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ABSTRACT 

A CROSS-SCALE EXAMINATION OF HOW KNOWLEDGE AND THE PHYSICAL 

ENVIRONMENT INFLUENCE THE USE OF BEST MANAGEMENT PRACTICES IN US 

COMMODITY AGRICULTURE 

 

By 

 

Riva Caroline Hodges Denny 

 

While agriculture is of the utmost importance to human societies for its production of 

food and fiber (and increasingly fuel), it is also a source of environmental harm as a producer of 

nonpoint-source pollution to the air and water. Even though efforts to control agricultural 

nonpoint-source pollution have focused on encouraging farmers to voluntarily use practices that 

will better keep soil and nutrients on farms, agriculture remain a substantial source of water 

pollution in the US. This has led to continued efforts to better understand why farmers choose to 

use these best management practices (BMPs) so that incentives can be improved. Therefore, this 

dissertation focuses on farmer decision-making related to the use of soil, water, and nutrient 

conserving BMPs in row-crop agriculture in the US Midwest, with particular interest in the 

importance of the roles of knowledge and the biophysical environment. Conceptually, my 

dissertation is informed and organized by a theory of action, in which purposive individual 

actions cumulatively create system-level effects. This is done by analyzing data at the individual, 

county, and state scales as well as across-scales in three empirical chapters. 

The first analysis uses qualitative interview data from 2014 with 151 Midwestern corn 

farmers in three states to explore the range and variation of the tillage practices in use, and to 

consider the reasons farmers give for their tillage decisions. The results show that farmers 

commonly use more than one style of tillage on their operation and base their tillage decisions on 

biophysical conditions, compatibility with other practices, and the relative savings and costs of 



 

 

 

different tillage styles. The second analysis uses 2017 farmer survey data from four states 

(n=814) to compare the relative importance of a wide range of predictors of BMP use from the 

literature on the use of five BMPs: pre-sidedress nitrate tests (PSNTs), nutrient maps, variable 

rate nitrogen (N), variable rate phosphorus (P) or potassium (K), and cover crops. It also explores 

the use of practice knowledge as a predictor of BMP adoption that has been underutilized in 

previous research. The results show little overlap in the predictors of the five practices, even 

between those with similar characteristics. Two predictors in particular—the use of independent 

crop consultants as an information source and a general measure of practice knowledge—were 

found to be the most important influences across all five models. The third analysis considers the 

cumulative decisions of multiple farmers by using county and state data for the North Central 

region (1,042 counties) to examine the effects of conservation tillage, no-till and cover crops on 

county-level fertilizer use. The results show no significant total effects on fertilizer use by no-till, 

conservation tillage, or cover crops, though there is the potential for cover crops to increase 

fertilizer use. 

The importance of the biophysical environment is a key finding of all three analyses, and 

different biophysical conditions can increase and decrease the use of BMPs. The differences in 

effects of both social and biophysical factors across BMPs has important implications for future 

research and suggests the need for specific measures of practices that include temporal and 

spatial variation, and the careful consideration of practices individually, rather than as groups of 

ostensibly related practices. Knowledge also shows promise as a variable of importance in 

practice use—both through knowledge of how to use or implement a practice, and through 

knowledge of environmental-systems that shape how farmers perceive and interpret their 

biophysical context.  



 

 

 

 

 

 

 

 

Copyright by  

RIVA CAROLINE HODGES DENNY 

2018 

 



 

v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents as a very small repayment  

for all their love and support throughout the years.  

And to JD, whose support, patience, and humor  

have kept things real during this journey.  

You are appreciated.  

 

 



 

vi 

 

ACKNOWLEDGEMENTS 

 

To my dissertation committee, Sandra Marquart-Pyatt (chair), Diana Stuart (former 

chair), Aaron McCright, Stephen Gasteyer, and Phil Robertson, my most heartfelt thanks for 

their feedback and guidance during my dissertation process. Extra special thanks to Diana for her 

early guidance and continued support in research and academic writing. Super special thanks to 

Sandy for being such an incredible advisor and collaborator, and for kicking my butt when I 

needed it; I cannot adequately express how important your mentorship and support has been to 

me these last three years. I also want to thank past committee members Phil Howard and Larry 

Busch for their time and contributions. Also, my sincere thanks to the farmers who took the time 

to sit for an interview or who filled out one of our many surveys—without them this research 

could not have happened. 

I also want to acknowledge and thank the MSU Environmental Science and Policy 

Program, the MSU Ecological Food and Farming Systems graduate specialization, the MSU 

W.K. Kellogg Biological Station Long Term Ecological Research program, and the MSU 

Graduate School for the financial support, large and small, that they have given me over the 

years, and which significantly facilitated my graduate experience and research. 

 Last but not least, I want to thank the other graduate students who have mentored, 

challenged, supported, and collaborated with me (not to mention laughed and cried with me) and 

who made the years rich, even when they were stressful. You know who you are. 

 



 

vii 

 

TABLE OF CONTENTS 

 

 

LIST OF TABLES .......................................................................................................................... x 

LIST OF FIGURES ..................................................................................................................... xiii 

KEY TO ABBREVIATIONS ....................................................................................................... xv 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

WHY AGRICULTURE? ............................................................................................................ 3 
WAYS TO UNDERSTAND FARMER-DECISION MAKING ............................................... 4 

Adoption-Diffusion Model ..................................................................................................... 5 

Social Psychological Theories .............................................................................................. 10 
OVERVIEW OF EMPIRCAL ANALYSES ............................................................................ 15 

REFERENCES ............................................................................................................................. 17 

CHAPTER 2: MOVING BEYOND BASIC TILLAGE CATEGORIES IN MIDWEST ROW-

CROP AGRICULTURE: AN EXPLORATORY ANALYSIS OF TILLAGE PRACTICES AND 

REASONS .................................................................................................................................... 22 

BACKGROUND ON TILLAGE.............................................................................................. 24 
LITERATURE REVIEW ......................................................................................................... 27 
METHODS ............................................................................................................................... 32 

Overview ............................................................................................................................... 32 
Data Collection ..................................................................................................................... 33 

Analysis................................................................................................................................. 35 
RESULTS ................................................................................................................................. 37 

Primary Tillage Tools ........................................................................................................... 39 
Secondary Tillage Tools ....................................................................................................... 40 

Types of Tillage .................................................................................................................... 41 
Tillage Decision Factors ....................................................................................................... 47 

DISCUSSION ........................................................................................................................... 54 

Variation in Tillage Practices and Meanings ........................................................................ 54 
Variation in Tillage Reasons ................................................................................................. 56 
Implications and Directions for Future Research ................................................................. 58 

CONCLUSION ......................................................................................................................... 59 
REFERENCES ............................................................................................................................. 61 

CHAPTER 3: DRIVERS OF THE USE OF FIVE BMPS IN MIDWEST ROW-CROP 

AGRICULTURE .......................................................................................................................... 67 
APPROACHES TO UNDERSTANDING BMP ADOPTION/USE ....................................... 68 

Social-Psychological Theories .............................................................................................. 68 
Adoption-Diffusion Model ................................................................................................... 69 

The Potential Importance of Knowledge .............................................................................. 70 
PREVIOUS RESEARCH ON DRIVERS OF BMP USE ........................................................ 76 

Connecting Variables and Theories ...................................................................................... 77 



 

viii 

 

METHODS AND ANALYSIS ................................................................................................. 77 

Sample................................................................................................................................... 78 

Variables ............................................................................................................................... 79 
Analysis................................................................................................................................. 87 

FINDINGS ................................................................................................................................ 88 
General Approach to Results ................................................................................................ 88 
Results of PSNT Model ........................................................................................................ 96 

Results of Nutrient Map Model ............................................................................................ 97 
Results of Variable Rate N Model ........................................................................................ 99 
Results of Variable Rate P or K Model .............................................................................. 100 
Results of Cover Crop Model ............................................................................................. 102 

DISCUSSION ......................................................................................................................... 106 

Independent Crop Consultants ............................................................................................ 106 

Knowledge .......................................................................................................................... 107 
Corn Yield ........................................................................................................................... 109 

Similarities Between Practices ............................................................................................ 110 

CONCLUSION ....................................................................................................................... 113 
APPENDICES ............................................................................................................................ 117 

APPENDIX A: Data Cleaning and Variable Calculation ....................................................... 118 

APPENDIX B: Modeling Decisions ....................................................................................... 124 
APPENDIX C: Additional Results ......................................................................................... 133 

APPENDIX D: Mplus Code ................................................................................................... 150 
REFERENCES ........................................................................................................................... 152 

CHAPTER 4: QUESTIONING THE FERTILIZER SAVINGS INCENTIVE FOR BMP 

ADOPTION IN THE NORTH CENTRAL REGION ................................................................ 157 

BACKGROUND .................................................................................................................... 159 
Fertilizer and BMPs ............................................................................................................ 159 
Coupled Natural and Human Systems ................................................................................ 163 

RESEARCH PROBLEM AND QUESTIONS ....................................................................... 165 
METHODS AND ANALYSIS ............................................................................................... 167 

Data and sample .................................................................................................................. 167 

Variables ............................................................................................................................. 168 
Analysis............................................................................................................................... 172 

RESULTS AND DISCUSSION ............................................................................................. 173 
CONCLUSION ....................................................................................................................... 180 

APPENDICES ............................................................................................................................ 185 

APPENDIX A: Variable Calculations .................................................................................... 186 
APPENDIX B: Centering Analysis Variables ........................................................................ 190 

APPENDIX C: Extra Sample Descriptives ............................................................................ 192 
REFERENCES ........................................................................................................................... 194 

CHAPTER 5: CONCLUSION ................................................................................................... 203 
MEASURES AND RESEARCH METHODS ....................................................................... 203 
KNOWLEDGE AND THE BIOPYISCAL ENVIRONMENT .............................................. 204 
PLANS FOR FUTURE RESEARCH ..................................................................................... 212 

Tillage ................................................................................................................................. 212 



 

ix 

 

BMP Adoption .................................................................................................................... 213 

Fertilizer Use ....................................................................................................................... 214 

REFERENCES ........................................................................................................................... 215 

 



 

x 

 

LIST OF TABLES 

 

Table 2.1. Sample recruitment sources by state. ........................................................................... 34 

Table 2.2. Mean and median farm size in acres per operation by state in 2012. .......................... 35 

Table 2.3. Cross-tab comparison of instances of tillage tool/type overlap, as percent of 151 and 

number of respondents. ................................................................................................................. 38 

Table 2.4. Summary of tillage tool use and tillage type by state, as percent and number of 

respondents. .................................................................................................................................. 39 

Table 2.5. No-till sub-categories by state and for total sample, as percent and number of 

respondents. .................................................................................................................................. 44 

Table 2.6. Comparison of tillage tools/types used for conservation (or minimum) tillage and 

conventional tillage, as percent and number of respondents. ....................................................... 46 

Table 2.7. Examples of quotes pertaining to the biophysical conditions that influence farmers’ 

tillage decisions. ............................................................................................................................ 48 

Table 2.8. Examples of quotes pertaining to the crop rotation and residue management aspects of 

operational needs and practice compatibility features that influence farmers’ tillage decisions. . 50 

Table 2.9. Examples of quotes pertaining to the fertilizer application aspects of operational needs 

and practice compatibility features that influence farmers’ tillage decisions. .............................. 52 

Table 2.10. Examples of quotes pertaining to the operational savings and costs that influence 

farmers’ tillage decisions. ............................................................................................................. 53 

Table 3.1. Overview of conservation/best management practice adoption meta-analyses. .......... 75 

Table 3.2. Comparison between final sample (n=814) and 2012 Census of Agriculture on key 

demographic variables by state. .................................................................................................... 79 

Table 3.3 Combined categories used in Prokopy et al. (2008) and Baumgart-Getz, Prokopy, and 

Floress (2012). .............................................................................................................................. 81 

Table 3.4. Variables used in analysis, their definition and scale, grouped by author-defined 

categories, and using sub-categories from the literature. All variables are for 2016. ................... 83 

Table 3.5. Analysis descriptives (n = 814 unless otherwise noted). ............................................. 89 

Table 3.6. Select probit regression coefficients and standard errors for PSNT and nutrient maps 

(n=814). ......................................................................................................................................... 91 



 

xi 

 

Table 3.7. Select probit regression coefficients and standard errors for variable rate N and 

variable rate P or K (n=814). ........................................................................................................ 92 

Table 3.8. Select probit regression coefficients and standard errors for cover crops (n=814). .... 93 

Table 3.9. Sign of significant variables in analyses. ..................................................................... 94 

Table 3.10. Total effects for significant variables on PSNT use in terms of probabilities with all 

other variables at average. ............................................................................................................. 97 

Table 3.11. Total effects for significant variables on nutrient map use in terms of probabilities 

with all other variables at average. ............................................................................................... 98 

Table 3.12. Total effects for significant variables on variable rate N use in terms of probabilities 

with all other variables at average. ............................................................................................. 100 

Table 3.13. Total effects for significant variables on variable rate P or K use in terms of 

probabilities with all other variables at average. ........................................................................ 101 

Table 3.14. Total effects for significant variables on cover crop use in terms of probabilities with 

all other variables at average....................................................................................................... 103 

Table 3.15. Skewness and kurtosis for endogenous variables. ................................................... 126 

Table 3.16. ICC comparison by sample and estimator. .............................................................. 129 

Table 3.17. Wald Chi-square for joint test of logistic regression for state differences in practice 

use using final sample (n=814). .................................................................................................. 130 

Table 3.18. Wald Chi-square for joint test of logistic regression for group-by-covariate 

interactions for select variables using final sample (n=814). ..................................................... 132 

Table 3.19. Tolerance and variance inflation factor (VIF) for exogenous analysis variables 

(n=814). ....................................................................................................................................... 133 

Table 3.20. Select Pearson correlation coefficients for exogenous variables where correlation 

coefficient is < -0.5 or > 0.5 (n = 814). ....................................................................................... 135 

Table 3.21 Average and range of measurement model results across the five practice analyses.

..................................................................................................................................................... 136 

Table 3.22. Probit regression coefficients and standard errors for PSNT and nutrient maps 

(n=814). ....................................................................................................................................... 137 

Table 3.23. Probit regression coefficients and standard errors for variable rate N and variable rate 

P or K (n=814). ........................................................................................................................... 139 

Table 3.24 Probit regression coefficients and standard errors for cover crops (n=814). ............ 141 



 

xii 

 

Table 3.25. Standardized regression coefficients and standard errors for PSNT and nutrient maps 

(n=814). ....................................................................................................................................... 144 

Table 3.26. Standardized regression coefficients and standard errors for variable rate N and 

variable rate P or K (n=814). ...................................................................................................... 146 

Table 3.27. Standardized regression coefficients and standard errors for cover crops (n=814). 148 

Table 4.1. Uncentered descriptive statistics for analysis variables (n=1042 unless otherwise 

noted). ......................................................................................................................................... 174 

Table 4.2. Direct effect coefficients and standard errors from multilevel structural equation 

model with random intercepts for 12 states, 2012 (n=1042). ..................................................... 175 

Table 4.3. Standardized, county-level, total effects on fertilizer use per acre. ........................... 179 

Table 4.4. Counties excluded from analysis due to low amount of agriculture or withheld data.

..................................................................................................................................................... 192 

Table 4.5. State-level averages for analysis variables. ............................................................... 193 

 



 

xiii 

 

LIST OF FIGURES 

 

Figure 1.1. Adopter categorization on the basis of an adoption frequency distribution (Rogers 

2003:351). ....................................................................................................................................... 7 

Figure 1.2. Conceptual diagram of the Theory of Reasoned Action and the Theory of Planned 

Behavior based on figures in Kaiser, Wölfing, and Fuhrer (1999:3) and Madden, Ellen, and 

Ajzen (1992:4). ............................................................................................................................. 11 

Figure 1.3. Conceptual diagram of the Reasoned Action Approach based on figure in Fishbein 

and Ajzen (2015:22). .................................................................................................................... 12 

Figure 2.1. Tillage definitions used by Vitale et al. (2011:252). .................................................. 29 

Figure 2.2. Tillage definitions used by Andrews et al. (2013:504). ............................................. 29 

Figure 3.1. Kaiser and Fuhrer’s (2003:606) conceptual model of how know knowledge types 

influence each other and ultimately ecological behavior. ............................................................. 72 

Figure 3.2. Combining perceived practice characteristics from the adoption-diffusion model with 

the Reasoned Action Approach by Reimer, Weinkauf, et al. (2012). .......................................... 73 

Figure 3.3. Probability of practice use by a typical farmer. .......................................................... 96 

Figure 3.4. Graphical depiction of the predicted probabilities of select variables on cover crop 

use across a range of values. ....................................................................................................... 105 

Figure 3.5. Graphical depiction of the probability of using BMPs at different frequencies of use 

of independent crop consultants as an information source, with all other variables at the average 

response level. ............................................................................................................................. 107 

Figure 3.6. Graphical depiction of the probability of using BMPs at the five reported levels of 

knowledge, with all other variables at the average response level. ............................................ 108 

Figure 3.7. Graphical depiction of the probability of using BMPs at the mean average corn yield, 

and at one and two standard deviations below and above the mean. .......................................... 110 

Figure 3.8. Practice use by state for final sample. ...................................................................... 130 

Figure 4.1. Diagram of feedback of CHN feedback in an agricultural system from Stuart et al. 

(2015:573). .................................................................................................................................. 164 

Figure 4.2. Conceptual Multilevel SEM diagram of fertilizer use. ............................................ 171 

Figure 4.3. Yield response graph (Vanotti and Bundy 1994:184). ............................................. 181 



 

xiv 

 

Figure 5.1. Conceptual diagrams from Rosa (1998:35) on left and Carolan (2004:515) on right.

..................................................................................................................................................... 207 

Figure 5.2. Simple example of realist (part A.) versus critical realist (part B.) approach to CNH 

feedback model. .......................................................................................................................... 211 

 

 



 

xv 

 

KEY TO ABBREVIATIONS 

 

AgCensus Census of Agriculture 

ANOVA Analysis of Variance 

BMP  Best Management Practice 

CFI  Comparative Fit Index 

CHANS Couple Human and Natural Systems 

CNH  Couple Natural and Human 

CRP  Conservation Reserve Program 

CSP  Conservation Stewardship Program 

CTIC  Conservation Technology Information Center 

EQIP  Environmental Quality Incentives Program 

IA  Iowa 

ICC  Intraclass Correlation Coefficient 

IN  Indiana 

K  Potassium 

MI  Michigan 

MIMIC Multiple Indicators and Multiple Causes 

MLR  Robust Maximum Likelihood 

N  Nitrogen 

NASS  National Agricultural Statistics Service 

NRCS  Natural Resource Conservation Service 

OLS  Ordinary Least Squares 



 

xvi 

 

P  Phosphorus 

PBC  Perceived Behavioral Control 

PSNT  Pre-Sidedress Nitrate Test 

RAA  Reasoned Action Approach 

RMSEA Root Mean Square Error of Approximation 

SEM  Structural Equation Modeling 

SEMLV Structural Equation Modeling with Latent Variables 

SES  Social-Ecological System 

TLI  Tucker-Lewis Index 

TPB  Theory of Planned Behavior 

TRA  Theory of Reasoned Action 

USDA  United States Department of Agriculture 

WLSMV Weighted Least Squares Means and Variance 

 



 

1 

 

CHAPTER 1: INTRODUCTION 

  

While agriculture is of the utmost importance to human societies for its production of 

food and fiber (and increasingly fuel), it is also a source of environmental harm as a producer of 

non-point-source pollution to the air and water (Aneja, Schlesinger, and Erisman 2009; 

Carpenter et al. 1998; Drinkwater and Snapp 2007; Lal 1993; Robertson et al. 2013; Robertson 

and Vitousek 2009; Uri and Lewis 1998). Nutrients, nitrogen and phosphorus in particular, are 

vital to crop production but also create great environmental costs when they leave the farm and 

enter surrounding waterways where they contribute to eutrophication, algal blooms and hypoxia 

(“dead zones”) (Blesh and Drinkwater 2013; Drinkwater and Snapp 2007; Hamilton 2015; 

Robertson and Vitousek 2009). Similarly, soil that washes off fields can impair surrounding 

water bodies through suspended soil particles that cloud the water and sediment accumulation at 

the bottom, and soil that is blown away by wind can impair air quality (Uri and Lewis 1998). 

 Concern over soil erosion in the US goes back to at least the Dust Bowl of the 1930s  

(Halcrow, Heady, and Cotner 1982), while concern over the off-farm effects of nutrient loss have 

only been of widespread concern since the 1970s (Drinkwater and Snapp 2007). Efforts to 

control both issues have focused on encouraging farmers to voluntarily use practices that will 

better maintain soil and nutrients on farms and thus benefit both farmers and society. While 

many farmers have changed their production practices in a variety of ways in response to these 

efforts, both nutrient loss and soil erosion from agriculture remain a source of pollution for water 

bodies in the US (EPA 2017). This has led to continued efforts to better understand why farmers 

choose to use these conservation or best management practices (BMPs) so that they can be better 

encouraged to use more of them on more of their land. 
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State-led efforts to reduce both soil and nutrient loss in the US have historically taken a 

voluntary approach through a number of federally supported conservation programs. The largest 

and oldest US conservation program is the Conservation Reserve Program (CRP), which pays 

farmers to either remove from cultivation or not start farming sensitive land. Working-land 

programs such as the Environmental Quality Incentives Program (EQIP) and the Conservation 

Stewardship Program (CSP) provide cost-share and resources for farmers with more specific 

management goals related to a range of topics (Reimer and Prokopy 2014).  

Incentives for program participation have not typically exceeded making money available 

to farmers for setting aside land or to help in adopting a practice, and thus have been of limited 

effectiveness (Ribaudo 2015). The one exception is the Conservation Compliance provision, 

initiated in the 1985 Farm Bill, which requires that steps be taken to reduce erosion on land 

classed as highly erodible for the farmer to be eligible for commodity program payments 

(Arbuckle 2013). With the end of the commodity programs in the 2014 Farm Bill, Conservation 

Compliance for highly erodible land and wetlands is now required for eligibility for federal 

subsidies for crop insurance premiums among other things (NRCS n.d.). 

 My dissertation focuses on farmer decision-making related to the use of soil, water, and 

nutrient conserving BMPs in row-crop agriculture in the US Midwest. In it, I seek to better 

identify the variables that drive farmers’ decisions to use or not use BMPs, with a particular 

interest on how the drivers may differ between practices, and to take a step towards considering 

how the use of BMPs influence other production decisions—in this case the degree of fertilizer 

use. The BMPs of interest in the analyses that follow are related to fertilizer rate and application 

methods, tillage practices, and the use of winter cover crops. These are all in-field practices that 
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can have a direct impact on fertilizer use, fertilizer use efficiency, and ultimately nutrient loss 

from agriculture. 

In my analyses I engage with and draw on the two most common conceptual approaches 

used in the literature to understand farmer decisions and behavior: the Theory of Planned 

Behavior/the Reasoned Action Approach (TPB/RAA), and the Diffusion of Innovations, or 

adoption-diffusion, model. I also specifically consider the role of knowledge and especially the 

biophysical environment in farmer decision-making, which represent two domains that, while 

not wholly absent from the approaches just mentioned, are extremely underutilized in the 

literature. In my analyses, I specifically work to integrate social and biophysical elements in the 

same analyses in a way that is rarely seen especially in the sociological literature. Conceptually, 

my dissertation is informed and organized by a theory of action, in which purposive individual 

actions all together create system-level effects. This is done by analyzing data at the individual 

scale as well as at the county and state scale, as appropriate, across my three empirical chapters.  

 

WHY AGRICULTURE? 

Agricultural systems sit right at the interface between society and the biophysical 

environment—they are rooted (literally) in chemical and ecological processes that exist 

independently of humans, and at the same time are highly “socialized” systems created by and 

for human purposes. As such agricultural systems are shaped by both “nature” and society, thus 

to understand the relationship between agriculture and society the biophysical world must also be 

considered (Carolan 2005; Dunlap and Martin 1983).  

The “recognition of the fact that physical environments can influence (and in turn be 

influenced by) human societies and behavior” (Dunlap and Catton 1979:244) is the founding 
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principle of environmental sociology. However, just how these reciprocal influences should be 

conceptualized and operationalized in research has often been a source of disagreement within 

the discipline—as an example, the social constructionist vs realist debate is/was at its core a 

disagreement over this question (see York and Dunlap 2011). The tendency thus far has been to 

take a biophysical problem as the context of a study, with the biophysical problem as an abstract 

outcome of the human activities being studied, but not to include biophysical problems or 

conditions as an influence on the human/social actions. This has resulted in research that retains 

social-social relationships as its primary interest.  

Additionally, in spite of agriculture being one of the most immediate and tangible ways 

that societies interact with their biophysical environment (Dunlap and Martin 1983), agriculture 

has not generally been a topic of much interest to environmental sociology. Agriculture has been 

a common subject of rural sociologists, particularly those who study the sociology of agriculture 

though they have not always given as much attention to the biophysical context of agriculture as 

some have thought they should (Dunlap and Martin 1983). Natural resource sociologists and 

social scientists have perhaps given agriculture and its issues related to sustainability and 

resource conservation the most attention (Field, Luloff, and Krannich 2002), though largely in an 

applied way and, like environmental sociology, including environmental problems as the 

justification for a study but not incorporating them into the research question or design. 

 

WAYS TO UNDERSTAND FARMER-DECISION MAKING 

 Two primary conceptual approaches have been used to explain farmers’ adoption of 

BMPs: the adoption-diffusion model, and social-psychological theories in the Theory of Planned 

Behavior tradition. While both approaches have been used with apparent success to better 
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understand the factors influencing farmers’ decisions to use or not use BMPs, they are both, to 

different degrees, limited in how they account for the external social and biophysical factors that 

are the context in which farmers’ make their management decisions. They both also have other 

limitations, which I discuss below.  

Adoption-Diffusion Model 

The adoption-diffusion model describes the process through which a new idea, 

technology, or practice (i.e., innovation) spreads through a social system, and is ultimately 

adopted (or not) by individuals over time (Rogers 2003). The study of innovation diffusion was 

originally developed independently in several social science fields in the first half of the 

twentieth century, including by rural sociologists to understand the spread and adoption of new 

agricultural technologies (Rogers 1958; Ruttan 1996; Ryan 1948; Ryan and Gross 1943). These 

traditions merged somewhat in the 1960s, through work by Katz and colleagues (Katz 1963; 

Katz, Levin, and Hamilton 1963), and that of Everett Rogers (Rogers 2003). Rogers, though not 

the creator of adoption-diffusion research1, is perhaps the single person most associated with it, 

through his work in rural sociology and latter in communications (Rogers 2003).   

Rogers (2003:5) describes diffusion as “the process in which an innovation is 

communicated through certain channels over time among the members of a social system.” It is a 

macro process (as opposed to the micro-level adoption decision) that is heavily dependent on 

communication, and where the newness of the innovation and its effects creates uncertainty 

about the innovation (Rogers 2003). Over time the innovation is communicated to more people 

and uncertainty is reduced through greater information, sometimes resulting in the full adoption 

of the innovation in the population (Rogers 2003). The result of diffusion (and the adoption 

                                                 
1 Rogers calls his model the Diffusion of Innovation Model. 
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process that results) makes it a form of social change, in that it can alter the structure and 

function of the social system (Rogers 2003). 

As diffusion happens, individuals (or other decision-making entities) gain information 

about the innovation and ultimately decide to use it or not use it. The “innovation-decision 

process,” as described by Rogers (2003:14), “is essentially an information-seeking and 

information-processing activity in which an individual is motivated to reduce uncertainty about 

the advantages and disadvantages of the innovation.” Rogers (2003) breaks the innovation-

decision process into five stages (Rogers 2003):  

1) Knowledge of the innovation—existence of the innovation and how it works. 

 

2) Persuasion of the usefulness/benefit or drawbacks of the innovation—formation of 

positive or negative attitudes about the innovation.  

 

3) Decision to adopt or reject the innovation based on activities that provide additional 

information, such as using it on a trial basis. 

 

4) Implementation of the innovation. 

 

5) Confirmation, or reassessment, of the decision made based on additional information. 

Rogers also describes five perceived attributes of innovations that influence how quickly 

the diffusion and adoption processes takes for a given innovation (Rogers 2003). These attributes 

are:  

1) Relative advantage of the innovation over current options on any of a number of 

dimensions (e.g., economic, social, convenience, etc.) 

 

2) Compatibility of the innovation with existing systems, beliefs and values.  

3) Complexity of the innovation as it pertains to understanding how it works and how to 

use it. 

 

4) Trialability of the innovation—being able to test it on a limited basis. 

5) Observability of the innovation being in use and of its benefits. 



 

7 

 

Low levels of perceived complexity and high levels of the other attributes serve to accelerate the 

adoption-diffusion process. 

 The time it takes an individual to complete the innovation-decision process and start 

using an innovation is considered a measure of their “innovativeness,” and has been used to 

descriptively categorize individuals (Rogers 2003). If innovativeness is considered to be a 

personality trait it is expected to generally follow the normal distribution in a given population, 

and as such, adoption of an innovation also follows a generally normal distribution (Rogers 

2003). This results in the “S-shaped curve of adoption” when the cumulative frequency of 

adopters over time is graphed, or a bell-shaped curve results if frequency of new adoption is 

graphed (Rogers 2003:272). Normality assumptions are based on full adoption, which often does 

not happen, so index measures of innovativeness are often used to avoid the technical difficulties 

of having non-exhaustive categories (Rogers 2003; Rollins 1993). 

 
Figure 1.1. Adopter categorization on the basis of an adoption frequency distribution (Rogers 

2003:351). 
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Rogers (2003) suggests making use of the normal properties of adoption rate by using 

standard deviation units from the mean to create five categories of innovation adopters: 

innovators, early adopters, early majority, late majority, and laggards, with early majority and 

late majority being the categories one standard deviation less than the mean and greater than the 

mean respectively (see Figure 1.1). 

Use of the adoption-diffusion approach in rural sociology peaked in the late 1950s, but 

had declined dramatically by the early 1970s (Ruttan 1996). Ruttan (1996) suggests this decline 

can be explained by a shift in sociological perspectives of modernity and technology, in which 

new technologies could decrease autonomy and increase inequalities rather than being a 

liberator, coupled with a period of agricultural production surpluses that reduced concern with 

agricultural technology adoption. Other criticisms of the approach seem to be based more on 

how it has been applied, than critiques of the approach itself, such as a lack of engagement with 

sociological theory, and pro-innovation biases (Ruttan 1996). While the adoption-diffusion 

approach has been out of general favor in rural sociology for nearly 50 years, it has not 

disappeared entirely, and aspects of it, such as the qualities of innovations that influence 

adoption, are still commonly used and referenced (e.g., Reimer, Weinkauf, and Prokopy 2012; 

Weber and McCann 2015). 

The adoption-diffusion model has certainly been considered as an explanation for 

conservation practices or BMPs, though not recently. The model has been challenged in its 

applicability to environmentally oriented practices (Pampel and van Es 1977), but has also been 

found to still be useful for understanding the adoption of these practices with appropriate 

adjustments for the purpose of the innovation being considered (Taylor and Miller 1978). The 

most recent form of the adoption-diffusion model (Rogers 2003) certainly is flexible enough to 
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accommodate both economically and environmentally oriented practices if the purpose of the 

practice is accounted for and appropriate variables are used. For example, the relative advantage 

of a practice like vegetative buffers might reasonably be expected to lie more in the social realm 

(such as the farmers’ personal identity, how they see themselves in their community, social and 

personal norms and values etc.) than a practice like precision fertilizer application that would 

have direct economic implications in the costs of adoption and the potential savings in more 

efficient fertilizer use. 

However, the adoption-diffusion model does have its flaws. A major challenge to fully 

utilizing the adoption-diffusion model for understanding BMP adoption is that the model is not 

easily operationalized empirically. The multi-scale nature of the model is one complicating 

factor, as the information networks and the diffusion process are conceptualized as macro or 

meso scale processes that are measured over time, while the five stages of the adoption decision 

take place at the individual level. This is further complicated by most farmer-level survey data 

being cross-sectional, and thus unsuitable for a true measure of adoption. In addition, there are 

the characteristics of the innovation that do not exist at either level, being properties of the 

innovation itself. It is important to note that the characteristics of a practice may have a 

subjective component at the individual level, especially for the relative advantage, compatibility, 

and complexity attributes. 

Two obvious things that the adoption-diffusion model is missing are an explicit inclusion 

of the biophysical and the political-economic contexts in which the innovation is being 

considered. The biophysical context is especially important when considering agricultural 

practices since the outcome of their use (and its success or failure to achieve the expected or 

desired result) will depend at minimum on environmental conditions like the soil and climate in 
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which it is being used. The political-economic context also potentially influences several aspects 

of the adoption-diffusion model, such as information sources, and the relative advantage of the 

innovation. The rise of large, integrated agricultural input suppliers that provide crop consulting 

services, and decreases in funding to agricultural extension has shifted to whom farmers turn for 

information away from extension and towards business affiliated consultants (Stuart et al. 2018), 

though the implications of this shift for what information farmers are receiving is not yet well 

understood. Similarly, the relative advantage of a practice would be expected to be influenced by 

factors such as crop prices, the availability of cost-sharing programs, and policies such as the 

Conservation Compliance provision discussed above. 

Social Psychological Theories 

With the adoption-diffusion model out of favor for studying agricultural decision-

making, the TPB family of theories from social psychology has become a very common 

conceptual approach for understanding farmer adoption of conservation practices. This family 

consists of the theory of reasoned action (TRA), the theory of planned behavior (TPB), and the 

reasoned action approach (RAA) (Ajzen 1991; Fishbein and Ajzen 2015). The use of the TPB for 

understanding agricultural decisions started as early as the mid-1990s (Lynne et al. 1995) 

currently quite popular (Arbuckle and Roesch-McNally 2015; Borges, Tauer, and Lansink 2016; 

Van Hulst and Posthumus 2016; Price and Leviston 2014; Reimer et al. 2012; Werner et al. 

2017). 

The three theories in this family are related and began with the theory of reasoned action 

(TRA). In the TRA attitude towards the behavior and subjective norms—the perceived 

expectations of others–drive behavioral intention, in turn drives behavior (see Figure 1.2). The 

use of behavioral intention as a mediator between attitudes, norms and behavior is a 
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distinguishing feature the TRA and the theories derived from it. The assumption is that intention 

leads to action, though there is evidence that this is not always the case in critical ways (Niles, 

Brown, and Dynes 2016). The theory of planned behavior (TPB) is an extension of the TRA that 

adds perceived behavioral control (PBC) as a predictor of behavioral intention and actual 

behavior (Madden et al. 1992 highlight the differences). Fishbein and Ajzen (2015:64) define 

PBC “as people’s perceptions of the degree to which they are capable of, or have control over, 

performing a given behavior.” This addition incorporates a contextual element to the theory and 

improves its predictive power, especially for behaviors that have greater actual or perceived 

external constraints (Ajzen 1991; Madden et al. 1992).  

 

Solid line = typical Theory of Reasoned Action (TRA) 

Solid line + dotted line = TRA with additional elements included by Kaiser, Wolfing, and Fuhrer 

(1999) 

Solid line + dashed line = Theory of Planned Behavior 

Figure 1.2. Conceptual diagram of the Theory of Reasoned Action and the Theory of Planned 

Behavior based on figures in Kaiser, Wölfing, and Fuhrer (1999:3) and Madden, Ellen, and 

Ajzen (1992:4). 
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Figure 1.3. Conceptual diagram of the Reasoned Action Approach based on figure in Fishbein 

and Ajzen (2015:22). 

 

The reasoned action approach (RAA) (see Figure 1.3) is the most recent incantation of 

this family of theories and extends the TPB by adding “individual,” “social,” and “information” 

background factors, along with a new tier of belief variables and an actual control variable 

(Fishbein and Ajzen 2015). The belief components underlie the attitude, subjective norms and 

perceived behavioral control variables, and typically measures of the different types of beliefs 

that are used to measure attitudes, subjective norms and perceived behavioral control using factor 

analysis (Fishbein and Ajzen 2015). Fishbein and Ajzen (2015:96, 223) formally describe beliefs 

“as the subjective probability that an object has a certain attribute” and more casually as “the 

information they [the person] have about a behavior.” These beliefs can be formed through a 

range of experiences, education, and information sources, and can be short or long lasting, with 
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the only conceptual requirement being that actions follow reasonably from beliefs, no matter 

how acurate or rational the beliefs may be (Fishbein and Ajzen 2015)2.  

Similar to the adoption-diffusion model, I see notable conceptual limitations in the 

TPB/RAA in that there is no conceptual location for political-economic or biophysical contexts3 

that may influence the decision process. Behavioral beliefs and PBC broadly might be able to 

accommodate some aspects of these contexts, such as beliefs in practice attributes and suitability, 

and adoption costs, but a closer look reveals these measures to be incompatible with the 

attitudes-measured-by-beliefs approach as discussed below, and with the theoretical 

conceptualization of PBC (Fishbein and Ajzen 2015), as whether costs constrain behavior is a 

complex and context specific condition that is heavily dependent on trade-offs and what 

alternatives are available. At best, the TPB/RAA offers indirect ways of incorporating political-

economic or biophysical contexts that are entirely dependent on the individual’s perceptions of 

them.  

Of greater concern, is that the TPB/RAA does not account for the nature or 

characteristics of the behavior under investigation. More importantly, because the TPB/RAA was 

intended to predict the voluntary behavior of individuals in their everyday life, it may not be 

appropriate for studying farmers’ decisions about their farming practices. The key distinction is 

that farming is a business, making it fundamentally different from use of public transportation 

                                                 
2 “It is important to note that, within our reasoned action framework, we do not assume that people are rational but 

only that their actions follow reasonably from their beliefs. Given that beliefs are often based on information 

provided by others and on fallible inference processes, behavioral, normative, and control beliefs need not be 

veridical. They can be inaccurate, biased to conform with preconceptions or motives, or they may represent 

rationalizations, wishful thinking, or other irrational processes. Nevertheless, the beliefs people hold constitute the 

information they have about a behavior, and because they naively assume that their beliefs are valid . . . , they act 

upon them.” (Fishbein and Ajzen 2015:223) 
3 The “background factors” as described by Fishbein and Ajzen (2015:24) are all specific to the individual and could 

include: “age, gender, ethnicity, socioeconomic status, education, nationality, religious affiliation, personality, 

mood, emotion, general attitudes and values, intelligence, group membership, past experiences, exposure to 

information, social support, and coping skills.” Fishbein and Ajzen suggest that the selection of background factors 

can be guided by domain-specific theories. 
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(Heath and Gifford 2002), hotel choice (Han, Hsu, and Sheu 2010), hunting (Hrubes, Ajzen, and 

Daigle 2001), and the use of dual-flush toilets to save water (Lam 2006) as a few examples. For 

farmers to remain farmers they must remain profitable, so any decisions about the methods and 

tools they will use to farm must meet this basic standard. This is not to say that all or even most 

farmers are profit-maximizers, but their farming decisions have to at least not cost them too 

much money compared to what the decision will make them. This frequently places farmers in a 

situation where they could implement a given practice, but they have to decide if they should 

implement it, thereby greatly complicating the PBC portion of the TPB/RAA, and potentially 

curtailing the role of attitudes and norms in their decisions.  

I also see empirical challenges with operationalizing the TPB/RAA, though these 

challenges are different than the ones for the adoption-diffusion model as the TPB/RAA already 

has a path model that is easily estimated through structural equation modeling (SEM). The main 

issue involves the potential conflict between the conceptualization and the common 

operationalization of beliefs and attitudes. Conceptually in the RAA beliefs are separate from 

and predict attitudes, but empirically it is most common to use beliefs as measures of attitudes in 

a latent variable. The measurement model of a latent variable uses the observed attitudes as 

endogenous variables that are predicted by the latent construct. In other words, the attitude 

predicts the beliefs, which is the opposite direction of the relationship as depicted in the RAA. 

This results in a model in which the belief variables have no direct or indirect effect on the 

behavior. It is possible to operationalize the model differently, as Borges, Tauer, and Lansink 

(2016) have done using a multi indicators and multiple causes (MIMIC) model4, which maintains 

the directions of the causal relationships in the TPB/RAA, but this is not a common method.   

 

                                                 
4 See Kline (2012) for more on MIMIC models. 
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OVERVIEW OF EMPIRCAL ANALYSES 

This dissertation includes three empirical analyses. In the first analysis I use qualitative 

data and grounded theory to investigate farmers’ tillage practices and the factors that influence 

their tillage choices. My primary purpose is to examine what tillage practices Midwestern corn 

farmers are using and why. The results that emerge on the ways farmers are tilling challenges the 

commonly used tillage categories, as I find that farmers’ tillage practices are not easily assigned 

to the usual three or four categories. The results of the reasons farmers gave for why they till as 

they do calls into question the social-psychological theories that are commonly used in studies of 

farmer decision-making, as I find that the biophysical context, the needs of the operation, and 

practice compatibility were much more heavily referenced by farmers as reasons for their tillage 

choices than were attitudes or values related to the environment or the tillage practices 

themselves. 

The second analysis is a quantitative analysis using structural equation modeling with 

latent variables that takes a broad approach to investigating the drivers of the use of five BMPs: 

pre-sidedress nitrate tests (PSNTs), nutrient maps, variable rate nitrogen (N), variable rate 

phosphorus (P) or potassium (K), and cover crops. The goal is to identify the common drivers of 

BMP use and assess their relative importance. It also explores the use of practice knowledge as a 

predictor of BMP use that has been underutilized in previous research. The results of this 

analysis show that these five practices have few drivers in common, even between practices that 

were expected to be similar. The relative importance of the significant variables suggests that the 

adoption-diffusion model may provide more predictive of farmers’ use of these BMPs than the 

social-psychological theories, as information sources were found to be more important to 

practice use than attitudes. 
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The third analysis uses county and state data in a multilevel structural equation model to 

examine the scaled-up effects of many individual decisions relating to the rate of nitrogen 

fertilizer used in the presence of cover crops, conservation tillage and no-till. The retention of 

nutrients by these in-field practices means that they have the potential to reduce the amount of 

fertilizer that a farmer needs to apply to get a good crop, thereby saving farmers money and 

reducing non-point-source nutrient pollution from agriculture. However, it is not clear to just 

what extent farmers actually do reduce their fertilizer use when they adopt any of these practices. 

If farmers are not experiencing tangible savings from the use of these practices then it is likely 

that the present incentive system for their use is insufficient for encouraging their adoption. The 

analysis does not show any of the three practices to have a significant total effect on fertilizer 

use, but it does suggest that cover crops may have the potential to increase fertilizer use. Not 

only does this analysis scale up from the individual to better assess the cumulative effects of 

many individual actions at a scale where the effects are more visible, but it also includes a 

mixture of ecological and economic and non-economic social variables in a single model, which 

is novel in sociological studies. 
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CHAPTER 2: MOVING BEYOND BASIC TILLAGE CATEGORIES IN MIDWEST 

ROW-CROP AGRICULTURE: AN EXPLORATORY ANALYSIS OF TILLAGE 

PRACTICES AND REASONS 

 

Extensive research and outreach efforts have focused on encouraging farmers to use more 

conservation-oriented practices to reduce the environmental impacts of agriculture (Aneja, 

Schlesinger, and Erisman 2009; Carpenter et al. 1998). Therefore, there is also great interest in 

better understanding why farmers choose to use or not use these practices and what incentives 

can encourage their voluntary use (Baumgart-Getz, Prokopy, and Floress 2012; Knowler and 

Bradshaw 2007; Liu, Bruins, and Heberling 2018; Prokopy et al. 2008; Wauters and Mathijs 

2014). The use of “conservation” tillage has long been a practice of interest in efforts to reduce 

soil erosion in US agriculture (Allmaras and Dowdy 1985; Halcrow, Heady, and Cotner 1982). 

However, the sociology of agriculture and the agriculturally oriented natural resource literature 

have long tended to oversimplify the ways that tillage is used and measured, particularly by 

ignoring the spatial and temporal aspects of tillage decisions (Reimer et al. 2014), though soil 

scientists are aware of the importance of crop rotation and soil type/qualities in the use of 

specific tillage practices (e.g., Reicosky and Allmaras 2003; Lal, Reicosky, and Hanson 2007).  

The over simplification of farmers’ tillage practices and decision-making process related 

to tillage has been exacerbated by the common division of tillage practices into three categories: 

“conventional” tillage, “conservation” or “reduced” tillage, and “no-till” and the use of binary 

measures of practice use/disuse, without consideration of duration, frequency, or area of use 

(Reimer et al. 2014). Furthermore, the use of these overly general categories of tillage mean that 

these binary measures may not be as accurate as desired. Reimer et al. (2014:57A) point out this 

problem: 
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Conservation tillage, for example, can mean continuous no-till to one farmer, 

strip-till after soybeans (Glycine max [L.] Merr.) but not after corn (Zea mays L.) 

to another, and use of a chisel plow rather than moldboard plow to another. Such 

variance in meanings and behavior can lead to substantial measurement error 

associated with discrete, binary measures of adoption.  

Categories are important and useful research tools, but too much aggregation can disguise 

important differences. Soil scientists Reicosky and Allmaras (2003) point out that terms like 

“conventional,” “conservation” and “reduced” are all broad and relative, and often have different 

regional meanings. Additionally, as tillage practices have shifted in a more conservation 

direction over time (Lal et al. 2007), and with the advent of new tillage technology, the meanings 

of these terms will also have inevitably changed (Reicosky and Allmaras 2003)5.  

My primary purpose for this exploratory analysis using qualitative interview data is to 

examine what tillage practices Midwestern corn farmers are using and why. The results that 

emerge on the ways farmers are tilling challenges the commonly used tillage categories, as I find 

that farmers’ tillage practices are not easily assigned to the usual three or four categories. The 

results of the reasons farmers gave for why they till as they do calls into question the social-

psych theories that are commonly used in studies of farmer decision-making, as I find that the 

biophysical context, the needs of the operation, and practice compatibility were much more 

heavily referenced by farmers as reasons for their tillage choices than were attitudes or values 

related to the environment or the tillage practices themselves. 

 

                                                 
5 “As new technology develops and new tillage and planting equipment become available, we should discontinue the 

use of the vague and nondescript terms of “conventional” and “conservation” terminology and provide explicit 

descriptions of equipment for tillage, residue management and planting. … An accurate description requires listing 

all operations in the system and should be the prime consideration in discussing various conservation tillage 

systems” (Reicosky and Allmaras 2003:77). 
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BACKGROUND ON TILLAGE 

 Tillage has long been an important agricultural practice. Reicosky and Allmaras 

(2003:76) describe tillage as “the mechanical manipulation of the soil and plant residue to 

prepare a seedbed where crop seeds are planted… [it] fragments soil, enhances the release of soil 

nutrients for crop growth, kills weeds, and modifies the circulation of water and air within the 

soil.” Early wooden hand tillage implements facilitated the rise of settled agriculture and their 

improvement into what we would recognize today as a “plow” that could be pulled by draft 

animals around 4000 to 6000 BC increased food production and supported the rise of urban-

oriented civilizations in Mesopotamia (Lal et al. 2007). Further improvements over time included 

the use of metal plow shares and shaping the share to invert the soil, rather than just break and 

loosen it, the hallmark of the modern “moldboard” plow (Lal et al. 2007). As a result, the most 

common tillage practice in the US for several hundred years was moldboard plowing followed 

by “secondary” tillage, which breaks up the soil more finely, and levels and smooths the soil in 

preparation for planting (Belknap and Saupe 1988; Bultena and Hoiberg 1983; Reicosky and 

Allmaras 2003).  

While soil erosion from plowing has been a concern for hundreds if not thousands of 

years, it took on new urgency in the US following the Dust Bowl of the 1930s and resulted in 

policies and programs to address it, such as the establishment of the Soil Erosion Service in 

1933, and the passage of the Soil Conservation Act in 1935 (Lal et al. 2007; Rasmussen 1982). 

Addressing soil erosion meant addressing tillage practice, and led to the challenging of 

moldboard plowing and of plowing at all in favor of “conservation” tillage and “no-till” practices 

during the 1940s-1960s (Lal et al. 2007). New technologies facilitated this challenge of plowing, 

especially new herbicides that could replace tillage for weed management, and the development 
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of implements for planting into untilled ground (Allmaras et al. 1998; Coughenour 2003; Lal et 

al. 2007; Reicosky and Allmaras 2003).  

However, the use of moldboard plows nationally did not start to decrease until the 1970s 

(Bultena and Hoiberg 1983; Crosson 1981; Reicosky and Allmaras 2003). In the 1980s, 

continued concern over high rates of soil erosion (Crosson 1984) and relatively low rates of 

adoption of non-moldboard tillage led to a large body of research on the adoption process of 

“conservation tillage” by rural sociologists (Bultena and Hoiberg 1983; Dillman and Carlson 

1982; Korsching et al. 1983; Napier, Thraen, and Gore 1984; Nowak 1987; Nowak and 

Korsching 1985; Warriner and Moul 1992) and agricultural economists (Belknap and Saupe 

1988; Ervin and Ervin 1982; Gould, Saupe, and Richard 1989; Lee and Stewart 1983; Norris and 

Batie 1987; Rahm and Huffman 1984; Shortle and Miranowski 1986) during this decade. 

Research during the 1980s mostly focused on the adoption of “conservation tillage” 

which was most commonly defined as any tillage system that did not involve the use of a 

moldboard plow (e.g., Belknap and Saupe 1988; Bultena and Hoiberg 1983). More broadly, 

“conservation tillage” has been defined as “a tillage system in which either crop residues are 

retained on or near the surface, or soil surface roughness is maintained, or both, to control soil 

erosion and to achieve good soil-water relations” (Allmaras and Dowdy 1985:197-198). 

However, a 30 percent remaining soil cover standard has been associated with “conservation” 

tillage since the 1980s (Allmaras and Dowdy 1985), and continues to be used by the 

Conservation Technology Information Center (CTIC, formerly the Conservation Tillage 

Information Center), with “reduced” tillage being defined as retaining 15-30 percent soil cover. 

These percentage soil cover standards have been regularly used in social research on tillage 

practice adoption (e.g., Reimer, Weinkauf, and Prokopy 2012; Vitale et al. 2011; Caswell et al. 
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2001). The retention of 30 percent or more residue can be achieved by a wide range of tillage 

methods from “one fall chisel with straight shanks, a shallow disking in the spring, a field 

cultivation and planting” to a full no-till system (NRCS 1992). 

How “conservation tillage” is defined and operationalized is important because different 

environmental implications that result from the use of the range of practices that are often 

included in the “conservation tillage” category. For example, Kumar et al. (2014) compare soil 

organic carbon levels in drained and undrained field under no-till and chisel plowing on 

continuous corn in Ohio, and find significantly more SOC in the no-till plots compared to the 

chisel plowed plots after 18 years. Similarly, López-Fando and Pardo (2012:33) compare total 

nitrogen content and nitrogen stratification ratios between “no-tillage (NT), minimum tillage 

(18–22 cm depth) with chisel plow (MT), and conventional tillage (25–30 cm depth) with 

mouldboard plow (CT)” over 19 years of a chickpea-barley rotation in central Spain. They find 

significant differences between the no-tillage, minimum tillage and conventional tillage systems, 

with no-tillage having higher total nitrogen and nitrogen stratification than minimum tillage 

which in turn was higher than conventional tillage, and they conclude that these measures 

indicate better soil properties particularly under no-tillage as compared to minimum tillage and 

conventional tillage. Greater soil fertility, in the form of nitrogen and carbon content, resulting 

from tillage practices on the no-till end of the spectrum have the potential to help mitigate global 

climate change by storing carbon in the soil (Robertson et al. 2014; Robertson, Paul, and 

Harwood 2000; Uri and Bloodwirth 2000). 
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LITERATURE REVIEW 

Many of the 1980s studies on the adoption of “conservation” tillage as well as more 

recent ones have been reviewed in meta-analyses of the predictors of “best management” or 

“conservation practices” not limited to tillage (Baumgart-Getz et al. 2012; Knowler and 

Bradshaw 2007; Liu et al. 2018; Prokopy et al. 2008; Wauters and Mathijs 2014). However, 

these analyses find mixed or inconclusive results of predictors, even when potentially focused on 

tillage practices. For instance, Prokopy et al. (2008) include sub-analyses based on practice type, 

including one for “soil management” which is presumably some form of “conservation tillage,” 

though they do not define what they include in this category. They find that, only acres farmed is 

significant more often than it is not significant as a predictor of “soil management” practices. 

One reason for this lack of consistency may be the measurement error pointed out by Reimer et 

al. (2014).  

 Recent quantitative studies (Andrews et al. 2013; Ryan, Erickson, and De Young 2003; 

Vitale et al. 2011) on factors related the adoption/use of “conservation” tillage and no-till in the 

US have acknowledged the potential for multiple meanings of tillage practice terms, and some 

have made efforts to limit measurement error by providing respondents with definitions of the 

response categories. However, these studies, while recognizing that farmers use tillage in 

complex ways, limited their analyses to overly simple categories of tillage use (Andrews et al. 

2013; Ryan et al. 2003; Vitale et al. 2011). These quantitative studies featured beliefs and 

attitudes but did not use any of the theories discussed in the introduction (Chapter 1). 

Ryan, Erickson, and De Young (2003) considered the likelihood of farmers in a Michigan 

watershed adopting one of several specific practices, including no-till, along streams and drains 

in the future. They also considered farmers motivations for adopting these practices and 
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considered six attitude and value-based variables (three of which are latent variables), though 

they did not draw explicitly on any specific theoretical approach. Twenty-seven percent of their 

respondents reported using “no-till farming to minimize soil erosion” and farmers rated no-till as 

the practice category they were most likely to adopt in the future (average score of 3.6 out of 5)6. 

However, the authors noted that “farmers may conceptualize no-till farming as a range of 

conservation tillage practices, such as minimum tillage” (Ryan, Erickson, and De Young 

2003:28). They found that full time farmers were more likely to adopt no-till than part time 

farmers, and that attachment to their farm, intrinsic environmental motives, and the visual 

recognition of no-till were important factors in the reported likelihood of future no-till adoption. 

Vitale et al. (2011) used a survey to study the adoption of three categories of tillage 

practices, conventional, reduced, and conservation tillage, among Oklahoma farmers. They took 

an atheoretical econometric approach that focused on the individual decision process and used 

three categories of “perception” variables related to conservation tillage: economic, agronomic, 

and other. The authors provided farmers with the CTIC definitions of each practice (see Figure 

2.1). In their descriptives they differentiated between farmers who reported using only one type 

of tillage and those who reported using the type on at least 50 percent of their operation and one 

or more other tillage types on their remaining acres; 36.8 percent of their respondents fell into 

one of these groups or did not use any one type of tillage on a majority of their acres (calculated 

from authors descriptive table). However, in their regression models the authors only used the 

typical categories. Their results highlight the importance of farmer age, farm size, crop rotation, 

presence of livestock, perceptions of the benefits and costs of different tillage practices, and 

knowledge of conservation tillage practices in explaining farmers’ dominant tillage type. 

                                                 
6 The highest rated individual practice was “maintain a grassy buffer strip/filter strip” with average rating of 3.86, 

however the authors used factor analysis to group similar practices into categories. No-till was used as an individual 

item in their analysis as it did not fit into any calculated factor. 
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Figure 2.1. Tillage definitions used by Vitale et al. (2011:252). 

 

 
Figure 2.2. Tillage definitions used by Andrews et al. (2013:504). 

 

Andrews et al. (2013) asked a national sample of farmers about their tillage practices in 

2009 and 2010 on three crops (see Figure 2.2) and reasons for using them as part of a survey on 

framing effects of conservation tillage on farmers’ interest in using conservation tillage and in 

receiving more information about it. They considered four frames: a basic rationale that focuses 

on soil quality benefits and erosion reduction (the control frame), a profit frame that focuses on 

the money saving potential of conservation tillage, a carbon offset frame that focuses on the 
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potential for getting carbon offset payments for using conservation tillage, and a payment for 

environmental benefits frame that focuses on the potential for payments for using conservation 

tillage based on the off-farm environmental benefits. How the benefits of a practice is presented 

or “framed” is expected to influence farmers’ attitudes towards the practice and in turn influence 

their likelihood of using it.  

Nearly 50 percent of their respondents reported using a combination of tillage types 

(calculated from authors’ descriptives table). However, the authors combined their respondents 

into three categories: “conservation tillers” who only used conservation tillage and/or no-till, 

“combined tillers” who used all three types or a combination of no-till and conventional tillage, 

and “conventional tillers” who only use conventional tillage or a combination of conventional 

tillage and conservation tillage. They found that concerns over water quality, soil erosion, 

improving soil productivity, and lowering costs were important factors for the “conservation 

tillers” group who were using conservation tillage and/or no-till. In contrast, conventional tillers 

were highly concerned with high yields, soil compaction/drainage, and earlier plating windows. 

For the framing treatments, the authors found no significant differences between treatments in 

the whole sample; they did find that the profit frame significantly reduced “conventional tillers” 

interest in conservation tillage compared to the basic rationale. The authors hypothesized that 

this effect could be due to the profit frame highlighting financial considerations that these 

farmers do not believe can be achieved with conservation tillage, possibly due to local soil 

qualities and climatic conditions that make conservation tillage practices less advantageous. 

Of particular interest to the present study are the small number of papers that use 

qualitative methods to better understand farmers’ use of different tillage practices. Two recent 
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qualitative studies have been conducted in the US on conservation practices that included tillage 

(Reimer, Thompson, and Prokopy 2012; Reimer, Weinkauf, et al. 2012).  

 Reimer, Thompson, et al. (2012) use 32 semi-structured farmer interviews in an Indiana 

watershed to examine farmers awareness of environmental issues and attitudes towards 

conservation practices, as well as their current awareness and use of conservation practices. They 

defined “conservation tillage” as the use of 100 percent no-till practices on corn, since “nearly 

all” farmers interviewed were using no-till for their soybeans; 56 percent of their sample was 

found to practice “conservation tillage” as they defined it. They identified three attitude 

dimensions in their interview data: “farm as business,” “[concern for] off-farm environment,” 

and “stewardship.” They found that the farm-as-business attitude was related with low use of 

conservation practices, while off-farm environmental concern and stewardship attitudes were 

associated with use of more conservation practices. Reimer, Thompson, et al. (2012) noted that  

the majority of farmers interviewed in this study were in a middle 

adopting group, adopting a few conservation practices but not 

expressing strong off-farm environmental, stewardship, or farm as 

business attitudes…. This group of farmers talked most extensively 

about the on-farm benefits and was aware of the indirect financial 

benefits of erosion control and soil nutrients that certain 

conservation practices brought. This group was most likely to 

adopt conservation tillage and grassed waterways where needed. 

(P. 36) 

 

Reimer, Weinkauf, et al. (2012) use the same 32 interviews used in Reimer, Thompson, 

et al. (2012), as well as an additional 13 farmer interviews in a different Indiana watershed. They 

use the interviews to examine farmers’ views on the “acceptability characteristics for each 

practice” (Reimer, Weinkauf, et al. 2012:121), drawing on the diffusion of innovations theory’s 

five characteristics of innovations that relate to adoption or rejection of a practice along with the 

reasoned action approach. The authors recognize 8 types of tillage practices among their 
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interview participants, including crop rotation-based differences, though their analysis just refers 

to “conservation tillage.” About 66 percent of their sample reported using either no-till for 

soybeans and a different type of tillage for corn, or a combination of tillage types “based on 

sensitivity of the ground or compatibility with other practices” (Reimer, Weinkauf, et al. 

2012:123). They found that soil conservation and input savings were the most important 

attributes reported that motivated farmers to use conservation tillage, while decreased yield, lack 

of perceived need, and uncertainty of effectiveness were the most important characteristics that 

deterred farmers from using conservation tillage. 

 

METHODS 

Overview 

Interviews with corn farmers were conducted in 2014 as part of a National Science 

Foundation funded Couple Human and Natural Systems (CHANS) project examining nitrogen 

efficiency in Midwest corn production. A semi-structured interview guide was used that included 

questions on general farm characteristics and practices used, sources of information used, 

influence of crop insurance, conservation programs, private companies and other farmers on 

farming practices, and views on the environment and climate change. The interview guide had a 

particular interest in the use of nitrogen fertilizer on corn, and many of the questions were asked 

in this context. 

Qualitative methods are particularly well suited to investigating exploratory research 

questions and gaining a detailed understanding of reasons and motivations. While theories and 

conceptual frameworks can be very useful research tools, there can also be benefit in collecting 

farmers’ responses using open-ended questions. As such, qualitative methods are a good choice 
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for approaching my research questions, which are: “what tillage practices do farmers use?” and 

“why do farmers till the way they do?” Tillage has not been a heavy focus of recent social 

science research, and the advance of tillage technology and demonstration of mixed tillage use in 

the literature suggests an exploratory analysis of tillage practices would be worthwhile. Why 

farmers till the way they do is also a topic that would clearly benefit from an exploratory analysis 

where farmers’ explanations for their actions could emerge. If the qualitative findings do not 

support the findings of the previous studies, or only do so in part, then the exploratory analysis 

will offer suggestions for additional angles of investigation, which can lead to further research 

questions, hypotheses and theory development.   

Data Collection 

 The farmer interviews were conducted by three individuals between May and December 

2014 in Iowa (IA), Indiana (IN) and Michigan (MI). Interviews lasted between 20 minutes and 3 

hours, with a typical interview lasting about 45 minutes. A total of 154 interviews were 

conducted, with 53 in IA, 51in IN, and 50 in MI7. A small number (fewer than five total) of 

interviews were conducted by phone and/or not audio recorded; the rest were conducted in-

person and were audio recorded with participant permission and subsequently transcribed 

verbatim. The interviews that were not recorded had notes written up immediately afterwards. 

The only requirement for inclusion in the sample was that the farmer be growing at least 100 

acres of non-organic corn. The final sample of 152 farmers covered 27 percent of IA counties, 25 

percent of IN counties, and 20 percent of MI counties8. 

                                                 
7 Two Michigan participants did not meet the sample selection criteria so 48 Michigan interviews are used in the 

following analysis. 
8 Not all MI counties have extensive corn production, especially those in the northern part of the state, which is why 

the percent of counties covered in MI is lower than in the other states. 
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Farmer recruitment was done primarily through referrals from respective state University 

Extension personnel and through snowball sampling, though the portions varied by state. Table 

2.1 shows the differences in participant recruitment methods by state. In IA, the extension source 

was through an extension-run program rather than direct referral by extension agents as was the 

case in IN and MI. In MI the participants recruited through “relevant organizations and 

programs” were all contacts made through the list of the Michigan Agriculture Environmental 

Assurance Program participants, while in IA it was through an email to the listserv of Practical 

Farmers of Iowa.  

While snowball sampling can help achieve a more diverse sample, the heavy use of 

extension in the initial participant recruitment is likely to have skewed the sample towards 

farmers who extension personnel see as being exemplary farmers. This bias may have made the 

sample more environmentally aware and operationally efficient than is typical of the general 

farming population. All participants were white men ranging in age from 20s-70s. Female and 

racial minority farmers were not deliberately excluded from the sample, but due to the focus of 

the study no special effort was made to include them. 

Table 2.1. Sample recruitment sources by state. 

  Michigan   Iowa   Indiana 

Number of interviews 50† 

 

53 

 

51 

  % (#)   % (#)   % (#) 

Extension 64.0 (32) 

 

22.6 (12) 

 

58.8 (30) 

Snowball sampling 24.0 (12) 

 

45.3 (24) 

 

33.3 (17) 

Other 12.0 (6) 

 

32.1 (17) 

 

7.8 (4) 

County Soil and Water Conservation District 0.0 (0) 

 

22.6 (12) 

 

0.0 (0) 

Field days and relevant events 0.0 (0) 

 

3.8 (2) 

 

0.0 (0) 

Relevant organizations and programs 12.0 (6)   5.7 (3)   7.8 (4) 

† Two Michigan participants did not meet the sample selection criteria so 48 Michigan interviews are used in the 

following analysis. 
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 The sample is also skewed towards larger farms. Farm sizes in the sample ranged from 

170 to 5,000 acres in IA, with an average size of 1,236 acres (average for the state was 3479), 

from 200 to 9,000 acres in IN, with an average size of 2,216 acres (average for the state was 

253), and from 200 to 4,500 acres in MI, with an average farm size of 1,529 acres (average for 

the state was 193). The larger average farm size in the sample is likely the result of the 100-acre-

minimum-corn selection criterion. This requirement automatically restricts the sample to farms 

greater than the median in MI and IN, and likely functionally does in IA as well (Table 2.2). 

Since this data is for total operation size, this means that the sample selection was restricted to 

the largest fifty-percent of farms. It is also plausible that larger farms are more likely to be 

growing corn.  

Table 2.2. Mean and median farm size in acres per operation by state in 2012. 

  Michigan   Iowa   Indiana 

Mean farm size 191 

 

345 

 

251 

Median farm size  60   136   57 

Source: NASS Census of Agriculture. 

    

Analysis 

 The analysis process used was based on Grounded Theory (Glaser and Strauss 1967) in 

the vein of Glaser’s approach (Glaser 1978, 1992; Walker and Myrick 2006). Grounded theory is 

the process of developing a theoretical explanation of a social action, interaction or process that 

is grounded in the analysis of qualitative data (Creswell 2007). It is an inductive, rather than a 

deductive, process. Briefly, Glaser’s approach involves two stages: “Substantive coding … is 

concerned with producing categories and their properties. Theoretical coding occurs at the 

                                                 
9 Average farm sizes are for all farms (not corn specific) for the three states are for 2014 from a USDA survey. Data 

was collected from NASS. 
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conceptual level, weaving the substantive codes together into a hypothesis and theory” (Walker 

and Myrick 2006:550). 

The initial substantive coding was done according to the questions on the interview 

guide. The responses analyzed in this paper were to the question: “How do you till and how does 

it affect your fertilizer decisions?” The question was alternatively asked in two parts: “How do 

you till?” and then after their response a follow up: “How does that affect your fertilizer 

decisions?” The analysis presented here began with coding the tillage question code by tillage 

tool. Given the large volume of data, even when only considering the tillage question code, the 

word search query in NVivo 11 (QSR) was used assist in locating all relevant passages. The 

terms till/tilling/tillage, plow/plowing and work/working were searched, and the relevant 

instances of them coded according to the tool/type mentioned. Each tool/type code was then 

searched for specifically to ensure that any instances that appeared without a form of till, plow or 

work were located. 

Each tool/type code was then further coded to identify farmers who reported current use 

of the tool/type and mentions of past use, reasons for use, observations of use by others etc. The 

tool/type use codes were then further coded by sub-type, season of use, method of use, and/or 

extent of use as was appropriate for the tool/type. For example, use of harrows was coded for 

disk harrow use vs. non-disk harrow use, then disk harrow use was coded for use as primary 

tillage vs secondary tillage, and each of those was further coded for season of use, and 

method/purpose of use—e.g., based on rotation, or used on “as needed” basis. 

The content coded to non-use tool/tillage codes as well as the tool/type specific codes 

related to method/purpose of the specific tool/tillage type were collected and substantively coded 

for reasons for tillage use, and then to pursue a more detailed set of reasons for each primary 
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reason code. Finally, theoretical coding was used to group these reasons into the explanatory 

categories discussed in the results section. 

Quantified results of tillage tool/type were based on the results of using the matrix query 

tool in NVivo 11. All tillage/type codes were expended as needed so that they overlapped, 

allowing for the use of multiple tools/types by a single farmer to be identified through matrix 

queries. 

 

RESULTS 

 The first part of this section presents and briefly discusses the results of the substantive 

coding of tillage tools and tillage types, primarily using the quantified results in Tables 2.3 and 

2.4. This portion of the analysis addresses my first research question: How are farmers tilling? 

My second research question is addressed by the theoretical codes that are discussed in the 

section on tillage decision factors. As it is not the purpose of this article to describe in detail the 

characteristics of the specific tillage tools and types, but rather to explore their overlap in use and 

the reasons for their use, only brief descriptions will be provided as needed. Readers are 

particularly referred to two publications: Conservation Tillage Systems and Management 

(MWPS 2000), and Tillage (John Deere 2007) for detailed descriptions, and images of the 

structure, performance, and options of the tillage tools and types discussed. 
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Table 2.3. Cross-tab comparison of instances of tillage tool/type overlap, as percent of 151 and number of respondents.  

 

Mold-

board 

plow 

Chisel 

plow Ripper Cultivator Harrow 

Soil 

finisher 

Vertical 

tillage 

Mulch 

till 

Ridge 

till 

Strip 

till No-till 

Cons. 

tillage 

Conv. 

tillage 

  % (#) % (#) % (#) % (#) % (#) % (#) % (#) % (#) % (#) % (#) % (#) % (#) % (#) 

Primary tillage tools 

Moldboard plow 
2.0  

(3) 

0.7 

(1) 

0.0 

(0) 

0.7 

(1) 

0.0 

(0) 

0.0 

(0) 

0.7 

(1) 

0.0 

(0) 

0.7 

(1) 

0.0 

(0) 

0.7 

(1) 

0.0  

(0) 
0.0 (0) 

Chisel plow 
0.7  

(1) 

19.2 

(29) 

3.3 

(5) 

5.3 

(8) 

4.0 

(6) 

3.3 

(5) 

2.0 

(3) 

0.0 

(0) 

0.0 

(0) 

0.0 

(0) 

12.6 

(19) 

4.6  

(7) 
1.3 (2) 

Ripper 
0.0  

(0) 

3.3 

(5) 

19.2 

(29) 

7.9 

(12) 

4.0 

(6) 

0.7 

(1) 

4.0 

(6) 

0.7 

(1) 

0.0 

(0) 

2.6 

(4) 

6.6 

(10) 

2.0  

(3) 
4.0 (6) 

Secondary tillage tools 

Cultivator 
0.7  

(1) 

5.3  

(8) 

7.9  

(12) 

17.9  

(27) 

4.0  

(6) 

1.3  

(2) 

2.0  

(3) 

0.7  

(1) 

0.7 

(1) 

0.7 

(1) 

7.3  

(11) 

2.0  

(3) 
3.3 (5) 

Harrow 
0.0  

(0) 

4.0  

(6) 

4.0  

(6) 

4.0  

(6) 

12.6 

(19) 

0.0  

(0) 

3.3  

(5) 

0.7  

(1) 

0.0 

(0) 

0.0 

(0) 

6.6  

(10) 

1.3  

(2) 
1.3 (2) 

Soil finisher 
0.0  

(0) 

3.3  

(5) 

0.7  

(1) 

1.3  

(2) 

0.0  

(0) 

5.3  

(8) 

0.0  

(0) 

0.0  

(0) 

0.0 

(0) 

0.0 

(0) 

4.0  

(6) 

1.3  

(2) 
0.0 (0) 

Tillage types              

Vertical tillage 
0.7  

(1) 

2.0  

(3) 

4.0  

(6) 

2.0  

(3) 

3.3  

(5) 

0.0  

(0) 

15.2 

(23) 

0.0  

(0) 

0.0 

(0) 

0.7 

(1) 

6.6  

(10) 

2.6  

(4) 
0.0 (0) 

Mulch till 
0.0  

(0) 

0.0  

(0) 

0.7  

(1) 

0.7  

(1) 

0.7  

(1) 

0.0  

(0) 

0.0  

(0) 

1.3  

(2) 

0.0 

(0) 

0.0 

(0) 

0.7  

(1) 

0.0  

(0) 
0.7 (1) 

Ridge till 
0.7  

(1) 

0.0  

(0) 

0.0  

(0) 

0.7  

(1) 

0.0  

(0) 

0.0  

(0) 

0.0  

(0) 

0.0  

(0) 

0.7 

(1) 

0.0 

(0) 

0.0  

(0) 

0.0  

(0) 
0.0 (0) 

Strip till 
0.0  

(0) 

0.0  

(0) 

2.6  

(4) 

0.7  

(1) 

0.0  

(0) 

0.0  

(0) 

0.7  

(7) 

0.0  

(0) 

0.0 

(0) 

11.9 

(18) 

5.3  

(8) 

0.7  

(1) 
2.0 (3) 

No-till 
0.7  

(1) 

12.6 

(19) 

6.6  

(10) 

7.3  

(11) 

6.6  

(10) 

4.0  

(6) 

6.6  

(10) 

0.7  

(1) 

0.0 

(0) 

5.3 

(8) 

64.9 

(98) 

8.6  

(13) 
3.3 (5) 

Cons. tillage 
0.0  

(0) 

4.6  

(7) 

2.0  

(3) 

2.0  

(3) 

1.3  

(2) 

1.3  

(2) 

2.6  

(4) 

0.0  

(0) 

0.0 

(0) 

0.7 

(1) 

8.6  

(13) 

13.9 

(21) 
1.3 (2) 

Conv. tillage 
0.0  

(0) 

1.3  

(2) 

4.0  

(6) 

3.3  

(5) 

1.3  

(2) 

0.0 

(0) 

0.0  

(0) 

0.7  

(1) 

0.0 

(0) 

2.0 

(3) 

3.3  

(5) 

1.3  

(2) 

8.6 

(13) 
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 Table 2.4. Summary of tillage tool use and tillage type by state, as percent and number of 

respondents. 

  Michigan   Iowa   Indiana 

Number of interviews 48 

 

53 

 

51 

  % (#)   % (#)   % (#) 

Primary tillage tools 

     Moldboard plow 2.1 (1) 

 

1.9 (1) 

 

2.0 (1) 

Chisel plow 29.8 (14) 

 

15.1 (8) 

 

13.7 (7) 

Ripper 27.7 (13) 

 

17.0 (9) 

 

13.7 (7) 

Secondary tillage tools 

    Cultivator 14.9 (7) 

 

24.5 (13) 

 

13.7 (7) 

Harrow 21.3 (10) 

 

7.5 (4) 

 

9.8 (5) 

Soil finisher 4.3 (2) 

 

9.4 (5) 

 

2.0 (1) 

Tillage types 

     Vertical tillage 17.0 (8) 

 

11.3 (6) 

 

17.6 (9) 

Mulch till 2.1 (1) 

 

1.9 (1) 

 

0.0 (0) 

Ridge till 0.0 (0) 

 

1.9 (1) 

 

0.0 (0) 

Strip till 8.5 (4) 

 

18.9 (10) 

 

5.9 (3) 

No-till 57.4 (27) 

 

71.7 (38) 

 

64.7 (33) 

Conservation tillage 14.9 (7) 

 

9.4 (5) 

 

17.6 (9) 

Conventional tillage 8.5 (4)   9.4 (5)   7.8 (4) 

 

Primary Tillage Tools 

Primary tillage displaces and shatters the soil as it reduces soil strength and tends 

to bury and mix plant residues and fertilizers within the tilled zone. Primary 

tillage is more aggressive, deeper and leaves a rough surface relative to secondary 

tillage operations. Primary tillage tools are the moldboard plow, chisel plow and 

various types of combination disc-chisel-subsoil tools designed to disturb the soil 

to greater depths. However, depending on the features, options and operation of 

that implement, results of primary tillage will be different as soil conditions 

change. (Reicosky and Allmaras 2003:78-79) 

 

As discussed above, the moldboard plow was long the go-to tillage implement of US 

farmers, but in the Corn Belt at least, this is no longer the case. Just three farmers, one in each 

state, mentioned that they use moldboard plows (Table 2.4) in some context. The IA and MI 

farmers indicated that they used it on a regular basis. All three farmers reported using other 

tillage types at other times or on other parts of their operation (Table 2.3). 
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Chisel plows and rippers are breaking and mixing tools10, rather than an inverting type 

and appear to have replaced the moldboard plow for typical primary tillage in the Midwest. 

Overall, almost 20 percent of the farmers interviewed said they used chisel plows in some 

capacity, and almost 20 percent said they used rippers in some capacity (Table 2.3). MI farmers 

reported higher use of both chisel plows and rippers (30 percent and 28 percent respectively) 

compared to IA (15 percent and 17 percent respectively) and IN (14 percent for both types of 

implements) (Table 2.4). Almost 13 percent said they used chisel plows and no-till, and almost 7 

percent reported use of rippers and no-till (Table 2.3). This overlap was often based on their crop 

rotation. Given the role of chisel plows and rippers as primary tillage tools, the overlap between 

their use and secondary tillage tools is as expected (Table 2.3). 

  

Secondary Tillage Tools 

Secondary tillage varies widely with type and number of operations, penetration is 

nearly always shallower than with primary tillage tools. Secondary tillage 

provides additional soil breakup, levels and firms the soil, closes some air pockets 

and kills some weeds. Tillage equipment often associated with secondary tillage 

includes disk harrows, field cultivators, spring-tooth harrows, levelers, packers, 

and other types of finishing equipment. Interpreting tillage system results may be 

confusing or meaningless when little information about secondary tillage 

operations is available. (Reicosky and Allmaras 2003:79) 

 

The following tools, field cultivators, harrows, and soil finishers, are considered 

secondary tillage implements and would typically be used after one of the primary tillage tools 

discussed above. However, some farmers described using them without first using primary 

tillage as part of a low-tillage system. These tools were sometimes used sequentially or as 

                                                 
10 The main difference between these tools is the depth they penetrate the soil. Rippers (also called “subsoilers”) run 

deeper (12-22 inches) than chisel plows (6-12 inches) and can break up compaction below the depth of other tillage 

tools (MWPS 2000). Both chisel plows and rippers can be designed to provide greater or lesser amounts of soil 

surface disturbance. Rippers were often mentioned in the form of disk rippers (8 percent of total sample). 
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substitutes for each other, as shown in the overlap of use, especially between field cultivators and 

harrows (Table 2.3).  

Overall, field cultivators were used the most (18 percent), followed by harrows11 (13 

percent) and soil finishers (5 percent) (Table 2.3). Field cultivators appear to be most popular in 

IA (25 percent) and similarly less popular in MI (15 percent) and IN (14 percent), while harrows 

are more commonly used in MI (21 percent) than in IN (9 percent) or IA (8 percent) (Table 2.4). 

Soil finishers were more popular in IA (9 percent) than in MI (4 percent) or IN (2 percent) (Table 

2.4).  

Types of Tillage 

The following terms refer to tillage types or styles based on function, rather than specific 

tools, though some like no-till, strip till and ridge tillage do need tools with specific capabilities. 

While there is certainly plenty of room for variation within the tillage tools discussed above 

(different names for the same tool, the use of different options on a tool that make it perform 

quite differently, etc.) there is even more room for vagueness when it comes to tillage styles, 

since they are not bound to a particular tillage tool even by name12.  

Vertical and mulch tillage. Vertical tillage appears to be a broad term without a firm 

definition (Kanicki 2014). It generally involves the use of an implement with vertical blades 

intended to cut up residue with minimal soil disturbance, though some have shallowly curved 

discs or wavy coulters that provide some soil lifting (Kanicki 2014). Mention of vertical tillage 

use was fairly even across the three states at 15 percent, 11 percent and 18 percent for MI, IA 

                                                 
11 Almost 79 percent of harrow use was of a disk harrow, primarily as secondary tillage. When non-disk harrows 

were discussed they tended to be used in a first field pass context. The use of disk harrows was quite evenly split 

between use as primary and secondary tillage (10 farmers and 8 farmers respectively). As primary tillage, there were 

an even number of reports of fall vs. spring use (4 farmers each). The fall use was typically for residue management 

and the spring use was for planting preparation. 
12 The one exception to this might be ridge tillage, which, while not tied to a specific tool per se does require a tool 

with quite a specific function. 
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and IN respectively (Table 2.4). Of the 23 total farmers considered to use this method, 18 labeled 

their practice/implement as vertical tillage, and 5 were considered to use it based on the tool they 

mentioned using—4 of the 5 said they used a “turbo till,” which is a trademarked name for an 

implement made by Great Plains that is billed as a vertical tillage tool. More mentions were 

made of using it in the spring, but fall use was also reported. There appears to be some overlap in 

tillage strategy with the harrows and cultivators in terms of timing and purpose of vertical tillage 

use, as well as with actual implement use. 

Mulch tillage is potentially an even broader term than vertical tillage, being generally 

defined as any conservation tillage system that is not no-till, strip till or ridge till, either with the 

requirement of 30% soil surface cover remaining (Caswell et al. 2001; John Deere 2007) or 

without (MWPS 2000; NRCS 2012b). Only two farmers described their tillage practices as 

“mulch tillage,” one in IA and one in MI (Table 2.4). The IA farmer described it as “a 

conventional mulch tillage thing, we field cultivate in the spring and do a disk ripping in the 

fall.” The MI farmer simply said that he does “mulch tillage on the soybeans to prepare for 

corn.” 

Ridge till. Ridge tillage is a specific practice where ridges are formed in the field and the 

crop is planted into the ridge for multiple years in a row while leaving the residue in the valleys 

between the rows, and is considered a residue-retaining type of tillage (Caswell et al. 2001; 

Reicosky and Allmaras 2003). Three farmers reported using ridge tillage in the past, but only one 

IA farmer reported currently using the practice (Table 2.4).  

Strip till. Strip till (also sometimes called “zone till”) is often considered a form of no-till 

(CTIC 2002; NRCS 2012a) but is considered separately in this analysis as most farmers 

distinguished between strip till and no-till, as can be seen by the small overlap in Table 2.3. Strip 



 

43 

 

till involves only tilling in strips across the field shortly before harvest, leaving the remaining 

portion of the field undisturbed (Reicosky and Allmaras 2003). The width of the allowed strip 

ranges up to 25 percent (Reicosky and Allmaras 2003) or 30 percent (CTIC 2002).  

Overall, 11 percent of our respondents used strip till in some capacity13 (Table 2.3). 

Nineteen percent of IA farmers mentioned using strip till compared to 6 percent of the MI and IN 

farmers (Table 2.4). Five percent of the sample noted using both strip till and no-till (Table 2.3). 

Some farmers blended the strip till/no-till distinction, either by using strip till and no-till at 

different points in their crop rotation, or by considering them as the same thing. 

“I've been no till since 1994. Right now, I’m really happy with my system. Its 

taking some time and haven’t been happy with it every year, this year I can be 

happy with how things have turned out…I work a 1/3 of the field. They’re roughly 

10 inch wide strips the whole way across the field and I plant right into those 

strips.” IA07 

 

No-till. As previously mentioned, no-till can include strip tilling practices, but a more 

narrow concept of it is that the only soil disturbance is the opening of a narrow slot by equipment 

on the front of the planter or seed drill (MWPS 2000; NRCS 2012a). No-till has overlap with all 

other types of tillage except ridge till, which is incompatible by definition (Table 2.3). No-till of 

some version was reportedly used by 65 percent of the farmers interviewed, making it the most-

used practice (Table 2.3). It was also the most used by state, with 72 percent of IA farmers and 

57 percent and 65 percent of MI and IN farmers respectively using it (Table 2.4). Because of the 

variation described in the use of no-till by participants, however, no-till has been further divided 

into 4 categories: all no-till, mostly or nearly no-till, some or part no-till, and no-till in rotation.  

The “all no-till” category is the use of 100 percent, or total no-till, or using no tillage. 

Farmers were still included in this group even if they mentioned specific exceptions in which 

                                                 
13 There was a mix of reported fall and spring strip till. 
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they tilled in some way. These exceptions were related to smoothing the ground after installing 

tile drainage or manure spreading, or if they started farming new land that was not ready to be 

no-tilled. The “mostly or nearly no-till” category is farmers who did not claim to be completely 

no-till but indicated that they mostly were. This included all no-till on most but not all of their 

acres, or all no-till most years but not always. The “some or part no-till” category is farmers who 

indicated that they do no-till some years, or on some parts of their operation, but not as 

consistently as the previous group. The “no-till in rotation” category is farmers who indicated 

that they used no-till according to their crop rotation. Most commonly this was no-tilling 

soybeans into corn stubble, but some also reported no-tiling corn into soybean stubble or as part 

of a more varied crop rotation. The least common use of rotation-based no-till was between corn 

crops. 

 Table 2.5. No-till sub-categories by state and for total sample, as percent and number of 

respondents. 

 

Michigan   Iowa   Indiana   Total 

Number of interviews 47 

 

53 

 

51 

 

151 

  % (#)   % (#)   % (#)   % (#) 

All no-till 14.9 (7) 

 

28.3 (15) 

 

21.6 (11) 

 

21.9 (33) 

Mostly or nearly no-till 6.4 (3) 

 

1.9 (1) 

 

9.8 (5) 

 

6.0 (9) 

All no-till in rotation 17.0 (8) 

 

24.5 (13) 

 

19.6 (10) 

 

20.5 (31) 

No-till corn into bean stubble 2.1 (1) 

 

15.1 (8) 

 

0.0 (0) 

 

6.0 (9) 

No-till soy into corn stubble 14.9 (7) 

 

11.3 (6) 

 

19.6 (10) 

 

15.2 (23) 

No-till in other rotation 10.6 (5) 

 

1.9 (1) 

 

0.0 (0) 

 

4.0 (6) 

Some or part no-till 19.1 (9) 

 

9.4 (5) 

 

13.7 (7) 

 

13.9 (21) 

No-till is strip till 4.3 (2) 

 

3.8 (2) 

 

0.0 (0) 

 

2.6 (4) 

No-till is vertical till 2.1 (1)   1.9 (1)   3.9 (2)   2.6 (4) 

 

Table 2.5 breaks down these four categories by state, and it also indicates the fuzziness 

between no-till and strip till and between no-till and vertical till. The use of total no-till is lower 

in MI than in IA and IN, and the use of no-till by crop rotation is higher in IA than in the other 

two states. The location of no-till in the rotation has some interesting state-level patterns. All of 
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the IN farmers who indicated using no-till in their rotation mentioned doing so between corn and 

soybeans, where the soybeans were no-tilled into the corn stubble. MI farmers mostly no-tilled 

soybeans into corn stubble as well, but there were several instances of using it in a non-corn-soy 

rotation. In contrast, IA farmers reported no-tilling corn into soybean stubble slightly more often 

than no-tilling soybeans into corn stubble. 

The overlap between no-till and strip till and vertical till is relatively small. Some of this 

overlap likely comes some from the mixed definitions of no-till, and some from farmers who are 

transitioning between methods. 

“I’m a not till farmer… on my first year corn I’m not doing any tillage at all. On 

my continuous corn, I’d guess you’d say I’m a vertical tiller, only one year. I just 

bought that machine.” IA28 

 

“I no till everything. As much as I can with exception if we tile something or do 

something different or alter something, but other than that we no till or coulter 

till. Maybe its more of a strip till, cause we have three coulters in front of our 

corn planter to till a little bit of a strip. Its not necessarily slot planting on the 

corn planter and the bean planter is a more of no till thing and the wheat is 

actually a no till. Strip till and no till. However you want to.” MI-40 

“Conservation” tillage. As mentioned previously, “conservation tillage” can include a 

wide variety of practices, so it is of interest to see what farmers consider it to be. Twenty-one 

farmers (7 MI, 5 IA, 9 IN) identified themselves as using either “conservation” or “minimum” 

tillage on their operation, in whole or in part (Table 2.6)14. The “conservation” tillage term was 

used less by farmers (4 farmers) than “minimum” tillage (18 farmers). There was no dramatic 

difference between states in the use of these terms, so they are considered together. Table 2.6 

shows the overlap between farmers who identified themselves as using conservation or minimum 

tillage and their use of different implements and tillage types. Chisel plows and no-till had the 

most overlap. None of the farmers who referred to their tillage as either “minimum,” or 

                                                 
14 The coding for this topic was quite conservative and was only used for farmers who used the specific terms—

references to “reducing” or “minimizing” tillage were not included. 
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“conservation,” mentioned being completely or nearly no-till; they did report using no-till in 

their rotation, or on a portion of a crop or on a portion of their fields. 

Table 2.6. Comparison of tillage tools/types used for conservation (or minimum) tillage and 

conventional tillage, as percent and number of respondents. 

  Conservation tillage   Conventional tillage 

Number using 21 

 

13 

  % (#)   % (#) 

Michigan 33.3 (7) 

 

30.8 (4) 

Iowa 23.8 (5) 

 

38.5 (5) 

Indiana 42.9 (9) 

 

30.8 (4) 

Moldboard 0.0 (0) 

 

0.0 (0) 

Chisel plow 33.3 (7) 

 

15.4 (2) 

Ripper 14.3 (3) 

 

46.2 (6) 

Cultivator as primary tillage 9.5 (2) 

 

15.4 (2) 

Harrow as primary tillage 0.0 (0) 

 

0.0 (0) 

Finisher as primary tillage 9.5 (2) 

 

0.0 (0) 

Vertical tillage 19.0 (4) 

 

0.0 (0) 

Ridge till 0.0 (0) 

 

0.0 (0) 

Strip till 4.8 (1) 

 

23.1 (3) 

No-till 61.9 (13) 

 

38.5 (5) 

All no-till 0.0 (0) 

 

0.0 (0) 

Mostly or nearly no-till 0.0 (0) 

 

0.0 (0) 

All no-till in rotation 23.8 (5) 

 

23.1 (3) 

Some or part no-till 28.6 (6) 

 

15.4 (2) 

No-till is strip till 0.0 (0) 

 

0.0 (0) 

No-till is vertical till 9.5 (2)   0.0 (0) 

 

“Conventional” tillage. Thirteen farmers, nearly evenly split by state, reported using 

what they called “conventional” tillage on all or part of their operation. One additional IA farmer 

referred to “full” tillage. Most of these farmers didn’t elaborate on their tillage methods, but two 

said they chisel plowed, six said used a ripper, three used strip till and five used no-till (Table 

2.6).  
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Tillage Decision Factors 

While it is important to know what farmers are doing, it is also important to know why 

they are doing it. Three broad categories of influences on tillage practices emerged from the 

interviews: biophysical conditions, operational needs and compatibility, and operational savings 

and costs. For general reference, biophysical conditions were mentioned by about a third of the 

sample, topics related to operational needs and compatibility were also mentioned by about a 

third of the sample, and operational savings and costs were mentioned by about 15 percent of the 

sample. A handful of farmers mentioned personal values and preferences in relation to their use 

of no-till, but not frequently enough to be considered a major theme. Examples can be seen in 

Table 2.7 in the “Less tillage to improve soil” section and in Table 2.10 in the “Yield costs” 

section. 

Biophysical conditions. Biophysical conditions centering around soil were by far the most 

mentioned influence on tillage decisions. However, there was not consistency in how some of 

these conditions influenced tillage decisions, such that apparently similar conditions led some 

farmers to till more and others to till less. Reducing soil erosion was consistently cited as a 

reason for less tillage—either no-till or strip till. Soil quality and texture influenced farmers to 

either till more or till less. Farmers felt like less tillage improved their soil quality, though none 

specifically gave this as a reason for why they reduced their tillage to begin with but rather 

reported it as a result. The texture of the soil was a primary reason given for use of more tillage 

or not using no-till at least on some areas or in certain parts of the rotation—farmers perceived 

their soil type as being incompatible with the successful use of no-till. Addressing soil 

compaction typically called for more tillage that was targeted to the problem areas, but some 

farmers discussed tilling less to avoid soil compaction. 
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Managing soil temperature and moisture was mentioned as reasons for both tilling more 

and tilling less. Less tillage was described as both retaining moisture as well as managing excess 

moisture. However, more tillage was said to be needed to dry and warm the soil in the spring, 

especially prior to planting corn. Extreme weather events were mentioned by a couple of farmers 

in relation to their tillage practices, with one specifically saying “I think we’re gonna get more 

rain more often. I believe that our climate is changing and we’re having an effect on it. So… 

that’s largely why I went to no till.” IA09. However, this was not a common sentiment. 

Table 2.7. Examples of quotes pertaining to the biophysical conditions that influence 

farmers’ tillage decisions. 
Less tillage to reduce soil erosion 

“the dirt running off the land is what we try to conserve.” IA15 [strip till farmer] 

“I think we’re just going to have to get used to working with no till if we’re gonna stay in this corn bean rotation. 

We’re just losing too much soil.” IA24 

“We have some places that are really eroded over the years; it’s one reason we went to no-till, to try to curb 

some of that.” IN#36 

“And especially in the spring when we get high winds; I’ve seen a lot of property change hands in the wind, the 

dust and dirt, and I don’t lose it. Nope.” MI-30 [mostly or nearly no-till] 

Less tillage to improve soil 

“And we no-till, we haven’t worked any ground since ‘91, we went 100% no till, and what we’ve noticed over the 

years is our organic matter is up probably 2 to 2 ½ percentage points since then, and of course that’s a lot 

more available nitrogen right there.” IN#37 

“now we have a deeper profile of a root zone to work with and I think we have much more volume of earth to 

hang onto what’s there.” IN#49 [a no-till/vertical tillage farmer] 

“I don’t think we use quite as much fertilizer because I think the soil is healthier. We’re getting good microbial 

activity. And breaking down the left overs you might say. So we’ve had success that way with some of our 

soil… I just like no till, I think its better for the soil” MI-2 

More tillage due to soil texture 

“Our soils are really deep and black and fertile, so no till doesn’t seem to work very well around here.” IA63 

“Our type of ground… No-till has been tried several times in our area and it just seems like everybody that… 

We’ve never tried it. We have no-tilled beans into corn ground that has not been tilled, that works half-way, 

well three-fourths way I’ll say. But corn into bean ground no-till it just seems like it does not work in this 

area. A lot of it is the type of ground we’ve got I think.” IN#13 

“About every 3-4 years I like to rip it. Go in there, even when I no till, just trying to pick it up and drop it. Kinda 

loosens the soil up. I had some hills that were heavy clay and we couldn’t get anything to grow on them 

since I was a kid and now I can have just as good of a crop on those hills as any other spot.” MI-8 [farmer 

has been using no-till for several years] 

More tillage to reduce compaction 

“Yeah, we started no tilling in the early 90s and… Once in a while, maybe every… I’ll take a wheat stubble field 

if it shows some compaction and I’ve got a ripper stripper that I’ll run in the fall then when I plant corn I’ll 

plant right on those same strips, and I don’t do it every year but…” IN#41 

“Well, I run primarily vertical tillage. Usually…I will use a chisel plow some, but predominately I’m probably on 

75% of my acres I strictly use vertical tillage in the spring. If I’m trying to fight some compaction issues I’ll 

chisel plow in the fall.” MI-45 
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Table 2.7. (cont’d). 
Less tillage to reduce compaction 

“Before I started no tilling, it was a lot more variability in the yield, now it seems like its evened out a lot 

more… Seemed like we had a lot of compaction when we were doing tillage, so we had areas that were 

really bad. But that’s evened out now. When we went to no till, we bought an inline ripper and I ripped 

everything 2 years in a row to try to relieve that compaction and that made a big difference and I think 

that’s why we’ve been successful no tilling” IA48 

Our ground tends to be on the wet side, it’s gummy, if you mess with it much deeper than that in the spring you 

bring nothing up the big old gummy balls of mud about like that, and they get harder’n a rock, and then it 

dries out and then you don’t grow anything. So that’s the reason we only scratch about that much in the 

spring, because if you go any deeper you’ve got mud, and you also start struggling with compaction. I 

mean, you don’t compact it unless you try to pull something hard and deep; if you just drive over it it 

doesn’t seem like it compacts it, but if you try to start pulling something and it makes the tractor work is 

when you start compacting. IN#13 

Less tillage to manage moisture 

“My opinion, and experts talk about this too, 80% of our yield is determined by the weather and we can’t control 

that necessarily. We can do things to minimize the impact of the weather, you know, my opinion the no-till 

minimizes the impact of the weather.” IN#12 [goes on to describe having more moisture in a dry year] 

“I have certain fields that just tend to be wet fields, and I tend to try to keep those no-tilled just so that they’re a 

little easier to deal with.” MI-7 

“I like no-till. And then in the fall if you get a wet year if you haven’t worked it for several years the ground’s 

nice and firm … You know, you get all the worm holes out there and they take the water” MI-36 

More tillage to manage moisture 

“I have kinda stayed away from the no till for the corn crop anyway because of some of the, those soils need to 

be dried and warm. And the bottom grounds tend to not, depending on planting dates and that type of 

thing.” IA38 

“Last year was the first year its been a detriment to us. We were so so terribly wet and with strip till it seems like 

you always have to wait about 1 day more than the conventional, they were going in in really wet conditions 

with a field cultivator and that would dry it up enough that they could get in with a planter and we had to 

wait.” IA19 

“And I don’t strip till everything. I have some farms that aren’t drained very well. Just haven’t been brave 

enough to try the strip till on them yet.” IA54 

More tillage to increase soil temperature 

“we do our low soils, we like to do some tillage because it helps them warm up. On the clay soils or sandy soils, 

there we’ll no till some. One of the things that’s been a concern is how cool we’ve been in the spring and 

actually have gone back to a little more tillage because of the cool spring because without the heat units the 

crop is off to a very slow start.” IA10 

“I’ve tried no-tilling on our clay-loam soils, and some years it’s okay, but you get the wrong year the soil doesn’t 

warm-up and you’re just… You start out behind the eight ball. So, by doing some tillage in the spring to 

prepare for corn planting it warms the soil up and it gives me more consistent yields.” MI-33 

“The problem with no till in this area is we don’t warm up in the spring enough and the crops don’t come out of 

the ground.” MI-34 

 

Operational needs and compatibility. This theme focuses on the interplay between 

different crops and operations that take place on a field from one year to the next. It includes two 

sub-topics: crop rotation and residue management, and fertilizer application. As has previously 

been highlighted in the no-till section, many farmers till differently at different points in their 

crop rotation, and this is not limited to no-till. For example, among the farmers that elaborated on 
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their chisel plow use, 12 percent reported chisel plowing according to their rotation, or in other 

words, following certain crops but not others. Most commonly mentioned was chisel plowing 

between corn crops or prior to planting corn. Some of this tillage variation based on crop rotation 

can also be seen in a couple of the quotes in Table 2.7 above.  

Table 2.8. Examples of quotes pertaining to the crop rotation and residue management aspects 

of operational needs and practice compatibility features that influence farmers’ tillage 

decisions. 
Tillage in rotation and for residue management 

“Generally, second year corn, we will till with a chisel plow or some kind of tillage. Just to handle the residue 

and what not.” IA36 

“Part of this vertical tillage and continuous corn is getting this tough crop mixed into the soil to get it 

breaking down faster.” IA51 

“We do some tillage on our corn stalks. Basically for residue management to deal with the corn stalks.” IA63 

“we’re making a tillage pass in front of everything. Doing it to size residue, with the twin row corn, with the 

higher populations we’ve got a lot of residue, so we’re doing it to size residue and to bury some residue 

and then for weed control and just to aerate and warm-up the soil.” IN#45 

Effects of newer corn varieties 

“Now you’re starting to see some tillage come back into soybeans more because of that darn residue with the 

corn. We’re putting fungicides on which make it not deteriorate, the higher populations, the GMO corns, 

they did exactly what we wanted, we wanted a strong stalk to hold the plant up but that strong stalk 

doesn’t break down. You almost need to break that stalk down so you can plant a good crop of soybeans 

next year.” MI-18 

“We got a tool they call vertical till that we go over the bean ground with and its mainly to break down the 

corn stalks. The corn stalks are greener and tougher now than they used to be. They bred that in to the 

seed.” MI-41 

“you get your soil so that it’s kind of working, breaking down stuff, it was working good until the Bt corn 

came into practice, and then you can break that stuff down, and we never applied any nitrogen on the 

stalks or anything like that.” MI-50 

Tillage in relation to planting equipment 

“Its [tillage] more to get the stand of the crop. We’ve got a no till drill and with these heavier corn stalks and 

stuff we were having an issue getting the stand that we want.  Even in the wheat and I don’t know why. 

We just feel its worth that [tillage] trip, we get a better stand.” MI-26 

“Corn we usually… we do a minimum till with the corn, just because the corn planter… We have some issues 

with our corn planter so we do a minimum till; we’ll go in and run our finisher in front of it and just get 

the soil loosened up and stuff so we have a better… We feel we have a better seed rate.” IN#48 

 

At least some of the reason for tilling based on rotation is to handle the residue that 

remains from the previous crop. The higher volumes of residue from corn (versus that of 

soybeans for example) were most often cited as the focus of tillage for this purpose. Several 

farmers mentioned residue management being a bigger issue in recent years, with newer corn 

varieties having stronger stalks that take longer to break down. A few farmers also discussed 
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residue management in relation to the operation of their planting equipment—needing to reduce 

the residue so their planting equipment would work better. 

There are also certain timing aspects to tillage that are based on rotation since harvest 

times differ between crops. This creates more opportunity for additional operations in the fall 

after some crops rather than others. For example, wheat that is typically harvested in July in the 

study area, versus October for corn and soybeans (NASS 2010) (see IN#41 quote in Table 2.7). 

Fertilizer application was the second sub-topic of the operational needs and compatibility 

theme. This has to do with the interaction between tillage practices and fertilizer practices, and 

how some fertilizer practices are incompatible with certain tillage practices, particularly no-till. 

The major issue was the desire to incorporate fertilizer into the soil through some sort of tillage, 

rather than leave them on the soil surface, though not all no-till farmers were concerned about it. 

This factor either put farmers off total no-till or pushed them to change or select their fertilizer 

practices to be compatible. As can be seen in the examples in Table 2.9, it was relatively 

common for farmers to switch from no-till to strip till in order to incorporate their applied 

nutrients. The use of anhydrous ammonia15 as a nitrogen source was particularly mentioned as 

being incompatible with no-till, leading farmers to either not fully no-till or not use anhydrous 

ammonia. 

The use of animal manure as a nutrient source was also mentioned as being a particular 

challenge with no-till, either through the injection process, the need to incorporate the manure if 

it has been spread on top of the soil, and/or the need to smooth the field following manure 

application and prior to planting. Manure is a resource but also a waste product and spreading 

manure on fields is a way to dispose of it, even if it is not optimal from a cropping standpoint. 

                                                 
15 Anhydrous ammonia is a gas and has to be injected under the soil surface using a ripper-style shank. 
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Because it is so bulky, manure does not tend to be hauled very far, so it is not necessarily spread 

evenly across an operation’s fields. 

Table 2.9. Examples of quotes pertaining to the fertilizer application aspects of operational 

needs and practice compatibility features that influence farmers’ tillage decisions. 
Need for fertilizer incorporation 

“Well, I actually switched to strip till because of the fertilizer management… When we went to straight no 

till, that P and K was just sitting on the surface. And people debate, about 50 percent say it doesn’t 

matter. But I feel like you need to get it incorporated, so that’s why I went to strip till. The strip till 

applicator actually injects that fertilizer about 4-6 inches deep, so I’m not spreading it on the surface 

anymore. So did tillage effect the way fertilizer, its probably the other way around, the way I fertilize 

effected how I wanted to do my tillage.” IA06 

“I didn’t start out trying to go to strip tillage, my real goal was to get the fertilizer in the ground rather than 

lay it on top. And I did not like that fact that I was practically giving up the nitrogen that was in my MAP 

and DAP. That’s practically free nitrogen. And if you’re putting on 200 pounds an acre, that’s 36 units 

at say 15 cents a unit, that’s 15 dollars worth of nitrogen. Why not take advantage of it?” IA64 

“when we started no tilling is when we started side dressing nitrogen, because historically my father had put 

all the nitrogen on with the local ag retailer, broadcast before we planted and we would work it in, and I 

just didn’t feel like leaving 200 pound of N lying on top. And I never thought it was a good idea to put all 

the N in spring.” IN#12 

Anhydrous ammonia and no-till 

“Minimum till. We’re really not in a no-till situation; the anhydrous tracks pre-plant makes it tough to plant 

behind.” IN#47 

“Well, we don’t use anhydrous for any purpose, and part of that is if you’re going to no till I don’t really 

want an anhydrous bar running through it prior. We primarily use 28…” IN#16 

 “…although they’ve got better equipment now, but that’s why we got set up with 28 because pre-plant 

anhydrous and no-till doesn’t work.” IN#33 

Manure use 

For the strip tilling, does that encourage you towards manure use or away? 

“Probably away. They’re diabolically opposed based on the seasonality and the till, the strip till that goes in 

the bean stubble for residue management, that’s a really nice way to do that, but obviously with the hog 

manure, between compaction and the way the hog manure is injected, strip till may not work with that 

very well.” IA62 

“We have all this manure to deal with, so no-till, just isn’t a good fit if you have a lot of manure, because 

you’ve got to kinda work it in.” IA23 

“Where we have been able to no-till and avoid hauling manure on it definitely has an impact, but manure 

application just destroys a lot of the benefits… but we’ve got to spread manure around so…” MI-28 

 

Operational savings and costs. The third major influence on tillage practice decisions is 

related to operational savings that come with less tillage in the form of time, labor, equipment, 

and/or fertilizer. The saving of time/labor was the most frequently and clearly articulated and 

came through fewer trips through the field and the ability to farm with fewer people. Fewer trips 

through the field also saves fuel and wear and tear on equipment. For some farmers less tillage 

was not their goal, but was an acceptable enough option when they ran out of time tilling all of 
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their land with their preferred method. There was also the potential savings on fertilizer, either 

through strip tilling and restricting fertilizer application to the strips, or through improved soil 

quality and biological functions. However, some farmers mentioned that savings came at the cost 

of yield, or there were other disadvantages.  

Table 2.10. Examples of quotes pertaining to the operational savings and costs that influence 

farmers’ tillage decisions. 
Time, labor, fuel and equipment savings 

“A side benefit of going to no till is that I don’t need to hire too many people. I can keep working my 82 year 

old father to death. There is a lot less trips across the fields. A lot less tractor time.” IA09 

“I mean we do do some no-tilling, you know, because you can’t keep a field cultivator far enough ahead 

sometimes, so, you know, you may do 400 or 500 acres no-till.” IN#38 

“I’m probably leaning more towards no till. Some of my fields are getting further and further away. And just 

the time and the fuel costs. If I have a planter that is set up to do it, why not?” MI-10 

How long have you been doing the minimum till? 

“Oh, my dad and my grandpa started in 1980. Early. They were one of the first ones in the county to start, 

and really they started out of necessity because it was just two guys, and my dad was doing the same 

thing I’m doing now, he worked full-time down at General Motors and they just didn’t have time to be 

working ground.” MI-25 

“We farmed 3000 acres when my dad was alive and we made some major changes [after he died] because it 

was just overwhelming, and we got rid of some of the less productive farms, and it was just my brother 

and I and we had a couple hired men and we went to no-till… I would never go back to conventional till; 

it’s just made our lives so much simpler… We use to just go through an enormous amount of diesel fuel 

and cultivator shovels when you’re out there working the ground, working the ground, working the 

ground, then you’ve gotta pick up stones, then you’ve got a clean out the ditches in the field; I mean, it 

just eliminated so much work it’s phenomenal. I mean, you could farm two or three times more ground 

because you’re not out there beating it all to death.” MI-36 

“I wanted to get to this no till stuff. We were starting out farming and I didn’t want to go out and buy all this 

huge equipment.” IA51 

Fertilizer savings 

“It [strip till] makes my fertilizer more efficient, it put it on right where the corn plant is gonna be.” IA26 

So you were saying you’re strip tilling. Do you feel like that impacts nitrogen use compared to other forms of 

tilling that you might use or could use? 

“Cuts it by a third, minimum. Everything’s in the band where the crops going to use it.” MI-35 

“Well, low crop prices, you know, we’ve had a stretch where margins were very tight, so… But when I 

started strip tilling we cut fertilizer 40%, you know, because you weren’t spreading 200 pounds of 

potash, you only needed 60 pounds in the band;” MI-35 

“The no-till system… once it’s established I think the nitrogen use is probably a little bit more efficient, 

there’s a transitional period where it takes a little bit more nitrogen to feed that a little more biological 

system. For us we’ve been no-tilling for about 20 years and so with the exception of new farms that we 

pick up. We feel overall… I’m going to say probably that we’re about 30 pounds less nitrogen required 

and that comes from the cycling of the stuff back from the biology that it seems to be that we’re seeing 

there, compared to the kind of best guess we can get from guys around here on conventional systems.” 

IN#18 
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Table 2.10. (cont’d). 
Yield costs 

“So, if we keep the soil in place, first and foremost, and the labor savings are a side benefit. But, I’m also 

leaving a little bit of money on the table by going to no till. If no till was the most profitable way to go, 

everybody would switch over in a season. As it is, hardly anybody switches over. Cause there is more 

money to be made, more yields to be had, planting that seed in freshly turned over black warm dirt, 

instead of unturned over soil that’s had a crop on it. So, people are not streaming to no till, but they are 

gradually coming around.” IA09 

“And I realized I suffered some yield, but I’m a no tiller. Cause the earth will be hear a lot longer than I am. 

But we don’t know, that’s the philosophy that I’m farming with.” IA53 
“I’ve kinda been going back and forth whether to go back to tilling or not. You know, advantageous and 

disadvantages. You save fuel and stuff. For the most part, we’ve been fairly satisfied with the yields. It’s 

kinda a pain…at the end, when you strip till you pick up a big chunk and its harder to keep your fields 

level. You need a finish tool.” IN#3 

 

DISCUSSION 

Variation in Tillage Practices and Meanings 

The results of this analysis show that there are several types of variation in tillage 

tool/type use among Midwestern farmers. The most obvious variation is in tillage tool/type use 

within a single farm: many farmers in the sample reported using multiple tillage tools/types, 

either consistently, based on soil type or crop rotation, or on an “as-needed” basis, such as to 

address soil compaction in specific places. The other type of variation is between farmers in the 

specifics of how tillage tools and types are used. This variation includes differences in how tools 

are set up—such as the size and shape of chisel plow and ripper shanks and the depths at which 

they are used—as well as what tools are used for different types of tillage. A prime example of 

variation in tillage tools and types this is whether chisel plows are an acceptable part of 

“minimum” tillage, with farmers expressing both views:  

“We are minimum till; we try to… most everything gets chisel plowed in the fall 

but we leave a lot of residue on the top.” MI-19 

 

“We’re all minimal till. We don’t chisel plow.” MI-12 

The demonstrated variation in spatial and temporal dimensions of tillage use, as well as 

in the meanings of different tillage types, suggests that recent research has glossed over 
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potentially important variation in tillage practices either by asking about tillage in too general a 

way and/or analyzing it in too general a way. Ryan, Erickson, and De Young (2003) recognize 

that they likely asked about the use of no-till in a way that potentially included a variety of actual 

practices. Vitale et al. (2011) and Andrews et al. (2013) do better by defining their categories, 

and in the case of Andrews et al. (2013) including differences in tillage by crop rotation in the 

question. However, neither Vitale et al. nor Andrews et al. seem to make use of the richness of 

their data as they collapse the variation into the typical categories. Reimer, Weinkauf et al. 

(2012) similarly recognize a more complex range of tillage practices, but did not seem to 

consider the meaning of this range—though their smaller sample size would have made this 

difficult. 

There is an argument to be made for the relevance of general or collapsed categories of 

tillage practices—convenience, interest in relative versus absolute categories, the value of how 

farmers self-identify and their ostensible intention, the importance of what farmers do on the 

majority of their land etc. However, there are potentially important environmental differences 

between the use of practices within the common tillage categories, and the use of these common 

categories sets researchers up to ignore an interesting line of research on the significance of 

using multiple types of tillage. 

The present analysis and previous studies (Andrews et al. 2013; Reimer, Weinkauf, et al. 

2012; Vitale et al. 2011) indicate that many farmers do use multiple tillage practices on their 

farms, and the present analysis suggests several reasons why they might do so, such as soil 

qualities, crop rotation, compatibility with other practices etc. But why do all farmers not do 

this? The descriptives tables in Vitale et al. (2011), and Andrews et al. (2013) suggests that there 

could be some notable differences between farmers who use all one kind of tillage and those who 
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use multiple types, which suggests an interesting line of future investigation. Are these farmers 

simply incomplete adopters who need more encouragement to complete the transition process to 

no-till? Or are these farmers actually the ideal? Are they the farmers with the skill, knowledge 

and equipment to tailor their practices to their crops, soil and weather conditions, such that they 

are flexible and resilient to a range of social, personal, economic and climate conditions?  

Variation in Tillage Reasons 

The results of this analysis suggest that biophysical conditions, operational needs and 

compatibility, and operational savings and costs are the dominant decision factors for tillage in 

Midwest corn agriculture. In contrast to the implied importance of attitudes and values in the use 

of social-psych theories to model farmer BMP decision-making, few farmers in the study 

mentioned values they hold as influencing, or at least being consistent with, their tillage 

practices. This suggests that farmers’ environmental attitudes and values are not playing a 

conscious role in their tillage decisions. While the unconscious role that attitudes and values 

might play may be meaningful, my results suggest that additional logistical and biophysical 

factors should at least be considered in conjunction with them. 

Vitale et al. (2011) and Reimer, Weinkauf et al. (2012) both consider perceived 

characteristics of conservation tillage and found them to be important positive and negative 

factors on practice use. They both find the perception that conservation tillage is good for 

reducing erosion and conserving soil as an important positive predictor, along with savings on 

inputs and labor, which is consistent with the findings of my analysis. Vitale et al. (2011) 

especially found soil type to be in important reason for not using conservation tillage, with soil 

type and trouble with soil compaction having negative influences on conservation tillage use. 

Similarly, Reimer, Weinkauf et al. (2012) found “lack of perceived need” as a reason for not 
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adopting conservation tillage. These previous findings are also consistent with the results of my 

analysis and reinforce the importance of perceived practice characteristics and what Rogers 

(2003) calls the “relative advantage” and “compatibility” characteristics of tillage practices, 

where the practice being considered needs to be better in some way than the current practice (in 

this case, provides economic savings in some form), but also needs to be compatible with the 

existing system—in this case both the biophysical conditions as well as fertilizer application 

practices.  

What is perhaps most surprising in my results, is that farmers reported different decisions 

to ostensibly the same soil conditions. This suggests that attitudes and values could possibly be 

influencing tillage decisions indirectly by influencing how farmers perceive their biophysical 

conditions, and how they prioritize different aspects of their operation (in other words, how do 

they define what they “can” and “cannot” do?). This is most apparent in Table 2.7, where soil 

compaction, and wet soils can either push farmers to till more or till less. This could be a case 

where the biophysical context is different enough to call for or make possible different 

responses, or it could be that farmers are in fact choosing to handle the same conditions in 

opposite ways. In either case, combined with the overall importance of soil qualities and 

conditions as a basis for tillage tool/type use, it suggests that researchers need to better consider 

the specific biophysical conditions in which a particular farmer is operating. 

“It encouraged more of us to use no till. Especially planting soy beans back into 

corn. And then, we could see the variations from field to field, even doing the 

same practices with different soils. Some of my lighter soils I went stronger into 

no till and then some of my fields where I was like, I could soil condition index 

there better with corn on corn even with tillage. It kinda tuned us in to how 

different practices on different fields was appropriate. Since then, I’ve moved into 

more of a resiliency concept, how do we handle these extreme weather events and 

variations. And how do we prepare our land for that.” IA04 
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Implications and Directions for Future Research 

Future social research on tillage practices is advised to consider three elements. 1) When 

collecting data on tillage practices, design questions to capture, or at least not preclude, the use 

of multiple tillage tools/types on the farm at the same time, the variation in tillage by crop, and 

other forms of temporal and spatial variation in tillage. Assumptions should not be made on the 

consistency of tillage practices from year to year, or extrapolate the practices used on a single 

field to those used on the whole operation. 2) Incorporate research from other disciplines; such as 

by working with soil scientists to focus interview/survey questions on the specific characteristics 

of tillage practices that are most important from an environmental perspective—be it season of 

tillage, depth of tillage, use or non-use of specific tools, number of tillage passes etc. 3) Consider 

the significance of farmers using multiple types of tillage.  

It is also worth noting that none of the farmers interviewed described their tillage 

practices in terms of the percentage of residue that remained—not for a specific tool or a type of 

tillage. This suggests that a common feature of tillage type definitions used on surveys may not 

be very helpful to farmers in accurately selecting the response category that reflects their tillage 

practices, even if the question were to be specific to a single field and year and thus removes the 

use of multiple tillage types from consideration. It seems likely farmers are categorizing their 

tillage practices when asked to do so based on broad conceptions of the practice and/or on the 

labels attached to the tillage tools they use, which may or may not match with definitions used on 

surveys.  

A final note should be made on the limitations and advantages that result from the design 

of the present study. The largest limitation is that the question about tillage practices was very 

general and was often asked in conjunction with the interaction between tillage and fertilizer 
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practices, resulting in many farmers focusing their responses on the later aspect and thus 

providing little detail on their tillage practices. The interviews were also focused on corn, so it is 

possible that many farmers only discussed their tillage on corn and did not mention how they till 

in other parts of their rotation. The result is that these interviews likely under-report farmers use 

of multiple tillage tools/types and their use in their crop rotation. The advantage of the general 

nature of how the tillage question was asked is that the reasons that farmers mentioned for their 

tillage practices were un-prompted (except for the fertilizer interaction and savings) and thus are 

expected to much more accurately represent the reasons that are most important to them. 

 

CONCLUSION 

This exploratory analysis had two research questions: How and why do Midwest farmers 

till? I find that how farmers till varies widely, with farmers utilizing a wide range of tillage tools 

and frequently use multiple tillage tools/types on different parts of their farm and at different 

times. Notably, the common tillage categories were found to contain great internal variation, 

especially in the case of no-till, which showed important temporal variation in its use that is 

rarely acknowledged in the literature. This intra-category variation poses a great challenge to the 

utility of the tillage categories currently in use in social science research as these categories are 

likely not measuring what the researchers think that they are, even when category definitions are 

provided, as spatial and temporal variation are rarely incorporated. 

The reasons for tillage decisions that emerged as most important were soil conditions, 

operational compatibility, and savings, though not always in consistent directions. The 

inconsistency in farmers’ tillage responses to soil conditions suggests the importance of 1) better 

understanding the soil conditions that farmers are actually dealing with so that their responses to 
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soil conditions can be assessed, and 2) the biophysical knowledge and social constructions that 

farmers have that influence their perceptions of their soil conditions and what actions will lead 

desirable outcomes. This later point pushes beyond the capacity of the adoption-diffusion model 

and suggests the utility of adding a critical realism perspective to efforts to understand farmer 

decision-making (Carolan 2006). Critical realism assumes the existence of a tangible, 

biophysical reality but also acknowledges that there can be multiple meanings assigned to it, 

making possible multiple, and even conflicting, knowledge claims about the same ostensible 

reality (Carolan 2005).  

The spatial and temporal variation in tillage practices reported, and the importance of the 

biophysical context in which the farmer is operating should be examined more systematically in 

future research. The exciting aspect of the diversity in tillage practices is that tillage is not a 

single binary decision, which leaves opportunity for experimentation and incremental change 

towards more sustainable farming practices. Better understanding why farmers use multiple 

types of tillage, can advise ways of encouraging farmers to take the first step and start using a 

practice on some of their fields and the potential to get farmers to use a given practice on a 

greater portion of their land. The work of soil scientists and those in related fields should be 

utilized to focus research efforts on the specific aspects of tillage practices that are most 

important environmentally. 
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CHAPTER 3: DRIVERS OF THE USE OF FIVE BMPS IN MIDWEST ROW-CROP 

AGRICULTURE 

 

The need for US commodity crop farmers to use increasing numbers of agricultural best 

management practices (BMPs) in order to reduce their effect on the surrounding environment has 

been well established (Holmes, Armanini, and Yates 2016; Lam, Schmalz, and Fohrer 2011; Liu 

et al. 2016; Sowa et al. 2016). At the same time, there has long been an interest in understanding 

the reasons farmers choose to use or not use these practices. In the last decade several meta-

analyses have attempted to summarize the findings of this expansive research across practices 

and conceptual approaches (Baumgart-Getz, Prokopy, and Floress 2012; Knowler and Bradshaw 

2007; Liu, Bruins, and Heberling 2018; Prokopy et al. 2008; Wauters and Mathijs 2014). 

However, there remains little agreement on what variables drive BMP use, and neither of the 

main conceptual approaches—the adoption-diffusion model and several social-psych theories, 

particularly those in the Theory of Planned Behavior (TPB) tradition—has emerged as a 

definitive winner. In addition, little research has been done that compares influential drivers 

across practices, though called for by Reimer et al. (2014). 

This analysis takes an exploratory approach and compares the relative importance of a 

wide range of predictors of BMP use from the literature, using the meta-analyses as a guide, on 

the use of five specific BPMs: pre-sidedress nitrate tests (PSNTs), nutrient maps, variable rate 

nitrogen (N), variable rate phosphorus (P) or potassium (K), and cover crops. The goal is to 

identify the common drivers of BMP use and assess their relative importance. It also explores the 

use of practice knowledge as a predictor of BMP use that has been underutilized in previous 

research. Rather than being a meta-analysis like previous studies, this one uses data from a single 

four-state farmer survey.  



 

68 

 

APPROACHES TO UNDERSTANDING BMP ADOPTION/USE 

 Two main conceptual approaches have been used to explain farmers’ use of BMPs: 

social-psychological theories, and the adoption-diffusion model. Over the years neither approach 

has displaced the other, though the adoption-diffusion model is not as popular for agricultural 

research as it once was (Ruttan 1996). This analysis does not take either approach as the a priori 

model to test, but rather includes variables commonly used in analyses based on both approaches 

in order to compare their relative importance along with common control variables. These two 

approaches also offer different ways to think about the role of knowledge in BMP use. 

Social-Psychological Theories 

One family of theories from social-psychology has become a very common conceptual 

approach for understanding farmer adoption of conservation practices. This family consists of 

the theory of reasoned action (TRA), the theory of planned behavior (TPB), and the reasoned 

action approach (RAA) (Ajzen 1991; Fishbein and Ajzen 2015). These three theories are related 

and began with the theory of reasoned action (TRA). In the TRA attitude towards the behavior 

and subjective norms—the perceived expectations of others–drive behavioral intention, in turn 

drives behavior. The use of behavioral intention as a mediator between attitudes, norms and 

behavior is a distinguishing feature the TRA and the theories derived from it. The theory of 

planned behavior (TPB) is an extension of the TRA that adds perceived behavioral control (PBC) 

as a predictor of behavioral intention and actual behavior (Madden et al. 1992 highlight the 

differences). This addition incorporates a contextual element to the theory and improves its 

predictive power, especially for behaviors that have greater actual or perceived external 

constraints (Ajzen 1991; Madden et al. 1992). The reasoned action approach (RAA) is the most 

recent incantation of this family of theories and extends the TPB by adding “individual,” 
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“social,” and “information” background factors, along with a new tier of belief variables and an 

actual control variable (Fishbein and Ajzen 2015). The belief components underlie the attitude, 

subjective norms and perceived behavioral control variables, and typically measures of the 

different types of beliefs that are used to measure attitudes, subjective norms and perceived 

behavioral control using factor analysis (Fishbein and Ajzen 2015).  

Adoption-Diffusion Model 

The adoption-diffusion model describes the process through which a new idea, 

technology, or practice (i.e., innovation) spreads through a social system, and is ultimately 

adopted (or not) by individuals over time (Rogers 2003). Originally developed in large part to 

understand the spread and adoption of new agricultural technologies (Rogers 1958; Ryan 1948; 

Ryan and Gross 1943), it has been applied to a wide range of topics and utilized by a number of 

different disciplinary fields, largely through the work of Everett Rogers (Rogers 2003).  

Rogers (2003:5) describes diffusion as “the process in which an innovation is 

communicated through certain channels over time among the members of a social system.” It is a 

macro process (as opposed to the micro-level adoption decision) that is heavily dependent on 

communication, and where the newness of the innovation and its effects creates uncertainty 

about the innovation (Rogers 2003). Over time the innovation is communicated to more people 

and uncertainty is reduced through greater information, sometimes resulting in the full adoption 

of the innovation in the population (Rogers 2003). The result of diffusion (and the adoption 

process that results) makes it a form of social change, in that it can alter the structure and 

function of the social system (Rogers 2003). 

As diffusion happens, individuals (or other decision-making entities) gain information 

about the innovation and ultimately decide to use it or not use it. The “innovation-decision 
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process,” as described by Rogers (2003:14), “is essentially an information-seeking and 

information-processing activity in which an individual is motivated to reduce uncertainty about 

the advantages and disadvantages of the innovation.”  

The Potential Importance of Knowledge 

Knowledge is included implicitly and explicitly in the above discussed theories/models, 

but it is rarely included in empirical analyses. One potential reason for this is that “knowledge” 

can be referenced with a wide variety of other terms depending on how subjectively one is 

willing to consider it. If we are interested in what a participant “knows” then we must extend our 

concept of “knowledge” to include what researchers might typically term beliefs, awareness, and 

even perceptions, because we are interested in how the subject identifies the parameters of the 

world in which they operate (Carolan 2006). 

“Factual knowledge” is included outright in the TRA, as described by Kaiser, Wölfing, 

and Fuhrer (1999), as the driver of attitude towards the behavior. Using a broad 

conceptualization of knowledge, the TPB has perceived behavior control in it, as does RAA 

along with knowledge as an information background factor and the three belief components, 

which are subjective knowledge measures. 

 The role of knowledge is more explicit in the adoption-diffusion model, where the spread 

of information through communication channels is a key aspect of the diffusion process and 

knowledge of the innovation is the first stage of the innovation-decision process. Rogers (2003) 

further breaks down knowledge of the innovation in to three types:  

1) Awareness-knowledge, which is simply awareness that the innovation exists. 

2) How-to knowledge, which is knowledge of how to correctly use and/or implement the 

innovation. 
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3) Principles-knowledge, which is knowledge of the systems and processes that underlay 

how the innovation works. 

These types of knowledge, along with a couple other components of the adoption-

diffusion model are notably similar to the four types of knowledge proposed by Kaiser and 

Fuhrer (2003) in the social-psych tradition. They posit that the role of knowledge in explaining 

ecological behaviors has been underestimated in past research because either education is used as 

a proxy for knowledge, different forms of knowledge are not considered simultaneously, and 

because knowledge is necessary but not sufficient for behavior, since other factors can constrain 

action even with sufficient knowledge. Kaiser and Fuhrer’s (2003) four types of knowledge are: 

1) Declarative knowledge is knowledge of environmental processes or how an 

environmental system works. 

 

2) Procedural knowledge is knowledge of how to implement a behavior or achieve a 

particular goal. 

 

3) Effectiveness knowledge is knowledge of the relative effectiveness of a given 

behavior to achieving the desired outcome.  

 

4) Social knowledge is knowledge of social norms and expectations (“conventional 

social norms”), as well as personal, “moral social norms.” 

Figure 3.1 shows how Kaiser and Fuhrer incorporate their four types of knowledge into a version 

of the TPB. However, they leave out perceived behavioral control, though they mention the 

importance of external constraints on behavior even when sufficient knowledge is present in the 

text. Presumably, perceived behavioral control would predict intention and ecological behavior 

in their model, in keeping with their theoretical foundations in TPB. 
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Figure 3.1. Kaiser and Fuhrer’s (2003:606) conceptual model of how know knowledge types 

influence each other and ultimately ecological behavior. 

 

There are clear correlations between Rogers’ principles-knowledge and Kaiser and 

Fuhrer’s declarative knowledge, as well as between how-to knowledge and procedural 

knowledge. Kaiser and Fuhrer’s effectiveness knowledge and social knowledge seem to both be 

included in Rogers’ relative advantage component of perceived innovation attributes. The 

perceived innovation attributes are not discussed overtly as knowledge, but they do fit in the 

broad conceptualization of knowledge discussed above. 

 How knowledge has been operationalized and included in empirical analyses related to 

agriculture has varied, but the most common form is some type of awareness knowledge—

awareness of problems (also called ‘concern’) and practices (e.g., Duff et al. 1992; Ervin and 

Ervin 1982; Napier, Thraen, and Gore 1984; Reimer and Prokopy 2012; Ulrich-Schad et al. 

2017), and exposure to information, communication networks, and education (e.g., Duff et al. 

1992; Dunn et al. 2016; Ervin and Ervin 1982; Napier et al. 1984; Ulrich-Schad et al. 2017). The 
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variable categories used in the meta-analyses by Prokopy et al. (2008) and Baumgart-Getz et al. 

(2012), highlight the use of principles-knowledge or declarative knowledge, which describes 

their “cause” “consequences” and “knowledge” categories, while their “program” category is 

either awareness knowledge or perhaps procedural knowledge of conservation programs (see 

Table 3.2).  

  

 

Figure 3.2. Combining perceived practice characteristics from the adoption-diffusion model with 

the Reasoned Action Approach by Reimer, Weinkauf, et al. (2012).  

 

 Knowledge of practice characteristics has also been used in empirical studies, drawing 

from the adoption-diffusion approach. Reimer, Weinkauf et al. (2012) merge the five perceived 

practice characteristics of Rogers (2003) with the RAA in their approach to understanding 

farmers’ reasons for adopting or not adopting best management practices in Indiana (see Figure 

3.2). They find that relative advantage and compatibility of BMPs (or lack thereof) to be the 

most important practice characteristics motivating or discouraging practice adoption. Arbuckle 

and Roesch-McNally (2015) use this combined conceptual approach to study cover crop 

adoption in Iowa qualitatively and quantitatively. Similarly to Reimer, Weinkauf et al. (2012), 
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Arbuckle and Roesch-McNally (2015) find variables related to the relative advantage and 

compatibility (or lack thereof) of cover crops to be important drivers of cover crop adoption or 

non-adoption. 

Rogers’ (2003:173) observed that “few diffusion investigations deal with how-to 

knowledge, although it must be a fundamental variable in the innovation-decision process,” and 

an extensive search of the literature supports this. The only recent study I could find that 

considered how-to BMP knowledge was Vitale et al. (2011), who included a knowledge of 

conservation tillage practices measure in their survey of Oklahoma farmers. They found 

conservation tillage knowledge to have a significant, positive effect on the use of reduced tillage 

and conservation tillage and a significant, negative effect on the use of conventional tillage. 

Nowak and Korsching (1985) long ago recognized the importance of knowledge, learning and 

experience in the adoption practice, pointing to the example of farmers who had been using 

conservation tillage longer retained more crop residue than more recent adopters.  
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Table 3.1. Overview of conservation/best management practice adoption meta-analyses. 

  Knowler and Bradshaw (2007) Prokopy et al. (2008) 

Baumgart-Getz, Prokopy 

and Floress (2012) Wauters and Mathijs (2014) 

Number of studies included 23 55 
46 (published and 

unpublished) 
38 

Number of analyses included 31 at least 329 [not provided] 69 

Type of analysis included quantitative 

quantitative with 

significant results at 

0.05 level 

quantitative with "enough 

information to calculate 

effect size" 

quantitative 

Number of predictor variables 

included (after reduction) 
46 34 30 87 

Year range of included studies 1984-2002 1982-2007 1982-2007 1982-2006 

Study location world-wide US at multiple scales US at multiple scales 
developed country (most in 

US) at multiple scales 

Outcome variable criteria 

"farm-level adoption of a 

number of soil management and 

wider conservation practices 

consistent with conservation 

agriculture" 

actual adoption of one 

or more practices 

expected to lead 

directly to water 

quality improvement 

actual BMP adoption 

use of soil conservation 

practices broadly defined, 

many on conservation tillage 

of some type 

Method of analysis vote-count vote-count 
mixed effects model using 

Hedges d 
vote-count 

Sub-analyses included: 
    

Practice / category X X 
 

X 

Analysis method X X 
 

X 

Predictor variable type 
  

X 
 

Region X 
   

Journal quality X       
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PREVIOUS RESEARCH ON DRIVERS OF BMP USE  

As discussed above, the inclusion of knowledge, especially how-to or procedural 

knowledge, is ripe for further explanation, but is not expected to be the only factor of importance 

in predicting farmers’ use/adoption of conservation and best management practices. Much of the 

more recent work on this topic, using both adoption-diffusion and social-psych approaches 

among others, has been analyzed in several recent meta-analyses (Baumgart-Getz et al. 2012; 

Knowler and Bradshaw 2007; Prokopy et al. 2008; Wauters and Mathijs 2014)16. However, the 

results of these analyses have found little consistency in sign and significance of the examined 

predictors. These analyses do provide a useful starting point for the present analysis though. 

These four meta-analyses (summarized in Table 3.1) include 23 to 55 studies from the early 

1980s through the mid-2000s that used actual adoption (as opposed to intended adoption) of a 

range of BMPs as their dependent variables.  

 Knowler and Bradshaw (2007) include studies from all parts of the world, making it less 

directly applicable than the other three studies, while Prokopy et al. (2008) and Baumgart-Getz et 

al. (2012) restrict their sample to the US and Wauters and Mathijs (2014) limit theirs to studies 

of “developed” countries. Knowler and Bradshaw (2007), Prokopy et al. (2008), and Wauters 

and Mathijs (2014) all use vote-count methodology, while Baumgart-Getz et al. (2012) use a 

mixed effects model. This later analysis method provides effect sizes for the variables 

considered, while vote-count methodology counts the models for which a given variable has a 

significant positive effect, significant negative effect, or insignificant effect. The vote-count 

analyses find a definite overall trend towards insignificance, though some variables are more 

often significant than not. The more sophisticated mixed effect model finds a large portion of 

                                                 
16 A very recent meta-analysis (Liu et al. 2018) is not included because they include studies that used program 

participation as the outcome of interest, making their results not directly comparable to the other studies referenced 

here.  
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variables with very small effect sizes and/or non-significant effects, but it allows for assessment 

of the relative importance/influence of different variables in a way that vote-count methods do 

not. 

Connecting Variables and Theories 

 While there is overlap in the types of variables that are used to operationalize the 

theoretical approaches discussed above, the different approaches emphasize different categories 

of variables. The social-psych theories naturally call for variables that measure respondents’ 

beliefs, attitudes and values as they relate to the environment, other entities, and the behavior in 

question (Baumgart-Getz et al. 2012; Prokopy et al. 2008). Beliefs, attitudes, and values are 

commonly measured as multi-item latent variables (see for example Price and Leviston 2014; 

Ulrich-Schad et al. 2017; Werner et al. 2017). While the adoption-diffusion model includes 

attitudes towards the practice as an important predictor of the adoption-decision process, it also 

focuses on the characteristics of the practice, and stresses the importance of education, and 

information sources (Nowak 1987; Nowak and Korsching 1985; Prokopy et al. 2008; Rogers 

2003). Some, though not recently, have also operationalized farmers’ innovativeness (Rollins 

1993). 

 

METHODS AND ANALYSIS 

The goal of this analysis is to look for the common drivers of BMP use across the five 

practices considered, and to assess the relative importance of significant drivers. This analysis 

does not take either the adoption-diffusion model or any of the social-psych approaches as an a 

priori model to test, but rather includes variables commonly used in analyses based on both 

approaches in order to compare their relative importance along with common control variables. I 
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use structural equation modeling with latent variables (SEMLV) with binary BMP use outcome 

variables, using 2017 farmer survey data from four states.  

Sample 

The data used comes from a 2017 survey of corn growers in Illinois, Indiana, Michigan, 

and Ohio. The questionnaire asked farmers about the 2016 growing season and included 

questions on their overall operation and cropping practices, specific practices used on their 

largest corn field, the frequency of their information source use and trust of those sources, their 

attitudes and values towards farming and the environment, and their demographic characteristics. 

Surveys were sent to 10,582 corn growers using a two-wave, modified Dillman (Dillman, Smyth, 

and Christian 2014) mailing procedure, with a response rate of 31 percent, of which 2289 

surveys were at least partially filled out (22 percent useable response rate). After dropping cases 

with missing values on key variables, the working sample was 1958 cases. Case-wise deletion of 

missing values on independent variables was required by the analysis method, leaving a final 

sample of approximately 814 cases17 (a few less on the dependent variables) (see Appendix A for 

details on data cleaning). The final sample response numbers by state are: IL = 282, IN = 212, 

MI = 114, OH = 256. As shown in Table 3.2, the sample contains more full-time farmers with 

larger farms than average. While this means that the sample is not representative of all farms in 

these states, it may be more representative of corn and soybean farms, and corn-soybean-wheat 

growing farms as these have larger average sizes. The farmers in this sample do represent those 

who can have the greatest environmental impact by using BMPs. 

 

 

                                                 
17 There are fewer than 814 observations on some of the latent variable measures as noted in Table 3.5. 
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Table 3.2. Comparison between final sample (n=814) and 2012 Census of Agriculture on key 

demographic variables by state.  

 

2016 Survey--Final Sample 

 

2012 Census of Agriculture† 

  IL IN MI OH   IL IN MI OH 

Years farming 29.0 28.7 26.0 30.0 

 

27.3 26.0 26.0 25.9 

Age in years 58.2 57.0 55.3 58.9 

 

57.8 55.8 57.6 56.8 

Percent working X days off-farm 

         0 days 54.8 59.1 58.7 54.1 

 

42.4 35.5 41.3 36.7 

1 to 49 days 18.6 13.1 15.6 13.9 

 

9.4 7.6 7.9 8.1 

50 to 99 days 3.4 4.0 3.7 4.1 

 

4.0 3.4 4.0 3.8 

100 to 199 days 8.0 6.6 4.6 9.4 

 

7.3 7.9 8.1 7.9 

200 or more days 15.2 17.2 17.4 18.4 

 

36.9 45.5 38.7 43.5 

Percent of household income from farming 

        less than 25% 10.6 15.2 17.4 18.0 

 

57.1 65.3 70.5 68.1 

25 to 49% 17.9 15.7 11.0 23.8 

 

10.1 9.5 7.8 9.6 

50 to 74% 20.5 18.7 16.5 20.1 

 

13.3 10.6 9.2 10.2 

75 to 100% 51.0 50.5 55.0 38.1 

 

19.6 14.6 12.4 12.1 

Average cropland per farm 1192.1 1289.4 1515.6 935.0 

 

351.3 257.7 171.7 167.3 

Average acres of corn-soy 

operation* 

     

591.8 497.5 336.6 331.4 

Average acres of corn-soy-wheat operation*         684.1 567.6 423.0 385.8 

†Data except for cropland for principle 

operator 

        *Only including farms that grow these crops 

         

Variables 

There are five outcome variables: use of pre-sidedress nitrate tests (PSNT), use of 

nutrient maps to inform fertilizer decisions, use of variable rate nitrogen (N), use of variable rate 

phosphorus (P) or potassium (K), and use of winter cover crops. PSNTs and nutrient maps are 

both decision aids for fertilizer applications, while the variable rate N and variable rate P or K 

are two examples of precision fertilizer application technology; cover crops represent a 

biological soil and nutrient management practice. The questions about these practices had five 

response categories18, and the variables used were created by combining the “yes, regularly do 

this,” with the “yes, sometimes do this” responses into a binary variable reflecting current use of 

                                                 
18 The three response categories that were not used are: “Used to, but no longer do,” “Never used, but might,” and 

“Never used, don’t want to.” 
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the practices19. The choice to use the collapsed, binary variables as opposed to the full range of 

responses was made based on my interest in actual practice use, rather than past use or possible 

future use.  

The above mentioned meta-analyses were used as guides for the present analysis. The 

categories and sub-categories of Prokopy et al. (2008) and Baumgart-Getz et al. (2012) were 

combined (Table 3.3)20, and the longer variable list from Wauters and Mathijs (2014) was used 

as examples of variables for each categories. These examples informed the selection and 

calculation of variables from those available to represent each sub-category in Table 3.3 as much 

as possible. This resulted in 53 independent variables, including two latent variables and two 

variables that are excluded from the analysis to serve as reference categories (see Table 3.4), 

representing 30 of the 39 sub-categories.  

Two common variables were not included in the analysis for technical reasons though 

they were in the dataset: age and operator gender. Age was highly correlated with farming 

experience (> 0.75) so both could not be included without unacceptably high multicollinearity. 

Operator gender was left out due to the very small number of women in the overall sample (1.5 

percent) and in the final sample (0.7 percent), which resulted in problematically low variation in 

the operator gender variable.  

The independent variables used in this analysis are described in Table 3.4. To facilitate 

analysis and discussion, the variables have been re-organized into six categories, rather than the 

four shown in Table 3.3; this was done to group more similar variables together, in some cases 

based on the actual measures being used in the present analysis. Changes were made to all the 

                                                 
19 This is a useful and simple measure, though it imperfectly reflects temporal variability in use and does not reflect 

the area on which the practice is used (spatial extent) at all. 
20 Many of the variable categories and definitions are the same between these two studies, which made combining 

them straightforward. 
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categories shown in Table 3.3, though the new “attitudes and values,” and “environmental 

awareness” categories are similar those of Prokopy et al. (2008) and Baumgart-Getz et al. 

(2012). The most substantial change was dividing the “capacity” variables into background 

factors, social farm characteristics, and information categories; the sub-category names are the 

same as in Table 3.3.  

Table 3.3 Combined categories used in Prokopy et al. (2008) and Baumgart-Getz, Prokopy, and 

Floress (2012). 

Categories and sub-category Description 

Capacity 

 Acres / farm size Number of acres farmed 

Age Farmer age 

Capital Measure of investment into farm (excluding acres) 

Diversity Measures that capture diversity of farm operation 

Education Farmer education 

Extension Training Subgroup of EDUCATION includes only extension training 

Formal education Subgroup of EDUCATION- includes only formal education 

Farming experience Years farming 

Income Measures of wealth such as income, crop value, etc. 

Information Access to and quality of information 

Labor Measures of increased labor available to the farm 

Networking Overall measure of networking capacity 

Agency Subgroup of NETWORKING: Connectivity to and familiarity with agency 

personnel and procedures 

Business Subgroup of NETWORKING: Measures of networking capacity in the agri-

business sector 

Local Subgroup of NETWORKING: Interacts with neighboring farms as well as 

any grass roots organization 

University Extension Subgroup of NETWORKING: Exposure to a university extension office 

Institutional / Ownership Type Farm structure or organization measures e.g. individually owned versus 

corporate-owned farms 

Tenure Whether operator owns farmland 

Attitudes 

 Overall attitude The attitude category as a whole 

Adoption payments Farmer receiving payments for participating in conservation programs 

Environmental Importance individual places on environmental quality 

Profitability of practice Farmer places financial gain as primary purpose of farm 

Heritage Farm will be taken over by a family member 

Quality of environment Farmer’s perception of the current quality of the environment 

Regulatory Farmer feels government can/should regulate agriculture 
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Table 3.3. (cont’d).  

Risk A measure of risk averseness 

Scientific Values scientific research 

Environmental awareness 

 Overall environmental awareness The environmental awareness category as a whole 

Cause Understanding how agriculture can impact environmental quality 

Consequences Understanding the consequences of a degraded system 

Knowledge Knowledge of general terms or facts related to environmental quality 

Program Knowledge of nonpoint source programs or efforts 

Farm characteristics  

Animal Livestock or dairy operations 

Grain Primarily a grain farm 

Operator gender Primary operator is male 

Other farm types Other/unspecified type of farm 

River Farm located near a stream or in a river bottom 

Slope Fields are hilly or have steeper slopes 

Soil quality Measures of soil quality 

Note: Sub-categories in italics are those which are not included in the present study. Age and gender were not used 

for technical reasons; the rest did not have relevant measures in the data used. 

 

Some variables were not easily categorized, such as crop insurance use, which could 

reasonably go in the social farm characteristics category, but which was kept in the attitudes and 

values category as a measure of risk aversion. Similarly, participation in conservation programs, 

either in general or working land programs specifically, could be included in the attitudes and 

values category or the environmental awareness categories as they are in Table 3.3. However, 

they have been included in the social farm characteristics category for this analysis because 

farmers participate in conservation programs for a range of reasons and also use conservation 

practices without participating in a program (Reimer and Prokopy 2014); thus program 

participation does not inherently reflect a particular attitude, value or awareness. 
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Table 3.4. Variables used in analysis, their definition and scale, grouped by author-defined categories, and using sub-categories from 

the literature. All variables are for 2016. 
Categories Variable Name Definition Scale 

Individual Characteristics    

Farming experience Years farming Years as primary farm decision-maker Continuous 

Education Education level Education level Categorical with 4 ordered categories:  

1 = less than high school, 4 = bachelor's 

degree or higher 

 College ag courses Took college courses in agriculture Binary 

Knowledge Knowledge Self-reported knowledge of practices for nutrient 

management and soil conservation 

Categorical with 5 levels of knowledge:  

1 = nothing at all, 5 = a great deal  

Income Value of sales Gross value of farm products sold Categorical with 4 ordered categories: 

1 = less than $100,000, 4 = greater than 

$1 million 

 Household income Household adjusted gross income Categorical with 6 ordered categories:  

1 = less than $25,000, 6 = greater than 

$500,000 

 Ag. income Portion (%) of household gross adjusted income 

coming from farming 

Categorical with 4 ordered categories:  

1 = less than 25%, 4 = greater than 74% 

Farm Characteristics—Physical    

Acres /  farm size Cropland area Cropland planted in 1000 acres Continuous 

Diversity Corn-soy ratio Corn acres to soy acres ratio (from a3) Continuous 

Animal Animal farm Dairy production or other livestock (including 

poultry) account for more than 10% of farm 

revenue 

Binary 

Grain Grain farm Field or grain crops account for more than 10% of 

farm revenue 

Binary 

Other farm types Other farm type Something other than grain or livestock provides 

more than 10% of revenue—includes fruit, nut 

and vegetable crops, and flowers, ornamentals 

and live plants 

Binary 

Slope Field slope Slope of largest, owned corn field Categorical with 4 ordered categories of 

slope: 1 = flat (0-2% average grade),  

4 = severely hilly (10% or more average 

grade) 
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Table 3.4. (cont’d).    

Soil quality Soy yield Average soy yield Continuous 

 Corn yield Average corn yield Continuous 

 Loam Main soil texture of largest, owned corn field is 

loam 

Binary 

 Clay Main soil texture of largest, owned corn field is 

clay 

Binary 

 Clay-loam Main soil texture of largest, owned corn field is 

clay-loam (reference) 

Binary 

 Silty-loam Main soil texture of largest, owned corn field is 

silty-loam 

Binary 

 Sandy-loam Main soil texture of largest, owned corn field is 

sandy-loam 

Binary 

 Other soil type Main soil texture of largest, owned corn field is 

"other"—includes sand and silt textures 

Binary 

Farm Characteristics—Social    

Tenure Cropland owned Percent of operation cropland that respondent 

owns 

Continuous 

Labor Days worked off farm Days worked off farm Categorical with 5 ordered categories: 

1 = none, 5 = 200 days or more 

 Number of employees Number of family and non-family employees, not 

including the respondent 

Continuous 

Ownership Type/structure Sole proprietorship Sole proprietorship (reference) Binary 

 Partnership Partnership Binary 

 LLC Limited liability corporation Binary 

 S-corporation Small corporation (subchapter S) Binary 

 C-corporation Corporation (subchapter C) Binary 

 Other business structure Other business structure--mostly combinations of 

the above 

Binary 

Program Conservation program 

participation 

Participate in any kind of conservation program Binary 

Adoption payments Working land program 

participation 

Participates in a working land program (EQIP or 

CSP) 

Binary 
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Table 3.4. (cont’d).    

Information    

Information access Info index Sum of frequency of use and level of trust for 9 

info sources 

Continuous 

Networking Associations info source Frequency of use of growers associations and 

conferences as info source 

Categorical with 5 levels of frequency:  

1 = never, 5 = once a day  

Business Chemical dealers info 

source 

Frequency of use of chem dealers as info source Categorical with 5 levels of frequency:  

1 = never, 5 = once a day  

 Seed dealers info source Frequency of use of seed dealers as info source Categorical with 5 levels of frequency:  

1 = never, 5 = once a day  

 Crop consultants info 

source 

Frequency of use of independent consultants as 

info source 

Categorical with 5 levels of frequency:  

1 = never, 5 = once a day  

Local Other farmers info 

source 

Frequency of use of family and other farmers as 

info source 

Categorical with 5 levels of frequency:  

1 = never, 5 = once a day  

University Extension Campus extension info 

source 

Frequency of use of campus extension as info 

source 

Categorical with 5 levels of frequency:  

1 = never, 5 = once a day  

 Local extension info 

source 

Frequency of use of local extension educators Categorical with 5 levels of frequency:  

1 = never, 5 = once a day  

Attitudes and Values    

Importance of environment Look after environment Importance of looking after the environment Categorical with 5 levels of importance:  

1 = low, 5 = high  

 Hunting and fishing 

environment 

Importance of maintaining good hunting, fishing, 

hiking 

Categorical with 5 levels of importance:  

1 = low, 5 = high  

Profitability of practice Economic attitude Economic attitude latent variable Latent 

 Wealth Importance of building up wealth and family 

assets (used in latent variable) 

Categorical with 5 levels of importance:  

1 = low, 5 = high  

 Profit Importance of maximizing farm/company profit 

(used in latent variable) 

Categorical with 5 levels of importance:  

1 = low, 5 = high  

 Income  Importance of earning a high income (used in 

latent variable) 

Categorical with 5 levels of importance:  

1 = low, 5 = high  

Heritage Passing on good land Importance of passing on land in good condition Categorical with 5 levels of importance:  

1 = low, 5 = high  

 Farming tradition Importance of keeping family farming tradition 

alive 

Categorical with 5 levels of importance:  

1 = low, 5 = high  

 Passing on farm Child or other relative expected to take over farm 

after respondent retires 

Binary 
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Table 3.4. (cont’d).    

Risk Debt aversion Importance of minimizing debt Categorical with 5 levels of importance:  

1 = low, 5 = high  

 Crop insurance use Percent of corn and soy acres covered by crop 

insurance 

Continuous 

Environmental Awareness    

Cause Concern ag. contributes 

to water problems 

Concern agriculture contributes to water problems 

latent variable 

Latent 

 Groundwater 

contribution 

Concern that agriculture contributes to 

groundwater contamination (used in latent 

variable) 

Categorical with 5 levels of concern:  

1 = low, 5 = high  

 Algal bloom 

contribution 

Concern that agriculture contributes to algal 

blooms in lakes (used in latent variable) 

Categorical with 5 levels of concern:  

1 = low, 5 = high  

 Hypoxia contribution Concern that agriculture contributes to hypoxia 

("dead zones") in oceans (used in latent 

variable) 

Categorical with 5 levels of concern:  

1 = low, 5 = high  

 Erosion contribution Concern that agriculture contributes to soil 

erosion (used in latent variable) 

Categorical with 5 levels of concern:  

1 = low, 5 = high  

Consequences Erosion impacts Concern about on-farm impacts from soil erosion Categorical with 5 levels of concern:  

1 = low, 5 = high  

 Pest resistances impacts  Concern about on-farm impacts from weeds and 

insects developing resistance to pesticides 

Categorical with 5 levels of concern:  

1 = low, 5 = high  

 Extreme weather impacts Concern about on-farm impacts from droughts, 

floods, and other extreme weather events 

Categorical with 5 levels of concern:  

1 = low, 5 = high  

  Warming impacts Concern about on-farm impacts from warmer 

temperatures 

Categorical with 5 levels of concern:  

1 = low, 5 = high  
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Analysis 

 Structural equation modeling with latent variables was used for this analysis and was 

executed in Mplus8. A separate model was run for each of the five outcome variables using the 

same independent variables. Due to the use of binary outcome variables and categorical variables 

in the latent variables, a robust, diagonally weighted least squares, means and variance adjusted 

estimator (specifically the WLSMV estimator in Mplus8) was used. Due to the evidence of state-

level differences for three of the five practice-use variables a “complex” analysis is specified in 

Mplus, which adjusts the standard errors and chi-square tests of model fit for clustering by state. 

See Appendix B for additional explanation and justification for these estimator and analysis type 

decisions. 

 Use of the WLSMV estimators results in estimated probit coefficients. The probit 

coefficients can be thought of as reflecting the rate of change in probability of practice use over 

different values of the variable, and significance indicates if the slope is significantly non-zero. 

The probit coefficients themselves do not indicate anything about the probability of practice use, 

but the probability of practice use can be calculated from the intercept21, probit coefficients, and 

specified values for each variable using the following equation (Muthén, Muthén, and 

Asparouhov 2016) where F is the standard normal distribution function22 (see Appendix B for 

more explanation): 

P(ui = 1 | xi) = F(β0 + β1 x1 + β2 x2 + … + βi xi) 

By calculating the probabilities of practice use at different values of a variable of interest 

while holding all other variables at a constant value the total effect of the variable on practice use 

                                                 
21 The intercept for a binary outcome variable is the negative threshold value that Mplus reports. See Appendix B for 

more information about the meaning of threshold values with categorical outcomes and how the WLSMV estimator 

calculates them. 
22 A z score is calculated by the intercept, coefficients and specified variable values, then a left sided z table is used 

to determine the probability of F(z)—this is equal to the area under the curve to the left of the z value. 
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can be evaluated in a standardized way that is comparable across variables (Muthén et al. 2016). 

The “baseline” value used for each variable was the mean value for continuous variables 

(including latent variables) and the mode value for categorical variables, resulting in the 

probability of practice use by an “average” farmer. Due to the more meaningful interpretation of 

the probabilities versus the probit coefficients, the probabilities are the focus on the following 

section. 

 

FINDINGS 

General Approach to Results 

Table 3.5 provides the descriptive statistics for the analysis sample, while tables 3.6, 3.7 

and 3.8 present select probit results from the five models (see Appendix C for full probit results). 

Conceptually similar practices have been paired for sake of space and comparability, and only 

effects significant or marginally significant for at least one of the practices are included in these 

tables. PSNT and nutrient maps are paired because they are both decision support tools that are 

independent of the crop in a given year. Variable rate N and variable rate P or K are paired 

because they are both using similar technology. Cover crops is by itself since it is the most 

different from the other practices included, by virtue of being a practice that is not directly 

related to target crop production and requiring additional activities to the crop growing cycle to 

plant it in the fall and then kill it before planting the regular crop in the spring. 

The sign of significant variables for all five practices are summarized in Table 3.9. One 

of the most notable results is the distinct lack of overlap in significant variables between the 

paired practices especially but also across all the models. In fact, of the fifty-three predictive 
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variables in the models only one, use of independent crop consultants as an info source, is 

significant in all five models.  

Table 3.5. Analysis descriptives (n = 814 unless otherwise noted).  

  Mean Mode Std Dev Minimum Maximum 

PSNT 0.182 0 0.386 0.000 1.000 

Nutrient maps 0.833 1 0.373 0.000 1.000 

Variable rate N 0.278 0 0.448 0.000 1.000 

Variable rate P or K 0.643 1 0.480 0.000 1.000 

Cover crops 0.355 0 0.479 0.000 1.000 

Individual Characteristics 

     Years farming 28.814 37 14.128 0.000 65.000 

Education level 2.937 2 0.852 1.000 4.000 

College ag courses 0.434 0 0.496 0.000 1.000 

Knowledge 3.550 3 0.805 1.000 5.000 

Value of sales 2.732 3 0.872 1.000 4.000 

Household income 3.173 3 1.035 1.000 6.000 

Ag. income 2.996 4 1.120 1.000 4.000 

Farm Characteristics—Physical 

     Cropland area 1.182 1 1.194 0.050 12.500 

Corn-soy ratio 1.295 1 1.574 0.012 25.000 

Animal farm 0.221 0 0.415 0.000 1.000 

Grain farm 0.966 1 0.182 0.000 1.000 

Other farm type 0.049 0 0.216 0.000 1.000 

Field slope 1.483 1 0.646 1.000 4.000 

Soy yield 58.825 55 9.082 20.000 82.000 

Corn yield 179.712 170 34.492 56.250 270.000 

Loam 0.053 0 0.224 0.000 1.000 

Clay 0.076 0 0.265 0.000 1.000 

Clay-loam 0.461 0 0.499 0.000 1.000 

Silty-loam 0.200 0 0.400 0.000 1.000 

Sandy-loam 0.140 0 0.347 0.000 1.000 

Other soil type 0.070 0 0.255 0.000 1.000 

Farm Characteristics—Social 

     Cropland owned 42.552 0 33.640 0.000 100.000 

Days worked off farm 2.138 1 1.554 1.000 5.000 

Number of employees 1.373 0 4.227 0.000 68.000 

Sole proprietorship 0.636 1 0.481 0.000 1.000 

Partnership 0.087 0 0.282 0.000 1.000 

LLC 0.128 0 0.334 0.000 1.000 

S-corporation 0.064 0 0.245 0.000 1.000 

C-corporation 0.076 0 0.265 0.000 1.000 

Other business structure 0.009 0 0.092 0.000 1.000 

Conservation program participation 0.420 0 0.494 0.000 1.000 



 

90 

 

Table 3.5. (cont’d).      

Working land program participation 0.157 0 0.364 0.000 1.000 

Information 

     Info index 51.996 55 7.716 28.000 77.000 

Associations info source 1.813 2 0.758 1.000 5.000 

Chemical dealers info source 2.924 3 0.708 1.000 5.000 

Seed dealers info source 2.802 3 0.747 1.000 5.000 

Crop consultants info source 1.819 1 0.977 1.000 5.000 

Other farmers info source 3.178 3 0.951 1.000 5.000 

Campus extension info source 1.700 1 0.741 1.000 5.000 

Local extension info source 1.736 2 0.675 1.000 4.000 

Attitudes and Values 

     Look after environment 4.290 4 0.742 1.000 5.000 

Hunting and fishing environment 2.763 3 1.256 1.000 5.000 

Economic attitude 

     Income (n=813) 3.696 4 0.870 1.000 5.000 

Wealth (n=812) 4.145 4 0.830 1.000 5.000 

Profit 4.348 5 0.712 1.000 5.000 

Passing on good land 4.576 5 0.693 1.000 5.000 

Farming tradition 4.504 5 0.785 1.000 5.000 

Passing on farm 0.764 1 0.425 0.000 1.000 

Debt aversion 4.216 5 0.819 1.000 5.000 

Crop insurance use 82.371 100 35.835 0.000 100.000 

Environmental Awareness 

     Concern ag. contributes to water problems 

     Groundwater contribution (n=802) 3.608 4 1.058 1.000 5.000 

Algal bloom contribution (n=803) 3.420 3 1.088 1.000 5.000 

Hypoxia contribution (n=799) 3.185 3 1.192 1.000 5.000 

Erosion contribution (n=805) 4.086 4 0.887 1.000 5.000 

Erosion impacts 4.161 5 1.061 1.000 5.000 

Pest resistances impacts  4.353 5 0.893 1.000 5.000 

Extreme weather impacts 3.565 4 1.242 1.000 5.000 

Warming impacts 3.061 3 1.210 1.000 5.000 

    

Twelve variables were not significant for any of the practices: years farming, ag income, 

grain farm, soy yield, clay soil type, other soil type, cropland owned, number of employees, s-

corporation, c-corporation, campus extension info source, and hunting and fishing environment. 

Five additional variables were only of marginal significance for any of the five practices: college 

ag courses, sandy-loam soil, other business structure, passing on good land, and debt aversion.  
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Table 3.6. Select probit regression coefficients and standard errors for PSNT and nutrient maps 

(n=814). 

 

PSNT 

 

Nutrient maps 

  Estimate (S.E.)   Estimate (S.E.) 

Individual Characteristics 

   Education level -0.086 (0.112)  

 

-0.084 (0.016)*** 

College ag courses 0.125 (0.070)t 

 

0.271 (0.141)t 

Knowledge 0.178 (0.222)  

 

0.204 (0.097)* 

Household income 0.083 (0.054)  

 

0.060 (0.031)* 

Farm Characteristics—Physical 

   Other farm type -0.458 (0.285)  

 

-0.671 (0.298)* 

Loam -0.558 (0.149)*** 

 

0.265 (0.280)  

Farm Characteristics—Social 

   Partnership 0.310 (0.121)* 

 

0.206 (0.374)  

Other business structure 0.987 (0.584)t 

 

0.127 (1.008)  

Information 

   Seed dealers info source 0.035 (0.101)  

 

-0.155 (0.072)* 

Crop consultants info source 0.295 (0.037)*** 

 

0.174 (0.056)** 

Local extension info source 0.067 (0.074)  

 

-0.129 (0.054)* 

Attitudes and Values 

   Passing on good land -0.091 (0.051)t 

 

-0.041 (0.040)  

Farming tradition 0.290 (0.185)  

 

-0.082 (0.034)* 

Crop insurance use 0.000 (0.002)  

 

0.003 (0.001)t 

Environmental Awareness 

   Concern ag. contributes to water problems 0.060 (0.006)*** 

 

0.051 (0.015)*** 

Erosion impacts 0.094 (0.035)** 

 

0.013 (0.077)  

Warming impacts -0.035 (0.075)  

 

-0.098 (0.040)* 

Intercept -4.325 (1.351)**   -2.937 (0.695)*** 

R-Square 0.349 (0.073)*** 

 

0.371 (0.121)** 

Chi-Square 679.695*** 

 

678.584*** 

RMSEA 0.033 

 

0.033 

CFI 0.839 

 

0.839 

TLI 0.812   0.812 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3.7. Select probit regression coefficients and standard errors for variable rate N and 

variable rate P or K (n=814). 

 

Variable rate N 

 

Variable rate P or K 

  Estimate (S.E.)   Estimate (S.E.) 

Individual Characteristics 

   Education level 0.034 (0.070)  

 

-0.163 (0.094)t 

Knowledge 0.123 (0.105)  

 

0.244 (0.062)*** 

Value of sales 0.045 (0.068)  

 

0.198 (0.077)* 

Farm Characteristics—Physical 

  Cropland area 0.156 (0.060)* 

 

0.026 (0.102)  

Other farm type -0.415 (0.314)  

 

-0.456 (0.260)t 

Corn yield 0.004 (0.000)*** 

 

0.006 (0.003)* 

Silty-loam -0.375 (0.148)* 

 

-0.100 (0.099)  

Sandy-loam 0.091 (0.132)  

 

0.328 (0.174)t 

Farm Characteristics—Social 

  Days worked off farm 0.000 (0.041)  

 

-0.019 (0.006)** 

LLC 0.306 (0.074)*** 

 

0.117 (0.118)  

Conservation program participation -0.029 (0.131)  

 

0.279 (0.073)*** 

Working land program participation 0.236 (0.063)*** 

 

-0.108 (0.188)  

Information 

   Info index 0.011 (0.002)*** 

 

0.019 (0.021)  

Chemical dealers info source -0.013 (0.124)  

 

0.226 (0.044)*** 

Crop consultants info source 0.134 (0.059)* 

 

0.106 (0.039)** 

Other farmers info source 0.018 (0.107)  

 

-0.080 (0.037)* 

Attitudes and Values 

   Economic attitude 0.085 (0.035)* 

 

0.008 (0.007)  

Passing on farm 0.251 (0.082)** 

 

0.070 (0.090)  

Debt aversion 0.009 (0.054)  

 

-0.144 (0.076)t 

Crop insurance use -0.001 (0.001)  

 

0.003 (0.001)*** 

Environmental Awareness 

   Extreme weather impacts 0.039 (0.012)** 

 

0.002 (0.032)  

Intercept -2.878 (0.348)*** -2.758 (0.967)** 

R-Square 0.237 (0.049)*** 

 

0.310 (0.028)*** 

Chi-Square 679.410*** 

 

677.040*** 

RMSEA 0.033 

 

0.033 

CFI 0.840 

 

0.840 

TLI 0.813   0.813 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3.8. Select probit regression coefficients and standard errors for cover crops (n=814). 

 
Cover crops 

  Estimate (S.E.) 

Individual Characteristics 

 College ag courses 0.111 (0.064)t 

Knowledge 0.257 (0.088)** 

Farm Characteristics—Physical 

Cropland area -0.086 (0.044)t 

Corn-soy ratio -0.035 (0.016)* 

Animal farm 0.420 (0.164)* 

Other farm type 0.338 (0.144)* 

Field slope 0.065 (0.022)** 

Corn yield -0.006 (0.002)* 

Silty-loam -0.227 (0.048)*** 

Farm Characteristics—Social 

LLC 0.208 (0.059)*** 

Working land program participation 0.631 (0.127)*** 

Information 

 Associations info source 0.136 (0.033)*** 

Crop consultants info source 0.129 (0.049)** 

Local extension info source 0.292 (0.039)*** 

Attitudes and Values 

 Look after environment 0.248 (0.097)* 

Economic attitude -0.126 (0.046)** 

Environmental Awareness 

 Concern ag. contributes to water problems 0.040 (0.024)t 

Erosion impacts 0.227 (0.017)*** 

Pest resistances impacts  -0.138 (0.051)** 

Intercept -2.726 (1.106)* 

R-Square 0.338 (0.02)*** 

Chi-Square 681.087*** 

RMSEA 0.033 

CFI 0.841 

TLI 0.814 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3.9. Sign of significant variables in analyses.  

  PSNT Nutrient maps Variable rate N Variable rate P or K Cover crops 

Individual Characteristics 

     Education level 

 

- 

   Knowledge 

 

+ 

 

+ + 

Value of sales 

   

+ 

 Household income 

 

+ 

   Farm Characteristics—Physical 

    Cropland area 

  

+ 

  Corn-soy ratio 

    

- 

Animal farm 

    

+ 

Other farm type 

 

- 

  

+ 

Field slope 

    

+ 

Corn yield 

  

+ + - 

Loam - 

    Silty-loam 

  

- 

 

- 

Farm Characteristics—Social 

     Days worked off farm 

   

- 

 Partnership + 

    LLC 

  

+ 

 

+ 

Conservation program participation 

  

+ 

 Working land program participation 

 

+ 

 

+ 
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Table 3.9. (cont’d)     

Information 

     Info index 

  

+ 

  Associations info source 

    

+ 

Chemical dealers info source 

  

+ 

 Seed dealers info source 

 

- 

   Crop consultants info source + + + + + 

Other farmers info source    -  

Local extension info source 

 

- 

  

+ 

Attitudes and Values 

     Look after environment 

    

+ 

Economic attitude 

  

+ 

 

- 

Farming tradition 

 

- 

   Passing on farm 

  

+ 

  Crop insurance use 

   

+ 

 Environmental Awareness 

     Concern ag. contributes to water problems + + 

   Erosion impacts + 

   

+ 

Pest resistances impacts  

    

- 

Extreme weather impacts 

  

+ 

  Warming impacts   -       

+ indicates positive effect and significant at p < 0.05 or better 

   - indicates negative effect and significant at p < 0.05 or better 
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 Figure 3.3 shows the predicted probability of practice use by an “average” farmer, that is, 

the probability of practice use when the mean or mode (for continuous and categorical variables 

respectively) of each variable is used in the equation discussed in the analysis section. These 

values represent the likelihood of a conceptually “average” of typical farmer using each practice, 

not the portion of the sample who reported using each practice (see Figure 3.5 in Appendix B for 

reported practice use by state).  

 
Figure 3.3. Probability of practice use by a typical farmer.  

 

Results of PSNT Model 

 Five variables are found to be significant predictors of PSNT use. As shown by the 

probabilities in Table 3.10, farmers with loam soil type on their largest corn field were 11 

percent less likely to use PSNTs than farmers with clay-loam soil type (reference category), and 

partnerships were 9 percent more likely to use PSNTs than sole proprietorships (reference 

category). The more frequent use of independent crop consultants as an information source is 
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found to be a very important predictor of PSNT use, with farmers who report consulting with 

them on a daily basis found to be more than three times more likely to use PSNTs than farmers 

who never consult with them. Farmers with high concern that agriculture contributes to water 

problems, and those with high concern over erosion impacts on their farm are both more likely to 

use PSNT tests than farmers who have low concern on these variables, but only by 6 percent and 

8 percent respectively. 

Table 3.10. Total effects for significant variables on PSNT use in terms of probabilities with all 

other variables at average. 

  Prob. at min (min value) Prob. at max (max value) 

Total 

effect  

Farm Characteristics—Physical 

  Loam (mode = 0) 18.7% (0) 7.4% (1) -11.3% 

Farm Characteristics—Social 

  Partnership (mode = 0) 18.7% (0) 28.1% (1) 9.4% 

Information 

   Crop consultants info source (mode = 1) 18.7% (1) 61.4% (5) 42.7% 

Environmental Awareness 

  Concern ag. contributes to water problems 

(mean = 3.575) 14.7% (1) 20.9% (5) 6.2% 

Erosion impacts (mode = 5) 10.2% (1) 18.7% (5) 8.5% 

Note: Total effect is calculated as the probability at the variable's max value minus the probability at the variable's 

minimum value. 

 

Results of Nutrient Map Model 

 Table 3.11 shows the total effects of the significant variables on nutrient map use. 

Farmers with higher levels of education are predicted to use nutrient maps less than their less 

educated counter-parts, with farmers with a bachelor’s degree or higher being about 8% less 

likely to use them than farmers with less than a high school degree. Knowledge, on the other 

hand has a positive effect on nutrient map use with a 25 percent total effect, and the second-

largest probability at max at 87 percent predicted probability of nutrient map use. Household 

income has a positive if modest effect on nutrient map use with the difference between 
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household incomes less than $25,000, and greater than $500,000 being only about 9 percent. 

Other farm type, those that generate more than 10 percent of their production value from 

something other than grain/field crop or livestock are predicted to be 24% less likely to use 

nutrient maps than farms not in this category. 

 Among the significant information sources, independent crop consultants are the only 

one with a positive effect on nutrient map use, while seed dealers and local extension have a 

negative effect. The difference in predicted probability of nutrient map use between farmers who 

use seed dealers as an information source daily, and those who never use them is about 19 

percent. The difference for local extension is similar at 17 percent. The daily use of independent 

crop consultants versus non-use results in a 15 percent greater probability of nutrient map use. 

While this is not the largest total effect on nutrient map use, it notably produces the highest 

probability of use at 93 percent when all other variables are at their average. 

Table 3.11. Total effects for significant variables on nutrient map use in terms of probabilities 

with all other variables at average. 

  

Prob. at min  

(min value) 

Prob. at max  

(max value) Total effect 

Individual Characteristics 

   Education level (mode = 2) 79.4% (1) 71.6% (4) -7.8% 

Knowledge (mode = 3) 62.9% (1) 87.5% (5) 24.6% 

Household income (mode = 3) 73.2% (1) 82.1% (6) 8.9% 

Farm Characteristics—Physical 

   Other farm type (mode = 0) 77.0% (0) 52.8% (1) -24.3% 

Information 

   Seed dealers info source (mode = 3) 85.3% (1) 66.6% (5) -18.7% 

Crop consultants info source (mode = 1) 77.0% (1) 92.5% (5) 15.5% 

Local extension info source (mode = 2) 80.8% (1) 68.4% (4) -12.3% 

Attitudes and Values 

   Farming tradition (5) 85.8% (1) 77.0% (5) -8.7% 

Environmental Awareness    

Concern ag. contributes to water problems  

(mean = 3.575) 

72.9% (1) 79.1% (5) 6.2% 

Warming impacts (mode = 3) 82.6% (1) 70.5% (5) -12.1% 

Note: Total effect is calculated as the probability at the variable's max value minus the probability at the variable's 

minimum value. 
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Farmers that feel it is important to keep the family farming tradition alive were 9 percent 

less likely to use nutrient maps than those that do not feel it is important to keep that tradition 

alive. Farmers with high concern that agriculture contributes to water problems were 6 percent 

more likely to use nutrient maps than those with low concern, but those with high concern that 

warming was impacting their farm were 12 percent less likely to use nutrient maps than those 

with low concern. 

Results of Variable Rate N Model 

 Table 3.12 shows the significant total effects on the use of variable rate N technology. 

Farmers with larger farms and higher average corn yields are more likely to use variable rate N 

than those with smaller farms and lower average corn yields by about 22 percent. Farmers with 

silty-loam soil type on their largest corn field were 14 percent less likely to use variable rate than 

farmers with clay-loam soil type (reference category). Farmers with an LLC business structure 

were 12 percent more likely to use variable rate N than farmers in a sole proprietorship 

(reference category). Farmers who participated in a working land conservation program were 9 

percent more likely to variable rate N than non-participants. 

 Farmers with a high information index value, those who use more information sources 

and who trust those sources more highly, are more likely to Nat a variable rate than those with 

low index scores. The difference in predicted probability of variable rate N use between farmers 

who use independent crop consultants as an information source on a daily basis, and those who 

never use is 21 percent. While this is not the variable with the largest total effect in the model, it 

is the variable that predicts that highest likelihood of variable rate N use at its max value (67 

percent) when all other variables are at their average. 
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 Farmers with a strong economic attitude/orientation are predicted to be 13 percent more 

likely to use variable rate N than those with a weak economic attitude. Farmers who expected to 

pass on their farm to a child or other relative were 10 percent more likely to use variable rate N 

than those who did not expect to pass on their farm. Farmers with high concern over the impacts 

of extreme weather events on their farm were 6 percent more likely to use variable rate N than 

those with low concern. 

Table 3.12. Total effects for significant variables on variable rate N use in terms of 

probabilities with all other variables at average. 

  

Prob. at min  

(min value) 

Prob. at max  

(max value) Total effect 

Farm Characteristics—Physical 

   Cropland area (mean = 1.182) 39.0% (0.050) † 60.6% (3.569) 21.7% 

Corn yield (mean = 179.712) 35.2% (110.727) 56.8% (248.696) 21.6% 

Silty-loam (mode = 0) 46.0% (0)  31.6% (1) -14.5% 

Farm Characteristics—Social 

   LLC (mode = 0) 46.0% (0) 57.9% (1) 11.9% 

Working land program participation (mode = 0) 46.0% (0) 55.2% (1) 9.2% 

Information 

   Info index (mean = 51.996) 39.4% (36.564) 52.8% (67.429) 13.4% 

Crop consultants info source (mode = 1) 46.0% (1) 66.6% (5) 20.6% 

Attitudes and Values    

Economic attitude (mean = 4.063) 35.9% (1) 49.2% (5) 13.3% 

Passing on farm (mode = 1) 36.3% (0) 46.0% (1) 9.7% 

Environmental Awareness 

   Extreme weather impacts (mode = 3) 41.3% (1) 47.6% (5) 6.3% 

Note: Total effect is calculated as the probability at the variable's max value minus the probability at the variable's 

minimum value. For continuous variables the min and max values are two standard deviations below and above 

the mean respectively unless otherwise noted. 

† The sample minimum is used because one standard deviation below the mean is less than the sample minimum. 

 

Results of Variable Rate P or K Model 

 The significant total effects for the variable rate P or K model are shown in Table 3.13. 

The effect of high knowledge on variable rate P or K is 37 percent higher than having low 

knowledge. This is the largest magnitude total effect in this model, as well as producing the 
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highest maximum probability at 72 percent. Farmers with farm sales greater than $1 million are 

predicted to be 23 percent more likely to use variable rate P or K than those with sales less than 

$100,000. Higher average corn yields were also related to more likely use of variable rate P or 

K. Part time farmers (those who worked off farm 200 days or more) were 3 percent less likely 

than full time farmers to use variable rate P or K. Participants in any kind of conservation 

program were 10 percent more likely to use variable rate P or K than non-program participant. 

Table 3.13. Total effects for significant variables on variable rate P or K use in terms of 

probabilities with all other variables at average. 

  

Prob. at min 

(min value) 

Prob. at max 

(max value) Total effect 

Individual Characteristics 

   Knowledge (mode = 3) 34.8% (1) 71.9% (5) 37.1% 

Value of sales (mode = 3) 38.2% (1) 61.4% (4) 23.2% 

Farm Characteristics—Physical    

Corn yield (mean = 179.712) 37.5% (110.727) 69.5% (248.696) 32.1% 

Farm Characteristics—Social    

Days worked off farm (mode = 1) 54.0% (1) 50.8% (5) -3.2% 

Conservation program participation (mode = 0) 54.0% (0) 64.4% (1) 10.5% 

Information 

   Chemical dealers info source (mode = 3) 35.9% (1) 70.1% (5) 34.1% 

Crop consultants info source (mode = 1) 54.0% (1) 69.9% (5) 15.9% 

Other farmers info source (mode = 3) 60.3% (1) 47.6% (5) -12.7% 

Attitudes and Values 

   Crop insurance use (mean = 82.371) 45.2% (10.701) 56.0% (100.00) † 10.7% 

Note: Total effect is calculated as the probability at the variable's max value minus the probability at the variable's 

minimum value. For continuous variables the min and max values are two standard deviations below and above the 

mean respectively unless otherwise noted. 

† The sample maximum is used because one standard deviation above the mean is greater than the sample 

maximum. 

 

Farmers who use chemical dealers as an information source on a daily basis are predicted 

to be 34 percent more likely to use variable rate P or K than farmers who never use chemical 

dealers, almost as large an effect as knowledge. Farmers with daily versus non-use of 

independent crop consultants are predicted to be 16 percent more likely to use variable rate P or 

K, but farmers with daily use of other farmers as an information sources verses those who do not 
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consult other farmers were 13 percent less likely to use variable rate P or K. Farmers with all of 

their corn and soy acres enrolled in crop insurance were 11 percent more likely to use variable 

rate P or K than those who did not use crop insurance.  

Knowledge, corn yield, and chemical dealers as an information source have the three 

highest total effects in this model, and all three have similar probabilities of variable rate P or K 

at their max values. Independent crop consultants as an information source actually predicts a 

slightly higher probability of variable rate P or K use at its max value than does corn yield, in 

spite of having a total effect of about half the size. 

Results of Cover Crop Model 

 Table 3.14 shows the significant total effects for the cover crop model. Farmers with a 

high level of knowledge are predicted to be 17 percent more likely to use cover crops than 

farmers with low knowledge. A high corn to soy ratio (i.e., farmer is growing mainly corn) is 

predicted to have a small negative effect on the probability of cover crop use. This variable is a 

measure of crop diversity, and cover crops are a type of crop diversity so this effect/relationship 

makes sense. Farmers having greater than 10 percent of farm revenue coming from livestock or 

from non-field crops or grain (e.g., other farm type), are also more likely to use cover crops by 9 

percent and 7 percent respectively.  

 Farmers who have largest corn fields with a greater than 10 percent grade are about 4 

percent more likely to use cover crops than farmers with flat largest corn fields. This suggests 

that at least some cover crop use is related to how sloped the farm is, assuming the largest corn 

field is generally indicative of the topography of the area/farm. Farmers with high average corn 

yields are less likely to use cover crops than those with lower average yields. Farms with silty-

loam soil texture in the largest corn field are predicted to be 3 percent less likely to use cover 



 

103 

 

crops than those with clay-loam as the dominant soil texture in the largest corn field. Having the 

farm structured as an LCC vs a sole proprietorship increased the predicted probability of using 

cover crops by 4 percent, while participation in a working lands conservation program increase 

cover crop use by an estimated 14 percent. 

Table 3.14. Total effects for significant variables on cover crop use in terms of probabilities with 

all other variables at average. 

  

Prob. at min 

(min value) 

Prob. at max 

(max value) Total effect 

Individual Characteristics 

   Knowledge (mode = 3) 3.0% (1) 19.8% (5) 16.8% 

Farm Characteristics—Physical 

  Corn-soy ratio (mean = 1.295) 9.3% (0.012) † 6.9% (4.442) -2.4% 

Animal farm (mode = 0) 8.5% (0) 17.1% (1) 8.6% 

Other farm type (mode = 0) 8.5% (0) 15.2% (1) 6.6% 

Field slope (1) 8.5% (1) 12.1% (4) 3.6% 

Corn yield (mean = 179.712) 17.1% (110.727) 3.8% (248.696) -13.4% 

Silty-loam (mode = 0) 8.5% (0) 5.6% (1) -2.9% 

Farm Characteristics—Social 

   LLC (mode = 0) 8.5% (0) 12.3% (1) 3.8% 

Working land program participation  

(mode = 0) 8.5% (0) 23.0% (1) 14.4% 

Information 

   Associations info source (mode = 2) 6.7% (1) 16.9% (5) 10.2% 

Crop consultants info source (mode = 1) 8.5% (1) 19.8% (5) 11.2% 

Local extension info source (mode = 2) 4.9% (1) 21.8% (4) 16.9% 

Attitudes and Values 

   Look after environment (mode = 4) 1.7% (1) 13.1% (5) 11.4% 

Economic attitude (mean = 4.063) 16.4% (1) 6.8% (5) -9.5% 

Environmental Awareness 

   Concern ag. contributes to water problems 

(mean = 3.575) 

7.1% (1) 9.5% (5) 2.4% 

Erosion impacts (mode = 5) 1.1% (1) 8.5% (5) 7.4% 

Pest resistances impacts (mode = 5) 20.6% (1) 8.5% (5) -12.1% 

Note: Total effect is calculated as the probability at the variable's max value minus the probability at the variable's 

minimum value. For continuous variables the min and max values are two standard deviations below and above the 

mean respectively unless otherwise noted. 

† The sample minimum is used because one standard deviation below the mean is less than the sample minimum. 
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 Daily versus non-use of associations, independent crop consultants, and local extension 

as information sources had total positive effects on cover crop use of 10 percent, 11 percent, and 

17 percent respectively. Farmers who feel that looking after the environment is very important 

are predicted to be 11 percent more likely to use cover crops than farmers who feel it has low 

importance, while having a high economic attitude predicts a 10 percent lower probability of 

cover crop use than a low economic attitude. High concern that agriculture contributes to water 

problems and high concern over erosion impacts on the farm both predict higher likelihood of 

cover crop use than low levels of concern, by 2 percent and 7 percent respectively. Farmers who 

are highly concerned about the impacts of pest resistance to pesticides on their farm are predicted 

to be 12 percent less likely to use cover crops than those who are not concerned about pest 

resistance. This represents a key practice trait deterring farmers from using the practice, as cover 

crops are often killed with herbicides in the spring prior to planting the main crop especially if 

no-till is also being use. 

Additional comparative insight across predictors can be gained by graphing probabilities 

across variable value gradients, and variables on the same scale can be graphed together to 

visually demonstrate the dynamics at play between minimum and maximum probability, and 

total effect. An example of this is given in Figure 3.4 where we can see the important influence 

that local extension can have on cover crop use, even though its total effect is only slightly larger 

than that of knowledge. Independent crop consultants have a smaller total effect than knowledge, 

but they have the same predicted probability of cover crop use at their max values. These 

differences occur because the normal distribution function is S-shaped, and thus the slope (and 

curve) of the predicted probabilities depends on the where on that S-curve the variable is being 

measured (Muthén et al. 2016).  
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This graph also clearly shows which variables have the most potential to increase cover 

crop use, and which are “maxed out” so to speak. Because the majority of farmers already have a 

high level of concern over erosion impacts on their farm, there is little if any room for increasing 

concern to change the likelihood that they will use cover crops. In contrast, these results suggest 

that increasing the frequency of contact with local extension, increasing the use of independent 

crop consultants, and increasing knowledge have the potential to increase the likelihood of cover 

crop use. Even increasing contact with local extension from once a year to once a month has the 

potential to increase the probability of cover crop use by more than 5%. 

 
Figure 3.4. Graphical depiction of the predicted probabilities of select variables on cover crop 

use across a range of values.  

Note: The points on the lines indicate the mode value of the respective variables. 
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DISCUSSION 

Independent Crop Consultants 

As previously mentioned, the use of independent crop consultants as an information 

source is the only variable that is significant in all five models of practice use; it also has a 

positive effect on the use of all five practices. Figure 3.5. shows the graphed predicted 

probabilities of the five practices across the frequency of use of independent crop consultants. 

Here we can see the effect of the more than 40 percent total effect of independent crop 

consultants on PSNT use, with the effect on the other practices ranging between 10 percent and 

20 percent.  

This shows that while the use of independent crop consultants has the potential to 

increase the use of all five practices, it is expected to be most effective at increasing the use of 

PSNTs based on its large total effect. The question then remains, why do some farmers choose to 

use independent crop consultants, and how can their use be increased? Stuart et al. (2018) do not 

consider the use of independent crop consultants specifically in their analysis of information 

source use in relation to nitrogen fertilizer, but they find from qualitative analyses that lack of 

trust in consultants associated with seed or fertilizer suppliers appears to be a reason that some 

farmers do not use those consultants, or do not put much weight in what they say. It is possible 

that for some farmers, the added cost of hiring an independent crop consultant is a worthwhile 

alternative to these other sources. Cost might be a factor in deterring the use of independent crop 

consultants, or farmers may have sufficient trust in the specific retail affiliated consultants they 

use, as found by Stuart et al. (2018), to not feel the need to hire an independent consultant. 
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Figure 3.5. Graphical depiction of the probability of using BMPs at different frequencies of use 

of independent crop consultants as an information source, with all other variables at the average 

response level. 
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the non-specific measure of knowledge used in this analysis is an important contributor to the 

use of at least some practices and should be investigated further.   

 The use of a non-practice specific measure of knowledge in this analysis may be the 

reason that the knowledge variable is not significant in all the models. If farmers associate some 

practices more strongly with “nutrient management and soil conservation practices” than others, 

then a lack of association wouldn’t be surprising. Using practice-specific measures of “how-to” 

or “procedural” knowledge is an important next step in this line of research and would be 

expected to have positive and significant effects on the use of the given practice. Vitale et al. 

(2011) find this to be the case with conservation tillage, where understanding of conservation 

tillage practices had a positive and significant effect on the use of both conservation tillage and 

reduced tillage, and a negative and significant effect on the use of conventional tillage. 

 

Figure 3.6. Graphical depiction of the probability of using BMPs at the five reported levels of 

knowledge, with all other variables at the average response level.  

Note: Asterisks (*) indicates the models in which knowledge has a significant effect. 
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While using practice-specific measures of knowledge is a clear next step, so is better 

understanding what leads to knowledge creation/acquisition. Education, experience and use of 

and trust in specific information sources are obvious candidates as important predictors of 

practice knowledge. However, these may be practice specific and/or have a complex relationship 

due to the low levels of correlation (< 0.5) found between knowledge, education and information 

source use in the present data (see Table 3.20 in Appendix C). Future modeling with more 

specific data can investigate this further. 

Corn Yield 

Average corn yield is a significant positive predictor of variable rate N, and variable rate 

P or K, and a significant negative predictor of cover crop use (Figure 3.7). It is among the most 

important predictors for the use of variable rate nutrients in terms of total effect size and 

predicted probability at the max value, though it is of relatively minor importance for cover crop 

use. Corn yield is included in the model as a measure of soil quality, and as such is not a measure 

that has potential for encouraging practice use. There is also the potential for variable rate 

nutrient use to be influencing corn yield, either directly or as an indicator of general attentiveness 

of the operator. Future examination of this dynamic would benefit from additional data on the 

soil type and quality of the farm (not just the largest field) and the inclusion of data on fertilizer 

rate and the use of other management practices.  
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Figure 3.7. Graphical depiction of the probability of using BMPs at the mean average corn yield, 

and at one and two standard deviations below and above the mean.  

Note: Asterisks (*) indicates the models in which corn yield has a significant effect. 
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Variable rate N has more variables in common with cover crops than with variable rate P 

or K. Being organized as an LLC instead of a sole proprietorship and participation in a working 

land conservation program both increase the likelihood of both variable rate N and cover crops. 

The effect of working land conservation programs on the use of both practices is not surprising 

since these are both practices that would be supported by such programs, though it is interesting 

that it did not have a significant effect on PSNT use. It is possible that the reduction in personal 

liability of the LLC business structure encourages farmers to take more risk in the purchase of 

new equipment in the case of variable rate N and in the new use of cover crops, which can take 

time to return benefits. It is interesting that the working land programs, which are intended to 

help reduce the risk of practice adoption, do not appear to do so enough to remove the significant 

effect of being an LLC. The total effect of being an LLC is larger than that of working land 

program participation for variable rate N (12 percent versus 9 percent), but the reverse is true for 

cover crops, where the total effect of being an LLC is quite small (4 percent) while the effect of 

working lands programs is notably larger (14 percent). 

Having a dominantly silty-loam soil texture on the largest 2016 corn field compared to a 

clay-loam texture had a negative effect on the use of both variable rate N and cover crops. This 

might also be an indication of similarity between these practices, but it could also be spurious 

given that the whole farm may not share that dominant soil type. More knowledge of soil 

properties by the researcher would be necessary to hypothesize on the reasons for the negative 

effect of silty-loam on variable rate N and cover crops, and the negative effect of loam on PSNT 

use. The fact that any of the soil texture of the largest 2016 corn field variables is significant in 

any of the models suggests that soil texture is a potentially relevant variable for some practices 

and might be worth investigating with more precise data. This could be done at the field level 
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with detailed enough field-level data, or possibly at the farm level using remote sensing data to 

determine soil type and variability across a region that could be assigned to a farm. 

There are a few other variables that have a significant effect on more than one practice. 

Other farm type and use of local extension as an information source both have a negative effect 

on nutrient map use but a positive effect on cover crop use. The effect of other farm type (i.e., 

those having more than 10 percent of their revenue generated by neither field/grain crops nor 

livestock) on nutrient map and cover crop use is not immediately apparent, though it could be 

related to the (in)compatibility of these practices with their production practices. The effect of 

local extension on nutrient map and cover crop use would appear to be from local extension not 

promoting or supporting the use of nutrient maps while promoting or supporting the use of cover 

crops. Lastly, concern over erosion impacts on the farm is positively significant on the use of 

both PSNTs and cover crops. The relation between erosion and the use of cover crops is clear, 

but the connection between erosion and PSNT use requires further investigation. 

Finally, a few other variables are interesting in their lack of significance, since they are 

staple variables for this type of analysis. For example, farming experience, and cropland owned 

are not significant in any of the models, education level is only significant for nutrient maps, but 

has a negative effect on their use, and cropland area is only significant for variable rate N. Some 

of these variables were significant in smaller models but became insignificant when additional 

variables were added. Since most analysis of predictors of BMPs use many fewer variables than 

the present one, it is perhaps not so surprising that some common control variables are not 

significant. 
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CONCLUSION  

The goal of this analysis was to look for the common drivers of BMP use across the five 

practices considered, and to assess the relative importance of significant drivers. The results 

showed that these five practices have few drivers in common, even between practices that 

seemed to be similar. The use of independent crop consultants was the only variable of the 53 

used in the model that had a significant effect on the use of all five practices. Practice knowledge 

and average corn yield each had significant effects on three of the five practices. These three 

variables were also consistently among the most important for predicting the use of each practice 

when considering both the total effect size and the probability of practice use at the maximum 

value of each variable. 

The first conclusion of these results is that there are no “families” or “types” or BMPs 

that share a common set of predictors. Without additional empirical testing we should not 

assume that any or all BMPs are meaningfully similar, and we should treat them separately in 

future analyses. This is goes against Reimer et al.’s (2014:58A) suggestion that “one approach 

might be to compare the significant drivers (or overall predictive power) of multivariate adoption 

models across categories of practices that share certain characteristics.” There are many 

dimensions in which practices could share characteristics, and the present analysis shows that 

these similarities may not be easily apparent—I find variable rate N and cover crops to be the 

most similar (and this is a relative measure as they only share three variables with the same sign 

in addition to independent crop consultant use), perhaps due to similarities in amount of cost and 

risk involved, rather than the pairs that seemed most similar based on the purpose of the practice, 

or pairs suggested by nutrient or practice timing. At the very least the formation of such 

categories should come with empirical support.  
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This conclusion is supported by the lack of consistent variable effects in the meta-

analyses of BMP adoption studies (Baumgart-Getz et al. 2012; Prokopy et al. 2008; Wauters and 

Mathijs 2014) that consider all types of BMPs together. Prokopy et al. (2008) also include 

analyses broken down by general practice categories such as “soil management,” “nutrient 

management,” and “pest management,” which shows some potential trends in variables effects, 

but nearly all are not significant more than they are significant, suggesting that a fruitful avenue 

of future research could be meta-analyses of specific practices.  

The differences in significant predictors between the five practices could be due to 

differences between nutrients and timing of practice, as well as type of practice. For example, 

PSNTs and variable rate N are both nitrogen specific practices that would be used during the 

growing season, though they are different types of practices (decision aid vs application 

technology). Nutrient maps are based on soil tests that are done in the fall and would typically be 

used to inform P application placement, which is also done in the fall, though these practices are 

also of different types (decision aid vs application technology). The five practices considered in 

this analysis each have a unique combination of these three dimensions (practice type, nutrient, 

and season) that helps explain the lack of overlap in significant predictors. 

The second conclusion is that the larger effect sizes of knowledge and independent crop 

consultants on the probability of practice use, especially compared to the effect sizes of the 

significant attitudes and value variables and environmental awareness variables, suggests that the 

adoption-diffusion model may provide more predictive power in predicting farmers’ use of 

BMPs compared to the social-psych theories. This is not to say that attitudes, values and 

awareness are not important, but this analysis finds them to be substantively less important in a 

relative sense than knowledge, information sources and corn yield. This is at least partly due to 
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the already quite high levels of environmental attitudes, and awareness reported by farmers in the 

sample, which leaves little room for these variables to increase the probability of practice use 

beyond the current level, all else being equal. In contrast, the low use of independent crop 

consultants and modest average levels of knowledge reported provides greater potential for 

increasing practice use by increasing knowledge, and the use of independent crop consultants. 

This suggests that while analyses that focus on the role of attitudes and environmental awareness 

in BMP use are not incorrect, they may be missing important predictive variables from their 

models such as information sources, knowledge, and biophysical context. 

The adoption-diffusion model depends heavily on the transmission of information about 

innovations, and from this analysis we can see that it matters from whom farmers are receiving 

information. The large positive effects of both knowledge and the use of independent crop 

consultants suggests that there may be a relationship between the use of independent crop 

consultants and farmers’ knowledge of the practices, but also that some practices may be more 

dependent on knowledge than others. In the latter case it is possible that independent crop 

consultants are in some way directly facilitating the implementation of the practice, possibly why 

they are so important for the use of PSNTs. The relationships between information sources, 

practice knowledge, and practice use, warrant greater and more nuanced investigation to see how 

these relationships are similar or different across BMPs.  

While the present analysis highlights the important differences between the predictors of 

the use of different practices, and indicates the value of considering them individually, this in no 

way means that multiple practices should not be considered in combination. The use of multiple 

BMPs simultaneously has important environmental implications (Holmes et al. 2016; Lam et al. 

2011; Liu et al. 2016; Sowa et al. 2016), and little social research has been done on how the use 
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of one BMP may lead to, facilitate or enhance the use of another (Weber and McCann (2015) are 

a notable example). For example, there is no reason for a farmer to use PSNTs if they do not 

intend to sidedress any of their nitrogen, but they very well might sidesdress nitrogen without 

using PSNTs. Arguably the use of both practices together would be the most effective at 

applying the optimal amount of nitrogen to the crop. It is these types of combined practice use 

that would be very interesting and useful to pursue. 

Future research could consider: 1) alternative measures of BMP use that better account 

for the spatial and temporal patterns of use, 2) practice specific measures of knowledge, 3) 

predictors of knowledge creation for different practices, 4) interaction effects of predictors on 

BMP use, 5) effects of the use of one BMP on another, and 6) the relative fit and explanatory 

power of the adoption-diffusion model compared to social-psych theories, using the same dataset 

and multiple BMPs—is the use of some practices better predicted by one approach vs the other? 

 



 

117 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 



 

118 

 

APPENDIX A: Data Cleaning and Variable Calculation 

Cleaning 

if f3=1924 then delete; *remarkably long time farming; 

if state='NA' then delete; *one respondent removed all identifying survey info; 

 

*a4 outliers; 

if a4_corn_low=4030 then delete;    

if a4_corn_avg=4355 then delete; 

if a4_corn_high=4482 then delete; 

 

Some questions were coded with missing values as zero. These variables were set to missing 

when all parts of the question were zero. 

 

**recoding "other" write in responses so not double counted when added; 

***decided to put contract livestock into a7e--important part being livestock on the farm; 

if a7f_desc = '32 acres alfalfa' then a7a = 1 and a7f = 0; 

if a7f_desc = 'Alfalfa and Timothy Hay' then a7a = 1 and a7f = 0; 

if a7f_desc = 'Beef Cows 18 HD' then a7e = 1 and a7f = 0; 

if a7f_desc = 'Christmas Trees' then a7c = 1 and a7f = 0; 

if a7f_desc = 'Contract Pullets' then a7e = 1 and a7f = 0; 

if a7f_desc = 'Custom dairy heifer raising' then a7e = 1 and a7f = 0; 

if a7f_desc = 'Fish' then a7e = 1 and a7f = 0; 

if a7f_desc = 'Hay' then a7a = 1 and a7f = 0; 

if a7f_desc = 'Hay Alfalfa/ Grass' then a7a = 1 and a7f = 0; 

if a7f_desc = 'Haylage (73 Acres Alfafa)' then a7a = 1 and a7f = 0; 

if a7f_desc = 'I custom raise hiefens for another person' then a7 = 1 and a7f = 0; 

if a7f_desc = 'Layers' then a7e = 1 and a7f = 0; 

if a7f_desc = 'Organic Spelt' then a7a = 1 and a7f = 0; 

if a7f_desc = 'Processing Pumpkins' then a7b = 1 and a7f = 0; 

if a7f_desc = 'Seed Corn' then a7a = 1 and a7f = 0; 

if a7f_desc = 'Seed Production' then a7a = 1 and a7f = 0; 

if a7f_desc = 'Seed corn' then a7a = 1 and a7f = 0; 

if a7f_desc = 'Tobacco' then a7a = 1 and a7f = 0; 

if a7f_desc = 'alfalfa' then a7a = 1 and a7f = 0; 

if a7f_desc = 'alfalfa hay' then a7a = 1 and a7f = 0; 

if a7f_desc = 'alfalfa sales' then a7a = 1 and a7f = 0; 

if a7f_desc = 'contract canning crop' then a7b = 1 and a7f = 0; 

if a7f_desc = 'corn & soybean' then a7a = 1 and a7f = 0; 

if a7f_desc = 'corn & soybeans' then a7a = 1 and a7f = 0; 

if a7f_desc = 'corn and beans' then a7a = 1 and a7f = 0; 

if a7f_desc = 'corn+soybeans' then a7a = 1 and a7f = 0; 

if a7f_desc = 'corn,beans,wheat' then a7a = 1 and a7f = 0; 

if a7f_desc = 'cull cows and calves' then a7e = 1 and a7f = 0; 

if a7f_desc = 'eggs' then a7e = 1 and a7f = 0; 

if a7f_desc = 'greenhouse bedding' then a7c = 1 and a7f = 0; 
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if a7f_desc = 'hal-alf' then a7a = 1 and a7f = 0; *assuming should be 'hay-alf'; 

if a7f_desc = 'hay' then a7a = 1 and a7f = 0; 

if a7f_desc = 'hay + straw' then a7a = 1 and a7f = 0; 

if a7f_desc = 'hay&straw' then a7a = 1 and a7f = 0; 

if a7f_desc = 'popcorn' then a7a = 1 and a7f = 0; 

if a7f_desc = 'rent hay' then a7a = 1; 

if a7f_desc = 'seed corn' then a7a = 1 and a7f = 0; 

if a7f_desc = 'seed wheat' then a7a = 1 and a7f = 0; 

if a7f_desc = 'soybeans' then a7a = 1 and a7f = 0; 

if a7f_desc = 'soybeans=corn' then a7a = 1 and a7f = 0; 

if a7f_desc = 'straw bales sales' then a7a = 1 and a7f = 0; 

if a7f_desc = 'timothy hay clover hay' then a7a = 1 and a7f = 0; 

if a7f_desc = 'tobacco' then a7a = 1 and a7f = 0; 

if a7f_desc = 'turkeys' then a7e = 1 and a7f = 0; 

 

*a10--scale 1-6; 

**recodeing 6 responses that fit in listed categories; 

***only a few clearly seem to be in a listed category; 

if a10_desc = 'Owner' then a10=1; 

if a10_desc = 'just me' then a10=1; 

  

Outcome variables 

PSNT  

 if c1a in (4 5) then c1a_use2=1; else c1a_use2=0; 

if c1a=. then c1a_use2=.; 

Nutrient maps  

 if c1d in (4 5) then c1d_use2=1; else c1d_use2=0; 

if c1d=. then c1d_use2=.; 

Variable rate N 

 if c1b in (4 5) then c1b_use2=1; else c1b_use2=0; 

if c1b=. then c1b_use2=.; 

Variable rate P or K  

 if c1c in (4 5) then c1c_use2=1; else c1c_use2=0; 

if c1c=. then c1c_use2=.; 

Cover crops 

if c1k in (4 5) then c1k_use2=1; else c1k_use2=0; 

if c1k=. then c1k_use2=.; 

   

Individual Characteristics  

Years farming  

 yrsfrm=2017-f3; 

Education level 

 f4;  

College ag courses 

 f5_rc=f5; 



 

120 

 

if f5=. then f5_rc=0; 

if f4=. then f5_rc=.; 

if f5=0 and f4=. then f5_rc=0; *one respondent didn't answer f4 but did answer f5 so 

putting that response back in;  

Knowledge 

 c2;  

Value of sales  

 f9; 

Household income 

 f10;  

Ag. income  

 f11; 

 

Farm Characteristics—Physical  

Cropland area  

 crop2size=(a3_corn+a3_soy+a3_wheat+a3_other)/1000; 

Corn-soy ratio  

 corn_soy=a3_corn/a3_soy; 

Animal farm 

 if a7d=1 then animal=1; else animal=0; 

if a7e=1 then animal=1; 

if a7d=. then animal=.; 

if a7e=. then animal=.; 

Grain farm  

 a7a; 

Other farm type 

 if a7b=1 then frm_oth=1; else frm_oth=0; 

if a7c=1 then frm_oth=1; 

if a7f=1 then frm_oth=1; 

if a7b=. then frm_oth=.; 

if a7c=. then frm_oth=.; 

if a7f=. then frm_oth=.;  

Field slope 

 b6;  

Soy yield 

 a4_soy_avg; *renamed soy_avg;  

Corn yield 

 a4_corn_avg; *renamed corn_avg; 

Loam 

 if b7=3 then loam=1; else loam=0; 

if b7=. then loam=.;  

Clay  

 if b7=4 then clay=1; else clay=0; 

if b7=. then clay=.; 

Clay-loam 

 if b7=5 then clay_loam=1; else clay_loam=0; 
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if b7=. then clay_loam=.;  

Silty-loam 

 if b7=6 then silty_loam=1; else silty_loam=0; 

if b7=. then silty_loam=.;  

Sandy-loam  

if b7=7 then sandy_loam=1; else sandy_loam=0; 

 if b7=. then sandy_loam=.; 

Other soil type 

if b7=1 then sand=1; else sand=0; 

if b7=. then sand=.; 

if b7=2 then silt=1; else silt=0; 

if b7=. then silt=.;  

if b7=8 then soil_other=1; else soil_other=0; 

 if b7=. then soil_other=.; 

 oth_soil=soil_other+sand+silt; 

 

Farm Characteristics—Social  

Cropland owned 

crpown_pc=(a2_crop_own/(a2_crop_own+a2_crop_in))*100;  

Days worked off farm  

 f8; 

Number of employees 

 employ=a8a+a8b;  

Sole proprietorship  

if a10=1 then sole_prop=1; else sole_prop=0; 

if a10=. then sole_prop=.; 

Partnership  

if a10=2 then partnshp=1; else partnshp=0; 

if a10=. then partnshp=.; 

LLC  

if a10=3 then llc=1; else llc=0; 

if a10=. then llc=.; 

S-corporation  

if a10=4 then s_corp=1; else s_corp=0; 

if a10=. then s_corp=.; 

C-corporation  

if a10=5 then c_corp=1; else c_corp=0; 

if a10=. then c_corp=.; 

Other business structure  

if a10=6 then other_bs=1; else other_bs=0; 

if a10=. then other_bs=.; 

Conservation program participation  

 a5; 

Working land program participation  

 if a5a>0 then wrkldprg=1; else wrkldprg=0;  

if a5a=. then wrkldprg=.; 
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Information  

Info index 

info_tot=d1cedu+d1tedu+d1ccamp+d1tcam+d1cchem+d1tchem+d1cseed+d1tseed+d1cin

d+d1tind+d1cfam+d1tfam+d1cmag+d1tmag+d1cweb+d1tweb+d1cass+d1tass;  

Associations info source 

 d1cass;  

Chemical dealers info source  

 d1cchem; 

Seed dealers info source  

 d1cseed; 

Crop consultants info source  

 d1cind; 

Other farmers info source  

 d1cfam; 

Campus extension info source 

 d1ccamp;  

Local extension info source  

 d1cedu; 

 

Attitudes and Values  

Look after environment 

 d2envi; 

Hunting and fishing environment  

 d2hunt; 

Economic attitude 

 ECON_AT BY d2inco d2weal d2prof;  

Income  

 d2inco; 

Wealth  

 d2weal; 

Profit  

 d2prof; 

Passing on good land  

 d2land; 

Farming tradition  

 d2trad; 

Passing on farm 

 f7; 

Debt aversion  

 d2debt; 

Crop insurance use  

 crop_ins=(a6/(a3_corn+a3_soy))*100; 

if crop_ins>100 then crop_ins=100; 
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*274 cases had crop insurance use over 100% suggesting they didn't read the question 

correctly and put all crop insurance acres, rather than just those for corn and soy, 

so I capped the values at 100 if they were larger than that; 

 

Environmental Awareness  

Concern ag. contributes to water problems  

WATERCON BY e1ccont e1calga e1chypo e1csoil; 

     e1calga WITH e1chypo; 

Groundwater contribution 

 e1ccont; 

Algal bloom contribution 

 e1calga; 

Hypoxia contribution 

 e1chypo; 

Erosion contribution 

 e1csoil; 

Erosion impacts  

e1fsoil; 

Pest resistances impacts   

 e1fresi; 

Extreme weather impacts  

 e1fextr; 

Warming impacts  

 e1fwarm; 
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APPENDIX B: Modeling Decisions 

Estimator Choice 

 The choice of estimator was driven by the binary nature of the outcome variables of 

interest. In addition, the measures of the two latent exogenous variables are categorical with five 

response options. I had two options for estimators: maximum likelihood and categorical least 

squares. 

Maximum likelihood (ML)—often with robust standard errors (MLR)—is a full-

information estimator and probably the most common estimator in SEM. ML(R) can be used 

with binary or categorical outcomes as the robustness correction adjusts for the non-normality of 

the categorical variable to make it compatible with the ML assumptions that apply to continuous 

variables (Li 2016; Rhemtulla, Brosseau-Liard, and Savalei 2012). This estimator uses the 

observed variable with a probit or logit link function to estimate the relationships between the 

specified variables (Rhemtulla et al. 2012). 

The alternative estimator is some form of limited information, categorical least squares 

(LS) estimator (usually weighted) that assumes a continuous latent variable underlying the 

categorical variable—threshold values are calculated that relate the values of the latent variable 

to the categories in the observed variable, and the latent variable is used in the rest of the model 

estimates (Li 2016; Rhemtulla et al. 2012). These estimators can also have robustness 

corrections, but these corrections are to adjust for using limited instead of full information rather 

than for data being non-normal as it is for ML(R) (Li 2016; Rhemtulla et al. 2012). 

 In this analysis I use a robust, diagonally weighted least squares, means and variance 

adjusted estimator (specifically the WLSMV estimator in Mplus8). There are several reasons for 

using a limited information, categorical LS estimator, even though it is less common.  
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1. More recent weighted LS estimators perform better than older versions (Beauducel and 

Herzberg 2006; Li 2016).  

 

2. Simulation studies have found categorical LS estimators to perform as well or better than 

ML estimators under a range of model conditions (Bandalos 2014; Beauducel and 

Herzberg 2006; Li 2016; Rhemtulla et al. 2012).  

 

3. Weighted LS estimators, by being limited information, are less computationally intensive 

than ML(R), especially with large models (Muthén and Muthén 2017).  

 

4. Though LS estimators are less efficient by virtue of being limited information, this has 

not been found to a problem in practice (Rhemtulla et al. 2012). 

 

5. By using the underlying latent variables weighted LS estimators have additional benefits 

when computing more complex models, like models with categorical mediators, such as 

allowing for the estimation of indirect and total effects, and standardized effects, which 

can’t be done with ML(R), allowing for more comparisons between the results of 

different models (Muthén and Muthén 2017).  

Simulation studies of confirmatory factor analysis (CFA) models have found diagonally 

weighted LS to perform better than ML (Beauducel and Herzberg 2006), and MLR (Bandalos 

2014; Li 2016), especially for binary outcomes (Beauducel and Herzberg 2006), as well as with 

model misspecification, as long as both sample size was sufficiently large and the data was not 

excessively asymmetric (Bandalos 2014; Li 2016). Bandalos (2014) and Li (2016) also consider 

the effects of different estimators on structural coefficients between latent variables with 

categorical measures, and they find that diagonally weighted LS performs at least as well as ML 

or MLR in most conditions. With a larger number of response categories, the differences 

between estimators diminished (Li 2016; Rhemtulla et al. 2012). 

While none of these studies examine the effects of estimators on estimates between two 

observed variables (I was not able to find any studies that did this), these findings are still 

relevant for my observed outcome variable, at least for the relationship between it and my latent 
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exogenous variables, since these are very similar to CFA dynamics. They are also relevant for 

the estimation of my exogenous latent variables themselves. 

Given my large sample size23 and not excessively skewed endogenous variables24 (see 

Table 3.15) there may not be a critical need for the WLSMV estimator, but it is conceptually the 

more appropriate choice and the simulation studies do not suggest that I face conditions where it 

would perform poorly.  

Table 3.15. Skewness and kurtosis for endogenous variables. 

  Number of response categories N Skewness Kurtosis 

PSNT 2 814 1.653 0.734 

Nutrient maps 2 814 -1.788 1.201 

Variable rate N 2 814 0.995 -1.013 

Variable rate P or K 2 814 -0.596 -1.649 

Cover crops 2 814 0.607 -1.636 

Income 5 813 -0.226 -0.191 

Wealth 5 812 -0.886 0.911 

Profit 5 814 -0.844 0.357 

Groundwater contribution 5 802 -0.454 -0.321 

Algal bloom contribution 5 803 -0.361 -0.428 

Hypoxia contribution 5 799 -0.246 -0.765 

Erosion contribution 5 805 -0.886 0.726 

 

Calculating Probabilities Using the WLSMV Estimator 

 The WLSMV estimator uses a probit link function and thus estimates probit coefficients. 

However, if the outcome is considered to be the underlying latent variable then the coefficient 

can be treated as a linear coefficient—this is relevant for the discussion of standardized results 

below.  

                                                 
23 Sample sizes in the simulation studies ranged from 100 to 1,000, putting mine in the ‘large’ category. 
24 In considering asymmetry in my endogenous observed variables, my variables fall in the low nonnormality 

category used by Bandalos (2014) by having skew smaller than ±2.4 and kurtosis less than ±3.8.  
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Probabilities of y =1 can be calculated from the intercept25, probit coefficients, and 

specified values for each variable using the following equation where F is the standard normal 

distribution function (Muthén, Muthén, and Asparouhov 2016:222-223).  

P(ui = 1 | xi) = F(β0 + β1 x1 + β2 x2 + … + βi xi) 

 

Using the above equation, a z score is calculated, then a left sided z table is used to determine the 

probability of F(z)—this is equal to the area under the curve to the left of the z value. 

Probabilities can be calculated from probit coefficients the same way whether the observed 

variable or the underlying latent variable is used if the residual variance is fixed at 1, which is 

typical for probit regression (Muthén, Muthén, and Asparouhov 2016:224-226). In cases where 

there is more than one categorical dependent variable, such as a mediation model, then the 

residual variance must be included in the probability calculation: 

P(ui = 1 | xi) = F[(β0 + β1 x1 + β2 x2 + … + βi xi)/√residual variance] 

If there is more than one mediator the formula is more complex (see Nguyen et al. 2016). 

Assessing the Nestedness of the Data 

Besides the model decisions based on the binary nature of the outcome variable, the 

potential for nestedness in the data drove many modeling decisions. When data is nested or 

clustered the OLS assumption of independence among observations is violated, and analyses that 

do not treat the data as clustered will tend to underestimate the standard errors, resulting in 

higher rates of type 1 errors (Bell and Jones 2015). Since the survey data used was collected in 

four states there is the potential for there to be significant clustering of respondents by state—

that is, respondents from a given state may be more like each other than they are like farmers 

                                                 
25 The intercept for a binary outcome variable is the negative threshold value that Mplus reports.  
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from the other states. Examining the data for evidence of clustering is the key next step in 

determining how the model should be specified.  

The first step of assessing clustering is to run a one-way ANOVA model that divides the 

variance in the variable between levels, and to calculate the intraclass correlation coefficient 

(ICC), which is the between variance divided by the total variance, effectively providing the 

portion/percent of the variance that exists at the between level/level 2 (Snijders and Bosker 

2012). Table 3.15 presents the ICCs and design effects for the full sample and the final sample 

using the WLSMV estimator with the variable specified as categorical, and for the full sample 

using MLR with the variable specified as continuous. When the variable is defined as 

categorical, regardless of what estimator is used, Mplus does not allow variances on the within 

level, thus making the between variances reported from these models suspect (none are 

significant). Therefore, I also present the results using MLR with the variable specified as 

continuous, to include the within level variance. The null model could not be computed for 

PSNT and variable rate N when using MLR for the final sample, due to the estimated between 

covariance matric not being positive definite. 

Design effect26 is included because there is no established threshold rule for ICC size, 

and even small ICCs can indicate important clustering with large cluster size (Snijders and 

Bosker 2012). The design effect, as a function of average cluster size and ICC, provides a way to 

evaluate the significance of the ICC based on cluster size (Lai and Kwok 2015). Lai and Kwok 

(2015) find that the ‘rule of thumb of being able to ignore clustering if the design effect is less 

than two is reasonable under certain conditions27. All but two of the design effects in Table 3.15 

                                                 
26 Design effect = 1 + (average cluster size – 1) x ICC (Lai and Kwok 2015) 
27 When “(a) the cluster size … is at least 10, (b) the relations between level 1 predictors and the outcome are 

constant (i.e., no random coefficients are present), and (c) the predictors are group-mean centered” (Lai and Kwok 

2015:434) 
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are substantially larger than 2, suggesting that there is important clustering in the data, at least for 

nutrient maps, variable rate P or K, and cover crops. 

Table 3.16. ICC comparison by sample and estimator.  

  
PSNT 

Nutrient 

maps 

Variable rate 

N 

Variable rate 

P or K 
Cover crops 

Final sample 

     sample size 814 814 814 814 814 

average cluster size 203.5 203.5 203.5 203.5 203.5 

Full sample 

     sample size 2007 2113 2061 2117 2098 

average cluster size 501.8 528.3 515.3 529.3 524.5 

WLSMV final sample 

     ICC 0.000 0.039 0.000 0.025 0.054 

Design Effect 1.000 8.898 1.000 6.0625 11.935 

WLSMV full sample 

     ICC 0.009 0.008 0.007 0.011 0.074 

Design Effect 5.507 5.218 4.600 6.811 39.739 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

    

The conclusions from Table 3.16 are that there appears to be significant clustering for 

three of the five practices. For PSNT and variable rate N, the clustering appears to be less 

significant: the ICCs are zero for the final sample resulting in design effects of one, and these are 

the only two practices that do not have even marginally significant between level variances in the 

MLR model. This conclusion is also supported by considering the graphs of practice use by state 

(see Figure 3.8), which shows significant state-level differences as tested by logistic regression28 

(see Table 3.17) for nutrient maps, variable rate P or K, and cover crops, but not PSNT and 

variable rate N.  

 

 

 

                                                 
28 Logistic regression used since ANOVA is inappropriate for binary variables. 
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Table 3.17. Wald Chi-square for joint test of logistic regression for state differences in practice 

use using final sample (n=814). 

  

Degrees of 

Freedom 
PSNT Nutrient maps 

Variable rate 

N 

Variable rate 

P or K 
Cover crops 

State 3 2.474 17.274*** 3.733 16.235** 33.692*** 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

  

 
Figure 3.8. Practice use by state for final sample. 

 

Snijders and Bosker (2012) also suggest checking for group-by-covariate interaction 

effects, as clustering can manifest in relation to covariates. The presence of significant 

interaction terms for all five practices across a sample of covariates (using logistic regression 

given the inappropriateness of ANOVA for binary variables and the challenges of ANCOVA 

with binary outcomes) suggests that there are important group differences in the presence of 

covariates for all of the practices (see Table 3.18). Given the presence of group-by-covariate 

interactions and design effects >2 for the full sample, clustering is considered to be an important 
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consideration for all five practices considered. This assumption also facilitates comparisons 

across models, as it justifies using the same model specification.  

However, given the small number of clusters (there are only four) specifying a multilevel 

model is problematic and can produce downwardly biased standard errors for both coefficients 

and variances, though the coefficients and variances themselves have been found to be unbiased 

(Lai and Kwok 2015; Maas and Hox 2005). Use of the COMPLEX analysis type in Mplus8 

should avoid this problem by adjusting the standard errors and chi-square test of model fit for 

clustering but without modeling the clustering as a multilevel model would (Muthén and Muthén 

2017).  
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Table 3.18. Wald Chi-square for joint test of logistic regression for group-by-covariate interactions for select variables using final 

sample (n=814). 

 

Degrees of 

Freedom 
PSNT Nutrient maps Variable rate N Variable rate P or K Cover crops 

State 3 1.255 12.173** 0.632 1.013 14.546** 

Average corn yield 1 8.182** 31.273*** 15.908*** 42.957*** 0.050 

Average corn yield x State 3 1.624 12.358** 1.640 1.376 12.863** 

       State 3 1.172 3.637 1.057 1.141 17.190*** 

Average soy yield 1 4.920* 25.969*** 11.021*** 36.116*** 0.471 

Average soy yield x State 3 1.598 3.660 2.075 1.680 17.629*** 

       State 3 2.248 6.059 5.912 6.135 26.578*** 

Corn-soy ratio 1 0.006 4.430* 1.625 0.641 1.184 

Corn-soy ratio x State 3 2.744 5.357 3.602 8.803* 2.639 

       State 3 3.628 15.836** 3.581 9.314* 16.841*** 

Percent cropland owned 1 4.672* 15.462*** 3.702t 7.429** 3.664t 

Percent cropland owned x State 3 2.634 11.490** 2.718 1.372 4.143 

       State 3 17.795*** 4.687 15.116** 1.159 1.426 

Importance of looking after environment 1 20.674*** 3.592t 2.979t 5.960* 23.756*** 

Importance of looking after environment x State 3 19.186*** 4.006 14.255** 2.527 2.031 

       State 3 8.250* 3.869 7.636t 2.405 6.976t 

Knowledge of practices 1 26.530*** 33.181*** 24.247*** 37.176*** 28.406*** 

Knowledge of practices x State 3 9.396* 1.901 8.520* 0.677 2.551 

t  p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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APPENDIX C: Additional Results 

A Note on R2 with Binary Outcomes 

The R-square values produced for the models are a bit different than the R-square for a 

regression model with a continuous variables, because, for binary outcomes, the R-square is 

based on the liner underlying latent variable and does not “involve a freely estimated residual 

variance” (Muthén et al. 2016:227). 

The proportion of variance explained is determined by the slope parameter alone 

which also describes the strength of relationship between x and u. Viewed from a 

probability curve perspective it is the steepness of a curve…that summarizes the 

situation: the flatter the curve, the lower the value of the slope, the lower the R2, 

and the higher the fixed residual variance relative to the total u* variance. 

(Muthén et al. 2016:227) 

 

For a binary outcome R2 = γ2V(x) / (γ2V(x) + c) 

 

The variance is V(u*) = γ2V(x) + c where c =1 for probit regression 

Additional Descriptives 

Table 3.19. Tolerance and variance inflation factor (VIF) for exogenous analysis variables 

(n=814). 

  Tolerance VIF 

Individual Characteristics 

  Years farming 0.785 1.274 

Education level 0.580 1.724 

College ag courses 0.594 1.685 

Knowledge 0.770 1.299 

Value of sales 0.422 2.372 

Household income 0.792 1.262 

Ag. income 0.607 1.647 

Farm Characteristics—Physical 

 Cropland area 0.399 2.509 

Corn-soy ratio 0.873 1.146 

Animal farm 0.827 1.209 

Grain farm 0.635 1.576 

Other farm type 0.641 1.561 

Field slope 0.893 1.120 
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Table 3.19. (cont’d).   

Soy yield 0.514 1.944 

Corn yield 0.491 2.035 

Loam 0.856 1.169 

Clay 0.851 1.176 

Silty-loam 0.787 1.270 

Sandy-loam 0.824 1.213 

Other soil type 0.858 1.166 

Farm Characteristics—Social 

  Cropland owned 0.842 1.188 

Days worked off farm 0.556 1.798 

Number of employees 0.711 1.406 

Partnership 0.823 1.215 

LLC 0.788 1.270 

S-corporation 0.882 1.134 

C-corporation 0.823 1.215 

Other business structure 0.939 1.065 

Conservation program participation 0.681 1.468 

Working land program participation 0.671 1.491 

Information 

  Info index 0.362 2.765 

Associations info source 0.689 1.451 

Chemical dealers info source 0.522 1.915 

Seed dealers info source 0.526 1.902 

Crop consultants info source 0.757 1.320 

Other farmers info source 0.668 1.497 

Campus extension info source 0.556 1.798 

Local extension info source 0.573 1.746 

Attitudes and Values 

  Look after environment 0.695 1.439 

Hunting and fishing environment 0.785 1.274 

Passing on good land 0.786 1.272 

Farming tradition 0.673 1.487 

Passing on farm 0.713 1.402 

Debt aversion 0.856 1.169 

Crop insurance use 0.858 1.166 

Environmental Awareness 

  Erosion impacts 0.577 1.734 

Pest resistances impacts  0.600 1.667 

Extreme weather impacts 0.488 2.051 

Warming impacts 0.488 2.050 
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Table 3.20. Select Pearson correlation coefficients for exogenous variables where correlation coefficient is < -0.5 or > 0.5 (n = 814).  

  

Ed. 

level 

Value of 

sales 

Ag. 

income 

Grain 

farm 

Soy 

yield 

Conservation 

program 

participation 

Chemical 

dealers 

info source 

Campus 

extension 

info 

source 

Erosion 

impacts 

Extreme 

weather 

impacts 

College ag courses 0.580*** 

         Cropland area 

 

0.645*** 

        Other farm type 

   

-0.518*** 

      Corn yield 

    

0.651*** 

     Days worked off farm 

  

-0.553*** 

       Working land program participation 

    

0.507*** 

    Seed dealers info source 

 

0.621*** 

   Local extension info source 

  

0.584*** 

  Pest resistances impacts  

        

0.568*** 

 Warming impacts           

    

0.681*** 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Measurement Model Results 

Table 3.21 Average and range of measurement model results across the five practice analyses. 

 
Probit 

 

Standardized 

 

R-square 

  

Average 

coefficient 

(min - max) 

Average standard 

error 

(min - max)   

Average 

coefficient  

(min - max) 

Average 

standard error 

(min - max)   

Average 

coefficient 

(min - max) 

Average 

standard error 

(min - max) 

Economic attitude 

        Income 1 0  0.8178 0.0084  0.669 0.014 

 

(1.000 - 1.000) (0.000 - 0.000)  (0.812 - 0.822) (0.008 - 0.009)  (0.659 - 0.676) (0.012 - 0.014) 

Wealth 0.6988 0.0436  0.7044 0.015  0.496 0.021 

 

(0.681 - 0.724) (0.042 - 0.045)  (0.701 - 0.709) (0.015 - 0.015)  (0.491 - 0.503) (0.021 - 0.021) 

Profit 0.627 0.079  0.665 0.037  0.442 0.049 

 

(0.613 - 0.648) (0.077 - 0.080)  (0.663 - 0.669) (0.036 - 0.037)  (0.439 - 0.448) (0.048 - 0.049) 

Concern ag. contributes to water problems 

       
Groundwater 

contribution 

1.000 0.000 

 

0.918 0.017 

 

0.843 0.031 

(1.000 - 1.000) (0.000 - 0.000) 

 

(0.917 - 0.919) (0.016 - 0.017) 

 

(0.841 - 0.844) (0.030 - 0.032) 

Algal bloom 

contribution 

0.511 0.081 

 

0.763 0.015 

 

0.583 0.023 

(0.508 - 0.514) (0.077 - 0.082) 

 

(0.763 - 0.764) (0.014 - 0.015) 

 

(0.582 - 0.583) (0.022 - 0.023) 

Hypoxia contribution 

0.394 0.048 

 

0.673 0.007 

 

0.454 0.009 

(0.392 - 0.395) (0.046 - 0.048) 

 

(0.673 - 0.674) (0.007 - 0.007) 

 

(0.453 - 0.455) (0.009 - 0.010) 

Erosion contribution 0.401 0.056 

 

0.680 0.016 

 

0.462 0.022 

(0.399 - 0.403) (0.053 - 0.057)   (0.679 - 0.681) (0.016 - 0.016)   (0.461 - 0.463) (0.022 - 0.022) 

Note: All factors are significant at < 0.001 
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Full Probit Regression Results 

Table 3.22. Probit regression coefficients and standard errors for PSNT and nutrient maps 

(n=814).  

 

PSNT 

 

Nutrient maps 

  Estimate (S.E.) 

 

Estimate (S.E.) 

Individual Characteristics 

  Years farming 0.004 (0.005)  

 

-0.001 (0.007)  

Education level -0.086 (0.112)  

 

-0.084 (0.016)*** 

College ag courses 0.125 (0.070)t 

 

0.271 (0.141)t 

Knowledge 0.178 (0.222)  

 

0.204 (0.097)* 

Value of sales -0.065 (0.128)  

 

0.149 (0.131)  

Household income 0.083 (0.054)  

 

0.060 (0.031)* 

Ag. income 0.039 (0.049)  

 

0.008 (0.034)  

Farm Characteristics—Physical 

  Cropland area 0.041 (0.083)  

 

-0.097 (0.192)  

Corn-soy ratio 0.050 (0.047)  

 

0.021 (0.052)  

Animal farm -0.114 (0.306)  

 

-0.038 (0.145)  

Grain farm -0.197 (0.437)  

 

-0.093 (0.559)  

Other farm type -0.458 (0.285)  

 

-0.671 (0.298)* 

Field slope -0.165 (0.127)  

 

0.050 (0.190)  

Soy yield 0.000 (0.008)  

 

0.010 (0.006)  

Corn yield 0.002 (0.002)  

 

0.006 (0.008)  

Loam -0.558 (0.149)*** 0.265 (0.280)  

Clay 0.079 (0.100)  

 

0.153 (0.124)  

Silty-loam -0.319 (0.216)  

 

-0.026 (0.126)  

Sandy-loam 0.101 (0.272)  

 

0.135 (0.232)  

Other soil type -0.120 (0.256)  

 

0.529 (0.418)  

Farm Characteristics—Social 

  Cropland owned -0.002 (0.002)  

 

-0.003 (0.005)  

Days worked off farm 0.013 (0.025)  

 

0.015 (0.068)  

Number of employees 0.005 (0.026)  

 

0.028 (0.109)  

Partnership 0.31 (0.121)* 

 

0.206 (0.374)  

LLC -0.025 (0.077)  

 

0.08 (0.0970)  

S-corporation -0.126 (0.465)  

 

-0.109 (0.378)  

C-corporation 0.001 (0.318)  

 

-0.035 (0.480)  

Other business structure 0.987 (0.584)t 

 

0.127 (1.008)  

Conservation program participation 0.053 (0.235)  

 

0.277 (0.192)  

Working land program participation 0.290 (0.201)  

 

0.056 (0.194)  
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Table 3.22. (cont’d).    

Information 

   Info index -0.005 (0.004)  

 

0.021 (0.025)  

Associations info source 0.161 (0.176)  

 

0.064 (0.066)  

Chemical dealers info source 0.143 (0.155)  

 

0.171 (0.232)  

Seed dealers info source 0.035 (0.101)  

 

-0.155 (0.072)* 

Crop consultants info source 0.295 (0.037)*** 0.174 (0.056)** 

Other farmers info source 0.018 (0.041)  

 

0.033 (0.093)  

Campus extension info source 0.017 (0.086)  

 

0.109 (0.078)  

Local extension info source 0.067 (0.074)  

 

-0.129 (0.054)* 

Attitudes and Values 

   Look after environment 0.217 (0.271)  

 

-0.014 (0.121)  

Hunting and fishing environment 0.007 (0.053)  

 

-0.001 (0.060)  

Economic attitude 0.052 (0.070)  

 

-0.003 (0.024)  

Passing on good land -0.091 (0.051)t 

 

-0.041 (0.040)  

Farming tradition 0.290 (0.185)  

 

-0.082 (0.034)* 

Passing on farm 0.046 (0.145)  

 

0.015 (0.153)  

Debt aversion -0.107 (0.100)  

 

-0.056 (0.078)  

Crop insurance use 0.000 (0.002)  

 

0.003 (0.001)t 

Environmental Awareness 

  Concern ag. contributes to water problems 0.060 (0.006)*** 

 

0.051 (0.015)*** 

Erosion impacts 0.094 (0.035)** 

 

0.013 (0.077)  

Pest resistances impacts  -0.084 (0.055)  

 

0.091 (0.098)  

Extreme weather impacts -0.040 (0.026)  

 

0.011 (0.054)  

Warming impacts -0.035 (0.075)  

 

-0.098 (0.040)* 

Intercept -4.325 (1.351)**   -2.937 (0.695)*** 

R-Square 0.349 (0.073)*** 0.371 (0.121)** 

Chi-Square 679.695*** 

 

678.584*** 

RMSEA 0.033 

 

0.033 

CFI 0.839 

 

0.839 

TLI 0.812   0.812 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3.23. Probit regression coefficients and standard errors for variable rate N and variable 

rate P or K (n=814).  

 

Variable rate N 

 

Variable rate P or K 

  Estimate (S.E.)   Estimate (S.E.) 

Individual Characteristics 

   Years farming 0.001 (0.003)  

 

0.000 (0.007)  

Education level 0.034 (0.070)  

 

-0.163 (0.094)t 

College ag courses -0.187 (0.171)  

 

0.130 (0.165)  

Knowledge 0.123 (0.105)  

 

0.244 (0.062)*** 

Value of sales 0.045 (0.068)  

 

0.198 (0.077)* 

Household income 0.019 (0.071)  

 

0.004 (0.064)  

Ag. income -0.093 (0.057)  

 

-0.062 (0.041)  

Farm Characteristics—Physical 

  Cropland area 0.156 (0.060)* 

 

0.026 (0.102)  

Corn-soy ratio -0.002 (0.051)  

 

-0.009 (0.107)  

Animal farm -0.231 (0.169)  

 

-0.132 (0.110)  

Grain farm -0.040 (0.298)  

 

-0.119 (0.144)  

Other farm type -0.415 (0.314)  

 

-0.456 (0.260)t 

Field slope -0.063 (0.097)  

 

0.023 (0.080)  

Soy yield 0.002 (0.009)  

 

0.010 (0.010)  

Corn yield 0.004 (0.000)*** 

 

0.006 (0.003)* 

Loam 0.030 (0.233)  

 

0.217 (0.150)  

Clay -0.173 (0.124)  

 

-0.261 (0.241)  

Silty-loam -0.375 (0.148)* 

 

-0.100 (0.099)  

Sandy-loam 0.091 (0.132)  

 

0.328 (0.174)t 

Other soil type -0.213 (0.157)  

 

0.242 (0.329)  

Farm Characteristics—Social 

  Cropland owned 0.000 (0.002)  

 

0.000 (0.001)  

Days worked off farm 0.000 (0.041)  

 

-0.019 (0.006)** 

Number of employees 0.001 (0.025)  

 

-0.007 (0.010)  

Partnership -0.014 (0.367)  

 

-0.127 (0.160)  

LLC 0.306 (0.074)*** 

 

0.117 (0.118)  

S-corporation 0.064 (0.100)  

 

-0.087 (0.209)  

C-corporation -0.050 (0.169)  

 

-0.030 (0.187)  

Other business structure -0.403 (0.869)  

 

-0.077 (0.456)  

Conservation program participation -0.029 (0.131)  

 

0.279 (0.073)*** 

Working land program participation 0.236 (0.063)*** 

 

-0.108 (0.188)  
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Table 3.23. (cont’d).    

Information 

   Info index 0.011 (0.002)*** 

 

0.019 (0.021)  

Associations info source 0.051 (0.094)  

 

-0.121 (0.112)  

Chemical dealers info source -0.013 (0.124)  

 

0.226 (0.044)*** 

Seed dealers info source 0.072 (0.122)  

 

-0.087 (0.081)  

Crop consultants info source 0.134 (0.059)* 

 

0.106 (0.039)** 

Other farmers info source 0.018 (0.107)  

 

-0.080 (0.037)* 

Campus extension info source -0.108 (0.079)  

 

0.044 (0.082)  

Local extension info source 0.157 (0.124)  

 

-0.059 (0.059)  

Attitudes and Values 

   Look after environment 0.004 (0.161)  

 

0.035 (0.106)  

Hunting and fishing environment -0.037 (0.031)  

 

-0.002 (0.018)  

Economic attitude 0.085 (0.035)* 

 

0.008 (0.007)  

Passing on good land -0.048 (0.030)  

 

-0.132 (0.106)  

Farming tradition -0.001 (0.050)  

 

-0.010 (0.081)  

Passing on farm 0.251 (0.082)** 

 

0.070 (0.090)  

Debt aversion 0.009 (0.054)  

 

-0.144 (0.076)t 

Crop insurance use -0.001 (0.001)  

 

0.003 (0.001)*** 

Environmental Awareness 

   Concern ag. contributes to water problems -0.001 (0.021)  

 

0.022 (0.013)  

Erosion impacts 0.060 (0.056)  

 

0.029 (0.071)  

Pest resistances impacts  -0.027 (0.108)  

 

0.057 (0.084)  

Extreme weather impacts 0.039 (0.012)** 

 

0.002 (0.032)  

Warming impacts -0.069 (0.096)  

 

0.001 (0.019)  

Intercept -2.878 (0.348)***   -2.758 (0.967)** 

R-Square 0.237 (0.049)*** 

 

0.310 (0.028)*** 

Chi-Square 679.410*** 

 

677.040*** 

RMSEA 0.033 

 

0.033 

CFI 0.840 

 

0.840 

TLI 0.813   0.813 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3.24. Probit regression coefficients and standard errors for cover crops (n=814). 

 

Cover crops 

  Estimate (S.E.) 

Individual Characteristics 

Years farming 0.002 (0.006)  

Education level 0.042 (0.071)  

College ag courses 0.111 (0.064)t 

Knowledge 0.257 (0.088)** 

Value of sales 0.031 (0.038)  

Household income 0.038 (0.048)  

Ag. income 0.041 (0.074)  

Farm Characteristics—Physical 

Cropland area -0.086 (0.044)t 

Corn-soy ratio -0.035 (0.016)* 

Animal farm 0.420 (0.164)* 

Grain farm 0.130 (0.286)  

Other farm type 0.338 (0.144)* 

Field slope 0.065 (0.022)** 

Soy yield -0.003 (0.010)  

Corn yield -0.006 (0.002)* 

Loam 0.091 (0.140)  

Clay 0.112 (0.132)  

Silty-loam -0.227 (0.048)*** 

Sandy-loam 0.040 (0.105)  

Other soil type 0.343 (0.245)  

Farm Characteristics—Social 

Cropland owned -0.001 (0.002)  

Days worked off farm 0.003 (0.071)  

Number of employees -0.005 (0.018)  

Partnership 0.144 (0.128)  

LLC 0.208 (0.059)*** 

S-corporation -0.062 (0.225)  

C-corporation 0.166 (0.231)  

Other business structure 0.287 (0.843)  

Conservation program participation 0.122 (0.101)  

Working land program participation 0.631 (0.127)*** 
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Table 3.24. (cont’d).  

Information 

 Info index -0.009 (0.010)  

Associations info source 0.136 (0.033)*** 

Chemical dealers info source -0.001 (0.067)  

Seed dealers info source -0.072 (0.071)  

Crop consultants info source 0.129 (0.049)** 

Other farmers info source 0.074 (0.050)  

Campus extension info source -0.060 (0.079)  

Local extension info source 0.292 (0.039)*** 

Attitudes and Values 

Look after environment 0.248 (0.097)* 

Hunting and fishing environment 0.025 (0.078)  

Economic attitude -0.126 (0.046)** 

Passing on good land 0.082 (0.069)  

Farming tradition -0.040 (0.074)  

Passing on farm 0.125 (0.108)  

Debt aversion -0.034 (0.042)  

Crop insurance use -0.002 (0.001)  

Environmental Awareness 

Concern ag. contributes to water problems 0.040 (0.024)t 

Erosion impacts 0.227 (0.017)*** 

Pest resistances impacts  -0.138 (0.051)** 

Extreme weather impacts 0.010 (0.024)  

Warming impacts -0.105 (0.064)  

Intercept -2.726 (1.106)* 

R-Square 0.338 (0.020)*** 

Chi-Square 681.087*** 

RMSEA 0.033 

CFI 0.841 

TLI 0.814 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Standardized Results 

Standardized results are included to satisfy expectations for the presentation of regression 

results. However, standardization is of little usefulness when dealing with probit results, and 

especially with probabilities, as the probability effect of a given variable is highly dependent on 

the range of possible values the variable can take and the average variable value as is discussed 

in the chapter. This means that the standardized coefficients are no more useful in comparing the 

relative effects of different variables than the unstandardized coefficients; one still has to 

consider the value range for the variable, the size of the coefficient/slope, and the variable 

average. The reason for this is that the standardization is done on the latent variable underlying 

the observed binary variable, not on the binary variable itself; the standardized value would still 

need to be related to the binary outcome via the threshold values. As Muthén, Muthén, and 

Asparouhov (2016) explain it: 

Although the need for comparing effects of covariates having different metrics 

may arise, it should be emphasized that these are effects in the metric of the 

standardized u*. In contrast, the effects on the probability of u = 1 vary depending 

on where along the x-axis it is evaluated…. With two or more covariates, 

standardization refers to partial regression coefficients where the effect on the u 

probability depends on the location of the combination of covariates. This 

complicates the comparison of standardized coefficients. A possible solution is 

instead to study the change in probability as one covariate changes around a value 

of importance while holding the other covariates fixed at values of importance. (P. 

227-228)  

In the below results binary variables were standardized based on the x variable changing 

from 0 to 1 (the STDY command in Mplus), while the rest of the variables were standardized 

based on a one standard deviation change in the x variable (STDYX command in Mplus), as is 

recommended by Muthén, Muthén, and Asparouhov (2016).
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Table 3.25. Standardized regression coefficients and standard errors for PSNT and nutrient 

maps (n=814). 

 

PSNT 

 

Nutrient maps 

  Estimate (S.E.)   Estimate (S.E.) 

Individual Characteristics 

  Years farming 0.050 (0.056) 

 

-0.011 (0.073) 

Education level -0.059 (0.075) 

 

-0.057 (0.013)*** 

College ag courses 0.101 (0.055)t 

 

0.215 (0.101)* 

Knowledge 0.115 (0.141) 

 

0.130 (0.057)* 

Value of sales -0.046 (0.090) 

 

0.103 (0.097) 

Household income 0.069 (0.043) 

 

0.049 (0.029)t 

Ag. income 0.035 (0.042) 

 

0.007 (0.031) 

Farm Characteristics—Physical 

  Cropland area 0.039 (0.080) 

 

-0.092 (0.178) 

Corn-soy ratio 0.063 (0.057) 

 

0.027 (0.064) 

Animal farm -0.092 (0.243) 

 

-0.030 (0.113) 

Grain farm -0.159 (0.361) 

 

-0.074 (0.444) 

Other farm type -0.369 (0.232) 

 

-0.532 (0.241)* 

Field slope -0.086 (0.069) 

 

0.026 (0.097) 

Soy yield 0.002 (0.056) 

 

0.071 (0.053) 

Corn yield 0.048 (0.046) 

 

0.178 (0.199) 

Loam -0.450 (0.140)** 

 

0.210 (0.211) 

Clay 0.064 (0.082) 

 

0.121 (0.092) 

Silty-loam -0.257 (0.171) 

 

-0.021 (0.101) 

Sandy-loam 0.081 (0.222) 

 

0.107 (0.179) 

Other soil type -0.097 (0.209) 

 

0.420 (0.337) 

Farm Characteristics—Social 

  Cropland owned -0.046 (0.056) 

 

-0.091 (0.122) 

Days worked off farm 0.016 (0.031) 

 

0.019 (0.082) 

Number of employees 0.016 (0.088) 

 

0.095 (0.358) 

Partnership 0.250 (0.091)** 

 

0.163 (0.286) 

LLC -0.020 (0.063) 

 

0.064 (0.076) 

S-corporation -0.101 (0.377) 

 

-0.086 (0.308) 

C-corporation 0.001 (0.256) 

 

-0.028 (0.379) 

Other business structure 0.796 (0.498) 

 

0.101 (0.805) 

Conservation program participation 0.043 (0.191) 

 

0.220 (0.149) 

Working land program participation 0.234 (0.155) 

 

0.045 (0.158) 

    

    

    

    



 

145 

 

Table 3.25. (cont’d).    

Information 

   Info index -0.030 (0.022) 

 

0.128 (0.166) 

Associations info source 0.098 (0.109) 

 

0.039 (0.041) 

Chemical dealers info source 0.082 (0.085) 

 

0.096 (0.122) 

Seed dealers info source 0.021 (0.061) 

 

-0.092 (0.040)* 

Crop consultants info source 0.233 (0.019)*** 0.135 (0.055)* 

Other farmers info source 0.013 (0.031) 

 

0.025 (0.068) 

Campus extension info source 0.010 (0.052) 

 

0.064 (0.043) 

Local extension info source 0.037 (0.042) 

 

-0.069 (0.031)* 

Attitudes and Values 

   Look after environment 0.130 (0.157) 

 

-0.008 (0.072) 

Hunting and fishing environment 0.007 (0.054) 

 

-0.001 (0.059) 

Economic attitude 0.060 (0.079) 

 

-0.004 (0.028) 

Passing on good land -0.051 (0.030)t 

 

-0.022 (0.024) 

Farming tradition 0.184 (0.111)t 

 

-0.051 (0.016)** 

Passing on farm 0.037 (0.117) 

 

0.012 (0.121) 

Debt aversion -0.071 (0.064) 

 

-0.036 (0.048) 

Crop insurance use -0.005 (0.069) 

 

0.073 (0.037)* 

Environmental Awareness 

  Concern ag. contributes to water problems 0.112 (0.019)*** 0.094 (0.013)*** 

Erosion impacts 0.080 (0.027)** 

 

0.011 (0.066) 

Pest resistances impacts  -0.061 (0.037) 

 

0.064 (0.071) 

Extreme weather impacts -0.040 (0.028) 

 

0.011 (0.054) 

Warming impacts -0.034 (0.073) 

 

-0.094 (0.042)* 

Intercept -3.489 (0.903)*** -2.329 (0.591)*** 

R-Square 0.349 (0.073)*** 0.371 (0.121)** 

Chi-Square 679.695*** 

 

678.584*** 

RMSEA 0.033 

 

0.033 

CFI 0.839 

 

0.839 

TLI 0.812   0.812 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

Note: Binary variable standardization is based on a change from 0 to 1, rather than a one standard deviation 

change as is used for the non-binary variables. 
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Table 3.26. Standardized regression coefficients and standard errors for variable rate N and 

variable rate P or K (n=814). 

 

Variable rate N 

 

Variable rate P or K 

  Estimate (S.E.)   Estimate (S.E.) 

Individual Characteristics 

   Years farming 0.012 (0.035) 

 

-0.002 (0.077) 

Education level 0.025 (0.052) 

 

-0.116 (0.068)t 

College ag courses -0.164 (0.147) 

 

0.108 (0.138) 

Knowledge 0.086 (0.073) 

 

0.164 (0.044)*** 

Value of sales 0.034 (0.052) 

 

0.143 (0.056)* 

Household income 0.018 (0.063) 

 

0.004 (0.055) 

Ag. income -0.091 (0.053)t 

 

-0.058 (0.039) 

Farm Characteristics—Physical 

   Cropland area 0.163 (0.064)* 

 

0.026 (0.101) 

Corn-soy ratio -0.003 (0.070) 

 

-0.011 (0.139) 

Animal farm -0.202 (0.151) 

 

-0.110 (0.091) 

Grain farm -0.035 (0.261) 

 

-0.099 (0.118) 

Other farm type -0.363 (0.265) 

 

-0.379 (0.214)t 

Field slope -0.035 (0.054) 

 

0.012 (0.043) 

Soy yield 0.016 (0.073) 

 

0.076 (0.076) 

Corn yield 0.110 (0.013)*** 

 

0.178 (0.077)* 

Loam 0.026 (0.203) 

 

0.180 (0.122) 

Clay -0.152 (0.105) 

 

-0.217 (0.196) 

Silty-loam -0.328 (0.134)* 

 

-0.083 (0.081) 

Sandy-loam 0.080 (0.113) 

 

0.272 (0.148)t 

Other soil type -0.186 (0.137) 

 

0.201 (0.277) 

Farm Characteristics—Social 

   Cropland owned -0.002 (0.064) 

 

0.005 (0.028) 

Days worked off farm 0.000 (0.055) 

 

-0.025 (0.008)** 

Number of employees 0.004 (0.093) 

 

-0.024 (0.035) 

Partnership -0.012 (0.321) 

 

-0.106 (0.133) 

LLC 0.268 (0.060)*** 

 

0.097 (0.098) 

S-corporation 0.056 (0.086) 

 

-0.072 (0.173) 

C-corporation -0.044 (0.148) 

 

-0.025 (0.155) 

Other business structure -0.352 (0.768) 

 

-0.064 (0.380) 

Conservation program participation -0.026 (0.115) 

 

0.232 (0.065)*** 

Working land program participation 0.206 (0.053)*** -0.089 (0.156) 
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Table 3.26. (cont’d).   

Information 

   Info index 0.074 (0.011)*** 0.122 (0.129) 

Associations info source 0.034 (0.062) 

 

-0.076 (0.070) 

Chemical dealers info source -0.008 (0.077) 

 

0.133 (0.028)*** 

Seed dealers info source 0.047 (0.078) 

 

-0.054 (0.050) 

Crop consultants info source 0.114 (0.048)* 

 

0.086 (0.03)** 

Other farmers info source 0.015 (0.089) 

 

-0.064 (0.03)* 

Campus extension info source -0.070 (0.050) 

 

0.027 (0.051) 

Local extension info source 0.093 (0.074) 

 

-0.033 (0.033) 

Attitudes and Values 

   Look after environment 0.002 (0.104) 

 

0.022 (0.066) 

Hunting and fishing environment -0.040 (0.035) 

 

-0.003 (0.018) 

Economic attitude 0.105 (0.045)* 

 

0.009 (0.007) 

Passing on good land -0.029 (0.019) 

 

-0.076 (0.061) 

Farming tradition -0.001 (0.034) 

 

-0.006 (0.053) 

Passing on farm 0.220 (0.065)** 

 

0.058 (0.076) 

Debt aversion 0.006 (0.039) 

 

-0.098 (0.051)t 

Crop insurance use -0.038 (0.044) 

 

0.102 (0.029)*** 

Environmental Awareness 

   Concern ag. contributes to water problems -0.003 (0.043) 

 

0.042 (0.028) 

Erosion impacts 0.055 (0.053) 

 

0.025 (0.062) 

Pest resistances impacts  -0.021 (0.084) 

 

0.042 (0.062) 

Extreme weather impacts 0.043 (0.013)** 

 

0.002 (0.033) 

Warming impacts -0.073 (0.103) 

 

0.001 (0.019) 

Intercept -2.514 (0.323)*** -2.292 (0.779)** 

R-Square 0.237 (0.049)*** 0.31 (0.028)*** 

Chi-Square 679.410*** 

 

677.040*** 

RMSEA 0.033 

 

0.033 

CFI 0.840 

 

0.840 

TLI 0.813   0.813 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

  Note: Binary variable standardization is based on a change from 0 to 1, rather than a one standard deviation change 

as is used for the non-binary variables. 
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Table 3.27. Standardized regression coefficients and standard errors for cover crops (n=814). 

 

Cover crops 

  Estimate (S.E.) 

Individual Characteristics 

 Years farming 0.020 (0.069) 

Education level 0.029 (0.049) 

College ag courses 0.090 (0.053)t 

Knowledge 0.168 (0.059)** 

Value of sales 0.022 (0.027) 

Household income 0.032 (0.040) 

Ag. income 0.037 (0.067) 

Farm Characteristics—Physical 

Cropland area -0.084 (0.044)t 

Corn-soy ratio -0.045 (0.021)* 

Animal farm 0.342 (0.130)** 

Grain farm 0.106 (0.234) 

Other farm type 0.275 (0.120)* 

Field slope 0.034 (0.012)** 

Soy yield -0.021 (0.074) 

Corn yield -0.155 (0.060)* 

Loam 0.074 (0.114) 

Clay 0.091 (0.109) 

Silty-loam -0.185 (0.042)*** 

Sandy-loam 0.033 (0.086) 

Other soil type 0.279 (0.201) 

Farm Characteristics—Social 

Cropland owned -0.040 (0.043) 

Days worked off farm 0.004 (0.090) 

Number of employees -0.017 (0.063) 

Partnership 0.117 (0.105) 

LLC 0.169 (0.048)*** 

S-corporation -0.050 (0.183) 

C-corporation 0.135 (0.189) 

Other business structure 0.234 (0.685) 

Conservation program participation 0.099 (0.083) 

Working land program participation 0.513 (0.099)*** 
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Table 3.27. (cont’d).  

Information 

 Info index -0.054 (0.064) 

Associations info source 0.084 (0.021)*** 

Chemical dealers info source 0.000 (0.038) 

Seed dealers info source -0.044 (0.044) 

Crop consultants info source 0.102 (0.040)* 

Other farmers info source 0.057 (0.039) 

Campus extension info source -0.036 (0.047) 

Local extension info source 0.160 (0.021)*** 

Attitudes and Values 

 Look after environment 0.150 (0.058)* 

Hunting and fishing environment 0.026 (0.080) 

Economic attitude -0.142 (0.050)** 

Passing on good land 0.046 (0.039) 

Farming tradition -0.026 (0.048) 

Passing on farm 0.102 (0.088) 

Debt aversion -0.022 (0.028) 

Crop insurance use -0.056 (0.039) 

Environmental Awareness 

 Concern ag. contributes to water problems 0.075 (0.047) 

Erosion impacts 0.196 (0.017)*** 

Pest resistances impacts  -0.100 (0.038)** 

Extreme weather impacts 0.010 (0.024) 

Warming impacts -0.104 (0.063)t 

Intercept -2.218 (0.896)* 

R-Square 0.338 (0.020)*** 

Chi-Square 681.087*** 

RMSEA 0.033 

CFI 0.841 

TLI 0.814 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

Note: Binary variable standardization is based on a change from 0 to 1, rather than a one standard deviation 

change as is used for the non-binary variables. 

 

 

 

 

 

 



 

150 

 

APPENDIX D: Mplus Code 

ICC Code 

Using WLSMV estimator with binary variable 

USEVARIABLES ARE c1a_use2; 

    MISSING ARE ALL (-99); 

    CATEGORICAL ARE c1a_use2;  

    CLUSTER IS stateansi; 

ANALYSIS: 

    ESTIMATOR=WLSMV; 

    TYPE IS TWOLEVEL;  

MODEL: 

    %WITHIN% 

    %BETWEEN% 

 

Using MLR estimator with continuous variable 

USEVARIABLES ARE c1a_use2; 

    MISSING ARE ALL (-99); 

    CLUSTER IS stateansi; 

ANALYSIS: 

    ESTIMATOR=MLR; 

    TYPE IS TWOLEVEL;  

MODEL: 

    %WITHIN% 

    %BETWEEN% 

 

 

Model Code 

*example using c1d_use2; 

*these models are called _final7_v6 in my dissertation folder for each practice; 

 

DATA: 

    FILE IS "C:\Users\rchdenny\Dropbox\Riva's Dissertation\mplus\mplus8.dat"; 

    NOBSERVATIONS ARE 814; 

VARIABLE: !variable names in NAMES ARE section must match the order of the variables in 

the dataset, in USEVARIABLES ARE they can be in any order; 

    NAMES ARE a5 a7a b6 c2 d1cedu d1ccamp d1cchem d1cseed d1cind d1cfam d1cass d2debt 

d2weal d2inco d2hunt d2envi d2prof d2land d2trad e1fsoil e1fresi e1fextr e1fwarm 

e1ccont e1calga e1chypo e1csoil f4 f7 f8 f9 f10 f11 stateansi IL IN MI OH crpown_pc 

crop2size corn_soy av_corn av_soy wrkldprg crop_ins animal frm_oth employ sole_prop 

partnshp llc s_corp c_corp other_bs loam clay clay_loam silty_loam sandy_loam oth_soil 

info_tot f5_rc yrsfrm c1a_use2 c1b_use2 c1c_use2 c1d_use2 c1e_use2 c1k_use2; 

    USEVARIABLES ARE c1d_use2 yrsfrm f4 f5_rc c2 f9 f10 f11 crop2size corn_soy animal 

a7a frm_oth b6  av_soy av_corn loam clay silty_loam sandy_loam oth_soil crpown_pc f8 

employ partnshp llc s_corp c_corp other_bs a5 wrkldprg info_tot d1cass d1cchem 
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d1cseed d1cind d1cfam d1ccamp d1cedu d2envi d2hunt d2weal d2prof d2inco d2land 

d2trad f7 d2debt crop_ins e1ccont e1calga e1chypo e1csoil e1fsoil e1fresi e1fextr 

e1fwarm; 

    MISSING ARE ALL (-99); 

    CATEGORICAL ARE c1d_use2 e1ccont e1calga e1chypo e1csoil d2weal d2prof d2inco; 

    CLUSTER IS stateansi; 

ANALYSIS: 

    ESTIMATOR = WLMSV; 

    ITERATIONS = 1000; 

    CONVERGENCE = .00005; 

    TYPE IS COMPLEX; !this accounts for the clustering of the data in the standard errors; 

    PARAMETERIZATION = THETA; 

MODEL: 

    ECON_AT BY d2inco d2weal d2prof; 

    WATERCON BY e1ccont e1calga e1chypo e1csoil; 

    e1calga WITH e1chypo; 

    c1d_use2 ON yrsfrm f4 f5_rc c2 f9 f10 f11 crop2size corn_soy animal a7a frm_oth b6  av_soy 

av_corn loam clay silty_loam sandy_loam oth_soil crpown_pc f8 employ partnshp llc 

s_corp c_corp other_bs a5 wrkldprg info_tot d1cass d1cchem d1cseed d1cind d1cfam 

d1ccamp d1cedu d2envi d2hunt ECON_AT d2land d2trad f7 d2debt crop_ins 

WATERCON e1fsoil e1fresi e1fextr e1fwarm; 

    c1d_use2@1; !fixes variance to 1; 

OUTPUT: 

    STDY; 

    STDYX; 

    TECH4; 
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CHAPTER 4: QUESTIONING THE FERTILIZER SAVINGS INCENTIVE FOR BMP 

ADOPTION IN THE NORTH CENTRAL REGION 

 

Agriculture is of the utmost importance to human societies for its production of food and 

fiber (and increasingly fuel), but it is also a source of environmental harm as a producer of non-

point-source pollution to the air and water (Aneja, Schlesinger, and Erisman 2009; Carpenter et 

al. 1998; Drinkwater and Snapp 2007; Lal 1993; Robertson et al. 2013; Robertson and Vitousek 

2009; Uri and Lewis 1998). Nutrients like nitrogen (N) and phosphorus (P) are vital to crop 

production but also create great environmental costs when they leave the farm and enter 

surrounding waterways or the atmosphere, where they contribute to eutrophication and hypoxia 

(“dead zones”) and global climate change respectively (Blesh and Drinkwater 2013; Robertson 

and Vitousek 2009).  

Efforts to reduce non-point-source nutrient pollution from agriculture have long focused 

on getting farmers to voluntarily adopt a range of best management practices (BMPs) either in 

the field to help retain nutrients or outside of fields to intercept nutrients. The retention of 

nutrients by in-field practices means that they have the potential to reduce the amount of 

fertilizer that a farmer needs to apply to get a good crop (Robertson and Vitousek 2009), thereby 

saving farmers money and reducing non-point-source nutrient pollution from agriculture. These 

nutrient savings are commonly assumed to act as an incentive for farmers to use these in-field 

practices and as an off-set for adoption costs, thus reducing the need for outside, particularly 

monetary, incentives (Odum 1984; Robertson and Harwood 2013; Robertson and Vitousek 

2009). However, it is not clear to just what extent farmers actually do reduce their fertilizer use 

when they adopt any of these practices. If farmers are not experiencing tangible savings from the 
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use of these practices, then it is likely that the present incentive system for their use is 

insufficient for encouraging their adoption. 

The present study examines the effects of three in-field practices (cover crops, 

conservation tillage, and no-till) on fertilizer use in the North Central Region of the US using 

county and state-level data. The use of this type of aggregated data, rather than farm-level or 

field-level data, represents an important move towards considering the overall environmental 

effects of agriculture and BMPs. While it is important to understand the farm-level dynamics 

surrounding fertilizer and BMP use, larger scale data lets us evaluate the cumulative effects of 

the agricultural practices of individual farmers. In this case: are enough farmers reducing their 

fertilizer use on their farms by a large enough amount when they use these BMPs to all together 

have a measurable effect on the environment?  

The use of aggregated data also moves the analysis in a different direction than the 

theoretical approaches commonly used to explain the drivers of BMP adoption: the Theory of 

Planned Behavior and related theories (Ajzen 1991; Fishbein and Ajzen 2015), and the Diffusion 

of Innovations Model (Rogers 2003). Variables these approaches have in common, such as 

attitudes towards a practice and personal values, are not easily attainable at the county level. 

Rather, biophysical characteristics become important contextual variables for the individual 

decisions that are aggregated, and important controls for county differences over a multi-state 

area. A coupled natural and human systems approach is used instead to inform the model design, 

which includes both social and biophysical variables. 
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BACKGROUND  

Fertilizer and BMPs 

As previously mentioned, the use of large amounts of concentrated chemical fertilizers, a 

hallmark of contemporary agriculture in much of the “developed world,” has greatly increased 

crop yields, but has also exacerbated the environmental problems from non-point source nutrient 

pollution (Robertson and Vitousek 2009). Nitrogen (N), and Phosphorus (P) are two of the most 

important nutrients that plants need and are the two nutrients that contribute most to non-point 

source nutrient pollution from agriculture, making them the focus of most nutrient management 

efforts (Kleinman et al. 2011; Robertson and Vitousek 2009). Nitrogen in particular is a critical 

nutrient in determining corn grain yields (Mahama et al. 2016), and its many, highly mobile 

forms make it especially challenging to manage (Robertson and Groffman 2015; Robertson and 

Vitousek 2009). 

To maximize profit and minimize environmental harm farmers are currently being 

encouraged to apply fertilizer of all kinds according to the 4R’s: right time, right place, right 

source, and right rate (Bruulsema, Lemunyon, and Herz 2009; Roberts and Johnston 2015; 

Snyder 2017). Applying fertilizer at the right time means applying it in accordance with the 

seasonal needs of the crop to ensure that the nutrients are available when the crop needs it and to 

reduce loss; this can include applying fertilizer in the spring instead of the fall, applying it during 

or after planting, or applying it multiple times. The right place means applying nutrients as close 

as possible to the plants’ roots, and particularly under the soil surface. The right source of 

nutrients refers to the formulation or product used, and particularly for N can include using a 

slow release product or a nitrification inhibitor (Snyder 2017). The right rate refers to applying 

the correct amount of the product to meet but not exceed crop needs, which is facilitated by the 
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use of decision-aids like soil or plant tissue tests that indicate the amount of nutrients available 

and variable rate technology. Some of these, primarily technology-based, practices serve more 

than one purpose, like slow-release products that relate to source and timing, and variable rate 

that relates to place and rate. Due to the interconnectedness of the 4Rs, changes to one means 

that the others should be re-assessed and also perhaps changed accordingly (Bruulsema et al. 

2009). 

In addition to the 4R BMPs discussed above, which are primarily technology-based, 

biologically-based practices function by supporting and enhancing the composition of, and 

biological functions in, the soil to increase nutrient availability and at the same time reduce 

nutrient losses (Blesh and Drinkwater 2013; Drinkwater and Snapp 2007; Robertson et al. 2014; 

Robertson and Vitousek 2009). These practices include crop rotation, off-season cover crops, 

and reduced/conservation tillage or no-till, which all have the potential to increase the amount of 

organic matter in the soil, which in turn has an important function in retaining nitrogen and 

phosphorus and making them available to later crops (Blesh and Drinkwater 2013; Drinkwater 

and Snapp 2007; Robertson and Vitousek 2009; Vandermeer 2011). 

Diverse, multi-year crop rotations, particularly those that include legumes, have been 

shown to increase grain yields over time and to produce high yields with lower external N inputs 

(Coulter et al. 2011; Osterholz, Liebman, and Castellano 2018; Stanger and Lauer 2008), as well 

as reduce N losses (Gardner and Drinkwater 2009). Cover crops, non-harvested crops grown 

between the harvest and planting of cash-crops, not only provide crop rotation benefits, but they 

also add the benefit of living soil cover during the time that the field would otherwise be bare. 

The cover crop takes up available N remaining in the field after the cash crop is harvested, thus 

preventing it from being washed out of the soil over the winter; when the cover crop is killed 
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prior to planting the next cash-crop the N remains in the field and is slowly released as the cover 

crop residue decomposes (Robertson and Vitousek 2009). Similarly to diverse crop rotations, 

cover crops have been shown to reduce if not fully replace the need for additions N inputs 

(Doane et al. 2009; Mahama et al. 2016; Robertson and Vitousek 2009). In addition, the soil 

cover provided by living or dead cover crops also helps reduce soil erosion (Dabney, Delgado, 

and Reeves 2001), and thus retain P (Gentry et al. 2007; Yuan et al. 2018). 

Conservation tillage and no-till represent additional in-field practices29 that can retain 

nutrients and thus reduce the amount of additional nutrients that need to be applied. Conservation 

tillage is typically defined as leaving at least 30 percent residue cover on the soil after planting 

(CTIC 2002) often through the use of a non-inversion plows or harrows (see Chapter 2). No-till 

involves the minimal disturbance of the soil surface and crop residue between harvest and 

planting (CTIC 2002)30. Conservation tillage and no-till have long been shown to reduce soil 

erosion by increasing soil surface roughness and retaining more crop residue on the soil surface 

(Allmaras, Unger, and Wilkins 1985). Reducing soil erosion is a key mechanism for reducing P 

loss, though dissolved P can also be lost through tile drainage (Gentry et al. 2007; Yuan et al. 

2018). Conservation tillage and no-till have also been shown to increase soil organic carbon, 

which increases the amount of N that can be stored in the soil (Grandy et al. 2006; Mazzoncini et 

al. 2011), at least in the upper soil layers (Dolan et al. 2006; Du, Ren, and Hu 2010). 

Conservation tillage and no-till can have additional soil benefits related to soil properties, 

including better water infiltration and retention, and larger and more diverse microbial 

communities that also contribute to soil fertility (Busari et al. 2015; Robertson et al. 2014). 

                                                 
29 There is also a significant technological aspect to tillage, but the primary feature that relates to nutrient retention is 

based in the soil qualities that result, rather than the direct effect of the specific tool. 
30 A related practice commonly called “strip-till” is often included in the no-till category, where strips of up to one-

third of the row width may be disturbed to facilitate planting and fertilizer application (CTIC 2002; NRCS 2012).  



 

162 

 

The cost of implementing BMPs is a potential barrier to their use. Conservation tillage 

and no-till offer direct savings through reduced fuel use and equipment wear, in addition to soil 

and nutrient benefits, though these benefits are not always clear enough to farmers to entice them 

to use those practices (Andrews et al. 2013). However, cover crops have the up-front cost of the 

seed, as well as adding an additional activities and management to plant and kill them (Plastina 

et al. 2018; Robertson and Vitousek 2009; Singer, Nusser, and Alf 2007) and farmers have been 

found to be uncertain about the benefits they may gain from using them (Arbuckle and Roesch-

McNally 2015). The high potential costs, both up-front and indirect, especially for cover crops 

but also for conservation tillage and no-till, combined with uncertainty in benefits indicates the 

importance of having an accurate understanding of the benefits that these practices may or may 

not provide to farmers in the form of fertilizer savings. 

While the use of 4R practices and biological in-field BMPs have been a common topic of 

inquiry in the BMP adoption literature, the actual rates of fertilizer application are rarely 

considered as an outcome variable of interest (Houser et al., in preparation). This is an important 

omission from the body of BMP adoption literature, as fertilizer rate is just as important 

(economically and environmentally) as the other 4Rs and is highly related to non-point-source 

nutrient loss from agriculture (Ribaudo et al. 2011). The key assumption is that farmers want to 

use these tools to reduce their fertilizer rate, but this assumption has not been systematically 

tested.  

Weber and McCann (2015:392) report: “Previous 2001 and 2005 ARMS data showed 

that corn farmers who use soil testing can reduce overall commercial fertilizer application 

compared with nonadopters … If N soil testing similarly reduced N applications in excess of 

crop needs, this would improve water quality” (italics added). They do not, however, discuss 
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whether farmers actually do reduce their nitrogen applications when using soil testing. Henke 

(2006) reports that very few California vegetable growers even adopted a quick test for nitrogen 

that was demonstrated to allow for reductions in fertilizer without reducing yields, let alone 

actually reduced their fertilizer application because of it. However, Reimer, Thompson, et al. 

(2012) report reduced input costs as a motivating factor for conservation adoption in their study 

of an Indiana watershed, suggesting that at least some farmers do adjust their fertilizer use as a 

result of using conservation practices. 

The question of whether or not BMPs reduce actual fertilizer use is an important one 

since an assumption of cost reduction is highly involved in assumptions of farmer motivations 

for practice adoption, and thus what other incentives might be needed to encourage a farmer to 

adopt them. The potentially false assumption is that farmers will save money on fertilizer when 

they use conservation practices and that these savings will substantially offset the cost of 

adopting the practice (Odum 1984; Robertson and Harwood 2013; Robertson and Vitousek 

2009), thereby assuming a reduction in the incentive needed. To be clear, agronomically the 

conservation practices do reduce fertilizer needs, but the question is how much do farmers 

believe this to be true and to what extent does that offset their perceived need for applying extra 

fertilizer. 

Coupled Natural and Human Systems 

A coupled human and natural system (CHANS), also often called a social-ecological 

system (SES), is most basically a “systems in which human and natural components interact” 

(Liu, Dietz, Carpenter, Folke, et al. 2007:639). While the two terms have somewhat different 

origins and disciplinary tendencies, the common defining characteristics of both are reciprocal 

effects and relationships across time and space, and the terms are frequently used 
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interchangeably (An and López-Carr 2012; Liu, Dietz, Carpenter, Alberti, et al. 2007; Liu, Dietz, 

Carpenter, Folke, et al. 2007). In studies that take this broadly defined CHANS/SES approach 

(henceforth referred to a coupled natural and human [CNH] system), the researcher(s) bring 

ecological variables into the heart of the study, especially allowing them to influence social 

actions and systems, either as exogenous variables or as endogenous variables as part of a 

feedback loop (see Figure 4.1). So far, few researchers have explicitly taken a CNH approach to 

understanding BMP use in industrialized agriculture, though Stuart et al. (2015) have made the 

case for doing so, and other studies have incorporated social and biophysical factors as drivers of 

human actions without referring to CHANS and without considering feedback effects (Blesh and 

Wolf 2014; Duff et al. 1992; Halbrendt et al. 2014; Houser, Stuart, and Carolan 2017; 

Stonehouse 1996). 

 
Figure 4.1. Diagram of feedback of CHN feedback in an agricultural system from Stuart et al. 

(2015:573). 
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For example Duff et al. (1992) and Stonehouse (1996) conceptualize a linked cultural and 

biophysical system where individual farmers and their farms are embedded in cultural and 

institutional settings and regional biophysical settings respectively. Stonehouse, more than Duff 

et al., conceptualizes farmer decision making as being dynamically embedded in this larger 

setting and as being both influenced by and influencing this larger context, that is, he recognizes 

the presence of feedbacks. Neither study makes any attempt to empirically test the conceptual 

models. More recently, Halbrendt et al. (2014), Blesh and Wolf (2014), and Houser et al. (2017) 

have also integrated social and biophysical factors in empirical studies, using mental models and 

qualitative interviews respectively. All three consider how the biophysical context of the 

agricultural system of interest influences farmers’ perceptions and farming practices.  

In the present study, I follow this tradition, but use a quantitative analysis. I include the 

environmental context in which farmers are operating and making decisions as an important 

control for their fertilizer use—both directly and indirectly through influencing corn yield.  

 

RESEARCH PROBLEM AND QUESTIONS 

 The core question of this research is: Does the use of BMPs reduce fertilizer use? 

Anecdotally there are examples of this happening (Reimer, Thompson, et al. 2012), but it does 

not appear to have been studied systematically, so it is unclear how common or widespread this 

result is. More specifically: Are enough farmers reducing their fertilizer use enough for it to 

show up at a great-than-farm-size scale? The implications of this question are two-fold: 1) are 

the fertilizer reductions great enough to function as an incentive for farmers to adopt the practice 

and/or offset the cost of adoption?, and 2) are the fertilizer reductions enough to reduce nutrient 

loads to local waterbodies?  
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Fertilizer rate is an important aspect of the potential for nutrient losses from agricultural 

fields to local waterbodies, but has rarely been the outcome of interest in analyses (Houser et al. 

in preparation). Reducing fertilizer rates to just meet crop needs is an important method of 

reducing nutrient losses to the environment and can potentially be done without reducing crop 

yields (Davis et al. 2000; Hoben et al. 2011; McSwiney and Robertson 2005; Moriasi et al. 2013; 

Rocha, Roebeling, and Rial-Rivas 2015; Teshager et al. 2017).  

Much agricultural research is done at the farmer scale, and this seems to be particularly 

true of research on the adoption of soil and water conservation practices where a focus on 

attitudes as explanations for conservation practice adoption or conservation program 

participation is common (cf. Arbuckle et al. 2013; Arbuckle and Roesch-McNally 2015; A. 

Reimer and Prokopy 2014; Reimer, Thompson, et al. 2012; Reimer, Weinkauf, et al. 2012; 

Roesch-McNally, Gordon Arbuckle, and Tyndall 2017). However, the individual scale of these 

studies limits their usefulness when it comes to understanding the potential for these practices to 

have an effect at larger scales such as watersheds. While the decisions to adopt one or more 

conservation practices and how much fertilizer to apply are individual decisions this analysis is 

at the county-level. There are two reasons for the choice of scale used: 1) data availability, and 2) 

interest in the prevalence and potential impact of the phenomena. Using county level data allows 

for a large geographic sample, and to study the cumulative patterns of farmer management 

decisions to see if reducing fertilizer due to adopting a conservation practice happens often 

enough to be detected at the county level.  

If conservation practice use is not found to be significantly related to fertilizer use at the 

county-level, then it is unlikely that the conservation practices considered are having a 

significant impact in reducing the overall nutrient loss from agriculture at a watershed scale at 
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their current rate of use. An insignificant result would not necessarily indicate a lack of 

relationship between the conservation practices and fertilizer use. County-level data cannot tell 

us what is happening at the individual-level—for example we cannot distinguish between 

farmers not reducing their fertilizer use when using the conservation practices, and farmers 

substantially reducing their fertilizer use when using the conservation practices but doing so on 

too small a portion of the acres in the county to have a significant effect on the county total. 

 

METHODS AND ANALYSIS 

Data and sample 

The data for this analysis come from the 2012 Census of Agriculture (“AgCensus” 

hereafter) and from the PRISM Climate Group at Oregon State University 

(http://prism.oregonstate.edu) as further described below. The 2012 AgCensus is the first one to 

included questions on specific conservation practices, providing national data on the number of 

farms using each practice, as well as the number of acres under each one. These much more 

specific measures are an important step forward in the study of conservation practice adoption 

and use by being more specific than a simple binary of adopt or did not adopt that ignores the 

extensiveness of practice use; a step that was called for by Reimer et al. (2014).  

The sample used is the counties of the twelve North Central US states: Illinois, Indiana, 

Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, 

and Wisconsin. Thirteen counties had to be excluded from the analysis due to either a lack of 

fertilized cropland or missing data31, leaving a final sample of 1,042 counties.  

In its reporting of the AgCensus, NASS withholds values in situations where the variable 

value is too close to the value of a specific operation (NASS 2012a). These missing, but not truly 

                                                 
31 See Appendix C for description of the excluded counties and descriptive statistics by state. 

http://prism.oregonstate.edu/
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missing, values were replaced in the exogenous variables using the agriculture district32 mean for 

that variable (see Appendix A for details). In the one case where there were no observations for 

an agriculture district, the average of the counties immediately adjacent to the agriculture district 

were used instead (see Appendix A for details). 

Variables 

Outcome Variables. The main outcome variable of interest, average fertilizer use, is 

measured in dollars spent on fertilizer, including lime and soil conditioners per acre of fertilized 

cropland. The use of this dollar-based proxy is necessitated by the nature of the data available, 

and the complexity inherent in the large number of fertilizer products available containing 

different combinations and concentrations of nutrients.  

Independent Variables. The key independent variables in this analysis are the use of 

conservation tillage, no-till and cover crops, operationalized in this analysis as the proportion of 

cropland acres where each practice was used33. Conservation tillage is defined in the AgCensus 

as leaving at least 30 percent residue cover (NASS 2012c) and excludes no-till (NASS 2012b). 

No-till is described as “using no-till or minimum till” (NASS 2012a:B-13). Cover crops are “a 

crop planted primarily to manage soil fertility, soil quality, water, weeds, pests, diseases, or 

wildlife” (NASS 2012a:B-13), and do not include acres enrolled in the Conservation Reserve 

Program (CRP).  

                                                 
32 Agriculture districts are sub-state designations made by USDA NASS. There are 9 agriculture districts in each 

state in the sample (https://www.nass.usda.gov/Charts_and_Maps/Crops_County/boundary_maps/indexgif.php). 
33 This formulation of independent variables as ratios was necessitated by the need to control for differences in total 

county size and more importantly the total area of farmland and cropland in each county without the introduction of 

the extreme multicollinearity that would result from including even one of these area measures as an independent 

variable along with total acres or counts.  
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Nineteen county-level control variables are included in the analysis and include farmer 

and farm characteristics, crop choice, and climate characteristics; all are group-mean centered34. 

The included variables were selected based on variables available in the AgCensus, literature on 

practice adoption, and agronomic principles. The farmer and farm characteristics are average 

years of farming experience, the portion of farmers who farm full time (full time famer ratio), 

median farm size, the ratio of rented county farmland to total county farmland (rented land 

ratio), the ratio of county acres under crop insurance to total county cropland acres (crop 

insurance acres ratio), and the ratio of irrigated county acres to total county cropland acres 

(irrigated acres ratio). Experience, farming full time, farm size, and amount of rented land are 

all common controls for BMP adoption analyses (Baumgart-Getz, Prokopy, and Floress 2012; 

Kara, Ribaudo, and Johansson 2008; Prokopy et al. 2008; Wauters and Mathijs 2014). Insurance 

and irrigation use are less common variables but both represent aspects of risk tolerance 

(Baumgart-Getz et al. 2012; Prokopy et al. 2008; Wauters and Mathijs 2014), and irrigation is an 

important aspect of growing conditions in conjunction with precipitation. Average farmland 

value is included as a measure of soil quality that is expected to have a positive effect on both 

corn yield and fertilizer spending, as high-quality soils have higher potential yields but only with 

sufficient fertilization. 

Because fertilization varies by crop (Kara et al. 2008; Wade, Claassen, and Wallander 

2015), and some crops and livestock can contribute to soil fertility and thus influence fertilizer 

use (Robertson and Vitousek 2009), I include crop and livestock variables in the form of ratios of 

county cropland where they were grown and density of animals. Corn acres ratio is the 

                                                 
34 Corn yield is not centered because it is an endogenous variable, but controlling for state average corn yield (by 

including path between state corn yield and county fertilizer use) produces the same effect—effectively partitioning 

the effect of corn yield on fertilizer use between the county and the state (Bell and Jones 2015). See Appendix C for 

explanation of centering decisions. 
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proportion of cropland acres that was harvested for corn grain, and is considered on its own 

given that corn is a very common crop in the region and is given high rates of N fertilizer 

(Ribaudo et al. 2011). The legume acres ratio is the ratio of county acres in a legume, either soy 

beans or alfalfa, and is included as a control for fertilizer use, because legumes can contribute 

nitrogen to the cropping system (Robertson and Vitousek 2009) and because legume crops are an 

indication of a more diverse crop rotation, which can improve yield and reduce fertilizer needs 

(Coulter et al. 2011; Osterholz et al. 2018; Stanger and Lauer 2008). Three livestock variables, 

operationalized as density of animals, are included to control for manure use that could replace 

purchased fertilizers (Robertson and Vitousek 2009). The livestock variables are the average 

number of animals per acre of county cropland for poultry, including broilers, layers, and turkeys 

(poultry density), cattle, including beef cattle on feed and dairy cattle (cattle density), and hogs 

(hog density). The different kinds of animals are considered separately, since the volume and 

composition of manure varies by animal type.  

Lastly, three climate variables are included to control for the normal35 climatic conditions 

across the region and the effects of the 2012 drought. The normals are used because they 

represent the typical growing conditions. The normal annual corn growing degree days36 is the 

number in thousands for the county, the normal growing season precipitation (April-September) 

is the normal precipitation in inches for the county, and the 2012 growing season precipitation is 

the April-September 2012 precipitation for the county.   

                                                 
35 The “normal” is the 30-year average. For this analysis normals were calculated from daily temperature and 

precipitation data from 1982-2011, in accordance with NOAA description at https://www.ncdc.noaa.gov/data-

access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data. See Appendix A for 

more detail.  
36 Corn growing degree days are a measure of the accumulated heat units in the temperature range in which plant 

growth occurs. For corn this temperature range is 50 °F to 86 °F (https://ndawn.ndsu.nodak.edu/help-corn-growing-

degree-days.html). See Appendix A for more detail.   

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data
https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html
https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html
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At the state level, average fertilizer use in dollars per acre is used as a control for county-

level fertilizer use, and state average corn grain yield in bushels per acre is used as a control for 

county-level corn yield. Both the state-level variables are grand-mean centered as is standard in 

multilevel models (Enders and Tofighi 2007)37.  

 
Figure 4.2. Conceptual Multilevel SEM diagram of fertilizer use. 

 

Mediating variable. The mediating variable is average corn yield in bushels per acre. 

This variable, as a mediator, functions as both an outcome and an independent variable in the 

model. Expected yield is a guide that farmers use when determining how much fertilizer to 

apply. Corn yield is expected to be highly driven by soil quality, which is measured by the 

average farmland value. While corn yield is measured for the 2012 growing season, it is used in 

the model as a measure of the typical yield expected and which is thus the basis for the fertilizer 

                                                 
37 See Appendix C for explanation of centering decisions. 
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used. The growing season precipitation for 2012 is used as a control for corn yield to account for 

the effects of the 2012 drought that affected much of the study area. 

Analysis 

 For this analysis I use a multilevel, random intercept, structural equation model (SEM) 

with county-level and state-level data. The state-level data is included in the intercept portion of 

the county-level equations. The key feature of a multilevel model is that it can include multiple 

random effects and accommodate data that includes variables at multiple levels (i.e., it is 

grouped or nested in a hierarchy) and not only control for but explain the variation that exists at 

those levels. Failing to account for the nested structure of one’s data and simply using an OLS 

model to analyze it typically results in underestimated standard errors, which increases the 

likelihood of type-1 errors (Bell and Jones 2015). The essential feature of nested, grouped or 

hierarchical data is that the observations are not all independent of each other; in other words, 

some are more alike than others. In the present case the grouping is related to counties sharing a 

state context (Jones and Duncan 1998). In this model, the multilevel features of the model that 

relate to the data structure are combined with the features of a structural equation model (SEM) 

to handle the specification of the desired conceptual relationships. 

SEM uses multiple, simultaneously estimated regression models and partitions variance 

among the different parts of the model. A notable feature of SEM is that it developed in-part 

from path modeling (Schumacker and Lomax 2010), so it has an integral visual element that 

makes it unique within the family of regression analysis. As the name suggests, SEM has a 

structural element and can accommodate multiple relationships between multiple variables 

including indirect effects, and reciprocal and feedback relationships, which makes it particularly 

well suited to modeling CNH systems as well as agricultural systems where many variables are 
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related to each other. SEM has not been used much to study agriculture or CNH systems, though 

its value for the latter purpose has been recognized (Fan et al. 2016; Marquart-Pyatt, Jorgenson, 

and Hamilton 2015), as well as its use as a communication tool in interdisciplinary research 

groups (Smith et al. 2014). SEM has also been recognized as being useful for modeling 

ecological systems (Fan et al. 2016; Grace et al. 2010).  

The effect of conservation practices on fertilizer use is the key outcome of interest, but 

the model includes corn yield as a mediator. The model also includes biophysical climate data 

among the control variables of corn yield and fertilizer use. Restricting the sample to corn-heavy 

states simplifies the analysis as the use of conservation practices and nitrogen fertilizer use and 

practices, especially rate and timing, are highly crop specific (Ribaudo et al. 2011; Ribaudo, 

Livingston, and Williamson 2012; Wade et al. 2015).  

 

RESULTS AND DISCUSSION 

 Table 4.1 provides the descriptive statistics for the sample used in the analysis (see Table 

4.5 in Appendix C. for select descriptives by state). Of particular interest in Table 4.1 are the 

average use of BMPs. On average, conservation tillage is used on 22 percent of cropland acres in 

a county but ranges up to just over 50 percent at the maximum. No-till has an even higher 

average rate of use at 28 percent, with a maximum close to 80 percent. Cover crops are only used 

on 3 percent of cropland acres on average, and 32 percent at most. Crop rotation is indicated by 

the distribution of crops grown, and a balanced corn-soy rotation appears to be quite common on 

average as indicated by the equal corn and legume acres ratios (32 percent). 



 

 

 

Table 4.1. Uncentered descriptive statistics for analysis variables (n=1042 unless otherwise 

noted). 

  Mean Std Dev Minimum Maximum 

Outcome Variables 

    Average fertilizer use ($/acre) a 122.994 44.118 33.214 784.530 

Average corn yield (bu./acre) b 103.479 39.112 14.000 193.722 

Farmer and Farm Characteristics 

    Rented land ratio 0.446 0.136 0.035 0.821 

Average farmland value ($1000/acre) 3.868 2.057 0.420 17.113 

Tile acres ratio 0.189 0.233 0.000 0.844 

Full-time farmer ratio 0.510 0.096 0.249 0.838 

Average years of farming experience 26.827 1.917 18.000 33.700 

Median farm size 229.014 325.380 2.000 3900.000 

Irrigated acres ratio 0.067 0.141 0.000 0.875 

Crop insurance acres ratio 0.617 0.221 0.000 2.253 

Crops 

    Corn acres ratio 0.315 0.181 0.000 0.771 

Legume acres ratio 0.321 0.133 0.001 0.638 

Poultry density 1.589 8.782 0.000 193.220 

Cattle density 0.054 0.063 0.000 0.343 

Hog density 0.194 0.345 0.000 3.730 

BMPs 

    Conservation tillage ratio 0.221 0.114 0.000 0.512 

No-till ratio 0.277 0.185 0.000 0.787 

Cover crops ratio 0.026 0.029 0.000 0.318 

Climate 

    Normal growing season precipitation 21.622 3.851 10.506 30.396 

2012 growing season precipitation 16.042 4.202 3.540 32.960 

Normal annual growing degree days (in 1000s) 3362.570 663.122 1853.850 4993.650 

State-level Variables 

    Average state fertilizer use ($/acre) 121.721 24.870 72.346 150.198 

Average state corn yield (bu./acre) 111.382 24.586 68.545 156.041 

Notes:  

    a. n=1008 

    b. n=1014 

     

 Results are presented in Table 4.2, organized by endogenous variable. The 

unstandardized coefficients of the ratio variables can be meaningfully interpreted by considering 

a tenth of a unit change (i.e., a 10 percent change in area) in the independent variable ratio and in 
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the outcome variable unit. For example, a 0.1 unit increase in the irrigated acres ratio in a county 

is associated with a 12.3 bushel per acre higher average corn yields. 

Average corn yield is significantly and positively predicted by the average farmland 

value, the cattle density, the irrigated acres ratio, and the tile acres ratio, which are all consistent 

with expectations. Higher value land produces more corn, while ensuring sufficient water 

through irrigation and sufficient drainage through tile drainage also contributes to higher corn 

yields. Interestingly, cattle density is associated with higher corn yields, while hog density is 

associated with lower corn yields, though this could reflect the growing conditions where hog vs 

cattle production is favored. Cover crops are significantly associated with lower corn yields, 

though it should not be presumed that cover crops cause lower corn yields as they may be being 

grown more in areas that have more challenging growing conditions and thus lower corn yields 

to start with. Tillage practices did not have a significant effect on corn yield. The average state 

corn yield is a significant and positive predictor of county corn yield as is expected.  

Table 4.2. Direct effect coefficients and standard errors from multilevel structural equation 

model with random intercepts for 12 states, 2012 (n=1042). 

  Coefficient (S.E.) Standardized Coefficient R2 

Average corn yield (bu./acre)  

  

0.439 

Average farmland value ($1000/acre) 2.885 (1.395)* 0.130 (0.062)* 

 Average years of farming experience 0.629 (0.545) 0.035 (0.030) 

 Cattle density 70.701 (35.494)* 0.112 (0.053)* 

 Conservation tillage ratio 20.494 (15.496) 0.065 (0.048) 

 Cover crops ratio -124.364 (49.378)* -0.096 (0.038)* 

 Full-time farmer ratio 29.096 (19.007) 0.073 (0.051) 

 Hog density -3.607 (1.18)** -0.033 (0.010)** 

 Irrigated acres ratio 123.495 (24.67)*** 0.409 (0.068)*** 

 Legume acres ratio -3.922 (16.759) -0.014 (0.061) 

 Normal annual growing degree days -0.012 (0.009) -0.109 (0.080) 

 No-till ratio -23.016 (14.962) -0.111 (0.075) 

 Poultry density 0.000 (0.071) 0.000 (0.020) 

 Tile acres ratio 53.609 (15.053)*** 0.287 (0.075)*** 

 2012 growing season precipitation 0.506 (0.554) 0.053 (0.058) 

 Residual variance (within) 531.025 (51.897)*** 0.561 (0.048)*** 
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Table 4.2. (cont’d).   

State-level effects 

 

0.953 

Average state corn yield (bu./acre) 0.989 (0.040)*** 0.976 (0.014)*** 

 Intercept 104.398 (1.651)*** 4.396 (0.868)*** 

 Residual variance (between) 26.437 (11.975)* 0.047 (0.028)t   

Average fertilizer use ($/acres)  

  

0.342 

Average corn yield (bu./acre) 0.385 (0.078)*** 0.321 (0.072)*** 

 Average farmland value ($1000/acre) 13.235 (7.347)t 0.498 (0.194)* 

 Average years of farming experience 1.474 (1.154) 0.068 (0.044) 

 Cattle density -97.07 (49.332)* -0.129 (0.057)* 

 Conservation tillage ratio -27.929 (18.517) -0.074 (0.048) 

 Corn acres ratio -1.828 (43.490) -0.006 (0.148) 

 Cover crops ratio 219.191 (106.027)* 0.142 (0.066)* 

 Crop insurance acres ratio -0.108 (13.874) 0.000 (0.064) 

 Full-time farmer ratio -21.743 (29.799) -0.046 (0.059) 

 Hog density -5.396 (4.009) -0.042 (0.026) 

 Legume acres ratio -53.518 (20.512)** -0.163 (0.068) 

 Median farm size 0.009 (0.006) 0.063 (0.044) 

 Normal annual growing degree days 0.022 (0.009)* 0.168 (0.071)* 

 Normal growing season precipitation 1.567 (0.966) 0.099 (0.075) 

 No-till ratio -26.011 (14.376)t -0.105 (0.067) 

 Poultry density 0.107 (0.086) 0.025 (0.023) 

 Rented land ratio -94.080 (43.533)* -0.276 (0.091)** 

 Residual variance (within) 895.957 (294.11)** 0.658 (0.041)*** 

 State-level effects 

 

0.926 

Average state fertilizer use ($/acre) 0.956 (0.066)*** 1.007 (0.057)*** 

 Average state corn yield (bu./acre) -0.194 (0.080)* -0.185 (0.093)* 

 Intercept 119.765 (2.225)*** 4.868 (0.956)*** 

 Residual variance (between) 44.724 (24.553)t 0.074 (0.052)   

Chi-square 13.567 

  Chi-square p-value 0.139 

  Root mean square error (RMSEA) 0.022 

  Comparative fit index (CFI) 0.980 

  Tucker-Lewis index (TLI) 0.901     

t p < 0.1, * p < 0.05 , ** p < 0.01 , *** p < 0.001 

 Note: Estimator used is maximum likelihood estimation with robust standard errors in Mplus8. County-level 

exogenous variables are group-mean centered; state-level variables are grand-mean centered. 

 

 Because the model includes a mediator, the interpretation of the fertilizer use coefficients 

(the direct effects) only provides part of the story, so I discuss these results briefly before 

discussing the total effects on fertilizer use. Average county-level fertilizer use is significantly 
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predicted by average county corn yield, cattle density, cover crop ratio, legume ratio, normal 

annual growing degree days, and the rented land ratio. Average corn yield, cover crops, and 

normal annual growing degree days are all positively and significantly associated with county 

fertilizer use, while cattle density, legume ratio, and the rented land ratio are all negatively and 

significantly associated with county fertilizer use. Average farmland value and the ratio of no-till 

acres are marginally significant with average farmland value having a positive effect and no-till 

having a negative effect. County-level fertilizer use is also positively predicted by the average 

state fertilizer use.  

The effect of state corn yield on county-level fertilizer use is included in the model to 

partition the effect of corn yield on fertilizer use between the county and the state levels, since 

the county corn yield variable cannot be centered like the exogenous variables in the model, and 

it is the difference between the county-level and state-level effects of corn yield on county 

fertilizer use (Bell and Jones 2015). The effect of the state corn yield on county fertilizer use can 

be calculated in this case by adding the county-level corn yield effect (0.385) and the state corn 

yield coefficient (-0.194) resulting in the actual effect of state corn yield on county fertilizer use 

being 0.191.  

Because it is a two-level model, variation in the outcome variables exists at both levels. 

The model explains 43.9 percent of the observed county-level variation in county-level corn 

yields. 37.5 percent of the variation in the corn yield data exists at the state-level38 and the R2 

value for the state-level effects describes the portion of that variation that is explained by the 

state-level variables. In this case 95.3 percent of the 37.5 percent of variation in county corn 

yield is explained by the average state corn yield. The model explains 34.2 percent of the 

observed county-level variation in county-level fertilizer use. The ICC for fertilizer use is 0.326, 

                                                 
38 This measure is the intraclass correlation coefficient (ICC). 
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so the state-level predictors explain 92.6 percent of the 32.6 percent of variation in county 

fertilizer that is at the state level. Over-all model fit is very good with a non-significant chi-

square, an RMSEA that is smaller than 0.05, and a CFI that is larger than 0.95, while the TLI is 

larger than 0.9 (West, Taylor, and Wu 2012). 

Given the mediating position of corn yield in the model, the direct effects on county 

fertilizer use given in Table 4.2 are of limited use, so the standardized total effects that combine 

the direct effect on fertilizer use with the indirect effect on fertilizer use that works through corn 

yield are presented in Table 4.3. The results show that use of conservation tillage has no 

significant total effect on fertilizer use, while cover crops and no-till have only a marginally 

significant total effect on fertilizer use. For cover crops the positive direct effect on fertilizer use 

is off-set by the negative effect on corn yield. The negative direction of the total effect of no-till 

on fertilizer use is the direction that the agronomic findings suggest should be there though and 

thus weakly supports the assumption that no-till can save farmers money, not only through saved 

time and fuel from less tillage but also through fertilizer use. However, the positive effect 

direction of cover crops on fertilizer use, does not lend any support to the assumption that cover 

crops can save farmers money on fertilizer.  

Among the control variables, average corn yield, average farmland value, the irrigated 

acres ratio, and the tile acres ratio all have significant and positive total effects on fertilizer use. 

The effects of corn yield and farmland value are consistent with expectations. The effects of 

irrigation and tile were less expected as they are coming entirely through their effect on corn 

yield, as their directs effects on fertilizer use were not included in the model. The total effects of 

farming experience, and normal annual corn growing degree days are positive but marginally 

significant. 
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Table 4.3. Standardized, county-level, total effects on fertilizer use per acre. 

  Coefficient (S.E.) 

Average corn yield (bu./acre) 0.321 (0.072)*** 

Average farmland value ($1000/acre) 0.539 (0.190)** 

Average years of farming experience 0.079 (0.042)t 

Cattle density -0.092 (0.050)t 

Conservation tillage ratio -0.053 (0.051) 

Corn acres ratio -0.006 (0.148) 

Cover crops ratio 0.111 (0.063)t 

Crop insurance acres ratio 0.000 (0.064) 

Full-time farmer ratio -0.022 (0.062) 

Hog density -0.052 (0.024)* 

Irrigated acres ratio 0.131 (0.031)*** 

Legume acres ratio -0.168 (0.063)** 

Median farm size 0.063 (0.044) 

Normal annual corn growing degree days 0.133 (0.080)t 

Normal growing season precipitation 0.099 (0.075) 

No-till ratio -0.141 (0.075)t 

Poultry density 0.025 (0.028) 

Rented land ratio -0.276 (0.091)** 

Tile acres ratio 0.092 (0.034)** 

2012 growing season precipitation 0.017 (0.019) 

t p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

Note: Estimator used is maximum likelihood estimation with robust standard errors in Mplus8. All variables listed 

are effectively group-mean centered. 

 

 Hog density, legume ratio and rented land all have negative total effects on fertilizer use. 

That the legume ration decreases fertilizer spending is consistent with the agronomic literature 

on crop rotations and leguminous properties. Interestingly the total effect of hog density is 

negative and significant, while the negative effect of cattle density on fertilizer use is balanced 

by its positive effect on corn yield which in turn is related to increased fertilizer spending, 

resulting in cattle density having a non-significant total effect. A similar situation occurs for 

cover crops, where the positive direct effect on fertilizer use is off-set by the negative effect on 

corn yield to result in a marginally significant total effect on fertilizer use. Higher proportions of 

rented land have a negative and significant total effect on fertilizer use, which is generally 
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consistent with Prokopy et al. (2008), but inconsistent with Baumgart-Getz et al. (2012), though 

these studies are based on general BMP use, in which fertilizer rate is not typically included. 

Based on unpublished interviews I expect that this negative effect is the result of farmers not 

wanting to “build up” the land they rent through higher fertilizer applications. 

The lack of significant total effect of conservation tillage, no-till and cover crops, is not 

as expected, but important lessons can still be learned from this analysis. The big one is the 

potential, indicated by the significant direct effects and the marginally significant total effects, 

for cover crops to increase fertilizer use. Dunn et al. (2016) reported that farmers in their national 

2013 survey thought that costs of cover crops and their reduction in yield in the following cash 

crop were “somewhat limits” to the adoption of cover crops in their area. It is possible that in 

order to try to avoid reductions in the following crop that farmers are tending to apply more 

fertilizer than they otherwise would. Even a slight inclination by farmers to apply more fertilizer 

when using cover crops would have large implications for not only the actual but perceived costs 

of using cover crops and with that the incentives needed to effectively promote their use for their 

other benefits. 

 

CONCLUSION 

 The primary goal of this analysis was to see if greater use of three BMPs was related to a 

decrease in the use of fertilizer at the county-level. However, I found no significant reduction in 

fertilizer use as a result of more prevalent use of either of the three practices. As previously 

mentioned, because this is an analysis of county-level averages care should be taken not to 

extend these findings to the individual-level (an ecological fallacy). As such, while the result is a 

bit disappointing from a sustainable agriculture standpoint, it does not rule-out the practices 
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having a fertilizer reducing effect at the individual farm-level. Care should also be taken not to 

over interpret the implication of causal effects in the model. For instance, while conservation 

practices precede both yield and fertilizer use in this model, this does not mean that the use of 

these conservation practices causes a reduction in yield, since we do not know what yield was 

prior to the use of the practices; it may be that farmers are more likely to use cover crops and no-

till on lower yielding fields where they are trying to maximize yield by applying relatively more 

fertilizer.  

 
Figure 4.3. Yield response graph (Vanotti and Bundy 1994:184). 

 

The size of the effect of corn yield on fertilizer use is relatively small, which may be due 

to fertilizer and yield having a non-linear relationship, combined with average county fertilizer 

use falling near the optimum amount by virtue of being an average. At the arrows in the yield 

response curve in Figure 4.3, the slope of the yield to input graph is relatively shallow, and a 
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0.385 unit relationship seems very reasonable. In addition, the fertilizer use variable is not corn 

specific, thus diffusing some of the potential effect. 

Water is clearly a key piece of yield and fertilizer use, with normal growing season 

precipitation, irrigation and tile drainage all having important effects on fertilizer use. Irrigation 

and tile both have substantial positive effects on corn yield that carry through to significant total 

effects on fertilizer. Tile lines are a major way that both N and P leave fields, so it is notable that 

tile is associated with greater fertilizer spending and suggests that there might be a positive 

feedback between fertilizer use and tile drainage. The 2012 growing season precipitation is an 

important control for the effects of the 2012 drought, but the effects appear to be spotty given the 

lack of significant effect on county average corn yield in 2012 even controlling for irrigation.  

 Future work along the lines of this analysis would be benefited by more precise data—

such as fertilizer use on corn rather than general fertilizer use—and additional waves of data at 

the county level. The release of the 2017 AgCensus data in early 2019 will make it possible to 

consider temporal variation in addition to the spatial variation considered in this analysis. Using 

farmer survey data (either from a private survey or the USDA Agricultural Resource 

Management Survey [ARMS]) to consider the relationships from this model at the farmer-level 

would also be an avenue for future work, as would scaling up further to the watershed scale, 

where measures of water quality could be included as an outcome of interest to see how 

conservation practices and fertilizer use affect water quality singularly and together and how 

water quality might feedback to influence the use of conservation practices. 

 The county-level used in this analysis could also be used to model the drivers of the three 

conservation practices. I attempted to incorporate the three conservation practices as mediators in 

the current model of fertilizer use but given the number of variables available there were not 
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enough degrees of freedom to estimate that large a number of parameters. The contexts that 

relate to the wider spread use of the practices could be estimated separately or as a seemingly 

unrelated regression model with the three practice-use ratio variables as correlated outcomes. 

 The effect of corn yield on fertilizer use raises some questions of order and causality. The 

relationship between corn yield and fertilizer is potentially complicated by having a reciprocal 

effect, since logically yield is a function of fertilizer use. In this model yield is being used as a 

proxy for expected yield, and thus as a predictor of fertilizer use. However, a non-recursive 

model with reciprocal effects between corn yield and fertilizer use was considered to see if the 

effect in the model was being suppressed by a negative effect going in the opposite direction. 

The effect from fertilizer use to corn yield was negative but not significant, suggesting that the 

relationship between these variables used in the model is appropriate. 

In sum, the use of conservation tillage, no-till and cover crops does not appear to have an 

effect on fertilizer use at the county-level, while corn yield, land value, hog density, irrigation 

crop rotation, (i.e. use of legumes), rented land, and tile drainage all have a significant effect on 

fertilizer use. Farmers’ use and management of nutrients like nitrogen have very real 

environmental impacts (hypoxia, climate change) and very real money is spent trying to 

minimize these impacts. Not only does this analysis scale up from the individual to better assess 

the cumulative effects of many individual actions at a scale where the effects are more visible, 

but it also includes a mixture of ecological and economic and non-economic social factors. The 

combining of all of these types of variables in one analysis is novel in sociological studies, but is 

in keeping with calls for more integrated research on social-ecological systems and soil and 

water conservation behaviors (Liu, Dietz, Carpenter, Alberti, et al. 2007; Reimer et al. 2014; 

Stuart et al. 2015) as well as a few recent studies that have integrated social and ecological 
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elements in one study (Blesh and Wolf 2014; Halbrendt et al. 2014). This analysis provides an 

important step toward both better integration of social and biophysical systems, from a 

sociological stand-point, and also better understanding how conservation practices can play a 

role in reducing the environmental impact of US agriculture. 
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APPENDIX A: Variable Calculations  

Replacing Missing Values 

For exogenous variables for which NASS had withheld values I replaced them using the 

agriculture district39 average. The process involved calculating agriculture district averages from 

the county data, calculating the ratio variables I use with the agriculture district averages, and 

then using the agriculture district ratios to replace the missing values in the county-level ratio 

variables. It is important that I use the ratio values in the replacement processes, rather than the 

counts, to avoid scale miss-matches resulting from counties of different sizes. 

I first calculated the agriculture district averages from the county data: 

proc sort data=yy; by agdist; run; 

proc summary data=yy; *means by ag district to replace missing values; 

var agdist farmland_12a corngrain_12b corngrain_12a cropland_12a 

alfalfa_12a soy_12a cropins_12a covcrop_12a constill_12a 

rentpartown_12a tenant_12a irrig_12a notill_12a hogs_12c catfeed_12c 

dairy_12c broilers_12c 

layers_12c turkeys_12c fertcrop_12a fert_12d tile_12a income_12df; 

by agdist; 

output out=adm_vars  

 mean(agdist farmland_12a corngrain_12b corngrain_12a cropland_12a 

alfalfa_12a soy_12a cropins_12a covcrop_12a constill_12a 

rentpartown_12a tenant_12a irrig_12a notill_12a hogs_12c catfeed_12c 

dairy_12c broilers_12c 

layers_12c turkeys_12c fertcrop_12a fert_12d tile_12a income_12df) 

 =agdist adm_farmland adm_corn_b adm_corn_a adm_cropland 

adm_alfalfa adm_soy adm_cropins adm_covcrop adm_constill 

adm_rentpartown adm_tenant adm_irrig adm_notill adm_hogs adm_cat 

adm_dairy adm_broil 

adm_lay adm_turk adm_fertcrop adm_fert adm_tile adm_income; 

run; 

Then I used those averages to calculate the agriculture district ratios for the variables I needed to 

replace: 

*calculate agdist averages for ratios that need to be replaced; 

data adm_r; set add; 

adm_alfalfa_r=adm_alfalfa/adm_cropland; 

adm_constill_r=adm_constill/adm_cropland; 

adm_corn_r=adm_corn_a/adm_cropland; 

adm_covcrop_r=adm_covcrop/adm_cropland; 

adm_cropins_r=adm_cropins/adm_cropland; 

adm_soy_r=adm_soy/adm_cropland; 

adm_rentpartown_r=adm_rentpartown/adm_farmland; 

adm_tenant_r=adm_tenant/adm_farmland;  

adm_irrig_r=adm_irrig/adm_cropland; 

                                                 
39 Agriculture districts are sub-state designations made by USDA NASS. There are 9 agriculture districts in each 

state in the sample (https://www.nass.usda.gov/Charts_and_Maps/Crops_County/boundary_maps/indexgif.php). 
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adm_notill_r=adm_notill/adm_cropland; 

adm_hogs_r=adm_hogs/adm_cropland; 

adm_dairy_r=adm_dairy/adm_cropland; 

adm_cat_r=adm_cat/adm_cropland; 

adm_broil_r=adm_broil/adm_cropland; 

adm_lay_r=adm_lay/adm_cropland; 

adm_turk_r=adm_turk/adm_cropland;  

adm_tile_r=adm_tile/adm_cropland; 

run; 

One district was missing dairy cattle data for all the counties in the district, so I calculated the 

average for the district from the surrounding counties. All other agriculture districts had data 

from at least two counties for each variable. 

proc means data=ratios; *calculating an alternate dairy ratio average 

for agdist 3820 which is missing observation on that variable for all 

counties. These 9 counties are adjacent to agdist 3820.  

Calculated mean for the 7 of these that are non-missing is 0.00009523; 

var dairy_12r; where fips in (38075 38101 38055 38083 38103 38027 

38063 38071 38095) 

and dairy_12r~=.; run;  

data fill1; set ratios; *dropping a couple variables left over from 

calculating agdist means and replacing missing agdist with 

alternatively calculated value; 

drop _TYPE_ _FREQ_;  

if agdist=3820 then adm_dairy_r=0.00009523; 

run; 

I calculated the ratios for the county-level variables: 

*calculate county level ratio variables; 

data ratios; set adm_r; 

constill_12r=constill_12a/cropland_12a; 

corngrain_12ba=corngrain_12b/corngrain_12a; 

corngrain_12r=corngrain_12a/cropland_12a;  

covcrop_12r=covcrop_12a/cropland_12a; 

cropins_12r=cropins_12a/cropland_12a; 

cropland_12r=cropland_12a/county_12a; 

csp_12df=csp_12d/csp_12f; 

csp_12da1=csp_12d/cropland_12a; 

csp_12da2=csp_12d/farmland_12a; 

eqip_12df=eqip_12d/eqip_12f; 

eqip_12da1=eqip_12d/cropland_12a; 

eqip_12da2=eqip_12d/farmland_12a; 

farmland_12r=farmland_12a/county_12a; 

fert_12da=fert_12d/fertcrop_12a; 

fertcrop_12af=fertcrop_12a/fertcrop_12f; 

fertcrop_12r=fertcrop_12a/cropland_12a; 

fullowner_12r=fullowner_12a/farmland_12a; 

fulltime_12r=fulltime_12f/farms_12c; 

irrig_12r=irrig_12a/cropland_12a; 
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notill_12r=notill_12a/cropland_12a; 

rentpartown_12r=rentpartown_12a/farmland_12a; 

tenant_12r=tenant_12a/farmland_12a; 

soy_12r=soy_12a/cropland_12a; 

alfalfa_12r=alfalfa_12a/cropland_12a; 

tile_12r=tile_12a/cropland_12a; 

broilers_12r=broilers_12c/cropland_12a; 

layers_12r=layers_12c/cropland_12a; 

turkeys_12r=turkeys_12c/cropland_12a; 

cat_12r=catfeed_12c/cropland_12a; 

dairy_12r=dairy_12c/cropland_12a; 

hogs_12r=hogs_12c/cropland_12a; 

run; 

Then I replaced the missing county data in the ratio variables with the agriculture district average 

ratios: 

*replacing missing values with agdist average; 

data fill2; set fill1;  

corngrain_r=input(corngrain_12r,best32.); 

if corngrain_12r=. then corngrain_r=adm_corn_r; 

soy_r=input(soy_12r,best32.); 

if soy_12r=. then soy_r=adm_soy_r; 

alfalfa_r=input(alfalfa_12r,best32.); 

if alfalfa_12r=. then alfalfa_r=adm_alfalfa_r; 

cropins_r=input(cropins_12r,best32.); 

if cropins_12r=. then cropins_r=adm_cropins_r; 

covcrop_r=input(covcrop_12r,best32.); 

if covcrop_12r=. then covcrop_r=adm_covcrop_r; 

constill_r=input(constill_12r,best32.); 

if constill_12r=. then constill_r=adm_constill_r; 

rentpartown_r=input(rentpartown_12r,best32.); 

if rentpartown_12r=. then rentpartown_r=adm_rentpartown_r; 

tenant_r=input(tenant_12r,best32.); 

if tenant_12r=. then tenant_r=adm_tenant_r; 

irrig_r=input(irrig_12r,best32.); 

if irrig_12r=. then irrig_r=adm_irrig_r; 

notill_r=input(notill_12r,best32.); 

if notill_12r=. then notill_r=adm_notill_r; 

hogs_r=input(hogs_12r,best32.); 

if hogs_12r=. then hogs_r=adm_hogs_r; 

catfeed_r=input(catfeed_12r,best32.); 

if catfeed_12r=. then catfeed_r=adm_cat_r; 

dairy_r=input(dairy_12r,best32.); 

if dairy_12r=. then dairy_r=adm_dairy_r; 

broilers_r=input(broilers_12r,best32.); 

if broilers_12r=. then broilers_r=adm_broil_r; 

layers_r=input(layers_12r,best32.); 

if layers_12r=. then layers_r=adm_lay_r; 

turkeys_r=input(turkeys_12r,best32.); 

if turkeys_12r=. then turkeys_r=adm_turk_r; 

tile_r=input(tile_12r,best32.); 
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if tile_12r=. then tile_r=adm_tile_r; 

income_df=input(income_12df,best32.); 

if income_12df=.d then income_df=adm_income; 

run; 

I created the combined variables in a separate data step:  

poultry_r=broilers_r+layers_r+turkeys_r; 

rented_r=rentpartown_r+tenant_r; 

cattle_r=catfeed_r+dairy_r; 

legume_r=soy_r+alfalfa_r; 

 

Calculation of Normal Precipitation and Corn Growing Degree Days 

30-year normals (e.g., averages) were calculated from daily from daily temperature and 

precipitation data from 1982-2011, in accordance with NOAA description at 

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-

normals/1981-2010-normals-data.  

For precipitation this was done by calculating the total precipitation for each of the 360 months, 

and then taking the average for each month of the year (e.g., the average of the 30 June totals) to 

get the normal precipitation for each month of the year. These normal totals for April through 

September were then added together to get the normal growing season precipitation. 

For corn growing degree days (GDD) the same process as above was followed except that prior 

to finding the total for each of the 360 months the corn GDD were calculated for each day 

according to the following formula and rules (https://ndawn.ndsu.nodak.edu/help-corn-growing-

degree-days.html):  

Daily Corn GDD (°F) = [(Daily Max Temp °F + Daily Min Temp °F) / 2] - 50 °F 

If the daily max and/or min temperature was < 50 °F it was set equal to 50 °F, and if the daily 

max temperature > 86 °F, it was set equal to 86 °F.  

 

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data
https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html
https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html
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APPENDIX B: Centering Analysis Variables 

There are two ways to center a variable: group mean centering and grand mean centering. 

Group-mean centering (also called centering within clusters) is what its name suggests—

centering the variable around the mean for each group. Grand-mean centering is centering the 

variable around the mean for all the observations of that type—for instance the average farm size 

across all the counties sampled. Level-2 variables (e.g., state-level variables) can be grand mean 

centered or left in their raw form.  

The decision to center level-2 variables depends on the nature of the variable and is for 

ease of interpretation as it is in OLS regressions (Enders and Tofighi 2007). In this case, grand-

mean centering the state-level variables is helpful because while having zero fertilizer use or zero 

corn grain yield can conceptually exist it does not in practice, thus the average is more 

interesting. 

Centering level-1 (e.g., county-level) variables has more important model implications 

than centering at level-2. Group-mean centering level-1 variables serves to separate the within-

group effects from the between group effects by removing the between group variation from the 

data, and thus removing correlation between the level-1 variables and the level-2 variables 

(Enders and Tofighi 2007). This results in level-1 coefficients that only include level-1 effects, 

thus making their interpretation more precise when the level-1 effects are of primary interest, as 

they are in this analysis (Enders and Tofighi 2007). The removal of between-level correlation is 

critical in random-slope models, where this lack of correlation is an important assumption 

(Enders and Tofighi 2007). Group-mean centering level-1 variables means that the model results 

are interpreted as follows (Enders and Tofighi 2007): 

• Intercept is the average unadjusted cluster mean—ie the average intercept of all 

the clusters 
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• Slope is pooled within-cluster level-1 regression coefficient (ie the average slope 

of all the group slopes)—in this case since model has fixed slope it is the same for 

all the groups 

• Intercept variance is the variance of the unadjusted cluster means 
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APPENDIX C: Extra Sample Descriptives 

Table 4.4. Counties excluded from analysis due to low amount of agriculture or withheld data. 

County State FIPS Corn bushels Corn acres Fertilizer dollars Fertilized acres Notes 

Cook IL 17031 375456 WH 765000 WH County contains majority of metro Chicago 

DuPage IL 17043 WH WH 499000 WH County contain west Chicago suburbs 

Keweenaw  MI 26083 0 0 0 0 County in the Upper Peninsula 

Iron MI 26071 0 0 473000 WH County in the Upper Peninsula 

Luce MI 26095 0 0 WH 1023 County in the Upper Peninsula 

Ontonagon MI 26131 WH 31 72000 WH County in the Upper Peninsula 

Schoolcraft MI 26153 WH WH 91000 WH County in the Upper Peninsula 

Cook MN 27031 0 0 1000 WH Most of county is in Superior National Forest 

Lake MN 27075 0 0 9000 WH Most of county is in Superior National Forest or 

Finland State Forest 

St. Louis City MO 29510 0 0 0 0 County is metro St. Louis 

Grant NE 31075 0 0 WH WH 

 Hooker NE 31091 0 0 WH 1560 

 Menominee WI 55078 0 0 0 0 County essentially coterminous with Menominee 

Indian Reservation 

WH = Withheld (by NASS) 
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Table 4.5. State-level averages for analysis variables.  

 
IL IN IA KS MI MN MO NE ND OH SD WI 

Outcome Variables 

            Average fertilizer use ($/acre) 134 150 135 74 147 133 124 113 72 141 90 128 

Average corn yield (bu./acre) 102 99 134 85 131 156 69 131 117 120 91 120 

Farmer and Farm Characteristics 

Rented land ratio 0.6 0.5 0.5 0.5 0.4 0.4 0.3 0.4 0.5 0.4 0.4 0.3 

Av. farmland value ($1000/acre) 6 5 6 2 4 4 3 2 1 5 2 4 

Tile acres ratio 0.4 0.5 0.5 0.0 0.3 0.3 0.1 0.0 0.0 0.5 0.0 0.1 

Full-time farmer ratio 0.5 0.4 0.5 0.5 0.5 0.5 0.4 0.6 0.6 0.4 0.6 0.5 

Average years of farming 

experience 27 26 28 27 26 28 26 27 28 26 27 26 

Median farm size 100 57 136 200 60 142 120 280 480 69 337 96 

Irrigated acres ratio 0.02 0.03 0.01 0.10 0.08 0.02 0.08 0.38 0.01 0.00 0.02 0.04 

Crop insurance acres ratio 0.74 0.67 0.80 0.63 0.53 0.75 0.51 0.72 0.76 0.60 0.82 0.50 

Crops 

            Corn acres ratio 0.52 0.48 0.52 0.14 0.31 0.39 0.22 0.42 0.13 0.34 0.28 0.33 

Legume ratio 0.39 0.43 0.38 0.15 0.34 0.36 0.36 0.27 0.22 0.46 0.32 0.28 

Poultry density 0.19 2.51 1.91 0.01 1.61 1.42 2.22 0.23 0.01 3.05 0.11 1.15 

Cattle density 0.01 0.02 0.06 0.05 0.05 0.04 0.01 0.06 0.00 0.03 0.01 0.11 

Hog density 0.17 0.25 0.67 0.04 0.11 0.29 0.10 0.07 0.00 0.15 0.03 0.02 

BMPs 

            Conservation tillage ratio 0.32 0.24 0.33 0.21 0.23 0.28 0.18 0.23 0.23 0.22 0.18 0.26 

No-till ratio 0.25 0.39 0.26 0.37 0.20 0.04 0.26 0.43 0.29 0.40 0.37 0.18 

Cover crops ratio 0.01 0.05 0.01 0.01 0.06 0.02 0.03 0.02 0.01 0.03 0.01 0.06 

Climate 

            Normal growing season 

precipitation 23 24 25 21 20 21 26 19 14 23 17 22 

2012 growing season precipitation 17 18 16 14 17 19 18 11 11 19 13 18 

Normal annual growing degree 

days (in 1000s) 4 4 3 4 3 3 4 3 2 3 3 3 

Note: The data presented here (except for the climate variables) are the state-level values from the AgCensus, not an average of the county-level data 

used in the analysis. 
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CHAPTER 5: CONCLUSION 

 In the preceding three analyses I examine how farmers till and the major factors that 

influence their tillage decisions, the range of predictors of the use of cover crops and four 

nutrient management BMPs, and the aggregated effects of tillage, and cover crops on fertilizer 

use. While these analyses have been written up as separate papers for purposes of the 

dissertation, there are several ways that the findings intersect and several overall conclusions that 

can be drawn. 

 

MEASURES AND RESEARCH METHODS 

 One of the other general conclusions that can be drawn from my analyses is the 

importance of how BMP use is measured. This should involve not just the incorporation of 

temporal and spatial variability, which is particularly important for practices like tillage and 

cover crops, but how practices are defined and grouped. The first analysis clearly demonstrates, 

with the number of versions of no-till found, just how important it is to consider the temporal and 

spatial use of a practice as well as clearly define the parameters of the practice of interest. This is 

not to pretend that doing so is easy. Indeed, a practice like tillage presents a substantial challenge 

given the number of dimensions that need to be considered. However, it is clear that the current 

method of using three or four categories provides at best a cursory representation of the actual 

practices being used and as a result much inconsistency is likely to exist in the data of such 

summary categories. The second analysis further demonstrates the potential trouble with using 

practice categories. The lack of overlap in significant variables across the practices, even ones 

like variable rate nitrogen (N) and variable rate phosphorus (P) or potassium (K), indicates that 

the meaningful features that could define a class of practices may not be readily apparent. There 
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is certainly great utility in using categories to simplify analyses, but it would seem that 

researchers in the social sciences have not yet spent enough time empirically establishing those 

categories for agricultural BMPs.  

 This conclusion is not to disparage previous or current research, but rather to push us all 

to do more and to do it better. There are reasons why BMP use data has been collected as it has, 

and there are still useful things to be learned from analyzing it. Indeed, as an example, I fail to 

follow my own advice in my second and third analyses by using binary practice use measures in 

my second analysis and the same tillage categories in the third analysis that I call out in the first. 

Mostly this use is because the data had already been collected, as is often the case. I have, 

however, done my best to reduce the worst of the effects of these measurement issues. For 

example, spatial variation in the four nutrient management practices I consider in the second 

analysis should be relatively low, thereby making the use of the binary measures less 

problematic than it is for cover crops. Using aggregated data in the third analysis potentially 

smooths out some of the variation in the overly general tillage categories used by the US 

AgCensus, making it reasonable to think that on average they indicate a relative position along 

the tillage continuum. 

 

KNOWLEDGE AND THE BIOPYISCAL ENVIRONMENT 

 The inclusion of the biophysical environment was a secondary goal of all three analyses, 

and the importance of it is a key finding, especially in the first two analyses. Soil qualities and 

conditions are an important aspect of farmers’ tillage decisions and also an influence on the use 

of PSNTs, variable rate N and cover crops. The biophysical context is a notable omission from 

both the adoption-diffusion model as well as the TPB/RAA though it potentially influences the 

appropriateness and function of BMPs and therefore their use. However, the finding of different 
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tillage decisions in response to ostensibly the same environmental conditions in the first analysis 

demonstrates a challenge to incorporating biophysical variables into social analyses: Are the 

environmental conditions the farmers are responding to actually the same? If they are then why 

are farmers responding differently? Do the farmers have the same understandings of how 

different tillage approaches work or are their differing responses based on different knowledge 

and expectations of the practices? How important then is the perception vs. the “reality”? These 

questions raise the possibility of the existence of substantial differences in how farmers perceive 

both their biophysical conditions and the practices themselves. 

 The environmental implications of only considering farmers’ perceptions can be 

considerable. If two farmers in the same farming conditions perceive their conditions differently 

so that one thinks it is important to use conservation tillage to reduce erosion and the other does 

not think it is needed because the land is pretty flat, then the two farmers are both acting 

consistently with their perceptions but the environmental outcomes will be quite different. The 

TPB/RAA is fully based on the importance of individual perceptions that may or may not be 

accurate (Fishbein and Ajzen 2015), especially through the behavioral beliefs and perceived 

behavioral control (PBC) components, which make it poorly suited for connecting the social and 

the ecological, since it is unknown what signals farmers actually received from their 

environmental contexts and thus how similar or dissimilar their perceptions are. With this 

approach the environmental context remains a social idea, which can limit our ability to connect 

social and environmental conditions, understand the causal paths that create environmental 

problems and conduct research that can contribute to finding solutions to those problems.  

In contrast, the adoption-diffusion model perhaps does not include the importance of 

perceptions enough, especially in the knowledge and persuasion steps of the innovation-decision 
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process and in the relative advantage and compatibility innovation attributes. The innovation 

attributes are conceptualized as inherent characteristics of the innovation, meaning there is no 

conceptual space for these attributes to differ between farmers. The lack of conceptual 

interaction between the knowledge and persuasion decision steps, and the practice characteristics 

in the adoption-diffusion model is an additional limitation to those discussed in the introduction 

chapter. Critical realism (Carolan 2005) offers a conceptual framework for integrating the “real” 

and perceived and for connecting the adoption-diffusion decision process to the innovation 

attributes. 

 Knowledge was of particular interest at the outset of these analyses, though it is only 

explicitly examined in the second analysis. In this analysis it is found to be an important 

predictor of the use of nutrient maps, variable rate P or K and cover crops, in spite of being a 

non-practice-specific measure. Knowledge of how to use or implement a practice is a basic 

threshold necessary for practice use (at least successful practice use). However, as is discussed in 

Chapter 3, there are conceptualized to be multiple types of knowledge, of which technical 

knowledge of the how-to variety is but one. Of particular interest is what Rogers’ principles-

knowledge and Kaiser and Fuhrer’s declarative knowledge—knowledge of how the 

environmental system and the practice work. In the context of the present analyses, this might 

include knowledge of the nitrogen cycle, soil physics and chemistry, and crop physiology, and is 

hypothesized to be extremely important in providing farmers with an understanding of how and 

why a given practice works. Not only would this knowledge be very helpful in successfully 

implementing the practice in the farmer’s specific conditions, but it would also help in adapting 

to changing conditions. 
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 Conceptually this system-type of knowledge goes beyond both education and 

information. Though education and information can contribute to the acquisition of system 

knowledge they are not equivalent to it. The potential importance of system knowledge in the 

agricultural context is that it includes aspects that cannot be observed directly, such as nitrogen 

in its elemental form, and thus connects the biophysical world with the social world. The less a 

process can be observed directly the more room exists for multiple social meanings and 

explanations to be attached to it, and thus for multiple actions seem appropriate (Carolan 2004, 

2006). This type of relationship between the biophysical and social through knowledge can be 

understood through the lens of critical realism. Rosa (1998) and Carolan (2004) both offer very 

similar looking and compatible, but apparently  independently developed40, conceptual 

frameworks for understanding of the interaction between social and biophysical components.  

  
Figure 5.1. Conceptual diagrams from Rosa (1998:35) on left and Carolan (2004:515) on right. 

 

Rosa developed his framework (shown on the left in Figure 5.1) in the context of 

studying and understanding risk in the face of meta-theoretical debates in the sociology of risk. 

He takes a position of ontological realism but recognizes and incorporates the potential 

                                                 
40 Carolan does not cite Rosa’s 1998 article. 



 

208 

 

usefulness of constructivist insights into his model. He does this by including epistemological 

hierarchicalism with his ontological realism (what he acronyms to OREH). What he means by 

epistemological hierarchicalism is that while all knowledge claims are potentially fallible, not 

“all knowledge claims are equally fallible” (Rosa 1998:34). His method of determining where a 

knowledge claim falls in the hierarchy is to ask where it falls in its measures of “ostensibility” 

and “repeatability” or “O&R.” “Ostensibility” is the degree to which observations align while 

“repeatability” is the degree to which repeated observations align. In Figure 5.1 above, Rosa 

places claims with high O&R in the corner of the axis and with these claims being highest in the 

epistemological hierarchy and thus being most appropriately understood by a “grounded realist” 

approach. On the other hand, claims with low O&R are at the other end of the scale and are best 

understood using a social constructivist approach. Claims between the two extremes easily take a 

middle approach, i.e., critical realism, or what Rosa calls “synthetic realism.”  

Carolan takes an ultimately similar but slightly different approach. He suspends belief in 

a single realist ontology not because he thinks that a physical reality doesn’t exist but because he 

recognizes that some environmental problems are more epistemologically distant and complex 

than others, and asks “What if multiple knowledges reflect not only varying positions but, in 

certain situations, a multiple ontology?” (Carolan 2004:498). Thus, he proposes that the more 

epistemologically distant and complex a phenomenon is the harder it is for us to know about it 

and the more ontologically fuzzy it is. He organizes the degree of fuzziness in his diagram of 

ontological orders (shown on the right in Figure 5.1). First order phenomena, like litter, are ones 

that are epistemologically closest to us—we can assess them with our own physical senses. 

Second order phenomena, like dioxin and nitrogen, area a step removed from our own senses; we 

can identify clearly what they are, but we need to use tools to measure or “see” them. Third order 
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phenomena, like global climate change, cannot be “seen” in their entirety, even with tools; we 

can only know them by observing other things (like temperature, size of ice caps etc.) that we 

then “translate” “into” the phenomena itself. Carolan (2004:505) says that this translation causes 

a shift (even if a small one) in our reality “because the object itself has shifted.” Not surprisingly, 

Carolan posits that at higher ontological orders trust in information and its sources becomes more 

important to hold together the complexity, and navigate the increased potential for multiple 

“realities.” 

If we were to lay Rosa and Carolan’s diagrams on top of each other we can easily see 

how similar and compatible they are. Ostensibility is highly related to epistemological 

distance—things that are easily observed are epistemologically closer and thus observations are 

more likely to be in agreement. Similarly, complex and epistemologically distant things are 

harder to observe and measurements are less likely to be repeatable, as differences in timing, 

place, instrument etc. are more likely to produce a variety of results. Agreement on these more 

complex and distant phenomena are therefore going to require more trust in those producing the 

results and the processes they use. Additionally, while realism certainly still applies to complex 

and epistemologically distant phenomena, the increased multiplicity that arises at higher 

ontological levels makes social constructions surrounding those empirical observations of greater 

political and research interest. As Carolan (2004:513) puts it: “if reality is social—and thus 

multiple—than it is also political” and we have seen this play out clearly in the case of global 

climate change where different groups have created different (and often political) narratives 

about the existence and potential impact of climate change and have expressed a lack of trust of 

the scientific observations that have been made of it (see for example: McCright and Dunlap 

2003; McCright 2007; Steel, Lach, and Satyal 2006; Zehr 2000). Agricultural nitrogen would 
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likely fall somewhere in the middle of these models—it is not overly complex in that it can be 

fully measured, but it also cannot be observed directly, being only “visible” through a chemical 

test or plant growth—including algae in local water bodies.  

In relation to farmer decision-making, these critical realist frameworks and the idea of 

“epistemological distance” helps contextualize several of the notable results of my analyses and 

suggests future research directions. One is the potential for farmers to respond differently to the 

same biophysical situation, as was found in the tillage analysis, indicates either that the 

biophysical situations are not in fact the same, and/or that as seemingly tangible as soil is it still 

has enough ontological distance to complicate the relationship between the biophysical 

conditions and the farmers’ actions. More detailed data on farm conditions, such as researcher 

conducted soil tests and geospatial data, that can be coupled with more detailed information from 

farmers on how they till and what they are trying to accomplish with their tillage, would help 

tease out the sources of this variation. 

Second, the importance of information sources in Chapter 3 relates well to the need for 

greater trust in information sources that comes with greater epistemological distance. While I did 

not include trust in information sources in the analysis explicitly, the frequency of use should be 

related to both trust and mode of access (Stuart et al. 2018). The association of specific 

information sources with specific practices suggests that something beyond a general trust in the 

source is at play, which bears further investigation.  

Third, critical realism provides opportunity for developing an alternative approach to 

thinking about the relationship between attitudes, knowledge and action than that proposed by 

the TPB/RAA. The adoption-diffusion model, while certainly including the importance of trust 
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and communication could likely benefit by being considered within an explicitly critical realist 

framework as well. 

Lastly, epistemological distance is an important aspect to keep in mind when considering 

coupled natural and human (CNH) systems, and especially modeling feedbacks within them 

between the biophysical and social components. The critical realist approach suggests that these 

feedbacks will only be as good as the social system (or its relevant segment given the topic) is at 

recognizing the effects that society is having on the environment. Thus, the dominant narrative 

about the environment will mediate the feedback, rather than there being a direct relationship 

between environmental conditions. A very simplified example of this is shown in Figure 5.2 part 

B, where water quality influence the social narrative that in turn influences water policy to 

address it, rather than being conceptualized as having a more directed reciprocal relationship 

(part A.). 

 

Figure 5.2. Simple example of realist (part A.) versus critical realist (part B.) approach to CNH 

feedback model. 
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PLANS FOR FUTURE RESEARCH 

 My plans for future research extend beyond what I suggest in the analysis chapters and 

includes dividing several of the chapters into multiple papers that will be a suitable length for 

publication in academic journals.  

Tillage 

 My first analysis chapter will be divided into two parts. One that covers the variation in 

the ways that farmers are tilling and the implications for tillage categories, and one that covers 

the reasons farmers gave for why they till the way they do. Extensions of this research could use 

survey data to tease out tillage variation using a larger number of observations as well as more 

representative and systematic data. Potential research questions include: How common is the use 

of multiple practices? Are farmers who use multiple practices different from those who use only 

one type? Does it depend on which combinations of tillage types a farmer uses? A mixed 

methods approach using the interviews data could be very helpful in interpreting the results of 

the quantitative analyses. 

 Given the measurement challenges discussed above, I think that it would be profitable to 

compare the results of the tillage questions asked on the four farmer surveys I have been 

involved with to date and compare how the questions have been formulated. This type of 

analysis could reveal aspects that are consistent across samples and measures and provide 

guidance in the design of future surveys on tillage.   

In the longer term, I would like to work with soil scientists to better understand the 

measurable biophysical context in which farmers are tilling and the tillage features that have the 

most important environmental implications. In other words, can we narrow the number of tillage 

facets that we need to measure to focus on those that matter the most? For example, how critical 
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is the distinction between no-till and strip till environmentally, or is it the season of the tillage 

that matters more? 

BMP Adoption 

 The second analysis will be divided into at least two journal articles. The nutrient 

management practices and the lack of consistency in their predictors will be one article. The 

drivers of cover crops will be another article—one that could use a step-wise regression model to 

look at the different categories of predictors separately before considering them all together, and 

one that could also interaction effects between select variables. A possible third article could 

focus on the probabilities of practice use and could utilize more of the response categories that 

were collected on the survey—including both adoption and non-adoption as possible outcomes. 

 Future work could consider the combinations in which practices are used, and the use of 

one practice to predict another. This could potentially lead to the creation of practice categories 

that have an empirical basis and that may not be based on practice function, but on some other 

aspect of compatibility, such as practice timing. This data could also be used for a preliminary 

comparison of the predictive power of the adoption-diffusion model vs. the TPB/RAA, as I 

believe that there is the need for a critical look at the appropriateness of the TPB/RAA for farmer 

decision-making and the potential for a useful revival of the adoption-diffusion model. I also am 

looking forward to using more recent survey data to consider the effects of practice-specific 

measure of knowledge, and the relationships between knowledge, education, experience, 

information sources and practice use in an analysis that could be a step towards incorporating a 

critical realist approach to understanding practice adoption. 
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Fertilizer Use 

 The third analysis will not be divided. Future extensions of this analysis could include the 

use of non-recursive models that consider the reciprocal effects between corn yield and fertilizer 

use. The 2017 AgCensus data (to be released in 2019) will make possible a longitudinal 

examination of cover crops, conservation tillage and no-till. Watershed scale models (facilitated 

by data integration using GIS software) could allow for the inclusion of a true feedback loop 

between water quality and practice use in the CNH tradition. Further developments along these 

lines would be greatly facilitated by more specific data at the county and watershed scale (like 

fertilizer spending on corn acres specifically)—which might be available from NASS by special 

tabulation or other arrangement.  

 As I have discussed above, I plan to continue the work that I have started in my 

dissertation in a number of ways. I am particularly interested in investigating the relationships 

between agricultural decisions and the biophysical environment, and in developing innovative 

modeling strategies that integrate social and biophysical data. In doing so, I plan to utilize 

geographic information system (GIS) tools and agent-based modeling alongside regression-based 

models. 
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