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ABSTRACT 

 

INTEGRATING SATELLITE OBSERVATIONS INTO PROCESS-BASED MODELS TO 

INFORM AGRICULTURAL WATER MANAGEMENT 

 

By 

Jillian M. Deines 

Irrigation plays an important role in food production and the water cycle worldwide by 

enhancing agricultural yields, buffering climate variability, and appropriating 70% of total 

human freshwater use. Maintaining and even expanding irrigated areas is required to address 

increasing global food demand and climate-induced water stress. Over the latter half of the 

twentieth century, however, non-renewable groundwater use more than tripled to comprise ~1/5 

of global irrigation water. As a result, key agricultural regions around the world are on 

unsustainable trajectories due to aquifer depletion. With limited water resources defining the 21st 

century, finding ways to maximize water use and operate within system boundaries is crucial. 

Crop and hydrology models can support decision making in the face of these challenges by 

simulating alternative management pathways under a range of resource conditions.  In many 

cases, however, critical input datasets are missing or lack the precision and accuracy to fully 

parameterize landscape models. Recent rapid advances in large-scale satellite remote sensing can 

address these data gaps by quantifying landscape characteristics at previously infeasible spatial 

and temporal resolutions.  

In this dissertation, I present new methodologies that translate Landsat satellite 

observations into annual irrigation maps needed to understand and manage agricultural water 

resources. Maps are then analyzed and integrated into crop models to better understand historic 

water use, evaluate novel stakeholder-driven groundwater management, and support future 

planning. I focused on the High Plains Aquifer (HPA) in the central United States, where a $20 



 

 

billion agricultural economy is threatened due to extensive depletion over much of the aquifer.  

In Chapter 1, I used Google Earth Engine and the full Landsat archive from 1999-2016 to 

generate annual, moderately high resolution (30 m) irrigation maps for the Republican River 

Basin portion of the HPA from 1999-2016. I found considerable interannual variability in 

irrigation location and extent, largely driven by annual precipitation, commodity prices, and 

increased irrigation efficiency over time. Chapter 2 extended this method to the full 450,000 km
2
 

HPA from 1984-2017, addressing additional challenges from satellite data gaps and a wider 

range of climate, crop types, and management. I estimated that up to 24% of currently irrigated 

area could be lost by 2100 if aquifer depletion continues along recent trends. 

With increasing resource scarcity, a diverse set of groundwater management approaches 

have emerged across the HPA to slow depletion. In Chapter 3, I combined the satellite-derived 

irrigation maps, detailed well records, and national crop maps to assess the efficacy of innovative 

stakeholder-driven groundwater management in northwest Kansas referred to as the Local 

Enhanced Management Area (LEMA) program. I found that farmers surpassed targets for 

reduced water use without compromising irrigated area through adaptive cropping choices and 

increased irrigation efficiency. Chapter 4 extends the LEMA analysis with process-based crop 

models to robustly quantify impacts to the full water budget along with trade-offs in crop yield. 

Integrating remote sensing into this modeling framework allowed me to estimate quantities that 

are difficult or impossible to measure. As aquifer depletion threatens crop production in many 

parts of the world, approaches that integrate models with in-situ and remotely sensed data can 

improve understanding and help inform economically and hydrologically sustainable 

management strategies.



 

 

iv 

This dissertation is dedicated to my daughter, Riley Deines.  
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CHAPTER 1:  
ANNUAL IRRIGATION DYNAMICS IN THE US NORTHERN HIGH PLAINS DERIVED 

FROM LANDSAT SATELLITE DATA 

Abstract 

 Sustainable management of agricultural water resources requires improved understanding 

of irrigation patterns in space and time. We produced annual, high resolution (30 m) irrigation 

maps for 1999-2016 by combining all available Landsat satellite imagery with climate and soil 

covariables in Google Earth Engine. Random forest classification had accuracies from 92-100% 

and generally agreed with county statistics (r
2
 = 0.88-0.96). Two novel indices which integrate 

plant greenness and moisture information show promise for improving satellite classification of 

irrigation. We found considerable interannual variability in irrigation location and extent, 

including a near doubling between 2002 and 2016. Statistical modeling suggested precipitation 

and commodity price influenced irrigated extent through time. High prices incentivized 

expansion to increase crop yield and profit, but dry years required greater irrigation intensity, 

thus reducing area in this supply-limited region. Datasets produced with this approach can 

improve water sustainability by providing consistent, spatially explicit tracking of irrigation 

dynamics over time. 
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1. Introduction 

 Following rapid expansion in the late 20
th

 century, global irrigated area is now relatively 

stable [Wada et al., 2013]. Regional gains and losses, however, can be substantial [Brown and 

Pervez, 2014]. Dynamic crop prices, climate and precipitation variability, changing water 

policies, and crop rotations all drive considerable local interannual variability in irrigated area 

[Ozdogan and Gutman, 2008; Wisser et al., 2008; Brown and Pervez, 2014]. Spatial irrigation 

datasets that accurately delineate irrigated areas annually would help constrain water budgets, 

improve hydrologic models, provide timely information to water managers and food security 

efforts, give insight into factors that influence irrigation behavior, and further clarify the effects 

of climate change on irrigation water demand and supply. Researchers have noted the need for 

routine mapping of irrigated lands [Thenkabail and Wu, 2012; Brown and Pervez, 2014; Peña-

Arancibia et al., 2014; Teluguntla et al., 2017], yet satellite-derived annual datasets are rare 

[Abuzar et al., 2015] due to historic computational limitations and inadequate ground reference 

data. 

Quantifying temporal and spatial variations in irrigation is fundamental to the challenge 

of sustainable water management. Globally, irrigated agriculture accounts for approximately 

70% of human freshwater use [Rosegrant et al., 2009; Wada et al., 2013]. Irrigation greatly 

enhances agricultural yields [e.g., Smidt et al., 2016] and price stability, but overexploitation of 

water resources has depleted groundwater aquifers and reduced annual river discharge [Postel, 

2003; Rockström et al., 2012]. Moreover, incentives to expand irrigation continue to grow due to 

increased food demand [Tilman et al., 2011], agricultural intensification [Gleick, 2003], and 

climate change [Wada et al., 2013; Aleksandrova et al., 2014]. Effectively managing limited 

water resources to meet future irrigation needs while remaining within regional and planetary 
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boundaries of sustainable freshwater use [Rockström et al., 2012] is a major challenge. 

Unfortunately, existing irrigation datasets are largely inadequate for this task, and the 

locations of irrigated areas remain uncertain [Ozdogan and Gutman, 2008; Wisser et al., 2008; 

Wada et al., 2011; Peña-Arancibia et al., 2014]. Existing datasets are primarily based on 

administrative boundary statistics for irrigated area or land equipped for irrigation, which lack 

spatial precision and can contain self-reporting bias. Existing spatially explicit, satellite-derived 

datasets tend to have relatively low resolution (250 – 1000 m), particularly at regional scales. 

Critically, the vast majority of datasets are generally single year, static snapshots that overlook 

temporal irrigation dynamics. 

Notable exceptions include recent work mapping annual irrigation for 14 years in 

Afghanistan [Pervez et al., 2014] and 16 years in Australia [Teluguntla et al., 2017], which 

provided insights into temporal trends and variability in irrigation. For example, Pervez et al. 

[2014] found irrigated area differed as much as 30% among years. Both studies were limited to 

the relatively coarse 250 m resolution of Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite products due to reported computing constraints. Although moderate resolution 

efforts are sufficient to capture broad scale patterns [Wardlow and Egbert, 2008], higher 

resolution imagery such as those from Landsat satellites (30 m) better resolve smaller or 

fragmented fields, provide precise field locations, and increase accuracy [Velpuri et al., 2009]. 

Due to the corresponding increase in data volume and processing requirements, however, 

Landsat based annual datasets are rare and limited to local studies. For example, Ozdogan et al. 

[2006] produced nine annual 30 m maps for a 1500 km
2
 area in Turkey using one Landsat scene 

per year. Irrigation dynamics compared across these early efforts in annual mapping differ in 

overall trend, yearly variance, and contextual drivers, suggesting that annual, spatial datasets 
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offer a refined picture of regional irrigation differences not well captured by static maps or 

aspatial data. 

Here, we produced high resolution, annual irrigation maps from 1999 to 2016 across the 

greater Republican River Basin region in the central United States (Figure 1.1), hereafter termed 

the Annual Irrigation Maps – Republican River Basin (AIM-RRB) dataset (available at 

http://dx.doi.org/10.4211/hs.55331a41d5f34c97baf90beb910af070). We leveraged recent 

developments in cloud computing to utilize all available Landsat scenes each year, combining 

satellite imagery with climate and soil covariables in a random forest classification workflow 

that is readily applicable to future years for ongoing monitoring. Research using the full Landsat 

record is a relatively recent phenomenon [e.g., Hansen et al., 2013] and to our knowledge not 

previously applied to irrigation mapping. We then used these maps to examine irrigation 

dynamics and associated drivers across this region. 

2. Methods 

2.1. Study area 

 The Republican River Basin (RRB) overlies portions of Colorado, Nebraska, and Kansas, 

draining a large portion of the High Plains Aquifer (HPA) before leaving the aquifer near the 

downstream Nebraska-Kansas border (Figure A.1.1). The basin provides riparian surface-water 

irrigation and groundwater irrigation over the HPA. Annual cropping systems dominate the 

region, and the top five crops by area planted (wheat, corn, soy, alfalfa/hay, and sorghum) can be 

both irrigated or rainfed (Figure A.1.2). Due to litigation concerning interstate water use 

beginning in 1999, both groundwater and surface-water irrigation are regulated to preserve 

streamflow into Kansas in accordance with the Republican River Compact of 1942. Strategies to 

meet  



 

 

5 

 
Figure 1.1. Study area location and map of irrigation frequency.  (a) Study area (purple) in the 

context of the High Plains Aquifer (blue); (b) Number of years each 30 x 30 m map pixel was classified 

as irrigated between 1999-2016 across the Republican River Basin (dashed outline) and the associated 

Republican River Compact Administration’s (RRCA) groundwater model (solid outline), with zoomed 

inset for enhanced resolution. Annual irrigation maps also demarcate novel and deactivated irrigated areas 

as demonstrated by mapping earliest (c) and latest (d) years irrigated during the study period. 

streamflow targets vary widely across localized management districts, change over time, and 

include restrictions on pumping volume, well-drilling moratoriums, efforts to retire water rights, 

and expensive augmentation plans via engineered water transfers [see Griggs, 2017 for further 

discussion]. The Republican River Compact Administration assesses compliance with a 

groundwater model covering the groundwatershed upstream of Kansas [RRCA, 2003], an area 
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hereafter termed the RRCA. Therefore, our study domain is the 86,429 km
2
 greater Republican 

Basin (GRB), defined as the union of the RRCA and RRB (Figure 1.1, Figure A.1.1). Annual 

irrigation maps and accuracy metrics are produced with a minimum 10 km buffer (total area: 

141,603 km
2
, Text A.1.1), though map results are presented solely for the GRB. In addition, we 

analyzed irrigation drivers in the portion of the RRB contained within the RRCA (RRB-RRCA) 

for 1999-2015 to capitalize on irrigation water volume data from the groundwater model (see 

section 3.4, Drivers of irrigated area). We defined the crop year as 1 November to 31 October to 

ascribe greenness from winter wheat to the year harvested. Mean annual precipitation increases 

eastward along a longitudinal gradient, ranging from 341 – 845 mm during the study period. 

Growing season precipitation (1 December – 31 August) ranged from 284 - 673 mm 

[Abatzoglou, 2013]. 

2.2. Satellite imagery, vegetation indices, and environmental variables 

 Landsat imagery is provided at nominal 30 m resolution in 182 x 185 km scene tiles, 

sixteen of which overlie the buffered study region (Figure A.1.3). Working in Google Earth 

Engine’s (GEE) cloud computing platform [Gorelick et al., 2017], we used all available Landsat 

Surface Reflectance Products [USGS, 2017b, 2017c] from 1 November 1998 to 31 October, 2016 

(9592 scenes, Text A.1.2), as temporal resolution increased substantially in 1999 after Landsat 7 

came online and image acquisition improved [Pekel et al., 2016]. Concurrently operating 

Landsat satellites provided an 8-day overpass interval for all years except 2012, when only 

Landsat 7 was operational. This 8-day interval was simultaneously augmented by side-

overlapping scene edges and reduced by clouds and acquisition inconsistencies, resulting in 99% 

of pixels having between 12 - 64 satellite observations per year except 2012 (mean including 

2012: 28). This provided adequate temporal resolution to capture both baseline and peak 
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greenness for multiple crop calendars (Figure 1.2a). Detailed information about Landsat scenes, 

processing, and yearly statistics for pixel observation frequency can be found in Text A.1.2 and 

Figure A.1.4. 

 
Figure 1.2. Seasonal greenness curves and qualitative assessment. (a) Mean and interquartile range 

(shaded) from Landsat monthly green index (GI) composites for 2010 training points. (b) Qualitative 

assessment of classification performance in 2002. Left: Landsat annual composite image of maximum 

greenness; Center: AIM-RRB classification. Right: Compared with 250 m resolution products [Pervez 

and Brown, 2010], AIM-RRB has similar patterns but higher spatial and temporal resolution (annual vs. 

five year). 

In GEE, we produced composites of annual maximum and annual range for four 

vegetation indices: (1) the normalized difference vegetation index (NDVI); (2) the enhanced 
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vegetation index (EVI); (3) the normalized difference water index (NDWI), which is sensitive to 

plant water content [Gao, 1996]; and (4) a less common green index (GI) [Gitelson et al., 2005] 

that is particularly sensitive to irrigation status [Ozdogan and Gutman, 2008]. Text A.1.3 

provides detailed index calculations. Composites thus captured both peak growing season 

greenness and the magnitude of annual change per pixel regardless of crop phenology.  

Climate, soil, and slope information can improve classification accuracy by refining cases 

of potential irrigation and providing context for vegetation greenness. We assembled variables 

related to plant growth including precipitation, plant available water, slope, and aridity (Text 

A.1.4). We also developed two novel combination indices that integrate moisture information 

with greenness levels to exaggerate differences by irrigation status and facilitate regional-scale 

classification across climate gradients. We called these the water-adjusted green index (WGI), 

calculated from Landsat as NDWI * GI, and aridity-normalized green index (AGI), calculated as 

GI / growing season aridity derived from meteorological data. In total, we generated 9 Landsat 

variables and 11 covariables for use in machine learning classification (Table A.1.1). 

2.3. Training data 

 We developed a robust training dataset using high-resolution (1 m) aerial imagery [NAIP, 

2017], Landsat GI and EVI times series (Text A.1.5), and crop type maps (CDL) [USDA-NASS, 

2017]. To maximize sampling of climate conditions, we created a multi-year training dataset 

using a wet year (2010) and a dry year (2012) and sampled across three Koeppengeiger climate 

zones [Peel et al., 2007]. In GEE, we manually located points for the top five crops plus non-

crop grassland, determining irrigation status from multiple lines of evidence such as irrigation 

infrastructure and seasonal greenness patterns (Text A.1.5). We defined irrigation as the use of 

supplemental water during the growing season and did not differentiate between partial or fully 
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irrigated fields or cropping intensity. Expert-selected training points, used here, can reduce data 

needs and improve performance compared to stratified random approaches [Zheng et al., 2015]. 

The final training dataset consisted of 1401 points (see Figure A.1.5 for locations and Table 

A.1.2 for breakdown by crop and climate region). Crop-specific seasonal greenness curves show 

good separation by irrigation status (Figure 1.2a). Points were then aggregated into “irrigated” 

and “non-irrigated” types for binary classification. 

2.4. Classification 

 We used the full training dataset to train both Classification and Regression Tree (CART) 

and random forest [Breiman, 2001] classifiers in GEE. A random forest classifier with 500 trees 

that omitted rainfed soy training points performed best on validation data used to evaluate 

classifiers (see Text A.1.6). We applied the classifier to the 1999-2016 period after masking 

urban, forest, and wetland areas using National Land Cover Dataset (NLCD) maps [Fry et al., 

2011]. We did not mask other non-crop areas because this inhibited classification of dynamic 

irrigation changes among years. 

Following initial classification, we performed two cleaning operations: (1) a 3x3 majority 

filter and (2) removal of pixels irrigated only once during the 18 year period, since infrastructure 

requirements make single-year irrigation unlikely. To understand the relative contribution of 

input variables to classification accuracy, we ran permutation tests and GINI index metrics in R 

[R Core Team, 2014] with an identically parameterized classifier since GEE does not currently 

output variable importance measures (Text A.1.7). 

2.5. Accuracy assessment and analyses 

 Assessing multi-year classification efforts across large regions is challenging since 

limited ground truth data are available. We sought to evaluate accuracy with test datasets across 
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a wide range of years from multiple data sources. First, we used two sets of national county 

statistics for six years (2002, 2007, 2012: NASS Agricultural Census [NASS, 2017]; 2000, 2005, 

2010: USGS water use data [USGS, 2015]) to compare total irrigated area for 35 counties 

contained within the buffered GRB. Second, we randomly generated points across Nebraska in 

2002 and the full study area in 2015 (Figure A.1.6) and marked them as “irrigated” or “not 

irrigated” as described for training points. Cases where no clear determination could be made (24 

of 2266 points) were marked as “uncertain” and omitted from accuracy assessments. We chose 

2002 (dry year) and 2015 (wet year) to include all three Landsat sensors and two precipitation 

extremes in our assessment. Table A.1.3 gives point breakdowns among years and classes. We 

then analyzed annual maps to provide summary statistics of irrigated area, overall and regional 

trends, and exploratory analyses of irrigation drivers. 

2.6. Data limitations 

 Although we leveraged several GIS, satellite, and aerial imagery datasets, our method 

relied on manually-produced training and test datasets well suited to identify areas where 

irrigation clearly enhances greenness. Locations where irrigation may have more subtle effects 

on greenness, such as sub-irrigation or where limited irrigation is used to prevent crop failure, 

were not selected. AIM-RRB could therefore be described as a map of “certainly irrigated” 

locations but may underrepresent some marginal irrigation areas. 

3. Results and Discussion 

 The random forest classifier using all available Landsat scenes produced 18 annual 

irrigation maps from 1999-2016 (AIM-RRB). Figure 1.1b shows the number of years each pixel 

in the study region was classified as irrigated during these 18 years. We found that 24.3% of the 
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GRB was irrigated at some point during the study period, and of that area, 28.1% was 

perennially irrigated, which we defined as having irrigation over 80% of years to allow for 

periodic crop rotations and fallowing. Only 8.4% of irrigated land was classified as irrigated for 

the entire study period. In general, perennial irrigation was concentrated near major rivers (Platte 

and Republican, Figure A.1.1) and in well-established groundwater areas. Non-perennial 

irrigation includes irrigated fields added, deactivated, or intermittently rainfed/fallowed during 

the study period (see section 3.3, Irrigation trends). Figure 1.1c and Figure 1.1d demonstrate 

how AIM-RRB can resolve years in which irrigation of individual fields began and/or ceased. As 

this zoomed area highlights, irrigated areas were both added and deactivated throughout the 

study period. 

3.1. Classification performance 

 Qualitatively, there was good visual agreement between Landsat composites, AIM-RRB, 

and previously published USGS MIrAD-US products at lower resolution (250 m) for 2002, 

2007, and 2012 [Pervez and Brown, 2010; Brown and Pervez, 2014] (Figure 1.2b). Using our 

point test dataset, we found overall accuracies of 98.6% and 97.6% for 2002 and 2015, 

respectively. For the irrigated class, we had omission errors from 6.1-7.6%, and commission 

errors from 0-6.3%. Table A.1.3 shows a full breakdown of accuracy by class type for 2002 and 

2015. 

County-level comparisons with NASS and USGS irrigation statistics showed good 

agreement with AIM-RRB estimates (Figure A.1.7). We found r
2
 values between 0.88 – 0.96 for 

the six available years, with similar agreement between years used to train the classifier (2010 

and 2012) and non-training years as well as robust performance across high and low precipitation 

years. AIM-RRB slightly underestimated irrigated area per county compared to the county 
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statistics, which can be seen in relation to the 1:1 lines in Figure A.1.7. USGS data is derived 

from state-specific statistical models with associated uncertainties, so it remains unclear if AIM-

RRB underestimates irrigation or if USGS estimates are high. NASS census data is self-reported 

but anonymized to minimize inaccurate reporting. However, there may be underlying incentives 

to report inflated numbers to preserve water rights. Alternatively, NASS may better reflect 

partial irrigation while AIM-RRB likely favors fully irrigated fields (see section 2.6, Data 

limitations). Finally, the Landsat dataset likely missed peak greenness in some locations due to 

cloud cover, resulting in occasional maximum greenness values similar to non-irrigated 

cropland. Because the MIrAD-US methodology uses the NASS county area statistics to allocate 

pixels to the irrigated class, AIM-RRB is the only independent multi-year data source in the 

region for this period  

3.2. Variable importance  

Our novel AGI and WGI indices, which combine GI with moisture indicators, ranked 

highest for both importance metrics used (permutation test: AGI; GINI Index: WGI; Text A.1.7, 

Figure A.1.8). GI contributed to the top three variables identified through both metrics, 

supporting previous findings that GI is more sensitive to irrigation status than conventional 

indices such as NDVI and EVI [Ozdogan and Gutman, 2008; Ozdogan et al., 2010a]. The annual 

GI range scored higher than the maximum for both metrics, suggesting that the change in 

greenness over the year conveys more information than peak greenness alone, corroborating 

conclusions in Ozdogan et al. [2010]. Interestingly, no climate-related variables ranked in the top 

eight according to the GINI Index, despite the high relative importance of AGI in the 

permutation test. Climate-related variables may gain importance for continental scale 

applications with larger climatic ranges. Slope and soil-related variables scored lowest, 
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indicating they do not enhance accuracy in this region. The high importance of AGI and WGI 

suggests these indices warrant further study for use in irrigation classification in other 

agricultural regions.  

3.3. Irrigation Trends  

Irrigated area in the GRB increased during the study period at an average rate of 0.37% 

per year (r
2
 = 0.72, p < 0.0001, Figure 1.3a), with a lower rate of 0.26% for the more regulated 

RRB-RRCA sub-domain (r
2
 = 0.62, p < 0.0001; Figure 1.4a). We found considerable variability 

around this trend, including multiple years in which irrigated area decreased from the previous 

year. The range in irrigated area among years was large; for example, irrigated area in the GRB 

increased by 92% between the low in 2002 and the high in 2016. Given this variability, datasets 

lacking high temporal frequency could generate disparate conclusions based on the years 

sampled. For example, a five-year product such as MIrAD-US, which is based on NASS data for 

2002, 2007, and 2012, would suggest a non-significant 0.02% increase per year (p = 0.90). 

Linear regression of irrigated area over time by 4 km
2
 aggregated grid cells revealed that 

the highest rates of increase were concentrated in the eastern, non-aquifer region and near the 

Platte and Republican Rivers, while western groundwater-dominated regions had relatively flat 

to decreasing trends (Figure 1.3b). This is likely due to groundwater allocation reductions, 

expanded well-drilling moratoriums, and retirement of water rights in Nebraska and Colorado to 

comply with the Republican River Compact. These efforts to protect streamflow have perhaps 

enabled the expansion of irrigation evident in the lower Kansas RRB (Figure 1.3a, Figure 1.3b). 

Irrigated area was both added and deactivated across the study region (Figure 1.3a). Surface- 

water dominated regions such as the lower Kansas RRB deactivated negligible irrigated area 

over the study period but did suffer large temporary reductions in irrigated area during drought  
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Figure 1.3. Sub-regional irrigation trends.  (a) Irrigated area (black) by region. Spatial locations of 

each region are depicted in map backgrounds (dark gray). Cumulative novel area (red) summarizes newly 

irrigated pixels each year (2002-2015); cumulative area deactivated (blue) tracks pixels not irrigated in 

subsequent years (2000-2013). Omitted years buffered against consecutive fallow periods at the study 

period start or end; (b) Rate of change over time from linear regression. Cells with non-significant trends 

(alpha ≥ 0.05) are in gray.  

years such as 2012. Groundwater dominated regions such as the CO RRB and the KS RRCA 

were less perturbed by drought but had the lowest net gain in novel irrigated areas (novel – 
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deactivated area). Changes in total irrigated area not accounted for by net gains or losses likely 

were due to reduced dryland crop rotations and/or fallowing frequency in existing irrigation 

areas. 

 
Figure 1.4. Irrigated area over time and associated drivers. For the portion of the Republican River 

Basin overlying the High Plains Aquifer (RRB-RRCA, shown in dark gray in the map inset of the Greater 

Republican Basin study area): (a) Percent irrigated area from AIM-RRB. Rate of change (m) is given in 

percent and actual area; (b) Irrigation water volume [RRCA, 2003]; (c) Precipitation from December 1 – 

August 31 (Text S3) [Abatzoglou, 2013]; (d) Corn price in 2016 dollars [NASS, 2017]; (e) Irrigation 

application depth (volume / area) vs. precipitation linear regression; (f) Trends in irrigated area vs. 

precipitation for years with high and low prices (split determined from CART (Text A.1.5, Figure A.1.9)). 
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3.4. Drivers of irrigated area 

Spatiotemporal irrigation dynamics detailed in AIM-RRB result from farmer irrigation 

decisions made within the context of annual climate variation, crop commodity prices, water 

management, and water supply. Utilizing irrigation water volume estimates from the RRCA 

model for 1999-2015 (Figure 1.4b) [RRCA, 2003], we investigated how these drivers might 

interact to influence irrigation within the RRB-RRCA. Correlation matrices revealed that 

irrigated area was positively correlated with the previous year’s crop prices (r = 0.55, p = 0.02) 

but not with precipitation, irrigation volume, or current year price (Figure A.1.9a). Instead, 

irrigated area likely was linked to precipitation through the depth of irrigation water applied, 

calculated as irrigation water volume divided by area. Both irrigation water volume and 

irrigation depth had strong negative correlations with precipitation (r = -0.89 and -0.86, 

respectively; p < 0.0001). In years with low precipitation, such as the 2002 and 2012 droughts, 

irrigation volume and depths were elevated while irrigated area was reduced (Figure 1.4a, Figure 

1.4b, &  Figure 1.4e), indicating farmers irrigated more intensely over less area to compensate 

for lack of rainfall. The inability to maintain or even expand irrigated area during dry periods 

when yield advantages are greatest suggests farmers are limited in either water supply, access 

rights, or delivery capability [e.g., Foster et al., 2014]. Without complementary datasets on 

irrigation volume and spatial extent made possible by annual map products, it is not possible to 

discern if increased water use was due to areal expansion, application depth increases, or both. 

Commodity prices also influence irrigation decisions by determining the return on 

investment for irrigation water use. Corn price approximately doubled between 2003 and 2012 

(Figure 1.4d). CART analysis suggested that price and precipitation interacted to influence 

annual irrigation extent (model R
2
 = 0.78; Text A.1.8 and Figure A.1.9b). When price was low, 
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irrigated area was low regardless of precipitation, likely due to poor return on irrigation costs 

(Figure 1.4f). In contrast, high prices incentivized irrigation expansion but was modulated by 

annual precipitation; low precipitation years required increased irrigation water depth (r
2
 = 0.72, 

Figure 1.4e), limiting the amount of water available for areal expansion. 

Although quantification is outside the scope of this paper, policy, management decisions, 

and groundwater depletion [e.g., Basso et al., 2013; Cotterman et al., 2017] also influence 

irrigation dynamics. This can include efficiency incentives and/or technological improvements 

that can increase area per unit volume, new use restrictions reducing irrigated area or, 

conversely, areal expansions in anticipation of future regulation [Pervez and Brown, 2010]. 

4. Conclusions 

 Our approach produced annual irrigation maps that provide consistent, spatially explicit 

tracking of irrigation, revealing temporal dynamics even in this heavily regulated system. Our 

use of the full Landsat record for each year allowed us to capture peak greenness values for 

multiple crops despite asynchronous crop maturation schedules and to quantify the annual range 

in greenness. We developed two new indicators combining remotely sensed plant greenness with 

moisture information (WGI and AGI) that show promise for improving satellite classification of 

irrigation. Because our approach utilizes satellite and derived climate datasets made available in 

near real time through Google Earth Engine, it can be applied to future years immediately 

following the growing season to provide updated and timely information to managers and 

scientists. The approach is transferable to other non-humid regions dominated by annual crops 

given region-specific training data. These annual maps provide critical insight into behavioral 

responses to irrigation drivers and document annual irrigation dynamics with high precision, thus 

providing vital information to inform agricultural water use models and management decisions. 
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APPENDIX 
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Text A.1.1. Expanded study area description  

 Much of the Republican River Basin (RRB) overlies the High Plains Aquifer (HPA), one 

of the largest and most stressed aquifers in the world [Gleeson et al., 2012b]. Average water 

demand exceeds supply over much of the region [Devineni et al., 2015], leading to extensive 

groundwater depletion [Haacker et al., 2016; Mcguire, 2017].  Similar to trends in the larger 

HPA, groundwater irrigation in the RRB expanded rapidly over the last half of the 20th century. 

Arguing that such large-scale groundwater development was depleting surface streamflow into 

the state, Kansas sued Nebraska in 1999 for violating the Republican River Compact of 1942, 

which allocated each state a portion of the unaltered basin water supply in perpetuity. Although 

groundwater was not explicitly addressed in the Compact, the US Supreme Court ruled that 

groundwater use was restricted under the Compact if it depleted transboundary streamflow and 

established a framework for using groundwater modeling to assess compliance on 5 year running 

averages under the Republican River Compact Administration [RRCA; Peck, 2007; Kuwayama 

and Brozović, 2013]. Griggs [ 2017] details various compliance strategies among actors in the 

basin. 

 To capture irrigation dynamics in the full Republican River Basin system, our study 

region is the union of the RRB and the RRCA groundwater model boundary (Figure A.1.1). To 

properly model the groundwater system, the RRCA boundary extends northward beyond the 

RRB to use the Platte River to set the boundary conditions along the northern model border, and 

extends beyond the RRB in the southeast in order to include the full aquifer in this region. The 

RRCA groundwater model uses 1-mile grid cells which results in a jagged, irregular boundary; 

thus we modified the RRCA boundary by using the actual borders of the aquifer on the east and 

west as well as the Platte River in the north. The RRB is fully contained within the RRCA with 
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the exception of the eastern, downstream tail, which exits the aquifer near the Nebraska-Kansas 

border and continues to flow through Kansas until it joins the Kansas River.  Therefore, our 

study domain is the 86,429 km
2
 greater Republican Basin (GRB), defined as the union of the 

79,371 km
2
 RRCA and the partially overlapping 64,521 km

2 
RRB (Figure 1.1, Figure A.1.1). 

As standard best practice to ensure the Annual Irrigation Maps – Republican River Basin 

(AIM-RRB) dataset generously covers the region of interest for downstream efforts such as 

hydrological modeling, we applied a buffer to the RRCA (10% of RRCA width, or ~26 km) and 

to the RRB (10 km) prior to performing a GIS union to combine the areas into the GRB (Figure 

A.1.1). We used the resulting 141,603 km
2 

buffered region to 1) train the classifier, 2) produce 

maps for the full buffered region, and 3) report accuracy statistics. For example, the buffered 

study area fully contains 35 counties, while the non-buffered union of the Republican River 

Compact Administration and the Republican River Basin would only contain 21 counties, 

limiting this accuracy assessment for the six years in which county data are available. 
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Figure A.1.1. Detailed study area map.  The study region (blue) is the union of the Republican River 

Compact Administration (RRCA) groundwater model domain (black outline) and the Republican River 

Basin (RRB; orange outline). Annual irrigation maps and accuracy metrics are produced for the full study 

are plus buffer (light blue), which encompasses the study region with a minimum 10 km buffer. 

Exploratory analyses of irrigation drivers are conducted on the portion of the RRB contained within the 

RRCA. Lines demark the Republican River and the Platte River.
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Figure A.1.2. Dominant crops in the study area.  The summed areas for all 35 counties completely 

contained within the buffered study region are shown. Colors indicate irrigation status. Data from USDA 

NASS county statistics for 2007 [NASS, 2017]. 

 

Text A.1.2. Satellite Images 

Sixteen Landsat scenes overlie the study region: Paths 28-29, rows 32-33, and paths 30-

33, rows 31-33 (Figure A.1.3). Three Landsat satellite sensors were operational during the study 

period: Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper-plus (ETM+), 

and Landsat 8 Operational Land Imager (OLI). Vegetation metrics derived from the three sensors 

have been found to be comparable without modification [Vogelmann et al., 2015], particularly 

for Surface Reflectance (SR) products that have been terrain, radiometrically, and 

atmospherically corrected [USGS, 2017b, 2017c]. All available SR scenes from the three 

satellites covering the study area between 1 November 1998 and 31 October 31 2016 were used, 

accessed through Google Earth Engine’s (GEE) [Gorelick et al., 2017] LANDSAT/LT5_SR, 

LANDSAT/LE7_SR, and LANDSAT/LC8_SR image collections. Because winter wheat has an 
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initial green-up stage in November prior to peak harvest season in April and May, we considered 

each nominal crop year to run from 1 November of the previous year through 31 October of the 

nominal year. This ensured that annual composites for each year included only greenness related 

to crops harvested during the nominal composite year. 

Clouds and cloud shadows were masked using the “cfmask” quality band provided with 

SR data products. We applied a negative 3 km buffer to all scenes prior to mosaicking to remove 

bad pixels along scene edges. Each satellite has a 16 day revisit cycle. There were two operating 

satellites orbiting at an 8-day offset in all years except 2012. This 8-day interval was 

simultaneously augmented by side-overlapping scene edges (imaged one week apart) and 

reduced by masked pixels due to cloud contamination, occasional poorly registered or missing 

scenes, and Landsat 7’s scan line corrector failure in 2003, which results in the loss of 

approximately 22% of each scene [Chen et al., 2011]. Satellite systems, scene totals, and pixel 

observation frequencies after buffering and cloud masking for each year are shown in Figure 

A.1.4.
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Figure A.1.3. Landsat scenes overlying the buffered study region.  The Landsat Worldwide Reference 

System (WRS) 2 is used to locate each scene with a unique row-path identifier. Sixteen scene footprints 

are displayed over the buffered study area, colored by path number for clarity.  Adjacent, side-

overlapping paths are imaged seven days apart. Overlap on the top and bottom of scenes in the same path 

are duplicate data points; duplicates were removed for pixel observation statistics (Figure A.1.4).
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Figure A.1.4. Landsat imagery statistics.  Top: Number of Landsat Surface Reflectance scenes used 

each year. Colored bars denote the active life of each satellite sensor. Bottom: Median, maximum, 

interquartile range (25-75%), and 1-99% range for number of satellite observations per pixel across the 

buffered study region over time. Duplicate observations in adjacent rows along the same path were 

removed for pixel observation statistics. 
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Text A.1.3: Vegetation Indices 

Four vegetation indices were used: (1) the Normalized Difference Vegetation Index 

(NDVI), a consensus index for irrigation mapping that has performed well in previous studies 

[see review in Ozdogan et al., 2010]; (2) the Enhanced Vegetation Index (EVI), which is known 

to have a wider functional range than NDVI before saturation in dense canopies [Huete et al. 

2002]; (3) the Normalized Difference Water Index (NDWI),which is sensitive to the water 

content in plants [Gao, 1996]; and (4) a less common Green Index (GI) [Gitelson et al., 2005] , 

which has been found to be particularly sensitive to plant greenness differences due to irrigation 

[Ozdogan and Gutman, 2008; Ozdogan et al., 2010a]. The following equations were used: 

 

NDVI = (NIR - Red) / (NIR + Red)          (1) 

 

EVI = 2.5 * (NIR - Red) / (NIR + 6 * Red - 7.5 * Blue + 1)      (2) 

 

NDWI = (NIR -SWIR) / (NIR + SWIR)      (3) 

 

GI = NIR / Green         (4) 

where NIR is the near-infrared band, SWIR is the short-wave infrared band 1 (band 5 for 

TM/ETM+, band 6 for OLI), and Red, Green, and Blue are the visible red band, visible green 

band, and visible blue band, respectively. Equation (2) uses constants optimized for MODIS 

sensors following Huete et al. [2002]. 
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Text A.1.4: Environmental Covariables 

 We used ten environmental covariables to provide climate, soil, and terrain context for 

irrigated and non-irrigated locations for the random forest classification. Variables fell into two 

categories: (1) static variables describing terrain and soil properties used for all classification 

years, and (2) yearly variables describing precipitation and dryness conditions for each year. 

Terrain slope was calculated from the 1/3 arc-second resolution USGS National Elevation 

Dataset [USGS, 2012], averaged over a 150 m radius moving kernel to capture mean slope for 

agriculturally relevant field sizes, and resampled to 30 m Landsat resolution. Total plant 

available water storage (PAW)  was obtained from the USDA SSURGO Web Soil Survey 

[NRCS, 2016], calculated as field capacity minus wilting potential, and was included as both the 

volume fraction in the top 25 cm (PAW-Vol) and as cm in the top meter (PAW cm). Daily 

gridded precipitation and potential evapotranspiration (PET) data at 4 km resolution was 

obtained from GRIDMET [Abatzoglou, 2013] and processed into 5 input layers: (1) total annual 

growing season precipitation (Ppt-Grow), defined as precipitation from 1 December  of the 

previous year through 31 August of the nominal year to capture precipitation relevant to that 

year’s soil replenishment and crop growth; (2) total late season precipitation (Ppt-Late), defined 

as precipitation from 1 May  – 31 August  for each year to capture precipitation from  primary 

green-up through harvest; (3) total early season precipitation (Ppt-Early),  defined as 

precipitation from 1 December of the previous year through 30 April of the nominal year as a 

proxy for soil water replenishment; (4) the ratio of early precipitation to PAW cm, a similar 

indicator of water availability in the soil prior to the growing season (Ppt-PAW); and (5) 

growing season aridity (Aridity), calculated as the total precipitation divided by PET from 1 May 

– 31 August. Finally, we obtained mean Palmer Drought Severity Index numbers [Abatzoglou et 
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al., 2014] for both the primary green-up through harvest time period (PDSI-Late, 1 May – 31 

August) and the full growing season timeframe (PDSI-Grow, previous1  December – 31 August) 

time periods. Table A.1.1 summarizes these 10 input variables along with the 8 Landsat 

composites and 2 novel indices (AGI and WGI). All inputs were accessed through Google Earth 

Engine (GEE)’s data archive except the SSURGO soil data, which was manually uploaded to 

GEE for classification. 
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Table A.1.1 Summary of variables used in random forest classification of satellite imagery.  All 

inputs were accessed through Google Earth Engine (GEE)’s data archive except the SSURGO soil data, 

which was manually uploaded to GEE for classification. 
 

Variable Short Name Type Time Period 

Res 

(m
2
) Source 

Maximum annual EVI EVI max yearly 1 Nov - 31 Oct  30 Landsat SR 

Maximum annual GI GI max yearly 1 Nov - 31 Oct 30 Landsat SR 

Maximum annual NDVI NDVI max yearly 1 Nov - 31 Oct 30 Landsat SR 

Maximum annual NDWI NDWI max yearly  1 Nov - 31 Oct 30 Landsat SR 

Annual range in EVI EVI range yearly 1 Nov - 31 Oct 30 Landsat SR 

Annual range in GI GI range yearly 1 Nov - 31 Oct 30 Landsat SR 

Annual range in NDVI NDVI range yearly 1 Nov - 31 Oct 30 Landsat SR 

Annual range in NDWI NDWI range yearly 1 Nov - 31 Oct 30 Landsat SR 

Growing season 

    precipitation Ppt-Grow yearly 1 Dec - 31 Aug 4000 GRIDMET 

Late season 

    precipitation Ppt-Late yearly 1 May - 31 Aug 4000 GRIDMET 

Early season 

    precipitation Ppt-Early yearly 1 Dec - 30 Apr 4000 GRIDMET 

Annual PDSI PDSI-Grow yearly 1 Dec - 31 Aug 4000 

Abatzoglou et al. 

2014 

Growing season PDSI PDSI-Late yearly May 1-Aug 31 4000 

Abatzoglou et al. 

2014 

Terrain slope Slope static NA 30 USGS NED 

Soil Plant Available 

    Water (fraction) PAW-Vol static NA 30 SSURGO 

Soil Plant Available  

    Water (cm) PAW-cm static NA 30 SSURGO 

Precipitation:paw Ppt-PAW yearly 1 Dec - 30 Apr 30 

Derived: Ppt-Early 

    * PAW-cm
-1

 

Aridity Aridity yearly 1 May - 31 Aug 4000 

Derived: Ppt- 

    Late * PET
-1

 

Water-adjusted green 

    index WGI yearly 1 Nov - 31 Oct 30 

Landsat SR 

(NDWI*GI) 

Aridity-normalized 

    green index AGI yearly 1 Nov - 31 Oct 30 

Derived: GI max * 

    Aridity
-1
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Text A.1.5: Expanded training data methodology 

As noted in the main text (Training data), we used high-resolution (1 m) aerial imagery 

[NAIP, 2017],  Landsat GI and EVI times series, and crop type maps (CDL) [USDA-NASS, 2017] 

to develop the training dataset. To identify irrigated and non-irrigated locations for target crop 

classes, we first produced a set of monthly imagery containing maximum GI and EVI per month 

for each training year (2010 and 2012) within GEE. These monthly time series were used to 

provide more information about greenness patterns on the landscape, including the timing of 

peak greenness to verify crop type.  Pixels lacking valid observations in any month between 

April – November due to cloud contamination and Landsat’s relatively long revisit cycle (text 

S2) were masked so that training points were targeted in areas with maximum information about 

seasonal greenness magnitudes and timing (Figure A.1.5).  We then based irrigation status 

decisions on multiple lines of evidence such as irrigation infrastructure, seasonal greenness 

patterns, and crop type as indicated by CDL. For example, irrigated corn training points were 

generated by first locating candidate corn fields using CDL. The Landsat monthly time series 

was then checked to confirm CDL classification accuracy.  Visual cues were then assessed, such 

as visible irrigation infrastructure and maximum greenness levels. A circular field with center 

pivot equipment, then, also had to have a temporal time series of monthly Landsat greenness that 

supported an irrigated status. Irrigated fields could also be square with center pivot equipment 

(with assumed corner extenders), square or other shapes with visible lateral move irrigation 

systems, or very green with evidence of irrigation ditches and surface irrigation. The expert 

selected method allowed us to target cases on the landscape that provided higher certainty, such 

as adjacent fields of the same crop type with vastly different greenness patterns and 

presence/absence of visible infrastructure. Figure A.1.5 provides training dataset locations and 
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Table A.1.2 provides numerical breakdown of training points by crop and climate region. 

Training points are available as indicated in the Acknowledgments and Data section of the main 

text. 

With recent computational advancements such as GEE, the acquisition or generation of 

accurate training, validation, and test datasets that reflect local crop types, irrigation systems, 

climate, and non-crop ecosystems is becoming a key limiting step for remote sensing 

classification of irrigated area across wide regions. To apply our approach to new areas, one need 

not replicate our specific method to generate training points. One only needs a robust spatial 

dataset that accurately denotes irrigated and non-irrigated locations for specific growing seasons, 

ensuring that these points adequately sample the dominant crop types, non-crop ecosystems, and 

climate zones in the region of interest.  

 

Figure A.1.5: Training point locations.  Training point locations overlaid on Koeppengeiger climate 

regions [Peel et al., 2007]. Climate types in the buffered study region include cool arid steppe (BSk) 

along with humid subtropical (Cfa) and humid continental (Dfa) temperate zones. 
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Table A.1.2. Number of training data by crop type, climate region, and year. In total, 1401 training 

points were sampled. Climate regions are described by Koeppengeiger codes [Peel et al., 2007] and 

include cool arid steppe (BSk) along with humid subtropical ( Cfa) and humid continental (Dfa) 

temperate zones. 

  Climate 

Region 

2010 2012 

Crop Type Irrigated Not Irrigated Irrigated Not Irrigated 

Alfalfa BSk 30 17 32 18 

 

Cfa 15 24 3 5 

 

Dfa 34 30 24 22 

Corn BSk 30 30 31 30 

 

Cfa 20 20 12 11 

 

Dfa 30 30 30 31 

Sorghum BSk 14 30 7 30 

 

Cfa 14 20 6 9 

 

Dfa 12 30 6 18 

Soy BSk 30 4 30 0 

 

Cfa 21 8 8 2 

 

Dfa 30 26 28 9 

Wheat BSk 25 30 26 39 

 

Cfa 11 21 3 12 

 

Dfa 15 30 3 24 

Fallow BSk - 15 - 16 

 

Cfa - 7 - 5 

 

Dfa - 15 - 7 

Grassland / BSk - 30 - 27 

Non-crop Cfa - 24 - 10 

  Dfa - 30 - 25 

Total   331 471 249 350 
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Text A.1.6: Validation dataset for algorithm development 

Initial classification algorithm development was performed in the Middle Republican 

Natural Resource District (NRD) in Nebraska within the GRB study area. We created a 

validation dataset for this purpose by generating random points stratified across crop types and 

grassland according to Cropland Data Layer (CDL) maps [USDA-NASS, 2017] for 2007 and 

2010 within the NRD. Points were marked as “irrigated” or “non-irrigated” in the same manner 

as the training and test data (see Methods and Text A.1.5), except that point locations were 

randomly generated in contrast to the expert selected training points. Similar to the test point 

dataset (see Accuracy assessment and analyses), cases where no clear determination could be 

made were marked as “uncertain” and removed from the validation dataset. This resulted in 878 

points for 2007 and 864 points for 2010. This provided a point dataset with higher point density 

for the smaller NRD region to evaluate classification decisions during algorithm development.  

In this study, our objective was to identify irrigated area regardless of crop type. Due to 

the similarity in greenness between irrigated corn and some fields of rainfed soy (Figure 1.2a), 

the accuracy of the training algorithm was reduced when dryland soy training points were 

included. Because rainfed soy is relatively rare on the landscape of our study system (Figure 

A.1.2), we selected the random forest classifier that omitted rainfed soy training points, as it 

performed best in accuracy metrics and qualitative evaluation (not shown). 
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Figure A.1.6: Test point locations for accuracy assessment. Randomly generated test point locations 

overlaid on Koeppengeiger climate regions [Peel et al., 2007]. Points in 2002 were restricted to Nebraska, 

since only Nebraska had crop type maps (NASS Cropland Data Layers, [USDA-NASS, 2017]) available 

before 2006. Climate types in the study region include cool arid steppe (BSk) along with humid 

subtropical (Cfa) and humid continental (Dfa) temperate zones. 
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Table A.1.3. Point-based accuracy of irrigation classification.  Accuracy metrics for 2002 and 2015 

test datasets. Parenthetical numbers give the number of points for each category. Precipitation represents 

December – August totals to capture agriculturally relevant precipitation (Text A.1.3). Omission errors 

describe the percentage of training points in each class that were not classified in that class (false 

negatives), while commission errors describe the percentage of training points that were not in that class 

but were predicted to be by the random forests classifier (false positives). 

Year 

Precip. 

(mm) Class 

Omission 

Errors 

Commission 

Errors 

Overall 

Accuracy 

2002
+
 203 

Irrigated 6.1% (14/229) 0% (0/215) 98.6% 

(1005/1019) Non-Irrigated 0% (0/790) 1.7% (14/804) 

2015
*
 484 

Irrigated 7.6% (16/210) 6.3% (13/207) 97.6% 

(1194/1223) Non-Irrigated 1.3% (13/1013) 1.6% (16/1016) 

Combined  
Irrigated 6.8% (30/439) 3.1% (13/422) 98.1% 

(2199/2242)   Non-Irrigated 0.7% (13/1803) 1.6% (30/1820) 
+
Active satellite sensors: Landsat 5 TM and Landsat 7 ETM+ 

*
Active satellite sensors: Landsat 7 ETM+ and Landsat 8 OLI
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Figure A.1.7. County-level accuracy assessment.  Irrigated area from county-level statistics compared 

with irrigated area from AIM classified maps against a 1:1 line (dashed). Agreement between the two 

datasets was assessed with r
2
 metrics from simple linear regression (trend line = solid line). Data for blue 

panels are from the USGS [USGS, 2015], while data for tan panels are from the USDA National 

Agricultural Statistics Service [NASS, 2017] and include 35 counties fully contained within the buffered 

study region. 

Text A.1.7. Variable importance 

To understand the relative contribution of the 20 input variables to classification 

accuracy, we ran permutation tests and GINI index metrics in R since Google Earth Engine 

(GEE) does not currently support variable importance measures (GEE accessed May 2016 -  July 

2017).  We used the randomForest package [Liaw and Wiener, 2002] with an identically 

parameterized random forest classification using 500 trees and identical training data. Agreement 

in predictions between the R and GEE classifiers was 99.91% for the point test data (2242 

points), suggesting both classifiers functioned similarly and the variable importance metrics from 
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R likely mirror their importance in GEE. Because random forest algorithms use randomization in 

node optimization and bagging, we averaged importance scores for 20 runs with different 

random seeds to produce robust metrics. The permutation test measures variable importance by 

permuting the value of each variable over all trees and finding the resulting mean decrease in 

accuracy for class predictions made on the out-of-bag samples. If the variable is not important, 

randomly rearranging its values would have little effect on prediction accuracy. Larger decreases 

in accuracy following permutation are expected for variables with greater contributions to overall 

accuracy. The second metric used is the GINI Index, which measures the reduction in node 

impurities resulting from splitting on each variable. Scores for both metrics are shown in Figure 

A.1.8. 
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Figure A.1.8. Variable importance in the random forest classification.  Variables are identified by 

their short name, which can be related to full names and source information using Table A.1.1.  Left: The 

mean decrease in accuracy (standardized) across trees found through a permutation test. Right: The mean 

decrease in node impurity resulting from splits on each variable as measured by the GINI Index. 
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Text A.1.8. Drivers of irrigated area 

We analyzed irrigation drivers for the RRB portion of the RRCA (RRB-RRCA, Figure 

A.1.1) for 1999-2015 because the irrigation volume dataset was restricted to this region of the 

RRB and time period. First, we ran a fully crossed correlation matrix in R on the following 

datasets, aggregated to the RRB-RRCA domain: (1) annual irrigated area from AIM-RRB; (2) 

annual irrigation volume from the RRCA groundwater model [RRCA, 2003]; (3) annual 

irrigation depth, found by dividing irrigation volume by irrigated area; (4) annual growing season 

precipitation (see Table A.1.1); (5) national annual corn price as a proxy for commodity prices 

[NASS, 2017], adjusted for inflation to 2016 dollars using the Consumer Price Index; and (6) 

annual crop price with a 1 year lag, referred to as price lag. Results are shown in Figure A.1.9a. 

To get a sense of how variables with significant correlation to irrigated area interact, we 

built a preliminary predictive model using classification and regression tree analysis (CART) as 

CART is robust to auto-correlation often found in time series data and nonlinear interactions 

among predictor variables. CART was performed in R using the ‘ctree’ function in the party 

package [Hothorn et al., 2006]. We set the split criteria at p = 0.15 with minimum node weights 

of 3 given our relatively short time series. Percent irrigated area was the dependent variable. We 

used price lag and precipitation for predictor variables, since correlation analysis and linear 

regression indicated that irrigated area was influenced by precipitation through the irrigation 

depth required (Figure A.1.9a & Figure 1.4e). The resulting CART tree is shown in Figure 

A.1.9b, and area vs. year trends given high or low prices based on the primary CART split is 

shown in Figure 1.4f.
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Figure A.1.9. Drivers of irrigated area. Correlation matrix for irrigated area and related variables. * 

indicates p < 0.05, ** indicates p < 0.005; (b) Conditional inference tree from CART model (R
2
 = 0.78). 

Price lag refers to the previous year’s corn commodity price in dollars per bushel from NASS [NASS, 

2017]. Precipitation is 1 December – 31 August totals for each growing season. 
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CHAPTER 2:  
MAPPING THREE DECADES OF IRRIGATION ACROSS THE HIGH PLAINS AQUIFER  

Abstract 

Understanding how irrigated areas change over time is vital to effectively manage limited 

agricultural water resources, but long-term, high-resolution, and spatially-explicit datasets are 

rare. The High Plains Aquifer (HPA) in the central United States is one of the largest and most 

stressed aquifer systems in the world. It supports a $20 billion economy, but groundwater use is 

unsustainable over much of the aquifer. Emerging cloud computing tools like Google Earth 

Engine (GEE) make it possible to leverage the full Landsat record to monitor regional systems 

like the HPA with high spatial and temporal resolution over multiple decades. Challenges 

remain, however, to develop irrigation classification methods that are robust to wide range of 

climate, crop types, and evolving crop varieties and management, along with missing data. Here, 

we address these challenges to produce annual, moderately high resolution (30 m) irrigation 

maps from 1984-2017 over the aquifer using random forest classification. Leveraging GEE’s 

extensive data catalog, we combined Landsat imagery with climate and environmental 

covariables to create a single random forest classifier. A novel Neighborhood Greenness Index 

contributed to a 91.4% map accuracy across years. Spatially refined trend analysis of irrigated 

area through time identified regions of stable, expanding, and declining irrigated area. Given 

declining aquifer conditions, we estimate that up to 24% of irrigated area may be lost this 

century. The map dataset is the longest, most spatially-refined record of where and when 

irrigation occurs in the world. It is freely available for stakeholders, managers, and researchers to 

inform future policies and management, as well as for use in hydrology, agronomy, and climate 

models. 
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1. Introduction 

Irrigation strongly affects food production and the water cycle worldwide, yet for such a 

critical water use, little is known about exactly where and when irrigation occurs. Globally, 85 to 

90 percent of consumptive water use [Shiklomanov, 2000; Doll, 2009] goes towards irrigating 

approximately 20% of croplands, enabling irrigated land to contribute ~40% of global food 

production [Abdullah, 2006]. Extensive irrigation dramatically alters the water cycle, depleting 

aquifers [Gleeson et al., 2012b] and surface water bodies [e.g., Conrad et al., 2016] while 

increasing atmospheric moisture content with demonstrable downstream climate effects [Lobell 

et al., 2006; Pei et al., 2016]. Maintaining and even expanding irrigation is required to meet the 

twin challenges of increasing food demand from demographic changes [Tilman et al., 2011] and 

water stresses in agricultural systems due to climate change and enhanced variability [Döll, 

2002; Wada et al., 2013]. At the same time, depleted water resources may curtail the future 

ability to irrigate existing croplands [Elliott et al., 2014; Cotterman et al., 2018].  

Spatially-explicit knowledge of the historical trajectories of irrigated areas is needed to 

inform planning and management for sustainable local economies and food security [Peña-

Arancibia et al., 2014; Abuzar et al., 2015], as well as to provide inputs necessary to improve 

surface energy balances in climate and earth systems models [Ozdogan et al., 2010b].  

Unfortunately, existing irrigation data do not meet the needs of scientists and resource managers 

alike due to a combination of factors, including low spatial and temporal resolution, limited 

spatial extent (localized studies), and/or potentially biased statistical summaries within political 

units. 

Satellite observations provide an opportunity to detect and map irrigation at sub-field-

scale resolution on an annual basis to inform agricultural water management. Until recently, 



 

 

44 

efforts to remotely sense irrigated lands at regional scales were limited to either coarse resolution 

(250 to 1000 m) sensors or short time frames, largely restricted to single or small subsets of 

years. Opening of the higher resolution (30 m) Landsat archive free-of-charge [Woodcock et al., 

2008; Wulder et al., 2012] and new cloud computing tools like Google Earth Engine (GEE) 

[Gorelick et al., 2017] allow estimation of land use tailored to regions of interest with high 

spatial and temporal resolution over multiple decades [Azzari and Lobell, 2017; Wulder et al., 

2018]. The resulting increased accessibility, computational efficiency, and ease of integration 

with supporting datasets via the co-located data catalog have created an unparalleled opportunity 

to increase our understanding of the spatial and temporal aspects of irrigation. Although barriers 

such as cost and processing time have been dramatically lowered, substantial technical 

challenges remain due to data gaps in the Landsat record as well as the diversity of irrigated 

characteristics across crop types and regions.  

Irrigated agriculture is a dynamic and challenging land use class for regional-scale remote 

sensing due to wide climate gradients, increasingly diverse crop types, and evolving management 

practices over time. While many of these challenges are shared with mapping croplands, 

irrigation classification from satellite observations is relatively underdeveloped [Ozdogan et al., 

2010a], particularly for multi-year monitoring [Abuzar et al., 2015]. Irrigated fields are 

distinguishable from rainfed fields via a variety of spectral characteristics and indices, most 

prominently greenness, wetness, and thermal properties. Most commonly, studies have used 

differences in greenness as measured by vegetation indices during the peak growing season as 

the key differentiator between irrigated and rainfed crops [Ozdogan et al., 2010a], but these 

differences diminish in humid environments [Pervez and Brown, 2010]. Peak greenness is also 

crop specific, with greenness thresholds indicative of irrigation often overlapping among crops, 
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particularly as crop diversity increases as study areas expand to regional scales. Similarly, the 

timing of peak greenness varies by crop type, and many regions have more than one crop season 

that needs to be captured. Finally, innovations in crop choice and management can cause 

apparent greenness to change over time, including new crop varieties, expansion of deep green 

crops like soybeans [Lark et al., 2015], and evolving irrigation technologies. Finally, limited 

historical ground-truth data are available to characterize such dynamic greenness issues within 

classification algorithms.  

To capture differences in greenness due to irrigation status, cloud-free satellite imagery 

needs to be obtained during peak growth for all major crops in a region. Not controlling for 

optimal timing of satellite observations can lead to false negatives, since the apparent peak 

greenness would be artificially suppressed. Studies focusing on the very recent past have the 

advantage of leveraging virtual constellations of simultaneously operating moderate to high 

resolution systems such as Sentinel and Landsat [e.g., Pastick et al., 2018], increasing the 

likelihood of capturing key growth stages. Other studies have combined lower resolution, higher 

frequency MODIS observations with Landsat [e.g., Peña-Arancibia et al., 2014], thus limiting 

focus to years following MODIS’s launch in 2000.  

Long-term studies, however, are limited due to fewer operational systems and less 

consistent historical data acquisition. Landsat is the only continuous, relatively high resolution 

(30 m) dataset longer than 30 years [Wulder et al., 2008], but high quality satellite observations 

are sparse in the early Landsat record. The Landsat constellation provides imagery on an 8-16 

day revisit cycle (the 16-day single-satellite cycle is offset when two satellites orbit 

simultaneously, thus providing an 8-day revisit period), but available imagery has considerable 

temporal gaps due to cloud cover, poorly registered scenes, and inconsistent data acquisition and 
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storage prior to 1999 [Arvidson et al., 2001; Gutman et al., 2013]. This presents challenges for 

consistently obtaining annual satellite observations during critical windows of the crop season, 

which are needed to accurately distinguish between irrigated and rainfed crops.  

Recent studies leveraging the full Landsat archive for other applications address these 

data gaps in several ways. Robinson et al. [2017] derived a 30 m, 16-day NDVI time series from 

1984-2016 for the conterminous United States by filling missing data with median NDVI 

observed in previous years and subsequent smoothing. Hermosilla et al. [2015] filled gaps in 

annual composites from 1998-2012 with synthetic proxy values by combining noise detection 

and removal, values from adjacent years, and breakpoint analysis. These methods, however, 

require relatively static land cover during the analysis periods to fill missing data [Robinson et 

al., 2017]. Image filling approaches, therefore, are not well suited for irrigation mapping, where 

drastic differences in greenness due to different crop rotations, fallowing, annual climate, and 

irrigation decisions that are common among adjacent years. Other gap filling approaches that 

may be more suitable for irrigation mapping include harmonics, Fourier analysis, or linear 

interpolation to fill missing data within each year’s phenological curve, but these perform poorly 

without adequate observations throughout the year [Hermosilla et al., 2015]. Particularly in the 

early (pre-1999) Landsat record, pixels missing data during peak growing seasons tend to have 

sparse data for the full year. 

Here, we addressed these challenges to produce a 34-year record (1984-2017) of 

irrigation across the entire High Plains Aquifer (HPA) in the central United States (Figure 2.1). 

The HPA covers more than 450,000 km
2
, spanning a wide East-West precipitation gradient and a 

latitudinal gradient that result in diverse agricultural practices across the region.
  
It is also one of 

the largest and most stressed aquifer systems in the world [Gleeson et al., 2012b]. The aquifer 
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supports a $20 billion agricultural economy [Ashworth, 2006], but water-level declines threaten 

the continued viability of irrigated agriculture dependent upon the aquifer [Scanlon et al., 2012; 

Haacker et al., 2016]. Despite this, it contains some of the most dynamic irrigated area in the 

country, accounting for 97% of US irrigation expansion between 2002 and 2007 [Brown and 

Pervez, 2014]. Like many areas worldwide [Wada et al., 2016], this increasingly scarce but 

valuable resource needs to be more efficiently managed to preserve water storage, which is 

critical for local economies and global food supply. In the past several decades, a diverse matrix 

of management areas, policy interventions, and court litigation have emerged to slow aquifer 

depletion rates [Smidt et al., 2016]. Knowledge of when and where irrigation occurs in the HPA 

is vital to better understand past water use, evaluate management, and improve regional crop, 

hydrology, and climate models to support future planning. 

 

Figure 2.1 Study area: the High Plains Aquifer (HPA).  (a) Study region with major aquifer regions 

delineated, and change in groundwater levels from predevelopment to 2016 based on [Haacker et al., 

2016]. (b) Variation in precipitation and crop types across the HPA. Mean annual precipitation from 

1984-2017 derived from [Abatzoglou, 2013]. Regional summaries of crop-specific irrigated and rainfed 

crop area for 2012 derived from national statistics [NASS, 2017]. 
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Building upon past efforts that focused on a single river basin in the northern HPA for 

1999-2016 [Deines et al., 2017], we use 34 years of Landsat imagery from the entire HPA to 

address the following challenges: 1) classifying irrigation across a dynamic climate gradient in 

temperature and precipitation; 2) incorporating changes in plant phenology across multiple crop 

types; 3) creating annual maps despite gaps in imagery during critical growing periods; and 4) 

incorporating a diverse set of training and validation points spanning multiple decades and 

jurisdictions. Specifically, we applied kernel-based filtering to quantify neighborhood greenness 

contrast; identified critical crop-specific observation windows based on phenology and growing-

degree days to minimize false negatives in irrigation classification; and quantified the uncertainty 

introduced by post-classification filling of missing years on a per-pixel basis. Changes in annual 

maps were then analyzed to better understand irrigation dynamics in this highly stressed aquifer 

system. The resulting map dataset, hereafter termed the Annual Irrigation Maps – High Plains 

Aquifer (AIM-HPA), is to date the longest, most spatially-refined record of where and when 

irrigation occurs in the world. AIM-HPA is freely available for stakeholders, managers, and 

researchers to inform future policies and management, as well as for use in hydrology, 

agronomy, and climate models. 

2. Methods 

2.1. Study area 

The HPA underlies 450,660 km
2
 of eight states in the central United States (Figure 2.1). 

By convention, it is often subdivided into three main regions based on physical properties and 

logistical legacies: the Northern High Plains (NHP), Central High Plains, (CHP), and Southern 

High Plains (SHP; Figure 2.1) [Weeks et al., 1988; Stanton et al., 2011]. Aquifer development 

for irrigation began in the Texas SHP in the 1930s and subsequently spread northward [Luckey et 
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al., 1981]. As high-capacity wells became widespread in the 1950s [Luckey and Becker, 1999], 

groundwater extraction exceeded recharge over much of the CHP and SHP, resulting in 

substantial declines (Figure 2.1a). At current rates of depletion, portions of the aquifer will 

become unusable in the coming decades [Haacker et al., 2016].  

The HPA spans a wide climatological gradient, ranging from Koeppen-Geiger class Bsk 

(cool arid steppe) in the south and west to classes Cfa (humid subtropical) and Dfa (humid 

continental) in the east [Peel et al., 2007]. Mean annual precipitation varies by nearly a factor of 

three along a longitudinal gradient, ranging from 315 mm in the west to 858 mm in the east 

averaged over the 1984-2017 study period (Figure 2.1b, summarized in GEE from GRIDMET 

gridded climate data [Abatzoglou, 2013]). Agriculture in this region is dominated by annual 

crops, approximately 30% of which are irrigated [Scanlon et al., 2012]. Across the HPA, the 

major irrigated crops in decreasing order of total irrigated area are corn, soybeans, cotton, wheat, 

alfalfa/hay, and sorghum (Figure 2.1b) [NASS, 2017]. Soybeans are mainly grown in the more 

humid northeastern portions of the region, particularly in the NHP. Cotton, which is the 

dominant crop in the SHP, requires less water and is well suited to the more arid southerly 

climate [West et al., 2018]. 

Groundwater declines have reduced groundwater well yields, increased pumping costs, 

and led to interstate conflict over shared water resources. Water management and rights doctrines 

vary substantially across the eight states and over time [Smidt et al., 2016]. A diverse set of 

groundwater management approaches have emerged across the aquifer to slow depletion, making 

the region a hotbed for innovation in stakeholder-regulator partnerships [e.g, Chapters 3 & 4, this 

volume]. Irrigation technology has also changed considerably during the study period, with a 

large transition from flood irrigation to center pivots and then to low-pressure spray systems.  
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Uncertainty over the location of irrigated areas and their interannual variability limit the 

ability to fully quantify, evaluate, model, and manage water use in this region. In the United 

States, county-level statistics updated in five year cycles [USGS, 2015; NASS, 2017] provide 

large-scale trends in irrigated area, but these lack the spatial precision and temporal resolution 

needed for detailed analysis and modeling. The only existing multi-year map product covering 

the full HPA (MIrAD-US) distributes NASS county statistics in space with consistent 

methodology across multiple years [Pervez and Brown, 2010; Brown and Pervez, 2014]. 

However, reliance on MODIS satellite data limit these map products to a relatively coarse 250 m 

resolution for years 2002, 2007, and 2012; these products have estimated accuracies between 75-

89% for the Great Plains region in 2002 and 2007 [Pervez and Brown, 2010; Brown and Pervez, 

2014]. In the HPA, Landsat-based studies have produced higher resolution (30 m) data sets for 

localized regions with reasonable accuracy [e.g, Dappen et al., 2007; Deines et al., 2017] or 

single years across the HPA [Qi et al., 2002] as early as 1982 [Dappen and Merchant, 2004]. 

This suggests that the Landsat archive provides a promising avenue to both recover historical 

irrigated locations across the region and develop a workflow for ongoing monitoring.  

Here, our study area encompasses the full HPA. Image processing and classification was 

conducted on an expanded region (Figure A 2.1). The full region includes a 15 km buffer around 

the HPA along with the entirety of the Republican River Basin and portions of the Platte and 

Arkansas River basins in Colorado. These additions allow us to leverage Colorado’s historical 

irrigation data sets for training and validation data (Text A 2.1). The irrigation classification was 

developed and evaluated on this full 608,260 km
2
 region. Here, results are presented for the non-

buffered HPA region, although the full buffered region datasets are available for download at 

http://hydroshare.org and through Google Earth Engine [DOI and links upon publication]. 
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2.2. Annual image composites 

Our method followed a “best available pixel” approach [White et al., 2014] to generate 

annual composites for the study region based on available imagery. We then applied filters to 

exclude pixels from the annual composite that lacked observations during key crop periods 

(section 2.3). In this manner, the same image composites and method could be used across 

regions and crop types based on customized date filters, decreasing processing time and 

increasing the flexibility of the method.  

The buffered study area underlies 50 Landsat scenes (Figure A 2.1). Working in Google 

Earth Engine’s (GEE) cloud computing platform [Gorelick et al., 2017], we used all available 

Landsat Collection 1 Tier 1 Surface Reflectance products [USGS, 2017a] between January 1, 

1984 and October 15, 2017 to build yearly collections that target the crops harvested during the 

nominal year. These include images from Landsat 4 TM, 5 TM, 7 ETM+, and 8 OLI. Surface 

Reflectance products have undergone terrain, radiometric, and atmospheric corrections [USGS, 

2017b, 2017c], and vegetation metrics derived from the three sensors have been found to be 

comparable without modification [Vogelmann et al., 2015]. In total, 34,194 scenes were 

available with these specifications. As expected, we saw a marked decrease in scene availability 

prior to 1999 (Figure 2.2). It’s worth noting that prior to opening the Landsat archive for free 

use, access to this number of scenes would have cost an estimated $67,829,100 in constant 

dollars based on year and sensor-specific costs [Wulder et al., 2012; Gartner, 2018], which 

clearly would be prohibitive for such a study. Furthermore, without Google Earth Engine, an 

image acquisition, storage, and processing effort of this magnitude would require months of 

processing on many-core compute clusters, along with 100+ TB of high-speed data storage, and 

the expertise and tools necessary to handle data streams of this magnitude. GEE provides an end-
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to-end platform that is freely accessible for research, education, and non-profit uses, greatly 

lowering the barrier to entry for remote sensing applications. 

 

Figure 2.2 Limited Landsat availability prior to 1999 in the US High Plains Aquifer makes annual 

classification of irrigated area challenging.  Top: the total number of Landsat scenes available in the 

study region by year. Bottom: summary statistics for the number of valid Landsat observations per 30 m 

pixel by year in the study region. Less frequent observations decrease the chances of capturing baseline 

and peak greenness in crops. The dotted line indicates the launch time for Landsat 7 and associated 

implementation of the Long Term Acquisition Plan [Arvidson et al., 2001]. 

For each Landsat image, we masked clouds, cloud shadows, and snowy pixels based on 

the CFMASK-based quality band included with each scene. We then filtered out pixel 

observations with surface reflectance values outside of the valid range (0-10,000). We applied a 

negative 2 km buffer to all Landsat 5 TM scenes prior to mosaicking to remove bad pixels along 

scene edges. Figure 2.2 provides summary statistics for the resulting number of valid Landsat 

observations per 30 m pixel each year in the buffered study region. We then calculated four 

commonly used vegetation indices (enhanced vegetation index (EVI), green chlorophyll 

vegetation index (GCVI, [Gitelson et al., 2005]), normalized difference vegetation index 
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(NDVI), and normalized difference water index (NDWI, [Gao, 1996]) – for calculations see Text 

A.1.3) and found the maximum, minimum, and annual range for each. We also calculated the 

water-adjusted green index (WGI) as the product of maximum GCVI and NDWI, a composite 

index effective at delineating irrigation status [Deines et al., 2017].  In addition to these 13 

Landsat-derived bands, composites also included day of year (DOY) for maximum observed 

GCVI along with year-to-date precipitation and growing degree days (GDD) for this DOY 

extracted from GRIDMET [Abatzoglou, 2013]. GDD, or heat accumulation units, were 

calculated using the simple sine method with corn-based upper and lower temperature thresholds 

of 10 and 30 Celsius, respectively [Baskerville and Emin, 1969]. Wheat-based GDD was also 

calculated, but patterns were similar to corn-based GDD, so we continued with the corn 

definition of GDD for parsimony. Table 2.1 gives a summary of these Landsat-derived variables, 

along with additional derived indices and ancillary variables included in the classification 

algorithm (sections 2.4 and 2.5).  

2.3. Defining key crop windows 

To separate irrigated and rainfed crops and effectively map irrigated areas based on crop 

condition at the peak of the growing season, one must have valid satellite observations during the 

peak greenness period for all major crop seasons in each year. Including pixels without 

observations during peak periods leads to potential false negatives as lower greenness in those 

pixels might fail to meet classification thresholds for irrigation. To avoid this, we generated data-

informed filters to mask pixels from each annual composite that lacked observations in key 

periods. Timing of peak greenness in crops is a function of crop species, cultivar, temperature, 

day length, and management decisions. To derive crop-specific time windows of peak greenness 

across the HPA, we used crop type maps (Cropland Data Layers (CDL)) produced by the USDA 
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National Agricultural Statistics Service (NASS) [USDA-NASS, 2017] to randomly sample the six 

main crops grown in the HPA from 2010-2017. We then extracted the DOY and GDD at 

maximum greenness from the Landsat-derived image composites (section 2.2). 

Table 2.1 Summary of variables generated for random forest classification of satellite imagery. All 

inputs were accessed through the data catalog in Google Earth Engine (GEE) with the exception of USDA 

SSURGO soil data, which was manually uploaded to GEE. Note that derived products are italicized in the 

source column.  

Variable Short Name Time Period Res (m
2
) Source 

Maximum annual EVI EVI max Jan. 1 - Oct. 15 30 Landsat 

Maximum annual GCVI GCVI max Jan. 1 - Oct. 15 30 Landsat 

Maximum annual NDVI NDVI max Jan. 1 - Oct. 15 30 Landsat 

Maximum annual NDWI NDWI max Jan. 1 - Oct. 15 30 Landsat 

Minimum annual EVI EVI min Jan. 1 - Oct. 15 30 Landsat 

Minimum annual GCVI GCVI min Jan. 1 - Oct. 15 30 Landsat 

Minimum annual NDVI NDVI min Jan. 1 - Oct. 15 30 Landsat 

Minimum annual NDWI NDWI min Jan. 1 - Oct. 15 30 Landsat 

Annual range in EVI EVI range Jan. 1 - Oct. 15 30 Landsat 

Annual range in GCVI GCVI range Jan. 1 - Oct. 15 30 Landsat 

Annual range in NDVI NDVI range Jan. 1 - Oct. 15 30 Landsat 

Annual range in NDWI NDWI range Jan. 1 - Oct. 15 30 Landsat 

Water-adj. green index WGI Jan. 1 - Oct. 15 30 Landsat 

DOY at max GCVI DOY Jan. 1 - Oct. 15 30 Landsat 

GDD at max GCVI GDD Jan. 1 - Oct. 15 30 GRIDMET 

Precip. at max GCVI Ppt-YTD Jan. 1 - Oct. 15 30 Landsat/GRIDMET 

Annual precipitation Ppt-Ann Dec. 1 - Oct. 15 4000 Landsat/GRIDMET 

Growing season precip. Ppt-Grow May 1 - Oct. 15 4000 GRIDMET 

Early season precip. Ppt-Early Dec. 1 - Apr. 30 4000 GRIDMET 

Annual PDSI PDSI-Ann Dec. 1 - Oct. 15 4000 GRIDMET 

Growing season PDSI PDSI-Grow May 1 - Oct. 15 4000 GRIDMET 

Terrain slope Slope static 30 USGS NED 

Soil Avail. Water Content AWC static 30 SSURGO 

Precip:Plant Avail. Water Ppt-PAW Dec. 1 - Apr. 30 30 ppt-early / paw-cm 

Soil Normalized GCVI GCVI-AWC Jan. 1 - Oct. 15 30 max GCVI /AWC 

Aridity Aridity May 1 - Oct. 15 4000 Ppt / ETo 

Aridity-normalized green index  AGI Jan. 1 - Oct. 15 30 GI max / aridity 

Soil Normalized AGI AGI-AWC May 1 - Oct. 15 30 AGI / AWC 

Neighborhood Green Index NGI Jan. 1 - Oct. 15 30 GCVI / GCVI_ngb_15p 

Latitude Latitude static 30 Generated in GEE 

Longitude Longitude static 30 Generated in GEE 

Year Year annual 30 Generated in GEE 
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To compare phenological timing across crop type and space, we examined the 

distributions by HPA sub-region (Figure 2.3). Two distinct groups are apparent: 1) a main season 

group consisting of corn, sorghum, soybeans, and cotton, and 2) an early season group consisting 

of winter wheat and alfalfa. In the first group, peak greenness is relatively invariant between 

DOY 183 (July 2) and 273 (Sept. 30) and across sub-regions, while regional distributions in 

GDD space showed more separation (Figure 2.3). The consistency in DOY of peak greenness for 

main season crops is likely due to factors such as region-specific cultivars (corn), photoperiod 

dependence (soy), and limited range (cotton).  In the early season group, the main crop of 

concern is wheat, which has large regional variations in DOY of maximum greenness. This 

variation was greatly reduced in GDD space (Figure 2.3), likely due to similarity of wheat 

cultivars and dependence on temperature to reach maturity. Alfalfa tends to have peak greenness 

in this early season similar to wheat, but goes through several peak greenness cycles due to 

multiple cuttings through the growing season. 

Based on this analysis, we defined two key crop windows to reliably capture irrigated 

agriculture across the HPA. First, we defined the main season window based on the 10
th

 - 90
th

 

percentiles in peak greenness DOY across the four main season crops (DOY 196, July 15 – DOY 

245, Sept. 2). This window was assumed to be invariant across years. Second, we defined the  

wheat-window by the 5
th

 to 95
th

 percentiles for GDD. This was implemented for each year by 

calculating pixel-based GDD using GRIDMET and extracting the DOY range associated with 

these thresholds. We assumed that alfalfa is likely captured when both the main season and 

wheat-based early season filters are met.  

We then applied these filters to the annual composites, masking pixels that lacked 

qualifying observations during both of these key windows. The resulting number of years with  



 

 

56 

 

Figure 2.3. Crop-specific timing of annual maximum greenness for major High Plains Aquifer 

regions.  Corresponding day of year (left) and growing degree days (right) on the day of maximum 

observed greenness based on GCVI derived from Landsat imagery randomly sampled across crop types 

for 2010-2017. NHP = Northern High Plains; CHP = Central High Plains; SHP = Southern High Plains. 

data per pixel for each window, and both windows combined, is shown in Figure 2.4. The 

combined window defines the number of years with valid data for classification. Pixels lacking 

observations during the combined crop window for any given year were masked as no data and 

were subsequently assigned irrigation status during post-classification processing based on 

surrounding years (section 2.8). We also assumed that for unmasked pixels, at least one cloud-

free pixel occurred during the non-growing season to capture annual greenness minimums, thus 

providing annual range values for the vegetation indices. 
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Figure 2.4 Number of years with satellite observations during crucial crop windows.  Left: Number 

of years where Landsat data met the wheat window criteria, dynamically defined based on growing 

degree days. Center: Number of years where Landsat data met the main season window criteria, defined 

as imagery between July 15 and Sept. 2. Right: Number of years that met both wheat and main season 

criteria, thus depicting the number of years Landsat provided sufficient data for classification. Missing 

pixels for each year were later filled in to generate annual maps with complete spatial coverage across 

years. 

2.4. Neighborhood greenness 

Crop greenness as measured by GCVI is a particularly strong delineator of irrigation 

status [Ozdogan et al., 2010a; Deines et al., 2017], but GCVI both within and outside of irrigated 

areas varies considerably over the range of crop types and climate conditions in the study area 

(Figure 2.5). To increase the generalizability of our classifier, we created a normalized greenness 

index by converting GCVI to an index of neighborhood greenness contrast (Neighborhood 
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Greenness Index, NGI).  

 

Figure 2.5 Neighborhood Greenness Index (NGI) demonstration, 2015.  Left: Green Chlorophyll 

Vegetation Index (GCVI). Right: NGI. By normalizing greenness based on surrounding areas, the 

resulting index value for irrigated crops becomes more consistent across the study region. 

Here, NGI is defined as the 30 m annual maximum GCVI value divided by the 15
th

 

percentile of a 50 km radius circular kernel. The moving kernel was calculated at a resampled 

1000 m resolution to incorporate a large neighborhood while staying within GEE’s 256-pixel 

kernel size limitation. Because urban areas and open water have low GCVI values and therefore 

depress neighborhood greenness percentiles, we masked urban and water pixels prior to running 

the neighborhood kernel using the most recent land cover product available from the US 

National Land Cover Database (NLCD) [Fry et al., 2011]. For the purposes of calculating the 

NGI, masked areas were then filled with the median value of a moving 50 km kernel to maintain 

a continuous data input layer. Finally, we set a maximum value on the neighborhood greenness 
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percentile layers based on a dynamic annual threshold set by the median region-wide maximum 

GCVI value for that year. This ensured that regions with extensive green crop cover were not 

overly muted due to normalization (such as eastern Nebraska), and the dynamic annual threshold 

accounted for changes in overall greenness due to annual climate variability as well as a general 

observed greening trend over the study period. An example of the NGI-15 layer compared to the 

original GCVI layer for 2015 is shown in Figure 2.5. By normalizing greenness based on 

surrounding areas, the resulting index value for irrigated crops becomes more consistent across 

the study region.  

2.5. Additional ancillary variables 

Classification of irrigated areas is improved when ancillary data are included to 

characterize climate, soil, and slope, thus providing context for vegetation greenness [Deines et 

al., 2017]. In addition to the 13 Landsat-based vegetation indices, NGI, and attributes at peak 

greenness described above, we assembled a suite of environmental co-variables to include in 

classification (Table 2.1). Broadly, this included seasonal precipitation and aridity time series 

derived from GRIDMET, slope calculated from a DEM [USGS, 2012], and soil water holding 

capacity extracted from the US SSURGO soil database [NRCS, 2016]. We also included pixel 

centroid latitude and longitude as a proxy for spatial trends, and year to capture any evolving 

changes in crop management and cultivars. Finally, we included several composite variables 

combining Landsat-derived GCVI with environmental covariables, including the aridity-

normalized green index (AGI) [Deines et al., 2017] and new soil-normalized inputs for GCVI 

and AGI. Table 2.1 summarizes the full set of 32 input variables. All datasets were obtained 

through GEE’s data catalog and are thus readily integrated into the classification workflow with 

the exception of SSURGO soil metrics, which we manually uploaded to our GEE assets.  
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2.6. Ground truth data, accuracy assessment, and variable importance 

Due to this study’s historical scope over a large region, ground truth data were limited to 

existing data sources. We made a large effort to discover and incorporate existing data from 

multiple sources, including state agency irrigation and well databases, previously published 

maps, and physical ground truth surveys undertaken by past researchers. Notably, the state of 

Texas in the SHP lack abundant available data for ground truth. Since extensive efforts and 

positive communication with local agencies and researchers failed to yield any available ground 

truth data, we supplemented the acquired data with manual, expert-selected training points by 

visually interpreting imagery using methods similar to those in Deines et al. [2017]. We refer to 

this collective dataset as “ground truth” data, although in most cases it’s derived from secondary 

sources. Ground truth locations by year and data source are shown in Figure 2.6. Text A 2.1 

provides detailed ground truth data sources and processing methods, which are summarized in 

Table 2.2. 

The point ground truth data for this study was split into three groups, with 40% going to 

classification training and 30% for validation used to assess accuracy during algorithm 

development, with the remaining 30% reserved as test data to be used as a final assessment of 

map accuracy. Accuracy for test data is not presented here to preserve its value for assessing 

final classification accuracy after improvements have been finalized. For an additional 

independent accuracy assessment, we used two sets of national county statistics for ten years 

(1997, 2002, 2007, 2012: NASS Agricultural Census (NASS, 2017); 1985, 1990, 1995, 2000, 

2005, 2010: USGS water use data (USGS, 2015)) to compare total irrigated area for the 157 

counties fully contained in the buffered study region. NASS county data are generated through 

farmer-reported irrigated areas as part of the semi-decadal census, and USGS estimates of 
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county-specific irrigated area are produced through state-specific statistical modeling. 

Agreement between AIM-HPA and county statistics was assessed with r
2
 metrics from simple 

linear regression. 

 

Figure 2.6 Ground truth data location by year and data source.  Point ground truth data was acquired 

from a variety of sources across the study period, including previous Landsat-derived maps (NE Calmit), 

well data (WIMAS), and ground truth data used in previous studies (NE Calmit GT, Qi et al. 1992). Table 

2.2 breaks down number by year and source. The buffered study area is shown in dark gray. 
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Table 2.2 Ground truth data summary.  Detailed descriptions of data sources and processing are in Text A 2.1.  Figure 2.6 provides spatial 

locations by year. 

Region Source Year Type Sampling Method Irrigated Rainfed Other 

CO South Platte CO DWR 1987 Curated Polygons Stratified random 800 800 800 

CO South Platte CO DWR 1997 Curated Polygons Stratified random 500 500 500 

CO South Platte CO DWR 2001 Curated Polygons Stratified random 500 500 500 

CO South Platte CO DWR 2005 Curated Polygons Stratified random 500 500 500 

CO South Platte, 

Republican, and Arkansas CO DWR 2010 Curated Polygons Stratified random 1500 1500 1500 

CO South Platte, 

Republican, and Arkansas CO DWR 2015 Curated Polygons Stratified random 1500 1500 1500 

CO Republican CO DWR 2016 Curated Polygons Stratified random 500 500 500 

NE Platte - CALMIT 

Dappen & Merchant 

2004 

1982 

(1984) Landsat MSS 3 Manual, 5% of polygons 675 329 108 

NE Platte - CALMIT 

Dappen & Tooze 

2001 1997 Landsat TM Stratified random 1000 1000 1000 

NE Platte - CALMIT 

Dappen and 

Merchant 2003 2001 Landsat ETM+ Stratified random 1000 1000 1000 

NE 2 Counties - CALMIT Dappen 2003 2002 Landsat ETM+ Stratified random 300 300 300 

NE Platte - CALMIT Dappen et al. 2007 2005 Landsat TM Stratified random 1000 1000 1000 

NE State - CALMIT USDA FSA 2005 Point locations Used full dataset 1673 1045 NA 

KS HPA WIMAS 1997 well data Manual, 5% of active wells 933 517 304 

KS HPA WIMAS 2002 well data Manual, 5% of active wells 908 680 432 

KS HPA WIMAS 2015 well data Manual, 5% of active wells 854 489 228 

HPA: TX, OK Qi et al. 2002; FSA 1988 Hand-drawn polygons One point per polygon 69 97 NA 

HPA: NM, OK, and TX Qi et al. 2002; FSA 1990 Hand-drawn polygons One point per polygon 322 333 NA 

HPA: CO, KS, NE, OK, SD Qi et al. 2002; FSA 1991 Hand-drawn polygons One point per polygon 1134 1836 NA 

HPA: all states but OK Qi et al. 2002; FSA 1992 Hand-drawn polygons One point per polygon 901 1924 NA 

HPA: KS, NE, WY Qi et al. 2002; FSA 1993 Hand-drawn polygons One point per polygon 578 1020 NA 

Manual: SHP, NE Sandhills Landsat 1988 Visual interpretation Targeted gaps 185 221 NA 

Manual: SHP, NE Sandhills Landsat 1997 Visual interpretation Targeted gaps 198 266 NA 

Manual: SHP  Landsat 2008 Visual interpretation Targeted gaps 295 296 NA 

Manual: SHP, NE Sandhills Landsat 2011 Visual interpretation Targeted gaps 295 296 NA 
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To understand the relative contribution of input variables (Table 2.1) to classification 

accuracy, we ran permutation tests and GINI index metrics in R [R Core Team, 2014], since 

GEE does not yet offer variable importance measures (GEE accessed January 2018 - July 2018). 

The GINI Index quantifies the decrease in node impurities resulting from classification tree splits 

on each variable. The permutation test measures variable importance by iteratively randomizing 

each variable’s values and quantifying the resulting decrease in accuracy for predictions made on 

the out-of-bag samples. Variables with greater contributions to overall accuracy would therefore 

see larger decreases in accuracy following permutation. Conversely, randomly rearranging 

values for unimportant variables would have little effect on prediction accuracy. We used the 

randomForest package [Liaw and Wiener, 2002] to develop a proxy random forest classification 

with the same variables, training data, and parameters used in GEE. To account for 

randomization in node optimization and bagging in random forest algorithms, we created 20 

classifiers from different random seeds and averaged importance scores for each variable.  

2.7. Classification and post-classification cleaning 

We used all ground truth data reserved for training in a random forest classification with 

300 trees within GEE. Because the training data included water, urban, and natural vegetation 

classes, we did not use a land use mask prior to classification to preserve flexibility to detect 

changing land use compared to the wide intervals between existing land cover products like 

NLCD, particularly given demonstrated ongoing conversion of uncultivated land in the study 

area [Lark et al., 2015]. The generated output is considered the raw classification output. 

Multi-year land cover classifications can benefit greatly from the ability to leverage a 

time series of repeat classifications to improve the accuracy of the final dataset [Cardille and 

Fortin, 2016; Wulder et al., 2018]. Here, we apply a series of three cleaning steps based on 
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external land cover datasets, year-specific irrigated area properties, and information gained from 

the time series of AIM-HPA.  

First, we masked confounding land covers and reduced speckle in each raw annual 

classified map based on the assumption that contiguous plots were managed uniformly. We used 

the NLCD to mask wetland and forest land covers that can be difficult to distinguish from 

irrigated lands. NLCD maps are available for 1992, 2001, 2006, and 2011. We used the most 

recent NLCD product for each year to mask woody and herbaceous wetlands; deciduous, 

evergreen, and mixed forests; and open water classes; the 1992 product was used for earlier 

years. Urban and grassland areas were accounted for in our training and validation datasets under 

the “not irrigated” category, allowing them to be dynamically classified over the full time period. 

To reduce speckle in classified maps, we counted connected pixels of each output class (irrigated 

and non-irrigated) based on connectivity with cardinal-direction neighbors. For all patches 

smaller than 25 connected pixels at 30 m resolution (2.25 ha, compared to a typical field size of 

~60 ha), we updated the classification output based on a circular kernel-based majority filter with 

a radius of 120 m. The overall effect of this filter is to convert isolated pixels classified as 

irrigated to non-irrigated, and to fill in small gaps in fields otherwise classified as irrigated. 

Restricting the majority filter update to small patches identified by the connected pixel count has 

the advantage of maintaining the location of field edges from the original classification. This first 

cleaning is referred to as a “despeckler”. 

Second, we leveraged the multi-year characteristics of the dataset to impose logical 

restrictions on irrigable area. Rainfed crops occasionally can overlap irrigated fields in the 

spectral signatures used in classification (i.e. Chapter 1, Figure 2). This is most likely to occur in 

years with high precipitation and can lead to spurious classifications over the 34 year study 
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period. To address this, we restricted irrigable area to pixels classified as irrigated at least twice 

during twelve specific years during the study period, since single-year irrigation is unlikely due 

to the cost of infrastructure required to irrigate. These twelve years included eight in the bottom 

quartile of precipitation to sample dry years across the study period (1989, 1991, 1994, 2000, 

2002, 2006, 2011, and 2012). Because no years near the beginning or end of the study fell in the 

bottom quartile, we also included the two first years and two last years of the study (1984-1985 

and 2016-2017) to avoid excluding fields that may have been deactivated shortly after the start of 

the study or recently activated. This second cleaning is referred to as “multiyear cleaning.” 

2.8. Addressing data gaps 

Masked pixels that lacked valid observations during the defined crop windows were then 

filled in based on data present in surrounding years, with an accompanying flag to specify filled 

pixels. Pixel-filling used the following rules, applied sequentially: 

1. Pixels that were never irrigated in available years were assigned as “non-irrigated 

2. Pixels that were always irrigated in available years were assigned as “irrigated”  

3. Pixels with an irrigated classification in adjacent years were assigned as “irrigated” 

4. Pixels with a non-irrigated classification in adjacent years were assigned as “non-

irrigated” 

5. Pixels with an irrigated classification in the adjacent 2 years were assigned as 

“irrigated” 

6. Pixels with a non-irrigated classification in the adjacent 2 years were assigned as 

“non-irrigated” 

7. All remaining gaps were assigned as “non-irrigated.” 

 

In this way, we were able to generate spatially-complete annual irrigation maps for 1984-2017, 

while maintaining information on which pixels were filled each year for downstream users. We 

are working to implement a more sophisticated Bayesian updating methodology [Cardille and 

Fortin, 2016] based on the 34-year time series for each pixel, incorporating pixel-wise 

probabilities and producing associated uncertainties with the final map product. 
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3. Results and Discussion 

3.1 Accuracy assessment 

Our random forest workflow and subsequent gap-filling approach produced 34 annual 

irrigation maps from 1984-2017 across the entire High Plains Aquifer (AIM-HPA). AIM-HPA 

had an overall accuracy of 91.4% based on a diverse validation dataset that integrated point 

datasets from numerous state, federal, and imagery-derived sources across multiple years (Table 

2.2). Post-classification cleaning steps reduced irrigation commission errors (false positives) 

from 10.5% to 6.9% while minimally increasing irrigation omission errors (false negatives) from 

14.2% to 15.7%. Table 2.3 provides a breakdown of overall accuracy at each classification and 

post-processing step, including overall omission (producer’s) and commission (consumer’s) 

errors for each map class.  

This point accuracy assessment represented reasonably wide coverage across years and 

regions given historic data limitations and can be considered a robust estimate of dataset 

accuracy. Table 2.4 and Table 2.5 break down accuracy by region and year, but these should be 

interpreted with caution due to uneven sampling across units typical for historical accuracy 

assessment [Wulder et al., 2018]. Errors were fairly consistent across HPA regions (Table 2.4). 

The NHP did have higher commission errors than the SHP and CHP, likely due to its relatively 

humid climate especially in the eastern regions that support robust rainfed crops in wet years. 

The approach also had good performance across the 34 year period, with overall accuracies from 

84.6% - 97.7% (Table 2.5). Five years (1987, 1991 – 1993, 2010) had irrigation omission errors 

higher than 20%, indicating there is some scope for further classification improvement.  
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Table 2.3. Overall map accuracy by cleaning step.  Accuracy percentages are provided along with the 

qualifying number of points and total sample size for each category. Note that point accuracy assessment 

specific to gap-filled regions has yet to be implemented; county-level assessment serves as validation for 

gap-filled estimates (Figure 2.7). 

Map 

Version 

Overall 

Accuracy Class  Omission Errors 

Commission 

Errors 

Raw Output 90.5% 

(13433/14845) 

Irrigated 14.2% (826/5802) 10.5% (586/5562) 

 

Non-Irrigated   6.5% (586/9043)   8.9% (826/9283) 

De-speckled 91.0% 

(13507/14845) 

Irrigated 14.8% (856/5802)   8.9% (482/5428) 

  Non-Irrigated   5.3% (482/9043)   9.1% (856/9417) 

Multiyear    

   clean 

91.4% 

(13572/14845) 

Irrigated 15.7% (910/5802)   6.9% (363/5255) 

Non-Irrigated   4.0% (363/9043)   9.5% (910/9590) 

Gap-filled 

  

91.4% 

(13572/14845)  

Irrigated 15.7% (910/5802)   6.9% (363/5255) 

Non-Irrigated   4.0% (363/9043)   9.5% (910/9590) 

 

 

Table 2.4. Point accuracy by region.  NHP = Northern High Plains, CHP = Central High Plains, SHP = 

Southern High Plains. 

    Omission Errors Commission Errors     

Region 

Overall 

Accuracy Irrigated 

Non-

Irrigated Irrigated 

Non-

Irrigated 

Total 

Points 

Irrigated 

Points 

NHP 90.7% 15.6% 5.5% 10.1% 8.8% 7981 1177 

CHP 91.1% 15.5% 2.4% 2.9% 13.3% 2402 2951 

SHP 92.8% 12.8% 1.9% 2.2% 11.1% 1055 515 

 

Comparisons with county-level national statistics for 157 counties fully contained within 

the buffered study area provide an additional assessment of map accuracy, providing even 

coverage across the full study area for a wide range of years and climate conditions (Figure 2.7). 

Overall county-level agreement across all years was good, with AIM-HPA slightly 

underestimating irrigated area compared to county statistics (simple linear regression, r
2
 = 0.81, 

m=0.83). Agreement by year was strongest NHP counties (r
2
 from 0.80 to 0.98) followed by 

those in the CHP (r
2
 from 0.78 to 0.96). SHP county comparisons indicated that AIM-HPA 

tended to underestimate irrigated area in the south (r
2
 from 0.47 to 0.94), performing particularly 

poorly during the early Landsat record. This is likely due to a combination of deficit-irrigated 
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cotton’s low greenness, limited training data, and low Landsat data availability in this region 

(Figure 2.4), with gaps largely concentrated in early years. For the post-1999 period, agreement 

with county statistic was similar across high (e.g., 2007) and low (e.g., 2002) precipitation years. 

In general, AIM-HPA showed better agreement with NASS county statistics compared with the 

USGS county estimates (NASS overall: r
2
 = 0.90; USGS: r

2
 = 0.793). It’s difficult to distinguish 

if this is a sampling effect due to availability in different years, or an artefact of the underlying 

county datasets themselves. All three datasets are imperfect. USGS irrigated area estimates are 

produced from state-specific statistical models and thus are not consistent in methodology across 

the study region. The NASS semi-decadal agricultural census is a robust effort by the USDA, but 

relies on self-reported irrigated area from producers who may have incentives for both under and 

over reporting due to water rights mechanisms. AIM-HPA provides a completely independent 

estimate of spatially-explicit irrigated area with misclassifications typical of remote sensing 

products. With the exception of the SHP in early years, which we hope to improve with more 

stringent image filtering algorithms, the county-level agreement among the three datasets is 

generally quite good. 
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Table 2.5 Point accuracy metrics by year.  Note that data source and spatial distribution varies across 

years due to historical data availability (Figure 2.6, Table 2.2, Text A 2.1). Mean annual precipitation for 

the buffered study area derived from GRIDMET. 

      Omission Errors Commission Errors     

Year 

Precip. 

(mm) 

Overall 

Accuracy Irrigated Non-Irrigated Irrigated Non-Irrigated 

Total 

Points 

Irrigated 

Points 

1984 531 97.7 1.1 4.1 2.7 1.7 306 184  

1987 576 90.3 24.8 1.5 3.5 12.0 721 254  

1988 455 92.5 13.7 1.6 1.8 11.8 253 124  

1990 496 91.4 13.3 3.7 3.9 12.6 221 113  

1991 524 86.1 25.9 6.6 12.6 14.5 883 336  

1992 563 84.6 30.7 7.7 18.1 14.3 820 274  

1993 618 87.0 21.4 8.2 15.4 11.8 460 168  

1997 571 93.3 10.8 4.0 6.6 6.7 2369 923  

2001 493 91.8 14.4 5.2 11.2 6.8 1308 424  

2002 384 93.9 10.7 2.9 4.7 6.9 1140 456  

2005 521 90.7 13.6 5.7 7.3 10.7 2156 978  

2008 556 96.8 5.8 0.7 0.8 5.2 285 138  

2010 583 91.9 23.4 1.2 3.3 9.7 1357 423  

2011 442 90.7 14.2 5.1 6.3 11.6 332 155  

2015 688 92.5 15.8 2.0 3.5 9.6 1786 710  

2016  547 93.1 15.5 2.9 7.0 6.9 448 142  
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Figure 2.7. County-level accuracy assessment by region.  Irrigated area from county-level statistics 

compared with irrigated area from AIM classified maps against a 1:1 line (dashed). Solid lines indicate 

trendlines by major aquifer region based on simple linear regressions. County statistics for blue panels are 

from the USGS [USGS, 2015], while statistics for tan panels are from the USDA National Agricultural 

Statistics Service [NASS, 2017] and include 157 counties fully contained within the buffered study 

region. 

3.2. Variable importance 

Variable importance metrics were separately in R to provide insight into key variables 

that contribute to classification accuracy. The two chosen accuracy metrics provide 

complementary assessment of variable performance (Figure 2.8). It is not surprising that over 

such a large region, important variables identified by the permutation test are those that help 
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group pixels by global attributes, essentially “localizing” subsequent nodes within the random 

forest trees. Latitude and longitude both scored in the top three, likely allowing the random forest 

to partition classification trees by major climate and crop type gradients. Similarly, neighborhood 

slope and annual minimum NDWI likely help separate non-crop or non-irrigable pixels, GDD 

and DOY at peak greenness likely provided a proxy for crop type based on phenology, and year 

allowed thresholds to vary through time. Without these large grouping variables, differences 

between irrigated and non-irrigated classes across such a large region would be less distinct.  

GINI scores (Figure 2.9), on the other hand, are dominated by variables that most 

effectively distinguish irrigated and non-irrigated classes within the “localized” portion of the 

decision trees. The novel NGI developed in this study scored highest, demonstrating the utility of 

normalizing pixel greenness to the surrounding neighborhood when working across large 

regions. The recently developed WGI  (and AGI to a lesser extent) [Deines et al., 2017] scored 

highest after NGI, again emphasizing the improvements gained by incorporating moisture 

indicators with typical greenness indices. This is further emphasized by NDWI’s ranking at 

number three, since NDWI was developed to monitor leaf water content [Gao, 1996]. GCVI, a 

primary component in both WGI and AGI, also scored high on the GINI index for annual range, 

maximum, and maximum normalized by soil available water content. This corroborates 

conclusions that GCVI is more effective at distinguishing irrigation status than more 

conventional vegetation indices such as NDVI and EVI [Ozdogan and Gutman, 2008; Ozdogan 

et al., 2010a; Deines et al., 2017]. 
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Figure 2.8. Variable importance metrics for the random forest classification.  Input variables for the 

classification algorithm are identified by their shortname; Table 2.1 summarizes variable definitions and 

source data. Left: Permutation test rankings, which ranks variable importance by assessing decreases in 

classification accuracy resulting from randomization of that variable. Right: GINI Index rankings, which 

measures the mean decrease in node impurity resulting from splits on each variable. 

3.3. Irrigation trends 

The AIM-HPA product details dynamic irrigation patterns that can inform water 
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management in this stressed aquifer system. Overall, we found that 23.2% of the HPA was 

irrigated during the study period, but only 2.2% of this was irrigated all 34 years due to 

characteristic rotations of crop type and irrigation status, periodic field fallowing, and irrigated 

area added or deactivated over the study period. AIM-HPA is able to track these changes 

annually with 30 m resolution. Figure 2.9a depicts the location and frequency of irrigated area 

across the study region. As expected, heavily irrigated areas closely align with regions of 

extensive aquifer depletion, particularly in the CHP and SHP (Figure 2.1a). 

 

Figure 2.9 Irrigation frequency and aquifer depletion in the High Plains Aquifer.  (a) Per pixel 

irrigation frequency between 1984-2017 based on the number of years irrigated in the classified map 

product. (b) Projected depletion timeline from Haacker et al. [2016], estimated assuming a continued 

linear trend in water level decline. The aquifer is considered depleted when saturated thickness falls 

below the 9 m needed for most high volume well operations. Black regions depict areas with <9 m 

saturated thickness at aquifer development. 
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Summarizing total irrigated area by sub-region revealed that the NHP has seen substantial 

expansion in irrigated area (Figure 2.10a). Comparison against county statistics indicates AIM-

HPA may underestimate irrigated area prior to 1997, likely due to decreased image frequency to 

capture true peak greenness, and overestimate in the latter half of the study period (Figure 2.7, 

Figure 2.10a). Soybeans, which can exceed irrigated corn greenness even for rainfed conditions 

[Deines et al., 2017], have been expanding in eastern Nebraska, possibly increasing commission 

errors. However, the relative rate of irrigated area increase between 1997 and 2007 is similar for 

AIM-HPA and NASS (Figure 2.10a). Other studies have reported increases in groundwater wells 

in this region exceeding 1200 per year between 2002-2005 [Pervez and Brown, 2010]. Given that 

the final NASS data point in 2012 represents a severe drought year that necessitated heavier 

irrigation on reduced area to meet crop water needs [Deines et al., 2017], the temporal resolution 

of NASS inhibits inference on recent irrigated area trends. The rate of expansion found in AIM-

HPA seems plausible due to wider trends for increased irrigation in humid areas to mitigate 

precipitation variability, relatively favorable aquifer conditions in the eastern NHP (Figure 2.1a 

and Figure 2.9b), biofuel expansion (17 new biofuel plants between 2002-2008 in Nebraska, 

[Pervez and Brown, 2010]), and high corn prices during this period. 

AIM-HPA trends in the CHP and SHP showed a lower rate of increase in irrigated area 

during the 1990s. Comparisons with county datasets strongly suggest this increasing trend may 

be largely due to the higher omission rates in the first half of the study period. Since 2000, the 

AIM-HPA trend in irrigated area is relatively stable for these regions with some interannual 

fluctuations likely driven by precipitation and pricing [Chapter 1, this volume]. For the CHP in 

particular, this seems likely since Kansas is known to be fully appropriated with very few new 

water rights granted [Whittemore et al., 2016]. 
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Figure 2.10. Irrigated area over time by region.  (a) Total irrigated area by major aquifer subregions 

based on the Landsat-derived annual irrigation maps (AIM-HPA). Totals from county statistics by data 

source are plotted for years available. (b) Projected cumulative area lost over time through 2300 relative 

to combined irrigated area from 2015-2017 based in AIM-HPA. Irrigated area was considered lost when 

the underlying aquifer was depleted beyond viable use based on linear extrapolation of past decline 

(Figure 2.9b) based on [Haacker et al., 2016]. 

We also examined fine-scale spatial trends in irrigated area over time by aggregating the 

30 m AIM-HPA dataset to a uniform 8 km
2
 grid and running a linear model on irrigated area per 

grid cell (Figure 2.11). Overall, the majority of the HPA displayed positive trends in irrigated 

area during the study period. Notable areas of strong increase were found in the eastern portion 

of Nebraska, as well as hot spots in the CHP. As discussed above, eastern Nebraska has seen a 

large expansion in irrigated area since the 1990s. Relatively high rates of natural recharge as well 

as considerable surface water resources have largely accommodated irrigation in this region 
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[Scanlon et al., 2012; Breña-Naranjo et al., 2014], but conditions should continue to be 

monitored going forward due to the rapid observed increases. 

 

Figure 2.11 Spatially explicit trends in irrigated area.  Center: Rate of change over time from linear 

regression based on a uniform 8 km
2
 aggregated grid. Cells with nonsignificant trends (alpha >= 0.05) are 

in gray. Left: Zoomed insets of regions with decreasing irrigated area over time. Right: Zoomed insets of 

regions with increasing irrigation over time. 

Increases in annual irrigated area in largely appropriated regions like Kansas may be due 

to improvements in irrigation technology, allowing producers to actively irrigate larger portions 

of their permitted area with their existing water allocation. For example, conversion to low-

pressure irrigation systems from ~1995-2005 allowed producers in western Kansas to irrigate 

more area [Pfeiffer and Lin, 2014a; Wang et al., 2015]. Dramatic increases in irrigated area were 

observed in the Texas portion of the CHP (Figure 2.11). The highlighted region of recent 
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expansion overlies an already highly stressed portion of the aquifer, suggesting this may be 

indicative of groundwater mining. Although Groundwater Conservation Districts are gaining 

momentum, Texas largely still follows an absolute ownership doctrine for water rights, granting 

land owners free reasonable use of any groundwater on their property and limiting regulation 

[Smidt et al., 2016].  

Regions of decreased irrigated area are not as prevalent but do occur in isolated areas 

across the HPA. Reasons for reductions vary across the aquifer. In Wyoming, for instance, 

programs such as the Agricultural Water Enhancement Program helped retire several thousand 

acres of irrigated cropland by purchasing water rights from producers willing to transition to 

dryland farming or pasture [WSEO, 2018]. The southwest corner of Nebraska (top left inset, 

Figure 2.11) has seen reduced area due to increasing regulation on water use, both by local 

management districts and as a result of lawsuits among Kansas, Nebraska, and Colorado settled 

in 2002 and 2015 by the Supreme Court. Irrigation technology can also drive changes in irrigated 

area, as indicated by the termination of irrigation in field corners due to the increased adoption of 

center pivot systems and discontinuation of the use of high-pressure end guns during the study 

period (Figure 2.11, center left). Other irrigated areas are retired due to aquifer depletion 

[Marsalis et al., 2018] or conservation programs such as the Conservation Reserve Program, 

which pays producers to enroll their land and return to grassland for a specified period generally 

10 years per contract [Hellerstein, 2017]. 

3.4. The future of the High Plains Aquifer 

It’s widely acknowledged that in many parts of the HPA, current rates of groundwater 

use cannot be sustained [Scanlon et al., 2012; Butler et al., 2016; Haacker et al., 2016; 

Whittemore et al., 2016]. Management goals reflect this in several jurisdictions, treating 
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groundwater as a nonrenewable resource that should be used wisely under “managed depletion” 

strategies [Waskom et al., 2006; Peck, 2007; Smidt et al., 2016]. Haacker et al. [2016] projected 

depletion timeframes across the HPA based on a linear extrapolation from historic 1993-2012 

trends (Figure 2.9b). Starting from a baseline reference of 2015-2017 combined irrigated area 

from AIM-HPA, we translated these depletion timeframes into annual irrigated area lost by HPA 

region through 2300 (Figure 2.10b). By this estimate, 54%, 41%, and 10% of currently irrigated 

area would no longer be viable by 2100 in the SHP, CHP, and NHP, respectively, together 

accounting for 24% (22,821 km
2
) of 2015-2017 irrigated area. 

Given this stark outlook, strategies have emerged across the aquifer to slow depletion, 

making the region a hotbed for innovation in irrigation technology, crop selection, management 

interventions, and stakeholder-regulator partnerships [e.g, Chapters 3 & 4, this volume]. Robust 

evaluation and comparison of programs within the context of historical irrigation trends can help 

identify successful strategies. For example, recent work has highlighted how improved irrigation 

efficiency through technological advances alone doesn’t translate to water conservation. In a 

case study in the Kansas portion of the HPA, groundwater extraction actually increased as 

producers used the saved water over greater areas by reducing fallowing frequency and switched 

to more water intensive and profitable crops [Pfeiffer and Lin, 2014a]. This study was enabled by 

Kansas’s extensive, publicly available well database detailing annual water use [KDA DWR, 

2017]. Well metering is increasingly common and mandatory across HPA jurisdictions. 

Combining AIM-HPA with water use data can provide unique insights into farmer adaptation 

strategies [e.g., Chapter 3, this volume].  

Producers in the SHP are transitioning away from water demanding crops like corn to 

those with less water demand, including sorghum and cotton, as well as testing new crops like 
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winter canola [Marsalis et al., 2018; West et al., 2018]. Field management to enhance yields 

without additional water is also spreading, including cover crops and reduced tillage to increase 

soil water storage [Marsalis et al., 2018]. The AIM-HPA product can help assess these strategies 

by providing a consistent dataset across multiple state and local jurisdictions with field-scale 

precision. This allows annual assessments at spatial aggregations relevant to each intervention, 

providing provide a timely assessment of trends not influenced by sampling effects inherent in 

the 5-year intervals of existing data or aggregations to larger, rigid spatial units such as counties. 

4. Conclusions 

Effective management of irrigation resources first requires that we know when and where 

irrigation occurs. Cloud-computing tools like Google Earth Engine and open access to the full 

Landsat archive enabled us to produce annual irrigation maps in the High Plains Aquifer from 

1984-2017, thus quantifying the history of irrigation extent across three decades. We developed a 

novel indicator, the Neighborhood Greenness Index (NGI), that performed well, contributing to a 

single random forest classification algorithm that achieved 91.4% overall accuracy across a wide 

region and time period. Neighborhood normalization of greenness may thus be a promising 

avenue for future continental to global-scale efforts. The approach presented here developed 

robust methods to handle sparse data in the early Landsat record, and it can be readily applied for 

ongoing monitoring through the computational infrastructure developed in Google Earth Engine.  

The resulting 34-year map dataset provides a rich and detailed accounting of irrigated 

lands across one of the key agricultural regions of the United States. Our broad-scale analyses 

indicated continued expansion across the full aquifer, including both areas of high water stress in 

the Central and Southern High Plains in addition to the less-stressed Northern High Plains. 

Assuming continued water use trends and management, however, we estimated that existing 
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irrigated area could decline by 24% over the 21
st
 century due to groundwater depletion. Finding 

solutions to extend aquifer life that simultaneously sustain agricultural economies and 

groundwater resources is a pressing challenge. The classification workflow described here 

translates available satellite imagery into information that can be used to quantify, evaluate, 

model, and manage agricultural water use. 
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Figure A 2.1 Landsat scenes covering the buffered study area.  All available Landsat Collection 1 

Surface Reflectance imagery for Landsat 4 TM, 5 TM, 7 ETM+, and 8 OLI from 50 scenes between 

1984-2017 were used. 

Text A 2.1 Expanded ground truth data description 

In Colorado, the Division of Water Resources has mapped irrigated area in the HPA 

region intermittently since 1956. The state is divided up into seven hydrologic divisions, two of 

which (the South Platte and Arkansas) overlie or are directly adjacent to the HPA.  Some of the 

Arkansas division is outside the High Plains Aquifer but is climatically similar to the HPA, so 

we included these as training points as well. The polygon dataset is produced using available 

well permits to delineate allowable irrigated areas and available data from Landsat, NASS, CDL, 

and NAIP (Chris Brown, CO-DWR, Nov. 2017, personal communication). For each year 

polygons were available (Table 2.2), we used the polygons and a crop mask (CDL or NLCD 

prior to CDL availability) to generate a continuous, 30 m categorical raster for irrigated, rainfed, 
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and non-crop pixels within the division boundary. We then used a stratified random approach to 

create 500 points in each class per available region, restricting locations to unmasked pixels in 

the annual composite. Due to limited data in earlier years, we made 800 points per class in 1987. 

We then split these points into training, validation, and test points.  

In Nebraska, the Center for Advanced Land Management Information Technologies 

(CALMIT) at the University of Nebraska – Lincoln has generated a series of remotely-sensed 

irrigation maps covering 28,800 square miles of the Central Platte River Basin in support of 

hydrological modeling efforts by the ongoing Platte River Cooperative Hydrology Study 

[Dappen and Tooze, 2001; Dappen, 2003; Dappen and Merchant, 2003, 2004; Dappen et al., 

2007]. Vector-format GIS maps are available for 1982, 1997, 2001, and 2005. Additional maps 

are available in 2002 for Scotts Bluff and Kearney Counties only. For 1997, 2001, 2002, and 

2005, we used the same approach described for CO DWR data to randomly sample irrigated, 

rainfed crop, and non-crop classes. Sample size was reduced for 2002, as it was restricted to two 

counties (Table 2.2). To leverage 1982 data to generate “ground truth” at the start of the study 

period, we randomly sampled 5% of 1982 irrigation polygons and overlaid them on 1984 

Landsat composites. Points were then manually placed in fields interpreted to be actively 

irrigated in 1984, as well as in adjacent rainfed crop or non-crop locations. Points were then split 

into training, validation, and test datasets. In addition, true ground truth locations used to 

generate these products were obtained for 2005, providing 2,718 points for the full extent of 

Nebraska within the study region. This ground truth was generated from USDA Farm Service 

Agency certified reporting records and in-season field excursions. 

In Kansas, the Division of Water Resources maintains the WIMAS well database, which 

contains annual records of irrigation wells in Kansas, including locations and annual pumping 



 

 

84 

volume. We used these records to guide manual placement of irrigated and non-irrigated points 

in the Kansas HPA in 1997, 2002, and 2015 (Table 2.2). After extracting well records located 

over the study area, we split the dataset into wells with non-zero pumping volume for the 

specified year (indicating active irrigation), and wells with zero pumping volume (a possible 

indication of inactive irrigation, depending on proximity of other active wells). We then 

randomly sampled 5% of each data set and overlaid them on the year-specified Landsat 

composite of maximum GCVI, including a layer for the day of year on which the maximum 

value was observed. Locations for irrigated crops, rainfed crops, and non-crop locations were 

then manually interpreted based on well locations and greenness patterns. 

We also obtained ground truth data previously used to produce a nominal 1992 HPA-

wide irrigation map [Qi et al., 2002]. Qi et al.[2002] identified between 1 and 10 one-square-

mile sections in all 154 counties across the HPA that were ≥ 50% agricultural land by area based 

on the 1992 NLCD. They then requested crop type and irrigation status for each Common Land 

Unit within the identified one-square-mile sections from the USDA FSA, and the FSA returned 

photocopied aerial images with fields labeled by crop type and irrigation status as self-reported 

by farmers to the FSA. Because their study used the best available Landsat TM imagery from 

1988-1993 to completely cover the HPA with peak-season imagery, crop type and irrigation 

status was requested for years matching the location-specific Landsat year in this time period. Qi 

et al. then hand-digitized the dataset, resulting in 10,992 polygons. During the gap in time 

between when this data was generated for the 2002 study and our data request, attribute data on 

image date was no longer available. We therefore digitized the map in Figure 11 in Qi et al. 

[2002] denoting years for Landsat scenes selected across the study area and performed a spatial 

join to ascribe year for each polygon. Polygons overlying image borders were omitted, since we 
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could not confidently ascribe a year. As this dataset was never reviewed or published, it should 

be considered provisional. Because these polygons did not have a 1:1 relationship with crop 

management units based on visual inspection with underlying Landsat imagery, we manually 

placed one point per polygon in the most likely location based on the crop type, irrigation status, 

and visual cues in the imagery. To reduce bias introduced by manual placement, we used 

polygon centroids in all cases where the centroid seemed plausible. For the remaining cases, 

including centroids which fell outside of irregularly shaped polygons or centroids which fell in 

clearly visible borders between differently managed fields in the polygon, we moved the point to 

a pseudo-random location in the described field. Data that overlaid regions lacking imagery in 

our critical crop windows for the specified year were omitted, along with locations that were 

clearly incorrect (e.g., a fallowed field that was marked as irrigated). In some cases, it was 

difficult to judge if the description was correct; these cases were marked as “uncertain” and 

removed from the training data set, but retained in validation and test data, to avoid biasing the 

classifier. The final number of points per year after cleaning is giving in Table 2.2. 

After initial classification based on these acquired ground truth data, qualitative 

evaluation of resulting maps and comparisons with county data (not shown) indicated 

underestimation of irrigation in the SHP and overestimation in the central Nebraska Sandhills 

region. Given minimal representation in the ground truth data set in these areas (Figure 2.6), we 

created additional ground truth points by manually locating points based on visual interpretation 

of Landsat imagery in GEE for four years across the study period chosen to fill existing gaps 

(1988, 1997, 2008, 2011). Irrigated area from the preliminary map product was overlain on 

annual Landsat GCVI composites to help target manual point placement in currently 

underrepresented cases, including irrigated fields in the SHP (particularly cotton) and wetland 



 

 

86 

swales in the NE Sandhills not fully captured by the NLCD land use mask. We created between 

185-295 additional irrigated ground truth points for each year, paired with similar numbers of 

points placed in surrounding rainfed agricultural fields and non-crop uses (combined in one non-

irrigated class, Table 2.2). 
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CHAPTER 3:  
QUANTIFYING WATER USE AND FARMER ADAPTATION STRATEGIES IN 

RESPONSE TO NOVEL STAKEHOLDER-DRIVEN GROUNDWATER MANAGEMENT IN 

THE US HIGH PLAINS AQUIFER 

Abstract 

Irrigation greatly enhances agricultural yields and stabilizes farmer incomes, but 

overexploitation has depleted groundwater resources around the globe. Strategies to address this 

sustainability challenge differ widely. Socio-ecological systems research suggests management 

of common pool resources like groundwater would benefit from localized approaches that 

combine self-organization with active monitoring. In 2012, the U.S. state of Kansas established a 

Local Enhanced Management Area (LEMA) program, empowering farmers to work with local 

and state officials to develop five-year, enforceable groundwater conservation programs. Here, 

we assessed the efficacy of the first LEMA implemented from 2013 to 2017 using a causal 

impact methodology that is new to agrohydrology. Compared to control scenarios, we found that 

the LEMA reduced water use by 33% through 2016, slowing the decline in groundwater levels. 

We then combined satellite-derived irrigated areas and crop type maps with well records to 

partition water savings among three conservation strategies, revealing that farmers focused on 

adaptive cropping choices and increased efficiency while largely maintaining irrigated area. The 

results of this analysis demonstrate that conservation programs that are irrigator-driven with 

regulatory oversight can provide a path toward sustainability in stressed aquifers worldwide. 
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1. Introduction 

Irrigated agriculture helps meet global food demand by enhancing agricultural yields and 

buffering crop productivity and farmer income from climate variability and change [Lobell et al., 

2009; Troy et al., 2015; Smidt et al., 2016; Rufin et al., 2018]. Groundwater contributes about 

half of the world’s irrigation water and is often the primary source in arid to semiarid regions 

[Kustu et al., 2010; Siebert et al., 2010; Aeschbach-Hertig and Gleeson, 2012], but 

overexploitation has depleted aquifers around the globe [Gleeson et al., 2012b; Wada and 

Heinrich, 2013; Rodell et al., 2018]. In the United States, the High Plains Aquifer (HPA) 

supports more than $20 billion in annual economic activity [Ashworth, 2006]. However, water-

level declines threaten the continued viability of irrigated agriculture over much of the aquifer 

[Scanlon et al., 2012; Haacker et al., 2016; Cotterman et al., 2018]. 

Policy and management institutions developed to address this sustainability challenge 

differ widely across the HPA and beyond. Aquifer depletion can be costly, since the value of 

irrigation water should increase over time considering expected future higher yielding varieties 

and irrigation's ability to mitigate droughts, which are likely to become more frequent and severe 

with climate change [Zipper et al., 2016; Foster et al., 2017; Quintana Ashwell et al., 2018]. At 

the same time, improved management could boost crop water productivity around the world 

[Brauman et al., 2013], indicating producers might obtain similar yields using less water and 

thus slow the rate of aquifer depletion. Top-down approaches to management are typically met 

with resistance by farmers who are understandably concerned with near-term profit [Wang et al., 

2015]. Since groundwater can be considered a common pool resource [Hardin, 1968; Ostrom et 

al., 1994], approaches that operate on local scales, allow self-organization, and include active 

monitoring and enforcement are more likely to achieve sustainability [Ostrom, 2009b].  
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A management framework with these characteristics has emerged in Kansas, where HPA 

water levels are rapidly declining and pumping reductions appear to be the only viable option for 

reducing decline rates [Butler et al., 2016; Whittemore et al., 2016]. Legislation in 2012 allowed 

stakeholder groups to establish Local Enhanced Management Areas (LEMAs) and work with 

local (groundwater management districts or GMDs) and state officials to develop enforceable 

and monitored water use reduction programs that operate over five year cycles [K.S.A. 82a-1041, 

2012]. The pioneering LEMA began in 2013, following a vote by irrigators within a 256 km
2
 

highly stressed region in northwestern Kansas referred to as Sheridan 6 (hereafter SD-6, Figure 

3.1) [KDA, 2013]. The group sought to reduce the total groundwater pumping over the five year 

(2013-2017) LEMA period by 20% relative to 2002-2012 levels [NW KS GMD 4, 2016]. 

Allocations were reduced to a total of 55 inches (139.7 cm) per irrigated acre over the five year 

period, with acreages varying by existing water rights; up to one year of unused water (11 

inches) can be carried over to subsequent LEMA cycles. In 2017, stakeholders voted to renew 

the SD-6 LEMA for 2018-2022. In the spring of 2018, a second LEMA was approved for most 

of the surrounding district (GMD4), and additional LEMAs are being discussed in parts of three 

other Kansas GMDs. 

Understanding the effectiveness and impact of the SD-6 LEMA is vital as the LEMA 

program expands, and opportunities for stakeholder-driven management spread across Kansas, 

the United States (e.g., California’s recent Sustainable Groundwater Management Act [Babbitt et 

al., 2018]), and the world [e.g, Tringali et al., 2017]. Here, we analyzed the effects of this first 

LEMA on groundwater pumping, water levels, and irrigated crop dynamics to address two main 

questions: 1) How did the observed pumping volumes following LEMA establishment differ 

from the pumping that would have occurred in its absence, controlling for climate and evolving 
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management trends?; and 2) What adaptation strategies did producers use to meet required 

pumping reductions? 

 

Figure 3.1. Study area map and regional characteristics.  a) Locations of the Sheridan 6 Local 

Enhanced Management Area (LEMA), paired control region, and a combined 10 km buffer within the 

High Plains Aquifer. Wells used to generate annual aquifer level maps are depicted with X’s, and wells 

with irrigation extraction volumes are shown with +’s. Irrigated areas are colored by irrigation frequency 

between 2008-2017 from Deines et al. [2017]. b) Variables used to select control region boundaries from 

2008-2017. A vertical dashed line divides the pre-LEMA and LEMA periods. Top: annual active crop 

area by region [USDA-NASS, 2017]. Center: Annual precipitation by region [Abatzoglou, 2013]. Bottom: 

Annual total pumping volume divided by total area. 

To account for climate fluctuations and wider trends in management and/or technology, 

we employed two complementary controls in the absence of a randomized experimental control. 

First, we established a paired control region that matched characteristics of the SD-6 region. 

Second, we generated a statistical control to estimate a business-as-usual scenario in the absence 

of the LEMA program (hereafter BAU scenario). To calculate the BAU scenario, we used causal 
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impact analysis, which is an emerging Bayesian structural time-series method [Brodersen et al., 

2015] new to agrohydrology. We then combined detailed well records, our remotely sensed 

annual irrigation maps dataset [Deines et al., 2017], and annual national crop maps to quantify 

how pumping reductions were achieved to understand land use impacts and farmer adaptation 

strategies. 

2. Methods 

2.1. Control region design and data processing 

We established the control region by manually demarcating an area analogous to SD-6 

during the five years prior to the LEMA (2008-2012, Figure 3.1). We targeted adjacent areas (at 

least 1.5 km away to reduce direct well effects [Fileccia, 2016]) with similar well density and 

irrigation frequency based on annual irrigation maps (AIM) [Deines et al., 2017]. Working in 

Google Earth Engine [Gorelick et al., 2017], we iteratively adjusted control region boundaries 

until the 2008-2012 mean control region statistics were within 10% of SD-6 for total area 

(ultimately a 0.12% difference), crop area based on the USDA Cropland Data Layers (CDL; 

1.38%) [USDA-NASS, 2017], annual precipitation derived from GRIDMET 4 km gridded daily 

climate data (0.01%) [Abatzoglou, 2013], and total pumped volume over total area based on 

WIMAS well data (7.1%, described below). 

The state of Kansas maintains high quality, publicly available groundwater level and 

well-specific annual pumping data. The WIZARD well database contains water depth 

measurements that have been curated by the Kansas Geological Survey since 1996 [KGS, 2018]. 

To translate these irregularly located wells into geostatistically robust groundwater levels, we 

used R software [R Core Team, 2014] to extract 1996 – 2017 well measurements within a 10 km 

buffer around the study regions, filtered for observations recorded between December 10 and 
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February 28 (~50 annual observations from 64 wells, Figure 3.1a). These winter measurements 

provided consistent timing for water tables to partially recover following the active pumping 

season, which typically ends by mid-September. We kriged these measurements with the gstat R 

package [Pebesma, 2004; Gräler and Pebesma, 2016] to produce annual water table elevation 

maps at 250 m resolution. Due to high longitudinal anisotropy in groundwater levels, we used 

universal kriging with an easterly trend. With this approach, the longitudinal trend was first 

modeled using a first-order polynomial. Residuals from the linear trend model were then kriged 

and combined with the trend surface to produce the estimated water table surface. Annual 

Gaussian variograms for model residuals were automatically fit with gstat, with mean variogram 

parameters of 0.83, 32.4, and 12,535 m for nugget, partial sill, and range respectively. The mean 

water level for each region was calculated and attributed to the year of the preceding active 

growing season. 

Annual groundwater pumping for each region was calculated based on the WIMAS water 

use database maintained by the Division of Water Resources (DWR) of the Kansas Department 

of Agriculture [KDA DWR, 2017], which documents annual pumping for 203 and 162 wells 

within SD-6 and the control region during 1996-2016, respectively (Figure 3.1a). The WIMAS 

data also reports well-specific crop mixes and irrigated areas. The 2017 WIMAS data were still 

undergoing QA/QC protocols and were thus unavailable for this analysis. 

To track land use changes in crop type and irrigation status, we used a novel fusion of 

satellite-derived annual crop type (CDL) and annual irrigation maps (AIM) at 30 m resolution 

from 2008 to 2017 to capture the 5-year periods before and after LEMA establishment. To our 

knowledge, no other data set for this region is able to track crop-specific irrigated area at this 

spatial and temporal resolution. Because the previously-published AIM dataset ends in 2016, we 
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used the method and classifier described in Deines et al. [2017] to extend the irrigation map 

product to 2017. To minimize misclassification in the satellite-derived maps, the AIM product 

was filtered by removing irrigated pixels outside allowable place-of-use tracts maintained by the 

Kansas DWR [KS DWR, 2017].  Both map datasets were accessed and processed through Google 

Earth Engine. 

2.2. Business As Usual (BAU) scenario and causal impact analysis on pumping and water 

levels 

We generated the BAU scenario using causal impact analysis implemented via the 

CausalImpact R package [Brodersen et al., 2015]. This approach originated in marketing and 

website analytics to provide robust analysis of time series data to assess market interventions 

when appropriate control groups are unavailable. It has since been applied widely, including to 

assess aviation fuel tax impact on aircraft emissions [González and Hosoda, 2016] and 

population-level vaccine effects [Bruhn et al., 2017], but has not to our knowledge been applied 

in the agriculture or hydrology literature. Causal impact analysis implements a Bayesian 

structural time series model, which uses supplied covariates to construct a BAU estimate with 

uncertainty bounds to enable causal attribution in the absence of a randomized experiment 

[Brodersen et al., 2015]. This state-space model approach is preferred over often-used Ordinary 

Least Squares regression or difference-in-differences methods because it addresses 

autocorrelations in time series data, incorporates changes in external conditions that can affect 

the response variable, flexibly allows regression coefficients to vary over time while avoiding 

overfitting, and provides inference about the temporal evolution of the response rather than 

simply comparing before and after conditions [Bertrand et al., 2002; Brodersen et al., 2015].  

To evaluate how the LEMA affected groundwater use and water levels in SD-6, we used 
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the CausalImpact package with default priors to separately model the BAU scenario for two 

response variables: (1) total pumping volume from 1996 to 2016 based on WIMAS well data, 

and (2) mean water levels from 1996 to 2017 based on the kriged annual water levels. For 

covariates, we used the following annual time series: 1) GRIDMET-derived annual precipitation, 

growing season (May through August) precipitation, and pre-season through harvest 

precipitation (January through August); 2) seasonal aridity, defined as accumulated potential 

evapotranspiration / precipitation for May through August; 3) corn prices as a proxy for all 

commodity prices [NASS, 2017]; and 4) year. These are suitable covariates since they correlate 

with the response variables but are not themselves affected by the LEMA program [Brodersen et 

al., 2015]. The model then uses the response variable’s observed time series behavior, the 

relationships among the response and covariate time series variables from 1996 through 2012, 

and the covariate time series during the LEMA period to construct the posterior distribution of 

the response variable’s BAU behavior. If observed values fall outside of this estimate and the 

95% confidence interval at alpha = 0.05, it can be concluded that the LEMA program had a 

significant impact on the response variable. We then used the same approach to generate a BAU 

scenario in the control region. If no differences between observed responses and BAU scenarios 

are found in the control region, then any significant changes in SD-6 are considered due to the 

LEMA program and not external regional-scale drivers such as altered management, technology 

adoption, and cropping trends unrelated to LEMA establishment. 

2.3. Evaluating relative contributions of water saving strategies 

Farmers can decrease water use in three primary ways: 1) reduce irrigated area, 2) reduce 

irrigation volume per area (hereafter, irrigation depth) applied to existing crops, and/or 3) switch 

to crops with lower irrigation demand [Hendricks and Peterson, 2012]. To partition water 
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savings among these three conservation strategies, we used the fused AIM-CDL annual maps of 

crop type and irrigation status along with WIMAS data that specifies well-specific pumping 

volume, crop mix, and area irrigated (section 2.1). 

First, we assessed changes in total irrigated area within SD-6 and the control regions to 

compare the five-year LEMA period (2013-2017) against the preceding five years (2008-2012, 

hereafter the pre-LEMA period), using both AIM and WIMAS as complementary lines of 

evidence. WIMAS is a well-curated data source, but irrigated area is self-reported. It is unclear 

how producers may vary in reporting year-specific active irrigated area compared to allowable 

irrigable area, or if reports include or omit area that received some irrigation but was then 

abandoned due to drought-induced water constraints. On the other hand, AIM is satellite-derived 

and is thus an independent data source, but it may not detect subtle differences between some 

rainfed and irrigated areas [Deines et al., 2017]. To overcome these potential issues, we chose to 

report statistics from both datasets for comparison. 

Second, we evaluated changes in irrigation depths for SD-6 and the control region by 

calculating annual depth applied by crop type from WIMAS, focusing on the four dominant 

crops (corn, soybeans, sorghum, and winter wheat). Because WIMAS does not explicitly break 

down irrigated area among crops for reported mixed-crop fields, we restricted this analysis to 

single-cropped fields from 1996-2016. We again applied causal impact analysis with the same 

covariates described in section 2.2 for each of four response variables (crop-specific irrigation 

depths) to estimate changes due to the LEMA, thus controlling for external climate conditions. 

We also compared the pre-LEMA and LEMA periods to describe overall changes in irrigation 

depths. Third, we used AIM-CDL to evaluate changes in crop-specific irrigated area by region 

between both 5-year periods. 
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Finally, we calculated the contribution of each of these three conservation strategies to 

overall water use reductions in the SD-6 LEMA based on differences between the pre-LEMA 

and LEMA periods. Water savings from reductions in total irrigated area (change in pumping, 

Δ𝑃𝐴𝑟𝑒𝑎) were estimated for both WIMAS- and AIM-specified areas based on the following 

equation: 

Δ𝑃𝐴𝑟𝑒𝑎 = 5 × 𝑑̅𝐿𝐸𝑀𝐴(𝐴̅0 − 𝐴̅𝐿𝐸𝑀𝐴)                                                 (1)  

where 𝑑̅𝐿𝐸𝑀𝐴 is mean annual irrigation depth in the 5-year LEMA period based on annual 

pumping volume and annual irrigated area for 2013-2016, 𝐴̅0 is pre-LEMA mean irrigated area, 

and 𝐴̅𝐿𝐸𝑀𝐴 is LEMA mean irrigated area. We used average applied irrigation depth during the 

LEMA period (𝑑̅𝐿𝐸𝑀𝐴) in Eq. (1) to avoid double counting savings from change in both total 

irrigated area and change in irrigations depths. Mean annual water savings are then multiplied by 

5 to estimate Δ𝑃1 for the full LEMA period. We then averaged estimates for WIMAS and AIM 

to obtain a final estimate. 

Water savings due to reduced irrigation depths on existing crops (Δ𝑃𝐷𝑒𝑝𝑡ℎ) were 

calculated based on annual crop-specific irrigated area obtained from fused AIM-CDL maps for 

2013-2017 and irrigation depth reductions found via causal impact analysis:  

Δ𝑃𝐷𝑒𝑝𝑡ℎ = ∑  
𝑦𝑒𝑎𝑟𝑠
𝑖 ∑  𝑎𝐿𝐸𝑀𝐴,𝑖𝑗 × 𝜖𝐿𝐸𝑀𝐴,𝑗  

𝑐𝑟𝑜𝑝 𝑡𝑦𝑝𝑒𝑠
𝑗                                     (2) 

where 𝑎𝐿𝐸𝑀𝐴,𝑖𝑗 is the year-specific irrigated area for each crop type and 𝜖𝐿𝐸𝑀𝐴,𝑗 is the crop-

specific LEMA effect on pumping depths based on causal impact models (see 𝜖 estimates in 

Table 1). Sorghum was not included here because there was no significant reduction in sorghum 

irrigation depths (Table 1), thus Eq. (2) applied to corn, soy, and wheat. Because results showed 

that wheat area increased in SD-6 during the LEMA period, we used pre-LEMA wheat area in 

Eq. (2) to avoid double counting water savings with changes in crop choice (below in Eq. 3). 
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To quantify water saved by changes in crop choice (Δ𝑃𝐶𝑟𝑜𝑝), we compared water use for 

the mean crop mix in the pre-LEMA and LEMA periods based on irrigation depths during the 

LEMA periods. In other words, we first estimated the hypothetical irrigation volume had relative 

crop areas not changed based on LEMA irrigation depth reductions. This hypothetical volume 

was then compared with the LEMA period as follows: 

Δ𝑃𝐶𝑟𝑜𝑝 = 5 × ∑  (𝑎̅0,𝑖 −  𝑎̅𝐿𝐸𝑀𝐴,𝑖) × 𝑑̅𝐿𝐸𝑀𝐴,𝑖
𝑐𝑟𝑜𝑝𝑡𝑦𝑝𝑒𝑠
𝑖                                    (3) 

where 𝑎̅0,𝑖 is crop-specific mean area in the pre-LEMA period, 𝑎̅𝐿𝐸𝑀𝐴,𝑖 is crop-specific mean 

area in the LEMA period, and 𝑑̅𝐿𝐸𝑀𝐴,𝑖 is crop-specific mean irrigation depth during the LEMA 

period. Water savings were then compared among management responses. 

All raw data used in this study are publicly available online. Derived data along with 

Earth Engine and R processing scripts can be found at https://zenodo.org/ [full DOI available 

upon publication]. 

3. Results and Discussion 

3.1. LEMA Impacts on Groundwater Use and Water Table Elevations 

We found that irrigators in the SD-6 LEMA significantly decreased groundwater use. 

Although some reduction was expected given the program’s targeted 20% pumping reduction 

from 2002-2012 levels, analysis of WIMAS pumping data indicated mean annual pumping 

declined by 36.1%, from 36.4 million m
3
 to 23.3 million m

3
. However, mean growing season 

precipitation derived from GRIDMET was 26.7% higher during the LEMA period, suggesting 

that at least part of the decreased pumping may be related to reduced water deficits.  

The BAU scenario generated through causal impact analysis allowed us to quantify the 

LEMA’s impact while accounting for changes in external conditions that can affect irrigation 
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demand, such as increased precipitation. We found that pumping following establishment of the 

LEMA decreased 33% compared to BAU estimates (p = 0.001, 95% confidence interval, CI = 

[23%, 42%], Figure 3.2a). Over the four year period for which pumping data are available (2013-

2016), this amounts to a cumulative reduction of 45.2 million m
3
 (CI = [32, 58]) or 11.3 million 

m
3
 per year, which is substantial relative to pre-LEMA mean annual pumping volumes (36.4 

million m
3
). Moreover, we found no significant effect in the control region, where observed 

pumping volumes closely tracked BAU predictions (p = 0.48, Figure 3.2). This indicates that the 

changes observed were unique to SD-6 and were not caused by other regional factors.  

 

Figure 3.2. Causal impact analyses on groundwater pumping and water table elevations in 

Sheridan 6 (SD-6) compared to the control region.  a) The Local Enhanced Management Area 

(LEMA) significantly reduced groundwater pumping in SD-6 compared to the modeled business-as-usual 

(BAU) scenario. b) No pumping change occurred in the control region, where data observations tracked 

modeled estimates. c) The LEMA resulted in a non-significant increase in groundwater levels compared 

to BAU expectations. d) Groundwater levels continued to decline in line with BAU estimates in the 

control region. Groundwater levels in (c) and (d) are relative to water-table position in 1996. 

For groundwater levels, we found a non-significant 2.0 m increase in SD-6 relative to 

BAU expectations through 2017 (p = 0.08, CI =  [-0.52, 4.6], Figure 3.2c). In the control region, 
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we found no evidence of changes in water level trajectory (p = 0.39, Figure 3.2d). Given the 

positive trend evident in SD-6 groundwater levels following LEMA implementation in Figure 

3.2c, more time may be needed to be able to fully define the effects on groundwater levels. In 

particular, as there are relatively few well observations within SD-6 to adequately influence the 

kriging surface (Figure 3.1), the effects on water levels are likely understated here. We thus 

hypothesize that this presents a conservative estimate of groundwater level changes. Butler et al. 

[In Press] used a lumped water balance approach to estimate a 67% reduction in the rate of water 

level decline based on the reduced pumping through 2016, further indicating a positive effect on 

groundwater levels.  

3.2. Land Use Impacts and Farmer Adaptation 

3.2.1. Changes in total irrigated area 

Analysis of annual, satellite-derived land use (CDL & AIM) and reported irrigated area 

statistics (WIMAS) suggested that farmers made only minor changes in total irrigated area to 

meet water reduction targets. AIM irrigated area estimates indicated non-significant -1.8% (T-

test, p = 0.84) and +3.9% (T-test, p = 0.62) changes in irrigated area for SD-6 and the control 

region, respectively (Figure 3.3a). WIMAS self-reported irrigated area showed the same 

directions of change, with a statistically significant 4.1% decrease in SD-6 (T-test, p = 0.003), 

and a non-significant 0.4% increase in the control region (T-test, p = 0.67, Figure 3.3a). Irrigated 

area estimates between the two sources generally agreed, although AIM displayed higher 

variability and tended to underestimate area compared to WIMAS. Overall, our results indicated 

SD-6 largely was able to sustain nearly the same irrigated cropping area following LEMA 

establishment. Although irrigated area apparently decreased in SD-6, this 2-4% reduction is 

modest given the large reduction in irrigation pumping volumes. 
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Figure 3.3. Farmer adaptation to water restrictions.  a) Changes in total irrigated area based on 

remotely sensed annual irrigation maps (AIM) and WIMAS irrigator-reported data for the Sheridan-6 

(SD-6) Local Enhanced Management Area (LEMA) and the control region. b) Changes in crop-specific 

irrigation depths derived from WIMAS, and crop-specific irrigated area derived from fusion of USDA 

Cropland Data Layers and AIM. Colored bars indicate five-year means (2013-2016 means for WIMAS-

based irrigation depth). Sorghum irrigation depth mean for SD-6 represents 2002-2012 mean due to lack 

of sorghum fields in the 2008-2012 period. 

3.2.2 Changes in crop-specific irrigation depths 

Farmers did show considerable adaptation in terms of water use and crop choices. Based 

on causal impact analysis of the 1996-2016 WIMAS data, we found the SD-6 LEMA produced 
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significant decreases in irrigation depths relative to the BAU scenario of 26%, 22%, and 44% for 

corn, soybeans, and wheat, respectively (Table 3.1). In contrast, within the control region we 

found no significant changes in irrigation depths for wheat or corn, and a significant increase of 

19% for soybeans. We found no significant changes in sorghum irrigation depth for either 

region, although high uncertainty limited inference (Table 3.1), since there were few single-

cropped sorghum fields prior to LEMA establishment in the WIMAS data set for either SD-6 or 

the control region. 

Table 3.1. Causal Impact of the Sheridan-6 LEMA Program on Irrigation Depth by Crop.  

* = significant at the alpha = 0.05 level. 

Crop Region Effect (𝜖, cm) [95% CI] Relative effect p value 

Corn LEMA -9.4 [-13, -5.9] -26% *0.001 

 

Control  0.2 [-3.6, 4] 0.57% 0.46 

Soybeans LEMA -7.2 [-14, -1.5] -22% *0.005 

 

Control  5.7 [0.97, 9.8] 19% *0.006 

Wheat LEMA -8.9 [-25, 1.9] -44% *0.049 

 

Control  5.6 [-3.5, 15] 29% 0.11 

Sorghum LEMA  3.2 [-36, 40] 21% 0.40 

  Control  1.2 [-8.8, 14] 3.8% 0.45 

 

In addition to this causal impact analysis, we also visualized changes in irrigation depths 

for the pre-LEMA and LEMA periods (Figure 3.3b). Several features likely enabled the 

substantial reduction in irrigation depths within SD-6. First, structural changes incorporated in 

the LEMA framework lowered barriers for deficit irrigation practices, which can generate similar 

yields while using less water [Chai et al., 2016]. For example, it removed the “use it or lose it” 

system that traditionally could void a water right for non-use [Streeter et al., 2018]. Similarly, it 

resulted in the development of a limited-irrigation crop insurance product that irrigators could 

use to avoid needing to meet irrigation depth mandates for full irrigated crop insurance [Manning 

et al., 2018]. However, few producers in SD-6 took advantage of this change due to the more 

involved enrollment process and an incomplete understanding of the program (R. Rockel, Kansas 
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Water Office, personal communication, 27 June 2018). 

Beyond lowering structural barriers, the LEMA framework induced SD-6 producers to 

emphasize net profits, part of a shifting mindset from targeting “highest yield” to “highest return 

on investment” [Waskom, 2017]. For example, reduced water use requires less energy to operate 

groundwater pumps. Energy supplies traditionally accounted for almost 10% of corn growing 

costs in western Kansas [Pfeiffer and Lin, 2014b]. Similarly, some producers used a lower seed 

density in irrigated fields as a strategy to maintain a fully irrigated crop under water constraints 

(R. Luhman, Groundwater Management District #4, personal communication, 27 June 2018). 

Preliminary analyses comparing production in SD-6 with irrigated fields just outside the LEMA 

boundary indicate that despite small yield decreases, the majority of LEMA producers reported 

higher net profit [Golden and Liebsch, 2017]. For corn, a 1.2% decrease in yield corresponded to 

4.3% higher net profits when comparing 20 fields within SD-6 with 11 neighboring fields 

outside the LEMA [Golden and Liebsch, 2017]. Observations for other crops were low (<5 per 

class) but suggest that LEMA producers improved water productivity and overall net profit for 

corn, sorghum and wheat, but not soybeans [Golden and Liebsch, 2017]. 

Finally, water resource use became more efficient through increased awareness and new 

tools, particularly surrounding irrigation scheduling and soil moisture monitoring [Lauer and 

Sanderson, 2017; NW KS GMD 4, 2017]. This allows producers to better take advantage of 

precipitation events and target irrigation during periods of crop need. Precision agriculture 

practices can help optimize management by specifying needed water, fertilizer, and other inputs 

in space and time, reducing waste and increasing net profits [Basso et al., 2013]. 
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3.2.3 Changes in crop choice 

SD-6 irrigators also reduced water use by switching to crops with lower irrigation 

demand, namely planting sorghum and wheat rather than corn and soybeans (Figure 3.3b). When 

comparing the pre-LEMA and LEMA periods, we found that mean irrigated corn and soybean 

area decreased 12.9% and 34.5%, respectively, in SD-6. In comparison, the control region had 

decreases of 0.2% and 5.2% for irrigated corn and soybeans. Both SD-6 and the control region 

had increases in irrigated sorghum and wheat area, but increases within SD-6 were considerably 

higher for both crops (sorghum: 493% vs 101%; wheat: 224% vs 82.2%; Figure 3.3b). The 

annual evolution of this pattern indicated that this could be a flexible strategy to manage the 5-

year water allocation cycle of the LEMA program. Basso et al. [2013] suggest there is 

opportunity across the aquifer to improve sustainability by choosing crops with water 

requirements that match local availability.   

3.2.4 Relative contributions of water conservation strategies 

Based on these changes in irrigated area, irrigation depths, and crop types, we estimated 

the relative contribution of each management response to overall water reductions in SD-6 over 

the LEMA period using equations (1)-(3). Reductions in irrigation depths accounted for 72.9% 

of total water savings; reductions in corn irrigation depths accounted for 7/8 of total water saved 

through this strategy due to irrigated corn’s dominance on the landscape (approximately 2/3 of 

irrigated area in SD-6 during the LEMA period, Figure 3.3b). Changes in crop choice further 

contributed 19.0% of water reductions, based on the difference between mean crop areas from 

2008-2012 versus 2013-2017 using mean crop-specific irrigation depths during the LEMA 

program. These additional gains are largely due to lower irrigation water requirements for 

sorghum [Araya et al., 2018] and wheat, which gained area previously used for more water 
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intensive corn and soybeans (Figure 3.3b). Reductions in total irrigated area accounted for the 

remaining 8.1% of water reductions. 

4. Conclusions 

The combined causal impact and control region approach allowed us to quantify the 

effects of stakeholder-driven groundwater management while accounting for changes in external 

conditions that can affect irrigation demand. By leveraging rich publicly available datasets, we 

found that this pioneering LEMA in the High Plains Aquifer in northwest Kansas surpassed 

goals for reduced water use, leaving enough water in the aquifer in its first four years to provide 

over a year’s worth of historic water needs. Farmers made only minor adjustments to total 

irrigated area to meet water reductions, instead relying on more efficient water management and 

less water intensive crops. Preliminary economic analyses suggested that farmers are maintaining 

net profit despite lower yields due to reduced input costs; the recent stakeholder-voted renewal 

for another five-year cycle corroborates the economic feasibility of the SD-6 LEMA [Golden 

and Liebsch, 2017]. 

There remains a need to robustly quantify trade-offs in crop yield as well as impacts to 

the full water budget, accounting for complexity in the physical system through coupled crop-

hydrology models. Because the SD-6 LEMA has unique elements hypothesized to promote self-

organization [Ostrom, 2009b], the generalizability remains to be tested on larger scales, such as 

the recently approved LEMA over most of the Groundwater Management District that includes 

SD-6. As aquifer depletion threatens crop production in many parts of the world, the successful 

water reduction pathways detailed here can serve as a road map for economically and 

hydrologically sustainable management. 
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CHAPTER 4:  
EVALUATION OF STAKEHOLDER-DRIVEN GROUNDWATER MANAGEMENT IN THE 

US HIGH PLAINS AQUIFER THROUGH CROP MODELING AND REMOTE SENSING 

Abstract 

Non-renewable groundwater sources contribute approximately 20% of global irrigation 

water. As a result, key agricultural regions around the world are on unsustainable water 

trajectories due to aquifer depletion, threatening food production and local economies. With 

increasing resource scarcity in the central High Plains Aquifer in the United States, an innovative 

stakeholder-driven groundwater management program has emerged in northwest Kansas referred 

to as the Local Enhanced Management Area (LEMA) program. Here, we assessed the efficacy of 

the first LEMA in moving the region towards system sustainability with a process-based crop 

model driven by remotely sensed annual agricultural land use. We found that groundwater 

extraction volumes decreased by ~25% as a result of increased irrigation efficiency under the 

LEMA program, but only 11.8% of this reduction translated to aquifer savings due to a 

corresponding 27.3% reduction in irrigation return flow. Based on simulated crop-specific yields 

at sub-field resolution, commodity prices, and energy saved from reduced groundwater pumping, 

however, we estimated that cost savings from pumping reductions were ~4 times greater than 

income loss from minor yield penalties, suggesting the program promotes both economic and 

water sustainability. As aquifer depletion threatens crop production in many parts of the world, 

approaches that integrate models with in-situ and remotely sensed data can help inform 

economically and hydrologically sustainable management strategies. 
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1. Introduction 

Over the latter half of the twentieth century, the use of non-renewable groundwater 

resources for irrigated agriculture more than tripled to become the source for approximately 1/5 

of global irrigation water [Wada et al., 2012]. As a result, key agricultural regions around the 

world are on unsustainable trajectories due to aquifer depletion, including California’s Central 

Valley [Scanlon et al., 2012; Faunt et al., 2016], the North China Plain [Cao et al., 2013], and 

northern India [Rodell et al., 2009; Tiwari et al., 2009]. In the central United States, the High 

Plains Aquifer (HPA) provides water for over 6 million hectares of irrigated land [Chapter 2, this 

volume], accounting for approximately 30% of US groundwater irrigation [Dennehy, 2000; 

Scanlon et al., 2005] and enabling a significant portion of the region’s $7.5 billion agricultural 

net income [Waskom et al., 2006; NASS, 2017]. However, water use exceeds natural recharge 

over much of the aquifer, particularly in its central and southern regions [Scanlon et al., 2012; 

Breña-Naranjo et al., 2014; Haacker et al., 2016]. Under current use, approximately 24% of 

irrigated area could be lost by the end of century due to falling groundwater levels [Chapter 2, 

this volume].  

With limited water resources defining the 21
st
 century [Rodell et al., 2018], finding ways 

to maximize water use and operate within system boundaries is crucial. Traditional water 

management systems in the western United States can exacerbate the problem. For example, 

water rights historically could be lost for non-use, providing perverse incentives for farmers to 

use their full water allocation to maintain their right even in years where this did not benefit crop 

yield [Peck, 2003]. However, systems are changing across the HPA. States are gradually 

establishing local groundwater management areas that have more power to restrict existing 

allocations, and court litigation has forced increased regulation in some areas [Smidt et al., 
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2016]. Most efforts seek to work collaboratively with local producers as stakeholders of water 

resources to define mutually desirable conservation goals and associated regulations to preserve 

aquifer lifespan [Hutchinson, 2010; Gleeson et al., 2012a]. Despite diverse perspectives, there is 

growing consensus that better aquifer management is beneficial for both water and economic 

sustainability in the region. 

In Kansas, 2012 legislation created the Local Enhanced Management Area (LEMA) 

program, which established a framework for local stakeholder groups to work with local and 

state officials to create enhanced management zones [K.S.A. 82a-1041, 2012]. Notably, the 

LEMA program combines key factors identified for successful management of common 

resources, including self-organization, local focus, and active monitoring and enforcement 

[Ostrom, 2009a]. LEMAs operate on 5-year cycles and must pass a vote by the local irrigators to 

go into effect. The first LEMA was operational from 2013-2017 within a 256 km
2
 highly stressed 

region in northwest Kansas known as Sheridan-6 (hereafter SD-6, Figure 4.1a) [KDA, 2013]. The 

SD-6 LEMA included restrictions to reduce total groundwater pumping by 20% compared to 

2002-2012 levels [NW KS GMD 4, 2016]. This was implemented by reducing existing water 

rights to a 5-year allocation of 55 inches (139.7 cm) per irrigated acre, with the flexibility to 

apply up to 11 inches of unused water to subsequent LEMA cycles. 

Initial assessments of SD-6 LEMA effectiveness show promising results. Farmers 

exceeded water reduction targets for 2013-2016 [Chapter 3, this volume], resulting in an 

estimated 67% reduction in the rate of water table decline [Butler et al., 2018]. Water savings 

have largely been accomplished without reduction in irrigated area through improved 

management, including increased water use efficiency and use of crops with lower irrigation 

demand such as sorghum [Chapter 3, this volume]. Moreover, preliminary analyses indicate that 



 

 

109 

despite slight yield loses (~1.2%), net profits have been stable or increased due to reduced 

energy and input costs [Golden and Liebsch, 2017]. Stakeholders voted to renew the LEMA for 

2018-2022, indicating the program’s continued support among producers. There remains a need, 

however, to robustly quantify the effects on the full water budget and trade-offs in crop yield, 

particularly as a second LEMA was approved in the spring of 2018 for most of the surrounding 

groundwater management district (GMD) (Figure 4.1a). Discussions for additional LEMAs in 

parts of three other Kansas GMD’s are ongoing. Understanding the effectiveness of the SD-6 

LEMA can improve understanding and help inform economically and hydrologically sustainable 

management strategies across the HPA and elsewhere. 

 

Figure 4.1. Study area and modeling approach.  (a) Location of the Sheridan-6 (SD-6) Local Enhanced 

Management Area (LEMA) within Groundwater Management District 4 (bold colors) in the United States 

High Plain Aquifer (inset, blue), including change in groundwater level between 1996-2012 prior to the 

start of the LEMA in 2013. (b) Modeling approach using the SALUS crop model. Models were run for 

each 30 x 30 m grid cell based on cell-specific soil, climate, and 10-year crop rotation sequences. Results 

were then aggregated for SD-6.  
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Although the state of Kansas is relatively data rich, existing datasets are inadequate for 

full evaluation of the SD-6 LEMA [Chapter 3, this volume]. A reliably curated water well 

dataset is publicly available to track annual groundwater pumping volume [KDA DWR, 2017], 

but this is not adequate on its own to fully quantify how reduced irrigation applications affect 

aquifer recharge via irrigation return flow. Because the region is relatively flat with few 

perennial streams, excess irrigation water generally infiltrates into the ground and returns to the 

aquifer as enhanced natural recharge. Effective aquifer conservation cannot be determined 

without factoring in this component. Similarly, remote sensing products specifying annual 

agricultural land use from 2006 to present [Deines et al., 2017; USDA-NASS, 2017] provide 

information on annually varying crop proportions and active irrigation locations but cannot be 

translated to changes in crop income without simultaneously measuring changes in crop yields. 

Currently, yield data representative of the SD-6 region is not available. This, combined with 

limited literature or empirical data that relates relationships between reduced water use and 

producer net profits [Golden and Liebsch, 2017], limits our ability to quantify the economic 

feasibility of programs such as this LEMA.  

Process-based crop models provide an opportunity to simulate difficult to measure 

quantities such as irrigation return flow, evaporative water losses, and crop-specific yield 

responses to different irrigation regimes. By simulating regional yields, water reductions can be 

translated into estimated income loss from yield penalties due to reduced irrigation application. 

Similarly, model estimates of business-as-usual water use can estimate water savings, which can 

be translated to energy cost reductions for groundwater pumping. These components are vital to 

assess agricultural sustainability, which must consider economic local socio-economic conditions 

in addition to environmental protections [Häni et al., 2003].   
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Here, we applied the System Approach to Land Use Sustainability (SALUS) crop model 

[Basso and Ritchie, 2012] to simulate historic cropping and water use in SD-6 and evaluate the 

sustainability implications of the LEMA program. To accurately quantify changes in crop yields, 

water use, and irrigation return flow, we developed a new methodology to drive the SALUS 

model with spatially explicit annual crop and irrigation based on remote sensing data. We used 

this modeling framework to ask the following questions: 1) What was the effect of the LEMA 

program on net aquifer change, considering both changes in groundwater extraction as well as 

irrigation return flows? and 2) How did the LEMA program affect crop yields and cash flow, 

incorporating yield penalties and energy saved associated with reduced pumping?  

The approach presented here simulated water savings due to changes in irrigation depth 

and frequency while assuming that the spatial distribution and annual sequence of crop types and 

irrigated area remained the same. Reducing irrigation depth and frequency is one of three key 

strategies available for farmers to reduce water use; in this case we estimated that this accounts 

for ~73% of reduced groundwater pumping during 2013-2017 [Chapter 3, this volume]. 

2. Methods 

2.1. SALUS crop model 

Here, we used the System Approach to Land Use Sustainability (SALUS) model [Basso 

et al., 2006; Basso and Ritchie, 2012] to simulate crop yield and crop water budget components, 

including evapotranspiration (ET), irrigation return flow, and irrigation water applied. SALUS is 

a crop bioenergetics model that simulates daily plant growth and soil-water-nutrient conditions 

under a range of potential specified management conditions. It improves upon the widely validated 

CERES crop model [Ritchie and Otter, 1985] and has been well validated [Hoang et al., 2014; Dzotsi 

et al., 2015], including for the central HPA [Cotterman et al., 2018]. 
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SALUS is a point-based model that runs continuously (vs being annually reinitialized), 

accumulating year-to-year changes to properly track components across years [Basso et al., 

2015] and simulating both the actively-cropped and dormant periods of the year. Therefore, we 

developed a set of real-world, spatially-explicit experiments that captured both the year-to-year 

sequences of crop choice and irrigation status along with the soil and climate variability across 

the study area. We discretized the study area into 30 m grid cells based on the resolution of the 

remotely sensed inputs (see section 2.2), and simulated individual experiments for each grid cell 

based on cell-specific soil properties, observed climate, and annual crop type and irrigation status 

(see subsequent sections) between 2006-2017 (Figure 4.1b). The absence of spatially-explicit 

crop data prior to 2006 limited an earlier start of the study period, thus 2006-2007 provided our 

model spin-up period. SALUS results were then summarized based on five year periods, 

hereafter termed Pre-LEMA (2008-2012) and LEMA (2013-2017). For this analysis, we 

analyzed yields for irrigated crops only to isolate the effects of LEMA water restrictions. Rainfed 

crops, fallowed fields, and grasslands were modeled to generate spatially complete estimates of 

soil drainage, thus enabling us to assess changes in groundwater recharge due to changes in 

irrigation regimes due to the LEMA program. 

2.2. Annual crop and irrigation map data 

The USDA’s NASS Cropland Data Layers (CDL) [Boryan et al., 2011; USDA-NASS, 

2017] provide annual maps of crop types for 2006-2017 at 56 m resolution for 2006-2007 and 30 

m resolution since 2008. This data is derived from a suite of satellite imagery and has reasonable 

accuracy in Kansas for the crops considered in this study, with accuracies ranging from 

approximately 70 – 95% for the study period depending on year and crop type [USDA-NASS-

RRD Spatial Analysis Research Section, 2017]. To minimize spurious crop classification, we 
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first smoothed annual CDL images with a two-step process in Google Earth Engine (GEE) 

[Gorelick et al., 2017], which hosts the CDL product in its cloud-based data catalog. First, we 

resampled all CDL years to 30 m where needed and ran a connected pixel counter that identifies 

the number of connected pixels by class type. We flagged patches with < 25 pixels (2.25 ha) as 

potentially spurious classifications given the typical field size ~60 ha in this region. Second, we 

updated values at these flagged patches with the most common crop class within a circular 

moving window with radius of 120 m. The effect of this “despeckling” process is to re-classify 

small patches with the most common class type within a moving local window, thus reducing the 

“salt and pepper” effect often produced from per-pixel classifications. We then used the 2016 

TIGER road vector dataset to update underlying pixels as roads. This provided consistent 

location of roads across CDL years and protected them from the implemented despeckling 

technique, since roads are often small patches due to imagery resolution and their long, narrow 

shape. 

Analysis of CDL data in R [R Core Team, 2014] indicated that from 2006-2017, corn 

area dominated within SD-6, followed by grassland, winter wheat, fallowed land, sorghum, 

soybeans, developed land, and alfalfa. Together, these classes covered 98.7% of the SD-6 study 

area (2006-2017 average). Of these top 8 classes, we simulated the water balance in all 7 non-

developed classes. The LEMA program lead to changes in proportional crop area compared with 

the previous five years [Chapter 3, this volume], including a decrease in corn and soy along with 

a corresponding increase in sorghum and wheat areas (Figure 4.2). Developed land covered 3.8% 

of the study region, largely as roads, and was not included in recharge estimates. In reality, roads 

and other impervious surfaces can serve as points of enhanced recharge due to concentration of 

runoff along the edges of these surfaces. However, because we are focused on recharge 
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differences resulting from the LEMA program, we don’t consider recharge along these 

impervious surfaces here simplicity. We used CDL maps to assign a series of annual crop 

rotations to each 30 m pixel in our study area grid for 2006-2017. 

 

Figure 4.2. Dominant land cover in the Sheridan-6 Local Enhanced Management Area.  Mean area 

for the eight predominant land cover classes based on NASS Cropland Data Layers [USDA-NASS, 2017] 

for the five years prior to the LEMA (2008-2012) and the initial 5-year LEMA period (2013-2017). 

Irrigation status was assigned for each 30 m grid cell based on the remotely sensed 

Annual Irrigation Maps – High Plains Aquifer (AIM-HPA) dataset [Chapter 2, this volume]. 

AIM-HPA provides annual irrigation status at Landsat resolution, allowing us to specify historic 

irrigation occurrence during the 2006-2017 model and spin-up period. AIM-HPA is estimated to 

have a 91.7% overall accuracy, leading to occasional misclassified pixels. To minimize these 

effects, we filtered AIM-HPA with allowable place-of-use tracts maintained by the Kansas DWR 

[KS DWR, 2017], removing any irrigated pixels that occurred outside of these tracts. 
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2.3. Weather and soil data 

Daily climate data were obtained from GRIDMET, a daily 4 km gridded surface 

meteorological dataset that includes precipitation, maximum daily temperature, minimum daily 

temperature, and shortwave radiation [Abatzoglou, 2013]. Data was accessed through GEE, 

where we combined daily observations with mean elevation per grid cell derived from the USGS 

National Elevation Dataset [USGS, 2012]. The resulting data was formatted for the SALUS 

model using R. Soil data was obtained from SSURGO, which provides soil classes at 30 m 

resolution and extensive soil properties [NRCS, 2016]. There are 16 SSURGO soil map units in 

SD-6, texturally dominated by silty loam.   

2.4. SALUS experiments 

We extracted all unique combinations of soil type, GRIDMET climate cell, and 12-year 

crop/irrigation rotations including fallow and grassland classifications. Some spurious 

combinations arose due to the inherent uncertainty in remote sensing products, such as irrigated 

grassland. In these cases, irrigation status was changed so that crop cover and irrigation status 

aligned. Crop rotation sequences had missing crop values in 4.0% of non-developed cells due to 

less common crop choices, such as sunflowers, omitted from this study. For cells with crop 

sequences missing two years or less due to these uncommon crop types, we assigned the alfalfa 

class in the missing years as a reasonable proxy to maintain model output for these locations 

across years. Sequences with more than two years of non-included crops were not simulated 

(0.4% of non-developed area). This resulted in 48,279 unique experiments from 270,814 active 

SALUS cells not covered by roads or other developed lands, repeated rare crops, or small water 

bodies, covering 95.5% of the total study area. 

SALUS crop management and water use parameters were defined in a three-step process. 
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First, we gathered information from available agronomic resources related to crop growth in 

northwest Kansas to set base model parameter conditions. Management parameters including 

annual state median planting dates were obtained through the USDA’s National Agricultural 

Statistics Service [NASS, 2017]. Typical planting densities and regional offsets from state 

planting dates were obtained from the Kansas Crop Planting Guide [Shroyer et al., 1996]. Initial 

cultivar selection for corn and wheat were taken from a previously published SALUS model in 

the adjacent Central High Plains portion of the HPA, including large parts of Kansas [Cotterman 

et al., 2018]; soybeans, sorghum, and alfalfa were run in “simple” mode within SALUS since 

“complex” mode with specific cultivars are not yet available for these crops. All crops were set 

to harvest at maturity as determined by the model. For this study, nitrogen was assumed to be 

non-limiting. We therefore ran SALUS with the nitrogen module off. All fields were set to no-till 

for parsimony, based on Cotterman et al. [2018]. Finally, although we planted pasture grass to 

mimic grassland and fallow land use types within the SALUS runs, we had difficulty simulating 

reasonable recharge values for perennial grasses. To get an improved overall recharge estimate 

while ultimately not affecting estimation of the relative impact of LEMA water reductions, we 

manually overrode recharge estimates for these cells using 1% of annual precipitation based 

available literature [Hansen, 1991]. 

Second, we calibrated these reference-informed starting parameters for cultivar type and 

planting density to better match state yield data from NASS. County-level annual statistics were 

also considered when available but were infrequent for the study area. Rainfed and irrigated 

crops were calibrated separately. During yield calibration, irrigation parameters were set to be 

non-limiting by delivering 25 mm (~1 in) of irrigation via sprinklers when soil moisture content 

dropped below 75% of plant available water (defined as the difference between the drained upper 
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limit and lower limit of the soil). Initial parameters for soybeans and sorghum performed well, so 

these were not modified. The medium-high yielding wheat variety and planting density from 

Cotterman et al. [2018] matched yield data better than other available cultivars and was thus 

selected for both rainfed and irrigated wheat. For corn, we found good agreement with NASS 

statistics by using a low yielding cultivar for rainfed fields, and a moderate yielding cultivar for 

irrigated fields. We did not calibrate alfalfa parameters due to its small proportional 

representation on the landscape. Final crop-specific cultivars and planting densities were uniform 

for the entire period. 

Finally, we used this calibrated yield model to develop two scenario models for analysis: 

1) one calibrated to pre-LEMA irrigation behavior and water use from 2008-2012, which we 

used to estimate business-as-usual (BAU) pumping and irrigation during the LEMA period, and 

(2) one which used BAU parameters for the pre-LEMA period but was then calibrated to LEMA 

irrigation behavior between 2013-2017. To identify SALUS parameters matching each period, 

we iteratively varied the soil moisture threshold, which triggers SALUS’s automatic irrigation 

between 25 and 90% of plant available water in steps of 5% for each of four application depths:  

12.7, 19.1, 25, and 31.8 mm (roughly 0.5, 0.75, 1, and 1.25 in.). These are reasonable given 

irrigation management in the region [Kranz et al., 2008]. Fully crossing these parameters 

resulted in 56 model runs. To account for water extracted from the aquifer but lost in delivery 

through factors such as wind-drift evaporation and other efficiency factors, we then divided 

SALUS modeled irrigation volumes for each run by a 90% efficiency penalty based on typical 

values for well-maintained center pivot sprinkler irrigation systems [Kranz et al., 2008]. Finally, 

we used the WIMAS well water use database maintained by the Kansas Geological Survey to 

select the irrigation parameter set that best estimated actual pumped water use during the target 
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periods for each scenario. To access system changes from the LEMA program, modeled yields 

and water budget components from the two scenarios were compared during the LEMA period. 

2.5. Economic analysis 

To assess the economic sustainability of the LEMA program, we estimated changes to 

farmer net income based on differences in regional crop yields and water use between the BAU 

and LEMA model scenarios. To estimate income from crop production, we obtained annual crop 

prices from NASS and adjusted prices to consistent 2017 dollars per kilogram of yield. We then 

summed simulated annual crop-specific yields for the full SD-6 region for each scenario (total kg 

of production for each crop), and converted this to monetary regional totals based on price data. 

For this analysis, we assume that other costs associated with production such as fertilizer, seed, 

equipment, land, and labor are fixed across scenarios to focus only on yield and price. 

To estimate monetary savings from reduced pumping costs, we first quantified the 

pumping volumes for the BAU and LEMA models for 2013-2017. We then translated the 

volume of water extracted into required energy based on a uniform 3.1 megajoules per cubic 

meter [McCarthy et al., In Prep]. A typical cost for industrial energy in the state of Kansas of 

1.97 cents per megajoule (https://www.electricitylocal.com/states/kansas/) was used to convert 

this energy required for pumping into dollars. We then calculated differences in total pumping 

costs between the BAU and LEMA scenarios. 

3. Results and Discussion 

3.1. Model calibration 

To assess the impact of the LEMA groundwater management program, we calibrated the 

SALUS crop model to represent historic yield and water use conditions in the SD-6 LEMA. 
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SALUS simulated yields generally showed good agreement with NASS state statistics (Figure 

4.3). These statistics were most complete for corn, with statewide crop yield for both irrigated 

and rainfed corn in all years of the calibration period (2008-2017). Median simulated yields were 

within 14% and 34% for irrigated and rainfed corn, respectively. NASS data for Sheridan county 

(which encompasses most of SD-6) indicated that simulated rainfed corn yields represented local 

conditions better than statewide conditions in 3 out of 4 available years (Figure 4.3). Given a 

wide E-W precipitation gradient across Kansas, it’s likely that rainfed SALUS yields estimated 

SD-6 yields with more accuracy than statewide yields.  

 

Figure 4.3. SALUS simulated yield validation, 2008-2017.  SALUS calibrated yields for the four 

primary crops in the Sheridan-6 LEMA by irrigation status. USDA NASS annual statewide crop yield 

statistics as well as Sheridan county statistics are shown where available. Values for combined irrigated 

and rainfed fields are shown when NASS data were not available by irrigation status. 
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Available NASS yields were less frequently separated by irrigation status for sorghum, 

soybeans, and wheat. When irrigated statistics were available (Figure 4.3), simulated yields were 

within 3%, 11%, and 24% for sorghum, soybeans, and wheat, respectively. Combined yields for 

all irrigated and rainfed fields were available in other years. Although these summarize both 

irrigated and rainfed fields across the state, the close agreement between combined and rainfed 

data when both are available (e.g., sorghum in 2008-2009; soybeans in 2008-2009 and 2014-

2016, Figure 4.3) suggested that combined statistics best represent rainfed conditions statewide. 

Reasonable agreement between SALUS simulated rainfed yields and NASS combined yields 

indicated that SALUS captured rainfed crop growth sufficiently. The sole Sheridan county data 

point for combined soybeans was also similar to simulated irrigated yields in SD-6 since the 

majority of soy grown in the study area is irrigated. Simulated yields for rainfed wheat were 

inconsistent with available data, with rainfed yields nearing irrigated yields in 2009, 2010, and 

2012. Combined state-level wheat yields from NASS did approach irrigated yields in 2016, so it 

is possible that conditions were particularly favorable for wheat in SD-6 for these years, but not 

for the wider state. Without county or region specific yield data, it is difficult to determine if this 

is a modeling artefact or indicative of SD-6 yields. Wheat yields therefore present an area for 

future investigation and improvement. 

For simulated water use, we selected the best SALUS model for each scenario based on 

agreement with WIMAS well pumping data from among the 56 model runs used for irrigation 

parameter selection (Figure 4.4b). For the BAU scenario, the model that best captured 2008-2012 

groundwater use delivered 31.8 mm (1.25 in) irrigation applications when soil moisture dropped 

below 85% of plant available water. For the LEMA scenario, the model that best captured 2013-

2017 groundwater use delivered 25 mm (1 in) irrigation applications when soil moisture dropped 
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below 80% of maximum capacity. Interestingly, the LEMA scenario model displays opposite 

year-to-year trends than WIMAS data in 2 out of 4 years, whereas the BAU scenario matches 

year-to-year trends during 2008-2012. It’s plausible that the observed pumping quantities don’t 

follow model simulations during LEMA because producers are now operating under a 5-year 

water budget, which likely influenced their cropping and irrigation decisions. 

 

Figure 4.4. SALUS crop model water use for the business-as-usual (BAU) and Local Enhanced 

Management Area (LEMA) scenarios.  (a) Mean annual precipitation for the Sheridan-6 (SD-6) study 

region. (b) Total pumping volume estimated for SD-6 via SALUS for the BAU scenario based on pre-

LEMA groundwater use (2008-2012, brown) and the LEMA scenario, based on LEMA groundwater use 

(2013-2017, green). Actual irrigation pumping volumes extracted from WIMAS well data [KDA DWR, 

2017] is indicated with the blue dashed line. Following the start of the LEMA program in 2013, the pre-

LEMA model served as a business-as-usual (BAU) estimate of water use had the LEMA not been 

implemented. Differences between the BAU and LEMA scenario models from 2013-2017 represent 

reductions in pumping volumes due to the LEMA program. (c) Total 2013-2017 pumping volume based 

on the BAU and LEMA scenarios. Dashed line shows the total water allocation for the five year LEMA 

period, based on 20% of 2002-2012 water use. 

Based on these selected irrigation parameters, producers on aggregate could achieve the 

observed water savings by irrigating less often (here, when the soil water threshold drops below 

80%, instead of 85% in the BAU scenario) and at reduced application irrigation depths (25 mm 
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instead of 31.8 mm). These irrigation application depths fall within observed practices in the 

region, where medium and fine-textured soils provide adequate field capacity for 19.1 – 33 mm 

(0.75 – 1.3 in) water applications for corn [Kranz et al., 2008], the dominant crop in SD-6. 

Typical ranges for soil moisture thresholds triggering irrigation for this region were not available 

to corroborate parameter estimates. If the assumed 90% irrigation efficiency was too high, it is 

possible that soil moisture thresholds are artificially inflated; lower efficiencies would require 

more water extracted from the aquifer to meet simulated water demand by SALUS, resulting in 

models parameterized with lower soil moisture thresholds better matching the WIMAS well data. 

Regardless of this uncertainty around the absolute values, the selected model scenarios revealed 

a decrease in soil moisture threshold for LEMA compared to BAU. Combined with the lower 

application depth, these parameters reflect on-the-ground observations that SD-6 farmers are 

becoming better groundwater managers through increased awareness of irrigation scheduling and 

soil moisture monitoring [Lauer and Sanderson, 2017; NW KS GMD 4, 2017].  

3.2. LEMA program impacts on the regional water budget and crop yields 

We then compared model scenarios to quantify LEMA-induced changes in water use, 

aquifer net balance, and crop yields. Based on modeled water use, we found that the LEMA 

program reduced total 5-year groundwater use by 25% to 119 million m
3
 compared to BAU 

estimates of 159 million m
3
 (Figure 4.4c). This translates to average annual savings of 7.9 

million m
3
. The resulting 39.6 million m

3 
saved over the 5-year LEMA was greater than BAU 

estimates for mean annual pumping (31.8 km
3
). The region surpassed the 20% water reduction 

goal, which would not have been met under BAU irrigation behavior (Figure 4.4c). 

The approach presented here modeled water savings from changes in irrigation depth and 

frequency assuming that the spatial distribution of crop types and irrigated area remained static. 
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Previous work based on statistical modeling found that such changes in overall irrigation depths 

accounted for 72.9% of water savings in the SD-6 LEMA [Chapter 3, this volume]. Thus, 

modeled estimates from SALUS were similar to previous findings based on statistical analysis in 

Chapter 3 while providing further insight into how water savings translate to yield and recharge 

changes. The causal impact analysis based on available 2013-2016 data estimated that in total, 

the SD-6 LEMA reduced water use by 33% at an average rate of 11.3 million m
3
 per year across 

adaptation strategies. Based on the 72.9% contribution, reductions in irrigation depth would 

contribute 24.1% of overall water savings at a rate of 8.2 million m
3
 per year. The close 

agreement from these two complementary approaches based on statistical and process-based 

modeling indicates that the SALUS scenarios developed here reasonably captured observed 

changes due to the LEMA program, lending confidence to using the SALUS model for full water 

budget evaluation, yield assessment, and economic analysis. 

Once irrigation water is applied, SALUS simulated whether the water transpired through 

the plant, evaporated from the soil, or infiltrated the ground past the root zone as irrigation return 

flow, thus recharging the aquifer. We found a small mean annual decrease of 0.73% (standard 

deviation, s.d. 0.57), 0.62% (s.d. 0.13), and 1.6% (s.d. 3.9) in the LEMA scenario for total SD-6 

plant transpiration, soil evaporation, and run off, respectively, totaling a net water savings of 

4.62 million m
3
. The soil evaporation ratio between BAU and LEMA was nearly constant across 

years, whereas differences in plant transpiration were larger in dry years such as 2013 and nearly 

identical in wet years such as 2017, likely accounting for the differences in yield (below). The 

five-year recharge for the LEMA scenario totaled 114 million m
3
, a 27.3% decrease compared to 

the BAU scenario. Figure 4.5 shows the spatial distribution of this decreased recharge across SD-

6, illustrating that the reduction in recharge is driven by irrigated fields (as denoted by the 
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characteristic circular shape due to the dominance of center pivot irrigation technology in the 

region). Figure 4.5 demonstrates how our method can capture sub-field level variability. 

 

 

Figure 4.5. Cumulative change in recharge in Sheridan-6 from the LEMA program, 2013-2017. 
Spatially-explicit comparison of total recharge in Sheridan-6 (SD-6) during the Local Enhanced 

Management Program (LEMA) compared to business-as-usual (BAU) scenario based on SALUS crop 

model output. LEMA-induced reductions in irrigation applications resulted in reduced recharge across 

agricultural fields, leading to a 32.1% decrease compared to BAU. Circular shapes are due to center pivot 

irrigation technology, which dominates SD-6. White lines represent “no data” for roads, which were 

omitted from the model. 

For net aquifer change based on the difference between water extracted and irrigation 

return flow, we found that the net change (extraction – return flow) was negative or near zero for 

all years with the exception of 2017, where high precipitation totals contributed to a positive net 

change (Figure 4.4a, Figure 4.6a). This corroborates studies reporting low recharge in the region, 

often less than the extraction rate except during very wet years which result in rare but 

substantial recharge [Whittemore et al., 2016]. 

When comparing the net change between scenarios, we found that the LEMA scenario 
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had a more favorable net balance than BAU with respect to aquifer preservation in all years 

(Figure 4.6b). Over the five-year period, this amounted to 4.68 million m
3 

of water gain 

compared to the BAU estimates (Figure 4.6c), roughly equivalent to the 4.62 million m
3
 of water 

saved in the LEMA scenario from decreases in plant transpiration, soil evaporation, and run off. 

Given that SD-6 covers 256 km
2
, this translates to a regional average 5-year recharge depth of 

18.3 mm.  

 

Figure 4.6. Net groundwater savings quantified by aquifer balance.  Aquifer balance indicated by net 

change calculated from the SALUS crop model (recharge – pumping). (a) Annual net change by model 

scenario. (b) Annual difference between net change from LEMA and BAU model scenarios. Negative 

values indicate years where the BAU model conserved more groundwater as indicated by the annual net 

change, and positive values indicate years where the LEMA model conserved more water. (c) Cumulative 

net change for the 5-year LEMA management period (2013-2017). 

The yield penalty from LEMA-induced irrigation reductions was small. By comparing 

the LEMA and BAU scenarios, we found that the 5-year mean decrease in median yield was 

0.67%, 1.21%, 1.41%, and 0.07% for corn, sorghum, soybeans, and wheat, respectively (Figure 

4.7). For all crops, interannual differences in median yield were larger than differences between 

modeled scenarios.  
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Figure 4.7. Yield penalty due to reduced irrigation water use, 2013-2017.  Annual median yield by 

crop estimated from the SALUS crop model for the Sheridan-6 Local Enhanced Management Area 

(LEMA). The LEMA scenario (teal) slightly underperformed the business-as-usual (BAU) scenario 

(brown) for all crops except wheat, which were highly similar between the two model scenarios. 

The ability to track yield effects of different irrigation regimes is a key metric needed to 

evaluate the LEMA program, but to date, data on crop yields for the region has been collected 

only from voluntary reporting on a limited number of fields and disconnected from soil and 

rainfall attributes, inhibiting robust statistical conclusions [Golden and Liebsch, 2017]. 

Preliminary conclusions from this data for corn, which is best represented with 20 observations 

within SD-6 and 11 observations in neighboring fields, suggest there was a 1.2% yield decline 

due to the LEMA water restrictions [Golden and Liebsch, 2017]. Given the uncertainties 

involved, this provides some support that yield declines estimated by SALUS are valid.  
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3.3. Economic analysis results 

Based on crop yields and pumping reductions, we found that the SD-6 LEMA generated 

an overall 5-year net benefit of $1,815,130 across the region compared to the BAU scenario 

(Table 4.1). By combining annual national commodity prices with crop-specific yields, we found 

that total crop gross income for the LEMA ranged from $14.7 million in 2015 to $21.2 million in 

2013. Over the 5-year LEMA period, the irrigation regime under the LEMA program resulted in 

a $604,380 loss in gross income compared to the BAU irrigation regime. This was a 0.75% 

reduction in crop income for irrigated fields. Differences were worse in dry years (2013: 

$194,144) and smallest in wet years ($18,019 in 2017, Table 4.1), likely mirroring differences in 

plant transpiration (see section 3.2.2). Estimated energy costs based on pumping volume, energy 

needs to lift water from the ground, and Kansas energy prices ranged from $1.33 million in 2017 

to $1.58 million in 2016 for LEMA. Compared to the BAU scenario, the LEMA saved a total of  

$2.42 million in pumping costs over 2013-2017, a 25% reduction in energy costs for the 5 years, 

scaling linearly from the reduced water volume.  

Table 4.1. Estimated gross crop income and groundwater pumping costs in the Sheridan-6 Local 

Enhanced Management Area (LEMA).  Absolute estimated amounts are given for the LEMA scenario, 

as well as changes from business-as-usual. Amounts are in U.S. dollars, adjusted to 2017 dollars. 

Year LEMA Crop 

Income ($) 
 Crop 

Income ($) 

LEMA Pumping 

Costs ($) 
 Pumping 

costs ($) 

2013 21,183,697 -194,144 1,554,309 425,962 

2014 15,003,266 -179,193 1,373,225 459,504 

2015 14,737,243 -98,098 1,440,761 423,456 

2016 14,793,577 -114,926 1,576,115 660,199 

2017 15,004,331 -18,019 1,327,595 450,391 

Total  -604,380  2,419,511 

 

Combined, these calculations indicate that the LEMA program provided a substantial net 

profit for SD-6 farmers. Our estimate of lost crop income is conservative, since we held annual 

crop types and irrigation extents constant between the BAU and LEMA scenario. In reality, 
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under BAU conditions producers would have irrigated approximately 2-4% more crop area as 

well as planted more corn [Chapter 3, this volume], presumably resulting in a higher total crop 

income for the SD-6 region. Still, even total losses are likely fully recovered by the $2.42 million 

saved in energy costs.  

4. Conclusions 

We used the process-based SALUS crop model to assess water and economic 

sustainability from stakeholder driven agricultural management in the Sheridan-6 Local 

Enhanced Management Area (SD-6 LEMA). Our approach leveraged annual agricultural land 

use maps derived from remote sensing to simulate crop yields and the agricultural water budget 

within the SD-6 region from 2008-2017. With this approach, we estimated that groundwater 

extraction volumes decreased by ~25% (39.6 million m
3
) due to reductions in irrigation 

application depths and frequency, which is consistent with previous statistical modeling efforts 

[Chapter 3]. Critically, however, SALUS was able to translate this reduced pumping volume into 

corresponding changes in simulated recharge due to diminished irrigation return flow when 

irrigation becomes more efficient. We estimated that the resulting decreases in irrigation volume 

reduced irrigation return flow by 27.3%. Combined with reduced pumping due to LEMA 

restrictions, the net aquifer water storage increased 4.68 million m
3
 for the 2013-2017 LEMA, or 

11.8% of estimated water use reductions. 

Our results suggest that the SD-6 LEMA program improves both the economic and 

hydrologic sustainability of the region, increasing net profits while improving the aquifer water 

balance compared to business-as-usual conditions. SALUS’s ability to model yield at sub-field 

resolution across SD-6 allowed us to assess how the LEMA program affected regional income. 

Overall, we estimated that changes in irrigation behavior in the LEMA scenario substantially 
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increased net profits by $1.8 million when both yield penalties and energy savings were 

included. Furthermore, extending aquifer lifespan can generate long-term benefits to the system 

given expected future higher yielding varieties and preserving the ability to mitigate drought 

[Zipper et al., 2016; Foster et al., 2017; Quintana Ashwell et al., 2018]. 

However, it remains unclear if LEMA-era levels of irrigated agriculture in the SD-6 

region are fully sustainable. Our analysis of net aquifer change indicated that the aquifer balance 

was positive only in abnormally wet years (Figure 4.6). The initial LEMA cycle from 2013-2017 

was 26.7% wetter than the 2002-2012 period upon which reduction targets are based [Chapter 3, 

this volume]. This indicates that any realized benefits from the first LEMA cycle may not apply 

under typical to drought conditions, particularly considering the relatively small net gain to the 

aquifer balance during this wetter than average period. Given the region’s intermediate drought 

frequency and expected increases in water stress due to climate change [Dai, 2013], LEMA 

effectiveness and yield implications in drought conditions need to be better understood to inform 

future planning efforts. Future work is planned to extend the modeling approach developed here 

to include drought scenarios, thus testing if the SD-6 LEMA framework is sufficient to avoid 

aquifer depletion under drought stress. As aquifer depletion threatens crop production in many 

parts of the world, approaches that integrate models with in-situ and remotely sensed data can 

estimate critical system components that are difficult to directly measure, thus informing 

economically and hydrologically sustainable management strategies. 
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