0) recovers the neo-Hookean
type curves in Fig. 4.3. Thinner walls (larger ζ) give less contact pressure for the
same value of swelling.
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decreasing contact pressure with wall thickness not only at first contact, but for all

values of swelling. This is confirmed in Figure 4.7 where the contact pressure as a

function of v is shown for a variety of thicknesses ratios ζ.

4.4.3 Asymptotic behavior for large swelling values

The examples of Section 4.4.2 raise an obvious question as to the channel closing

behavior in the large v limit. Specifically, when viewing a graph like that given in

Fig. 4.5 one can ask which of the three logical alternatives occurs: (a) the channel

closes at some finite v, (b) the channel never fully closes but approaches a zero radius

as v tends to infinity, or (c) the channel radius approaches a finite positive asymptote

as v tends to infinity?

To answer this question we first perform a v → ∞ asymptotic analysis of the

condition G = H in order to extract the large v behavior of λz. To this end we

first observe from (4.25) that the bound v/λz ≤ λ2
lat/(1 − ζ2) gives that λz → ∞ as

v → ∞. If λz is order Cvm in this limit then m ≥ 1. Furthermore if m > 1 then

C > 0 and if m = 1 then C ≥ (1− ζ2)/λ2
lat.

Consider a case in which λz ∼ Cvm with m > 1. It would then follow from (4.27)

and (4.28) that

G = ln

[
1

ζ2

]
+ o(1) and H = −(1− ζ2)

2λ3
z

v
+O(1) as v →∞. (4.33)

This case is now discarded because (4.33) is inconsistent with meeting the condition

G = H in the large v limit. It is thus concluded that

λz = Cv + o(v) with C ≥ (1− ζ2)/λ2
lat as v →∞.
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If the inequality is strict, i.e., if C > (1− ζ2)/λ2
lat, this then makes

G = ln

[
1− 1− ζ2

Cλ2
lat

+ o(1)

]
+O(1),

and

H = (1− ζ2)

(
1− 2C3v2 + o(v2) +

ζ2

Cλ2
lat − (1− ζ2)

+O(1)

)
,

so that once again it is not possible to meet the condition G = H in the large v limit.

Therefore the remaining possibility is that λz ∼ Cv with C = (1−ζ2)/λ2
lat whereupon

we write

λz = Cv (1 + ε1(v)) with C = (1− ζ2)/λ2
lat and ε1(v) = o(1) as v →∞. (4.34)

It then follows that

G = ln

[
1

ζ2

]
+ ln

[
ε1

1 + ε1

]
= ln[ε1] +O(1)

and

H = (1− ζ2)

(
1− 2

v
C3v3(1 + 3ε1 +O(ε21)) +

vζ2

v(1− ζ2)(1 + ε1)− v(1− ζ2)

)
= (1− ζ2)

(
1− 2C3v2 +O(ε1v

2) +
ζ2

1− ζ2

1

ε1

)
= −2(1− ζ2)C3v2 +

ζ2

ε1
+O(1) + o(v2).

Hence the condition G = H gives

ln[ε1] +O(1) = −2(1− ζ2)C3v2 +
ζ2

ε1
+O(1) + o(v2), as v →∞. (4.35)

There are three main terms in (4.35) and at this stage it is not obvious which two
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are dominant, and hence in balance with each other, as v →∞. We seek the leading

order behavior in the function ε1(v) so as to provide the appropriate balance between

whichever two terms are in fact dominant.

There are three possible ways to balance the expression (4.35):

II

ln[ε1] = −2(1

I

− ζ2)C3v2 +
ζ2

ε1

III

. (4.36)

Balance possibility I gives ε1 ∼ e−2(1−ζ2)C3v2 , so that the two balanced terms are

O(v2). However, this makes the third (unbalanced) term ζ2/ε1 ∼ ζ2e2(1−ζ2)C3v2 which

dominates the O(v2) terms as v →∞. Hence balance I is inconsistent and so removed

from further consideration.

Balance possibility II involves two terms that are of fundamentally different

orders and hence cannot balance each other. This balance possibility is therefore

also discarded.

Balance possibility III yields

ε1 ∼
ζ2

2(1− ζ2)C3

1

v2
, as v →∞

which is consistent with the requirement that ε1(v) = o(1) as v →∞. The remaining

unbalanced term in (4.36) is O(ln[v]) and hence satisfies the requirement that it is

dominated by the O(v2) terms that are in balance for this possibility.

Hence III provides a consistent balance, and it is the only consistent balance from

among the three possibilities diagrammed in (4.36). Thus the ε1(v) appearing in

(4.34) can now be written as

ε1(v) =
ζ2

2(1− ζ2)C3

1

v2
(1 + ε2(v)) with ε2(v) = o(1) as v →∞
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where C continues to be by given (1− ζ2)/λ2
lat. Continuing the analysis now using

λz = Cv

(
1 +

ζ2

2(1− ζ2)C3

1

v2
(1 + ε2)

)

it is found that G becomes simply

G = −2 ln[v] +O(1).

On the other hand, the determination of the leading behavior for H requires a se-

quence of tedious manipulations that results in

H = (1− ζ2)− 3(1− ζ2)ζ2

λ6
latC

3
− 2C3(1− ζ2)ε2v

2 +O(ε2) +O(v−2) +O(ε22v
2).

Enforcing the condition G = H now leads to the conclusion that

ε2 ∼
λ6
lat

(1− ζ2)4

1

v2
ln[v].

Consolidating all of these results provides the following asymptotic expression for λz

as a function of v,

λz =
1− ζ2

λ2
lat︸ ︷︷ ︸
C

v +
λ4
latζ

2

2(1− ζ2)3

(
1

v

)
+

λ10
latζ

2

2(1− ζ2)7

(
1

v3
ln[v]

)
+ o

(
1

v3
ln[v]

)
. (4.37)

Employing this expansion of λz in the lateral pressure expression (4.26) it is found

that Plat = µC2v + O(ln[v]/v) ∼ µ(1 − ζ2)2v/λ4
lat. Employing (4.37) in (4.9) now

yields the corresponding expansion for ri by using

ri = Roλlat

(
1− Cv

λz

)1/2

= Roλlat

(
1− 1

1 + ε1

)1/2

= Roλlat ε
1/2
1 (1 + ε1)−1/2,
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Figure 4.8 Asymptote of the deformed inner radius ri as a function of swelling v in a
hollow tube taking the inner radius Ri = 1/2 and the outer radius Ro = 1 (so that
λlat = Rc and ζ = 1/2) with Rc = 1.51/3. The graphs are for the pure numerical
solution (red curve in the middle) and the asymptotic expansion (4.38) with only the
leading term (green curve on the bottom) and with the additional first correction
term (blue curve on the top).
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with ε1 again defined as in (4.34). It follows that

ri
Ro

=

√
2

2

λ4
lat ζ

(1− ζ2)2

(
1

v

)
+

√
2

4

λ10
lat ζ

(1− ζ2)6

(
1

v3
ln[v]

)
+ o

(
1

v3
ln[v]

)
, (4.38)

which shows for this material model how the channel closes in the large v asymptotic

limit. This is depicted in Figure 4.8 where the asymptotic result is compared with

the pure numerical treatment.
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CHAPTER V

Channel Confinement Swelling of Internally

Balanced Material Plugs and Tubes

5.1 Internally balanced elastic materials

Chapters II to IV considered swelling in the purely hyperelastic context. In this

chapter we broaden the material constitutive theory so as to place swelling in the

framework of internally balanced materials. The theory of internally balanced elas-

tic materials as described in Demirkoparan et al. (2014); Demirkoparan and Pence

(2015a); Hadoush et al. (2017, 2014, 2015) makes use of the general multiplication

decomposition of the deformation gradient F = F̂F∗ that was also used here in (1.3).

Such a decomposition, which was originally invoked in the setting of finite deforma-

tion plasticity due to dislocation slip Kröner (1959); Lee (1969), is now commonly

used in other mechanical descriptions of finite deformations, including thermoelastic

deformation Vujošević and Lubarda (2002), crystallographic transformation plasticity

Havner (1992); Forest et al. (2014) and biological growth Chen and Hoger (2000). In

such treatments the first factor in (1.3) typically describes the action of the physical

effect under consideration and the second factor F̂ corresponds to some sort of elastic

recovery or accommodation. This allows F̂ to be described via energy minimization,

whereas F∗ need not in general have a corresponding energetic framework. Indeed it

may be the case that the phenomena described by F∗ is inherently dissipative. In con-

trast, the theory of internally balance elastic materials as studied in Demirkoparan
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et al. (2014); Demirkoparan and Pence (2015a); Hadoush et al. (2017, 2014, 2015)

specifically attributes an energy minimal variational structure to both factors in the

decomposition (1.3).

The internally balanced material theory as described in Hadoush et al. (2017,

2014, 2015) involved no material constraint whereas the internally balanced material

theory as described in Demirkoparan et al. (2014); Demirkoparan and Pence (2015a)

involved the material constraint of incompressibility. It is our purpose here to consider

the effect of the constraint (1.1) in the internal balance theory. Recall the discussion

in page 10 that indicated the possibility of considering functions F∗ in (1.3) that

were not prescribed to be equal to v1/3I. For our purpose we instead specify that the

individual factors in (1.3) are to be subject to the individual constraints

detF̂ = 1, detF∗ = v. (5.1)

The special case of (5.1) with v = 1 then recovers the treatment as given in Demirkoparan

et al. (2014); Demirkoparan and Pence (2015a).

One motivation for the particular constraint choice (5.1) is that it makes the de-

composition F = F̂F∗ a generalization of the simpler decomposition F = v1/3F̂ with

det F̂ = 1. This simpler decomposition is a special case of F = F̂F∗ as can be seen

by taking F∗ = v1/3I. The simpler decomposition F = v1/3F̂ with det F̂ = 1 has

served as a useful description of material swelling in a more conventional hyperelas-

tic framework Tsai et al. (2004); Pence and Tsai (2005b); Demirkoparan and Pence

(2007a); Fang et al. (2011). In contrast the framework presented here does not require

that F∗ = v1/3I; hence it offers the possibility of modeling more complicated swelling

phenomena.
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Mirroring conventional hyperelasticity let W denote the mechanical energy storage

density per unit volume in the reference configuration. This W is to depend on both

F̂ and F∗ and thus any such W is described in terms of alternative and equivalent

constitutive specifications

W = Φ(0)(F,F∗, v) = Φ(1)(F, F̂, v) = Φ(2)(F̂,F∗, v), (5.2)

with F, F̂ and F∗ related via (1.3). A specification for any one of the energy density

functions Φ(0), Φ(1) or Φ(2) permits determination of the other two by simply requiring

consistency with (1.3). In what follows we shall omit v in the argument list of these

energy density functions in order to provide a simpler notation. Continuum mechanics

principles such as material frame indifference and material symmetry place specific

restrictions on the way in which these energy densities may depend upon F, F∗, and

F̂. The principle of material frame indifference specifically gives that

W = Φ(3)(C,C∗), (5.3)

with

C = FTF, C∗ = (F∗)TF∗, Ĉ = F̂T F̂. (5.4)

Although Ĉ does not appear in (5.3) it is introduced in (5.4) because of subsequent

developments. By virtue of (5.1) it follows that detC = detC∗ = v2 and detĈ = 1. It

is to be remarked that C and C∗ do not determine Ĉ, and thus one may not conclude

that W can be written as a function of C and Ĉ. The function Φ(3) can always be

expressed as a symmetric function of the tensors C and C∗, and it is presumed that

this is the case in going forward Demirkoparan et al. (2014).
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As in conventional hyperelasticity, equilibrium deformations minimize the total

stored energy minus the work of any body forces and prescribed surface tractions.

The total stored energy is computed by the volume integral of W taken with respect

to the reference configuration. In terms of Φ(0) this energy integral is

E(χ,F∗) =

∫
B

Φ(0)(∇χ,F∗)dVR. (5.5)

The work functionalW(χ) is a volume integral over the region that is subject to body

forces in conjunction with a surface integral over the portion of the boundary that

is subject to prescribed surface tractions. The minimization is both with respect to

deformations χ and with respect to the factor F∗. Incorporating the constraints (5.1)

by means of Lagrange multiplier fields p = p(X) and q = q(X) the functional that is

to remain stationary with respect to variations of χ, F∗, p and q can be taken as

I(χ,F∗) = E(χ,F∗)−W(χ)−
∫
B

p(det∇χ− v)dVR −
∫
B

q(det F∗ − v)dVR. (5.6)

For simplicity in going forward, body forces will be neglected and each boundary point

is presumed to be either a free surface or else subject to a prescribed displacement.

This makes the work functional W(χ) = 0. Consideration of body forces and consid-

eration of more general boundary conditions is easily accomplished by specifying an

appropriate W(χ) Demirkoparan et al. (2014).

Minimization of I with respect to χ leads to

divT = 0, T =
2

v
F
∂Φ(3)

∂C
FT − pI, (5.7)

where div is the divergence operator with respect to the deformed configuration de-

scribed by locations x.

Minimization with respect to F∗ provides the new aspect of the treatment. This
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leads to the internal balance requirement in the form of the tensor equation

∂Φ(0)

∂F∗
− q(detF∗)F∗−T = 0. (5.8)

By using (5.3), the internal balance (5.8) is manipulated into the form

2
∂Φ(3)

∂C∗
− qvC∗−1 = 0. (5.9)

The partial derivatives with respect to C and C∗ in (5.7)2 and (5.9) involve holding

the other tensor fixed (the standard meaning). For the case of no swelling, meaning

v = 1, the above equations all reduce to those as given previously in Demirkoparan

et al. (2014); Demirkoparan and Pence (2015a).

5.1.1 Retrieving the hyperelastic theory

The purely hyperelastic theory of swelling with W = W (C, v) and T given by (1.2)

can be recovered form the above framework in which (1.1) is imposed as a constraint.

This theory makes no explicit use of the decomposition (1.3), although it can be

connected to the present framework by imposing the additional requirement F∗ =

v1/3I. In such a case the tensor C∗ in (5.4) becomes a prescribed quantity. As such,

the notion of minimizing with respect to either F∗ or C∗ becomes moot so that (5.9)

is no longer generated. Alternatively, taking C∗ = v2/3I and temporarily allowing

variation with respect to v we have that

∂Φ(3)

∂C∗
=
∂Φ(3)

∂v

dv

dC∗
(5.10)

where, in view of (5.1) and (5.4),

dv

dC∗
=

d

dC∗
(det C∗)1/2 =

1

2
(det C∗)1/2C∗

−1

=
1

2
vC∗

−1

, (5.11)
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so that (5.9) becomes a requirement that

v
∂Φ(3)

∂v
C∗−1 − qvC∗−1 = 0, (5.12)

which is satisfied identically provided that q takes on the pleasing form

q =
∂Φ(3)

∂v
. (5.13)

Thus by a variety of arguments it is confirmed that (5.9) plays no role if F∗ is stip-

ulated in the form F∗ = v1/3I. This leaves (5.7) with Φ(3) = Φ(3)(C) which retrieves

the theory of hyperelasticity as explored in a variety of papers such as Tsai et al.

(2004); Pence and Tsai (2005b); Demirkoparan and Pence (2007b); Fang et al. (2011);

Demirkoparan and Pence (2015b); Gou and Pence (2016).

5.1.2 Isotropic materials

The framework as summarized in (1.1), (1.3), (5.1), (5.3), (5.7) and (5.9) is a straight-

forward generalization of a theory of incompressible internally balanced elastic ma-

terials, as described in Demirkoparan and Pence (2015a), to a theory of internally

balanced elastic materials subject to prescribed volumetric change. In Demirkoparan

et al. (2014) and Demirkoparan and Pence (2015a) the incompressible theory is con-

sidered in detail where it is shown that the resulting formulation describes a material

that is isotropic if

W = Φ(4)(I1, I2, I
∗
1 , I

∗
2 , Î1, Î2). (5.14)

The same logic continues to apply in the present setting (the change from det F∗ = 1

to det F∗ = v in (5.1) has no effect on the formal argument) and thus (5.14) provides

constitutive description for an isotropic material in the internally balanced treatment

when swelling is present. Two questions immediately arise. The first is whether (5.14)
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is consistent with (5.3). It is consistent because

Î1 = C∗−1 : C, (5.15)

and

Î2 =
1

2

(
(C∗−1 : C)(C∗−1 : C)− (C∗−1C) : (CC∗−1)

)
, (5.16)

which allows Î1 and Î2 to be calculated directly from C and C∗. The second question

is to what extent (5.14) is consistent with the usual isotropy stipulation in terms of

a material symmetry group that consists of all proper rotations. This issue is also

discussed in Demirkoparan et al. (2014) where it is shown that (5.1) is consistent with

material isotropy in the standard sense. However because of the decomposition (1.3)

one may introduce secondary stipulations on the individual parts, including a notion

of interstitial symmetry. As discussed in Demirkoparan et al. (2014) the form (5.14) is

not generally consistent with the additional notion of isotropic interstitial symmetry.

However, the form (5.14) does become consistent with the notion of isotropic intersti-

tial symmetry if the argument list of Φ(4) in (5.14) is restricted so as to include only

(I∗1 , I
∗
2 , Î1, Î2).

For the purpose of using (5.7)2 and (5.9) for materials obeying (5.14) it is noted

that

∂Φ(3)

∂C
=

∂Φ(4)

∂I1

I +
∂Φ(4)

∂I2

(
I1I−C

)
+
∂Φ(4)

∂Î1

C∗−1

+
∂Φ(4)

∂Î2

(
Î1C

∗−1 −C∗−1CC∗−1
)

(5.17)
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and

∂Φ(3)

∂C∗
=

∂Φ(4)

∂I∗1
I +

∂Φ(4)

∂I∗2

(
I∗1I−C∗

)
− ∂Φ(4)

∂Î1

C∗−1CC∗−1

−∂Φ(4)

∂Î2

(
Î1C

∗−1CC∗−1 −C∗−1CC∗−1CC∗−1
)
. (5.18)

Alternative expressions may be obtained through use of the connection C∗−1(CC∗−1)n =

F∗−1ĈnF∗−T . The Cauchy stress tensor (5.7)2 thus becomes

T =
2

v

(∂Φ(4)

∂I1

+ I1
∂Φ(4)

∂I2

)
B− 2

v

∂Φ(4)

∂I2

B2

+
2

v

(∂Φ(4)

∂Î1

+ Î1
∂Φ(4)

∂Î2

)
B̂− 2

v

∂Φ(4)

∂Î2

B̂2 − pI (5.19)

with

B = FFT , B∗ = F∗(F∗)T , B̂ = F̂F̂T . (5.20)

Although B∗ does not appear in (5.19) it is introduced in (5.20) because of subsequent

developments. Also (5.1) gives detB = detB∗ = v2 and detB̂ = 1.

The internal balance (5.9) is cast into a convenient form by the following sequence

of operations: premultiplication by F, postmultiplication by FT , substitution from

(5.18), and use of the Cayley Hamilton theorem to express B̂3 in terms of lower

powers. The result is

−2I∗1
∂Φ(4)

∂I∗2
FC∗FT + 2

(∂Φ(4)

∂I∗1
+ I∗1

∂Φ(4)

∂I∗2

)
B

−q̄vB̂− 2
∂Φ(4)

∂Î1

B̂2 + 2
∂Φ(4)

∂Î2

I = 0, (5.21)
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where q̄ is a redefined multiplier in place of q (formally q̄v = qv + 2Î2∂Φ(4)/∂Î2).

A natural configuration for an unconstrained material is one for which the Cauchy

stress vanishes, i.e., T = 0. For a constrained material, a natural configuration is

one for which the Cauchy stress is restricted to take the form of the constraint stress.

In conventional isotropic incompressible hyperelasticity, the reference configuration

is automatically a natural configuration, meaning that the stress tensor takes the

form of a hydrostatic pressure. An analogous result holds for the internally balanced

material. To see this for a given v we consider the state of uniform (equi-axial)

swelling F = v1/3I. The Cauchy stress (5.19) is then

T =
(

2v−1/3∂Φ(4)

∂I1

+ 4v1/3∂Φ(4)

∂I2

− p
)∣∣∣

F=v1/3I
I

+
2

v

(∂Φ(4)

∂Î1

+ Î1
∂Φ(4)

∂Î2

)∣∣∣
F=v1/3I

B̂− 2

v

∂Φ(4)

∂Î2

∣∣∣
F=v1/3I

B̂2. (5.22)

Here the subscript F = v1/3I indicates I1 = 3v2/3 and I2 = 3v4/3 with the four re-

maining arguments (Î1, Î2, I∗1 , I∗2 ) as yet undetermined. In addition F = v1/3I casts

the internal balance (5.21) into the form

−2v2/3I∗1
∂Φ(4)

∂I∗2

∣∣∣
F=v1/3I

C∗ − 2
∂Φ(4)

∂Î1

∣∣∣
F=v1/3I

B̂2 − q̄vB̂

+2
(
v2/3∂Φ(4)

∂I∗1
+ v2/3I∗1

∂Φ(4)

∂I∗2
+
∂Φ(4)

∂Î2

)∣∣∣
F=v1/3I

I = 0. (5.23)

This internal balance (5.23) in conjunction with F̂F∗ = v1/3I, detF̂ = 1, and detF∗ =

v is now a set of equations for F̂, F∗ and q̄. A solution to this set is given by F̂ = I,

F∗ = v1/3I and

q̄ = −2

v

(∂Φ(4)

∂Î1

−∂Φ(4)

∂Î2

−v2/3∂Φ(4)

∂I∗1
+3(v2−v4/3)

∂Φ(4)

∂I∗2

)∣∣∣
(3v2/3,3v4/3,3,3,3v2/3,3v4/3)

. (5.24)
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The subscript (3v2/3, 3v4/3, 3, 3, 3v2/3, 3v4/3) in (5.24) denotes the evaluation (I1, I2, Î1, Î2, I
∗
1 , I

∗
2 ) =

(3v2/3, 3v4/3, 3, 3, 3v2/3, 3v4/3). The particular value of q̄ as given above plays no for-

mal role other than to show that it allows the satisfaction of the internal balance

(5.24). Then entering (5.22) with B̂ = I and the full evaluation (I1, I2, Î1, Î2, I
∗
1 , I

∗
2 ) =

(3v2/3, 3v4/3, 3, 3, 3v2/3, 3v4/3) one obtains

T = −p̄I (5.25)

where p̄ is given by a sum of terms where, with the exception of the constraint

term containing −p, each term involves the evaluation of a derivative of Φ(4) with

respect to one of the six arguments (I1, I2, Î1, Î2, I
∗
1 , I

∗
2 ). Since the constraint pressure

p in this expression is still arbitrary it follows that p̄ in (5.25) is similarly arbitrary.

Taking p̄ = 0 one obtains from (5.25) that free swelling T = 0 gives an all-around

equiaxial volume change F = v1/3I. Furthermore since the volume v is determined

by constraint, it follows more generally from (5.25) that equiaxial volume change is

consistent with an arbitrary hydrostatic pressure p̄. All of these results exactly mirror

that of conventional isotropic hyperelasticity with a volume constraint. In particular,

as in conventional isotropic incompressible hyperelasticity, the reference configuration

is automatically a natural configuration.

For the internally balanced theory the hyperelastic energy expression (1.15) sug-

gests consideration of the form

Φ(4)(I1, I2, I
∗
1 , I

∗
2 , Î1, Î2) =

α

2
(I1 − 3v2/3) +

α∗

2
(I∗1 − 3v2/3) +

α̂

2
(Î1 − 3) (5.26)

where the moduli parameters obey α ≥ 0, α∗ ≥ 0, α̂ ≥ 0. Just as the modulus µ in

the hyperelastic model (1.15) was allowed to depend on v, the moduli in the internally

balanced material (5.26) are also allowed to depend upon v.

For the internally balanced material with stored energy density (5.26), the Cauchy
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stress follows from (5.19) as

T =
α

v
B +

α̂

v
B̂− pI. (5.27)

The internal balance condition (5.21) reduces to

α∗B− α̂B̂2 − qvB̂ = 0, (5.28)

where, recalling that q̄v = qv+ 2Î2∂Φ(4)/∂Î2, we return to the use of q for notational

ease. Equivalent forms for (5.28) are

α∗B∗ − α̂Ĉ− qvI = 0, (5.29)

and

α∗C∗2 − α̂C− qvC∗ = 0. (5.30)

If α̂ = 0 and α∗ > 0 it follows from (5.27) that T = (α/v)B − pI so that if

v = 1 then the model is equivalent to the usual neo-Hookean material model in

hyperelasticity with modulus α. The internal balance (5.28) then formally gives

B̂ = v−2/3B and q = α∗v−1/3.

If α∗ = 0 and α̂ > 0 it follows from (5.28) that B̂ = I and q = −α̂/v. This gives

T = (α/v)B + (α̂/v− p)I and α̂/v can be absorbed into p. Hence if v = 1 the model

with α∗ = 0 and α̂ > 0 is also equivalent to a neo-Hookean material with modulus α.

Additional understanding of the range of qualitative behaviors follows from con-

sideration of the three different two-term dominant balances that may occur between

the various terms of the internal balance (5.28). For this purpose we rewrite (5.28)

as

α̂ B̂
2

+ qvB̂ = α∗ B, (5.31)
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and inquire into the determination of both B̂ (obeying detB̂ = 1) and q for specified

α̂, α∗, v and B (obeying detB = v2).

Consider first a dominant balance between the second and third terms of (5.31),

that is

α̂ B̂
2

+ qv B̂ = α∗ B. (5.32)

Such a balance becomes dominant as α∗ >> α̂. Specifically consider α∗ → ∞ at

finite α̂. Introduce

β = α̂/α∗, ρ(X) = q(X)v(X)/α∗. (5.33)

Here we have written q and v as possible functions of X to emphasize that possibility

in the formulation and solution of boundary value problems. We could also have

written α̂ and α∗ as a possible function of X so as to treat the case of nonuniform

and composite materials. In going forward, we shall cease to indicate this possible

dependence upon X. Using the notation (5.33) the internal balance equation (5.31)

is recast into the form

β B̂
2

+ ρ B̂ = B. (5.34)

In the limit β → 0 the solution pair (ρ, B̂) such that (5.34) is satisfied with detB̂ = 1

is ρ = v2/3 and B̂ = v−2/3B. On the presumption that both ρ and B̂ can be expanded

in powers of β it is found from the O(β) analysis of (5.34) (using also detB̂ = 1) that

the O(β) corrections are respectively: −(v−2/3/3)I1 and −v−2B2+(v−2/3)I1B. Hence

returning to original variables it is concluded that

B̂ = v−2/3B +
α̂

α∗

(1

3
v−2I1B− v−2B2

)
+O

(( α̂
α∗

)2)
,
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q = α∗v−1/3 − 1

3
α̂v−5/3I1 + α̂ O

( α̂
α∗

)
, (5.35)

as α∗ →∞ at finite α̂.

Next consider a dominant balance between the first and second terms, that is

α̂ B̂
2

+ qv B̂ = α∗ B. (5.36)

Such a balance becomes dominant as α̂ >> α∗. Specifically consider α̂→∞ at finite

α∗. Introduce

γ = α∗/α̂, κ = qv/α̂, (5.37)

to rewrite equations (5.31) in the form

B̂
2

+ κ B̂ = γB. (5.38)

In the limit γ → 0 the solution pair (κ, B̂) such that (5.38) is satisfied with detB̂ = 1

is κ = −1 and B̂ = I. On the presumption that both κ and B̂ can be expanded in

powers of γ it is found from the O(γ) analysis of (5.38) (using also detB̂ = 1) that

the O(γ) corrections are respectively: (1/3)I1 and B− (1/3)I1I. Hence returning to

original variables it is concluded that

B̂ = I +
α∗

α̂

(
B− 1

3
I1I
)

+O
((α∗

α̂

)2)
,

q = − α̂
v

+
1

3

α∗

v
I1 + α∗ O

(α∗
α̂

)
, (5.39)
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as α̂→∞ at finite α∗.

Finally, consider a dominant balance between the first and third terms, that is

α̂ B̂
2

+ qv B̂ = α∗ B. (5.40)

This balance gives B̂ ∼
√

(α∗/α̂)B where it is recalled that symmetric positive-

definite tensors have a unique symmetric positive-definite square root (the symbol

√
· denotes this unique tensor square-root). The scalar q drops out of the balance,

and this loss has as a consequence that the condition detB̂ = 1 is met if and only if

α∗/α̂ = v−2/3. More formally, this balance becomes dominant as α∗ → α̂v−2/3 and it

is an exact balance for α∗ = α̂v−2/3. Specifically, it follows that

B̂ = v−1/3
√

B, q = 0, (5.41)

when α∗ = α̂v−2/3.

The three cases examined above show how the theory is sensitive to the ratio

β = α̂/α∗. With respect to q the above results summarize as

q →


−∞, if α̂/α∗ → 0,

= 0, if α̂/α∗ = v2/3,

+∞, if α̂/α∗ →∞,

(5.42)

in a manner that is independent of B. For values of β = α̂/α∗ that do not correspond

to those given in (5.42) it would generally be the case that q is also dependent upon

B. Turning to the Cauchy stress, the result (5.42) for q in conjunction with (5.27)

gives
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T→


(αv−1 + α̂v−5/3)B− pI, if α∗ →∞ at finite α̂,

αv−1B + α̂v−4/3
√

B− pI, if α̂ = α∗v2/3,

(αv−1 + α∗v−1)B− p̄I, if α̂→∞ at finite α∗.

(5.43)

For the case of α̂→∞ at finite α∗ the scalar p̄ = p−α̂v−1 +α∗v−1I1/3. Since however

p is arbitrary the extra term in p̄ can be absorbed into p.

It is to be emphasized that the internal balance theory considered here need not be

tied to the swelling phenomena. In other words the isochoric material case (formally

the specialization of all previous results to v = 1) is a viable material description in

its own right. Indeed the previous works Demirkoparan et al. (2014); Demirkoparan

and Pence (2015a) considered only this case. Thus it is worth remarking that the

results (5.43) for the isochoric specialization become

T→


(α + α̂)B− pI, if α∗ →∞ at finite α̂,

αB + α̂
√

B− pI, if α̂ = α∗,

(α + α∗)B− pI, if α̂→∞ at finite α∗.

(5.44)

Comparing (5.43) with (1.15)2 shows that both extreme cases of α̂/α∗ → 0 and

α̂/α∗ → ∞ give neo-Hookean behavior in the limit. Specifically this correspondence

with the neo-Hookean hyperelastic theory with swelling requires the identifications

µ↔


α +

α̂

v2/3
if α∗ →∞ at finite α̂,

α + α∗ if α̂→∞ at finite α∗.

(5.45)

In contrast, as shown by the case α̂ = α∗, the general case gives behavior that does
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not coincide with the hyperelastic neo-Hookean theory.
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5.2 Homogeneous deformation for the internally balanced

material model

Equation (4.3) provided an explicit relation for Plat in terms of v for the hyperelastic

swelling theory. We now inquire into the extent to which a similar relation can be

obtained for the internally balanced material theory. To this end it is necessary to

decompose F in (4.3) according to (1.3). By virtue of symmetry it is presumed that

F̂ and F∗ can be written in terms of positive parameters ξ̂ and ξ∗ in the forms

F∗ = ξ∗(e1⊗e1+e2⊗e2)+
v

ξ∗2
e3⊗e3, F̂ = ξ̂(e1⊗e1+e2⊗e2)+

1

ξ̂2
e3⊗e3. (5.46)

These forms are consistent with the constraints (5.1). They are also consistent with

the decomposition (1.3) provided that

ξ̂ξ∗ = λlat. (5.47)

Also ξ̂ and ξ∗ may vary with v even though λlat is fixed. Using (4.3)1 two nontrivial

scalar equations then emerge from the diagonal entries of the stress tensor (5.27):

−Plat =
α

v
λ2
lat +

α̂

v
ξ̂2 − p, 0 =

αv

λ4
lat

+
α̂

vξ̂4
− p. (5.48)

Two nontrivial scalar equations also emerge from the diagonal entries of the internal

balance (5.31):

α∗λ2
lat − α̂ξ̂4 − qvξ̂2 = 0,

α∗v2

λ4
lat

− α̂

ξ̂8
− qv

ξ̂4
= 0. (5.49)

For given λlat and v > λ3
lat equations (5.47)-(5.49) provide five scalar relations among

the five unknown quantities: Plat, ξ̂, ξ
∗, p and q. As shown below, this allows solutions

for Plat, ξ̂, ξ
∗, p and q in terms of v and λlat. In particular this then gives Plat as a
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function of v and λlat such that this Plat represents the lateral confining pressure for

the case v > λ3
lat.

In order to verify the above claim, eliminate q between the two equations of (5.49)

so as to obtain

α∗v2ξ̂8 + α̂λ4
latξ̂

6 − α∗λ6
latξ̂

2 − α̂λ4
lat = 0. (5.50)

For a given pair (λlat, v) with λlat > 0 and v > 0 this polynomial equation in ξ̂ has

a unique positive root by virtue of Descarte’s rule of signs. This defines a function

Ξ̂(λlat, v) such that ξ̂ = Ξ̂(λlat, v) solves (5.50). This function also depends upon the

ratio α̂/α∗ (we do not show this in the argument list for Ξ̂). Recall also that it is

permissible to allow either α̂ or α∗ to depend upon v provided that these moduli

remain positive for all v. In such a case the dependence of Ξ̂ upon v must also take

this moduli dependence into account. Such a dependence has no effect upon the gen-

erality of the results given here.

Eliminating p between the two equations of (5.48) gives

Plat = α
( v

λ4
lat

− λ2
lat

v

)
+
α̂

v

( 1

ξ̂4
− ξ̂2

)
. (5.51)

Using (5.47) and (5.50) it follows that an alternative form for this result is

Plat = α
( v

λ4
lat

− λ2
lat

v

)
+ α∗

( 1

ξ∗4
− ξ∗2

)
. (5.52)

This function (5.51) with ξ̂ = Ξ̂(λlat, v) defines a function

Π(λlat, v) = α
( v

λ4
lat

− λ2
lat

v

)
+
α̂

v

( 1

Ξ̂4(λlat, v)
− Ξ̂2(λlat, v)

)
(5.53)

such that Plat = Π(λlat, v) gives the lateral confining pressure. The result is gen-

eral so as to accommodate any dependence of α, α̂ or α∗ upon v provided that the
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requirements α ≥ 0, α̂ ≥ 0 or α∗ ≥ 0 always hold.

Because lateral confinement occurs for v > λ3
lat, it follows that v > λ3

lat defines

the physically meaningful range for the argument pair (λlat, v). The value λlat = v1/3

corresponds to the free swelling threshold at which the plug has swollen by an amount

that is just sufficient to allow all-around contact with the inner channel wall of the

confining rigid pipe. This motivates the observation that if λlat = v1/3 then the posi-

tive root ξ̂ to (5.50) is ξ̂ = 1. Thus Ξ̂(v1/3, v) = 1. Use of this result in (5.53) gives

Π(v1/3, v) = 0. This is the expected result, namely Plat = 0 at initial material contact

with the wall, i.e., when v = λ3
lat. The general dependence of confining pressure Plat

on swelling v when v exceeds the contact value λ3
lat then follows from Plat = Π(λlat, v)

using (5.50) and (5.53). The detailed dependence of Π(λlat, v) upon v is sensitive

to how the moduli α, α̂ and α∗ vary with v. Figure 5.1 then shows Plat vs. v as

determined from solution to (5.50) and (5.53) using chosen parameter values.

The initial slope of the curves in Figure 5.1 can be determined analytically. For

this purpose let us suppose that the moduli α, α̂ and α∗ are all independent of v.

Now (5.53) can be differentiated with respect to v to get

∂Π(λlat, v)

∂v
= α

( 1

λ4
lat

− λ2
lat

v2

)
− α̂

v2

( 1

Ξ̂4(λlat, v)
− Ξ̂2(λlat, v)

)

− 2α̂

v

( 2

Ξ̂5(λlat, v)
+ Ξ̂(λlat, v)

)∂Ξ̂(λlat, v)

∂v
. (5.54)

As pointed out in the previous paragraph, Ξ̂(v1/3, v) = 1 when λlat = v1/3. Therefore

Ξ̂(λlat, λ
3
lat) = 1. Moreover (5.50) can be differentiated with respect to v and then

evaluated at (λlat, λ
3
lat) to get
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Figure 5.1 Confinement pressure Plat = Π(λlat, v) as a function of swelling v taking
α̂ = 1, α∗ = 2 and Ro = 1 (so that λlat = Rc). The three graphs on the left are
for Rc = 1.51/3. The three graphs on the right are for Rc = 21/3. For each Rc

the graph of Plat is given for three different values of α. Here Plat is normalized by
α + (α̂α∗)/(α̂ + α∗). Because of (5.56) this accounts for the common slope at the
rightmost departure (Rc = 21/3) being less than the common slope at the leftmost
departure (Rc = 1.51/3).
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∂Ξ̂

∂v

∣∣∣
(λlat,λ

3
lat)

=
−α∗

3(α∗λ3
lat + α̂λlat)

. (5.55)

Consequently use of (5.55) in (5.54) and algebraic manipulations give

∂Π

∂v

∣∣∣
(λlat,λ

3
lat)

=
2

λ4
lat

(
α +

α̂α∗

α∗λ2
lat + α̂

)
. (5.56)

This in turn describes the slope in Figure 5.1 when the pressure Plat departs from

zero due to first wall contact.

In order to recover the hyperelastic result, recall that (5.45) indicates how the

hyperelastic neo-Hookean swelling theory follows from two special limits of the inter-

nally balanced material theory. Thus it must be the case that (4.3) will follow from

(5.50) and (5.51) in these two special limits. We now verify that this is indeed the case.

Consider first the limit α∗ → ∞ at finite α̂. It then follows that the dominant

balance in (5.50) gives

ξ̂ → λlat
v1/3

as α∗ →∞, (5.57)

so that (5.47) gives ξ∗ → v1/3. Thus (5.51) gives

Plat → (α +
α̂

v2/3
)
( v

λ4
lat

− λ2
lat

v

)
, (5.58)

which matches (4.3) under the identification connection from (5.45).

Second consider the limit α̂ →∞ at finite α∗. It then follows that the dominant

balance in (5.50) gives

ξ̂ → 1 as α̂→∞ (5.59)
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so that (5.47) gives ξ∗ → λlat. Because (5.51) would generate the indeterminate form

of infinity multiplied by zero we use the alternative form (5.52) to obtain

Plat → (α + α∗)
( v

λ4
lat

− λ2
lat

v

)
(5.60)

which matches (4.3) under the correspondence from (5.45).
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5.3 Cylindrical deformation in internally balanced material

model

In this section we use the internally balanced material model for the same boundary

value problem of the confined hollow tube that was considered in section 4.3. In this

regard the cylindrical deformation (4.4) that is subject to the volume change (4.6) is

again considered. Recall that the tube is still confined such that the (4.8), (4.9) and

(4.10) still hold. The relation (4.9) again provides that ri = ri(λz) and this makes the

axial force requirement (4.13) be a single relation to obtain the ultimate unknown λz.

Here in this section in the internally balanced material model that is given by

(5.26) for simplicity it is assumed that α = 0. The left Cauchy-Green deformation

tensor B is given by

B = FFT =


r
′2

0 0

0 (r/R)2 0

0 0 λ2
z

 = r
′2

(er⊗er)+(r/R)2(eθ⊗eθ)+λ2
z(ez⊗ez). (5.61)

Moreover, notice that it follows from (5.28) that an eigenvector of B is also an eigen-

vector of B̂ and this argument is shown in Demirkoparan et al. (2014). Hence it is

reasonable to seek solutions in which B̂ is symmetric positive-definite in the form

B̂ =


B̂rr 0 0

0 B̂θθ 0

0 0 B̂zz

 = B̂rr(er ⊗ er) + B̂θθ(eθ ⊗ eθ) + B̂zz(ez ⊗ ez), (5.62)

where its components satisfy the internal balance equations (5.31). It then follows
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from (5.62) and (5.27) that the stress tensor T is of the form

T =


Trr 0 0

0 Tθθ 0

0 0 Tzz

 = Trr(er ⊗ er) + Tθθ(eθ ⊗ eθ) + Tzz(ez ⊗ ez) (5.63)

where

Trr =
α̂

v
B̂rr − p,

Tθθ =
α̂

v
B̂θθ − p,

Tzz =
α̂

v
B̂zz − p.

(5.64)

This will reduce the equilibrium equation into (4.11) that is associated with the

boundary condition (4.12).

The boundary value problem for the deformation field (4.4) with given swelling

amount v, the geometric configuration Ri, Ro and Rc and the stress field (5.64) is

then formulated to seek the seven unknowns as follows: axial elongation λz, the outer

confinement pressure Plat, scalar functions p and q and a symmetric positive-definite

tensor function B̂ (with the three unknown component functions of B̂rr, B̂θθ and B̂zz)

such that the following equations are satisfied: the equilibrium equation (4.11), the

zero resultant axial force , the requirement (5.1) and three scalar equations of Internal

Balance that come from diagonal entries in (5.28). Once λz is determined then ri is

obtained directly from (4.9).

5.3.1 Internal balance requirement

We consider an approach in which q and B̂rr, B̂θθ and B̂zz are regarded as the primary

and λz, Plat and the hydrostatic pressure function p are regarded as the secondary

unknowns. Notice that instead of q, we seek for ρ = qv/α̂. Also because we assume

finite and positive values for α̂ and α∗ we choose to pick the notations in (5.33). The
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primary unknowns are then formulated in terms of the secondary unknowns. Once the

secondary unknowns are solved, the primary unknowns are consequently obtained. To

formulate the four primary unknowns we use the three equations of Internal Balance

(5.31) and the requirement of (5.1). Thus using the assumptions (5.61) and (5.62) in

the internal balance (5.31), it gives three quadratic and decoupled equations relating

B̂rr, B̂θθ and B̂zz to ρ as follows

B̂2
rr + ρB̂rr − r

′2
/β = 0,

B̂2
θθ + ρB̂θθ − r2/(βR2) = 0,

B̂2
zz + ρB̂zz − λ2

z/β = 0.

(5.65)

These equations can be solved for positive B̂rr, B̂θθ and B̂zz. Making one additional

replacement of r
′
= Rv/(rλz) from (4.6) and introducing s = r/R these solutions are

B̂rr =
1

2

(
− ρ+

√
ρ2 + 4v2/(βs2λ2

z)

)
,

B̂θθ =
1

2

(
− ρ+

√
ρ2 + 4s2/β

)
,

B̂zz =
1

2

(
− ρ+

√
ρ2 + 4λ2

z/β

)
.

(5.66)

Now we need one more equation in order to solve for the four primary unknowns. To

this end, det B̂ = 1 requires that B̂rrB̂θθB̂zz = 1 which because of (5.66) becomes

1

8

(
− ρ+

√
ρ2 + 4v2/(βs2λ2

z)

)(
− ρ+

√
ρ2 + 4s2/β

)(
− ρ+

√
ρ2 + 4λ2

z/β

)
= 1.

(5.67)

This brings additional relation between ρ, s, v, λz and β and shows that ρ is indepen-

dent of θ and z. The immediate question then arises if there is any unique ρ which

satisfies (5.67). To investigate that let’s define

h(ρ) =
1

8
h1(ρ)h2(ρ)h3(ρ), (5.68)
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in which

h1(ρ) = −ρ+
√
ρ2 + 4R2v2/(βr2λ2

z) > 0,

h2(ρ) = −ρ+
√
ρ2 + 4r2/(βR2) > 0,

h3(ρ) = −ρ+
√
ρ2 + 4λ2

z/β > 0,

(5.69)

and seek the solution ρ to

h(ρ) = 1 (5.70)

which is equivalent to (5.67). To this end observe that

8
dh

dρ
= h

′

1h2h3 + h1h
′

2h3 + h1h2h
′

3 (5.71)

with

h
′

1 = (−1 +
ρ√

ρ2 + 4R2v2/(βr2λ2
z)

) < 0,

h
′

2 = (−1 +
ρ√

ρ2 + 4r2/(βR2)
) < 0,

h
′

3 = (−1 +
ρ√

ρ2 + 4λ2
z/β

) < 0.

(5.72)

This makes the channel argument dh/dρ < 0 for all real ρ. Note also from (5.67) that

lim
ρ→−∞

h(ρ) =∞, lim
ρ→∞

h(ρ) = 0. (5.73)

It is concluded that the equation h(ρ) = 1 has a unique solution ρ which is a function

of s = r/R and also the parameters v, λz, β and Ri. We recall that all of these

parameters are given with the exception of λz. It follows that we can write

ρ = ρ(s; v, β, λz). (5.74)

To determine the sign of ρ notice that from (5.68) we have h(ρ)|ρ=0 = v/β3/2. Hence,

for the solution of h(ρ) = 1, it is seen that v/β3/2 < 1 gives ρ < 0 and v/β3/2 > 1
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gives ρ > 0. In other words the sign of ρ which solves (5.67) depends on the value of

v/β3/2 = v(α∗/α̂)3/2. Hence, in any given problem ρ will either be restricted to vary

through only positive values or through only negative values. If this ρ is taken such

that ρ = ρ(s; v, β, λz) solves (5.67), then from (5.66), the components of B̂ are found

to be functions of s. With the help of the map r = r(R) from (4.4), the function ρ

and all the components of B̂ are obtained and found to be functions of s and the still

unknown parameters λz and ri(λz). Depending on which aspect is to be emphasized

we either write ρ = ρ(s) or ρ = ρ(s, λz).

The analytical solution to (5.67) is not available. Two numerical solutions of

ρ = ρ(s; v, β, λz) are graphed in the Figure 5.2. It is seen that for β < v2/3 the

solution ρ(s) is positive and if β > v2/3 the solution ρ(s) is negative. Moreover,

the solutions are finite over the channel range of s, it goes to zero when s → 0 and

asymptotes to zero when s→∞.

In order to identify the special value of the parameter s = sext that makes the

extremum of ρext = ρ(sext) we can take the derivatives of the two sides of (5.67) with

respect to s and use dρ/ds
∣∣
s=sext

= 0. This yields

1

s4
ext

√
ρ2
ext + 4s2

ext/β

(
− ρ+

√
ρ2
ext + 4s2

ext/β

)
=

λ2
z

v2

√
ρ2
ext + 4v2/(βs2

extλ
2
z)

(
− ρext +

√
ρ2
ext + 4v2/(βs2

extλ
2
z)

)
(5.75)

One obvious root of this equation for sext is sext =
√
v/λz that is shown in Figure

5.2.
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Figure 5.2 Three solutions of ρ(s; v, β, λz) to the requirement (5.67) with one repre-
sentative set of v = 2 and λz = 2. Two of the non-trivial solutions are obtained for
different ration β = 2 and β = 1/2. If β is taken as β = v2/3 = 22/3 then the obvious
solution is ρ(s) ≡ 0.

5.3.2 Stress and equilibrium

To find the secondary unknowns λz, Plat and p, we first show that p is a function

of R alone. We notice that since the components of B̂ are independent of θ and

z, regarding (5.64) and equilibrium equations from (4.11) the components of T and

consequently p, are also independent of θ and z. Hence it follows that p = p(R) and

by presuming that the map r = r(R) is invertible we can write the function p as a

function of s = r/R and hence p = p(s). The function p(s) will then be solved from

the first equilibrium equation (4.11) and satisfying the boundary condition (4.12)

where T is given by (5.27). The parameter ri(λz) is obtained via (4.9) and recall

that the unknown parameter λz is the solution to the requirement (4.13). Thus the

procedure is as follows: after determining ρ(s, λz) the stress components to be used
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in (4.11) are from (5.27). If we rewrite the stress components from (5.64) it follows

Trr =
α̂

v
B̂rr − p(s), (5.76)

Tθθ =
α̂

v
B̂θθ − p(s), (5.77)

Tzz =
α̂

v
B̂zz − p(s). (5.78)

Thus the components of B̂ are used from (5.66) into (5.76) and it gives

Trr =
α̂

2v

(
− ρ(s, λz) +

√
ρ(s, λz)2 + 4v2/(βs2λ2

z)
)
− p(s), (5.79)

Tθθ =
α̂

2v

(
− ρ(s, λz) +

√
ρ(s, λz)2 + 4s2/β

)
− p(s), (5.80)

Tzz =
α̂

2v

(
− ρ(s, λz) +

√
ρ(s, λz)2 + 4λ2

z/β
)
− p(s). (5.81)

Hence (4.11) becomes the differential equation

∂

∂r
Trr +

α̂

2rv

(√
ρ(s, λz)2 + 4v2/(βs2λ2

z)−
√
ρ(s, λz)2 + 4s2/β

)
= 0, (5.82)

and notice that with the help of the connection

∂

∂r
Trr =

1

r′
d

dR
Trr, (5.83)

into (5.82) it follows that

R∫
Ri

dTrr =

R∫
Ri

α̂

2rv

(√
ρ(s, λz)2 + 4s2/β −

√
ρ(s, λz)2 + 4v2/(βs2λ2

z)

)
r
′
dR. (5.84)

The left hand side of the relation (5.85) is reduced with the help of the boundary

condition (4.12) and in the right hand side we can use (4.6) to replace r′ and perform
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the integration to obtain

Trr(s) = − α̂
2

s∫
si

φ(ρ(s, λz), v, λz, β) ds, (5.85)

in which it is defined that si = ri/Ri and also

φ(ρ(s, λz), v, λz, β) =
1

vs− λzs3

(√
ρ(s, λz)2 + 4v2/(βs2λ2

z)−
√
ρ(s, λz)2 + 4s2/β

)
.

(5.86)

It can be confirmed that the parameter s = r/R is either decreasing (with lower

bound
√
v/λz) or increasing (with upper bound

√
v/λz) for Ri ≤ R ≤ Ro. Since

the boundary value problem is defined such that Pi = 0 and Po = Plat > 0 then it is

concluded that si < so. Consequently it follows that si < so <
√
v/λz. This guaran-

tees a non-zero denominator in the function φ in (5.86) and it allows the integration

(5.90) to be determined.

Once the radial component of the Cauchy stress tensor is obtained via (5.85), the

hydrostatic pressure p(s) follows from (5.79) and other stress components are also

given by (5.80) and (5.81). We have

Tθθ(s) =
α̂

2v

(√
ρ(s, λz)2 + 4s2/β −

√
ρ(s, λz)2 + 4v2/(βs2λ2

z)

)
− α̂

2

s∫
si

φ(ρ(s, λz), v, λz, β) ds,

(5.87)

Tzz(s) =
α̂

2v

(√
ρ(s, λz)2 + 4λ2

z/β −
√
ρ(s, λz)2 + 4v2/(βs2λ2

z)

)
− α̂

2

s∫
si

φ(ρ(s, λz), v, λz, β) ds.

(5.88)
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Figure 5.3 Axial elongation λz on a hollow tube as a function of swelling v taking
α = 0 α̂ = 1, α∗ = 2 and Ri = 1/2, Ro = 1 (so that λlat = Rc). The graphs are the
solution to (5.89) and are for two separate cases of outer pipe radius: Rc = 1.51/3 and
Rc = 21/3, which are chosen so as to give contact v values of 1.5 and 2, respectively.

Moreover, λz is the only unknown in all above relations because the parameter ro is

prescribed as ro = Rc for v > λ3
lat. To solve for λz recall that the requirements of

volume conversation (4.9) and also the zero axial resultant load (4.13) with the axial

component of Cauchy stress (5.85) are used. The latter is

2π

λlat∫
ri/Ri

Tzz(s)

∣∣∣∣
s= r

R

rdr ≡ 0, (5.89)

in which the definition so = ro/Ro = Rc/Ro = λlat is again used and recall that

ri(λz) is given by (4.9). Two different numerical solutions of (5.89) are graphed in

Figure 5.3. As it is seen the solution is consistent with conventional M-R model that

was obtained and shown in Figure 4.4. This leads to obtaining the inner radius from

(4.9) that is shown in Figure 5.4. Once λz and ri(λz) are determined the lateral

confinement pressure follows from Trr|λlat= −Plat which is equivalent to
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Figure 5.4 Inner radius ri on a hollow tube as a function of swelling v taking α = 0
α̂ = 1, α∗ = 2 and Ri = 1/2, Ro = 1 (so that λlat = Rc). The graphs are the solution
to (4.9) and are for two separate cases of outer pipe radius: Rc = 1.51/3 and Rc = 21/3,
which are chosen so as to give contact v values of 1.5 and 2, respectively.

Plat =
α̂

2

λlat∫
si

φ(ρ(s, λz), v, λz, β) ds. (5.90)

The values of lateral pressure are also plotted in Figure 5.5. This plot also shows the

variation of lateral pressure with respect to changing the material parameter ratio

β = α̂/α∗. One special curve is for β → ∞ that is obtained with very large values

of α̂ at a finite α∗. Recall from (5.45) that in this limit the finite material parameter

α∗ retrieves the elastic modulus µ. This figure shows how the lateral pressure also

recovers the hyperelastic behavior that was shown in Figure 4.7.

5.3.3 Explicit solution of the special case v = β3/2

We recall the special case of the relation (5.66) when v = β3/2 for which the

solution ρ(s) is identical to zero for all si ≤ s ≤ so and this corresponds to the second

special case introduced in (5.42). Note that in this case the axial stress component
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Figure 5.5 Confinement pressure Plat on a hollow tube as a function of swelling v
taking α = 0 and β = 1/2 (α̂ = 1, α∗ = 2) and Ri = 1/2, Ro = 1 (so that λlat = Rc)
for longer graphs with Rc = 1.51/3 and Rc = 21/3. The graphs of β = 4, 10 and ∞ are
also plotted for Rc = 1.51/3. Note that the graph of β =∞ retrieves the hyperelastic
behavior shown in Figure 4.6 based on (5.45). Here Plat is normalized by α̂α∗/(α̂+α∗).

given by (5.88) simplifies to

Tzz(s) =
α̂

β1/2

(
λz
β3/2

− 1

λzsi

)
, (5.91)

which is independent of the normalized radius s. The requirement of the zero axial

load invokes that this radial stress is zero for all pointwise radial locations. Note

that this result is unlike the M-R behavior that was described in Chapter IV and

also in contrast with the internally balanced material model with swelling amounts

v 6= β3/2 where the pointwise zero axial stress could not be captured. This pecu-

liar behavior shows that with the internally balanced material, the special value of

swelling makes the axial stress field vanishes while the assumption z = λzZ still holds.
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The condition (5.91) provides the relation

λz =
β3/4

s
1/2
i

, (5.92)

that in conjunction with (4.9) obtains λz. It follows that λz is the solution to the

single equation that is a forth order polynomial

λ4
z −

β3/2

λ2
lat

(1− ζ2)λ3
z −

β3ζ2

λ2
lat

= 0. (5.93)

Since there is only one sign change to the coefficients of the polynomial it follows that

there exists only one root to (5.93) which is the solution to λz. Note that once λz is

obtained from (5.93) then the radial stress from (5.85) simplifies to

Trr(s) = − α̂
2

s∫
si

φ(ρ(s, λz), v, λz, β) ds

= − α̂
2

s∫
si

φ(0, v, λz, β) ds

= − α̂
2

s∫
si

1

vs− λzs3

(
2v

sλzβ1/2
− 2s

β1/2

)
ds

=
α̂

β1/2

s∫
si

ds

v − λzs2
− α̂v

λzβ1/2

s∫
si

ds

vs2 − λzs4

=
α̂

λzβ1/2

(
1

s
− λ2

z

β3/2

)
.

(5.94)

It is clear that with (5.92) this radial stress vanishes at s = si and it is decreasing

(compression) toward the outer radius at which so = λlat and the lateral pressure is

given by

Plat =
α̂

λzβ1/2

(
λ2
z

β3/2
− 1

λlat

)
. (5.95)
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If this pressure is normalized by α̂α∗/(α̂ + α∗) and is renamed to P̄lat it follows that

P̄lat =
β + 1

λzβ1/2

(
λ2
z

β3/2
− 1

λlat

)
. (5.96)

In addition, the circumferential stress form (5.87) reduces to

Tθθ(s) =
α̂

β2
(s− λz) . (5.97)

Since si ≤ s ≤ so ≤ λlat ≤ λz this hoop stress is also compressive. Moreover note that

in a case where this special case coincides with the first wall contact we have s = λlat,

v = λ3
lat and λz = λlat for all si ≤ s ≤ so and hence all three stress components vanish.
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CHAPTER VI

Concluding Remarks,

Speculations and Broader Connections

In this thesis we have shown how swelling can be treated in the framework of hyper-

elastic theory as a parametric volume change. We used the multiplicative decompo-

sition of the deformation gradient to distinguish between swelling and other elastic

accommodations within different processes. This allows for introducing the incorpo-

ration of swelling in the constitutive relations both in the conventional hyperelastic

and in the internal balance theory. In the context of conventional hyperelastic consti-

tutive model we considered spherical and cylindrical geometries and in the former case

allowed the material parameters to depend on the swelling amount. In the context

of the internally balance material theory we considered the cylindrical deformation

and showed how swelling can lead to different response than that of the conventional

hyperelastic theory.

The possibility of modeling a variety of swelling effects has immediate conse-

quences in several areas of application, many of which are motivated by biomechani-

cal modeling. Others have direct bearing on possible mechanical devices that achieve

their control by soft material action. The combined effect of external loading and

internal swelling can give rise to complicated states of deformation. Even in the

simple setting of a spherical shell subject to combinations of simple pressure with

uniform through-thickness (homogeneous) swelling, instabilities can arise that might
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not otherwise be present if either pressurization or swelling was acting by itself. In

this thesis we have explored the role that swelling can have on eliciting qualitative

changes in the pressure-expansion inflation response of spherical deformation. Unlike

in the context of conventional hyperelastic theory where the swelling is imposed as

prescribed deformation, the internally balanced theory makes use of a deformation

gradient decomposition to obtain the portion of deformation that is responsible for

swelling. The additional requirement that obtains the swelling deformation is a nat-

ural consequence of energy minimization with respect to the new decomposition. We

explored aspects of these two constitutive theories for cylindrical deformation of con-

fined plug and tube.

In the first and second chapters considerations have been limited to the deforma-

tions of the spherical symmetry. Generalizing methods of analysis pioneered by Car-

roll in the context of incompressible hyperelasticity we have examined a rather straight

forward constitutive model, one which is motivated by the well known Mooney-Rivlin

model in the incompressible theory, so as to incorporate swelling dependent stiffness

parameters. We have shown how certain dependencies preserve the overall qualita-

tive nature of the inflation process independent of the amount of swelling, whereas

other dependencies do not. In the latter case we have provided general rules, il-

lustrated with examples, showing how certain constitutive forms cause a monotonic

(benign) inflation response in the absence of swelling to become nonmonotonic (burst-

inducing) as the swelling proceeds. Alternative constitutive forms have the opposite

effect, burst-inducing inflation response in the absence of swelling can be mitigated

into benign inflation response as the swelling proceeds. It is also important to note

that the development of surface roughness due to swelling has been observed in solid

hydrogel spheres. This may then give way to an aspherical and facetted surface mor-

phology as the swelling proceeds Bertrand et al. (2016). These are typically confined
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to distinct ranges of overall swelling and may be connected to nonuniform states of

internal hydration (v = v(R) in the notation of the third chapter), especially if the

identified swelling ranges differ on the basis of whether the overall fluid content is

increasing or decreasing.

It is interesting to speculate in the possible broader connections of this work to

physical and biological phenomena. The overall considerations of the present study,

as well as possible future studies that bring to bear the techniques in the above

referenced works, give rise to the prospect that swelling, when viewed as a control

variable, could be manipulated so as to tune the inflation response of spherical shells

and membranes. This includes the possibility of both triggering and avoiding in-

stances of inflation burst. On this basis, one may even speculate to what extent such

processes of regulation might be present in biological systems. For example, colonies

of soft celled creatures are capable of rapidly undergoing complex shape changes. This

includes the green alga volvox in the shape of a spherical shell. At a crucial point

in their embryonic development, volvox essentially turn themselves inside-out in a

process that is conjectured to be triggered by cell shape change at a specific latitude

on the shell Höhn et al. (2015); Haas and Goldstein (2015). An intriguing issue in

this context is the extent to which the global conditions of the type examined here

might possibly abet the resulting snap-through process.

In the final two chapters we have examined the finite strain swelling of cylindrical

plugs (with original outer radius Ro) within a rigid cylindrical tube of radius Rc > Ro,

all with circular cross-section. For a simple plug with no internal cavities or voids the

wall contact deformation involves only a simple axial lengthening.

When the plug is not simply connected, in our case because of an internal channel

of original radius Ri, the deformation after contact involves a combination of axial

lengthening and channel closing. A boundary value problem must be solved in order
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to determine the relative importance of these two ways to accommodate the swelling

volume increase. For a conventional swelling model based on a generalized neo-

Hookean response we show that this boundary value problem has a unique solution.

Asymptotic analysis of the problem shows how the channel radius closing depends

upon v as the swelling becomes large.

Figure 4.8 shows the various trends for the plug’s internal channel radius as the

swelling proceeds. Prior to wall contact the internal channel radius grows linearly with

v causing ri to reach its maximum size when the channel makes contact with the rigid

tube wall. Additional swelling then constricts the internal channel in a manner that

can be addressed analytically both for the immediate post-contact values of v and

then again for sufficiently large v. While these trends are intuitive for the problem

formulated here they can also provide useful insight for various hypothetical elastic

systems involving tubes with multiple layers.

One reason for pointing out these connections is because certain biological tube

organs have such a multi-layer structure, indeed, for the purpose of mechanics mod-

eling, arteries are often regarded as three layered tubes Holzapfel et al. (2000). So is

the windpipe (the trachea) Gou and Pence (2016). Moreover, it is typically the inner

layer that is the most subject to distress and disease, thus exposing it to various

possibilities for inflammation, edema or other phenomena that at least have some

aspect of swelling. The analogy with our above hypothetical tube is however a highly

imperfect one – it would typically be the swelling layer that is the least stiff and not

the central layer. In any event, the type of formalism employed here might at least

provide some insight into the behavior of such biological systems when subject to

inflammatory swelling. Other soft tissue cylindrical structures in the body that are

subject to swelling, although not in the sense of inflammation but rather in the sense

of normal function, include the cervix, especially as it undergoes remodeling during

pregnancy Myers et al. (2015). As indicated by the above references, all of these
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systems are the subject of current biomechanics based modeling.

Finally brain swelling (hydrocephalus), while being confined to more of a spherical

(not tubular) enclosure, is also the object of recent mechanics based modeling Wilkie

et al. (2011). In this case the three layer system identification is again interesting, if

we identify Ri < R < Ro with the swelling brain, and R > Rc with the surrounding

skull. Detailed finite strain treatments relating to this issue are now being developed.

The approach presented in this thesis could aid in the formulation of more precise

mathematical models of this important human health concern.
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