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ABSTRACT

MECHANISMS OF INJURY TO ‘HONEYCRISP> APPLE UNDER CONTROLLED
ATMOSPHERE (CA) STORAGE CONDITIONS

By

Diep Thi Ngoc Tran
Controlled atmosphere (CA) storage is used to maintain the fresh quality of most commercial
varieties of apples in the US. CA storage units are typically operated at O levels below 3 kPa
and CO levels between 1 and 5 kPa. However, 'Honeycrisp' fruit is very sensitive to standard
CA conditions, which can cause jagged-edged brown lesions in the fruit cortex and lens-shaped
voids. The brown lesions develop rapidly, maximizing within the first 1.5 months of CA storage,
and the voids develop more slowly, increasing in frequency with storage time. We found that the
severity of CA-injury rose with increasing CO. concentrations. The fruit treated with the
antioxidant diphenylamine (DPA) before CA storage experienced minimal CA injury. The
damage caused by elevated CO., in combination with 3 kPa O, induced the formation of
fermentative volatiles ethanol, ethyl acetate, and acetaldehyde. Our data suggested that the
fermentative volatiles do not cause damage, but rather they are the result of the damage caused
by CA conditions. The injury was found to be associated with changes in cellular metabolites
associated with energy interconversion and reducing potential. CA injury was associated with a
shortage of reducing agents in ‘Honeycrisp’ apple. The data suggest that the tissue does not have
enough adenylate energy charge (AEC) for cellular survival and sufficient antioxidants for
scavenging oxygen free radicals that accumulate under CO3 stress. Consequently, cell death

follows, leading to the browning symptoms and lens-shaped voids of CA injury.
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CHAPTER 1.

INTRODUCTION



1.1 Issues of ‘Honeycrisp’ apple under CA storage

Since its release in 1991 from the Minnesota Agricultural Experiment Station's
Horticultural Research Center (Bedford, 2001; Luby and Bedford, 1992), the ‘Honeycrisp’
apple (Malus x domestica) cultivar has been widespread and become one of the most valuable
cultivar grown the United States (National Agricultural Statistics Service, 2011, 2012, 2015).
A reconstructed pedigree for ‘Honeycrisp’ based on haplotype analysis using SPN data
proved that the cultivar was bred between ‘Keepsake’ parent and previously unreported
parent ‘MN1627° (Howard et al., 2017). ‘Honeycrisp’ apple now occupies a significant share
of the apple market in the U.S. since the cultivar has become a favorite fruit of consumers
because of its crisp texture and unique flavor (Abad-Santos, 2017; Yue and Tong, 2001). Due to
a dramatic and continues increase in planting area of this cultivar, it is very necessary to extend
the marketing season for the apple. Thus, long-term storage for marketing season is needed
(Beaudry et al., 2014; Watkins and Rosenberger, 2000).

Controlled atmosphere technology functions as a supplement to cold temperature storage
to prolong storage life of horticultural crops after harvest. CA storage includes an increased CO>
concentration (usually in the range of 2% to 30%) and/or decreased O, concentration (usually in
the range of 0.5% to 14%) (Gormley, 1985). However, very low O and/or very high CO>
concentrations can induce the development of physiological disorders in many apple cultivars.
Low Oz or high CO- alone or a combination of both gases caused CA storage injury (CA injury)
(Pierson et al., 1971).

Since the 1960s, CA storage has been developed and applied to most commercial
varieties of apples (Golding and Jobling, 2012) including ‘Honeycrisp’ in the US and in major

apple production areas around the world. Unfortunately, however, 'Honeycrisp' has a high



sensitivity to low storage temperatures and low Oz, high CO. atmospheres, leading to storage
disorders. Therefore, it is challenging in storing the fruit for a long-tern. Soggy breakdown and
soft scald which are classified as typical low temperature disorders (i.e. the chilling injury
symptoms) (Beaudry and Contreras, 2009; Brook and Harley, 1934; Plagge and Maney, 1928;
Ramsey et al., 1917; Watkins and Rosenberger, 2000; Watkins et al., 2004, 2005). Common
symptoms of CA injury include internal browning and lens-shaped voids in the flesh. In
particular, CA-related injury causes jagged-edged brown lesions in the apple cortex which may
extend to the core (Beaudry and Contreras, 2009). Testing disorder incidence on ‘Honeycrisp’
under different CA conditions with varied combinations of O2/CO- partial pressures (kPa): 1/0,
3/0, 1/3, 3/3, 21/3, 21/0 (air) showed that the symptom was caused by elevated CO- levels and
was exacerbated by reduced O levels (Contreras et al., 2014).

CA storage recommendations for ‘Honeycrisp’ apple in Michigan, New York,
Minnesota, Nova Scotia, and Ontario are being developed (Beaudry and Contreras, 2009;
Beaudry et al., 2014; Contreras et al., 2014; DeEll and Ehsani-Moghaddam, 2012; DelLong et al.,
2004a; Leisso et al., 2017; Watkins and Nock, 2012b, 2012a). Preconditioning (3, 10, and 20 °C
for 5 days), diphenylamine drench (DPA, an antioxidant; 1000 puL-L™), or 1-methylcyclopropene
(1-MCP, an ethylene action inhibitor; 1 pL-L™) were applied to ‘Honeycrisp’ before CA storage
under O2/CO; partial pressures (kPa) of 3/0 and 3/3 for preconditioning and DPA and 21/0 for 1-
MCP (Contreras et al., 2014). Preconditioning and DPA drench before any preconditioning
treatments almost eliminated CA injury. Additionally, 1-MCP before air storage was found to
not to cause deleterious effects on the fruits (Contreras et al., 2014). Additional work revealed
that conditioning at higher temperatures for shorter periods of time could also effectively

suppress CA injury. Fruits can be preconditioned 3 days at 20 to 25 °C before CA storage at 3



kPa Oz plus 3 kPa CO» at 3 °C (Beaudry et al., 2014). However, since this result was based on
limited data, it needs to be additionally tested. So far, there has been no safe recommendation
emerging from most 'Honeycrisp' production areas because the effects of these applications have
not been consistent (Watkins and Nock, 2012a). Moreover, the mechanisms causing injury to
‘Honeycrisp’ under CA conditions are not understood. This knowledge may be helpful in finding
ways to eliminate CA injury to ‘Honeycrisp’.
1.2 Possible causes of CA injury
1.2.1 Cellular energy state shortage

Adenosine 5'-triphosphate (ATP) is the principal molecule for storing and transferring
energy in cells. It is considered as the energy currency of the cell because it can be “spent” so
that chemical reactions can occur. The adenylate energy charge (AEC) is one way of describing
the energy status of a cell. AEC value is equal to [ATP] + 0.5 [ADP])/ ([ATP] + [ADP] +
[AMP]) which “represents the relative saturation of the adenylate pool in phosphor anhydride
bonds” (Atkinson, 1977). Energy status helps maintain the integrity of cell membranes because
adenylate nucleotides play a vital role in the biosynthesis of fatty acids of membrane lipids
(Saquet et al., 2003).

At harvest, the fruit respires to breakdown energy-containing compounds and synthesizes
ATP for its continual survival (Nelson and Cox, 2013; Taiz and Zieger, 2010). In cytosol, one
glucose molecule splits into two pyruvate molecules (from glycolysis). Under normal aerobic
respiration, pyruvate is transported into the mitochondrial matrix, decarboxylated, and
dehydrogenized to acetyl CoA which is the first substrate in the Krebs cycle. NADH and FADH:
regenerated in Krebs cycle will supply hydrogen to hydrogen carriers and electrons to electron

carriers to makes energy available for the synthesis of ATP from ADP and Pi by creating a



proton gradient across the inner mitochondrial membrane. In summary, one glucose molecule
makes 36 ATP molecules under aerobic respiration (Taiz and Zeiger, 2010). The impact of
higher aerobic respiratory activity can be seen in avocado where ATP levels rose in accordance
with the rate of CO, production and then declined during storage (Bennett et al, 1987). When the
cell limits or lacks oxygen for cytochrome c, the Krebs cycle is hindered. Instead, ATP is
synthesized via anaerobic respiration. During anaerobic respiration, one glucose molecule
produces only two ATP molecules (from glycolysis). Concurrently, pyruvate from glycolysis is
decarboxylated to acetaldehyde which is reduced to ethanol molecules (Nelson and Cox, 2004)
(Taiz and Zeiger, 2010).

After harvest, fruit ripens, senesces, and dies. ATP levels are affected by both ripening
and senescence. Fresh fruit ripening is an irreversible programmed cell death process of which
characteristics have been investigated recently on over-ripening banana (Ramirez-Sanchez et al.,
2018). ATP levels declined significantly during senescence and exogenous ATP application
reduced browning of litchi skin and delayed senescence of cut carnation flowers (Song et al.,
2006b) (Song et al., 2008)(Wang et al., 2013). ATP levels decreased when the apple and pear
stored at elevated CO> and low O and exposed to CA injury (Saquet et al., 2000).

Inhibition of activities of some enzymes in glycolysis and Krebs cycle under CA
condition resulted in a decrease in aerobic respiration rate (Kader, 1989), which can hinder ATP
synthesis (Ke et al., 1993). CA has been suggested to cause local ATP deficiency in ‘Kanzi’,
‘Jonagold’ and ‘Braeburn’ apples (Ho et al., 2013a), 'Bartlett' pear (Nanos and Kader, 1993),
‘Conference' pears and ‘Jonagold' apples (Saquet et al., 2000). When ATP levels fall below a
critical level, it would probably no longer be sufficient to support life for tulip petals in

senescence stage (Azad et al., 2008) and may, therefore, cause cell death that horticulturalists



refer to as disorders which incidence of the severe disorders increased. (Saquet et al., 2000).
However, low ATP is may not always cause disorders; under anoxia (0 kPa O2 with or without
CO») pears show no damage despite very low ATP levels in the tissue (Veltman and
Peppelenbos, 2003).
1.2.2 Fermentative toxicity

Fermentative metabolism does not typically happen under standard CA conditions (Ke et
al., 1993). Under severe hypoxic conditions, however, fruit respiratory metabolism will switch to
fermentation (Ke et al., 1993). Ethanol and acetaldehyde increased in avocado, pears, lettuce and
strawberry (Fernandez-Trujillo et al., 1999; Ke et al., 1995; Watkins et al., 1999) under low O
(0.25 kPa) and high CO- (20 — 80 kPa). Ethanol, acetaldehyde, and methyl esters levels had been
increased in ‘Conference’ pears (Saquet and Streif, 2006), ‘Fuji’ apples (Lumpkin et al., 2015),
and ‘Jonagold’ apple (Saquet and Streif, 2008) under lower CO. concentrations (6 kPa) in
combination with 0.5 kPa Oz. It is still unknown if fermentative metabolism is a cause or a result
of internal disorders in pome fruit, although a correlation between the browning rate and
fermentative volatile level was demonstrated (Lee et al., 2012; Pint6 et al., 2001; Volz et al.,
1998). In addition, Fernandez-Trujillo et al. (2001) suggested that accumulation of the
fermentative volatiles resulted from internal browning of apples. The link between cellular
damage and the synthesis of fermentative volatiles may be common in the plant world. There
was an accumulation of acetaldehyde and ethanol in red pine and paper birch trees which
exposed to stressful conditions such as ozone, sulfur dioxide, freezing temperature, and drought

(Kimmerer and Kozlowski, 1982).



1.2.3 Metabolic dysfunction

High concentrations of COz in CA conditions influence carbohydrate metabolic
pathways. 10% CO> caused an increase in fructose-6-phosphate and a decrease in fructose-1, 6-
diphosphate in 'Bartlett’ pear (Kerbel et al., 1988). CA conditions also interfered with normal
metabolisms of the TCA cycle, causing increases in alanine, galactose, mannitol, sorbitol, and
xylose and decreases in malic acid and sucrose (Hatoum et al., 2014). Vandendriessche et al.
(2013) found that there is an increase in alanine in ‘Braeburn’ apple. Alanine accumulation
might be the result of, not the cause for, ‘Braeburn’ cell death (Hatoum et al., 2014).

Accumulated galactose in ‘Braeburn’ at very early CA storage did not link with
senescence, but with cell wall dysfunction, resulting in browning in the cortex (Hatoum et al.,
2014). Sorbitol, an indicator of disturbed metabolism, and mannitol, a protector against oxidative
damage, accumulated in damaged/brown ‘Braeburn’ inner cortex (Hatoum et al., 2014). An
exogenous application of a high concentration of succinate application on apple peels caused
browning of the tissue (Hulme, 1964; Neal and Hulme, 2018). When apple fruit were stored
under very high CO; level (20%), succinic dehydrogenase activity was obstructed, causing an
increase in succinic acid to a level that becomes poisonous to fruit tissues (Fernandez-Truijillo et
al., 2001; Hatoum et al., 2014; Hulme, 1956). Succinate accumulation, however, has not always
been found to be directly related to CO: injury (Fernandez-Trujillo et al., 2001). To sum up, CA
conditions alter carbohydrate metabolism, but it is unknown if the metabolites have direct or
indirect effects on fruit damage.
1.2.4 Reactive oxygen species (ROS)

ROS can be destructive or act as signaling molecules to plant cells, depending on their

levels. ROS in plants are naturally produced from the electron transport chains of photosynthesis



and respiration. When ROS are maintained under conditions of homeostasis, they will be an
effective secondary messenger to help plant cells tolerate environmental stresses such as to low
O, elevated CO», mechanical injury, pathogens, drought, too high or too low temperature
(Chomkitichai et al., 2014). Extracellular ATP (eATP), one of the damage-associated molecular
patterns (DAMPS) of plants to activate plant defense responses (Martinez-Reyes and Cuezva,
2014), induces an accumulation of ROS by triggering activation of Ca?>* and NADPH oxidase in
cytosol. However, when ROS level exceeds a threshold of defense mechanisms, it causes
“oxidative stress” and eventual death of the cells (Saed-Moucheshi et al., 2014).

1.2.5 Cellular membrane damage

Under oxidative stress, cells can undergo lipid peroxidation, causing alterations in
cellular membrane properties, ion leakage, and cellular decompartmentation (Chomkitichai et al.,
2014). Proteins, nucleic acids, and enzymes are also damaged by ROS (Chomkitichai et al.,
2014). In a review of (Maragoni et al., 1996), phospholipases and lipoxygenases cause loss of
function of cellular membrane damage because they change membrane lipid and protein
properties. Changes in the expression of genes involved in fatty acid oxidation and cell wall
loosening of ‘Bracburn’ which exposed to browning incidence under CA condition (3 kPa O2 +
0.7 kPa CO) (Mellidou et al., 2014).

Following cellular decompartmentation, phenolics from the vacuole will be oxidized by
polyphenol oxidase (PPO) and/or peroxidase (POD) to o-quinones. The accumulation of
melanins derived from such quinones results in browning in the litchi fruit skin (Chomkitichai et
al., 2014). Cellular membrane damage affected by stresses during CA storage is the main reason

for internal browning in pear fruit in the review of (Franck et al., 2007).



1.2.6 Insufficiency in NADH, NADPH, and antioxidants
1.2.6.1. NADH and NADPH

The nucleotides NADH and NADPH [collectively, NAD(P)H] comprise redox energy
currency. Glutathione (GSH), a non-enzymatic antioxidant, accumulates in its reduced form
when receiving electrons from NAD(P)H via the ascorbate-glutathione cycle. At the same time,
the cycle also produces ascorbic acid (Asc), a non-enzymatic antioxidant (Noctor and Foyer,
1998). There are many studies of the roles of NAD(P)H on redox balance in plant cells under
osmotic, drought, and pathological stresses. However, its roles in fruits under CA storage has not
been much investigated. Under CA conditions, NAD(P)H levels increased in avocado (Ke et al.,
1995), ‘Conference’ pears and ‘Jonagold’ apples (Saquet et al., 2000). The studies so far have
not demonstrated a clear relationship between NAD(P)H pools and stresses caused by CA
conditions on fruits.
1.2.6.2. Antioxidants

The antioxidative system in plant cells provides essential protection against oxidative
damage in scavenging or detoxification of surplus ROS. There are two kinds of antioxidant:
enzymatic antioxidants and nonenzymatic antioxidants. Two vital non-enzymatic antioxidants in
plants are ascorbate (Asc) and glutathione (GSH), which are the most abundant low molecular
weight antioxidants in cells. They join in the ascorbate-glutathione cycle to reduce H>O> to H20
(Noctor and Foyer, 1998; Sharma et al., 2012). Asc is considered the most powerful plant
antioxidant. If Asc level is below a threshold to scavenge ROS, oxidative stress can damage
membranes and cellular constituents, and cause browning in fruits (Veltman et al., 2000). Pome
fruits held in CA conditions had decreased Asc, which was associated with the occurrence of

browning disorders (Haffner et al., 1997; Veltman et al., 2000, 2003). GSH is another important



antioxidant. In addition to regeneration of Asc via Asc-GSH cycle. GSH can directly eliminate
02", "OH, and H20>. Under oxidative stresses, glutathione accumulation was dramatically
induced (Noctor and Foyer, 1998). Regeneration of GSH did not happen in strawberries under 20
kPa Oz whether the CO levels: were 40 or 0 kPa (Blanch et al., 2013).

1.2.6.3. Diphenylamine (DPA) and its role as an antioxidant

Due to its antioxidant function, DPA could reduce oxidation of the sesquiterpene a-
farnesene, resulting in eliminating superficial scald on apple peel of ‘Granny Smith’ and
‘Crofton’ (Huelin and Coggiola, 1970), of ‘Cortland’ apple (Mir and Beaudry, 1999).

DPA and its hydroxylated derivatives (2-, 3- and 4-hydroxydiphenylamines) also
prevented internal browning on ‘Braeburn’ apples under CA conditions (Lee et al., 2012;
Mattheis and Rudell, 2008). DPA suppressed amino acid accumulation (Lee et al., 2012), which
would have resulted from enhanced proteolysis during cell death (Muntz, 2007). Consequently,
fermentative volatile production of ethyl esters using these amino acids as substrates did not
increase in DPA treated ‘Fuji’ and ‘Braeburn’ fruit (Lee et al., 2012; Argenta et al., 2002).
However, there were no significant differences in fermentative volatiles between DPA-treated
and untreated ‘Cortland’ and ‘Law Rome’ exposed to 45 kPa CO; for 12 days (Fernandez-
Trujillo et al., 2001). In addition, it is suggested that DPA eliminated the toxic effects of high
succinate levels for apples under CA conditions (Lee et al., 2012). In general, DPA application
eliminated CA disorders of apples (Contreras et al., 2014; Lee et al., 2012; Mattheis and Rudell,
2008). However, the mechanism whereby DPA eliminates CA disorders in the fruit is still

unknown.
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1.3 Hypothesis of mechanisms causing CA injury in ‘Honeycrisp’ apple
We hypothesize that CA storage may cause a shortage of adenylate charge (AEC), redox
energy compounds, and/or antioxidants in ‘Honeycrisp’ apple. We anticipate that the pools of
these metabolites may not be sufficient for cellular survival under the stressful conditions of high
CO2 and low O and the associated cell death leads to a loss in tissue compartmentation and
browning of the affected tissues. We propose that diphenylamine (DPA), which protects the fruit
from CO2 damage, does so by maintaining Asc above a threshold level and succinic acid below a
critical threshold in the fruit cells.
1.4 Objectives
To study mechanisms by which CA storage conditions cause physiological injury to
‘“Honeycrisp’ apple fruit, we investigated:
1) CA conditions that cause physiological injury to ‘Honeycrisp’,
2) Metabolite pools of essential processes in tissues injured by CA conditions,
3) The role of the antioxidant DPA in suppressing changes in metabolite pools,
4) The role of the preconditioning in suppressing changes in metabolite pools, and
5) Mode of actions causing cell death in cortical tissues under CA conditions.
1.5 Summary of research methodology
In Chapter 2, to find out how quickly CO: injury symptoms developed inside the apple
cortex and the dose response of the injury to CO2, CA conditions were established that would
yield a range of injury symptoms. 'Honeycrisp' fruit were stored under 5 COz levels (0, 1.5, 3, 5,
10, and 20 kPa) at 3 kPa O at 3 °C. We also studied low O levels (0.1 — 0.4 kPa) at 0 kPa CO-
at 3 °C. In addition, the antioxidant diphenylamine (DPA) was used to suppress symptom

development and the impact of this chemical control measure on the cellular metabolic pool and
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in the presence of otherwise toxic CO> levels was evaluated. We evaluated the use of the
ethylene action inhibitor 1- MCP and the use of preconditioning treatments on CA injury and
fruit quality. Internal and external disorders of the treatments were analyzed during storage.

In Chapter 3, we analyzed the association of injury with emissions of fermentative
volatiles (ethanol, acetaldehyde, and ethyl acetate).

In Chapter 4, we studied the impact of CO2, DPA, and preconditioning on 15 important
metabolites, using tissue samples collected before symptom development, at the onset of injury,
at half maximal injury development, and at maximal injury development. The metabolites
include adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate
(AMP), reduced nicotinamide adenine dinucleotide (NADH), oxidized nicotinamide adenine
dinucleotide (NAD), reduced nicotinamide adenine dinucleotide phosphate (NADPH), oxidized
nicotinamide adenine dinucleotide phosphate (NADP), ascorbic acid (Asc), glutathione (GSH),
glutathione disulfide (GSSG), coenzyme A (CoA), acetyl coenzyme A (acetyl CoA), succinic

acid (SA), phosphoenolpyruvate (PEP), and uridine diphosphate glucose (UDP-G).
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CHAPTER 2.

INJURY OF ‘HONEYCRISP’ APPLES CAUSED BY CA STORAGE AND

APPROACHES TO REDUCE THE INJURY

20



2.1 Introduction
2.1.1 CAinjury

Since commercial production of ‘Honeycrisp’ apple (Malus x domestica) began in 1991,
the cultivar has become a favorite for consumers because of its crisp texture and unique flavor.
In the U.S. its growing area has increased in Michigan, New York, and Washington (National
Agricultural Statistics Service, 2011, 2012, 2015). The demand for 'Honeycrisp' apples has led to
the need to extend the marketing season. Long-term storage is needed for this apple to meet the
demand. Low temperature storage and the use of controlled atmosphere (CA) storage are two
technologies that normally prolong the storage life of apple fruit by apple industry. However,
‘Honeycrisp’ fruit is very sensitive to low temperature and CA conditions and can be severely
damaged in storage (Beaudry and Contreras, 2009; Contreras et al., 2014; Watkins and Nock,
2012b).

Two common low temperature disorders in 'Honeycrisp' are soggy breakdown and soft
scald (Beaudry and Contreras, 2009; Watkins and Rosenberger, 2000). The injury caused by CA
conditions is called CA-related injury (i.e., CA injury), which, in some cases, is very similar in
appearance to soggy breakdown. It is characterized by brown lesions/patches in the fruit cortex,
often with irregular edges and sometimes with the inclusion of lens-shaped openings in the
brown lesions (Beaudry and Contreras, 2009; Contreras et al., 2014). The symptom of CA injury
has been described in detail by Beaudry et al. (2014) and can be distinguished to chilling injury
in both appearances on the apple cortex and fermentative scent. CA injury is also considered as
CO:z injury since high CO> plays as a driving factor. and low O, combined in CA intensifies the

symptom (Plagge, 1929).
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2.1.2 Preconditioning treatment

“Delayed cooling” or “pre-storage conditioning” is another term of preconditioning. If
‘Honeycrisp’ apples was kept at a temperature about 10 — 15 °C higher than long-term storage
temperature (i.e. about 3 °C) for several days before stored in CA room, soft scald and soggy
breakdown symptoms reduced (Beaudry et al., 2010; DeLong et al., 2004b; Watkins and Nock,
2003; Watkins et al., 2004). These injuries can be reduced by storage at 3 °C and by conditioning
the fruit by holding for several days at 10 to 20 °C prior to CA storage (Beaudry et al., 2010;
Moran et al., 2010; Watkins and Nock, 2012a). Preconditioning was also applied on the fruit to
reduce CA injury (Beaudry and Contreras, 2009; Beaudry et al., 2014; Contreras et al., 2014;
Leisso et al., 2017; Moran et al., 2010; Watkins and Nock, 2012b). However, a repeated
preconditioning experiment is necessary for preventing chilling injury and CA injury in the
cultivar.
2.1.3 DPA treatment

Diphenylamine (DPA), an arylamine antioxidant, can be an important tool in preventing
CA injury to ‘Honeycrisp’, a CA sensitive cultivar. DPA drench almost completely eliminated
the disorder of the apples when stored at 3% O> and 3% CO: (Contreras et al., 2014). It also
successfully eliminates superficial scald on the skin of ‘Granny Smith’ and ‘Crofton’ apple
because it can suppress auto-oxidation of a-farnesene which is a causative agent of superficial
scald because of its antioxidant properties (Huelin and Coggiola, 1970).

DPA (1000 pL-L 1) drench before any preconditioning treatments almost completely
eliminated CA disorder of the ‘Honeycrisp” apples under 3% Oz and 3% CO- (Contreras et al.,
2014). DPA and its derivatives also prevented internal browning on ‘Braeburn’ apples under CA

conditions (Lee et al., 2012; Mattheis and Rudell, 2008). Our preliminary experiments showed
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that diphenylamine (1000 pL-L™ or ppm in 30s) could prevent CA injury in Honeycrisp’ apple.
We found that even 250 ppm DPA (1/4 label dosage) DPA was also effective at suppressing CA
injury for the fruit stored in 5 kPa CO> (data not shown). We need to learn the limitations for
DPA concentration needed to protect 'Honeycrisp' apples against CA injury for standard CA
conditions.
2.1.41-MCP

DPA residues on fruit are not accepted in European Union countries even at very low
doses (Calvo and Kupferman, 2012). Therefore, use of 1-MCP, an ethylene antagonist, can
extend the storage life of apple fruit and might avoid CA injury caused by CA conditions
because the fruit can be stored in air (21 kPa Oz + 0 kPa CO>). The application of the ethylene
antagonist 1-methylcyclopropene (1-MCP) can extend the storage life of apple fruit. 1-
MCP has been commercially applied in the apple industry since 2002 under the commercial
name SmartFresh™ (AgroFresh Inc., Spring House, PA, USA) (Beaudry and Watkins,
2003). The advantage of 1-MCP is that it can strongly and, apparently, permanently bind
to ethylene receptors at very low concentrations (from 0.005 — 1 ppm), depending on the
exposure durations of apples to the compound (Beaudry and Watkins, 2003; Sisler et al.,
1996). With a single dose treatment of 1-MCP to ‘Honeycrisp’ apples before air storage,
production of ethylene in the fruit dramatically reduced relative to the control (DeEll and
Ehsani-Moghaddam, 2012; Watkins and Nock, 2012a). Consequently, fruit ripening and
senescence were retarded (Watkins and Nock, 2012a).

Ethylene receptors, however, can continue to be produced in fruit tissues especially
when the fruit is at climacteric (Nakatsuka et al., 1998). To maintain the effectiveness of 1-

MCP in blocking ethylene receptors, multiple applications of the compound were applied to

23



‘Northern Spy’, ‘Empire’, and ‘Mclntosh’ apples (DeEll et al., 2016), and ‘Redchief
Delicious’ apples (Mir et al., 2001) and found to inhibit ripening significantly better than
single applications. Similarly, continuous application of 1-MCP delays color development for
tomatoes especially at breaker stage (Mir et al., 2004) and 2 doses of 1-MCP application on
the apples helped maintain their firmness (DeEll et al., 2016).

A single dose treatment of 1-MCP has been applied to ‘Honeycrisp’ apples before air
storage to reduce ethylene production (DeEll and Ehsani-Moghaddam, 2010; Watkins and Nock,
2012b). For further understanding role of 1- MCP in inhibiting ripening on the fruit, a
multiple application need to be researched.

‘Safe' recommendations for the CA storage of 'Honeycrisp' so far have not emerged
because of inconsistent control of CA injury (Watkins and Nock, 2012b). To elucidate safe
recommendations of using CA storage for this cultivar, we need to better understand the
responses of 'Honeycrisp' fruit to CO> in the storage environment. Aims of this study were: 1) to
know the dynamics of CA injury of ‘Honeycrisp’ apples in response to variations in CO>
concentrations and 2) to improve current practices including DPA, preconditioning, and 1-MCP
treatments. Experiments were focused on dose-response relationships between CO>
concentration and DPA concentration, dose-response relationships between preconditioning
temperature and preconditioning duration, and the capacity for use of 1-MCP to preserve fruit
quality without the use of CA storage.

2.2 Materials and Methods
2.2.1 Plant material
‘Honeycrisp’ apples were harvested at commercial maturity (i.e., at the time of the

primary harvest by the growers from whom the apples were sourced) in 2014, 2015, and 2016 in
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Michigan. At each orchard, two 18-bushel bins of fruit were harvested in the morning. Fruit was
transferred to 60 x 40 x 18 cm plastic crates (model 5000206, Twinpack B.V., Netherlands) and
immediately transported to the Postharvest Physiology Laboratory at Michigan State University.
At the onset of each experiment, 20 fruits from each orchard were used for maturity analysis on
the day of harvest (day 0) and after one week at room temperature (day 7). Maturity indices
included the fruit weight (kg), ethylene (ppm), background color (1 -5) and skin color (%), starch
index (1-8) and total soluble solids (°Brix). Methods of measuring the indices were performed as
previously described by Contreras et al. (2014).

2.2.2 Experiment 1. Effect of CO2 on the severity of CA injury of the fruit

The relationships between CO> concentration and the rate and severity of CA injury were
determined over three years (2014 — 2016) using the protocol outlined in Fig. 2.1 and Table 2.1.
The storage temperature of 3 °C was used to avoid/suppress chilling injury symptoms and
thereby isolate CA injury symptoms. Similarly, the oxygen concentration was maintained at 3
kPa to reduce hypoxia-related fermentation and to determine only the effect of CO2 on CA
injury.

In 2014, fruit from five orchards were used. On the day of harvest, 30 crates
(approximately 40 fruits per crate) of apples from each orchard were divided into six lots (i.e.,
five crates per lot). The five crates were placed into each of six CA chambers (Storage Control
Systems, Sparta, MI) and held under CO2/O- partial pressure (kPa) combinations of 0/3, 1.5/3,
3/3, 5/3, 10/3, and 20/3, respectively, at 3°C.

The atmospheres in CA chambers were monitored and regulated by an atmosphere
control system (ICA 61 Laboratory System; International Controlled Atmosphere Ltd., Paddock

Wood, U.K.). Chamber temperature (3 °C) was regulated by the cold room in which the
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chambers were held. There were 13 sampling dates (day 7, 14, 21, 28, 35, 42, 49, 56, 70, 84,
112, 140, 168, and 240). At each sampling date, 10 — 20 fruits from each treatment from each
orchard were taken out of the chamber to be assessed for incidence and severity of storage
disorders (Fig. 2.1). Total storage duration was 6 months or until all sampled apples had been
damaged depending on CO- treatments. A symptom of internal browning and the development of
lens-shaped voids were evaluated as described by Beaudry and Contreas (2009).

In 2015, fruits from each orchard were put into 20-L buckets connected to the CA system
described previously to obtain for 4 CO; levels (0, 5, 10, and 20 kPa) in combination with 3 kPa
O at 3 °C. There were two replicates for each CA condition.

In 2016, fruits were stored in two CO./O, combinations of (0/3 and 5/3) at 3 °C in CA
chambers as previously described, using 2 chambers for each CO, concentration as replicates.
Internal disorders included CA injury, CA injury index, lens-shaped voids, and senescent
breakdown. External ones consisted of fruit bitter pit, decay, and soft scald. CA injury in the fruit
cortex was categorized into four levels: 0 (0%); 1 (1 - 10%); 2 (10-25%); 3 (25 - 50%); 4 (>
50%) of browning area on the cut surface of each fruit (Table 2.1).

Each year, experiments consisted of completely random split-plot designs in which
CO2 was the whole plot treatment factor with two CA chambers (2014 and 2016) and two
buckets (2015) as replicates. Storage day was a split-plot treatment factor. Since we used
different fruit trays at each sampling time, this observational unit was treated as a random
factor. All data for the variables of the experiments were subjected to test normality and
assumptions for ANOVA using SAS 'Proc mixed' procedure (Version 9.4; SAS Institute Inc.,
Cary, NC). Mean separations are examined using Duncan’s multiple range test and only

differences significant at P < 0.05 are discussed
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Orchard A Orchard B Orchard C Orchard D Orchard E

South Lyon Sparta Harford Belding Ludington
| One bin (30 crates) ‘ ‘ One bin (30 crates) | ‘ One bin (30 crates) ‘ ‘ One bin (30 crates) | ‘ One bin (30 crates) |
Five CA chambers Five CA chambers
0, 1.5, 3,10, 20 kPa CO,. 3kPa O,, 3°C 0, 1.5,3, 10, 20 kPa CO,.3kPa O,, 3°C
Sampling dates
0,7d | — ‘ Maturity analysis; 10 fruit/sampling date

External disorders (decay, bitter pit, decay, and soft scald)
Internal disorders (CA injury, lens - shaped voids,
senescent breakdown).

10 fruit/treatment/orchard/sampling day

7,14, 21,28, 35, 42,
49, 56,70, 84, 112, | ==
140, 168,240 d

Figure 2. 1. Unbalanced completely random split-plot design using five partial pressures of CO2
(0, 1.5, 3, 10, and 20 kPa) in combination with 3 kPa Oz at 3 °C for ‘Honeycrisp’ apple from five
commercial orchards in Michigan in 2014. Samples were used for analysis of external and
internal disorders.

Table 2. 1. CO2 concentrations applied, sampling dates, and storage disorders assessed for

'Honeycrisp' apple fruit in 2014 — 2016.

Year CO: level (kPa) Sampling dates (Days in CA) Observations
2014 0,15,3,10,20* 7,14, 21, 28, 35, 42, 56, 70, 84, 112, Internal disorders;
140, and 168 External disorders
2015 0,5, 10,20 3,7,14, 21 and 42 Internal disorders
2016 0,5 3,7, 14, 21, 28, 35, 42, 56, and 140 Internal disorders

*5 kPa CO2 was also applied but the CA system failed to maintain the desired atmosphere.
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2.2.3 Experiment 2. Effect of DPA on CA injury of the fruit

The ability of DPA to suppress CO> injury across a range of CO> concentrations was
evaluated. In 2014, fruit at commercial maturity from three orchards were harvested and handled
as previously described. Fruit from each orchard were divided into 24 lots of approximately 40
fruit each and each lot was placed in a plastic crate. Apple fruit were treated with DPA (1000
ppm, drenched for 30 s and air dried) and 12 lots each were stored under 3 or 10 kPa COz in
combination 3 kPa O at 3 °C (Fig. 2.2). One lot of fruit was evaluated for storage disorders after
7,14, 21, 28, 35, 42, 56, 70, 84, 112, 140, and 168 d storage.

In 2015, fruit to more precisely understand the relationship between the concentrations of
COz and DPA on the development of injury symptoms, we tested a matrix of two factors: CO;
levels (0, 5, 10, and 20 kPa) and DPA concentrations (1, 10, 50, 100, 250, and 1000ppm) (Fig.
2.3). at commercial maturity from five orchards were harvested and handled as previously
described. Fruit from each orchard were divided into 72 lots of approximately 40 fruit each and
each lot was placed in a plastic crate. Twelve lots (crates) were drenched in each of six DPA
concentrations (1, 10, 50, 100, 250, and 1000 ppm a.i.) for 30 s. The fruit were dried for
approximately two hours then stored in each of four CA chambers with CO; levels of 0, 5, 10,
and 20 kPa and held at 3 °C. One lot of fruit from each treatment combination was evaluated for

storage disorders after 42, 90, and 180 d storage.
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Orchard A Orchard B Orchard C

South Lyon Sparta Harford
One bin (30 crates) One bin (30 crates) One bin (30 crates)

DPA drench: 1000 ppm in 30 s,
dryin2h

1

Two CA chambers
3, 10 kPa CO,. 3kPa O,, 3°C

Sampling dates

External disorders (decay, bitter pit,
decay, and soft scald)

= | Internal disorders (CA injury, lens -
shaped voids, senescent breakdown)

10 fruit/treatment/orchard/sampling day
except day 240 (120 fruits)

7,14, 21, 28, 35,42, 49, 56,
70, 84, 112, 140, 168,240d

Figure 2. 2. Experiment design of the 'Honeycrisp' apple fruit harvested from three commercial
orchards in Michigan in 2014, treated with DPA (1000 ppm, 30s), and then stored under 3 and 10
kPa COz in combination 3kPa O at 3 °C. Samples were used for analysis of external and internal
disorders.

The ability for 1-MCP in air storage to suppress ripening was evaluated as a means of
avoiding the use of CA storage and incurring injury due to the storage atmosphere. In 2015, in a
preliminary experiment, we applied a single dose treatment of 1-MCP to ‘Honeycrisp’ apples
before air storage; production of ethylene of the fruit was dramatically reduced relative to the
control (data not shown) and the results were consistent with a previous study on the same
cultivar (DeEIll and Ehsani-Moghaddam, 2010; Watkins and Nock, 2012b). In 2016, to maintain
the effectiveness of 1-MCP in blocking ethylene receptors, multiple applications of the
compound were applied. The methods and results are presented in detail in a manuscript titled
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“Response of air-stored ‘Honeycrisp’ apple fruit to repeated application of 1-MCP” for ISHS
Postharvest Unlimited Conference 2017 in the appendix A of CHAPTER 2. Single (at harvest),
double (at harvest and after 1.5 months) and triple (at harvest and after 1.5 and 3 months)
applications of 1-MCP were given to ‘Honeycrisp’ apples harvested from four orchards across

Michigan in 2016 before storing the fruit in air (21 kPa O, + 0 kPa CO3) at 3 °C.

Orchard B Orchard F Orchard D Orchard E
Sparta Sparta Belding Ludington

l l I I

One bins (30 crates) || One bins (30 crates) || One bins (30 crates) || One bins (30 crates)

6 DPA concentrations: 1, 10, 50, 100, 250, 1000 ppm, 30s
Dryin 2 h

l

24 CA chambers: 4 CO, levels x 6 DPA concentrations
0,5, 10, 20 kPa CO, + 3 kPa O, at 3°C

Sampling dates

Maturity analysis;
0,7d = |10 fruit/sampling date

Senescent breakdown, lens - shaped void,
42d,904d, 180d == | CA injury.
N = 10 fruit/orchard/treatment/sampling day

Figure 2. 3. Experimental design of 24 matrix treatments of two factors for the storage of
'Honeycrisp' apple fruit: 1) DPA concentrations (1, 10, 50, 100, 250, and 1000 ppm) and 2) CO>
levels (0, 5, 10, and 20 kPa) for the fruit harvested from four commercial orchards in 2015.
2.2.4 Experiment 3. Using 1-MCP in air storage to substitute for CA storage

In 2017, fruit from two orchards were obtained at commercial maturity. Fruit were given
0, 1, 2, or 4 doses of 1-MCP (1 pL-L™) while in air storage at 3 °C. The first dose was applied

after 15 days storage with additional treatments at 15-day intervals, fruit receiving only 3 doses
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were not evaluated; all were also given a fourth dose. Fruit were held in 0/21 and 3/3

combinations of O,/CO; partial pressures (kPa) (Fig. 2.4). Ethylene, selected volatile esters

(ethyl acetate, hexyl acetate, butyl acetate, butyl 2-methylbutanoate, and 2-methylbutyl acetate),

and greasiness were used as measures of ripening behavior. These indices were measured after

1.5, 3, 4.5, 6, and 9 months of storage. The methods of analysis and quantification of the indices

were the same as methods section which was presented in detail in the appendix A of CHAPTER

2.
Orchard F Orchard H
Sparta Sparta
l One bin l One bin
Transported to MSU Postharvest lab on harvest day
Refrigerated air (RA) storage at 3°C in 8 CA chambers
1-MCP 0 doses 1-MCP 1 doses 1-MCP 2 doses ‘ 1-MCP 4 doses

ar | ]|

ldi [ais [ ]

[dl|d15 [d30 [a45

RA storage at 3°C untild 270

(0 kPa CO, + 21 kPa O,)

Sampling dates: 30, 45,90, 135, 180,270 d |

RA storage at 3°C untild 60

CA storage at 3°C untild 270

(3 kPa C02 + 3 kPa 02)

|

| Sampling dates: 90, 135, 180,270 d |

Senescent breakdown, soft scald, lens - shaped void, CA injury, greasiness, titratable
acidity (N= 10 - 20 fruit/orchard/treatment/sampling date only d 30, 45 and 90)

Ethyl acetate, hexyl acetate, butyl acetate, butyl 2-methylbutanoate, 2-methylbutyl acetate
(N= 5 fruit/orchard/treatment/sampling date only d 30, 45 and 90)

Figure 2. 4. Experimental design of eight matrix treatments of two factors: 1) 1-MCP application

dose (0, 1, 2, 4 doses with 15-day interval each treatment); and 2) Atmosphere condition (Air: 21

kPa O»+ 0 kPa COz and CA: 3 kPa O.+ 3 kPa CO) for the fruit harvested from two commercial

orchards in 2017.

31



2.2.5 Experiment 4. Effect of preconditioning and the combination of preconditioning and
DPA on CA injury of "Honeycrisp® apple fruit

Eight matrix treatments of three factors: 1) DPA (0 and 1000 ppm), 2) preconditioning (0
and 5 days at 10°C), 3) COz levels (0 and 5 kPa) were set up for fruit harvested from four
commercial orchards across Michigan in 2016. The fruit was evaluated for disorders after 7, 14,
28, 56, and 120 days (Fig. 2.5).

In 2017, fruit from two orchards in Sparta, Michigan were treated with DPA, kept at the
lab at two or five days at 20 °C, and then stored at two CA conditions (5 kPa or 3 kPa CO; + 3
kPa Oy) at 3 °C. After 4.5 and 9 months of storage, disorders were recorded (Fig. 2.6).

In the same year, we implemented a preconditioning experiment in the field for 0, 1, 3, 5,
and 7 days and in the lab for five days at 20 °C (Figure 2.7) and stored at five CO: levels (0, 3, 5,
10, and 20 kPa CO,) in CA conditions at 0 and 3 °C. Storage disorders, greasiness, and titratable
acids were evaluated after 120 days of storage. In total, there were 30 treatments (6
preconditioning levels x 5 CO; levels) and two bins of apples were used as replicates. The

greasiness, soft scald, and CA injury were tested after 4.5 months of storage.
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Orchard B Orchard C Orchard D Orchard E

Harford Sparta Belding Ludington
‘ One bins (30 crates) ‘ One bins (30 crates) One bins (30 crates) One bins (30 crates)
| Transported to MSU Postharvest lab on harvest
| ! day
Maturity analysis DPA concentrations: 0, 1000 ppm, 30s
(d0,d7)
l Dryin2h

| Preconditioning: 0, 5 days at 10 °C ‘

/\

0 kPa CO, + 3 kPa O, at 3°C ‘5kPaCOz+3kPa02 at 3°C |

Sampling dates: 0,7,21,56d Sampling dates: 7, 14, 21,28, 56, 120 d
| |

15 metabolites (ATP, ADP, AMP, NADH, NAD, Senescent breakdown, soft scald, lens -
NADPH, NADP, Asc, GSH, GSSG, CoA, shaped void, CA injury N =20
Acetyl CoA, SA, PEP, and UDP-G). fruit/orchard/treatment/sampling
N =5 fruit cortex/orchard/treatment/sampling date/replicate (preconditioning factor)
day/replicate. Only no preconditioning fruit used

Figure 2. 5. Experimental design of a matrix of eight treatment combination s of three factors: 1)
DPA (0 and 1000 ppm), 2) preconditioning (0 and 5 days at 10°C), 3) CO2 levels (0 and 5 kPa)

for the fruit harvested from four commercial orchards in 2016.
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Orchard F
Sparta

I

Orchard H
Sparta

l

One bins (30 crates)

One bins (30 crates)

On harvest day | Transported to MSU Postharvest lab

DPA concentrations: 0, 1000 ppm, in 30s

l Dryin 2 h
Preconditioning: 0, 2, 5 days at 20 °C at the lab
0 kPa CO, 5 kPa CO, 0 kPa CO, 5 kPa CO,
3kPa O, 3kPa O, 3kPa O, 3kPa O,
at 3°C at 3°C at 0°C at 0°C

| |

Sampling dates: 4.5,9 Mo

Sampling dates: 4.5 Mo

. —

1) Senescent breakdown, soft scald, lens - shaped void, CA mjury,
chilling injury

N= 20 fruit/orchard/treatment/sampling date/replicate (preconditioning)
2) 15 metabolites (ATP, ADP, AMP, NADH, NAD, NADPH, NADP,
Asc, GSH, GSSG, CoA, Acetyl CoA, SA, PEP, and UDP-G)

N =5 fruit cortex/orchard/treatment/sampling day (d 0, 37, 21, 56,
90)/replicate. Not using treatment conditioning for 2 days at 20 °C.

Figure 2. 6. Experimental design of 24 matrix treatments of four factors: 1) DPA levels (0, 1000
ppm), 2) preconditioning (0, 2, 5 days at 20 °C), 3) CO: levels (0, 5 kPa CO»), and 4) storage
temperatures (0, 3 °C) for the fruit harvested from two commercial orchards in 2017. Two crates

of fruit for each treatment for precondition factor were used as replicates.
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Orchard F Orchard H
Sparta Sparta

Four bins

Rep 1 Rep 2

|

Precond at lab: 5d
(20 °C)

Precond at the fields:
0,1,3,5,7d

Temperature for fruit, air,
and bin

Transported to MSU Postharvest
Lab on harvest day

Maturity analysis
(d0,d7)

CA conditions: 0, 3,
+ 3 kPa O, at 3°C

5,10, 20 kPa CO,

|

Sampling date: 120 d

Greasiness, decay, lens-shaped voids, soft scald, chilling injury, CA
injury, titratable acidity. (N = approximately 30 fruits/rep/treatment)

Figure 2. 7. Experimental design of 30 matrix treatments of two factors: 1) Preconditioning in

the field for 0, 1, 3, 5, 7 days and at the lab for 5 days; and 2) CO- levels (0, 3, 5, 10, 20 kPa

COy) for 'Honeycrisp' fruit harvested from two commercial orchards in 2017. Two crates of fruit

for each treatment for precondition factor were used as replicates.

2.2.6 Experiment 5. Effect of hypoxia on CA injury of the fruit

In 2017, we performed an additional experiment to test the effect of low oxygen on CA

injury using ‘Honeycrisp’ apples after 3 months of refrigerated air storage. The fruits were put

into 20-L plastic buckets fitted with an airtight gasket-sealed lid (Gamma Plastics Company) and

flushed with nitrogen gas at a flow rate 20 mL min™ to achieve three oxygen levels 0.1, 0.2, and

0.4 kPa. Control fruits were from a CA chamber in which oxygen concentration was maintained
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at 21 kPa. In each environment, the CO: partial pressure was 0 kPa and storage temperature was
3 °C.

2.3 Results and discussions

2.3.1 Experiment 1. Effect of CO2 on the severity of CA injury

In response to applied CO during storage, jagged-edged brown lesions appeared in the
central region of the 'Honeycrisp' apple cortex tissues within the first two months of storage (Fig.
S-B2.2), consistent with damage reported by Contreras et al. (2014). Early in browning injury
development, the 'Honeycrisp' apple injury symptoms were brown lesions in the cortex
possessing white areas near the center of some of the lesions (Fig. 2.8).

The extent of CA injury of ‘Honeycrisp’ apples was positively correlated with CO2
concentration and storage period (Fig. 2.8 and Fig. S-B2.2). The onset of injury development
was most rapid for the 20 kPa CO- treatment where the injury was first noted after 7 days of
storage (Fig. 2.8). In this treatment, 75% of the fruit under 20 kPa CO> were injured after 14 d,
while no injury symptoms were noted for the 0 kPa CO- treatment (Fig. 2.8). 100% of the fruit
treated with 20 kPa CO> were damaged after 28 d (Fig. 2.8). However, even at 0 kPa CO», the
fruit also suffered CA injury incidence of up to 18 % (Fig. S-B2.2). The effect of CO>
concentration on the severity level of CA injury was relatively consistent over the three years of

the study (Fig. 2.9).
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Figure 2. 8. ‘Honeycrisp” apples from orchard A stored at 0 kPa CO> (left) and 20 kPa CO-

(right) after 14 days.
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Figure 2. 9. The relationship between CO> concentration and maximal injury on ‘Honeycrisp’

apples based on data from 2014 -2016. The curve fit equation was made using Proc Univariate

20

o

0 5 10 15 20 25
CO, (kPa)

and 'Proc nimixed' procedures in SAS 9.4 (AIC = 84.6), P< 0.0001.
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The rate of the development of the CA injury was highly dependent on CO>
concentration. Depending on CO> concentrations, the fruit reached half-maximal and maximal
injury severity at different storage days (Table 2.2, Fig. S-B 2.2). The practical implication is that
CA managers should check for CA injury symptom after two weeks of storage and decide
whether to sell the fruit immediately in order to avoid excessive loss due to CA injury disorders.
Table 2. 2. The storage time for ‘Honeycrisp’ apples stored at different CO2 levels needed to

achieve half-maximal and maximal CA injury

CO2 (kPa) Half-maximal injury Maximal injury
0 Week 4-5 Week 11-12
1.5 Week 4-5 Week 11-12
3 Week 3 Week 8
5 Week 3 Week 7
10 Week 2 Week 7
20 Week 2 Week 4

There was no significant difference in external disorders (bitter pit, decay, soft scald) and
lens-shaped void incidence among CO- levels (0, 1.5, 3, 10 kPa) of the fruit that had received
maximal injury (Fig. 2.10 - A2 to D2). 20 kPa CO. quickly caused 100% damage of the fruit at
early storage. Therefore, we did not observe disorders other than bitter pit, which was noted after
only one week of storage at all CO; treatment (Fig. 2.10 - B2).

Since there was no effect of CO> on these indices, we tested if they will change with
storage time (from day 0 to 240) by using average data for each index of five CO: levels (0, 1.5,
3, 10, and 20 kPa) at each sampling date. Decay, soft scald and lens-shaped void incidences of
the fruit significantly increased with storage time (Fig. 2.10 - Al, C1, and D1). However,
maximum severity of the decay, soft scald, and lens-shaped cavity incidences were only about
10, 5, and 20%, respectively (Fig. 2.10 - A1, C1, and D1). Lens-shaped voids were formed after

browning incidence occurred in the cortex. In this experiment, this symptom was first noted
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when the fruit started to reach maximal CA injury, and eventually, it increased with storage time
(R? = 0.83, Fig. 2.10-D1). Only approximately 2% of sampled fruit (i.e. 27 out of 1323 fruits)
after 168 and 240 days of storage had senescent breakdown symptom (data not shown).
2.3.2 Experiment 2. Effect of DPA on CA injury of the fruit

In 2014, in response to 1 g-L* a.i DPA, the fruit showed no CA injury at any CO2 level,
compared to control fruit stored at 3 kPa and 10 kPa CO2 which received 34% and 78% maximal
damage, respectively (Fig. S-B2.2). We also observed that at 250 ppm DPA (1/4 label dosage)
DPA was also effective at suppressing CA injury for the fruit stored in 5 kPa CO> (data not
shown).

In 2015, we found that 100 ppm of DPA was enough to eliminate CA injury at 0 kPa CO>
and a higher dose of DPA was required for fruit stored at more elevated CO- levels (Fig. 2.11).
20 % COo, however, was too high to prevent injury by 1000 ppm of DPA. We predicted ~ 2000
ppm DPA would be required to suppress CA injury caused by 20 kPa CO; (Fig. 2.12 - B). The
trendline in Fig. 2.12A indicates that 75 — 185 ppm of DPA was effective enough to eliminate
CA injury because the CO; level commercially applied in most CA storage was between 1 and 3
kPa. Thus, storage operators may be able to reduce DPA residue on the fruit. DPA use is
restricted or not permitted in some countries, so minimizing residue levels may be advantageous

in markets that still permit its use.

39



12 A

y = 0.0002°x2 - 0.0048**x +1.1167 Al A2
R?=0.73
. -
S A
)
m
Q
(]
Q
A
A
B
25 - B1 B2
L] L .
L] L ] A
20 - ® . A
\’3 L
< - g .
21 o . | A N
o)
£ 104
o
5 4
0 i T T T T T 1 T L Ll
0 50 100 150 200 250 15 3 10 20
Storage time (Day) CO, (kPa)

Figure 2. 10. Effect of storage time on decay (A1), bitter pit (B1), soft scald (C1), and lens-

shaped cavity (D1) of ‘Honeycrisp’ apples stored at different CA conditions and effect of CO2
concentrations (0 — 20kPa) on decay (A2), bitter pit (B2), soft scald (C2), and lens-shaped cavity

(D2) of the fruits which received maximal injury (data pooled from day 56 to day 240). For Fig.

2.10 -Al to D1, each symbol represent means from data of 5 orchards as replicates with

approximately 10 fruits from each sampling day (except for day 240, 100 fruits). For Fig.2.10 -

A2 to D2, each column represents means from data of 5 orchards as replicates with

approximately 150 fruit from each orchard.
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Figure 2. 10 (cont’d)
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In 2015, we soaked apple in the antioxidant butylated hydroxytoluene (BHT) (Wills and
Scott, 1977), (5000 pL-L?, 30 s) to compare the effect of BHT and DPA on reducing/
eliminating CA injury of the fruit exposed to 0. 5, 10, and 20 kPa CO>. However, since the fruit
contained in the buckets and received CA condition from mixed CA lines, both DPA (1000
pL-LY) and BHT (5000 pL-L™?) did not prevent CA injury (Fig. S-B2.4). In addition, CA injury
symptoms of these treatments were different from those fruit stored in CA chambers (Fig. S-

B2.5).
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Figure 2. 11. Dose dependence of CA injury on DPA concentration and CO- level in

‘Honeycrisp apples. Vertical bars indicate S.E of the mean.
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Figure 2. 12. Logistic regression models (R Studio®, ggplot, quasibinomial) was applied and
the confidence-interval was used to identify interactions between DPA concentrations and CO>
levels (A) and the DPA concentration (ppm) required to eliminate CA injury caused by a

particular CO2 concentration.
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2.3.3 Experiment 3. Using 1-MCP in air storage to substitute for CA storage

Experiments on 1- MCP multi-application to ‘Honeycrisp” apple in 2016 showed that 1-
MCP reduced internal ethylene, aromatic compound production, and delayed the development of
greasiness on apple skin relative to untreated fruit. Fruit treated with one, two, and three doses of
1-MCP did not differ in terms of firmness, greasiness, the incidence of CA injury (internal
browning), or the concentration of internal ethylene (Fig. 2.13 and Table 2.3). Additional doses
of 1-MCP delayed ripening only slightly more than a single dose. Little difference was detected
between 1-MCP treatments in the production of volatile esters (Fig. 2.14). The harvest maturity
of apples likely influenced the success of 1-MCP treatment since 1-MCP is not highly effective
at suppressing ripening of over-mature fruit. We suggested that a single dose of 1-MCP at
harvest yielded the maximum benefit in terms of quality retention and that there was still a need
to control the internal injury we call ‘CA injury' beyond the use of non-CA (i.e., air) storage
conditions for this variety.

From the experiment in 2016, we considered whether 1.5-month intervals of 1-MCP
application might be too long. During that time, ethylene receptors might be produced, and
ethylene production may recover to a level that outweighs additional 1-MCP molecules.
Therefore, in 2017, we applied 1-MCP at a shorter interval, increasing the frequency of
application (15 days) and we extended the maximum number of repeat doses to 4 doses on fruits
from two orchards in Sparta (Fig. 2.4). After two months in air storage, half of the fruits from the
four 1- MCP treatments were transferred to CA chambers (3 kPa CO; + 3 kPa O2). The results
were consistent with the experiments in 2016 in which the fruits that received more doses of 1-
MCP produced less ethylene. However, there was no difference in the ethylene levels of fruit

which had been treated either once or twice with 1-MCP (Fig. 2.15).
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CA conditions (3 kPa CO; + 3 kPa O>) suppressed ethylene production at the rate that
negatively correlated with the number of doses of 1-MCP. In addition, CA conditions
contributed in reducing decay symptom for the fruit stored for 6 months (Table 2.4). While the
fruits from orchard H, which were more mature (Table S-B2.1), did not show CA injury
symptom, the fruits from orchard F were very sensitive to both 1-MCP treatment and CA
conditions. 1-MCP with more doses appeared to enhance the sensitivity of the cultivar to CA
injury (Table 2.4). Therefore, 1-MCP in combination with CA storage should not be applied to
less mature fruit.

Table 2. 3. Senescent breakdown and CA injury incidence of ‘Honeycrisp’ apple treated with O,
1, 2, and 3 doses of 1-MCP and stored under refrigerated air (21 kPa Oz and 0 kPa CO) at 3°C
for 1.5, 3, 4.5, 6, and 9 months in 2016 (n=20 per orchard/storage duration/1-MCP dosage

combination)

Storage Senescent breakdown CA injury
time (%) (%)

(months) No 1-MCP | 1-MCP | 1-MCP No 1-MCP | 1-MCP | 1-MCP
1-MCP 1dose | 2 doses | 3doses | 1-MCP | 1dose | 2 doses | 3 doses

1.5 0.0 0 0.0 0.0

3 0.0 0 0 0.0 0.0 0.0

4.5 7.5 2.5 0 0 2.5 4.0 2.5 2.5
6 0.0 0 2.5 2.5 0.0 7.5 5.0 0.0
9 0.0 0 0 0 0.0 0.0 0.0 0.0
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Figure 2. 13. Effect of 1-MCP multiple applications on internal ethylene concentration (A), fruit
firmness (B) and skin greasiness (C) of ‘Honeycrisp’ apple during RA storage (21 kPa Oz and 0
kPa CO,) at 3 °C. Each symbol represents fruit from four orchards in 2016, n=10 fruit per

orchard; bars are £ 1 SD.
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Figure 2. 14. Effect of 1-MCP on production of ethyl acetate (A), butyl acetate (B), hexyl
acetate (C), 2-methylbutyl acetate (D), and butyl 2-methylbutanoate (E) of ‘Honeycrisp’
apple harvested from the four orchards during air storage (21 kPa Oz and 0 kPa CO3) at 3°C.

Each symbol represents fruit from four orchards, n=5 fruit per orchard; bars are + 1 SD.
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Figure 2. 15. Ethylene level of ‘Honeycrisp” apple receiving 1-MCP application (1 uL-L™t) with

0 doses (A) or 1, 2, or 4 doses (B) with a 15-day interval between repeat doses and stored in air

(21 kPa O2+ 0 kPa CO2) and CA (3 kPa O2+ 3 kPa COy).
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Table 2. 4. Storage disorders of ‘Honeycrisp’ apple received 1-MCP application (with 0, 1, 2, 4

doses at 15 day — interval) and stored in air (21 kPa O+ 0 kPa CO.) and CA condition (3 kPa

O2+ 3 kPa CO2)
Orchard 1-d'\(<|sip D(%thy s?:gllc(tj I?:Sreerz]ilezjcgvr\]/; sIBear;JZd Incj: l'JA;y ir%ﬁx
(%) (%) void (%) (%) (0-1)
Air storage

F 0 23.68 2241 8.62 25.86 32.76 0.20
F 1 2294 3214 1.19 7.14 32.14 0.20
F 2 23.89  43.02 3.49 8.14 26.74 0.22
F 4 2453  15.00 6.25 12.50 26.25 0.16

H 0 2.78 0 0 0 0 0
H 1 1.77 5.26 0 2.11 4.21 0.03
H 2 3.37 16.28 0 0 6.98 0.03

H 4 0 4.00 0 0 1 0

CA storage

F 0 0 6.67 16.67 10.00 13.3 0.05
F 1 9.09 3.33 0 8.33 16.7 0.13
F 2 6.78 12.73 3.64 7.27 20.0 0.09
F 4 0 26.67 6.67 23.33 36.7 0.28

H 0 0 0 0 0 0 0
H 1 2.50 2.56 0 0 5.13 0.02
H 2 2.50 0 0 0 2.56 0.02

H 4 0 0 0 0 0 0

2.3.4 Experiment 4. Effect of preconditioning and the combination of preconditioning and
DPA on CA injury of "Honeycrisp® apple fruit

Temperature conditioning is a required activity for successful storage of ‘Honeycrisp’
apples (and some other chilling sensitive cultivars) in refrigerated air (RA) or controlled

atmosphere (CA) storage. Failure to properly condition the fruit can lead to a loss of most of the
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crop. In 2014, we performed a matrix experiment of days and temperatures of preconditioning.
The results showed that the minimal time for conditioning is about 2-3 days at 20 °C, 3-5 days at
15 °C, or 5-7 days at 10 °C (Beaudry et al., 2014). In 2015 and 2016, we noticed that more
matured fruit was more tolerant to CA conditions.

In 2017, we implemented a new preconditioning experiment in which the fruits from two
commercial orchards in Sparta were kept in the field for 0, 1, 3, 5, or 7 days before being
transported to our lab and stored under CA conditions (five CO2 levels: 0, 3, 5, 10, and 20 kPa in
combination with 3kPa O at 3 °C). Additionally, the fruits on the harvest day were transported
to the lab and preconditioned for five days at 20 °C before storage in the same CA conditions as
the fruit preconditioned in the field (Fig. 2.7). Based on our previous work, the needed degree-
days for control of CO- injury was between 100 and 140 degree-days. It took 5 - 7 days for
preconditioning in the field to receive such required degree-days. The results showed that
approximately 5-7 days in the field or five days (at 20 °C at the lab) were needed to suppress
storage injuries (Table S-B2.3-4) because the fruits were more matured (Table S-B2.2). Thus,
field conditioning may perform well to protect ‘Honeycrisp’ fruit from CA and chilling injuries.
It should be noted that some greasiness was found in fruit conditioned for seven days in the field.
Harvesting fruit at a less mature stage could reduce greasiness (Table S-B2.3-4). In addition,
preconditioning at 20 °C at least 2 — 5 days in the lab showed more effective than 10°C for 5
days in reducing CA injury (Table S-B2.3- 6). Preconditioning was a more effective approach
than using 1- MCP for the fruit from orchard 1 which was less matured and very sensitive to CA

injury.
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2.3.5 Experiment 5. Combination of DPA and preconditioning to reduce CA injury and
chilling injury of the fruits

In 2016, DPA again confirmed its ability to eliminate CA injury even though the fruit did
not receive preconditioning. However, preconditioning approach alone (10°C for five days in
cold storage) failed to reduce the symptoms of CA injury (Table S-B 2.5).

In 2017, we used 20 °C, instead of 10 °C like the preconditioning experiment in 2016, as
preconditioning temperature. Following 4.5 months of storage, soft-scald, a chilling injury
symptom at chilling temperature 0 °C, was noted in non-preconditioned fruits which were treated
or not treated with DPA and stored at 2 CO- levels (Table S-B2.6). The fruits from orchard F,
less mature than those from orchard H (Table S-B2.1), suffered more severity of soft scald if not
received the preconditioning treatment (Table S-B2.7). In other words, preconditioning (2 or 5
days at 20 °C) was more effective in reducing chilling injury for the fruit from this orchard.
Especially, ethylene production of orchard F increased to more than 100 ppm after five days
receiving precondition treatment in the field or the lab (Table S-B2.2).

DPA might play as a supplementary factor to preconditioning. A combination of
preconditioning and DPA resulted in the most effective reduction of chilling injury in apples
from both orchards. From this experiment, we confirmed that DPA can eliminate CA injury at
two CO: levels (3 and 5 kPa) (Table S-B2.6). However, preconditioning should apply at least
two days for more mature apples (orchard H) and five days for less mature fruit (orchard F) to
reduce both chilling injury and CA injury at 3 kPa COz and 3 °C.

2.3.6 Experiment 6. The response of fruit to hypoxia condition
Fruits of all treatments did not have CA injury symptoms on the day of removal from the

experimental condition. The fruit under extreme hypoxia (0.1 kPa Oz and 0.2 kPa O>), however,
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showed injury with different symptoms after three days at air condition at 20 °C (Fig. 2.16). 0.1
kPa Oz caused an external injury on the skin, which had an appearance like soft scald early
symptoms whereas 0.1 kPa O> caused an internal injury of which the symptom was the same as
CAinjury.

We hypothesized that a sudden shift from anaerobic to aerobic conditions may have
provided more oxygen for browning reactions. Dilley et al (1963) observed a superficial scald-
like browning incidence of 'Red Rome' apples exposed 108 h in anaerobic condition following

36 h in aerobic one.

Figure 2. 16. Injury symptoms of “Honeycrisp’ apples treated with hypoxia for 14 days at 0.1

kPa Oz (A) and 0.2 kPa O (B) at 3 °C and then held for 3 days in normal air (21 kPa O>) at 20
°C.
2.3.7 Relationship of the maturity stage of the fruit and CA injury

‘Honeycrisp’ apples were harvested from commercial apple orchards during the primary
period of harvest so that findings would represent commercial practices in Michigan and other
temperate fruit production regions. Maturity stages were determined but not controlled. Research
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on ‘Honeycrisp’ apples showed that the fruit was more tolerant to CA when picked at higher
maturity and this is consistent with the findings of Contreras et al. (2014). We also noted this
factor when performing experiments with fruit from 2014 — 2017. Orchards B and D from Sparta
and Belding respectively, which supplied the fruit for the experiments for three years (2014 —
2016), picked the fruits at different maturity stages (Table S-B1). Based on ethylene and starch
index levels, fruit from orchard B were less mature than fruits from orchard D (P < 0.05). The
fruits from these orchards had a significantly different response to CA injury. To evaluate the