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ABSTRACT

MULTI-MODAL DIAGNOSTIC AND PROGNOSTIC TECHNIQUES FOR NDE
APPLICATIONS

By

Portia Banerjee

With rapid technological breakthroughs, role of non-destructive evaluation (NDE) has
shifted from assessing structural integrity to building complex systems with reliable defect
classification and decision making capabilities. Widespread use of NDE in industries such as
aviation, nuclear, construction and automotive, have resulted in increased amount of NDE
data which is beyond capacity for human analysts and demands automated signal classifica-
tion (ASC) systems for accurate and consistent signal interpretation. A typical ASC system
processes NDE signals and classifies signal categories based on appropriate features. Despite
striking benefits of ASC systems, classification results are often affected due to inherent am-
biguity of non-discriminative features, inadequate training samples or noisy measurements.
As a result, uncertainty quantification in defect classification is critical in NDE applications
where the performance of a structure depends on the reliability of the ASC results. A relia-
bility measure that accounts for system uncertainties can help in monitoring its performance
and automatically flagging indications where operator intervention is required. In addition
to diagnosis, i.e., reliable characterization of current health status, damage prognosis or pre-
diction of system’s remaining-useful-life (RUL) is another essential aspect of NDE. Accurate
health prognosis ensures system reliability and aids in estimating residual serviceability of
a component which in turn reduces repair or replacement costs. Moreover, combining infor-
mation from multiple sensors in multi-modal NDE systems can effectively improve damage

growth modeling and prediction of system’s RUL. This dissertation presents three major



contributions to the field of NDE diagnosis and prognosis:

1. Uncertainty in ASC systems is quantified in a statistical framework to develop a con-
fidence metric (CM) associated with ASC results. By bootstrapping and weighting
Bayes posterior probability with estimated noise distribution, effect of measurement
noise is embedded into the proposed CM. Effectiveness of the CM is demonstrated
on experimental data from eddy current inspection of steam generator tubes. Fur-
ther, the benefit of CM in improving classification performance is explored using a

confidence-rated-classification technique.

2. Particle filtering (PF) framework is developed for prediction of impact damage prop-
agation in composite materials which utilizes both physical model based on modified

Paris’ law and inspection data obtained from NDE system.

3. Joint likelihood updation is proposed in existing PF algorithm which enables opti-
mization of damage model parameters at every time step by discarding noisy or biased
measurements from multiple sources. Prognosis results on a composite specimen sub-
jected to fatigue testing and inspected using two NDE modalities, validate the benefit
of multi-sensor prognosis approach over single-sensor methods. Additional advantage
of multi-sensor prediction in reduction of particle count within the PF algorithm is

demonstrated, thereby reducing the total computation time and resources.

Overall, a reliability metric and prognosis methodology is discussed for a multi-sensor

system that can be extended to multiple applications.
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Chapter 1

Introduction

1.1 Motivation & Objective

With advancement of technology in recent years, the field of nondestructive evaluation
(NDE) and testing have shifted its gears from classical approaches to more complex inter-
disciplinary operations. Traditional NDE systems have focused mostly on evaluation of
mechanical components for the detection and characterization of defects in materials or
structures. However with discovery of new scientific methods and imaging systems, the field
has grown both in scope and across disciplines. NDE engineering is no longer just restricted
to detecting and characterizing defects but extends to analyzing ’risk versus rewards’ and
'remaining useful life” of systems and components. Overall, industries have started demand-
ing designers, system integrators and operators to collaborate and develop “cradle-to-grave”
evaluation solutions.

Integrated NDE inspection primarily comprises two equally important processes (i) diag-
nostics of systems’ health and (ii) prognostics or prediction of remaining operational lifetime.
NDE diagnostics comprises identification of distinguishing features which are indicators of
any anomaly or deterioration of general health of industrial components. Existing and emerg-
ing NDE monitoring techniques include mechanical, electrical, electromagnetic or optical

methods that can successfully image or indicate presence of flaws without compromising



their usefulness. One of the crucial aspects of NDE diagnostics is maintaining reliability and
accuracy of its evaluation performance. With increase in amount of information from nu-
merous NDE applications such as defect characterization in steam generator tubes, natural
gas transmission pipelines, aircraft engines and components, artificial heart valves and many
more, automated data analysis systems have become necessary. In dealing with such large
volumes of data, manual analysis besides being time-consuming is often inconsistent which
demands the need for automated signal classification (ASC) systems to identify anomalies
with reduced error by applying suitable signal processing algorithms on the acquired NDE
response signal. Often, expensive remedial operations are involved based on the classification
results requiring more accuracy and consistency in ASC systems. After a defect is detected
in a tube, it is either replaced or repaired which is both time-consuming and expensive. On
the other hand, detection of potentially harmful anomalies which may be fatal and should
not be missed at any cost. Such defects should be identified with greater certainty than those
generated from benign discontinuities. Hence design of self-evaluating automated data anal-
ysis systems have become the need of the hour where safety and serviceability of structural
components can be met while necessary level of operator intervention is minimized.

The second crucial process in modern NDE systems is the prognosis of structural aging
over time. Prognosis deals with predicting future health of a system, specifically to predict
the time until which the system is deemed to be safe. The diagnostic step feeds vital
information to the prognostic arm wherein past and present health indicators are used to
predict future health of a structure. By calculating the long-term reliability or prognosis
of remaining useful life, failures can be avoided enabling the maximum serviceability of the
component. This is extremely beneficial to industries since it ensures maximum usage from

the component.



Another important advancement in modern NDE is the practice of multi-modal sensing
and inspection techniques for characterizing materials or structures. Rapid development in
sensing and computing technologies has enabled the use of more than one sensor for simulta-
neous condition based maintenance (CBM) of a component. Many times a single measure-
ment technique has limited capabilities for characterizing structural health of a component
due to their resolution constraints. Different sensors are sensitive to different stages of degra-
dation and can portray multiple perspectives of the underlying damage growth path, thus
providing more information about system health. As a result, fusion of measurements from
multiple sensors helps reduce the uncertainty of individual sensor signal and enhances the
reliability of prognosis. Data fusion techniques are a promising enhancement in the field of
NDE wherein current measurement systems combined with advanced statistical processing
can provide more reliable results.

The principle objective of this thesis is to provide a detailed investigation of NDE diag-
nostics and prognostic tools that aim at enhancing reliability, accuracy and consistency of
damage detection and characterization systems. Specifically, sources of uncertainties typi-
cally encountered in NDE measurement systems and their effects on the final diagnosis of
defects are studied. A confidence metric based on Bayes posterior probability has been pro-
posed which can incorporate several factors of uncertainty to provide a comprehensive metric
to the final inspection results. Further, use of statistical estimation and optimization tools
such as particle filtering method are employed for prediction of damage growth in compos-
ite materials. Results from prognosis of delamination in glass fiber reinforced polymers in

association with data fusion from multiple NDE modalities are presented in this thesis.



1.2 Scope and Organization of the dissertation

There are ten chapters in this dissertation. Chapter 1 introduces the motivation and
objectives of this study. The remaining of the report can be broadly categorized in two parts.
Chapters 2-5 discusses the problem of diagnostics in NDE in which the overall background of
existing statistical aspects in NDE diagnostics is discussed in chapter 2. Chapter 3 focuses on
the importance of confidence metric in NDE signal classification and describes the proposed
method of computing a comprehensive Bayes confidence. Results on applying confidence
assessment on real data from eddy current inspection of heat exchange tubes are presented
in chapter 4 and improving existing classification algorithms by incorporation of confidence
metric is demonstrated in chapter 5.

Chapters 6-9 are devoted to prognostics in NDE. The background review and theory
of prognosis is discussed in chapter 6. Chapter 7 describes particle filtering technique for
predicting damage propagation model and residual life based on NDE data acquired by
direct condition monitoring. Results obtained by applying the proposed method on study of
impact-damage growth in composites are presented in the same chapter. Prognosis results on
indirect condition monitoring of composite joints subjected to Mode I fatigue mechanism are
presented in chapter 8. Chapter 9 discusses the benefit of multi-modal NDE measurements on
the prognosis of end-of-life of a component. A joint likelihood update method is proposed to
particle filtering framework which enables optimization of damage growth model parameters
at every time step by discarding noisy or biased measurements. Prediction results of matrix
stiffness degradation in tensile composite coupons subjected to run-to-failure fatigue tests
are presented. The overall contribution of this research in the field of NDE and future scope

of work are summarized in Chapter 10.



Chapter 2

Diagnostics in NDE

2.1 Introduction

Nondestructive evaluation (NDE) encompasses the study and inspection of objects with-
out compromising their structural integrity. In a typical NDE inspection, a test object is
stimulated by an external energy source and the response of the energy interaction with
the test material is recorded. A schematic of of a typical NDE system with the associated
forward and inverse problems, is depicted in Figure 2.1. Forward problem involves predic-
tion o the defect signal given the material, defect parameters and excitation energy. This
can be done via experimental methods using appropriate energy sources or via mathemati-
cal models which can simulate underlying governing equations (eg: Finite Element Model).
On the other hand, detection and characterization of defects based on NDE measurements
forms the inverse problem. This includes processes to realize properties of the structure from
the NDE response image/signal. Inversion techniques in industries include development of
data analysis and image processing methodologies to interpret NDE measurements for vi-
sualization, full profile reconstruction or classification of defects in structures. Full profile
reconstruction is required for determining size and shape of defects, whereas classification
is applied to distinguish defect indications from measurement noise and decide if a flaw is

serious enough to render a component unacceptable or unusable.



Forward problem
*  Signal acquisition by experiments
*  Simulations by solving underlying
governing equations

Test object Response of the energy
stimulated by inferaction with the test
ENergy source material = NDE signal.

Inverse problem
» Profile reconstruction
o Classification

Figure 2.1: Schematic of forward and inverse problem in NDE.

In NDE, automated classification systems are used to analyze large volume of measure-
ment data. For example, defects at rivet sites in aircraft wings is is commonly inspected
using electromagnetic NDE methods. Each aircraft wing contains thousands of rivets, with
defects in only a few of them. NDE inspection of such structures generate huge amount of
information that needs to be processed and classified into defect and non-defect categories.
Other NDE applications such as inspection of gas pipelines extending upto hundreds of miles
or inspection of thousands of tubes in heat exchange units by multiple probes produce large
volumes of data. In such cases, manual analysis of individual measurements take excessive
time. Besides, errors due to human fatigue often lead to inconsistent and inaccurate clas-
sification results. Performance of manual analysis depends on level of training acquired by
the NDE operator which may vary from person to person. Therefore industries are moving
towards th use of automated systems that can analyze large volume of NDE measurements

faster and with higher accuracy, consistency and reliability [9] [10]. In nuclear industries,



single-pass systems or single-party-analysis is preferred over two-party-analysis whereby NDE
signals are analyzed by automated data analysis systems and only a few selected signals are
reviewed by review analysts. This reduces cost of human resources as well as down time of
the power plant. Moreover, shorter and more accurate inspections by automated systems
have a significant economic impact on the overall station’s operational cost, since each day of
station shutdown can result in millions of dollars in lost revenue. Thus, shorter inspections

and prevention of unplanned shutdowns can help the stations save millions of dollars [11].

2.2 Automated Signal Classification in NDE

A schematic of a typical Automated Signal Classification (ASC) system is shown in figure
2.2. It comprises three major components- (1) Signal enhancement, (2) Feature Extraction
(3) Classification. Signal enhancement techniques improves the signal-to-noise ratio of input
raw signal using methods ranging from simple averaging and low-pass filtering methods [12]
to more sophisticated techniques such as wavelet shrinkage de-noising [13] and adaptive noise
cancellation. Noise contained in a signal can be attributed to several sources including in-
strumentation, probe wobble and variations in lift-off or from unwanted reflections caused by
the specimen’s surface roughness. Depending on the characteristics of noise, different filter-
ing techniques are implemented. Once noise is removed from input signal, regions-of-interest
(ROI) or potential defect locations are identified by implementing adaptive thresholds.

After data reduction step, meaningful features are extracted from the ROIs which are
able to discriminate defects from noise indications. Feature extraction serves two major
functions, namely data compression and invariance. A judiciously selected feature vector

contains most of the discriminatory information and yet be substantially smaller in dimension
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Figure 2.2: A generic automated data analysis system.

relative to the original signal vector. This, in turn, improves the classification accuracy
and reduces the overall computational effort. Moreover, NDE signals are often acquired
under varying test conditions and their results are sensitive to factors such as variations in
probe characteristics, scanning speed, operating frequencies, test object conductivity and
permeability values, instrument drift, gain settings, etc. Feature extraction serves as an
important step in ASC of NDE signals where features are chosen so that they are invariant
to changes in test conditions or test specimen properties.

After feature extraction, the feature vector is sent to the classification module. Signal
classification techniques, based on pattern recognition principles, are used to classify signals
into one of a known set of classes. Such methods may be employed to discriminate be-
tween multiple types of defects or between defects and benign sources. Several classification
algorithms have been used in NDE such as K-means clustering [14] , neural networks|[15],
support-vector machine and density estimation techniques. The parameters of the classifier
are determined offline using a data bank of signals from known defect types, referred to as
the training database. Similar features are extracted from the test ROI and sent as input
to the classification algorithm to obtain the output class of the test signal. A schematic of
feature space, obtained from training database, with classification threshold and test data is
shown in Figure 2.3, indicated by "x". Based on the location of the test feature point, the

test data is classified into either of the classes.
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Figure 2.3: Schematic of feature space(from training database) with classification threshold
and test data x.

2.3 Statistical measures in NDE

NDE measurements provide indirect indication of defect locations. For example,eddy cur-
rent testing generates a complex voltage signal from which relevant features are extracted
and classified into positive(defect) and negative(non-defect) indications by human or auto-
mated discriminators. Positive signals may be generated from non-defect sources such as
surface roughness, grain sructure, variations in geometry and material properties. It is im-
portant to note that such signals constitute the application noise inherent to a specific NDE
procedure and is different from electronic or measurement noise which can be eliminated
by filtering or averaging techniques. Discrimination threshold of NDE signals must be set
such that the defect indications exceed the level of application noise. In Figure. 2.4 (a),
an example signal/ image obtained from eddy current technique is shown. A histogram of
the pixels from the ’defect” and 'non defect or noise’ indications typically forms a bimodal
distribution and a threshold can be selected to clearly distinguish the defect pixels from the
noise indications, as demonstrated in Figure 2.4 (b).

Although control measures are applied to ensure a consistent output, measurements from
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Figure 2.4: (a) Example NDE signal (b)Classification between defect and non-defect (noise)
indications from NDE signal.

an NDE system varies within control parameters. Specifically, if the same NDE experiment
is repeated multiple times, it is unlikely to obtain the same result every time because of slight
variations in hardware, material properties, geometry or surface condition. As a result, a
probability distribution of signal is generated at the output instead of a deterministic result.
Due to the inherent stochastic nature of any NDE process, several statistical measures such
as probability of detection (POD), probability of false alarms (PFA), Receiver-Operating
Characteristic (ROC) curve and confidence bounds are defined to characterize detection ca-
pability of an NDE procedure. These measures are obtained by using data from experiments.
The objective of these measures is solely to characterize inspection capability of the NDE
method by providing estimates and confidence bounds for important quantities as described

in the following sections.

2.3.1 Hit/Miss response

The name “hit/miss” is derived from the ability of some NDE procedures to detect only
the presence or absence of a flaw, providing no quantitative information about flaw charac-

teristics. Binary responses of this type are most common for methods such as the liquid-
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penetrant imaging and radiography, for which there may be limited ability to measure the

flaw size. For a hit/miss data, the response is typically defined as:

1, if defect is detected
Y = (2.1)

0, if defect is not detected

2.3.2 Probability of Detection (POD) and Probability of False Alarm

(PFA)

When NDE assessment for crack detection is performed, the inspection capability of the
procedure cannot be fully characterized by a simple Hit/miss response. As shown in matrix

in Figure 2.5 the possible outcomes from a typical inspection system are:

(a) True positive (TP): A crack exists and is detected, where M(A a) is the total number

of true positives and P(A,a) is the probability of true positive.

(b) False positive (FP): No crack exists but is identified by the NDE system, where M(A,n)

is the total number of false positives and P(A n) is the probability of false positive.

(c) False negative (FN): A crack exists but is not detected, where M(N,a) is the total

number of false negatives and P(N,a) is the probability of false negative.

(d) True negative (TN): No crack exists and is not detected, where M(N,n) is the total

number of true negatives and P(N,n) is the probability of true negative.

To completely characterize detection capbility of a NDE system, two measures are defined.

The probability of detection (POD) or probability for a true positive P(A,a) can be expressed

) . M(A,a) Total true positive calls
as: P(A’ a) ~ M(A,a)+M(N,a) OT Total number of defects

11
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Figure 2.5: Matrix of four possible outcomes from an NDE procedure for flaw detection
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Figure 2.6: Signal/noise distribution for (a) large flaw (b)medium flaw and (c) small flaw.

Similarly, the probability of false alarm (PFA) or probability for a false positive P(A,n)

can be expressed as: P(A,n) = gl

M(An)

Total false alarms

An)+M(N,n) O Total number of non-defects

For a given flaw size, distributions for application noise and defect signal are depicted

in Figure 2.6. The region to the right of the chosen decision threshold corresponds to the

POD whereas the region to the left of the threshold represents the PFA. It is obvious that

the shaded regions representing POD and PFA depends largely on the distribution of noise

and defect signal as well as on the choice of decision threshold.

Under ideal conditions, such as response from a large flaw, the signal and noise distribu-

tions are well separated and can be clearly discriminated by the chosen threshold, as shown

12
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Figure 2.7: a vs @ model with POD curve generation (|2]).

in Figure2.6 (a). This corresponds to the most desirable output with high POD and low
PFA. For medium flaws as shown in Figure 2.6 (b), there is some overlap between the two
distributions. If threshold is the same as the previous case, this NDE inspection will be
characterized with lower POD and higher PFA than case (a). Similarly, detection of the
smallest flaws is most challenging since the noise and defect signals cannot be separated

resulting into lowest POD and highest PFA.

2.3.3 a vs a Model

Calculation of POD can be extended to flaws of multiple sizes to generate a POD curve.
Suppose a is the true flaw size, the signal response estimated from the output of NDE
inspection corresponding to a flaw size a is termed as a. Under ideal conditions, measurement
a is supposed to be exactly equal to true size a and correspond to the black solid line in
a versus a plot in Figure 2.7. However, in NDE inspections the true size is unknown and
relationship between a and a is inferred only from the measurement data. According to

empirical studies in [16], it was found that a normal-theory regression model, with standard
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devaition o, can be applied to logarithmic transformation on a and a such that:
Y =N(u=p+ bz, 0) (2.2)

where, Y = loga, X = loga, By and (1 are the regression parameters. For a a versus a
model in NDE, a threshold ay, is set; whenever a exceeds the threshold, the ROT is classified
as a flaw and the corresponding POD is calculated. The POD is calculated for varying flaw
sizes and a POD curve is generated as shown in Figure 2.7. The Probability of Detection

(POD) curve is further defined as

(ath — (BO + 61 log CL)>

Pr(a > aypla) =1—¢
o

(2.3)

where ¢(Z) is the standard normal cdf. Figure 2.8 illustrates the estimated POD curves for a
dataset with varying threshold parameters. These curves are useful to examine the trade-off
between number of hits versus misses. POD functions can be defined for more general NDE
models by including the inspection factors unique to the NDE procedure. Details of POD

studies in NDE are available in [17, 18, 19].

2.3.4 a90/95 Confidence Bounds on POD curve

POD curves are critical in assessing the detection capability of any NDE measuring
system. However, accuracy of a POD curve is itself dependent on the estimation of the
regression parameters Sy and ;. Slight change in these parameters can affect the POD
curve greatly and therefore it is necessary to pose confidence bounds on them to allow for

discrepancies in the estimated POD values.
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Figure 2.8: POD curves for example dataset calculated at different threshold parame-
ters(adopted from [3]).

Consider a plot of the loglikelihood ratio for different values of p and o, as shown in
Figure 2.9 (a). According to Knopp et al. [4], if the pair of parameters is moved from their
maximum likelihood estimate (MLE) position denoted by +, the loglikelihood changes, as
illustrated by the contour lines. One of the contours, shown by the dotted line, is the 95%
confidence bound for the parameter estimates based on these data. In other words, the
true 1 and o pair is expected to be contained within the confidence ellipse in 95% of future
experiments simlar to this one. POD curves are then constructed for all the points along the
95% confidence ellipse as shown in Figure 2.9 (b). The envelope of all these POD(a) curves
represents the confidence bounds on the POD(a) curve. The POD curve corresponding to
the MLE of parameters is shown as the black solid line in figure 2.9(b). The point where the
estimated POD curve intersects POD=0.9, is known as the a90/95 value which represents
that in 95 out of 100 similar experiments, the output flaw size having POD of 0.9 will lie

within the estimated confidence bounds.
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Figure 2.9: (a) Loglikelihood ratio space for regression parameters (b)POD with 95% likely
parameters [4].

2.3.5 Receiver Operating Characteristics (ROC)

The ROC curve is a plot of Probability of False Alarm on the horizontal axis and Probabil-
ity of Detection on the vertical axis, as shown in Figure 2.10. The ROC function is generated
by varying detection threshold over all possible values. ROC functions were originally de-
veloped to illustrate the effect of choice of threshold on the probability of misclassification
in radar applications [20].

If a set of measurements, containing a group of flaws of similar size, is repeatedly assessed,
the POD and PFA can be calculated which forms a single point on the ROC curve. This
process is repeated by several operators of varying levels of proficiency (denoting varying
thresholds) and the ROC curve is generated. A superior discriminating performance of the
NDE inspection will result in high POD and low PFA, or the top-left region of the ROC

curve is considered as the preferred threshold.
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Figure 2.10: ROC curves for example dataset having different sized flaws [3].

2.3.6 Confidence Metric

Statistical measures such as POD and ROC curves with their confidence bounds assesses
the inherent detection performance of any NDE measuring system. While ROC curve aids in
selecting the optimum threshold for detecting defect of a particular size, POD curve shows
the effect of flaw size on detection capability for a fixed threshold. Both these curves are
critical for assessing the minimum flaw size that can be accurately detected using the NDE
procedure.

However, these measures do not deal with the complete picture of system reliability
in NDE. Apart from inherent uncertainties of the measuring system, classification by au-
tomated systems are affected by other factors which are not taken into account in either
of these measures. An inspection system with high detection capability can still produce
inaccurate results if the ASC system is under-trained or sub-optimal signal features are se-
lected. Further, while computing POD and PFA, only application noise is considered which

is inherent to the NDE technology. Random noise in measurements which may occur due to
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probe lift-off variations, unexpected change in structural geometry or machine fatigue affects
classification results which is not captured by either POD or ROC measure.

Most importantly, both POD and ROC curves are generated using experimental data
with known flaw sizes, for characterizing the measurement system before applying to field
data. On contrary, when field data is inspected by NDE procedure, the ASC system is un-
aware of defect sizes and the field data can be significantly different from experimental data
used to compute POD or ROC curves. The test data of unknown defect profile is processed
and the final classification results are based solely on training and selected features. As a
result, existing POD and ROC curves cannot quantify reliability of ASC system which is
affected by number and distribution of training signals, quality of features and measurement
noise in test data. A reliability measure of the ASC system is defined in terms of confidence
metric (CM) to quantify uncertainties associated with classification of every ROI. Assess-
ment of CM to individual field data observations is a necessary tool in NDE diagnostics
since potentially harmful anomalies are expected to be detected with greater probability
than benign discontinuities and an ASC system with such capability can automatically flag
indications for which operator intervention is required. As depicted, in Figure 2.11 (a) , NDE
data 3 and 4 identified with low confidence can be further analyzed before directly replacing
or repairing the ’defective’ component. By reviewing only selected signals (having low CM),
single-pass systems can be reliably used in industries thereby saving both time and cost of

human resources.
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Figure 2.11: (a) Self-evaluation in ASC system with confidence metrics (b)Single-pass sys-
tems in NDE.

2.4 Existing confidence metrics

The following section is dedicated to a review of some exising confidence metrics to

understand their capabilities and shortcomings in different classifiers.

2.4.1 Confidence in binary form

Initial part of literature on classification algorithms has restricted confidence measure
to have a binary form. Grunwald et al.[21]| uses high confidence (sure) and low confidence
(unsure) as the two labels to denote whether a given indication is correct (C) or incorrect(I).
Bailey et al.|22| build on the concept of a rejection region implementing uncertainty envelopes
(UE) that are associated with unsure classifications. When tested with a large number of
classifiers, the percentage of classifiers that correctly classifies the same exemplar is the
level of confidence associated with that exemplar. In such cases, a user-defined threshold
is applied to form the UE. Any data falling into the uncertainty envelope is unsure, and
any data falling outside the uncertainty envelope is sure. Thus, the confidence measure is
essentially a binary indicator, either sure or unsure. Similar concepts have been used by

Krzanowski|23] and Jacobsen|24]. Although, these confidence measures give a good estimate
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of success-failure analysis of classification, the usage of a user-defined threshold makes these
approaches heuristic in nature and do not particularly address the effect of uncertainties in

a classification.

2.4.2 Confidence in terms of probability

The most popular method of quantifying uncertainty in classification has been in the form
of probability. Due to inherent characteritics of a NDE system, noise and signal conditional
distributions overlap and a test data falls under both the classes with different probabilities.
Different classfication algortihms in literature such as K-nearest neighbor Similarity Ratio|25]
provide probability scores which can be defined as confidence metrics. A few other approaches

are discussed further.

2.4.3 Similarity Ratio in Clustering

Clustering|[14] is an intuitive means of classification that uses the fact that patterns from
the same class tend to be similar to each other. Members of a class tend to cluster around

a point in feature space. It is a simple algorithm which minimizes the objective function:

k n
1

-3

j=11

29— ch2 (2.4)

1

(J) .
where Hxl — ¢

(7)

is a chosen distance measure between a data point xi]

2
‘ and the cluster

centre ¢;. n is the total number of data points and k is the number of classes the data
is grouped into. The simplest form of clustering is the K-means algorithm which assigns
data points to the group that has the closest centroid. Figure 2.12 shows the result of

application of 2-means clustering on a synthetic dataset. One possible confidence metric
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Figure 2.12: 2-means clustering on a synthetic dataset.

in cluster analysis is formulated based on closeness of a data point to the cluster with the
closest center. A point which is closer to the centre of its assigned cluster will be associated
with higher confidence of classification compared to a point which is far from the cluster.

Confidence associated with classification of a datapoint can be computed as:

dm

C=1-—
dim1di

(2.5)

where d; is the distance of datapoint ¢ from k cluster centres and d,, is its distance from the

cluster to which it is classified to.

2.4.4 Membership Functions in Neural Networks

Neural networks have been used successfully in pattern recognition largely due to their
simple learning algorithms and ability to generate complex decision boundaries. They con-
sist of weighted interconnections of simple processing units called neurons. FEach weight

represents the interconnection strength between two cells. Learning occurs by a process of

adapting the weights to reflect mapping of an input to a desired output. Pradeep [26] uses
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Figure 2.13: The probabilistic neural network.

probabilistic neural network (PNN) as the classification scheme applied on a database of
ultrasonic signals obtained from inspection of tubes in nuclear power plants. He further uses
membership function to represent the confidence associated with every signal classification.
Figure 2.13 shows the architecture of a PNN. The input pattern is multiplied by the in-
terconnection weights and sent to the second layer pattern nodes representing the training

dataset. Each pattern unit implements memebership function M F' defined as:

MF = exp (-% (x - C>2> (2.6)

where z is the input and ¢, o are the center and spread of the Gaussian membership function

of that pattern node. The output of each pattern unit j is the degree ¢; to which the rule

fires.

i () (2.7)
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The outputs of pattern nodes belonging to the same class are sent as input to the summation
layer and their corresponding membership values are aggregated. The input pattern is
assigned to the class having the maximum output from summation layer. Classification

confidence can be interpreted as the aggregated membership values p;:

pi(x) =Yt (2.8)

jGCZ

2.4.5 Posterior Probability in Density Estimation techniques

In classification via density estimation techniques, concept of posterior probability con-
tains relevant information to assess the accuracy of classification result [27, 28, 29]. The
datapoints to be classified are assumed to be generated by a underlying probability density
function of respective classes. Classification is performed by estimating the density functions
for 'defect’ and 'non-defect’ class and assigning a data to the class having maximum density
value. Density estimation techniques include parametric approaches such as Maximum Like-
lihood Estimate or non-parametric methods such as Parzen window classifier and K-nearest
neighbors. A typical confidence metric in density estimation technique is the Bayes posterior

probability or the Bayes Confidence.

2.5 Bayes Confidence

During training of the system, features from training data are plotted in a hyper-dimensional
feature space and a decision boundary is obtained such that the classification error is mini-
mized as shown in Figure 2.14. This decision boundary partitions the feature space in two

categories, defect (classl) and non-defect(class2) . Features from test signal are extracted
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Figure 2.14: A sample feature space with decision boundary (dashed line) separating two
classes.

and the signal is classified into the class depending on the location of the test data relative
to the decision boundary.

According to Bayes theorem, if x is a pattern vector from a class A;, the posterior prob-
ability of class A; given x is written as the conditional probability P(A;|x). Thus, the
probability distribution of a class is conditioned on evidence obtained from training data
and z is assigned to the class having maximum posterior probability density function.[30]

Confidence in classification can be defined as the probability of making a correct decision.
Consequently, the confidence of classifying a test data in class A; is the posterior probability

function, given by the well-known Bayes rule. [31]

p(x|A;) P(A;)
i—1 p(x|A;) P(4;)

P(Ajlz) = (2.9)

where,
P(A;|z) is the class-conditional density for a class A;
P(A;) is prior probability of class A;

P(A;|x) is posterior probability of class A; given the pattern vector x.
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Figure 2.15: Bayesian confidence for one-dimensional case in a two-class classification. (Ex-
ample: test data is x=1).

If no other information about the classes is available, the prior probabilities can be
assumed to be equal. For a 2-class problem (Defect and Non — defect), the equation (2)
reduces to
Confidence of z classified as De fect is:

p(z|Defect)
(z|Defect) + p(x|Non — Defect)

P(Defect|z) = p (2.10)

Hence, for a given test data z, the classification confidence of x as defect can be obtained
using the above equation. The conditional probability density functions for the two classes
p(z|Defect) and p(x|Non — defect) are estimated from the training set. Figure 2.15 shows
the representation of confidence in a 1-dimensional case (where the training set is represented
by one feature). Assuming Gaussian distribution for class-conditional density functions of
the two classes, the two Gaussian plots represent the estimated distribution of the features
from training samples labeled as class A; and class Ao. The confidence of z* classified as
class Aj is calculated as Cy; = P(A1]z") = 0.176/(0.176 + 0.0829) = 0.6798 or 67.98%.
One of the major challenges of using simply the posterior probability directly is that

priors are often unknown, as pointed out by Richard et al[32]. Moreover, such a measure
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is heavily dependent on correct estimation of density functions. Throughout literature,
although confidence measure has been defined in different ways, all approaches deal with a
single objective of trying to come up with the best possible way to include the effects of all

potential uncertainties encountered in existing NDE classification.
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Chapter 3

Comprehensive Confidence Metric in

NDE

3.1 Introduction

Although a wide range of both rule-based and pattern recognition-based classification
algorithms have been studied for various NDE applications [33, 34|, the estimation of a
confidence measure has remained under-emphasized in NDE literature. There are numerous
uncertainties involved in NDE systems. Goebel et al. claim that NDE sensor data is often
highly noisy and number of training samples available is limited [35]. Although utilizing
classifier ensembles improves classification performance for noisy NDE data, the reliability
of classification results have not been evaluated. Besides, accuracy of a classifier depends
on the discriminative quality of the features used. There has been investigation of noise-
invariant features to improve classification performance, for instance in [36], but their effect
on reliability is not yet verified. A few quantitative studies on reliability of classification
systems have been conducted over the past years [37, 23|, but no method of confidence
estimation seems to be widely accepted till date. In practice, the sources affecting reliability
of signal classification in NDE systems occur simultaneously. While they have been discussed

before by NDE specialists, a joint quantification and incorporation of their impact in the
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form of a single reliability measure for every decision made remains unsolved.

Much of the current studies [27, 28, 29| use posterior probability or similar measures of
confidence. As mentioned in chapter 2, posterior probability of occurrence of an event is
representative of inter-class similarities and intra-class distance and thus, may be used as a
measure of inherent ambiguity of classes and discriminative quality of features. However the
major concern in such approaches lies in the estimation of the parameters of density functions
from training set. Bayes confidence takes into account the effect of quality of features ex-
tracted from signal assuming that the class-conditional density functions are known a-priori.
On the contrary, in practice, lack of adequate training data causes estimated parameters to
be significantly different from their true values which affects the calculation of confidence
of classifier. To the best of our knowledge, this factor has remained under-emphasized in
existing literature on confidence measures. In our study, the difference between true param-
eters and estimated values is reduced and the effect of size of training data is incorporated
in Bayes confidence by applying bootstrap method [38].

The other cause of unreliability in classification decision, irrespective of the classifica-
tion technique, is the measurement noise. Particularly in NDE, the absolute noise level
and absolute strength of a defect signal depends on a number of factors. For example in
ultrasound detection, measurement noise depends on probe size and focal properties, probe
frequency, inspection path, coupling between transducer and sample, inherent noisiness of
the metal microstructure, etc. Similarly in eddy current testing, the major noise sources
are temperature variations, probe lift-off, changes in the electromagnetic properties of the
material such as electrical conductivity or magnetic permeability and changes in test speed
[39]. Researchers in NDE have explored advanced signal processing techniques for detecting

different sources of noise and distinguishing signals arising from true defects in presence of
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noise [40, 41]. However to the best of author’s knowledge, existing confidence assessments do
not incorporate noise information. In case of uncertainty analysis, estimation theory suggest
that the variance of the estimator depends largely on the variance of noise in observation
which therefore affects the confidence of classification result and motivated our study on
proposing an updated confidence metric.

In this chapter, the primary sources of uncertainties encountered in a typical ASC system
in NDE have been identified. A framework has been developed to incorporate their effect
on classification performance into a single quantity. In lieu of the commonly used simplistic
assumption of fixed distributions [42], we assume that parameters of the distribution of a
class are random variables. We utilize bootstrap method to find empirical distribution of
parameters of the class conditional densities based on which a distribution of confidence is
obtained [38]. From this distribution, different interpretations of the confidence measure may
be provided. Analytical results show how statistical properties of the confidence distribution

are representative of the underlying sources of uncertainties in ASC systems.

3.2 Factors Affecting Reliability in NDE Signal Classifi-

cation

The reliability of classifying a signal as defect is largely affected by the accuracy in
estimation of the density functions of the classes. Uncertainties in parametric estimation
of the class-conditional densities lead to errors in classification results in terms of missing
true defects or causing false alarms. Ideally, a comprehensive confidence measure in ASC
systems should be able to quantify the effect of the factors affecting reliability of NDE signal

classification and provide self-evaluation of its results. The following factors were identified
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and their individual effects were studied.

3.2.1 Quantity and representativeness of training data

Since Bayes confidence relies on parametric statistics, accuracy of estimated confidence
heavily depends on the number of training samples used.

According to Chebyshevs Inequality,

2
P(|zp —pl<e) < o) (3.1)

where, p is true mean, T, is the expected mean, o is the variance of the distribution and
n is the number of samples. This states that the estimated statistical parameters of class
distributions tend to converge to the true distribution as the number of samples increases
[43]. Subsequently, the confidence associated with decision of a test signal by an ASC system
which is trained with more training samples would be higher, considering that the training
data is representative of the class irrespective of its size.

Another desired property of training dataset is that it should be representative of its
classes. For instance, an ideal training dataset of defect signals should contain signals ob-
tained from defects of all possible depth, width or any other parameter that affects signal
features. If some region of the feature space is under-represented due to lack of enough

samples, computation of classification confidence of a test data will be inaccurate.

3.2.2 Quality of features

Features selected to describe the training data should possess discriminative property.

Confidence of a signal being a defect is more when its feature lies closer to the mean of
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distribution of class defect and farther from the mean of the other class. Discriminative
property of feature ensures that inter-class distance is high and intra-class variance is low
which enables separation of two classes in the feature space. A test data which lies farther
from the mean of distribution of another class and closer to the mean of its own class is likely
to have a higher value of confidence associated with it [44]. This concept can be expressed

quantitatively as :

Con fidence % (3.2)
2

dl : Inter-class distance (distance between means of both distributions)
d2: Intra-class distance (variance of each class distribution)

Figure 3.1 shows the case where the same test data is associated with the same clas-
sification result but intuitively has different confidence due to difference in discriminative
property of feature set chosen. Fig. 3.1 a) indicates higher inter-class distance leading to
distinct clusters resulting in higher confidence assigned to a test data. Fig. 3.1 b) uses
feature3 and feature 4 to describe an overlapping feature space and therefore confidence of

the same test data (to be in class 1) is low.

3.2.3 Noise statistics of test data

The signal-to-noise ratio (SNR) of the test data affects confidence of its classification.
Noise is generated during measurement in NDE systems which may be different for different
test samples. A noisy test signal will have inaccuracy in computed features which inherently
affects its classification confidence. Hence, to generate a more comprehensive confidence
metric, it is important to incorporate noise characteristics into the posterior probabilty

measure. The effect of noise statistics on NDE classification confidence and the method of
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Figure 3.1: Effect of discriminative quality of features on confidence measure.

incorporating it into calculation of confidence are discussed in greater details in later sections.

3.3 Comprehensive (Boosted) Bayes Confidence

Assuming known parameters characterizing the class-conditional density functions, ex-
isting Bayes posterior probability sufficiently denotes a possible measure of reliability in
classification results. However in NDE applications, density functions are unknown and con-
fidence of signal analysis depends strongly on the accuracy of parametric estimation as well
as the noise model. In this thesis, these two issues are addressed. A new metric of reliability
is proposed based on traditional Bayes confidence which successfully incorporates effects of
uncertainties due to limited number of training data and noise in measurements. A popular
sub-sampling technique known as bootstrapping is applied for calculation of posterior prob-
ability such that the estimation error is reduced, followed by incorporation of noise statistics
from NDE signal into the confidence assessment. The details of the proposed method are

described in the following subsections and summarized in Algorithm 1 and 2.
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3.3.1 Bootstrapping

Bootstrapping is a technique of sub-sampling with replacement|38|. At every iteration of
the algorithm, a subset of the total training dataset (D) is selected and maximum likelihood
estimators of parameters of the class-conditional density functions are obtained.

A Gaussian mixture model (GMM) is implemented on Dy to model class-conditional pdf

for all classes [wq, ....,w| as :

k

(" @) = (o (s =) (3:3)

L=l

h vector component is characterized by normal distributions with weights ¢;,

where the it
means fr; and covariance matrices ¥; of k components in GMM [45].

Using estimated values of mean vector and covariance matrix, the Bayes posterior proba-
bility is calculated according to Equation 2.9. Repeating the process on other set of samples
for a fixed number of iterations provides a deeper insight into the behavior of the entire
statistical population. In lieu of deterministic approach, parameters of the distribution of
a class are assumed to be random variables under this framework and hence a distribu-
tion of confidence is obtained, instead of one-shot confidence calculation. The procedure is
illustrated in Figure 3.2.

From the confidence histogram, C( 95 measure is calculated to the right of which 95% of
the total area under the histogram lies. Classification confidence of C g5 associated with a
NDE signal signifies that 95 times out of 100, the ASC ensures that the signal will belong

to the reported class with a confidence of Cg5. If the histogram of confidence values is

denoted as h = [hy,...... hy)
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Figure 3.2: (a)Bootstrappping Bayes confidence, (b) Confidence histogram with Cj g5 value

as the red line.
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h is defined as:

hy = Z dn () (3.4)

x€[0,1]
Where,n @ 1,2,...., N; N is the total number of bins of histogram and J,, is an indicator

function such that,

1 ifrlcr<n
N —*%—=N
on(x) = (3.5)

0 otherwise

The metric C g5 is further defined as:

index—1 index
7N

Cog5 = — 5 (3.6)
where,
N /

index = max [ Y "y >0.95 (3.7)

I \kZ

h
bl = = (3.8)

" ZnEN hn

As a rule of thumb, at least 75% of the training samples are selected in each iteration to gen-
erate unbiased estimates of the parameters. Additionally, bootstrapping reinforces the effect
of number of training samples on confidence evaluation, depicted using simulated dataset
in Figure 3.3 with training data of size (a) 10, (b) 15 and (c) 20 respectively. Presence
of more number of representative training data reduces the variance of the confidence his-
togram which reflects higher certainty in classification results [46]. It is important to note
that training data distribution is unchanged for the three cases, only the number of data

varies.
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Figure 3.3: Effect of number of training data on confidence histogram and Cj g5 value for
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3.3.2 Incorporation of noise factor

As stated by Mann et al. [47], the level of confidence that can be attributed to classifi-
cation is highly sensitive to prior assumptions regarding the nature of the background noise,
as well as the appropriateness of the statistical model for noise. Typical measurements from
an NDE experiment contains flaw response affected by different sources of noise. For most
cases especially when the flaw size is relatively small, it is very difficult to determine whether
an observation arises due to a flaw or measurement noise leading to low confidence in clas-
sification. In this work, assuming additive noise we recognize that features from a noisy
signal are not deterministic in nature; instead they are random variables whose distribution
is affected by the noise pdf. Noise statistics is extracted from the measured NDE signal and
characterized by its density function. During training of algorithm, posterior probability
function of the feature space is calculated. Subsequently, the Bayes posterior probability
function is weighted with the noise density function according to equation 3.3, in order to

evaluate corresponding classification confidence [48].

_ Y oweA Do (x—a%). (Pp (x))w dx

S o pn (@ —a) da (39)

(PW (x))w

where, A is the feature space, (Pp (m))w is the calculated posterior probability function
of the signal classified into class w, py, (x — z*) is the estimated noise density function of the
signal and (Py (x)),, is the noise-weighted posterior probability function of the classified
signal.

The process of weighting posterior probability with noise distribution is demonstrated in
figure 3.4. Bayes confidence of test data 2* without noise is computed as C7 (value of C(x)

at =*). With effect of noise, the classification confidence is calculated as:
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Figure 3.4: Demonstration of confidence computation by weighting with noise.

The proposed method of computing classification confidence of a noisy test data imple-

mented in bootstrap framework is described in Algorithm 1 and 2.

Algorithm 1 Training algorithm

Input: Training data D = {w;,y;};i € {1,2,..., N} with true labels y; € {w;};j €

{1,2,....,c};
Output: Posterior pdf of the class for which confidence is calculated= (P;; (x))w
J
1: Initialize t = 1;
2: for t =1 to T' (Number of iterations) do
3:  Select a training subset Dy containing M samples drawn from D;

4:  Fit GMM to Dy and model class-conditional pdf for all classes (w1, ....,w,| as :
k
(o' (l‘))wi = (2im1 &N (14, Xi))t
where the it" vector component is characterized by normal distributions with weights
¢;, means fr; and covariance matrices Y; of k components in GMM

5. Estimate (g, Zt)wi for all classes [wi, ...., wc);
6:  Calculate the posterior probability for the class for which confidence is obtained (e.g.

w]') :
| (o).
( p($>)wj - ch: (pt(x))w
7: end for
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Algorithm 2 Generating confidence of classification of a test data

Input: Test data whose confidence is to be evaluated : =*;

Classified label of 2™ = y*;
PDF of noise of test data = py, (z — x™);

Output: Confidence of test data classified into class w; = ij;

1:
2:

fort=1to T do
Calculate posterior pdf weighted by noise pdf:

¢ dzeA pn($_$*>'(P7§(x))on
(Phy @),
where A : {feature space};

Calculate weighted posterior probability for test data: (Pﬁv (x*))y*,
end for
Formulate a histogram of (P (m))wj with M bins s.t. h = [hy,...... hasl;
Define h,,, as:
hm =Y Om(z) (3.11)
x€[0,1]
where,m : 1,2, ..., M; M is the total number of bins of histogram and d,,, is an indicator

function such that,
1 =l o cm
_ M =" =M 12
Om () { 0 otherwise (3.12)

Calculate classification confidence of z* = ij: Co.95 ;
index—1 + index
Co.g5 = —1 5 AL (3.13)
where,
M /
index = max Z hy > 0.95 (3.14)
J k=
h
hl m (3.15)

Y e hin

3.4 Simulation Results

A parametric study showing effect of noise variance on classification confidence is demon-

strated in this section. The proposed algorithm is applied on a synthetic example of 2-

dimensional feature space classified into two classes-'red” and 'blue’. The 2D feature plot

shown in Fig. 2(a) is obtained by random sampling of datapoints from a bivariate distribu-
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tion. These points in the feature space signify the features from training dataset and "X"
marks the test data (z*) whose classification confidence is calculated. Simulated noise is
modelled by white Gaussian uncorrelated noise model: py, (z*) ~ N(0,02) and is denoted by
the elliptical contours around the test data x in Fig. 2 (a). The noise variance is varied from
0 to 0.05 and corresponding confidence of the test data is computed according to algorithms

1 and 2. It should be noted that the magnitude of JT% determines the power of the injected

noise.

0.35 : y

03} * * © 1
- * g
% 0.25} * "
5 02f " = 095}
> . 5
© 015 . -3 g
% 01} _§ 09}
i o ) =

005} 0g 0® * Do ] =

() O Non Defect O 0.85 . " \ \
. o)
.% 05 0 0.05 o1 015 02 0 001 002 003 004 005
Feature Variable 2 Noise Variance (o, )

() (b)

Figure 3.5: (a) 2D scatter plot of training and test data x with noise distributions.(b)
Classification confidence of x in 'Red’ class with respect to varying noise levels of test data.

Fig. 2(b) shows that as variance of noise density function increases, the confidence of
classifying the test data reduces, indicated by blue curve C),. The red dashed line denotes
confidence calculated without taking noise into consideration Cy. It is a reasonable argument
that if the output measurement from NDE inspection is affected by a high level of noise,
corresponding features will be incorrect, leading to less reliable classification decision which
is reflected by its low classification confidence. On the other hand, if a flaw-signal is affected
by low noise, the contribution of noise weights on the Bayes posterior probability is low and

hence the confidence of classification is higher.
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Chapter 4

Confidence Metric Evaluation: Eddy
Current inspection of Steam (Generator

tubes.

4.1 Introduction

One of the fields where NDE is used extensively since 1950s is the nuclear industry.
Steam generators (SG) are heat exchange tubes used in nuclear industries for transferring
heat from the primary loop to the hot pressurized water circulating on the outside to pro-
duce steam, which is used to run the turbines. These SG tubes are continuously exposed to
high temperature, vibrations and corrosive environment often resulting in various types of
degradations such as mechanical wear between tube and tube support plates, outer diameter
stress corrosion cracking (ODSCC), pitting, volumetric changes, primary water stress corro-
sion cracking (PWSCC), and inter granular attack (IGA). Tube wall thinning or formation
of cracks causes harmful radioactive gases leak from the primary side to the secondary side
which may be catastrophic to environment or lead to unscheduled plant shutdowns. Hence
there is a strong economic incentive to build NDE systems in order to periodically monitor

the general health of SG tubes.
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Multi-frequency and multi-coil probe eddy current testing (ECT) has been an effective
NDE techniques used for in-service SG tube inspection as they are very well suited for
detecting defects in conducting materials [49, 50, 51|. Due to harsh environment faced
by the heat exchange units and their complex geometries, often other methods such as
ultrasonics, radiography, liquid-penetrants or optical scanning are incapable of producing
strong indication of anomalies which makes EC'T an obvious choice. Eddy current inspection
has proven to be both fast and effective in detecting and sizing most of the degradation
mechanisms that occurred in the early generators. By using ECT it is possible to detect and
size defects even in the presence of artifacts that usually complicate the analysis procedure.
Moreover, collection of data at several test frequencies simultaneously decreases in-service
inspection time and human exposure time to radiation. Three major types of multifrequency
eddy current probes are used in practice — the bobbin coil, the rotating probe coil (RPC)
and the array sensors.

Structural health management of SG tubes and related uncertainty quantification tech-
niques have been an important NDE problem[52|. With rapid increase in the amount of data
obtained from heat exchanger tube by EC inspections, there is a high demand of automated
signal analysis systems that can provide accurate and consistent signal interpretation and
avoid errors by human analysts. The data acquired from SG tube inspection must be ana-
lyzed accurately and in near real-time. Generally, the analysis requirement is a classification
of the signal into flaw and non-flaw categories. In such scenarios, computation of reliability
of each classification becomes critical so that specific classifications with low confidence can
be reported to NDE analyst for further investigation. In this chapter, confidence of signal
classification has been studied for eddy current data collected using RPC probe from in-

spection of SG tubes consisting of volumetric flaws. This study was conducted as a part
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of a project funded by the Electric Power Research Institute(EPRI), USA. EC data from
various tube geometries were collected by EPRI and analysed by an automated analysis
software developed by Non Destructive Evaluation Laboratory of Michigan State University
[5, 6].Confidence metrics were assigned to the classification results from this data analysis
software.

This chapter briefly reviews the principle of EC technique and existing signal process-
ing methods performed on EC data to enhance flaw indication by increasing signal-to-noise
(SNR) ratio. Further, noise from typical eddy current signals obtained from SG tube in-
spection by RPC probe is studied to extract statistical parameters of the noise distributions.
Finally, boosted Bayes Confidence, proposed in chapter 3, was calculated for every flaw

indications by taking noise statistics into consideration.

4.2 Principle of Eddy Current Testing

Eddy current (EC) technique works on the principle of electromagnetic induction. When
an alternating current source is brought close to an electrically conducting material , an
alternating magnetic field is induced in the material which causes current to flow inside
the material in the form of closed path like eddies; their direction being opposite to the
induced current flow according to Lenz’s law. Opposing secondary field generated by the
induced current in the sample interacts with the primary field and reduces the characteristic
impedance of the excitation coil, as demonstrated in Figure. 4.1. Moreover, presence of a
defect in the sample amends the path of the induced eddies which in turn changes the coil
impedance substantially. This change in coil impedance forms the NDE signal (containing

information about sample defects) recorded by the EC probes [39].
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A:Coil in air

B:Coil over a defective
nonfetromagnetic speciman
C:Coil over a defect-free
nonferromagnetic specimen
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Figure 4.1: (a)Eddy current generation and flow in a conducting specimen (b) Change in
impedance of coil in a defect and defect free region (X axis: resistance, Y axis: inductance)
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Figure 4.2: (a) RPC configuration (b) Post processed eddy current signal (RPC probe at
300KHz) of a defective SG tube [5].

4.3 Automated Analysis of SG Tube Inspection data

State-of-the art eddy current testing of SG tubes by rotating probe coil (RPC) is demon-
strated in Figure 4.2. These probes acquires a two-dimensional data depicting impedance
change in the form of a complex voltage which is a function of axial and circumferential po-
sition of the probe in the tube structure. Imaginary component of a typical post processed
signal from eddy current tube inspection is shown in Figure. 4.2. The abscissa and ordinate
denote the circumferential and axial direction of the SG tube respectively. Similar to any
NDE data analysis system, eddy current data are first subjected to signal processing followed

by identifcation of regions of interests( ROIs). From the ROIs or the possible location of
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Figure 4.3: Automtated EC data analysis system with confidence metric computation mod-
ule.

flaws, discriminative features are chosen to eventually classify a ROI into defect or non-defect
category.

The flowchart of existing automated eddy current analysis systems along with added con-
fidence metric computation module applicable to inspection data from SG tubes is presented
in Figure 8.10.A brief overview of existing methods in EC data analysis is discussed in the

following subsections.

4.3.1 Signal Pre-processing

Potential ROIs shown by rectangular boxes in Figure. 4.2 (b) are identified after rigorous
signal processing algorithms on the raw signal which includes calibration, tube support signal
(TSP) suppression and noise removal. Details of these algorithms are described by Udpa

et al. in [6]. Several other signal processing methodologies for analysing EC signals have
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Figure 4.4: Various stages of automated signal processing (a) Raw data, (b) Calibrated data,
(¢) TSP suppression, (d) thresholding (e) ROI detection [6].

been discussed extensively in literature such as linear and nonlinear mixing [53] and wavelet
transforms [54, 40].Often flaw indications are corrupted by noise and/or nondefect signals
due to the probe lift-off and surrounding tube structures which adversely affect detection and
characterization of defects. Hence, it becomes necessary to enhance the SNR of the ECT
signals by using signal processing methods [55, 56| before implementing the recognition

techniques.

4.3.2 ROI Detection

Once the raw signal is cleaned and its SNR is improved, possible flaw locations are identi-
fied by selecting peak signals or signals above a pre-defined threshold adaptively [57]. Signals
at different frequencies are integrated appropriately to determine the potential defect indi-
cations. However, the final result often contain signals from non-flaws as well (for instance,
signals from external deposits). The enitre process of adaptive thresolding followed by ROT

selection in a typical SG tube inspection signal is demonstrated in Figure. 4.4.
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4.3.3 Feature Extraction and Classification

Signal characteristics or salient features are extracted from the ROIs which can distin-
guish a defect ROI from a non-defect one. Features can be computed using the signal in time
domain such as peak-to-peak value of the real and imaginary components of the complex
eddy current signal, its phase angle or energy [58]. Transformed features (eg: Fourier de-
scriptors [59]) or statistical features (eg: principal components[60]) have been used as well in
existing EC data analysis. These features are calculated from each potential ROI from data
obtained at several excitation frequencies. Figure. 4.5 shows the two-dimensional feature
space spanned by the real and imaginary components of the complex EC signal acquired at
300kHz by RPC. Each feature point represents an ROI collected from all the training data
whose real categories (or ground truth) are known. The red labelled data points are defect
ROIs wheras the blue labelled ones are the ROIs which were selected after thresholding step

but eventually did not represent a flaw.
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0.5 O no defect *
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: % G+
g 0.1}

0 iy
-0.05 0 0.05 0.1 0.15
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Figure 4.5: Scatter plot for steam-generator tube data showing features from training data
from both classes and test data x.

Features are fed into a rule-base or neural networks or other machine learning algorithms

to classify them into defect or non-defect class. Several classifiers for analysis eddy current
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signals [9] including impedance plane diagrams [61], inverse analysis [62] and artificial neural
networks [15] have been studied in literature. In the example test data shown in Figure. 4.2,
red and green boxes denote ROIs in the tube which have been classified as non-defects and
defect respectively by rule-based classifier in the automated analysis algorithm.

The subsequent step of an automated signal classifier in NDE is to assess the reliability
of its classification results by assigning confidence metrics. Our proposed confidence measure
incorporates features, classification results and noise statistics of the acquired EC signal as
shown in figure 8.10. Hence, the next section focusses on the study of noise in EC signal

obtained from SG tube inspection.

4.4 Noise Analysis in Field Data from Eddy Current In-

spection

In our study, noise extracted from EC inspection signals is modelled as a mixture of one
or more Gaussian density functions (GMM). The rationale behind this assumption is based
on a previous work by Safdarnejad et al. 63| where the authors have not only shown that
the experimental noise present in complex ECT signals from SG tube inspection adheres to
Gaussian distribution but further reported that GMM along with noise filtering algorithms
enhances performance of noisy EC signal analysis. Another important characteristic of the
noise is its additive nature. It is known that steam generators consist of several tubes fixed
with supports from the outside. Ideally in noise-free scenario, the ECT signal from SG
tube inspection contain indications only from the tube supports and from an anomaly if it
exists. Signal at the free-span region (in between the tube supports) is assumed to be zero

in absence of any noise. However in real experiments, the ECT signal at the free-span is not
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zero everywhere but contains some low voltage measurements which originates due to probe
wobble, mechanical motion of probe and measurement noise. Therefore, the signal from
free-span region is considered as the noise-only measurement which is modeled as additive
to the noise-free measurement. This assumption is backed by a previous study where Olin
et al. [3]| used a sequence of NDE signals at different positions on a unit containing no flaws

to provide information about the “noise-only” distribution.
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Figure 4.6: (a) Imaginary channel image of a sample eddy current response signal at 300KHz
with rectangular ROI box indicating circumferential flaw. (b) Signal with masked tube
support and flaw region (c) Noise histogram. (d-f) Repeated for real channel data.

Fig. 4.6 explains the process of estimating noise distribution of a typical eddy current re-
sponse image. Imaginary and real components of the eddy current inspection image obtained
from a defective SG tube at 300KHz are shown in Fig. 4(a) and Fig. 4(d); ROIs containing

flaw indications and signal from the tube support are masked, as shown in Fig. 4(b) and

Fig. 4(e), and the rest of the signal is used to extract noise-only information represented as
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Figure 4.7: Experimental noise modelled as a bivariate Gaussian distribution.

the noise histograms (Fig. 4(c) and Fig. 4(f)). It is important to note that flaw signals in
the vicinity of external support structures (such as tube support plates (TSP)) are distorted
by the presence of the support structures and hence not included as the noise-only region.

Since, experimental noise is complex with real and imaginary values, the resultant noise
is modelled as 2D distribution as shown in Fig. 4.7. In this example, noise distribution
has been modelled as a bivariate Gaussian density function whose statistical parameters
are estimated by maximizing the likelihood function. The estimated noise distribution is
described by the elliptical contours in Fig. 4.7.

It should be noted that experimental noise is specific to tube inspected, probe and the
inspection frequency. Fig. 4.8 shows two different tubes that are inspected using two different
kinds of RPC probe (pancake and plus-point probe) at 200KHz and 300KHz. Fig. 6(a)
and Fig. 6(c) show the noise-only signal obtained from Tube 1 and Tube 2 inspections
respectively whereas Fig. 6(b) and Fig. 6(d) show the corresponding noise histograms of
the two tubes inspected by two probes at two frequencies-200KHz and 300KHz. Due to
such unique nature of experimental noise, it is absolutely imperative to study the nature of

inspection noise before computing classification confidence of a ROI present in a particular

SG tube.
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Figure 4.8: (a) Noise-only signal from ECT of Tube 1 using Pancake and Plus-point probes
at 200Hz and 300kHz, (b) Noise histogram of Tube 1 signals, (c) Noise-only signal from ECT
of Tube 2 using Pancake and Plus-point probes at 200Hz and 300kHz, (d) Noise histogram
of Tube 2 signals.

At times when Gaussian function does not serve as the best fitted distribution, other

pdfs such as log-normal, exponential, gamma or beta functions can be chosen which has a

higher goodness of fit on the noise data. However, the proposed confidence metric evaluation

approach can still be applied to those cases with no change applied to the algorithm. As

described before, the posterior pdf will be weighted by the noise density function irrespective

of its form.
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Figure 4.9: Scatter plot for steam-generator tube data showing experimental noise distribu-
tion for a test feature x.

4.5 Confidence of Classification with Noise Considera-
tion.

In eddy current inspection, magnitude and phase based information form crucial features
to discriminate signals of a defective sample from a healthy sample[6]. In this thesis, the
peak-to-peak value of real and imaginary components of the complex eddy current signal
are chosen as suitable features for confidence analysis. Fig.4.9 denotes the feature plot using
features extracted from 10 tubes in the training database, each containing one or more flaws.
Experimental noise is extracted from one of the test ROIs and modelled as bivariate density
function shown by elliptical contours at the test data location. Classification confidence
of the test datapoint is calculated according to algorithms 1 and 2 by multiplying Bayes
posterior pdf with noise-weights in a bootstrap framework.

In Fig.4.9, confidence of classifying test ROI as 'defect” without taking noise into account
is calculated as 90.41%. After incorporating the effect of noise, the confidence reduced

to 80.15%. Similarly, all ROIs classified as 'defects’ were assessed, noise in their response
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signals were extracted and their classification confidence metrics were obtained. The results
are recorded in Table 4.1. An important thing to note is that modeling training data with
Gaussian pdf may not always be a valid assumption depending on the data and should
be chosen carefully before calculating Bayes posterior probability. Statistical tools such as
quantile-quantile plots should be computed on the training data to verify the validity of the
Gaussian assumption on the training dataset . If data does not fit a normal distribution,

other pdfs should be considered or non-parametric (kernel based) approaches may be availed.

l,

(a) ) | )

Figure 4.10: Eddy current response signal of three SG tubes with ROIs consisting ofdefects
and affected by different noise levels.

In Fig. 4.10, eddy current signals from three SG tubes are shown. The ROIs were
identified by automated data analysis software and confidence of classifying each of them as
defects was calculated. It can be seen that as the eddy current response image gets noisier,
classification of the defect ROIs becomes more difficult. Hence certainty of the auto analysis

results decreases with higher noise level which corresponds to lower classification confidence.
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Table 4.1: Confidence of classification of defects in steam generator tubes using RPC probe.

Noise-mean Noise-co Noise-free Confidence
Tube-ID No. of flaws ot g ,‘g Confidence | with noise
(pn) x 10 (2p)x10
Co Cr
0.99 0.98
. A ~16 29 05 1 0.99
—42 05 27 0.95 0.65
0.59 0.55
2 1 018 58 0.6 [0.98 ] [ 082 ]
1.2 06 08
3 5 —0.043 17 009 1 0.99
0.025 009 2.7 1 0.99
A 5 —0.022 0.9 05 0.99 0.98
0.026 05 0.9 1 0.99
5 1 0.19 1.5  —=0.75 [ 0.99 ] [ 0.94 }
—0.23 075 08
. [0.99 T [0.86 ]
% 22 -11
R EE IR
—0.5 11 12
| 0.90 | | 0.61 |
. 5 0.16 23 —19 0.98 0.58
—0.34 ~19 26 0-99 0-86
| 0.96 | | 0.67 |
8 1 0-12 34 0171 1090 [0.80 ]
~0.002 —017 28
46 18 —0s9f |63 061
’ 5 —29 059 1.3 ! 0-99
0.99 0.95
10 1 0.96 L5 47 [0.99 ] [0.85 ]
0.38 47 3.04

SG tubes depicted in Fig. 8(a), (b) and (c¢) correspond to tube ID 4,5 and 7 in Table 4.1 and
are affected by low, medium and high noise level respectively. The classification confidence
of these ROIs are recorded as a) 99.8%,98.03% (b) 94.23% and (c) 58.36%,86.86%,67.82%.

This it can be concluded that the proposed confidence metric is well representative of noise
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in NDE response signal.

Another interesting observation to deduce from these results is that a low confidence
metric can serve as an indicator of smaller flaws which are more difficult to be diagnosed. For
example, the two flaws in Tube ID 1 and 9 were two of the smallest flaws in the database used
for this study and they were associated with confidence values of 0.59 and 0.63 respectively
even before their experimental noise was considered. In such cases, it might be useful to
segregate the study into classes of ’larger flaw’ and ’smaller flaw’ before evaluating the
confidence metrics. This shall be looked into in more detail as a future extension of this

research.
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Chapter 5

Confidence-Rated Classification in NDE

5.1 Introduction

After identifying the underlying factors of uncertainties in a typical NDE data classifica-
tion system and generating a suitable confidence metric for classification of NDE signal, the
next idea was to study the possibility of improving performance of ASC systems by incor-
porating knowledge of its classification confidence. The basic idea is to use the confidence
metric as a feedback to the classifier as shown in the schematically in figure 5.1. The benefit
of such a system is that it not only generates a self-evaluating metric of reliability, but also

utilizes it as a feedback and retrains the system to achieve a lower error rate on blind testing.

Classified
e signal (defect
NDE signal | E or non-defect)

| « Signal Pre'processing : |_ _Si_gna B _i |_ Confidence _i::>
* ROl detection | Classification J::>| Evaluation
+ Feature Extraction | —_—— A With
________ 4 ﬂFeedback to improve ﬂ confidence of

classification classification
ﬂ performance. ﬂ

Figure 5.1: Automated analysis system with confidence feedback.

This chapter describes the development of a confidence-rated-classifier ensemble approach

is developed to classify eddy current data into ’defect’ and 'non defect’ class which incor-
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porates underlying statistical characteristics of data. Reliability measure defined by Bayes
confidence, in the previous chapters, is fed into the automated data analysis system such
that final classification of NDE signals is enhanced. Our work is inspired from Shapire’s
ADABOOST (traditional boosting)|64] algorithm with the modification of maximizing con-
fidence of classification at every iteration of the classifier ensemble in addition to minimizing
the misclassification error. Such an approach helps to detect defects with weaker indications
which are missed otherwise.

One of the latest contributions in the field of machine learning is the development of en-
semble classifiers known as boosting or mixture of experts. In a broader sense, an ensemble
system is a combination of outputs from many individual classifiers such that the combined
classifier performs better than all the individual ones. There are several advantages of using
ensemble systems, one of them being its ability of statistical learning from limited amount of
training data which is particularly relevant for analysing NDE data. In 1990, Schapire [64]
proved that a strong classifier can be generated through a weighted combination of several
weak classifiers and developed ADABOOST algorithm which was followed by extensive em-
pirical and theoretical study [65] [66] [67]. Other versions of ensemble based decision systems
include mixture of experts [68], classifier fusion [69] and committees of neural networks [70].
Benefits of ensemble based systems in automated decision making applications have also been
recently discovered by computational intelligence community and NDE researchers. Polikar
et al.|71] developed Learn++ algorithm, based on ensemble classifiers, which achieves incre-
mental learning on data from ultrasonic weld inspection wherein the classifier is able to learn

new information without forgetting previously acquired knowledge.
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5.2 Background

5.2.1 ADABOOST

Boosting is a technique of combining a group of weak learners into a strong classifier
with much lower error rate. A weak learner is a simple classifier which produces prediction
results of an instance just better than random-guessing. Boosting creates an ensemble of
classifiers by strategically resampling the data. The final classification is then obtained by
combining prediction results of weak classifiers using majority voting. In 1997, Freund and
Schapire introduced ADABOOST algorithm which generates hypotheses by training weak
learners on instances drawn from an iteratively updated distribution of the training data
[72]. This update ensures that instances which are misclassified in previous classifier are
more likely to be included in training data of the next classifier. The pseudocode for the
original ADABOOST algorithm is provided in Algorithm 3.

Let S = {(z1,91), .-, (Tm,ym)} be a sequence of m training samples where each instance
x; € X represents a feature vector and each label y; € Y represents the true class of z;.
Although ADABOOST can be exended to multiclass problems, in this paper we limit our
discussion to a binary classification scheme such that Y = {—1,+1} .

For a defined set of T iterations, a weak classifier is trained on the training sequence S.
The distribution D1(¢) is initialized to be uniform which signifies that at ¢t = 1, all instances

(x;) are equally likely to be selected for training the first weak classifier.

Di(i) = 1/m; (5.1)

With every iteration, the weight distribution is updated according to the equation 5.2 and
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a weak hypothesis h; is generated for every instance hy(x;)Vi such that hy(x;) € Hy, Hy =

1, +1].
Dy(i)e(—otvil (%))

Dyi1(i) = Z

(5.2)

Oétzéln(_l_’_rt) (53)

where r¢ =Y. Dy (i) yihe(x;)

Whenever there is mismatch in sign of h; and y;, it signifies misclassification of that
instance and its weight is increased. Correctly classified instances have their weights un-
changed. The parameter « controls the influence of each of the weak hypothesis and is
defined by equation 5.3. The final output of the classifier ensemble H(z) is the signed sum-
mation of all the weak hypotheses given by equation 5.4. During testing of blind data x, the

final hypothesis H(x) is calculated and its class is predicted based on its sign {—1,+1}.

T
H(z) = sz’gn(z athy(x)) (5.4)
t=1

5.3 Confidence rated classification :proposed method

In confidence-rated boosting proposed by Schapire and Singer 73], the chosen confidence
measure is heuristic in nature and does not quantify the sources of uncertainties. In this
thesis, typical uncertainties present in NDE data analysis are quantified in terms of confidence
measure which includes effect of quantity of training data, quality of features and noise in
test data. Therefore it is a more comprehensive measure of reliability which can be used as

feedback to classification algorithm to increase the classification accuracy.
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Algorithm 3 ADABOOST

Input: Training data S = {(z;,vy;)},¢ = 1,2, ....,m with correct labels y; € Y, Y = [—1,+1];
1: Initialize

D1(i) = 1/m; (5.5)

and
t=1; (5.6)

2: T =Total no. of iterations in classifier ensemble;
Output: Final hypothesis H(x)
3: for t < T do
4:  Train Weaklearner using distribution Dy;
5. Get weak hypothesis h¢(z;)Vi such that hy(x;) € Hy, Hy = [—1,+1] ;

6: Calculate ) )
—1+4+r
=1 5.7
o 2 n( 11— ) (57)

where 1y =Y. Dy (i) yihe(x;)
Update

n

Dy (i) e(—atyili(@;))
Di1(1) = tli)e 7

where Z; is a normalization factor chosen to have Dy, as a distribution function;
8: end for
9: Final hypothesis

(5.8)

T
H(x) = sign(d_ arhi(z)) (5.9)
t=1

The pseudocode of proposed confidence-rated ADABOOST is shown in Algorithm 4. The
primary difference from traditional ADABOOST is that the prediction of every instance by

each weak hypothesis is multiplied with its associated Bayes confidence.
hi(w;) = Cy () Hy, Hy = {—1,+1} (5.10)

where, .
(2)),,.
_ 2(p )y (5.11)
vi o ier (01 (2))y,

7

Ct,i = (p;;os ([L’))

By weighting the hypothesis of every weak learner with the confidence metric, the samples
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which are classified with a higher confidence but to the wrong class are associated with lower

weights. Hence, the objective function is modified such that for every iteration classification

confidence is maximized along with minimizing the error rate.

Algorithm 4 Bayes confidence-rated ADABOOST

Input: Training data S = {(x;,y;},7 = 1,2,....,m with true labels y; € Y, Y = {—1,+1};
Output: Final hypothesis H(x)
1: Initialize

Dy(i) = 1/m (5.12)

and

t=1 (5.13)

2: T =Total no. of iterations in classifier ensemble;
3: fort <T do

4:  Estimate (py, Ut)?/z‘ for all classes y;
5. Calculate class-conditional pdf (pt (x))y for all classes y; € Y , Y = {—1,+1} using
1
estimated (pt, o)y,
6:  Calculate the posterior probability for the class for which confidence is calculated (say
yj) :
t (v (@),, _—
Cii= (ppas (x)) =5 5.14
v S (0 (@),
7:  Train Weaklearner using distribution Dy;
8:  Get weak hypothesis hy(x;)Vi such that
hi(x;) = Cyi(a;)Hy, Hy = {—1,+1} (5.15)
9:  Obtain . .
—1L 4+
=-1 5.16
=5 n( 1—r ) (5.16)
where rp = 32 Dy (i) yihe(;);
10:  Update:
 Dy(i)e(—atyil(e;)
Dyi1(i) = &) 7 (5.17)
t
where Z; is a normalization factor chosen to have Dy, as a distribution function;
11: end for

12: Final hypothesis

T
H(z) = sz’gn(z athy(z)) (5.18)
t=1
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5.4 Results

5.4.1 Simulation Results

The proposed method of confidence-rated ADABOOST is applied on classification of
synthetic data into two classes- red and blue and its performance is compared with tradi-
tional ADABOOST performance. Dataset used for training and validation testing of the two

methods are shown in figure 5.2.
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Figure 5.2: (a) Training data (b) test data with true class labels of two classes: red and blue.

Figure 5.3 illustrates the classification results of the two methods. It is found that after
16 iterations, the error rate on training data has reached to zero in traditional ADABOOST
classifier, but is at 5% for confidence-rated ADABOOST. However, the error rate on the test
data classification is calculated as 35% and 25% for traditional ADABOOST and confidence-
rated ADABOOST respectively. This is due to the fact that the principal objective of
ADABOOST is to minimize training error which often leads to overfitting of the model.
It results in misclassifications on a blind test set which is reflected from the error in the
test dataset. When confidence-rated ADABOOST is applied, it increases the generalization
property of the classifier by classifying test data with lower error.

Figure 5.4 shows that in both the approaches of classifier ensemble, the error rate on
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Figure 5.3: Training error rate versus number of weak classifiers in (a) traditional AD-
ABOOST (b) Bayes confidence-rated ADABOOST. Test data classified with ADABOOST
model (¢) traditional ADABOOST: Error rate on test data= 35% (d) Bayes confidence-rated
ADABOOST: Error rate on test data= 35%

test data decreases with increase in number of training samples, although confidence-rated

ADABOOST poses approximately 5% lower error rate than the other.
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Figure 5.4: Comparison of classification performance of traditional ADABOOST and
confidence-rated ADABOOST.

63



5.4.2 Experimental Results

As described in NDE application presented in chapter 4, confidence-rated classifier en-
semble is utilized to classify experimental data obtained from eddy current inspection of
steam generator(SG) tubes. SG tubes which are continuously exposed to harsh environmen-
tal conditions are affected by various types of degradations. There is demand from industry
for the development of automated signal classification systems that can provide accurate
and consistent signal interpretation with capability of computing its reliability. A typical
post-processed signal from eddy current tube inspection is shown in figure 6. The regions Of
interest (ROIs) denoting the possible locations of the flaws are identified by the ASC system

as shown by the rectangular boxes.

£
=
=7

Figure 5.5: A sample post-processed eddy current signal of defective SG tube. Red rectan-
gular boxes: ROIs containing false indications (classified as non-defect); Green rectangular
boxes: ROIs containing true defects.

Discriminatory features are extracted from these ROIs of training data and used to
develop the classifier model. In this experiment, peak values of real and imaginary signal
from each ROI are used as features for classifcation. As in the case of synthetic dataset, the
total available training data from experiments was divided into two sets: one to train the
classifier model and the other to validate the performance of the classifier. Both methods

of classifier ensemble were compared. The feature plots of the training and test dataset are
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shown in figure 5.6.
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Figure 5.6: (a) Training data (b) test data with true class labels of two classes: red (non-
defect) and blue (defect).

Confidence of classification of every training sample is calculated by the comprehen-
sive Bayes posterior probability as stated in algorithm 2 and then implemented into the
confidence-rated-classification framework. Classification results by the two ADABOOST
methods are shown in figure 5.7. As in synthetic dataset, confidence-rated ADABOOST is
able to correctly classify more test instances relative to the traditional ADABOOST. A few
flaws, as indicated in Figure 5.8, are detected correctly by applying confidence-feedback to
classifier ensemble that were missed by traditional ADABOOST. Three eddy current images
of defective steam generator tubes are depicted having ROIs idenitified by the ASC system.
The green boxes indicate defects which are correctly identified by both the classification
methods. The red rectangular ROI boxes indicate more subtle flaws and are the ones which
are classified as non-defects by traditonal ADABOOST, but correctly identified as defects
by the confidence-rated ADABOOST. As a result, error rate reduced from 19.40% to 14.93%
in the proposed ASC system having confidence feedback.

In this thesis, confidence-based ADABOOST has been validated on a two-class classi-

fication problem. This approach not only emphasizes the importance of a self evaluation
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Figure 5.7: Training error rate versus number of weak classifiers in (a) traditional AD-
ABOOST (b) Bayes confidence-rated ADABOOST. Test data classified with ADABOOST
model (c) traditional ADABOOST: Error rate on test data= 19.40% (d) Bayes confidence-
rated ADABOOST: Error rate on test data= 14.93%

(c)

Figure 5.8: Eddy current response signal after calibration of 3 defective SG tubes (Imaginary
channel, plus point probe, at 300KKHz). Green boxes: ROIs (true defects) classified as defects
by both traditional and Confidence-based ADABOOST. Red boxes: ROIs (true defects)
classified as non-defects by traditional ADABOOST but correctly classified as defects by
Confidence-based ADABOOST.
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measure in ASC systems, but further utilizes it for improving classification of NDE signals.
The proposed classifier exploits the advantages of a boosting algorithm while avoiding the
problem of over-fitting. Weaker indications of tube defects from an eddy current response
signal which are misclassified by traditional ADABOOST, are correctly classified with a

confidence-based ensemble system.
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Chapter 6

Prognosis in NDE

6.1 Introduction

In addition to assessing classification confidence of NDE data obtained from periodic
monitoring of structures and industrial components, study of structural reliability based on
the acquired data is an equally critical task to achieve. The primary objective of long-term
reliability analysis in NDE is defect growth prediction or damage prognosis. As cited by Far-
rar et al. [74], damage prognosis (DP) is defined as “the estimation of the remaining useful
life (RUL) of equipment by taking into consideration the information gathered from mon-
itoring systems, design information, past operation experience and operating environment
of the system or equipment”. Accurate and dynamic RUL prediction enables industries to
maximize usage of a component before it encounters a catastrophic failure. Integrated struc-
tural health monitoring and damage prognosis (SHM-DP) strategies [1]-[3], coupled with
nondestructive evaluation (NDE) techniques [4]-[6], are becoming fundamental engineering

tools for near-real-time structural integrity assessment and predictive maintenance.

6.2 Theory of Reliability

According to International Organization for Standardization (ISO), reliability is defined

as " the ability of an item to perform a required function, under given environmental and op-
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Figure 6.1: State variable X (¢) and Time to Failure ¢ of a system. [7]

erational conditions and for a stated period of time (ISO8402)". In simpler terms, reliability
is calculated as the probabaility that a given component or entity can operate satisfacto-
rily for a specified time period in the actual application for which it is intended without
experiencing a failure.

The state of an system at time ¢ may be described by the state variable X (t). X(¢) is

defined as:

1, if system is functioning at time t
X = (6.1)

0, if system is not functioning at time t

Suppose the system starts operating at time ¢ = 0. The time elapsing from its start
time to the instant it encounters a failure is termed as the time to failure (7"). The relation
between X (t) and (7) is demonstrated in Figure 6.1.

It is quite obvious that due to presence of several uncertainties during the operation
of the system, time to failure (7") cannot be interpreted as a fixed value but as a random

variable with a probability density function f(¢) and distribution function:
t
F(t)=Pr(T <t)= / f(u)dufort >0 (6.2)
0

where F'(t) denotes the probability that the item fails within the time interval (0,¢] . The
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Time t

Figure 6.2: Distribution function F'(t) and probability density function f(¢).[7]

pdf f(t) and CDF F(t) are illustrated in Figure 6.2.

It should be noted that the operation time t does not indicate the clock time. It can
include any other metrics which counts the age or usage of the system such as number of
loading cycles of a mechanical part, number of kilometers a car has been driven, number of
rotations of a bearing etc.

The reliability function of a system can be defined as R(t) where:
R(t)=1—F(t)=Pr(T > t)fort >0 (6.3)

or equivalently

t inf
R(t) = 1— /0 £ () du = /t £ (u) du (6.4)

Hence R(t) is the probability that the item does not fail in the time interval (0,¢] , or, in other
words, the probability that the item survives the time interval (0,¢] and is still functioning
at time t . The reliability function R(t) is also called the survivor function and is illustrated
in Figure 6.3. There are several other statistical measures and functions which are useful
in study of reliability theory such as Failure Rate function or Mean Time to Failure etc.

which are outside the scope of this research and hence not discussed in this thesis. Readers
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Figure 6.3: Reliability or survivor function R(t). |7]

interested in such topics can find the definitions and explanations in the book by Rausand

and Arnljot |7].

6.2.1 Remaining Useful Life (RUL)

Among the broader definition of reliability measure R(t), the metric most commonly used
in damage prognosis is remaining useful life (RUL) of a system under operation. RUL of
any system can be defined by a random variable which depends on system’s current age, its
operation environment and health information acquired from periodic NDE of the system.
If the history of inspection data acquired upto time ¢ is denoted by Y'(¢), the primary goal
of prognosis is to estimate expectation of the RUL pdf : E(R¢|Y?).

The process of damage prognosis followed by RUL calculation is demonstrated in figure
6.4. Firstly a health index (HI) is defined which characterizes the damage level of a system
or structure at a given time instant t. After regular time intervals (or loading cycles),
measurements are recorded and HI is calculated at every time step upto the current time
(say k). These constitute the measurement data shown by the black dots in figure 6.4. The
objective of damage prognosis is to construct the damage propagation path up to the current

time using the measurement HI values as well as predict HI for future time (7) till the system

71



RUL PDF prediction at &

\
A lower percentile of RUL
Failure Threshold
>
@
>
2
Q
oo
©
g Current PDF
o at k¥
(] ¢ %
e .- ™) r
o [ ]
@: Measurement data
Current time, k Time

Figure 6.4: Tllustration of damage path prognosis and RUL prediction [8]

reaches a predefined failure threshold. Failure threshold is usually decided as the value of HI
when the system is expected to crash or fail and is generally obtained from domain experts

in the specific application field/ industry.

RUL=#%—k (6.5)

At a first glance, damage prognosis may seem like a trivial problem of polynomial fitting on
the measurement data and then extending the fitted curve upto the threshold to calculate
the RUL. However, this may not be a feasible approach in most practical cases. Figure 6.5
illustrates the reason why RUL prediction using a simple curve fitting solution may not always
lead to the correct solution. In many cases the damage propagation is a complex and dynamic
phenomenon which not only depends on the material and dimensions of the structure but also
on external characteristics such as pressure, temperature or other environmental conditions
etc. In such cases, a damage propagation curve generated from first few measurements is very
different from the true damage growth path. Wrong estimation of RUL can be dangerous

especially if it is over-estimated (illustrated in Figure 6.5 (a)). A first order polynomial
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fit is applied on the measurement data acquired upto 750 hours and the damage growth
curve is estimated. If damage size of 0.03 mm is considered as the failure threshold, then
the optimum time at which the system should be stopped is at 2200 hours. However, the
estimated damage growth line reaches the threshold of 0.03 much beyond 2200 hours and

therefore the equipment will continue operation beyond its safety limit which may be fatal.

. . . . . . . . . .
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (sec) Time (sec)

Figure 6.5: (a) 1 degree polynomial fitting on measurement data leading to under estimation
of RUL (b)2 degree polynomial fitting on measurement data leading to over estimation of
RUL

On the other hand, under-estimation of RUL leads to suboptimal performance of the
equipment as the system is stopped too early, as shown in Figure 6.5 (b). A 2nd order
polynomial curve is fitted on the same measurement data which reaches the failure threshold
of 0.03 mm at 1630 hours (much earlier than 2200 hours). As a result, the system is stopped
earlier than its safety limit(2200-1630=570 hours before expected failure). Both these cases
should be avoided and therefore statistical methods are adopted for accurate RUL estimation.
Prognostic approaches should ideally be able to incorporate underlying uncertainties involved
in the damage propagation process in order to provide accurate prediction results. A review

of current state-of the art in this topic is provided in the following section.
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6.3 Literature Review on RUL Prognosis

6.3.1 Model-based methods

Existing prognosis methods can be roughly classified into model-based (or physics-based)
and data-driven methods. Model-based methods predict the equipment health condition
using component physical models, such as finite element (FE) models, and damage prop-
agation models based on damage mechanics. Such methods use fixed model parameters
depending on material properties and generally do not use condition monitoring data for
prediction of damage evolution. Several model-based systems has been studied over the past
years. Kacprzynski et al. [75] presented a prognosis tool using 3D gear FE modeling to
study damage inititation and propagation in helicopter gears. Li and Lee |76] proposed a
gear prognosis approach based on FE modeling where an embedded model was proposed
to estimate Fourier coefficients of the meshing stiffness expansion. The strip-yield model
included in the NASGRO software developed in [77] is widely used to simulate crack growth
under variable amplitude loading. If accurate models can be developed for every mechani-
cal structure and damage type, model-based prognosis can provide prediction results with
high precision. However, building authentic physical models for describing the equipment
dynamic response and damage propagation is a challenging task in itself which requires a
thorough understanding of the system. If any important physical phenomenon is missed, the

prediction of degradation will be erroneous resulting in catastrophic consequences..

6.3.2 Data-based methods

On the other hand, data-driven prognostic methods models the relationship between

equipment age and condition monitoring data by training the prognostic system on histor-
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ical data. Gebraeel et al. [78] used Artificial Neural Network (ANN) for monitoring rolling
bearing elements and predicting fatigue crack propagation from vibration-based degradation
signals. Bayesian updating methods have been investigated in equipment prognostics for
utilizing the real-time condition monitoring data [79]. Data-driven methods do not rely on
physical models, and only utilize the collected condition monitoring data for health predic-
tion. Accuracy of these methods strongly rely upon the training data characteristics. As
a result, they may fail to produce accurate prediction if insufficient or under-representative
training data is used. Results from these methods may sometimes be counter-intuitive as
they do not consider underlying physics of the system and therefore may be erroneous at

times.

6.3.3 Integrated methods

By incorporating benefits of both model-based and data-based prognostic approaches,
integrated or hybrid methods have gained a lot of popularity in recent years [80]. Under these
methods, physics based degradation models are considered but the parameters of the physical
model underlying the damage growth process are not fixed. Instead they are estimated
utilizing the data from CBM of the structure. Bayesian inference [81] is a common technique
implemented in several studies wherein the model parameters are updated at every instant a
new inspection data is reported, thereby increasing the accuracy of estimated physical model.
Another crucial benefit of integrated methods is their ability to incorporate uncertainity
due to model as well as measurements into their algorithm which makes them a better
representative of practical systems. Bayesian inference has been used by Shankar et al. [82]
to estimate parameters of finite element model, surrogate model and crack growth model

in cylindrical structures subjected to fatigue. Another hybrid approach is the particle filter
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based framework developed by Orchard and Vachtsevanos [83| for the failure prognosis of
planetary carrier plates.
A literature review and mathematical theories of a few broad categories of prognostic

approaches are discussed below for understanding the state-of-art methodologies in this area.

6.3.3.1 Regression based models

Regression-based methods are have gained popularity in industries and academic fields
for estimation of equipment life due to the simplicity of these models.[84, 85|. They fall
into the category of data-based prognosis. The fundamental principle of these methods is
that the health of the systems under study can be mapped by some key features obtained
from condition monitoring (CM) of systems and RUL can be estimated by trending, and
predicting these CM features upto a predefined threshold. Lu and Meeker [84] were the first
authors to present a general nonlinear regression model to characterize the degradation path
of a population of units. According to the general degradation model, the observed sample
degradation Y'(t) at time t can be represented as Y (t) = D(t; ¥, 0) + €(t), where D(t; ¥, 0)
is the actual path at time ¢, U is the fixed effect regression coefficients common for all units,
6 is the random effect representing individual unit characteristics, and €(t) is the random
error term described by N (0,0¢). Here,  and €(t) are assumed to be independent of each
other. Using this model, the RUL at sampling time ¢; can be defined as:

Xt =g Dt + 245 9,0) > w[D(t; ¥, 0) <w (6.6)

]

Similar to the work by Lu and Meeker, many extensions and applications have appeared

in literature, such as machine condition monitoring using regression trees |86, 87|, updating
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prognosis in biliary cirrhosis using Cox regression models [88], degradation assessment using
logistic regression [89]. Based on critical analysis of previous methods and case studies
involved, the underlying assumptions of the regression model can be summarized as follows:
(i) the condition of the device deteriorates with operating time and the level of deterioration
can be observed at any time; (ii) the device being monitored comes from a population of
devices, each of which exhibits the same degradation form; and (iii) the distribution of the
random term across the population of devices is known with the error in degradation signal
being independent and identically distributed across the population of devices.

Although regression is a relatively simpler technique for prognosis, it is not very well
suited for dynamic systems in which damage growth rate changes at different stages of
degradation. All data which has been observed upto the current time is considered as a col-
lective dataset and regression is performed instead of capturing the temporal characteristics
of the measurements. Assumption of independence and identically distribution of measure-
ments may not be valid for all applications as a result of which the final RUL computation

may be inaccurate.

6.3.3.2 Markovian based models

Temporal characteristics or the observed data is incorporated into Markovian models
where it is assumed that the future degradation state of a system depends only on its current
degradation state, which is often termed as being memoryless. In general, the degradation
process Yy, n > 0 evolves on a finite state space ¢ = 0,1, ..., N with 0 corresponding to the

perfect healthy state and N representing the failed state of the monitored system. The RUL
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at time instant n can be defined as

The transition probability matrix of such Markov models can be written as:

P= (6.8)

with Py = (I — P)e, where P is the transition matrix for transient states ¢\N, I is the
identity matrix and e = (1, ..., 1)T is a column vector with dimensions N — 1. In principle,
RUL estimation using Markovian-based models can be captured by computing amount of
time the process will take to transit from the current state to the absorbing state N for the
first time, referred to as FPT .

Based on this framework, several authors have developed their prognosis methods suited
to respective applications. Kharoufeh [90] considered the reliability of a single-unit system
whose cumulative damage over time was a continuous wear process that depended on an
external environment process. The external process was characterized as a time homogeneous
Markovian environment with continuous time. Later, Kharoufeh and Mixon [91] proved
several limit theorems related to a time-scaled version of the degradation process and a space-
scaled version of the unit’s random lifetime. Although their models were mathematically
appealing and easy to implement, they lacked the flexibility to account for the environment
state sojourn times or shock inter-arrival times which may not be exponentially distributed.
Additionally, Lee et al. [92]| incorporated the Markov property into a regression model and

presented a new model for the survival analysis called Markov threshold regression, in which
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the subject’s health followed a stochastic process and failure occurred when the process first
reached a failure state.

Despite their strong mathematical background, RUL estimation based on Markov models
faces a few limitations. Firstly, the underlying assumption of independence and memoryless
property is difficult to achieve in real measurements. Also, the transition probability among
the system states in Markov models is often determined by empirical knowledge or by a large
number of samples, which is not always available. These limitations have been addressed
to an extent by studies based on semi-Markov or Hidden Markov Models with indirectly
observed state processes. Several papers can be found in literature showing their application

to structural prognosis [93, 94, 95, 96].

6.3.3.3 Stochastic Filtering

In lieu of a deterministic RUL calculated by the above two approaches, the RUL is treated
as a random variable by stochastic filtering models. This broad category of methods allows
system uncertainties incorporated into the estimation of damage propagation path which
makes them suitable for structural monitoring systems. Batzel and Swanson [97] presented
a RUL estimation method based on the Kalman filter for aircraft power generators. In
their work, it was assumed that the relationship between the RUL and the estimated state
followed a time-dependent function. Hence, the RUL estimation was achieved by minimizing
the difference between the value of such function and a pre-determined state threshold. If,
for an observation state y;, x; is defined as the RUL at time ¢ or the current monitoring
check point, then

v =ap_p — (t—k) if oy > (t — k) (6.9)
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and

yt = g(zt,0) (6.10)

where ¢ is a function to be determined, 6 is a noise term, k is the time of the last
monitoring checkpoint and (¢ —k) is the interval between the current and the last checkpoint.
In addition, Luo et al. [98] used a multiple-model filter to estimate the mean and variance
of the RUL without considering the distribution of RUL explicitly.

Among all stochastic filtering techniques, the most commonly used process is the Bayesian
updating based on the philosophy that one can incorporate prior knowledge about the degra-
dation phenomenon in the model and update the model as more measurements are collected.
One of the ways of achieving Bayesian updating process is the particle filtering approach in-
vestigated by Orchard and Vachtsevanos [83]. They used a non-linear state-space model
(with unknown time-varying parameters) and a particle filtering algorithm that can update
the current state estimate. In this thesis, this approach was used to compute the damage
growth curve in composite materials and therefore this algorithm will be described in more

detail in the following sections.

6.4 Theory of Bayesian Updating

According to the Bayesian point of view, observation data X is considered a random
variable generated from an underlying pdf f(z,0),0 € ©. 6 is also defined by a random
variable with density fg(@) which describes the probability of occurrence of a parameter
value from ©, before any observation is made. Hence fg(0) is called the prior density of ©.
The objective of Bayes updating is to obtain é, the estimated value of 0 that characterizes

the underlying pdf generating the observation data.
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With this interpretation, joint density of X and ©, fx g(z,0) , is given by:

fxo(z0) = fxe|8).fo(6) (6.11)

The marginal density of X is,

fx(@) = [ frole.0d0 = [ fxje)sl6).fo(0)i0 (6.12)
Hence, the conditional density of © given X = x becomes,

fxe(x0) [fxo(z0)fe(0)
fx(x) fx(z)

fo|x(0lz) = (6.13)

f@| x(0|z) expresses the probability distribution of © after having observed X = x|
and f9|X(0|x) is therefore called the posterior density of ©. It should be noted that when

X is observed, fx(x) occurs in Equation 6.13 as a constant. Hence fg x(6|z) is always

proportional to f' fx|g(x(0)fo(6):

foix(8]x) < fx|o(x|0)fo(0) (6.14)

The Bayesian approach is used for updating information about the parameter ©. First,
an initial probability density for © is assigned before observations of X = x is collected.
When the first mesurement in X is available, the prior distribution of © is updated to the
posteriori distribution of ©, given X = x. This process is repeated and in the next iteration
the posterior distribution of ©, given X = x, is chosen as the new prior distribution. When

another measurement in X is observed, it leads to a second posterior distribution, and so
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Figure 6.6: Bayes Updating Process

on. This updating process is illustrated in Figure 6.6.

The final task of the Bayes updating process is to estimate the value 6 of © that generates

~

an observed value x of X. We denote this estimate by 0(x). The optimum estimate is the

~

one that minimizes the expectation of mean squared error (MSE): E[(A(x) — ©)2].

E@(w) -0 = [ [ @) - 07 Fxole.0)dsdt (6.15)

By using equation 6.14,

~

E@@) - %) = [ 1x(@) | @) - 6oy blo)dt)is (6.16)

Q(
E[(é\(x)—@)z] is minimized when for each z, 6(z) is chosen to minimize [fQ(g(ac)—@)zf@X(H]x)dH]
whose solution is F(6©|X).

Hence, according to Bayes inference or updating process, the estimate of @ is the mean

of the posterior distribution of ©.

6 = E(O|X) (6.17)
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6.4.1 Bayes update of model parameters using synthetic data

For prognostics application, the primary goal is to estimate the damage growth path based
on measurement data, as illustrated in Figure 6.4. If data based method is adopted in such
applications, no damage model needs to be defined; but data driven models may not always
yield accurate results as discussed earlier. Hence integrated methods are a better alternative
where a damage propagation model is defined whose parameters are estimated using the
measurement data by Bayes updating process. It should be noted that in this thesis, damage
growth model for degradation in composites is defined based on experimental measurements
acquired from periodic NDE inspections. Although measurements were assumed to imply
the underlying model, physics based relation between damage level and loading cycles have
not been studied in this research. Physics-based relationships for a specific geometry and
loading conditions depend entirely on the structural mechanics of a component and will be
incorporated in future extensions of this research.

A synthetic measurement dataset is considered to demonstrate the implementation of

Bayes updating procedure using a simple exponential damage model defined as:

k= Ct" (6.18)

where, k represents the crack length propagating over time t. C and m are the model
parameters. In this example, the value of C' is kept fixed at 9.12 x 1073 and m is estimated
using the Bayes updating. 6 synthetic measurements are selected by adding random noise
to the true crack length values at time 1, 10,20, 30,40 and 50 seconds. These replicate the
observations that are obtained from experiments where the crack length is measured after

fixed intervals of time or loading cycles. Figure 6.7 (b) shows the true crack growth curve
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(by using true value of m

1.48) along with the measurements selected. Only these 6

measurement data were used to estimate the unknown parameter m of the damage model

to eventually predict the crack propagation path.
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Figure 6.7: (a)Bayes Updating of parameter m (b) Crack growth example for synthetic
dataset with estimated crack growth path.

The prior distribution of m is chosen as:

Fprior(m) ~ N(2.6,0.5%)

(6.19)

At each inspection time instant, the posterior distribution of the current iteration becomes

the prior distribution for the next updating time. The updating history for the crack growth

parameters is shown in Table 6.1. Thus it can be concluded that by repeating the recursive

process as new measured data becomes available, the estimated parameters converges to

their true values [99].
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Inspection time (sec) | Crack length (mm) Mean of m Standard Deviation of m
1 0.296 2.6 0.5
10 0.645 145 035
20 1.086 1.19 0.29
30 1.695 1.17 0.25
40 2:17 1.27 022
50 3.10 143 0.2

Table 6.1: Bayes Updating history of parameter m for synthetic crack growth path.

6.5 Bayesian Updating based on Particle Filtering(PF)

Approach

In recent years, recursive Bayesian framework has been used extensively in fault diagnos-
tics and prognostics applications [100, 101]. In this approach, observed data is incorporated
into the a-priori state estimation by considering the likelihood of measured values. Particu-
larly, sequential Monte Carlo (SMC) technique, also referred to as particle filtering(PF) has
gained popularity in engineering domain owing to their consistent theoretical foundation to
handle model non-linearities or non-Gaussian observation noise [83, 102]. In this approach,
the conditional probability is approximated by a ’swarm’ of points, known as ’particles’.
The particles constitute discrete samples with associated weights representing the discrete
probability masses. Particles can be generated and recursively updated given a non-linear
process model, a measurement model, a set of available measurements Z = {z,, k € N} and
an initial estimation for the state probability density function (pdf) p(xg). Using this idea
Orchard and Vachtsevanos [83] presented a failure prognostic model to predict the evolution
in time of the fault indicator and compute the RUL pdf of the faulty subsystem.

Under PF framework, the Bayesian update is processed in a sequential way with particles

having probability information of unknown parameters. It is based on a state-transition
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function or the damage propagation model f and measurement function h [103].

ar, = (f, 0, i) (6.20)

Rl = h(ak,wk) (6.21)

where k is the time step index or index of loading cycle at which sample is scanned, a, is
damage state, 0;. is parameter vector and z; is the measurement data. v and wj are the
model and measurement noise respectively. In prognostic applications, the measurement is
assumed to be affected by white Gaussian noise wj, ~ N(0,0). Therefore, the unknown
parameters are © = {a, 0,0}, including the damage state a which is obtained based on the
model parameters 6.

Figure 6.8 illustrates the process of Bayes updation using particle filtering technique.
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Figure 6.8: Illustration of Bayes estimation using particle filtering technique.

Next, a synthetic dataset is used as an example to demonstrate the PF algorithm for
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estimation of damage growth path and remaining useful life (RUL).

6.5.1 PF estimate of model parameters using synthetic data

A simple exponential damage propagation model is defined where the crack grows expo-
nentially with time (8.4). The true values of the parameters are selected as C' = —22.62 and

m = 3.8 and the true crack growth path is shown in Figure 6.10.

a=Ctm (6.22)

For applying PF algorithm, both parameters C' and m are considered unknown and
represented by a set of n = 5000 particles. For the sake of simplicity, measurement noise is
modelled as white Gaussian density with standard deviation (o) of 0.01. A synthetic dataset
of 25 points are chosen, also denoted in Figure 6.10, which form the measurements used in
Bayes updating by particle filtering. The particle filtering approach can be described in the

following steps.

(a) Initialization: At k = 1 step,n samples of all parameters are drawn from initial (prior)
distribution. The prior distribution parameters are slected either based on domain
knowledge or intelligent data processing from available measurements. Most often,
experiments are conducted multiple times and the first inspection observations are
used as the prior. In this example, the prior distributions for the unknown parameters

are set as:

ag ~ N(0.01, (5 x 107%)?)
mo ~ N(4, (0.02)2),

logCp ~ N (—22.33, (1.12)%)
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(b)

(c)

(d)

In this example, the parameter C' and m follow log-normal and normal distribution

respectively.

Prediction: Posterior distributions of the model parameters evaluated at the previous
(k — 1)th step are used as prior distributions at the current step (k") in the form of

particles.

Also, damage state at the current time step is transmitted from the samples at the

previous step according to the damage propagation model (8.4).

ap = Ck: (Atk)mk +ap_q (6.23)

where At} is the time gap between (k — 1)th and kth inspection step.

Updating: In this step, the likelihood is calculated such that Bayes inference can
be evaluated according to Equation 6.11. Given that measurement noise wj, follows

normal distribution, the likelihood can be computed as:

AN
L 1 1 (Inz, — N
L(zp|ab,mi, Cl) = ———eap | —= | —2 "k i=1,..n 6.24
where,
2
= |14+ —F—— (6.25)
ag.(mp., C})
and
: S 1 .
= In [af(mi. )] - 5 (6 (6.26)

Resampling: Resampling is the step in which an existing set of particles is replaced
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by a new set. It is particularly essential in PF in order to avoid degeneracy of weights
[104] in which a few particles dominate the rest, after the first few iterations. This

often leads to inaccurate estimates with large variances.

Several resampling techniques are discussed in literature such as single distribution
sampling [105] thresholds/grouping-based resampling [106] or variable size resampling
[107]. In our application, a sequential importance resampling technique, specifically
the inverse CDF method is applied to achieve the resampling process [102] whereby a
particle of the parameter having the CDF value generated randomly is chosen and the
kth

process is repeated n times in order to obtain n resampled particles at the end of

iteration.

Figure 6.9: Tllustration of resampling by inverse CDF method [8].

Figure 6.9 illustrates the above process. Here a random value is generated from U (0, 1)
which becomes a particular CDF value (e.g., 0.45 in the figure). Finally, a sample of
the parameter having the CDF value is found, which is marked by a rectangle in the
figure. By repeating this process n times, n samples are obtained. Note that since

samples exist in a discrete form, the sample having the closest value to the CDF value
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is selected.

The PDF constituted from these resampled particles forms the posterior distribution

of the current iteration or the prior distribution of the next iteration.

(e) Prognosis: Once the model parameters are estimated, the damage state is propagated
from the current state upto the threshold value. The PDF of the particles in current
state is subtracted from those at the threshold value in order to evaluate the PDF of
the RUL. The median RUL along with its confidence intervals are calculated from the

PDF of the RUL.

Figure 6.10 demonstrates the results of applying particle filtering on the synthetic dataset.
The true values of parameters were known a-priori and served as a reference to compare the
accuracy of estimated values using the synthetic data. The estimated crack growth path
with its confidence bounds matches closely to the true path as seen in Figure 6.10(a). Also,
the estimated RUL histogram is plotted in Figure 6.10(b) using a failure thresold at crack
length = 0.03 units. The median RUL at 1200 cycles is computed as 950 cycles with its 95%
confidence bounds at 750 and 1200 cycles. This means that if the current inspection is done
at 1200 cycles, after 950 cycles the crack length is predicted to reach its failure thresold of
0.03 mm. The results show close alignment of predicted RUL with its true value which is
1000 cycles.

It is important to note that in statistical prognosis, observed condition monitoring (CM)
data from periodic NDE can be classified into direct and indirect CM [108, 109]. Data from
direct CM describes the underlying damage state directly such as crack length or damage
area extracted from NDE imaging techniques or stiffness data obtained from strain gauge.

For direct CM, prediction of RUL is equivalent to prediction of the CM data to reach a

90



0.06

0.05

0.04 j

0.03 1

0.02 1

0.01

15

T
= = Truea

| === median a
= 2.5per a
97.5per a
® Synthetic data

0 500 1000 1500 2000 2500
No of cycles
x107°
== median C
= 2.5per C
97.5per C| A
True C

0 500 1000

1500

(c)

2000 2500 300

1500

11000 |

500 ¢

0

46T
4.4 &
median m
4.2t m—2.5per m
97.5per m
m—True m
4

3.8

3.6

3.4

at 1200 No. of cycles

600 800 1000 1200 1400 1600 1800

RUL (No. of cycles)

N
W

0 500 1000 1500 2000 2500 3000

()

Figure 6.10: (a) Crack growth prediction using PF algorithm (b)Predicted RUL histogram
(¢) Trace of updating of parameter C' (d) Trace of updating of parameter m

predefined failure threshold level. On the other hand, indirect CM provides data which can
indirectly or partially indicate the health status of a structure.In these cases, failure event
data may be needed in addition to CM data for RUL estimation. Examples of indirect CM
are time-of-flight data obtained from ultrasonic waves, amplitude data from eddy current
signals or features from other NDE techniques from which structural health can be deduced

indirectly. Chapter 7 focuses on prognosis using direct CM whereas applications on indirect

CM are discussed in chapters 8 and 9.
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Chapter 7

Single Sensor Prognosis in Composites

by Direct Condition Monitoring

7.1 Introduction

In last few decades, composite materials have gained immense popularity and replaced
metals or alloys in several industries namely aviation, automotive, space and construction
owing to their salient properties of light-weightness, high specific stiffness and strength.
Despite their high environmental and fatigue resistance, laminated fibre-reinforced polymers
(FRP) are often vulnerable to flaws during fabrication and service such as fatigue cracks
or disbonds in adhesive metal-composite joints. Hence there is a need for NDE experts
to develop methodologies for inspecting composite materials. Also, industrial components
made of composite materials are subjected to a wide range of stresses during their service
life. Dynamic loading is common especially in aircraft components such as dropping of tools
during maintenance or hailstorms while in service which pose serious threat to the remaining
usability and reliability of such components. If a composite laminate is subjected to repeated
low-velocity impact of sufficient energy, it may create damage internally in the form of
delaminations which may remain invisible but can significantly compromise the structure’s

integrity. Hence, several analytical and experimental investigations [110, 111, 112, 113,
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114] have been conducted on the initiation and evolution of impact damages in composite
materials which demonstrated that the extent and rate of growth of such damage depend
on the material, manufacturing process, hybridization, energy levels and geometry of the
impactor. Vulnerability of composite materials propels the need for robust prognostics and
health monitoring techniques. In this chapter we focus on prognosis of damage accumulation
in GFRP samples due to repeated low velocity impacts.

Accurate health prognostics is critical for condition-based-maintenanace (CBM) and for
reducing overall life-cycle costs. Under CBM, data is collected from various non-destructive
evaluation (NDE) techniques such as vibration, acoustic emission, X-ray imaging etc. are
utilized for structural health inspection and prediction of RUL. Several NDE techniques
are discussed in literature for inspecting impact damage in composite laminates. Meola
et al. [115] demonstrated the use of infrared thermography to image delaminations in the
sample. X-ray computed tomography has been popular as well to inspect delaminations in
GFRP [116, 117]. In this work, optical transmission scanning (OTS) was used to detect and
locate damage introduced in a GFRP composite plate by successive low velocity impacts.
OTS has been recently proposed by Khomenko et al. [118] as a novel optical method for
quantitative NDE of GFRP structures. The technique can be used when access to both the
top and bottom surfaces of the test sample are available. In addition to being non-contact,
rapid, cost-efficient and safe, it provides high-resolution optical transmittance (OT) scans of
a GFRP sample. Details of this method has been described in section 2.

This chapter presents two crucial contributions to research in prognosis of composite
materials by direct CM utilizing experimental data from OTS of GFRP samples. Firstly, an
optimized damage propagation model is described using improved Paris’ law for delamination

growth in the sample. Lack of robust models capable of describing the critical transition
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from a healthy to a progressively damaged sample up to the complete collapse of the material
makes estimation of failure thresholds more challenging for composite structures. Although
crack propagation models in metals has been studied extensively, damage propagation in
GFRP specifically the growth of delaminations introduced by low-velocity impacts have not
been addressed yet. Secondly, an integrated prognosis method is implemented to estimate
damage area growth in GFRP wherein data from OTS forms the CBM data to be used
for estimation of the future damage area under the framework of particle-filtering. With
growing demand of GFRP in industries, prognostic studies on such materials have become

imperative and are addressed in this study.

7.2 Condition based Maintenance of GFRP

7.2.1 Impact Damage in GFRP

One of the most common degradation mechanisms encountered in composite samples
is delamination formed by low velocity impacts. Impact damage in composites occur in
the transverse direction where they lack through-thickness reinforcement and the transverse
damage resistance is poor. As a result, the impact force tends to break the fibres in the
polymer and eventually leads to formation of air gaps or delaminations inside the material
which may or may not be visibly detected [119]. Delamination in a composite plate is
caused due to interlaminar stresses which are dependent on specimen geometry and loading
parameters such as dimensions of specimen, type of boundary conditions, shape of impactor,
impact energy, etc. Interlaminar strength is strongly related to the material properties,
i.e., fracture toughness of matrix and bonding strength between fiber and matrix. Effect

of impact damage on residual compressive strength of GFRP laminates have been studied
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previously by several researchers [113, 114].
Figure 7.1 shows a healthy sample of GFRP laminate and after being subjected to an
impact of 20J. As delamination area increases, the strength of the structure reduces which

eventually leads to failure.

(b)

Figure 7.1: (a) Healthy GFRP sample (no damage),(b) Delaminated GFRP sample after
E=20J impact.

7.2.2 Optical Transmission Scanning (OTS)

In this paper, experimental data from Optical Transmission Scanning (OTS) system
[120] is used for assessing and predicting delamination growth in GFRP due to repeated
impacts. Optical transmission scanning (OTS) has emerged as a viable technique for rapid
and non-contact nondestructive evaluation (NDE) of glass fiber reinforced polymer (GFRP)
composites [118]. Earlier works [121, 120] highlighted the capabilities of OTS in quantifying
low velocity impact damage in multilayer GFRP samples, which, in combination with ad-
vanced image processing, allowed for accurate characterization of multiple delaminations and
their contours. The results obtained demonstrated excellent agreement with well-established
NDE techniques.

Figure 7.2 shows the image of the OTS setup. It comprises a translation stage, a laser
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source that illuminates the GFRP samples, and a downstream photodetector placed under-
neath the sample. The photodetector records the power transmitted through the sample
after it is illuminated by the laser source. Consequently the output power depends on the
transmission properties of the sample being tested. Hence, presence of delamination (airgap)
inside the sample alters the transmitted radiation received by the photodetectors which is
captured by the OTS system. Images from inspection of a healthy and impacted sample by

the OTS is presented in Figure 7.3.

Laser source

Figure 7.2: Experimental setup of optical transmission scanning system with impacted sam-
ple under test.

OTS has been demonstrated as a successful fast and non-contact technique to detect
delaminations in GFRP and validated using a digital camera image of the cross-section of
the GFRP sample|[118]. The authors further applied advanced signal processing on the OT
images in order to determine the delamination contours as a function of the number of fiber
layers that have been affected by impact. As denoted in figure 7.3 (c¢), the OTS image
of impacted GFRP is segmented into four sets of delaminations, ranging from 1 to 4+,
quantifying the extent and severity of damage. A detailed description of the OTS operat-
ing principle, image processing procedure for determining the segments of delaminations in

GFRP and computation of the area of each delmaination segment is illustrated in [118]. The
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Figure 7.3: (a)(top)Healthy (no impact) GFRP sample ; (bottom)GFRP sample after E=30J
impact (b) OT Scan of (top)healthy; (bottom) impacted sample (¢) Segmentation of delam-
inations in (fop)healthy; (bottom) impacted sample.

results obtained demonstrated excellent agreement with other well-established NDE tech-
niques. Ongoing work of the authors is focused on extending the capabilities of OTS to 3D

imaging such that they can be tailored towards scanning the GFRP structure under loading

conditions in industrial applications.

7.3 Proposed Prognostic framework for delamination growth

model

7.3.1 Damage Propagation Model

In this application, damage propagation model used for describing propagation of de-
lamination area inside a GFRP sample due to repeated low-velocity impacts is based on

Paris Law which defines the relationship between crack growth rate and stress state of the
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structure, as given by equation 1.

da

== C(AK)" (7.1)

a
N is the crack growth rate per cycle, N is the total number

of load/ impact cycles, AK is the range of the stress intensity factor and C' and m are the

where a is the crack length,

Paris law parameters. AK can be further interpreted as:

AK =Y ra (7.2)

where, Y is a dimensionless constant depending on the crack shape and geometry of the
specimen for a given stress range in fatigue crack growth models.

From material structures theory, it can be inferred that most of existing crack growth
models are based on the empirical Paris’ law [122] to define the relationship between crack
growth rate and stress state of the structure. There are several prognostic studies in literature
which adheres to Paris law to predict crack growth in metallic structures such as analysis of
axial crack growth in UH-60 planetary carrier plate [83], aluminium alloy specimens [123] or
fatigue cracks in SAE1045 steel [124|. However, unlike crack growth in metals, delamination
in GFRP samples due to repeated impacts behave differently. In particular, the fibre/matrix
interphase properties, which are affected by fibre surface treatment, play an important role
in determining the failure mechanisms, the extent of damage and the threshold energy of
the composite [125]. Many researchers have studied impact damages in composite materials
[112, 119] and monitored the relationship between delamination area and impact energy. A

typical damage propagation curve is presented in Figure 7.4. The damage area is found
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to increase rapidly in the first few impacts and then slow down beyond a threshold. Such
behaviour of delamination area growth has been studied before by Wu et al.[112| where he
reported that the area extends at a slower rate after the first few impacts due to constraints

from the four-fixed end boundaries in (0°,90°) cross-ply laminates.
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Figure 7.4: Delamination area propagation with respect to increase in cumulative impact
energy.

Applying Paris Law directly was not suitable for modeling and predicting degradation
processes in GFRP samples and hence a modified version referred as the Paris-Paris model
based on Piecewise-deterministic Markov processes (PDMPS) is proposed. The mathemat-
ical details are described in [123] where the authors presented fatigue crack growth (FCG)
prediction approach using "Paris model with one jump". In this paper, the damage prop-
agation plot is divided into two regions- Region I and Region II. Instead of considering a
single exponential model, two different exponential models are considered before and after
the threshold or 'jump’ in damage propagation curve. Paris law is used in both the regions
but defined by different set of parameters. Overall, the five parameters in the Paris-Paris
model to be estimated are :{mq,Cy, mo, Cy, E*} where my,C] and mg, Co are the parame-

ters of Paris model before and after the loading cycle E*. Tt should be noted that the PDMPs
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may use other crack propagation laws such as Paris-Forman law [126] or Paris-Erdogan law
[122] for other applications and the number of "jumps’ may not be restricted to one. More
jumps’ will lead to more regions and more parameters to be estimated, without changing the
underlying theory. In our study, the Paris-Paris model was used for modelling the growth of

delamination area in GFRP samples with one ’jump’ in the damage growth curve.

7.3.2 Particle Filtering based Prognosis of Delamination Area in

GFRP

The particle filtering approach, described in chapter 6, has been implemented in this
study for the prognosis of delamination area in a GFRP sample. The overall algorithm
is modified to estimate unknown parameter vector 8 of the Paris-Paris model where 8 =
{m1,C1,mg, Co, Ex} (Note: T is replaced by Ex since we measure delamination area after
fixed intervals of impact energy instead of time or loading cycle).

Damage area obtained from OTS measurement (z}) at kyj, observation is assumed to be
equivalent to the true damage area (aj) with additive noise, as described in equation 7.3,
where wy, ~ N(0, 02).

2 = Qf + Wi (7.3)

The assumption of additive normal measurement noises is backed by experimental evi-
dence. Measurement noise in the OTS system is essentialy generated due to vibrations in the
equipment gantry, noise in photodetector and external lights (eg: from computer screens in
the optical laboratory). Noise from external lights contribute to majority of the experimental
noise whereas the other factors can be neglected. In order to quantify the noise distribu-

tion, OTS system was used to scan a 40mm x 50mmarea without specimen in absence of
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laser source. The output image captured by OTS photodetectors in depicted in Figure 7.5

(a). It can be further concluded that the measurement noise follows a normal distribution

with mean at 0.2535 and standard deviation of 0.0091. Similar observations were found for

repeated OTS scans without specimen.
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Figure 7.5: (a) Measurement noise collected by photodetector without specimen in absence
of laser source (b) Measurement noise histogram : A (u = 0.2535,0 = 0.0091).

Therefore, the unknown parameters to be estimated are © = {a,0,0}, including the

damage state a that depends on the model parameters . The particle filtering approach

tailored towards this application is summarized in the following steps.

(a) Initialization: At & = 1 step, n samples of all parameters are drawn from initial

(prior) distribution.

(b) Prediction: Posterior distributions of the model parameters evaluated at the previous

(k —

l)th step are used as prior distributions at the current step (k).

Using equation 7.1,damage state at the current time step is predicted from the param-

eters estimated at the previous step according to equation 7.4.
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The Paris model is re-written in the form of state-transition function in equation 7.5.
It should be noted, loading cycle interval dN of Paris law for crack propagation in
metals is replaced by AE or the interval of impact energy between two consecutive

impacts on GFRP.

ar — a1 = C (Y,/Fak_l)m dN (7.5)

When the cumulative energy of the impacts is lower than the unknown ’jump’ energy
E*, the damage update follows the Paris law with parameters {C1,m;}. Beyond E*,
the model shifts to Region II (in Fig.2) wherein the damage propagates according to

Paris Law with parameters {Cy, ma}.

k m’f : *
CY (Yvmap_1)"VAE+ap_q, ifEx<E
ap = (7'6)

k
ch (Y/rap_)"2 AE + aj_q, if B, > E*

Updating: In this step, the likelihood is calculated according to Bayes inference de-
noted in Equation 3. Assuming that measurement noise w;. follows normal distribution,

the likelihood is computed as:

SN\ 2
. . . 1 1 lnzk — A\ .
L(Zk|a’;€’m2"cll§) = m@l’p —5 <—Zk> , 1 = ]_, ...n (77)

where,

2
; o
e (azmz,%) i
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(d)

and

= o [afmf O] - 5 (607 (7.9

The n particles for each parameter in © at KM iteration are associated with weights
that correspond to the PDF value of the ith particle in measurement zj as calculated
by Equation 8. Paris law parameters {m,C} are chosen differently before and after

the cumulative impact energy Fj. crosses the ’jump’ energy E*.

Resampling: Samples with higher likelihood are duplicated whereas the ones with
lower likelihood are eliminated. This step captures the essence of optimization by
particle filtering such that the 'good’ particles are transmitted to the next iteration,

thereby refining the estimation of model parameters.

Remaining-Useful-Life (RUL) computation: Once the model parameters are es-
timated, the damage state is propagated from the current state upto the threshold
value or end-of-life EFOL. After every measurement state, every particle which crosses
the failure threshold are identified and its RUL is computed as RUL, = FOL —n, n
being the current observation time instant. PDF of RUL is generated by computing
the RUL of all the particles. The median and mean value of the RUL along with its

confidence intervals are calculated from the RUL PDF.
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7.4 Experimental Setup and Results

7.4.1 GFRP Specimen and Experimental Setup

Three eight-layered S2-glass reinforced laminates S1, 52 and 53 of dimensions 100 x 100 x
4.7mm were subjected to a sequence of low-velocity impacts by drop-weight tests with fixed
mass of 17K ¢ with different energies (or different velocities) and scanned at every interval
using the OTS technique. S1 and S2 were subjected to 15 impacts with energies stated
in Table 7.1, whereas S3 was impacted with 14 impacts of different energies upto 89.J, as
denoted in Table 7.1. The velocity of the impact varied depending on the impact energy
such that for a 10J impact, the velocity of drop-weight tests was recorded as 1 m/s, whereas

for 50J and 100J , the measured velocity was around 2.41 m/s and 3.39 m/s respectively.

Impacts 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15
Cumulative 2.5 5 10 125 15 17.5 20 30 40 50 60 70 80 90 100
Energy (J)

Table 7.1: Cumulative energies of consequtive low velocity imapacts on GFRP sample 1 and
2.

Impact 1 2 3 5 6 7 8 9 10 11 12 13 14
Cumulative | 1.5 3 4.5 75 |11 15.5 |21.5 |29 38 485 [60.5 |74 89
energy (J)

Table 7.2: Cumulative energies of consequtive low velocity imapacts on GFRP sample 3

The OTS setup used in this experiment consisted of an iBeam-smart-640s laser diode with
640nm fundamental wavelength used as the light source. It had 1.5mm beam diameter and
up to 150mW output power. The transmitted radiation was registered using a DET36A Si
detector with 350 — 1100nm wavelength range, 14ns rise time and 13 mm? active area. The
voltage on the output of the photodetector was directly proportional to registered radiation

power. The XY-coordinate stage with stepper motors allowed for rapid inspection of the
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GFRP samples with a lateral resolution of 0.25mm.
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Figure 7.6: OTS scans of GFRP sample (a) healthy (b)-(p) after each consequtive impact
from 1 to 15 as mentioned in Table 7.1.

At the end of each impact, the GFRP sample was inspected by OTS thereby producing
15 scans for S1 and S2 and 14 scans for S3. The OTS images for S1 after 15 repeated impacts
are presented in Figure 7.6. Based on the image segmentation as shown in Figure 7.3 (c),
delamination area for 1,2, 3,44 delminations were calculated from each OTS scan for the
three samples. The damage area growth curve with respect to cumulative impact energies is
plotted in Figure 7.7 which verifies the damage growth behaviour caused by repeated impacts
in the three samples. These curves are considered as the ground truth for our application
and estimation of damage growth parameters using our proposed method is validated against
them. It is observed that the ‘knee’ of the health index curve or the ‘jump’ energy correspond
to an approximate value of 20J for all three samples, even when the sample were impacted
with different intervals of impact energy (or velocity) due to the same geometry of specimens

and the location of impact.
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Figure 7.7: Growth of delamination area for three samples with increased cumulative impact

energies (Solid curve- S1, Dashed curve- S2, Dotted curve- S3).
7.4.2 Prognosis Results

In order to implement particle filtering algorithm to predict damage growth curve from
initial measurements, initial distribution for the parameters were set as:

ag ~ N(20, (0.01)?)
mig ~N(4, (0.02)2), logCiyg ~ N(—22.33, (1.2)%)
mag ~ N(2.87, (0.1)2), log Cog ~ N(—22.2, (0.1)?)

E} ~ N(20.02, (0.45)2)

The prior distibution of E* where the Paris law parameters ’jump’ from Region I to
Reguion II is highly sensitive to the OTS measurements for individual GFRP specimens.
Slope difference at every measurement cycle with respect to its last two predicted delami-
nation areas was calculated according to equation (7.10) and Eg(i) = Ej_q if Sg;rr(k) =

max(Sy;¢r). This process was repeated for damage growth curves in the three GFRP sam-
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ples (i = 1 to 3) and the mean and sample variance were used to define the prior PDF of

Sqipr(k)

_ A — a1

_ Ap—1 — Q2

- Ep—Ep

Erp_1— Er_o

(7.10)

To verify the particle filtering prognostics approach, parameters of the Paris-Paris model
were estimated with varying number of available measurements from 9 to 12 and the esti-

mated curves are presented in Figure 7.8.
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Figure 7.8: Prediction of delamination area curves based on different number of available
measurements (a) n=9, (b) n=10, (c¢) n=11, (d) n=12. The true measured delamination
area curve is plotted in dashed lines.

It is observed that the prediction became more accurate with number of observations

Figure 7.8. The RMSE of estimated vaues compared to the OTS measurements was com-
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puted according to equation 7.11 and plotted in Figure 7.9 which shows a decreasing trend

with increasing number of observations.

n

> (a; —d;)? (7.11)

1=1

RMSE =

S|

To further demonstrate the benefit of an optimized Paris-Paris model over a regular Paris
model, RMSE was computed for number of available measurements increasing from 10 to 13
and plotted in Figure 7.9. Although RMSE is less than 0.15 for both the models when more
than 10 measurements were considered, prediction is more accurate with Paris-Paris model

since it has lower RMSE in general than the regular Paris model.
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Figure 7.9: Comparison of damage area prognosis by Paris model (dashed line) and Paris-
Paris model (solid line) for (a) 1 delamination (b) 2 delaminations (c¢) 3 delaminations (d)
4+ delaminations.

An interesting thing to note is that when number of available measurements of delamina-
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tion area were more than 8 or when the cumulative impact energy was higher than the ’jump’
energy (E* = 20.J), the predicted damage growth curves matched the true measured growth
accurately, with maximum RMSE of 0.07. However when the number of measurements was
either 8 or 7 i.e before the damage growth curve changed its growth rate, estimation becomes
more challenging as the impending 'jump’ energy needs to be predicted accurately even be-
fore it is reached. This is where an optimized Paris-Paris model outperforms a regular Paris

model.

1500

Damage area, mm?®
Damage area, mm?

o 20 40 B0 B0 100 0 20 an 60 B0 100
Cumulative Impact Energy, J Cumulative Impact Energy, J

(a) (b)

- -
- td
L -
o4 '} o
E s =
E o E
a ] - o -
o - L - e IRl
E] - rﬁ
@ - )
=] - =
o - - ] -
g - i i E L e
(=] e T - = -
- = e -
- o
40 60 80 100 BO 100
Cumnulative Impact Energy, J Cumulative Impact Energy, J
(c) (d)

Figure 7.10: Prediction of delamination area curves based on different number of available
measurements (a) n=8, Paris model (b) n=7, Paris model (¢) n=8, Paris -Paris model (d)
n=7, Paris -Paris model. The true measured delamination area curve is plotted in dashed
lines.

Results are presented in Figure 7.10(a) and (b) for estimation of damage growth curve
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wth 8 and 7 measurements using Paris-Paris model. The maximum RMSE is calculated
to be 0.1. On the other hand, when same measurements were used to predict the damage
growth curve using regular Paris model with one set of parameters {m1, C1}, the estimation
failed, as shown in figure 7.10 (a) and (b). Clearly for these cases, the Paris model could not
capture the ’jump’ in the damage growth curve, therefore resulting in wrong prediction of its
future values. If 6 or less measurements were chosen, both the models failed to accurately
predict the 'jump’ in the damage growth curve due to lack of sufficient information.

In order to compute the remaining-useful-life of the GFRP sample from the initial OTS
measurements, sample S1 was subjected to more number of impacts with higher energy
intervals, as stated in Table 7.3. At the end of 450 J, OTS image of the GFRP specimen in
Figure 7.11 (g-h) shows that delamination had reached to one of its edges leading to breakage
of fibres at that end, hence denoting its end-of-life (EOL) as further usage of the specimen
could not be continued. The net delamination area after 450 J was calculated as 7803.8 mm?

or 78.03% of total area of the sample. Figure 7.12 presents the damage growth curve upto

EOL for sample 1.

Impacts 16 17 18 19 20 21

Cumulative 150 200 250 300 350 450
Energy (J)

Table 7.3: Cumulative energies of more number of impacts on GFRP sample S1 from 150J
to 450J

A set of damage thresholds was set 74;d = 1,2, 3, 4 for every delaminations corresponding
to the 21 impact or total energy of 450J: 71 = 955 sq mm, 7 = 1362 sq mm, 73 = 2065
sq mm, 74 = 3422 sq mm. RUL was calculated on the Paris-Paris model for different

number of observations ranging from 14 to 21 and the corresponding result is illustrated in
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Figure 7.11: OTS scans of GFRP sample (a)-(f) after each consequtive impact from 16 to
21 as mentioned in Table 7.3,(g) Camera image of sample 1 after 450 J impact (H) Enlarged
image of delamination reaching the edges and breakage of fibers denoting its end-of-life.
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Figure 7.12: Growth of delamination area for sample 1 with increased cumulative impact
energies upto end-of-life.

Figure 7.13. At 14t observation, the cumulative impact energy was 90J, hence true RUL
is 4507 — 90.J = 360.J whereas at 215 observation, the cumulative impact energy was 450.J,
hence true value of RUL is 0 .

The mean and median of estimated RUL values along with their 90% confidence bounds is

shown in Figure 7.13. The two shaded cones of accuracy at 20% and 30% of true RUL enable
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Figure 7.13: RUL prediction for (a) 1 delamination (b) 2 delaminations (¢) 2 delaminations
and (d) 4 delaminations.

comparison of prediction accuracy and precision. Prediction precision clearly improves with
time as the 90 % confidence interval of estimated RUL decreases with addition of more
measurements. The true RUL lies within the confidence intervals for most of the cases.
In fact for delamination 2,3 and 4, the mean of estimated RUL exactly matches the true
RUL when 18 or more measurements are used for prediction. However, it can be seen that
RUL estimation error is high ( 50%) when 16 or fewer measurements are used (true value
lies within 90% CI) which indicates that the model and its variance structure do not fully
capture the damage dynamics at the earlier stages of delamination growth. In order to
improve RUL prediction with lesser measurements, a more accurate damage growth model

should be investigated.
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Chapter 8

Single Sensor Prognosis in Composites

by Indirect Condition Monitoring

8.1 Introduction

Prediction of future damage state using NDE data from direct condition monitoring (CM)
of a composite specimen is discussed in chapter 7. Accurate estimation of delamination area
could be achieved with high-resolution optical transmission scanning (OTS) system, particu-
larly suitable for transparent GFRPs. However, often industries demand in-situ monitoring
of slow-growing defects in structures such as fatigue-induced delamination in composites.
Airplane wings or automobile parts made of composites are frequently subjected to a wide
spectrum of loading patterns during their service resulting in slow progression of cracks
caused by fatigue. Fatigue-induced delamination in composite joints poses serious threat
to their remaining usability [127, 128] propeling several analytical and experimental inves-
tigations on the initiation and evolution of fatigue cracks in composites [129, 130]. Fatigue
behavior often results in formation of air-gaps in between the matrix layers known as delam-
ination which may be hidden in internal layers and not visible on outer surfaces. Therefore,
complex damage mechanisms in composites demand the use of NDE and SHM techniques

not only to detect damages at the initial stages of fatigue but also to provide indirect CM
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data for future health prognosis .

Although some NDE techniques such as pulse-echo ultrasonics [131], far-field microwave
imaging [132]| and sonic infrared imaging technique [133| are capable of diagnosing delami-
nation in composites, accurate prognosis of fatigue damage in composites using NDE data
remains a challenging task. Firstly in the case of most NDE techniques, no known physics-
based models are available for describing fatigue-damage progression in composite joints
[134]. As discussed before, unlike metals, composites are heterogenous in nature where a
slight change in the material or geometry can result into an entirely different and complex
damage mechanism resulting in uncertain NDE inspection results. Crack or delamination
growth behavior in composites strongly depend on the manufacturing process, mechanical
properties of material(s), presence of impurities or inclusions in resin and other complex
micro-level phenomenon which are difficult to be incorporated into known electromagnetic,
acoustic or optical measurements, particularly for composites cured from multiple and newer
materials. As a result in most practical applications, prognosis is solely dependent on in-
direct CM data from periodic NDE/ SHM of the composite structures. Secondly, most of
in-situ monitoring systems cannot provide accurate estimation of the slow-growing defect in
adhesive joints especially in the early stages of fatigue. Prognosis based on noisy estimates
collected under uncertain environment inherently leads to overfitting on the training data
and wrong prediction of future damage states.

This chapter presents the prognostic capabilities of two methods using indirect CM data:
regression based prediction|85] and stochastic filtering based on Bayes inference|81] in a
sequential Monte Carlo framework, such as Kalman filter and particle filter. Delamination
area is predicted for a GFRP specimen subjected to mode I fracture mechanism under cyclic

loading. Indirect CM data is provided by guided wave(GW)|135] signals which are generated
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through surface-mounted piezo electric transducers, therefore facilitating on-line monitoring
of composite structures while they are in service. Delamination area computed from periodic
OTS measurements are considered as the ground truth. Prediction results of both approaches
are compared to demonstrate the benefit of dynamic parameter update in NDE prognosis

applications.

8.2 Experimental Setup

8.2.1 Specimen Geometry and Material

GFRP composite samples, used in the mode I fatigue experiment, were manufactured
using vacuum assisted liquid molding process. The reinforcement was S2-glass plain weave
fabric with areal weight of 818g/m2, namely Shield-Strand S, provided by Owens Corning.
The GFRP samples comprised six layers of such fabrics stacked at the same angle. The
distribution medium was Resinflow 60 LDPE/HDPE blend fabric from Airtech Advanced
Materials Group and the resin, SC' — 15, was a two part toughened epoxy obtained from
Applied Poleramic. GFRP plate of size 300 x 150mm? was manufactured in a 914.4 x
609.6mm? aluminum mold with point injection and point venting. Two teflon sheets of
dimensions 50x 150mm?2 with density 2.16g/cm3 and tensile strength of 3900psi were inserted
in between third and fourth layer of GFRP fabrics at the two edges of the plate. After the
materials were placed, the mold was sealed using a vacuum bag and sealant tape, and it was
then infused under vacuum at 29 in Hg. The resin-infused panel was cured in a convection
oven at 60°C for two hours and post-cured at 94°C for four hours. Finally, double-cantilever
beam (DCB) samples with dimensions of L = 150mm, b = 25mm and h = 2mm were cut

from the manufactured GFRP plate using a diamond saw and piano hinges were attached
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Figure 8.1: Double-cantilever beam (DCB) specimen for Mode I fatigue tests, according to
AST M D5528.

using high-strength cyanoacrylate glue. The design of the sample adheres to AST M D5528
standard for mode 1 fatigue testing, as shown in figure 8.1. Figure 8.3(a) shows a DCB
sample used in our experiments which is made of 6 layers with a teflon sheet of length
50mm inserted from the edge in between second and third layer of the plate. As the teflon
inserts are ultra-thin, they have no mechanical contribution to the sample but are used solely
to create initial delamination in the specimen. Each DCB specimen is characterized with
Young’s modulus of 26G Pa, density 1907Kg/cm3 and the poison’s ratio of 0.17 (material is

assumed to be quasi-isotropic).

8.2.2 Fatigue testing of GFRP under Mode I failure

According to ASTM standard E 1823, fatigue in mechanical systems is defined as: “The
process of progressive localized permanent structural changes occurring in a material sub-
jected to conditions that produce fluctuating stresses at some point or points and that may
culminate in cracks or complete fracture after a sufficient number of fluctuations". When
a structure is subjected to cyclic loading, the applied stress is not constant but changes

with time leading to fatigue failure. Striking characteristic of fatigue is that due to repeated
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variable loading, localized stress concentration points are created at which crack is initiated
and the system fails at stress values below the yield strength of the material. Hence, fatigue
poses serious threat in the overall reliability of materials and requires accurate prognosis.

Practical mechanical systems undergo variable loading in several scenarios such as;

1. Change in the magnitude of applied load Example: punching or shearing operations.

2. Change in direction of load application Example: a connecting rod.

3. Change in point of load application Example: a rotating shaft.

Figure 8.2: (a) Experimental setup for Mode I GFRP sample subjected to cyclic loading in
MTS machine, (b) Enlarged image of GFRP sample under Mode I test.

Susceptibility to delamination is one of the major weaknesses of many advanced laminated
composite structures. Although progressing at a lower rate, fatigue can induce local matrix
cracking in composites leading to delaminations in adhesive joints or matrix laminates, which
significantly compromises structure’s health and can be catastrophic. Owing to its industrial
importance, fatigue mechanisms have been studied extensively with regards to composite
materials [136, 137, 138|. In this paper, effect of fatigue loading is studied on reliability of

a DCB GFRP sample under Mode I cyclic loading. The GFRP specimen is subjected to
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tension-tension fatigue testing in 810 Material Test System (MTS) machine with 50kN load
cell. At first, critical displacement where the specimen cracks is recorded by introducing
monotonic loading. The process is repeated on 5 similar specimens and the average critical
displacement is computed. Fatigue loading is then conducted on a new sample under constant
displacement at 5 Hz with displacement ratio of 0.1 and maximum stress equal to 70% of
critical displacement. The experimental setup for DCB GFRP sample subjected to cyclic

loading in MTS machine follows ASTM Standard D6115 and is illustrated in Figure 9.4.

8.3 NDE of Fatigue Damage in Composites

For reliability analysis, interrupted fatigue tests are performed on the DCB sample. Start-
ing from its pristine condition, cyclic loading is paused after every 20,000 cycles and the
specimen is inspected using two NDE methods. This process was continued up to 120,000
cycles. NDE measurements along with features indicating the structural damage growth is

described in this section.

8.3.1 Delamination detection using OTS

A detailed description of the OTS operating principle for detection of impact damages
in GFRP is discussed in chapter 7. Similar experimental setup is used for inspection of the
DCB GFRP specimen subjected to Mode I failure under cyclic loading. A GFRP sample
with delamination shown in Figure 8.3 (a) is inspected by OTS imaging system and the
resulting image data is presented in Figure 8.3 (b). Light is obstructed by the teflon sheet
inserted within the DCB specimen resulting in no power transmitted through that region.

Detailed profile of delamination starting from the edge of teflon sheet is visble from the OT
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scan, shown in Figure 8.3 (b).

Length, mm

(b)

Figure 8.3: (a)GFRP sample under Mode I fatigue tests after 160K load cycles (b) OTS
image of GFRP sample with delamination indications.

OTS images of the DCB GFRP sample obtained after every 20K cycles of fatigue loading
upto 160K load cycles is presented in Figure 8.4. An iBeam-smart-640s laser diode with 640
nm fundamental wavelength, 1.5 mm beam diameter and 3.1 mW output power was used
as the light source. The OTS system was placed on an active vibration isolation table and
optical scans were acquired in dark ambience with a 1 mm step size.

From the OTS images, extent of delamination can be observed as the region between
end of teflon and the beginning of healthy part of the sample. As expected, delamination
grows inside the sample with increase in number of load cycles. Area of delamination from
the scanned image is computed using image processing algorithm implemented in MATLAB,
as depicted in Figure 8.5. The delaminated area is identified using segmentation via fast
marching method [139] to generate the gray scale image shown in Figure 8.5 (b). The total
number of pixels that are ‘turned on’ provides the area of delamination in terms of pixels
(dpiz)-

The piezoelectric sensors attached to the GFRP sample mark as reference points and are
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Figure 8.4: OTS images of a GFRP sample (a) Healthy sample and on being subjected to
Mode 1 cyclic loading after (b) 20K cycles (¢) 40K cycles (d) 60K cycles (e) 80K cycles (f)
100K cycles (g) 120K cycles (h) 140K cycles (i) 160 cycles.

used to calculate the physical area of delamination from dp;;. Specific use of the sensors are
described in the following section. Using cluster-based-segmentation followed by connected
components [19], location of the two pzt sensors are identified and the pixel distance between
their inner edges is recorded as lp;;. Additionally, edge detection algorithm is implemented
to determine the upper and lower edges of the sample and its pixel width is recorded as wy;;.
Measuring the physical distance between two PZT sensors (L, ) and width of the sample
(Wphy), the delamination area (Dpy, ) is calculated according to equation 8.1. In this paper,

L,py, = 10em and (W,

phy) = 2.5cm.

phy

(dpiz) 2
D =—*r" (L x W cm 8.1
phy ( lpi:r » wpia:)< phy phy) ( )

Area of delamination is computed for each of the OTS images depicted in Figure 8.4, after
every interval 20K load cycles. Plot of delamination area against number of load cycles is
shown in Figure8.6. The initial damage area computed from the healthy sample is deducted

from all successive area measurements. Khomenko et al. [120] successfully demonstrated
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Figure 8.5: (a) Fatigued GFRP sample after 160K load cycles (b) OTS image of delaminated
sample (¢) Binary image denoting delamination area identified after image processing.

OTS as a valid technique to detect delamination in GFRP induced by repeated low-velocity
impacts and validated scanned results by observing damage in a cross-section of the impacted
samples after being cut by diamond-saw. Similar to crack length in fatigue-crack-growth
(FCG) prediction, delamination area served as a suitable health indicator of the DCB GFRP

sample subjected to Mode I fatigue testing.
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Figure 8.6: Plot of number of load cycles versus delamination area from OTS measurements.
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8.3.2 Delamination detection using GW

One of the in-situ NDE/SHM techniques which has been used for real-time monitoring of
aerospace and automobile components is guided wave (GW) sensing [140, 141]. Delamination
detection using GW technique can be achieved using PZT sensors mounted on the surface
of composite laminates which can transmit and receive guided wave signals in pitch-catch
configuration [135]. The excitation frequency is identified by studying dispersion curves for
selected materials such that complex wave modes are avoided and the anti-symmetric Ay and
symmetric Sy modes are excited. PZTs with resonant frequency close to excitation frequency
are mounted on both ends of the specimen (see Fig 8.3 (a)). Waveform generator excites
the transducer and generates the guided wave, which propagates through the specimen and
picked up by a second transducer. The received signals can be observed via an oscilloscope.
Schematic of the experimental setup for GW inspection of GFRP specimen is depited in
figure 8.7 (a).

According to GW theory [142], geometrical properties of the waveguide, especially speci-
men thickness, determine the mode content of the GW signal at the receiver PZT sensor. In
Mode I fracture tests, growth of delamination results in change of thickness of the waveguide
at the crack tip which modifies the dispersion curves or leads to mode conversion [143]. Ear-
lier works [144] confirm that the group velocity of the GW signal is reduced as delamination
grows and therefore, analyzing the time of flight (TOF) from the received GW signal,as de-
picted in Figure 8.7 (b), provides information about presence of internal air-gaps (or damage)
in the composite laminate.

The same 6-layered GFRP sample is monitored using GW setup in addition to OTS, after

every 20K fatigue cycles.As delamination area increases, time of flight between received and
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Figure 8.7: (a) Schematic of GW experimental setup (b)Excited and received signals in
healthy sample.

transmitted signal increases. The incremental change in TOF of received GW signal is
computed for 9 rounds of tension-tension loading of the sample. Figure 8.8(a) shows the
phase shift in received GW signal as the sample progresses from healthy to delaminated
layers after every 20K cycles. Figure 8.8(b) illustrates the ATOF from healthy to 160K
fatigue cycles at an interval of 20K cycles. A steady growth in ATOF is noticed which can
be correlated to the increase in delamination inside the specimen.

In order to quantify effect of delamination growth in the GW measurements, difference of

TOF of received GW signals between the delaminated and healthy specimen is computed.

ATOF, = TOF), — TOF\Vk = 1,2,...,9 (8.2)

ATOF of GW signals were compared with the delamination area extracted from OTS
images of fatigue-induced samples. A positive correlation between the two parameters, as
shown in Figure 8.9, demonstrates that monitoring TOF of received GW signals can be used

to estimate the area of delaminaion in GFRP specimens. A 2nd degree polynomial curve,
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Figure 8.8: (a) Received signal for a healthy sample and sample after 20K-160K cycle (b)
TOF between received and excited signal with increase in number of fatigue cycles.

according to equation 8.3, was estimated based on the measurements and then used to

predict the delamination area from guided wave signals recorded at the receiver PZT sensor.

From the experimental dataset, the coefficients were computed as p; = —9.1005 x 107,

po = 0.4 x 109 and p3 = 0.297.

Area = p1(ATOF)? 4 po(ATOF) + p3 (8.3)
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Figure 8.9: Correlation between TOF from guided wave signals and delamination area from
OTS images.

8.3.3 Overall Framework of Damage Prognosis

In our application, damage area in the adhesive joint was derived from sensor measure-
ments obtained at regular intervals of fatigue progression. Fatigue tests were intermediately
stopped on the training specimens to extract the guided wave (GW) data from attached PZT
sensors and imaged using OTS technique. Features determining degradation of structural
health were extracted from the GW signals and compared with the delamination area com-
puted from OTS images. Finally, features from test specimen, extracted after intermediate
fatigue cycles, were implemented via regression and stochastic filtering approaches to predict
future feature values from which the future delamination area was computed. Predicted area
was then compared with OTS image data to assess the performance of the damage prognosis
algorithm. The entire approach is described in the flowchart of figure 8.10.

Measurements from OTS and GW sensors on a GFRP specimen subjected to interrupted

fatigue loading is recorded in table 8.1.
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Fatigue tests on

Mode 1 GFRP joint
(Training specimens) PZT received signal
from Test specimen
PZT received signal PZT received signal . ‘l'
OTS image —
Dataset 2 Dataset 1 Feature Extraction
& l’ Time-of-flight (TOF)
Feature Extraction EZT;:;?:;::CE‘: l
Time-of-flight (TOF) (Ar) Prognosis by
particle filtering
Training Measurement ¢
Measurement Model ;
Predicted TOF
Model Validation Arry, = f(TOFry)
Validation
N
Predicted future
Delamination Area

(ArTest, )

Figure 8.10: Damage prognosis flowchart using guided wave and optical transmission data.

Obs. (k) 1 2 3 4 5 6 7 8 9
Load cycles (T)
x 1000 0 20 40 60 80 100 120 140 160
TOF;, x 10~* (sec) 261 2.63 2.67 2.70 271 2.73 2.74 2.75 2.76
ATOF, x 107°
) 64 94 04 ) . 4 4
(TOF, — TOF,) (sec) 0 0.16 0.6: 0.9 1.0 121 1.32 1.42 1.44
Ary (sq.mm) 0 131 2.59 3.05 3.56 3.81 3.99 4.26 433

Displacement control: Maximum displacement= 70% of

Failure Strain. Displacement ratio =0.1 Frequency= 5Hz

Table 8.1: OTS and GW measurements from Mode I fatigue testing of GFRP at intermediate
load cycles.

8.4 Damage Prognosis Results

Prediction of future delamination area in a GFRP specimen based on initial GW measure-
ments is performed using two dynamic data-driven prediction approaches, namely kalman
filter and particle filter. The prediction accuracy for each of these methods are compared
with regression based static estimation approach. Starting with the first 3 GW measure-
ments (77.3 = 0,20K,40K cycles), ATOF is computed for the next measurement time-point

k‘th

which is at 60K load cyces. All measurements upto observation are utilized to predict the
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ATOF for (k+ 1) observation. Delamination area Arj. 1 is then computed from predicted

ATOF using the correlation expression given by equation 8.3. This process is repeated upto

160K cycles.

8.4.1 Prediction of Delamination Area by Logarithmic Regression

Based on damage-propagation curve depicted in Figure 8.8(b), a simple logarithmic func-

tion, as described in equation 8.4, is implemented to model change in TOF measurements

in DCB composite sample over time (number of loading cycles). Logarithmic regression is

achieved by fitting a function of the form 8.4 on the measurements T'O F} ;. to estimate model

parameter m and hence, TOF}, 1.

ATOF = mlog(T)

(8.4)

Results of delamination area prediction under static approach using logarithmic regres-

sion is presented in Figure 8.11(a). Updated values of parameter m at every

time is plotted in figure 8.11(h).
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Figure 8.11: (a) Predicted delamination area from predcited GW measurements using cor-
relation curve(b) Updation of logarithmic rate ‘m’ at every estimation step.
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It can be observed that estimates of future damage area from predicted ATOF values do
not match the true damage area obtained from OTS measurements. Besides, the predicted
values have high variances that translate to large confidence intervals which makes these
results unacceptable. Primary reason for the high prediction error in regression based prog-
nosis is the lack of large number of NDE measurements. Regression can achieve accurate
estimation only when a large amount of data is available which is seldom the case in indus-
trial applications. Hence, other prognosis techniques such as stochastic filtering is explored
for prediction of damage area from fewer GW measurements.

It should be noted that in this thesis, logarithmic function is selected to model propa-
gation of GW measurements with increasing fatigue cycles, due to lack of known physics-
based-models that can define ATOF of GW signals in DCB woven composites under cyclic
load. If underlying physics of guided wave propagation in GFRP plates can be modeled

accurately, improved model-based-prediction of damage growth may be achieved.

8.4.2 Prediction of Delamination Area by Kalman filtering

As discussed in chapter 6, Bayes inference [145] is a widely used approach for parameter
estimation §. This approach derives the posterior distribution of parameters by updating
an initial prior estimate multiplied with likelihood function obtained from measurements,
according to equation 6.14. Particularly in fatigue damage prognosis, Bayesian inference has
been implemented by Peng et al. [146] for probabilistic prognosis in fatigue test of lap joints,
Enrico et al. [102] for fault prognosis in non-linear components and An et al. [81] for crack
growth modeling under Mode I fracture tests.

Apart from particle filtering, approximate solution of Bayes inference can be achieved by

another stochastic filtering approach known as Kalman filtering [147], specifically suitable
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for linear systems with Gaussian noise. Since, the logarithmic model for ATOF adheres to
a linear system, Kalman filter was explored for this prognosis application.

Christer et al. [148] applied Kalman filter for estimating refractory thickness in an in-
ductor furnace from a series of measurements, containing measurement noise and model
uncertainties. Kalman filter is a typical tool used for optimal estimation of unknown pa-
rameters in linear systems, with Gaussian measurement and process noise. In this paper,
an empirical relationship is established between fatigue cycle and change in TOF of received
GW signals from damaged GFRP specimens, as stated in equation (8.4). It is important to
note that this empirical model is valid only for the given specimen geometry, material and
Mode I loading conditions.

This logarithmic relationship is represented in a state space model, which is derived in

equations (8.5) - (8.9),

Tpt1 = Axg, (8.5)

Ye+1 = Crpp (8.6)

where, z is the state vector, A is the state-transition matrix and C'is the observation matrix.

ATOF,
xR = (8.7)
mg
B 1 log(AT) (55)
0 1
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C= (8.9)

The developed damage evolution state space model can be used in Kalman filter (KF)
algorithm for prognosis. In general, KF algorithm follows two steps i.e. prediction and
measurement update. In prediction step, the states x, error covariance P_ (k|k — 1) and
output y_(k|k — 1) for the k" fatigue interval is predicted with the information available
from k — 1" fatigue interval as shown in equation (8.5). The prediction step of Kalman filter
computes change in TOF z;, for next iteration from the experimental GW data z;, according

to equations (8.11)-(8.13).

T(kjk—1) = AL(k—1) (8.10)
Ppj—1) = APy A" (8.11)
Y(klk—1) = CTk)p-1) (8.12)
(8.13)

When a new measurement is obtained, estimated parameters (x},) are updated according
to equations (8.15)-(8.16) where Kj, is the kalman gain, P, is the error covariance and
R = 0.025 is the measurement noise. The future damage area is hence predicted from

estimated zj which is updated once a new GW measurement is available.

Ky, = Pypp—1)CT (CPklk — 1) + R) ™! (8.14)
T = T(ph—1) T Ke(zk — Crp—1)) (8.15)
P = (1 = KxC)Ppj—1) (8.16)
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Implementing Kalman filter on the same dataset generated prediction results depicted

in Figure 8.12. The initial distribution of parameters are computed using the first two GW

observations, as denoted in equation 8.18.
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Figure 8.12: (a) Predicted delamination area from predcited GW measurements using cor-
relation curve(b) Updation of logarithmic rate ‘m’ at every estimation step.

8.4.3 Prediction of Delamination Area by Particle filtering

As explained in chapters 6 and 7, under particle filtering framework, Bayes inference is

processed in sequential manner with particles associated with probability weights [103, 149).

Prediction of delamination area in composite laminates under Mode I fatigue testing is based

on the damage propagation model given by the logarithmic function in equation (8.19) where

AT;. is the time gap between (k — 1)th and k' inspection step.

a = mylog(ATg) + a4
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Unlike the case of Kalman filtering, in this case noise variance is treated as an unknown
parameter which is estimated by the particle filtering algorithm. Assuming zero model

noise, the conditional probability of the NDE measurements can be deduced as,
1 1z —al
. k —_ k
L(zla}) = ———eap | —= | ——= 8.20

Starting with uniform initial distributions for all the parameters in equation 8.21 and
n = 5000 particles, the estimated damage area curve along with updating path of 'm’ are

denoted in Figure 8.13.
a ~ Uniform(0,1)

m ~ Uniform(0,1) (8.21)

o ~ Uniform(0.01,0.05)
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Figure 8.13: (a) Predicted delamination area from predcited GW measurements using cor-
relation curve (b) Updation of logarithmic rate ‘m’ at every estimation step.

In order to compare prediction performance of the three methods, the normalized root
mean squared error (RMSE) is computed according to equation 8.22, for variable number of
observations and plotted in Figure 8.14. The prediction error is lower in the dynamic data-

driven approaches by approximately 10 — 15%, especially at the earlier stages of damage
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progression when fewer measurements are considered. Therefore, it can be concluded that
both the dynamic data-driven techniques via Kalman and particle filtering outperforms the
static regression based approach owing to capability of sequential update of function param-
eters by incorporating uncertainties of non-linear model and measurement noise. Moreover,
resampling based on likelihood computation within particle filtering technique drives the es-
timation towards the optimum parameter value even when fewer measurements are available.
Hence the prediction error is lower than Kalman filtering at the earlier stages of damage area

growth. With additional measurements after 120K load cycles, prediction results from both

the filters become comparable.

NRMSE — \/%Z?:ﬂai — d;)?

mean(a) (8.22)
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Figure 8.14: Error comparison of prognosis methods for prediction of delamination area from
guided wave measurements.
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Chapter 9

Multi-sensor Prognosis in Composites

9.1 Introduction

One of the recent extensions of NDE is the use of more than one sensing technique for
inspection of structures. Traditional NDE prognostics focuses on analyzing a single sensor
signal when a unit runs under a single operational condition [150, 151]. In most practical
situations, a stochastic model is first developed at the training stage based on historical
results. Inspection data from a test unit is then applied onto the model to predict its future
health state. These approaches are effective under the assumption that single sensor data
is able to capture the entire stochastic nature of the degradation process. Unfortunately, as
system becomes more complex, several uncertainty factors come into play during damage
propagation wherein measurements from one sensor may suffer from noise, outliers or biases
[152, 153]. In such cases, relying on single sensor data becomes insufficient to accurately pre-
dict the growth of underlying degradation mechanism, leading to inaccurate and unreliable
remaining-useful-life (RUL) prediction.

Assessing fatigue behaviour of any structure is an important aspect of its reliability
analysis. Fatigue in mechanical systems occurs when a structure is subjected to continuous
cyclic loading resulting in progressive, localized and permanent structural changes. Repeated

variable loading creates localized stress concentration points in a specimen at which crack

134



is initiated and the system fails at stress values below the yield strength of the material.
Hence, fatigue poses serious threat in the overall reliability of materials and demands accu-
rate prognosis, especially at its initial stages. Although progressing at a lower rate, fatigue
induces local matrix cracking in composites leading to global damages, which significantly
compromises structure’s overall health. Owing to its industrial importance, fatigue mech-
anisms have been studied extensively with regards to composite materials. In [154, 138],
Bayesian model is discussed for parameter estimation of fatigue damage propagation based
on modified Paris law. Owen [155] presented an exponential cumulative damage model for
estimation of strength of carbon fiber polymers. Kruger et al. [156] studied an energy based

approach for fatigue damage model in FRP under plane loading.
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Figure 9.1: (a) Reference GFRP specimen failing after 1386 cycles while subjected tension-
tension fatigue test under constant load (Max load= 70% of failure load, Stress ra-
tio=0.1,Frequency =3Hz), (b) Test GFRP specimen (identical manufacturing conditions)
failing after 2250 cycles subjected to identical fatigue testing conditions (c) Normalized stiff-
ness degradation of reference and test specimen from MTS measurements.

Reliability assessment of fatigue behavior is more challenging in composite materials,
compared to metals, owing to poorly understood nature of damage propagation. Unlike

metals, cyclic loading in composites results in simultaenous formation of complex damages
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consisting of matrix cracking, fiber breakage and delamination, which do not follow known
crack propagation models such as Paris-Forman|157| or Paris-Erdogan law [122]. Most im-
portantly, variations in composite manufacturing such as improper resin mixing proportions
or presence of impurities results in large differences of tensile stiffness from one specimen to
another, even when subjected to exact same loading conditions. As shown in figure 9.1 (a)
and (b), two glass fiber-reinforced polymers (GFRP) specimens manufactured under iden-
tical conditions and subjected to same fatigue load may fail at significantly different time
instants. Normalized stiffness degradation curves for the reference and the test specimen
under identical loading conditions, computed from mechanical testing system (MTS), are
plotted in figure 9.1 (c¢). Although belonging to the same GFRP plate, minor variations
in number of fibers or fiber orientation responsible for specimen’s tensile strength lead to
significant difference in failure time of the two specimens. Therefore, life-cycle studies in-
ferred from mechanical testing on a reference specimen may no longer remain valid for a test

sample which poses serious issue on RUL prediction in composite structures.
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Figure 9.2: (a) Digital camera image of GFRP sample with delamination, under Mode I
fracture test (b) Low-frequency eddy current inspection usng TR coil at 10MHz(c) Near-
field microwave scan at 7.5GHz (d)Optical transmission scan at 2.5mW .

One possible way to overcome these issues is to use multiple NDE sensors for tracking
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defects in a composite structure [158]. Different sensitivity of individual NDE techniques can
provide distinct inferences of the damage mechanism, which if judiciously combined can pre-
cisely describe the overall stiffness degradation of the structure. However, individual sensor
information may be incoherent, uncertain, fuzzy or even in conflict which demands devel-
opment of robust data fusion methods to estimate the true damage status of the specimen.
Figure 9.2 shows a GFRP delaminated sample inspected using three NDE techniques: (a)
low-frequency eddy current inspection usng TR coil at 10MHz, (b) near-field microwave scan
at 7.50GHz and (c) optical transmission scan at 2.5mW. The length of delamination inferred
from each of these techniques are not equal to the true delamination length (lg = 7em) and
even varies from each other. Therefore, using only one technique is not ideal for accurate
prognosis since incorrect evaluation of damage length at an observation time leads to in-
correct prediction of length at a future time instant. In such cases, fusion of information
gathered from multiple NDE sensors is a possible solution for reducing prediction errors.
Despite several multi-sensor fusion processes been reported in literature [159, 160, 161],
implementation of effective data fusion systems for prediction of composite stiffness is non-
trivial. In practice, if individual NDE data are biased and their underlying uncertainty or
variance is not taken into account, prognosis based on fused data may produce worse results
than what could be obtained from the "best’ sensor [1]. Moreover, some of the existing data
fusion techniques such as the cluster based fusion|162] assumes measurements at consecutive
time instants to be statistically independent which is specifically not applicable in damage
prognostics. In the case of composites where the structure deteriorates from its pristine state
to total failure, correlation exists between NDE observations at consecutive time instants
which needs to be incorporated into the fusion methodology. Besides, cluster based fusion

approaches [162, 163] are able to provide accurate prediction results only when data from a
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large number of sensors are available since number of clusters is usually selected as Ng/3, Ny
being the number of sensors. Since NDE of composites in automotive or aviation structures
is usually an expensive and time-consuming process, most industrial applications rely on
inspection from 1 or 2 NDE systems and therefore demand a data fusion technique for fewer
sensor data.

Using multiple sensors for NDE inspection raises two main challenges. Firstly, sensors
may have different sensitivity at different stages of the degradation. For example, thermal
camera is often incapable of imaging small cracks in metals at their initial stage but can
sense them once the crack is of a substantial size [164]. Thus, contribution of measurements
from different sensors to the fused path should change with time. This brings in the notion of
associating dynamic and non-uniform weights to individual sensors while generating the fused
path. Secondly, signals collected from multiple sensors are often correlated and each signal
only contains partial information of the degraded unit. A good example for such scenarios
is the one where a sample is inspected using optical and acoustic technique. Regular optical
methods do not provide information regarding the depth of volumetric defects in samples
which can be obtained from the acoustic methods. In such cases, data fusion methods should
be designed for effective combination of information from multiple sensors to achieve better
characterization of system health. Besides, since all sensors measure the same degradation
process, their measurements are highly correlated and hence should be treated jointly.

In this chapter, a multi-sensor prognosis methodology is proposed based on joint like-
lihood computation in particle filtering framework to predict residual stiffness of a GFRP
specimen subjected to fatigue. Three major contributions in reliability assessment of com-
posite materials are demonstrated through this study- 1) a paris-paris model is discussed for

potential modeling of normalized stiffness degradation of GFRP tensile coupon under cyclic
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loading conditions, which have not been reported before, 2) improvement in prediction re-
sults using two independent NDE sensors over single-sensor prognosis is established, both
in RUL computation as well as prediction error domain and 3) possible reduction in num-
ber of particles used in particle filters is achieved by implementing multi-sensor prognosis
based on joint likelihood computation which may result in significant benefit in lowering the

computation time and cost.

9.2 Literature Review of Data Fusion Techniques

Historically, data fusion techniques were primarily developed for military applications
(stated in Table 9.1 ) such as automated target recognition, remote sensing, battlefield
surveillance, and automated threat recognition systems. Later the techniques were adopted
in several civilian applications as summarized in Table 9.2. For our study, we focus on the
application of data fusion for condition based maintenance of structures as an extension to

existing NDE technology.

* Detection, tracking, * M signal * Hundreds of nautical + Ships
identification of * Acoustic signals miles *  Aircraft
Ocean Surveillance largets/cvents * Nuclear related * Air/surface/sub- *  Submannes
* Derived observations surface *  Ground-based
(wake) *  Ocean-based
= Detection, tracking, *  EM radiation « Hundreds of miles *  Ground-based
Air-to-Air and Surface-to- identification of (strategic) *  Awraaft
Air Defense aircraft *  Miles (tactical) *  Ships
Battle * Detection and *  EM radiation * Tens (o hundreds of *  Ground-based
attlefield [ntelligence, . . des s i
Surveillance, and Target identification of n‘nln about a s Aircraft
Acquisition potential ground baulefield
target
* Detection of + EM radiation + Global «  Satellif =
indications of * Nuclear related *  Alrcrait
Strategic Warning and impending strategic *  Ground-based
Defense actyons
= Detectionftracking of
ballistic missiles and
warheads

Table 9.1: Military applications of data fusion, from [1].

Measurement data can be combined or fused at
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* Detection, * EM signal *  Micrascopic «  Ships
characterization of *  Acoustic signals inspection to hundreds Aircraft
Condition-Based system faults *  Magnetic of feet Ground-based (c.g.,
Maintenance * R Jations for | « Temp factory)
maintenance + Xerays
corrective actions +  Vibration
* Location, identifica « TV *  Microscopic (o tens of Robot body
Robotics tion of obstacles, and ¢ Acoustic signals feet about the robot
objects 1o be * EM signals
manipulated o Xorays
+ Location, identifica- * Xerays *  Human body volume Labora.ory
tion of tumors, « NMR
abnormalities, and *  Temperature
Medical Diagnostics disease « IR
«  Visual inspection
¢+ Chemical/iological
data
+ Identification, location | + SAR + Hundreds of miles «  Satellites
of natural phenomena *  Seismic *  Miles (site *  Aircraft
Environmental (earthquakes, *  EM radiation monitoring) *  Ground-based
Monitoring weather) +  Core samples +  Underground samples
¢ Chemical/iological
data
Table 9.2: Non-military applications of data fusion, from [1].

fusion, feature level fusion or decision level fusion [165, 166]. Data level fusion combines the
raw data measured by individual sensors to form an unified indicator [159, 160|. Data level
fusion can be implemented when the sensors are commensurate, i.e they have similar output
measurements such as combining data from two acoustic sensors or two eddy current sensors
acquiring data at different frequencies. Feature level fusion is combination of representative
features from sensor data and concatenating them to form a new feature vector which is
then fed to pattern recognition approaches such as neural network, clustering etc [161, 167].
The most common example of feature level fusion is the human cognitive system. Finally,
decision level fusion is obtained by combining inferences from individual sensors after each
sensor has made a preliminary decision in order to extract more comprehensive information
[168]. In the case of condition based maintenance by NDE techniques, decision level fusion
combines damage propagation path predicted by multiple NDE sensors and then computes
the final residual life using the fused path.

Several statistical tools and signal processing techniques have been incorporated in the

past for the objective of data fusion. Typical decision level fusion include evidential reason-
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ing [169], Bayesian inference [170], and Dempster—Shafer’s method|[171]. Besides, pattern
recognition approaches have been incorporated in decision level fusion such as artificial neu-
ral network based fusion [172] and cluster based fusion [162]. A detailed review of popular
data fusion techniques can be found in [1].

Despite these qualitative notions and quantitative calculations of improved system oper-
ation by using multiple sensors and fusion processes, actual implementation of effective data
fusion systems is not trivial at all. In practice, fusion of sensor data may produce worse
results than what could be obtained from the ’best’ sensor. This can happen especially
when individual sensor data are biased and their underlying uncertainty or variance is not
taken into account while fusing their decisions. Moreover, some of the existing data fusion
techniques such as the cluster based fusion only considers the measurements at a particular
time instant which is specifically not applicable in prognostics. Correlations exist between
observations from sensors at consecutive time instants which needs to be incorporated into
the fusion methodology. In this chapter, all the above challenges are addressed by develop-
ing a data fusion framework based on weighted combination of sensor data depending on its
consistency and quality of inspection signal. The methodology will be implemented for prog-
nosis and reliability analysis of delamination growth in glass fiber reinforced polymer(GFRP)

composites subjected to fatigue testing.

9.3 Joint Likelihood Computation in Particle Filtering

In this study, integrated prognostics under particle filtering framework is implemented
for prediction of stiffness degradation in composites. Similar to prediction of impact damage

area in GFRP described in chapter 7 [149], stiffness (s) degradation in GFRP tensile coupons
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caused by fatigue is modeled according to the Paris-Paris model [123]. When composites are
subjected to tensile loading, different damages occur in sequential phases; the matrix begins
to crack at the initial stages of fatigue followed by delamination growth during mid-life and
fiber breakage towards the end-of-life (EOL)[138]. Since matrix stiffness is relatively lower
than fiber strength in composites, overall structural stiffness drops rapidly in the first few
load cycles and then decreases at a lower rate until failure. Such a stiffness degradation curve
can therefore be described by the Paris-Paris model based on Piecewise-deterministic Markov
processes (PDMPS) where Paris law is described by two sets of parameters (my, Cq, mo, C9)

before and after a transition time N*, denoted by equation 9.1.

ds C1(Y/ms)", if N < N* o)

dN
Co (Yo/ms)"2 | if N > N*

Periodic stiffness values obtained from NDE measurements, denoted by z;, are incor-
porated for updation of model parameters where z;. is considered as noisy estimate of true

stiffness value sy of the composite specimen at time instant 77..

2 = S + Wi (9.2)

WE ~ N(O, 0‘2) (9'3>

In existing PF algorithm, distribution of i particle is updated based on its likelihood given
the evidence or the measurement data z;,, as denoted in equation 9.4. It is important to note

that different Paris law parameters {m1,C1} and {mo, Co} are selected before and after the
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loading cycle N}, crosses the ’jump’ cycle N*.

L(z ysi)_;ex 1 M 2 (9.4)

where,

2
&= [ |1+ (%) (9.5)

P = [sp] - %(5};)2 (9.6)

In order to incorporate data from multiple NDE sources, likelihood of particles are com-
puted according to the principle of Bayesian network (see Appendix A.), as depicted in
figure 9.3. For multi-sensor NDE systems, if true stiffness parameter 3’}% of a structure is
known, evidence from individual NDE techniques {zi,zi, ...,zljy} can be considered to be
statistically independent. For example, a structure with a particular stiffness can be imaged
using NDE sensor 1 as well as NDE sensor 2. Owing to difference in physics of the NDE
methods, features extracted from individual NDE signals can be different, yet both can be
used to characterize the same structural stiffness. Any change in the stiffness value extracted
from one sensor image does not affect stiffness measurement from second sensor. Therefore,
according to the theory of conditional independence, the joint likelihood for ith particle can
be computed from M measurements using equation 9.7, where individual likelihoods are
obtained using equation 9.4 -9.6. Additional advantage of this approach lies in the fact that

single sensor likelihood is computed incorporating the model and measurement noise of the

corresponding NDE sensor which facilitates dynamic updating of weights from individual
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sensors on the resultant stiffness estimation.

L(zé,zg,.. I|sk :H Zk;|3k (9.7)

At k" jteration

Particles

Measurements

Figure 9.3: Bayesian network in multi-sensor particle filtering framework.

It should be noted that the assumption of conditional independence remains valid only
when different NDE sensors are used for inspection of same structural stiffness. If multiple
features are extracted from the same NDE result (eg: eddy current measurements obtained
at more than one frequencies) and implemented into the multi-sensor framework, conditional
independence between measurements will not be applicable. In such cases, correlation be-
tween each measurement has to be considered while computing the joint likelihood of each
particle.

As described in chapter 6, resampling in PF algorithm is achieved through inverse CDF
method such that particles with likelihood greater than a random number generated from
U(0,1) are duplicated and others are discarded [102]|. In this study, it is assumed that the
end-of-life (EOL) of the composite structure is known a-priori from previous experiments
for a specific geometry and material. Under fatigue tests, GFRP specimens failed at 30%
of initial stiffness obtained at pristine condition. The stiffness model parameters 6, are

updated upto k = L iterations, where L is the total number of observed measurements.
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After L iterations, future stiffness is predicted using equations 7.6 until it reaches 30% of
initial stiffness. RUL after L iterations is hence computed as RUL, = (Lo, — L) cycles
where Lpor, is the load cycle at EOL. PDF of RUL is generated by computing the RUL
of all the particles and the RUL median and mean along with its confidence intervals are

calculated from the RUL’s PDF.

9.4 Experimental set-up

9.4.1 Specimen Geometry and Material

For our experiment, four-layered (0/90) GFRP specimens were fabricated using Vac-
uum Assisted Resin Transfer Molding (VARTM) technique. The reinforcement consisted of
S2-glass plain weave fabric with areal weight of 818¢g/ m? provided by Owens Corning and dis-
tribution medium comprising Resinflow 60 LDPE/HDPE blend fabric obtained from Airtech
Advanced Materials Group. A two part toughened epoxy resin ,SC — 15, was used from Ap-
plied Poleramic . The GFRP plate (150 x 300mm?) was manufactured in a 609.6 x 914.4mm?
aluminum mold with point injection and point venting. After the glass fabric with resin
transfer medium were placed on the mold and sealed using a vacuum bag and sealant tape,
the reinforcement was infused under vacuum at 29 in-Hg following by curing in a convection
oven at 60° C for two hours and post-curing at 94°C for four hours. Finally, open-hole tensile
coupons with dimensions of 250mm x 25mm x 2mm and center hole diameter of 6mm were
cut from the manufactured GFRP plate using a water-cooled diamond saw, according to

ASTMD7615/D7615M standard, as depicted in Figure 9.6 (a).
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9.4.2 Fatigue testing of GFRP under tensile loading

In this chapter, effect of fatigue loading on stiffness degradation is studied on an open-
hole GFRP sample under tension-tension cyclic load on a 810 Material Test System (MTS)
machine with 50kN load cell, according to ASTM D3479/D3479M standard . The exper-
imental setup for open-hole GFRP sample subjected to cyclic loading in MTS machine is
illustrated in Figure 9.4 with a laser extensometer to track the axial displacement while the
sample is under load. At first, average failure load (F7) where the specimen breaks was
recorded by introducing monotonic loading to five similar samples. Then a test sample was
subjected to cyclic loading at constant load equal to 70% of Fy , frequency of 3 Hz and stress
ratio of 0.1. Axial load (F) and axial displacement (AL) was continuously recorded by the

MTS measurement and laser extensometer respectively.

Figure 9.4: (a) Experimental setup for tensile open-hole GFRP coupon subjected to cyclic

loading in MTS machine, (b) Healthy and broken GFRP coupons subjecte to fatigue.
Tensile stiffness of any material is given by its Young’s modulus (FE), as defined by

equation 9.8, where € is the axial strain undergone by the specimen subjected to axial stress

o, F'is the constant load applied to the specimen in axial direction, A is the cross-sectional

146



area of sample perpendicular to the direction of applied force, L is the original length of the
sample and AL denotes the change in specimen length caused by loading. Cross-sectional
area (A) and original length (L) of the specimen are constant, therefore the stiffness is
directly proportional to the ratio of the axial load and change in length of the specimen
under cyclic loading.

o F_/A F

E="2

e  AL/L AL (9:8)

For a composite specimen under cyclic loading, stiffness modulus S is computed as the slope
of the load — displacement (or stress — strain) hysteresis loop ,i.e., the slope of the line
connecting the maximum stress and minimum stress point[173, 174]. As depicted in figure
9.5 (a), the slope of hysteresis loop reduces with increasing load cycles. Stiffness computed
from this slope, versus number of loading cycles for a training GFRP specimen is plotted in
Figure 9.5 (b). The stiffness modulus was normalized with respect to the maximum stiffness
modulus (Sp) computed in its pristine condition. Details of computing tensile strength of

composite material is derived in Appendix B.

9.5 NDE data acquisition

9.5.1 Fatigue damage detection by OTS)

One of the NDE sensors used in this study is based on an optical transmission scanning
(OTS) system developed by Khomenko et al. [118]. Formation of air gaps inside GFRP ma-
terial introduces changes in its optical properties such as radiation absorption and scattering,
which are captured by the OTS system. Earlier works have demonstrated the capability of

OTS to image impact damages in GFRP specimens and allowed for accurate characterization
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of multiple delaminations and their contours [120, 149|. The results obtained demonstrated
excellent agreement with camera images using dye penetrant. Besides, OTS showed great
potential for quality control (QC) and other crucial NDE applications such as characteriza-

tion of thickness variations, improper resin proportions and mixing and inclusions of foreign

objects.
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Figure 9.5: (a) Stress-strain hysteresis loop of GFRP specimen at different intervals of fatigue
cycles (b) Stress-strain slope or stiffness modulus (.5) as a function of number of load cycles.

In this study, the experimental setup used for NDE data acquisition consisted of an
iBeam-smart-640s laser diode source emitting light of wavelength 640nm, 1.5mm beam
diameter and maximum output power of 150mW. A photodetector underneath the GFRP
specimen recorded the through-transmission power and mapped to 0 — 10V value such that
direct transmission in air without specimen corresponded to 10V. The laser power was fixed
at 1.9mWV in order to obtain highest signal-to-noise ratio and to fix transmission voltage
close to 9.8V at the healthy sections of the sample. These specifications provided high
contrast images of damaged or delaminated regions in the specimen, as shown in Figure 9.6.

The goal of NDE prognosis is to infer stiffness of the structure from multi-modal NDE

techniques including OTS and GW collected at periodic intervals of fatigue loading, starting
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Figure 9.6: (a) Healthy open-hole GFRP coupon (b) OTS image of healthy GFRP coupon
(c) OTS image of GFRP coupon after 900 fatigue cycles at 70% of failure load and stress
ratio of 0.1.

from its pristine condition up to end-of-life. OTS images for an open-hole GFRP coupon
(training specimen) subjected to fatigue test in the MTS machine, are presented in figure
9.7. At cyclic loading of 70% of failure load and load ratio of 0.1, the specimen failed after
1386 cycles.

Strong indications on the OTS images reflect the presence of air gap hidden inside the
composite layers caused by continuos cyclic loading, which eventally leads to loss of stiffness
in the composite matrix. Pixels associated with damage were extracted from the OTS images
via histogram thresholding [175]. It is known from structural mechanics theory, the open
hole in a tensile coupon results in stress concentration zone around the hole and the material
starts to crack (or delaminate in case of composites) surrounding the hole. The OTS images
supports the above theory and therefore a 100mm length of the sample is considered for
damage area computation, keeping the hole at the center. Damage area computed for each

of the OTS images in figure 9.7 is plotted in Figure 9.8 (a).
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Figure 9.7: OTS images of an open-holed GFRP coupon under fatigue loading :(a) Healthy
(0 cycles) (b)200 cycles (¢)400 cycles (d) 600 cycles (e) 800 cycles (f) 900 cycles (g) 1000

40 {h) 60

? 20 ) {b 60 80 1po

i e 2,

1] - 20 40 &0 80 100
(e)

cycles (h) 1100 cycles (i) 1200 cycles (j) Total failure at 1386 cycles.

Damage area from OTS

Figure 9.8: (a) Increase in delamination area in open-holed GFRP coupon under fatigue
loading, from OTS measurements (b)Correlation between normalized stiffness from MTS
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measurements and delamination area from OTS images.

Normalized stiffness can be interpreted from the damage area in an OTS image using

calibration curve obtained from training specimen, depicted in Figure 9.8 (b). It is important

150

400 600 800 1000 1200 1400
Damage ?ﬁ? from OTS



to repeat the experiments on multiple specimens in order to assess the reproducibility of the
NDE method as well as calculate underlying model uncertainty and measurement noise
variance. A second order polynomial curve, given by equation 9.9, is implemented to define
the relationship between normalized stiffness (S) and damage area (Aropg) from OTS image.
For the set of GFRP specimens used in our study, the parameters of the polynomial curve

were computed as p; = —1.12 x 1077, py = —3.66 x 10~% and p3 = 1.014.

S = p1(Arors)? + p2(Arors) + p3 (9.9)

9.5.2 Fatigue damage detection by GW

Guided wave (GW) sensing technique is an in-situ NDE method which captures the
change in acoustic waves propagating through structures in presence of an anomaly [140,
141, 121]. Capability of GW sensing for detection of fatigue damage in GFRP adhesive
joints via surface mounted PZT sensors have been successfully established in chapter 8. In
this study, GW sensing is implemented via a sensing skin with pressure sensitive adhesive.
In stead of mounting PZT sensors on the specimen, the transducers are embedded on a
sensing skin with pressure sensitive adhesive for repeated bonding and debonding as shown
in Fig. 9.9. The experimental setup used for GW inspection of GFRP specimen is shown in
figure 9.9 (a). Gaussian pulse with 50 KHz central frequency was generated using function
generator to excite the transmitter PZT.

In comparison to permanently bonded transducers, these sensing skins are reusable. Be-
sides, distance between the two transducers are held constant irrespective of any plastic
(permanent) strain in the specimen. Neglecting plastic strain in the material, the observed

time of flight (TOF) change in guided wave signals can be solely accounted to the speci-
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Figure 9.9: Guided Wave inspection of GFRP specimen (a) Experimental setup (b)
Schematic of pressure sensitive skin.

men stiffness degradation which arises from various source of damage such as fiber breakage,
matrix cracking, delamination etc. Group velocity of acoustic wave (c) traversing through
specimen depends on its stiffness along longitudinal direction given by its Young’s modulus
E7 according to equation 9.10. v is Poisson’s ratio, p is density, w is angular frequency and
d is the thickness of the plate. Assuming the change in Poisson’s ratio to be nominal, for a
fixed frequency and specimen geometry, the velocity of acoustic waves decreases with reduc-
tion of its stiffness modulus. Given the distance between PZT transducers do not change in

the sensing skin, time taken by the GW signal to reach the receiver PZT sensor is more in a
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damaged GFRP specimen. Hence, change in TOF of GW signals serve as suitable indicator

of stiffness degradation.

_ £
c=2 m\/m (9.10)

GW data was collected from the open-hole GFRP coupon in intermediate load cycles as it
gradually progressed from healthy to total failure, with the help of the GW sensing skin. Raw
ultrasonic signals were averaged 64 times prior to plotting and were filtered with a bandpass
filter with cut off frequencies of 5 kHz and 400 kHz. As the composite specimen underwent
matrix cracking followed by formation of delaminaion and fiber breakage, structural stiffness
reduced which caused a phase-shift in the group Sy mode of the GW signals. A time-shift
was observed in the GW signal at the receiver PZT, as depicted in figure 9.10 . ATOF was

hence computed at every load cycle interval and plotted in figure 9.11 (a).
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Figure 9.10: (a)Time shift in GW signals in progressively damaged GFRP specimen under
fatigue cycles (b) Enlarged region in Sy mode of received GW signals.

Similar to OTS sensing, normalized stiffness obtained from M'TS measurements could
be correlated with the GW signal features. On contrary to OTS, GW signal propagatign
through the damaged region of composite plate provids a more global assessment of damage
in composites including effect of matrix cracking, delamination and fibre breakage on the

overall stiffness reduction. A 2nd order polynomial curve is fitted on the correlation curves,
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Figure 9.11: (a) Increase in ATOF in open-holed GFRP coupon under fatigue loading, from
GW measurements (b) Correlation between normalized stiffness from MTS measurements
and delamination area from GW images.

as depicted in figure 9.11 (b) and the calibration coeffcients are obtained from the training

specimens as p; = —1.5 X 109, po = —6.5 X 103 and p3 = 1.009.

S = pi1(ATOF)? + pyATOF) + p3 (9.11)

9.6 Prognosis Results

Particle filtering based prognosis was applied to the OTS and GW data collected from
GFRP specimens subjected to fatigue testing and the prediction results are reported in this
section. Initial distribution of unknown parameters (@) and correlation coefficients(py, p2, p3)
of NDE data and stiffness measured from MTS system were obtained from training sample.
PF algorithm with the estimated parameters was then implemented in an identical test where
GFRP specimen was subjected to fatigue loading with conditions as recorded in table 9.3.

Starting from its pristine condition, the test specimen was subjected to progressive fa-

tigue degradation until it failed after 2250 cycles. Stiffness computed from measurements
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1|2 |3 |4 |5 |6 |7 | 8|9 |10 11|12 13| 14| 15| 16

t;a;' cyeles | 4 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 950 | 1200 | 1400 | 1650 | 1900 | 2000 | 2250
k
Norm.MTS | 1 | 97 | 0.3 | 091 | 087|077 | 071 | 0.64 | 0.63 | 0.51 | 0.47 | 0.46 | 0.42 | 035 | 0.32 | 0.29
meas. (Sg)
Norm. OTS

ors- | 1 098|092 |087|0.80|0.78|070|0.65]|062|058| 052|050 041 | 0323|030 | 0.27
meas.(z; °)
Norm. GW

ew~ | 1 099090087 |082|080|072|067|060|057|050]|046| 039 | 035 | 030 | 0.28
meas.(z;" )
Failure Load = 25.5 kN Maximum stress= 70% of Failure Stress Stress ratio =0.1 Frequency = 3Hz

Table 9.3: Loading cycles for intermediate OTS and GW inspections on test GFRP specimen.

from the MTS and laser extensometer were considered as the ground truth in this study.
Benefit of using two NDE sensor data over single sensor prognosis is assessed and results
from implementing the proposed joint likelihood computation approach is compared with

prediction on average of sensor measurements.

9.6.1 PF prognosis on OTS data

Stiffness computed from OTS measurements {2975} using equation 9.9 were used to
predict unknown parameters in Paris-Paris model describing the stiffness degradation in
fatigue-induced GFRP test specimen. Initial distribution of parameters were obtained from

training dataset and set as:

so ~ N(0.01, (0.001)?)

mig ~ N4, (0.6)%%1) log C1g ~ N(=10, (0.1)?)
mag ~ N(0.3, (0.01)2),log Coy ~ N(—10, (0.1)?) (9.12)

T§ ~ N(750, (10)%)

w ~ N(0.09, (0.001))
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Initial distribution of noise was characterized based on experimental evidence of NDE
measurements on training specimens. Prediction results with different number of OTS ob-
servations are presented in figure 9.12. The likelihood of each particle in the PF algorithm is
updated according to the single-sensor prognosis framework, as given in equation 9.13. With
increasing number of available OTS measurements, the predicted stiffness curve converges to
the true stiffness calculated from MTS measurements along with decreasing 95% confidence

intervals.

S\ 2
. 1 {1n ZOTS Y/
L(z9T5|st) = —= (M (9.13)

1
—————exp

Similar to training specimen, stiffness prediction of the test specimen was continued up
till the composite stiffness reduced to less than 30% of its initial stiffness in pristine condition.
The estimated RUL values at all fatigue stages along with their 95% confidence intervals are
illustrated in figure 9.13. When 2 OTS observations were available, the specimen had already
been subjected to 100 cycles, therefore the true RUL was computed as 2250 — 1000 = 2150
cycles whereas true RUL at the end of 2250 cycles was 0 since it reached its EOL. Prediction
accuracy of RUL in terms of normalized mean squared error (NRMSE), according to equation
9.14, was 0.1761 where O is the number of observations. Since RUL predicted from OTS
measurements is lower than its true value for most of the cases, it does not lead to usage
of GFRP strucutre beyond its safety limit. However, portion of its residual life may remain

unexploited due to underestimation of RUL by single sensor NDE.

59 (RUL; — RUL;)
NRMSE = ok ZL(RUL, :

mean(RU L;) (9.14)
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Figure 9.12: Prediction of stiffness degradation curve based on different number of available
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9.6.2 PF prognosis on GW data

Prediction results of stiffness reduction in GFRP specimen via implementation of PF
based prognosis on GW sensing data is presented in this section. Normalized stiffness is
computed from the ATOF of GW received signals using the calibration coefficients in equa-
tion 9.11. Particles were updated in the PF approach by resampling according to their
likelihood values computed by equation 9.13, with {2975} being replaced by {zE"'} or the
stiffness values of the specimen at different stages of fatigue inferred from GW measurements.
Prediction results of future stiffness values using the Paris-Paris model are denoted in figure
9.14. Similar to OTS data, initial noise distribution was characterized from GW experiments
on training specimens. Initial distribution of other parameters in PF algorithm were kept
unchanged, in order to compare the prediction capability of the two NDE techniques.

It is obvious from figure 9.14 that as number of available measurements increases, the
predicted stiffness curve becomes more representative of the true stiffness values. the con-
fidence interval reduces. Similar to OTS measurement results, the RUL is computed for
different number of available GW measurements assuming that the specimen’s EOL occurs
at 2250 cycles. Figure 9.15 presents the accuracy of RUL estimation compared to the true
values at every intermediate stage of fatigue testing. NRMSE for RUL prediction using GW
measurements was obtained as 0.1441. Comparing figures 9.13 and 9.15, it can be concluded
that GW measurements can describe the damage growth progression more accurately than
OTS data, the reason being that GW data provide global assessment of damage status in-
cluding matrix cracks, fiber breakage and delamination whereas, OTS system captures effect
of delamination on stiffness degradation. Diagnosis of stiffness from OTS measurements

lacks the contribution from matrix cracking and fiber breakage, thereby leading to higher
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9.6.3 PF prognosis on Average of Two Sensors data

With an aim to exploit the benefits of both NDE sensors, PF based prognosis was imple-
mented on a dataset obtained by averaging OTS and GW measurements at every time-step.

The likelihood for each particle in the PF framework was computed according to equation

9.13 with {2975} being replaced by {z4VE}, where {24V is:

{ZAVG} _ {ZOTS} ;_ {ZGW} (915)

Keeping all other parameters of the Paris-Paris model unchanged, future stiffness val-
ues were predicted, given varying number of known measurements and the corresponding
estimated stiffness curves are denoted in Figure 9.16. As expected, the predicted curve was
closer to the true stiffness computed from MTS measurements with increasing number of
observations. The corresponding RUL prediction for different observed measurements using
average data is presented in Figure 9.17. NRMSE of predicted RUL was computed as 0.1507
which shows that a simple averaging of two sensor data does not provide higher accuracy in
its prognosis results. Stiffness degradation in a composite material is inherently a dynamic
process which cannot be captured by static weighted combination of the two sensor data.
Accuracy of OTS and GW measurements varies at different load cycles which require dy-
namic updating of weights on the final prediction result. On the contrary, averaging lead to

higher NRMSE of RUL prediction compared to that of GW measurements.
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Figure 9.16: Prediction of stiffness degradation curve based on different number of available
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(NRMSE=0.1507).

9.6.4 PF Prognosis on Two Sensor Data by Joint Likelihood Com-
putation

In a GFRP specimen with a open-hole at the center undergoing fatigue test, overall

stiffness reduction can be accredited to thel%%mage growth around the hole. Particularly



for composites, damage includes multiple structural phenomenon occuring simultaneously.
However analysing OTS and GW data, it was observed that the individual sensors only
provided partial representation of damage status inside a GFRP specimen subjected to
fatigue. On one hand, stiffness inferred from OTS measurements accounted for the increase
in delamination area around the hole, whereas on the other hand, stiffness computed from
GW measurements captured overall damage mechanism throughout the specimen length and
not limited to the region around hole. Besides, measurements from individual NDE sensors
were affected by variable noise at every inspection. Since different sensor data provides
different contribution to the stiffness reduction, it is crucial to implement joint likelihood in

Bayesian network within the PF algorithm, for this application.
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Figure 9.18: Prediction of stiffness degradation curve based on different number of available
measurements using joint likelihood computation in Paris-Paris model (a) n=4, (b) n=8 (c)
n—12 (d) n=16.
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Using same parameters as before, joint likelihood particles at every iteration is calculated
by equation 9.13, replacing {075} with {z7L} where L{z/L} is computed according to

conditional independence of OTS and GW measurements in Bayesian networks.

L{z"1} = L{zO0T5Y x L{z6") (9.16)

As shown in figure 9.18, predicted stiffness by joint likelihood converges closer to the ground
truth with increasing number of observed measurements. Moreover, compared to the previ-
ous results, the most accurate RUL prognosis is achieved, with NRMSEof 0.065 when joint
likelihood is taken into account, as denoted in figure 9.19. The mean of RUL distribution
lied within 20% error bound from true values with exact matching of median RUL at most
observation cycles. The primary reason for higher accuracy of RUL prognosis by joint likeli-
hood computation of two sensor data is due to the fact that this approach allowed dynamic
update of weights contributing to the true stiffness value unlike simple averaging of two
data. Especially at earlier stages of fatigue when fewer measurements were available, deci-
sion fusion from both sensors with unequal weights based on their stiffness model uncertainty
and measurement noise lead to more accurate prediction of stiffness degradation in GFRP
specimen.

For additional comparison between the prognosis approaches, NRMSE is calculated for
every predicted stiffness curve using different number of observed measurements and plotted
in figure 9.20. Benefit of proposed joint likelihood based PF algorithm over other approaches
is evident from Fig. 9.20 (a) especially in the earlier stages of fatigue. Further, the final
error after 16 measurements reaches 3%, thereby reinforcing the proposed method as a valid

prediction technique.
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Figure 9.20: (a) Error comparison for varying number of available OTS and GW measure-
ments, (b) Error comparison for varying number of particles in PF algorithm.

It is important to note that increasing number of particles in PF algorithm reduces the
estimation error, but leads to higher computation time [176]. Advantage of joint likelihood
in PF algorithm in producing accurate prediction results at lower particle count compared
to the other single-sensor prognosis is depicted in figure 9.20 (b). Implementing the joint
likelihood approach on 16 observations, NRMSE reaches to 0.04 using 50 particles whereas
it takes almost 500 particles for single sensor or average data prognosis. Computation time

is doubled when 500 particles are used compared to 50 particles. Besides, averaging of
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two measurements does not guarantee higher estimation accuracy compared to the single
sensor data. However, joint likelihood computation ensures the lowest error for all particle
counts. Therefore, the proposed method of computing joint likelihood of measurements from
multi-modal NDE system demonstrates an added advantage of reducing particle count in PF
algorithm. Reduction of particles have significant impact in reducing overall computation

time and resources, thereby achieving real-time prognosis of industrial structures.
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Chapter 10

Conclusion

In this study, the importance of self evaluation in existing automated NDE signal analysis
system has been discussed. Sources of uncertainties in a typical NDE signal classification
system and their effects on classification confidence have been identified. Benefits of Bayes
posterior probability as a strong measure of reliability has been implemented which captures
the effect of interclass distance and intra-class variance in the feature space. In addition
to that, effect of inspection noise has been incorporated into confidence calculation. It has
been shown that bootstrapping and weighting Bayes posterior probability with the noise
statistics of the test data achieves a more comprehensive confidence metric associated with
classification of noisy NDE data. Further, implementation of the proposed approach on
steam generator tube inspection data shows possible application of the method.

In future, other factors of reliability in NDE analysis such as effect of a-priori information
about the mechanical structure and historical inspection results can be studied. Another
highly important problem to be addressed is the effect of ill-fitting of statistical model on
the data. If data does not follow normal distribution, the proposed confidence metric will fail
to capture the reliability of classification results accurately. In such cases, a more adaptive
reliability measure based on non-parametric statistical model is necessary. The challenging
task of evaluating classification confidence with limited data, missing data or presence of

outliers should be investigated.
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The second part of the thesis presents an NDE approach for condition based maintenance
and reliability analysis of structures under operation. Prediction of delamination growth in
GFRP samples subjected to low velocity impacts is discussed. Images from optical trans-
mission scanning system were used for extracting delamination area from impacted samples
which is a rapid and non contact scanning technique in addition to being cost effective and
easy to be implemented in industries. Results from implementation of particle filtering ap-
proach to estimate delamination propagation path and remaining useful lifetime of a GFRP
sample are promising. Due to unique characteristic of GFRP resin, the delamination area
growth had a sudden ’jump’ at the transition impact energy which made the prediction all
the more challenging. Applying two Paris models with different parameters for capturing the
‘jump’ instead of a single Paris model enhances the prognosis performance of the approach
and refined estimation of the delamination propagation path and RUL.

Despite striking benefits of the Paris-Paris model, one of the limitations of this model is
that it strongly depends on the initial distribution of the ’jump’ energy. If the jump’ energy
is highly different from the true value, the model fails to correctly estimate the transition and
yields a sub-optimal result and hence predicted delamination curve is inaccurate. Moreover
the delamination path could not be estimated when fewer measurements were available
due to lack of enough information to predict the ’jump’ energy. In future, the proposed
algorithm should be investigated on other composite samples by incorporating additional
factors affecting inter-laminar delamination such as complex damage growth due to vibration
following impacts or complicated specimen geometry. In such cases, the damage growth
model has to be modified without changing the overall framework of the prediction approach.

An obvious extension to the NDE prognostics is the use of multi-sensor information to

refine the prediction of residual life of a system under operation. It is evident from prognosis
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results hat OTS and GW measurements complement each other for estimating composite’s
stiffness from NDE methods. OTS can image delamination accurately but cannot detect
matrix cracking which occurs at the initial stages of fatigue. On the other hand, overall
effect of matrix crack and delamination is captured within change in TOF of GW signals.
Judicious usage of both measurements enables higher prediction accuracy, even for earlier
stages of fatigue. OTS-stiffness model error is higher than GW-stiffness model error, which
can be fed into the PF model, thereby automatically adjusting fusion weights during joint
likelihood computation. PF prognosis by joint likelihood achieves highest RUL prediction
and lowest prediction error (NRMSE), thereby validating the proposed prognosis approach
based on joint likelihood computation.

Results are encouraging and can be implemented using more than 2 sensors, without
changing the Bayesian Network framework since the assumption of conditional independence
stays valid in multiple sensor framework. In future, prediction results can be further refined
by replacing empirical correlation curves between NDE features and structural stiffness with
physics-based models. Besides, Paris-Paris model should be investigated for more specimens
under varying load conditions. Overall, the proposed prognosis method can be used for

reliability assessment of any multi-sensory network across various application fields.
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Appendix A

Bayesian Networks for multi-sensor

fusion

Bayesian networks, also known as belief networks is a popular method for modeling
uncertain and complex domains such as environmental modelling [177], fault diagnosis [17§]
and forensic science [179]. Bayesian networks are a type of probabilistic graphical model
that represents a set of variables (nodes), and their conditional dependencies (arrows) via a
directed acyclic graph (DAG), as shown in figure A.1.In this example, there are M children

nodes (X1, X9, ..., Xjy) from the parent variable P.

Figure A.1: Example of Bayesian Network with children nodes (X7, Xo, ..., X;s) and their
parent node (P).

The primary advantage of Bayes network is to decompose the joint distributions of all
variables by exploiting local Markov property of variables, thereby reducing dimensionality of
the model to make it computationally feasible. Local Markov property of variables dictates

that the the joint probability density function can be written as a product of the individual
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density functions, conditional on their parent variables [180].
p(z) = H p(xv|xpa(v)) (A1)
veV

Now, for any set of random variables, the probability of any member of a joint distribution
can be calculated from conditional probabilities using the chain rule (given a topological

ordering of X) as follows:

M
P(X1 = 21 Xag = 2m) = [ P(Xo = 20| Xop1 = 2og1s s Xar = 2m)  (A2)
veV

By conditional independence of variables, for each X; which is a parent of X, the joint

likelihood can therefore be computed as:

M
P(Xy=x1,... Xy =am) = [ P(Xo = 20| X; = ) (A.3)
veV

Bayesian networks are particularly suitable for decision fusion in practical applications

owing to their favorable features such as:
e They facilitate learning about causal relationships between variables [180].
e They provide a method for avoiding overfitting of data [181]

e They can show good prediction accuracy even with rather small sample sizes [182]
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Appendix B

Stifiness of Composite Materials

Tensile load applied to any specimen stretches its material. The change in length of
the specimen with respect to its original length is termed as the strain. Now, for isotropic
materials such as metals, the relationship between stress (o) and strain (¢) is independent
of the direction of applied force. Hence, stiffness in isotropic materials can be defined by a
single parameter called Young’s modulus (E) which relates the stress and strain according

to equation B.1.

o= FEe (B.1)

Materials in which their mechanical properties differ in different directions are known to
be anisotropic. Composite materials belong to this category and therefore stiffness compu-
tation is more complicated in polymers compared to metals. For anisotropic materials, the
stress-strain behavior is given by the generalized Hooke’s law, given by equation B.2. Apart
from the Youngs modulii, material properties are also given by the Poisson’s ratio () which
is the ratio of the strain perpendicular to a given loading direction, to the strain parallel to

the given loading direction . Eg: v19 = ;—? for unixial load in direction 1.
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Figure B.1: Material directions in a specimen z = 1;y = 2; 2 = 3.
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The C matrix consisting of 36 constants is known as the generalized stiffness matrix
in which the subscripts 1 to 6 denote the six possible directions of stiffness change in the
matrix subjected to external load. 1,2 and 3 refer to the longitudinal (z) and transverse
directions (y, z) as shown in figure B.1, whereas ¢4, c5 and g denotes the strain along 2z, yz
and xy directions.

A composite with unidirectional fiber orientation can be considered as an orthotropic
material is one which has three orthogonal planes of microstructural symmetry. As ex-
plained in [183], material symmetry (equal normal stresses o1 = 03,09 = 03 , opposite shear
stresses g = —O’é) inherent in the orthotropic material reduces the number of independent
elastic constants. As a result, the stiffness matrix is reduced to nine independent elastic

constants,according to equation B.3.
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Expanding the elastic constants in terms of Youngs modulus (E), Poisson’s ratio (v) and

shear modulus (G), equation B.4 is obtained.

L Y Va 0 0 0
El EZ E3
- Vi, 1 Vi, -
-— = = 0 0 0
& E, E, E, %
&, ViV i 0 0 0 g,
s|_| B E,E oy
4 0 0 — o ||
. 2G,, o,
1
7867 O 0 O f 70-67
13
0 0 0 0 0 !
2G,,

i | (B.4)

In our application of tensile loading, only axial stress along the direction of fibers (o7)
is present. Further, in tensile coupons, the width of the specimen being very small, strains
in z direction can be neglected. Besides, in orthotropic material there is no shear coupling
with respect to the material axes, i.e., normal stresses result in normal strains only and
shear stresses result in shear strains only. Hence, by retaining only the x,y components of

normal strains and inverting the compliance matrix of equation B.4, the stiffness matrix can
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be generated as equation B.5.

o1 S11 S22 0| |&1
o9l = |S21 S99 O €9 (B.5)
o6 0 0 Ses| |<s
FE E v1oF vo1 B
where, S1] = —— &899 = 72— Sjg = —22_ — _ 2171 apnd S5 = Go.
' DL Toup9u91 P22 T Towqougy P12 = Tovjgugr — T-viavgg 66 = 712

For axial loading of a tensile GFRP specimen, its has been assumed that majority of
deformation in the specimen is contributed by material strain in the axial direction. The
Poisson’s ratio along the direction perpendicular to applied load is considered to be negligible
(v192 = 91 = 0;v13 = v31 = 0). Therefore, approximate stiffness of the specimen in axial
direction or S71 is calculated by the ratio of axial stress and strain, as given by the hysteresis
loop for a specimen undergoing tensile fatigue tests.

01

S11=FE1 = o (B.6)
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