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ABSTRACT

MULTI-MODAL DIAGNOSTIC AND PROGNOSTIC TECHNIQUES FOR NDE
APPLICATIONS

By

Portia Banerjee

With rapid technological breakthroughs, role of non-destructive evaluation (NDE) has

shifted from assessing structural integrity to building complex systems with reliable defect

classi�cation and decision making capabilities. Widespread use of NDE in industries such as

aviation, nuclear, construction and automotive, have resulted in increased amount of NDE

data which is beyond capacity for human analysts and demands automated signal classi�ca-

tion (ASC) systems for accurate and consistent signal interpretation. A typical ASC system

processes NDE signals and classi�es signal categories based on appropriate features. Despite

striking bene�ts of ASC systems, classi�cation results are often a�ected due to inherent am-

biguity of non-discriminative features, inadequate training samples or noisy measurements.

As a result, uncertainty quanti�cation in defect classi�cation is critical in NDE applications

where the performance of a structure depends on the reliability of the ASC results. A relia-

bility measure that accounts for system uncertainties can help in monitoring its performance

and automatically �agging indications where operator intervention is required. In addition

to diagnosis, i.e., reliable characterization of current health status, damage prognosis or pre-

diction of system's remaining-useful-life (RUL) is another essential aspect of NDE. Accurate

health prognosis ensures system reliability and aids in estimating residual serviceability of

a component which in turn reduces repair or replacement costs. Moreover, combining infor-

mation from multiple sensors in multi-modal NDE systems can e�ectively improve damage

growth modeling and prediction of system's RUL. This dissertation presents three major



contributions to the �eld of NDE diagnosis and prognosis:

1. Uncertainty in ASC systems is quanti�ed in a statistical framework to develop a con-

�dence metric (CM) associated with ASC results. By bootstrapping and weighting

Bayes posterior probability with estimated noise distribution, e�ect of measurement

noise is embedded into the proposed CM. E�ectiveness of the CM is demonstrated

on experimental data from eddy current inspection of steam generator tubes. Fur-

ther, the bene�t of CM in improving classi�cation performance is explored using a

con�dence-rated-classi�cation technique.

2. Particle �ltering (PF) framework is developed for prediction of impact damage prop-

agation in composite materials which utilizes both physical model based on modi�ed

Paris' law and inspection data obtained from NDE system.

3. Joint likelihood updation is proposed in existing PF algorithm which enables opti-

mization of damage model parameters at every time step by discarding noisy or biased

measurements from multiple sources. Prognosis results on a composite specimen sub-

jected to fatigue testing and inspected using two NDE modalities, validate the bene�t

of multi-sensor prognosis approach over single-sensor methods. Additional advantage

of multi-sensor prediction in reduction of particle count within the PF algorithm is

demonstrated, thereby reducing the total computation time and resources.

Overall, a reliability metric and prognosis methodology is discussed for a multi-sensor

system that can be extended to multiple applications.
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Chapter 1

Introduction

1.1 Motivation & Objective

With advancement of technology in recent years, the �eld of nondestructive evaluation

(NDE) and testing have shifted its gears from classical approaches to more complex inter-

disciplinary operations. Traditional NDE systems have focused mostly on evaluation of

mechanical components for the detection and characterization of defects in materials or

structures. However with discovery of new scienti�c methods and imaging systems, the �eld

has grown both in scope and across disciplines. NDE engineering is no longer just restricted

to detecting and characterizing defects but extends to analyzing 'risk versus rewards' and

'remaining useful life' of systems and components. Overall, industries have started demand-

ing designers, system integrators and operators to collaborate and develop �cradle-to-grave�

evaluation solutions.

Integrated NDE inspection primarily comprises two equally important processes (i) diag-

nostics of systems' health and (ii) prognostics or prediction of remaining operational lifetime.

NDE diagnostics comprises identi�cation of distinguishing features which are indicators of

any anomaly or deterioration of general health of industrial components. Existing and emerg-

ing NDE monitoring techniques include mechanical, electrical, electromagnetic or optical

methods that can successfully image or indicate presence of �aws without compromising
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their usefulness. One of the crucial aspects of NDE diagnostics is maintaining reliability and

accuracy of its evaluation performance. With increase in amount of information from nu-

merous NDE applications such as defect characterization in steam generator tubes, natural

gas transmission pipelines, aircraft engines and components, arti�cial heart valves and many

more, automated data analysis systems have become necessary. In dealing with such large

volumes of data, manual analysis besides being time-consuming is often inconsistent which

demands the need for automated signal classi�cation (ASC) systems to identify anomalies

with reduced error by applying suitable signal processing algorithms on the acquired NDE

response signal. Often, expensive remedial operations are involved based on the classi�cation

results requiring more accuracy and consistency in ASC systems. After a defect is detected

in a tube, it is either replaced or repaired which is both time-consuming and expensive. On

the other hand, detection of potentially harmful anomalies which may be fatal and should

not be missed at any cost. Such defects should be identi�ed with greater certainty than those

generated from benign discontinuities. Hence design of self-evaluating automated data anal-

ysis systems have become the need of the hour where safety and serviceability of structural

components can be met while necessary level of operator intervention is minimized.

The second crucial process in modern NDE systems is the prognosis of structural aging

over time. Prognosis deals with predicting future health of a system, speci�cally to predict

the time until which the system is deemed to be safe. The diagnostic step feeds vital

information to the prognostic arm wherein past and present health indicators are used to

predict future health of a structure. By calculating the long-term reliability or prognosis

of remaining useful life, failures can be avoided enabling the maximum serviceability of the

component. This is extremely bene�cial to industries since it ensures maximum usage from

the component.
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Another important advancement in modern NDE is the practice of multi-modal sensing

and inspection techniques for characterizing materials or structures. Rapid development in

sensing and computing technologies has enabled the use of more than one sensor for simulta-

neous condition based maintenance (CBM) of a component. Many times a single measure-

ment technique has limited capabilities for characterizing structural health of a component

due to their resolution constraints. Di�erent sensors are sensitive to di�erent stages of degra-

dation and can portray multiple perspectives of the underlying damage growth path, thus

providing more information about system health. As a result, fusion of measurements from

multiple sensors helps reduce the uncertainty of individual sensor signal and enhances the

reliability of prognosis. Data fusion techniques are a promising enhancement in the �eld of

NDE wherein current measurement systems combined with advanced statistical processing

can provide more reliable results.

The principle objective of this thesis is to provide a detailed investigation of NDE diag-

nostics and prognostic tools that aim at enhancing reliability, accuracy and consistency of

damage detection and characterization systems. Speci�cally, sources of uncertainties typi-

cally encountered in NDE measurement systems and their e�ects on the �nal diagnosis of

defects are studied. A con�dence metric based on Bayes posterior probability has been pro-

posed which can incorporate several factors of uncertainty to provide a comprehensive metric

to the �nal inspection results. Further, use of statistical estimation and optimization tools

such as particle �ltering method are employed for prediction of damage growth in compos-

ite materials. Results from prognosis of delamination in glass �ber reinforced polymers in

association with data fusion from multiple NDE modalities are presented in this thesis.
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1.2 Scope and Organization of the dissertation

There are ten chapters in this dissertation. Chapter 1 introduces the motivation and

objectives of this study. The remaining of the report can be broadly categorized in two parts.

Chapters 2-5 discusses the problem of diagnostics in NDE in which the overall background of

existing statistical aspects in NDE diagnostics is discussed in chapter 2. Chapter 3 focuses on

the importance of con�dence metric in NDE signal classi�cation and describes the proposed

method of computing a comprehensive Bayes con�dence. Results on applying con�dence

assessment on real data from eddy current inspection of heat exchange tubes are presented

in chapter 4 and improving existing classi�cation algorithms by incorporation of con�dence

metric is demonstrated in chapter 5.

Chapters 6-9 are devoted to prognostics in NDE. The background review and theory

of prognosis is discussed in chapter 6. Chapter 7 describes particle �ltering technique for

predicting damage propagation model and residual life based on NDE data acquired by

direct condition monitoring. Results obtained by applying the proposed method on study of

impact-damage growth in composites are presented in the same chapter. Prognosis results on

indirect condition monitoring of composite joints subjected to Mode I fatigue mechanism are

presented in chapter 8. Chapter 9 discusses the bene�t of multi-modal NDE measurements on

the prognosis of end-of-life of a component. A joint likelihood update method is proposed to

particle �ltering framework which enables optimization of damage growth model parameters

at every time step by discarding noisy or biased measurements. Prediction results of matrix

sti�ness degradation in tensile composite coupons subjected to run-to-failure fatigue tests

are presented. The overall contribution of this research in the �eld of NDE and future scope

of work are summarized in Chapter 10.

4



Chapter 2

Diagnostics in NDE

2.1 Introduction

Nondestructive evaluation (NDE) encompasses the study and inspection of objects with-

out compromising their structural integrity. In a typical NDE inspection, a test object is

stimulated by an external energy source and the response of the energy interaction with

the test material is recorded. A schematic of of a typical NDE system with the associated

forward and inverse problems, is depicted in Figure 2.1. Forward problem involves predic-

tion o the defect signal given the material, defect parameters and excitation energy. This

can be done via experimental methods using appropriate energy sources or via mathemati-

cal models which can simulate underlying governing equations (eg: Finite Element Model).

On the other hand, detection and characterization of defects based on NDE measurements

forms the inverse problem. This includes processes to realize properties of the structure from

the NDE response image/signal. Inversion techniques in industries include development of

data analysis and image processing methodologies to interpret NDE measurements for vi-

sualization, full pro�le reconstruction or classi�cation of defects in structures. Full pro�le

reconstruction is required for determining size and shape of defects, whereas classi�cation

is applied to distinguish defect indications from measurement noise and decide if a �aw is

serious enough to render a component unacceptable or unusable.
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Figure 2.1: Schematic of forward and inverse problem in NDE.

In NDE, automated classi�cation systems are used to analyze large volume of measure-

ment data. For example, defects at rivet sites in aircraft wings is is commonly inspected

using electromagnetic NDE methods. Each aircraft wing contains thousands of rivets, with

defects in only a few of them. NDE inspection of such structures generate huge amount of

information that needs to be processed and classi�ed into defect and non-defect categories.

Other NDE applications such as inspection of gas pipelines extending upto hundreds of miles

or inspection of thousands of tubes in heat exchange units by multiple probes produce large

volumes of data. In such cases, manual analysis of individual measurements take excessive

time. Besides, errors due to human fatigue often lead to inconsistent and inaccurate clas-

si�cation results. Performance of manual analysis depends on level of training acquired by

the NDE operator which may vary from person to person. Therefore industries are moving

towards th use of automated systems that can analyze large volume of NDE measurements

faster and with higher accuracy, consistency and reliability [9] [10]. In nuclear industries,

6



single-pass systems or single-party-analysis is preferred over two-party-analysis whereby NDE

signals are analyzed by automated data analysis systems and only a few selected signals are

reviewed by review analysts. This reduces cost of human resources as well as down time of

the power plant. Moreover, shorter and more accurate inspections by automated systems

have a signi�cant economic impact on the overall station's operational cost, since each day of

station shutdown can result in millions of dollars in lost revenue. Thus, shorter inspections

and prevention of unplanned shutdowns can help the stations save millions of dollars [11].

2.2 Automated Signal Classi�cation in NDE

A schematic of a typical Automated Signal Classi�cation (ASC) system is shown in �gure

2.2. It comprises three major components- (1) Signal enhancement, (2) Feature Extraction

(3) Classi�cation. Signal enhancement techniques improves the signal-to-noise ratio of input

raw signal using methods ranging from simple averaging and low-pass �ltering methods [12]

to more sophisticated techniques such as wavelet shrinkage de-noising [13] and adaptive noise

cancellation. Noise contained in a signal can be attributed to several sources including in-

strumentation, probe wobble and variations in lift-o� or from unwanted re�ections caused by

the specimen's surface roughness. Depending on the characteristics of noise, di�erent �lter-

ing techniques are implemented. Once noise is removed from input signal, regions-of-interest

(ROI) or potential defect locations are identi�ed by implementing adaptive thresholds.

After data reduction step, meaningful features are extracted from the ROIs which are

able to discriminate defects from noise indications. Feature extraction serves two major

functions, namely data compression and invariance. A judiciously selected feature vector

contains most of the discriminatory information and yet be substantially smaller in dimension
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Figure 2.2: A generic automated data analysis system.

relative to the original signal vector. This, in turn, improves the classi�cation accuracy

and reduces the overall computational e�ort. Moreover, NDE signals are often acquired

under varying test conditions and their results are sensitive to factors such as variations in

probe characteristics, scanning speed, operating frequencies, test object conductivity and

permeability values, instrument drift, gain settings, etc. Feature extraction serves as an

important step in ASC of NDE signals where features are chosen so that they are invariant

to changes in test conditions or test specimen properties.

After feature extraction, the feature vector is sent to the classi�cation module. Signal

classi�cation techniques, based on pattern recognition principles, are used to classify signals

into one of a known set of classes. Such methods may be employed to discriminate be-

tween multiple types of defects or between defects and benign sources. Several classi�cation

algorithms have been used in NDE such as K-means clustering [14] , neural networks[15],

support-vector machine and density estimation techniques. The parameters of the classi�er

are determined o�ine using a data bank of signals from known defect types, referred to as

the training database. Similar features are extracted from the test ROI and sent as input

to the classi�cation algorithm to obtain the output class of the test signal. A schematic of

feature space, obtained from training database, with classi�cation threshold and test data is

shown in Figure 2.3, indicated by "x". Based on the location of the test feature point, the

test data is classi�ed into either of the classes.
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Figure 2.3: Schematic of feature space(from training database) with classi�cation threshold
and test data x.

2.3 Statistical measures in NDE

NDE measurements provide indirect indication of defect locations. For example,eddy cur-

rent testing generates a complex voltage signal from which relevant features are extracted

and classi�ed into positive(defect) and negative(non-defect) indications by human or auto-

mated discriminators. Positive signals may be generated from non-defect sources such as

surface roughness, grain sructure, variations in geometry and material properties. It is im-

portant to note that such signals constitute the application noise inherent to a speci�c NDE

procedure and is di�erent from electronic or measurement noise which can be eliminated

by �ltering or averaging techniques. Discrimination threshold of NDE signals must be set

such that the defect indications exceed the level of application noise. In Figure. 2.4 (a),

an example signal/ image obtained from eddy current technique is shown. A histogram of

the pixels from the 'defect' and 'non defect or noise' indications typically forms a bimodal

distribution and a threshold can be selected to clearly distinguish the defect pixels from the

noise indications, as demonstrated in Figure 2.4 (b).

Although control measures are applied to ensure a consistent output, measurements from
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(a) (b)

Figure 2.4: (a) Example NDE signal (b)Classi�cation between defect and non-defect (noise)
indications from NDE signal.

an NDE system varies within control parameters. Speci�cally, if the same NDE experiment

is repeated multiple times, it is unlikely to obtain the same result every time because of slight

variations in hardware, material properties, geometry or surface condition. As a result, a

probability distribution of signal is generated at the output instead of a deterministic result.

Due to the inherent stochastic nature of any NDE process, several statistical measures such

as probability of detection (POD), probability of false alarms (PFA), Receiver-Operating

Characteristic (ROC) curve and con�dence bounds are de�ned to characterize detection ca-

pability of an NDE procedure. These measures are obtained by using data from experiments.

The objective of these measures is solely to characterize inspection capability of the NDE

method by providing estimates and con�dence bounds for important quantities as described

in the following sections.

2.3.1 Hit/Miss response

The name �hit/miss� is derived from the ability of some NDE procedures to detect only

the presence or absence of a �aw, providing no quantitative information about �aw charac-

teristics. Binary responses of this type are most common for methods such as the liquid-
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penetrant imaging and radiography, for which there may be limited ability to measure the

�aw size. For a hit/miss data, the response is typically de�ned as:

Y =


1, if defect is detected

0, if defect is not detected

(2.1)

2.3.2 Probability of Detection (POD) and Probability of False Alarm

(PFA)

When NDE assessment for crack detection is performed, the inspection capability of the

procedure cannot be fully characterized by a simple Hit/miss response. As shown in matrix

in Figure 2.5 the possible outcomes from a typical inspection system are:

(a) True positive (TP): A crack exists and is detected, where M(A,a) is the total number

of true positives and P(A,a) is the probability of true positive.

(b) False positive (FP): No crack exists but is identi�ed by the NDE system, where M(A,n)

is the total number of false positives and P(A,n) is the probability of false positive.

(c) False negative (FN): A crack exists but is not detected, where M(N,a) is the total

number of false negatives and P(N,a) is the probability of false negative.

(d) True negative (TN): No crack exists and is not detected, where M(N,n) is the total

number of true negatives and P(N,n) is the probability of true negative.

To completely characterize detection capbility of a NDE system, two measures are de�ned.

The probability of detection (POD) or probability for a true positive P(A,a) can be expressed

as: P (A, a) =
M(A,a)

M(A,a)+M(N,a)
or Total true positive calls

Total number of defects
.
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Figure 2.5: Matrix of four possible outcomes from an NDE procedure for �aw detection

(a) (b) (c)

Figure 2.6: Signal/noise distribution for (a) large �aw (b)medium �aw and (c) small �aw.

Similarly, the probability of false alarm (PFA) or probability for a false positive P(A,n)

can be expressed as: P (A, n) =
M(A,n)

M(A,n)+M(N,n)
or Total false alarms

Total number of non-defects
.

For a given �aw size, distributions for application noise and defect signal are depicted

in Figure 2.6. The region to the right of the chosen decision threshold corresponds to the

POD whereas the region to the left of the threshold represents the PFA. It is obvious that

the shaded regions representing POD and PFA depends largely on the distribution of noise

and defect signal as well as on the choice of decision threshold.

Under ideal conditions, such as response from a large �aw, the signal and noise distribu-

tions are well separated and can be clearly discriminated by the chosen threshold, as shown
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Figure 2.7: a vs â model with POD curve generation ([2]).

in Figure2.6 (a). This corresponds to the most desirable output with high POD and low

PFA. For medium �aws as shown in Figure 2.6 (b), there is some overlap between the two

distributions. If threshold is the same as the previous case, this NDE inspection will be

characterized with lower POD and higher PFA than case (a). Similarly, detection of the

smallest �aws is most challenging since the noise and defect signals cannot be separated

resulting into lowest POD and highest PFA.

2.3.3 a vs â Model

Calculation of POD can be extended to �aws of multiple sizes to generate a POD curve.

Suppose a is the true �aw size, the signal response estimated from the output of NDE

inspection corresponding to a �aw size a is termed as â. Under ideal conditions, measurement

â is supposed to be exactly equal to true size a and correspond to the black solid line in

a versus â plot in Figure 2.7. However, in NDE inspections the true size is unknown and

relationship between a and â is inferred only from the measurement data. According to

empirical studies in [16], it was found that a normal-theory regression model, with standard
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devaition σ, can be applied to logarithmic transformation on a and â such that:

Y = N (µ = β0 + β1xi, σ) (2.2)

where, Y = log â, X = log a, β0 and β1 are the regression parameters. For a a versus â

model in NDE, a threshold ath is set; whenever â exceeds the threshold, the ROI is classi�ed

as a �aw and the corresponding POD is calculated. The POD is calculated for varying �aw

sizes and a POD curve is generated as shown in Figure 2.7. The Probability of Detection

(POD) curve is further de�ned as

Pr(â > ath|a) = 1− φ(
ath − (β0 + β1 log a)

σ
) (2.3)

where φ(Z) is the standard normal cdf. Figure 2.8 illustrates the estimated POD curves for a

dataset with varying threshold parameters. These curves are useful to examine the trade-o�

between number of hits versus misses. POD functions can be de�ned for more general NDE

models by including the inspection factors unique to the NDE procedure. Details of POD

studies in NDE are available in [17, 18, 19].

2.3.4 a90/95 Con�dence Bounds on POD curve

POD curves are critical in assessing the detection capability of any NDE measuring

system. However, accuracy of a POD curve is itself dependent on the estimation of the

regression parameters β0 and β1. Slight change in these parameters can a�ect the POD

curve greatly and therefore it is necessary to pose con�dence bounds on them to allow for

discrepancies in the estimated POD values.
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Figure 2.8: POD curves for example dataset calculated at di�erent threshold parame-
ters(adopted from [3]).

Consider a plot of the loglikelihood ratio for di�erent values of µ and σ, as shown in

Figure 2.9 (a). According to Knopp et al. [4], if the pair of parameters is moved from their

maximum likelihood estimate (MLE) position denoted by +, the loglikelihood changes, as

illustrated by the contour lines. One of the contours, shown by the dotted line, is the 95%

con�dence bound for the parameter estimates based on these data. In other words, the

true µ and σ pair is expected to be contained within the con�dence ellipse in 95% of future

experiments simlar to this one. POD curves are then constructed for all the points along the

95% con�dence ellipse as shown in Figure 2.9 (b). The envelope of all these POD(a) curves

represents the con�dence bounds on the POD(a) curve. The POD curve corresponding to

the MLE of parameters is shown as the black solid line in �gure 2.9(b). The point where the

estimated POD curve intersects POD=0.9, is known as the a90/95 value which represents

that in 95 out of 100 similar experiments, the output �aw size having POD of 0.9 will lie

within the estimated con�dence bounds.
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Figure 2.9: (a) Loglikelihood ratio space for regression parameters (b)POD with 95% likely
parameters [4].

2.3.5 Receiver Operating Characteristics (ROC)

The ROC curve is a plot of Probability of False Alarm on the horizontal axis and Probabil-

ity of Detection on the vertical axis, as shown in Figure 2.10. The ROC function is generated

by varying detection threshold over all possible values. ROC functions were originally de-

veloped to illustrate the e�ect of choice of threshold on the probability of misclassi�cation

in radar applications [20].

If a set of measurements, containing a group of �aws of similar size, is repeatedly assessed,

the POD and PFA can be calculated which forms a single point on the ROC curve. This

process is repeated by several operators of varying levels of pro�ciency (denoting varying

thresholds) and the ROC curve is generated. A superior discriminating performance of the

NDE inspection will result in high POD and low PFA, or the top-left region of the ROC

curve is considered as the preferred threshold.
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Figure 2.10: ROC curves for example dataset having di�erent sized �aws [3].

2.3.6 Con�dence Metric

Statistical measures such as POD and ROC curves with their con�dence bounds assesses

the inherent detection performance of any NDE measuring system. While ROC curve aids in

selecting the optimum threshold for detecting defect of a particular size, POD curve shows

the e�ect of �aw size on detection capability for a �xed threshold. Both these curves are

critical for assessing the minimum �aw size that can be accurately detected using the NDE

procedure.

However, these measures do not deal with the complete picture of system reliability

in NDE. Apart from inherent uncertainties of the measuring system, classi�cation by au-

tomated systems are a�ected by other factors which are not taken into account in either

of these measures. An inspection system with high detection capability can still produce

inaccurate results if the ASC system is under-trained or sub-optimal signal features are se-

lected. Further, while computing POD and PFA, only application noise is considered which

is inherent to the NDE technology. Random noise in measurements which may occur due to
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probe lift-o� variations, unexpected change in structural geometry or machine fatigue a�ects

classi�cation results which is not captured by either POD or ROC measure.

Most importantly, both POD and ROC curves are generated using experimental data

with known �aw sizes, for characterizing the measurement system before applying to �eld

data. On contrary, when �eld data is inspected by NDE procedure, the ASC system is un-

aware of defect sizes and the �eld data can be signi�cantly di�erent from experimental data

used to compute POD or ROC curves. The test data of unknown defect pro�le is processed

and the �nal classi�cation results are based solely on training and selected features. As a

result, existing POD and ROC curves cannot quantify reliability of ASC system which is

a�ected by number and distribution of training signals, quality of features and measurement

noise in test data. A reliability measure of the ASC system is de�ned in terms of con�dence

metric (CM) to quantify uncertainties associated with classi�cation of every ROI. Assess-

ment of CM to individual �eld data observations is a necessary tool in NDE diagnostics

since potentially harmful anomalies are expected to be detected with greater probability

than benign discontinuities and an ASC system with such capability can automatically �ag

indications for which operator intervention is required. As depicted, in Figure 2.11 (a) , NDE

data 3 and 4 identi�ed with low con�dence can be further analyzed before directly replacing

or repairing the 'defective' component. By reviewing only selected signals (having low CM),

single-pass systems can be reliably used in industries thereby saving both time and cost of

human resources.
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Figure 2.11: (a) Self-evaluation in ASC system with con�dence metrics (b)Single-pass sys-
tems in NDE.

2.4 Existing con�dence metrics

The following section is dedicated to a review of some exising con�dence metrics to

understand their capabilities and shortcomings in di�erent classi�ers.

2.4.1 Con�dence in binary form

Initial part of literature on classi�cation algorithms has restricted con�dence measure

to have a binary form. Grunwald et al.[21] uses high con�dence (sure) and low con�dence

(unsure) as the two labels to denote whether a given indication is correct (C) or incorrect(I).

Bailey et al.[22] build on the concept of a rejection region implementing uncertainty envelopes

(UE) that are associated with unsure classi�cations. When tested with a large number of

classi�ers, the percentage of classi�ers that correctly classi�es the same exemplar is the

level of con�dence associated with that exemplar. In such cases, a user-de�ned threshold

is applied to form the UE. Any data falling into the uncertainty envelope is unsure, and

any data falling outside the uncertainty envelope is sure. Thus, the con�dence measure is

essentially a binary indicator, either sure or unsure. Similar concepts have been used by

Krzanowski[23] and Jacobsen[24]. Although, these con�dence measures give a good estimate
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of success-failure analysis of classi�cation, the usage of a user-de�ned threshold makes these

approaches heuristic in nature and do not particularly address the e�ect of uncertainties in

a classi�cation.

2.4.2 Con�dence in terms of probability

The most popular method of quantifying uncertainty in classi�cation has been in the form

of probability. Due to inherent characteritics of a NDE system, noise and signal conditional

distributions overlap and a test data falls under both the classes with di�erent probabilities.

Di�erent class�cation algortihms in literature such as K-nearest neighbor Similarity Ratio[25]

provide probability scores which can be de�ned as con�dence metrics. A few other approaches

are discussed further.

2.4.3 Similarity Ratio in Clustering

Clustering[14] is an intuitive means of classi�cation that uses the fact that patterns from

the same class tend to be similar to each other. Members of a class tend to cluster around

a point in feature space. It is a simple algorithm which minimizes the objective function:

J =
k∑
j=1

n∑
i=1

∥∥∥x(j)
i − cj

∥∥∥2
(2.4)

where
∥∥∥x(j)

i − cj
∥∥∥2

is a chosen distance measure between a data point x
(j)
i and the cluster

centre cj . n is the total number of data points and k is the number of classes the data

is grouped into. The simplest form of clustering is the K-means algorithm which assigns

data points to the group that has the closest centroid. Figure 2.12 shows the result of

application of 2-means clustering on a synthetic dataset. One possible con�dence metric
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Figure 2.12: 2-means clustering on a synthetic dataset.

in cluster analysis is formulated based on closeness of a data point to the cluster with the

closest center. A point which is closer to the centre of its assigned cluster will be associated

with higher con�dence of classi�cation compared to a point which is far from the cluster.

Con�dence associated with classi�cation of a datapoint can be computed as:

C = 1− dm∑k
i=1 di

(2.5)

where di is the distance of datapoint i from k cluster centres and dm is its distance from the

cluster to which it is classi�ed to.

2.4.4 Membership Functions in Neural Networks

Neural networks have been used successfully in pattern recognition largely due to their

simple learning algorithms and ability to generate complex decision boundaries. They con-

sist of weighted interconnections of simple processing units called neurons. Each weight

represents the interconnection strength between two cells. Learning occurs by a process of

adapting the weights to re�ect mapping of an input to a desired output. Pradeep [26] uses
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Figure 2.13: The probabilistic neural network.

probabilistic neural network (PNN) as the classi�cation scheme applied on a database of

ultrasonic signals obtained from inspection of tubes in nuclear power plants. He further uses

membership function to represent the con�dence associated with every signal classi�cation.

Figure 2.13 shows the architecture of a PNN. The input pattern is multiplied by the in-

terconnection weights and sent to the second layer pattern nodes representing the training

dataset. Each pattern unit implements memebership function MF de�ned as:

MF = exp

(
−1

2

(
x− c
σ

)2
)

(2.6)

where x is the input and c, σ are the center and spread of the Gaussian membership function

of that pattern node. The output of each pattern unit j is the degree tj to which the rule

�res.

tj = MFj
(
yj
)

(2.7)
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The outputs of pattern nodes belonging to the same class are sent as input to the summation

layer and their corresponding membership values are aggregated. The input pattern is

assigned to the class having the maximum output from summation layer. Classi�cation

con�dence can be interpreted as the aggregated membership values µi:

µi (x) =
∑
j∈Ci

tj (2.8)

2.4.5 Posterior Probability in Density Estimation techniques

In classi�cation via density estimation techniques, concept of posterior probability con-

tains relevant information to assess the accuracy of classi�cation result [27, 28, 29]. The

datapoints to be classi�ed are assumed to be generated by a underlying probability density

function of respective classes. Classi�cation is performed by estimating the density functions

for 'defect' and 'non-defect' class and assigning a data to the class having maximum density

value. Density estimation techniques include parametric approaches such as Maximum Like-

lihood Estimate or non-parametric methods such as Parzen window classi�er and K-nearest

neighbors. A typical con�dence metric in density estimation technique is the Bayes posterior

probability or the Bayes Con�dence.

2.5 Bayes Con�dence

During training of the system, features from training data are plotted in a hyper-dimensional

feature space and a decision boundary is obtained such that the classi�cation error is mini-

mized as shown in Figure 2.14. This decision boundary partitions the feature space in two

categories, defect (class1) and non-defect(class2) . Features from test signal are extracted
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Figure 2.14: A sample feature space with decision boundary (dashed line) separating two
classes.

and the signal is classi�ed into the class depending on the location of the test data relative

to the decision boundary.

According to Bayes theorem, if x is a pattern vector from a class Ai, the posterior prob-

ability of class Ai given x is written as the conditional probability P (Ai|x). Thus, the

probability distribution of a class is conditioned on evidence obtained from training data

and x is assigned to the class having maximum posterior probability density function.[30]

Con�dence in classi�cation can be de�ned as the probability of making a correct decision.

Consequently, the con�dence of classifying a test data in class Ai is the posterior probability

function, given by the well-known Bayes rule. [31]

P (Ai|x) =
p(x|Ai)P (Ai)∑c
i=1 p(x|Ai)P (Ai)

(2.9)

where,

P (Ai|x) is the class-conditional density for a class Ai

P (Ai) is prior probability of class Ai

P (Ai|x) is posterior probability of class Ai given the pattern vector x.
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Figure 2.15: Bayesian con�dence for one-dimensional case in a two-class classi�cation. (Ex-
ample: test data is x=1).

If no other information about the classes is available, the prior probabilities can be

assumed to be equal. For a 2-class problem (Defect and Non − defect), the equation (2)

reduces to

Con�dence of x classi�ed as Defect is:

P (Defect|x) =
p(x|Defect)

p(x|Defect) + p(x|Non−Defect)
(2.10)

Hence, for a given test data x, the classi�cation con�dence of x as defect can be obtained

using the above equation. The conditional probability density functions for the two classes

p(x|Defect) and p(x|Non− defect) are estimated from the training set. Figure 2.15 shows

the representation of con�dence in a 1-dimensional case (where the training set is represented

by one feature). Assuming Gaussian distribution for class-conditional density functions of

the two classes, the two Gaussian plots represent the estimated distribution of the features

from training samples labeled as class A1 and class A2. The con�dence of x∗ classi�ed as

class A1 is calculated as CA1
= P (A1|x∗) = 0.176/(0.176 + 0.0829) = 0.6798 or 67.98%.

One of the major challenges of using simply the posterior probability directly is that

priors are often unknown, as pointed out by Richard et al[32]. Moreover, such a measure
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is heavily dependent on correct estimation of density functions. Throughout literature,

although con�dence measure has been de�ned in di�erent ways, all approaches deal with a

single objective of trying to come up with the best possible way to include the e�ects of all

potential uncertainties encountered in existing NDE classi�cation.
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Chapter 3

Comprehensive Con�dence Metric in

NDE

3.1 Introduction

Although a wide range of both rule-based and pattern recognition-based classi�cation

algorithms have been studied for various NDE applications [33, 34], the estimation of a

con�dence measure has remained under-emphasized in NDE literature. There are numerous

uncertainties involved in NDE systems. Goebel et al. claim that NDE sensor data is often

highly noisy and number of training samples available is limited [35]. Although utilizing

classi�er ensembles improves classi�cation performance for noisy NDE data, the reliability

of classi�cation results have not been evaluated. Besides, accuracy of a classi�er depends

on the discriminative quality of the features used. There has been investigation of noise-

invariant features to improve classi�cation performance, for instance in [36], but their e�ect

on reliability is not yet veri�ed. A few quantitative studies on reliability of classi�cation

systems have been conducted over the past years [37, 23], but no method of con�dence

estimation seems to be widely accepted till date. In practice, the sources a�ecting reliability

of signal classi�cation in NDE systems occur simultaneously. While they have been discussed

before by NDE specialists, a joint quanti�cation and incorporation of their impact in the
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form of a single reliability measure for every decision made remains unsolved.

Much of the current studies [27, 28, 29] use posterior probability or similar measures of

con�dence. As mentioned in chapter 2, posterior probability of occurrence of an event is

representative of inter-class similarities and intra-class distance and thus, may be used as a

measure of inherent ambiguity of classes and discriminative quality of features. However the

major concern in such approaches lies in the estimation of the parameters of density functions

from training set. Bayes con�dence takes into account the e�ect of quality of features ex-

tracted from signal assuming that the class-conditional density functions are known a-priori.

On the contrary, in practice, lack of adequate training data causes estimated parameters to

be signi�cantly di�erent from their true values which a�ects the calculation of con�dence

of classi�er. To the best of our knowledge, this factor has remained under-emphasized in

existing literature on con�dence measures. In our study, the di�erence between true param-

eters and estimated values is reduced and the e�ect of size of training data is incorporated

in Bayes con�dence by applying bootstrap method [38].

The other cause of unreliability in classi�cation decision, irrespective of the classi�ca-

tion technique, is the measurement noise. Particularly in NDE, the absolute noise level

and absolute strength of a defect signal depends on a number of factors. For example in

ultrasound detection, measurement noise depends on probe size and focal properties, probe

frequency, inspection path, coupling between transducer and sample, inherent noisiness of

the metal microstructure, etc. Similarly in eddy current testing, the major noise sources

are temperature variations, probe lift-o�, changes in the electromagnetic properties of the

material such as electrical conductivity or magnetic permeability and changes in test speed

[39]. Researchers in NDE have explored advanced signal processing techniques for detecting

di�erent sources of noise and distinguishing signals arising from true defects in presence of

28



noise [40, 41]. However to the best of author's knowledge, existing con�dence assessments do

not incorporate noise information. In case of uncertainty analysis, estimation theory suggest

that the variance of the estimator depends largely on the variance of noise in observation

which therefore a�ects the con�dence of classi�cation result and motivated our study on

proposing an updated con�dence metric.

In this chapter, the primary sources of uncertainties encountered in a typical ASC system

in NDE have been identi�ed. A framework has been developed to incorporate their e�ect

on classi�cation performance into a single quantity. In lieu of the commonly used simplistic

assumption of �xed distributions [42], we assume that parameters of the distribution of a

class are random variables. We utilize bootstrap method to �nd empirical distribution of

parameters of the class conditional densities based on which a distribution of con�dence is

obtained [38]. From this distribution, di�erent interpretations of the con�dence measure may

be provided. Analytical results show how statistical properties of the con�dence distribution

are representative of the underlying sources of uncertainties in ASC systems.

3.2 Factors A�ecting Reliability in NDE Signal Classi�-

cation

The reliability of classifying a signal as defect is largely a�ected by the accuracy in

estimation of the density functions of the classes. Uncertainties in parametric estimation

of the class-conditional densities lead to errors in classi�cation results in terms of missing

true defects or causing false alarms. Ideally, a comprehensive con�dence measure in ASC

systems should be able to quantify the e�ect of the factors a�ecting reliability of NDE signal

classi�cation and provide self-evaluation of its results. The following factors were identi�ed
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and their individual e�ects were studied.

3.2.1 Quantity and representativeness of training data

Since Bayes con�dence relies on parametric statistics, accuracy of estimated con�dence

heavily depends on the number of training samples used.

According to Chebyshevs Inequality,

P (|xn − µ| ≤ ε) ≤ σ2

nε2
(3.1)

where, µ is true mean, xn is the expected mean, σ is the variance of the distribution and

n is the number of samples. This states that the estimated statistical parameters of class

distributions tend to converge to the true distribution as the number of samples increases

[43]. Subsequently, the con�dence associated with decision of a test signal by an ASC system

which is trained with more training samples would be higher, considering that the training

data is representative of the class irrespective of its size.

Another desired property of training dataset is that it should be representative of its

classes. For instance, an ideal training dataset of defect signals should contain signals ob-

tained from defects of all possible depth, width or any other parameter that a�ects signal

features. If some region of the feature space is under-represented due to lack of enough

samples, computation of classi�cation con�dence of a test data will be inaccurate.

3.2.2 Quality of features

Features selected to describe the training data should possess discriminative property.

Con�dence of a signal being a defect is more when its feature lies closer to the mean of
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distribution of class defect and farther from the mean of the other class. Discriminative

property of feature ensures that inter-class distance is high and intra-class variance is low

which enables separation of two classes in the feature space. A test data which lies farther

from the mean of distribution of another class and closer to the mean of its own class is likely

to have a higher value of con�dence associated with it [44]. This concept can be expressed

quantitatively as :

Confidence ∝ d1

d2
(3.2)

d1 : Inter-class distance (distance between means of both distributions)

d2: Intra-class distance (variance of each class distribution)

Figure 3.1 shows the case where the same test data is associated with the same clas-

si�cation result but intuitively has di�erent con�dence due to di�erence in discriminative

property of feature set chosen. Fig. 3.1 a) indicates higher inter-class distance leading to

distinct clusters resulting in higher con�dence assigned to a test data. Fig. 3.1 b) uses

feature3 and feature 4 to describe an overlapping feature space and therefore con�dence of

the same test data (to be in class 1) is low.

3.2.3 Noise statistics of test data

The signal-to-noise ratio (SNR) of the test data a�ects con�dence of its classi�cation.

Noise is generated during measurement in NDE systems which may be di�erent for di�erent

test samples. A noisy test signal will have inaccuracy in computed features which inherently

a�ects its classi�cation con�dence. Hence, to generate a more comprehensive con�dence

metric, it is important to incorporate noise characteristics into the posterior probabilty

measure. The e�ect of noise statistics on NDE classi�cation con�dence and the method of
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Figure 3.1: E�ect of discriminative quality of features on con�dence measure.

incorporating it into calculation of con�dence are discussed in greater details in later sections.

3.3 Comprehensive (Boosted) Bayes Con�dence

Assuming known parameters characterizing the class-conditional density functions, ex-

isting Bayes posterior probability su�ciently denotes a possible measure of reliability in

classi�cation results. However in NDE applications, density functions are unknown and con-

�dence of signal analysis depends strongly on the accuracy of parametric estimation as well

as the noise model. In this thesis, these two issues are addressed. A new metric of reliability

is proposed based on traditional Bayes con�dence which successfully incorporates e�ects of

uncertainties due to limited number of training data and noise in measurements. A popular

sub-sampling technique known as bootstrapping is applied for calculation of posterior prob-

ability such that the estimation error is reduced, followed by incorporation of noise statistics

from NDE signal into the con�dence assessment. The details of the proposed method are

described in the following subsections and summarized in Algorithm 1 and 2.
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3.3.1 Bootstrapping

Bootstrapping is a technique of sub-sampling with replacement[38]. At every iteration of

the algorithm, a subset of the total training dataset (Dt) is selected and maximum likelihood

estimators of parameters of the class-conditional density functions are obtained.

A Gaussian mixture model (GMM) is implemented on Dt to model class-conditional pdf

for all classes [ω1, ...., ωc] as :

(
pt (x)

)
ωi

= (
k∑
i=1

φiN (µi,Σi))t (3.3)

where the ith vector component is characterized by normal distributions with weights φi,

means ~µi and covariance matrices Σi of k components in GMM [45].

Using estimated values of mean vector and covariance matrix, the Bayes posterior proba-

bility is calculated according to Equation 2.9. Repeating the process on other set of samples

for a �xed number of iterations provides a deeper insight into the behavior of the entire

statistical population. In lieu of deterministic approach, parameters of the distribution of

a class are assumed to be random variables under this framework and hence a distribu-

tion of con�dence is obtained, instead of one-shot con�dence calculation. The procedure is

illustrated in Figure 3.2.

From the con�dence histogram, C0.95 measure is calculated to the right of which 95% of

the total area under the histogram lies. Classi�cation con�dence of C0.95 associated with a

NDE signal signi�es that 95 times out of 100, the ASC ensures that the signal will belong

to the reported class with a con�dence of C0.95. If the histogram of con�dence values is

denoted as h = [h1, . . . . . . hn]

33



20 25 30 35
22

24

26

28

30

32
Sub−samples taken from the entire dataset

feature 1

fe
at

u
re

 2

 

 

22 24 26 28 30 32
22

24

26

28

30

32
Estimated distribution 

feature 1

fe
at

u
re

 2

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Confidence values for every sub−samples

class 1

class 2

class 1

class 2

(a)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

confidence histogram

(b)

Figure 3.2: (a)Bootstrappping Bayes con�dence, (b) Con�dence histogram with C0.95 value
as the red line.
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h is de�ned as:

hn =
∑

x∈[0,1]

δn (x) (3.4)

Where,n : 1, 2, ...., N ; N is the total number of bins of histogram and δn is an indicator

function such that,

δn(x) =


1 if n−1

N ≤ x ≤ n
N

0 otherwise

(3.5)

The metric C0.95 is further de�ned as:

C0.95 =
index−1

N + index
N

2
(3.6)

where,

index = max
j

 N∑
k=j

h
′
k ≥ 0.95

 (3.7)

h′n =
hn∑
n∈N hn

(3.8)

As a rule of thumb, at least 75% of the training samples are selected in each iteration to gen-

erate unbiased estimates of the parameters. Additionally, bootstrapping reinforces the e�ect

of number of training samples on con�dence evaluation, depicted using simulated dataset

in Figure 3.3 with training data of size (a) 10, (b) 15 and (c) 20 respectively. Presence

of more number of representative training data reduces the variance of the con�dence his-

togram which re�ects higher certainty in classi�cation results [46]. It is important to note

that training data distribution is unchanged for the three cases, only the number of data

varies.
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Figure 3.3: E�ect of number of training data on con�dence histogram and C0.95 value for
test data X (a) C0.95= 0.4033 for n=10 (b)C0.95= 0.6776 for n=15 (c) C0.95= 0.7277 for
n=20.

36



3.3.2 Incorporation of noise factor

As stated by Mann et al. [47], the level of con�dence that can be attributed to classi�-

cation is highly sensitive to prior assumptions regarding the nature of the background noise,

as well as the appropriateness of the statistical model for noise. Typical measurements from

an NDE experiment contains �aw response a�ected by di�erent sources of noise. For most

cases especially when the �aw size is relatively small, it is very di�cult to determine whether

an observation arises due to a �aw or measurement noise leading to low con�dence in clas-

si�cation. In this work, assuming additive noise we recognize that features from a noisy

signal are not deterministic in nature; instead they are random variables whose distribution

is a�ected by the noise pdf. Noise statistics is extracted from the measured NDE signal and

characterized by its density function. During training of algorithm, posterior probability

function of the feature space is calculated. Subsequently, the Bayes posterior probability

function is weighted with the noise density function according to equation 3.3, in order to

evaluate corresponding classi�cation con�dence [48].

(PW (x))ω =

∑
x∈A pn (x− x∗) .

(
Pp (x)

)
ω dx∑

x∈A pn (x− x∗) dx
(3.9)

where, A is the feature space,
(
Pp (x)

)
ω is the calculated posterior probability function

of the signal classi�ed into class ω, pn (x− x∗) is the estimated noise density function of the

signal and (PW (x))ω is the noise-weighted posterior probability function of the classi�ed

signal.

The process of weighting posterior probability with noise distribution is demonstrated in

�gure 3.4. Bayes con�dence of test data x∗ without noise is computed as C1 (value of C(x)

at x∗). With e�ect of noise, the classi�cation con�dence is calculated as:
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Cn =
C1n1 + C2n2 + C3n3 + C4n4 + ...+ CMnM

n1 + n2 + n3 + n4 + ...+ nM
∀n ∈ N (3.10)

Figure 3.4: Demonstration of con�dence computation by weighting with noise.

The proposed method of computing classi�cation con�dence of a noisy test data imple-

mented in bootstrap framework is described in Algorithm 1 and 2.

Algorithm 1 Training algorithm

Input: Training data D = {xi, yi}; i ∈ {1, 2, ...., N} with true labels yi ∈ {ωj}; j ∈
{1, 2, ...., c};

Output: Posterior pdf of the class for which con�dence is calculated=
(
P tp (x)

)
ωj

1: Initialize t = 1;
2: for t = 1 to T (Number of iterations) do
3: Select a training subset Dt containing M samples drawn from D;
4: Fit GMM to Dt and model class-conditional pdf for all classes [ω1, ...., ωc] as :(

pt (x)
)
ωi

= (
∑k
i=1 φiN (µi,Σi))t

where the ith vector component is characterized by normal distributions with weights
φi, means ~µi and covariance matrices Σi of k components in GMM

5: Estimate ( ~µt,Σt)ωi for all classes [ω1, ...., ωc];
6: Calculate the posterior probability for the class for which con�dence is obtained (e.g.

ωj) :(
P tp (x)

)
ωj

=

(
pt(x)

)
ωj∑c

i=1(pt(x))ωi
;

7: end for
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Algorithm 2 Generating con�dence of classi�cation of a test data

Input: Test data whose con�dence is to be evaluated : x∗;
Classi�ed label of x∗ = y∗;
PDF of noise of test data = pn (x− x∗);

Output: Con�dence of test data classi�ed into class ωj = Cωj ;

1: for t = 1 to T do
2: Calculate posterior pdf weighted by noise pdf:(

P tW (x)
)
ωj
=

∑
x∈A pn(x−x∗).

(
Ptp(x)

)
ωj∑

x∈A pn(x−x∗)
where A : {feature space};

3: Calculate weighted posterior probability for test data:
(
P tW (x∗)

)
y∗ ;

4: end for
5: Formulate a histogram of (PW (x))ωj

with M bins s.t. h = [h1, . . . . . . hM ];

6: De�ne hm as:
hm =

∑
x∈[0,1]

δm (x) (3.11)

where,m : 1, 2, ....,M ; M is the total number of bins of histogram and δm is an indicator
function such that,

δm(x) =

{
1 if m−1

M ≤ x ≤ m
M

0 otherwise
(3.12)

7: Calculate classi�cation con�dence of x∗ = Cωj= C0.95 ;

C0.95 =
index−1

M + index
M

2
(3.13)

where,

index = max
j

 M∑
k=j

h
′
k ≥ 0.95

 (3.14)

h′m =
hm∑

m∈M hm
(3.15)

3.4 Simulation Results

A parametric study showing e�ect of noise variance on classi�cation con�dence is demon-

strated in this section. The proposed algorithm is applied on a synthetic example of 2-

dimensional feature space classi�ed into two classes-'red' and 'blue'. The 2D feature plot

shown in Fig. 2(a) is obtained by random sampling of datapoints from a bivariate distribu-

39



tion. These points in the feature space signify the features from training dataset and "X"

marks the test data (x∗) whose classi�cation con�dence is calculated. Simulated noise is

modelled by white Gaussian uncorrelated noise model: pn (x∗) ∼ N(0, σ2
n) and is denoted by

the elliptical contours around the test data x in Fig. 2 (a). The noise variance is varied from

0 to 0.05 and corresponding con�dence of the test data is computed according to algorithms

1 and 2. It should be noted that the magnitude of σ2
n determines the power of the injected

noise.
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Figure 3.5: (a) 2D scatter plot of training and test data x with noise distributions.(b)
Classi�cation con�dence of x in 'Red' class with respect to varying noise levels of test data.

Fig. 2(b) shows that as variance of noise density function increases, the con�dence of

classifying the test data reduces, indicated by blue curve Cn. The red dashed line denotes

con�dence calculated without taking noise into consideration Cθ. It is a reasonable argument

that if the output measurement from NDE inspection is a�ected by a high level of noise,

corresponding features will be incorrect, leading to less reliable classi�cation decision which

is re�ected by its low classi�cation con�dence. On the other hand, if a �aw-signal is a�ected

by low noise, the contribution of noise weights on the Bayes posterior probability is low and

hence the con�dence of classi�cation is higher.
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Chapter 4

Con�dence Metric Evaluation: Eddy

Current inspection of Steam Generator

tubes.

4.1 Introduction

One of the �elds where NDE is used extensively since 1950s is the nuclear industry.

Steam generators (SG) are heat exchange tubes used in nuclear industries for transferring

heat from the primary loop to the hot pressurized water circulating on the outside to pro-

duce steam, which is used to run the turbines. These SG tubes are continuously exposed to

high temperature, vibrations and corrosive environment often resulting in various types of

degradations such as mechanical wear between tube and tube support plates, outer diameter

stress corrosion cracking (ODSCC), pitting, volumetric changes, primary water stress corro-

sion cracking (PWSCC), and inter granular attack (IGA). Tube wall thinning or formation

of cracks causes harmful radioactive gases leak from the primary side to the secondary side

which may be catastrophic to environment or lead to unscheduled plant shutdowns. Hence

there is a strong economic incentive to build NDE systems in order to periodically monitor

the general health of SG tubes.

41



Multi-frequency and multi-coil probe eddy current testing (ECT) has been an e�ective

NDE techniques used for in-service SG tube inspection as they are very well suited for

detecting defects in conducting materials [49, 50, 51]. Due to harsh environment faced

by the heat exchange units and their complex geometries, often other methods such as

ultrasonics, radiography, liquid-penetrants or optical scanning are incapable of producing

strong indication of anomalies which makes ECT an obvious choice. Eddy current inspection

has proven to be both fast and e�ective in detecting and sizing most of the degradation

mechanisms that occurred in the early generators. By using ECT it is possible to detect and

size defects even in the presence of artifacts that usually complicate the analysis procedure.

Moreover, collection of data at several test frequencies simultaneously decreases in-service

inspection time and human exposure time to radiation. Three major types of multifrequency

eddy current probes are used in practice � the bobbin coil, the rotating probe coil (RPC)

and the array sensors.

Structural health management of SG tubes and related uncertainty quanti�cation tech-

niques have been an important NDE problem[52]. With rapid increase in the amount of data

obtained from heat exchanger tube by EC inspections, there is a high demand of automated

signal analysis systems that can provide accurate and consistent signal interpretation and

avoid errors by human analysts. The data acquired from SG tube inspection must be ana-

lyzed accurately and in near real-time. Generally, the analysis requirement is a classi�cation

of the signal into �aw and non-�aw categories. In such scenarios, computation of reliability

of each classi�cation becomes critical so that speci�c classi�cations with low con�dence can

be reported to NDE analyst for further investigation. In this chapter, con�dence of signal

classi�cation has been studied for eddy current data collected using RPC probe from in-

spection of SG tubes consisting of volumetric �aws. This study was conducted as a part
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of a project funded by the Electric Power Research Institute(EPRI), USA. EC data from

various tube geometries were collected by EPRI and analysed by an automated analysis

software developed by Non Destructive Evaluation Laboratory of Michigan State University

[5, 6].Con�dence metrics were assigned to the classi�cation results from this data analysis

software.

This chapter brie�y reviews the principle of EC technique and existing signal process-

ing methods performed on EC data to enhance �aw indication by increasing signal-to-noise

(SNR) ratio. Further, noise from typical eddy current signals obtained from SG tube in-

spection by RPC probe is studied to extract statistical parameters of the noise distributions.

Finally, boosted Bayes Con�dence, proposed in chapter 3, was calculated for every �aw

indications by taking noise statistics into consideration.

4.2 Principle of Eddy Current Testing

Eddy current (EC) technique works on the principle of electromagnetic induction. When

an alternating current source is brought close to an electrically conducting material , an

alternating magnetic �eld is induced in the material which causes current to �ow inside

the material in the form of closed path like eddies; their direction being opposite to the

induced current �ow according to Lenz's law. Opposing secondary �eld generated by the

induced current in the sample interacts with the primary �eld and reduces the characteristic

impedance of the excitation coil, as demonstrated in Figure. 4.1. Moreover, presence of a

defect in the sample amends the path of the induced eddies which in turn changes the coil

impedance substantially. This change in coil impedance forms the NDE signal (containing

information about sample defects) recorded by the EC probes [39].
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Figure 4.1: (a)Eddy current generation and �ow in a conducting specimen (b) Change in
impedance of coil in a defect and defect free region (X axis: resistance, Y axis: inductance)
[5].

(a) (b)

Figure 4.2: (a) RPC con�guration (b) Post processed eddy current signal (RPC probe at
300KHz) of a defective SG tube [5].

4.3 Automated Analysis of SG Tube Inspection data

State-of-the art eddy current testing of SG tubes by rotating probe coil (RPC) is demon-

strated in Figure 4.2. These probes acquires a two-dimensional data depicting impedance

change in the form of a complex voltage which is a function of axial and circumferential po-

sition of the probe in the tube structure. Imaginary component of a typical post processed

signal from eddy current tube inspection is shown in Figure. 4.2. The abscissa and ordinate

denote the circumferential and axial direction of the SG tube respectively. Similar to any

NDE data analysis system, eddy current data are �rst subjected to signal processing followed

by identifcation of regions of interests( ROIs). From the ROIs or the possible location of
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Figure 4.3: Automtated EC data analysis system with con�dence metric computation mod-
ule.

�aws, discriminative features are chosen to eventually classify a ROI into defect or non-defect

category.

The �owchart of existing automated eddy current analysis systems along with added con-

�dence metric computation module applicable to inspection data from SG tubes is presented

in Figure 8.10.A brief overview of existing methods in EC data analysis is discussed in the

following subsections.

4.3.1 Signal Pre-processing

Potential ROIs shown by rectangular boxes in Figure. 4.2 (b) are identi�ed after rigorous

signal processing algorithms on the raw signal which includes calibration, tube support signal

(TSP) suppression and noise removal. Details of these algorithms are described by Udpa

et al. in [6]. Several other signal processing methodologies for analysing EC signals have
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Figure 4.4: Various stages of automated signal processing (a) Raw data, (b) Calibrated data,
(c) TSP suppression, (d) thresholding (e) ROI detection [6].

been discussed extensively in literature such as linear and nonlinear mixing [53] and wavelet

transforms [54, 40].Often �aw indications are corrupted by noise and/or nondefect signals

due to the probe lift-o� and surrounding tube structures which adversely a�ect detection and

characterization of defects. Hence, it becomes necessary to enhance the SNR of the ECT

signals by using signal processing methods [55, 56] before implementing the recognition

techniques.

4.3.2 ROI Detection

Once the raw signal is cleaned and its SNR is improved, possible �aw locations are identi-

�ed by selecting peak signals or signals above a pre-de�ned threshold adaptively [57]. Signals

at di�erent frequencies are integrated appropriately to determine the potential defect indi-

cations. However, the �nal result often contain signals from non-�aws as well (for instance,

signals from external deposits). The enitre process of adaptive thresolding followed by ROI

selection in a typical SG tube inspection signal is demonstrated in Figure. 4.4.
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4.3.3 Feature Extraction and Classi�cation

Signal characteristics or salient features are extracted from the ROIs which can distin-

guish a defect ROI from a non-defect one. Features can be computed using the signal in time

domain such as peak-to-peak value of the real and imaginary components of the complex

eddy current signal, its phase angle or energy [58]. Transformed features (eg: Fourier de-

scriptors [59]) or statistical features (eg: principal components[60]) have been used as well in

existing EC data analysis. These features are calculated from each potential ROI from data

obtained at several excitation frequencies. Figure. 4.5 shows the two-dimensional feature

space spanned by the real and imaginary components of the complex EC signal acquired at

300kHz by RPC. Each feature point represents an ROI collected from all the training data

whose real categories (or ground truth) are known. The red labelled data points are defect

ROIs wheras the blue labelled ones are the ROIs which were selected after thresholding step

but eventually did not represent a �aw.

Figure 4.5: Scatter plot for steam-generator tube data showing features from training data
from both classes and test data x.

Features are fed into a rule-base or neural networks or other machine learning algorithms

to classify them into defect or non-defect class. Several classi�ers for analysis eddy current
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signals [9] including impedance plane diagrams [61], inverse analysis [62] and arti�cial neural

networks [15] have been studied in literature. In the example test data shown in Figure. 4.2,

red and green boxes denote ROIs in the tube which have been classi�ed as non-defects and

defect respectively by rule-based classi�er in the automated analysis algorithm.

The subsequent step of an automated signal classi�er in NDE is to assess the reliability

of its classi�cation results by assigning con�dence metrics. Our proposed con�dence measure

incorporates features, classi�cation results and noise statistics of the acquired EC signal as

shown in �gure 8.10. Hence, the next section focusses on the study of noise in EC signal

obtained from SG tube inspection.

4.4 Noise Analysis in Field Data from Eddy Current In-

spection

In our study, noise extracted from EC inspection signals is modelled as a mixture of one

or more Gaussian density functions (GMM). The rationale behind this assumption is based

on a previous work by Safdarnejad et al. [63] where the authors have not only shown that

the experimental noise present in complex ECT signals from SG tube inspection adheres to

Gaussian distribution but further reported that GMM along with noise �ltering algorithms

enhances performance of noisy EC signal analysis. Another important characteristic of the

noise is its additive nature. It is known that steam generators consist of several tubes �xed

with supports from the outside. Ideally in noise-free scenario, the ECT signal from SG

tube inspection contain indications only from the tube supports and from an anomaly if it

exists. Signal at the free-span region (in between the tube supports) is assumed to be zero

in absence of any noise. However in real experiments, the ECT signal at the free-span is not
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zero everywhere but contains some low voltage measurements which originates due to probe

wobble, mechanical motion of probe and measurement noise. Therefore, the signal from

free-span region is considered as the noise-only measurement which is modeled as additive

to the noise-free measurement. This assumption is backed by a previous study where Olin

et al. [3] used a sequence of NDE signals at di�erent positions on a unit containing no �aws

to provide information about the �noise-only� distribution.
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Figure 4.6: (a) Imaginary channel image of a sample eddy current response signal at 300KHz
with rectangular ROI box indicating circumferential �aw. (b) Signal with masked tube
support and �aw region (c) Noise histogram. (d-f) Repeated for real channel data.

Fig. 4.6 explains the process of estimating noise distribution of a typical eddy current re-

sponse image. Imaginary and real components of the eddy current inspection image obtained

from a defective SG tube at 300KHz are shown in Fig. 4(a) and Fig. 4(d); ROIs containing

�aw indications and signal from the tube support are masked, as shown in Fig. 4(b) and

Fig. 4(e), and the rest of the signal is used to extract noise-only information represented as
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Figure 4.7: Experimental noise modelled as a bivariate Gaussian distribution.

the noise histograms (Fig. 4(c) and Fig. 4(f)). It is important to note that �aw signals in

the vicinity of external support structures (such as tube support plates (TSP)) are distorted

by the presence of the support structures and hence not included as the noise-only region.

Since, experimental noise is complex with real and imaginary values, the resultant noise

is modelled as 2D distribution as shown in Fig. 4.7. In this example, noise distribution

has been modelled as a bivariate Gaussian density function whose statistical parameters

are estimated by maximizing the likelihood function. The estimated noise distribution is

described by the elliptical contours in Fig. 4.7.

It should be noted that experimental noise is speci�c to tube inspected, probe and the

inspection frequency. Fig. 4.8 shows two di�erent tubes that are inspected using two di�erent

kinds of RPC probe (pancake and plus-point probe) at 200KHz and 300KHz. Fig. 6(a)

and Fig. 6(c) show the noise-only signal obtained from Tube 1 and Tube 2 inspections

respectively whereas Fig. 6(b) and Fig. 6(d) show the corresponding noise histograms of

the two tubes inspected by two probes at two frequencies-200KHz and 300KHz. Due to

such unique nature of experimental noise, it is absolutely imperative to study the nature of

inspection noise before computing classi�cation con�dence of a ROI present in a particular

SG tube.
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Figure 4.8: (a) Noise-only signal from ECT of Tube 1 using Pancake and Plus-point probes
at 200Hz and 300kHz, (b) Noise histogram of Tube 1 signals, (c) Noise-only signal from ECT
of Tube 2 using Pancake and Plus-point probes at 200Hz and 300kHz, (d) Noise histogram
of Tube 2 signals.

At times when Gaussian function does not serve as the best �tted distribution, other

pdfs such as log-normal, exponential, gamma or beta functions can be chosen which has a

higher goodness of �t on the noise data. However, the proposed con�dence metric evaluation

approach can still be applied to those cases with no change applied to the algorithm. As

described before, the posterior pdf will be weighted by the noise density function irrespective

of its form.
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Figure 4.9: Scatter plot for steam-generator tube data showing experimental noise distribu-
tion for a test feature x.

4.5 Con�dence of Classi�cation with Noise Considera-

tion.

In eddy current inspection, magnitude and phase based information form crucial features

to discriminate signals of a defective sample from a healthy sample[6]. In this thesis, the

peak-to-peak value of real and imaginary components of the complex eddy current signal

are chosen as suitable features for con�dence analysis. Fig.4.9 denotes the feature plot using

features extracted from 10 tubes in the training database, each containing one or more �aws.

Experimental noise is extracted from one of the test ROIs and modelled as bivariate density

function shown by elliptical contours at the test data location. Classi�cation con�dence

of the test datapoint is calculated according to algorithms 1 and 2 by multiplying Bayes

posterior pdf with noise-weights in a bootstrap framework.

In Fig.4.9, con�dence of classifying test ROI as 'defect' without taking noise into account

is calculated as 90.41%. After incorporating the e�ect of noise, the con�dence reduced

to 80.15%. Similarly, all ROIs classi�ed as 'defects' were assessed, noise in their response
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signals were extracted and their classi�cation con�dence metrics were obtained. The results

are recorded in Table 4.1. An important thing to note is that modeling training data with

Gaussian pdf may not always be a valid assumption depending on the data and should

be chosen carefully before calculating Bayes posterior probability. Statistical tools such as

quantile-quantile plots should be computed on the training data to verify the validity of the

Gaussian assumption on the training dataset . If data does not �t a normal distribution,

other pdfs should be considered or non-parametric (kernel based) approaches may be availed.

(a) (b) (c)

Figure 4.10: Eddy current response signal of three SG tubes with ROIs consisting ofdefects
and a�ected by di�erent noise levels.

In Fig. 4.10, eddy current signals from three SG tubes are shown. The ROIs were

identi�ed by automated data analysis software and con�dence of classifying each of them as

defects was calculated. It can be seen that as the eddy current response image gets noisier,

classi�cation of the defect ROIs becomes more di�cult. Hence certainty of the auto analysis

results decreases with higher noise level which corresponds to lower classi�cation con�dence.
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Table 4.1: Con�dence of classi�cation of defects in steam generator tubes using RPC probe.

Tube-ID No. of �aws
Noise-mean
(µn)× 10−4

Noise-cov
(Σn)×10−3

Noise-free
Con�dence

C0

Con�dence
with noise

Cn

1 4
[
−1.6
−4.2

] [
2.9 0.5
0.5 2.7

] 
0.99

1
0.95
0.59




0.98
0.99
0.65
0.55



2 1
[

0.18
1.2

] [
5.8 0.6
0.6 0.8

] [
0.98

] [
0.82

]

3 2
[
−0.043
0.025

] [
1.7 0.09
0.09 2.7

] [
1
1

] [
0.99
0.99

]

4 2
[
−0.022
0.026

] [
0.9 0.5
0.5 0.9

] [
0.99

1

] [
0.98
0.99

]

5 1
[

0.19
−0.23

] [
1.5 −0.75
−0.75 0.8

] [
0.99

] [
0.94

]

6 3
[

4.5
−0.5

] [
2.2 −1.1
−1.1 1.2

]  0.99
1

0.90

  0.86
0.99
0.61



7 3
[

0.16
−0.34

] [
2.3 −1.9
−1.9 2.6

]  0.98
0.99
0.96

  0.58
0.86
0.67



8 1
[

0.12
−0.002

] [
3.4 −0.17
−0.17 2.8

] [
0.90

] [
0.80

]

9 3
[

4.6
−2.9

] [
1.8 −0.59
−0.59 1.3

]  0.63
1

0.99

  0.61
0.99
0.95



10 1
[

0.96
0.38

] [
1.5 4.7
4.7 3.04

] [
0.99

] [
0.85

]

SG tubes depicted in Fig. 8(a), (b) and (c) correspond to tube ID 4,5 and 7 in Table 4.1 and

are a�ected by low, medium and high noise level respectively. The classi�cation con�dence

of these ROIs are recorded as a) 99.8%,98.03% (b) 94.23% and (c) 58.36%,86.86%,67.82%.

This it can be concluded that the proposed con�dence metric is well representative of noise
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in NDE response signal.

Another interesting observation to deduce from these results is that a low con�dence

metric can serve as an indicator of smaller �aws which are more di�cult to be diagnosed. For

example, the two �aws in Tube ID 1 and 9 were two of the smallest �aws in the database used

for this study and they were associated with con�dence values of 0.59 and 0.63 respectively

even before their experimental noise was considered. In such cases, it might be useful to

segregate the study into classes of 'larger �aw' and 'smaller �aw' before evaluating the

con�dence metrics. This shall be looked into in more detail as a future extension of this

research.
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Chapter 5

Con�dence-Rated Classi�cation in NDE

5.1 Introduction

After identifying the underlying factors of uncertainties in a typical NDE data classi�ca-

tion system and generating a suitable con�dence metric for classi�cation of NDE signal, the

next idea was to study the possibility of improving performance of ASC systems by incor-

porating knowledge of its classi�cation con�dence. The basic idea is to use the con�dence

metric as a feedback to the classi�er as shown in the schematically in �gure 5.1. The bene�t

of such a system is that it not only generates a self-evaluating metric of reliability, but also

utilizes it as a feedback and retrains the system to achieve a lower error rate on blind testing.

Figure 5.1: Automated analysis system with con�dence feedback.

This chapter describes the development of a con�dence-rated-classi�er ensemble approach

is developed to classify eddy current data into 'defect' and 'non defect' class which incor-
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porates underlying statistical characteristics of data. Reliability measure de�ned by Bayes

con�dence, in the previous chapters, is fed into the automated data analysis system such

that �nal classi�cation of NDE signals is enhanced. Our work is inspired from Shapire's

ADABOOST (traditional boosting)[64] algorithm with the modi�cation of maximizing con-

�dence of classi�cation at every iteration of the classi�er ensemble in addition to minimizing

the misclassi�cation error. Such an approach helps to detect defects with weaker indications

which are missed otherwise.

One of the latest contributions in the �eld of machine learning is the development of en-

semble classi�ers known as boosting or mixture of experts. In a broader sense, an ensemble

system is a combination of outputs from many individual classi�ers such that the combined

classi�er performs better than all the individual ones. There are several advantages of using

ensemble systems, one of them being its ability of statistical learning from limited amount of

training data which is particularly relevant for analysing NDE data. In 1990, Schapire [64]

proved that a strong classi�er can be generated through a weighted combination of several

weak classi�ers and developed ADABOOST algorithm which was followed by extensive em-

pirical and theoretical study [65] [66] [67]. Other versions of ensemble based decision systems

include mixture of experts [68], classi�er fusion [69] and committees of neural networks [70].

Bene�ts of ensemble based systems in automated decision making applications have also been

recently discovered by computational intelligence community and NDE researchers. Polikar

et al.[71] developed Learn++ algorithm, based on ensemble classi�ers, which achieves incre-

mental learning on data from ultrasonic weld inspection wherein the classi�er is able to learn

new information without forgetting previously acquired knowledge.
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5.2 Background

5.2.1 ADABOOST

Boosting is a technique of combining a group of weak learners into a strong classi�er

with much lower error rate. A weak learner is a simple classi�er which produces prediction

results of an instance just better than random-guessing. Boosting creates an ensemble of

classi�ers by strategically resampling the data. The �nal classi�cation is then obtained by

combining prediction results of weak classi�ers using majority voting. In 1997, Freund and

Schapire introduced ADABOOST algorithm which generates hypotheses by training weak

learners on instances drawn from an iteratively updated distribution of the training data

[72]. This update ensures that instances which are misclassi�ed in previous classi�er are

more likely to be included in training data of the next classi�er. The pseudocode for the

original ADABOOST algorithm is provided in Algorithm 3.

Let S = {(x1, y1), ...., (xm, ym)} be a sequence of m training samples where each instance

xi ∈ X represents a feature vector and each label yi ∈ Y represents the true class of xi.

Although ADABOOST can be exended to multiclass problems, in this paper we limit our

discussion to a binary classi�cation scheme such that Y = {−1,+1} .

For a de�ned set of T iterations, a weak classi�er is trained on the training sequence S.

The distribution D1(i) is initialized to be uniform which signi�es that at t = 1, all instances

(xi) are equally likely to be selected for training the �rst weak classi�er.

D1(i) = 1/m; (5.1)

With every iteration, the weight distribution is updated according to the equation 5.2 and
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a weak hypothesis ht is generated for every instance ht(xi)∀i such that ht(xi) ∈ Ht, Ht =

[−1,+1].

Dt+1(i) =
Dt(i)e

(−αtyiht(xi))

Zt
(5.2)

αt =
1

2
ln

(
−1 + rt
1− rt

)
(5.3)

where rt =
∑
iDt (i) yiht(xi)

Whenever there is mismatch in sign of ht and yt, it signi�es misclassi�cation of that

instance and its weight is increased. Correctly classi�ed instances have their weights un-

changed. The parameter α controls the in�uence of each of the weak hypothesis and is

de�ned by equation 5.3. The �nal output of the classi�er ensemble H(x) is the signed sum-

mation of all the weak hypotheses given by equation 5.4. During testing of blind data x, the

�nal hypothesis H(x) is calculated and its class is predicted based on its sign {−1,+1}.

H(x) = sign(
T∑
t=1

αtht(x)) (5.4)

5.3 Con�dence rated classi�cation :proposed method

In con�dence-rated boosting proposed by Schapire and Singer [73], the chosen con�dence

measure is heuristic in nature and does not quantify the sources of uncertainties. In this

thesis, typical uncertainties present in NDE data analysis are quanti�ed in terms of con�dence

measure which includes e�ect of quantity of training data, quality of features and noise in

test data. Therefore it is a more comprehensive measure of reliability which can be used as

feedback to classi�cation algorithm to increase the classi�cation accuracy.
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Algorithm 3 ADABOOST

Input: Training data S = {(xi, yi)}, i = 1, 2, ....,m with correct labels yi ∈ Y , Y = [−1,+1];
1: Initialize

D1(i) = 1/m; (5.5)

and
t = 1; (5.6)

2: T =Total no. of iterations in classi�er ensemble;
Output: Final hypothesis H(x)
3: for t ≤ T do
4: Train Weaklearner using distribution Dt;
5: Get weak hypothesis ht(xi)∀i such that ht(xi) ∈ Ht, Ht = [−1,+1] ;
6: Calculate

αt =
1

2
ln

(
−1 + rt
1− rt

)
(5.7)

where rt =
∑
iDt (i) yiht(xi)

7: Update

Dt+1(i) =
Dt(i)e

(−αtyiht(xi))

Zt
(5.8)

where Zt is a normalization factor chosen to have Dt+1 as a distribution function;
8: end for
9: Final hypothesis

H(x) = sign(
T∑
t=1

αtht(x)) (5.9)

The pseudocode of proposed con�dence-rated ADABOOST is shown in Algorithm 4. The

primary di�erence from traditional ADABOOST is that the prediction of every instance by

each weak hypothesis is multiplied with its associated Bayes con�dence.

ht(xi) = Ct,i(xi)Ht, Ht = {−1,+1} (5.10)

where,

Ct,i =
(
ptpos (x)

)
yj

=

(
pt (x)

)
yj∑2

i=1 (pt (x))yi

(5.11)

By weighting the hypothesis of every weak learner with the con�dence metric, the samples
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which are classi�ed with a higher con�dence but to the wrong class are associated with lower

weights. Hence, the objective function is modi�ed such that for every iteration classi�cation

con�dence is maximized along with minimizing the error rate.

Algorithm 4 Bayes con�dence-rated ADABOOST

Input: Training data S = {(xi, yi}, i = 1, 2, ....,m with true labels yi ∈ Y , Y = {−1,+1};
Output: Final hypothesis H(x)
1: Initialize

D1(i) = 1/m (5.12)

and
t = 1 (5.13)

2: T =Total no. of iterations in classi�er ensemble;
3: for t ≤ T do
4: Estimate (µt, σt)yi for all classes yi
5: Calculate class-conditional pdf

(
pt (x)

)
yi

for all classes yi ∈ Y , Y = {−1,+1} using
estimated (µt, σt)yi

6: Calculate the posterior probability for the class for which con�dence is calculated (say
yj) :

Ct,i =
(
ptpos (x)

)
yj

=

(
pt (x)

)
yj∑2

i=1 (pt (x))yi

(5.14)

7: Train Weaklearner using distribution Dt;
8: Get weak hypothesis ht(xi)∀i such that

ht(xi) = Ct,i(xi)Ht, Ht = {−1,+1} (5.15)

9: Obtain

αt =
1

2
ln

(
−1 + rt
1− rt

)
(5.16)

where rt =
∑
iDt (i) yiht(xi);

10: Update:

Dt+1(i) =
Dt(i)e

(−αtyiht(xi))

Zt
(5.17)

where Zt is a normalization factor chosen to have Dt+1 as a distribution function;
11: end for
12: Final hypothesis

H(x) = sign(
T∑
t=1

αtht(x)) (5.18)
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5.4 Results

5.4.1 Simulation Results

The proposed method of con�dence-rated ADABOOST is applied on classi�cation of

synthetic data into two classes- red and blue and its performance is compared with tradi-

tional ADABOOST performance. Dataset used for training and validation testing of the two

methods are shown in �gure 5.2.
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Figure 5.2: (a) Training data (b) test data with true class labels of two classes: red and blue.

Figure 5.3 illustrates the classi�cation results of the two methods. It is found that after

16 iterations, the error rate on training data has reached to zero in traditional ADABOOST

classi�er, but is at 5% for con�dence-rated ADABOOST. However, the error rate on the test

data classi�cation is calculated as 35% and 25% for traditional ADABOOST and con�dence-

rated ADABOOST respectively. This is due to the fact that the principal objective of

ADABOOST is to minimize training error which often leads to over�tting of the model.

It results in misclassi�cations on a blind test set which is re�ected from the error in the

test dataset. When con�dence-rated ADABOOST is applied, it increases the generalization

property of the classi�er by classifying test data with lower error.

Figure 5.4 shows that in both the approaches of classi�er ensemble, the error rate on
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Figure 5.3: Training error rate versus number of weak classi�ers in (a) traditional AD-
ABOOST (b) Bayes con�dence-rated ADABOOST. Test data classi�ed with ADABOOST
model (c) traditional ADABOOST: Error rate on test data= 35% (d) Bayes con�dence-rated
ADABOOST: Error rate on test data= 35%

test data decreases with increase in number of training samples, although con�dence-rated

ADABOOST poses approximately 5% lower error rate than the other.
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Figure 5.4: Comparison of classi�cation performance of traditional ADABOOST and
con�dence-rated ADABOOST.
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5.4.2 Experimental Results

As described in NDE application presented in chapter 4, con�dence-rated classi�er en-

semble is utilized to classify experimental data obtained from eddy current inspection of

steam generator(SG) tubes. SG tubes which are continuously exposed to harsh environmen-

tal conditions are a�ected by various types of degradations. There is demand from industry

for the development of automated signal classi�cation systems that can provide accurate

and consistent signal interpretation with capability of computing its reliability. A typical

post-processed signal from eddy current tube inspection is shown in �gure 6. The regions Of

interest (ROIs) denoting the possible locations of the �aws are identi�ed by the ASC system

as shown by the rectangular boxes.

Figure 5.5: A sample post-processed eddy current signal of defective SG tube. Red rectan-
gular boxes: ROIs containing false indications (classi�ed as non-defect); Green rectangular
boxes: ROIs containing true defects.

Discriminatory features are extracted from these ROIs of training data and used to

develop the classi�er model. In this experiment, peak values of real and imaginary signal

from each ROI are used as features for classifcation. As in the case of synthetic dataset, the

total available training data from experiments was divided into two sets: one to train the

classi�er model and the other to validate the performance of the classi�er. Both methods

of classi�er ensemble were compared. The feature plots of the training and test dataset are
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shown in �gure 5.6.
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Figure 5.6: (a) Training data (b) test data with true class labels of two classes: red (non-
defect) and blue (defect).

Con�dence of classi�cation of every training sample is calculated by the comprehen-

sive Bayes posterior probability as stated in algorithm 2 and then implemented into the

con�dence-rated-classi�cation framework. Classi�cation results by the two ADABOOST

methods are shown in �gure 5.7. As in synthetic dataset, con�dence-rated ADABOOST is

able to correctly classify more test instances relative to the traditional ADABOOST. A few

�aws, as indicated in Figure 5.8, are detected correctly by applying con�dence-feedback to

classi�er ensemble that were missed by traditional ADABOOST. Three eddy current images

of defective steam generator tubes are depicted having ROIs ideniti�ed by the ASC system.

The green boxes indicate defects which are correctly identi�ed by both the classi�cation

methods. The red rectangular ROI boxes indicate more subtle �aws and are the ones which

are classi�ed as non-defects by traditonal ADABOOST, but correctly identi�ed as defects

by the con�dence-rated ADABOOST. As a result, error rate reduced from 19.40% to 14.93%

in the proposed ASC system having con�dence feedback.

In this thesis, con�dence-based ADABOOST has been validated on a two-class classi-

�cation problem. This approach not only emphasizes the importance of a self evaluation
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Figure 5.7: Training error rate versus number of weak classi�ers in (a) traditional AD-
ABOOST (b) Bayes con�dence-rated ADABOOST. Test data classi�ed with ADABOOST
model (c) traditional ADABOOST: Error rate on test data= 19.40% (d) Bayes con�dence-
rated ADABOOST: Error rate on test data= 14.93%

(a) (b) (c)

Figure 5.8: Eddy current response signal after calibration of 3 defective SG tubes (Imaginary
channel, plus point probe, at 300KHz). Green boxes: ROIs (true defects) classi�ed as defects
by both traditional and Con�dence-based ADABOOST. Red boxes: ROIs (true defects)
classi�ed as non-defects by traditional ADABOOST but correctly classi�ed as defects by
Con�dence-based ADABOOST.
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measure in ASC systems, but further utilizes it for improving classi�cation of NDE signals.

The proposed classi�er exploits the advantages of a boosting algorithm while avoiding the

problem of over-�tting. Weaker indications of tube defects from an eddy current response

signal which are misclassi�ed by traditional ADABOOST, are correctly classi�ed with a

con�dence-based ensemble system.
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Chapter 6

Prognosis in NDE

6.1 Introduction

In addition to assessing classi�cation con�dence of NDE data obtained from periodic

monitoring of structures and industrial components, study of structural reliability based on

the acquired data is an equally critical task to achieve. The primary objective of long-term

reliability analysis in NDE is defect growth prediction or damage prognosis. As cited by Far-

rar et al. [74], damage prognosis (DP) is de�ned as �the estimation of the remaining useful

life (RUL) of equipment by taking into consideration the information gathered from mon-

itoring systems, design information, past operation experience and operating environment

of the system or equipment�. Accurate and dynamic RUL prediction enables industries to

maximize usage of a component before it encounters a catastrophic failure. Integrated struc-

tural health monitoring and damage prognosis (SHM-DP) strategies [1]�[3], coupled with

nondestructive evaluation (NDE) techniques [4]�[6], are becoming fundamental engineering

tools for near-real-time structural integrity assessment and predictive maintenance.

6.2 Theory of Reliability

According to International Organization for Standardization (ISO), reliability is de�ned

as " the ability of an item to perform a required function, under given environmental and op-
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Figure 6.1: State variable X(t) and Time to Failure t of a system. [7]

erational conditions and for a stated period of time (ISO8402)". In simpler terms, reliability

is calculated as the probabaility that a given component or entity can operate satisfacto-

rily for a speci�ed time period in the actual application for which it is intended without

experiencing a failure.

The state of an system at time t may be described by the state variable X(t). X(t) is

de�ned as:

Xt =


1, if system is functioning at time t

0, if system is not functioning at time t

(6.1)

Suppose the system starts operating at time t = 0. The time elapsing from its start

time to the instant it encounters a failure is termed as the time to failure (T ). The relation

between X(t) and (T ) is demonstrated in Figure 6.1.

It is quite obvious that due to presence of several uncertainties during the operation

of the system, time to failure (T ) cannot be interpreted as a �xed value but as a random

variable with a probability density function f(t) and distribution function:

F (t) = Pr(T ≤ t) =

∫ t

0
f(u)dufort > 0 (6.2)

where F (t) denotes the probability that the item fails within the time interval (0, t] . The
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Figure 6.2: Distribution function F (t) and probability density function f(t).[7]

pdf f(t) and CDF F (t) are illustrated in Figure 6.2.

It should be noted that the operation time t does not indicate the clock time. It can

include any other metrics which counts the age or usage of the system such as number of

loading cycles of a mechanical part, number of kilometers a car has been driven, number of

rotations of a bearing etc.

The reliability function of a system can be de�ned as R(t) where:

R(t) = 1− F (t) = Pr(T > t)fort > 0 (6.3)

or equivalently

R(t) = 1−
∫ t

0
f (u) du =

∫ inf

t
f (u) du (6.4)

Hence R(t) is the probability that the item does not fail in the time interval (0, t] , or, in other

words, the probability that the item survives the time interval (0, t] and is still functioning

at time t . The reliability function R(t) is also called the survivor function and is illustrated

in Figure 6.3. There are several other statistical measures and functions which are useful

in study of reliability theory such as Failure Rate function or Mean Time to Failure etc.

which are outside the scope of this research and hence not discussed in this thesis. Readers
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Figure 6.3: Reliability or survivor function R(t). [7]

interested in such topics can �nd the de�nitions and explanations in the book by Rausand

and Arnljot [7].

6.2.1 Remaining Useful Life (RUL)

Among the broader de�nition of reliability measure R(t), the metric most commonly used

in damage prognosis is remaining useful life (RUL) of a system under operation. RUL of

any system can be de�ned by a random variable which depends on system's current age, its

operation environment and health information acquired from periodic NDE of the system.

If the history of inspection data acquired upto time t is denoted by Y (t), the primary goal

of prognosis is to estimate expectation of the RUL pdf :E(Rt|Yt).

The process of damage prognosis followed by RUL calculation is demonstrated in �gure

6.4. Firstly a health index (HI) is de�ned which characterizes the damage level of a system

or structure at a given time instant t. After regular time intervals (or loading cycles),

measurements are recorded and HI is calculated at every time step upto the current time

(say k). These constitute the measurement data shown by the black dots in �gure 6.4. The

objective of damage prognosis is to construct the damage propagation path up to the current

time using the measurement HI values as well as predict HI for future time (τ̂) till the system
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Figure 6.4: Illustration of damage path prognosis and RUL prediction [8]
.

reaches a prede�ned failure threshold. Failure threshold is usually decided as the value of HI

when the system is expected to crash or fail and is generally obtained from domain experts

in the speci�c application �eld/ industry.

RUL = τ̂ − k (6.5)

At a �rst glance, damage prognosis may seem like a trivial problem of polynomial �tting on

the measurement data and then extending the �tted curve upto the threshold to calculate

the RUL. However, this may not be a feasible approach in most practical cases. Figure 6.5

illustrates the reason why RUL prediction using a simple curve �tting solution may not always

lead to the correct solution. In many cases the damage propagation is a complex and dynamic

phenomenon which not only depends on the material and dimensions of the structure but also

on external characteristics such as pressure, temperature or other environmental conditions

etc. In such cases, a damage propagation curve generated from �rst few measurements is very

di�erent from the true damage growth path. Wrong estimation of RUL can be dangerous

especially if it is over-estimated (illustrated in Figure 6.5 (a)). A �rst order polynomial
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�t is applied on the measurement data acquired upto 750 hours and the damage growth

curve is estimated. If damage size of 0.03 mm is considered as the failure threshold, then

the optimum time at which the system should be stopped is at 2200 hours. However, the

estimated damage growth line reaches the threshold of 0.03 much beyond 2200 hours and

therefore the equipment will continue operation beyond its safety limit which may be fatal.
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Figure 6.5: (a) 1 degree polynomial �tting on measurement data leading to under estimation
of RUL (b)2 degree polynomial �tting on measurement data leading to over estimation of
RUL

On the other hand, under-estimation of RUL leads to suboptimal performance of the

equipment as the system is stopped too early, as shown in Figure 6.5 (b). A 2nd order

polynomial curve is �tted on the same measurement data which reaches the failure threshold

of 0.03 mm at 1630 hours (much earlier than 2200 hours). As a result, the system is stopped

earlier than its safety limit(2200-1630=570 hours before expected failure). Both these cases

should be avoided and therefore statistical methods are adopted for accurate RUL estimation.

Prognostic approaches should ideally be able to incorporate underlying uncertainties involved

in the damage propagation process in order to provide accurate prediction results. A review

of current state-of the art in this topic is provided in the following section.
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6.3 Literature Review on RUL Prognosis

6.3.1 Model-based methods

Existing prognosis methods can be roughly classi�ed into model-based (or physics-based)

and data-driven methods. Model-based methods predict the equipment health condition

using component physical models, such as �nite element (FE) models, and damage prop-

agation models based on damage mechanics. Such methods use �xed model parameters

depending on material properties and generally do not use condition monitoring data for

prediction of damage evolution. Several model-based systems has been studied over the past

years. Kacprzynski et al. [75] presented a prognosis tool using 3D gear FE modeling to

study damage inititation and propagation in helicopter gears. Li and Lee [76] proposed a

gear prognosis approach based on FE modeling where an embedded model was proposed

to estimate Fourier coe�cients of the meshing sti�ness expansion. The strip-yield model

included in the NASGRO software developed in [77] is widely used to simulate crack growth

under variable amplitude loading. If accurate models can be developed for every mechani-

cal structure and damage type, model-based prognosis can provide prediction results with

high precision. However, building authentic physical models for describing the equipment

dynamic response and damage propagation is a challenging task in itself which requires a

thorough understanding of the system. If any important physical phenomenon is missed, the

prediction of degradation will be erroneous resulting in catastrophic consequences..

6.3.2 Data-based methods

On the other hand, data-driven prognostic methods models the relationship between

equipment age and condition monitoring data by training the prognostic system on histor-
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ical data. Gebraeel et al. [78] used Arti�cial Neural Network (ANN) for monitoring rolling

bearing elements and predicting fatigue crack propagation from vibration-based degradation

signals. Bayesian updating methods have been investigated in equipment prognostics for

utilizing the real-time condition monitoring data [79]. Data-driven methods do not rely on

physical models, and only utilize the collected condition monitoring data for health predic-

tion. Accuracy of these methods strongly rely upon the training data characteristics. As

a result, they may fail to produce accurate prediction if insu�cient or under-representative

training data is used. Results from these methods may sometimes be counter-intuitive as

they do not consider underlying physics of the system and therefore may be erroneous at

times.

6.3.3 Integrated methods

By incorporating bene�ts of both model-based and data-based prognostic approaches,

integrated or hybrid methods have gained a lot of popularity in recent years [80]. Under these

methods, physics based degradation models are considered but the parameters of the physical

model underlying the damage growth process are not �xed. Instead they are estimated

utilizing the data from CBM of the structure. Bayesian inference [81] is a common technique

implemented in several studies wherein the model parameters are updated at every instant a

new inspection data is reported, thereby increasing the accuracy of estimated physical model.

Another crucial bene�t of integrated methods is their ability to incorporate uncertainity

due to model as well as measurements into their algorithm which makes them a better

representative of practical systems. Bayesian inference has been used by Shankar et al. [82]

to estimate parameters of �nite element model, surrogate model and crack growth model

in cylindrical structures subjected to fatigue. Another hybrid approach is the particle �lter
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based framework developed by Orchard and Vachtsevanos [83] for the failure prognosis of

planetary carrier plates.

A literature review and mathematical theories of a few broad categories of prognostic

approaches are discussed below for understanding the state-of-art methodologies in this area.

6.3.3.1 Regression based models

Regression-based methods are have gained popularity in industries and academic �elds

for estimation of equipment life due to the simplicity of these models.[84, 85]. They fall

into the category of data-based prognosis. The fundamental principle of these methods is

that the health of the systems under study can be mapped by some key features obtained

from condition monitoring (CM) of systems and RUL can be estimated by trending, and

predicting these CM features upto a prede�ned threshold. Lu and Meeker [84] were the �rst

authors to present a general nonlinear regression model to characterize the degradation path

of a population of units. According to the general degradation model, the observed sample

degradation Y (t) at time t can be represented as Y (t) = D(t; Ψ, θ) + ε(t), where D(t; Ψ, θ)

is the actual path at time t, Ψ is the �xed e�ect regression coe�cients common for all units,

θ is the random e�ect representing individual unit characteristics, and ε(t) is the random

error term described by N (0, σε). Here, θ and ε(t) are assumed to be independent of each

other. Using this model, the RUL at sampling time ti can be de�ned as:

Xti = xti : D(ti + xti ; Ψ, θ) ≥ w|D(ti; Ψ, θ) < w (6.6)

Similar to the work by Lu and Meeker, many extensions and applications have appeared

in literature, such as machine condition monitoring using regression trees [86, 87], updating
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prognosis in biliary cirrhosis using Cox regression models [88], degradation assessment using

logistic regression [89]. Based on critical analysis of previous methods and case studies

involved, the underlying assumptions of the regression model can be summarized as follows:

(i) the condition of the device deteriorates with operating time and the level of deterioration

can be observed at any time; (ii) the device being monitored comes from a population of

devices, each of which exhibits the same degradation form; and (iii) the distribution of the

random term across the population of devices is known with the error in degradation signal

being independent and identically distributed across the population of devices.

Although regression is a relatively simpler technique for prognosis, it is not very well

suited for dynamic systems in which damage growth rate changes at di�erent stages of

degradation. All data which has been observed upto the current time is considered as a col-

lective dataset and regression is performed instead of capturing the temporal characteristics

of the measurements. Assumption of independence and identically distribution of measure-

ments may not be valid for all applications as a result of which the �nal RUL computation

may be inaccurate.

6.3.3.2 Markovian based models

Temporal characteristics or the observed data is incorporated into Markovian models

where it is assumed that the future degradation state of a system depends only on its current

degradation state, which is often termed as being memoryless. In general, the degradation

process Yn, n ≥ 0 evolves on a �nite state space φ = 0, 1, ..., N with 0 corresponding to the

perfect healthy state and N representing the failed state of the monitored system. The RUL
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at time instant n can be de�ned as

Xn = inf xn : Yn+xn = N |Yn 6= N (6.7)

The transition probability matrix of such Markov models can be written as:

P =

P̃ P0

0 1

 (6.8)

with P0 = (I − P̃ )e, where P̃ is the transition matrix for transient states φ\N , I is the

identity matrix and e = (1, ..., 1)T is a column vector with dimensions N − 1. In principle,

RUL estimation using Markovian-based models can be captured by computing amount of

time the process will take to transit from the current state to the absorbing state N for the

�rst time, referred to as FPT .

Based on this framework, several authors have developed their prognosis methods suited

to respective applications. Kharoufeh [90] considered the reliability of a single-unit system

whose cumulative damage over time was a continuous wear process that depended on an

external environment process. The external process was characterized as a time homogeneous

Markovian environment with continuous time. Later, Kharoufeh and Mixon [91] proved

several limit theorems related to a time-scaled version of the degradation process and a space-

scaled version of the unit's random lifetime. Although their models were mathematically

appealing and easy to implement, they lacked the �exibility to account for the environment

state sojourn times or shock inter-arrival times which may not be exponentially distributed.

Additionally, Lee et al. [92] incorporated the Markov property into a regression model and

presented a new model for the survival analysis called Markov threshold regression, in which
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the subject's health followed a stochastic process and failure occurred when the process �rst

reached a failure state.

Despite their strong mathematical background, RUL estimation based on Markov models

faces a few limitations. Firstly, the underlying assumption of independence and memoryless

property is di�cult to achieve in real measurements. Also, the transition probability among

the system states in Markov models is often determined by empirical knowledge or by a large

number of samples, which is not always available. These limitations have been addressed

to an extent by studies based on semi-Markov or Hidden Markov Models with indirectly

observed state processes. Several papers can be found in literature showing their application

to structural prognosis [93, 94, 95, 96].

6.3.3.3 Stochastic Filtering

In lieu of a deterministic RUL calculated by the above two approaches, the RUL is treated

as a random variable by stochastic �ltering models. This broad category of methods allows

system uncertainties incorporated into the estimation of damage propagation path which

makes them suitable for structural monitoring systems. Batzel and Swanson [97] presented

a RUL estimation method based on the Kalman �lter for aircraft power generators. In

their work, it was assumed that the relationship between the RUL and the estimated state

followed a time-dependent function. Hence, the RUL estimation was achieved by minimizing

the di�erence between the value of such function and a pre-determined state threshold. If,

for an observation state yt, xt is de�ned as the RUL at time t or the current monitoring

check point, then

xt = xt−k − (t− k) if xt−k > (t− k) (6.9)
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and

yt = g(xt, θ) (6.10)

where g is a function to be determined, θ is a noise term, k is the time of the last

monitoring checkpoint and (t−k) is the interval between the current and the last checkpoint.

In addition, Luo et al. [98] used a multiple-model �lter to estimate the mean and variance

of the RUL without considering the distribution of RUL explicitly.

Among all stochastic �ltering techniques, the most commonly used process is the Bayesian

updating based on the philosophy that one can incorporate prior knowledge about the degra-

dation phenomenon in the model and update the model as more measurements are collected.

One of the ways of achieving Bayesian updating process is the particle �ltering approach in-

vestigated by Orchard and Vachtsevanos [83]. They used a non-linear state-space model

(with unknown time-varying parameters) and a particle �ltering algorithm that can update

the current state estimate. In this thesis, this approach was used to compute the damage

growth curve in composite materials and therefore this algorithm will be described in more

detail in the following sections.

6.4 Theory of Bayesian Updating

According to the Bayesian point of view, observation data X is considered a random

variable generated from an underlying pdf f(x,θ),θ ∈ Θ. θ is also de�ned by a random

variable with density fΘ(θ) which describes the probability of occurrence of a parameter

value from Θ, before any observation is made. Hence fΘ(θ) is called the prior density of Θ.

The objective of Bayes updating is to obtain θ̂, the estimated value of θ that characterizes

the underlying pdf generating the observation data.
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With this interpretation, joint density of X and Θ, fX,Θ(x,θ) , is given by:

fX,Θ(x,θ) = fX|Θ(x|θ).fΘ(θ) (6.11)

The marginal density of X is,

fX(x) =

∫
Ω
fX,Θ(x,θ)dθ =

∫
Ω
fX|Θ)x|θ).fΘ(θ)dθ (6.12)

Hence, the conditional density of Θ given X = x becomes,

fΘ|X(θ|x) =
fX,Θ(x,θ)

fX(x)
=
fX|Θ(x|θ)fΘ(θ)

fX(x)
(6.13)

fΘ|X(θ|x) expresses the probability distribution of Θ after having observed X = x ,

and fΘ|X(θ|x) is therefore called the posterior density of Θ. It should be noted that when

X is observed, fX(x) occurs in Equation 6.13 as a constant. Hence fΘ|X(θ|x) is always

proportional to f fX|Θ(x|θ)fΘ(θ):

fΘ|X(θ|x) ∝ fX|Θ(x|θ)fΘ(θ) (6.14)

The Bayesian approach is used for updating information about the parameter Θ. First,

an initial probability density for Θ is assigned before observations of X = x is collected.

When the �rst mesurement in X is available, the prior distribution of Θ is updated to the

posteriori distribution of Θ, given X = x. This process is repeated and in the next iteration

the posterior distribution of Θ, given X = x, is chosen as the new prior distribution. When

another measurement in X is observed, it leads to a second posterior distribution, and so
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Figure 6.6: Bayes Updating Process

on. This updating process is illustrated in Figure 6.6.

The �nal task of the Bayes updating process is to estimate the value θ of Θ that generates

an observed value x of X. We denote this estimate by θ̂(x). The optimum estimate is the

one that minimizes the expectation of mean squared error (MSE): E[(θ̂(x)−Θ)2].

E[(θ̂(x)−Θ)2] =

∫ ∞
−∞

∫
Ω

(θ̂(x)−Θ)2fX,Θ(x, θ)dxdθ (6.15)

By using equation 6.14,

E[(θ̂(x)−Θ)2] =

∫ ∞
−∞

fX(x)[

∫
Ω

(θ̂(x)−Θ)2fΘ|X(θ|x)dθ]dx (6.16)

E[(θ̂(x)−Θ)2] is minimized when for each x, θ(x) is chosen to minimize [
∫

Ω(θ̂(x)−Θ)2fΘ|X(θ|x)dθ]

whose solution is E(Θ|X).

Hence, according to Bayes inference or updating process, the estimate of θ is the mean

of the posterior distribution of Θ.

θ̂ = E(Θ|X) (6.17)
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6.4.1 Bayes update of model parameters using synthetic data

For prognostics application, the primary goal is to estimate the damage growth path based

on measurement data, as illustrated in Figure 6.4. If data based method is adopted in such

applications, no damage model needs to be de�ned; but data driven models may not always

yield accurate results as discussed earlier. Hence integrated methods are a better alternative

where a damage propagation model is de�ned whose parameters are estimated using the

measurement data by Bayes updating process. It should be noted that in this thesis, damage

growth model for degradation in composites is de�ned based on experimental measurements

acquired from periodic NDE inspections. Although measurements were assumed to imply

the underlying model, physics based relation between damage level and loading cycles have

not been studied in this research. Physics-based relationships for a speci�c geometry and

loading conditions depend entirely on the structural mechanics of a component and will be

incorporated in future extensions of this research.

A synthetic measurement dataset is considered to demonstrate the implementation of

Bayes updating procedure using a simple exponential damage model de�ned as:

k = Ctm (6.18)

where, k represents the crack length propagating over time t. C and m are the model

parameters. In this example, the value of C is kept �xed at 9.12× 10−3 and m is estimated

using the Bayes updating. 6 synthetic measurements are selected by adding random noise

to the true crack length values at time 1, 10, 20, 30, 40 and 50 seconds. These replicate the

observations that are obtained from experiments where the crack length is measured after

�xed intervals of time or loading cycles. Figure 6.7 (b) shows the true crack growth curve
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(by using true value of m = 1.48) along with the measurements selected. Only these 6

measurement data were used to estimate the unknown parameter m of the damage model

to eventually predict the crack propagation path.
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Figure 6.7: (a)Bayes Updating of parameter m (b) Crack growth example for synthetic
dataset with estimated crack growth path.

The prior distribution of m is chosen as:

fprior(m) ∼ N (2.6, 0.52) (6.19)

At each inspection time instant, the posterior distribution of the current iteration becomes

the prior distribution for the next updating time. The updating history for the crack growth

parameters is shown in Table 6.1. Thus it can be concluded that by repeating the recursive

process as new measured data becomes available, the estimated parameters converges to

their true values [99].
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Table 6.1: Bayes Updating history of parameter m for synthetic crack growth path.

6.5 Bayesian Updating based on Particle Filtering(PF)

Approach

In recent years, recursive Bayesian framework has been used extensively in fault diagnos-

tics and prognostics applications [100, 101]. In this approach, observed data is incorporated

into the a-priori state estimation by considering the likelihood of measured values. Particu-

larly, sequential Monte Carlo (SMC) technique, also referred to as particle �ltering(PF) has

gained popularity in engineering domain owing to their consistent theoretical foundation to

handle model non-linearities or non-Gaussian observation noise [83, 102]. In this approach,

the conditional probability is approximated by a 'swarm' of points, known as 'particles'.

The particles constitute discrete samples with associated weights representing the discrete

probability masses. Particles can be generated and recursively updated given a non-linear

process model, a measurement model, a set of available measurements Z = {zk, k ∈ N} and

an initial estimation for the state probability density function (pdf) p(x0). Using this idea

Orchard and Vachtsevanos [83] presented a failure prognostic model to predict the evolution

in time of the fault indicator and compute the RUL pdf of the faulty subsystem.

Under PF framework, the Bayesian update is processed in a sequential way with particles

having probability information of unknown parameters. It is based on a state-transition
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function or the damage propagation model f and measurement function h [103].

ak = (f, θk, νk) (6.20)

zk = h (ak, ωk) (6.21)

where k is the time step index or index of loading cycle at which sample is scanned, ak is

damage state, θk is parameter vector and zk is the measurement data. νk and ωk are the

model and measurement noise respectively. In prognostic applications, the measurement is

assumed to be a�ected by white Gaussian noise ωk ∼ N(0, σ). Therefore, the unknown

parameters are Θ = {a, θ, σ}, including the damage state a which is obtained based on the

model parameters θ.

Figure 6.8 illustrates the process of Bayes updation using particle �ltering technique.

Figure 6.8: Illustration of Bayes estimation using particle �ltering technique.

Next, a synthetic dataset is used as an example to demonstrate the PF algorithm for
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estimation of damage growth path and remaining useful life (RUL).

6.5.1 PF estimate of model parameters using synthetic data

A simple exponential damage propagation model is de�ned where the crack grows expo-

nentially with time (8.4). The true values of the parameters are selected as C = −22.62 and

m = 3.8 and the true crack growth path is shown in Figure 6.10.

a = Ctm (6.22)

For applying PF algorithm, both parameters C and m are considered unknown and

represented by a set of n = 5000 particles. For the sake of simplicity, measurement noise is

modelled as white Gaussian density with standard deviation (σ) of 0.01. A synthetic dataset

of 25 points are chosen, also denoted in Figure 6.10, which form the measurements used in

Bayes updating by particle �ltering. The particle �ltering approach can be described in the

following steps.

(a) Initialization: At k = 1 step,n samples of all parameters are drawn from initial (prior)

distribution. The prior distribution parameters are slected either based on domain

knowledge or intelligent data processing from available measurements. Most often,

experiments are conducted multiple times and the �rst inspection observations are

used as the prior. In this example, the prior distributions for the unknown parameters

are set as:

a0 ∼ N (0.01, (5× 10−4)2)

m0 ∼ N (4, (0.02)2),

logC0 ∼ N (−22.33, (1.12)2)
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In this example, the parameter C and m follow log-normal and normal distribution

respectively.

(b) Prediction: Posterior distributions of the model parameters evaluated at the previous

(k − 1)th step are used as prior distributions at the current step (kth) in the form of

particles.

Also, damage state at the current time step is transmitted from the samples at the

previous step according to the damage propagation model (8.4).

ak = Ck (∆tk)mk + ak−1 (6.23)

where ∆tk is the time gap between (k − 1)th and kth inspection step.

(c) Updating: In this step, the likelihood is calculated such that Bayes inference can

be evaluated according to Equation 6.11. Given that measurement noise ωk follows

normal distribution, the likelihood can be computed as:

L(zk|aik,m
i
k, C

i
k) =

1

zk
√

2πξik
exp

−1

2

(
ln zk − λik

ξik

)2
 , i = 1, ...n (6.24)

where,

ξik =

√√√√√ln

1 +

(
σ

aik(mi
k, C

i
k)

)2
 (6.25)

and

λik = ln
[
aik(mi

k, C
i
k)
]
− 1

2
(ξik)2 (6.26)

(d) Resampling: Resampling is the step in which an existing set of particles is replaced
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by a new set. It is particularly essential in PF in order to avoid degeneracy of weights

[104] in which a few particles dominate the rest, after the �rst few iterations. This

often leads to inaccurate estimates with large variances.

Several resampling techniques are discussed in literature such as single distribution

sampling [105] thresholds/grouping-based resampling [106] or variable size resampling

[107]. In our application, a sequential importance resampling technique, speci�cally

the inverse CDF method is applied to achieve the resampling process [102] whereby a

particle of the parameter having the CDF value generated randomly is chosen and the

process is repeated n times in order to obtain n resampled particles at the end of kth

iteration.

Figure 6.9: Illustration of resampling by inverse CDF method [8].

Figure 6.9 illustrates the above process. Here a random value is generated from U(0, 1)

which becomes a particular CDF value (e.g., 0.45 in the �gure). Finally, a sample of

the parameter having the CDF value is found, which is marked by a rectangle in the

�gure. By repeating this process n times, n samples are obtained. Note that since

samples exist in a discrete form, the sample having the closest value to the CDF value
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is selected.

The PDF constituted from these resampled particles forms the posterior distribution

of the current iteration or the prior distribution of the next iteration.

(e) Prognosis: Once the model parameters are estimated, the damage state is propagated

from the current state upto the threshold value. The PDF of the particles in current

state is subtracted from those at the threshold value in order to evaluate the PDF of

the RUL. The median RUL along with its con�dence intervals are calculated from the

PDF of the RUL.

Figure 6.10 demonstrates the results of applying particle �ltering on the synthetic dataset.

The true values of parameters were known a-priori and served as a reference to compare the

accuracy of estimated values using the synthetic data. The estimated crack growth path

with its con�dence bounds matches closely to the true path as seen in Figure 6.10(a). Also,

the estimated RUL histogram is plotted in Figure 6.10(b) using a failure thresold at crack

length = 0.03 units. The median RUL at 1200 cycles is computed as 950 cycles with its 95%

con�dence bounds at 750 and 1200 cycles. This means that if the current inspection is done

at 1200 cycles, after 950 cycles the crack length is predicted to reach its failure thresold of

0.03 mm. The results show close alignment of predicted RUL with its true value which is

1000 cycles.

It is important to note that in statistical prognosis, observed condition monitoring (CM)

data from periodic NDE can be classi�ed into direct and indirect CM [108, 109]. Data from

direct CM describes the underlying damage state directly such as crack length or damage

area extracted from NDE imaging techniques or sti�ness data obtained from strain gauge.

For direct CM, prediction of RUL is equivalent to prediction of the CM data to reach a
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Figure 6.10: (a) Crack growth prediction using PF algorithm (b)Predicted RUL histogram
(c) Trace of updating of parameter C (d) Trace of updating of parameter m

prede�ned failure threshold level. On the other hand, indirect CM provides data which can

indirectly or partially indicate the health status of a structure.In these cases, failure event

data may be needed in addition to CM data for RUL estimation. Examples of indirect CM

are time-of-�ight data obtained from ultrasonic waves, amplitude data from eddy current

signals or features from other NDE techniques from which structural health can be deduced

indirectly. Chapter 7 focuses on prognosis using direct CM whereas applications on indirect

CM are discussed in chapters 8 and 9.
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Chapter 7

Single Sensor Prognosis in Composites

by Direct Condition Monitoring

7.1 Introduction

In last few decades, composite materials have gained immense popularity and replaced

metals or alloys in several industries namely aviation, automotive, space and construction

owing to their salient properties of light-weightness, high speci�c sti�ness and strength.

Despite their high environmental and fatigue resistance, laminated �bre-reinforced polymers

(FRP) are often vulnerable to �aws during fabrication and service such as fatigue cracks

or disbonds in adhesive metal-composite joints. Hence there is a need for NDE experts

to develop methodologies for inspecting composite materials. Also, industrial components

made of composite materials are subjected to a wide range of stresses during their service

life. Dynamic loading is common especially in aircraft components such as dropping of tools

during maintenance or hailstorms while in service which pose serious threat to the remaining

usability and reliability of such components. If a composite laminate is subjected to repeated

low-velocity impact of su�cient energy, it may create damage internally in the form of

delaminations which may remain invisible but can signi�cantly compromise the structure's

integrity. Hence, several analytical and experimental investigations [110, 111, 112, 113,
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114] have been conducted on the initiation and evolution of impact damages in composite

materials which demonstrated that the extent and rate of growth of such damage depend

on the material, manufacturing process, hybridization, energy levels and geometry of the

impactor. Vulnerability of composite materials propels the need for robust prognostics and

health monitoring techniques. In this chapter we focus on prognosis of damage accumulation

in GFRP samples due to repeated low velocity impacts.

Accurate health prognostics is critical for condition-based-maintenanace (CBM) and for

reducing overall life-cycle costs. Under CBM, data is collected from various non-destructive

evaluation (NDE) techniques such as vibration, acoustic emission, X-ray imaging etc. are

utilized for structural health inspection and prediction of RUL. Several NDE techniques

are discussed in literature for inspecting impact damage in composite laminates. Meola

et al. [115] demonstrated the use of infrared thermography to image delaminations in the

sample. X-ray computed tomography has been popular as well to inspect delaminations in

GFRP [116, 117]. In this work, optical transmission scanning (OTS) was used to detect and

locate damage introduced in a GFRP composite plate by successive low velocity impacts.

OTS has been recently proposed by Khomenko et al. [118] as a novel optical method for

quantitative NDE of GFRP structures. The technique can be used when access to both the

top and bottom surfaces of the test sample are available. In addition to being non-contact,

rapid, cost-e�cient and safe, it provides high-resolution optical transmittance (OT) scans of

a GFRP sample. Details of this method has been described in section 2.

This chapter presents two crucial contributions to research in prognosis of composite

materials by direct CM utilizing experimental data from OTS of GFRP samples. Firstly, an

optimized damage propagation model is described using improved Paris' law for delamination

growth in the sample. Lack of robust models capable of describing the critical transition
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from a healthy to a progressively damaged sample up to the complete collapse of the material

makes estimation of failure thresholds more challenging for composite structures. Although

crack propagation models in metals has been studied extensively, damage propagation in

GFRP speci�cally the growth of delaminations introduced by low-velocity impacts have not

been addressed yet. Secondly, an integrated prognosis method is implemented to estimate

damage area growth in GFRP wherein data from OTS forms the CBM data to be used

for estimation of the future damage area under the framework of particle-�ltering. With

growing demand of GFRP in industries, prognostic studies on such materials have become

imperative and are addressed in this study.

7.2 Condition based Maintenance of GFRP

7.2.1 Impact Damage in GFRP

One of the most common degradation mechanisms encountered in composite samples

is delamination formed by low velocity impacts. Impact damage in composites occur in

the transverse direction where they lack through-thickness reinforcement and the transverse

damage resistance is poor. As a result, the impact force tends to break the �bres in the

polymer and eventually leads to formation of air gaps or delaminations inside the material

which may or may not be visibly detected [119]. Delamination in a composite plate is

caused due to interlaminar stresses which are dependent on specimen geometry and loading

parameters such as dimensions of specimen, type of boundary conditions, shape of impactor,

impact energy, etc. Interlaminar strength is strongly related to the material properties,

i.e., fracture toughness of matrix and bonding strength between �ber and matrix. E�ect

of impact damage on residual compressive strength of GFRP laminates have been studied
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previously by several researchers [113, 114].

Figure 7.1 shows a healthy sample of GFRP laminate and after being subjected to an

impact of 20J. As delamination area increases, the strength of the structure reduces which

eventually leads to failure.

Figure 7.1: (a) Healthy GFRP sample (no damage),(b) Delaminated GFRP sample after
E=20J impact.

7.2.2 Optical Transmission Scanning (OTS)

In this paper, experimental data from Optical Transmission Scanning (OTS) system

[120] is used for assessing and predicting delamination growth in GFRP due to repeated

impacts. Optical transmission scanning (OTS) has emerged as a viable technique for rapid

and non-contact nondestructive evaluation (NDE) of glass �ber reinforced polymer (GFRP)

composites [118]. Earlier works [121, 120] highlighted the capabilities of OTS in quantifying

low velocity impact damage in multilayer GFRP samples, which, in combination with ad-

vanced image processing, allowed for accurate characterization of multiple delaminations and

their contours. The results obtained demonstrated excellent agreement with well-established

NDE techniques.

Figure 7.2 shows the image of the OTS setup. It comprises a translation stage, a laser
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source that illuminates the GFRP samples, and a downstream photodetector placed under-

neath the sample. The photodetector records the power transmitted through the sample

after it is illuminated by the laser source. Consequently the output power depends on the

transmission properties of the sample being tested. Hence, presence of delamination (airgap)

inside the sample alters the transmitted radiation received by the photodetectors which is

captured by the OTS system. Images from inspection of a healthy and impacted sample by

the OTS is presented in Figure 7.3.

Figure 7.2: Experimental setup of optical transmission scanning system with impacted sam-
ple under test.

OTS has been demonstrated as a successful fast and non-contact technique to detect

delaminations in GFRP and validated using a digital camera image of the cross-section of

the GFRP sample[118]. The authors further applied advanced signal processing on the OT

images in order to determine the delamination contours as a function of the number of �ber

layers that have been a�ected by impact. As denoted in �gure 7.3 (c), the OTS image

of impacted GFRP is segmented into four sets of delaminations, ranging from 1 to 4+,

quantifying the extent and severity of damage. A detailed description of the OTS operat-

ing principle, image processing procedure for determining the segments of delaminations in

GFRP and computation of the area of each delmaination segment is illustrated in [118]. The
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Figure 7.3: (a)(top)Healthy (no impact) GFRP sample ; (bottom)GFRP sample after E=30J
impact (b) OT Scan of (top)healthy; (bottom) impacted sample (c) Segmentation of delam-
inations in (top)healthy; (bottom) impacted sample.

results obtained demonstrated excellent agreement with other well-established NDE tech-

niques. Ongoing work of the authors is focused on extending the capabilities of OTS to 3D

imaging such that they can be tailored towards scanning the GFRP structure under loading

conditions in industrial applications.

7.3 Proposed Prognostic framework for delamination growth

model

7.3.1 Damage Propagation Model

In this application, damage propagation model used for describing propagation of de-

lamination area inside a GFRP sample due to repeated low-velocity impacts is based on

Paris Law which de�nes the relationship between crack growth rate and stress state of the
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structure, as given by equation 1.

da

dN
= C (∆K)m (7.1)

where a is the crack length,
da

dN
is the crack growth rate per cycle, N is the total number

of load/ impact cycles, ∆K is the range of the stress intensity factor and C and m are the

Paris law parameters. ∆K can be further interpreted as:

∆K = Y
√
πa (7.2)

where, Y is a dimensionless constant depending on the crack shape and geometry of the

specimen for a given stress range in fatigue crack growth models.

From material structures theory, it can be inferred that most of existing crack growth

models are based on the empirical Paris' law [122] to de�ne the relationship between crack

growth rate and stress state of the structure. There are several prognostic studies in literature

which adheres to Paris law to predict crack growth in metallic structures such as analysis of

axial crack growth in UH-60 planetary carrier plate [83], aluminium alloy specimens [123] or

fatigue cracks in SAE1045 steel [124]. However, unlike crack growth in metals, delamination

in GFRP samples due to repeated impacts behave di�erently. In particular, the �bre/matrix

interphase properties, which are a�ected by �bre surface treatment, play an important role

in determining the failure mechanisms, the extent of damage and the threshold energy of

the composite [125]. Many researchers have studied impact damages in composite materials

[112, 119] and monitored the relationship between delamination area and impact energy. A

typical damage propagation curve is presented in Figure 7.4. The damage area is found
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to increase rapidly in the �rst few impacts and then slow down beyond a threshold. Such

behaviour of delamination area growth has been studied before by Wu et al.[112] where he

reported that the area extends at a slower rate after the �rst few impacts due to constraints

from the four-�xed end boundaries in (0◦, 90◦) cross-ply laminates.

Figure 7.4: Delamination area propagation with respect to increase in cumulative impact
energy.

Applying Paris Law directly was not suitable for modeling and predicting degradation

processes in GFRP samples and hence a modi�ed version referred as the Paris-Paris model

based on Piecewise-deterministic Markov processes (PDMPS) is proposed. The mathemat-

ical details are described in [123] where the authors presented fatigue crack growth (FCG)

prediction approach using "Paris model with one jump". In this paper, the damage prop-

agation plot is divided into two regions- Region I and Region II. Instead of considering a

single exponential model, two di�erent exponential models are considered before and after

the threshold or 'jump' in damage propagation curve. Paris law is used in both the regions

but de�ned by di�erent set of parameters. Overall, the �ve parameters in the Paris-Paris

model to be estimated are :{m1, C1,m2, C2, E
∗} where m1, C1 and m2, C2 are the parame-

ters of Paris model before and after the loading cycle E∗. It should be noted that the PDMPs
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may use other crack propagation laws such as Paris-Forman law [126] or Paris-Erdogan law

[122] for other applications and the number of 'jumps' may not be restricted to one. More

'jumps' will lead to more regions and more parameters to be estimated, without changing the

underlying theory. In our study, the Paris-Paris model was used for modelling the growth of

delamination area in GFRP samples with one 'jump' in the damage growth curve.

7.3.2 Particle Filtering based Prognosis of Delamination Area in

GFRP

The particle �ltering approach, described in chapter 6, has been implemented in this

study for the prognosis of delamination area in a GFRP sample. The overall algorithm

is modi�ed to estimate unknown parameter vector θ of the Paris-Paris model where θ =

{m1, C1,m2, C2, E∗} (Note: T∗ is replaced by E∗ since we measure delamination area after

�xed intervals of impact energy instead of time or loading cycle).

Damage area obtained from OTS measurement (zk) at kth observation is assumed to be

equivalent to the true damage area (ak) with additive noise, as described in equation 7.3,

where ωk ∼ N (0, σ2).

zk = ak + ωk (7.3)

The assumption of additive normal measurement noises is backed by experimental evi-

dence. Measurement noise in the OTS system is essentialy generated due to vibrations in the

equipment gantry, noise in photodetector and external lights (eg: from computer screens in

the optical laboratory). Noise from external lights contribute to majority of the experimental

noise whereas the other factors can be neglected. In order to quantify the noise distribu-

tion, OTS system was used to scan a 40mm × 50mmarea without specimen in absence of
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laser source. The output image captured by OTS photodetectors in depicted in Figure 7.5

(a). It can be further concluded that the measurement noise follows a normal distribution

with mean at 0.2535 and standard deviation of 0.0091. Similar observations were found for

repeated OTS scans without specimen.

(a) (b)

Figure 7.5: (a) Measurement noise collected by photodetector without specimen in absence
of laser source (b) Measurement noise histogram : N (µ = 0.2535, σ = 0.0091).

Therefore, the unknown parameters to be estimated are Θ = {a, θ, σ}, including the

damage state a that depends on the model parameters θ. The particle �ltering approach

tailored towards this application is summarized in the following steps.

(a) Initialization: At k = 1 step, n samples of all parameters are drawn from initial

(prior) distribution.

(b) Prediction: Posterior distributions of the model parameters evaluated at the previous

(k − 1)th step are used as prior distributions at the current step (k).

Using equation 7.1,damage state at the current time step is predicted from the param-

eters estimated at the previous step according to equation 7.4.

da = C
(
Y
√
πa
)m

dN (7.4)
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The Paris model is re-written in the form of state-transition function in equation 7.5.

It should be noted, loading cycle interval dN of Paris law for crack propagation in

metals is replaced by ∆E or the interval of impact energy between two consecutive

impacts on GFRP.

ak − ak−1 = C
(
Y
√
πak−1

)m
dN (7.5)

When the cumulative energy of the impacts is lower than the unknown 'jump' energy

E∗, the damage update follows the Paris law with parameters {C1,m1}. Beyond E∗,

the model shifts to Region II (in Fig.2) wherein the damage propagates according to

Paris Law with parameters {C2,m2}.

ak =


Ck1
(
Y
√
πak−1

)mk1 ∆E + ak−1, if Ek ≤ E∗

Ck2
(
Y
√
πak−1

)mk2 ∆E + ak−1, if Ek ≥ E∗
(7.6)

(c) Updating: In this step, the likelihood is calculated according to Bayes inference de-

noted in Equation 3. Assuming that measurement noise ωk follows normal distribution,

the likelihood is computed as:

L(zk|aik,m
i
k, C

i
k) =

1

zk
√

2πξik
exp

−1

2

(
ln zk − λik

ξik

)2
 , i = 1, ...n (7.7)

where,

ξik =

√√√√√ln

1 +

(
σ

aik(mi
k, C

i
k)

)2
 (7.8)
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and

λik = ln
[
aik(mi

k, C
i
k)
]
− 1

2
(ξik)2 (7.9)

The n particles for each parameter in Θ at kth iteration are associated with weights

that correspond to the PDF value of the ith particle in measurement zk as calculated

by Equation 8. Paris law parameters {m,C} are chosen di�erently before and after

the cumulative impact energy Ek crosses the 'jump' energy E∗.

(d) Resampling: Samples with higher likelihood are duplicated whereas the ones with

lower likelihood are eliminated. This step captures the essence of optimization by

particle �ltering such that the 'good' particles are transmitted to the next iteration,

thereby re�ning the estimation of model parameters.

(e) Remaining-Useful-Life (RUL) computation: Once the model parameters are es-

timated, the damage state is propagated from the current state upto the threshold

value or end-of-life EOL. After every measurement state, every particle which crosses

the failure threshold are identi�ed and its RUL is computed as RULn = EOL− n, n

being the current observation time instant. PDF of RUL is generated by computing

the RUL of all the particles. The median and mean value of the RUL along with its

con�dence intervals are calculated from the RUL PDF.
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7.4 Experimental Setup and Results

7.4.1 GFRP Specimen and Experimental Setup

Three eight-layered S2-glass reinforced laminates S1, S2 and S3 of dimensions 100×100×

4.7mm were subjected to a sequence of low-velocity impacts by drop-weight tests with �xed

mass of 17Kg with di�erent energies (or di�erent velocities) and scanned at every interval

using the OTS technique. S1 and S2 were subjected to 15 impacts with energies stated

in Table 7.1, whereas S3 was impacted with 14 impacts of di�erent energies upto 89J , as

denoted in Table 7.1. The velocity of the impact varied depending on the impact energy

such that for a 10J impact, the velocity of drop-weight tests was recorded as 1 m/s, whereas

for 50J and 100J , the measured velocity was around 2.41 m/s and 3.39 m/s respectively.

Table 7.1: Cumulative energies of consequtive low velocity imapacts on GFRP sample 1 and
2.

Table 7.2: Cumulative energies of consequtive low velocity imapacts on GFRP sample 3

The OTS setup used in this experiment consisted of an iBeam-smart-640s laser diode with

640nm fundamental wavelength used as the light source. It had 1.5mm beam diameter and

up to 150mW output power. The transmitted radiation was registered using a DET36A Si

detector with 350− 1100nm wavelength range, 14ns rise time and 13 mm2 active area. The

voltage on the output of the photodetector was directly proportional to registered radiation

power. The XY-coordinate stage with stepper motors allowed for rapid inspection of the
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GFRP samples with a lateral resolution of 0.25mm.

Figure 7.6: OTS scans of GFRP sample (a) healthy (b)-(p) after each consequtive impact
from 1 to 15 as mentioned in Table 7.1.

At the end of each impact, the GFRP sample was inspected by OTS thereby producing

15 scans for S1 and S2 and 14 scans for S3. The OTS images for S1 after 15 repeated impacts

are presented in Figure 7.6. Based on the image segmentation as shown in Figure 7.3 (c),

delamination area for 1, 2, 3, 4+ delminations were calculated from each OTS scan for the

three samples. The damage area growth curve with respect to cumulative impact energies is

plotted in Figure 7.7 which veri�es the damage growth behaviour caused by repeated impacts

in the three samples. These curves are considered as the ground truth for our application

and estimation of damage growth parameters using our proposed method is validated against

them. It is observed that the `knee' of the health index curve or the `jump' energy correspond

to an approximate value of 20J for all three samples, even when the sample were impacted

with di�erent intervals of impact energy (or velocity) due to the same geometry of specimens

and the location of impact.
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Figure 7.7: Growth of delamination area for three samples with increased cumulative impact
energies (Solid curve- S1, Dashed curve- S2, Dotted curve- S3).

7.4.2 Prognosis Results

In order to implement particle �ltering algorithm to predict damage growth curve from

initial measurements, initial distribution for the parameters were set as:

a0 ∼ N (20, (0.01)2)

m10 ∼ N (4, (0.02)2), logC10 ∼ N (−22.33, (1.2)2)

m20 ∼ N (2.87, (0.1)2), logC20 ∼ N (−22.2, (0.1)2)

E∗0 ∼ N (20.02, (0.45)2)

The prior distibution of E∗ where the Paris law parameters 'jump' from Region I to

Reguion II is highly sensitive to the OTS measurements for individual GFRP specimens.

Slope di�erence at every measurement cycle with respect to its last two predicted delami-

nation areas was calculated according to equation (7.10) and E∗0(i) = Ek−1 if Sdiff (k) =

max(Sdiff ). This process was repeated for damage growth curves in the three GFRP sam-
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ples (i = 1 to 3) and the mean and sample variance were used to de�ne the prior PDF of

E∗0 .

Sdiff (k) =
ak − ak−1

Ek − Ek−1
−

ak−1 − ak−2

Ek−1 − Ek−2
(7.10)

To verify the particle �ltering prognostics approach, parameters of the Paris-Paris model

were estimated with varying number of available measurements from 9 to 12 and the esti-

mated curves are presented in Figure 7.8.

Figure 7.8: Prediction of delamination area curves based on di�erent number of available
measurements (a) n=9, (b) n=10, (c) n=11, (d) n=12. The true measured delamination
area curve is plotted in dashed lines.

It is observed that the prediction became more accurate with number of observations

Figure 7.8. The RMSE of estimated vaues compared to the OTS measurements was com-
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puted according to equation 7.11 and plotted in Figure 7.9 which shows a decreasing trend

with increasing number of observations.

RMSE =

√√√√ 1

n

n∑
i=1

(ai − âi)2 (7.11)

To further demonstrate the bene�t of an optimized Paris-Paris model over a regular Paris

model, RMSE was computed for number of available measurements increasing from 10 to 13

and plotted in Figure 7.9. Although RMSE is less than 0.15 for both the models when more

than 10 measurements were considered, prediction is more accurate with Paris-Paris model

since it has lower RMSE in general than the regular Paris model.
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Figure 7.9: Comparison of damage area prognosis by Paris model (dashed line) and Paris-
Paris model (solid line) for (a) 1 delamination (b) 2 delaminations (c) 3 delaminations (d)
4+ delaminations.

An interesting thing to note is that when number of available measurements of delamina-
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tion area were more than 8 or when the cumulative impact energy was higher than the 'jump'

energy (E∗ = 20J), the predicted damage growth curves matched the true measured growth

accurately, with maximum RMSE of 0.07. However when the number of measurements was

either 8 or 7 i.e before the damage growth curve changed its growth rate, estimation becomes

more challenging as the impending 'jump' energy needs to be predicted accurately even be-

fore it is reached. This is where an optimized Paris-Paris model outperforms a regular Paris

model.

Figure 7.10: Prediction of delamination area curves based on di�erent number of available
measurements (a) n=8, Paris model (b) n=7, Paris model (c) n=8, Paris -Paris model (d)
n=7, Paris -Paris model. The true measured delamination area curve is plotted in dashed
lines.

Results are presented in Figure 7.10(a) and (b) for estimation of damage growth curve
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wth 8 and 7 measurements using Paris-Paris model. The maximum RMSE is calculated

to be 0.1. On the other hand, when same measurements were used to predict the damage

growth curve using regular Paris model with one set of parameters {m1, C1}, the estimation

failed, as shown in �gure 7.10 (a) and (b). Clearly for these cases, the Paris model could not

capture the 'jump' in the damage growth curve, therefore resulting in wrong prediction of its

future values. If 6 or less measurements were chosen, both the models failed to accurately

predict the 'jump' in the damage growth curve due to lack of su�cient information.

In order to compute the remaining-useful-life of the GFRP sample from the initial OTS

measurements, sample S1 was subjected to more number of impacts with higher energy

intervals, as stated in Table 7.3. At the end of 450 J, OTS image of the GFRP specimen in

Figure 7.11 (g-h) shows that delamination had reached to one of its edges leading to breakage

of �bres at that end, hence denoting its end-of-life (EOL) as further usage of the specimen

could not be continued. The net delamination area after 450 J was calculated as 7803.8 mm2

or 78.03% of total area of the sample. Figure 7.12 presents the damage growth curve upto

EOL for sample 1.

Table 7.3: Cumulative energies of more number of impacts on GFRP sample S1 from 150J
to 450J

A set of damage thresholds was set τd; d = 1, 2, 3, 4 for every delaminations corresponding

to the 21st impact or total energy of 450J: τ1 = 955 sq mm, τ2 = 1362 sq mm, τ3 = 2065

sq mm, τ4 = 3422 sq mm. RUL was calculated on the Paris-Paris model for di�erent

number of observations ranging from 14 to 21 and the corresponding result is illustrated in
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Figure 7.11: OTS scans of GFRP sample (a)-(f) after each consequtive impact from 16 to
21 as mentioned in Table 7.3,(g) Camera image of sample 1 after 450 J impact (H) Enlarged
image of delamination reaching the edges and breakage of �bers denoting its end-of-life.
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Figure 7.12: Growth of delamination area for sample 1 with increased cumulative impact
energies upto end-of-life.

Figure 7.13. At 14th observation, the cumulative impact energy was 90J , hence true RUL

is 450J − 90J = 360J whereas at 21st observation, the cumulative impact energy was 450J ,

hence true value of RUL is 0 .

The mean and median of estimated RUL values along with their 90% con�dence bounds is

shown in Figure 7.13. The two shaded cones of accuracy at 20% and 30% of true RUL enable
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Figure 7.13: RUL prediction for (a) 1 delamination (b) 2 delaminations (c) 2 delaminations
and (d) 4 delaminations.

comparison of prediction accuracy and precision. Prediction precision clearly improves with

time as the 90 % con�dence interval of estimated RUL decreases with addition of more

measurements. The true RUL lies within the con�dence intervals for most of the cases.

In fact for delamination 2,3 and 4, the mean of estimated RUL exactly matches the true

RUL when 18 or more measurements are used for prediction. However, it can be seen that

RUL estimation error is high ( 50%) when 16 or fewer measurements are used (true value

lies within 90% CI) which indicates that the model and its variance structure do not fully

capture the damage dynamics at the earlier stages of delamination growth. In order to

improve RUL prediction with lesser measurements, a more accurate damage growth model

should be investigated.
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Chapter 8

Single Sensor Prognosis in Composites

by Indirect Condition Monitoring

8.1 Introduction

Prediction of future damage state using NDE data from direct condition monitoring (CM)

of a composite specimen is discussed in chapter 7. Accurate estimation of delamination area

could be achieved with high-resolution optical transmission scanning (OTS) system, particu-

larly suitable for transparent GFRPs. However, often industries demand in-situ monitoring

of slow-growing defects in structures such as fatigue-induced delamination in composites.

Airplane wings or automobile parts made of composites are frequently subjected to a wide

spectrum of loading patterns during their service resulting in slow progression of cracks

caused by fatigue. Fatigue-induced delamination in composite joints poses serious threat

to their remaining usability [127, 128] propeling several analytical and experimental inves-

tigations on the initiation and evolution of fatigue cracks in composites [129, 130]. Fatigue

behavior often results in formation of air-gaps in between the matrix layers known as delam-

ination which may be hidden in internal layers and not visible on outer surfaces. Therefore,

complex damage mechanisms in composites demand the use of NDE and SHM techniques

not only to detect damages at the initial stages of fatigue but also to provide indirect CM
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data for future health prognosis .

Although some NDE techniques such as pulse-echo ultrasonics [131], far-�eld microwave

imaging [132] and sonic infrared imaging technique [133] are capable of diagnosing delami-

nation in composites, accurate prognosis of fatigue damage in composites using NDE data

remains a challenging task. Firstly in the case of most NDE techniques, no known physics-

based models are available for describing fatigue-damage progression in composite joints

[134]. As discussed before, unlike metals, composites are heterogenous in nature where a

slight change in the material or geometry can result into an entirely di�erent and complex

damage mechanism resulting in uncertain NDE inspection results. Crack or delamination

growth behavior in composites strongly depend on the manufacturing process, mechanical

properties of material(s), presence of impurities or inclusions in resin and other complex

micro-level phenomenon which are di�cult to be incorporated into known electromagnetic,

acoustic or optical measurements, particularly for composites cured from multiple and newer

materials. As a result in most practical applications, prognosis is solely dependent on in-

direct CM data from periodic NDE/ SHM of the composite structures. Secondly, most of

in-situ monitoring systems cannot provide accurate estimation of the slow-growing defect in

adhesive joints especially in the early stages of fatigue. Prognosis based on noisy estimates

collected under uncertain environment inherently leads to over�tting on the training data

and wrong prediction of future damage states.

This chapter presents the prognostic capabilities of two methods using indirect CM data:

regression based prediction[85] and stochastic �ltering based on Bayes inference[81] in a

sequential Monte Carlo framework, such as Kalman �lter and particle �lter. Delamination

area is predicted for a GFRP specimen subjected to mode I fracture mechanism under cyclic

loading. Indirect CM data is provided by guided wave(GW)[135] signals which are generated
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through surface-mounted piezo electric transducers, therefore facilitating on-line monitoring

of composite structures while they are in service. Delamination area computed from periodic

OTS measurements are considered as the ground truth. Prediction results of both approaches

are compared to demonstrate the bene�t of dynamic parameter update in NDE prognosis

applications.

8.2 Experimental Setup

8.2.1 Specimen Geometry and Material

GFRP composite samples, used in the mode I fatigue experiment, were manufactured

using vacuum assisted liquid molding process. The reinforcement was S2-glass plain weave

fabric with areal weight of 818g/m2, namely Shield-Strand S, provided by Owens Corning.

The GFRP samples comprised six layers of such fabrics stacked at the same angle. The

distribution medium was Resin�ow 60 LDPE/HDPE blend fabric from Airtech Advanced

Materials Group and the resin, SC − 15, was a two part toughened epoxy obtained from

Applied Poleramic. GFRP plate of size 300 × 150mm2 was manufactured in a 914.4 ×

609.6mm2 aluminum mold with point injection and point venting. Two te�on sheets of

dimensions 50×150mm2 with density 2.16g/cm3 and tensile strength of 3900psi were inserted

in between third and fourth layer of GFRP fabrics at the two edges of the plate. After the

materials were placed, the mold was sealed using a vacuum bag and sealant tape, and it was

then infused under vacuum at 29 in Hg. The resin-infused panel was cured in a convection

oven at 60oC for two hours and post-cured at 94oC for four hours. Finally, double-cantilever

beam (DCB) samples with dimensions of L = 150mm, b = 25mm and h = 2mm were cut

from the manufactured GFRP plate using a diamond saw and piano hinges were attached
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Figure 8.1: Double-cantilever beam (DCB) specimen for Mode I fatigue tests, according to
ASTMD5528.

using high-strength cyanoacrylate glue. The design of the sample adheres to ASTMD5528

standard for mode 1 fatigue testing, as shown in �gure 8.1. Figure 8.3(a) shows a DCB

sample used in our experiments which is made of 6 layers with a te�on sheet of length

50mm inserted from the edge in between second and third layer of the plate. As the te�on

inserts are ultra-thin, they have no mechanical contribution to the sample but are used solely

to create initial delamination in the specimen. Each DCB specimen is characterized with

Young's modulus of 26GPa, density 1907Kg/cm3 and the poison's ratio of 0.17 (material is

assumed to be quasi-isotropic).

8.2.2 Fatigue testing of GFRP under Mode I failure

According to ASTM standard E 1823, fatigue in mechanical systems is de�ned as: �The

process of progressive localized permanent structural changes occurring in a material sub-

jected to conditions that produce �uctuating stresses at some point or points and that may

culminate in cracks or complete fracture after a su�cient number of �uctuations". When

a structure is subjected to cyclic loading, the applied stress is not constant but changes

with time leading to fatigue failure. Striking characteristic of fatigue is that due to repeated
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variable loading, localized stress concentration points are created at which crack is initiated

and the system fails at stress values below the yield strength of the material. Hence, fatigue

poses serious threat in the overall reliability of materials and requires accurate prognosis.

Practical mechanical systems undergo variable loading in several scenarios such as;

1. Change in the magnitude of applied load Example: punching or shearing operations.

2. Change in direction of load application Example: a connecting rod.

3. Change in point of load application Example: a rotating shaft.

(a) (b)

Figure 8.2: (a) Experimental setup for Mode I GFRP sample subjected to cyclic loading in
MTS machine, (b) Enlarged image of GFRP sample under Mode I test.

Susceptibility to delamination is one of the major weaknesses of many advanced laminated

composite structures. Although progressing at a lower rate, fatigue can induce local matrix

cracking in composites leading to delaminations in adhesive joints or matrix laminates, which

signi�cantly compromises structure's health and can be catastrophic. Owing to its industrial

importance, fatigue mechanisms have been studied extensively with regards to composite

materials [136, 137, 138]. In this paper, e�ect of fatigue loading is studied on reliability of

a DCB GFRP sample under Mode I cyclic loading. The GFRP specimen is subjected to
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tension-tension fatigue testing in 810 Material Test System (MTS) machine with 50kN load

cell. At �rst, critical displacement where the specimen cracks is recorded by introducing

monotonic loading. The process is repeated on 5 similar specimens and the average critical

displacement is computed. Fatigue loading is then conducted on a new sample under constant

displacement at 5 Hz with displacement ratio of 0.1 and maximum stress equal to 70% of

critical displacement. The experimental setup for DCB GFRP sample subjected to cyclic

loading in MTS machine follows ASTM Standard D6115 and is illustrated in Figure 9.4.

8.3 NDE of Fatigue Damage in Composites

For reliability analysis, interrupted fatigue tests are performed on the DCB sample. Start-

ing from its pristine condition, cyclic loading is paused after every 20,000 cycles and the

specimen is inspected using two NDE methods. This process was continued up to 120,000

cycles. NDE measurements along with features indicating the structural damage growth is

described in this section.

8.3.1 Delamination detection using OTS

A detailed description of the OTS operating principle for detection of impact damages

in GFRP is discussed in chapter 7. Similar experimental setup is used for inspection of the

DCB GFRP specimen subjected to Mode I failure under cyclic loading. A GFRP sample

with delamination shown in Figure 8.3 (a) is inspected by OTS imaging system and the

resulting image data is presented in Figure 8.3 (b). Light is obstructed by the te�on sheet

inserted within the DCB specimen resulting in no power transmitted through that region.

Detailed pro�le of delamination starting from the edge of te�on sheet is visble from the OT
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scan, shown in Figure 8.3 (b).

(a)

(b)

Figure 8.3: (a)GFRP sample under Mode I fatigue tests after 160K load cycles (b) OTS
image of GFRP sample with delamination indications.

OTS images of the DCB GFRP sample obtained after every 20K cycles of fatigue loading

upto 160K load cycles is presented in Figure 8.4. An iBeam-smart-640s laser diode with 640

nm fundamental wavelength, 1.5 mm beam diameter and 3.1 mW output power was used

as the light source. The OTS system was placed on an active vibration isolation table and

optical scans were acquired in dark ambience with a 1 mm step size.

From the OTS images, extent of delamination can be observed as the region between

end of te�on and the beginning of healthy part of the sample. As expected, delamination

grows inside the sample with increase in number of load cycles. Area of delamination from

the scanned image is computed using image processing algorithm implemented in MATLAB,

as depicted in Figure 8.5. The delaminated area is identi�ed using segmentation via fast

marching method [139] to generate the gray scale image shown in Figure 8.5 (b). The total

number of pixels that are `turned on' provides the area of delamination in terms of pixels

(dpix).

The piezoelectric sensors attached to the GFRP sample mark as reference points and are
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Figure 8.4: OTS images of a GFRP sample (a) Healthy sample and on being subjected to
Mode 1 cyclic loading after (b) 20K cycles (c) 40K cycles (d) 60K cycles (e) 80K cycles (f)
100K cycles (g) 120K cycles (h) 140K cycles (i) 160 cycles.

used to calculate the physical area of delamination from dpix. Speci�c use of the sensors are

described in the following section. Using cluster-based-segmentation followed by connected

components [19], location of the two pzt sensors are identi�ed and the pixel distance between

their inner edges is recorded as lpix. Additionally, edge detection algorithm is implemented

to determine the upper and lower edges of the sample and its pixel width is recorded as wpix.

Measuring the physical distance between two PZT sensors (Lphy) and width of the sample

(Wphy), the delamination area (Dphy) is calculated according to equation 8.1. In this paper,

Lphy = 10cm and (Wphy) = 2.5cm.

Dphy =
(dpix)

(lpix × wpix)
(Lphy ×Wphy)cm2 (8.1)

Area of delamination is computed for each of the OTS images depicted in Figure 8.4, after

every interval 20K load cycles. Plot of delamination area against number of load cycles is

shown in Figure8.6. The initial damage area computed from the healthy sample is deducted

from all successive area measurements. Khomenko et al. [120] successfully demonstrated
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(a)

(b)

Figure 8.5: (a) Fatigued GFRP sample after 160K load cycles (b) OTS image of delaminated
sample (c) Binary image denoting delamination area identi�ed after image processing.

OTS as a valid technique to detect delamination in GFRP induced by repeated low-velocity

impacts and validated scanned results by observing damage in a cross-section of the impacted

samples after being cut by diamond-saw. Similar to crack length in fatigue-crack-growth

(FCG) prediction, delamination area served as a suitable health indicator of the DCB GFRP

sample subjected to Mode I fatigue testing.
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Figure 8.6: Plot of number of load cycles versus delamination area from OTS measurements.
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8.3.2 Delamination detection using GW

One of the in-situ NDE/SHM techniques which has been used for real-time monitoring of

aerospace and automobile components is guided wave (GW) sensing [140, 141]. Delamination

detection using GW technique can be achieved using PZT sensors mounted on the surface

of composite laminates which can transmit and receive guided wave signals in pitch-catch

con�guration [135]. The excitation frequency is identi�ed by studying dispersion curves for

selected materials such that complex wave modes are avoided and the anti-symmetric A0 and

symmetric S0 modes are excited. PZTs with resonant frequency close to excitation frequency

are mounted on both ends of the specimen (see Fig 8.3 (a)). Waveform generator excites

the transducer and generates the guided wave, which propagates through the specimen and

picked up by a second transducer. The received signals can be observed via an oscilloscope.

Schematic of the experimental setup for GW inspection of GFRP specimen is depited in

�gure 8.7 (a).

According to GW theory [142], geometrical properties of the waveguide, especially speci-

men thickness, determine the mode content of the GW signal at the receiver PZT sensor. In

Mode I fracture tests, growth of delamination results in change of thickness of the waveguide

at the crack tip which modi�es the dispersion curves or leads to mode conversion [143]. Ear-

lier works [144] con�rm that the group velocity of the GW signal is reduced as delamination

grows and therefore, analyzing the time of �ight (TOF) from the received GW signal,as de-

picted in Figure 8.7 (b), provides information about presence of internal air-gaps (or damage)

in the composite laminate.

The same 6-layered GFRP sample is monitored using GW setup in addition to OTS, after

every 20K fatigue cycles.As delamination area increases, time of �ight between received and
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(a) (b)

Figure 8.7: (a) Schematic of GW experimental setup (b)Excited and received signals in
healthy sample.

transmitted signal increases. The incremental change in TOF of received GW signal is

computed for 9 rounds of tension-tension loading of the sample. Figure 8.8(a) shows the

phase shift in received GW signal as the sample progresses from healthy to delaminated

layers after every 20K cycles. Figure 8.8(b) illustrates the ∆TOF from healthy to 160K

fatigue cycles at an interval of 20K cycles. A steady growth in ∆TOF is noticed which can

be correlated to the increase in delamination inside the specimen.

In order to quantify e�ect of delamination growth in the GW measurements, di�erence of

TOF of received GW signals between the delaminated and healthy specimen is computed.

∆TOFk = TOFk − TOF1∀k = 1, 2, ..., 9 (8.2)

∆TOF of GW signals were compared with the delamination area extracted from OTS

images of fatigue-induced samples. A positive correlation between the two parameters, as

shown in Figure 8.9, demonstrates that monitoring TOF of received GW signals can be used

to estimate the area of delaminaion in GFRP specimens. A 2nd degree polynomial curve,
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Figure 8.8: (a) Received signal for a healthy sample and sample after 20K-160K cycle (b)
TOF between received and excited signal with increase in number of fatigue cycles.

according to equation 8.3, was estimated based on the measurements and then used to

predict the delamination area from guided wave signals recorded at the receiver PZT sensor.

From the experimental dataset, the coe�cients were computed as p1 = −9.1005 × 109,

p2 = 0.4× 106 and p3 = 0.297.

ˆArea = p1(∆TOF )2 + p2(∆TOF ) + p3 (8.3)
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Figure 8.9: Correlation between TOF from guided wave signals and delamination area from
OTS images.

8.3.3 Overall Framework of Damage Prognosis

In our application, damage area in the adhesive joint was derived from sensor measure-

ments obtained at regular intervals of fatigue progression. Fatigue tests were intermediately

stopped on the training specimens to extract the guided wave (GW) data from attached PZT

sensors and imaged using OTS technique. Features determining degradation of structural

health were extracted from the GW signals and compared with the delamination area com-

puted from OTS images. Finally, features from test specimen, extracted after intermediate

fatigue cycles, were implemented via regression and stochastic �ltering approaches to predict

future feature values from which the future delamination area was computed. Predicted area

was then compared with OTS image data to assess the performance of the damage prognosis

algorithm. The entire approach is described in the �owchart of �gure 8.10.

Measurements from OTS and GW sensors on a GFRP specimen subjected to interrupted

fatigue loading is recorded in table 8.1.
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Figure 8.10: Damage prognosis �owchart using guided wave and optical transmission data.

Table 8.1: OTS and GWmeasurements from Mode I fatigue testing of GFRP at intermediate
load cycles.

8.4 Damage Prognosis Results

Prediction of future delamination area in a GFRP specimen based on initial GWmeasure-

ments is performed using two dynamic data-driven prediction approaches, namely kalman

�lter and particle �lter. The prediction accuracy for each of these methods are compared

with regression based static estimation approach. Starting with the �rst 3 GW measure-

ments (T1:3 = 0, 20K, 40K cycles), ∆TOF is computed for the next measurement time-point

which is at 60K load cyces. All measurements upto kth observation are utilized to predict the
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∆TOF for (k+1)th observation. Delamination area Ark+1 is then computed from predicted

∆TOF using the correlation expression given by equation 8.3. This process is repeated upto

160K cycles.

8.4.1 Prediction of Delamination Area by Logarithmic Regression

Based on damage-propagation curve depicted in Figure 8.8(b), a simple logarithmic func-

tion, as described in equation 8.4, is implemented to model change in TOF measurements

in DCB composite sample over time (number of loading cycles). Logarithmic regression is

achieved by �tting a function of the form 8.4 on the measurements TOF1:k to estimate model

parameter m and hence, TOFk+1.

∆TOF = mlog(T ) (8.4)

Results of delamination area prediction under static approach using logarithmic regres-

sion is presented in Figure 8.11(a). Updated values of parameter m at every kth observation

time is plotted in �gure 8.11(b).
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Figure 8.11: (a) Predicted delamination area from predcited GW measurements using cor-
relation curve(b) Updation of logarithmic rate ‘m′ at every estimation step.
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It can be observed that estimates of future damage area from predicted ∆TOF values do

not match the true damage area obtained from OTS measurements. Besides, the predicted

values have high variances that translate to large con�dence intervals which makes these

results unacceptable. Primary reason for the high prediction error in regression based prog-

nosis is the lack of large number of NDE measurements. Regression can achieve accurate

estimation only when a large amount of data is available which is seldom the case in indus-

trial applications. Hence, other prognosis techniques such as stochastic �ltering is explored

for prediction of damage area from fewer GW measurements.

It should be noted that in this thesis, logarithmic function is selected to model propa-

gation of GW measurements with increasing fatigue cycles, due to lack of known physics-

based-models that can de�ne ∆TOF of GW signals in DCB woven composites under cyclic

load. If underlying physics of guided wave propagation in GFRP plates can be modeled

accurately, improved model-based-prediction of damage growth may be achieved.

8.4.2 Prediction of Delamination Area by Kalman �ltering

As discussed in chapter 6, Bayes inference [145] is a widely used approach for parameter

estimation θ̂. This approach derives the posterior distribution of parameters by updating

an initial prior estimate multiplied with likelihood function obtained from measurements,

according to equation 6.14. Particularly in fatigue damage prognosis, Bayesian inference has

been implemented by Peng et al. [146] for probabilistic prognosis in fatigue test of lap joints,

Enrico et al. [102] for fault prognosis in non-linear components and An et al. [81] for crack

growth modeling under Mode I fracture tests.

Apart from particle �ltering, approximate solution of Bayes inference can be achieved by

another stochastic �ltering approach known as Kalman �ltering [147], speci�cally suitable
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for linear systems with Gaussian noise. Since, the logarithmic model for ∆TOF adheres to

a linear system, Kalman �lter was explored for this prognosis application.

Christer et al. [148] applied Kalman �lter for estimating refractory thickness in an in-

ductor furnace from a series of measurements, containing measurement noise and model

uncertainties. Kalman �lter is a typical tool used for optimal estimation of unknown pa-

rameters in linear systems, with Gaussian measurement and process noise. In this paper,

an empirical relationship is established between fatigue cycle and change in TOF of received

GW signals from damaged GFRP specimens, as stated in equation (8.4). It is important to

note that this empirical model is valid only for the given specimen geometry, material and

Mode I loading conditions.

This logarithmic relationship is represented in a state space model, which is derived in

equations (8.5) - (8.9),

xk+1 = Axk (8.5)

yk+1 = Cxk+1 (8.6)

where, x is the state vector, A is the state-transition matrix and C is the observation matrix.

xk =

∆TOFk

mk

 (8.7)

A =

1 log(∆T )

0 1

 (8.8)
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C =

1

0

 (8.9)

The developed damage evolution state space model can be used in Kalman �lter (KF)

algorithm for prognosis. In general, KF algorithm follows two steps i.e. prediction and

measurement update. In prediction step, the states x, error covariance P_(k|k − 1) and

output y_(k|k − 1) for the kth fatigue interval is predicted with the information available

from k−1th fatigue interval as shown in equation (8.5). The prediction step of Kalman �lter

computes change in TOF xk for next iteration from the experimental GW data zk according

to equations (8.11)-(8.13).

x(k|k−1) = Ax(k−1) (8.10)

P(k|k−1) = AP(k−1)A
T (8.11)

y(k|k−1) = Cx(k|k−1) (8.12)

(8.13)

When a new measurement is obtained, estimated parameters (xk) are updated according

to equations (8.15)-(8.16) where Kk is the kalman gain, Pk is the error covariance and

R = 0.025 is the measurement noise. The future damage area is hence predicted from

estimated xk which is updated once a new GW measurement is available.

Kk = P(k|k−1)C
T (CP(k|k − 1) +R)−1 (8.14)

xk = x(k|k−1) +Kk(zk −Cx(k|k−1)) (8.15)

Pk = (1−KkC)P(k|k−1) (8.16)

130



Implementing Kalman �lter on the same dataset generated prediction results depicted

in Figure 8.12. The initial distribution of parameters are computed using the �rst two GW

observations, as denoted in equation 8.18.

a = ∆TOF1 (8.17)

m =
(∆TOF2 −∆TOF1)

log(∆T )
(8.18)
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Figure 8.12: (a) Predicted delamination area from predcited GW measurements using cor-
relation curve(b) Updation of logarithmic rate ‘m′ at every estimation step.

8.4.3 Prediction of Delamination Area by Particle �ltering

As explained in chapters 6 and 7, under particle �ltering framework, Bayes inference is

processed in sequential manner with particles associated with probability weights [103, 149].

Prediction of delamination area in composite laminates under Mode I fatigue testing is based

on the damage propagation model given by the logarithmic function in equation (8.19) where

∆Tk is the time gap between (k − 1)th and kth inspection step.

ak = mklog(∆Tk) + ak−1 (8.19)
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Unlike the case of Kalman �ltering, in this case noise variance is treated as an unknown

parameter which is estimated by the particle �ltering algorithm. Assuming zero model

noise, the conditional probability of the NDE measurements can be deduced as,

L(zk|aik) =
1

zk
√

2πσik
exp

−1

2

(
zk − aik
σik

)2
 (8.20)

Starting with uniform initial distributions for all the parameters in equation 8.21 and

n = 5000 particles, the estimated damage area curve along with updating path of 'm' are

denoted in Figure 8.13.

a ∼ Uniform(0, 1)

m ∼ Uniform(0, 1)

σ ∼ Uniform(0.01, 0.05)

(8.21)
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Figure 8.13: (a) Predicted delamination area from predcited GW measurements using cor-
relation curve (b) Updation of logarithmic rate ‘m′ at every estimation step.

In order to compare prediction performance of the three methods, the normalized root

mean squared error (RMSE) is computed according to equation 8.22, for variable number of

observations and plotted in Figure 8.14. The prediction error is lower in the dynamic data-

driven approaches by approximately 10 − 15%, especially at the earlier stages of damage
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progression when fewer measurements are considered. Therefore, it can be concluded that

both the dynamic data-driven techniques via Kalman and particle �ltering outperforms the

static regression based approach owing to capability of sequential update of function param-

eters by incorporating uncertainties of non-linear model and measurement noise. Moreover,

resampling based on likelihood computation within particle �ltering technique drives the es-

timation towards the optimum parameter value even when fewer measurements are available.

Hence the prediction error is lower than Kalman �ltering at the earlier stages of damage area

growth. With additional measurements after 120K load cycles, prediction results from both

the �lters become comparable.

NRMSE =

√
1
n

∑n
i=1(ai − âi)2

mean(a)
(8.22)
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Figure 8.14: Error comparison of prognosis methods for prediction of delamination area from
guided wave measurements.
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Chapter 9

Multi-sensor Prognosis in Composites

9.1 Introduction

One of the recent extensions of NDE is the use of more than one sensing technique for

inspection of structures. Traditional NDE prognostics focuses on analyzing a single sensor

signal when a unit runs under a single operational condition [150, 151]. In most practical

situations, a stochastic model is �rst developed at the training stage based on historical

results. Inspection data from a test unit is then applied onto the model to predict its future

health state. These approaches are e�ective under the assumption that single sensor data

is able to capture the entire stochastic nature of the degradation process. Unfortunately, as

system becomes more complex, several uncertainty factors come into play during damage

propagation wherein measurements from one sensor may su�er from noise, outliers or biases

[152, 153]. In such cases, relying on single sensor data becomes insu�cient to accurately pre-

dict the growth of underlying degradation mechanism, leading to inaccurate and unreliable

remaining-useful-life (RUL) prediction.

Assessing fatigue behaviour of any structure is an important aspect of its reliability

analysis. Fatigue in mechanical systems occurs when a structure is subjected to continuous

cyclic loading resulting in progressive, localized and permanent structural changes. Repeated

variable loading creates localized stress concentration points in a specimen at which crack
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is initiated and the system fails at stress values below the yield strength of the material.

Hence, fatigue poses serious threat in the overall reliability of materials and demands accu-

rate prognosis, especially at its initial stages. Although progressing at a lower rate, fatigue

induces local matrix cracking in composites leading to global damages, which signi�cantly

compromises structure's overall health. Owing to its industrial importance, fatigue mech-

anisms have been studied extensively with regards to composite materials. In [154, 138],

Bayesian model is discussed for parameter estimation of fatigue damage propagation based

on modi�ed Paris law. Owen [155] presented an exponential cumulative damage model for

estimation of strength of carbon �ber polymers. Kruger et al. [156] studied an energy based

approach for fatigue damage model in FRP under plane loading.
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Figure 9.1: (a) Reference GFRP specimen failing after 1386 cycles while subjected tension-
tension fatigue test under constant load (Max load= 70% of failure load, Stress ra-
tio=0.1,Frequency =3Hz), (b) Test GFRP specimen (identical manufacturing conditions)
failing after 2250 cycles subjected to identical fatigue testing conditions (c) Normalized sti�-
ness degradation of reference and test specimen from MTS measurements.

Reliability assessment of fatigue behavior is more challenging in composite materials,

compared to metals, owing to poorly understood nature of damage propagation. Unlike

metals, cyclic loading in composites results in simultaenous formation of complex damages
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consisting of matrix cracking, �ber breakage and delamination, which do not follow known

crack propagation models such as Paris-Forman[157] or Paris-Erdogan law [122]. Most im-

portantly, variations in composite manufacturing such as improper resin mixing proportions

or presence of impurities results in large di�erences of tensile sti�ness from one specimen to

another, even when subjected to exact same loading conditions. As shown in �gure 9.1 (a)

and (b), two glass �ber-reinforced polymers (GFRP) specimens manufactured under iden-

tical conditions and subjected to same fatigue load may fail at signi�cantly di�erent time

instants. Normalized sti�ness degradation curves for the reference and the test specimen

under identical loading conditions, computed from mechanical testing system (MTS), are

plotted in �gure 9.1 (c). Although belonging to the same GFRP plate, minor variations

in number of �bers or �ber orientation responsible for specimen's tensile strength lead to

signi�cant di�erence in failure time of the two specimens. Therefore, life-cycle studies in-

ferred from mechanical testing on a reference specimen may no longer remain valid for a test

sample which poses serious issue on RUL prediction in composite structures.

Figure 9.2: (a) Digital camera image of GFRP sample with delamination, under Mode I
fracture test (b) Low-frequency eddy current inspection usng TR coil at 10MHz(c) Near-
�eld microwave scan at 7.5GHz (d)Optical transmission scan at 2.5mW .

One possible way to overcome these issues is to use multiple NDE sensors for tracking
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defects in a composite structure [158]. Di�erent sensitivity of individual NDE techniques can

provide distinct inferences of the damage mechanism, which if judiciously combined can pre-

cisely describe the overall sti�ness degradation of the structure. However, individual sensor

information may be incoherent, uncertain, fuzzy or even in con�ict which demands devel-

opment of robust data fusion methods to estimate the true damage status of the specimen.

Figure 9.2 shows a GFRP delaminated sample inspected using three NDE techniques: (a)

low-frequency eddy current inspection usng TR coil at 10MHz, (b) near-�eld microwave scan

at 7.5GHz and (c) optical transmission scan at 2.5mW. The length of delamination inferred

from each of these techniques are not equal to the true delamination length (l0 = 7cm) and

even varies from each other. Therefore, using only one technique is not ideal for accurate

prognosis since incorrect evaluation of damage length at an observation time leads to in-

correct prediction of length at a future time instant. In such cases, fusion of information

gathered from multiple NDE sensors is a possible solution for reducing prediction errors.

Despite several multi-sensor fusion processes been reported in literature [159, 160, 161],

implementation of e�ective data fusion systems for prediction of composite sti�ness is non-

trivial. In practice, if individual NDE data are biased and their underlying uncertainty or

variance is not taken into account, prognosis based on fused data may produce worse results

than what could be obtained from the 'best' sensor [1]. Moreover, some of the existing data

fusion techniques such as the cluster based fusion[162] assumes measurements at consecutive

time instants to be statistically independent which is speci�cally not applicable in damage

prognostics. In the case of composites where the structure deteriorates from its pristine state

to total failure, correlation exists between NDE observations at consecutive time instants

which needs to be incorporated into the fusion methodology. Besides, cluster based fusion

approaches [162, 163] are able to provide accurate prediction results only when data from a
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large number of sensors are available since number of clusters is usually selected as Ns/3, Ns

being the number of sensors. Since NDE of composites in automotive or aviation structures

is usually an expensive and time-consuming process, most industrial applications rely on

inspection from 1 or 2 NDE systems and therefore demand a data fusion technique for fewer

sensor data.

Using multiple sensors for NDE inspection raises two main challenges. Firstly, sensors

may have di�erent sensitivity at di�erent stages of the degradation. For example, thermal

camera is often incapable of imaging small cracks in metals at their initial stage but can

sense them once the crack is of a substantial size [164]. Thus, contribution of measurements

from di�erent sensors to the fused path should change with time. This brings in the notion of

associating dynamic and non-uniform weights to individual sensors while generating the fused

path. Secondly, signals collected from multiple sensors are often correlated and each signal

only contains partial information of the degraded unit. A good example for such scenarios

is the one where a sample is inspected using optical and acoustic technique. Regular optical

methods do not provide information regarding the depth of volumetric defects in samples

which can be obtained from the acoustic methods. In such cases, data fusion methods should

be designed for e�ective combination of information from multiple sensors to achieve better

characterization of system health. Besides, since all sensors measure the same degradation

process, their measurements are highly correlated and hence should be treated jointly.

In this chapter, a multi-sensor prognosis methodology is proposed based on joint like-

lihood computation in particle �ltering framework to predict residual sti�ness of a GFRP

specimen subjected to fatigue. Three major contributions in reliability assessment of com-

posite materials are demonstrated through this study- 1) a paris-paris model is discussed for

potential modeling of normalized sti�ness degradation of GFRP tensile coupon under cyclic
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loading conditions, which have not been reported before, 2) improvement in prediction re-

sults using two independent NDE sensors over single-sensor prognosis is established, both

in RUL computation as well as prediction error domain and 3) possible reduction in num-

ber of particles used in particle �lters is achieved by implementing multi-sensor prognosis

based on joint likelihood computation which may result in signi�cant bene�t in lowering the

computation time and cost.

9.2 Literature Review of Data Fusion Techniques

Historically, data fusion techniques were primarily developed for military applications

(stated in Table 9.1 ) such as automated target recognition, remote sensing, battle�eld

surveillance, and automated threat recognition systems. Later the techniques were adopted

in several civilian applications as summarized in Table 9.2. For our study, we focus on the

application of data fusion for condition based maintenance of structures as an extension to

existing NDE technology.

Table 9.1: Military applications of data fusion, from [1].

Measurement data can be combined or fused at multiple stages resulting in data level
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Table 9.2: Non-military applications of data fusion, from [1].

fusion, feature level fusion or decision level fusion [165, 166]. Data level fusion combines the

raw data measured by individual sensors to form an uni�ed indicator [159, 160]. Data level

fusion can be implemented when the sensors are commensurate, i.e they have similar output

measurements such as combining data from two acoustic sensors or two eddy current sensors

acquiring data at di�erent frequencies. Feature level fusion is combination of representative

features from sensor data and concatenating them to form a new feature vector which is

then fed to pattern recognition approaches such as neural network, clustering etc [161, 167].

The most common example of feature level fusion is the human cognitive system. Finally,

decision level fusion is obtained by combining inferences from individual sensors after each

sensor has made a preliminary decision in order to extract more comprehensive information

[168]. In the case of condition based maintenance by NDE techniques, decision level fusion

combines damage propagation path predicted by multiple NDE sensors and then computes

the �nal residual life using the fused path.

Several statistical tools and signal processing techniques have been incorporated in the

past for the objective of data fusion. Typical decision level fusion include evidential reason-
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ing [169], Bayesian inference [170], and Dempster�Shafer's method[171]. Besides, pattern

recognition approaches have been incorporated in decision level fusion such as arti�cial neu-

ral network based fusion [172] and cluster based fusion [162]. A detailed review of popular

data fusion techniques can be found in [1].

Despite these qualitative notions and quantitative calculations of improved system oper-

ation by using multiple sensors and fusion processes, actual implementation of e�ective data

fusion systems is not trivial at all. In practice, fusion of sensor data may produce worse

results than what could be obtained from the 'best' sensor. This can happen especially

when individual sensor data are biased and their underlying uncertainty or variance is not

taken into account while fusing their decisions. Moreover, some of the existing data fusion

techniques such as the cluster based fusion only considers the measurements at a particular

time instant which is speci�cally not applicable in prognostics. Correlations exist between

observations from sensors at consecutive time instants which needs to be incorporated into

the fusion methodology. In this chapter, all the above challenges are addressed by develop-

ing a data fusion framework based on weighted combination of sensor data depending on its

consistency and quality of inspection signal. The methodology will be implemented for prog-

nosis and reliability analysis of delamination growth in glass �ber reinforced polymer(GFRP)

composites subjected to fatigue testing.

9.3 Joint Likelihood Computation in Particle Filtering

In this study, integrated prognostics under particle �ltering framework is implemented

for prediction of sti�ness degradation in composites. Similar to prediction of impact damage

area in GFRP described in chapter 7 [149], sti�ness (s) degradation in GFRP tensile coupons
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caused by fatigue is modeled according to the Paris-Paris model [123]. When composites are

subjected to tensile loading, di�erent damages occur in sequential phases; the matrix begins

to crack at the initial stages of fatigue followed by delamination growth during mid-life and

�ber breakage towards the end-of-life (EOL)[138]. Since matrix sti�ness is relatively lower

than �ber strength in composites, overall structural sti�ness drops rapidly in the �rst few

load cycles and then decreases at a lower rate until failure. Such a sti�ness degradation curve

can therefore be described by the Paris-Paris model based on Piecewise-deterministic Markov

processes (PDMPS) where Paris law is described by two sets of parameters (m1, C1,m2, C2)

before and after a transition time N∗, denoted by equation 9.1.

ds

dN
=


C1 (Y

√
πs)m1 , if N ≤ N∗

C2 (Y
√
πs)m2 , if N ≥ N∗

(9.1)

Periodic sti�ness values obtained from NDE measurements, denoted by zk, are incor-

porated for updation of model parameters where zk is considered as noisy estimate of true

sti�ness value sk of the composite specimen at time instant Tk.

zk = sk + ωk (9.2)

ωk ∼ N (0, σ2) (9.3)

In existing PF algorithm, distribution of ith particle is updated based on its likelihood given

the evidence or the measurement data zk, as denoted in equation 9.4. It is important to note

that di�erent Paris law parameters {m1, C1} and {m2, C2} are selected before and after the
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loading cycle Nk crosses the 'jump' cycle N∗.

L(zk|sik) =
1

zk
√

2πξik
exp

−1

2

(
ln zk − λik

ξik

)2
 (9.4)

where,

ξik =

√√√√√ln

1 +

(
σ

sik

)2
 (9.5)

λik = ln
[
sik

]
− 1

2
(ξik)2 (9.6)

In order to incorporate data from multiple NDE sources, likelihood of particles are com-

puted according to the principle of Bayesian network (see Appendix A.), as depicted in

�gure 9.3. For multi-sensor NDE systems, if true sti�ness parameter sik of a structure is

known, evidence from individual NDE techniques {z1
k, z

2
k, ..., z

M
k } can be considered to be

statistically independent. For example, a structure with a particular sti�ness can be imaged

using NDE sensor 1 as well as NDE sensor 2. Owing to di�erence in physics of the NDE

methods, features extracted from individual NDE signals can be di�erent, yet both can be

used to characterize the same structural sti�ness. Any change in the sti�ness value extracted

from one sensor image does not a�ect sti�ness measurement from second sensor. Therefore,

according to the theory of conditional independence, the joint likelihood for ith particle can

be computed from M measurements using equation 9.7, where individual likelihoods are

obtained using equation 9.4 -9.6. Additional advantage of this approach lies in the fact that

single sensor likelihood is computed incorporating the model and measurement noise of the

corresponding NDE sensor which facilitates dynamic updating of weights from individual
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sensors on the resultant sti�ness estimation.

L(z1
k, z

2
k, ..., z

M
k |s

i
k) =

M∏
j=1

L(z
j
k|s

i
k) (9.7)

Figure 9.3: Bayesian network in multi-sensor particle �ltering framework.

It should be noted that the assumption of conditional independence remains valid only

when di�erent NDE sensors are used for inspection of same structural sti�ness. If multiple

features are extracted from the same NDE result (eg: eddy current measurements obtained

at more than one frequencies) and implemented into the multi-sensor framework, conditional

independence between measurements will not be applicable. In such cases, correlation be-

tween each measurement has to be considered while computing the joint likelihood of each

particle.

As described in chapter 6, resampling in PF algorithm is achieved through inverse CDF

method such that particles with likelihood greater than a random number generated from

U(0, 1) are duplicated and others are discarded [102]. In this study, it is assumed that the

end-of-life (EOL) of the composite structure is known a-priori from previous experiments

for a speci�c geometry and material. Under fatigue tests, GFRP specimens failed at 30%

of initial sti�ness obtained at pristine condition. The sti�ness model parameters θk are

updated upto k = L iterations, where L is the total number of observed measurements.
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After L iterations, future sti�ness is predicted using equations 7.6 until it reaches 30% of

initial sti�ness. RUL after L iterations is hence computed as RULL = (LEOL − L) cycles

where LEOL is the load cycle at EOL. PDF of RUL is generated by computing the RUL

of all the particles and the RUL median and mean along with its con�dence intervals are

calculated from the RUL's PDF.

9.4 Experimental set-up

9.4.1 Specimen Geometry and Material

For our experiment, four-layered (0/90) GFRP specimens were fabricated using Vac-

uum Assisted Resin Transfer Molding (VARTM) technique. The reinforcement consisted of

S2-glass plain weave fabric with areal weight of 818g/m2 provided by Owens Corning and dis-

tribution medium comprising Resin�ow 60 LDPE/HDPE blend fabric obtained from Airtech

Advanced Materials Group. A two part toughened epoxy resin ,SC− 15, was used from Ap-

plied Poleramic . The GFRP plate (150×300mm2) was manufactured in a 609.6×914.4mm2

aluminum mold with point injection and point venting. After the glass fabric with resin

transfer medium were placed on the mold and sealed using a vacuum bag and sealant tape,

the reinforcement was infused under vacuum at 29 in-Hg following by curing in a convection

oven at 60o C for two hours and post-curing at 94oC for four hours. Finally, open-hole tensile

coupons with dimensions of 250mm× 25mm× 2mm and center hole diameter of 6mm were

cut from the manufactured GFRP plate using a water-cooled diamond saw, according to

ASTMD7615/D7615M standard, as depicted in Figure 9.6 (a).
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9.4.2 Fatigue testing of GFRP under tensile loading

In this chapter, e�ect of fatigue loading on sti�ness degradation is studied on an open-

hole GFRP sample under tension-tension cyclic load on a 810 Material Test System (MTS)

machine with 50kN load cell, according to ASTMD3479/D3479Mstandard . The exper-

imental setup for open-hole GFRP sample subjected to cyclic loading in MTS machine is

illustrated in Figure 9.4 with a laser extensometer to track the axial displacement while the

sample is under load. At �rst, average failure load (FL) where the specimen breaks was

recorded by introducing monotonic loading to �ve similar samples. Then a test sample was

subjected to cyclic loading at constant load equal to 70% of FL, frequency of 3 Hz and stress

ratio of 0.1. Axial load (F) and axial displacement (∆L) was continuously recorded by the

MTS measurement and laser extensometer respectively.

(a) (b)

Figure 9.4: (a) Experimental setup for tensile open-hole GFRP coupon subjected to cyclic
loading in MTS machine, (b) Healthy and broken GFRP coupons subjecte to fatigue.

Tensile sti�ness of any material is given by its Young's modulus (E), as de�ned by

equation 9.8, where ε is the axial strain undergone by the specimen subjected to axial stress

σ, F is the constant load applied to the specimen in axial direction, A is the cross-sectional
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area of sample perpendicular to the direction of applied force, L is the original length of the

sample and ∆L denotes the change in specimen length caused by loading. Cross-sectional

area (A) and original length (L) of the specimen are constant, therefore the sti�ness is

directly proportional to the ratio of the axial load and change in length of the specimen

under cyclic loading.

E =
σ

ε
=

F/A

∆L/L
∝ F

∆L
(9.8)

For a composite specimen under cyclic loading, sti�ness modulus S is computed as the slope

of the load � displacement (or stress � strain) hysteresis loop ,i.e., the slope of the line

connecting the maximum stress and minimum stress point[173, 174]. As depicted in �gure

9.5 (a), the slope of hysteresis loop reduces with increasing load cycles. Sti�ness computed

from this slope, versus number of loading cycles for a training GFRP specimen is plotted in

Figure 9.5 (b). The sti�ness modulus was normalized with respect to the maximum sti�ness

modulus (S0) computed in its pristine condition. Details of computing tensile strength of

composite material is derived in Appendix B.

9.5 NDE data acquisition

9.5.1 Fatigue damage detection by OTS)

One of the NDE sensors used in this study is based on an optical transmission scanning

(OTS) system developed by Khomenko et al. [118]. Formation of air gaps inside GFRP ma-

terial introduces changes in its optical properties such as radiation absorption and scattering,

which are captured by the OTS system. Earlier works have demonstrated the capability of

OTS to image impact damages in GFRP specimens and allowed for accurate characterization
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of multiple delaminations and their contours [120, 149]. The results obtained demonstrated

excellent agreement with camera images using dye penetrant. Besides, OTS showed great

potential for quality control (QC) and other crucial NDE applications such as characteriza-

tion of thickness variations, improper resin proportions and mixing and inclusions of foreign

objects.
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Figure 9.5: (a) Stress-strain hysteresis loop of GFRP specimen at di�erent intervals of fatigue
cycles (b) Stress-strain slope or sti�ness modulus (S) as a function of number of load cycles.

In this study, the experimental setup used for NDE data acquisition consisted of an

iBeam-smart-640s laser diode source emitting light of wavelength 640nm, 1.5mm beam

diameter and maximum output power of 150mW . A photodetector underneath the GFRP

specimen recorded the through-transmission power and mapped to 0− 10V value such that

direct transmission in air without specimen corresponded to 10V . The laser power was �xed

at 1.9mW in order to obtain highest signal-to-noise ratio and to �x transmission voltage

close to 9.8V at the healthy sections of the sample. These speci�cations provided high

contrast images of damaged or delaminated regions in the specimen, as shown in Figure 9.6.

The goal of NDE prognosis is to infer sti�ness of the structure from multi-modal NDE

techniques including OTS and GW collected at periodic intervals of fatigue loading, starting
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Figure 9.6: (a) Healthy open-hole GFRP coupon (b) OTS image of healthy GFRP coupon
(c) OTS image of GFRP coupon after 900 fatigue cycles at 70% of failure load and stress
ratio of 0.1.

from its pristine condition up to end-of-life. OTS images for an open-hole GFRP coupon

(training specimen) subjected to fatigue test in the MTS machine, are presented in �gure

9.7. At cyclic loading of 70% of failure load and load ratio of 0.1, the specimen failed after

1386 cycles.

Strong indications on the OTS images re�ect the presence of air gap hidden inside the

composite layers caused by continuos cyclic loading, which eventally leads to loss of sti�ness

in the composite matrix. Pixels associated with damage were extracted from the OTS images

via histogram thresholding [175]. It is known from structural mechanics theory, the open

hole in a tensile coupon results in stress concentration zone around the hole and the material

starts to crack (or delaminate in case of composites) surrounding the hole. The OTS images

supports the above theory and therefore a 100mm length of the sample is considered for

damage area computation, keeping the hole at the center. Damage area computed for each

of the OTS images in �gure 9.7 is plotted in Figure 9.8 (a).
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Figure 9.7: OTS images of an open-holed GFRP coupon under fatigue loading :(a) Healthy
(0 cycles) (b)200 cycles (c)400 cycles (d) 600 cycles (e) 800 cycles (f) 900 cycles (g) 1000
cycles (h) 1100 cycles (i) 1200 cycles (j) Total failure at 1386 cycles.
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Figure 9.8: (a) Increase in delamination area in open-holed GFRP coupon under fatigue
loading, from OTS measurements (b)Correlation between normalized sti�ness from MTS
measurements and delamination area from OTS images.

Normalized sti�ness can be interpreted from the damage area in an OTS image using

calibration curve obtained from training specimen, depicted in Figure 9.8 (b). It is important
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to repeat the experiments on multiple specimens in order to assess the reproducibility of the

NDE method as well as calculate underlying model uncertainty and measurement noise

variance. A second order polynomial curve, given by equation 9.9, is implemented to de�ne

the relationship between normalized sti�ness (Ŝ) and damage area (ArOTS) from OTS image.

For the set of GFRP specimens used in our study, the parameters of the polynomial curve

were computed as p1 = −1.12× 10−7, p2 = −3.66× 10−4 and p3 = 1.014.

Ŝ = p1(ArOTS)2 + p2(ArOTS) + p3 (9.9)

9.5.2 Fatigue damage detection by GW

Guided wave (GW) sensing technique is an in-situ NDE method which captures the

change in acoustic waves propagating through structures in presence of an anomaly [140,

141, 121]. Capability of GW sensing for detection of fatigue damage in GFRP adhesive

joints via surface mounted PZT sensors have been successfully established in chapter 8. In

this study, GW sensing is implemented via a sensing skin with pressure sensitive adhesive.

In stead of mounting PZT sensors on the specimen, the transducers are embedded on a

sensing skin with pressure sensitive adhesive for repeated bonding and debonding as shown

in Fig. 9.9. The experimental setup used for GW inspection of GFRP specimen is shown in

�gure 9.9 (a). Gaussian pulse with 50 KHz central frequency was generated using function

generator to excite the transmitter PZT.

In comparison to permanently bonded transducers, these sensing skins are reusable. Be-

sides, distance between the two transducers are held constant irrespective of any plastic

(permanent) strain in the specimen. Neglecting plastic strain in the material, the observed

time of �ight (TOF) change in guided wave signals can be solely accounted to the speci-
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(a)

(b)

Figure 9.9: Guided Wave inspection of GFRP specimen (a) Experimental setup (b)
Schematic of pressure sensitive skin.

men sti�ness degradation which arises from various source of damage such as �ber breakage,

matrix cracking, delamination etc. Group velocity of acoustic wave (c) traversing through

specimen depends on its sti�ness along longitudinal direction given by its Young's modulus

E1 according to equation 9.10. ν is Poisson's ratio, ρ is density, ω is angular frequency and

d is the thickness of the plate. Assuming the change in Poisson's ratio to be nominal, for a

�xed frequency and specimen geometry, the velocity of acoustic waves decreases with reduc-

tion of its sti�ness modulus. Given the distance between PZT transducers do not change in

the sensing skin, time taken by the GW signal to reach the receiver PZT sensor is more in a
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damaged GFRP specimen. Hence, change in TOF of GW signals serve as suitable indicator

of sti�ness degradation.

c = 2

√
E1

3ρ(1− ν2)

√
ωd (9.10)

GW data was collected from the open-hole GFRP coupon in intermediate load cycles as it

gradually progressed from healthy to total failure, with the help of the GW sensing skin. Raw

ultrasonic signals were averaged 64 times prior to plotting and were �ltered with a bandpass

�lter with cut o� frequencies of 5 kHz and 400 kHz. As the composite specimen underwent

matrix cracking followed by formation of delaminaion and �ber breakage, structural sti�ness

reduced which caused a phase-shift in the group S0 mode of the GW signals. A time-shift

was observed in the GW signal at the receiver PZT, as depicted in �gure 9.10 . ∆TOF was

hence computed at every load cycle interval and plotted in �gure 9.11 (a).
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Figure 9.10: (a)Time shift in GW signals in progressively damaged GFRP specimen under
fatigue cycles (b) Enlarged region in S0 mode of received GW signals.

Similar to OTS sensing, normalized sti�ness obtained from MTS measurements could

be correlated with the GW signal features. On contrary to OTS, GW signal propagatign

through the damaged region of composite plate provids a more global assessment of damage

in composites including e�ect of matrix cracking, delamination and �bre breakage on the

overall sti�ness reduction. A 2nd order polynomial curve is �tted on the correlation curves,
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Figure 9.11: (a) Increase in ∆TOF in open-holed GFRP coupon under fatigue loading, from
GW measurements (b) Correlation between normalized sti�ness from MTS measurements
and delamination area from GW images.

as depicted in �gure 9.11 (b) and the calibration coe�cients are obtained from the training

specimens as p1 = −1.5× 109, p2 = −6.5× 103 and p3 = 1.009.

Ŝ = p1(∆TOF )2 + p2∆TOF ) + p3 (9.11)

9.6 Prognosis Results

Particle �ltering based prognosis was applied to the OTS and GW data collected from

GFRP specimens subjected to fatigue testing and the prediction results are reported in this

section. Initial distribution of unknown parameters (θ) and correlation coe�cients(p1, p2, p3)

of NDE data and sti�ness measured from MTS system were obtained from training sample.

PF algorithm with the estimated parameters was then implemented in an identical test where

GFRP specimen was subjected to fatigue loading with conditions as recorded in table 9.3.

Starting from its pristine condition, the test specimen was subjected to progressive fa-

tigue degradation until it failed after 2250 cycles. Sti�ness computed from measurements

154



 

 

 

 

 

 

 

 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Load cycles 
(𝑻𝒌) 

0 100 200 300 400 500 600 700 800 950 1200 1400 1650 1900 2000 2250 

Norm. MTS 
meas. (𝒔𝒌) 

1 0.97 0.93 0.91 0.87 0.77 0.71 0.64 0.63 0.51 0.47 0.46 0.42 0.35 0.32 0.29 

Norm. OTS 

meas.(𝒛𝒌
𝑶𝑻𝑺) 

1 0.98 0.92 0.87 0.80 0.78 0.70 0.65 0.62 0.58 0.52 0.50 0.41 0.323 0.30 0.27 

Norm. GW 

meas.(𝒛𝒌
𝑮𝑾) 

1 0.99 0.90 0.87 0.82 0.80 0.72 0.67 0.60 0.57 0.50 0.46 0.39 0.35 0.30 0.28 

Failure Load = 25.5 kN Maximum  stress= 70% of Failure Stress Stress ratio =0.1 Frequency = 3Hz 

Table 9.3: Loading cycles for intermediate OTS and GW inspections on test GFRP specimen.

from the MTS and laser extensometer were considered as the ground truth in this study.

Bene�t of using two NDE sensor data over single sensor prognosis is assessed and results

from implementing the proposed joint likelihood computation approach is compared with

prediction on average of sensor measurements.

9.6.1 PF prognosis on OTS data

Sti�ness computed from OTS measurements {zOTS} using equation 9.9 were used to

predict unknown parameters in Paris-Paris model describing the sti�ness degradation in

fatigue-induced GFRP test specimen. Initial distribution of parameters were obtained from

training dataset and set as:

s0 ∼ N (0.01, (0.001)2)

m10 ∼ N (4, (0.6)0.01), logC10 ∼ N (−10, (0.1)2)

m20 ∼ N (0.3, (0.01)2), logC20 ∼ N (−10, (0.1)2) (9.12)

T ∗0 ∼ N (750, (10)2)

ω ∼ N (0.09, (0.001))
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Initial distribution of noise was characterized based on experimental evidence of NDE

measurements on training specimens. Prediction results with di�erent number of OTS ob-

servations are presented in �gure 9.12. The likelihood of each particle in the PF algorithm is

updated according to the single-sensor prognosis framework, as given in equation 9.13. With

increasing number of available OTS measurements, the predicted sti�ness curve converges to

the true sti�ness calculated from MTS measurements along with decreasing 95% con�dence

intervals.

L(zOTSk |sik) =
1

zOTSk

√
2πξik

exp

−1

2

(
ln zOTSk − λik

ξik

)2
 (9.13)

Similar to training specimen, sti�ness prediction of the test specimen was continued up

till the composite sti�ness reduced to less than 30% of its initial sti�ness in pristine condition.

The estimated RUL values at all fatigue stages along with their 95% con�dence intervals are

illustrated in �gure 9.13. When 2 OTS observations were available, the specimen had already

been subjected to 100 cycles, therefore the true RUL was computed as 2250− 1000 = 2150

cycles whereas true RUL at the end of 2250 cycles was 0 since it reached its EOL. Prediction

accuracy of RUL in terms of normalized mean squared error (NRMSE), according to equation

9.14, was 0.1761 where O is the number of observations. Since RUL predicted from OTS

measurements is lower than its true value for most of the cases, it does not lead to usage

of GFRP strucutre beyond its safety limit. However, portion of its residual life may remain

unexploited due to underestimation of RUL by single sensor NDE.

NRMSE =

√
1

O−1

∑O
i=2(RULi − ˆRULi)

mean(RULi)
(9.14)
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Figure 9.12: Prediction of sti�ness degradation curve based on di�erent number of available
OTS measurements in Paris-Paris model (a) n=4, (b) n=8 (c) n=12(d) n=16.
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Figure 9.13: RUL prediction for varying number of available OTS measurements
(NRMSE=0.1761).
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9.6.2 PF prognosis on GW data

Prediction results of sti�ness reduction in GFRP specimen via implementation of PF

based prognosis on GW sensing data is presented in this section. Normalized sti�ness is

computed from the ∆TOF of GW received signals using the calibration coe�cients in equa-

tion 9.11. Particles were updated in the PF approach by resampling according to their

likelihood values computed by equation 9.13, with {zOTS} being replaced by {zGW } or the

sti�ness values of the specimen at di�erent stages of fatigue inferred from GWmeasurements.

Prediction results of future sti�ness values using the Paris-Paris model are denoted in �gure

9.14. Similar to OTS data, initial noise distribution was characterized from GW experiments

on training specimens. Initial distribution of other parameters in PF algorithm were kept

unchanged, in order to compare the prediction capability of the two NDE techniques.

It is obvious from �gure 9.14 that as number of available measurements increases, the

predicted sti�ness curve becomes more representative of the true sti�ness values. the con-

�dence interval reduces. Similar to OTS measurement results, the RUL is computed for

di�erent number of available GW measurements assuming that the specimen's EOL occurs

at 2250 cycles. Figure 9.15 presents the accuracy of RUL estimation compared to the true

values at every intermediate stage of fatigue testing. NRMSE for RUL prediction using GW

measurements was obtained as 0.1441. Comparing �gures 9.13 and 9.15, it can be concluded

that GW measurements can describe the damage growth progression more accurately than

OTS data, the reason being that GW data provide global assessment of damage status in-

cluding matrix cracks, �ber breakage and delamination whereas, OTS system captures e�ect

of delamination on sti�ness degradation. Diagnosis of sti�ness from OTS measurements

lacks the contribution from matrix cracking and �ber breakage, thereby leading to higher
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Figure 9.14: Prediction of sti�ness degradation curve based on di�erent number of available
GW measurements in Paris-Paris model (a) n=4, (b) n=8 (c) n=712 (d) n=16.

error in its prognosis results.
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Figure 9.15: RUL prediction for varying number of available GW measurements
(NRMSE=0.1441).
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9.6.3 PF prognosis on Average of Two Sensors data

With an aim to exploit the bene�ts of both NDE sensors, PF based prognosis was imple-

mented on a dataset obtained by averaging OTS and GW measurements at every time-step.

The likelihood for each particle in the PF framework was computed according to equation

9.13 with {zOTS} being replaced by {zAV G}, where {zAV G} is:

{zAV G} =
{zOTS}+ {zGW }

2
(9.15)

Keeping all other parameters of the Paris-Paris model unchanged, future sti�ness val-

ues were predicted, given varying number of known measurements and the corresponding

estimated sti�ness curves are denoted in Figure 9.16. As expected, the predicted curve was

closer to the true sti�ness computed from MTS measurements with increasing number of

observations. The corresponding RUL prediction for di�erent observed measurements using

average data is presented in Figure 9.17. NRMSE of predicted RUL was computed as 0.1507

which shows that a simple averaging of two sensor data does not provide higher accuracy in

its prognosis results. Sti�ness degradation in a composite material is inherently a dynamic

process which cannot be captured by static weighted combination of the two sensor data.

Accuracy of OTS and GW measurements varies at di�erent load cycles which require dy-

namic updating of weights on the �nal prediction result. On the contrary, averaging lead to

higher NRMSE of RUL prediction compared to that of GW measurements.
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Figure 9.16: Prediction of sti�ness degradation curve based on di�erent number of available
AVG measurements in Paris-Paris model (a) n=4, (b) n=8 (c) n=12 (d) n=16.
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Figure 9.17: RUL prediction for varying number of available AVG measurements
(NRMSE=0.1507).

9.6.4 PF Prognosis on Two Sensor Data by Joint Likelihood Com-

putation

In a GFRP specimen with a open-hole at the center undergoing fatigue test, overall

sti�ness reduction can be accredited to the damage growth around the hole. Particularly161



for composites, damage includes multiple structural phenomenon occuring simultaneously.

However analysing OTS and GW data, it was observed that the individual sensors only

provided partial representation of damage status inside a GFRP specimen subjected to

fatigue. On one hand, sti�ness inferred from OTS measurements accounted for the increase

in delamination area around the hole, whereas on the other hand, sti�ness computed from

GW measurements captured overall damage mechanism throughout the specimen length and

not limited to the region around hole. Besides, measurements from individual NDE sensors

were a�ected by variable noise at every inspection. Since di�erent sensor data provides

di�erent contribution to the sti�ness reduction, it is crucial to implement joint likelihood in

Bayesian network within the PF algorithm, for this application.
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Figure 9.18: Prediction of sti�ness degradation curve based on di�erent number of available
measurements using joint likelihood computation in Paris-Paris model (a) n=4, (b) n=8 (c)
n=12 (d) n=16.
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Using same parameters as before, joint likelihood particles at every iteration is calculated

by equation 9.13, replacing {zOTS} with {zJL} where L{zJL} is computed according to

conditional independence of OTS and GW measurements in Bayesian networks.

L{zJL} = L{zOTS} × L{zGW } (9.16)

As shown in �gure 9.18, predicted sti�ness by joint likelihood converges closer to the ground

truth with increasing number of observed measurements. Moreover, compared to the previ-

ous results, the most accurate RUL prognosis is achieved, with NRMSEof 0.065 when joint

likelihood is taken into account, as denoted in �gure 9.19. The mean of RUL distribution

lied within 20% error bound from true values with exact matching of median RUL at most

observation cycles. The primary reason for higher accuracy of RUL prognosis by joint likeli-

hood computation of two sensor data is due to the fact that this approach allowed dynamic

update of weights contributing to the true sti�ness value unlike simple averaging of two

data. Especially at earlier stages of fatigue when fewer measurements were available, deci-

sion fusion from both sensors with unequal weights based on their sti�ness model uncertainty

and measurement noise lead to more accurate prediction of sti�ness degradation in GFRP

specimen.

For additional comparison between the prognosis approaches, NRMSE is calculated for

every predicted sti�ness curve using di�erent number of observed measurements and plotted

in �gure 9.20. Bene�t of proposed joint likelihood based PF algorithm over other approaches

is evident from Fig. 9.20 (a) especially in the earlier stages of fatigue. Further, the �nal

error after 16 measurements reaches 3%, thereby reinforcing the proposed method as a valid

prediction technique.
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Figure 9.19: RUL prediction for varying number of available OTS and GW measurements
using joint likelihood computation (NRMSE=0.065).

2 4 6 8 10 12 14 16
No. of observations

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
R

M
S

E

OTS data
GW data
2 sensor Average
2-sensor Joint Likelihood

0 100 200 300 400 500

No. of particles

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

N
R

M
S

E

OTS data
GW data
2 sensor Average
2-sensor Joint Likelihood

(a) (b)

Figure 9.20: (a) Error comparison for varying number of available OTS and GW measure-
ments, (b) Error comparison for varying number of particles in PF algorithm.

It is important to note that increasing number of particles in PF algorithm reduces the

estimation error, but leads to higher computation time [176]. Advantage of joint likelihood

in PF algorithm in producing accurate prediction results at lower particle count compared

to the other single-sensor prognosis is depicted in �gure 9.20 (b). Implementing the joint

likelihood approach on 16 observations, NRMSE reaches to 0.04 using 50 particles whereas

it takes almost 500 particles for single sensor or average data prognosis. Computation time

is doubled when 500 particles are used compared to 50 particles. Besides, averaging of
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two measurements does not guarantee higher estimation accuracy compared to the single

sensor data. However, joint likelihood computation ensures the lowest error for all particle

counts. Therefore, the proposed method of computing joint likelihood of measurements from

multi-modal NDE system demonstrates an added advantage of reducing particle count in PF

algorithm. Reduction of particles have signi�cant impact in reducing overall computation

time and resources, thereby achieving real-time prognosis of industrial structures.
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Chapter 10

Conclusion

In this study, the importance of self evaluation in existing automated NDE signal analysis

system has been discussed. Sources of uncertainties in a typical NDE signal classi�cation

system and their e�ects on classi�cation con�dence have been identi�ed. Bene�ts of Bayes

posterior probability as a strong measure of reliability has been implemented which captures

the e�ect of interclass distance and intra-class variance in the feature space. In addition

to that, e�ect of inspection noise has been incorporated into con�dence calculation. It has

been shown that bootstrapping and weighting Bayes posterior probability with the noise

statistics of the test data achieves a more comprehensive con�dence metric associated with

classi�cation of noisy NDE data. Further, implementation of the proposed approach on

steam generator tube inspection data shows possible application of the method.

In future, other factors of reliability in NDE analysis such as e�ect of a-priori information

about the mechanical structure and historical inspection results can be studied. Another

highly important problem to be addressed is the e�ect of ill-�tting of statistical model on

the data. If data does not follow normal distribution, the proposed con�dence metric will fail

to capture the reliability of classi�cation results accurately. In such cases, a more adaptive

reliability measure based on non-parametric statistical model is necessary. The challenging

task of evaluating classi�cation con�dence with limited data, missing data or presence of

outliers should be investigated.
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The second part of the thesis presents an NDE approach for condition based maintenance

and reliability analysis of structures under operation. Prediction of delamination growth in

GFRP samples subjected to low velocity impacts is discussed. Images from optical trans-

mission scanning system were used for extracting delamination area from impacted samples

which is a rapid and non contact scanning technique in addition to being cost e�ective and

easy to be implemented in industries. Results from implementation of particle �ltering ap-

proach to estimate delamination propagation path and remaining useful lifetime of a GFRP

sample are promising. Due to unique characteristic of GFRP resin, the delamination area

growth had a sudden 'jump' at the transition impact energy which made the prediction all

the more challenging. Applying two Paris models with di�erent parameters for capturing the

'jump' instead of a single Paris model enhances the prognosis performance of the approach

and re�ned estimation of the delamination propagation path and RUL.

Despite striking bene�ts of the Paris-Paris model, one of the limitations of this model is

that it strongly depends on the initial distribution of the 'jump' energy. If the 'jump' energy

is highly di�erent from the true value, the model fails to correctly estimate the transition and

yields a sub-optimal result and hence predicted delamination curve is inaccurate. Moreover

the delamination path could not be estimated when fewer measurements were available

due to lack of enough information to predict the 'jump' energy. In future, the proposed

algorithm should be investigated on other composite samples by incorporating additional

factors a�ecting inter-laminar delamination such as complex damage growth due to vibration

following impacts or complicated specimen geometry. In such cases, the damage growth

model has to be modi�ed without changing the overall framework of the prediction approach.

An obvious extension to the NDE prognostics is the use of multi-sensor information to

re�ne the prediction of residual life of a system under operation. It is evident from prognosis

167



results hat OTS and GW measurements complement each other for estimating composite's

sti�ness from NDE methods. OTS can image delamination accurately but cannot detect

matrix cracking which occurs at the initial stages of fatigue. On the other hand, overall

e�ect of matrix crack and delamination is captured within change in TOF of GW signals.

Judicious usage of both measurements enables higher prediction accuracy, even for earlier

stages of fatigue. OTS-sti�ness model error is higher than GW-sti�ness model error, which

can be fed into the PF model, thereby automatically adjusting fusion weights during joint

likelihood computation. PF prognosis by joint likelihood achieves highest RUL prediction

and lowest prediction error (NRMSE), thereby validating the proposed prognosis approach

based on joint likelihood computation.

Results are encouraging and can be implemented using more than 2 sensors, without

changing the Bayesian Network framework since the assumption of conditional independence

stays valid in multiple sensor framework. In future, prediction results can be further re�ned

by replacing empirical correlation curves between NDE features and structural sti�ness with

physics-based models. Besides, Paris-Paris model should be investigated for more specimens

under varying load conditions. Overall, the proposed prognosis method can be used for

reliability assessment of any multi-sensory network across various application �elds.
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Appendix A

Bayesian Networks for multi-sensor

fusion

Bayesian networks, also known as belief networks is a popular method for modeling

uncertain and complex domains such as environmental modelling [177], fault diagnosis [178]

and forensic science [179]. Bayesian networks are a type of probabilistic graphical model

that represents a set of variables (nodes), and their conditional dependencies (arrows) via a

directed acyclic graph (DAG), as shown in �gure A.1.In this example, there are M children

nodes (X1, X2, ..., XM ) from the parent variable P .

Figure A.1: Example of Bayesian Network with children nodes (X1, X2, ..., XM ) and their
parent node (P).

The primary advantage of Bayes network is to decompose the joint distributions of all

variables by exploiting local Markov property of variables, thereby reducing dimensionality of

the model to make it computationally feasible. Local Markov property of variables dictates

that the the joint probability density function can be written as a product of the individual
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density functions, conditional on their parent variables [180].

p(x) =
∏
v∈V

p(xv|xpa(v)) (A.1)

Now, for any set of random variables, the probability of any member of a joint distribution

can be calculated from conditional probabilities using the chain rule (given a topological

ordering of X) as follows:

P (X1 = x1, ..., XM = xm) =
M∏
v∈V

P (Xv = xv|Xv+1 = xv+1, ..., XM = xm) (A.2)

By conditional independence of variables, for each Xj which is a parent of Xv the joint

likelihood can therefore be computed as:

P (X1 = x1, ..., XM = xm) =
M∏
v∈V

P (Xv = xv|Xj = xj) (A.3)

Bayesian networks are particularly suitable for decision fusion in practical applications

owing to their favorable features such as:

• They facilitate learning about causal relationships between variables [180].

• They provide a method for avoiding over�tting of data [181]

• They can show good prediction accuracy even with rather small sample sizes [182]
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Appendix B

Sti�ness of Composite Materials

Tensile load applied to any specimen stretches its material. The change in length of

the specimen with respect to its original length is termed as the strain. Now, for isotropic

materials such as metals, the relationship between stress (σ) and strain (ε) is independent

of the direction of applied force. Hence, sti�ness in isotropic materials can be de�ned by a

single parameter called Young's modulus (E) which relates the stress and strain according

to equation B.1.

σ = Eε (B.1)

Materials in which their mechanical properties di�er in di�erent directions are known to

be anisotropic. Composite materials belong to this category and therefore sti�ness compu-

tation is more complicated in polymers compared to metals. For anisotropic materials, the

stress-strain behavior is given by the generalized Hooke's law, given by equation B.2. Apart

from the Youngs modulii, material properties are also given by the Poisson's ratio (ν) which

is the ratio of the strain perpendicular to a given loading direction, to the strain parallel to

the given loading direction . Eg: ν12 =
−ε2
ε1

for unixial load in direction 1.
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Figure B.1: Material directions in a specimen x ≡ 1; y ≡ 2; z ≡ 3.

(B.2)

The C matrix consisting of 36 constants is known as the generalized sti�ness matrix

in which the subscripts 1 to 6 denote the six possible directions of sti�ness change in the

matrix subjected to external load. 1,2 and 3 refer to the longitudinal (x) and transverse

directions (y, z) as shown in �gure B.1, whereas ε4, ε5 and ε6 denotes the strain along xz, yz

and xy directions.

A composite with unidirectional �ber orientation can be considered as an orthotropic

material is one which has three orthogonal planes of microstructural symmetry. As ex-

plained in [183], material symmetry (equal normal stresses σ1 = σ
,
1, σ2 = σ

,
2 , opposite shear

stresses σ6 = −σ,6) inherent in the orthotropic material reduces the number of independent

elastic constants. As a result, the sti�ness matrix is reduced to nine independent elastic

constants,according to equation B.3.
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(B.3)

Expanding the elastic constants in terms of Youngs modulus (E), Poisson's ratio (ν) and

shear modulus (G), equation B.4 is obtained.

(B.4)

In our application of tensile loading, only axial stress along the direction of �bers (σ1)

is present. Further, in tensile coupons, the width of the specimen being very small, strains

in z direction can be neglected. Besides, in orthotropic material there is no shear coupling

with respect to the material axes, i.e., normal stresses result in normal strains only and

shear stresses result in shear strains only. Hence, by retaining only the x, y components of

normal strains and inverting the compliance matrix of equation B.4, the sti�ness matrix can
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be generated as equation B.5.


σ1

σ2

σ6

 =


S11 S12 0

S21 S22 0

0 0 S66




ε1

ε2

ε6

 (B.5)

where, S11 =
E1

1−ν12ν21
,S22 =

E2
1−ν12ν21

,S12 =
ν12E2

1−ν12ν21
=

ν21E1
1−ν12ν21

and S66 = G12.

For axial loading of a tensile GFRP specimen, its has been assumed that majority of

deformation in the specimen is contributed by material strain in the axial direction. The

Poisson's ratio along the direction perpendicular to applied load is considered to be negligible

(ν12 = ν21 = 0; ν13 = ν31 = 0). Therefore, approximate sti�ness of the specimen in axial

direction or S11 is calculated by the ratio of axial stress and strain, as given by the hysteresis

loop for a specimen undergoing tensile fatigue tests.

S11 = E1 =
σ1

ε1
(B.6)
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