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ABSTRACT

A VARIABLE-LENGTH MANY-OBJECTIVE OPTIMIZATION APPROACH IN IMAGE
SEGMENTATION PROBLEMS

By

Xuhui Huang

Image segmentation is a technique of dividing an image space into a number of meaningful ho-

mogeneous regions. Various data clustering techniques have been adapted in solving segmentation

problems. In particular, data clustering is often posed as multi-optimization problem so that

characteristics of data could be caught by different objectives simultaneously. Traditional multi-

optimization methods often require some prior knowledge or assumptions about data, performance

is poor if these assumptions do not hold. Limitations with established multi-optimization methods

are caused by their inadequacy in handling a large number of objectives. Nondominated sorting

genetic algorithm III (NSGA-III) [1] is proposed to alleviate this issue. However, NSGA-III is

inefficient in removing some bad solutions in high-dimensional searching space during evolution.

In this article, we propose a variable string length many-objective genetic algorithm(VMOGA)

whose framework has evolved from NSGA-III and its encoding strategy, genetic and evolution-

ary operator have been redesigned. Performance of VMOGA in image segmentation problems is

further enhanced by an appropriate selection of objectives. In the end, we conduct unsupervised

segmentation by proposed clustering technique on magnetic resonance image(MRI) of human

brain. Comparisons with other evolutionary algorithms are presented and dominance of VMOGA

has been demonstrated quantitatively. VMOGA is also performed on detection of delamination

area caused by fatigue loading in Mode I glass fiber reinforced polymer (GFRP) samples. Results

are compared with fast marching algorithm(FMA) and superiority of VMOGA suggests future

potential application in fatigue detection.
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CHAPTER 1

INTRODUCTION

1.1 Brief Introduction of Data Clustering

Data clustering has emerged as one of the fundamental technique for data analysis recently. One

of the primary application of data clustering is image segmentation. The problem of image seg-

mentation is usually considered as clustering image pixels in the intensity space [2] [1]. Geographic

distribution sometimes is also incorporated to enhance homogeneity. Real-life applications of im-

age segmentation include segmentation of remote sensing satellite images [3], magnetic resonance

image(MRI) medical imagery of human body [4] and texture image [5]. Other applications such as

social network analysis [6], time series data analysis [7], web mining [8] involve more sophisticated

data. The purpose of clustering is to partition a given dataset into homogeneous groups. Given

a dataset X = {x1, x2, . . . , xn} with size n in a multi-dimensional space, the goal of clustering is

to produce a partition matrix U = {uk, j }, value of uk, j is the membership or belongingness of

data point x j to cluster Ck . Generally speaking, if uk, j = max
i∈[1,k]

{ui, j } then x j ∈ Ck . Crisp and

fuzzy partition matrix both exist in the literature with their differences of selecting uk, j . For crisp

partition matrix, uk, j = 1 or 0 while belongingness ranging from 0 to 1 in a fuzzy matrix [9]. It is

worth to be noted that fuzzy clustering is better capable of handling overlapping and noisy clusters.

1.2 Multi-objective Optimization and Data Clustering

Performances of clustering solution are often evaluated by some validity indices. Therefore,

clustering is posed as optimization problem by directly optimizing validity index [5] [6] [10].

Principle underlying this strategy is to consider partition matrix U equivalent to optimization

searching space. Searching space is composed of all the possible clustering results which are

denoted as Z . Notice that mapping between U and Z is unique and bilateral. On the other hand,

there is a strong connection between performance of clustering results and validity index. This

1



is because validity index often represents properties of cluster such as homogeneity, separation,

compactness, etc. In fact, when data is classified into reasonable or suitable groups, validity index

is often optimized and vice versa. Further analysis on this transformation requires a thorough study

on properties of cluster reflected by validity index, hence selection of validity index is important.

There are some evident limitations with single-objective framework [11]. If only one validity index

is optimized, characteristics of data are unlikely to be fully considered, thus adding complexity

in discriminating two data groups with features alike. It is also extremely difficult to choose an

objective with no prior knowledge about dataset. If wrong assumption is made at the beginning,

clustering results would be corrupted [12]. In the end, it is impossible to implement tradeoff

on objectives by single-objective optimization. At one time, in order to solve this issue, people

adopt single-objective framework incorporating multiple objectives by ordering them according

to importance or using weight vector to convert into single objective [13]. However, relative

significance of various validity indices is unknown real-life application since data structure usually

has not been specified. Moreover, it is extremely difficult to choose an objective with no prior

knowledge about dataset. If wrong assumption is made at the beginning, clustering results would

be corrupted. Therefore, optimizing multiple objectives simultaneously is demanded by situations.

1.3 Concept of Multi-objective Optimization

In order to achieve higher accuracy, our framework must optimize many objectives simulta-

neously. Multi-objective optimization can be formally stated as min
x∈X
( f1(x), f2(x), . . . , fk (x)), fi

denotes objective function. Maximum can be expressed as max
x∈X

fi(x) = min
x∈X
{− fi(x)}, where X

is the feasible region. Solution to this problem is not unique. Moreover, good solution can be

extracted by some standards. The most important notion here is Pareto optimality [09], if x∗ ∈ X

is Pareto optimal, ∀x ∈ X, s.t. (1) if ∀i fi(x∗) ≤ fi(x), ∃i ∈ 1, 2, ...K, s.t fi(x∗) < fi(x) (2)

∃i ∈ 1, 2, . . . ,K, fi(x∗) < fi(x). Similarly, non-domination sorting rule can be written (in min-

imization style): if ∀i ∈ 1, 2, ...,K, fi(x) ≤ fi(y), ∃i ∈ 1, 2, ...K, fi(x) < fi(y) then x dominate

y

2



1.4 Genetic Algorithms(GAs)

One of the most efficient approach in searching solutions of Pareto optimality in multi-

optimization problem is Genetic Algorithms(GAs) [14], proposed by John Holland. It is proven

that GAs are the most powerful searching technique in a large space. Inspired by evolutionary

process theory created by Charles Darwin, GAs adopt some similar concepts such as parent, child,

population selection, mutation, crossover. Initialization of GAs is to encode solutions(variables)

into strings called chromosomes, by operating on chromosomes instead of variables. GAs conduct

searching from multiple points instead of single point. Therefore, GAs are unlikely to get trapped

in local optimum as other searching algorithms do. Each solution is then given a fitness value

and evaluated based on fitness value that measures the goodness of the solution encoded in the

chromosome. In this article, fitness value is equivalent to objective value. Thereafter, chromo-

somes are selected based on fitness value, those having better fitness are given more chance to be

selected and reproduce other chromosome. Potential better solutions are reproduced from selected

chromosomes by applying some operators such as mutation and crossover. The procedure that

retain best chromosome and replace the worst during each generation is called elitism and better

fitness than previous generation is provided. Model that build upon these notions are developing

very fast in the last decade. Strength Pareto Evolutionary Algorithm (SPEA) [15] and [16], Pareto

Envelope-Based Selection Algorithm (PESA) [17]and PESA-II [18], Non-dominated Sorting Ge-

netic Algorithm-II (NSGA-II) [19] are proposed and instantly become popular in application of

multi-objective evolutionary algorithm for clustering problem.

1.4.1 Multi-objective Genetic Algorithm

In recent studies, multi-objective genetic algorithm (MOGA) based methods are frequently adopted

in unsupervised image segmentation, medical and geographical detection problems. NSGA-II is

one of the most widely used MOGA based methods since its proposal. However, procedures within

NSGA-II framework that benefit its performance on two-objective optimization problems has

3



prevented it from achieving decent results on many-objectives problem (with number of objectives

larger than 3). NSGA-III was proposed to alleviate the issue, as an evolutionary many-objective

algorithm, it becomes popular instantly. As a reference-point-based searching algorithm, solution

in each iteration is encouraged to be close to vacant reference lines, thus adding coverage among

searching space.

1.4.2 General Framework of MOGA

4

Existing MOGA techniques mainly differ in five aspects [20]. First of all, data clustering is posed as 

optimization problems by optimizing some validity indices (objective functions). Therefore, selec- 

tion of objective function must be done in the first place. Then, cluster solution will be represented 

in the form of chromosome. Encoding operators are different in terms of representation strategy. 

Among them, label representation and coordinate representation from Label-Based Encoding and 

Prototype-Based Encoding respectively are most commonly applied. Cluster solution is initialized 

as parent solution population in this period. In the next stage, genetic operator produces child 

solution population. Genetic operator is highly related to encoding operator, so they are often 

discussed together. The key aspect of MOGA is the evolutionary operator which makes selection 

on parent-child combined population and generates solution population for the next generation. In 

some articles, genetic operator and evolutionary operator are bounded together as evolutionary op- 

erator. Here, we want to stress the importance of selection strategy in evolution, thus, evolutionary 

operator is discussed separately. In the end, a single clustering solution must be obtained from the 

last generation. General framework of MOGA is illustated in fig[1.1]



1.5 Evolving the Number of Clusters

Conventional MOGA methods require predetermination of the number of cluster K . In fact,

only an appropriate choice of K could yield acceptable clustering results. In this article, choice of

the number of clusters can be tackled by evolving K automatically during iteration using variable

string-length encoding in GAs. However, previous encoding strategies and proposed evolutionary

operators [21] are inefficient to generate K since they ignore inherent distribution of binarymutation

and crossover. In this paper, we examine child population distribution from different evolutionary

operators. Performance of selecting K is also evaluated and superiority of proposed evolutionary

strategy is demonstrated.

1.6 Structure of This Paper

This paper is organized as follows. In section 2, we introduce methods of constructing encoding

and genetic operator. Inspired by some philosophy underlying conventional operator, we design

a new strategy for VMOGA which is capable of handling variable number of. In section 3,

evolutionary operator is introduced with respect to NSGA-II and III. Weakness with exiting strategy

5
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is discussed and a selection scheme which remove “bad” solutions is proposed. In section 4,

we discuss the choice of objective functions which are selected based on prior knowledge and

supplement information provided by total correlation. In section 5, conventional objective functions

are first introduced, then refined objective functions are constructed in order to better target image

segmentation problem. In section 6, implementation details of proposed algorithm are presented.

For MRI human brain image, evaluation of segmentation results which demonstrate superiority of

proposed algorithm is accomplished by comparing adjusted rand index(ARI) and accuracy(ACC)

with corresponding truth table. Results of experiment on detecting delamination area are also

discussed.
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CHAPTER 2

ENCODING STRATEGY AND GENETIC OPERATOR

2.1 General Encoding Strategy

Encoding strategy is adopted to represent a clustering solution. At first glance, clustering

solutions can be represented by partition matrix. This representation scheme provides full coverage

of entire solution space and it is convenient to define extra constraints during mutation or crossover.

However, with increasing number of data points introduced in clustering problem, the complexity

of direct encoding is surging exponentially, even for a mid-sized clustering problem, scale of its

representation will be too large to handle. Consequently, reduction of searching space is vital for

encoding and searching. Previous researches have chosen a more indirect approach: assigning

each point to its closest cluster represented by centroid of the cluster and encoding coordinates

of the centroids. Hence each representation has the length of K × d, d is the dimension of data

and K denotes the number of clusters. It is written as [Z1, Z2, . . . , ZK ], Zi denotes center of the

cluster which is vector of d by 1. In image segmentation, d = 3. Notice that K is a variable in

VMOGA. Centroid-based encoding strategies produce considerably smaller scale of representation

and reduce its complexity significantly. In initialization, a set of initial solutions are forwarded to

encoding by the form of chromosome. They solution chromosomes are manipulated to produce

child population solutions by evolutionary operator. Procedures in evolutionary operator to produce

child population are called mutation and crossover. During each generation, effective population

maintenance strategies are also adopted to keep track of the current non-dominated front.

2.2 Binary Encoding Strategy and Genetic Operator

Solutions population are encoded in the form of binary string by binary encoding strategy [22].

Mutation and crossover are performed on a binary string as illustrated in fig 21. One application

of Binary-coded GAs is to conduct feature selection, chromosomes of solutions are encoded by

7



binary string with length of total number of features. Bit ‘1’ and ‘0’ represent selected and ignored

feature respectively, thus every solution denotes a subset of features. In Centroid-based encoding

framework, positions of cluster center are encoded in the form of binary string. However, there

are some weaknesses with binary-coded GAs in real-life implementation. The biggest one with

binary-coded scheme is that Hamming cliff is likely to be triggered during searching. When

searching around neighboring area of one particular solution, one might need to change many bits,

i.e. 01111 −→ 10000 which introduce lots of inconveniency to the gradual search in continuous

searching space. This is inherently caused by uneven importance distribution among different

schema in binary string. Moreover, it is difficult to achieve arbitrary precision since fixed string

length limits the precision of solution and appropriate length of the string is often not known.

2.3 Real-coded Encoding Strategy

In order to solve these issues, real-coded GAs are adopted where population solutions are not

required to convert into binary strings. Real-coded GAs are simple and straightforward. The key

of constructing real-coded scheme is to imitate child population distribution results from binary

coded scheme.

8

      Figure 2.1 Conducting binary-coded crossover and mutation



2.4 Simulation of SBC

Notice that probability of conducting crossover, number of bits changed during one crossover

and position of crossover in binary scheme are all affecting distribution of child population distri-

bution. Generally speaking, some properties of binary-coded crossover are important to estimate

distribution. First of all, symmetry plays a significant role in distribution: P1+P2 = C1+C2, which

9

Figure 2.2 Real coded encoding strategy for Crossover

Figure 2.3 Real coded encoding strategy for Mutation

 As shown above ,distribution of child population is produced by repeating binary- coded 

crossover and mutation process. These distributions are listed as reference in constructing real-

coded scheme. Simulated binary crossover (SBC) is widely used and proposed by [23].



means we place equal importance on P1and P2. Secondly, P1 and P2 have the same probability

Pc to be selected as a crossover point. Crossover in the lower bit and large bits results in small

and large change respectively. In the end, child population are likely to be closed to parent pop-

ulation. SBC adopts probability density function of child distribution and simulates single-point

crossover in binary-coded GAs (multiple-point crossover is superimposition of some single-point

crossover). P1 and P2 are ready for crossover, C1 =
P1+P2

2 −
β(P2−P1)

2 ; C2 =
P1+P2

2 +
β(P2−P1)

2

; β is functioned as a spreading factor. C1 and C2 are spread outward when β > 1, inwards when

β < 1. Probability distribution of β should be similar to probability distribution of spread factor in

binary-coded crossover. Probability density function(PDF) of β is defined as:

f (β) =


0.5(n + 1)βn β ≤ 1

0.5(n + 1) 1
βn+2 β > 1

(2.1)

n =2 to 5 mostly. Another refined version is given by [23]:

C1 =
(1 + β)P1

2
+
(1 − β)P2

2
; C2 =

(1 − β)P1
2

+
(1 + β)P2

2
(2.2)

β is the distribution index. Where β can be generated each time by

β =


(2u)

1
ηc+1 u ≤ 0.5(

1
2(1−u)

) 1
ηc+1

u > 0.5
(2.3)

ηc is a variable that controls distribution concentration. As shown in fig 24 larger ηc tends to

generate children closer to parents while small ηc allows children to be far from parents.

On the other hand, if ηc is comparatively small, distribution converges slowly. In extreme

cases where large number of repetition is unreachable, distribution of child population is no longer

guaranteed to have higher PDF around parent population. This is illustrated in fig[25]
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Some valuable discoveries from simulation needs to be discussed. First of all, ηc can be

considered as a spread factor in constructing crossover operator. Secondly, if ηc and the number

of iteration is small, there will be some uncertainty with children distribution, therefore ηc should

not be too small. On the other hand, children population are encouraged to spread out during

early searching period. This is because parent solutions in this period are usually far away from

11

                

Figure 2.5 Child population distribution after 50 iterations given ηc = 1 and 20 for crossover respectively

 We see that distribution of child population gradually converges to a smooth curve as 

number of simulation increasing.

Figure 2.4 Child population distribution after 10000 iterations given ηc = 5, 10, 15, 20 for crossover



Pareto optimal front and searching area should be large enough to reach out for better solution.

Lastly, evolutionary operator should conduct searching in neighborhood area of parent population

as iteration approaching termination. This is largely to that in later period, parent population

solutions are assumed to locate in vicinity of Pareto optimal front. In summary, large ηc fails to

satisfy our requirement in early searching stage while small ηc could results in wasteful searching.

As a result, ηc should be a function of iteration with its value increasing as iteration going up.

2.5 Simulation of Real-coded Mutation

The design of mutation operator is quite similar. There are two types of mutation: uniform mu-

tation and non-uniform mutation. The random mutation generates a solution randomly distributed

within a vicinity of the original solution. Customarily, non-uniform mutation is adopted due to

its preference on original solutions. There are several demands on selection of mutation operator.

First of all, we wish mutated solutions are distributed towards parent population. Secondly, As

the generation number increases, mutated solutions are generated closer to the original solution.

Finally, it is obvious that all mutated solutions should be feasible. Mutation operator proposed

by [20] is given as

C = P + 0.5τ∆
(
1 − r(1−

t
tmax )

d
)

(2.4)
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Figure 2.6 Child population distribution after 100, 500, 1000, 10000 iterations given ηc = 2 for crossover



∆ is the maximum mutation step within constraint and τ is direction index where τ = 1 and −1

indicate mutation towards upper and lower bound respectively. Mutation step is also affected by

r which is randomly selected from 0 to 1. t and tmax denote number of mutation so far and

the maximum number of mutation respectively. d is a variable that control concentration within

the child population distribution after mutation. Usually large d tends to generate children closer

to parents while small d allows children to be far from parents. For convergence perspective, if

d is comparatively small, distribution with insignificant number of trials β under test has some

randomness. In other words, it is not guaranteed that child population are more likely to be near

parent under insufficient simulation. On the other hand, if d is large enough, insufficient simulation

won’t be a problem
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Figure 2.7 Child population distribution after 10000 iterations given different d for mutation



With number of simulation increasing, distribution of child population gradually approaches

to a smooth curve Some valuable discoveries from simulation also needs to be discussed. First of

all,d can be considered as a spread factor in constructing mutation operator. Secondly, if dand the

number of iterations is small, there will be some uncertainty with children distribution, therefore

d should not be too small. On the other hand, children population are encouraged to spread out

during early searching period. This is because parent solutions in this period are usually far away
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Figure 2.8 Child population distribution after 50 iterations given d = 0.2 and 5 for mutation respectively

Figure 2.9 Child population distribution after 100, 500, 1000, 10000 iterations given d = 1 for mutation



from Pareto optimal front and searching area should be large enough to reach out for better solution.

Lastly, evolutionary operator should conduct searching in neighborhood area of parent population.

This is largely to that in later period, parent population solutions are assumed to locate in vicinity

of Pareto optimal front. In summary, large d fails to satisfy our requirement in early searching stage

while small d could results in wasteful searching. As a result, d should be a function of iteration

with its value increasing as iteration moving on.

2.6 Handling of Variable Length Chromosome in VMOGA

One proposed operator by [21] is capable of doing crossover when K is a variable. Assume

parent solutions P1 and P2 encode K1 and K1 cluster centers. Kmax and Kmin denote upper and

lower bound respectively. Considering data is always classified into at least 2 groups, Kmin = 2.

During iteration, crossover operator randomly selects an integer from max(2,K1 + K2 − Kmax), to

min(Kmax,K1+K2−2) as variable length for child population. Procedure is illustrated in fig[210]:

Another crossover operation iproposed by [4] ensures exchanging solution information is con-

ducted smoothly. Similarity, assume parent solutions P1 and P2 encode K1 and K2 cluster centers.

λ1 and λ2 denote the location of crossover point in P1 and P2 respectively. λ1 is generated by

conducting random integer selection from 2 to K1m2. λ2 is generated by conducting random integer

selection from λ2 to λ2. if λ2 ≤ λ2 , λ2 is given by:

λ2 = min[2,max(2 − (K1 − λ1))] (2.5)
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Figure 2.10 Genetic operator handle variable K by random selection from gene pool



λ2 = K2 −max[0, (2 − λ1)] (2.6)

Otherwise λ2 = 0, This is illustrated in fig[211]

Despite being easy to implement, genetic operator that handle variable K by random selection

from gene pool do not follow binary crossover distribution. K
′

1 and K
′

2 are randomly selected from

section with lowerbound and upperbound beingmax(2,K1+K2−Kmax) andmin(Kmax,K1+K2−2)

respectly, thus probability of child population to some extent will not be higher when it is getting

close to parent population. Genetic operator that handle K by exchanging gene segment also has

similar limitations. Moreover, it is unable to generate solutions with different length after initiation.

In order to solve these issues, genetic operator in VMOGA is introduced. First of all, to achieve

similar distribution when K is a variable, a similarity index is proposed to measure similarity

between child and parent population.
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Figure 2.11 Genetic operator handle variable K by exchanging gene segment

 ⎪⎧ ⎪⎪ |C | ⎨⎪ |P | if adding genes
 S(P, C) = (2.7) ⎪⎪ |P∩C | ⎪⎪ if losing genes
 ⎩ |P |

Then, motivated by parameter setting in simulated crossover and mutation distribution, a spreading 

factor is generated from a normal distribution N(µ, σ2) with µ determined by parent population and 

σ adopt the same strategy as ηc and d. In simulation, select operator conduct a random selection 

N(µ, σ2). C1 = P1 ∪ select(P2) or C1 = select(P1), each with 50 percent chance representing 

contraction and expansion. Results of simulation are illustrated in fig 2.12
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               Figure 2.12 Child population distribution by VMOGA genetic operator given 10000 iterations for std = 1,2,3,4



CHAPTER 3

EVOLUTIONARY OPERATOR

3.1 Evolutionary strategy for Low-dimensional Space

Various strategies exist in the literature of searching in low-dimensional space. The most

widely used technique is NSGA-II. NSGA-II conduct non-dominated sorting based on fitness value

(objective value) and preserving diversity among solutions. The scheme to preserve diversity is

to adopt crowding comparison operator. Generally, the operator prefers solutions with lower rank

(sorting by non-domination) and if both solutions belong to the same rank, solutions located in

a less crowded region are preferred. NSAG-III is a reference-point-based algorithm that adopt

similar framework as NSGA-II

3.1.1 Non-dominated Sorting Algorithm

The concept of domination and Pareto front are given in introduction part. Here, we will see how

these concepts applied in evaluating solutions population. Note that minx∈X ( f1(x), f2(x), ..., fk (x))

, denotes
−→
f = ( f1, f2, ..., fk ), x1, x2, . . . , xN are N solutions. Basic idea is that we compare

every
−−−→
f (xi), with

−−−−→
f (x1),...,

−−−−−−→
f (xi−1),

−−−−−−→
f (xi+1). . . ,

−−−−→
f (xN ). Comparison on each solution will bring

computation complexity of O(kN2). In order to find the first non-dominated front, each solution is

assigned two labels: domination count DC and dominated count DDC, representing the number of

solution xi dominated and the number of solution xi being dominated. The only requirement for

xi to enter first front is DDC(xi) = 0which means solution xi is dominated by no one. Hence, no

solution is being dominated in the first front. In order to find solutions in the next level, solutions

of the first front are discounted temporarily and solutions of the first front among the remaining

solutions enter marked as the second front. This is usually done by
⋃

limN
i=1 DC(xi) in practice.

Procedure above is repeated until end of iteration and it is shown in fig ??
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3.1.2 Diversity Preservation Algorithm

In NSGA-II, convergence of solution to the Pareto-optimal set is underlined. This requires evolu-

tionary operator to maintain a good spread of solutions. In other words, our evolutionary operator

must give an estimation of density of solutions surrounding a particular solution very quickly

after non-domination sorting. Obviously, density estimation will be restricted in a certain area,

i.e. neighborhood area of a given point. However, it is very difficult to determine how large this

neighborhood should be, if it’s too small, there might be no points fall in the area for most solutions

being examined while it’s computationally ineffective to construct such a large neighborhood. On

the other hand, density estimation is fundamentally unreliable for high dimensional space. For

relatively small dimensional space, crowding distance operator is proposed to handle this issue.

Mostly, crowding distance requires sorting solutions with each objective function value in ascend-

ing order. For each objective function fi, each boundary value xu = {x : fi(x) = max( fi(x))}or

xl = {x : fi(x) = min( fi(x))} is assigned an infinity value which emphasis significance of preserv-

ing spreading out solutions. For other solutions, overall distance is calculated as the sum height

and width of cuboid. It is extremely useful in two-objective space since they only use one number

to describe density. In other occasions where two or more features are required to depict density,
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Figure 3.1 Framework of conducting non-dominated sorting and generating solution front



non-domination sorting rule could also be applied. In summary, diversity preserving operator gives

every solution a “crowding estimation” DE and sort them by descending order, larger DE(xi) is

preferred in diversity sorting which represent that solution xi is located in a sparse area and pre-

serving xi will guide the searching toward a uniformly spread-out Pareto optimal front. Procedure

for diversity preservation in NSGA-II is illustrated in fig[32]

3.1.3 Weakness

When dealing with real world problems, we often need to optimize more than four or more

objectives. It is well known that with an increase number of objectives, an increasing proportion

of solutions will be non-dominated. This is shown in fig[33]
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Step Operation
Step1 Initial parent solutions P1 with population number N are created with each

population given a corresponding objective value.
Step2 Create offspring solutions Q1 based on P1 with population number N by

genetic operator and corresponding objective values are assigned.
Step3 Combining P1

⋃
Q1 = R1. Sorting R1 based on non-domination rule and

generate F1, F2, . . . , Fi, . . . Now we want to select N populations from R1
in order to construct P2, since l must exist satisfying |

⋃l−1
i=1 Fi | ≤ N and

|
⋃I

i=1 Fi | ≥ N The first l − 1 fronts F1, F2, ..., Fl−1 are assigned to P2 and
remaining N − |

⋃l−1
i=1 Fi | solutions will be selected from Fl by diversity pre-

serving operator.
Step4 Sorting solutions in Fl by DE , x = {x : x ∈ Fl,DE(x) = max(DE(x))}will

be first selected, assigned to P2, Fl = Fl\x and so on until |P2 | = N .
Step5 Go to step2 until iteration is over.

Figure[33] shows percentage of non-dominate solution versus cardinality For example, given

|Pt | = N ,|Qt | = N and Rt = Pt
⋃

Qt , |Rt | = 2N . If proportion of non-dominated solution is more

than 50 %, then |F1 | > N which suggest that non-domination sorting is not working in population

21

Figure 3.3 Non-dominated solutions proportion versus number of objectives

Table 3.1 Main loop of NSGA-II



selection. On the other hand, all the selecting pressure will be placed on diversity preserving

operator. Recall that it is computationally expensive to calculate diversity in high-dimensional

space, identification of neighborswhich required crowded-comparison operator brings huge amount

of calculation, approximation in diversity estimation to make computations faster may cause an

unacceptable distribution of solutions at the end. To make things even worse, diversity preserving

operator will sort N solutions in F1 instead of solutions in Fl with population N − |
⋃l−1

i=1 Fi |.

In summary, traditional evolutionary operator leaves no space for in accommodating an adequate

number of new solutions in the population and cause diversity preservation operator collapsing

during iteration.

3.2 Evolutionary Strategy for High-dimensional Space

3.2.1 ε-Non-dominated Sorting Algorithm

In order to optimize many objectives simultaneously, a special domination rule is proposed by [24]

by means of changing dominance rule. In minimization problem, ε-dominance can be expressed

as: if x dominate y, then ∀i ∈ 1, 2, ...,K, fi(x) + εi ≤ fi(y) and ∃i ∈ 1, 2, ...K, s.t fi(x) + εi <

fi(y) . Another approach of conducting ε-dominance is quite similar: if x dominate y, ∀i ∈

1, 2, ...,K, fi(x)(1 + εi) ≤ fi(y) (2) ∃i ∈ 1, 2, ...K, fi(x)(1 + εi) < fi(y) The concept of ε-Pareto

optimal is given as, if x∗ ∈ X is ε-Pareto optimal, then ∀x ∈ X if ∀i ∈ 1, 2, ...,K fi(x∗) + εi ≤

fi(x), ∃i ∈ 1, 2, ...K, fi(x∗) + εi < fi(x). Notice that εi must be predefined by some prior

knowledge or universal rules. It has been proved the number of population in ε-Pareto optimal set

is related to ε. Assume K objectives, if ∀i ∈ 1, 2, ...,K, 1 ≤ fi(x) ≤ M

|Fε | ≤
(

logM
log(1 + ε)

)K−1
(3.1)

In fact, there are many different concepts of ε-Pareto optimality and ε-dominance exist in research

literature. If we consider performance of ε non-dominated sorting on objective space, value of

ε actually represents a relative tolerance or constraint on each objective. When ε → 0, the ε-

dominance place no extra constraint on solution population. As the value of ε increases, size of
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|Fε | is decreasing over time. Idea behind this suggests a tradeoff between converging speed and

diversity.

3.2.2 Reference Based Diversity Preservation Rule

In NSGA-III, a predefined set of reference point is adopted to maintain diversity. In this paper, we

use Das and Dennis’s [021] systematic approach that places points on a normalized hyper-plane.

Imagine a mapping from objective space to a hyperplane, we now focus on geometric characteristic

of hyper-plane. Reference points are uniformly distributed, and recombination population ismapped

into this space. The number of reference points ρ j ∈ ρ can be computed by
(d+P−1

P
)
denote the

number of objectives and divisions (along each objective) respectively. Similarity, we would like

to see a solution getting higher chance of being selected when it is located in a less crowded region.

Crowdedness here is measured by counting total number of solutions attached to the reference point.

Reliable measurement must be designed in order to provide qualitative crowdedness description.

3.2.3 Density Estimation

Firstly, in order to make reasonable calculation, each objective function fi(x) is normalized:

f
′

i (x) =
( fi(x)− fmin(x))

max( fi(x)−min( fi(x))
, x ∈ St . Then, each reference point is associated with closest solutions.

Here, distance between reference point and solutions are measured by projection on reference line.

Reference line w is defined on the hyper-plane by joining reference point with the origin.

pd(x,w j) =





x −
wT

j xw j

‖w j ‖
2





 (3.2)

pd(x,w j) denotes perpendicular distance of solution x to reference line w j . Then we calculate

δ(xi,w j) =


1 if pd(xi,w j) = min

w∈W
(pd(x,w j))

0 otherwise
(3.3)
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Step Operation
Step1 Sorting combined solution population Rt (generation t ) based on ε-

nondomination rule. F1, F2, . . . , Fi, . . . are generated.
Step2 Now we want to select N populations from R1 in order to construct P2

, since l must exist satisfying |
⋃

i = 1l−1Fi | ≤ N and |
⋃l

i=1 Fi | ≥ N
The first l − 1 fronts F1, F2, . . . , Fl−1 are assigned to Pt+1

Step3 Now N − |
⋃l−1

i=1 Fi | solutions from Fl will be associated with reference
points. θ(x) = {ρm : min

ρ j∈ρ
ρ j } are calculated for all solutions x in⋃l

i=1 Fi
Step4 Sorting solutions x ∈ Fl by order of θ(x), x ∈ Fl, θ(x) = min (θ(x)}will

be first selected, assigned to Pt+1, Fl = Fl\x and so on until |Pt+1 | = N;

δ(xi,w j) = 1 represent that solution xi is associated with reference linew j . The number of solutions

associated with every reference line w j is counted as

ρ j =
∑
x∈X

δ(x,w j) (3.4)

ρ j for reference line w j provides valuable information to estimate solution density or crowdedness.

Maximum diversity is then achieved by niche-preservation Operation.

3.2.4 Niche-Preservation Operation

We start with calculating

θ(x) = (ρm |ρm = min
ρ j∈ρ

ρ j) X = {x : x ∈ X, θ(x) = min (θ(x)} (3.5)

Least crowded reference lines are considered firstly. Solution population associated with these

reference lines are selected randomly. Selection stops if the number of population reach N.

Otherwise, after taking care of solutions associated with these reference lines, least crowded

reference lines among the remaining are considered. General procedure is written as :
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3.3 Evolutionary Operator for VMOGA

3.3.1 Tchebycheff Metric

In practice, parameter setting in ε-non-dominated sorting algorithm is difficult when prior knowl-

edge about data to be clustered is un known. Usually, ε1 = ... = εd = ε with d representing the

number of objectives. Solution that achieves superb performance in one objective while behave

poorly on all the other objectives is still able to propagate to the next generation. For example,

optimization problem is described as min
x∈X
( f1(x), f2(x), . . . , fd(x)), and ∃x0, s.t f1(x0) << f1(x),

∀x ∈ X\x0 while fi(x0) >> fi(x), ∀x ∈ X\x0 for i = 2, 3, . . . , d. Even if ε is very large, still

(1 + ε) f1(x0) < f1(x), ∀x ∈ X\x0. Hence, x0 always have great chance to be selected to first non-

dominated front. Generally speaking, this issue can be alleviated (not extinguished) by adopting

ε-dominance and setting large ε. However, large ε will significantly decrease the size of Pareto

front, thus impairing diversity. Tchebycheff metric offers us inspiration in terms of removing bad
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solution populoation. Proposed by [002], Tchebycheff metric is defined as

TCH(x,w, z∗) = max
i∈1,...,d

wi ‖ fi(x) − z∗i ‖ (3.6)

z∗denotes projection of idea point in each objective axis with weight vector W = [w1, . . . ,wd]

characterizing significance of each objective. In order to reject “unacceptable” solution population

W could be set as wi = 1, i = 1, . . . , d. However, to determine the idea point is very hard.

Sophistication of determining z∗ also prevents us from using method. Furthermore, order of

priority in rejection should be considered. Intuitively, solutions that deliver bad performance on

d − 1 objectives ought to be removed, then d − 2 comes next, Finally, if rejection quota has not

been used up, solutions with only one corrupted objective should be deleted. If equal importance

is placed upon objectives, It is illustrated in analysis above that Tchebycheff metric basically ignore

order of priority in rejection.

3.3.2 A Rejection Operator

Motivated by Tchebycheff metric and aggregating technique, a selection index V is proposed and

defined as:

V(x) =
d∑

i=1
wi f ∗i (x) (3.7)

f ∗i (x) denotes normalized objective value for solution x. Notice that V could take the advantage

of Niche preservation process where normalization has done. ε-non-dominated sorting is still

implemented in VMOGA after normalization of objective value. Here, ε is determined by previous

experiment that illustrate relationship between non-dominated population proportion and value of

ε. We need to ensure that

2N ∗ P(ε) < N (3.8)

As a supplement to non-dominated sorting, rejection operator has the rejecting rate of θ
1+θ%. Top

θ
1+θ% population with largest V(x) are rejected after Niche-Preservation Operation. In order to

maintain population, a new l exist satisfying |
⋃l−1

i=1 Fi | ≤ N(1 + θ) while |
⋃l

i=1 Fi | ≥ N(1 + θ)

.The number of N(1+θ)− |
⋃l−1

i=1 Fi |solutions are selected by reference-based diversity preservation
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operator. Then θ
1+θ%of the Combined solutions with population N(1+θ)are rejected. Evolutionary

operator in VMOGA is illustrated in fig[35]
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CHAPTER 4

OBJECTIVE FUNCTIONS

4.1 Introduction

Objective functions that evaluate quality of clustering solutions are simultaneously optimized

in multi-optimization framework. Early exploration of data clustering adopt validity index in

evaluation of classification results since a solid connection exists between performance of clustering

and validity index. When clustering performance is enhanced, validity index is optimized and vice

versa. Applications of validity indexes as objective functions achieve satisfied results in previous

studies [022]. Generally speaking, cluster prototype-based and cluster label-based approach are two

types of objective functions exist in the literature. In 2005, cluster label-based encoding strategy

is proposed by [023] and has been improved from then. However, it requires every data point

being assigned a label, thus demands large computation. This issue can be tackled by Prototype-

based approach. In this article, we adopt Prototype-based encoding strategy and introduce several

frequently applied corresponding objectives. The importance of right choice of objective functions

is also illustrated.

4.2 Distance Measure

Distance measure is the basic element in constructing measurement gauging similarity/ dissim-

ilarity between two data points xi and x j . Suppose X ∈ Rd , distance between xi and x j is denoted

as D(xi, x j) which satisfying following properties:

• D(xi, x j) ≥ 0 for all xi, x j ∈ X and D(xi, x j) = 0 only if i = j

• D(xi, x j) = D(x j, xi)

• D(xi, x j) ≤ D(xi, xl) + D(xl, x j) for all xi, x j ∈ X
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Name Expression characteristics
D(1)(xi, x j) D(1)(xi, x j) = |xi,d − x j,d |, xi,dandx j,d repre-

sent dth component of xi,d ,x j,drespectively that
contain intensity information of image.

intensity information

D(2)(xi, x j) D(2)(xi, x j) =
√∑l=d

l=1
(
xi,l − x j,l

)2 Geographic and in-
tensity information

D(3)(xi, x j) D(3)(xi, x j) =
√∑

l=l1,l2,...,lk
(
xi,l − x j,l

)2. lth
1 , . . . , l

th
k feature

of data space

Euclidean distance measure is the most commonly used one in research, here, we categorize them

into three groups based on characteristics representation.

4.3 Membership Function

Membership function is vital in constructing objectives. In this paper, we wish to build up a

framework containing a set of universally applicable objective functions. Cluster validity indices

according to [022], are often selected as the objective function and they are heavily depend on

calculation of membership value. Membership function can be written as a matrix U with its value

reflecting belongingness of data point to corresponding cluster. It is also equivalent to partition

matrix. In image segmentation problems, fuzzy membership value is calculated by:

ui, j =
1∑

limK
i=1

(
D(zk,x j )
D(zi,x j )

) 2
m−1

, 1 ≤ i ≤ K; 1 ≤ j ≤ n; (4.1)

uk, j ∈ [0, 1] and simple calculation shows that:

∑ K
lim
k=1

uk, j

(∑ K
lim
k=1

D(zk, x j)
2

m−1
) (∑ K

lim
k=1

∑ n
lim
j=1

uk, j

)
= 1;

∑ K
lim
k=1

∑ n
lim
j=1

uk, j = n (4.2)

Equation[4.2] proves that uk, j is reasonable to reflect belongness. D(zi, xk ) denotes dis-

tance between cluster centerzi and pattern xk . It should be pointed out that D(zi, xk ) could be
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D(1)(xi, x j)or D(2)(xi, x j) in following studies determined by practical demands. In image segmen-

tations, D(1)(xi, x j) and D(2)(xi, x j) are adoptedwhen intensity distribution of pixels and geographic

information are considered respectively. Fuzzy exponential m is usually set as 2, leading 2
m−1 = 2.

During implementation, centers encoded in a chromosome are first extracted (usually given by a

random generation) and are forwarded to objective function.

4.4 Refined Membership Function

In practice, uk, j is likely to be affected by noise and artifacts. In theory, we hope pixel or pattern

gets bigger chance of being classified into the same cluster as neighborhood pixels. As a result,

refined membership function is proposed by [024]. By evaluating belongingness of surrounding

area, neighborhood information is incorporated into refined membership value. Another advantage

of refined membership function is that ambiguity between adjacent patterns (i.e. overlapping) will

be considerably reduced. In order to construct refined member function, some preparations are

needed. First of all, diameter of neighboring region is predefined (usually set as 3 or 5) and crisp

membership value is calculated via

gk, j =


1 i f uk, j ≥ ul, j, l = 1, 2, ...,K

0 otherwise
(4.3)

Secondly, estimation on partition results of neighboring region is given by

hk, j =
∑

j∈neighborhood
gk, j (4.4)

hk, j is defined as the summation of crisp membership value gk, j in a given neighboring region.

In the end, refined membership function can be constructed by product of hk, j and uk, j with

normalization.

u∗k, j =
uk, j hk, j

K∑
k=1

uk, j hk, j

, 1 ≤ i ≤ K, 1 ≤ j ≤ n (4.5)

Similarly, u∗k, j ∈ [0, 1] and simple calculation shows that:∑ K
lim
k=1

u∗k, j

( K∑
k=1

D(zk, x j)
2

m−1
) ( K∑

k=1

∑ n
lim
j=1

u∗k, j

)
= 1;

K∑
k=1

n∑
j=1

u∗k, j = n (4.6)
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4.5 Objective Functions

4.5.1 Fuzzy C-means (FCM)

FCM [025][026] is a widely used objective in partition matrix evolution. In fact, single-objective

optimization once took FCM as optimizing objective because of its capability of upgrading cluster

center every iteration. In this paper, Jm is only considered as one of objective functions and it’s

given by

FCM =
n∑

j=1

K∑
k=1

um
k, j D2(zk, x j) (4.7)

Where n is the number of data point or pattern (number of pixels in image equivalently),

D(zk, x j)denotes Euclidean distance between data points x j and the center zk . Notice that Jm

summates variance over all clusters. Lower value of Jm indicate better compactness and each data

point is classified to the cluster that achieves the largest membership value. It’s quite intuitive that

Jm decrease as number of cluster K increasing and it can be proved that Jm takes minimum value

when K = n

4.5.2 Xie-Beni Index (XB)

Xie-Beni index [027] a function of the ratio of the total variation σ to the minimum separation sep

of the clusters. Total variation σ is given by

σ =

n∑
j=1

K∑
k=1

um
k, j D2(zk, x j) (4.8)

which is the same as Jm and minimum separation min sep(V) = min
i, j
{‖zi − z j ‖

2}, is a measure of

the worst case scenario of separation in clustering. XB is written as

XB(U,V ; X) =
σ(U,V ; X)

n × min_sep(V)
(4.9)
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4.5.3 Overall Cluster Deviation (DEV)

Dev =
K∑

k=1

∑
x j∈Ck

D2(zk, x j) (4.10)

When maximum membership for each data point is assigned 1 and others by 0,

Jm =
∑

k = 1K
∑

x j∈Ck

D2(zk, x j) (4.11)

In fact, Dev can be viewed as crisp version of Jm. During iteration ambiguity on the boundary is

eliminated since summation in every iteration is proceed right after crisp classification. Dev must

be minimized in order to obtain compact clusters. This objective is practically the same as the

objective of K-means clustering.

4.5.4 Fuzzy Separation (FESP)

Fuzzy separation is given by [019]

S =
K∑

i=1

K∑
j=1, j,i

µm
i, j D2(zi, x j) (4.12)

Membership degree follow similar equation to measure belongingness of each zi to z j , i , j.

µi, j =
1

K∑
l=1,l, j

(
D(z j,zi)
D(z j,zl )

) 2
m−1

, j , i (4.13)

It should be maximized in order to obtain well separated clusters.

4.5.5 Global Separation (SEP)

Global separation [022] is introduced as supplement criteria in estimating separation and it can

be considered as the crisp version of fuzzy separation. Maximizing sep(V) encourage clusters to

be separated from each other, on the other hand, distance between cluster centers should be large

enough to avoid overlapping.

sep(V) =
2

K(K − 1)

∑ K
lim
i=1

∑
i, j

D2(zi, z j) (4.14)
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4.5.6 Average Between Group Sum of Squares (ABGSS)

ABGSS is proposed by [028] which also measure cluster separation and compute the average

distance of the cluster centers from the centroid of the dataset as follows:

ABGSS =

∑
limK

i=1 niD2(zi, z)

K
(4.15)

Here, z represent the center of the whole dataset and ni is the number of data points having

maximum membership value corresponding to zi. ABGSS must be maximized in order to obtain

well-separated clusters.

4.5.7 Intra-cluster Entropy (H)

Intra-cluster entropy is brought up in terms of improving clustering homogeneity [029]. Average

degree of similarity between each cluster center and data points is given by

g(zk ) =
1
n

∑ n
lim
j=1

[
0.5 +

CO(zk, x j)

2

]
(4.16)

Value of g(zk ) reflect global probability of grouping all data points to Ck represented by center zk .

cosine distance CO(xi, x j) is written as CO(xi, x j) =
−→xi ·
−→x j

‖
−→xi ‖‖
−→x j ‖

Intra-cluster entropy of partition Ci

is given by

H(Zi) = −[g(zi) log2 g(zi) + (1 − g(zi)) log2 (1 − g(zi))] (4.17)

In the end, general Intra-cluster entropy is defined as

H =
K∑

k=1

[
1 − H(Zi)g(zi)

] 1
d

(4.18)

d is the dimension of dataset. High intra-cluster entropy is desirable because low entropy from

each cluster enhance homogeneity of our results.
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4.5.8 Davies-Bouldin Index (DB)

The Davies-Bouldin index [030] is a function of the ratio of the sum of within-cluster scatter to

between-cluster scatter, scatter of cluster is given as:

Si =

∑
x j∈Zi

D2(zi, x j)

|Z j |
(4.19)

Single intra-cluster homogeneity and compactness can be estimated by

Rk = max
j,k

{ Sk + Sj

D2(zk, z j)

}
(4.20)

Overall homogeneity and compactness is then given by:

DB =

∑
limK

k=1 Rk

K
(4.21)

Davies-Bouldin index calculate the ratio of within cluster scatter to intra cluster separation. For a

good partition result, inter cluster separation as well as intra cluster homogeneity and compactness

should be high. This affirms the idea that no cluster has to be similar to another, and hence the best

clustering scheme essentially minimizes the Davies–Bouldin index.

4.5.9 Connectedness

Inspired by concept of fuzzy adjacency relation from [01], For any pair of pixel (x, y), the affinity

function µk (x, y)indicates the local hanging togetherness and it is written as:

µk (x, y) = µα(x, y)g(µψ(x, y), µφ(x, y)) (4.22)

µα(x, y) represents adjacency relation which is defined as:

µα(x, y) =


1 i f ‖x − y‖ ≤ 1

0 otherwise
(4.23)

g should be a monotonically non-decreasing function and two components of µψ(x, y) and µφ(x, y)

represent object-feature based and homogeneity-based function. In our case, calculation of
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g(µψ(x, y), µφ(x, y)) can be simplified into

g(µψ(x, y), µφ(x, y)) =


1 x, y ∈ Ck

0 otherwise
(4.24)

The shortest path between two points x,y is denotes as dshort(x, y), which is measured along the

relative neighborhood graph. First of all, all possible paths connecting x and y are found, assume

x1, x2, . . . , xk are intermediate point forming path C(x1, x2, . . . , xk ) which satisfy

µk (xk, xk+1) = 1 (4.25)

Set |C(x1, x2, . . . , xk )| = k, dshort(x, y) = minc∈C |c |. Otherwise, if there is no path between (x, y),

set dshort(x, y) = inf. For a given cluster Ck , we calculate the number of connected components

and denote it as L(Ck )

Conn = max
k∈1,2,...,K

L(Ck ) (4.26)

Cluster validity index is minimized during optimization.
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CHAPTER 5

EVALUATION OF OBJECTIVES

As mentioned before, there is no single objective function that works well for all kinds of dataset.

Moreover, performance of multi-optimization algorithm is also likely be harmed by objectives

that provide insufficient coverage of data features. Therefore, selection of objective is quite

important. An increasing number of objectives generally enhance optimizing performance while

adding computational complexity. Multi-objective optimization is performed on a number of, often

conflicting objectives. The degree of conflict between two objectives increases if optimization of

one objective violate the assumption of the other. One example is to optimize XB and FCM:

FCM is strongly correlated with global variance while XB index is a combination of global

variance and minimum separation as numerator and denominator respectively. Separation between

closest clusters are considered as the worst-case scenario here, the value of which increases as

clusters are well separated from each other, thus increase global variance. It is shown in [015],

minimizing XB index and FCM simultaneously yields good results. It turns out to be much

more difficult to give similar analysis on other objective functions depending limited knowledge.

Therefore, information theory is introduced to solve this issue.

5.1 Multivariate Mutual Information

5.1.1 Mutual Information Among Two Variables

Generally speaking, mutual information [031] measures amount of information about one variable

given the knowledge of another variable and it is mostly defined on two variables. In probability

theory, mutual information gives a quantitativemeasurement on the amount of information obtained

about one variable through another. Our problem here requires the knowledge of interaction

between more than two variables. Firstly, in two-objective cases, assume X and Y have distribution
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PX (x),PY (y) respectively. Entropy is given by

H(X) = −
∑
x∈X

PX (x) log PX (x) (5.1)

H(Y ) = −
∑
y∈Y

PY (y) log (PY (y)) (5.2)

Then joint entropy is written as

H(X,Y ) = −
∑

x∈X,y∈Y
PXY (x, y) log (PXY (x, y)) (5.3)

Mutual information is defined in terms of individual entropy and joint entropy:

I(X;Y ) = H(x) + H(Y ) − H(X,Y ) (5.4)

Now, wewant to expand tomany-objective situation, the idea underlying this is dimension reduction.

5.1.2 Mutual Information Among Multi Variables

For three variables, U,V,Y . If V has no effect on U and Y then IV (U;Y ) = I(U;Y ), Iv(U;Y ) =

I(U;Y ). On the other hand, if V affect the relationship between Uand Y , we could eliminate V by

taking a weighted sum (on the probability of occurrence of the particular value of V ) of the mutual

information between U and Y for each value of V .

IV (U;Y ) =
∑
v∈V

PV (v)I(U;Y |V = v) = I(U;Y |V) (5.5)

I(U;Y |V) = I(U,V ;Y ) − I(V ;Y ) (5.6)

since

I(U,V ;Y ) = H(U,V) + H(Y ) − H(U,V,Y ); I(U;Y ) = H(U) + H(Y ) − H(U,Y ) (5.7)

We can defer that

IV (U;Y ) = H(U,V) − H(U,V,Y ) − H(V) + H(V,Y ) (5.8)

A simple subtraction betweenIV (U;Y ) andI(U;Y ) can be written as

I(U;Y ) − IV (U;Y ) = H(U) + H(V) + H(Y ) − (H(U,V) + H(V,Y ) + H(U,V)) + H(U,V,Y ) (5.9)
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This is also called mutual interaction between V,U and Y.Analysis above presume that probability

distribution of each variable is known. Now, we can easily extend mutual information calculation

to a universal case:

I(X1; X2) = H(X1) − H(X1 |X2); H(X1 |X2) = I(X1 |X2) (5.10)

So, I(X1; X2) = I(X1) − I(X1 |X2), with knowledge above

I(X1; X2; X3) = I(X1; X2) − I(X1; X2 |X3) (5.11)

And

I(X1; X2; . . . ; XN ) = I(X1; X2; . . . ; XN−1) − I(X1; X2; . . . ; XN−1 |XN ) (5.12)

These equations can be expressed in terms of entropy

I(X1; X2; ...; XN ) = (H(X1) + H(X2) + ... + H(XN )) − ... + (−1)N−1H(X1; X2; ...; XN ) (5.13)

When processing only two variables,I is always nonnegative, if I = 0, Xand Yare independent and

knowing X does not give any information aboutY and I > 0 implies information is shared by Xand

Y , the largerI is, more information is shared by X andY . The inefficiency with multi-variate mutual

information is that it could be either positive or negative. For instance, consider case that U and Y

are independent of each other and V is a variable only dependent on U, then I(U; V ;Y ) is negative.

5.2 Total Correlation

Total correlation is the amount of information shared among the variables in the set. In

information theory, total correlation is one of the several generalizations of mutual information.

For a given set of N random variables {X1, X2, . . . , XN }, total correlation is defined as Kullback-

Leibler divergence from the joint distribution p(X1, X2, . . . , XN ) to the independent distribution of

p(X1)p(X2). . . p(XN ) :[032]

C(X1, X2, . . . , XN ) = DKL[p(X1, X2, . . . , XN )|p(X1)p(X2). . . p(XN )] (5.14)
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By reducing divergence to simpler difference of entropies:

C(X1, X2, . . . , XN ) =
N∑

i=1
H(Xi) − H(X1, X2, . . . , XN ) (5.15)

which can be also written as

C(X1, X2, . . . , XN ) =
∑
i, j

I(Xi; X j) +
∑
i, j,k

I(Xi; X j ; Xk ) + ... + I(X1; X2; . . . ; XN ) (5.16)
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CHAPTER 6

IMPLEMENTATION

6.1 Minor Specification

6.1.1 Handling of Infinity Solution in Objective Space

It’s not rare in practice when prior knowledge is inaccessible and number of cluster in implementa-

tion is unknown. An infinite value in objective space is possible, for instance, when some clusters

are empty, Zi, hence |Zi | = 0. Recall that within-scatter of cluster is given as:

Si =

∑
x j∈Zi

D2(zi, x j)

|Z j |
(6.1)

Si goes to infinity. Notice that normalization will be affected by doing calculation ∞−C
∞ . This is

unlikely to generate a reasonable result. In our implementation, solutions with infinite objective

are detected immediately and deleted.

6.1.2 Handling of Solutions with Same Objectives or Diversity

Solutions with the same objectives or diversity are always selected randomly until solution popu-

lation reach threshold N .

6.1.3 Handling of Solutions with Same Membership on Two Clusters

Assume that data pointx j has equivalent maximum membership for cluster Z1 and Z2: u1, j = u2, j

due to fuzzy clustering. This often implied that x j is on the boundary of Z1 and Z2. In order

to take advantage of fuzzy clustering, data pointswith equivalent degree of belongingness are

assigned to more than one clusters. Some objectives, for instance, deviation requires calculating

Dev =
K∑

k=1

∑
x j∈Ck

D2(zk, x j). In VMOGA, x j is assigned to both Z1and Z2.
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6.2 Parameter and Experiment Setting

6.2.1 Initialization and Objective Selection

Initialization Parameter value
Number of generations 50
Population size 100
Parent solution population 100
Child solution population 100
Upper bound on number of clusters 30
Lower bound on number of clusters 2

Six different methods are selected to construct comparison Fuzzy c-means (FCM) is a method

of clustering which allows one pixel to belong to two or more clusters. FCM is proposed by [9]

and frequently applied in pattern recognition. It is based on minimization of the FCM objective

function

FCM =
n∑

j=1

K∑
k=1

um
k, j D2(zk, x j) (6.2)

Partition is carried out through an iterative optimization of FCM shown above, with the update of

membership ui, j and the cluster centers zk ,

ui, j =
1

K∑
i=1

(
D(zk,x j )
D(zi,x j )

) 2
m−1

, 1 ≤ i ≤ K; 1 ≤ j ≤ n; (6.3)

zk =

∑n
j=1 um

k, j x j∑n
j=1 um

k, j
(6.4)

NSGA-II is one of the most widely adopted two-objective optimization genetic algorithm. In

our experiment, MOVGA and NSGA-II optimize the same objectives (FCM and XB) while the

number of clusterK is fixed for NSGA-II and set as a variable for MOVGA. Similarily, NSGA-III

and VMOGA-1 both optimize FCM ,XB, 1/FSEP, DB, 1/H while K is fixed for NSGA-III and set

as a variable for VMOGA-1. In VMOGA-2, another objective functionConn in terms of evaluating
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connectedness is incorporated into our framework. However, introduction of Conn disrupts the

balance of previous objective set. Number of cluster K , which is set as a variable in VMOGA, is

adopted to address this issue. SO (Single optimization of FCM + XB + 1/FSEP + DB + 1/H)

is taken as a supplement criteria in our comparison, with corresponding weight value to each

objective set as one. Recall that weight value or priority for each objective function is needed

before implementing aggregating methods. Optimizing SO in our experiment is to exclude the

possibility that equal weights happen to be the right answer since in this case rejection operator

invalidate the rest part of evolutionary operator.

Methods Choice of objectives
Jm XB 1/FuzzySep DB 1/H Conn

FCM
√

SO
√ √ √ √ √ √

NSGA-II
√ √

MOVGA
√ √

NSGA-III
√ √ √ √ √ √

VMOGA
√ √ √ √ √ √

1SO optimize normalized Jm + XB + 1/FuzzySep + DB + 1/H + Conn

6.2.2 Parameter Encoding and Genetic Operator

Methods with predefined number of clusters K (NSGA-II, NSGA-III, SO) adopt simulated binary

crossover with ηc = 10 and mutation operator with d = 10 with Crossover probability and mutation

probability equal 1 and 0.2 respectively. In VMOGA, crossover operation is determined by normal

distribution N(µ, σ2), µ is the length of the parent solution chromosome, σ = 4 − 3
(

t
tmax

) 1
2
, t

denotes iteration insofar, tmax = 200 as total number of generation. Mutation operator parameter
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d = 0.1 + 9.9
(

t
tmax

) 1
2
; Moreover, rejection rate θ = 0.1 for VMOGA. In refence-based sorting

algorithm, provision is set as 4.

6.2.3 Obtaining Final Solution

Notice that, a set of non-dominated solutions are generated by multi-optimization algorithm and

none of these solutions can be improved in one objective without degrading another. Thus, we

need do some tradeoff or use a selection scheme to choose one particular solution. Index I [6] is

efficient as a supplement validity index to measure the goodness of cluster results. It is given by

I(K) =
1
K
×

E1
EK
× DK (6.5)

K denotes the number of clusters. Observed from equation, Index I is composed of 1
K , E1

EK
and

DK . E1 =
∑n

j=1 D(z1, x j) ;EK =
∑K

k=1
∑

x j∈Zk
D(zk, x j). E1 is taken as constant and z1 represent

global center of dataset. Recall that EK has same expression as Dev which needs to be minimized

in order to enhance compactness of clustering results. DK = max
i, j

D(zi, z j); it denotes the largest

distance between two cluster centers and larger DK indicate better separation. In summary, indexI

is to be maximized. During implementation, we select solution from the last generation with largest

I.

6.3 Experiment on MRI Data

6.3.1 Introduction of MRI Data

Image Segmentation plays an important role in medical image analysis. Automatic segmentation

of MRI brain images into different classes is very important in clinical study and neurological

pathology. However, image segmentation has always been challenging for MRI images since these

images are noisy and imprecise in nature. One important aspect of evaluating segmenting results is

to calculate regional volume. In real-life application, regional volume calculations often bring very

useful diagnostic information. Among them, the quantization of gray andwhitematter volumesmay
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be of major interest in neurodegenerative disorders such as Alzheimer disease, movement disorders

such as Parkinson or Parkinson related syndrome, white matter in metabolic or inflammatory

disease, congenital brain malformations, perinatal brain damage, or in post-traumatic syndrome.

Normal brain image data provided by [22] is a great source to evaluate efficiency of proposed

algorithm. Here, ground truth table is available for these images. There are ten classes present in

Normal brain image with each class given an integer between 0 and 9 representing its content.

Class Back
gound

CSF Grey
Matter

White
Matter

Fat Muscle/
skin

Skin Skull Glial
Matte

Connective

Label 0 1 2 3 4 5 6 7 8 9

A result comparison here is established withMOVGAproposed by [4] and evaluated by adjusted

rand index(ARI) [25]

6.3.2 Adjusted Rand Index(ARI)

Clustering quality is mostly evaluated by external measurement. The Rand index(RI) takes two

partitions as the input (one of which is the correct solution from truth table). The number of

pairwise co-assignments of data items between the two partitions is counted as RI. Adjusted Rand

index (ARI) [25] additionally introduces a statistically induced normalization in order to yield

values close to zero for random partitions. Suppose true partition is available and denotes as

T = {T1,T2, . . . ,Tr } for MRI data X = {X1, X2, . . . , XN }, our segmentation results are written as

C = {C1,C2, . . . ,Cs}. Overlapping between T and C can be summarized in a contingency table

illustrated in table[64]
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C1 C2 ... Cs Sums
T1 n11 n12 ... n1s a1
T2 n21 n22 ... n2s a2
... ... ... ... ... ...
Tr nr1 nr2 ... nrs ar
Sums b1 b2 ... bs

Each element in contingency table denotes the number of objects belonging to Ti
⋂

Cj as

ni j = |Ti
⋂

Cj |, and
∑r

i=1 ai =
∑s

i=1 bi = N

ARI =

∑
i, j

(ni, j
2

)
−

[∑
i (

ai
2 )

∑
j (

bj
2 )

]
(
N
2 )

1
2
∑

i
(ai
2
) ∑

j
(bj

2
)
−

[∑
i (

ai
2 )

∑
j (

bj
2 )

]
(
N
2 )

(6.6)

ARI=1 when clustering results perfectly match true partition T and approximate to 0 for random

classification.

6.3.3 Evaluation of Segmentation Results

Algorithms have been applied on the images corresponding to the Z planes Z10, Z72, Z108, Z120

and Z140.Results are presented in Fig[61:65]. It appears that proposed VMOGA has identified

different homogeneous regions very well
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Table 6.4 Contingency table

Figure 6.1 (a)Original MRI image in Z10 plane (b)Ground truth table (c)Corresponding segmented image 
produced by VMOGA clustering
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Figure 6.2 (a)Original MRI image in Z72 plane (b)Ground truth table (c)Corresponding segmented image 
produced by VMOGA clustering

Figure 6.3 (a)Original MRI image in Z108 plane (b)Ground truth table (c)Corresponding segmented image 
produced by VMOGA clustering

Figure 6.4 (a)Original MRI image in Z120 plane (b)Ground truth table (c)Corresponding segmented image 
produced by VMOGA clustering

Figure 6.5 (a)Original MRI image in Z140 plane (b)Ground truth table (c)Corresponding segmented image 
produced by VMOGA clustering



Results of ARI score are illustrated in table [65]

FCM SO NSGA-II NSGA-III MOVGA VMOGA
Z10 0.661 0.509 0.722 0.786 0.744 0.801
Z72 0.604 0.450 0.727 0.725 0.664 0.719
Z108 0.719 0.557 0.732 0.791 0.767 0.808
Z120 0.698 0.386 0.761 0.810 0.758 0.825
Z140 0.627 0.591 0.816 0.886 0.827 0.893

It is evident in table[65] that proposed VMOGA generally outperforms other algorithm. Mean-

while, the presence of VMOGA and NSGA-III results illustrate that more objectives provide extra

coverage of data characteristics, hence enhance clustering performance. Comparison of FCM,

NSGA-II and NSGA-III further illustrate the importance of optimizing many objectives simultane-

ously. Results of single-objective optimization is also presented in the table. Recall that a rejection

operator V is adopted in VMOGA to remove bad solutions. It is also neccessary to eliminate the

possibility that best results could be selected by index V individually. The single optimization of V

here displays that rejection operator is incapable of selecting good solutions.

6.3.4 Detection of White and Gray Matter

Further application on MRI images segmentation results is going to be estimation of white and

gray matter. Gray matters are important reference in diagnosing neurodegenerative disorders such

as Alzheimer disease, Parkinson or Parkinson related syndrome while white matter is important for

metabolic or inflammatory disease, congenital brain malformations, perinatal brain damage, or in

post-traumatic syndrome. Here detection accuracy (AAC) is defined as

ACC =
TP + T N

TP + FP + FN + T N
(6.7)

TP, FP, FN,T N can be interpreted as True positive: white/gray matter correctly identified as

white/gray matter, False positive: white/gray matter incorrectly identified as non-white/gray matter,

True negative: non-white/gray matter correctly identified as non-white/gray matter, False negative:

47

Table 6.5 Results for Z10, Z72, Z108, Z120 and Z140 planes



non-white matter incorrectly identified as white matter respectively.Moreover, VA(Volume predic-

tion accuracy) is proposed to examine accuracy of white or gray matter prediction. VA is given

by

V A =
|P − T |
|T |

(6.8)

Where T and P denotes true volume and predicted volume by segmentation respectively Compar-

isons are made on Gray and White Matter segmentation with respect to truth label and VMOGA

results. It is illustrated in fig[66-68]

48

Figure 6.7 (a)Gray Matter Ground truth (b)Gray Matter Extraction produced by VMOGA+Extraction on Z108 
plane (a)White Matter Ground truth (b)White Matter segmentation produced by VMOGA-based extraction on Z108 
plane

Figure 6.8 (a)Gray Matter Ground truth (b)Gray Matter segmentation produced by VMOGA on Z120 plane 
(a)White Matter Ground truth (b)White Matter segmentation produced by VMOGA on Z120 plane

Figure 6.6 (a)Gray Matter Ground truth (b)Gray Matter segmentation produced by VMOGA on Z108 plane 
(a)White Matter Ground truth (b)White Matter segmentation produced by VMOGA on Z108 plane



MRI plane Index Performance evaluation
FCM SO NSGA-II NSGA-III MOVGA VMOGA Extraction

Z72 Gray Acc 0.86 0.692 0.873 0.881 0.892 0.899 0.959
Gray VA 39% 46% 33.8% 35.2% 31.9% 26.2% 3.15%
White Acc 0.873 0.777 0.912 0.904 0.915 0.924 0.978
White VA 47% 59.5% 40.4% 25.1% 29.6% 17.7% 3.3%

Z80 Gray Acc 0.852 0.791 0.839 0.860 0.881 0.884 0.970
Gray VA 50% 64% 40.8% 46.5% 39.2% 25.3% 4.68%
White Acc 0.901 0.832 0.942 0.933 0.939 0.948 0.971
White VA 41% 60% 27.9% 13.8% 22.2% 16.5% 3.85%

Z100 Gray Acc 0.906 0.821 0.906 0.91 0.904 0.895 0.982
Gray VA 35% 66% 40.8% 46.5% 39.2% 26.2% 2.34%
White Acc 0.876 0.707 0.912 0.934 0.925 0.941 0.987
White VA 40% 37% 30.9% 15.8% 29.6% 15.1% 1.09%

Z108 White Acc 0.893 0.802 0.932 0.884 0.915 0.951 0.977
White VA 40% 49.5% 30.9% 15.8% 29.6% 17.7% 3.21%
Gray Acc 0.895 0.844 0.811 0.948 0.864 0.947 0.985
Gray VA 38% 77.2% 33.1% 38.4% 22.6% 19.9% 0.53%

Z120 White Acc 0.907 0.772 0.883 0.952 0.910 0.961 0.978
White VA 40% 106% 34.9% 35.8% 41% 26% 1.75%
Gray Acc 0.929 0.821 0.881 0.93 0.901 0.944 0.984
Gray VA 32% 83% 17.2% 16% 19.4% 12.9% 0.21%

Figure [66-69] shows the clustered gray and white matter using VMOGA technique. Visually

it provides a similar clustering structure as that provided corresponding truth table. However,

VMOGA fails to identify skin, skin/muscle matter which disturbs measurement accuracy. There-
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Figure 6.9 (a)Gray Matter Ground truth (b)Gray Matter Extraction produced by VMOGA+Extraction on Z120 
plane (a)White Matter Ground truth (b)White Matter segmentation produced by VMOGA-based extraction on Z120 
plane

Table 6.6 Gray and White Matter extraction results for normal brain images for Z72, Z80, Z100, Z108 and Z120 planes.



fore, connectedness-based extraction is adopted as a supplementary procedure in quantization of

Gray and White Matter and corresponding segmentation result of Z100 and Z120 plane is shown

in Fig [66-69].It is illustrated in the table[66] that proposed VMOGA generally achieve higher

accuracy when extracting White and Gray Matter. Meanwhile, the presence of VMOGA and

NSGA-III results illustrate that increasing number of objectives provide growing coverage of data

characteristics. Comparison of FCM, NSGA-II and NSGA-III further illustrate the importance

of optimizing many objectives simultaneously. Furthermore, it is shown in the table [66] that

evident discrepancies exist in the quantization of Gray and White Matter from VMOGA. Superior-

ity of proposed Extraction (results from VMOGA plus connectedness based extraction) has been

demonstrated which significantly reduce the error of detection and volume prediction accuracy.

6.4 Implementation on Fatigue Area Detection

The proposed image processing method is validated on NDE data obtained from inspection of

delamination in glass fiber reinforced polymer (GFRP) specimens subjected to Mode I fatigue tests.

A GFRP specimen is periodically imaged from its healthy state to damaged state using optical

transmission scan [26]. OTS has been previously used for tracking impact damage growth in GFRP

specimens [27]. In the experiment, sample is illuminated by the laser source and power transmitted

through the sample is recorded by photodetector to examine extent of delamination in the GFRP

sample. At first, the critical displacement where the specimen cracks are recorded by introducing

monotonic loading to five similar samples. The process is then repeated for all the specimens and

the average critical displacement is computed. Fatigue loading is then conducted on a new sample

under cyclic loading at 5 cycles/sec and displacement ratio of 0.1. OTS images of mode 1 GFRP

sample subjected to 8 rounds of cyclic loading are presented in Figure [610]:
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From OTS images, extent of delamination can be observed as the region between end of Teflon

and the beginning of healthy part of the sample. It is shown that delamination inside specimen grows

slowly as the number of load circles increasing. The piezoelectric sensors attached to the GFRP

sample are marked as reference points and are used to calculate the physical area of delamination

from dpix . During preprocessing, location of the two PZT sensors are identified and the pixel

distance between their inner edges is recorded as lpix .Additionally, upper and lower edges of the

sample and its pixel width is recorded as wpix . The cutting results are presented in Fig[611]
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Figure 6.10 Healthy sample being subjected to Mode 1 cyclic loading after (a) 20K cycles (b) 40K cycles (c) 
60K cycles (d) 80K cycles (e) 100K cycles (f) 120K cycles (g) 140K cycles (h) 160 cycles



Area of delamination from the OTS image is originally computed using image processing

algorithm implemented in MATLAB. The delaminated area is identified using segmentation via

fast marching method (FMM) [02] whose corresponding threshold for extracting fatigue area is

known. Physical distance between two PZT sensors Lphy and width of the sample Wphy the

delamination area are measured before segmentation. Finally, Dphy is calculated by equation 6.9

dpix

lpis × wpix
(Lphy ×Wphy)cm2 (6.9)

Where Lphy = 10cm and Lphy = 2.5cm. Notice that unsupervised VMOGA generate result that

contains edge effect which in practice does belong to delamination.
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Figure 6.11 PZT cutting image of Healthy sample being subjected to Mode 1 cyclic loading after (a) 20K cycles 
(b) 40K cycles (c) 60K cycles (d) 80K cycles (e) 100K cycles (f) 120K cycles (g) 140K cycles (h) 160K cycles



In order to separate edge effect from real delamination, a special window function is adopted.

Recall the process in constructing refined membership function where

gk, j =


1 i f uk, j ≥ ul, j, l = 1, 2, ...,K

0 otherwise
(6.10)

In fact, gk, j is the crisp version of fuzzy membership uk, j , W = {wi} is predetermined as a group

of rectangular windows with width equal to one. The length of wi is denoted as li

hk, j =
∑

i

∑
j∈wi

gk, j T =
∑ li + 1

2
(6.11)

h∗k, j =


1 i f hk, j ≥ hl, j, l = 1, 2, ...,K

0 otherwise
(6.12)

Largest component of ROI produced by h∗k, j is selected as our segmenting result. Binary images

denoting delamination area is shown in figure[613-614].In the end, plot of number of load cycles
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Figure 6.12 Edge effect and real delamination area in PZT cutting image of Healthy sample after 160K cycles

Figure 6.13 Healthy sample being subjected to Mode 1 cyclic loading after 20K, 40K, 60K and 80K cycles



versus delamination area detected is shown in fig[615]. It is clear that curve of delamination area

detected by VMOGA Extraction fits very well.
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Figure 6.14 Healthy sample being subjected to Mode 1 cyclic loading after 100K, 120K, 140K and 160 cycles

Figure 6.15 Plot of number of load cycles versus delamination area detected by VMOGA+Extraction and FMM.



CHAPTER 7

CONCLUSION AND FUTUREWORK

In this article, a variable-length multi-objective optimization technique(VMOGA) has been pro-

posed to evolve the number of clusters automatically. NSGA-III has been adopted as underlying

optimization framework for multi-objective optimization due to its capability of managing a large

number of objectives. Essential components of existing multi-objective optimization algorithms

have been discussed and developed. Frist of all, a new encoding and genetic operator has been

designed following principle underlying binary operator in order to reduce redundant computation.

Then, weaknesses with existing evolutionary operator are discussed and a rejection scheme is pro-

posed to remove “bad” solutions that occupy population space. Furthermore, total correlation is

introduced as a supplementary tool to make suitable choice of objectives. Conventional objective

functions are presented. Spatial Jm, intra-cluster entropy and connectedness which incorporate

various aspects of spatial information are also constructed in order to better target image segmen-

tation problem. Superiority of VMOGA is demonstrated in segmenting MRI human brain images

by comparing with several other optimization algorithms. Additionally, In the end, VMOGA is

performed on detection of delamination area caused by fatigue loading in Mode I glass fiber rein-

forced polymer (GFRP) samples. Results suggest future potential application in fatigue detection.

However, some limitations still exist in our proposed VMOGA. It is known that among the large

number of cluster validity indices, none of which performs satisfactorily for a wide range of data

sets alone. Therefore, it is important to select two or more objective functions that can complement

and compensate for one another. This is illustrated by MRI experiment. We know that different

tissues may hold similar intensity information at some locations while intensity value of a particular

tissue may variate across some region. This is caused by noise and intensity inhomogeneities in

data collection phase. As a result, it is possible to improve clustering results by incorporating extra

spatial information. However, the amount of spatial information needed is still unknown. In future

work, balance between geography-based and intensity-based objectives should be examined.
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