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ABSTRACT

MULTI-OBJECTIVE REGRESSION WITH APPLICATION TO THE
CLIMATE DOMAIN

By

Zubin Abraham

Regression-based approaches are widely used in climate research to derive the statistical,

spatial, and temporal relationships among climate variables. Despite its extensive litera-

ture, existing approaches are insufficient to address the unique challenges arising from the

data characteristics and requirements of this domain. For example, climate variables such

as precipitation have zero-inflated distributions, which render ineffective any linear regres-

sion models constructed from the data. In addition, whereas traditional regression-based

approaches emphasize on minimizing the discrepancy between observed and predicted val-

ues, there is a growing demand for regression outputs that satisfy other domain-specific

criteria. To address these challenges, this thesis presents multi-objective regression frame-

works designed to extend current regression-based approaches to meet the needs of climate

researchers. First, a framework called Integrated Classification and Regression (ICR) is de-

veloped to accurately capture the timing of rain events and the magnitude of rain amount

in zero-inflated precipitation data. The second multi-objective regression framework focuses

on modeling the extreme values of a distribution without degrading its overall accuracy in

predicting non-extreme values. The third framework emphasizes on both minimizing the

divergence between the regression output and observed data while maximizing the fit of

their cumulative distribution functions. The fourth contribution extends this framework to

a multi-output setting, to ensure that the joint distribution of the multiple regression outputs

is realistic and consistent with true observations.
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Chapter 1

Introduction

Regression is a statistical method for deriving the relationship between a continuous-valued

response variable y ∈ < and its predictor variables x ∈ <d. The relationship is typically

expressed as a mathematical function f : <d → <. Numerous regression-based methods

have been developed in the past, including discriminative models (such as multiple linear

regression [58] and support vector regression [105]) and generative models (such as hidden

Markov regression [57]). These methods are primarily designed to minimize a loss function,

`[f(x), y], that measures the difference between the observed and predicted values. Although

such a loss function is sufficient to ensure a good fit between the predicted and observed

values, there are other requirements that must be met when applying such methods to real-

world applications. This thesis focuses on developing new regression-based methods that

can handle the unique challenges arising from the climate research domain.

1.1 Regression in Climate Research

Given the growing concerns about global warming and its potential influence on human

and natural systems [107, 28, 49, 93, 75, 60], there is a pressing need to generate accurate

and robust projections of future climate scenarios for researchers, policy-makers and other

stakeholders. For example, to aid crop management decision making, the projections can

be incorporated into crop models to assess the crop yield response to future climate change.
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Towards this end, recent advances in global and regional climate modeling have produced

vast amounts of simulation data that can be harnessed to improve our understanding of the

climate system and its evolution under different greenhouse gas emission scenarios [31, 46,

116, 85]. These general circulation models (GCMs) and regional climate models (RCMs),

as they are called, are physical-based models, developed based on the fundamental laws

of physics, chemistry, and fluid dynamics to simulate the response of the Earth system

to various external forcings on a three-dimensional spatial grid mesh. However, the scale of

these computer-simulated model outputs are often too coarse to be effectively used in climate

change impacts, adaptation, and vulnerability (CCIAV) assessment studies. Furthermore,

due to the complexity of the climate system and inadequacy of the models in capturing all

of its underlying processes, there are inherent biases in the model outputs that must be

corrected to enable reproduction of historical climate conditions.

Regression is a popular method to empirically downscale the coarse resolution model

outputs to a finer resolution. It can also debias the model outputs to fit the distribution of

historical climate data. In addition to generating climate projections, regression can also be

applied for the purpose of spatial interpolation, to fill in missing values at locations where

observed values are unavailable [64]. However, in spite of extensive number of regression-

based approaches that have been proposed to generate downscaled climate projections and

bias corrected climate projections, there are still a number of challenges current regression

methods have not adequately addressed.
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1.2 Challenges

The projections generated by climate models are not an end in themselves but are often

integrated into other numerical models (such as crop and hydrological models) to enable

assessments of future climate change impacts. These downstream models not only differ in

terms of the climate variables needed as input, they may also have distinct expectations

regarding the desired characteristics of the climate projections. As an example, the skills of

the climate projections in terms of simulating the length of wet and dry runs, i.e., number of

consecutive rain and non-rain days, is an important requirement to estimate drought duration

and intensity [9]. The least-square loss function employed by multiple linear regression

(MLR) or the first-order Markov assumption employed by weather generators are inadequate

to simulate the higher order temporal autocorrelation of a precipitation time series. Thus,

one of the main challenges of applying regression methods to generate climate projections

is that there could be more than one distinct expectation of the projections, which are not

always easy to simultaneously achieve.

Furthermore, the projections should be unbiased across all quantiles. An unbiased pro-

jection is one whose distributional characteristics are consistent with that of the true values

of the response variable, across all the quantiles of its distribution. To illustrate this, consider

the histogram of observed daily maximum temperature at a weather station in Michigan,

represented by the gray area in Figure 1.1. The red dotted line represents the histogram of

daily maximum temperature generated by multiple linear regression. Observe that the MLR

outputs have a warm bias for the cooler days and a cold bias during the warmer days. As

a result, MLR is not a suitable approach if extreme values are of paramount importance to

users of the climate projections.
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Figure 1.1: Histogram comparing the distribution of predicted daily maximum temperature
at a weather station in Michigan to its respective observed values, 1990-1999. [For interpre-
tation of the references to color in this and all other figures, the reader is referred to the
electronic version of this dissertation]

To address the requirement for an unbiased distribution, there is a class of bias correction

approaches that can be used. Although these approaches can generate climate projections

with low bias, their residual errors can be high, which implies a lack of agreement between

the observed and predicted values at each time step. Hence, it is imperative to develop

regression-based approaches that provide outputs satisfying both requirements of minimal

error and unbiased predictions.

In addition, when considering the distribution characteristics of the regression outputs,

the end user may be interested in certain quantiles over others. For instance, farmers are

often interested in the frequency and magnitude of extreme values in the climate projections,

due to the larger economic implications associated with them. However, as most approaches

prioritize the conditional mean of the distribution, they tend to underestimate the frequency

of extreme-valued data points as shown in Figure 1.2. Thus, another challenge for regression-
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Figure 1.2: Histogram comparing the distribution of extreme values of the predicted daily
maximum temperature at a weather station in Michigan, obtained using multiple linear
regression, to its respective observed values, 1990-1999.

based approach is to provide a framework that is flexible enough to prioritize the accuracy

at the quantiles of the end-user’s choice, without significantly degrading the performance at

other quantiles.

End users may also require projections of more than one climate variable. For instance,

daily minimum and maximum temperature as well as total precipitation are among the com-

mon variables needed for CCIAV assessments. Although regression-based approaches can be

trained for each variable independently, the resulting projections may not be consistent with

each other. Hence, there is a growing demand for multiple output prediction methods capa-

ble of capturing the joint distribution of the response variables in a realistic and consistent

fashion, while minimizing their residual errors. Unfortunately, current methods are designed

to optimize one of the two criteria, but not both, as shown in Figure 1.3. Generating pro-

jections for multiple variables while preserving their joint relationships and minimizing the
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Figure 1.3: Scatter plot comparing the joint distribution between the quantile mapping (QM)
predicted output of two response variables and it true values.

residual errors is another challenge that has not been sufficiently addressed.

Some climate variables are also harder to project due to their unique data characteristics.

For instance, daily precipitation is notoriously challenging to model due of its zero-inflated

distribution, a challenge that conventional regression methods are not well suited to handle.

A zero-inflated distribution is a distribution with an abundance of zero values as shown

in Figure 1.4. Such distribution can also be found in many other applications that are

related to long-term projections, such as ecological modeling, disease monitoring, and traffic

monitoring. As conventional regression methods typically prioritize modeling the conditional

mean of the distribution, they tend to underestimate the frequency of zero-valued data points

as well as the magnitude of the extreme values of a zero-inflated variable. Thus, there is a

need to develop models that are geared toward dealing with some of the more uncharacteristic

distributions observed among the climate variables.

The source of climate data available for building the regression models may also introduce
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Figure 1.4: Histogram of daily precipitation recorded at a weather station in Canada.

additional complications. For example, the GCM or RCM-simulated precipitation data may

not be exactly synchronized with the observed precipitation since each simulated output is

only one possible realization of the time series. This affects both the training of regression

models as well as model evaluation, which typically assumes there is a one-to-one mapping

between the input and output variables for each data point used in the regression model.

Fortunately, there are alternative approaches, such as quantile mapping, that cater to mod-

eling data points with asynchronous predictor and response variables. Unfortunately, this

flexibility also results in a prediction with relatively higher residual errors, as the models

do not utilize the existing mapping information between the predictor and response vari-

ables. The challenge here is to develop models that can handle asynchronous data with

compromises model accuracy.

For RCM models, the simulations can be driven by either reanalysis data (akin to true

observations) or by GCM models as their initial boundary conditions. Reanalysis-driven
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RCM runs are typically used to generate hindcast values of the predictor variables whereas

GCM-driven RCM runs are needed to generate forecast values of the predictor variables.

Most regression-based approaches are trained using reanalysis-driven RCM runs and tested

on future data generated by GCM-driven RCM runs. Unfortunately, there are inherent biases

in the GCM-driven RCM runs that are not fully accounted for by the regression model. This

presents an additional challenge that must be addressed by regression-based approaches,

which typically assume that the training and test data have similar distributions.

1.3 Thesis Contributions

This thesis presents multivariate regression-based frameworks that simultaneously addresses

multiple objectives pertaining to the individual requirements of an accurate climate projec-

tion. By simultaneously optimizing multiple objectives, the frameworks generate a projec-

tion that satisfy multiple requirement with minimal degradation of any one objective, unlike

existing regression-based approaches that address a single objective at the expense of com-

promising other requirements. The multiple objectives addressed by each of the frameworks

pertain to best replicating the unique distribution characteristics of a response variable, while

also ensuring an accurate projection in terms of minimum residual errors.

As mentioned earlier, pragmatic approaches to modeling predictive systems need to take

into account any unique distribution characteristics of the response variable that is criti-

cal to generating an accurate projection. Chapter 3 presents an integrated multi-objective

framework that simultaneously performs classification and regression to accurately predict

values of a zero-inflated time series [4]. The regression and classification models are trained

to optimize a joint objective function that minimizes both the classification errors (zero
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and non-zero values) and regression errors for data points that have non-zero values. The

framework compensates for the uncertainty in the data by using a smoothing function that

prioritizes non-zero valued data point whose response value is consistent with other data

points having similar values for their respective predictor variable, during the learning of the

regression function. The effectiveness of the framework is demonstrated in the context of its

application to a downscaling precipitation climate variable. The semi-supervised extension

of the framework in Chapter 3 is elaborated in Chapter 4 and compared with its supervised

counterpart [3].

Given that studies and applications that utilize long-term projections for analysis may

be interested in certain quantiles of the distribution of the projection over others, Chapter

5 presents a multivariate framework that focuses on the accurate projection of a specific

quantile of the distribution (such as those pertaining to extremes values) with minimum

deterioration of the accuracy of the projection at the other quantiles of the response variable

[8]. Chapter 5 also elaborates on the framework in a semi-supervised setting.

As an extension of the above-mentioned framework, Chapter 6 presents a multi-objective

framework called ICR that focuses on reliable prediction of extreme values events for a

zero-inflated response variable [7]. This multi-objective framework incorporates the multiple

objectives of classification, regression and conditional quantiles. The frameworks in Chapters

5 and 6 were evaluated on climate data and these demonstrated their ability in accurately

detecting the frequency, timing and magnitude of extreme temperature and precipitation

events effectively compared to several baseline methods.

Chapter 7 shows the limitations of popular regression-based approaches in terms of pre-

serving the distribution characteristics of true response variable across the various quantiles

in spite of its minimizing residual errors. Chapter 7 goes on to present a multi-objective re-
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gression framework that simultaneously replicates the cumulative distribution properties of

the response variable while minimizing the residual errors. The framework is highly flexible

and can be applied to linear, nonlinear, and conditional quantile models [5]. The effective-

ness of the framework in modeling the daily minimum and maximum temperature as well

as precipitation for climate stations in the Great Lakes region is demonstrated along with

marked improvement over traditional regression-based approaches, for all climate stations

evaluated.

There is a growing demand for a multiple-output prediction that not only is accurate in

terms of minimal residual errors but also in terms of accurately capturing the joint distri-

butional characteristic of multiple output variables, so that they are realistic and consistent

with each other. Unfortunately, the preservation of these associations is not guaranteed by

regular single or multiple output regression approaches. Chapter 8 presents a framework

for multiple output regression that preserves the general association patterns among the re-

sponse variables (including non-linear associations) while minimizing the overall errors of the

individual prediction, by coupling regression and geometric quantile mapping. The effective-

ness of the framework in modeling temperature and daily precipitation for climate stations

in the Great Lakes region is demonstrated [6]. The framework showed significant improve-

ment in reducing residual errors while preserving the joint distribution of the multi-output

variables, over the baseline approaches, in all climate stations evaluated.

1.4 Summary

To summarize, the presented frameworks address the challenges pertaining to the application

of regression-based approaches to the climate research domain. However, even though the
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multi-objective frameworks presented in this thesis are originally motivated by the need to

generate accurate and unbiased projections of climate variables, they are generic enough to

be used for other applications. For example, the ICR framework is applicable to any domains

with zero-inflated data distribution whereas the MCR framework is designed for domains

that require consistent predictions across multiple response variables.

Additionally, the proposed frameworks leverage ideas from semi-supervised learning, sta-

tistical asynchronous regression, and geometric quantiles to address the challenges introduced

by the climate research domain. All the experimental results reported in this thesis pertain-

ing to demonstrating the effectiveness of the frameworks are conducted on climate data for

a study region involving parts of Canada and the Great Lake region around Michigan. The

effectiveness of the frameworks is demonstrated in the context of their applications to bias

correcting and downscaling precipitation and temperature data.
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Chapter 2

Related Work

Regression is a commonly employed statistical approach for estimating the relationship be-

tween a response variable and its respective predictor variables. Popular approaches of

regression, such as multiple linear regression (MLR), learn the regression coefficients that

estimate the conditional expectation of the response variable, given the predictor variables.

Unlike MLR, quantile regression estimates the conditional quantile of the response vari-

ables [77]. Similarly, there are numerous other popular variants of regression-based ap-

proaches [58, 15, 73], such as ridge regression [62], lasso regression [110], recurrent neural

networks [55], Hidden Markov Model Regression [52], and support vector regression [105].

The various regression approaches primarily differ based on the number of predictor variables

used, the number of response variables, the type of response variable, the estimation method

used to identify the regression coefficients, the bias in the estimated regression coefficients,

whether a linear or non-linear regression function is used, etc.

Time series prediction [80] has long been an active area of research with applications in

finance [30], network monitoring [81], transportation planning [63][91], weather forecasting

[46][31], etc. Regression approaches can be applied to time series data for forecasting pur-

poses. When it comes to using regression for time series analysis, the two most common

approaches employed are autoregressive and multivariate regression approaches. While mul-

tivariate regression-based approaches are constrained by the requirement of the availability
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of future values of the predictor variable to make a forecast, autoregressive approaches, such

as autoregressive moving average (ARMA) and autoregressive integrated moving average

(ARIMA) [23] do not have such constraints. Autoregressive approaches make forecasts by

repeatedly invoking a model that makes its prediction, one unit at a time and using the

predicted values from the previous iteration to infer future values. However, autoregressive

approaches are plagued by the error accumulation problem, on account of the propagation

of errors from one prediction step to the next one.

Given the influence of climate on agriculture [28, 107], natural ecosystems [49, 93], human

health and natural calamities [60, 75], economic impact [104] etc., considerable effort has

been dedicated to generate projections of climate variables, to aid strategic decision making.

This effort has also been precipitated by the growth in the number of climate models in the

climate science domain [88].

2.1 Forecasting in the Climate Science Domain

In the climate science domain, there has been extensive research on applying time series

regression models on climate data obtained from global climate models (GCM) [31, 46, 116].

Global climate models (GCMs) are extensively used for understanding how the global climate

may change in the future.

GCMs are computer-generated models for simulating future climate conditions under

different greenhouse gas emission scenarios. However, the spatial resolution of GCM outputs

are often too coarse to reliably project the future climate scenarios of a local region and do

not provide reliable information on scales below about 200 km [Meehl et al., 2007].

Two of the more widely employed approaches to improving the projection of climate
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variables obtained from climate models such as GCMs and regional climate models (RCM),

is downscaling and bias correction. While bias correction is employed to correct the biases

in the distributional characteristics of the climate projection, downscaling is employed to

refine the granularity of the projection to better represent the climate variability associated

with the location of interest of the impact assessment study. In spite of the two distinct

objectives, regression is a popular approach employed, to generate bias corrected projections

as well as downscaled climate projections.

2.1.1 Downscaling in the Climate Science Domain

Downscaling techniques are used to relate the coarse-scale GCM outputs to the local cli-

mate variables such as daily precipitation and temperature [116]. There are two common

approaches to downscaling climate variables. The first approach is dynamical downscaling,

which nests a regional climate model (RCM) into the GCM to represent the atmospheric

physics with a higher grid-box resolution within a limited area of interest. The second ap-

proach is statistical downscaling, that statistically links coarse-scale weather with relatively

finer resolution observed local-scale weather. Wilby and Wigley [117] classified statistical

downscaling into regression methods, weather type approaches, and stochastic weather gen-

erators. Multiple linear regression (MLR) is probably the most common regression-based

statistical downscaling approach whose objective is to minimize the sum square error. Multi-

ple linear regression with randomization (MLRR) is another regression-based approach that

adds a randomization term to compensate for the reduced variability in the prediction of

the regression function that is fitted to pass through the centroid of the data. Themeβl et

al. [108] applies MLRR to bias correct precipitation data. Analog method (AM) and its

variants, such as nearest neighbor analog methods (NNAM), are other common downscaling
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techniques that are based on the intuition of prototyping. The advantage of approaches such

as AM is the minimum training time required. The disadvantage is the need for sufficiently

large amount of historical data for accurate prediction as well as the limitation of being

unable to predict extreme events beyond the magnitude of extreme events available among

the historical data sets. Rummukainen [100] differentiated various statistical downscaling

approaches based on the nature of the chosen predictors as either being perfect prog(nosis)

(PP) or model output statistics (MOS) (Glahn and Lowry [56]).

2.1.2 Bias Correction in the Climate Science Domain

Often even the results of downscaling, such as RCM simulation data often needs to be bias

corrected to accurately reflect the observed distribution of the respective climate variables

before being fed to climate change impact models and/or crop growth and yield models so

that biases in the simulated data are not propagated. RCM variables, such as temperature,

may require bias correction of the mean and standard deviation of the distribution, while

variables such as precipitation may require frequency and intensity of the distribution to be

additionally calibrated.

The quantile-based bias correction approaches focuses on matching the distribution of

the downscaled approaches as closely as possible to that of its observations’ distribution.

Quantile mapping, modified quantile mapping (EDCDFm) and transfer functions defined

by Piani et al.[96][97] are a few examples. Quantile mapping has been extensively used to

downscale climate variable across regions, ranging from the smaller regions, such as Japan

(Iizumi et al. [67]) to the larger areas such as the European continent as seen by Piani et al

[96]. Samuels et al. [102] and Ines et al. [68] use quantile mapping for downscaling and bias

correcting climate variables like precipitation. Ceglar et al. [29] has used it to downscale
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even variables like solar radiation. Quantile mapping can use both as a means to downscale

the climate variables as well as a bias correction technique. When used as separate bias

correction technique, QM corrects the errors in the shapes of the two distributions either

prior or after downscaling the data, using any of the downscaling approaches. Approaches

such as linear regression used by Rivington et al. [98] and copula-based approaches used by

Favre et al. [47] are also occasionally used for bias correction.

2.1.3 Regression-Based Approaches for Bias Correction and Down-

scaling

Regression-based approaches are among the most commonly employed approaches for bias

correction and downscaling climate projections. In spite of the nuance between the objec-

tives of bias correction and downscaling climate variables for generating projection, there is

considerable overlap in terms of the approaches employed by both applications. The various

regression-based approaches used for downscaling and bias correcting climate projections

can be broadly categorized as either being distribution-driven or accuracy-driven, based on

whether their primary objective is minimizing residual errors or ensuring that the cumula-

tive distribution of the projection of the response variable matches, as closely as possible,

the distribution of the corresponding observations data at each quantile. Multiple linear re-

gression and QM are respectively, the most popular accuracy-driven and distribution-driven

approaches.

Among the various accuracy-driven regression-based approaches, change factor (delta

method), linear regression (LR), its multiple variable counterpart and multiple linear regres-

sion (MLR) are the most popular regression-based approaches used for downscaling and bias
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correction [108][98]. Multiple linear regression with randomization used by Themel et al.

and copula based approaches used by Favre et al. [47] have also occasionally been used for

bias correction and downscaling climate variables.

Unlike accuracy-driven approaches, distribution-based approaches primarily focuses on

ensuring that the cumulative distribution of the projection of the response variable matches

as closely as possible, the distribution of the corresponding observations data at each quantile.

Quantile mapping (QM), modified quantile mapping (EDCDFm), transfer functions defined

by Piani et al. and local intensity scaling [108][61][96][97] are few examples of distribution-

based regression approaches commonly used for bias correction and downscaling climate

projections.

2.2 Multiple-Objective Prediction

Based on the distribution characteristics of the response variable, modeling certain response

variables, is more challenging that others. This is often due to the distinct or uncommon dis-

tribution characteristics of the response variable. For instance, conventional single-objective

regression models that prioritize the conditional mean of the distribution tend to under-

estimate the number of zero-valued data points while also under-estimating the values of the

extreme values of a zero-inflated response variable. Similarly, the single-objective regression

approaches such as MLR, that are commonly used when the emphasis is on minimizing SSR,

fare poorly in terms of capturing the shape of the distribution and hence is not well suited in

preserving the distribution characteristics of the projection. Thus there is the need to have

a framework that caters to simultaneously addressing multiple objectives.

As mentioned earlier, precipitation which is an important driver in a lot of models such as
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fresh water modeling [78], is considerably more difficult to model than temperature, mostly

due to its high spatial and temporal variability and its nonlinear nature. The motivation

behind using a multi-objective approach that combines the use of classification and regression

models is to address the challenges of zero-inflated distribution observed in precipitation.

Previous studies have shown that additional precautions must be taken to ensure that

the excess zeros do not lead to poor fits [11, 13, 42, 20, 114] of the regression models. A

typical approach to model a zero-inflated data set is to use a mixture distribution of the

form

P (y|x) = απ0(x) + (1− α)π(x)

where π0 and π are functions of the predictor variables x and α is a mixing coefficient that

governs the probability an observation is a zero or non-zero value. This approach assumes

that the underlying data are generated from known parametric distributions. For example,

π may be Poisson or negative binomial distribution (for discrete data) and lognormal or

Gamma (for continuous data). Piani et al. [97] proposed a multi-objective transfer functions,

specific to response variables having zero-inflated distribution. Similarly, local intensity

scaling (LOCI) has been specialized for bias correcting response variables that have a zero-

inflated distribution by accounting for the zero-inflated characteristics of precipitation data

[108].

There have been extensive studies on the effect of incorporating unlabeled data to super-

vised classification problems, including those based on generative models[41], transductive

SVM [71], co-training [19], self-training [120] and graph-based methods [18][121]. Some stud-

ies concluded that significant improvements in classification performance can be achieved

when unlabeled examples are used, while others have indicated otherwise [19, 36, 40, 109,
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118]. Blum and Mitchell [19] and Cozman et al. [36] suggested that unlabeled data can help

to reduce variance of the estimator as long as the modeling assumptions match the ground

truth data. Otherwise, unlabeled data may either improve or degrade the classification per-

formance, depending on the complexity of the classifier compared to the training set size

[40]. Tian et al. [109] showed the ill effects of using different distributions of labeled and

unlabeled data on semi-supervised learning.

Recently, there have been growing interest on applying semi-supervised learning to re-

gression problems [119][24][39][122]. Some of these approaches are direct extensions of their

semi-supervised classification counterparts. Cheng and Tang [33] proposed a semi-supervised

learning framework for long-term time series forecasting based on Hidden Markov Model

Regression. They also developed a covariance alignment method to deal with the issue of

inconsistencies between historical and future data from climate simulation models. None of

these semi-supervised learning methods are designed for handling zero-inflated time series

data.

2.3 Modeling Extremes

Identifying and modeling extreme events in climatology have recently gained a lot of traction

[48]. Unfortunately, the common regression techniques mentioned earlier that may be used

for downscaling, focus on predicting the conditional mean of the response variable, while

extreme values are better identified by conditional quantiles that corresponds to the extreme

values. Hence, unlike the common regression techniques mentioned earlier that focus on

predicting the conditional mean, the motivation behind the presented model focuses on the

conditional quantile, using an approach similar to quantile regression [77].
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Variations of quantile regression, such as non-parametric quantile regression and quan-

tile regression forests, have been used to infer the conditional distribution of the response

variable, which may be used to build prediction intervals [106, 87]. Also, variants of quantile

regression that estimate the median are used due to their robustness to outliers when com-

pared to traditional mean estimate [82]. Friederichs and Hense [51] presented a statistical

downscaling approach to estimate censored conditional quantiles of precipitation that uses

QR. The conditional probability of the censored variable is estimated using a generalized

linear model (GLM) with a logit function to model the nature of the distribution of precipi-

tation and hence cannot be directly applied to model temperature. Mannshardt-Shamseldin

et al. [83] demonstrate another approach to downscaling extremes through the development

of a family of regression relationships between the 100 year return value (extremes) of climate

modeled precipitation (NCEP and CCSM) and station-observed precipitation values. Gener-

alized extreme value theory based approaches have also be applied to model extreme events

like hydrologic and water quality extremes, precipitation, etc [111, 16]. The Pareto distri-

bution [43, 66], Gumbel [22, 14] and Weibull [35] are the more common variants of general

extreme value distribution used. But these techniques are probability based that emphasize

trends pertaining to the distribution of future extreme events and not the deterministic tim-

ing of the occurrence of the extreme event. The drawback of building a model that primarily

focuses on only a particular section of the conditional distribution of the response variable

is the limited amount of available data. Hence, the motivation for incorporating unlabeled

data during model building.

When it comes to accurately predicting extreme values in the presence of zero-inflated

data, studies have shown that additional precautions must be taken to ensure that the excess

zeros do not lead to poor fits [11, 13, 42, 20, 114] of the regression models. Generally, simple
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modeling of zero values may not be sufficient, especially in the case of zero-inflated climate

data such as precipitation, where extreme value observations need to be accurately modeled.

Due to the significance of extreme values in climatology and the increasing trend in extreme

precipitation events over past few decades, a lot of work has be done in analyzing the trends

in precipitation, temperature, etc., for regions in the United States and Canada among others

[79, 99, 44, 37, 101]. Katz [72] introduces the common approaches used in climate change

research, especially with regard to extreme values.

The common approaches to modeling extreme events are based on general extreme value

theory [53, 89, 50], Pareto distribution [43, 66, 70, 90], generalized linear modeling [35,

34], hierarchical Bayesian approaches [54, 65, 103], etc. Gumbel [22, 14] and Weibull [35]

are the more common variants of General extreme value distribution used. There are also

Bayesian models such as the model of Cooley et al. [38] that augment the model with spatial

information. Watterson et. al. proposed a model that also deals with the skewness of non-

zero data/intermittency of precipitation using gamma distribution to interpret changes in

precipitation extremes [113]. In contrast, the framework presented in this chapter handles the

intermittency of the data by coupling a logistic regression classifier to the quantile regression

part of the model.

2.4 Distribution Preserving Modeling

Courtesy of projects such as NARCCAP (North American Regional Climate Change As-

sessment Program), extensive studies have been done to utilize the long-term future climate

projections made available [86, 88]. Many of these studies focus on the impact assessment

of climate change on domains, ranging from natural ecosystems [93] [49] to those related to
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human systems [94]. Since many climate change impact assessment studies are interested

in long-term climate projections, the accuracy of the distribution of the projection is often

critical. As mentioned earlier, efficient utilization of these projections require the projections

to be unbiased across all the quantiles of the distribution [31, 4, 116].

As mentioned earlier, bias correction approaches such as QM [108], Equidistant CDF

Matching (EDCDFm), Statistical Asynchronous Regression (SAR)[92], transfer functions

proposed by Piani et al.(2010b), etc, have been applied, to address these biases in the

projection of climate data. However, these approaches are best suited when there is no day-

to-day mapping available between the predictor and the response variable, as is the case of

downscaling from GCMs or data from RCMs driven by GCMs. QM is very well equipped to

generate a projection of the response variable with an unbiased distribution. However, these

bias correction approaches under-perform in terms of accuracy of prediction of individual

data points. This is because these bias correction approaches do not leverage the original

mapping information between the response and predictor variables during training. This

drawback is all the more impeding, since data obtained from RCMs driven by reanalysis data

have day-to-day mapping and may be used for building a regression model for downscaling

and bias correction.

Thus, common distribution driven single output regression approaches are best suited

when the predictor and output variables are asynchronous and there is less emphasis on

low sum squared residual error (SSR). Accuracy-driven regression approaches, such as

MLR, Ridge, Lasso and analog methods [108], are commonly used when the emphasis is on

minimizing SSR but fare poorly in terms of capturing the shape of the distribution (Figures

1.1). Thus, commonly used regression approaches are not well suited in preserving the

distribution characteristics of the projection. Given the drawbacks of regression and quantile-
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based approaches, approaches such as Contour Regression (CR) [5] have been proposed that

try to simultaneously minimize error and preserve the shape of the forecast distribution. CR

uses a regression function that regularizes the area between the CDF of the target response

variable and the regression result.

To address the limitation of single output regression (SOR), numerous multiple output

regression (MOR) models have been proposed including the commonly used multi-output

regression [59] and structured output regression [17]. A number of regression-based multi-

ple output models focus on penalizing of the regression matrix using low rank penalization

methods such as reduced rank regression [69]. However, these approaches do not model

correlation in output dimensions. Another common approach to multiple output prediction

is to penalize input space shared, for co-linearity, such as partial least square regression

discriminant analysis (PLSDA) [95]. However these models, too, do not capture the asso-

ciation among various response variables. ”Curds and whey” is an example of regression

based approach that models output correlation [25]. However, modeling output correlation

assumes the relation among the response variables is linear. Multiple output SVR is an-

other approach that takes advantage of correlation among response variables and extends

SVR to multi-output systems by considering Cokriging (a multi-variable version of Kriging)

[112]. Cokriging models multiple output variables by computing cross covariances between

the different outputs. Group lasso [74], LL-MIMO [21], gaussian process MOR [10] are other

examples of MOR.

However, none of the above-mentioned approaches preserve the full range of variability

of the joint distribution of the response variables. He et al.[61] proposed bivariate quantile

mapping to address the limitations of QM in bivariate space and use the intuition proposed

by Buja et al. regarding geometric quantiles [26]. However, in spite of the approach faring
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very well in terms of capturing the requisite marginal distribution characteristics of the two

response variables, due to its asynchronous nature, it suffers from poor SSR.

In the following chapters, approaches that address the challenges of modeling zero-inflated

response variables, prioritizing extremes in a distribution of the response variable, preserving

the overall distribution characteristics of the response variable, in both a single output and

a multi-output setting are proposed.
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Chapter 3

Modeling Zero-Inflated Data

This chapter presents a multi-objective approach for predicting future values of a time series

data that are inherently zero-inflated. The proposed framework decouples the prediction

task into two objectives—a classification step to predict whether the value of the time series

is zero and a regression step to estimate the magnitude of the non-zero time series value.

3.1 Introduction

Predictive models for time series data are commonly employed in the fields of economics,

finance, epidemiology, ecology, and meteorology, among others. The prediction accuracy

is subject to the choice of model used, which in turn, may be limited by characteristics

of the time series observations. For example, studies have shown that the performance of

classical regression models is degraded when applied to data sets with excess zero values

[11, 13, 42, 20, 114]. Such data are typically encountered in applications such as climate

and ecological modeling, disease monitoring, manufacturing defect detection, and traffic

monitoring.

Figure 3.1 shows the histogram of daily precipitation (in log scale) at a weather station

in Canada for the period between January 1, 1961 and December 31, 2000. Nearly half of

the observations have precipitation values equal to zero. Such zero-inflated data, as they

are commonly known, often lead to poor model fitting using standard regression methods as
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Figure 3.1: A zero-inflated frequency distribution of daily precipitation at a weather station
in Canada

they tend to underestimate the frequency of zeros and the magnitude of non-zero values of

the data. A typical strategy for handling such type of data is to first invoke a classification

model to predict whether the output value is zero. A regression model, which has been

trained on the non-zero data points, is then applied to estimate its magnitude only if the

classifier predicts a non-zero output. Such an approach is commonly used for statistical

downscaling of precipitation [115], in which the occurrence of rain or wet days is initially

predicted prior to applying a regression model to estimate the amount of rainfall for the

predicted wet days. The limitation of this approach is that the classification and regressions

models are often built independent of each other. As a result, neither models can glean
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Figure 3.2: Comparison between independent modeling approach and proposed framework
for predicting zero-inflated data

information from the other to potentially improve their prediction accuracy.

The objective of this chapter is to develop an integrated framework that accurately esti-

mates the future values of a zero-inflated time series by simultaneous training the classifica-

tion and regression models. Specifically, the models are trained to optimize a joint objective

function that penalizes errors in classifying a data point and errors in predicting the magni-

tude of non-zero data points. Given a test point, the regression model is applied to estimate

the magnitude of the predicted value. The output from the regression model along with the

values of other predictor variables of the test point are then fed into a classification model

to determine whether the predicted value should be adjusted to zero. The distinction be-

tween the traditional two-step independent modeling approach and the proposed framework

is illustrated in Figure 3.2.

The effectiveness of the learning framework is demostrated in the context of precipitation

prediction, using climate data from the Canadian Climate Change Scenarios Network Web

site [1]. Specifically, the performance of the integrated framework was compared against

27



two baseline methods. The first baseline corresponds to applying standard multiple linear

regression (MLR) method on the entire training data, which includes both dry and rain days.

The second baseline method (SVM-MLR) uses a combination of support vector machine

classifier to predict dry/wet days and multiple linear regression to predict rainfall amount

on wet days. Both the models are trained independently. Empirical results showed that the

proposed framework outperforms both MLR and SVM-MLR on the majority of the weather

stations investigated in this study.

In summary, the main contributions of this chapter are as follows:

• An integrated framework for simultaneously learning classification and regression mod-

els.

• The proposed framework was found to be more effective at predicting zero-inflated time

series than building a single regression model or building independent classification and

regression models to fit the time series data.

• The framework was successfully applied to the real-world problem of downscaling pre-

cipitation time series for climate impact assessment studies.

3.2 Preliminaries

Consider a multivariate time series L = (xt, c
′
t), where t ∈ {1, 2, · · · , n} denote the elapsed

time, xt is a d-dimensional vector of predictor variables at time t, and ct is the correspond-

ing value for the response (target) variable. Given an unlabeled sequence of multivariate

observations xτ , where τ ∈ {n + 1, · · · , n + m}, the goal was to learn a target function

f(xτ ,w) that best estimates the future values of the response variable at each time τ . The
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set of weights w = [w1, w2, ..., wd]
T are the regression coefficients to be estimated from the

training data L. For applications such as statistical downscaling, the predictor variables

xτ correspond to climate variables at large spatial scales generated from computer-driven

general circulation models (GCMs).

For zero-inflated data, the frequency of zero values in the time series is relatively larger

than the frequency of each non-zero values, as shown in Figure 3.1. The response variable

c′t can be mapped into a binary class ct, where

ct =





1, if c′t > 0;

0, otherwise.

(3.1)

For brevity, the notation y′ ≡ f(x,w) was used as the predicted value of the response

variable and y as its corresponding predicted class.

3.3 Framework for Simultaneous Classification and Re-

gression

In this chapter, a framework is presented for predicting future values of a time series with

the following unique characteristics:

1. The framework simultaneously performs classification and regression to improve the

accuracy of predicting the magnitude of non-zero values in a zero-inflated time series.

2. The framework can be easily extended to a semi-supervised learning setting via graph

regularization.
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This chapter considers a framework for modeling zero-inflated variables using a combi-

nation of classification and regression models. The models in the framework are trained to

optimize a joint objective function that considers both the classification errors on the time

series and regression errors for the non-zero values. The framework presented in this chapter

trains an SVM classifier only once after the parameters of the regression model have been

determined. Proofs of convergence of our algorithm are also presented in this section.

Multiple linear regression (MLR) was considered as the underlying regression model in

this study, in which f(x,w) = wTx. Extending the approach to nonlinear models will be a

subject for future research.

3.3.1 Objective Function

The classification and regression models developed in this study are designed to minimize

the following objective function:

arg min
w,y

L(w,y) =
n∑

i=1
ci(c

′
i − yiy

′
i)

2 + T1

n∑

i=1
(yi − ci)

2

+ T2

n∑

i,j=1
si,j [ciy

′
i − cjy

′
j ]

2 + T3||w||2

where,

y′i =
∑

d

wdxi,d, yi ∈ {0, 1}

and sij is the similarity between the values of the predictor variables at ti and tj

The rationale for the design of our objective function is as follows. The first term is

somewhat similar to the standard least-square formulation of multiple linear regression,

except the estimation of w is based on the non-zero values in the time series. The regression
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model is therefore biased towards estimating the non-zero values more accurately instead

of being influenced by the over-abundance of zeros in the time series. The product yiy
′
i in

the first term corresponds to the predicted output of our joint classification and regression

models. The second term in the objective function is equivalent to misclassification error

in training data. The third term corresponds to a graph regularization constraint to ensure

smoothness and consistency in the model predictions. Specifically, for two highly similar

data points xp and xq, i.e., spq is large, the model is penalized if the predicted values of

the response variables are inconsistent. Finally, the last term in the objective function is

equivalent to the L2 norm used in ridge regression models to shrink the coefficients in w.

Each data point was considered to be a given elapsed time t ∈ {1, 2, · · · , n} in the time

series. An n × n similarity matrix S = [sij ] is computed between every pair of data points

based on the similarities of their predictor variables. Prior to computing the similarity

matrix, each variable is standardized by subtracting its mean value and then dividing by its

corresponding standard deviation. The standardization of the variables is needed to account

for their varying scales. Pearson correlation coefficient was used to compute the similarity

between each pair of data points and then transform the value to a range between 0 and

1 to ensure ensure all the terms in the objective function are non-negative. The choice of

Pearson correlation as the similarity measure is due to the popularity of the measure in the

Earth science domain.
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3.3.2 Parameter Estimation

The objective function can be further expanded as follows:

L(w,y) =
n∑

i=1
ci(c

′
i − yi

∑

d

wdxi,d)
2 + T1

n∑

i=1
(yi − ci)

2

+ T2

n∑

i,j=1
si,j

(∑

d

ciwdxi,d −
∑

d

cjwdxj,d

)2

+ T3||w||2

or equivalently,

L(w,y) =
n∑

i=1
ci(c

′
i − yi

∑

d

wdxi,d)
2

+ T1

n∑

i=1
(yi − ci)

2 + T3||w||2

+ T2

n∑

i,j=1
si,j

((∑

d

ciwdxi,d

)2
+

(∑

d

cjwdxj,d

)2

− 2
∑

d,d′
cicjwdwd′xi,dxj,d′

)

To estimate the regression parameter w and class labels y, the following iterative pro-

cedure was employed. First, the partial derivative of L(w,y) is computed with respect to
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each of the w’s and set it to zero (assuming y is fixed):

∂L

∂wk
=

[
− 2

n∑

i=1
ci

(
c′i − yi

∑

d

wdxi,d

)(
yixi,k

)

+ 2T2

n∑

i,j=1
si,j

((∑

d

ciwdxi,d

)(
cixi,k

))

+ 2T2

n∑

i,j=1
si,j

((∑

d

cjwdxj,d

)(
cjxj,k

))

− 2T2

n∑

i,j=1
si,j

(∑

d

cicjwd(xi,dxj,k + xi,kxj,d)

)

+ 2T3wk

]
= 0

This reduces to a system of linear equations of the form Aw = b where

bk =
n∑

i=1
ciyic

′
ixi,k

and A is a square matrix of dimension d× d whose non-diagonal elements is given by,

Ak,l = 2T2

n∑

i,j=1
si,jcixi,lxi,k

− 2T2

n∑

i,j=1
si,jcicjxi,lxj,k

+
n∑

i=1
ciyixi,lxi,k
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and diagonal elements

Ak,k = 2T2

n∑

i,j=1
si,jcix

2
i,k

− 2T2

n∑

i,j=1
si,jcicjxi,kxj,k

+
n∑

i=1
ciyix

2
i,k + T3

To estimate y, the following part of the objective function that depends on y is minimized:

Lc(y) =
n∑

i=1
ci(c

′
i − yiy

′
i)

2 + T1

n∑

i=1
(yi − ci)

2

subject to the constraint yi ∈ {0, 1}. It is straightforward to show that Lc is minimized

according to the following rule:

yi =





1, if ci = 1 and (c′i − y′i)
2 > c′2i + T1;

0, otherwise.

(3.2)

The predicted class labels y are then used to re-estimate the regression coefficients w. This

procedure is repeated until the regression coefficients and class labels converge.

3.3.3 Proof of Convergence

This section presents the proof of convergence of our iterative update algorithm. Let

(wt,yt) be the regression coefficients and class labels estimated after the t-th iteration and

(wt+1,yt+1) be the regression coefficients and class labels estimated after the (t + 1)-th
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iteration.

Proposition 3.3.1. Assuming that the class labels yt are fixed, L(wt+1,yt) ≤ L(wt,yt).

Proof. For a fixed yt, let Lr(w) be part of the objective function that depends on the

regression coefficients w:

Lr(w) =
n∑

i=1
ci(c

′
i − yi

∑

d

wdxi,d)
2 + T3||w||2

+ T2

n∑

i,j=1
si,j

(∑

d

ciwdxi,d −
∑

d

cjwdxj,d

)2

The Hessian matrix H of Lr(w) is given by:

∂2Lr

∂wk∂wl
= 2

n∑

i=1
ciyi

2xi,kxi,l + 2T3δkl

+ 2T2

n∑

i,j=1
si,j(cixi,k − cjxj,k)(cixi,l − cjxj,l)

where δkl = 1 if k = l and zero otherwise. Since the parameters T2 and T3 are non-negative,

it can be shown that, for any non-zero vector z with real values, zTHz ≥ 0, i.e., the Hessian

matrix is positive semi-definite. Thus, the stationary point wt+1 minimizes L(wt+1) and

Lr(wt+1) ≤ Lr(wt).

Proposition 3.3.2. Assuming that the regression coefficients are fixed,

L(wt+1,yt+1) ≤ L(wt+1, yt).

Proof. For a fixed wt+1, let L(wt+1,yt) = Lc(yt) + T2
∑n

i,j=1 si,j [ciy
′
i − cjy

′
j ]

2 + T3||w||2.

Note that last two terms are independent of yt. Since the update formula for yt minimizes
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Lc(y), it follows that L(wt+1,yt+1) ≤ L(wt+1,yt).

Theorem 3.3.1. The objective function L(w) is monotonically non-increasing given the

update formula for w and y.

Proof. The update formula iteratively modifies the objective function as follows: L(wt,yt) ⇒

L(wt+1,yt)⇒ L(wt+1,yt+1). Using the above propositions we have L(wt+1,yt) ≤ L(wt,yt)

and L(wt+1,yt+1) ≤ L(wt+1,yt). Therefore, L(wt+1,yt+1) ≤ L(wt,yt)

Lemma 3.3.1. The objective function will eventually converge, as the value of the loss

function is always non-negative and since we know L(w) is monotonically decreasing.

3.3.4 Classification of Test Data

The update formula presented in the previous subsections compute the regression coefficients

w and class labels y of the training examples in such a way that minimizes the objective

function. For a given test example xτ , where τ ∈ {n + 1, · · · , n + m}, the predicted value of

the regression model can be computed as follows: y′τ = wTxτ . However, the classification

output cannot be determined since the update formula for y depends on the true class labels

c, as shown in Equation (3.2). Therefore, to predict the class label y, an SVM classifier on

(xt,y
′
t) as the d + 1-dimensional feature vector and the estimated (yt) as the class labels

using only examples from training data. Once the classifier has been constructed, it can be

applied to predict the class label of a test example. The final output of the joint classification

and regression model is the product yτy′τ (see Figure 3.2).
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Empirically, it was found that SVM may be used as an alternate classifier to predict y

at each iteration, instead of the update formula described above. But since the objective

function of the generic classifier does not necessarily minimize both the first and second term

of Lc(y) simultaneously, convergence cannot be guaranteed.

3.4 Integrated Classification and Regression Algorithm

The Integrated Classification and Regression (ICR) framework takes as input (xt, c
′
t) (a

multivariate time series with d-dimensional predictor variables xt and response variable c′t)

and a sequence of unlabeled observations (xτ ). The output returned by the framework are

the regression coefficients (w) and the predicted values of the unlabeled sequence (zτ ). For

the training phase set c = (c′ > 0) and initialize y = c. Then until convergence update w by

solving Aw = b followed by updating y using Equation (3.2). Then train an SVM classifier

g : (xt,y
′
t) → yt. During the testing phase, set ∀τ : y′τ = wTxτ , ∀τ : yτ = g(xτ , y′τ ) and

∀τ : zτ = yτy′τ .

It is assumed that the time series data has been partitioned into a training set, a validation

set (for model selection), and a test set. Model selection is needed to estimate the parameters

T1,T2,T3 of our objective function L(w,y).

The class labels c of the training examples are obtained based on the response variable c′.

The training phase of the algorithm starts by setting y = c for all the n-training examples.

It then iteratively updates the regression coefficients w and class labels y according to the

methodology presented in the previous section. At this stage, the value of the objective

function is computed and saved for testing convergence of the objective function. Upon

convergence, an SVM classifier g is constructed to learn the mapping between the input
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features x,y′ and output class y.

Once the training phase is completed, the Testing phase begins. Testing is performed

by first applying the multiple linear regression model to the predictor variables xτ . This is

followed by invoking the SVM classifier to predict the class label yτ for the m test examples.

The classifier takes xτ and y′τ as input and returns class labels yτ . Finally, the prediction

output is obtained by setting zτ = yτy′τ .

The time complexity of the training phase of the algorithm is O(k(n2d+ d3)), where n is

the number of training examples, d the number of predictor variables and k is the maximum

number of iterations required for convergence. The computational complexity of the training

phase is composed of two major parts: the first that requires computing the similarity matrix

and the second that requires iteratively solving w and y. The time needed to compute the

similarity matrix is (O(n2d)). The time complexity of each iteration refers to the time needed

to compute w (O(n2d2 + d3)) plus time needed to compute y (O(n)). Hence, for maximum

iterations set to k, the time complexity for the training phase is O(k(n2d + d3)), where

d ¿ n.

3.5 Experimental Evaluation

This section presents the experimental results to demonstrate the effectiveness of the pro-

posed framework.

3.5.1 Experimental Setup

The ICR algorithm was run on climate data obtained for 37 weather stations in Canada, from

the Canadian Climate Change Scenarios Network Web site [1]. The response variable to be
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regressed corresponds to daily precipitation values measured at each weather station. The

predictor variables correspond to 26 coarse-scale climate variables derived from the NCEP

Reanalysis data set, which include measurements of airflow strenght, sea-level pressure, wind

direction, vorticity, and humidity, as shown in Table 7.1. The data span a 40-year period,

1961 to 2001. The time series was truncated for each weather station to exclude days for

which the precipitation values are missing.

Table 3.1: List of predictor variables for precipitation prediction.

Predictor Variables

Mean sea level pressure Surface zonal velocity
Surface airflow strength Surface meridional velocity
Surface vorticity Surface wind direction
Surface divergence Mean temp at 2m
500 hPa airflow strength 850 hPa airflow strength
500 hPa zonal velocity 850 hPa zonal velocity
500 hPa meridional velocity 850 hPa meridional velocity
500 hPa vorticity 850 hPa vorticity
500 hPa geopotential height 850 hPa geopotential height
500 hPa wind direction 850 hPa wind direction
500 hPa divergence 850 hPa divergence
Relative humidity at 500 hPa Relative humidity at 850 hPa
Near surface relative humidity Surface specific humidity

A comparison of the performance of the algorithm(ICR) was made against the multiple

linear regression (MLR) model and an approach that combined SVM and MLR (SVM-MLR).

MLR uses the least square criterion to estimate the weight vector w of the model. In SVM-

MLR, SVM was used to learn a classifier model to differentiate between Rain and NoRain

days, and MLR was learnt on rain days only. Finally, for the given test set MLR is applied

only to those days classified as a Rain day. As far as choice of SVM is concerned, during the

evaluation phase a choice of the kernel (Linear or RBF) and its respective parameter is made.

The choice of the SVM kernel for ICR was limited to a linear kernel. Future experiments

will include a wider selection during the evaluation phase.
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The following criteria was used to evaluate the performance of the models:

• Root Mean Square Error (RMSE), which measures the difference between the actual

and predicted values of the response variable, i.e.: RMSE =

√∑n
1 (c′i−y′i)2

n .

• Accuracy, which measures the number of Rain and NoRain days predicted correctly by

the model.

• F-measure, which is the harmonic mean between recall and precision values for rain

days.

3.5.2 Experimental Results

The purpose of the experiment is to demonstrate the following:

1. Limitations of classical regression models in terms of handling zero-inflated time series

data.

2. Performance comparison between classical regression models and the proposed frame-

work.

3.5.2.1 Effect of Zero-Inflated Time Series Data

The objective of this experiment is to demonstrate the effect of increasing number of zeros in

a time series on the performance of a regression model. Specifically, given the precipitation

time series of a randomly selected weather station, each day was classified as NoRain or Rain,

depending on the amount of precipitation it receives is equal to or greater than zero. Several

training sets of different sizes and varying percentage of NoRain and Rain days by randomly
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Figure 3.3: Effect of increasing the number of NoRain days on performance of regression
model (best viewed in color).

sampling the original time series, were created. A disjoint test set of size ten years, is used

for all the experiments in this subsection.

The performance of two multiple linear regression (MLR) models was evaluated: (1)

MLR1, which is trained on both Rain and NoRain days and (2) MLR2, which is trained on

Rain days only. Figure 3.3 compares the RMSE values of both models for Rain days in the

test set. The horizontal axis corresponds to the ratio of NoRain to Rain days in the training

set. The larger the ratio, the more inflated the number of zeros in the training data. The

vertical axis corresponds to the training set size, where each unit on the scale represents a

period of three months. The value of each cell indicates the performance improvement when

using MLR2 to predict the Rain days:

%Improvement =
RMSE(MLR1)− RMSE(MLR2)

RMSE(MLR1)
(3.3)
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Figure 3.4: The cumulative distribution function of multiple linear regression output for a
zero-inflated precipitation response variable.

Since the % Improvement is greater than or equal to zero, this indicates that MLR2 consis-

tently outperforms MLR1 in terms of predicting future Rain days irrespective of the training

set size. The amount of improvement becomes even more pronounced when the percentage

of NoRain days in the training data increases. A similar improvement pattern is observed

for all the weather stations investigated in this study, as shown in Figure 3.5. In contrast,

MLR1, which is trained on both Rain and NoRain days, has a lower RMSE compared to

MLR2 when applied to all the days in the test set, as shown in Figure 3.6. This is because

MLR2 tends to overestimate the amount of precipitation for the NoRain days.

In summary, the experiment given in this section clearly justifies the rationale for applying

a combination of classification and regression models to better estimate the precipitation

amount of Rain days.
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Figure 3.5: Comparison of RMSE values (tested on Rain days only) for MLR models trained
on all days compared with models trained only on Rain days.
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Figure 3.6: Comparison of RMSE values (tested on All days) for MLR models trained on all
days compared with models trained only on Rain days.
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3.5.2.2 Impact of Coupling the Classifier and Regression Model Creation

The objective of this experiment is to demonstrate the advantage of building a classifier

and regression model in conjunction with each other, as against building them independent

of the other for zero-inflated time-series data. Specifically, empirical results demonstrating

improvement in the classification accuracy, F-measure of classification as well as RMSE of

the predictors are provided.

The performance of two multiple linear regression models was evaluated and compared.

In the first model, MLR is trained on all days and a quadratic discriminant analysis (QDA)

trained on ground truth response variable. In the second model, again MLR is trained on all

days but the QDA trained on the predicted response values y′ = wTx. The results of the

experiment show that the model trained on the predicted response values outperformed the

model trained on ground truth response variable for all 37 stations, when it came to RMSE,

Classification Accuracy and F-Measure. In particular, the average improvements were 13.4%

and 19.3% when it came to RMSE and classification accuracy.

In summary, these empirical results provide motivation to try and integrate the classifier

and regression models to take into consideration the accuracy of the other’s prediction for

each individual data point.

3.5.2.3 Performance Comparison

This section compares the RMSE, accuracy, and F-measure values of the predicted response

variable (Precipitation) for our proposed supervised (ICR) framework against that of mul-

tiple linear regression (MLR), SVM-MLR (A model that combines MLR and SVM) and

classification and regression tree (CART). All the experiments were performed using a train-

ing size (n) of 3 years starting from the first observation in the time series. The test set
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size (m) was also fixed at 1 year. After calculating the RMSE on the test set, the training

set was shifted by 3 years, such that it now occupied the data set used for testing in the

previous iteration. The experiment is repeated 5 times for each station. The RMSE values

reported in this section is the mean value of all 5 iterations. The same approach is used

to compute the RMSE values for Rain days, accuracy (for all days), F-measure for Rain

days only and F-measure for NoRain days only. The results for 37 weather stations when

ICR is compared with both MLR and SVM-MLR, is presented. Classification accuracy, and

F-measures related to classification accuracy of MLR is not plotted on account of MLR not

having an explicit classifier. CART fared comparatively poorly in terms of residual errors

and classification accuracy and F-measure. However, CART fared well in replicating the

cumulative distribution function of the response variable as shown later in the experiment

section.

As shown in Figures 3.7 and 3.8, our supervised model, ICR significantly outperformed

the MLR model (trained on all days) and the SVM-MLR model in terms of their RMSE

values for predicting both Rain and NoRain days.

ICR outperformed MLR in 36 out of 37 stations and outperformed SVM-MLR in 30

out of the 37 stations. In terms of percentage improvement in RMSE for all days, ICR

indicated an average 8% improvement over MLR and 5.8% improvement when compared to

SVM-MLR.

In terms of the RMSE values for Rain days only, as shown in Figures 3.9 and 3.10, ICR

consistently outperformed both the MLR and SVM-MLR model with ICR outperforming

MLR in 35 stations and ICR outperforming SVM-MLR in 33 stations. When evaluating

average RMSE value for Rain days only, ICR had an improvement of 5.3% over MLR and

8.6% over SVM-MLR.
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Figure 3.7: Comparison of RMSE values (for all days) among MLR, SVM-MLR and ICR.
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Figure 3.8: Comparison of RMSE values (for all days) among MLR, SVM-MLR and ICR.
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Figure 3.9: Comparison of RMSE values (for Rain days) among MLR, SVM-MLR and ICR.
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Figure 3.10: Comparison of RMSE values (for Rain days) among MLR, SVM-MLR and ICR.
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Figure 3.11: Comparison of classification accuracy (for all days) between SVM-MLR and
ICR.
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Figure 3.12: Comparison of classification accuracy (for all days) between SVM-MLR and
ICR.
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MLR does not inherently classify any days as Rain or NoRain. Hence, a comparison

between ICR and MLR with regards to classification accuracy and F-measure, is not plotted.

As shown in Figures 3.11 and 3.12, ICR outperformed SVM-MLR in 36 of the 37 stations

and showed a 9.1% improvement in classification accuracy. At the same time, in terms of

F-measure for Rain days, the model outperformed SVM-MLR, as shown in Figures 3.13,

3.14. ICR outperformed SVM-MLR in 35 out of the 37 stations.

Although, MLR does not inherently classify any days as Rain or NoRain, a Quadratic

Discriminant Analysis(QDA) classifier mentioned earlier was trained on the MLR output.

ICR witnessed a 21.2% improvement in overall classification accuracy.
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Figure 3.13: Comparison of F-measure (for Rain days) between SVM-MLR and ICR.

With regard to F-measure for NoRain days, ICR outperformed SVM-MLR, in 36 stations.
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Figure 3.14: Comparison of F-Measure (for Rain days) between SVM-MLR and ICR.
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As shown in Figures 3.15,3.16 that shows the comparison of F-Measure for NoRain days

between SVM-MLR and ICR, ICR outperformed SVM-MLR in all but one station and

witnessed an 8.1% improvement in F-measure results.
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Figure 3.15: Comparison of F-Measure (for NoRain days) between SVM-MLR and ICR.

As shown in the following figure, ICR as well as SVM-MLR was able to capture the

frequency of zero-valued data points in the distribution as well as improve the shape of

the cumulative distribution function when compared to that of multiple linear regression.

CART fared the best in terms of replicating the distribution of the zero inflated precipitation

observed, especially for the higher quantiles. However, CART fared less favorably in terms

of capturing the frequency of zero-valued data points as shown in Figure 3.17. Also, ICR

prediction showed a 28.9% and 24.2% improvement over the CART output in terms of
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Figure 3.16: Comparison of F-Measure (for NoRain days) between SVM-MLR and ICR.
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Figure 3.17: Comparing the cumulative distribution function of the predicted values of
precipitation according to the various models.

RMSE for all-days and rain-days respectively. Similarly, the classification accuracy of ICR

was 12.9% better than CART. The F-measure of ICR for rain days and non-rain days 5.3%

and 25.2% better.

3.6 Conclusions

This chapter presents a novel approach for predicting future values of a time series data that

are inherently zero-inflated. The proposed framework decouples the prediction task into

two steps—a classification step to predict whether the value of the time series is zero and a

regression step to estimate the magnitude of the non-zero time series value. The effectiveness

of the model was demonstrated on climate data to predict the amount of precipitation at a

given station.

The framework presented in this chapter assumes a linear relationship between the pre-
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dictor and response variables. The framework can also be extended to a semi-supervised

learning setting as shown in the Chapter 3.
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Chapter 4

Semi-Supervised Modeling of

Zero-Inflated Data

This chapter demonstrates a semi-supervised extension of the ICR framework, presented in

Chapter 3 . The purpose of the framework is to utilize both labeled and unlabeled data to

accurately estimate the future values of a zero-inflated variable, by simultaneously performing

classification and regression. The regression and classification models are simultaneously

learned by optimizing a unified objective function that includes a graph regularization term

to ensure smoothness of their target functions and consistency between the labeled and

unlabeled examples. The effectiveness of the semi-supervised learning framework is also

demonstrated in the context of precipitation prediction using climate data obtained from

the Canadian Climate Change Scenarios Network website [1]. The proposed framework

significantly outperforms regression models trained on both zero and non-zero parts of the

time series for the majority of the weather stations investigated in this study.

4.1 Preliminaries

Let L = (Xl, c
′
l) be a multivariate time series of length l, where the predictor variables

Xl = [xl1,xl2, ...,xln]T is a d-dimensional sequence of values and c′l =
[
c′l1, c

′
l2, ..., c

′
ln

]T
is
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the corresponding ground truth values for the response variable. The objective of time series

prediction is to learn a target function f(x,w) that best estimates the future values of the

response variable, c′u =
[
c′u1, c

′
u2, ..., c

′
um

]T
, given the historical data L and the unlabeled

data, Xu = [xu1,xu2, ...,xum]T , where w = [w1, w2, ..., wd]
T is the set of weights associated

with the target function. Xu may be obtained, for example, using computer-driven simula-

tion models. In the semi-supervised framework proposed in this study, let n represent the

number of labeled training points and m the number of unlabeled training points. In the

supervised framework proposed, m represents the number of unlabeled testing points.

In this study, the relative frequency of zero values in c′l and c′u is assumed to be larger

than the frequency of non-zero values. Furthermore, the response variable c′ can be mapped

into a binary class c, where c = 1 if c′ > 0, and c = 0 otherwise. For brevity, the notation

y′ ≡ f(x,w) is used as the predicted value of the response variable and y as the predicted

class. Let, y′u =
[
y′l1, y

′
l2, ..., y

′
lm

]T
and yu = [yl1, yl2, ..., ylm]T .

In the semi-supervised framework proposed, let ỹ be a vector of length n+m whose first

n elements are initialized with the vector cl and whose remaining m elements are initialized

with the vector yu. Hence, in the supervised framework proposed, as there are no unlabeled

training points, ỹ is a vector of length n and is initialized with the vector cl.

4.2 Semi-Supervised Framework for Simultaneous Clas-

sification and Regression

Unlike ICR, the semi-supervised extension modifies the graph regularization term to be

summed over n + m data points, where the m refers to the unlabeled data points. In the

remainder of this chapter, the supervised and semi-supervised versions of the algorithm
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are denoted as ZICR-S and ZICR-SS, respectively (where ZICR stands for Zero-Inflated

Classification-Regression method).

For brevity, only linear regression models were considered, where f(x,w) = wTx. Ex-

tending the approach to nonlinear models will be a subject for future research.

The goal was to simultaneously estimate the values of the weight parameters w and the

class labels y to minimize the following objective function:

arg min
w,y

f(w) =
n∑

i=1
ci(c

′
i − yiy

′
i)

2 + T1

n∑

i=1
(yi − ci)

2

+ T2

n∑

i=1

n+m∑

j=1
si,j [ciy

′
i − ỹjy

′
j ]

2 + T3||w||2

where,

∑

d

xi,dwd = y′i.

Intuitively the first term of the objective function is equivalent to the least square for-

mulation of multiple linear regression, except the estimation of w is performed based on

the rain days only. The second term of the objective function measures the classification

accuracy on the training data. The third term in the objective function computes the sum

of squared difference in the predicted response values for every pair of data points, weighted

by the similarity value of their predictor variables. This represents a graph regularization

constraint to ensure smoothness of the objective function and can be used to extend the

framework to a semi-supervised learning setting. Unlike ICR, ZICR the observed class label

term in the graph regularizer component of the equation is replaced by its expected value,

to that it could be extended to include unlabeled data points. Finally, the last term of the

objective function is equivalent to the L2 norm used in ridge regression models to penalize
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models that have many large non-zero weights.

Note that each data point corresponds to a given time period in the time series. The

similarity matrix S is computed according to the Pearson correlation coefficient between

every pair of data points in X. Prior to computing the similarity matrix, each attribute

value of the data set is standardized by subtracting the mean value of the attribute and

then dividing by its corresponding standard deviation. The standardization of each column

is done to account for differences in the variance of the various attributes in the data set.

The Pearson correlation value is then transformed to range between 0 and 1. The choice of

Pearson correlation as our similarity measure is due to the popularity of the measure in the

Earth science domain.

The purpose of the similarity function is to identify how closely related two data points

are to one another, and to use this information in creating the regression model which gives

more credence to closeness in the predicted amount of precipitation for data points that are

similar as against to data points that are dissimilar. As the similarity function has values

ranging between 0 to 1, dissimilar data points have limited impact on the error function

while similar data points that differ significantly on the amount of predicted precipitation

have the largest impact on the error function. The model further emphasizes on using data

points that are categorized as rain events by using ‘0’ and ‘1’ as class labels. Such that ‘0’

is assigned to days that are categorized as ‘NoRain’ days and ‘1’ to ’Rain’ days.

The supervised version of the framework is obtained by considering only the labeled

training examples for the third term in the objective function.

An iterative procedure was employed to solve the objective function. First, the partial
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derivative of f(w) with respect to each of the w’s is computed, and set to zero:

∂f

∂wk
=

[
2T2

n+m∑

i,j=1
si,j

((∑

d

ỹiwdxi,d

)(
ỹixi,k

))

+ 2T2

n+m∑

i,j=1
si,j

((∑

d

ỹjwdxj,d

)(
ỹjxj,k

))

− 2T2

n+m∑

i,j=1
si,j

(∑

d

ỹiỹjwd(xi,dxj,k + xi,kxj,d)

)

− 2
n∑

i=1
ci

(
c′i − yi

∑

d

wdxi,d

)(
xi,k

)

+ 2T3wk

]
= 0

This reduces to a system of linear equations of the form Ax = b where x = [w1w2....wd]
T

and

bk =
n∑

i=1
cic

′
ixi,k

A is a square matrix of dimension d× d where the non-diagonal elements,

Ak,l = 2T2

n+m∑

i,j=1
si,j ỹixi,lxi,k − 2T2

n+m∑

i,j=1
si,j ỹiỹjxi,lxj,k

+
n∑

i=1
ciyixi,lxi,k
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and the diagonal elements

Ak,k = 2T2

n+m∑

i,j=1
si,j ỹix

2
i,k − 2T2

n+m∑

i,j=1
si,j ỹiỹjxi,kxj,k

+
n∑

i=1
ciyix

2
i,k + T3

Next quadratic discriminant analysis (QDA) was applied on the predicted response values

y′ = wTx to estimate the class labels of the unlabeled data points. The updated class labels

y are then used to re-estimate the regression weights w. This procedure is repeated until

convergence. A summary of the framework is presented in Algorithm 1. In the remainder

of this paper, the supervised and semi-supervised versions of our algorithm are denoted

as ZICR-S and ZICR-SS, respectively (where ZICR stands for Zero-Inflated Classification-

Regression method).

4.3 Experimental Evaluation

This section presents the experimental results to demonstrate the effectiveness of our pro-

posed framework.

4.3.1 Experimental Setup

The set up of the experiments discussed in this chapter is similar to the experiment setup

described in Chapter 3. The performance of the algorithm was compared against the multiple

linear regression (MLR) model. MLR uses the least square criterion to estimate the weight
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Algorithm 1 Concurrent Semi-supervised Regression and classification using simultaneous
equations iteratively.
Input:
X (An (n + m)× d matrix of NCEP weather data)
c (A n-dimension vector of class labels (1-Rain/0-NoRain))
c′ (A n-dimension vector of precipitation values for each day.)
Output:
w (A d-dimensional vector of weights)
y (A (n + m)-dimensional vector containing class labels.)
y′ (A (n + m)-dimensional vector containing regressional values of amount of precipitation
for each day)
Method:
Partition data 3 ways (training, evaluation and test)
1) Perform MLR on the training set (Size-n) to get w.
2) Use the w on the testing set (Size-m) to get y′i.
3) Calculate the objective function error using the present w and save the value
4) Quadratic Discriminant Analysis (QDA) is performed on y′i to get yi
5) In the semi-supervised approach (ZICR-SS) initialize ỹ to c for the first n datapoints
and initialize the remaining m points of ỹ with y from step-3.

In the supervised approach (ZICR-SS), ỹ is initialized to c only.
6) Solve w, using the d equations got after differentiating the objective function f(w)
7) After having solved w, solve for y′ using the linear equation y′ = xw
8) Apply QDA to find class labels for the training data points y.
10) Calculate the objective function error using the present w
11) For a fixed number of iterations (e.g., 10) or based on the convergence of the objective
function, repeat steps 4 to 10
12) Evaluate the model by testing the RMSE error on the test data set.
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vector w of the model. The following criteria was used to evaluate the performance of the

models:

• Root Mean square error (RMSE), which measures the difference between the actual

and predicted values of the response variable, i.e.: RMSE =

√∑n
1 (c′i−y′i)2

n .

• Accuracy, which measures the number of Rain and NoRain days predicted correctly by

the model.

• F-measure, which is the harmonic mean between recall and precision values for rain

days.

4.3.2 Experimental Results

The purpose of the experiment was to demonstrate the following:

1. Limitations of classical regression models in terms of handling zero-inflated time series

data.

2. Rationale of incorporating unlabeled data for precipitation prediction.

3. Performance comparison between classical regression models and our proposed frame-

work.

4.3.2.1 Rationale for Incorporating Unlabeled Data

The objective of this section is to demonstrate the utility of incorporating unlabeled data

for semi-supervised learning in precipitation prediction. Previous studies have shown that

unlabeled data are helpful as long as their distribution is similar to those in the labeled

training data [19, 36]. For climate data, the study showed that the natural periodic behavior
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of the predictor variables and the response variable (precipitation) provides an opportunity

to leverage the unlabeled data to improve precipitation prediction.

Figure 4.1 shows the average similarity values of the predictor variables over time. The

horizontal axis corresponds to the width of two time periods in the time series while the

vertical axis corresponds to the average similarity for all pairs of time periods with the given

width. For example, consider a time series of length 10,000 days. To compute the average

similarity of width 3 months, we compare the similarity of the predictor variables on days

1 and 91, days 2 and 92, and so on. We use Pearson correlation as the similarity measure.

The plot shows there are clear cycles in the average similarity values demarcated by years,

i.e., the predictor variables for a given day is more similar to another observation that is

1yr, 2yr, or 3yrs apart when compared to observations that are 1.5yr, 2.5yr and 3.5yr apart.

Figure 4.1 shows that this trend in similarity of observations is valid even for differences as

large as 30 years. More subtle trends of cycles of a decade and a half were also observed.

One of the encouraging observations is that the similarity of the predictors showed very slow

decay with time. This observation encourages the notion that the predictor variables even

if separated by large time differences still contain useful information that can be exploited

for predicting future precipitation events.

One caveat is that though the similarity of predictor variables may not differ much over

time, the similarity of the relationship between the predictor and response variables over time

tend to decrease at a much faster rate, as shown in Figure 4.3. The product of similarity

between predictor variables and similarity between response variables for two time periods

of a given width was used to represent the vertical axis. This was the case because, as shown

in Figure 4.2, though the similarity of precipitation was periodic in nature, it was fluctuating

more rapidly compared to similarity of the predictor variables over time.
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Figure 4.1: Similarity of predictor variables for all pairs of time periods of a given width.
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Figure 4.2: Similarity of response variable for all pairs of time periods of a given width.
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Figure 4.3: Similarity of the relation between Predictors and Predicants over time

4.3.2.2 Performance Comparison

This section compares the RMSE, accuracy, and F-measure values for our proposed super-

vised (ZICR-S) and semi-supervised (ZICR-SS) framework against the precipitation predic-

tion results of multiple linear regression (MLR). All the experiments were performed using a

training size (n) of 3 years starting from the first observation in the time series. The test set

size (m) was also fixed at 3 years. After calculating the RMSE on the test set, the training

set was shifted by 3 years, such that it now occupied the data set used for testing in the

previous iteration. The experiment is repeated 7 times for each station. The RMSE values

reported in this section is the mean value of all 7 iterations. The same approach is used to

compute the RMSE values for Rain days, accuracy (for all days), F-measure for Rain days

only and F-measure for NoRain days only. Due to space restriction, we show the results for

20 weather stations.

As shown in Figure 4.4, both our models, ZICR-S and ZICR-SS, significantly outper-
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formed the MLR model (trained on all days) in terms of their RMSE values for predicting

both Rain and NoRain days.
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Figure 4.4: Comparison of RMSE values (for all days) among MLR, ZICR-S, and ZICR-SS.

The supervised version of the approach outperformed MLR for all 37 stations, while

the semi-supervised approach outperformed MLR in 34 out of the 37 stations. In terms of

percentage improvement in RMSE, the RMSE for MLR was at an average 8.8% and 8.4%

worse than ZICR-S and ZICR-SS respectively. ZICR-S outperformed ZICR-SS in 22 out of

the 37 stations.

However, in terms of the RMSE values for Rain days only, Figure 4.5 MLR had an average

RMSE value for Rain days only that was 4.9% and 5.2% higher than ZICR-S and ZICR-SS

respectively. Both ZICR-S and ZICR-SS consistently outperform the MLR model with ZICR-

S outperforming in 34 and ZICR-SS outperforming in 32 stations. ZICR-S outperformed

ZICR-SS in 21 out of the 37 stations.

Although MLR does not inherently classify any days as Rain or NoRain, the Quadratic
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Figure 4.5: Comparison of RMSE values (for Rain days) among MLR, ZICR-S, and ZICR-SS.
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Figure 4.6: Comparison of classification accuracy (for all days) among MLR, ZICR-S, and
ZICR-SS.
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Discriminant Analysis (QDA) classifier used in our framework, was trained on the MLR

outputs to compare its classification accuracy and F-Measure against those of ZICR-S and

ZICR-SS. As shown in Figure 4.6, all 3 ZICR-S ZICR-SS and MLR were comparable in

terms of classification accuracy with ZICR-SS outperforming MLR in approx 60% of the

stations. Nevertheless, in terms of F-measure for Rain days, both the models consistently

outperformed MLR as shown in Figure 4.7 with ZICR-S outperforming MLR in 32 stations

while ZICR-SS outperformed MLR in 33 stations.
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Figure 4.7: Comparison of F-Measure (for Rain days) among MLR, ZICR-S, and ZICR-SS.

With regard to the number of stations that MLR was outperformed in F-measure for

Rain days, ZICR-S outperformed MLR in 32 and ZICR-SS in 33 stations. Figure 4.8 shows

the comparison of F-measure for NoRain days between MLR, ZICR-S, and ZICR-SS.
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Figure 4.8: Comparison of F-Measure (for NoRain days) among MLR, ZICR-S, and ZICR-SS.

4.4 Conclusions

This chapter elaborates on extending the ICR framework detailed in Chapter 3, to a semi-

supervised learning setting. This chapter compares the performance of the framework when

it utilizes both unlabeled data and labeled data instead of using only labeled data during

training of the model.
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Chapter 5

Modeling Conditional Quantiles

This chapter as well as the following chapter elaborates the importance of accurately pre-

dicting the frequency, timing and magnitude of extreme values in the distribution of the

response variable. Specifically, a semi-supervised framework for smoothed quantile regres-

sion (LSSQR) is presented that focuses on accurate prediction of extreme values without

significantly degrading the sum-of-square residual errors.

5.1 Introduction

An integral part of climate modeling is downscaling, which seeks to project future scenarios

of the local climate based on the coarse resolution outputs produced by global climate mod-

els (GCMs). Two of the more common approaches to downscaling are dynamic downscaling

and statistical downscaling. Dynamic downscaling uses a numerical meteorological model to

simulate the physical dynamics of the local climate while utilizing the climate projections

from GCMs as initial boundary conditions. Though it captures the geographic details of a

region unresolved by GCMs, the simulation is computationally demanding while its spatial

resolution remains too coarse for many climate impact assessment studies. Statistical down-

scaling establishes the mathematical relationship between the coarse-scale GCM outputs and

the fine-scale local climate variables based on observation data. Unlike dynamic downscal-

ing, it is flexible enough to incorporate any predictor variable and is relatively inexpensive.

74



Most of the statistical downscaling approaches employ regression methods such as multiple

linear regression, ridge regression, and neural networks to estimate the conditional mean of

the future climate conditions. These methods are ill-suited for predicting extreme values of

the climate variables.

An alternative approach is to use techniques such as quantile regression, which aims

to minimize an asymmetrically weighted sum of absolute errors, to estimate the particular

quantile that corresponds to extreme values [77]. Unfortunately, quantile regression tends to

overestimate the response variable resulting in a large number of data points being falsely

predicted to be extreme. Figure 5.1 represents the histogram of the distribution of observed

temperature at a weather station in Canada. The lines represent the distribution of the pre-

dicted values for temperature obtained using multiple linear regression (MLR) and quantile

regression. An observation is considered an extreme data point if its response variable is in

the top 5 percentile of observations. The shape of the tail of the distribution that repre-

sents extreme data points (observed and projected) is shown in Figure 5.2. It is clear from

the figures that methods such as multiple linear regression (green line) that estimate the

conditional mean tend to underestimate the tail of observed probability distribution, while

quantile linear regression (red line) overestimates the tail part of the probability distribu-

tion. As elaborated in Section 5.4, it was found that for the 37 stations evaluated, at an

average, quantile regression predicted a datapoint to be an extreme point more than twice

as frequently as the actual frequency of observed extreme data points.

To address this overestimation, a method known as smoothed quantile regression (LSQR)

is proposed, that reduces the absolute error of extreme data points by introducing a smooth-

ing term that brings the predicted response value of extreme points closer to the value

corresponding to the percentile of extreme data points. This smoothing term also provides a
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Figure 5.1: Histogram of observed temperature.
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Figure 5.2: Tail of the histogram.
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means to easily extend the objective function to a semi-supervised learning setting (LSSQR).

Semi-supervised learning, in addition to using the training data, can also use the distribu-

tion characteristics of the predictor variables of the test set to glean a better estimate of the

distribution of data upon which the model will be applied.

In summary, the main contributions of this chapter are as follows:

• Demonstrating the limitation of MLR, ridge regression and quantile regression in pre-

dicting extreme values.

• Presenting a smoothed quantile regression framework for extreme values prediction.

• Extending the framework to a semi-supervised setting.

• Demonstrating the efficacy of our learning framework on climate data (temperature)

obtained from the Canadian Climate Change Scenarios Network website [1]. Both the

supervised and the semi-supervised proposed frameworks outperformed the baseline

methods in 85% of the 37 stations evaluated, in terms of magnitude, frequency and

the timing of the extreme events.

5.2 Preliminaries

Let Dl = {(xi, yi)}ni=1 be a labeled dataset of size n, where each xi ∈ Rd is a vector

of predictor variables and yi ∈ R the corresponding response variable. Similarly, Du =

{(xi, yi)}n+m
i=n+1 corresponds to the unlabeled dataset. The objective of regression is to learn

a target function f(x, β) that best estimates the response variable y. β is the parameter

vector of the target function. n represents the number of labeled training points and m

represents the number of unlabeled testing points.
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5.2.1 Multiple Linear Regression (MLR) and Ridge Regression

One of most widely used forms of regression is multiple linear regression. It solves a linear

model of the form

y = xT β + ε

where, ε ∼ N(0, σ2) is an i.i.d Gaussian error term with variance σ2. β ∈ Rd is the

parameter vector. MLR minimizes the sum of squared residuals

(y −Xβ)T (y −Xβ)

which leads to a closed-form expression for the solution

β̂ = (XT X)−1XT y

A variant of MLR, called ridge regression or Tikhonov regularization is often used to mitigate

overfitting. Ridge regression also provides a formulation to overcome the hurdle of a singular

covariance matrix XT X that MLR might be faced with during optimization. Unlike the loss

function of MLR the loss function for ridge regression is

(y −Xβ)T (y −Xβ) + λβT β,

and its corresponding closed-form expression for the solution is

β̂ = (XT X + λI)−1XT y
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where, the ridge coefficient λ > 0 results in a non-singular matrix XT X + λI always being

invertible. The problem with both MLR and ridge regression is that they try to model the

conditional mean, which is not best suited for predicting extremes.

5.2.2 Quantile Linear Regression(QR)

The τ th quantile of a random variable Y is given by:

QY (τ) = F−1(τ) = inf{y : FY (y) ≥ τ}

where,

FY (y) = P (Y ≤ y)

is the distribution function of a real valued random variable Y and τ ∈ [0, 1].

Unlike MLR that estimates the conditional mean, quantile regression estimates the quan-

tile (e.g., median) of Y .To estimate the τ th conditional quantile QY |X(τ), quantile regression

minimizes an asymmetrically weighted sum of absolute errors. To be more specific, the loss

function for quantile linear regression is:

N∑

i=1
ρτ (yi − xT

i β)

where,

ρτ (u) =





τu u > 0

(τ − 1)u u ≤ 0

Unlike MLR and ridge regression that have a closed-formed solution, quantile regression

is often solved using optimization methods such as linear programming. Linear programming
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is used to solve the loss function by converting the problem to the following form.

min
u,v

τ1T
nu + (1− τ)1T

n v

s.t. y − xT β = u− v

where, ui ≥ 0 and vi ≥ 0. But as shown in Figures 5.1 and 5.2, quantile regression often

overestimates data points resulting in too many false positive extreme events predicted.

5.3 Framework for Smoothed Quantile Regression

Given that the primary objective of the model is to accurately regress extreme valued data

points and quantile regression has been shown to perform relatively better that its least

square counterparts that tend to underestimate the frequency and magnitude of extreme

data points, the proposed objective approach of the proposed frameworks is modeled around

linear quantile regression. Section 5.3.1 describes smoothed quantile regression (LSQR) and

its objective function. Section 5.3.2 proposes a semi-supervised extension to LSQR which is

then followed by mathematical properties of the behavior of the objective function.

5.3.1 Smoothed Quantile Regression (LSQR)

A quantile-based linear regression model was proposed, based on the assumption of smooth-

ness, i.e., data points whose predictor variables are similar, should have a similar response.

The notion of smoothness as an integral part of the framework, as experiments provided in

Section 5.4 demonstrate this characteristic in the dataset used. The smoothness assumption
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could be described as the constraint

n∑

i,j

wij(fi − fj)
2 < c

where wij is a measure of similarity between data point i and j, f the predicted value of the

response variable and c is a constant.

Also, since the framework doesn’t restrict the training set only to extreme data points,

the smoothing component of the objective function tends to implicitly cluster data points

resulting in better distinction of the response variables of an extreme valued data point and a

non-extreme valued data point. Empirical results comparing supervised quantile regression

to the proposed semi-supervised model illustrate this point as shown in Section 5.4. The

term

wij = exp(−||xi − xj ||2
σ

) i, j ∈ [1, 2, . . . , n]

is equivalent to the radial basis function and is used to capture the similarity between the

predictor variables of data point i and data point j. σ is a scale parameter used to control

the distance above which two data points are not considered as being highly coupled.

Assuming linear regression, f(xi, β) = xiβ, the smoothing term can be reformulated as

n∑

i,j

wij(f(xi, β)− f(xj , β))2 = fT∆f = βTΣβ

where,

Σ = XT∆X

∆ = D −W
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and D is a diagonal matrix such that Dii =
∑n

j=1 wij and W = {wij}|ni,j=1.

Coupling smoothing with the objective function of linear qunatile regression, we end up

with the following optimization problem.

min
β

n∑

i=1
ρτ (yi − xT

i β) + λβTΣβ

As can be clearly observed from the objective functions of LSQR, λ → 0 results in an

estimate similar to quantile linear regression while, λ → ∞ results in the estimate of the

response variable converging towards the target quantile of data. This is because a large λ

would penalize any non-zero difference between fi and fj very harshly thereby minimizing

the error by setting fi = α, ∀i ∈ [1, 2, . . . , n], thereby reducing the error from the second

component of the equation to 0. This reduces the loss function to the following

f(β) =
n∑

i=1
ρτ (yi − α), β = (α, 0, 0, . . . , 0)T

The formal proof of this is provided in the following theorem.

Theorem 1: f(xi, β) → y(nτ) as λ →∞, ∀i ∈ [1, 2, . . . , n].

Proof : Let y(i) be the ith smallest element among yk|nk=1 and y(i) < αi <= y(i+1).

When λ →∞, the loss function can be rewritten in terms of αi as follows

i∑

k=1

(1− τ)(αi − y(k)) +
n∑

k=i+1

τ(y(k) − αi) +
n∑

i,j=1
Wij(αi − αi)
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which is equivalent to minimizing

τ

n∑

k=1

y(k) −
i∑

k=1

y(k) − (nτ − i)αi

or maximizing
i∑

k=1

y(k) + (nτ − i)αi = li

Therefore,

lj − lj−1 = yj − αj−1 + (nτ − j)(αj−1 − αj)

Hence, ∀j : j ≤ nτ , lj − lj−1 >= 0, since (yj − αj−1), (nτ − j) and (αj−1 − αj) are all

≥ 0. Similarly, ∀j : j ≥ nτ ,

lj − lj+1 = αj+1 − yj+1 + (nτ − j)(αj − αj+1) ≥ 0

Hence, if ∃i : i = nτ , then α = y(nτ). But if, i < nτ < (i + 1), then α is in the interval

[y(i), y(i+1)] ¤

Figure 5.3 is a plot that tracks the values of β for different λ values. The figure shows

that the regression parameter vector β will converge to (α, 0, 0, . . . , 0)T as λ increases. β0 is

the regression parameter that corresponds to the column of 1’s in the design matrix.

Figures 5.4 and 5.5 plots the influence of λ on the predicted values returned from LSSQR.

i.e., as the value of λ increases, LSSQR shrinks the prediction range to the quantile τ . Figure

5.5 is a zoomed-in image, capturing the tail of Figure 5.4.
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Figure 5.3: Influence of parameter λ on the regression coefficients β in LSQR.
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Figure 5.4: Influence of λ on the probability distribution of the predicted values obtained
from LSSQR.
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Figure 5.5: Influence of λ on the probability distribution of the predicted extreme values
obtained from LSSQR.
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5.3.2 Linear Semi-Supervised Quantile Regression (LSSQR)

The objective function of LSQR can be easily extended to a semi-supervised learning setting

since the smoothing factor (the second term in the equation) is independent of y. Therefore,

by extending the range of the indices i and j of the smoothing term to span 1 to n + m, the

predictor variables of the unlabeled data Xu = [xu1, ..., xum]T can be harvested.

The objective function of the LSSQR is

arg min
β

n∑

i=1
ρτ (yi − xT

i β) + λ

n+m∑

i,j

wij(x
T
i β − xT

j β)2

5.4 Experimental Results

In this section, the climate dataset that is used for statistical downscaling is described. This is

followed by the experimental setup, which address the inherent properties of the dataset, such

as its periodic nature. Once the dataset is introduced, we analyze the behavior of baseline

models developed using MLR, ridge regression and quantile regression and contrast them

with LSQR and LSSQR. The efficacy of the models in accurately measuring the magnitude,

the relative frequency and timing of forecasting a data point as an extreme event is measured.

5.4.1 Data

All the algorithms were run on climate data obtained at 37 weather stations in Canada, from

the Canadian Climate Change Scenarios Network website [1]. The response variable to be

regressed (downscaled) corresponds to daily temperature values measured at each weather

station. The predictor variables for each of the 37 stations correspond to 26 coarse-scale

climate variables derived from the NCEP re-analysis data set, which include measurements

88



of airflow strength, sea-level pressure, wind direction, vorticity, and humidity, as shown in

Table 5.1. The predictor variables used for training were obtained from the NCEP re-analysis

data set that span a 40-year period (1961 to 2001). The time series was truncated for each

weather station to exclude days for which temperature or any of the predictor values are

missing.

Table 5.1: List of predictor variables for temperature prediction.

Predictor Variables

500 hPa airflow strength 850 hPa airflow strength
500 hPa zonal velocity 850 hPa zonal velocity
500 hPa meridional velocity 850 hPa meridional velocity
500 hPa vorticity 850 hPa vorticity
500 hPa geopotential height 850 hPa geopotential height
500 hPa wind direction 850 hPa wind direction
500 hPa divergence 850 hPa divergence
Relative humidity at 500 hPa Relative humidity at 850 hPa
Near surface relative humidity Surface specific humidity
Mean sea level pressure Surface zonal velocity
Surface airflow strength Surface meridional velocity
Surface vorticity Surface wind direction
Surface divergence Mean temp at 2 m

5.4.2 Experimental Setup

As is well known, temperature, which is the response variable in our experiments, has sea-

sonal cycles. To efficiently capture the various cycles, de-seasonalization is performed prior

to running the experiments. As is common practice in the field of climatology, a common

approach to de-seasonalization is to split the data into 4 seasons (DJF, MAM, JJA, SON)

where ’DJF’ refers to the months of December-January-February in the temperature time-

series. Similarly, ’MAM’ refers to March-April-May, and ’JJA’ refers to June-July-August

and ’SON’, September-October-November. In effect, for each station, 4 different models,
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corresponding to the 4 seasons were built. The training size used spanned 6 years of data

and the test size, 12 years. During validation, the parameter λ was selected using the

score returned by RMSE for extreme data points. A data point is considered extreme if

its response variable is greater than .95 percentile (Threshold-1) of the whole dataset corre-

sponding to the station. QR was implemented using the interior point algorithm as detailed

in [76]. Broyden Fletcher Goldfarb Shanno (BFGS) method was used to solve the LSQR

and LSSQR optimization problem.

5.4.3 Evaluation Criteria

The motivation behind the selection of the evaluation metrics was the intent to evaluate the

different algorithms in terms of accuracy of the prediction of extreme values, the timing of

the extreme events as well as the frequency with which a data point is predicted to be an

extreme data point. The following metrics are used to capture the above evaluation criteria

for the various models:

• Root Mean Square Error (RMSE), which measures the difference in magnitude between

the actual and predicted values of the response variable, i.e.:

RMSE =

√∑n
i=1(y′i−f ′i)2

n . RMSE was computed on those days that were observed to

be extreme data points.

• Precision and recall of extreme events are computed to measure the timing accuracy of

the prediction. F-measure, which is the harmonic mean between recall and precision

values, will be used as a score that summarizes the precision and recall results.

F-measure = 2×Recall×Precision
Recall+Precision

• The frequency of predicting extreme data point for the various methods was measured
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by computing the ratio of the number of data points that were predicted to be extreme

to the number of observed extreme data points.

To summarize, RMSE is used for measuring the accuracy of the predicted magnitude of the

response variable, whereas F-measure can be thought of as measuring the correctness of the

timing of the extreme events.

5.4.4 Baseline

We compared the performance of LSQR and LSSQR with baseline models created using

multiple linear regression (MLR), ridge regression (Ridge), and quantile regression (QR). All

the baselines were run for the same 37 stations and for all the 4 seasons. Also, a comparison

of the performance of the proposed supervised framework (LSQR) is made with its semi-

supervised counterpart (LSSQR), where LSSQR demonstrated an improved performance

over LSQR for the 37 stations evaluated upon as shown in Table 5.2. Table 5.2 summarizes

the tally of percentage of times LSSQR outperformed LSQR over the 4 seasons for the given

37 stations. As seen in the table, LSSQR showed an improved performance in terms of both

RMSE and F-measure.

Table 5.2: The relative performance of LSSQR compared with LSQR with regard to the
extreme data points.

Win Loss Tie
RMSE 68.25% 31.75% 0%
F-measure 60.14% 37.16% 2.7%
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5.4.5 Results

As mentioned earlier, experiments were run separately using each of the baseline approaches

and LSQR and LSSQR for the 4 seasons (DJF, MAM, JJA, SON) of the year for each of

the 37 stations’ data. The results over all the seasons and stations are summarized in Tables

5.3 and 5.4 while the individual results of each season in Figures 5.6 and 5.8. Table 5.3

summarizes the relative performance of LSQR with respect to the baseline methods in terms

of RMSE of extreme data points and F-measure of identification of extreme data points.

During testing, a data point is considered extreme, if its response variable is greater than .95

percentile (Threshold-1) of the whole dataset corresponding to the station. For the purpose

of analysis, results of using the .95 percentile of the response variable in the training set

(Threshold-2) to identify extreme data points are also summarized. The fact that the results

obtained by using the two different baselines is an indicator that the training data did capture

the distribution of the response variable reasonably well. LSQR consistently outperformed

the baselines both in terms of RMSE and F-measure. It must also be noted that LSQR did

outperform MLR and Ridge in terms of recall of extreme events comprehensively across each

of the 37 stations and seasons.

Table 5.3: The percentage of stations LSQR outperformed the respective baselines, with
regard to the extreme data points.

MLR Ridge QR

RMSE
Threshold-1 88.51% 87.84% 80.40%
Threshold-2 89.19% 87.84% 79.05%

F-measure
Threshold-1 59.45% 60.13% 72.97%
Threshold-2 56.08% 58.10% 79.05%

Similarly, Table 5.4 summarizes the relative performance of LSSQR with respect to the

baseline methods in terms of RMSE of extreme data points and F-measure of identification

of extreme data points. Like LSQR, LSSQR consistently outperformed the baselines both
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Table 5.4: The percentage of stations LSSQR outperformed the respective baselines, with
regard to the extreme data points.

MLR Ridge QR

RMSE
Threshold-1 87.16% 85.14% 85.13%
Threshold-2 87.84% 86.49% 81.76%

F-measure
Threshold-1 60.13% 58.78% 75.67%
Threshold-2 56.75% 59.45% 81.75%

in terms of RMSE and F-measure. It must be noted that LSSQR outperform MLR and

Ridge in terms of recall of extreme events comprehensively across each of the 37 stations

and seasons.

Figure 5.6 gives a breakdown of the performance of the LSSQR over each of the 4 seasons

of the 37 stations using Threshold-1 for the purpose of marking a data point as extreme.

The figure is a bar chart of percentage of stations that LSSQR outperformed MLR, ridge

regression and QR in prediction accuracy for only extreme data points in the test set. RMSE

was used to compute the accuracy of each model in predicting extreme value data points, at

the 37 stations. As seen in the plot, LSSQR outperforms MLR, ridge regression and QR in

each of the four seasons across the 37 stations.

Figure 5.7 shows a graph that depicts the percentage of stations LSSQR outperformed

MLR, ridge regression and QR in terms of identifying extreme data points over 37 stations.

Again, LSSQR comprehensively outperforms MLR and ridge regression over all the 37 sta-

tions and 4 seasons. But as expected, QR outperforms LSSQR in terms of recall performance

for each of the 4 seasons due to the overestimating nature of QR, which consequently re-

sulted in poor precision and which is reflected in its F-measure score. At an average, quantile

regression, predicted a datapoint to be an extreme point more than twice as frequently as

the actual frequency of observed extreme data points. In fact, QR lost out to LSSQR in

91% of 37 stations across 4 seasons in terms of precision of identifying extreme data points.

93



Season DJF Season MAM Season JJA Season SON
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a

ti
o

 o
f 

S
ta

ti
o

n
s

  
  

  
  

  
L

S
S

Q
R

 o
u

tp
e

rf
o

rm
e

d
 b

a
s

e
li

n
e

 

 
MLR
Ridge
QR

Figure 5.6: Ratio of stations LSSQR outperforming baseline in terms of RMSE of extreme
data points.
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Figure 5.7: Ratio of stations LSSQR outperforming baseline in terms of recall of extreme
data points.

Figure 5.8 shows a graph that depicts the percentage of stations where LSSQR outper-

formed MLR, ridge regression and QR in prediction accuracy based on F-measure of the

identifying extreme data points over 37 stations. Again, LSSQR outperforms MLR, ridge

regression and QR for all the 4 seasons.

The performance improvement obtained by LSSQR in terms of predicting the extreme

values can be easily visualized in Figure 5.9. Figure 5.9 is a plot comparing the predicted

response variable of the various methods. The plot is restricted to only extreme data points
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Figure 5.8: Ratio of stations LSSQR outperformin baseline in terms of F-measure of extreme
data points.

for a station. As expected, the predicted value of the response variable using multiple

linear regression is often underestimating the observed temperature, while quantile regression

regularly overestimates the prediction of temperature and LSSQR lies in between MLR and

QR and closer to the observed temperature.
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5.5 Conclusions

This chapter presents a semi-supervised framework (LSSQR) for accurately predicting values

of extreme data points. The proposed approach was applied to real world climate data

spanning 37 stations and was compared against MLR, ridge regression and quantile regression

in terms of the effectiveness the model demonstrated in identifying and predicting extreme

temperatures for the given stations. The next chapter merges the intuition of the framework

presented in this chapter, related to extreme values, with the integrated classification and

regression framework presented in Chapter 3.
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Chapter 6

Modeling Extremes in Zero-Inflated

Data

This chapter extends the LSQR framework presented in Chapter 5, that emphasizes the

accurate predicting of the frequency, timing and magnitude of extreme values in a the dis-

tribution of the response variable, to handle zero-inflated response variables such as daily

precipitation.

6.1 Introduction

The notion behind being able to foretell the occurrence of an extreme event in a time series

is very appealing, especially in domains with significant ramifications associated with the

occurrence of an extreme events. Predicting pandemics in an epidemiological domain or

forecasting natural disasters in a geological and climatic environment are examples of ap-

plications that give importance to detection of extreme events. Unfortunately, the accurate

prediction of the timing and magnitude of such events is a challenge given their low occur-

rence rate. More so, the prediction accuracy depends on the regression method used as well

as characteristics of the data. On the one hand, standard regression methods such as general-

ized linear model (GLM) emphasize estimating the conditional expected value, and thus, are
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not best suited for inferring extremal values. On the other hand, methods such as quantile

regression are focused towards estimating the confidence limits of the prediction, and thus,

may overestimate the frequency and magnitude of the extreme events. Though methods for

inferring extreme value distributions do exist, combining them with other predictor variables

for prediction purposes remains a challenging research problem.

Standard regression methods typically assume that the data conform to certain para-

metric distributions (e.g., from an exponential family). Such methods are ineffective if the

assumed distribution does not adequately model characteristics of the real data. For exam-

ple, a common problem encountered especially in modeling climate and ecological data is

the excess probability mass at zero. Such zero-inflated data, as they are commonly known,

often lead to poor model fitting using standard regression methods as they tend to under-

estimate the frequency of zeros and the magnitude of extreme values in the data. One way

for handling such type of data is to identify and remove the excess zeros and then fit a

regression model to the non-zero values. Such an approach, can be used, for example, to

predict future values of a precipitation time series [115], in which the occurrence of wet or

dry days is initially predicted using a classification model prior to applying the regression

model to estimate the amount of rainfall for the predicted wet days. A potential drawback of

this approach is that the classification and regressions models are often built independent of

each other, preventing the models from gleaning information from each other to potentially

improve their predictive accuracy. Furthermore, the regression methods used in modeling

the zero-inflated data do not emphasize accurate prediction of extreme values.

The chapter presents an integrated framework that simultaneously classifies data points

as zero-valued or not, and apply quantile regression to accurately predict extreme values or

the tail end of the non-zero values of the distribution by focussing on particular quantiles.
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We demonstrate the efficiency of the proposed approach on modeling climate data (pre-

cipitation) obtained from the Canadian Climate Change Scenarios Network website [1]. The

performance of the approach is compared with four baseline methods. The first baseline is

the general linear model (GLM) with a Poisson distribution. The second baseline used is the

general linear model using an exponential distribution coupled with a binomial distribution

classifier (GLM-C). A zero-inflated Poisson was used as the third baseline method (ZIP).

The fourth basesline was quantile regression. Empirical results showed that the proposed

framework outperforms the baselines for majority of the weather stations investigated in this

study.

In summary, the main contributions of this chapter are as follows:

• Comparison and analysis of the performance of models created using variants of GLM,

quantile regression and ZIP approaches to accurately predict values for extreme data

points that belong to a zero-inflated distribution.

• Presenting an approach optimized for modeling zero-inflated data that outperforms

the baseline methods in predicting the value of extreme data points.

• Successfully demonstrating the proposed approach to the real-world problem of down-

scaling precipitation climate data with application to climate impact assessment stud-

ies.

6.2 Preliminaries

Consider a multivariate time series L = (xt, yt), where t ∈ {1, 2, · · · , n} is a discrete-valued

index for time, xt is a d-dimensional vector of predictor variables at time t, and yt is the
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corresponding value for the response (target) variable. Given an unlabeled sequence of

multivariate observations xτ , where τ ∈ {n + 1, · · · , n + m}, the goal is to learn a target

function f(x,β) that best estimates the values of the response variable by minimizing the

expected loss Ex,y[L(y, f(x,β))]. The weight vector β denotes the regression coefficients to

be estimated from the training data L.

Multiple linear regression (MLR) is one of most widely used regression methods due to

its simplicity. It assumes f(x,β) = βTx (where x is a (d+1)-dimensional vector whose first

element x0 = 1 and β ∈ <d+1 is the weight vector) and the response variable y is related to

f(x,β) via the following equation:

y = βTx + ε, ε ∼ N(0, σ2).

As a result, P (y|x) ∼ N(βTx, σ2) and Ey|x[y] =
∫

yP (y|x)dy = βTx. Since the predicted

value of the response variable for a test data point xτ is βTxτ , this implies that the predic-

tions made by MLR focus primarily on the average value of y given xτ . This explains the

limitation of MLR in terms of inferring extreme values in a given time series. The parameter

vector β in MLR can be estimated using the maximum likelihood (ML) approach to obtain

β̂ = (XTX)−1XTy,

where X is the n× (d + 1) design matrix and y is an n× 1 column vector for the observed

values of the response variable.

The drawback of simple linear regression is that it is built on a strong assumption -namely,

normality. Unfortunately, real world data may not always have a normal distribution and
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may be skewed to one side or may not cover the whole range of real numbers or may have

a heavier tail than the normal distribution, etc. Hence, alternative approaches that are not

constrained by such assumptions such as GLM may be used.

6.2.1 Generalized Linear Model and 2-Step GLM (GLM-C)

The generalized linear model is one of most widely used regression methods due to its

simplicity. Generally, a GLM consists of three elements:

1. The response variable Y, which has a probability distribution from the exponential

family.

2. A linear predictor η = Xβ

3. A link function g(·) such that E(Y|X) = µ = g−1(η)

where, Y ∈ Rn×1 is the response variables vector, X ∈ Rn×d is the design matrix with

all 1 in the last column. β ∈ Rp×1 is the parameter vector. Since the link function shows

the relationship between the linear predictor and the mean of the distribution, it is very

important to understand the detail about the data before arbitrarily using the canonical

link function. In this case, since the precipitation data are always non-negative and values

represented using a millimeter scale, the non-zero data may be treated as count data allowing

the use Poisson distribution or an exponential distribution to describe the data. Hence, in

these experiments log(·) is chosen as the link function and Poisson distribution chosen. We

scale the Y used in the regression model to be 10× Y :

(10× Yi)|Xi ∼ Poi(λi)

E((10× Yi)|Xi) = λi = g−1(ηi) = g−1(Xiβ);
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Considering the large number of zeros, one is motivated to perform classification first

to eliminate the zero values before any regression. There are many classification methods

available. But for the purpose of these experiments, logistic regression (which is also a

variation of GLM) was chosen to do the classification. The response variable Y ∗ of logistic

regression is a binary variable defined as:

Y ∗ =





1 Y > 0,

0 Y = 0

The detail of the model is as follows: The link function is a logit link g(p) = log(
p

1− p
),

such that,

Y ∗i |Xi ∼ Bin(pi)

E(Y ∗i |Xi) = pi = g−1(ηi) = g−1(Xiβ);

When the fitted values are derived, they will be transferred to be binary:

f∗ =





1 1 ≥ Ŷ ∗ > 0.5,

0 0.5 ≥ Ŷ ∗ ≥ 0

The second part is a GLM with exponential distribution, the response variable Y ′ is just

those non-zero data, and the link function is g(·) = log(·):

Y ′i |Xi ∼ Exp(λi)

E(Y ′i |Xi) = λi = g−1(ηi) = g−1(Xiβ);
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Then, the fitted-value f ′ was found for all Xi

Finally, the product of those two fitted-values Ŷ = f∗ × f ′ was reported.

To fit the GLM model, iteratively reweighted least squares(IRLS) method was used for

maximum likelihood estimation of the model parameters.

6.2.2 Zero Inflated Poisson Regression (ZIP)

Differing from the methods above, zero inflated poisson regression treats the zero as a mixture

of two distributions: a Bernoulli distribution with probability πi to get 0, and a Poisson

distribution with parameter µ (let Pr(·; µ) denote the probability density function). In fact,

the ZIP regression model is defined as:

Pr(Y = yi|xi) =





πi + (1− πi)Pr(Yi = 0; λi) yi = 0,

(1− πi)Pr(Y = yi; λi) yi > 0

where 0 < πi < 1, and

logit(πi) = log(
πi

1− πi
) = xiβ1

log(µi) = xiβ2

where β1, β2 are all regression parameter. Both of them could be found by maximizing the

likelihood function. For the purpose of the experiments, the R package ’pscl’ was used to fit

the model.
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6.2.3 Quantile Linear Regression(QR) and 2-step QR (QR-C)

Quantile regression was used to estimate the specified quantile of a population. Hence, if the

objective of the regression is to estimate the conditional quantile(e.g., median) of Y instead

of a conditional mean like MLR and Ridge regression, one may use quantile regression. Its

loss function for the linear regression model is:

f(b) =
N∑

i=1
ρτ (Yi −XT

i b), and β̂ = arg min
b

f(b),

where

ρτ (u) =





τu u > 0

(τ − 1)u u ≤ 0

Let FY (y) = P (Y ≤ y) be the distribution function of a real valued random variable Y. The

τ th quantile of Y is given by:

QY (τ) = F−1(τ) = inf{y : FY (y) ≥ τ}

It can be proved that the ŷ which minimizes Eρτ (y − ŷ) should satisfy that FY (ŷ) = τ .

Thus, quantile regression will find the τ th quantile of a random variable, for example:

Median(Y|X) = Xβ̂
qr

; β̂
qr

= arg min
b

∑
ρ0.5(yi −XT

i b)

For the purpose of the experiments conducted, τ = 0.95 was used to represent extreme

high value. Unlike the least squares methods mentioned above, which could be solved by

numerical linear algebra, the solution to quantile regression is relatively non-trivial. Linear
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programming is used to solve the loss function by converting the problem to the following

form.

min
u,v,b

{τeT
Nu + (1− τ)eT

Nv|Y −Xb = u− v;b ∈ Rp;u,v ∈ RN
+ }

For the same reason as mentioned in the Section 6.2.1, a classification method should be

incorporated along with the regression model. Logistic regression was used for classification,

and quantile regression on those nonzero Y . Finally, the product of those two fitted values

is reported. Quantile regression may return a negative value, which we force to 0. We do

this because precipitation is always non-negative.

6.3 Framework for Integrated Classification and Re-

gression

With the introduction of quantile regression, which is an integral part of the objective func-

tion, the motivation behind the various components of the proposed objective function needs

to be elaborated. Since zero-inflated data is best described with the help of a classifier that

help identify non-zero values and a regression component to address non-zero values, this

framework consists of both components. For the classifier component, a least square support

vector machine is used and for the regression component, the intuition of quantile regres-

sion is used to help focus the regression of extreme values. Since the final prediction of the

data point using this framework is a product of the regression and classification component,

the quantile regression component is built to work on the eventual predicted return value,

thereby integrating both the classifier and regression components.
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6.3.1 Integrated Classifier and Regression for Extreme Values (ICRE)

The classification and regression models developed in this study are designed to minimize

the following objective function:

arg min
ω1,ω2

L(ω1,ω2) =
1

n

n∑

i=1
(1− (2yi − 1)fi)

2 (6.1)

+
1

n∗
n∑

i=1
yiρτ (y′i − f ′i × (fi + 1)/2) + λ(||ω1||2 + ||ω2||2)

where n∗ is the number of nonzero yi. Then it can be expanded as follows:

arg min
ω1,ω2

L(ω1, ω2) =
1

n

n∑

i=1
(1− (2yi − 1)(xT

i ω2))
2 (6.2)

+
1

n∗
n∑

i=1
yiρτ (y′i − (xT

i ω1)× (sign((xT
i ω2 + 1)/2)))

+ λ(||ω1||2 + ||ω2||2)

The rationale for the design of our objective function is as follows. The first term which

corresponds to the regression part of the equation represents quantile regression performed

for only the observed non-zero values in the time series. The regression model is therefore

biased towards estimating the non-zero extreme values more accurately and not be adversely

influenced by the over-abundance of zeros in the time series. The product f ′i×(fi+1)/2 in the

first term, corresponds to the predicted output of our joint classification and regression model.

The second term in the objective function, which is the main classification component,

is equivalent to the least square support vector machine. And the last two terms in the

objective function are equivalent to the L2 norm used in ridge regression models to shrink

the coefficients in ω1 and ω2.
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Each data point is considered to be a representative reading at an instance of time

t ∈ {1, 2, · · · , n} in the time series. Each predictor variable is standardized by subtracting its

mean value and then dividing by its corresponding standard deviation. The standardization

of the variables is needed to account for the varying scales.

The optimization method used while performing experiments is ’L-BFGS-B’, described

by Byrd et. al. [27]. It is a limited memory version of BFGS methods. This method does

not store a Hessian matrix, just a limited number of update steps for it, and then it uses

derivative information. Since this model includes a quantile regression component, which is

not differentiable, this method of optimization is well suited to the objective function.

To solve the objective function, the inverse logistic function of xT
i ω2instead of sign((xT

i ω2+

1)/2)) was used. The decision was motivated by the fact that the optimizer tries to do a

line search along the steepest descent direction and finds the positive derivative along this

line, which would result in a nearly flat surface for the binary component. Hence, conversion

of the binary report to an inverse logistic function of xT
i ω2 was used to address this issue.

During the prediction stage, the binary-fitted values from the SVM component was used.

6.4 Experimental Evaluation

In this section, the climate data that are used to downscale precipitation is described. This

is followed by the experiment setup. Once the dataset is introduced, the behavior of baseline

models was analyzed and contrasted with ICRE, in terms of relative performance of the var-

ious models when applied to this real world dataset to forecast future values of precipitation.
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6.4.1 Data

All the algorithms were run on climate data obtained for 29 weather stations in Canada, from

the Canadian Climate Change Scenarios Network website [1]. The response variable to be

regressed (downscaled), corresponds to daily precipitation values measured at each weather

station. The predictor variables correspond to 26 coarse-scale climate variables derived from

the NCEP Reanalysis data set and the H3A2a data set(computer generated simulations),

which include measurements of airflow strength, sea-level pressure, wind direction, vorticity,

and humidity. The predictor variables used for training were obtained from the NCEP

Reanalysis data set while the predictor variables used for the testing were obtained from

the H3A2a data set. The data span a 40-year period, 1961 to 2001. The time series was

truncated for each weather station to exclude days for which temperature or any of the

predictor values are missing.

6.4.2 Experimental Setup

The first step was to standardize the predictor variables by subtracting its mean value and

then dividing by its corresponding standard deviation to account for their varying scales.

The training size used was 10yrs worth of data and the test size, 25yrs. During the validation

process, the selection of the parameter λ was done using the score returned by RMSE-95.

Also, to ensure the experiments replicated the real world scenario where the prediction for a

future timeseries needs to be performed using simulated values of the predictor variables for

the future time series, simulated values for the corresponding predictor variables obtained

from H3A2a climate scenario was used as XU , while XL are values obtained from NCEP.

All the experiments were run for 37 stations.
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6.4.3 Baseline Algorithm

We compare the performance of ICRE with baseline models created using general linear

model(GLM), general linear model with classification (GLM-C), quantile regression(QR),

quantile regression with classification and zero-inflated Poisson(ZIP). Further details about

the baselines are provided below.

6.4.3.1 General Linear Model (GLM)

The baseline GLM refers to the generalized linear model that uses a Poisson distribution as

a link function, resulting in the regression function log(λ) = Xβ, where E(Y |X) = λ

6.4.3.2 General Linear Model with Classification (GLM-C)

Unlike the previous baseline (GLM), GLM-C refers to a two step generalized linear model

that uses a Binomial distribution, for the classifier with the model described as logit(p) =

Xβ, and E(Y ′ = 1|X) = p which Y ′ = 1 when Y > 0 and Y ′ = 0 when Y = 0 and a

second step that uses a generalized linear model with an exponential distribution that is

built only on non-zero response data points. The regression function is log(λ) = Xβ, which

E(Y |X) = λ. The eventual predicted value for each data point is the product of the two

respective fitted values.

6.4.3.3 Quantile Regression (QR)

The baseline QR refers to the regular quantile regression described earlier in the preliminary

section 6.2
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6.4.3.4 Quantile Regression with Classification (QR-C)

The baseline QR-C refers to a two step model that has a GLM that uses a binomial distribu-

tion that acts as a classifier and a regular quantile regression model that is built on non-zero

valued data points as described earlier in the preliminary section. These two models that

comprise QR-C are built independent of each other and the eventual predicted value for each

data point is the product of the two respective fitted values.

6.4.3.5 Zero Inflated Poisson (ZIP)

Zero Inflation Poisson model used as a baseline and is similar to the ZIP model described in

Section 6.2.

6.4.4 Evaluation Criteria

The motivation behind the selection of the various evaluation metrics was to evaluate the

different algorithms in terms of predicting the magnitude and the timing of the extreme

events.The following criteria to evaluate the performance of the models are used:

• Root Mean Square Error (RMSE), which measures the difference between the actual

and predicted values of the response variable, i.e.:

RMSE =

√∑n
i=1(y

′
i − f ′ifi)2

n

• RMSE-95, was used to measure the difference between the actual and predicted value

of the response variable for only the extreme data points(j). Extreme data points refer

to the points whose actual value were 95 percentile and above. The equation is with

respect to 95 percentile, as throughout this chapter, we associate data points that are
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95 percentile and above as extreme values, i.e.:

RMSE-95 =

√√√√
∑n/20

j=1 (y′j − fif
′
j)

2

n/20

• Confusion matrices will be computed to visualize the precision and recall of extreme

and non-extreme events. F-measure, which is the harmonic mean between recall and

precision values was used as a score that evaluates the precision and recall results.

F-measure =
2×Recall × Precision

Recall + Precision

To summarize, RMSE-95 is used for measuring magnitude and F-measure measures the

correctness of the timing of the extreme events.

6.4.5 Experimental Results

The results section consists of two main sets of experiments. The first set of experiments

evaluates the impact of zero-inflated data on modeling extreme values. The second section

compares the performance of ICRE with the baseline methods which are followed .

6.4.5.1 Impact of Zero-Inflated Data on Extreme Value Prediction

Unlike regular data which may be modeled using regression, modeling zero-inflated data

usually involves a classifier and a regression component. The classifier is used to identify

zero and non-zero values, which is followed by regression for the non-zero values. But since

the focus of the chapter is on extreme data points within zero-inflated data, the impact of

the classifier is unclear. In this section, the impact of including the classifier in modeling
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extreme values of zero-inflated data is compared. QR is compared with QR-C and GCM with

GCM-C and show the results in Table 6.1. Note that the percentage of wins for F-measure,

recall, precision may not total to 100 in the case of a tie.

Table 6.1: Percentage of stations won

QR-C QR GLM-C GLM
RMSE-95 0 100 67.57 32.43
F-Measure 81.08 18.92 18.92 35.13

As shown in the Table 6.1, it isn’t clear that using an independent classifier along with

regression for modeling extreme values among zero inflated data is preferred. But the results

do indicate that the inclusion or exclusion of a classifier with the regression model built inde-

pendent of each other may compromise either RMSE-95 (by overestimating the magnitude)

or F-measure (mistiming predicting an extreme value), without necessarily compromising

both together.

6.4.5.2 Comparison of ICRE to Baseline Methods

Table 6.2 shows the relative performance of ICRE to all the baseline methods in terms

of percentage of stations outperformed against the baseline method in terms of RMSE-95

values calculated on extreme rain days. In terms of RMSE of extreme rain days, as shown

in Table 6.2, ICRE outperformed the baselines (except QR) in almost every one of the 37

stations. But QR was the best across all methods for RMSE-95 of extreme days. In terms

Table 6.2: Percentage of stations ICRE outperformed the baseline

QR-C QR GLM-C GLM ZIP
RMSE-95 91.89 0 97.3 97.3 97.3
F-Measure 43.24 62.16 89.19 89.19 91.9

of F-measure that was computed based on recall and precision of identifying extreme events,
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ICRE again outperformed the baselines(except QR-C) in majority of the 37 stations. But

ICRE was only able to outperform QR-C in 16 or the 37 stations in terms of F-measure.

Although QR performed the best in terms of estimating magnitude for those extreme events,

it over-estimated the timing of the events as seen by the relatively lower F-measure score.

QR-C did the reverse, it did reasonably well in terms of modeling the timing, but performed

very poorly in terms of the magnitude of the events by overestimating.

6.5 Conclusions

This chapter compares and analyzes the performance of models created using variants of

GLM, quantile regression and ZIP approaches to accurately predict values for extreme data

points that belong to a zero-inflated distribution. An alternate framework(ICRE) was present

that outperforms the baseline methods and the effectiveness of the model was demonstrated

on climate data to predict the amount of precipitation at a given station.
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Chapter 7

Contour Regression

The LSSQR and ICRE frameworks presented in Chapter 5 and Chapter 6 prioritize the

accuracy of the prediction of a response variable at a user specified quantile. However, there

are climate model applications that are interested in capturing the accurate distribution

characteristics of the response variable across all quantiles. In this chapter, the limitations

of current regression-based approaches in terms of preserving the distribution of observed

climate data is shown and a multi-objective regression framework that simultaneously fits

the distribution properties and minimizes the prediction error is presented. The framework is

highly flexible and can be applied to linear, nonlinear, and conditional quantile models. The

chapter demonstrates the effectiveness of the framework in modeling the daily minimum and

maximum temperature as well as precipitation for climate stations in the Great Lakes region.

The framework showed marked improvement over traditional regression-based approaches in

all 14 climate stations evaluated.

7.1 Introduction

There are numerous climate modeling applications that can be cast into a regression prob-

lem, from projecting future climate scenarios to downscaling the coarse-scale outputs from

global/regional climate models for climate change impact assessment and adaptation studies

[107, 60, 104]. In addition to minimizing the residuals of the predicted outputs, some of
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Figure 7.1: Area between the CDF of y and yMLR.

these applications emphasize preserving specific characteristics of the predicted distribution.

However, as most regression-based approaches are designed to optimize the former, they

tend to perform poorly on the latter criterion.

As an illustration, consider a two-dimensional regression problem, where the response

variable y is related to the predictor variables x according to the following equation: y =

ωTx + ω0 + ε(0, σ2), where Ω = [ω2ω1ω0] = [1, 2, 5]. Using the least square (maximum like-

lihood) estimation approach, multiple linear regression (MLR) was able to fairly accurately

estimate Ω as [0.99, 1.96, 5.05 ]. Yet, it fared poorly in terms of replicating the shape of

the original distribution of y as seen from its cumulative distribution function (CDF) plots

given in Figure 7.1. Even though the regression model was trained using ten thousand data

points, it is clear from Figure 7.1 that MLR fails to replicate the shape of the cumulative

distribution for y, particularly the tails of the distribution.

As another example, Figure 7.2 compares the histograms of daily maximum temperature

observed at a climate station in Michigan and the predicted outputs of MLR. In this case,
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Figure 7.2: Histogram of predicted daily maximum temperature at a weather station in
Michigan, 1990-1999.

the standard deviation of MLR’s predicted outputs differs quite substantially from that

of observation data. In spite of minimizing the sum of squared prediction error, regression-

based approaches such as MLR fared poorly in preserving the overall shape of the distribution

compared to non-regression based approaches such as quantile mapping (QM), which had

an RMSE value 25% worse than that of MLR but gives a better fit to the distribution

of maximum temperature. As a consequence, distribution-driven approaches [108, 97] have

been used to correct the distribution characteristics of the data to better match the observed

climate variable. However, their prediction accuracy is typically worse than regression-based
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Figure 7.3: CDF of predicted daily precipitation at a weather station in Michigan, 1990-1999.

approaches.

Raw projections of climate variables are often obtained from General Circulation Models

(GCM) and more recently from Regional Climate Models (RCM) that incorporate complex

topography, land cover, and other regional forcings into the physical models. These raw

climate projections need to be further post-processed to meet the requirements of impact

assessment studies. In addition to the previously mentioned requirements from the climate

variables, empirical downscaling of the output from the climate models to a finer resolution is

often needed to bridge the mismatch in spatial or temporal scale between the model output

and the scale desired, since the resolutions of the output from the climate models may

remain too coarse for many applications where local scale information is needed. Similarly,

bias correction is often needed to reduce the inherent uncertainties in the RCM outputs that

may be afflicted by the systematic errors introduced by the driving GCM runs, imperfections

of the RCM representation, and sampling biases due to the finite length time series used to

parameterize and validate the models [45].
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Since the fidelity of both the distribution characteristics and the accuracy of projec-

tions are important, a framework for multivariate regression is proposed that regularizes

the distribution of the response variable to simultaneous improve the accuracy of the pro-

jection as well as the shape of the distribution by jointly solving both objectives. Due to

its generic nature, the framework may be applied to various types of marginal distributions

as well as different objective function criteria including least square error, kernel regression

and quantile regression (QR). In this chapter, the effectiveness of the proposed framework

is demonstrated by downscaling and bias correcting daily temperature and precipitation to

match their corresponding observations.

In summary, the main contributions of this study are:

• Identification of the limitations of existing least squared error regression techniques.

• Presentation of a regression based framework (Contour Regression) for multivariate

empirical downscaling and bias correction that address the limitation of existing ap-

proaches by simultaneously improving accuracy of projection for individual data points

as well as the overall shape of the distribution.

• Demonstration of the feasibility of adapting the framework to fit various objective

functions such as multivariate ordinary least squares, QR and non-linear kernel ridge

regression.

• Evaluation of the framework on real world climate data and found that it consistently

outperformed or was at least on-par with the baseline approaches and showed its

robustness to response variables having different types of shapes of distribution.
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7.2 Preliminaries

Let D = {(xi, yi)}ni=1 be a labeled dataset of size n, where each xi ∈ Rd is a vector

of predictor variables and yi ∈ R the corresponding response variable. The objective of

regression is to learn a target function f(x, β) that best estimates the response variable y.

β is the parameter vector used by the target function. n represents the number of training

points.

7.2.1 Multiple Linear Regression (MLR)

MLR is the most common regression approach used for empirical downscaling of climate

data. MLR uses ordinary least squares to solve a linear model of the form

y = xT β + ε

where, ε ∼ N(0, σ2) is an i.i.d Gaussian error term with variance σ2. β ∈ Rd is the

parameter vector. MLR minimizes the sum squared residuals (y − Xβ)T (y − Xβ) which

leads to a closed-form expression for the solution

β̂ = (XT X)−1XT y

7.2.2 Quantile Mapping (QM)

Quantile mapping is the most commonly used approach for correcting the shape of the

distribution of a climate variable to match observations. It adjusts all the moments of the

distribution while maintaining the rank correlation. The following equation is an example
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of the QM approach.

QM : yi = F−1
Y (FX(xi))

FX(x) is a function that corresponds to the CDF for the predictor variable ’X’ and is defined

by FX(x) = P (x ≤ X). The above equation of QM may be rewritten as follows to help

identify the correction made by QM.

QM : yi = xi + F−1
Y (FX(xi))− F−1

X (FX(xi))

One of the main assumptions made by QM is that the data points upon which the bias

correction function is to be applied come from the same distribution that describes the

training sets and that the relationship between predictor and response is constant. Also, a

sufficiently large enough training size is required by QM to capture the true shape of the

distribution of the model and observations. A distinct advantage of QM is that no day-to-day

mapped data are required.

It can be shown that a QM function that accurately replicates the distribution char-

acteristics of the response variable may not guarantee RMSE = 0, nor a relatively small

RMSE.

Proposition 7.2.1. A QM function that accurately replicates distribution of the observation

may have RMSE > 0

Proof. Given QM : y = F−1
y (Fx(x)), where FX ∈ [0, 1] and FY ∈ [0, 1] are the empirical

cumulative distribution function of x and y respectively. Let R and O be the multiset

containing the quantile values of x in Fx and y in Fy respectively. i.e., Fx(x) = R and

Fy(y) = O. Let ε(i) = |Fy(O(i)) − Fy(R(i))| be the QM prediction error of data point xi.
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⇒ RMSE =
√∑

i ε2(i)/n. A necessary and sufficient condition for the quantile function

to replicate the distribution of observation is that the cardinality, member and multiplicity

of the multiset O equals the multiset R, i.e.,

|O
⋂

R| = |O| = |R|

The above requirement does not eliminate that possibility that ∃i, s.t., O(i) 6= R(i), where

R(i) corresponds to the quantile value of data point xi.

⇒ if ∃i, s.t., O(i) 6= R(i), and FY (O(i)) 6= FY (R(i)). ⇒ RMSE > 0. Hence, quantile

mapping function that accurately replicates the distribution characteristics of the response

variable may not guarantee RMSE = 0, nor a relatively small RMSE. ♦

Proposition 7.2.2. A QM function accurately returns the distribution characteristics of the

response variable as well as RMSE = 0 when rank correlation Γ = 1 between the predictor

and response variables.

Proof. Let R and O be the multiset quantiles Fx(x) and Fy(y) of x and y respectively. Let

ε(i) = |Fy(O(i))−Fy(R(i))| be the ith error of the predicted values from QM. ⇒ RMSE =

√
ε2(i)/n. Given (Γ = 1) ≡ (∀i, R(i) = O(i)), we have ε(i) = |Fy(O(i)) − Fy(O(i))|.

⇒ RMSE =
√∑

i ε2(i)/n = 0 ♦

7.3 Framework for Multivariate Contour Regression

(CR)

Since regression based approaches have a distinct advantage in terms of prediction accuracy

of individual data points but are limited by their lack of emphasis on the shape of the
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distribution of the projection as depicted by the area between their two CDFs in Figure 7.1,

there is a need to regularize the area between the CDF of the target response variable and

the regression result. The proposed distribution regularized framework is

min
β

n∑

i=1
(γπ(f(xi), yi) + (1− γ)π(f(xi), y(i)))

where, y(i) corresponds to the i-th order value of the target response variabley. π(., .) can

be any generic loss function, such as sum squared error, while 0 ≤ γ ≤ 1 is a user defined

parameter that may be used for either prioritizing fidelity in regression accuracy or its CDF.

An important required preprocessing step (elaborated in the following subsection) re-

quired, is that the predictor matrix X is pre-sorted such that i < j ∀f(xi, β) ≤ f(xj , β).

The choice of π determines the objective function that is to be minimized and could be

as simple as ordinary least squares or a more complex user defined function. Section 7.3.1

elaborates on CR and describes multivariate linear contour regression (MLCR) which has an

objective function that is based on ordinary least squares. Section 7.3.2 proposes kernel con-

tour regression (KCR) that is a kernel-based interpretation of the CR framework. Section

7.3.3 proposes a quantile regression based interpretation that emphasizes the conditional

quartile of the user’s preference. In this study, the conditional quartile chosen corresponded

to the extreme fifth percentile of the distribution.

7.3.1 Multiple Linear Contour Regression (MLCR)

This section describes an approach for CR that is based on ordinary least square (OLS) to

simultaneously regress on the response variable as well as regress on the ordered value of the
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response variable by minimizing the sum squared error, as shown below.

n∑

i=1
(γ(f(xi, β)− yi)

2 + (1− γ)(f(xi, β)− zi)
2)

where, f(X, β) = Xβ and zi = y(i). This equates to minimizing

γ(y −Xβ)T (y −Xβ) + (1− γ)(z −Xβ)T (z −Xβ)

where the predictor matrix X is pre-sorted such that i < j ∀f(xi, β) ≤ f(xj , β) and

γ ∈ [01] is a user defined parameter that may be used for either prioritizing fidelity in

regression accuracy or shape of the distribution. It is obvious from the equation that as

γ → 1, MLCR converges to the solution of MLR as seen in Figure 7.4, which depicts the

influence of the γ parameter on the shape of the CDF of the response variable. The closed

form solution to MLCR is

β̂ = (XT X)−1(γXT y + (1− γ)XT z)

Since it is often not possible to guarantee that X is pre-sorted correctly according to

f(xi, β), one may need to iteratively solve the objective function after reordering the data

points X and corresponding y, such that the new ordering of the data points conforms to

i < j ∀f(xi, β) ≤ f(xj , β) based on the β obtained from the previous iteration, until

convergence. Convergence is obtained when ∀f(xi, β) ≤ f(xj , β), ∀i < j. As shown in the

theorem below, the following objective function converges with each iteration.
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Figure 7.4: Influence of gamma parameter on fidelity of the response variable’s cumulative
distributive function.

7.3.1.1 Proof of Convergence

This section presents the proof of convergence of the iterative update algorithm. Let βt, ft, Xt

be the regression coefficients, predicted values for the response variable and the predictor

variables at the t-th iteration, while βt+1, ft+1, Xt+1 represent the regression coefficients,

predicted values for the response variable and the predictor variables after the (t + 1)-th

iteration.

Proposition 7.3.1. Assuming that the indices of the predictor variables are fixed,

L(βt, ft, Xt) ≥ L(βt+1, ft+1, Xt)

Proof. For a fixed Xt, L(βt+1, ft+1, Xt) ≤ L(βt, ft, Xt) since the βt+1 is obtained from a

closed form solution of ordinary least squares and by definition is the solution that minimizes

the objective function. In the worst case, L(βt+1, ft+1, Xt) = L(βt, ft, Xt).
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Proposition 7.3.2. Assuming that the regression coefficients β are fixed,

L(βt+1, ft+1, Xt) ≥ L(βt+1, ft+1, Xt+1)

Proof. Let L(βt+1, ft+1, Xt) = L
y
t+1 + Lz

t where, L
y
t+1 refers to the first half of the loss

function that regresses on y and Lz
t refers to the second half of the loss function that regresses

on z. Since, the change in ordering of X from t-th to the t + 1-th iteration doesn’t impact

the Ly component of the loss function, and L(βt+1, ft+1, Xt+1) = L
y
t+1 + Lz

t+1, we shall

concentrate on Lz. Lz
t = (1− γ)

∑n
i=1(f(xi, β)− zi)

2 which can be rewritten as

Lz
t =

n∑

i=1
(f2

i + z2
i + 2fizi)

(1 − γ) being a constant, is ignored for simplicity. Given that β and values for f are fixed,

Lz
t+1 =

∑n
i=1(f

2
(i) + z2

i + 2f(i)zi).

⇒ Lz
t − Lz

t+1 =
n∑

i=1
(f(i)zi − fizi)

And since,
∑n

i=1 a(i)b(i) ≥
∑n

i=1 aibi ∀a ∈ Rn, b ∈ Rn we have
∑n

i=1(f(i)zi) ≥
∑n

i=1(fizi),

since by definition, zi = z(i).

⇒ Lz
t − Lz

t+1 ≥ 0

⇒ L(βt+1, ft+1, Xt) ≥ L(βt+1, ft+1, Xt+1)

Theorem 7.3.1. The objective function L(β) is monotonically non-increasing given the

update formula for β, f and X.
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Proof. The update formula iteratively modifies the objective function as follows: L(βt, ft, Xt) ⇒

L(βt+1, ft+1, Xt)⇒ L(βt+1, ft+1, Xt+1). Using the above propositions, we have L(βt, ft, Xt) ≥

L(βt+1, ft+1, Xt) and L(βt+1, ft+1, Xt) ≥ L(βt+1, ft+1, Xt+1).

⇒ L(βt+1, ft+1, Xt+1) ≤ L(βt, ft, Xt)

Lemma 7.3.1. The objective function will eventually converge, as the value of the loss

function is always non-negative and since we know L(β) is monotonically decreasing.

7.3.2 Kernel Contour Regression (KCR)

A variant of MLR, called ridge regularization is used to mitigate over-fitting in regression.

Ridge regression also provides a formulation to overcome the hurdle of a singular covariance

matrix XT X that MLR might be faced with during optimization. Unlike the loss function

of MLR, the loss function for ridge regression is

(y −Xβ)T (y −Xβ) + λβT β,

and its corresponding closed-form expression for the solution is

β̂ = (XT X + λI)−1XT y
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where, the ridge coefficient λ > 0 results in a non-singular matrix XT X + λI always being

invertible. The dual ridge regression is given by the equation

α̂ = yT (G + λI)−1X

where, G = XXT . By mapping φ the predictor variable X to a higher dimension feature

space F , i.e.,

φ : X ∈ Rd → F ⊆ RN

where N >> d, one can transform the regularized least square regression to feature space

F using the Kernel K. Similarly, the predictor variables of CR can be mapped to a higher

dimension feature space F by using the ridge counterpart of MLCR.

β = (φ(X)T φ(X) + λI)−1(γφ(X)T y + (1− γ)φ(X)T z)

⇒ β = λ−1φ(X)T (γy + (1− γ)z − φ(X)β) = φ(X)T α

⇒ α = (G + λI)−1(γy + (1− γ)z)

where, G = φ(X)φ(X)T , Gij = 〈φ(xi), φ(xj)
T 〉 = K(xi, xj).

7.3.3 Quantile Contour Regression (QCR)

Most regression approaches that are used for downscaling focus on predicting the conditional

mean of the response variable. Predicting the conditional mean is not well suited for predict-

ing extreme values that are better identified by the conditional quantiles that corresponds

to the extreme values. Hence, unlike the common regression techniques mentioned earlier,
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approaches similar to quantile regression(QR) [77] are better suited to estimate the extremes

of Y .

To estimate the τ th conditional quantile QY |X(τ), QR minimizes an asymmetrically

weighted sum of absolute errors using the loss function:

n∑

i=1
ρτ (yi − xT

i β)

where,

ρτ (u) =





τu u > 0

(τ − 1)u u ≤ 0

and the τ th quantile of a random variable Y is given by:

QY (τ) = F−1(τ) = inf{y : FY (y) ≥ τ}

where, FY (y) = P (Y ≤ y) is the distribution function of a real valued random variable Y

and τ ∈ [0, 1].

Linear programming is used to solve the loss function by converting the problem to the

following form.

min
u,v

τ1T
nu + (1− τ)1T

n v

s.t. y − xT β = u− v

where, ui ≥ 0 ,vi ≥ 0 and β ∈ Rd.
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The objective function of QR can be adopted by CR to obtain the following loss function

n∑

i=1
(ρτ1(yi − xT

i β) + ρτ2(zi − xT
i β))

where,

ρτ (u) =





τu u > 0

(τ − 1)u u ≤ 0

which equates to

min
u,v,u′,v′

τ11
T
nu + (1− τ)1T

n v + τ21
T
nu′ + (1− τ)1T

n v′

s.t. y − xT β = u− v

s.t. z − xT β = u′ − v′

where, τ2 = 0.5, ui ≥ 0, u′i ≥ 0, vi ≥ 0, v′i ≥ 0 and β ∈ Rd.

7.3.3.1 Proof of Convergence

Let βt, ft, Xt be the regression coefficients, predicted values for the response variable and the

predictor variables at the t-th iteration, while βt+1, ft+1, Xt+1 be the regression coefficients,

predicted values for response variable and the predictor variables after the (t+1)-th iteration.

Proposition 7.3.3. Assuming that the indices of the predictor variables are fixed,

L(βt, ft, Xt) ≥ L(βt+1, ft+1, Xt)

Proof. For a fixed Xt, L(βt+1, ft+1, Xt) ≤ L(βt, ft, Xt) since βt+1 is the solution that mini-
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mizes the objective function. In the worst case, L(βt+1, ft+1, Xt) = L(βt, ft, Xt).

Proposition 7.3.4. Assuming that the regression coefficients β are fixed,

L(βt+1, ft+1, Xt) = L(βt+1, ft+1, Xt+1)

Proof. Let L(βt+1, ft+1, Xt) = L
y
t+1 + Lz

t where, L
y
t+1 refers to the first half of the loss

function that performs QR on y and Lz
t refers to the second half of the loss function that

performs QR on z. Since, the change in ordering of X doesn’t impact Ly we shall concentrate

on Lz. Given, Lz
t = 0.5

∑n
i=1(fi − zi) and Lz

t+1 = 0.5
∑n

i=1(f(i) − zi)

⇒ Lz
t = Lz

t+1

Hence, L(βt+1, ft+1, Xt) = L(βt+1, ft+1, Xt+1)

Theorem 7.3.2. The objective function L(β) is monotonically non-increasing given the

update formula for β, f and X.

Proof. The update formula iteratively modifies the objective function as follows: L(βt, ft, Xt) ⇒

L(βt+1, ft+1, Xt)⇒ L(βt+1, ft+1, Xt+1). Using the above propositions, we have L(βt, ft, Xt) ≥

L(βt+1, ft+1, Xt) and L(βt+1, ft+1, Xt) = L(βt+1, ft+1, Xt+1).

⇒ L(βt+1, ft+1, Xt+1) ≤ L(βt, ft, Xt)
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7.4 Experimental Results

The objective of the experiments was to evaluate the effectiveness of CR on observed climate

data.

7.4.1 Data

All the algorithms were run using climate data obtained at fourteen weather stations in

Michigan, USA. Daily maximum temperature (T), minimum temperature (t), and precipi-

tation (P) were the three climate target variables evaluated.

The predictor variables used in this study were obtained from the North American Re-

gional Climate Change Assessment Program (NARCCAP) [2] (Table 7.1). Nine different data

sets are used that correspond to the combination of three different RCMs and three target

variables. The three RCMs used are the Canadian Regional Climate Model (CRCM), the

Weather Research and Forecasting Model (WRFG) and the Regional Climate Model Version-

3 (RCM3) The models were each driven by NCEP/DOE AMIP-II Reanalysis (NCEP) for a

domain covering the United States and Canada. The data for the RCMs spans the period

1980-1999. The gridded RCM data have a spatial resolution of 50km. Unlike observation

data that relate to a point location, RCM data are available at grid resolution with the value

representing a grid-cell average.

Since the observation data used correspond to daily values, preprocessing was also done

to convert the three hour reanalysis-driven RCM data to daily values. Preprocessing was

also needed for conversion of the observation data as well as data from the various RCM

runs to the same units. For instance, precipitation in the observation data was in millimeters

while precipitation data obtained from the various RCM runs was recorded in MKS units of
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Table 7.1: List of predictor variables from each RCM.

Predictor variables Frequency

Meridional Surface Wind Speed 3 hourly
Zonal Surface Wind Speed 3 hourly
Minimum Surface Air Temperature Daily
Maximum Surface Air Temperature Daily
Surface Air Temperature 3 hourly
Surface Pressure 3 hourly
Precipitation 3 hourly
Surface Specific Humidity 3 hourly
500 hPa Geopotential Height 3 hourly

kg/m2/s and needed to be converted to millimeters. In the event of missing values in the

reanalysis/GCM-driven RCM simulated data the whole day corresponding to the data point

was removed during the training phase of the various BCED approaches that were evaluated

in this study, even if the missing value corresponded to only a three hour time stamp for a

particular day.

7.4.2 Experimental Setup

Twenty year (1980-1999) model data from the various RCM models along with the corre-

sponding observation data were split into two parts of ten contiguous years that were used for

training and testing. The results provided in this section are those observed during out-of-

sample evaluation only. A 10-fold cross validation approach for comparing the performance

of the various BCED models was also evaluated. But since the climate models’ ability to

reproduce climate variability is typically averaged over the order of ten years for the purpose

of analysis, as noted by Ehret et al. [45], and the relative performances being consistent

across the two set-ups, the results of 10-fold cross validation are not included in this chapter.

For the purpose of the evaluation of the relative skill in bias correction and downscaling of

the proposed approach, popular BCED approaches such as MLR, Lasso, QM, PHC, LOCI,

134



QR, kernel regression were used as baselines. For simplicity, the parameter γ was fixed

across every station. Throughout this chapter, the extreme 5 percentile of a distribution is

defined as extreme values. Consequently, 0.95 is used as τ for QR based experiments that

model extreme precipitation and extreme maximum temperature, while 0.05 is used as τ

for modeling extreme minimum temperature. Radial basis function (RBF) kernel was the

choice of kernel used in this study. For the CR based experiments, the maximum number of

iterations was set to ten.

7.4.3 Results

The motivation behind the experiments was to evaluate the different algorithms in terms of

accuracy of the prediction, the fidelity of the shape of the distribution to observation, the

timing of the extreme events and the frequency with which a data point is predicted to be an

extreme data point. The performance of MLCR was compared using MLR, ridge regression

(Ridge), lasso regression (Lasso), QM, LOCI and fitted histogram equalization. Similarly,

QCR was compared to baseline approaches such as MLR, QM, QR. Auto regressive baselines

were not used as baselines as they are not well suited for long term climate projections (40-

100 years into the future).

Since regression emphasizes minimizing the residuals, MLCR was compared first with

its baseline for potential loss in root mean square error (RMSE) performance and put it

in perspective of the improvement over baseline CDFs. Barring possible over-fitting, MLR

should by definition of its objective function have minimum SSE among the linear regression

approaches. Hence, MLR was used as a baseline to evaluate possible deterioration in terms

of RMSE by MLCR on account of MLCR’s distribution regularization. MLCR showed an

average deterioration in RMSE of about < 3% across the first six data sets (target variables
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Table 7.2: Relative performance gain of MLCR over baseline approaches.

RMSE RMSE-CDF RMSE-CDF
% loss % gain win-loss %

Dataset MLR Lasso MLR Lasso MLR Lasso

WRFG-T 1.9 1.7 39.0 41.7 100 100
CRCM-T 2.8 2.6 25.8 28.0 100 100
RCM3-T 2.0 1.8 35.3 39.2 100 100
WRFG-t 1.0 0.6 51.4 53.7 100 100
CRCM-t 1.9 1.6 38.2 40.1 100 100
RCM3-t 1.8 1.6 53.2 56.1 100 100
WRFG-P 28.8 28.3 74.3 75.8 100 100
CRCM-P 25.8 25.0 71.1 73.2 100 100
RCM3-P 29.9 29.5 75.6 76.7 100 100

maximum and minimum temperature) (Table 7.2) while improving the average error in terms

of empirical cumulative distribution frequency (RMSE-CDF), around 40% (Figure 7.6).

Given, RMSE-CDF =

√∑n
i=1(y′(i)−f ′(i))

2

n and its results are in the same order as RMSE,

it is clear that MLCR was able to considerably improve the shape of the distribution to

better match the observations at the expense of a marginal deterioration in RMSE. This

improvement was observed across all climate stations within each dataset. as shown by the

100% win-loss percentage (Table 7.2). Ridge and Lasso fared comparably well to MLR, while

QM had the worst RMSE, as expected.

MLR fared considerably worse in terms of its CDF, when it came to modeling precipita-

tion (Gamma distribution) (Figure 7.5). Since, MLR struggled to capture the shape of the

precipitation distribution, a smaller value for the γ parameter for MLCR was chosen, than

was used for the previous datasets (normal distribution) to better fit the observations’ CDF.

Consequently, the increase in the deterioration in terms of RMSE performance came at the

expense of an impressive average RMSE-CDF improvement > 70%. For evaluation of simi-

larity of distributions, the Kolmogorov-Smirnov statistic (K) is used, which for a given pair

of cumulative distribution function F1(x) and F2(x) is max(|F1(x) − F2(x)|), the standard
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Figure 7.5: CDF of predicted daily precipitation at a weather station in Michigan over the
years 1990-99.

deviation σ, correlation(ρ) and correlation-CDF(ρ−CDF ), which measures the correlation

between two CDFs. MLCR regularly outperformed the baseline regression approaches at ev-

ery station (Table 7.3), while QM produces the most accurate standard deviation. However,

MLCR was able to catch up with QR in terms of ρ−CDF , especially for precipitation due

to the emphasis given to the distribution driven term in the experiments.

Table 7.3: Percentage of stations that MLCR outperformed baseline in terms of σ and
ρ− CDF

σ ρ− CDF
win-loss% win-loss%

Dataset MLR Lasso QM MLR Lasso QM

WRFG-T 100 100 0 100 100 0
CRCM-T 100 100 0 100 100 0
RCM3-T 100 100 0 100 100 0
WRFG-t 100 100 0 78.6 85.8 64.3
CRCM-t 100 100 0 92.9 100 35.8
RCM3-t 100 100 0 92.9 85.8 85.7
WRFG-P 100 100 7.1 100 100 28.6
CRCM-P 100 100 0.0 100 100 50.0
RCM3-P 100 100 7.1 100 100 64.3
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Figure 7.6: CDF of predicted daily maximum temperature at a weather station in Michigan,
1990-99.

7.4.3.1 QCR Results

In addition to the above-mentioned metrics for comparison, QCR was compared with baseline

approaches such as MLR, QM and QR, in terms of its performance at extremes of the

distributions. In terms of the RMSE for the extreme valued data point alone, QCR was able

to outperform MLR, since MLR tended to underestimate the extremes. QCR also fared very

well against QR (Figure 7.8), where the regression models emphasized the lowest τ quantile

that correspond to extreme values for the target variable (minimum temperature). It is clear

that QCR emphasized accuracy in the distribution of the lower quantiles of the distribution

over the higher quantiles, as expected.

Precision and recall of extreme events were computed to measure the timing accuracy

of the prediction of extreme valued data points. F-measure, which is the harmonic mean

between recall and precision values, is used as a score that summarizes the precision and

recall results. It was also found that QCR had the best F-measure among the regression
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Figure 7.7: CDF of predicted daily precipitation at a weather station in Michigan, 1990-99.

based approaches in terms of correctly identifying extreme values across all the stations.

Figure 7.7 shows the performance of QCR on precipitation. In spite of larger value for the γ

parameter of QCR compared with that used for MLCR, QCR performed better than MLCR

in terms of correcting the overall shape of the distribution. This is because of the zero-

inflated nature of precipitation, resulting in very few large valued data points, which have

a larger influence on the appearance of the CDF plot. As seen in Table 7.4, QCR regularly

outperformed QR in terms of the other metrics such as correlation.

7.5 MCR Using Heterogeneous Data

The MCR framework can also incorporate heterogeneous data sources of predictor vari-

ables. This extension is referred to as MCRHET . An example of incorporating the het-

erogeneous data sources is utilizing a reanalysis values for the predictor variables as well as

asynchronous data obtained from GCM driven runs of RCM. The asynchronous predictor
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Figure 7.8: CDF of predicted daily minimum temperature at a weather station in Michigan,
1990-99.

variables obtained from GCM driven runs of RCM is incorporated into the second term of

MCR. Figure 7.9 shows the CDF of predicted daily minimum temperature at a weather

station (Eau Claire)in Michigan, 1990-99, using asynchronous regional climate model data.

Similarly, Figure 7.10 shows the CDF of predicted daily precipitation at the same weather

station in Michigan, 1990-99, using asynchronous regional climate model data.

7.5.1 Geometric Quantile Mapping

The multi-dimensional equivalent of quantile function is geometric quantile [32].

For a univariate random variable X ∈ <, let FX(x) be its cumulative distribution func-

tion (CDF), i.e., FX(x) = P (X ≤ x). The corresponding α-quantile of X is given by

inf {x ∈ < : FX(x) ≥ α}. More generally, the position [84] of data point z relative to a set

of points Z = (z1, .., zm)T is given by
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Table 7.4: Percentage of stations that QCR outperformed baseline approaches in terms of
RMSE, F-measure, k statistic and correlation for data points considered extreme value.

Dataset RMSE F-Measure k ρ

WRFG-T 100 100 100 100
CRCM-T 100 100 100 92.9
RCM3-T 100 100 100 100
WRFG-t 100 100 100 64.3
CRCM-t 100 100 100 58.7
RCM3-t 100 100 100 78.6
WRFG-P 100 100 100 35.8
CRCM-P 100 100 100 28.6
RCM3-P 100 100 100 21.4

pZ(z) = 1
m

∑m
i=1 η(z− zi) where η(w) =





w
‖w‖ , if w 6= 0

0, if w = 0

For univariate data, the position pZ(z) is equal to 2FZ(z)−1, where FZ(z) is the cumulative

distribution function of Z. The multi-dimensional equivalent of quantile function is geometric

quantile [32].

Distribution correction methods such as quantile mapping is only applicable if one can

match the position of a data point in one univariate distribution (say for x) to its corre-

sponding position in another univariate distribution (say for y). This is possible using the

preceding definition of position for univariate data since the values of pZ are always fixed in

the range between [−1, +1] irrespective of the values in Z. Unfortunately, when extended

to multivariate positions, the range of values for pZ may vary depending on the values in Z.

To overcome this problem, He et al. [61] introduce the notion of a stationary position by

iteratively applying the following position transformation function until convergence:

pk
Y (z) =

1

κn

n∑

i=1

pk−1
Y (z)− pk−1

Y (yi)

‖ pk−1
Y (z)− pk−1

Y (yi) ‖
, p1

Y (z) =
1

κn

n∑

i=1

z− yi

‖ z− yi ‖
(7.1)
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Figure 7.9: Cumulative distribution function of predicted daily minimum temperature at a
weather station in Michigan, 1990-99, using asynchronous regional climate model data.

Here each component in yi must be converted to its marginal rank first before applying

the position transformation function. Marginal rank refers to the rank of the data point

divided by the largest rank and then normalized to the range [−1, 1]. The normalization

is done to negate the effect of variables having values that correspond to different ranges.

Data points with normalized marginal rank close to ±1 correspond to extreme values for the

particular variable, while those close to 0 are located near the median of the distribution. In

practice, the number of iterations needed to reach a stationary distribution is quite small,

typically K > 5 [61]. For univariate data, it can be shown that Pk reaches a stationary

distribution at k = 1. The term κ in Equation (7.1) is a normalization factor to ensure the

distribution of the geometric positions is supported in a q-dimensional unit hypersphere. In

the case of bivariate response variable Y, the stationary geometric quantile distribution is

circularly symmetric around the origin, with the radial density of r/
√

1− r2 for r ∈ (0, 1)
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Figure 7.10: Cumulative distribution function of predicted daily precipitation at a weather
station in Michigan, 1990-99, using asynchronous regional climate model data.

[61].

7.5.2 MCR Using Geometric Quantile Mapped Heterogeneous Data

The predictor variables from the asynchronous data can be transformed to the have the

same geometric distribution characteristics of the given synchronous predictor variables data

using methods such as a geometric quantile mapping (GQM) and covariance alignment. The

MCR approach that used Geometric quantile mapping on the predictor variables having

asynchronous data, is referred to as MCRGQ.

Figure 7.11 compares the CDF of predicted daily minimum temperature at a weather

station (Eau Claire)in Michigan, 1990-99, with and without geometric quantile mapping

the asynchronous predictor variables to match the synchronous predictor variables. Using

geometric quantile mapping the asynchronous predictor variables to match the synchronous
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Figure 7.11: Comparing the cumulative distribution function of MCRHET and MCRGQ
output of predicted daily minimum temperature at a weather station in Michigan, 1990-99,
using asynchronous regional climate model data.

predictor variables prior to applying GQM showed marginal improvement. Similarly, results

were also seen in the case of the CDF of predicted daily precipitation at the same weather

station in Michigan, 1990-99, with and without geometric quantile mapping the asynchronous

predictor variables to match the synchronous predictor variables (Figure 7.12).

7.5.3 Projections For The Years 2040-2049

Figure 7.13 and Figure 7.14 shows the projected distribution of the climate variables for the

years 2040-2049, for the same weather station in Michigan.
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Figure 7.12: Comparing the cumulative distribution function of MCRHET and MCRGQ
output of predicted daily precipitation at a weather station in Michigan, 1990-99, using
asynchronous regional climate model data.

7.6 Conclusions

This chapter presents a framework that regularizes the distribution characteristics of a vari-

able to simultaneously improve the accuracy of individual data points as well as the shape

of the distribution of the projections. The effectiveness of the framework when using a

multivariate linear interpretation, a non-linear (RBF kernel), as well as a quantile driven

interpretation in effectively capturing both the shape and accuracy of observed climate data

of various climate stations located in Michigan, USA, is demonstrated. In addition to con-

sistently reducing day-to-day error of the projections, the framework is also shown to be

flexible enough to capture different shapes from various distributions as shown in the case

of Gaussian and Gamma distributions.
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Figure 7.13: Comparing the cumulative distribution function of projected daily minimum
temperature at a weather station in Michigan, for the period 2040-2049 to that of QM model
output for the years 1990-99
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Figure 7.14: Comparing the cumulative distribution function of projected daily precipitation
at a weather station in Michigan, for the period 2040-2049 to that of QM model output for
the years 1990-99
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Chapter 8

Multivariate Contour Regression

This chapter presents a framework for multiple output regression that extends the single

output regression framework presented in Chapter 7. The framework is motivated by the

growing demand for multiple output prediction methods capable of both minimizing resid-

ual errors and capturing the joint distribution of the response variables in a realistic and

consistent fashion. The multiple output regression presented in this chapter, preserves the

relationships among the response variables (including possible non-linear associations) while

minimizing the residual errors of prediction by coupling regression methods with geometric

quantile mapping.

8.1 Introduction

Multiple output regression (MOR) is the task of inferring the joint values of multiple response

variables from a set of common predictor variables. The response variables are often related,

though their true relationships are generally unknown a priori. An example application

of multiple output regression is to simultaneously estimate the projected future values of

temperature, precipitation, and other climate variables needed for climate change impact,

adaptation and vulnerability (CCIAV) assessments. The projected values are used as the

driving input variables for phenological and hydrological models to simulate the responses

of the ecological system to future climate change scenarios. To ensure the projected values
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Figure 8.1: Scatter plot of observed daily maximum and minimum temperature at a climate
station in Michigan, USA.

are realistic, there are certain constraints on the relationship among the response variables

that must be preserved; e.g., minimum temperature must not exceed maximum temperature

or liquid precipitation should be zero when temperature is below freezing. While there have

been numerous multiple output regression methods developed in recent years [25, 112, 12,

95, 69], most of them are focused on fitting the conditional mean or preserving covariance

structure of the outputs. Such methods do not adequately capture the full range of variability

in the joint output distribution, as illustrated in Figure 8.1(a).

The inability of standard regression-based approaches to reproduce the shape of the true

distribution of output variables, even for univariate response variables, is well-documented

[5]. Univariate distribution-driven approaches such as quantile mapping (QM) [108] and sta-

tistical asynchronous regression (SAR) [92] have been developed to address this limitation,

but the accuracy of these approaches is generally poor since they are not designed to min-

imize residual errors. Quantile mapping approaches map a univariate predictor variable x
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to its corresponding response variable y by transforming the cumulative distribution func-

tion (CDF) of x to match that of y. More recently, a bivariate quantile mapping approach

(BQM) (see Figure 8.1(b)) has been developed to generate bivariate response values that

mimic the joint distribution of the observed response data [61]. However, as will be shown

in this chapter, the residual error is significantly worse when compared to regression-based

methods because the position and rank correlation between the predictor and response vari-

ables remain invariant under QM-based transformation, which in turn, hinders its ability

to minimize residual errors. Thus, unless the predictor variable has a high rank correlation

with the response variable, the residual error upon applying QM-based approaches is likely

to be large.

This suggests a possible hybrid approach to improve both the residual errors and dis-

tribution fitting is by first applying a regression-based method to transform the predictor

variables so that their rank correlation with respect to the response variable is high, before

applying quantile mapping to adjust for the fit in distribution. However, maximizing the

rank correlation of the data points is necessary but not sufficient condition for improvement

in the residuals for QM, unless the response values of the data points are uniformly spaced.

Hence, the need for position regularization, that would prioritize the prediction accuracy of

data points whose position, when incorrectly estimated, results in high residual. The term

‘position’ here refers to the geometric quantile of a data point with respect to a multivariate

distribution, which is analogous to the quantile of a data point in the case of univariate dis-

tribution. In this chapter, a position-regularized, multi-output prediction framework called

Multi-Output Contour Regression (MCR) is presented. MCR addresses the dual objective of

preserving the associations among the multiple output variables as well as minimizing resid-

uals. MCR is able to achieve the dual objective by applying a novel, position-regularized
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regression method, followed by geometric quantile mapping (GQM) to improve the fit in

distribution. The position-regularized regression helps to alleviate the limitation associated

with the rank invariant property of QM, which contributes to the high residuals of QM-based

approaches. MCR additionally addresses the challenge of ensuring that its prediction of the

response variables will always abide by the constraints of the actual response data. MCR is

also not limited by the number of predictor variables that may be used nor does it require

them to have high correlation with the response variables, unlike quantile mapping. The

flexible nature of our framework allows for the incorporation of other loss functions such as

the L1 loss used in quantile regression.

8.2 Preliminaries

Let X = [x1, ..,xn]T be an (n × d) data matrix and Y = [y1, ..,yn]T be the corresponding

(n× q) response matrix, such that xi ∈ <d and yi ∈ <q are column vectors representing the

respective values of predictor and response variables for the ith data point. The objective of

multi-output regression (MOR) is to learn a target function h(x, Ω) that best estimates the

multi-output response y, where Ω = (ω1, .., ωq) is the parameter set of the target function.

For a univariate random variable X ∈ <, let FX(x) be its cumulative distribution func-

tion (CDF), i.e., FX(x) = P (X ≤ x). The corresponding α-quantile of X is given by

inf {x ∈ < : FX(x) ≥ α}. Intuitively, each quantile indicates the value in which a certain

fraction of the data points are below it, and thus, provides a measure of its position in the

data. For example, the median, which is equivalent to the 0.5-quantile, is the central location

of the distribution. More generally, the position [84] of data point z relative to a set of points

Z = (z1, .., zm)T is given by
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pZ(z) = 1
m

∑m
i=1 η(z− zi) where η(w) =





w
‖w‖ , if w 6= 0

0, if w = 0

For univariate data, the position pZ(z) is equal to 2FZ(z)−1, where FZ(z) is the cumulative

distribution function of Z. The multi-dimensional equivalent of quantile function is geometric

quantile [32].

Distribution correction methods such as quantile mapping is only applicable if one can

match the position of a data point in one univariate distribution (say for x) to its corre-

sponding position in another univariate distribution (say for y). This is possible using the

preceding definition of position for univariate data since the values of pZ are always fixed in

the range between [−1, +1] irrespective of the values in Z. Unfortunately, when extended

to multivariate positions, the range of values for pZ may vary depending on the values in Z.

To overcome this problem, He et al. [61] introduce the notion of a stationary position by

iteratively applying the following position transformation function until convergence:

pk
Y (z) =

1

κn

n∑

i=1

pk−1
Y (z)− pk−1

Y (yi)

‖ pk−1
Y (z)− pk−1

Y (yi) ‖
, p1

Y (z) =
1

κn

n∑

i=1

z− yi

‖ z− yi ‖
(8.1)

Here each component in yi must be converted to its marginal rank first before applying

the position transformation function. Marginal rank refers to the rank of the data point

divided by the largest rank and then normalized to the range [−1, 1]. The normalization

is done to negate the effect of variables having values that correspond to different ranges.

Data points with normalized marginal rank close to ±1 correspond to extreme values for the

particular variable, while those close to 0 are located near the median of the distribution. In

practice, the number of iterations needed to reach a stationary distribution is quite small,
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typically K > 5 [61]. For univariate data, it can be shown that Pk reaches a stationary

distribution at k = 1.

The term κ in Equation (8.1) is a normalization factor to ensure the distribution of the

geometric positions is supported in a q-dimensional unit hypersphere. In the case of bivariate

response variable Y, the stationary geometric quantile distribution is circularly symmetric

around the origin, with the radial density of r/
√

1− r2 for r ∈ (0, 1) [61]. Therefore,

κ =

∫ 1

0

r√
1− r2

dr ⇒ κ =
π

4

In this chapter, the position of the multivariate data points in Y is denoted as PY =

[pY (y1), ..,pY (yn)]T , where pY (yi) ∈ [−1, 1]q. The notation zXY (y) = p−1
X (pY (y)) is used

to represent a point in the domain of X that has the same geometric quantile position as

the data point y in Y, i.e., pX(zXY (y)) = pY (y). Consequently, zY Y (yi) = yi. Finally,

let ZXY (y) = [zXY (y1)
T , .., zXY (yn)T ]T be the geometric quantiles in X that correspond

to the data points in Y .

8.2.1 Properties of the Geometric Quantiles

Proposition 8.2.1. For q = 1, Pk reaches a stationary distribution at k = 1.

Proof. Based on Equation 8.1, for q = 1, Pk
X(x) computes rank of the univariate variable

x, scaled to the range (−1, 1). Since, each iteration of Pk
X(x) re scales the marginal rank to

range (−1, 1), the rank is preserved. Hence, for q = 1, Pk reaches a stationary distribution

at k = 1. ♦

Proposition 8.2.2. Multivariate distributions that are movement transformations of each

other have the same P k distribution.
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Proof. Geometric quantile distribution is invariant under movement transformation, if, given

X = [x1, ..,xn] and Y = [y1, ..,yn], having geometric quantile distribution PX and PY ,

PX = PY . Since, X and Y are scalar transformations of each other, by definition ∃∆ ∈ Rq

s.t., X = Y + ∆. Given, zY ∈ Y such that

p1
Y (zY ) =

1

κn

N∑

i=1

zY − yi

‖ zY − yi ‖
⇒ p1

Y (zY ) =
1

κn

N∑

i=1

zX −∆− xi + ∆

‖ zX −∆− xi + ∆ ‖

⇒ P k
X = P k

Y ∀ k. Hence P k is invariant under movement transformation. ♦

Proposition 8.2.3. Multivariate distributions that are scale transformations of each other

have the same PK distribution.

Proof. Geometric quantile distribution is invariant under scale transformation, if, given X =

[x1, ..,xn] and Y = [y1, ..,yn], having geometric quantile distribution PX and PY , PX = PY .

Since, X and Y are scale transformations of each other, by definition ∃α ∈ R s.t., X = αY .

Given,

P 1
X(zx) =

1

κn

∑

t∈X

zx −X(t)

‖ zx −X(t) ‖

⇒ P 1
X(zx) =

1

κn

∑

t∈X

αzY − αY (t)

‖ αzY − αY (t) ‖ ⇒ P 1
X(zx) =

1

κn

∑

t∈X

α(zY − Y (t))

α ‖ zY − Y (t) ‖

⇒ PX = PY , which means that PK is invariant under scale transformation. ♦
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8.2.2 Quantile Mapping-Based Approaches

Quantile mapping transforms a univariate predictor variable X to its corresponding response

variable Y by adjusting the cumulative distribution function FX to match that of FY :

QM : ŷ = F−1
Y (FX(x)) (8.2)

It can be shown that QM preserves the rank correlation1 between the variables. For instance,

consider the example in Table 8.1 where y is the response variable and x1, x2 are two

independent predictor variables. Let QM(x1) and QM(x2) be the corresponding QM outputs

for x1 and x2, respectively. If we sort the vectors in ascending order, it is easy to see that

the resulting rank vectors are invariant under QM transformation. As a result, the rank

correlation between x1 (or x2) and y is identical to the rank correlation between QM(x1)

(or QM(x2)) and y. Furthermore, the empirical CDF for QM(x1) as well as QM(x2) are

identical to that for y, i.e., FY = FQM(x1) = FQM(x2).

Even though quantile mapping was able to replicate the empirical distribution of y per-

fectly, QM(x1) has a higher residual error than QM(x2). This can be explained by the lower

rank correlation between x1 and y compared to the rank correlation between x2 and y. Note

that the inverse relationship between rank correlation and residual error holds only if the

values of the response variable are uniformly spaced. For example, if the response value y for

the fourth data point changes from 0.4 to 0.7, the residual error for QM(x2) increases from

0.02 to 0.32, and is larger than the residual error for QM(x1), which remains at 0.06. In this

case, a high rank correlation for x2 does not translate to lower residual error when applying

quantile mapping. A formal proof showing the relationship between rank correlation and

1Examples of rank correlation measures include Kendall τ and Spearman’s ρ coefficients.
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Table 8.1: Quantile Mapping Example

x1 x2 y QM(x1) QM(x2)
0.6 0.7 0.2 0.1 0.2
0.8 0.6 0.1 0.3 0.1
0.7 0.9 0.3 0.2 0.4
0.9 0.8 0.4 0.4 0.3

SSR= 0.06 0.02

x3 x4 y QM(x3) QM(x4)
0.7 0.6 0.2 0.2 0.1
0.6 0.7 0.1 0.1 0.2
0.9 0.8 0.3 0.7 0.3
0.8 0.9 0.7 0.3 0.7

SSR= 0.32 0.02

residual error for uniformly spaced data is given in the next section.

Since most data sets are non-uniform, maximizing rank correlation is not a sufficient

condition to ensure a low residual error. Nevertheless, the data points were observed to

be associated with quantiles that are located in sparse regions (i.e., far from their next

closest quantiles) will contribute to higher residual error when incorrectly ranked compared

to data points associated with quantiles located in dense regions. This is demonstrated by

the example shown in Table 8.1, where both x3 and x4 have the same rank correlation with

respect to the response variable y, yet have different SSR. The response values for the

first three data points (0.2, 0.1, and 0.3) are closer to each other than the last data point

(0.7). An incorrect ranking of the fourth data point will lead to much higher residual error

compared to the first three data points. Since x3 ranked the fourth data point incorrectly,

its residual error is larger than x4 even though they both have the same rank correlation.

This suggests a possible heuristic for improving both rank correlation and residual error by

emphasizing on data points that contribute to high residual errors in prediction if ranked

incorrectly.

8.2.3 Rank Correlation and Residual Errors of Quantile Mapping

This section presents several properties of the QM approach with respect to the rank corre-

lation and residual error of its output. First, quantile mapping was shown to preserve the
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rank correlation between the predictor and response variables.

Proposition 8.2.4. Rank correlation is invariant under QM transformation if the values of

the predictor and response variables in a data set are unique.

Proof. Consider a data set D = {(xi, yi)}ni=1 that contains n points. Let ŷi be the quantile

mapped value for the data point with predictor variable xi. To prove that rank correlation

is invariant under QM transformation, it is sufficient to show that the rank for xi is identical

to the rank of ŷi after quantile mapping. Without loss of generality, assume the data points

in D are sorted in increasing order of their x values. Thus, the rank for data point xi is i

(since the x values are unique). Equation (8.2) can be rewritten as follows

FY (ŷi) = FX(xi)

Since FX(xi) = i/n, therefore FY (ŷi) = FX(xi) = i/n. Given that the response values yi

are distinct, the rank for ŷi is also i. ♦

Next, the relationship between rank correlation and residual error of QM, for data sets

with uniformly spaced response values is illustrated.

Proposition 8.2.5. The residual error of QM is negatively proportional to the rank corre-

lation given a data set with uniformly spaced response variable.

Proof. Consider a data set D = {(xi, yi)}ni=1 that contains n points. Let ri be the rank of

xi and si be the rank of the response value yi. To simplify the discussion, it is assumed that

the ranks in r and s are unique. Since y is uniformly spaced, it can be easily shown that

yi = sic1 + c0, where c0 and c1 depend only on the minimum and maximum values in y.
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Following Proposition 1, since QM preserves the rank of the data point xi, ŷi = ric1 + c0.

The Spearman rank correlation between x and y can be written as

ρ =

∑
i (ri − r̄)(si − s̄)√∑

i (ri − r̄)2
∑

i (si − s̄)2

which can be further simplified as ρ = (
∑

i risi + c3)/c2 where, c2 and c3 are constants for

a fixed n. Since the QM output ŷ is a reordering of y, its residual error can be computed

as SSR =
∑

i (yi − ŷi)
2 = 2(

∑
i y2

i −
∑

i yiŷi). Furthermore,
∑

i yiŷi = c21
∑

i risi + c4.

where, c4 depends on c0, c1, and n. Therefore, SSR = 2(
∑

i y2
i − c21c2ρ − c3 − c4). Since,

c2 is a non-negative constant, c21c2 will always be non-negative. Hence, SSR is negatively

proportional to ρ for a given data set with uniformly spaced y. ♦

Although Proposition 2 is applicable only to uniformly spaced response variable, there are

other situations where the residual error of QM output can be reduced if its rank correlation

increases, as will be shown in the next proposition.

Proposition 8.2.6. Correcting the rank of xi to match the rank of its corresponding response

variable yi, maintains, if not, improves the residual error of QM output, as long as it does

not deteriorate the ranks of other data points in x.

Proof. Given the response variable y, let ŷ be the QM output of predictor variable x.

The sum squared residual of QM(x) is SSRx =
∑

i (yi − ŷi)
2 where, the residual error

of the ith data point εxi = yi − ŷi = F−1
Y (FY(yi)) − F−1

Y (FY(ŷi)). Following Equation

(8.2), we have FY(ŷi) = FX(xi). Consequently, the residual error εxi can be rewritten as

εxi = F−1
Y (FY(yi))− F−1

Y (FX(xi)). Assuming the residual error of the QM output for x is

non-zero, there must exist a data point xj such that FY(yj) 6= FX(xj). Next, consider an
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improved vector x′, which is a reordering of the values in vector x subject to the following

two conditions: (1) x′i is equal to xi if the ith data point of x is ranked correctly. i.e.,

x′i = xi if FX(xi) = FY(yi). (2) If ith data point of x is not ranked correctly, then either

x′i = xi or x′i = F−1
X (FY(yi)). Note that there must be at least one data point ranked

incorrectly in x but correctly x′. The second condition also implies that any data point that

has been reordered, it must be ranked correctly. Thus, for all the data points in condition

(1), ε2
xi

= ε2
x′i

since their ranks remain unchanged. On the other hand, for all the data points

in condition (2), ε2
xi
≥ ε2

x′i
since FX(x′i) is either the same as FX(xi) or FY(yi). Therefore,

∀i, ε2
xi
≥ ε2

x′i
. Hence, SSRx ≥ SSRx′ . Thus, by correcting the ranks of those data points

that do not have the same rank as its corresponding response value, while ensuring the ranks

of all other data points remain the same, the SSR of QM output can be improved. ♦

Even though the above proposition suggests that one can maximize rank correlation

and improve residuals simultaneously, this requires a flexible target function that allows all

possible orderings of x. For linear functions, it might not be possible to produce a reordering

of values in x without affecting the ranks of other data points. Thus, an alternate scheme was

proposed that focuses on correcting the ranks of data points associated with high residuals,

which is explained in the next section.

8.3 Multi-Output Contour Regression Framework

(MCR)

Since QM and regression-based approaches have their own distinct advantages which have

been successfully exploited in a hybrid manner by approaches such as CR, we propose a
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framework that extends the intuition behind hybrid approaches that exploits the unique

advantages of both QM and regression, to work in a multi-output setting. The approach

uses a position regularized regression function h(x, Ω̂) that prioritizes matching the positions

of output to best match the positions of the observed response data. This step is followed by

correcting the geometric quantiles of the output from the previous step to match the observed

response data using the intuition of QM. This hybrid approach addresses the limitation of

QM regarding the number of predictor variables that may be used as well as requirement of

the predictor variables being highly correlated to the response variable. The hybrid approach

was further exposed to be flexible enough to work in a multi-output setting so as to be able

to capture the multi-output associations that are often ignored.

To prioritize improving the positions of the output, the proposed multi-output contour

regression (MCR) framework learns the regression function h(x, Ω̂). The regression function

h(x, Ω̂) consists of two components. The first component is similar to conventional regression

loss function where the data matrix is made to regress with respect to the observed response

variable. This component emphasizes minimizing residual error of the regression function.

The second component of h(x, Ω̂) is the position regularizer that helps improve rank

correlation of h(x, Ω) and y. At a first glance, one would expect the second term to be

regressing on the position of the data points. Instead of regressing on the position of the

data points, we regress on the geometric quantiles of the data points obtained by inverse

mapping their positions to the output response space. This is done so that the position

regularizer assigns a larger penalty to those data points whose position when incorrectly

estimated, results in a larger minimum residual errors. To accomplish this, the data matrix
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is made to regress on z
Ŷ Y

, where,

ẑ
Ŷ Y

(y) = p−k
Ŷ

(pk
Y (y)) (8.3)

is the geometric quantile value in the h(x, Ω̂) regression output space that corresponds to

the position of the observed response variable y.

The regression function of MCR is shown in Equation (8.4),

min
Ω

n∑

i=1
(γL(h(xi, Ω),yi) + (1− γ)L(h(xi, Ω), z

Ŷ Y
)) (8.4)

where 0 ≤ γ ≤ 1 is a user defined parameter that may be used for either prioritizing fidelity

of regression accuracy or its position correlation.

L can be any generic loss function such as ordinary least square (that multiple linear

regression adopts), or quantile mapping (if certain quantiles are to be prioritized overs others,

such as in the case of a heavy tail distribution).For instance, when the loss function L is

ordinary least square, Equation 8.4 takes the form

min
Ω

q∑

j=1

n∑

i=1
(γ(xT

i Ωj − yi)
2 + (1− γ)(xT

i Ωj − z
Ŷ Y

)2)

which corresponds to the following matrix form

Ω̂ = arg min
Ω

tr(γ(XΩ−Y)T (XΩ−Y) + (XΩ− Z
Ŷ Y

)T (XΩ− Z
Ŷ Y

))

The regression parameters Ω̂ is learnt in an iterative manner. At each iteration, the

regression output space from the previous iteration is used to compute z
Ŷ Y

in the second
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component of the regression function h(x, Ω̂). For the very first iteration, the regression

output space is that of regular multiple linear regression.

Once h(x, Ω̂) is learnt, the MCR prediction for a given data point x having corresponding

observed multi-output response y and a regression estimation of ŷ = h(x, Ω̂) is obtained by

inverse geometrically quantile mapping pk
Ŷ

(ŷ) to its corresponding value in the observed

response variable space, to give the MCR prediction ẑ
Y Ŷ

,

MCR : ẑ
Y Ŷ

= p−k
Y (pk

Ŷ
(h(x, Ω̂))) (8.5)

where, p−k
Y (pk

Ŷ
(ŷ)) maps the stationary geometric quantile position of h(x, Ω̂) to its

corresponding data point in Y.

To summarize, multi-output contour regression (MCR) performs multi-output regression

of the predictor variables such that the position of its output is highly correlated with

respect to position of the observed response variable, thereby reducing position errors of the

multi-output regression results. This multivariate regression output is then mapped to its

corresponding geometric quantile counterpart in the observed multi-output response space

using geometric quantiles. The rationale behind using the regularized regression results,

prior to performing multi-output geometric quantile mapping in MCR, is to improve on SSR

by increasing the correlation among the multivariate ranks of the predictors and response

variable.

8.3.1 Estimating Inverse Geometric Quantile Position

The value ẑ(p) that corresponds to a given geometric quantile position p, in a multivariate

distribution FY i.e., pY (p), is empirically computed by minimizing the generalized multi-
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variate quantile loss function [32]

ẑ(p) = arg min
z∈<q

n∑

i=1
(‖yi − z|+ < p,yi − z >) (8.6)

where, p ∈ <q and < ., . > denotes the Euclidean inner product. So long all the values of yi

does not fall on the same line, ẑ(p) will be unique for a given p for q ≥ 2 [32]. Algorithms such

as Newton-Raphson’s method can be used to solve the above loss function geometric quan-

tile ẑ(p) using the following update ẑ ← ẑ− δ
δ′ where, δ =

∑n
i=1((nκ)p−‖z−yi‖−1(z−yi))

δ′ =
∑n

i=1 ‖z− yi‖−1(Iq − ‖z− yi‖−2 × (z− yi)(z− yi)
T )

For a univariate distribution, FY , it can be easily shown that equation (8.6) boils down

to the same loss function used to identify the αth regression quantile in a linear regression

setup for quantile regression [77], where 0 < α < 1 and p = 2α−1. i.e,
∑n

1 (|yi−z|+p(yi−z))

is minimized for z that corresponds to the αth quantile of Y .

8.3.2 Alternative Approximation-Based Approach for MCR

If one can make the assumption that given the position (p) of a test data point (ytest) that

belongs to the distribution FY , and ∃yi ∈ Y such that ytest ' yi, then the search space for

ẑ = ytest can be limited to data points in Y.

Given that the search space for ẑ is finite it will not always possible to find the exact same

point in FY using the loss function δ, as it returns a vector. Alternatively, the following

range bound approximation that is equivalent to Equation 8.6, can be used to find the best
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Figure 8.2: Relative computation time of the various approximation-based approaches for
estimating inverse geometric quantile positions.

solution [61, 32].

arg min
z

n∑

i=1
{‖ yi − z ‖ +

1

κ
(yi − z)Tp} (8.7)

where κ in the scaling factor chosen in Equation (8.4)

As shown in the experiment section, there was only a marginal performance deterioration

in the solution obtained from the above approximation, due to sufficient amount of training

data points. Another approximation approach with even less tighter bounds than Equation

8.7, having O(n) time complexity is to use the following Euclidean approximation.

ẑ = arg min
yi

((p− pY (yi))(p− pY (yi))
T ) (8.8)

The R-limited approximation approach (Equations 8.7) as well as the Euclidean approxima-

tion approach (8.8) show considerable improvement in the computation time across varying
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training size (Figure 8.2.a) and test size (Figure 8.2.b), with minimum deterioration in terms

of accuracy of the inverse geometric quantile positions estimated.

8.4 Variations of MCR

As mentioned above, when the loss function L is ordinary least square, equation 8.5 takes

the form

min
Ω

q∑

j=1

N∑

i=1
(γ(xT

i Ωj − yi)
2 + (1− γ)(xT

i Ωj − z
Ŷ Y

)2)

which corresponds to the following matrix form

Ω̂ = arg min
Ω

tr(γ(XΩ−Y)T (XΩ−Y) + (XΩ− Z
Ŷ Y

)T (XΩ− Z
Ŷ Y

))

The following subsection demonstrates the use of alternative loss functions in the MCR

framework.

8.4.1 Quantile Multi-Output Contour Regression (MCRQ)

An alternative to using ordinary least square loss function, which is well suited when the

response variable has a non-uniform distribution such as a heavy tail, is to use quantile

regression (QR) loss function for L so as to prioritize the rank correlation for the ranks that

have the highest variance and corresponding highest impact on residual errors while quantile

mapping, if incorrectly ranked [77]. Additionally, MCRQ may also be suited to estimate the

extremes of Y , by prioritizing the correct estimation of ranking extreme values.
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The objective function of QR can be adopted by MCR to obtain the following loss function

n∑

i=1
(ρτ1(yi − xT

i β) + ρτ2(zi − xT
i β))

where,

ρτ (u) =





τu u > 0

(τ − 1)u u ≤ 0

8.4.2 Non-linear Multi-Output Contour Regression (MCRNL)

Unlike the above mentioned linear interpretations of MCR, MCRNL uses a non-linear ap-

proach. By mapping the predictor variable X to a higher dimension feature space F to give

φ , i.e.,

φ : X ∈ Rd → F ⊆ RN

where N >> d, one can transform the regularized least square regression to feature space F

using the kernel K. Similarly, the predictor variables of MCR can be mapped to a higher

dimension feature space F by using the ridge counterpart of the loss function of MCR.

β = (φ(X)T φ(X) + λI)−1(γφ(X)T y + (1− γ)φ(X)T z)

⇒ β = λ−1φ(X)T (γy + (1− γ)z − φ(X)β) = φ(X)T α

⇒ α = (G + λI)−1(γy + (1− γ)z)

where, G = φ(X)φ(X)T , Gij = 〈φ(xi), φ(xj)
T 〉 = K(xi, xj).
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8.5 Experimental Results

The objective of the experiments was to evaluate the ability of MCR in replicating the asso-

ciations among multiple climate response variables while minimizing sum square residuals.

All the algorithms were run using climate data obtained at fourteen weather stations in

Michigan, USA. The response variables used were maximum temperature, minimum temper-

ature, and the total precipitation for each day spanning twenty years. The predictor variables

used in this study are simulated climate data obtained from regional climate models (RCM)

that best correspond to the observed response variables at each of the fourteen weather sta-

tions. Three different RCM data sets for each of the climate stations were obtained from

North American Regional Climate Change Assessment Program (NARCCAP) [2]. The three

RCMs used are the Canadian Regional Climate Model (CRCM), the Weather Research and

Forecasting Model (WRFG) and the Regional Climate Model Version-3 (RCM3). For the

purpose of the experiments, there were a total of 126 data sets with univariate response

variables, 126 data sets with bivariate responses and 42 data sets with trivariate responses.

8.5.1 Experimental Setup

Twenty year of predictor and response data, spanning the years 1980-1999 was split into

two parts for training and testing. For the purpose of the evaluation of the relative skill in

preserving associations among the multi-output responses, popular regression and quantile

mapping approaches such as MLR, Ridge regression (Ridge), QM, EDCDFm, MOR, CR,

BQM as well as ad-hoc approaches that sequently combine regression and quantile mapping

approaches were used as baseline. An example of the ad-hoc baseline approach used is MOR

in combination with BQM (RBQM) and MLR and QM (RQM). γ was set to 0.5 for all
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experiments. For CR and MCR based experiments, the maximum number of iterations was

set to ten.

After discarding the missing values, each experiment run for each of the stations, across

all the data sets, had a minimum of one thousand training and test data points. All the

results provided in the following section are on test data (out-of-sample results). Kendall

τ rank correlation and Spearman ρ rank correlation were the two rank correlation metrics

used for evaluation univariate rank correlation. In the following experiment section, results

of only one of the two rank correlation metrics were included, when their results were very

similar. Root mean square error (RMSE), was used as a metric to compare the performance

of the various approaches evaluated in terms of its output residual errors. Two dimensional

and three dimensional scatter plots were used to visualize the relative skill of the various

approaches in preserving the associations among the multi-output responses.

8.5.2 Results

8.5.2.1 Univariate MCR

The rank correlation of the various response variables were computed in a single output MCR

setting and it was found that across all the different data sets and stations and response

variables (i.e, 126 datasets), MCR consistently improved the rank correlation across both

rank correlation metrics. The 126 individual data sets that corresponded to univariate

response data were grouped into nine larger data sets, where each of the larger data sets

were a grouping of data sets that shared the same response variable as well as the same RCM

source for the predictor variables.

Figure 8.3 is a box plot representing the percentage of stations in each of the nine data
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Figure 8.3: Box plot of the percentage stations where MCR showed improvement over single
output baselines, in terms of Kendall τ rank correlation and RMSE, across all RCM’s and
variables.

sets where the rank correlation regularizer used in Equation 8.4, improved rank correlation

and reduced residuals when compared to baselines approaches.

The box plot in Figure 8.4 shows that in spite of MCR’s reported improvement across

majority of stations in terms of τ and RMSE, for both regression and quantile mapping based

approaches, the improvement was not significant when compared to the regression based

approaches. However, the rank correlation regularizer showed a significant improvement in

terms of RMSE at each station when compared to the corresponding quantile mapping based

approaches.

8.5.2.2 Bivariate MCR

Bivariate modeling for all the combinations of bivariate response variables were evaluated.

As shown in Figure 8.5, MCR performed best in replicating both the bivariate associations
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Figure 8.4: Box plot of MCR’s improvement over baseline approaches in terms of Kendall τ
rank correlation and RMSE, across all RCM’s and variables.
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Figure 8.5: Scatter plot portraying the fidelity of forecast values of various approaches
replicating the observed associations among the bivariate temperature response variables.
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Table 8.2: Performance (RMSE) of bivariate MCR over baseline approaches

RMSE
Data set % of stations Avg.improvement

outperformed across stations
baseline over baseline

MOR QM BQM MOR QM BQM
WRFG1 29 100 100 -0.06 0.18 0.17
WRFG2 07 100 100 -0.08 0.16 0.16
WRFG3 00 100 100 -0.07 0.31 0.30
CRCM1 93 100 100 0.06 0.25 0.25
CRCM2 71 100 100 0.03 0.23 0.23
CRCM3 07 100 100 -0.02 0.35 0.34
RCM31 43 100 100 -0.02 0.20 0.20
RCM32 36 100 100 -0.03 0.19 0.18
RCM33 00 100 100 -0.07 0.31 0.30

and minimizing SSR, although BQM performed as well in terms of replicating the bivariate

associations. Regression based approaches (both SOR and OMR) fared poorly in preserving

associations in the 2D space, while single output quantile mapping based approaches, were

very sensitive to correlation of the predictor variables with response resulting in poor bivari-

ate associations in spite of replicating the marginal distributions of the individual responses

very well.

In terms of residuals, MCR had considerably lower residuals when compared of the var-

ious quantile mapping baseline approaches as shown in Table 8.2. But as expected, MCR

showed marginal increase in residuals when compared to the respective SOR and MOR based

approaches.

8.5.2.3 Trivariate MCR

The performance of modeling the association among three response variables was also eval-

uated and is shown in Figure 8.6. The performance is compared against single output, and

multiple output models. We also use as a baseline, an trivariate extension of the bivariate
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Table 8.3: Performance (Kendall τ) of bivariate MCR over baseline approaches

Kendall τ
Data set % of stations Avg.improvement

outperformed across stations
baseline over baseline

MOR QM BQM MOR QM BQM
WRFG1 64 100 100 0.03 0.40 0.41
WRFG2 79 100 100 0.04 0.38 0.39
WRFG3 0 100 100 -0.01 0.75 0.67
CRCM1 100 100 100 0.13 0.52 0.53
CRCM2 100 100 100 0.12 0.49 0.52
CRCM3 14 100 100 -0.01 0.78 0.73
RCM31 79 100 100 0.06 0.46 0.46
RCM32 79 100 100 0.06 0.47 0.45
RCM33 0 100 100 -0.01 0.81 0.78
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Figure 8.6: Three dimensional scatter plot of the observed associations among maximum
temperature, minimum temperature and precipitation as well as the respective forecasts
made by the various single output and multiple output approaches.
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BQM approach, as an additional baseline. Along with MCR, the trivariate extension of BQR

fared best in replicating the observed associations among three variables when compared to

the baseline approaches.

Additionally, MCR was also able to improve upon its BQM counterpart in terms of

reduction of residuals. MCR produced lower RMSE for all the station across all the tri-variate

datasets with an average reduction of RMSE in excess of 10%. The average improvement of

the three variables in terms of rank correlation τ was found to be 0.41.

8.6 Conclusions

This chapter present a multi-output regression framework extension of the single output

regression framework presented in Chapter 7. The multi-output regression framework pre-

serves the general association patterns among multiple response variables while minimizing

the overall residual errors by coupling regression and geometric quantile mapping. The chap-

ter demonstrates the effectiveness of the framework in significantly reducing residuals while

preserving the joint distribution of the multi-output variables, over the baseline approaches

in all the climate stations evaluated.
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Chapter 9

Conclusions and Future Work

In this thesis, a number of multivariate frameworks are presented that improve upon existing

regression based approaches used for generating projections, by integrating multiple objec-

tives pertaining to the unique characteristics of response variable, as well as the expectations

of a long-term projection.

The four primary multivariate frameworks, as well as its logical extensions, address the

following four primary challenges. The first framework addresses the challenge of modeling

response variables with irregular distribution characteristics, in particular, zero-inflated re-

sponse variables. The second framework addresses the challenge of extremes in a distribution,

by prioritizing the conditional quantile associated with extreme values. The third framework

addresses the challenge of building a regression framework that preserves the distribution

characteristics of the response variable, so as to provide an unbiased projection across all

the quantiles of the distribution. The fourth framework extends the intuition behind the

above-mentioned single output distribution preserving framework to an multi-output set-

ting, such that not only is each projection unbiased, but it also maintains the relationships

among multiple outputs.

Given that most of the emphasis of the evaluation of the frameworks presented in this

thesis assumed a linear relationship between the predictor and response variables, a detailed

evaluation of the performance, while assuming a non-linear relationship needs to be explored
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as well. In the frameworks presented in Chapter 3 and Chapter 4, Pearson correlation

coefficient was chosen as the default similarity measure. As future work, the impact of

the choice of kernel/similarity measures chosen, needs to be evaluated. Exploration of non-

linear approaches to further improve the precision and recall of zero and non-zero valued data

points, would provide new insights. Given the availability of numerous sources of available

data, there is extensive scope for further exploiting the available heterogeneous datasets in

modeling zero-inflated data.
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Figure 9.1: Relative likelihood of identifying large precipitation residuals

The main challenge in identifying erroneous values within the training dataset is being

able to differentiate it from valid anomalies. Also, a model that cleans spurious data during

model building should also be able to do so for out-of-sample data upon which the model is to

be applied. Discarding data points due to a faulty value in one of the predictor variables may

result in a very small training data set. This is all the more the case when the occurrence of

errors across predictor variables are independent of each other and there are a large number of
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predictor variables– even if the percentage of error values for any individual predictor variable

is relatively small. Often in many practical applications due to the scarcity of available data

needed for training a model, discarding large amount of data could be unfeasible. The other

drawback of dropping values that may be erroneous is that the model’s response value for

such data points in the test set may be extremely poor on account of not having been trained

on similar data points.
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Figure 9.2: Relative likelihood of identifying days with large residuals

A possible approach for future work is therefore to build regression models in the presence

of uncertain data to identify data points that have a high likelihood of being erroneous,

based on its relationship with other corresponding variables, and assign weights for each

data point that is a function of this uncertainty similar to weighted regression where weights

are the inverse of the variance observed for the respective response variable. Unlike weighted

regression, the weights chosen can be a function of the fidelity of the values for the data

points.

175



As shown in figure 9.1, it was observed that data points whose predictor variables seemed

anomalous with respect to the rest of its corresponding predictor variables were far more

likely to have large residuals for the response variable. In the case of modeling precipitation

using multiple linear regression, it was found that the data points that belonged to the top

5% of those likely to have an erroneous value for the precipitation predictor variable were

thrice as likely to have large residuals for the response variable.

Figure 9.2 shows that the relative likelihood of a data point being one with a high residual,

increases as a function of the number of predictor variables for the data point being erroneous

increases.
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