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ABSTRACT 

COGNITIVE AND AFFECTIVE COMPONENTS OF UNDERGRADUATES LEARNING HOW TO 
PROVE 

 
By 

Visala Rani Satyam 

Students struggle with proving, a fundamental activity in upper-level undergraduate 

mathematics courses. Learning how to prove is a difficult transition for students, as they 

shift from largely computation-based to argument-based work. In response, mathematics 

departments have instituted courses, introduction or transition to proof, designed to help 

students learn how to prove. Existing research has extensively examined students’ errors, 

struggles, and some of their strategies at a given point in time, but we know little about 

students’ development over a longer period of time. There is a need for longitudinal work 

in this area, to follow students through the transition to proof. 

In addition, little is known about the affective side of proving (e.g., attitudes, beliefs, 

emotions). Affect plays a central role in mathematics learning, influencing students’ 

cognitive processes while problem solving and their motivation to value and want to do 

mathematics. Understanding affective issues are important, as students consider their 

future participation in mathematical work and communities. Positive experiences at 

transitional junctions, such as learning how to prove, are crucial for retention of students 

through the STEM (Science, Technology, Engineering, and Mathematics) pipeline.  

The purpose of this work was to explore the cognitive and affective factors involved 

in undergraduates’ efforts to learn how to prove: how their proving developed during a 

transition to proof course and what kinds of satisfying moments, i.e. positive emotional 

reactions, they experienced. Four semi-structured interviews across a semester were 



 

  

conducted with eleven undergraduate students enrolled in a transition to proof course. The 

resulting data was analyzed using qualitative methods. 

Findings indicate that students showed growth in fluency, strategy use, and 

monitoring and judgement over time. Four developments were frequently observed across 

the sample: (1) increased sophistication in students’ rationales for choice of proof 

techniques, (2) awareness about how a solution attempt was going and managing that for 

their subsequent strategies, (3) intentional exploring and monitoring when unsure about 

what direction to pursue, and (4) checking examples in conjunction with other strategies as 

a way to become unstuck. The variety of developments – and the different ways in which 

they emerged – is significant, because it confirms that multiple developments occur in 

different ways, strongly suggesting that there is no one path that students take through the 

transition to proof.  

Students’ satisfying moments were largely about accomplishments both with and 

without struggle, understanding, external validation, as well as interacting with others. A 

theory for how satisfying moments are elicited was proposed. Expectations and a sense of 

mastery played large roles in mediating satisfying moments, but students’ desire for 

understanding and sense-making was also prominent.  

This work provides guidance for curriculum design of transition to proof courses, in 

considering how to support students’ development in proving. In addition, examination of 

just what makes a satisfying moment satisfying is helpful in thinking about how to 

construct mathematical tasks with opportunities for positive experiences with math. 
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PREFACE 

 

 It is a funny thing, where we get ideas from – how long they sit with us 

unbeknownst or when the same kind of question about the nature of things emerges in 

varying contexts. While working on this dissertation, I realized both of these were true.  

 I watch a lot of figure skating. Like many others, I watch for those special moments 

when the crowd would go crazy and instantly rise to their feet. I often wondered – What 

guarantees a standing ovation? Why is it that some performances end with good applause 

but others pull the crowd out of their chairs, as though electric? Perhaps it had something 

to do with the rise and fall of the music or the way a skater hit certain movements or maybe 

even a sequence of the above that would elicit that automatic rise to one’s feet. Could one 

purposely design for this? 

 Without realizing it at the time, I seek to answer the same question in this 

dissertation but with an eye toward mathematics: What kinds of mathematical experiences 

bring about an internal standing ovation for an individual, i.e. feelings of satisfaction and 

elation? Are there features in common across individuals when these events happen and if 

so, can we as instructors intentionally create learning opportunities with these features 

embedded? This may be playing with fire; humans are delicate things and their emotions 

even more so, nowhere nearly deterministic as to be easily managed. But in a similar way 

to how Tolstoy wrote that “Happy families are all alike,” perhaps satisfying mathematical 

experiences have threads in common too. 

The above explains the genesis of the affective side of this work. The cognitive side 

came about in wanting to see how students’ proving changed as they were learning, not 
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just at one given snapshot in time. But soon into conducting interviews with students, this 

question was on my mind: why do some people interpret failure negatively and others 

positively?  

Throughout these interviews, some students were dejected about their solutions 

when they felt they were wrong. But other students reacted to getting my problems wrong 

by asking me how it worked and outright saying that now they knew how to do it in the 

future. They genuinely saw failure as learning opportunities. I was shocked. Could this 

difference be the key? 

To the reader, I urge you to keep this last question in mind as you read (or let’s be 

honest, peruse) these chapters ahead. While this was not the research question I set out to 

answer and there may not be enough evidence to truly draw claims, I think it is the deep 

question at the heart of all this. I do believe that math educators, in all their forms, want the 

same things for their students, to grow and to feel good about math. I hope this work spurs 

some thoughts – and in keeping with the theme, feelings too - on these basic goals. 
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CHAPTER 1: Introduction 

The transition to proof is difficult for undergraduate students (Moore, 1994; Selden 

& Selden, 1987). Students struggle with learning how to prove (Iannone & Inglis, 2010; 

Selden & Selden, 2013). The transition to proof is a shift in the “game” of mathematics, from 

answering “exercises” that are largely procedural (Schoenfeld, 1992) to now writing 

arguments and justifying said answers.  

Researchers have identified the types of errors students make (Selden & Selden, 

1987) and their struggles (Harel & Sowder, 1998; Selden & Selden, 2003). Common proving 

errors in undergraduates’ proofs are in regards to use of examples, notation and symbols, 

quantifiers, and general logic (Epp, 2003; Selden & Selden, 1987). Students struggle with 

larger issues as well, such as giving empirical rather than deductive arguments (Harel & 

Sowder, 2007) and having difficulty writing formal arguments (Alcock & Weber, 2010). 

Another strand of research has focused on students’ strategies and approaches to the 

proving process (Karunakaran, 2014; Savic, 2012).  

We know students’ struggles and their strategies while proving at singular points in 

time, but few have looked at how these strategies change over the course of the learning 

process. Much existing research is about whether students understand logic and proof 

techniques, such as contradiction and induction. One way to interpret this work is that 

gaining the ability to prove statements is about the accumulation of individual techniques. 

But development is not necessarily about accumulating competencies; as Piaget (1964) 

said, "For some psychologists, development is reduced to a series of specific learned items, 

and development is thus the sum, the culmination of this series of specific items. I think this 

is an atomistic view which deforms the real state of things" (p. 38). Thinking about proving 
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as the sum of skills and assessing whether or not students have those skills may not be 

enough for us to understand students’ learning process. We may be able to tentatively 

assess their proof competencies at certain points in time, but we do not yet know how 

students put all these pieces together while they are learning how to prove nor the order in 

which these proving abilities develop. We lack models of students’ cognitive development 

for how they learn how to prove, as a mathematical activity. There is a need for 

longitudinal work in work on undergraduates’ proving (Smith, Levin, Bae, Satyam, & Voogt, 

2017; Bae, Smith, Levin, Satyam, & Voogt, 2018), for having frequent interactions with the 

same students over a reasonable interval to see how they change  

 In addition, the affective side of learning has largely been understudied in 

mathematics education teaching and learning (McLeod, 1992; Sinclair, 2006). Affect plays a 

central role in mathematics learning but especially in problem solving (McLeod, 1994; 

Silver, 1985). Affect can also influence cognitive processes, such as knowing what to do 

next while problem solving (McLeod, 1988). McLeod (1992) claimed that any research can 

be strengthened by examining both affective and cognitive issues together. Within the 

context of proof learning, Selden & Selden (2013), called for more research on how 

students’ affect influences their problem solving and proving work. Positive affective 

moments may provide the intrinsic motivation then (Middleton & Spanias, 1999) for 

students to continue doing and valuing mathematics. Moments of positive affect are 

therefore educationally desirable.  

 In summary, the field is currently missing developmental and affective examinations 

of how students learn how to prove. How do students learn how to prove? Moreover, is this 

an activity they wish to do more of?  



 

 
3 

Research Questions 

 In response to this gap, the purpose of this study is to examine both the cognitive 

and affective components involved in how undergraduates learn how to prove. The 

research questions are: 

1. How does undergraduate students' proving develop over the duration of a 

transition to proof class? 

2. What kinds of satisfying moments do undergraduate students have during the 

transition to proof? 

This study contributes to research and practice about mathematics education teaching and 

learning in multiple ways. First, this work attempts to describe how undergraduate 

students learn how to prove. Second, this work examines the nature of affective 

experiences in mathematics, specifically at a transition point in students’ mathematics 

education. These results may be of interest to mathematics education researchers with 

interests in proof, emotional responses, and cognitive approaches to learning in general. 

Lastly, findings from this work may benefit course developers, by informing the design of 

future undergraduate transition to proof courses, from managing expectations about the 

pace and depth of student understanding to engineering opportunities for positive, 

satisfying moments for students.  
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CHAPTER 2: Literature Review 

 In this chapter, I review literature in order to unpack the two major phenomena in 

my study, proving and emotions in regards to mathematics. First, I provide an overview of 

what we know about students’ proving, the need for understanding development, and then 

proving from a problem solving perspective. Second, I discuss what we know about affect 

in mathematics education before focusing on emotion. My conceptual framing of the 

constructs used in this study will be discussed in Chapter 3.  

Proof and Proving 

What does it mean to prove? It is difficult to pin down a definition of what it means 

to prove but many have tried. One can think of proving in terms of creating a product, a 

proof. Stylianides (2007) provides us with one definition of a proof:  

Proof is a mathematical argument, a connected sequence of assertions for or against 

a mathematical claim, with the following characteristics: 

1. It uses statements accepted by the classroom community (set of accepted 

statements) that are true and available without further justification; 

2. It employs forms of reasoning (modes of argumentation) that are valid and known 

to, or within the conceptual reach of, the classroom community; and 

3. It is communicated with forms of expression (modes of argument representation) 

that are appropriate and known to, or within the conceptual reach of, the classroom 

community. (p. 291; emphasis in original.)  

A proof can generally be thought of then as an argument with certain norms of expression.  

A proof also has generality, distinguishing it from computations which are tied to specific 

instantiations of variables. 
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We can also consider what activities constitute proving. “Given this definition of 

proof, we define proving broadly to denote the activity in search for a proof." (Stylianides, 

Stylianides, & Weber, 2016). Indeed, covering all that constitutes proving is difficult. In 

terms of reasoning, deductive reasoning is often associated with proofs, but inductive and 

abductive reasoning are at play as well. Some specific activities that constitute proving 

include: 

• Constructing a proof 

o Estimating the truth of a conjecture  

o Justifying a statement estimated to be true  

• Presenting a proof 

o Taking audience conviction into account 

o Explaining to an audience 

o Demonstrating validity 

o Demonstrating understanding  

• Reading a proof 

o Proof Comprehension 

o Proof Evaluation 

(Mejia-Ramos & Inglis, 2009, p. 90).  

 Why should we care about proof? Proving is often thought of as a foundational  

activity in mathematics (Harel & Sowder, 2007). Some purposes for why we should 

produce proofs are listed here:  

• Verification (demonstrate truth) 

• Explanation/illumination (why it is true) 
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• Discovery (discovering new things in process of proving) 

• Systematization (organizing results into a system) 

• Intellectual challenge (affective feeling of self-realization and fulfillment) 

• Communication  

(Bell, 1976; de Villiers, 1990).  

A proof serves many functions then, beyond just a way of verifying the correctness of 

mathematical statements. It is important to note that mathematics did exist prior to proof; 

proof as a notion is attributed to Euclid’s Elements. However, Euclid’s form of 

argumentation has been so useful that it has become a staple of mathematics as a discipline 

and remains today (Harel & Sowder, 2007).  

Proof and Mathematics Education  

Within the field of mathematics education, there was some attention to proving in 

the early 21st century (Fawcett, 1938), but most of the work has come in recent times. 

Recent educational standards have staked the importance of proving at all ages, e.g. 

Common Core State Standards in Mathematics (NGA & CCSSO, 2010) in the United States. 

Indeed, there is the notion that proof should play an important role in all students’ 

mathematical education (e.g., Hanna & Jahnke, 1996; Mariotti, 2006). 

Proving is a difficult activity, however, and students have a hard time learning how 

to prove (Baker & Campbell, 2004; Moore, 1994; Selden & Selden, 2013). This is not 

surprising; in everyday life, people use examples as verification for truth. We are not 

accustomed to general, formal arguments. It is sensible that a foreign skill would take time 

to learn. One reason is that they have little experience with proving (Jones, 2000). Students 

are used to computations or following algorithms, as laid out by the curriculum, and 
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precursors to proof like explaining one’s work is not overly common in the curriculum. For 

students in the United States, high school geometry is typically the first place they 

encounter the word proof, by way of two-column proofs. But the highly constrained nature 

of two-column proofs make it not an adequate introduction to proving (Herbst, 2002).   

Students struggle with proving at all ages: mathematical justification and proof in 

middle school (e.g. Bieda, 2010; Knuth, Choppin, & Bieda, 2009; Staples, Bartlo, & 

Thanheiser, 2012) and geometry proofs in high school (e.g. Senk, 1989). Introducing young 

children to the ideas of proof is a developing topic of interest (e.g. Bieda, Drwencke, & 

Picard, 2014; Stylianides, 2007). 

The majority of research on students proving has been at the undergraduate level. 

There is lots of research on students’ difficulties, and the difficulties are many. One 

common issue is in using empirical instead of deductive arguments (Harel & Sowder, 1998; 

Recio & Godino, 2001). Harel & Sowder (1998) proposed the idea of a proof scheme to be a 

person's conception of proof, of what counts as ascertaining (remove one's own doubts) 

and persuading (removing others' doubts). Another issue is in translating informal to 

formal arguments (Alcock & Weber, 2010; Pedemonte, 2007; Pedemonte & Reid, 2011). If 

the “distance” between the informal and formal arguments are too wide, students struggle 

to produce a proof (Pedemonte, 2007). Other student difficulties are around proof-specific 

writing, such as using quantifiers and notation (Epp, 2003; Selden & Selden, 1987), proof 

methods (Stylianides, Stylianides, & Philippou, 2004, 2007), using theorems (Selden & 

Selden, 1987), generalization (Selden & Selden, 1987) and understanding and working with 

definitions (Dubinsky, Elterman & Gong, 1988; Moore, 1994).  
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 Undergraduate students also struggle to tell whether a proof verifies a mathematical 

fact as true, i.e. they are not persuaded by proofs (Alcock & Weber, 2005; Inglis & Alcock, 

2012; Ko & Knuth, 2013; Selden & Selden, 2003; Weber, 2010). This effect has been seen in 

preservice secondary teachers (Bleiler, Thompson, & Krajcevski, 2014) and also inservice 

secondary teachers (Knuth, 2002).  

Selden and Selden (2007) distinguished between the problem-centered versus 

formal-rhetorical parts of proving. The problem-centered aspect of proving involves the 

decisions and key insights that are made in order to solve the embedded problem in the 

proof, oftentimes with no set procedure. The formal-rhetorical aspect of proving involves 

the logical structure of the proof. Students learning how to prove encounter difficulties of 

both of these types. Both aspects are necessary in order to interpret mathematical 

statements and try to prove them, although students may favor one approach to proving 

over the other (Weber & Alcock, 2004). Selden & Selden have worked on helping students 

with the formal-rhetorical difficulties of proving, through the use of their proof frameworks. 

While difficulties with formal-rhetorical aspects of proving hinder students especially in 

the beginning, the problem-centered aspect may pose a longer, more on-going struggle to 

students. There is still much left to be learned in the problem-centered aspect of proving, 

with its emphasis on strategies and decision-making, especially in terms of how students 

develop this sense in regards to proof.  

 In summary, research has established many of the ways in which undergraduates 

struggle. Some work has focused on how to help students (e.g. Blanton, Stylianou, & David, 

2003). What we need more work on, however, is in what the learning process of proving 

looks like. What are students able to do and what does the learning process look like? 
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Learning how to prove is more than just accumulating individual skills or techniques, so 

analyzing just what they struggle to do is not enough to understand their learning. 

Development is not necessarily just about accumulating competencies. What more, despite 

the numerous difficulties, students somehow still learn how to prove through experience 

and with the help of instructors. Students may not gain full mastery of proving quickly but 

they do make progress. How can we understand the developments students go through in 

learning how to prove? For this, we go to the closest cousin of proving for which we have 

an abundance of research: problem solving.  

Proving as Problem Solving 

Research on proving has been conducted in a myriad of ways, with new approaches 

emerging especially over the last couple decades (Stylianides, Stylianides, & Weber, 2016). 

One way of looking at proving is as a form of problem solving (Savic, 2012).  

For these reasons, I draw on the literature of problem solving, as well as that of 

proof. Problem solving as a research area was a common theme among mathematics 

education researchers of the 1980s and early 1990s (Schoenfeld, 1992; Silver, 1985). Non-

routine mathematical problem solving may be thought of as situations "in which possessed 

knowledge of algorithms, facts, and procedures do not guarantee success" (Malmivuori, 

2001, p. 7). I briefly describe the evolution of theory on mathematical problem solving 

below.  

Polya (1945), the forefather of mathematical problem solving, described the 

problem solving process in a linear fashion: understanding the problem, devising a plan, 

carrying out the plan, and then reflecting back on one’s work in order to extend it for future 
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problems. A number of theoretical frameworks for investigating problem solving have been 

created since then, building off Polya’s work.  

Garofalo & Lester (1985) brought into focus the importance of metacognition in 

problem solving, of having knowledge of one’s own cognition and regulation of it. They 

identified four categories activities people engage in when working on a task - orientation, 

organization, execution, and verification – and how metacognition is involved in each. 

Schoenfeld (1985b; 1992)’s work on problem solving identified five components of 

problem solving: cognitive resources, strategies or heuristics, monitoring and control, 

beliefs and affect, and practices.  

But problem solving need not be sequential; it can be a cyclical process. Carlson & 

Bloom (2005) found that subjects often go through cycles of reasoning when problem 

solving: making a plan, executing the plan, checking if the plan continues to work, and then 

creating a new plan if issues arose. This framework has been used to analyze proving as 

well (Savic, 2012), due to the similarities between problem solving and proving processes.  

In summary, various theories of mathematical problem solving have been developed and 

have built on each other, leading to the refined work we have today.  

Transition to Proof Courses 

Now I turn to a discussion of transition to proof courses. Considering all the 

difficulties inherent to proving, it is not surprising that mathematics departments have 

responded with courses designed to help students learn.  The formation of introduction or 

transition to proof courses can be seen as a departmental response to students’ struggles. 

These courses can take on many names, but I call all courses of this nature transition to 

proof for the sake of simplicity.  
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There is great variety in the design of transition to proof courses across the United 

States. David & Zazkis (2017) conducted a syllabus study to categorize the variety of 

designs. One common design is to teach proving as a stand-alone skill, with instruction on 

formal logic, quantifiers, proof methods, and propositions. The content of these courses is 

often around sets, functions, etc. A variation of this is for the majority of the course to be 

about logic and grammar, with an introduction to an advanced mathematical topic they will 

encounter in the future near the end. The other course design is to teach proving through a 

content area to provide some context, with oftentimes little explicit instruction to formal 

logic. In these courses, students are often expected to pick up how to prove along the way. 

On the other hand, there is an advantage to proof in the context of a content area, where 

proof as a means of discovery of new results is better motivated.   

 Multiple transitions taking place. Transition to proof courses are transitions in 

terms of content – proof-based work in place of computation. There is transition then in 

terms of cognitive aspects. But transition can also refer to a transition in terms of 

experience. Mathematics as many students are used to in K-12, of computations and 

algorithms, has now been exchanged for mathematical argumentation and writing. This 

constitutes a shift in students’ mathematical experience, at a socio-emotional level (Smith, 

Levin, Bae, Satyam, & Voogt, 2016).  

Affect 

Affect is generally thought as the domain involving emotions (Middleton, Jansen, 

Goldin, 2017). McLeod (1992) defined the affective domain as “the wide range of beliefs, 

feelings, and moods that are generally regarded as going beyond the domain of the 

cognition” (p. 576).  
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One way to think of affect is as a representational system: 

 Affect includes changing states of emotional feeling during mathematical problem 
solving (local affect)...and more stable, longer-term constructs (global affect), which 
establish contexts for local affect and which local affect can influence. Our 
hypothesis is that affect is fundamentally representational, rather than a system of 
mostly involuntary, physiological side-effects of cognition. (DeBellis & Goldin, 2006, 
p. 133) 
 

For example, frustration while working on a problem serves as an indicator that something 

is not working (DeBellis & Goldin, 2006). Thus, frustration serves as an encoding of this 

cognitive noticing that current strategy is not working – and trying a new strategy should 

be taken. 

Major Types of Affect in Relation to Mathematics Education 

Three major types of affect include beliefs, attitudes, and emotions (McLeod, 1992). 

I provide definitions of each, using McLeod (1992)’s dimensions and Middleton, Jansen, & 

Goldin (2017)’s state vs. trait distinction to discuss these constructs and how they relate. 

 Attitudes. Attitudes are "orientations or predispositions toward certain sets of 

emotional feelings (positive or negative) in particular (mathematical) contexts.” (DeBellis 

& Goldin, 2006, p. 135). Some examples of attitudes in mathematics education are being 

bored by algebra, curious about geometry, and disliking story problems. Attitudes are seen 

as traits, in that they are long-term and relatively stable to an individual, thus difficult to 

change.   

Beliefs. Beliefs are “the attribution of some sort of external truth or validity to 

systems of propositions or other cognitive configurations” (DeBellis & Goldin, 2006, p. 

135).  

One pervasive example of a belief in mathematics education is believing in one is bad at 

mathematics. Other beliefs include self-efficacy and other motivational variables. Beliefs 
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are often highly stable and perhaps the most difficult to change among attitudes, beliefs, 

and emotions.  

Emotions. Emotions are "rapidly-changing states of feeling experienced consciously 

or occurring preconsciously or unconsciously” (DeBellis & Goldin, 2006, p. 135). Emotions 

are generally thought of as responses to events. Emotions tend to be short in duration but 

can reach high intensity, in contrast to attitudes and beliefs tending to be long in duration 

but low in intensity. Emotions are local and oftentimes bound up in the context at hand.  

Emotion is the state (rapidly changing) of affect vs. attitudes/beliefs as traits (stable).  

Emotions can also function as representations of the consequence of goals, thereby 

communicating information about the situation. For example, a person feels happy when 

they make progress or sadness when noticing a lack of progress (Middleton, Jansen, & 

Goldin, 2017).  In addition, emotions do not sit in a vacuum away from attitudes and beliefs 

but are influenced by them: students’ long-term interests and beliefs about a situation at 

hand can manifest themselves through their emotions (Middleton, Jansen, & Goldin, 2017). 

Affective Work in Mathematics Education 

Early work on attitudes. I provide here a brief overview of the history of studying 

affect in mathematics education. Early research in mathematics education regarding affect 

focused on attitudes, specifically students’ attitudes towards mathematics (Higgins, 1970). 

This work in the 1970s was largely quantitative, administering questionnaires to large 

groups to measuring attitudes pre- and post- some intervention. Well-known attitude 

scales include the Fennema & Sherman (1976)’s mathematics attitudes scales, specifically 

meant to study gender differences but used by many researchers for general research on 

students’ attitudes in mathematics.  
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Students’ beliefs about math. The second wave of development in affective work 

in mathematics education came from a focus on problem solving. Attention was on 

students’ beliefs about mathematics and how their beliefs influenced their problem solving. 

Teacher beliefs was also a large avenue of research, but since the focus of this review is on 

students, I do not discuss this more.  

Studies of emotion as rare.  Emotions are difficult to study. Emotions are much 

shorter in duration and thus fleeting, and thus hard to capture, compared to attitudes and 

beliefs. Trait-like variables are more easily measurable, due to their stability; survey work 

is an appropriate method gold this. This stability means they are not easily alterable, for 

good and for bad. 

Studies focusing on emotion in mathematics education are far fewer than that of 

beliefs and attitudes (e.g. Gómez-Chacón, 2000; Op ’t Eynde, De Corte, & Verschaffel, 2006, 

2007). Historically, those that existed were typically around math anxiety (e.g. Buxton, 

1981) but some recent studies have examined how emotions influence mathematical 

thinking and learning (e.g. Op ’t Eynde, De Corte, & Verschaffel, 2007). Careful observation 

of students with detailed interviews can help researchers analyze emotional states of 

mathematics learners (McLeod, 1988, 1992). 

Why care about studying emotions? Why does studying emotions matter, 

especially if they are fleeting in nature? One, emotions are the vehicle for changing 

attitudes and beliefs. Repeated emotional responses may lead to student having different 

attitudes, which then may be able to alter beliefs.  Two, emotions themselves as in-the-

moment and states are the most responsive to change. Middleton, Jansen, and Goldin (2017) 

asserted that “In-the-moment engagement, on the other hand, is more easily susceptible to 
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immediate influence by the teacher” (p. 691). I assert the same is for emotions, as the 

affective construct with the shortest duration. There is a push for more work on in-the-

moment affective constructs (Evans, 2002; Hannula, 2002; McLeod 1992).  
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CHAPTER 3: Conceptual Framing   

In this chapter, I present some of the concepts used in my study which influenced its 

design. This is a separate chapter from the literature review for the sake of reader clarity. 

First, I conceptualize proving as problem solving, specifically what a person does when 

stuck with a focus on strategies and monitoring and judgment. I also briefly discuss my 

conceptualization of development which influenced the study design. Lastly, I define a new 

construct, satisfying moments, and relate it to existing constructs about intense positive 

emotions. Analytical frameworks will be discussed in a separate chapter. 

Conceptualizing Proving as Problem Solving 

I defined students’ proving as students’ problem solving in the context of proof, i.e., 

the work of constructing a proof for a given statement. I chose this particular 

conceptualization of proving for multiple reasons. First, I purposely wanted to keep the 

phenomenon of focus broad by using the term proving rather than narrowing my focus to a 

particular skill, e.g. deductive reasoning. Second, I wanted to focus on proving as a process, 

rather than the product (Karunakaran, 2014), to look at what students do and their 

strategies. Third, because the focus is on students’ process, their objective performance on 

the tasks – whether they produced a successful proof at the end of the allotted time – was 

not so important in this research; what they attempt to do was more vital.   

To consider proving to be a subset of problem solving, we must define what is 

meant by problem solving, given the rich research tradition about problem solving in 

mathematics. To keep things simple, I take problem solving to be what a person does when 

stuck. This is equivalent to what activity a person engages in when reaching an impasse 

(Savic, 2012). Under this definition, a task may elicit problem solving in one student but not 
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another, depending on whether or not they become stuck at any point in the proving 

process. The operationalization of what is meant by stuck will be discussed in Methods.  

When looking at what a person does when stuck, I focused on the components of 

strategies (heuristics) and monitoring and judgement of problem solving (Schoenfeld, 

1985b; 1992). Strategies are “techniques for making progress on unfamiliar or 

nonstandard problems” (Schoenfeld, 1985b, p. 15). Monitoring and judgment can be 

thought of as self-regulation and fall under the umbrella of metacognition (Schoenfeld, 

1992), knowledge of and regulation of one’s own thinking. I include these here in the 

conceptual framing because while I did not strictly adhere to Schoenfeld (1985b; 1992)’s 

frameworks regarding strategy and monitoring and judgment, it did highly influence my 

thinking and the design of this study (see discussion in Methods chapter about think-

aloud).  

Conceptualizing Development 

Development refers to change over time, but even that can be thought of in multiple 

ways. For example, one way of thinking about development is in terms of stages, in which a 

person presumably passes through each stage on their way to full mastery (Piaget, 1971). 

One famous example of development is the Van Hiele (1959) levels of geometry thinking. 

Conceptualizing students learning by way of levels remains to this day (Cobb & Wheatley, 

1986; Lo, Grant & Flowers, 2008). I conceptualize development as taking a “snapshot” - a 

characterization of some construct at a point in time - and looking across these at multiple 

timestamps for change. Figure 3.1 illustrates this idea.  
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Figure 3.1. Conceptualization of development in students’ proving by capturing snapshots 
of student’s proving and compare across time. 
 

Defining Satisfying Moments  

I define a satisfying moment to be an emotional response to a particular moment in 

time, characterized by intense positive feelings. I think of a satisfying moment as being 

located within an experience, which serves as the context or situation which leads up to the 

satisfying moment.  The use of the word moment is meant to suggest this event holds an 

instantaneous feeling to the individual, regardless of whether it is in reality. However, the 

distinction between a moment vs. an experience, the latter of which implies a duration, is 

not important. 

  

Figure 3.2. How satisfying moments relate to existing concepts regarding intense positive 
emotion. 
 

Figure 3.2 shows how I conceptualize satisfying moments, as acting as a superset for other 

existing constructs in the literature regarding intense positive emotions. One concept that 
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falls under the umbrella of satisfying moments is the idea of mathematical beauty (Hardy, 

1940; Sinclair, 2006). Another example is the aha or eureka moment (Barnes, 2000; 

Liljedahl, 2004). I discuss these related ideas below. 

Related Constructs 

Mathematical beauty. There is a well-documented phenomenon of mathematicians 

writing and talking about beauty in mathematics (Hadamard, 1945; Hardy, 1940; Lockhart, 

2002; Poincaré, 1952; Thomsen, 1973). Mathematicians say statements like “That is an 

elegant solution” or “This is a beautiful proof” when talking about mathematics they admire 

and talk about math as being comparable to art in certain ways. Zeki, Romaya, Benincasa, 

and Atiyah (2014) showed that when mathematicians experience mathematical beauty, 

this correlates with activity in the same part of the brain associated with enjoying art. 

There are philosophical differences over whether mathematical beauty is an 

objective characteristic of the piece of mathematics or a projection from the observer 

(Sinclair, 2006, 2009). However, I take the approach of the latter and conceptualize 

mathematical beauty as an emotional response to mathematics. 

In the same way it is difficult to define beauty, it is difficult to define mathematical 

beauty. G.H’s Hardy’s (1940) A Mathematician’s Apology is one of the texts most associated 

with the idea of mathematical beauty. Hardy claimed that theorems that are beautiful tend 

to exhibit a triumvirate of inevitability, economy, and unexpectedness. Some commonly 

stated features of mathematical beauty include simplicity, brevity, inevitability, economy, 

enlightenment, understanding, and surprise, among others (Blåsjö, 2012; Cellucci, 2015; 

Hardy, 1940; Rota, 1997; Satyam, 2016; Sinclair, 2006).  
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Mathematical beauty is a driving force for doing mathematics, playing a crucial part 

of engaging in mathematical inquiry (Hardy, 1940; Poincaré, 1952). Sinclair (2004) 

identified three roles for beauty in doing mathematics: motivational, generative, and 

evaluative. Mathematical beauty reveals the values of mathematicians and the larger 

mathematical community.  

Aha moments. An aha moment is an affective response to an unexpected idea or 

solution, which are cognitive events (Liljedahl, 2004). One of the most famous stories 

examples is of Archimedes sitting in a bath and realizing that displacement equals volume 

and leaping out yelling “Eureka!” For this reason, aha moments are sometimes called 

eureka moments as well. Aha moments are characterized by a sudden realization or insight. 

Mathematicians like to think of mathematical beauty as a moment of instantaneous 

enlightenment, like a lightbulb turning on (Rota, 1997). Hadamard (1945) talked about 

discovery as a flash of insight as well, also using the metaphor of light illuminating the 

darkness. There has been some work on aha moments (Mason, Burton, & Stacey, 1982), 

due to the hope that they may change attitudes and beliefs (Liljedahl, 2004).  

Why create a new construct? Moments of mathematical can be relatively rare and aha 

moments even more so, which makes these phenomena very difficult to capture and study. 

In addition, based on my past work, I found that a good number of students did not 

respond well to the word “beauty” to describe math. It came across as an odd word to use, 

perhaps because of what all is brought to one’s mind by the word “beauty” in everyday 

language. I would have needed a different term to use with them even if I had gone that 

route.  
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Satisfying moments are therefore an expanded version of mathematical beauty. It is 

also just a shorter way of referring to moments with intense positive emotions. The scope 

of this construct is kept broad intentionally, so that students may say they do indeed 

experience this and thus report more of them. This investigation of kinds of satisfying 

moments is therefore about the range of these moments which occur. Some may end up 

being instances of mathematical beauty or even aha moments.  

Experiences with intense positive emotions provide motivation for students to 

continue doing mathematics and thus can be productive. Research is needed on how these 

experiences can provide intrinsic motivation for students to continue and value doing 

mathematics (McLeod, 1988).  
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CHAPTER 4: Method 

 In this chapter, I outline and justify the methods used to answer the research 

questions. I describe the study context of the transition to proof course, the participants, 

the sources of data, and the methods of data collection. I also provide a detailed description 

of the pilot study and how that informed the research. Data analysis will be discussed in the 

next chapter. 

Study Context: Transition to Proof Course 

The transition to proof course at this university was designed to ease the transition 

from calculus-based courses (e.g. Multivariable Calculus or Differential Equations, where 

the work was primarily computation and using formulas) to upper-level math courses that 

involved writing proofs. This course was required for undergraduates majoring and 

minoring in mathematics, unless they chose to enroll in an advanced linear algebra course, 

which then functioned as their transition to proof course. This course was a prerequisite 

for Linear Algebra, so a variety of STEM (science, technology, mathematics, and 

engineering) majors were enrolled in this course as well.  

Content 

The first half of the course focused on grammar, and the second half introduced 

students to basic concepts in real analysis, linear algebra, and number theory (see Table 

4.1).1 The course met for 80 minutes three days a week, for fifteen weeks. 

                                                      

 

 

1 This weekly content was true at the time of data collection but has since changed. 
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Table 4.1: Schedule of Weekly Content for Transition to Proof Course 

Week Topics 
1 Sets  
2 Functions: injection, surjection, and bijection 
3 Mathematical statements (negation, and, or) / Induction 
4 Truth tables / Implication/ Contradiction/ Proof by contradiction 
5 Converse, contrapositive / Proof by contrapositive 
6 Conditional statements and quantifiers 
7 Review and exam 1 
8 Real analysis; open and closed / sequences and convergence 
9 Linear algebra; vector space, linear functions  

10 Linear algebra; vector space, linear functions 
11 Number theory; division lemma, gcd  
12 Number theory; modulus, equivalence relation 
13 Review  
14 Review and exam 2 
15 Review for the final 

 Final exam 
 
Note. Description of content for each week of the Transition to Proof course. The first half 
was about proof grammar and techniques, and the second half of the course presented 
basic concepts from advanced mathematics students had not taken yet. Adapted with 
permission.  
 

Course Design 

This specific transition to proof course differed from a “typical” lecture mathematics 

course. The instructor (graduate student or faculty) lectured for roughly 120 minutes each 

week, with typically 1½ days devoted to lecture. For the rest of the class time, students 

worked on problems in groups of 3-4. A graduate or undergraduate teaching assistant also 

assisted the instructor with the group work portion of the class two days a week. In the 

past, the amount of lecture had generally decreased over the course of the semester, 

depending on the concepts.  

Students were expected to read selected material from How to Think Like a 

Mathematician (Houston, 2009) and course-created supplementary documents before 
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coming to class, in order to have a first exposure to the content. Online reading quizzes 

worth a minimal number of points provided the incentive for students to do this reading. 

Students also had access to the online forum Piazza where they could ask questions, and 

instructors, teaching assistants, and fellow students could answer through this system.  

Homework was a central learning activity of the course. Homework was due every 

week, to be typed in LaTeX, a typesetting software commonly used in mathematics. Each 

homework typically had three types of questions: answer only, medium justification, and 

complete justification. The proportion of the three types of homework problems shifted 

over the semester, towards more complete justification full proofs. Students could also 

seek help on their homework from a math learning center (MLC) on campus.    

Researcher Positionality: My Dual Role as Researcher and Teaching Assistant 

My relationship with the transition to proof course was not that of an outside 

researcher. Thus, I describe my position relative to the course, because it influenced my 

access to the participants and the nature of the data collected.  

I was a teaching assistant for the course in Fall 2016 and Spring 2017, the latter of 

which was the semester of data collection. I was in the classroom two out of the three 80-

minute periods that the class met in order to help with group work. There were weekly 

course meetings for instructors and teaching assistants, contributing to my knowledge of 

the intentions behind course decisions. I was also a tutor at the MLC each week, where 

students of this course visited (including, sometimes, my own participants in this study), 

primarily for help with the homework for the course. Lastly, I had also observed the course 

periodically in the previous year, as a part of a separate research project. Thus, I had 
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observed the nature of this course and how it had changed over time. The participants in 

the study were not my own students however. 

This perspective influenced the study in the following positive ways. One, I had 

easier access to potential participants due to personally knowing all of the other 

instructors. Two, I was aware of what students had been taught so far in the course, which 

affected how I conduct my interviews with students and my interpretation of their work. 

Three, some students already knew me from the math learning center, so there was an 

added rapport; I could talk about course milestones and what was currently happening in 

the course with participants, e.g. commiserate over the last homework or exam.  

My insider status with the course also had some limitations. There was the potential 

for students to see me as an “authority” regarding the class, because some students knew 

me first as a teaching assistant as opposed to a researcher. To prevent them from 

potentially asking me for help and answers, as they would a teaching assistant, I was 

upfront about my role in my interviews with them and told them I would have to decline 

helping them during the interview tasks, when it would interfere with the study. All the 

participants understood the different role I played when conducting the study, and it was 

not an issue. 

Description of Instructors 

Here I give brief descriptions of the two transition to proof instructors whose 

students I recruited for this study. Pseudonyms were chosen by the instructors. 

Mr. X was an assistant professor in the mathematics department. He was the 

coordinator of the transition to proof course and developed much of its structure. At the 

time of data collection, he had taught the course for multiple semesters. 
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 Ms. Frye was a graduate student in the mathematics department. At the time of data 

collection, this was her second semester teaching the transition to proof course. 

Participants 

The participants were N=11 undergraduate students taking a transition to proof 

mathematics course at a large Midwestern university (see Table 4.2). Their ages were from 

18 and up. Twelve students were interviewed initially – there was one student who only 

completed the first of the four required interviews and so is not listed here.  

Table 4.2: Background of Participants 

Name Major(s) Minor(s) Year Gender Ethnicity Instructor 
Amy Actuarial 

Science 
Entrepren-
eurship 

2 F     -- Ms. Frye 

Charlie Computational 
Math 

Computer 
Science 

3 M Chinese Mr. X 

Dustin Statistics  2 M White Ms. Frye 
Gabriella Actuarial 

Science 
 1 F     -- Mr. X 

Granger Physics, Math  1 M Caucasian Mr. X 
Joel Statistics  2 M White Ms. Frye 
Jordan Math, 

Secondary 
Education 

Chemistry 2 F     -- Ms. Frye 

Leonhard Math  1 M White Ms. Frye 
Stephanie Actuarial 

Science 

 
2 F White Mr. X 

Shelby Statistics 
 

2 F White Mr. X 
Timothy Math 

 
3 M White Ms. Frye 

 
Note. Pseudonyms are used for participants and instructors. Participants self-identified 
ethnicity using their own terms. The -- notation denotes a participant opted out of self-
identifying their ethnicity. 
 
Recruitment and Selection of Participants 

I recruited participants using the following process. Recruitment was done in 

person. I asked the instructors of two sections of the course, Ms. Frye and Mr. X, if I could 
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visit their class in order to talk to students about the research and ask for volunteers. Ms. 

Frye and Mr. X’s classes had enrollments of 22 and 21, respectively. Across both classes, I 

selected students to vary along the following parameters: instructor, math major or not, 

and gender. First, I chose an equal number of participants from each section of the course, 

in order to account for how different instruction can influence students’ proving.  Second, 

within each instructor’s students, I chose half math majors and half other. Third, I picked 

half the sample to be female, the other half male. The demographics of this specific course 

tended to be 2/3 male and 1/3 female. I chose to not mimic the gender distribution of the 

course, due to existing research evidence about interaction between gender and affect, 

especially in regard to negative emotions, so gender was an important variable. When 

choices still remained, I chose participants based on ethnicity, to align with representation 

in the course, and finally on their schedule availability. Participants self-identified their 

ethnicity, via a blank space on the participant form.  

20 students volunteered for the study; of these, I selected an initial 12 participants 

according to the guidelines above. Some participants did not reply, so they were replaced 

by additional participants, adhering to the above rules when possible. 2  

                                                      

 

 

2 A question that may arise for the reader: Why were there so few non-white participants? 
The fact that most of the participants were white stood out. A little background: 7 of the 20 
volunteers for the study self-identified as an ethnicity other than white. Out of these, I 
selected 5 for the study: a black female, black male, Asian female, Middle Eastern male, 
Hispanic female. When I contacted them to follow up, only 1 replied – and she could not 
continue the study after 1 interview. It seemed odd for a number of non-white students to 
sign up and then very few participate in the study itself. This sample size is small; no real 
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Descriptions of Participants 

Here I give brief descriptions of the eleven participants who completed the entire 

interview series. These are portraits of the students as I came to know them over multiple 

interactions over time, not first impressions.  As such, I include some interesting details 

specific to them; these profiles are not meant to be complete. I include this section in order 

to humanize these participants, as a reminder that these are all individuals with different 

backgrounds, personalities, and hopes for their future. These details do color the data, 

especially in examining affective issues.  

Amy was a white female sophomore majoring in Actuarial Science and minoring in 

entrepreneurship. Amy said she has a love/hate relationship with math; she does not like 

math when she first starts a problem but then loves it when she is done. She especially 

liked the competitive and challenging aspects of mathematics, e.g., doing a hard problem 

that someone says cannot be done. In terms of career goals, her goal was to be an actuary. 

Charlie was an Asian male (an international student from China) junior majoring in 

computational math and science and considering a minor in computer science. He had a 

penchant for problems he could do in his head and also talked about his thought process 

using metaphors throughout the interviews. 

                                                                                                                                                                            

 

 

(cont’d) conclusions can be made from it. However, investigating whether there are 
structural factors that lead to non-participation by students with non-white backgrounds is 
worthy of future research.   
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Dustin was a white male sophomore statistics major, minoring in actuarial science. 

He wanted to do actuarial science but was majoring in statistics, to give himself more 

career options. He claimed he did not do well on timed tests. He expressed that he liked 

using examples as models for proofs and that he understood math when someone else 

explained it to him. He found that talking about math with other people helped him work.  

Granger was a white male freshman math and physics major. He wanted to be a 

professor or an industrial mathematician. He explained that his class had positioned him as 

one of the “smart ones.” During interviews, he wrote very quickly and expressed that he felt 

his brain was usually way ahead of whatever he’s writing. Granger felt he was not 

emotional in general, let alone when doing mathematics. 

Gabriella was a white female freshman majoring in actuarial science. She was good 

friends with Stephanie; they often worked on homework together. In the beginning, she 

said she would oftentimes second guess her answers, but she stopped doing this as the 

semester went on. She said she preferred calculus-based courses to proving; she just 

wanted to get through this class, as a requirement for her major.  

Joel was a white male sophomore majoring in statistics and considering a minor in 

math.  He talked about how math used to come easy to him in high school. In the beginning, 

he said he was terrified about the course, but as time went on, he found the material 

interesting. He did however talk about enjoying “grinding out” problems, where one can 

just do them as opposed to having to figure things out.  

  Jordan was a white female sophomore math major with a minor in chemistry. She 

wanted to be a secondary math teacher. Jordan started the semester off well but seemed to 

be demoralized by the class as time went on. She felt that she had put in a lot of effort and 
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time into homework yet still received low homework scores and that she did not 

understand concepts as time went on. 

Leonhard was a white male freshman majoring in math. He wanted to be either a 

high school teacher or a mathematician for aerospace engineering. He had just transferred 

to school this semester. Leonhard had lots of thoughts about mathematics and used 

metaphors to explain his thinking often. 

Shelby was a white female sophomore majoring in statistics. She had taken some 

math classes at nearby community colleges, for the smaller class size. She liked having 

steps in mathematics. She also expressed that talking out loud to people helped her when 

she was stuck working on mathematics and that she enjoyed working with people. 

Stephanie was a white female sophomore majoring in actuarial science. She was 

good friends with Gabriella, and they would work together on homework. She wanted to 

work in insurance. She came across as practical, not swayed by emotions. She said her 

biggest struggle was in understanding what the problem was asking for. She put stock in 

high performance and did get good grades but by end of semester, she was worn down.  

Timothy was a white male junior majoring in mathematics. He wanted to work in 

informational technology (IT) afterwards. He found proving to be fun but felt he needed 

time to learn things, for concepts and definitions to sink in. He was especially good at 

talking his thoughts out loud.  

Data Sources  

 The data were a series of four semi-structured interviews across the semester with 

each participant. Each interview consisted of two halves: the first half was organized 

around two proof construction tasks, and the second half was about satisfying moments 
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with stimuli tasks. Figure 4.1 shows the different data sources by interview, as the second 

half of interviews 2-4 was different from that of interview 1. 

 

 
Figure 4.1. Representation of data sources (by color) within each interview 

 
In capturing development of proving, the times at which I took “snapshots” of 

students’ reasoning was important. As a reminder, the course was designed so that the first 

half is about general proof structures and the second half focused on content (real analysis, 

linear algebra, and number theory). I interviewed participants at these four times: middle 

of the proof structures section, end of the proof structures section, middle of the content 

section, and end of the content section. Each of the four rounds of interviews were done 

over a two-week span. In the following sections, I describe the design of each part of the 

interview in detail, including instruments and stimuli tasks.  

First Half of Interview: Proving 

During the first part of each interview, participants worked for no more than 15-20 

minutes on each of two proof tasks. I chose to give participants two tasks, rather than only 

one, so that they had more than one opportunity to show their thinking at this current 

point of the class, in case they struggled majorly with the particulars of one task. The idea 

was to give students two “chances” per interview in case specifics of one tasks threw them 
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off. I told participants they had 15 minutes but gave them a maximum of 15-20 minutes to 

work on each task, in order to give them enough time to showcase their thought process 

and attempt to overcome stuck points when any occurred. I was interested in their thought 

process, as opposed to analyzing their final written product. If a student was still working 

at the 15 minute mark, I oftentimes let them work for a minute or two until they finished 

their current train of thought.  

Proof construction tasks: Selection. The selection of tasks for the proving section 

of the interview was vital. Because students’ written and verbal responses to the tasks 

were how I chose to measure their proving at a given point in time, the nature of the 

statements and their possible solutions largely determined what the students did. 

Especially in using tasks to study students’ development, a coherent rationale behind 

selection of tasks was necessary. Table 4.3 lists the proof tasks (full versions given in 

Appendix A). 

Table 4.3: Proof Construction Tasks by Interview 

Interview 1 Statement 

Task 1 Suppose x and y are integers. If x2 – y2 is odd, then x and y do not have the 
same parity.  

Task 2 Prove the following statement: If a and b are strictly positive real 
numbers, then (a+b)3 never equals a3 + b3. 

Interview 2  
Task 1  Prove the following statement: If x and y are consecutive integers, then xy 

is even. 
Task 2 Prove the following statement: If a, b, and c are non-zero integers such 

that a divides b and a divides c, then a divides (mb + nc), for any integers 
m and n.  

 
Note. Abbreviated versions of each of the proof construction tasks. Underlined words were 
new definitions, which were defined for the participant; full versions of tasks given in 
Appendix A. 
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Table 4.3 (cont’d) 
 

Interview 3  

Task 1 Prove the following statement: Suppose x, y, z are positive integers. If x, y, 
and z are a Pythagorean triple, then one number is even or all three 
numbers are even. 

Task 2 Prove the following statement without using induction: If n is an odd 
natural number, then n2 - 1 is divisible by 8. 

Interview 4  

Task 1 Prove the following statement: If a and b are odd perfect squares, then 
their sum a + b is never equal to a perfect square. 

Task 2 Prove the following statement: If x, y are positive real numbers and x ≠ y, 

then 
𝑥

𝑦
 + 

𝑦

𝑥
 > 2.  

 
The following criteria were used to select tasks. First, the goal of the task was to 

function as an assessment for the student at a certain point in time. Because students’ 

progress was likely heavily influenced by instruction, it made sense to pick tasks that were 

similar in nature to questions they would encounter in the course, generally around the 

same time period (weeks) but before students actually encountered them. For these 

reasons, the tasks were taken from past homework assignments from previous semesters 

of the course, specifically Spring and Fall 2016.  

Second, tasks with multiple possible solution paths, not just one, were chosen when 

possible. For example, statements that could only be proven easily using a proof by 

contradiction were excluded; however, statements that could be proven by either 

contrapositive or contradiction were still viable because of the choice in technique.   

Third, all tasks were from one content area, basic number theory. The goal was for 

the tasks to not be heavily dependent on content knowledge nor a singular specific proof 

technique (e.g. induction). Because I hoped to make claims about the students’ problem 

solving abilities, I wanted to minimize the effect of a lack of content understanding. For 
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example, proofs regarding analysis concepts were excluded because a student’s difficulties 

could be due to struggles in understanding analysis definitions or concepts and not 

necessarily in proving. There is a danger however in making content-free claims about 

students’ proving (Dawkins & Karunakaran, 2016), so my claims about student proving 

may be specific to this content area. Even still, I would argue that basic number theory, e.g. 

properties of even and odd numbers, is a more broadly accessible content area than 

analysis, so more students can at least start the task.  

The first task of each interview was designed to introduce a new definition, a novel 

situation with new information to deal with it. The second task was designed to elicit stuck 

points, where students thought they knew what to do but it would not work. I searched for 

tasks that looked like they would be routine but were in fact not. Interview 3 – Task 2 is an 

example of a task that was especially successful at what I described above. Interview 1 – 

Task 2 was less so, but because it was the first interview, this did not affect the analysis 

much. Tasks that are novel and/or have a stuck point built in are problems, as defined in 

the literature.  

To select potential tasks, I looked through all homework sets from the previous two 

semesters and compiled questions that best satisfied these criteria. I used homework 

questions that students were likely to have not seen by the time of the interview, i.e., they 

would run into a homework question of that type later in the course. When I could not find 

suitable questions from homework, I found some using other textbooks or online resources 

or made my own. 

Think-aloud. In order to capture their strategies and reasons for using certain 

strategies, I used a think-aloud protocol (Ericsson & Simon, 1980, 1981; Schoenfeld, 
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1985a), where participants voice their thoughts aloud about a task, either in real time or 

shortly after the task is complete. Previous work on how students problem-solve and prove 

has largely used think-aloud methods as a proxy for accessing cognition (Schoenfeld, 1992; 

Weber & Alcock, 2004).  

Over the years, researchers have considered and examined the validity of using 

verbal data to infer about the thought process (Ericsson & Simon, 1980, 1993; Schoenfeld, 

1985a;). In other words, to what extent does asking a subject to verbalize their thought 

process affect their thought process? This issue is called reactivity (Leighton, 2009) and 

affects certain kinds of experimental set-ups and questions (Schoenfeld, 1985a). Certain 

experimental variables can impact the data produced, such as the number of people being 

interviewed, the degree of interviewer intervention, and the environment under which task 

is being given (Schoenfeld, 1985a).  

A major issue then in administering a think-aloud is the level of interviewer 

intervention: more vs. less and the character of it. More intervention can mean more 

verbalizations and thus evidence, especially of metacognitive behavior. However, asking 

students to reflect on their problem solving process in the moment can affect their 

performance (Ericsson & Simon, 1980). In addition, asking “why” questions during a task 

can dramatically change one’s behavior (Schoenfeld, 1985a). It safer then to ask “what” 

questions during a performance, such as asking them to identify what they just did. 

Ericsson and Simon (1980) have argued that asking subjects to verbalize their thoughts but 

not asking for any explanation of said thoughts does not affect a person’s performance. 

Other non-intervening moves during task performance include "I haven't heard you say 
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much in the past couple minutes. Are you still working on the problem?" and answering 

specific student questions. 

Based on the affordance and constraints of asking probing questions, I chose to 

minimize interviewer intervention during task performance. This was because my 

phenomenon of interest was the proving/problem solving process itself so keeping the 

process intact from a validity standpoint as much as possible was of the utmost 

importance. This was especially the case since my phenomenon of interest was what 

students do when stuck, and there was a high chance that talking would get them unstuck. 

In other words, I did not want students’ verbalizing to affect their proving process.  

I asked students right before they started a task to verbalize their thoughts out loud, 

as long as they felt it did not interfere with their thought process. If the student had been 

silent for a few minutes, I would sometimes remind them to say what they were thinking. 

Otherwise, I remained silent. Over time, I developed a sense for which participants were 

comfortable talking while working and which participants were less so, and I held back on 

nagging the latter group. This is one place where familiarity with the individual was helpful 

for minimizing the interference on each individual’s performance, even if it meant I had to 

act slightly different across participants. 

I then debriefed with the student immediately after they said they were done 

working. During this debrief, I asked all probing questions: to explain their thought process 

and any “why” questions, such as "Why did you do X?" Subjects can talk about their thought 

processes about a given task if asked immediately after task completion (Ericsson & Simon, 

1981). I tried to ask probing questions in a way that did not let on if their solution attempt 

was correct or not, since there was more data to be collected regarding their solution after 
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the debrief. Asking students to think-aloud but not pushing them to do so and then asking 

probing questions immediately after they had finished their work optimized the benefits 

and pitfalls of think-alouds for studying proving as a phenomenon.  

 Ensuring students’ comfort during proof tasks. It was a major goal that students 

felt comfortable throughout the interview. This was especially important during the proof 

tasks section of the interview, where I video recorded each student while they worked on 

difficult tasks. It can be difficult to work with someone watching over you, let alone the fact 

that participants feeling pressure would affect the data.  Most of my behavior throughout 

the interview was centered around making them feel comfortable, for instance by having 

students sit in my chair at the center of the desk rather than relegating them to a small 

chair off to the side.  

 I took the following steps to decrease the likelihood of students’ discomfort. One, I 

set the video camera as far away from the participant in the room as I could while still 

being able to capture their written work. I also stood far away from the student while they 

were working on one of the proof tasks. In times when students became very frustrated, I 

left the room momentarily while keeping the camera rolling in the hopes that my 

temporary absence would decrease the pressure they felt in that moment. Students 

adapted to the experimental set-up very well – none of them glanced back at the camera 

out of self-awareness or observable self-consciousness.  

Collected but not analyzed: Affective data on students’ proving. In this section, I 

describe some of the data that was collected to capture students’ emotions about problem 

solving. This data is not analyzed in detail in this dissertation, except for one instance in the 

development of students’ proving results chapter.  
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annoyed  curious 
 

disappointed  surprised 
 

sad   joyful  indifferent 
 

frustrated  satisfying  
 

ashamed  proud 

After each proof task’s debrief, I asked participants to picks emotion words they 

went through while working on the task and to draw a graph of their emotions. The 

purpose of these were to help participants describe their emotional responses to their 

proof tasks, as a way to capture affective data about cognition (their proof work).  

Emotion words. Participants were shown cards with an affective word written on 

each (as shown in Figure 4.2). Five negative-positive “pairs” and one neutral emotion word 

were chosen with the intention of capturing the range of possible emotions while problem 

solving, based on literature review. Participants were free to choose other or none of these 

words; these given words were only meant to provide a base to start with. 

 
Figure 4.2. Physical arrangement of the 11 affective words for the Emotion Word Task 

 
The eleven index cards with one emotion word on each were laid out on a table in 

front of the participant, as shown in Figure 4.2. Participants were asked to select which 

emotions on the cards they experienced and to say why. By putting the emotion words on 

tangible cards, participants could point to or handle each one physically. They oftentimes 

put the cards with emotions they felt in temporal order. As the interviewer, I circled the 

words they chose on a pre-printed piece of paper and then asked if there were any other 
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emotion words the participant would have picked that were not present. Their emotion 

words expressed the emotions that the participant experienced, and their reasons for 

picking each word helped me to identify the conditions that led to that emotion.  

 Emotion graphs (adapted from McLeod, Craviotto, & Ortega (1990) and Smith, 

Levin, Bae, Satyam, & Voogt (2017)). The participant was given a blank graph and asked to 

chart their emotions during the entirety of the proof construction task. The graph allowed 

for a temporal look at the ups and downs in emotion over the course of their solution 

attempt.  Graphing emotions is a technique that can be used to describe variations in 

students’ emotional responses while solving a problem (McLeod, Craviotto, & Ortega, 

1990). Participants were also asked to mark on the X-axis and/or annotate their graph with 

short captions at the points at which their feelings changed. 

 

Figure 4.3. Example of an emotion graph for a proof task 
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Second Half of Interview: Satisfying Moments 

The purpose of the second half of the interview was to capture data for my second 

research question, about the nature of satisfying moments related to the transition to 

proof. The data in this half of the interview consisted of questions about satisfying 

moments, discussion over emotion graph tasks and then the emotion word task (only on 

interview 1). The interview protocol in Appendix B lists the questions that were asked. The 

goal of these questions was for students to describe in full detail any satisfying moments 

the students had encountered in relation to the course, whether through homework 

problems or in class.  

Self-report of satisfying moments. Self-report was an appropriate method for 

capturing this data because it revealed the subject’s perception of their own satisfying 

moment, which was most important. For example, if a person truthfully perceived an 

experience as satisfying, then I could argue that this experience was satisfying to that 

person, even if an outside observer watching the entire experience unfold did not see it as 

satisfying. In other words, the label of “satisfying” is determined by the subject’s emotional 

response, which is internal and personal. 

The instructions given to students naturally then influence what they report. In 

designing the interview questions, I therefore introduced the idea of a satisfying moment 

with few constraints, so that students would report back according to however they 

defined it for themselves. However, in the first interview, after introducing the idea of a 

satisfying moment, I asked follow up questions about situations that could be satisfying, 

e.g., problems that feel rewarding, flashes of understanding/insight. These questions were 

meant to probe, to help students if they could not think of satisfying moments on their own, 
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but also to try to capture some related affective concepts, such as aha moments. It is 

possible though that these follow-up questions may have influenced what students 

reported in the future as satisfying. As we shall see, however, the fact that students still 

talked about performance and that flashes of insight were still relatively rare suggests 

these follow up questions did not affect the data unduly. 

Emotion graphs as recall. It is possible that students may not remember satisfying 

moments, without some kind of record. In the first interview, I asked participants in detail 

about satisfying moments in relation to their transition to proof course. For the most 

salient experience, I asked them to draw an emotion graph. This emotion graph had small 

variations in wording from the emotion graph for the proof task (see Figure 4.4).  
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Figure 4.4. One of Stephanie’s emotion graphs for a satisfying moment in Interview 2 
 

After the first interview, I gave participants 2-4 blank emotion graphs to take home and 

asked them to fill it out (i.e. draw a graph) whenever they had a satisfying moment before 

the next interview. In interviews 2-4, participants came to the interview with already filled 

out emotion graphs and were ready to talk about satisfying moments they had experienced 

outside the interview. 
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The purpose of the emotion graphs was to (a) have a record of a satisfying moment 

presumably in real time or at least not too long after of a satisfying moment and (b) serve 

as a stimulus for discussing the satisfying moment during the interview. On the first 

interview, students were asked to pick emotion words from the index cards for their most 

salient satisfying moment, which I chose in real time based on the subject’s responses to 

the previous questions about satisfying moments. The selection of the experience went as 

follows: if the subject discussed only one satisfying moment in the interview, I used that 

experience. If the subject talked about multiple satisfying moments, I picked the most 

intense one or the one they talked about the most. If the subject did not talk about any 

satisfying moments, then I didn’t administer the word selection and emotion graph tasks.  

On interviews 2-4, I did not ask them to pick out emotion words for their satisfying 

moments, in order to (a) avoid task fatigue, as this would be their third time choosing 

words during the interview, but also (b) students were now comfortable using emotion 

words when talking about their experience. The emotion word task was no longer needed 

then, as an artificial stimulus for talking about satisfying moments.   

Interview notes. Interview notes were taken on paper during interview. They were 

then recorded digitally with more observations as soon as possible after the interview. I 

also took notes about things to ask them next time, to keep continuity across interviews. 

These interview notes became a source of data for some of the analyses. 

Pilot Study 

 I conducted pilot interviews with three participants in order to test the research 

design and instruments the semester before the real data collection occurred. In this 

version of the study, the research focus was on asking students about homework problems 
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as a central place of learning in the class and as a source for satisfying moments. The 

interview protocol asked students to talk about problems from the homework set they had 

completed that week, specifically a problem I pre-chose for its non-routine characteristics 

and a problem they personally found challenging.  

The goal was to conduct three interviews with each of the participants, to simulate 

doing multiple interviews over the semester to study development. All three were 

recruited from one instructor’s section of the transition to proof course, to eliminate 

possible variation due to differences in instruction. Interviews were conducted soon after 

they passed in their homework, to account for their memory of the proving process 

receding over time. Homework was due on Wednesdays, so participants were interviewed 

anywhere from Wednesday to the following Monday.  

In the end, two of the participants conducted the set of three interviews and the 

other participant conducted only one. Interviews occurred in weeks 8, 10, and 14 of the 

class. Pilot participants were paid $20 per interview as compensation with a $15 bonus for 

completing the full series of 3 interviews as an incentive. 

First and Second Rounds of Pilot Data Collection 

Based on the first interview, I found that when asked about satisfying moments on 

the most recent homework, students pointed to a problem almost instantly, i.e., they could 

point to a specific experience. They picked a variety of words from my selection to describe 

the experience, sometimes adding one more of their own, and drew detailed emotion 

graphs of their experience. There was some confusion over what the x-axis, or “zero” 

emotion, represented. At my request, they added annotations for the ups and downs in the 
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emotion graph, sometimes adding more when discussing the graph with me. All in all, the 

satisfaction portion of the interview went well.  

A number of issues emerged, however, in the proving section of the interview. I 

found that it was difficult for students to discuss their thought process about problems 

after they had been completed, even when the interview was done on the same day as the 

homework had been due. Participants had a tendency to describe their answers quickly, 

with quick comments at the start about initial strategies that proved fruitless. After two 

sets of two interviews were completed, I compiled a full list of challenges that appeared. 

Methodological issues. First, there was poor quality of participant’s discussion of 

the process of developing their proofs, likely because I was examining the process after the 

fact. This lead to discussing proof as a finished product, not process. Second, students often 

did not finish or do some of the homework problems, leading to loss of comparison 

between participants on pre-chosen problems. Third, students were able to get outside 

help on homework (from professor, teaching assistant, tutoring center, other students, 

online, etc.), so their answer was not necessarily a representation of their own thinking. 

Logistical issues. The tight interview window (in order to mitigate memory loss) 

led to a lower probability of accomplishing the full set of interviews per participant and a 

smaller potential number of participants due to time constraints on the interviewer’s part. 

These problems led to a redesign of the proving section of the interview, where I 

asked participants to work on a proof during the interview. Instead of completing the full 

set of three interviews with a design that had deep flaws, I chose to implement my 

revamped interview protocol for the third interview. 
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Third Round of Pilot Data Collection: Re-Design of Proving Section.  

The purpose of this round of interviews was to test the new proving section of the 

interview. N=2 participants completed this interview. The priority was testing whether the 

verbal data produced by participants working on a proof during the interview itself, in real 

time, would be of better quality in answering my research questions than in the previous 

pilot round design. Inferring students’ thought processes and strategies was much easier 

using this method, because (a) I could see how they approached the problem on paper, (b) 

they would talk aloud as they thought, and (c) I could ask clarifying questions in the 

moment. 

  Another goal of this third interview was to test out the proof tasks themselves. In 

selecting tasks, I chose two questions from the prior semester’s (relative to the pilot data 

collection) course homework from around this same time in the course schedule. One task 

turned out to be very similar to what was done in class and thus was done relatively 

quickly and without impasses for the students. This task was therefore not very 

illuminating in terms of observing students’ proving and what they did when stuck, so it 

was changed for the actual data collection. The other task was more of a problem, as that 

term is characterized by Schoenfeld (1992), in that there were times where participants 

were momentarily stuck. Both pilot participants correctly completed both proofs in the end 

however. 

Additional Changes from Data Collection 

Another major change that came out of this pilot data collection was deciding to 

video record participants’ work. For the pilot work, I only audio recorded the interviews, 

but I found that participants commonly pointed to their work and homework problems 
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while talking about them, which was lost in audio. Video of their work and hands provided 

another source of data validation, especially when any doubt arose from the audio.  

  



 

 
48 

CHAPTER 5: Data Analysis 

In this chapter, I describe how I analyzed the data. Recall that my research questions 

were as follows:  

1) How does undergraduate students' proving develop over the duration of a 

transition to proof class? 

2) What kinds of satisfying moments do undergraduate students have during the 

transition to proof? 

The data analysis is described here in a stand-alone chapter because a good deal of work 

went into deciding how to analyze this data. My two phenomena of interest were quite 

different, but I faced similar difficulties in addressing them. One phenomenon, satisfying 

moments, was a construct I conceptualized myself, so no ready-made analytical 

frameworks existed. The other phenomenon, proving, was backed by research especially in 

thinking about proving as problem solving, yet analytical frameworks that served my 

purpose were difficult to find. In doing this work, I consider the data analysis itself and the 

challenges I ran into to be a major finding in and of themselves, which is typical for 

qualitative work. I detail my journey through these challenges here.  

I used qualitative methods, because I sought to describe and understand how the 

phenomena of proving and satisfying moments occurred. The Data Use Matrix (see Table 

5.1) summarizes how various data from the interviews was used to answer the research 

questions and the analyses that were done. 
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Table 5.1: Data Use Matrix 

Research Question Method Data Used Analysis 

1. How does 
undergraduate students' 
proving develop over the 
duration of a transition to 
proof class? 

 
 

  

1a. What problem 
solving strategies do 
students use in their 
attempted solution 
when stuck?    

Characterize 
proving at a 
snapshot in time 
 

Proof Tasks (2)  
-Written work 
-Think-aloud  
-Debrief 
 
Triangulation: 
Interview 
-About current 
approach to proofs  

Look at tasks on which a 
student becomes stuck.  
 
Record their strategies 
(proof-specific 
intentions) in response 
to being stuck  

1b. How do students’ 
use of problem solving 
strategies when stuck 
change over time? 

Compare the 
snapshots over 
time 

Triangulation: 
Interview 
-Question about 
reflecting on 
change over 
semester (only 
interviews 2-4) 

Look for change over a 
student’s strategies 
across tasks 

2. What kinds of 
satisfying moments do 
undergraduate students 
have during the transition 
to proof? 

Identify moments 
 
Describe them 
 
Categorize them 

Interview 
-Questions about 
satisfying moments 
 
Triangulation:  
-Emotion Words 
-Emotions Graphs 
 

Bottom-up generation of 
codes. Add more codes 
from literature.  
 
Apply coding scheme & 
create new codes as 
needed (modified open 
coding). 
 
Note: The coding scheme 
itself answers this RQ. 

 
Note. The Data Use Matrix summarizes which pieces of data were used to answer each 
research question (RQ) and their associated analyses.  
 

Research Question 1: Development of Students’ Proving 

In this section, I describe the process by which I analyzed my data to answer my 

first research question: How does undergraduate students' proving develop over the duration 
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of a transition to proof class? In general, the data collected in the proving section of the 

interview was used to answer my first research question. 

My goal was to (a) collect “snapshots” of a student’s proving at various points in 

time and then (b) compare how these “snapshots” changed. Because there were two stages 

involved in the way I viewed development, I split this research question into two sub-

questions for the sake of describing the analysis:  

(1a) What problem solving strategies do students use in their attempted solution 

when stuck? 

(1b) How do students’ use of problem solving strategies change over time when 

stuck? 

The results chapter for development in students’ proving addresses the original research 

question, not split up. 

Research Question 1a 

The purpose of research sub-question 1a was to characterize a student’s proving at 

a certain point in time. All of the data generated during the first half of the interview was 

used here (see Appendix B): students’ written work, their verbalizations during the think-

aloud, and their responses to questions about their reasoning afterwards. This question 

was also used when possible: How would you say you currently approach proofs right now? 

The purpose of this question was to capture the student’s perceptions of what their 

“typical” approach to proving was at that point in time, as a form of triangulation, albeit still 

a perception.  
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Research Question 1b 

The purpose of research sub-question 1b was to compare the snapshots created 

from research sub-question 1a. This question from the interview was also used: How do you 

feel your ability to write proofs has changed since the last time we met? The goal of this 

question was to have students reflect on how they had developed since the last meeting 

and see how their sense compared to what was revealed by the tasks. Again, the intention 

was to capture the students’ perception of how they thought their work had changed, as a 

complement to what was observed as the researcher.  

Searching for Usable Analytic Frameworks 

In studying development, I needed a way to characterize proving at a snapshot in 

time (RQ 1a) and compare these snapshots across time (RQ 1b). My initial plan for 

capturing these snapshots of proving was to use an existing problem solving framework, 

such as Carlson & Bloom’s (2005) multidimensional problem solving framework. Because I 

have argued proving to be a subset of problem solving, and problems solving as a 

phenomenon was backed by copious research, it made sense to use existing frameworks 

for problem solving if they were appropriate for the data. I originally wanted to use Carlson 

& Bloom for getting these snapshots, because it would provide a thorough way to code all 

the behaviors that appear in a problem solving attempt. 

Why existing problem solving frameworks proved problematic. I soon ran into 

two problems. One, there were frameworks to identify what phase of problem solving a 

student was in at various times in a task, but characterizing their overall problem solving 

process was harder. Two, I wanted to be able to identify students’ strategies specific to 

proving, and general problem solving frameworks would not do that because of their 
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generality naturally. Any problem solving framework would not pick up proof intricacies, 

and something would be lost by staying in the general problem solving analytical frame. 

What I really needed was a proof-specific framework. This is not a new issue; Savic (2012) 

has called for the need for a proof framework for conducting research on proving.  

Analytical Framework: Looking at Students’ Intentions When Stuck 

Instead, I looked at what students did when stuck and how that changed, with close 

attention to strategy and monitoring and judgement components of problem solving 

(Schoenfeld, 1992).  Stuckness is an aspect of problem solving, not all, but I argue that 

without being stuck, a person is not truly in “problem solving land.” Thus, if we wish to tap 

into authentic proving, when a person is in a state of uncertainty about how to proceed, 

looking at what a person does when stuck is key. I operationalize what it means to be 

“stuck” below.   

Operationalizing stuckness. Operationalizing what it meant for a person to be 

stuck on a problem was tricky because it required finding some observable behaviors to 

serve as indicators of a person’s internal mental state. I conceptualized being stuck as when 

a person (1) realizes there is an issue that needs to be resolved and (2) are not sure what to 

do. These two criteria had to be present. A key insight into telling when someone was stuck 

was hesitation over what to do next. Savic (2012) differentiated between an individual 

facing an impasse vs. changing directions in one’s proof attempt, and this difference is 

based on hesitation. “Stuckness” (I will often use this term despite it not being a word for 

the sake of simplicity) can manifest itself through silence (via audio) and through body 

language (via video). In my data analysis, I chose to operationalize being stuck as no 

written or verbal activity for at least 15 seconds. Body language instead became more 
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important in telling whether a person was stuck, justifying the need to collect video. Body 

language behaviors which suggested a person was stuck on a proof construction task are 

reported later.  

Analysis Process 

To analyze the data, I watched the video recordings of a select number of 

participants’ attempts on all eight tasks. I watched for points where they became stuck (no 

written or verbal activity for over 15 seconds). I recorded what behaviors indicated they 

were stuck, as judging whether someone is stuck can be difficult. When this happened, I 

recorded (a) my observable evidence that they were stuck, (b) why they were stuck, based 

off their think-aloud, the later debrief, or my own inferences, (c) actions they took (as 

observable on screen, on paper data, or verbally spoken during think-aloud or explained in 

debrief later), and (d) the intention or strategy I could infer from the action. After this, I 

looked over the strategies the students enacted when they were stuck and looked for 

patterns of change. I only used tasks where students became stuck, i.e. problems, unless 

noted otherwise.  

The notion of actions and intentions while proving came from Karunakaran (2014), 

as an analytical tool. It was sometimes difficult to infer their strategy. In the best case, 

students stated their strategy out loud during think-aloud or talked about it in debrief. In 

the worst case, I had to infer their strategy myself from little to no observable data.  

Difficulties in Analysis 

Issues with tasks. Some of my interview tasks had unexpected pitfalls. For 

example, in Interview 3 - Task 1, many students took the negation of the conclusion (“one 

number is even or all three numbers are even”) in a procedural way that led to a statement 
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that did not make sense: “one number is odd and all three numbers are odd.” This led to 

students having an incorrect proof, but reasoning from there on could be high- or low-

quality problem solving, so it was not particularly relevant to this analysis. If anything, it 

provided a point of uncertainty to students which allowed for more insight into what 

students do when unsure.  

In Interview 4 - Task 1, there was some ambiguity over what exactly was odd in the 

assumption: if a, b were odd or a2, b2 were odd. However, many students did ask for 

clarification – this being the last interview over a semester suggests they have been more 

comfortable asking me question – and it did not affect the final product. Because this 

research is about students’ processes when stuck, tasks that accidentally cause confusion 

or ambiguity may in fact work in our benefit. 

Same or different stuck points? One issue that had to be resolved was whether to 

group together multiple stuck points, if and when they really addressed the same challenge. 

Interview 2 - Task 1 with Timothy is an example of this: He became stuck, took a step, 

became stuck again, and took another step. His progress throughout this time had a 

stuttered nature to it, with lots of stops and starts. In cases like these, I considered all of 

these actions to be in response to one stuck point, as his strategies with each step were all 

responses to the same stuckness. I counted it therefore only as one stuck point.  

Operationalizing strategy. Another difficulty was identifying the “size” of what 

counted as a student’s strategy, whether to analyze local or more global strategies. For 

example, consider the different “sizes” of the following strategies:  

Try to solve the problem 

Try a different method 
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Try a different proof technique 

Switch to proof by contrapositive 

These are all strategies, from the most concretely actionable (local) to the most 

overarching (global). Switch to proof by contrapositive is the most concrete strategy, but 

their goal really is to try to solve the problem. However, try to solve the problem was not 

helpful for shedding any light on my research question. Looking at the in-between levels, 

try a different method is more general than proof technique. 

My answer to the issue then was to use the most local strategy that was proof-specific 

but not task-specific. In the chain of strategies above, “try a different proof technique” is the 

smallest-sized intention specific to proving but not tied to the specifics of that task and thus 

may happen for other tasks. “Try a different proof technique” is also better than “try a 

different method” because the first is specific to proving whereas the latter is not. 

Therefore, in this example above, “try a different proof technique” would be the strategy I 

record.   

Research Question 2: Kinds of Satisfying Moments 

Here I describe how I answered my second research question:  What kinds of 

satisfying moments do undergraduate students have during the transition to proof work?  

Overview of Constructs and Data Analysis for Satisfying Moments  

As a reminder, I operationalized the key terms in this research question as follows. 

By satisfying moment, I mean an experience characterized by significantly positive 

emotions, such as an aha moment. By kinds of experiences, I mean experiences that share 

some set of similar characteristics.  Under this conceptualization of kinds and considering 

the limited existing research about experiences of this nature, grounded theory (Glaser & 
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Strauss, 1967) methods were appropriate for identifying key themes in participants’ 

experiences. I therefore report here my method for identifying kinds, as well as the kinds 

themselves. In other words, the process by which I identified kinds of satisfying moments 

was as much a result as the identification of the satisfying moments themselves. 

 I answered this research question using three steps. First, I identified sections of the 

audio interview where students discussed satisfying moments: questions 8-19. I also 

looked at the Emotion Word and Emotion Graph tasks themselves and discussion around 

them, as needed. Second, I described these moments, according to participants’ narratives. 

The word selection and emotion graph tasks helped me in describing how the situation 

unfolded as well, as triangulation for the audio. Lastly, I categorized all these different 

moments, as a way to create different “kinds” of satisfying moments. This categorization 

process was done bottom-up, using techniques from grounded theory. 

Assumptions 

An overarching assumption that guides this work is to stick close to participants’ 

sense of their own experiences and what they say is satisfying. There was a choice: Do I 

report what participants are aware of and claim to be satisfying, or is it better to code what 

I, as researcher, saw as evidence of a satisfying moment that they were not consciously 

aware of? It is tempting to do the latter, to uncover things that participants themselves are 

not aware of in their consciousness. However, it is students’ perceptions of their experience 

and satisfaction that matter and affect them, over any “outside” possibly more objective 

reading of their experience (e.g. Satyam et al, 2018). For this reason, I report on what the 

students identified verbally as satisfying. 
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Data Sources 

There were two sources of instances of satisfying moments: in-interview proof 

construction tasks that students said were “satisfying” and out-of-interview instances. This 

analysis focuses on the latter. Across all four interviews with the eleven participants, there 

were N = 75 instances of satisfying moments; that is, 75 times participants reported some 

experience related to their work in the course as satisfying. 

Of these 75 instances of satisfying moments, 56 had emotion graphs associated with 

them. This discrepancy in number comes from two main sources. One, in the first 

interview, I had participants draw an emotion graph for only one of the satisfying moments 

discussed. Two, sometimes students would talk about moments that they said were 

satisfying but did not draw a graph for it. A minor source is particular to one participant, 

who drew graphs of how he felt about each question in an entire homework assignment, 

not for the specific question that did feel satisfying. These graphs were not usable and 

therefore not counted. Regardless, this analysis does not rely on the emotion graphs.  

From participants’ verbal descriptions of the satisfying moments, I reduced the data 

to be analyzed through a careful process to preserve relevant meaning. This is described 

below. Specifically, I produced 1-2 sentence descriptions of what exactly felt satisfying in 

each experience, which were distilled representations of their experience.  

Data Preparation 

Distilling audio to short descriptions. To prepare the data for analysis, I listened 

to the audio of each satisfying moment in each of the four interviews for each participant. 

After listening to the full retelling of each satisfying moment, I wrote (a) a summary of what 
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had occurred and (b) a short 1-2 sentence description of what was satisfying to that 

student, based on what they said. An example of one of these short descriptions is:  

Getting a problem you’ve been stuck on for a while and getting it yourself (Joel-1-1). 

The parenthetical identification lists participant, the interview, and a number associated 

with that satisfying moment. Thus, in the description above, this satisfying moment was the 

first one Joel talked about in the first interview. The goal of this two-step process was to 

carefully identify and keep what felt satisfying to the student. To maintain validity, I later 

rechecked each of my summaries and 1-2 sentence descriptions against each other, to 

check that no important relevant information had been lost that would influence coding. 

Probing about singular satisfying moments. In many cases, I explicitly asked 

students whether there was a singular moment within this entire experience that felt 

satisfying. I did not always remember to ask this question, as it was a question that arose 

over the course of data collection. When I did ask it, I included their answer into my 

sentence description. When I did not ask it, I stuck to the summary as close as possible 

when writing my sentence description, trying to minimize my inferences while also trying 

to not lose important information about the situation. Given the emergent nature of my 

analysis, I did not know what information would be significant ahead of time, so 

minimizing inferences was a non-trivial task.   

Why not code transcripts directly? In grounded theory methods, it is typical to 

code participants’ words directly, sticking close to what was verbally uttered. I chose to 

depart from this tradition in my analysis: My short descriptions (the data to be coded) 

were by nature already interpretive; they were colored by what I noticed while listening 

and were written by me, not my participant. This was a purposeful decision, however, for 
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many reasons. Firstly, the participant’s descriptions of what happened were often 

prolonged and spread out, because I would probe with questions at different points in time. 

This is not surprising, as their retellings of their experiences were akin to story-telling, and 

story-telling does not always occur in a straightforward fashion. Secondly, as stated earlier, 

I sometimes would ask the participant directly what moment exactly felt satisfying within 

their experience, but this (a) presumed that there was a singular moment to the participant 

and (b) may have introduced pressure to the participant to find something to say. Thirdly, 

participants’ tone of voice (e.g. excitement when talking about a certain point) seemed 

incredibly important for analyzing emotions; tone would have been lost by using 

transcripts that only included the spoken language. 

Given these concerns, I thought it better to (a) listen to the entire event and then (b) 

summarize what seemed to be the satisfying moment to the student, sticking close to their 

interpretations of events. This meant listening to participants intently, paying special 

attention to aspects such as tone of voice. An outside researcher could verify this by 

listening to the audio as well. But admittedly with this analysis, I took into account my 

familiarity with each student – what I picked up about their personalities and how they 

communicate, much of which is not present in a transcript. Considering the nature of 

qualitative analysis, taking into account familiarity with participants is appropriate here. 

Data cleaning: Excluded data and separating out independent instances. After 

listening to recorded audio, there were 75 satisfying moments. Of these, one entry was 

excluded as it concerned why a participant had had no satisfying moments. In another case, 

one instance of a satisfying moment was actually two: the participant talked about 

understanding equivalence classes being satisfying, and also that talking to fellow students 
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about math was satisfying as well. An assumption that underlies this dataset is that each 

satisfying moment is independent from the next. I therefore separated these instances into 

two.  

In contrast, experiences that had some element in common were kept together, even 

if there were multiple different aspects that were satisfying. For example, Stephanie said 

that doing and understanding homework feels satisfying. She also expressed that re-

explaining the homework to fellow students and getting better grades than others on the 

homework felt satisfying. Even though there were multiple things Stephanie found 

satisfying, I did not separate them into different satisfying instances because both 

concerned the same event, homework. If I had done so, these three instances would not 

have been completely independent of each other. Through this process of excluding one 

instance and splitting one instance into two, I arrived at N = 75 experiences to be coded.  

Data Analysis: Creation of Coding Scheme 

Coding. I coded all N = 75 descriptions of satisfying moments using grounded 

theory methods to create a preliminary coding scheme. This bottom-up coding scheme was 

created in the following fashion:  

1. Assigning raw keywords to each instance for what participants felt was satisfying 

2. Aggregating all the raw keywords together 

3. Consolidating keywords similar in meaning 

4. Repeatedly grouping similar keywords into larger categories, and  

5. Applying coding scheme and looking within each category for variation.  

Steps 4 and 5 were done cyclically in many rounds, until reaching the coding scheme 

detailed below. The goals of this cyclical process of defining categories was to minimize 
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overlap between top-level categories while retaining conceptually relevant categories. For 

example, while the Understanding category had subcategories that could be separated, 

there was variation left within the Understanding category. This was purposeful in that 

teasing apart nuanced meanings of the word “understand” would not be particularly 

illuminating.  

Testing codes from the literature. While a framework for satisfying moments did 

not previously exist, there are similar ideas in the literature, including aha moments, 

mathematical beauty, and self-efficacy. It made sense then to build off existing theory and 

connect to the literature, in order to grow our knowledge collectively. I derived codes from 

the following sources: 

• Mathematical beauty: Sinclair (2006), Hardy (1940), Inglis & Aberdein 

(2014), Blåsjö (2012) 

• Aha moments: Liljedahl (2004) 

• Self-efficacy: Bandura (1977) 

These sources were chosen based on their thoroughness or uniqueness in examining the 

topic.  

To test out the emergent codes against the research, I coded a “representative” 

subset of the entire data: N = 30 of the satisfying moments. I chose instances that 

exemplified typical instances or were unique. With the combination of these two, the goal 

was to have relatively high theoretical saturation of all the experiences within my dataset. 

After this test, I dropped some of the codes because there were no recorded instances in 

the representative dataset. A few codes from this round were retained in the final set.  
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Difficulties in coding scheme creation. A number of issues arose while in the 

process of creating the coding scheme using bottom-up methods. First, it was confusing to 

keep straight coding for what was satisfying versus why something felt satisfying. For 

example, doing well on homework is what is satisfying but because it is an indicator of my 

understanding is why that event was satisfying. Second, instances had multiple codes, 

which meant any instance could fall into multiple groups, making constant comparison 

difficult. Nevertheless, I focused on the criteria and what to include and exclude with each 

additional instance. Coding along multiple dimensions – e.g. code for type of success, 

difficulty, and people involved – did not work because this started to capture contextual 

elements and not main elements; this was too much information that it was obscuring the 

main themes. Lastly, there was a large amount interrelatedness between codes, which 

made refining the coding scheme difficult. 

In the following chapters, I discuss the results to both research questions. Chapter 6 

concerns development in students’ proving, and Chapter 7 is about kinds of satisfying 

moments that students encountered in relation to the transition to proof. 
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CHAPTER 6: Development in Students’ Proving 

In this chapter, I answer my first research question, How does undergraduate 

students' proving develop over the duration of a transition to proof class? I discuss a selection 

of some of the major kinds of productive changes that occurred, illustrating each using 

participant(s) as examples. I focus on four important, prevalent developments: (1) 

sophistication in how students chose proof techniques and their rationales for their 

choices, (2) awareness about how a solution attempt was going and harnessing that 

awareness for subsequent strategies, and (3) using examples to notice patterns and 

kickstart insight when stuck, and (4) becoming comfortable with exploring and monitoring. 

Next, I present a longitudinal profile of one individual, to highlight how growth in 

reasoning and performance do not necessarily happen together. I then discuss some less 

prevalent developments and end with a cursory analysis for developments across the 

sample. 

I interviewed each of the 11 participants four times over the semester and in each 

interview, they worked on two proof construction tasks. This chapter uses the data from 

the eight proof tasks for each of the 11 participants (see Table 6.1, a repeat of Table 4.3).  

Table 6.1: Proof Construction Tasks By Interview 

Interview 1 Statement 

Task 1 Suppose x and y are integers. If x2 – y2 is odd, then x and y do not 
have the same parity.  

Task 2 Prove the following statement: If a and b are strictly positive real 
numbers, then (a+b)3 never equals a3 + b3. 

Interview 2  
Task 1  Prove the following statement: If x and y are consecutive 

integers, then xy is even. 
Task 2 Prove the following statement: If a, b, and c are non-zero 

integers such that a divides b and a divides c, then a divides (mb 
+ nc), for any integers m and n.  
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Table 6.1 (cont’d) 
 

Interview 3  
Task 1 Prove the following statement: Suppose x, y, z are positive integers. 

If x, y, and z are a Pythagorean triple, then one number is even or all 
three numbers are even. 

Task 2 Prove the following statement without using induction: If n is an 
odd natural number, then n2 - 1 is divisible by 8. 

Interview 4  

Task 1 Prove the following statement: If a and b are odd perfect squares, 
then their sum a + b is never equal to a perfect square. 

Task 2 Prove the following statement: If x, y are positive real numbers and 

x ≠ y, then 
𝑥

𝑦
 + 

𝑦

𝑥
 > 2.  

 

Indicators of Being Stuck 

As I watched videos of students’ proof tasks, I made notes about what observable 

behaviors contributed to my judgment that students were stuck. A list of these are included 

below, across the participants’ video data I watched:  

• Silent 
• No writing 
• Stares at paper 

o Holds paper closer 
o Sits back from paper, to look at it from a distance 

• Taps/plays with pen 
• Touch face with hand or pen 

 
These behaviors were not exhaustive and individuals exhibited different behaviors specific 

to themselves, but I believe these behaviors cover much of what we see when a person is 

stuck. 

Students’ Performance on Proof Tasks 

While the focus of this chapter is on student’s development in problem solving, I 

provide some attention first to the quality of the written arguments they produced in the 
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four interviews. One common way to think about development in proving is in terms of 

performance – are students more successful at proving as the course goes on?  

For this reason, I coded students’ written work on each of the proof tasks for 

correctness. I assigned their attempts to one of three categories: Correct, Partially Correct, 

and Incorrect. The idea behind each category was to match standards set in the course, i.e., 

what students would receive as a score for their written work if they passed it in for 

homework. One reason for this choice was that students’ own standards of whether a proof 

was correct or not would be influenced by the course’s standards. Correct proofs were 

those that would receive full credit on homework, Partially Correct proofs would likely get 

at least half credit on homework, and Incorrect would get less than half credit. In assigning 

these “grades” I drew on my experience as a teaching assistant in the course. Table 6.2 

below provides more clarity on the criteria for each correctness category, in terms of 

content of the written work as well. Note this is a rubric for proof as a product, whereas my 

analysis regarding problem solving is about process. Therefore, conceptual, logical and 

expression issues were all considered errors. 
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Table 6.2: Rubric for Scoring Performance on Proof Tasks 

 
Table 6.3 below shows students’ performance on each task across the interviews. In 

order to easily look across students’ success over the entire interview series, correctness is 

quantified here in the following way: 1 denotes Correct, ½ denotes Partially Correct, 0 

denotes Incorrect. The last column shows their correctness score across interviews (out of 

a possible total of 8). 

 

 Correct Partially Correct Incorrect 

Criteria in terms 
of the course 
standards 

Would receive full 
credit in course 

Would receive at least 
half credit in course 

Would receive less 
than half credit in 
course  

Criteria in terms 
of content  

Correct proof, with no 
conceptual or major 
logical errors. May 
contain trivial 
mistakes (e.g. using 
same variables, minus 
sign, etc.) that do not 
affect validity of proof. 

Overall idea of proof is 
clear and correct. May 
contain 1-2 conceptual 
or expression errors, 
depending on severity. 

Anything less than 
Partially Correct or at 
least 2 severe errors 

Common errors -Proved something 
more general than 
given statement 
-Minor expression 
issues that do not 
affect validity or logic 
of proof 
 

-Wrote negation 
incorrectly 
-Stated contrapositive 
incorrectly  
-Did not justify a step 
(unless this is the 
point of the proof, in 
which case Incorrect) 
-Incomplete Cases: 
Forgot a case  
-Minor expression 
issue that do affect 
validity or logic of 
proof  
-Informally written in 
words (but idea is 
correct) 
-Started with the goal 
rather than proving it 

-Proved the converse 
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Table 6.3: Performance across Proof Tasks by Participant 

Participant 1-1 1-2 2-1 2- 2 3-1 3-2 4-1 4-2 Total 

Amy 0 1 1 ½ 1 ½ 1 1 6 

Charlie ½ 1 1 1 ½ 0 0 ½ 4 ½ 

Dustin 0 0 ½ ½ 0 0 0 0 1 

Granger 1 1 1 1 1 0 ½ 1 6 ½ 

Gabriella ½ 1 1 0 ½ 0 0 0 3 

Joel 1 ½ 1 ½ 0 0 0 1 4 

Jordan 0 ½ 1 0 0 0 0 1 2 ½ 

Leonhard ½ 0 1 ½ 0 0 0 0 2 

Shelby 0 ½ 0 ½ 0 0 0 0 1 

Stephanie 1 1 1 ½ 0 0 0 0 3 ½ 

Timothy 1 1 1 1 ½ 1 ½ 0 6 
 
Note. The headings denote Interview-Task (e.g. 1-1 means Interview 1-Task 1). Cells: 1 
denotes Correct, ½ denotes Partially Correct, 0 denotes Incorrect.  
 

Looking across the interviews, Granger had the most success across the eight tasks 

(6 correct, 1 partially correct), followed by Amy (5 correct, 2 partially correct) and Timothy 

(5 correct, 2 partially correct). Dustin and Shelby got the least correct across all interviews 

(only 2 partially correct each). It is important to note that the difficulty of the items was 

equated across the interviews; in my estimation, difficulty generally increased over time. 

Later proof tasks were more reliant on increased content knowledge of basic number 

theory and had more complicated solution paths. If item difficulty had stayed the same 

throughout, we would expect that performance would improve as interviews progressed. 

Because difficulty cannot be assumed to be constant but in my view increased, participants’ 

poor scores on later tasks should not necessarily be taken as an indicator that they had not 

improved. In the following analyses, I only discuss tasks where students were at least 

partially or completely correct. 
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Cross-Individual Developments 

I present the most pervasive developments and practices that appeared, i.e. the 

developments that occurred across the largest shares of my eleven participants. The goal is 

to describe the developments that have the most grounding in data. For these 

developments, I take a cross-individual analysis: I discuss one to three student examples to 

(a) illustrate what that development looked like as it unfolded but also to (b) highlight any 

variation in how that development occurred. I provide a summary of the changes seen for 

each development. I would like to note that my choices of participants are not meant to say 

that other participants did not show these developments nor even that these are the best 

examples across participants. The students discussed as examples of each development are 

merely to be illustrative of the development, serving the reader.  

Development A: Changes in Choosing a Proof Technique 

One common development that occurred across participants were changes in how 

they chose what proof technique to pursue, when approaching constructing a proof. By 

proof technique, I mean tools such as direct proof, proof by contradiction, proof by 

contrapositive, cases, and proof by induction—the techniques that were taught in the 

course. For the sake of redundancy, I will often refer to proof by contradiction as just 

contradiction and proof by contrapositive as just contrapositive. The first half of the course 

was about learning proof techniques, so naturally many students generally thought about 

what proof technique to use as a major way of approaching constructing a proof. In 

addition, homework tasks were often written in such a way that one of the proof 

techniques led to an easier proof, over using other proof techniques. Eight of eleven 

participants showed signs of this development, based on data from the interview notes and 
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across all tasks (not only the ones where they became stuck). I discuss two participants 

here, as illustrative examples of this development. 

Example A1: Favoring one technique. From the beginning (Interviews 1 and 2), 

Stephanie favored proof by contradiction over all other techniques when constructing a 

proof. In Interview 1 – Task 1, she immediately jumped to trying proof by contradiction 

because the statement was an implication, having an “if-then” structure: “When I see the if-

then statement, I immediately think I can do this by contradiction.” She explained she felt 

comfortable using this technique. Figure 6.1 shows her work, where she immediately 

identified the assumption as “A” and conclusion of the statement as “B” and wrote the 

negation.  

 

Figure 6.1. Beginning of Stephanie’s work on Interview 1 – Task 1 

Note that Stephanie technically wrote the negation incorrectly; the correct negation 

is “A and not B” i.e. “x2 – y2 is odd and x or y have the same parity.” Instead, she because she 

wrote the negation as an implication, a common error. However, this error did not affect 

the rest of her proof and her reasoning for picking proof by contradiction is unaffected by 

her execution. It is interesting that already by the first interview Stephanie felt most 

comfortable with proof by contradiction, considering that this was new knowledge they 

had recently learned in class, not something they came to the course already knowing.  
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In the next interview, Stephanie go-to method was still proof by contradiction. Upon 

starting Interview 2 – Task 1, she said "I can see that this is an if-then statement, so 

automatically I'm going to try to use contradiction, but I don't know if it will work or not." 

She explained during the debrief that “When I read an if-then statement, I'm most 

comfortable using negation or a contradiction. So then I just try that, even though I know it 

doesn't always work, but I just try it." Note how the use contradiction is automatic for her, 

and she herself said outright she does not always know if proof by contradiction will lead 

to a correct solution. The general structure – that the statement has “if” and “then” clauses 

– is enough to determine that she can use her favored technique, but she did not make use 

the statement in any further way to guide her choice of technique.  

Stephanie did indeed get stuck on her proof by contradiction, so she switched to 

proof by contrapositive (see Figure 6.2).  
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Figure 6.2. Stephanie’s move to contrapositive on Interview 2 – Task 1 

She explained during the debrief, “I'll try contrapositive and then I felt a little better after I 

tried contrapositive just because I thought [out of] both of them, probably one of them was 

gonna be right." Stephanie did not give a rationale for why specifically proof by 

contrapositive, just that it was another technique.  
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Summary. These snapshots of Stephanie’s thoughts during Interviews 1 and 2 

showcase how a student can “latch on” to a proof technique and use it whenever they can. 

Stephanie did have a condition for when to use proof by contradiction, when she sees an if-

then statement. However, this applies to nearly all statements to be proven in the course 

that we can safely say this is her general technique. Stephanie becomes less dependent on 

proof by contradiction and her rationales do become more sophisticated over time, but her 

work was unfortunately incorrect on all four tasks on Interviews 3 and 4. We turn then to a 

different student in order to better see how choice of proof technique and rationale 

changed over time.   

Example A2: Recognizing advantages of a technique, independent of 

statement. I now present the case of Timothy, to show development that extends what we 

saw through Stephanie. Timothy was similar to Stephanie in having favored proof 

techniques in the beginning, but his rationales became more sophisticated and based on 

the statement itself as his interviews progressed, in addition to producing correct or 

partially correct proofs. 

Figure 6.3 shows Timothy’s attempt in Interview 1 - Task 1 to construct a proof for 

the statement, “If x^2 – y^2 is odd, then x and y do not have the same parity.” When stuck 

in the beginning, he re-read the question and wrote what was known. At this point he 

switched from his direct proof attempt to proof by contrapositive. 
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Figure 6.3. Beginning of Timothy’s work on Interview 1 - Task 1 

When asked why he selected contrapositive, he explained it was a method from class but 

also that it was a logically equivalent tool to direct proof that he could use: 

Timothy: It was confusing me when I’d try to think of it the normal way so I knew 
the contrapositive is true, it’s basically the equivalent, logical equivalent.  
… 
Interviewer: So actually, so how did you come up with contrapositive? 
Timothy: Looking at it straightforward didn’t…it wasn’t working for me so I know 
we learned in class that the contrapositive is basically not B implies not A. I knew we 
said that was logically equivalent, so if I could prove the contrapositive was true, 
then I could prove the original statement was true was kinda my thinking with that. 
 

He explained that a direct proof method was not helpful in generating a proof, but he gave 

no specific rationale for choosing contrapositive over other proof techniques. His 

explanation implied that contrapositive was a legitimate tool from class, so why not use it? 

While it is possible he may have had some internal reason for using contrapositive, he 

neither mentioned this on his own nor articulated any further reasons when questioned.  

 Later in this interview, he talked more about contradiction being one of his “go-to” 

methods and why: 
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Timothy: I always go about it with either contradiction or induction or straight up so 
I kinda knew that I might be able to contradict this never equaling that, so I wrote 
out the contradiction...I guess contradiction is a little easier for me to think about. 
You just say the first part of the implication is true and the second part is false. So 
it’s just easier in my head, I guess, just to think about rather than switching around 
the implication, negating both parts. 
Interviewer: Okay 
Timothy: So I guess that’s why I go to that first. 
 

Timothy expressed here that contradiction was easier for him than contrapositive, which 

involves negating the assumption and conclusion. His insight about the work involved in 

setting up the two different proof techniques – contradiction vs. contrapositive – was true. 

It is important to note that he had some rationale for why he might use contradiction, but it 

was couched in terms of ease of use, first and foremost.  

The idea of ease of use as determining choice of proof techniques showed up in 

latter interviews. In his work for Interview 2 - Task 1 (see Figure 6.4), Timothy started by 

defining x and y using the definition of consecutive numbers and in calculating xy, became 

stuck over what to do.  

Figure 6.4. Timothy’s switch to contrapositive on Interview 2 – Task 1 
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He then switched to contrapositive when stuck because “sometimes that’s an easier way for 

me to look at it.” Similar to Leonhard’s reasoning, he knew that contrapositive was easier 

on some level for him but not for any reasons specific to the statement and did not further 

articulate why. What exactly made this method easier remained unknown to him or at least 

was not clear enough to him to easily articulate when asked. (In the end, his contrapositive 

proof was not to his liking and also not correct). 

But by the end of the interviews, Timothy showed sophisticated thinking in 

considering which proof techniques to use. In Interview 4 - Task 1 (see Figure 6.5), 

Timothy became stuck after computing the goal (a+b) directly.  

 

Figure 6.5. Timothy’s work on Interview 4 – Task 1 
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He explained that he used contradiction because “it’s easier when I know something like is 

equal to something or is something.” His rationale was similar then to Leonhard’s for this 

same task. He then gave this further rationale for why contradiction:  

I was trying to prove that it’s not equal to a perfect square and I know from past 
experiences, it’s easier when I know something is equal to something or is 
something. So I tried to use contradiction because I knew I could say then it is a 
perfect square. 
 

His argument was that he wanted to be able to work with an equality, much like Leonhard. 

Timothy also gave a rationale for not using another method, contrapositive: 

I thought about contrapositive, too, but then it would say that A and B are not 
perfect squares and that’s again, like something’s not so I mean, it’s easier for me to 
work when I know like a straight definition of something. So if I could keep this, I 
knew if I could keep this, like they are perfect squares and say this is a perfect 
square, then it’d be easier to work with. 
 

His explanation was similar to his prior one about equality of objects being easier, i.e. 

knowing things are not equal is not as helpful. His subgoal then was to find a proof 

technique that would give him a+b is a perfect square.  

This task is notable however for drawing out Timothy’s observations on contradiction: 

I never really thought about it this way but I realized when you use the 
contradiction, you don’t really have the assumption and conclusion anymore…you 
can actually pick any part of that statement you want and work with it. Rather 
than with an if/then statement, you start with the assumption and try to work 
to the conclusion. So you’re not as limited, I guess. 
 

Timothy gave a high-level explanation of the nature of proof by contradiction. He found 

proof by contradiction to be freer than other techniques, due to being able to work with all 

parts of the statement. This stood in contrast to starting with the assumption and trying to 

prove the conclusion as is done in direct proof but also proof by contrapositive. It is of 

separate note that this revelation came about during this interview context, based on the "I 
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never really thought about it this way but..." clause. The interview served as a vehicle for 

reflection on proof techniques for Timothy.  

Summary. Timothy’s went from picking a proof technique (1) because it existed as a 

tool to (2) having a fuzzy sense that it would be easier to (3) explaining how the content of 

the statement drives the problem solving approach to (4) articulating understanding at the 

meta-level of how a technique functions as logical tools. His later interviews revealed 

insights for when to use contradiction that did not depend on statement content but 

instead meta-level structure. 

Comparing developments in choice of proof techniques. Both Stephanie and 

Timothy showed similar growth in how they chose proof techniques to pursue through 

most of their interviews. Both discussed liking and being drawn to certain techniques, as 

their “go-to” method. Timothy’s latter interviews showed some level of weighing the utility 

of different techniques, to think about which would be better, whether it be a cleaner proof 

or just easier. He noticed that being able to set things equal provided the prover with more 

to work with; contradiction was therefore the most useful technique, based on the content 

of the statement. 

The difference between the two lies in where they ended: Timothy came up with a 

general insight for when contradiction was useful. By looking across these two students, we 

can see this general trajectory in how students grew in how they chose techniques to use. If 

we conceptualize this specific development as a series of stages, Figure 6.6 illustrates the 

stages students tended to step through.  
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Figure 6.6. Stages of development in how students choose proof techniques to pursue 
 

To use an analogy, let us think of proof techniques as hammers. In the beginning, 

students have a certain hammer they like for reasons that tend to be personal and not 

mathematical, and they use this hammer for all tasks, regardless of the nature of the task at 

hand. After some time, they start using different hammers other than their favorite but 

have no clear rationale for why one over another; they just pick up a different one when the 

need arises. They then start using specific hammers for specific tasks (attending to content 

of the statement to be proven), but without yet explaining why they are doing so. Finally, 

some students see when to use certain hammers over others, understand the advantages of 

each, and can explain why. The same way different hammers work better in different 

situations, different proof techniques can lead to more straightforward proofs. 

Development B: Assessing How the Solution Attempt Is Going and Harnessing It 

 Another common development among participants was a growing metacognitive 

awareness of how their solution attempt was going, usually when they felt they were on the 

wrong track. Four of the eleven participants showed development of this kind. Being aware 
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of how one’ s solution is going is normal and to be expected; what is important is examining 

what students did in response to their awareness (albeit involuntarily) and how that 

guided them to better solutions. For these reasons, I highlight individual tasks where 

students showed they had this awareness, with the implication that this did not appear in 

earlier interviews. I discuss three students to show variation in how students harnessed 

metacognitive awareness: Granger, Timothy, and Jordan. 

Example B1: Intuitive awareness lead to restart. Granger was another student 

who was aware when things were going wrong, even if the reason why was not clear. In 

Interview 2 – Task 2, he said from the start “this is going to throw me for a loop” – and it 

was indeed a difficult task for him. He became stuck at some point and took multiple 

attempts, as can be seen by all the cross-outs in his scratch work in Figure 6.7. 

Interview 2 
Task 2 

Prove the following statement: If a, b, and c are non-zero integers such 
that a divides b and a divides c, then a divides (mb + nc), for any integers 
m and n.  

 

 

Figure 6.7. Granger’s scratch work on Interview 2 – Task 2 (statement provided) 
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The following exchange happened during the debrief, in which he showed awareness that 

things were off: 

Granger: So I was like, "What am I doing? This isn't right. Something's not right 
here." 
Interviewer: But it sounds like you had a sense that... You knew that like, "I am not 
doing this the right way." 
Granger: Yeah, I definitely did. I don't know. I just know... I don't know how to 
explain that. You just know when something isn't right. 
Interviewer: Is it like when it's [this attempt is] not helping you get anywhere or it's 
not clarifying things? Or is it really just like an intuition?  
Granger: Yeah, just like an intuition, like, "That does not... This statement 
absolutely doesn't make any sense with this," and I was like, "It can't be right." 
...But you know it's just like, "This does not agree with the definition at all, so 
what am I doing?" And then I just reassess the situation and I'm like, "Okay, 
let's start fresh." 

 
Granger knew something was wrong, intuitively. He could not pinpoint what exactly was 

wrong but had an awareness that this could not be a correct way to go about it. He also 

explained his strategy of starting over:  

Granger: Usually, on homework I would pick a page and start going and, I don't 
know, it's a weird thing, I'd be writing or something, and if it's wrong, I'd cross it out 
and I'd try again if it's wrong... Eventually, if I get to this much space where I've 
gotten... I just flip to a whole new page and it's like a refresher like, "Okay, you 
start a whole new... What's going on." 
Interviewer: So that kind of helps, it sounds like. 
Granger: Yeah, yeah, definitely. I don't know. It's intimidating when you see a 
whole bunch of crossed out marks and it's just like your brain is focusing on 
what you got wrong and... Yeah. 
Interviewer: As opposed to fresh ideas or trying new things. 
Granger: And we learned in... Ironic, I learned in psychology, when you're trying to 
figure out a problem, your unconscious mind is also thinking about it but you don't 
realize, it's unconscious, but...So as I'm flipping the paper over and just like resetting 
myself, also, my unconscious is thinking about what I did wrong already, so it 
doesn't matter, I already know what not to do. 
Interviewer: So you don't need to look at it to... 
Granger: Yeah, exactly. And looking at it, it messes up consciously what I'm doing 
unconsciously. 
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His subsequent strategy was to abandon his past attempt and ways of thinking completely 

and start afresh. It worked on this task: Near the bottom of his scratch work, he started 

working in a more helpful direction and was able to get to a correct proof.  

Summary. Granger knew intuitively that his work was off, expressing that “you just 

know when something isn’t right.” This mathematical sense for when things were off was 

helpful here, in that it led him to let go of what he had done and start something afresh, 

leading to a correct solution.  

Example B2: Awareness lead to finding new strategy. I now highlight one task 

where Timothy’s awareness drove his solution attempt. In Interview 2 - Task 1, he became 

stuck multiple times over the course of proving: “If x, y are consecutive numbers, then xy is 

even” (see Figure 6.8).  
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Figure 6.8. Timothy’s first attempt at Interview 2 – Task 1 

In response, he started reasoning out loud about the mathematical relationships (“If [x,y 

are] not consecutive, they wouldn’t have this relationship...what does this tell me?”) and 

explained that he would continue to try it this way but didn’t know if it would work or not 

and "can’t think of any other way" right now. He was assessing his attempt while working: 

“I finished it out because I just wanted to get something down but I didn’t really like that 

one.” After getting stuck twice more, he ended up with proof but he was unconvinced about 

it; he did not feel good about it.  
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In the debrief, he explained that “I didn’t really like that one [proof by 

contrapositive]. And then I went back because I really wanted to do something with this 

directly. I liked that better." (The latter proof will be discussed in a later section). His use of 

the word “like” indicated a judgment part cognitive and part affective, of a sense of “fit” 

being off rather than fully about the correctness of this proof. His first proof did not sit well 

with him then, enough to lead him to look for a different solution. This sense served him 

well, as indeed his first attempt was not correct – but the one he came up with later was. 

This affective metacognitive sense playing a role in his work was further indicated 

by his emotion graph and words for this task.  

 

Figure 6.9. Timothy’s emotion graph for Interview 2, Task 1. Note that the dip occurs when 
he was unsatisfied with his contrapositive proof.  
 
His emotion words were “annoyed” when he was stuck and “frustrated” and “disappointed” 

when unsatisfied with his proof. In fact, his dip in emotion in the graph came from 

dissatisfaction about his contrapositive proof specifically. It is possible that he was 

dissatisfied because he thought his proof was not correct and that manifested itself through 

his emotions. However, even if this is true, it is interesting (in light of other research 

questions in this dissertation), that he spoke about the acceptability of his proof affectively.  
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Summary. In summary, Timothy showed a metacognitive, affective awareness and 

monitoring of his proof attempt. It drove him to keep thinking and look for another way, 

even though he had reached an end in his work. In a later section, I examine how Timothy 

was able to act on his awareness and find a better proof, more to this liking.  

Example B3: Aware but stayed on same solution path. I now present a 

contrasting example, of a student who was aware when something was wrong but 

continued her strategies, not changing direction. Jordan became stuck and was aware that 

something was not working, but she would move past it and continue with her current 

strategy.  

In Interview 3 – Task 1 (see Figure 6.10), Jordan was stuck in the beginning, stating 

she felt like she did not understand what she was proving.  

Interview 3 
Task 1 

Prove the following statement: Suppose x, y, z are positive integers. If x, y, 
and z are a Pythagorean triple, then one number is even or all three 
numbers are even. 

Figure 6.10. Statement of Interview 3 – Task 1 

She had an idea about using two cases, where one case would be setting one of x,y, or z to 

be even and the other case would be setting all three of these variables to be even. She was 

confused though because she felt she was starting with what she normally would show. 

Regardless, she forged ahead with using cases on x,y, and z for the equation x2 + y2 = z2. 

Figure 6.11 shows her work on this first case: 

 

Figure 6.11. Jordan’s beginning work on Interview 3 – Task 1. She assumed one variable 
was even and the other two were odd but it lead to a statement that did not help her. 
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She became stuck again after she expanded her terms, because she did not know what to do 

with the last line in Figure 6.11. She ignored it and skipped ahead to the second case, where 

x, y, and z were all even. Afterwards during the debrief, she said “I feel like maybe I got the 

first part, but then, I don't know. I just feel like there's a better way to properly do it.” 

Jordan was unsure about her outcome; she was aware that something was wrong and that 

there must be a better solution but that never changed her strategy of using these 

particular cases on x, y, and z throughout her attempt. Indeed, Jordan’s solution was 

incorrect in the end. 

On Interview 4 - Task 1, she began by checking some examples and did some 

algebra but then became stuck with how to show that the expression was not a perfect 

square. From then on, her work was a stuttered series of stops and starts (see Figure 6.12): 

factoring out a 2, getting stuck, taking the square root, getting stuck, factoring out √2 , and 

getting stuck. Jordan’s solution here was also incorrect in the end. 

 
Figure 6.12. Jordan’s work on Interview 4 – Task 1 (statement provided). The last few lines 
are where she experienced multiple stops and starts. 
 

Interview 4 
Task 1 

Prove the following statement: If a and b are odd perfect squares, then 
their sum a + b is never equal to a perfect square. 
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During the debrief, she was honest:  

Interviewer: How are you feeling about it overall?  
Jordan: I just don't think I'm allowed to do that. I don't think I did it right. 
 

Jordan was aware that her solution attempt was off (and in fact believed she had taken 

invalid mathematical moves). When she was stuck during the proving process, she ignored 

that something was off and kept pushing forward via algebraic manipulation. 

Summary. These tasks from the latter two interviews showed that by the end of the 

course, Jordan knew when her attempt was off and had some idea of why (e.g. not knowing 

how to formally show something), but she would ignore it and move past it and/or not 

alter her current path. 

Comparing developments in awareness and using it. All three of these students 

showed awareness when things were not going well. Granger’s was more while he was 

working, feeling intuitively something was wrong in this process, while Jordan and 

Timothy’s attention were focused more on not liking the outcome.  

However, these three reacted differently to feeling something was wrong: Jordan 

would continue on with her current plan of attack, Timothy would re-assess what he was 

doing by reasoning out loud about the relationships, and Granger would start on a fresh 

page in order to not be influenced by this past thinking. Another way to examine this is to 

look at the conceptual “level” at which they worked: Jordan stayed grounded at the level of 

the algebra to try to make her way of thinking work, whereas both Granger and Timothy 

went back to the top level of the problem. Timothy in fact “zoomed out” of the problem (he 

physically would lean away from the paper) and muse about the task as though with a 

bird’s eye view. Both Granger and Timothy stumbled upon correct proofs for their tasks 

here, whereas both of Jordan’s proofs discussed here were incorrect. In summary, all three 
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were aware of how their attempt was going, but Granger and Timothy used that to guide 

themselves to better solutions successfully. 

These three students serve as variations of what students’ awareness of how their 

proof attempt is going looks like and their subsequent metacognitive strategies: (1) 

continuing with the plan (Dustin falls into this category too), (2) abandoning the current 

path completely, and (3) playing around with what one is drawn to in order to find a new 

path. This last variation in particular may be an example of the inquiry-driving role of 

mathematical aesthetics in leading the mathematician to investigate certain avenues of 

solution attempts over others (Sinclair, 2004). 

 This discussion may make it seem like Jordan did not experience development. It is 

important to note that having awareness that one may have used invalid mathematical 

moves (as she worried about on Interview 4 – Task 2) is far better than assuming one’s 

solution is always correct. Jordan may have continued on her current approaches when 

stuck because she thought them the most likely path to success or did not know what else 

to do, in the same way that Timothy and Granger thought changing their approach would 

lead to a correct proof and/or did not what else to do. The key difference was in how 

Jordan did not know what to do but stayed in that confused state, whereas Timothy in 

particular engaged in practices that helped him go from not knowing what to do (same 

state as Jordan) to figuring out what to do. Awareness that one’s attempt is not going so 

well is the first step; using that effectively to get oneself unstuck is the next. 

Development C: Exploring and Monitoring 

 Working without already knowing how a solution would go was another 

development seen across participants. Students were used to tasks in their past 
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mathematical courses, from K-12 through calculus in college, that lend themselves to clear 

methods and procedures upon reading the task. As will be discussed in a latter chapter, 

students also found it satisfying being able to see the entire solution path ahead of time.  

But during the transition to proof course, students became stronger at careful, 

intentional “winging it” – working and exploring without knowing what will happen in 

advance and noticing when a key piece of information for constructing the proof arose. 

Rather than remain stuck and wait for the solution path to materialize in one’s head, it can 

be better to start working and see what comes up. This practice is about effectively 

managing oneself when there no clear strategy is apparent. 

Four of the eleven students showed growth along these lines. I only discuss one 

student – Amy – for this development because she served as a representative for the 

changes seen in the participants analyzed. But more so, Amy is a case of a student who was 

high achieving from the start and did not change much throughout the interviews. Recall 

from Table 6.2 that she got 5 tasks correct and 2 partially correct, out of 8. Her 

performance therefore already had little room to grow, but moreover, her approach when 

stuck did not undergo serious changes – except for one singular change described below.  

Amy considered herself as a planner, always thinking ahead. Over time, she became 

more comfortable with working without a specific strategy in mind. She was a strong 

performer and confident in the class from the start, often finishing tasks quickly. Amy was 

outwardly confident in her mathematical ability and oftentimes saw how to do tasks right 

away. For example, she wrote her proof for Interview 2 – Task 1 in under four minutes. 

While discussing other things at the end of the second interview, Amy said this about 

herself: 
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Amy: I just plan, I don't know, I plan everything super far in advance.  
Interviewer: Oh, okay. So when you go in... 
Amy: I just feel like for everything, I just look ahead. Even when I'm doing math 
problems. I just like, in my brain, I think about what I'm gonna do before I start 
doing it. 
 

Amy specifically noted that this was how she did mathematics, always planning out her 

mathematical actions in advance and thinking ahead in the problem.  

 But even with her disposition towards planning, Amy became comfortable with 

working on her feet as interviews progressed. In Interview 4 – Task 2, she decided to use 

proof by contradiction so that she could work with the “≤ 2” part of the conclusion but 

became stuck briefly after that because she did not know what to do now. She said out loud 

that she did not have a plan while working but that she would figure something out (see 

Figure 6.13).  

 

Figure 6.13. First half of Amy’s proof for Interview 4 – Task 2 

Amy intentionally chose to explore the mathematical situation, manipulating the equations 

algebraically, with no clear purpose. This proved fruitful, as she noticed the contradictory 
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nature of 0 < (-x+y)(x-y). After this, the rest of her work argued why this was an impossible 

situation for (-x+y) and (x-y). Thus, she had found a contradiction, as shown in Figure 6.14. 

 

Figure 6.14. Second half of Amy’s proof on Interview 4 – Task 2, sans the final lines. 

During the debrief, she talked about what was going on when she was stuck early on: 

Interviewer: Okay, are there any points in this problem where you feel like you got 
stuck? That you'd call stuck?  
Amy: I feel like this whole portion, I was kind of stuck, but I was just like, "Just check 
through the algebra until you can get to something." I was like, "I don't see this going 
anywhere, but I'm sure it will. Just keep going."  
 

Her proving process on this task showed how she did not know at the beginning what she 

was going to do but was able to roll with the punches. She worked without a specific goal in 

mind and when a potential avenue appeared, she pursued it and found the contradiction. 

Summary. With Amy, she moved from planning out steps ahead (based on her own 

words) to being comfortable exploring and monitoring her work when unsure what to do. 

The important thing was her noticing an insight when it arrived. Some of this may have 

been due to the difficulty of proof tasks; these tasks were no longer so easy that their 

solutions could be seen right from the beginning (compared to traditional K-12 math), so 
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some level of working without knowing what will happen is part and parcel of a true 

problem in proving.  

Development D: Using Examples to Get Unstuck 

As this analysis has focused on what students do when stuck, it is sensible to pose 

the question: Do students develop effective ways of becoming unstuck? One could say this 

is a hidden goal of a transition to proof or any problem solving course. A productive 

practice specific to mathematics emerged during some of the latter interviews, where 

student would check examples as strategy located within a temporal string of strategies. 

Three participants - Charlie, Granger, and Timothy - showed this behavior during 

interviews, through a cursory analysis. I present Timothy here as a representative, to 

showcase how example checking was used to become unstuck.  

Timothy developed a robust practice of using examples when stuck, over the course 

of interviews. In an earlier section, I indicated Timothy was not happy with his first 

solution to Interview 2 – Task 1. As a result, he was silent for some period of time, which I 

interpreted as some version of being stuck. He looked back at his work, reasoned out loud 

“What if we assumed k is odd…and odd squared is going to be an odd” and then imagined 

what would happen. While imagining, he thought of "plenty of examples like this [from 

class] where you give a generic odd and even value in this case and then solve it out." He 

then said, “I guess I could look at it a different way” and had an insight about taking even 

and odd cases on k (see Figure 6.15).  
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Figure 6.15. Timothy’s new solution on Interview 2 – Task 1, after thinking of example 
exercises from class. 
 
His proof was indeed correct. In this task, Timothy’s examples were from example 

exercises from class; he drew on past mathematical situations he had seen. 

The last interview provided a view of Timothy’s more typical way of using example 

checking, however, to get out of tough situations. The last line of his work in Figure 6.16. 

for Interview 4 – Task 1 shows he got to a formula for m but then became stuck again. This 

was in fact his fourth stuck point on this task. 
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Figure 6.16. Timothy’s work on Interview 4 – Task 1. He reasoned out loud about the 
implications of the last line. 
 

He then started reasoning out loud: If m has to be an integer, what does n have to 

be? He mused out loud, let’s say n2 is an integer. He stopped for a moment and “zoomed” 

out from his work, thinking about what he needed conceptually. He checked an example 

out loud and noticed n2/4 would have to have a ½ in it, to cancel out the -1/2. He had some 

realization about why the claim was true, based on his examples, but did not know how to 

officially show m was not an integer within the allotted time. In the end he gave up, but his 

work was partially correct and his strategy got him quite close to noticing what the 

contradiction was in a way that other students did not, that m could never be an integer in 

this situation.  
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On the final task of the fourth interview (Task 2), his example checking came to full 

fruition (see Figure 6.17).  

Figure 6.17. Timothy weighing proof techniques on Interview 4 – Task 2 

He became stuck on the first item because he was not sure how to negate the statement. He 

then reasoned out loud what his issue was and possible decisions he could take (see the 

contrapositive and contradiction set-ups in his work.) This is akin to parallel processing in 

assessing which of many solution paths is a good idea. He then checked some examples: 

“I’m just thinking of examples in my head now so like going at it straight, so let’s say we 

chose 1 and 2, so ½ + 2 is greater than 2.” He then stopped and switched to contradiction. 

What he had done in this instance was reason out loud about the issue -> imagine multiple 

paths -> check examples -> try a different proof method. Ultimately, Timothy’s work was 

incorrect due to multiple algebraic errors, but his approach of using examples in 

conjunction with other strategies is unaffected by this. 

Summary. Timothy developed a practice of what to do when stuck, whether 

knowingly or not, as interviews progressed. He did some combination of these strategies in 

this relative order: Look back over work -> reason out loud -> imagine what would happen 

if certain things were true -> check examples -> have an insight that establishes a direction. 

It is important to note that Timothy put reasoning out loud to good use here, based on how 
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frequently he became unstuck after doing so. His use of talking out loud stood out across 

the sample, even when considering that participants were explicitly asked to think out 

loud. 

Timothy used examples as a way of instigating insights, whether intentional or not. 

He reasoned out loud about what was known, musing about the content at hand, in a sense 

looking for something to work with. The important thing, however, was that he was 

attentive enough to notice something when it came up. An example is not a proof, but it can 

provide an idea for a proof, and he used examples in this nuanced way.  

It is of note that this practice may have originated from his instructors. Timothy’s 

instructor, Ms. Frye, reported3 that she spoke to her class about using examples to get an 

intuition about why a statement was true but that examples did not count as a proof. 

Another participant (Granger) also said that Mr. X suggested checking examples as well. 

Longitudinal Case: Leonhard 

In contrast to the cross-individual discussion of developments, I now present a 

profile of development by following one individual across the interviews. The purpose of 

this section is to illuminate what can be gleaned from paying attention to an individual’s 

development. Here I follow the changes seen in Leonhard because over the interview series 

he showed growth in certain areas – his affect and his proving process – but his 

performance declined.  

                                                      

 

 

3 (Ms. Frye [pseudonym], personal communication, May 19, 2018) 
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Following Leonhard’s Process for Choosing Proof Techniques  

In the beginning, Leonhard’s baseline was to choose proof techniques based on what 

he knew and was familiar with. In Interview 1 - Task 1, Leonhard chose to use proof by 

contradiction to approach this problem, despite being a little stuck because he was not 

being sure how to negate the conclusion (see Figure 6.18). 

 

Figure 6.18. The beginning of Leonhard’s work on Interview 1 – Task 1 

His rationale for that choice was that “A lot of time in class whenever we’re proving an 

implication, we use contradiction I guess so that’s why it’s my first thought.” He used 

contradiction because that is what they used in class and he was used to it.  

In approaching Task 2 of that same interview (see Figure 6.19), he used proof by  

Figure 6.19. Writing out contradiction and not finding it helpful; beginning of Leonhard’s 
work on Interview 1 – Task 2. 
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contrapositive this time when stuck. At first he wrote the contradiction statement but his 

explanation was that “I didn’t really know how the contradiction would end up looking and 

how nice looking it would be to use a contradiction4 so I used contrapositive.”  

He had a sense then that contradiction would not be so “nice looking,” so better to 

avoid it and use the contrapositive. This could mean that proof by contradiction would not 

be so clean or would require more work. In fact, Leonhard wanted to use contradiction, as 

established on the last task as his “go-to” method. Only because he was worried about it did 

he switch to contrapositive. His move to contrapositive specifically was motivated then but 

only because it was another technique; his rationale used general terms and he did not 

articulate it in more detail.  

In Interview 2, Task 1, he wanted to do direct proof but became stuck because he 

was unsure whether what he wanted to do would work. He applied the definitions to x and 

y and then was stuck again over what method to use, direct proof vs. proof by 

contradiction. He became stuck again in choosing whether to do direct or contradiction. 

Ultimately, he chose contradiction and the reason he went with it was: “I decided to do 

contradiction because I know how to do it.” Leonhard chose what method to use based off 

what he felt he could do at that point in time, his own sense of fluency with methods and . 

                                                      

 

 

4 It should be noted that Leonhard made some errors here: a and b strictly positive means 
they cannot be 0, so his written work should state that a > 0, b > 0, not “greater than or 
equal to.” In addition, the negation of “never equals” is not “always equals,” which the equal 
sign implies. 
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As time progressed, there was  clear growth in his reasoning for his choices – even 

though his solutions were overall incorrect. Interview 3 – Task 1 is an example where 

Leonhard cycled through a few options for proof techniques, as seen in his written work 

(see Figure 6.20). 

 

Figure 6.20. Leonhard’s work on Interview 3 – Task 1 
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He used proof by contradiction but then became stuck in writing the negation, because his 

negation of the conclusion did not make sense: “One number is odd and all three numbers 

are odd” did not seem possible to him and so he stops writing after the “all.” He had 

negated the “or” when in actuality it was not a logical “or”; the correct negation is “two or 

none of the numbers are odd.” Then he switched to proof by contrapositive but then 

realized he had the same issue with how to negate the conclusion, as before. So, he 

switched again to direct proof. His rationale for why contradiction in the first place was as 

follows:  

I’m biased towards contradiction so I usually like to do that...my mind goes straight 
there [to contradiction]. I like it the most because...at some point you usually run 
into something that just comes out sounding weird. So then you have to be right I 
guess. 
 

Leonhard admitted that contradiction was his favorite, so he tended to use it whenever he 

could. He liked it, because of its unique nature in producing something nonsensical. He 

later added, “I don’t know what possessed me to write this [contrapositive],” because he 

ran into the same issue. Leonhard knew he liked certain methods over others and had some 

rationale - in how proof by contradiction results in a nonsensical claim and that he should 

have known to use contrapositive. His rationale was still general, however, in that 

contradiction was a technique he liked and that his fondness for it drove his usage of it. 

Interestingly, he mused out loud about how his underlying idea may have been to 

check which proof techniques did not work well here and see what is leftover: “I guess this 

was a good way of crossing out the things that you can’t do so you can find the things that 

you can do.” However, the qualification of “I guess” at the beginning of his words suggests 

we should not put too much stock into this claim about his thinking. 
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By the fourth interview, Leonhard showed growth in the precision and detail given 

in his rationales for his choice of proof technique. In Interview 4 - Task 2, he was stuck in 

the beginning and his subsequent actions were to identify the assumption and conclusion, 

test a couple examples for x and y, and then try proof by contrapositive (see Figure 6.21).  

 

Figure 6.21. Beginning of Leonhard’s work on Interview 4 - Task 2 

His rationale for contrapositive was, “You can’t really do much with x not equal to y. But 

you can do a whole lot with x = y,” and “The contradiction wouldn’t give me anything to 

work with.” Leonhard wanted to start with x = y because he saw how equality was more 

useful than not equal to in proving, and neither direct proof nor proof by contradiction 

provided an equality. He decided what proof technique to use based on specifics of the 

statement to be proven. In addition, his rationale also explicitly explained why another 

proof technique (contradiction) would be less useful here. In the end, Leonhard had a 

rationale for why his chosen proof technique was a helpful approach and why other 

techniques would be less helpful. In the end, his proof was incorrect, as reaching a true 

statement (2 ≤ 2) is not the same as showing the conclusion, but his rationale for why use 

contrapositive was coherent.  

 

 



 

 
101 

Making Sense of Leonhard’s Growth 

Over the course of these interviews, the rationales Leonhard gave for why he chose 

the proof techniques that he did became more sophisticated. He moved from choosing 

certain methods (1) for little to no reason to (2) having some rationale, with a general 

sense of one technique being better than others to (3) based on the statement itself.   

Leonhard showed clear growth, yet if we “de-couple” growth from performance, we see 

that Leonhard’s work was oftentimes incorrect (see the excerpt from Table 6.1 below).  

Participant 1-1 1-2 2-1 2- 2 3-1 3-2 4-1 4-2 Total 

Leonhard ½  0 1 ½ 0 0 0 0 2 
 
Across the interviews, he got 1 task correct and 2 partially correct. Moreover, his work for 

the last two interviews (four tasks) was all incorrect according to the scoring rubric, due to 

making substantial errors and/or missing crucial pieces of the proof. Interestingly, 

Leonhard’s perception was that his work was correct on three of these four tasks; he 

showed great confidence, as can be seen in his emotion graphs for these tasks in Figure 

6.22.  

Over the interviews, even though his success on tasks stagnated, Leonhard showed 

progress in terms of affect, of having confidence in his work. There are some good things to 

this, in how he had a positive orientation towards his work, but it is also worrying when a  

student does not notice major flaws in their work. Leonhard is an example then of where a 

student’s confidence is high and their reasoning and rationale for their decisions is high, 

but these do not necessarily lead to correct work.
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Figure 6.22. Leonhard’s emotion graphs for Interview 3 – Task 1 (top left), Interview 3 – Task 2 (top right), Interview 4 – Task 
1 (bottom left), Interview 4 – Task 2 (bottom right). His graphs indicated high positive emotions about his work on Interview 3 
and Interview 4 – Task 2 but his solutions were incorrect.
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There is a difference then between reasoning and execution: Leonhard reasoned 

well but his execution was flawed. Can we say Leonhard understands contrapositive? 

Another interpretation of this profile is that progress in terms of process does not always 

manifest itself in terms of performance, as measured by objective correctness. Judging a 

student based on solely their written work does not necessarily capture the thinking and 

reasoning behind their choices that was valid, which alone is valuable growth in proving.   

Developments with Limited Data 

 Here, I talk briefly about some other developments that occurred but were less 

pervasive across participants. These developments are not particular responses to being 

stuck but are approaches to proving in general.  

Development E: Attending to the Goal  

In contrast to working without a plan, some students were more attentive to the 

goal while proving, as opposed to just working. Charlie only showed signs of being stuck on 

two tasks of the eight, but one of the tasks serves as a great example of getting stuck and 

then unstuck. On Interview 2 - Task 2 (see Figure 6.23), Charlie experienced multiple 

wrong directions and multiple stuck points, due to interpreting the definition of divides 

incorrectly.  

Interview 2 
Task 2 

Prove the following statement: If a, b, and c are non-zero integers such 
that a divides b and a divides c, then a divides (mb + nc), for any integers 
m and n.  

Figure 6.23. Statement for Interview 2 – Task 2 

During his second “wrong way” (in his words), Charlie set his equations for a equal 

to each other (
𝑏

𝑚
= 𝑎 =

𝑐

𝑛
) but realized what he was doing was not helpful for the goal: 
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“That is not my aim.” In response to this stuck point, his subsequent actions were to start 

with his goal and work backwards and this lead him to a correct proof.  

Charlie attended to the goal even when not stuck. During Interview 3 – Task 2, he 

thought about whether what he was doing was helpful for what he had to show: “I think 

this is not a good idea for prov[ing] this [statement].” Indeed, thinking about the goal is 

something his instructor, Ms. Frye, recommended in class at some point, likely explaining 

this development.  

In contrast, Leonhard had a habit of working on a proof and reaching a true 

statement, thinking that meant his work was correct. This is an example of how not 

attending to the goal can lead to incorrect proofs. An example of this occurred on Interview 

4 – Task 2 (see Figure 6.24). 

Figure 6.24. Leonhard’s work on Interview 4 – Task 2. He reached a true statement and 
thought he had shown the claim.  
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He worked until he happened upon a true statement at the end of his work, that 2 ≤ 2, and 

believed confidently that he had written a correct proof. Reaching a true statement does 

not mean one has proven the claim, however. Paying close attention to what needs to be 

shown is important. 

Development F: More Systematic Ways of Approaching the Statement 

 The last observed development I discuss was in how students systematically broke 

down problems. Here, I provide two cases: Leonard who did this from the start vs. Timothy 

who did this over time and reported it as an area in which he felt he had grown. 

 From the beginning until the end, Leonhard had his own process whenever he read 

a task: Identify the assumption and conclusion, oftentimes assigning them P and Q (as is 

standard nomenclature). Figure 6.25 shows this consistent practice across interviews.  
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Figure 6.25. Example of Leonhard’s systematic approach to start problems, from Interviews 
1 through Interview 4. He identified the assumption and conclusion of the statement, using 
parentheses. 
 

In contrast, Timothy became more systematic in his approach over the course of the 

class, specifically in how he broke problems down. In Interview 2, he revealed how he was 

just now “getting” the latest definitions (convergence, open/closed):  

Timothy: I felt like a lot of kinda new definitions were kinda thrown at us quickly 
Interviewer: Yeah 
Timothy: So it was kinda like sorting through and learning each definition kinda one 
at a time. 
 

He expressed that he was taking his time, because it was a lot of new definitions and 

information to sort through at once. 
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However by Interview 3, Timothy said he had noticed changes in himself. He 

explained that he now knew how to break definitions down, thinking about each part 

separately. He now looked at definitions and proved them according to the order of the 

quantifiers that appeared: 

Timothy: I look at the definition now and actually try to go quantifier by quantifier 
like we’ve been talking about and try to like, so it helps a lot because now I 
understand why I’m doing the steps in the proofs rather than just like following the 
rules or whatever. So I think that’s definitely like the biggest thing that’s changed 
and it’s definitely helped out, just so I can understand...like understanding why 
you’re doing something...helps you do it” 

 
He said that quantifiers made more sense now, whereas before he would follow steps in his 

notes from class and not really be sure why he was doing what. 

Interviewer: Yeah, so before, it sounds like maybe in class, you guys would do like a 
convergence proof 
Timothy: Uh huh 
Interviewer: And like you could do it but it sounds like maybe you didn’t always 
know why you’re doing it? 
Timothy: Yeah, I’d just try to follow like what we did in class and try to do the 
same thing and it didn’t, especially like convergence, it doesn’t apply to every 
problem the same 
Interviewer: Yeah 
Timothy: So when you know what you’re trying to do, it helps out a lot more. 
 

Systematically breaking down definitions and approaching proving that way helped him 

understand what he was proving better. Based on how often Timothy appears as a case of 

development in this chapter, it is clear that he reaped the benefits from this. 

Developments Across All Participants 

 I focused on the four common developments, a longitudinal profile, and two less 

pervasive developments across my sample. Table 6.4 shows the developments that 

occurred across all eleven participants, based on interview notes. It is important to note 

that of all the participants, Timothy seemed to grow the most over the interviews. Some 
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Table 6.4: Developments in Proving, By Participant 

 Changes in 
how one 
chooses a 
proof 
technique 

Harness 
awareness 
of how 
solution 
attempt is 
going 

Check 
examples in 
conjunction 
with other 
strategies 

Work 
without 
a plan  
 

Imagine 
multiple 
paths 

Approach 
becomes 
more 
systematic 

Check 
work 
using 
other 
methods 

Draw on 
familiar 
examples 

Try 
multiple 
methods 

Attend 
to goal 

Amy    X       

Charlie X  X      X X 

Dustin X          

Granger  X X X       

Gabriella X X         

Joel  X   X      

Jordan X          

Leonhard X    X X X    

Stephanie X       X   

Shelby X        X  

Timothy X X X X  X  X  X 
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participants – e.g. Amy and Granger – started the interviews high performing and so did not 

show much development. Others, e.g. Dustin and Jordan, became more dejected as the 

course went on and showed the same one development, in how they chose proof 

techniques. Future analyses will delve into the other developments listed here and other 

participants. 

Conclusions 

The developments shown here can be grouped into three broad categories (see 

Figure 6.26). Fluency refers to students’ skill level, e.g. using multiple proof techniques 

and/or wielding them quickly, without struggle. Strategy refers to students’ intentions in 

trying to solve a problem. Monitoring and Judgment refers to students’ ability to pay 

attention and collect information about how the solution attempt is going (monitoring) and 

making decisions on what to change (judgment). 

 It is theoretically possible to have monitoring and not judgment or vice versa. 

Monitoring without judgment would be being aware that your work is not going well but 

not knowing why or what to do next. This in fact describes Jordan, who monitored her 

work but did not use that information to change course when stuck. Judgment without 

monitoring would be making arbitrary decisions, not based on any of the information from 

Fluency

Monitoring 
& Judgement

Strategy

Figure 6.26. Three Categories of Proving Development  
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the attempt. This latter idea is difficult to imagine and was not seen in this sample but may 

be possible. 

The fact that these major categories mapped back onto Strategy and Monitoring & 

Judgment of Schoenfeld’s (1985b) components of problem solving was a validity check of 

my conceptual framing. In addition, even though fluency with proof techniques and logic 

was not a development I had set out to look for, it is sensible that it showed up here. It is 

difficult to imagine students showing strategy and monitoring & judgment without some 

proficiency in proof techniques and logic.  
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CHAPTER 7: On the Nature of Satisfying Moments 

In this chapter, I answer my second research question, What kinds of satisfying 

moments do undergraduate students have during the transition to proof? Informally, this 

question led to identifying what events felt satisfying to participants, (i.e. led to significant 

positive emotions), and then categorizing them. First, I discuss the kinds of satisfying 

moments and how often each kind occurred. Then, I present more focused analyses: 

combinations of codes that co-occurred together and student profiles of satisfaction.  

Identification and Description of Codes 

 The coding scheme is described in Table 7.1. Each code is a kind of satisfying 

moment, as emerged from the data or derived from literature. I discuss characteristics of 

each of the kinds, providing prototypical example(s) from the dataset as needed for the 

purpose of illustrating what each kind is conceptually. Results of applying the coding 

scheme will be discussed after.  
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Table 7.1: Coding Scheme for Kinds of Satisfying Moments 

Code Sub-code Keywords in Data Criteria for Code Example 

External   Satisfaction is about some external element to the 
individual, such as a task or situation. 

 

Completing 
Task(s) 

 Figure it out 
No stuck 
Know how to do 

Figuring out how to do something, typically a 
mathematical task. Emphasis is on the 
accomplishment of solving a task. Excludes 
struggle.  

 

Overcoming 
Challenge(s) 
 
 

Present Struggle 
Stuck 
Can’t see/do at first 
Hard 

Struggling on a task and overcoming it. This 
includes problems that are perceived as hard to 
the participant.  

Anything where you 
struggle first and then 
figure it out (Jordan-3-1) 

 Comparison to 
Past 

Something I struggle with 
Not good at X 

Present day struggle and overcoming it is set 
against the backdrop of a previous struggle on a 
similar kind of task or situation. Participant 
compares two time points: the present to existing 
history. 

Getting one side of 
induction to look like 
another, something she 
struggles with 
(Stephanie-1-2) 

Partial 
Progress 

 Better 
Improvement 
Best I can 

Incremental or partial mastery. Includes 
improvement and doing better than I did before 
or to the best my present capability. 

Understanding a problem 
better (Gabriella-3-1) 
 

External 
Validation  

Grades Self and Authority 
Points/Full credit  

Receiving good scores, grades, or other outcomes 
as the source of satisfaction.  

Getting good grades 
(Jordan-1-1) 

 Assessments Self and Authority 
Exam/Mini-exam 

Doing well on a significant assessment, specifically 
an exam. Excludes homework. 

Didn't get stuck on mini-
exam (Jordan-1-2) 

 Authority Figures Self and Authority 
Praise 
 

Authority figure (often instructor) giving praise to 
the person specifically, e.g. saying work looks 
good. 

TA saying her work was 
“perfect” on a hard 
problem she worked on 
by herself (Amy-3-1) 

Internal   Satisfaction is about some internal state.  

Understanding General Making sense 
Understanding 
(I) get this 

Understanding how or why something works, 
usually a concept, task, or method; a sense of 
things falling into place or order.  

Understanding real 
analysis because it's 
understanding a concept 
(Jordan-4-1) 
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Table 7.1 (cont’d) 

 Aha Moment Realize 
Turning point 
Enlightenment/Revelation 
“Clicked” 

A singular moment of mathematical 
understanding. Often characterized more 
intensely as realization or insight.  

Instructor's other 
explanation clicked for 
him, a revelation 
(Granger-1-1) 

 Seeing the 
Solution 

See Using the word “see” as a visual metaphor for 
knowing the solution path or what to do.  

Felt good about this 
proof, could see it 
(Dustin-2-1) 

Internal 
conviction 

 Know it’s right Expressing personal conviction in the veracity of 
one’s work, i.e. that they have the right answer or 
what they found was true 

Knowing he'd gotten it 
right... before getting the 
grade (Timothy-4-1) 

 On my own  By myself 
On my own 
No help 

Doing something in present time on their own, 
without any help (people, notes, etc.). This idea 
has to be explicitly expressed by participant.  

Getting a homework 
problem right all by 
myself (Jordan-1-3) 

Properties of 
Math 

  Satisfaction is located within the mathematics 
itself by the participant. 

 

Useful  Applies 
Universal  

This technique or way of thinking is useful for 
other problems, e.g. applies to another problem.  

Learning the method & 
applying it to another 
problem (Granger-3-1) 

Simple  Simple 
Easy 
Familiar 

Task marked by a sense of ease and effortlessness. 
This can be throughout the entire time or a task 
becoming easy after an event. 

Questions that are easy, 
simple (Charlie-4-1) 

Interactions 
with People 

  Satisfaction comes from an interaction with other 
people specifically. 

 

Social 
Comparison 

 Self VS Others 
Only one/me 
Doing better at X than 
others 
Proving people wrong 
Compared 
 

An interaction of an adversarial nature among 
peers, e.g. involving competition. This code 
includes situations such as: 
• being the first or only one to do/know X 
• being/doing better at X than others 
• proving other people (classmates, authority 

figures, etc.) wrong 

TA said no one would get 
it…She was the only one 
in class to get it (Amy-4-
2) 

Friendly 
Interactions 

 Self AND Others 
Helping 
Explaining to others 
Contributing 
“if they can do it, so can I” 

An interaction of a non-adversarial nature with 
peers, often helping or working together. 
Examples include: 
• helping, teaching, or explaining to others  
• contributing or debating ideas 
• vicarious experiences 

Being able to explain a 
problem to someone else 
such that it makes sense 
to them (Jordan-1-4) 
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External Codes 

 External codes were situations in which satisfaction was about some external 

element to the individual, such as a task or situation. 

 Completing Task(s). An instance was coded as Completing Task(s) if it referred to 

figuring out how to do something, typically a mathematical task. The emphasis in these 

cases was on the accomplishment of solving a task. This category included situations like 

“not getting stuck on a problem.” This category excluded reference to struggle, so the codes 

Completing Task(s) and Overcoming Challenge(s) were mutually exclusive.  

Overcoming Challenge(s): Present and Comparison to Past. In contrast to 

Completing Task(s), this category contained all instances that described a challenge, in that 

there was direct reference to an obstacle or struggle. This category is essentially a more 

problematic version of Completing Task(s). Tasks that were talked about as “hard” fell 

under this category.  

It is important to note that the sense of challenge was specific to participant and 

their relationship to the task at hand; the same task was a challenge to one student and not 

to another. In some cases, participants used terms like “difficult looking problems,” which 

implied that perhaps the task was not personally challenging to them but appeared 

challenging. In these cases, I looked at the associated emotion graphs, and the graphs 

started with negative levels of emotion. Hence, data triangulation with the emotion graphs 

in these instances showed that “difficult looking problems” were perceived as challenging 

when students experienced negative emotions at the start.  

Within this category of Overcoming Challenge(s), two clear subcategories emerged. 

Some instances referred to occasions where participants discussed facing a challenge in the 
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present time (Present challenge), whereas other instances referred to a history of challenge 

or struggle on a similar type of problem (Comparison to Past). A common example of the 

latter subcategory was working on a kind of problem that has been a struggle in the past. If 

the instance referred to a past struggle, I coded it as Comparison to Past; if not, I coded it as 

Present. Therefore, Present and Comparison to Past are mutually exclusive within the 

Overcoming Challenge(s) category.  

Partial Progress. The idea of incremental growth or experiencing progress as good 

is a common idea (Dweck, 2006). The criteria for Partial Progress is incremental or partial 

mastery, including references to improving or doing one’s best. Common keywords include: 

improvement, progress, and “best I can.”  

External Validation: Grades, Assessments, and Authority Figures. In contrast to 

satisfaction coming from an internal sense of accomplishment of a task, External Validation 

is about outside sources determining one’s success. External validation is essentially a form 

of extrinsic motivation, where the motivation to do something comes from outside rewards 

(Middleton & Spanias, 1999). I conceptualize External Validation as taking place between 

the participant and some authority, whether that authority be a person or an assessment.  

Because external validation as a concept can be quite broad, I separated three types 

of external validation into individual sub-codes: Grades, Assessments, and Authority 

Figures. These codes were not mutually exclusive, in that an instance could fall under 

multiple of these sub-codes. An instance was coded as Grades if satisfaction came from 

external performance, a common one being receiving good grades. An instance was coded 

as Assessment if the instance referenced a significant assessment, constrained here to an 

exam or mini-exam. Even though homework was also an important assessment in the 
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course, I excluded homework from this category because homework was frequent and 

therefore a normal occurrence to the student, whereas the mini-exam and exam in this 

course happened less frequently. In addition, I wanted to separate out significant and rare 

events, such as exams.  

While seeming quite similar, Assessment was different from Grades in that 

Assessment concerned the background in which a satisfying moment took place whereas 

Grades focuses on the outcome as satisfying. Another difference is that knowing how to do 

something on an assessment served as an indicator of mastery to participants, irrelevant of 

the actual grade assigned. This did mark a slight departure from my principle to code only 

what the students themselves verbally mark as contributing to satisfaction. Instead, if the 

instance took place during an assessment, I coded the instance as Assessment, regardless of 

whether the participant explicitly referred to the exam context being a factor. The reason 

for my departure from sticking close to the participant’s own interpretations was that I 

thought this was a situation where participants may not explicitly say “this was satisfying 

because it was on an exam.”  

A third sub-code was Authority Figures, was assigned when a person of authority 

offered praise or other forms of validation to the participant. People of authority tended to 

be instructors or teaching assistants for the course. An example of this was, “answering 

instructor's question in the way he was looking for because your correct response means 

you understand the topic and validation from him (Stephanie-1-2)”. Instances that included 

talking with an authority figure but where that person was left in the background and not 

the foreground of the experience were excluded from this category. 
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Internal Codes 

Internal codes were situations which did not refer to some objective external 

element, like a problem, but instead were more internally located to the participant.  

 Understanding: General, Aha Moment, and Seeing the Solution. Understanding 

as a whole can be a source for mathematical beauty (Sinclair, 2006). One can think of 

understanding resulting from “things falling into place.” However, the difficulty here is that 

the term understanding on its own can take on multiple meanings. Just the words 

“Understanding a question” can vary in meaning: making basic sense of what a question is 

asking, knowing how to do the question, or grasping how the concepts in the question 

relate to each other. What students mean when they use the term “understanding” did not 

necessarily match what mathematics education researchers mean by the term. It was 

difficult to tease apart these different meaning, especially knowing vs. understanding. For 

example, in “understanding what he did wrong (Granger-2-3),” did understanding actually 

mean knowing? Because of these difficulties, I decided to not tease apart these different 

meanings into separate sub-codes. I felt very little would be gained conceptually by 

separating Understanding into multiple sub-categories.  

 Two ideas were however worthy of being separated into sub-codes: Aha Moment 

and Seeing the Solution. Aha Moment captures those experiences of understanding with a 

short temporal duration, often characterized as a realization, a revelation, or something 

“clicking.” I decided that this idea was worthy of its own sub-code because (a) temporal 

duration can be inferred from how participants discussed their experience and (b) sudden 

rushes of understanding as satisfying was an idea present in mathematical beauty 

literature (Sinclair, 2006). Seeing the Solution was generated by noticing that several 
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instances referred to situations where participants were working on a task and then could 

“see” clearly the line of reasoning or what to do next in order to solve the task. Seeing the 

Solution is a metaphor for things coming into focus, borrowing from visual language. 

Participants specifically used the word “see,” as shown in some examples below:  

(1) Felt good about this proof, could see it (Dustin-2-1) 

(2) Saw how to do induction problem on exam, which he initially thought he could do it 

but had gotten stuck using his usual ways (Joel-4-2) 

(3) When someone says the problem in a way that makes it click for her, making it 

easier to visualize the situation and see if it's true (Shelby-1-3) 

I did not code instances as Seeing the Solution if (a) the word “see” could be substituted by 

“realized” or “know how to do” without loss of meaning and (b) there were no other 

indications by the participant that the word “see” was central to their experience. The 

second instance above, from Joel, is an example of where “saw” could be replaced by 

“realized,” but he spoke emphatically about the seeing the path forward by working 

backwards, so the word seemed central to his experience.  

 Figure 7.1 shows the relationship among the subcategories of Understanding.  

Figure 7.1. Representation of how the Understanding sub-codes are related. Aha Moment 
and Seeing the Solution are different constructs but can overlap. General accounts for all 
other kinds of understanding. 
 

 
Aha 

Moment 

Seeing the 

solution 

General 
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Aha Moment and Seeing the Solution are not mutually exclusive, as there can be overlap. 

Understanding: General was used if Understanding: Aha Moment and Understanding: Seeing 

the Solution did not apply (Understanding: General is mutually exclusive with Aha Moment 

and Seeing the Solution) except in rare circumstances when the satisfying moment involves 

multiple types of understanding. One such instance was “Figuring out specific moves on a 

proof he couldn't see how to do at first: cases and factoring. Made sense (Dustin-4-2).” Here 

the satisfaction came from “seeing” the mathematical moves that complete the proof but 

also that they make sense in a more general way, so it fell under Understanding: General 

and Understanding: Seeing the Solution. Another instance of this was “When he finished a 

convergence question (which he's generally not comfortable with, unsure what to do), 

looking back on the proof as a whole, seeing it made sense. Had a realization that was a 

turning point in the problem (Timothy-2-1).” This instance fell under Understanding: 

General and Understanding: Aha Moment because there was a realization while proving but 

also general sense-making from looking over his proof as a whole after finishing it.  

Internal Conviction. Internal Conviction refers to the participant’s own sense that 

what they have done is correct or true. The instance that best illustrates this concept is 

“Knowing he'd gotten it [a convergence problem] right away during the exam before grade 

came back (Timothy-4-1).” The satisfaction occurred during the situation itself, 

immediately knowing that he had found the answer; he did not need a grade in order to 

know it. Another example of this was “didn't get stuck anywhere on problem, ‘I know this is 

true’ (Charlie-3-1).” The phrase “I know it’s true” spoke to a certain immediate conviction 

and content with his work. The key word for this category was therefore “know it’s 

right/true.” 
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This code originated from the data itself, but the notion of conviction has ties to 

mathematical beauty. Conviction in finding the correct answer may be related to a 

confirmation of one’s own ability, that a person was indeed able to find the right answer – a 

sense of “I did it.” Conviction in the truth of one’s mathematical work, however, may be 

more related to mathematical beauty.  

 On my own. This code refers to a participant doing something on their own or 

without help. Common keywords include: by myself, himself/herself/ourselves, on my 

own, no help. Instances had to refer to events that had already happened in order to be 

included in this code; future expectations were excluded (e.g. believing they can do this 

problem on their own next time). 

 This code was difficult to apply because students were very often working alone in 

many of the experiences they discussed. I decided to only code an instance as “on my own” 

if the participant explicitly used those words or some of the other keywords, rather than 

code all instances where the participant happened to work alone. This decision aligns with 

my principle of coding the participant’s interpretation of what was satisfying, not mine. My 

assumption was that if accomplishment happening on their own was vital to what felt 

satisfying, the participant would use those words. For example, “didn't get stuck on mini-

exam (Jordan-1-2).” technically involved the participant doing something on their own, 

because it was an exam and exams are solitary efforts in this course. However, Jordan 

emphasized that the heart of the satisfaction was not getting stuck, not that she was able to 

do this on her own., so this was not coded as On my own. 
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Properties of Mathematics Codes 

This cluster of codes refers to times when participants spoke to techniques, 

methods, or the mathematics itself as being satisfying. This is in contrast to prior categories 

which involved relationships between the mathematics and the participant. Codes about 

what properties of mathematics are commonly seen as beautiful were added from the 

existing literature at one point, but after a test coding, most of them were removed because 

they had no instances. The only two concepts that are properties of mathematics originated 

from the data itself and are described below.  

 Useful. This code refers to a mathematical technique or way of thinking as being 

useful for doing other tasks in the future. An example of an instance that spoke to the idea 

of utility was “Learning the method and applying it to another problem (Granger-3-1).” 

This category had a large overlap with the notion of mathematical utility or universality, 

which is a common characteristic of mathematical beauty (Sinclair, 2006). Common 

keywords for this code were “applies” and “universal.” This category could have been called 

Applicability or Universality, but the term Useful captures the utilitarian and practical 

nuances as well.  

 Simple. Simple captured instances when a participant emphasized satisfaction 

coming from the simplicity of a task or when a task becomes simple. Common keywords 

include “simple,” “easy,” and “familiar.” This code is characterized by a sense of ease in 

doing the task such that it is effortless. This is a code that comes from mathematical beauty, 

the long-held idea that simple mathematics is beautiful (Hardy, 1940; Wells, 1990).  

It could be argued that talking about simple tasks actually refer to the relationship 

between the solver and the task, as what one person finds simple another person may not. 
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However, many of the participants talk about the mathematics itself being simple, so I am 

sticking close to their interpretation in considering Simple a property of the mathematics. 

At first, one may think that this category should fall under Completing Task(s), because 

simple tasks tended to mean the participant did not get stuck. While this was true, this 

category also includes experiences where a task became simple, i.e. the task was 

challenging and then something happened where it became simple and was from there on 

easy or clear to do. Because of this variation, Simple exists as a category that can factor 

across Completing Task(s) and Overcoming Challenge(s). 

Interactions with People Codes 

These codes referred to experiences where interactions with other people were 

described as satisfying. In order to fall into this general cluster of codes, the participant had 

to refer to the interaction itself as being satisfying. For example, a clause like “the rest of 

the group didn’t get it” references people but was used just to set up that the mathematical 

task was a challenge. An instance with this clause would therefore not necessarily count as 

an interaction then.  

Social Comparison. This category refers to satisfaction that comes from comparing 

oneself to others – and coming out ahead. Here, the comparison is between the self vs. 

peers. Social comparison also has links to self-efficacy, as a type of vicarious experience 

(Bandura, 1977). Typically, social comparison has an adversarial or competitive nature and 

involves at least one other person. The three main situations that occur are:  

• being the only or first one (compared to others) or to do/know X  

• being or doing better at X than others 

• proving other people (especially classmates or authority figures) wrong 
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While many of these situations had challenges inherent in them, instances were coded 

Social Comparison when it was the interaction or the comparison with others that was 

satisfying. If the people in the experience had disappeared, would the experience still be 

satisfying? If no, then the experience was not coded as Social Comparison.  

Friendly Interactions. This category concerned non-adversarial interactions, as 

different from Social Comparison. Typical situations that counted as friendly interactions 

were working with, talking to, or helping fellow students in the course. The core idea of this 

category was of a person working with their peers, rather than working versus peers. 

Instances where the satisfaction came from interactions with instructors or TAs did not fall 

in this category because they were authority figures, so they would be categorized as 

External Validation: Authority Figures. 

Applying the Coding Scheme to the Data 

After finalizing the coding scheme, I then went back and uniformly applied the 

coding scheme to the dataset. The results of the coding process are given in Table 7.2, from 

most to least frequently occurring kinds of satisfying moments. Instances contained 

multiple kinds, so each instance could and frequently did take on multiple codes. The 

average number of codes per instance was 2.3 codes, so each instance on average had 2-3 

codes assigned.
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Table 7.2: Frequency and Percentage of Satisfying Moments by Kind 

Kind  #  % (of N = 75) 

Overcoming Challenge(s) 37 49% 
   Present 26 35% 
   Comparison to Past  11 15% 

Understanding 34 45% 
   General 23 31% 
   Aha Moment 8 11% 
   See the solution 7 10% 
Completing Task(s) 21 28% 
External Validation 18 24% 
   Grades 8 11% 
   Assessments 10 13% 
   Authority Figures 3 4% 
Interactions 16 21% 

   Friendly Interactions 12 16% 
   Social Comparison 6 8% 
On my own 13 17% 
Simple 11 15% 
Internal Conviction 5 7% 

Partial Progress  4 4% 

Useful 2 3% 
Total Codes Applied 169 - 

 
Note. This table lists the percentage of each code out of N=75 satisfying moments. The 
codes are listed from most to least frequently occurring. Data were frequently assigned 
multiple codes, hence percentages do not add up to 100%. The total number of codes 
applied is included in the last row. 
 

Based on percentages across the full dataset, the most common types of satisfying 

moments were the following: Overcoming Challenge(s), Understanding, Completing Task(s), 

and External Validation. Each of these accounted for more than a 20% share of the data. A 

second tier of codes captured at least 10% of the dataset: On my own, Friendly Interactions, 

and Simple. Social Comparison, Internal Conviction, Useful, and Partial Progress each applied 

to less than 10% of the data.  
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Overcoming Challenge and Completing Task(s) Account for a Large Portion of Data 

Not surprisingly, many satisfying moments (49%) involved overcoming challenges. 

This finding is sensible, because the course was designed to be challenging for students and 

thus accomplishing a challenge can make an experience out of the norm, against one’s 

expectations of what would happen. A little over a third of the data – 35% - concerned 

present challenges, making this the larger of the two sub-codes. Nevertheless, 15% of the 

data involved the comparison of the present to past challenges. This result suggests the 

importance of a person’s history, that past experiences can influence the satisfaction of an 

experience, especially overcoming long-standing struggles. 

The fact that experiences with a lack of challenge were satisfying too (Completing 

Task(s)) is also not surprising and confirms informal observations that as educators we 

grapple with: Students often enjoy tasks on which they do not have to struggle. In other 

words, students enjoy exercises. Accomplishments absent of struggle also confirms the 

importance of mastery experiences, from self-efficacy (Bandura, 1977).  

Experiences that involved both overcoming challenges and completing task(s) 

accounted for 77% of the entire dataset. This high percentage suggests that satisfying 

moments tended to be about mastery, regardless of whether or not there was struggle.  

External Validation vs. Understanding: Unexpected Results 

External Validation was a code I expected to account for a large part of the dataset 

because of the emphasis on grades and performance across society. Indeed, 18 instances - 

about a quarter of the dataset - fell under External Validation. Of those, eight instances were 

about grades, nine took place on assessments, and two were about authority figures. There 

were only two instances that were both about grades and assessments:  
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• She’s not good at showing convergence but did it on the exam, felt it was the best 

convergence proof she'd ever done, and got full credit for it (Amy-4-1) 

• Scoring well on the mini-exam (Leonhard-1-1) 

The overlap between Grades and Assessments within External Validation was therefore 

minimal, considering how tightly grades and assessments are intertwined.  

 While External Validation did account for a little over a fifth of the data, it was not 

the most common kind of satisfying moment. Understanding took a larger share of the data, 

a little less than double that of External Validation. There was indeed a large amount of 

within-code variation for this category, from basic sense-making to knowing how to do 

something to understanding concepts.  

History and expectations play a role when it comes to what level of understanding is 

satisfying, explaining some of the variation seen within the Understanding code. Basic 

sense-making can be satisfying when even that is difficult to come by. For example, Jordan 

discussed in the fourth interview how her instructor's explanation made sense, to the point 

that she felt she could do similar problems on her own next time. At this point in time, 

Jordan was worn down by the course and felt like she was not understanding very much. It 

is natural then that even just following along with what an instructor said could be 

satisfying, although this example did have a link to then being able to successfully complete 

a task.   

What are the implications then of such a large portion of the dataset falling under 

Understanding? First, students do find understanding satisfying – they want to understand 

and when they do, it feels good. This is important for two reasons. One, this corroborates 

mathematicians writing about understanding as a quality of mathematical beauty and that 
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students experience and appreciate at least some version of this. Even if aha moments 

occur less frequently (10% of instances here), it is heartening that students find regular 

understanding to be satisfying. Two, reform efforts in U.S. mathematics education have 

often pushed for more understanding in mathematics classrooms (NCTM Standards, 

Common Core State Standards), while counter-efforts have often called for a return to basic 

skills and facts with the belief that understanding will come later. That students report 

understanding as satisfying – and are aware themselves that understanding feels good – 

provides support at the student-level for efforts pushing for more understanding in the 

mathematics classroom.  

Interactions with People: Friendly Interactions 

 I chose to group both Interactions with People codes together in the table, to show 

that they accounted for 21% of the data. Friendly Interactions accounted for 16% of the 

data, more than Social Comparison. The most common Friendly Interaction reported was in 

explaining or helping others with a question (6 of the 10 instances). There were some 

interesting other cases that fell in this category. For example, Shelby voiced two instances 

of talking and working with others in the MLC: 

• Working with others (not just for getting answers); when student says something 

that makes problem click, to the point that you can tackle those problems on your 

own later (Shelby-1-1) 

• Talking about math in the MLC with people and writing on the board if they're 

people who she can bounce ideas off of. (Shelby-4-2) 

Other types of friendly interaction came from Gabriella, about debating with others and 

also this experience from the beginning of the course:  
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She struggled the first week, feeling like doesn't understand, can't contribute, and 
thinking she's the only one lost. But she's ‘getting’ the class now, so that she can 
contribute in groups and get correct answers. This came from someone else telling her 
she can get through this course and others are struggling too. (Gabriella-1-1) 
 

 A student with the same major as Gabriella who had already taken the course in a 

previous semester assured her that it was a difficult course but that she could get through 

it. This is an example of a vicarious experience (Bandura, 1977). Gabriella noticed that 

someone else similar to her (with the same major) could also get through this helped her.  

It is important to note that while these interactions concerned helping one another, 

personal mastery was still present. When a student was able to explain a homework 

question to another student and can see evidence that they understand, that served as 

confirmation of one’s own level of understanding. The frequency of non-adversarial peer-

to-peer interactions that appear in the data suggest that mathematics classrooms, even 

upper-level undergraduate mathematics classrooms, can benefit from facilitating more 

interactions between students. This course encouraged the use of structures outside the 

classroom, where students could meet in a common space to work and talk together about 

homework. Even if take the most cynical interpretation, that students do this for their own 

sense of mastery and understanding, the conclusion from the data is straightforward: 

Some students enjoyed helping each other. 

On My Own & Simple 

On my own and Simple were the most common codes among the second tier, 

capturing 17% and 15% of the data respectively. There was variation within On my own in 

regard to what “no help” constituted. Instances ranged from the basic “getting a homework 

problem right all by myself (Jordan-1-3)” to not getting help from friends: “Figuring it out 
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by himself before others because he wants to know why it works and it's more satisfying 

than having someone tell him how it works (Leonhard-1-3).” There was one instance that 

referred to not using resources: “Did convergence question without notes, after worrying 

because they hadn't done one [a question] like this in a few weeks (Stepanie-4-2).”  

 There was variation within what was meant by Simple as well. Two instances 

referred to a task becoming simpler, e.g. “got stuck on a problem he expected to be easy, so 

thought about it differently and it clicked in a way that problem became simple. Now he 

knows what to do with these problems (Joel-2-1).” It was the task becoming simple when 

the previous state was one of confusion, that is important to notice here. In addition, two 

instances referred to thinking: 

• Gets excited about it [induction] now because easier and doesn't have to think 

(Timothy-1-1) 

• Questions that are easy, simple, and/or that he can do just by thinking about them 

(Charlie-4-1) 

The first instance referred to not “hav[ing] to think” as satisfying. It is not surprising that 

induction is the content mentioned here, as induction has an algorithmic and procedural 

nature. At face value, this is similar to students finding exercises pleasing. At a base level, 

the sentiment makes sense; we want to conserve the amount of resources needed to do a 

task, so when we are able to do a task with little effort, that manifests itself in the form of 

an aesthetic feeling.  

Data that Did Not Fit into the Coding Scheme 

One instance did not fall into any category. It concerned writing homework in the 

typesetting language LaTeX; the participant said it felt satisfying because it was like 
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programming. This suggests something about the writing of a proof, specifically the 

product, was satisfying. There was an element of this in one instance of Amy’s satisfying 

moments: “proud of writing proof for a lengthy and hard-looking problem (1-1).” Timothy 

also talked about looking back at his proof as a whole and feeling good about it making 

sense. There was not enough evidence in the text itself to warrant a code, but there may be 

a possible code for creating a product or proof as a creation. This may appeal to a more 

aesthetic take, of evaluating a product for its beauty. This would need to be explored with 

more data.  

Partial Progress as Rare  

There were only two instances that spoke to the idea of partial mastery as satisfying. 

Both of these came from Gabriella:  

• Doing the best she could on the test, knowing how to do most of the hard ones, after 

instructor says he doesn’t expect people to finish, making her emotions drop (2-1).  

• Understanding a problem she didn’t understand better by talking to instructor, given 

that she had no idea at first and a TA’s explanation didn’t help much (3-1).  

Typically, when refining a coding scheme, a code containing only two instances in a dataset 

of this size would be a likely candidate for elimination. I did consider removing the Partial 

Progress code, but this idea of progress could not be subsumed by my other categories 

easily. Additionally, I think it is telling that incremental growth, which is supposed to be a 

good thing, is generally not reported as satisfying. The two instances reported here came 

from the same student, which raises questions about its generality. Full mastery and 

accomplishment, with or without struggle, make up a large share of satisfying moments. 

This suggests the question – is there something about mathematics as a domain that makes 
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partial mastery not as satisfying as in other domains, such as learning how to play an 

instrument or running? Even taking into account that satisfying moments are highly 

personal, perhaps mathematics educators need to underscore to students that partial 

progress in mathematics is something to be proud of, in and of itself. 

Combinations of Kinds 

 As mentioned previously, getting the codes to a point where the interrelations could 

be minimized was difficult. It took many rounds of refining the coding scheme to do this. 

One way is to look at what codes co-occur with each other. In other words, when I label an 

instance code A, am I likely to also label it code B? This would suggest that perhaps code A 

and B should be collapsed. However – just because two codes co-occur do not mean code A 

and B are the same construct (Bakeman & Gottman, 1997). In this section, I discuss codes 

that seemed to co-occur together but seem to be separate constructs.  

My judgments are given further backing from a co-occurrence matrix I constructed. 

Each cell of this co-occurrence matrix corresponds to a row X and column Y, and each cell 

represents the co-occurrence of Y with X. Co-occurrence was calculated as the % = all 

instances labeled code X and code Y / all instances labeled code X. In other words, each cell 

is a conditional probability: Of all instances of code X, what percent were also labeled code 

Y?  

Completing Task(s) + Simple 

One frequent co-occurring pair was Completing Task(s) and Simple. A third (33%) of 

Completing Task(s) instances were also coded as Simple (see Table 7.3) and in turn, 64% of 

Simple instances were also coded Completing Task(s) (see Table 7.4). 

Table 7.3: Co-occurrence of Codes with Completing Task(s) & Overcoming Challenge(s) 
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 Code # 
External 
Validation 

Internal 
conviction Progress 

On 
my 
own Understanding  Useful Simple 

Completing 
Task(s) 21 29% 5% 0% 24% 29% 0% 33%* 
Challenge: 
Aggregate 37 24% 8% 5% 22% 43%* 0% 11% 

  
Note. Only selected codes are shown here in columns. External Validation and 
Understanding are aggregates across sub-codes. 
 
Table 7.4: Co-occurrence of Codes with Completing Task(s) and Challenge(s) 

 Code # 
Completing 
Task(s) 

Challenge: 
Aggregate 

External Validation: 
Aggregate 18 33% 50%* 

Internal Conviction 5 20% 60%* 

Progress 3 0% 67%* 

On my own 13 38% 62%* 
Understanding: 
Aggregate 34 18% 47%* 

Simple 11 64%* 36% 
 
Note. Only selected codes are shown here in columns. 

This combination makes sense, in that experiences that lack struggle are likely to 

also be simple or feel effortless to the person. There could be an argument that these 

constructs are so inter-related that they are the same, but Simple also includes instances 

where challenging problems became simple. So Simple tasks as I have defined in this study 

are not exactly the same as Completing Task(s), but they do tend to occur together. 

Overcoming Challenge + Understanding  

Another set of co-occurring codes were Overcoming Challenge(s) and Understanding. 

Table 7.3 shows that 43% of Overcoming Challenge instances involved Understanding and 

Table 7.4 shows that 47% of Understanding instances involved Overcoming Challenges. 
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Both of these codes have a large number of instances themselves (n=37 and n=34 

respectively). 

There were also a number of codes that were unidirectional in relation to challenge, 

as in many of these codes’ instances were also coded as Overcoming Challenge(s) but not 

vice versa. Table 7.4 shows the codes for which many of their instances were also coded as 

challenges: External Validation (n=18), Internal Conviction (n=5), Partial Progress (n=3), On 

my own (n=13), and Social Comparisons (n=6). The frequencies of some these codes are 

quite small, which may explain why Overcoming Challenge(s) accounts for a large share of 

each. External Validation and On my Own have double-digit frequencies, so I will discuss 

them, as an example of this unidirectional relation. 

Table 7.4 shows that 62% of On my own instances were also coded as Overcoming 

Challenge(s). It may seem at first that doing something on one’s own has an equal effect on 

accomplishment with or without challenge, looking at the similar conditional probabilities 

(24%, 22% respectively) in Table 7.3. But when looking at the whole of On my Own 

instances (see Table 7.4), 62% were also challenges, whereas only 38% were 

accomplishments without challenge. On my own is therefore not necessary to feel good 

about doing a challenge, but when someone is proud of doing something on their own, it 

tended to be something challenging.  

Friendly Interactions + Understanding 

Friendly Interactions tended to involve Understanding and to a lesser extent 

occurred on non-challenging tasks. In Table 7.5, a third (33%) of Friendly Interactions 

involved tasks without challenges.  
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Table 7.5: Co-occurrence of Interactions with People with a Selection of Codes 

 Code 
# of 
items 

Completing 
a task 

Challenge: 
Aggregate 

External 
Validation: 
Aggregate 

Internal 
Conviction 

On 
my 
own 

Understanding: 
Aggregate 

Social 
Comparison  6 17% 50% 17% 17% 17% 50% 

Friendly 
Interactions 12 33% 8% 8% 8% 17% 67% 

 

More interestingly, 67% of Friendly Interactions also fell under one of the Understanding 

codes. In turn, 24% of Understanding instances were about Friendly Interactions. This 

suggests that satisfying Friendly Interactions tended to have an understanding component, 

but satisfying Understanding instances did not require peer interaction. 

 This result makes sense given that the most common Friendly Interactions were 

variations of teaching fellow students and watching them understand. In addition, helping 

others can produce confirmation of one’s own understanding. Working and talking with 

others can deepen one’s own personal understanding. This suggests that one important 

kind of peer-peer interactions which are satisfying are the ones that provide deeper 

understanding of the content.  

Half (50%) of Social Comparisons were also coded as Overcoming Challenge(s), but 

there were only n=6 instances of Social Comparison in the entire dataset. This makes it 

difficult to make any strong inferences about commonly co-occurring codes for Social 

Comparison. However, if we consider this co-occurrence to be a claim with limited data, it 

makes sense because social comparison is often adversarial or competitive. Besting others 

at something difficult can be more indicative of mastery than besting others at an easy task.  
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Clustering of Satisfying Moments by Individuals  

These results also raise the question from an individual-centered standpoint: Do 

individuals tend towards certain kinds of satisfying moments? In other words, what is the 

variation of kinds within one person’s satisfying moments? In this cursory analysis, I 

present satisfying moments by participant. Table 7.6 shows the results for each participant, 

i.e. which codes each of their satisfying moments fell under and how many.  

Table 7.6: Kinds of Satisfying Moments by Participant 

Participant/ Code C
o

m
p

letin
g T

ask
(s) 

O
verco

m
in

g C
h

allen
ge(s) 

E
xtern

al V
alid

atio
n

 

In
tern

al C
o

n
victio

n
 

P
ro

gress 

O
n

 m
y o

w
n

 

U
n

d
erstan

d
in

g 

U
sefu

l 

Sim
p

le 

So
cial C

o
m

p
ariso

n
 

F
rien

d
ly

 In
teractio

n
s 

T
o

ta
l C

o
d

e
s 

T
o

ta
l M

o
m

e
n

ts 

Amy 1 5* 2   2 1           3      14 6 
Charlie 7* 2 3 1      1         5*     1 20 8 

Dustin 7* 2 2           4    2           17 9 

Gabriella      5* 1 1 2 1 4*       2 16 6 

Granger                    1     4*    1           1 7 5 
Joel      4    1           1 3*      1         7 4 
Jordan 4* 1 2          1 4*               2 14 8 
Leonhard 2 4 3 2      2 2      1 2 2 20 9 
Shelby      3 1             6* 1 1      3 15 8 
Stephanie      6* 2           4* 1          1 1 15 7 

Timothy      5*    1 1      1 4*      1           13 5 

 
Note. Each cell shows the frequency of satisfying moments per participant by code. The * 
denotes codes that made up at least half of that participant’s total satisfying moments. Total 
Moments is the number of satisfying moments, where Total Codes is the sum of codes 
applied across all their instances. Empty cells are zeros, which have been omitted for 
clarity. Overcoming Challenge(s), External Validation, and Understanding are aggregates.  
 
By looking at codes that accounted for at a majority (at least half) of the participants’ 

satisfying moments, four major profiles are revealed, which I discuss below. 
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Case A: Students Who Enjoy Completing Task(s) 

  One profile is that of the student whose satisfying moments come mainly from 

accomplishing tasks that are not challenges, i.e. exercises. Three of the eleven participants 

fit this profile: Charlie, Dustin, and Jordan. Charlie extended this profile in that simplicity 

was embedded in many of his satisfying moments: “Truth table elicited positive emotions 

because it was simple and easy (Charlie-1-1).” and “It’s a topic, convergence, that’s his 

strength: simple and didn’t get stuck (Charlie-3-2).” Charlie also talked about tasks “that he 

can do just by thinking about them (Charlie-4-1).” Being able to solve a question in one’s 

head implied not needing to expend effort and also spoke to clarity: An answer that came 

naturally just from thinking is satisfying. There is an effortless, almost comforting, feeling 

to the satisfying moments described by not just Charlie, but all three of these participants. 

Case B: Students Who Enjoy Overcoming Challenges(s) 

 The next profile is that of the student who really enjoys accomplishing challenging 

tasks. Three of the eleven participants fit this profile: Amy, Stephanie, and Leonhard. In 

Leonhard’s case, only four of his nine satisfying moments were about challenge; while that 

is technically less than half of his instances, he is honorarily included in this category 

because the greatest share of his instances were this kind.  

 There are other codes that can go with Overcoming Challenges too. Amy focused on 

Social Comparison. During the interviews, it was clear Amy was competitive and especially 

loved proving people wrong, e.g. “Getting a problem that TA said no one would get (Amy-4-

2).” It makes sense that a person who likes challenges would also be motivated by social 

comparison, as social comparison often has a competitive nature. In Amy’s case, sometimes 
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challenge and social comparison occurred in separate instances, but there were instances 

where they occurred in tandem, so the combination of these two kinds makes sense. 

 Another kind that co-occurred with enjoying challenges was doing them on one’s 

own. Stephanie liked doing questions on her own, which again was sensible because doing 

something without the help of others can be thought of as a more general form of challenge. 

When a student solves difficult math problem by themselves, this can be interpreted as 

being competitive with oneself, in that they have exceeded their own expectations of 

themselves.  

Case C: Students Who Enjoy Understanding 

 A surprising profile may be that of students for whom understanding is everything. 

Two of the eleven participants fit this profile: Granger and Shelby. Both of these students 

talked quite a bit about understanding the mathematics in their satisfying moments. This is 

corroborated by how they were also the only participants to talk about usefulness and 

applicability of certain techniques or methods as satisfying: “Learning the method and 

applying it to another problem (Granger-3-1)” and “Likes this [table method] because 

it’s...universal, in that she used it on 3 problems this past week (Shelby-3-1).” While there is 

an element of being happy about having a procedure, these students’ instances are 

fundamentally about liking a certain piece of mathematics for its power to do more.  

Case D: Students Who Enjoy Overcoming Challenges(s) and Understanding 

 As a combination of the previous two profiles, there were also students for whom it 

both challenges and understanding constituted most of their satisfying moments. Three of 

the eleven participants fit here: Gabriella, Joel, and Timothy.  
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For Gabriella, making sense of the question was a big struggle she talked about 

throughout the interviews. Once she understood what the question was asking, she 

generally knew what to do. Of her four instances of Understanding, one concerned basic 

sense-making, but the other three were indeed about a deeper level of understanding.  

For Joel and Timothy, all but one of their instances concerned understanding, but 

they also reported a relatively low total number of satisfying moments across the four 

interviews (4 and 5 respectively). For Joel, two of his four instances were about “seeing” 

the solution in problems where he was stuck and one was about knowing what to do in the 

future. While again there is a procedural flavor to Gabriella and Joel’s instances, the sense 

that the mathematics fell into place for them was apparent. Timothy in fact reported aha 

moments (not shown in Table 7.6) in three of his five satisfying moments. Understanding 

can therefore come in different ways: basic sense making, to knowing what to do, to 

instantaneous realizations that illuminate the path forward. Taking satisfaction from both 

challenging problems and understanding, especially when the understanding comes from 

working on challenging problems, may serve students well for their mathematical future.  

Conclusions 

 In this chapter, I answered the research question, What kinds of satisfying moments 

do undergraduate students have during the transition to proof? Through grounded theory 

techniques, I developed a system of kinds of satisfying moments. The most commonly 

occurring ones in this data were Completing Task(s), Overcoming Challenges, Understanding, 

and External Validation. The aggregate of interactions with people, both Social Comparison 

and Friendly Interactions, also applied to a large share of the dataset.  
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 Additional analyses showed how codes related to each other and which ones stood 

out. Common combinations of co-occurring codes revealed the following pairings: 

Completing Task(s) & Simple, Overcoming Challenge(s) & Understanding, and Friendly 

Interactions & Understanding. Four student profiles of what students most often found 

satisfying were revealed: (a) Completing Task(s), (b) Overcoming Challenge(s), (c) 

Understanding, and (d) a combination of Overcoming Challenge(s) and Understanding. 

Based on all these analyses, accomplishment both with and without challenge, 

understanding, and working with and/or helping fellow students seem to be major kinds of 

satisfying moments.  
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CHAPTER 8: Discussion 

In this chapter, I consider the methods and results of this study in relation to 

research on proof and problem solving and design of introduction to proof courses. First, I 

summarize the findings to both of my research questions. Then I discuss the implications of 

this work, to contextualize my results. I also identify the limitations and future research 

and development suggested by this study, with respect to studying proving and satisfying 

moments. I end with some concluding remarks with respect to task design and affect in 

mathematics. As a reminder, the research questions were:  

(1) How does undergraduate students' proving develop over the duration of a 

transition to proof course? 

(2) What kinds of satisfying experiences do undergraduate students have during the 

transition to proof? 

Findings Related to the Development of Students’ Proving 

My first research question focused on the nature of productive changes in students’ 

proving work over the course of the study. Four developments were observed over 

multiple students in the sample: (1) increased sophistication in how they chose proof 

techniques to use and their rationales for why, (2) awareness about how a solution attempt 

was going and harnessing that to change their strategies, (3) becoming comfortable 

exploring and monitoring when which strategy to pursue is unclear, and (4) checking 

examples in conjunction with other strategies as a way to trigger new insights when stuck. 

Some of these developments were specific to the context of proof, such as choice of proof 

techniques; others, such as awareness of how one’s attempt is going, were more general 

problem solving and thus less proof-specific.   
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Results indicated that students showed growth in fluency, strategy, and monitoring 

and judgement in how they reacted when they were stuck. This was evidenced in the 

approaches they chose to try next, the rationale for their choices, and how they monitored 

their progress. For example, early on, students tended to use a favorite method (proof by 

contradiction, contrapositive, etc.) for all problems, indiscriminately. But it was not always 

the case that these developments led to improvements in the students’ proof performance.  

The imperfect correlation between growth and performance could be seen in Leonhard’s 

individual case. Leonhard’s reasoning changed and improved over the course of the 

interviews, yet his solutions were incorrect for the last two interviews. What does it mean 

then to have positive growth but stagnated performance? Some may see this as evidence 

that a student did not in fact improve, but I claim that a de-coupling of performance and 

growth is appropriate here. This is an age-old case question in educational research and 

remains for the future. 

Although I only discussed a few of the developments in detail, multiple types of 

developments could be seen in the students. Beyond types or categories of development, 

there were also multiple ways a development could emerge. This is sensible, that different 

students would grow in different ways and that that growth would look a little different. 

The phenomenon of multiple and relatively simultaneous developments can be 

conceptualized metaphorically as many ropes, each made up of many strands, representing 

a different way of getting to the development. This is important to acknowledge because 

oftentimes there is an unspoken assumption that there is one path for learning 

mathematics and the goal of instruction is to move students along that path. Instead, there 

are many productive paths of proving development. 
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Findings Related to Satisfying Moments 

The second research question was about identifying the kinds of satisfying moments 

students experienced in relation to the course. These kinds were identified using grounded 

theory techniques and grouped broadly into external and internal situations, properties of 

the mathematics, and interactions with others. The most common satisfying moments 

among participants concerned completing task(s), overcoming challenges, understanding 

(as an aggregate of its various forms), external validation, and interactions with people. 

Some codes directly indicated the nature of a satisfying experience, whereas others, like On 

my Own, appeared to function as a sort of modifier, where its presence seemed to 

strengthen a satisfying moment. For example, “solving a difficult problem all by myself” is 

likely more satisfying than “solving a difficult problem but with help.”  

Certain kinds of satisfying moments stood out in the analysis, and certain aspects of 

experiences tended to co-occur: (a) Completing Task(s) with Simple tasks and (b) 

Overcoming Challenge(s) with Understanding. It is important to note that Understanding 

was not necessary for feeling satisfaction at Overcoming a Challenge, but when a person did 

feel good about Understanding, the situation was typically challenging. This nuance in how 

challenges and understanding give rise to satisfaction was shown by the four profiles that 

cover this sample of students: those who enjoy (a) Completing Task(s), (b) Overcoming 

Challenge(s), (c) Understanding, and (d) a combination of the two, Overcoming Challenge(s) 

and Understanding. Last, interactions with people were frequently connected other aspects, 

based on other co-occurring codes: Friendly Interactions with Understanding. These 

interactions point to overarching characteristics behind the kinds of satisfying moments. 
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In thinking about what lies at the heart of satisfying moments as a phenomenon, two 

ideas emerged. First, mastery seemed to be an overarching characteristic. Partial progress, 

confirmations or reassurances of present mastery, and expectations of future mastery may 

explain why the situations discussed above were satisfying. However, there were a few 

instances where mastery did not fully explain the satisfaction; understanding and 

interactions with others did. Understanding can serve as confirmation of present mastery, 

but there was something about sense-making that intrinsically seemed to feel satisfying to 

many of the participants. Understanding involves things falling into place, a sense of “fit,” 

(Sinclair, 2006) which does not fall squarely under the umbrella of mastery. Mastery and 

understanding overlap then, but there is an aesthetic component to understanding that 

mastery on its own does not seem to capture. The same applies to interactions with people, 

especially Friendly Interactions; working together with people and helping others to 

understand has elements that are satisfying which fall outside the purview of pure mastery.  

Second, expectations likely played a large role in what was reported as satisfying 

moments. The results share much in common with the idea of self-efficacy (Bandura, 

1977), the expectation of success. Students’ expectations seemed to mediate whether an 

experience was perceived as satisfying. When a student was successful in a situation that 

was expected to be unsuccessful, this positive discrepancy between expected and actual 

outcome may have been linked to satisfaction. There is an element of surprise in the 

expected outcome, which corroborates past work on the importance of surprise in 

aesthetic responses to mathematics (Satyam, 2016).  

This difference between expected and actual outcomes may explain then why 

students remembered these events, elevating events up and out from the milieu of 
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everyday proving that constituted their normal experience. An experience that followed 

expectations would be considered “normal” and therefore may not stand out in memory, 

including situations where failure is expected and then indeed felt. In other words, 

memorable events are more likely later be reported as satisfying. The observation does beg 

the question: Are there satisfying moments that are not memorable events? What happens 

to those? I argue that if an event is not in a person’s awareness, then it lacks the power to 

be a satisfying moment. However, I speculate that we have experiences that we do not 

place importance on in memory but are still felt at a subconscious level, affecting us later. 

This is likely beyond the test of empirical data with our current methods, so it remains a 

philosophical musing. 

Based on these results, I proposed a theory of the phenomenon of satisfying 

moments. This theory came out of my observations that some of my codes were of different 

“types.” Many were situations (e.g. Completing Task(s), Interactions with People), but a code 

like On my own acted more like a moderating variable, appeared only in conjunction with 

other codes and so likely moderated the strength of the main relationship. In addition, 

codes like Understanding and Partial Progress were more abstract than other situations. 

Figure 8.1 illustrates how the different codes may relate to each other, to explain how 

certain situations give rise to the feeling of satisfaction (satisfying moment). 
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Figure 8.1. Possible model for how satisfying moments occur as a phenomenon. Situations 
(independent variables) give rise to the feeling of satisfaction (dependent variable). On my 
own may act as a moderating variable, in that it strengthens the elicitation of satisfaction. 
Understanding and expectations may act as mediating variables, explaining why those 
situations elicit satisfaction. Note the variable-paradigm is used for illustrative purposes 
here. 
 

Accomplishments with and without challenge, understanding, external validation, 

and social interactions with people covered the range of the majority of satisfying moments 

in this dataset. One can think of them as situations that elicit the emotional response of 

satisfaction. Working on challenging problems by yourself and/or without needing help 

(On my own) may strengthen the feeling of satisfaction, thereby acting as a moderating 

variable, which moderates the relationship between the independent and dependent 

variables. But above all, understanding and expectations of mastery may be what mediate 

(explain) how certain situations give rise to satisfaction as an emotional response. This 
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means, without understanding or an expectation of mastery, the situations on the left in 

Figure 8.1 do not give rise to satisfaction.  

The depiction of this model was influenced by the independent-dependent variable 

paradigm, with mediating and moderating variables. This is my speculation; my research 

methods do not support making any causal arguments. In fact, the situations that give rise 

to satisfaction as a feeling are not manipulatable; they only provide opportunities for 

situations to happen. Grounded theory is useful for revealing the categories, but not 

necessarily for unpacking how the categories relate to each other. However, I offer this up 

as a speculative theory, based on the varying conceptual types of my codes.  

Findings Related to Connections Between Proving and Emotion 

Throughout the analysis of proving, connections between affective and cognitive 

aspects of students’ activity presented themselves (though I did not pose a research 

question to address them), particularly in how their emotions interacted with their 

awareness of their solution attempts. This corroborates the idea that what students value 

mathematically (e.g., efficiency, straightforwardness, cleanliness, etc.) may draw and guide 

them to what (Sinclair 2004). These values manifest themselves though emotion. For 

example, Granger and Timothy showed strong negative emotions towards solutions they 

thought were wrong and demonstrated how their emotions influenced their future 

attempts. The important result here is in how they harnessed strong negative emotions to 

search for alternate solutions. 

A cursory examination at the emotion graphs students drew and emotion words 

they picked while proving also provided preliminary findings about the relationship 

between cognition and affect. Analyzing this in full is beyond the scope of this study, 
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entailing different research questions. More robust frameworks for looking at this need to 

be developed.  

Implications 

Now I discuss some implications of this work, relating my findings to those of 

existing studies when possible. I separate these issues into theoretical, methodological, and 

pedagogical foci. 

Theoretical Issues 

This work contributes to existing literature on proving, specifically in its focus on 

students’ developments over the course of a single class. This study had a longer duration 

(a semester) than most studies examining students’ proving that are non-interventions and 

with repeated interactions with multiple students, not just one or two. This work was 

longitudinal in the short-term sense, examining students proving work across one 

semester. 

Formal-rhetorical aspects of proving may actually be problem-centered. 

Although this study focused on the problem solving aspects of proving, the developments 

discussed earlier revealed the amount of decision making that goes into even writing the 

first line of a proof. Students took the content of the statement to be proven into account 

when deciding how to begin a proof. This suggests a revisiting of the distinction between 

formal-rhetorical and problem-centered aspects of proving (Selden & Selden, 2007). In the 

formal-rhetorical phases of proof construction, the first and last statements are seen as 

following logically from the statement to be proven and can be stated without a great deal 

of thought. Acts that we expect to be formal-rhetorical, such as writing the first line of a 

proof, may actually be more complicated and dependent on content. Selden & Selden 
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(2007) do not treat these aspects as dichotomous but teaching formal-rhetorical and 

problem-centered aspects of proving separately may not give us the desired results in 

students if the interplay of these two aspects is lost. 

Noticing as crucial to proving. The act of "noticing" appeared multiple times in 

students’ development, in exploring and monitoring until students noticed something 

helpful and in using examples before noticing patterns. Teacher noticing of students’ 

mathematical thinking has been a topic of research (Sherin, Jacobs, & Philipp, 2011; Jacobs, 

Lamb, & Philipp, 2010), but students’ own noticing seems to be especially key here. How 

does a student know where to pay attention and to notice certain things? In solving 

mathematical problems, there can be many mathematical objects and relationships to 

attend to; noticing as a phenomenon can be quite complicated (Lobato, Hohensee, & 

Rhodehamel, 2013). One could speculate that successful provers notice important 

relationships when they appear, since the solution to problems that are truly problems is 

not clear from the beginning. Many of us have had the experience of noticing some 

important piece that makes everything fall into place. In these moments, the solution can 

seem so obvious after that point, hence the overuse of the word “trivial” in mathematical 

circles. How do we teach students to notice when something important arises in their 

work? As a focus for future research, how can we study the development of student 

noticing? 

Role of confidence in proving and its implications. To segue from the discussion 

of noticing, what role does confidence play in noticing – and proving in general? Amy was 

my example student for exploring and monitoring; she was comfortable just working 

without a strategy and noticed when something useful appeared. I noted separately that 
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Amy had high confidence in her mathematical work, from the beginning of the interviews. 

Did the fact that she had confidence in her work play a contributing factor in her 

productive noticing, in trusting herself that she would notice important insights when they 

came up and that she would act on it when she saw it? Others with high levels of confidence 

in their work, e.g. Granger and Leonhard, also had moments like Amy’s. Students with low 

levels of confidence in their work, e.g. Dustin and Jordan, struggled.  

This connection between confidence may have implications then for the importance 

of confidence in proving, a process so ridden with failure when held in comparison to most 

students’ prior mathematical work of computation and exercises. Learning mathematics is 

difficult; students experience repeated failures and that failure is often taken as an 

indicator of a lack of (a fixed) ability. Perhaps confidence acts as an insulator of self against 

these failures? A sane person experiencing the regular failures in learning how to prove 

would likely quit, finding it not pleasing. This would be a natural reaction, all things 

considered.  

Similarly, if we think then about which demographic groups in the United States are 

culturally associated with confidence, could confidence partly explain why we see mostly 

white males and a dearth of women in higher levels of mathematics? Sociocultural factors 

may be at play, perhaps making feeling confident about one’s abilities – especially in 

mathematics – harder for some than others. We should not be so quick, however, to claim 

that individuals from underrepresented backgrounds should just be more confident. How 

mathematical classrooms treat students showing confidence as indicators of correctness 

and/or intelligence (when not always warranted) should be examined.   
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Algorithms as satisfying. Students often spoke about mathematical tasks that had 

a clear set of specific steps as satisfying. For example, a number of participants spoke about 

enjoying induction in their discussion of satisfying moments. Why are steps and algorithms 

pleasing? This counters the idea that understanding and other forms of explanation are 

intrinsically pleasing (Sinclair, 2006). Is it that the reduced cognitive load translates to the 

affective domain as feelings of contentedness? One answer to this may be in what makes a 

mathematical situation feel like a puzzle and other situations not.  

Methodological Issues 

This work involved a relatively large number of novel constructs and data analysis 

techniques, adapted from existing literature. I describe some of the ways in which what I 

did may help others. 

Studying impasses without intruding? People tend to get quiet when they are 

stuck. Going into this study, I had expected that some participants would have a difficult 

time talking when they were stuck. I did not anticipate that this would be true across all the 

participants, but they all fell silent when stuck. This was true even for my one participant, 

Shelby, who said she found it useful to talk when stuck and would in fact turn to me to say 

her thoughts out loud when stuck on the proof tasks, after I offered to be her listener. But 

even she would fall silent at times when she was stuck.  

Why is this important? For any research that focuses on what students do when 

stuck, it is important to not force them to talk out loud when stuck. Talking out loud could 

easily change the nature of the students’ experience. Students are deep in thought, 

expending much cognitive effort, and queries like “What are you thinking” may be an 

additional load on their cognitive focus and capacity (Ericsson & Simon, 1981). They may 
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lose their train of thought, as happens in everyday life when interrupted. If I had prodded 

my students to talk when they were stuck, there is a chance that my leading questions 

could have helped them become unstuck.  

In fact, Timothy developed a habit of talking to himself after he became stuck, where 

he stated the fact that he was stuck, explained why he was stuck, and discussed some of his 

preliminary ideas that related to the mathematical situation at hand. This often proved 

successful in leading him out of being stuck. His speech was explanatory, so it was more 

communicative to others than typical self-talk or Vygotsky’s (1978) egocentric speech. 

Timothy’s self-guided talk appeared to help him out of tough situations. In conclusion, 

prodding students to talk may influence the phenomenon of becoming stuck as an object of 

study, but inviting students to think out loud may be useful pedagogically. 

Emotion graphs. Asking students to draw a graph of their emotions and pick out 

words that described their emotions while working on a task proved to be insightful for 

looking into their experience. With careful choices about data collection and care about the 

types of claims that can be gleaned, these tools are useful for research on students’ 

experience. Satyam et al., (2018) examined the affordances of different variations of 

graphing as a research tool, and these findings corroborate the results reported in that 

work: Graphing is useful as a stimulus for helping students make sense of and discuss 

affective phenomena. The analysis of the graphs themselves, taken as a self-report of some 

phenomenon, must be done carefully. 

How to get students to stay with a series of interviews. I originally chose 12 

participants, with the hopes that 8 participants would complete all four interviews, i.e., that 

I would have no more than a 1/3 drop-out rate. I expected that participants would drop 
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out, especially near the end of the semester when their work load increased, as they 

prepared for final exams. Instead, I was surprised when 11 of them continued with this 

work until the end (and the 12th participant had medical issues preventing her from 

continuing the study). In a world where it is difficult to keep participants coming back, the 

question is: Why did they stay? Yes, they were paid for being in the study, but I do not think 

that modest reward explains their continuing participation.  

I believe my participants stayed in for the simple reason that they got something out 

of the interviews. A number of them said outright that they saw these interviews with the 

proof tasks as providing extra practice for their class. I also think the interviews were 

useful to them as a space to talk about their thoughts regarding the class and math in 

general. I believe the lesson here for research practice is to think about whether the data 

collection process is of current value to students, whether that be mathematically and/or 

emotionally valuable.  

Pedagogical Issues 

These results also have implications for the design and teaching of introduction to 

proof courses. 

Curriculum design of undergraduate transition to proof courses. I argue that 

knowing the ways in which students develop and what they find satisfying in challenging 

mathematical work is useful for designing transition to proof courses at the undergraduate 

level. One way to go about that design would be to think about the types of developments 

one wishes to happen and design tasks that aid in student problem solving development. 

For example, if a goal is for students to come away with knowing when each proof 

technique makes sense, then one can design a task that asks students to prove a single 
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statement using different proof techniques (e.g. using direct proof, then contradiction, and 

contrapositive) and then reflect on the advantages and disadvantages of each. A less time-

consuming variation of this would be to ask students to consider two or three techniques 

and write down some of the advantages and disadvantages to using each, prior to 

implementing any of them. This same tactic could be used for designing assessment items. 

We can see here the need for a proving process framework, which could drive the 

curriculum development of courses like these, meant to help students.  

Noticing when students are and are not stuck in the classroom. Distinguishing 

between observable behaviors that indicate a student was stuck vs. thinking silently but 

not stuck was difficult for me to operationalize. I found in this study that I could only make 

that distinction by interpreting body language and having a familiarity with the individual. 

This distinction is especially important for the classroom – how can we tell when a student 

is unproductively stuck vs. engaged in productive struggle? As math educators, the first we 

would like to intervene and “help,” but productive struggle should be encouraged, not only 

among college students (Middleton, Jansen, & Goldin, 2017). In fact, as instructors, we often 

may not want to step in and interrupt productive struggle. Our task may center more in 

helping students accept productive struggle as a mathematical virtue and learn to make the 

responses to struggle more productive. 

Interview as a vehicle for reflection and rendering knowledge. Last, I realized at 

some point through these interviews that there were interesting things happening in this 

space, beyond the foci of my dissertation. These students were being honest about how 

they felt they did on exams, their in-class experience, and how they felt the course – as well 
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as other courses - were going for them. They were musing out loud about their thoughts on 

what they were currently learning.  

My participants expressed their thoughts about mathematics generally and may not 

have had other people to talk about it with. Leonhard for example would routinely talk to 

me during the interview, sometimes going over 2 hours, and tell me his thoughts about 

mathematics as a whole. Now Leonhard was not the norm, however, the fact remains that 

this was a large public research university with only a couple mathematics advisors for the 

entire student body. So advice and mentorship is and was likely hard to come by. This 

speaks to the importance of truly listening to students and taking their experiences 

seriously. This is especially important considering that this is a transition for students. The 

course instructors were upfront that the math and their work would be different, but it is 

not clear if this is generally the case across the country. It is very, very easy for students to 

make ill-formed inferences about their lack of ability in mathematics and leave the STEM 

pipeline when there is no intervention by a mentor. How can large institutions institute 

opportunities for interaction of this kind for their undergraduates? A space like the Math 

Learning Center, where students can gather to work together and talk about mathematics, 

would be useful, given the current national focus on STEM education. 

The interview also acted as a vehicle for reflection for the students. Some students, 

like Timothy, realized meta-level aspects about proving during the interview. Needing to 

discuss the mathematics and share their thought processes likely helped students reflect 

on and render their knowledge. More opportunities for this kind of reflection in 

mathematics education seem useful.  
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Alternative Explanation(s) 

Here I consider one alternative explanation of this data and discuss why I believe it 

can be ruled out. An alternate interpretation of the development results is that students 

naturally became better at proving over time due to the sheer amount of relevant 

experience alone. In other words, students’ proving grew due to practice and face time with 

the material and not due to changes in internal cognitive, affective, or reasoning processes. 

Becoming better at using tools is not necessarily reflective of deeper mathematical 

understanding, as Guin & Trouche (1999) noted about students using calculators as tools.  I 

argue that the “it’s mainly experience” can be ruled out because taking experience as the 

primary factor does not account for the variation and individual differences seen across 

students in this sample by the end of the semester. Some students grew in the problem 

solving domain while others still struggled by the end. Especially since the course design 

required students to work on proving tasks in class, it can be argued that all students who 

attended class had some base amount of experience with proving, at least more so than if 

students’ only real experience with proving was left to outside of class time and thus less 

regulated. The developments seen in some students and not others and also the variations 

in how these developments occur, when students’ experience with the course material is 

relatively uniform, suggests that repeated practice with tasks is not sufficient to explain 

growth in proving competence in this context.  

Limitations and Factors Influencing the Findings 

 This analysis was qualitative in nature. My goal was to generate theory and the 

small sample size was an indicator of that. Generalizations such as how most student learn 
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how to prove are not possible with this data. Future quantitative work assessing the theory 

generated here will be required to answer questions of that nature. 

Students’ development was shaped by the nature of this specific transition to proof 

course. For some of the developments, there was evidence of the instructors explicitly 

encouraging students to engage in certain helpful practices, e.g., Ms. Frye recommending 

using examples to gain an intuition for a statement but not to prove it. There is a question 

then regarding the specificity of these results: How much do they reflect the specific 

features of this course? To what extent would we see these same developments in any 

other transition to proof course? Transition to proof has been organized in a myriad of 

ways across the United States (David & Zazkis, 2017), so a prototypical transition course 

does not in fact exist. Students using strategies like checking examples likely would have 

transpired regardless, however, even without the instructor’s recommendations.  

The developments documented in this study was also shaped by the specific proving 

tasks that students worked on in the interviews. This raises the question of how much the 

developments observed in students were shaped by the nature of those tasks. When a 

student did something different on a task, was it due to particulars of that task or was it 

indicative of some internal development? This question holds for much of scientific 

research (Popper, 1963) and so remains unanswerable here. However, the tasks used in 

this study were drawn from a reasonable population of tasks similar to those seen in class 

and on homework, so one can argue that development measured via tasks from the course 

itself would not have looked substantially different. In addition, my first research question 

focused on identifying what changes that occur and not necessarily why. I leave future 

researchers to grapple with that question.  



 

 

 
157 

Development may well also depend to some extent on the interview context. Would 

the same developments have been seen if students had worked on the tasks by themselves 

without my presence in the room? My presence could have added pressure and thereby 

impeded problem solving performance, but it also meant they could ask me factual 

questions easily. In addition, they knew that they would be explaining their work to me 

afterwards, so they have tended to write more informal written arguments which could be 

explained verbally when stuck. As a counteracting force though, my stature and also 

openness in demeanor may have contributed to making these interviews a place where 

students felt comfortable sharing their thoughts when problem solving. If one wishes to 

minimize interview presence, less intrusive data collection methods are an alternative. 

Technology such as Livescribe pens which record students’ audio and their written work 

may be useful. 

Timing of tasks was very important and so there are alternative choices that could 

be made. If I were to repeat the same study, I would ask students to draw emotion graphs 

immediately after they completed a task, before the debrief, in order to shorten the already 

short window of time between the proving and affective record of it. Another choice was in 

trying to capture students’ emotions in the moment vs. after problems were solved. In 

asking students to draw a graph after the task, I documented students’ emotions after the 

fact. However, I contend that it may not matter much what students actually felt in the 

moment (that is, while they were working on their proofs). Instead, what matters more was 

their perception of it and remembrance of it afterwards, because those remembered 

emotions were more likely to stick with them and affect their subsequent work. If emotions 

in the moment are of interest, one could measure emotion using more physiological 
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methods, such as a heartrate monitor. This would reveal the intensity of a person’s 

emotions but not the character of the emotion, in the way that direct observation or a 

person reporting their own can. 

I acknowledge that these above factors – the course, the tasks, the interview setting, 

and timing of tasks – influenced the data. However, all these factors are not so 

straightforward in their effects as to determine the data one way or another.  

 Lastly, talk of changing one’s emotions introduces an ethical dilemma. If we study 

emotions in mathematics education because emotions are the type of affect most 

responsive to change and can alter attitudes and beliefs, this implies we wish to alter 

students’ emotions. The notion of trying to change a person’s emotions feels to this author 

as intrusive and manipulative. Emotional responses are highly personal. Do we wish to be 

in the business of trying to mold students’ emotions? To some extent, as instructors we 

already do this; we take into account students’ reactions when we design a lesson. The 

take-away from this study is not to expect that if we do X, all students will feel Y. Rather, I 

argue for creating opportunities for satisfying moments, to at least set the conditions for 

them to perhaps occur, regardless of whether they do. The contrapositive holds here – if we 

do not provide conditions for satisfying moments to occur, satisfying moments may rarely 

happen and perhaps only for a few students. 

Suggestions for Future Research 

The empirical results reported here and the speculative propositions and frames that arose 

from those results suggest issues that could be explored in subsequent studies.  
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Empirical Work  

Future work could examine how satisfying moments change over time for a student. 

This study produced some, but not sufficient data to make claims about change over time. It 

would be fascinating to see instances of students learning to enjoy challenges over time and 

if so, inquire about the factors that orient such change. Is enjoying challenge more of a trait-

like aspect to an individual that is resistant to change? Another promising direction for 

future research is to examine satisfying moments of groups of students (for example, those 

working together in a small group), not just individuals. Liljedahl (2004) called for 

investigation of group aha moments. This is relevant for the classroom, in thinking about 

how to design instruction around eliciting intense positive emotions for multiple people at 

once. Considering how frequently satisfying moments involved fellow students, there may 

be potential for students to experience this together.  

Lastly, this work originally sought to seek out the conditions that elicit satisfying 

moments, i.e. what actually triggers the feeling of satisfaction. Identifying kinds of 

satisfying moments, in order to get a lay of the land (so to speak) is the necessary start but 

getting at what truly causes satisfying moments is the next step.  

Theoretical Work   

Proving process frameworks. There is a strong need for a proving-problem 

solving framework that would support the characterization and assessment of students’ 

proving process over time. This call is not a new one: 

A minor expansion of Carlson and Bloom’s framework could potentially provide the 

mathematics education community a proving-process framework, complete with 
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additional problem-solving attributes that a prover experiences. (Savic, 2012, p. 

121)  

Such a framework would be useful for diagnostic purposes in the classroom as well as 

research: It would be an accomplishment to generate a proving-process framework, similar 

to Carlson and Bloom’s problem-solving framework, that would accommodate beginning 

provers (if not more advanced accomplished students of mathematics). Such a framework 

would be helpful in assessing a student’s proving and their phases or problem-solving 

attributes that need improvement. It might identify the phases (Orienting, Planning, 

Executing, and Checking) or problem-solving attributes (Resources, Heuristics, Affect, and 

Monitoring) that need work, and focus instruction on that phase/attribute (Savic, 2012, p. 

122). Reliable assessments for measuring students’ proof comprehension have been 

recently developed (Mejía-Ramos, Lew, de la Torre, Weber, 2017). A framework that covers 

all that the proving process entails, much like what has been developed over the years for 

problem solving, would be useful.  

Challenge of studying phenomena by looking at individual components. 

Fundamentally, analysis is the process of breaking complex phenomena down into more 

basic and separable components, studying each separately, and then putting them all 

together again. The underlying assumption is that the process of decomposition and 

recomposition supports insights into what is going on that would not be possible if the 

researcher simply looked carefully at the whole phenomenon of interest. However, I sensed 

in my analyses of both proving and satisfying moments that something that was being lost 

in this process, some gestalt sense of what was going on.  I believe this happened for both 

the analysis of proving and satisfying moments because both are fuzzy constructs – they 
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are hard to define, especially in a way that is measurable. Problem solving and satisfying 

moments each involve numerous highly interrelated processes. Considering the two 

phenomena, I undertook this study thinking I could effectively study cognition as one 

component and affect as another. But as the work unfolded, I found that the relations 

between the two could not be ignored. This study uncovers some of the connections, but 

future work will likely uncover more. 

Going forward, theory that attends to interactions may be most illuminating. Even in 

the 1990s, Schoenfeld (1992) argued that “what we know little about is how these 

[problem solving] components interact” (p. 363), referring to “resources,” “heuristics,” and 

“beliefs” among others. Theory that targets interactions among highly interactive rather 

than separable components will be helpful in shedding light on how “fuzzy” phenomena 

work, from descriptive to more explanatory understandings. 

Conclusions 

 As was just stated, it is difficult to ignore the connections between affect and 

cognition. My concluding remarks relate these two phenomena and look across the results 

of each analysis to review what we have learned.  

The importance of task design is clear. Careful task design, whether it be in-class 

instruction or out-of-class homework and other assessments, can support students’ 

development in productive ways and potentially have students feel good about doing 

mathematics. Similarly, poor task design can fail to support those goals, if not worse. This 

extends beyond the context of proving and even undergraduate education, into K-12 

schooling as well. Constructing and selecting tasks that support developments we wish to 

see are important. In the case of satisfaction, sequencing seems crucial because of the 
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temporal order of emotions. Curriculum is therefore an important force. Careful attention 

to the storyline of the mathematics (e.g. Dietiker, 2016) and what reactions certain 

curriculum choices elicit (e.g. Dietiker, Richman, Brackoniecki, Miller, 2016) may be the key 

to providing more frequent opportunities for students to feel good about mathematics and 

themselves as learners of that content.  

Are there any affective qualities in common across successful provers? While I did 

not address this directly in the analysis, some observations about my participants began to 

coalesce. Students whose satisfying moments involved challenges were successful either to 

start or became successful. The students in my sample whose satisfying moments 

concerned accomplishments without struggle and easy tasks tended to struggle with 

proving and the course, as time went on. Finding joy in struggle may be important for 

students, as they take on more difficult tasks in life, let alone mathematics.  

In addition, successful problem solvers in my sample seemed to take failure as 

opportunities for learning. When they got a problem wrong, they would ask to see how it 

worked and expressed that now they would know what to do in the future. This speaks to a 

larger issue of how we treat mastery, challenge, and non-success in mathematics. While 

this issue extends far beyond mathematics, how math is often portrayed in this world 

makes failure more salient and catastrophic than in other domains of human endeavor. A 

retooling of how we teach mathematics – and how failures can be progress – may help us 

resolve this. 
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APPENDIX A: Proof Tasks 

Interview 1 – Task 1 

We say that two integers, x and y, have the same parity if both x and y are odd or both x and 

y are even. Prove the following statement:  

 
Suppose x and y are integers. If x2 – y2 is odd, then x and y do not have the 
same parity.  
 
 
 
Interview 1 – Task 2 

Prove the following statement:   

 

If a and b are strictly positive real numbers, then (a+b)3 never equals a3 + b3.  

 

Reminder: Binomial expansion of (x+y)3 = x3 + 3x2y + 3xy2 + y3 

 

Interview 2 – Task 1 

Two numbers are consecutive means one number comes after the other. Prove the 

following statement: 

 

If x and y are consecutive integers, then xy is even. 

Interview 2 – Task 2  

We say x divides y if kx = y for some integer k. Prove the following statement:  
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If a, b, and c are non-zero integers such that a divides b and a divides c, then 

 a divides (mb + nc), for any integers m and n.  

 

Interview 3 – Task 1 

Three positive integers a, b, and c are called a Pythagorean triple if they satisfy a2 + b2 = c2. 

Prove the following statement: 

 

Suppose x, y, z are positive integers. If x, y, and z are a Pythagorean triple, then 

one number is even or all three numbers are even. 

 

Interview 3 – Task 2 

Prove the following statement without using induction: 

 

If n is an odd natural number, then n2 - 1 is divisible by 8. 

 

Interview 4 – Task 1 

A perfect square is any number that can be written as n2, for some integer n. Prove the 

following statement: 
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If a and b are odd perfect squares, then their sum a + b is never equal to a 

perfect square. 

 

Interview 4 – Task 2 

Prove the following statement:  

 

If x, y are positive real numbers and x ≠ y, then 
𝑥

𝑦
 + 

𝑦

𝑥
 > 2.  
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APPENDIX B: Interview Protocols 

Interview #1 Protocol 
 

Logistics: 
• Interview should take place in a quiet room 
• Max time: 90 min 

o 20 minutes for Proof Task #1 
o 20 minutes for Proof Task #2 
o 30-45 minutes for Satisfying Moments questions, word selection, and graph 

• Ask students ahead of time to bring any scratchwork and a copy of their homework 
 

Materials for students: 
• The 2 proof tasks on separate sheets of paper 
• Resources for proof task for student: sheet with definitions, laptop, scrap paper 
• Note: Provide the hw, example sheets, and solutions in paper form. 
• Cards with emotion words on them 
• Emotion graph worksheet 

Materials for interviewer: 
• Paper for writing down word selection 
• Paper for notes 

 
Key for this document: 
Black plain text is the script, instructions and questions to be spoken to participant 
Black italicized text is instructions for interviewer, not to be spoken 
Red italicized text denotes purpose of question, linking everything back to research questions. 
 
Warm-up & Basics (1st interview only) 
Thanks for agreeing to help us. I’m going to ask you some questions about your experience 
with math courses in your past and MTH 299.   

1. What mathematics courses have you taken here before 299? 
2. Are you taking other math courses this semester, along with 299? 
3. How is MTH 299 going for you, so far? 

 
Proof Tasks [RQ1] 
 
I’m trying to understand students’ thought process, in how they approach proofs; it’s not 
about the final answer. So I’m going to give you two statements I’d like you to prove. It 
would be helpful to me if you share your thinking with me: what you’re trying to do, why 
you’re trying to do that, etc. I want you to vocalize everything you’re thinking about the 
problem. Pretend you’re at home and you’re just talking to yourself out loud. 
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You may know me as a TA for this course, but in this interview, because I am interested in 
how you are thinking, so I will not be able to help you out during the task. This means I 
can’t answer any questions about the math or what to do next if you get stuck.   
 
Any questions I ask or notes I take means that I’m interested in what you’re doing, it’s not a 
sign that I’m judging your work or that your thinking is incorrect. I may ask questions 
every so often like, “What do you mean by…?” or “Why did you decide…” I may ask you 
“What are you thinking right now?” if you’re been quiet for some time.  
 
Proof Task #1 
Here’s the first task. You can do your work directly on this sheet of paper [where the task is 
written]. You may look at definitions in this supplementary document from class, your 
notes from class, or online using my computer. I’ll give you 15 minutes to work on it and it 
doesn’t matter how far you get, it’ll be fine. I’ll then have you stop and we can talk about 
what you did. You can start.  
 
Interviewer sits near enough to see their work but a little farther away than when typically 
asking interview questions, in order to give student space to minimize pressure from being 
watched, as much as possible. Give the student max 20 minutes. 
 
After student is done, ask the following questions: 

4. Can you mark for me any places you would count as scratchwork, as in, you 
wouldn’t include if you were typing it up in LaTeX?  

5. Were there any places where you got stuck?  
Probe about their rationale at points of interest, where students paused or went in a new 
direction: 
How did you…? 
Why did you…? 

 
Ask student to do the Emotion Word and Emotion Graph (scroll down to that section) for 
this proof task. 
 
Proof Task #2. Repeat above steps. 
 
After both tasks are complete: 

6. How would you say you currently approach proofs right now? Students’ perception 
of their “typical” approach to proofs, right now [RQ 1a] 

 
Satisfying Moments [RQ 2] 

7. Have you had any satisfying moments related to your work in MTH 299 since the 
last time we met? Identifying satisfying moments without any influence in certain 
directions by interviewer 

8. Were there moments that felt satisfying while you were working on problems on the 
last homework set? 
Clarify and Probe as needed Identifying satisfying moments recently in time  
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9. How about the rest of this homework set? Identifying satisfying moments a little 
farther out  

10. What’s your favorite kind of problem? What kind of problem in this class feels the 
most rewarding? A different approach to trying to access satisfying moments  

11. How about in class (since the last interview)? Identifying satisfying moments longer 
ago   

12. Can you think of a time when you had a flash of understanding or insight? If they had 
any A-HA moments, a hypothesized type of satisfying moment. 

13. Do you have moments of negative emotion, such as frustration? What moments 
stand out? Moments of intense negative emotion (for sake of completeness)   

14. Do these moments (positive or negative) affect your motivation to continue to do 
math? If so, how? Link between moments of intense emotion and motivation. 
 

The Word Selection & Emotion Graph Tasks should be about the same experience. It is up to 
the interviewer which experience to choose. 
 

Word Selection Task [RQ2] 
 
I’d like you to select words that reflect what it was like to work on <that satisfying 
moment>  
 
 
 
 

 
 
 
 

 
15. What words did you choose and why? Identifying emotions and conditions 
16. Are there other words that reflect how you felt about this problem that weren’t 

included here? Covering any other emotions, so word choice bank doesn’t restrict 
answers      

 
 

15. What words did you choose? Please circle them on this sheet. Identifying emotions 
behind the problem   

16. What made you pick the words you did? Identifying conditions 
17. Are there other words that reflect how you felt about this problem that weren’t 

included here? Covering any other emotions, so word choice bank doesn’t restrict 
answers     

 
Emotion Graph Task [RQ 2] 
 

Description of Task: 11 Words total 
  
5 negative 5 positive 1 neutral 
annoyed curious 
disappointed surprised 
sad  joyful  indifferent 
frustrated satisfying  
ashamed proud 
 
Notes: I’ve written words that are “opposite” emotions in the same colors. 
Words in black have no corresponding word pair. Each word is written on a 
separate small notecard, in black. I spread the notecards out in the exact 
arrangement above in front of the student. 
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I’d like you to now draw a graph that shows your emotions while working on this problem. 
The x-axis is time, from when you started to when you stopped working on this problem. 
The y-axis is emotions, where positive and negative emotions. Think of the highest mark as 
indicating strong positive emotions like satisfaction or excitement. The middle mark would 
be neutral, as in your normal resting state. The lower mark would be strong negative 
feelings like frustration or panic. Please also mark what triggered any ups and downs, as in 
turning points, in your graph, like which strategies you tried and how that corresponds 
with your emotional reactions. 
 

18. Talk me through your graph here. Have participant talk through the experience, 
marking turning points (conditions for changed emotion). 
Clarify and Probe as needed 
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Interviews #2-4 Protocol 

 
Logistics: 

• Interview should take place in a quiet room 
• Max time: 90 min 

o 20 minutes for Proof Task #1 
o 20 minutes for Proof Task #2 
o 20 minutes for Satisfying Moments questions, word selection, and graph 

 
Materials for students: 

• The 2 proof tasks on separate sheets of paper 
• Resources for proof task for student: laptop, scrap paper 
• Note: Provide the hw, example sheets, and solutions in paper form. 
• Cards with emotion words on them 
• Emotion graph worksheet 

Materials for interviewer: 
• Paper for writing down word selection 
• Paper for notes 

 
Key for this document: 
Black plain text is the script, instructions and questions to be spoken to participant 
Black italicized text is instructions for interviewer, not to be spoken 
Red italicized text denotes purpose of question, linking everything back to research questions. 
 
Warm-up  

1. How is MTH 299 going for you since our last interview?  
 
Proof Tasks [RQ1] 
I’m trying to understand students’ thought process, in how they approach proofs; it’s not 
about the final answer. So I’m going to give you two statements I’d like you to prove. It 
would be helpful to me if you share your thinking with me: what you’re trying to do, why 
you’re trying to do that, etc. I want you to vocalize out loud how you’re thinking about the 
problem and what you’re trying to do. Pretend you’re at home and you’re just talking to 
yourself out loud. 
 
You may know me as a TA for this course, but in this interview, because I am interested in 
how you are thinking, so I will not be able to help you out during the task. This means I 
can’t answer any questions about the math or what to do next if you get stuck.   
 
Any questions I ask or notes I take means that I’m interested in what you’re doing, it’s not a 
sign that I’m judging your work or that your thinking is incorrect. I may ask questions 
every so often like, “What do you mean by…?” I may ask you “What are you thinking right 
now?” if you’ve been quiet for some time.  
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After you are done, I will ask to talk me through what you did and why. I may ask you some 
questions like, “What do you mean by…?” or “Why did you decide…” 
 
Proof Task #1 
Here’s the first task. You can do your work directly on this sheet of paper [where the task is 
written]. I’ll give you 20 minutes to work on it and no matter where you get to, it’s fine. You 
can start.  
 
Interviewer sits near enough to see their work but a little farther away than when typically 
asking interview questions, in order to give student space to minimize pressure from being 
watched, as much as possible. If it looks like interviewer presence is causing pressure, 
interviewer will leave and tell participant to talk into the microphone. Give the student max 
20 minutes. 
 
If present, interviewer should try to take notes about what participant is doing – their process, 
including place they got stuck. 
 
After student is done, ask the following questions: 

2.   Can you mark for me any places you would count as scratchwork, as in, you wouldn’t 
include if you were typing it up in LaTeX?  

3. Were there any places where you got stuck?  
Probe about their rationale at points of interest, where students paused or went in a new 
direction: 
How did you…? 
Why did you…? 

 
Word Selection Task 
Emotion Graph Task (leave the room for emotion graph) 
 
Proof Task #2. Repeat above steps, including Word and Graph Tasks. 
 
After both tasks are complete: 

4. How would you say you currently approach proofs right now? Students’ perception 
of their “typical” approach to proofs, right now [RQ 1a] 

 
5. Do you think your ability to write proofs has changed since the last time we met? In 

what ways? 
Probe as needed. Students’ perception of their development since last point in time [RQ 1b] 
 
 
Satisfying Moments [RQ 2] 

6. Have you had any satisfying moments related to your work in MTH 299 since the 
last time we met?  
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Ask them to pull out graphs they did at home and talk me through it. Identifying 
satisfying moments without any influence in certain directions by interviewer 

 
7. Talk me through this experience/your graph. 

Ask as needed  
a. Can you find me the exact problem? 
b. What was happening before this? 
c. Were you working alone or with others (if not clear) 
d. What do you think triggered “this”? 

 
If they forgot to return graphs, give them a blank sheet to draw it. 
If they forgot to do it period, ask the following: 
 

8. Have you had any moments related to MTH 299 that felt satisfying? By satisfying, I 
mean a super positive feeling, like rewarding or a feeling of joy, etc. 
Clarify and Probe as needed Identifying satisfying moments recently in time  

 
If they report no satisfying moments: 

9. So you said you’ve had no satisfying moments (homework, class, etc.) – is this true? 
10. Is math ever satisfying for you? 

Prompt for examples and try to suss out situations/properties. 
11. If so, what do you think it takes for math to be satisfying for you?  

 
Back to MTH 299 

12. Have you had any moments of negative emotion, such as frustration, since our last 
interview? Any moments that stand out? Moments of intense negative emotion (for 
sake of completeness)   

 
13. Do/how do these moments (positive or negative) affect your motivation to continue 

to do math? If so, how? Link between moments of intense emotion and motivation. 
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APPENDIX C: Emotion Graph 

Please draw a graph of your emotions over the course of this homework problem.  
 
The X-axis represents time, from when you started working on the problem to when you finished. Please mark different 
strategies you used on the x-axis.  
 
The Y-axis represents your positive and negative feelings while working on this homework problem. Think of the highest 
mark as indicating emotions like satisfaction or excitement; the middle mark would be neutral, your “resting state”; and the 
lower mark would be feelings like frustration or panic. If there were points during the problem when your feelings changed, be 
sure to mark those points on the X-axis. 
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