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ABSTRACT 

FUNDAMENTAL STUDIES AND ENGINEERING MODELING OF HYDROGEN 

BONDING 

 

By 

Aseel Mohamed Ahmed Bala Ahmed 

This project aims to enhance the engineering modeling of hydrogen bonding, or association, by 

blending ab initio quantum calculations, fundamental molecular level findings from experimental 

techniques, and thermodynamic models. Because of the ubiquity of hydrogen bonding, 

applications for an improved association model are extensive, ranging from drug design to plastics 

manufacturing. Therefore, a substantial amount of work has been aimed at improving traditional 

thermodynamic tools, which often fail to capture the behavior of associating systems accurately. 

To guide models, spectroscopic techniques have been leveraged to gain insight into the interactions 

between molecules in the liquid phase, but interpretation is difficult. Moreover, with the 

advancement of computational chemistry technology, molecular dynamics (MD) and quantum 

mechanical (QM) calculations have also been utilized to understand the characteristics of hydrogen 

bonded clusters. However, few studies have combined all 3 techniques (the thermodynamic model, 

spectroscopy and ab initio calculations) in a rigorous way. To this end, an activity coefficient 

model for association is developed using Wertheim’s perturbation theory and its capabilities and 

limitations are explored with parameters from literature. Furthermore, a sequential MD and QM 

protocol is designed which facilitates the interpretation of the hydroxyl vibration in infrared 

spectroscopy and a method is developed to quantify the entire band. Finally, the methods are used 

to calculate the value of the association constant for an alcohol + alkane system. 

 

 



iii 

 

This dissertation is dedicated to the memory of my mother, 

Amal Ziada, who gave everything and then some.



iv 

 

ACKNOWLEDGEMENTS 

 

The work documented in this dissertation would not have been possible without the contributions 

and support of the following individuals. First and foremost, I owe my deepest gratitude to my 

advisor, Dr. Carl Lira, whose passions for thermodynamics and teaching have been a tremendous 

inspiration to me. His guidance, encouragement and patience were absolute, and I am thankful to 

have benefitted from his mentorship throughout my time as a graduate student. I would also like 

to thank my committee members, Drs. James “Ned” Jackson, Dennis Miller and Andre Lee for 

their valuable insight, assistance and contributions. 

I acknowledge with gratitude the National Science Foundation for funding the project as well as 

our collaborators in industry, Drs. Tim Frank, Paul Mathias, Navin Patel, Eric Cheluget, Dung Vu, 

You Peng, and Suphat Watanasiri, for their input and advice. I am also grateful to have worked 

with my colleagues and friends, William G. Killian, Jackson Storer, Renming Liu and Dr. Lars 

Peereboom, who have assisted with data collection and contributed greatly to this work.  

In my time at Michigan State University, I have been fortunate enough to meet many wonderful 

people who became my support system, sounding boards and friends. I would like to thank Amrita 

Oak, Souful Bhatia, Annalisa Grunwald, Iman Nezam, Neda Rafat, GracieLou Klinger and Aritra 

Sarkar for the many laughs, sound advice and great company.  

Finally, I would like to express my sincerest gratitude for the life-long love and encouragement of 

my parents, Amal Ziada and Mohamed Ahmed Bala, my siblings, Asem, Leena, and Sarya, and 

my aunt, Iman Ziada. To this list, I add the friends that have played just as great a role in this 

journey: Sarah Gard and Fatima El-Hussain. I am thankful for their kindness, compassion and 

unwavering support throughout the many years of our friendship. 



v 

 

TABLE OF CONTENTS 

 

 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ........................................................................................................................ x 

KEY TO SYMBOLS AND ABBREVIATIONS ......................................................................... xv 

Chapter 1. Introduction to Thermodynamic Modeling of Associating Systems ............................ 1 
1.1. Background .......................................................................................................................... 3 

1.1.1. Equations of state (EOS) ............................................................................................... 4 
1.1.2. Activity coefficient models ........................................................................................... 6 
1.1.3. Association modeling.................................................................................................... 8 

1.2. Research objectives .............................................................................................................. 9 
1.3. Dissertation outline ............................................................................................................ 10 

Chapter 2. Relation of Concentration-based Equilibrium Constants to Activity-based Equilibrium 

Constants in the Liquid Phase ....................................................................................................... 12 

2.1. Introduction ........................................................................................................................ 12 
2.2. Gibbs energy and the activity-based equilibrium constant ................................................ 13 

2.3. Gas phase activity-based equilibrium constant .................................................................. 14 
2.4. Liquid phase activity-based equilibrium constant ............................................................. 15 

APPENDICES .......................................................................................................................... 19 
Appendix A: Development of the activity-based equilibrium constant for athermal solutions

............................................................................................................................................... 20 

Appendix B: Effect of mass density on volume of mixing ................................................... 21 

Chapter 3. Relation of Wertheim Association Constants to Concentration-based Equilibrium 

Constants for Mixtures with Chain-forming Components ............................................................ 22 
3.1. Introduction ........................................................................................................................ 22 

3.1.1. Motivation ................................................................................................................... 22 
3.1.2. Historical perspective.................................................................................................. 23 

3.2. Theory and analysis ........................................................................................................... 25 
3.2.1. Association term – Wertheim’s theory ....................................................................... 26 

3.2.2. Flory’s concentration-based equilibrium constant ...................................................... 29 

3.2.3. Relationship between 𝐾𝑎, 𝐾𝐶  and Δ ............................................................................ 30 
3.2.4. Association term – Campbell’s chemical theory model ............................................. 32 

3.2.5. Algebraic equivalence of chemical and Wertheim’s theory ....................................... 34 
3.2.6. Calculating association parameters ............................................................................. 36 
3.2.7. Numerical equivalence of chemical and Wertheim’s theory ...................................... 38 

3.3. Conclusions ........................................................................................................................ 40 
APPENDICES .......................................................................................................................... 41 

Appendix C: Derivation of the Wertheim association contribution to the activity coefficient

............................................................................................................................................... 42 



vi 

 

Appendix D: Relationship between the fugacity coefficient and true compressibility factor

............................................................................................................................................... 44 

Appendix E: Relation of Campbell’s concentration variable in terms of the molar 

concentration of species ........................................................................................................ 45 

 

Chapter 4. Relation of Wertheim and Chemical Theories in Systems with Association and 

Solvation ....................................................................................................................................... 47 

4.1. Introduction ........................................................................................................................ 47 
4.2. Theory and analysis ........................................................................................................... 50 

4.2.1. Implementation of Wertheim’s perturbation theory ................................................... 50 
4.2.2. Implementation of chemical theory ............................................................................ 52 
4.2.3. Numerical equivalence of chemical and Wertheim’s theories ................................... 56 

4.2.4. Activity coefficients .................................................................................................... 64 

4.2.5. Perspective on further generalization .......................................................................... 66 
4.3. Conclusions ........................................................................................................................ 67 

APPENDICES .......................................................................................................................... 69 

Appendix F: Simplification of double sums without a multiplication factor ....................... 70 
Appendix G: Simplification of double sums with a multiplication factor ............................ 71 

Chapter 5. Applications of a Wertheim association activity coefficient model to methanol and 

ethanol-containing mixtures.......................................................................................................... 72 

 Introduction ........................................................................................................................ 72 
 Model theory and parameters ............................................................................................. 74 

5.2.1. Association contribution ............................................................................................. 75 

5.2.2. Combinatorial contribution ......................................................................................... 76 

5.2.3. Residual contribution .................................................................................................. 78 
5.2.4. EOS model parameters ............................................................................................... 82 
5.2.5. Association parameters ............................................................................................... 82 

 Model comparisons ............................................................................................................ 85 
5.3.1. Binary system with no association .............................................................................. 89 

5.3.2. Binary systems with self-association .......................................................................... 92 
5.3.3. Binary systems with self- and cross-associating systems ......................................... 103 
5.3.4. Ternary systems ........................................................................................................ 110 

5.3.5. General findings and recommendations.................................................................... 114 
 Association parameter value ............................................................................................ 117 
 Conclusions ...................................................................................................................... 120 

APPENDIX ............................................................................................................................. 122 

Chapter 6. Quantitative Analysis of Infrared Spectra of n-Butanol + Cyclohexane with Quantum 

Chemical Calculations ................................................................................................................ 126 
6.1. Introduction ...................................................................................................................... 126 

6.1.1. Analysis of the O-H stretching band ......................................................................... 128 
6.1.2. Motivation ................................................................................................................. 130 

6.2. Computational methods ................................................................................................... 131 
6.2.1. Molecular dynamics simulations .............................................................................. 131 
6.2.2. Quantum mechanics simulations .............................................................................. 133 



vii 

 

6.3. Experimental methods ..................................................................................................... 134 

6.4. Results and discussions .................................................................................................... 135 

6.4.1. Processing and preliminary analysis of experimental IR spectra ............................. 135 
6.4.2. Results from MD+QM .............................................................................................. 138 
6.4.3. Scaling and further analysis of experimental IR spectra .......................................... 144 
6.4.4. Universality of spectroscopic characteristics ............................................................ 148 

6.5. Conclusions ...................................................................................................................... 150 

Chapter 7. Integration of Quantum Calculations and Spectroscopy for Wertheim Alcohol 

Association .................................................................................................................................. 151 
7.1. Introduction ...................................................................................................................... 151 

7.1.1. Hydrogen bonding and infrared spectroscopy .......................................................... 151 

7.1.2. Thermodynamic modeling of hydrogen bonding ..................................................... 155 

7.1.3. Motivation ................................................................................................................. 157 
7.2. Experimental methods ..................................................................................................... 157 

7.3. Results and discussions .................................................................................................... 158 

7.3.1. IR band assignments ................................................................................................. 164 
7.3.2. IR peak fitting ........................................................................................................... 167 
7.3.3. IR calculation of association parameters .................................................................. 175 

7.3.4. NMR calculations and results ................................................................................... 178 
7.4. Summary of future work .................................................................................................. 183 

APPENDIX ............................................................................................................................. 185 

Chapter 8. Conclusions and Future Directions ........................................................................... 189 

BIBLIOGRAPHY ....................................................................................................................... 193 

 

 

 

 

 

 

 

 

  



viii 

 

LIST OF TABLES 

 

Table 3.1: Concentration based equilibrium constants ................................................................. 30 

Table 3.2: Equilibrium constant for primary alcohols .................................................................. 37 

Table 3.3: Calculated parameters and intermediate values for Flory and Wertheim’s theories for 

three systems. ................................................................................................................................ 39 

 

Table 4.1: 𝑋𝐵𝑖 Equations for sites in hypothetical system ............................................................ 52 

Table 4.2: Key associations in the hypothetical system and their equilibrium constants ............. 53 

Table 4.3: Other species formed in hypothetical system .............................................................. 54 

Table 4.4: Association parameters and component densities ....................................................... 57 

Table 4.5: Calculated monomer fraction values ........................................................................... 58 

Table 4.6: Chemical and Wertheim’s theory concentration equations and calculated values at 𝑥𝐸 =
0.2, 𝑥𝐹= 0.2 and 𝑥𝐺𝑀=0.6 ............................................................................................................. 59 

 

Table 4.7: Calculated parameters and intermediate values for activity coefficient calculations .. 65 

 

Table 5.1: CPA parameters used to calculate Δ𝐴𝐷 ........................................................................ 83 

Table 5.2: AspenPlus® databases used in calculations ................................................................ 85 

Table 5.3: PC-SAFT pure component parameters ........................................................................ 85 

Table 5.4: Data used for parameter regression ............................................................................. 86 

Table 5.5: Total SSQ for systems studied in this work................................................................. 87 

Table 5.6: Model performance in order of best fit ........................................................................ 88 

Table 5.7: Legend for plots in Model Capabilities section ........................................................... 89 

Table 5.8: Association contribution to the total activity coefficient at infinite dilution ............. 116 

Table H.1: Regressed parameters values. ................................................................................... 123 

Table H.2: Hayden-O’Connell 휂𝑖𝑗 parameters............................................................................ 125 



ix 

 

Table 6.1: MD simulation details................................................................................................ 132 

Table 6.2: Number of each species and bond analyzed with QM calculations .......................... 138 

Table 6.3: Average calculated vibrational frequencies and integrated absorption coefficients . 140 

Table 6.4: Areas and standard deviations for the absorbance and scaled absorbance bands ...... 147 

Table 7.1: Frequency range defined as hydroxyl band for each spectrum ................................. 158 

Table 7.2: Number of each species and bond analyzed with QM calculations for the distribution 

plot in Figure 7.7 and Figure 7.8................................................................................................. 164 

 

Table 7.3: Concentration of free ends (𝛼 + 𝛽) in mol/mL calculated from fitted Gaussian peaks

..................................................................................................................................................... 175 

 

Table 7.4: Regressed parameters from NMR analysis and corresponding CPA parameters for 

comparison .................................................................................................................................. 182 

 

Table 8.1: Accomplished and future goals for research project ................................................. 190 

 

 

  



x 

 

LIST OF FIGURES 

 

Figure 1.1: NRTL representation of VLE and LLE of methanol (1) – cyclohexane (2). ............... 2 

Figure 1.2: Vapor pressure as a function of temperature for ethanol calculated using two sets of 

CPA parameters. ............................................................................................................................. 5 

Figure 3.1: 2B association scheme................................................................................................ 27 

Figure 4.1: 2B association scheme................................................................................................ 49 

Figure 4.2: Hypothetical molecules for analysis. .......................................................................... 50 

Figure 4.3: Bonding schemes for hydrogen bonding in a mixture of E, F and G. ........................ 53 

Figure 4.4: Counting species in chemical theory system .............................................................. 55 

Figure 4.5: True monomer fraction of components in system of study and fractions of acceptors 

and donors ..................................................................................................................................... 60 

Figure 4.6: Distribution of species with component E when 𝑥𝐹=0.2 ........................................... 60 

Figure 4.7: Distribution of species with component F when 𝑥𝐹=0.2 ........................................... 61 

Figure 4.8: Distribution of species with component G when 𝑥𝐹=0.2 ........................................... 61 

Figure 4.9: True mole fraction of methanol chains calculated with 4 values of Δ𝐴𝐺𝐷𝐺 ............... 64 

Figure 4.10: Calculated values of the activity coefficient contributions ...................................... 66 

Figure 5.1: Phase equilibria diagram for n-heptane + cyclohexane at 101.3 kPa ......................... 90 

Figure 5.2: Heat of mixing for n-heptane + cyclohexane at T=298.14 K and 101.3 kPa ............. 90 

Figure 5.3: Calculated and experimental activity coefficients for n-heptane + cyclohexane at 101.3 

kPa................................................................................................................................................. 91 

Figure 5.4: Percent errors of K-ratios for n-heptane + cyclohexane system ................................ 91 

Figure 5.5: Phase equilibria diagram for methanol + n-heptane at 101.3 kPa .............................. 92 

Figure 5.6: Heat of mixing for methanol + n-heptane at T=298.15 K and 101.3 kPa .................. 93 

Figure 5.7: Calculated and experimental [4] activity coefficients for methanol + n-heptane at 101.3 

kPa................................................................................................................................................. 93 



xi 

 

Figure 5.8: Percent errors of K-ratios for methanol + n-heptane system...................................... 94 

Figure 5.9: Phase equilibria diagram for methanol + cyclohexane at 101.3 kPa.......................... 95 

Figure 5.10: Heat of mixing for methanol + cyclohexane at T=416.29 K and 1900 kPa ............. 95 

Figure 5.11: Calculated and experimental activity coefficients for methanol + cyclohexane at 101.3 

kPa................................................................................................................................................. 96 

Figure 5.12: Percent errors of K-ratios for methanol + cyclohexane system ............................... 96 

Figure 5.13: Phase equilibria diagram for methanol + n-pentane at T=397.7 K .......................... 97 

Figure 5.14: Calculated and experimental [145] activity coefficients for methanol + n-pentane at 

T=397.7 K ..................................................................................................................................... 97 

Figure 5.15: Percent errors of K-ratios for methanol + n-pentane system.................................... 98 

Figure 5.16: Phase equilibria diagram for ethanol + cyclohexane at 101.3 kPa ........................... 99 

Figure 5.17: Heat of mixing for ethanol + cyclohexane at T=298.14 K and 101.3 kPa ............... 99 

Figure 5.18: Calculated and experimental activity coefficients for ethanol + cyclohexane at 101.3 

kPa............................................................................................................................................... 100 

Figure 5.19: Percent errors of K-ratios for ethanol + cyclohexane system ................................ 100 

Figure 5.20: Phase equilibria diagram for ethanol + n-decane at T=338.17 K ........................... 101 

Figure 5.21: Phase equilibria diagram for ethanol + n-decane at 101.3 kPa .............................. 101 

Figure 5.22: Heat of mixing for ethanol + n-decane at T=298.15 K and 101.3 kPa .................. 102 

Figure 5.23: Phase equilibria diagram for methanol + water at 101.3 kPa ................................. 104 

Figure 5.24: Phase equilibria diagram for methanol + water at T=298.14 K (bottom) and T=308.14 

K (top) ......................................................................................................................................... 104 

Figure 5.25: Calculated and experimental [146,147] activity coefficients for methanol + water at 

T=298.14 K, T=308.14 K and P=101.3 kPa from top to bottom ................................................ 105 

Figure 5.26: Percent errors of K-ratios for methanol + water system ........................................ 106 

Figure 5.27: Phase equilibria diagram for methanol + ethanol at T=298.14 K (bottom) and 

T=413.13 K (top) ........................................................................................................................ 107 

Figure 5.28: Phase equilibria diagram for methanol + ethanol at T=298.14 K .......................... 108 



xii 

 

Figure 5.29: Calculated and experimental activity coefficients for methanol + ethanol at T=298.14 

K (bottom) and T=413.13 K (top) .............................................................................................. 108 

Figure 5.30: Percent errors of K-ratios for methanol + ethanol system...................................... 109 

Figure 5.31: Phase equilibria diagram for methanol + n-heptane + cyclohexane at 101.3 kPa and 

298.15 K ...................................................................................................................................... 110 

Figure 5.32: K-ratios for methanol (a) + n-heptane (b) + cyclohexane (c) system at 101.3 kPa and 

298.15 K ...................................................................................................................................... 111 

Figure 5.33: Phase equilibria diagram for methanol + ethanol + cyclohexane at 101.3 kPa and 298 

K .................................................................................................................................................. 112 

Figure 5.34: K-ratios for methanol (a) + ethanol (b) + cyclohexane (c) system at 101.3 kPa and 

298 K ........................................................................................................................................... 113 

Figure 5.35: Comparison of phase equilibria fits with two sets of CPA parameters for ethanol + 

cyclohexane at 101.3 kPa ............................................................................................................ 118 

Figure 5.36: Comparison of phase equilibria fits with two sets of CPA parameters for ethanol + n-

decane at T=338.17 K ................................................................................................................. 118 

Figure 5.37: Δ𝐴𝐷 for the self-association of the primary alcohols at 298.15 K calculated by fitting 

to different properties. ................................................................................................................. 119 

Figure 6.1: Types of covalent O-H bonds ................................................................................... 130 

Figure 6.2: Bond distribution in trimers calculated with MD simulations for an equimolar n-

butanol + cyclohexane mixture ................................................................................................... 133 

Figure 6.3: Experimental O-H IR band for a 0.1 mole fraction of n-butanol in cyclohexane .... 136 

Figure 6.4: Total absorbance band area of the O-H band for n-butanol + cyclohexane data as a 

function of the mole fraction for 4 compositions........................................................................ 137 

Figure 6.5: Hydroxyl stretching frequencies and integrated absorption coefficients for two 

concentrations of n-butanol + cyclohexane mixtures calculated from QM simulations ............ 141 

Figure 6.6: Hydroxyl stretching frequencies and integrated absorption coefficients for other 

systems calculated from QM simulations ................................................................................... 144 

Figure 6.7: Scaled absorbance spectra for n-butanol + cyclohexane at 𝑥𝐵𝑢𝑂𝐻 = 0.1 ................. 145 

Figure 6.8: Scaled absorbance band area of the O-H band for n-butanol + cyclohexane data as a 

function of the mole fraction of 4 experimental compositions ................................................... 146 



xiii 

 

Figure 6.9: Relationship between the covalent O-H bond length and vibrational frequency 

calculated for equimolar ethanol + cyclohexane mixture ........................................................... 148 

Figure 6.10: Comparison of calculated NMR and IR characteristics for equimolar ethanol + 

cyclohexane mixture ................................................................................................................... 149 

Figure 7.1: Types of covalent OH bonds .................................................................................... 153 

Figure 7.2: Hydroxyl stretching frequencies and integrated absorption coefficients for n-butanol + 

and ethanol + cyclohexane mixtures calculated from QM simulations ...................................... 154 

Figure 7.3: Raw (top) and scaled (bottom) O-H IR band for a 0.0469 mole fraction of n-butanol in 

cyclohexane................................................................................................................................. 160 

Figure 7.4: Raw (top) and scaled (bottom) O-H IR band for a 0.0678 mole fraction of n-butanol in 

cyclohexane................................................................................................................................. 161 

Figure 7.5: Raw (top) and scaled (bottom) O-H IR band for a 0.0817 mole fraction of n-butanol in 

cyclohexane................................................................................................................................. 162 

Figure 7.6: Raw (top) and scaled (bottom) O-H IR band for a 0.100 mole fraction of n-butanol in 

cyclohexane................................................................................................................................. 163 

Figure 7.7: Smoothed normalized distributions of bond types from QM simulations of n-butanol + 

and ethanol + cyclohexane mixtures. .......................................................................................... 165 

Figure 7.8: Smoothed normalized distributions of bond types from QM simulations with 𝛾 from 

dimers separated from others. ..................................................................................................... 166 

Figure 7.9: Peaks fitted to scaled IR spectra for n-butanol + cyclohexane mixture at 𝑥𝐵𝑢𝑂𝐻=0.0469.

..................................................................................................................................................... 168 

Figure 7.10: Peaks fitted to scaled IR spectra for n-butanol + cyclohexane mixture at 

𝑥𝐵𝑢𝑂𝐻=0.0678. ............................................................................................................................ 169 

Figure 7.11: Peaks fitted to scaled IR spectra for n-butanol + cyclohexane mixture at 

𝑥𝐵𝑢𝑂𝐻=0.0817. ............................................................................................................................ 170 

Figure 7.12: Peaks fitted to scaled IR spectra for n-butanol + cyclohexane mixture at 𝑥𝐵𝑢𝑂𝐻=0.100.

..................................................................................................................................................... 171 

Figure 7.13: Scaled band area as a function of apparent n-butanol concentration ..................... 172 

Figure 7.14: Bond distributions calculated from IR peak fitting ................................................ 173 

Figure 7.15: Concentration of 𝛼 bonds vs. mole fraction of n-butanol ...................................... 174 

Figure 7.16: Calculated and fitted concentrations of free end (𝛼 + 𝛽) hydroxyls ..................... 176 



xiv 

 

Figure 7.17: Derived association parameter values from IR analysis (solid line) compared to CPA 

Δ𝐴𝐷 values (dashed line) for the self-association of n-butanol .................................................. 177 

Figure 7.18: O-H proton chemical shift as a function of n-butanol mole fraction for n-butanol + 

cyclohexane mixtures at 26.3 ⁰C. ............................................................................................... 180 

Figure 7.19: O-H proton chemical shift as a function of n-butanol mole fraction for n-butanol + 

cyclohexane mixtures at 34 ⁰C. .................................................................................................. 181 

Figure 7.20: O-H proton chemical shift as a function of n-butanol mole fraction for n-butanol + 

cyclohexane mixtures at 41 ⁰C. .................................................................................................. 181 

 

 

  



xv 

 

KEY TO SYMBOLS AND ABBREVIATIONS 

 

a interaction parameter for molecules in a mixture, calculated with mixing rules 

𝑎𝑖 interaction parameter for i number of molecules of a single component in Chapter 

3; activity of species i otherwise 

 

𝑎𝑖𝑗 interaction parameter for interactions between molecules of components i and j 

𝑎0 CPA parameter for attractive term 

�̃� fitted spectroscopic parameter 

�̃�𝑖𝑗 fitted residual term parameter 

A molar Helmholtz energy (extensive if accompanied by underbar); absorbance in 

Chapters 6, 7 

 

𝐴𝑖 absorbance of species i 

�̃� scaled absorbance 

𝐴𝑖𝑗 fitted residual term parameter 

AVEC association with variable equilibrium constant 

𝑏 size parameter of mixture, calculated with mixing rules 

𝑏𝑖   size parameter for i number of molecules of a single component 

�̃� fitted spectroscopic parameter 

�̃�𝑖𝑗 fitted residual term parameter 

Bfree free contribution to the second virial coefficient 

𝑐1 Intermediate CPA parameter for attractive term 

�̃� fitted spectroscopic parameter 

𝐶𝑖  concentration of component i (apparent unless accompanied by subscript T) 

𝐶𝑖
′ apparent dimensionless concentration of component i 



xvi 

 

𝐶𝑇,𝑀𝑖
′  dimensionless true monomer concentrations of component i in a mixture 

𝐶𝑇,𝑀𝑖
′0  dimensionless true monomer concentrations of component i in a pure solution of 

component i 

 

CLAM continuous linear association model 

CPA cubic-plus-association model 

�̃� fitted spectroscopic parameter 

DFT density functional theory 

EOS equation of state 

ECR Elliott’s combining rule 

ESD Elliott-Suresh-Donohue model 

𝑓 constant in Eq. (3.14) 

𝑓𝑖 fugacity of component i 

�̃�  fitted spectroscopic parameter 

𝑔 function defined by Eq. (3.18) in Chapter 3; radial distribution function otherwise  

�̃� fitted spectroscopic parameter 

𝐺 molar Gibbs energy (extensive if accompanied by underbar) 

ℎ function defined by Eq. (C.1) 

ℎ̃ fitted spectroscopic parameter 

𝐻 molar enthalpy (extensive if accompanied by underbar) 

IR infrared spectroscopy 

𝑘 Boltzmann’s constant 

𝑘𝑓 reaction rate constant for forward reaction 

𝑘𝑟 reaction rate constant for reverse reaction 



xvii 

 

𝑘𝑖𝑗 binary interaction parameter 

K equilibrium constant 

𝐾𝐴𝑖𝐷𝑗 fitted association parameter with units of volume 

KLL K-ratio in the liquid-liquid region 

KVL K-ratio in the vapor-liquid region 

𝑙 pathlength 

𝐿 generic notation for a regressed property 

𝐿𝑂𝐻 length of the hydroxyl bond 

LLE liquid-liquid equilibrium 

LACT linear association with cyclic trimer 

LCST lower critical solution temperature 

𝑚 number of segments per chain in PC-SAFT 

MD molecular dynamics 

𝑀𝑊𝑖 molecular weight of species i 

𝑛 number of moles  

𝑛𝐵𝑖,𝑓𝑟𝑒𝑒 number of non-bonded sites of type 𝐵𝑖 

𝑛𝐵𝑖,𝑡𝑜𝑡𝑎𝑙 total number of sites of type 𝐵𝑖 in solution 

n* effective number of carbon atoms in an ether homomorph molecule 

𝑁𝑖 number of molecules of component i 

𝑁𝑖𝑗 local composition, number of component i molecules around molecule j 

𝑁𝐵,𝑖 number of sites identical to site i of type B on the site host 

𝑁𝑚𝑎𝑡𝑒𝑗  synonymous to 𝑁𝐵,𝑖, introduced for disambiguation in Eq. (4.1) 

NMR nuclear magnetic resonance spectroscopy  



xviii 

 

NPT condition holding number of moles, pressure and temperature constant 

NRTL non-random two liquid model 

NVT condition holding number of moles, volume and temperature constant 

P probability in Chapter 4, pressure otherwise 

𝑃𝑖 Gaussian peak fitted to IR 

𝑃𝑖
𝑣𝑎𝑝

 vapor pressure of component i 

PC-SAFT perturbed chain – statistical associating fluid theory 

PM1, PM2 CPA pure component parameters from Kontogeorgis et al. [1] and [2] 

respectively 

 

PME Particle Mesh Ewald 

QM quantum mechanics 

ri ratio of reference molar density, 𝜌𝑟𝑒𝑓 (taken to be that of methanol at 303.15 K) 

to the molar density of component i, 𝜌𝑖 
 

R universal gas constant 

𝑠𝑡𝑑𝑑𝑒𝑣 standard deviation 

𝑆 molar entropy of solution 

𝑆𝑖 molar entropy of component i 

SAFT statistical associating fluid theory model 

SG Staverman-Guggenheim model 

SH Scatchard-Hildebrand model 

SSQ sum of squares error 

t time 

T temperature 

𝑈 molar internal energy (extensive if accompanied by underbar) 



xix 

 

UNIFAC UNIQUAC functional-group activity coefficient model 

UNIQUAC universal quasichemical model 

Vi molar volume of pure component i 

V molar volume of solution, extensive volume if accompanied by underbar 

VLE vapor-liquid equilibrium 

VLLE vapor-liquid-liquid equilibrium 

WAG Wertheim association gamma model 

𝑥𝑖 apparent liquid mole fraction of component i  

𝑥𝑖𝑗 mole fraction of component i molecules around a molecule of component j 

𝑋𝐵𝑖 fraction of sites identical to site i of type B that remain non-bonded at equilibrium 

𝑦𝑖  vapor phase mole fraction of species i 

𝑧 true mole fraction (for monomer in Chapter 4) 

Z compressibility factor 

Greek Symbols 

𝛼 type of O-H bond in Chapters 6 and 7 given in Figure 6.1 

𝛼𝑖𝑗  non-randomness parameter in NRTL model 

𝛼𝑗,𝑖  function defined by Eq. (E.2) 

𝛽 type of O-H bond in Chapters 6 and 7 given in Figure 6.1 

𝛽𝐴𝑖𝐷𝑗 association volume parameter 

𝛾 activity coefficient; type of O-H bond in Chapters 6 and 7 given in Figure 6.1 

𝛿 type of O-H bond in Chapters 6 and 7 given in Figure 6.1 

𝛿𝑖 solubility parameter in Scatchard-Hildebrand 

∆ Wertheim’s association parameter 



xx 

 

Δ𝑥𝐻 displacement of hydrogen atom in x-direction 

Δ𝑦𝐻 displacement of hydrogen atom in y-direction 

Δz𝐻 displacement of hydrogen atom in z-direction 

Δ�̃� observed NMR chemical shift relative to monomer NMR chemical shift  

Δ�̃�𝑁  NMR chemical shift of hydrogen bonded proton relative to monomer NMR 

chemical shift 

 

𝜖 depth of pair potential in PC-SAFT 

𝜖𝐴𝑖𝐷𝑗 fitted association interaction energy parameter 

휀 molar absorption coefficient  

휀𝑖 molar absorption coefficient of species i 

휁 type of O-H bond in Chapters 6 and 7 given in Figure 6.1 

휂 packing fraction; type of O-H bond in Chapters 6 and 7 given in Figure 6.1 

휃 thermal correction factor 

𝜅𝐴𝑖𝐷𝑗 effective association volume in PC-SAFT 

Λ𝑗𝑖 rearrangement of Ω𝑖𝑗 used in Wilson’s equation defined by Eq. (5.11)  

νi stoichiometric number of species i  

𝜈 wavenumber, 𝜈 = frequency (𝜈)/speed of light (𝑐)  

𝜈′ NMR chemical shift 

𝜌 molar solution density (apparent unless accompanied by subscript T) 

𝜌𝑖 molar density of component i (apparent unless accompanied by subscript T) 

𝜏𝑖𝑗 interaction energy parameter between components i and j 

𝜎 size parameter, i.e. contact distance 

𝜎𝑖𝑖 temperature-independent segment diameter in PC-SAFT 



xxi 

 

𝜑𝑖  fugacity coefficient of pure component i  

Φ𝑖
 volume fraction of component or species i (apparent unless accompanied by 

subscript T) 

Φ𝑖
′ modified apparent volume fraction of component or species i  

𝜓 integrated absorption coefficient 

Ψ total true dimensionless concentration of complexes (Campbell’s work) 

Ψi true dimensionless concentration of all chains that end in i (Campbell’s work) 

Ω𝑖𝑗 local composition parameter defined by Eq. (5.7) 

Subscripts 

0 pertaining to apparent species 

𝛾 activity-coefficient 

a activity-based 

alc pertaining to the alcohol  

avg averaged 

C concentration-based 

CPA pertaining to CPA 

Crit critical property 

D dimer 

f pertaining to the formation of a reaction product 

h hypothetical fluid in Brandani’s work 

host pertaining to component hosting the site 

𝑚𝑎𝑥 at maximum peak height 

𝑚𝑎𝑡𝑒𝑗 pertaining to site j that can bond to 𝐵𝑖 

mix mixture property 



xxii 

 

M monomer 

𝑛𝑗≠𝑘 constant number of moles for all components except component 𝑘 

Nmer complex (hydrogen-bonded species)  

p constant power 

P at constant pressure 

T pertaining to true species or at constant temperature 

Tri trimer 

𝑉 at constant volume 

x mole fraction based 

Superscripts 

′ dimensionless (used for Campbell’s concentration) 

° standard state property 

0 property for pure component 

assoc association (Wertheim’s) contribution 

att attractive contribution 

𝐵𝑖𝐸𝑗 interaction between site i of type B and site j of type E 

c cyclic species 

chem chemical theory 

comb combinatorial contribution 

exp experimental value 

E excess property 

Flory  pertaining to or calculated with Flory’s theory 

ℎ𝑠 hard sphere 



xxiii 

 

ig ideal gas 

is ideal solution 

l linear species 

L pertaining to a liquid 

Mod Flory calculated with modified Flory’s theory 

Nagata calculated with Nagata’s model 

NRTL calculated with NRTL 

𝑝 constant for Eq. (5.6)  

ref pertaining to a reference state 

rep repulsive contribution 

res residual contribution 

𝑠𝑎𝑡 property at saturation 

SH calculated with Scatchard-Hildebrand 

T total 

𝑣𝑎𝑝 pertaining to a vapor 

Wilson calculated with Wilson’s equation 

Special Notations 

 as in 𝐴 extensive property 

as in 𝑉 partial molar property 

̂ as in �̂� property of component in a mixture 

[i] apparent concentration of component i 

  



 

1 

 

Chapter 1.  Introduction to Thermodynamic Modeling of Associating Systems 
 

Thermodynamic models play an essential role in the chemical industry. These tools provide 

valuable information on the qualitative and quantitative responses of a system to variations in 

temperature, pressure and composition. As such, they are necessary in the design of process 

equipment, allowing engineers to extrapolate the system’s behavior to conditions that have not or 

cannot be investigated with bench-scale experiments. Of particular importance is the use of 

thermodynamic models for the design and operation of separation units, such as distillation 

columns, which can constitute as much as 70% of a plant’s costs. Due to this high expense, the 

optimization of each component of a separation process, including the accuracy and robustness of 

the thermodynamic models, is an active area of research.  

In today’s chemical industry, process streams contain more polar components than ever before. 

Dow Chemical and Fluor manufacture large quantities of alcohols, ketones and esters. Honeywell 

UOP is interested in biorefining pyrolysis oils to fuels, a process that includes three-phase mixtures 

that are difficult to model.  In cases like these where one or more components in a system can 

hydrogen bond, the relatively strong associations within and between molecules complicate 

thermodynamic modeling. Indeed, traditional models do not specifically account for hydrogen 

bonding between molecules, but instead lump effects into dispersion terms of the equations. For 

example, the non-random two liquid (NRTL) [3] model is commonly used in industry due to its 

relative simplicity and flexibility. This model represents molecular asymmetry with up to three 

parameters per binary, two for pair interactions at infinite dilution and one to adjust model to 

deviations from ideality at intermediate compositions. However, because the binary parameters 

are intended to represent relatively nondirectional dispersion interactions the model can fail to 

accurately represent components that hydrogen bond. This means that, when extrapolated to new 
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sets of conditions, NRTL can perform poorly and can therefore not be used with confidence. This 

is illustrated in Figure 1.1 for the vapor-liquid (VLE) and liquid-liquid equilibria (LLE) of 

methanol in cyclohexane. When the VLE envelope is fitted (solid lines), the same parameters yield 

a poor prediction of the LLE, incorrectly indicating a three-phase vapor-liquid-liquid (VLLE) 

condition which would occur where the LLE binodal lines extrapolate to the VLE. Conversely, 

when the LLE is fitted (dashed lines), the model falsely predicts a higher temperature azeotrope 

and improperly shifts the VLE. 

 

Figure 1.1: NRTL representation of VLE and LLE of methanol (1) – cyclohexane (2).Solid 

lines are fitted to the VLE envelope (𝜏12 = 661.8/𝑇, 𝜏21 = 753.425/𝑇, and 𝛼12 = 0.422) and 

dashed lines are fitted to the LLE envelope (𝜏12 = 0.7523 − 5.772/T, 𝜏21 = 147.8 + 2204/𝑇, 

and 𝛼12 = 0.2). Markers are experimental VLE [4] and LLE [5] phase equilibria data. 

 

To make models more flexible and robust, it has been demonstrated [6,7] that hydrogen bonding 

is best calculated explicitly as a separate term.   
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1.1. Background 

Hydrogen bonding is a type of dipole-dipole interaction that occurs between a hydrogen atom 

bonded to a 'proton donor' and a neighboring strongly electronegative 'proton acceptor'. While 

weak compared to a covalent bond, this interaction is responsible for the higher melting and boiling 

points of water and alcohols relative to hydrocarbons with similar molecular weights.  

In thermodynamics literature, the terms “association”, “cross-association”, and “solvation” are 

used to describe the phenomenon of hydrogen bonding. Association, or “self-association”, refers 

to hydrogen bonding between two molecules of the same component, such as between two 

methanol molecules or between two water molecules. Cross-association describes hydrogen 

bonding between molecules of two different components which are also able to self-associate, such 

as an interaction between a water molecule and a methanol molecule. The term solvation is used 

in cases where one or both components involved in a hydrogen bond do not self-associate. 

Examples of solvating systems are water + ethers or chloroform + ethers. Though these definitions 

describe distinct behavior, the terms are often used loosely in literature. Frequently, the term 

“association” is used for convenience when referring to all three types of hydrogen bonding 

collectively and we adopt this convention in the present document.  

To provide context for current state of the art in association modeling, we describe two categories 

under which most thermodynamic models fall: equations of state (EOS) and activity coefficient 

(𝛾) models. Thermodynamic modeling is based on quantifying departures or difference from 

idealized mixture states. The primary difference between the two classes is the choice of idealized 

state. Ideality, as it refers to ideal gases or solutions, is a simplified hypothetical state which is 

used as a conceptual reference point in thermodynamic model design. From this starting point, 
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contributions are incorporated to calculate the differences between ideal and real solution 

dynamics. In many cases, the major contribution to non-ideality is due to hydrogen bonding.  

1.1.1. Equations of state (EOS) 

Equations of state (EOSs) use departures from ideal gases to model mixture behavior. An ideal gas 

is a collection of point particles which do not interact with one another by collision, repulsion or 

attraction. The fugacity of each component of a gas mixture, 𝑓𝑖, is given by [8]  

 𝑓𝑖 = 𝑦𝑖�̂�𝑖𝑃  1.1 

where 𝑦𝑖 is the vapor phase mole fraction of component i, 𝑃 is the total pressure. The component 

fugacity coefficient, �̂�𝑖, quantifies the departure from an ideal gas mixture, and is unity for an ideal 

gas. Equations of state (EOS), such as the van der Waals and Peng-Robinson equations of state, 

calculate deviations from this idealized state by adding the effects of repulsive and attractive forces 

and association in solution. As such, the fugacity coefficient is separated as 

 ln �̂�𝑖 = ln �̂�𝑖
𝑟𝑒𝑝 + ln �̂�𝑖

𝑎𝑡𝑡 + ln �̂�𝑖
𝑎𝑠𝑠𝑜𝑐 − ln 𝑍 1.2 

where 𝑍 = 𝑃𝑉/(𝑅𝑇) is the compressibility factor and can also be separated into the same 

contributions. 

 ln �̂�𝑖 = ln �̂�𝑖
𝑟𝑒𝑝 + ln �̂�𝑖

𝑎𝑡𝑡 + ln �̂�𝑖
𝑎𝑠𝑠𝑜𝑐 − ln(1 + 𝑍𝑟𝑒𝑝 + 𝑍𝑎𝑡𝑡 + 𝑍𝑎𝑠𝑠𝑜𝑐) 1.3 

Classical EOSs omit the association term entirely. However, newer models such as the Statistical 

Associating Fluid Theory (SAFT) [9], Elliott-Suresh-Donohue (ESD) [10] and Cubic-Plus-

Association (CPA) [11] were developed to include hydrogen bonding explicitly. While the 

theoretical basis of these models is solid, and they are popular in academics, there are three barriers 

that impede their wide adoption in the chemical industry.  

The first barrier that limits wide spread use is that the parameters for these models are determined 

by fitting to a large quantity of pure component vapor pressure and density experimental data, 
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which are frequently unavailable to industry over a suitable span. When new compounds are 

developed, data is expensive to obtain over wide ranges, and limited data results in significant 

uncertainty in parameter fitting. 

The second barrier to wider adoption is that dispersion forces and the association forces are both 

‘attractive’, so proper attribution is difficult to discern when fitting parameters. This challenge is 

demonstrated for ethanol in Figure 1.2 using calculations of the pure component vapor pressure as 

a function of temperature.  

 
 

Figure 1.2: Vapor pressure as a function of temperature for ethanol calculated using two 

sets of CPA parameters. Blue markers are experimental data, black dotted line are calculated 

with parameters from Kontogeorgis (2006) [1] (referred to in Chapter 5 as PM1) and dashed 

lines are calculated with parameters from Kontogeorgis (2010) [2] (referred to in Chapter 5 as 

PM2). The bottom plot is a zoom-in of the top plot. 

 

-2

0

2

4

6

8

0.0018 0.0024 0.003 0.0036 0.0042 0.0048 0.0054

lo
g

1
0

(P
sa

t
(P

a)
)

1/T (K-1)

3.5

4

4.5

5

5.5

6

0.0024 0.0026 0.0028 0.003 0.0032 0.0034

lo
g

1
0

(P
sa

t
(P

a)
)

1/T (K-1)

Exp Data

Prms from Kontogeorgis 2006

Prms from Kontogeorgis 2010



 

6 

 

The two black lines are both calculated using the CPA EOS and the only difference is the fitting 

method used to obtain the pure component parameters. For the dotted line, the parameters were 

fitted to pure vapor pressure and density (PM1) [1] and, for the dashed line, parameters were fitted 

to vapor pressure, density, and spectroscopic data (PM2) [2]. The numerical values of the 

parameters in PM2 are up to 37% different than those in PM1.  

In both fits presented in Figure 1.2, the CPA parameters were fitted to data over a wide temperature 

range. Despite this, the PM1 parameters clearly fit the vapor pressure much better than PM2 

parameters.  Indeed, the PM2 fit underestimates the vapor pressure of ethanol by 22 kPa at 

T=338.17 K when the constraint is added to also represent spectroscopic data. The challenge in 

fitting indicates that several reasonable solutions exist for the fitting problem and that it is under-

specified, and still may not represent all properties accurately. Even when fitted to a large amount 

of data, the parameters are sometimes not known with confidence. Making small adjustments to 

one parameter requires refitting of all parameters.  

The third obstacle for more wide-spread adoption of EOSs is that the ability to represent mixtures 

is sensitive to accuracy of fitting the pure component property data. For example, if the parameters 

fit vapor pressure poorly at purity such as ethanol with the PM2 parameter set, the resulting mixture 

phase diagram will be skewed and fail to match experiment, even if the mixture deviations from 

mixture ideality are correct. This difficulty is further discussed in Chapter 5.  

1.1.2. Activity coefficient models 

In contrast to EOSs, activity coefficient (𝛾) models, such as NRTL and UNIversal QUAsiChemical 

(UNIQUAC) [12], calculate deviations from an ideal solution state and are commonly used for 

liquid states. For this approach, component fugacities of each component i in solution are 

calculated relative a standard state liquid fugacity, 𝑓𝑖° , often set to be that of a pure component. 
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  𝑓𝑖 = 𝑥𝑖𝛾𝑖𝑓𝑖°  1.4 

where 𝑥𝑖 is the mole fraction of component i. The ideal solution model requires that the activity 

coefficient, 𝛾𝑖, is unity. More specifically, the ideal solution model requires several important 

constraints, including: 

1. No excess volume, 𝑉 = ∑ 𝑥𝑖𝑉𝑖𝑖  where 𝑉 and 𝑉𝑖 are the mixture molar volume and the 

component molar volume respectively, and no excess entropy, 𝑆 = ∑ 𝑥𝑖𝑆𝑖𝑖 −

𝑅∑ 𝑥𝑖 ln 𝑥𝑖  𝑖 where 𝑆 and 𝑆𝑖 are the mixture molar entropy and the component molar entropy 

respectively. These constraints are approached when molecules in a mixture have similar sizes 

and shapes. 

2. No excess energy or 𝑈𝐸 = 0. This constraint requires that the energy of all intermolecular 

interactions, including hydrogen bonding, are the same regardless of the molecule types 

involved across the composition range. This constraint is approached when mixing methanol 

and ethanol for example. 

Deviations from these ideality constraints are corrected in activity coefficient models by 

combinatorial, residual and association 𝛾 contribution respectively. Models are typically 

developed for the logarithms of the contributions, which are added according to [8]: 

 ln 𝛾𝑖 = ln 𝛾𝑖
𝑐𝑜𝑚𝑏 + ln 𝛾𝑖

𝑟𝑒𝑠 + ln 𝛾𝑖
𝑎𝑠𝑠𝑜𝑐 1.5 

Compared to EOSs, activity coefficient models are not limited by the first and third challenges 

outlined in Section 1.1.1. First, 𝛾 models can be used with limited pure component data because 

vapor pressure and density data are required only for the limited range where the models must be 

applied. Secondly, pure component fugacities and vapor pressures can be represented by 

correlations separate from the mixture model, decoupling the fitting of the pure component and 

mixture properties.  
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Despite these advantages, activity coefficient models that capture effects of hydrogen bonding 

have not gained wide acceptance. Until the mid-1990s, models primarily used a chemical theory 

approach where the association is represented by chemical species [13–16]. Chemical theory is 

difficult to generalize, which creates a barrier for wide-spread use. Fu and Sandler [6] 

demonstrated that the more general technique of Wertheim’s theory could be used, but did not 

develop expressions that are readily applied in a generalized way. Development of activity models 

has languished while most development effort has focused on equations of state.  

1.1.3. Association modeling 

Association is most commonly modeled in thermodynamics with chemical theory or Wertheim’s 

perturbation theory, which is the method used in CPA and the SAFT families of equations. While 

the chemical and Wertheim’s theories are different, there are several parallels between them. One 

such similarity is that both methods have two key quantities: an association constant and another 

variable that is related directly to the fraction of “monomers” or molecules that remain non-bonded 

at equilibrium. A common challenge between EOS and activity coefficient models is discerning 

the value for these variables. In fact, published association constants can vary up to a factor of four 

to five depending on the source. A fundamentally satisfying method to obtain accurate association 

constants is to quantify the real monomer fraction in solution and fit the association parameters to 

the monomer fraction.  

Some efforts have been made to determine monomer fractions from molecular dynamics 

simulations using atomistic force fields. While more rigorous than fitting to macroscopic density 

and vapor pressure data, the monomer fractions and hydrogen bonding depend significantly on the 

force field employed. Kwac and Geva [17] show that the relative population of monomers can 

vary by up to 13% between various force fields. A better approach is to probe the microscopic 
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nature of the interactions with spectroscopic tools such as infrared (IR) or nuclear magnetic 

resonance (NMR) spectroscopy. The advantage of these techniques lies in the measurement of the 

experimental response due to the types and relative quantities of microscopic species existing in 

solution. However, attainment of high-quality information from these techniques remains 

challenging. For example, this work will show that the IR extinction coefficient varies by 

approximately 20 times for different types of hydroxyl groups in solution. Due to overlapping 

peaks, individual species have not previously been determined experimentally with confidence. 

NMR provides a time-averaged measure of hydrogen bonding and, in cases with multiple 

equilibrating species, the measurements provide only broad insight into the specific distribution of 

hydrogen bonded species in solution. 

1.2. Research objectives 

The project developed in this dissertation integrates multiple tools to improve the thermodynamic 

modeling of associating systems: a new activity coefficient model, spectroscopy and MD + QM 

simulations. The complimentary relationship between these facets provides new quantitative 

insights that overcome the limitations and exceed the capabilities of the individual tools acting 

alone. First, a flexible thermodynamic activity coefficient model is developed that incorporates 

Wertheim’s association term. Next, the key model quantity, the monomer fraction, is extracted 

from IR and NMR spectra. Finally, to overcome the challenges associated with spectral analysis, 

MD + QM simulations are used to estimate the extinction coefficients of various species and 

predict their distribution in solution. Ultimately, the objective of this work is to advance knowledge 

of hydrogen bonding by quantifying its effects at a molecular level to lend physical significance 

to engineering models for industry.  
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1.3. Dissertation outline 

This remainder of this document is organized as follows: Chapter 2 describes the relation between 

the concentration-based equilibrium constant, 𝐾𝐶 and the activity-based equilibrium constant, 𝐾𝑎. 

Equilibrium reactions and chemical theory are often described by 𝐾𝐶 which is assumed to be 

independent of composition in the liquid phase. However, from the thermodynamic perspective, it 

is actually 𝐾𝑎 that remains constant with composition as it is directly related to the Gibbs energy. 

The chapter explores the relationship between the two types of equilibrium constants, and their 

use in reaction engineering. In Chapters 3 and 4, the two most prevalent association theories in 

thermodynamics, chemical theory and Wertheim’s perturbation theory, are shown to be 

numerically and analytically identical under reasonable approximations. We demonstrate a direct 

relationship between the concentration-based equilibrium constant 𝐾𝐶 used in chemical theory, 

and the Wertheim association constant Δ𝐴𝑖𝐷𝑗 by relating them both to the activity-based 

equilibrium constant, 𝐾𝑎. Moreover, an activity coefficient association contribution (𝛾𝑎𝑠𝑠𝑜𝑐) 

model, named the Wertheim Association Gamma (WAG), is developed to provide generalized 

method to integrate association into thermodynamic 𝛾 models.  

Chapter 3 considers associating species in an inert solvent. In Chapter 4, the analysis is extended 

to systems that solvate in addition to forming chains. Existing literature in this area has rarely 

detailed the species in chemical theory. Therefore, objectives of Chapters 3 and 4 are to elucidate 

how various species must be counted in chemical theory and to demonstrate the relationship with 

Wertheim theory. 

The WAG model developed in Chapter 3 is used in Chapter 5 to model the behavior of methanol 

and ethanol-containing binary and ternary systems of industrial significance. The purpose of this 

work is to demonstrate the capabilities and limitations of the functional form of the 𝛾𝑎𝑠𝑠𝑜𝑐  when 
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combined with traditional physical models such as NRTL [3], Wilson [18], and Scatchard-

Hildebrand [19,20] and compare with the SAFT and CPA models. To this end, the values of the 

association constants (Δ𝐴𝑖𝐷𝑗) are set to values determined from published CPA parameters.  

In Chapters 6 and 7, fundamental studies are leveraged to obtain more physically significant values 

of Δ𝐴𝑖𝐷𝑗. First, a successive molecular dynamics and quantum mechanics (MD + QM) approach 

to investigating molecular association is outlined. Molecules are classified according to their 

participation in hydrogen bonding, and their response to excitation by infrared is studied. A 

universal map is created that relates the hydroxyl IR band characteristics and the bond length of 

the hydroxyl in alcohol monomers and clusters. Then, the QM maps are used to analyze 

experimental IR spectra to calculate Δ𝐴𝑖𝐷𝑗 for butanol + cyclohexane. In the final Chapter 8, the 

main conclusions of the project are summarized and recommendations for future work are 

outlined. 
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Chapter 2.  Relation of Concentration-based Equilibrium Constants to 

Activity-based Equilibrium Constants in the Liquid Phase 
 

Concentration-based equilibrium constants are used widely in modeling chemical kinetics for 

elementary reactions in both the gas phase and liquid phase. However, activity-based equilibrium 

constants are the rigorous values based on thermodynamic minimization of the Gibbs energy. The 

relation between the concentration-based constants and the activity-based constants is well-

documented in textbooks for the ideal gas phase. This research note shows the relation between 

the equilibrium constants in the liquid phase and discusses conditions under which the 

concentration-based equilibrium constant is independent of composition. 

2.1. Introduction 

Characterization of chemical equilibria is necessary for chemical reactor design, and of interest for 

understanding limitations of chemical conversion. A requirement for chemical equilibrium is that 

the Gibbs free energy of the reaction is minimized, and the standard state Gibbs energy change is  

related to the activity-based equilibrium constant, 𝐾𝑎 [8]. As such, from a fundamental 

thermodynamic perspective, 𝐾𝑎 is independent of composition for a given reaction. However, in 

practice, this compositional independence is commonly assumed for the concentration-based 

equilibrium constant, 𝐾𝐶, for reactions in both the gaseous and liquid phases. The use of 

concentrations in the liquid phase is often explained using the empirical law of mass action rather 

than on a basis of thermodynamic principles [21–23]. In this work, we show why this approach is 

valid for ideal gases and explore the conditions under which the approximation is reasonable for 

liquids. 
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2.2. Gibbs energy and the activity-based equilibrium constant 

For the purposes of this communication, we consider the reaction components E and F combining 

into a product composed of 𝑒𝐸 and 𝑓𝐹. 

 𝑒𝐸 + 𝑓𝐹 ⇌ 𝐸𝑒𝐹𝑓 2.1 

Commonly, reactions are generalized using stoichiometric coefficients, |𝜈𝑖| and stoichiometric 

numbers, 𝜈𝑖 [21]. Thus, the stoichiometric coefficients for this reaction are e, f, and 1 respectively 

for the three species, and the stoichiometric numbers are 𝜈𝐸 = −𝑒, 𝜈𝐹 = −𝑓 , and 𝜈𝐸𝑒𝐹𝑓 = 1 . 

While there is only one product for this simple example, the results set forth here are not limited 

to single-product reactions.  

Thermodynamic analysis focuses on the activity-based equilibrium constant defined by 

 

𝐾𝑎 =∏(𝑎𝑖)
ν𝑖

𝑁

𝑖=1

 

2.2 

where 𝑎𝑖 is the activity of species i and depends on the standard state. The activity-based 

equilibrium constant is dimensionless, independent of composition and depends only on 

temperature. The equilibrium constant value is calculated via 

 −𝑅𝑇 ln𝐾𝑎 = 𝛥𝐺
𝑜 =∑𝜈𝑖Δ𝐺𝑓,𝑖

𝑜

𝑖

 
2.3 

where 𝛥𝐺𝑜 is the standard Gibbs energy of reaction and Δ𝐺𝑓,𝑖
𝑜  is the standard state Gibbs energy 

of formation of component i. The value of the equilibrium constant depends on the standard state 

used for each component and the value will be different when ideal gas standards states are used 

compared to when liquid standards states are used. Commonly, all the components use the same 

standard state, though this is not required. In many cases, pure thermodynamic quantities are not 
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known, and the value of the equilibrium constant is determined empirically from applying Eq. 

(2.2) or approximations. The activity in Eq. (2.2) is given by 

 𝑎𝑖 = 𝑓𝑖/𝑓𝑖
𝑜 2.4 

where 𝑓𝑖 is the component fugacity and 𝑓𝑖
𝑜 is the standard state fugacity. A standard state is 

specified at a particular composition, state of aggregation, and typically chosen to be at the 

temperature of the reacting system and a specified standard state pressure, 𝑃°.  

2.3. Gas phase activity-based equilibrium constant 

When the reactants and products are in the gas phase, the fugacity is calculated using an equation 

of state, 𝑓𝑖 = 𝑦𝑖�̂�𝑖𝑃, where 𝑦𝑖 is vapor mole fraction and �̂� is the component fugacity coefficient. 

Using the common standard state of a pure ideal gas at a pressure of 1 bar, 𝑓𝑖
𝑜 = 𝑃° = 1 bar, and 

for the reaction of Eq. (2.1), inserting activities from Eq. (2.4) into Eq. (2.2) gives 

 
𝐾𝑎 =

𝑦𝐸𝑒𝐹𝑓�̂�𝐸𝑒𝐹𝑓𝑃/𝑃°

(𝑦𝐸�̂�𝐸𝑃/𝑃°)𝑒(𝑦𝐸�̂�𝐹𝑃/𝑃°)𝑓
 

2.5 

where commonly 𝑃° is omitted from the expression and 𝑃 is expressed in bar to assure that 𝐾𝑎 

remains dimensionless. When the gas phase is ideal, the fugacity simplifies by neglecting gas 

phase nonidealities, �̂�𝑖 = 1, and recognizing the molar concentration for species i, and denoting it 

by square brackets, [𝑖] = 𝑦𝑖𝑃/(𝑅𝑇): 

 
𝐾𝑎
𝑖𝑔
=

𝑦𝐸𝑒𝐹𝑓

𝑦𝐸𝑒𝑦𝐹𝑓𝑃(𝑒+𝑓−1)
=

[𝐸𝑒𝐹𝑓]

[𝐸]𝑒[𝐹]𝑓(𝑅𝑇)(𝑒+𝑓−1)
=

𝐾𝐶
(𝑅𝑇)(𝑒+𝑓−1)

 
2.6 

The expression in Eq. (2.6) is only valid for ideal gases as noted with the superscript ig. The 

concentration-based equilibrium constant found within the equation is defined as 

 

𝐾𝐶 ≡∏[𝑖]ν𝑖  

𝑁

𝑖=1

=
[𝐸𝑒𝐹𝑓]

[𝐸]𝑒[𝐹]𝑓
 

2.7 
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This relation is shown widely in many texts and developed only for ideal gases and/or used without 

proof for condensed phases [8,21–25]. Since 𝐾𝑎 is independent of composition, it is obvious from 

Eq. (2.6) that 𝐾𝐶 is independent of concentration for ideal gas species. However, for liquid phases, 

the ideal gas law does not apply and thus, [𝑖] ≠ 𝑦𝑖𝑃/(𝑅𝑇). Therefore, (𝑅𝑇)(𝑒+𝑓−1) is not the 

correct conversion factor between the liquid phase 𝐾𝑎 and 𝐾𝐶 values and the general relation for 

condensed phases is not obvious. The following section demonstrates the relation between 𝐾𝑎 and 

𝐾𝐶 in condensed phases and explains the conditions under which liquid-phase 𝐾𝐶 can be expected 

to be independent of composition.  

2.4. Liquid phase activity-based equilibrium constant  

One method to explore the composition dependence of 𝐾𝐶 in the liquid phase is to use a standard 

state of 1 M in Eq. (2.3), and to use the concentration scale for activities in Eq. (2.4). However, 

activity relations for nonelectrolytes on the concentration scale are uncommon. This work will use 

the mole fraction scale to understand the relation between 𝐾𝑎 and 𝐾𝐶 and the conditions where 𝐾𝐶 

may be expected to be independent of composition in the liquid phase. 

The use of 𝐾𝐶 also arises from reaction kinetics. Chemical kinetics are routinely modeled using 

concentrations to represent the driving force [21–23] for the reaction rate. For the reaction in Eq. 

(2.1), the commonly-used concentration-based rate expression for an elementary reversible 

reaction in a batch reactor is 

 
−
1

𝑒

𝑑[𝐸]

𝑑𝑡
= −

1

𝑓

𝑑[𝐹]

𝑑𝑡
=
𝑑[𝐸𝑒𝐹𝑓]

𝑑𝑡
= 𝑘𝑓[𝐸]

𝑒[𝐹]𝑓 − 𝑘𝑟[𝐸𝑒𝐹𝑓] 
2.8 

where 𝑘𝑓 and 𝑘𝑟 are the forward and reverse rate constants, 𝑑[𝐸]/𝑑𝑡 and 𝑑[𝐹]/𝑑𝑡 are the rates of 

change of E and 𝐹 concentrations, respectively. The term  𝑑[𝐸𝑒𝐹𝑓]/𝑑𝑡 is the rate of change for 

concentration of 𝐸𝑒𝐹𝑓. Rate laws represent the non-equilibrium reaction phenomena, and a lengthy 
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review regarding the use of the law of mass action is available [26]. For the purposes of this note, 

we accept the form of Eq. (2.8) as sufficient for engineering application for ideal gases. If valid, 

since the forward and reverse rates are equal at equilibrium, then 

 
𝐾𝐶 =

𝑘𝑓

𝑘𝑟
=

[𝐸𝑒𝐹𝑓]

[𝐸]𝑒[𝐹]𝑓
 

2.9 

In the liquid phase, using a liquid standard state, the activity is 𝑎𝑖 = 𝑥𝑖𝛾𝑖𝑓𝑖/𝑓𝑖
𝑜 where 𝑓𝑖 and 𝑓𝑖

𝑜 are 

evaluated according to 𝑓𝑖 = 𝜑𝑖
𝑠𝑎𝑡𝑃𝑖

𝑠𝑎𝑡 exp (
𝑉(𝑃−𝑃𝑠𝑎𝑡)

𝑅𝑇
) and 𝑓𝑖

𝑜 = 𝜑𝑖
𝑠𝑎𝑡𝑃𝑖

𝑠𝑎𝑡 exp (
𝑉(𝑃𝑜−𝑃𝑠𝑎𝑡)

𝑅𝑇
) at P 

and Po respectively. Ignoring the minor effect of pressure on liquid fugacity, the equilibrium 

constant for the example reaction of Eq. (2.1) results in [8] 

 

𝐾𝑎
𝐿 =∏(𝑥𝑖𝛾𝑖)

ν𝑖

𝑁

𝑖=1

=
𝑥𝐸𝑒𝐹𝑓𝛾𝐸𝑒𝐹𝑓

(𝑥𝐸𝛾𝐸)𝑒(𝑥𝐹𝛾𝐹)𝑓
 

2.10 

To introduce concentrations for condensed phases, molar densities are typically used according to 

 𝑥𝑖 = [𝑖]/𝜌 2.11 

where 𝜌 is the mixture molar density. Thus, the relation between 𝐾𝑎 and 𝐾𝐶 is 

 𝐾𝑎
𝐿 = 𝐾𝐶𝜌

(𝑒+𝑓−1)𝐾𝛾 2.12 

where  

 
𝐾𝛾 =

𝛾𝐸𝑒𝐹𝑓

𝛾𝐸
𝑒𝛾𝐹
𝑓
 

2.13 

Because 𝐾𝑎 is independent of composition, and molar density and activity coefficients change with 

composition, then 𝐾𝐶 may be expected to display composition dependence via Eq. (2.12), which 

is in conflict with the frequent empirical use of 𝐾𝐶 for modeling of reactions that approach reaction 

equilibrium. Certainly, activity-based kinetics can model the composition dependence [27,28], but 

improved clarity of the relation between the 𝐾𝐶 and 𝐾𝑎 would benefit the kinetics and 

thermodynamics communities. 
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Within chemical engineering, activity coefficients are commonly modeled by [12,29] 

 ln 𝛾𝑖 = ln 𝛾𝑖
𝑐𝑜𝑚𝑏 + ln 𝛾𝑖

𝑟𝑒𝑠 2.14 

where comb indicates the combinatorial entropy contribution, often given by Flory’s equation [30] 

or some variant, and res indicates the energetic and other residual effects that are commonly 

modeled with adjustable parameters [12,29]. Note that Eq. (2.14) combined with Eq. (2.10) 

becomes 

𝐾𝑎
𝐿 =

𝑥𝐸𝑒𝐹𝑓𝛾𝐸𝑒𝐹𝑓
𝑐𝑜𝑚𝑏𝛾𝐸𝑒𝐹𝑓

𝑟𝑒𝑠

(𝑥𝐸𝛾𝐸
𝑐𝑜𝑚𝑏𝛾𝐸

𝑟𝑒𝑠)
𝑒
(𝑥𝐹𝛾𝐹

𝑐𝑜𝑚𝑏𝛾𝐹
𝑟𝑒𝑠)

𝑓
=

𝑥𝐸𝑒𝐹𝑓𝛾𝐸𝑒𝐹𝑓
𝑐𝑜𝑚𝑏

(𝑥𝐸𝛾𝐸
𝑐𝑜𝑚𝑏)

𝑒
(𝑥𝐹𝛾𝐹

𝑐𝑜𝑚𝑏)
𝑓
𝐾𝛾
𝑟𝑒𝑠 = 𝐾𝑎

𝑐𝑜𝑚𝑏𝐾𝛾
𝑟𝑒𝑠 

2.15 

where the superscript L indicates liquid phase and 𝐾𝑎
𝑐𝑜𝑚𝑏 is represented by the Flory equation, 

denoted explicitly in the superscript: 

 
𝐾𝑎
𝐹𝑙𝑜𝑟𝑦

=
𝑥𝐸𝑒𝐹𝑓𝛾𝐸𝑒𝐹𝑓

𝑐𝑜𝑚𝑏

(𝑥𝐸𝛾𝐸
𝑐𝑜𝑚𝑏)

𝑒
(𝑥𝐹𝛾𝐹

𝑐𝑜𝑚𝑏)
𝑓
;     𝐾𝛾

𝑟𝑒𝑠 =
𝛾𝐸𝑒𝐹𝑓
𝑟𝑒𝑠

(𝛾𝐸
𝑟𝑒𝑠)𝑒(𝛾𝐹

𝑟𝑒𝑠)𝑓
 

2.16 

Appendix A demonstrates that use of Flory’s equation for configurational entropy under two 

conditions. First, Flory’s equation assumes that the packing factor, which is the fraction of the total 

volume that is occupied by molecules and a measure of how “packed” molecules are in a given 

system, is universal. Second, the molar volumes are assumed to be additive on reaction, meaning 

that 𝑉𝐸𝑒𝐹𝑓 = 𝑒𝑉𝐸 + 𝑓𝑉𝐹 which is satisfied if mass density of reaction products and reactants are all 

the same as shown in Appendix B. The calculation results in 

 𝐾𝑎
𝐹𝑙𝑜𝑟𝑦

= 𝐾𝐶𝐾𝑉exp (𝑒 + 𝑓 − 1) 2.17 

where 𝐾𝑉 = 𝑉𝐸𝑒𝐹𝑓/(𝑉𝐸
𝑒𝑉𝐹

𝑓
) with 𝑉𝑖 representing the molar volume of species i. Note 𝐾𝑉exp (𝑒 +

𝑓 − 1) is independent of concentration. Thus, we conclude that Flory’s equation justifies density 

appearing in Eq. (2.12) and that 
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 𝐾𝑎
𝐿 = 𝐾𝐶𝐾𝑉𝐾𝛾

𝑟𝑒𝑠exp (𝑒 + 𝑓 − 1) 2.18 

Because 𝐾𝑎
𝐿 is independent of composition, dependence of 𝐾𝐶 on composition is coupled to 

composition dependence of 𝐾𝛾
𝑟𝑒𝑠. We expect 𝐾𝐶 to be independent of composition when 𝐾𝛾

𝑟𝑒𝑠 is 

constant, defined by Flory as an athermal solution (𝐾𝛾
𝑟𝑒𝑠 = 1), and approximately independent of 

composition when residual contributions are small. Components often have large differences in 

molar volumes (thus molar densities) creating a composition dependence of molar volume (thus 

molar density). However, mass densities, 𝜌∗, are frequently found experimentally to be in the range 

of 0.8 kg/L < 𝜌∗ < 1 kg/L. In cases where the reactants and products of a reaction have the same 

mass densities, the molar volumes are additive (𝑉𝐸𝑒𝐹𝑓 = 𝑒𝑉𝐸 + 𝑓𝑉𝐹) as shown in Appendix B. 

Then, under the assumption of Flory’s equation with a constant 𝐾𝛾
𝑟𝑒𝑠, 𝐾𝐶 will be constant. Note 

that the Flory configurational contribution to 𝐾𝛾 cancels the molar density appearing in Eq. (2.12). 

Also, this analysis indicates that when residual activity coefficients are used with 𝐾𝐶, the activity 

coefficient models should not include the combinatorial contribution to avoid double-counting the 

combinatorial effect. 
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Appendix A: Development of the activity-based equilibrium constant for athermal solutions 

Here we develop the expression for 𝐾𝑎 for an athermal solution using Flory’s equation [30] for the 

activity coefficients. Considering Flory’s theory for the combinatorial activity coefficient, we write 

the following expression: 

 ln 𝑥𝑖𝛾𝑖
𝑐𝑜𝑚𝑏 = ln 𝑥𝑖 + ln (

Φ𝑖
𝑥𝑖
) + 1 −

Φ𝑖
𝑥𝑖
= lnΦ𝑖 + 1 −

Φ𝑖
𝑥𝑖

 
A.1 

where Φ𝑖 is the volume fraction for component i defined as: Φ𝑖 = 𝑥𝑖𝑉𝑖/∑ 𝑥𝑗𝑉𝑗𝑗 . Therefore, the 

equilibrium constant ratio for products and reactants is  

 ln (
𝑥𝐸𝑒𝐹𝑓𝛾𝐸𝑒𝐹𝑓

𝑐𝑜𝑚𝑏

(𝑥𝐸𝛾𝐸
𝑐𝑜𝑚𝑏)

𝑒
(𝑥𝐹𝛾𝐹

𝑐𝑜𝑚𝑏)
𝑓
) = ln (

Φ𝐸𝑒𝐹𝑓

Φ𝐸
𝑒  Φ𝐹

𝑓
) − 1 + 𝑒 + 𝑓 −

Φ𝐸𝑒𝐹𝑓
𝑥𝐸𝐹

+
𝑒Φ𝐸
𝑥𝐸

+
𝑓Φ𝐹
𝑥𝐹

 A.2 

If the molar volumes are assumed to be additive on product formation and 𝑉𝐸𝑒𝐹𝑓 = 𝑒𝑉𝑒 + 𝑓𝑉𝑓, and 

recognizing the molar density 𝜌 = 1/∑ 𝑥𝑗𝑉𝑗𝑗 , the equilibrium constant ratio can be written as: 

 

ln 𝐾𝑎
𝐹𝑙𝑜𝑟𝑦

= ln (
𝑥𝐸𝑒𝐹𝑓𝛾𝐸𝑒𝐹𝑓

𝑐𝑜𝑚𝑏

(𝑥𝐸𝛾𝐸
𝑐𝑜𝑚𝑏)

𝑒
(𝑥𝐹𝛾𝐹

𝑐𝑜𝑚𝑏)
𝑓
)

= ln (
𝑥𝐸𝑒𝐹𝑓

𝑥𝐸
𝑒  𝑥𝐹

𝑓
 
𝑉𝐸𝑒𝐹𝑓

𝑉𝐸
𝑒 𝑉𝐹

𝑓
 

1

𝜌(𝑒+𝑓−1)
) − 1 + 𝑒 + 𝑓 

A.3 

 ln𝐾𝑎
𝐹𝑙𝑜𝑟𝑦

= ln (
[𝐸𝑒𝐹𝑓]

[𝐸]𝑒[𝐹]𝑓
 
𝑉𝐸𝑒𝐹𝑓

𝑉𝐸
𝑒 𝑉𝐹

𝑓
exp(𝑒 + 𝑓 − 1)) A.4 

 𝐾𝑎
𝐹𝑙𝑜𝑟𝑦

= 𝐾𝐶𝐾𝑉 exp(𝑒 + 𝑓 − 1) A.5 

where we define for convenience a composition-independent term 

 𝐾𝑉 ≡
𝑉𝐸𝑒𝐹𝑓

𝑉𝐸
𝑒 𝑉𝐹

𝑓
 A.6 
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Appendix B: Effect of mass density on volume of mixing 

Here we show that if mass density is constant upon mixing or reaction that excess volume is zero. 

If mass density of the mixture and components are all equal:  

 
𝑀𝑊𝑚𝑖𝑥
𝑉

=
𝑀𝑊𝐸
𝑉𝐸

=
𝑀𝑊𝐹
𝑉𝐹

 B.1 

where 𝑀𝑊𝑖 and 𝑉𝑖 is the molecular weight and molar volume of component i respectively. 

Using the definition of average molecular weight 𝑀𝑊𝑚𝑖𝑥 = 𝑥𝐸𝑀𝑊𝐸 + 𝑥𝐹𝑀𝑊𝐹, and selecting E 

as a basis for the right-hand side: 

 
𝑥𝐸𝑀𝑊𝐸 + 𝑥𝐹𝑀𝑊𝐹

𝑉
=
𝑀𝑊𝐸
𝑉𝐸

 B.2 

Rearrange for 𝑉 

 
(𝑥𝐸𝑀𝑊𝐸 + 𝑥𝐹𝑀𝑊𝐹)𝑉𝐸

𝑀𝑊𝐸
= 𝑉 B.3 

Similarly, if the mass densities are equal, from Eq. (B.1): 

 𝑉𝑗 =
𝑉𝑖𝑀𝑊𝑗

𝑀𝑊𝑖
 B.4 

Substituting Eq. (B.4) in Eq. (B.3), shows that the excess volume is zero 

 𝑥𝐸𝑉𝐸 + 𝑥𝐹 (
𝑀𝑊𝐹𝑉𝐸
𝑀𝑊𝐸

) = 𝑥𝐸𝑉𝐸 + 𝑥𝐹𝑉𝐹 = 𝑉𝑚𝑖𝑥 B.5 

Because most liquids have very similar mass densities, the excess volume can often be neglected 

in all but the most precise work.  
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Chapter 3.  Relation of Wertheim Association Constants to Concentration-

based Equilibrium Constants for Mixtures with Chain-forming Components 
 

Several association modeling approaches have been developed to accurately describe the 

properties of polar solutions. Chemical theory and Wertheim’s perturbation theory are among the 

most popular of these and they have been shown to yield similar functional forms for the 

contributions of association to Helmholtz energy and activity coefficients. In this paper, we study 

Flory polymerization theory through the work of Campbell and elucidate its correlation to 

Wertheim’s theory. A simple key relationship between the concentration-based equilibrium 

constant and Wertheim’s association constant is developed for systems in which all associating 

components have one acceptor and one donor site. Algebraic and numerical proofs are given for 

the equivalence of Flory’s polymerization theory and Wertheim’s perturbation theory for pure 

fluids and mixtures. Additionally, a new generalized activity expression is developed for 

Wertheim’s theory. 

3.1. Introduction 

3.1.1. Motivation 

As global demand for renewable chemicals and fuels increases, new pathways for their 

manufacture are being proposed. These projects include upgrading of natural oils, and 

fermentation of pyrolysis products to chemicals and fuels. The ubiquitous presence of polar 

components in biobased process streams complicates the design of industrial separation units. 

Traditional thermodynamic models, such as non-random two liquid (NRTL) and UNIversal 

QUAsiChemical (UNIQUAC), are incapable of accurately representing LLE and VLLE in these 

systems without utilizing more parameters than can be determined with confidence of physical 

relevance [31].  
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The limitations of traditional models for polar systems are largely due to their crude representation 

of important molecular interactions; specifically, hydrogen bonding. Polar molecules that 

hydrogen bond (or associate) with each other form clusters of chains and/or rings which cause 

large deviations from ideal behavior. These interactions are responsible for higher boiling points 

and enthalpies of vaporization of hydrogen bonding compounds compared to molecules of 

comparable size and polarity that lack the ability to hydrogen bond. The extent and nature of 

association varies under different conditions including solution composition, temperature and 

pressure. Therefore, it is necessary for thermodynamic models to incorporate hydrogen bonding 

explicitly rather than lumping the contributions with nonpolar (van der Waals) and simple dipole-

dipole interactions.  

3.1.2.  Historical perspective 

Association models can be classified into three categories: chemical theories, lattice models and 

perturbation theories. Apelblat [32,33] presents a historical summary of the advancements made 

in association modeling from 1884 to 1984. Among the most noteworthy contributions is 

Dolezalek’s [34] theory representing hydrogen bonding as an equilibrium reaction governed by an 

equilibrium constant. The original theory, often called ‘ideal’ chemical theory, considers the true 

species formed through hydrogen bonding (e.g. dimers, trimers etc.) to otherwise behave ideally. 

In other words, physical interactions between the complexes in solution are ignored. This 

simplification is difficult to justify and has proved inadequate for many systems especially in 

modeling liquid-liquid immiscibility. The Dolezalek approach was therefore enhanced by 

combining the chemical theory contribution with a conventional model, such as NRTL [35] or 

UNIQUAC [36], to capture the physical interactions.  
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With chemical theory, several decisions must be made a priori regarding the species that exist in 

solution and the equilibrium constants for various hydrogen bonds. The continuous association 

model, also known as the Mecke-Kempter model, makes the simplification that the value of the 

equilibrium constant does not depend on the chain or ring size formed.  While there has been some 

discussion on the contradiction of this assumption with spectroscopic evidence [37], it is often 

adopted as a first-order representation of the complexation in solution. 

Lattice models represent the system as a lattice of empty and occupied sites and investigate the 

extent of association by quantifying interactions between adjacent occupied sites. Perhaps the most 

prominent lattice model is the one presented by Guggenheim [38] which accounts for non-

randomness in the solution. Hydrogen bonding has since been integrated into several lattice models 

[39–42].  

Perturbation theories add the association to a non-associating reference fluid. Gubbins [43] 

recently presented a review of work done in this area. Several perturbation theories [44–46] have 

been developed but the simplest and most popular is Wertheim’s theory [47–50], which is the basis 

of a number of equation of state (EOS) models including Elliott-Suresh-Donohue (ESD) [10,51], 

cubic plus association (CPA) [11,52] and the statistical associating fluid theory (SAFT) family of 

equations [9,53–57].  

Numerous independent researchers [58–60] have compared association models. Economou and 

Donohue [58] found that for many systems, both chemical theory (using activity-based 𝐾𝑎) and 

Wertheim’s theory yield essentially the same functional form for the association contribution, 

despite differences in their origins and derivations. Wolbach and Sandler derived relations between 

𝐾𝑎 and Wertheim’s association constant for ideal gases and used quantum calculations to estimate 

values of the Wertheim association constant for molecules with multiple sites [59,61]. Chapman 
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et al. [9] noticed the similarity in polymer distributions using Wertheim’s theory in the SAFT 

model compared to Flory’s polymerization theory (using concentration-based 𝐾𝐶). Campbell 

rearranged the Flory polymerization theory and was able to find a similar algebraic form but the 

terms were not identical [16]. Thus, the analytical equivalence of the Wertheim theory and Flory’s 

polymerization theory has not yet been proven. In this work, we compare the two approaches for 

systems of chain-forming species in which the associating components each have an acceptor site 

and a donor site to contribute to association. Examples of these systems include pure alcohols, 

alcohol + inerts and alcohol mixture solutions. We also provide algebraic and numerical proofs of 

the equivalence of Flory’s theory and Wertheim’s theory when the packing factor is universal, and 

the excess volume is zero.  

3.2. Theory and analysis 

A nonideal system’s behavior is described using either deviations from ideal gas mixtures using 

fugacity coefficients, or deviations from ideal solutions using activity coefficients as discussed by 

Prausnitz and Tavares [62]. Fugacity coefficients are readily calculated with an equation of state 

through the compressibility factor, Z. It is common practice to separate contributions to Z relative 

to the ideal gas value, 𝑍𝑖𝑔, according to the nature of the nonideality causing the deviations. 

 𝑍 − 𝑍𝑖𝑔 = 𝑍 − 1 = 𝑍𝑟𝑒𝑝 + 𝑍𝑎𝑡𝑡 + 𝑍𝑎𝑠𝑠𝑜𝑐 3.1  

Here 𝑍𝑟𝑒𝑝 and 𝑍𝑎𝑡𝑡 represent effects of the repulsive and attractive forces and 𝑍𝑎𝑠𝑠𝑜𝑐 accounts for 

hydrogen bonding between molecules. Contributions to the Helmholtz energy departure at fixed T 

and V are correspondingly 

 (𝐴 − 𝐴𝑖𝑔)
𝑇,𝑉
= 𝐴𝑟𝑒𝑝 + 𝐴𝑎𝑡𝑡 + 𝐴𝑎𝑠𝑠𝑜𝑐  3.2 

In a model such as the SAFT EOS, a bond term is added to both 𝑍 − 𝑍𝑖𝑔 and(𝐴 − 𝐴𝑖𝑔)
𝑇,𝑉

. An 

alternative approach is to consider the excess Gibbs energy (GE), related directly to the activity 
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coefficient, γ, of each component and separate perturbations according to their sources. Deviations 

caused by differences in the size and shapes of molecules are accounted for by an entropic 

combinatorial contribution which ignores all attractive interactions and is the only term remaining 

at infinitely high temperatures. The association contribution represents non-idealities due to 

hydrogen bonding and the residual term accounts for other interactions that are not as well-

understood and typically includes adjustable parameters. The contributions combine in a 

multiplicative form. However, it is conventional to calculate the logarithms of the activity 

coefficients and present the relationship as 

 ln 𝛾 =  ln 𝛾𝑐𝑜𝑚𝑏 + ln 𝛾𝑎𝑠𝑠𝑜𝑐 + ln 𝛾𝑟𝑒𝑠 3.3 

The focus of this work is the 𝛾𝑎𝑠𝑠𝑜𝑐 term. We begin by introducing the nomenclature used to 

describe the apparent and true concentrations in associating solutions. Here, the term ‘apparent’ is 

used to denote ‘stoichiometric’ or ‘superficial’ concentrations of species in a mixture which is the 

overall amount added in composing the mixture divided by the mixture volume. The speciation 

that occurs in solution results in ‘true’ species, which are model-dependent. For example, in a pure 

alcohol, the apparent mole fraction of alcohol is unity, but the solution can also be described in 

terms of concentrations of true monomers, dimers, trimers and so on. Notations vary in literature, 

and the distinction between apparent and true molarity is not always clear. In this work, a subscript 

T is used to denote the true quantities. Every solution will contain some ‘free’ or ‘unassociated’ 

molecular species which is described as monomer and denoted with the subscript M, which is 

understood to be a ‘true’ quantity. 

3.2.1. Association term – Wertheim’s theory 

Wertheim’s perturbation theory calculates the probabilities of various site interactions that result 

in the formation of complexes. Each molecule type in solution may have any number of acceptor 
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(A) and/or donor (D) sites and bonding between each pair is governed by an association constant, 

∆𝐴𝑖𝐷𝑗. Notation for the acceptor and donor sites subscripts differs in literature, thus comparisons 

must be done carefully. In early literature, the i and j denote the host component. However, as 

noted by Michelsen [63], the summations are greatly simplified by indexing the acceptor and donor 

sites rather than the site hosts because site hosts can have more than one type of each site. We 

write summations over sites in this work. The acceptor and donor terminology allows the model 

to lend itself to any type of complexation, including covalent bonding. Depending on the number 

and types of sites attributed to a molecule of a component, different association schemes can be 

used as reviewed by Kontogeorgis and Folas [64]. Alcohols, for example, are commonly modeled 

using the 2B association scheme which corresponds to having one acceptor and one donor site per 

molecule (Figure 3.1). We follow this convention in the present work. A detailed explanation of 

the theoretical development of Wertheim’s theory is given by Chapman [9] and Zmpitas and Gross 

[65].  

 

Figure 3.1: 2B association scheme. Hydrogen bonded oligomers with two bonding sites per 

molecule. The acceptor and donor sites are labeled on the leftmost molecule. 

 

The Helmholtz energy departure at fixed temperature and volume due to association derived from 

Wertheim’s theory is implemented in SAFT and CPA as 

 (𝐴 − 𝐴𝑖𝑔)
𝑇,𝑉

𝑎𝑠𝑠𝑜𝑐

𝑅𝑇
= ∑ 𝑛0,𝐵𝑖 ℎ𝑜𝑠𝑡𝑁𝐵𝑖 (ln(𝑋

𝐵𝑖) −
𝑋𝐵𝑖

2
+
1

2
)

𝑎𝑙𝑙 𝑠𝑖𝑡𝑒 
𝑡𝑦𝑝𝑒𝑠 𝐵𝑖

 
3.4 

where 𝐵𝑖 is generic notation for an acceptor, donor, or bivalent (acceptor/donor) site, 𝑛0,𝐵𝑖 ℎ𝑜𝑠𝑡 is 

the apparent number of moles of the component hosting site 𝐵𝑖, and 𝑁𝐵𝑖 is the number of identical 
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sites of type B on the host. The term 𝑋𝐵𝑖 = 𝑛𝐵𝑖,𝑓𝑟𝑒𝑒/𝑛𝐵𝑖,𝑡𝑜𝑡𝑎𝑙 is the fraction of sites of type B that 

remain non-bonded at equilibrium, calculated through the balance on the probability of binding: 

where 𝐸𝑗 is generic notation for a site which mates with site 𝐵𝑖, 𝑥𝐸𝑗 ℎ𝑜𝑠𝑡 denotes the component 

apparent mole fraction of the site 𝐸𝑗 host and ∆𝐵𝑖𝐸𝑗 is an association constant parameter between 

site i of type B and site j of type E. In this work 𝜌 is molar density and thus ∆𝐵𝑖𝐸𝑗  has units of molar 

volume. 

With chain-forming components, when each hydrogen bond formed, one acceptor (A) and one 

donor (D) site are consumed. Thus, in a pure fluid with the 2B association scheme, the fraction of 

molecules non-bonded at each acceptor site is the same as those free at the donor sites. Therefore, 

numbering acceptor and donor sites on the same host using the same subscripts, 

For mixtures of associating species with the 2B model, Eq. (3.6) is contingent on ∆𝐴𝑖𝐷𝑗= ∆𝐷𝑗𝐴𝑖, 

which is true when certain cross-coefficients equations are used. The reader should recognize that 

site indexes i and j match the host indexes for the 2B model indexing discussed here. The 

combining rules we use to calculate cross-coefficients are consistent with Eq. (3.6) and are 

discussed in Section 3.2.6.  

To derive a formula for 𝛾𝑖
𝑎𝑠𝑠𝑜𝑐 using Wertheim’s theory, we consider the work of Michelsen and 

Hendriks [66] in deriving a generalized function which reduces to Eq. (3.4) when maximized and 

results in the association contribution to chemical potential. This approach is extended to calculate 

the fugacity coefficient of each component in the mixture in Elliott and Lira [8] (Important 

 

𝑋𝐵𝑖 =

(

 
 
1 + ∑ 𝑥𝐸𝑗 ℎ𝑜𝑠𝑡𝑁𝐸𝑗𝑋

𝐸𝑗𝜌∆𝐵𝑖𝐸𝑗

𝑚𝑎𝑡𝑖𝑛𝑔 
𝑠𝑖𝑡𝑒𝑠 𝐸𝑗 )

 
 

−1

 3.5 

 𝑋𝐴𝑖 = 𝑋𝐷𝑖 3.6 
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corrections are made in the errata [67]). Calculating the activity coefficient from the fugacity 

coefficient for a given component for the case of conventional mixing rules, van der Waals 𝑍𝑟𝑒𝑝, 

a universal packing factor, and no excess volume yields (Appendix C) 

where 𝑋𝐵𝑖 is given by Eq. (1.4), and 𝑋𝐵𝑖,0 represents the fraction of sites free when the host for the 

site is pure. These constraints are identical to those used in Flory’s polymerization theory. This 

activity coefficient equation is easier to apply than the equation of Fu and Sandler [6] because 

derivatives of 𝑋𝐵𝑖 are not needed. A more general expression is given in Appendix C, Eq. (C.14). 

3.2.2. Flory’s concentration-based equilibrium constant 

In chemical theory, the energetic effects associated with hydrogen bonding are embedded within 

an equilibrium constant, 𝐾. This parameter could be based on the concentrations (𝐾𝐶), mole 

fractions (𝐾𝑥) or activities (𝐾𝑎) of the products and reactants. Flory’s well-known work on 

oligomer modeling used a concentration-based equilibrium constant and provided a discussion on 

the inconsistency of 𝐾𝑥 with statistical mechanics [30]. Flory’s original form of 𝐾𝐶 and variations 

of it have since been applied in several publications. Chemical kinetics are commonly described 

in practice using concentrations, and for reversible reactions are consistent with 𝐾𝐶, which is 

frequently assumed to be independent of composition. This simplification is explored in Chapter 

2 where we prove the assumption to be valid only when 𝐾𝛾 is invariant with composition.  For 

pure alcohols or alcohol + inert systems, some of the variations of 𝐾𝐶 for the formation of a chain 

of size i+1 from a complex of size i and a monomer are shown in Table 3.1. Here, 𝜌𝑎𝑙𝑐 represents 

 
ln 𝛾𝑘

𝑎𝑠𝑠𝑜𝑐 = ∑ 𝑁𝐵𝑖
𝑠𝑖𝑡𝑒𝑠 𝐵𝑖
 𝑜𝑛 𝑘 

[ln (
𝑋𝐵𝑖

𝑋𝐵𝑖,0
) −

1

2
(1 − 𝑋𝐵𝑖,0)]

+
1

2

𝜌

𝜌𝑘
∑ 𝑥𝐵𝑖 ℎ𝑜𝑠𝑡𝑁𝐵𝑖(1 − 𝑋

𝐵𝑖)
𝑎𝑙𝑙 

𝑠𝑖𝑡𝑒𝑠 𝐵𝑖

 

3.7 
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the pure alcohol molar density. The quantity Φ𝑖 is the volume fraction. The variable 𝜌𝑇 = 𝑛𝑇/𝑉, 

is the true molar density which is smaller than the apparent molar density 𝜌 = 𝑛0/𝑉, because 

bonding reduces the number of moles,  𝑛𝑇 ≤ 𝑛0. In Eq. (3.11), ralc is a measure of the molecular 

size of the associating species relative to some reference (𝑟𝑎𝑙𝑐 = 𝜌
𝑟𝑒𝑓/𝜌𝑎𝑙𝑐), chosen by Campbell 

to be the molar density of methanol at 303.15 K. The term 𝑧𝑖 denotes the true mole fraction of 

component i. 

Table 3.1: Concentration based equilibrium constants. Variations of the concentration-based 

equilibrium constant used in literature. The subscript numeral on 𝐾𝐶 differentiates between 

models. 

 

𝑲𝑪 References Eqn 

𝐾𝐶1 =
𝐶𝑇,𝑖+1
𝐶𝑇,𝑖𝐶𝑀

=
𝑧𝑖+1
𝑧𝑖𝑧𝑀

1

𝜌𝑇
 

Flory [30], Renon and 

Prausnitz [68,69] (eqn. 2)  
3.8 

𝐾𝐶2 = 
Φ𝑇,𝑖+1
Φ𝑇,𝑖ΦM

𝑖

𝑖 + 1
=
𝑧𝑖+1
𝑧𝑖𝑧𝑀

𝜌𝑎𝑙𝑐
𝜌𝑇

= 𝐾𝐶1𝜌𝑎𝑙𝑐 
Flory [30], Nagata [70], Nath 

and Bender [71], Renon and 

Prausnitz [68,69] (eqn. 1)  

3.9 

𝐾𝐶3 = 
Φ𝑇,𝑖+1
Φ𝑇,𝑖ΦM

=
𝑧𝑖+1
𝑧𝑖𝑧𝑀

𝜌𝑎𝑙𝑐
𝜌𝑇

𝑖 + 1

𝑖
= 𝐾𝐶1𝜌𝑎𝑙𝑐

𝑖 + 1

𝑖
 Nagata [72] 3.10 

𝐾𝐶4 = 
Φ𝑇,𝑖+1
Φ𝑇,𝑖ΦM

𝑖𝑟𝑎𝑙𝑐
𝑖 + 1

=
𝑧𝑖+1
𝑧𝑖𝑧𝑀

𝜌𝑟𝑒𝑓

𝜌𝑇
= 𝐾𝐶1𝜌

𝑟𝑒𝑓 
Brandani [73,74], Campbell 

[16] 
3.11 

 

3.2.3. Relationship between 𝐾𝑎, 𝐾𝐶  and Δ 

To understand the relationship between 𝐾𝑎  and 𝐾𝐶, we use equations for a pure component with 

one acceptor and one donor. These are later extended to mixtures using combining rules in Section 

3.2.6. We begin with the thermodynamic definition of the activity-based equilibrium constant: 

 
𝐾𝑎 =  

𝑧𝑖+1
𝑧𝑖𝑧𝑀

�̂�𝑖+1
�̂�𝑖�̂�𝑀

𝑃°

𝑃
 3.12 

where 𝑃° is the standard state pressure, typically 1 bar. Inserting Eq. (3.8) into Eq. (3.12) yields 

 
𝐾𝑎 = 𝐾𝐶1𝜌𝑇

�̂�𝑖+1
�̂�𝑖�̂�𝑀

𝑃°

𝑃
 3.13 
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Economou and Donohue [58] discuss different conventions used for equilibrium constants. By 

comparing the monomer fraction derived from various models, they conclude that Δ must be 

proportional to 𝐾𝑎 at the same T. Wolbach and Sandler [59] explore the relationship further and 

show that in the case where the vapor phase is an ideal gas 

where 𝑓 is a constant that depends on the association scheme used to model the component in 

solution. For liquid components modeled with 2B, Eq. (3.14) becomes 

where 𝑔 is a function that depends on the equation of state used to calculate the fugacity coefficient 

ratio. The value of this function depends on the mixing rules used for the true solution of monomers 

and oligomers. The most accepted and widely used combining rules for complexes, introduced by 

Heidemann and Prausnitz [75], are 

 𝑎𝑖 = 𝑖
2𝑎𝑀 3.16 

 𝑏𝑖 = 𝑖𝑏𝑀 3.17 

where 𝑎𝑀  and 𝑏𝑀  are the interaction and size parameters for monomers respectively. Heidemann 

and Prausnitz [75] show that when Eqs. (3.16) and (3.17) and the Lorentz-Berthelot mixing rules 

(𝑏 = ∑ 𝑥𝑗𝑏𝑗𝑗 , 𝑎 = ∑ ∑ 𝑥𝑗𝑥𝑘𝑎𝑗𝑘𝑘𝑗 ) are followed, then g is given by Eq. (3.18). 

Here, 휂 is the packing factor. From this equation, an important observation can be made. While 

𝐾𝑎 depends only on temperature, Wertheim’s association constant Δ of Eq. (3.15) is also a function 

of the density of the solution due to the 𝑔 function. Kontogeorgis and Folas [64] summarized the 

 
Δ𝑖𝑔 =  𝑓𝐾𝑎

𝑅𝑇

𝑃°
 3.14 

 
Δ =  𝑒𝑔𝐾𝑎

𝑅𝑇

𝑃°
 3.15 

 
𝑔 = ∫

𝑍𝑟𝑒𝑝

휂
𝑑휂

𝜂

0

 
3.18 
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assumptions taken in various models in literature and the resulting forms of 𝑔. When the van der 

Waals repulsive term is used, Eq. (3.18) gives the radial distribution function at contact distance, 

𝑔(𝜎).  Moreover, applying the combining rules (Eqs. (3.16) and (3.17)) to the van der Waals 

equation for the component fugacity coefficients provides a useful relationship between the 

fugacity coefficient and true compressibility factor, 𝑍𝑇, as shown in Appendix D. Calculating the 

ratio of the fugacity coefficients for the reaction of a complex of size i and a monomer to form a 

complex of size i+1 yields 

 
ln (
�̂�𝑖�̂�𝑀
�̂�𝑖+1

) = 𝑔(𝜎) − ln 𝑍𝑇 3.19 

or  

 
𝑒𝑔(𝜎) =

𝑃𝑉

𝑛𝑇𝑅𝑇

�̂�𝑖�̂�𝑀
�̂�𝑖+1

 3.20 

Substituting Eq. (3.20) into Eq. (3.15), then converting to apparent density and inserting Eq. (3.13): 

 
∆ =

𝑃𝑉

𝑃°𝑛𝑇

�̂�𝑖�̂�𝑀
�̂�𝑖+1

𝐾𝑎 =
𝑃𝐾𝑎
𝑃°𝜌

�̂�𝑖�̂�𝑀
�̂�𝑖+1

 
𝑛0
𝑛𝑇
=
𝐾𝐶1𝜌𝑇
𝜌

 
𝑛0
𝑛𝑇

 3.21 

Recognizing that 𝜌𝑇/𝜌 = (𝑛𝑇/𝑉)/(𝑛0/𝑉) = 𝑛𝑇/𝑛0 yields a remarkably simple ∆-𝐾𝐶  relationship 

for pure fluids based on the 𝐾𝐶1 definition of Eq. (3.8). 

 ∆ =  𝐾𝐶1 3.22 

This result is intuitive considering the conclusions arrived at by several investigators [58,60,66] 

on the mathematical similarity of chemical and Wertheim’s theories. However, it is powerful in 

that it allows one to use and compare both association models with ease.  

3.2.4. Association term – Campbell’s chemical theory model 

Pradhan et al. [76] developed a chemical theory model by integrating an equilibrium constant into 

the Flory-Huggins (FH) theory. Campbell [16] extended the expression to systems containing any 
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number of alcohols. In this section, we clarify the relationship between this set of equations and 

other association models.  

Following Flory [30], Campbell writes 

where 𝐶′𝑇,𝑀𝑖 and 𝐶′𝑇,𝑀𝑖
0  are the dimensionless true monomer concentrations of component i in a 

mixture and at purity, respectively. All concentrations 𝐶′, are made dimensionless by dividing by 

𝜌𝑟𝑒𝑓, the liquid molar density of methanol at 303.15 K. Ψ is the total molar concentration of the 

true complexes in solution which Campbell showed is given by 

where the summations are over apparent species and 𝐶𝑖
′ is the apparent dimensionless 

concentration of component i. As shown in Appendix E, Campbell’s Ψ𝑖 can be recognized as the 

total molar concentration of species with a free end group i.  

The Flory concentration-based 𝐾𝐶4,𝑗𝑖 = 𝐶𝑇(𝑗,𝑛+1)
′ /(𝐶𝑇(𝑖,𝑛)

′ 𝐶𝑇(𝑗,1)
′ ) is the equilibrium constant for 

the association between a chain of length n with a non-bonded acceptor i, forming a bond with 

monomer j donor, resulting in a chain of length n + 1 with a non-bonded j acceptor end. Campbell 

does not discuss acceptors or donors, but the nomenclature helps clarify how, when the alcohol 

monomer donor bonds to an end of a chain, it can still participate through its free acceptor. Note 

that the nomenclature for acceptors and donors could be flipped without changing the balances. 

Campbell provides mathematical derivations for Eqs. (3.23) and (3.24). The free end on a chain 

could be an acceptor or a donor. Considering the end to be an acceptor, Ψ𝑖 represents the 

dimensionless molar concentration of non-bonded acceptors of type i. Because each alcohol 

 
ln 𝛾𝑖

𝑐ℎ𝑒𝑚 = ln (
𝐶𝑇,𝑀𝑖
′

𝑥𝑖𝐶𝑇,𝑀𝑖
′0 ) − 𝑟𝑖(Ψ −Ψ𝑖

0) 3.23 

 
Ψ =∑Ψ𝑖

𝑖

;         Ψ𝑖  =
𝐶𝑖
′

1 + ∑ 𝐾𝐶4,𝑗𝑖Ψ𝑗𝑗

 3.24 
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molecule possesses one acceptor site, the dimensionless apparent molar concentration of all 

acceptors on component i in solution is equal to 𝐶𝑖
′. Therefore, the fraction of unbonded acceptors 

is 

or Ψ𝑖 = 𝐶𝑖
′𝑋𝐴𝑖. Substituting the dimensionless concentration in terms of molar densities 𝐶𝑖

′ =

Φ𝑖𝜌𝑖/𝜌
𝑟𝑒𝑓 = 𝑥𝑖𝜌/𝜌

𝑟𝑒𝑓, we find that 

Therefore, ∑ 𝐾𝐶𝑗𝑖Ψ𝑗𝑗  can be written as ∑ 𝑥𝑗𝜌𝐾𝐶4,𝑗𝑖𝑋
𝐷𝑗/𝜌𝑟𝑒𝑓𝑗 . Simple manipulation will show that 

the right expression of Eq. (3.24) is the same as Eq. (1.4). 

3.2.5. Algebraic equivalence of chemical and Wertheim’s theory 

For a binary alcohol (1) + inert (2) system, Wertheim’s theory (Eq. (3.7)) gives 

For the same system, we begin the analysis of Campbell’s model by calculating Ψ and Ψ𝑖
0 by 

combining Eqs. (3.24) and (3.26): 

 
Ψ = Ψ1 +Ψ2 = 

𝑥1𝜌𝑋
𝐴

𝜌𝑟𝑒𝑓
+
𝑥2𝜌

𝜌𝑟𝑒𝑓
 3.29 

 
Ψ1
0 =

𝜌1𝑋
𝐴,0

𝜌𝑟𝑒𝑓
;  Ψ2

0 =
𝜌2
𝜌𝑟𝑒𝑓

 3.30 

 Ψ𝑖
𝐶𝑖
′ =

𝑛𝐴𝑖

𝑛𝐴𝑖,𝑇
= 𝑋𝐴𝑖 3.25 

 Ψ𝑖 = 𝑥𝑖𝜌𝑋
𝐴𝑖/𝜌𝑟𝑒𝑓 3.26 

 
ln 𝛾1

𝑎𝑠𝑠𝑜𝑐 = 2 ln (
𝑋𝐴

𝑋𝐴,0
) − (1 − 𝑋𝐴,0) +

𝜌

𝜌1
𝑥1(1 − 𝑋

𝐴)

= 2 ln (
𝑋𝐴

𝑋𝐴,0
) + 𝑋𝐴,0 − (1 − Φ1) − 𝑋

𝐴Φ1 

3.27 

 
ln 𝛾2

𝑎𝑠𝑠𝑜𝑐 =
𝜌

𝜌2
𝑥1(1 − 𝑋

𝐴) =
Φ2
𝑥2
𝑥1(1 − 𝑋

𝐴) 3.28 
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Next, we calculate the values of  𝐶𝑇,𝑀𝑖
′  and 𝐶𝑇,𝑀𝑖

′0 . Campbell provides the relationship between the 

concentration of monomers ending with group i and 𝐶𝑖
′ given as 𝐶𝑇,𝑀𝑖

′ = Ψ𝑖
2/𝐶𝑖

′. Substituting into 

this equation with the definition of 𝐶𝑖
′ and Eq. (3.28), we find for both components in the mixture 

and at purity  

 𝐶𝑇,𝑀1
′ = 

𝑥1𝜌

𝜌𝑟𝑒𝑓
(𝑋𝐴)

2
;   𝐶𝑇,𝑀2

′ =
𝑥2𝜌

𝜌𝑟𝑒𝑓
  3.31 

 
𝐶𝑇,𝑀1
′0 = 

𝜌
1

𝜌𝑟𝑒𝑓
(𝑋𝐴,0)

2
;  𝐶𝑇,𝑀2

′0 =
𝜌
2

𝜌𝑟𝑒𝑓
 3.32 

Therefore, by combining Eqs. (3.29-3.32), Eq. (3.23) for the alcohol becomes 

 
ln 𝛾1

𝑐ℎ𝑒𝑚 = 2 ln (
𝑋𝐴

𝑋𝐴,0
) + ln (

Φ1
𝑥1
) − 𝑋𝐴Φ1 −

Φ1
𝑥1
+Φ1 + 𝑋

𝐴,0 3.33 

Adding and subtracting 1, and rearranging yields 

 
ln 𝛾1

𝑐ℎ𝑒𝑚 = 2 ln (
𝑋𝐴

𝑋𝐴,0
) + 𝑋𝐴,0 − (1 − Φ1) − 𝑋

𝐴Φ1 + ln (
Φ1
𝑥1
) + 1 −

Φ1
𝑥1

= ln 𝛾1
𝑎𝑠𝑠𝑜𝑐 + ln 𝛾1

𝐹𝑙𝑜𝑟𝑦
 

3.34 

where Flory’s equation [30] for the combinatorial contribution to activity coefficients is 

 
ln 𝛾𝑖

𝐹𝑙𝑜𝑟𝑦
= ln (

Φ𝑖
𝑥𝑖
) + 1 −

Φ𝑖
𝑥𝑖

 3.35 

Similarly, rearranging Eq. (3.23) and substituting Eqs. (3.29-3.32) for the inert solvent gives 

 
ln 𝛾2

𝑐ℎ𝑒𝑚 =
𝑥1𝜌

𝜌2
(1 − 𝑋𝐴) + ln (

Φ2
𝑥2
) + 1 −

Φ2
𝑥2
= ln 𝛾2

𝑎𝑠𝑠𝑜𝑐 + ln 𝛾2
𝐹𝑙𝑜𝑟𝑦

 3.36 

 ln 𝛾𝑖
𝑐ℎ𝑒𝑚 = ln𝛾𝑖

 𝑎𝑠𝑠𝑜𝑐 + ln 𝛾𝑖
𝐹𝑙𝑜𝑟𝑦 3.37 

Thus, this provides analytical proof that Campbell’s chemical theory incorporates combinatorial 

effects through Flory’s equation. Consequently, when Wertheim’s theory is compared to 

Campbell’s model, the Flory term must be added separately. When calculating activity coefficients 

using Campbell’s chemical theory, the combinatorial term is inherently included. 
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3.2.6. Calculating association parameters 

To clarify the comparison further, we provide some numerical calculations. Early work done in 

determining 𝐾𝐶  for binary alcohol + inert systems used data reduction of mixture data to fit 

association constants [68,69]. Commonly, the value of 𝐾𝑐 is assumed to be independent of solvent 

species or concentration. Therefore, models based only on the properties of the pure associating 

compound were developed. Nath and Bender [71] based 𝐾𝐶   on the temperature and enthalpy of 

vaporization at the normal boiling point of the alcohol. Lobien [77] calculated smaller 𝐾𝐶  values 

than others using limiting activity coefficient data. Because these approaches differ considerably, 

there is significant scatter in the resulting 𝐾𝐶  values for the same alcohol [71]. For CPA and SAFT, 

the Δ𝐴𝑖𝐷𝑗  values are typically determined by fitting density and vapor pressure [9,11,78].  

In this work, to provide numerical calculations, we follow the approach outlined by Nagata [70] 

in applying the Brandani [73]’s work. The model essentially assumes that the only differences 

between the vapor pressure of an alcohol, 𝑃𝑎𝑙𝑐
𝑣𝑎𝑝

, and that of a non-associating compound with an 

identical molecular weight and chemical formula, i.e. its homomorph, 𝑃ℎ
𝑣𝑎𝑝

, are the consequences 

of hydrogen bonding. Therefore, 𝐾𝐶  is determined by matching the two vapor pressures through 

Eq. (3.38). 

 
𝑃𝑎𝑙𝑐
𝑣𝑎𝑝 = 𝛾𝑎𝑙𝑐,𝑀

0 𝑥𝑎𝑙𝑐,𝑀
0 𝑃ℎ

𝑣𝑎𝑝 exp(
(𝑃𝑎𝑙𝑐

𝑣𝑎𝑝 − 𝑃ℎ
𝑣𝑎𝑝)(𝑉𝑎𝑙𝑐 − 𝐵𝑎𝑙𝑐

𝑓𝑟𝑒𝑒
)

𝑅𝑇
) 3.38 

where 𝐵𝑎𝑙𝑐
𝑓𝑟𝑒𝑒

 is the free contribution to the second virial coefficient evaluated using Hayden and 

O’Connell’s calculations [79] and 𝛾𝑎𝑙𝑐,𝑀
0  is the activity coefficient of the alcohol monomer in pure 

alcohol as given by Flory’s equation. 

The volume and mole fractions of monomer in pure alcohol are calculated as [70] 
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Φ𝑀
0 = 

1 + 2𝐾𝐶2 − √1 + 4𝐾𝐶2

2𝐾𝐶2
2  3.39 

 𝑥𝑀
0 =  1 − 𝐾𝐶2Φ𝑀

0  3.40 

Ethers were selected as homomorphs for alcohols and their vapor pressures were determined using 

Ambrose’s [80] correlation with the same n* (effective number of carbon atoms in the ether 

homomorph) values as Nagata. Our resulting values of 𝐾𝐶2 are given in Table 3.2. 

Table 3.2: Equilibrium constant for primary alcohols. 𝐾𝐶2 and 𝐾𝐶1calculated at 50 °C 

Alcohol 𝑲𝑪𝟐 𝑲𝑪𝟏 = 𝚫 

Methanol 111.0 4549 

Ethanol 81.48 4803 

n-Propanol 71.27 5381 

n-Butanol 69.88 6458 

n-Pentanol 57.09 6233 

We have refitted the 𝐾𝐶2 values to be consistent with all of our physical properties. We assume 

Nagata’s [70] values for the enthalpy for the formation of a hydrogen bond.  

To extend the analysis to alcohol mixtures, the cross-association parameters for dissimilar 

components are related through combining rules. Common combining rules that have been 

developed and tested [11,51,54,61,81–83] are variations of an arithmetic or geometric mean of the 

pure components’ association energy and volume parameters. Kontogeorgis [64] outlines a 

number of these and provides a brief summary of work done in identifying the most accurate rules 

for various classes of mixtures. We find that Flory’s polymerization theory and Wertheim’s 

perturbation theory yield identical results for alcohols described with a 2B model, regardless of 

the combining rules used if Eq. (3.22) is maintained for the cross coefficients. Therefore, further 

exploration of the effect of the combining rules lies beyond the scope and intentions of this work 

and for alcohol mixtures, we use Suresh and Elliott’s [51] combining rule given by: 
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 ∆𝐴𝑖𝐵𝑗= ∆𝐴𝑗𝐵𝑖= √∆𝐴𝑖𝐵𝑖∆𝐴𝑗𝐵𝑗   3.41 

3.2.7. Numerical equivalence of chemical and Wertheim’s theory 

We implement the abovementioned approaches to provide numerical evidence for the equivalence 

of chemical theory and Wertheim’s theory. Within the constraints discussed, we find that the two 

approaches produce exactly the same results for systems in which the associating components can 

be described by the 2B association scheme. This is illustrated in Table 3.3 for two alcohol + inert 

systems at 30 and 80 mol% of alcohol and one alcohol + alcohol system at 30 mol% of methanol. 

Both theories yield the same monomer fractions and activity coefficients. 

These results prove that Campbell’s observation of the similarities between his association model 

and Wertheim’s perturbation theory are justified. Indeed, when combinatorial effects are added to 

the perturbation theory and the correct relationship between the association parameters of the two 

models is implemented, their mathematical forms become identical. Chapman’s recognition that 

Wertheim’s model gives the same distribution as Flory’s model is also consistent with this work. 

Future work in this area will look at extending the analysis to components with multiple acceptors 

and donors.  
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Table 3.3: Calculated parameters and intermediate values for Flory and Wertheim’s theories for three systems.. The reference 

density of methanol used for Campbell’s theory calculations is 0.02440 mol/cm3. For methanol + ethanol, the cross coefficient is 

Δ𝐴1𝐷2 = Δ𝐴2𝐷1 = 2559 cm3/mol or 𝐾𝐶4,𝑖𝑗= 62.44 

 

System 
Ethanol (1) +  

n-heptane (2) 

n-Pentanol (1) +  

n-heptane (2) 

Methanol (1) +  

Ethanol (2) 

𝑥1 0.3 0.8 0.3 0.8 0.3 

T (K) 344.9 344.7 368.4 383.1 347.0 

Component i 1 1 1 1 1 2 

Campbell’s 

Chemical 

Theory 

𝐾𝐶4 67.37 67.65 53.60 40.30 60.76 64.16 

Ψ 0.2680 0.1790 0.2427 0.1419 0.1025 

Ψi
0 0.0944 0.0942 0.0749 0.0849 0.1203 0.0966 

𝐶𝑖,𝑀
′  0.0101 0.0123 0.0119 0.0184 0.0043 0.0095 

𝐶𝑇,𝑀𝑖
′0  0.0128 0.0128 0.0149 0.0192 0.0145 0.0134 

𝑥𝑀
𝑛0
𝑛𝑇

 0.0301 0.0230 0.0396 0.0527 0.0056 0.0124 

𝐥𝐧 𝜸𝒊
𝒄𝒉𝒆𝒎 0.7195 0.06100 0.5280 0.03109 -0.002853 -0.0004456 

Wertheim's 

Theory 

∆𝐴𝑖𝐷𝑖 (cm3/mol) 2761 2773 2197 1652 2490 2629 

𝑋𝐴𝑖 = 𝑋𝐷𝑖 0.3167 0.1696 0.3633 0.2566 0.1361 0.1330 

𝑥𝑀
𝑛0
𝑛𝑇

 0.0301 0.0230 0.0396 0.0527 0.0056 0.0124 

ln 𝛾𝑖
𝑎𝑠𝑠𝑜𝑐 0.9281 0.09320 0.5513 0.03344 0.02999 0.004305 

ln 𝛾𝑖
𝐹𝑙𝑜𝑟𝑦

 -0.2086 -0.03220 -0.02337 -0.002351 -0.03285 -0.004751 

𝐥𝐧 𝜸𝒊
𝒄𝒉𝒆𝒎 0.7195 0.06100 0.5280 0.03109 -0.0028533 -0.0004455 
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3.3. Conclusions 

In this work, we outline derivations for Wertheim’s perturbation theory’s activity coefficient 

model and chemical theory and compare the two models. The focus is for the 2B scheme where 

each associating component has one acceptor and one donor site per molecule such as alcohol + 

inert and alcohol + alcohol mixtures. In these cases, the association strength ∆𝐴𝑖𝐵𝑗 in Wertheim’s 

theory is found to be equal to the concentration-based equilibrium constant 𝐾𝐶1 used in Flory’s 

polymerization theory. This elucidates the relationship between the two association models. 

Furthermore, we consider Campbell’s implementation of chemical theory and show that the 

activity coefficient model is the sum of Flory’s combinatorial term, calculated on an apparent 

basis, and the association contribution calculated with Wertheim’s perturbation theory. The 

similarities drawn by Campbell between his theory and Wertheim’s theory are therefore consistent 

with this work. The correlation between the association models also supports Chapman’s 

understanding that the species distribution predicted by Flory’s and Wertheim’s models are 

identical. Finally, we provide in Eqs. (3.7) and (C.14) a new generalized expression for activity 

coefficients from Wertheim theory useful when the packing factor is universal and excess volume 

is zero. 
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APPENDICES
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Appendix C: Derivation of the Wertheim association contribution to the activity coefficient  

Following Michelsen and Hendricks [66] and to abbreviate notation, we define, at equilibrium,  

 ℎ = ∑ 𝑥𝐵𝑖 ℎ𝑜𝑠𝑡𝑁𝐵𝑖(1 − 𝑋
𝐵𝑖)

𝑎𝑙𝑙 𝑠𝑖𝑡𝑒 
𝑡𝑦𝑝𝑒𝑠 𝐵𝑖

 
C.1 

 

Elliott and Lira [8] show that 

 
𝑍𝑎𝑠𝑠𝑜𝑐 = −0.5 (1 + (

𝜕 ln 𝑔

𝜕 ln 휂𝑃
)
𝑇,𝑛

)ℎ C.2 

 
ln �̂�𝑘

𝑎𝑠𝑠𝑜𝑐 = ∑ 𝑁𝐵𝑖 ln(𝑋
𝐵𝑖)

𝑠𝑖𝑡𝑒𝑠 𝐵𝑖 
𝑜𝑛𝑙𝑦 𝑜𝑛 𝑘

− 0.5𝑛0 (
𝜕 ln 𝑔

𝜕𝑛𝑘
)
𝑇,𝑉,𝑛𝑗≠𝑘

ℎ 
C.3 

We will use these equations to calculate and simplify the equation for γassoc. By definition, 

Helmholtz energy is a natural function of temperature and volume.   

 𝐴(𝑉, 𝑇, 𝑛1, 𝑛2, … , 𝑛𝑛) C.4 

For an activity coefficient, we need a derivative of Helmholtz energy at constant T and P [6]. At 

constant T,  

 
𝑑𝐴 = (

𝜕𝐴

𝜕𝑉
)
𝑇,𝑛

𝑑𝑉 +∑(
𝜕𝐴

𝜕𝑛𝑘
)
𝑇,𝑉,𝑛𝑗≠𝑘

𝑑𝑛𝑘
𝑘

 
C.5 

The expansion rule gives 

 
(
𝜕𝐴

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

= (
𝜕𝐴

𝜕𝑉
)
𝑇,𝑛

(
𝜕𝑉

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

+ (
𝜕𝐴

𝜕𝑛𝑘
)
𝑇,𝑉,𝑛𝑗≠𝑘

 
C.6 

The association contribution to the fugacity coefficient can be calculated from  

 1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑉,𝑛𝑗≠𝑘

= ln �̂�𝑘
𝑎𝑠𝑠𝑜𝑐 

C.7 

and 

 
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑉
)
𝑇,𝑛

= −𝑃𝑎𝑠𝑠𝑜𝑐 
C.8 

And making the appropriate substitutions into Eq. (C.6):  
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 1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

= −
𝑍𝑎𝑠𝑠𝑜𝑐

𝑉
𝑉𝑘 + ln �̂�𝑘

𝑎𝑠𝑠𝑜𝑐 
C.9 

Substituting Eqs. (C.1 and C.2) yields the universal equation 

 1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

= ∑ 𝑁𝐵𝑖 ln 𝑋
𝐵𝑖

𝑠𝑖𝑡𝑒𝑠 𝐵𝑖 
𝑜𝑛𝑙𝑦 𝑜𝑛 𝑘

 

+
1

2
ℎ [
𝑉𝑘
𝑉
(1 + (

𝜕 ln𝑔

𝜕 ln 휂𝑃
)
𝑇,𝑛

) − 𝑛0 (
𝜕 ln 𝑔

𝜕𝑛𝑘
)
𝑇,𝑉,𝑛𝑗≠𝑘

] 

C.10 

To simplify this further, we assume that 𝑍𝑟𝑒𝑝 is given by the van der Waals equation. Applying 

Eq. (3.18) results in 𝑔 = 1/(1 − 𝑏𝜌) = (1/(1 − 휂𝑃). 

 
(
𝜕 ln 𝑔

𝜕 ln 휂𝑃
)
𝑇,𝑛

= 휂𝑃 /(1 − 휂𝑃) C.11 

 
𝑛0 (

𝜕 ln𝑔

𝜕𝑛𝑘
)
𝑇,𝑉,𝑛𝑗≠𝑘

=
𝑏𝑘𝜌𝑘
1 − 휂𝑃

(
𝑉𝑘
𝑉
)  

 

Eq. (C.10) becomes 

 1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

= ∑ 𝑁𝐵𝑖 ln(𝑋
𝐵𝑖)

𝑠𝑖𝑡𝑒𝑠 𝐵𝑖 
𝑜𝑛𝑙𝑦 𝑜𝑛 𝑘

+
1

2
ℎ [
𝑉𝑘
𝑉
(

1

1 − 휂𝑃
) −

𝑉𝑘
𝑉
(
𝑏𝑘𝜌𝑘
1 − 휂𝑃

) ] 
C.12 

If excess volume is zero and the packing factor is universal,  

 1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

∑ 𝑁𝐵𝑖 ln(𝑋
𝐵𝑖)

𝑠𝑖𝑡𝑒𝑠 𝐵𝑖 
𝑜𝑛𝑙𝑦 𝑜𝑛 𝑘

+
1

2
(
𝜌

𝜌𝑘
) ∑ 𝑥𝐵𝑖 ℎ𝑜𝑠𝑡𝑁𝐵𝑖(1 − 𝑋

𝐵𝑖)

𝑎𝑙𝑙 𝑠𝑖𝑡𝑒 
𝑡𝑦𝑝𝑒𝑠 𝐵𝑖

 
C.13 

Using this equation, γassoc can be calculated as 

 
ln 𝛾𝑘

𝑎𝑠𝑠𝑜𝑐 = 
1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

|

𝑚𝑖𝑥

−
1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

|

𝑝𝑢𝑟𝑒 𝑘

 
C.14 

This results in Eq. (3.7) in the text. Note that 𝑥𝑖𝜌/𝜌𝑘 = Φ𝑖 when excess volume is zero. 
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Appendix D: Relationship between the fugacity coefficient and true compressibility factor 

Beginning with the fugacity coefficient relation, we substitute van der Waals equation of state 

 
𝑍𝑇 = 

𝑃𝑉

𝑛𝑇𝑅𝑇
= 1 +

𝑏𝜌𝑇
1 − 𝑏𝜌𝑇

−
𝑎𝜌𝑇
𝑅𝑇

 
D.1 

 

and its implementation into the Helmholtz departure equation 

 (𝐴 − 𝐴𝑖𝑔)
𝑇,𝑉

𝑛𝑇𝑅𝑇
= − ln(1 − 𝑏𝜌𝑇) −

𝑎𝜌𝑇
𝑅𝑇

 

D.2 

For a true associated species in a pure fluid 

 
ln �̂�𝑖  = − ln(1 − 𝑏𝜌𝑇) +

𝑏𝑖𝜌𝑇
1 − 𝑏𝜌𝑇

−
2𝜌𝑇Σ𝑗𝑥𝑇,𝑗𝑎𝑖𝑗

𝑅𝑇
− ln 𝑍𝑇 

D.3 

Applying Eq. (3.16) and (3.17), calculating Eq. (D.3) for a monomer and a dimer gives 

 
ln
�̂�𝑀

2

�̂�𝐷
= −  ln(1 − 𝑏𝜌𝑇) − ln 𝑍𝑇 

D.4 

 

or 

 �̂�𝐷

�̂�𝑀
2 = 𝑍𝑇(1 − 𝑏𝜌𝑇) =

𝑃𝑉(1 − 𝑏𝜌𝑇)

𝑛𝑇𝑅𝑇
=
�̂�𝑖+1
�̂�𝑖�̂�𝑀

 
D.5 
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Appendix E: Relation of Campbell’s concentration variable in terms of the molar 

concentration of species 

   
Here, we provide proof that Ψ𝑖 is the true concentration of all chains ending with i. Beginning with 

the definition of Ψ𝑖 in Campbell’s [16] paper: 

 Ψ𝑖 = 𝐶𝑖,1
′ +∑𝛼𝑗,𝑖(𝐶𝑗,1

′ +

𝑗

∑𝛼𝑘,𝑗(𝐶𝑘,1
′ +∑𝛼𝑙,𝑘(𝐶𝑙,1

′ +⋯

𝑙𝑘

 
E.1 

where  

 𝛼𝑗,𝑖 = 𝐾𝐶4,𝑗𝑖𝐶𝑖,1
′  E.2 

Multiplying through Eq. (E.1), 

 Ψ𝑖 = 𝐶𝑖,1
′ +∑𝛼𝑗,𝑖𝐶𝑗,1

′ +

𝑗

∑𝛼𝑗,𝑖
𝑗

∑𝛼𝑘,𝑗𝐶𝑘,1
′ +∑𝛼𝑗,𝑖

𝑗

∑𝛼𝑘,𝑗
𝑗

∑𝛼𝑙,𝑘𝐶𝑙,1
′ +⋯

𝑙𝑘

 
E.3 

In Campbell’s appendix C, the concentration of all chains of length n ending in i is given by 

 𝐶𝑖,𝑛 =∑𝛼𝑗,𝑖𝐶𝑗,𝑛−1
𝑗

 
E.4 

This equation provides a recursion for simplification. Recognizing Eq. (E.4) in the second, third, 

and fourth term on the right hand side of Eq. (E.3) can be expressed as 

 𝐶𝑖,2
′ =∑𝛼𝑗,𝑖𝐶𝑗,1

′

𝑗

  and  𝐶𝑗,2
′ =∑𝛼𝑘,𝑗𝐶𝑘,1

′

𝑘

  and   𝐶𝑘,2
′ =∑𝛼𝑙,𝑘𝐶𝑙,1

′

𝑙

 
E.5 

Then 

 Ψ𝑖 = 𝐶′𝑖,1 + 𝐶𝑖,2
′ +∑𝛼𝑗,𝑖

𝑗

𝐶𝑗,2
′ +∑𝛼𝑗,𝑖

𝑗

∑𝛼𝑘,𝑗
𝑗

𝐶𝑘,2
′ +⋯ 

E.6 

Simplifying the third and fourth term on the right with Eq. (E.4) again, 

 Ψ𝑖 = 𝐶𝑖,1
′ + 𝐶𝑖,2

′ + 𝐶𝑖,3
′ +∑𝛼𝑗,𝑖

𝑗

𝐶𝑗,3
′ +⋯ 

E.7 
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This procedure applied continuously to all sums in Eq. (E.3) yields the result that Ψ𝑖 is also the 

true concentration of all chains that end in i. 

 Ψ𝑖 = 𝐶𝑖,1
′ + 𝐶𝑖,2

′ + 𝐶𝑖,3
′ + 𝐶𝑖,4

′ +⋯ =∑𝐶𝑖,𝑗
′

𝑗

 
E.8 
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Chapter 4.  Relation of Wertheim and Chemical Theories in Systems with 

Association and Solvation 
 

Hydrogen bonding is usually calculated in thermodynamic models using chemical or Wertheim’s 

theory. Although the basis of the two methods is different, several researchers have noted parallels 

between them. In fact, our previous study derives analytical and numerical proofs of the 

equivalence of chemical and Wertheim’s theories for the case of an alcohol + inert system. In this 

work, we extend this finding to a complex ternary system containing a chain-forming component 

and two non-chain-forming components. The non-chain-forming molecules have only acceptor 

sites or donor sites, but not both. One molecule has two acceptor sites, and the other a donor site. 

The main objectives of this work are to elucidate the complicated counting that must be done in 

chemical theory to correctly account for all the bonded species that can form in solution and to 

demonstrate the equivalence of the two approaches for this complex system. The work also 

demonstrates how Wertheim’s free site fractions can be used to determine species concentrations. 

4.1. Introduction 

As mixtures containing water, alcohols, organic acids and esters occur frequently in the chemical 

industry, new methods are being developed to accurately model their thermodynamic behavior. 

The challenge with these types of components is their propensity for hydrogen bonding which has 

a significant effect on many of the mixture physical properties. For example, hydrogen bonding is 

responsible for the high melting and boiling points of water relative to other chemical compounds 

of similar molecular size. To robustly capture this behavior, it is now widely accepted that 

hydrogen bonding, or association, must be represented explicitly as a separate term in 

thermodynamic models.  
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Association can be modeled several ways and the most common methods fall into one of two 

categories: chemical theory or perturbation theory. Chemical theory is based on the representation 

of hydrogen bonding as a chemical reaction, described by an equilibrium constant 𝐾𝐶, which 

results in the formation of a new species. This concept was originally proposed by Dolezalek [34] 

and has since been implemented to understand on a wide variety of associating systems including 

liquid metals [16,37,68,75,84–91]. In particular, Nagata et al. have published an extensive body 

of work [84,92–94] applying chemical theory to a wide range of organic mixtures. With alcohols, 

a simplified model, called the Mecke-Kempter model, is often used which assumes that the value 

of the equilibrium constant is the same regardless of the size of the cluster formed. A challenge in 

chemical theory that has yet to be resolved is that the types of species that may be formed in 

solution must be known, or assumed, a priori and the equations for multicomponent mixtures with 

arbitrary sites are complex.    

More recently, perturbation theories such as Wertheim’s theory have become more common in 

thermodynamic modeling. Developed in the mid-1980s [47–50,65], Wertheim’s perturbation 

theory is a statistical mechanics approach derived for molecules with a repulsive core and attractive 

“sites” and it calculates the probabilities of hydrogen bonds forming between sites. The method 

can be used for any type of association including charge transfer complexes. For hydrogen 

bonding, acceptor sites are allocated to the electronegative atom(s) which will accept a proton and 

donor sites are allocated to the protons. Huang and Radosz [55] tabulate schemes that have been 

developed for site allocations and the common 2B scheme used for alcohols is given in Chapter 3.  

and repeated here (Figure 4.1) for the reader’s convenience. 
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Figure 4.1: 2B association scheme. The 2B scheme is commonly used to model alcohols by 

calculating the association between an acceptor site on the oxygen and a donor site on the 

hydrogen. 

 

The probability of association is described by an association constant, ∆𝐴𝑖𝐷𝑗 between each binary 

pair. Wertheim’s theory has been implemented into several equations of state such as CPA [11,52] 

and the SAFT family of equations [9,54–56,95]. In our previous work [96], we created an activity 

coefficient association contribution with Wertheim’s theory by adapting methods developed by 

Michelsen and Hendricks [66]. We also show that with reasonable simplifications, the association 

constant Δ𝐴𝑖𝐷𝑗 is equivalent to the concentration-based equilibrium constant 𝐾𝐶 and that the two 

association theories yield the same results for the activity coefficient for alcohol + inert and alcohol 

+ alcohol systems. This aligns with prior work beginning with Elliott et al. [10] who were the first 

to document the relationship between the activity-based chemical association constant, Ka, and 

perturbation theories. Economou and Donohue [58] then used this equivalence analytically for 

pure and binary mixtures in which associating components possess 0, 1 or 2 sites each. Similarly, 

Campbell et al. [16,85] recognized the same parallels using the concentration-based equilibrium 

constant 𝐾𝐶 algebraically for mixtures containing any number of alcohols and, later, for those 

containing any number of alkanes and any number of alcohols. Perhaps the most significant 

contribution of Campbell’s earlier work is the novel method for counting clusters in solution by 

tracking the cluster size and end molecule identity of each cluster. While this scheme is innovative, 

it’s implementation is time-consuming and cumbersome for more complex mixtures, such as water 

+ alcohol, where the number of sites per molecule is greater.  
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In this work, we outline the calculations in chemical and Wertheim theories for a hypothetical 

ternary mixture in which one of the components possesses two identical acceptor sites and no 

donor sites. The presence of such a component complicates chemical theory because certain 

species resulting from hydrogen bonding can be formed in multiple ways. The main objective of 

the current work is to prove that the species calculation used in Wertheim’s theory is in agreement 

with that of chemical theory. To this end, we implement a counting scheme and show that the 

monomer fractions obtained by the two association theories are identical. 

4.2. Theory and analysis 

The hypothetical system chosen for this work consists of a component with two identical acceptor 

sites, such as 1,4-dioxane, a component with one donor site, such as chloroform (where the 

electronegativity of the chlorine atoms makes the hydrogen atom susceptible to hydrogen 

bonding), and a component with one acceptor and one donor site, which is the “2B” scheme often 

used to model alcohols. We use E, F, G to designate components rather than A, B, C to avoid 

confusion in use of A for acceptor and C for concentration. The components are illustrated in 

Figure 4.2. 

 

Figure 4.2: Hypothetical molecules for analysis. The system studied in this work is a ternary 

mixture of these three molecule types, where the acceptor sites are solid dots and the donors are 

open dots 

 

4.2.1. Implementation of Wertheim’s perturbation theory  

At equilibrium, molecules which hydrogen bond form clusters of various geometries and sizes. 

We refer to the molecules that remain free without any sites bonded as “monomers”, a term 

borrowed from polymer science. For both chemical theory and Wertheim’s theory, the fraction of 
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molecules that remain as monomers at equilibrium is the key term on which all subsequent 

calculations depend. Therefore, it is of particular importance that this quantity is known with 

certainty. When calculating mole balances, a distinction is important between a balance which 

counts individual molecules as if no association is occurring, the apparent mole balance, and that 

which counts each species formed after association has taken place in solution, the true mole 

balance. The number of species decreases when bonding occurs. Therefore, the true total mole 

count, 𝑛𝑇, is always less than the apparent mole count, 𝑛0. 

To study the monomer fractions calculated by Wertheim’s perturbation theory, the equation for 

the fraction of free sites, 𝑋𝐵𝑖 = 𝑛𝐵𝑖,𝑓𝑟𝑒𝑒/𝑛𝐵𝑖,𝑡𝑜𝑡𝑎𝑙, is used. This 𝑋 represents the fraction of sites of 

type 𝐵𝑖 that remain non-bonded at equilibrium, where 𝑛𝐵𝑖,𝑓𝑟𝑒𝑒 is the number of moles of site 𝐵𝑖 

that are free and 𝑛𝐵𝑖,𝑡𝑜𝑡𝑎𝑙 is the total number of moles of site 𝐵𝑖 in solution. Variable i can be an 

index or can be a site host identity; in this work we use the site host identity because the two 

acceptor sites on E are equivalent. B is a generic variable that can represent an acceptor A, donor 

D, or carboxylic acid site C which describe a site that can bond with other C to form dimers.  𝑋𝐵𝑖 

is calculated via  

where 𝑚𝑎𝑡𝑒𝑗 is generic site notation that can represent an acceptor, donor, or C-site to which 𝐵𝑖 

can bond. Variable 𝑥𝑚𝑎𝑡𝑒𝑗 ℎ𝑜𝑠𝑡 is the apparent mole fraction of the component which hosts 𝑚𝑎𝑡𝑒𝑗, 

𝑁𝑚𝑎𝑡𝑒𝑗  is the number of sites identical to 𝑚𝑎𝑡𝑒𝑗 on the host for 𝑚𝑎𝑡𝑒𝑗. 𝜌 is the solution’s apparent 

molar density and ∆𝐵𝑖𝑚𝑎𝑡𝑒𝑗 is the association constant for an interaction between 𝑚𝑎𝑡𝑒𝑗  and 𝐵𝑖. 

 

𝑋𝐵𝑖 =

(

 
 
1 + ∑ 𝑥𝑚𝑎𝑡𝑒𝑗 ℎ𝑜𝑠𝑡𝑁𝑚𝑎𝑡𝑒𝑗𝑋

𝑚𝑎𝑡𝑒𝑗𝜌∆𝐵𝑖𝑚𝑎𝑡𝑒𝑗

𝑚𝑎𝑡𝑖𝑛𝑔 
𝑠𝑖𝑡𝑒𝑠 𝑚𝑎𝑡𝑒𝑗 )

 
 

−1

 4.1 
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Applying Eq. (1.4) to the four unique sites in the hypothetical system yields the equations in Table 

4.1. 

Table 4.1: 𝑿𝑩𝒊 Equations for sites in hypothetical system. The equations are used to calculate 

the fraction of free sites of each type 

 

Interactions involving Wertheim 𝑿𝑩𝒊 Equation Eq 

AE, Acceptors on E 1 − 𝑋𝐴𝐸 = 𝑋𝐴𝐸(𝑥𝐹𝜌𝑋
𝐷𝐹Δ𝐴𝐸𝐷𝐹 + 𝑥𝐺𝜌𝑋

𝐷𝐺Δ𝐴𝐸𝐷𝐺) 4.2 

AG, Acceptor on G 1 − 𝑋𝐴𝐺 = 𝑋𝐴𝐺(𝑥𝐹𝜌𝑋
𝐷𝐹Δ𝐴𝐺𝐷𝐹 + 𝑥𝐺𝜌𝑋

𝐷𝐺Δ𝐴𝐺𝐷𝐺) 4.3 

DG, Donor on G 1 − 𝑋𝐷𝐺 = 𝑋𝐷𝐺(2𝑥𝐸𝜌𝑋
𝐴𝐸Δ𝐴𝐸𝐷𝐺 + 𝑥𝐺𝜌𝑋

𝐴𝐺Δ𝐴𝐺𝐷𝐺) 4.4 

DF, Donor on F 1 − 𝑋𝐷𝐹 = 𝑋𝐷𝐹(2𝑥𝐸𝜌𝑋
𝐴𝐸Δ𝐴𝐸𝐷𝐹 + 𝑥𝐺𝜌𝑋

𝐴𝐺Δ𝐴𝐺𝐷𝐹) 4.5 

 

Here, 𝑋𝐴𝐸, 𝑋𝐴𝐺, 𝑋𝐷𝐺and 𝑋𝐷𝐹 are the free site fractions of the acceptors on component E and G and 

donors on G and F respectively. For a given molecule of component E, the monomer fraction is 

equal to the joint probabilities that the first acceptor is free, and the second acceptor is free. If 

interactions at the two sides are considered to be independent of one another and recognizing that 

𝑋𝐵𝑖 represents the probability that site 𝐵𝑖 is free 

  𝑛𝑀,𝐸
𝑛0,𝐸

= 𝑃(𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟 1 𝑓𝑟𝑒𝑒 ∩  𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟 2 𝑓𝑟𝑒𝑒) = 𝑋𝐴𝐸 ∙ 𝑋𝐴𝐸 = (𝑋𝐴𝐸)2 4.6 

where 𝑛𝑀,𝐸 is the moles of E monomer, 𝑛𝐸  is the total apparent moles of E molecules and the 𝑃 

represents probability. Similarly, for components F and G: 

 𝑛𝑀,𝐹
𝑛0,𝐹

= 𝑃(𝐷𝑜𝑛𝑜𝑟 𝑓𝑟𝑒𝑒 ) = 𝑋𝐷𝐹 4.7 

 𝑛𝑀,𝐺
𝑛0,𝐺

= 𝑃(𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟 𝑓𝑟𝑒𝑒 ∩  𝐷𝑜𝑛𝑜𝑟 𝑓𝑟𝑒𝑒) = 𝑋𝐴𝐺𝑋𝐷𝐺  4.8 

 

4.2.2. Implementation of chemical theory 

Calculating monomer fractions with chemical theory is more complicated than Wertheim’s theory 

for two reasons. First, chemical theory is a species-wise approach rather than a site-wise approach. 

Therefore, one must have a priori knowledge of all the possible species that may form in a solution 

of components. Figure 4.3 shows the bonding schemes that can form in the hypothetical ternary 
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mixture studied here. Because molecules of component G possess both an acceptor and a donor 

site, they can form chains in solution. Therefore, it should be noted that each molecule of 

component G in Figure 4.3 can be replaced by a chain of G molecules. 

 

Figure 4.3: Bonding schemes for hydrogen bonding in a mixture of E, F and G. The bonding 

schemes circled and denoted by * can be formed in two ways. 

 

As with Wertheim’s theory, the species formed in solution can be described with chemical theory 

by four key types of association upon which the remaining associations are related. Each can be 

described by an equilibrium constant as shown Table 4.2. 

Table 4.2: Key associations in the hypothetical system and their equilibrium constants.  

𝐸 + 𝐹 ⇌ 𝐸𝐹 𝐾𝐶1 𝐾𝐶1 =
𝐶𝑇,𝐸𝐹

2𝐶𝑇,𝐸𝐶𝑇,𝐹
 4.9 

𝐺𝑀 + 𝐺𝑀  ⇌ 𝐺2 

𝐺𝑀 + 𝐺𝑖 ⇌ 𝐺𝑖+1 
𝐾𝐶2 𝐾𝐶2 =

𝐶𝑇,𝐺2
𝐶𝑇,𝐺𝑀𝐶𝑇,𝐺𝑀

=
𝐶𝑇,𝐺𝑖+1
𝐶𝑇,𝐺𝑀𝐶𝑇,𝐺𝑖

 4.10 

𝐸 + 𝐺𝑀  ⇌ 𝐸𝐺 𝐾𝐶3 𝐾𝐶3 =
𝐶𝑇,𝐸𝐺

2𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀
 4.11 

𝐹 + 𝐺𝑀 ⇌ 𝐹𝐺 𝐾𝐶4 𝐾𝐶4 =
𝐶𝑇,𝐹𝐺

𝐶𝑇,𝐹𝐶𝑇,𝐺𝑀
 4.12 

A subscript of T on concentration indicates a true value. The common assumption is that the change 

in Gibbs energy for each bond type is independent of cluster size, thus logarithms of the 

equilibrium constants add, and the 𝐾𝐶 for any compound is the product of the 𝐾𝐶’s for the 
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constituent species. From these four interactions, the hydrogen bonded clusters can be formed as 

summarized in Table 4.3. 

Table 4.3: Other species formed in hypothetical system. This table outlines the equilibrium 

constants associated with each species formation and the relation to the key association 

constants. 

𝐸 + 2𝐹 ⇌ 𝐸𝐹2 𝐾𝐶5 = 𝐾𝐶1
2  

𝐾𝐶5 =
𝐶𝑇,𝐸𝐹2
𝐶𝑇,𝐸𝐶𝑇,𝐹

2  
4.13 

𝐺𝑀 + 𝑖𝐺𝑀  ⇌ 𝐺𝑖+1  𝐾𝐶6 = 𝐾𝐶2
𝑖  

𝐾𝐶6 =
𝐶𝑇,𝐺𝑖+1

𝐶𝑇,𝐺𝑀𝐶𝑇,𝐺𝑀
𝑖

 
4.14 

𝐸 + 𝑖𝐺𝑀  ⇌ 𝐸𝐺𝑖 𝐾𝐶7 = 𝐾𝐶3𝐾𝐶2
𝑖−1 

𝐾𝐶7 =
𝐶𝑇,𝐸𝐺𝑖

2𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀
𝑖

 
4.15 

𝐹 + 𝑖𝐺𝑀  ⇌ 𝐹𝐺𝑖 𝐾𝐶8 = 𝐾𝐶4𝐾𝐶2
𝑖−1 

𝐾𝐶8 =
𝐶𝑇,𝐹𝐺𝑖

𝐶𝑇,𝐹𝐶𝑇,𝐺𝑀
𝑖

 
4.16 

𝐸 + 𝑖𝐺𝑀 + 𝑗𝐺𝑀  ⇌ 𝐺𝑖𝐸𝐺𝑗 𝐾𝐶8 = 𝐾𝐶3
2 𝐾𝐶2

𝑖+𝑗−2
 

𝐾𝐶8 =
𝐶𝑇,𝐺𝑖𝐸𝐺𝑗

𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀
𝑖+𝑗

 
4.17 

𝐸 + 𝑖𝐺𝑀 + 𝑗𝐺𝑀 + 𝐹 ⇋ 𝐹𝐺𝑖𝐸𝐺𝑗 𝐾𝐶9 = 𝐾𝐶3
2 𝐾𝐶2

𝑖+𝑗−2
𝐾𝐶4 

𝐾𝐶9 =
𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗

2𝐶𝑇,𝐹𝐶𝑇,𝐺𝑀
𝑖+𝑗

𝐶𝑇,𝐸
 

4.18 

𝑖𝐺𝑀 + 𝐸 + 𝐹 ⇌ 𝐺𝑖𝐸𝐹 𝐾𝐶10 = 𝐾𝐶3𝐾𝐶1𝐾𝐶2
𝑖−1 

𝐾𝐶10 =
𝐶𝑇,𝐺𝑖𝐸𝐹

2𝐶𝑇,𝐺𝑀
𝑖 𝐶𝑇,𝐸𝐶𝑇,𝐹

 
4.19 

𝐸 + 𝑖𝐺𝑀 + 𝐹 ⇌ 𝐸𝐺𝑖𝐹 𝐾𝐶11 = 𝐾𝐶3𝐾𝐶4𝐾𝐶2
𝑖−1 

𝐾𝐶11 =
𝐶𝑇,𝐸𝐺𝑖𝐹

2𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀
𝑖 𝐶𝑇,𝐹

 
4.20 

𝐹 + 𝐸 + 𝑖𝐺𝑀 + 𝐹 ⇌ 𝐹𝐸𝐺𝑖𝐹 𝐾𝐶12 = 𝐾𝐶1𝐾𝐶3𝐾𝐶4𝐾𝐶2
𝑖−1 

𝐾𝐶12 =
𝐶𝑇,𝐹𝐸𝐺𝑖𝐹

2𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀
𝑖 𝐶𝑇,𝐹

2
 

4.21 

𝐸 + 𝑖𝐺𝑖 + 𝑗𝐺𝑗 + 2𝐹 ⇌ 𝐹𝐺𝑖𝐸𝐺𝑗𝐹 𝐾𝐶13 = 𝐾𝐶4
2 𝐾𝐶3

2 𝐾𝐶2
𝑖+𝑗−2

 
𝐾𝐶13 =

𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗𝐹

𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀
𝑖+𝑗

𝐶𝑇,𝐹
2

 
4.22 

 

The second complexity with chemical theory is correctly accounting for species that can be formed 

in multiple ways and which of the ways are indistinguishable by symmetry. In our hypothetical 

system, all species formed through an unsymmetrical bonding scheme, denoted by an asterisk in 

Figure 4.3, can be formed in two ways as illustrated for species EF in Figure 4.4. This occurs 

because E has two identical acceptor sites. To account for these multiple pathways, the equilibrium 

constant equation for these “reactions” contains a factor of 2 in Table 4.2 and Table 4.3. 
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Figure 4.4: Counting species in chemical theory system. Some species may be formed through 

multiple pathways. 

 

Next, we outline a careful implementation of chemical theory to a mole balance of the three 

components in our system. To begin with, the mole balance for component E is given by 

 
𝑥𝐸𝜌 = 𝐶𝑇,𝐸 + 𝐶𝑇,𝐸𝐹 + 𝐶𝑇,𝐸𝐹2 +∑(𝐶𝑇,𝐸𝐺𝑖 + 𝐶𝑇,𝐺𝑖𝐸𝐹 + 𝐶𝑇,𝐸𝐺𝑖𝐹 + 𝐶𝑇,𝐹𝐸𝐺𝑖𝐹)

∞

𝑖=1

+∑∑(𝐶𝑇,𝐺𝑖𝐸𝐺𝑗 + 𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗 + 𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗𝐹)

∞

𝑗=1

∞

𝑖=1

 
4.23 

The double sums in Eq. (4.23) are simplified to a converging series with a closed solution. This 

calculation is demonstrated in Appendix F for ∑ ∑ 𝐶𝑇,𝐺𝑖𝐸𝐺𝑗
∞
𝑗=1

∞
𝑖=1 . Substituting the equilibrium 

constant relations in Table 4.2 and Table 4.3 for the species concentrations and putting all 𝐾𝐶 

values in terms of  𝐾𝐶1, 𝐾𝐶2, 𝐾𝐶3 and 𝐾𝐶4: 

 𝐶𝑇,𝐸
𝑥𝐸𝜌

= (1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)
2
[(1 + 𝐾𝐶1𝐶𝑇,𝐹)

2
(1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)

2

+ 2 𝐾𝐶3𝐶𝑇,𝐺𝑀(1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)(1 + 𝐾𝐶1𝐶𝑇,𝐹)(1 + 𝐾𝐶4𝐶𝑇,𝐹)

+ (𝐾𝐶3𝐶𝑇,𝐺𝑀)
2
(1 + 𝐾𝐶4𝐶𝑇,𝐹)

2
]
−1

 

4.24 

Similarly, the mole balance for F and G can be calculated and rearranged as 
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𝑥𝐹𝜌 = 𝐶𝑇,𝐹 + 𝐶𝑇,𝐸𝐹 +  2𝐶𝑇,𝐸𝐹2 +∑(𝐶𝑇,𝐹𝐺𝑖 + 𝐶𝑇,𝐺𝑖𝐸𝐹 + 𝐶𝑇,𝐸𝐺𝑖𝐹 + 2𝐶𝑇,𝐹𝐸𝐺𝑖𝐹)

∞

𝑖=1

+∑∑(𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗 + 2𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗𝐹)

∞

𝑗=1

∞

𝑖=1

 

4.25 

 𝐶𝑇,𝐹
𝑥𝐹𝜌

= (1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)
2
[(1 + 2𝐾𝐶1𝐶𝑇,𝐸(1 + 𝐾𝐶1𝐶𝑇,𝐹)) (1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)

2

+ (1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)(𝐾𝐶4𝐶𝑇,𝐺𝑀(1 + 2𝐾𝐶3𝐶𝑇,𝐸)

+ 2𝐾𝐶1𝐾𝐶3𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀(1 + 2𝐾𝐶4𝐶𝑇,𝐹))

+ 2𝐾𝐶3
2 𝐾𝐶4𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 (1 + 𝐾𝐶4𝐶𝑇,𝐹)]
−1

 

4.26 

 
𝑥𝐺𝜌 =∑(𝑖𝐶𝑇,𝐺𝑖 + 𝑖𝐶𝑇,𝐸𝐺𝑖 + 𝑖𝐶𝑇,𝐹𝐺𝑖 + 𝑖𝐶𝑇,𝐺𝑖𝐸𝐹 + 𝑖𝐶𝑇,𝐸𝐺𝑖𝐹 + 𝑖𝐶𝑇,𝐹𝐸𝐺𝑖𝐹)

∞

𝑖=1

+∑∑(𝑖 + 𝑗) (𝐶𝑇,𝐺𝑖𝐸𝐺𝑗 + 𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗 + 𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗𝐹)

∞

𝑗=1

∞

𝑖=1

 

4.27 

 𝐶𝑇,𝐺𝑀
𝑥𝐺𝑀𝜌

= (1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)
3
[(1 + 2𝐾𝐶3𝐶𝑇,𝐸(1 + 𝐾𝐶1𝐶𝑇,𝐹)) (1 + 𝐾𝐶4𝐶𝑇,𝐹)(1

− 𝐾𝐶2𝐶𝑇,𝐺𝑀) + 2𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀(1 + 𝐾𝐶4𝐶𝑇,𝐹)

2
]
−1

 

4.28 

The simplification of the double sums in Eqs. (4.25) and (4.27) is demonstrated in Appendix G.  

4.2.3. Numerical equivalence of chemical and Wertheim’s theories 

To investigate parallels between the two association theories, it should be recognized that 

monomer fractions of each component are related by 

 𝐶𝑇,𝐸
𝑥𝐸𝜌

= (𝑋𝐴𝐸)2 
4.29 

 𝐶𝑇,𝐹
𝑥𝐹𝜌

= 𝑋𝐷𝐹 
4.30 

 𝐶𝑇,𝐺𝑀
𝑥𝐺𝑀𝜌

= 𝑋𝐴𝐺𝑋𝐷𝐺  
4.31 

where the left and right-hand sides pertain to chemical theory and Wertheim’s theory respectively 

and the mixture density is calculated by assuming no excess volume of mixing, 𝜌 = 1/∑ (𝑥𝑖/𝜌𝑖)𝑖 .  
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Based on the simplifications of our earlier work [96], the concentration-based equilibrium 

constant, as defined in Table 4.2 and Table 4.3, is equivalent to the association strength parameter, 

∆𝐵𝑖𝐶𝑗. Therefore, 

𝐾𝐶1 = Δ
𝐴𝐸𝐷𝐹 𝐾𝐶2 = Δ

𝐴𝐺𝐷𝐺 𝐾𝐶3 = Δ
𝐴𝐸𝐷𝐺 𝐾𝐶4 = Δ

𝐴𝐺𝐷𝐹 4.32 

 

For this study, the chosen vales of the association constants do not represent values expected from 

experiment. Rather, we have chosen parameter values that yield concentrations which are visible 

on the plot axes (see Table 4.4). Standard liquid densities of dioxane, chloroform and methanol 

were adopted for components E, F, G respectively as summarized in Table 4.4.  

Table 4.4: Association parameters and component densities. Concentration based equilibrium 

constants are equivalent to Δ𝐴𝑖𝐵𝑗 in Wertheim’s theory with the simplifications used here 

Association Parameters (cm3/mol) 

𝐾𝐶1 = Δ
𝐴𝐸𝐷𝐹 5000 

𝐾𝐶2 = Δ
𝐴𝐺𝐷𝐺 10000 

𝐾𝐶3 = Δ
𝐴𝐸𝐷𝐺 7000 

𝐾𝐶4 = Δ
𝐴𝐺𝐷𝐹 12000 

Component Densities (mol/cm3) 

𝜌𝐸   1.167E−02 

𝜌𝐹 1.242E−02 

𝜌𝐺  2.479E−02 

 

Next, the values of the monomer fraction of each component is calculated. For both association 

theories, this involves solving simultaneous equations using successive substitution or other 

iterative techniques. With chemical theory, Eqs. (4.24), (4.26) and (4.28) are solved 

simultaneously to find values of 𝐶𝑇,𝐸,  𝐶𝑇,𝐹  and  𝐶𝑇,𝐺𝑀 . Similarly, for Wertheim’s theory, the 

equations in Table 4.1 are solved simultaneously to yield values for 𝑋𝐴𝐸, 𝑋𝐴𝐺, 𝑋𝐷𝐺and 𝑋𝐷𝐹. Both 

methods yield identical results and this is demonstrated for a solution composition of 𝑥𝐸 = 0.2, 

𝑥𝐹= 0.2 and 𝑥𝐺𝑀=0.6 in Table 4.5 and Table 4.6. The selected composition provides an 

environment where complex formation is extensive and only small fractions of the available sites 
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are free. Because the number of species is infinite, the chains are summed in Table 4.6 by bonding 

scheme. 

Table 4.5: Calculated monomer fraction values. Component monomer fractions for a solution 

composition of 𝑥𝐸 = 0.2, 𝑥𝐹= 0.2 and 𝑥𝐺𝑀=0.6 where 𝜌 = 1.741E−02 mol/cm3 

 Chemical Theory Wertheim’s Theory 
Monomer Fraction 

Value 

Monomer fraction of E 
𝐶𝑇,𝐸
𝑥𝐸𝜌

 (𝑋𝐴𝐸)2 7.50E−02 

Monomer fraction of F 
𝐶𝑇,𝐹
𝑥𝐹𝜌

 𝑋𝐷𝐹 2.92E−02 

Monomer fraction of G 
𝐶𝑇,𝐺𝑀
𝑥𝐺𝑀𝜌

 𝑋𝐴𝐺𝑋𝐷𝐺  5.55E−03 

 

While Wertheim’s theory is easier to implement to find the monomer fractions, it does not directly 

provide species distributions. Table 4.6 demonstrates how species distributions can be obtained 

from both methods. 
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Table 4.6: Chemical and Wertheim’s theory concentration equations and calculated values at 𝒙𝑬 = 𝟎. 𝟐, 𝒙𝑭= 0.2 and 𝒙𝑮𝑴=0.6. 

 

Species Chemical Theory 𝑪𝑻,𝒌 Wertheim’s Theory 𝑪𝑻,𝒌  𝑪𝑻,𝒌 × 104 (mol/cm3)  
𝐶𝑇,𝐸 Eq. (4.24) 𝑥𝐸𝜌(𝑋

𝐴𝐸)2 2.61 

𝐶𝑇,𝐹 Eq. (4.26) 𝑥𝐹𝜌𝑋
𝐷𝐹 1.02 

𝐶𝑇,𝐺𝑀  Eq. (4.28) 𝑥𝐺𝜌𝑋
𝐴𝐺𝑋𝐷𝐺 0.58 

∑𝐶𝑇,𝐺𝑖

∞

𝑖=1

 
𝐶𝑇,𝐺𝑀

1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2
 

𝑥𝐺𝜌𝑋
𝐴𝐺𝑋𝐷𝐺

1 − 𝑥𝐺𝜌𝑋
𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺

 1.38 

𝐶𝑇,𝐸𝐹 2𝐶𝑇,𝐹𝐶𝑇,𝐸𝐾𝐶1 2𝑥𝐸𝜌(𝑋
𝐴𝐸)2 𝑥𝐹𝜌𝑋

𝐷𝐹∆𝐴𝐸𝐷𝐹 2.65 

𝐶𝑇,𝐹𝐸𝐹 𝐶𝑇,𝐹
2 𝐶𝑇,𝐸𝐾𝐶1

2   (𝑥𝐹𝜌𝑋
𝐷𝐹)2𝑥𝐸𝜌(𝑋

𝐴𝐸)2(∆𝐴𝐸𝐷𝐹)2 0.67 

∑𝐶𝑇,𝐹𝐺𝑖

∞

𝑖=1

 
𝐶𝑇,𝐹𝐶𝑇,𝐺𝑀

1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2
𝐾𝐶4 

(𝑥𝐹𝜌𝑋
𝐷𝐹)(𝑥𝐺𝜌𝑋

𝐴𝐺𝑋𝐷𝐺)

1 − 𝑥𝐺𝜌𝑋𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺
Δ𝐴𝐺𝐷𝐹  1.68 

∑𝐶𝑇,𝐸𝐺𝑖

∞

𝑖=1

 
2𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀
1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2

𝐾𝐶3 
2(𝑥𝐸𝜌(𝑋

𝐴𝐸)2)(𝑥𝐺𝜌𝑋
𝐴𝐺𝑋𝐷𝐺)

1 − 𝑥𝐺𝜌𝑋𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺
Δ𝐴𝐸𝐷𝐺 5.04 

∑𝐶𝑇,𝐺𝑖𝐸𝐹

∞

𝑖=1

 
2𝐶𝑇,𝐺𝑀𝐶𝑇,𝐸𝐶𝑇,𝐹

1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2
𝐾𝐶1𝐾𝐶3 

2(𝑥𝐺𝜌𝑋
𝐴𝐺𝑋𝐷𝐺)(𝑥𝐸𝜌(𝑋

𝐴𝐸)2)(𝑥𝐹𝜌𝑋
𝐷𝐹)

1 − 𝑥𝐺𝜌𝑋𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺
∆𝐴𝐸𝐷𝐹Δ𝐴𝐸𝐷𝐺 2.56 

∑𝐶𝑇,𝐸𝐺𝑖𝐹

∞

𝑖=1

 
2𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀𝐶𝑇,𝐹

1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2
𝐾𝐶3𝐾𝐶4 

2(𝑥𝐸𝜌(𝑋
𝐴𝐸)2)(𝑥𝐺𝜌𝑋

𝐴𝐺𝑋𝐷𝐺)(𝑥𝐹𝜌𝑋
𝐷𝐹)

1 − 𝑥𝐺𝜌𝑋𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺
Δ𝐴𝐸𝐷𝐺Δ𝐴𝐺𝐷𝐹 6.15 

∑𝐶𝑇,𝐹𝐸𝐺𝑖𝐹

∞

𝑖=1

 
2𝐶𝑇,𝐺𝑀𝐶𝑇,𝐸𝐶𝑇,𝐹

2

1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2
𝐾𝐶1𝐾𝐶3𝐾𝐶4 

2(𝑥𝐺𝜌𝑋
𝐴𝐺𝑋𝐷𝐺)(𝑥𝐸𝜌(𝑋

𝐴𝐸)2)(𝑥𝐹𝜌𝑋
𝐷𝐹)2

1 − 𝑥𝐺𝜌𝑋𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺
∆𝐴𝐸𝐷𝐹Δ𝐴𝐸𝐷𝐺Δ𝐴𝐺𝐷𝐹 3.12 

∑∑𝐶𝑇, 𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

 
𝐶𝑇,𝐺𝑀
2 𝐶𝑇,𝐸

(1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2)
2𝐾𝐶3

2  
(𝑥𝐺𝜌𝑋

𝐴𝐺𝑋𝐷𝐺)2(𝑥𝐸𝜌(𝑋
𝐴𝐸)2)

(1 − 𝑥𝐺𝜌𝑋𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺)2
(Δ𝐴𝐸𝐷𝐺)2 2.43 

∑∑𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

 
2𝐶𝑇,𝐹𝐶𝑇,𝐺𝑀

2 𝐶𝑇,𝐸

(1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2)
2 𝐾𝐶3

2 𝐾𝐶4 
2(𝑥𝐹𝜌𝑋

𝐷𝐹)(𝑥𝐺𝜌𝑋
𝐴𝐺𝑋𝐷𝐺)2(𝑥𝐸𝜌(𝑋

𝐴𝐸)2)

(1 − 𝑥𝐺𝜌𝑋𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺)2
(Δ𝐴𝐸𝐷𝐺)2Δ𝐴𝐺𝐷𝐹 5.94 

∑∑𝐶𝑇,𝐹𝐺𝑖𝐸𝐺𝑗𝐹

∞

𝑗=1

∞

𝑖=1

 
𝐶𝑇,𝐹
2 𝐶𝑇,𝐺𝑀

2 𝐶𝑇,𝐸

(1 − 𝐶𝑇,𝐺𝑀𝐾𝐶2)
2 𝐾𝐶3

2 𝐾𝐶4
2  

(𝑥𝐹𝜌𝑋
𝐷𝐹)2(𝑥𝐺𝜌𝑋

𝐴𝐺𝑋𝐷𝐺)2(𝑥𝐸𝜌(𝑋
𝐴𝐸)2)

(1 − 𝑥𝐺𝜌𝑋𝐴𝐺𝑋𝐷𝐺∆𝐴𝐺𝐷𝐺)2
(Δ𝐴𝐸𝐷𝐺)2(Δ𝐴𝐺𝐷𝐹)2 3.62 
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Next, we explore the species distribution in solution by varying the composition of the ternary 

mixture. For the plots shown in Figures 4.5-4.8, 𝑥𝐹 is fixed at 0.2 (with the exception of the pure 

G composition point), 𝑥𝐺  is varied from 0 to 1 and the balance of the composition is 𝑥𝐸.  

 

Figure 4.5: True monomer fraction of components in system of study and fractions of 

acceptors and donors. The mole fraction of component F is fixed at 0.2. 

 

 

Figure 4.6: Distribution of species with component E when 𝒙𝑭=0.2. The bottom plot is a 

zoomed panel of the top plot 
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Figure 4.7: Distribution of species with component F when 𝒙𝑭=0.2. The bottom plot is a 

zoomed panel of the top plot 

 

 
 

Figure 4.8: Distribution of species with component G when 𝒙𝑭=0.2. The bottom plot is a 

zoomed panel of the top plot 
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Figure 4.5 shows the mole fraction of monomers for each component and the percentage of 

acceptors and donors in solution. The successive three plots show how components E, F and G are 

distributed in solution. 

The fraction of acceptors and donors in solution are calculated by the ratio of acceptors (or donors) 

to the total sites in solution. Acceptors are in excess to the left of 𝑥𝐺 = 0.7 and because the 

association constants are large, almost all of the donors are bonded until above  𝑥𝐺 ≈ 0.6 where 

some F remains free. In Figure 4.6 the true mole fraction of monomer E, (𝑧𝐸 = 𝑛𝑇,𝐸/𝑛𝑇 =

𝜌𝑇,𝐸/𝜌𝑇), stays near the apparent mole fraction of E on the left side of the figure because, although 

the true moles of E decrease due to bonding, the true mole fractions are calculated using the total 

moles of all species after bonding, which is less than the apparent moles, (𝑛𝑇 < 𝑛0 or 𝜌𝑇 < 𝜌), 

used to calculate the apparent mole fraction (𝑥𝐸 = 𝑛𝐸/𝑛0). For example, at the composition 𝑥𝐺 =

0 and 𝑥𝐸 = 0.8, 𝜌𝑇,𝐸 = 7.26 × 10
−3 mol/cm3, 𝜌𝑇 = 9.48 × 10

−3 mol/cm3 and 𝜌 = 1.18 ×

10−2 mol/cm3. This yields a 𝑧𝐸 value of 0.766. Moreover, almost all the F is associated, and the 

dominant species are E and EF. At 𝑥𝐺 = 0.4 the apparent E and apparent G are equimolar, so the 

𝐸𝐺𝑖 compounds are favored. At 𝑥𝐺 = 0.6, the ratios 𝐹/𝐺and 𝐸/𝐺 are equal, and thus the dominant 

species are 𝐸𝐺𝑖𝐹, 𝐹𝐺𝑖𝐸𝐺𝑖, and 𝐸𝐺𝑖. 

The figures show the sum of mole fractions for oligomers rather than oligomer distributions. For 

a pure solution of a chain-forming compound such as component G, it can be shown that the true 

mole fraction of monomers is always larger than the mole fraction of any oligomer species. The 

number of moles of a chain of G molecules of length i is [8,67]:  

 𝑛𝑖
𝑛𝑇
= 𝑧𝐺𝑀(𝜌Δ

𝐴𝐺𝐷𝐺(𝑋𝐴𝐺)2)𝑖−1 4.33 
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where 𝑛𝑇 is the total true number of moles and 𝑧𝐺𝑀 is the true monomer fraction of G. Note that 

for pure component G, 𝑋𝐴𝐺 = 𝑋𝐷𝐺  and therefore, 𝑋𝐴𝐺𝑋𝐷𝐺  can be written as (𝑋𝐴𝐺)2. Further, it is 

shown that: 

 𝑧𝐺𝑀 =
𝑛𝑇
𝑛0
= 𝑋𝐴𝐺 4.34 

where 𝑛0 is the total apparent number of moles. Combining Eqs. (4.33) and (4.34) yields: 

 𝑛𝑖
𝑛0
= (𝑋𝐴𝐺)2𝑖(𝜌Δ𝐴𝐺𝐷𝐺)𝑖−1 4.35 

Using this equation, the relationship between 𝑛𝑖 and 𝑛𝑖+1 can be calculated to be: 

 𝑛𝑖+1
𝑛𝑖

= 𝜌Δ𝐴𝐺𝐷𝐺(𝑋𝐴𝐺)2 4.36 

Recognizing that (𝑋𝐴𝐺)2 is the monomer fraction in solution, we note an interesting trend. As the 

value of Δ𝐴𝐺𝐷𝐺 is increased, molecules are more likely to form bonds and therefore (𝑋𝐴𝐺)2 

decreases. This occurs such that 𝜌Δ𝐴𝐺𝐷𝐺(𝑋𝐴𝐺)2 is always a fraction and 𝑛𝑖+1 is less than 𝑛𝑖. In 

other words, there are always more monomers in solution than dimers, more dimers than trimers 

and so on. This trend is calculated with Wertheim’s theory in Figure 4.9 for pure methanol at 

𝜌𝑀𝑒𝑂𝐻 = 2.479 × 10
−2 mol/cm3 for four values of Δ𝐴𝐺𝐷𝐺. As a reference, the cubic-plus-

association (CPA) equation of state value for the Δ𝐴𝐺𝐷𝐺for pure liquid methanol with itself is 

approximately 16000 cm3/mol at 298.15 K. More interestingly, as Δ𝐴𝐺𝐷𝐺 approaches infinity, the 

distribution of various cluster sizes becomes uniform. 
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Figure 4.9: True mole fraction of methanol chains calculated with 4 values of 𝚫𝑨𝑮𝑫𝑮  

4.2.4. Activity coefficients 

As further demonstration of the equivalence of Wertheim and chemical theory methods, we 

illustrate the calculation of activity coefficients. In our previous work [96], we demonstrated that 

the association contribution to the activity coefficients, assuming van der Waals correction to 

Flory’s equation and no excess volume, results in: 

where the superscript 0 represents the pure state for component k. In our previous work [96], the 

logarithm operator was missing on Equation A14 and it should have appeared as  

 
ln 𝛾𝑘

𝑎𝑠𝑠𝑜𝑐 = 
1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

|

𝑚𝑖𝑥

−
1

𝑅𝑇
(
𝜕𝐴𝑎𝑠𝑠𝑜𝑐

𝜕𝑛𝑘
)
𝑇,𝑃,𝑛𝑗≠𝑘

|

𝑝𝑢𝑟𝑒 𝑘

 
4.38 

The activity coefficient from chemical theory is 

ln 𝛾𝑘
𝑎𝑠𝑠𝑜𝑐 = ∑ 𝑁𝐵𝑖

𝑠𝑖𝑡𝑒𝑠 𝐵𝑖
 𝑜𝑛 𝑘 

[ln (
𝑋𝐵𝑖

𝑋𝐵𝑖,0
) −

1

2
(1 − 𝑋𝐵𝑖,0)] +

1

2

𝜌

𝜌𝑘
∑ 𝑥𝐵𝑖 ℎ𝑜𝑠𝑡𝑁𝐵𝑖(1 − 𝑋

𝐵𝑖)

𝑎𝑙𝑙 
𝑠𝑖𝑡𝑒𝑠 𝐵𝑖

 
4.37 

Δ𝐴𝐺𝐷𝐺= 



 

65 

 

Note that the molar densities are equivalent numerically to the molar concentrations used above in 

the reaction equilibria. The previous work [96] showed that the two approaches are related by 

Flory’s equation through ln 𝛾𝑘
𝑐ℎ𝑒𝑚 = ln 𝛾𝑘

𝑎𝑠𝑠𝑜𝑐 + ln 𝛾𝑘
𝐹𝑙𝑜𝑟𝑦

. Table 4.7 summarizes calculation of 

the activity coefficients from the two approaches using the concentrations determined above. 

Figure 4.10 shows the activity coefficient contributions for mixtures with increasing compositions 

of component G when the mole fraction of F is fixed at 0.2. The association parameters and the 

pure component densities used in all calculations are given in Table 4.4. 

Table 4.7: Calculated parameters and intermediate values for activity coefficient 

calculations. The selected composition is 𝑥𝐸 = 0.2, 𝑥𝐹 = 0.2 and 𝑥𝐺 = 0.6 and 𝜌 = 1.741E−02 

mol/cm3, 𝜌𝑇 = 3.889E−03 mol/cm3 

 

Component 𝒌 𝐸 𝐹 𝐺 

𝒙𝒌 0.2 0.2 0.6 

Chemical 

theory 

𝜌𝑘𝑀 2.62E−04 1.01E−04 5.80E−05 

𝜌𝑘𝑀
0  1.17E−02 1.24E−02 9.38E−05 

𝜌𝑇,𝑘
0  1.17E−02 1.24E−02 1.53E−03 

ln 𝛾𝑘
𝑐ℎ𝑒𝑚 −1.52 −2.51 −6.65E−02 

Wertheim's 

Theory 

𝑋𝐴 0.274 - 0.190 

𝑋𝐷 - 2.91E−02 2.93E−02 

𝑋𝐴,0 1.00 - 6.15E−02 

𝑋𝐷,0 - 1.00 6.15E−02 

ln 𝛾𝑘
𝑎𝑠𝑠𝑜𝑐 −1.43 −2.45 −1.08E−02 

ln 𝛾𝑘
𝐹𝑙𝑜𝑟𝑦 −9.17E−02 −6.40E−02 −5.57E−02 

ln 𝛾𝑘
𝑐ℎ𝑒𝑚 −1.52 −2.51 −6.65E−02 

 

 
ln 𝛾𝑘

𝑐ℎ𝑒𝑚 = ln(
𝜌𝑘𝑀
𝑥𝑘𝜌𝑘𝑀

0 ) +
1

𝜌𝑘
(𝜌𝑇,𝑘
0 − 𝜌𝑇) 4.39 
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Figure 4.10: Calculated values of the activity coefficient contributions. For each component, 

Wertheim’s theory ( ), chemical theory ( ), and Flory’s theory ( ) contributions are 

shown as a function of the apparent mole fraction of G. The mole fraction of component F is 

fixed at 0.2. 

 

4.2.5. Perspective on further generalization 

It is worth noting that the system chosen for this study is intentionally rather simple compared to 

those encountered in the chemical industry. By definition, components which contain only one 

type of site, such as components E and F, limit the extent of association in solution. When a 

molecule of F binds to an acceptor site, it seals one end of the chain from further association. With 

mixtures of water, alcohols and/or glycols, hydrogen bonding is extensive and can create cyclic 

species that cannot be captured by Wertheim’s theory [97]. Though chemical theory can capture 

cyclic species [13,98], specifying the species to include in solution is challenging. However, even 
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without considering cyclic species, the intricacy of chemical theory is in stark contrast with the 

simple elegance of Wertheim’s theory where all site bonding is calculated using the site balance 

introduced in Eq. (1.4). Chemical theory requires correct identification of all possible bonding 

schemes and the number of combinations through which each can form. It is thus this complexity 

that has increased the popularity of Wertheim’s theory in the area of thermodynamic modeling. 

The parallels between chemical and Wertheim’s theories have been noted by several independent 

researchers [10,16,58]. Indeed, in our own previous work [96], the algebraic and numerical 

equivalence of the two theories is shown for simple mixtures containing chain-forming species, 

specifically pure alcohol and alcohol + inert type systems. However, in those cases, the alcohol, 

modeled in the same way as component G here, results in only chain equations that are more easily 

manipulated. The presence of species E creates a complexity that has not been previously 

demonstrated. To our knowledge, no preceding work has shown the numerical equivalence of the 

two methods for multicomponent non-chain-forming species with this rigor. 

4.3. Conclusions 

In this work, we explore the numerical equivalence of chemical and Wertheim’s theory for a 

hypothetical system that contains a chain-forming component and molecules with multiple sites 

which can only solvate.  For chemical theory, the calculations are outlined carefully to elucidate 

the oftentimes complicated counting procedure required to account for all associating species. 

Moreover, the effect of the value of the association parameters on derived monomer fraction values 

is studied. We demonstrated how Wertheim site free fractions can be used to calculate species 

concentrations. It is found that, when implemented carefully, Wertheim and chemical theory yield 

identical species distributions for the given system, providing that cyclic species are not present. 

Because the system of study is a mixture of generalized non-specific components, we expect that 
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the work presented here can be extended to all other chemical systems that do not form cyclic 

species. Although both theories are fundamentally the same, Wertheim’s theory has a distinct 

advantage due to the simplicity of its universal equations and is therefore recommended as the 

superior method for determining monomer fractions.    
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APPENDICES 
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Appendix F: Simplification of double sums without a multiplication factor 

Here, we demonstrate double sum simplifications such as that of 

 
∑∑𝐶𝑇,𝐺𝑖𝐸𝐺𝑗 = (𝐶𝑇,𝐺1𝐸𝐺1 + 𝐶𝑇,𝐺1𝐸𝐺2 + 𝐶𝑇,𝐺1𝐸𝐺3 +⋯)

∞

𝑗=1

∞

𝑖=1

+ (𝐶𝑇,𝐺2𝐸𝐺1 + 𝐶𝑇,𝐺2𝐸𝐺2 + 𝐶𝑇,𝐺2𝐸𝐺3 +⋯) +⋯ 

F.1 

Careful inspection of the equilibrium constants shows that whenever  𝑖 + 𝑗 sum to the same value, 

all concentrations where G is redistributed on both sides of E are identical, i.e. 

 𝐶𝑇,𝐺2𝐸𝐺2 = 𝐶𝑇,𝐺3𝐸𝐺1 = 𝐶𝑇,𝐺1𝐸𝐺3 = ⋯ F.2 

Therefore, the double sum can be written as a single sum: 

 
∑∑𝐶𝑇,𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

=∑𝑖𝐶𝑇,𝐺1𝐸𝐺𝑖

∞

𝑖=1

= 𝐶𝑇,𝐺1𝐸𝐺1 + 2𝐶𝑇,𝐺1𝐸𝐺2 + 3𝐶𝑇,𝐺1𝐸𝐺3 +⋯ F.3 

Substituting the definition for the equilibrium constant for this reaction from Eq. (4.17): 

 
∑∑𝐶𝑇,𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

= 𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 + 2𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 (𝐾𝐶2𝐶𝑇,𝐺𝑀) 

+ 3𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 (𝐾𝐶2𝐶𝑇,𝐺𝑀)
2
+⋯ 

F.4 

 
∑∑𝐶𝑇,𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

= 𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 (1 + 2𝐾𝐶2𝐶𝑇,𝐺𝑀 + 3(𝐾𝐶2𝐶𝑇,𝐺𝑀)
2
+⋯) F.5 

Recognizing the converging series  

 
∑(𝑖 + 1)𝑎𝑖 =

1

(1 − 𝑎)2
= 1 + 2𝑎 + 3𝑎2 +⋯

∞

𝑖=0

 
F.6 

results in the following simple term: 

 
∑∑𝐶𝑇,𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

=
𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2

(1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)
2 

F.7 
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Appendix G: Simplification of double sums with a multiplication factor 

For the double sums involving an (𝑖 + 𝑗) coefficient, such as, 

 
∑∑((𝑖 + 𝑗)𝐶𝑇,𝐺𝑖𝐸𝐺𝑗) = (2𝐶𝑇,𝐺1𝐸𝐺1 + 3𝐶𝑇,𝐺1𝐸𝐺2 + 4𝐶𝑇,𝐺1𝐸𝐺3 +⋯)

∞

𝑗=1

∞

𝑖=1

+ (3𝐶𝑇,𝐺2𝐸𝐺1 + 4𝐶𝑇,𝐺2𝐸𝐺2 + 5𝐶𝑇,𝐺2𝐸𝐺3 +⋯)

+ (4𝐶𝑇,𝐺3𝐸𝐺1 + … ) + … 

G.1 

Applying Eqs. (F.2) and (4.17) again yields two single sums. 

 
∑∑(𝑖 + 𝑗)𝐶𝑇,𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

= 𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 (2 + 6𝐾𝐶2𝐶𝑇,𝐺𝑀 + 12𝐾𝐶2𝐶𝑇,𝐺𝑀
2 +⋯) 

= 𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 ∑𝑘(𝑘 − 1)(𝐾𝐶2𝐶𝑇,𝐺𝑀)
𝑗−2

∞

𝑘=2

 

= 𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 ∑((𝑖 + 1) + (𝑖 + 1)2)

∞

𝑖=0

(𝐾𝐶2𝐶𝑇,𝐺𝑀)
𝑖 

= 𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 [
(1 + 2𝐾𝐶2𝐶𝑇,𝐺𝑀 + 3(𝐾𝐶2𝐶𝑇,𝐺𝑀)

2
+⋯)

+(1 + 4𝐾𝐶2𝐶𝑇,𝐺𝑀 + 9(𝐾𝐶2𝐶𝑇,𝐺𝑀)
2
+⋯)

] 

G.2 

The first sum is addressed in Appendix A. The second sum is also a converging series. 

 
∑(𝑖 + 1)2𝑎𝑖 =

1 + 𝑎

(1 − 𝑎)3
= 1 + 4𝑎 + 9𝑎2 +⋯

∞

𝑖=0

 
G.3 

Applying Eqs. (F.6) and (G.3): 

 
∑∑(𝑖 + 𝑗)𝐶𝑇,𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

= 𝐾𝐶3
2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀

2 [
1

(1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)
2 +

1 + 𝐾𝐶2𝐶𝑇,𝐺𝑀

(1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)
3] 

G.4 

 
∑∑(𝑖 + 𝑗)𝐶𝑇,𝐺𝑖𝐸𝐺𝑗

∞

𝑗=1

∞

𝑖=1

=
2𝐾𝐶3

2 𝐶𝑇,𝐸𝐶𝑇,𝐺𝑀
2

(1 − 𝐾𝐶2𝐶𝑇,𝐺𝑀)
3 

G.5 

  



 

72 

 

Chapter 5.  Applications of a Wertheim association activity coefficient model to 

methanol and ethanol-containing mixtures 
 

A new activity coefficient method for associating systems, Wertheim Association Gamma (WAG), 

is evaluated for methanol and ethanol-containing binary and ternary mixtures. The method 

combines Wertheim’s perturbation theory, Flory’s theory and a residual contribution. This residual 

contribution is represented using several existing thermodynamic models including NRTL, 

Scatchard-Hildebrand and a variation of Wilson’s equation developed by Nagata. The capabilities 

and limitations of the models are compared to those of PC-SAFT and CPA.  The WAG-NRTL and 

WAG-Nagata approaches capture the behaviors of these mixed systems well when modeled with 

four parameters. Meanwhile, WAG with Scatchard-Hildebrand (WAG-SH) out-performs CPA and 

PC-SAFT in several cases, with only two fitted parameters. Lastly, the limitations of existing 

methods for calculating association parameters are explored and shown to need improvement.    

 Introduction 

Primary alcohols have many important uses in the chemical industry. Ethanol has been studied 

extensively as a promising alternative to petroleum-derived chemicals and fuels [99–101]. 

Methanol is often used as a raw material in the manufacture of important compounds, such as 

methyl-tert-butyl ether, and to prevent the formation of gas hydrates in the oil and gas industry 

[102]. In such cases, the thermodynamic behavior of the systems can be difficult to represent with 

traditional models and more advanced methods must be used. For alcohols, water, organic acids 

and other polar molecules, it is now well-established that models that include hydrogen bonding 

effects perform better than those that do not. For this reason, association equations of state, such 

as SAFT [9] (and its derivatives [54–56,95]), CPA [11] and ESD [10] provide better representation 

of these types of systems.   
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Though theoretically more rigorous, equations of state require fitting of several pure component 

parameters, requiring extensive vapor pressure and density data that are often not available for 

new compounds. Lack of data results in large uncertainty in parameter values. Further, the 

dispersion terms and association terms are both attractive and correct attribution of effects to the 

respective interactions is difficult when fitting limited macroscopic data. In contrast, activity 

coefficient (𝛾) models have been favored by industry for many applications (particularly those at 

low or moderate pressures) because the fitting of pure-component properties is only required in 

the range to be modeled, and attention can be focused on the mixture nonidealities. Additionally, 

the representation of the mixture is not biased by challenges in fitting the pure component behavior.  

Association has been modeled in activity coefficient models as early as 1969. Harris and Prausnitz 

[103] combined the van Laar equation with Dolezalek’s [34] chemical theory to represent physical 

interactions and hydrogen bonding respectively. The Dolezalek approach describes the formation 

of a hydrogen bond as an equilibrium reaction guided by an equilibrium constant. More recently, 

Karachewski [13] combined this association theory with Scatchard-Hildebrand [19,20] and 

derived the value of the equilibrium constants of hydrogen bonding from NMR spectroscopy. 

Asprion et al. [7] demonstrated that use of chemical theory with local composition models can 

suppress false prediction of VLLE. An alternative method for calculating association is 

Wertheim’s perturbation theory [47–50]. This model has become increasingly popular in recent 

years and is described in more detail in Section 5.2.1. Fu and Sandler [6] were the first to integrate 

Wertheim’s theory for association into UNIQUAC [12], an activity coefficient model, achieving 

significant improvement for binary systems. The model was also extended to a predictive UNIFAC 

method [104] with good results, albeit with the association parameters regressed to experimental 

phase equilibria data without consideration of actual spectroscopically measured association. 
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Unfortunately, both of Fu's models include a derivative term that make them difficult to generalize 

for multicomponent systems. In our previous work [96], we developed a generalized γ expression 

for association which will henceforth be referred to as the Wertheim Association Gamma (WAG) 

method. This development eliminates the need for the complex derivative in Fu and Sandler’s 

work yielding a general equation that can be applied readily in multicomponent systems. More 

importantly, the generalized 𝛾 association term can be attached to existing activity coefficient 

models to enhance their ability to model systems with hydrogen bonding. In this work, we explore 

the capabilities and limitations of three variations, WAG-NRTL, WAG-Scatchard-Hildebrand 

(WAG-SH) and WAG-Nagata, for various systems of industrial importance and then compare 

their performance to two association equations of state, CPA and PC-SAFT. 

 Model theory and parameters 

In this section, we outline the models compared herein. In cases with the WAG models, the vapor 

phase non-idealities are calculated using the Hayden O’Connell [79] model which has long been 

recognized for its accurate modeling of the vapor phase. Liquid phase non-idealities are calculated 

using an activity coefficient model which is a product of three contributions:  

 𝛾 =  𝛾𝑐𝑜𝑚𝑏𝛾𝑟𝑒𝑠𝛾𝑎𝑠𝑠𝑜𝑐 5.1 

or 

 ln 𝛾 =  ln 𝛾𝑐𝑜𝑚𝑏 + ln 𝛾𝑟𝑒𝑠 + ln 𝛾𝑎𝑠𝑠𝑜𝑐 5.2 

The terms 𝛾𝑐𝑜𝑚𝑏, 𝛾𝑟𝑒𝑠and 𝛾𝑎𝑠𝑠𝑜𝑐 are the combinatorial, residual and association contributions to 

the activity coefficient 𝛾 respectively. The combinatorial contribution calculates the entropic 

effects that arise due to differences in molecular sizes and shapes in solution. In theory, this would 

be the only term remaining at liquid densities and infinitely high temperature. The residual 

contribution accounts for molecular interactions between unlike molecules. In practice, depending 
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on parameters used, this term can remain at liquid densities and infinitely high temperature. The 

association contribution calculates the effects of hydrogen bonding. 

5.2.1. Association contribution 

Association is often modeled using Wertheim’s perturbation theory [47–50], a statistical 

mechanics approach that quantifies that probability of bonds forming between sites on molecules. 

Acceptor and donor sites are allocated on electronegative atoms that accept hydrogen bonds and 

the protons that can be donated respectively. In our previous work [96], we introduced a 

generalized activity coefficient contribution for association using Wertheim’s perturbation theory. 

The model assumes conventional mixing rules, no excess volume, and a universal packing fraction. 

Further details regarding the development of the model are given in Appendix C of Chapter 3 and 

are omitted here. The resulting functional form is given by: 

where 𝑋𝐴𝑖 and 𝑋𝐴𝑖,0 represent the fraction of sites free in the mixture and when the host for the 

site is pure respectively. 𝑁𝐴𝑖is the number of identical 𝐴𝑖 sites on a molecule of host component. 

𝑋𝐴𝑖 can be calculated using: 

where 𝐷𝑗  represents any site that 𝐴𝑖 can bond to and ∆𝐴𝑖𝐷𝑗 is the association constant for the two 

sites. The variable 𝑥𝐷𝑗 ℎ𝑜𝑠𝑡 is the apparent mole fraction of the component that hosts the site. Donor 

sites are solved by using a similar equation obtained by flipping the acceptor and donor identities 

in the equation.  

ln 𝛾𝑘
𝑎𝑠𝑠𝑜𝑐 = ∑ 𝑁𝐴𝑖

𝑠𝑖𝑡𝑒𝑠 𝐴𝑖
 𝑜𝑛 𝑘 

[ln (
𝑋𝐴𝑖

𝑋𝐴𝑖,0
) −

1

2
(1 − 𝑋𝐴𝑖,0)] +

1

2

𝜌

𝜌𝑘
∑ 𝑥𝐵𝑖 ℎ𝑜𝑠𝑡𝑁𝐵𝑖(1 − 𝑋

𝐵𝑖)

𝑎𝑙𝑙 
𝑠𝑖𝑡𝑒𝑠 𝐵𝑖

 
5.3 

 

𝑋𝐴𝑖 = (1 +∑𝑥𝐷𝑗 ℎ𝑜𝑠𝑡𝑁𝐷𝑗𝑋
𝐷𝑗𝜌∆𝐴𝑖𝐷𝑗

𝐷𝑗

)

−1

 5.4 
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5.2.2. Combinatorial contribution 

The combinatorial contribution is commonly calculated using the well-known modified Flory’s 

equation: 

where Φ𝑖′ is the volume fraction or modified volume fraction for component i calculated by 

assuming zero excess volume: 

In Flory’s original theory (and unless otherwise specified in this work), 𝑝 = 1. Despite its extensive 

application, Flory’s theory does have known shortcomings such as assuming a universal packing 

factor. This is reasonable for smaller molecules of similar size where the entropy effects are small. 

However, the assumption of constant packing factor is inaccurate for polymers in solvents where 

entropy of mixing is significant [105]. Various attempts to correct such weaknesses in the theory 

commonly use the Staverman-Guggenheim (SG) theory [38,106] which has been integrated into 

well-known models including UNIQUAC [12] and UNIFAC [29]. Recent work by Vahid et al. 

[105] compares the excess entropy term calculated using several methods with results from 

discontinuous molecular dynamics simulations. They found that Flory, both alone or corrected 

with SG, underestimated the excess entropy for certain values of packing factor and 

misrepresented its skewness with respect to equimolar composition.  

Other semi-empirical variations of Flory’s theory exist which replace the molar volumes in Eq. 

(5.6) with the UNIQUAC parameter 𝑟𝑖 and/or using fractions for the power, 𝑝. Donohue and 

Prausnitz [107] were the first to suggest using 𝑟𝑖 with a non-unity power in the Flory-Huggins 

model, which combines Flory’s theory with Scatchard-Hildebrand.  Kikic et al. [108] compared 

the excess Gibbs energy calculation from Donohue and Prausnitz model with others that corrected 

 
ln  𝛾

𝑖

𝐹𝑙𝑜𝑟𝑦
= ln(

Φ𝑖′

𝑥𝑖
) + 1 −

Φ𝑖′

𝑥𝑖
 5.5 

 
Φ𝑖′ =

𝑥𝑖𝑉𝑖
𝑝

∑ 𝑥𝑗𝑉𝑗𝑗
𝑝 5.6 
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Flory-Huggins with a modified SG term. They tested both 𝑟𝑖
2/3

 and 𝑉2/3 for the SG term and 

showed that both modifications far out-performed traditional SG for aliphatic hydrocarbons. 

Following these studies, two groups published modified UNIFAC models that incorporate a non-

unity power in the Flory portion of the model. The first, which was developed at the University of 

Dortmund and is therefore often referred to as the Dortmund modified UNIFAC [109,110], sets 

𝑝 = 3/4 and retains the SG correction. The second, developed at the University of Denmark 

(Lyngby), is sometimes referred to as the Lyngby modified UNIFAC model [111,112] and follows 

Kikic et al.’s suggestion of using a power of 2/3. The Lyngby modified UNIFAC model also 

removed the SG correction completely, citing work by Sayegh and Vera [113] showing that the 

correction often has little effect or sometimes overestimates the combinatorial contribution leading 

to unrealistic excess entropies. 

In our own work, we performed preliminary comparisons between: 

1. Traditional Flory’s theory (Eq. (5.6) with 𝑝=1)  

2. Traditional Flory’s theory (Eq. (5.6) with 𝑝=1) + SG 

3. Modified Flory’s theory (Eq. (5.6) with 𝑝 =2/3) 

4. Traditional Flory’s theory (Eq. (5.6) with 𝑝=1) + van der Waals entropy correction [8,67] 

A survey of several systems showed no appreciable differences in the fitting of binary systems 

studied in this work. In all cases, the residual term compensated for differences in the 

combinatorial term. Accepting that the original Flory and the Staverman-Guggenheim have some 

deficiencies, we follow Kikic et al. and Sayegh and Vera’s recommendations and model the 

combinatorial contribution using Eq. (5.6) with 𝑝=2/3 and no additional correction. The decision 

to use molar volumes rather than the UNIQUAC 𝑟𝑖 parameter was made based on the note by Kikic 
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et al. that the former case showed a slight advantage over the latter in modeling linear alkanes. The 

use of volumes provides some temperature dependence in the Flory term.  

5.2.3. Residual contribution 

Three models for the residual contribution are tested in this work: non-random two liquid (NRTL) 

theory, a model developed by Nagata, and Scatchard-Hildebrand yielding the WAG-NRTL, 

WAG-Nagata and WAG-SH models respectively. In this section, we provide a brief overview of 

each of these ln 𝛾𝑘
𝑟𝑒𝑠 models.  

Activity coefficient models for liquid phase modeling may assume random mixing or consider 

variations in local compositions. In contrast to random mixing models, which assume that species 

are randomly dispersed in solution, local composition models represent the compositional 

differences between the solvent shell of a molecule and the bulk fluid. This variation is modeled 

by defining a constant, Ω𝑖𝑗: 

where 𝑥𝑖𝑗 is the mole fraction of molecules of component i around a molecule of component j. Ω𝑖𝑗 

represents a ratio of the local composition to the bulk composition of the fluid and is calculated 

differently in every model.  

The NRTL equation, which was developed by Renon and Prausnitz [3] in 1968, calculates Ω𝑖𝑗 

with adjustable parameters, 𝛼𝑖𝑗 and 𝜏𝑖𝑗: 

Here, 𝜏𝑖𝑗 is the interaction energy parameter between a molecule of component i and one of 

component j and 𝛼𝑖𝑗 = 𝛼𝑗𝑖  is called the non-randomness parameter. The value of ln 𝛾𝑟𝑒𝑠 is then 

calculated through: 

 
Ω𝑖𝑗 =

𝑥𝑖𝑗/𝑥𝑗𝑗

𝑥𝑖/𝑥𝑗
 5.7 

 Ω𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗) 5.8 
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Often, 𝜏𝑖𝑗 is fitted by two parameters to increase the temperature dependence of the term:  

NRTL is a commonly used model in the chemical industry because its functional form makes it 

remarkably flexible. However, its parameters lack the theoretical significance necessary to derive 

physical meaning or predict their values without regression. In this work, NRTL models (both with 

and without WAG) are called 2-parameter models if �̃�𝑖𝑗 is set to 0 and only �̃�𝑖𝑗 is fitted. The “2” 

indicates that there will be two �̃�𝑖𝑗 values used to fit each binary system: �̃�12 and �̃�21. The 4-

parameter model fits both �̃�𝑖𝑗 and �̃�𝑖𝑗. The non-randomness parameter, 𝛼𝑖𝑗, is not fitted to each 

individual system. Instead, 𝛼𝑖𝑗 = 𝛼𝑗𝑖 was set to 0.2 when the system has a liquid-liquid 

immiscibility and 0.3 otherwise.      

Another local composition model, Wilson [18], is the basis of what is referred to herein as the 

Nagata model.  Wilson used the variable Λ𝑗𝑖 to represent local composition. Ellliott and Lira [8,67] 

show that, with some rearrangment, Wilson’s parameter Λ𝑗𝑖 is related to Ω𝑖𝑗 in Eq. (5.7) through: 

where 𝐴𝑗𝑖
𝑊𝑖𝑙𝑠𝑜𝑛 is a fitted parameter. With careful evaluation of the terms in Wilson’s original 

equation, it is possible to separate Flory’s theory [8,67]. For convenience, one can consider Flory 

to be the combinatorial contribution to the excess Gibbs energy, 𝐺𝐸,𝑊𝑖𝑙𝑠𝑜𝑛, and attribute the other 

terms to a residual contribution, 𝐺𝐸,𝑊𝑖𝑙𝑠𝑜𝑛 𝑟𝑒𝑠. 

 
ln 𝛾𝑖

𝑁𝑅𝑇𝐿,𝑟𝑒𝑠  =
∑ 𝑥𝑗𝜏𝑗𝑖 exp(−𝛼𝑗𝑖𝜏𝑗𝑖)𝑗

∑ 𝑥𝑘𝑘 exp(−𝛼𝑘𝑖𝜏𝑘𝑖)

+∑
𝑥𝑖 exp(−𝛼𝑖𝑗𝜏𝑖𝑗)

∑ 𝑥𝑘𝑘 exp(−𝛼𝑘𝑗𝜏𝑘𝑗)𝑗

(𝜏𝑖𝑗 −
∑ 𝑥𝑚𝜏𝑚𝑗 exp(−𝛼𝑚𝑗𝜏𝑚𝑗)𝑚

∑ 𝑥𝑘𝑘 exp(−𝛼𝑘𝑗𝜏𝑘𝑗)
) 

5.9 

 
𝜏𝑖𝑗 = �̃�𝑖𝑗 +

�̃�𝑖𝑗

𝑇
 5.10 

 
Ω𝑖𝑗 = Λ𝑗𝑖 =

𝑉𝑖
𝑉𝑗
exp(−

𝐴𝑗𝑖
𝑊𝑖𝑙𝑠𝑜𝑛

𝑅𝑇
) =

𝑉𝑖
𝑉𝑗
𝜏𝑖𝑗 5.11 
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In their 1997 work, Nagata et al. [15] used this idea to combine Eq. (5.14), which they refer to as 

the physical contribution, with a chemical term based on Flory’s theory. In the chemical term, the 

molar volume in Eq. (5.6) is replaced by a UNIQUAC volume parameter raised to 2/3, and the 

chemical contribution is calculated in terms of the true monomer activities. This approach is very 

similar to that developed by Campbell [16] and we show in our previous work that the resulting 

“true”  Flory activity coefficient, 𝛾𝑐ℎ𝑒𝑚, is related to the traditional Flory activity coefficient, 

𝛾𝐹𝑙𝑜𝑟𝑦, through: 

Therefore: 

Nagata’s model was shown to provide excellent fits of excess enthalpy, binary and ternary 

equilibria data.  For this reason, we chose to test the capabilities of the “residual term” in Wilson 

and Nagata’s work given by: 

where Φ𝑖 = 𝑥𝑖𝑉𝑖/∑ 𝑥𝑗𝑉𝑗𝑗  is the volume fraction for component i. The quantity 𝜏𝑖𝑗 is calculated 

through Eq. (5.10) and the 2- and 4-parameter implementations of this model are fitted in the same 

way as described above for NRTL. To avoid confusion, we refer to this as WAG-Nagata, rather 

 𝐺𝐸,𝑊𝑖𝑙𝑠𝑜𝑛 = 𝐺𝐸,𝐹𝑙𝑜𝑟𝑦 + 𝐺𝐸,𝑊𝑖𝑙𝑠𝑜𝑛 𝑟𝑒𝑠 
 

5.12 

 
𝐺𝐸,𝐹𝑙𝑜𝑟𝑦 = 𝑅𝑇∑𝑥𝑖

𝑖

ln (
Φ𝑖
𝑥𝑖
) 5.13 

 

𝐺𝐸,𝑊𝑖𝑙𝑠𝑜𝑛 𝑟𝑒𝑠 = −𝑅𝑇∑𝑥𝑖
𝑖

ln(∑(Φ𝑗 exp (−
𝐴𝑖𝑗
𝑊𝑖𝑙𝑠𝑜𝑛

𝑅𝑇
))

𝑗

) 5.14 

 ln 𝛾𝑐ℎ𝑒𝑚 = ln 𝛾𝐹𝑙𝑜𝑟𝑦 + ln 𝛾𝑎𝑠𝑠𝑜𝑐 5.15 

 ln 𝛾𝑁𝑎𝑔𝑎𝑡𝑎 = ln 𝛾𝑊𝑖𝑙𝑠𝑜𝑛,𝑟𝑒𝑠 + ln 𝛾𝐹𝑙𝑜𝑟𝑦 + ln 𝛾𝑎𝑠𝑠𝑜𝑐 5.16 

 

ln 𝛾𝑖
𝑁𝑎𝑔𝑎𝑡𝑎,𝑟𝑒𝑠

= − ln(∑Φ𝑗
𝑗

𝜏𝑗𝑖) +
Φ𝑖
𝑥𝑖
−∑

𝑥𝑘
𝑥𝑖

Φ𝑖𝜏𝑖𝑘
∑ Φ𝑗𝑗 𝜏𝑗𝑘

𝑘

 5.17 
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than Wilson, to make it clear that only the residual portion of Wilson is used and the association 

and combinatorial contributions are calculated as described in Sections 5.2.1 and 5.2.2. 

The third residual model evaluated here is Scatchard-Hildebrand (SH). Developed in the early 

1930s [19,20], SH is a regular solution theory which extends the van der Waals equation of state 

to mixtures. The excess Gibbs energy and ln 𝛾𝑟𝑒𝑠 have the form: 

where 𝑉 is the mixture molar volume calculated by assuming no excess volume, 𝑉 = ∑ 𝑥𝑖𝑉𝑖𝑖 , Φ𝑖 

is the volume fraction of component i and 𝐴𝑖𝑗
𝑆𝐻 is a combined term that can be related to the 

solubility parameter of each component 𝛿𝑖 through: 

The solubility parameter, 𝛿𝑖, is a measure of the internal energy departure per molar volume of a 

component and is therefore often referred to as the cohesive energy density. 𝑘𝑖𝑗 of Eq. (5.20) is a 

binary interaction parameter that can be fitted to experimental mixture data. Because adjusting 𝑘𝑖𝑗 

is equivalent to fitting 𝐴𝑖𝑗, we regress 𝐴𝑖𝑗 as: 

where �̃�𝑖𝑗 and �̃�𝑖𝑗 are the fitted parameters. 

In summary, ln 𝛾 will be calculated using the following 3 WAG models: 

 

𝐺𝐸,𝑟𝑒𝑠 ≈ 𝑈𝐸,𝑟𝑒𝑠 = 𝑉∑ ∑ Φ𝑖Φ𝑗𝐴𝑖𝑗
𝑆𝐻

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 5.18 

 

ln 𝛾𝑖
𝑟𝑒𝑠  =

𝑉𝑖
𝑅𝑇
(∑𝜑𝑘𝐴𝑘𝑖

𝑆𝐻 −
1

2
∑∑Φ𝑘Φ𝑗𝐴𝑘𝑗

𝑆𝐻

𝑛

𝑗=1

𝑛

𝑘=1

𝑛

𝑘=1

) 5.19 

 𝐴𝑖𝑗
𝑆𝐻 = (𝛿𝑖 − 𝛿𝑗)

2 + 2𝛿𝑖𝛿𝑗𝑘𝑖𝑗 5.20 

 𝐴𝑖𝑗
𝑆𝐻 = �̃�𝑖𝑗𝑇 + �̃�𝑖𝑗 5.21 
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5.2.4. EOS model parameters 

The WAG models developed in Eqs. (5.22-5.24) are compared to CPA and PC-SAFT. These EOS 

models are used as a reference and thus, their derivations are not provided here but can be found 

in references [11] and [95] for CPA and PC-SAFT respectively. We use the implementations in 

version 9 of AspenPlus® and we fit the binary interaction parameter, 𝑘𝑖𝑗 with the forms 

implemented in AspenPlus®: 

5.2.5. Association parameters 

Often, ∆𝐴𝑖𝐷𝑗 of Eqn. 5.4 is calculated by fitting to pure component properties. In this work, the 

WAG models use the CPA association parameter, given by: 

 
∆𝐴𝑖𝐷𝑗= 𝑔(𝜎)𝛽𝐶𝑃𝐴

𝐴𝑖𝐷𝑗𝑏𝐶𝑃𝐴,𝑖𝑗 (exp(
𝜖𝐴𝑖𝐷𝑗

𝑘𝑇
) − 1) 

5.26 

 

where 𝑏𝐶𝑃𝐴,𝑖𝑗 is the CPA covolume term, 𝜖𝐴𝑖𝐷𝑗  is an interaction energy parameter, 𝑘 is 

Boltzmann’s constant, and 𝛽𝐶𝑃𝐴
𝐴𝑖𝐷𝑗

 is a fitted parameter. The term 𝑔(𝜎) is the radial distribution 

function at contact given by: 

  
𝑔(𝜎) =

1

1 −
1.9
4 𝑏𝐶𝑃𝐴𝜌

 
5.27 

 

 ln 𝛾 = ln 𝛾𝑁𝑅𝑇𝐿,𝑟𝑒𝑠 + ln 𝛾𝑀𝑜𝑑 𝐹𝑙𝑜𝑟𝑦 + ln 𝛾𝑎𝑠𝑠𝑜𝑐 5.22 

 ln 𝛾 = ln 𝛾𝑆𝐻,𝑟𝑒𝑠 + ln 𝛾𝑀𝑜𝑑 𝐹𝑙𝑜𝑟𝑦 + ln 𝛾𝑎𝑠𝑠𝑜𝑐 5.23 

 ln 𝛾 = ln 𝛾𝑁𝑎𝑔𝑎𝑡𝑎,𝑟𝑒𝑠 + ln 𝛾𝑀𝑜𝑑 𝐹𝑙𝑜𝑟𝑦 + ln 𝛾𝑎𝑠𝑠𝑜𝑐 5.24 

 
𝑘𝑖𝑗 = �̃�𝑖𝑗 + �̃�𝑖𝑗

𝑇

298.15 𝐾
 (𝐶𝑃𝐴) 

𝑘𝑖𝑗 = �̃�𝑖𝑗 + �̃�𝑖𝑗
298.15 𝐾

𝑇
 (𝑃𝐶 − 𝑆𝐴𝐹𝑇) 

5.25 
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The values of CPA parameters used in this work are given in Table 5.1. The values of 𝜖𝐴𝐷 and 

𝛽𝐴𝐷 in the table refer to the self-association interactions, which occur between acceptors and 

donors on molecules of the same component. Using Huang and Radosz’s [55] notation, alcohols 

are modeled with a 2B scheme (one acceptor site, one donor site) and water with 4C (two identical 

acceptor sites, two identical donor sites). For ethanol, one set of CPA parameters are used for all 

the WAG models and another is used for the CPA fits they are compared to. The reasoning for this 

choice is given in Section 5.4.  

Table 5.1: CPA parameters used to calculate 𝚫𝑨𝑫. The terms 𝜖𝐴𝐷 and 𝛽𝐴𝐷 pertain to self-

association interactions 

 

Compound 
𝑻𝑪𝒓𝒊𝒕 
(K) 

𝒃𝑪𝑷𝑨  

(L/mol) 

𝒂𝟎,𝑪𝑷𝑨 

(bar L2 

mol-2) 

𝒄𝟏,𝑪𝑷𝑨 
𝝐𝑨𝑫 (bar L 

mol-1) 
𝜷𝑨𝑫 Reference 

Methanol 512.6 0.03098 4.053 0.4310 245.91 0.0161 [1] 

Ethanol (CPA) 513.9 0.04910 8.672 0.7369 215.32 0.0080 [1] 

Ethanol (Other) 513.9 0.04690 6.701 0.7987 247.72 0.0127 [2] 

Water 647.3 0.01452 1.228 0.6736 166.55 0.0692 [114] 

n-Pentane 469.7 0.09101 18.20 0.7986   [114] 

n-Heptane 540.2 0.1254 29.18 0.9137   [114] 

n-Decane 617.7 0.1787 47.39 1.1324   [114] 

Cyclohexane 553.6 0.09038 21.26 0.7427   [114] 

 

Cross-association, which occurs between molecules of different components, is approximated by 

combining self-association parameters according to simplifying rules called combining rules. 

Elliott’s combining rule (ECR) states that: 

 Δ𝐴𝑖𝐷𝑗 = √Δ𝐴𝑖𝐷𝑖Δ𝐴𝑗𝐷𝑗 5.28 

For WAG models, we implement a modification. The ECR includes the radial distribution function 

of the pure components i and j in Δ𝐴𝑖𝐷𝑖 and calculates their geometric mean values of the 

association parameters. However, this eliminates any compositional dependence of 𝑔(𝜎) for the 

mixture. Therefore, we modify the rule as follows: 
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 Δ𝐴𝑖𝐷𝑗 = 𝑔(𝜎)√
Δ𝐴𝑖𝐷𝑖

𝑔(𝜎𝑖)

Δ𝐴𝑗𝐷𝑗

𝑔(𝜎𝑗)
 5.29 

Where the pure component 𝑔(𝜎𝑖) values are determined at the pure component densities at the 

same temperature. Assuming that exp (
𝜖𝐴𝐷

𝑘𝑇
) − 1 ≅ exp (

𝜖𝐴𝐷

𝑘𝑇
), Eq. (5.29) can be applied by 

setting: 

 𝛽𝐶𝑃𝐴
𝐴𝑖𝐷𝑗𝑏𝐶𝑃𝐴,𝑖𝑗 = √𝛽𝐶𝑃𝐴

𝐴𝑖𝐷𝑖𝛽𝐶𝑃𝐴
𝐴𝑗𝐷𝑗𝑏𝐶𝑃𝐴,𝑖𝑏𝐶𝑃𝐴,𝑗 5.30 

 𝜖𝐴𝑖𝐷𝑗 =
𝜖𝐴𝑖𝐷𝑖 + 𝜖𝐴𝑗𝐷𝑗

2
 5.31 

where 𝛽𝐶𝑃𝐴
𝐴𝑖𝐷𝑗𝑏𝐶𝑃𝐴,𝑖𝑗 is a constant in this work. For the CPA model, the CR-1 combining rules are 

applied for cross-association such that: 

 𝛽𝐶𝑃𝐴
𝐴𝑖𝐷𝑗 = √𝛽𝐶𝑃𝐴

𝐴𝑖𝐷𝑖𝛽𝐶𝑃𝐴
𝐴𝑗𝐷𝑗

 5.32 

 𝜖𝐴𝑖𝐷𝑗 =
𝜖𝐴𝑖𝐷𝑖 + 𝜖𝐴𝑗𝐷𝑗

2
 5.33 

For the PC-SAFT model, parameters are obtained from literature for associating [115] and inert 

[95] components. The association parameter is given by: 

 Δ𝐴𝑖𝐷𝑗 = 𝑔𝑖𝑗
ℎ𝑠𝜅𝐴𝑖𝐷𝑗𝜎𝑖𝑗

3 (exp (
𝜖𝐴𝑖𝐷𝑗

𝑘𝑇
) − 1) 5.34 

where 𝑔𝑖𝑗
ℎ𝑠is the radial distribution function for hard spheres calculated with the Carnahan-Starling 

[116] equation and:  where 𝜅𝐴𝑖𝐷𝑗 has units of volume and 𝜎𝑖𝑖 is the temperature-independent 

segment diameter for component i. Eqs. (5.33) and (5.35) are the combining rules used to model 

cross-association in PC-SAFT. 

 

𝜅𝐴𝑖𝐷𝑗 = √𝜅𝐴𝑖𝐷𝑖𝜅𝐴𝑗𝐷𝑗 (
√𝜎𝑖𝑖𝜎𝑗𝑗

0.5(𝜎𝑖𝑖 + 𝜎𝑗𝑗)
)

3

 5.35 
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 Model comparisons 

To isolate the capabilities of the residual model for all WAG models, the Wertheim association 

parameter was calculated using the CPA parameters from Table 5.1 consistently for all models 

except PC-SAFT. Only the residual term parameters were adjusted. Liquid molar volumes were 

calculated using DIPPR molar volumes as provided by the AspenPlus® databases given in Table 

5.2. PC-SAFT parameters are given in Table 5.3. 

Table 5.2: AspenPlus® databases used in calculations. WAG-* denotes all WAG models 

 

Model Databases in AspenPlus® 

WAG-* APV90 PURE35, NISTV90 NIST-TRC 

CPA APEOSV90 AP-EOS, APV90 PURE35, NISTV90 NIST-TRC 

PC-SAFT APV90 PURE35, APV90 PC-SAFT 

 

Table 5.3: PC-SAFT pure component parameters. The terms 𝜖𝐴𝐷 and 𝜅𝐴𝐷 pertain to self-

association interactions 

 

Compound 𝒎 𝝈𝒊𝒊 (Å) 𝝐/k (K) 𝝐𝑨𝑫/𝒌 (K) 𝜿𝑨𝑫 Reference 

Methanol 1.526 3.230 188.9 2900 0.03518 [115] 

Ethanol 2.383 3.177 198.2 2653 0.03238 [115] 

Water 1.066 3.001 366.5 2501 0.03487 [115] 

n-Pentane 2.690 3.773 231.2   [95] 

n-Heptane 3.483 3.805 238.4   [95] 

n-Decane 4.663 3.838 243.9   [95] 

Cyclohexane 2.530 3.850 278.1   [95] 

 

Hayden-O’Connell parameters were used as provided by AspenPlus® ver. 9 (given in Appendix 

H) without adjustment. Excess volume was assumed to be zero, and all mixture molar volumes 

used for volume fractions were temperature-dependent. To facilitate regressions, the WAG and 

residual models were programmed as a user activity coefficient subroutine for AspenPlus®. 

Data sources used for regression are summarized in Table 5.4 and the values of the regressed 

parameters are given in the Appendix. When multiple data sets are available from the source, all 

sets are used in the regressions.  
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Table 5.4: Data used for parameter regression. 

 

System Data fitted to 

Methanol + n-heptane VLE [117], LLE [118] 

Methanol + cyclohexane VLE [117], LLE [5], HE [119] 

Methanol + n-pentane VLE [120] 

Methanol + water VLE [121,122] 

Methanol + ethanol VLE [123–125], HE [126] 

n-Heptane + cyclohexane VLE [127] (point at 𝑥𝐻𝑒𝑝 = 0.984 omitted), HE [128] 

Ethanol + n-decane VLE [129], HE [130] 

Ethanol + cyclohexane VLE [131], HE [132] 

 

The goodness of fit for each regression is given in this work by the sum of squares value, SSQ, 

calculated by: 

Here, 𝐿 is generic notation for all properties used in the regression such as mole fractions or heats 

of mixing.  The superscript ‘𝑒𝑥𝑝’ refers to the experimental value and 𝑠𝑡𝑑𝑑𝑒𝑣𝑖𝑗 is a standard 

deviation assumed for the experimental data; 𝑠𝑡𝑑𝑑𝑒𝑣𝑖𝑗 is 0.1 K for temperature values in the VLE 

data sets and 0.01 K for those in LLE data sets, 0.1% for excess enthalpy data, 1% for vapor mole 

fractions, and 0.1% for pressure and liquid mole fraction data. These weights reflect the confidence 

with which each property can be obtained experimentally.  

Table 5.5 gives the total SSQ of each model for all systems tested here with the exception of two. 

The methanol + pentane system was omitted because 4-parameter WAG models and NRTL were 

deemed unnecessary due to the satisfactory fits of the 2-parameter versions. The methanol + 

cyclohexane system was also omitted because the 2-parameter WAG-NRTL model did not 

converge. From these results, the four parameter versions of WAG-NRTL and WAG-Nagata 

provide the best overall fits. This is not surprising when compared to CPA and PC-SAFT since the 

equations of state were fitted with only two parameters each. However, it is encouraging that 

 

𝑆𝑆𝑄 =∑∑(
𝐿𝑖𝑗 − 𝐿𝑖𝑗

𝑒𝑥𝑝 

𝑠𝑡𝑑𝑑𝑒𝑣𝑖𝑗
)

2𝑚

𝑗=1

𝑘

𝑖=1

 5.36 
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WAG-SH and the 2-parameter variation of WAG-Nagata, which are also fitted with just two 

parameters, perform better than the CPA and PC-SAFT for the systems tested.  

Table 5.5: Total SSQ for systems studied in this work. Systems for which only some model 

were fitted have been omitted from this table and (2) and (4) denote the number of fitted 

parameters 

 

Model 
Number of fitted 

parameters 
Total SSQ × 10-5 

WAG-NRTL(4) 4 1.12 

WAG-Nagata(4) 4 1.82 

NRTL(4) 4 2.13 

WAG-SH 2 8.14 

WAG-Nagata(2) 2 9.30 

CPA 2 11.9 

NRTL(2) 2 19.7 

WAG-NRTL(2) 2 27.2 

PC-SAFT 2 42.5 

 

While the total SSQ provides a reasonable overview for the fit, it is important to consider each 

regression individually to understand the limitations of each model. For example, the high SSQ 

value for PC-SAFT misrepresents the majority of fits. This SSQ is large due to the moderately 

poor representation of the methanol + n-heptane liquid-liquid equilibrium. To explore fits more 

carefully, Table 5.6 arranges the models according to SSQ value for each system. Each of the 

models will be represented by the line and/or color in Table 5.7.  In some figures, certain lines may 

be obscured due to overlap with others.  
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Table 5.6: Model performance in order of best fit. Numbers are SSQ × 10-4 values and (2) and (4) indicate the number of fitted 

parameters in the model. (*) denotes that only VLE (not excess enthalpy) data was fitted 

 

Methanol +  

n-heptane 

WAG-

NRTL(4) 

8.83 

NRTL(4) 

13.0 

WAG-

Nagata(4) 

16.0 

WAG-SH 

75.2 

WAG-

Nagata(2) 

87.0 

CPA 

103 

NRTL(2) 

183 

WAG-

NRTL(2) 

265 

PC-

SAFT 

419 

Methanol +  

cyclohexane 

NRTL(4) 

17.6 

CPA 

20.6 

WAG-

Nagata(4) 

23.8 

WAG-

NRTL(4) 

24.5 

WAG-SH 

41.8 

PC-

SAFT 

80.3 

WAG-

Nagata(2) 

107 

NRTL(2) 

285 

 

 

Methanol +  

n-pentane 

WAG-SH 

0.170 

WAG-

Nagata(2) 

0.215 

WAG-

NRTL(2) 

0.241 

PC-

SAFT 

0.279 

CPA 

0.303 

NRTL(2) 

0.597 
   

Methanol +  

water 

WAG-

Nagata(4) 

0.133 

NRTL(4) 

0.169 

WAG-SH 

0.199 

NRTL(2) 

0.218 

WAG-

Nagata(2) 

0.244 

CPA 

0.325 

PC-

SAFT 

0.525 

WAG-

NRTL(4) 

0.564 

WAG-

NRTL(2) 

0.790 

Methanol +  

ethanol 

WAG-

NRTL(4) 

0.00872 

NRTL(4) 

0.00882 

WAG-

Nagata(4) 

0.0108 

WAG-

NRTL(2) 

0.0423 

NRTL(2) 

0.0431 

WAG-

Nagata(2) 

0.0716 

PC-

SAFT 

0.0993 

CPA 

0.618 

WAG-

SH 

0.664 

n-Heptane +  

cyclohexane 

WAG-

Nagata(2)* 

0.0152 

NRTL(2)* 

0.0152 

WAG-

NRTL(2)* 

0.0153 

WAG-

Nagata(4) 

0.0172 

NRTL(4) 

0.0191 

WAG-

NRTL(4) 

0.0193 

WAG-SH 

0.0881 

PC-

SAFT 

0.0893 

CPA 

0.101 

Ethanol +  

n-decane 

WAG-

NRTL(4) 

1.51 

WAG-

Nagata(4) 

1.68 

PC-SAFT 

4.35 

WAG-SH 

4.89 

WAG-

Nagata(2) 

5.23 

WAG-

NRTL(2) 

5.64 

NRTL(4) 

7.50 

NRTL(2) 

12.0 

CPA 

13.0 

Ethanol +  

cyclohexane 

WAG-

NRTL(4) 

0.305 

WAG-

Nagata(4) 

0.318 

WAG-SH 

0.392 

WAG-

Nagata(2) 

0.401 

PC-

SAFT 

0.443 

NRTL(4) 

0.560 

WAG-

NRTL(2) 

0.645 

NRTL(2) 

1.43 

CPA 

1.98 
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Table 5.7: Legend for plots in Model Capabilities section 

Model Notation in Figures 

WAG-NRTL (2 parameters)   or ○ 

WAG-NRTL (4 parameters) 
 

or ● 

WAG-Nagata (2 parameters) 
 

or ○ 

WAG-Nagata (4 parameters) 
 

or ● 

WAG-SH 
 

or ● 

NRTL (2 parameters) 
 

or ○ 

NRTL (4 parameters) 
 

or ● 

PC-SAFT 
 

or ○ 

CPA 
 

or ● 

 

In the upcoming sections, we show phase diagrams, heat of mixing plots (when applicable), 

activity coefficients and percent errors for the K-ratios calculated by the various models. As an 

additional measure of the model fits, the percent error of the K-ratios is calculated for each binary 

as: 

where KVL is the K-ratio in the vapor-liquid equilibrium (VLE) region and the superscript of 𝑒𝑥𝑝 

indicates experimental values. For the liquid-liquid equilibrium (LLE) region, KVL is replaced by 

the K-ratio in the LLE region.  

5.3.1. Binary system with no association 

First, we test the capabilities of the residual and combinatorial activity coefficients with a simple 

binary mixture of two inert components, n-heptane and cyclohexane. The results are given in 

Figures 5.1-5.4. The 2-parameter WAG and NRTL models were unable to simultaneously fit the 

VLE and heat of mixing data well. Because the heat of mixing is small and inconsequential for 

nearly ideal systems such as this, the parameters were fitted only to the VLE data. Therefore, the 

lines for the 2-parameter WAG and NRTL models are shown in the VLE diagram but omitted 

from the heat of mixing diagram. All the models were able to describe VLE behavior equally well. 

 
% 𝑒𝑟𝑟𝑜𝑟 =

𝐾𝑉𝐿𝑒𝑥𝑝 − 𝐾𝑉𝐿

𝐾𝑉𝐿𝑒𝑥𝑝
× 100% 5.37 
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Figure 5.1: Phase equilibria diagram for n-heptane + cyclohexane at 101.3 kPa.  

 

 

Figure 5.2: Heat of mixing for n-heptane + cyclohexane at T=298.14 K and 101.3 kPa. The 

WAG-NRTL(4) line is obscured by the WAG-Nagata(4) and NRTL(4). The WAG-SH, CPA and 

PC-SAFT lines are overlapped. 



 

91 

 

 

Figure 5.3: Calculated and experimental activity coefficients for n-heptane + cyclohexane 

at 101.3 kPa. Data and fits correspond to the experimental data in Figure 5.1 

 

 

  

 
 

Figure 5.4: Percent errors of K-ratios for n-heptane + cyclohexane system. Figures (a) is the 

K-ratio of n-heptane and (b) is the K-ratio of cyclohexane in the VLE region at 101.3 kPa 

(a) 
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5.3.2. Binary systems with self-association 

Figures 5.5-5.8 show fits for the methanol + n-heptane system. The fits for heat of mixing exhibit 

a linear segment that spans the predicted LLE for each model. NRTL and WAG-NRTL(2) are 

unable to capture both phase equilibria simultaneously. NRTL’s poor representation, both for the 

fitted phase equilibria and the predicted heat of mixing in Figure 5.6, can be explained by its lack 

of association. Including the Wertheim association term in WAG-NRTL improves the fit 

significantly. However, WAG-NRTL(2) does not have the temperature dependence necessary to 

fit the LLE region accurately and two more parameters must be included. PC-SAFT also shows a 

poor fit in the liquid-liquid region. The other models are able to represent the phase equilibria with 

comparable accuracy.  

 

Figure 5.5: Phase equilibria diagram for methanol + n-heptane at 101.3 kPa. Experimental 

VLE and LLE data is shown by markers. 
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Figure 5.6: Heat of mixing for methanol + n-heptane at T=298.15 K and 101.3 kPa. 

Experimental data [133] is shown for the miscible region (𝑥𝑀𝑒𝑂𝐻<0.1464 and 𝑥𝑀𝑒𝑂𝐻 > 0.8899). 

 

 

Figure 5.7: Calculated and experimental [4] activity coefficients for methanol + n-heptane 

at 101.3 kPa. Data and fits correspond to the experimental VLE data in Figure 5.5 
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Figure 5.8: Percent errors of K-ratios for methanol + n-heptane system. Figures (a) and (c) 

are K-ratios in the VLE region and (b) and (d) are K-ratios in the LLE region 

 

The fitting results of the methanol + cyclohexane system are very similar to those of methanol + 

n-heptane, which are given in Figures 5.9-5.12. NRTL and the two-parameter WAG models 

provide poorer fits, particularly in the LLE. The excess enthalpy data in Figure 5.10 is fitted well 

by the four parameter WAG models. While capable of capturing the magnitude well, CPA and 

WAG-SH are slightly inferior in capturing the minor asymmetry in the heat of mixing.  

(a) (b) 

(c) (d) 
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Figure 5.9: Phase equilibria diagram for methanol + cyclohexane at 101.3 kPa. 

Experimental VLE and LLE data is shown by markers. 

 

 

Figure 5.10: Heat of mixing for methanol + cyclohexane at T=416.29 K and 1900 kPa. 
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Figure 5.11: Calculated and experimental activity coefficients for methanol + cyclohexane 

at 101.3 kPa. Data and fits correspond to the experimental VLE data in Figure 5.9 

 

 

 
 

Figure 5.12: Percent errors of K-ratios for methanol + cyclohexane system. Figures (a) and 

(c) are K-ratios in the VLE region and (b) and (d) are K-ratios in the LLE region 

(a) (b) 

(c) (d) 
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The methanol + n-pentane system is described in Figures 5.13-5.15. The parameters were fitted to 

data at two temperatures, 372.7 and 397.7 K, and the results at both conditions were very similar. 

The higher temperature fits are shown here. It is clear that both CPA and PC-SAFT have difficulty 

describing the dew line for methanol + n-pentane. In contrast, WAG-Nagata and WAG-SH capture 

both phase lines very well with only two fitted parameters each.  

 

Figure 5.13: Phase equilibria diagram for methanol + n-pentane at T=397.7 K 

 

 

Figure 5.14: Calculated and experimental [120] activity coefficients for methanol + n-

pentane at T=397.7 K. Data and fits correspond to the experimental VLE data in Figure 5.13. 
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Figure 5.15: Percent errors of K-ratios for methanol + n-pentane system. Figure (a) is the K-

ratio of methanol and (b) is the K-ratio of n-pentane in the VLE region at T=397.7 K 

 

Ethanol + cyclohexane fits are provided in Figures 5.16-5.19. This system has no liquid-liquid 

immiscibility. Three models perform particularly poorly for this system: NRTL(2), NRTL(4) and 

CPA. The first two models falsely predict an LLE and the last miscalculates the azeotropic 

composition. WAG-SH and the four parameter WAG models describe the VLE and heat of mixing 

data much better for this system.  

(a) 
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Figure 5.16: Phase equilibria diagram for ethanol + cyclohexane at 101.3 kPa. 

 

 

Figure 5.17: Heat of mixing for ethanol + cyclohexane at T=298.14 K and 101.3 kPa. 
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Figure 5.18: Calculated and experimental activity coefficients for ethanol + cyclohexane at 

101.3 kPa. Data and fits correspond to the experimental VLE data in Figure 5.16. 

 

 

 

Figure 5.19: Percent errors of K-ratios for ethanol + cyclohexane system. Figures (a) is the 

K-ratio of ethanol and (b) is the K-ratio of cyclohexane in the VLE region at 101.3 kPa 
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Figures 5.20-5.22 show the model fits for ethanol + n-decane. The parameters were fitted to the 

data in the figures and two more P-xy VLE data sets in Narasigadu et al. [129]. The P-xy fits at 

the other temperatures are similar and, therefore, omitted for brevity. Linear segments in the bubble 

line or the heat of mixing indicate prediction of VLLE. 

 

Figure 5.20: Phase equilibria diagram for ethanol + n-decane at T=338.17 K 

 

 

Figure 5.21: Phase equilibria diagram for ethanol + n-decane at 101.3 kPa 
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Figure 5.22: Heat of mixing for ethanol + n-decane at T=298.15 K and 101.3 kPa. 

The binary ethanol + n-decane system is especially challenging for all models tested. NRTL (4) 

incorrectly predicts VLLE for the isothermal fits between 328 K and 348 K. WAG-NRTL (4) 

begins to incorrectly predict VLLE at a temperature slightly above 328 K and WAG-Nagata (4) 

does so at a temperature between 328 K and 298.15 K. WAG-SH and PC-SAFT do not incorrectly 

predict VLLE at 328 K but they cannot model the steep rise in the bubble line for the P-xy 

diagrams. The heat of mixing data shown in Figure 5.22 does not indicate phase splitting at 298.15 

K, which would appear in the form of a linear section. Therefore, the VLLE predicted by almost 

all models tested here at temperatures above 298.15 K is incorrect and illustrates a shortcoming of 

the models.  The CPA EOS generates a wider P-xy envelope than the other models due to the 

difference in the association parameters used for CPA. The Δ𝐴𝐷 value used in CPA is 

approximately 1/5th that of the value used in the WAG models and therefore, the hydrogen bonding 

is modeled to be weaker. The regressed residual portion must then compensate for the association 
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term in order to match the experimental data and the resulting residual contribution is 

overestimated. This demonstrates the importance of correctly quantifying the association effects 

on non-ideality and the difficulties that arise when the balance between 𝛾𝑎𝑠𝑠𝑜𝑐 and 𝛾𝑟𝑒𝑠 is 

incorrect.  

Exploring the models’ predictions at lower temperatures reveal another challenge with WAG-

NRTL and WAG-Nagata. For ethanol + n-decane, the experimental data used in the parameter 

regression was between 445 and 328 K. However, when the phase behavior was extrapolated 60 

K lower, both models incorrectly predict a lower critical solution temperature (LCST) near 260 K. 

Interestingly, although CPA, PC-SAFT and WAG-SH provided inferior fits of the experimental 

data, they did not predict an LCST when extrapolated to low temperatures. We attribute this 

advantage to the temperature dependence of the residual contribution in the EOS models. Thus, 

future work will focus on studying the temperature dependence of the residual contribution for the 

local composition models.  

5.3.3. Binary systems with self- and cross-associating systems 

Two systems with cross-association are modeled in this work. Figures 5.23-5.26 and 5.27-5.30 

show the fits for methanol + water and methanol + ethanol respectively. For the first system, all 

the models describe the data well with no difficulty. However, the methanol + ethanol binary is 

more complicated because it is so close to an ideal solution. Almost all models can capture the 

phase behavior and heat of mixing for the system well except for CPA and WAG-SH. CPA is 

especially poor at modeling the system and Section 5.4 explores this limitation further.  
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Figure 5.23: Phase equilibria diagram for methanol + water at 101.3 kPa 

 

 

Figure 5.24: Phase equilibria diagram for methanol + water at T=298.14 K (bottom) and 

T=308.14 K (top) 
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Figure 5.25: Calculated and experimental [121,122] activity coefficients for methanol + 

water at T=298.14 K, T=308.14 K and P=101.3 kPa from top to bottom. Data and fits 

correspond to the experimental VLE data in Figure 5.23 and Figure 5.24. 



 

106 

 

  
 

Figure 5.26: Percent errors of K-ratios for methanol + water system. Figures (a-c) are K-

ratios of methanol and (d-f) are K-ratios of water in the VLE regions at T=298.14 K, T=308.14 

K and P=101.3 kPa from top to bottom. 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 5.27: Phase equilibria diagram for methanol + ethanol at T=298.14 K (bottom) and 

T=413.13 K (top) 
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Figure 5.28: Phase equilibria diagram for methanol + ethanol at T=298.14 K 

 
 

Figure 5.29: Calculated and experimental activity coefficients for methanol + ethanol at 

T=298.14 K (bottom) and T=413.13 K (top). Data and fits correspond to the experimental VLE 

data in Figure 5.27. 



 

109 

 

 
 

Figure 5.30: Percent errors of K-ratios for methanol + ethanol system. Figures (a) and (c) are K-ratios of methanol and (b) and (d) 

are K-ratios of ethanol in the VLE regions at T=298.14 K (top) and T=413.13 K (bottom) 

(a) (b) 

(c) (d) 
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5.3.4. Ternary systems 

The parameters that were obtained by regression to binary data are used to predict the behavior of 

the components in a ternary mixture. Mathias and Kister [134] have shown that including ternary 

LLE in the regression of binary parameters can lead to improved simultaneous representation. 

However, to explore the behavior for predictive capabilities, the simultaneous regressions were 

not performed in this work. The phase diagram for methanol + n-heptane + cyclohexane is given 

in Figure 5.31 and the K-ratios for each of the components are given in Figure 5.31. The predicted 

LLE compositions are most accurate for the four parameter WAG-NRTL and NRTL models. 

WAG-SH and CPA also provide a good prediction. However, PC-SAFT and the other two-

parameter WAG variations struggle to capture the methanol and cyclohexane rich phase.  

 
 

Figure 5.31: Phase equilibria diagram for methanol + n-heptane + cyclohexane at 101.3 kPa 

and 298.15 K. Parameters used were fitted only to binary data. 
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Figure 5.32: K-ratios for methanol (a) + n-heptane (b) + cyclohexane (c) system at 101.3 

kPa and 298.15 K. 
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Similarly, the ternary diagram for methanol + ethanol + cyclohexane and K-ratios for the 

components is given in Figures 5.33 - 5.34. The performance of the models is much different for 

this system. NRTL’s false prediction of an LLE between ethanol and cyclohexane creates the 

wrong envelope in the figure. While this is the worst description of data, the other models are also 

weak at predicting the behavior of this system. However, WAG-SH provides the best prediction, 

out-performing CPA and PC-SAFT. 

 

Figure 5.33: Phase equilibria diagram for methanol + ethanol + cyclohexane at 101.3 kPa 

and 298 K. Parameters used were fitted only to binary data. 
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Figure 5.34: K-ratios for methanol (a) + ethanol (b) + cyclohexane (c) system at 101.3 kPa 

and 298 K.  
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5.3.5. General findings and recommendations  

Some general conclusions can be drawn from the results shown in this work. The first is that 4-

parameter variations of WAG-NRTL and WAG-Nagata models provide excellent fits of 

experimental data for binary systems. The total SSQ of these two models is 47% and 15% smaller 

than that of 4-parameter NRTL, which is the model with the next smallest SSQ, and are therefore 

recommended as four parameter models. For systems that are difficult to model, the performance 

of WAG-NRTL model could be further improved by fitting the 𝛼𝑖𝑗 parameter. However, because 

the goal of this work is to compare WAG-Nagata and WAG-NRTL with the same number of 

adjustable parameters, this was not examined for the systems studied here, and is therefore left for 

future studies. 

Amongst two-parameter models, the WAG-SH model developed here is a clear frontrunner. 

WAG-SH has been shown to correlate the behavior of the systems in this work better than the 

equations of state. It is particularly interesting to compare it to CPA. The functional forms of the 

energetic contributions in both WAG-SH and CPA are very similar but the SSQ for WAG-SH is 

only about 70% of that for CPA. The differences are that WAG-SH uses a 2/3rd power on the 

volume terms in Flory’s theory whereas CPA does not, and the liquid volumes are calculated 

differently. Additionally, CPA includes a correction for Flory’s theory derived from the van der 

Waals equation [8,67].  

The parameter of �̃�𝑖𝑗 is small for WAG-SH, CPA and PC-SAFT across all systems. However, the 

parameter 𝑏𝑖𝑗 of WAG-SH is consistently larger than that of CPA and PC-SAFT, in some cases 

by three orders of magnitude. This is because, the 𝑘𝑖𝑗 parameters in the EOS are corrections to the 

attractive parameter which have an imbedded temperature dependence in their functional form. In 

contrast, the fitted parameters in WAG-SH, and indeed all the WAG models, provide all of the 



 

115 

 

temperature dependence of the residual term. Therefore, the difference in the magnitude of the 

parameters between the WAG and EOS methods is expected. The small values of the fitted 

parameters in the equations of state indicate that the functional form of the equations adequately 

captures the temperature dependence of the experimental data. However, the fits generated by them 

are still weaker than those by the 4-parameter models for most systems. This is a consequence of 

the poor compositional dependence of CPA and PC-SAFT compared to WAG and NRTL. 

As indicated by Flemr [135], NRTL and Wilson (and by extension, Nagata’s model) share a 

common flaw: violation of local composition pair conservation (Flemr’s condition) given by. 

 𝑁𝑎𝑁𝑏𝑎 = 𝑁𝑏𝑁𝑎𝑏 5.38 

𝑁𝑖 is the total number of 𝑖 molecules and 𝑁𝑖𝑗  is the number of 𝑖 molecules around 𝑗. Lin et al. [136] 

showed that the non-compliance of these models to Flemr’s condition is due to the use of 

Boltzmann weighing factors for local compositions. Instead, they introduced a flexible weight, 𝑓𝑖 , 

characteristic of each species, to enforce pair conservation. The resulting function, while more 

fundamentally correct, requires iterative solution. Moreover, similar to EOSs, the equation is less 

flexible with respect to composition than NRTL or Nagata. Despite this, an interesting future 

extension of this work can explore combining a residual contribution that obeys Flemr’s condition 

with the combinatorial and association contributions used in this work.    

The SSQ analysis reported here is only strictly applicable to the current set of systems and will 

therefore not necessarily represent all systems. However, the relative performances of the models 

are expected to yield similar trends. Further, some conclusions for this work may be dependent on 

the association parameter. An observation in this work is that experimental alcohol + inert infinite 

dilution activity coefficients increase rapidly at infinite dilution. When the phase behavior is fitted 

using a model without chemical association, false LLE can be predicted because the residual 
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models do not include this rapid rise at infinite dilution (except for Nagata). However, adding 

chemical association has a strong effect at infinite dilution, and suppresses the tendency for false 

LLE because the association term creates very large infinite dilution activity coefficients before 

LLE begins to occur. Larger values of association constants permit fitting of infinite dilution 

activity coefficients while diminishing the tendency for false LLE and warrants further study. 

Future work will also investigate the relative magnitudes of the contributions to the activity 

coefficient, 𝛾. For the WAG models and the systems tested here involving alcohol + hydrocarbons, 

the activity coefficient is dominated by the association contribution. The ratios of 𝛾𝑎𝑠𝑠𝑜𝑐 to the 

total 𝛾 at infinite dilution compositions are given in Table 5.8.  

Table 5.8: Association contribution to the total activity coefficient at infinite dilution 

System 

Component 

at infinite 

dilution 

𝜸∞,𝒂𝒔𝒔𝒐𝒄/𝜸∞ 

WAG-

NRTL(4) 

WAG-

Nagata(4) 
WAG-SH 

WAG-

NRTL(2) 

WAG-

Nagata(2) 

Methanol +  

n-Heptane 

T=335 K 

Methanol 1.255 1.234 1.177 1.082 1.145 

n-Heptane 1.368 1.274 1.069 1.070 0.903 

Methanol + 

Cyclohexane 

T=335 K 

Methanol 0.988 0.958 0.954 - 0.924 

Cyclohexane 0.880 0.793 0.725 - 0.712 

Methanol + 

Water 

T=350 K 

Methanol 2.844 3.845 3.905 2.848 4.129 

Water 1.226 1.793 1.881 2.055 1.794 

Methanol +  

n-Pentane 

T=370 K 

Methanol - - 1.061 1.073 1.089 

n-Pentane - - 0.897 1.060 0.955 

Methanol + 

Ethanol 

T=340 K 

Methanol 1.056 1.048 0.935 1.025 1.028 

Ethanol 1.064 1.060 0.902 1.029 1.030 

Ethanol + 

Cyclohexane 

T=345 K 

Ethanol 0.877 0.861 0.851 0.773 0.840 

Cyclohexane 0.680 0.684 0.711 0.725 0.641 

Ethanol +  

n-Decane 

T=380 K 

Ethanol 1.429 1.448 1.245 1.211 1.212 

n-Decane 1.680 1.283 1.392 1.434 1.281 
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In general, the ratios are very similar across all WAG models for every system. However, there is 

significant variation in the calculated 𝛾∞,𝑎𝑠𝑠𝑜𝑐/𝛾∞ values for the methanol + water system. Since 

the calculated values of 𝛾𝑎𝑠𝑠𝑜𝑐 and 𝛾𝑀𝑜𝑑 𝐹𝑙𝑜𝑟𝑦 are constant for a given system and condition, this 

is an indication that the calculated energies of the dispersion interactions, described by 𝛾𝑟𝑒𝑠, are 

very different depending on the calculation method used. Compared to Nagata and SH, NRTL 

calculates larger deviations from ideality at infinite dilution due to dispersion interactions. Thus, 

future work should include consideration of infinite dilution values. 

 Association parameter value  

The parameters used to model ethanol with CPA were different than those used to calculate the 

ethanol association parameters in WAG. In the former case, the parameters, which will be referred 

to here as PM1, were calculated by fitting to vapor pressure and saturated liquid density data [1]. 

This procedure is typical of equations of state such as PC-SAFT and CPA. However, other studies 

have employed different methods for the same purpose. For example, Renon and Prausnitz [68] 

and Campbell [16] fit the association parameters directly to binary phase equilibrium data. Others 

[70,96] follow an approach developed by Brandani et al. [73] that calculates the association 

parameter by quantifying the difference between the vapor pressure of an alcohol and that of an 

ether homomorph with a similar molecular size. In a recent study, Kontogeorgis et al. [2] refitted 

CPA parameters to data that included the fraction of  molecules that are non-bonded at equilibrium 

(monomers). This quantity was calculated from spectroscopy and the resulting parameter set, PM2, 

was found to be significantly different from those calculated previously. The values fitted to 

spectroscopy for ethanol give more association and thus a larger association contribution to infinite 

dilution. Unfortunately, the parameters also do not simultaneously represent the vapor pressure. 
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We illustrate this difference for ethanol + cyclohexane and ethanol + n-decane in Figures 5.35 - 

5.36. 

 

Figure 5.35: Comparison of phase equilibria fits with two sets of CPA parameters for 

ethanol + cyclohexane at 101.3 kPa. Solid lines are fits calculated using PM1 parameters [1] 

and dashed lines are calculated with PM2 parameters [2] 

 

 

Figure 5.36: Comparison of phase equilibria fits with two sets of CPA parameters for 

ethanol + n-decane at T=338.17 K. Solid lines are fits calculated using PM1 parameters [1] and 

dashed lines are calculated with PM2 parameters [2] 
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The solid and dashed lines in Figures 5.35 - 5.36 are fits of the CPA model made using PM1 and 

PM2 parameters respectively. The end points for pure ethanol are completely missed by the PM2 

parameters. Thus, PM1 parameters were implemented for CPA fits in this work. Exploratory work 

showed that most of the WAG models resulted in false LLE when regressed with PM1 for ethanol 

+ cyclohexane. Also, because of the direct relationship between Δ𝐴𝐷 and monomer fraction, the 

PM2 parameters, which are fitted to the monomer fraction, are expected to be more fundamentally 

consistent with reality. Therefore, we elected to use PM2 parameters for ethanol to calculate the 

association parameter for WAG models.  

The Δ𝐴𝐷 parameters for the self-association of primary alcohols as calculated by the various 

approaches described are shown in Figure 5.37.  

 

Figure 5.37: 𝚫𝑨𝑫 for the self-association of the primary alcohols at 298.15 K calculated by 

fitting to different properties.Parameters were calculated by fitting to pure component 

properties (CPA [1,64], PC-SAFT [115]), binary VLE data (Renon [68], Campbell [16]) or vapor 

pressures of ether homomorphs (Bala [96], using methodology from Nagata [70]). The marker 

‘×’ shows the association parameter calculated with the PM2 parameters which are fitted to 

spectroscopic and pure component data 
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For the methods of Renon, Campbell and Bala, association was modeled using chemical theory 

and the calculated parameter was the equilibrium constant, 𝐾𝐶. In these cases, we use the finding 

of our earlier work [96] which showed that, with reasonable assumptions, Δ𝐴𝐷 = 𝐾𝐶 , to compare 

the values of the Δ𝐴𝐷.  

It is immediately clear from Figure 5.37 that the value of Δ𝐴𝐷 can vary by a factor of over 6 

depending on the calculation method used.  This is due, in part, to the fact that all these methods, 

with the exception of the one that yields the PM2 CPA parameter set, lack molecular-level 

experimental insight. Instead, they depend on macroscopic manifestations of hydrogen bonding.   

To address this situation, more fundamental techniques such as spectroscopy must be utilized in 

parameter calculations and we explore these methods in the following chapters. It is worth noting 

that Δ𝐴𝐷 calculated for the self-association of ethanol from the PM2 parameters, which include 

spectroscopic information, falls more in line with the values calculated from other methods and 

are close to that calculated by PC-SAFT. The work of Asprion et al. [7,137,138]uses spectroscopy, 

but is not directly useful in the Wertheim framework. Regardless of the uncertainty in the exact 

value of the association constant, this work demonstrates that inclusion of association is important 

to improve the performance of traditional activity coefficient models.  

 Conclusions 

In this work, a Wertheim activity coefficient term is combined with existing thermodynamic 

models including NRTL, Scatchard-Hildebrand and the energetic part of Wilson’s equation. The 

resulting models are used to fit phase equilibria and heat of mixing data for methanol and ethanol-

containing systems and compared to CPA and PC-SAFT. The four parameter WAG models were 

found to perform the best, with sum of squares errors that were 3 to 22% of those of 2-parameter 

models. Among the two parameter models, WAG-SH provided comparable or, in some cases, 
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superior results to CPA and PC-SAFT. Including association improved the models’ capability to 

fit simultaneous VLE and LLE data even though there was uncertainty in the association constant 

value. While CPA parameters from literature were used to calculate the association parameter 

values in this work, the resulting fits highlight the importance of incorporating spectroscopic 

findings in determining accurate values of the association parameter Δ𝐴𝐷.  
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Appendix H: Parameter values for Hayden O’Connell and the regressed residual terms 

Table H.1: Regressed parameters values. The parameter 𝛼𝑖𝑗 was not regressed but is tabulated 

for convenience 

 
  �̃�𝑖𝑗 �̃�𝑗𝑖 �̃�𝑖𝑗 �̃�𝑗𝑖 𝛼𝑖𝑗 

M
et

h
an

o
l 

(i
) 

+
  

n
-h

ep
ta

n
e 

(j
) 

WAG-NRTL(2prms) - - 530 -318 0.2 

WAG-NRTL(4prms) -2.71 0.233 1400 -426 0.2 

WAG-SH -0.0505 24.7 - 

CPA -0.0298 0.0336 - 

WAG-Nagata(2prms) - - -140 -17.5 - 

WAG-Nagata(4prms) 4.85 -0.691 -1532 177 - 

NRTL(2prms) 0 0 541 387 0.2 

NRTL(4prms) 0.781 -3.96 335 1515 0.2 

PC-SAFT 0.0830 -0.0455 - 

M
et

h
an

o
l 

(i
) 

+
  

n
-p

en
ta

n
e 

(j
) 

WAG-NRTL(2prms) - - 374 -225 0.3 

WAG-SH -0.128 57.7 - 

CPA -0.0186 0.0557 - 

WAG-Nagata(2prms) - - -79.4 -22.2 - 

NRTL(2prms) - - 552 492 0.3 

PC-SAFT 0.0534 0.00770 - 

M
et

h
an

o
l 

(i
) 

+
  

C
y
cl

o
h
ex

an
e 

(j
) 

WAG-NRTL(4prms) -0.645 -0.643 732 -101 0.2 

WAG-SH -0.0965 46.8 - 

CPA** 0.0320 0.00782 - 

WAG-Nagata(2prms) - - -14.1 -80.1 - 

WAG-Nagata(4prms) 1.62 -0.196 -502 -23.7 - 

NRTL(2prms) - - 354 459 0.2 

NRTL(4prms) 0.0803 -4.780 347 1906 0.2 

PC-SAFT 0.0726 -0.0220 - 

E
th

an
o
l 

(i
) 

+
 

n
-d

ec
an

e 
(j

) 

WAG-NRTL(2prms) - - 41.2 -20.4 0.2 

WAG-NRTL(4prms) -6.61 5.56 2170 -1746 0.2 

WAG-SH -0.0154 7.10 - 

CPA -0.122 0.122 - 

WAG-Nagata(2prms) - - -5.63 -18.1 - 

WAG-Nagata(4prms) 5.635 -1.732 -1721 472 - 

NRTL(2prms) - - 138 749 0.2 

NRTL(4prms) 1.35 -0.554 -63.0 690 0.2 

PC-SAFT 0.0634 -0.0363 - 

 



 

124 

 

Table H.1 (cont’d) 

  �̃�𝑖𝑗 �̃�𝑗𝑖 �̃�𝑖𝑗 �̃�𝑗𝑖  𝛼𝑖𝑗  

E
th

an
o
l 

(i
) 

+
  

C
y
cl

o
h
ex

an
e 

(j
) 

WAG-NRTL(2prms) - - 201 -55.6 0.3 

WAG-NRTL(4prms) 0.466 -0.529 292 -52.5 0.3 

WAG-SH -0.0189 17.4 - 

CPA -0.0560 0.0947 - 

WAG-Nagata(2prms) - - -152 -19.6 - 

WAG-Nagata(4prms) 0.3605 -0.103 -256 16.8 - 

NRTL(2prms) - - 187 794 0.3 

NRTL(4prms) -0.00483 0.912 238 415 0.3 

PC-SAFT 0.0646 -0.0225 - 

n
-H

ep
ta

n
e 

(i
) 

+
 

cy
cl

o
h
ex

an
e 

(j
) 

WAG-NRTL(2prms)* 0 0 -95.1 123 0.3 

WAG-NRTL(4prms) 0.0367 -0.494 -142 344 0.3 

WAG-SH -0.0202 8.41 - 

CPA 0.0123 -0.0119 - 

WAG-Nagata(2prms)* 0 0 -193 184 - 

WAG-Nagata(4prms) -0.159 0.625 65.4 -259 - 

NRTL(2prms)* 0 0 -123 149 0.3 

NRTL(4prms) -0.0382 -0.435 -131 334 0.3 

PC-SAFT -0.00573 0.00787 - 

M
et

h
an

o
l 

(i
) 

+
  

W
at

er
 (

j)
 

WAG-NRTL(2prms) - - -473 322 0.2 

WAG-NRTL(4prms) 12.7 -4.74 -2881 720 0.2 

WAG-SH -0.147 -26.6 - 

CPA -0.0881 0.0163 - 

WAG-Nagata(2prms) - - 130 59.6 - 

WAG-Nagata(4prms) 1.72 -2.76 -489 1058 - 

NRTL(2prms) - - -111 345 0.2 

NRTL(4prms) 3.59 -3.53 -1224 1430 0.2 

PC-SAFT 0.00387 -0.0759 - 

M
et

h
an

o
l 

(i
) 

+
  

E
th

an
o
l 

(j
) 

WAG-NRTL(2prms) - - 67.8 -63.2 0.3 

WAG-NRTL(4prms) -0.868 0.712 336 -291 0.3 

WAG-SH 0.0145 1.28 - 

CPA** 0.0155 -0.0365 - 

WAG-Nagata(2prms) - - -49.4 32.2 - 

WAG-Nagata(4prms) 1.03 -0.660 -327 215 - 

NRTL(2prms) - - 62.8 -53.8 0.3 

NRTL(4prms) -1.03 0.929 351 -320 0.3 

PC-SAFT 0.00926 -0.00830 - 
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Table H.2: Hayden-O’Connell 𝜼𝒊𝒋 parameters.The value of 휂𝑖𝑗, which is dimensionless, for 

alcohol + alkane binaries is zero 

 

 
Comp j 

Methanol Ethanol 

C
o
m

p
 i

 

Methanol 1.63 1.55 

Ethanol 1.55 1.4 
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Chapter 6.  Quantitative Analysis of Infrared Spectra of n-Butanol + Cyclohexane with 

Quantum Chemical Calculations 
 

Hydrogen bonding has profound effects on the microscopic behavior of molecules. Infrared 

spectroscopy (IR) allows for the analysis of molecular vibrations by excitation with infrared 

radiation. However, quantitative analysis of the hydroxyl band in the IR spectrum, where hydrogen 

bonding is most prominently expressed, is non-trivial. Specifically, the broadness of the band and 

the range of variation of the O-H absorption coefficient complicate the analysis. In the present 

work, sequential MD and QM simulations are used to develop functions that relate the vibrational 

frequencies to the integrated absorption coefficients of hydroxyl bands. This relationship is then 

used to quantitatively calculate the mixture concentration of alcohol molecules from experimental 

IR spectra by integration across the entire hydroxyl band. Finally, universal maps to relate bond 

lengths, vibrations and NMR chemical shifts are proposed.   

6.1. Introduction 

In infrared (IR) spectroscopy, molecules are excited with light in the mid IR wavelength region 

and the amount of light absorbed by the sample is detected. Absorption of light at different 

wavelengths induces vibrations of different bonds within the molecule and analysis of the resulting 

spectra can yield information about the types of functional groups it possesses. IR spectroscopy 

has long been used in this way to identify chemical compounds through the interpretation of band 

patterns. Moreover, quantitative analyses of IR spectra can be used to gain insight into the 

concentration of functional groups in a solution. For example, Williams et al. [139] explored the 

relationship between absolute integrated intensities of the C-H stretching and bending bands of 

gas-phase alkanes. The authors compared density functional theory (DFT) calculation results to 

experimental IR spectra and found that the number of C-H bonds in the molecules studied is 
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linearly correlated with the integrated intensities of C-H stretching and bending bands. IR is also 

frequently used in chemometrics [140]. Several researchers have been able to correlate intensities 

of various classes of compounds with physical characteristics of the molecules such as the number 

of methylene groups [141], molecular size [142] and degree of branching [143].  

The O-H stretching bands have been the focus of many studies that aim to understand the complex 

effects of hydrogen bonding [37,144–151]. These bands occur between ~3200 cm-1 and 3700 cm-

1 and their combinations appear in the form of two overall peaks: a sharp higher frequency peak 

and a broad lower frequency peak. The formation of hydrogen bonds is known to decrease the O-

H stretching band frequency and increase its integrated intensity [152]. Wu et al. [146] investigated 

supercritical and liquid methanol and found that an isothermal increase in density causes the 

integrated spectroscopic area to increase and the hydroxyl vibrational band to shift to lower 

frequencies. Expectedly, isobaric heating has the opposite effect. Due to these widely varying 

measurement response factors compared to C-H bonds, vibrations associated with free and 

hydrogen-bonded hydroxyl groups are much more difficult to interpret in quantitative terms and 

have therefore largely been interpreted qualitatively. To overcome some of the challenges involved 

in IR analysis of hydroxyl peaks, computational tools such as molecular dynamics (MD) [153] and 

quantum mechanical (QM) [139,144,154–159] simulations are being leveraged to elucidate the 

effects of hydrogen bonding on IR peak characteristics. MD and QM calculations balance 

computational expense with modeling rigor. The former method is less demanding of 

computational time and resources but does not model electronic effects, which are the basis of 

hydrogen bonding and, in particular, result in the distributions of hydrogen bond types. Indeed, 

Kwac and Geva [17] show that, depending on the choice of empirical forcefield, the simulated 
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relative populations of species can vary by as much as 20%. For this reason, MD is often used in 

conjunction with QM [17,160–162] rather than as the primary tool for investigation. 

A recent development in the computational sphere is empirical mapping. This approach, developed 

by Skinner et al. [163–167] for water, creates functions or “maps” that relate vibrational 

frequencies to properties that can be calculated with reasonable accuracy from MD calculations. 

In this way, one can obtain a meaningful fundamental understanding of a system’s IR response 

without having to use excessive computational resources. Mesele and Thompson [168] extended 

these techniques to primary alcohols, developing several “universal” maps that relate the transition 

frequencies, dipole derivatives and position matrix elements to the electric field on the atoms.  

In this work, we aim to present a combined computational and experimental approach which 

leverages the power of simulations to address the challenges of interpreting the infrared behavior 

of O-H bonds. Furthermore, we apply this technique to quantitatively analyze the entire hydroxyl 

band and calculate the relative and absolute concentrations of hydroxyl groups in the various 

contexts (monomers and clusters) existing in solution. In all our discussions, references to the 

hydroxyl vibrational bands pertain to the vibrations of the covalent O-H bond and not vibrations 

of the actual hydrogen bond (which appear at much lower frequencies [152]). Additionally, the 

term ‘apparent concentration’ will be used to refer to concentration of species in solution ignoring 

the clusters formed by hydrogen bonding – the molecules are counted individually.  The term 

“apparent concentration” in chemical engineering is synonymous with “formal concentration” in 

chemistry literature.  

6.1.1. Analysis of the O-H stretching band 

Quantitative interpretation of infrared spectra begins with the Beer-Lambert law, which relates the 

observed IR absorbance of a solute to its concentration in solution according to:  
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where 𝐴𝑖 and 𝐶𝑖 are the observed absorbance and concentration of the absorbing solute i 

respectively. The pathlength, 𝑙, is the length of the sample that the IR light beam passes through 

and 휀𝑖 is the molar absorption coefficient, also known as the extinction coefficient, of species i. 

The latter parameter is a measure of the IR absorbance of a single bond vibration at a selected 

wavenumber and is often assumed to be independent of concentration for the solute. In common 

practice, solutions of known concentrations are prepared and analyzed with IR spectroscopy. Then, 

a peak corresponding to a vibration in the solute molecules is chosen in an area where overlap with 

solvent bands is minimal. The absorbance peak height values are then plotted against the 

experimental concentrations of the solutions. Finally, the value of 휀 is calculated as the gradient 

of this plot, which is ideally linear, and used in subsequent studies to analyze solutions of unknown 

concentration.  

However, the Beer-Lambert law is not universal; it fails under conditions where the relationship 

between 𝐴𝑖 and 𝐶𝑖 becomes non-linear. This occurs when the solute molecules interact 

significantly with one another or solvent molecules, such as in high concentration solutions. In 

these cases, the value of the molar absorption coefficient, 휀, can vary dramatically for the same 

bond depending on the molecule conformation and its microenvironment. This contributes to the 

broadening of the observed IR band and complicates quantification. Moreover, there is 

disagreement in the literature concerning the assignment of vibrational bands. In earlier studies 

[137,145,169], vibrational bands were assigned to hydrogen bonded clusters and were 

distinguished based on the size of the cluster. Hall and Wood [170] were the first to propose that 

covalent O-H bond vibrations should be classified individually according to if and how they 

participate in hydrogen bonding. If the O-H is neither accepting nor donating a hydrogen atom, it 

 𝐴𝑖 = 휀𝑖𝐶𝑖𝑙  6.1 
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is classified as an α bond. If it is accepting one hydrogen atom but not donating, it is classified as 

a β bond. These and the other 4 categories of bonds are illustrated in Figure 6.1. Using femtosecond 

IR pump probe studies of ethanol clusters, Woutersen et al. [171] were able to assign the 𝛼, 𝛽, 𝛾 

and 𝛿 bonds to experimentally deconvoluted peaks as far back as 1997. 

 

Figure 6.1: Types of covalent O-H bonds 

 

This approach to IR band interpretation is more aligned with the fundamental basis of IR excitation 

as a bond perturbation rather than a molecular or cluster-wide phenomenon. Therefore, Hall and 

Wood’s classification system has been adopted more frequently in recent work [147,148,150,172] 

and will also be used in this work.  

6.1.2. Motivation 

While research in this area is extensive, we are unaware of any work demonstrating quantification 

of the entire hydroxyl IR band area for alcohols and relating the area to the apparent concentration. 

Such a relationship has profound implications for the study and modeling of hydrogen bonding. 

Indeed, in the development of engineering models for the association of an alcohol in an inert 

solvent, the key parameter that defines the extent of hydrogen bonding is the fraction of hydroxyl 

protons that remains nonbonded at equilibrium. Once this value is determined, some assumptions 
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can be made about the types of species present in solution and the energy of their formations. A 

simple model that has often been adopted [98,173,174] for alcohol + inert systems is the CLAM, 

or Continuous Linear Association Model. As the name suggests, CLAM accounts only for linear 

species in solution and assumes that each hydrogen bond has the same energy of formation 

regardless of the size of the cluster it forms. The motivation behind the current study is to develop 

a procedure capable of accurately determining the fraction of free hydroxyl protons and conduct a 

thorough quantitative analysis of the O-H IR bands.   

6.2. Computational methods 

To analyze the vibrational spectra derived from infrared spectroscopy, a combined molecular 

dynamics (MD) and quantum mechanics (QM) approach was used. In this section, these 

computational techniques are outlined. 

6.2.1.  Molecular dynamics simulations 

Molecular dynamics simulations were carried out using the AMBER 14 package [175]. The 

AMBER94 force field was implemented with the AM1-BCC charge method and no modification 

to the force field parameters. For each concentration, a cubic box of n-butanol and cyclohexane 

molecules was created at the ideal solution density using PACKMOL [176] and the energy of the 

system was minimized within 1500 steps. Next, the box was heated up with a 40 ps NVT run, 

using a time step of 2 fs, in two stages. The temperature was ramped up from 0 to 283.15 K during 

the first 9000 steps then maintained at that temperature for the remaining 11000 steps. Finally, a 

10.4 ns NPT production run was conducted at 1 bar and a time step size of 2 fs. The temperature 

and pressure were controlled using the Langevin thermostat (with a collision frequency of 2 fs) 

and Berendsen barostat respectively; both implemented with default parameters. During the NVT 

and NPT simulations, periodic boundary conditions were enforced in the x,y and z coordinates. 



 

132 

 

The cutoff for non-bonded interactions was set at 8 Å and a continuum model was used for 

Lennard-Jones interactions beyond this range. Electrostatic interactions were calculated using the 

Particle Mesh Ewald (PME) summation method with default settings and parameters. Only bond 

lengths involving hydrogen were constrained using the SHAKE algorithm. This method was 

repeated for n-butanol + cyclohexane and ethanol + cyclohexane at the equimolar composition. 

The simulation details that varied between systems are given in Table 6.1. 

Table 6.1: MD simulation details. Box and run for n-butanol + cyclohexane systems studied in 

this work 

 

System n-Butanol + Cyclohexane Ethanol + Cyclohexane 

Alcohol mole fraction 0.1 0.5 0.5 

Number of alcohol molecules 26 128 168 

Number of cyclohexane molecules 230 128 168 

Initial cubic box length (Å) 40 40 36 

Temperature (K) 283.15 283.15 298.15 

Production run length (ns) 10.4 10.4 13.0 

 

The production runs were longer than 10 ns in all cases, giving all the systems ample time to 

equilibrate. Furthermore, only the last 2.4 ps of the simulations were analyzed for hydrogen 

bonding information.  

The hydrogen bond criteria were defined as an O-O distance < 3.2 Å and an O-H∙∙∙O bond angle 

> 130⁰.  Using this definition, hydrogen bonded clusters of various sizes were identified, and each 

bond was assigned a class based on the categories in Figure 6.1. For the current study, only linear 

species are analyzed. Furthermore, the low incidence of structures including 휂 and 휁 bonds 

suggested that they play a minor role; they are thus neglected. 

To verify thermal equilibration, Figure 6.2 shows the number of times each n-butanol molecule 

appears as a 𝛽, 𝛿 or 𝛾 bond in trimers in approximately 590 evenly spaced frames collected every 

40 fs in the last 2.4 ps of the production run. Each molecule appears in a trimer in about 15% of 
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the frames. The x-axis is the unique identifying number of each n-butanol molecule in the box. 

The distribution is random for the three bond types across all molecules in solution.  

 

Figure 6.2: Bond distribution in trimers calculated with MD simulations for an equimolar 

n-butanol + cyclohexane mixture. The distribution illustrates that molecules are equally likely 

to sample all bond types. 

6.2.2.  Quantum mechanics simulations 

Once the hydroxyl bonds were classified, each cluster was prepared to undergo QM calculations. 

Careful implementation of QM simulations is a balance between accuracy and computational 

expense. For this reason, performing extensive calculations over the entire box was not feasible 

and an alternative was necessary. In this work, all molecules with atoms that fell within 5 Å of the 

hydroxyl hydrogen atom in the hydrogen bonded cluster were retained in the simulation 

environment. All other molecules were excluded. This cutoff effectively ensures that the sampled 

environments were representative of the whole box while minimizing the computational effort 
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required for quantum calculations. To this end, we also constrained all atoms and bonds except for 

the -CH2-O-H groups in each alcohol molecule of the hydrogen bonded cluster of interest.    

Gaussian 09 [177] was used to optimize the geometries of each cluster and perform the frequency 

calculations. The B3LYP [178] level of theory and 6-31G* basis set were chosen shown [154,159] 

to capture the effects of hydrogen bonding accurately for a reasonable computational cost.  

Finally, the IR vibrational information calculated underwent two tests. In the first, the final atom 

positions were checked to ensure that the covalent bond classifications made earlier had not 

changed during QM optimization. Secondly, vibrational coupling between multiple -O-H bonds 

was estimated by calculating the displacement of each -O-H hydrogen atom in the cluster using: 

 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =  Δ𝑥𝐻
2 + Δ𝑦𝐻

2 + Δ𝑧𝐻
2  6.2 

where Δ𝑥𝐻, Δ𝑦𝐻 and Δ𝑧𝐻  is the displacement of the hydrogen atom in the 𝑥, 𝑦, and 𝑧 directions 

respectively. Several studies have shown that vibrational coupling between different groups have 

an effect on the spectra [149,172,179,180]. However, in this work, we are interested in comparing 

the behaviors of individual bond types. Therefore, to reduce the effects of coupling, vibrations 

were excluded from analyses if they could not be confidently assigned to only one –O-H bond. 

We define confidence as having one hydrogen atom’s displacement in a vibration being at least 

0.3 Å2 greater than any other’s in the optimized geometry. 

6.3. Experimental methods 

Experimental IR data collection was performed by William G. Killian, a member of the Lira Lab 

at Michigan State University and will be included in his Ph.D. dissertation [181]. Therefore, this 

section provides a basic outline of the experimental methodology for context.  Cyclohexane, 

ethanol and n-butanol were purchased in anhydrous forms at purities of 99.5%, 99.5% and 99.8% 

respectively and further dried using 3 Å molecular sieves for at least 72 hours. Samples were 



 

135 

 

prepared volumetrically in a glove box and then transferred to scintillation vials to be removed 

from the inert environment for analysis.  

Infrared absorbance spectra were collected on a JASCO FT/IR-6600 spectrometer using a Specac 

demountable temperature-controlled liquid flow cell (GS20582) with CaF2 windows and PTFE 

spacers. The system was allowed to stabilize for 10 minutes at each temperature. The pathlength 

for all measurements was 0.01092 cm. A background of the empty cell was taken at each 

temperature and subtracted from the sample data. For each reported spectrum, 128 scans were 

accumulated with a resolution of 2 cm -1.  

6.4. Results and discussions  

6.4.1. Processing and preliminary analysis of experimental IR spectra 

The raw IR spectra were processed as follows. The hydroxyl band region is determined to be 

3049.9 to 3755.2 cm-1. First, the solvent bands were removed from the spectra by subtracting 

concentration-weighted spectroscopic data of neat cyclohexane at the same temperature and 

pathlength of the sample. The concentration was calculated by assuming ideal volume of mixing 

using temperature-dependent volumes through 𝑉 = ∑ 𝑥𝑖𝑉𝑖𝑖 . The processed experimental IR 

spectra for n-butanol in cyclohexane in the region of the hydroxyl stretching band is given in Figure 

6.3 for 𝑥𝐵𝑢𝑂𝐻 = 0.1. As the temperature increases, the peak at ~3650 cm-1 and shoulder at ~3540 

cm-1, 𝑃1 and 𝑃2 respectively, increase in absorbance while the broad peak centered at ~3320 cm-1, 

𝑃3, diminishes.  
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Figure 6.3: Experimental O-H IR band for a 0.1 mole fraction of n-butanol in cyclohexane. 

Data was collected at five temperatures between 30 ⁰C and 70 ⁰C 

 

While band assignment is a topic of great interest to the scientific community, we defer such 

discussion to the following chapter. In this work, we instead conduct a quantitative analysis of the 

entire hydroxyl band.  To this end, we begin with an investigation of the physical significance of 

the absorbance band area. Figure 6.4 shows the relationship between the area under the entire O-

H absorbance band and the apparent concentration for four concentrations at five temperatures.  

𝑃3 

𝑃2 

𝑃1 
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Figure 6.4: Total absorbance band area of the O-H band for n-butanol + cyclohexane data 

as a function of the mole fraction for 4 compositions. Spectra were collected at 𝑥𝐵𝑢𝑂𝐻= 

0.0469,0.0678, 0.0817 and 0.100 and the lines indicate the line of best fit given by the equations 

on the figure. A thermal correction for density is applied. 

 

When temperature rises, it is expected that an increasing number of hydrogen bonds will break, 

forming smaller chains and monomers. Thus, the distribution of the different bond types will 

change. However, at a given composition, the total quantity of hydroxyl groups should remain 

constant across the temperature range studied here. To correct concentration for the effect of 

temperature on the density, the band areas plotted in Figure 6.4 are scaled with a thermal correction 

factor which is defined as: 

 
휃 =

𝜌𝑟𝑒𝑓

𝜌
 

6.3 

 

where 𝜌 and 𝜌𝑟𝑒𝑓 are the mixture densities at the temperature of the experiment and a reference 

temperature (298.15 K) respectively. The mixture density is calculated by assuming no excess 

volume. Therefore, 𝜌 = (∑ 𝑥𝑖𝑉𝑖𝑖 )−1 where 𝑉𝑖 is the molar volume of component i. 
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It is immediately clear from Figure 6.4 that the assumed linearity of 𝐴𝑖 and 𝐶𝑖 that is traditionally 

assumed for a given absorbance in the Beer-Lambert law does not apply for the overall hydroxyl 

band. If it did, all of the points (at all temperatures and compositions) would be reasonably well 

represented with a single straight line that passes through zero on both axes. However, while data 

at each temperature is quite linear, the intercept varies significantly between temperatures, 

indicating that the changing distribution of bond types is not being captured. This discrepancy is 

expected as hydrogen bonding is known to conflict with the assumptions that underlie the Beer-

Lambert law.  Figure 6.4 is evidence that the molar absorption coefficient, 휀, must vary at different 

vibrational frequencies. Next, the results of the QM/MM analysis are shown to provide key 

insights into this variability, resulting in relationships between absorption intensity, wavenumber, 

and covalent bond length. 

6.4.2. Results from MD+QM  

In this section, we investigate the calculated IR characteristics of the hydroxyl stretch. Because of 

the computational expenses associated with each QM calculation, the scope is limited to 

monomers, dimers, trimers, and tetramers and Table 6.2 lists the numbers of each bond and species 

type analyzed. 

Table 6.2: Number of each species and bond analyzed with QM calculations. All species 

larger than a monomer have one 𝛽 and one 𝛾 bond. Trimers and tetramers also possess one and 

two 𝛿 bonds respectively. Cyclic clusters are not considered. 

 

  𝒙𝑩𝒖𝑶𝑯 =0.1 𝒙𝑩𝒖𝑶𝑯 =0.5 Total 

S
p

ec
ie

s 

Monomer 653 366 1019 

Dimer 153 230 383 

Trimer 53 52 105 

Tetramer 46 23 69 

B
o
n

d
s 

𝛼 653 366 1019 

𝛽 252 305 557 

𝛿 145 98 243 

𝛾 252 305 557 
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The calculated “intensity” from Gaussian09 is the integrated absorption coefficient, 𝜓, in units of 

km/mol, which is defined by the equation: 

 
𝜓 = ∫ 휀(𝜈)𝑑𝜈

𝑏𝑎𝑛𝑑

 
6.4 

 

In this function, the integral spans the entire absorption band. Like the molar absorption 

coefficient, the integrated absorption coefficient is directly related to the derivative of the dipole 

moment and is a measure of the intensity of a transition. Literature on the relationship between the 

integrated absorption coefficient, 𝜓, and the molar absorption coefficient, 휀, is somewhat scarce. 

However, Spanget-Larson [182] provides a simple interpretation of the process which involves 

assuming a function for 휀(𝜈). When a Lorentzian function is assumed for 휀(𝜈), then 𝜓 is related 

to the peak height selected for 휀𝑚𝑎𝑥 via a constant. For the purposes of this work, the results will 

be scaled by a constant and thus avoiding the need for numerical conversion or specification of the 

Lorentzian parameter values. We use 𝜓 reported by Gaussian09 as a measure of each hydroxyl’s 

IR absorbance, with the understanding that it is proportional to the peak height 휀𝑚𝑎𝑥. Following 

standard practice, the vibrational frequencies resulting from Gaussian are scaled by a factor of 0.96 

to correct for the limitations of the B3LYP/6-31G* model and better match experimental IR data 

[183].  

To visualize general trends, the average vibrational wavenumbers and integrated absorption 

coefficients for different bonds and species are given in Table 6.3. The first observation is that 

with an increase in the apparent concentration of alcohol in the simulated box, there is a slight red-

shift in almost all the vibrational frequencies, most prominently those of the 𝛼 and 𝛽 bonds. In 

general, there is also a red-shifting tendency for bond vibrations as the size of the chain they are 

on grows. Indeed, the difference is most prominent between dimers and larger oligomers with 

dimer 𝛽 and 𝛾 bonds having vibrational frequencies that are, on average, ~9 and ~50 cm-1 greater 
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than those of trimers and tetramers respectively. Table 6.3 follows a trend that increases in the 

order 𝛼, 𝛽, 𝛾, 𝛿 though the differences between species are more complex. 

Table 6.3: Average calculated vibrational frequencies and integrated absorption 

coefficients 

 

Species Bond 

�̃�𝒂𝒗𝒈 (cm-1) 𝝍𝒂𝒗𝒈 (km/mol) 

𝒙𝑩𝒖𝑶𝑯 = 0.1 𝒙𝑩𝒖𝑶𝑯 = 0.5 𝒙𝑩𝒖𝑶𝑯 = 0.1 𝒙𝑩𝒖𝑶𝑯 = 0.5 

Monomer 𝛼 3602 3587 31.90 53.97 

Dimer 

𝛽 3601 3583 52.33 72.32 

𝛾 3479 3471 376.5 411.0 

Trimer 

𝛽 3589 3572 68.31 96.21 

𝛾 3418 3414 464.1 525.2 

𝛿 3410 3412 583.9 537.0 

Tetramer 

𝛽 3586 3574 68.39 87.65 

𝛾 3436 3426 426.8 428.1 

𝛿 3387 3363 628.8 675.9 

 

Figure 6.5 shows the vibrational frequency and integrated absorption coefficient associated with 

each hydroxyl vibration at both apparent concentrations, 𝑥𝐵𝑢𝑂𝐻 = 0.1 and 𝑥𝐵𝑢𝑂𝐻 = 0.5. When the 

two concentrations are considered separately, we observe little difference in the trends, indicating 

that apparent concentration has little effect on the 𝜈- 𝜓 relationship. Therefore, they are plotted 

together in Figure 6.5 and the different markers denote the four bond types studied here: 𝛼 

(diamonds), 𝛽 (triangles), 𝛾 (squares), and 𝛿 (circles).  
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Figure 6.5: Hydroxyl stretching frequencies and integrated absorption coefficients for two 

concentrations of n-butanol + cyclohexane mixtures calculated from QM simulations. 

Diamond, triangle, square and circle markers denote 𝛼, 𝛽, 𝛾, and 𝛿 bond vibrations respectively. 

The solid line is a line of best fit determined visually. 

 

It is evident that the two bonds in which the hydrogen atom is free, 𝛼 and 𝛽, overlap completely 

and are responsible for the sharp higher frequency peak in the O-H stretching band. Together, these 

two bonds constitute all the free hydroxyl protons in solution. This is convenient since the key 

parameter required for the thermodynamic modeling of alcohol + inert systems is the fraction of 

the free O-H protons. Moreover, there is significant disagreement in the literature concerning the 

𝛼-𝛽 overlap in IR spectra. Several authors have assumed that  bond vibrations do not contribute 

significantly to the sharp free O-H proton peak, instead allocating it entirely/predominantly to the 

𝛼 vibration [184–186]. In these cases, it is assumed that most clusters in solution are in cyclic form 

(resulting in few  bonds), that the  peak occurs at different frequency altogether, or that the 

intensity of the  absorbance is significantly less than that of the 𝛼. However, the results of our 

QM calculations are consistent with more recent work in this area [2,150]. While there is a red-
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shift in the 𝛽 vibration due to charge redistribution when an oxygen atom accepts another proton, 

this shift is very slight. This indicates that the electronic structure is only weakly affected when an 

oxygen in a hydroxyl hydrogen bonds. The next observation is that the 𝛾 bonds appear at a lower 

frequency and have greater integrated absorption coefficients, (approximately 3-10 times that of 

the 𝛼 and 𝛽 bonds). The 𝛿 bonds follow the same pattern with respect to 𝛾 bonds with integrated 

absorption coefficients that are 3-20 times that of the 𝛼 and 𝛽 bonds). The frequency trend is easily 

explained by recognizing that, as the hydroxyl protons become more “shared” due to hydrogen 

bonding, the covalent bond is weakened. As a result, the potential energy well in which the 

hydrogen in moving is effectively broadened, causing the vibrational frequency of the hydroxyl to 

red shift. The increase in intensity is caused by an increase of the dipole moment due to charge 

distribution that occurs through the hydrogen bond as the proton vibrates between the two oxygen 

atoms.  

The most valuable finding of this work and, in fact, the most obvious is that the relationship 

between the integrated absorption coefficient of an O-H bond and its vibrational wavenumber 

follows a curve that is independent of the bond category. The relationship can be described well 

by an inverted Gaussian function of the form: 

 
𝜓 = �̃� − �̃� exp(−(

(𝜈 − �̃�)2

2�̃�2
)) = 1500 − 1455 exp(−(

(𝜈 − 3597)2

2(200)2
)) 6.5 

 

where the parameters �̃�, �̃�, �̃� and �̃� are visually determined. This fit is plotted as a black line in 

Figure 6.5. It is worth noting that a polynomial function was insufficient in capturing the curve 

characteristics well. Previous studies in this area have recognized patterns in vibrational 

characteristics. For example, as early as 1956, Huggins and Pimentel [187], using notation X-H ∙∙∙ 

Y to indicate that a variety of electronegative groups, found similarly interesting patterns for a 
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wide range of hydrogen-bonding systems. They show that a monotonic relationship between the 

vibrational X-H frequency and Δ𝐵, which is defined as the difference between the intensity in the 

solvent minus the intensity in chloroform, a weak hydrogen bond donor. More recently, Mesele 

and Thompson [168] conducted DFT calculations on neat alcohols and showed that the empirical 

maps that relate transition frequencies, position matrix elements, dipole derivatives and the electric 

field are surprisingly linear. Moreover, these relationships were identical for all 4 primary alcohols 

tested and were predicted to hold to all other alcohols. Having independently uncovered this 

pattern, we further explore the applicability of Figure 6.5 and Eq. (6.5) by repeating the described 

procedure for an equimolar mixture of ethanol and cyclohexane at 298.15 K. The resulting plot of 

vibrational frequencies and integrated extinction coefficient overlaps completely with data in 

Figure 6.5 as shown in Figure 6.6 for all bond types.  

Further, we also include the results of Murdoch et al.’s work [144] in which the vibrational 

behavior of ethanol clusters from monomers to hexamers was calculated with DFT methods. The 

clusters were optimized in vacuum and the effects of conformation (anti and gauche) were also 

investigated. In Figure 6.6, the linear species are included as filled squares. For the cyclic species, 

we noted that, while there was a wide scatter in the intensities of the bond vibrations, each high 

intensity vibration was coupled with a low intensity vibration. From an experimental perspective, 

an IR experiment will collect the average intensity. Thus, we averaged the values of frequency and 

integrated extinction coefficient for all the molecules in each cluster and included them in Figure 

6.6 as filled triangles. The fit of these calculations with our own is striking. Though untested thus 

far, Figure 6.6 is a promising indication that the inverted Gaussian fit may be representative for 

other alcohols. 
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Figure 6.6: Hydroxyl stretching frequencies and integrated absorption coefficients for 

other systems calculated from QM simulations. Unfilled diamond, triangle, square and circle 

markers denote 𝛼, 𝛽, 𝛾, and 𝛿 bond vibrations of ethanol + cyclohexane respectively (this work). 

Filled small circles are butanol + cyclohexane data (this work). Filled squares and triangles 

denote linear and averaged cyclic ethanol oligomers respectively (Murdoch et al. [144]). The 

solid line is a line of best fit determined visually. 

 

6.4.3. Scaling and further analysis of experimental IR spectra 

To quantify the number of bonds in the hydroxyl band in Figure 6.3, we revisit the Beer-Lambert 

law and use the integrated extinction coefficient, 𝜓 in place of 휀. At the wavenumber of every data 

point, a value for the 𝜓 is calculated and used to scale the absorbance. In addition to this, the 

wavenumber quantities found using QM calculations must be applied carefully when interpreting 

experimental data. It should be recognized that relative relationships between ab initio calculated 

IR features are more reliable than absolute values. Therefore. we adjust the inverted Gaussian 

function developed in Eq. (6.5) such that the wavenumber of the minimum, which is decided by 

parameter �̃�, matches the free-end peak center in the experimental spectra. Therefore, we set �̃� to 

3645 cm-1 and 𝜓 is calculated according to: 
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�̃�(𝜈) =

𝐴(𝜈)

𝜓(𝜈)𝑙
=  

𝐴(𝜈)/𝑙

1500 − 1455 exp (− (
(𝜈 − 3645)2

2(200)2
))

 6.6 

 

where �̃� represents the scaled absorbance at wavenumber 𝜈 and represents a concentration 

response by the system to IR irradiation. Plotting the resulting scaled spectra yields Figure 6.7 

which is visually very different from the original spectra in Figure 6.3. Peaks 𝑃1 and 𝑃2 now 

dominate in intensity while 𝑃3 is diminished considerably.  

 

Figure 6.7: Scaled absorbance spectra for n-butanol + cyclohexane at 𝒙𝑩𝒖𝑶𝑯 = 0.1. Spectra 

are scaled with the integrated absorption coefficient function 

 

Calculating the area under the new scaled spectra and comparing the results with the experimental 

mole fraction provides Figure 6.8, which is analogous to Figure 6.4. 

𝑃1 

𝑃2 𝑃3 
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Figure 6.8: Scaled absorbance band area of the O-H band for n-butanol + cyclohexane data 

as a function of the mole fraction of 4 experimental compositions. Spectra were collected at 

𝑥𝐵𝑢𝑂𝐻= 0.0469,0.0678, 0.0817 and 0.100 and the line indicate the line of best fit given by the 

equations on the figure. A thermal correction for density is applied. 

 

The relationship between the band area and the apparent mole fraction is corrected significantly. 

First, at a given composition (and correcting for temperature effects on density due to thermal 

expansion), the integrated concentration response of the system is remarkably close regardless of 

temperature for all the compositions studied. This is especially clear when the sample standard 

deviation between temperatures is compared as in Table 6.4. The standard deviation is calculated 

using the equation: 

 

𝑠𝑡𝑑𝑑𝑒𝑣 = √
∑(𝐴𝑟𝑒𝑎 − 𝑀𝑒𝑎𝑛 𝐴𝑟𝑒𝑎)

2

𝑠 − 1
 

6.7 

 

where s is 5, the number of temperature data points at each composition. 
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Table 6.4: Areas and standard deviations for the absorbance and scaled absorbance bands 

𝒙𝑩𝒖𝑶𝑯 T(⁰C) 

Absorbance Band, 𝑨 Scaled Absorbance Band, �̃� 

Area 
Area Std 

Dev 
Area 

Area Std 

Dev 

0.0469 

30 94.94 

22.35 

17.73 

1.0013 

40 82.05 17.74 

50 68.35 17.54 

60 53.85 16.98 

70 38.40 15.37 

0.0678 

30 154.1 

27.91 

26.78 

0.4453 

40 138.1 27.08 

50 120.2 26.82 

60 102.0 26.52 

70 83.99 25.91 

0.0817 

30 187.1 

32.48 

30.69 

0.5723 

40 168.9 31.11 

50 149.2 30.87 

60 126.7 30.16 

70 105.6 29.69 

0.1 

30 229.9 

34.68 

35.04 

0.3828 

40 209.2 35.37 

50 186.3 35.27 

60 165.1 35.97 

70 142.3 35.80 

 

Figure 6.8 demonstrates that, with the scaled spectra, the Beer-Lambert law can be applied 

successfully to the entire O-H band permitting quantification of the hydroxyl band to determine 

the alcohol concentration in solution.  The functional form of the inverted Gaussian function 

developed in Eq. (6.5) results adequate scaling. To our knowledge, no other work has performed 

a comparable quantitative analysis of the O-H band due to its known complexity. The work 

presented here provides a powerful tool that maps the band characteristics to the concentration in 

solution, effectively placing the absorptions of all O-H sites, regardless of their context, on a 

quantitatively equal footing.  
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6.4.4. Universality of spectroscopic characteristics 

An interesting and important universality emerges from the QM calculations of various properties 

demonstrated here for an equimolar mixture of ethanol + cyclohexane at T = 298.15 K. The same 

computational technique described in Section 6.2 were carried out on the system. Figure 6.9 shows 

how the length of the optimized O-H bond length correlates with its vibrational frequency. 

 

Figure 6.9: Relationship between the covalent O-H bond length and vibrational frequency 

calculated for equimolar ethanol + cyclohexane mixture. Diamond, triangle, square and circle 

markers denote 𝛼, 𝛽, 𝛾, and 𝛿 bond vibrations of ethanol + cyclohexane respectively 

 

The relationship is described extremely well by a linear function of the form:  

𝐿𝑂𝐻 = −5.764 × 10
−5𝜈 + 1.178 

where 𝐿𝑂𝐻 is the length of the hydroxyl bond in Angstroms and 𝜈 is the wavenumber in cm-1. 

Furthermore, the IR vibration also shows a distinct relationship with the NMR chemical shift of 

the hydroxyl calculated with Gaussian09 as shown in Figure 6.10.  
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Figure 6.10: Comparison of calculated NMR and IR characteristics for equimolar ethanol 

+ cyclohexane mixture. Diamond, triangle, square and circle markers denote 𝛼, 𝛽, 𝛾, and 𝛿 

bond vibrations of ethanol + cyclohexane respectively 

 

While some relationship between these different molecular characteristics is expected, the direct 

correlation is striking. Hydrogen bonding is often considered to be a complex phenomenon with 

random effects on mixture properties. These figures show that, with careful implementation and 

analysis, computational simulations have the power to create models that relate the bond length, 

vibrational behavior and NMR response. These universal “maps” allow for the prediction of one 

of these elements from the others and can have far-reaching impacts on the analysis of the 

molecular behavior of alcohols. 

The visual fit of Eq. 6.5 may require refinement as more data become available at lower 

concentrations, or with other alcohols. Typically, ab initio calculations at the level of theory 

implemented here would be expected to require additional scaling beyond the frequency shift that 

is implemented. However, with the currently available data, such scaling is difficult to justify 
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because the current constants provide scaled areas with excellent linear correlation to experimental 

data. 

In future work, we aim to leverage these maps to gain quantitative insight into the speciation that 

occurs due to hydrogen bonding. It will be important to study the behavior of cyclic species and 

include them in model development. Our preliminary work with Murdoch [144]’s data for cyclic 

species in Figure 6.6 indicates that bonds in cyclic clusters behave very similarly to 𝛿 bonds. For 

this reason, we expect that they will also be well-represented with the QM correlation developed 

here. However, the behavior of 휂 and 휁 bonds is less easy to anticipate without further calculations. 

Therefore, future directions will explore the infrared responses of these bonds. Finally, we aim to 

calculate the values of  association parameters for a thermodynamic model developed in an earlier 

work [96] from spectroscopic findings. 

6.5. Conclusions  

In this work, the hydroxyl vibrational band is analyzed quantitatively for alcohol + inert mixtures 

using insights from QM simulations. First, MD simulations were carried out to generate sample 

environments around O-H bonds. Then, selected clusters were further analyzed with QM 

calculations to gain an understanding of their spectroscopic characteristics. It was found that the 

integrated absorption coefficient and vibrational frequency of a group can be related by an inverted 

Gaussian function. Through a variation of the Beer-Lambert law, this function can be used to 

calculate the concentration of hydroxyl groups in solution from IR spectra. Finally, universal 

“maps” between the O-H bond length, its vibrational frequency, integrated absorption coefficient 

and NMR chemical shift were developed. 

 

  



 

151 

 

Chapter 7.  Integration of Quantum Calculations and Spectroscopy for 

Wertheim Alcohol Association 
 

In this work, we provide preliminary calculations and results for the derivation of Wertheim 

association parameters from spectroscopic findings. IR and NMR spectra for mixtures of n-butanol 

+ cyclohexane mixtures were collected and analyzed using a combination of thermodynamic 

modeling and insight from MD+QM calculations. While some results are discussed, the challenges 

encountered herein lie beyond the scope of this dissertation. As such, recommendations are given 

for future directions that will help advance the current work and address its limitations.   

7.1. Introduction 

7.1.1. Hydrogen bonding and infrared spectroscopy 

Several analytical tools have been applied to further the understanding and modeling of hydrogen 

bonding including Raman scattering [153,188–190], neutron diffraction [191–193] and NMR 

spectroscopy [13,14,194]. Infrared spectroscopy [146,150,169,195–198] has been especially 

instrumental in uncovering the behavior of molecules that hydrogen bond. There is an established 

understanding that the effects of hydrogen bonding are most evident in the changes occurring in 

the O-H vibration region. For this reason, research is often focused on investigating the effects of 

various conditions, such as temperature and pressure, on the characteristics of the hydroxyl 

vibrational band [146]. As hydrogen bonded cluster sizes increase, the high frequency O-H 

vibrational peak decreases and a second broad O-H peak increases at lower frequencies 

[144,150,154]. The spectrum is fitted with curves to represent the experimental data. The 

contributions of the hydroxyl bonds to the band is  known in general terms [199]. However, the 

curve fitting procedure has historically been conducted without recognizing the importance of 

variations in extinction coefficient with wavenumber. Deconvolution typically uses several 
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symmetrical peaks that are assigned to specific bonds or species based on the absorbance 

dependence on temperature or pressure. As indicated by Barlow [200], a common challenge with 

this approach is that the problem is under-constrained; comparable fits can be obtained from 

several different interpretations depending on the initial guess.  

Computational simulations are increasingly being leveraged to lend more insight to hydrogen 

bonding in alcohols [17,139,154,155,160] and its effect on their IR vibrations. Studies have 

included molecular dynamics (MD) [153], quantum mechanical (QM) [139,144,154–159] and 

hybrid multi-level (QM/MD) simulations [17,160–162].While MD simulations are less 

computationally expensive than QM calculations, they neglect quantum effects which are 

important in hydrogen bonding. Another shortcoming of MD was highlighted by Kwac and Geva 

[17]. Using simulations of CH3OD in carbon tetrachloride, they found that the relative populations 

of hydrogen bonded clusters calculated are dependent on the harmonicity, polarizability and 

damping of the empirical MD forcefield. The relative populations of the different bonds varied by 

up to 20% percent depending on the choice of forcefield. Furthermore, in their MD simulations 

with ethanol + water mixtures, Gereben et al. [201,202] were not able to identify a forcefield model 

that represented experimental scattering X-ray structure factors well across the composition range. 

Instead, different forcefields were recommended depending on the composition simulated.  

In Chapter 6, we developed a sequential MD + QM method to calculate the IR vibrational 

frequencies and integrated absorption coefficients of different types of O-H bonds. These were 

classified according to how their atoms participate in hydrogen bonding as shown in Figure 7.1.  
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Figure 7.1: Types of covalent OH bonds 

 

Though all the bonds in Figure 7.1 occur in solution, it is often assumed, especially in chemical 

engineering thermodynamics, that 휂 and 휁 bonds are formed in minimal quantities and are thus 

ignored. Moreover, cyclic species are usually neglected. Gereben et al. recently extended their 

work with ethanol + water to study cluster formations [203] and found that 60% (for an 80 mol% 

ethanol in water mixture) to 95% (pure water) of hydrogen bonded molecules were bonded in 

cyclic clusters. Considering this, the assumption of no cyclic species is difficult to justify. 

However, the thermodynamic models which use this assumption are often capable of representing 

experimental data reasonably well [14,68,173]. Therefore, as a first approximation, we ignore 

cyclic species in this work and defer their analysis to future work.  

The work covered in Chapter 6 aimed to quantify concentration of alcohol molecules in an alcohol 

+ alkane mixture using the infrared O-H vibration. To this end, QM calculations were conducted 

to find relationships between several spectroscopic properties including the vibrational frequency 

of an O-H bond and NMR shift of its proton.  A key finding was the correlation shown in Figure 
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6.6 (and repeated in Figure 7.2 for the reader’s convenience) between the integrated absorption 

coefficient, 𝜓, and the wavenumber of O-H vibrations.  

 

Figure 7.2: Hydroxyl stretching frequencies and integrated absorption coefficients for 

n-butanol + and ethanol + cyclohexane mixtures calculated from QM simulations. 

Diamond, triangle, square and circle markers denote 𝛼, 𝛽, 𝛾, and 𝛿 bond vibrations respectively. 

The solid line is a line of best fit determined visually 

 

It was shown that the relationship is very well modeled by an inverted Gaussian function given 

by: 

 
𝜓 = �̃� − �̃� exp(−(

(𝜈 − �̃�)2

2�̃�2
)) = 1500 − 1455 exp(−(

(𝜈 − 3597)2

2(200)2
)) 7.1 

 

 

When used to analyze the experimental spectra, the minimum of the Gaussian function, where 𝛼 

and 𝛽 bonds fall, was shifted to match the free-end peak wavenumber in the spectrum by adjusting 

parameter �̃� to 3645 cm-1.  The quantity 𝜓 was used with the Beer-Lambert law to calculate a 

“scaled” absorbance that is directly related to the total O-H concentration. In this work, we extend 

this method to calculate the concentrations of 𝛼, 𝛽, 𝛾 and 𝛿 bonds. Further, this cluster distribution 
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is used to calculate association (or hydrogen bonding) parameters for thermodynamic modeling of 

the alcohol + alkane systems.  

7.1.2. Thermodynamic modeling of hydrogen bonding 

Capturing the effects of hydrogen bonding is important for the thermodynamic modeling of many 

systems encountered in the chemical industry.  In our previous work [96], we developed a model 

that calculates deviations of the real solution from an ideal solution reference straight via an 

activity coefficient term, 𝛾, which is unity for an ideal solution and non-unity otherwise. 

Deviations due to hydrogen bonding were calculated using Wertheim’s perturbation theory [47–

50], a statistical mechanics approach which assigns sites on molecules which act as hydrogen bond 

acceptors and/or donors. A common scheme used for alcohols is the “2B” scheme in which the 

oxygen is designated as an acceptor site and the hydrogen as the donor site. Mathematically, this 

behavior is captured through: 

 

where 𝑋𝐵𝑖 and 𝑋𝐵𝑖,0 are the fraction of sites 𝐵𝑖 which remain free (not bonded) in the mixture and 

when the site host is pure, respectively. Variable 𝑥𝐵𝑖 ℎ𝑜𝑠𝑡 is the apparent mole fraction of the 

molecule that hosts site Bi. The number of identical 𝐵𝑖 sites on a host is given by 𝑁𝐵𝑖. For example, 

the two hydrogen atoms in water are modeled as identical sites due to the symmetry of their host 

molecule and the assumption that they will interact in the same way with their microenvironments, 

independent of bonding order.  

Careful consideration on the definition of the term 𝑋𝐵𝑖 in Wertheim’s theory, given in Eq. (7.3), 

reveals a physical significance relevant to IR spectroscopy.  

ln 𝛾𝑘
𝑎𝑠𝑠𝑜𝑐 = ∑ 𝑁𝐵𝑖

𝑠𝑖𝑡𝑒𝑠 𝐵𝑖
 𝑜𝑛 𝑘 

[ln (
𝑋𝐵𝑖

𝑋𝐵𝑖,0
) −

1

2
(1 − 𝑋𝐵𝑖,0)] +

1

2

𝜌

𝜌𝑘
∑ 𝑥𝐵𝑖 ℎ𝑜𝑠𝑡𝑁𝐵𝑖(1 − 𝑋

𝐵𝑖)
𝑎𝑙𝑙 

𝑠𝑖𝑡𝑒𝑠 𝐵𝑖

 7.2 
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𝑋𝐵𝑖 =

𝑛𝐵𝑖,𝑓𝑟𝑒𝑒

𝑛𝐵𝑖,𝑡𝑜𝑡𝑎𝑙
 

7.3 

 

 

Here, 𝑛𝐵𝑖,𝑓𝑟𝑒𝑒 and 𝑛𝐵𝑖,𝑡𝑜𝑡𝑎𝑙 are the moles of sites with free 𝐵𝑖 sites and the moles of total 𝐵𝑖 sites 

respectively. For alcohols and alcohol + inert (non-hydrogen bonding component) mixtures, 𝑋𝐵𝑖 

represents two sites simultaneously, the fraction of free acceptor sites (oxygen atoms), 𝑋𝐴, and the 

fraction of free donor sites (hydrogen atoms), 𝑋𝐷, at equilibrium. Because each hydrogen bond 

involves one acceptor and one donor site, the material balance when the alcohol is the only 

associating species yields 𝑋𝐴 = 𝑋𝐷. Coupling this with Eq. (7.3) yields:  

where 𝐶𝛼+𝛽 is the concentration of 𝛼 and 𝛽 bonds and 𝐶𝑎𝑙𝑐 is the apparent concentration of the 

alcohol. Moreover, Wertheim’s theory includes a function that relates the fraction of free sites to 

an association parameter, Δ𝐴𝐷. For the case considered here where the alcohol is dissolved in a 

non-associating solvent:  

where 𝑥𝑎𝑙𝑐 is the mole fraction of alcohol in the mixture and 𝜌 is the solution molar density. 

Therefore, by using Eq. (7.4) and Eq. (1.4), it is possible to regress spectroscopic measurements 

of 𝑋𝐴 to find the value of the association parameter ∆𝐴𝐷. The generalized model and form of Eq. 

(3.7) are provided in our previous work [96].  

Wertheim’s theory has been incorporated into several thermodynamic equation of state models 

including the cubic-plus-association (CPA) [11,52] and the statistical associating fluid theory 

(SAFT) family of equations [9,54–56,95]. In these models, the association parameter is normally 

found by regressing macroscopic experimental data such as phase equilibria data, vapor pressures 

 
𝑋𝐴 = 𝑋𝐷 =

𝑛𝐷,𝑓𝑟𝑒𝑒

𝑛𝐷,𝑡𝑜𝑡𝑎𝑙
=
𝐶𝛼+𝛽

𝐶𝑎𝑙𝑐
 7.4 

 𝑋𝐴 = 2/ (1 + √1 + 4𝑥 𝑎𝑙𝑐𝜌∆𝐴𝐷) 7.5 
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and/or saturated liquid densities. However, as shown in Figure 5.37 in Chapter 5, these methods 

can yield values of Δ𝐴𝐷 that differ by factors of up to four to five depending on the data used for 

the fitting. This discrepancy is greater than the expected dependence on solvent. An alternative 

approach is to derive association parameter values from data collected using fundamental tools 

such as IR and NMR spectroscopy. Studies that leverage these tools often calculate a 

concentration-based equilibrium constant, 𝐾𝐶 (or a directly related form of the equilibrium 

constant) instead of Δ𝐴𝐷. In these cases, association is modeled using chemical theory which is a 

distinct form but, if applied with reasonable assumptions, equivalent to Wertheim’s theory [58,96].  

7.1.3. Motivation 

In this work, we extend the quantitative MD + QM analysis methods developed in Chapter 6 to 

calculate the concentrations of different types of O-H bonds in solution. Further, the aim is to 

describe the methodology and provide preliminary results for the calculation of association 

parameters for the thermodynamic activity coefficient model in Eq. (3.7). This primary method 

will involve interpretation of the infrared spectra of n-butanol + cyclohexane mixtures. Nuclear 

magnetic resonance (NMR) spectroscopy is used as a complementary tool to confirm findings 

from IR.  

7.2. Experimental methods 

The complete methodology for the computational and IR studies is identical to that in Chapter 6 

and details can be found in Sections 6.2 and 6.3. For the NMR experiments, two protocols were 

used. In the first, we followed Karachewski’s [98] NMR procedure closely and collected data at 

T=34 ⁰C. Samples were prepared volumetrically in a glove bag under a continuous flow of nitrogen 

gas. Anhydrous n-butanol, cyclohexane and deuterated cyclohexane at purities of 99.8, 99.5% and 

99% respectively, were purchased from Sigma-Aldrich and used with no further purification. For 
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dilute samples with an alcohol mole fraction less than 0.03, the solvent was completely replaced 

with deuterated cyclohexane (Sigma Aldrich– isotopic purity ≥ 99.6 atom % D) for the purpose of 

diminishing the solvent proton shifts such that no significant overlap occurs with the alcohol O-H 

proton shift. For samples at compositions greater than 3 mol% n-butanol, a coaxial tube system 

was used in which the inner tube contained the prepared sample and the outer tube contained 

deuterated cyclohexane (for locking) and TMS (as an internal reference). For dilute samples, the 

outer tube was left empty and the inner tube contained the sample with 0.5 mole% TMS. Data was 

obtained using a Varian 600 MHz superconducting NMR Spectrometer and the temperature was 

calibrated with ethylene glycol.  

For data collected at other temperatures, a very similar procedure was used but the coaxial tube 

system was replaced with a simpler single tube configuration and all samples were prepared using 

deuterated cyclohexane as the solvent. In these cases, data was obtained using a Varian 500 MHz 

NMR Spectrometer. 

7.3. Results and discussions 

In IR spectroscopy, the consequences of hydrogen bonding are most evident in the region of the 

O-H stretching vibration, in which the bands combine and appear as two peaks between ~3200 and 

3700 cm-1. As mentioned in Chapter 6, the raw spectra are processed to remove solvent bands and 

the O-H bands are determined to begin and end at local minima on either side of the two peaks. 

Furthermore, the method developed earlier to create more physically significant spectra by scaling 

the absorbance with the integrated absorption coefficient function in Figure 7.2 is repeated here. 

However, in this chapter, the integration ranges determined for each individual spectrum by 

finding the minima on either end of the hydroxyl band. These ranges are provided in Table 7.1. 

Table 7.1: Frequency range defined as hydroxyl band for each spectrum 
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𝒙𝑩𝒖𝑶𝑯 
Temperature (⁰C) 

30 40 50 60 70 

0.0469 3055 - 3750 3064 - 3752 3091 - 3750 3092 - 3750 3153 - 3752 

0.0678 3048 - 3751 3053 - 3751 3067 - 3751 3076 – 3752 3089 - 3752 

0.0817 3050 - 3751 3058 - 3751 3066 - 3751 3076 - 3751 3088 - 3751 

0.100 3049 - 3752 3050 - 3755 3056 - 3752 3066 - 3752 3078 - 3752 

 

Although the integrated ranges are not consistent across all temperatures and compositions, the 

difference between the integrated areas calculated using this method compared to that in Chapter 

6 (in which a fixed range was integrated for all spectra) is only 1.2%. In the future, we plan to 

conduct the analysis described in this chapter over a fixed wavenumber range for a wider variety 

of systems and conditions. However, the minor change in the integration limits would not affect 

the preliminary results provided here.  

Figures 7.3-7.6 show the raw and scaled spectra for n-butanol + cyclohexane at four 

concentrations. There are some features of the O-H vibrational band that are well-documented 

which are evident in the raw spectra. First, the band consists of two peaks: a sharp, high-frequency 

peak and a broad, lower-frequency peak. The former peak is often attributed to free end group 

protons, 𝛼 and 𝛽 bonds [146,150,153,154,204], though there is some disagreement on whether 𝛽 

contributes significantly to this peak [185,186]. As the temperature is increased, the sharp free end 

peak increases in absorbance while the broad O-H peak diminishes. This is evidence of shifting 

bond distributions as hydrogen bonds break at higher temperature [144,146] and more monomers 

form in the solution. Moreover, as the proton in a bond becomes more tethered to others by 

hydrogen bonding, its vibrations occur at lower frequencies and higher intensities. This is evident 

in our own work in Figure 7.2 as well as that of others [153,205,206].   
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Figure 7.3: Raw (top) and scaled (bottom) O-H IR band for a 0.0469 mole fraction of 

n-butanol in cyclohexane. Data was collected at five temperatures between 30 ⁰C and 70 ⁰C at a 

pathlength of 0.01092 cm. 
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Figure 7.4: Raw (top) and scaled (bottom) O-H IR band for a 0.0678 mole fraction of 

n-butanol in cyclohexane. Data was collected at five temperatures between 30 ⁰C and 70 ⁰C at a 

pathlength of 0.01092 cm 
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Figure 7.5: Raw (top) and scaled (bottom) O-H IR band for a 0.0817 mole fraction of 

n-butanol in cyclohexane. Data was collected at five temperatures between 30 ⁰C and 70 ⁰C at a 

pathlength of 0.01092 cm. 
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Figure 7.6: Raw (top) and scaled (bottom) O-H IR band for a 0.100 mole fraction of 

n-butanol in cyclohexane. Data was collected at five temperatures between 30 ⁰C and 70 ⁰C at a 

pathlength of 0.01092 cm. 
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7.3.1. IR band assignments 

It has been recognized that IR vibrational bands are more accurately attributed to bonds 

[147,150,172,207], as first proposed by Hall and Wood [170], rather than to entire hydrogen 

bonded clusters. For this reason, we begin peak assignments by studying how the 𝛼, 𝛽, 𝛾 and 𝛿 

bonds vibrate in the QM simulations. The number of the different species and bond types analyzed 

to generate the QM calculated distributions in this work is given in Table 7.2. 

Table 7.2: Number of each species and bond analyzed with QM calculations for the 

distribution plot in Figure 7.7 and Figure 7.8. All species larger than a monomer have one 𝛽 

and one 𝛾 bond. Trimers and tetramers also possess one and two 𝛿 bonds respectively. 

 

  Ethanol + Cyclohexane n-Butanol + Cyclohexane 

  𝒙𝑬𝒕𝑶𝑯 = 0.5 𝒙𝑩𝒖𝑶𝑯 =0.1 and 0.5 

S
p

ec
ie

s 

Monomer 859 1019 

Dimer 413 383 

Trimer 236 105 

Tetramer 223 70 

B
o
n

d
s 

𝛼 859 1019 

𝛽 872 558 

𝛿 682 245 

𝛾 872 558 

 

Figure 7.7 shows the distribution of vibrational frequencies of 𝛼, 𝛽, 𝛾 and 𝛿 bonds calculated 

through QM simulations of ethanol + and n-butanol + cyclohexane mixtures. Findings from the 

two systems are plotted together because separate plots showed no discernable difference between 

them. To create the figure, the vibrations of each bond type were binned in 5 cm-1 wide bins and 

normalized, and the resulting lines were smoothed with a 7-bin moving average and normalized to 

display the relative populations for each bond type as a function of wavenumber. These processing 

steps were carried out to refine the shape of the distributions and display relative information about 
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them more clearly. It should be emphasized that only semi-quantitative information should be 

obtained from this figure from the peak shapes. The peak heights should not be compared between 

bond types because the data are insufficient to reflect the distribution of bond types at the simulated 

concentrations. Instead, the value of Figure 7.7 lies in its ability to reveal approximate peak shapes 

and a qualitative description of the vibrational frequencies of different bond types relative to one 

another.   

In agreement with other studies [146,150,153,154,204], Figure 7.7 shows that 𝛼 and 𝛽 bonds 

vibrate at the same frequency and show significant overlap. This confirms that the 𝛽 bond 

contribution to the sharp high-frequency O-H peak should not be ignored. Moreover, the QM 

calculations show that some of 𝛼 and 𝛽 hydroxyls are found at frequencies red-shifted from the 

high frequency peak. This finding is noteworthy as most previous work has considered only the 

high frequency peak to represent all the 𝛼 and 𝛽 hydroxyls [150,153]. 

 

Figure 7.7: Smoothed normalized distributions of bond types from QM simulations of 

n-butanol + and ethanol + cyclohexane mixtures. Vibrational frequencies of 𝛼 (n=1878), 𝛽 

(n=1430), 𝛾 (n=1430), and 𝛿 (n=927) bonds are binned in 5 wavenumber bins and smoothed 

with a 7-bin moving average 
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Figure 7.8: Smoothed normalized distributions of bond types from QM simulations with 𝜸 

from dimers separated from others.Vibrational frequencies of 𝛼 (n=1878), 𝛽 (n=1430), 𝛾𝐷𝑖𝑚 

(n=796), 𝛾𝑁𝑚𝑒𝑟 (n=634) and 𝛿 (n=927) bonds are binned in 5 wavenumber bins and smoothed 

with a 7-bin moving average 

 

Another interesting observation is made when the vibrations of the 𝛾 bond on dimer clusters, 𝛾𝐷𝑖𝑚 

is separated from that of 𝛾 bonds on larger oligomers, 𝛾𝑁𝑚𝑒𝑟. As shown in Figure 7.8, 𝛾𝐷𝑖𝑚 

vibrations are blue-shifted by about 50 cm-1 compared to 𝛾𝑁𝑚𝑒𝑟. Interestingly, 𝛽 bonds on dimers 

display no similar shift compared to those on larger clusters. We hypothesize that the reason for 

the shift in 𝛾 is the small size of the dimer molecule. This causes the frequencies of protons in the 

𝛾𝐷𝑖𝑚 bonds to be higher as they have characteristics that are a hybrid of those of the 𝛽 hydrogen 

it is attached to and those of 𝛾 bonds on larger clusters, 𝛾𝑁𝑚𝑒𝑟. For species larger than dimers, the 

𝛾𝑁𝑚𝑒𝑟 proton is separated from 𝛽 proton by one or more 𝛿 bonds, so the vibrational mixing lowers 

its frequency. To our knowledge, this is the first time this distinction has been made and we use 

this finding to guide the peak fitting and assignment procedure described in the next section. 
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7.3.2. IR peak fitting 

Quantitative fitting of infrared spectroscopy requires the overlap between constituent peaks to be 

accurately determined [208]. As alcohol + inert mixtures become more concentrated in alcohol, 

extensive hydrogen bonding causes the broad O-H peak to have more and more overlap with the 

free end peak. Therefore, as indicated by Wandschneider et al. [155], it becomes difficult to 

calculate the concentration of free ends when the mole fraction of alcohols exceeds 0.3. For this 

reason, we limit our study to the mixtures shown in the spectra in Figures 7.3 - 7.6 where the 

alcohol mole fractions are below 0.100. 

Based on the line shapes found from the QM calculated vibrational frequency distributions, we fit 

each scaled experimental IR spectrum with 6 Gaussian peaks: one for 𝛼, 𝛽 (visually determined 

to require 2 peaks), 𝛾𝐷𝑖𝑚, 𝛾𝑁𝑚𝑒𝑟 and 𝛿.  Each Gaussian peak, 𝑃𝑖 is given by the function: 

 
𝑃𝑖 = 𝑓𝑖 exp(−(

(𝜈 − 𝑔�̃�)

ℎ�̃�
)

2

) 7.6 

 

 

where 𝑓𝑖, 𝑔�̃� and ℎ�̃� are fitted parameters. To focus the search for correct parameters, the regression 

is constrained such that the concentration of 𝛽 bonds is equal to that of 𝛾 bonds. This physical 

constraint holds as long as no branched chains exist in solution as is assumed in our work. The 

area under a Gaussian curve is given by 𝑓𝑖ℎ�̃�√𝜋 , 

 
∫𝑃𝛽1 𝑑𝜈 + ∫𝑃𝛽2 𝑑𝜈 =  ∫𝑃𝛾𝐷𝑖𝑚 𝑑𝜈 + ∫𝑃𝛾𝑁𝑚𝑒𝑟 𝑑𝜈 

7.7 

 

 𝑓𝛽1ℎ̃𝛽1 + 𝑓𝛽2ℎ̃𝛽2 = 𝑓𝛾𝐷𝑖𝑚ℎ̃𝛾𝐷𝑖𝑚 + 𝑓𝛾𝑁𝑚𝑒𝑟 ℎ̃𝛾𝑁𝑚𝑒𝑟  7.8 

 

Initial guesses for the wavenumbers of the peak apexes were determined from the shifts of the 𝛽, 

𝛾𝐷𝑖𝑚, 𝛾𝑁𝑚𝑒𝑟 and 𝛿 peaks in Figure 7.8 relative to the 𝛼 peak. The upper and lower bounds set for 
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the wavenumbers was ±80 cm-1 from the initial guesses. Figures 7.9-7.12 show the results of the 

fitting to the spectra at the four lower temperatures for each of three concentrations studied here.  

  

Figure 7.9: Peaks fitted to scaled IR spectra for n-butanol + cyclohexane mixture at 

𝒙𝑩𝒖𝑶𝑯=0.0469. Figures a, b, c, d and e indicate data at T= 30, 40, 50, 60, 70 ⁰C respectively 
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Figure 7.10: Peaks fitted to scaled IR spectra for n-butanol + cyclohexane mixture at 

𝒙𝑩𝒖𝑶𝑯=0.0678. Figures a, b, c, d and e indicate data at T= 30, 40, 50, 60, 70 ⁰C respectively 
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Figure 7.11: Peaks fitted to scaled IR spectra for n-butanol + cyclohexane mixture at 

𝒙𝑩𝒖𝑶𝑯=0.0817. Figures a, b, c, d and e indicate data at T= 30, 40, 50, 60, 70 ⁰C respectively 
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Figure 7.12: Peaks fitted to scaled IR spectra for n-butanol + cyclohexane mixture at 

𝒙𝑩𝒖𝑶𝑯=0.100. Figures a, b, c, d and e indicate data at T= 30, 40, 50, 60, 70 ⁰C respectively 
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The concentration of each of the bond types is calculated by multiplying the areas under the 

corresponding peaks by the constant relating scaled peak areas to apparent concentrations given in 

Figure 7.13. The scaling factor is 1/37.47 = 0.0290. 

 

Figure 7.13: Scaled band area as a function of apparent n-butanol concentration. The 

equation for the line of best fit provides a convenient method of relating the calculated apparent 

concentrations from the scaled band area. 

 

The hydroxyl species distributions calculated from the scaling factor are given in shown in Figure 

7.14. In plots were a gray bar appears, the fitted spectrum was not able to fit the experimental 

concentration exactly and therefore there was an “unassigned” portion. Conversely, plots in which 

the bars exceed unity indicate that the fitted peaks over predict the prepared concentration value. 

These slight discrepancies are especially prominent in the plots for the two most dilute sample and 

are likely due to experimental error in preparing the samples. The exception to this, though, is the 

fit of the data at T=70 ⁰C and 𝑥𝐵𝑢𝑂𝐻 = 0.0469 which has an unassigned percentage of 13.1%. The 

peak shape for the raw spectra in Figure 7.3 has unexpected features that are indicative of a 

problem with the experiment, such as evaporation. 
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Figure 7.14: Bond distributions calculated from IR peak fitting. Colors show 𝛼 ( ), 𝛽 ( ), 

𝛾𝐷𝑖𝑚 ( ), 𝛾𝑁𝑚𝑒𝑟 ( ), 𝛿 ( ) bond concentrations and unassigned peak area ( ). From top to 

bottom, figures pertain to samples at 0.0469, 0.0678, 0.0817 and 0.100 mol fraction of n-butanol. 
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In general, however, the plots show several encouraging trends. First, the percent of 𝛼 bonds 

increases with temperature by an average of 16.1% from 30 ⁰C to 70 ⁰C. This is consistent with 

the fact that more hydrogen bonds break as temperature is increased, converting large clusters to 

smaller oligomers and monomers. For the same reason, the fractions of 𝛿 bonds should and, for 

the most part, do decrease with increasing temperatures. The trends for 𝛽 and 𝛾 are less predictable 

because their concentrations depend on the rate at which larger clusters break down to form smaller 

clusters (which increases the number of 𝛽and 𝛾 bonds) compared to the rate of dimers breaking to 

form monomers (which decreases the number of 𝛽and 𝛾 bonds). However, from Figure 7.14, it is 

observed that the 𝛽 + 𝛾 concentrations decrease slightly but consistently for the three most dilute 

samples, suggesting that the rate of large cluster disintegration to smaller (non-monomer) species 

is greater. For the highest concentration, the 𝛽 + 𝛾 concentrations decrease until the T = 50 ⁰C 

point then increases again. From this, it may be deduced that the two rates balance at approximately 

50 ⁰C at this concentration.  

An interesting trend is noted when the concentration of 𝛼bonds is plotted as a function of n-butanol 

mole fraction (see Figure 7.15):  

 

Figure 7.15: Concentration of 𝜶 bonds vs. mole fraction of n-butanol. 
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There is a linear decrease at all temperatures except for the data point at T=70 ⁰C and 𝑥𝐵𝑢𝑂𝐻 =

0.0469. This is further evidence that the data point is flawed and should be measured again and 

refitted. However, the relationship shown in the figure for the other data points is striking.  

To calculate the association parameters in the following section, the concentration of free ends 

must be known. Therefore, the calculated values for 𝐶𝛼+𝛽 are given in Table 7.3. 

Table 7.3: Concentration of free ends (𝜶 + 𝜷) in mol/mL calculated from fitted Gaussian 

peaks 

 

x 
T (⁰ C) 

30 40 50 60 70 

0.0469 2.16E-04 2.36E-04 2.51E-04 2.63E-04 2.43E-04 

0.0678 3.25E-04 3.51E-04 3.70E-04 3.92E-04 4.03E-04 

0.0817 3.65E-04 3.95E-04 4.14E-04 4.31E-04 4.50E-04 

0.1001 4.04E-04 4.37E-04 4.61E-04 4.96E-04 5.20E-04 

 

7.3.3. IR calculation of association parameters 

To extract quantitative information from IR spectroscopy, it is necessary to assume some form of 

model for the species in solution and assign bands accordingly. Recently, Chen et al. [209] 

calculated the dimerization equilibrium constant for 3-ethyl-2-methyl-3-pentanol in 

tetrachloroethylene for quantitative analysis of infrared spectra. This system was intentionally 

chosen for the study because steric hindrance was thought to limit the extent of association to 

dimers. The analysis was consistent with this notion, but simple computer simulations point to 

little trouble going from dimers to linear and cyclic trimers. Such limited hydrogen bonding 

systems are, of course, unusual among alcohols which hydrogen bond extensively. For association 

of alcohols, models and band assignments vary widely in literature. A common model for alcohol 

+ inert systems assumes that chains of infinite sizes can form continuously in solution. Such 

models have been used with some success to interpret associating systems [14,37,68,89,210–212]. 
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In contrast, Asprion et al. [7,137,138] published several papers which assume only monomer, 

dimer and one other n-mer formation (1-2-n) where n was a fitted parameter. The work 

supplemented an existing thermodynamic model, UNIQUAC, with chemical theory and derived a 

value of 𝐾𝐶 from infrared spectra. Many other studies obtain best fits of their experimental data by 

assuming at least one cyclic species (most often a cyclic trimer [150,213] or tetramer 

[144,185,186,214]) is stable enough to exist in appreciable quantities at equilibrium.  

 In this work, we aim to derive a value for the Wertheim association constant, Δ𝐴𝐷 and therefore 

consider only linear species. First, we regress the values of Δ𝐴𝐷 to best fit the calculated free end 

concentrations in Table 7.3 using Eq. (1.4). The resulting fit is given in Figure 7.16.  

 

Figure 7.16: Calculated and fitted concentrations of free end (𝜶 + 𝜷) hydroxyls. Markers 

indicate the concentrations derived from IR at T= 30 (crosses), 40 (triangles), 50 (circles), 60 

(filled circles), 70 (diamonds) ⁰C respectively. 

 

Then, the Δ𝐴𝐷 value is further separated using the form used in CPA: 

 
Δ𝐴𝐷 = 𝑔(𝜎)𝐾𝐴𝐷 (exp(

𝜖𝐴𝐷/𝑘

𝑇
) − 1) 

7.9 
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The 𝐾𝐴𝐷 and 𝜖𝐴𝐷/𝑘 are regressed to best fit the Δ𝐴𝐷 found in the first step. The quantity 𝑔(𝜎) in 

Eq. (7.9) is the radial distribution function defined as: 

  
𝑔(𝜎) =

1

1 −
1.9
4 𝑏𝐶𝑃𝐴𝜌

 7.10 

 

 

where 𝑏𝐶𝑃𝐴 = ∑𝑥𝑖𝑏𝐶𝑃𝐴,𝑖, is the CPA covolume term and 𝜌 is the mixture apparent molar density. 

The final fit of Δ𝐴𝐷 is given in Figure 7.17. 

 

Figure 7.17: Derived association parameter values from IR analysis (solid line) compared 

to CPA 𝚫𝑨𝑫 values (dashed line) for the self-association of n-butanol. Markers indicate the 

Δ𝐴𝐷 values from fitting the IR measurements. 

 

While we plot the CPA value of Δ𝐴𝐷in the figure as well, it should be recognized that the CPA 

calculations are not the standard to which other values of Δ𝐴𝐷 must be compared. However, it does 

provide reference values. It can be seen that the association parameter calculated from the IR fits 

has a weaker temperature dependence with its 𝜖𝐴𝐷/𝑘 parameter being 18% smaller than that of 

CPA. This parameter is a measure of the enthalpy of the hydrogen bond and the value calculated 



 

178 

 

from IR (2065 K) corresponds to an energy value of 4.1 kcal/mol which is in the correct range for 

hydrogen bonds. The IR-derived 𝐾𝐴𝐷 parameter is about 12% larger than that of CPA though the 

physical significance of 𝐾𝐴𝐷 is less defined. In the next section, we leverage another spectroscopic 

tool, NMR, for the calculation of association parameters.  

7.3.4. NMR calculations and results 

A useful complement to IR is proton nuclear magnetic resonance (1H NMR) spectroscopy. 

Chemical shifts of proton spins observed in NMR spectra are a result of differences in the electron 

shielding of hydrogen atoms on a molecule due to their immediate environment. Unlike IR and 

NIR, the timescale of an NMR measurement is long relative to the lifetime of a hydrogen bond. 

Therefore, NMR spectra illustrate a time-averaged observation rather than an instantaneous one. 

However, there are no issues with varying extinction coefficients as there are with IR. Furthermore, 

with modern equipment, this form of spectroscopy is highly sensitive [98] and accurate to 0.1 ppb 

[215].  

For alcohol + hydrocarbon systems, the work of Gutowsky and Saike [216] is heavily cited for the 

derivation of the relationship between the observed shift, �̃� , for an O-H site and the weighted 

average of the shift of the free OH groups and the associated OH groups given by: 

where �̃�, �̃�𝑀and �̃�𝑁𝑚𝑒𝑟
′  are the observed chemical shift, the monomer chemical shift and the 

chemical shift of hydrogen bonded protons respectively. 𝐶𝑖
𝑙 is the concentration of linear clusters 

of size i. It is assumed that end-groups and monomers have the same shift and all complexed 

species (linear and cyclic produce the same shift.   

 

�̃�′ =
𝐶𝑀
𝐶𝑎𝑙𝑐

�̃�𝑀
′ +∑[(

𝐶𝑖
𝑙

𝐶𝑎𝑙𝑐
) �̃�𝑀

′ + ((𝑖 − 1)
𝐶𝑖
𝑙

𝐶𝑎𝑙𝑐
) �̃�𝑁𝑚𝑒𝑟

′ ]

∞

𝑖=2

 7.11 
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In this section, we derive the values of the self-association Δ𝐴𝐷 parameter for n-butanol from NMR. 

To this end, we test out two models: the 1-K Continuous Linear Association Model (CLAM) that 

was implemented by several studies [68,98,173] and a new model that we have developed, called 

the 2-K CLAM. As indicated by its name, the 1-K CLAM model neglects non-linear species and 

assumes that the formation of every hydrogen bond is governed by the same equilibrium constant, 

𝐾𝐶. While the simplicity of this type of model is appealing, its often insufficient in capturing real 

behavior [98]. For this reason, Karachewski et al. developed several more sophisticated models 

including the LACT [98] (linear association with cyclic trimer) model and AVEC [13] (association 

with variable equilibrium constant) models. These models require more fitted parameters and, in 

the case of the AVEC model, have no closed form. This means that “infinite association 

possibilities” must instead be approximated by selecting some very large oligomer size as a cutoff. 

While this is unlikely to affect the physical significance of the model parameters significantly, any 

a priori assumptions that must be made are a disadvantage.  

For the 2-K CLAM model, we recognize an important phenomenon regarding the energetic and 

entropic effects that accompany the formation of a dimer. The formation of the first hydrogen bond 

releases less energy than subsequent bonds which benefit from a “cooperative effect” [155]. When 

a hydroxyl group is already accepting or donating in a hydrogen bond, the charge redistribution is 

such that the bond becomes more receptive to another association. As such, it seems justified to 

include a different 𝐾𝐶 for dimer formation than other oligomers. The 2-K CLAM does this by: 

1. Combining a complete mole balance of alcohol molecules with the law of mass action using 

the equilibrium constant for larger oligomer formation, 𝐾𝐶,𝑁𝑚𝑒𝑟  

2. Subtracting the dimer term from the mole balance 

3. Re-introducing the dimer term with a different equilibrium constant, 𝐾𝐶,𝐷 
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Similar to our calculations with IR spectra, we derive the association parameters from NMR 

spectra by fitting the CPA Δ𝐴𝐷 equation in Eq. (7.6). Therefore, the 1-K CLAM requires fitting 3 

parameters: 𝐾𝐴𝐷, 𝜖𝐴𝐷/𝑘 and the chemical shift of hydrogen-bonded protons, �̃�𝑁𝑚𝑒𝑟
′ . The 

monomer shift is obtained experimentally as the shift visible for an extremely dilute n-butanol + 

cyclohexane mixture (𝑥𝐵𝑢𝑂𝐻<0.002).  The 2-K CLAM model requires fitting 5 parameters: 𝐾𝐷
𝐴𝐷, 

𝜖𝐷
𝐴𝐷/𝑘, 𝐾𝑁𝑚𝑒𝑟

𝐴𝐷 , 𝜖𝑁𝑚𝑒𝑟
𝐴𝐷 /𝑘 and �̃�𝑁𝑚𝑒𝑟

′ .  

Figures 7.18-7.20 show the observed chemical shifts relative to the monomer shift for various mole 

fractions of n-butanol in cyclohexane at three temperatures. The black lines show the fits obtained 

by the 1-K and 2-K CLAM models when all the parameters, including the 𝜖𝐴𝐷/𝑘 parameters, are 

fitted. 

 

Figure 7.18: O-H proton chemical shift as a function of n-butanol mole fraction for n-

butanol + cyclohexane mixtures at 26.3 ⁰C. Inset shows a close-up of the dilute region. The 

markers, dashed line and solid line indicate experimental data, the 1-K CLAM model and the 2-K 

CLAM model respectively. The black lines include the 𝜖𝐴𝐷 parameter in the regression while red 

lines fix 𝜖𝐴𝐷 at the CPA value of 2526 K. 



 

181 

 

 

Figure 7.19: O-H proton chemical shift as a function of n-butanol mole fraction for n-

butanol + cyclohexane mixtures at 34 ⁰C. Inset shows a close-up of the dilute region. The 

markers, dashed line and solid line indicate experimental data, the 1-K CLAM model and the 2-K 

CLAM model respectively. The black lines include the 𝜖𝐴𝐷 parameter in the regression while red 

lines fix 𝜖𝐴𝐷 at the CPA value of 2526 K. 

 

 

Figure 7.20: O-H proton chemical shift as a function of n-butanol mole fraction for n-

butanol + cyclohexane mixtures at 41 ⁰C. Inset shows a close-up of the dilute region. The 

markers, dashed line and solid line indicate experimental data, the 1-K CLAM model and the 2-K 

CLAM model respectively. The black lines include the 𝜖𝐴𝐷 parameter in the regression while red 

lines fix 𝜖𝐴𝐷 at the CPA value of 2526 K. 
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The shortcomings of the 1-K CLAM are very evident in both the concentrated and dilute region. 

In contrast, the 2-K CLAM is much more capable of describing the dilute region where dimers are 

a dominant species. The regressed parameters calculated from NMR are given in Table 7.4. 

Table 7.4: Regressed parameters from NMR analysis and corresponding CPA parameters 

for comparison 

 

CPA 

IR derived 

𝑲𝑪 1-K CLAM 

(NMR) 

2-K CLAM (NMR) 

 𝑫𝒊𝒎𝒆𝒓, 𝑲𝑫
𝑨𝑫 

𝑵−𝒎𝒆𝒓, 

𝑲𝑵𝒎𝒆𝒓
𝑨𝑫  

𝑲𝑨𝑫 6.535E-01 7.31E-01 3.135E-03 1.722E+00 5.118E-02 

𝝐𝑨𝑫/𝒌 (𝑲) 2.526E+03 2.07E+03 4.182E+03 1.712E+03 3.525E+03 

�̃�𝑵𝒎𝒆𝒓
′    6.136 5.281 

 

The parameters are derived from NMR are very different from both CPA values and those derived 

from the IR fitting. The 𝜖𝐴𝐷/𝑘 parameter of the 1-K CLAM model is almost double that of derived 

from the IR fits (a difference in the enthalpy of the hydrogen bond of approximately 4.2 kcal/mol) 

and the 𝐾𝐴𝐷 parameter is less than three orders of magnitude smaller. With the 2-K CLAM, the 

dimer enthalpy parameter is very low (3.4 kcal/mol) and that of larger oligomers is very high (7 

kcal/mol). The NMR algorithm can yield multiple solutions with similar fits to the data. To 

demonstrate this, we fixed the value of  𝜖𝐴𝐷/𝑘 to the CPA value of 2526 K for both the 1-K CLAM 

and 2-K CLAM and refitted the other parameters. This yields the red lines in Figures 7.18-7.20. 

The values of the shift 𝜈𝑁 remained almost the same but  𝐾𝐴𝐷, 𝐾𝐷
𝐴𝐷 and 𝐾𝑁𝑚𝑒𝑟

𝐴𝐷  were found to be 

0.696, 0.1166 and 1.341 respectively. These quantities are closer to CPA and IR-derived values. 

This indicates that a more reasonable solution exists but that the regression program must be 

constrained in order to find it. More work must be done to correct for this and we outline this and 

other future work in Section 7.4.     
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7.4. Summary of future work 

This chapter contains preliminary analyses and results for the calculation of Wertheim association 

parameters from IR and NMR spectroscopy. As an ongoing project, there are several areas that 

will be further pursued in the future. Firstly, the fitting of the scaled infrared spectra should be 

revisited. Specifically, the spectrum at T=70 ⁰C and 𝑥𝐵𝑢𝑂𝐻 = 0.0469 produced strange trends as 

discussed earlier. This may be due to errors in the experimental IR data collection because 

evaporation can occur at high temperatures. However, this may also be due to the low wavenumber 

cutoff which marks the end of the integration area. This is most clearly visible in Figure 7.3 where 

the line is discontinued at a lower wavenumber than the other spectra. Currently, the range of the 

plot is determined by finding the minima on either side of the O-H band. However, in the future, 

data should be integrated between band limits that are consistent for all temperatures and 

concentrations.  

Though the QM species distributions in Figure 7.8 suggest that the 𝛼 hydroxyl, like the 𝛽 hydroxyl, 

is best described by two Gaussian peaks instead of one, adding another peak to the fitting procedure 

may result in difficulties in discerning differences between the two types.  For this work, the 𝛽 

hydroxyls were represented by a broad low peak in the high frequency region and the 𝛼 hydroxyls 

were represented by a tall narrow peak. However, because the 𝛼 and 𝛽 distributions are so similar 

in Figure 7.8 separation of the species may not be correct. Rather, it may be more realistic combine 

the two peaks together as the sum 𝛼 + 𝛽, eliminate the area constraint between 𝛽 and 𝛾 hydroxyls, 

and, instead. focus on improved initial guesses for the 𝛾 hydroxyls. 

Regarding the shape of the fitted peaks, it may be worthwhile to explore other line shapes beyond 

Gaussian such as Lorentzian or gamma distribution functions. Some researchers have found 

success by combining two functions such as with the Gaussian-Lorentzian curves [200]. However, 
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this requires including more parameters for unclear benefit. Instead, it is recommended that 

Lorentzian functions be used for the peaks that convolute to form the sharp high frequency peak 

and Gaussians be used for the others. In this way, the same total number of parameters is 

maintained but the two peaks are analyzed differently.  

Secondly, we encountered some challenges in calculating association parameters from NMR 

spectra. The key issue is that many combinations of parameters can yield reasonably accurate 

representations of the experimental data. In such cases, it is important that the stability of the final 

solution be tested by perturbing the initial guesses and ensuring that the same result is reached 

[200]. To correct for this issue, it is recommended that more constraints be defined to remove 

degrees of freedom.    

Moreover, although the 2-K CLAM model was shown to represent NMR data more accurately, 

there is no equivalent form of the model within Wertheim’s theory. A model with the accuracy of 

2-K CLAM but flexibility and practicality of Wertheim’s theory would be very powerful. 

Therefore, this endeavor warrants further study. Lastly, none of the models tested in this work 

considered cyclic species. With linear species, an n-mer contains n-1 hydrogen bonds whereas a 

cyclic n-mer contains only n hydrogen bonds. This counting discrepancy is not accounted for with 

Wertheim’s theory, which serves as the basis of our thermodynamic model. While it may be 

difficult to adapt the functional form of Wertheim’s theory for cyclic species, the idea is worth 

pursuing because, if successful, the resulting model will be a valuable contribution to the field. 

Additionally, hydrogen bonding in these types of clusters can be studied using the MD+QM 

method developed in Chapter 6. This insight can help improve chemical theory models by 

providing a physical basis for the assumptions used.  
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APPENDIX
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Appendix I: Derivation of the 2-K CLAM model 

To derive the 2-K CLAM model, we start with an apparent mole balance written in terms of 

concentration by dividing both sides by total volume, 𝑉, 

Defining two equilibrium constants, one for the formation of dimers and another for all subsequent 

oligomers: 

Combining Eqs. (I.3 and I.4) and rearranging yields 

Eq. (I.5) can be substituted into the mole balance in Eq. (I.2), 

Rearranging: 

Recognizing the converging series 

 
∑(𝑖 + 1)𝑎𝑖 =

1

(1 − 𝑎)2
= 1 + 2𝑎 + 3𝑎2 +⋯

∞

𝑖=0

 I.8 

Eq. (I.7) can be written as 

 𝑛0,𝑎𝑙𝑐
𝑉

=
𝑛𝑀 + 2𝑛𝐷 + 3𝑛𝑇𝑟𝑖 +⋯

𝑉
 

I.1 

 
𝐶𝑎𝑙𝑐 = 𝐶𝑀 + 2𝐶𝐷 + 3𝐶𝑇𝑟𝑖 +⋯ = 𝐶𝑀 +∑𝑖𝐶𝑖

∞

𝑖=2

 I.2 

 

 
𝐾𝐶,𝐷 =

𝐶𝐷

𝐶𝑀
2 =

Φ𝐷/2𝑉𝑀
(Φ𝑀/𝑉𝑀)2

=
1

2

Φ𝐷

Φ𝑀
2 𝑉𝑀 

I.3 

 𝐾𝐶,𝑁𝑚𝑒𝑟 =
𝐶𝑇𝑟𝑖

𝐶𝐷𝐶𝑀
= ⋯ =

𝐶𝑁

𝐶(𝑁−1)𝐶𝑀
=
(𝑁−1)

𝑁

Φ𝑁

Φ𝑁−1Φ𝑀
𝑉𝑀 for 𝑁 > 2  I.4 

 𝐶𝑁 = 𝐾𝐶,𝐷𝐾𝐶,𝑁𝑚𝑒𝑟
𝑁−2 𝐶𝑀

𝑁             for 𝑁 > 1 I.5 

 
𝐶𝑎𝑙𝑐 = 𝐶𝑀 +∑𝑁𝐾𝐶,𝐷𝐾𝐶,𝑁𝑚𝑒𝑟

𝑁−2 𝐶𝑀
𝑁

∞

𝑁=2

= 𝐶𝑀 + 2𝐾𝐶,𝐷𝐶𝑀
2 + 3𝐾𝐶,𝐷𝐾𝐶,𝑁𝑚𝑒𝑟𝐶𝑀

3 +⋯ I.6 

 

 
𝐶𝑎𝑙𝑐 = 𝐶𝑀 (1 + 2𝐾𝐶,𝐷𝑖𝑚𝐶𝑀 +

𝐾𝐶,𝐷
𝐾𝐶,𝑁𝑚𝑒𝑟

(3(𝐾𝐶,𝑁𝑚𝑒𝑟𝐶𝑀)
2
+ 4(𝐾𝐶,𝑁𝑚𝑒𝑟𝐶𝑀)

3
+⋯)) I.7 
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Substituting 

and recognizing that the apparent molar volume of an alcohol, 𝑉𝑎𝑙𝑐 is the volume of the monomer 

𝑉𝑀 yields 

Rearranging in terms of Φ𝑀, Eq. (I.12) can be written in the form of a cubic equation 

where 𝑎0, 𝑎1, 𝑎2 and 𝑎3 are: 

The chemical shift is then calculated from Eq. (7.11):  

Substituting Eq. (I.2) for 𝐶𝑀 and rearranging yields: 

𝐶𝑎𝑙𝑐 = 𝐶𝑀 (1 + 2𝐾𝐶,𝐷𝐶𝑀 +
𝐾𝐶,𝐷
𝐾𝐶,𝑁𝑚𝑒𝑟

(
1

(1 − 𝐾𝐶,𝑁𝑚𝑒𝑟𝐶𝑀)
2 − 1 − 2𝐾𝐶,𝑁𝑚𝑒𝑟𝐶𝑀)) I.9 

 

 

𝐶𝑎𝑙𝑐 = 𝐶𝑀 (1 +
𝐾𝐶,𝐷
𝐾𝐶,𝑁𝑚𝑒𝑟

(
1

(1 − 𝐾𝐶,𝑁𝑚𝑒𝑟𝐶𝑀)
2 − 1)) 

I.10 

 Φ𝑁𝑚𝑒𝑟 = 𝐶𝑁𝑚𝑒𝑟𝑉𝑁𝑚𝑒𝑟 I.11 

 

Φ𝑎𝑙𝑐 = Φ𝑀

(

 
 
1 +

𝐾𝐶,𝐷
𝐾𝐶,𝑁𝑚𝑒𝑟

(
1

(1 − 𝐾𝐶,𝑁𝑚𝑒𝑟
Φ𝑀
𝑉𝑀
)
2 − 1)

)

 
 

 I.12 
 

 𝑎0Φ𝑀
3 + 𝑎1Φ𝑀

2 + 𝑎2Φ𝑀 + 𝑎3 = 0 I.13 

 
𝑎0 =

𝐾𝐶,𝐷𝐾𝐶,𝑁𝑚𝑒𝑟 − 𝐾𝐶,𝑁𝑚𝑒𝑟
2

𝑉𝑀
2  

I.14 

 
𝑎1 =

2(𝐾𝐶,𝑁𝑚𝑒𝑟 − 𝐾𝐶,𝐷)

𝑉𝑀
+ (
𝐾𝐶,𝑁𝑚𝑒𝑟
𝑉𝑀

)
2

Φ𝑎𝑙𝑐 I.15 

 
𝑎2 = −1 − 2

𝐾𝐶,𝑁𝑚𝑒𝑟
𝑉𝑀

Φ𝑎𝑙𝑐 I.16 

 𝑎3 = Φ𝑎𝑙𝑐 I.17 

 

�̃�′ =
𝐶𝑀
𝐶𝑎𝑙𝑐

�̃�𝑀
′ +∑[(

𝐶𝑖
𝑙

𝐶𝑎𝑙𝑐
) �̃�𝑀

′ + ((𝑖 − 1)
𝐶𝑖
𝑙

𝐶𝑎𝑙𝑐
) �̃�𝑁𝑚𝑒𝑟

′ ]

∞

𝑖=2

 I.18 
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or 

where Δ�̃� and Δ�̃�𝑁 represent the observed chemical shift and the chemical shift of hydrogen-bonded 

protons relative to the monomer shift respectively. Written in terms of volume fractions and 

assuming that the volume of an 𝑁-mer is given by 𝑉𝑖 = 𝑖𝑉𝑀: 

Finally, substituting the definitions of the equilibrium constants in terms of volume fractions (Eqs.  

(I.3 and I.4)) and rearranging gives: 

 

  

 

�̃�′ = (1 −∑(𝑖 − 1)
𝐶𝑖
𝑙

𝐶𝑎𝑙𝑐

∞

𝑖=2

) �̃�𝑀
′ +∑((𝑖 − 1)

𝐶𝑖
𝑙

𝐶𝑎𝑙𝑐
) �̃�𝑁𝑚𝑒𝑟

′

∞

𝑖=2

 I.19 
 

 
�̃�′ − �̃�𝑀

′ = Δ�̃� =∑(𝑖 − 1)
𝐶𝑖
𝑙

𝐶𝑎𝑙𝑐
(�̃�𝑁𝑚𝑒𝑟
′ − �̃�𝑀

′ )

∞

𝑖=2

=∑(𝑖 − 1)
𝐶𝑖
𝑙

𝐶𝑎𝑙𝑐
Δ�̃�𝑁

∞

𝑖=2

 I.20 

 

 
Δ�̃� =∑(𝑖 − 1)

Φ𝑁𝑚𝑒𝑟/𝑉𝑁𝑚𝑒𝑟
Φ𝑎𝑙𝑐/𝑉𝑀

Δ�̃�𝑁

∞

𝑖=2

=∑
(𝑖 − 1)

𝑖

Φ𝑁𝑚𝑒𝑟
Φ𝑎𝑙𝑐

Δ�̃�𝑁

∞

𝑖=2

 
I.21 

 
Δ�̃� = [

𝐾𝐶,𝐷
𝑉𝑀

Φ𝑀
2 +

𝐾𝐶,𝑁𝑚𝑒𝑟
𝑉𝑀

Φ𝑀(Φ𝑎𝑙𝑐 −Φ𝑀)]
Δ�̃�𝑁
Φ𝑎𝑙𝑐

 I.22 
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Chapter 8.  Conclusions and Future Directions 
 

The objective of this project is to combine spectroscopic tools and computational techniques to 

improve the thermodynamic modeling of systems with hydrogen bonding. To this end, this 

document begins by outlining two common methods for modeling association in thermodynamics: 

chemical theory and Wertheim’s theory. Noting a gap in literature on the relationship between 

concentration- and activity-based equilibrium constants for the liquid, we first explore this 

question in Chapter 2. It is shown that the two equilibrium constants can be related by using Flory’s 

theory [30] and that the concentration-based equilibrium constant, 𝐾𝐶, can only be assumed to be 

independent of composition when residual contributions to non-ideality are also constant. In 

Chapter 3, 𝐾𝐶, which is the association parameter in chemical theory, is shown to be identical to 

Δ𝐴𝑖𝐷𝑗, the association parameter in Wertheim’s theory for alcohol + inert type systems under 

reasonable assumptions of zero excess volume and universal packing factor. A Wertheim activity 

coefficient model (WAG) is also introduced based on methods developed by Michelsen et al. [66]. 

Furthermore, algebraic and numerical proofs of the equivalence of the two theories are derived for 

these systems when only linear species are present. This finding is extended to other systems that 

contain both associating and solvating components in Chapter 4. The activity coefficient model 

developed in Chapter 3 is tested in Chapter 5 using literature (CPA) Δ𝐴𝑖𝐷𝑗 values and its 

performance is compared to that of existing association equations of state. It is found that, when 

combined with NRTL or Nagata’s residual term and fitted with four parameters, the WAG models 

are able to capture the behavior of methanol and ethanol-containing systems well, generating fits 

with the lowest overall SSQ value. Among the two parameter models, WAG-SH, which combines 

WAG with Scatchard-Hildebrand provided the best fits and predictions of the experimental data. 

Indeed, WAG-SH performed similarly or better than the association equations of state tested, PC-
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SAFT and CPA. Chapters 6 and 7 describe work on the analysis of IR spectra for the calculation 

of  Δ𝐴𝑖𝐷𝑗 values. In the former, the hydroxyl vibrational region in IR spectra of alcohol + alkane 

systems is quantified for the first time and related to the apparent concentration of alcohol in the 

mixture. This is accomplished by using relationships between IR properties found by MD + QM 

calculations of hydrogen bonded clusters. In Chapter 7, preliminary calculations for the value of 

Δ𝐴𝑖𝐷𝑗 from the analysis of IR spectra of n-butanol + cyclohexane mixtures are shown. This 

deconvolution procedure lies beyond the scope of this thesis. However, detailed recommendations 

for future directions in the IR analysis portion of this project are outlined. Other future work is 

categorized and summarized in Table 8.1.  

Table 8.1: Accomplished and future goals for research project 

Project Goal 

C
o
m

p
le

te
d

  

F
u

tu
re

 W
o
rk

 

T
h
er

m
o
d

y
n
am

ic
 M

o
d
el

 

Explore similarities and differences between association modeling theories   

Develop an activity coefficient model for Wertheim’s theory (WAG model)   

Test modeling capabilities of WAG for VLE and LLE of alcohol + inert 

systems 

  

Test predictive power for LLE of ternary systems of alcohol + inert systems   

Test modeling capabilities of WAG for systems with association and solvation   

Test modeling capabilities of WAG for components that only solvate   

Develop a 2-parameter WAG model analogous to 2-K CLAM   

Create an AspenPlus® user model for industrial partners to explore   

Release AspenPlus® user model for public use   

S
p
ec

tr
o
sc

o
p
y

 Establish reliable IR protocols and benchmark methods against literature   

Establish reliable NMR protocols and benchmark methods against literature   

Assemble database of spectroscopic data for alcohol + inert systems   

Assemble database of spectroscopic data for other challenging systems   
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Table 8.1 (cont’d) 

 

Project Goal 

C
o
m

p
le

te
d

  

F
u

tu
re

 W
o
rk

 

M
D

 +
 Q

M
 

Develop scripts and run MD simulations   

Develop scripts to analyze MD simulations for hydrogen bonding information   

Develop scripts to conduct QM calculations on linear clusters    

Develop scripts to conduct QM calculations on non-linear clusters   

Run MD+QM calculations for alcohol + inert systems   

Run MD+QM calculations for other challenging systems   

O
v
er

al
l 

Use MD+QM findings to quantify IR peak   

Use MD+QM findings to quantify concentration of free ends   

Calculate association parameters from spectroscopy (IR, NMR) and MD + QM   

Test modeling and predictive power of WAG with new association parameters   

 

For the thermodynamic model development, the derivation of the WAG function should be 

revisited to relax some of its underlying assumptions such as the use of a constant packing fraction. 

Moreover, the WAG model should be tested for more systems that contain solvating components. 

An especially complex case occurs when components that do not associate but are capable of 

solvating, such as dioxane and chloroform, are mixed. In these cases, the combining rules 

introduced in Chapter 5 cannot be used and association parameters must be estimated through 

other means. Furthermore, for consistency across all phases, it will be beneficial to extend the 

WAG model to be able to capture association in the vapor phase by adapting the Hayden O’Connell 

model [79]. Once this is completed, the WAG user model, which has already been developed to 

function with AspenPlus®, a process design software package, can be released for commercial 

use. In this work, we developed a chemical theory variation with two equilibrium constants: one 

for the formation of a dimer and another for subsequent association. The model is shown to be 
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more capable of fitting NMR chemical shifts than single parameter models. However, Wertheim’s 

theory is more easily generalizable than chemical theory. Therefore, future efforts should be 

invested in developing a Wertheim association theory that allows for two association parameters. 

In terms of computational experimentation, future work should include MD + QM calculations 

like those developed in Chapter 6 for different classes of systems. Additionally, the characteristics 

of non-linear clusters, such as ring and branched structures, should be investigated. 
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