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ABSTRACT 

CLINICAL INSIGHTS FROM MOUSE MODELS OF BREAST CANCER 

By 

Jonathan Paul Rennhack 

Breast cancer presents an enormous public health concern.  One out of eight women 

will experience breast cancer in her lifetime.  To understand the root of breast cancer initiation 

and progression, many multi “-omic” projects have been undertaken. This effort has been 

extremely fruitful in in the discovery of many new genomic events in breast cancer.  However, 

what the studies lack is the functional impact of the genomic events discovered.  To understand 

this, researchers must use in vitro and in vivo models of the disease. One common in vivo model 

used is the genetically engineered mouse model.  Despite their widespread use, there is no 

integrative database to capture the similarity and differences between human tumors and 

genetically engineered mouse models.   

To begin to address this critical need, we started by identifying genomic copy number 

alterations (CNAs) in 600 tumors across 27 major mouse models of breast cancer through the 

application of a predictive algorithm to publicly available gene expression data.  It was found 

that despite the presence of strong oncogenic drivers in most mouse models, CNAs are 

extremely common but heterogeneous both between models and within models.  

Due to the predictive nature of the previous study, we have completed whole genome 

sequencing and transcriptome profiling of two widely used mouse models of breast cancer, 

MMTV-Neu and MMTV-PyMT.  This genomic information was integrated with phenotypic data 

and CRISPR/Cas9 studies to understand the impact of key events on tumor biology  



 
 

To functionalize this data, we followed up on one key amplification event that we found 

on chromosomes 11D.  We identified this event to be associated with worse distant metastasis 

free survival due to the presence of Co11a1 and CHAD within the amplification event.  This was 

identified through the use of a wound healing assay, tail vein injection, and mammary fat pad 

injection of CRISPR-Cas9 generated knockout cell lines for Col1a1 and CHAD.  In all assays the 

reduction of metastatic potential was seen.  Importantly, we are also able to identify the 

vulnerability of tumors with the 17q21.33 amplicon to AKT targeted therapy.  This was 

predicted through a number of high throughput genomic and drug compound screens in which 

unique vulnerabilities were identified in those cell lines containing the 17q21.33 amplicon.   

Here we also identified a conserved mutation in phosphotyrosine receptor phosphatase 

type H (Ptprh).  The mutation is highly conserved in mouse models of breast cancer and is 

identified to be mutant in 81% of MMTV-PyMT tumors.  A key finding is that Ptprh mutations 

are associated with high EGFR activity, lower latency and more aggressive tumors in a variety of 

cancer types.  Importantly when cell lines with the Ptprh mutation were compared against 

those without the mutation we identified an increased sensitivity to EGFR targeted therapy 

such as erlotinib associated with Ptprh mutation.   

 Through these studies we have identified key genomic alterations within mouse models 

of breast cancer.  Both of the explored events serve as biomarkers of treatment response and 

could change the course of therapy for patients.  We believe that these events are just case 

studies and many other events exist within mouse models.  Taken together this shows the 

critical need to increase the depth and breadth of full characterization of mouse models of 

breast cancer.  
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INTRODUCTION 
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BREAST CANCER 

Breast cancer is an extremely prevalent disease.  At its most basic definition it is 

uncontrolled cellular proliferation of tissue in the breast. In fact, it is estimated that there will 

be approximately a quarter million new diagnoses of breast cancer in the US in the year 20181.  

Compounded over the life span of a women, 1 in 8 women, will experience breast cancer in 

their lifespan2.  There is also a rate of 1 in 1000 for male breast cancer3.  The sheer number of 

cases causes breast cancer to be a huge public health concern. 

Breast cancer largely begins in two areas.  These are the duct of the mammary gland 

and the milk producing lobule.  Ductal breast cancer is the most common with almost 90% of all 

cases resulting from this cell type4.  Lobular breast cancer is much rarer.  Both subtypes are 

divided into two classes: invasive and in situ. A breast cancer is classified as in situ if it has not 

invaded out of its original structure (duct or lobule) to the surrounding tissue.  If this is the case, 

the survival rate of the patient is very high4.  Survival rates are worse for invasive disease if they 

started in the duct or lobule4.  Other rarer types of breast cancer such as inflammatory breast 

cancer are less understood and thus have fewer treatment options and worse outcomes. 

For women, breast cancer is the second leading cause of death behind lung cancer5.  

The average five-year survival rate of women with breast cancer is 90%6.  However, this is 

closely linked to staging of the disease.  Stage 0 or 1 breast cancer, local disease, has a five-year 

survival rate of close to 100%.  However, as the disease progresses to stage 2, 3, or 4 the 

survival rate drops dramatically.  Stage 4 has a five-year survival rate of only 22% 6.  The poor 

survival associated with stage 4 breast cancer is because this staging of breast cancer 
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represents systemic disease.  At this disease stage, the tumor has invaded beyond the breast 

and colonized different organs in a process called metastasis. 

Once the disease is metastatic it is systemic.  This causes several unique challenges in 

treatments with regards to treatment delivery and efficacy which are explored in later chapters 

of this work.  Ultimately the colonization of a vital distant organ, not the primary tumor in the 

breast, results in the death of the patient.  To improve patient outcomes researchers must 

develop therapeutic regimens which not only treat the primary tumor but also prevent the 

development of new and kill metastatic lesions existing at the time of diagnosis. 

TUMOR METASTASIS 

The process of tumor metastasis involves a number of complex stages each of which has 

its own challenges that the tumor cell must overcoming.  Each of these stages have been 

profiled from a gene expression point of view7,8, but there is still much more work to do to 

understand all of the genes involved with tumor metastasis.  

The first stage of metastasis is the tumor cell must develop invasive properties.  The 

cause of this remains unknown, but a number of factors have been implicated in the initiation 

of the metastatic cascade.  These factors include hypoxia9 and paracrine signaling10 from the 

tumor.  Once the cell has acquired an invasive phenotype, it can begin to migrate to the 

surrounding tissue, or enter the lymphatic system or circulatory system.  Key proteins have 

been identified in the extracellular matrix11 that encourage migration and the perpetration of 

the invasive phenotype. 

The process of entering the blood vasculature is call intravasation.  Once in the blood 

stream the cell has a number of factors it must evade to survive.  This includes an unnatural pH, 
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surviving in a liquid environment rather than a solid tissue, and nutrient restraints.  The 

mechanisms that a tumor cell uses to survive in the vasculature is still unknown.  However, it 

has been shown that there is increased survival of cells which migrate in clusters as well as 

those who are able to attract platelets as a level of protection12. 

The collection of tumor cells and platelets are relatively bulky and tend to get caught in 

capillary beds.  Once stuck in the capillary bed the tumor must leave the vasculature in a 

process called extravasation and colonize the distant organ. A still relatively unstudied part of 

the metastatic cascade is how tumor cells begin to proliferate again in the distant organ.  In 

some cases, it has been shown that the tumor cell in the distant organs can remain dormant for 

decades before becoming active and forming a metastatic lesion13. 

The most common site of breast cancer metastasis are capillary rich organs including 

the bone, brain, liver and lung14. Interestingly, each of these metastatic sites show unique 

transcriptomic profiles.  Work by the Massague group identified that cells with a unique 

transcriptional profile will preferentially colonize the lung15,  bone16, and brain17.  The causes 

behind the identified transcriptional changes are largely unknown.  Surprisingly, whole genome 

sequencing has not identified characteristic changes in the genome between metastatic 

locations18.  This indicates that the changes are not hardwired into the tumor cell but are of a 

more transient nature.  Emerging evidence has pinpointed that these changes may be 

epigenetic in nature and are flexible throughout the lifespan of the tumor and metastatic 

cascade19.  The epigenetic nature of the changes reveals an interesting therapeutic avenue 

which is currently being explored for treatment of the metastatic lesions. 
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GENOMIC STABILITY 

 Tumor metastasis is not the sole process involved in the progression of tumors.  In 

Hanahan and Weinberg’s seminal paper stating the changes that must occur for cancer to occur 

they outlined the six hallmarks of cancer as: sustained proliferative signaling, evasion of growth 

suppressors, activation of invasion and metastasis, enabling replicative immortality, introducing 

angiogenesis, and resisting cell death20.  While the mechanism of how each of these processes 

is activated is still under debate, Hanahan and Weinberg agree that an enabling characteristic 

underlying each hallmark is the presence of genomic instability. 

 Genomic instability causes changes in the genome of a cancer cell.  These changes come 

in three varieties: Single nucleotide variants or short indels, gene copy number changes, and 

gene translocations. Each change alters the behavior of a critical protein in each process and 

leads to tumor progression. 

 A common type of variant, single nucleotide variants and indels are frequent in breast 

cancer.  In these types of variants, a single nucleotide is changed, or a small section of 

nucleotides are lost or gained.  This in turn will alter the protein structure and eventual 

function.  Across all subtypes of breast cancer, it was found that PIK3CA, PTEN, AKT1, TP53, 

GATA3, CDH1, RB1, MLL3, MAP3K1, CDKN1B, TBX3, RUNX1, CBFB, AFF2, PIK3R1, PTPN22, 

PTPRD, NF1, SF3B1 and CCND3 were all mutated 21.  Many of these mutations have been 

identified to have a pro tumorigenic effect through activating oncogenic changes others 

through loss of function mutations of tumor suppressors.   

 Copy number alterations are extremely common in breast cancer.  They present as 

either gene deletions or gene amplifications.  These alterations can span either short regions 
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encompassing just a few genes to large regions spanning entire chromosomal arms and cause 

changes to many genes.  Gene amplifications typically present as either chromosomal tandem 

repeat regions or extrachromosomal double minute events.  In tandem repeats a region of the 

chromosome in duplicated in series head to tail.  For double minute events the amplification 

event has broken from chromosome and has formed a small chromosome like structure 

containing the amplified region. 

 The process of gene amplification is still debated however the prevailing hypothesis 

involves mistakes in the process of DNA replication during mitosis.  There have been four main 

models proposed for the mechanism of gene amplification. These include: extrareplication and 

recombination, the breakage-fusion-bridge (BFB) cycle, double rolling-circle replication (DRCR), 

and replication fork stalling and template switching (FoSTes)22. 

 In extrareplication and recombination a secondary replication fork is formed during DNA 

replication.  This creates an extra copy of the region being replicated.  After completion of the 

replication the newly created “replication bubble” will break and fuse forming classic double 

minute structures.  After the double minutes are formed they are able to stay as 

extrachromosomal structures or be embedded in chromosomes through break and repair 

events 23–26. 

 The breakage-fusion-bridge (BFB) model supports the generation of both tandem 

repeats and double minutes.  In this model, a break occurs in the chromosome.  During 

replication, due to the lack of telomere the broken ends of a chromosome are fused together 

creating head to tail repeats.  This can continue for many cycles and create many head to tail 

repeats or during subsequent cell divisions homologous recombination can occur.  If 
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recombination occurs between replicated intrachromosomic events, the resulting structure is a 

double minute27–30. 

 The last two models, DRCR and FoSTes are relatively young models and do not have the 

same type of support from a molecular biology point of view and from a community acceptance 

standpoint.  DRCR has been described as an important experimental system and is widely 

utilized in the Cre-Lox system; however, there is no evidence that this occurs in cancer31.  

FoSTes also has little support to no evidence of occurring in cancer but has been shown to be 

involved in other diseases including Pelizaeus-Merzbacher and Charcot-Marie-Tooth disease32.  

For the sake of brevity and the lack of involvement of these models in cancer they will not be 

discussed further here 

 Common copy number alterations in breast cancer were identified by the TCGA group.  

Across breast cancer regardless of subtype TCGA identified PIK3CA, EGFR, FOXA1 and HER2 as 

focally amplified and MLL3, PTEN, RB1 and MAP2K4 as focally deleted21.  However, it is likely 

there are many more gene amplification and deletions that are influential on tumor behavior or 

are subtype specific. 

 The last type of instability event, translocations, are not well classified in breast cancer. 

In this event one part of a chromosome breaks and is fused to a new location either on the 

same chromosome or a different chromosome.  The resulting structure can have a number of 

effects.  It can link a gene with the wrong regulatory regions.  It can cause premature ending or 

elongation of the translation of a protein. In rare cases, the resulting structure can cause the 

production of a fusion protein in which two functional parts of a protein are fused together 

causing the creation of a new protein with oncogenic properties.  Classical translocation events 
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such as BCR-ABL are extremely rare and it was believed until recently that there were very few 

defining breast cancer translocation.  However recent work has begun to show that subsets of 

patients do have oncogenic translocations including various NRG1 translocations and a 

recurrent MAGI3–AKT3 translocation33. 

The events described above are all somatic events.  Thus, they arise in somatic cells in 

the patient and are not passed on to the offspring.  This is the case in 90% of breast cancer 

patients.  However around 10% of patients have disease which is influenced by germline 

mutations.  The most common of these are mutations in BRCA1 and BRCA2.  However there 

have also been inherited mutations in PALB2, PTEN, NBN, RAD51C, RAD51D, MSH6, and PMS2 

as well34. 

BREAST CANCER HETEROGENEITY 

Another compounding factor in the poor outcomes associated with breast cancer is the 

heterogeneity associated with the disease.  Due to difference in selective pressure and random 

chance compounded with the inherent genomic instability in cancer each breast cancer is 

unique.  There are differences in growth rate, metastatic ability, and response to treatment.   

There is also heterogeneity within a single tumor.  Different regions are under different 

selective pressures.  Due to the inherent genomic instability in tumor cells, this lead to the 

tumor being under Darwinian principles.  In a survival of the fittest type model, different 

regions of the tumor will have a different mutational profile.  The most apparent indicator of 

the heterogeneity found within a tumor is the presence of multiple cell morphologies or 

histological subtypes in different regions of the tumor.  There are also genomic studies that 

have confirmed this diversity including aCGH as well as single cell sequencing studies genomic 
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and transcriptomic level.   Recent studies have shown differences in key oncogenic pathways 

such as TP53 and PI3KCA35.   

The type of diversity noted above is spatial heterogeneity.  However, throughout the 

development of the tumor there has also been evidence of temporal heterogeneity.  The 

temporal heterogeneity typically presents itself in two unique situations.  In the case of 

metastasis, a group of primary tumor cell seed a distant organ.  This distant organ has distinct 

selective pressures and shifts the evolution of the metastatic site in a unique direction from the 

primary tumor.  This increases the diversity of the tumor. 

A large selective pressure that a tumor undergoes during the course of disease is 

treatment.  This pressure leads to a bottleneck in evolution.  In this case, those clonal 

population that are sensitive to the treatment are killed but the resistant populations can 

survive and repopulate the tumor and or metastatic lesions.   

This has obvious implication in the patient treatment and survival and indicates a 

specific model for how cancer care might be handled in the future.  One could envision a 

situation where a patient that is diagnosed with go through various rounds of biopsy, genetic 

profiling, treatment, relapse, and subsequent biopsy to understand the new dominant clonal 

population.  The understanding of each genetic change of the dominant clone and tailoring 

treatment accordingly has spawned the field of research call precision medicine. 

PRECISION MEDICINE 

Precision medicine is the tailoring of medical treatment to a particular patient group 

based upon genomic or imaging analysis of a disease.  The goal of the field is to stratify diseases 

in such a way that treatment can be tailored to a particular disease subtype and improve 
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patient outcomes through identifying therapeutic vulnerabilities or by reducing treatment side 

effects.   In this pursuit scientists and clinicians hope to advance the field in such a way to 

provide the right treatment to the right patient at the right time. 

 The field of precision medicine is not a new field.  It has long been common practice to 

tailor disease treatment to specific patient populations.  Notably in cancer, in the early 1980’s it 

was discovered to give patients positive for Estrogen Receptor competitive estrogen binding 

molecules like tamoxifen36 significantly improved patient survival.  However, there has been 

renewed interest in the field since the establishment of the Precision Medicine Initiative by 

President Barack Obama in the 2015 State of the Union address.  The call to action and 

founding of the initiative have been ignited by recent advances in high throughput technology 

to understand disease on a molecular level in a large-scale manner. 

 Due to the genetic nature of the disease, the field of cancer research and treatment has 

embraced the use of precision treatment more quickly than other fields.  Breast cancer, has 

seen large advances in patient outcomes due to the use of tailored therapeutics and genetic 

classification of the disease.    Historically, breast cancer has been classified on the status of 

Estrogen Receptor (ER), Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 

2 (HER2) as well as proliferative markers such as Ki67.   

ER is the single most important marker for clinical classification of the disease.  75% of 

breast cancers are classified as ER positive and are shown to be response to estrogen targeting 

therapy.  The other clinically relevant endocrine marker in breast cancer, PR, is found in 

approximately 70% of breast cancer patients.  While ER and PR status do not differ frequently 

they are all markers of responsiveness to endocrine targeted therapy37. 
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HER2 is an extremely important marker for clinical decision making regarding treatment.  

It has been identified that approximately 20% of breast cancers have amplification and/or 

overexpression of the HER2 gene38,39.  This has been shown to be a member of the epidermal 

growth factor receptor protein family and alteration of these family members have been shown 

to cause uncontrolled cell proliferation.  Importantly breast cancer patient’s classified as HER2 

positive are responsive to HER2 targeted therapy.     

 Ki67 is a proliferative marker.  It identifies highly proliferative breast cancer patients.  

Due to the proliferative status of these tumors, it is an important marker of response to 

adjuvant chemotherapy 40.  A combination of ER, PR, HER2, and Ki67 status has largely driven 

the course of treatment for the majority of recent breast cancer patients. 

 However, with the advancement of transcriptomics and the advent of DNA microarray 

technology breast cancers began to be profiled on their global genomic profile.  Based upon 

hierarchical clustering of breast cancer patients four subtypes were identified Luminal A, 

Luminal B, Basal, and HER2 positive 41.  More recently a new subtype, Claudin Low has been 

established 42.  Luminal A and B tumor cells resemble cells that start in the lumin of the 

mammary duct.  These tumor types tend to be ER or PR positive with luminal A being slower 

proliferating and thus not responsive to traditional chemotherapy.  The vast majority of basal 

tumors are ER, PR, and HER2 negative, also known as triple negative, and resemble cells that 

are outside the mammary duct.  Basal tumors do not respond to endocrine therapy or HER2 

targeted therapy.  The HER2 molecular subtype is not the same as HER2 positive tumors but like 

basal and triple negative they correlate closely.  The HER2 molecular subtype of tumors are 

responsive to HER2 targeted therapy.  Despite the PAM50 subtype’s potential for driving 
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therapy at this point it does not add much information to ER, PR, HER2, and Ki67 markers in 

terms of clinical decision making. 

 However, there are other gene expression-based assays which are routinely used in 

making treatment decisions.  These are most commonly Mammaprint43 and Oncotype DX44.  

Oncotype DX is 21 gene signature used in ER+ patients.  This is used to predict recurrence and 

identify a subset of ER+ tumors which are responsive to chemotherapy.  Mammaprint is a larger 

70 gene assay which is used regardless of ER status.  Mammaprint helps to identify tumors that 

are likely to metastasize and a class to respond to chemotherapy. 

 With the drastic drop in next generation sequencing pricing, the development of 

sequencing-based panels was accelerated.  The most common of these, the Foundation One 

(“FoundationOne - Foundation Medicine,” 2018) panel, include 61 genes that are tested for 

sequence or copy number variants.  Based upon the status of these genes the report matches 

therapeutics and clinical trials that the patient might benefit from.   

 The advances in transcriptomic and next generation sequencing have rapidly brought 

down the price of understanding the tumor genetics and advancing precision medicine.  

However, the problem has now shifted from generating the data to understand the genomic 

landscape but correlating that data with clinical outcomes.  

“-OMIC” PROFILING OF THE DISEASE 

The advances in precision medicine have mirrored the advances in high throughput “-

omic” technologies.  There have been three major advancements that have caused a dynamic 

shift in the field of precision medicine.  These are the ability to profile the entire transcriptome 

through the use of microarray technology, advancements in next generation sequencing to 
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profile the transcriptome and genome, and most recently the advancement of single cell 

profiling.  Each of these technologies have revealed a deeper understanding the large amount 

of heterogeneity in breast cancer. 

The earliest profile of the transcriptome in a high throughput manner was made 

possible through the invention of cDNA Microarrays.  In short, the microarrays are chips with 

tens of thousands of oligos fused to them which are unique to a specific transcript.  To analyze 

transcription levels, RNA is reverse transcribed to cDNA, labeled with a fluorescent probe and 

allowed to flow across the chip.  The amount of transcript level in interpreted through, after a 

number of normalization steps, the intensity of bound fluorescent cDNA at each fused oligo 

location.  There are two major types of chips - Agilent and Affymetrix. 

Though the outcome of both types of microarrays are the same, the transcriptomic 

profile of the tumor, there are key differences.  Agilent assays use unique 60-mer probe IDs.  

Furthermore Agilent uses a Cy3, Cy5 dye system to calculate expression values46. 

Affymetrix microarrays use a 25-mer system which contains exact matches to the gene 

of interest and probes with a mismatched nucleotide.  This match/mismatch system allows the 

calculation of real signal to noise to be completed with just a single dye system47.  This is in 

contrast to the two dye Agilent system described earlier.   

While both of these systems fill similar niches of transcription, they produce slightly 

different results.  In head to head comparisons Affymetrix seems to be able to pick up more 

minor differences in transcriptional levels.  However, this is at the cost of more false negative 

gene calls.  Agilent has less false positives but transcriptional differences must be relatively 

large to be picked up on this technology48. 
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Microarray technology has several advantages.  The major advantage that microarray 

had over other types of platforms is the cost.  There is also an advantage with the speed and 

ease that data can be collected from microarrays.  Microarray experiments can be completely 

quickly and with no advanced computing power needed.  Furthermore, once the data is 

normalized the file sizes are small and can be analyzed using simple scripts or even 

commercially available spreadsheet management software such as Microsoft Excel.  However, 

there are key deficiencies in microarray technology.  The most glaring deficiency that 

microarrays have is their limited ability to determine the frequency at with SNPs occur in a 

transcript, the abundance of splice forms, and the presence of rare transcript.   

Another issue with microarray technology is the variability of microarray data.  There 

will be large differences in the data returned based upon each experimental run.  These are 

known as batching effects and can largely be removed through mathematical manipulation to 

remove variance.  However, with the use of this software one can remove technical artifacts 

that have been introduced but also remove some biological variance.  This mutes any biological 

differences seen and makes it difficult to identify small differences in the biological variation. 

With the dramatic decrease in the cost of RNA sequencing (RNA-seq) has become more 

common than microarray because it addresses some of these key deficiencies.  RNA-seq also 

has the first step of conversion to cDNA.  However, next it involves the shattering of cDNA into 

smaller chunks and the fusing of adapter sequences to one or both sides of the fragment.  

These known adapter sequences are fused to a plate to allow for the fluorescence based 

sequencing of the unknown regions.  Each of these unknown sequences, called reads, are then 

mapped to their transcriptomic location.  The relative abundance of each transcript is 
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calculated from the number of reads that map to a particular transcript after size of the 

transcript is adjusted for.    

The largest benefit of RNA-seq is the quantity of data generated.  Nucleotide variants, 

alternative splicing, as well as the identification of rare transcripts can easily be identified using 

RNA-seq.  However, the drawback of the RNA-seq is the accessibility of the data.  Due to the 

large file sizes and scale of the data, an enormous amount of processing power must be used to 

analyze the data in a time friendly manner.  This usually requires the use of a high performance 

compute cluster either locally or in the cloud.  Also due to the relatively young age of the field 

the pipelines for data analysis are not well worked out and many times software is not user 

friendly.  This makes the burden for entry to dealing with NGS data relatively high. 

Coupled with the advance in RNA-seq came the ability to sequence the entire genome.  

Using a workflow similar to RNA-seq, a researcher can now determine the entire genomic 

landscape of a tumor.  This includes nucleotide variants in both coding and non-coding regions 

of the genome, copy number changes, and translocations.  The amount of information the one 

is able to obtain from next generation sequencing (NGS) is directly proportional to the depth of 

coverage (the theoretical amount of times that the entire genome has been sequenced). With 

deep enough sequencing, one can also understand the frequency at which a variant occurs 

throughout the tumor and give some insight into the clonal heterogeneity within the tumor.  

Further information about the intratumoral heterogeneity can be obtained through the 

use of single cell sequencing technology.  This technology is emerging and has become 

widespread in the last two years.  With the advance of DNA and RNA amplification technology 

as well as single cell isolation technologies it is now possible to perform NGS of RNA and DNA 
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on single cells.  After the single cell isolation and amplification of DNA or RNA, the process of 

data generation and analysis is extremely similar to RNA-Seq and DNA-Seq.  The major 

drawback of this type of data is similar to the RNA-seq and DNA-seq where there is a large 

amount of computational power required to analyze the data.  Also, there is controversy in the 

field as to the utility and translatability of findings using single cell technology.  

CELL LINES 

 A key tool in the study of what each genomic event does in cancer is through the use of 

in vitro cell line experimentation.  The first cell line was originally established in the early 1950’s 

by George Gey49.  This cell line, named HeLa, was a cervical cancer line and it revolutionized the 

way that cancer was studied.  With this line, it was now possible to culture a cancer line with 

normal cell culture media and perform a host of in vitro experiments. 

 Shortly after the derivation of the HeLa line, many other lines were developed including 

the first breast cancer line, BT-20 in 1958.  Since that time a variety of lines have been 

developed representing various subtypes of breast cancer. With the establishment of various 

cell lines researches have virtually unlimited access to a relatively homogenous population of 

tumor cells for experimentation. 

 This has been paired with various genomic techniques such as siRNA, TALEN, and CRISPR 

to manipulate the genomic and expression landscape of many lines to tease out hypotheses 

and make translational findings.  Another key strength of the model system that complements 

nicely with the ease of genetic engineering is the ability of high throughput screening.  The cell 

line system allows for the ease of global siRNA or CRISPR and drug screens to identify key 

dependencies in various tumor types 
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 Two major studies through the Broad institute and Sanger Institute have helped to 

define vulnerabilities of cell lines in regard to genomics and chemical compounds.  With the 

Broad project, named cell dependency map, a panel of cell lines has been carefully gnomically 

characterized and then screened with a genomic siRNA51 and CRISPRi screen52.  This analysis 

allowed for correlation of genomic events including, single nucleotide variants (SNVs), Copy 

number variants (CNVs), and translocations with genetic dependencies53. The Sanger group 

took a similar approach where they identified well characterized cell lines and subjected them 

to a high throughput screen.  However, instead of using genomic purturbins they used chemical 

compounds with the hope of identifying compounds that will target specific genomic events54.  

The goal is that these compounds would also target tumors in patients with similar genomic 

changes as those identified in the cell lines. 

 However, there has been debate about the translatability of findings with cell lines to 

the clinic.  This largely is rooted in the environment which they are grown.  The majority of cell 

lines are grown on a 2D plane in plastic dishes.  This is very different from the three-

dimensional complex tissue setting that a tumor is typically found in.  The differences have 

been shown to cause major differences in drug response between a 2D cell culture system and 

a 3D complex environment. 

 Furthermore, many cell lines, especially in breast cancer, are not derived from the 

primary tumor.  Instead they are derived from distant metastatic lesions, pleural effusions, and 

ascites.  It is predicted that due to the large transcriptional differences present in each site it is 

predicted that cell lines derived from a metastatic lesion may not represent a primary tumor56. 
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 Many of these differences are represented when a cell line is transplanted into a mouse 

host.  Importantly the largest change is that many cell lines derived from metastatic tumors 

have lost their ability to metastasize in the mouse.  This fact along limits the utility of breast 

cancer cell line in vivo. 

PATIENT DERIVED XENOGRAPH MODELS 

 In order to improve on cell line research, researchers developed patient derived 

xenograft (PDX) models.  In these models, tumor biopsies are taken directly from the patient 

and implanted into a mouse host within hours.  As of 2016 over 500 different PDX models have 

been created from breast cancer patients57.  These models represent a variety of histological 

and molecular subtypes of cancer.  These models have been shown (at least initially) to reflect 

their parent tumor with genomic alterations, gene expression, histology, and treatment 

response58. 

 The obvious benefit to using PDX mouse models is the quick translatability to the clinic.  

It has been shown that in a number of studies and drug designs that a response in PDX is 

indicative of a response in humans58.  This not only allows for the potential impact on the clinic 

immediately, but it also provides an import resource for moving treatments to clinical trials.  In 

fact, they serve as an early indicator as to if a novel treatment will pass a clinical trial. 

 However, despite these advantages a number of flaws exist with the PDX models.  The 

models only represent the most aggressive cancers and only represent a relatively small 

amount of the diversity found in breast cancer patients.  In one such study where novel PDX’s were 

derived, 113 tumors were implanted with an overall take rate of 27.4% (31/113). These were highly 

skewed towards basal breast cancer subtype.  Specifically, the take rate was 51.3% (20/39) in basal 
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cancer, 26.5% (9/34) in HER2+, 5.0% (2/40) in luminal B and 0% (0/3) in luminal A. Furthermore, 

through multiple passages the PDX models undergo selective pressures and develop mouse 

specific genomic changes.   

 The biggest challenge to the PDX models is the presence of human tissue in mouse.  This 

causes unnatural interactions between the human tumor and the stroma from the mouse.  

Furthermore, the mouse must be immunocompromised in order to prevent immune rejection 

of the foreign tissue.  With the renewed interest in the tumor and its relationship to the 

immune system this has become an increasingly large flaw with PDX models.  To combat this, 

researchers have developed humanized mouse models, but these lines are extremely expensive 

to create and maintain.  Thus, the model is cost prohibitive for large scale studies such as those 

needed for high throughput drug treatment studies.   Due to these limitations, genetically 

engineered mouse models have become increasingly popular to use. 

TRANSGENIC MOUSE MODELS 

Mouse models are an extremely important tool in understanding basic tumor biology.  

To initiate tumorigenesis in mice, researchers have employed several strategies including 

chemical carcinogen treatment, viral infection, and genetically engineered mouse models 

(GEMMs).  Using these models, key oncogenes and tumor suppressors have been characterized.  

Furthermore, many models have been created to model different subtypes of the disease and 

various characteristics such as tumor metastasis or genomic instability. 

The most common chemically induced breast cancer tumor is generated by giving 7,12-

dimethylbenz[a]anthracene (DMBA) orally59.   This model has been shown to create mammary 

tumors in 75% of mice with an average latency of 22 weeks.  Importantly this model has helped 
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reveal the full process of exposure to a carcinogen, to mutational impact, to tumorigenesis 

(Currier 2005).  Also, these tumors are shown to have a variety of histological subtypes and 

pathways active which is reflective of the human disease.  Despite these similarities to the 

human disease criticisms of the model remain due to the limited scope of tumorigenesis in this 

model: Many human breast cancers are not due to chemical carcinogen exposure. 

The most early studies of most models began last century with the identification of a 

number of inbred strains which had a tendency to develop breast cancer60.  To begin to 

understand why these specific strains developed tumors more frequently than other strains, 

crosses were performed between high incidence strains and low incidence strains.  It was 

shown that there was a high influence of the mother on the incidence of tumorigenesis in the 

offspring.  This indicated that there was a sex linked or epigenetic factor driving the tumors in 

the high incidence strains.  Early work by Bitner suggested that this influence was in fact milk 

derived61 and follow-up work showed that it was in fact a virus, named the mouse mammary 

tumor virus (MMTV), which caused tumors.  Despite the fact that this virus was poorly infective, 

and the model was much maligned about its relevance it was found that the viral protomer 

could be used to drive gene expression in the mammary gland. 

To have an in-depth view of each discovered oncogene researchers have utilized 

GEMMs.  In many models a tissue specific promoter such as the MMTV or WAP (whey acid 

protein) promoters are used to drive tumorigenic in a mammary specific manner with some 

leaky expression noted in other endothelial cells.  These models allow for the identification of 

specific changes or dependencies related to a specific oncogene or tumor suppressor of 
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interest.  Two key models, the MMTV-Neu and MMTV-PyMT, have had a remarkable impact on 

the discovery of basic tumor biology. 

The MMTV-Neu mouse model was meant to mimic HER2 amplified subtype of cancer.  

In this model, a non-activated form of Neu is overexpressed in the mammary gland.  This causes 

the development of mammary tumors with a relatively long latency.  Tumors develop in 50% of 

mice with a median latency of 202 days63.  Importantly, these tumors were shown to carry the 

phosphorylated form of Neu; indicating that the tumors were in fact driven by the Neu 

transgene.  Beyond this, the tumors showed a singular histological subtype of 

adendocarcinoma.  Like human HER2 positive tumors, 72% of tumors formed in the mouse 

model were shown to be metastatic to the lung.  A further finding which increased the 

translatability of the model is that it has been shown to have similar oncogenic signaling 

pathways as HER2 positive tumors.  Notably this includes AKT and the E2F family of 

transcription factors64. 

The other model discussed at length in this thesis is the MMTV-PyMT tumor model.  The 

MMTV-PyMT model uses MMTV promoter to drive expression of the middle T antigen and 

subsequently generate mammary tumors65.  This tumor model is highly aggressive and 

metastatic.  Tumors developed with an average latency of 45 days in this model and the 

majority (94%) of mice had metastatic disease to the lung.   The molecular pathways associated 

with this model are also consistent with human tumors66.  Furthermore, the model like the 

human disease produces a variety of histological features. 
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RATIONALE FOR DISSERTATION 

 To improve patient outcomes, I believe that we must continue to advance the field of 

precision medicine with an eye towards treatment of tumor metastasis.  We must develop 

therapeutic regimens that match the right therapy with the right patient, at the right time.  To 

pursue this goal, we must identify biomarkers present in the tumor that are associated with 

various tumor behaviors and ultimately treatment response.  

 In order to study this, I chose to use genetically engineered mouse model systems.  I 

believe that GEMMs are an ideal model system for the discovery of new biomarkers for a 

number of reasons.  Importantly, tumors formed in many of these models are metastatic.  This 

is in contrast to cell lines and xenograft models where metastases are rare after orthotopic 

injection.  Furthermore, mouse models undergo evolutionary selection throughout their 

development.  Despite the presence of oncogenic initiating events, the mouse model is still 

subjected to Darwinian pressures.  Other models such as PDX and cell lines are already 

transformed and do not have the same type of pressures.  This limits their utility for discovering 

new tumor influencing genomic event.  Finally, genetically engineered mouse models have 

been shown to be heterogeneous and capture a wide range of human tumor diversity.  The 

diversity present in mouse models allow findings in this system to be readily translated to the 

clinical setting.  On the other hand, PDX and cell line models capture a relatively small patient 

population. 

 Despite the wide spread use of mouse models, there remains a critical need to 

understand which models resemble which subtypes of human breast cancer.  Historically, 

researchers chose their model based upon the initiating oncogenic event.  That is if a study is 
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on HER2 positive tumors, a researcher might choose to use the MMTV-Neu mouse model.  Or if 

one was interested in basal tumors an MMTV-Myc mouse model may be used.  However, these 

may not be the best option.  Recent work has shown the MMTV-Neu tumors to be much more 

similar to Luminal A or B tumors than HER2 positive tumors from a transcriptional viewpoint.  

Furthermore, MMTV-Myc tumors have been shown to be extremely heterogeneous with some 

tumors resembling basal tumors but many others resemble other human breast cancer 

subtypes.  In fact, it was shown that many mouse models are extremely heterogeneous and the 

adage “One oncogene, one tumor” is false when it comes to mouse models. 

 This heterogeneity has been profiled in a few papers from a transcriptional viewpoint. 

However, what causes this heterogeneity is unknown.  I set out with the central hypothesis that 

genetically engineered mouse models have the same underlying genomic instability as human 

cancers and are subjected to the same evolutionary forces.  I first wanted to pursue this at a 

copy number level.  I designed an experiment to identify the gene copy number changes 

present in mouse models of cancer. 

 To pursue this, I assembled a large database of 27 different mouse model of breast 

cancer and 600 tumors spread across the models.  This database was of publicly available 

transcriptomic data from the various mouse models.  From this transcriptomic data I used a 

previously established predictive algorithm to identify gene copy number variants.  After calling 

copy number variants I worked to identify key variants in each model and how these variants 

were reflective of human breast cancer. 

 This analysis revealed, as predicted, mouse models had a large number of copy number 

changes in them.  Furthermore, the copy number variants reflected the heterogeneity found in 
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the model.  Importantly I identified conserved copy number variants in both mouse and human.  

However, these variants were not in traditional tumor suppressors or oncogenes.  From these I 

hypothesized that the events were causing other evolutionary advantages for the tumor and 

maybe involved in other aspects of tumor progression such as angiogenesis or metastasis.  

 To follow-up on the prediction that copy number variants were involved with secondary 

tumor characteristics and due to the predictive nature of the previous study I sought to 

perform an integrative copy number analysis.  In this experiment I performed next generation 

whole genome sequencing on two highly utilized mouse models (MMTV-PyMT and MMTV-

Neu).  With this data I identified single nucleotide variants, copy number variants, and 

translocations.  I integrated these variant calls with transcriptomic data to get a full 

understanding of the genomic and transcriptomic landscape of the tumors.  Furthermore, I 

integrated these changes with tumor phenotypes with an emphasis on tumor metastasis.  In 

the final stage of this study I used CRISPR-Cas9 experiments to confirm phenotypic impacts of 

each variant through the use of in vitro and in vivo studies. 

 Specifically, in the MMTV-Neu model I identified an amplified region associated with 

metastasis. Importantly this region is amplified in 25% of human HER2+ve breast cancer and is 

linked with metastatic progression. Knocking out genes in this region resulted in reduced 

migration and metastasis in both mouse and human breast cancer cell lines. Likewise, in the 

MMTV-PyMT model we identified a mutation in PTPRH, a protein tyrosine phosphatase, which 

was conserved in over 80% of tumors. PTPRH normally dephosphorylates EGFR, and the PTPRH 

mutation that we identified is associated with an ~15-fold increase in phosphorylated EGFR 

levels. Critically, we found that human lung cancers had mutations in PTPRH that were mutually 
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exclusive with amplified or mutated EGFR. Furthermore, cell lines derived from PTPRH mutant 

tumors were responsive to tyrosine kinase inhibitor therapy while wild type PTPRH tumors 

were not responsive. 

 While my studies are exciting, they are not exhaustive and there is much more work to 

be done.  The most immediate work to be done is to expand the study beyond the MMTV-Neu 

and MMTV-PyMT models.  More models must have comprehensive transcriptomic and genomic 

profiling, so the research community can make educated decisions about which model to use 

for a particular study.  Furthermore, the analysis presented in this thesis is a first pass analysis.  

More work should be performed to characterize the translocations as well as the non-coding 

variants.  Last, further biochemical work needs to be performed to fully characterize the 

mechanism between the amplification event and metastasis as well as PTPRH mutations and 

EGFR signaling dependence. 

My work will have an immediate impact to the mouse modelling, cancer research, and 

clinical communities. This is the study, the first of its kind, profiling the MMTV-Neu and MMTV-

PyMT mouse models at the sequence level. This shows the importance of secondary genomic 

events in driving tumor progression and heterogeneity in mouse models which were previously 

thought to be largely driven by the initiating engineered event. We expect this manuscript to 

have translational findings to other models of breast and other cancer types and to inspire 

similar studies in other models. I have uncovered and functionally characterized found two 

novel alterations in breast cancer, these findings and the other alterations we describe will 

have an immediate impact on the basic cancer research community. The genomic events we 

observed include a copy number alteration which drives tumor metastasis and a single 
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nucleotide variant which modifies EGFR signaling. The events are described more in detail 

below. Finally, I have identified a mutation which will be directly relevant in a clinical setting 

and our immediate next steps are geared towards translation to the clinic. Tumors with the 

uncovered mutation readily respond to EGFR targeted therapy and this mutation has strong 

potential to be a deciding biomarker in the course of patient therapy. 
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CHAPTER 1   

CONSERVED E2F MEDIATED METASTASIS IN MOUSE MODELS OF BREAST CANCER AND HER2 

POSITIVE PATIENTS 
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PREFACE 

This chapter while not directly related to the work in the thesis was included due to the fact 

that it is a case study for the power of integrating informatics and traditional laboratory 

science.  It has been previously been published in Oncoscience as: 

 Rennhack, J. & Andrechek, E. Conserved E2F mediated metastasis in mouse models of breast 

cancer and HER2 positive patients. Oncoscience 2, 867 (2015). 
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ABSTRACT 

To improve breast cancer patient outcome work must be done to understand and block 

tumor metastasis. This study leverages bioinformatics techniques and traditional genetic 

screens to create a novel method of discovering potential contributors of tumor progression 

with a focus on tumor metastasis. A database of 1172 of expression data from a variety of 

mouse models of breast cancer was assembled and queried using previously defined oncogenic 

activity signatures. This analysis revealed high activity of the E2F family of transcription factors 

in the MMTV-Neu mouse model. A genetic cross of MMTV-Neu mice into an E2F1 null, E2F2 

null, or E2F3 heterozygous background revealed significant changes in tumor progression 

specifically reductions in tumor latency and metastasis with E2F1 or E2F2 loss. These findings 

were found to be conserved in human HER2 positive patients. Patients with high E2F1 activity 

were shown to have worse outcomes such as relapse free survival and distant metastasis free 

survival. This study shows conserved mechanisms of tumor progression in human breast cancer 

subtypes and analogous mouse models and underlies the importance of increased research into 

the characterization of and comparisons between mouse and human tumors to identify which 

mouse models resemble each subtype of human breast cancer. 
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MAIN TEXT 

BREAST CANCER AS A HETEROGENEOUS DISEASE 

Breast cancer is an extremely common and deadly disease. With over 200,000 new 

cases and 40,000 deaths in the United States annually contributed to the cancer, it is the 

second leading cause of cancer deaths in women. The main cause of these deaths is the ability 

of the tumor to metastasize to the lungs, liver, bone, and brain1. This is reflected in the survival 

rates of patients diagnosed with or without tumor metastasis. The five year survival rate of a 

patient without tumor metastasis is over 90% in contrast to a patient with tumor metastasis 

who only has approximately a 20% five year survival rate2. In order to improve patient 

outcomes, significant research effort must be placed on treating and preventing tumor 

metastasis. 

A defining characteristic of breast cancer is heterogeneity. Tumors from different 

patients will have a wide variety of tumor growth rates, response to treatment, and metastatic 

potential. In order to understand the mechanism behind the diversity of characteristics from 

one tumor to another many multi “-omic” studies such as TCGA and Metabric have begun to 

profile tumors from a molecular standpoint3,4. Gene expression data has classified tumors into 

six main subgroups: Luminal A, Luminal B, Basal, Claudin Low, Normal, and HER2 positive5. Each 

subtype has key driving events such as basal breast cancer being largely associated with p53 

mutations or Myc amplification, while HER2+ breast cancer is characterized by the 

amplification/overexpression of the HER2 protein. 

The HER2 subtype has been of special interest due to its clinical relevance. 

Approximately 25% of breast cancer patients have a HER2 amplification event6,7. This causes 
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the upregulation of HER2, a growth factor receptor, on the cell surface leading to uncontrolled 

cell growth and increased metastatic capability. Despite the aggressive nature of the subtype, 

there has been success in developing treatment targeted against the HER2 protein. However, 

these treatments, such as Herceptin8 and Lapatinib9,are not effective in all HER2 positive 

patients. This indicates that there is heterogeneity in the subgroups as well as redundant 

oncogenic signaling allowing for survival of the cancer cell without the HER2 signaling cascade. 

To better understand and predict the activation of key signaling pathways, oncogenic 

activation signatures were created. These signatures, developed through Bayesian regression 

analysis and induced expression of a specific oncogenic driver10–12, have shown key signaling 

pathways involved in each molecular subtype. As expected, the basal subgroup has low 

activation of ER and PR while HER2 positive subtypes have HER2 activation. However it is also 

seen that subsets of each tumor subtype have a specific oncogenic signaling pattern including a 

subset of Luminal A tumors with high Src activity. The high Src signaling indicates that a 

subgroup of Luminal A tumors is dependent upon the Src signaling pathway. 

MOUSE MODELS OF BREAST CANCER 

Mouse models have been created to mimic specific oncogenic drivers, such as Src, in 

hopes to mirror different types of breast cancer to better understand tumor progression that is 

dependent on a specific signaling pathway. Induction of breast cancer in a mouse model can be 

accomplished in a number of different manners. These methods include leveraging tissue 

specific promoters such as MMTV or WAP to drive expression of an oncogene such as Neu13, or 

the use of a tissue specific Cre14 or inducible drug system to create conditional knockouts of 

tumor suppressors. Other models use a carcinogen induced model such as DMBA treatment. 
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Models have also been created to investigate specific aspects of breast cancer progression 

including genomic instability through the loss of key checkpoint or repair proteins like p5315 or 

BRCA16 or tumor metastasis through induction of PyMT17. Given the variety of methods to 

induce tumors as well activation of unique tumor driving pathways, the transcriptional program 

in each model would be expected to be unique. 

GENE EXPRESSION PROFILING OF MOUSE MODELS OF BREAST CANCER 

To profile this diversity, a database consisting of 1172 tumors from a variety of mouse 

models was generated18. As expected, there was a significant amount of diversity between 

samples from different models and also within each model (Figure 1.1A). Despite these 

differences it was found through unsupervised hierarchical clustering that mouse models of 

breast cancer clustered into four distinct clusters. These clusters contain transcriptional profiles 

which regulate different tumor characteristics and are associated with histological patterns 

such as epithelial to mesenchymal transition (EMT). As expected each of the clusters also had 

unique oncogenic pathway activation. 

Oncogene activation signatures were calculated for each sample in the manner 

described above, and hierarchical clustering was performed. It was seen that within models sets 

of tumors had the same signature profile. A key example being the Myc induced tumor models. 

Tumors derived from these models were extremely heterogeneous19 and subsets of tumors 

contained the same oncogenic signaling pattern as tumors from each of the human subclasses 

of breast cancer18,20. 

 

 



39 
 

HIGH E2F ACTIVITY IN MMTV-NEU MOUSE MODEL 

Surprisingly it was noted that the activator subclass of the E2F family of transcription 

family was seen to be highly active in MMTV-Neu tumor samples (Figure 1.1A) 21. The E2F 

family, classically known to regulate cell cycle22,23, has recently been shown to regulate a 

number of tumor characteristics beyond proliferation such as DNA repair, angiogenesis, and 

immune-evasion24,25. When oncogenic signatures were applied to a group of human breast 

cancer patients it was seen that a subset of HER2+ patients with unique E2F signaling had worse 

outcomes, including relapse free survival21. This indicates that the E2F family of transcription 

factors play an important role in HER2 positive tumor progression. 

LOSS OF E2FS IMPACT TUMOR PROGRESSION MMTV-NEU MOUSE MODEL 

To test the hypothesis that the E2Fs are critical in HER2 tumor progression, MMTV-Neu 

tumors were crossed into an E2F1 null, E2F2 null, and E2F3 heterozygous background 

(Figure1.1B)21. The E2Fs have been shown to be redundant in their binding sites and function, 

so as expected there was compensation by other E2F family members with the loss of individual 

E2Fs26. Despite the apparent compensation of the E2F knockouts, significant differences were 

identified in tumor progression between the E2F wildtype and E2F null background indicating 

specificity in the functions of each E2F family member in regards to tumor progression. There 

was a significant delay in tumor latency associate with E2F1, E2F2 and E2F3 loss. Furthermore, 

there was a reduction in tumor burden showing a decrease from an average of 2.5 tumors per 

mouse in wildtype E2Fs to 1.5 tumors per mouse in the E2F1 null background. The growth rate 

of the tumors was not affected with E2F2 and E2F3; however, there was a significant increase in 

the growth rate of E2F1 null tumors. This is likely due to the role of E2F1 in tumor apoptosis. 
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Striking differences were seen in tumor metastasis. There was a significant reduction in 

the number of mice with metastasis with the loss of specific E2Fs21. In a wildtype MMTV-Neu 

background it was seen that 73% of mice with tumors develop metastasis to the lungs (Figure 

1.1B). This number is reduced to 40% and 35% with the loss of E2F1 and E2F2 respectively 

(Figure 1.1B). It was also seen that the E2Fs affect both early and late stages on metastasis in a 

cell independent manner. A colony formation assay from circulating tumor cells showed a 

reduction in the amount of colonies formed in the E2F2 null background indicating a block in 

the early stages of tumor metastasis. However, the E2F1 null tumors did not show a significant 

reduction in the amount of colonies formed indicating a block in the late stages of metastasis. 

The metastasis effects were seen to be background independent with E2F1 null tumors still 

being non-metastatic when transplanted into a wildtype host. 

CONSERVATION OF THE E2FS ROLE IN METASTASIS OF HUMAN BREAST CANCER 

A dataset of gene expression data from human HER2 breast cancer patients was 

assembled and E2F activity was assessed. It was shown that patients with high E2F1 activity 

compared to those with relatively lower E2F1 activity had worse metastasis free survival21. 

Furthermore patients were separated on the basis of low and high E2F1 activity regardless or 

subtype27, and it was shown that patients with high E2F1 levels had worse distant metastasis 

free survival (Figure 1.1C). 

FUTURE DIRECTIONS 

With the establishment of the role of the E2Fs in tumor metastasis, the next goal is to 

leverage them as a therapeutic target to block metastasis and reduce the mortality associated 

with breast cancer. It is not predicted that the E2Fs themselves will be good targets for therapy 
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due to their involvement in a myriad of normal cell processes. However, one might predict that 

there are specific downstream targets of E2F1 or E2F2 that mediate discreet steps in the 

development of tumor metastasis. As these genes are identified and characterized they may 

provide opportunities for development as therapeutic targets. 

The description of the role of E2Fs in Neu mediated tumors is an example of how an 

integrative approach can be used to uncover genes that regulate metastasis. As such, this study 

demonstrates the need for increased basic research into mouse models. In this study we have 

taken a bioinformatics prediction in a mouse model about the essential nature of the E2Fs in a 

model, MMTV-Neu. This was investigated and validated through traditional genetic studies, and 

the role of E2F1 and E2F2 was shown in tumor metastasis. The finding was consistent in HER2 

positive patients leading to a potential new therapeutic avenue to block tumor metastasis. To 

continue studies of this kind, more work must be completed to understand mouse models from 

a molecular standpoint and to understand which mouse models represent which classes of 

human tumors. Leveraging advances in bioinformatics and applying them to mouse models of 

breast cancer therefore presents a unique opportunity to develop and test hypotheses for how 

metastatic breast cancer progresses. 
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Figure 1.1: An integration of traditional genetics and bioinformatics to understand the role of 

E2F1 in breast cancer 

Identification and validation of conserved mechanism of tumor metastasis in mouse models 

and human breast cancer patients 
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CHAPTER 2 

MOUSE MODELS OF BREAST CANCER SHARE AMPLIFICATION AND DELETION EVENTS WITH 

HUMAN BREAST CANCER 
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PREFACE 

This chapter has previously been published as: 

Rennhack, J., To, B., Wermuth, H., & Andrechek, E. R. (2017). Mouse Models of Breast Cancer 

Share Amplification and Deletion Events with Human Breast Cancer. Journal of Mammary 

Gland Biology and Neoplasia, 22(1), 71–84. 
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ABSTRACT 

Breast tumor heterogeneity has been well documented through the use of 

multiplatform –omic studies in human tumors.  However, there is no integrative database to 

capture the heterogeneity within mouse models of breast cancer.  This project identifies 

genomic copy number alterations (CNAs) in 600 tumors across 27 major mouse models of 

breast cancer through the application of a predictive algorithm to publicly available gene 

expression data.  It was found that despite the presence of strong oncogenic drivers in most 

mouse models, CNAs are extremely common but heterogeneous both between models and 

within models. Many mouse CNA events are largely conserved in human tumors and in the 

mouse we show that they are associated with secondary tumor characteristics such as tumor 

histology, metastasis, as well as enhanced oncogenic signaling.   These data serve as an 

important resource in guiding investigators when choosing a mouse model to understand the 

gene copy number changes relevant to human breast cancer. 
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INTRODUCTION 

Genomic instability, including point mutations, translocation, and gene copy number 

alteration in key oncogenic signaling genes, is an underlying driver of breast cancer 

development and progression.  Gene copy number changes, containing amplifications such as 

HER21 and MYC2 or deletion events such as PTEN3, are key biomarkers of tumor onset4–7, 

histology8, metastatic potential9, and treatment response10,11.  The amplification of HER2 in 20-

30% of breast cancer patients results in significantly more aggressive tumors and is an 

important prognostic marker in a patient’s ability to respond to anti-HER2 therapy such as 

trastuzumab.  Despite the success of HER2 therapy, the majority of patients with the 

amplification event will have primary or acquired resistance to trastuzumab11, indicating 

potential heterogeneity in these tumors.  

To investigate tumor heterogeneity, large multiplatform studies such as The Cancer 

Genome Atlas (TCGA)12 and Metabric13 projects have begun to integrate transcriptional data 

and genomic data, as well other data platforms.  Traditionally, breast cancer diversity has been 

classified at the transcriptional level into six basic subtypes: basal, luminal A, luminal B, HER2 

positive, claudin-low, and normal like14,15.  The integration of gene copy number showed that 

there are a number of classical gene copy number alterations that are associated with each 

tumor subtype.  For instance, this revealed that MYC amplification occurs in all breast cancer 

subtypes, but MYC is only transcriptionally active in the basal subtype12.  This study underscores 

the importance of integration of multiple platforms to understand tumor heterogeneity. 

In order to understand the function of oncogenic drivers, research has employed mouse 

models. There are a variety of methods to induce breast cancer in a mouse model.  These range 
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from tissue specific overexpression using promoters including mouse mammary tumor virus 

(MMTV)  or Whey acidic protein (WAP) promoters to drive oncogene expression16–19, to 

conditional knockouts of tumor suppressive genes through the use of a tissue specific Cre20–22 

or inducible system23,24 and carcinogen induced model such as DMBA treatment.  Furthermore, 

models have been used to investigate particular aspects of tumor development such as 

metastasis via MMTV-PyMT25,26 or genomic instability with loss of p5327.  Given these varied 

methods and drivers of tumor formation, the transcriptional program in each model would be 

expected to be unique.  Importantly the recent advent of patient derived xenografts (PDX) 

models has given a new option.  These models have been shown to reflect their human 

counterpart at a genomic28 and transcriptional level; however, other common mouse models of 

breast cancer have not been described in such a manner. 

Recent work has captured the gene expression diversity between models and within 

tumors of the same model29–31. However, these works do not describe multiple levels of 

genomic diversity in mouse models like the TCGA and Metabric projects do in human tumors.  

Largely this is due to a lack of multi-platform omic studies present for the mouse models.  Small 

scale studies that integrate CNA with expression data across species have identified a unique 

CNA in Basal like breast cancer32. The lack of such profiling on a large scale leaves researchers 

relatively uninformed about genomic changes present in a mouse tumor when choosing a 

mouse model which is representative of a specific subtype of human breast cancer.  

 Here we describe a large scale investigation of copy number changes in 600 tumors 

across 27 mouse models of breast cancer for the use of the ACE algorithm33.  In short, the ACE 

algorithm predicts CNA from gene expression data through the use of a weighted mean of gene 
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expression across a given genomic region. Due to its reliance on consistent regulation across an 

entire genomic region it has been shown to accurately predict copy number variants and has 

been shown to have consistent results to traditional genetic predictors of gene copy number 

tumors33. This predicted CNA across our dataset demonstrated wide heterogeneity across 

mouse models of breast cancer.  Interestingly, consistent CNA changes were noted in the 

microacinar histological subtypes of breast cancer indicating a role in copy number changes and 

a tumor’s histological phenotype.  Moreover, in an important observation we noted that CNA 

was associated with breast cancer metastasis and enhanced oncogenic signaling in both mouse 

models and human breast cancer. 
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RESULTS 

IDENTIFICATION OF GENE COPY NUMBER ALTERATION IN MOUSE MODELS OF BREAST 

CANCER 

A large number of mouse model tumors have been examined by microarray for gene 

expression but few have been assessed for genome wide copy number alteration.  To 

computationally predict CNA from gene expression data, we applied the ACE algorithm33.  The 

ACE algorithm is shown to be consistent with traditional means of determining CNA utilized by 

the TCGA breast cancer study.  To validate the algorithm, we used the entire TCGA breast 

cancer dataset in which both gene expression and copy number data is available.   A random 

selection of three samples from the dataset show a high degree of similarity between the ACE 

calls and the TCGA CNA calls (Figure 2.1A)12,34.  Application of the algorithm across the entire 

dataset shows a false positive rate of 25.4% and 24.3% for amplifications and deletions 

respectively for the ACE algorithm (Figure 2.1B).  However, the false negative rate was higher at 

greater than 90% (Figure 2.1B).  This includes both amplification of whole arms of the 

chromosome and very small amplification events.  For the false negatives, the algorithm also 

shows a dependence upon gene expression being coordinated with CNA.  Importantly, in the 

case of amplification events with a high transcriptional impact, noted by a z-score of greater 

than 4, we found a success rate of 31.1% of TCGA events called by the ACE algorithm.   

We have also shown the translational effects of copy number gains and losses in human 

tumors through investigation of Reverse Phase Protein Array (RPPA) data associated with EGFR 

(Figure 2.3A) and FOXO3 (Figure 2.3B) amplification events.  This analysis shows that in both 

EGFR and FOXO3 the protein level is directly correlated with gene copy number.  This validation 
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of the ACE software across the TCGA dataset shows that the events predicted in this manuscript 

are an understatement of the events in the tumor.  However, the false low false positive rate 

shows that the events called in the manuscript can be used for predictive purposes and begin to 

show the copy number profile in mouse models of breast cancer.   

          To investigate the presence of copy number alterations in mouse models we applied the 

ACE algorithm to gene expression data from a normal mammary gland from an FVB Wildtype 

mouse (Figure 2.1C) and an MMTV-Neu derived tumor from the same background (Figure 

2.1D).  As expected, no CNA was identified in the control mammary gland.  In contrast, the 

MMTV-Neu sample is characterized by a large amplification event on chromosome 3 as well as 

a large deletion on chromosome 4.  This deletion is consistent with previously published 

findings of chromosome 4 loss in MMTV-Neu mouse models35.  In addition to these major CNA 

events, there are a number of smaller CNAs throughout of the genome of the sample.  

We then hypothesized as a further check that unstable models would have significantly 

more CNAs than oncogene induced models.  To investigate this hypothesis, we tested for CNA 

in multiple samples from unique mouse models of breast cancer.  The ACE algorithm was 

applied to tumor samples from MMTV-Myc, MMTV-PyMT, MMTV-Neu, TAG, and DMBA treated 

models derived from the FVB/NJ mouse background (Figure 2.1E).  ACE analysis showed 

genomic stability in the MMTV-Neu driven mouse models.  This model had significantly fewer 

amplification or deletion events than more classically unstable models such as the TAG (p<.05) 

and DMBA (p<.05). This is mirrored in human cancer where certain tumors such as Basal tumors 

are shown to be more unstable than other subtypes especially Luminal A36.  It was also noted 

that mice with the same oncogenic initiation event such as PyMT had a difference in copy 
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number based upon the background of the mouse model (Figure 2.4).  We noted that the FVB 

background was the most unstable when compared to the AKXD background in PyMT driven 

tumors and the Balb/C background in the TAG or various p53 driven models.  

CONSERVATION OF CNA VARIABILITY IN MOUSE MODELS 

To investigate the extent of CNA in mouse models and to determine if there were 

common alterations across various oncogenic driver genes, expression data was downloaded 

from a previously assembled mouse model database29.  Specifically, for copy number variability 

we used 600 tumor samples from 27 mouse models that had been analyzed through the use of 

Affymetrix microarrays.  ACE analysis was run and the percent of samples, regardless of model, 

amplified or deleted with CNA at a specific locus across the genome was calculated (Figure 

2.2A).   

This data shows the vast majority of genes across the genome are amplified or deleted 

in less than 5% of the total samples with a few distinct regions being amplified or deleted in a 

larger fraction of samples.  However, we did identify regions of instability that were conserved 

across models.  We identified a number of genes that were both amplified and deleted in 

greater than 10% of mouse models.  Specifically, we identified Gsn is amplified 10.9% of 

samples and deleted in 11.4% of samples.  Other genes that were amplified and deleted at a 

high level included Cct4, Hnrnpab, Cp, Cklf, Cenpo, and Dnm2.  These genes are all located at 

regions previously described in the mouse genome to be unstable37.   

Given the extensive heterogeneity in breast cancer, we sought to test the hypothesis 

that heterogeneity was present at the level of gene copy number within individual mouse 

models of cancer.  The extent of heterogeneity of CNAs within a tumor model was analyzed by 
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examining the fraction of mice within a model with a given amplification or deletion event at a 

particular locus (Figure 2.2B).  This analysis revealed a large degree of heterogeneity within 

models with most models having the majority of loci amplified or deleted in less than 50% of 

the sample within a model.  This is despite that fact that many tumor samples are driven by the 

same oncogenic driver and are biological replicates.  Some of the genes that were amplified in 

greater than 50% of samples within a given tumor model represent key genes in tumor 

development, progression and metastasis including well known genes such as Cdkn2, Mmp23, 

Sumo2, and Adcy33.   Interestingly, conserved CNA events were not seen to span models, 

reinforcing the genomic diversity both within each model system and between the model 

systems.  In addition, we noted some models with more copy number events, such as the p53 

induced models. 

These CNA changes were then divided into amplification events (Figure 2.5A) or deletion 

events (Figure 2.5B) to reflect the copy number diversity in each model.  This revealed that 

mouse tumor models largely fall into three categories.  First, we observed unstable models with 

a high degree of amplification or deletion in a large number of genes but with low levels of 

conservation, this including many models with a p53 mutation.  Secondly, we noted models 

that are relatively stable with no amplification or deletion at the vast majority of genes, 

including models such as MMTV-PyMT.  Lastly there are models with a few highly conserved 

amplification or deletion events.  These conserved events were noted in more than 25% of 

samples in lines such as the Erbb2 knock-in model or the WAP TAG model.   
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CONSERVED ROLE OF CNAS IN HUMAN AND MOUSE TUMORS 

A key feature of the mouse tumors is their ability to model human cancer.  To test the 

hypothesis that there were conserved CNAs in both species, we began by identifying the 

fraction of tumors within each model with an amplification or a deletion at genes prone to copy 

number alteration in human breast cancer such as ERBB2, MYC, PTEN, RB, and others identified 

in the TCGA study.  Driver genes were found to be amplified or deleted in specific mouse 

models.  Specifically, this occurred in the BRCA/p53 modified models, which have a fraction of 

samples with amplification in common oncogenes such as CCNE or deletion of common tumor 

suppressors like CMTM3. 

To identify genes that were amplified or deleted at a high level in both mouse and 

human that are not traditional drivers of tumorigenesis, we used unsupervised hierarchical 

clustering of CNAs in human tumors of various subtypes and mouse models of breast cancer 

(Figure 2.6A). As expected, human tumors and mouse models showed diverse copy number 

profiles and in general showed similarity in copy number profiles.  This was illustrated through 

co-clustering in an unsupervised hierarchical clustering of gene loci amplified or deleted in 

more than 5% of mouse and human tumors (Figure 2.7A).  Through this analysis we identified 

three tightly clustered groups of human and mouse samples.  The sub-cluster indicated by the 

purple portion of the dendrogram was largely dominated by human Luminal A and normal like 

tumors while the yellow and green portions of the dendrogram had clusters characterized by 

the presence of Luminal B tumors.  Largely absent in this analysis were the HER2 positive 

tumors.  This finding indicates the lack of mouse tumor models with the HER2 amplification 

event or associated copy number changes.  Of interest we noted that a fraction of MMTV-PyMT 
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samples were present in each of the clusters, indicating considerable diversity within the 

MMTV-PyMT tumor model from a gene copy number perspective.  To show that within these 

clusters there is similarity between mouse and human samples, we showed a significant 

increase in the Jaccard index (a similarity metric of mouse to human samples) within the purple 

cluster, and a low Jaccard index between the mouse samples of the purple cluster and the 

human samples of the other two defined clusters (Figure 2.7B). This shows that each cluster of 

tumors has a significantly different copy number profile.  

While we noted model to model heterogeneity, our previous analysis revealed within 

model heterogeneity.  It was hypothesized that the heterogeneity was due to differences in 

histological subtypes.  To test this, unsupervised hierarchical clustering of CNA events from the 

MMTV-Myc tumor model by the top 4118 commonly amplified or deleted genes, filtered by 

standard deviation of neighborhood score, was performed (Figure 2.8A).  The major clusters 

demonstrated that distinct copy number changes are associated specific histological subtypes 

within the Myc driven model.  Specifically, there is a cluster enriched for the microacinary 

subtype.  The mircoacinar subtype shows the majority of samples containing amplification of 

many genes located on chromosomes 11 and 15.  The EMT subtype is characterized by having 

few amplification or deletion events. Tumors of this histological subtype have previously been 

noted to have activating mutations in Kras that contribute to the EMT histological subtype.  

These activating mutations may result in a reduced requirement for other copy number events. 

The genes amplified in mice with a microacinar histological subtype, located on mouse 

chromosome 11, are also conserved in humans.  Specifically, we found a region of fourteen 

genes which mapped to chromosome 17q25.1 in humans.  These genes are amplified shown to 
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be amplified in a subset of breast tumors as identified by cBio portal.  An assessment of mouse 

(Figure 2.8B), and human (Figure 2.8C) tumors, from the MMTV-Myc mouse model and TCGA 

breast cancer dataset respectively, showed conserved histology across species.   

Human tumor samples were divided into those containing the microacinar specific 

genes through the use of a 14 gene signature (Figure 2.8D).  Tumors with at least two of the 14 

genes amplified were considered to be in the amplified subgroup.  This produced a subgroup 

for 28 human tumors and was compared against 30 randomly chosen tumors that contained 

none of the 14 amplified microacinar associated genes.  Histology for each of the groups of 

samples was determined and it was found that the microacinar associated gene amplified 

subgroup contained an enrichment of tumors with a microacinar histology (Figure 2.8E).  This 

indicated a conserved role in gene copy number across mouse and human breast cancer in 

determining tumor histology specifically with respect to the microacinar subtype. 

To investigate the role of the CNA on tumor progression, we examined tumor metastasis 

by integrating gene expression data with gene copy number data.  Specifically we used a 

previously identified lung metastasis gene signature38 and correlated gene copy number events 

with the sample’s metastasis score through Spearman’s Rank correlation (Figure 2.9A) to reveal 

amplification and deletion events associated with highly metastatic samples.  This was applied 

to the human TCGA breast dataset (Figure 2.9B – top) as well as the mouse model dataset 

(Figure 2.9B – bottom). When differences in gene location were taken into account, there were 

132 gene copy number alterations highly correlated with metastasis that were conserved in the 

TCGA breast cancer and mouse datasets (Figure 2.9B).  To provide validation of the 132 genes 

and their association with tumor metastasis we leveraged the KM-plot human dataset to show 
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that over express or decreased expression of amplified or deleted genes was associated with 

worse distant metastasis free survival.  We showed that 55% of these regions had significantly 

increased or decreased metastasis free survival depending upon the transcript level of the 

gene.  To further investigate the metastasis related genes we used the Metabric data with 

associated overall survival data.  Of the samples with an identified amplification or deletion 

event in a predicted metastasis region, we showed 28% of the events resulted in a decrease in 

overall survival of the patients.  A closer examination of mouse chromosome 3 (Figure 2.9C) 

revealed a number of genes in the 3F region where amplification is associated with a high 

metastasis score.  It was seen that some regions, such as the 3F region, associated with the 

metastasis signature.  It was seen that chromosome 3F amplification was also associated with 

high RAS activity revealing a potential mechanism of metastasis (Figure 2.9C).   

To test the role of chromosome 3F on metastasis, we examined mouse tumor samples 

where metastasis data and pathway activity predictions were available.  In particular, we used 

the MMTV-Myc, MMTV-Neu, and MMTV-PyMT models.  As predicted those samples with the 

3F amplification had much higher predicted Ras activity and number of lung metastases than 

those with a deletion.  (Figure 2.9D).  The 3F amplification event is also conserved in human 

Luminal A tumors.  When tumors were split on the basis of amplification of the analogous 

human region it was seen that they exhibited higher Ras pathway activity (Figure 2.9E) and had 

worse metastasis free survival (Figure 2.9F).  

Given that CNA was associated with metastatic progression we then hypothesized that 

CNA would also impact key cell signaling pathways.  To test this hypothesis we examined the 

role of CNAs on major oncogenic pathways including BCAT, SRC, E2F, and others (38, 39).  This 
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experiment then used the same workflow to coordinate CNA and pathway activation status as 

was used to coordinate amplification and deletion events with the tumor metastasis signature 

(Figure 2.10).  This analysis revealed amplification and deletion regions associated with each 

major oncogenic signature.  The regulation of signaling pathways can occur through amplifying 

key genes within the signaling pathway.  An example of this was observed when specific 

amplified genes associated with high AKT activity located on chromosome 4 or the specific 

amplified genes associated located on chromosome 14 associated with high E2F2 activity were 

tested.  When these genes are displayed in an interaction network, the vast majority of the 

genes can be found to be located either up or downstream of their respective key signaling 

protein such as or RB/E2F2 (Figure 2.10B).  This suggests the chromosome 14 region is 

associated with Rb/E2F signaling.  
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DISCUSSION 

 Here we have described the copy number alteration across the genome of 27 mouse 

models of breast cancer.  This has been completed through the use of an algorithm (ACE) to 

infer gene copy number profile from gene expression data.   The ACE algorithm was identified 

to have a high rate of false negatives and a relatively low rate of false positive calls. When the 

algorithm was run across the TCGA dataset, it was seen to have a moderate rate of concurrence 

with the TCGA copy number calls.  Due to this, it is important to note the predictive nature of 

this database.  While the copy number calls found in this dataset have not been validated using 

traditional means, the dataset begins to identify potential copy number variants in the mouse 

models of breast cancer.  This is an important step in understanding tumorigenesis in these 

models specifically from a copy number point of view until a more robust and accurate profiling 

of the tumors can be completed. 

The copy number profiles have been examined in a number of ways to classify inter and 

intra model heterogeneity as well as the similarities between copy number profiles in mouse 

models and human breast cancer.  This study makes important contributions in understanding 

CNA in mouse models.  Beyond this the CNAs are profiled for their contribution to tumor 

progression and the conservation of this role in human tumors. 

 Despite the presence of strong oncogenic signals, gene copy number alterations are still 

extremely common in mouse models of breast cancer.   Common human drivers of breast 

cancer such as HER2, MYC or PTEN were not observed to be amplified or deleted at a high level 

across mouse models.  This is unsurprising due to the lack of selective pressure for CNAs in 

these oncogenes or tumor suppressors because of the presence of a strong oncogenic signal.  
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The exceptions to this are the p53/BRCA induced models which do not have a strong oncogenic 

signal but instead induce genomic instability.  Amplification or deletion events in common 

human oncogenes are more frequent in these models. 

 A key finding of this manuscript is the heterogeneity of copy number alterations both 

within a model and between models.  The within model heterogeneity is surprising due to the 

fact that each tumor is a biological replicate with the same driving oncogenic event.  We 

identified that most events that occur within a given tumor model are not shared among even 

50% of tumors from that same model.  This finding underscores the importance of gene 

expression and genomic characterization of tumor studies when dealing with mouse models 

due to the inherent genomic variability.  It further emphasizes the need for a large enough 

cohort to capture the heterogeneity of all tumor models. 

During preparation of this manuscript, a complementary study was published examining 

CNA in mouse models of breast cancer39.  This publication uses a different algorithm to predict 

CNAs, one that predicts resolution on the whole chromosome scale while the ACE algorithm 

provides finer resolution.  Due to the predictive nature of defining gene amplification events 

from gene expression data, we believe that it is important to compare their manuscript with 

the data herein. This demonstrates that multiple algorithms call the same dataset with 

overlapping findings, resulting in a comprehensive view of CNA in mouse model tumors.  The 

two manuscripts agree on a number of findings including the stability of mouse models with 

rapid latency, the p53 KO model being the most unstable, within model heterogeneity, and the 

association of CNA changes with the microacinar subtype.  The increased precision of the ACE 

method has allowed us to identify small focal events in many of the models including PyMT that 
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the published paper did not uncover.  Indeed, the data we present here allows one to search 

for a mouse model with amplification or deletion of particular genes.  We have also leveraged 

human data through the use of the TCGA, Metabric, and KMplotter datasets to provide a 

comprehensive comparison of mouse models and the five main subtypes of human breast 

cancer tumors.   In addition, we have also shown the conservation of regions between the two 

species to predict a number of new metastasis related copy number changes. 

We noted that the amplification or deletion events are associated with secondary tumor 

characteristics such as tumor histology, enhanced oncogenic signaling, and tumor metastasis.  

Specifically, we observed unique copy number profiles for the microacinar tumor histology 

including the amplification of fourteen genes on chromosome 17q25.1. However other 

histological subtypes did not have characteristic copy number profiles.  Surprisingly, we noted 

that EMT tumors were stable in regards to copy number change, likely due to activation of Kras 

in MYC tumors23,40,41.  The lack of pattern of amplification or deletion of other histological 

subtypes indicates that there are other factors such as point mutations or transcriptional 

changes associate with these subtypes.  This can also be said for oncogenic signaling pathways 

and tumor metastasis. While CNAs contribute to each of these, there are also contributions of 

single nucleotide variants (SNVs) and transcriptional changes.  For this reason, it is important to 

integrate multiple platforms to understand tumor heterogeneity. 

 There is conservation between mouse and human subtypes in regards to tumor 

metastasis and oncogenic signaling.  132 genes that were amplified or deleted in mouse and 

human contributed to increased metastasis.  Furthermore, these genes were located in the 
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same oncogenic signaling pathways indicating conserved mechanisms of metastasis in human 

and mouse. 

 When comparing heterogeneity of breast cancer, we found a large degree of 

heterogeneity both between models and within specific models.  Given these findings, it is 

therefore critical to understand copy number profile when choosing a strain to model human 

breast cancer.  For example, if one is interested in the HER2 oncogene there are a number of 

mouse models including the MMTV-Neu16,25, Erbb2 Knock-in20, NDL42 and others with 

conditional activation24.  Each of these models has completely different CNA and transcriptional 

profiles leading to different oncogenic signaling and subsequently different tumor properties.   

This heterogeneity also exists in other common models such as MMTV-Myc.  This strain 

has previously been identified to be heterogeneous from a transcriptional viewpoint40 and 

therefore it is unsurprising that it is also heterogeneous from a copy number standpoint.  Due 

to the heterogeneity present at a gene expression and copy number level, investigators must 

take care when choosing tumor models of breast cancer to ensure that the chosen model 

reflects all aspects of the human breast cancer subtype they wish to model.  We have also 

noted strain specific differences for some of the models.  It was seen that the FVB model was 

found to be more unstable when compared to tumors derived from other backgrounds.  This 

finding emphasizes the importance of researchers understanding the background of their 

mouse strain when choosing mouse models for their study.  

 Projects such as TCGA have profiled human tumors at multiple levels.  This allows 

researchers to stratify human tumors by gene expression, copy number profile, as well as SNVs 

and epigenetic markings to find a tumor population that is relevant for their study.  However, 
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there is not a mouse model equivalent to this dataset, so researchers are unable to choose 

mouse models which represent their specific tumor subtype at multiple levels.  Recent studies 

such as this and others have begun to make strides in this area by profiling tumors at a CNA and 

expression levels.  However, there is still a need to continue to profile mouse models through 

the use of whole genome sequencing as well as epigenetic markings.  This information needs to 

be available to researchers in order to design studies that accurately represent the human 

subtypes of breast cancer. 

 This study clearly illustrates the importance of gene copy number alterations in tumor 

progression even in the presence of strong oncogenic drivers.  Many mouse models contain a 

high degree of gene copy number alterations.  These copy number alterations are highly 

heterogeneous both between models and within a model of breast cancer.  Despite this 

heterogeneity, it was seen that the CNAs found in mice are conserved in humans. Conserved 

variants were associated with tumor progression and potentially play a role in enhanced 

oncogenic signaling, histological appearance, and the tumor’s metastatic potential in both 

human and mouse tumors. 

 Beyond the profiling of mouse tumors and the conserved roles of CNAs in mouse and 

human tumors this study has a broader impact on the field of cancer research. It, when used in 

combination with gene expression studies, begins to create a comprehensive molecular portrait 

of tumors derived from mouse models of breast cancer.  These studies could be significantly 

enhanced if outcome, pathology, metastasis and other clinical data was included when 

publishing tumor data from mouse models.  However, this current study provides an essential 
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resource to researchers to contemplate as they choose a model system to mimic a specific 

subtype of human breast cancer. 
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MATERIALS AND METHODS 

DATASET AND ACE ANALYSIS 

A comprehensive mouse dataset was downloaded and assembled as previous described29 

including GSE15263, GSE3165, GSE37954, GSE32152, GSE10450, GSE22406, GSE42533, 

GSE15904, GSE8836, GSE27101, GSE30864, GSE20416, GSE10193, GSE23938, GSE15119, 

GSE16110, GSE25488, GSE21444, GSE8828, E-TABM-684.  ACE analysis was run as previously 

described33 comparing each individual sample to a wildtype mouse of the same strain (FVB/NJ = 

GSE25488, Balb/C = GSE21444, C57BL/6 = GSE14753) with a significance threshold p and q 

value of .05 with any size of the event. 

Z-SCORE CALCULATION 

The microarray based expression data was downloaded from the TCGA dataset.  Z score was 

calculated for each gene in each sample and each event was classified based on the Z-score for 

validation analysis. 

HUMAN DATASET AND ANALYSIS 

The TCGA breast cancer and KMplot.com datasets were used for human copy number analysis12 

and validation of results. Specific tumor breast cancer subtype and copy number calls were 

used from the TCGA dataset12,34.  To run ACE the gene symbols were replaced with their 

Affymetrix U133A_2 probe ID.  This was queried using the cbio portal visualization tool.  Distant 

metastasis free survival results were obtained using the KMplot.com dataset43.  ACE analysis for 

the human analysis compared expression to normal HMEC gene expression (n=10) data 

gathered from GSE24468. 
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MOUSE METASTASIS DATASET 

A dataset with known lung metastasis from MMTV-Neu44, MMTV-Myc45,46, and MMTV-PyMT47 

was compiled for metastasis free survival of mouse models. 

MOUSE AND HUMAN GENE LOCATION CONVERSION 

Locations of mouse and human genes were taken from the Affymetrix array annotation files 

from mouse 430A_2 and human U133A_2 array.  These locations were merged by common 

gene symbol to provide a conversion table between the two species for the location of a 

particular gene. 

CLUSTERING OF HUMAN AND MOUSE TUMORS 

ACE analysis was performed as previously described on the TCGA breast cancer human dataset 

as well as the mouse dataset.  Significant CNAs were mapped onto the mouse genome for 

clustering.  For human to mouse comparisons genes were filtered to those genes that were 

amplified or deleted in at least 5% of human and mouse tumors (n=594). Unsupervised 

hierarchical clustering was performed using cluster 3.0 and Java Tree View.  For tumor histology 

the MMTV-Myc dataset with histological annotations, GSE15904, was used.  To cluster this 

dataset we filtered the genes to 4118 genes through the use of standard deviation of the 

neighborhood score.  This removed all genes that were unaltered across the dataset.  For all 

clustering analysis Euclidian distance, complete linkage was used for the similarity metric and 

clustering method respectively. 

JACCARD INDEX 

Jaccard index was calculated between clusters through use of the R package “sets” through use 

of the similarity function. 
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MOUSE AND HUMAN HISTOLOGICAL COMPARISONS 

Histological annotations were analyzed from a group of MMTV-Myc mouse tumors40, 

GSE15904, as well as the human TCGA tumors12.  We identified the genes within mouse 

chromosome 11 which were also amplified in a subset of human tumors using cbio portal.  

These fourteen identified genes mapped to the 17q25.1 region in humans and are referred to 

as the microacinar associated event.  For overrepresentation analysis we compared the number 

of human tumors with the microacinar subtype from a group with the microacinar associated 

amplification event found in mice against a random set of tumors not containing that 

amplification event through the use of a 2x2 contingency table. 

ONCOGENIC SIGNATURE APPLICATION 

Predefined oncogenic signatures were applied to the dataset.  Briefly, the training data was 

merged with the full dataset and batch effects removed through the use of COMBAT.  These 

samples were then subjected to binary regression analysis with a predefined gene list and 

conditions for each individual signature40,48–51. 

COORDINATION OF CNA WITH ONCOGENIC SIGNATURE 

Oncogenic signatures40,48,49,51 and lung metastasis signatures38 were applied to mouse and 

human datasets as previously described.  These scores were coordinated to neighborhood 

score through the use of a Spearman rank correlation applied through R.  A significance 

threshold of P<.01 was applied and the results were visualized using MATLAB. 

GENE NETWORK INTERACTION 

Interaction networks were visualized through the use of STRING-DB52.  Input nodes were those 

genes significantly correlated with the particular pathway in a specific region as well as key 
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signaling proteins for the pathway (Rb/E2F2).  Twenty additional white nodes were added to 

complete the network. 
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Figure 2.1:  Identification of copy number alteration through gene expression data from 

mouse models of breast cancer 
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Figure 2.1 (cont’d) 

(a) The Venn diagram illustrates the consistency of ACE copy number calls with traditional copy 

number calls of three randomly chose TCGA breast cancer samples. The ACE algorithm was 

applied to a three TCGA sample and genes that were significantly amplified (p<.05, q<.05) were 

compared against the TCGA copy number predictions for the same sample.  (b) When applied 

to the entire TCGA breast cancer dataset with microarray and complete CNV calls (N=478) the 

ACE algorithm is able to identify amplification (top) and deletion (bottom) events with a false 

discovery rate of 25.4% and 23.3% respectively (left) and a false negative rate of over 90% 

(right)  (c)  The ACE algorithm predicts no copy number alteration in an FVB control mouse.  The 

graph shows neighborhood score, the weighted mean expression value used by the algorithm 

to predict copy number, at each genomic location (blue line).  Significant regions of 

amplification or deletion are identified when the blue line falls outside of the red bounds 

(p<.05, q<.05).  (d) Copy number predictions across the genome of a FVB MMTV-Neu tumor 

reveals notable amplification in chromosome 3 and deletion in chromosome 4 in addition to 

several smaller amplification and deletion events.  (e) When the ACE algorithm is applied to a 

set of mouse tumors made up of MMTV-Myc tumors (N=12), MMTV-Neu tumors (N=15), 

MMTV-PyMT tumors (N=26) and DMBA (N=14) and TAG models (N=37),  all on the FVB/NJ 

background, the MMTV-Neu model has significantly (P<.05) less amplified or deleted genes 

compared to the TAG or DMBA models.  The MMTV-Neu model was significantly more stable 

(P<.05) and showed on average less copy number changes than all other models. 
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Figure 2.2:  Landscape of CNA heterogeneity across mouse models of breast cancer   

(a) ACE analysis to predict CNA was applied to 600 mouse model tumors arising from 27 major 

models of breast cancer.  The percentage of mice with amplification (red) or deletion (blue) 

regardless of mouse model at a particular locus across the genome is shown as identified by 

ACE (q<.05).  All genes present on the microarray were graphed.  Genes that are amplified or 

deleted in more than 10% of mice are identified.  (b) The fraction of mice with amplification or  
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Figure 2.2 (cont’d) 

deletion event at individual loci is shown across all chromosomes for individual mouse models.  

The bar height and color illustrates the percent of samples with an amplification or deletion at 

the individual gene locus as indicated by the legend.   
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Figure 2.3:  Correlation between copy number alterations and gene expression data 

The TGCA data was queried for copy number alterations and protein levels in EGFR (a) and 

FOXO3 (b).  These samples were separated in to five categories, Deep deletion (homozygous 

deletion), Shallow deletion (heterozygous deletion), diploid, Gain (low level amplification), and 

amplification (high level amplification).  A positive correlation between increased copy number 

and protein level was identified. 
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Figure 2.4:  Mouse genetic background and number of copy number alterations 

To identify the effect of mouse strain on the stability of a mouse model we used mouse models 

with the same oncogenic driver on different mouse model backgrounds.  This was done with  
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Figure 2.4 (cont’d) 

the MMTV-PyMT (a), TAG (b), and p53/BRCA (c) models.  It was found that in the PyMT model 

significantly more alterations were found in the FVB background (N=66) when compared to the 

AKXD model (N=55) (P<.01).  A similar result was noted with the TAG model where the FVB 

background (N=37) had significantly more alterations than TAG driven tumors in a Balb/C 

background (N=3) (P<.05).  In the BRCA/p53 models we found the C5Bl/6 model (N=12) to be 

more unstable compared to the Balb/c background (N=73) (P<.01). 
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Figure 2.5:  Amplification or Deletion in specific mouse models 

Heatmap representation of the data in Figure 2B. Containing amplification or deletion 

percentages in specific mouse models.  Percentages are displayed as a value between 0 (blue) 

and 100% (red).  The figure is split into amplifications (left) and deletions (right)   
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Figure 2.6:  Full heatmap associated with Figure 2.7A 

(a)To assess the conservation of CNAs in mouse models and human patients unsupervised 

hierarchical complete linkage clustering of samples across human and mouse tumors were 

clustered by recurrent CNA events (N=597) that were amplified or deleted in greater than 5% of 

mouse and human tumors.  The dataset used the complete mouse models dataset of 27 mouse  
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Figure 2.6 (cont’d) 

models (N=600) and randomly chosen TCGA breast cancer tumors across all five major subtypes 

of breast cancer (N=559).  The clustering revealed three tight clusters composed of human and 

mouse samples as indicated by the purple, yellow, and green clusters.  
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Figure 2.7:  Conservation of common human CNAs in specific mouse models 
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Figure 2.7 (cont’d) 

(a) To assess the conservation of CNAs in mouse models and human patients unsupervised 

hierarchical complete linkage clustering of samples across human and mouse tumors were 

clustered by recurrent CNA events (N=597) that were amplified or deleted in greater than 5% of 

mouse and human tumors.  The dataset used the complete mouse models dataset of 27 mouse 

models (N=600) and randomly chosen TCGA breast cancer tumors across all five major subtypes 

of breast cancer (N=559).  The clustering revealed three tight clusters composed of human and 

mouse samples as indicated by the purple, yellow, and green clusters. A highlighted version of 

this figure is seen (a) while the full version can be found in the supplemental materials.  The 

analysis showed a large fraction of PyMT tumors sorted into each major cluster indicating there 

are shared copy number alterations between the MMTV-PyMT mouse model and human 

tumors particularly the Lumina A, Lumina B and normal like subtypes of breast cancer.(b) 

Through the use of a Jaccard index we showed within cluster similarity.  This reveals a 

significant decrease of Jaccard Index score when comparing mouse samples from the purple 

cluster to human samples of the purple, yellow (P<.05) and green cluster (p<.05).     
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Figure 2.8:  Within model CNA heterogeneity associates with tumor histology 
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Figure 2.8 (cont’d) 

(a) For the MMTV-Myc tumor model (n=105), individual tumor samples were clustered by their 

copy number profile and separated largely into histological subtypes.  Histological subtype of 

each sample is indicated by the color of the bar below the dendrogram as specified by the 

legend.  Vertically the genes (n=4118) are ordered by their chromosomal location from 1 to X.  

The relationship of the samples is indicated by the dendrogram.  The heatmap indicates 

amplification (red) or deletion (blue) at a particular locus (p<.05, q<.05).  Chromosome 11 

amplification was noted in a large fraction of mouse tumor with microacinar histology (Boxed). 

(b) Mouse tumors with chromosome 11 amplification display a distinct microacinar histological 

subtype. (c)  Human tumors with analogous region (17q25.1) amplified exhibit similar 

microacinar-like histological patterns.  (d) The cbio oncoprint of the microacinar associated 

genes across 58 samples.  The genes were identified as amplified on mouse chromosome 11 as 

well as human chromosome region 17q25.1 and total 14 genes in all and identify the core genes 

associated with microacinar like tumor histology(28 control samples with amplification events 

and 30 control samples) (e) Across the TCGA breast cancer dataset, patients with a consistent 

amplification pattern of chromosome 17q23.1 have a microacinar like histological subtype 

significantly (P=.01) more often than those without the amplification event (N= 28 for 

amplified, N=30 for non-amplified) indicating a role in this region in defining tumor histology.    
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Figure 2.9:  Role of CNA in tumor metastasis 

(a) The schematic outlining the strategy to associate copy number alteration with metastasis 

score is shown where the metastasis score was correlated with the neighborhood score to 

assess CNA.  Negative correlation (blue) and positive correlation (red) examples are shown.  (b) 

Metastasis associated copy number gains (red) or losses (blue) in the TCGA human breast  
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Figure 2.9 (cont’d) 

cancer dataset are shown by human chromosome (B - top).  The location of the homologous 

loci and their amplification status are shown in the mouse model database (B - bottom).  Dark 

black lines indicate example conserved human locations and their associated mouse 

chromosomal location.  Conserved amplification and deletion events between both species are 

overrepresented when compared to a random set of genes (P<.0001)  An identified region is 

conserved between humans chromosome 1 and mouse chromosome 3F indicating a role in 

tumor metastasis by this region in mouse and human tumors and is more completely explored 

in panel c. (c) To identify a potential pathway through which metastasis was being mediated we 

coordinated Ras activity with each amplification or deletion event and looked to identify 

regions that were associated with metastasis and high ras activity.  This is graphed for mouse 

chromosome 3F by the negative log of P value for the association of amplification (positive) and 

deletion (negative) of mouse chromosome 3 where amplification is associated with both 

metastasis and Ras activity in the 3F region.  (d) When tumors are split on the basis of 

chromosome 3F status those mice, from and MMTV-Myc, MMTV Neu, or MMTV-PyMT 

background, with amplification (Red) (n=5) are shown to have significantly more metastases 

than those with a deletion at the same locus (Blue) (n=6) (e).  When the region is identified in 

the kmplot.com dataset this event is shown to be conserved in human Luminal A tumors when 

the analogous human region is amplified there is significantly (P=.03) higher Ras activity and 

lower (P<.01) metastasis free survival (f).  
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Figure 2.10:  Role of CNA in oncogenic signaling pathways   
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Figure 2.10 (cont’d) 

(a) Spearman’s rank correlation of amplification (red) or deletion (blue) events with high activity 

of oncogenic signaling pathways is shown.  Events are arranged by chromosomal location as 

indicated at the top for the pathways indicated at the right. The String-DB derived connectivity 

map of RB-E2F (B) networks is depicted.  Rb and E2F2 are denoted by black arrows.  All other 

colored nodes are genes which have a copy number alteration significantly correlated with a 

particular signaling pathway indicated by black circles, with the exception of Rb and E2F2. 
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CHAPTER 3 

GENOMIC LANDSCAPE OF MMTV-NEU AND MMTV-PYMT TUMORS 
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ABSTRACT   

Mouse models have an essential role in cancer research, yet little is known about how 

various models resemble human cancer at a genomic level.  However, the shared genomic 

alterations in each model and corresponding human cancer are critical for translating findings 

in mice to the clinic.  We have completed whole genome sequencing and transcriptome 

profiling of two widely used mouse models of breast cancer, MMTV-Neu and MMTV-PyMT.  

This genomic information was integrated with phenotypic data and CRISPR/Cas9 studies to 

understand the impact of key events on tumor biology.  Despite the engineered initiating 

transgenic event in these mouse models, they contain similar copy number alterations, single 

nucleotide variants, and translocation events as human breast cancer.  A key finding showed 

that both models had similar mutational processes.  Despite this similarity, it was shown that 

the MMTV-Neu mouse model was significantly more unstable than the MMTV-PyMT tumor 

model.  A larger panel of tumors for each model showed a large amount of diversity in both 

model systems.  This diversity was shown in key genes associated with tumor progression and 

potentially modify the behavior of the tumors in both mouse and human.  These findings 

underscore the importance of understanding the complete genomic landscape of a mouse 

model and illustrate the utility this has in understanding human cancers.   
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INTRODUCTION 

 Breast cancer is a large public health concern with an estimated one in eight women 

experiencing the disease during her lifespan1.  Compounded with this, breast cancer is the 

second leading cause of cancer related deaths in women2.  Largely, the cause of death in 

patients is the heterogeneity of the disease.   This heterogeneity is shown at all level of genetic 

regulation including genome3, transcriptome4, and proteome5.  Due to the diversity in the 

disease it becomes very difficult to match the correct patient with the correct treatment. 

 There have been international efforts including, TCGA3,6, ICGC7, and Metabric8 to 

understand the underlying causes and diversity in breast cancer.  These studies have been 

extremely productive and have identified a number of subtypes of breast cancer each with 

unique genomic profile.  A number of candidate oncogenes and tumor suppressors have been 

potentially identified through these studies; however, in order to validate these hypotheses 

researchers must turn to in vitro and in vivo models of the disease. 

 A key in vivo tool that researchers use is the genetically engineered mouse model.  In 

this system, a mouse has been altered in such a way that it is predisposed to tumors in the 

mammary gland.  Many times, this involves the overexpression of an oncogene through the use 

of a tissue specific manner.  In the case of breast cancer this is typically the mouse mammary 

tumor virus (MMTV)9,10 or whey acidic protein (WAP)11,12 promoter system. 

 Two key models using this system to model breast cancer are the MMTV-Neu and 

MMTV-PyMT mouse models.  The MMTV-Neu13 mouse model is meant to model HER2 positive 

breast cancer through the forced over expression of the HER2 homolog, Neu, in the mammary 

gland.  These tumors have a moderate latency of 202 days and the majority of the tumors 
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metastasize to the lung.  The MMTV-PyMT14 mouse model, formed through the over expression 

of the polyoma middle T antigen in the mammary gland, is meant to model highly aggressive 

endstage disease.   The model has a latency of 45 days and is highly metastatic.   

 Despite the frequency of these models there is debate about the findings in them and 

how well they translate to the human patient setting.  This is largely due to the fact it is 

unknown how well the models actually represent the human disease from a genomic 

viewpoint.  There have been preliminary bioinformatic studies profiling the gene expression 

profile15–17 and gene copy number status18,19 of mouse models of breast cancer.  These studies 

have revealed that mouse models on a whole are extremely heterogeneous like human cancer.  

Surprisingly, many mouse models produce tumors which represent multiple subtypes of human 

cancer. 

 To understand this further, and to confirm genomic events underlying the 

transcriptional diversity in mouse models of cancer researchers have turned to next generation 

sequencing.  To date, there have been studies profiling the genome of lung cancer mouse 

models20,21, models of melanoma22 as well as tumor suppressor driven23 breast cancer mouse 

models.  However, to our knowledge the MMTV-Neu and MMTV-PyMT models have not been 

profiled in such a way. 

 Here we present an integrative genomic profile of the MMTV-Neu and MMTV-PyMT 

mouse models.  In this pursuit we have performed whole genome sequencing as well 

transcriptomic profiling of the two models.  We have carefully integrated this with tumor 

phenotypes including latency, metastatic ability, as well as the histological subtype.   
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 Through this analysis we further confirmed this heterogeneity found in mouse models.  

Despite the heterogeneity, we were able to identify a number of defining events in each model 

including a copy number variant which modulates metastatic potential and a single nucleotide 

variant that modifies EGFR signaling.     

 This study is an important proof of concept study and underscores the importance of 

understanding the entire genomic landscape of mouse models.  Furthermore, this type of study 

has immediate clinical benefits beyond the impact in basic research. 
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RESULTS 

INTER AND INTRA TUMOR DIVERSITY IN MMTV-NEU AND MMTV-PYMT 

To characterize the genomic landscape of the MMTV-Neu and MMTV-PyMT tumors, we 

created a tumor database with complete phenotypic characterization including tumor latency, 

histology, and metastatic burden.  Representative tumors from this database were selected for 

whole genome sequencing and whole transcriptome profiling by microarray.  The analysis 

pipeline then correlated phenotypic changes with molecular profiling, including transcriptomics 

and sequence alterations.  The resulting genes were then filtered through human breast cancer 

datasets to ensure relevance to human breast cancer and confirmed with in vitro and in vivo 

experiments (Figure 3.1A).  A high degree of transcriptomic diversity both between and within 

each model was observed in hierarchical clustering (Figure 3.1B).  As expected, this 

heterogeneity correlated with tumor histological subtype rather than tumor model, consistent 

with recent studies15,24.  It was hypothesized that these differences in expression were driven 

by genomic changes. 

 Following standard informatic pipelines, the whole genome sequencing data was 

analyzed.  To validate bioinformatic calls of SNVs and CNVs we used PCR and qPCR, observing a 

validation rate of 85%.  Whole genome sequencing revealed large differences in the genomic 

landscape of the MMTV-Neu (Figure 3.2A) and MMTV-PyMT (Figure3.2B) tumors.  The two 

tumor models had similar numbers of SNVs (Figure 3.2C), however both models were ~20X 

more stable than human breast tumors with 0.049 mutations/megabase in the mouse models 

in comparison to an average of approximately 1 mutation/megabase in breast cancer25.  Copy 
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number alterations (Figure 3.2D) and translocations (Figure 3.2E) were more frequent in the 

MMTV-Neu model relative to MMTV-PyMT. 

 To understand the specific role of copy number alterations within the two models we 

compared copy number variants present in the mouse models with those also in the human 

breast cancer.  This analysis identified 11 candidate genes which were highly altered in breast 

cancer (Figure 3.4) and predicted to impact tumor biology based upon a literature screen.  qPCR 

gene copy number analysis across an extended tumor panel (15 MMTV-PyMT, 10 MMTV-Neu) 

identified the rate at which each copy number variant occurred throughout the model (Figure 

3.3A).  This analysis showed that while each of the copy number variants predicted through 

bioinformatic means were valid, the depth of the amplification was largely around 1.5 fold 

indicating shallow amplification events (Figure 3.3B).  Interestingly we identified the largest 

diversity of copy number profiles in the 11D locus.   

MUTATIONAL PROCESS OF GENETICALLY ENGINEERED MOUSE MODELS 

In addition to copy number alterations, the whole genome sequence data resulted in 

the identification of numerous mutations (Figure 3.2C). When COSMIC mutational 

signatures26,27 were applied to the models, it was observed that the tumor models had similar 

mutational processes (Figure 3.5).  The MMTV-Neu and MMTV-PyMT tumors both contain the 

same trinucleotide context of their mutation spectrum.  The mutation spectrum shows all 

nucleotide substitutions present with a slight bias towards C/T and T/C transitions.  When 

compared to the human mutational signatures, the mutational processes present in both 

mouse models closely resembles COSMIC signature 5 (Figure 3.5C).  This signature has been 
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shown to be present in breast cancer patients with disease associated with late onset28,  

indicating a similar mutational process in both the human disease and mouse models 

SINGLE NUCLEOTIDE VARIANTS IN GEMMS 

 The distribution of SNVs reflected patterns seen in the transcriptional data (Figure 3.1B) 

with some events shared between Neu and PyMT tumors while others were unique to the 

models. Considerable SNV diversity within a model was also prevalent.  For instance, the 

MMTV-Neu model had no genes with shared mutations in all samples and only five genes 

containing a coding, non-synonymous mutation in more than one sample (Figure 3.6).  Notably 

we identified mutations within Mucin 4 (Muc4) which are potentially impactful due to Muc4’s 

emerging roles in HER2 positive cancer and metastasis29.   

Interestingly, we observed that PyMT induced tumors had more SNVs in the coding 

regions of the genome despite not having significantly more mutations overall. Specifically, 

these mapped to 34 genes, 9 of which overlapped with Neu tumors.  A number of genes with 

coding mutations specifically in PyMT tumors, including Matn2, Plekhm1, Muc6 and Ptprh were 

observed. Matn230, Plekhm131 and Muc632 have all been demonstrated to have roles in tumor 

progression and metastasis and may contribute to the high metastatic capacity of the MMTV-

PyMT model.  Ptprh is a phoso-tyrosine receptor phosphatase that is shown to regulate EGFR 

signaling33.  This gives it obvious implications in tumor signaling and progression.  

 To test the frequency of these coding mutations in the models as a whole we selected a 

population of 10 MMTV-Neu tumors and 15 MMTV-PyMT tumors for targeted resequencing.   

From these tumors we extracted genomic DNA and performed PCR based amplification 

followed by Sanger sequencing of Matn2, Plekhm1 and Ptprh.  While Matn2 and Plekhm1 
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confirmed the whole genome sequencing variant calls in the sequenced tumors, additional 

mutations were not found. Strikingly, Ptprh was found to be mutated in 81% of MMTV-PyMT 

tumors.  This indicates a conserved and perhaps necessary role of Ptprh mutation within 

MMTV-PyMT tumors which was explored in greater depth in future chapters. 
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DISCUSSION 

This data is to our knowledge the first comprehensive multi-omic profile of mouse 

models of breast cancer specifically the MMTV-Neu and MMTV-PyMT models.  These models 

provide key insights into HER2 positive breast cancer and the process of tumor metastasis and 

are critical for the advancement of their respective research fields.  This research fills the critical 

need of understanding translatability of mouse models to human cancer. 

We found that mouse models reflect the heterogeneity found in breast cancer.  In both 

models, there is a large amount of diversity both with the transcriptome as well as the genome.  

Interestingly it was found that these differences largely correlate with the histological subtype 

of the tumor.  This finding should change the way that researchers choose mouse models to use 

for study.  Instead of choosing a mouse model based upon the oncogenic driver, researchers 

should instead choose the tumors within the model that capture their disease context better.  

We have identified tumor histological subtype as an indicator of genomic profile and a good 

proxy for determining what class of tumor that a given tumor from a mouse model belongs to. 

Interestingly despite the presence of heterogeneity in the models, all of the sequenced 

tumors, regardless of model, had a similar mutational profile, referred to as mutagenic 

signature.  In human cancer, specific mutagenic signatures correlate with specific mutational 

processes such as BRCA loss or exposure to UV light.  The presence of a consistent mutational 

signature indicates the same driver of instability underlying both models.  Strikingly the 

mutational signature found in MMTV-Neu and MMTV-PyMT is highly consistent with human 

mutational signature number 5.  Human signature number 5 is found in breast cancer patients 

that present at and old age; however, the driver of the signature is unknown.  Study of the 
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mouse models may reveal insight into the driver of signature 5.  However, more work must be 

done to understand the drivers of instability in mouse models.  The most obvious limitation of 

this study is with the number of samples.  More samples must be sequenced to see if the 

consistency of mutational profile extends beyond the individual tumors presented in this study.  

Also, it will be important to expand this type of analysis to other tumor models with different 

oncogenic drivers including those with loss of tumor suppressors or carcinogen induced model. 

A key opportunity of this study was to examine the “two hit hypothesis.”  In human 

cancers, the prevailing hypothesis is that it takes multiple genomic alterations (hits) to cause 

the development of tumors.  Some mouse models require multiple hits to initiate tumors 

including models such as the BRCA/p53 knockout models.  However, this is not the case for the 

MMTV-Neu or MMTV-PyMT tumor models.  In these models, the only engineered oncogenic 

event is the force overexpression of Neu or the Middle T antigen in each model respectively.  It 

is possible that in order for the tumor to develop and progress additional oncogenic drivers 

must be affected. 

Surprisingly, in neither model were traditional human drivers of cancer identified as 

altered in the sequenced tumors.  In the MMTV-PyMT tumors, we saw an extremely prevalent 

mutation in the protein Ptprh.  Indicating that loss of Ptprh is required for PyMT tumors to 

progress, or certainly it is highly advantageous for the development of tumors.  We do not 

identify analogous mutation of this protein in breast cancer patients; however, it is present in 

other tumor types such as lung cancer.  With regards to MMTV-Neu tumors we did not identify 

any highly conserved mutations.  This made the identification of additional oncogenic hits 

difficult.  With this study, we cannot conclude rather this model requires additional oncogenic 
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promotion in addition to the overexpression of Neu.  To pursue this question, more individuals 

from the model must be examined. 

We did identify a number of copy number variants that were in traditional oncogenic or 

tumor suppressive tumors.  However, when these were validated through qPCR they were 

identified to be low level copy number variants with only 1.5 to 3 fold extra copies.  To identify 

if this is an artifact of the assay additional assays such as fish must be performed.  If the copy 

number variants are determined to be low level, next will be to understand if the upregulation 

is significant enough to cause impacts in cell signaling.  It has recently been shown that there is 

a subclass of human tumors with the low level copy number variants.  A number of extra 

experiments must be performed to determine if and how mouse models of breast cancer 

resemble low level copy number variant driven human tumors.  

As noted in earlier chapters, the identified copy number and single nucleotide variants 

were associated with tumor progression, not initiation.  Specifically, we identified a number of 

genes that are implicated in tumor metastasis.  These are explored in more detail in additional 

chapters.  

A key finding is that mouse models have significantly less mutations than human 

tumors.  This is unsurprising due to the lack of evolutionary pressure on these tumors.  This 

finding as impacts that both improve and hinder the utility of mouse models.  An advantage to 

using mouse models is that there are relatively few alterations.  This makes the system 

relatively clean without the same magnitude of genomic noise and passenger events found in 

human tumors.  The lack of genomic variants improves the ability of researchers to find novel 

impactful events such as the variation of Ptprh found in this work.  However, the lack of 
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genomic events limits of the utility of traditional mouse models for tumor immunology 

research.  It has recently been shown that tumors with a high mutation burden have a high 

number of neo-peptides and have evolved ways to evade immune detection.  This is not the 

case with the MMTV-Neu and MMTV-PyMT tumors.  The low mutation burden causes low neo-

peptide production and thus few immune evasion techniques.  To study these aspects of tumor 

biology new genetically engineered mouse models with a higher mutational load must be 

developed. 

This project is an important proof of concept study.  It provides important information 

about the heterogeneity in and progression of MMTV-PyMT and MMTV-Neu tumors.  Beyond 

this, the study shows the utility of sequencing specific mouse models.  In these relatively small 

studies we identified a number of events with direct translatability to the clinic.  We expect that 

with an expansion of the number of samples in the study the amount of clinically relevant 

findings will grow exponentially.  It is critical for the advancement of basic cancer research as 

well as translational findings to have a comprehensive understanding of genetically engineered 

mouse models and the genomic changes present in them. 
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MATERIALS AND METHODS 

ANIMAL STUDIES 

All animal husbandry and use was conducted according to local, national and institutional 

guidelines. The MMTV-Neu13 and MMTV-PyMT14 mice were in the FVB background.  MMTV-

PyMT634 and MMTV-Neu mice were obtained from The Jackson Laboratory. Mice were 

monitored twice weekly for tumor initiation and growth.  At a 2000 mm3 endpoint, mice were 

necropsied.  For mice with multiple tumors the endpoint was established when the primary 

tumor was at 2000 mm3.Tumors and lungs were collected for genomic analysis, hematoxylin 

and eosin staining for histological subtyping and presence of pulmonary metastases. The 

number of metastasis was quantified using a single cut through the lung and count of the 

number of micro-metastases in that plane.  Masson’s trichrome staining was used to examine 

tumors for collagen deposition using standard methods. 

WHOLE GENOME SEQUENCING 

Flash frozen tumor pieces were ground and DNA was extracted with the Qiagen Genomic-tip 

20/G with the manufacturer’s protocol.  DNA was sequenced to a depth of 40X with paired end 

150 base pair reads on an Illumina HiSeq 2500 using the Illumina TruSeq Nano DNA library 

preparation. 

TRANSCRIPTOMIC PROFILING 

Transcriptome data for this study was previously published34–36.  Data was downloaded from 

GSE42533 (MMTV-Neu) and GSE104397 (MMTV-PyMT) as .cel files.  Affymetrix expression 

console was used to normalize each individual dataset using RMA normalization.  To remove 
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batch effects between datasets BRFM normalization37 was performed with standard 

parameters. 

CLUSTERING 

Unsupervised hierarchical clustering was performed using Cluster 3.0 and heatmaps were 

created using the MATLAB imagesc function. 

VARIANT CALLING  

Generated .fastq files were assessed for quality control using FASTQC analysis 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc.  Reads were trimmed for quality 

using Trimmomatic38.  After trimming, data was reassessed for quality using FASTQC.  Then 

reads were aligned to the mm10 mouse reference genome using BWA-mem.  After alignment, 

base recalibration and pcr induced biases were removed using PICARD tools 

(http://broadinstitute.github.io/picard).  For variant calling we utilized four software packages, 

GATK39, Mutect240, Strelka41, and SomaticSniper42.  To be a legitimate variant we filtered to only 

those variants called by 3 of the 4 packages.  To control for differences in the FVB strain and the 

mm10 reference genome we used previously published normal FVB tissue (ERR046395)43.  To 

call copy number and structural variants we used Delly44.  For copy number we used default 

quality control settings and only analyzed those copy number events which had precise 

boundaries and were larger than 100KB.  For translocations we used default quality control 

setting and precise breakpoints. 

 

 

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://broadinstitute.github.io/picard
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VARIANT VERIFICATION AND EXTENDED TUMOR PANEL SEQUENCING 

For verification of SNVs we used PCR based amplification followed by Sanger sequencing.  For 

validation of CNVs we used qPCR on the genomic DNA with the Quantabio PerfeCTa SYBR green 

kit under the manufacturer’s specifications.  

CIRCOS VISUALIZATION 

Representative MMTV-Neu and MMTV-PyMT samples were chosen to be displayed as CIRCOS33 

plots.  CIRCOS plots were generated using CIRCOS v 0.69 and SNVs, CNVs, and translocations 

were mapped according to their location on the mm10 genome. 

MUTATION SIGNATURES 

Due to the low mutational burden of MMTV-Neu and MMTV-PyMT tumors, mutations were 

combined into a signal analysis for each model.  These samples were processed with MutSpec-

NMF45 for trinucleotide context and comparison to the known human mutation signatures. 
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Figure 3.1:  Genomic landscape of MMTV-Neu and MMTV-PyMT tumors 

The schematic representation of the project workflow is depicted (A), where mammary tumors 

from two major mouse models are completely characterized through histological, molecular, 

sequence and transcriptomic methods.  After data integration and analysis, the tumors were 

compared to human cancers at both genomic and phenotypic levels.  Gene expression patterns 

from MMTV-Neu and MMTV-PyMT tumors were compared by unsupervised clustering, 

revealing substantial heterogeneity both between and within models.  Tumors clustered largely 

based on histological subtype and not simply genotype.  SQU – squamous, MAC – microacinar, 

PAP – papillary, and CAC – comedo-adenocarcinoma (n=15 for MMTV-Neu, n=25 for MMTV-

PyMT) (B).   
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Figure 3.2:  MMTV-Neu tumors are significantly more unstable that MMTV-PyMT tumors 

Circos plots from whole genome sequencing results for MMTV-Neu (C) and MMTV-PyMT (D) 

tumors revealed differences between the strains for genomic alterations.  Plots display from 

outside in; Chromosomal location (Each chromosome is unique color), SNVs (green), copy 

number alterations (Amplification – Red and Deletions – Blue), and translocations (black lines). 

Variation from multiple tumors is shown for Single Nucleotide Variants (E), Copy Number 

Variants (F) and translocations (G) (n=3 for each). 
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Figure 3.3:  Copy number alterations in mouse models of breast cancer 

Schematic representation of filtering of copy number variants (A) where copy number variants 

were detected from NGS and filtered to the top 11 variants by selecting those genes that  
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Figure 3.3 (cont’d) 

encompassed both mouse models and were conserved in human breast cancer.  These genes 

were then assayed using qPCR analysis across a larger panel of MMTV-Neu (n=10) and MMTV-

PyMT (n=15) tumors and depicted using a circos plot for genes in chromosomes 2, 6, 11 and 17 

(B).  Deletion on the interior of the plot to a 3 fold amplification on the exterior of the plot is 

shown.  A key copy number alteration in the 11D region 
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Figure 3.4:  Copy number alterations TCGA Breast Cancer Oncoprint 

Oncoprint of the human TCGA Breast cancer cohort (Nature 2012) displaying the alteration of 

genes altered at a high rate in mouse models with regards to copy number  
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Figure 3.5:  Mutational Signatures of MMTV-Neu and MMTV-PyMT Models 

The trinucleotide context of MMTV-Neu (A) and MMTV-PyMT (B) samples are similar.  They 

show the presence of every mutation possibility with the overrepresentation of the C>T and 

T>C transitions.  These trinucleotide signatures were compared with human mutational 

signatures through the use of a Baysian model high similarity (Red) and low similarity (yellow) 

were identified through the use of a heat map.  Signature 5 represented the highest similarity 

score.
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Figure 3.6:  Heterogeneity of SNVs in mouse models of breast cancer 

The MMTV-Neu (A) and MMTV-PyMT (B) models have considerable diversity in regards to 

SNVs.  Samples were analyzed for overlap in SNV calls through the use of a Venn Diagram 
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CHAPTER 4 

CHARACTERIZATION OF 17Q21.33 AMPLIFICATION   
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ABSTRACT 

 The HER2 positive subtype of breast cancer presents a unique clinical challenge.  It is 

present in approximately 20% of HER2 positive breast cancer and it is shown to be particularly 

aggressive with regard to metastatic potential compared to breast cancer patients of other 

subtypes.  A unique challenge of the subtype is the presence of multiple amplicons located on 

chromosome 17 that lead to differential gene signaling and potentially different tumor 

phenotypes.  Here we use an integrative in silico, in vitro and in vivo approach we present here 

characterization of one such event, 17q21.33.  The 17q21.33 amplicon is present in 25% of 

HER2 positive breast cancer patients and 8% of patients regardless of subtype.  We identified 

this event to be associated with worse distant metastasis free survival due to the presence of 

Co11a1 and CHAD within the amplification event.  This was identified through the use of a 

wound healing assay, tail vein injection, and mammary fat pad injection of CRISPR-Cas9 

generated knockout cell lines for Col1a1 and CHAD.  In all assays the reduction of metastatic 

potential was seen.  Importantly, we are also able to identify the vulnerability of tumors with 

the 17q21.33 amplicon to AKT targeted therapy.   This was predicted through a number of high 

throughput genomic and drug compound screens in which unique vulnerabilities were 

identified in those cell lines containing the 17q21.33 amplicon.  This study underscores the 

importance of understanding the diversity within HER2 positive cancer.  Furthermore, the work 

presented here has immediate clinical impact due to its translatability with screening for 

metastatic lesions as well as AKT targeted therapy. 
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INTRODUCTION 

 Approximately 20% of breast cancers are classified as HER2 positive1,2.  This subtype is 

defined by the amplification and/or overexpression of the epidermal growth factor receptor 

family protein HER2.  This subclass is associated with a high metastatic burden with an 

overrepresentation of metastases to the brain3.  The highly metastatic potential of this tumor 

subclass makes it particularly difficult to treat. 

 The process of tumor metastasis involves a number of complex steps as a tumor 

proceeds from its primary location in the breast, through the lymph and vasculature, to a 

distant organ.  While many stages of this process are unknown it has been shown that a tumor 

microevironment plays an important role in both the initiation of metastasis4 and progression 

of the process.  Specifically, it has been shown that the extracellular matrix (ECM) must be in a 

certain formation to allow for cell migration5.  This involves the remodeling of the ECM through 

the production of collagen fibers6, matrix metalloproteinase7 and adherens8 proteins. 

 Despite the metastatic nature of the disease, there has been success in developing 

targeted therapy for this disease subtype.  Specifically, these therapies target the HER2 

signaling cascade through binding to HER2 directly or indirectly stopping signaling9–11.  These 

therapies have successful in improving patients outcomes; however, a significant portion of 

patients either fail to respond initially or acquire resistance to the therapeutic agent12,13. 

 Underlying the diversity of response to HER2 targeted therapy is diversity within HER2 

positive breast cancer14.  A characteristic of the HER2 subtype is not just the amplification of 

the HER2 coding region but amplification in other regions of the genome as well.  In fact, many 

HER2 positive tumors present with a “firestorm” amplification pattern along chromosome 1715.  
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In these tumors many regions along chromosome 17 are amplified.  It is hypothesized that each 

of these amplification events have impacts on cell signaling and eventual tumor characteristics 

including metastasis and treatment response. 

  Here we present an in depth muti-platform analysis of one of the firestorm events on 

chromosome 17 specifically on band 21.33 (17q21.33).  This event was shown to be found in 

approximately 25% of breast cancer patients.  This patient population was also shown to have 

lower distant metastasis free survival.  Through the use of CRIPSR-Cas9 mediated studies we 

identified Collagen Type 1 Alpha 1 (Col1a1) and Chondroadherin (CHAD) as contributing genes 

to the metastatic phenotype.  We also used bioinformatic and high throughput screening 

studies to predict therapeutic impacts of the amplification event.  While we were unable to 

identify an association with HER2 targeted therapy, we did identify an association of tumors 

with the 17q21.33 amplification event and response to AKT targeted therapy.  This result 

indicates that patients with the HER2 amplicon and co-amplification of 17q21.33 may benefit 

from addition AKT targeted therapy. 
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RESULTS 

IDENTIFICATION OF 11D COPY NUMBER VARIATIONS 

Through the resequencing approach discussed in the previous chapter, we identified 

low number gene copy number alterations in the mouse models.   Interestingly we identified 

the largest diversity of copy number profiles in the 11D locus.  This locus includes a total of 40 

genes, 19 with transcriptomic differences.  Depending on the presence or absence of the locus, 

the tumors exhibited striking differences in structure and behavior.  We identified dramatic 

differences in the tumors with the presence of an 11D amplification with regards to collagen 

content through a Mason’s trichrome (Figure 4.1A) stain and the presence of metastatic lesions 

in the lungs (Figure 4.1 B). 

 To identify the driving genes of the metastatic phenotype associated with 11D 

amplification, we examined human breast cancer for distant metastasis free survival outcomes 

and then created CRISPR-Cas9 generated knockouts of two potential metastasis related 

proteins within the region, Collagen type 1 alpha 1 (Col1a1) and Chondroadherin (Chad).  

Knockouts were generated in two mouse driven tumor cell lines NDL2-516 and PyMT 41917.  

NDL2-5 is an 11D amplified Neu driven line, while the 419 line is diploid for the 11D locus and is 

driven by PyMT expression.  Knockouts of each gene in both cell lines revealed defects in the 

ability to migrate in a wound healing assay (Figure 4.2A and Figure 4.2B).  Defects in lung 

colonization in a tail vein injection were also observed with the Col1a1 and Chad knockout cell 

lines (Figure 4.2C and Figure 4.2D). The differences in migratory ability may be contributed by 

the completentess of the knowout/knockdown in each line (Figure 4.4).  Migration was partially 
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rescued with addback of wildtype Col1a1 or Chad, demonstrating that migration defects were 

not due to off target effects (Figure 4.5).  

11D AMPLIFICATION IS ANALOGOUS TO 17Q21.33 AMPLIFICATION IN HUMANS  

 Mouse chromosome 11D is conserved in humans and is analogous to chromosomal 

region 17q21.33.  There is similar amplification event at 17q21.33, including COL1A1 and CHAD 

that occurs in 8% of breast cancer patients.  Array CGH from the TCGA data18,19 demonstrates 

that COL1A1/CHAD amplification was distinct from HER2 amplification (Figure 4.3A).  

Importantly, this amplification is subtype specific; 25% of HER2+ breast cancers have a co-

amplification of the 17q21.33 region along with the HER2 amplicon while only 6% of Luminal A, 

7% of Luminal B, and 1.2% of Basal breast cancers have amplification (Figure 4.3B).  To 

investigate the transcriptional impact of the amplification event we used weighted gene 

correlation network analysis20.  This identified a robust transcriptional signature that 

differentiated COL1A1/CHAD, HER2 positive tumors from HER2 positive tumors without the 

amplification event.  Unsupervised hierarchical clustering readily identified separation of the 

two HER2 positive subtypes based on this signature (Figure 4.3C).    These correlated genes 

were used in a predictive signature to correlate patient outcome with predictive amplification 

status (Figure 4.6) revealing that metastasis was associated with the amplification event (Figure 

4.3D).   

To test whether COL1A1 and CHAD were driving the metastasis phenotype in human 

breast cancer, we used CRISPRi21 to knockdown COL1A1 and CHAD in the HER2 amplified, 

COL1A1/CHAD amplified breast cancer line BT-474.  These knockdowns showed a decreased 

ability to migrate in a wound healing assay (Figure 4.3E and 4.3F).  Importantly the knockdown 
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lines also were unable to metastasize to the lung after being injected into the mammary fat pad 

(Figure 4.3G and 4.3H). Together these data underscore the importance of identifying copy 

number variation in mouse models of cancer. 

TREATING THE 17Q21.33 AMPLIFICATION EVENT 

Many other genes were also noted to be co-amplified with the presence of Col1a1 and 

Chad (Figure 4.7) With the presence of the 17q21.33 we identified a consistent transcriptional 

profile indicating that the tumors had a unique profile from other HER2 amplified tumors 

(Figure 4.8).  It was hypothesized that the differences in transcription identified between the 

HER2 positive 17q21.33 amplified tumors and the HER2 positive tumors without the 17q21.33 

amplification event may introduce new genetic dependencies and potential therapeutic targets.  

To pursue this hypothesis, we first identified differences in key oncogenic pathways.  We 

identified slight increases in AKT, E2F2, and Myc (Figure 4.9) signaling associated with 17q21.33 

indicating reliance upon these pathways. 

To identify specific gene upregulations associated with the 17q21.33 amplicon we first 

defined the gene amplification region and identified those genes within the region that had 

coordinated RNA upregulation associated with gene amplification (Figure 4.7).  We identified 

this through the use of cbio portal and the TCGA breast cancer dataset.  If is also possible that 

genes may be differentially regulated as downstream effects of the amplification event and not 

within genomic region of the event.  To identify this we used cbioportal to correlate genes that 

are overexpressed or underexpressed in the HER2 positive patients with 17q21.33 amplification 

(Figure 4.10).  This identified a number of interesting genes. 
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To find genes that might contribute to the higher AKT signaling that was identified 

previously in 17q21.33 amplified patients, we used a stringdb22 approach.  This approach 

interestingly identified three of the correlated proteins, PHB, Beclin, and SLC45A to be directed 

interacting with AKT (Figure 4.10).  Because of their known roles in apoptosis and autophagy 

PHB and Beclin were selected to be tested for downstream analysis. 

Interestingly, when PHB was knocked down in a 17q21.33 amplified cell line it showed 

that the cells performed better.  That is, they had a higher rate of proliferation than those cells 

that did not have amplification of 17q21.33 when PHB was knocked down (Figure 4.12) this is 

not the case for any other gene within the amplicon event as shown by the random growth 

effects for Ankrd40.  This indicates that PHB has a tumor suppressive role in the tumors in 

which it is amplified. 

To overcome the high levels of PHB and continue to proliferate the tumor must 

inactivate or evade the PHB growth signals.  According to recent literature, AKT is directly 

responsible for the phosphorylation or PHB and its inhibition.  This drove us to hypothesize that 

17q21.33 are dependent upon high AKT signaling.  To pursue this, we used a number of publicly 

available high-throughput screening database. 

We first used the Achilles23 database to identify differentially lethal siRNA in cell lines 

with co-amplification of the HER2 amplicon and the 17q21.33 amplification as well as those 

with only HER2 amplification.  Unsurprisingly, a number of differentially lethal siRNA’s were 

identified between the two cell groups (Figure 4.11).  In support of our hypothesis of AKT 

addiction, it was shown that the vast majority of the lethal siRNA’s were associated with AKT 
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signaling as identified through a string-DB network.  This indicates that any amount of AKT 

signaling perturbation will cause the death of the cell line. 

To confirm this using a chemical compound we identified a PDX24 highthroughput drug 

screening dataset25–27.  Similar to the Achilles dataset we dived the PDX samples into HER2 

amplified and HER2 amplified with the presence of the 17q21.33 amplification event.  Then we 

identified the response of the tumor to AKT targeted therapy.  In particular we identified two 

compounds which inhibited PI3K signaling (an important activator of AKT).  In both cases the 

samples with the 17q21.33 amplification event was shown to be more sensitive to this line of 

therapy (Figure 4.11). 
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DISCUSSION 

 Here we identify an important subclass of HER2 positive cancer.  This subclass is defined 

by the presence of the 17q21.33 amplification event.  Furthermore, we have shown this 

subclass to be directly impactful clinically with these patients having more metastatic tumors.  

These patients should have a different course of care than other HER2 positive patients with 

the additional screening to identify metastatic lesions early.  Furthermore, these patients may 

benefit from the addition of AKT targeted therapy. 

 The identification of Col1a1 and CHAD as drivers of metastasis presents a unique 

opportunity to intervene in the metastatic cascade.  The data presented in this manuscript 

indicates that Col1a1 and CHAD play a role in both early and late stages of metastasis.  If a 

therapy was designed to either inhibit the production of these proteins or the ability of the 

tumor cell to migrate along them, it would inhibit the formation of new metastatic lesions.  One 

could envision such a therapy being concurrent to cytotoxic therapies.  This type of therapy 

would greatly reduce the metastatic potential of the tumors and greatly improve patient 

outcomes. 

 The identified AKT addiction presents a key proof of concept type study for the 

identification of therapeutic avenues.  Here we see the amplification of a tumor suppressor, 

PHB, introduce a unique vulnerability in 17q21.33 tumors.  We believe that PHB is amplified as 

part of a passenger event due to its proximity to other tumor promoting proteins such as KAT7.  

It is not selected against, due to the high AKT activity present due to the co-occurring HER2 

amplification event28.  However, in the absence or reduction of AKT signaling, PHB is able to 

return to its natural tumor suppressive role29 and kill the tumor.  This manuscript exposes a 
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unique vulnerability to 17q21.33 amplified tumors and it shows the importance of oncogenic 

addiction.  Furthermore, this study shows the special notice that should be taken when tumors 

are identified with the amplification of traditional tumor-suppressors due to the therapeutic 

opportunity that they present. 

 It is critical to understand the diversity within the HER2 subtype to improve patient care.  

This has never been more evident than with AKT targeted therapy.  Currently, there are no AKT 

targeting agents that are approved in breast cancer. However, there have been a number of 

clinical trials presenting AKT targeted therapy in various contexts30.  However, these have all 

failed in either phase II or phase III settings due to efficacy.  We believe that these studies were 

fundamentally flawed in their design by not accounting for the heterogeneity within the HER2 

subtype.  Based on the data presented in this manuscript we believe that those patients noted 

in each trial to have partial or complete response may be 17q21.33 amplified.  It is predicted 

that the other copy number events associated with HER2 amplicon may have similar impact on 

tumor behaviors and treatment response.  To design and advance clinical trials in the era of 

precision medicine researchers much account for the diversity within the HER2 positive 

subtype. 
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MATERIALS AND METHODS 

CELL LINES 

The PyMT 419 cell lines were a gracious gift from Dr. Stuart Sell and Dr. Ian Guess17.  The NDL2-

5 cells lines were obtained as a gift from Dr. Peter Siegel16.  The BT-474 cell line was obtained 

from Dr.  Kathy Gallo and validated using fingerprinting analysis performed at Michigan State 

University. 

CRISPR GENERATED KNOCKOUTS OF PYMT 419 AND NDL2-5 

CRISPR/Cas9 constructs were created to knockout Col1a1 and Chad in PyMT 419 and NDL2-5.  

Guides were designed and inserted into Px458, obtained from addgene (Addgene #48138) as a 

gift from Feng Zhang, as previously described31.  Cells were sorted using FACS technology into 

single cells and grown into clonal population, then screened for the presence of INDELs using 

Sanger sequencing.  Knockouts were further confirmed for the NDL2-5 lines using western blot. 

CRISPRI GENERATED KNOCKDOWNS IN BT-474 

Knockdowns of Col1a1 and CHAD were created in the BT-474 line using CRISPRi technology.  

gRNA were cloned into a plasmid containing the gRNA under the control of the U6 promoter 

(Addgene plasmid #60955)32. Lenti virus was created for stable expression of this plasmid and 

the stable expression of KRAB-Cas9 fusion protein (Addgene plasmid #60954)32.  Cells were 

infected with KRAB-Cas9 expression virus first and selected for uptake by puromycin treatment.  

The stable KRAB-Cas9, BT474 line was then infected with the virus for stable selection of the 

gRNA for CHAD or COL1A1.  These were then sorted using flow cytometery for RFP expression 

into a pooled population and validated knockdown through western blot.  The plasmids used in 

the part of the project were obtained through Addgene as a gift from Jonathan Weissman. 
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WOUND HEALING ASSAY 

Wound healing assays were performed similarly for all cell lines in the manuscript.  Cells were 

grown to 100% confluence in a six well plate then a wound was created in the middle of the 

plate.  Cells were allowed to close the wound for 24 hours in the presence of Mitomycin C 

growth inhibitor then the cells were imaged.  Images were quantified for the amount of 

migration into the wound using ImageJ.  

TAIL VEIN INJECTION 

NDL2-5 Chad and Col1a1 knockout cell lines were injected into the tail vein of syngeneic FVB/NJ 

mice.  Cell were suspended in PBS in a single cell population and injected in a single bolus of 

500x105 cells in 50uL.  Mice were monitored for 9 weeks then euthanized.  At this point, lungs 

were collected and stained with Hematoxylin and Eosin to identify the presence of pulmonary 

metastases.  

MAMMARY FAT PAD INJECTION 

NDL2-5 WT and cell lines were suspended in PBS and injected into mammary gland number 

four in syngeneic FVB/NJ mice as a single bolus of 1x106 cells.  The mice were monitored twice 

weekly until tumors reached an endpoint of 2000 mm3 in diameter. 

BT474 wildype and CHAD/COL1A1 knockout lines were suspended in a 1:1 

concentration of matrigel:PBS mixture and injecting into the mammary gland number four in a 

single bolus of 1x106 cells.  Balb/C nude mice were used for these studies.  Tumors were 

monitored until a size of 1000 mm3 in diameter.  Tumors were then resected, and mice were 

monitored for an additional four weeks.  At necropsy lungs were imaged for RFP using the IVIS 

imaging system and then processed for hematoxylin and eosin staining. 
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HUMAN DATASET USAGE 

All human datasets used in this study are publicly available and noted as used in the 

manuscript. For genomic alteration frequency the TCGA Breast cancer18,19 and the TCGA-pan 

Lung cancer33 datasets were used.  For the expression based survival data the KMPlot.com 

dataset34 was used. 

WESTERN BLOTTING 

Western blots in this manuscript were completed under manufacturer’s specifications.  

Blocking was performed for 1 hour by incubation at room temperature with the LiCor blocking 

reagents.  Western blots were imaged using the LiCor system.  The following antibodies were 

used: COL1A1 (Origene TA309096), CHAD (Abcam ab104757), HSP90 (CST 4874S), Beta-tubulin 

(CST 2128S), anti-rabbit secondary (Licor 926-32211), anti-mouse secondary (Licor 926-68070) 

AKT SENSITIVITY EXPERIMENTS 

 CCLE35 data was download and separated into HER2+ lines with 17q21.33 amplification 

and those without.  The Achilles23 data was filtered to those samples and the top 200 

differentially lethal siRNA’s were identified between the two subgroups.  For the PDX24 analysis 

a similar approach was taken with the division of HER2+ tumors into the two subgroups and 

differentially lethal compounds were identified.  
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Figure 4.1:  Association of ECM changes and metastatic potential changes with 11D CNV 

A key copy number alteration in the 11D region encompassing the Col1a1 gene was observed to 

correlate with reduction and lack of collagen alignment in Masons trichrome staining (C) and an 

increase in metastases in the lungs of mice with Col1a1 amplification in the primary tumors (D).   
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Figure 4.2:  Loss of Col1a1 or CHAD effects migration in vitro and lung colonization in vivo in 

mouse mammary tumor cell line 

CRISPR-Cas9 mediated knockout of two key genes within this region, Col1a1 and Chad, show 

defects in wound healing (A, B) (n=9).  Knockout also impaired the ability to colonize the lung 

through a tail vein injection (C, D) (WT n=12, Chad KO n=9, Col1a1 KO n=6). (**=P<.01 for D) 
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Figure 4.3: 11D amplicon presence and function is conserved in human breast cancer 
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Figure 4.3 (cont’d) 

TCGA breast cancer copy number dataset analysis revealed co-amplification of HER2 and the 

COL1A1 locus through a heatmap across chromosome 17 of multiple samples with each row 

representing an independent patient sample (A-top) with red representing amplification and 

blue representing deletion.  The COL1A1 amplification event occurred independently of HER2 

(A-bottom) as identified by probe intensity of aCGH data of a single TCGA breast cancer patient.  

The COL1A1/CHAD amplification event was disproportionately found in HER2 positive tumors 

and is present in approximately 25% of HER2 positive tumors (B).  Gene expression of HER2+ 

samples with and without the Col1A1 17q21.33 amplification demonstrated a unique gene 

expression profile as identified by unsupervised hierarchical clustering (C) and overall survival 

within the KMplotter dataset (P<.001) (D).  CRISPRi mediated knockdown of CHAD and COL1A1 

in human cell line BT-474 resulted in defects in wound healing (F, G) (*=p<.05, n=9) and distant 

metastasis to the lung after orthotopic injections (H, I n=10, for WT, n= 4 for CHAD KO1, n = 5 

for CHAD KO2 n= 12 for Col1a1 KO1, n=6 for Col1a1 KO2). 
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Figure 4.4:  Confirmation of Col1a1 and CHAD knockout in PyMT 419, NDL2-5, and BT-474 cell 

lines 

Sanger sequencing of CHAD (A) and Col1a1 (B) KO clones revealed the production of indels 

within the coding sequence of each protein within the PyMT 419 line.  This is also the case  
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Figure 4.4 (cont’d) 

where multiple different indels were shown in the Col1a1/CHAD amplified cell line NDL2-5 (C).  

The confirmation of knockdown was completed through western blot for CHAD (top) and 

Col1a1 (Bottom).  The CRISPRi system with guides against early exons of CHAD and Col1a1 was 

used to generate knockdowns of the respective genes in the human HER2 positive, 

COL1A1/CHAD amplified line BT474.  The efficiency of knockdown in the pooled population was 

assessed through western blot for CHAD (E) and COL1A1 (F). 
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Figure 4.5:  Addback of Col1a1 and CHAD in PyMT 419 cell lines 

The addback of wildype Col1a1 and Chad into the CRISPR generated knockout lines showed 

partial recovery of movement in a scratch assay (*=P<.05). 

  



147 
 

Figure 4.6:  Validation of COL1A1/CHAD amplicon gene expression signature 

A score between 0 (diploid) and 1 (amplified) was generated for the predicted presence of the 

COL1A1/CHAD amplification event based upon a weighted gene expression data.  This signature 

showed a robust prediction of the amplification event in both the training HER2 positive 

dataset (A) and the Luminal A validation cohort (B) 
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Figure 4.7:  17q21.33 Oncoprint 
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Figure 4.7 (cont’d) 

An oncoprint showing all the genes within the amplification event shows co-amplification of 

approximately 40 genes.  Many of these genes show an upregulation of RNA to accompany the 

amplification at the DNA level 



150 
 

Figure 4.8:  Gene expression impact of 17q21.33 

Consistent gene expression changes were identified with the presence of the 17q21.33 

amplification event (Red) through unsupervised hierarchical clustering.  Gene expression data is 

color coded as shown in the color bar with high being red and low being blue. 
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Figure 4.9:  Key signaling changes 

Significant differences were seen between amplified and diploid pathway activity signatures in 

E2F2 (Top), AKT (Middle), and Myc (Bottom) (P<.05)  
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Figure 4.10:  17q21.33 Amplified gene expression correlation 

Genes which had expression correlated with Col1A1/CHAD amplification within the TCGA 

breast cancer cohort were identified through the use of cbio portal (top).  Many of these genes  
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Figure 4.10 (cont’d) 

were shown to be unrelated; however, a key network of genes revolving around AKT was 

identified including PHB, SLC2A4, and Beclin (bottom) 
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Figure 4.11:  Targeting of Col1a1/CHAD amplicon 

Use of the Achilles data identified preferentially lethal siRNA target genes between HER2 

amplified and HER2/Col1a1 Amplified cell lines (top).  The proliferation score is color coded 

with Red being highly proliferative (non-lethal) and Blue being lowly proliferative (Lethal).  This 

data was followed up on in PDX drug studies where it was identified that 17q21.33 amplified 

lines were more sensitive to PI3K inhibition (bottom) 
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Figure 4.12:  17q21.33 correlated genes and dependency 

A ranking of CCLE cell lines from low to high of dependency score shows differential survival 

depending upon amplification status of 17q21.33.  PHB knockdown shows a large increase in 

cell viability when in an amplified setting (Red) but not in a diploid (Blue) setting (top).  This is 

not the case for other 17q21.33 correlated genes such as ANKRD40 (bottom) 
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Figure 4.13:  Working model of AKT sensitivity 
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Figure 4.13 (cont’d) 

In a HER2/Col1a1 amplified setting High AKT signaling is able to overcome PHB and Beclin 

mediated apoptosis (top).  However, in the presence of AKT inhibition PHB mediated apoptosis 

occurs and kills the tumor cells (bottom).  
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CHAPTER 5  

CONSERVED MUTATIONS OF PTPRH IN MMTV-PYMT TUMORS  
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ABSTRACT 

Receptor tyrosine kinases play a critical role in the development and progression of human 

cancers.  A key protein in many cancers of this type is EGFR where uncontrolled activation of 

the protein results in uncontrolled cell proliferation.  The activity of EGFR is tightly regulated by 

phosotyrosine receptor phosphatases.  Here we identify a conserved mutation in one such 

protein, phosphotyrosine receptor phosphatase type H (Ptprh).  The mutation is highly 

conserved in mouse models of breast cancer and is identified to be mutant in 81% of MMTV-

PyMT tumors.  Also, we identified the mutation to be present in a number of human tumors 

including Ovarian, Head and Neck, and lung tumors.  A key finding is that Ptprh mutations are 

associated with high EGFR activity, lower latency and more aggressive tumors in a variety of 

cancer types.  Importantly when cell lines with the Ptprh mutation were compared against 

those without the mutation we identified an increased sensitivity to EGFR targeted therapy 

such as erlotinib associated with Ptprh mutation.  We believe that this mutation acts as a 

dominant negative mutation and leads to uncontrolled EGFR signaling.  An important impact of 

this finding is its immediate clinical relevance.  The presence of a Ptprh mutation in a patient’s 

tumor may lead to sensitivity towards EGFR targeted therapy.  This would have immediate 

impact on patient care and potential provide a new therapeutic option for many patients.  The 

study underscores the importance of understanding mouse models of cancer.  We believe that 

Ptprh is just one of many conserved events present in mouse models and with the increase in 

number and breadth of models we will identify other key tumor promoting genomic events.  
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INTRODUCTION 

 A hallmark of cancer is uncontrolled growth through the self-sufficiency in growth 

signals1.  This allows the replication of a tumor cell without the presence of a growth factor.  

There have many different types of oncogenic, proliferative modifications identified that drive 

replication in cancer2,3.  Many of these are receptor tyrosine kinases (RTKs) in the epidermal 

growth factor receptor family. 

 The epidermal growth factor receptor family has four family members EGFR, HER2/Neu, 

Her3, Her44.  The family members work together to promote cell proliferation.  EGFR, Her3 and 

Her4 bind growth factors.  Upon binding of their ligand, they will homodimerize or 

heterodimerize with other family members to lead to uncontrolled cell proliferation. Mutations 

or amplifications of these family members have been identified that cause uncontrolled cell 

proliferation in the absence of the growth factor and is the underlying cause of many cancer5. 

 EGFR modifications have shown to play a key role in the development of lung cancers6, 

anal cancers, glioblastoma7, and tumors of the head and neck8.  This dysregulation is caused by 

mutation or amplification of the EGFR protein in most cases.  Upon binding of the growth 

factor, like other family members, EGFR with homo or hetero dimerize.  This leads to of several 

intercellular tyrosine residues.  In the human these are specifically Y992, Y1045, Y1068, Y1148 

and Y11739.  The phosphorylation of these residues leads to activation of the AKT/PI3K10, 

MAPK11, or JNK12 signaling cascades and leads to cellular division.  Emerging research has 

identified that phosphorylation of specific residues leads to specific signaling cascades13. 

 Due to its frequency of modulation and important role in cancer a number of targeted 

therapies have been developed to block EGFR signaling14.  There are two main classes of EGFR 
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targeted therapy.  The first type are monoclonal antibodies raised against EGFR.  These 

antibodies function in a number of ways by blocking binding to EGF, preventing dimerization 

and mediating antibody dependent cytotoxicity.  A common drug from this class used to treat 

patients is pertuzumab15.  The other main class of compounds are EGFR inhibitors. These are 

small molecule compounds which prevent the tyrosine kinase activity of the receptor.  By 

inhibiting phosphorylation, the molecules prevent downstream signaling from occurring and 

stop cell growth.  Some common small molecule inhibitors of EGFR are erolotinib16, gefitinib17, 

and afatinib18. 

 An important class of regulatory proteins of EGFR and its family members are 

phosphotyrosine receptor (ptpr) proteins.  This protein family has 21 members and plays a 

critical role in regulating a number of cellular processes including cell growth and 

differentiation19.  Recent work has shown an emerging role of PTPRs in cancers where 

misregulation of the protein is present in the tumor but not the surrounding normal tissue20.  

The Ptprs vary in structure and thus vary in function with each one having a unique profile of 

EGFR family member that it is responsible to bind to, and tyrosine residues to de-

phosphorylates.  Ptprs work in a dimer system in which homo or heterodimer must form in 

order for the phosphatase activity to occur21. 

 As expected, many mouse models of breast cancer that rely on EGFR signaling have 

been developed.  Most common dysregulation of EGFR results in mouse models of lung 

cancer22.  However, in a highly aggressive mouse model of breast cancer, MMTV-PyMT, it has 

been shown that EGFR is highly active and the model is dependent upon EGFR signaling for 

progression23.  This is surprising due to the fact that breast cancer is not traditionally EGFR 
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driven.  Furthermore, the mechanism of how EGFR signaling is upregulated in this model is 

unknown.  To date, EGFR amplification or mutations have not been found in this model. 

 Here we present an integrative whole genome and transcriptome analysis of MMTV-

PyMT tumors to identify underlying drivers of tumorigeneisis in this model.  Strikingly we 

identified a previously unknown mutation in PTPRH in 81% of PyMT tumors.  Importantly we 

showed that similar mutations were present in around 5% of lung cancer patients.  The tumors 

with PTPRH mutation were shown to be more aggressive than those with wildtype tumors with 

increased EGFR signaling and lower latency in the mouse as well as worse outcomes in the 

human.  It was also found that tumors with PTPRH mutations with Ptprh mutations are more 

responsive to EGFR targeted therapy like erolotinib.   

 Taken together these findings have impacts in both the research community and also in 

the clinic.  In the research community, this work gives an increased understanding of the 

tumorigenesis of the MMTV-PyMT tumors.  This will help to translate the findings from the 

MMTV-PyMT into the appropriate patient population.  The most immediate impact of this work 

is that the identification of a Ptprh mutation will lead to new treatment options for a number of 

lung cancer patients.  These patients would otherwise be faced with traditional chemotherapy 

and would have worse outcomes.  We believe that this study underscores the importance of 

understanding mouse models of cancer and shows the importance of increase the number and 

diversity of mouse models that have been profiled.  
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RESULTS 

IDENTIFICATION OF PTPRH MUTATIONS 

Ptprh was found to be mutated in 81% of MMTV-PyMT tumors.  Furthermore, the Ptprh 

mutation was shown to be homozygously mutated in 21% of PyMT tumors and heterozygously 

mutated in 60% of PyMT tumors (Figure 4.1A and 4.1B).  Surprisingly, an identical C to T 

mutation was observed in each tumor resulting in a valine residue being converted to a 

methionine at amino acid 483 (V483M). To test for the conservation of mutations of Ptprh in 

mouse strains beyond FVB/NJ, we sequenced Ptprh of MMTV-PyMT models in a C57/Bl6, 

C57/Bl10, CAST, and MOLF backgrounds as well as a different inbred MMTV-PyMT FVB /NJ line.  

This analysis showed consistent mutation in the structural fibronectin domains (FN3) and the 

phosphatase domain of Ptprh (Figure 4.1C).  Interestingly we found that the two FVB models 

contained different mutational patterns indicating an impact of environmental and potential 

epigenetic causes of mutational hotspots. 

PTPRH MUTATION MODULATES EGFR SIGNALING 

Given that recent work identified the target of PTPRH as EGFR20, we hypothesized that 

EGFR was not dephosphorylated with Ptprh mutation.  Testing this, we observed that the 

V483M mutation correlated with pEGFR levels (Figure 4.2A and Figure 4.2B).   With the 

resulting increase in EGFR activity, we also observed a significant decrease in tumor latency 

(Figure 4.2C).  With an increase in EGFR activity, it was possible that tumors with mutant Ptprh 

would be dependent upon EGFR signaling.  To test this prediction, cell lines derived from Ptprh 

wildtype and mutant tumors were treated with EGFR targeted therapy.  After 48 hours, tumors 
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containing Ptprh mutations were shown to be more sensitive to erlotinib treatment (Figure 

4.2D).   

 Given the role of EGFR in lung cancer, we next sought to determine if there was a non-

EGFR mutant patient population within lung cancer that could benefit from EGFR inhibition. 

Examination of the pan–lung TCGA data revealed 5% of patients with a mutation in PTPRH 

(Figure 4.3A).  Importantly, these mutations were shown to be mutually exclusive from EGFR, 

indicating that patients were likely not treated with EGFR tyrosine kinase inhibitors.  To confirm 

the impact of PTPRH mutations on EGFR activity in human lung tumors we used gene set 

enrichment analysis to predict EGFR activity of each mutant PTPRH sample.  This analysis 

revealed four key hotspots of mutations driving high EGFR activity, including three in the FN3 

domains and one in the phosphatase domain of PTPRH (Figure 4.3B). 

PAN-CANCER IMPACTS OF PTPRH LOSS 

 To identify if PTPRH is altered in other tumor types beside lung we utilized the TCGA 

data from various tumor types (Figure 4.4A).  It was seen that lung cancer had the highest 

number of samples with Ptprh mutation.  Surprisingly, it was shown that a high degree of tumor 

samples had a heterogeneous loss of Ptprh.  This includes a significant portion of ovarian and 

head and neck tumors.  Interestingly both of these tumor types have been shown to have 

subsets of tumors which respond to EGFR targeted therapy.  We also identified a protective 

role of high expression of Ptprh in breast (Figure 4.4B), ovarian (Figure 4.4C), stomach (Figure 

4.4D) and liver (Figure 4.4E) cancer with regards to overall and relapse free survival.  This 

confirms a pan-cancer protective role of Ptprh.  Bioinfomatic analysis of the ovarian tumors and 

head and neck tumors however, did not reveal activation of the Egfr pathway.  However, this 
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could be due to the fact that the gene sets did not fully represent the specific type of Egfr 

signaling induced by Ptprh loss or other activators of Egfr in those tumors. 

 To identify if Ptprh mutation lead to specific Egfr signaling we used the breast cancer 

dataset.  Despite the small number of samples with Ptprh mutations in breast cancer we 

utilized this dataset for the informatic extensive informatic tools which have been validated in 

it.  Specifically, there are pathway activity signatures that would give insight into the 

downstream pathways of Egfr which are active. We hypothesized that different alterations in 

different Ptprs will lead to different downstream pathway activation.  We pursued this 

hypothesis through the use of unsupervised hierarchical clustering of pathway activity and 

identified specific alterations with specific pathway activity associated (Figure 5.5A).  With 

regards to Ptprh mutation we identified that the AKT/PI3K pathway was activated downstream 

of Egfr indicating a specific role of Ptprh in de-phosorylation and subsequent signaling (Figure 

5.5B). 
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DISCUSSION 

 Here we have identified a conserved mutation in Ptprh in 81% of the MMTV-PyMT 

mouse model which is conserved in approximately 5% of lung cancer patients.  We confirmed 

that mutations of Ptprh is associated with higher EGFR activity and more aggressive tumors in a 

variety of cancer types.  The most immediate clinical impact is the identification of a new 

patient population that may respond to EGFR targeted therapy such as erlotitinib.  We 

identified this through the isolation of Ptprh mutant and wildtype cell lines.  

 We identified specific pathway regulation associated with Ptprh mutation this indicates 

that Ptprh is responsible for de-phosphorylation of specific tyrosine residues that lead to 

downstream AKT/PI3K signaling. Preliminary evidence states that other phosphor-tyrosine 

receptor phosphatases regulate additional signaling cascades and could potentially be markers 

of other therapeutic response much like Ptprh is of erlotinib sensitivity. 

 A key remaining question is if mutations in Ptprh work in a haploinsuffienct manner or in 

a dominant negative manner. Based upon our copy number data we identify that a one copy 

number loss of Ptprh does not lead to changes in EGFR activity.  However, a heterozygous 

mutation does result in increased EGFR activity. This indicates a dominant negative loss of 

function mutation.  The dominant negative function limits the therapeutic potential of 

overexpression of Ptprh through gene therapy.  Any therapeutic involving Ptprh would have to 

be an edit of the mutated gene back to wildtype.  This could perhaps be a target for emerging 

CRISPR based gene editing therapy. 

 Likely, the utility of the Ptprh clinically is as a biomarker of response to erlotinib 

treatment.  More work must be completed to use Ptprh as a biomarker.  Due to the lack of a 
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hotspot mutation, traditional sequencing of the tumor of circulating DNA will not be possible.  

However, we believe that due to the consistent signaling changes associated with Ptprh a 

signaling based approach may be more beneficial to identifying those patient populations with 

Ptprh mutations.  We predict that this may be feasible through a gene signature approach or an 

IHC stain of pEGFR. 

 This research underscores the importance and direct translatability of understanding 

the genomic landscape of mouse models of breast cancer.  In addition, to its obvious benefit to 

the research community understanding mouse models have an impact in clinical care as well.  

Mouse models present a relatively stable tumor and only have selective pressure for extremely 

important events.  Many times, these events are conserved in human tumors as well.  We 

believe that this study is a proof of concept work and many events other events beyond Ptprh 

mutation will be identified with the increase in number and diversity of mouse models profiled. 
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MATERIALS AND METHODS 

ANIMAL STUDIES 

All animal husbandry and use was conducted according to local, national and institutional 

guidelines. The MMTV-PyMT5 mice were in the FVB background.  MMTV-PyMT634 and MMTV-

Neu mice were obtained from The Jackson Laboratory. Mice were monitored twice weekly for 

tumor initiation and growth.  At a 2000 mm3 endpoint, mice were necropsied.  For mice with 

multiple tumors the endpoint was established when the primary tumor was at 2000 

mm3.Tumors and lungs were collected for genomic analysis, hematoxylin and eosin staining for 

histological subtyping and presence of pulmonary metastases. The number of metastasis was 

quantified using a single cut through the lung and count of the number of micro-metastases in 

that plane.  Masson’s trichrome staining was used to examine tumors for collagen deposition 

using standard methods. 

WESTERN BLOTTING 

Western blots in this manuscript were completed under manufacturer’s specifications.  

Blocking was performed for 1 hour by incubation at room temperature with the LiCor blocking 

reagents.  Western blots were imaged using the LiCor system.  The following antibodies were 

used: EGFR (CST D38B1), pEGFR (Invitrogen PA5-37553), Beta-tubulin (CST 2128S), anti-rabbit 

secondary (Licor 926-32211), anti-mouse secondary (Licor 926-68070) 

ERLOTINIB SENSITIVITY ASSAY 

Cell lines derived from Ptprh mutant and wildtype tumors were seeded at a concentration of 

250 cells/mL and subjected to erlotinib treatment for 48 hours with the concentrations stated 

in the manuscript.  Eroltinib was purchased from Cayman Chemical.  After treatment with 
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erlotinib or DMSO control, cells were given fresh media to grow for 7 days.  Cells were then 

fixed and stained with crystal violet for counting. 

HUMAN DATASET 

The TCGA pan-lung cancer24 and breast cancer datasets were used in this analysis and visualized 

through the use of cbio portal.  Survival data was queried using the kmplot.com dataset25. 

EGFR ACTIVITY PREDICTION 

The pan-lung cancer dataset was downloaded and interrogated with single sample GSEA.  The 

activity score for EGFR was downloaded and mean centered between 0 and 1.  The samples 

were then matched with their PTPRH mutation data for the same sample and mutations 

mapped to the gene location using UCSC genome browser.  It was then color coded as seen on 

the figure. 

ONCOGENIC SIGNATURE APPLICATION 

Predefined oncogenic signatures were applied to the dataset. Briefly, the training data was 

merged with the full dataset and batch effects removed through the use of COMBAT. These 

samples were then subjected to binary regression analysis with a predefined gene list and 

conditions for each individual signature26–28. 

CLUSTERING ANALYSIS 

Unsupervised hierarchical clustering was performed with Cluster 3.0 and visualized with Java 

TreeView. The heatmap and sample legends used in the figure were made using Matlab. 
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Figure 5.1:  PTPRH mutations are conserved in MMTV-PyMT and human lung cancer 

Phosphotyrosine receptor, Ptprh was shown through Sanger sequencing  (A) to be 

heterozygously mutated in 60% and homozygously mutated in 21% (B) of MMTV-PyMT tumors 

(n=45).  Sequencing revealed multiple mouse backgrounds have a variety of mutations 

clustered in the functional domains of the Ptprh proteins 
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Figure 5.2:  PTPRH mutation modulates EGFR signaling and treatment response 

Increases in pEGFR signaling (A,B) and a decrease in tumor latency (C) (E n=9, *=p<.05) was 

correlated with mutant Ptprh alleles (V483M) within the FVB background. Cell lines derived 

from Ptprh mutant (V483M) PyMT tumors showed an increased response to EGFR targeted 

therapy including erlotinib (D)(n=3, **=p<.01, *=p<.05) 
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Figure 5.3:  PTPRH mutations are prevalent in lung cancer 

In human lung cancer (TCGA pan-lung cancer) approximately 5% of patients have a mutation in 

PTPRH which are mutually exclusive from EGFR (A).  High EGFR activity, as determined by gene 

set enrichment analysis, is associated with mutations clustered within the structural and 

functional domains of PTPRH as seen by the colors in the lollipop plot (B) 
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Figure 5.4:  Presence and effect of PTPRH modulation in other tumor types 

PTPRH copy number and mutation was assayed across cancer types (A) and shown to be highly 

modified in ovarian and lung cancers.  Effects in expression show a protective role in Breast (B),  
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Figure 5.4 (cont’d) 

Ovarian (C), Gastric (D), or Liver (E) cancer with respect to overall survival (OS) and relapse free 

survival (RFS) 
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Figure 5.5:  Ptprh alterations lead to specific Egfr signaling pathway activation 

Unsupervised hierarchical clustering identifies unique signaling pathways associated with each 

ptpr alteration (A).  Alterations are categorized into Amplified (Red), Deleted (Blue), Mutation 

(Yellow), or No Alteration (Black).  The pathway activity is presented as a heatmap with high 

activity being yellow and low activity being blue.  Significant differences in E2F1 (B), PI3K (C),  

Figure 2.1 (cont’d) 
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Figure 5.5 (cont’d) 

and AKT (D) activities were seen between Ptprh modified tumors and non-modified tumors 

(P<.05). 
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CHAPTER 6 

FUTURE DIRECTIONS  
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MULTI-OMIC CLASSIFICATION OF MOUSE MODELS OF BREAST CANCER 

 The most obvious extension of this project is to perform more sequencing and 

transcriptomic profiling of mouse models.  This study would greatly benefit from the addition of 

more individuals in the MMTV-Neu and MMTV-PyMT mouse models.  The addition of more 

samples will allow us to detect SNVs, CNVs, and translocations that are present in a much 

smaller population percentage.  Another key will be to expand the pool of mouse models.  It 

will be critical to have a more diverse population of models to profile which have a variety of 

mechanisms of tumorigenesis.  For starters I would like to profile the landscape of other 

oncogenic drivers and promoters such as the MMTV-Myc or WAP-Myc.  It would also be 

interesting to include tumor suppressive models such as those with alterations to P53 and BRCA 

as well as carcinogen induced models such as DMBA.  It will also be enlightening to capture the 

diversity of models with the same driving oncogene.  The Myc or Neu induced models would be 

ideal systems to study this in. In both of these systems, there are multiple mouse models with 

modifications to Myc or Neu that change tumor properties in the model.  It would be beneficial 

to the research community to see how those alterations allow for the selection of different 

genomic landscapes. 

 Another key direction to take the profiling study would be to expand the datatypes 

present in the dataset.  An unexplored level of regulation in this work is the epigenetic 

alterations present in the tumors.  I hypothesize that there will be a vast diversity in the 

epigenomic profile of mouse models.  This is due to the fact that the diversity found in this 

thesis with regards to SNVs and CNVs is not enough to account for the heterogeneity found in 

mouse models at the transcriptomic level.  Epigenetics will also be important to consider in 
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matched tumor and metastatic lesions.  Recent human studies have shown that metastatic 

lesions do not contain unique genomic alterations but instead show differences in their 

epigenetic profile from their primary tumor.  It will be informative to see if this is also true in 

mouse models since many of these are used to study the process of tumor metastasis. 

 Some key data pieces have been left unexplored in our current dataset due to the lack 

of reliable informatic pipelines and validation of findings.  However, as the pipelines become 

more refined it will be important to identify the impact of non-coding variant in the tumors as 

well as translocations.  Recent work has identified key non-coding mutations in lung cancer as 

well as a pan-cancer approach which has identified a number of novel translocation events.  It 

will be important to continue to profile the mouse tumors to identify if these events are 

conserved as well as identify novel events in mouse and human tumors. 

 A unique opportunity that presents itself with this dataset it to understand the cause of 

the mutational signature present in the mouse models.  The mouse models share human 

signature five with human cancers.  Human cancers have been unable to identify an aetology 

associated with this mutational signature.  I propose that a causative mechanism maybe able to 

be identified within the mouse model due to its relative clean genomic landscape and lack of 

events.  To do this, I propose to take each individual sequenced mouse tumor and compare 

using a mixture modeling approach to understand the contribution of signature 5 to the 

mutation profile of the tumor.  I will use this as a mutation score and use weighted gene 

correlation analysis to find gene expression correlates of signature 5.  Once the signature is 

obtained, I will cross compare this to the copy number variants and SNVs both directly and 

through interactors.  From this gene list I will identify those that overlap with repair and 
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instability gene signatures to identify potential mechanisms of signature five.  The will then 

need to be explored through in vitro and in vivo knockout experiments to confirm the 

bioinformatic experiments 

17Q21.33 AMPLIFICATION 

 The 17q21.33 amplification event has roles in metastasis and treatment response.  Due 

to the dual role of the amplicon the future directions for this project the future directions for 

this project are varied and involve everything from biological assays to clinical trials. 

 Most immediately, the studies that must be completed are the mechanistic studies 

behind how Col1a1 and CHAD amplification contribute to both early and late stages of 

metastasis.  I hypothesize that the contributions to metastasis are due to increased migration in 

the presence of high Col1a1 and Chad.  The initial experiment to do would be a picrosirius red 

stain to understand if it is simply more type one collagen that is constructed in the extracellular 

matrix or if other types of collagen are also upregulate as well to make an abundance of 

collagen fibrils.  The next experiment would be to perform cell adhesion assays in the presence 

of wild type Chad levels as well as an abundance of Chad.  This will identify if Chad is 

contributing directly to cellular adhesion.  I hypothesize that Chad binds to Col1a1 directly to 

help facilitate movement.  To start to investigate this I propose to use IHC staining to identify 

the location of Chad and Col1a1 both within the cell and within the overall structure of the 

tumor.  This assay will show co-localization.  To identify binding of the two proteins, I will use a 

co-IP approach of the entire tumor and ECM lysate.  To understand migration I will complete in 

vitro migration assays include wound healing and transwell experiments with various 

combinations of Col1a1 and Chad knockout.   
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 Another area that could be expanded from this experiment it to use a drug screen to 

block metastasis.  Col1a1 and Chad are potential targets for therapeutic intervention to block 

metastasis from developing.  One could envision a therapeutic that either works to block the 

production of a collagen matrix or blocks the adherence properties of Chad.  To identify this I 

propose to use the drug repurposing core to identify compounds which block migration 

through the use of a high throughput wound healing assay both in the presence of a collagen 

matrix and without – to identify compounds which inhibit Col1a1 and Chad. Once this 

compound is identified it will need to be tested in mouse models to identify its ability to block 

metastasis in an in vivo setting. 

 Next, much more work must be done to confirm the AKT sensitivity present in 17q21.33 

patients.  To validate the bioinformatic predictions Phb KO and overexpression studies must be 

completed both within a 17q21.33 amplified setting and in a wildtype setting.  After the 

creation of these, AKT targeted therapy will be performed and sensitivity assayed through cell 

death assays.  This will work to confirm the mechanisms proposed by the bioinformatic means. 

Furthermore, the AKT sensitivity was identified in mostly a high-throughput in vitro setting.  To 

confirm this in vivo drug targeting studies must be performed both in genetically engineered 

mouse models and PDX models.   

 Preliminary work shows that the 17q21.33 amplicon is present both within the 

metastatic lesion and the primary tumor.  Sequencing and or copy number assays need to be 

performed on both the primary tumor and the metastasis lesions to identify the extent to 

which the metastatic lesion contains the 17q21.33 amplification event and if it has the 

propensity to drive metastasis to a certain location.  Furthermore, to identify 17q21.33 as a 
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biomarker for therapeutic response it must be seen in a patient setting.  Recent studies show 

that cell free circulating tumor DNA is reflective of the metastatic lesions. It will be important to 

see if the 17q21.33 amplification event can be detected through a blood draw. If not, FISH 

techniques must be refined to identify the 17q21.33 amplification event from a tumor biopsy. 

PTPRH STUDIES 

 The Ptprh studies present in this work have the most immediate translational impact.  

However, to move them from the benchside to clinic more work must be completed in both 

through biochemical assays and with patient samples. 

 The largest remaining question is the mechanistic impact of Ptprh mutation.  That is, 

how exactly does the Ptprh mutation disrupt the process of removing the phosphate from 

active EGFR.  There are two hypotheses for this currently.  First, the mutation prevents 

dimerization of Ptprh and through that stops it from being active.  The other hypothesis is that 

mutations to Ptprh prevent it from binding to phosphorylated EGFR.  The most illuminating 

experiment will be a Co-IP where an anybody will pull down the mutant and wildtype Ptprh and 

identifying binding partners. 

 Another experiment to perform is to use CRISPR-Cas9 based gene editing to induce 

mutant Ptprh as well as restore wildtype Ptprh in a mutant setting.  Through these experiments 

we will be able to identify if the Ptprh mutation is acting in a dominant negative or 

haploinsufficient manner.  Once these are created it will also give a controlled setting in which 

to confirm the erlotinib sensitivity found in this study.   

 Along with erlotinib sensitivity, it will need to be identified how Ptprh mutations effect 

the response to other first-generation EGFR inhibitors. Furthermore, this study can be 
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expanded to second and third generation drugs.  These experiments will be completed using a 

standard drug sensitivity curve of tumors with mutant Ptprh vs tumors with the same genetic 

background with wildtype Ptprh.  Drug sensitivity experiments will identify if patients with 

mutant Ptprh will respond to any EGFR targeted therapy or if they will only respond to erlotinib. 

 A key followup experiment to the in vitro data presented in this study it will be 

important to complete in vivo validation of the erlotinib sensitivity.  To start with this 

experiment, I propose to use PDX models with wildtype EGFR.  These models will be split into 

Ptprh wild type and mutant and treated with erlotinib or other EGFR targeted therapy that was 

found to be effective in the above experiments.  Once these experiments are completed the 

transition to the clinic will be relatively rapid due to the already wide use of EGFR targeted 

therapy in a lung cancer setting. 

 One potential hurdle to the clinical translation of the finding is identifying a biomarker 

of Ptprh mutation.  Due to the lack of a hotspot Ptprh mutation traditional genomic sequencing 

will not be an option for identifying mutations of Ptprh.  It may however, be cost effect to 

sequence the RNA present to identify the presence of a point mutation.  The most cost-

effective options would be to identify phosphorylated EGFR or other downstream targets of 

EGFR to tell activity.  Ptprh de-phosphorylates a specific tyrosine residue on EGFR so an IHC 

approach with an antibody against pospho-tyrosine on EGFR may be an effective way to 

identify sensitive patients.  It also may be possible to develop a gene expression signature to 

identify key genes which are differentially regulated through in the presence of Ptprh mutation.  

This signature would be developed through the identification of differentially regulated genes 

and could be assessed at initial biopsy.  


