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ABSTRACT 

A COMPUTATIONAL INVESTIGATION FOR TWO-DIMENSIONAL EDDY CURRENT 

TESTING PROBLEMS USING SUBREGION FINITE ELEMENT METHOD 

By 

Mohammad Rawhi Alrawashdeh 

A novel computational technique is presented in this thesis which improves Finite Element 

Method (FEM) in solving both direct and inverse problems for nondestructive evaluation (NDE) 

applications. Subregion method is used to select and isolate area of interest that design parameters 

need to be updated from entire domain. An elastic mesh generator is developed in this thesis to 

generate optimal meshes in the selected area to save connectivity matrix until having the most 

accurate design parameters. Using Subregion FEM (SFEM) in solving inverse problems will help 

in minimizing processing time and memory usage in addition of reducing solution complexity. An 

Eddy Current Testing (ECT) problem of detecting and characterizing the location and shape of 

surface and subsurface defects by separating the defects from entire domain is investigated to 

validate the presented SFEM algorithm. The elastic mesh generator is derived to update the pre-

selected design parameters of the defect in each iteration. This novel meshing technique adds the 

specialty of using subregion method in inverse problems, where, elements and nodes numbering 

is saved inside and outside the defect region. Both of Genetic Algorithm (GA) and Simulated 

Annealing (SA) based optimization techniques are developed to get the accurate defect parameters. 

A parametric study of those defect parameters including size, depth and position is also presented 

to study the defect response problems by comparing with classical forward formulation. The 

presented SFEM results have been verified computationally using conventional FEM and 

COMSOL Multiphysics. Excellent results of signal agreement and processing time minimization 

with a reduction of 90% with an accuracy of 98% have been achieved. In addition, the presented 

SFEM algorithm has been verified experimentally using Aluminum (T6061-T6) and steel samples. 



The experiments are carried out for the first time using an elongated excitation coil in a fixed 

position mounted on the top of the sample and Tunneling Magnetoresistive (TMR) sensor to 

measure magnetic field. The measured magnetic fields were used as input to the inverse SFEM 

solver and machined artificial defects were characterized with excellent accuracy. 
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1 Introduction  

In the year of 1831, the English scientist Michael Faraday discovered electromagnetic induction.  

Faraday found an electric current would flow through the conductor when a conductor passes 

through a magnetic field. This current would flow if there is a closed path through which the 

current can circulate. On that time, the terminology of eddy current was not a fundamental part in 

research like these days. Eddy current was called sometime as Foucault currents referring to the 

French scientist Leon Foucault who generated magnetic fields in 1951. Foucault experiment was 

in placing a moving copper desk in a strong magnetic field. This generated magnetic field is 

generated due to the eddy current existence.  

The basic explanation for ECT of crack detection that will be presented in this thesis is that a 

magnetic field will be resulted from AC current excitation. This magnetic field will induce an eddy 

current starting on the surface and deeply inside the conductor. An opposing magnetic field due to 

the flow of eddy currents will be produced, while we can detect the resultant magnetic field density 

values at some fixed measuring points.  This coil has the flexibility of moving to scan all surface 

of the conductor to detect defect(s). Once the defect starts to interrupt the paths of the eddy current, 

that will lead to a direct effect on the opposing magnetic field in the entire material in general and 

on a pre-determined measuring points in specific. These measuring points will be used to define 

some parameters later to examine the effect of the defect on the magnetic flux density on these 

points. That defect could be detected using the concept of ECT as shown in Figure 1-1. 
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Figure 1-1 Side view of the effect of the defect on the eddy current regular paths (a) Interrupted 

eddy current paths due to the defect (b) Defect free conductor with regular eddy current paths. 

A computational model, by improving FEM using subregion method is presented in this thesis to 

study both direct and inverse ECT problems. Using SFEM in solving such problems will reduce 

processing time and memory usage in tangible values compared to conventional FEM. 

The introduction of this thesis will give a general view for different techniques used in 

nondestructive evaluation (NDE) technology. Then, we will focus on ECT since we used the 

presented SFEM algorithm to solve ECT problems to validate the proposed SFEM methodology. 

The mathematical derivation for SFEM and elastic meshing and how they are used in solving ECT 

problems will be presented in Chapters: 2, 3, 4 and 5 in this thesis. While, the experimental part 

of setting up an ECT experiment will be explained in detail in Chapter 6. The final chapter will 

give a complete discussion of the results found in this thesis in addition to the recommended future 

work. 
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1.1 Nondestructive Evaluation 

Nondestructive testing (NDT) is a wide group of analysis techniques used in science and 

technology industry to evaluate the properties of a material, component or system without causing 

damage. The terms nondestructive inspection (NDI) and nondestructive evaluation (NDE) are also 

commonly used to describe this technology. Because NDT does not permanently alter the article 

being inspected, it is a highly valuable technique that can save both money and time in product 

evaluation, troubleshooting, and research. The six most frequently used NDT methods in industry 

are eddy-current [1-5] , magnetic-particle [6-8], liquid penetrant [9-11], radiographic [6, 12-16], 

ultrasonic [17-22], and visual testing [6, 20, 23, 24]. NDT is commonly used in forensic 

engineering [25-28], mechanical engineering [29-31], petroleum engineering [32-34], electrical 

engineering [24, 35-38] and civil engineering [30, 39-42], .  

NDT methods may rely upon use of electromagnetic radiation, sound, and inherent properties of 

materials to examine samples. This includes some kinds of microscopy to examine external 

surfaces in detail, although sample preparation techniques for metallography, optical microscopy 

and electron microscopy are generally destructive as the surfaces must be made smooth through 

polishing or the sample must be electron transparent in thickness. The inside of a sample can be 

examined with penetrating radiation, such as X-rays, neutrons or terahertz radiation. Sound waves 

are utilized in the case of ultrasonic testing. Contrast between a defect and the bulk of the sample 

may be enhanced for visual examination by the unaided eye by using liquids to penetrate fatigue 

cracks. One method (liquid penetrant testing) involves using dyes, fluorescent or non-fluorescent, 

in fluids for non-magnetic materials, usually metals. Another commonly used NDT method used 

on ferrous materials involves the application of fine iron particles (either liquid or dry dust) that 

are applied to a part while it is in an externally magnetized state (magnetic-particle testing). The 
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particles will be attracted to leakage fields within the test object, and form on the objects surface. 

Magnetic particle testing can reveal surface and some sub-surface defects within the part. 

Moreover, thermoelectric effect uses thermal properties of an alloy to quickly and easily 

characterize many alloys. The chemical test, or chemical spot test method, utilizes application of 

sensitive chemicals that can indicate the presence of individual alloying elements. Electrochemical 

methods, such as electrochemical fatigue crack sensors, utilize the tendency of metal structural 

material to oxidize readily to detect progressive damage [43-47]. 

1.2 Eddy Current Testing  

Eddy-current testing (ECT) is one of many electromagnetic testing methods used in nondestructive 

testing (NDT) making use of electromagnetic induction to detect and characterize surface and sub-

surface flaws in conductive materials. 

Eddy current testing as a technique for testing finds its roots in electromagnetism. Eddy currents 

were first observed by François Arago in 1824, but French physicist Léon Foucault is credited 

with discovering them in 1855. ECT began largely as a result of the English scientist Michael 

Faraday's discovery of electromagnetic induction in 1831. Faraday discovered that when there is 

a closed path through which current can circulate and a time-varying magnetic field passes through 

a conductor (or vice versa), an electric current flows through this conductor. 

In 1879, another English-born scientist, David Edward Hughes, demonstrated how the properties 

of a coil change when placed in contact with metals of different conductivity and permeability, 

which was applied to metallurgical sorting tests.  

Much of the development of ECT as an nondestructive testing technique for industrial applications 

was carried out during World War II in Germany. Professor Friedrich Förster while working for 

https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Eddy_currents
https://en.wikipedia.org/wiki/Fran%C3%A7ois_Arago
https://en.wikipedia.org/wiki/L%C3%A9on_Foucault
https://en.wikipedia.org/wiki/Michael_Faraday
https://en.wikipedia.org/wiki/Michael_Faraday
https://en.wikipedia.org/wiki/Electromagnetic_induction
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/David_Edward_Hughes
https://en.wikipedia.org/wiki/Electromagnetic_coil
https://en.wikipedia.org/wiki/Nondestructive_testing
https://en.wikipedia.org/wiki/World_War_II
https://en.wikipedia.org/wiki/Germany
https://en.wikipedia.org/w/index.php?title=Friedrich_F%C3%B6rster&action=edit&redlink=1
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the Kaiser-Wilhelm Institute (now the Kaiser Wilhelm Society) adapted eddy current technology 

to industrial use, developing instruments measuring conductivity and sorting mixed ferrous 

components. After the war, in 1948, Förster founded a company, now called the Foerster Group 

where he made great strides in developing practical ECT instruments and marketing them.  

Eddy current testing is now a widely used and well understood inspection technique for flaw 

detection, as well as thickness and conductivity measurements. Frost & Sullivan analysis in the 

global NDT equipment market in 2012 estimated the magnetic and electromagnetic NDT 

equipment market at $220 million, which includes conventional eddy current, magnetic particle 

inspection, eddy current array, and remote-field testing. This market is projected to grow at 7.5% 

compounded annual growth rate to approximately $315 million by 2016.  

In its most basic form, the single-element ECT probe where a coil of conductive wire is excited 

with an alternating electrical current. This wire coil produces an alternating magnetic field around 

itself. The magnetic field oscillates at the same frequency as the current running through the coil. 

When the coil approaches a conductive material, eddy currents are induced in the material. 

Variations in the electrical conductivity and magnetic permeability of the test object, and the 

presence of defects causes a change in eddy current and a corresponding change in phase and 

amplitude that can be detected by measuring the impedance changes in the coil, which is a telltale 

sign of the presence of defects. This is the basis of standard (pancake coil) ECT. 

ECT has a very wide range of applications. Because ECT is electrical in nature, it is limited to 

conductive material. There are also physical limits to generating eddy currents and depth of 

penetration (skin depth).  

https://en.wikipedia.org/wiki/Kaiser_Wilhelm_Society
https://en.wikipedia.org/w/index.php?title=Foerster_Group&action=edit&redlink=1
https://en.wikipedia.org/wiki/Magnetic_particle_inspection
https://en.wikipedia.org/wiki/Magnetic_particle_inspection
https://en.wikipedia.org/wiki/Eddy-current_testing#Eddy_current_array
https://en.wikipedia.org/wiki/Remote_field_testing
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Skin_depth
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The two major applications of ECT are surface inspection [48-51] and tubing inspections [49, 52-

55]. Surface inspection is used extensively in the aerospace industry, but also in the petrochemical 

industry. The technique is very sensitive and can detect tight cracks. Surface inspection can be 

performed both on ferromagnetic and non-ferromagnetic materials.  

Tubing inspection is generally limited to non-ferromagnetic tubing and is known as conventional 

ECT. Conventional ECT is used for inspecting steam generator tubing in nuclear plants and heat 

exchangers tubing in power and petrochemical industries. The technique is very sensitive to detect 

and size pits. Wall loss or corrosion can be detected but sizing is not accurate. 

A variation of conventional ECT for partially magnetic materials is full saturation ECT. In this 

technique, permeability variations are suppressed by applying a magnetic field. The saturation 

probes contain conventional eddy current coils and magnets. This inspection is used on partially 

ferromagnetic materials such as nickel alloys, duplex alloys, and thin-ferromagnetic materials such 

as ferritic chromium molybdenum stainless steel. The application of a saturation eddy current 

technique depends on the permeability of the material, tube thickness, and diameter. A method 

used for carbon steel tubing is remote field ECT. This method is sensitive to general wall loss and 

not sensitive to small pits and cracks [56-59]. 

When it comes to surface applications, the performance of any given inspection technique depends 

greatly on the specific conditions - mostly the types of materials and defects, but also surface 

conditions, etc. [60]. However, in most situations, the following statements for conventional ECT 

are true: 

• Effective on coatings/paint: yes 

https://en.wikipedia.org/wiki/Petrochemical_industry
https://en.wikipedia.org/wiki/Petrochemical_industry
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• Computerized record keeping: partial 

• 3D/Advanced imaging: none 

• User dependence: high 

• Speed: low 

• Post-inspection analysis: none 

• Requires chemicals/consumables: no 

ECT is also useful in making electrical conductivity and coating thickness measurements, among 

others [61]. 

To circumvent some of the shortcomings of conventional ECT, other ECT techniques were 

developed with various successes. Conventional ECT uses sinusoidal alternating current of a 

particular frequency to excite the probe. Pulsed eddy current (PEC) testing uses a step function 

voltage to excite the probe. The advantage of using a step function voltage is that such a voltage 

contains a range of frequencies. As a result, the electromagnetic response to several different 

frequencies can be measured with just a single step [62, 63]. Since depth of penetration depends 

on the excitation frequency, information from a range of depths can be obtained all at once. If 

measurements are made in the time domain, i.e., by looking at the strength of the signal as a 

function of time, indications produced by defects and other features near the inspection coil can 

be seen first and more distant features will be seen later in time.  

When comparing PEC testing with the conventional ECT, ECT can be regarded as a continuous-

wave method where propagation takes place at a single frequency or, more precisely, over a very 

narrow-frequency bandwidth. With pulse methods, the frequencies are excited over a wide band, 

the extent of which varies inversely with the pulse length; this allows multi-frequency operation. 

https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Step_function
https://en.wikipedia.org/wiki/Bandwidth_%28signal_processing%29
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The total amount of energy dissipated within a given period of time is considerably less for pulsed 

waves than for continuous waves of the same intensity, thus allowing higher input voltages to be 

applied to the exciting coil for PEC than conventional ECT.  

One of the advantage of this type of testing is that there is no need for direct contact with the tested 

object. Testing can be performed through coatings, sheathings, corrosion products and insulation 

materials. Through this way, even high-temperature inspections are possible. 

Eddy current array (ECA) and conventional ECT share the same basic working principles. ECA 

technology provides the ability to electronically drive an array of coils (i.e., multiple coils) 

arranged in a specific pattern called a topology that generates a sensitivity profile suited to the 

target defects. Data acquisition is achieved by multiplexing the coils in a special pattern to avoid 

mutual inductance between the individual coils [64, 65]. The benefits of ECA are:  

• Faster inspections 

• Wider coverage 

• Less operator dependence - array probes yield more consistent results compared to manual 

raster scans 

• Better detection capabilities 

• Easier analysis because of simpler scan patterns 

• Improved positioning and sizing because of encoded data 

• Array probes can easily be designed to be flexible or shaped to specifications, making hard-

to-reach areas easier to inspect 

https://en.wikipedia.org/wiki/Corrosion
https://en.wikipedia.org/wiki/Building_insulation
https://en.wikipedia.org/wiki/Multiplexing
https://en.wikipedia.org/wiki/Inductance
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ECA technology provides a remarkably powerful tool and saves significant time during 

inspections. For example, ECA inspection in carbon steel welds is regulated by ASTM standard 

E3052. 

In EC NDE, a different, albeit physically closely related challenge is the detection of deeply lying 

flaws and inhomogeneities in electrically conducting solid materials. In the traditional version of 

ECT, an alternating (AC) magnetic field is used to induce eddy currents inside the material to be 

investigated. If the material contains a crack or a flaw, which make the spatial distribution of the 

electrical conductivity non-uniform, the path of the eddy currents is perturbed and the impedance 

of the coil, which generates the AC magnetic field is modified. By measuring the impedance of 

this coil, a crack can hence be detected. Since the eddy currents are generated by an AC magnetic 

field, their penetration into the subsurface region of the material is limited by the skin effect. The 

applicability of the traditional version of ECT is therefore limited to the analysis of the immediate 

vicinity of the surface of a material, usually of the order of millimeters. Attempts to overcome this 

fundamental limitation using low frequency coils and superconducting magnetic field sensors have 

not led to widespread applications [66, 67]. 

A recent technique, referred to as Lorentz force ECT (LET), exploits the advantages of applying 

DC magnetic fields and relative motion providing deep and relatively fast testing of electrically 

conducting materials. In principle, LET represents a modification of the traditional ECT from 

which it differs in two aspects, namely (i) how eddy currents are induced and (ii) how their 

perturbation is detected. In LET, eddy currents are generated by providing the relative motion 

between the conductor under test and a permanent magnet. If the magnet is passing by a defect, 

http://www.astm.org/Standards/E3052.htm
http://www.astm.org/Standards/E3052.htm
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the Lorentz force acting on it shows a distortion whose detection is the key for the LET working 

principle. If the object is free of defects, the resulting Lorentz force remains constant. 

One of the major advantages of eddy current as an NDT tool is the variety of inspections and 

measurements that can be performed. In proper circumstances, eddy currents can be used for crack 

detection, material thickness measurement, coating thickness measurement and conductivity 

measurement. Some of the advantages of eddy current inspection include that it is sensitive to 

small cracks and it detects surface and near surface defects by giving immediate results. There are 

few limitations of eddy current inspection include [68-70]: only conductive materials can be 

inspected, surface must be accessible to the probe, skill and training required is more extensive 

than other techniques, surface finishing and roughness may interfere, reference standards needed 

for setup and flaws such as delamination’s that lie parallel to the probe coil winding and probe 

scan direction are undetectable 

1.3 Motivation 

Finite Element Method (FEM) has been widely used for solving different electromagnetic 

problems [71-76].  ECT is an example of electromagnetic quasi-static problems, which can be 

solved by different methods using FEM [77, 78]. Computational methods, which lead later to 

different commercial FEM software, can use different kinds of mathematical and numerical 

techniques that play a key role in improving FEM. The idea of subregion method was applied 

successfully in conjunction with many computational techniques, especially in Finite Element 

Method for solving electromagnetic problems to reduce processing time and saving issues [79-83]. 

Frontal method, as an example of subregion method was used for repeated solution of large sparse 

matrices in electromagnetic problems [84]. SFEM was used before in designing machine pole at 
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given values for magnetic flux density as some measuring points [85]. Dividing solution domain 

of a problem to multiple regions regarding the physical properties or areas of interest and 

recombine them later using subregion method can be used in ECT techniques, where we can detect 

and reconstruct the shape of different types of defects. This will be useful in testing the 

performance of the entire system that contains these metals. These metals maybe parts of aircrafts, 

vehicles or industrial machines and the defects may be close to surface, on surface or deep inside 

the metal. In this thesis, we developed a general algorithm for all defect shapes and positions. The 

numerical results have been verified using COMSOL and conventional FEM. The presented 

algorithms can be used in industry and to improve commercial software especially in simulating 

complicated shape problems that needs long processing time.  

Engineering design problems can be defined in two opposing ways according to given and required 

data. Direct or forward problems, which can be, defined as the problems of calculating what should 

be observed for a particular model.. Where inverse problem can be defined as the process of 

calculating from a set of observations the causal factors that produced them: for example, 

calculating an image in computer tomography, source reconstructing in acoustics, or calculating 

the density of the Earth from measurements of its gravity field [86-89]. It is called an inverse 

problem because it starts with the results and then calculates the causes. Inverse problems are some 

of the most important mathematical problems in science and mathematics because they tell us 

about parameters that we cannot directly observe. They have wide applications in optics, radar, 

acoustics, communication theory, signal processing, medical imaging, computer vision, 

geophysics, oceanography, astronomy, remote sensing, natural language processing, machine 

learning, nondestructive testing, and many other fields [90-94]. Figure 1-1 shows how design 

process rarely calls upon the engineer to solve the direct problem only.  
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Figure 1-2 Block diagram for direct problems 

When an electromagnetic system is given, using such well- known methods as finite elements or 

boundary elements [95, 96], for example, it may be analyzed for its electromagnetic fields; these 

are then used to predict the system’s performance defined by such as quantities forces, voltages, 

flux linkages and so on.  

The inverse problem in this thesis of detecting and characterizing hidden defects inside metals can 

be described in Figure 1-2, where we can get our optimal solution by finding the best matching 

defect from known parameters of the current density, permeability and conductivity of the entire 

problem. 

 

Figure 1-3 Block diagram for inverse problems 

ECT, as seen in Figure 1-4; came from the idea of applying an AC source, which generates an AC 

current in the connected coil that is close to the conductor surface. 
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Figure 1-4 Eddy current formulation in conductive materials  

As an example of practical application in industry, ECT is used in aircrafts for detecting defects in 

different multilayer aircraft structures and study some selective depth techniques [97, 98] .  In 

nuclear plant structures, [99] showed how to design Rotating Magnetic Field Eddy-Current Probe 

(RoFEC) eddy-current probe composed of three windings excited by three-phase as current 

sources. FEM is one of the leading computational tools that used in ECT. In general, and from 

computational point of view, FEM was used in ECT techniques for the purpose of detecting defects 

[97-106]. Recently, domain decomposition FEM was used to divide the solution into both test 

sample and core domains [107]. The problems of processing speed and saving storage were types 

of major challenges for researchers who use FEM in their practical applications simulations. 

Graphical Processing Units- Finite Element Method (GPU-FEM) was used to solve such problems 

for different defects shapes [108-113].   In this thesis, subregion method, which is widely used in 

structural engineering is improved for solving Forward ECT problems by studying multiple defects 

with different angles, shapes and positions. Then, this algorithm is improved and developed to 

study some defects characterization problems, where we use inverse problem mathematical 

techniques and both of Genetic Algorithm and Simulated Annealing optimization methods to get 

the best shape of the defect that is close to the “ground truth”. We developed and improved an 

elastic meshing method to track these hidden defects, so we can only conduct FEM computation 
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within defect region efficiently. Finally, all solutions can be merged using the sub-regional FEM. 

This process will stop when we get the optimal defect shape. 

Defect Characterization techniques vary according to multiple factors.  A C-Scan imaging method 

was presented in [106] using LabView for DAQ, and defect evaluation is carried out. Experimental 

work is widely used in defects and cracks detection and characterization. Infrared Thermography 

was used in [105] to inspect large areas non-invasively rapidly and provide full field images in a 

noncontact nature.  

1.4 Problem Statement  

In this thesis, we have derived new algorithm contains an integration between subregion Method, 

which was introduced in [85] for solving some magnetostatic problems with an Elastic Mesh 

Generation scheme that was introduced in [114] for solving pole machine problems, where we 

used Genetic Algorithm and Simulated Annealing optimization techniques for minimizing the cost 

function and get the optimal shape of the defect shape [115, 116].  

In our two dimensional (2-D) Mmagnetostatic and ECT problems, we started from the adaptive 

mesh generator which was introduced in [116, 117]. We derived our FEM solver starting from [95, 

118], which presented how classical FEM algorithms can be derived for solving different EM 

problems. Detecting defects in metals using classical FEM will not be a problem from processing 

time side since FEM analysis will be applied only one time for the entire domain. It is necessary 

to know the exact shape of defects shapes. To do that, an iterative method can be applied and 

different defect shapes will be found at each iteration until having the optimal 

solution/approximation. Be noted that the entire domain has a fixed surface area and this area 

contains the reconstructed defect each iteration. To do that, we will need a flexible and iterative 

FEM mesh generator. There are several methods for developing some algorithms for generating 



 

15 

 

meshes as in [119-121]. In [117], a parameter based mesh generator was used to generate meshes 

for the purpose of characterizing two dimensional defects as shown in [108, 109, 115, 116] where 

the idea for this mesh generator is to change the number of nodes and elements and then to change 

the related connectivity matrix at each iteration. The core in SFEM is to divide the entire domain 

to two different regions; first, defect region and second, the reminder domain. These two regions 

will be connected to each other using interfacing nodes. Those nodes should have fixed positions 

and they should not change their positions. Therefore, we will not be able to use the methods 

developed in [117] to solve inverse SFEM problems. As a result, we used an elastic mesh generator 

that saves interfacing nodes positions to generate meshes and nodes to solve inverse SFEM 

problems. Examples for these adaptive elastic meshing techniques are presented in [122, 123]. For 

the presented SFEM to be used in inverse ECT problems, the mesh generator that was presented 

in [114] was used to derive an elastic mesh generator to update meshing in the defect region each 

iteration. This update should continue until getting the optimal defect shape where we used both 

Simulated Annealing and Genetic Algorithm for this issue. Genetic Algorithm [124-129] and 

Simulated Annealing [129-133] are used to solve different inverse problems in computational 

science and engineering. We get an excellent defect characterization and detection matching 

between our SFEM results and [108-116] . The presented results in this thesis have been verified 

through COMSOL in addition to an experimental validation that was done in the Nodestructive 

Evaluation Lab at Michigan State University. Those results prove that our presented algorithm is 

valid and can be extended to more advanced applications as will be shown in this study.  

1.5 Thesis Contributions  

This study passes through multiple steps as introduced in previous sections. The main contribution 

in this thesis is considered computational by developing new algorithms for solving computational 
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electromagnetic problems. To verify the presented algorithm, we used it in solving multiple direct 

and inverse 2D-ECT problems. Later, we set up a complete experiment to verify the numerical 

results experimentally and we get an excellent computational and experimental validation.  We 

can summarize the contributions in this doctoral thesis as: 

1) Improving conventional Finite Element Method (FEM) by using Subregion method by 

improving FEM so, regions will be assembled instead of elements. This will improve 

processing time and memory usage for solving inverse problems. 

2) Developing a Subregion 2D-FEM solution for Magnetostatic problems. We want to find 

the magnetic field and vector potential lines that resulted from passing known current 

through cable. We used classical FEM to validate our algorithm for the same problem 

parameters. This work was done before in [31] and we started developing our algorithm by 

using it in solving different Magnetostatic problems to verify our algorithm before 

improving it for solving Eddy Current problems. 

3) We updated the SFEM solver to solve direct Eddy Current problems. This study is done 

for the first time for these kinds of problems. We designed our algorithm so it can solve 

any 2D SFEM-ECT problems. We studied multiple defect shapes with different angles and 

positions. After that, we compared between our results and other published results in 

addition to COMSOL and experimental validation. We get excellent matching between 

these results.  

4) We improved our methodology that we used in solving direct SFEM-ECT problems so we 

can solve inverse ECT-FEM problems. Solving these inverse problems led to find and 

detect hidden defects inside metals. We used both Genetic Algorithm and Simulated 
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Annealing as optimization techniques to minimize cost function. This study has been done 

for the first time and will help to minimize processing time and in memory saving. 

5) In addition to computational and COMSOL validation, a complete setup for an 

experimental part was done for testing both of a steel plate (0.15 - 0.30% carbon and Fe) 

and Aluminum (T6061-T6) samples with defects. Moreover, we get an excellent matching 

between SFEM and experimental results. We used TMR sensor to measure the component 

of the magnetic field normal to the sample top surface.  

6) Deriving an elastic mesh generator that can be used for subregion problems. This technique 

has the property of giving a unique solution for gridding the divided regions into elements 

and changing elements distributions within these regions with keeping the same 

connectivity between these elements. This idea for this technique was introduced in [56] 

in solving some Magnetostatic problems. This technique is improved in this study and 

merged with SFEM be one algorithm that can solve any inverse SFEM problem. 

7) The major part of minimizing computational processing time up to 90% compared to 

classical FEM with a reconstruction defect shape accuracy of 98% was achieved which can 

lead to use this technique in online and in field practical testing problems. 

8) A complete description for future work to extend the presented algorithm to serve more 

complicated projects will be presented in Chapter Seven in this dissertation. 
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2 Finite Element Method 

Computational Electromagnetics plays an important role in modeling and solving different NDE 

problems. Those methods helps to understand the underlying physics, more cost effective testbed 

for NDE sensors development and developing different numerical algorithms can be used to 

improve commercial software used in NDE in addition comparing with experimental results [134-

138].  

2.1 Finite Element Computation for Two-Dimensional Magneto-Static Problems 

The presented algorithm in solving ECT problems using SFEM is derived from solving and 

analyzing Magneto-Static problems by using SFEM find the optimal shape of a magnetic pole 

piece for obtaining a constant air gap flux density and finding the magnetic flux density that 

resulted from passing current through coil [85]. Therefore, the first step is to validate the proposed 

algorithm to these magnetostatic problems. After that, moving to the next step which is the core 

of this research by solving Eddy Current problems to detect hidden defects and then to characterize 

these defects in order to evaluate the overall performance. Finally, these algorithms can be used to 

solve a complete inverse problem, which is another objective of this thesis.    

Using SFEM solve a complete magnetostatic problem means to solve the related differential 

equation using FEM after dividing the domain to specific subregions. A complete solution for the 

magnetic vector potential will be demonstrated for a sheathed cable through this method. After 

that, these potential lines will be drawn inside the cable as shown in Figure 2-1 [95]. 
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Figure 2-1 Cable System:(a) Commercial Board to wire connecter, rectangular for flat cables (b) 

a 2D cross sectional for sheathed infinitely long cable carrying current through inner conductor 

and returned through the outside sheath. 

We need to start from Maxwell’s equations to derive the governing second order differential 

equation for the system shown in Figure 2-1 to get the values of magnetic potentials. These 

equations are: 

D  =        (2.1) 

0B =    
(2.2) 

D
H J

t


 = +


   

(2.3) 

0E =    
(2.4) 

where D  is electric flux density, D

t




 is displacement current which is negligible at low 

frequencies since it has low value compared to conductive current J [95, 118],  𝜌 is the electric 

charge density, B is the magnetic flux density, H is the magnetic field intensity,  J  is the 

conductive current density, and E  is the electric field intensity. Where we can relate J is to E  

by the constitutive relationship: 
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eJ E=    (2.5) 

where 𝜎𝑒 is the material electric conductivity.  B  is related to H as D  is related to E  by the 

constitutive relationships: 

B H=    (2.6a) 

D E=     
(2.6b) 

where   is the permittivity and 𝜇 is the permeability. In addition to these equations, the magnetic 

vector potential A  is defined by: 

           B A=    
 (2.7) 

Now, for the vector A  to be unique and therefore determinable, its divergence must be defined. 

This can be done by Coulomb Gauge as: 

                                 0A =     
(2.8) 

The subject of computational electromagnetics may be divided into low and high frequency 

electromagnetics. It is a natural separation in view of the governing equations and the specialized 

nature of the division between low and high frequency electromagnetics. Typical low frequency 

devices are electrical machines, electronic devices, transmission lines, and magnetic recording 

heads whereas high frequency devices are waveguides, resonant cavities, and radiating devices 

such as antennae. In terms of equations, the difference between these two systems is that in low 

frequency devices, displacement current is negligible while in high frequency devices it is not.  

Therefore, for high frequency devices, although D  is small, its rate of change is high, making 

D

t




 of equation (2.3) will be reduced to conductive current only. However, in many problems in 

lossless media, where medium has zero conductivity 𝜎𝑒, no conduction current may exist in 

keeping with equation (2.5).  
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Since H B= and B A= where   is the reluctivity: 

                            H B A = =      
(2.9) 

Substituting the magnetic field intensity H from equation (2.9) into (2.3), so the result curl of curl 

of the magnetic vector potential will be will be: ( )A J  =  . 

Since   is constant, so:  ( ) 2A A A =   −  and 0A =  leading to: 

                                
2 A J−  =     (2.10) 

 

Although we have continued variable governed by one equation, we still must solve for three 

components. A great simplification arises in two dimensional problems where no changes occur 

in one direction as in z- direction, so: 0
z





. In this case, all magnetic flux will be on the xy-

plane. From curl equation (2.3) and setting Bz =0, then: J zJ= . Since equation (2.10) represents 

three Poisson’s equations for the three components of A , the vector A will have only one 

component as: A zA= where this value of vector potential will automatically have zero divergence 

in view of imposing 0
z





. The resulting equation after putting vector potential in equation (2.8) 

and thereafter equating the magnitudes we can derive the Poisson equation for the magnitude A of 

the vector potential A  as:  

                                                                    
2 A J−  =                                                                                (2.11) 

It is seen that in two dimensional Magnetostatic at least under which many design tasks are fitted, 

using the vector potential does replace a vector unknown by a scaler giving us scalar boundary 

value problem. 
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Given the current through the cable, the solution for the previous Poisson’s Equation in (2.11) will 

be the magnetic vector potentials within the cable of Figure 2-1. The idea of FEM is to divide the 

space of solution into mesh of triangles. Points in these triangles are called the interpolation nodes 

of the mesh. The variation of the potential over the triangles is assumed to be defined by a given 

trial function. The objective is to find the potentials at the nodes of the mesh so that the potential 

at any given point inside a triangle can be found using the trial function. To do this, we develop 

one equation per unknown node in the mesh. Then, this set of equations must be solved to find the 

potentials at each node. Since these equations alone are not enough to get a unique solution, some 

boundary conditions must also be considered. These boundary conditions are imposed to help us 

to get the values for all unknown nodes for our problem. 

The main objective of using FEM is to find solution for such Partial Differential equations as in 

equation (2.11) that do not have close form solution in the problem domain. 

To start the FEM equations, we will identify the energy functional that is at its minimum at the 

point of solution and has the energy is at its minimum at stable state. This function is called the 

Lagrange Function. 

The Lagrange Function for the scalar boundary problem in equation (2.11) is given by: 

                   ( )
2

2
R

L A A JA dR
 

=  − 
 

    
(2.12) 

Where the solution domain R will be meshed to triangular elements and a first order two-

dimensional trail function can be represented for any point inside these elements, as we will see in 

the following section. 
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2.2 Interpolation Using First Order Trial Functions 

In our two-dimensional problem in Figure 2.1 we will use a two-dimensional triangular element 

in order of discretizing our domain. A first order trail function ( ),x y can be represented in 

Cartesian coordinate for any point inside any arbitrary element as: 

                                                         ( ),x y a bx cy = + +     (2.13) 

Where a, b, and c are constants and are related to each triangular element, so we need to create a 

profile contains these values for each element.  

In FEM, we will use Triangular coordinates since this system provides many advantages in 

analyzing properties inside elements.  A first order trail function can be represented in Triangular 

coordinate for any point inside any arbitrary element as: 

                                               ( )1 2 3 1 1 2 2 3 3, ,         = + +    (2.14) 

Where arbitrary point P(x,y) inside the triangular element can be represented in triangular 

coordinates as we can see in Figure 2-2:   

                                                                   ( ) ( )1 2 3, , ,x y     

 

Figure 2-2 Triangular coordinates derivation per element 
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Triangular coordinate ( )1 2 3, ,    for any point P can be found directly as: 

k
k

k

h

H
 =     

(2.15) 

Where:  k represents vertex, and facing edge number as: 1,2 and 3. Hk is the shortest distance from 

vertex k to the facing edge while hk is the shortest distance from point P to related edge.  

( )1 2 3, ,   should be derived for each element. So, three equations will be needed to get these 

values so that we can find the values for each trial function for each element as in equation (2.9). 

Using linear interpolation, the Cartesian coordinates for point P within the triangular element can 

be written as: 

                              1 1 2 2 3 3x x x x  = + +     (2.7) 

                              1 1 2 2 3 3y y y y  = + +     (2.8) 

 

The third equation can be found from the summation of the three sub-triangles areas that resulted 

from the point of interest P and the vertices ( N1, N2 and N3) of the triangle where the area is: 

1

2
n ijS H N=     

(2.9) 

Where: n, i and j are cyclic permutation of :1, 2 and 3. Nij=Nji is the length of the edge that faces 

Nn and between vertices Ni and Nj.  

3 1

2
n ij

n i

S h N
=

=    
(2.10) 

From the definitions of ( )1 2 3, ,   in equation (2.9) we can write equation (2.19) as: 

3 1

2
n n ij

n i

S H N
=

=    
(2.20) 

Using (2.20) we can find the third equation as:  
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1 2 31   = + +    (2.21) 

Now, we can find the triangular coordinates ( )1 2 3, ,   in each element by solving the algebraic 

equations (2.16), (2.17) and (2.21) as: 

                    

1

1 2 3 2

1 2 3 3

1 1 1 1

x x x x

y y y y







     
     

=
     
          

   

(2.22) 

 

 

 

Then solving the previous system of equations in (2.21) as: 

                                                    

1

1

2 1 2 3

3 1 2 3

1 1 1 1

x x x x

y y y y







−

     
     

=
     
          

    

(2.23) 

 

 

 

Using Cramer’s Rule to find the inverse of the matrix as:  
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2

3

1 1 1 1

1 1 1 1

1 1 1 1
1

x x

y y y y x x

x x

y y y y x x

x x

y y y y x x
x

y







 
 
 
 
 
 
 
 

    
    =
   
      

  

 

 

(2.24) 

 

 

 

 

 

Where:    

1 2 3

1 2 3

1 1 1

x x x

y y y

 =  

So, each of the three triangular coordinates will be: 
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( ) ( ) ( )( )2 3 3 2 2 3 3 2

1

x y x y x y y y x x


− + − + −
=


  

(2.25) 

 

( ) ( ) ( )( )3 1 1 3 3 1 1 3

2

x y x y x y y y x x


− + − + −
=


  

(2.26) 

( ) ( ) ( )( )1 2 2 1 1 2 2 1

3

x y x y x y y y x x


− + − + −
=


  

(2.11) 

Therefore, we can write general equation for finding the triangular coordinates within any element 

in our domain as in equation (2.28): 

                             i i i
i

a b x c y


+ +
=


   

(2.12) 

Where: 

( )1 2 2 1i i i i ia x y x y= −  

( )1 2i i ib y y= −  

( )2 1i i ic x x= −  

And: 

( )1  mod  3 1i i= +  

( )2 1 mod  3 1i i= +  

We can define:  i= 1, 2 and 3 referring to the triangular coordinate system that we are working on 

now. For three-dimensional system i will be extended to 4.  

Now, we can find the first order trial function ( )1 2 3, ,    in terms of Cartesian coordinates using 

equation (2.22) in each triangular element as taken from equation (2.8). 

Keeping in mind that ( ),A x y is the potential at any point  P in all elements ( the entire domain),   

( )1 2 3, ,     is the first order trail function which gives an approximate value for the potential 
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inside a specific element using nodal potentials at N1, N2 and N3 ;  ϕ1, ϕ2 and ϕ3 for this element as 

shown in Figure 2-2.  

This can be verified by considering that the triangular coordinates of the three nodes of the triangle 

are (1,0,0), (0,1,0) and (0,0,1). By substituting these points, one will get ϕ1, ϕ2 and ϕ3 as the 

potentials and a linear variation of potentials along any given line inside a triangle. This trial 

function also provides a continuous variation of potentials from triangle to triangle and a 

continuous first derivative from triangle to triangle along the tangential direction of the boundary. 

And these potentials and their related derivatives will be the source for deriving the two-

dimensional FEM Solver for such problems.  

Equation (2.8) can be written as: 

                                                                  
t

  =     (2.13) 

Where:  

                         1 2 3

t
   =    (2.30) 

 

                                          

1 1 1

1

2 2 2
2

3
3 3 3

a b x c y

a b x c y

a b x c y



 



+ + 
 

   
+ +   = =

   
     + +

 
  

    

 

 

(2.31) 

 

Therefore, we can write (2.29) as:    
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 

1 1 1

2 2 2
1 2 3

3 3 3

3 3 31 1 1 2 2 2
1 2 3  

a b x c y

a b x c y

a b x c y

a b x c ya b x c y a b x c y

   

  

+ + 
 
 

+ + =
 
 

+ +
 
  

+ ++ + + +
= + +

  

  

 

 

(2.32) 

According to equation (2.12) we need to find the derivative for  per each element with respect 

to both x and y. Therefore, we need first to find
 
x




 and 

 
y




 as: 

                                
 

   31 2
1 2 3

1
t

t
b b b b

x x x x

     
= = =      

   
  (2.33) 

                                
   31 2

1 2 3

1
t

t
c c c c

y y y y

     
= = = 

     

    
(2.34) 

 

These two equations are referred to as first order differentiation matrices 

Now, we can find both 
x




 and 

y




 as: 

  
   

 
 

   
t

t t
b

x x x

  
 

 
= = =

  
   

   

(2.35a) 

  
   

 
 

   
t

t t
c

y y y

  
 

 
= = =

  
  

    

(2.35b) 

We also need to deal with second term of the integral in equation (2.12). Referring to Figure 2-3, 

we find that dy=dhi ,so we can find 
idR



  as: 
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                                 ( )

( )

2

10

2 1

0 0

2 1

0 0

           

           

i i

i

i i i i

i i

i i i i

i i

h H x x

i i i
i

i ih x x

h H h H

i i i i
i

i ih h

h H h H

i i i i
i

i ih h

h h dxdh
dR dxdy

H H

h dh h dh
x x b

H H

h dh h dh
x x b

H H



= =

  = =

= =

= =

= =

= =

= =

= − =

= − =

   

 

 

                         

 

 

  (2.36) 

From the similarity of the triangles, we can find that: 

                                                          
i i i

i i

b H h

B H

−
=  

 

Figure 2-3 Area of trial function in triangular coordinates 

So, equation (2.36) can be written as: 

   ( ) 2

0

1 1 1

3 2 3 2

i i

i

h H

i
i i i i i i i

ih

B
dR h H h dh H B

H


=

 =


= − = =    

(2.14) 

By using the S as the area of the triangular element as: 𝑆 =
Δ

2
   .                                                                                                                              

Now,  dR


  can be found as: 
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   1 2 3

1 2 3

0,1

              

1 1 1
              

3 3 3

t

t

t

dR dR

dR dR dR

S S S T S

   

  

 

  

=

 
=  
 

 
= = 
 

 

    

 

 

 

  (2.38) 

 

 

In addition, we can find the total integration for the trial function  inside any triangle as:   

                0,11 1 1

3 3 3

t
t t t

dR dR S S S dR T S    
  

 
= = = 

 
                                   (2.39) 

Therefore, the second term of equation (2.12) will be derived from equation (2.39) as we will see 

in next section, where 
0,1 1 1 1

3 3 3

t

T
 

=  
 

is a metric tensor. 

2.3 Solution for the Lagrange Functional 

Now, we can return to original Lagrange function in (2.12). The solution region has been divided 

into triangles. Therefore, the total energy can be written as the sum of the energies of each 

individual triangle as: 

                                                       ( )
2

2
L J dR


  

 

  
=  −  

  
     

    

(2.40) 

 For the first term in (2.34): 

                         ˆ ˆx y
x y

 


 
 = +

 
   

(2.41) 

                             ( )
2

2
ˆ ˆ ˆ ˆ ˆ ˆx y x y x y

x y x y x y

     


          
 = + = + • +     

          

   
  (2.42) 

 

So ( )
2

2
dR






 
 

 
 will be: 
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                                         ( )
22

2

2 2
dR dR

x y

  


 

     
 = +            

     
 

                            ( )
       

2 2

2

2 2
  

t t

dR dR
x y

    


 

         = +                

     

 

                              ( )
     

 
2 2

2
 

2 2
 

t
dR dR

x y

   
 

 

      
  = +             

      
 

 

                                     ( )
 

       
2

2 2
 

t t t
dR S b b c c

 
 



    = +    
    

   

(2.43) 

 

Since we have already the solution for the second term of equation (2.12), then we can write an 

element Lagrange Function as: 

                                                          0.5
Lt t

L P q   

= −     (2.44) 

Where: 

   

1

3

1

3

1

3

q JS

 
 
 
 

=  
 
 
 
 

 

 

 

(2.45) 

 

                    

2 2

1 1 1 2 1 2 1 3 1 3

2 2

2 1 2 1 2 2 2 3 2 3

2 2

3 1 3 1 3 2 3 2 3 3

L t t

b c b b c c b b c c

P S b b c c S b b c c b c b b c c

b b c c b b c c b c

 

 + + +
  = + = + + +  
 + + + 

   

 

(2.46) 

 

 

Where we can now find programmable close form for  [𝑃]𝐿 as: 

                                  

2 2

1 1 1 2 1 2 1 3 1 3

2 2

2 1 2 1 2 2 2 3 2 3

2 2

3 1 3 1 3 2 3 2 3 3

L

b c b b c c b b c c

P S b b c c b c b b c c

b b c c b b c c b c



 + + +
 

= + + + 
 + + + 

   

  

(2.47) 

 

 

 

In addition,   was defined in equation (2.29). 
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To get a solution for the total domain we should minimize total  L  with respect  
t

 after 

finding the total energy for all elements as: 

                             
 

 
 

         
1

2

Lt t L

t t
L P q   

  

   = −
  

    
    

(2.48) 

 

To get the solution for the values of    at the nodes for all elements, then equation (2.42) should 

be solved. 

                             
 

 
 

         
1

2

Lt t L

t t
L P q   

  

   = −
  

    
 

                                                         
 

  0
t

L 



=


   

 

 

   
 

        0
L L

t
L P q 

 

  = − =
 

    
   

(2.15) 

 

 

Therefore, the final solution can be obtained by solving: 

                             
Total Total

L L
P q

 

=     
   

(2.50) 

 

 

In addition, the equation solved algebraically for    after doing the assembly process for the 

local matrices for  
L

P and  
L

q according to the global scheme of node numbering that used for 

generating the elements. 

FEM analysis provides the solution to equation (2.50) by applying certain boundary conditions. 

The local matrices of elements will be added to the corresponding position of the global matrix to 

be solved for potential values at all nodes, 
total

 .This leads to the FEM matrix equation: 
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                              
G total G

P Q =    (2.51) 

 

The solution for (2.51) can be found in any numerical technique like LU Decomposition [95, 118]. 

Where we will sum and add the local matrices of [𝑃]𝐿 per each elements as we will do for the local 

vectors  
L

q so that we can have our final and global matrix  
G

P  and vector  
G

Q  that contains all 

the data for the elements of the system. The solution will be  
total

  that contains the values of the 

known nodes that will be used to find the values of the unknown nodes. 

2.4 Finite Element Computation for Two-Dimensional Eddy Current Problems 

Eddy Current Problems are considered as quasi-static problems. Therefore, solving Eddy Current 

problems will be started as we did for solving magnetostatic problems since both can be derived 

from Maxwell’s equations for low frequency problems in magnetostatic. If time variation is 

introduced, the resulting magnetic field does affect the initial electric field as for static problems 

where we neglect the effect of varying fields. Let us consider Maxwell’s equations again (2.1-2.4), 

the non-divergent B may be modelled by a vector potential A as in equation (2-9); 

                                                    
B A

E
t t

 
 = − = −

 
   

(2.52) 

 

                        
A

E
t

 
 =  − 

 

    
  (2.53) 

 

The two vectors E  and 
A

t


−


have the same curl, which is possible only if:  
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A

E
t




= − −


    

(2.54) 

 

It is realized that the term   −  is the externally imposed electric field driving the current and 

A

t


−


 is the induced electric field. Combining equations (2.5) and (2.3), substituting (2.6), (2.8) 

and (2.54), 

                         eH J E = =    (2.55) 

 

So that 

                  
e

A
H

t
 

 
 = − − 

 

   
(2.56) 

 

And  

              
1

e

A
A

t
 



 
  = − − 

 

    
(2.57) 

 

 

where   represents the electric potential and using equation (2.9) , then curl of curl for the 

magnetic vector potential can be represented as:  

         ( ) 2 2A A A A =   − = −   (2.58) 

 

Differentiation with respect to time is the equivalent of pre-multiplication by 𝑗𝜔 in phasor 

representations as and as we did for Magnetostatic Poisson’s equation in taking only the z-

component but in phasor representation for both current density and vector potential as: 0
ˆJ zJ=   

and ˆA zA=  respectively and substituting A  =0 in equation (2.58) as: 

                                       
21

e eA J E j A   


 −  = = = − −     
(2.16) 

 

This reduces to our final equation 
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2

0

1
eA J j A


−  = −    

(2.60) 

 

For eddy current problem, equation (2.60) is the key equation to be solved to find the magnetic 

vector potential A  for a given imposed current density 0J . Once we find A  , the magnetic flux 

density B  can be calculated using equation (2.8). Calculating A from (2.60) using the FEM will 

be like one solving Magnetostatic problems but we need to add the part that is related to frequency 

of the imposed current, which means that we will work with phasor representation of fields. 

Magnetic fields in a ferromagnetic material can be generated by placing an AC (Alternative 

Current) coil on top of the material.  For AC magnetization, the magnetic vector potential A , and 

the exciting current density 0J at angular frequency ω, are related by 
2

0

1
eA J j A


−  = −  as 

described in equation (2.60). 

The corresponding Lagrange function can be written, like the way we derived for equation (2.12) 

as: 

                                     ( )
2

2

0

1 1

2 2
e

R

L A A J A j A dR


 
  =  − +  

 
    

   

(2.61) 

When we divide the total domain to triangular meshes then the total energy can be represented as: 

                                  ( )
2

2

0

1 1

2 2
eL J j dR    

 

  
  =  − +   

  
      

   

(2.62) 

 

Where the solution domain R will be meshed to triangular elements and a first order two-

dimensional trail function can be represented for any point inside these elements as we will see in 

the following section. 
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The functional in equation (2.62) contains three terms. The first two terms were solved in detail in 

the previous section. While the third term, which resulted from the AC current, can be solved as 

following: 

                                       21 1

2 2

tt

e ej dR j dR      
 

   
=   

   
     

   

(2.63) 

 

 

Where  
t

  and   can be found from (2.30) and (2.31) respectively. Then (2.63) will be: 

                
1 1

2

1 2 3 2 1 2 3 2

3 3

1 1

2 2
e ej dR j dR

 

          

  

   
    

 =        
      

    

     

 

(2.64) 

 

              

2
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2

1 3 2 3 3 3
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2 2
e ej dR j dR

     

           

      

   
    

 =       
     

    

      

 

(2.65) 

 

 

If S is the element area and   in a triangle element has been written in triangular coordinates, 

then: 

                                                    ( )
( )

1 2 3

! ! !
2!

2 !

i j k i j k
dR S

i j k
  



=
+ + +    

  (2.66) 

 

 

By substituting equation (2.66) in (2.65), and rearranging, 
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  

   
      =                 

    
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t

e
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 
 
 
  

 

  

 

 

 

 

  

 

(2.67) 

 

 

Now, we can expand equation (2.62) to be: 

           

2 2

1 1 1 2 1 2 1 3 1 3 1

2 2

1 2 3 2 1 2 1 2 2 2 3 2 3 2

2 2

3 1 3 1 3 2 3 2 3 3 3

1 2 3 0 1 2

1

2

1

3

1 1
              

3 2

1

3

e

b c b b c c b b c c

L S b b c c b c b b c c

b b c c b b c c b c

J S j



    




     



  + + +
  

   = + + +      
  + + +   

 
 
 
 
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 
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
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

  
        
     

    

 

 

 

(2.68) 

 

 

 

 

 

For the entire domain of the problem, we need to sum (2.68) for all elements as: 
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 
 
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 
 
 
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 
 
 
 
 
  

 
  
  

  
  

    

 

 

 

 

(2.17) 

 

 

Now we can get a final corresponding equation as: 

                                                            
1

2

t tL
L P q   



 
  = −  

 
    

(2.70) 

 

Where: 
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                     
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   + + +   

    

 

(2.71) 
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 
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 
  

   

 

 

  (2.72) 

 

 

 

                                                              
1

2

t tL
L P q   



 
  = −  

 
     

(2.73) 

 

 

To get a solution for the total domain we should minimize L  
 

with respect to  
t

A  after finding 

the total energy for all elements from (2.73) as: 

                                       

   
         

1

2
 

t tL

t t
L P q   

  

     = −     
    

(2.74) 

 

To get the solution for the values of   at the nodes for all elements, then equation (2.75) should 

be minimized and.  Therefore (2.74) will be: 
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     = −     
  
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L 
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
  = 


 

   

 

                                                  

 
      0

L L

t
L P q 

 

    = − =   


    
(2.75) 

 

 

Therefore, the final solution can be obtained by solving: 
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                                                                  
Total Total

L L
P q

 

=      
  (2.76) 

 

In addition, the equation solved algebraically for   after doing the assembly process for the local 

matrices for  
L

P and  
L

q  according to the global scheme of node numbering that used for 

generating the elements. 

FEM analysis provides the solution to (2.76) by applying certain boundary conditions. The local 

matrices of elements will be added to the corresponding position of the global matrix to be solved 

for  . This leads to the FEM matrix equation 

                                        
G total G

P Q =    (2.77) 

 

The solution for (2.77) can be found in any numerical technique like LU decomposition. Where 

we will sum and add the local matrices of  
L

P per each elements as we will do for the local vectors 

 
L

q so that we can have our final and global matrix  
G

P and vector  q that contains all the data 

for the elements of the system. The solution will be  
total

 that contains the values of the known 

nodes that will be used to find the values of the unknown nodes. 

2.5 Boundary Conditions  

We use two types of boundary conditions, namely Dirichlet and Neumann [3] to solve the system 

of matrices in equations (2.51) and (2.77). Dirichlet boundary conditions mean that the potential 

along the boundary is fixed at a given value and Neumann boundary conditions mean the derivative 

of the unknown potential at the boundary along the normal direction is zero. Dirichlet boundary 

conditions can be implemented by considering the node points on the boundary to have known 
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values. Where our objective will be to use any matrix solver to find the values of the n-unknown 

values  ukA .  

 

Figure 2-4 FEM solver showing both known and unknown nodes distributions 

Figure 2-4 summarizes how we will write our code to solve these equations and how we write our 

FEM solver by separating known from unknown potentials.  LU Choleski decomposition is used 

as matrix solver and excellent results were achieved. 
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3 Subregion Method 

3.1 Introduction 

In our solution, we will use the LU Cheolsky Decomposition Matrix solver. An analogy can be 

seen from Figure 2-5 between solving both Magnetostatic, Eddy Current and Electrostatic FEM 

problems [95, 118]. Where in general we can rewrite the governing Poisons equation for 

Electrostatic problems as: 

    
2  −  =  

where, 𝜌 is charge density, φ is scaler potential and ε is permittivity. The mapping came from using 

the same procedure in minimization the functional to end with same equations (2.78) and (2.52), 

where we can rewrite them as: 

                                                                           uk

kn

P Q
 

= 
 

                                                            (3.1) 

 Where again, [P] and  Q  are the global matrices that contain data and properties of the generated 

elements and physical properties of the problem and uk

kn

 
 
 

 will be the scalar potentials vector of 

the (voltage drops) on each node. Any matrix solver like LU Decomposition can find the values 

of the unknown potential uk  given the known potentials  kn as Dirichlet boundaries through 

the problem. So, the next step will be to apply the post processing analysis according to the nature 

of the given problem. 

In this chapter, derivations of needed equations that lead to subregions method and how we will 

use them in designing magnetic devices and solve Magnetostatic problems. These equations will 
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be improved to solve Eddy Current Problems in order to detect hidden cracks and characterize 

their shapes.  

3.2 Methodology 

1) Dividing the area of interest into sub areas, so the whole domain region will be divided 

into subregions (R1, R2, R3...RN). 

2) Define subregions such like:  

i- Areas where the material parameters have to be modified in the next iteration and 

solution steps (it may be one area or more according to the nature of the problem) 

and where the calculation results should be saved and recorded at each step; e.g. 

R1.  

ii- Reminder areas; (all reminder areas else R1), which we have to deal with 

computationally only one time. For example, we can define R2 as separated area as 

for R3 as seen in Figure 3-1. However, we will consider that we have two areas in 

this example: R1 and R2+R3+R4 . 
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Figure 3-1 Subdivision of the whole solution domain into subregions and interface nodes. 

3) Finding the coefficient matrices of the different subregions. 

4) Assemble these coefficient matrices separately and reduce them to number of equations 

related to degrees of freedom that are associated with nodes at subregions interfaces. 

5) Finally, the reduced matrices of all subregions will be used to assemble the final global 

matrix, which will be solved for the reduced system. 

Therefore, as much as we repeat solving the associated field problem, we just deal with the desired 

subregion. This will save computation, time and memory since we deal with reduced system. 
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3.3 The Subregion Method  

In this part, we will show how we will use fundamentals of FEM to solve the field problem using 

the subregion criteria. 

We can now rewrite equation (3.1) in matrix form as in equation (3.2) as a subregional formulation 

for equation (3.1) as [85]: 

                      ee ei e e

ie ii i i

P P Q

P P Q

     
=    

     
    

(3.1) 

 

Where equation (3.1) shows the basis of plugging the sub structural analysis in the study of fields 

by splitting the field into substructures. Where each subregion will have its own subregional 

matrix-vector of equation (3.1) as shown in Figure 3-1. 

The main point of this method is to divide the whole field into number of subdomains. We should 

be careful about choosing the boundaries, because these boundaries are governed by both the 

nature of the application and the efficiency of the matrix computations involved. The subscript e 

in equation (3.1) denotes the exterior DOFs along the interfaces between neighboring subregions, 

as highlighted in Figure 3-1; the DOFs of the interior nodes of the subregion are denoted by the 

subscript i. It should be noticed that the interior nodes are those nodes interior to the subregion 

where design will change the shape in our FEM solution.  

Therefore, for a system contains number of subregions as in Figure 3-1, we have the following 

nodes: 

i- Boundary nodes, such like for usual FEM problems; they may be Dirichlet or Neumann 

according to the nature of the problem. 
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ii- Internal or interior nodes and those nodes that are inside the sub-regions. 

iii- External or exterior nodes and those nodes are at the boundaries between different sub 

regions.  

Directly from equation (3.1), the first row is: 

                          ee e ei i eP P Q +  =    (3.2) 

                           ie e ii i iP P Q +  =    (3.3) 

Now, we can continue working on equation (3.4) as: 

                           ii i i ie eP Q P = −     (3.4) 

From the second row of the partitioned equation (3.1), the potential of the internal DOFs is 

expressed in terms of the extremal ones as: 

                                                         
1 1

i ii i ii ie eP Q P P
− −

 = −     (3.5) 

 

And this is possible, because the interior fields inside regions are unique since the boundary fields 

are defined [85]. 

Inserting the expression for the interior DOFs  i  in equation (3.5) into the first row of equation 

(3.1) will give the reduced matrix equation for the extremal DOFs of the subregion. 

Now, we can use equation (3.5) to substitute for  i in equation (3.2) for as: 



 

47 

 

                                              
1 1

ee e ei ii i ii ie e eP P P Q P P Q
− −

 + −  =    
(3.6) 

 

Simplifying (3.6) as:  

                       
1 1

ee e ei ii i ei ii ie e eP P P Q P P P Q
− −

 + −  =  (3.7) 

 

                                            
1 1

ee e ei ii ie e e ei ii iP P P P Q P P Q
− −

 −  = −    (3.8) 

 

The exterior DOFs  e  can be represented as: 

                                              1 1

ee ei ii ie e e ei ii iP P P P Q P P Q
− − −  = −

     
(3.9) 

Where, now we can define new expressions for the subregion parameters as: 

                       
1

sr ee ei ii ieP P P P P
−

= −    (3.10) 

 

                                                               sr ee eiP P P A= −   (3.11) 

 

where: 

                                                                  
1

ii ieA P P
−

=  (3.12) 

 

                                                          1

sr e ei ii iQ Q P P Q
−

= −  
(3.13) 

 

                       sr e ei ioQ Q P= −    (3.14) 

where: 

                                                                  
1

io ii iP Q
−

 =   (3.15) 

 

Using (3.10-3.16), the coefficient matrices and the excitation vectors on the right-hand side are 

combined to yield the subregion matrices reduced to the exterior DOFs: 
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                                                                  sr e srP Q =    (3.16) 

 

The modification matrix [A], as well as the vector  io are not obtained by explicit inversion of 

the coefficient matrix associated with the interior DOFs, but rather by symmetric triangular 

Choleski Decomposition of [Pii] with subsequent forward and backward substitution with the 

columns of [Pie]and  iQ  as the right-hand side:  

                 ii io ei iP A P Q =  (3.17) 

 

Therefore, we have now to compute both of [A] and  io from (3.13) and (3.16) respectively by 

using the symmetric triangular Choleski Decomposition, but first, there are some important 

properties of the off-diagonal rectangular partition [Pie] and its transpose [Pei]: 

1- They are representing the connectivity of the exterior with the interior DOFs. 

2- They exhibit sparsity, with only as many non-zero entries in a column as interior nodes are 

connected to the exterior node of this column; where, this sparsity pattern those partitions is 

utilized in a column wise calculation of [A].  

3- The forward and backward substitutions involved in equation (3.18) are carried out only for 

row numbers higher than the column number of the first non-zero entry in the corresponding 

row of the sparse matrix [Pei]. 

So, the important steps now are to find both of [A] and  io . 
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The solution  io is essentially the potential distribution within the subregion due to all interior 

field sources and the application of Dirichlet boundary conditions of zero at all external nodes, 

which is equivalent to isolating this subregion completely from its neighbors. 

It is supposed that we have both of [A] and io for each subregion.  Now the next step is to find 

the condensed matrices [Psr] and vectors [Qsr]for each of the N- subregions (by considering that 

we have N- subregions). These nodes and related matrices are clear in Figure 3-2 for different 

subregions. 

 

Figure 3-2 Explanation of subregion division 

Now, both condensed matrices [Psr] and vectors [Qsr] are assembled into the residual equation for 

all external DOFs in the same way that the global FEM matrix was assembled from the local 

element matrices: 
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                   
1 1

N N

res res sr e sr resj jj
j j

P P Q Q
= =

 =  = =   
(3.18) 

 

This residual equation represents the whole solution domain reduced to the DOFs at the interfaces 

of all subregions; i.e. all  e ’s for all subregions. If our design contains just only one subregion 

of interest, then N=1 in (3.18). 

Having computed the solution  res  of the residual, the data recovery for the interior potential 

distribution is performed for each subregion separately using equation (3.5). The unreduced, 

complete equation for the full solution region of (3.1) is thus never assembled and solved. Instead, 

the solution of the whole system is replaced by the solution of several subsystems of significantly 

smaller size. 

From Figure 3-2, we can now define and understand how to divide the nodes of the given problem 

into both internal and external nodes. In this figure, we have a little bit complicated and more 

detailed shape that contains 4 different subregions (R1, R2, R3 and R4) that all together form the 

main region. In subregional FEM solution, we start as regular FEM solution, so we can summarize 

the SFEM solution problems by: 

1- Define the problem parameters and start doing the usual pre-processing FEM and use any 

mesh generation to generate meshes (nodes, elements) to the given problem. hand written 

mesh generation is used in these explaining examples while other mesh generation 

techniques as in [117] are used for more complicated problems.   

2- Define the regions of the given problem according to given parameters. We define the 

coordinates and the physical properties for each subregion as in the example in Figure 3-2, 

we see we have 4 regions, so we need to define the coordinates for each region, for 
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example, the green area is related to R4. The other important parameters are the physical 

parameters for each region, because they are included in the solution of the FEM problem. 

For example, in Electrostatic solution, permittivity and charge density should be defined 

for each subregion, while in Magnetostatic problems, permeability and current charge 

density will be defined for each subregion. This is the core for subregion method; to define 

the subregion that we want to focus our FEM solution on within our coding. Again, we 

have now 4 subregions in our example which are (R1, R2, R3 and R4). 

3- Defining subregions is not enough in our analysis, now we must define both the internal 

and external nodes for each subregion. This step is very important and critical because we 

will now define these nodes based on the numbering scheme that we used when we 

generate the nodes [117]. For each subregion, R1 , the external nodes are those surrounding 

nodes that surround that region; or in other words those nodes are the interfacing nodes 

with the other regions, so they may be mutual with other regions. We can see that Фe1,4 is 

an example of an external node for R1 but also it can be considered as an external node for 

R4 since it is on the interface between R1 and R4 . While R4 has more external nodes with 

more than one region as shown in the Figure 3-2. Фe3,4 and Фe2,4  are both examples for 

external nodes between  R4   and both R2  and R3  respectively. It is important to know that 

also Фe4   can be considered as an example of external node for R4 , because it surrounds 

this region and bounds it. Now these boundary nodes will be taken in our solution 

according to their values and whether if they are Dirichlet or Neumann boundary 

conditions. The internal nodes are those nodes within the subregion and belongs 

exclusively to that region, so they cannot be found in other regions. These nodes are unique 
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within each subregion. An examples of the internal nodes are Фi1, Фi2 , Фi3 and Фi4 in (R1, 

R2, R3 and R4) respectively.  

4- The next step is to start doing FEM analysis but for each subregion such like in Figure 3-

2b, and after that assembly all the solutions for each subregion to get the final answer. To 

give more details about this point let us take the zoomed R1 again in Figures 3-2b and 3-

3a, now, we deal with R1 as individual problem. We have the following for this region: 

 

Figure 3-3 Arranging external and internal nodes. (a) Example of subregion with both exterior 

and interior nodes. All these nodes considered to be unknown nodes. (b) How potentials are 

arranged in subregional order; exterior nodes first, then interior nodes.  

i- We have a bounded region and can be considered as separated region R1. 

ii- Mesh generation was done for this region, so we have related nodes and elements 

for this region. We can find that this region contains 18 nodes and 28 elements. We 

can use any mesh generator to do meshing. Now the important thing is that these 

nodes which map this region should be divided into two categories as defined 

earlier in this chapter; into both external and internal nodes. In this example, we 
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have a total of 18 global nodes divided into 10 internal nodes and 8 external nodes. 

The critical thing is that we save the original node numbering scheme, so that we 

use it again in arranging these nodes into internal and external as in Figure 3-3b. 

iii- Now we can use ii to define the new inputs for our FEM solver, we have two inputs: 

Coordinate_ Matrix_ One which contains the coordinates for each node in R1, 

which means we will have a 19 by 2 matrix for the coordinates for this region, and 

each row will be the x and y coordinates for each node for R1 respectively. The 

second input will be the Data_ Matrix_ One which is the connectivity matrix that 

contains the relation between elements and related nodes and define physical 

properties within each element. The matrix for R1 in Figure 3-2b will be 28 by 5, 

where each row will correspond to each element in R1 and the first three columns 

will represent the nodes numbering scheme and the reminder two column will be 

saved for defining the physical properties and give numeric values for these 

quantities in each individual element.  

iv- So, the inputs for our FEM solver will be derived. We can do all the FEM analysis 

but for each subregion alone as we did for R1. For example, the system in Figure 3-

2a contains 4 subregions, which means that we will do FEM analysis for each 

subregion after taking boundary conditions in our consideration. Therefore, 4 

different global matrices and vectors will be the result, where for each subregion 

(arbitrary subregion j),  [𝑃]𝑗 = [
𝑃𝑒𝑒 𝑃𝑒𝑖

𝑃𝑖𝑒 𝑃𝑖𝑖
]

𝑗

 and {𝑄}𝑗 = {
𝑄𝑒

𝑄𝑖
}

𝑗

 as in equation (3.2). 

v- This step will be similar to regular FEM analysis, but we will assembly regions 

instead of elements. As derived in (3.12) and (3.15) , we will derive [𝑃𝑠𝑟]𝑗 and 
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{𝑄𝑠𝑟} 𝑗 for each subregion and use (3.19) to assembly in the final Global_  Region_ 

Matrix and Global_  Region_ Vector. Let us take the three subregion example in 

Figure 3-4, we can now see how the [𝑃𝑠𝑟]1, [𝑃𝑠𝑟]2 are [𝑃𝑠𝑟]3 are assembled in the 

complete [𝑃𝑠𝑟]  matrix to get the solution for the external nodes between the 

subregions. 

 

Figure 3-4 Assembly regions to whole domain. 

vi- We will now find the values for all the external nodes  e  for all subregions from 

solving Global_ Region_ Matrix and Global_  Region_ Vector. We may use regular 

matrix solver built in functions in Matlab or numerical techniques for big size 

problems.  

vii- After finding the external nodes for all the system   e , we can now go to each 

subregion (arbitrary subregion j) individual  i j
  to find its related internal nodes.
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4 Elasticity Mesh Generation Method 

4.1 Introduction 

One of the outcomes for this project is to detect the hidden cracks within metals, then to evaluate 

theirs effect, so we can evaluate wither this defect is major or not. The objective for this chapter is 

for developing a FEM mesh generator that can fit SFEM which separates crack region from the 

entire domain. Using subregion method with classical FEM analysis will be very hard in case we 

use an adaptive mesh generator as in [117] that will generate new meshes every time with new 

numbers and connectivity matrix for the entire domain. The reason of that because we want to 

keep the same exterior nodes positions between regions. Because these exterior nodes working as 

an interface between different connecting regions and we should save them. An elastic mesh 

generating scheme should be used in this case, so that we can detect nodes of interest, then, play 

with these nodes by changing their positions and keeping the connectivity matrix without any 

change.  

One of the most critical issues in inverse problems is how to choose design parameters and apply 

optimization in order to get the optimal parameters that fit minimum or maximum of the fitness 

score. In Eddy Current Problems and especially in the process of detecting and characterizing 

defects, it is necessary to implement a flexible mesh generator that can be updated each iteration. 

[114] presented a criterion for changing meshes for design sensitivity computation while 

preserving continuity of the object function. It was shown to be applicable to various kinds of 

linear changes of multiple parameters that combine to model changes of nodes, lines and objects 

in designing poles in Magnetostatic problems. This generator allows repeated solutions with 

iterated meshes so that it can be employed in a first-order optimization strategy exploiting its faster 

convergence. This chapter will explain this algorithm through some examples. While, this method 
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is improved by using it with SFEM in order to solve inverse Eddy Current problems and 

characterize defects. New defect pattern will be generated each iteration until obtaining the real 

defect pattern. 

4.2 Moving Single Node 

By knowing an initial location of the defect, we can isolate this location from the entire problem 

to reshape the defect. Selecting the design parameters as our master nodes [114]. Then move these 

nodes within the defect region only (R2) will grantee that. Moving these master or design nodes 

will be the source of moving the reminder interior nodes (
2

i

RA  ) within R2. We will consider these 

reminder interior nodes within R2 as relative nodes. Figure 4-1 shows these nodes in addition of 

the external nodes for the region R2.  

 

Figure 4-1 General plot representing only the defect region R2 contains the defect.  

We can see the difference between both interior and exterior nodes within this region in addition 

of dividing the interior nodes to both master (design) nodes and relative nodes.  
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The exterior nodes 
2

e

RA  for R2 will be fixed, not changed and will be the interfacing nodes with 

the reminder region R1 through equation (3.19).  

Each iteration of the inverse problem should be done within the preselected region R2 only; this is 

the core of SFEM. Only the designing nodes ( design parameters) as shown in Figure 4-1 will be 

changed in each iteration according the value of the given fitness score. 

Here we will present the equations for linear movements, where we are going to save connectivity 

between nodes and as master node (our preselected design nodes) move, other nodes move 

elastically within a semi rectangular domain where it should start from 90o angle at the moving 

design node forming parallelogram moving domain boundary surrounding the moving parameter 

which is the circumference of the defect region R2. Where master nodes move toward this 

boundary, nodes between master nodes and R2 outer boundary will move to crunch element’s edge 

segments between these master nodes and the boundary. Where it moves away, edges are stretched. 

A single master node moving in a direction (x or y) commonly occurs. This is a special case of 

two-dimensional moving. In our solution, we consider movement in y-direction. This can be 

generalized to be in both directions.  

Starting by drawing vertical and horizontal lines at the master design node P that divide the region 

R2 into four quadrants as seen in Figure 4-1. If we consider the corresponding areas of these four 

regions are denoted by: AreaQud1, AreaQud2, AreaQud3 and AreaQud4 . Now, in a certain quadrant, say 

the first one, if the node P moves a desired distance D in the y-direction (using Cartesian 

coordinates) all other nodes in the region R2 are to be moved elastically with respect to the node P. 

Suppose Q, is a free node not tied to any parameter in the first quadrant and say, it moves by a 

distance d in the y-direction as P moves. To find the distance it moved related the moving of point 

P we will draw a vertical and horizontal lines at this relative node Q as we did for P. Now we can 
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find the area of AreaQ_in_Quad1 as the area of the region made by this relative node Q and the 

boundary of R2 in the related quadrant (which is the first one in this case). Then, we can derive the 

ratio of moving an arbitrary node in the 1st quadrant relative to design master node P as: 

                           
_ _ 1

1

Q in Quad

i

Quad

Area
C

Area
=    

(4.1) 

 

Where Ci defined as the moving ratio with respect to the free node Qi and this is a key ratio in 

these elastic algorithms. We note that the area for each quadrant is never zero and this ratio is 1 

when Qi coincides with P. Similarly, a moving ratio can be found if the node Qi is in the 2nd, 3rd, 

or 4th quadrant.  

Therefore, each y-coordinate node within R2 will be incremented as: 

            d=DCiy (4.2) 

Where D can be negative depending on which side of P it is located. That is, the new y-coordinates 

of points P and Qk
i  will be: PYnew=PY+D and Qk

i,Ynew=Qk
i,Y + d for k=1,2,3 and 4.  

Consider the following elements diagram in Figure 4-2. We marked the master node by a blue 

circle. According to the presented algorithm, we should first find the bigger area so that nodes will 

move only in this region. We will consider the outer boundary nodes for the bigger rectangular are 

the fixed nodes that will not move, while other nodes which are inside this rectangle will be free 

to move different distances and in different directions relative to the movement of the master node. 

To generate general scheme for moving n-master nodes, we will study moving one master node 

first and after that, we will generalize the related equations. We see from Figure 4-3 that we mark 

our master node by big blue circle. This problem may be considered as Magnetostatic problem or 
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rectangular problem or any other problem since we are still working on the preprocessing of the 

FEM problem.  

 

Figure 4-2 Position for: master, relative and none-moving nodes for one master node. 

If we fallow the previous steps, then we can see that we will have fixed none-moving nodes. Also, 

we will have: bottom axis, right axis, top right quarter, top left quarter, bottom right quarter and 

bottom left quarter relative nodes. It is important to notice that we do not have any relative nodes 

on the top axis and left axis nodes for this example.  
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Figure 4-3 Example for moving one master node and the effect for stretching and crunching 

elements. 

It is obvious that moving the master node in Figure 4-3a (the red circled node) will lead to moving 

other relative nodes, but it will keep and save the same connection between nodes which is the 

idea of this algorithm. If we move the master node vertically up wards, then we notice how 

elements become crunched upper the master node, while the lower elements will be stretched. 

While the opposite thing will be happening if we move the same master node vertically down as 

in Figure 4-3b.  We can see other two different cases of moving master nodes and change the 

position of the master node in both Figures 4-3c and 4-3d. It is obvious now moving the master 
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node will crunch the elements that are in the same direction of movement while it will stretch the 

remanding ones. 

4.3 Moving multiple nodes 

The actual displacement for n design nodes P1, P2, P3, …, Pn will be: D1, D2, D3, …, Dn . If P1 

moves a distance by h1, then all other nodes, even master nodes will move by related distance. For 

example, if we have only two nodes P1, P2, then: P1 moves by h1, P2 will also move as “another 

node” in the R2 boundary by d2.  Similarly, P1 will also move by d1 as P2 moves by h2 as a master 

node. Thus, the actual movement of P1 is h1+d1 and this combined total has to be D1. Similarly, 

D2= h2 + d2. Now let C2,1 be the moving ratio of node P2 with respect to node P1. Here C2,1 

determines the movement of P2 only due to the movement of P1. Also, let C1,2 be the moving ratio 

of node P1 with respect to the node P2. Hence, we can form a matrix, [C]2x2, for moving ratios and 

find displacement, d1 (due to the virtual displacement of P2 using (4.2). By the same procedures, 

d2 can be found. This can be formulated as follows: 

        D C h=  (4.3) 

 

                                     1,21 1

2,12 2

1

1

CD h

CD h

    
=     

    

                            
(4.4) 

 

 

Equation (4.4) is solved for h1 and h2 by inversion and we move the nodes P1 and P2, accordingly. 

The total movement will be as required. To generalize this method for solving n design nodes, we 

will define vnx1 as the vector of actual displacements of all n variable design nodes (including the 

nodes on the line joining design nodes). Now let [C]n×m be the matrix of all moving ratios of the 

m nodes in the moving domain with respect to the n design nodes. All these moving ratios can be 

easily computed. Taking hn as the vector of virtual displacements of all n design nodes (including 
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nodes on the line joining design nodes). The y- displacement of each node in the moving domain 

R2 can be computed from: 

           , 2

1

   ,         
n

i i

new old i j j

j

y y c h i R
=

= +    
   (4.5) 

Other important factor should be taken into consideration which is how other relative nodes on the 

circumstance of the defect and between the design nodes move because of moving these design 

nodes. The movement for these nodes can be interpolated refereeing the surrounded design nodes. 

Therefore, we can guarantee these relative nodes will stay on the same line after moving the design 

nodes. The following example in Figure 4-4 shows how defect shape can be changed each iteration 

using elastic SFEM. First, the selected defect region should be selected. Next, a selected 

predetermined design values should be chosen on the surface of the defect. Those nodes will have 

the same connectivity and numbing scheme same as all nodes and elements within the selected 

defect area each iteration.  Those nodes will be the design nodes: P1, P2, P3, …, Pn 

 

Figure 4-4 System for multiple master nodes surrounds area of interest 
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The effect of moving multiple design nodes and their effect on the entire system of moving are 

shown in Figure 4-5. The area of interest is selected as the inner rectangle that maps the defect 

region. The number of design nodes can be chosen regarding the computational cost with knowing 

that the maximum number of design nodes we have.   In this example, the defect is surrounded by 

design nodes, where these nodes numbers are: ( 4, 22 , 8, 14, 9 ,10 ,3 ,1 ,27 ,15 ,42 ,32 ,35 ,2 ,73 , 

25, 26, 31, 5, 29).  

Moving these nodes will certainly affect the entire elements by different of stretching and 

crunching ratios and values according to the direction and value for each single movement per 

each design node as shown in Figure 4-5. 

 

Figure 4-5 Moving multiple of master nodes and their effect on related elements 

As shown in Figure 4-5, we can get unlimited patterns for the internal region after each iteration 

of movement for the design nodes. This will show how defect can change its shape each iteration 
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until getting the best fitness score function. It is important to mention that each defect pattern in 

Figure 4-5 has the same design nodes as in Figure 4-4 in addition of the same elements and nodes 

numbering and connectivity matrix. This technique will be the key for solving inverse problems 

for characterizing and reshaping structures given certain constraints, as we will see in the next 

chapter. 
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5 Computational Validation for Subregion Finite Element Method 

This chapter will present several numerical examples that can be solved using SFEM. The 

presented algorithm is validated by comparing SFEM results with COMSOL, classical FEM and 

results found in other papers. A computational validation will be presented in this chapter while 

an experimental validation will be presented in next chapter. Magnetostatic examples will be 

presented first , since SFEM was derived from solving such problems as in [85]. After that, several 

examples and cases for ECT problems will be solved in both direct and inverse methods. 

5.1 Magnetostatic Problem 

Multiple examples will be shown in this chapter to verify the presented algorithm. Simple cases in 

Magnetostatic cable problems will be shown first to explain how solution domain can be divided 

into multiple regions. Those examples will be solved gradually until reaching complete design 

Quasi- Static problem that is characterizing hidden defect in inverse ECT problems using the 

SFEM.  

Example 5.1, Basic Cable problems with few elements. 

In this example, a rectangular conductor carries a current density of ( J=3A/m2) is surrounded by 

air. We need to find the magnetic vector potential values and to draw the field lines for this cable 

example in Figure 5-1.  The relative permeability for all regions is 1.  
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7  

Figure 5-1 Cable System of rectangular conductor carries current density of ( J=3A/m2) 

surrounded by air 

After applying FEM technique as in [95, 118], Magnetic vector potential field lines can be drawn, 

(choosing 45 nodes, 64 elements) as in Figure 5-2. The fields plot is true according to solving 

Maxwell’s equation.  

 

Figure 5-2 Potential lines distribution for the cable example for limited number of elements 

The aim for this thesis is to do subdomain analysis, one subdomain example is to divide the 

problem area as in Figure 5-3. While we can also divide our problem area into multiple forms 

according to the given parameters and conditions.  
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Figure 5-3 Subdivision of the whole solution domain 

According to Figure 5-3, the solution domain in Figure 5-1 can be divided into two subregions (1 

and 2) as in Figure 5-3. Dividing the solution domain to two or more solutions will be the first step 

in SFEM and will minimize processing time as was shown in Chapter 3.  

Example 5.2, Cable problems with higher number of elements. 

In this example, subregion method will be used to find magnetic vector potential lines in addition 

of increasing number of elements and nodes. We will solve this example in detail so it will explain 

the procedure that we used in the presented analysis. We increased the number of elements to 1012 

elements that distributed into 550 nodes. We will divide our problem into internal and external 

subregions. The internal subregion will be the rectangular conductor which carries a current 

density of ( J=3A/m2). The external subregion will be the surrounded free space. The relative 

permeability for both two regions is 1.  
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According to subregion method, we should define the subregions in addition of both internal and 

external nodes.  As a preprocessing step, we have used the mesh generation which was presented 

in  [117] to generate meshes for both regions. Therefore, we can now summarize the solution steps 

into the following steps: 

1- Define and name the solution subregions that we will use in our analysis. As seen in Figure 

5-4: 

 

Figure 5-4 Define both regions air (R1) and conductive cable (R2) 

2- Therefore, we have now both of R1 and R2 as the outer and inner subregions respectively. 

Now we must mesh each subregion individually, but we must keep the numbering scheme 

as like we did it for the complete problem, so that we can get our solutions from all 

subregions. We have a total of 1012 elements for the complete problem. For R1 , we used 

758 elements as in Figure 5-5. 
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Figure 5-5 Region 1 elements distribution 

The total number of nodes for R1 will be equal to number of external nodes added to number of 

internal nodes and this will be equal to the number of edge nodes with other regions (R2) in this 

example in addition to number of boundary nodes added to number of internal nodes within R1, 

which will be the summation of  (48, 86 and 312). The result will be 446 nodes while we have 758 

elements for R1.  

3- Now we will repeat step (2) for R2. The preprocessing FEM analysis for R1 will generate 

elements for R1 as in Figure 5-6 as: 

 

Figure 5-6 Region 2 elements distribution 

Now we have to compute the number of nodes for R2 as we did for R1, the total number of nodes 

for R2  will be the number of external nodes for R2 added to number of internal nodes for R2 which 
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is equal to number of edge nodes with R1 since we do not have boundary nodes in R2 added to  

number of internal nodes for R2 as 152 nodes, while we have 254 elements for this region.  

4- Now, we used the subdomain equations to find the values of magnetic vector potentials at the 

external nodes and then use these values to find the values for the internal magnetic vector 

potentials for both R1 and R2. After that, we can plot the vector potential fields for both regions 

as: 

 

Figure 5-7 Vector potential plots for R1 

 

Figure 5-8 Vector potential plots for R2 
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The results in Figures 4-7 and Figures 4-8 show an exact matching between the plots of vector 

potential lines for both cases (classical FEM solution) and SFEM solution for the same problem 

and both solutions are true. 

5.2 Forward Eddy Current Problem 

In this section, several examples are presented to verify using SFEMSFEM in solving ECT 

problems. The main objective for the presented method is to simplify solution for big size and 

complicated problems by choosing small subregion represents defect location and change its 

parameters without the need to implement FEM method again for the total problem in each 

iteration.  

In this part, 2D model for coil carrying AC current inducing magnectic flux density to generate an 

eddy currrent will be used to detect hidden metalic defects. This study is done for different defect 

parameters including shapes, angles and depths of the cracks. Meshing diagram then equipotential 

lines will be plotted with different defect structures. In addition, magnetic flux density will be 

calculated at certain measuring points. Finally, some analysis will be done based on the final 

values.  Defect shape, size and position will affect the resultant magnetic density values at the 

measuring points. To model that, the magnetic flux density will be treated as function of the 

following defect parameters: , , , ,x d l w   as shown in Figure 5-9.   
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Figure 5-9 The 2D model for the given problem with a given numerical values showing the box 

that separates total area to both regions one and two.The region inside the box will be R2 while 

the reminder region is R1 

Where, x: is the horizontal distance between the defect and the center of the domain which gives 

an indication about the horizontal defect position with respect to coils, d: is the depth of the defect 

in the material far from the material surface; which gives an indication about the vertical position 

of the defect and how it can be detected comparing to skin depth value. While l and w are both 

defect length and width respectively. Finally, 𝜃 is the clock-wise rotation angle of the defect from 

the horizontal line parallel to the material surface. The box which surrounds the defect will separate 

the entire domain of soliton into two subregions; subregion two (R2) which is the area inside the 

box and subregion one, (R1) which describes the reminder area of the problem. It is clear that the 

box that is chosen is general and suitable for all cases; which means it may cover part of the 

conductor and the air according to the position of the defect and its closeness to the steel surface. 

To summarize the methodology that used in solving ECT problems using direct SFEM such in 

Figure 5-9, a flow chart is used as in Figure 5-10 to explain solution process step by step starting 
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from giving values of the physical properties and ending by getting the results.  The core issue of 

the solution is how defect region is selected and separated from the entire region as was done in 

Figure 4-1. The parameters for bigger domain which represents the reminder region R1 will be 

saved for the entire of the structure. To update the defect itself like changing its physical 

parameters through the presented algorithm, FEM will not be used each time once defect’s 

properties are changed through the entire solution. It is enough to separate the defect from the 

problem and call it as region two and change these parameters including width or length or 

orientation while keeping the FEM data for region one fixed each iteration. This will lead to get 

values of the magnetic flux densities at the pre-determined measuring points. All what needed is 

to update the defect region related profile (R2).  
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Figure 5-10 Flow chart for solving direct ECT problems using SFEMSFEM  



 

75 

 

From programming point of view, a mesh generator should be used to generate meshes for different 

predetermined subregions. An automatic parameter-based mesh generator that used for several 

inverse Magnetostatic problems [117] was used to generate elements and nodes for each region. 

The important point, even these nodes and elements are generated for two separated subregions, 

then the related data for both nodes and elements numbering scheme will be saved for both regions; 

for example, if region one contains two elements and region two contains three elements, then, 

total number of elements will be five but with two elements in region one like element two and 

element five and the reminder elements will be for region two which are elements one, three and 

four. After finding the related nodes and elements for both subregions, FEM now can be used for 

both subregions. The basic step is to update FEM solution by rearranging nodes to both interior 

and exterior nodes for both subregions to use them later to get the solution. Choleski 

Decomposition is used twice in this algorithm; the first time when both subregion matrix [Psr] and 

subregion vector {Qsr} were found as seen from equations (3.12) and (3.15). The second time 

when final FEM solution is used to find potential values at all external nodes in (3.19).  Where the 

resulted values at these external nodes will lead to find the reminder values of potentials in the 

interior region for both subregions (3.6).  

The algorithm that is shown in Figure 5-10 will be applied for different defect cases and parameters 

for the model that was introduced in Figure 5-9. This example will be presented to validate the 

proposed technique in solving some of ECT problems. The following examples in this section will 

show how we can use SFEM in solving direct ECT problems. 
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Example 5.3, Evaluating Equipotential Lines for Different Defect Shapes 

In this example, subregion method is used in deriving and plotting magnetic potential lines. As for 

classical FEM method, meshing both R1 and R2 will be the first step after considering the defect 

area as a separated region from the entire region. After that, our FEM solver will be used to get 

the values of potentials in both interior and exterior nodes for both subregions. Next, these 

potentials will be used to find the values of the potentials for the reminder nodes. Finally, a post 

processing algorithm can be used for plotting the magnetic fields for the total domain. The defect 

in this example will have the following fixed parameters based on Figure 5-9  {x = 0.0, 𝑑 =

0.5cm, 𝑙 = 2.5cm, 𝑤 = 0.1cm} and different angles of defects rotation of:  90o, 0o, 30o and a no 

defect case. The following steps must be followed to get the final solution 

1. Generating meshes after determining both subregions. 

The first part in solving subregion problems is to determine these subregions. A fixed model 

dimensions of 8 cm by 10 cm will be divided equally to upper and lower air and conductive halves 

respectively. The AC current will flow in the coils with a current density of ± 100A/cm2 (the 

negative sign refers to the opposite direction of the current through the coil). This current will 

induce the coil magnetic flux density that will induce the eddy current at the surface of the 

conductor. This conducer’s conductivity is 1000S.m-1.  Four cases will be analyzed in this part 

based on Figure 5-11 depending on the defect characterizations. All the cases will share the 

physical properties and dimensions of {x=0.0,d=0.5cm,l=2.5cm,w=0.1cm}, while no defect case 

will be taken in our study in addition to three different defect angles of ( 0o, 30o and 90o ). The 

meshing diagram for each case for both regions is shown in Figure 5-11.  
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Figure 5-11 Meshing diagram for both regions (1 and 2) as tabulated in Table 5-1 effected by a 

defect with the following parameters: {𝑥 = 0.0, 𝑑 = 0.5𝑐𝑚, 𝑙 = 2.5𝑐𝑚, 𝑤 = 0.1𝑐𝑚} and 

different angles of rotations. (a) No defect Case. (b) 90o Defect angle. (c) 0o Defect angle. (d) 30o 

Defect angle. 

Taking the defect as a separate region regardless of the reminder of the domain will simplify the 

solution for advanced applications. Dirichlet boundary conditions of zero potential is applied to all 

boundaries for the total problem since no symmetry was used. It can be seen that Region 1 contains 

the meshing of the coils, part of the air and part of the conductor, while Region 2 contains the 

remainder part of the air and the conductor in addition to the defect itself. According to [117], the 

minimum elements area will be 0.05cm2 . These relatively small elements were automatically used 

in critical and narrow spaces. Table 5-1 shows meshing data used in generating both regions for 

all cases in Figure 5-11. 
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Table 5-1 Meshing data including number of nodes and elements for both regions (one and two) 

for the current example and processing time for all cases. 

  No Defect 90o Defect angle 0o Defect angle 30o Defect angle 

R1 R2 R1 R2 R1 R2 R1 R2 

Number of  

Nodes 

1275 154 1275 154 1292 191 1157 347 

Number of 

 Elements  

2380 260 2380 260 2409 329 2118 623 

Processing  

Time (s) 

39.69 44.69 59.09 56.53 

 

Increasing the number of elements will increase processing time. In the 30o defect angle case, more 

elements are used for meshing the two regions, since angular defect will occupy more rotational 

area within the metal, so, processing time (getting the final potential values) at all nodes will take 

the longest time. 

2. Plotting potentials for both subregions. 

After generating the meshes for both subregions, FEM analysis will be applied for both subregions 

(1 and 2) according to the flow chart in Figure 5-10. There will be three separate sets of nodes: I- 

The outer boundary nodes where all Dirichlet potential values at these boundary nodes equal to 

zero, so these values are known in our solution. II- External nodes between the two-separated 

subregions where, the potential values on these nodes are found using equation (3.19). Now the 

outer boundary nodes are also external nodes to the related region which is Region one in this case, 

but since they have a given predetermined values, then, those can be considered as a separate set 

of nodes. III- The internal nodes for each subregion, which are all found after knowing the values 

of the potentials on all external and boundary nodes, and equation (3.6) is used to find the potential 

at these nodes. After having the values for the total potentials at all nodes, vector potential can be 
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plotted in a 2D-xy plane for both regions. Figure 5-12 shows the complete plot for the potential 

values for the same previous example that used in Figure 5-11. 
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Figure 5-12 Equipotential lines for both regions (one and two) for example in Figure 5-11. (a) 

No defect case. (b) 90o Defect angle. (c) 0o Defect angle. (d) 30o Defect angle 

It is clear that each case represents a defect angle that has two vector potential plots for both defect 

and reminder regions. Where each case represents different defect angle. In Figure 5-12a, a no 
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defect case was introduced, so a non-interrupted potential can be noted as expected. While, in 

Figure 5-12b and Figure 5-12c a 90o and 0o defects angles affected potential lines respectively, 

and an interrupted potential fields due to these defects were resulted. In Figure 5-12d, a 30o defect 

angle was studied, where some interrupted potential fields were resulted due to the defect presence. 

The results in Figure 5-12 shew how fields distributed in both regions R1 and R2 in each case and 

how equation (3.19) was used to connect both regions solutions to the final one. More details about 

the field lines and final values can be more obvious when recombining fields in both regions after 

using same coordinates for the original domain as in Figure 5-13.  

3. Plotting field lines for the complete problem. 

Figure 5-13 shows the complete plot for the field lines for each case of the defect angles. Merging 

both regions to return to the original domain will connect the separated field lines. 
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Figure 5-13 Final plot for the magnetic equipotential lines for example in Figure 5-11. (a) No 

defect Case. (b) 90o Defect angle. (c) 0o Defect angle. (d) 30o Defect angle. 
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COMSOL was used to validate results achieved by SFEMSFEM solver. An excellent matching 

between both SFEMSFEM solver and COMSOL solver is clear from plotting the potential lines 

per each case in Figure 5-13. It is now clear that there will be no interrupted of fields when defect 

free problem exists as shown in Figure 5- 13a and dividing the problem will help us in saving time 

if our solution is repeated for different physical properties for the elements who are saved in R2. 

Changing the defect angle will lead to make changes in the fields and will resulted in interrupt 

some fields. The values of magnetic vector potentials, then, the plot for these potential lines in 

defect region can give a mark of having defect as noticed from the total plot for the complete 

domain in Figure 5-13 for the four presented cases. Detailed study of changing the properties of 

the defect will be presented in the next examples.  

Example 5.4, Comparison Between Classical and SFEM 

A classical FEM solver was used to solve same exact examples in addition to COMSOL validation 

by meshing total domain area R instead of defect region R1 and reminder region R2 in equation 

(3.2) to triangular elements where a first order two dimensional trail function ( )1 2 3, ,a    was used 

to represent any point inside these elements as:  

                           ( ) 
( )( ) ( )
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2
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       (5.1) 

Where, ( )1 2 3, ,   are the triangular coordinates for any point ( ),x y  inside each element.  A 

comparison between presented SFEMSFEM and classical FEM results for 90o defect rotation 

angle at some measuring points is presented in Figure 5-14. These points are:  

[(3,4.2), (3.5,4.2), (4,4.2), (4.5,4.2), (5,4.2), (5.5,4.2), (6,4.2), (6.5,4.2), (7,4.2), (7.5,4.2),] (cm).   
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Figure 5-14 Magnetic Flux Density in the y-direction for the 90o defect problem at some 

measuring points 

Figure 5-14 shows an excellent agreement between the values of the perpendicular magnetic flux 

densities By at the these points found using the SFEMSFEM and those which were found through 

the classical FEM method as in [115] and through solving equation (5.1). The final results through 

classical FEM method for any problem should map those found through subregion method. They 

are both FEM but with different meshing and dividing schemes.  

The main purpose of using the subregion method is to save computations and processing time 

especially for large problems. Dividing the original problems into separated profiles, then saving 

the data for each profile and use these profiles later in the SFEMSFEM method is an effective way 

for dealing with these large problems.  

 

Example 5.5, Maximum Value of Magnetic Flux Density Ratio 
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It is important to study the relation of changing some of the physical parameters of the defect to 

setup a robust algorithm to detect these hidden defects. In this example, multiple parameters will 

be analyzed using SFEMSFEM. The effect of changing some of the numerical parameters that are 

related to the defects dimensions and positions while keeping the reminder parameters fixed as 

shown in  Figure 5-9. Next, SFEMSFEM will be applied once, twice or more according to the 

nature of the problem and how many times these parameters changed. After that, magnetic vector 

potentials will be found and it was noticed that interruption to these lines happened due these 

defects and this will give a flag whether if there is a hidden defect or not. However, in more 

advanced problems, like optimization and inverse problems, this will be not enough, since 

measuring vector potential lines inside the conductor region will be difficult. So, some measuring 

points will be appointed at the surface of the conductor to measure the resultant magnetic flux 

density that results from both the eddy current and the AC current in the coil. In this example, pre-

determined 10 points will be located for the model in Figure 5-9 with keeping the values for 

conductivity and current density fixed. These points are:  

[(3,4.2), (3.5,4.2), (4,4.2), (4.5,4.2), (5,4.2), (5.5,4.2), (6,4.2), (6.5,4.2), (7,4.2), (7.5,4.2),] (cm).  

Finding the values for magnetic flux density at all these points will be the next step in our solution. 

By changing defect parameters like: length, rotation angle, width or depth, these values for 

magnetic flux densities will be changed at the these measuring points as these values will be 

changed for the entire domain.  The values for resultant By  due the existence of the defect at these 

measuring points will be named as
i

defectB . Then the effect on flux density i

BR will be calculated for 

each defect and tabulated as the normalized difference between 
i

nodefectB  and 
i

defectB . By considering 

the maximum of 
i

BR , the defect detecting ratio will be defined as [115]: 
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                                                ( ), , 100

i i

nodefect defect

i

nodefect

B B
R d l max

B


 −
=   

 
                                                        (5.2) 

where, ( ), ,R d l  is the maximum value of flux density ratio between flux changes caused by the 

defect and flux without the defect, where a defect with length 𝑙 is at depth 𝑑 from the material 

surface and rotated by angle 𝜃 clock-wise from the horizontal line parallel to the steel surface as 

seen in Figure 5-9.  Figure 5-15 shows multiple examples of different defects sizes and positions 

parametric studies. This will give an excellent handout for detecting these kinds of defects once 

they are existing. 
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Figure 5-15 The relation between 𝑅(𝜃,𝑑,𝑙) and the variance of some properties: (a) with the defect 

angles. (b) With the defect depth from steel surface. (c) With the defect horizontal displacement 

from the right edge. (d) With the defect width. 

 Figure 5-15 shows how ratio ( ), ,R d l  varies with defect parameters. When ( ), ,R d l is high, 

there will be a higher chance that the defect will be detected.  Figure 5- 15a shows how ( ), ,R d l  

varies with angle 𝜃, ( ), ,R d l goes to a maximum when 𝜃 = 00. That can be clear for both cases 

presented in Figure 5- 15a, where, x was chosen to be -1cm, d=0.5cm, w=0.8cm and l=1.6cm for 

the first smaller defect while x was chosen to be -1cm, d=0.1cm, w=1.2cm and l=2cm for the 

second larger one. Those values of R show that there will be higher chances for detecting horizontal 

orientation defects. And this chance reduces by increasing the rotational angle of the defect with 

the horizontal axis between (40o- 60o) and starts to increase slowly until 90o,. R started from 16.62 

at 0o and decreased to 5.3 at 50o and increased again to be 10.81 at 90o for the larger defect with
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( )0.4, 0.4, 0.4R d l w− + + while R started from 3.54 at 0o and decreased to 1.28 at 60o and 

increased again to be 1.69 at 90o for the smaller defect with ( ), ,R d l w . That is obvious for the 

large and surface closer defect more than the smaller one which has more depth inside the metal. 

The depth of penetration will be the same for both cases, while the skin depth will affect directly 

the probability of detect the defect with different depth d values as shown in Figure 5- 15b which 

shows the result of increasing the perpendicular distance between a defect with w=0.75cm, l=1cm, 

x=1cm and 𝜃=45o and the conductor surface at y=4cm. The values of R show that while increasing 

this distance d, then R will be decreased too.  The skin depth is calculated at the operated frequency 

as 1.592cm. The defect has better chance to be detected if d ≤1.592 cm so that the eddy current 

will have tangible values, which it can flows within the defect position and then can change the 

values of the magnetic flux densities at the measuring points. The large value of R (R =3.9) when 

no gab between the defect and the conductor surface is due to the flow of eddy current along the 

surface. The defect would interrupt the flow of eddy currents which would find it difficult to go 

deep because of the value of the conductivity of the defect and due to skin effect. The example in  

Figure 5- 15c takes fixed values for w, d, x and 𝜃 as 1cm, 0.5cm 1cm and 90o for the same operating 

frequency of 10 Hz. It is noticed that the values of R increased sharply by increasing l up to 0.75cm, 

while the increase in R becomes slow at values of l ≥0.75 cm. This is due to skin depth of 1.592cm, 

since the part of the defect that is locating out the depth of penetration distance will be harder to 

be detected and will have small contribution on the value of R, but it will still affect the resulted 

magnetic flux density values at the measuring points. A study of the relation between defect length 

l with R is presented in  Figure 5- 15c. It is shown that increasing the length of the defect will be 

a sign of increasing its size, so that, it will be resulted in increasing the interpretation of the eddy 

current and then increasing the values of R.  Figure 5- 15d shows the relation between width of the 
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defect and ( ), ,R d l which considered as the relation between detecting the defect and its size too. 

It is shown that for a fixed depth d=0.2cm and angle of rotation 𝜃= 60o, ( ), ,R d l will increased 

by increasing w at fixed x=1cm and length l=1.5 cm. 

Defining x; the horizontal distance of the defect from the entire domain’s center and the defect as 

was shown in Figure 5-9 will give an indication regarding the coil horizontal position due to defect. 

Taking three values of x as: x1=-2.25cm, x2=0 cm and x3=2.25cm respectively and plotting the 

value of R at these horizontal distances as shown in  Figure 5-16a for w=1cm, l=4cm and 𝜃=12o. 

 

Figure 5-16 Horizontal defect central distance effect on R for three different x values: x1=-2.25 

cm, x2= 0 cm and x3=2.25 cm. (a) R at x= x1, x2 and x3 vs. d as the depth of the defect for 

w=1cm, l=4cm and 𝜃=12o . (b) Values of R according given values for both x and d in Table 2 

where w =0.5 cm, l=1cm and 𝜃=90o 

It is shown that the horizontal position of the defect will affect its detection probability. By moving 

horizontally away from the coil center position, the strength of the eddy current density will be 

decreased. And this can be shown for plotting R as a function of d for three horizontals x distances 

of: -2.25 cm, 0 cm and 2.25 cm as seen in  Figure 5- 16a. At deeper perpendicular distance (large 

value of d compared to skin depth of: 1.592 cm), R-values will be close to each other as excepted.  

Figure 5- 16b shows some discrete values of R with given values of x and d in to Table 5-2 where 

w =0.5 cm, l=1cm and 𝜃=90o.  
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Table 5-2  Values of R for both x and d where w =0.5 cm, l=1cm and 𝜃=90o 

  d=0 cm d=1.1cm d=2.1 cm 

x=-2.25 cm R=18.74 R=0.38 R=0.05 

x=0 cm R=15.41 R=0.27 R=0.02 

x=2.25 cm R=18.27 R=0.39 R=0.05 

 

It is shown that R has large values when no gabs between these defects and conductor surfaces, 

while these defects will have smaller vales of R by increasing d . Three values of x were chosen, 

two of them directly at the center of the coils where R will be the maximum at these locations due 

to the larger values of eddy current on these points since they are directly below the coils. While 

the values of the eddy currents decrease by moving far from these points as moving toward x2, 

where R will still have relatively high value at this point if d=0 but R will decrease by increasing 

d for the three cases as shown before in  Figure 5-15. 

Example 5.6, Minimization Processing Time for Direct ECT Problems 

Figure 5-17 shows how using SFEMSFEM will be used to minimize processing time. Define TR2 

and AR2 as:  

                                                                          
2

2R

Tot

t
T

t
=                                                                  (5.3a)  

                                                                          
2

2R

Tot

A
A

A
=                                                                (5.3b)  

Where: t2 is time for processing region two only which is the defect region, tTot is the total time for 

processing the complete domain with both regions one and two, A2 is the area for region two and 

ATot is the total area for both regions one and two.  
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Figure 5-17 Normalized subregion areas (different areas for both R1 and R2) for the same 90o 

defect problem Vs.  Normalized processing time for region R2, R1+R2=80cm2 

Increasing 𝐴𝑅2
 that’s defiantly will increase 𝑇𝑅2

. The maximum value for processing time will be 

when AR2=1 where SFEMSFEM will be turned to classical FEM by making the selected region of 

defect represents the entire domain. This result is logical if the total area increased by increasing 

both areas of R1 and R2 since increasing the areas of the solution domain will increase the number 

of meshes and makes it takes longer time in processing. Table 5-3 shows how increasing the 

number of elements for both regions or one region (R1 or R2) for a fixed domain (fixed dimensions) 

will increase processing time for the case shown in Figure 5-11b.   
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Table 5-3 Study the effect of controlling the minimum element area of the given problem for a 

fixed 90o defect problem in Figure 5-11b with fixed area of 80cm2 

Elements 

minimum 

area (cm2) 

Number of 

elements 

in R1 

 

Number of 

elements 

 in R2 

Number of 

elements in 

total domain 

Processing  

time for  

total domain (s) 

Processing 

time for R2 (s) 

0.05 2380 260 2640 38.4 4.4 

0.04 2952 288 3240 71.6 10.5 

0.02 5902 445 6347 515.5 45.6 

0.01 11942 792 12734 4179.3 380.3 

 

The first case in Table 5-3 shows that processing time needs 38.4s to get values of the potential 

fields at all nodes for the problem that was described in Figure 5-11b. Updating the profile for R2 

will not need 38.4 s again for getting the required answer. It will take 4.4s to update the data profile 

for R2 and solving the SFEMSFEM equations (3.19) to get the magnetic potential fields at all 

nodes. Finally, the same solution process will be for both cases as plotted in Figure 5-13b. That 

means a big save in time will be achieved as mentioned before. 

5.3 Inverse Eddy Current problem  

An inverse problem in science is the process of calculating from a set of observations the causal 

factors that produced them: for example, calculating an image in computer tomography, source 

reconstructing in acoustics, or calculating the density of the Earth from measurements of its gravity 

field. 

In our work, we need to use the concept of inverse problems to re-characterize defect shapes so 

we can evaluate whether these defects are major or minor and then if they will affect the 

performance of the system or not. 
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We will use two optimization techniques in our analysis, Genetic Algorithm and Simulated 

Annealing optimization techniques. I will use same method and updates codes which have been 

used in [115, 116] for similar problems.  

The first step for characterizing the defect will be to detect its location. After that we will use 

inverse problem techniques to characterize it. After detecting the defect, we investigated more on 

defect characterization. Defect Characterization means knowing its size, shape, physical 

construction and properties, exact location. Next, we measure its effect on the total performance.   

Our comparison will be with no defect case. By knowing the response when there is no defect, if 

the response is different because of the crack whether its hidden inside the material or not, the test 

object is presently flagged as defective and the plate is sent for repair without assessing if the 

defect is serious enough for removal from service. In my work, this technique is extended here for 

purpose of characterization. An iterative approach is presented that repeatedly employs SFEM 

technique for modeling the forward problem to characterize the shape of defects in a steel plate. 

The defect can be assigned to several design parameters, that will be used to characterize its shape 

as seen in Figure 5-18. 

The defect can be assigned to design parameters. Predicting that we know the defect design 

parameters as we get these results from the experimental testing. That will be used to characterize 

defect shape as seen in Figure 5-18. 
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Figure 5-18 Defect model with design parameters 

Those design parameters are presented by matrix [h] as: 
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(5.1) 

 

where these x and y coordinates in {ℎ} represent key points for the unknown defect. We are free 

to choose these points as we can see from Figure 5-18. The best choice for these points will come 

after solving the inverse problem by choosing the appropriate optimization technique.  

An object function 𝐹 is defined as the sum of the squares of the difference between computed and 

measured (defect) performance values at measurement points at all measuring points,  
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𝐹 will represent the object shaping function.  By minimizing the object function F with respect to 

the parameters by any of the optimization methods, the characteristics of the defect can be 

estimated.  

The computational process in the defect identification system is shown in Figure 5-19. It needs to 

solve the design parameters {h}. First, the mesh needs to be generated for the given design 
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parameter. Mesh generation is a very important part of FEM analysis based design optimization. 

Instead of solution using classical FEM method [108, 109, 111, 112], we will not be able to use a 

parameter based mesh generator as in [117] , because in every iteration, the mesh must be 

generated automatically when design parameters change. These types of special parametric mesh 

generator will generate different numbers and sets of elements in each iteration to calculate the 

magnetic vector potential. The subregional inverse FEM problems objective is to divide the 

solution area into different regions. After that, we will pick up our region, which will be our work 

region that contains the requested design. Generating new meshes with new number of elements 

and nodes inside this region will make applying equation (3.2) and then (3.6) and (3.19) impossible 

because of changing the number of the potential values at the interior nodes not changing their 

values. The source of stability for these equations is to keep this number fixed in each iteration. 

Triangles must be modified for flexible, nonstop optimizations way to save connectivity matrix 

and then save the connection between nodes and the same number of the interior nodes to apply 

the SFEM in our inverse problem. This can be done by applying an elastic mesh generating 

technique which was introduced in Chapter 4. The authors of [114] apply this method to reduce 

processing time in some Magnetostatic pole design problems. We updated this method to use it in 

Eddy Current problems.  

The objective for our analysis is to compute the magnetic vector potential for all the system. After 

computing vector potential values, the magnetic flux density
i

CalculatedB  is computed and the object 

function 𝐹 is evaluated. When the object function 𝐹 is minimum, the parameters {h} will be found.  

If 𝐹 is not minimum, the design parameters will be changed using the optimization method being 

used for the known defect which is known as true profile. 
i

MeasuredB should be calculated first. Then 

faking that we do not know the shape of the defect, we generated hundreds of different shapes of 
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defects using our algorithm. 
i

CalculatedB was calculated each time. Comparing 
i

MeasuredB and 
i

CalculatedB

the object function 𝐹 is evaluated each time and optimized. When 𝐹 is minimum, the reconstructed 

shape of the defect is generated.  

The block diagram in Figure 5-19 explains in detail how we can detect and characterize a hidden 

crack in metals using our proposed algorithm. 

 

Figure 5-19 Design cycle for solving inverse ECT using SFEM 

The first step is to do a complete FEM Analysis for the whole problem. We will find the values of 

magnetic vector potentials for all nodes. After that we will find the values for the magnetic flux 

density in all elements. We can see the values of the magnetic flux densities at some measuring 

points too.  
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Our first mission in our solution is to know if we have a crack or not. Then we need to know 

whether this crack is tangible and affected the performance of the system or not. We can determine 

an initial location for that defect by measuring the values for the magnetic flux densities in all 

elements and compare these values with no defect values.  

The following plot in Figure 5-20 shows the values of the magnetic flux density for each element 

in no defect case for the problem in Figure 5-9. This can be saved as a reference file to be used 

later. 

 

Figure 5-20 Finite Element Solution for the entire domain which finds the magnetic flux density 

at each element in no defect case. 

There is a complete symmetry for this plot. The highest values of the magnetic flux densities will 

be in the middle distances between the two coils and that is logical since the both locations will 

have the summation for the positive two values of the magnetic flux densities. We used the values 

of the magnetic flux densities in the no defect case as a reference for detecting the initial position 

of the defect if it is existing.  

Now, we will return to the original problem for Figure 5-9 and we will consider that we have an 

arbitrary 2D defect as shown in Figure 5-21. 
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Figure 5-21 Arbitrary 2D defect and resulted vector potential lines 

We can see the victor potential lines in the same plot and we can notice the change in these lines 

because of the defect. To choose the initial defect region R2 we need to make a calculation for 

magnetic flux density for the entire domain. After that we can choose our regions and then apply 

the subregion method.  

The following plot shows how magnetic flux density distributed along the entire domain of the 

problems. 

 

Figure 5-22 Finite Element Solution for the entire domain which finds the magnetic flux density 

at each element in defect case. 
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We can notice that there is a distortion in the selected area. We can compare this result with that 

in Figure 5-20 when the magnetic flux density was plot in the no defect case. This region is selected 

as defect region (R2). To give more details about this region, the following figure shows the plot 

of the difference between magnetic flux densities in defect and no defect cases as:  

                         difference defect nodefectB B B= −    (5.3) 

 

 

Figure 5-23 Difference of magnetic flux densities between defect and no defect cases at each 

element. 

The difference has tangible values at the defect location, where its values floating around zero 

while we move far from the defect position. All these results will give us an indication of the crack 

location, also it may give an initial guess regarding its shape.  

After that we can setup a defect subregion area named R2. In this step, we will apply the SFEM 

method to find magnetic vector potentials in this region R2 and the reminder region R1. This will 

be done as we did in first part of this chapter in. In this step, we will divide nodes to interior and 

exterior nodes. These nodes will be the key of our solution. When we obtain all these values of the 

magnetic vector potentials, then we will reconnect the FEM solutions for both regions R1 and R2 
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again to find the total solution, so we can find the values of the magnetic flux densities at the 

measuring points. Then we will use inverse problem techniques to get the best defect shape 

characterization. In our work, we used both Genetic Algorithm and Simulated Annealing 

Optimization Techniques as colleagues used in their previous research in [115, 116]. We see from 

the block diagram in Figure 5-19 that we calculated our cost function at the measuring points. 

According of the resulted values, we can determine whether to stop our solver or continue to 

reshape the defect. If we find F in equation (5.5) is not minimum, then we will get a conclusion 

that our solution is not optimal. That means the generated defect is not close to the original one. 

Therefore, we will need to generate new meshes. The presented technique is to use a flexible 

elastic131 method in generating the new meshes. We will use the technique which was introduced 

in Chapter 4 for only just the predetermined defect region, which is R2. This means we will not 

change the connectivity matrix for the entire domain. And we will move nodes according to a 

mathematical scheme within R2 but under the condition of saving and keeping the same connection 

between these nodes. This process of solving is clear in the Figure 5-19 which means we only play 

with nodes not the elements. And this will save time and will be more flexible and will give 

accurate results. The purpose of using this technique in this time is we are using subregion 

technique. This means we divided each region to both interior and exterior nodes. We have 

positions for the exterior nodes at the interface between these two regions. And to get a final 

solution for any problem that used the subregion method migrate with FEM, we should combine 

both regions using the interfacing exterior nodes between regions. These positions contain 

information that cannot be changed. So, using any other meshing algorithm inside R2 may change:  

1) Number of nodes even interior or exterior in R2.  
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2) The position of the exterior nodes in case we keep the same number of nodes while 

generating new meshes.  

So, I found that the best solution is to use this technique of saving connectivity scheme and 

generalize it to fit all kinds of problems. Therefore, we will keep changing the position of the 

interior nodes within the defect region R2 until reaching the optimal values of F which is the 

minimum value. In this case we will stop the algorithm and we can return to our profile of the 

interior nodes inside R2 to select defect nodes. Then we characterize it and find its shape. We 

should know that we can do a lot of constrains in our solution. Each constrain has its special 

purpose. And that will be clear from the solved example.  

Example 5.7, Reconstruction Shape of the Hidden Defect by Using SFEM 

Consider the following model in Figure 5-24 which is used to validate the Subregion Finite 

Element Method in solving ECT Problem. The objective for this problem is to detect the hidden 

defect, then to characterize it using the proposed algorithm. The coil (with 𝜇𝑟   =  1.0, and current 

density  𝐽 = ± 100  A/cm2 ) excites the magnetic field in the steel plate (with 𝜇𝑟   =  100.0 and 

current density 𝐽0 = 0.0). The conductor is surrounded by air (with 𝜇𝑟   =  1.0 and current 

density 𝐽 = 0.0 ). The magnetic flux density in the y-direction By is measured at  𝑦 =  4.5 cm, 

4 cm ≤ 𝑥 ≤ 6 cm using 10 points as shown in Figure 5-24 labeled as the measuring line. 
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Figure 5-24 Given parameters for a 2D ECT problem in Example 5.7 with the true defect. 

On each node on the defect, the vertical displacements are selected as design parameters. In our 

numerical model we have 10 geometric parameters instead of 8 as used in [115, 116] contained in 

the vector {h}:{ h1, h2, h3, h4, h5, h6, h7, h8, h9, h10}. This will give more accurate results. The 

measuring line located at y = 4.5 cm, is sampled to ten equally spaced points and tolerance 

boundaries on {h}  

To start our solution, R1 and R2 should be selected first; next our design parameters will be 

identified inside R2. Those design parameters should be on the surface of our predetermined defect 

as in Figure 5-18.  Each design variable is represented by 10 bits to be used later in Genetic 

Algorithm. For testing, defect was used with the following fixed design parameters nodes 

coordinates: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5,2 , 6.5,2.3 , 7,2 , 8,3.1 , 9,2 , 9,2.6 , 8,3.3 , 7, 2.6 , 6.5,3.1 , 5,2.8  

Starting from these points, {h} will be calculated each iteration to find the original defect shape 

as we chose the y-directions of these design parameters as:{h}= {2.0. 2.3, 2, 3.1, 2, 2.6, 3.3, 2.6, 

3.1, 2.8} cm and computed the field 
i

MeasuredB  at the measuring points.  
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These design parameters will be treated as our design nodes in our method of solution. An initial 

defect shape will be generated with saving the node numbering as done for the first time of these 

designing nodes. After that SFEM will be used to change positions for these nodes until getting 

our solution which will be the most accurate defect shape and the reconstructed {h} will be 

generated each iteration to match the measurements
i

MeasuredB .  

After determining the defect region and name it as R2, the remainder area will be considered as a 

fixed region with fixed nodes and elements and this will be  R1 as shown in Figure 5-25. 

 

Figure 5-25 Dividing the entire problem domain to R1 and R2 and showing exterior (interfacing) 

nodes for both regions. 

The next step will be to determine groups of nodes for each selected region. Each region should 

have two sets of nodes; interior and exterior nodes. At least one set of exterior nodes should be 

common between both regions for applying subregion method. 

For the reminder region; the bigger one R1, will consists of two sets of the exterior nodes (Group 

1 and Group 2) as shown in Figure 5-25 where the exterior nodes in Group 1 of nodes will be at 

the interface between both of R1 and R2. Those are the common nodes between both regions. Those 

nodes will be used in equation (3.19) as the interfacing exterior nodes between both regions.  Nodes 
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that belong to Group 2 are also considered to be exterior nodes for R1. Those are the boundary 

nodes and their values are upon the given data. In our example, zero potential values are imposed 

for these nodes.  

The reminder nodes within region R1, which are not belong to Groups 1 and 2 will be saved as the 

interior nodes for R1 and will be used in equation (3.6). Our SFEM solver is designed to determine 

both interior and exterior nodes for R2 where nodes belong to Group 1 are exterior nodes for R2. 

Those are the common set of nodes in R1. While the reminder nodes inside R2 are considered as 

interior nodes for R2.  

After selecting nodes for both regions, a sub-regional Finite Element solution will be implemented 

for both regions. The important issue will be in creating two profiles for both regions. Then saving 

results in these two profiles to be used later in the inverse part to detect the shape of the defect.  

The profile that contains the resulted data of R1 will be fixed and created only one time. While 

continuously updating data in the profile that is related to R2. This is because SFEM will continue 

among the given iterations until achieving the optimal solution which is the best score function 

value. That means the best reconstructed shape of the hidden defect which happened at minimum 

value of F in equation (3.5). To update the data for R2, new meshing scheme will be generated 

every iteration. The only things that will have changed will be the position of the nodes and the 

values of their resulted vector potential values, Changing the position of the interior nodes in R2 

means that a resulted change on the predetermined design parameters and the magnetic flux density 

is then calculated 
i

CalculatedB  along the measuring line. The object function 𝐹 is evaluated by 

comparing 
i

CalculatedB  with 
i

MeasuredB .  

It is necessary to impose constraints to get a single defect [115, 116]. So, to maintain a realistic 

shape with a single defect, node 10 is on top of node 1, node 9 on top of node 2, node 8 on top of 
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node 3 and node 7 on top of node 4 and node 6 on top of node 5, as shown later in Figure 5-18, 

where 10 nodes are used as designing nodes and by imposing the constraints as h10>h1, h9 >h2, h8 

>h3 ,  h7 >h4 and h6 >h5:  Therefore, single and realistic defect will be created 

In our simulation, both of Genetic Algorithm and Simulated Annealing as used in [115, 116] are 

used as optimization techniques to calculate fitness score function each iteration. These 

optimization techniques will be used to find and calculate the best fitness score. To apply these 

optimization techniques in our proposed method, the object function F is calculated at each 

iteration. After that, new meshes inside the defect region R2 will be generated using the elastic 

meshing and then get new defect shape each iteration until having the best defect shape. Next, 

evaluate the performance of the complete system by calculating F. Figure 5-26 shows the block 

diagrams for both optimization techniques used in this SFEM solution. Both methods gave 

excellent results. Those block diagrams can be plugged in the main SFEM flow chart in Figure 5-

19 for optimization and calculating F and then make the decision of processing continuity or not.   

 

Figure 5-26 The used optimization techniques in the presented inverse SFEM  ECT problem in 

order to get the optimal defect construction [115, 116]. (a) Using Simulated Annealing (SA). (b) 

Using Genetic Algorithm (GA) 
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Several simulations of defect characterization problem were run and the results were tabulated 

using both optimization techniques. The best fitness score using Genetic Algorithm was achieved 

when the population size is 48 for the 25 iterations as shown in Table 5-4. 

Table 5-4 Fitness scores and processing time using GA for different iteration numbers. 

Population 

size 

5 iterations 15 iterations 25 iterations 

Time(s) F Time(s) F Time(s) F 

6 409.22 0.0785 951.12 0.0541 1914.21 0.0453 

18 700.21 0.0614 1801.21 0.0497 3001.15 0.0281 

30 1085.55 0.0480 3459.17 0.0270 4701.55 0.0146 

36 1294.64 0.0329 4139.13 0.0118 6424.32 0.0054 

42 2538.98 0.0144 4859.64 0.0032 6613.05 0.0013 

48 3722.83 0.0063 4481.67 0.0014 7309.36 0.0005 

 

The verification of Genetic Algorithm is achieved by increasing both iteration numbers and 

populations size which means better values and being closer to the optimal solution of the fitness 

score.  

The best fitness score using Simulated Annealing was calculated through:   

                                                                            ( )
E

kTP E e


=     
  (5.7) 

Where 𝐸=Δf, 𝑘 is Boltzmann constant , T is average value of  f and P will be generated randomly 

each iteration to achieve the optimal value of the fitness score. Δ f  is the difference between current 

and previous score values.  When we change the coordinates yold  from previous to current values 

ycurrent, this will lead to change F from fold to fnew. Δ f = fnew- fold which is equivalent to E in Simulated 

Annealing. 

Excellent results were found using Simulated Annealing optimization as shown in Table 5-5.  
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Table 5-5 Fitness scores and processing time using SA for different iteration numbers. 

Iterations 10×10 20×20 30×30 40×40 50×50 

F 0.0784 0.0530 0.0391 0.0272 0.0214 

Time (s) 40.21 45.77 54.43 60.43 75.15 

 

It is clear that increasing number of iterations will make solution closer to optimal value. In 

addition, this will increase processing time as done using Genetic Algorithm in Table 5-4.  

Our objective in this study is to get an accurate shape for the hidden defect so we can study its 

effect on the entire system. This is clear from fitness score values per each case using Genetic 

Algorithm. In our solution, Genetic Algorithm needs more computational time in processing since 

it takes three steps in determining the next population which are: selection, crossover and mutation. 

It is binary coded algorithm; it takes time to convert to real numbering system in our computational 

solution.  

Perfect matching between both defects profiles as seen in Figure 5-27 that shows the optimum 

shape of the reconstructed defect vs the accurate one. To measure the accuracy of the reconstructed 

defect, the length from the centroid of the true profile to each point was calculated using equation 

(5.8).  

                                                                
1

i in
true reconstructed

i
i true

r r

r
e

n

=

 −
 
 =


   

(5.8) 

where 
i

truer is length from the centroid to the true profile, and 
i

reconstructedr is the length from the 

centroid to the reconstructed profile, where 𝑛 is the number of coordinates in the profile.  
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Figure 5-27 Equipotential lines using SFEM (a) Original Defect. (b) Reconstructed Defect. 

The calculation process for our numerical model is calculated using equation (5.8). The resulted 

values are all tabulated in Table 5-6.  

Table 5-6 Calculating defect accuracy for computational example. 

Original 

Node 

number 

 

Design 

Parameter 

number 

 

 True Defect 

Profile 

Reconstructed Defect 

Profile 
i i

true reconstructed

i

true

r r

r

 −
 
 

 

 

x 

 

y 

 
i

truer  
x 

 

y 

 
i

reconstructedr  

9 h1 5 2 2.1189 5 2.069652 2.096983 0.010372 

10 h2 6.5 2.3 0.6403 6.5 2.298805 0.64106 0.001167 

11 h3 7 2 0.7 7 2.044291 0.655709 0.063273 

12 h4 8 3.1 1.0770 8 3.220627 1.12741 0.046774 

13 h5 9 2 2.1189 9 1.96676 2.130174 0.005291 

14 h6 9 2.3 2.0396 9 2.293784 2.040836 0.000602 

15 h7 8 3.4 1.2206 8 3.5 1.280625 0.049129 

16 h8 7 2.7 0 7 2.697894 0.002106 eps 

17 h9 6.5 2.9 0.5385 6.5 2.875489 0.529902 0.015996 

18 h10 5 3 2.0223 5 2.987524 2.020562 0.000896 

 

This calculation gives error 𝑒 = 2.1%, which means an accuracy of 97.9% in the average 

reconstruction of the defect. For the reconstructed profile, the finite element solution of the 

magnetic vector potential is shown in Figure 5-27 where COMSOL was used to validate the SFEM 

results as shown in Figure 5-28. 
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Figure 5-28 Equipotential lines using COMSOL (a) Original Defect. (b) Reconstructed Defect. 

An excellent agreement between the values of the magnetic vector potentials using COMSOL in 

Figure 5-28 and SFEM in Figure 5-27 which can be used in applying SFEM in other physical 

problems. 

Those results of the vector potential lines will be evaluated later in a post processing terminology 

to evaluate the performance of the system that contains this defect. From the resulted vector 

potential lines, we can notice the effect on these potential lines. Moreover, this maybe a source of 

technical problem.   

Modeling SFEM by using GA with 25 iteration and population size of 45 will be used to prove 

that using SFEM can be considered as an excellent mathematical method, which can be used, in 

regular lab CPUs to perform computations. Figure 5-29 shows how using SFEM will be used to 

minimize processing time. Defining TR2 and AR2 as done before for direct SFEM as:  

                                                                                 
2

2R

Tot

t
T

t
=                                                     (5.9a)  
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2

2R

Tot

A
A

A
=                                                     (5.9b)  

Where: t2 is time for processing region two only which is the defect region, tTot is the total time for 

processing the complete domain with both regions one and two, A2 is the area for region two and 

ATot is the total area for both regions one and two.  

 

Figure 5-29 Normalized subregion areas (different areas for both R1 and R2) Vs.  Normalized 

processing time for region R2, R1+R2=80cm2 

Increasing 𝐴𝑅2
 that is defiantly will increase 𝑇𝑅2

 because of increasing FEM processing area. The 

maximum value for processing time will be when AR2=1, where SFEM will be equivalent to 

classical FEM by making the selected region of defect represents the entire domain. Time 

minimizing ratio between SFEM and classical FEM is not fixed; it is a positive value less than or 

equal to 1.0; (0.1 as seen in Figure 5-29; this value depends on the area of R2) and it becomes 1.0 

when defect region R2 represents the total region R1+R2. The used optimization technique and 

choosing population size and iteration numbers and constrains affect SFEM processing time. The 

main conclusion will be by increasing processing time when defect region area R2 increases as 

shown in Figure 5-29. For more accurate results, R2 should be allocated carefully according to 
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magnetic flux values for the entire domain. To achieve convergence of solution, it is recommended 

to choose R2  with at least twice element length distances from boundaries and primary defect 

circumference. 
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6 Experimental Validation for Subregion Finite Element Method 
 

An experimental validation to SFEM will be presented in this chapter in addition to COMSOL and 

conventional FEM that were presented in Chapter 5.  

Multiple samples were tested to validate the presented results in the NDE Lab in MSU, where we 

use TMR sensor to collect data by scanning it through some measurement points. An elongated 

coil has been used as an excitation coil. The input voltage used was 10 Vpp with the required testing 

frequency. We used a frequency range of (10 Hz-1 kHz). The following constrains should have 

been taken in consideration while setup the experiments: 

• The sensor needs to be scanned above the excitation coil.  

• The sensor position above the coil might not be in the best location, we could not scan 

under the coil. 

• We could not select the points that are theoretically the best as a measuring points, the best 

that we can do is to measure above the coil as close as possible. 

• The objective of this dissertation is to validate the presented algorithm in solving 2D- ECT 

problems by doing an experimental setup that validate the presented computational 

examples presented in Chapter 5.  

The experimental setup was done for testing the following samples: aluminum with edge defect, 

steel with surface defect and aluminum with subsurface defect. Excellent results have been 

achieved. 

The following block diagram in Figure 6-1 shows how we setup our experiments to test our 

samples. 
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Figure 6-1 Eddy Current Testing using TMR sensor used in our experimental Validation 

The excitation coil that contains the AC input voltage will be the source for the first part of the 

magnetic flux density at the predetermined measuring points BCoil (T). While, the eddy current will 

contribute the second part as BEddy Current (T).  We are dealing with 2D-problem, so we will choose 

By as the normal values that we are planning to test using TMR sensor at these measuring points. 

The TMR sensor is placed on a scanner that scans the surface of the tested sample where it will 

read the values of the normal magnetic flux densities By (T). Then it will convert these values to a 

related voltages Vy (volt). it is necessary to note that we are plan to have values of By lie in the 

linear region of the sensor. Therefore, we will have a proportional output voltages. If the values of 

By are high, then there is a chance to input the saturation region of the sensor. This will be a 

limitation for the coil size.  These voltages Vy (volt) are small related to input values, so we need 

to amplify these values. To do that, we will use an instrument amplifier with a gain Gm. The output 

of the amplifier (Vmy)then will be: GmVy (volt). This amplified signal will be then input to a lock-

up amplifier to measure phasor parameters for Vmy (volt). We can use the same input voltage as a 

reference voltage to measure the phase of the output signal. This lock-in amplifier has low-pass 

filter in addition of a circuit that used to amplify the signal. Therefore, the output of this lock-in 

amplifier will be two readings, the first one as real output signal Voreal (volt) and imaginary signal 

as Voimag (volt). There may be a small phase shift in the output voltages due to the existence of the 
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low pass filter in the lock-in amplifier. Where we can then find a relation between the resulted 

output voltages and the magnetic flux density values. This relation is linear and the resulted signal 

will be a scaled version for By. More details will be explained through this chapter. 

6.1 Edge Defect Experimental Setup for Aluminum Sample. 

An initial validation for 2D SFEM is done on the edge of  healthy Aluminum sample as shown in 

Figure 6-2. 

 

Figure 6-2 Aluminum sample and coils position for edge defect example 

This setup in Figure 6-2 is used to start doing an experimental validation with SFEM by 

considering the adjacent free space region to one of the edges as a free space defect. The setup of 

the model is shown in Figure 6-3, where it will be considered that this sample as the defect is 

infinitely long in the z-direction with limited dimensions in the xy-plane. This will be converted to 

the experiment by taking a sample, where edges for coils and sample are far away from 2D cross 

section in addition of taking a measuring points of the normal magnetic flux density By that show 

the effect of this edge defect.  
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Figure 6-3 Aluminum sample with edge defect and coil positions 

It is important to determine the optimal positions for these measuring points that will give the 

required details regarding the experiment.  

To evaluate the performance of the existence of the edge defect, a line of measuring points should 

be allocated above the coils centered at the middle point between the coils that cover part of the 

sample and part of the defect. In this way, a perfect study will be done to study this defect.  

An elongated coil is used to create an experimental validation according to a 2D geometry. The 

coil is long enough along one axis to reduce the effect from the coil edges on the fields over the 

center of the coil. The line of measurements is across the center of the coil as indicated in Figure 

6-4a. The coil consists of 15 turns coated wire with diameter of 0.1 mm. The current flowing in 

the wire at 1000 Hz frequency is measured to 70 mA. The cross section of the coil is 0.5 mm2, 

other dimensions in the setup are given in Figure 6-4c. The conductive sample is an Aluminum 

alloy T6061-T6 with a conductivity of 25 MS/m. 
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Figure 6-4 Experimental steup for testing the Aluminum sample with coils position. (a) Top 

view. (b) Side view. (c) Sample and coils dimensions and positions. 

The coil is mounted on the sample close to the edge. The edge will introduce asymmetry of the 

induced currents and the magnetic field above the sample. A magnetic field sensor using a 

tunneling magnetoresistive (TMR) element is used to measure the component of magnetic field 

normal to sample top surface. The TMR sensor is mounted on a PCB with a circuit to amplify the 

sensor output signal. The TMR sensor is placed in the sensor fixture and scanned over the coil. 

The sensitivity axis is normal to the sample top surface. The setup is shown in Figure 6-5.  

a) Top view b) Side view
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Figure 6-5 TMR sensor mounted in scanner to measure magnetic flux density at measuring 

points. 

A sinusoidal voltage with 1000 Hz frequency is connected to the excitation coil. The overall 

experimental setup is shown in Figure 6-6. 

TMR sensor board

Sensor fixture
Coil

Sample
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Figure 6-6 Complete experimental setup for the experiment . 

A lock-in amplifier model 830 from Stanford Research Systems is used to enhance the signal 

output from the TMR sensor. Equation (6.1) gives the model of the input signal to lock-in 

amplifier: 

𝑉𝑠 = 𝐾𝑠𝑐𝑜𝑠(𝜔𝑡 + 𝜑𝑠) (6.1) 

where 𝐾𝑠 is amplitude, 𝜔 is angular frequency, 𝜑𝑠 is phase angle. Equation (6.2) shows reference 

signal, which should have the exact same angular frequency 𝜔 as the input signal and pre-specified 

constant amplitude 𝐾𝑟. 

𝑉𝑟 = 𝐾𝑟𝑐𝑜𝑠(𝜔𝑡 + 𝜑𝑟) (6.2) 

These two signals are multiplied according to equation (6.3). 

Lock-in amplifier

Waveform generator

XYZ gantry

TMR sensor

Coil
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𝑉𝑚 = 𝑉𝑟 ∙ 𝑉𝑠 =
1

2
𝐾𝑟𝐾𝑠[𝑐𝑜𝑠(𝜑𝑠 − 𝜑𝑟) + 𝑐𝑜𝑠(2𝜔𝑡 + 𝜑𝑟 + 𝜑𝑠)] 

  (6.3) 

The result consists of two frequency components. If the low pass filter is set correctly, the high 

frequency component will be removed and the output is the baseband signal given by equation 

(6.4): 

𝑉𝑜𝑢𝑡 =
1

2
𝐾𝑟𝐾𝑠𝑐𝑜𝑠(𝜑𝑠 − 𝜑𝑟) 

(6.4) 

There are two multipliers in the lock-in amplifier with reference signals shifted 90° in phase.  The 

two outputs are given in equations (6.5) and (6.6), which are correlated to the in-phase and 

quadrature component of the signal respectively as, 

     𝑉𝑋 =
1

2
𝐾𝑟𝐾𝑠𝑐𝑜𝑠(𝜑𝑠 − 𝜑𝑟)      (6.5) 

𝑉𝑌 =
1

2
𝐾𝑟𝐾𝑠𝑠𝑖𝑛(𝜑𝑠 − 𝜑𝑟) 

(6.6) 

The reference signal to the lock-in amplifier is obtained from the excitation current, to ensure the 

references have the exact same frequency as the signal and that the measured in-phase and 

quadrature components are related to the exciting current. The schematic of the experimental setup 

is shown in Figure 6-7.  

 

Figure 6-7 Schematic of the experimental setup shows inputs and outputs for the lock-in 

amplifier. 
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The results from scanning the TMR sensor over the center line of the excitation coil, as described 

in Figure 6-4, are presented in Figure 6-8. The asymmetry of the fields due to the edge of the 

sample is seen in the collected data which is proportional to the component of the magnetic field 

normal to the sample top surface (By). The measurements are acquired at 6.3 mm from the sample 

surface scanning the TMR sensor over the excitation coil. 

 

Figure 6-8 Experimental results using 1000 Hz excitation frequency 

The tested values will be used then to make an analysis for the edge defect. 

6.2 Edge Defect Experimental Setup for Aluminum Sample 

To make an equivalent 2D computational model, the Aluminum sample will be located in a very 

large space, so the outer boundaries which are the Dirichlet boundary conditions will not affect the 

resulted potential lines. Then values of the magnetic flux densities at measuring points will not be 

changed too. The 2D equivalent model for the experiment is shown in Figure  6-9. 
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Figure 6-9 Computational model for Aluminum sample to be in SFEM and COMSOL. 

 

The used sample in this experiment is T6061-T6 Aluminum alloy with conductivity 25 MS/m. The 

equivalent current densities in both coils are: ±2.1×106 A/m2  where all dimensions are in mm as 

shown in the schematic in Figure 6-4c and 6-9.  

The following results are for the values of normalized magnetic flux density values at the 

measuring points. 
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Figure 6-10 Normalized magnetic flux density values at measuring line 

These results were taken when f=1kHz. Where we use COMSOL to compare the experimental 

with the presented SFEM solver results to validate the experimental results. Unsymmetrical   shape 

for the values of the normalized magnetic flux densities is shown according to the defect existence 

for the positive values of the measuring points.  These values give an indication of having a defect 

in this region where an excellent agreement between COMSOL and SFEM and the experimental 

values as shown in Figure 6-10.  

6.6 Steel sample with surface defect experimental validation. 

This part objective is to verify using SFEM in detecting surface defect. After that, use the same 

experiment setup and experimental data to characterize this defect using SFEM. 

This experiment was done in the Non-Destructive Lab in Michigan State University with the same 

experimental setup as done for the aluminum sample. However, we replaced that aluminum sample 

by Mild steel plate (0.15 - 0.30% carbon and Fe) with relative permeability of 2000. The 

conductivity of this steel sample is found to be: 6.3×106 S/m. Figure 6-11 shows a top schematic 
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for the steel sample with defect and sample dimensions. The thickness of this sample is equal to 

10 mm. 

 

Figure 6-11 Top schematic for the steel sample with defect 

Figure 6-12 shows a top view for the surface defect. The 3D dimensions for this surface defect 

dimensions are (cm): 2.54 ×1.27 ×0.635. 

 

Figure 6-12 Top view for the surface defect 
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The steel sample was tested in the lab with lift off distance coils equal to 1.5 mm from steel surface, 

The center of left coil is located over the center of the defect and the distance between coils is 8 

mm. We used 11000 points as our sampling points where the used frequency used was: 100Hz.  

We used 50 mA current that passed through 250 turns coil with a square cross-sectional area of: 

3mm×3mm. So, the resulted current density in both coils has been found as: 
250 50

3 3




 = ± 

1.389×106 A/m2. 

Figure 6-13 shows how this coil is fixed and mounted on the top of steel sample. 

 

Figure 6-13 Coil position at the top of steel sample 

As mentioned, we used 11000 sampling points as measuring data. In addition, the measuring line 

has taken on 10.6 mm above the steal surface and its length was 110mm.  

A computational setup was used for both COMSOL modeling and SFEM, the following 2D setup 

will be used to convert the computational work to 2D. 
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Figure 6-14 Computational model for steel sample used for simulation in SFEM 

We used a measuring line between points (119.3mm,20.6mm) to (229.3mm,20.6mm). We used 

this measuring line to find values for normal magnetic flux density (By) as measuring the output 

voltage for the lock-in amplifier. Therefore, we can use these values in our solution. The 

experimental values for the real part of the output voltage is shown in Figure 6-15. 

 

Figure 6-15 The experimental values for real part for output voltage  

It is noticed from Figure 6-15 that there is very small sign for asymmetry due to the defect. The 

maximum values for the magnetic flux density will be at the center between the coils. This small 
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intangible asymmetry is due to low values for skin depth according to the high values of the 

permeability and conductivity for the used steel sample. This will make this defect too hard to be 

detected in the given parameters. In addition, we noticed some noise added to these data. The 

source for noise is due to using low pass filter in the experiment and to surface roughness and 

sample microstructure.  

A parametric study by varying both conductivity   and permeability
r  for the steel sample is 

presented in Figure 6-16.  

 

Figure 6-16 Parametric study for absolute values for the normal magnetic flux density values at 

the measuring points 
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Decreasing these values and running the simulation for testing the steel sample using COMSOL 

will give us more asymmetrical shape for the output signal which is representing the absolute for 

normal magnetic flux density at the measuring points. 

Figure 6-17 shows a comparison between COMSOL, SFEM and experimental results. Finding the 

normalized values for normal magnetic flux density (By) will give an indication for both the 

validation and detecting the defect.  

 

 

Figure 6-17 Normalized magnetic flux density values at measuring line 

The results in Figure 6-17 shows an excellent matching between the normalized values of the 

magnetic flux density at the measuring points. 

According to multiple factors like the existing of low pass filters and due to electrical circuits 

components used in the experimental setup, there may be phase shift between the experimental 
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and FEM values in addition to scaling. This shift may affect the results if we are taking the real 

part of the magnetic flux density. To solve this, we took the absolute values for magnetic flux 

density values. It is also noticed that there is some noise in the experimental results. The source of 

noise may be electrical or due the roughness of the steel surface. In addition, it may be resulted 

from the molecular construction for the steel in addition to noise that resulted from using low pass 

amplifier in the experiment itself.  

6.7 Subsurface Aluminum Defect  

 

In order to characterize hidden defect, we will study subsurface defect in Aluminum sample 

(T6061-T6). In this study, we will be able to validate our presented SFEM algorithm in this thesis, 

where an initial validation was done in section 6.2 for a healthy sample with edge defect. The setup 

shown in Figure 6-18 will be used for experimental validation. 

 

Figure 6-18 Aluminum sample and coils position for subsurface defect 

It will be considered that this sample as the defect is infinitely long in the z-direction with limited 

dimensions in the xy-plane. This will be converted to the experiment by taking large sample with 

respect to the coils in addition of taking a measuring points of the normal magnetic flux density By 

that show the effect of this internal defect. 
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To evaluate the performance of the existence of this subsurface defect, a line of measuring points 

should be allocated above the coils. In this way, a perfect study will be done to study this defect.  

An elongated coil is used to create an experimental validation according to a 2D geometry. The 

coil is long enough along one axis to reduce the effect from the coil edges on the fields over the 

center of the coil. The line of measurements is across the center of the coil as indicated in Figure 

6-19.  

 

Figure 6-19 Top view for the aluminum sample with the coils 

 

The sample was tested in the NDE lab with lift off distance coils equal to 1.5 mm from aluminum 

surface, where the center of left coil is located over the defect and distance between coils is 8 mm. 

We used 12000 points as sampling points where we tested the sample at multiple frequencies; 

10Hz, 100Hz and 1kHz.   
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We used 50 mA current that passed through 250 turns coil with a square cross-sectional area of: 

3mm×3mm. Therefore, the resulted current density in both coils will be: 
250 50

3 3




 = ± 1.389×106 

A/m2. The conductive sample is an Aluminum alloy T6061-T6 with a conductivity of 25 MS/m. 

Figure 6-20 shows the bottom view for the sample with defect.  

 

Figure 6-20 Bottom view shows the subsurface defect in the aluminum sample 

The measuring line has been taken on 9.2 mm above the aluminum surface and its length was 

120mm. 

A computational setup has been used for both COMSOL modeling and SFEM, the following 2D 

setup in Figure 6-21 will be used to convert the computational work to 2D. 

 

 



 

131 

 

 

Figure 6-21 Computational model for aluminum sample used for simulation in SFEM 

We used a measuring line between points (-1.66mm,13.8mm) to (118.34mm,13.8m). We used this 

measuring line to find values for normal magnetic flux density (By) as absolute, real and imaginary 

values, so we can use these values in our solution. The experimental values for the output of the 

lock-in amplifier Vy at 10 Hz, 100 Hz and 1kHz are shown in Figure 6-22. 
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Figure 6-22 Experimental results for Vy (volt) at measuring line. (a) Real values at 1 kHz. (b) 

Imaginary values at 1 kHz. (c) Absolute values at 1 kHz. (d) Real values at 100 Hz. (e) 

Imaginary values at 100 Hz. (f) Absolute values at 100 Hz (g) Real values at 10 Hz. (h) 

Imaginary values at 10 Hz.  (i) Absolute values at 10 Hz. 

These values are representing real, imaginary and absolute values of magnetic flux density values. 

The left coil is positioned directly over the defect, while the right coil is positioned over the sample. 

This can be shown clearly from the values of magnetic flux density values at the measuring points. 

Unsymmetrical shapes for the values of the magnetic flux densities is shown according to the 

defect existence.  These values give an indication of having a defect in this region. This can be 

clear in shapes for real and absolute Vy at 1kHz. Where the unsymmetrical trend decreases by 

decreasing the frequency to 100Hz, and finally to 10Hz. This is due to skin depth that increases by 

decreasing the frequency; ( 3.1839 mm at 1kHz, 10.0684 mm at 100 Hz and 31.8391 at 10 Hz). 
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The output measured voltages are not clear due noise. There are a lot of resources of noise in ECT 

experimental systems, some of them due to [139] : lift off distances for coils, temperature variation, 

changes in electromagnetic properties of the material and the variation in testing speed. 

As a solution for this problem, we input the experimental output signal to a moving average low 

pass filter to reduce the effect of noise as shown in Figure 6-23.  

 

 

Figure 6-23 Filtered experimental results for Vy at measuring line. (a) Real values at 1 kHz. (b) 

Imaginary values at 1 kHz. (c) Absolute values at 1 kHz. (d) Real values at 100 Hz. (e) 

Imaginary values at 100 Hz. (f) Absolute values at 100 Hz (g) Real values at 10 Hz. (h) 

Imaginary values at 10 Hz.  (i) Absolute values at 10 Hz. 

 

It is noticed that imaginary part contribution in total magnetic flux density is very small compared 

to real part; about 1% of Vy. So, this will not be used in our updated values to reconstruct the defect. 
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It is still clear that there is asymmetry in real and absolute shapes for Vy which gives us an initial 

sign to start characterizing the defect since we are able now to detect it.   

The following results are for the values of normalized magnetic flux density values By (T) at the 

measuring points. 

 

Figure 6-24 Normalized magnetic flux density By values at measuring line at : (a) 1 kHz. (b) 100 

Hz. (c) 10 Hz. 

These results were taken at  f=1kHz, 100Hz and 10Hz . Where we use COMSOL to compare the 

experimental with the presented SFEM results to validate the experimental results. Unsymmetrical   
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shape for the values of the normalized magnetic flux densities has been noticed according to defect 

existence.  These values give an indication of having a defect in this region where an excellent 

agreement between COMSOL, SFEM and experimental values as shown in Figure 6-24.  

In order to see whether the experimental values are in phase with SFEM, we will plot the imaginary 

part vs. real part of By at all given tested frequencies as shown in Figure 6-25.  
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Figure 6-25 Real vs. imaginary values for the normalized magnetic flux density at measuring 

points at (a) 1 kHz (b) 100 Hz (c) 10 Hz 

We notice that a good phase matching occurs at 1 kHz and 100 Hz, where there is small phase 

shift at 10 Hz. This phase shift can be easily solved by rotating the experimental results by the 

phase difference toward the Subregion results. 
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To characterize the defect, we will select the experimental results at 1 kHz for the following 

reasons: 1- increasing the frequency is proportional to input signal strength. That means more 

accurate results. 2- Skin depth is smaller ( 3.1839 mm). This means that all eddy current will flow 

in the sample and defect will have more chances to be detected.  3- For the previous two reasons 

and by refereeing to Figure 6-24 it is clear that asymmetrical behavior is clear at 1 kHz, that means 

more chances to detect the defect and the defect contribution on the magnetic flux density values 

at measuring points will be the maximum.   

According to inverse solution for SFEM in ECT problems, defect should be detected first and an 

initial location should be assigned for the defect. 

By testing the sample that contains the defect we find the values of the magnetic flux density values 

at the measurement plan, which has a lift off distance of 9.2 mm from sample surface. Plotting Vy 

at this plan can give us an indication for the defect location as shown in Figure 6.26.  

 

Figure 6-26 Experimental voltage values at the surface for the sample including the coils. (a) 

Real values. (b) Imaginary values. (c) Absolute values. 

Figure 6-26 shows real, imaginary and absolute values of output voltage on the measurement plan. 

The location of the coils is clean where the defect can be assigned at the left of the left coil as 

shown in Figure 6-26c.  
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On each node on the defect, the vertical displacements are selected as design parameters. In our 

numerical model we have 8 geometric parameters  as used in [115, 116] contained in vector {h}:{ 

h1, h2, h3, h4, h5, h6, h7, h8}. To start our solution, we will assign two regions, one for the defect as 

R2 , where other one will be the reminder region R1. Next, our design parameters will be identified 

inside R2. Those design parameters should be on the surface of our predetermined defect as in 

Figure 5-18.  Each design variable is represented by 10 bits to be used later in Genetic Algorithm. 

For testing, as was done for the original defect, the following fixed design parameters (mm) nodes 

coordinates as shown in Figure 6-25 will represent the original defect: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4.12,0 , 4.283,0 , 4.446,0 , 4.61,0 , 4.61,0.365 , 4.446,0.365 , 4.283,0.365 , 4.12,0.365
 

 

Figure 6-27 Original defect that is used for testing with the design parameters. 

Starting from these points, {h} will be calculated each iteration to find the original defect shape 

as we chose the y-directions of these design parameters as: {h}= {0, 0, 0, 0, 0.365, 0.365, 0.365, 

0.365, } cm and computed the field 
i

MeasuredB  at the measuring points.  

These design parameters will be treated as our design nodes in our method of solution. An initial 

defect shape will be generated with saving node numbering as done for the first times of these 
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designing nodes. After that SFEM will be used to change the positions for these nodes until getting 

our solution which will be the most accurate defect shape and the reconstructed {h} will be 

generated each iteration to match the measurements
i

MeasuredB .  

In order to find the best 
i

MeasuredB values, we will need to multiply the experimental voltage values 

Vy by factor Knorm, where Knorm,can be found found as: 

                                                     𝐾𝑛𝑜𝑟𝑚 =
𝑀𝑎𝑥{𝐵𝑦_𝑠𝑢𝑏𝐹𝐸𝑀}−𝑚𝑖𝑛{𝐵𝑦_𝑠𝑢𝑏𝐹𝐸𝑀}

𝑀𝑎𝑥{𝑉𝑦_𝐸𝑥𝑝}−𝑚𝑖𝑛{𝑉𝑦_𝐸𝑥𝑝}
                                          (6.7) 

In our simulation and comparing values, we used the real part of magnetic flux density at 

measuring points. Where, we used multiple sets of measuring points along the sample and we 

chose a set of measuring points located between the coils as: x (mm)located at: {40, 42.22, 44.44, 

46.66, 48.88, 51.11, 53.33, 55.55, 57.77, 60} and y=13.8 mm. 

After determining the defect region and name it as R2, then the remainder area will be considered 

as a fixed region with fixed nodes and elements and this will be  R1 as shown in Figure 5-25. 

The next step will be to pick and determine the groups of nodes for each selected region. Each 

region should have two sets of nodes; interior and exterior nodes as mentioned before. At least one 

set of exterior nodes should be common between both regions for applying subregion method. 

For the reminder region; the bigger one R1, will consists of two sets of the exterior nodes (Group 

1 and Group 2) where the exterior nodes in Group 1 of nodes will be at the interface between both 

of R1 and R2. Those are the common nodes between both regions. Those nodes will be used in 

equation (3.19) in simulation SFEM as the interfacing exterior nodes between both regions.  Nodes 

that belong to Group 2 are also considered to be exterior nodes for R1. Those are the boundary 

nodes and their values are upon the given data. In our example, zero potential values are imposed 

for these nodes.  
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The reminder nodes within region R1 ,which are not belong to both Groups 1 and 2 will be saved 

as the interior nodes for R1 and will be used in equation (3.6) in Subregion simulation. Our SFEM 

solver is designed to determine both interior and exterior nodes for R2 where nodes belong to 

Group 1 are exterior nodes for R2. This is the common set of nodes in R1. While reminder nodes 

inside R2 are considered the interior nodes for R2.  

After selecting nodes for both regions, a sub-regional Finite Element solution will be implemented 

for both regions. The important issue will be in creating two profiles for both regions. Then saving 

results in these two profiles to be used later in the inverse part to detect the shape of the defect.  

The profile that contains the resulted data of R1 will be fixed and created only one time. While 

continuously updating data in the profile that is related to R2. This is because SFEM will continue 

among the given iterations until achieving the optimal solution which is the best score function 

value. That means the best reconstructed shape of the hidden defect which happened at minimum 

value of F in equation (3.5). To update the data for R2, new meshing scheme will be generated 

every iteration. The only things that have changed is be nodes position and their resulted vector 

potential values, Changing the position of the interior nodes in R2 means that a resulted change on 

the predetermined design parameters and the magnetic flux density is then calculated 
i

CalculatedB  

along the measuring line. The object function 𝐹 is evaluated by comparing 
i

CalculatedB  with 
i

MeasuredB  

by using equation (5.2). 

                                   ( ) ( )
2

1 1 2 2

1

, , , , , ,
measuring points

i i

n n Calculated Measured

i

F x y x y x y B B
=

 = −             (5.2) 

It is necessary to impose constraints to get a single defect [115, 116]. So, to maintain a realistic 

shape with a single defect, node 8 on top of node 1 and node 7 on top of node 2 and node 6 on top 

of node 3 as shown later in Figure 5-18, where 8 nodes are used as designing nodes and by 
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imposing the constraints as h8>h1, h7 >h2, h6 >h3 and h5 >h4:  Therefore single and realistic defect 

will be created 

In our simulation, Genetic Algorithm [115, 116] is used as optimization technique to calculate 

fitness score function each iteration. This optimization technique will be used to calculate best 

fitness score value. To apply this optimization technique in our proposed method, the object 

function F is calculated at each iteration. After that, new meshes inside the defect region R2 will 

be generated using elastic meshing and then get new defect shape each iteration until having the 

best defect shape. Next, evaluate the performance of the complete system by calculating F. Figure 

5-26b shew the block diagram of Genetic Algorithm optimization technique used in this SFEM 

solution. This GA block diagram can be plugged in the main SFEM flow chart in Figure 5-19 for 

optimization and calculating F each iteration. 

Several simulations of defect characterization problem have been running and the results were 

tabulated. The best fitness score using Genetic Algorithm was achieved when the population size 

is 100 for the 50 iterations as shown in Table 6-1. 

The verification of Genetic Algorithm is achieved by increasing both iteration numbers and 

populations size which means better values and being closer to the optimal solution of the fitness 

score in equation (5.2).  

Table 6-1 Fitness scores and processing time using GA for different iteration numbers. 

Population 

size 

10 

iterations 

20 

iterations 

30 

iterations 

40 

iterations 

50 

iterations 

20 0.0784 0.0645 0.0331 0.0173 0.0139 

40 0.0524 0.0408 0.0317 0.0169 0.0122 

60 0.0338 0.0314 0.0272 0.016 0.0108 

80 0.0374 0.0259 0.0152 0.0134 0.0073 

100 0.0124 0.0114 0.0071 0.0069 0.0047 
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It is clear that increasing number of iterations will make solution closer to optimal value. In 

addition, this will increase processing time. Our objective in this thesis is to get an accurate shape 

for the hidden defect so we can study its effect on the entire system. This is clear from fitness score 

values per each case using Genetic Algorithm. In our solution, Genetic Algorithm needs 

computational time in processing since it takes three steps in determining the next population 

which are: selection, crossover and mutation. It is binary coded algorithm; it takes time to convert 

to real numbering system in our computational solution.  

To measure the accuracy of the reconstructed defect, the length from the centroid of the true profile 

to each point was calculated using equation (5.8).  

                                                     
1

i in
true reconstructed

i
i true

r r

r
e

n

=

 −
 
 =


        

 

   (5.8) 

where 
i

truer is length from the centroid to the true profile, and 
i

reconstructedr is the length from the 

centroid to the reconstructed profile, where 𝑛 is the number of coordinates in the profile.  

Three different examples are taken to find 
i

truer  as shown in following results in Tables 6-2, 6-3 and 6-

4.  

Table 6-2 Calculating defect reconstruction accuracy for example one (cm). 

True Defect 

Centroid 

True Defect  

Profile 

Reconstructed 

Defect Profile 

i i

true reconstructed

i

true

r r

r

 −
 
 

 

x y x y i

truer  x y i

reconstructedr  

4.365 0.1825 4.12 0 0.3055 4.12 0.1025 0.2577 0.1563 

4.365 0.1825 4.283 0 0.1999 4.283 0.0254 0.1770 0.1144 

4.365 0.1825 4.446 0 0.1999 4.446 -0.2427 0.4329 1.1655 

4.365 0.1825 4.61 0 0.3055 4.61 0.2158 0.2472 0.1906 

4.365 0.1825 4.61 0.365 0.3055 4.61 0.3419 0.2922 0.0432 

4.365 0.1825 4.446 0.365 0.1999 4.446 0.4401 0.2702 0.3515 

4.365 0.1825 4.283 0.365 0.1999 4.283 0.3113 0.1525 0.2372 

4.365 0.1825 4.12 0.365 0.3055 4.12 0.429 0.3475 0.1376 

 

The reconstructed defect in Table 6-2 gives error= 29.96% with an average reconstruction 

efficiency = 70.04% 
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Table 6-3 Calculating defect reconstruction accuracy for example two (cm). 

True Defect 

Centroid 

True Defect  

Profile 

Reconstructed 

Defect Profile 

i i

true reconstructed

i

true

r r

r

 −
 
 

 

x y x y i

truer  x y i

reconstructedr  

4.365 0.1825 4.12 0 0.3055 4.12 0.2706 0.2603 0.1477 

4.365 0.1825 4.283 0 0.1999 4.283 -0.1350 0.3278 0.6396 

4.365 0.1825 4.446 0 0.1999 4.446 -0.0492 0.2456 0.2287 

4.365 0.1825 4.61 0 0.3055 4.61 0.0124 0.2982 0.0237 

4.365 0.1825 4.61 0.365 0.3055 4.61 0.3221 0.2819 0.0769 

4.365 0.1825 4.446 0.365 0.1999 4.446 0.4802 0.3086 0.5439 

4.365 0.1825 4.283 0.365 0.1999 4.283 0.3218 0.1614 0.1923 

4.365 0.1825 4.12 0.365 0.3055 4.12 0.4410 0.3561 0.1658 

 

The reconstructed defect in Table 6-3 gives error=  25.23%  with an average reconstruction 

efficiency = 74.77% 

Table 6-4 Calculating defect reconstruction accuracy for example three (cm). 

True Defect 

Centroid 

True Defect  

Profile 

Reconstructed 

Defect Profile 

i i

true reconstructed

i

true

r r

r

 −
 
 

 

x y x y i

truer  x y i

reconstructedr  

4.365 0.1825 4.12 0 0.3055 4.12 0.2038 0.2459 0.19501 

4.365 0.1825 4.283 0 0.1999 4.283 0.1810 0.0816 0.5914 

4.365 0.1825 4.446 0 0.1999 4.446 -0.1433 0.3358 0.6799 

4.365 0.1825 4.61 0 0.3055 4.61 -0.0254 0.3213 0.0517 

4.365 0.1825 4.61 0.365 0.3055 4.61 0.4519 0.3641 0.1919 

4.365 0.1825 4.446 0.365 0.1999 4.446 0.2880 0.1334 0.3327 

4.365 0.1825 4.283 0.365 0.1999 4.283 0.4171 0.2484 0.2424 

4.365 0.1825 4.12 0.365 0.3055 4.12 0.3473 0.2952 0.0334 

 

The reconstructed defect in Table 6-4 gives error=  28.98%  with an average reconstruction 

efficiency = 71.02%. 

Figure 6-28 shows the reconstructed and original defect diagrams for the previous three cases in 

Tables 6-2, 6-3 and 6-4. 
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Figure 6-28 Reconstructed vs. original defect shapes. (a) Case one. (b) Case two. (c) Case three.   

Where the reconstructed defect designing nodes pi are the results of the optimization solution and 

are found in Tables 6-2, 6-3 and 6-4.  

The best solution with average reconstruction efficiency equal to 74.77% is shown in Figure 6-

28b.  

We can now run our forward problem with these reconstructed defect design parameters to plot 

the magnetic vector potential lines as shown in Figure 6-29. 

 

Figure 6-29 Magnetic vector potential lines distribution for the reconstructed defect. 

This potential plot in Figure 6-29 can show us the effect of the subsurface defect on these vector 

potential lines. A lot of factors control the reconstruction of the defects as will be shown in the 

next chapter. 
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The reconstructed defect shows that it may extended over the sample which is computationally 

true but not representing a real defect. The shape of the defect is related to the constrains that we 

used in addition of the subregion area that we chose for the defect. We chose reliable defect region 

that is relatively large and not enclosed within the sample ( 1.5 mm above the upper surface of the 

sample and 4.6 mm bellow the sample lower surface along the sample).   Figure 6-30 shows a 

reliable defect with limited number of elements to show how defect can be reconstructed within 

the sample and the resultant magnetic vector potential lines.  

 

Figure 6-30 An example for a reconstructed defect within the sample. (a) Vector potential lines 

due to defect. (b) Zoomed plot for the defect. (c) Zoomed plot for the defect shows the elements. 

After several iterations, we chose constrains to make the reconstructed defect within the sample as 

shown in Figure 6-30a that shows the resultant vector potential lines. Figure 6-30b shows a zoomed 

plot for the defect and how vector potential lines distributed in the sample. Figure 6-30c shows an 

extra zoomed plot for the defect with the constructing elements.  
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Figure 6-31 Normalized subregion areas vs. Normalized processing time  

Figure 6-31 shows how using SFEMSFEM will be used to minimize processing time. Define Td 

and Ad as:  

                                                                          
2

d

Tot

t
T

t
=                                                                  (5.3a)  

                                                                          
2

d

Tot

A
A

A
=                                                                (5.3b)  

Where: t2 is time for processing region two only which is the defect region, tTot is the total time for 

processing the complete domain with both regions one and two, A2 is the area for region two (defect 

region) and ATot is the total area for both regions one and two.  

Increasing 𝐴𝑑 that’s defiantly will increase 𝑇𝑑. The maximum value for processing time will be 

when Ad=1 where SFEMSFEM will be turned to classical FEM by making the selected region of 

defect represents the entire domain. This result is logical if the total area increased by increasing 
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both areas of R1 and R2 since increasing the areas of the solution domain will increase the number 

of meshes and makes it takes longer time in processing.  
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7 Conclusions and Future Work  
 

SFEM method is an effective method in solving different EM problems. In this thesis, this method 

was used to study some ECT problems for NDE applications. Excellent results have been achieved 

especially in saving time for solving large problems. This can help us to study more applications 

especially in inverse and optimization problems. We used SFEM solve both direct and inverse 2D-

ECT problems. After that, we did an experimental validation to validate the presented 

computational results. The following will show the related conclusions and discussions to each 

part of the results presented in this thesis. 

The proposed method was used successfully to find and plot magnetic potential lines for different 

cases and shapes of the defect. The objective of that part was to know how these defects can affect 

potential lines and how can that help us in detecting these defects in advanced applications of ECT. 

A ratio parameter was defined to study the relation between magnetic flux density values at some 

predetermined points with and without the existence of the defect. Then, these ratio values were 

used to study the relation between different defects shapes, angle of rotations, widths and depth 

from the sample’s surfaces. Excellent results have been achieved compared to other techniques 

and to COMSOL in detecting defects. It was shown that increasing the depth of defect within metal 

will decrease its chance to be detected. While these defects will be easier to be detected if they lie 

within the skin depth distance. Also, the size of the defect and its rotation angle play an important 

factor in detecting defects. Increasing the size of the defects by increasing the width and the length 

of the defect will affect these ratios and will increase their values. It was shown that the maximum 

values of these ratios will be for those defects that are directly under the center of the coils and 

touching conductors surface. Regarding the processing time, it was shown that using SFEM 

improved processing time up to 90% comparing solving same problem using classical FEM.  
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The idea of having two regions in solving ECT problems came to improve both processing time 

and memory saving problems especially in advanced applications. Characterization defects is 

considered to be an inverse problem of using finite element with a selected optimization technique 

each running iteration until achieving the solution. Applying subregion method in the Finite 

Element solution for such problems give the benefits of minimizing computations in limited 

region. An elastic meshing scheme was used to solve the problem of numbering nodes inside the 

pre-divided regions each iteration and this method was improved to be used to generate meshes 

within the selected subregions. The elastic SFEM can save connectivity matrix each iteration for 

the entire elements. Minimizing the fitness, which was the difference between the calculated and 

measured magnetic flux density values score each iteration using both Genetic Algorithm and 

Simulated Annealing was used to get the most accurate defect shape. An excellent results were 

achieved using SFEM especially when Genetic Algorithm was used where 98% of the original 

defect could be reconstructed in very short time compared to classical FEM which proves that the 

presented method in this thesis can be used to locate hidden defects inside metals and to 

characterize these defects in addition to minimize processing time up to 90% of the total time and 

saving memory which allow this method to be used later in more complicated applications.  

A magnetic field sensor using a tunneling magnetoresistive (TMR ) element was used to measure 

the component of the magnetic field normal to the sample top surface. The TMR sensor was 

mounted on a PCB with a circuit to amplify the sensor output signal. The TMR sensor is placed in 

the sensor fixture and scanned over the coil that was placed on the top of the sample.  

We tested the following samples: 

1) Aluminum alloy T6061-T6 with edge defect. 

2) Aluminum alloy T6061-T6 with subsurface defect. 
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3) Mild steel plate (0.15 - 0.30% carbon and Fe) with surface defect. 

Where we get excellent results by testing these samples and it was easier to detect the aluminum 

defects rather than the steel defects due to high values for both conductivity (6.3×106 S/m) and 

relative permeability (2000) for steel sample. 

Therefore, we use the aluminum sample to validate the computational SFEM results. After that, 

we used the experimental data to characterize hidden defect in this sample and after using our 

inverse SFEM solver using GA, we get an accuracy of 74% related to the original defect which is 

consider to be an excellent results since we are comparing experimental with computational data.  

The experimental data that we get from the output of the lock-in amplifier came with noise and 

this noise may affect the reconstruction results. In addition, of scaling and phase shifting that may 

happen to the output data related to the following reasons, which also may consider as noise 

sources in experimental results: 

1) Low pass filter used in the lock-in amplifier. 

2) Surface roughness and sample microstructure.  

3) Electrical noise. 

4) Lift off distances for coils. 

5) Temperature variation and thermal noise. 

6) Changes in electromagnetic properties of the material, in case if we use nonlinear material.  

Nonlinear material.  

7) Variation in testing speed. 

8) Vibration of the scanner 

9) TMR noise, related to solid state construction of TMR 
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All these factors may affect the output results and it will affect directly the reconstruction accuracy 

for the defect. 

I believe that improving this technique will have tangible results especially in solving inverse FEM 

problems for the reasons and discussions that were presented in this thesis and other related 

research. 

In computational analysis, researchers are facing many obstacles especially if they asked to 

validate their work experimentally. Working in solving these problems through my work on ECT 

problems and find logical explanations for results that I get, opens my mind to a lot of related 

thought and ideas that can be implemented in future to improve the algorithm and use it in a lot of 

related applications. The following are some recommendations for future work related to this topic. 

1) Improving the presented SFEM solve 3D problems. We can start solving actual ECT 

problems by improving our solver to 3D FEM solver. In addition, we can improve the 3D 

SFEM solver for solving any computational physical problem. 

2) Working on the absorber boundary conditions for open space problems. One of the major 

factors that increases processing ruing time is placing the sample and coils in a box of free 

space. In our computations, we choose the dimensions of this box to be very large which 

will increase processing time especially in classical FEM solutions. Therefore, applying 

absorber boundary conditions and Ballooning method will minimize processing time. 

3) In our computational work, we used a coil with a fixed position. The effect for using a fixed 

position coil can be noticed when we did the experimental validation. We saw that we got 

a reconstruction accuracy of 75%. Using a moving coil in the future along the surface of 

the defect for each point for the measuring points will definitely increase the defect 

reconstruction accuracy. 



 

152 

 

4) We presented a study of a single defect; we can update our method to study multiple defects 

within the sample. Where we can select a specific region for each defect and continue our 

analysis. 

5)  We used the presented algorithm in this thesis to study ECT problems in a low range of 

frequencies. We can reproduce our FEM solver to be used at high frequency range. For 

example, we can use SFEM in finding the full wave analysis for 3striplines and coupled 

microstrip lines and in microwave engineering in general. Doing that means we need to 

solve Maxwell’s equations in high frequency condition and continue updating the 

algorithm by deriving the subregions, then derive the needed elastic mesh generator that 

should be used and finally use the suitable optimization technique in case of solving inverse 

problems, like measuring the width and thickness for the conductor strips in microstrip 

lines for a given characteristic impedances matching purposes.  

6) We can update our presented algorithm to solve multi-physical FEM problems, like electro-

thermal problems.  

7) When we test the mild steel sample, we could not get an accurate results due to the high 

values of the relative permeability (2000) for that sample. We can work in developing a 

techniques for demagnetize these kind of samples so we can use Eddy Current in testing 

such samples an get more accurate results. 

8) In our experimental validation, we use one TMR sensor, we can use more than one sensor 

in the future to get more accurate results. 

9) In our experimental validation, we tried as much as we can to make an equivalent 2D model 

for the computational problem. Therefore, we used a traditional coil that we did it from 

electric wire. We can think of using the GMR with a linear excitation coil and we can try 
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to update our algorithm parameters to handle this planner coil by consider it as a current 

sheet in our FEM modeling. 

10)  Subregion method was applied to serve FEM in this study where it can be derived to merge 

with other computational techniques for different applications like Finite Difference 

Frequency Domain method (FDFD) and Finite Difference Time Domain method (FDTD).  

11)  In our solution for inverse defect reconstruction problem we chose our design parameters 

to vary in y- direction. We can generalize the algorithm so we can move these design 

parameters in both x and y directions.  

12) We can make a comparison study between defects parameters and the probability of detect 

these defects. We noticed that some defects are easy to be detected while other were more 

difficult.  In addition, I noticed that the magnetic field density plot for the entire problem 

can give us some information regarding the initial position of these defects. I believe that 

doing some line segment detecting analysis will be significant in detecting 2D hidden 

defect and characterize their shapes from theoretical point of view.  
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Figure 7-1 Using segment line detection to characterize hidden cracks  

This can be useful in 3D analysis. We can do a FEM analysis for the entire domain. Then we can 

find and plot the magnetic flux density in each tetrahedral. The 2D side views, like, top bellow, 

right and left can give us an initial data regarding the hidden defects inside these metals. For this 

given problem, we propose to localize the defect from an image processing perspective. Therefore, 

the first step would be to transfer the output visualization of the system including the defect pattern 

into an RGB image. This is accomplished through sampling points in the vertical and horizontal 

directions of the plot, and then assign those samples to pixels accordingly.  After obtaining the 

image, many computer vision and image processing techniques can be used to highlight the defect 

in a precise manner. The defect can be characterized as a single fully connected region, which 

exhibits high frequency edges on most of the boundaries, while some other edges are low 

frequencies. One approach is to simply try to detect the edges of the defect in the image using 

Sobel or Canny edge detectors. However, the results would appear too noisy since some edges are 
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not clear for the defect. Relaying on color information is also a bad choice, since the defect might 

contain colors similar to normal regions. One promising technique is to use a method named 

superpixel segmentation. In general, a superpixel is a polygonal part of an image, larger than a 

normal pixel, which has common color and texture information. Learning some features of the 

superpixels containing the defect, would help us to define a full segmentation of the entire defect 

part. This segmentation method is very well studied by researchers in the image-processing field, 

and it has been used in many applications. For example, object detection [140], depth estimation 

[141], medical image segmentation [142], and plant/tree disease segmentation [143]. 
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