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ABSTRACT

SPARSE HARMONIC TRANSFORMS

By

Bosu Choi

We develop fast function learning algorithms given an assumption that a function can be

well approximated by the expansion of a few high-dimensional basis functions. Considering

the tensorized Fourier basis functions, several versions of high-dimensional sparse Fourier

transforms (SFTs) are discussed. One-dimensional sparse Fourier transforms introduced in

[1] and [2] quickly approximate functions represented by only s Fourier basis functions using a

few samples (function evaluations) without noise and with noise respectively. The algorithms

can be directly applied to compute the Fourier transform of the high-dimensional functions.

However, it becomes hard to implement them if the dimension gets too large. In this thesis,

we introduce two new concepts: partial unwrapping and tilting. These two ideas allow us to

efficiently compute the high-dimensional sparse Fourier transforms using the ideas in [1] and

[2]. Furthermore, we develop sublinear-time compressive sensing methods to approximate

the multivariate functions by the expansion of a few bounded orthonormal product (BOP)

bases which include tensorized Fourier basis functions. These new methods are obtained

from CoSaMP by replacing its usual support identification procedure with a new faster one

inspired by fast SFT techniques. The resulting sublinearized CoSaMP method allows for

the rapid approximation of bounded orthonormal product basis (BOPB)-sparse functions

of many variables which are too hideously high-dimensional to be learned by other means.

Both numerics and theoretical recovery guarantees will be presented.
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Chapter 1

Introduction

In this thesis, we develop sublinear-time algorithms for finding signals under the assumption

of sparsity. We first do this in the Fourier setting and then develop a generalized method

which is expected to be applied to Uncertainty Quantification(UQ) with great promise.

In various numerical problems, one encounters the problem of function approximation,

interpolation, and learning from finite function evaluations (samples). For high-dimensional

function domains, there is the danger of the curse of dimensionality, i.e., the problem that the

number of function evaluations required for an accurate result grows exponentially fast as the

dimension grows. For example, one of the best known and most frequently-used algorithms

is the Fast Fourier Transforms (FFT). However, in the case that the bandwidth M of the

frequencies is large, the sampling size becomes large, as dictated by the Shannon-Nyquist

sampling theorem. Specifically, the runtime complexity is O(M logM) and the number of

samples is O(M). This issue is only exacerbated in the D-dimensional setting, where the

runtime complexity is O(MDlogMD) and the number of samples is O(MD) if we assume

the dimension is D and the bandwidth in each dimension is M . For another example, it

is proven in [3] that the numerical integration of D-dimensional functions in Cr requires

more than cr(1 + γ)D function evaluations for γ > 0 in order to achieve a given error ε.

Thus, some additional assumptions are endowed to the functions for developing a feasible

algorithm. Sparsity is the one such assumption that we are often able to observe in many
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problems. That is, many signals or data show some sparse (or compressible) property in

various forms.

Due to this curse of dimensionality, many higher dimensional problems of interest are

beyond current computational capabilities of the traditional FFT. Moreover, in the sparse

setting where the number s of significant frequencies is small, it is computationally wasteful

to compute all MD coefficients. In such a setting we refer to the problem as being sparse in

the Fourier domain. On the other hand, for such sparse problems, the idea of sublinear sparse

Fourier transforms was introduced in [4], and several sublinear algorithms were developed

extending the idea [4, 5, 6, 7, 8, 1, 2]. These methods greatly reduce the runtime and

sampling complexity of the FFT in the sparse setting. The methods were primarily designed

for the one dimensional setting.

In [9], practical algorithms for data in two dimensions were given for the first time. In

this thesis, we develop algorithms designed for higher dimensional data, which is effective

even for dimensions in the hundreds and thousands. To achieve our goal, our approach must

address the worst case scenario presented in [9]. It is not straightforward to extend one

dimensional sparse Fourier transform algorithms to multiple dimensions. We face several

obstacles. First, we do not have an efficient FFT for multidimensional problems much

higher than three. Using projections onto lower-dimensional spaces solves this problem.

However, like all projection methods for sparse FFT, one needs to match frequencies from

one projection with those from another projection. This registration problem is one of the

big challenges in the one dimensional sparse FFT. An equally difficult challenge is that

different frequencies may be projected into the same frequency (the collision problem). All

projection methods for sparse FFT primarily aim to overcome these two challenges. In

higher dimensional sparse FFT, these problems become even more challenging as now we
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are dealing with frequency vectors, not just scalar frequencies.

In order to make our multi-dimensional sparse Fourier algorithm to be robust to noisy

samples, we utilize the idea of a multiscale method from [2]. Suppose f : [0, 1)D → C defined

as
∑
n∈S cne

2πin·x+z(x) where x ∈ [0, 1)D, n ∈ [−M/2,M/2)D∩ZD, |S| = s�MD and

z(x) represents a noise function. Our algorithms introduced in Chapter 2 are not robust to

noise. This lack of robustness is due to the computation of the ratio between the discrete

Fourier transforms of two sample sets from f at the shifted and unshifted points in order

to get the traces of significant Fourier modes. For example, consider a one mode sparse

function f(x) = ce2πinx of one dimension and two sample sets of length p, where p is taken

to be 1. That is, f0 = (f(0)) and f ε = (f(ε)) each of whose DFT yields the exact recovery

of the frequency n = 1
2πεArg

(
f(ε)
f(0)

)
where the function Arg gives the argument falling into

[−π, π). If those samples are noisy, however, then 1
2πεArg

(
f(ε)+z(ε)
f(0)+z(0)

)
does not guarantee

the proper approximation of n. The fraction in Arg(·) in general is corrupted by the term

whose size is O(σ/cmin
√
p) where p is the number of samples, cmin is the nonzero Fourier

coefficient least in magnitude, and the noise is assumed to be Gaussian noise ∼ N (0, σ2),

details are given in Section 3.1.2. A significantly large p > O(σ/εcmin)2/3 enables us to find

the correct Fourier modes by simple rounding as introduced in [2]. However, when either σ is

too big or the shift size ε is too small, p is required to be very large, accordingly. In order to

avoid p excessively enlarged, we make use of a multiscale method in Chapter 3 which makes

an initial guess about each frequency using moderately large ε0 and p, and add the finite L

correction terms computed by using gradually increasing εq for q = 1, 2, · · · , L.

Our algorithms assume that we have access to an underlying continuous function f ,

i.e., we can sample at anywhere we want. However, samples are sometimes given at the

beginning and getting extra samples can be very expensive. Accordingly, it is necessary to
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do the approximation of extra samples using given samples. A fully discrete sparse Fourier

transform was introduced in [10] combining periodized Gaussian filters and one-dimensional

sparse Fourier transform in the continuous setting such as [11] and [2]. We expect for the

future work that this approach will help our multiscale high-dimensional algorithm to be

modified to work for fully discrete samples.

Many problems are best represented using bases other than Fourier. In this thesis we

develop a generalization of sublinear-time sparse harmonic transforms for such applications.

To motivate our generalized sparse harmonic transform we will now consider an example

from uncertainty quantification (UQ). A common class of examples in UQ literature [12, 13],

is that certain quantities of interest (QoI) are affected by a number of parameters and one

can assume that the QoI depend smoothly on these parameters. Consequently, uncertainty

in these inputs affects the uncertainty in the QoI outputs. In the process of quantifying

these uncertainties, the probability density function (PDF) of the input parameters is esti-

mated through Bayesian inference, and the uncertainty is propagated through the models

for sampling points chosen from the PDF in order to obtain the prediction intervals of QoI.

A crucial step in this process is then to approximate the QoI from its sample values. This

typically requires multivariate function integration and interpolation, usually via quadra-

ture methods, sparse grid approaches, or Monte Carlo methods, depending on the number

of parameters.

The first two methods indeed face the curse of dimensionality: Quadrature methods [14]

require O(MD) samples when D is the number of dimensions/function variables. Sparse

grid methods [15] improve on this by working with function spaces of mixed smoothness.

Instead of a full grid using O(MD) samples, they require only O(M(logM)D−1) samples.

Although it is better than quadrature methods for high dimensional problems, it still exhibits
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exponential dependence on D, and so they are only feasible for moderately large dimensional

problems. Monte Carlo methods [16] on the other hand have the advantage of a convergence

rate independent of the number of dimensions. However, they exhibit slow convergence at

a rate of O(1/
√
m), where m is the sample number. Consequently, such methods are often

used to integrate relatively high-dimensional functions. Similarly, quasi-Monte Carlo[17, 16]

achieves a convergence rate, O(
(logm)D

m ) by using low-discrepancy sample sets. Though

good for integration, (quasi-)Monte Carlo methods can not be used for function learning,

approximation or interpolation. For such applications one has few options for large dimen-

sions.

Uncertainty quantification consists of several stages. We first get several experimental

observations of some phenomenon, design our model from observations using ODE, PDE,

etc., and solve this model using various numerical methods. These three steps are revisited

for validation and calibration. Each step contains uncertainty (error), and these errors

are accumulated to uncertainty in QoI. Our models usually contain tens of or hundreds

of parameters which are unknown. We consider parametric operator equations [18, 19,

20],

A(x)u(x) = b,

where the solution u(x) is in the Sobolev space H1
0 (U), a parameter vector x ∈ D ⊂ RD with

a large D ∈ N and a probability measure ν on D, and U is the physical domain of u. QoI is

approximated by a function g : x→ G(u(x)), where G is a functional on u ∈ H1
0 (U).

The following class of parametric elliptic partial differential equations is considered in
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several papers [18, 20, 21],

−∇ · (a(·,x)∇u) = b, u|∂U = 0,

where a(·,x) is a diffusion coefficient. Considering these parameters as variables x as well

as physical variables t, by the Karhunen-Loève expansion[18], a stochastic process, a(t,x),

can be represented as the expectation, ā(t), plus an infinite sum of eigenfunctions of the

covariance function multiplied by eigenvalues. We look at a simple case where a affinely

depends on x as follows,

a(t,x) = ā(t) +
∑
j≥1

xjψj(t).

Accordingly, u can be represented by a (possibly) infinite expansion in Tn, typically, ten-

sorized Chebyshev or Legendre functions,

u(t,x) =
∑
n∈F

dnTn(x),

where dn ∈ H1
0 (U). When G is a linear functional,

g(x) = G(u(x)) =
∑
n∈F

G(dn)Tn(x),

and if cn := G(dn) and we truncate this expansion to a finite sum of a few cn large in their

magnitude,

g(x) ≈
∑

n∈S⊂F
cnTn(x),

which means that a function g can be approximated by a linear combination of a few ten-

sorized basis functions.
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Our generalized method is inspired by the sparse approximation of QoI which can be

considered as a function of many variables in UQ. We consider a D-variate function f(x) :

D → C with D ⊂ RD which is compressible in a bounded orthonormal system {Tn},

i.e.,

f(x) =
∑

n∈[M ]D

cnTn(x)

where only s � MD number of cn are significant, such n satisfy ‖n‖0 ≤ d with d ≤ D,

and [M ] := {0, 1, 2, · · · ,M − 1}. We aim at recovering s significant coefficients cn and

corresponding index vectors n efficiently in terms of both runtime and sampling.

Our method is a greedy method motivated by CoSaMP[22], HTP[23], etc. The support

identification in these methods requires a construction of a measurement matrix and its

multiplication with a sample vector resulting in huge memory and operation counts when

considering the high dimensional problems. Accordingly, our method introduces a faster

support identifying method that finds the entries of the multi-index n (entry identification)

and then integrates the entries to recover the multi-indices (pairing). After estimating the

support of n, the least squares problem restricted to this support is solved to approximate

the corresponding coefficients. The process so far is repeated until we recover the function

f with desirable error.

To wrap up, this thesis explores several versions of sublinear-time algorithms for approx-

imating high dimensional functions which show sparsity in some bounded orthonormal prod-

uct basis(BOPB) expansion. Our algorithm using the CoSaMP approach can compute the

discrete Fourier transform quickly instead of our proposed high dimensional sparse Fourier

transforms. However, the sparse Fourier transforms shows faster and more efficient perfor-

mance whereas the sublinear CoSaMP works for the general BOPB including the tensorized
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Fourier basis.

In the remainder of the introduction, we review the related work. The first sparse

Fourier algorithm was proposed in [4]. The authors introduced a randomized algorithm

with O(s2logcM) runtime and O(s2logcM) samples where c is a positive number that varies

depending on the trade-off between efficiency and accuracy. An algorithm with improved

runtime O(slogcM) and samples O(slogcM) was given in [5]. The algorithms given in [6]

and [7] achieved O(slogM logM/s) average-case runtime, and the actual empirical results

are given in [7] comparing their algorithms with FFTW and an existing sparse FFT from

[24]. The algorithms in [4, 5, 6, 7] are all randomized. The first deterministic algorithm

using a combinatorial approach was introduced in [8]. In [1], another deterministic algo-

rithm was given whose procedure recognizes frequencies in a similar manner to [6]. The two

methods in [1, 6] were published at the same time and both use the idea of working with

two sets of samples, one at O(s) points and the second at the same O(s) points plus a small

shift. The ratio of the FFT of the two sets of points, plus extra machinery, leads to fast

deterministic algorithms. The first deterministic algorithm [8] has O(s2log4M) runtime and

sampling complexity, and in [11], an improved deterministic algorithm was introduced, and

the extension to higher dimensional functions was suggested but it suffered the exponential

dependence of runtime complexity on the dimension. Another deterministic algorithm was

introduced in [1] which uses the similar idea in the frequency recovery through phaseshift

and works for noiseless samples from exactly s-sparse functions. It has O(s log s) runtime

and O(s) sampling complexity on average. In [2], a multiscale method was introduced which

works when we are given noisy samples and has O(s log s logM/s) runtime and O(s logM/s)

sampling complexity.

Extension of one-dimensional sparse Fourier transform to multidimensional problem set-
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ting is not straightforward. One simple way of extension is to unwrap the multi-dimensional

signal to one-dimensional signal, however, it suffers from the exponentially large runtime

complexity due to the curse of dimensionality [11]. The first randomized algorithm for the

two-dimensional problem was introduced in [9] using parallel projections of frequencies. In

[25], a general D-dimensional deterministic sparse Fourier algorithm achievesO(Ds2M) sam-

ples and O(Ds3 + ds2M log(sM)) runtime complexity by using rank-1 lattices and finding

frequencies in an entry-wise fashion. To reduce the runtime complexity, the authors also

introduced a randomized version of the algorithm with O(Ds + DM) samples and O(Ds3)

runtime. A randomized algorithm introduced in [26] requires 2O(D2)(s logMD loglogMD)

samples and 2O(D2)s logD+3MD runtime.

Many functions in UQ problems assume sparsity(or compressibility) in various forms that

inspires us to consider the possible contribution of compressive sensing and sparse approx-

imation. In [27], randomized algorithms approximating sparse polynomials are introduced.

In [25, 28, 29, 30], different versions of high-dimensional sparse Fourier transforms are intro-

duced. As the sparsity in high-dimensional Chebyshev and Lengendre space is considered in

some UQ problems, fast algorithms to recover functions with such sparsity have been devel-

oped [31, 20, 19]. These papers often have additional assumptions on the structure of the

sparsity which implies the degrees of the polynomials with large coefficients are very small.

A simple example is the case where a function of larger number of variables actually depends

on a fewer variables[32]. Hyperbolic cross[33, 34] and lower sets[19] are also examples with

such characteristic, and this implies the bounded mixed smoothness of the objective function

instead of arbitrary smoothness. In [3], it is shown that the number of function evaluations

required to approximate a function with the arbitrary smoothness cannnot avoid the curse

of dimensionality, i.e., super-exponential growth with the number of dimensions. Instead,

9



many methods assumes the structured sparsity in order to avoid the curse of dimensionality

in certain problems. One method is a sparse grid method [15] which is used for both inter-

polation and integration of multi-variate functions. In [20, 18], compressive sensing method

with weighted l1 minimization is combined with Petrov-Galerkin method to approximate the

linear functional of parametric PDE’s solution which can be represented by the combination

of a few tensorized Chebyshev polynomials.

1.1 Thesis Outline

In the thesis, we present three different approaches to quickly approximating functions of

many variables that are sparse in BOPBs using a few function evaluations. A tensorized

Fourier basis is the one with good properties compared to the other BOPBs. We develop

very efficient sparse FFTs using these advantages. The first approach works for exactly

sparse functions by using noiseless samples, and the second approach works for functions

with moderate noise. Then, general sparse harmonic transforms are established so that they

work for any BOPB including the Fourier basis.

As a first step to our goal of a high dimensional sparse FFT, the thesis addresses the

case for the continuous functions without noise in a high dimensional setting in the Chapter

2. We introduce effective methods to address the registration and the collision problems in

Section 2.1. In Section 2.2, the ideas of various methods to resolve these problems in 2D

are introduced which can be extended to the methods in the higher dimensional setting. In

particular, we introduce a novel partial unwrapping technique in Section 2.3 that is shown

to be highly effective in reducing the registration and collision complexity while maintains

the sublinear runtime efficiency even in very high-dimensional problems. We shall show in
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Section 2.4 that our algorithm can achieve O(Dslogs) computational complexity and O(Ds)

sampling size on average assuming there is no worst-case scenario. In Section 2.5, we present

as examples computational results for sparse FFT where the dimensions are 100 and 1000

respectively. For comparison, the traditional D-dimensional FFT requires O(MDlogMD)

time complexity and O(MD) sampling complexity, which is impossible to implement on any

computers today.

In Chapter 3, we shall present an adaptation of the algorithm for noisy data. In Sec-

tion 3.1 we introduce our problem setting, necessary notation and our noise model. Based

on these, a multiscale method for frequency entry estimate is introduced and analyzed in

Section 3.2. In Section 3.3, parameters that determine the performance of our algorithm

are introduced and the pseudocode is given with description. The results of the numerical

experiments are shown in Section 3.4.

In Chapter 4, a generalized sparse harmonic transform is described. In Section 4.1, we

introduce the notation that is used throughout the chapter and the problem setting, and

reviewed the basics of compressive sensing related to the thesis. In Section 4.2 the description

and the performance results of our proposed method are introduced. The analysis supporting

the results in Section 4.2 is elaborated in Section 4.3 and the results of numerical experiments

are shown in Section 4.4.
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Chapter 2

High-dimensional Sparse Fourier

Transforms

2.1 Preliminaries

2.1.1 Review of the One-Dimensional Sparse Fourier Transform

The one-dimensional sublinear sparse Fourier algorithm inspiring our method was developed

in [1]. We briefly introduce the idea and notation of the algorithm before developing the

multidimensional ones throughout this chapter. We assume a function f : [0, 1) → C with

sparsity s as the following,

f(x) =
∑
n∈S

cne
2πinx (2.1)

where the bandwidth is M , i.e., each frequency n ∈ S ⊂ [−M/2,M/2)∩Z, the cardinality,

|S|, of S is s, and the corresponding nonzero coefficient cn is in C for all n. We can consider

it as a periodic function over R instead of [0, 1). The goal of the algorithm is to recover all

coefficients cn and frequencies n so that we can reconstruct the function f . This algorithm

is called the “phase-shift” method since it uses equi-spaced samples from the function and

those at the positions shifted by a small positive number ε. To verify that the algorithm

correctly finds the frequencies in the bandwidth M , ε should be strictly no bigger than 1/M .
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We denote a sequence of samples shifted by ε with the sampling rate 1/p, where p is a prime

number, as

fp,ε =
(
f(0 + ε), f(

1

p
+ ε), f(

2

p
+ ε), f(

3

p
+ ε), · · · , f(

p− 1

p
+ ε)

)
. (2.2)

We skip much of the details here. In a nutshell, choosing p slightly larger than s is enough

to make the algorithm work. In [1] p is set to be roughly 5s, which is much smaller than the

Nyquist rate M . Discrete Fourier transform (DFT) is then applied to the sample sequence

fp,ε, and the hth element of its result is the following

F(fp,ε)[h] = p
∑

n=h( mod p)

cne
2πiεn (2.3)

where h = 0, 1, 2, . . . , p− 1. If there is only one frequency n congruent to h modulo p,

F(fp,ε)[h] = pcne
2πiεn. (2.4)

By putting 0 instead of ε, we can get the unshifted samples fp,0 and applying the DFT

gives

F(fp,0)[h] = pcn. (2.5)

This process so far is visualized in the Figure 2.1. As long as there is no collision of frequencies

with modulo p, we can find frequencies and their corresponding coefficients by the following

computation

n =
1

2πε
Arg

(F(fp,ε)[h]

F(fp,0)[h]

)
,
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cn =
1

p
F(fp,0)[h], (2.6)

where the function “Arg” gives us the argument falling into [−π, π). Note that n should be

the only frequency congruent to h modulo p, i.e., n has no collision with other frequencies

modulo p. The test to determine whether a collision occurs or not is

|F(fp,ε)[h]|
|F(fp,0)[h]|

= 1. (2.7)

The equality (2.7) above holds when there is no collision. If there is a collision, the equality

does not hold for almost all ε, i.e., the test fails to predict a collision for the finite number of

ε [1]. Furthermore, it is also shown in [1] that for any ε = a
b with a, b coprime and b ≥ 2M ,

equality (2.7) does not hold for at least one shift in a certain finite set of integer multiples

of ε unless there is no collision. In practical implementations, we choose ε to be 1/CM for

some positive integer C ≥ 1 and allow some small difference τ between the left and right

sides of (2.7) where τ is a very small positive number.

Figure 2.1: Process of 1D sublinear sparse Fourier algorithm
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The above process is one loop of the algorithm with a prime number p. To explain it from

a different view point, we can imagine that there are p bins. Then we sort all frequencies into

these bins according to their remainder modulo p. If there are more than one frequencies in

one bin, then a collision happened. If there is only one frequency, then there is no collision.

To determine whether a collision occurs, we use the above test. In the case where the test

fails, i.e., the ratio is not 1, we need to use another prime number p′. Thus we re-sort

the frequencies into p′ bins by their remainder modulo p′. Even if two frequencies collide

modulo p, it is likely that they do not collide modulo p′. Particularly, the Chinese Remainder

Theorem guarantees that with a finite set of prime numbers, {p`}, any frequency within the

bandwidth M can be uniquely identified, given
∏
` p` ≥ M . Algorithmically, for each loop,

we choose a different prime number p′ and repeat equations (2.2)–(2.7) with p replaced by

p′. In this way we can recover all cn and n in sublinear time O(slogs) using O(s) samples

on average. The overall code is shown in Algorithm 4 referred from [1].

2.1.2 Multidimensional Problem Setting and Worst Case Scenario

In this section, the multidimensional problem is introduced. Let us consider a function

f : RD → C such that

f(x) =
∑
n∈S

cne
2πin·x, (2.8)

where n ∈ [−M/2,M/2)D ∩ ZD and cn ∈ C. That is, from (2.1), x is replaced by the

D-dimensional phase or time vector x, the frequency n is replaced by the frequency vector

n, and thus the operator between n and x is a dot product instead of simple scalar multi-

plication. We can see that this is a natural extension of the one-dimensional sparse problem.

As in the one-dimensional setting, if we find cn and n, we recover the function f .
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Algorithm 1 Phaseshift

1: procedure Phaseshift
2: Input:f, C, s,M, ε
3: Output:R
4: R← ∅
5: t← 1
6: while |R| < s do
7: s∗ ← s− |R|
8: p← t th prime number ≥ Cs∗
9: Q(x) =

∑
(n,cn)∈R cne

2πinx

10: for ` = 0→ p− 1 do
11: fp,0[`] = f( `p)−Q( `p)

12: fp,ε[`] = f( `p + ε)−Q( `p + ε)
13: end for
14: F(fp,ε) = FFT(fp,ε)
15: F(fp,0) = FFT(fp,0)
16: F sort(fp,0) = SORT(F(fp,0))
17: for h = 0→ s∗ − 1 do

18: if
∣∣∣ |Fsort(fp,0)[h]|
|Fsort(fp,ε)[h]|

− 1
∣∣∣ < ε then

19: ñ = 1
2πεArg

(
Fsort(fp,ε)[h]

Fsort(fp,0)[h]

)
20: cñ = 1

pF
sort(fp,0)[h]

21: R← R ∪ (ñ, cñ)
22: end if
23: end for
24: prune small coefficients from R
25: t← t+ 1
26: end while
27: end procedure

However, since our time and frequency domain have changed, we cannot apply the previ-

ous algorithm directly. If we project the frequencies onto a line, then we can apply the former

algorithm so that we can retain the sublinear time complexity. Since the operator between

frequency and time vectors is a dot product, we can convert projection of frequencies to that

of time. For example, we consider the projection onto the first axis, that is, we put the last

D− 1 elements of time vectors as 0. If the projection is one-to-one, i.e., there is no collision,

then we can apply the algorithm in Section 2.1.1 to this projected function to recover the

first element of frequency vectors. If there is a collision on the first axis, then we can try
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another projection onto k̃th axis, k̃ = 2, 3, · · · , D, until there are no collisions. We introduce

in the latter sections how to recover the corresponding remaining D − 1 elements by ex-

tending the test to determine the occurrence of a collision in Section 2.1.1. Furthermore, to

reduce the chance of a collision through projections, we use an “unwrapping method” which

unwraps frequencies onto a lower dimension guaranteeing a one-to-one projection. There are

both a “full unwrapping” and a “partial unwrapping” methods, which are explained in later

sections.

We shall call projections onto any one of the coordinate axes a parallel projection. The

worst case is where there is a collision for every parallel projection. This obviously happens

when a subset of frequency vectors form the vertices of a D-dimensional hypercube, but it can

happen also with other configurations that require fewer vertices. Then our method cannot

recover any of these frequency vectors via parallel projections. To resolve this problem,

we introduce tilted projections: instead of simple projection onto axes we project frequency

vectors onto tilted lines or planes so that there is no collision after the projection. We shall

call this the tilting method and provide the details in the next section. After introducing

these projection methods, we explore which combination of these methods is likely to be

optimal.

2.2 Two Dimensional Sublinear Sparse Fourier Algo-

rithm

As means of explanation, we introduce the two-dimensional case in this section and extend

this to higher dimensions in Section 2.3. The basic two-dimensional algorithm using a parallel

projection is introduced in Section 2.2.1, the full unwrapping method is introduced in Section
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2.2.2 and the tilting method for the worst case is discussed in Section 2.2.3.

Figure 2.2: Process of the basic algorithm in 2D

2.2.1 Basic Algorithm Using Parallel Projection

Our basic two-dimensional sublinear algorithm excludes certain worst case scenarios. In most

cases, we can recover frequencies in the 2-D plane by projecting them onto each horizontal

axis or vertical axis. Figure 2.2 is a simple illustration. Here we have three frequency vectors

where n1 and n3 are colliding with each other when they are projected onto the horizontal

axis, and n1 and n2 are colliding when they are projected onto the vertical axis. The first

step is to project the frequency vectors onto the horizontal axis and recover n2 and its

corresponding coefficient cn2 only, since it is not colliding. After subtracting n2 from the

data, we project the remaining frequency vectors onto the vertical axis and then find both

n1 and n3.

Now let us consider the generalized two-dimensional basic algorithm. Assume that we

have a two-dimensional function f with sparsity s :

f(x) =
∑
n∈S

cne
2πin·x, cn ∈ C, n ∈

[
− M

2
,
M

2

)2
∩ Z2. (2.9)

For now, let us focus on one frequency vector ñ which is not collided with any other pairs
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when they are projected onto the horizontal axis. To clarify put x = (x1, 0) with n = (n1, n2)

into (2.9),

f1(x1) := f(x1, 0) =
∑
n∈S

cne
2πin1x1 , (2.10)

which gives the same effect of the parallel projection of frequency vectors. Now, we can

consider this function as a one-dimensional function f1 so that we can use the original one

dimensional sparse Fourier algorithm to find the first component of ñ. We get the samples

f1
p and f

1,1
p,ε without and with the shift by ε, respectively. We can find these in the form

of sequences in (2.2), apply the DFT to them, and then recover the first component of the

frequency pair and its coefficient as follows,

ñ1 =
1

2πε
Arg

(F(f
1,1
p,ε)[h]

F(f1
p)[h]

)
,

cñ =
1

p
F(f1

p)[h]. (2.11)

At the same time, we need to find the second component. In (2.10), we replace 0 by ε.

Then

f1,2(x1) := f(x1, ε) =
∑
n∈S

cne
2πi(n1x1+n2ε),

F(f
1,2
p,ε )[h] = pcñe

2πiñ2ε,

ñ2 =
1

2πε
Arg

(F(f
1,2
p,ε )[h]

F(f1
p)[h]

)
, (2.12)

where f
1,2
p,ε are samples shifted by ε in the vertical sense with rate 1/p from the function

f1,2. The equalities in (2.11) hold only when ñ1 is the only one congruent to h modulo p

among every first component of s frequency pairs and (2.12) holds only when the previous
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condition is satisfied and ñ = (ñ1, ñ2) does not collide with other frequency pairs from the

parallel projection.

Now we have two kinds of collisions. The first one is from taking modulo p after the

parallel projection and the second one is from the projection. Thus we need two tests. To

determine whether there are both kinds of collisions, we use similar tests as (2.7). If there are

at least two different n1 congruent to h modulo p, then the second equality in the following

is not satisfied for almost all ε, just as (2.7),

|F(f
1,1
p,ε )[h]|

|F(f1
p)[h]|

=
|p
∑
n1=h( mod p) cne

2πiεn1 |
|p
∑
n1=h( mod p) cn|

= 1. (2.13)

Likewise, if there is a collision from the projection, i.e., the first components n1’s of at least

two frequency vectors are identical and the corresponding n2’s are different, the following

second equality does not hold for almost all ε,

|F(f
1,2
p,ε )[h]|

|F(f1
p)[h]|

=
|p
∑
n1=h( mod p) cne

2πiεn2 |
|p
∑
n1=h( mod p) cn|

= 1. (2.14)

The two tests above are both satisfied only when there is no collision both from taking

modulo p and the projection. We use these for the complete recovery of the objective

frequencies.

So far we project the frequencies onto the horizontal axis. After we find the non-collided

frequencies from the first projection, we subtract a function consisting of the found fre-

quencies and their coefficients from the original function f to get a new function. Next we

project this new function onto the vertical axis and do a similar process. The difference is

to exchange 1 and 2 in the super-indices in (2.10) through (2.14). Again, find the remaining
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non-collided frequencies, change the axis again and keep doing this until we recover all of

the frequencies.

2.2.2 Full Unwrapping Method

We introduce another kind of projection which is one-to-one. The full unwrapping method

uses one-to-one projections onto one-dimensional lines instead of the parallel projection onto

axes from the previous method. We consider the s pairs of frequencies n = (n1, n2) ∈ S and

transform them as follows

(n1, n2) → n1 +Mn2. (2.15)

This transformation in frequency space can be considered as the transformation in phase or

time space. That is, from the function in (2.9)

g(x) := f(x,Mx) =
∑
n∈S

cne
2πi(n1+Mn2)x. (2.16)

The function g(x) is a one-dimensional function with the sparsity s and the bandwidth

bounded by M2. We can apply the algorithm in Section 2.1.1 on g so that we recover s

frequencies of the form on the right side of the arrow in (2.15). Whether unwrapped or not,

the coefficients are the same, so we can find them easily. In the end we need to wrap the

unwrapped frequencies to get the original pairs. Remember that unwrapping transformation

is one-to-one. Thus we can wrap them without any collision.

Since the pairs of the frequencies are projected onto the one-dimensional line directly,

we call this method the “full unwrapping method”. A problem of this method occurs when

the dimension D gets large. From the above description, we see that after the one-to-one
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unwrapping the total bandwidth of the two dimensional signal increases from M in each

dimension to M2. If the full unwrapping method is applied to a function in D-dimensions,

then to guarantee the one-to-one transformation the bandwidth will be MD. Theoretically

this does not matter. However, since ε is dependent on the bandwidth, in the case where

D is large, we need to consider the limit of machine precision for practical implementations.

As a result, we need to introduce the partial unwrapping method to prevent the bandwidth

from becoming too large. The partial unwrapping method is discussed in Section 2.3.

Figure 2.3: Worst case scenario in two dimensions and solving it through tilting

2.2.3 Tilting Method for the Worst Case

Up till now, we have assumed that we do not encounter the worst case, i.e., that we do not

encounter the case where any frequency pair has collisions from the parallel projection for all

coordinate axes. This makes the algorithm break down. A very simple example of the worse

case scenario is given in Figure 2.3 where the four frequency pairs n1,n2,n3 and n4 form

a rectangle, and thus each pair has collisions in both horizontal and vertical projections.

The following method is for finding those frequency pairs. Basically, we rotate axes of the

frequency plane and thus use a projection onto a one-dimension system which is a tilted
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line with the tilt chosen so that there are no collisions. If the horizontal and vertical axes

are rotated with angle θ then the frequency pair n = (n1, n2) can be relabeled with new

coordinates as the right side of the following

(n1, n2) → (n1 cos θ − n2 sin θ, n1 sin θ + n2 cos θ). (2.17)

In phase-sense, this rotation can be written as

g(x̃1, x̃2) := f(x̃1 cos θ + x̃2 sin θ,−x̃1 sin θ + x̃2 cos θ)

=
∑
n∈S

cne
2πi{n1(x̃1 cos θ+x̃2 sin θ)+n2(−x̃1 sin θ+x̃2 cos θ)},

=
∑
n∈S

cne
2πi{(n1 cos θ−n2 sin θ)x̃1+(n1 sin θ+n2 cos θ)x̃2}. (2.18)

We can apply the basic algorithm in Section 2.2.1 to the function g to get the frequency

pairs in the form of the right side of the arrow in (2.17).

One problem we face is that the components of the projected frequency pairs should be

integers to apply the method, since we assume the integer frequencies in the first place. To

guarantee the injectivity for both projections, tan θ should be irrational, however, and thus

the projected frequencies become irrational. Thus, we should try a rational tan θ, and to

make them integer it is inevitable to increase the bandwidth by multiplying the least common

multiple of the denominators of sin θ and cos θ. We assume the following with integers a, b

and c

sin θ =
a

c
, cos θ =

b

c
, gcd(a, c) = gcd(b, c) = 1. (2.19)
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Multiplying c to both inputs in the right-hand side of (2.18) we obtain

ĝ(x̃1, x̃2) := f(c(x̃1 cos θ + x̃2 sin θ), c(−x̃1 sin θ + x̃2 cos θ))

=
∑
n∈S

cne
2πi{(cn1 cos θ−cn2 sin θ)x̃1+(cn1 sin θ+cn2 cos θ)x̃2}. (2.20)

As long as there is no collision for at least one projection, the frequency pairs, (cn1 cos θ−

cn2 sin θ, cn1 sin θ+ cn2 cos θ), can be found by applying the basic algorithm in Section 2.2.2

on ĝ. Due to the machine precision the integer c should not be too large, or the bandwidth

gets too large resulting in the failure of the algorithm. If four pairs of frequencies are at

vertices of a rectangle aligned with coordinate axes before the rotation, then they are not

aligned after the rotation with 0 < θ < π/2. Thus we can assure finding whole frequencies

whether they are in the worst case or not.

The pseudo code of the 2D tilting method is shown in Algorithm 2. The lines 15 and 16

mean that each frequency pair (n1, n2) is rotated by a matrix [cos − sin; sin cos] and scaled

to make the rotated components integers. Thus we first find the frequency pairs in the form

of ñ = (n1 cos−n2 sin, n1 sin +n2 cos) and after finding all of them, we rotate them back

into the original pairs with the matrix [cos sin; − sin cos] in line 39.

This tilting method is a straight forward way to resolve the worst case problem. First,

we recover the frequencies as much as possible from the basic parallel projection method. If

we cannot get any frequency pairs for several projections switching among each axis then,

assuming that the worst case happens, we apply the tilting method with an angle so that

all remaining frequency pairs are found. We only introduced the tilting method in the

two-dimensional case, but the idea of rotating the axes can be extended to the general D-

dimensional case with some effort. On the other hand, we may notice that the probability of
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Algorithm 2 2D Sparse Fourier Algorithm with Tilting Method Pseudo Code

1: procedure 2DTiltedPhaseshift
2: Input:f, C, s,M,D, ε, base, height, hypo
3: Output:R
4: R← ∅
5: t← 1
6: cos← base, sin← height
7: while |R| < s do
8: s∗ ← s− |R|
9: p← t th prime number ≥ Cs∗

10: k̃ ← (t mod 2) + 1
11: Q(x̃) =

∑
(ñ,cñ)∈R cñe

2πiñ·x̃

12: for k = 1→ 2 do
13: for ` = 0→ p− 1 do
14: m′ ← k̃ mod 2, m′′ ← k̃ + 1 mod 2, n′ ← k mod 2, n′′ ← k + 1 mod 2

15: f k̃,kp,ε [`] = f(( `pm
′ + εn′) cos +( `pm

′′ + εn′′) sin,−( `pm
′ + εn′) sin +( `pm

′′ + εn′′) cos)

−Q( `pek̃ + εek)

16: f k̃,kp [`] = f( `pm
′ cos + `

pm
′′ sin,− `

pm
′ sin + `

pm
′′ cos)−Q( `pek̃)

17: end for
18: F(f k̃,kp,ε ) = FFT(f k̃,kp,ε )

19: F(f k̃p) = FFT(f k̃p)

20: F sort(f k̃p) = SORT(F(f k̃p))
21: end for
22: for h = 0→ s∗ − 1 do
23: `← 0
24: for k = 1→ 2 do

25: if
∣∣∣ |Fsort(f k̃,kp )[h]|
|Fsort(f k̃,kp,ε )[h]|

− 1
∣∣∣ < ε then

26: `← `+ 1
27: end if

28: ñk = 1
2πεArg

(
Fsort(f k̃,kp,ε )[h]

Fsort(f k̃p)[h]

)
29: cñ = 1

pF
sort(f k̃p)[h]

30: end for
31: if ` == 2 then
32: R← R ∪ (cñ, ñ)
33: end if
34: end for
35: prune small coefficients from R
36: t← t+ 1
37: end while
38: cos← base

hypo , sin← height
hypo

39: rotate each ñ back to n using a matrix [cos sin;− sin cos] and restore it in R
40: end procedure
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this worst case is very low, especially when the number of dimensions D is large. Its details

are shown in Section 2.3.

2.3 Partial Unwrapping Method for High Dimensional

Algorithm

In this section we present the partial unwrapping method for a sublinear sparse Fourier algo-

rithm for very high dimensional data. As we have already mentioned, while full unwrapping

converts a multi-dimensional problem into a single dimensional problem, it is severely limited

in its viability when the dimension is large or when the bandwidth is already high because of

the increased bandwidth. Partial unwrapping is introduced here to overcome this problem

and other problems. In Section 2.3.1 we give a four dimensional version of the algorithm

using the partial unwrapping method as well as a generalize it to D dimension. In Section

2.3.2, the probability of the worst case in D dimension is analyzed.

2.3.1 Partial Unwrapping Method

To see the benefit of partial unwrapping we need to examine the main difficulties we may

encounter in developing the sublinear sparse Fourier algorithms. For this let us consider

a hypothetical case of sparse FFT where we have s = 100 frequencies in a 20-dimensional

Fourier series distributed in [−10, 10)20. When we perform the parallel projection method,

because the bandwidth is small, there will be a lot of collisions after the projections. It is

often impossible to separate any frequency after each projection, and the task could thus not

be completed. This, ironically, is a curse of small bandwidth for sparse Fourier algorithm.
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On the other hand, if we do the full unwrapping we would have increased the bandwidth

to M ′ = 2020, which is impossible to do within reasonable accuracy because M ′ is too

large.

However, a partial unwrapping would reap the benefit of both worlds. Let us now break

down the 20 dimensions into 5 lower 4-dimensional subspaces, namely we write

[−10, 10)20 =
(

[−10, 10)4
)5
.

In each subspace we perform the full unwrapping, which yields bandwidth M ′ = 204 =

160, 000 in the subspace. This bandwidth M ′ is large enough compared with s, so when the

projection method is used there is a very good probability that the collision will occur only

for a small percentage of the frequencies, allowing them to be reconstructed. On the other

hand, M ′ is not so large that the phase-shift method will incur significant error.

One of the greatest advantage of partial unwrapping is to turn the curse of dimensionality

into the blessing of dimensionality.

Note that in the above example, the 4 dimensions of any subspace do not have to follow

the natural order. By randomizing (if necessary) the order of the dimensions it may achieve

the same goal as the tilting method. Also note that the dimension for each subspace needs

not be uniform. For example, we can break down the above 20-dimensional example into

four 3-dimensional subspaces and two 4-dimensional subspaces, i.e.

[−10, 10)20 =
(

[−10, 10)3
)4
×
(

[−10, 10)4
)2
.

This will lead to further flexibility.
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2.3.1.1 Example of 4-D Case

Before introducing the generalized partial unwrapping algorithm for dimension D, let us

think about the simple case of 4 dimensions. We assume that s frequency vectors are in

4-dimensional space (D = 4). Then, a function f constructed from these frequency vectors

is as follows,

f(x) =
∑
n∈S

cne
2πin·x, cn ∈ C, n ∈

[
− M

2
,
M

2

)4
∩ Z4. (2.21)

Since 4 = 2× 2, the frequency pairs of the two-two dimensional spaces are both unwrapped

onto one-dimensional spaces. Here, 4 dimensions is projected onto 2 dimensions as fol-

lows

g(x1, x2) := f(x1,Mx1, x2,Mx2)

=
∑
n∈S

cne
2πi{(n1+Mn2)x1+(n3+Mn4)x2}

=
∑
n∈S

cne
2πi(ñ1x1+ñ2x2), (2.22)

where ñ1 = n1 +Mn2 and ñ2 = n3 +Mn4. Note that this projection is one-to-one so as to

guarantee the inverse transformation.

Now we can apply the basic projection method in Section 2.2.1 to this function g re-

defined as the 2-dimensional one. To make this algorithm work, ñ = (ñ1, ñ2) should not

collide with any other frequency pair after the projection onto either the horizontal or vertical

axes. If not, we can consider using the tilting method. After finding all the frequencies in

the form of (ñ1, ñ2), it can be transformed to (n1, n2, n3, n4).
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2.3.1.2 Generalization

We introduce the final version of the multidimensional algorithm in this section. Its pseudo

code and detailed explanation are given in Algorithm 3 and Section 2.5.1, respectively. We

start with a D-dimensional function f ,

f(x) =
∑
n∈S

cne
2πin·x, cn ∈ C, n ∈

[
− M

2
,
M

2

)D
∩ ZD. (2.23)

Let us assume that D can be divided into d1 and d2 - the case of D being a prime number

will be mentioned at the end of this section. The domain of frequencies can be considered

as ([−M/2,M/2) ∩ Z)D = (([−M/2,M/2) ∩ Z)d1)d2 and ([−M/2,M/2) ∩ Z)d1 will be re-

duced to one dimension, as d1 is in the 4 dimensional case. Each of the d1 elements of a

frequency vector, n = (n1, n2, · · · , nD), is unwrapped as

(n(d1q+1), n(d1q+2), n(d1q+3), · · · , n(d1q+d1))

→ n(d1q+1) +Mn(d1q+2) +M2n(d1q+3) + · · ·+Md1−1n(d1q+d1)

=: ñ(q+1) (2.24)

with q = 0, 1, 2, · · · , d2− 1, increasing the respective bandwidth from M to Md1 and having

injectivity. We rewrite this transformation in terms of the phase. With x = (x1, x2, · · · , xD)

and put the following into x`

MR(`−1,d1)x̃Q(`−1,d1)+1 (2.25)
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for all ` = 1, 2, · · · , D, where R(`− 1, d1) and Q(`− 1, d1) are the remainder from dividing

`−1 by d1 and quotient from dividing `−1 by d1 respectively, and x̃ = (x̃1, x̃2, · · · , x̃d2
) is a

phase vector in d2 dimensions after projection. Define a function g on d2 dimension as

g(x̃) := f(· · · ,MR(`−1,d1)x̃Q(`−1,d1)+1, · · · )

=
∑
n∈S

cne
2πi

∑d2−1
q=0

(∑d1−1
r=0 n(d1q+r+1)M

r
)
x̃q+1 , (2.26)

where MR(`−1,d1)x̃Q(`−1,d1) is the `th element of the input of f . If we project frequency

vectors of g onto the k̃th axis, then the kth element of a frequency vector ñ can be found in

the following computation,

g
k̃,k
p,ε =

(
g(0e

k̃
+ εek), g(

1

p
e
k̃

+ εek), · · · , g(
p− 1

p
e
k̃

+ εek)
)

ñk =
1

2πε
Arg

(F(g
k̃,k
p,ε )[h]

F(gk̃p)[h]

)
cñ =

1

p
F(gk̃p)[h], (2.27)

where e
k̃

is the k̃th unit vector with length d2, i.e., all elements are zero except the k̃th one

with entry 1. The last two equalities in (2.27) hold as long as ñ
k̃

is the only one congruent

to h modulo p among all k̃th elements of the frequency vectors, and ñ does not collide with

any other frequency vector due to the projection onto the k̃th axis. The test for checking

whether these conditions are satisfied is

|F(g
k̃,k
p,ε )[h]|

|F(gk̃p)[h]|
= 1 (2.28)
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for all 1 ≤ k ≤ d2. The projections onto the k̃th axis, where k̃ = 1, · · · , d2, take turns until

we recover all frequency vectors and their coefficients. After that we wrap the unwrapped

frequency vectors up from d2 to D dimension. Since the unwrapping transformation is

one-to-one, this inverse transformation is well-defined.

So far, we assumed that the dimension D can be divided into two integers, d1 and d2. For

the case that D is a prime number, or both d1 and d2 are so large that the unwrapped data

has a bandwidth such that ε is below the machine precision, a strategy of divide and conquer

can be applied. In that case we can think about applying partial unwrapping method in

a way that each unwrapped component has a different size of bandwidth. If D is 3, for

example, then we can unwrap the first two components of the frequency vector onto one

dimension and the last one lies in the same dimension. In that case, the unwrapped data is

in two dimensions, and the bandwidth of the first component is bounded by M2 and that of

second component is bounded by M . In this case we can choose a shift ε < 1/M2 where M2

is the largest bandwidth. We can extend this to the general case, so the partial unwrapping

method has a variety of choices balancing the bandwidth and machine precision.

2.3.2 Probability of Worst Case Scenario

In this section, we give an upper bound of the probability of the worst case assuming that

we randomly choose a partial unwrapping method. As addressed in the Section 2.3.1, there

is flexibility in choosing certain partial unwrapping method. Assuming a certain partial

unwrapping method and considering a stronger condition to avoid its failure, we can find the

upper bound of the probability of the worst case where there is a collision for each parallel

projection.

For simple explanation, consider a two dimensional problem. Choosing the first frequency
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vector n1 = (n11, n12) on a two dimensional plane, if the second frequency vector, n2 =

(n21, n22), is not on the vertical line crossing (n11, 0) and the horizontal line crossing (0, n12),

then the projection method works. Then if the third frequency vector is not on four lines,

those two lines mentioned before, the vertical line crossing (n21, 0) and the horizontal line

crossing (0, n22), then again the projection method works. We keep choosing next frequency

vector in this way, excluding the lines containing previous frequencies. Thus, letting such

event A, the probability that the projection method fails is bounded above by 1−P(A).

Generally, let us assume that we randomly choose a partial unwrapping, without loss of

generality, the total dimension is D = d1+d2+· · ·+dr where r is the number of subspaces and

d1, d2, · · · , dr are the dimensions of each subspace. That is, partially unwrapped frequency

vectors are in r < D dimensions and each bandwidth is Md1 ,Md2 , · · · ,Mdr , respectively,

which is an integer strictly larger than 1. Then, the failure probability of projection method

is bounded above by

1−
s∏
j=1

P(Aj) ≤ 1−
s∏
j=1

MD − (j − 1)(Md1 +Md2 + · · ·+Mdr)

MD

= 1− 1

τs
τ !

(τ − s)!

(
τ :=

MD

Md1 +Md2 + · · ·+Mdr

)

∼ 1− 1

τs

√
τ

τ − s

(τ
e

)τ(τ−s
e

)τ−s (by Sterling’s formula)

= 1− 1

es

(
1− s

τ

)−τs ·s (
1− s

τ

)s−1
2 (2.29)

where Aj is the event that we choose jth frequency not on the lines, crossing formerly chosen

frequency vectors and parallel to each coordinate axis. Noting MD = Md1×Md2×· · ·×Mdr ,

sparsity s is relatively small compared to MD, and τ is large, we can see that the upper

bound above gets closer to 0 as D or M grows to infinity.
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Algorithm 3 Multidimensional Sparse Fourier Algorithm Pseudo Code

1: procedure MultiPhaseshift
2: Input:f, C, s,M,D, d1, d2, ε
3: Output:R
4: R← ∅
5: t← 1
6: while |R| < s do
7: s∗ ← s− |R|
8: p← t th prime number ≥ Cs∗
9: k̃ ← (t mod d2) + 1

10: Q(x̃) =
∑

(ñ,cñ)∈R cñe
2πiñ·x̃

11: for k = 1→ d2 do
12: for ` = 0→ p− 1 do

13: f k̃,kp,ε [`] = f(
∑d1−1

j=0 M j `
ped1(k̃−1)+j + ε

∑d1−1
j=0 M jed1(k−1)+j)−Q( `pek̃ + εek)

14: f k̃p [`] = f(
∑d1−1

j=0 M j `
ped1(k̃−1)+j)−Q( `pek̃)

15: end for
16: F(f k̃,kp,ε ) = FFT(f k̃,kp,ε )

17: F(f k̃p) = FFT(f k̃p)

18: F sort(f k̃p) = SORT(F(f k̃p))
19: end for
20: for h = 0→ s∗ − 1 do
21: `← 0
22: for k = 1→ d2 do

23: if
∣∣∣ |Fsort(f k̃p)[h]|

|Fsort(f k̃,kp,ε )[h]|
− 1
∣∣∣ < ε then

24: `← `+ 1
25: end if

26: ñk = 1
2πεArg

(
Fsort(f k̃,k

p,ε )[h]

Fsort(f k̃
p)[h]

)
27: cñ = 1

pF
sort(f k̃p)[h]

28: end for
29: if ` == d2 then
30: R← R ∪ (ñ, cñ)
31: end if
32: end for
33: prune small coefficients from R
34: t← t+ 1
35: end while
36: inverse-transform each ñ in d2-D to n D-D and restore it in R
37: end procedure

2.4 Analysis

In this section, we analyze the performance of our algorithms suggested. We will prove that

the tilting method works well in two dimensions but explain that it is hard to extend the
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idea to the general high dimensional setting. However, it was shown in Section 2.3.2 that

the probability of the worst-case scenario is extremely small. Furthermore, the average-case

runtime and sampling complexity is shown in this section under the assumption that there

are no frequency vectors forming a worst-case scenario. The following theorem shows that

the tilting method in 2D recovers all frequency pairs even though they form a worst-case

scenario.

Theorem 1. Let n = (n1, n2) ∈ S ⊂
[
−M2 ,

M
2

)2
∩ Z2. If tan θ = a

b such that c > b >

a are Pythagorean triples where b > 2M and a are relative primes, then all (cn1 cos θ −

cn2 sin θ, cn1 sin θ + cn2 cos θ) rotated by θ does not collide with any other pair through the

parallel projection. Thus, all rotated pairs can be identified by the parallel projection method.

Proof. Suppose that any two frequency pairs n = (n1, n2) and n′ = (n′1, n
′
2) cannot be

recovered through the tilting method. This implies that the slope of the line crossing n

and n′ is perpendicular to tan θ, and thus those two pairs collide at least once if they are

projected onto each principal axis rotated by the angle θ. This results in the fact that
n2−n′2
n1−n′1

is either a
b or − ba . However, this is a contradiction since −M < n1 − n′1, n2 − n′2 < M , and

a and b > 2M are relative primes.

Theorem 1 implies that all frequency pairs can be distinguished by the tilting method

with only one proper angle θ. It is natural to think about extending this idea to the high-

dimensional setting. However, it is not as easy to find a proper slope as in two dimensions

using the Pythagorean triples. Moreover, even though we consider choosing a finite set of

random angles guaranteeing that it includes the proper one, each line crossing between two

arbitrary vectors in general D dimensions has infinitely many lines perpendicular to it so
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that such a finite set is difficult to find again. It should be noted that there is a variety of the

worst-case scenario where the relatively simple tilting method still works. For example, if

the frequency vectors are located on the two dimensional subspace, then the tilting method

applied on the subspace would recover all the frequencies. There still exist trickier worst-case

scenarios, however, such that the frequencies form a D-dimensional cube or more complicated

structures. It is still worth exploring further about the tilting method. On the other hand,

we also have shown in Section 2.3.2 that the worst-case scenario rarely happens in extremely

high dimensions.

In order to obtain the average-case runtime and sampling complexity of the parallel

projection method under the assumption that there is no worst-case scenario, we utilize

the probability recurrence relation as in [1]. We remind readers that each entry of the

frequency vectors should be distinguished modulo M due to parallel projection as well as

be distinguished modulo p. Since C = 5 determining p is shown in [1] to ensure that 90%

of frequencies are isolated modulo p on average, at least 90% of frequencies are isolated

modulo M on average if M ≥ p. Taking the union bound of failure probabilities of isolation

modulo p and M yields at least 80% of frequencies are isolated both modulo M and p at the

same time. Algorithm 3 with d1 = 1 and d2 = D implements the direct parallel projection

method, and it takes a(s) = Θ(Ds log s), the runtime on input of size s and m(s) = s/5, the

average size of the subproblem. Then, the straightforward application of Theorem 2 in [1]

gives the following theorem.

Theorem 2. Assume M ≥ 5s and there is no worst-case scenario. Let T (s) denote the

runtime of Algorithm 3 on a random signal setting with d1 = 1 and d2 = D. Then E[T (s)] =

Θ(Ds log s) and

P[T (s) > Θ(Ds log s) + tDs log s] ≤ 5−t.
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In a similar manner, Algorithm 3 takes a(s) = Θ(Ds), the number of samples on input

of size s and m(s) = s/5, the average size of the subproblem. Thus, Theorem 2 in [1] again

gives,

Theorem 3. Assume M ≥ 5s and there is no worst-case scenario. Let S(s) denote the

number of samples used in Algorithm 3 on a random signal setting with d1 = 1 and d2 = D.

Then E[S(s)] = Θ(Ds) and

P[S(s) > Θ(Ds) + tDs] ≤ 5−t.

2.5 Empirical Result

The partial unwrapping method is implemented in the C language. The pseudocode of

this algorithm is shown in Algorithm 3. It is explained in detail in Section 2.5.1. In our

experiment, dimension D is set to 100 and 1000, d1 is 5 and d2 is 20 and 200, accordingly.

Frequency bandwidth M in each dimension is 20 and sparsity s varies as 1, 2, 22, · · · , 210.

The value of ε for shifting is set to 1/2Md1 and the constant number C determining the

prime number p is set to 5.

We randomly choose s frequency vectors n ∈ [−M/2,M/2)D ∩ ZD and corresponding

coefficients cn = e2πiθn ∈ C from randomly chosen angles θn ∈ [0, 1) so that the magnitude

of each cn is 1. For each D and s we have 100 trials. We get the result by averaging l2

errors, the number of samples used and CPU TICKS out of 100 trials.

Since it is difficult to implement high dimensional FFT and there is no practical high

dimensional sparse Fourier transform with wide range of D and s at the same time it is

hard to compare the result of ours with others, as so far no one else was able to do FFT on
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this large data set. Thus we cannot help but show ours only. From Figure 2.4 we can see

that the average l2 errors are below 2−52. Those errors are from all differences of frequency

vectors and coefficients of the original and recovered values. Since all frequency components

are integers and thus the least difference is 1, we can conclude that our algorithm recover

the frequency vectors perfectly. Those errors are only from the coefficients. In Figure 2.5

the average sampling complexity is shown. We can see that the logarithm of the number

of samples is almost proportional to that of sparsity. Note that the traditional FFT would

show the same sampling complexity even though sparsity s varies since it only depends on

the bandwidth M and dimension D. In Figure 2.6 the average CPU TICKS are shown. We

can see that the logarithm of CPU TICKS is also almost proportional to that of sparsity.

Note that the traditional FFT might show the same CPU TICKS even though sparsity s

varies since it also depends on the bandwidth M and dimension D only.

2.5.1 Algorithm

In this section, the explanation of Algorithm 3 is given. In [1] several versions of 1D al-

gorithms are shown. Among them, non-adaptive and adaptive algorithms are introduced

where the input function f is not modified throughout the whole iteration, and is modified

by subtracting the function constructed from the data in registry R, respectively. In our

multidimensional algorithm, however, the adaptive version is mandatory since excluding the

contribution of the currently recovered data is the key of our algorithm to avoid the collision

of frequencies through projections, whose simple pictorial description is given in Figure 2.2.

In Algorithm 3, the function Q is the one constructed from the data in the registry R.

Our algorithm begins with entering inputs, a function f , a constant number C deter-

mining p, a sparsity s, a bandwidth M of each dimension, a dimension D, factors d1 and
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d2 of D and a shifting number ε ≤ 1/Md1 . For each iteration of the algorithm, the number

of frequencies to find is updated as s∗ = s − |R|. It stops when |R| becomes equal to the

sparsity s. The prime number p is determined depending on this new s∗ as p ≥ Cs∗ and is

chosen as the next larger prime number. The lines 13 and 14 of Algorithm 3 represent the

partial unwrapping, and sampling with and without shifting from the function where the

contribution of former data is excluded. After applying the FFT on each sequence, sorting

them according to the magnitude of F(f k̃p), we check the ratio between the FFT’s of the

unshifted and shifted sequences to determined whether there is a collision, either from mod-

ulo p or a parallel projection. If all tests are passed, then we find each frequency component

and corresponding coefficient for the data that passed and store them in R. After several

iterations, we find all the data and the final wrapping process gives the original frequency

vectors in D dimensions.

2.5.2 Accuracy

We assume that there is no noise on the data that we want to recover. Figure 2.4 shows that

we can find frequencies perfectly and the l2 error from coefficients are significantly small. This

error is what we average out over 100 trials for each D = 100, 1000 and s = 1, 21, 22, · · · , 210

when M is fixed to 20. The horizontal axis represents the logarithm with base 2 of s and

the vertical axis represents the logarithm with base 2 of the l2 error. It is increasing as the

sparsity s is increasing since the number of nonzero coefficients increases. The red graph

in the Figure 2.4 shows the error when the number of dimensions is 100 and the blue one

shows the error when the number of dimensions is 1000. Thus, we see that the errors are

not substantially impacted by the dimensions.
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Figure 2.4: Average l2 error

2.5.3 Sampling Complexity

Figure 2.5 shows the sampling complexity of our algorithm averaged out from 100 tests for

each dimension and sparsity. The horizontal axis means the logarithm with base 2 of s and

the vertical axis represents the logarithm with base 2 of the total number of samples from the

randomly constructed function which are used to find all frequencies and coefficients. The

red graph in the Figure 2.5 shows the sampling complexity when the number of dimensions

is 100 and the blue one shows the one when the number of dimensions is 1000. Both graphs

increase as s increases. When D is large, we see that it requires more samples since there

are more frequency components to find. From the graphs, we see that the scaling seems to
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Figure 2.5: Average sampling complexity

be proportional to D.

2.5.4 Runtime Complexity

In Figure 2.6, we plot the runtime complexity of the main part of our algorithm averaged

over 100 tests for each dimension and sparsity. “Main part” means that we have excluded

the time for constructing a function consisting of frequencies and coefficients and the time

associated with getting samples from it. The horizontal axis is the logarithm, base 2, of

s and the vertical axis is the logarithm, base 2, of CPU TICKS. The red curve shows the

runtime when we set the number of dimensions to 100 and the blue one shows the same
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Figure 2.6: Average CPU TICKS

thing when the number of dimensions to 1000. Both plots increase as s increases. When D

is larger, the plots show that it takes more time to run the algorithm. From the graphs we

see that the runtime looks proportional to D.

Unfortunately, the sampling process of getting the samples from continuous functions

dominates the runtime of the whole algorithm instead of the main algorithm. To show the

runtime of our main algorithm, however, we showed CPU TICKS without sampling process.

Reducing the time for sampling is still a problem. In [10] a one-dimensional fully discrete

Fourier transform is introduced that we expect to use to reduce it. Exploring how to use

this will be one part of our future work.
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Chapter 3

Multiscale Sparse Fourier

Transforms

3.1 Preliminaries

3.1.1 Notation and Review

In this section, we introduce the notation used throughout this chapter. Let s, D and M be

natural numbers, s � MD, and D := [0, 1)D. We consider a function f : D → C which is

s-sparse in the D-dimensional Fourier domain as follows

f(x) =
∑
n∈S

cne
2πin·x

where each n ∈ [−M/2,M/2)D ∩ ZD and cn ∈ C. We note that f can be regarded

as a periodic function defined on RD. The aim of sparse Fourier algorithms is to rapidly

reconstruct a function f using a small number of its samples. In Chapter 2, the methods were

introduced using several different transformations and parallel projections along coordinate

axes of frequencies in order to exploit the one-dimensional sparse Fourier algorithm from

[1]. These transformations such as partial unwrapping and tilting methods are introduced in

order to change the locations of energetic frequencies when the current energetic frequencies
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are hard or impossible to find through the parallel projections directly. Through those

manipulations, each frequency vector n is recovered in an entry-wise fashion. In this way,

the linear dependence of runtime and sampling complexities on the dimension D could

be shown empirically, which is a great improvement when compared to the D-dimensional

FFT with the exponential dependence on D. The transformations and projections occur in

the physical domain, which provides the separation of the frequency vectors in the Fourier

domain. That is, each n is transformed to n′ and then projected onto several lines, and these

can be done by manipulating the sampling points in the physical domain D. Let u : D′ → D

represent those transformations where D′ is D or less dimensional space and is determined

by each transformation. We assume that D′ has D′ dimensions. A new function g : D′ → C

is defined as a composition of f and u, i.e.,

g(x) := f(u(x)).

We note that g is still s-sparse in theD′-dimensional Fourier domain, [−M ′/2,M ′/2)D
′∩ZD′ ,

whose bandwidthM ′ depends on each transformation. For example, consider a 4-dimensional

function f with the Fourier domain, [−M/2,M/2)4∩Z4. If a partial unwrapping is applied to

f which unwraps each n = (n1, n2, n3, n4) to n′ = (n′1+Mn′2, n
′
3+Mn′4) then it implies that

u : (x1, x2)→ (x1,Mx1, x2,Mx2) and g has the Fourier domain, [−M2/2,M2/2)2∩Z2 where

accordingly M ′ = M2 and D′ = 2. This is one example and there are variations of partial

unwrapping methods and tilting methods which can be found in Chapter 2. Using samples of

g(or f), the transformed frequency vectors n′ and corresponding Fourier coefficients cn′(=cn)

are found through the parallel projection method, and n′ are transformed back to n. Now,

we remind the readers using comprehensive notations how n′ = (n′1, n
′
2, · · · , n

′
D′) can be
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recovered element-wise using the parallel projection method and the ideas from the one-

dimensional sparse Fourier algorithm. Let p be a prime number greater than a constant

multiple of s, i.e., p > Cs for some constant C, n be a fixed frequency vector in S, k be fixed

among the set {1, 2, · · · , D′} and ek be a vector with all zero entries but 1 at the index k.

Furthermore, ε is defined as a positive number ≤ 1/M ′. To recover the kth element of each

n′, we use two sets of p-length equispaced samples gk̃p and g
k̃,k
p,ε as follows,

gk̃p [`] := g

(
`

p
e
k̃

)
and g

k̃,k
p,ε [`] := g

(
`

p
e
k̃

+ εek

)

where ` = 0, 1, · · · , p − 1 and k̃ ∈ {1, 2, · · · , D′} is the index of coordinate axis where a

particular ñ has k̃th element, ñ
k̃
, different from the k̃th elements of any other energetic

frequency vectors. In this case, we refer to the above phenomenon as “no collision from

projection”. At the same time, if there is no collision modulo p, i.e., ñ
k̃

has the unique

remainder modulo p from others then the discrete Fourier transform of each sample set

is

F
(
gk̃p

)
[h] = p

∑
n′
k
≡h mod p

cn′ = pcñ, and

F
(
g
k̃,k
p,ε

)
[h] = p

∑
n′
k
≡h mod p

cn′e
2πin′kε = pcñe

2πiñkε, (3.1)

respectively. The equations above in (3.1) give a unique entry for the kth element assuming

there does not exist a collision modulo p of the vetor projected onto the kth axis. Hence, in the
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above equations, when the second equalities hold, we can recover cñ and ñk as follows,

ñk =
1

2πε
Arg

F
(
g
k̃,k
p,ε

)
[h]

F
(
gk̃p

)
[h]

 and cñ =
F
(
gk̃p

)
[h]

p
. (3.2)

The right choice of the branch and the shift size ε ≤ 1
M ′ make it possible to find the correct

ñk. Algorithmically, the two kinds of collisions are guaranteed not to happen using the

following test: ∣∣∣∣∣∣∣∣
F
(
g
k̃,k
p,ε

)
[h]

F
(
gk̃p

)
[h]

∣∣∣∣∣∣∣∣ = 1, (3.3)

which is inspired by the test used in [1]. Practically, we put some threshold τ > 0 so that if

the difference between the left and right-hand sides in (3.3) is less than τ , then we conclude

that there are no collisions of both kinds. In this case, each ñk for k = 1, 2, · · · , D′ can

be recovered using a pair of sets gk̃p and g
k̃,k
p,ε , respectively. Otherwise, we take another

prime number for sample length, switch the index of coordinate axis for the projection,

update the samples by eliminating the influence from previously found Fourier modes and

repeat our procedure as before. Switching the coordinate axis and updating samples reduce

the occasions of collisions from projection. In Chapter 2, moreover, it is proved that the

probability is very low when D′ is large that all remaining frequency vectors have collisions

from projection onto all coordinate axes, which we call the “worst case scenario”. In the

“worst case scenario”, the parallel projections we just used do not work and thus, we need

a rotation mapping, u′, defining another function g′ = f ◦ u′.

45



3.1.2 Noise Model

In practice, the samples from f(or g) are often corrupted by noise. The high-dimenisonal

sparse Fourier algorithm introduced in Section 3.1.1 works well when f is exactly s-sparse

and the samples from f are not noisy. It is not robust to noise since in order to find entries

of energetic frequency vectors we compute the fraction F
(
g
k̃,k
p;ε

)
[h]
/
F
(
gk̃p

)
[h] which is

sensitive to noise. In the remaining sections of Chapter 3, we consider the case of noisy

measurements of g as follows

rk̃p [`] := gk̃p [`] + z` = g

(
`

p
e
k̃

)
+ z`

for ` = 0, 1, · · · , p− 1 where z := (z0, z1, · · · , zp−1) is a complex Gaussian random variable

with mean 0 and variance σ2I. If we apply DFT to this sample set, we get

F
(
rk̃p

)
[h] = F

(
gk̃p

)
[h] +

p−1∑
`=0

z`e
−2πih `p (3.4)

Since z` are i.i.d Gaussian variables, the expectation and variance of the second term in (3.4)

are

E

p−1∑
`=0

z`e
−2πih `p

 = 0

and

Var

p−1∑
`=0

z`e
−2πih `p

 = pσ2,

respectively. Accordingly,

E
[
F
(
rk̃p

)
[h]
]

= F
(
gk̃p

)
[h]
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and

Var
[
F
(
rk̃p

)
[h]
]

= pσ2.

For noisy shifted samples set r
k̃,k
p;ε := g

k̃,k
p;ε + z̃ with an i.i.d Gaussian random vector z̃, we

have likewise

E
[
F
(
r
k̃,k
p,ε

)
[h]

]
= F

(
g
k̃,k
p,ε

)
[h]

and

Var

[
F
(
r
k̃,k
p,ε

)
[h]

]
= pσ2.

In the case of n′
k̃

not having collisions both from projection and modulo p, and n′
k̃
≡

h (mod p),

F
(
rk̃p

)
[h] = pcn′ +O(σ

√
p) (3.5)

and

F
(
r
k̃,k
p,ε

)
[h] = pcn′e

2πin′kε +O(σ
√
p)

for each k = 1, 2, · · · , D′. As a result, we get

F
(
r
k̃,k
p,ε

)
[h]

F
(
rk̃p

)
[h]

= e
2πin′kε +O(

σ

c′n
√
p

) (3.6)

and note that if there were no noise in samples, we only have the first term on the right

side of (3.6) which makes it possible to recover n′k by taking its argument and dividing it by

2πε as (3.2). With noisy samples, however, it is corrupted with noise which is a multiple of
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σ
c′n
√
p
. Defining

n̂k :=
1

2πε
Arg

F
(
r
k̃,k
p,ε

)
[h]

F
(
rk̃p

)
[h]

 , (3.7)

we want to see how far n̂k is from n′k. For this purpose, we introduce the Lee norm associated

with a lattice L in R as ‖z‖L := miny∈L |z − y| for z ∈ R and the related property that

under the Lee norm associated with the lattice 2πZ,

‖Arg(γ + ν)− Arg(γ)‖2πZ =

∥∥∥∥Arg

(
1 +

ν

γ

)∥∥∥∥
2πZ
≤ π

2

∣∣∣∣νγ
∣∣∣∣ , (3.8)

where |γ| ≥ |ν| with γ, ν ∈ C. By choosing the sample length p large enough depending

on the least magnitude nonzero cmin and the noise level σ, (3.8) can be applied to (3.6) as

follows, ∥∥∥∥∥∥∥∥Arg

F
(
r
k̃,k
p,ε

)
[h]

F
(
rk̃p

)
[h]

− 2πn′kε

∥∥∥∥∥∥∥∥
2πZ

≤ O
(

σ

|cmin|
√
p

)
.

Consequently, ∥∥n̂k − n′k∥∥Z ≤ O( σ

2πε |cmin|
√
p

)
, (3.9)

which implies that the error of our estimate n̂k to n′k is controlled by the size of σ
ε |cmin|

√
p
.

Thus, p needs to be chosen carefully depending on σ
ε |cmin|

. On the other hand, from (3.5),

we can approximate the corresponding coefficient cn′ with the error of size O(σ/
√
p) as

follows

cn′ =
1

p
F
(
rk̃p

)
[h] +O

(
σ
√
p

)
. (3.10)
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3.2 Multiscale Method

In [2], rounding and multiscale methods for the one-dimensional sparse Fourier algorithm

for noisy data were introduced. Both methods use the fact that the peaks of the DFT are

robust to relatively high noise, i.e., h can be correctly found such that n ≡ h(mod p) for an

energetic frequency n. The Rounding method is efficient when σ is relatively small, which

approximates such n := bp + h for some integer b up to p/2 error and rounds a multiple of

p in order to get the correct b. It was shown that p ≥ max{C1s, C2( σ
ε|cmin|

)2/3} for some

constants C1 and C2 makes it possible to correctly find n through the rounding method. On

the other hand, the multiscale method was introduced for relatively large σ. It prevents p

from becoming too large, which happens for large σ in the rounding method. In this section,

we focus on extending the multiscale method to recover high dimensional frequencies by

gradually fixing each entry estimation with several shifts εq.

3.2.1 Description of Frequency Entry Estimation

Let n′ ∈ S ′ and k ∈ {1, 2, · · · , D′} be fixed. The set S ′ is defined to be the set containing all

n′ transformed from n ∈ S. The target frequency entry n′k is assumed not to have collisions

both from projection and modulo p. We start with a coarse estimation n′k,0 of n′k defined

by

n′k,0 :=
1

2πε0
Arg

F
(
r
k̃,k
p,ε0

)
[h]

F
(
rk̃p

)
[h]

 ,

where ε0 ≤ 1/M ′. Then n′k,0 ≡ n′k(mod p) even though it is not guaranteed that n′k,0 = n′k.

Thus, we need to improve the approximation. With each correction, the solution is improved

by l digits where l depends on the parameters that are chosen in the method as well as noise.
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Each correction term is calculated with a choice of growing εq > 1/M ′, i.e., εq−1 < εq for

all q ≥ 1. With the initialization bk,0 := ε0n
′
k,0, the correction terms are calculated in the

following way,

bk,q :=
1

2π
Arg

F
(
r
k̃,k
p,εq

)
[h]

F
(
rk̃p

)
[h]


and

n′k,q := n′k,q−1 +

(
bk,q − εqn′k,q−1

)(
mod

[
−1

2 ,
1
2

))
εq

for q ≥ 1, where x (mod [−1/2, 1/2)) is defined to be the value a ∈ [−1/2, 1/2) such that

x ≡ a (mod 1). Using this fact,

bk,q ≈ εqn
′
k

(
mod

[
−1

2
,
1

2

))
,

the error n′k − n
′
k,q−1 can be estimated as

εq(n
′
k − n

′
k,q−1) = εqn

′
k − εqn

′
k,q−1

≈ (bk,q − εqn′k,q−1)

(
mod

[
−1

2
,
1

2

))

and thus, in a similar manner to (3.9),

O
(

σ

εqcmin
√
p

)
= (n′k − n

′
k,q−1)−

(
bk,q − εqn′k,q−1

)(
mod

[
−1

2 ,
1
2

))
εq

(3.11)

= n′k −

n′k,q−1 +

(
bk,q − εqn′k,q−1

)(
mod

[
−1

2 ,
1
2

))
εq

 (3.12)

= n′k − n
′
k,q. (3.13)
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As the correction is repeated with larger εq, the error of the estimate decreases. In other

words, we approximate n′k by its most significant bits and the next significant bits repeatedly.

The performance of this multiscale method is shown in detail in the next section.

3.2.2 Analysis of Multiscale Method

The following theorem shows how the correction term dk,q/εq is constructed in each iteration

and how large the error of estimate n′k after L iterations is in the multiscale frequency entry

estimation procedure.

Theorem 4. Let n′ ∈ S ′, k ∈ {1, 2, · · · , D′} be fixed and n′k ∈
[
−M

′
2 , M

′
2

)
. Let 0 < ε0 <

ε1 < · · · < εL and bk,0, bk,1, · · · , bk,L ∈ R such that

‖εqn′k − bk,q‖Z < δ, 0 ≤ q ≤ L

where 0 < δ < 1
4 . Assume that ε0 ≤ 1−2δ

M ′ and βq :=
εq
εq−1

≤ 1−2δ
2δ . Then there exist

dk,0, dk,1, · · · , dk,L ∈ R, each computable from {εq} and {bk,q} such that

∣∣ñk − n′k∣∣ ≤ δ

ε0

L∏
q=1

β−1
q , where ñk :=

L∑
q=0

dk,q
εq

.

Proof. The proof is the same as the proof of Theorem 4.2 in [2] since each entry of frequency

vectors is corrected in the same way as each one-dimensional frequency w in [2] is. Each dq

is defined as

d0 := b0 and
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dq := bq − εqλq−1

(
mod

[
−1

2
,
1

2

))
for q ≥ 1,

where λq = dq/εq for q ≥ 0.

Corollary 1. Assume that we let βq = β in Theorem 4 where β ≤ 1−2δ
2δ , i.e., εq = βqε0 for

all q ≥ 1. Let p > 0 and L ≥
⌊
logβ

2δ
ε0

⌋
+ 1. Then,

∣∣ñk − n′k∣∣ ≤ δ

ε0
β−L <

1

2
.

Proof. This is straightforward corollary of Theorem 4.

Corollary 1 looks very similar to Corollary 4.3 in [2]. However, it is different in that the

iteration number is increased in order to make the error between ñk and n′k less than 1/2

instead of p/2. In [2], the remainder h modulo p of each energetic n is known by sorting out

the s largest DFT components of p-length unshifted sample vector so that p/2 error bound

is enough to guarantee the exact recovery of n. On the other hand, in the high-dimensional

setting of this section, the remainders of all entries of n′k are not known. Instead, the

remainder of n′
k̃

is only known where k̃ is the index of coordinate axis where the frequencies

are projected. Thus, we decrease the error further by enlarging the iteration number L and

are able to recover the exact n′k by rounding when the error is less than 1/2.

Remark 1. Similar to Theorem 4.4 in [2], the admissible size of δ can be estimated as

follows,

δ = min

(
1− ε0M ′

2
,

1

2β + 2

)
(3.14)

under the assumption ε0 ≤ 1−2δ
M ′ of Corollary 1 together with the assumption β ≤ 1−2δ

2δ of
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Theorem 4.

3.3 Algorithm

In this section, the parameters that determine the performance of our algorithm are intro-

duced and the way that they are chosen is shown. Those are affected by the noise level,

σ. Furthermore, the pseudocode of the multiscale algorithm and the related explanation are

provided. It is important to know how the frequency entry estimation works in the algorithm

and how the collision detection tests are modified from the tests in Chapter 2 in order to

make them tolerant of noise.

3.3.1 Choice of p

The sample length p affects the total runtime complexity since the discrete Fourier transform

is applied to all sample sets taken to recover the frequency entries. Due to this, we want

to make it as small as possible. At the same time, however, we can see from (3.9) that the

error between the target entry and its approximation becomes smaller if a larger p is taken.

Thus, as discussed in Section 3.2, if p is large enough, then the rounding method instead of

multiscale method can recover the exact frequency by rounding (3.7) to the nearest integer

of the form pv+h with an integer v. In this case, p is large enough to diminish the influence

of σ, and therefore if σ is large, so is p. Instead, the multiscale method makes it possible to

enlarge p moderately. From Theorem 4, we get

|n′k,q+1 − n
′
k| <

δ

εq+1
(3.15)
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and (3.13) implies

|n′k,q+1 − n
′
k| ≤ O

(
σ

2πεq |cmin|
√
p

)
. (3.16)

By putting the right side of (3.16) as Cσ
σ

εq |cmin|
√
p

with some constant Cσ and equating

both right sides of (3.15) and (3.16), β := εq+1/εq can be estimated as

β =
2πδ
√
p

cminCσσ
. (3.17)

β determines the choice of εq for each iteration, i.e., εq = βqε0 where ε0 is chosen to be less

than 1/M ′. Combining (3.14) and (3.17), the sample length p can be calculated as

p =

(
β(β + 1)cminCσσ

π

)2

when ε0 = 1
2M ′ and β > 1, which implies δ = 1

2β+2 . Eventually, the sample length p for the

multiscale method needs to satisfy

p > max

{
C1s,

(
β(β + 1)cminCσσ

π

)2
}
, (3.18)

where p > C1s ensures the sample is long enough so that the 90% of all energetic frequencies

are not collided modulo p on average which comes from the pigeonhole argument in [1].
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3.3.2 Collision Detection Tests

As mentioned in Section 3.1.1, frequencies are recovered only when there are no collisions

from the projection and the modulo p division. These conditions are satisfied if

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
F
(
g
k̃,k
p,ε

)
[h]

F
(
gk̃p

)
[h]

∣∣∣∣∣∣∣∣− 1

∣∣∣∣∣∣∣∣ < τ, (3.19)

for k = 1, · · · , D′ and some small τ > 0 which are the practical tests of (3.3). In our

noisy setting, Equation (3.6) implies that the left hand side of (3.19) is bounded above by

O
(

σ
cmin

√
p

)
. Thus, we set our threshold τ as a constant multiple of σ

cmin
√
p . Moreover, since

we iteratively update the estimates n′k,q for q = 0, 1, · · · , L, we reject the estimate after L

iterations if the tests fail for more than η(L+1) times for each kth entry with k = 1, 2, · · · , D′

where η is a fraction< 1. Numerical experiments indicate η = 1
4 is a good number.

3.3.3 Number of Iterations

From Corollary 1, L ≥
⌊
logβ

2δ
ε0

⌋
+1 guarantees we get the approximation error,

∣∣ñk − n′k∣∣ <
1
2 which is required to recover the exact n′k by rounding ñk to the nearest integer. With our

choice of ε0 = 1
2M ′ and the fact that δ < 1, L =

⌊
logβM

′⌋+1 suffices to satisfy the 1/2 error

bound. For example, if each n ∈
[
−M2 ,

M
2

)D
∩ ZD is partially unwrapped to some value

in

[
−M

d1
2 , M

d1
2

)d2
∩ Zd2 where d1 and d2 are positive integers satisfying D = d1d2, then

d2 entries of each energetic frequency are recovered element-wisely after L = O(d1 logM)

iterations.
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3.3.4 Description of Our Pseudocode

In this section, we explain the multiscale high-dimensional sparse Fourier transform whose

pseudocode is provided in Algorithm 4. The set R contains the identified Fourier frequen-

cies and their corresponding coefficients, and it is an empty set initially. Parameter t is

the counting number determining the index k̃ of the coordinate axes where the frequencies

are projected in line 6. Parameters p, τ and L are determined as discussed in the previous

sections. Function Q in line 7 is a function constructed from the previously found Fourier

modes which is used in updating our samples in lines 9 and 17. In line 9, the unshifted

samples rk̃p corrupted by random Gaussian noise z` are taken and in line 11, DFT is applied

to these samples and the transformed vector is sorted in the descending order of magnitude.

Only its s∗ largest components are taken into account under the s∗-sparsity assumption.

In the loop from line 12 through 39, the entries of frequencies corresponding to these s∗

components are estimated iteratively. The shift size εq is updated in line 14 and we get the

D′ number of length p samples at the points shifted by εq along each axis. Each length p

sample will be used to approximate each entry. Similar to line 11, DFT is applied to each

length-p sample and the transformed vector is sorted again following the index order of the

sorted DFT of unshifted samples in line 19. In line 22, we check whether the D′ tests are

passed at the same time or not. If not, the vote is increased by 1. From lines 24 through

34, the estimate n′k for kth entry is updated. Except when q = 0, n′k is improved by adding

the correction term shown in line 29 in each iteration. In the last iteration when q = L,

n′k is rounded to the nearest integer in order to recover the exact entry, as guaranteed by

Corollary 1. Whether this estimate is stored in the set R or not is determined by checking if

the vote after L iterations is less than η(L+ 1). If it is less, this implies that the failure rate
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of the collision detection tests is less than η. Accordingly, we estimate cn′ from the DFT of

unshifted samples and store (n′, cn′) in R. The entire while loop repeats until s energetic

Fourier modes are all found through switching the projection coordinate. Once we find all s

frequency vectors, each n′ ∈ R is transformed to D-dimensional n = u−1(n′).

Theorem 5. Let fz(x) = f(x)+z(x), where f̂(n) is s-sparse with all frequencies satisfying

n ∈ S ⊂ [−M/2,M/2)D ∩ ZD and not forming any worst case scenario, and z is complex

i.i.d. Gaussian noise of variance σ2. Moreover, suppose that s > C(β(β + 1)cminσ)2 for

some constant C. Algorithm 4, given M,D, s, β with M > 5s and access to fz(x) returns a

list of s pairs (n̂, cn̂) such that (i) each n̂ ∈ S and (ii) for each n̂, there is an n ∈ S such

that |cn − cn̂| ≤ Cσ/
√
s. The average-case runtime and sampling complexity are

O(sD log s logM) and O(sD logM),

respectively, over the class of random signals.

Proof. The difference of Algorithm 4 from Algorithm 3 appears in lines 13 through 39.

Algorithm 4 has the multiscale frequency entry estimation. Thus, the average-case runtime

and sampling complexity of Algorithm 3 is increased by a factor of L which is the number

of the repetition in the multiscale frequency entry estimation. Corollary 1 ensures that the

returned frequency vectors n̂ are correct, and the coefficient cn̂ has the desired error bound

from (3.10).
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3.4 Empirical Evaluation

In this section, we show the empirical evaluation of the multiscale high-dimensional sparse

Fourier algorithm. The empirical evaluation was done for test functions f(x) which consist of

cn randomly chosen from a unit circle in C and n randomly chosen from [−M/2,M/2)D∩ZD.

Sparsity s varied from 1 to 210 = 1024 by factor of 2. The noise term added to each sample

of f came from the Gaussian distribution N (0, σ2). Standard deviation σ varied from 0.001

to 0.512 by factor of 2. The dimension D was chosen to be 100 and 1000, and M was

chosen as 20. The transformation u was the one for partial unwrapping that was used in

[35], i.e., every 5-dimensional subvector of each frequency vector was unwrapped to a one-

dimensional vector and therefore each 100 and 1000-dimensional function f was unwrapped

to a 20 or 200-dimensional function f ◦ g whose Fourier domain is
(
[−205/2, 205/2) ∩ Z

)20

or
(
[−205/2, 205/2) ∩ Z

)200
, respectively. Input parameters C1 = 2, Cσ = 6, η = 1/4 and

β = 2.5 were empirically chosen to balance the runtime and accuracy as in [2]. Initial shift

size ε0 was set to 1
2·205 . All experiments are performed in MATLAB.

The three plots in Figure 3.1 show the average over 10 trials of the l1 error, the number

of samples, and the runtime in seconds as the noise level σ changes. These values are in

logarithm in the plots. Dimension D and sparsity s are fixed with 100 and 256, respectively.

On the other hand, the other three plots in Figure 3.2 show the average over 10 trials of the

l1 error, the number of samples, and the runtime in seconds as the sparsity s changes when

D = 100 and 1000. These values are in logarithm in the plots, either and the noise level is

fixed to 0.512.
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(a)

(b)

(c)

Figure 3.1: (a)Average l1 error vs. noise level σ in logarithm. (b)Average samples vs. noise
level in logarithm. (c)Average runtime vs. noise level in logarithm.
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(a)

(b)

(c)

Figure 3.2: (a)Average l1 error vs. sparsity s in logarithm. (b)Average samples vs. sparsity
s in logarithm. (c)Average runtime vs. sparsity s in logarithm.
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3.4.1 Accuracy

In Figure 3.1a and Figure 3.2a, the l1 errors of Fourier coefficient vectors are given under

various parameter changes. Throughout all trials conducted in these experiments frequencies

were always recovered exactly even for the noise level of σ = 0.512, which is relatively large

compared to the true coefficients from the unit circle in C. Thus, we can observe the errors

only from coefficients whose size is a constant multiple of σ√
p from (3.10). Due to the charac-

teristic of the multiscale method which uses less samples compared to the rounding method,

l1 errors are relatively large in nature. From Figure 3.1a, l1 error looks increasingly linear

as σ increases, which meets our expectation. In Figure 3.2a, the plot does not look exactly

linear, but between log2 s = 5 and 6, there is a transition of slope. This is because the sample

length p from (3.18) changes from C1s to
(
β(β+1)cminCσσ

π

)2
during this transition.

3.4.2 Sampling complexity

Sample number along σ changes in Figure 3.1b seems irregular at first sight. Looking at

the scale of vertical axis, however, we can see that the difference between maximum and

minimum is less than 0.3. Therefore, sampling complexity is not very affected by noise level.

In Figure 3.2b, the red graph shows the average sample numbers as the sparsity increases

when D = 100 and the blue graph shows the ones when D = 1000. Since our multiscale

algorithm recovers each frequency entry iteratively using logM sets of O(s)-length samples,

the average-case sampling complexity is indeed O(sD logM). Two graphs in Figure 3.2b

look close to be linear excluding the transition between log2 s = 5 and 6, which again is

caused by the change of p from (3.18). Moreover the difference between the values of the

red and blue graphs are close to 3, which implies that the sampling number depends linearly
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on D. The D-dimensional FFT whose sampling complexity is O(MD) cannot deal with

our high-dimensional problem computationally, whereas our algorithm uses only millions to

billions of samples for reconstruction.

3.4.3 Runtime complexity

Figures 3.1c and 3.2c show the average-case runtime complexity of the algorithm. The time

for evaluating the samples from functions is excluded when measuring the runtime. For the

main algorithm, we demonstrated that it isO(sD log s logM) because for each entry recovery,

DFT with O(s log s) runtime complexity is applied in D logM iterations. In Figures 3.1c,

the runtimes in seconds look irregular but the scale of vertical axis is less than 0.3 so that

we can conclude that similar to sample numbers the runtime is not affected by σ very much.

Overall, it took less than a second on average. In Figure 3.2c, the red graph represents the

runtimes as the sparsity changes when D = 100, and the blue graph represents the ones

when D = 1000. Those graphs do not look linear, but considering the average slope we can

see that the runtime is increased by around 28 while s is increased by 210. On the other

hand, the difference between two graphs implies that the runtime complexity is linear in D.

Compared to the FFT with runtime complexity of O(MD logMD) which is impossible to

be practical in high-dimensional problems, our algorithm is quite effective, taking only a few

seconds.
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Algorithm 4 Multiscale High-dimensional Sparse Fourier Algorithm Pseudo Code

Input:f, u, s,M,D,M ′, D′, σ, cmin, Cσ,C1, η, β
Output:R

1: R← ∅, t← 0
2: while |R| < s do
3: s∗ ← s− |R|
4: p← first prime number ≥ max

{
C1s
∗,
(
β(β + 1)cminCσσ/π

)2}
5: τ ← Cσσ

cmin
√
p

, L← 1 + blogβ M
′c

6: k̃ ← (t mod D′) + 1

7: Q (x)←
∑

(n′,cn′)∈R
cn′e

2πin′·x

8: for ` = 0→ p− 1 do

9: rk̃p [`]← f
(
u
(
`
pek̃

))
+ z` −Q

(
`
pek̃

)
10: end for

11: F
(
rk̃p

)
← FFT

(
rk̃p

)
, Fsort

(
rk̃p

)
← SORT

(
F
(
rk̃p

))
12: vote← 0
13: for q = 0→ L do

14: εq ← βq

2M ′
15: for k = 1→ D′ do
16: for ` = 0→ p− 1 do

17: r
k̃,k
p,εq [`]← f

(
u
(
`
pek̃

+ εqek

))
+ z′` −Q

(
`
pek̃

+ εqek

)
18: end for

19: F
(
r
k̃,k
p,εq

)
← FFT

(
r
k̃,k
p,εq

)
, Fsort

(
r
k̃,k
p,εq

)
← SORT

(
F
(
r
k̃,k
p,εq

))
20: end for
21: for h = 0→ s∗ − 1 do

22: if

∣∣∣∣∣∣∣∣Fsort(rk̃p)[h]

∣∣∣∣/∣∣∣∣Fsort(r
k̃,k
p,εq )[h]

∣∣∣∣− 1

∣∣∣∣ > τ for any k = 1, 2, · · · , D′ then vote← vote+ 1

23: end if
24: for k = 1→ D′ do
25: bk ←

1
2πArg

((
Fsort

(
r
k̃,k
p,εq

)
[h]

)/(
Fsort

(
rk̃p

)
[h]

))
26: if q == 0 then
27: n′k ← bk/εq
28: else
29: n′k ← n′k +

((
bk − εqn

′
k

)
(mod [−1/2, 1/2))

)
/εq

30: end if
31: if q == L then

32: n′k ← round
(
n′k
)

33: end if
34: end for
35: if vote ≤ η(L+ 1) then

36: cn′ ←
1
pF

sort
(
rk̃p

)
[h], R← R ∪

(
n′, c

n′
)

37: end if
38: end for
39: end for
40: t← t+ 1
41: end while
42: inverse-transform each n′ in D′-D to n D-D and restore it in R
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Chapter 4

General Sparse Harmonic

Transforms

4.1 Preliminaries

In this section, we introduce a completely different approach for high dimensional sparse

problems. The approach is a generalized sparse transform for a generic tensor basis. We

present the new method and a class of problems that it is ideally suited for.

4.1.1 The Compressive Sensing Problem for BOPB-Sparse Func-

tions

Toward a more exact problem formulation, let p ∈ N be any natural number and [N ] :=

{0, 1, 2, . . . , N −1} for all N ∈ N. The set of functions, {Tk : D → C}k∈[N ] forms a Bounded

Orthonormal System (BOS) with respect to a probability measure σ over D ⊂ Rp with BOS

constant K := maxk ‖Tk‖∞ ≥ 1 if K <∞, and

〈Tk, Tl〉(D,σ) :=

∫
D
Tk(x)Tl(x)dσ(x) = δk,l =


1 if k = l

0 if k 6= l
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holds for all k, l ∈ [N ]. Now let Bj := {Tj,k : Dj → C}k∈[M ] form a BOS with respect to

a probability measure νj on Dj ⊂ R, with constant K̃j for each j ∈ [D]. Then, the BOPB

functions B := {Tn : D → C}
n∈[M ]D

, defined by

Tn(x) :=
∏
j∈[D]

Tj;nj (xj) (4.1)

again form a BOS with constant

K := max
n
||Tn||∞ =

∏
j∈[D]

K̃j

with respect to the probability measure ν := ⊗j∈[D]νj over D := ×j∈[D]Dj ⊂ RD.

Herein we consider BOPB-sparse functions f : D → C of the form

f(x) :=
∑

n∈S⊂I⊆[M ]D

cnTn(x)

where |S| = s � |I| ≤ |B| = N = MD. Following [32, 20, 18] we will take I to be the

subset of [M ]D containing at most d ≤ D nonzero entries.

Considering the recovery of f using standard compressive sensing methods [36, 37] when

I = [M ]D, one can simply independently draw m′1 points, GE :=

{
t1, . . . , tm′1

}
⊂ D,

according to ν and then sample f at those points to obtain

yE = f
(
GE
)

:=

(
f (t1) , f (t2) , . . . , f

(
tm′1

))T
∈ Cm

′
1 . (4.2)

Our objective becomes the recovery of f using only the samples yE.
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Let the m′1 ×M
D random sampling matrix Φ ∈ Cm

′
1×M

D
have entries given by

Φ`,n = Tn(t`). (4.3)

We can now form the underdetermined linear system

yE =



f (t1)

f (t2)

...

f

(
tm′1

)


=



Tn1(t1) Tn2(t1) · · · · · · Tn
MD

(t1)

Tn1(t2) Tn2(t2) · · · · · · Tn
MD

(t2)

...
...

. . .
...

Tn1(tm′1
) Tn2(tm′1

) · · · · · · Tn
MD

(tm′1
)


c = Φc,

where c ∈ CMD
contains the basis coefficients cn of f , and the index vectors n1, . . . ,nMD ∈

[M ]D are ordered, e.g., lexicographically. Note that this linear system is woefully underde-

termined when m′1 � MD. When c has only s � MD nonzero entries as it does here,

however, the compressive sensing literature tells us that c can still be recovered using sig-

nificantly fewer than MD function evaluations as long as the normalized random sampling

matrix Φ has the Restricted Isometry Property (RIP) of order 2s [37].

Definition 1 (See Definition 6.1 in [37]). The sth restricted isometry constant δs of a matrix

Φ̃ ∈ Cm×N is the smallest δ ≥ 0 such that

(1− δ)‖c‖22 ≤
∥∥∥Φ̃c

∥∥∥2

2
≤ (1 + δ)‖c‖22

holds for all s-sparse vectors c ∈ CN . The matrix Φ̃ is said to satisfy the RIP of order s if

δs ∈ (0, 1).
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Furthermore, one can show that random sampling matrices have the restricted isometry

property with high probability when
∣∣∣GE∣∣∣ is relatively small.

Theorem 6 (See Theorem 12.32 and Remark 12.33 in [37]). Let A ∈ Cm×N be the random

sampling matrix associated to a BOS with constant K ≥ 1. If, for δ, p ∈ (0, 1),

m ≥ aK2δ−2s ·max{log2(4s) log(8N) log(9m), log(p−1)},

then with probability at least 1− p, the restricted isometry constant δs of Ã = 1√
m
A satisfies

δs ≤ δ. The constant a > 0 is universal.

Note that Theorem 6 effectively decouples the number of samples that one must acquire/

compute in order to recover any BOPB-sparse f from the overall BOP basis size |B| = MD.

It guarantees that a random sampling set of size
∣∣∣GE∣∣∣ = m′1 = O(K2 · s ·D · log4(KMD))

suffices. The main obstacle to reducing the sampling complexity (i.e., m′1) at this point

becomes the BOS sampling constant K. To see why, consider, e.g., the cosine BOPB where

for all j ∈ [D] in (4.1) we set Tj;n(x) =
√

2 cos (nx) for n ≥ 1 and Tj;0(x) = 1 in (4.1).

This leads to a BOS with K = 2D/2 with respect to uniform probability measure ν over

D = [0, 2π]D. Now we can see that we still face the curse of dimensionality since K2 = 2D

even for this fairly straightforward BOPB. Nonetheless, it expresses itself in a dramatically

reduced fashion: 2D is still a vast improvement over MD for even moderately sized M >

2.

As previously mentioned, to further reduce the sampling complexity from scaling like

2O(D) previous work has focussed on developing efficient methods for effectively reducing

the basis size to a smaller subset of the total basis B (see, e.g., [19, 20]). To see how this
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might work in the context of our simple cosine BOPB example above, we can note that the

BOPB elements in (4.1) can be rewritten as

Tn(x) := 2‖n‖0/2
D−1∏
j=0

cos
(
njxj

)

in that case. It now becomes obvious that limiting the basis functions to those with indexes

in I := {n ∈ [M ]D | ‖n‖0 ≤ d ≤ D} leads to a reduced BOS constant of K = 2d/2 < 2D/2

for the resulting reduced basis, as well as to a smaller basis cardinality of size
(D
d

)
Md =

O
(

(DMd )d
)

.

In particular, the utility of the assumption that the s non-negligible basis indexes of

f , S ⊂ [M ]D, also belong to the reduced index set I above is supported in some UQ

applications where it is known that, e.g., the solutions of some parametric PDE are not only

approximately sparse in some BOP bases such as the Chebyshev or Legendre product bases,

but also that most of their significant coefficients correspond to index vectors n ⊂ ND with

relatively small (weighted) `p-norms [19, 20]. In certain simplified situations this essentially

implies that S ⊂ I as discussed above. As a result, we will assume throughout this chapter

that S ⊂ I so that N = |I| =
(D
d

)
Md ≤MD.1

Even when s·K2 � N so that the number of required samplesm′1 is small compared to the

reduced basis size |I| = N , however, all existing standard compressive sensing approaches

for recovering f still need to compute and store potentially fully populated intermediate

coefficient vectors c′ ∈ CN at some point in the process of recovering f . As a result,

all existing approaches are limited in terms of the reduced basis sizes I they can consider

1Additionally, we will occasionally assume that our total grid size |G| below always satisfies |G| ≤ Nc for
some absolute constant c ≥ 1 in order to simplify some of the logarithmic factors appearing in our big-O
notation. This will certainly always be the case for any standardly used (trigonometric) polynomial BOPB
(such as Fourier and Chebyshev product bases) whenever sKDM < N .
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by both their memory needs and runtime complexities. In this chapter we develop new

methods that are capable of circumventing these memory and runtime restrictions for a

general class of practical BOP bases. As a result, we make it possible to recover a new class

of extremely high-dimensional BOPB-sparse functions which are simply too complicated to

be approximated by other means. We are now prepared to discuss our main results.

4.1.2 Main Results

The proposed sublinear-time algorithm is a greedy pursuit method motivated by CoSaMP[22],

HTP[23], and their sublinear-time predecessors [38, 39]. In particular, it is obtained from

CoSaMP by replacing CoSaMP’s support identification procedure with a new sublinear-time

support identification procedure. See Algorithm 5 in section 4.2 for pseudocode and other

details. Our main result demonstrates the existence of a relatively small grid of points G ⊂ D

which allows Algorithm 5 to recover any given BOPB-sparse function f in sublinear-time

from its evaluations on G. We refer the reader to section 4.1.3 for a detailed description of

the grid set G and its use in Algorithm 5. The following theorem is a simplified version of

theorem 7 in section 4.2.

Theorem (Main Result). Suppose that
{
Tn
∣∣ n ∈ I ⊆ [M ]D

}
is a BOS where each basis

function Tn is defined as per (4.1). Let Fs be the subset of all functions f ∈ span
{
Tn
∣∣ n ∈ I}

whose coefficient vectors are s-sparse, and let cf ∈ CI denote the s-sparse coefficient vec-

tor for each f ∈ Fs. Fix p ∈ (0, 1/3), a precision parameter η > 0, 1 ≤ d ≤ D, and

K = sup
n s.t.‖n‖0≤d

‖Tn‖∞. Then, one can randomly select a set of i.i.d. Gaussian weights

W ⊂ R for use in (4.19), and also randomly construct a compressive sensing grid, G ⊂ D,

whose total cardinality |G| is O
(
s3DL′K4 max

{
d4 log4(s) log4(D2M), log2(Dp )

})
, such that
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the following property holds ∀f ∈ Fs with probability greater than 1− 3p: Let y = f(G) con-

sist of samples from f ∈ Fs on G. If Algorithm 5 is granted access to y, G, and W, then it

will produce an s-sparse approximation a ∈ CI s.t.

‖cf − a‖2 ≤ Cη,

where C > 0 is an absolute constant. Furthermore, the total runtime complexity of Algorithm

5 is always

O
((
s5D2LK4 max

{
d4 log4(s) log4(D2M), log2(Dp )

})
× log

‖cf ‖2
η

)
.

Note that Algorithm 5 will run in sublinear-time whenever s5DLK4d4 � |I| (neglecting

logarithmic factors). Here and in the theorem above the parameters L and L′ depend on

your choice of numerical method for computing the inner product between a sparse function

in the span of each one-dimensional BOS Bj =
{
Tj;m

∣∣ m ∈ [M ]
}

. More specifically, let

L′j represent the number of function evaluations one needs in order to compute all M -inner

products
{
〈g, Tj;ñ〉

}
ñ∈[M ]

in O(L)-time for any given function g : Dj → C belonging to the

span of Bj that is also s-sparse in Bj . We then set L′ := maxj∈[D] L′j . For example, if each

BOS Bj consists of orthonormal polynomials whose degrees are all bounded above by M then

quadrature rules such as Gaussian quadrature or Chebyshev quadrature give L = O(M2)

and L′ = O(M) [14]. If each Bj is either the standard Fourier, sine, cosine, or Chebyschev

basis then the Fast Fourier Transform (FFT) can always be used to give L = O(M logM)

and L′ = O(M) [14].

Moreover, there are several sublinear-time sparse Fourier transforms as well as sparse

harmonic transforms for other bases which could also be used to give other valid L′ and L

combinations [40, 41, 10, 5, 24, 42, 43, 7, 44, 8, 45, 11, 46]. These typically have O(sc logc
′
M)
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runtime and sampling complexities for small positive absolute constants c and c′. As a result,

one can obtain much stronger results than the main theorem above when s�M and every

one-dimensional BOS Bj is either the Fourier, sine, cosine, or Chebyshev basis. The follow-

ing corollary of our main theorem is obtained by using deterministic one-dimensional SFT

results from [11] and [44] in order to compute all of the nonzero inner products in lines 6 – 13

of Algorithm 6. They lead to L′ and L values in section 4.2’s theorem 7 of size O(s2 log4M).

Corollary 2. Suppose that
{
Tn
∣∣ n ∈ I ⊆ [M ]D

}
is a BOS where each basis function Tn

is defined as per (4.1), and where every one-dimensional BOS Bj is either the Fourier, sine,

cosine, or Chebyshev basis. Let Fs be the subset of all functions f ∈ span
{
Tn
∣∣ n ∈ I}

whose coefficient vectors are s-sparse, and let cf ∈ CI denote the s-sparse coefficient vector

for each f ∈ Fs. Fix p ∈ (0, 1/3), a precision parameter η > 0, 1 ≤ d ≤ D, and let

K = sup
n s.t.‖n‖0≤d

‖Tn‖∞. Then, one can randomly select a set of i.i.d. Gaussian weights

W ⊂ R for use in (4.19), and also randomly construct a compressive sensing grid, G ⊂ D,

whose total cardinality |G| is

O
(
s3D log4(M)K4 max

{
d4 log4(s) log4(D2M), log2(Dp )

})
, such that the following property

holds ∀f ∈ Fs with probability greater than 1 − 3p: Let y = f(G) consist of samples from

f ∈ Fs on G. If Algorithm 5 is granted access to y, G, and W, then it will produce an

s-sparse approximation a ∈ CI s.t.

‖cf − a‖2 ≤ Cη,

where C > 0 is an absolute constant. Furthermore, the total runtime complexity of Algorithm

5 is always
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O
((
s5D2 log4(M)K4 max

{
d4 log4(s) log4(D2M), log2(Dp )

})
× log

‖cf ‖2
η

)
.

Note that the runtime dependance achieved by the corollary above scales sublinearly with

M , quadratically in D, and at most polynomially in the parameter d ≤ D used to determine

I. We also remind the reader that the BOS constant K for the Fourier basis is 1. As a result,

the K dependence in the runtime complexity vanishes entirely when the BOPB in question is

the multidimensional Fourier basis.2 Finally, there are also sublinear-time sparse transforms

for one-dimensional Legendre polynomial systems [44], though the theoretical results for

sparse recovery therein require additional support restrictions beyond simple sparsity. Thus,

corollary 2 can also be extended to restricted types of Legendre-sparse functions in order to

achieve sublinear-in-M runtimes. A detailed development of such results is left for future

work, however.

4.1.3 Randomly Constructed Grids with Universal Approxima-

tion Properties

Fix a BOP basis B and sparsity level s. We will call any set G ⊂ D a compressive sensing

grid if and only if ∃ a set of weights W s.t. ∀ f : D → C that are s-sparse in B

Algorithm 5 with weights W can recover f from its evaluations on G

is true. As mentioned above, our main results demonstrate the existence of relatively small

compressive sensing grids by randomly constructing highly structured sets of points that are

2Though the resulting O
(
s5D2d4polylog(MDs‖c‖2/ηp)

)
-runtime achieved by corollary 2 for the multi-

dimensional Fourier basis is strictly worse than the best existing noise robust and deterministic sublinear-time

results for that basis [11] (except perhaps when s3d4 � D3), we emphasize that it is achieved with a different
and significantly less specialized grid G herein.
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then shown to be compressive sensing grids with high probability. We emphasize that our

use of probability in this chapter is entirely constrained to (i) the initial choice of the grid G

given a BOP basis B and sparsity level s, and to (ii) the entirely independent and one-time

initial choice of a set of random gaussian weights W for use in (4.19) (i.e., as part of the

initialization phase for Algorithm 5). Algorithm 5 is entirely deterministic once both G and

W have been chosen.

The compressing sensing grids G utilized herein will be the union of three distinct sets

of points in D. The first set of points is the set GE ⊂ D on which f is evaluated in order

to obtain yE in (4.2). This set of points is used in Algorithm 5 in order to estimate the

basis coefficients for the basis elements identified by Algorithms 6 and 7. The second and

third sets included in G, GI ⊂ D and GP ⊂ D, are utilized by Algorithm 6 and Algorithm 7,

respectively. They are defined below.

Let Uj :=

{
uj,0, . . . , uj,L′j−1

}
⊂ Dj be the set of L′j points at which one can evaluate

any given Bj-sparse function g : Dj → C in the span of Bj in order to compute all M -inner

products
{
〈g, Tj;ñ〉

}
ñ∈[M ]

in O(L)-time. Also, let I≥j : [D − 1] → {0, 1} be the indicator

function that is zero when κ < j, and one when κ ≥ j. For each j ∈ [D] we will then define

GIj ⊂ D to be the set of mL′j randomly generated grid points given by

x′j,`,k =
(
(xj,`)0, (xj,`)1, . . . , (xj,`)j−1, uj,k, (xj,`)j , . . . , (xj,`)D−2

)
∀(`, k) ∈ [m]× [L′j ],

where each (xj,`)κ ∈ Dκ+I≥j(κ) is an independent realization of a random variable ∼

νκ+I≥j(κ) for all κ ∈ [D − 1]. We now take GI to be the union of these sets so that

GI :=
⋃
j∈[D]

GIj =
⋃
j∈[D]

{
x′j,`,k

}
(`,k)∈[m]×[L′j ]

.
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Finally, similar to (4.2), we will also define f ’s evaluations on GI to be yI ∈ Cm
′
2 where

yI = f
(
GI
)

:=

(
f
(
x′0,0,0

)
, f
(
x′0,0,1

)
, . . . , f

(
x′
D−1,m−1,L′D−1−1

))T
.

To define GP we will again need several different subsets for each j ∈ [D] \ {0}. For

each fixed (j, `, k) ∈ [D] \ {0} × [m1]× [m2] let wj,` ∈ ×i∈[j+1]Di and zj,k ∈ ×D−1
i=j+1Di be

chosen independently at random according to ⊗i∈[j+1]νi and ⊗D−1
i=j+1νi, respectively.3 We

then define GPj ⊂ D to be the set of m1m2 randomly generated grid points given by

GPj :=
{

(wj,`, zj,k)
∣∣ (`, k) ∈ [m1]× [m2]

}
∀j ∈ [D] \ {0}.

As above, we now let GP be the union of these sets so that

GP :=
⋃

j∈[D]\{0}
GPj

and define f ’s evaluations on GP to be yP ∈ Cm
′
3 where

yP = f
(
GP
)

:=
(
f
(
w1,0, z1,0

)
, f
(
w1,0, z1,1

)
, . . . , f

(
wD−1,m1−1, zD−1,m2−1

))T
.

As we saw in Section 4.1.2, it turns out that G := GE ∪ GI ∪ GP will be a compressive

sensing grid with high probability even when each component set is chosen to have a relatively

small cardinality. The vast majority of the remainder of this chapter will be dedicated to

proving this fact. We will begin the remainder of Section 4.1 by introducing additional

notation that is used throughout the rest of the chapter, and by interpreting our function

3When j = D − 1 the vector zj,k is interpreted as a null vector satisfying (wj,`, zj,k) = wj,` ∀(`, k).
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evaluations on G,

y = (yE,yI,yP)T ∈ Cm
′
1+m′2+m′3 (4.4)

as standard compressive sensing measurements. Next, in Section 4.2, Algorithm 5 is discussed

in detail and the main theorem above is proven with the help of a key technical lemma (i.e.,

Lemma 2) that guarantees the accuracy of our proposed support identification method.

Lemma 2 is then proven in Section 4.3. Finally, a numerical evaluation is carried out in

Section 4.4 that demonstrates that Algorithm 5 both behaves as expected, and is robust to

noisy function evaluations.

4.1.4 Notation and Problem Setting

In this section we introduce the notation that will be used in the rest of this chapter as

well as the problem for which we will develop our proposed algorithm. We denote by N the

set of natural numbers, R the set of real numbers, and C the set of complex numbers. Let

[N ] := {0, 1, 2, . . . , N − 1} for N ∈ N.

In this chapter all letters in boldface (other than probability measures such as ν) will

always represent vectors. Vectors whose entries are indexed by index vectors in, e.g., [M ]D

will be assumed to have their entries ordered lexicographically for the purposes of, e.g.,

matrix-vector multiplications. Thus, we say either v ∈ C[M ]D or v ∈ CMD
when we want

to emphasize that each entry vn of v is corresponding to its index vector n, or when we

perform, e.g., matrix-vector multiplications, respectively. We further define the `0 pseudo-

norm of a vector v by ‖v‖0 := |{i : vi 6= 0}| where the index i refers to the ith entry of the

vector (in lexicographical order). If v ∈ C is a scalar then we will also use the `0-notation
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to correspond to the indicator function defined by

‖v‖0 :=


1 if v 6= 0

0 if v = 0

. (4.5)

We will consider functions f : D → C given in a BOS product basis expansion below so

that

f(x) :=
∑

n∈[M ]D

cnTn(x). (4.6)

We will further assume that f is approximately sparse in this BOS product basis. That

is, we will assume that there exists some index set S ⊂ I for an a priori known index set

I ⊆ [M ]D such that S has the property that both (i) |S| = s � |I| ≤ MD, and that (ii)

the set of coefficients C := {cn
∣∣ n ∈ S} ⊂ C dominates f ’s `2-norm in the sense that

∑
n∈S
|cn|2 �

∑
n∈[M ]D\S

|cn|2 =: ε2,

for a relatively small number ε > 0. We emphasize here that absolutely nothing about S is

known to us in advance beyond the fact that it is a subset of I, and has cardinality at most

s. We must learn the identity of its elements ourselves by sampling f .

Our analysis herein will focus on the case where I is given by

I :=
{
n ∈ [M ]D

∣∣ ‖n‖0 ≤ d
}

for some d ≤ D (cf. Section 4.1.1). Note that this includes, for d = D, the special case

where I = [M ]D. We will call the index vectors n ∈ S energetic. Our goal is to recover
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S and the associated coefficients C as rapidly as possible using only evaluations/samples

from f . This will, in turn, necessitate that we sample f at very few locations in D. In this

chapter we will mainly focus on providing theoretical guarantees for the case where ε = 0

(i.e., for provably recovering f that are exactly s-sparse in a BOS product basis). Numerical

experiments in Section 4.4 demonstrate that the method also works when ε > 0, however.

We leave theoretical guarantees in the case of ε > 0 for future consideration.

4.1.5 Definitions Required for Support Identification

As with most compressive sensing and sparse approximation problems we will see that iden-

tifying the function f ’s support S is the most difficult part of recovering f . As a result our

proposed iterative algorithm spends the vast majority of its time in every iteration recov-

ering as many energetic n = (n0, n1, · · · , nD−1) ∈ S as it can. Only after doing so does

it then approximate a sparse vector c ∈ C[M ]D containing nonzero coefficients cn for each

discovered n ∈ S. Here, each n will be referred to as an index vector of an entry in c.

Let supp(v) ⊆ [M ]D represent the set of index vectors whose corresponding vn entries are

nonzero. We introduce the following notation in order to help explain our algorithm in the

subsequent sections of the chapter.

For a given v ∈ C[M ]D , j ∈ [D], and ñ ∈ [M ] the vector vj;ñ ∈ C[M ]D−1
indexed by

k ∈ [M ]D−1 is defined by

(
vj;ñ

)
k

=


vn, if n = (k0, . . . , kj−1, ñ, kj , . . . , kD−2)

0 otherwise

. (4.7)
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Note that vj;ñ will only ever have at most

N ′ :=

(
D − 1

d− ‖ñ‖0

)
Mmin{d−‖ñ‖0,D−1} ≤

(
e(D − 1)M

max{d− 1, 1}

)d
(4.8)

nonzero entries if vn = 0 for all n ∈ [M ]D with ‖n‖0 > d by assumption. Here, as

throughout the remainder of the chapter, we define
(p
q

)
to be 1 whenever q ≥ p or q < 0

(also recall the definition of ‖ñ‖0 from (4.5) above).4 Similarly, for a given v ∈ C[M ]D ,

j ∈ [D], and ñ ∈ [M ]j+1 the vector vj;(ñ,··· ) ∈ C[M ]D−j−1
indexed by k ∈ [M ]D−j−1 is

defined by

(
vj;(ñ,··· )

)
k

=


vn, if n = (ñ,k)

0 otherwise

. (4.9)

The following lemma bounds the total number of nonzero entries that vj;(ñ,··· ) can have

given that vn = 0 whenever ‖n‖0 > d. Note that for j = 0, vj;ñ = vj;(ñ,··· ) so that (4.8)

follows as a special case.

Lemma 1. Let v ∈ C[M ]D , j ∈ [D], and ñ ∈ [M ]j+1 with ‖ñ‖0 ≤ d. Suppose that vn = 0

whenever ‖n‖0 > d. Then vj;(ñ,··· ) can have at most

Ñj :=

(
D − j − 1

d− ‖ñ‖0

)
Mmin{d−‖ñ‖0,D−j−1} ≤

(
e(D − j − 1)M

max{d− j − 1, 1}

)d
(4.10)

nonzero entries.

Proof. Since vn = 0 whenever ‖n‖0 > d it must be the case that
(
vj;(ñ,··· )

)
n

= 0 whenever

4The min {d− ‖ñ‖0, D − 1} in the exponent of the M in (4.8) handles the case when d = D and ñ = 0.
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n = (ñ, ñ′) has ‖ñ′‖0 > d−‖ñ‖0, where ñ′ ∈ CD−j−1. As a result, if D− j−1 > d−‖ñ‖0

then there are at most
(D−j−1
d−‖ñ‖0

)
entry combinations left in n which can be nonzero, each of

which can take on M different values. If, on the other hand, d− ‖ñ‖0 ≥ D − j − 1 then all

of the remaining D − j − 1 values of n can each take on M different values.

Motivated by the definition of vj;ñ in (4.7) we further define

Ij;ñ :=
{
n ∈ I

∣∣ nj = ñ
}
⊂ C[M ]D ,

and denote the restriction matrix that projects vectors in C[M ]D onto each Ij;ñ (considered

as a subset of C[M ]D−1
) by Pj;ñ ∈ {0, 1}M

D−1×MD
. That is, we consider each Pj;ñ matrix

to have rows indexed by l ∈ [M ]D−1, columns indexed by k ∈ [M ]D, and entries defined

by

(Pj;ñ)l,k :=


1 if k = (l0, . . . , lj−1, ñ, lj , . . . , lD−2)

0 otherwise

. (4.11)

As a result, we have that Pj;ñv = vj;ñ for all v ∈ C[M ]D .

The fast support identification strategy we will employ in this chapter will effectively boil

down to rapidly approximating the norms of various cj;ñ and cj;(ñ,··· ) vectors for carefully

chosen collections of ñ ∈ [M ] and ñ ∈ [M ]j+1. This, in turn, will be done using as few

evaluations of f in (4.6) as possible in order to estimate inner products and norms of other

proxy functions constructed from f . As a simple example, note that ‖c‖2 can be estimated

by using samples from f in order to approximate ‖f‖2
L2(D,ν)

since

‖f‖2
L2(D,ν)

=
∑

n∈[M ]D

|cn|2.
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A bit less trivially, for j ∈ [D] and ñ ∈ [M ] one can also define the function
〈
f, Tj;ñ

〉
(Dj ,νj)

:

D′j → C with domain D′j := ×k 6=jDk by having
〈
f, Tj;ñ

〉
(Dj ,νj)

(w) evaluate to

∫
Dj

f(w0, . . . , wj−1, z, wj+1, . . . , wD−2)Tj;ñ(z) dνj(z)

for all w ∈ D′j . Let ν ′j := ⊗k 6=jνk. It is not too difficult to see that

∥∥∥〈f, Tj;ñ〉(Dj ,νj)

∥∥∥2

L2(D′j ,ν
′
j)

=
∑

n s.t. nj=ñ

|cn|2 = ‖cj;ñ‖22 (4.12)

in this case. Similarly, for some j ∈ [D] and ñ ∈ [M ]j+1 one can define the function

〈f, Tj;ñ〉(×i∈[j+1]Di,⊗i∈[j+1]νi

) from D′′j := ×k>jDk into C by letting

〈f, Tj;ñ〉(×i∈[j+1]Di,⊗i∈[j+1]νi

)(w) equal to

∫
×i∈[j+1]Di

f(z, w0, . . . , wD−j−2)
∏

k∈[j+1]

Tk;ñk
(zk) d

(
⊗i∈[j+1]νi

)
(z)

for all w ∈ D′′j . Let ν ′′j := ⊗k>jνk. Analogously to the situation above we then have

that ∥∥∥∥∥〈f, Tj;ñ〉(×i∈[j+1]Di,⊗i∈[j+1]νi

)∥∥∥∥∥
2

L2
(
D′′j ,ν

′′
j

) = ‖cj;(ñ,··· )‖
2
2. (4.13)

As we shall see below, both (4.12) and (4.13) will be implicitly utilized in order to allow the

estimation of such ‖cj;ñ‖22 and ‖cj;(ñ,··· )‖22 norms, respectively, using just a few nonadaptive

samples from f .
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4.1.6 The Proposed Method as a Sublinear-Time Compressive

Sensing Algorithm

Note that c, cj;ñ and cj;(ñ,··· ) from (4.6) are all at most s-sparse under the assumption

that ε = 0. As mentioned above, this means that recovering f from a few function eval-

uations is essentially equivalent to recovering c using random sampling matrices. Given

this, the method we propose in the next section can also be viewed as a sublinear-time

compressive sensing algorithm which uses a highly structured measurement matrix A con-

sisting of several concatenated random sampling matrices. More explicitly, the measurements

y ∈ Cm
′
1+m′2+m′3 utilized by Algorithm 5 below consist of function evaluations (i.e., recall

(4.4)) which can be represented in the concatenated form

y =


yE

yI

yP

 =


Φc

AIc

AP c

 =


Φ

AI

AP

 c = Ac (4.14)

for subvectors yE ∈ Cm
′
1 , yI ∈ Cm

′
2 , yP ∈ Cm

′
3 (recall Section 4.1.3), and structured

sampling matrices Φ ∈ Cm
′
1×M

D
, AI ∈ Cm

′
2×M

D
, and AP ∈ Cm

′
3×M

D
.

In (4.14) the matrix Φ is a standard random sampling matrix with the RIP formed as per

(4.3). It and its associated samples yE = Φc are used to estimate the entries of c indexed by

the index vectors contained in the identified energetic support set T in line 13 of Algorithm 5.

The matrices AI and AP are both used for support identification. In particular, AI and its

associated samples yI = AIc are used to try to identify all of the energetic basis functions
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in each input dimension, i.e., the sets

N ′j :=
{
ñ ∈ [M ]

∣∣ ∃n ∈ S with nj = ñ
}
⊆ [M ]

for each j ∈ [D] (see Algorithm 6). The matrix AP and its associated samples yP = AP c

are then used in Algorithm 7 to help build up the estimated support set T ⊂ [M ]D from the

previously identified N ′j-sets. See Section 4.2 below for additional details.

The matrix AI above is built using the matrix Kronecker products Ãj ⊗ Lj for j ∈ [D],

where Ãj ∈ Cm×[M ]D−1
is the random sampling matrix defined in (4.20), and Lj ∈ CL

′
j×[M ]

is a sampling matrix associated with Uj ⊂ Dj from Section 4.1.3 defined as

(
Lj
)
q,n := Tj;n(uj,q), q ∈ [L′j ] and n ∈ [M ]. (4.15)

The matrix AP , on the other hand, is constructed using Bj ⊗Cj for all j ∈ [D] \ {0} where

each Bj ∈ Cm1×[M ]j+1
is the random sampling matrix defined below in (4.35), and each

Cj ∈ Cm2×[M ]D−j−1
the random sampling matrix defined in (4.34). In particular, we have

that

AI :=


Ã0 ⊗ L0

...

ÃD−1 ⊗ LD−1

 , and AP :=


B1 ⊗ C1

...

BD−1 ⊗ CD−1

 . (4.16)

From a set of random gaussian weights W , a marix G ∈ CL×m is defined as

(G)k,` := gk` , k ∈ [L] and ` ∈ [m], (4.17)

where gk` ’s are the gaussian weights from (4.19).
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Briefly contrasting the proposed approach interpreted as a sublinear-time compressive

sensing method via (4.14) against previously existing sublinear-time algorithms for Com-

pressive Sensing (CS) (see, e.g., [38, 39, 47, 48, 49]), we note that no previous sublinear-time

CS methods exist which utilize measurement matrices solely derived from general BOS ran-

dom sampling matrices. This means that the associated recovery algorithms developed herein

can not directly take advantage of the standard group testing, hashing, and error correcting

code-based techniques which have been regularly employed by such methods, making the

development of fast reconstruction techniques and their subsequent analysis quite challeng-

ing. Nonetheless, we will see that we can still utilize at least some of the core ideas of these

methods by sublinearizing the runtime of one of their well known superlinear-time relatives,

CoSaMP [22].

4.2 The Proposed Method

In this section we introduce and discuss our proposed method. Roughly speaking, our

algorithm can be considered as a greedy pursuit algorithm (see, e.g., [50, 23, 22, 51, 52])

with a faster support identification technique that takes advantage of the structure of BOS

product bases. In particular, we will focus on the CoSaMP algorithm [22] herein. Note that

support identification is the most computationally expensive step of the CoSaMP algorithm.

Otherwise, CoSaMP is already a sublinear-time method for any type of BOS basis one likes.

Our overall strategy, therefore, will be to hijack the CoSaMP algorithm as well as its analysis

by removing its superlinear-time support identification procedure and replacing it with a

new sublinear-time version that still satisfies the same iteration invariant as the original.

See Algorithm 5 for pseudocode of our modified CoSaMP method. Note that most its steps
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Algorithm 5 Sublinearized CoSaMP

1: procedure SublinearRecoveryAlgorithm
2: Input: Sampling matrices Φ, AI , AP (implicitly, via the samples in G that determine

their rows), samples yE = Φc, yI = AIc, yP = AP c, a sparsity estimate s, and a set
of i.i.d. Gaussian weights W

3: Output: s-sparse approximation a of c
4: a0 = 0 {Initial approximation}
5: vI ← yI, vP ← yP

6: t← 0
7: repeat
8: {The next line calls Algorithm 6 . . . }
9: Nj ∀j ∈ [D]← EntryIdentification(vI , W) {Support identification step # 1}

10: {The next line calls Algorithm 7 . . . }
11: Ω← Pairing(vP , Nj ∀j ∈ [D]) {Support identification step # 2}
12: T ← Ω ∪ supp(at) {Merge supports}
13: bT ← Φ

†
Ty

E {Local estimation by least-squares}
14: t← t+ 1
15: at ← bs {Prune to obtain next approximation}
16: vI ← yI − AIat, vP ← yP − APat {Update current samples}
17: until halting criterion true
18: end procedure

are identical to the original CoSaMP algorithm except for the two “Support identification”

steps, and the “Update current samples” and “halting criterion” lines. Thus, our discussion

will mainly focus on these three parts.

Like CoSaMP, Algorithm 5 is a greedy approximation technique which makes locally

optimal choices during each iteration. In the t-th iteration, it starts with an s-sparse ap-

proximation at of c and then tries to approximate the at most 2s-sparse residual vector

r := c − at. The two “Support identification” steps begin approximating r by finding a

support set Ω ⊂ I of cardinality at most 2s which contains the set

{
n
∣∣ |rn|2 ≥ ‖r‖22

α2s

}
(i.e.,

Ω contains the indices of the entries where most of the energy of r is located). These support

identification steps constitute the main modification made to CoSaMP in this chapter and

are discussed in more detail in sections 4.2.1 and 4.2.2 below. After support identification, in

the “Merge supports” step, a new support set T of cardinality at most 3s is then formed from

84



the union of Ω with the support of the current approximation at. At this stage T should

contain the overwhelming majority of the important (i.e., energetic) index vectors in S. As a

result, restricting the columns of the sampling matrix Φ to those in T (or constructing them

on the fly in a low memory setting) in order to solve for bT := argmin
u∈C|T |

‖ΦTu− yE‖2

should yield accurate estimates for the true coefficients of c indexed by the elements of T ,

cT .5 The vector bs restricting bT to its s largest-magnitude elements then becomes the next

approximation of c, at+1.

As previously mentioned, the main difference between Algorithm 5 and CoSaMP is in

the support identification steps. In the proposed method support identification consists of

two parts: “Entry Identification” and “Pairing”. For each of these steps we use a different

measurement matrix, AI or AP , respectively, as well as a different set of samples (either vI

or vP ) from the current residual vector. Thus, we need to update a total of three estimates

every iteration: vI , vP and at. In the next two sections we review each of the two newly

proposed support identification steps in more detail.

5In practice, it suffices to approximate the least-squares solution bT by an iterative least-squares approach
such as Richardson’s iteration or conjugate gradient [14] since computing the exact least squares solution
can be expensive when s is large. The argument of [22] shows that it is enough to take three iterations for

Richardson’s iteration or conjugate gradient if the initial condition is set to at, and if Φ has an RIP constant
δ2s < 0.025. In fact, both of these methods have similar runtime performance.
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4.2.1 Support Identification Step # 1: Entry Identification

Algorithm 6 Entry identification

1: procedure EntryIdentification

2: Input: vI , and a set of i.i.d. Gaussian weights W for use in the hj;k below (see (4.19))

3: Output: Nj for j ∈ [D]

4: for j = 0→ D − 1 do

5: Nj ← ∅

6: for ñ = 0→M − 1 do

7: {The method works because mediank∈[L]

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≈ ‖rj;ñ‖2. See

8: (4.18) and (4.19) for the definition of hj;k. For exactly s-sparse c one can use

9: τ = 0 below. More generally, one can select the largest s estimates for Nj .}

10: if mediank∈[L]

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣, then
11: Nj ← {ñ} ∪ Nj .

12: end if

13: end for

14: end for

15: end procedure

For each j ∈ [D] the entry identification algorithm (see Algorithm 6) tries to find the j-th

entry of each energetic index vector n corresponding to a nonzero entry rn in the 2s-sparse

residual vector r = c − at. Note that for each j this gives rise to at most 2s index entries

in [M ].6 We therefore define N t
j to be the resulting set {nj | n ∈ supp(r)} of size at most

6Note that we are generally assuming herein that 2s < M . In the event that 2s ≥ M one can proceed
in at least two different ways. The first way is to not change anything, and to simply be at peace with
the possibility of, e.g., occasionally returning Nj = [M ]. This is our default approach. The second way is

regroup the first g ∈ N variables of f together into a new collective “first variable”, the second g variables
together into a new collective “second variable”, etc., for some g satisfying Mg > 2s. After such regrouping
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2s for each j ∈ [D]. Note that ñ ∈ N t
j if and only if ‖rj;ñ‖2 > 0. As a result we can

learn N t
j by approximating ‖rj;ñ‖2 using

∥∥∥〈h, Tj;ñ〉(Dj ,νj)

∥∥∥2

L2(D′j ,ν
′
j)

via (4.12) as long as

we know

h(x) :=
∑

n∈supp(r)

rnTn(x). (4.18)

Whenever
∥∥∥〈h, Tj;ñ〉(Dj ,νj)

∥∥∥2

L2(D′j ,ν
′
j)

is larger than a threshold value (e.g., zero) for a par-

ticular choice of j ∈ [D] and ñ ∈ [M ], we could simply add ñ to Nj (our estimate of N t
j ) in

this case.

Of course we don’t actually know exactly what h is. However, we do have access to

samples from h in each iteration in the form of vI and vP . And, as a result, we are able

to approximate
∥∥∥〈h, Tj;ñ〉(Dj ,νj)

∥∥∥2

L2(D′j ,ν
′
j)

= ‖rj;ñ‖2 for any j ∈ [D] and ñ ∈ [M ] with the

estimator

mediank

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣
defined using (4.19). In section 4.3.1 we show that this estimator can be used to accurately

approximate ‖rj;ñ‖2 for all 2s-sparse residual vectors r ∈ C[M ]D using only O
(
s ·K2dL′ ·

polylog(D, s,M,K)
)

universal samples from any given r’s associated h-function in (4.18)

(i.e., the samples in vI).7 Furthermore, the estimator can always be computed in just

O
(
s2 ·K2d2L · polylog(D, s,M,K)

)
-time.

At this point it is important to note that managing to find each N t
j exactly for all j ∈ [D]

still does not provide enough information to allow us to learn supp(r) when d > 1. In general

the most we learn from this information is that supp(r) ⊂
(
×j∈[D]Nj

)⋂
I ⊂ [M ]D. In

the algorithm can then again effectively be run as is with respect to these new collective variables.
7Recall that L′ represents the maximum number of function evaluations one needs in order to com-

pute 〈g, Tj;ñ〉 for all ñ ∈ [M ] in O(L)-time for any given j ∈ [D], and s-sparse g : Dj → C in

span
{
Tj;m

∣∣ m ∈ [M ]
}

.
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the next “Pairing” step we address this problem by iteratively pruning the candidates in

×j∈[1]Nj ,×j∈[2]Nj , . . . ,×j∈[D]Nj down at each stage to the best 2s candidates for being

a prefix of some element in supp(r). As we shall see, the pruning in each “Pairing” stage

involves energy estimates that are computed using only the samples from h in vP . These

ideas are discussed in greater detail in the next section.

4.2.2 Support Identification Step # 2: Pairing

Algorithm 7 Pairing

1: procedure Pairing

2: Input: vP =
{
h(wj,`, zj,k)

∣∣ j ∈ [D] \ {0}, ` ∈ [m1], k ∈ [m2]
}

, Nj for j ∈ [D]

3: Output: P

4: P0 ← N0

5: for j = 1→ D − 1 do

6: {This method works because Ej;(ñ... ) ≈ ‖rj;(ñ,··· )‖22 below.}

7: Ej;(ñ... ) ← 1
m2

∑
k∈[m2]

∣∣∣ 1
m1

∑
`∈[m1] h(wj,`, zj,k)Tñ(wj,`)

∣∣∣2 ∀ñ ∈ Pj−1 ×Nj .

8: Create Pj containing each ñ whose energy estimate Ej;(ñ... ) is in the 2s-largest.

9: end for

10: P ← PD−1

11: end procedure

Once all the Nj ⊂ [M ] have been identified for all j ∈ [D] it remains to match them together

in order learn the true length-D index vectors in supp(r) ⊂ [M ]D. To achieve this we begin

by attempting to identify all the prefixes of length two, ñ = (ñ0, ñ1) ∈ N0 × N1, which

begin at least one element in the support of r. Similar to the ideas utilized above, we
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now note that (ñ,n′) ∈ supp(r) for some n′ ∈ [M ]D−2 if and only if ‖rj;(ñ,··· )‖22 > 0.

As a result, it suffices for us to use the samples from h (recall (4.18)) in vP in order to

compute Ej;(ñ... ) ≈ ‖rj;(ñ,··· )‖22 in Algorithm 7 above. The 2s-largest estimates Ej;(ñ... )

are then used to identify all the prefixes of length 2 which begin at least one element of

supp(r). Of course, this same idea can then be used again to find all length-3 prefixes of

elements in supp(r) by extending the previously identified length-2 prefixes in all possible

O(s2) combinations with the elements in N2, and then testing the resulting length-3 prefixes’

energies in order to identify the 2s most energetic such combinations, etc.. See Algorithm 7

above for pseudocode, Section 4.3.2 for analysis of these Ej;(ñ... ) estimators, and Section

4.2.2.1 just below for a concrete example of the pairing process.

4.2.2.1 An Example of Entry Identification and Pairing to Find Support

Assume that r ∈ C[M ]3 is three-sparse with a priori unknown energetic index vectors

supp(r) = {(3, 5, 6), (4, 7, 8), (11, 5, 100)} ⊂ [M ]3

and corresponding nonzero coefficients r(3,5,6), r(4,7,8), and r(11,5,100). We can further imag-

ine that M here is significantly larger than, e.g., 100 so that computing all M3 coefficients

of r using standard numerical methods would be undesirable. In this case, Algorithm 6 aims

to output the sets

N0 = {3, 4, 11}, N1 = {5, 7}, and N2 = {100, 6, 8} ⊂ [M ],

i.e., the first, second, and third entries of each index vector in the support of r, respectively.

Note that there are 18 = 3 × 2 × 3 possible index vectors which are consistent with the

89



N0, N1, and N2 above. Algorithm 7 is now tasked with finding out which of these 18

possibilities are truly elements of supp(r) without having to test them all individually.8

To identify supp(r) without having to test all 18 index vectors in N0 × N1 × N2, the

pairing process instead starts by estimating the energy of the |N0| · |N1| = 6 length-2 prefixes

in N0 × N1 which might begin an index vector in supp(r). In the ideal case these energy

estimates will reveal that only 3 of these 6 possible length-2 prefixes actually have any

energy,

P1 = {(3, 5), (4, 7), (11, 5)} ⊂ [M ]2.

In its next stage the pairing process now continues by combining these three length-2 prefixes

in P1 with N2 in order to produce |P1| × |N2| = 9 final candidate elements potentially

belonging to supp(r) ⊂ [M ]3. Estimating the energy of these 9 candidates then finally

reveals the true identities of the index vectors in the support of r.

Note that instead of computing energy estimates for all 18 possible support candidates in

N0×N1×N2, the pairing process allows us to determine the correct support of r using only

15 = 6 + 9 < 18 total energy estimates in this example. Though somewhat underwhelming

in this particular example, the improvement provided by Algorithm 7 becomes much more

significant as the dimension D of the index vectors grows larger. When |supp(r)| = |Nj | = s

for all j ∈ [D], for example, ×j∈[D]Nj will have sD total elements. Nonetheless, Algo-

rithm 7 will be able to identify supp(r) using only O
(
s2D

)
energy estimates in the ideal

setting.9

8In this simple example we can of course simply estimate the energy for all 18 possible index vectors. The
three true index vectors in the support of r with nonzero energy would then be discovered and all would be
well. However, this naive approach becomes spectacularly inefficient for larger D � 3.

9In less optimal settings one should keep in mind that Algorithm 7 only finds the most energetic entries

in general, so that P ⊃

{
n
∣∣ |rn|2 ≥ ‖r‖22

α2s

}
for a given α > 1. This is why we need to apply it iteratively.
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4.2.3 A Theoretical Guarantee for Support Identification

The following lemma and theorem show that our support identification procedure (i.e., Al-

gorithm 6, followed by Algorithm 7) always identifies the indexes of the majority of the

energetic entries in r. Consequently, the energy of the residual is guaranteed to decrease

from iteration to iteration of Algorithm 5. We want to remind readers that r is always

2s-sparse since c and each at−1 are s-sparse in the present analysis (i.e., ε = 0).

Lemma 2. Suppose that
{
Tn
∣∣ n ∈ I ⊆ [M ]D

}
is a BOS where each basis function Tn is

defined as per (4.1). Let H2s be the set of all functions, h : D → C, in span
{
Tn
∣∣ n ∈ I}

whose coefficient vectors are 2s-sparse, and let rh ∈ CI denote the 2s-sparse coefficient vector

for each h ∈ H2s. Fix p ∈ (0, 1/2), 1 ≤ d ≤ D, N =
(D
d

)
Md, and K = sup

n s.t.‖n‖0≤d
‖Tn‖∞.

Then, one can randomly select a set of i.i.d. Gaussian weights W ⊂ R for use in (4.19), and

also randomly construct entry identification and pairing grids, GI ⊂ D and GP ⊂ D (recall

Section 4.1.3), whose total cardinality
∣∣∣GI ∣∣∣+

∣∣∣GP ∣∣∣ is

O
(
sDL′K2 max{log2(s) log2(DN), log(Dp )}+s3DK4 max

{
log4(s) log2(N) log2(DN), log2(Dp )

})
,

such that the following property holds ∀h ∈ H2s with probability greater than 1 − 2p: Let

vIh ∈ Cm
′
2 and vPh ∈ Cm

′
3 be samples from h ∈ H2s on GI and GP , respectively. If Algorithms

6 and 7 are granted access to vIh, vPh , GI , GP , and W then they will find a set Ω ⊂ [M ]D of

cardinality 2s in line 11 of Algorithm 5 such that

‖(rh)Ωc‖2 ≤ 0.202‖rh‖2.

Furthermore, the total runtime complexity of Algorithms 6 and 7 is always

O
(
s2DLK2 max{log2(s) log2(DN), log(Dp )}+s5D2K4 max

{
log4(s) log2(N) log2(DN), log2(Dp )

})
.

91



In Lemma 2 above L′ denotes the maximum number of points in Dj required in order to

determine the value of 〈g, Tj;ñ〉(Dj ,νj) for all ñ ∈ [M ] in O(L)-time for any given s-sparse

g : Dj → C in span
{
Tj;m

∣∣ m ∈ [M ]
}

, maximized over all j ∈ [D]. See Section 4.1.2 for

a more in depth discussion of these quantities. The reader is also referred back to Section

4.1.3 for a discussion of the entry identification and pairing grids, GI and GP , mentioned

in Lemma 2. The proof of Lemma 2, which is quite long and technical, is given in Section

4.3.3. Once Lemma 2 has been established, however, it is fairly straightforward to prove that

Algorithm 5 will always rapidly recover any function of D-variables which exhibits sparsity

in a tensor product basis by building on the results in [22]. We have the following theorem.

Theorem 7. Suppose that
{
Tn
∣∣ n ∈ I ⊆ [M ]D

}
is a BOS where each basis function Tn

is defined as per (4.1). Let Fs be the subset of all functions f ∈ span
{
Tn
∣∣ n ∈ I} whose

coefficient vectors are s-sparse, and let cf ∈ CI denote the s-sparse coefficient vector for

each f ∈ Fs. Fix p ∈ (0, 1/3), 1 ≤ d ≤ D, N =
(D
d

)
Md, K = sup

n s.t.‖n‖0≤d
‖Tn‖∞, and a

precision parameter η > 0. Then, one can randomly select a set of i.i.d. Gaussian weights

W ⊂ R for use in (4.19), and also randomly construct a compressive sensing grid, G ⊂ D,

whose total cardinality |G| is

O
(
sDL′K2 max{log2(s) log2(DN), log(Dp )}+ s3DK4 max

{
log4(s) log2(N) log2(DN), log2(Dp )

})
,

such that the following property holds ∀f ∈ Fs with probability greater than 1 − 3p: Let y

consist of samples from f ∈ Fs on G. If Algorithm 5 is granted access to y, G, and W, then

it will produce an s-sparse approximation a such that

‖cf − a‖2 ≤ Cη.
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Here C > 0 is an absolute constant. Furthermore, the total runtime complexity of Algorithm

5 is always

O
((
s2D2LK2 max{log2(s) log2(DN), log(Dp )}+s5D2K4 max

{
log4(s) log2(N) log2(DN), log2(Dp )

})
× log

‖cf‖2
η

)
when |G| is bounded as above.

As above, we refer the reader back to Section 4.1.2 for a discussion of the quantities

L′ and L appearing in Theorem 7, as well as to Section 4.1.3 for more information on the

compressive sensing grid G ⊂ D mentioned therein.

Proof. In order to analyze the support identification step, we replace Lemma 4.2 in [22] by

Lemma 2, and then we obtain

‖cf − at+1‖2 ≤ 0.5‖cf − at‖2

for each iteration t ≥ 0, which is the same as in Theorem 2.1 in [22] provided that f is exactly

s-sparse and samples are not noisy. Except for the support identification step(s), Algorithm

5 agrees with CoSaMP, so that Lemmas 4.3 – 4.5 in [22] still directly apply to Algorithm 5.

After O
(

log
‖cf ‖2
η

)
iterations, we see that the s-sparse approximation a therefore satisfies

‖cf − a‖2 ≤ Cη.

Since the runtime complexity of the support identification steps and the sample update

process in each iteration, the total running time arises from multiplying it with the number

of iterations. The number of sample points, m′1, m, m1 and m2 used to define the matrices

Φ, Ãj , Bj and Cj discussed in Section 4.1.6 are all chosen to ensure that these resulting

measurement matrices have the RIP. Thus, the samples of f in y can be reused over as many
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iterations as needed. Updating the samples for the entry identification or pairing causes an

extra O(sDm′2) and O(sDm′3) computations respectively which causes a D2 factor instead

of D in the first term of runtime complexity. The probability of successful recovery for all

f ∈ Fs is obtained by taking the union bound over the failure probability p of Φ having

δ2s < 0.025 via Theorem 6 together with the failure probability 2p of Lemma 2.

We are now prepared to begin the process of proving Lemma 2.

4.3 Analysis of the Support Identification

In this section, we analyze the performance of the sublinear-time support identification tech-

nique proposed herein. First, we show in Section 4.3.1 the success of the entry identification

step. Indeed, Theorems 8 and 9 show under the RIP assumption that certain one-dimensional

proxy functions allow us to identify the entry with large corresponding coefficients. Lemma

6 then estimates the necessary sample complexity. In Section 4.3.2, we analyze the pairing

step showing that it works uniformly for any 2s-sparse functions in Theorem 10. Finally, in

Section 4.3.3, we complete the proof of the Lemma 2 providing the complete result for the

proposed support identification method.

4.3.1 Entry Identification

In this section, we seek to find Nj containing the j-th entries of the index vectors of the

nonzero transform coefficients for all j ∈ [D]. Define [D]′ := [D] \ {j}.

Assume without loss of generality that the number L ∈ N of proxy functions is odd.

Choose Xj := {xj,`}`∈[m] where each xj,` is chosen independently at random from D′j

according to dν ′j . Also, choose {gk1 , · · · , g
k
m}k∈[L] where each gk` is an i.i.d. standard Gaus-
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sian variable ∼ N (0, 1), which forms W introduced in Section 4.1.3. We define a function

hj;k : Dj → C of one variable in Dj as follows,

hj;k(x) :=
1√
m

∑
`∈[m]

gk` h([x,xj,`]) =
1√
m

∑
`∈[m]

gk`

∑
n∈supp(r)

rnTj;nj (x)
∏
i∈[D]′

Ti;ni(xj,`)i,

(4.19)

and [x,xj,`] is the vector obtained by inserting the variable x between the entries of xj,`

indexed by [j] and {j, j + 1 · · · , D − 2}, i.e.,

[x,xj,`] :=
(
(xj,`)0, (xj,`)1, · · · , (xj,`)j−1, x , (xj,`)j , · · · , (xj,`)D−2

)
.

For the sake of simplicity, we let Tň(x̌) :=
∏
i∈[D]′ Ti;ňi(x̌i) with ň ∈ [M ]D−1 and x̌ ∈

D′j .

We choose m large enough above to form the normalized random sampling matrix Ãj ∈

Cm×[M ]D−1
for each j ∈ [D], defined as

(
Ãj

)
`,ň

:=
1√
m
Tň(xj,`), ` ∈ [m], ň ∈ [M ]D−1, (4.20)

so that each one has a restricted isometry constant δ2s of at most δ with high probability

in its restricted form. Here, the restricted form is introduced by eliminating the columns of

the full Ãj indexed by vectors n /∈ Ij;ñ. To explain further, we denote ÃjPj;ñr = Ãjrj;ñ

where Pj;ñ is a restriction matrix defined in (4.11). This comes from the inner product in

line 10 of Algorithm 6 which is calculated by using the evaluations of hj,k at Uj defined in

Section 4.1.3. Then, the inner product can be written as
(
GÃjPj;ñr

)
k

where G is defined

as in (4.17). In other words, the evaluations of h at [uj,k,xj,`] from GIj in Section 4.1.3 are
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utilized to compute the inner product. Then, the matrix-vector multiplication Ãjrj;ñ can

be considered in its restricted form by eliminating the columns of Ãj and elements of rj;ñ

which are zero due to their corresponding index vectors not belonging to Ij;ñ. The resulting

restricted matrix Ãj has the size m×N ′ where N ′ is bounded above in (4.8) so that Ãj has

the restricted isometry constant δ2s mentioned. The advantage of forming RIP matrices in

this fashion is that it allows us to analyze the different iterations of Algorithm 5 repeatedly

with the same RIP matrices. For a discussion about the number of measurements needed to

ensure that Ãj satisfies the RIP, see the following lemma (which is a simple consequence of

Theorem 6).

Lemma 3. Let Ãj ∈ Cm×N ′ be the random sampling matrix as in (4.20) in its restricted

form. If, for δ, p ∈ (0, 1),

m ≥ aK2δ−2smax

{
d log2(4s) log(9m) log

(
8e(D − 1)DM

d

)
, log

(
D

p

)}
,

then with probability at least 1− p, the restricted isometry constant δs of Ãj satisfies δs ≤ δ

for all j ∈ [D]. The constant a > 0 is universal.

As we will show, more than half of the proxy functions, {hj;k}k∈[L] are guaranteed with

high probability to have ‖hj;k‖L2(Dj ,νj) bounded above by ‖r‖2 up to some constant, and

also
∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ bounded above and below by ‖rj;ñ‖2 up to some constants for all

ñ ∈ [M ] and j ∈ [D].

To show this we consider the indicator variable Eh,j,ñ,k which is 1 if and only if all three

of

1. ‖hj;k‖2L2(Dj ,νj)
≤ α′‖r‖22 for the absolute constant α′ defined in Lemma 4,

2. 9
4‖rj;ñ‖2 ≥

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≥ √23
12 ‖rj;ñ‖2, and
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3. the vector of Gaussian weights gk ∈ Rm satisfying 1
2m ≤ ‖g

k‖22 ≤
3
2m,

are simultaneously true, and 0 otherwise.

The proof will proceed as follows. Lemmas 4 and 5 together with the bound on ‖gk‖2

through Bernstein’s inequality imply that the probability of each Eh,j,ñ,k being 1 is greater

than 0.5. Combining this with Chernoff bound, the deviation of
∑
k∈[L]Eh,j,ñ,k below

its expectation shows exponential decay in its distribution. Then, with sufficiently many

proxy functions, i.e., sufficiently large L, the probability that
∑
k∈[L]Eh,j,ñ,k < L/2 for all

(h, j, ñ) ∈ H × [D] × [M ] becomes very small, which is shown in Theorem 8. The number

L logarithmically depends on DM |H|. In order to get the desired properties for all 2s-

sparse functions satisfying our support assumption, the finite function set H is taken as

Hε with corresponding coefficient vector set Rε which is an ε-cover over all normalized 2s-

sparse vectors in CN in Theorem 9. Thus, with high probability, the desired properties hold

uniformly, i.e., for all functions of interest, and for ∀j ∈ [D] and ñ ∈ [M ].

The following lemma bounds the energy of the proxy functions.

Lemma 4. Suppose that r ∈ CN is 2s-sparse, and the restricted isometry constant δ2s of

Ãj satisfies δ2s ≤ δ for all j ∈ [D] where δ ∈ (0, 7/16). Then, for each k ∈ [L], there exists

an absolute constant α′ ∈ R+ such that

P
[
‖hj;k‖2L2(Dj ,νj)

≥ α′||r||22
]
≤ .025 (4.21)

for all j ∈ [D].

Proof. Consider the random sampling point set Xj =
{
xj,` | ` ∈ [m]

}
to be fixed for the

moment. We begin by noting that
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‖hj;k‖2L2(Dj ,νj)
=

∫
Dj
|hj;k(x)|2dνj(x)

=

∫
Dj

∣∣∣∣∣∣ 1√
m

∑
`∈[m]

gk` h(
[
x,xj,`

]
)

∣∣∣∣∣∣
2

dνj(x)

=
1

m

∑
`,`′∈[m]

gk` g
k
`′

∫
Dj

h([x,xj,`])h([x,xj,`′ ]) dνj(x)

=
1

m

∑
`,`′∈[m]

gk` g
k
`′

∑
n,n′∈supp(r)

rnrn′
∏
i∈[D]′

Ti;ni(xj,`)i
∏

i′∈[D]′
Ti′;n′

i′
(xj,`′)i′

(4.22)

×
∫
Dj

Tj;nj (x)Tj;n′j
(x) dνj(x)

=
1

m

∑
`,`′∈[m]

gk` g
k
`′


∑
ñ∈[M ]

∑
n,n′ s.t.
nj=n′j=ñ

rnrn′
∏
i∈[D]′

Ti;ni(xj,`)i
∏

i′∈[D]′
Ti′;n′

i′
(xj,`′)i′


=
∑
ñ∈[M ]

∑
`,`′∈[m]

gk` g
k
`′
(
Ãjrj;ñ

)
`

(
Ãjrj;ñ

)
`′
, (4.23)

where Ãj ∈ Cm×N ′ is the restricted random sampling matrix from (4.20) and rj;ñ ∈ CN ′

is the restricted vector from (4.7). Thus, we can see that

‖hj;k‖2L2(Dj ,νj)
=

∑
ñ∈[M ]

∣∣〈Ãjrj;ñ, gk〉∣∣2 =
∥∥∥(gk)∗ÃjR

∥∥∥2

2
=
∥∥∥(ÃjR)∗ gk∥∥∥2

2

where R ∈ CN ′×M is the matrix whose ñth column is rj;ñ. This yields results that

E
gk

[
‖hj;k‖2L2(Dj ,νj)

]
= ‖ÃjR‖2F.

Now observe that
(
ÃjR

)∗
gk ∼ N (0, UΣ2U∗), where UΣV ∗ is the SVD of

(
ÃjR

)∗
and
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Σ ∈ Rmin{M,m}×min{M,m} is the diagonal matrix containing at most min{M,m} nonzero

singular values, σ1 ≥ σ2 ≥ · · · ≥ σmin{M,m} ≥ 0, of ÃjR. Let g̃k := ΣV ∗gk ∼ N (0,Σ2)

and note that ‖U g̃k‖22 = ‖g̃k‖22. As a consequence, one can see that

P
[
‖hj;k‖2L2(Dj ,νj)

≥ t

]
= P

[
‖g̃k‖22 ≥ t

]
= P

min{M,m}∑
`=1

σ2
`X` ≥ t


holds for all t ∈ R, where each X` is an i.i.d χ2 random variable. Applying the Bernstein

type inequality given in Proposition 5.16 in [53] we deduce that

P
[∣∣∣∣‖hj;k‖2L2(Dj ,νj)

− ‖ÃjR‖2F

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−a′min

{
t2

‖σ‖44
,

t

‖σ‖2∞

})

≤ 2 exp

(
−a′min

{
t2

‖ÃjR‖4F
,

t

‖ÃjR‖2F

})
(4.24)

where a′ ∈ R+ is an absolute constant, and σ is the vector containing the diagonal elements

of Σ. An application of (4.24) with t = max
{

log 80/a′,
√

log 80/a′
}
‖ÃjR‖2F finally tells us

that

‖hj;k‖2L2(Dj ,νj)
≥

(
1 + max

{
log 80

a′
,

√
log 80

a′

})
‖ÃjR‖2F

will hold with probability at most 1/40.

Turning our attention to ‖ÃjR‖2F =
∑
ñ∈[M ] ‖Ãjrj;ñ‖22, we assert that

‖ÃjR‖2F =
∑
ñ∈[M ]

‖Ãjrj;ñ‖22 ≥
1

2

∑
ñ∈[M ]

‖rj;ñ‖22 =
1

2
‖r‖22

holds since the restricted isometry constant δ2s of Ãj is assumed to be bounded above by

7
16 . Therefore, we finally get the desired probability estimate with α′ := 1

2

(
1 + max

{ log 80
a′ ,
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√
log 80
a′
})

.

The following lemma bounds the estimated inner products.

Lemma 5. Suppose that r ∈ CN is 2s-sparse, and the restricted isometry constant δ2s of

Ãj satisfies δ2s ≤ δ for all j ∈ [D] where δ ∈ (0, 7/16). Let k ∈ [L], j ∈ [D], and ñ ∈ [M ].

Then, there exists an absolute constant β′ ∈ R+ such that

P

[∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≤ √23

12
‖rj;ñ‖2 or

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≥ 9

4
‖rj;ñ‖2

]
≤ 0.273. (4.25)

Proof. Consider the random sampling point set Xj to be fixed for the time being. Recalling

the definitions of hj;k and of rj;ñ, one can see that

〈hj;k, Tj;ñ〉(Dj ,νj) =
1√
m

∑
`∈[m]

gk`

∑
n s.t.
nj=ñ

rn
∏
i∈[D]′

Ti;ni(xj,`)i =
∑
`∈[m]

gk`

(
Ãjrj;ñ

)
`
. (4.26)

Looking at (4.26) one can see that 〈hj;k, Tj;ñ〉(Dj ,νj) ∼ N (0, ‖Ãjrj;ñ‖22) and hence,

P

[∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≤ ‖Ãjrj;ñ‖2
3

or
∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≥ 3‖Ãjrj;ñ‖2

]
≤ 0.273 (4.27)

holds. Combining (4.27) and the assumption on δ2s, which yields 9
16‖rj;ñ‖

2
2 ≤ ‖Ãjrj;ñ‖

2
2 ≤

23
16‖rj;ñ‖

2
2, establishes the desired result.

Theorem 8. Let H be a finite set of functions h whose BOS coefficient vectors are 2s-sparse,

and let rh ∈ CN denote the coefficient vector for each h ∈ H. Suppose that the restricted

isometry constant δ2s of Ãj satisfies δ2s ≤ δ for all j ∈ [D] where δ ∈ (0, 7/16). Furthermore,
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let p ∈ (0, 1), L ∈ N be odd, and L ≥ γ̃ log(DM |H|/p) hold for a sufficiently large absolute

constant γ̃ ∈ R+. Then,
∑
k∈[L]Eh,j,ñ,k > L/2 simultaneously for all (h, j, ñ) ∈ H × [D]×

[M ] with probability at least 1− p. That is, with probability at least 1− p, the following will

hold simultaneously for each (h, j, ñ) ∈ H × [D]× [M ]: All three of

1. ‖hj;k‖2L2(Dj ,νj)
≤ α′‖rh‖22 for the absolute constant α′ defined in Lemma 4,

2. 9
4‖(rh)j;ñ‖2 ≥

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≥ √23
12 ‖(rh)j;ñ‖2, and

3. the vector of Gaussian weights gk ∈ Rm satisfying 1
2m ≤ ‖g

k‖22 ≤
3
2m,

will be simultaneously true for more than half of the k ∈ [L].

Proof. Let h ∈ H, k ∈ [L], and ñ ∈ [M ]. The probabilities that the first and second

properties fail are given in (4.21) and (4.25), respectively. For the third property, applying

the Bernstein type inequality given in Proposition 5.16 in [53], one obtains

P
[∣∣∣‖gk‖22 −m∣∣∣ ≥ m

2

]
≤ 2e−a

′′m ≤ 0.03, (4.28)

where a′′ ∈ R+ is an absolute constant.

Combining (4.21), (4.25), (4.28) via a union bound now tell us that P
[
Eh,j,ñ,k = 0

]
≤

328/1000. Utilizing the Chernoff bound (see, e.g., [54, 55]) one now sees that

P

∑
k∈[L]

Eh,j,ñ,k < L/2

 = P

∑
k∈[L]

(1− Eh,j,ñ,k) > L/2

 < e
−L/γ̄ ≤ p

DM |H|

for an absolute constant γ̄ ∈ R+, where the last inequality follows by choosing γ̃ = γ̄ in the

assumption. Applying the union bound over all choices of (h, j, ñ) ∈ H × [D] × [M ] now

establishes the desired result.

Theorem 9. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse,
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and let rh ∈ CN denote the coefficient vector for each h ∈ H2s. Suppose that the restricted

isometry constant δ2s of Ãj satisfies δ2s ≤ δ for all j ∈ [D] where δ ∈ (0, 7/16). Fur-

thermore, let p ∈ (0, 1), L ∈ N be odd, and assume that L ≥ γ′s · d · log

(
DM

d
√
sd p1/s

)
for

sufficiently large absolute constant γ′ ∈ R+. Then, with probability greater than 1 − p, one

has
∑
k∈[L]Eh,j,ñ,k > L/2 simultaneously for all (h, j, ñ) ∈ H × [D] × [M ]. Consequently,

with probability greater than 1−p, it will hold that for all choices of (h, j, ñ) ∈ H2s×[D]×[M ]

both

1. ‖hj;k‖2L2(Dj ,νj)
≤ (α′ + 1)‖rh‖22 for the absolute constant α′ defined in Lemma 4, and

2. 9
2‖(rh)j;ñ‖2 ≥

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≥ 1
3‖(rh)j;ñ‖2

are true simultaneously for more than half of the k ∈ [L].

Proof. Define Rε ⊂ CN as a finite ε-cover of all 2s-sparse coefficient vectors r ∈ CN with

‖r‖2 = 1, together with 0, where N =
(D
d

)
Md and ε ∈ (0, 1). Such covers exist of cardinality

|Rε| ≤
(
eN
2s

)2s (
1 + 2

ε

)2s
(see, e.g., Appendix C of [37]). Define Hε as the set of functions

corresponding to the 2s-sparse coefficient vectors in Rε. Assume that for H = Hε and all

choices of (h, j, ñ) ∈ Hε × [D]× [M ], Properties 1 – 3 of Theorem 8 will hold for more than

half of the k ∈ [L]. By the theorem, this event will happen with probability at least 1 − p.

We will now prove that under this assumption both Properties 1 and 2 above will hold as

desired.

Let ñ ∈ [M ], j ∈ [D], consider h ∈ H2s with coefficient vector r = rh, and let τ := ‖r‖22.

Then, there exists an h′ ∈ Hε with coefficient vector r′ ∈ Rε such that both ‖r′‖2 = 1 and∥∥r − τr′∥∥2 ≤ ετ hold. Finally, let k ∈ [L] be one of the values for which Properties 1 – 3 of

Theorem 8 are simultaneously true for (h′, j, ñ). We will begin by establishing Property 1
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above for h, j and k. Using (4.19) we have that

∥∥hj;k∥∥L2(Dj ,νj)
=

∥∥∥∥∥∥ 1√
m

∑
`∈[m]

gk`

∑
n∈supp(r)

rnTj;nj (x)
∏
i∈[D]′

Ti;ni(xj,`)i

∥∥∥∥∥∥
L2(Dj ,νj)

≤ τ
∥∥∥h′j;k∥∥∥L2(Dj ,νj)

(4.29)

+

∥∥∥∥∥∥ 1√
m

∑
`∈[m]

gk`

∑
n∈supp(r)

(
rn − τr′n

)
Tj;nj (x)

∏
i∈[D]′

Ti;ni(xj,`)i

∥∥∥∥∥∥
L2(Dj ,νj)

≤ τ
√
α′‖r′‖2 +

∥∥∥(h− τh′)j;k∥∥∥L2(Dj ,νj)

= τ
√
α′ +

∥∥∥(h− τh′)j;k∥∥∥L2(Dj ,νj)
, (4.30)

where the last inequality follows from the first property of Theorem 8 holding for h′.

Repeating the expansion from the proof of Lemma 4 for
∥∥∥(h− τh′)j;k∥∥∥2

L2(Dj ,νj)
, one

obtains

∥∥∥(h− τh′)j;k∥∥∥2

L2(Dj ,νj)
=
∑
ñ∈[M ]

∣∣∣∣ 〈Ãj (r − τr′)j;ñ, gk〉 ∣∣∣∣2

≤
∑
ñ∈[M ]

∥∥∥Ãj (r − τr′)j;ñ∥∥∥2

2

∥∥∥gk∥∥∥2

2

≤ 9

4
m
∑
ñ∈[M ]

∥∥∥(r − τr′)j;ñ∥∥∥2

2

where the last inequality follows from the third property of Theorem 8, and Ãj having

δ2s ≤ 7
16 . Continuing, we can see that

∥∥∥(h− τh′)j;k∥∥∥2

L2(Dj ,νj)
≤ 9

4
m
∥∥(r − τr′)∥∥2

2 ≤
9

4
mτ2ε2.
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Combining this expression with (4.30) we now learn that

∥∥hj;k∥∥L2(Dj ,νj)
≤ τ

(√
α′ +

3

2
ε
√
m

)
= ‖r‖2

(√
α′ +

3

2
ε
√
m

)
.

Making sure to use, e.g., an ε ≤
(

6
√
α′m

)−1
ensures property one.

Turning our attention to establishing Property 2 above for h, ñ, and k, we now choose

an h′ ∈ Hε whose coefficient vector r′ ∈ Rε has ‖r′‖2 = 1, and also satisfies

∥∥∥rj;ñ − τ ′r′∥∥∥
2
≤ ετ ′ (4.31)

for τ ′ := ‖rj;ñ‖2. Note that all nonzero entries of r′j;ñ agree with those of r′, the latter

vector only has certain additional nonzero entries in locations where r′j;ñ and also rj;ñ

vanish. Consequently, replacing r′ by r′j;ñ makes the left hand side of (4.31) smaller, and

one obtains that ∥∥∥rj;ñ − τ ′r′j;ñ.∥∥∥2
≤ ετ ′ (4.32)

From (4.19) one can see that

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≥ ∣∣∣〈τ ′h′k, Tj;ñ〉(Dj ,νj)

∣∣∣− ∣∣∣∣∣〈(hj;k − τ ′h′k) , Tj;ñ〉(Dj ,νj)

∣∣∣∣∣
≥
√

23

12
τ ′‖r′j;ñ‖2 −

∣∣∣∣∣∣
∑
`∈[m]

gk`

(
Ãj
(
r − τ ′r′

)
j;ñ

)
`

∣∣∣∣∣∣ .
where the last inequality follows from the second property of Theorem 8 holding for h′.

Continuing using (4.32) we have that

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≥ √23

12

(
‖rj;ñ‖2 − ‖(τ ′r′ − r)j;ñ‖2

)
−
∣∣∣∣ 〈Ãj (r − τ ′r′)j;ñ, gk〉 ∣∣∣∣
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≥
√

23

12
‖rj;ñ‖2 −

√
23

12
ετ ′ −

∣∣∣∣ 〈Ãj (r − τ ′r′)j;ñ, gk〉 ∣∣∣∣
≥
√

23

12
‖rj;ñ‖2 −

√
23

12
ετ ′ −

∥∥∥Ãj (r − τ ′r′)j;ñ∥∥∥2

∥∥∥gk∥∥∥
2

≥
√

23

12
‖rj;ñ‖2 −

√
23

12
ετ ′ − 3

2

√
m
∥∥∥(r − τ ′r′)j;ñ∥∥∥2

=
1

3
‖rj;ñ‖2

(√
23

4
−
√

23ε

4
− 9

2
ε
√
m

)
.

On the other hand,

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≤ ∣∣∣〈τ ′h′j;k, Tj;ñ〉(Dj ,νj)

∣∣∣+

∣∣∣∣∣〈(hj;k − τ ′h′j;k) , Tj;ñ〉(Dj ,νj)

∣∣∣∣∣
≤ 9

4
τ ′‖r′j;ñ‖2 +

∣∣∣∣∣∣
∑
`∈[m]

gk`

(
Ãj
(
r − τ ′r′

)
j;ñ

)
`

∣∣∣∣∣∣ .
As above, we obtain using (4.32) that

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≤ 9

4

(
‖rj;ñ‖2 + ‖(τ ′r′ − r)j;ñ‖2

)
+

∣∣∣∣ 〈Ãj (r − τ ′r′)j;ñ, gk〉 ∣∣∣∣
≤ 9

4
‖rj;ñ‖2 +

9

4
ετ ′ +

∣∣∣∣ 〈Ãj (r − τ ′r′)j;ñ, gk〉 ∣∣∣∣
≤ 9

4
‖rj;ñ‖2 +

9

4
ετ ′ +

∥∥∥Ãj (r − τ ′r′)j;ñ∥∥∥2

∥∥∥gk∥∥∥
2

≤ 9

4
‖rj;ñ‖2 +

9

4
ετ ′ +

3

2

√
m
∥∥∥(r − τ ′r′)j;ñ∥∥∥2

=
9

4
‖rj;ñ‖2

(
1 + ε+

2

3
ε
√
m

)
.

Once again, making sure to use, e.g., an ε ≤
(

6
√
α′m

)−1
will now ensure property two for

h as well.

Lemma 6. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse,

and let rh ∈ CN denote the coefficient vector for each h ∈ H2s. Furthermore, let δ ∈
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(0, 7/16), p ∈ (0, 1), L ∈ N be odd, and assume that m ≥ β̃′K2δ−2smax
{
d log2(4s) log(9m)

log
(8e(D−1)DM

d

)
, log

(2D
p

)}
and L ≥ γ′s · d · log

(
DM

d
√
sd (p/2)1/s

)
for sufficiently large ab-

solute constants β̃′, γ′ ∈ R+. Then, with probability greater than 1 − p, all of the following

will hold for all (h, j, ñ) ∈ H2s × [D]× [M ]: Both

1. ‖hj;k‖2L2(Dj ,νj)
≤ (α′ + 1)‖rh‖22 for the absolute constant α′ defined in Lemma 4, and

2. 9
2‖(rh)j;ñ‖2 ≥

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ ≥ 1
3‖(rh)j;ñ‖2

will be simultaneously true for more than half of the k ∈ [L].

Proof. Let A be the event that for all (h, j, ñ) ∈ H2s × [D]× [M ], the properties 1 and 2 in

Theorem 9 simultaneously hold for more than half of the k ∈ [L], and let B be the event

that the restricted isometry constant δ2s of Ãj satisfies δ2s ≤ δ for all j ∈ [D]. By Theorem

9 and Lemma 3 with properly chosen parameters including L and m, both P
[
A
∣∣ B] and

P[B] are greater than 1− p/2. We obtain, by Bayes’ theorem,

1− p ≤
(

1− p

2

)(
1− p

2

)
≤ P

[
A
∣∣ B]P [B] = P[A ∩B] ≤ P [A],

which establishes the desired result.

The results from Lemma 6 can be exploited in our algorithm as follows. In the entry

identification, by taking the median over k ∈ [L] of
∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣, we get a nonzero

value if
∥∥∥(rh)j;ñ

∥∥∥
2

is nonzero and a zero value if
∥∥∥(rh)j;ñ

∥∥∥
2

is zero, especially due to the

second property in Lemma 6 being satisfied for more the half of k ∈ [L]. Thus, we store all

those ñ with nonzero median value in Nj . On the other hand, the summation over ñ ∈ [M ]

of mediank

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣∣ can be also used for the halting criterion in our algorithm.

Although O(‖c‖2/η) iterations guarantee the desired precision, it is not necessary to repeat
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the iteration if the residual r already has small energy. For any j ∈ [D], if

∑
ñ∈[M ]

∣∣∣mediank|〈hj;k, Tj;ñ〉(Dj ,νj)|
∣∣∣2 ≤ 1

9
η2,

then ‖r‖2 ≤ η by using the lower bound in the Property 2 of Lemma 6.

4.3.2 Pairing

In the entry identification, we can find at most 2s entries belonging to Nj := {nj | n ∈

supp(r)} ⊂ [M ] for each j ∈ [D]. However, we do not know how to combine the entries of

each Nj to identify the elements of supp(r). In order to do this, in the pairing process briefly

introduced in Section 4.2.2, we successively build up the prefix set Pj of the energetic pairs

for all j ∈ [D] \ {0} such that Pj ⊃
{
ñ ∈ Pj−1 ×Nj

∣∣ ‖rj;(ñ,··· )‖22 ≥ ‖r‖22α2s

}
with the ini-

tialization of P0 = N0. The prefix set Pj contains only 2s pairs throwing out the other pairs

with smaller energy for each j ∈ [D] \ {0} so that PD−1 ⊃
{
ñ ∈ supp(r)

∣∣ |rñ|2 ≥ ‖r‖22α2s

}
.

From (4.13), the energy
∥∥∥rj;(ñ,··· )∥∥∥2

2
corresponding to each ñ ∈ [M ]j+1 has the following

equality, ∥∥∥rj;(ñ,··· )∥∥∥2

2
=

∥∥∥∥∥〈h, Tj;ñ〉L2
(
×i∈[j+1]Di,⊗i∈[j+1]νi

)∥∥∥∥∥
2

L2
(
D′′j ,ν

′′
j

) . (4.33)

The energy is estimated by using the following estimator Ej;(ñ,··· ) defined as

Ej;(ñ,··· ) :=
1

m2

∑
k∈[m2]

∣∣∣∣∣∣ 1

m1

∑
`∈[m1]

h(wj,`, zj,k)Tj;ñ(wj,`)

∣∣∣∣∣∣
2

which approximates the right hand side of (4.33) by using only a finite evaluations of h. Those

sampling point setsWj×Zj for all j ∈ [D]\{0} are constructed fromWj := {wj,`}`∈[m1] and
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Zj := {zj,k}k∈[m2] wherewj,` and zj,k are chosen independently at random from×i∈[j+1]Di

and D′′j for j ∈ [D− 1] \ {0}, respectively. If j = D− 1, WD−1 := {wD−1,`}`∈[m1] is chosen

from ×i∈[D]Di and ZD−1 = ∅. Note that Wj × Zj = GPj from Section 4.1.3. Furthermore,

the sets Wj × Zj for all j ∈ [D] \ {0} build a random sampling matrix AP in (4.16) which

explicitly expresses the samples(evaluations) of the 2s-sparse h used in the (4.34) as APr.

The matrix AP is broken into smaller matrices Bj and Cj for j ∈ [D] \ {0} defined and

explained in the next paragraph for the complete analysis of the pairing process in the

upcoming lemmas and theorems in this section.

For all j ∈ [D−1]\{0}, the measurement matrix Cj ∈ Cm2×[M ]D−j−1
is defined as

(
Cj
)
k,n2

:=
1
√
m2

T ′′n2
(zj,k), k ∈ [m2], n2 ∈ [M ]D−j−1, (4.34)

where T ′′n2
(y) is a partial product of the last D − j − 1 terms of Tn(x) defined in (4.1),

i.e.,

T ′′n2
(y) =

∏
i∈[D−j−1]

Ti+j+1;ni+j+1
(yi), y ∈ D′′j .

The matrix Cj can be restricted to the matrix of size m2×Ñj when Cj is applied to vj,(ñ,··· )

where Ñj estimated in (4.10) is the cardinality of the superset of any possible supp(vj;ñ) with

fixed j, ñ, D and d so that it satisfies RIP with sufficiently large m2. When the j = D − 1,

the matrix Cj is defined to be 1 since ZD−1 = ∅. For all j ∈ [D] \ {0}, on the other hand,

the matrices Bj ∈ Cm1×[M ]j+1
is defined as

(
Bj
)
`,n1

:=
1
√
m1

T ′n1
(wj,`), ` ∈ [m1], n1 ∈ [M ]j+1, (4.35)
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where T ′n1
(z) is a partial product of the first j + 1 terms of Tn(x) in (4.1), i.e.,

T ′n1
(z) =

∏
i∈[j+1]

Ti;ni(zi), z ∈ ×i∈[j+1]Di.

The matrix Bj can be restricted to the matrix of size m1 × N̄j where N̄j =
(j+1
d

)
Md if

j + 1 ≥ d, or Md otherwise. The number N̄j is the cardinality of the set of any possible

prefix ñ ∈ [M ]j+1 with fixed j, ñ and d. The sampling numbers m1 and m2 are chosen for

all Bj and Cj with any j ∈ [D] \ {0} to satisfy RIP with the restricted isometry constants

δ̃2s+1 ≤ δ̃ and δ′2s ≤ δ′, respectively. We again mention that CD−1 = 1.

Lemma 7. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse and

let rh ∈ CN denote the coefficient vector for each h ∈ H2s. Let j ∈ [D] \ {0}, and δ̃ and

δ′ be chosen from (0, 1). Assume that Bj and Cj satisfy RIP with δ̃2s+1 ≤ δ̃ and δ′2s ≤ δ′,

respectively. Then, denoting r := rh for simplicity,

(1− δ′2s)
(

max{0,
∥∥∥rj;(ñ,··· )∥∥∥2

− δ̃2s+1‖r‖2}
)2
≤ Ej;(ñ,··· )

≤ (1 + δ′2s)
(∥∥∥rj;(ñ,··· )∥∥∥2

+ δ̃2s+1‖r‖2
)2
.

(4.36)

for any ñ ∈ [M ]j+1.

Proof. As j ∈ [D]\{0} is fixed, for simplicity, we use notation w` and zk for sampling points

instead ofwj,` and zj,k constructing the sampling matrices Bj and Cj as in (4.35) and (4.34),

respectively. Fix ñ ∈ [M ]j+1. Letting n = (n1,n2), n1 ∈ [M ]j+1 and n2 ∈ [M ]D−j−1, we
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can rewrite the energy estimate Ej;(ñ,··· ) as follows,

Ej;(ñ,··· ) =
1

m2

∑
k∈[m2]

∣∣∣∣∣∣ 1

m1

∑
`∈[m1]

h(w`, zk)Tj;ñ(w`)

∣∣∣∣∣∣
2

=
1

m2

∑
k∈[m2]

∣∣∣∣∣∣ 1

m1

∑
`∈[m1]

∑
n=(n1,n2)∈supp(r)

rnTn(w`, zk)Tj;ñ(w`)

∣∣∣∣∣∣
2

=
1

m2

∑
k∈[m2]

1

m2
1

∣∣∣∣∣∣
∑

n∈supp(r)

∑
`∈[m1]

rnT
′
n1

(w`)Tj;ñ(w`)T
′′
n2

(zk)

∣∣∣∣∣∣
2

=:
1

m2

∑
k∈[m2]

1

m2
1

∣∣∣∣∣∣∣∣∣
∑

n2 s.t. ∃n1
with (n1,n2)∈supp(r)

(r̃ñ)n2
T ′′n2

(zk)

∣∣∣∣∣∣∣∣∣
2

, (4.37)

where

(r̃ñ)n2
:=

∑
n′1 s.t.

n=(n1,n2)∈supp(r)

rn
∑

`∈[m1]

T ′n1
(w`)Tj;ñ(w`). (4.38)

We can construct a vector r̃ :=
(

(r̃ñ)n2

)
∈ CÑj with entries (r̃ñ)n2

at n2 so that r̃ has

a support whose cardinality is at most 2s since h is 2s-sparse. Thus, the energy estimate

Ej;(ñ,··· ) in (4.37) can be expressed as
∥∥∥Cj ( r̃

m1

)∥∥∥2

2
. Since the restricted measurement matrix

Cj ∈ Cm2×Ñj satisfies the RIP,

(1− δ′2s)
∥∥∥∥ r̃m1

∥∥∥∥2

2
≤
∥∥∥∥Cj ( r̃

m1

)∥∥∥∥2

2
≤ (1 + δ′2s)

∥∥∥∥ r̃m1

∥∥∥∥2

2
. (4.39)

In order to get an upper bound and lower bound of
∥∥∥ r̃
m1

∥∥∥
2
, we define eñ ∈ CN̄j as a standard
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basis vector with all 0 entries except for a 1 at ñ, and Rj ∈ CÑj×N̄j as

(Rj)n2,n1 :=


r(n1,n2) if (n1,n2) ∈ supp(r)

0 otherwise .

Note that Rj contains at most 2s nonzero elements since h is 2s-sparse, and ñ is any element

in [M ]j+1. Set Q := {ñ}∪{n1 ∈ [M ]j+1 | ∃n2 ∈ [M ]D−j−1 such that (n1,n2) ∈ supp(r)}

with a fixed ñ ∈ [M ]j+1. Thus, the cardinality of Q is at most 2s+ 1. Orderings of indices

n1 and n2 depend on the column orderings of Bj and Cj , respectively. We note that the

ñ-th column of Rj is rj;(ñ,··· ). Both bounds of
∥∥∥ r̃
m1

∥∥∥
2

are found as follows

∥∥∥∥ r̃m1
− rj;(ñ,··· )

∥∥∥∥
2

=
∥∥Rj(Bj)∗Q(Bj)Qeñ −Rjeñ

∥∥
2

≤ ‖Rj‖2→2‖(Bj)∗Q(Bj)Q − I‖2→2‖eñ‖2

≤ δ̃2s+1‖Rj‖F

= δ̃2s+1‖r‖2

and therefore,

∣∣∣∣∥∥∥∥ r̃m1

∥∥∥∥
2
−
∥∥∥rj;(ñ,··· )∥∥∥2

∣∣∣∣ ≤ δ̃2s+1‖r‖2,∥∥∥rj;(ñ,··· )∥∥∥2
− δ̃2s+1‖r‖2 ≤

∥∥∥∥ r̃m1

∥∥∥∥
2
≤
∥∥∥rj;(ñ,··· )∥∥∥2

+ δ̃2s+1‖r‖2. (4.40)

Combining (4.39) and (4.40), we reach the conclusion in (4.36).

Lemma 8. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse and

let rh ∈ CN denote the coefficient vector for each h ∈ H2s. Let j be any integer such that
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j ∈ [D] \ {0}, and δ̃ and δ′ be chosen from (0, 1). Given α > 1, assume that the restricted

Bj and Cj satisfy RIP with δ̃2s+1 ≤ δ̃ ≤ 1
č
√
s

for some č >
√

2 and δ′2s ≤ δ′ ∈ (0, 1),

respectively, with
√

1+δ′
1−δ′ <

č
α − 1. Then, denoting r := rh for simplicity, one has the set

Pj ⊃
{
ñ ∈ [M ]j+1

∣∣ ‖rj;(ñ,··· )‖22 ≥ ‖r‖22α2s

}
of cardinality 2s resulting from Algorithm 7 if

Pj−1 ⊃
{
n̂ ∈ [M ]j

∣∣ ‖rj−1;(n̂,··· )‖22 ≥
‖r‖22
α2s

}
.

Proof. By assumption that Pj−1 ⊂ ×i∈[j]Ni contains all prefixes in
{
n̂ ∈ [M ]j

∣∣ ‖rj−1;(n̂,··· )‖22

≥ ‖r‖
2
2

α2s

}
, Pj−1 ×Nj contains all possible prefixes ñ ∈ [M ]j+1 with ‖rj;(ñ,··· )‖22 ≥

‖r‖22
α2s

by

the definition of Pj and Nj for all j ∈ [D]. If
∥∥∥rj;(ñ,··· )∥∥∥2

= 0, i.e., there is no n2 such that

(ñ,n2) ∈ supp(r), then from Lemma 7,

0 ≤ Ej;(ñ,··· ) ≤ (1 + δ′)
(
δ̃‖r‖2

)2
≤ (1 + δ′)

(
‖r‖2
č
√
s

)2

.

On the other hand, if
∥∥∥rj;(ñ,··· )∥∥∥2

2
≥ ‖r‖

2
2

α2s
, i.e., there is n2 such that (ñ,n2) ∈ supp(r), then

(1− δ′)
(∥∥∥rj;(ñ,··· )∥∥∥2

− ‖r‖2
č
√
s

)2

≤ (1− δ′)
(∥∥∥rj;(ñ,··· )∥∥∥2

− δ̃‖r‖2
)2

≤ Ej;(ñ,··· ) ≤ (1 + δ′)
(∥∥∥rj;(ñ,··· )∥∥∥2

+ δ̃‖r‖2
)2
.

In order to distinguish nonzero
∥∥∥rj;(ñ,··· )∥∥∥2

≥ ‖r‖2
α
√
s

from zero
∥∥∥rj;(ñ,··· )∥∥∥2

, we should have

(1 + δ′)
(
‖r‖2
č
√
s

)2

< (1− δ′)
(
‖r‖2
α
√
s
− ‖r‖2
č
√
s

)2

which is implied by √
1 + δ′

1− δ′
<
č

α
− 1,
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as in the assumption. Since estimates of zero energy and nonzero energy greater than
‖r‖22
α2s

are separated, choosing 2s prefixes with largest estimates Eñ guarantees that it contains all

prefixes with energy greater than
‖r‖22
α2s

.

Theorem 10. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse

and let rh ∈ CN denote the coefficient vector for each h ∈ H2s. We assume that we have

Nj for all j ∈ [D]. Let α > 1, δ̃ ≤ 1
č
√
s

for some č >
√

2 and δ′ ∈ (0, 1), satisfying√
1−δ′
1+δ′ <

č
α − 1, and p ∈ (0, 1). If

m1 ≥ ᾱK2
(
δ̃
)−2

smax

log2(4s) · d · log

eMD
1+ 1

d log3(4s)

d

 log(9m1), log(2D/p)

 and

m2 ≥ β̄K2 (δ′)−2
smax

log2(4s) · d · log

eMD
1+ 1

d log3(4s)

d

 log(9m2), log(2D/p)

 ,

for absolute constants ᾱ and β̄, then denoting r := rh for simplicity, Algorithm 7 finds

P ⊃
{
n ∈ [M ]D | |rn|2 ≥

‖r‖22
α2s

}
of |P| = 2s with probability at least 1− p.

Proof. Given m1 and m2, by Theorem 3, the probability of either Bj or Cj not satisfying

δ̃2s+1 < δ̃ or δ′2s < δ′ respectively is at most p
2D for each j ∈ [D] \ {0}, and thus the union

bound over all j yields the failure probability at most
p(D−1)
D < p. That is, Theorem 3 ensures

that Bj and Cj have RIP uniformly for all j ∈ [D] \ {0} with probability at least 1 − p.

Repeatedly applying Lemma 8 yields the final P(= PD−1) ⊃
{
n ∈ [M ]D

∣∣ |rn|2 ≥ ‖r‖22
α2s

}
of

cardinality 2s by combining the fact that P0(= N0) ⊃
{
ñ ∈ [M ]

∣∣ ‖r(ñ,··· )‖22 ≥
‖r‖22
α2s

}
.
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4.3.3 Support Identification

In this section, it remains to combine the results of entry identification and pairing processes

in order to give the complete support identification algorithm and to prove Lemma 2 which

is the main ingredient of Theorem 7 in Section 4.2.3. The support identification starts with

the entry identification providing Nj , j ∈ [D] as outputs, and in turn, the pairing takes Nj ,

j ∈ [D] as inputs and outputs P of cardinality 2s containing

{
n ∈ [M ]D | |rn|2 ≥

‖r‖22
α2s

}
.

Accordingly, we can get the following result.

Lemma 9. The set P contains at most 2s index vectors satisfying

‖rPc‖2 ≤

√
2s
‖r‖22
α2s

=

√
2‖r‖2
α

,

where rPc is the vector of r restricted to the complement of P.

Proof. Note that r is 2s-sparse and by Theorem 10 the squared magnitude of each rn at Pc

is less than
‖r‖22
α2s

so that we obtain the desired result.

Finally, we are ready to prove Lemma 2 in order to complete the analysis of support

identification.

Proof of Lemma 2. By choosing α = 7 and P = Ω in Lemma 9, we obtain the desired

upper bound of ‖(rh)Ωc‖2 with probability at least 1− 2p given the grids GI and GP . The

union bound of the failure probabilities p of Lemma 6 and Theorem 10 gives the desired

probability. It remains to demonstrate the sampling complexity combining
∣∣∣GI ∣∣∣ and

∣∣∣GP ∣∣∣,
and the runtime complexity combining Algorithms 6 and 7. The first term

∣∣∣GI ∣∣∣ is mL′D

where m comes from Lemma 6, L′ is defined as in Section 4.2.3 , and D, the number of

changes in j ∈ [D], therein. We emphasize that m samples are utilized repeatedly in order

114



to implicitly construct L proxy functions combined with different Gaussian weights so that

L does not affect the sampling complexity but affects the runtime complexity. The second

term
∣∣∣GP ∣∣∣ is m1m2(D − 2) + m1 where m1 and m2 are from Theorem 10, and D − 2 is

the number of changes in j ∈ [D − 1] \ {0}. We remind readers that CD−1 = 1 implied

by ZD−1 = ∅ so that m1 samples are utilized instead of m1m2 when j = D − 1. Now, we

consider the runtime complexity. The first term in runtime complexity is O(mLLD) from

Algorithm 6 where mL computations are taken to implicitly construct the L proxy functions,

O(L) is defined as in Section 4.2.3 , and D comes from the for loop from Algorithm 6. The

second term in runtime complexity is 4s2 (m1m2(D − 2) +m1) + 4s2m1
∑D−1
j=1 (j + 1) from

Algorithm 7 since 4s2 energy estimates are calculated using the m1m2 samples for each

j ∈ [D − 1] \ {0} and m1 samples for j = D − 1, and the evaluations of Tj;ñ(wj,`) are

calculated for all ñ ∈ Pj , ∀j ∈ [D] \ {0}. Here, it is assumed that it takes O(1) runtime to

evaluate each ith component Ti;ñi
((wj,`)i) of Tj;ñ(wj,`).

4.4 Empirical Evaluation

In this section Algorithm 5 is evaluated numerically and compared to CoSaMP [22], its

superlinear-time progenitor. Both Algorithm 5 and CoSaMP were implemented in MATLAB

for this purpose.

4.4.1 Experimental Setup

We consider two kinds of tensor product basis functions below: Fourier and Chebyshev. In

both cases each parameter, M , D, and s, is changed while the others remain fixed so that

we can see how each parameter affects the runtime, sampling number, memory usage, and
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error of both Algorithm 5 and CoSaMP. For all experiments below d = D so that I = [M ]D.

Every data point in every plot below was created using 100 different randomly generated

trial signals, f , of the form

f(x) =
∑
n∈S

cnTn(x), (4.41)

where each function’s support set, S, contained s index vectors n ∈ [M ]D each of which was

independently chosen uniformly at random from [M ]D, and where each function’s coefficients

cn were each independently chosen uniformly at random from the unit circle in the complex

plane (i.e., each cn = e
iθ where θ is chosen uniformly at random from [0, 2π]). In the Fourier

setting the basis functions Tn(x) in (4.41) were chosen as per (4.42), and in the Chebyshev

setting as per (4.43).

Below a trial will always refer to the execution of Algorithm 5 and/or CoSaMP on a

particular randomly generated trial function f in (4.41). A failed trail will refer to any trial

where either CoSaMP or Algorithm 5 failed to recover the correct support set S for f . Herein

the parameters of both Algorithm 5 and CoSaMP were tuned to keep the number of failed

trials down to less than 10 out of the total 100 used to create every datapoint in every plot.

Finally, in all of our plots Algorithm 5 is graphed with red, and CoSaMP with blue.

4.4.2 Experiments with the Fourier Basis for D = [0, 1]D

In this section we consider the Fourier tensor product basis

Tn(x) :=
D−1∏
j=0

e
2πinjxj (4.42)

116



0 20 40 60 80
10-4

10-2

100

102

104

CoSaMP
Algorithm 1

(a)

0 20 40 60 80
10

1

10
2

10
3

10
4

(b)

0 20 40 60 80
10

9

10
10

10
11

(c)

0 20 40 60 80

1

2

3

4

5

6
10

-15

(d)

Figure 4.1: Fourier basis, M ∈ {10, 20, 40, 80}, D = 4, s = 5

whose orthogonality measure is the Lebesgue measure on D = [0, 1]D. In figures 4.1, 4.2 and

4.3, results are shown for approximating Fourier-sparse trial functions (4.41) using noiseless

samples y. In figure 4.1, the parameter M changes over the set {10, 20, 40, 80} while D = 4

and s = 5 are held constant. In figure 4.1a, the average runtime (in seconds) is shown as

M changes. The average here is calculated over all 100 trials at each data point excluding

any failed trials. As we can see, the runtime of Algorithm 5 grows very slowly as M grows,

whereas the runtime grows fairly quickly for CoSaMP since its measurement matrix’s size
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Figure 4.2: Fourier basis, M = 10, D = {2, 4, 6, 8}, s = 5

increases significantly as M grows. Figure 4.1b shows the number of samples used by both

CoSaMP and Algorithm 5. We can see that Algorithm 5 requires more samples due mainly

to its support identification’s pairing step. On the other hand, we can see in figure 4.1c that

the memory usage of CoSaMP grows very rapidly compared to the slow growth of Algo-

rithm 5’s memory usage. This exemplifies the tradeoff between Algorithm 5 and CoSaMP

– Algorithm 5 uses more samples than CoSaMP in order to reduce its runtime complexity

and memory usage for large D and M . Finally, figure 4.1d demonstrates that both methods
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Figure 4.3: Fourier basis, M = 20, D = 4, s = {1, 2, 3, · · · , 10}

produce outputs whose average errors (over the trials where they don’t fail) are on the order

of 10−15.

In figure 4.2, the number of dimensions, D, changes while both M = 10 and s = 5 are

held fixed. Here, we can clearly see the advantage of Algorithm 5 for functions of many

variables. The runtime and memory usage of CoSaMP blow up quickly as D increases due

to the gigantic matrix-vector multiplies it requires to identify support. Algorithm 5, on the

other hand, shows much slower growth in runtime and memory usage. When D = 10, for
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example, CoSaMP requires terabytes of memory whereas Algorithm 5 requires only a few

gigabytes. In figure 4.3, s varies in {1, 2, 3, · · · , 10} while M = 20 and D = 4 are fixed.

Since Algorithm 5 has Õ(s5) scaling in runtime due to its pairing step, it suffers as sparsity

increases more quickly than CoSaMP does. Note that the crossover point is around s = 8,

so that Algorithm 5 appears to be slower than CoSaMP for all s > 8 when M = 20 and

D = 4. Though “only polynomial in s”, it is clear from these experiments that the runtime

scaling of Algorithm 7 in s needs to be improved before the methods proposed herein can

become truly useful in practice.

4.4.3 Experiments with the Chebyshev Basis for D = [−1, 1]D

In this section we consider the Chebyshev tensor product basis

Tn(x) := 2
1
2‖n‖0

D−1∏
j=0

cos
(
nj arccos(xj)

)
(4.43)

whose orthogonality measure is dν = ⊗j∈[D]
dxj

π
√

1−x2
j

on D = [−1, 1]D. Runtime, memory,

sampling complexity, and error graphs are provided in figures 4.4, 4.5 and 4.6 as M , D, and

s vary, respectively. Since this Chebyshev product basis has a BOS constant of K = 2D/2,

both CoSaMP and Algorithm 5 suffer from a mild exponential grown in sampling, runtime,

and memory complexity as D increases (recall that d = D for these experiments). This leads

to markedly different overall performance for the Chebyshev basis than what is observed for

the Fourier basis where K = 1. A reduction in performance from the Fourier case for both

methods is clearly visible, e.g., in figure 4.5. Nonetheless, Algorithm 5 demonstrates the

expected reduced runtime and sampling complexity dependence on M and D over CoSaMP

in figures 4.4 and 4.5, as well as a striking reduction in its required memory usage over

120



0 20 40 60 80
10-2

100

102

CoSaMP
Our method

(a)

0 20 40 60 80
102

103

104

105

(b)

0 20 40 60 80
109

1010

1011

(c)

0 20 40 60 80
0.95

1

1.05

1.1

1.15
10-15

(d)

Figure 4.4: Chebyshev basis, M ∈ {10, 20, 40, 80}, D = 4, s = 5

CoSaMP even in figure 4.6 when its runtime complexity is worse. Unfortunately, the Õ(s5)

runtime dependance of Algorithm 7 on sparsity is again clear in figure 4.6a leading to a

crossover point of Algorithm 5 with CoSaMP at only s = 3 when M = 10 and D = 6. This

again clearly marks the pairing process of Algorithm 7 as being in need of improvement.
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Figure 4.5: Chebyshev basis, M = 20, D = {2, 4, 6}, s = 5

4.4.4 Experiments for Larger Ranges of Sparsity s and Dimension

D

Figures 4.7 and 4.8 explore the performance of Algorithm 5 on Fourier sparse functions for

larger ranges of D and s, respectively. In figure 4.7, a function of D = 75 variables can

be recovered in just a few seconds when it is sufficiently sparse in the Fourier basis. It

is worth pointing out here that when D = 75 the BOS in question contains 2075 ∼ 1097

basis functions, significantly more than the approximately 1082 atoms estimated to be in
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Figure 4.6: Chebyshev basis, M = 10, D = 6, s = {1, 2, 3, · · · , 10}

the observable universe. We would like to emphasize that Algorithm 5 is solving problems

in this setting that are simply too large to be solved efficiently, if at all, using standard

superlinear-time compressive sensing approaches due to their memory requirements when

dealing with such extremely large bases. Figure 4.8 also shows that functions with larger

Fourier sparsities, s, than previously considered (up to s = 160) can be be recovered in about

an hour or less from a BOS of size 405 = 102, 400, 000.

In figures 4.9 and 4.10 we consider the functions which are sparse in the Chebyshev prod-
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Figure 4.7: Fourier basis, M = 20, D ∈ {5, 10, 15, 20, · · · , 75}, s = 5
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Figure 4.8: Fourier basis, M = 40, D = 5, s ∈ {5, 10, 20, 40, 80}

uct basis. Again, due to the larger BOS constant of the Chebyshev basis, the D and s ranges

that our method can deal efficiently are smaller than in the Fourier case. When D is 12 or s

is 20 in figures 4.9 and 4.10, respectively, for example, it takes a few hours for Algorithm 5

to finish running. We again remind the readers that standard superlinear-time compressive

sensing methods cannot solve with such high dimensional problems at all, however, on any-

thing less than a world class supercomputer due to their memory requirements. In the figure

4.9 experiments the Chebyshev BOS contains 2012 ∼ 1015 basis functions when D = 12. In

the figure 4.10 experiments the BOS contains just over 100 million basis functions.

124



2 4 6 8 10 12

100

102

104

Our method

(a)

2 4 6 8 10 12
102

104

106

108

(b)

2 4 6 8 10 12
0

0.5

1

1.5

2
10-14

(c)

Figure 4.9: Chebyshev basis, M = 20, D ∈ {2, 4, 6, · · · , 12}, s = 5
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Figure 4.10: Chebyshev basis, M = 40, D = 5, s ∈ {2, 4, 6, · · · , 20}

4.4.5 Recovery of Functions from Noisy Measurements

In figures 4.11 and 4.12 we further consider exactly sparse trial functions (4.41) whose func-

tion evaluations are contaminated with Gaussian noise. That is, we provide Algorithm 5

with noisy samples

y′ = y + g′ = y + σ
‖y‖2

‖g‖2
g

where y contains noiseless samples from each f as per (4.4), g ∼ N (0, I), and σ ∈ R+ is

used to control the Signal to Noise Ratio (SNR) defined herein by

SNRdb := 10 log10

(
‖y‖22
‖g′‖22

)
= − 10 log10

(
σ2
)
.
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Figure 4.11: Algorithm 5, Fourier basis, M = 10, D ∈ {4, 6, 8, 10}, s = 5, SNRdB ∈
{0, 10, 20, · · · , 80}

Figures 4.11 and 4.12 show the performance of Algorithm 5 for the Fourier and Chebyshev

product bases, respectively, as SNR varies. Figure 4.11a shows the average runtime for each

D ∈ {2, 4, 6, 8} as SNRdB changes. When SNRdB is close to 0 (which means that the `2-

norm of noise vector is the same as the `2-norm of sample vector), the runtime gets larger due

to Algorithm 5 using a larger number of overall iterations. The runtime also increases mildly

as D increases in line with our previous observations. The sampling number in Figure 4.11b

is set to be three times larger than the sampling number used in the noiseless cases. Figure
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Figure 4.12: Algorithm 5, Chebyshev basis, M = 10, D ∈ {6, 8}, s = 5, SNRdB ∈
{0, 10, 20, · · · , 80}

4.12 shows the results of Algorithm 5 applied to functions which are sparse in the Chebyshev

product basis. Similar to the Fourier case, the runtime grows as the noise level gets worse in

Figure 4.12a. Also, larger D results in the larger runtime as previously discussed. In Figure

4.12b, the sampling number is also set by tripling the sampling number used in noiseless

cases.

As above, in both figures 4.11 and 4.12 the average `2-error is computed by only consid-

ering the successful trials where every element of f ’s support, S, is found. Here, however,
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the percentage of successful trials falls below 90% for lower SNR values. The success rates

(i.e., the percentage of successful trials at each data point) are therefore plotted in figures

4.11d and 4.12d. Both figures show that a smaller SNRdB results in a smaller success rate,

as one might expect. As SNRdB increases, however, the `2-error decreases linearly for the

successful trials.

4.4.6 Some Additional Implementational Details

In the line 13 of Algorithm 5 solving the least square problem can be accelerated by the

iterative algorithms such as the Richardson method or the conjugate gradient method when

the size of the matrix ΦT is large [22]. For our range of relatively low sparsities, however,

there was not much difference in the runtime between using such iterative least square solving

algorithms and simply multiplying yE by the Moore-Penrose inverse, Φ
†
T := (Φ∗TΦT )−1Φ∗T .

Thus, we simply form and use the Moore-Penrose inverse for both CoSaMP and Algorithm

5 in our implementations below.

Similarly, in our CoSaMP implementation the conjugate transpose of the measurement

matrix, Φ, of size m×MD is simply directly multiplied by the updated sample vector v in

each iteration in order to obtain the signal proxy used for CoSaMP’s support identification

procedure (recall that d = D in all experiments below so that I = [M ]D). It is impor-

tant to note that this matrix-vector multiplication can generally be done more efficiently

if, e.g., one instead uses nonuniform FFT techniques [56] to evaluate Φ∗y for the types of

high-dimensional Fourier and Chebyshev basis functions considered below. However, such

techniques are again not actually faster than a naive direct matrix multiply for the ranges of

relatively low sparsities we consider in the experiments herein.10 Furthermore, such nonuni-

10CoSaMP always uses only m = O(s ·D logM) samples in the experiments herein which means that its
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form FFT techniques will still exhibit exponential runtime and memory dependence on D

in the high-dimensional setting even for larger sparsity levels. Thus, nonuniform FFTs were

not utilized in our MATLAB implementation of CoSaMP.

measurement matrix’s conjugate transpose, Φ∗ ∈ CM
D×m, can be naively multiplied by vectors in only

O(s ·D logM ·MD)-time. When s is small this is comparable to the O(D logM ·MD) runtime complexity
of a (nonuniform) FFT.
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Chapter 5

Conclusion

In this thesis, we developed several sublinear-time high-dimensional function learning al-

gorithms under the assumption that the function has a sparsity in the tensorized basis of

bounded orthonormal functions including the tensorized Fourier basis. When focusing on

Fourier basis, nice properties of Fourier basis make it possible to more quickly and efficiently

recover the frequency vectors and the corresponding Fourier coefficients using much less

samples.

In Chapter 2 we showed how to extend our 1D sublinear sparse Fourier algorithm to the

general D dimensional case. The methods project D dimensional frequency vectors onto

lower dimensions. In this process we encounter several obstacles. Thus we introduced “tilt-

ing method” for the worst case problems and the “partial unwrapping method” to reduce

the chance of collisions and to increase the frequency bandwidth within the limit of com-

putation. Through those methods we can overcome the obstacles as well as maintain the

advantage of the 1D algorithm. In [1] the average-case sampling complexity is O(s) and the

runtime complexity is O(slogs). Extended this estimation from our 1D algorithm, we have

O(Ds) sampling complexity and a runtime complexity of O(Dslogs) on average under the

assumption that there is no worst case scenario happening.

In Chapter 3 we developed a multiscale high-dimensional sparse Fourier algorithm re-

covering a few energetic Fourier modes using noisy samples. As the estimation error is
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controlled by the noise level σ and the sample length p, larger p reduces the error. Rather

than recovering the frequencies in a single step, however, we choose multiscale approach in

order to make the sample length p increase moderately by improving the estimate iteratively

through correction terms determined by a sequence of shifting sizes εq. We showed that

the finite number of correction terms are enough to make the error smaller than 1/2 so

that we can reconstruct each integer frequency entry by rounding. As a result, the algorithm

has O(sD logM) sampling complexity and O(sD log s logM) runtime complexity on average

combining the result from Chapter 2 and [2].

In Chapter 4 we have shown that there exist sublinear-time algorithms that approximate

multivariate functions sparse in BOS. The approximations provide uniform error guarantee

for any function at certain sparsity level. As well as the uniform error guarantee for all

exactly sparse functions, the numerical experiments demonstrate our proposed method can

well approximate functions containing certain level of noise.

All methods in this thesis assume that we can get the measurement at any sample point.

However, this is not always the case in practice. Our future work will be a modification of

the algorithms to make it work for given discrete signals with sparsity in Fourier domain

using the idea of filtering from [10]. Moreover, one of the future work will be proving rigorous

error guarantee of Algorithm 5 for nearly sparse functions. Moreover, combining the work

in this section with [32] sublinearizing the dependence on ambient dimension D when the

functions only depend on d̃-variables instead of D ≥ d̃, we expect the further acceleration of

approximating functions of many variables.
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