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ABSTRACT

ANALYSIS OF COMPLEX LIFE-HISTORY DATA AND VARIABLE SELECTION IN

SURVIVAL ANALYSIS UNDER INTERVAL CENSORING

By

Daewoo Pak

Event-time data are routinely obtained from longitudinal investigations to evaluate the time to onset

and progression of chronic diseases. Such data are commonly referred to as disease life course data

and have several nontrivial complications. In many longitudinal studies, disease life course data

are subject to interval censoring, within-sampling-unit clustering, and multiplicity of event states.

Moreover, because medical studies usually collect a large number of hypothesized risk factors for

the disease, identifying pertinent determinants of the disease life course is of interest for disease

prevention and prediction.

In Chapter 1, we describe a dental caries data set from a unique longitudinal study of young

low-income urban African-American children. This data set motivates the three statistical method-

ologies developed respectively in Chapters 2-4.

In Chapter 2, we formulate a parametric frailty Markov model coupled with a likelihood-based

inference to analyze the life course data with the complications of interval censoring, within-

sampling-unit clustering and three event states. We also develop a Bayesian approach to predict

observational-unit-level future transition probabilities. Such probabilities have implications for

precision medicine.

Albeit its ease of computations, the proposed parametric method in Chapter 2 has some limita-

tions. An obvious limitation is the restrictive parametric model imposed on the baseline intensities.

Thus, in Chapter 3, we propose a similar model but with unspecified baseline intensities and develop

a penalized spline method for the model estimation. Numerical experiments demonstrate that the

proposed methods perform very well in finite samples with moderate sizes.

In Chapter 4, we propose a penalized variable selection method for interval censored data under

the Cox proportional hazards model. It conducts a penalized nonparametric maximum likelihood



estimation with an adaptive Lasso penalty, which can be implemented through a penalized EM

algorithm. The method is proved to have the oracle property. We also extend it to left truncated

and interval censored data. Our simulation studies show that the method demonstrates the oracle

property in samples of modest sizes and outperforms existing approaches in terms of many operating

characteristics. The practical utility of the approach is illustrated using the mouth-level dental caries

data introduced in Chapter 1.
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CHAPTER 1

INTRODUCTION

In medical research involving chronic diseases, it is often the practice to use a small number

of predefined clinical states, which are exhaustive and mutually exclusive contemporaneously, to

represent the spectrum of the disease. These classifications coupled with longitudinal investigations

can be used to study the transition of subjects across the spectrum of the disease, which is paramount

in understanding the life course of the condition. A good example is the joint damage in psoriatic

arthritis, where researchers typically classify subject participants four states ranging from normal to

severe states requiring surgery, in view of the reading of X-ray images (see, for example, Sutradhar &

Cook, 2008) . Many chronic diseases manifest themselves at several regions of the body, resulting in

endpoints that are potentially correlated even after conditioning on observed covariates. In diabetic

retinopathy, for instance, retinal lesions in the two eyes within a body develop dependently, due

to the two eyes being exposed to common risk factors, including genetic variants, environmental

factors, control of glucose in the blood (management of diabetes), nutritional status, etc., which may

not be fully measured. Any analysis that ignores this correlation is apt to yield biased inferences

for parameters describing the life-history of the disease, if multiple endpoints are recorded cross-

sectionally on the same subject. Finally, in many longitudinal investigations, even in studies that

aim at describing the life course of the disease, data are collected intermittently, yielding interval

censored data. For such data, the exact time of the transition from one state to another is known up

to being bracketed by two assessment times.

A good example of correlated and interval censored life-history data is in a life-course study of

tooth decay. Tooth decay medically known as dental caries is the most prevalent chronic disease

in childhood, despite being largely preventable (Selwitz et al., 2007). It is estimated that tooth

decay is five times more prevalent than asthma in childhood and seven times more prevalent than

hay fever (US Department of Health and Human Services, 2000; Benjamin, 2010). Its diagnosis is

typically performed at the tooth-surface level where both the shape and the depth of any potential
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lesions are scored on an ordinal scale representing the stages of the disease process, ranging from

sound (no lesion) to lesions into the dental pulp. These detailed tooth-surface level assessments

have enabled epidemiological and clinical studies to describe the intra-oral susceptibility of dental

caries (Kandelman & Lewis, 1988; Batchelor & Sheiham, 2004; Zhang et al., 2011). While tooth

and tooth-surface susceptibilities to cavity are well understood, the intra-oral life course of dental

caries remains relatively understudied. It is well known that caries susceptibility differs between

the maxilla and mandible and also across individual teeth and their surfaces, but little is known

about the timing and the transition of the disease for these intra-oral characteristics. Understanding

the intra-oral caries life course may provide important evidence on the timing and the transition of

the disease, critical for caries prevention and treatment.

The study of intra-oral caries life course involves a longitudinal association due to the same tooth

or tooth surface being observed over time. This association is of primary importance and used to

model the transition across caries states. A basic statistical approach is to use a multistate survival

model where the outcome of interest is the time to transition across various caries states. Due to

intermittent dental assessments, however, the time to disease transition is often interval censored

in many medical researches. Interval censoring in multistate survival models gives rise to a new

difficulty, which does not exist in classical survival models, in that several paths are possible for

transitioning from one state to another between two sequential assessments. Unlike the longitudinal

association, the intra-oral association is essentially a nuisance term that needs to be accommodated

to yield valid inferences for the model parameters describing all tooth-level progressions. For

example, when the transition durations across the caries states are to be compared for several teeth

or tooth surfaces of the same child, a correlated data model is needed to accommodate the inherent

intra-oral correlation.

A unique database that provides detailed information for the study of intra-oral caries life course

is the Detroit Dental Health Project (DDHP). This is a longitudinal study designed to understand

the oral health of low-income African-American children (0-5 years at baseline) and their main

caregivers (14+ years) residing in the city of Detroit, Michigan. Although it is well established that
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low income and minority children exhibit the most adverse oral health outcomes (Vargas et al., 1998;

Mouradian et al., 2000; Edelstein & Chinn, 2009), little is known about the intra-oral life course of

caries in this underserved population. Among other information, this study comprises longitudinal

investigations involving tooth and tooth-surface level information on caries life course which can

shed light on important research questions such as: which teeth or tooth surfaces transition faster

from sound to noncavitated lesions and ultimately to cavitated lesions? Another interesting intra-

oral question is whether there are left-right or upper-lower symmetries in the development of tooth

decay.

In addition to the intra-oral investigations, the DDHP also provides information on a relatively

large number of factors (child-, household- and community-levels) that are known to be associated

with caries prevalence. Because a high proportion of children (81% in the DDHP data) did not

exhibit any caries activity at the first examination (Wave 1), it may of interest to determine which

of these variables, albeit their associations with caries prevalence, are associated with the duration

of transition from no caries to some caries. The study on the duration of caries transition or

caries development is ultimately of interest in dental practice as the information gained can provide

guidance on the timing of dental screening and treatment, which is especially critical for low

income African American children who have fewer dental visits and fewer protective sealants than

any other socio-economic and racial groups (Mouradian et al., 2000; Edelstein & Chinn, 2009).

The DDHP data contain longitudinal investigations of caries on all deciduous teeth in 1021

children during the three waves (2002-2003, 2004-2005 and 2007). The caries status was assessed

at tooth-surface level and its result was coded as a two-digit number according to the International

Caries Detection and Assessment System (ICDAS). The first digit identifies restorations, sealants

or other conditions: 0 for surface neither restored nor sealed (sound), 1 for partial sealant, 2 for full

sealant, 3 for tooth colored restoration, 4 for amalgam restoration, 5 for stainless steel crown, 6 for

other various restorations (Full porcelain, PFM crown, etc.) 7 for lost restoration, 8 for temporary

restoration, and 9 for surface missing due to carious or non-carious related reasons. The second

digit codes the caries severity: 0 for sound surface, 1-2 for noncavitated lesions, 3-6 for cavitated
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lesions with various severity (Enamel cavity, Extensive cavity, etc.), 7 for tooth missing because

of caries, 8 for tooth missing for reasons other than caries, and 9 for an unerupted tooth. Since all

teeth were assessed simultaneously when a child had a study visit, the examination times are the

same for all teeth within a child.

The statistical modeling and intra-oral and inter-oral inferences for the DDHP data are inherently

complex because the data have several theoretical complications inherent in the study of intra-oral

caries life course. The ICDAS scoring system generates multiple caries states over time (up to

three times in DDHP study). Moreover, intra-oral clustering of teeth or tooth-surfaces with an

unusual spatial configuration poses another level of difficulty. And, finally, the exact ’failure’ time

to disease transition is not directly observed but it is only known up to occur between the periodic

assessments, yielding interval censored survival endpoints. Such interval censoring is referred

as mixed case interval censoring because it is generated with varying numbers of monitoring

times among children, which is the most common type of interval censoring (Schick & Yu, 2000).

Methodologically, there have been several works in the literature which examine related issues and

complications. To our best knowledge, we are not aware of any robust statistical methodology that

addresses all these complications simultaneously.

In Chapter 2 and Chapter 3, we study how to analyze intra-oral caries life course data at the

tooth-level. Thus, we reformulate the DDHP tooth-surface level data to the tooth-level data by

classifying all possible two-digit numbers into three states: 0 for normal condition, 1 for early

caries (noncavitated), and 2 for advanced caries (cavitated), as following Table 1.1. After then, the

most severe caries status of all surface of a tooth were taken to represent the caries status of the

tooth. An unerupted tooth is considered as normal condition (coded 99), and a lost tooth due to

caries (coded 97) is treated as being in the advanced caries state. A deciduous tooth that is missing

due to replacement by a permanent tooth is assumed to be right-censored at the last visit time when

the primary tooth was seen. In these two chapters, motivated by the DDHP data, we propose a

multistate Markov frailty models to analyze interval censored tooth-level life-history data of caries

in the deciduous dentition. Specifically, in Chapter 2, we propose a multistate frailty Markov model

4



Table 1.1: The classification rule for three caries states based on a two-digit number system in the

International Caries Detection and Assessment System

A two-digit number system caries state

00, 10, 20, 99 0

01, 02, 11, 12, 21, 22 1

03, 04, 05, 06,

2

13, 14, 15, 16,

23, 24, 25, 26,

30, 31, 32, 33, 34, 35, 36,

40, 41, 42, 43, 44, 45, 46,

50, 51, 52, 53, 54, 55, 56,

60, 61, 62, 63, 64, 65, 66,

70, 71, 72, 73, 74, 75, 76,

80, 81, 82, 83, 84, 85, 86,

97

96, 98 right-censored

coupled with a likelihood-based inference to analyze tooth-level life course data in caries research.

In Chapter 3, the less restrictive formulation that uses spline functions to control the fitting of

the baseline intensities in the multistate frailty model framework is described. In the analyses of

Chapter 2 and Chapter 3, we focus on any spatial symmetry in the mouth with respect to the life

course of dental caries and whether the same type of tooth has a similar decay process in male

and female, using the tooth location and gender as covariates in the models. These analyses prove

challenging because of nontrivial complications including intra-oral clustering, interval censoring,

multiplicity of caries states, and computational complexities. Besides fitting appropriate models,

the methodologies for predicting individuals’ future transition probabilities are also developed.

It is helpful to know the probability of a tooth transitioning to a more severe caries state at a

future time point for the timing of dentist visit and disease-modifying intervention. Because there

is usually heterogeneity in transition rates between different individuals that are not captured by

measured covariates, the future trajectory of a subject’s life-history process would be predicted more

accurately if the future transition probabilities are predicted conditional on the subject’s up-to-date

life course data.
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In Chapter 4, we introduce a new variable selection approach for the time-to-event data subject

to interval censoring and left truncation. Our interest lies in identifying which among important

risk factors are associated with increased risk of developing dental caries from DDHP data. Guided

by the conceptual model in Fisher-Owens et al. (2007), potential variables to examine in our

analysis of the DDHP data will include child-, household- and community-level characteristics.

Child-level variables will include demographic variables (e.g., age) and known risk factors (e.g,

weight, brushing frequency). Household-level variables will include children’s oral health-related

measures (e.g., oral health self-efficacy, usage of water filter/purifier on kitchen tap) and caregiver’s

status (e.g., education level, parenting stress score). Community-level characteristics will include

the number of dentists, full-scale grocery stores and churches in predefined neighborhoods. A

list of the variables of interest for the analysis will be discussed in detail in Chapter 4. Instead

of tooth- or tooth-surface level caries life course data, in this chapter, we consider mouth-level

caries life course data, aiming to early detection of carious lesions among the surfaces of all teeth

in a mouth. Thus, we create the mouth-level data from DDHP data by taking the time intervals

within which first noncavitated/cavitated lesion is observed in any surface. The proposed variable

selection is conducted under the Adaptive Lasso framework, and the model estimation is through

a penalized Expectation–Maximization algorithm (EM) based on the penalized nonparametric

maximum likelihood approach for the baseline hazard function and the regression parameters. The

consistency of the regression parameter estimator is also studied along with its sparsity.
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CHAPTER 2

PARAMETRIC ANALYSIS OF CORRELATED AND INTERVAL CENSORED

EVENT-HISTORY DATA

2.1 Introduction

Several survival analysis methods, which can accommodate some of the complications of the

DDHP data such as interval censoring and intra-oral correlation, have been developed and appied to

caries history data. For example, Tommi et al. (2000) and Komárek et al. (2005) used nonparametric

and semiparametric Bayesian intensity models to analyze clustered and interval censored time-to-

caries data. Komárek & Lesaffre (2008) proposed a Bayesian accelerated failure time model for

clustered doubly-interval censored data for the time to caries of permanent first molars. Beside these

methods tailored for caries data, there are other survival analysis methods for multiple (correlated)

interval censored survival time data (see e.g., Goggins & Finkelstein, 2000; Bogaerts et al., 2002;

Kim & Xue, 2002; Kor et al., 2013) that can be applied to caries research. These existing models,

however, can only handle time-to-event data where the event is a binary endpoint, e.g. the incidence

of caries defined according to a dichotomized version of the ICDAS scoring criterion. Although

important, this approach only provides partial information on the complete time course of dental

caries. To our best knowledge, only few papers (see e.g., Sutradhar & Cook, 2008; Joly et al.,

2012) studied the class of multistate models for clustered life-history data under interval censoring.

However, neither of Sutradhar & Cook (2008) and Joly et al. (2012) considered cluster-level or

observation-unit-level covariates in their models, and they did not discuss how to predict unit-level

future transition. Simulations corroborating their methods are also lacking. From a methodological

viewpoint, this chapter aims at developing a statistical method that simultaneously addresses the

complications of the intra-oral caries life course data and the limitations of existing works.

Intra-oral caries life course data are complex for statistical analysis. Firstly, dental caries

is usually classified into multiple states according to its severity. Secondly, the caries state of
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each tooth is determined at intermittent dental examinations, which leads to interval censoring of

the transition time between states. Thirdly, the progressions of caries at different teeth within a

mouth are correlated. To address these complexities simultaneously in the analysis, we consider

a parametric estimation of multistate models for clustered interval censored data coupled with

a conditionally progressive Markov model. The approach is challenging in many points. Even

for uncorrelated data, non-homogeneous Markov multistate models are hard to fit with interval

censored observations and general software is not readily available (Cook & Lawless, 2014). The

practical novelty of the methodology relies essentially on the application of multistate models to

analyze complex caries life course data. This methodological approach will advance knowledge in

dental caries research by providing a more detailed information on the caries life course, both at

tooth and tooth-surface levels. Additionally, the effects of potential determinants of early childhood

caries transition, e.g. gender, tooth types and sites on teeth, will be easily evaluated using regression

techniques through the transition intensities. And finally, the proposed model will be able to predict

future caries outcomes for a tooth or tooth surface given its current disease status.

The proposed statistical methods also have general applications to modeling chronic dieases

involving paired or multiple organs in cohort studies where the diseases status is measured inter-

mittently. Besides dental caries, popular examples includes sacroiliac joint damage in psoriatic

arthritis and diabetic retinopathy as discussed in Chapter 1. For these cohort studies of chronic

diseases, the proposed models and the associated estimation and inferences can be used to estimate

the rate of disease onset and progression, to identify demographic, genetic and environmental risk

factors, and to assess therapeutic interventions; and predict future disease status at the individual

or population level. Despite a wide range of applications of the proposed statistical methods, their

application to dental caries is unique in view of the intral-oral clustering with an unusual spatial

configuration.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the three-state non-

homogeneous Markov frailty model and derive the corresponding likelihood of tooth-level caries

life course data. Section 2.2.1 discusses the likelihood-based estimation and inference. Section
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2.2.2 presents the Bayesian prediction method. In Section 2.3, we perform a simulation study to

investigate the finite sample performance of the likelihood-based inferential approach, followed by

the application of the proposed methodology to the DDHP data in Section 4.6. Section 2.5 gives

some concluding remarks.

2.2 Statistical methodologies

We model the caries transition profile of n specific primary teeth (n = 20 if all the primary

teeth are modeled). The time scale is chosen to be age, so birth is the time origin. Let m be

the number of children. The study visit times of the i-th child are denoted by Vi1, Vi2, . . . ,ViMi
,

where Mi is the number of visits for the i-th child and can vary across children. Let Ai j(t)

be the caries state of the j-th tooth for the i-th subject (i = 1, . . . ,m; j = 1, . . . , n) at time t

(t ≥ 0), observed only at the finite time points. Our basic model assumes that Ai j (t) follows a

conditionally progressive Markov model with the three states representing the tooth-level caries

spectrum because a direct transition from state 0 to 2 is biologically impossible and the only

plausible reverse transition, 1 to 0 (Ismail et al., 2011), is rare in reality (3.4% of all the transitions

on primary molars in the DDHP data). Also note that any continuous intensity model for Ai j(t) that

allows reverse transitions is non-identifiable under interval censoring. Therefore, we consider tooth

decay a progressive process from normal condition to early caries and finally to advanced caries

as illustrated by Figure 2.1. The corresponding observed caries states of the j-th tooth are denoted

by K
( j)
i1
, K

( j)
i2
, . . . ,K

( j)
iMi

respectively. Define Vi ≡ (Vi1, . . . ,ViMi
) and Ki j ≡ (K( j)

i1
, . . . ,K

( j)
iMi

). Let

Xi j be the baseline covariate vector of interest for the j-th tooth of the i-th child, e.g., gender, tooth

location, left-handed or right-handed, number of dentists nearby, and socioeconomic status. Define

Yi j ≡ (Vi,Ki j,Xi j) and Yi ≡ (Yi1, . . . ,Yin). Then an interval censored tooth-level caries-history

data set consists of Y ≡ (Y1, . . . ,Ym).

Caries life course data of the teeth within a child are correlated, so are the transition times

between different pairs of states in a tooth. We use a subject-level random effect on transition

intensities modulated by transition types to capture these two kinds of correlation. Specifically, we
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Figure 2.1: The progressive three states: state 0 for normal condition, state 1 for early caries and

state 2 for advanced caries

account for the intra-oral correlation between Ai j(t)’s ( j = 1, . . . , n) by positing a common random

effect ui in their transition intensities, and assume that

hab(t |Xi j, ui) = lim
∆t→0

Pr(Ai j (t− + ∆t) = b|Ai j (u), 0 ≤ u < t, Ai j(t−) = a,Xi j, ui)

= lim
∆t→0

Pr(Ai j (t− + ∆t) = b|Ai j (t−) = a,Xi j, ui),

where (a, b) ∈ {(0, 1), (1, 2)}. Furthermore, we postulate the following multiplicative intensity

model for h01(t |Xi j, ui) and h12(t |Xi j, ui),

h01(t |Xi j, ui) = h
(0)
01

(t) exp(XT
i jβ01 + σ01ui) (2.1a)

h12(t |Xi j, ui) = h
(0)
12

(t) exp(XT
i jβ12 + σ12ui) (2.1b)

where β01 and β12 are the regression coefficient vectors of Xi j , ui’s are assumed to be i.i.d.

from the standard normal distribution, σ10 and σ12 are the standard deviations of the log frailties

corresponding to the two transition types respectively, and h
(0)
01

(t) and h
(0)
12

(t) are the baseline

intensity functions. In the parametric modeling framework, we can use the Weibull distribution

to model the baseline intensities, namely, h
(0)
01

(t) = k01r01tr01−1 and h
(0)
12

(t) = k12r12tr12−1 with

unknown positive parameters (k01, r01, k12, r12).

Denote the vector of all parameters by θ ≡ (log k01, log r01, log k12, log r12, logσ01, logσ12,

β01, β12). Let f (·) be a generic notation of density/mass function and f (·|·) be a generic notation of

conditional density/mass function. Under the assumption that the tooth decay process is Markovian

and Yi’s are independent across children, the likelihood function of the data equals, up to a

multiplicative constant not dependent on θ,

L(θ; Y) =
m∏

i=1

∫ ∞

−∞

n∏
j=1

f (Ki j |θ,Vi,Xi j, ui)φ(ui)dui, (2.2)
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where φ(·) is the density function of the standard normal distribution. Under the Markov assumption,

f (Ki j |θ,Vi,Xi j, ui) can be expressed as the product of transition probabilities, namely,

f (Ki j |θ,Vi,Xi j, ui) =
Mi∏

q=1

f (Ai j (Viq) = K
( j)
iq

|Ai j (Vi,q−1) = K
( j)
i,q−1

,Xi j, ui),

where Vi0 = 0, K
( j)
i0
= 0 and Ai j(0) = 0 according to the caries classification scheme in Chapter 1.

Thus the log-likelihood function, l(θ; Y), is simply,

l(θ; Y) =
m∑

i=1

log

∫ ∞

−∞

n∏
j=1




Mi∏
q=1

f (Ai j (Viq) = K
( j)
iq

|Ai j (Vi,q−1) = K
( j)
i,q−1

,Xi j, ui)


φ(ui)dui . (2.3)

To simplify the notations, we write the transition probability f (Ai j (Viq) = K
( j)
iq

|Ai j(Vi,q−1) =

K
( j)
i,q−1

,Xi j, ui) on the right-hand side of (2.3) as a function p
K
( j)
i,q−1

K
( j)
iq

(Vi,q−1,Viq,Xi j, ui, θ), which

can be computed using h01(t |Xi j, ui) and h12(t |Xi j, ui) as follows,

p00(Vi,q−1,Viq,Xi j, ui, ξ,σ) = S01(Vi,q−1,Viq |Xi j, ui) (2.4a)

p01(Vi,q−1,Viq,Xi j, ui, ξ,σ) =
∫ Viq

Vi,q−1

S01(Vi,q−1, r |Xi j, ui)h01(r |Xi j, ui)S12(r,Viq |Xi j, ui)dr

(2.4b)

p02(Vi,q−1,Viq,Xi j, ui, ξ,σ)

=

∫ Viq

Vi,q−1

∫ Viq

r1

S01(Vi,q−1, r1 |Xi j, ui) · h01(r1 |Xi j, ui)S12(r1, r2 |Xi j, ui)h12(r2 |Xi j, ui)dr2dr1

=

∫ Viq

Vi,q−1

S01(Vi,q−1, r |Xi j, ui)h01(r |Xi j, ui){1 − S12(r,Viq |Xi j, ui)}dr (2.4c)

p11(Vi,q−1,Viq,Xi j, ui, ξ,σ) = S12(Vi,q−1,Viq |Xi j, ui) (2.4d)
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p12(Vi,q−1,Viq,Xi j, ui, ξ,σ) =
∫ Viq

Vi,q−1

S12(Vi,q−1, r |Xi j, zi)h12(r |Xi j, ui)dr

= 1 − S12(Vi,q−1,Viq |Xi j, ui) (2.4e)

p22(Vi,q−1,Viq,Xi j, ui, ξ,σ) = 1 (2.4f)

where Sab(x, y |Xi j, ui) ≡ exp{−
∫
y

x
hab(t |Xi j, ui)dt}. The integrals involved in p01 and p02 do not

have a closed form and thus are numerically approximated using the Gauss-Jacobi quadrature.

2.2.1 Parameter estimation and inference

We maximize the log likelihood of the observed data (2.3) to get the maximum likelihood estimate

(MLE) θ̂. The Gauss-Jacobi quadrature is used to compute the integrals over finite intervals in

(2.4b, 2.4c) that do not have a closed form, and the Gauss-Hermite quadrature is used to compute

the integrals with respect to the random effect in (2.3). In the Gauss-Jacobi quadrature, the number

of quadrature points is determined by

# of quadrature points = min

(
25, 50 × length

max.length

)
,

where ‘length’ is the length of the integration interval and ‘max.length’ is the maximum length

among all the integration intervals. In the Gauss-Hermite quadrature, 25 quadrature points are used

to get a numerical integral value. The optimization is carried out by the R function nlminb. The

observed information matrix for θ, Iobs(θ̂), is founded by the summation of the cross products of

the subject-level score function. The inference about θ is based on the asymptotic distribution of

θ̂, approximated by N(θ, Iobs(θ̂)−1).

2.2.2 Prediction of future transition probabilities

Using all the children’s caries life-history data, the transition probability of the j-th tooth in the i-th

child from the last observed state is expressed by,

p
K
( j)
iMi

q
(ViMi

, t,Xi j, ui, θ), (2.5)
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where t > ViMi
and q ≥ K

( j)
iMi

. Given the data, θ and ui are the only two unknown quantities in (2.5).

So a natural estimator of (2.5) can be obtained by substituting θ̂ for θ and ûi for ui, where ûi is the

empirical Bayes estimator of ui under the zero-one loss obtained by maximizing f (Yi |ui, θ̂)φ(ui).

However, it is difficult to construct a prediction interval for (2.5) using a frequentist approach.

We can also predict the transition probabilities using a Bayesian approach. Specifically, we

assume θ has a flat prior distribution so that we can predict (2.5) by its posterior mean or median

obtained from simulating (ui, θ) according to their joint posterior distribution. The credible interval

for (2.5) can also be obtained from the simulation. We derive the posterior distribution of (ui, θ) as

follows,

f (ui, θ |Y) =
∫

· · ·
∫

f (u1, . . . , um, θ |Y)du1 · · · dui−1dui+1 · · · dum

∝ 1

f (Y)

∫
· · ·

∫
f (Y|u1, . . . , um, θ)

m∏
j=1, j,i

φ(u j )du1 · · · dui−1dui+1 · · · dum

=

f (Yi |ui, θ)φ(ui)
f (Y)

m∏
j=1

∫
f (Y j |u j, θ)φ(u j )du j

=

f (Yi |ui, θ)φ(ui)∫
f (Yi |ui, θ)φ(ui)dui

×
∏m

j=1

∫
f (Y j |u j, θ)φ(u j)du j

f (Y)

∝ f (Yi |ui, θ)φ(ui)∫
f (Yi |ui, θ)φ(ui)dui

× f (θ |Y), (2.6)

which implies f (ui |Y, θ) ∝ f (Yi |ui, θ)φ(ui). When m is large enough, we can approximate f (θ |Y)

by the multivariate normal distribution, N(θ̂, Iobs(θ̂)−1). Given the observed data of i-th child

along with the child’s random effect and the parameters, i.e, (Yi, ui, θ), f (Yi |ui, θ) can be computed

using the transition probabilities (2.4a - 2.4f). Therefore, we can generate a posterior realization,

(u∗
i
, θ∗), from f (ui, θ |Y) in the following two steps:

(a) generate θ∗ from the multivariate normal distribution N(θ̂, Iobs(θ̂)−1)

(b) generate u∗
i

from f (Yi |ui, θ
∗)φ(ui) using the Metropolis-Hastings algorithm with the burn-

in period 5000 and the proposal distribution being a normal distribution with appropriate

variance allowing the acceptance ratio to be between 20% and 40% in general.
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From a large sample of (ui, θ)’s simulated from f (ui, θ |Y), we can get a large sample of

p
K
( j)
iMi

q
(ViMi

, t,Xi j, ui, θ)’s. Thus, the posterior mean or median of (2.5) can be approximated by

the sample mean or median, and a 95% credible interval for (2.5) can be approximated by the

interval between the 2.5% and 97.5% sample quantiles of the p
K
( j)
iMi

q
(ViMi

, t,Xi j, ui, θ)’s.

2.3 Simulation study

2.3.1 Simulation setting

We performed a Monte Carlo simulation study to investigate the finite-sample performance of

the likelihood-based inferential approaches for θ. Two different sets of sample sizes were con-

sidered: 1) m = 200 and n = 4, and 2) m = 400 and n = 4. With the assumption of the

Weibull intensities, the vector of Weibull and variance parameters in (2.1) was chosen to be

(r01, k01, r12, k12, σ12, σ12) = (1.2, 0.1, 0.9, 0.2, 1, 1.2). After taking the logarithm of these values,

we get (log r01, log k01, log r12, log k12, logσ01, logσ12) = (0.18,−2.30,−0.11,−1.61, 0, 0.18). As

covariates, three dummy variables X1, X2 and X3 indicating the four tooth locations and a stan-

dard normal random variable X4 were considered. For the dummy variables, the location of the

first tooth was set as the reference. The continuous covariate was chosen to be a subject-specific

variable which means all teeth within a subject have the same value of X4. The coefficients of

(X1, X2, X3, X4) were chosen to be β01 ≡ (β(1)
01
, β

(2)
01
, β

(3)
01
, β

(4)
01

) = (0.2,−0.1, 0.1, 0.3) for the 0-to-1

transition and β12 ≡ (β(1)
12
, β

(2)
12
, β

(3)
12
, β

(4)
12

) = (0.5,−0.2, 0.3, 0.2) for the 1-to-2 transition. The

exact transition times from one caries state to the next were generated by the inverse cumulative

distribution function method. Three visit times, V1, V2 and V3, were generated for each subject

in this manner: V1 ∼ U(1.6, 2.4), V2 = V1 + U(0.8, 1.2), and V3 = V2 + 5. The final data set in

each iteration of simulation consist of visit times, caries state at each visit time, and covariates for

the four teeth of every subject. The number of iterations was one thousand in the Monte Carlo

simulation.
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Table 2.1: Simulation results for estimating the Weibull and variance parameters

log r01 log k01 log r12 log k12 logσ01 logσ12

True value 0.182 -2.303 -0.105 -1.609 0 0.182

m=200, n = 4

Estimate† 0.188 -2.317 -0.083 -1.674 -0.011 0.164

Coverage‡ 0.968 0.957 0.958 0.968 0.944 0.947

MSE 0.002 0.025 0.019 0.139 0.008 0.017

Bias 0.006 0.015 0.022 0.065 0.011 0.019

Empirical SE 0.049 0.157 0.135 0.367 0.087 0.129

Mean of SEs∗ 0.054 0.164 0.150 0.402 0.087 0.128

m=400, n = 4

Estimate 0.183 -2.302 -0.093 -1.636 -0.017 0.157

Coverage 0.960 0.946 0.962 0.961 0.939 0.951

MSE 0.001 0.013 0.009 0.065 0.004 0.008

bias 0.000 0.000 0.012 0.027 0.017 0.026

Empirical SE of 0.035 0.115 0.092 0.254 0.062 0.087

Mean of SEs 0.038 0.113 0.103 0.275 0.061 0.088

† The average of the estimates across the 1000 simulations.
‡ The empirical coverage of the 95% confidence interval based on the asymptotic distribution of θ̂.
∗ The average of the asymptotic standard errors across the 1000 simulations

2.3.2 Simulation results

Table 2.1 and Table 2.2 show the simulation results of model estimation for the two different sample

sizes. As seen in Table 2.1 and Table 2.2, the bias, standard error and mean squared error of every

parameter’s estimator are small in both scenarios. The empirical coverage of every parameter’s

asymptotic confidence interval is close to the nominal level. The empirical standard error of every

estimator is also close to the asymptotic standard error. When the sample size doubles, both MSE

and variance of every estimator reduce about by half as expected according to the asymptotic theory.

In a word, the likelihood-based inference for θ performs very well when the number of subjects is

equal to or greater than 200.
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Table 2.2: Simulation results for estimating the regression parameters β

β
(1)
01

β
(2)
01

β
(3)
01

β
(4)
01

β
(1)
12

β
(2)
12

β
(3)
12

β
(4)
12

True value 0.2 -0.1 0.1 0.3 0.5 -0.2 0.3 0.2

m=200, n = 4

Estimate 0.198 -0.098 0.100 0.305 0.510 -0.191 0.310 0.201

Coverage 0.953 0.963 0.954 0.928 0.972 0.954 0.965 0.938

MSE 0.017 0.017 0.018 0.008 0.035 0.040 0.036 0.014

Bias 0.002 0.002 0.000 0.005 0.010 0.009 0.010 0.001

Empirical SE 0.131 0.132 0.134 0.091 0.186 0.200 0.188 0.118

Mean of SEs 0.135 0.138 0.136 0.084 0.198 0.204 0.199 0.112

m=400, n = 4

Estimate 0.200 -0.103 0.099 0.307 0.497 -0.199 0.302 0.203

Coverage 0.947 0.953 0.951 0.912 0.947 0.962 0.956 0.921

MSE 0.009 0.009 0.009 0.004 0.018 0.017 0.018 0.008

bias 0.000 0.003 0.001 0.007 0.003 0.001 0.002 0.003

Empirical SE 0.095 0.093 0.093 0.065 0.133 0.132 0.135 0.090

Mean of SEs 0.094 0.096 0.094 0.058 0.137 0.141 0.137 0.076

Figure 2.2: Molars in a child’s mouth clockwise starting from the upper-right teeth (numbers

starting 5) from the dentist’s view. The child’s right side corresponds to the tooth chart’s left side.

The numbers ending 4 and 5 correspond to first and second molars respectively
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2.4 Application

In this section, we apply the three-state Markov frailty model to the Analysis of Detriot Dental

Health Project (DDHP) data and demonstrate how to predict the future tooth decay based on the

given information on a child. The data on the first and second molars were analyzed, resulting

in eight teeth per child (see Figure 2.2). We consider fifteen dummy covariates to indicate every

possible combination of tooth type (first or second molar), tooth location (upper or lower, right

or left) and gender of the child in the model. The upper right first molar for male is set as the

reference category. The total number of parameters is 36 because there are additionally four

Weibull parameters and two random-effect scale parameters and all the parameters are specific to

the transition type (0-to-1 and 1-to-2). We first fit this saturated model, and the resulting estimates

and standard errors are shown in the Table 2.3.

Based on the saturated model, we try to answer the following three scientific questions:

i. Is there an interaction effect between gender and tooth identity (type and location) on tooth

decay?

ii. Do the first and second molars have the same tooth decay profile?

iii. Is there a upper-lower symmetry or right-left symmetry in tooth decay profile?

Every question above can be answered by testing a hypothesis of the form

H0: Aθ = 0

formulated by choosing an appropriate matrix A with full row rank s. A test for it would be the

Wald test:

(Aθ̂)T (AI−1
obs

(θ̂)AT )−1Aθ̂
H0∼ χ2

s . (2.7)

To test the interaction between gender and tooth identity, the hypothesis is formulated as

H0:



αi,01 = β(i+1),01 − β1,01

αi,12 = β(i+1),12 − β1,12

, i = 1, . . . , 7. (2.8)
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Table 2.3: The DDHP data analysis using the univariate random effect model

Gender Molar Type Quadrant Transition Parameter Estimate SE p-value

Male

1st molar

Upper left teeth (64)
0 → 1 α1,01 -0.0087 0.1219 0.9431

1 → 2 α1,12 0.1088 0.1842 0.5546

Lower left teeth (74)
0 → 1 α2,01 0.3464 0.1106 0.0017

1 → 2 α2,12 0.2495 0.1768 0.1580

Lower right teeth (84)
0 → 1 α3,01 0.3450 0.1028 0.0008

1 → 2 α3,12 0.2214 0.1657 0.1816

2nd molar

Upper right teeth (55)
0 → 1 α4,01 1.4359 0.1051 < 0.0001

1 → 2 α4,12 -0.1986 0.1709 0.2453

Upper left teeth (65)
0 → 1 α5,01 1.5080 0.1071 < 0.0001

1 → 2 α5,12 -0.2002 0.1537 0.1925

Lower left teeth (75)
0 → 1 α6,01 1.3746 0.1006 < 0.0001

1 → 2 α6,12 -0.1279 0.1585 0.4194

Lower right teeth (85)
0 → 1 α7,01 1.4169 0.1057 < 0.0001

1 → 2 α7,12 -0.1234 0.1543 0.4237

Female

1st molar

Upper right teeth (54)
0 → 1 β1,01 0.2178 0.1198 0.0691

1 → 2 β1,12 0.0110 0.1621 0.9461

Upper left teeth (64)
0 → 1 β2,01 0.3071 0.1118 0.0060

1 → 2 β2,12 0.0769 0.1565 0.6230

Lower left teeth (74)
0 → 1 β3,01 0.2723 0.1126 0.0156

1 → 2 β3,12 0.3337 0.1518 0.0279

Lower right teeth (84)
0 → 1 β4,01 0.3277 0.1141 0.0041

1 → 2 β4,12 0.3509 0.1608 0.0291

2nd molar

Upper right teeth (55)
0 → 1 β5,01 1.6215 0.1088 < 0.0001

1 → 2 β5,12 -0.0885 0.1515 0.5590

Upper left teeth (65)
0 → 1 β6,01 1.6814 0.1153 < 0.0001

1 → 2 β6,12 0.0694 0.1503 0.6440

Lower left teeth (75)
0 → 1 β7,01 1.8786 0.1192 < 0.0001

1 → 2 β7,12 0.0509 0.1531 0.7395

Lower right teeth (85)
0 → 1 β8,01 1.9004 0.1114 < 0.0001

1 → 2 β8,12 -0.0679 0.1518 0.6546
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According to the data analysis, this null hypothsis was rejected at a 5% significant level (p-

value< 0.0001). It indicates that there is a statistically significant interaction effect between gender

and tooth identity on tooth decay, so questions (ii) and (iii) would be more meaningful if asked for

each gender. The subsequent null hypotheses of question (ii) are formulated as

H0:




αj,01 = α( j+4),01

α4,01 = 0

αj,12 = α( j+4),12

α4,12 = 0

, j = 1, 2, 3, (2.9)

for male and

H0:



βk,01 = β(k+4),01

βk,12 = β(k+4),12

, k = 1, 2, 3, 4, (2.10)

for female. The p-values for testing these two hypotheses are both less than 0.0001. Thus the first

and second molars have different tooth decay profiles. Question (iii) asks whether the dental caries

progresses in a same pattern between lower (or right) and upper (or left) teeth. The null hypotheses

for the upper-lower symmetry are formulated as

H0:




α1,01 = α2,01

α1,12 = α2,12

α3,01 = α3,12 = 0

α4,01 = α7,01

α4,12 = α7,12

α5,01 = α6,01

α5,12 = α6,12

(2.11)
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for male and

H0:




β1,01 = β4,01

β1,12 = β4,12

β2,01 = β3,01

β2,12 = β3,12

β5,01 = β8,01

β5,12 = β8,12

β6,01 = β7,01

β6,12 = β7,12

(2.12)

for female, and the null hypotheses for the right-left symmetry are formulated as

H0:




αi,01 = αi+1,01

αi,12 = αi+1,12

α1,01 = α1,12 = 0

, i = 2, 4, 6, (2.13)

for male and

H0:



βk,01 = βk+1,01

βk,12 = βk+1,12

, k = 1, 3, 5, 7, (2.14)

for female. The test statistics for the hypotheses (2.11), (2.12), (2.13) and (2.14) are 35.412 (p-value

< 0.0001), 29.658 (p-value = 0.0002), 0.999 (p-value = 0.8415) and 2.916 (p-value = 0.9395)

respectively. Therefore, right-left symmetry exists in the tooth decay profile for each gender. The

hypotheses above can be expressed in simpler forms if we use more subscripts (see Section 3.4 of

Chapter 3), although the current expression of the hypotheses is more intuitive.

We further performed the tests for questions (ii) and (iii) only to the transition from 0 to 1 or

from 1 to 2. Table 2.4 shows the Wald test statistics and their p-values of these tests for symmetry.

One can see that there is a symmetry in 1-to-2 transition intensity between the upper and lower

molars in boys. Since hypotheses (2.13) and (2.14) were not rejected, it is no wonder that none of

the tests for right-left symmetry in Table 2.4 shows any significant result.
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Table 2.4: The Wald test statistics (p-value) for the three types of symmetry in caries transition

intensity

Gender Test for symmetry
Transition

0 to 1 1 to 2

Male

Upper vs Lower 28.95(< 0.0001) 4.77(0.3115)

Right vs Left 0.52(0.9716) 0.37(0.9849)

First molar vs Second molar 1013.65(< 0.0001) 28.65(< 0.0001)

Female

Upper vs Lower 16.58(0.0023) 12.42(0.0145)

Right vs Left 1.08(0.8967) 1.83(0.7666)

First molar vs Second molar 1742.93(< 0.0001) 16.45(0.0025)

To illustrate predicting the future transition probability, we chose a boy from the dataset who

had only two visits (2.14 yrs and 4.23 yrs) with the following caries states: the upper right first

molar and all the lower teeth in study remained sound over the two study visits; the rest of the

considered teeth were sound at the first visit but were found to have early caries at the second. No

tooth had advanced caries. The empirical Bayes estimator of ui is 0.13 for the child. The posterior

median and the 95 % credible interval of this boy’s transition probability after his last visit were

computed over the time interval (4.23 yrs, 8 yrs). A sample of 200 transition probability functions

were computed based on 200 (ui, θ)’s generated from their joint posterior distribution. The top plot

of Figure 2.3 shows the probabilities of the 0-to-1 and 0-to-2 transitions for his upper right first

molar, and the bottom plot shows the 1-to-2 transition probability for his upper right second molar.

The solid line is the posterior median of the transition probability. The credible interval refers to

the interval between the 2.5% and 97.5% sample quantiles of the transition probability. One can

see that at age six, this boy’s upper right first molar only has probability 0.03 of having advanced

caries, but his upper right second molar has probability 0.23 to be in advanced caries state.

2.5 Discussion

We proposed a parametric three-state Markov frailty model for tooth-level caries life course data

under interval censoring. The likelihood-based inference for the model was shown to perform very

well in finite samples by simulation. Furthermore, we came up with a Bayesian approach to predict

future transition probabilities given a child’s observed caries life-history data. It is worthy to point
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Figure 2.3: The predicted transition probabilities from state 0 to state 1 and to state 2 for the upper

right first molar (A) and from state 1 to state 2 for the upper right second molar (B) for a boy in the

DDHP dataset

out that the prediction approach can predict future caries development not only for individual teeth

but also at the mouth level. For instance, using the Bayesian approach, one can obtain a predicted

value and a prediction interval of the probability that no tooth in the mouth will develop new caries

within one year after the most recent dental visit.

Information gained from applying the proposed methods to real data will provide guidance on

the timing of dental screening and treatment. Our statistical methods also have general applications

to modeling chronic diseases involving paired or multiple organs in cohort studies where the disease

status is measured intermittently. Besides dental caries, popular examples include sacroiliac joint

damage in psoriatic arthritis (Rahman et al., 1998) and diabetic retinopathy (Diabetes Control and

Complications Trial Research Group, 1995).

Several future research directions are worth to pursue. Firstly, it would be appealing to model

the baseline transition intensity nonparametrically, which will be discussed in Chapter 3. To achieve
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this, we will use a linear spline model for the log baseline intensity since it does not induce additional

numerical integrations in the likelihood calculation. Secondly, the intra-oral and the inter-transition

correlations of caries life course data can be accounted for in the analysis in a different way. For

instance, we can replace the shared random effect in our model by two transition-specific random

effects with a bivariate normal distribution. GEE-type of analysis is also feasible. Lastly, one may

relax the proportionality assumption on intensities between different teeth by forming strata (e.g.,

dental quadrants) and using stratum-specific baseline intensities.
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CHAPTER 3

SEMIPARAMETRIC ANALYSIS OF CORRELATED AND INTERVAL CENSORED

EVENT-HISTORY DATA

3.1 Introduction

As discussed in Chapter 1, in many instances, the data generated from longitudinal investiga-

tions are interval censored, in that the transition time point is only known up to a time interval.

Additionally, many chronic conditions, despite being inherently continuous, are often represented

by a finite number of states derived from clinical evaluations, serological tests and other medical

assessment tools. Furthermore, many chronic conditions manifest themselves at various locations

of the body, resulting in correlated time-to-event endpoints even after conditioning on observed

covariates. In caries research, carious lesions are likely to develop on multiple teeth of a person,

owing to the intra-oral association resulting from sharing common risk factors, including genetic

variants and environmental factors which may not be fully measured.

In this chapter, we are interested in formulating a flexible multistate model to describe a set of

multiple life-history processes observed only at intermittent time points. A data example motivating

the proposed model comes from the Detroit Dental Health Project (DDHP) involving tooth-level

caries assessments in primary dentition for young inner-city African-American children, which has

been introduced in detail in Chapter 1. In this era of precision medicine, understanding the transition

process of a tooth across the caries spectrum could aid dentists design tooth-specific prevention and

treatment plans. Existing works in caries research have primarily focused on mouth-level indices

such as the number of Decayed, Missing or Filled teeth or surfaces, a typical measure of caries

experience in human populations (Lewsey & Thomson, 2004). Albeit important, these indices have

well documented limitations regarding their inability to provide a comprehensive assessment of

dental caries (Lewsey & Thomson, 2004), which is critical for personalizing preventive oral health

care and treatment plans.
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Analysis of correlated interval censored event-history data is nontrivial, owing to the difficulty

of the theoretical argument and the computational burden of the numerical implementation. For

example, the use of counting process techniques is very difficult in the framework of interval

censored data, hence prohibiting the use of martingale theory. Consequently, unlike right-censored

data, one has to rely on complicated empirical process arguments to investigate the asymptotic

properties of the estimation procedures (Zhang & Sun, 2010). It is also well known that when

multiple life-history assessments are made on the same sampling unit, any analysis involving

the within-unit correlation of the data, viewed as a quantity of scientific interest or a nuisance,

necessitates the use of methods for correlated survival data (Kalbfleisch & Prentice, 2002, Chapter

10). To the best of our knowledge, only few statistical papers (Sutradhar & Cook, 2008; Joly et al.,

2012) have studied analysis of correlated interval censored event-history data without imposing

the common modeling restriction that the life-history process is time-homogeneous, i.e. having a

constant transition intensity matrix across time. Assuming a restrictive model structure is apt to yield

biased analysis results due to model misspecification. The existing works and the methodological

approach of Chapter 2 relied on likelihood-based inference by means of frailty models for intensity

functions to account for the within-sampling-unit clustering. Albeit important, these works still

have notable limitations. For example, the works of Sutradhar & Cook (2008) and Joly et al. (2012)

are not amenable to analysis involving cluster-level or observation-unit level covariates. As well as

the approach in Chapter 2, the works of Joly et al. (2012) also assumed that the baseline intensity

functions are of Weibull type, which is apt to yield biased inferences for the covariate effects on

the transition intensities. Sutradhar and Cook (2008) attempted to relax this modeling assumption

by allowing the baseline intensities to be piecewise constant. A limitation, however, is that the

selection of the number and locations of knots was ad hoc ignoring that a poorly chosen number of

knots may introduce bias. Finally, existing works such as Sutradhar & Cook (2008) and Joly et al.

(2012) often lacked numerical simulations to support the heuristic arguments being proposed.

To circumvent some of the limitations of existing works, in this chapter, we propose a semipara-

metric Markov model with frailties to analyze clustered interval censored tooth-level event-history
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data on early childhood caries. Our model is similar in spirit to the parametric model introduced in

Chapter 2, which uses frailties to tie together all life-history data from the same sampling unit. But

unlike Chapter 2 which considers Weibull-type baseline intensities and shared frailties for various

types of transitions, the formulation in this chapter relaxes these assumptions by using unshared

frailties and approximating the unknown baseline intensities by spline functions. The estimation

of the model parameters including fixed effects coefficients, spline parameters, and random effects’

variance components then proceeds by maximizing a penalized log-likelihood which constrains the

spline coefficients to avoid the overfitting problem. As discussed by Brumback & Rice (1998) and

Cai & Betensky (2003), penalizing the spline coefficients is equivalent to treating these coefficients

as random effects, and penalty parameters can be estimated as reciprocal variance components

of the random effects using a restricted maximum likelihood approach. Thus, this mixed-model

representation avoids the use of computationally intensive techniques such as cross-validation to

select penalty parameters. More importantly, it enables the fitting algorithm and inferential ap-

proaches to be devised within the framework of hierarchical likelihood (Lee & Nelder, 1996). As

a by-product of the analysis, we propose a Bayesian approach for predicting the future transition

probabilities of tooth-level caries in the spirit of Section 2.2.2. Due to the inherent heterogeneity

in transition rates among different individuals not captured by measured covariates, these future

transition probabilities are predicted using the subject’s historical data via the frailties estimates.

We conduct a simulation study to evaluate the performance of the Bayesian prediction procedure.

The rest of the chapter is organized as follows. The proposed semiparametric Markov frailty

model is outlined in Section 3.2, followed by a detailed description of the model estimation and

associated inference, and a Bayesian approach for predicting future transition probabilities. In

Section 3.3, simulation studies are conducted to evaluate the accuracy of the estimators as well as

the coverage rates of the confidence intervals for the regression parameters and baseline intensities.

We also investigate the coverage of the prediction intervals for future transition probabilities through

simulations. The application of the proposed methods to the DDHP data is presented in Section

3.4. We give some concluding remarks in Section 3.5.
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3.2 Statistical methodologies

We define Ai j (t) as the caries state of the j-th tooth for the i-th subject (i = 1, . . . ,m; j = 1, . . . , n)

at time t (t ≥ 0), observed only at the time points Vi . The intra-oral correlation among the Ai j (t)’s

( j = 1, . . . , n) is modeled through a bivariate frailty wi = (wi,01,wi,12)T on transition intensities,

coupled with the conditional independence assumption. To highlight the dependence on covariates

and the frailty, we denote by hab(t |Xi j,wi) the transition intensity from a to b, defined as follows,

hab(t |Xi j,wi) = lim
∆t→0

Pr(Ai j (t− + ∆t) = b|Ai j (u), 0 ≤ u < t, Ai j(t−) = a,Xi j,wi)

= lim
∆t→0

Pr(Ai j (t− + ∆t) = b|Ai j (t−) = a,Xi j,wi),

where (a, b) ∈ {(0, 1), (1, 2)}.

The following multiplicative intensity model for hab(t |Xi j,wi) is assumed

hab(t |Xi j,wi) = h
(0)
ab

(t)wi,ab exp(XT
i jβab), (a, b) ∈ {(0, 1), (1, 2)},

where h
(0)
ab

(t)’s are unspecified baseline transition intensities and log(wi) = (log(wi,01), log(wi,12))T

is assumed to follow a bivariate zero-mean normal distribution, that is,

log(wi) ∼ N
©­­
«
©­­
«

0

0

ª®®
¬
,
©­­
«

σ2
01

σ01σ12ρ

σ01σ12ρ σ2
12

ª®®
¬
ª®®
¬
.

Here σ2
ab

((a, b) ∈ {(0, 1), (1, 2)}) reflects not only the strength of the intra-oral association of caries

progressions among different teeth, but also the magnitude of heterogeneity in caries transition

intensities between subjects that is not captured by observed covariates. The parameter ρ reflects

the within-subject correlation between the two types of transitions, with positive ρ’s implying that

the two intensities evolve similarly (for example, if the transition from 0 to 1 is fast and so is 1

to 2). The assumed bivariate frailty provides a more flexible representation of the inter-transition

dependence compared to the shared frailty model in chapter 2, which constrains ρ the correlation

between the log frailties of the two transitions to one.
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For computational simplicity, we reparameterize log(wi) as log(wi) = (σ01zi1, σ12(ρzi1 +√
1 − ρ2zi2))T where zi1 and zi2 are independent standard normal random variables. Under this for-

mulation, hab(t |Xi j,wi) are rewritten as hab(t |Xi j, zi) ((a, b) ∈ {(0, 1), (1, 2)}) with zi ≡ (zi1, zi2)T .

3.2.1 A penalized likelihood estimation

As described in Chapter 1, the transition times between caries states in the Detroit study are only

known up to an interval between two consecutive study visits. This naturally complicates the

estimation of the multistate model for tooth decay. Without interval censoring, the regression

parameters and baseline intensities for different transitions can be estimated separately based on

the transition-specific partial likelihood and Breslow’s estimator (Kalbfleisch & Prentice, 2002,

Section 8.3), even after conditioning on random effects; while under interval censoring, they have

to estimated jointly as the partial likelihood approach is not applicable. Consequently, the model

estimation would require a full-likelihood-based method, which is developed in this subsection.

Unlike the model in Chapter 2 which imposes a parametric form on h
(0)
01

(·) and h
(0)
12

(·), we

estimate these functions nonparametrically via penalized spline smoothing. Specifically, we ap-

proximate the logarithms of baseline intensity functions by linear splines,

log h
(0)
ab

(t) = α0,ab + b0,abt +

Nab∑
j=1

b j,ab(t − κ j,ab)+, (a, b) ∈ {(0, 1), (1, 2)}

where (x)+ = max(0, x), and κ j,01’s ( j = 1, . . . , N01) and κ j,12’s ( j = 1, . . . , N12) are the locations

of knots. The roughness of the spline functions, defined later, is penalized in the model estimation.

We choose linear spline basis because it leads to closed-form expressions of cumulative baseline

intensities involved in the likelihood function. The numbers of knots for these spline models increase

with the sample size. In practice, a large number of knots can be used to reduce the approximation

bias while not incurring the overfitting problem due to the penalization, but small N01 and N12

are preferred computationally. According to Kauermann et al. (2009), a penalized spline with

dimension proportional to a small fractional power of the sample size can achieve the optimal rate

of convergence (Stone, 1982). This guides our selection on the number of knots discussed later. The
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knots for the a-to-b transition, (κ1,ab, · · · , κNab,ab), are equally spaced with respect to the quantiles

of the unique values of {Vi,l−1,Vil : an a-to-b transition occurred to a tooth in (Vi,l−1,Vil], i =

1, . . . ,m, l = 1, . . . , Mi} ∪ {VMi
: no a-to-b transition occurred to a tooth by VMi

, i = 1, . . . ,m},

where Vi0 = 0.

Define σ ≡ (σ01, σ12, ρ)T . Denote the vector of all model parameters except the variance

components by ξ ≡ (βT
01
, βT

12
, α0,01, α0,12, b

T
01
, bT

12
)T where b01 ≡ (b0,01, b1,01, · · · , bN01,01)T

and b12 ≡ (b0,12, b1,12, · · · , bN12,12)T . Under the assumption that the tooth decay processes are

independent across subjects, the log-likelihood of the observed data Y is

l(Y|ξ,σ) =
m∑

i=1

log

∫ ∞

−∞

∫ ∞

−∞

n∏
j=1

f (Yi j |zi, ξ,σ)φ(zi1)φ(zi2)dzi1dzi2,

where φ(·) is the standard normal density. Under the conditional Markov assumption on the tooth

decay process,

f (Yi j |zi, ξ,σ) ∝
Mi∏

q=1

Pr
(
Ai j (Viq) = K

( j)
iq

|Ai j(Vi,q−1) = K
( j)
i,q−1

,Xi j, zi, ξ,σ
)
, (3.1)

where K
( j)
i0
= 0 (Ai j (0) = 0 according to the caries classification scheme in Chapter 1). To

simplify the notations, we write the transition probabilities on the right-hand side of (3.1) as

p
K
( j)
i,q−1

,K
( j)
iq

(Vi,q−1,Viq,Xi j, zi, ξ,σ), which can be expressed in terms of the transition intensities

hab(t |Xi j, zi) ((a, b) ∈ {(0, 1), (1, 2)}) as follows,

p00(Vi,q−1,Viq,Xi j, zi, ξ,σ) = S01(Vi,q−1,Viq |Xi j, zi)

p01(Vi,q−1,Viq,Xi j, zi, ξ,σ) =
∫ Viq

Vi,q−1

S01(Vi,q−1, r |Xi j, zi)h01(r |Xi j, zi)S12(r,Viq |Xi j, zi)dr

p02(Vi,q−1,Viq,Xi j, zi, ξ,σ) =
∫ Viq

Vi,q−1

S01(Vi,q−1, r |Xi j, zi)h01(r |Xi j, zi){1 − S12(r,Viq |Xi j, zi)}dr

p11(Vi,q−1,Viq,Xi j, zi, ξ,σ) = S12(Vi,q−1,Viq |Xi j, zi)

p12(Vi,q−1,Viq,Xi j, zi, ξ,σ) = 1 − S12(Vi,q−1,Viq |Xi j, zi)

p22(Vi,q−1,Viq,Xi j, zi, ξ,σ) = 1
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where Sab(x, y |Xi j, zi) ≡ exp{−
∫
y

x
hab(t |Xi j, zi)dt}. The integrals involved in p01 and p02 do not

have a closed form and thus are numerically approximated using the Gauss-Jacobi quadrature. In

our implementation, the number of quadrature points is,

max

(
5,

⌈
10 ×

Viq − Vi,q−1

max{Vik − Vi,k−1 : all i and k}

⌉)
.

We estimate (ξ,σ) by maximizing the following penalized log-likelihood,

lpen(Y|ξ,σ) = l(Y|ξ,σ) − τ01

2
bT

01b01 −
τ12

2
bT

12b12, (3.2)

where τ01 and τ12 are two penalty parameters that regularize the roughness of the two estimated

baseline intensity functions. Our roughness definition is similar to
∫
(∂ log h

(0)
ab

(t)/∂t)2dt but

slightly different from that in Equation (2.4) of Kauermann et al. (2009) , which does not include

b2
0,ab

. We tried the penalty excluding b2
0,ab

in simulations; the results (not reported here) are worse

than including b2
0,ab

. Albeit using a slightly different penalty term, we follow Assumption 4 of

Kauermann et al. (2009) to set the two numbers of knots to N01 = N12 = max(⌈(mn)1/5⌉, 5).

The values of the penalty parameters are generally determined by cross-validation techniques.

However, these procedures are known to be computationally intensive, especially for penalized

log-likelihoods involving intractable integrals. An alternative approach is to treat the penalized

likelihood as that of a mixed-effects model and then estimate the penalty parameters as reciprocal

variance components of the random effects as, e.g., in Cai & Betensky (2003). More specifically,

we treat the spline parameter vectors b01 and b12 as random effects that follow the multivariate

normal distributions below:

b01 ∼ N
(
0, θ2

01IN01+1

)
and b12 ∼ N

(
0, θ2

12IN12+1

)
,

where θ2
01
= 1/τ01, θ2

12
= 1/τ12, and Ik denotes a k × k identity matrix (k ∈ Z+). The re-

sulting mixed-effects model has fixed effect parameters ζ ≡ (βT
01

, βT
12
, α01, α12)T , random effect

parameters γ ≡ (bT
01

, bT
12
, zT

1
, · · · , zT

m)T , and variance component parameters ν ≡ (logσ01, logσ12,

ψ(ρ), log θ01, log θ12)T . Here, ψ(·) denotes the Fisher’s z-transformation function.
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Ideally, we would like to estimate ζ and ν by maximizing the log-likelihood of the observed

data Y (marginal likelihood) based on the above mixed-effects model,

lmixed(Y|ζ, ν) = log

∫ ∫ ∫
f (Y|z, ξ,σ) f (z) f (b01) f (b12)dzdb01db12

= log

∫
elh(Y,γ |ζ,ν)dγ − (N01 + 1) log θ01 − (N12 + 1) log θ12, (3.3)

where z = (zT
1
, · · · , zT

m)T and

lh(Y, γ |ζ, ν) =
m∑

i=1


n∑

j=1

log
{

f (Yi j |zi, ξ,σ)
}
−

zT
i

zi

2


− 1

2θ2
01

bT
01b01 −

1

2θ2
12

bT
12b12. (3.4)

However, this marginal maximum likelihood estimation for ζ and ν is numerically rather complex,

due to the marginal likelihood involving a multiple integral that does not have a closed form. To

circumvent this difficulty, other methods which are computationally feasible have been proposed for

estimating parameters of mixed-effects models; see, e.g., Pinheiro & Bates (1995) for a summary.

Here we adopt Lee & Nelder (1996)’s hierarchical likelihood approach to estimate ζ , γ and ν. This

approach estimates ν by maximizing the following restricted likelihood with respect to ν,

lr (Y|ν) = log

∬
elh(Y,γ|ζ,ν)dγdζ − (N01 + 1) log θ01 − (N12 + 1) log θ12. (3.5)

This restricted likelihood is constructed following Harville (1974)’s Bayesian interpretation of

the restricted maximum likelihood estimator (REML) for variance components in linear mixed-

effects models. Specifically, assuming that ζ and ν have a prior density that is flat relative to the

likelihood function lmixed(Y|ζ, ν), lr(Y|ν) is then the logarithm of the marginal posterior density

for ν. Thus, the estimator for ν, denoted by ν̂, obtained via maximizing lr(Y|ν) is ν’s marginal

posterior mode, which is the same as the Bayesian interpretation of REML for linear mixed-effects

models (Harville, 1974). Given ν̂, the hierarchical likelihood approach estimates η ≡ (ζT,γT )T

via maximizing lh(Y,γ |ζ, ν̂), called h-likelihood by Lee & Nelder (1996), with respect to η.

In practice, due to the lack of a closed form of the multiple integral in (3.5), we evaluate

the restricted likelihood using the Laplace’s approximation. This leads to the adjusted profile

h-likelihood (APHL) (Lee & Nelder, 1996),

lA(Y|ν) = lh(Y, γ̂(ν)|ζ̂ (ν), ν)−
1

2
log |−Hh(η̂(ν); Y, ν)|−(N01+1) log θ01−(N12+1) log θ12, (3.6)
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where η̂(ν) ≡ (γ̂(ν), ζ̂ (ν)) maximizes lh(Y,γ |ζ, ν) given ν, Hh(η̂(ν); Y, ν) is the Hessian matrix

of lh(Y,γ |ζ, ν) with respect to η evaluated at η̂(ν), and | · | denotes the matrix determinant.

Because there is no analytical expression for η̂(ν), we compute the maximum adjusted profile

h-likelihood estimate (MAPHLE) ν̂ for ν and the maximum h-likelihood estimate (MHLE) η̂ for η

by alternatively maximizing lA(Y|ν) and lh(Y, γ |ζ, ν) as in the following steps:

(i) Set s = 0, choose an initial value ν(0) for ν and maximize lh(Y,γ |ζ, ν(0)) w.r.t. η to obtain

η(0);

(ii) Maximize the following function w.r.t. ν to obtain ν(s+1):

lh(Y, γ(s) |ζ (s), ν) − 2−1 log | − Hh(η(s); Y, ν)| − (N01 + 1) log θ01 − (N12 + 1) log θ12;

(iii) Maximize lh(Y, γ |ζ, ν(s+1)) w.r.t. η to obtain η(s+1) and set s = s + 1;

(iv) If ‖(η(s)T , ν(s)T )T −(η(s−1)T , ν(s−1)T )T ‖/‖(η(s−1)T , ν(s−1)T )T ‖ < 0.01, stop and set η̂ = η(s)

and ν̂ = ν(s); otherwise, go to (ii). Here, ‖ · ‖ denotes the Euclidean norm.

The simulation study and data analysis in this chapter were performed using the R statistical

software (R 3.1.1). We used the optim function with the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) quasi-Newton option to maximize lh(Y, γ |ζ, ν(s+1)) w.r.t. η and lh(Y, γ(s) |ζ (s), ν) −

2−1 log | − Hh(η(s); Y, ν)| − (N01 + 1) log θ01 − (N12 + 1) log θ12 w.r.t. ν. In particular, the limited-

memory BFGS method was used to maximize lh(Y, γ |ζ, ν(s+1)), since it is more suited for the

maximization of a function w.r.t. a large number of arguments. We computed the gradient and

the hessian matrix of h(Y, γ |ζ, ν) w.r.t η using their analytic expressions. In evaluating those

expressions, we sometimes encountered the situation where the denominator of a fraction was so

close to zero that the software recognized it as zero. When that happened, the denominator was

replaced with 10−40.
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3.2.2 Statistical inference

According to Lee & Nelder (1996), the MHLE ζ̂ is asymptotically equivalent to the marginal MLE

for ζ obtained by maximizing (3.3), and both are asymptotically normal with a mean ζ and a

covariance matrix that can be consistently estimated by the upper-left (2p+2)× (2p+2) sub-matrix

of −H−1
h

(η̂; Y, ν̂) where 2p+2 is the length of the vector ζ . Hence, hypothesis tests and confidence

intervals for ζ can be constructed based on this asymptotic normal distribution.

In view of the random effect treatment of the penalized spline coefficients, we use a Bayesian

approach to conduct inferences on h
(0)
01

(·) and h
(0)
12

(·). Specifically, we treat ζ and ν as random

quantities with a flat joint prior density, whence exp{lh(Y, γ |ζ, ν)} is proportional to the joint

posterior density of ξ and z, f (ξ, z|Y, ν), where z = (zT
1
, . . . , zT

m)T . A Taylor expansion similar to

(5.3) in O’Sullivan (1988) can be used to show that f (ξ |Y, ν̂) is approximately a multivariate

normal distribution when m is large. Similar arguments to Appendices B, C and G in Lee

& Nelder (1996) can be used to show that the normal approximation of f (ξ |Y, ν̂) has a mean

approximately equal to the MHLE ξ̂ and a covariance matrix approximately equal to the upper-left

(2p+4+N01 +N12)× (2p+4+N01 +N12) block of −H−1
h

(η̂; Y, ν̂), which enables one to construct

pointwise Bayesian confidence intervals, a.k.a. credible intervals, for h
(0)
01

(t) and h
(0)
12

(t). The use

of the conditional posterior f (ξ |Y, ν̂) is justified because ξ and ν are expected to be asymptotically

orthogonal (Ha et al., 2016, Section 4.1).

3.2.3 Prediction of future transition probabilities

Understanding the process by which a tooth transitions from being sound to being decayed is of

great interest for primary and secondary prevention in dental care. An important step toward

reaching this goal is to predict the tooth-level probabilities of future caries state transitions. The

future transition probability is defined here as the conditional probability of a tooth being in a

specific caries state at a future time point given the individual’s up-to-date caries life-history data.

In terms of the previous notations, the future transition probability of the j-th tooth of the i-th
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subject is

p
K
( j)
iMi

q
(ViMi

, t,Xi j, zi, ξ,σ), (3.7)

where t > ViMi
and q ≥ K

( j)
iMi

. Note that ViMi
is the last dental exam time for the i-th child and

K
( j)
iMi

is the dental caries state of the j-th tooth of the i-th child at ViMi
. A natural point predictor

for (3.7) is p
K
( j)
iMi

q
(ViMi

, t,Xi j, ẑi, ξ̂, σ̂), which is the empirical Bayes estimator of (3.7) under the

zero-one loss. It is, however, not straightforward to construct a 1 − α prediction interval for the

future transition probability, so we resort to Bayesian methods again. Treating ζ and ν as random

quantities with a flat joint prior density, we can obtain credible intervals for (3.7) as its prediction

intervals through simulating (ξ, zi) from their joint posterior density f (ξ, zi |Y, ν̂). The use of

this conditional posterior is justified because (3.7) depends on (zi, ξ,σ) through (ξ,wi), which is

expected to be asymptotically orthogonal to ν (Ha et al., 2016, Section 4.1). A posterior realization

of (ξ∗, z∗
i
) is generated as follows:

(a) Generate ξ∗ from f (ξ |Y, ν̂) ≈ N(Aη̂(ν̂),−AH−1
h

(η̂(ν̂); Y, ν̂)AT ), where

A = (I2p+4+N01+N12
, 0(2p+4+N01+N12)×2m) and 0(2p+4+N01+N12)×2m is a (2p + 4 + N01 +

N12) × 2m zero matrix.

(b) Generate z∗
i

from f (zi |Y, ξ∗, ν̂) ∝ f (Yi |zi, ξ
∗, ν̂)φ(zi1)φ(zi2) using the Metropolis-Hastings

algorithm which employs a standard bivariate normal distribution as the proposal distribution

and has a burn-in period of 5000.

We repeat steps (a) and (b) until we obtain enough pairs of (ξ∗, z∗
i
), each of which results in a

p
K
( j)
iMi

q
(ViMi

, t,Xi j, z
∗
i
, ξ∗, σ̂), a realization of (3.7) from its posterior distribution. The credible

interval formed by the α/2-th and (1 − α/2)-th sample quantiles of the posterior sample of (3.7) is

then used as a 1 − α prediction interval for (3.7). The posterior sample mean and median are two

alternative point predictors for (3.7) to the empirical Bayes estimator.
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3.3 Simulation study

3.3.1 Simulation setting

A Monte Carlo simulation study was performed to evaluate the finite-sample performance of the

estimation and inference methods for the regression parameters and the baseline intensity functions,

and the prediction method for the future transition probability. The simulation study was conducted

for two sample sizes m = 100 and m = 200, and for n = 8 tooth-level processes. Weibull

intensities, h
(0)
01

(t) = 0.12t1.2−1 and h
(0)
12

(t) = 0.18t0.9−1 were used as the baseline intensities.

Seven dummy variables X1 through X7 were generated to indicate the eight tooth sites, with the

first tooth serving as the reference. Additionally, one continuous tooth-specific covariate X8 was

generated from a standard normal distribution. The coefficients of (X1, · · · , X8) were chosen to

be (β(1)
01
, β

(2)
01
, β

(3)
01
, β

(4)
01
, β

(5)
01
, β

(6)
01
, β

(7)
01
, β

(8)
01

) = (0.2,−0.1, 0.1, 0.3, 0.2,−0.3, 0.1, 0.2) for the 0-to-1

transition and (β(1)
12
, β

(2)
12
, β

(3)
12
, β

(4)
12
, β

(5)
12
, β

(6)
12
, β

(7)
12
, β

(8)
12

) = (0.5,−0.2, 0.3, 0.2, 0.2,−0.3, 0.2, −0.1)

for the 1-to-2 transition. We set σ01, σ12 and ρ as 1, 0.8 and 0.8, respectively. Three dental exam

times were simulated as follows: V1 ∼ U(1.6, 2.4), V2 = V1+U(1.6, 2.4), and V3 = V2+U(3.2, 4.8).

And finally, 1000 Monte Carlo samples were generated for each of the two sample sizes.

3.3.2 Simulation results

Tables 3.1 and 3.2 show the simulation results for estimating β ≡ (βT
01
, βT

12
)T . The mean estimates

are close to the true parameter values. The empirical coverage probabilities of the 95% confidence

intervals based on the asymptotic normal distribution of β̂ are centered around the nominal level.

The standard deviation of the estimates (empirical standard error) for each component in β is almost

the same as the mean of the estimated asymptotic standard errors. The mean squared errors (MSEs)

and the empirical variances decrease roughly by half as the number of subjects doubles, which is

consistent with the asymptotic theory.

Figure 3.1 shows that the average baseline intensity estimates are reasonably close to the true

baseline intensities over the interval [1.6, 9.6], with the endpoints being the lower and the upper
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Table 3.1: The simulation results for estimating β01

(0-to-1 transition) β
(1)
01

β
(2)
01

β
(3)
01

β
(4)
01

β
(5)
01

β
(6)
01

β
(7)
01

β
(8)
01

Truth 0.2 -0.1 0.1 0.3 0.2 -0.3 0.1 0.2

m=100

Estimate 0.201 -0.106 0.096 0.301 0.193 -0.304 0.098 0.194

Coverage 0.955 0.940 0.954 0.956 0.954 0.953 0.958 0.961

MSE 0.033 0.035 0.032 0.031 0.032 0.035 0.032 0.012

Bias 0.001 0.006 0.004 0.001 0.007 0.004 0.002 0.006

Empirical SE 0.181 0.186 0.179 0.177 0.178 0.186 0.178 0.109

Mean of SEs 0.181 0.185 0.182 0.180 0.181 0.188 0.182 0.113

m=200

Estimate 0.199 -0.100 0.105 0.303 0.200 -0.299 0.097 0.195

Coverage 0.950 0.955 0.959 0.954 0.954 0.943 0.964 0.956

MSE 0.016 0.016 0.016 0.016 0.015 0.017 0.015 0.006

Bias 0.001 0.000 0.005 0.003 0.000 0.001 0.003 0.005

Empirical SE 0.128 0.125 0.125 0.127 0.124 0.132 0.124 0.076

Mean of SEs 0.128 0.130 0.128 0.127 0.128 0.133 0.129 0.079

Table 3.2: The simulation results for estimating β12

(1-to-2 transition) β
(1)
12

β
(2)
12

β
(3)
12

β
(4)
12

β
(5)
12

β
(6)
12

β
(7)
12

β
(8)
12

Truth 0.5 -0.2 0.3 0.2 0.2 -0.3 0.2 -0.1

m=100

Estimate 0.509 -0.191 0.308 0.222 0.205 -0.281 0.211 -0.104

Coverage 0.966 0.961 0.938 0.960 0.958 0.943 0.947 0.942

MSE 0.053 0.062 0.060 0.054 0.056 0.074 0.060 0.012

Bias 0.009 0.009 0.008 0.022 0.005 0.019 0.011 0.000

Empirical SE 0.230 0.249 0.245 0.231 0.237 0.272 0.245 0.108

Mean of SEs 0.242 0.259 0.245 0.241 0.244 0.269 0.246 0.105

m=200

Estimate 0.484 -0.197 0.291 0.189 0.197 -0.298 0.188 -0.099

Coverage 0.959 0.948 0.961 0.954 0.954 0.953 0.950 0.948

MSE 0.027 0.033 0.028 0.028 0.028 0.035 0.030 0.005

Bias 0.016 0.003 0.009 0.011 0.003 0.002 0.012 0.001

Empirical SE 0.164 0.181 0.166 0.167 0.166 0.188 0.174 0.072

Mean of SEs 0.170 0.182 0.172 0.170 0.171 0.189 0.173 0.073
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Figure 3.1: The average estimates of h
(0)
01

(t) and h
(0)
12

(t), their average 95% pointwise confidence

intervals and their mean integrated squared errors (MISE) across the 1000 Monte Carlo samples

bounds of V1 and V3 respectively. The mean integrated squared errors (MISE), E[
∫ 9.6

1.6
{ĥ

(0)
ab

(t) −

h
(0)
ab

(t)}2dt] (ab = 01, 12), decrease with the sample size m.

The average 95% pointwise confidence intervals for the baseline intensities are of proper

widths and contain the true values at all the time points. The posterior standard deviations of

the baseline intensities in the calculation of the Bayesian confidence intervals were obtained by

the delta method, and they are treated as the theoretical standard errors of the baseline intensity

estimators. The pointwise averages of these theoretical standard errors over the 1000 Monte Carlo
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0−1 transition (m=100, n=8)
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Figure 3.2: The comparison between the empirical standard errors and the average theoretical

standard errors of the baseline intensity estimators

samples are shown to be close to the empirical standard errors of the baseline intensity estimators

in Figure 3.2, except for ĥ
(0)
01

(t) near the upper boundary. In addition, both standard errors reduce

as the sample size increases.

Figure 3.3 displays the empirical coverage probabilities of the 95% pointwise confidence inter-

vals for the baseline intensities. Most of the coverage probabilities are scattered around 95% except

when the time point is near the upper boundary, which shows that the Bayesian confidence interval
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Figure 3.3: The empirical coverage probabilities of the 95% pointwise confidence intervals for the

baseline intensities

has a good frequentist performance.

To evaluate the accuracy of the prediction procedure for the future transition probability de-

scribed in Section 3.2.3, we picked the last tooth (the 8-th) of the last (the m-th) subject in each

Monte Carlo sample and checked whether the 95% prediction interval contains the true probability

of that tooth remaining in the last observed caries state at several future time points. We considered

five future time points, which were obtained by adding 0.1, 0.3, 0.5, 1 and 1.5 to the last visit time
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Table 3.3: The proportion of the Monte Carlo iterations where the 95% prediction interval contains

the true future transition probability for the last tooth of the last subject at VmMm + t∗ where

t∗ = 0.1, 0.3, 0.5, 1, 1.5

m
VmMm + t∗

t∗ = 0.1 0.3 0.5 1 1.5

100 0.9445 0.9428 0.9428 0.9428 0.9376

200 0.9381 0.9381 0.9434 0.9434 0.9416

respectively. Five hundred posterior realizations of (ξ∗, z∗
i
) were used to compute the prediction

intervals. Table 3.3 shows the coverage rates of the 95% prediction intervals at the future time

points. They are all close to 0.95. The Monte Carlo iterations where the m-th subject has an

advanced caries state at the last visit were not considered in the calculation of the coverage rates

because that is an absorbing state. The number of removed iterations was 423 for m = 100 and 435

for m = 200.

Overall, the estimation and inference methods for regression parameters and baseline intensities

as well as the prediction procedure for the future transition probability all perform reasonably well

when the number of subjects is no less than 100 and the number of teeth considered is at least eight.

3.4 Application

We applied the proposed methods to the analysis of the DDHP data. This analysis was restricted

to caries data on first and second molars of each quadrant, resulting in n = 8 teeth per child being

studied. One subject was removed from the analysis data set because that subject’s birth date was

missing, leading to m = 1020 including 487 boys and 533 girls. The caries state of a tooth may be

missing at a study visit if some tooth surface is not visible; the tooth is missing for reasons other

than caries; or the child simply missed the visit. In these instances, the observation was removed

from the analysis data set, assuming a missing at random mechanism. The remaining observations

are then used to study the intra-oral distribution of dental caries by contrasting for example the

transition intensities for the first molar vs. second molar, the upper molar (maxilla) vs. lower

(mandible) molar, and right quadrant vs. left quadrant. More importantly, they are used to predict

tooth-level future transition probabilities for caries formation.
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Table 3.4: The regression parameter estimates for the saturated model based on the DDHP data

Gender Molar Type Quadrant Transition Parameter Estimate SE p-value

Male

1st molar

Upper right tooth (54)
0 → 1 β1,1,1,01 The reference category
1 → 2 β1,1,1,12

Upper left tooth (64)
0 → 1 β1,1,2,01 -0.0200 0.1147 0.8614

1 → 2 β1,1,2,12 0.1208 0.1681 0.4724

Lower left tooth (74)
0 → 1 β1,1,3,01 0.3410 0.1118 0.0023

1 → 2 β1,1,3,12 0.2174 0.1591 0.1719

Lower right tooth (84)
0 → 1 β1,1,4,01 0.3580 0.1125 0.0015

1 → 2 β1,1,4,12 0.2139 0.1581 0.1762

2nd molar

Upper right tooth (55)
0 → 1 β1,2,1,01 1.4652 0.1075 < 0.0001

1 → 2 β1,2,1,12 -0.3856 0.1504 0.0104

Upper left tooth (65)
0 → 1 β1,2,2,01 1.5330 0.1081 < 0.0001

1 → 2 β1,2,2,12 -0.3883 0.1498 0.0095

Lower left tooth (75)
0 → 1 β1,2,3,01 1.4061 0.1078 < 0.0001

1 → 2 β1,2,3,12 -0.3307 0.1517 0.0293

Lower right tooth (85)
0 → 1 β1,2,4,01 1.4426 0.1076 < 0.0001

1 → 2 β1,2,4,12 -0.3115 0.1496 0.0373

Female

1st molar

Upper right tooth (54)
0 → 1 β2,1,1,01 0.1274 0.1617 0.4306

1 → 2 β2,1,1,12 0.0096 0.1624 0.9530

Upper left tooth (64)
0 → 1 β2,1,2,01 0.2324 0.1608 0.1484

1 → 2 β2,1,2,12 0.0483 0.1582 0.7599

Lower left tooth (74)
0 → 1 β2,1,3,01 0.1805 0.1612 0.2628

1 → 2 β2,1,3,12 0.2544 0.1584 0.1083

Lower right tooth (84)
0 → 1 β2,1,4,01 0.2326 0.1606 0.1477

1 → 2 β2,1,4,12 0.2647 0.1581 0.0941

2nd molar

Upper right tooth (55)
0 → 1 β2,2,1,01 1.5512 0.1569 < 0.0001

1 → 2 β2,2,1,12 -0.3185 0.1467 0.0300

Upper left tooth (65)
0 → 1 β2,2,2,01 1.6083 0.1573 < 0.0001

1 → 2 β2,2,2,12 -0.2099 0.1457 0.1496

Lower left tooth (75)
0 → 1 β2,2,3,01 1.8307 0.1579 < 0.0001

1 → 2 β2,2,3,12 -0.2834 0.1454 0.0512

Lower right tooth (85)
0 → 1 β2,2,4,01 1.8725 0.1580 < 0.0001

1 → 2 β2,2,4,12 -0.3777 0.1458 0.0096

Because each child has a total of eight primary molars, we considered a saturated model with

fifteen dummy covariate variables indicating the combination of tooth identity and gender. The

upper right first molar for boys was set as the reference category. Seven knots were used for

approximating log h
(0)
01

(t) and log h
(0)
12

(t) by linear splines. The total number of parameters in the

model is 51 including the spline parameters, the regression coefficients and the variance components

of the log frailties for both types of transitions.
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The regression coefficient estimates and their standard errors for the saturated model are shown

in Table 3.4. The subscripts of β represent gender (1= Male, 2= Female), molar type (1=First

molar, 2=Second molar), quadrant (1=Upper right, 2=Upper left, 3=Lower left, 4=Lower right)

and transition type (01=0-to-1 transition, 12=1-to-2 transition) in order. For instance, β1,1,1,01 and

β1,1,1,12 are the coefficients for 0-1 and 1-2 transitions of the upper right first molar in a boy, the

reference category, respectively, thus β1,1,1,01 = β1,1,1,12 = 0. It is of scientific interest to compare

tooth decay profiles between first and second molars, between upper and lower molars, and between

right and left molars. These symmetry evaluations need to be stratified by gender if there exists an

interaction effect between gender and tooth identity (type and quadrant) on the tooth decay profile.

All these questions can be answered by testing a hypothesis of the form H0 : Gβ = 0, where G is

an appropriate matrix with full row rank, denoted by r , and 0 is a zero vector of length r . Based on

the asymptotic normality of β̂, the corresponding Wald test is,

(Gβ̂)T (G ˆVar(β̂)GT )−1Gβ̂
H0
 χ2

r ,

where ˆVar(β̂) is the sub-matrix of −H−1
h

(η̂; Y, ν̂) corresponding to β.

The null hypothesis for testing the interaction between gender and tooth identity can be formu-

lated as

H0 : β1,t,l,ab − β1,1,1,ab = β2,t,l,ab − β2,1,1,ab, for all t, l, ab.

This null hypothesis was rejected at 5% significant level (p-value = 0.0016) based on the data.

Hence we evaluate whether there are any intra-oral symmetries with respect to the tooth decay

profile for each gender. The null hypothesis of comparing the tooth decay profile between first and

second molars for each gender is,

H0 : βg,1,l,ab = βg,2,l,ab for all l, ab,

where g takes values 1 or 2. These two null hypotheses were rejected (both p-values less than

0.0001). The null hypothesis of comparing the tooth decay profile between upper and lower molars

for each gender is,

H0 : βg,t,1,ab = βg,t,4,ab, βg,t,2,ab = βg,t,3,ab for all t, ab,
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Table 3.5: The Wald test statistics (p-value) for the three types of symmetry in caries transition

intensity stratified by gender and transition type

Gender Test for symmetry
Transition

0 to 1 1 to 2

Male

Upper vs Lower 21.87(0.0002) 2.74(0.6020)
Right vs Left 0.71(0.9498) 0.54(0.9695)

First molar vs Second molar 538.75(< 0.0001) 48.35(< 0.0001)

Female

Upper vs Lower 18.96(0.0008) 5.75(0.2180)
Right vs Left 1.86(0.7617) 1.66(0.7973)

First molar vs Second molar 775.38(< 0.0001) 51.22(0.0004)

where g takes values 1 or 2. This hypothesis was rejected for each gender (p-value = 0.0011 for

boys and p-value= 0.0020 for girls). Lastly, the right-left symmetry in tooth decay for each gender

can be tested using the null hypothesis:

H0 : βg,t,1,ab = βg,t,2,ab, βg,t,3,ab = βg,t,4,ab for all t, ab, (3.8)

where g takes values 1 or 2. The corresponding test statistics are 1.256 (p-value = 0.9961) for boys

and 3.690 (p-value= 0.8840) for girls, which indicates that the right-left symmetry in tooth decay

exists for both genders.

We further performed the tests for the three types of symmetries in caries transition intensity

stratified by gender and transition type. The Wald test statistics and the p-values for these tests are

shown in Table 3.5. Since the null hypotheses (3.8) were not rejected, it is expected that none of

the tests comparing the right and left molars in Table 3.5 was rejected. The detailed comparisons

associated with the significant non-symmetries found in Table 3.5 (at 5% level) were conducted in

order to find out where the difference is. The results of these specific tests can be found in Table

3.6. The upper-lower non-symmetry in 0-to-1 transition intensity for boys is due to lower first

molars transitioning faster from state 0 to 1 than upper first molars in boys. The first vs. second

difference in 0-to-1 transition intensity for boys is because of the first molar transitioning slower

from 0 to 1 than the second molar in every quadrant of a boy’s mouth. In contrast, the first molar

transitions faster from state 1 to 2 than the second molar in every quadrant of a boy’s mouth, which

explains the first vs. second non-symmetry in 1-to-2 transition intensity for boys. The upper-lower
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Table 3.6: The detailed comparisons associated with the significant non-symmetries in caries

transition intensity found in Table 3.5

Gender Transition Teeth Compared Wald Test Statistic (p-value)

Male

0 → 1

Upper right first Lower right first -3.181 (0.0007)

Upper left first Lower left first -3.200 (0.0007)

Upper right second Lower right second 0.236 (0.4068)

Upper left second Lower left second 1.323 (0.0928)

0 → 1

Upper right first Upper right second -13.625 (< 0.0001)

Upper left first Upper left second -14.212 (< 0.0001)

Lower right first Lower right second -10.382 (< 0.0001)

Lower left first Lower left second -10.261 (< 0.0001)

1 → 2

Upper right first Upper right second 2.563 (0.0052)

Upper left first Upper left second 3.443 (0.0003)

Lower right first Lower right second 3.864 (0.0001)

Lower left first Lower left second 3.934 (< 0.0001)

Female

0 → 1

Upper right first Lower right first -0.988 (0.1592)

Upper left first Lower left first 0.494 (0.3015)

Upper right second Lower right second -3.489 (0.0002)

Upper left second Lower left second -2.423 (0.0077)

0 → 1

Upper right first Upper right second -14.055 (< 0.0001)

Upper left first Upper left second -13.681 (< 0.0001)

Lower right first Lower right second -16.200 (< 0.0001)

Lower left first Lower left second -16.168 (< 0.0001)

1 → 2

Upper right first Upper right second 2.424 (0.0077)

Upper left first Upper left second 2.000 (0.0227)

Lower right first Lower right second 4.966 (< 0.0001)

Lower left first Lower left second 4.167 (< 0.0001)

non-symmetry in 0-to-1 transition intensity for girls is due to lower second molars transitioning

faster from state 0 to 1 than upper second molars in girls. The first vs. second difference in 0-to-1

transition intensity for girls is because of the first molar transitioning slower from 0 to 1 than the

second molar in every quadrant of a girl’s mouth, but it is the opposite for comparing the first

molars with the second in 1-to-2 transition intensity for girls: the first molar transitions faster from

1 to 2 than the second in every quadrant of a girl’s mouth.

We predicted future transition probabilities for two molars of a boy in the data set who had only

two study visits at 2.15 and 4.25 years of age respectively. The boy is the same child who was

used for the data analysis in Chapter 2. The molars of interest were his upper right first and second
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molars. His upper right second molar was sound at the first visit but was in the early caries state at

the second visit, whereas his upper right first molar remained sound over the two visits. For each

molar, the empirical Bayes estimates and the 95% prediction intervals for the probabilities of all

possible transitions after his last visit were computed up to age 8 using 500 posterior realizations

of (ξ∗, z∗
i
). The left-side plot in Figure 3.4 shows the probabilities of the 0-to-0, 0-to-1 and 0-to-2

transitions for his upper right first molar, and the right-side plot shows the probabilities of the 1-to-1

and 1-to-2 transitions for his upper right second molar. The probabilities for the molars to stay in

the current state get smaller as the child ages, and those for the molars to develop caries get greater

as time goes by. Dentists can decide the proper timing of future dental exams for this child based

on these probabilities.

The correlation parameter ρ in the distribution of the bivariate frailty could be impacted by

covariates. To examine the heterogeneity in ρ and assess its impact on the analysis results, we fit our

model with ρ being gender-specific to the Detroit data. The analysis results are given in Appendix

A and they are very similar to the results obtained from assuming a homogeneous ρ, although the

likelihood ratio test for the heterogeneity based on the adjusted profile h-likelihood (3.6) showed

that gender has a statistically significant effect on ρ (p-value = 0.0343).

3.5 Discussion

We have proposed a semiparametric three-state Markov frailty model for tooth-level caries

life course data subject to interval censoring. Estimation of the model proceeds by maximizing a

penalized likelihood, imposing a constraint on the coefficients of the linear splines that approximate

the unknown baseline intensities. The linear spline approximation is computationally convenient as

it avoids certain numerical integrations with respect time appearing in the log-likelihood function,

the score function and the hessian matrix. The penalized likelihood resembles the joint likelihood

of a mixed model, treating the coefficients of the spline as random effects. Using the mixed-model

representation avoids the classical problem of penalty parameter tuning. Because the marginal

maximum likelihood estimation for the mixed-effects model involves high-dimensional intractable
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Figure 3.4: The future transition probabilities to every possible state out of the caries state at the

last visit for the upper right first molar (A) and the upper right second molar (B)

integrals, we adopted the hierarchical likelihood approach of Lee and Nelder (1996) for model

fitting and inference. In addition, we developed a Bayesian approach, as a by-product of the model

estimation, to predict future caries transition probabilities at the tooth level. Tooth-level caries

transition risks are useful for prevention and treatment planning in dental care.

The simulation study demonstrated that the estimation and inference methods for the regression

parameters and baseline intensities have a good performance. The Bayesian prediction interval for

the future transition probability is also shown to have a good frequentist property. The methodology

is applied to the DDHP data to describe the intra-oral life-history of caries, with an emphasis on

spatial symmetry evaluation. Our statistical methods are generally applicable to cohort studies and

medical records involving chronic diseases in which the disease progression is assessed at various

locations of the body and at intermittent time points.

The model has some limitations. For example, to account for the intra-oral clustering, we

assume that the intensities of different teeth share a bivariate frailty. This restriction can be relaxed

46



by allowing quadrant-specific frailties. Also, the conditional Markov assumption might not be

realistic and could be replaced by a conditional semi-Markov assumption. These extensions of the

model merit future research.
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CHAPTER 4

VARIABLE SELECTION IN THE PROPORTIONAL HAZARDS MODEL FOR

INTERVAL CENSORED DATA

4.1 Introduction

Epidemiologic/clinical studies usually collect a large number of variables such as subjects’

biomarkers, genotypes, demographic characteristics, and environmental risk factors to study their

relationships with the outcome. Building a regression model including all those variables is often

undesirable because it has low prediction accuracy and is hard to interpret. Therefore, variable

selection is an important topic in regression modeling. There have been many statistical methods

on variable selection. Among them, the traditional method of best subset selection is being

generally used in many applications, but it is known to be unstable as resulting in poor predictive

performance (Breiman, 1996). Another popular class of methods, which is more stable, is variable

selection via regularization, also known as penalized variable selection. This class of methods can

simultaneously determine which variables to put in a regression model and estimate their effects on

the outcome. Popular penalized variable selection methods include Lasso (Tibshirani, 1996), the

smoothy-clipped absolute deviation (SCAD; Fan & Li, 2001) and adaptive Lasso (Zou, 2006). The

latter two methods enjoy the so-called oracle property: when the sample size is large, they build

the regression model as if they knew which variables are important and which are not.

Most penalized variable selection methods were proposed for linear or generalized linear models,

where the outcome is fully observed. There are some methods for survival analysis. For example,

Lasso, SCAD and adaptive Lasso have been extended to the Cox model for right censored data

by Tibshirani (1997), Fan & Li (2002) and Zhang & Lu (2007) respectively. However, to the best

of our knowledge, there is only one published method (Wu & Cook, 2015) on penalized variable

selection for interval censored data. Wu & Cook (2015) assumes a proportional hazards model

with a piecewise constant baseline hazard function, and performs the variable selection through
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penalized likelihood estimation with a LASSO, SCAD or adaptive LASSO penalty. They did not

prove any asymptotic property of the method and used an ad hoc approach to specify the number

and location of break points for the piecewise constant baseline hazard function.

In this chapter, we propose a penalized variable selection method for the Cox proportional

hazards model of interval censored data and investigate the performance of the proposed model

in realistic samples, in terms of both variable selection and estimation consistency. The model is

semiparametric because its baseline hazard function is completely unspecified. The nonparametric

maximum likelihood estimator for the baseline harzard function is considered with the support set

which was introduced by Alioum & Commenges (1996). The variable selection is performed via

a penalized nonparametric maximum likelihood estimation with an adaptive Lasso penalty. In the

model estimation procedure, we first obtain the unpenalized nonparametric maximum likelihood

estimators for the regression parameters as following the EM algorithm in Zeng et al. (2016)

with some modifications, and use these consistent estimates in the penalized likelihood estimation

procedure with the adaptive LASSO penalty. We prove that our method has the oracle property

and give an approach to estimate the covariance matrix of the penalized estimator. In addition, we

extend the method to left truncated and interval censored data.

To evaluate model performance, we compared our proposed method to the existing methods

introduced by Zhang & Lu (2007) and Wu & Cook (2015) under interval censoring. Because

Zhang and Lu’s method is designed for right censored data, the evaluation on their method is

conducted using mid-point imputations of the censoring intervals, which is a common practice in

many studies.

The application of the proposed model in this chapter is performed with the mouth-level DDHP

data described in Chapter 1. We consider the event that a child has at least one noncavitated/cavitated

lesion in the surfaces of all teeth. Unlike Chapter 2 and Chapter 3, we have only one censored

interval for each child. In addition, we use the child-level, family-level or community-level influence

variables as covariates of the model to determine social and behavioral factors that play a critical

role in developing dental caries in deciduous dentition.
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In Section 4.2, we introduce a new variable selection approach via adaptive Lasso estimation

for interval censored time-to-event data. Followed by Section 4.2, the asymptotic property of the

adaptive Lasso estimator from the proposed model is shown in Section 4.3. The extension of the

proposed model to and interval censored data is demonstrated in Section 4.4. We also conduct

the simulation study in Section 4.5, as comparing the proposed model with the existing variable

selection approaches. The simulation study with left truncated and interval censored data is also

described in this section. The practical utility of the proposed variable selection approach is

illustrated with the mouth-level DDHP data in Section 4.6. The concluding remarks are given in

Section 4.7.

4.2 Statistical methodologies

We consider a random sample of n independent subjects. Let Ti and Xi respectively denote the

time to event of interest and a p-dimensional vector of covariates for subject i (i = 1, . . . , n). We

study how to select significant covariates among Xi for the time-to-event outcome Ti in the situation

where Ti is subject to mixed case interval censoring (Schick & Yu, 2000). Denote the sequence

of inspection times for subject i by ®Vi = (Vi1, . . . ,ViKi
)T . Define ∆ik = I(Vi,k−1 < Ti ≤ Vik )

(k = 1, . . . ,Ki) with Vi0 = 0, and ®∆i = (∆i1, . . . ,∆iKi
)T . Then the observed data consist of

{Oi = ( ®Vi, ®∆i,Xi)}n
i=1

.

We assume that the inspection process is independent of the time to event given the covariates,

i.e. Ti ⊥ (®Vi,Ki)|Xi . We also assume that the conditional distribution of Ti given Xi satisfies the

Cox proportional hazards model, i.e.

h(t |Xi) = h(t) exp(βTXi), (4.1)

where h(t |Xi) ≡ lim∆t→0+ pr(t ≤ Ti < t + ∆t |Ti ≥ t,Xi)/∆t, h(t) is an unspecified baseline hazard

function, and β is a vector of unknown regression parameters.
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4.2.1 Variable selection

We conduct the variable selection via an adaptive Lasso estimation. Let Li and Ri denote respec-

tively the last inspection time before Ti and the first inspection time after Ti. Set Li = 0 if Ti is

smaller than Vi1 and Ri = ∞ if Ti is larger than ViKi
, i.e. Ti is right censored. Under the Cox model

(4.1) and the mixed case interval censoring, the logarithm of the observed-data likelihood is

ln(β,H) =
n∑

i=1

log
[
exp{−H(Li) exp(βTXi)} − exp{−H(Ri) exp(βT Xi)}

]
, (4.2)

where H(t) =
∫ t

0
h(s)ds and the convention, exp{−H(∞) exp(βTXi)} = 0, is used. The adaptive

Lasso estimation is

max
β,H




ln(β,H) − nθ

d∑
j=1

|β j |/| β̃ j |


, (4.3)

where β̃ ≡ (β̃1, . . . , β̃d)T is the unpenalized nonparametric maximum likelihood estimator for β,

which can be obtained using the EM algorithm in Zeng et al. (2016), θ is a thresholding parameter

whose selection is discussed later, and the maximization with respect to H is over the space of

nondecreasing nonnegative functions. We denote the estimator from (4.3) by (β̂, Ĥ).

Note that the penalty in (4.3) does not involve H. Thus the support set over which Ĥ(·)

increases is the same as that of the unpenalized nonparametric maximum likelihood estimator

for H, which was characterized by Alioum & Commenges (1996). Specifically, the estimator Ĥ

increases only on so-called maximal intersections: intervals of the form (l, u] where l ∈ {Li}n
i=1

,

u ∈ {Ri}n
i=1

and there is no Li or Ri in (l, u). Additionally, Ĥ is indifferent to how it increases on

the maximal intersections, as only the overall jump sizes over (l, u]’s (u < ∞), Ĥ(u) − Ĥ(l), affect

the penalized likelihood in (4.3). Write the maximal intersections with a finite upper endpoint as

(l1, u1], . . . , (lm, um]. According to the characterizations of Ĥ, we can assume, just for the purpose

of computing Ĥ, that H is flat on ∪m
j=1

(l j, u j]. Define hk = H(uk ) − H(lk ) (k = 1, . . . ,m). Then
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the log likelihood ln(β,H) can be written as ln(β, h), where h = (h1, . . . , hm)T , and

ln(β, h) =
n∑

i=1

log


exp{−

∑
uk≤Li

hk exp(βTXi)} − I(Ri < ∞) exp{−
∑

uk≤Ri

hk exp(βT Xi)}


=

n∑
i=1

log
©­­
«
exp{−

∑
uk≤Li

hk exp(βT Xi)}

1 − exp{−

∑
Li<uk≤Ri

hk exp(βT Xi)}


I(Ri<∞)ª®®¬
.

Direct maximization of ln(β, h) − nθ
∑d

j=1
|β j |/| β̃ j | is challenging because of no closed-form

expression for the maximizer ĥ, whose dimension increases with the sample size. In the spirit of

Zeng et al. (2016), we propose an EM algorithm for the adaptive Lasso estimation as follows. LetWik

(i = 1, . . . , n; k = 1, . . . ,m) be independent Poisson random variables with means hk exp(βTXi).

Define Ai =
∑

uk≤Li
Wik and Bi = I(Ri < ∞)∑Li<uk≤Ri

Wik . Consider Õ ≡ {(Li, Ri,Xi, Ai = 0) :

1 ≤ i ≤ n and I(Ri) = ∞} ∪ {(Li, Ri,Xi, Ai = 0, Bi > 0) : 1 ≤ i ≤ n and I(Ri) < ∞} as an observed

data set, where Ai = 0 means that Ai is observed to be zero and Bi > 0 means that Bi is observed

to be positive. The log likelihood of Õ has the form

n∑
i=1

log





∏
uk≤Li

pr(Wik = 0)





1 − pr
©­
«

∑
Li<uk≤Ri

Wik = 0
ª®¬



I(Ri<∞)
=

n∑
i=1

log
©­­«
exp{−

∑
uk≤Li

hk exp(βT Xi)}

1 − exp{−

∑
Li<uk≤Ri

hk exp(βTXi)}


I(Ri<∞)ª®®
¬
,

which is the same as ln(β, h). Therefore, we can maximize ln(β, h) − nθ
∑d

j=1
|β j |/| β̃ j | via an EM

algorithm by treating {Wik : i = 1, . . . , n and uk ≤ R∗
i
}, where R∗

i
= Li I(Ri = ∞) + Ri I(Ri < ∞),

as the complete data corresponding to Õ.

The complete-data log likelihood is

n∑
i=1

m∑
k=1

I(uk ≤ R∗
i )

[
Wik log{hk exp(βTXi)} − hk exp(βTXi) − logWik !

]
. (4.4)

At the E-step, we compute, Ê(Wik )’s, the conditional means of Wik ’s given the observed data Õ

and the current parameter updates (β(s), h(s)) (s = 0, 1, ...). For uk ≤ Li , Ê(Wik ) = 0 since Ai = 0.
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For Li < uk ≤ Ri with Ri < ∞,

Ê(Wik ) = E(Wik |Li, Ri,Xi, Ai = 0, Bi > 0)

= E(Wik |
∑

Li<uj≤Ri

Wi j > 0)

=

h
(s)
k

exp(β(s)T Xi)

1 − exp{−∑
Li<uj≤Ri

h
(s)
j

exp(β(s)T Xi)}
.

At the M-step, we first maximize the expected complete-data log likelihood with respect to h

conditioning on β. The maximizer has an analytical expression:

h
(s+1)
k

(β) ≡
∑n

i=1
I(uk ≤ R∗

i
)Ê(Wik )∑n

i=1
I(uk ≤ R∗

i
) exp(βTXi)

(k = 1, . . . ,m).

Plugging hk = h
(s+1)
k

(β) into the conditional expectation of (4.4), we update β by maximizing

Q(β, h(s+1)(β)|β(s), h(s)) − nθ

d∑
j=1

|β j |/| β̃ j |,

where

Q(β, h(s+1)(β)|β(s), h(s)) =
n∑

i=1

m∑
k=1

I(uk ≤ R∗
i
)Ê(Wik )


− log




n∑
j=1

I(uk ≤ R∗
j
) exp(βT X j )



+ βT Xi


and h

(s+1)(β) = (h(s+1)
1

(β), . . . , h
(s+1)
m (β))T . To perform this maximization, we approximate

−Q(β, h(s+1)(β)|β(s), h(s)) by a second-order Taylor expansion around β(s). It can be written in a

quadratic form 2−1(Y−Zβ)T (Y−Zβ), where Z is from the Cholesky decomposition of∇2Q(β(s)) ≡

−∂2Q/∂β∂βT |
β=β(s) , that is∇2Q(β(s)) = ZT Z, and Y = (ZT )−1{∇2Q(β(s))β(s)−∇Q(β(s))} with

∇Q(β(s)) = −∂Q/∂β |
β=β(s) . Then we minimize

1

2
(Y − Zβ)T (Y − Zβ) + nθ

d∑
j=1

|β j |/| β̃ j | (4.5)

to obtain β(s+1), using the modified shooting algorithm in Zhang & Lu (2007). The corresponding

update for h is h(s+1)
= h

(s+1)(β(s+1)).

The EM algorithm stops if the maximum of the absolute differences between the estimates

at two successive iterations is smaller than, say 10−3. We choose the initial parameter values
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(β(0), h(0)) to be the unpenalized nonparametric maximum likelihood estimator (β̃, h̃), which can

be obtained from the same EM algorithm as the above except that the objective function (4.5)

becomes 2−1(Y − Zβ)T (Y − Zβ).

4.2.2 Covariance matrix of the adaptive Lasso estimator

Note that the estimator β̂ obtained from (4.3) is equivalent to the solution of the following penalized

profile likelihood estimation,

max
β




lpn(β) − nθ

d∑
j=1

|β j |/| β̃ j |


, (4.6)

where lpn(β) = supH ln(β,H). Adapting the standard error derivation in Section 4.1 of Lu & Zhang

(2007) to the Adaptive Lasso estimation (4.6), the covariance matrix of β̂ can be estimated by a

sandwich formula:

{∇2lpn(β̂) + nθA(β̂)}−1
Σ(β̂){∇2lpn(β̂) + nθA(β̂)}−1, (4.7)

where ∇2lpn(β) is the negative hessian of lpn(β), Σ(β̂) = {∇2lpn(β̂) + nθD(β̂)}{∇2lpn(β̂)}−1

{∇2lpn(β̂) + nθD(β̂)}, A(β) = diag(1/β2
1
, . . . , 1/β2

d
) and D(β) = diag(I(β1 , 0)/β2

1
, . . . , I(βd ,

0)/β2
d
). Here we take the convention 0/0 = 0 and set 1/0 to a very large number, say 1010.

Since lpn(β) does not have a closed form, we calculate ∇2lpn(β̂) using a second-order numerical

difference as in Murphy & Van Der Vaart (1999), that is,

(∇2lpn(β̂))i, j ≈ −
lpn(β̂ + δnei + δne j ) − lpn(β̂ + δnei) − lpn(β̂ + δne j ) + lpn(β̂)

δ2
n

, (4.8)

where ei is the ith unit vector in Rd and δn = Op(n−1/2). The value of lpn(β) can be evaluated

using the EM algorithm in Section 4.2.1 with β held fixed.

4.2.3 Thresholding parameter tuning

Like all the variable selection methods via regularization, the performance of our adaptive Lasso

estimator β̂θ depends critically on the choice of the thresholding parameter θ. To select it, we
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minimize the following Bayesian information criterion (BIC),

BIC(θ) = −2lpn(β̂θ) + |αθ | log(n), (4.9)

where αθ = { j : β̂θ, j , 0} is the active set identified by the adaptive Lasso estimation with

thresholding parameter θ, and |αθ | is its size. For generalized linear models with a fixed number

of covariates, the adaptive Lasso with the thresholding parameter selected using BIC identifies the

true model consistently (Zhang et al., 2010; Hui et al., 2015). This motivates us to use BIC to select

the thresholding parameter in our variable selection method for interval censored data.

The grid points of θ is constructed by following (Simon et al., 2011, Section 2.3). We first find

the smallest tuning parameter θ which all coefficient estimates are zero through a rough search, and

denote it as θmax because it will be used as the largest value among the possible tuning parameters.

After then, the minimum value for the tuning parameter is calculated from θmax by θmin = ǫθmax

where ǫ = 0.0001. In our simulation study and data analysis, we use one hundred grid points for

θ between θmin and θmax (including the maximum and the minimum) so as to ignore a value of θ

very near 0 and to distribute them reasonable. Thus, as suggested by Simon et al. (2011), the j-th

grid point is chosen by θl = θmax(θmin/θmax)l/100, l = 1, · · · , 100.

4.3 Asymptotic properties

We study the asymptotic properties of the adaptive Lasso estimator β̂ obtained from maximizing

the penalized likelihood,

Wn(β,H) = ln(β,H) − nθn

d∑
j=1

|β j |/| β̃ j |, (4.10)

with respect to β and H. Denote the true value of β by β0 = (βT
10
, βT

20
)T , where β10 denotes the

vector of all q non-zero components (1 ≤ q ≤ d) and β20 the vector of zero components. Write β̂

as (β̂T
1 , β̂

T
2 )T accordingly.

We assume the following regularity conditions:

(C1) The true value β0 belongs to the interior of a known compact set B. The union of the

supports of (V1, . . . ,VK ) is a finite interval [ζ, τ], where 0 < ζ < τ < ∞. The true value of
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H(·), denoted by H0(·), is strictly increasing and continuously differentiable on [ζ, τ], and

0 < H0(ζ ) < H0(τ) < ∞.

(C2) The covariate vector X is bounded almost surely.

(C3) The covariance matrix of X is positive definite.

(C4) The number of inspection times, K , is positive almost surely, and E(K) < ∞. Additionally,

pr(Vj+1 −Vj ≥ η |X,K) = 1 ( j = 1, . . . ,K −1) for some positive constant η. Furthermore, the

conditional densities of (Vj,Vj+1) given (X,K), denoted by f j(s, t |X,K) ( j = 1, . . . ,K − 1),

have continuous second-order derivatives with respect to s and t when t − s > η and are

continuously differentiable with respect to X.

Condition (C1) is the regularity condition 1 assumed in Zeng et al. (2016). (C2) and (C3) are

the special cases of their regularity conditions 2 and 3 respectively. (C4) is almost the same

as their regularity condition 4 except that we do not assume pr(VK = τ |X,K) to be greater than a

positive constant since this assumption is too restrictive and unnecessary for proving the asymptotic

properties in Zeng et al. (2016) as discussed by Zeng et al. (2017). Note that the regularity condition

5 in Zeng et al. (2016) automatically holds for the Cox proportional hazards model. Conditions

(C1)–(C4) ensure the root-n consistency of the unpenalized maximum likelihood estimator β̃ (Zeng

et al., 2016), which is required for the penalty term in (4.10) to be an adaptive Lasso penalty as

defined in Zou (2006). These conditions also ensure that the log profile likelihood lpn(β) has a

quadratic expansion around β0 (see Remark A1 in Zeng et al., 2016). Our proofs of the asymptotic

properties of β̂ relies on it.

The following asymptotic results are obtained under the above regularity conditions.

Theorem 4.3.1 If
√

nθn = Op(1), then ‖ β̂ − β0‖ = Op(n−1/2).

Proof First note that the estimator β̂ obtained from maximizing (4.10) is equivalent to the solution
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of maximizing the following penalized profile likelihood,

Qn(β) = lpn(β) − nθn

d∑
j=1

|β j |/| β̃ j |. (4.11)

Under the regularity conditions (C1)–(C4), Theorem 1 of Murphy & van der Vaart (2000) is

applicable (see Remark A1 in Zeng et al., 2016). Hence, for any random sequence β∗n
p−→ β0, the

log profile likelihood lpn(β∗n) has the following quadratic expansion around β0:

lpn(β∗n) = lpn(β0)+(β∗n−β0)T
n∑

i=1

S̃0(Oi)−
1

2
n(β∗n−β0)T Ĩ0(β∗n−β0)+oPβ0,H0

(
√

n‖β∗n−β0‖+1)2,

(4.12)

where S̃0 is the efficient score function for β as given implicitly in Zeng et al. (2016) and Ĩ0 is its

covariance matrix, the efficient Fisher information matrix.

According to Proposition 3.1 and the discussion in Section 4.4 of Huang & Wellner (1997),

ln(β, h) is concave in (β, h). Following the proof of Theorem 1 in Zeng et al. (2016), it can be

shown that Ĥ(τ) is bounded almost surely when n is large. Thus, without loss of generality, we

may restrict the parameter h to a compact space. Then lpn(β) = suph ln(β, h) is concave in β. This

together with the concavity of −nθn
∑d

j=1
|β j |/| β̃ j | leads to that Qn(β) is concave. Hence, to show

the root-n consistency of β̂, it is sufficient to show that, for any ǫ > 0, there exists a large constant

C such that

lim inf
n→∞ pr

{
sup

‖u‖=C

Qn(β0 + n−1/2u) < Qn(β0)
}
≥ 1 − ǫ . (4.13)

This implies that when n is large, there is a local maximizer of Qn(β) in the interior of the ball

{β0 + n−1/2u : ‖u‖ ≤ C} with probability at least 1 − ǫ . By the concavity of Qn(β), the local

maximizer must be β̂ and thus ‖ β̂ − β0‖ = Op(n−1/2).

By the quadratic expansion (4.12), we have, when n is large,

1

n
{lpn(β0 + n−1/2u) − lpn(β0)}

=

1

n
uT n−1/2

n∑
i=1

S̃0(Oi) −
1

2n
uT Ĩ0u + oPβ0,H0

(n−1/2‖u‖ + n−1/2)2

=

1

n
Op(1)

d∑
j=1

|u j | −
1

2n
uT Ĩ0u + oPβ0,H0

{
(‖u‖ + 1)2

n

}
,
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where the second equality holds because n−1/2 ∑n
i=1

S̃0(Oi) = Op(1). It follows that

1

n
{Qn(β0 + n−1/2u) − Qn(β0)}

=

1

n
{lpn(β0 + n−1/2u) − lpn(β0)} − θn

d∑
j=1

|β j0 + n−1/2u j | − |β j0 |
| β̃ j |

≤ 1

n
{lpn(β0 + n−1/2u) − lpn(β0)} − θn

q∑
j=1

|β j0 + n−1/2u j | − |β j0 |
| β̃ j |

≤ 1

n
Op(1)

d∑
j=1

|u j | −
1

2n
uT Ĩ0u + oPβ0,H0

{
(‖u‖ + 1)2

n

}
+ n−1/2θn

q∑
j=1

|u j |
| β̃ j |

. (4.14)

Since the unpenalized maximum likelihood estimator β̃ satisfies ‖ β̃ − β0‖ = Op(n−1/2), we have,

for 1 ≤ j ≤ q,

1

| β̃ j |
=

1

|β j0 |
−

sign(β j0)
β2

j0

(β̃ j − β j0) + op(| β̃ j − β j0 |) =
1

|β j0 |
+

Op(1)√
n
.

Then, under the condition
√

nθn = Op(1), we have

n−1/2θn

q∑
j=1

|u j |
| β̃ j |
= n−1/2θn

q∑
j=1

( |u j |
|β j0 |

+

|u j |√
n

Op(1)
)
≤ Cn−1/2θnOp(1) = Cn−1Op(1)

Therefore, in (4.14), the first and fourth terms are of the order Cn−1, the third term is of a order

smaller than C2n−1, and the second term is of the order C2n−1 because Ĩ0 is positive definite (see

the proof in Zeng et al., 2016). If C is sufficiently large, the second term dominates the others in

(4.14). Hence, (4.13) holds, which completes the proof.

Theorem 4.3.2 If
√

nθn → 0 and nθn → ∞, then β̂ has the following properties:

(i) limn→∞ pr(β̂2 = 0) = 1;

(ii)
√

n(β̂1 − β10)  N(0, Ĩ−1
10

), where Ĩ10 is the upper-left q × q sub-matrix of the efficient

Fisher information matrix for β, denoted by Ĩ0, as given implicitly in Zeng et al. (2016).

Proof (i) Since ‖ β̂ − β0‖ = Op(n−1/2) according to Theorem 4.3.1, to prove limn→∞ pr(β̂2 =

0) = 1, it suffices to show that for any sequence β1 such that ‖β1 − β10‖ = Op(n−1/2) and for any
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positive constant C,

lim
n→∞ pr

{
Qn(β1, 0) = max

‖β2‖≤Cn−1/2
Qn(β1, β2)

}
= 1.

We show this by proving that for any such sequence β1 and any positive constant C, ∂Qn(β)/∂β j

and β j have opposite signs for any β j ∈ (−Cn−1/2, 0) ∪ (0,Cn−1/2) ( j = q + 1, . . . , d) with

probability tending to 1.

For any β1 satisfying ‖β1−β10‖ = Op(n−1/2) and any β2 such that ‖β2‖ ≤ Cn−1/2, lpn{β} has

the quadratic expansion (4.12) when n is large. It is then easy to see that ∂lpn{β}/∂β j = Op(n1/2)

( j = q + 1, . . . , d). Hence, for β j ∈ (−Cn−1/2, 0) ∪ (0,Cn−1/2) ( j = q + 1, . . . , d),

∂Qn(β)
∂β j

=

∂lpn(β)
∂β j

− nθn

sign(β j )
| β̃ j |

= Op(n1/2) − (nθn)n1/2 sign(β j )
|n1/2 β̃ j |

.

Since n1/2(β̃ j − 0) = Op(1), it follows that

∂Qn(β)
∂β j

= n1/2
{
Op(1) − nθn

sign(β j)
|Op(1)|

}
. (4.15)

Because nθn → ∞, the sign of β j determines the sign of ∂Qn(β)/∂β j in (4.15) when n is large,

and they have opposite signs.

(ii) According to (i), limn→∞ pr(β̂2 = 0) = 1. Thus we just need to derive the asymptotic

representation of β̂1 in the event {β̂2 = 0}. Set ĥ =
√

n(β̂1 − β10) and ∆1n = n−1/2 ∑n
i=1

S̃10(Oi),

where S̃10 is the sub-vector of S̃0 corresponding to β1. For any random sample in the event

{β̂2 = 0}, we have Qn(β̂1, 0) ≥ Qn(β0 + n−1/2(Ĩ−1
10
∆1n, 0)). Note that ‖ β̂1 − β10‖ = Op(n−1/2)

according to Theorem 4.3.1 and Ĩ−1
10
∆1n = Op(1). By (4.12), we have

Qn(β̂1, 0) = lpn(β0) + ĥT
∆1n − 1

2
ĥT Ĩ10 ĥ + op(‖ ĥ‖ + 1)2 − nθn

q∑
j=1

| β̂ j |
| β̃ j |

= lpn(β0) + ĥT
∆1n − 1

2
ĥT Ĩ10 ĥ + op(1) − nθn

q∑
j=1

| β̂ j |
| β̃ j |
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and

Qn(β0 + n−1/2(Ĩ−1
10
∆1n, 0))

= lpn(β0) + ∆T
1n Ĩ−1

10 ∆1n − 1

2
∆

T
1n Ĩ−1

10 ∆1n + op(‖ Ĩ−1
10 ∆1n‖ + 1)2 − nθn

q∑
j=1

|β j0 + n−1/2(Ĩ−1
10
∆1n) j |

| β̃ j |

= lpn(β0) +
1

2
∆

T
1n Ĩ−1

10 ∆1n + op(1) − nθn

q∑
j=1

|β j0 + n−1/2(Ĩ−1
10
∆1n) j |

| β̃ j |
.

Since Qn(β̂1, 0) − Qn(β0 + n−1/2(Ĩ−1
10
∆1n, 0)) ≥ 0, it follows that

ĥT
∆1n − 1

2
ĥT Ĩ10 ĥ − 1

2
∆

T
1n Ĩ−1

10 ∆1n − nθn

q∑
j=1

| β̂ j | − |β j0 + n−1/2(Ĩ−1
10
∆1n) j |

| β̃ j |
≥ op(1) (4.16)

The left side of (4.16) is equal to

− 1

2
(ĥ − Ĩ−1

10 ∆1n)Ĩ10(ĥ − Ĩ−1
10 ∆1n) − nθn

q∑
j=1

| β̂ j | − |β j0 + n−1/2(Ĩ−1
10
∆1n) j |

| β̃ j |

≤ −c‖ ĥ − Ĩ−1
10 ∆1n‖2

+

√
nθn

q∑
j=1

|√n(β̂ j − β j0) − (Ĩ−1
10
∆1n) j |

| β̃ j |

for some positive constant c since Ĩ10 is positive definite. It follows that

‖ ĥ − Ĩ−1
10 ∆1n‖2 ≤ 1

c

√
nθn

q∑
j=1

|√n(β̂ j − β j0) − (Ĩ−1
10
∆1n) j |

| β̃ j |
+ op(1).

Note that | β̃ j |
p−→ |β j0 | > 0 for j = 1, . . . , q. Thus, under the condition

√
nθn → 0, ‖ ĥ− Ĩ−1

10
∆1n‖ =

op(1), and then
√

n(β̂1 − β10) = Ĩ−1
10
∆1n + op(1) N(0, Ĩ−1

10
).

The consistency and sparsity of β̂ shown in Theorem 4.3.1 and Theorem 4.3.2(i) respec-

tively imply that the adaptive Lasso estimator enjoys the selection consistency property, that is,

limn→∞ pr(An = {1, . . . , q}) = 1 with An = { j : β̂ j , 0}. Theorem 4.3.2(ii) implies that the

adaptive Lasso estimator for the non-zero regression parameters is semiparametrically efficient as

if the unimportant covariates were known. It is more efficient than the unpenalized maximum

likelihood estimator β̃1, whose covariance matrix is (Ĩ−1
0

)11, the leading q × q sub-matrix of Ĩ−1
0

.

60



4.4 Extension to left truncated and interval censored data

In this section, we extend the variable selection method to left truncated and interval censored

data. Such data have one additional variable Vi0 (i = 1, . . . , n), the time to entering the study, to

the observed data described in Section 1. Left truncation means that the random sample comes

from the subpopulation of subjects whose time to event is greater than his/her time to study entry,

also called left truncation time. To avoid confusion in understanding the sampling plan, we define

T∗, V∗
0

and X∗ to be the time to event, left truncation time and covariate vector of a subject from

the target population, respectively. Then (Ti,Vi0,Xi) (i = 1, . . . , n) are a random sample from the

subpopulation of (T∗,V∗
0
,X∗) with T∗ > V∗

0
. To describe the assumption below on the inspection

process, we introduce a positive random variable Uk (k = 1, . . . ,K) to represent the time from

study entry to the k-th inspection of a sampled subject, where K denotes the random total number

of inspections. Hence Uik = Vik −Vi0 (i = 1, . . . , n; k = 1, . . . ,Ki). Define ®U = (U1, . . . ,UK )T . We

assume that T∗ is independent of (V∗
0
,K, ®U) given X∗ and that the joint distribution of (V∗

0
,K, ®U,X∗)

does not involve β and H.

Under the above assumptions, the log likelihood of left truncated and interval censored data is,

up to an additive constant free of (β,H),

l
(T )
n (β,H) =

n∑
i=1

log
[
exp{−(H(Li) − H(Vi0)) exp(βT Xi)} − exp{−(H(Ri) − H(Vi0)) exp(βT Xi)}

]
,

(4.17)

where the superscript (T)means truncation. We perform the variable selection through the following

adaptive Lasso estimation,

max
β,H




l
(T )
n (β,H) − nθ

d∑
j=1

|β j |/| β̃ j |


, (4.18)

where β̃ ≡ (β̃1, . . . , β̃d)T is the unpenalized nonparametric maximum likelihood estimator for

β, which can be obtained using the EM algorithm below except no penalty being involved, θ

is a thresholding parameter whose selection can follow the method in Section 4.2.3, and the

maximization with respect to H is over the space of nondecreasing nonnegative functions. We
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denote the estimator from (4.18) by (β̂, Ĥ).
Similar to the case of interval censored data, Ĥ has the same characterizations as the unpenalized

nonparametric maximum likelihood estimator for H, which were given in Alioum & Commenges

(1996). Specifically, the estimator Ĥ increases only on intervals of the form (l, u]where l ∈ {Li}n
i=1

,

u ∈ {Ri,Vi0}n
i=1

and there is no Li , Ri or Vi0 in (l, u). Additionally, Ĥ is indifferent to how it increases

on those intervals, as only the overall jump sizes over (l, u]’s with l > 0 and u < ∞, Ĥ(u) − Ĥ(l),
affect the penalized likelihood in (4.18). Write the intervals (l, u]’s with l > 0 and u < ∞ as

(l1, u1], . . . , (lm, um]. According to the characterizations of Ĥ, we can assume, just for the purpose

of computing Ĥ, that H is flat on ∪m
j=1

(l j, u j]. Define hk = H(uk ) − H(lk ) (k = 1, . . . ,m). Then

the log likelihood l
(T )
n (β,H) can be written as l

(T )
n (β, h), where h = (h1, . . . , hm)T , and

l
(T )
n (β, h) =

n∑
i=1

log


exp{−

∑
Vi0<uk≤Li

hk exp(βT Xi)} − I(Ri < ∞) exp{−
∑

Vi0<uk≤Ri

hk exp(βT Xi)}


=

n∑
i=1

log
©­­«
exp{−

∑
Vi0<uk≤Li

hk exp(βT Xi)}

1 − exp{−

∑
Li<uk≤Ri

hk exp(βT Xi)}


I(Ri<∞)ª®®¬
.

In view of the similarity between l
(T )
n (β, h) and ln(β, h), the adaptive Lasso estimation (4.18)

can be performed using the same EM algorithm as for the case of interval censored data except that

the indices uk ≤ Li are replaced by Vi0 < uk ≤ Li throughout the algorithm.

4.5 Simulation study

4.5.1 Simulation setting

To check the finite sample performance of our variable selection methods, we conducted numerical

experiments in two cases, one without left truncation and one with it. In the former, we also

compare the performance of our method with Wu & Cook (2015)’s and Zhang & Lu (2007)’s, for

the latter of which the event times were obtained using mid-point imputations. We used the R codes

developed by the authors to implement Wu & Cook (2015)’s and Zhang & Lu (2007)’s methods.

The simulation scenario is the following. For every subject of a sample, a vector of ten

covariates is generated from a multivariate normal distribution, Xi
i.i.d.∼ MVN10(0, Σ) where Σ is
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the covariance matrix whose i j-th element is Σi j = 0.5|i− j |. We set β j = 0.5 for j = 1, 2, 9, and

10, and β j = 0 for j = 3, . . . , 8 in the Cox model, h(t |Xi) = h(t) exp(βT Xi). We use the Weibull

hazard as the baseline hazard function, h(t) = κη(ηt)κ−1 with κ = 1.5 and η = 0.02, which renders

P(Ti < 10|Xi = 0) ≈ 0.95. The number of planned inspections is three, but we allow subjects to

miss each of the second and third planned inspections with a 5% chance so that the actual number

of inspections could vary across subjects. In the untruncated case, the inspection times V1, V2 and

V3 are generated from V1 ∼ U(3.2, 4.8), V2 = V1 + U(1.5, 2.5), and V3 = V2 + U(1.5, 2.5). In the

truncated case, we generate the left truncation time V0 from V0 = 2.5 +U(0, 4), and the inspection

times are obtained from V1 = V0 + U(3.2, 4.8), V2 = V1 + U(1.5, 2.5) and V3 = V2 + U(1.5, 2.5).

The proportions of subjects being right-censored are 24.2% in the untruncated case and 29.7% in

the truncated case. We considered two sample sizes, 200 and 400. One thousand Monte Carlo

samples were generated for each sample size. However, for 247 Monte Carlo samples of size 200

and 210 samples of size 400, Wu & Cook (2015)’s method failed to converge for a wide range

of thresholding parameter values. We removed these Monte Carlo samples from computing the

simulation performance measurements for Wu & Cook (2015)’s method.

4.5.2 Simulation results

Table 4.1 gives the variable selection percentages of our method, Zhang & Lu (2007)’s method

based on mid-point imputation, and Wu & Cook (2015)’s method in the untruncated case. Our

method’s selection percentages of significant covariates are almost one and higher than the other

two methods. Our method’s selection percentages of non-significant covariates are less than 8%

for n = 200 and less than 5% for n = 400, slightly worse than Zhang & Lu (2007)’s but better

than Wu & Cook (2015)’s. All the three methods’ variable selection performances improved as

the sample size increased. Table 4.2 shows the average numbers of correct and incorrect zero

coefficients as well as the mean squared error of the coefficient estimator, (β̂ − β)TΣ(β̂ − β), where

Σ is the population covariance matrix of the covariates. Our method outperforms the other two in

terms of the average numbers of incorrect zero coefficients and the mean squared error. Zhang &
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Table 4.1: The variable selection percentages of our method (Ours), Zhang & Lu (2007)’s method

based on mid-point imputation (ZL), and Wu & Cook (2015)’s method (WC) in the untruncated

case

n Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

200

Ours 0.997 0.993 0.067 0.067 0.069 0.060 0.072 0.066 0.992 0.993

ZL 0.974 0.963 0.038 0.019 0.032 0.030 0.035 0.035 0.967 0.971

WC 0.991 0.992 0.121 0.102 0.112 0.086 0.106 0.130 0.987 0.983

400

Ours 1.000 1.000 0.037 0.026 0.042 0.040 0.047 0.033 1.000 1.000

ZL 0.999 0.998 0.012 0.009 0.008 0.009 0.012 0.008 1.000 0.999

WC 0.996 0.995 0.113 0.086 0.085 0.090 0.106 0.109 0.996 0.998

Lu (2007)’s method has a relatively large mean squared error because of the estimation bias for the

non-zero coefficients caused by the mid-point imputation, as shown in Table 4.3. Our method’s

average numbers of correct zero coefficients are only worse than Zhang & Lu (2007)’s, but are still

reasonably good. Table 4.3 gives the mean estimate, the empirical standard error of the estimator,

the mean of the standard error estimates, and the coverage of the Normal-based confidence interval

for the non-zero coefficients. For the variance estimation of our method and the oracle method, the

latter of which applies Zeng et al. (2016)’s approach to the true model, we set δn = 5n−1/2, the

same as in Zeng et al. (2016). Concurring with the theory, our method performs like the oracle

method as the sample size increases. Even in small samples, our variance formula (4.7) is rather

accurate, and our estimators for the non-zero coefficients showed normality, as reflected by the

coverage of the Normal-based confidence intervals and the Normal Q-Q plots in Figure 4.1 Wu &

Cook (2015)’s method performs well in terms of bias and empirical variance, but it has convergence

issues as mentioned earlier. Moreover, the standard errors and the coverage of the Normal-based

confidence intervals for Wu & Cook (2015)’s method were not computed, because the bootstrap,

suggested by Wu & Cook (2015) for computing the standard errors, was very time-consuming in

the simulations and unstable in getting moderate standard errors. Figure 4.1, the Normal Q-Q plots

of our regularized estimators for the non-zero coefficients, shows that the estimators’ distributions

are very close to Normal.

The simulation results for the truncated case are available in Appendix B. In the truncated case,
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Table 4.2: Average numbers of correct and incorrect zero coefficients and mean squared errors

(MSE) of the coefficient estimators for our method (Ours), Zhang & Lu (2007)’s method based on

mid-point imputation (ZL), and Wu & Cook (2015)’s method (WC) in the untruncated case. In the

parentheses are the ideal numbers of correct and incorrect zero coefficients

n Correct (6) Incorrect (0) MSE

200

Ours 5.599 0.025 0.083

ZL 5.811 0.125 0.297

WC 5.343 0.048 0.098

400

Ours 5.775 0 0.034

ZL 5.942 0.004 0.229

WC 5.411 0.015 0.043

our adaptive Lasso method also performed very well in terms of variable selection percentages

(Table B.1), average numbers of correct and incorrect zero coefficients (Table B.2), and estimation

accuracy of the non-zero coefficients (Table B.3). For the variance estimation of our method and the

oracle method, we again set δn = 5n−1/2. Figure B.1 shows that the distributions of our regularized

estimators for the non-zero coefficients are very close to Normal.
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Table 4.3: Simulation results on the estimation of the non-zero coefficients in the untruncated case. The oracle method is the unpenalized

nonparametric maximum likelihood estimation with only the covariates whose coefficients are non-zero, i.e., X1, X2, X9 and X10. The

standard errors and the coverage of the Normal-based confidence intervals for Wu & Cook (2015)’s method were not computed due to

the bootstrap, suggested by Wu & Cook (2015) for computing the standard errors, being time-consuming

Method

n = 200 n = 400

Estimate Coverage Empirical SE Mean of SEs Estimate Coverage Empirical SE Mean of SEs

Oracle

β1 = 0.5 0.531 0.974 0.123 0.137 0.518 0.963 0.085 0.090

β2 = 0.5 0.535 0.972 0.124 0.136 0.516 0.961 0.090 0.089

β9 = 0.5 0.536 0.972 0.127 0.137 0.517 0.953 0.087 0.089

β10 = 0.5 0.525 0.969 0.124 0.136 0.517 0.961 0.084 0.090

Our method

β1 0.481 0.939 0.140 0.139 0.491 0.952 0.091 0.091

β2 0.483 0.948 0.147 0.150 0.488 0.948 0.098 0.098

β9 0.484 0.955 0.148 0.149 0.488 0.947 0.094 0.098

β10 0.476 0.936 0.142 0.138 0.490 0.937 0.091 0.091

Zhang & Lu (2007)’s

β1 0.298 0.470 0.133 0.097 0.318 0.299 0.089 0.068

β2 0.296 0.493 0.134 0.097 0.314 0.280 0.090 0.068

β9 0.300 0.485 0.135 0.097 0.314 0.285 0.090 0.068

β10 0.295 0.469 0.132 0.097 0.315 0.285 0.086 0.068

Wu & Cook (2015)’s

β1 0.514 - 0.132 - 0.507 - 0.094 -

β2 0.514 - 0.139 - 0.504 - 0.101 -

β9 0.515 - 0.150 - 0.504 - 0.102 -

β10 0.512 - 0.146 - 0.505 - 0.091 -
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(b) n = 400

Figure 4.1: Normal Q-Q plots of the proposed estimators for the non-zero coefficients in the

untruncated case
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4.6 Application

We apply the proposed method to the data of Detroit Dental Health Project (DDHP). The study

collected a broad array of hypothesized determinants of oral health and made tooth-surface-level

caries assessments on the participants over three waves from 2003 to 2007. In the analysis, we

consider the event of interest to be that a child has at least one non-cavitated or cavitated lesion

in the primary dentition. We use age as the time scale and call the time to event age to caries.

According to the study design, each child had 1-3 inspection times depending on whether he or

she missed study visits. So the age to caries is either left censored, interval censored or right

censored. The number of children in the analyzed data set is 1020, because one child does not have

age-at-inspection information. We study the effects of child-, family- and community-level factors

on mouth-level primary dental caries development. A list of variables considered in the analysis are

in Table 4.4. All of them except WATER were picked out according to Ismail et al. (2009). These

variables’ values at Wave I were used in the analysis, assuming that the time-dependent variables

in the list did not change much during the follow-up, which is reasonable to some extent owing to

the dichotomization of many of the time-dependent variables.

The included child-level factors are gender (0 for female, 1 for male), weight-for-age percentiles,

frequency of brushing during the preceding week (0 for < 7, 1 for >= 7), and frequencies of

wiping teeth, cleaning teeth with water (0 for never or rarely, 1 for sometimes or usually) and

whether a child participates in WIC or Head Start (0 for no, 1 for yes). The weight-for-age

percentiles are obtained using the 2000 Centers for Disease Control and Prevention growth charts

(see Kuczmarski, et al., 2000). Eleven family-level factors are taken into consideration in the model,

inclusive of five children’s oral health-related measures (OHSE, KBU, KCOH, OHF, KITCHEN)

and six caregiver’s status-related measures (CESD, PARENTSTRESS, SUPPORT, EDU, EMPLOY,

RELIGION). Some family-level measures (OHSE, KBU, KCOH) are constructed by averaging the

responses to the questionnaire. SUPPORT was created based on availability of social support in

five areas: 1 for support from all five areas and 0 for otherwise (Ismail et al., 2009). The items

of the questionnaire for each measure (if applicable) are shown in Appendix C (see Table C.1 and
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Table 4.4: The candidate covariates considered in the analysis of DDHP data

Variable Name Variable Description

Child-level

GENDER Gender of child

WEIGHT Weight-for-age percentile

BRUSHRATE Brushing frequency during the preceding week (0 for < 7; 1 for ≥ 7)

WIPE Frequency of wiping teeth of the child (0=never or rarely; 1=sometimes

or usually)

WATER Frequency of cleaning teeth of the child with water (0=never or rarely;

1=sometimes or usually)

WIC Participating in WIC (0=no; 1=yes)

HEADSTART Participating in Head Start (0=no; 1=yes)

Family-level

OHSE Caregiver’s score of perception of self-efficacy related to brushing the

child’s teeth regularly

KBU Caregiver’s score of knowledge of bottle use

KCOH Caregiver’s score of knowledge of children’s oral hygiene

OHF Caregiver’s belief in oral health fatalism (0 = neutral, disagree, or

strongly disagree; 1 = agree or strongly agree)

KITCHEN Water filter/purifier on kitchen tap (0=no; 1=yes)

CESD Caregiver’s depressive symptoms (0=absence; 1=presence)

PARENTSTRESS Caregiver’s parenting stress score

SUPPORT Social support received by the caregiver (0=low; 1=high)

EDU Caregiver’s education attainment (0 = less than high school, 1 = high

school diploma or more)

EMPLOYMENT Caregiver’s full-time employment status (0 = no, 1 = yes)

RELIGIOUSNESS Caregiver’s frequency of attending religious services (1 for less than

three times a month; 0 for at least once a week)

Community-level

DENTIST Number of dentists in the neighborhood

GROCER Number of grocery stores in the neighborhood

CHURCH Number of churches in the neighborhood
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Table C.2). The depression scale (CESD) is dichotomized additionally (0 for < 23, 1 for >= 23)

to indicate the presence of symptoms by following Siefert et al. (2007). The rest of the factors are

also dichotomized: oral health-related fatalism (0 for neutral or disagree, 1 for agree), the level

of caregiver’s education (0 for less than high school, 1 for high school diploma or more), Having

water filter/purifier on kitchen tap (0 for no, 1 for yes), the employment status (0 for no, 1 for yes),

and frequency of attending religious services (0 for less than three times a month, 1 for at least

once a week). Lastly, the numbers of dentists, grocery stores and churches in the neighborhood are

included as community-level factors, based on geocoding (Tellez et al., 2006).

The data analysis results are shown in Table 4.5. Six covariates (BRUSHRATE, WIPE, HEAD-

START, KBU, PARENTSTRESS and EDU) were selected in the Cox model by the proposed

adaptive Lasso approach. All of their effect directions except WIPE’s and PARENTSTRESS’s

make common sense. A possible explanation about the positive effect of WIPE could be that the

wiping cloth was dirty so that wiping teeth accelerated the caries development. A possible expla-

nation about the negative effect of PARENTSTRESS could be that spending more efforts taking

care of the child’s oral health increased the caregiver’s prarenting stress. As can be seen from Table

4.5, the 5%-level Wald tests for each covariate based on the unpenalized nonparametric maximum

likelihood estimation would pick the same set of significant variables as the adaptive Lasso. But

this test-based variable selection approach suffers from the multiple-testing issue, especially in this

case of 21 candidate covariates.

4.7 Discussion

In this chapter, we have proposed a new adaptive Lasso approach for left truncated and interval

censored data, based on nonparametric maximum likelihood estimation. The simulation study

shows that the proposed model led to better and reasonable performance in parameter estimation

and variable selection, compared to the other two models. The data application of the proposed

model was performed with the mouth-level DDHP data, focusing on the effects of individual-,

family- and community-level factors on the development of noncavitated/cavitated lesions in a
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Table 4.5: The DDHP data analysis results. NPMLE is the coefficient estimate from the nonpara-

metric maximum likelihood estimation, and Adaptive Lasso is the coefficient estimate from the

proposed shrinkage method. Standard errors are given in the parentheses

Variable NPMLE Adaptive Lasso

Child-level

GENDER -0.039 (0.040) 0 (-)

WEIGHT -0.038 (0.039) 0 (-)

BRUSHRATE -0.114 (0.043) -0.092 (0.087)

WIPE 0.160 (0.041) 0.138 (0.086)

WATER -0.002 (0.041) 0 (-)

WIC 0.033 (0.04) 0 (-)

HEADSTART -0.112 (0.042) -0.087 (0.107)

Family-level

OHSE -0.032 (0.042) 0 (-)

KBU -0.098 (0.044) -0.060 (0.043)

KCOH 0.058 (0.045) 0 (-)

OHF 0.040 (0.041) 0 (-)

KITCHEN 0.015 (0.040) 0 (-)

CESD -0.003 (0.041) 0 (-)

PARENTSTRESS -0.118 (0.044) -0.094 (0.060)

SUPPORT -0.023 (0.042) 0 (-)

EDU -0.094 (0.042) -0.080 (0.085)

EMPLOYMENT -0.023 (0.040) 0 (-)

RELIGIOUSNESS -0.026 (0.045) 0 (-)

Community-level

DENTIST 0.054 (0.051) 0 (-)

GROCER 0.040 (0.052) 0 (-)

CHURCH -0.077 (0.052) 0 (-)
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child’s caries experience trajectory.

We consider the support set of Alioum & Commenges (1996) that has positive mass of NPMLE

of H when constructing the log-likelihood. This support set is also applicable for the left truncated

and interval censored data, which fact allows us to extend the proposed approach to the truncated case

with a simple modification of the estimation procedure. In the truncated case, the corresponding

covariance matrix can also be estimated using the profile likelihood method (Murphy & van der

Vaart, 2000). These approaches, to the best of our knowledge, are new in the literature. They

performed well in finite samples, as seen in Table B.3 of Appendix B.

The proposed variable selection method can be readily extended to interval censored data with

time-dependent covariates whose trajectories are fully observed, e.g., marital status and parity.

The asymptotic properties for the extension can be also easily derived based on this chapter and

Zeng et al. (2016), which considered fully-observed time-dependent covariates. A more interesting

and challenging extension is to the high-dimensional setting, i.e., d is comparable to n or even

much larger than n. The modification of the EM algorithm by replacing the penalty term with a

Lasso penalty will be applicable. However, it will loose the consistency of the estimators, as being

generally discussed in much of the Lasso approaches.
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APPENDIX A

We regress the correlation parameter ρ in the distribution of the bivariate frailty on gender after the

Fisher z-transformation, namely,

1

2
log

1 + ρ

1 − ρ
= β0 + β1gender.

Table A.1 shows the model estimation results based on the heterogeneity in ρ. The further

results are available in Table A.2 and Table A.3.
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Table A.1: The regression parameter estimates for the saturated model based on the DDHP data

Gender Molar Type Quadrant Transition Parameter Estimate SE p-value

Male

1st molar

Upper right tooth (54)
0 → 1 β1,1,1,01 The reference category
1 → 2 β1,1,1,12

Upper left tooth (64)
0 → 1 β1,1,2,01 -0.0216 0.1147 0.8506

1 → 2 β1,1,2,12 0.1192 0.168 0.4781

Lower left tooth (74)
0 → 1 β1,1,3,01 0.3386 0.1118 0.0025

1 → 2 β1,1,3,12 0.2177 0.159 0.1709

Lower right tooth (84)
0 → 1 β1,1,4,01 0.3556 0.1125 0.0016

1 → 2 β1,1,4,12 0.2131 0.158 0.1775

2nd molar

Upper right tooth (55)
0 → 1 β1,2,1,01 1.4635 0.1075 < 0.0001

1 → 2 β1,2,1,12 -0.3788 0.1504 0.0118

Upper left tooth (65)
0 → 1 β1,2,2,01 1.5315 0.1081 < 0.0001

1 → 2 β1,2,2,12 -0.3816 0.1497 0.0108

Lower left tooth (75)
0 → 1 β1,2,3,01 1.4042 0.1078 < 0.0001

1 → 2 β1,2,3,12 -0.3242 0.1516 0.0326

Lower right tooth (85)
0 → 1 β1,2,4,01 1.4407 0.1076 < 0.0001

1 → 2 β1,2,4,12 -0.3054 0.1495 0.0411

Female

1st molar

Upper right tooth (54)
0 → 1 β2,1,1,01 0.1258 0.1616 0.4361

1 → 2 β2,1,1,12 0.0293 0.1623 0.8567

Upper left tooth (64)
0 → 1 β2,1,2,01 0.2306 0.1607 0.1512

1 → 2 β2,1,2,12 0.0680 0.1581 0.6672

Lower left tooth (74)
0 → 1 β2,1,3,01 0.1788 0.1611 0.2670

1 → 2 β2,1,3,12 0.2740 0.1583 0.0835

Lower right tooth (84)
0 → 1 β2,1,4,01 0.2308 0.1605 0.1504

1 → 2 β2,1,4,12 0.2839 0.158 0.0723

2nd molar

Upper right tooth (55)
0 → 1 β2,2,1,01 1.5512 0.1568 < 0.0001

1 → 2 β2,2,1,12 -0.2991 0.1466 0.0413

Upper left tooth (65)
0 → 1 β2,2,2,01 1.6082 0.1571 < 0.0001

1 → 2 β2,2,2,12 -0.1906 0.1456 0.1904

Lower left tooth (75)
0 → 1 β2,2,3,01 1.8309 0.1575 < 0.0001

1 → 2 β2,2,3,12 -0.2635 0.1453 0.0697

Lower right tooth (85)
0 → 1 β2,2,4,01 1.8726 0.1575 < 0.0001

1 → 2 β2,2,4,12 -0.3576 0.1457 0.0141

Table A.2: The Wald test statistics (p-value) for the three types of symmetry in caries transition

intensity stratified by gender and transition type

Gender Test for symmetry
Transition

0 to 1 1 to 2

Male

Upper vs Lower 21.71(0.0002) 2.74(0.6025)
Right vs Left 0.72(0.9490) 0.53(0.9709)

First molar vs Second molar 538.41(< 0.0001) 47.08(< 0.0001)

Female

Upper vs Lower 19.05(0.0008) 5.73(0.2202)
Right vs Left 1.85(0.7625) 1.66(0.7976)

First molar vs Second molar 779.47(< 0.0001) 51.20(0.0004)
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Table A.3: The detailed comparisons associated with the significant non-symmetries in caries

transition intensity found in Table A.2

Gender Transition Teeth Compared Wald Test Statistic (p-value)

Male

0 → 1

Upper right first Lower right first -3.160 (0.0008)

Upper left first Lower left first -3.193 (0.0007)

Upper right second Lower right second 0.238 (0.4060)

Upper left second Lower left second 1.327 (0.0923)

0 → 1

Upper right first Upper right second -13.611 (< 0.0001)

Upper left first Upper left second -14.208 (< 0.0001)

Lower right first Lower right second -10.381 (< 0.0001)

Lower left first Lower left second -10.261 (< 0.0001)

1 → 2

Upper right first Upper right second 2.519 (0.0059)

Upper left first Upper left second 3.388 (0.0004)

Lower right first Lower right second 3.815 (0.0001)

Lower left first Lower left second 3.891 (< 0.0001)

Female

0 → 1

Upper right first Lower right first -0.986 (0.1597)

Upper left first Lower left first 0.494 (0.3016)

Upper right second Lower right second -3.495 (0.0002)

Upper left second Lower left second -2.427 (0.0076)

0 → 1

Upper right first Upper right second -14.066 (< 0.0001)

Upper left first Upper left second -13.693 (< 0.0001)

Lower right first Lower right second -16.235 (< 0.0001)

Lower left first Lower left second -16.201 (< 0.0001)

1 → 2

Upper right first Upper right second 2.428 (0.0076)

Upper left first Upper left second 2.003 (0.0226)

Lower right first Lower right second 4.961 (< 0.0001)

Lower left first Lower left second 4.165 (< 0.0001)
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APPENDIX B

Table B.1: The variable selection percentages of our method in the truncated case

n X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

200 0.996 0.986 0.063 0.062 0.064 0.070 0.075 0.087 0.988 0.993

400 1 1 0.031 0.039 0.035 0.033 0.031 0.042 1 1

Table B.2: Average numbers of correct and incorrect zero coefficients and mean squared errors

(MSE) of the coefficient estimators for our method in the truncated case. In the parentheses are the

ideal numbers of correct and incorrect zero coefficients

n Correct (6) Incorrect (0) MSE

200 5.579 0.037 0.0877

400 5.789 0 0.0347
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Table B.3: Simulation results on the estimation of the non-zero coefficients in the truncated case. The oracle method is the unpenalized

nonparametric maximum likelihood estimation with only the covariates whose coefficients are non-zero, i.e., X1, X2, X9 and X10

Method

n = 200 n = 400

Estimate Coverage Empirical SE Mean of SEs Estimate Coverage Empirical SE Mean of SEs

Oracle

β1 = 0.5 0.542 0.968 0.128 0.134 0.542 0.946 0.086 0.089

β2 = 0.5 0.546 0.955 0.129 0.134 0.546 0.948 0.086 0.089

β9 = 0.5 0.545 0.958 0.129 0.134 0.545 0.948 0.088 0.089

β10 = 0.5 0.539 0.960 0.129 0.133 0.539 0.937 0.088 0.089

Our method

β1 = 0.5 0.479 0.934 0.143 0.137 0.495 0.944 0.091 0.091

β2 = 0.5 0.480 0.942 0.148 0.147 0.492 0.958 0.093 0.098

β9 = 0.5 0.478 0.945 0.150 0.147 0.496 0.953 0.096 0.098

β10 = 0.5 0.475 0.931 0.145 0.136 0.495 0.942 0.092 0.091
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Figure B.1: Normal Q-Q plots of the proposed estimators for the non-zero coefficients in the

truncated case
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APPENDIX C

Table C.1: Questionnaire items for the family-level measures (OHSE, KBU, KCOH)

Questionnaire items

Oral health self-efficacy (OHSE): 1 = not at all confident, 4 = very confident

(Q1 - Q9) How confident are you that the child’s teeth will get brushed when:

- you are stressed

- you are depressed

- you are anxious

- you are too busy

- you are tired

- you are worried

- child is crying

- child does not stay still

- child do not feel like brushing right now

Knowledge of bottle use (KBU): 1 = strongly agree, 4 = strongly disagree

(Q1 - Q3) Putting a baby to bed with a bottle helps the child:

- to be better fed

- sleep better

- to gain weight and grow

Q4. There is nothing wrong with putting a baby to bed with a bottle

Knowledge of children’s oral hygiene (KCOH): 1 = strongly agree, 5 = strongly disagree

Q1. Cavities in baby teeth don’t matter since they fall out anyway

Q2. Keeping baby teeth clean is not very important; after all, they fall out

Q3. There is not much I can do to stop the child from developing dental cavities

Q4. There is not much I can do to help the child have healthy teeth

Q5. Children don’t need to brush every day until they get their permanent teeth

Q6. Children don’t really need their own toothbrush until all their teeth are in
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Table C.2: Questionnaire items for the family-level measures (OHF, SUPPORT)

Questionnaire items

Oral health-related fatalism (OHF): 1 = strongly disagree, 5 = strongly agree

Q1. Most children eventually develop dental cavities

Social support (SUPPORT): 1 = yes, 0 = no

(Q1 - Q5). Is there someone you could count on to:

- run errand for you if you needed them to

- lend you some money if you really needed it in a time of financial crisis

- give you encouragement and reassurance if you really needed it

- watch your (child/children) for you if you needed them to

- lend you a car or give you a ride if you needed them
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