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ABSTRACT

CONTROL FUNCTION METHODS IN APPLIED ECONOMETRICS

By

Riju Joshi

This dissertation considers estimation and inference in three econometric models containing

issues commonly encountered with observational data. Fundamental issues of self-selection,

endogeneity, missing observations are pervasive in observational data. Moreover, often, the ob-

servations in a dataset are rarely statistically independent and have complex dependence struc-

tures. These issues can have a significant effect on the causal effect analysis and pose serious

limitations on the popular methodologies that either maintain restrictive assumptions and/or re-

quire complicated and computationally tedious solutions.The dissertation aims to apply control

function method as the primary tool to design estimation procedures under relaxed distributional

and functional form assumptions. I describe computationally simple solutions to these issues

to obtain more precise results. These estimation procedures are obtained under relaxed distri-

butional and functional form assumptions allowing a researcher to incorporate more variability

(or heterogeneity).

Chapter 1: Specification Tests in Unbalanced panels with Endogeneity (joint work with
Jeffrey M Wooldridge)

This chapter develops specification tests for unbalanced panels with endogenous explanatory

variables. We obtain a general equivalence results for the Random Effects 2SLS and Pooled

2SLS in an unbalanced panel. This algebraic result serves as the foundation to the fully-

robust regression based Hausman Test to compare RE2SLS and FE2SLS estimators in form

of a Variable Addition Test. In addition, we also obtain an equivalence result for Control Func-

tion estimators and FE2SLS estimators in an unbalanced panel. The results helps us to obtain

regression-based fully robust specification test to check the correlation between the explana-



tory variables and the unobserved idiosyncratic errors. The test compares FE estimators with

FE2SLS estimators

Chapter 2: Control Function Sieve Estimation of Endogenous Switching Models with En-
dogeneity (joint work with Jeffrey M Wooldridge)

In this chapter, we propose a sieve estimation procedure for estimating average treatment ef-

fects with a binary treatment in the framework of endogenous switching models. We consider a

generalized model for the reduced form of the treatment variable that allows for the heterogene-

ity in terms of a distribution- free, conditional-heteroskedastic error term. We derive a simple,

two-step estimation method that uses control function methods to correct for the endogeneity

of the treatment assignment. consider the effect of attending a catholic high school on student

math test scores.

Chapter 3:Control Function Estimation of Spatial Error Models with Endogeneity

This chapter considers estimation of linear regression models that allows some covariates to

be endogenous when the data is suspected to exhibit spatial dependence. For example a hedo-

nic price model in the housing markets not only has endogenous covariates such as schooling

quality that are of prime interest but also often has spatially correlated neighborhood variables

that are difficult to fully incorporate explicitly. These omitted spatially correlated neighbor-

hood variables induce spatial correlation in the errors in the model. This paper uses control

function method to control for endogeneity and incorporates the spatial dependence of data to

achieve more precise results. I describe an estimation strategy that first divides the observations

into groups based on the distance between them and then imposes control function assumptions

to model the endogeneity within each group. A computationally simple two-step estimation

procedure is suggested for a parametric estimation strategy where a GLS-type estimation is

proposed that accounts for only the within-group correlations while ignoring the across-group



correlations. Results from the Monte Carlo simulation studies show that we obtain noticeable

efficiency gains through this estimation procedure.
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CHAPTER 1

SPECIFICATION TESTS IN UNBALANCED PANELS WITH ENDOGENEITY

1.1 Introduction

Panel data has become very popular in contemporary empirical work specially in social and

behavioral sciences. Hsiao (1985,1986), Klevmarken (1989) and Baltagi (2001) attribute this

popularity to the ability of panel data to capture dynamics through its time dimension providing

more variability in the data. Panel data allows the observations to have heterogeneity and this

allows researchers to model complicated behavioral patterns. However, finding or constructing

a balanced panel data is extremely rare. In most cases, observations on each time period for all

cross-sectional units are not available and we have an unbalanced or incomplete panel dataset.

This is particularly common when the cross-sectional unit is a firm, household or a person. For

instance, an unbalanced panel might be a result of the survey design, as in the case of a rotating

panel, where equally sized sets of sample units are brought in and out of the sample in some

specified pattern. In other cases, incomplete panels might arise due to cross-sectional units

dropping out leading to the problem of attrition.

Specification and estimation issues of econometric models for unbalanced panels have pri-

marily focused on testing for the presence of selection bias and estimating models if sample

selection is present. Nijman and Verbeek (1992) develop a simple test to check for sample se-

lection bias in random effects framework and Wooldridge (2010) extends this for fixed effects.

Wooldridge (1995) develops variable addition tests for selection bias and these tests are further

extended for models with endogenous variables in Semykina and Wooldridge (2010). Hsiao et

al. (2008) propose limited information test to check for selection issues. In addition to testing

for sample selection, a number of studies have addressed the issue of treatment of unbalanced

panels in the presence of selection bias. Numerous parametric and semi-parametric solutions
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to correct for sample selection bias have been proposed in econometrics literature. Wooldridge

(1995), Semykina and Wooldridge (2010), Kyriazidou (1997), Rochina-Barrachina (1999) are

just a few notable examples that consider the estimation in unbalanced panels for both linear

and non-linear models with exogenous and endogenous covariates.

In the absence of selection bias, we can extend the models and the estimation methods for

balanced panels to their unbalanced counterpart. Specification testing for drawing comparisons

between different estimation methods can also be extended for unbalanced panels. Specification

tests such as Hausman Test to compare fixed effects and random effects have been developed

for unbalanced panels with exogenous sampling. However, as is the case with balanced pan-

els, the traditional Hausman test maintains the assumption that the conditional variances of the

composite error terms1 have the random effects structure. This becomes one of the key limi-

tation of the traditional Hausman Test as the failure of this assumption distorts the asymptotic

distribution of the test statistic.

Wooldridge (2010) explains why we need to develop a test statistic that is robust to the vio-

lation of the random effects structure of the composite errors. A comparison between the fixed

effects and random effects estimator essentially boils down to testing the correlation between

unobserved heterogeneity and covariates. This is captured in the conditional first moment as-

sumptions of the model. The assumption that the composite errors have the random effects

structure, on the other hand, is an assumption about the second moments. Traditional Hausman

test is concerned with verifying the validity of the former while also maintaining the latter. Fail-

ure of the second moment assumptions have serious consequences for the test statistic which is

primarily concerned with the first moment. In fact, in this case it causes the test statistic to have

a non-standard asymptotic distribution. Thus a non-robust Hausman test statistic which tests

conditional mean specifications has no systematic power against the violation of the conditional

variance specifications.

1Unobserved heterogeniety and idiosyncratic errors are clubbed together to form composite
errors

2



The limitations of the traditional Hausman specification test when used as a pretest of ran-

dom effect specification are also studied in Guggenberger (2010) . In particular, it is shown both

theoretically and through Monte-Carlo simulations that the asymptotic size of the t-statistic that

is based on either the random effect or fixed effect specification based on the outcome of Haus-

man pretest, is severely distorted.

For balanced panels, this issue is addressed by the fully-robust regression-based Hausman

Test. The fundamental idea behind regression-based tests in panel data is given by Correlated

Random Effects models due to Mundlak (1978). For unbalanced panels with exogenous ex-

planatory variables, correlated random effects models are developed in Wooldridge (2016) that

subsequently lead to a simple fully-robust Hausman specification tests to compare Fixed Effects

and Random Effects estimators. Models with individual specific slopes are also considered and

correlated random effect assumption is used to develop tests for correlation between the selec-

tion and heterogeneous slopes.

This paper extends Wooldridge (2016) for the unbalanced panels where some elements of

the time-varying explanatory variables are allowed to be correlated with the unobserved idiosyn-

cratic shocks. In particular, Correlated Random Effects models are developed for unbalanced

panels with endogeneity and simple specification tests are suggested to compare Fixed Effects

2SLS (FE2SLS) and Random Effects 2SLS (RE2SLS) estimators. Wooldridge (2016) obtains

an algebraic equivalence result where Fixed Effects estimator is computed as a Pooled OLS

estimator (P2SLS) of the model by adding time averages of the covariates (averaged across the

unbalanced panel) as additional explanatory variables. We obtain a similar result for the case

when some of the covariates are allowed to be endogenous.

Regression based Hausman test to check for correlation between the instruments and indi-

vidual heterogeneity in unbalanced panel data models begins with modeling of the unobserved

heterogeneity in terms of the time averages of the instruments. While this seems to be a natural

extension of the balanced panel models, Wooldridge (2016) explains how CRE models in the
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unbalanced panels differ from their balanced counterpart. The unbalanced nature of the panel

is reflected in the time averages of the instruments as the number of time periods for which

observations are available differs across different cross-sectional units. Thus time averages of

the instruments are defined only for the full set of observations. In addition, unlike in the bal-

anced case, the time averages of aggregate time variables are also included because we average

different time periods for different cross-sectional units. In other words, in unbalanced panels,

the unobserved heterogeneity is modeled in terms of the instruments and the selection.

This paper uses Mundlak (1978) assumption to model the unobserved heterogeneity, and

we get an algebraic result that the FE2SLS estimator for the coefficient on the covariates is

obtained by doing a P2SLS or RE2SLS on the augmented model. This algebraic result showing

the equivalences of the estimators serves as the building block for the specification test that

compares FE2SLS and RE2SLS estimators. It provides a way to obtain a regression based

Hausman test that is fully-robust to the second moment conditions of the composite errors.

We also consider a test to check the endogeneity of some explanatory variables using the

control function approach. In addition to being a bit unwieldy, the traditional Hausman test for

checking the endogenous explanatory variables suffers from shortcomings like giving a wrong

degrees of freedom and often gives a negative χ2 test statistic. Moreover, it is also not robust to

heteroscadasticity. To address this issue, we adopt the control function approach and obtain an

equivalence result. More specifically, we show that adding the residuals from the reduced form

equation to the original model yields FE2SLS estimators. This result is then used to develop a

simple regression based fully robust Hausman Test for endogeneity of the explanatory variables.

The paper is structured as follows. Section 1.2 introduces the general model for unbalanced

panels and the assumptions maintained in this paper. Section 1.3 specifies the key estimation

methods for unbalanced panels with endogeneity, namely FE2SLS and RE2SLS. Section 1.4

obtains algebraic equivalences between different estimators. In Section 1.5, we develop a sim-

ple fully-robust regression based Hausman specification test to compare Random Effects 2SLS
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and Fixed Effects 2SLS estimators. In Section 1.6, we consider the control function approach

to detect the possible endogeneity of explanatory variables in unbalanced panel data model. In

Section 1.7, we briefly talk about an empirical strategy that could be followed as protocol for

approaching endogeneity issues in a linear model with unbalanced panels. We illustrates this

strategy and our theoretical findings with an empirical application in Section 1.8. More specif-

ically, we study the effects of spending on student performance in Michigan schools. Section

1.9 concludes the paper.

1.2 Model

We begin by assuming that a random sample is drawn from an underlying population that con-

sists of a large number of units for whom data on T time periods are potentially observable.

In our model, for an individual i, at time period t, yit denote the potentially observed out-

come variable, xit is a 1×K vector of potentially observed time-variant covariates and wi de-

notes the set of time-invariant variables (that contains unity). In addition to the potentially

observable variables, we also draw unobservables for each i and ci denotes the unobserved

heterogeneity associated with each i. The idiosyncratic errors are denoted by uit .

The standard linear model with additive heterogeneity is given as:

Assumption 1.2.1

yit = xitβββ +wiδδδ + ci +uit (1.1)

We believe that some elements of xit are correlated with uit , or even uir with r 6= t. To

deal with this endogeneity issue we have a set of 1×L possible instrumental variables zit with

L ≥ K. This set of instruments zit not only includes the excluded exogenous variables but also

all the elements of xit that are exogenous.

To allow for an unbalanced panel, we introduce a binary selection indicator sit which is

defined as
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Assumption 1.2.2

sit =


1 if and only if (xit ,yit ,zit) is fully observed

0, otherwise
(1.2)

In other words, si ≡ {si1,si2, ...,siT} is the series of selection indicator for each i. This implies

that sit = 1 if time period t for unit i can be used in estimation. The number of time periods for

which a unit i is observed is denoted by Ti which is simply equal to ∑
T
r=1 sir. Our panel data

can be concisely represented as a vector of a randomly drawn sample across the cross section

dimension i , with fixed time periods T : {(sit ,xit ,yit ,zit);ci}.

Since we allow for endogeneity of some of the explanatory variables xi ≡ (xi1, ...,xiT ),

our assumptions in this paper primarily structure the relationship between the instruments

zi ≡ (zi1, ...,ziT ), selection indicators si, unobserved individual heterogeneity ci and the id-

iosyncratic errors ui = (ui1, ...,uiT ).

1.3 Estimation Methods

We consider two main estimation methods to estimate our key parameter of interest βββ : Fixed

Effects 2SLS and Random Effects 2SLS.

1.3.1 Fixed Effects 2SLS (FE2SLS)

First, we consider the case where unobserved heterogeneity ci is allowed to be correlated with

the history of instruments zi. As with the balanced panel analysis, FE2SLS approach for the

unbalanced panel data transforms (1.1) to eliminate the unobserved effect ci. In unbalanced

panels, the fixed effects transformation, also called the within transformation is obtained by

first multiplying equation (1.1) by sit :

sityit = sitxitβββ + sitwiδδδ + sitci + situit (1.3)
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Averaging this equation across t for each i gives us the time averaged equation:

ȳi = x̄iβββ +wiδδδ + ci + ūi (1.4)

The time averages are given by ȳi = T−1
i ∑

T
r=1 siryir and x̄i = T−1

i ∑
T
r=1 sirxir. Note that

the time averages for yit ,xit , (and also zit) are computed only for periods when data exists on

the full set of variables. (1.4) is of interest in its own right because its Pooled 2SLS estimation

using z̄i as instruments gives us the Between 2SLS estimator of βββ : β̂ββ B2SLS

Time demeaning (1.3) using (1.4) we get:

sit(yit − ȳi) = sit(xit − x̄i)βββ + sit(uit − ūi) (1.5)

We denote the time demeaned variables as ẍit = (xit − x̄i) and ÿit = (yit − ȳi).

The FE2SLS estimator is obtained by estimating (1.5) by Pooled OLS using z̈it ≡ (zit − z̄i)

as instruments:

β̂ββ FE2SLS =

[( N

∑
i=1

T

∑
t=1

sit ẍ
′
it z̈it

)( N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it

)−1( N

∑
i=1

T

∑
t=1

sit z̈
′
it ẍit

)]−1
×[( N

∑
i=1

T

∑
t=1

sit ẍ
′
it z̈it

)( N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it

)−1( N

∑
i=1

T

∑
t=1

sit z̈
′
it ÿit

)]
The key assumptions sufficient for the consistency of FE2SLS estimator on the unbalanced

panel can be stated as:

Assumption 1.3.1 For all i = 1, ...,N

• FE2SLS.1 E[uit |zi,ci,si,wi] = 0

• FE2SLS.2 ∑
T
t=1E[sit z̈′it ẍit ] is full rank and ∑

T
t=1E[sit z̈′it z̈it ] is full rank

Assumption FE2SLS.1 implies two things. First is the strict exogeneity of selection and in-

struments with respect to the idiosyncratic errors. Second, we allow for correlation between

ci and vector of instruments zi. We also allow for selection sit at time t to be correlated with
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(zi,ci). Assumption FE2SLS.2 is the appropriate rank condition that ensures invertibility of

matrices in an unbalanced panel data. It naturally implies that any time-invariant variables are

dropped out of our the fixed effects analysis. Under the assumptions stated above, FE2SLS on

the unbalanced panel is consistent and is asymptotically normal.

1.3.2 Random Effects

Fixed effects estimation methods suffer from a few limitations that arise due to the demeaning

of the variables. As illustrated in (1.5), time-invariant observables are eliminated in the process

of eliminating ci. In addition, because of time-demeaning, any observation with Ti = 1 also

drops out. In addition, much of the variation in the data is also removed in the demeaning

process. Random Effects estimation provides a remedy to these issues by imposing additional

assumptions.

Assumption 1.3.2 For all i = 1, ...,N

• RE2SLS 1. E[ci|wi,zi,si] = E[ci] = 0

E[ci] = 0 can be assumed whenever we include an intercept in our model. Random Effects

transformation becomes straightforward if we add the assumption that:

Assumption 1.3.3 For all i = 1, ...,N

• RE2SLS 2. E[uiu′i|wi,zi,ci,si] = σ2
u IT and E[ci|wi,zi,si] = σ2

c

Analogous to the case of balanced panel data, we get a straightforward Generalized Least

Square(GLS) transformation when we define

θi = 1−
[

σ2
u

(σ2
u +Tiσ2

c )

]1
2

(1.6)

where θi is viewed as a random variable which is a function of Ti. In addition, Ti is also

exogenous since E[uit |wi,zi,ci,si] = 0 andE[ci|wi,zi,si] = E[ci] = 0. This implies that E [ci +

uit |wi,zi,Ti] = 0.
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A Pooled 2SLS on the selected sample of (yit − θiȳi) on (xit − θix̄i) and (1− θi)wi using

(zit − θiz̄i) as instruments will give us RE2SLS estimator: β̂ββ RE2SLS. Not surprisingly, just

as in the balanced panel data case, the consistency of our estimator will not be affected if

we use an incorrect variance-covariance structure. We would just calculate the fully robust

variance-covariance matrix for β̂ββ RE2SLS. However, this is true only under the assumption of

strict exogeneity of instruments and selection with respect to ci + uit . As Wooldridge (2010)

notes, this is a very restrictive assumption.

1.4 An Algebraic Equivalence Result

Wooldridge (2016) obtains a general equivalence result for the Random Effects and Pooled OLS

in unbalanced panels. We extend the equivalence result further for the RE2SLS and Pooled

2SLS in an unbalanced panel. As we will see below, the equivalence result requires no assump-

tion except that the appropriate matrices are invertible in the sample.

Consider the following regression model:

(yit −θiȳi) = (xit −θix̄i)βββ +(1−θi)z̄iξξξ +(1−θi)wiδδδ +uit (1.7)

where we follow the notation of Section 2. The Pooled 2SLS estimator for βββ for selected sample

(i.e for sit = 1) using (zit −θiz̄i) as instruments for (xit −θix̄i) is given as

β̂ββ P2SLS = [(
N

∑
i=1

T

∑
t=1

sit(xit −θix̄i)
′z̈it)(

N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it)

−1(
N

∑
i=1

T

∑
t=1

sit z̈
′
it(xit −θix̄i))]

−1×

[(
N

∑
i=1

T

∑
t=1

sit(xit −θix̄i)
′z̈it)(

N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it)

−1(
N

∑
i=1

T

∑
t=1

sit z̈
′
it(yit −θiȳi))] (1.8)

where as before, we define z̈it = (zit − z̄i). This expression is obtained by following the

simple idea of the Frisch-Waugh-Lovell theorem and extending it for the instrumental variables

estimation. (See Section 1.9.1)
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Theorem 1 If (∑N
i=1 ∑

T
t=1 sit z̈′it z̈it) and [(∑N

i=1 ∑
T
t=1 sit(xit −

θix̄i)
′z̈it)(∑

N
i=1 ∑

T
t=1 sit z̈′it z̈it)

−1(∑N
i=1 ∑

T
t=1 sit z̈′it(xit − θix̄i))] are nonsingular matrices,

then the Pooled 2SLS estimator obtained above is algebraically equivalent to the Fixed Effect

2SLS estimator on the unbalanced panel:

β̂ββ P2SLS = β̂ββ FE2SLS

Proof. For θi = 0,∀i,

β̂ββ P2SLS =

[( N

∑
i=1

T

∑
t=1

sitx′it z̈it

)( N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it

)−1( N

∑
i=1

T

∑
t=1

sit z̈
′
itxit

)]−1
×[( N

∑
i=1

T

∑
t=1

sitx′it z̈it

)( N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it

)−1( N

∑
i=1

T

∑
t=1

sit z̈
′
ityit

)]

Noting that
(

∑
N
i=1 ∑

T
t=1 sit ẍ′it z̈it

)
simplifies to

(
∑

N
i=1 ∑

T
t=1 sitx′it z̈it

)
, we get the expression

for β̂ββ FE2SLS

For 0≤ θi < 1, first consider
(

∑
N
i=1 ∑

T
t=1 sit(xit −θix̄i)

′z̈it

)
.

( N

∑
i=1

T

∑
t=1

sit(xit −θix̄i)
′z̈it

)
=

( N

∑
i=1

T

∑
t=1

sit(x′it z̈it −θix̄′iz̈it)

)
=

( N

∑
i=1

T

∑
t=1

sitx′it z̈it

)
−
( N

∑
i=1

θix̄′i
T

∑
t=1

sit z̈it

)

Note that ∑
T
t=1 sit z̈it = 0. So we get( N

∑
i=1

T

∑
t=1

sit(xit −θix̄i)
′z̈it

)
=

( N

∑
i=1

T

∑
t=1

sitx′it z̈it

)
=

( N

∑
i=1

T

∑
t=1

sit ẍ′it z̈it

)
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Similarly, we get: ( N

∑
i=1

T

∑
t=1

sit z̈
′
it(yit −θiȳi)

)
=

( N

∑
i=1

T

∑
t=1

sit z̈
′
ityit

)
=

( N

∑
i=1

T

∑
t=1

sit z̈
′
it ÿit

)

Substituting these expressions, our 2SLS coefficient becomes:

β̂ββ P2SLS =

[( N

∑
i=1

T

∑
t=1

sit ẍ′it z̈it

)( N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it

)−1( N

∑
i=1

T

∑
t=1

sit z̈
′
it ẍit

)]−1
×[( N

∑
i=1

T

∑
t=1

sit ẍ′it z̈it

)( N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it

)−1( N

∑
i=1

T

∑
t=1

sit z̈
′
it ÿit

)]

= β̂ββ FE2SLS

1.5 Regression based fully-robust Hausman Test to compare RE2SLS and
FE2SLS

Specification test in this section is concerned with comparing the FE2SLS and RE2SLS estima-

tors. In other words, we want to test that heterogeneity is mean independent of the instruments

and selection in all time periods. As we mentioned before, the traditional Hausman test statistic

to compare RE2SLS and FE2SLS suffers from several limitations. An elegant way to deal with

this is provided by the regression-based fully robust Hausman test. We apply the principle of

the Wu-Hausman endogeneity test with additionally using Mundlak (1978) device to modify

our regression model.

A comparison of of FE2SLS and RE2SLS estimators in unbalanced panels is essentially a

test of correlation between unobserved heterogeneity and instruments. In other words, Hausman
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test can be interpreted as a test of

E[ci|zi,si] = E[ci] (1.9)

In particular, our model is

yit = xitβββ +wiδδδ + ci +uit (1.10)

for i = 1,2, ...,N and t = 1,2, ...,T . Recall that wi contains unity.

We specify a correlated random effects structure for ci due to Mundlak (1978):

ci = ξ0 + z̄iiiξξξ +ai, (1.11)

where Cov[ai,zi] = 0, E[ai] = 0

Substituting for ci in our regression model, we get the usual Mundlak equation:

yit = xitβββ +wiδδδ + z̄iiiξξξ +ai +uit (1.12)

where ξ0 is absorbed into the intercept in wi. Now regression based fully-robust Hausman

test is simply an application of Theorem 1. If we estimate the above equation by RE2SLS or

Pooled 2SLS using (zit , z̄i) as instruments then we know from the Theorem 1 that the resulting

estimator of βββ is the FE2SLS estimator. The regression based Hausman test is simply a Wald

test of

H0 : ξξξ = 0

To obtain a fully robust test, we estimate (1.12) by pooled 2SLS and use cluster-robust inference.

Testing for Correlation between Selection and Idiosyncratic Errors

The test developed above helps us to rule out estimation of parameters by RE2SLS method.

However, FE2SLS estimation methods are consistent only if selection is strictly exogenous

with respect to the idiosyncratic errors conditional on the unobserved effect. Thus, ruling out

the possibility of relation between selection (sit) and idiosyncratic errors (uit), conditional on
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ci is imperative before we proceed. Further, in our context, it will be erroneous to use Heckman

(1976) test (extended to the panel data context in Wooldridge (1995)) because it requires the

exogenous components of xit to be observable in all time periods. We do not impose such

restriction in our model.

Nijman and Verbeek (1992) suggest a simple test for testing of selection bias in the context

of random effects which also works in the fixed effects estimation. We simply add the lagged

value of the selection indication : si,t−1 to the original model and check for its significance. We

can also add Ti and check for its significance using a t-test. This test is extended to the fixed

effects framework in Wooldridge (2010). We add si,t−1 in our model and estimate the model

by fixed effect using sit = 1. A simple robust t-test of the coefficient on si,t−1 tests the null

hypothesis that selection in the previous period is not significant. Another alternative which is

useful in the attrition problems is to add the lead value of the selection indicator: si,t+1.

Once we rule out selection bias in our data, we can now rely on Fixed Effects estimation

methods to estimate the coefficients of our model. We would also like to check for the endo-

geneity of our explanatory variables. Next section develops simple regression based fully-robust

tests for endogeneity.

1.6 Robust Hausman Test to compare FE vs FE2SLS

Previous sections focus on developing the test for checking if the instruments are correlated

with the individual heterogeneity. A natural addition to those tests would be to check whether

or not the explanatory variables are correlated with the idiosyncratic shocks. Traditional Haus-

man Test for checking endogeneity of explanatory variables in panel data suffers from several

shortcomings (Baum (2006)). It often generates negative χ2 test statistic which makes the test

infeasible. In addition, often the degrees of freedom are wrongly calculated and this leads to de-

generacies. And lastly, the traditional Hausman test statistic is not robust to heteroscadasticity
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and the robust versions of the test are not readily available in most softwares. 2

In this section, we use control function approach to check the endogeneity of explanatory

variables. Control function approach deals with endogenous explanatory variables by formaliz-

ing the correlation between the endogenous explanatory variables and unobservables of idiosyn-

cratic shocks. In the cross-section data analysis with linear endogenous explanatory variables,

it has been shown that control function approach leads to the same estimators as that of 2SLS.

We will show in this section that this algebraic result also holds in unbalanced panels. In the

context of panel data, the control function approach would yield FE2SLS estimators. Through

this result, we are able to obtain a regression-based fully robust specification test to compare

fixed effects estimators with fixed effect 2SLS estimators.

1.6.1 Model

The model is defined in terms of the following assumptions:

Assumption 1.6.1 For all i = 1, ...,N the first assumption specifies a linear equation for the

outcome variable:

yit1 = xitβββ +yit2ααα + ci1 +uit (1.13)

yit1 denotes the potentially observed outcome variable. In this section we slightly modify the

notations and explicitly denote the 1×Ky2 vector of endogenous variables by yit2. In other

words, while xit denote the 1×Kx vector of potentially observed explanatory variables that

are not correlated with the idiosyncratic errors uit , some elements of yit2 are allowed to be

correlated with uit . We introduce the 1×Kw = 1× (Kx + Kz) vector wit as the full set of

instruments that also contain exogenous variables, i.e wit = {xit ,zit}, where the 1×Kz zit serve

as instruments for yit2. The reduced form equation for yit2 is given by:

2We could always set up the whole model as a GMM problem.
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Assumption 1.6.2 We assume that the reduced form of the endogenous variable is a set of

linear equations:

yit2 = witγγγ + ci2 + vit (1.14)

We introduce the selection indicator as:

Assumption 1.6.3

sit =


1 if and only if (wit ,yit) is fully observed

0, otherwise
(1.15)

As before, the time averages are computed only for periods when data exists on the full set

of variables.

To obtain regression based fully-robust Hausman test checking for the endogeneity of yit2,

we first estimate the reduced form (1.14) by Fixed Effects using the selection sample, i.e for

sit = 1. We obtain residuals from this regression, and denote them by ˆ̈vit . Next, we augment

equation (1.13) with ˆ̈vit and obtain:

yit1 = xitβββ +yit2ααα + ˆ̈vitρρρ + errorit (1.16)

(1.16)is called the control function equation and serves as the primary equation for obtaining

the Hausman test. The errorit term comprises of both individual heterogeneity and idiosyncratic

error. Our key algebraic result is stated in Theorem 2:

Theorem 2 Estimate the augmented equation (1.16) by Fixed Effects using the selected sample

and let β̃ββ FE(aug.) and α̃ααFE(aug.) denote the Fixed Effect estimators of the augmented equation.

Then,

β̃ββ FE(aug.) = β̂ββ FE2SLS and α̃ααFE(aug.) = α̂ααFE2SLS

The proof of the result is shown in the Section 1.10.2. This result essentially gives us

an elegant way to obtain the regression based test to check the possible endogeneity of the
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explanatory variables. Following the foundations of Section 4, regression based fully-robust

Hausman Test is given by a simple Wald test of

Ho : ρρρ = 0

using robust standard errors.

1.7 A Strategy for an Applied Econometrician

In this paper, we have suggested two kinds of specification tests. One is to test the endogeneity

of the explanatory variables with the time-varying idiosyncratic shocks (Section 1.6) and the

other is to test the endogeneity of the instruments with the time-constant unobserved individual

effects (Section 1.5). An empirical econometrician would begin with testing the endogeneity

of the explanatory variables in her model. This would essentially mean that we would compare

FE estimator with FE2SLS estimator using the regression based fully-robust Hausman Test that

essentially takes the form of a Variable Addition Test (VAT) given in Section 1.5. A failure to

reject the null implies that we can consider our explanatory variables to be exogenous with re-

spect to the time-varying unobserved idiosyncratic shocks and go ahead with the usual Random

Effects and Fixed Effects analysis. We could further compare the RE and FE estimators using a

Hausman Test.

A rejection of the null implies that we need to account for the endogeneity of our explanatory

variables. This entails using instruments and we have two key estimation methods: RE2SLS

and FE2SLS. Now, it is possible that our instruments are exogenous not only with respect

to the idiosyncratic errors but also with respect to the unobserved time-invariant individual

heterogeneity. If FE2SLS estimates seem to be imprecise, then we can use the VAT version of

Hausman Test described in Section 6 to compare RE2SLS and FE2SLS estimators. This would

help us to determine which of the estimation methods fit our model the best.
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1.8 Empirical Illustration

To illustrate the methods above, we consider the problem of estimating the effects of spend-

ing on student performance. We use the data on standardized test scores from 1992 to 1998

at Michigan schools to determine the effects of spending on math test outcomes for fourth

graders. Papke (2005) studies this using school-level data and a linear functional form. Papke

and Wooldridge (2008) extend the analysis by recognizing the fractional nature of the pass rates.

Specifically, they use fractional response models for the district level panel data. Both find non-

trivial effects of spending on test pass rates. Since we deal with linear models in our paper, our

analysis is closer to Papke (2005).

1.8.1 Background

Funding for K-12 schools in Michigan dramatically changed in 1994 from local, property-tax

based system to a statewide system supported primarily through a higher sales tax. The primary

goal of this policy change was to equalize spending and this was reflected in the rise of per-

pupil spending. Papke (2005) studies the effect of this policy change on student performance.

The data used comes from annual Michigan School Reports (MSRs). The outcome variable

of study is the percentage of students passing the Michigan Educational Assessment Program

(MEAP) math test for 4th graders: math4. The key explanatory variable is log of average per

pupil expenditure: log(avgrexpp) which serves as a measure of per-pupil spending.

The data used in Papke (2005) is an unbalanced panel data. In this empirical illustration, we

revisit this problem taking the note of the incomplete nature of the panel. In addition, we use

Stata 14 and have fully robust standard errors as ’clustering’ is available for all the regressions.

3

3Previous versions of Stata do not allow to compute fully robust standard errors for example
in RE2SLS. However, we could bootstrap to obtain proper standard errors.
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1.8.2 Results

Since our purposes are primarily illustrative, we focus on the simple specification:

math4it = θt +β1log(avgrexppit)+β2lunchit +β3log(enrollit)+ ci1 +uit (1.17)

where i indexes school and t indexes year. In this specification, θt is captured by adding

time dummies. The covariate vector is given as xit = [log(avgrexppit), lunchit , log(enrollit)].

Papke (2005) argues that log(avgrexppit) could be endogenous as spending could be correlated

with the idiosyncratic shocks uit . She uses the district foundation grant log( f oundit) as in-

struments. Thus, we have a vector of instruments : zit = [log( f oundit), lunchit , log(enrollit)],

where [lunchit , log(enrollit)] serve as their own instruments.

A simple Nijman-Verbeek (1992) test verifies that the selection is not correlated with the

idiosyncratic shocks. Specifically, we add the lagged value of the selection indicator to our

model and found it insignificant. This allows us to apply our tests to this empirical problem.

We begin by conducting a test to check the endogeneity of the explanatory variables. As

mentioned before, Papke (2005) argues that the primary variable of interest log(avgrexpp) is

endogenous in the sense that it is correlated with the time varying idiosyncratic erros. She

verifies this claim using a fully robust Hausman test that compares the Pooled OLS and Pooled

2SLS estimators. In this paper, we further verify the endogeneity of log(avgrexpp) using the

control function approach as described in Section 6. More specifically, we begin by estimating

the reduced form equation:

log(avgrexppit) = φt +π1lunchit +π2log(enrollit)+π3log( f oundit)+ ci2 +νit2 (1.18)

using fixed effects. The residuals from this regression are denoted by ν̂it2. The control function

equation would be equation (1.17) augmented with ν̂it2:

math4it = θt +β1log(avgrexppit)+β2lunchit +β3log(enrollit)+ρν̂it + c1i + errorit (1.19)

We then estimate the above equation using fixed effects. The results are given in Column (1)

of Table 1. We see that the equivalence result holds and the estimates are equal to the FE2SLS
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estimates given in Column (2). To check for the endogeneity of log(avrgexpp), we check the

significance of the estimate of the coefficient on ν̂ . We see that it is significantly different from

zero thus we can conclude that average spending per pupil is endogenous. This is the rejection

at 10 percent level. If we think of it as rejection, then we can go ahead and do a RE2SLS and

FE2SLS analysis. However, since this is only at 10 percent level, then we can also only look

at FE and RE. This is done in the Column (2) and Column (3) of Table 1.1. We compare FE

and RE estimates through the regression based Hausman test for unbalanced panels given in

Wooldridge (2016). The regression model augumented with the Mundlak’s device is estimated

using Random Effects and the standard errors are robust. The results are given in Columm

(4). To test for the correlation of the explanatory variables with the individual heterogeneity,

we check the joint significance of {lunchi, log(enroll)i, log(avgrexpp)i,y96,y97,y98}. The χχχ2

and the p values of the test are given in Table 2. We can clearly infer that null of no correlation

between the explanatory variables and unobserved individual time-invariant heterogeneity is

rejected, validating the FE estimation method.

Next, we do a RE2SLS and FE2SLS analysis. The results are given in Columns (5) and

(6) of Table.1 Both give a statistically significant estimate of the coefficient on log(avgrexpp).

The results verify that the effects of spending on student performance are non-trivial. This is

consistent with the results obtained in Papke (2005) and Papke and Wooldridge (2008). We find

that the RE2SLS estimates are quite different from the FE2SLS estimates and this motivates

us to test for the correlation of the instrument with the individual heterogeneity. We use the

Mundlak (1978) device and apply the regression based fully-robust Hausman Test developed

in Section 5. This also allows us to verify our equivalence results. Recall that we model the

individual heterogeneity as: E [c1i|zi] = ξ0 + z̄zziiiξξξ and add it to our model. Our estimating

equation becomes:

math4it = θt +β1log(avgrexpp)it +β2lunchit +β3log(enroll)it

+ξ1lunchi +ξ2log(enroll)i +ξ3log( f ound)i +ηit (1.20)
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Aggregate time dummies should be added in the specification. In other words, z̄zziii include the

averages of the year dummies also. This is an important aspect in which our analysis differs

due to the unbalanced nature of the panel. Since different individuals have different Ti, we are

averaging over different time periods for different i. Thus the time averages of the aggregate

time variables changes across i.

We estimate the equation(1.20) by RE2SLS and the results are given in Column (7) of Table

1.1. The estimates verify our equivalence result for the unbalanced panels with endogeneity.
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To check for the correlation of our instrument log( f ound) with the unobserved heterogene-

ity ci, we check the joint significance of the coefficients on z̄zziii. This translate into checking the

joint significance of the coefficients on {lunchi, log(enroll)i, log( f ound)i,y96,y97,y98}. The

χχχ2 and the p values of the test are given in Table 1.2. We find that the variables are jointly

significant that illustrates a non-zero correlation between the instruments and the time-invariant

unobserved individual-specific heterogeneity. This validates FE2SLS to be an appropriate esti-

mation procedure.

1.9 Technical Details

1.9.1 Derivation for β̂P2SLS

To obtain the expression for β̂ββ P2SLS in section 1.3, we use Frisch-Waugh-Lovell theorem for

instrument variables. Consider

Yi = X1iβ1 +X2iβ2 + εi

where X2i is exogenous with respect to εi and X1i is endogenous with respect to εi. To deal with

this endogeneity problem, we have instruments Zi. Then Firsch-Waugh-Lovell Theorem states

that the 2SLS estimator of β1 can be estimated as:

• First, regress Zi on X2i and obtain the residuals Ri

• Next, regress Yi on X1i using Ri as instruments.

We follow the similar procedure in the following steps:

Step 1 : First we run a Pooled OLS as:

(zit −θiz̄i) = (1−θi)z̄iααα1 +(1−θi)w̄iααα2 + error using sit = 1

Theorem 3 Consider the regression:
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Table 1.1: Empricial Illustration Results

(1) (2) (3) (4) (5) (6) (7)
math4 CF FE RE CRE RE2sls FE2sls CRE2sls

log(avgexp)47.00** 5.084 7.256*** 5.084 19.47*** 47.00* 47.00*
(23.32) (3.46) (1.80) (3.46) (2.69) (25.03) (25.04)

lunch -0.005 0.02 -0.37*** 0.02 -0.38*** -0.005 -0.005
(0.05) (0.0433) (0.01) (0.04) (0.01) (0.05) (0.05)

log(enrol) 6.483 -3.174 -1.814** -3.174 -0.523 6.483 6.483
(5.63) (2.22) (0.84) (2.22) (0.89) (6.16) (6.16)

y96 -2.558 1.598*** 1.274*** 1.598*** 0.0966 -2.558 -2.55
(2.367) (0.549) (0.473) (0.549) (0.519) (2.534) (2.535)

y97 -6.63** -1.43** -1.51*** -1.43** -3.03*** -6.63** -6.63**
(2.984) (0.610) (0.503) (0.610) (0.568) (3.18) (3.18)

y98 6.111* 11.72*** 11.74*** 11.72*** 10.05*** 6.11* 6.11*
(3.23) (0.66) (0.53) (0.66) (0.61) (3.44) (3.44)

log(avgexp) 3.137
(4.082)

lunch -0.43*** -0.45***
(0.04) (0.04)

log(enrol) 1.42 -4.51
(2.388) (4.18)

y96 -4.97 -2.202
(4.21) (4.57)

y97 2.89 2.436
(4.34) (4.57)

y98 -
15.61***

-
16.24***

(4.38) (4.73)
v̂ -42.48*

(23.52)
log( f ound) -20.40

(17.10)
Constant -361.8 38.61 26.98 25.04 -

80.65***
-361.8 -136.9*

(222.2) (35.03) (17.05) (19.81) (24.73) (238.9) (73.77)

Obs 5,913 5,913 5,913 5,913 5,913 5,913 5,913
#
Schools

1,643 1,643 1,643 1,643 1,643 1,643 1,643

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

22



Table 1.2: Specification Tests

Specification Tests Chi-Squared p-value Degrees of Freedom
FE vs RE 109.53 0.0 6
FE2SLS vs RE2SLS 105.67 0.0 6

(zit −θiz̄i) = (1−θi)z̄iααα111 +(1−θi)w̄iααα222 + error.

Pooled OLS estimators using sit = 1 will yield α̂αα1 = IIIL (Identity matrix) and α̂αα2 = 000 (zero

matrix).

Proof. First run a pooled regression of (zit−θiz̄i) on (1−θi)z̄i for sit = 1. The coefficient

will be

=

[ N

∑
i=1

T

∑
t=1

sit(1−θi)
2z̄′iz̄i

]−1[ N

∑
i=1

T

∑
t=1

sit(1−θi)
2z̄′i(zit −θiz̄i)

]
=

[ N

∑
i=1

Ti(1−θi)
2z̄′iz̄i

]−1[ N

∑
i=1

(1−θi)z̄′i
T

∑
t=1

sit(zit −θiz̄i)

]
=

[ N

∑
i=1

Ti(1−θi)
2z̄′iz̄i

]−1[ N

∑
i=1

(1−θi)z̄′i(Tiz̄i−Tiθiz̄i)

]
=

[ N

∑
i=1

(1−θi)
2z̄′iz̄i

]−1[ N

∑
i=1

(1−θi)
2z̄′iz̄i

]
= III

The residuals from this regression would be equal to

(zit −θiz̄it)− (z̄i−θiz̄i)

= (zit − z̄i)

≡ z̈it

Next, we run a POLS on the regression of

(1−θi)wi on (1−θi)z̄i for sit = 1
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As it is clear, both the coefficient and the residuals from this regression would only depend

on i.

Coefficient:

=

[ N

∑
i=1

T

∑
t=1

sit(1−θi)
2z̄′iz̄i

]−1[ N

∑
i=1

T

∑
t=1

sit(1−θi)
2z̄′iwi

]
=

[ N

∑
i=1

Ti(1−θi)
2z̄′iz̄i

]−1[ N

∑
i=1

Ti(1−θi)
2z̄′iwi

]
Residuals:

= (1−θi)wi− (1−θi)z̄i

[ N

∑
i=1

Ti(1−θi)
2z̄′iz̄i

]−1[ N

∑
i=1

Ti(1−θi)
2z̄′iwi

]
≡ ẽeei(depends only on i)

To obtain α̂αα2, run a POLS of z̈it = (zit − z̄i) on ẽeei for sit = 1. (Frisch-Waugh-Lovell

theorem). We get

α̂αα2 =

[ N

∑
i=1

T

∑
t=1

sit ẽee
′
iẽeei

]−1[ N

∑
i=1

T

∑
t=1

sit ẽee
′
iz̈it

]
=

[ N

∑
i=1

T

∑
t=1

sit ẽee
′
iẽeei

]−1[ N

∑
i=1

T

∑
t=1

sit ẽee
′
i(zit − z̄i)

]
=

[ N

∑
i=1

Tiẽee
′
iẽeei

]−1[ N

∑
i=1

ẽee′i
( T

∑
t=1

sitzit −Tiz̄i
)]

=

[ N

∑
i=1

Tiẽee
′
iẽeei

]−1[ N

∑
i=1

ẽee′i
(
Tiz̄i−Tiz̄i

)]
= 0

Finally, since α̂αα2 = 000, to obtain α̂αα1 we simply do a POLS of (zit −θiz̄i) on (1−θi)z̄i for

sit = 1. This was shown above to be equal to IIIL.

Using Theorem 3, we obtain the residuals from the regression in Step 1 as (zit− z̄i) = z̈it

Step 2 : Regress

(yit −θiȳi) on (xit −θix̄i)
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for sit = 1 using (zit − z̄i) = z̈it as instruments. The resulting 2SLS coefficient will be

β̂ββ P2SLS =

[( N

∑
i=1

T

∑
t=1

sit(xit −θix̄i)
′z̈it

)( N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it

)−1( N

∑
i=1

T

∑
t=1

sit z̈
′
it(xit −θix̄i)

)]−1
×[( N

∑
i=1

T

∑
t=1

sit(xit −θix̄i)
′z̈it

)( N

∑
i=1

T

∑
t=1

sit z̈
′
it z̈it

)−1( N

∑
i=1

T

∑
t=1

sit z̈
′
it(yit −θiȳi)

)]

1.9.2 Proof of Theorem 2

We have :

yit1 = xitβββ +yit2ααα + ci1 +uit (1.21)

and the reduced form equation:

yit2 = witγγγ + ci2 +vit (1.22)

The first step is to estimate the reduced form equation using Fixed Effects. We first time demean

equation (1.22):

ÿit2 = ẅitγγγ + v̈it (1.23)

and do a simple POLS using the selected sample, i.e for sit = 1. Denote the FE residuals as ˆ̈vit .

The control function equation would be obtained by augmenting equation (1.21) with ˆ̈vit :

yit1 = xitβββ +yit2ααα + ˆ̈vitρρρ + errorit (1.24)

We will show that the FE estimators of (βββ ,ααα) in equation (1.22) would be identical to the

FE2SLS estimators from equation (1.21).

Proof :

To obtain the FE estimators of (βββ ,ααα) in augmented equation (1.24), let xit1 ≡ (xit ,yit2), xit2 ≡

ˆ̈vit and βββ 1 ≡

βββ

ααα

. Our equation becomes:

yit1 = xit1βββ 1 +xit2ρρρ + ηit (1.25)
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The error term ηit in equation (1.25) contains both individual heterogeneity term and the id-

iosyncratic error. FE transformation is given as:

ÿit1 = ẍit1βββ 1 + ẍit2ρρρ + η̈ηη it (1.26)

FE estimator for βββ 1 is obtained by doing a POLS on equation (26) using sit = 1. To obtain an

expression for βββ 1 , we will use Frisch-Waugh-Lovell theorem:

• Step 1: Do a POLS of ẍit1 on ẍit2 for sit = 1. Let the estimator for the coefficient be

denoted by π̂ππ:

π̂ππ =

[
∑

N
i=1 ∑

T
t=1 sit ẍ′it2ẍit2

]−1[
∑

N
i=1 ∑

T
t=1 sit ẍ′it2ẍit1

]
Consider[ N

∑
i=1

T

∑
t=1

sit ẍ
′
it2ẍit1

]
=

[ N

∑
i=1

T

∑
t=1

sitx
′
it2ẍit1

]
=

[ N

∑
i=1

T

∑
t=1

sit ˆ̈v′it(ẍit , ÿit2)

]
since xit1 ≡ (xit ,yit2), xit2 ≡ ˆ̈vit

=

[ N

∑
i=1

T

∑
t=1

sit ˆ̈v′it ẍit ,
N

∑
i=1

T

∑
t=1

sit ˆ̈v′it ÿit2

]
Note that since ˆ̈vit are FE residuals from the reduced form equation (1.23), by construc-

tion we will have ∑
N
i=1 ∑

T
t=1 sitẅ′it ˆ̈vit ≡ 000,

N

∑
i=1

T

∑
t=1

sit ˆ̈v′itẅit =
N

∑
i=1

T

∑
t=1

sit ˆ̈v′it(ẍit , z̈it) = 000

=⇒
[ N

∑
i=1

T

∑
t=1

sit ˆ̈v′it ẍit ,
N

∑
i=1

T

∑
t=1

sit ˆ̈v′it z̈it

]
= (0,0)

This implies that ∑
N
i=1 ∑

T
t=1 sit ˆ̈v′it ẍit = 000. So we get[

∑
N
i=1 ∑

T
t=1 sit ˆ̈v′it ẍit ,∑

N
i=1 ∑

T
t=1 sit ˆ̈v′it ÿit2

]
=

[
0,∑N

i=1 ∑
T
t=1 sit ˆ̈v′it ÿit2

]
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=⇒

π̂ππ =

[ N

∑
i=1

T

∑
t=1

sit ẍ
′
it2ẍit2

]−1[
0,

N

∑
i=1

T

∑
t=1

sit ˆ̈v′it ÿit2

]
=

(
0,
[ N

∑
i=1

T

∑
t=1

sit ẍ
′
it2ẍit2

]−1[ N

∑
i=1

T

∑
t=1

sit ˆ̈v′it ÿit2

])
=

[ N

∑
i=1

T

∑
t=1

sit ẍ
′
it2ẍit2

]−1[
0,

N

∑
i=1

T

∑
t=1

sit ˆ̈v′it ÿit2

]
=

(
0,
[ N

∑
i=1

T

∑
t=1

sit ẍ
′
it2ẍit2

]−1[ N

∑
i=1

T

∑
t=1

sitx′it2ÿit2

])
since xit2 ≡ ˆ̈vit

Now, note that [∑N
i=1 ∑

T
t=1 sit ẍ′it2ẍit2]

−1[∑N
i=1 ∑

T
t=1 sitx′it2ÿit2] is nothing but the FE esti-

mator when yit2 is regressed on xit2 ≡ ˆ̈vit for sit = 1.

This by construction would be equal to identity matrix: I. This implies

π̂ππ = [0,I]

The residuals from regressing ẍit1 on ẍit2 would be:

r̂it = ẍit1− ẍit2[0,I]

= [ẍit , ÿit2]− [0, ẍit2]

= [ẍit ,(ÿit2− ẍit2)]

Now, note that (ÿit2− ẍit2) is nothing but the predicted values of ÿit2 from equation (23):

ÿit2 = ˆ̈yit2 + ẍit2

• Step 2 Do a POLS of ÿit1 on r̂it for sit = 1. This would be a regression of ÿit1 on ẍit2 and

the predicted values from the reduced form equation: ˆ̈yit2. This precisely the FE2SLS

method.
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1.10 Concluding Remarks

Literature on unbalanced panels can be broadly classified into two broad sections. The first sec-

tion focuses on the problems related to the detection of selection bias and estimation methods to

correct for this bias, if it is not ruled out. The second section looks at the cases when selection

bias does not exist. When data is missing at random, then estimation methods of the balanced

panel case can be extended. A similar adaptation can be done for specification tests. However,

just like in the balanced case, the limitations of these tests would also hold in the unbalanced

case. While methods to counter these have been developed for the balanced panels, for unbal-

anced panels, limited work has been done to formally account for these limitations. This paper

hopes to contribute to the existing literature by attempting to address this issue.

The preliminary linear model considered in this paper has many possible extensions for

future research. We are interested in developing correlated random effects models for linear

unbalanced panel data models with individual specific slopes. This would give us a way to

obtain a specification test for testing for heterogeneous slopes. Moreover, in this paper we

have assumed that conditional on the observables, selection mechanism is exogenous to the

idiosyncratic shocks. This assumption seldom holds in most unbalanced panels. Thus analysis

for specifications for unbalanced panels where the exogenous sampling does not hold is another

area in which we would like to further extend our analysis.
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CHAPTER 2

CONTROL FUNCTION SIEVE ESTIMATION OF ENDOGENOUS SWITCHING
MODELS WITH ENDOGENEITY

2.1 Introduction

Evaluating the causal effects of a program or a policy intervention is one of the most important

questions in econometric analysis. In the case of discrete treatments, endogenous switching

models provide a powerful framework to capture the causal effects. Switching regression mod-

els have been extensively used to estimate structural shifts: to capture the parameter variation

where each possible state of parameter vector is called a regime. Endogenous switching models

have been used as the primary econometric technique in labour economics to study wage dif-

ferentials between public and private sectors(Adamchik and Bedi(1983)), union and non-union

members (Lee(1978)). It has also been used in modeling housing demand and modeling of

markets in disequilibrium (Thorst(1977)).

Endogenous switching models have been traditionally estimated using joint maximum like-

lihood estimation. This requires a full specification of the joint distribution of the unobservables.

This approach not only places restrictive assumptions on the model but is also computationally

challenging. Murtazashvili and Wooldridge(2016) use control function methods to obtain com-

putationally simple estimation of switching models under both coefficient homogeneity and

heterogeneity. They however still maintain distributional assumptions and homoskedastic er-

rors.

In this paper, we generalize the endogenous switching models by allowing a more flexible

reduced form for the treatment variable. This allows us to incorporate more heterogeneity in our

model. To allow for heterogeneity in the treatment variable model, we allow the errors in the

reduced form to have conditional heteroskedasticity. It allows the unobservables to contribute to

the dependent variable in a heterogeneous manner. One can argue that we can also incorporate
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heterogeneity in an econometric model by allowing for individual-specific slopes in the reduced

form. While this specification of the treatment variable model will allow the model to be more

structural, this also imposes a specific structure to the heteroskedasticity. We would prefer if

our reduced form has a general form of heteroskedasticity. An attractive feature of allowing

heteroskedasticity to be of a general form is that this allows the unconditional distribution of

the error term to be of an unknown form, that further relaxes the distributional assumptions on

the errors.

The endogeneity of the treatment variable or the switching indicator is modeled through

control function methods. In particular, we model the endogeneity in terms of the relationship

between the errors of the primary equation for the outcome variable (’structural’ errors) and the

errors of the reduced form equation for the treatment variable (’reduced-form’ errors). Since

we are allowing the ’reduced-form’ errors to have heteroskedasticity that is conditional on the

explanatory variables, the relationship between the two error terms is also modeled in terms of

the explanatory variables. This is done by using Conditional Linear Projections (CLPs). CLPs

are just conditional counterparts to the usual linear projections that are popular in modeling the

conditional expectations, specially of the auxiliary terms of an econometric model. The key as-

sumption is that the relationship between the ’structural’ errors and the ’reduced-form’ errors

that is reflected in terms of the conditional expectation of the ’structural’ errors can be repre-

sented in terms of a linear projection conditional on explanatory variables. Conditional linear

projections restrict linearity only in terms of the errors while allowing for the dependence on

the explanatory variables to be of an unknown functional form. Moreover, when we consider

the model which allows for individual-specific slopes in the outcome equation, we have an

added component contributing the endogeneity: endogeneity arising due to the correlation be-

tween the treatment and idiosyncratic gain to the treatment. This correlation is again in terms

of the explanatory variables because of conditional heteroskedasticity. However, as we will see,

conditional linear projection allow us to model this endogeneity as well.
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The estimation is done in two steps. The correction terms for the endogeneity are obtained

in the first step estimation of the reduced form model for the treatment variable. An estimat-

ing equation that accounts for the endogeneity through these correction terms is estimated in

the second step. Since the heteroskedasticity of the reduced-form error as well as the correc-

tion terms in the estimating equation are of an unknown functional form, we estimate both the

step using the semi-nonparametric methods. In particular, we use method of sieves in both the

steps to obtain the estimation procedure. However, we also illustrate how one can impose the

functional assumptions in the model making it fully parametric and thus estimate both the step

through standard parametric methods. Thus we obtain both parametric and semi-nonparametric

estimation procedures.

An attractive feature of endogenous switching model is that it serves as an umbrella model

for other econometric models. Specifically, the estimation strategy can be modified to estimate

the parameters in sample selection models and models with a binary endogenous variable. The

estimation procedures in this paper are obtained for the model with homogeneous treatment

effects and heteroskedastic reduced form model for the treatment variable and is extended to

three models. The first model incorporates heterogeneous treatment effects through individual-

specific slopes in the outcome equation. We further extend the estimation strategy to the models

with binary endogenous variable and sample selection models.

We also give a detailed large sample properties of the estimators. Large sample properties

of the parametric estimators are obtained by the straightforward GMM types treatment of the

two-step estimation. To obtain the large sample estimation theory of the sieve estimators, we

refer to Hahn, Liao and Ridder(2018). Hahn, Liao and Ridder(2018) provide a general unified

mathematical framework investigating the asymptotic properties of such sieve two-step estima-

tors. Since our sieve estimation procedure neatly fits into this framework, our estimator follows

these results. They also show the numerical equivalence result for the parametric variances and

sieve variances. We use this equivalence result to obtain the expressions for variances of the
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two-step sieve estimators.

The paper is organized as follows. In section 2.2, we begin with the traditional model of

endogenous switching models with constant coefficients. We describe the assumptions of con-

ditional heteroskedasticity in the reduced form and obtain the estimating equation using the

control function approach that uses conditional linear predictors. In section 2.3, we obtain both

parametric and sieve two-step estimation procedures. Section 2.4 describes the asymptotics of

our estimators and obtain the results of consistency, asymptotic normality and expressions for

the asymptotic variances using the numerical equivalence result. Section 2.5 extends our analy-

sis to other econometric models. In particular, we consider endogenous switching models with

individual-specific slopes in the outcome equation, models with a binary endogenous explana-

tory variable and sample selection models. Section 2.6 illustrate our estimation procedures to

an empirical application. Section 2.7 concludes the paper.

2.2 Constant Coefficients Endogenous Switching Regression

2.2.1 Model

Suppose that we are interested in evaluating the causal effect of a program on N individuals

indexed by i = 1,2, ...,N. The treatment status of an individual i is denoted by a binary variable

y2i that takes the value 1 if she is treated and 0 otherwise. As we will see later, y2i could denote

a binary endogenous explanatory variable or the selection indicator in sample selection models.

In the framework of switching models, y2i becomes the endogenous switching indicator for two

regimes:

y2i =


0 for Regime 0

1 for Regime 1
(2.1)

Consistent with the treatment literature, we postulate the existence of two potential out-

comes, one in each regime denoted by {y(0)1i ,y(1)1i } where the superscript denotes the regime.
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Our first assumption states that these counter-factual outcomes are linear in the parameters:

Assumption 2.2.1 For each i = 1,2, ...,N,

y(0)1i = x1iγγγ
(0)+u(0)i

y(1)1i = x1iγγγ
(1)+u(1)i

where x1i is a 1×Kx1 vector of exogenous explanatory variables that includes unity. x1i also

allows all functional forms (like log, squares) that are linear in parameters. {u(0)i ,u(1)i } are the

unobservables. We allow for different coefficients in each regime, however these coefficients are

not individual-specific. Note that our observed outcome variable give by y1i can be expressed

as:

y1i = (1− y2i)y
(0)
1i + y2iy

(1)
1i (2.2)

Substituting for the counter-factuals, we get our primary equation for the switching regres-

sion model with constant coefficients γγγ(0) and γγγ(1) as:

y1i = (1− y2i)x1iγγγ
(0)+ y2ix1iγγγ

(1)+(1− y2i)u
(0)
i + y2iu

(1)
i (2.3)

Changing the notations slightly, we re-write (2.3) as:

y1i = x1iβββ 0 + y2ix1iβββ 1 + v0i + y2iv1i (2.4)

where: βββ 0 ≡ γγγ(0), βββ 1 ≡ γγγ(1)− γγγ(0), v0i ≡ u(0)i , v1i ≡ u(1)i −u(0)i . The average treatment effect

is captured by the parameter βββ 1.

The switching indicator y2i is a binary variable modeled as:

y2i = 111[xiβββ 2− v2i ≥ 0] (2.5)

where xi is a 1×Kx vector of explanatory variables with Kx > Kx1 . We allow x1i ⊂ xi
1

1As we will see, this would serve as an exclusion restriction to ensure proper estimation.
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Heteroskedastic Errors: The key feature of our model is that we allow for the heterogene-

ity in the treatment assignment by allowing for a heteroskedastic error variance in the treatment

model.

Assumption 2.2.2 We incorporate multiplicative heteroskedasticity by assuming:

v2i = σ2(xi) ···u2i , u2i |= xi , u2i ∼N (0,1) (2.6)

where N denotes Normal Distribution and σ2(xi) is a function of all the explanatory variables.

As we will see, the form of heteroskedasticity is specified in the parametric estimation procedure

and is allowed to be of an unknown function in the semi-nonparametric estimation procedure.

Before we describe the method to obtain the estimating equations, consider the interpreta-

tion of the error structure in the model of the treatment variable. Substitution of equation (2.6)

in the reduced form equation for the treatment variable implies:

y2i = 111[xiβββ 2−σ2(xi)u2i ≥ 0] (2.7)

If we interpret u2i to be an unobserved variable that effects the probability of an individual

i to be in the treated group, then equation (2.7) suggests that the contribution of this unob-

served variable depends on the individual’s other covariates that effects his/her selection into

the program in a flexible way(as reflected in the unspecified form of the functional form of

the heteroskedasticity). For instance, consider the standard example of studying the effect of

a job training program on wages and assume that u2i is a measure of unobserved ability. A

heteroskedastic error structure in the treatment equation implies that the contribution of the un-

observed ability on the probability of being selected or participating in the job training program

depends on the individual’s socio-economic factors in a flexible way that is captured by σ2(xi).

34



2.2.2 Estimating Equation

First note that y2i is a function of (xi,v2i). Thus, to obtain the estimating equation, we first

write:

E[y1i|xi,v2i] = x1iβββ 0 + y2ix1iβββ 1 +E[v0i|xi,v2i]+ y2iE[v1i|xi,v2i] (2.8)

E[v0i|xi,v2i] and E[v1i|xi,v2i] are the correction terms that correct for the bias due to the en-

dogenous switching.

It is clear from (2.8) that we need to obtain expressions for the correction terms. We will

obtain these expressions in terms of Conditional Linear Projections (or predictions).

Conditional Linear Projections(CLPs)

Linear projections are a popular tool in econometric models to approximate the conditional ex-

pectations. In our model, we want to approximate the relationships between the unobservables

in the outcome equation and treatment equation conditional on xi as is reflected in the correction

terms. In addition, since we would allow the conditional heteroskedasticity to be of an unknown

form in the semi-nonparametric estimation, we would like to impose linearity only with respect

to v2i leaving the functional form with respect to xi unspecified. Thus, for our purposes, we will

the use conditional linear projections. Denoted by L[v ji|v2i;xi], Conditional Linear Projection

is defined as the linear projection of v ji on v2i conditional on xi, for j = {0,1}. The theory of

CLPs was first developed in Hansen and Richard(1987) in which they essentially extended the

conventional Hilbert Space analysis to the conditional framework. Wooldridge(1999) uses the

concept of CLP to develop the orthogonality conditions to obtain a distribution free estimation

of nonlinear panel data models. In the context of this paper, CLP form the key assumption:

Assumption 2.2.3 The conditional expectations are assumed to be linear in v2i conditional on
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xi:

E[v0i|v2i,xi] = L[v0i|v2i;xi]≡

(
σ02(xi)

σ2
2 (xi)

)
v2i (2.9)

E[v1i|v2i,xi] = L[v1i|v2i;xi]≡

(
σ12(xi)

σ2
2 (xi)

)
v2i (2.10)

where: σ j2(xi) ≡ Cov(v ji,v2i|xi) , j = {0,1} denote the conditional variances between the

error terms in the outcome equation and the error term in the reduced form equation for the

treatment equation.

Assumption (2.2.3) imposes linearity of E[v ji|v2i,xi], j = {0,1} but only with respect to v2i.

Since we are using linear projections conditional on xi, we still allow E[v ji|v2i,xi] to be a

flexible non-linear function of xi. To give some context to our assumption, first denote the linear

projections in an unconditional case as Lu[v ji|v2i,xi] defined as the linear projection of v ji on v2i

and xi, for j = {0,1}. We can use the unconditional linear projections to model the relationships

between the unobservables in the case where we impose the stronger assumption of (v0i,v1i,v2i)

being jointly independent of xi. In this case, Assumption 2.2.3 translate into E[v ji|v2i,xi] =

E[v ji|v2i,xi] = Lu[v ji|v2i]. Furthermore, if we relax the independence assumption but impose

linearity on xi, Assumption 2.3 becomes E[v ji|v2i,xi] = Lu[v ji|v2i,xi].

Substituting Assumption (2.2.3) in equation (2.8), we get

E[y1i|xi,v2i] = x1iβββ 0 + y2ix1iβββ 1 +

(
σ02(xi)

σ2
2 (xi)

)
v2i + y2i

(
σ12(xi)

σ2
2 (xi)

)
v2i (2.11)

Next, note that E[u2i|xi,y2i] are the Generalized Errors from the reduced form model for the

treatment variable. In our context,

E[u2i|xi,y2i] =

[
y2iλ

(
xiβββ 2

σ2(xi)

)
− (1− y2i)λ

(
− xiβββ 2

σ2(xi)

)]
≡ h(y2i,xi)
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λ (.) is the Inverse Mills Ratio and h(y2i,xi) denote the generalized residuals from the first

stage estimation.

=⇒ E[v2i|xi,y2i] = σ2(xi)E[u2i|xi,y2i]

= σ2(xi)h(y2i,xi)

We also have: E[y1i|xi,y2i] = E[E[y1i|xi,v2i]|xi,y2i]. So we get:

E[y1i|xi,y2i] = x1iβββ 0 + y2ix1iβββ 1 +

(
σ02(xi)

σ2
2 (xi)

)
E[v2i|xi,y2i]+ y2i

(
σ12(xi)

σ2
2 (xi)

)
E[v2i|xi,y2i]

=⇒

E[y1i|xi,y2i] = x1iβββ 0 + y2ix1iβββ 1 +

(
σ02(xi)

σ2(xi)

)
︸ ︷︷ ︸
≡g0(xi)

h(y2i,xi)+ y2i

(
σ12(xi)

σ2(xi)

)
︸ ︷︷ ︸
≡g1(xi)

h(y2i,xi)

We get our estimating equation as:

y1i = x1iβββ 0 + y2ix1iβββ 1 +g0(xi)h(y2i,xi)+ y2ig1(xi)h(y2i,xi)+ηi (2.12)

where E[ηi|xi,y2i] = 0 by construction.

2.3 Estimation Strategy

For estimation:

y2i = 111[xiβββ 2−σ2(xi)u2i ≥ 0]

y1i = x1iβββ 0 + y2ix1iβββ 1 +g0(xi)h(y2i,xi)+ y2ig1(xi)h(y2i,xi)+ηi

These two equations suggest a two-step estimation procedure. In the first step we estimate the

reduced form model of the treatment variable or the switching indicator. In the second step,

we will plug-in the estimates from the first stage and will estimate equation (2.12). Since we
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have terms of unknown functional form given by {σ2(xi),g0(xi),g1(xi)}, we would estimate

both the step through semi-nonparametric procedures, specifically through method of sieves.

However, one can easily impose both the distributional and functional form assumptions and

estimate both the steps through standard parametric procedures. In this section we describe

both parametric and sieve estimation of our model.

2.3.1 Parametric Estimation

To estimate the model parametrically, we will first specify the functional form of the het-

eroskedasticity in the errors in the treatment model. More specifically, we assume:

Assumption 2.3.1 For all i = 1, ...,N

σ2(xi)≡ exp(xiΠΠΠ2) (2.13)

This implies Var[v2i|xi] = [exp(xiΠΠΠ2)]
2. This will allow us to estimate the reduced form model

for the treatment using heteroskedastic probit.

First Step: The true parameters to be estimated in the first stage can be denoted by θθθ 02 ≡

{βββ 02,ΠΠΠ02} that belong to a finite dimensional parameter space ΘΘΘ2. Denoting, Φ(.) as Normal

cdf, our first stage parametric estimators θ̂θθ 2 ≡ (β̂ββ 2,Π̂ΠΠ2) solve:

θ̂θθ 2 = arg max
θθθ2∈ΘΘΘ2

N

∑
i=1

[
y2i log[Φ

(
xiβββ 2

exp(xiΠΠΠ2)

)
]+ (1− y2i) log[1−Φ

(
xiβββ 2

exp(xiΠΠΠ2)

)
]

]
(2.14)

In practice, we would run the standard het probit command in Stata. This would give us esti-

mators for βββ 2 and ΠΠΠ2 which would subsequently give us an estimator of λ (.) and h(xi,y2i).

Denote these estimators as λ̂i ≡ λ

(
x2iβ̂ββ2
σ̂2(xi)

)
, ĥi ≡ h(xi,y2i)

Second Step: Plugging in the estimator from the first stage estimation in equation (2.12):

y1i = x1iβββ 0 + y2ix1iβββ 1 +g0(xi)ĥ(y2i,xi)+ y2ig1(xi)ĥ(y2i,xi)+η1i (2.15)

In the second stage, we further specify the functional forms for the terms g0(xi) and g1(xi). The

simplest assumption is that these terms are linear:
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Assumption 2.3.2 For all i = 1, ...,N

g0(xi)≡ xiΩΩΩ02 (2.16)

g1(xi)≡ xiΩΩΩ12 (2.17)

where {ΩΩΩ02,ΩΩΩ12} are parameters.

Since we can include interactions, squares, logarithms and other functional forms of the ex-

planatory variables in xi, the above assumptions impose linearity only in terms of the pa-

rameters. We denote the full list of true parameters to be estimated in the second stage as

θθθ 01 ≡ {βββ 00,βββ 01,ΩΩΩ0,01,ΩΩΩ0,12} that belong to the finite dimensional parameter space ΘΘΘ1. In the

second step, we can estimate the parameters by running a simple least squares. More specifi-

cally, the estimator θ̂θθ 1 solves:

θ̂θθ 1 = arg min
θθθ1∈ΘΘΘ1

N

∑
i=1

[
y1i−x1iβββ 0− y2ix1iβββ 1− ĥixiΩΩΩ02− y2iĥixiΩΩΩ12

]2 (2.18)

2.3.2 Sieve Estimation

The primary feature of our model is that we do not have any assumptions on the functional

forms for the heteroskedasticity of the error terms. We estimate the unknown functions using

the sieve estimation procedures. We need to impose some regularity conditions on the unknown

functions to be able to estimate them. More specifically, we need to specify the smoothness of

the unknown functions to be estimated. Define h ≡ [σ2(xi),g0(xi),g1(xi)] to be the collection

of all the unknown functions in our model. We assume that h belongs to a Hölder class. We

give the technical definition of the Hölder Class in the Section 2.7.

Hölder Class of functions are the most popular in the non-parametric estimation procedures in

econometrics because they can be easily estimated by linear sieves. A sieve is called a finite-

dimensional linear sieve if it is a linear span of finitely many basis functions. Power series,

Fourier series, splines, B-splines and wavelets are some of the most popular linear sieves used

in sieve estimation.
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The estimation in the semi-nonparametric setting also takes place in two steps. Since in this

case, we do not impose any functional form assumptions on {σ2(xi),g0(xi),g1(xi)}, our pa-

rameters to be estimated no longer lie in the finite dimensional parameter space ΘΘΘ≡ {θθθ 1,θθθ 2}.

Now that we are optimizing on an infinite dimensional space, we will use sieve estimation meth-

ods to obtain the estimators in both the stages. The preliminary step in both the first and second

stage estimation will be to define the basis functions and the sieve spaces.

First Step: In the first stage, our true parameters to be estimated are {βββ 20,σ20(xi)} that lie in

the infinite dimensional parameter space A2. For sieve estimation, we define the finite dimen-

sional sieve space as:

A2N = B2X

{
σ2(.) = exp(SKσ ,N (xi)ΠΠΠN) : ΠΠΠN ∈ RKσ ,N

}
(2.19)

where X denotes the tensor product. SKσ ,N (xi) ≡ {s1(.), ...,sKσ ,N (.)} is 1×Kσ ,N vector of

basis functions. Thus we get: ααα2N ≡ (βββ 2,σ2N) ∈ A2N which is our finite dimensional sieve

space. Next, denoting, Φ(.) as Normal cdf, our estimators are:

α̂αα2N = arg max
ααα2N∈A2N

N

∑
i=1

y2i log[Φ

(
xiβββ 2

exp(SKσ ,N (xi)ΠΠΠN)

)
]+

(1− y2i) log[1−Φ

(
xiβββ 2

exp(SKσ ,N (xi)ΠΠΠN)

)
] (2.20)

This would give us estimators for βββ 20 and σ2
20(xi) which would subsequently give us an

estimator of λ (.) and h(xi,y2i). Denote the first stage estimators as β̂ββ 2 , σ̂2
2 (xi) , λ̂i ≡

λ

(
x2iβ̂ββ2
σ̂2(xi)

)
, ĥi ≡ ĥ(xi,y2i).

Second Step: For the second stage we have the sieve space for {βββ 0,βββ 1,g0(xi),g1(xi)}

A1N = B1X

{
g0(.) = G0,Kg0,N

(xi)ΩΩΩN,02:ΩΩΩN,02∈R
Kg0,N

}
X
{
g1(.) = G1,Kg1,N

(xi)ΩΩΩN,12 : ΩΩΩN,12 ∈ RKg1,N
}
= B1X G0NX G1N (2.21)

where G0,Kg0,N
(xi) ≡ {g0,1(.), ...,g0,Kg0,N

(.)} is 1× Kg0,N vector of basis functions and

G1,Kg1,N
(xi) ≡ {g1,1(.), ...,g1,Kg1,N

(.)} is 1×Kg1,N vector of basis functions. Plugging in
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equation (12):

y1i = x1iβββ 0 + y2ix1iβββ 1 +G0,Kg0,N
(xi)ΩΩΩN,02ĥi + y2iG1,Kg1,N

(xi)ΩΩΩN,12ĥi +η1i (2.22)

As suggested by equation (21), in the second stage the estima-

tor α̂αα1N ≡ {β̂ββ 0, β̂ββ 1, ĝ0(xi), ĝ1(xi)} ∈ A 1N where {ĝ0(xi), ĝ1(xi)} ≡

{G0,Kg0,N
(xi)Ω̂ΩΩN,02,G1,Kg1,N

(xi)Ω̂ΩΩN,12} solve the following optimization problem:

α̂αα1N =arg min
ααα1N∈A 1N

N

∑
i=1

[y1i−x1iβββ 0− y2ix1iβββ 1

−G0,Kg0,N
(xi)ΩΩΩN,02ĥi− y2iG1,Kg1,N

(xi)ΩΩΩN,12ĥi]
2

(2.23)

In practice, this amounts to running regression y1i on x1i, y2ix1i, ĥiG0,Kg0,N
(xi),

ĥiy2iG1,Kg1,N
(xi).

2.4 Asymptotics

This section describes the asymptotic properties of our two-step estimators, both in parametric

and sieve estimation. An important consideration in a two-step estimation procedure is whether

and how the estimation error of the first step estimators affects the asymptotic variance of the

second step estimators. In the parametric case, the methods of adjusting the asymptotic variance

of the second step estimator follows the standard procedures given in Wooldridge(2002). In the

sieve case, we apply the general results of Hahn,Liao and Ridder(2018) wherein the statistical

properties of sieve two step estimators are derived. We further apply the numerical equivalence

results of Hahn,Liao and Ridder(2018) due to which we can treat the two-step sieve estimation

as if it were a standard two-step parametric estimation and thus conduct a practical inference on

the parameters.
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2.4.1 Asymptotic Properties of the Parametric Estimators

In the parametric setting, the consistency of the parameters follows under finite moment con-

ditions. Valid inference of the parameters in the second step should take into account the in-

clusion of the generalized residuals obtained in the first step. More specifically, we can obtain

the asymptotic distribution and the variance analytically by formulating the two-step estima-

tion method in an one-step method of moment framework. The asymptotic distribution of our

parametric estimators is given as:

√
N

(θ̂θθ 1−θθθ 01)

(θ̂θθ 2−θθθ 02)

→d N (000,V) , V≡ A−1BA′−1 (2.24)

We derive the analytical expression for the asymptotic variance of the parametric estimator in

the Appendix. Alternatively, we can also run a bootstrap routine.

2.4.2 Asymptotic properties of the Sieve Estimators

In this section, we would specify the asymptotics of our two-step sieve M estimators and the

assumptions needed for these properties to hold. There is a rich literature on the the asymptotic

properties of 2 step semi-nonparametric estimators. Two-step sieve M estimators have been

studied in great detail in Hahn, Liao and Ridder (2018). They derive the asymptotic properties

such as consistency and the asymptotic distribution of the estimators. Our estimation problem

is very well behaved and our model falls neatly into their framework. Thus all the calculations

and properties are easily adapted here and we map their results by verifying the conditions.

Assumption 2.4.1 We assume that for i = 1,2,...,N: {y1i,y2i,xi} is i.i.d

Assumption 2.4.2 In the first step, we assume that ααα20≡{βββ 20,σ
2
20(xi)} ∈A 2 is the identified

as an unique solution to supααα2∈A 2
E[Q2(Z2i,ααα2)] where

Q2(Z2i,ααα2)≡ y2i log[Φ
(

xiβββ 2
σ2(xi)

)
]+ (1− y2i) log[1−Φ

(
xiβββ 2

σ2(xi)

)
] (2.25)
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We estimate ααα20 ∈ A 2 by α̂αα2N ∈ A 2N where A 2N is a finite dimensional sieve space

defined as:

A 2N = B2X

{
σ2(.) = exp(SKσ ,N (xi)ΠΠΠN) : ΠΠΠN ∈ RKσ

N
}

= B2X S 2N

where the dim(A 2N) = dim(B2)+dim(S 2N) = Kx +Kσ ,N ≡ K2.

Assumption 2.4.3 Sieve Spaces in the First Step

(i) The sieve spaces A 2n are compact under ||.||A 2

(ii) A 2n ⊆A 2 n+1 ⊆ ...⊆A 2∀n≥ 1

(iii) ∃πnααα20 ∈A 2n 3 ||πnααα20−ααα20||A 2
→ 0 as n→ ∞

α̂αα2N is defined as:

1
N

N

∑
i=1

Q2(Z2i, α̂αα2N)≥ supααα2N∈A 2N
1
N

N

∑
i=1

Q2(Z2i,ααα2N)−Op(ε
2
2N) (2.26)

where ε2N is the magnitude of the optimization error. Define Z2i ≡ (y2i,xi).

Let ~βββ 10 ≡ (βββ 00,βββ 10)
′, g0(xi) ≡ (g00(xi),g10(xi)). Further define~x1i ≡ (x1i,y2ix1i),~hhhi ≡

~hhh(ααα02;Z2i)≡ [h(ααα02;Z2i),y2ih(ααα02;Z2i)]
′

Assumption 2.4.4 In the second stage, we assume that ααα10 ≡ (~βββ 10,g0) ∈ A 1 is the unique

solution to supααα1∈A 1
E[Q1(Z1i,ααα1,ααα20)] where

Q1(Z1i,ααα1,ααα20)≡−
[y1i− (~x1i

~βββ 1 +~g0(xi)~hhhi)]
2

2
(2.27)
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We estimate ααα10 ∈A 1 by α̂αα1N ∈A 1N where A 1N is a finite dimensional sieve space defined

as

A 1N = B1X

{
g0(.) = G0,Kg0,N

(xi)ΩΩΩN,02 :ΩΩΩN,02 ∈ RKg0,N
}

X

{
g1(.) = G1,Kg1,N

(xi)ΩΩΩN,12 :ΩΩΩN,12 ∈ RKg1,N
}

= B1X G N

where the dim(A 1N) = dim(B1)+dim(G N) = Kx1 +Kg0,N +Kg1,N ≡ K1

Assumption 2.4.5 Sieve Spaces in the Second Step

(i) The sieve spaces A 1n are compact under ||.||A 1

(ii) A 1n ⊆A 1 n+1 ⊆ ...⊆A 1∀n≥ 1

(iii) ∃πnααα10 ∈A 1n 3 ||πnααα10−ααα10||A 1
→ 0 as n→ ∞

α̂αα1N is defined as:

1
N

N

∑
i=1

Q1(Z1i, α̂αα1N , α̂αα2N)≥ supααα1N∈A 1N
1
N

N

∑
i=1

Q1(Z1i,ααα1N , α̂αα2N)−Op(ε
2
1N) (2.28)

where ε1N is the magnitude of the optimization error.

2.4.2.1 Consistency

The following theorem provide the consistency result of our two step sieve estimators.

Theorem 4 (a) Under Assumptions 2.4.1, 2.4.2 and 2.4.3 the first stage estimator α̂αα2N is

consistent for ααα20 under the pseudo metric ||.||A 2
defined on A 2. The convergence rate

is defined as δ∗2N .

(b) Under Assumptions 2.4.1, 2.4.4 and 2.4.5 the second step estimator α̂αα1N is consistent for

ααα10 under the pseudo metric ||.||A 1
defined on A 1. The convergence rate is defined as

δ∗1N .
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Given the convergence rates, we can define the shrinking neighborhoods and assume that

• α̂αα2N belongs to a shrinking neighborhood of ααα20 with probability approaching 1 defined

as:

N 2N ≡ {ααα2N ∈A 2N : ||ααα2N−ααα20||A 2
≤ δ2N}

where δ2N ≡ δ∗2N log(log(N)) = o(1).

• α̂αα1N belongs to a shrinking neighborhood of ααα10 with probability approaching 1 defined

as:

N 1N ≡ {ααα1N ∈A 1N : ||ααα1N−ααα10||A 1
≤ δ1N}

where δ1N ≡ δ∗1N log(log(N)) = o(1)

The assumptions for the consistency of the first step sieve estimator correspond to the theo-

retical conditions in Theorm 3.1 in Chen(3.1). Since the likelihood function in the first step is a

CDF, it satisfies he continuous and thus is sufficient for consistency.

The consistency of the second step sieve estimator takes into account that the first step sieve

estimator is consistent. Since our first step sieve estimator is essentially an interaction term

in the second step estimating equation, we have a fairly straightforward least square criterion

function in the second step that satisfies the continuity and uniform convergence conditions.

2.4.2.2 Asymptotic Normality

The asymptotic normality results follow the general asymptotic theory developed by Hahn,Liao

and Ridder(2018). We denote α̂ααN ≡ {α̂αα1N , α̂αα2N} which is an estimator of ααα0 ≡ {ααα10,ααα20} ∈

A ≡A 1X A 2 We are interested in the asymptotic properties of a linear functional ρ(α̂αα) which

is an estimator of ρ(ααα0). We defined the shrinking neighborhoods for our first stage and

second stage estimators as N 2N ,N 1N respectively. Based on these definitions, we can as-

sume that α̂ααN belongs to the shrinking neighborhood defined as: N N ≡ {(ααα1N ,ααα2N) : ααα1N ∈

N 1N and ααα2N ∈N 2N}, with probability approaching one.
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Riesz Representer for the First Step: Suppose that for all ααα2N ∈N 2N , we can approxi-

mate Q2(Z2i,ααα2N)−Q2(Z2i,ααα20) by ∆2(Z2i,ααα20)[ααα2N−ααα20] such that ∆2(Z2i,ααα20)[ααα2N−

ααα20] is linear in ααα2N −ααα20. Since ααα20 is a unique maximizer of E[Q2(Z2i,ααα2)] on A 2, we

can let:

−∂E[∆2(Z2i,ααα20 + τ[ααα2N−ααα20])[ααα2N−ααα20]]

∂τ

∣∣∣∣
τ=0
≡ ||ααα2N−ααα20||2A 2

which defines a norm on N 2N . Let H 2 be the closed linear span of N 2N −{ααα20} under

||.||A 2
which is a Hilbert Space under ||.||A 2

with the corresponding inner product
〈
., .
〉

defined

as: 〈
a2N , b2N

〉
A 2

= −∂E [∆2(Z2i,ααα20 + τb2N)[a2N ]]

∂τ

∣∣∣∣
τ=0

for any a1N ,b2N ∈H 2 Typically, we will have

∆2(Z2i,ααα20)[a2N ] =
∂Q2(Z2N ,ααα20 + τa2N)

∂τ

∣∣∣∣ and

〈
a2N , b2N

〉
A 2

= −E
[

∂∆2(Z2i,ααα20 + τb2N)[a2N ]

∂τ

∣∣∣∣
τ=0

]
(2.29)

if the derivative exists and we can interchange the derivative and expectation. We assume that

there is a linear functional ∂2ρ(ααα0)[.] : H 2→ R such that

∂2ρ(ααα0)[a2] =
∂ρ(ααα10,ααα20 + τa2)

∂τ

∣∣∣∣
τ=0

for all a2 ∈H 2 (2.30)

Let ααα20,N denote the projection of ααα20 on A 2N under the norm ||.||A 2
. Let H 2N denote the

Hilbert space generated by N 2N −{ααα20,N}. Then dim(H 2N) = dim(A 2N) < ∞. By Riesz

Representation Theorem, there exists a sieve Riesz Representer a∗2N
∈H 2N such that

∂2ρ(ααα0)[a2] =
〈
a∗2N

,a2
〉
A 2
∀a2 ∈H 2N and ||a∗2N

||2A 2
= sup

0 6=a2∈H 2N

∣∣∣∂2ρ(ααα0)[a2]
∣∣∣2

||a2||2A 2

.

Riesz Representer for the Second Step: Suppose that for all ααα1N ∈ N 1N , we can ap-

proximate Q1(Z1i,ααα1N ,ααα20)−Q2(Z2i,ααα10,ααα20) by ∆1(Z1i,ααα10,ααα20)[ααα1N−ααα10] such that
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∆1(Z1i,ααα10,ααα20)[ααα1N −ααα10] is linear in ααα1N −ααα10. Since ααα10 is a unique maximizer of

E[Q1(Z1i,ααα1,ααα20)] on A 1, we can let:

−∂E[∆1(Z1i,ααα10 + τ[ααα1N−ααα10],ααα20)[ααα1N−ααα10]]

∂τ

∣∣∣∣
τ=0
≡ ||ααα1N−ααα10||2A 1

which defines a norm on N 1N . Let H 1 be the closed linear span of N 1N −{ααα10} under

||.||A 1
which is a Hilbert Space under ||.||A 1

with the corresponding inner product
〈
., .
〉
A 1

defined as: 〈
a1N , b1N

〉
A 1

= −∂E [∆1(Z1i,ααα10 + τb1N ,ααα20)[a1N ]]

∂τ

∣∣∣∣
τ=0

for any a1N ,b1N ∈H 1 Typically, we will have

∆1(Z1i,ααα0)[a1N ] =
∂Q1(Z1i,ααα10 + τa1N ,ααα20)

∂τ

∣∣∣∣
and

〈
a1N , b1N

〉
A 1

= −E
[

∂∆1(Z1i,ααα10 + τb1N ,ααα20)[a1N ]

∂τ

∣∣∣∣
τ=0

]
(2.31)

if the derivative exists and we can interchange the derivative and expectation. We assume that

there is a linear functional ∂1ρ(ααα0)[.] : H 1→ R such that

∂1ρ(ααα0)[a1] =
∂ρ(ααα10 + τa1,ααα20)

∂τ

∣∣∣∣
τ=0

for all a1 ∈H 1 (2.32)

Let ααα10,N denote the projection of ααα10 on A 1N under the norm ||.||A 1
. Let H 1N denote the

Hilbert space generated by N 1N −{ααα10,N}. Then dim(H 1N) = dim(A 1N) < ∞. By Riesz

Representation Theorem, there exists a sieve Riesz Representer a∗1N
∈H 1N such that

∂1ρ(ααα0)[a1] =
〈
a∗1N

,a1
〉
A 1
∀a1 ∈H 1N and ||a∗1N

||2A 1
= sup

0 6=a1∈H 1N

∣∣∣∂1ρ(ααα0)[a1]
∣∣∣2

||a1||2A 1

.

Let H = H 1X H 2. For any a= (a1,a2) ∈H , we denote

∂αρ(ααα0)[a] = ∂1ρ(ααα0)[a1]+∂2ρ(ααα0)[a2] (2.33)

To evaluate the effect of first step sieve estimation on the asymptotic variance of the second

step sieve estimator, we define

F1(ααα0)[a1] =
∂E[Q1(Z1i,ααα10 + τ1a1,ααα20)]

∂τ1

∣∣∣∣∣
τ1=0

for any a1 ∈H 1 (2.34)
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and

F(ααα0)[a1,a2] =
∂ [F1(ααα10,ααα20 + τ2a2)]

∂τ2

∣∣∣∣∣
τ2=0,

for any a2 ∈H 2 (2.35)

Assume that F(ααα0)[., .] is a bilinear functional on H . Given the Riesz Representer a∗1N
, define

a∗FN
∈H 2N as:

F(ααα0)[a2N ,a
∗
1N

] =
〈
a2N ,a

∗
FN

〉
A 2

for any a2N ∈H 2N

Finally, we define:

||V ∗N ||
2 ≡Var

∑
N
i=1

[
∆2(Z2i,ααα20)[a

∗
2N

]+∆2(Z2i,ααα20)[a
∗
FN

]+∆1(Z1i,ααα0)[a
∗
1N

]
]

N1/2



Theorem 5 Under the assumptions of Theorem 3.1 in Hahn, Liao and Ridder(2018), the two

step estimator satisfies:
√

N
[
ρ(α̂αα1N , α̂αα2N)−ρ(ααα10,N ,ααα20,N)

]
||V ∗N ||

→d N (0,1) (2.36)
√

N [ρ(α̂αα1N , α̂αα2N)−ρ(ααα10,ααα20)]

||V ∗N ||
→d N (0,1) (2.37)

2.4.2.3 Consistent Variance Estimator

To obtain a method of inference, we now need a consistent estimator of ||V ∗N ||. In this section

we obtain the sample analog of ||V ∗N || which would be a consistent estimator. First assume that

our data is iid and both the criterion functions are twice pathwise differentiable with respect to

ααα2N and (ααα1N ,ααα2N) in N N . Next we define

∆2(Z2i,ααα2N)[a2N ]≡
∂Q2(Z2i,ααα2N + τa2N)

∂τ

∣∣∣∣∣
τ=0

and H2(Z2i,ααα2N)[a2N ,b2N ]≡
∂∆2(Z2i,ααα2N + τa2N)[b2N ]

∂τ

∣∣∣∣∣
τ=0

(2.38)
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for all (a2N ,b2N) ∈H 2N .

Similarly, define

∆1(Z1i,ααα1N ,ααα2N)[a2N ]≡
∂Q1(Z1i,ααα1N + τa1N ,ααα2N)

∂τ

∣∣∣∣∣
τ=0

and H1(Z1i,ααα1N ,ααα2N)[a2N ,b2N ]≡
∂∆1(Z1i,ααα1N + τa1N ,ααα2N)[b2N ]

∂τ

∣∣∣∣∣
τ=0

(2.39)

for all (a1N ,b1N) ∈H 1N .

Empirical Riesz representer â∗2N
is defined as:

∂ρ2(α̂ααN)[a2N ] =
〈
a2N , â

∗
2N

〉
N,A 2

for all a2N ∈H 2N for any a2N ∈H 2N . (2.40)

where 〈
a2N ,b2N

〉
N,A 2

≡− 1
N

N

∑
i=1

H2(Z2i, α̂αα2N)[a2N ,b2N ] (2.41)

Similarly, we define Empirical Riesz representer â∗1N
as:

∂1ρ(α̂ααN)[a1N ] =
〈
a1N , â

∗
1N

〉
N,A 1

for all a1N ∈H 1N for any a1N ∈H 1N . (2.42)

where 〈
a1N ,b1N

〉
N,A 1

≡− 1
N

N

∑
i=1

H2(Z1i, α̂ααN)[a1N ,b1N ] (2.43)

and we define â∗FN
as:

FN(α̂ααN)[â
∗
1N ,a2N ] =

〈
â∗FN

,a2N
〉

N,A 2
for all a2N ∈H 2N (2.44)

where

FN(α̂ααN)[â
∗
1N

,a2N ] =
1
N

N

∑
i=1

∂∆1(Z1i, α̂αα1N , α̂αα2N + τa2N)[â
∗
1N

]

∂τ

∣∣∣∣∣
τ=0

(2.45)

A simple sample analog of ||V ∗N || is given as:

||V̂ ∗N ||
2 =

1
N

N

∑
i=1

∣∣∣∣∣∆2(Z2i, α̂αα2N)[â
∗
2N

+ â∗FN
]+∆1(Z1i, α̂αα1N , α̂αα2N)[â

∗
1N

]

∣∣∣∣∣
2

(2.46)
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Theorem 6 Hahn Liao and Ridder(2018) establish the following results in Theorem 4.1:∣∣∣∣∣ ||V̂ ∗N ||||V ∗N ||
−1

∣∣∣∣∣= op(1) (2.47)

Therefore, √
N [ρ(α̂αα1N , α̂αα2N)−ρ(ααα10,ααα20)]

||V̂ ∗N ||
→d N (0,1) (2.48)

2.4.2.4 Explicit Expressions in our model

Let

〈
a2N ,b2N

〉
A 2

= R2(Z2i,ααα20)[a2N ,b2N ]≡ E [−H2(Z2i,ααα20)[a2N ,b2N ]] for all a2N ,b2N ∈H 2〈
a1N ,b1N

〉
A 1

= R1(Z1i,ααα0)[a1N ,b1N ]≡ E [−H1(Z1i,ααα0)[a1N ,b1N ]] for all a1N ,b1N ∈H 1

In the first step, define S̄≡

 ~111Kx

S′2N(.)

 where~111Kx is a Kx×1 vector of ones and S(.) are the

1×Kσ
N vector of basis functions in S 2N . Now for the first step, we will obtain the following

expressions:

∆2(Z2i,ααα20)[S̄] =

 x′iq̇qq2(Z2i,ααα20)

−S(.)′ixiβββ 2q̇qq2(Z2i,ααα20)



q̇qq2i(Z2i,ααα20) =

y2i−Φ

(
xiβββ2

σ2
20(xi)

)
[

Φ

(
xiβββ2

σ2
20(xi)

)][
1−Φ

(
xiβββ2

σ2
20(xi)

)]φ

(
xiβββ 2

σ2
20(xi)

)
1

σ2
20(xi)

E(−H2(Z2i,ααα20)[S̄, S̄]) =

 E[x′ixi(q̈qq2(Z2i,ααα20))] E[−x′iS(.)
′
i(xiβββ 2q̈qq2(Z2i,ααα20))]

E[−S(.)′ixi(xiβββ 2q̈qq2(Z2i,ααα20))] E[−S(.)′iS(.)((xiβββ 2)
2q̈qq2(Z2i,ααα20))]



q̈qq2(Z2i,ααα20) =

[
φ

(
xiβββ2

σ2
20(xi)

)]2

[
Φ

(
xiβββ2

σ2
20(xi)

)][
1−Φ

(
xiβββ2

σ2
20(xi)

)]
[σ2

20(xi)]2

a∗2N
= S̄[R2(Z2i,ααα20)[S̄, S̄]]

−1
∂2ρ(ααα0)[S̄]
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In the second step, define Ḡ≡

~111Kx1

G′N(.)

 where~111Kx1
is a Kx×1 vector of ones and G(.) are

the 1×Kg
N vector of basis functions in G N . Further define ∂~hhhi ≡

∂~hhhi
∂ααα20

Now for the second

step, we will obtain the following expressions:

∆1(Z1i,ααα0)[Ḡ] =

 ~x′1iηi

G(.)′i
~hhhiηi


E(−H1(Z1i,ααα0)[Ḡ, Ḡ]) =

 E[~x′1i~x1i] E[−~x′iG(.)′i~hhhi]

E[−G(.)′i~xi~hhhi] E[−G(.)′iG(.)(~hhhi)
2]


F(ααα0)[S̄, Ḡ] =

(
~x′i1G(.)∂~hhhiS̄ G(.)′G(.)∂~hhhiS̄

)
a∗1N

= Ḡ[R1(Z1i,ααα0)[Ḡ, Ḡ]]
−1

∂1ρ(ααα0)[Ḡ]

a∗FN
= S̄[R2(Z2i,ααα20)[S̄, S̄]]

−1F(ααα0)[S̄,a
∗
1N

]

2.4.3 Numerical Equivalence

It has been well established in the theoretical econometrics literature that the in many cases

of semi-nonparametric estimation, one can obtain the semi-nonparametric variances using the

standard formulas derived in the parametric estimation. These numerical equivalence also hold

true in the estimation strategies that involve two step estimation procedures. This greatly simpli-

fies the estimation of the semiparametric asymptotic variance that takes account of the first step

estimation. In this section, we will use this numerical equivalence result to derive the expression

of the asymptotic variances of our sieve estimators.

Recall that in our model, at each step we have unknown functions forms: σ2(xi) in the first

stage and {g0(xi),g1(xi)} in the second stage. In the sieve estimation procedure, we construct

the sieve spaces that are defined in section 2.2. Suppose that we make the incorrect Assumption

that the unknown functions in both the steps take the parametric form. In particular, suppose
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that for the misspecification, we have the following models for the functions:

σ20(.) = S(.)ΠΠΠσ2

g0(.) = G0(.)ΩΩΩg0

g1(.) = G1(.)ΩΩΩg1

where the terms are defined as in section 2.2 except that we have now suppressed the super-

scripts for notational simplicity. The most important thing under this misspecification is that

the dimensions of these terms in the parametric approximation is equal to the number of basis

functions in the sieve estimation. Under these misspecification, the criterion functions become:

Q1(xi,βββ 0,βββ 1,G0(.)ΩΩΩg0 ,G1(.)ΩΩΩg1;S(.)ΠΠΠσ2)≡ Q1

Q2(xi,βββ 2,S(.)ΠΠΠσ2)≡ Q2

Define

βββQ1
≡ {βββ 0,βββ 1,ΩΩΩg0 ,ΩΩΩg1}

βββQ1
≡ {βββ 2,ΠΠΠσ2}

To solve for the asymptotic variances, we cast the optimization problem into the GMM frame-

work: 
∂Q1

∂ β̂ββQ1
∂Q2

∂ β̂ββQ2

=

000

000

 (2.49)

The asymptotic result is as follows:

√
N

β̂ββQ1
−βββQ1

β̂ββQ2
−βββQ2

→d N (000,V) (2.50)
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where:

V≡ A−1BA−1

A≡ E


∂2Q1

∂βββQ1∂βββQ1

∂2Q1
∂βββQ1∂βββQ2

∂2Q2
∂βββQ2∂βββQ1

∂2Q2
∂βββQ2∂βββQ2

≡
Q11 Q12

Q21 Q22



B≡ E


∂Q1

∂βββQ1
[

∂Q1
∂βββQ1

]′
∂Q1

∂βββQ1
[

∂Q2
∂βββQ2

]′

∂Q2
∂βββQ2

[
∂Q1

∂βββQ1
]′

∂Q2
∂βββQ2

[
∂Q2

∂βββQ2
]′

≡
B11 B12

B21 B22



Using the results from the partitioned matrix, we can further extract the asymptotic variance of
√

N(β̂ββQ1
−βββQ1

) as:
√

N(β̂ββQ1
−βββQ1

)→d N (000,VβββQ1
) (2.51)

where

VβββQ1
≡ A11B11A

′
11 +A12B21A

′
11 +A11B12A

′
21 +A12B22A

′
11

A11 ≡
(
Q11−Q12Q

−1
22 Q21

)−1

A12 ≡−Q11Q12

(
Q22−Q21Q

−1
11 Q12

)−1

A21 ≡−Q22Q21

(
Q11−Q12Q

−1
22 Q21

)−1

The estimators for these expressions are simply the sample analogue of the population terms.

We denote the estimator for VβββQ1
as V̂βββQ1

The numerical equivalence result implies that

||V̂ ∗N ||
2 = V̂βββQ1

(2.52)
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2.5 Empirical Illustration

We illustrate our methods using the subset of the data on student performance and catholic

school attendance from Altonji, Elder and Taber(2005). We begin with the the model

math12i = α1 +x1iβββ 0 +δcathhsi + cathhsix1iβββ 1 + v0i + cathhsiv1i (2.53)

where x1i includes mother’s education, father’s education and the log of family income. Our

primary parameter of interest is δ which the coefficient on cathhs. The instruments for cathhs,

which is a binary indicator for attending a Catholic high school, is distance from nearest

Catholic high school divided into five bins. Thus the switching indicator cathhs modeled as:

catthsi = 1[α2 +xiβββ 2− v2i > 0] (2.54)

where xi contains x1i and four distance dummy variables.

Preliminary Results2: According to our estimation procedure, we do the estimation in two

steps. In the first step, we estimate the binary response model for the cathhs and obtain the

generalised residuals denoted by ĝr. In the second step, we run the estimating equation that

contains the corrections terms accounting for the endogeneity of cathhs. The results of the

second step estimation are given in Table 1.

The four columns of Table 1 contain the second step estimation results from four estimation

procedures. In the first column, we assume that the model for the switching indicator cathhs is

homoskedastic and the model for the outcome variable math12 contains constant coefficients.

Thus we run a simple probit command in the first step, obtain the generalized residuals and the

run a simple OLS of

math12i on 1,cathhsi,x1i,cathhsi× (x1i−x1i), ĝr2,cathhsi× ĝr2 (2.55)

2All the estimation is done in Stata 13 and the standard errors are based on 1000 bootstrap
replications.
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where centering x1i ensures that the coefficient on cathhs gives the average treatment effect. The

estimates in the first column are similar to those obtained in Wooldridge(2015). The average

treatment effect obtained in population is negative and is not statistically different from zero.

In the second model we again assume that the model for the switching indicator cathhs is

homoskedastic, so the first step is again probit. However, now we allow for random coefficients

on all the explanatory variables. So in the second stage, we run OLS of

math12i on 1,cathhsi,x1i,cathhsi× (x1i−x1i), ĝr2,cathhsi× ĝr2,

ĝr2× (x1i−x1i),cathhs× ĝr2× (x1i−x1i) (2.56)

The results of the second step estimation are given in column 2 of Table 1 and replicate the

results obtained in Wooldridge(2015): the average treatment effect in the enitre population is

essentially zero.

The third model now introduced heteroskedasticity in the reduced form model for the

switching indicator cathhs. As a result, our estimating equation in the second step now takes the

form of Equation(12). We estimate the model by both parametric and sieve estimation in both

steps. Column 3 of Table 1 gives the results from the parametric estimation. The first step was

a simple hetprobit of cathhs on {1,xi} with the heteroskedastic function being a function of xi.

In the second step, the unknown functions are assumed to take the form as given in Assumption

3.2. As before, center the explanatory variables to make the coefficient on cathhs consistent

for the average treatment effect. We see that the average treatment is again not significantly

different from zero.

Finally, in column 4 of Table 1, we estimate both the first step estimation and the second

step estimation through sieve estimation. In the first step, the sieve space for the heteroskedastic

variance function σ2
2 (xi) is given as:

S 2N =
{

exp(SKσ ,N (xi)ΠΠΠN) : ΠΠΠN ∈ RKσ
N
}

(2.57)
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where SKσ ,N (xi) is a vector of basis functions that contains the elements of the second order

polynomials of vector xi. Considering this sieve space, we estimate the first stage model using

a flexible het probit to obtain the estimates for the generalized residuals. In the second step, we

define the sieve spaces for the unknown functions g0(),g1(.) as follows:

G 0N =

{
G0,Kg0,N

(xi)ΩΩΩN,02 :ΩΩΩN,02 ∈ RKg0,N
}
,G 1N =

{
G1,Kg1,N

(xi)ΩΩΩN,12 :ΩΩΩN,12 ∈ RKg1,N
}

(2.58)

where both G0,Kg0,N
(xi),G0,Kg1,N

(xi) are each vector of basis functions that contains the ele-

ments of the second order polynomials of vector x1i. After defining the sieve spaces for the

unknown functions, we run a flexible OLS in the second step estimation with the explanatory

variables appropiately demeaned. The results from the second step estimation are given in the

column 4 of Table 1. We once again find that the average treatment of attending a catholic high

school does not have a significant effect on the scores.
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Table 2.1: Empirical Illustration Results

(1) (2) (3) (4)
Explanatory
Variables

Hom_Const Hom_Rand Het_para Het_Sieve

cathhs -0.953 0.277 0.847 0.482
(1.747) (2.054) (2.133) (2.200)

mthed 0.709*** 0.619*** 0.599*** 0.653***
(0.0642) (0.0801) (0.0788) (0.0811)

f thed 0.876*** 0.871*** 0.877*** 0.886***
(0.0583) (0.0725) (0.0716) (0.0731)

l f aminc 1.858*** 1.821*** 1.856*** 1.776***
(0.149) (0.179) (0.177) (0.184)

cathhs ×
(mthed −
mthed)

-0.0851 0.149 -0.677 -0.357

(0.262) (0.972) (0.882) (0.972)
cathhs ×
( f thed− f thed)

0.184 -0.541 -0.143 0.387

(0.238) (0.891) (0.894) (0.931)
cathhs ×
(l f aminc −
l f aminc)

-0.691 -1.968 -2.445 -4.435*

(0.634) (2.092) (2.200) (2.457)

Observations 7,444 7,444 7,444 7,444
R-squared 0.185 0.186 0.186 0.189
Bootstrapped Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.1 (cont’d)
(1) (2) (3) (4)

Explanatory
Variables

Hom_Const Hom_Rand Het_para Het_Sieve

ĝr -1.523* -0.592 -0.603 -0.652
(0.797) (0.895) (0.924) (0.914)

cathhs× ĝr 3.308** 1.744 1.417 1.750
(1.306) (1.489) (1.540) (1.584)

ĝr × (mthed −
mthed)

-0.915* -1.121** 11.32**

(0.484) (0.448) (5.436)
ĝr × ( f thed −
f thed)

-0.0478 -0.00513 2.846

(0.453) (0.440) (5.285)
ĝr× (l f aminc−
l f aminc)

-0.519 -0.158 -21.22**

(1.191) (1.106) (9.967)
ĝr × (mthed −
mthed)2

-0.457***

(0.165)
ĝr × (mthed ×
f thed −
mthed× f thed)

0.140

(0.191)

Observations 7,444 7,444 7,444 7,444
R-squared 0.185 0.186 0.186 0.189
Bootstrapped Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.1 (cont’d)
(1) (2) (3) (4)

Explanatory
Variables

Hom_Const Hom_Rand Het_para Het_Sieve

ĝr × (mthed ×
l f aminc −
mthed× l f aminc)

-0.140

(0.494)
ĝr × ( f thed −
f thed)2

-0.317**

(0.139)
ĝr × ( f thed ×
l f aminc −
f thed× l f aminc)

0.381

(0.507)
ĝr× (l f aminc−
l f aminc)2

0.847

(0.534)
cathhs × ĝr ×
(mthed −
mthed)

0.826 1.554** -12.08**

(0.774) (0.715) (5.883)
cathhs × ĝr ×
( f thed− f thed)

0.536 0.255 -4.156

(0.703) (0.701) (5.831)
cathhs × ĝr ×
(l f aminc −
l f aminc)

1.251 1.184 22.28**

(1.646) (1.667) (10.66)

Observations 7,444 7,444 7,444 7,444
R-squared 0.185 0.186 0.186 0.189
Bootstrapped Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.1 (cont’d)
(1) (2) (3) (4)

Explanatory
Variables

Hom_Const Hom_Rand Het_para Het_Sieve

cathhs × ĝr ×
(motheduc −
motheduc)2

0.502***

(0.181)
cathhs × ĝr ×
(motheduc ×
f atheduc −
motheduc× f atheduc)

-0.137

(0.211)
cathhs × ĝr ×
(motheduc ×
l f aminc −
motheduc× l f aminc)

0.110

(0.547)
cathhs × ĝr ×
( f atheduc −
f atheduc)2

0.273*

(0.150)
cathhs × ĝr ×
( f atheduc ×
l f aminc −
f atheduc× l f aminc)

-0.159

(0.576)
cathhs × ĝr ×
(l f aminc −
l f aminc)2

-0.898

(0.591)
intercept 11.18*** 12.87*** 12.69*** 12.71***

(1.381) (1.649) (1.653) (1.706)

Observations 7,444 7,444 7,444 7,444
R-squared 0.185 0.186 0.186 0.189
Bootstrapped Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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We also compute the average treatment effect on the untreated and the average treatment

effect on the treated using the method given in Wooldridge(2015) for the heteroskedastic sieve

estimation by running separate regressions. The results are given in Table 2. The estimates

gives us a deeper insight into the reason leading to average treatment effect in the population

being not statistically different from zero. As one can see, the ATE on the Treated is positive

and significantly different from zero. However, the ATE on the Untreated is not significantly

different from zero. In this dataset, though the ATE on the Untreated is numerically small, the

fact that the only 452 observations are treated compared to 6992 untreated observations makes

the average treatment effect in the population not significantly different from zero.

Table 2.2: Treatment Effects

Coefficient
Observed

Std. Error
Bootstrap

Z P >z confidence interval]
Normal Based [95 %

on the Treated
ATE

2.774772 1.319732 2.10 0.036 .1881439 5.3614

on the Untreated
ATE

.2969452 2.088351 0.14 0.887 -3.796147 4.390037

ATE .4473989 1.97412 0.23 0.821 -3.421804 4.316602
Treated Observations = 452
Untreated Observations = 6992

2.6 Technical Details

2.6.1 Asymptotic Variance for the Parametric Estimators

The asymptotic variance in the parametric setting can be obtained by using the M estimation

methods. We will first define the notations in the parametric setting. We have the following

models:

• wi ≡ {xi,y2ix1i,h(y2i,xi)xi,y2ih(y2i,xi)xi}
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• θθθ 1 ≡ {βββ 0,βββ 1,ΩΩΩ02,ΩΩΩ12
}

• θθθ 2 ≡ {βββ 2,ΠΠΠ}

• θθθ ≡ {θθθ 1,θθθ 2}

Next, we will define the estimation problem in the M estimation framework:

q(w1,θθθ 1;θθθ 2)≡


q1(w1,θθθ 1,θθθ 2)

q2(w1,θθθ 2)

q3(w1,θθθ 2)

 (2.59)

where:

q1(w1,θθθ 1;θθθ 2)≡−
[
y1i−x1iβββ 0− y2ix1iβββ 1− ĥixiΩΩΩ01− y2iĥixiΩΩΩ01

]
w′i ≡−ηiw′i (2.60)

q2(w1,θθθ 2)≡
y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]φ

(
xiβββ 2

σ2(xi,ΠΠΠ)

)
x′i

σ2(xi,ΠΠΠ)
(2.61)

q3(w1,θθθ 2)≡
y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]φ

(
xiβββ 2

σ2(xi,ΠΠΠ)

)
x̃ix
′
i (2.62)

where x̃i ≡ [xiβββ 2][−1][exp(xiΠΠΠ)]−1

The vector q(.) denotes the first order conditions for our estimation criterion functions that

implies:

E


q1(wi,θθθ 01;θθθ 02)

q2(wi,θθθ 02)

q3(wi,θθθ 02)

=


0

0

0

 (2.63)

The asymptotic distribution of our parametric estimators is given as:

√
N

(θ̂θθ 1−θθθ 01)

(θ̂θθ 2−θθθ 02)

→d N (000,V) (2.64)
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where:

V≡ A−1BA′−1

A≡ E
[

∂q(wi,θθθ 1;θθθ 2)

∂θθθ

]
B≡ E[q(wi,θθθ 1;θθθ 2)q(wi,θθθ 1;θθθ 2)

′]

In addition, we define σ2
2 (xi,Π)≡Var(vi2|xi) In the rest of this subsection, we will define the

terms for A,B.

∂q(wi,θθθ 1;θθθ 2)

∂θθθ
=


∂q1(wi,θθθ1;θθθ2)

∂θθθ1

∂q1(wi,θθθ1;θθθ2)
∂βββ2

∂q1(wi,θθθ1;θθθ2)
∂ΠΠΠ

∂q2(wi,θθθ2)
∂θθθ1

∂q2(wi,θθθ2)
∂βββ2

∂q2(wi,θθθ2)
∂ΠΠΠ

∂q3(wi,θθθ2)
∂θθθ1

∂q3(wi,θθθ2)
∂βββ2

∂q3(wi,θθθ2)
∂ΠΠΠ


Next,

∂q1(wi,θθθ 1;θθθ 2)

∂θθθ 1
= w′iwi

∂q1(wi,θθθ 1;θθθ 2)

∂θθθ 2
= w′i000 000 λd

(
xiβββ2

σ2(xi,ΠΠΠ)

) x′i
σ2(xi,ΠΠΠ)

xiΩΩΩ02 y2iλ
d
(

xiβββ2
σ2(xi,ΠΠΠ)

) x′i
σ2(xi,ΠΠΠ)

xiΩΩΩ12

∂q1(wi,θθθ 1;θθθ 2)

∂ΠΠΠ
= w′i000 000 λd

(
xiβββ2

σ2(xi,ΠΠΠ)

)
x̃ixiΩΩΩ02 y2iλ

d
(

xiβββ2
σ2(xi,ΠΠΠ)

)
x̃ixiΩΩΩ12
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∂q2(wi,θθθ 2)

∂θθθ 1
= 000

∂q2(wi,θθθ 2)

∂βββ 2
=

−
[
φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]2 x′ixi
σ2

2 (xi,ΠΠΠ)[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)] + q̃2(wi,θθθ 2)


∂q2(wi,θθθ 2)

∂ΠΠΠ
=

−
[
φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]2 x̃ixix
′
i

σ2
2 (xi,ΠΠΠ)[

Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)] + q̃2(wi,θθθ 2)


∂q3(wi,θθθ 2)

∂θθθ 1
= 000

∂q3(wi,θθθ 2)

∂θθθ 2
=

−
[
φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]2 x̃ixix
′
i

σ2
2 (xi,ΠΠΠ)[

Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)] + q̃3(wi,θθθ 2)


∂q3(wi,θθθ 2)

∂ΠΠΠ
=

−
[
φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]2 x̃2
i xix
′
i

σ2
2 (xi,ΠΠΠ)[

Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)] + q̃3(wi,θθθ 2)


where λd(.) denotes the first derivative of the inverse mills ratio. In addition,

E[q̃2(wi,θθθ 2)] and E[q̃3(wi,θθθ 2)] are functions of wi,θθθ 2 that will become equal to zero when

we will take expectations because they contain [y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
]

Next we define B= E[q(wi,θθθ 1;θθθ 2)q(wi,θθθ 1;θθθ 2)
′]

= E




q1(wi,θθθ 1;θθθ 2)

q2(wi,θθθ 2)

q3(wi,θθθ 2)


(

q1(wi,θθθ 1;θθθ 2)
′ q2(wi,θθθ 2)

′ q3(wi,θθθ 2)
′
)

= E




q1q′1 q1q′2 q1q′3

q2q′1 q2q′2 q2q′3

q3q′1 q3q′2 q3q′3



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Note that we are the suppressing the arguments of the function for expositional simplicity

q1q′1 = ηiw′iwi

q1q′2 =−ηiw′ixi

φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
σ2(xi,ΠΠΠ)

y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]
q1q′3 =−ηiw′ixix̃iφ

(
xiβββ 2

σ2(xi,ΠΠΠ)

) y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]
q2q′1 =

y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]φ

(
xiβββ 2

σ2(xi,ΠΠΠ)

)
x′i

σ2(xi,ΠΠΠ)
wiηi

q2q′2 =

 y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]


2φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
σ2(xi,ΠΠΠ)


2

x′ixi

q2q′3 =

 y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]


2 [
φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]2

σ2(xi,ΠΠΠ)
x̃ix
′
ixi

q3q′1 =

 y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]
φ

(
xiβββ 2

σ2(xi,ΠΠΠ)

)
x̃ix
′
iwiηi

q3q′2 =

 y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]


2 [
φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]2

σ2(xi,ΠΠΠ)
x̃ix
′
ixi

q3q′3 =

 y2i−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)
[
Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)][
1−Φ

(
xiβββ2

σ2(xi,ΠΠΠ)

)]


2[
φ

(
xiβββ 2

σ2(xi,ΠΠΠ)

)]2
x̃2

i x′ixi

2.6.2 Holder class

Assume that X is the support of x and is compact.3 Denote x≡ (x1, ...,xK), where the dimension

dim(x) =K,. Let 0< γ ≤ 1. Further define |x|e≡∑
K
k=1(x

2
k)

1/2 to be the Euclidean Norm. Next,

3We suppress the subscript i to simplify the notations.
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we define f : X→R to be a real valued function.

• Hölder Condition: f are said to satisfy a Hölder condition with exponent γ if

∃c > 0 such that ∀{x,y} ∈ X, |f(x)− f(y)| ≤ c|x−y|γe

Next, let α ≡ (α1, ...,αK),[α] ≡ α1 + ...+αK . A Differential Operator is defined as Dα ≡
∂ [α]

∂x
α1
1 ...∂x

αK
K

. Next, let m be a non-negative integer and let p = m+ γ .

• f is said to be p- smooth if (a) f is m times continuously differentiable, (b), and (c) Dα f

satisfies Hölder condition for exponent γ for all α with [α] = m

• Hölder Ball: Define Hölder class to be the class of p -smooth functions f , denoted by

Λp(X). Define Cm(X) to be a space of m- times continuously differentiable functions f.

Hölder ball with smoothness p = m+ γ is defined as:

Λ
p
c (X) =

[
f ∈ Cm(X) :sup[α]≤m supx∈X|Dα f(x)| ≤ c;

sup[α]=m supx,y∈X,x6=y
|Dα f(x)−Dα f(x)|

|x−y|γe
≤ c

]

The key assumption in our model is that we need to assume that the unknown functions that

need to be estimated belong to the Hölder class. Formally stating, we assume that

h ∈ Λ
p
c (X) (2.65)

2.7 Application of the Estimation Strategy to other econometric models

The estimation strategy of this paper can be applied to the other econometric models as well.

In this paper, we describe how our estimation strategy can be extended to three econometric

models. The first model that we consider incorporates individual specific slope in the outcome

equation along with heteroskedastic reduced form model for the treatment variable. The sec-

ond model that we consider is a standard sample selection model, with heteroskedastic errors.
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Finally, we consider the econometric model in which the primary equation has a binary endoge-

nous variable, that is has a heteroskedastic reduced form. We show how our estimation strategy,

both parameteric and sieve estimation can be extended for the estimation of parameters of these

models.

2.7.1 Heterogeneous Coefficients Model

The first model that we consider is an endogenous switching model with heterogeneous coeffi-

cients in the primary equation for the outcome variable. As before, we also allow the reduced

form equation of the treatment variable to have conditional heteroskedastic errors. Allowing

individual specific slopes in the primary outcome equation allows us to capture heterogeneity in

the treatment effects. However, individual-specific slopes also become another source that con-

tributes to the endogeneity of the treatment. As we will see, conditional linear predictors allow

us to model this endogeneity in a similar way as before. This allows to incorporate substantial

amount of heterogeneity in our econometric model.

Model: We define the primary outcome equation for each i = 1, ...,N as:

Assumption 2.7.1

y1i = x1ibbb0i + y2ix1ibbb1i + v0i + y2iv1i (2.66)

Where bbbgi ≡
(

b1,gi . . . bK1,gi

)′
denote the individual specific slopes in each regime g ∈

{0,1}. The primary outcome equation is derived in the similar manner as before using the

counterfactual framework but with individual specific slopes:

y(0)1i = x1iγγγ
(0)
i +u(0)i

y(1)1i = x1iγγγ
(1)
i +u(1)i

y1i = (1− y2i)y
(0)
1i + y2iy

(1)
1i

In the random coefficient framework, our primary parameters of interest are the average

population effects denoted by βββ g ≡ E[bgi]. Thus we have βββ g = bgi + dddgi where dddgi ≡
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(
d1,gi . . . dK1,gi

)′
with E[dddgi] = 0 for g = {0,1} by construction. Substituting, the out-

come equation (43) becomes:

y1i = x1iβββ 0 + y2ix1iβββ 1 +x1iddd0i + v0i + y2ix1iddd1i + y2iv1i (2.67)

The switching indicator y2i is a binary variable modeled as before in Assumption 2.2.

Estimation Equation: To obtain the estimating equation, we first write:

E[y1i|xi,v2i] = x1iβββ 0 + y2ix1iβββ 1 +x1iE[ddd0i|xi,v2i]

+ y2ix1iE[ddd1i|xi,v2i]+E[v0i|xi,v2i]+ y2iE[v1i|xi,v2i] (2.68)

The expressions for E[v0i|xi,v2i] and E[v1i|xi,u2i] can be obtain from Assumption 2.2.3. In

this estimating equation, we have two additional terms. These additional terms stem from the

correlation of the heterogeneous coefficients and the endogenous treatment. These terms are

E[ddd0i|xi,v2i] and E[ddd1i|xi,v2i]. To obtain the appropriate expressions for these additonal cor-

rection terms, we extend the CLP approximation to

Assumption 2.7.2 For i = 1, ...N and for g = {0,1},

E[dgi|v2i,xi] = L[dgi|v2i,xi] =

(
σσσdg2(xi)

σ2
2 (xi)

)
v2i (2.69)

where

σσσdddg2(xi)≡
(

σdg12(xi) σdg22(xi) . . . σdgK1
2(xi)

)′
and σdg j2(xi)≡Cov(dgi, j,v2i|xi)

(2.70)

for g = {0,1} and j = 1,2, ...,K1. Substituting the expressions for the correction terms we get:

E[y1i|xi,v2i] = x1iβββ 0

+ y2ix1iβββ 1 +x1i

(
σσσddd02(xi)

σ2
2 (xi)

)
v2i + y2ix1i

(
σσσddd12(xi)

σ2
2 (xi)

)
v2i +

(
σ02(xi)

σ2
2 (xi)

)
v2i

+ y2i

(
σ12(xi)

σ2
2 (xi)

)
v2i (2.71)
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Next,using the similar calculations as in section 2.3, we get:

E[y1i|xi,v2i] = x1iβββ 0 + y2ix1iβββ 1+x1i

(
σσσddd02(xi)

σ2(xi)

)
h(y2i,xi)+ y2ix1i

(
σσσddd12(xi)

σ2(xi)

)
h(y2i,xi)

+

(
σ02(xi)

σ2(xi)

)
h(y2i,xi)+ y2i

(
σ12(xi)

σ2(xi)

)
h(y2i,xi)

where h(y2i,xi) is the expression for generalized residuals as defined previously. Next, define:

fdddg(xi)≡


fdddg1

(xi)

. . .

fdddgK1
(xi)

≡


σdg12(xi)

σ2(xi)
...

σdgK1
2(xi)

σ2(xi)

 for g = {0,1}

fvg ≡
(

σg2(xi)

σ2(xi)

)
for g = {0,1}

Using this notation, we get our final estimating equation as:

y1i = x1iβββ 0 + y2ix1iβββ 1 +x1ifddd0
(xi)h(y2i,xi)

+ y2ix1ifddd1
(xi)h(y2i,xi)+ fv0(xi)h(y2i,xi)+ y2ifv1(xi)h(y2i,xi)+ηi (2.72)

where E[ηi|xi,y2i] = 0 by construction.

Parametric Estimation: The estimation will be done in two steps as before with the first

step being a hetprobit with Assumption 3.1. We will obtain the estimator for h(y2i,xi). In the

second step, we will have to specify the functional forms for the additional terms fddd0
(xi) and

fddd1
(xi). This in turn means that we would be specifying the functional forms for fdddg j

(xi) for

each g = {0,1} and for all j = {1, ...,K1}. The simplest functional form is a linear in parameter

specification:

Assumption 2.7.3 For all i = 1, ...,N, for each g = {0,1}, for all j = 1, ...,K1 assume

fdddg j
(xi) = xiωωωdg j (2.73)
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where each ωωωdg j is a K×1 vector of coefficients. This implies:

fdddg(xi) = XiΩΩΩdg, where Xi ≡



xi 000 . . . . . .

000 xi . . . 000
... . . . . . . ...

000 000 . . . xi


and ΩΩΩdg ≡



ωωωdg1

ωωωdg2
...

ωωωdgK1


Substituting the functional forms of the additional terms with the terms defined in Assumption

3.1 and the estimators from the first step, we have the following parametric estimating equation:

y1i = x1iβββ 0 + y2ix1iβββ 1 +x1iXiΩΩΩd0
ĥi + y2ix1iXiΩΩΩd1

ĥi + ĥixiΩΩΩ01+ y2iĥixiΩΩΩ01+ηi (2.74)

In the second step, equation (51) is then estimated using least squares.

Sieve Estimation: The first step of sieve estimation also follows the same procedure as in

section 2.2 with defining the sieve space as A2N and then estimating the result MLE. In the

second stage, we extend the sieve space to accommodate the additional functional forms arising

due to the presence of individual specific slopes.The sieve spaces for {fv0(xi), fv1(xi)} would

be similar to those defined for {g0(xi),g1(xi)}. The sieve spaces for {fddd0
(xi), fddd1

(xi)} would

also be straightforward, but a little more notationally involved.

In particular, first define sieve spaces for each component of fdddg(xi):fdddg j
(xi) = Dg j(xi)ωωωN,dg j ≡ D

K
dg j
N

g (xi)ωωωN,dg j : ωωωN,dg j ∈ RK
dg j
N

 (2.75)

for each j = {1, ...,K1} and for g = {0,1}. D
K
dg j
N

g (.) is a 1×K
dg j
N vector of basis functions.

Next, let K
dddg
N ≡ (K

dg1
N +K

dg2
N + ...+K

dgK1
N ) and define:

Dg(xi)≡



Dg1(xi) 000 . . . . . .

000 Dg2(xi) . . . 000
... . . . . . . ...

000 000 . . . DgK1(xi)


(K1×K

dddg
N )

and ΩΩΩN,dg ≡



ωωωN,dg1

ωωωN,dg2
...

ωωωN,dgK1


(K

dddg
N ×1)
(2.76)
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We have the sieve space for fdddg(xi) for g = {0,1},{
fdddg(xi) = Dg(xi)ΩΩΩN,dg :ΩΩΩN,dg ∈ RK

dddg
N

}
(2.77)

In particular, our sieve space in the second stage for the parameters

{βββ 0,βββ 1, fddd0
(xi), fddd1

(xi), fv0(xi), fv1(xi)} is now defined as:

A 1N = B1X

{
fv0(.) = G

K
v0
N

0 (xi)ΩΩΩN,02 :ΩΩΩN,02 ∈ RK
v0
N

}
X{

fv1(.) = G
K

v1
N

1 (xi)ΩΩΩN,12 :ΩΩΩN,12 ∈ RK
v1
N

}

X

{
fddd0

(xi) = D0(xi)ΩΩΩN,d0
:ΩΩΩN,d0

∈ RK
ddd1
N

}
X{

fddd1
(xi) = D1(xi)ΩΩΩN,d1

:ΩΩΩN,d1
∈ RK

ddd1
N

}
(2.78)

where G
K

v0
N

0 (xi) ≡

{
g1

0(.), ...,g
K

v0
N

0 (.)

}
is a 1×K

v0
N vector of basis functions , G

K
v1
N

1 (xi) ≡{
g1

1(.), ...,g
K

v1
N

0 (.)

}
is a 1×K

v1
N vector of basis functions. Plugging in equation(49) and sup-

pressing the superscripts:

y1i = x1iβββ 0 + y2ix1iβββ 1 +x1iD0(xi)ΩΩΩN,d0
ĥi + y2ix1iD1(xi)ΩΩΩN,d1

ĥi

+G0(xi)ΩΩΩN,02ĥi + y2iG1(xi)ΩΩΩN,12ĥi +ηi (2.79)

As suggested by equation (56), in the second step, we obtain the estimators by running regres-

sion y1i on x1i,y2ix1i,x1iD0(xi)ĥi,y2ix1iD1(xi)ĥi,G0(xi)ĥi,y2iG1(xi)ĥi

2.7.2 Binary Endogenous Variable

The next model that we consider are the models with a binary endogenous variable. Adaptation

of the estimating strategy helps to incorporate heterogeneity in the reduced form by allowing

heteroskedastic errors.
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Model: The model comprises of a primary equation for the outcome variable y1i that is

assumed to be linear in parameters:

Assumption 2.7.4 For all i = 1, ...,N

y1i = x1iβββ 1 + y2iβy + v1i (2.80)

where y2i is a binary endogenous variable. x1i are the exogenous variables. We also have a

linear reduced form model for y2i given as:

Assumption 2.7.5

y2i = 111[xiβββ 2− v2i < 0], (2.81)

where xi is a vector of all the exogenous variables that includes x1i. The formal version for the

exogeneity is given as:

Assumption 2.7.6

E[v1i|xi] = 0 (2.82)

The next assumption defines the heteroskedastic structure to the errors in the reduced form:

v2i ≡ σ2(xi)u2i (2.83)

u2i |= xi, u2i ∼N (0,1) (2.84)

Finally, we use conditional linear predictors to model the endogeneity of y2i through control

function methods:

Assumption 2.7.7

E[v1i|v2i;xi] = L[v1i|v2i;xi] =
σ12(xi)

σ2
2 (xi)

v2i (2.85)

This Assumption helps us to obtain the correction term that we need to obtain the estimating

equation.
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Estimating Equation: To obtain the estimating equation, we follow the similar algorithm

as given in section 2.2:

E[y1i|xi,y2i] = E[E[y1i|xi,v2i]|xi,y2i] = x1iβββ 1 + y2iβy +E[E[v1i|xi,v2i]|xi,y2i]

= x1iβββ 1 + y2iβy +

(
σ12(xi)

σ2(xi)

)
︸ ︷︷ ︸
≡g(xi)

h(xi,y2i)

E[y1i|xi,y2i] = x1iβββ 1 + y2iβy +g(xi)h(xi,y2i)

where h(xi,y2i) is the generalized residuals from the first stage estimation of the reduced form

model for y2i. Thus we get our estimating equation as:

y1i = x1iβββ 1 + y2iβy +g(xi)h(y2i,xi)+ηi (2.86)

with E[ηi|xi,y2i] = 0 by construction. Estimation of equation (2.63) is analogous to the two step

estimation described in the previous sections. We can either impose the parametric Assumptions

by specifying the functional forms of the σ2(xi) and g(xi) or can perform the sieve estimation

in both the steps.

Parametric Estimation: In the first step we define again specify the functional form for

σ2(xi) as in Assumption 3.3 and will run the hetprobit and obtain the estimator for the general-

ized residuals. The second step involves specifying the functional form for the g(xi):

Assumption 2.7.8 Assume that for all i = 1, ...,N,

g(xi) = xiΩΩΩ12 (2.87)

Next we just substitute the functional form and the estimators from the first step and obtain:

y1i = x1iβββ 1 + y2iβy +xiΩΩΩ12ĥi +ηi (2.88)

that is solved by regressing y1i on x1i, y2i, ĥixi.

Sieve Estimation: The firs step in sieve estimation again begins with define the sieve space

A2N as done previously and running the resulting hetprobit In the second step, the sieve
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space is defined as A 1N = B1 ×
{
g(xi) = G

Kg
N (xi)ΩΩΩ12,N :ΩΩΩ12,N ∈ RKg

N

}
where G

Kg
N (xi) ≡

{g1(.), ...,g
Kg

N (.)} is 1×Kg
N vector of basis functions. Substituting the first stage estimators

and the basis functions, we get

y1i = x1iβββ 1 + y2iβy +G
Kg

N (xi)ΩΩΩ12ĥi +ηi (2.89)

and the parameters are obtained by regressing y1i on x1i, y2i, ĥiG
Kg

N (xi).

2.7.3 Sample Selection Model

Finally we extend our estimation strategy to sample selection models with heteroskedasticity.

Sample selection models are one of the leading applications for the semi and nonparameteric

estimation techniques. However, as Vella(1998) notes, heteroskedasticity in sample selection

models still remains an unexplored issue. Since heteroskedasticity in sample selection mod-

els manifests itself in the model for the selection indicator that is usually non-linear, it cre-

ates inconsistency. On the other hand, identifying and correcting the issues arising due to het-

eroskedasticity require restrictive distribution assumptions (Vella(1998)).

Heteroskedastic sample selection models have been previously addressed by Donald(1995)

and Chen and Khan(2003). Donald(1995) permits heteroskedasticity of an unknown form and

maintains the assumption of bivariate normality of the errors. He suggests a two-step estimation

procedure that allows a non-parametric estimation of the model. However, as we will see,

his method becomes complicated due to necessity of a trimming rule. Chen and Khan(2003)

propose a three-step estimator that corrects for heteroskedastic sample selection bias. Their

estimation procedure involves nonparametric estimation of propensity scores in the first step and

nonparametric quantile estimation of the conditional interquartile range of the outcome equation

dependent variable for the selected observations in the second step. The first two steps yield a

reweighted outcome equation that is partially linear that is analogous Donald’s(1995) and is thus

estimated using the appropriate methods. While innovative in nature, their three-step estimation
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strategy requires multiple smoothing parameters, including those for the quantile estimation in

the second step and a trimming function in the third step.

The estimation procedure suggested in this section, addresses these issues by proposing a

simple two-step estimation that corrects for the sample selection bias and is straightforward to

apply. We incorporates heteroskedasticity in the sample selection models that could either be

given a functional form in the parametric estimation or could be of an unknown form in the

sieve estimation. As before, we model the endogeniety arising in the model due to the sample

selection bias using the conditional linear predictors.

Model: The model comprises of two latent variables: a continuous variable y∗1i that yields

the outcome variable and a latent variable y∗2i that yields the binary selection indicator. Both

latent variables are assumed to be linear in parameters:

Assumption 2.7.9 For all i = 1, ...,N

y∗1i = x1iβββ 1 + v1i (2.90)

y∗2i = xiβββ 1− v2i, x1i ⊂ xi (2.91)

=⇒

y1i = y2i • y∗1i (2.92)

y2i = 111[xiβββ 2− v2i < 0] (2.93)

In other words,

y2i =


1 if and only if {xi,y1i}, is fully observed

0, otherwise
(2.94)

We incorporate conditional heteroskedasticity of the multiplicative form:

Assumption 2.7.10

v2i ≡ σ2(xi)u2i, u2i |= xi, u2i ∼N (0,1) (2.95)
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The endogeneity of sample selection is reflected in the relationship between the latent errors of

the outcome equation and the selection equation. The relationship is modeled using conditional

linear predictors that restricts the linearity only in terms of v2i which allowing xi to enter in an

unspecified functional form.

Assumption 2.7.11

E[v1i|v2i;xi] = L[v1i|v2i;xi] =
σ12(xi)

σ2
2 (xi)

v2i (2.96)

where y2i is now the selection indicator. The nonrandom selection is reflected in equation (53).

Estimating Equation: To obtain the estimating equation, first note that since y1i is observed

only when y2i = 1, our key equation in sample selection models is E[y1i|xi,y2i = 1]. Thus our

algorithm changes slightly to:

E[y1i|xi,y2i = 1] = E[E[y1i|xi,v2i]|xi,y2i = 1]

= x1iβββ 1 +E[E[v1i|xi,v2i]|xi,y2i = 1]

= x1iβββ 1 +

(
σ12(xi)

σ2(xi)

)
︸ ︷︷ ︸
≡g(xi)

λ

(
x2iβββ 2
σ2(xi)

)

E[y1i|xi,y2i = 1] = x1iβββ 1 +g(xi)λ

(
x2iβββ 2
σ2(xi)

)
with λ (.) being the Inverse Mills Ratio.

Thus we get our estimating equation as:

y1i = x1iβββ 1 +g(xi)λ

(
x2iβββ 2
σ2(xi)

)
+ηi (2.97)

with E[ηi|xi,y2i = 1] = 0 by construction.

Estimating Procedure: The estimating strategy is exactly as before for both parametric and

sieve estimation with two main differences. First, in the first step we need to obtain only the es-

timator for λ

(
xiβββ2

σ2(xi)

)
≡ λ̂i and not the full generalized residual. Secondly, in the second stage,

we will run the regression only using the observations with y2i = 1 for obvious reasons. To give
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some context to our estimation strategy, we compare it with that proposed by Donald(1995). To

obtain the estimation procedure, Donald(1995) divides equation (74) by λi ≡ λ

(
x2iβββ2
σ2(xi)

)
that

yields:
y1i
λi

=
xi
λi

βββ 1 +g(xi)+
ηi
λi

Replacing λi with λ̂i, yields a partially linear model that is then and then estimated using a

differencing procedure analogous to Robinson(1988). In Donald(1995) the first stage esti-

mation is done using nonparametric methods and λi is constructed by inverting the standard

normal density function that is only defined if the arguments of the density function are be-

tween zero and one. In addition, λ̂i the enters the estimating equation in the denominator. As

Donald(1995) notes, this requires a trimming function that complicates the estimation. In the

semi-nonparametric estimation procedure suggested in this paper requires no such methods and

directly estimates the unknown function in the estimating equation using sieve methods.

2.8 Concluding Remarks

This paper proposes a two-step sieve control function estimation of endogenous switching mod-

els. We allow the probit reduced form model for the binary switching indicator to incorpo-

rate heterogeniety by allowing for a conditional heteroskedastic error term. Allowing the het-

eroskedastic function to be of an unknown form, we also relax the distributional assumption

in the reduced form. Conditional Linear Projections help us to obtain the corrections terms

in the estimating equation in the environment of conditional heteroskedasticity and unspeci-

fied distributional assumptions. Though the focus of the paper is the sieve estimation, we also

suggest how one can still incorporate an heteroskedastic reduced form and estimate the model

parametrically. We also extend the model to the endogenous switching models with individual

specific slopes in the outcome equation, linear models with a binary endogenous variable and

sample selection models. The extension to the sample selection model serves as an important
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contribution to the limited literature of sample selection models with heteroskedasticity.
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CHAPTER 3

CONTROL FUNCTION ESTIMATION OF SPATIAL ERROR MODELS WITH
ENDOGENEITY

3.1 Introduction

Cross-sectional dependence creates an interesting and challenging environment for estimation

and inference in applied econometrics. In the context of time-series data, we have several

tractable procedures for estimation with correlated observations because of the uni-directional

nature of dependence that renders a natural ordering to the data: outcomes in the past can affect

the outcomes in the future but not vice-versa. In the cross-sectional context, on the other hand,

the lack of such natural ordering and structure restricts the use of general forms of dependence

that are routinely allowed in time-series data.

Allowing the observations to exhibit spatial dependence is an important way to model cross-

sectional dependence among economic agents. In the framework of spatial dependence, the

individuals are interdependent due to their locations in an Euclidean space and their proximity

with each other other. This proximity is measured as the economic distance between the indi-

viduals as described in Conley (1999) that can be defined within the framework of the specific

empirical application.

In this paper we consider the R2 Euclidean space for the sake of exposition. Empirical ques-

tions in the field of regional and urban economics, agricultural and environmental economics,

industrial organization and as well as public health and epidemiology- all are concerned with

data that exhibits significant spatial dependence due to the geographical location of the obser-

vations. Specifically, consider the hedonic price models in the housing markets. Hedonic price

models are regression models where the price of a commodity is regressed on its attributes.

In housing markets, the price of a house depends not only on its own attributes such as floor

plan etc but also on the location of the house. The spatial dependence is exhibited in the un-
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observed (or poorly measured) neighborhood variables. These spatial omitted neighborhood

variables enter the unobservables of the regression model inducing spatial dependence in the

errors. This serves as the key motivation behind Spatial Error Models (SEM) that provide one

framework to capture spatial dependence in the data. Spatial dependence can also be modeled

in the framework of Spatial Lag Models were the outcome variables are assumed to exhibit

spatial correlation.

In this paper, we consider the Spatial Error Models. Thus, we posit that the spatial de-

pendence in the data is captured in the unobservables of the models. This entails having a

non-spherical variance-covariance matrix of the errors. The spatial dependence is accounted

for in estimation of SEMs by incorporating the correlations between the observations in the es-

timation procedure. This entails accounting for all the pairwise correlations of the spatial data

in a framework similar to Generalized Least Squares (GLS) estimation. However, in a large

sample we have a huge error variance-covariance matrix and this makes the efficient GLS-type

estimation procedure very cumbersome to implement.

In this paper, we contribute to the literature by obtaining an estimation procedure for linear

regression models with spatially correlated errors and endogenous variables. Our estimation

procedure achieves efficiency gains by taking account of the spatial correlations between the

observations. We provide a computationally simple estimation procedure by dividing the data

into groups based on the distances between them and then accounting for only the correlation

between the observations within a group while ignoring the correlations between the observa-

tions between the groups. The intuition is based on The First Law of Geography, according to

Tobler (1970): "everything is related to everything else, but near things are more related than

distant things". Since correlations within a group accounts for the most correlation in the data,

we get significant efficiency gains while simultaneously avoiding the tedious calculations of the

traditional GLS estimation with the variance-covariance matrix for the entire data. This is also

motivated by the nature in which spatial data is collected: data is often collected from different
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geographical regions leading to a natural clustering or division of the observations. However the

estimation is different from the estimation procedures with clustered data because with spatial

data, the correlations within a group are the function of the distance between the observations

in a group. In addition, unlike the estimation procedures with clustered data, we do not impose

the independence assumptions between different groups.

Lu and Wooldridge (2017) consider estimation of linear econometric models with spatial

data in which they describe an estimation procedure by first dividing the observations into

groups and then using only the within-group information while ignoring the across-group cor-

relations. For the linear models, they obtain a Quasi-GLS estimation procedure that uses a

tapered error covariance matrix as opposed to using the full error covariance matrix used in the

traditional GLS estimation. Estimation for the non-linear models can be done in the similar way

to obtain Generalized Estimating Equations that account for the spatial correlations in the data

(Lu 2013). Wang, Iglesias and Wooldridge (2013) also suggest a similar estimation procedure

for spatial Probit models in which the observations are divided by pairwise groups and then

bivariate normal distributions are specified within each group.

In Lu and Wooldridge (2017) framework of estimation of models with spatial data, all the

covariates are assumed to be uncorrelated with the unobservables. However, in practice, ex-

planatory variables are often correlated with the errors leading to endogeneity that causes in-

consistencies of estimators. For example, consider the hedonic housing price models where

one is interested in studying the causal relationship between school quality and house prices.

Nguyen-Hoang and Yinger (2011) give a detailed account of the studies that have explored

the impact of school quality on housing values. In this empirical question; the school qual-

ity, often measured by some indicator of overall school achievement scores; is correlated with

the omitted neighborhood variables giving rise to the problem of endogeneity. In addition,the

houses located near one another to have similar unobservable attributes and this motivates the

spatial error framework of spatial dependence. This serves as an important motivation behind
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the design of the econometric model of this paper.

In this paper, we consider linear models with spatially correlated data and allow some co-

variates to be endogenous and implement control function method to correct for the endogene-

ity. Our estimation strategy divides the observations into groups based on the distance between

them and then incorporates the correlation structure of individuals within a group. The group

structure is also conducive to obtaining additional instruments to correct for the endogeneity.

Specifically, we recognize that for each individual within a group, the exogenous variables of

his/her within-group neighbors are also eligible instruments for that individual. We use these

additional instruments in the traditional 2SLS estimation to obtain what we call Grouped Two

Stage Least Square estimator. We also describe how the groupwise spatial dependence can be

incorporated with these additional instruments in an a Generalized Instrument Variable frame-

work to obtain a Spatial Generalized Instrument Variable estimator. Finally we describe

a two step control function estimation method in which we explicitly model the endogeneity

through a control function assumption that is imposed for each group. This control function

assumption also incorporates the groupwise spatial dependence and gives us a Spatial Control

Function estimator.

Spatial econometrics has experienced some major advancements in the asymptotic theory

research. Asymptotic theory for estimation with dependent processes establishes laws of large

numbers and central limit theorems by imposing some structure to the cross-sectional depen-

dence and regularity conditions. In practice, this entails clearly defining the nature of spatial de-

pendence and then either deriving or applying the asymptotic results. Conley (1999) establishes

law of large numbers and central limit theorems for stationary mixing processes. Jenish and

Prucha (2009) consider the spatial asymptotics for more general form of dependence including

nonstationary mixing processes. Jenish and Prucha (2012) derive the law of large numbers and

central limit theorems for near-epoch dependent random fields. Under this general framework,

they also establish the consistency and asymptotic normality results for the GMM estimators. In
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this paper, the asymptotic results are described under the framework of near-epoch dependence

to give it the most general treatment.

There are two framework under which spatial asymptotic theory can be developed. Under

increasing-domain asymptotics, we assume that the number of observations increase and the

minimum distance between the observations is bounded below by a positive constant. In con-

trast, we have the fixed-domain or infill aymptotics, wherein, the observations become increas-

ingly dense in a fixed and bounded region. While there is a vast literature establishing several

asymptotic results of consistency and normality in the increasing-domain framework (Mardia

and Marshall (1984), Cressie and Lahiri (1993), Lee (2004), Conley (1999)) ; under the fixed-

domain framework, as the interactions between the observations increase with the sample size,

it is known that Maximum Likelihood estimators are inconsistent (Lee (2004)). We obtain the

asymptotic properties of the estimators under the increasing-domain framework.

For the asymptotic properties in our context, we assume that as the number of observations

increases, the number of groups increases while the group size remains fixed. We further assume

that the minimum distance between the observations and the groups is bounded below by a

positive constant. The asymptotic properties of the Spatial Control Function are obtained by

collecting the estimating equations and describing the two-step estimation procedure as a one-

step estimation procedure. In addition, since we have a two-step estimation, we also obtain the

asymptotic variance of the Spatial Control Function that corrects for the first-step estimation.

We also obtain consistent variance-covariance estimators that are made robust to the mis-

specification of the spatial correlation structure as well as the correlation between the observa-

tions in different groups. This accounts for across-group dependence between the observations

that we ignore in the estimation procedure making our inference robust. We use the HAC esti-

mator defined by Lu and Wooldridge (2017) that considers all the observations/groups within a

fixed radius of a particular observation/group.

The paper is structured as follows. In section 2, we define a linear regression model with the
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spatially dependent errors and endogenous covariates. In section 3, we obtain the estimating

equations by implementing control function methods. In section 4, we describe our estima-

tion procedure that takes account of the within-group correlations. In section 5, we obtain the

asymptotic properties of our estimator under near-epoch dependence. We also provide consis-

tent variance estimators. In section 6, we describe the design and the results of the Monte Carlo

simulation studies to illustrate the small sample properties of our estimators. Finally, in section

7, we conclude and suggest possible avenues for future research.

3.2 Model

Let S be a two dimensional Euclidean space in which the population resides. Let si represent

a location in S for i = 1,2, .... Denote the distance between locations {si} ∈S and location

{s j} ∈S by di j. The data points sampled at a location si ∈S are denoted by {y1si,y2si ,zsi}

where i = 1,2, ...,N. In addition, we have {usi,vsi} as the underlying unobservables. To make

the notations simple, we will denote the index si by i.

3.2.1 A Linear Regression Model

The primary equation for our outcome variable is assumed to be linear in parameters:

Assumption 3.2.1 We have a linear in parameter regression model for the outcome variable:

y1i = xxx1iβββ 1 + τy2i +ui (3.1)

where y2i is the scalar endogenous variable and xxx1i is a 1×Kx1 vector of exogenous explanatory

variables with the first element being equal to unity. The vector of coefficients on xxx1i is denoted

by βββ 1 which is Kx1×1. τ is a scalar coefficient on the scalar endogenous variable y2i.

We defined a linear in parameter reduced form model for the endogenous variable: The reduced

form of the scalar endogenous variable is also assumed to be linear in parameters:
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Assumption 3.2.2 For i = 1,2, ...,N

y2i = xxx2iβββ 2 + vi (3.2)

where xxx2i is a 1×Kx2 vector of exogenous explanatory variables that also include x1i. We

assume that Kx2 ≥ Kx1 that serves as an exclusion condition needed for identification. The

vector of coefficients on x2i is denoted by βββ 2 which is Kx2×1.

In matrix form, we write our model as:

Y1N = XXX1Nβββ 1 + τY2N +UN (3.3)

Y2N = XXX2Nβββ 2 +VN (3.4)

where

Y1N ≡
(

y11 . . . y1N

)′
; XXX1N ≡

(
xxx11 . . . xxx1N

)′
; Y2N ≡

(
y21 . . . y2N

)′
(3.5)

UN ≡
(

u1 . . . uN

)′
; VN ≡

(
v1 . . . vN

)′
; XXX2N ≡

(
xxx21 . . . xxx2N

)′
(3.6)

We assume that the strict exogeneity of the instruments hold. The assumption for the ex-

ogenous variables is formally stated as below:

Assumption 3.2.3 Strict Exogeneity Condition:

E


UN

VN


∣∣∣∣∣∣∣XXX2N

= E

UN

VN

=

000

000

 (3.7)

3.2.2 Spatially Correlated Errors

In this paper, the spatial nature of the data is captured in the variance-covariance matrix of the

error terms. In other words, we consider Spatial Error Models (SEMs). As Dubin (1988)

notes, SEMs are an integral part of the urban economics and they play a special role in housing
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hedonic regression analysis. In housing markets, the omitted variables will have high degree

of dependence because houses that are near each other will have similar "neighborhood vari-

ables" (Dubin (1988)). Dubin (1988) recognizes crime rates, quality of public schools , race as

common neighborhood variables that are either unobservables and/or are difficult to accurately

measure. Thus, often these variables that exhibit spatial dependence enter the error terms of the

regression model motivating a SEM analyses.

Glass, Kenegalieva and Sickles (2012) also use SEM analysis the context of state vehicle

usage in the US. They make two economic arguments for incorporating SEM. First, in the

context of state vehicle usage in the US, they argue SEMs gives a fuller representation of spatial

dependence than models which do not include a spatial autocorrelation term. Second, they

illustrate how SEMs allow researchers to permit Wald tests of whole sets of coefficients against

one another to ascertain if models which are estimated using disaggregated data contain more

information than the aggregate model.

In our model, we have two types of errors for each individual. Each individual has a pri-

mary error ui which is the unobservable term in the primary equation and the a reduced-form

error vi which is the unobservable term in the reduced form equation . Thus we focus on the

variance-covariance matrix of

UN

VN

. However, since we also have endogeneity in our model,

the variance-covariance matrix of the error terms also needs to capture that. The following as-

sumption formalizes the spatial nature of the data and the endogeneity of the model:

Assumption 3.2.4 The variance-covariance matrix is given as:

V


UN

VN


∣∣∣∣∣∣∣XXX2N ,D,ρ,λ

= V


UN

VN


∣∣∣∣∣∣∣D,ρ,λ

= ΛN(D,ρ,λ ) (3.8)

where D contains all the pairwise distance between the observations in the data, ρ is the vector

of variance-covariance parameters and λ is the spatial parameter.
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The essential idea that we would like to formalize through Assumption 4 is twofold. First,

we specify that the unobservables of all the individuals exhibit spatial correlations. In other

words, for all i, j = 1,2, ...,N, ui is spatially correlated with u j and vi is spatially correlated with

v j. Second, we postulate that the primary error of an individual i is spatially correlated with the

both the reduced-form error of the individual i and the reduced-form error of the individual j.

In other words, for all i, j = 1,2, ...,N, ui is spatially correlated with v j.

We can write the error variance-covariance matrix as:

ΛN(D,ρ,λ ) =

ΛUU,N(D,ρ,λ ) ΛUV,N(D,ρ,λ )

ΛUV,N(D,ρ,λ ) ΛVV,N(D,ρ,λ )

 (3.9)

where ΛUU,N(D,ρ,λ ) ≡ V[UN ],ΛVV,N(D,ρ,λ ) ≡ V[VN ] and ΛUV,N(D,ρ,λ ) ≡ Cov[UN ,VN ].

In our model, we express the endogeneity of y2i through the relationship between the errors of

the primary equation and the errors of the reduced-form equation. Formally, this relationship

is expressed in the control function assumption that we state below. The components of the

control function assumption, however, are defined in the variance-covariance matrix denoted by

ΛUV,N(λ ).

3.3 Estimating Equation

Our estimating equation needs to take account of the endogeneity in our spatially correlated

data. To deal with the endogeneity in the spatially correlated data of our model, we divide our

data set into G groups and then use the information on these observations within a group. The

essential idea that we want to capture is that the internal correlation between these observations

in a group are more important than the external correlation. We divide the total number of

observations into G groups, each containing Lg number of observations. For simplicity assume

that there are same number of observations in each group; i.e L1 = L2 =, ...,= LG ≡ L.

Writing the model at the group level, we have:

87



For g = 1, ...,G:

Y1g = XXX1gβββ 1 + τY2g +Ug (3.10)

with

Y1g ≡
(

y1g1 . . . y1gL

)′
; XXX1g ≡

(
xxx1g1 . . . xxx1gL

)′
Y2g ≡

(
y2g1 . . . y2gL

)′
; Ug ≡

(
ug1 . . . ugL

)′
Next, note that since y2i is a function of ZZZ2g,Vg where ZZZ2g is the vector of all the exogenous

variables within the group g:

E[Y1g|ZZZ2g,Vg] = XXX1gβββ 1 + τY2g +E[Ug|ZZZ2g,Vg] (3.11)

As we will describe in section 3.2, ZZZ2g can contain more elements than XXX2g ≡(
xxx2g1 . . . xxx2gL

)′
.

If we do not have endogeneity, we will have E[Ug|ZZZ2g,Vg] = 0. This is the framework stud-

ied in Lu and Wooldridge (2017). However, ruling out endogenous covariates in a regression

analysis is often not justified by economic theory. In practice, explanatory variables are often

correlated the errors due to the common encountered issues of omitted variables and/or mea-

surement errors which lead to inconsistencies in parameter estimation. This calls for a more

general treatment of linear regression models that allow for both spatially dependent errors and

endogenous covariates.

In this paper, endogeneity of y2i is captured in the relationship between the primary errors

and the reduced-form errors. This relationship is captured by E[Ug|ZZZ2g,Vg] which is also termed

as the correction term. Obtaining an expression for the correction term and including it in

the estimating equation enables us to obtain the consistent estimators for the parameters. The

control function approach proceeds by the imposing some structure on the correction terms.

In our context, since the unobservables also exhibit spatial dependence, the control function

assumption that we would impose allows us to incorporate this spatial dependence.
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3.3.1 Control Function Assumption

Control function approach models the endogeneity of the covariates by explicitly specifying

the endogeneity in the estimation. In our model, the control function method corrects for the

endogeneity of y2 by modeling the relationship between the errors of the primary equation and

the error of the reduced-form equation. Since we have divided the data into groups, we specify

the control function assumption for each group. This also incorporates the spatial correlation

between the errors of each group. Thus the components of the control function assumption are

given by the variance-covariance matrix of each group.

To obtain the expression for the control function assumption, define the group specific

variance-covariance matrix of the unobservables as:

V


Ug

Vg


∣∣∣∣∣∣∣ZZZ2g,Dg,λ

=

ΛUU,g(λ ) ΛUV,g(λ )

ΛUV,g(λ ) ΛVV,g(λ )

 (3.12)

where Dg contains all the pairwise distance between the observations within a group g

Formally stating, our control function assumption is:

Assumption 3.3.1 For each g = 1,2, ..,G

E[Ug|ZZZ2g,Vg] = E[Ug|Vg] =
[
ΛVV,g

]−1 [
ΛUV,g

]
Vg (3.13)

Define Πg =
[
ΛVV,g

]−1 [
ΛUV,g

]
and using the vectorization operator we can write:

E[Ug|Vg] =
[
ΛVV,g

]−1 [
ΛUV,g

]
Vg = ΠgVg (3.14)

=
[
V ′g⊗ IL

][
vec(Πg)

]
(3.15)

Substituting in the equation 10 we obtain the estimating equation as:

Y1g = XXX1gβββ 1 + τY2g +
[
V ′g⊗ IL

][
vec(Πg)

]
+ηg (3.16)

where E[ηg|ZZZ2g].
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3.3.2 Instruments

Within a group, the exogenous variables for an individual gi are given by xxx2gi . However, the

exogenous variables of other individuals in a group also serve as instruments for the individual

gi. In other words, if we denote the XXX2g−i as the vector of exogenous covariates of other

individuals in a group g, then the full set of instruments for gi are given by zzz2gi ≡ [xxx2gi ,XXX2g−i]

For example, suppose that L = 2. In this case, Y2g =

(
y2g1 y2g2

)′
. Recall that for each

individual gi in group g, we have the vector of instruments given by xxx2gi . Recognizing that

within a group the exogenous variables of the ones neighbors can also serve as the instruments,

we can obtain extra instruments. That is in this case for g1 the instruments are given by ZZZ2g1 ≡

[xxx2g1 ,xxx2g2 ].

We can write the within-group reduced form model for the endogenous variable that incor-

porates all the exogenous variables that are found within a group:

Y2g = ZZZ2gδδδ 2 +Vg (3.17)

where ZZZ2g ≡
(

ZZZ2g1 . . . ZZZ2gL

)′
.

3.4 Estimation Procedures

In this section, we describe three new estimation procedures that incorporate the additional

instruments as well as the within-group spatial dependence that is facilitated by the groupwise

division of the data. We begin by describing a two-step estimation of the Spatial Control Func-

tion Estimator. Next, we describe a Grouped Two Stage Least Square estimation procedure

that uses only the additional instruments and ignores the spatial dependence in the data. Finally,

we describe the Spatial Generalized Instrumental Variable estimator that incorporates both

the additional instruments as well as the within-group spatial dependence of the observations.
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3.4.1 Control Function Estimation

We write the reduced form equation and the estimating equation again for convenience:

Y1g = XXX1gβββ 1 + τY2g +
[
V ′g⊗ IL

][
vec(Πg)

]
+ηg

Y2g = ZZZ2gδδδ 2 +Vg

The equations above suggest a two-step estimation procedure. In the first step we esti-

mate the reduced form model and obtain the residuals. In the second step we plug in the first

step residuals in the estimating equation. Then we use the Quasi-GLS estimation procedure

described in Lu and Wooldridge (2017).

3.4.1.1 First Step

In the first step, we can re-write:

Y2g = ZZZ2gδδδ 2 +Vg (3.18)

Denote the true parameters of the first-step as δδδ 2∗ ∈ δδδ
P
2 where δδδ

P
2 is a finite dimensional

parameter space. The estimator denoted by δ̂δδ 2 is given as:

δ̂δδ 2 = arg min
δδδ2∈δδδ

P
2

1
G

G

∑
g=1

[(
Y2g−ZZZ2gδδδ 2

)′ (Y2g−ZZZ2gδδδ 2
)]

(3.19)

Since we are estimating a linear model, we get:

δ̂δδ 2 =

[
G

∑
g=1

ZZZ′2gZZZ2g

]−1[ G

∑
g=1

ZZZ′2gY2g

]
(3.20)

In addition, this gives the first stage residuals as:

V̂g = Y2g−ZZZ2gδ̂δδ 2 (3.21)

3.4.1.2 Second Step

In the second stage, we have the estimating equation as:

Y1g = XXX1gβββ 1 + τY2g +
[
V ′g⊗ IL

][
vec(Πg)

]
+ηg

91



To motivate the estimation procedure in the second-step, assume that we fully observe Vg. Re-

write the estimating equation as:

Y1g = XXXgθθθ 1 +ηg (3.22)

where XXXg is a vector that contains all the covariates of the estimating equation and θθθ 1 is a vector

that contains all the parameters. We can estimate the parameters in equation (22) using a simple

a OLS and we will obtain consistent estimators. However, note that the errors in the estimating

equation are going to have spatial dependence. This suggests that we can obtain some efficiency

gains if we can incorporate the spatial dependence in the estimation procedure.

To estimate the parameters in this spatial setting, we will implement the Quasi-GLS estima-

tion procedure proposed by Lu and Wooldridge (2017). Denote the variance-covariance matrix

of ηg by Λgη(λη) where λη is the spatial parameter. Note that the group-specific variance-

covariance matrix Λgη(λη) is contained in the full variance-covariance matrix for ηN denoted

by ΛNη(λη).

Traditional GLS estimation considers the entire error variance-covariance matrix ΛNη(λη).

This entails accounting for all the pairwise correlations of the observations which is compu-

tationally very tedious. However, since we divide the observations into groups according to

the distances between the observations we recognize that the within-group correlations account

for most of the correlations in the data and ignoring the across-group correlations should not

lead to much efficiency loss. This is precisely the motivation behind the Quasi-GLS estima-

tion procedure in Lu and Wooldridge (2017). Quasi-GLS estimation procedure involves using a

tapered error variance-covariance matrix which essentially implies that we extract the variance-

covariance matrix for within-group errors denoted by Λgη(λη) and the correlations between the

errors across-groups are set to zero.

Formally, define a N×N tapering matrix T whose individual components Ti, j = 1 if the

observations i, j belong to the same group and Ti, j = 0 otherwise for i, j = 1,2, ..,N. Define

Λη ≡ diag
[
Λ1η ,Λ2η , ...,ΛGη

]
. In other words, Λη is a block diagonal matrix that contains
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only within-group error variance-covariances. Note that Λη ≡ T ◦ΛNη where ◦ denotes the

Hadamard product. Now, while the traditional GLS estimation is weighted by ΛNη and Quasi-

GLS estimation is weighted by Λη .

For example, consider the simplest case of N = 4. Further assume that observations {1,2}

are in group 1 and observations {3,4} are in group 2. In this case,

T =



1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


,Λη =



σ11 σ12 0 0

σ21 σ22 0 0

0 0 σ33 σ34

0 0 σ43 σ44


= T ◦ΛNη

where ΛNη =



σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44


.

In our context, we call Quasi-GLS estimator as the Spatial Control-Function Estimator

(sp.CF). Denote the true parameters of the second-step as θθθ 1∗ ∈ ΘΘΘ1 where ΘΘΘ1 is a finite di-

mensional parameter space. The estimator is obtained as:

θ̂θθ 1(sp.CF) = arg minθθθ1∈ΘΘΘ1
1
G

G

∑
g=1

[(
Y1g−XXXgθθθ 1

)′
Λ
−1
gη

(
Y1g−XXXgθθθ 1

)]
(3.23)

As it is clear, by using the Quasi-GLS estimation procedure to obtain our Control-Function

estimator in the second-step, we are taking account of some of the correlations in the data by

including Λgη(λη). Thus we get efficiency gains because we do not completely ignore the

spatial dependence in the data.

In practice, we first plug in V̂g as the consistent estimators for Vg that controls for the endo-

geneity of Y2g. Further, to obtain a feasible version of the Spatial Control-Function estimator,

we will need a consistent estimator for Λgη(λη) that depends on the pairwise distances and

spatial parameter λη . Let Λ̂gη(λ̂η) be the consistent estimator for Λgη(λη). For notational

convenience, XXXg now denotes the vector of all the covariates with V̂g instead of Vg.
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The second-step essentially entails using the Feasible Quasi-GLS procedure of Lu and

Wooldridge (2017) to obtain what we call the Feasible Spatial Control-Function (F.sp.CF) es-

timator, denoted by θ̂θθ 1(F.sp.CF). The estimator is obtained as:

θ̂θθ 1(sp.CF) = arg minθθθ1∈ΘΘΘ1
1
G

G

∑
g=1

[(
Y1g−XXXgθθθ 1

)′
Λ̂
−1
gη

(
Y1g−XXXgθθθ 1

)]
(3.24)

Solving the optimization routine the explicit expression is obtained as:

θ̂θθ 1(F.sp.CF) =

[
G

∑
g=1

(
XXX ′gΛ̂

−1
gη XXXg

)]−1[ G

∑
g=1

(
XXX ′gΛ̂

−1
gη Y1g

)]
(3.25)

3.4.2 Incorporating Extra Instruments in other Estimation Procedures

Grouping the observations into groups based on the distance between the observations allows

us to obtain additional instruments for each group. We can incorporate these instruments in the

traditional estimation procedures to get some efficiency gains.

Let zzz1i ≡ {xxx1i,y2i} and denote βββ ≡ [βββ 1,τ]
′ for notational simplicity. The primary outcome

equation can be re-written as:

y1i = zzz1iβββ +ui (3.26)

The groupwise notation is given as:

Y1g = ZZZ1gβββ +Ug (3.27)

where ZZZ1g is the groupwise notation for zzz1i.

The traditional 2SLS estimator is given as:

β̂ββ (2SLS) =

( N

∑
i=1

zzz′1ixxx2i

)(
N

∑
i=1

xxx′2ixxx2i

)−1( N

∑
i=1

xxx′2izzz1i

)−1

× (3.28)

( N

∑
i=1

zzz′1ixxx2i

)(
N

∑
i=1

xxx′2ixxx2i

)−1( N

∑
i=1

xxx′2iy1i

)
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3.4.2.1 Grouped 2SLS Estimation

When we group the data to estimate the model with new instruments, we obtain the expression

for what we call grouped-2SLS.

β̂ββ (grpd.2SLS) =

( G

∑
g=1

ZZZ′1gZZZ2g

)(
G

∑
g=1

ZZZ′2gZZZ2g

)−1( G

∑
g=1

ZZZ′2gZZZ1g

)−1

× (3.29)

( G

∑
g=1

ZZZ′1gZZZ2g

)(
G

∑
g=1

ZZZ′2gZZZ2g

)−1( G

∑
g=1

ZZZ′2gY1g

)

3.4.2.2 Spatial Generalized Instrumental Variable Estimation

We can also incorporate the extra instruments as well as the spatial dependence in the framework

of Generalized Instrumental Variables (GIV) estimation.

Recall that we denoted Var[Ug] = ΛUU,g as the groupwise variance-covariance matrix for

the primary outcome equation. The instruments are denoted as ZZZ2g. GIV works by incorpo-

rating the spatial dependence of the errors through a GLS type transformation of equation (27).

Assuming that ΛUU,g to be a positive definite, we obtain the GLS transformation as:

Λ
−1/2
UU,gY1g = Λ

−1/2
UU,gZZZ1gβββ +Λ

−1/2
UU,gUg (3.30)

where Λ
−1/2
UU,gΛ

−1/2
UU,g = Λ

−1
UU,g.

Next, we estimate (32) using Λ
−1/2
UU,gZZZ2g as instruments. We call this estimator as Spatial

GIV:

β̂ββ (sp.GIV ) =

( G

∑
g=1

ZZZ′1gΛ
−1
UU,gZZZ2g

)(
G

∑
g=1

ZZZ′2gΛ
−1
UU,gZZZ2g

)−1( G

∑
g=1

ZZZ′2gΛ
−1
UU,gZZZ1g

)−1

×

(3.31)( G

∑
g=1

ZZZ′1gΛ
−1
UU,gZZZ2g

)(
G

∑
g=1

ZZZ′2gΛ
−1
UU,gZZZ2g

)−1( G

∑
g=1

ZZZ′2gΛ
−1
UU,gY1g

)
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In practice, we use a Feasible version of the estimator once we plug in an estimator for Λ̂
−1
UU,g

β̂ββ (F.sp.GIV ) =

( G

∑
g=1

ZZZ′1gΛ̂
−1
UU,gZZZ2g

)(
G

∑
g=1

ZZZ′2gΛ̂
−1
UU,gZZZ2g

)−1( G

∑
g=1

ZZZ′2gΛ̂
−1
UU,gZZZ1g

)−1

×

(3.32)( G

∑
g=1

ZZZ′1gΛ̂
−1
UU,gZZZ2g

)(
G

∑
g=1

ZZZ′2gΛ̂
−1
UU,gZZZ2g

)−1( G

∑
g=1

ZZZ′2gΛ̂
−1
UU,gY1g

)
(3.33)

3.4.3 Estimation of the spatial parameter

We can obtain a consistent estimator for λη using a straightforward minimization algorithm.

We can obtain residuals from a preliminary consistent estimator of θθθ 1. Recall that we denoted

the variance-covariance matrix of ηN by ΛNη(D,λη). We specify the functional form of the

individual components of the matrix as ΛNη ;(i, j)(di j,λη) with ΛNη ;(i,i) = σ2
η .

A consistent estimator for the variance of ηi denoted by σ̂η is given as

σ̂η =
1

N−Kx

N

∑
i=1

η̃
2
i (3.34)

A consistent estimator for λη can be obtained as:

λ̂η = arg min
1
N

N

∑
i=1

N

∑
j 6=i

(
η̃iη̃ j−ΛΛΛNη ;(i, j)(di j, σ̂η ,λη)

)2
(3.35)

3.5 Asymptotics

In spatial statistics, there are two main frameworks for the asymptotic analysis (Lee (2004),

Cressie (1993)): increasing-domain and fixed-domain. In increasing-domain framework, we

assume that the minimum distance between the observations is bounded below by a positive

constant and the asymptotics are based on a growing observation region. In fixed-domain or infill
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framework, we assume that as the number of observations increase, the observational region

becomes increasingly dense while the observational region is assumed to be fixed and bounded.

It has been well established (Cressie (1993) , Stein (1999), Ripley (1988), Zhang (2004) )

that general results under fixed-domain asympotics are not available because as the number of

observations increase, the number of interactions between the observations also increase and

there is no theoretical basis for the usual behavior of estimators.

There exist a large body of literature on the asymptotic analysis with spatial dependence un-

der the increasing-domain framework. Mardia and Marshall (1984), Cressie and Lahiri (1993)

give consistency and asymptotic normality results for the maximum likelihood and other likeli-

hood estimators for regression models with spatially correlated errors. Lee (2004) investigates

the asymptotic properties of the maximum likelihood and quasi-maximum likelihood estima-

tor for the spatial autoregressive models. Conley (1996) obtains the asymptotic results for the

generalized method of moments estimators with stationary spatial data.

In this paper, we obtain the asymptotic results for out estimator under the increasing-domain

framework. We collect our estimating equations and describe the two-step estimation procedure

as a one-step estimation procedure that enables us to derive the asymptotic properties in a con-

cise manner. We choose the framework of Jenish and Prucha (2012) to implement the law of

large numbers and central limit theorem for spatial near-epoch dependence.

Let wi = {y1i,y2i,xxx2i,ui,vi} be all the random variables in our model for i = 1,2,3....

Assumption 3.5.1 ∀N, wi are located on an infinitely countable lattic D ∈ Rd of possibly

uneven placed locations. The space Rd is equipped with the metric d(i, j) = max1≤l≤d |il− jl |,

where jl is the lth element of j, and all elements of D are located at distances of at least d∗ > 0

from each other

Next, we define the nature of dependence of the spatial processes of our model to obtain asymp-

totic properties of our estimators. Jenish and Prucha (2012) obtains results for law of large
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numbers and central limit theorem under the general set of restrictions on near cross-sectional

dependence. Specifically, the spatial processes are assumed to exhibit near-epoch dependence.

Near-epoch dependence for random fields is described as:

Assumption 3.5.2 (a) For some random filed ε = {εi,N ; i ∈TN ,TN ⊂D ,N ≥ 1} with |TN | →

∞ as N → ∞ where || denotes the cardinality of a set; for some element wa
i of wi, the random

field {{wa
i }i=2,..,N}N≥1 is L2-near-epoch dependent (NED) on the random field ε , i.e, :

||wa
i −E

(
wa

i |Fi,N(s))||2 ≤Cψ(s)
)

(3.36)

where Fi,N(s) = σ(ε j,N ; j ∈ TN ,di, j ≤ s). C is some positive constant, and ψ(s) is a deter-

ministic sequence called NED coefficients with ψ(s)≥ 0 and lims→∞ψ(s) = 0

(b) ε is α-mixing coefficients satisfying Assumption 3 of Jenish and Prucha (2012).

(c)ψ(s) satisfies ∑
d−1
r=1 ψ(r)< ∞

This assumption implies that the random variables in wi can be arbitrarily well approximated by

neighboring observations of an α-mixing field. This includes the case where wi is the α-mixing

as is the case in this model. (Verdier 2016)

Under Assumption 1 and Assumption 2 described above and Assumption (4) in Jenish and

Prucha (2012) we can apply the weak law of large numbers and central limit theorem described

in Theorem 1 and Theorem 2 in Jenish and Prucha (2012).

3.5.1 Asymptotics for Feasible Spatial Control Function Estimator

For g = 1,2, ...,G:

Y1g = XXXgθθθ 1 +ηg (3.37)

Y2g = ZZZ2gδδδ 2 +Vg (3.38)

Re-writing the equations:

yg = wgθθθ +ug (3.39)
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where

yg =

Y1g

Y2g

 ,wg =

XXXg 000

000 ZZZ2g

 ,ug =

ηg

Vg

 (3.40)

Next assumption imposes strict exogeneity:

Assumption 3.5.3 For i = 1,2, ...,N

E[ui|w1,w2, ...] = 0 (3.41)

where ui,wi is individual level notation. This implies that for any matrix ΩΩΩg of conformable

dimension, E[w′gΩΩΩ
−1
g wg] = 000 for all g.

In the context of this paper, we have

ΩΩΩg =

Λgη 000

000 I

 (3.42)

The Spatial Control-Function estimator is given as:

θ̂θθ (sp.CF) = arg minθθθ∈ΘΘΘ

1
G

G

∑
g=1

[(
yg−wgθθθ

)′
ΩΩΩ
−1
g

(
yg−wgθθθ

)]
(3.43)

The first order conditions for the optimization routine are given as:

SG(θ̂θθ (sp.CF))≡
1
G

G

∑
g=1

sg

(
θ̂θθ sp.CF ,wg

)
≡ 1

G

G

∑
g=1

w−1
g ΩΩΩ

−1
g

(
yyyg−wgθ̂θθ (sp.CF)

)
(3.44)

=
1
G

G

∑
g=1

sg1

(
θ̂θθ 1(sp.CF),ZZZ2g; δ̂δδ 2

)
sg2

(
δ̂δδ 2,ZZZ2g

)
 (3.45)

≡

 1
G ∑

G
g=1 XXX ′gΛgη

(
Y1g−XXXgθ̂θθ 1(sp.CF)

)
1
G ∑

G
g=1 ZZZ′2g

(
Y2g−ZZZ2gδ̂δδ 2

)
 (3.46)

= 000 (3.47)

These conditions are in fact the sample analogue of the moment conditions:

E
[

sg
(
θθθ∗,wg

)∣∣WG
]
= 000 (3.48)
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where θθθ∗ ≡ {θθθ 1∗,δδδ 2∗} denote the true parameters, WG is the full data matrix and

sg
(
θθθ ,wg

)
=

sg1
(
θθθ 1,ZZZ2g;δδδ 2

)
sg2
(
δδδ 2,ZZZ2g

)
 (3.49)

=

XXX ′gΛgη

(
Y1g−XXXgθθθ 1

)
ZZZ′g
(
Y2g−ZZZgδδδ 2

)
 (3.50)

Thus the estimator proposed in this paper can also be described in a GMM framework. The

asymptotic theory developed by Jenish and Prucha (2012) for spatial GMM can easily be im-

plemented here. In this paper, we also explicitly correct for the first-step estimation.

Next define

Hg(θθθ∗,wg)≡

(
∂ sg
(
θθθ∗,wg

)
∂θθθ
′

)
=−w′gΩΩΩ

−1
g wg (3.51)

The next two assumptions impose boundedness conditions and appropriate rank conditions.

Assumption 3.5.4 A≡ limG→∞
1
G ∑

G
g=1E

(
−Hg(θθθ∗,wg)

)
exists and has full rank

In addition, assume:

Assumption 3.5.5 B ≡ limG→∞E
{[

1
G ∑

G
g=1 sg

(
θθθ∗,wg

)][ 1
G ∑

G
h=1 sh (θθθ∗,wh)

]′}
exists and

has full rank.

Since Quasi-GLS groups the observations according to the distances between the individuals,

it is essentially grouping "nearby" observations. Thus the groups will also be near-epoch de-

pendent processes. In addition, NED is preserved under addition and multiplication (Verdier

2016, Davidson 1994). So Theorem 1 and Theorem 3 of Jenish and Prucha (2012) can be

implemented.

In practice, we get the feasible version of the estimator as:

θ̂θθ (F.sp.CF) = arg minθθθ∈ΘΘΘ

1
G

G

∑
g=1

[(
yg−wgθθθ

)′
Ω̂ΩΩ
−1
g

(
yg−wgθθθ

)]
(3.52)
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Theorem 7 Under Assumptions 1-10, θ̂θθ (F.sp.CF) is consistent and

√
G
(

θ̂θθ (F.sp.CF)−θθθ∗
)
→d N

(
000,A−1BA−1

)
(3.53)

Proof. Following the procedure in Lu (2013), we will first obtain the asymptotic properties for

θ̂θθ (sp.CF) and then show that θ̂θθ (sp.CF) and θ̂θθ (F.sp.CF) are asymptotically equivalent.

• Consistency of θ̂θθ (sp.CF): For consistency, note that

θ̂θθ (sp.CF) = θθθ∗+

(
1
G

G

∑
g=1

w′gΩΩΩ
−1
g wg

)−1(
1
G

G

∑
g=1

w′gΩΩΩ
−1
g ug

)
(3.54)

Because NED, is preserved under multiplication and addition (Theorems 17.8 and

17.9 in Davidson (1994)) w′gΩΩΩ
−1
g wg and w′gΩΩΩ

−1
g ug as well as

(
1
G ∑

G
g=1w

′
gΩΩΩ
−1
g wg

)
and(

1
G ∑

G
g=1w

′
gΩΩΩ
−1
g ug

)
are also NED processes. Using Theorem 1 in Jenish and Prucha

(2012), we get (
1
G

G

∑
g=1

w′gΩΩΩ
−1
g wg

)
→p A (3.55)(

1
G

G

∑
g=1

w′gΩΩΩ
−1
g ug

)
→p 000 (3.56)

The consistency result follows.

• Asymptotic Normality of θ̂θθ (sp.CF): Doing a mean value expansion around θθθ∗

SG(θ̂θθ (sp.CF)) = 000 (3.57)

000 =
1
G

G

∑
g=1

sg

(
θ̂θθ (sp.CF),wg

)
(3.58)

000 =
1
G

G

∑
g=1

sg
(
θθθ∗,wg

)
+

1
G

G

∑
g=1

Hg
(
θ̈θθ ,wg

)(
θ̂θθ (sp.CF)−θθθ∗

)
(3.59)

√
G
(

θ̂θθ (sp.CF)−θθθ∗
)
=

[
− 1

G

G

∑
g=1

Hg
(
θ̈θθ ,wg

)]−1[
1√
G

G

∑
g=1

sg
(
θθθ∗,wg

)]
(3.60)
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where θ̈θθ has elements between θ̂θθ and θθθ∗

Using Theorem 1 and Theorem 2 of Jenish and Prucha (2012),[
− 1

G

G

∑
g=1

Hg
(
θ̈θθ ,wg

)]
→p A (3.61)

and
1√
G

G

∑
g=1

sg
(
θθθ∗,wg

)
→d N (000,B) (3.62)

Bringing these two results together, we get

√
G
(

θ̂θθ (sp.CF)−θθθ∗
)
→d N

(
000,A−1BA−1

)
(3.63)

• Asymptotic Equivalence of θ̂θθ (sp.CF) and θ̂θθ (F.sp.CF): We have

θ̂θθCF = θθθ∗+

(
1
G

G

∑
g=1

w′gΩΩΩ
−1
g wg

)−1(
1√
G

G

∑
g=1

w′gΩΩΩ
−1
g ug

)

θ̂θθ FCF = θθθ∗+

(
1
G

G

∑
g=1

w′gΩ̂ΩΩ
−1
g wg

)−1(
1√
G

G

∑
g=1

w′gΩ̂ΩΩ
−1
g ug

)

Note that since Ω̂ΩΩg→p ΩΩΩg, we get:

w′gΩ̂ΩΩ
−1
g wg→p w

′
gΩΩΩ
−1
g wg (3.64)

1
G

G

∑
g=1

w′gΩ̂ΩΩ
−1
g wg→p

1
G

G

∑
g=1

w′gΩΩΩ
−1
g wg (3.65)

Since 1
G ∑

G
g=1w

′
gΩΩΩ
−1
g wg→p A, this implies 1

G ∑
G
g=1w

′
gΩ̂ΩΩ
−1
g wg→p A

Next,

w′gΩ̂ΩΩ
−1
g ug = w′g(ΩΩΩ

−1
g +op(1))ug (3.66)

= w′gΩΩΩ
−1
g ug +op(1) (3.67)

1√
G

G

∑
g=1

w′gΩ̂ΩΩ
−1
g ug =

1√
G

G

∑
g=1

w′gΩΩΩ
−1
g ug +op(1) (3.68)

Thus we will have 1√
G ∑

G
g=1w

′
gΩ̂ΩΩ
−1
g ug→d N (000,B) and the asymptotic result follows.
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3.5.1.1 Adjusting for first-step estimation

We can further tease out the asymptotic properties of θ̂θθ 1(F.sp.CF) from our GMM framework.

The asymptotic variance of θ̂θθ 1(F.sp.CF) would adjust for the first-step estimation. We have:

SG(θ̂θθ (F.sp.CF)) =

SG1(θ̂θθ 1(F.sp.CF),ZZZ2g; δ̂δδ 2)

SG2(δ̂δδ 2;ZZZ2g)


≡

 1
G ∑

G
g=1 sg1(θ̂θθ 1(F.sp.CF),ZZZ2g; δ̂δδ 2)

1
G ∑

G
g=1 sg2(δ̂δδ 2;ZZZ2g)

=

000

000


Next, define

Hg1 ≡

(
∂ sg1

(
θθθ 1∗,ZZZ2g;δδδ 2∗

)
∂θθθ
′
1

)
(3.69)

Hg2 ≡

(
∂ sg1

(
θθθ 1∗,ZZZ2g;δδδ 2∗

)
)

∂δδδ
′
2

)
(3.70)

Doing the similar calculations as before we will get:

√
G
(

θ̂θθ 1(F.sp.CF)−θθθ 1∗
)
= [A1]

−1

[
1
G

G

∑
g=1

sg1

(
θθθ 1∗,ZZZ2g; δ̂δδ 2

)]
+op(1) (3.71)

where A1 ≡ limG→∞

{
− 1

G ∑
G
g=1E

[
Hg1

]}
.

Also, using the mean value expansion,

1
G

G

∑
g=1

sg1

(
θθθ 1∗,ZZZG; δ̂δδ 2

)
=

1
G

G

∑
g=1

sg1 (θθθ 1∗,ZZZG;δδδ 2∗)+F
(

δ̂δδ 2−δδδ 2∗
)
+op(1) (3.72)

where

F≡ lim
G→∞

{
− 1

G

G

∑
g=1

E
[
Hg2

]}
(3.73)

Next, we have a first order representation of
√

G
(

δ̂δδ 2−δδδ 2∗
)

as:

√
G
(

δ̂δδ 2−δδδ 2∗
)
=

1
G

G

∑
g=1

s(2)g
(
δδδ 2∗,ZZZ2g

)
+op(1) (3.74)
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where s(2)g
(
δδδ 2∗,ZZZ2g

)
depends on the first-step estimation and sg2

(
δδδ 2,ZZZ2g

)
with

E[s(2)g
(
δδδ 2∗,ZZZ2g

)
] = 000.

Now bringing together equations (70), (71) and (73), we have:

√
G
(

θ̂θθ 1−θθθ 1∗
)
= [A1]

−1

[
1
G

G

∑
g=1

sg1 (θθθ 1∗,ZZZG;δδδ 2∗)+F

[
1
G

G

∑
g=1

s(2)g
(
δδδ 2∗,ZZZ2g

)]]
+op(1)

(3.75)

= [A1]
−1

[
1
G

G

∑
g=1

s(1)g
(
θθθ 1∗,ZZZ2g;δδδ 2∗

)]
+op(1) (3.76)

where

s(1)g
(
θθθ 1∗,ZZZ2g;δδδ 2∗

)
= sg1

(
θθθ 1∗,ZZZ2g;δδδ 2∗

)
+Fs(2)g

(
δδδ 2∗,ZZZ2g

)
(3.77)

Next define B1 ≡ limG→∞

{
1
GE
[
∑

G
g=1 s(2)g

(
θθθ 1∗,ZZZ2g;δδδ 2∗

)
∑

G
g=1 s(2)g

(
θθθ 1∗,ZZZ2g;δδδ 2∗

)′]}.

Using the law of large number and central limit theorem for the mixing sequence, we can

follow the steps above to establish the following:

Theorem 8 Under Assumptions 1-10 ,

√
G
(

θ̂θθ 1(F.sp.CF)−θθθ 1∗
)
→d N

(
000,A−1

1 B1A−1
1

)
(3.78)

As Lu and Wooldridge (2017), these results allow for non-normal errors and for three kinds

of mis-specifications in the error vairance-covariance matrix. It allows for the mis-specification

that Quasi-GLS procedure makes by ignoring the correlations between individuals across the

groups. Further, these results also allow for the mis-specification of the structure in the Λgη as

well as inconsistencies in the estimation of the spatial parameters.

3.5.1.2 A consistent estimator for variance robust to cross-sectional structure

To facilitates valid inference from the estimator described in the paper, we use the heteroskedas-

ticity and autocorrelation (HAC) estimator suggested in Lu and Wooldridge (2017). Define

ũg ≡ yg−wgθ̂θθ (F.sp.CF) (3.79)
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and let

ûg = w′gΩ̂ΩΩ
−1
g ũg (3.80)

The kernel function given in Lu and Wooldridge (2017) denoted by KBC(dgih j) ; is the function

of i− th observation in group g denoted by gi and j− th observation in group g denoted by h j

is defined as

KBC(di j) =


1−dgih j/d∗ dgih j ≤ d∗

0 dgih j > d∗

(3.81)

Âvar
(

θ̂θθ 2FCF

)
T.S.robust

=

[
G

∑
g=1

(
w′gΩ̂ΩΩ

−1
g wg

)]−1[ G

∑
g=1

G

∑
h=1

KBC(dgh)ûgû
′
h

][
G

∑
g=1

(
w′gΩ̂ΩΩ

−1
g wg

)]−1

(3.82)

where KBC(dgh) is the kernel matrix defined for group g and h.

3.5.2 Asymptotics for 2SLS, Grouped 2SLS and Spatial GIV

Once we establish the assumptions on the nature of spatial dependence, the results of Jenish

and Prucha (2012) can be applied to obtain the asymptotic properties of the other estimators

described in the paper. The arguments of the proof will be similar to those given in the previous

section.

Re-writing the estimators :

β̂ββ (2SLS) =

( N

∑
i=1

zzz′1ixxx2i

)(
N

∑
i=1

xxx′2ixxx2i

)−1( N

∑
i=1

xxx′2izzz1i

)−1

×

( N

∑
i=1

zzz′1ixxx2i

)(
N

∑
i=1

xxx′2ixxx2i

)−1( N

∑
i=1

xxx′2iy1i

)

β̂ββ (grpd.2SLS) =

( G

∑
g=1

ZZZ′1gZZZ2g

)(
G

∑
g=1

ZZZ′2gZZZ2g

)−1( G

∑
g=1

ZZZ′2gZZZ1g

)−1

×

( G

∑
g=1

ZZZ′1gZZZ2g

)(
N

∑
g=1

ZZZ′2gZZZ2g

)−1( N

∑
g=1

ZZZ′2gY1g

)
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β̂ββ (F.sp.GIV ) =

( G

∑
g=1

ZZZ′1gΛ̂
−1
UU,gZZZ2g

)(
G

∑
g=1

ZZZ′2gΛ̂
−1
UU,gZZZ2g

)−1( G

∑
g=1

ZZZ′2gΛ̂
−1
UU,gZZZ1g

)−1

×

( G

∑
g=1

ZZZ′1gΛ̂
−1
UU,gZZZ2g

)(
G

∑
g=1

ZZZ′2gΛ̂
−1
UU,gZZZ2g

)−1( G

∑
g=1

ZZZ′2gΛ̂
−1
UU,gY1g

)
Using the arguments described in the previous section, the estimators are consistent and asymp-

totically normal with asymptotic variance given as below:

For the traditional 2SLS estimator:

Avar[
√

G
(

β̂ββ (2SLS)−βββ

)
] = [A2SLS]

−1[B2SLS][A2SLS]
−1 (3.83)

where A2SLS≡
[
limN→∞

1
N ∑

N
i=1E(zzz

′
1ixxx2i)

][
limN→∞

1
N ∑

N
i=1E(xxx

′
2ixxx2i)

][
limN→∞

1
N ∑

N
i=1E(xxx

′
2izzz1i)

]
and

B2SLS≡
{[

limN→∞
1
N ∑

N
i=1E(zzz

′
1ixxx2i)

][
limN→∞

1
N ∑

N
i=1E(xxx

′
2ixxx2i)

]}{
Var

[
1√
N ∑

N
i=1E(xxx

′
2iui)

]}
{[

limN→∞
1
N ∑

N
i=1E(zzz

′
1ixxx2i)

][
limN→∞

1
N ∑

N
i=1E(xxx

′
2ixxx2i)

]}′
For the Grouped 2SLS estimator:

Avar[
√

G
(

β̂ββ (grpd.2SLS)−βββ

)
] = [Agrpd.2SLS]

−1[Bgrpd.2SLS][Agrpd.2SLS]
−1 (3.84)

where

Agrpd.2SLS ≡

[
lim

G→∞

1
G

G

∑
g=1

E(ZZZ′1gZZZ2g)

]
×[

lim
G→∞

1
G

G

∑
g=1

E(ZZZ′2gZZZ2g)

][
lim

N→∞

1
G

G

∑
g=1

E(ZZZ′2gZZZ1g)

]

and

Bgrpd.2SLS ≡

{[
lim

G→∞

1
G

G

∑
g=1

E(ZZZ′1gZZZ2g)

][
lim

G→∞

1
G

G

∑
g=1

E(ZZZ′2gZZZ2g)

]}
×

{
Var

[
1√
G

G

∑
g=1

E(ZZZ′2gUg)

]}{[
lim

G→∞

1
G

G

∑
g=1

E(ZZZ′1gZZZ2g)

][
lim

G→∞

1
G

G

∑
g=1

E(ZZZ′2gZZZ2g)

]}′
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Finally, for the Feasible Spatial GIV estimator:

Avar[
√

G
(

β̂ββ (F.sp.GIV )−βββ

)
] = [AF.sp.GIV ]

−1[BF.sp.GIV ][AF.sp.GIV ]
−1 (3.85)

where AF.sp.GIV ≡ limG→∞
1
G ∑

G
g=1

[
E(ZZZ′1gΛ

−1
UU,gZZZ2g)[E(ZZZ′2gΛ

−1
UU,gZZZ2g)]

−1E(ZZZ′2gΛ
−1
UU,gZZZ1g)

]
,

BF.sp.GIV ≡Var
[

1√
G ∑

G
g=1

(
∑

G
g=1 ZZZ′1gΛ

−1
UU,gZZZ2g

)(
∑

N
i=1 ZZZ′2gΛ

−1
UU,gZZZ2g

)−1(
∑

N
i=1 ZZZ′2gΛ

−1
UU,gUg

)]

3.6 Monte Carlo Simulations

In this section, we illustrate the properties of our estimator using Monte Carlo simulations. The

simulation results show the finite sample properties of the estimator and we compare them with

the traditional 2SLS estimator.

3.6.1 Data Generating Process

The total number of observations is given by N. The data is generated in a
√

N×
√

N lattice

(Figure 1). In other words, each observation is located on the intersections of the square lattice.

This generates a coordinate system for the entire data given as {(l1, l2) : l1, l2 = 1,2,3, ...,
√

N}

where (l1, l2) can be interpreted as the "longitude" and "latitude" for each observation. We

consider N = 400 such that the observations are generated in a 20×20 lattice.

The pairwise distances between the observation i and j is calculated using these coordinates.

We can use several distance measures such as Euclidean distance, Manhattan distance, maxi-

mum coordinate-wise distance among others. In this paper, we only consider the Euclidean

distance for simplicity.
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3.6.2 Model

The primary equation for the outcome variable is defined as:

y1i = β11 + τy2i +ui +N (0,1) (3.86)

{β11,τ} ≡ {1,1} (3.87)

where ui, i = {1,2, ...,N} is a spatially correlated vector of unobservables.

We have three models for the endogenous variable y2i: Three models for the endogenous

variable y2i:

M1 : y2i = 1+3∗ x2i +ρui +N (0,1) (3.88)

M2 : y2i = 1+3∗ x2i +2∗ x(2,i+1)+ρui +N (0,1) (3.89)

M3 : y2i = 1+3∗ x2i +3∗ x(2,i+1)+ρui +N (0,1) (3.90)

where x2i is an exogenous variable that is generated as spatially correlated random variable.

x(2,i+1) is the exogenous variable (x) of nearest neighbor of the observation i. We include this

in the specification of the reduced form model of y2i to increase the strength of the additional

instruments that we get when we divide the data into groups.

ρ is the level of endogeneity captured as the relationship between y2i and ui. To study the

effect of increasing endogeneity on our estimation, we consider following different levels of ρ:

ρ = 1,3 (3.91)

3.6.3 Spatial Correlations

To generate a spatially correlated random vector UN , we use the Negative Exponential functional

form of the spatial correlation structure. Specifically, each element of the variance-covariance

matrix of a spatially correlated random variable is defined as

Λu,N(i j) = σexp
(
−

di j

λu

)
; σ ≡ 1 (3.92)
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where λu is the spatial parameter that reflects how quickly the correlations decrease with the

increasing distance.

A spatial correlated random vector is generated as:

Λ
1/2
u,NN (0,1) (3.93)

where Λ
1/2
u,N is the Cholesky Decomposition and N (0,1) is a vector of i.i.d standard normal

variables

To study the effect of increasing spatial dependence on our estimation, we consider follow-

ing different levels of λu:

λu = 0.1,0.5,0.8 (3.94)

The spatial parameter for X2N is 0.5 and X2N is generated in the same way using the Cholesky

Decomposition and standard normal distribution.

3.6.4 Results

We estimate the model using Tradional 2SLS, Grouped 2SLS, Spatial GIV and Spatial Control

Function estimation methods. For the grouped estimation, we divide the data set into groups

with each group containing 2 observations. We report the robust standard errors generated in

the way described in section 3.5.

Table 3.1 lists the results of model M1, Table 3.2 lists the results of model M2 and Table

3.3 lists the results of model M3. We list the Mean, Standard Deviation, Standard Errors made

robust to spatial correlation, Bias, Root MSE, Rejection rate and Coverage Probability of 95

percent confidence intervals. The rejection rates and the confidence intervals are calculated for

the 95 percent confidence levels. As we can see, Grouped 2SLS, Spatial GIV and Spatial CF

estimators give standard deviations that are almost 40 percent less than the standard deviation

of the Traditional 2SLS even though they use only the nearest neighbor.
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Comparing the performance of Grouped 2SLS, Spatial GIV and Spatial Cf, we find that the

results are comparable to each other. However, Spatial GIV performs better in some cases both

in terms of point estimates and inference.
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Table 3.1: M1 y2i = 1+3∗ x2i +ρui +N (0,1)

ρ=1,λ=.1 Mean S.D S.E Bias RMSE Cov

2SLS 0.99919 0.054815 0.049795 0.00081 0.054794 0.958
G2SLS 0.9995 0.05479 0.049792 0.000505 0.054764 0.959
Sp. GIV 0.99952 0.054769 0.049793 0.000476 0.054744 0.958
Sp. CF 0.99961 0.054997 0.056054 0.000388 0.054971 0.979

ρ=1,λ=.5 Mean SD SE Bias RMSE Cov

2SLS 1.0015 0.064765 0.05694 -0.0015 0.06475 0.946
G2SLS 1.0018 0.064777 0.056908 -0.00179 0.064769 0.947
Sp. GIV 1.0013 0.06395 0.05642 -0.00132 0.063932 0.946
Sp. CF 1.0014 0.064082 0.057404 -0.00136 0.064064 0.965

ρ=1,λ=.8 Mean SD SE Bias RMSE Cov

2SLS 0.99641 0.079801 0.067279 0.003591 0.079842 0.947
Grpd.
2SLS

0.99669 0.07972 0.067256 0.003313 0.079749 0.947

Sp. GIV 0.99745 0.074992 0.064722 0.002547 0.074998 0.948
Sp. CF 0.99748 0.075113 0.058463 0.002516 0.075117 0.941

ρ=3,λ=0.1 Mean SD SE Bias RMSE Cov

2SLS 0.99668 0.055837 0.049877 0.003319 0.055908 0.951
G2SLS 0.99753 0.05564 0.049824 0.002473 0.055667 0.956
Sp. GIV 0.99751 0.055652 0.04983 0.002487 0.05568 0.956
Sp. CF 0.99743 0.056075 0.057293 0.002572 0.056105 0.983

ρ=3,λ=0.5 Mean SD SE Bias RMSE Cov

2SLS 1.0012 0.064568 0.056942 -0.00123 0.064547 0.957
G2SLS 1.0022 0.064487 0.056824 -0.00216 0.064491 0.956
Sp. GIV 1.0023 0.063988 0.05646 -2.31E-03 0.063998 0.961
Sp. CF 1.0022 0.064128 0.0586 -0.00216 0.064132 0.976

ρ=3,λ=0.8 Mean SD SE Bias RMSE Cov

2SLS 0.99737 0.079359 0.067875 0.002632 0.079363 0.947
G2SLS 0.99835 0.079082 0.067655 0.001655 0.079059 0.949
Sp. GIV 0.99923 0.075195 0.065005 0.000767 0.075161 0.95
Sp. CF 0.99918 0.075495 0.060856 0.000818 0.075462 0.96
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Table 3.2: M2 y2i = 1+3∗ x2i +2∗ x(2,i+1)+ρui +N (0,1)

ρ=1,λ=.1 Mean SD SE Bias RMSE Cov

2SLS 0.99896 0.039498 0.036398 0.001043 0.039492 0.958
G2SLS 0.99898 0.036695 0.033626 0.001017 0.03669 0.963
Sp. GIV 0.99898 0.036693 0.033627 0.001016 0.036689 0.963
Sp. CF 0.99909 0.036719 0.037769 0.000914 0.036712 0.98

ρ=1,λ=.5 Mean SD SE Bias RMSE Cov

2SLS 1.0019 0.047544 0.041376 -0.00187 0.047557 0.956
G2SLS 1.0022 0.045458 0.039112 -0.00217 0.045487 0.951
Sp. GIV 1.0022 0.045453 0.039126 -0.00219 0.045483 0.95
Sp. CF 1.0021 0.045482 0.039987 -0.00214 0.04551 0.961

ρ=1,λ=.8 Mean SD SE Bias RMSE Cov

2SLS 0.99961 0.058086 0.04803 0.000392 0.058058 0.931
G2SLS 0.99969 0.057516 0.046503 0.000309 0.057488 0.93
Sp. GIV 0.99974 0.057342 0.046516 0.000259 0.057314 0.932
Sp. CF 0.99969 0.057457 0.042024 0.000305 0.057429 0.932

ρ=3,λ=.1 Mean SD SE Bias RMSE Coverage

2SLS 0.99834 0.037525 0.035985 0.001658 0.037543 0.961
Grpd.
2SLS

0.99881 0.03528 0.033241 0.001193 0.035283 0.961

Sp. GIV 0.99882 0.035274 0.033242 0.001183 0.035276 0.961
Sp. CF 0.99878 0.035336 0.038309 0.001218 0.035339 0.983

ρ=3,λ=.5 Mean SD SE Bias RMSE Cov

2SLS 0.99857 0.049543 0.04195 0.001427 0.049539 0.949
G2SLS 0.99874 0.047417 0.039778 0.001262 0.04741 0.951
Sp. GIV 0.99887 0.047432 0.039793 1.13E-03 0.047422 0.952
Sp. CF 0.9989 0.047558 0.040621 0.001096 0.047547 0.954

ρ=3,λ=0.8 Mean SD SE Bias RMSE Cov

2SLS 1.0031 0.058043 0.048244 -0.00312 0.058097 0.954
G2SLS 1.0033 0.056827 0.046631 -0.00332 0.056895 0.951
Sp. GIV 1.0036 0.056699 0.046655 -0.00364 0.056787 0.955
Sp. CF 1.0036 0.056764 0.043687 -0.00362 0.056851 0.952
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Table 3.3: M3 y2i = 1+3∗ x2i +3∗ x(2,i+1)+ρui +N (0,1)

ρ=1,λ=0.1 Mean Std. D Std. E Bias RMSE Coverage

2SLS 0.99794 0.046829 0.043653 0.002064 0.046851 0.963
G2SLS 0.99761 0.035071 0.032641 0.002393 0.035135 0.958
Sp. GIV 0.99761 0.035071 0.032641 0.002389 0.035135 0.958
Sp. CF 0.99761 0.035042 0.036407 0.002388 0.035106 0.973

ρ=1,λ=0.5 Mean Std. D SE Bias RMSE Cov

2SLS 0.99786 0.051009 0.044939 0.002138 0.051028 0.96
G2SLS 0.9971 0.041219 0.035274 0.002899 0.0413 0.948
Sp. GIV 0.99713 0.041216 0.035272 0.002867 0.041295 0.948
Sp. CF 0.99717 0.041251 0.038399 0.002833 0.041328 0.969

ρ=1,λ=0.8 Mean SD SE Bias RMSE Cov

2SLS 0.99773 0.052182 0.046249 0.002267 0.052205 0.958
G2SLS 1.0001 0.04499 0.038229 -0.0001 0.044968 0.956
Sp. GIV 1.0002 0.044975 0.038228 -0.00016 0.044953 0.956
Sp. CF 1.0002 0.044902 0.040531 -0.00017 0.04488 0.971

ρ=3,λ=0.1 Mean SD SE Bias RMSE Cov

2SLS 1.0019 0.047362 0.043963 -0.00186 0.047374 0.962
G2SLS 1.0013 0.034815 0.032403 -0.00133 0.034823 0.967
Sp. GIV 1.0013 0.034815 0.032403 -0.00134 0.034823 0.967
Sp. CF 1.0013 0.035018 0.037006 -0.00134 0.035026 0.982

ρ=3,λ=0.5 Mean SD SE Bias RMSE Cov

2SLS 1.0017 0.050229 0.04479 -0.00174 0.050234 0.962
G2SLS 1.0018 0.039554 0.035241 -0.00176 0.039573 0.959
Sp. GIV 1.0018 0.039535 0.035239 -1.85E-03 0.039558 0.958
Sp. CF 1.0018 0.03953 0.039045 -0.00177 0.03955 0.982

ρ=3,λ=0.8 Mean SD SE Bias RMSE Cov

2SLS 1.0001 0.051082 0.04666 -0.00011 0.051057 0.958
G2SLS 0.99973 0.043154 0.038117 0.000273 0.043134 0.954
Sp. GIV 0.99994 0.043109 0.038117 6.26E-05 0.043088 0.955
Sp. CF 0.99999 0.042903 0.041549 1.29E-05 0.042881 0.974

113



3.6.5 Performance of Spatial GIV

Since the Spatial GIV estimator performs better as compared to the SpatialCF estimator under

no additional assumptions, we conduct another set of Monte Carlo simulations to analyze it’s

properties. Specifically, the outcome variable y1i is generated as (3.85). The model for the

endogenous variable y2 is give as 2 ∗ x2i +ρui +N (0,1), where ρ indicates the endogeneity

which is allowed to be 1 and 3. To highlight the benefit of incorporating the within-group spatial

correlation between the observation, we increase the group size to L = 4 and for simplicity, we

do not include the Spatial CF. In addition, we only use one additional instrument. Finally, the

spatial parameter for x is 0.2 and spatial parameter for u takes the value 0.1,0.5,2.0,5.0 The

results are given in Table 3.4.

As we can see, when we increase the group size, the Spatial GIV estimator gives us very

good efficiency gains even in the presence of high spatial correlation.
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Table 3.4: Performance of Spatial GIV

ρ=1,λ=0.1 Mean Std. D S.E Bias RMSE

2SLS 0.9956 0.0783 0.072 0.004438 0.0783
G2SLS 0.9965 0.078 0.0719 0.003528 0.078
Sp. GIV 0.9965 0.0655 0.0624 0.003496 0.0655

ρ=1,λ=0.5 Mean Std. D S.E Bias RMSE

2SLS 0.9957 0.0781 0.072 0.00434 0.0781
G2SLS 0.9966 0.0777 0.0719 0.003421 0.0777
Sp. GIV 0.9967 0.0644 0.0617 0.003269 0.0644

ρ=1,λ=2.0 Mean Std. D S.E Bias RMSE

2SLS 0.9958 0.0776 0.0718 0.004207 0.0777
G2SLS 0.9967 0.0773 0.0717 0.003275 0.0773
Sp. GIV 0.9971 0.0607 0.0594 0.002886 0.0607

ρ=1,λ=5.0 Mean Std. D S.E Bias RMSE

2SLS 0.9956 0.0774 0.0715 0.00443 0.0774
2SLS 0.9964 0.0771 0.0713 0.003607 0.0771
Sp.GIV 0.9971 0.059 0.0584 0.002864 0.059

ρ=3,λ=0.1 Mean Std. D S.E Bias RMSE

2SLS 0.9941 0.0789 0.0727 0.005869 0.0791
G2SLS 0.9967 0.0781 0.0723 0.003284 0.0781
Sp. GIV 0.996 0.0657 0.0629 0.00397 0.0657

ρ=3,λ=0.5 Mean Std. D S.E Bias RMSE

2SLS 0.9943 0.0786 0.0727 0.005742 0.0788
G2SLS 0.9969 0.0776 0.0722 0.003136 0.0776
Sp. GIV 0.9964 0.0646 0.0621 0.003634 0.0646

ρ=3,λ=2.0 Mean Std. D S.E Bias RMSE

2SLS 0.9944 0.0782 0.0725 0.005576 0.0783
G2SLS 0.9971 0.0769 0.0718 0.002937 0.0769
Sp. GIV 0.9972 0.0609 0.0596 0.002784 0.0609

ρ=3,λ=5.0 Mean Std. D S.E Bias RMSE

2SLS 0.9943 0.0778 0.0721 0.005665 0.0779
Grpd. 2SLS 0.9966 0.0766 0.0714 0.003374 0.0766
Sp. GIV 0.9974 0.0592 0.0584 0.002618 0.0592
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3.7 Conclusion and Future Research

In this paper, we propose a computationally simple estimation procedure to account for spatially

correlated errors in linear econometric models with endogenous variables in a cross-section

dataset. We describe how by dividing the observations into groups according to the distances

between them and then taking account for only the spatial dependence of observation within

a group gives us noticeable efficiency gains; even though we ignore the correlations between

across-group observations. We suggest control-function approach to account for endogeneity

in the model that gives us intuitive estimating equations. The estimating procedure in the paper

provides an empirical researcher with a powerful tool that achieves more precise estimator while

avoiding tedious calculations that are unavoidable when we attempt to take account of the entire

correlation structure of all the observations.

The estimation strategy described in this paper can also be extended to incorporate non-

parametric methods of estimation. For example, we can use method of sieves in the second-step

of our estimation procedure. To explain the motivation of doing a sieve estimation in the second-

step, consider the case where L = 2. In that case, ΠΠΠg is a deterministic function of the distance

between the two observations in a group g denoted by dg. We can allow ΠΠΠg to be a flexible

function of dg and this motivates a sieve approximation of ΠΠΠg.

Further, when we have two observations in a group, sieve methods can also be implemented

to estimate the spatial dependence without restricting the functional form for spatial correlation

structure. Since the correlation between the two observations in each group depend on the

spatial parameter λη and the distance between the two observations dg, we can approximate the

correlation function using the method of sieves. A formal description of the sieve methods in

our estimation procedure and the asymptotic analysis is left for future research.
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