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ABSTRACT 
 

CASE STUDIES OF UNDERGRADUATE STUDENT INTERACTIONS 
WITH AN ONLINE COMPUTER ADAPTIVE INSTRUCTION 

INTERMEDIATE ALGEBRA COURSE 
 

By 

Jennifer L. Nimtz 

Remedial/developmental and introductory university mathematics courses have a long 

history of high attrition rates. Recently, university administration and mathematics departments 

have been considering technological solutions, and one such solution is computer-adaptive-

instruction (CAI). In fact, CAI has been touted as a “silver bullet” to the dilemma of 

undergraduate mathematics attrition and failure rates (Twigg, 2011), yet little research has 

documented the nature of student engagement in these courses and what they actually learn. 

Although the use of CAI in college introductory mathematics has been increasing, research about 

student engagement in CAI mathematics is scarce. The goal of this dissertation was to illustrate 

and understand that nature of student engagement in an online CAI intermediate algebra course.  

Drawing on qualitative case-study methods, I investigated the overarching question: 

What is the nature of student engagement in an online intermediate CAI intermediate algebra 

course? Specifically, I investigated the nature of students’ cognitive, academic, and affective 

interactions. The primary data collection method included the combined use of screencast and 

pen-cast video technology to produce weekly think-aloud recordings. These recordings were 

independently conducted by each student as they worked on assignments in an online CAI 

intermediate algebra course. Secondary sources of data included responses to pre-and post- 

questionnaires followed by interviews. After processing and transcribing the data for each case, a 

comparative analysis and relational analysis across the three cases were conducted and described 



  

 

in the results section. 

This dissertation study presents an original framework with which to analyze the nature 

of an individual’s mathematical work. The foundation of this framework was synthesized from 

seminal work, such as Polya (1985) and Schoenfeld (1985), concerning the solving of non-

routine mathematics tasks. I posited the three phases of this new framework (orientation, 

generation, and conclusion) would be applicable to any type of mathematical task, even routine 

exercises common in CAI, but that the activities within each of the three phases would differ. 

The results of this study suggest this is true, yet further research is required. 

I also examined the cognitive demand of the mathematics tasks presented in the CAI 

environment, and all 57 of the tasks recorded in the data were low cognitive demand. Because of 

this finding regarding low cognitive demand, it was surprising to discover that for a few of the 

CAI tasks, students engaged with the mathematics at a deeper level than expected. Again, further 

research is warranted to determine what may be contributing factors for these deeper interactions 

in a CAI environment even when the tasks are low cognitive demand. 

Implications of this research suggest cautions, actions, and future research for various 

groups within the undergraduate mathematics education community: mathematics department 

chairs, course instructors, mathematics education researchers, and curriculum and CAI 

developers.  
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CHAPTER 1 
INTRODUCTION 

 

The challenge that has always faced American education . . . is how to create both the 
social and cognitive means to enable a diverse citizenry to develop their ability. It is an 
astounding challenge: the complex and wrenching struggle to actualize the potential not 
only of the privileged. (Rose, 1989, p. 225) 

 
In the above quote, Rose summarized the struggle of well-meaning educators—and a 

struggle that has existed throughout the 20th and into the 21st Century. Mathematics, algebra in 

particular, serves as an excellent example of this challenge. For instance, for at least the past 30 

years, algebra has been a gatekeeper to college as well as the social and economic status 

associated with a college degree. More recently, algebra has been deemed a gatekeeper to high 

school graduation. As Moses and Cobb (2001) aptly summarized: 

Algebra was assigned a certain role, a certain place in the education system.  Students 
learned how to manipulate abstract symbolic representations for underlying mathematical 
concepts. Now here comes history, which brings in a technology that places symbolic 
representations front and center… So, now algebra becomes an enormous 
barrier…there’s nothing that says it has to be algebra. It could be a mix of a number of 
things—and some people would argue that it should be…For the time being, it’s going to 
be algebra. (pp. 13-14) 

 
Thus, social and economic status is afforded college degrees with algebra playing a key role in 

whether a student attains a college degree. To increase the number and diversity of students 

earning college degrees, “Algebra for All” policies and related efforts to improve K-12 

mathematics education have been in place for some time. Although some progress has been 

made, the hard work of shifting systemic social systems such as the education system has been 

frustratingly slow, and algebra remains a barrier for many people. Roughly 20% to 30% of 

entering college freshman throughout the United States place into a developmental/remedial 

mathematics course that largely consists of high school algebra content (Hill, 2006; Parsad & 
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Lewis, 2003). Despite the fact that the validity of mathematics placement tests have been called 

into question by recent research, the use of such tests remains a prevalent practice that dictates 

students’ first undergraduate mathematics course (Drake, 2010; Fain, 2012; Latterell & Regal, 

2003). Students enrolled in these developmental/remedial mathematics courses pay tuition, but 

the courses do not count toward the completion of a degree. Throughout this paper, I will refer to 

these courses as either intermediate algebra, which is the course specific to this study, or non-

credit-bearing mathematics courses (NCBMC). I emphasize the latter to acknowledge the 

money, time, and effort the students enrolled in these courses put forth to attain a college degree. 

I will discuss the issues surrounding the language used to define these courses and the stigma 

associated with that language in Chapter 2. 

The intent for NCBMC is to prepare students to succeed in college-level mathematics 

coursework and increase their chances of completing a degree program. However, when 

compared with students who take credit-bearing courses, students who take NCBMC often do 

not complete their education within six years, are less likely to take advanced courses, and are 

more likely to drop out of college altogether (Bahr, 2010b; Bailey, 2009; Bailey, Jeong, & Cho, 

2009; Goldrick-Rab, 2010). In addition, university enrollment statistics indicate that NCBMC are 

disproportionately populated by African American, Latina/o students, as well as poor and 

working-class students (Bahr, 2010a; Larnell, 2011; Meza, 2015). Thus, the university education 

system continues to perpetuate the prevalent social and economic inequities for poor people and 

people of color.  

Because students who begin their college coursework in NCBMC are less likely to finish 

their programs of study, university mathematics departments have turned to an assortment of 

strategies to improve student completion rates, such as curricular strategies, student academic 
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support strategies, and evaluating the effectiveness of placement tests. Curricular strategies 

include acceleration through NCBMC, modularization of the courses, and alternative 

mathematics curricular tracks such as contextualized co-requisite courses and quantitative 

reasoning courses. Student academic support strategies include learning communities, tutoring 

services, and supplemental instruction. In addition, colleges are examining their assessment and 

placement practices to accurately place more students into credit bearing courses. (Meza, 2015) 

Technological advancements are also being used to meet the diverse needs of students 

who place into NCBMC. For example, community college and university mathematics 

instructors rely on online homework systems to ensure that students get adequate practice and 

immediate feedback on their homework assignments. Also, colleges and universities increasingly 

utilize various methods of delivering mathematics course content online (hybrid, synchronous, 

and asynchronous) to provide flexibility for student schedules. Most relevant to this study, 

computer adaptive instruction (CAI) mathematics software (e.g. ALEKS, and My Math Lab), 

provides technologically mediated individualized learning environments for students. CAI 

mathematics software generally begins with an assessment of an individual student’s 

mathematics skills, and then uses a combination of ongoing assessment and the prescription of 

mathematics exercises that the software algorithm assigns for the student to advance student 

learning.  

Current reports about the efficacy of CAI vary from glowing reports to unfavorable 

reports. On the one hand, Twigg (2011) of the National Center for Academic Transformation, has 

touted CAI mathematics software and associated instructional models (e.g., the math emporium 

model) as a “silver bullet for higher education mathematics courses” (p.1). On the other hand, 

researchers have argued that mathematics CAI software does not foster the mathematical 



  

 4 

thinking that prepares students to use mathematics to solve problems other than those that are 

presented in the software (Webel, Krupa, & McManus, 2015). 

In the midst of this flurry of reforms and related data gathering efforts regarding 

NCBMC, most studies have examined end of course outcomes, few have documented students’ 

learning experiences or mathematical thinking. Consequently, there is a dearth of knowledge 

about student experiences in NCBM courses that has just begun to be addressed by recent 

research (Larnell, 2011, 2016). Even less research has documented students’ learning experiences 

in NCBM CAI mathematics environments.  

Research Questions 

Because we know little about student experiences in NCBMC in general, and even less 

about the mathematical interactions that occur between students and CAI mathematics 

environments, the purpose of this study was to address that gap in the existing research literature. 

The study examined the nature of students’ engagement with an online intermediate algebra CAI 

course to describe and understand that phenomena. To examine the nature of students’ 

engagement, I adapted Finn and Zimmer’s (2012) framework for indicators of student 

engagement, which include cognitive interactions, academic interactions, affective interactions, 

and social interactions, as indicated in the subsequent overarching research question and related 

sub-questions:  

1. What is the nature of students’ engagement with an online CAI intermediate algebra 

course? 

a. What is the nature of students’ cognitive interactions within an online CAI 

intermediate algebra course? 

b. What is the nature of students’ academic interactions within an online CAI 

intermediate algebra course? 
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c. What is the nature of students’ affective interactions within an online CAI 

intermediate algebra course? 

Note that in these research questions I use “the nature of” in its plural sense, not its 

singular sense. In other words, my assumption is that many patterns of interaction exist, and that 

multiple descriptions of various patterns of interactions are what comprises the nature of student 

engagement for this study. 

Students’ social interactions were not observed in this study because the research context 

was individual student’s learning interactions in the online course. These phenomena did not 

necessarily include interactions with others in the students’ quest to learn in this environment. 

That said, my theoretical research perspective on learning is that learning in any environment, 

whether it be face-to-face classroom instruction or virtually mediated instruction, occurs within 

the larger, pervading sociocultural environment. The sociocultural environment includes issues 

of culture, power, politics, and economics. My sociocultural approach to this case study is 

clarified in the theoretical and conceptual framework of Chapter 3.  

Overview of Research Methodology and Goals 

 This research is a multi-case study of three university students as they interact with an 

online intermediate algebra CAI environment, a NCBMC at Michigan State university. The data 

gathered included responses to a math history questionnaire, weekly independent screencast 

recordings conducted by each student as they worked in the online CAI intermediate algebra 

course (approximately 15 minutes each week), a longer mid-semester recorded session of 

students working in the online CAI intermediate algebra course that I observed and recorded 

(approximately 45 minutes for each student), and an end of course questionnaire and interview. 

The goal of this study is to contribute to the existing research base about students’ experiences in 
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NCBMC, and more specifically, to document students’ learning interactions within an online 

CAI intermediate algebra course. 

Study Rational and Significance 

I conducted this study because online instructional software use is prevalent and is 

predicted to increase. Yet, I have reservations about how some of the current software on the 

market has been implemented, as well as how some implementations have been touted as a 

“silver bullet” for higher education mathematics (Twigg, 2011). If students need to engage in 

activities such as mathematical problem solving and modeling to be successful in subsequent 

STEM courses and careers, then it is important that students have opportunities to engage in 

these practices and develop the associated necessary mathematical habits of mind. This study has 

the potential to influence the development of undergraduate mathematics education courses that 

utilize computer adaptive instruction. This research has the potential to influence the design of 

CAI software such as ALEKS and My Math Lab. It is my hope that the results of this and similar 

research studies will inform future software design to foster productive mathematical interactions 

and deeper student thinking. Lastly, as colleges and universities continue to turn to various 

instructional models that incorporate CAI (See Chapter 2, Table 1, p. 13), the need for 

independent scholarly research in this area will persist. A wider range of quantitative and 

qualitative research methods for evaluating these programs will continue to be necessary to 

provide a more detailed picture of the nature of student experiences and learning in these 

environments. Furthermore, the area of CAI in mathematics will also continue to provide rich 

research opportunities with the ultimate goal of improving the mathematical opportunities that 

students interact with and learn from. 
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Overview of the Forthcoming Chapters 

  In the next chapter, I present background literature on remedial/developmental 

mathematics in higher education, beginning with an analysis of the terms remedial and 

developmental and why I have chosen to use non-credit-bearing mathematics courses instead. 

This is followed by an overview of the related topics relevant to this research, enrollment in 

these courses, teacher-student interactions, instructional models that utilize various forms of 

online technology, research about student thinking, and research about student experiences, 

identity and mathematical socialization. In the first part of Chapter 3, I describe the overarching 

theoretical framework of this study, the sociocultural aspects of student engagement in higher 

education, followed by how I connect this framework with the background literature in Chapter 

2. In the second part of Chapter 3, I illustrate the more specific conceptual framework utilized in 

this study, and provide details of student engagement indicators, cognitive interactions, academic 

interactions, affective interactions, and social interactions. In Chapter 4, I describe the study 

methods and how the conceptual framework was operationalized. In Chapters 5, 6, and 7, I 

present three descriptive case studies of the participants—Jade, Chad, and Tia. In Chapter 8, I 

present a cross-case analysis and findings from the three cases. In Chapter 9, I conclude with 

further interpretation and synthesis of the research, revisit the strengths and limitations of the 

study, discuss implications of this research and make recommendations for future research.   
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CHAPTER 2 
BACKGROUND LITERATURE 

 

This chapter begins with my rationale for using non-credit-bearing mathematics course 

rather than the more common labels remedial mathematics or developmental mathematics 

courses.  Then, I briefly review the literature about higher education enrollment in general, 

followed by enrollment in NCBMC and enrollment in online courses to further bolster the 

rational for this study. Third, because this study examines students learning interactions within a 

CAI NCBMC, I examine the existing literature regarding teacher-student interactions in 

NCBMC. In the fourth subsection about NCBMC, I describe the various mathematics 

instructional models that use web-based CAI technology. In the fifth subsection, I outline some 

existing literature that examines student thinking in NCBMC. Lastly, I summarize a study that 

describes student experiences in a NCBMC, and then conclude this section with a 

summary/synthesis of this background literature. 

Why Non-Credit-Bearing Mathematics Courses?  

 As stated in Chapter 1, when students transition from high school to college, most are 

required to take a mathematics placement exam, the results of which imply that 20 to 30 percent 

of students are not ready for college-level mathematics coursework despite the fact that the most 

have taken 3 or more years of high school mathematics (Hill, 2006; Parsad & Lewis, 2003). 

Students who perform poorly on the placement exam typically are required to take courses 

offered by the college or university, but that are not considered college-level mathematics. Many 

names have been used to describe these courses—and often (inappropriately) students as well: 

“developmental, remedial, compensatory, intermediate, college preparatory, refresher, basic 

skills” (Larnell, 2016, p. 237). The terms, remedial and developmental mathematics courses are 
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most often used in research literature, and sometimes interchangeably, but there are subtle 

differences between the the philosophy of education associated with each. In this section I briefly 

outline the use of remedial education and developmental education in the context of the history 

of higher education, and then deconstruct the definitions of these words in a manner similar to 

Clowes (1980), Higbee (1996), and Arendale (2005) to examine the source of meaning 

associated with these terms.  

Remedial education was most commonly used to describe this field from the 1860s 

through the early 1960s, a time period when higher education was reserved for the elite, upper 

class (Arendale, 2005). Remedial is defined as “giving or intended as a remedy or cure” with the 

secondary definition, “provided or intended for students who are experiencing learning 

difficulties” ("New Oxford American Dictionary," 2005). These definitions present students as 

requiring a remedy or cure for their learning difficulties. Remedial education typically uses 

diagnostic testing to identify and remediate specific skill deficits. Often, students enrolled in 

remedial courses are required to do so as a condition of admission to the college. Whereas 

remedial education comes from a deficit perspective, developmental education takes a more 

holistic view of student growth and recognizes the value of diverse student experiences (Clowes, 

1980). This shift was due, in part, to the social revolution occurring during the 1960s and 1970s, 

when the use of developmental education emerged. Furthermore, all college students were 

thought to be growing in their overall development. The root of developmental is develop, which 

is defined as “grow or cause to grow and become more mature, advanced, or elaborate” ("New 

Oxford American Dictionary," 2005). Even if we consider developmental to apply to every living 

being, a question remains. Why is the label developmental education only used in higher 

education circles to describe courses that are not considered college-level content? Maxwell 
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stated, “…developmental education has become a euphemism for remedial with all the negative 

connotations that word implies…students taking developmental courses are stigmatized” (Piper, 

1998, p. 35). For instance, in K-12 education, developmental is often associated with terms such 

as developmental delays or developmental disabilities both having the social connotations of 

somehow less able or less intelligent. Despite the efforts to adopt language that is holistic and 

that promotes the diversity of learners, the terms remedial and developmental both stigmatize the 

students enrolled in those courses as somehow less able or less intelligent. For example, Larnell 

(2016) transcribed and presented a student’s definition of remedial: 

The word means like simple, or like, dumb. Well, I don't want to say dumb, but . . . And 
how it applies to the course that I just took? I think that most of the material was simple. 
But . . . and I feel like . . . Okay. Like when people ask you, like, what course are you in, 
[the NCBR mathematics course], it’s kind of like, “Well, gee, you’re really bad at math!” 
(p. 258)   
 

This student’s definition and experience clearly illustrated the stigma associated with these 

words. Thus I have rejected both of these terms in this study. 

 I use non-credit-bearing mathematics course (NCBMC) to describe courses that are not 

considered college-level content. This term is similar to Larnell’s (2011, 2016) description non-

credit-bearing remedial mathematics courses, but without the word remedial. Remedial is 

redundant to non-credit-bearing because if a course is designated as developmental or remedial 

at the university level, the content is not considered college-level content and the accumulated 

credits earned by the students enrolled in NCBMC do not count toward a degree. Lastly, I use 

non-credit-bearing rather than remedial to honor the fact that students dedicate their effort, time, 

and money to pay for the credits toward achieving their academic goals, but the ownership of the 

fact that the course is non-credit-bearing remains with the educational system as a whole, and 

specifically with the college or university department. 
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Enrollment in NCBMC and Online Courses 

According to the National Center for Education Statistics (NCES) (Snyder, Brey, & 

Dillow, 2016), general enrollment in higher education has increased about 22% between 2003 

and 2013. In addition, the NCES has projected that college enrollment will “set new records 

from 2018 through 2024” (Snyder et al., 2016, p. 8). Roughly 20% to 30% of entering college 

freshman place into a NCBMC that largely consists of high school algebra content (Engstrom & 

Tinto, 2008; Hill, 2006; Parsad & Lewis, 2003), so as enrollment in colleges and universities 

increases, so does enrollment in NCBMC. One strategy that higher education has used to meet 

the demands of increased enrollment has been various forms of online instruction, particularly 

for graduate and undergraduate entry-level courses. The latter has also been true in 

undergraduate mathematics courses, as well as NCBMC (Ashby, Sadera, & McNary, 2011; 

Meza, 2015; Twigg, 2011). Because approximately 30% of undergraduate students take at least 

one online course, and 8% are enrolled in programs that are delivered entirely online, enrollment 

in online courses has also continued to increase. For instance, Allen and Seaman (2011) reported 

that “Over 6.1 million students were taking at least one online course during the fall 2010 term; 

an increase of 560,000 students over the number reported the previous year” (p. 4).  

The use of technology in NCBMC has been growing. This study documents students’ 

learning experiences and students’ interactions with and ways of thinking about mathematics in 

an online CAI NCB, intermediate algebra course. In line with this purpose, I have organized the 

background research literature into these sections: (a) research on classroom interactions in 

lecture based NCBMC, (b) research on web-based technology mathematics instructional models, 

(c) a summary of ALEKS, the CAI software specific to this study, (d) research on student 
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experiences in NCBMC, and (e) research on the mathematical thinking of students enrolled in 

NCBMC. 

Interactions in NCBMC Teaching and Learning 

Because this study focusses on student interactions in learning mathematics (albeit in an 

online course) here I briefly discuss a few studies that touch on teacher-student interactions in a 

lecture-based NCBMC. Although many articles on teaching lecture-based NCBMC have been 

published, only a few are empirical studies that report on interactions occurring in those classes 

and include research methods and supporting data for the claims that are made. My review of 

existing literature revealed two such studies. Both Mesa (2010) and Kanter (2009) conducted 

empirical studies which found that college lecture-based NCBMC interactions were shaped and 

often constrained by instructors’ ingrained beliefs about the supposed simplicity of the course 

content, and purported students’ high anxiety and limited mathematical abilities. As a result of 

these beliefs, NCBMC instructors typically lectured about mathematical procedures and 

questions posed to students generally were low cognitive demand questions.  

NCBMC with a face-to-face lecture format often incorporate technology.  For instance, 

handheld or online graphing calculators are often used in class to demonstrate the relationships 

between a functions table, graph and equation representations. In addition, other uses of 

technology may be incorporated, but the lecture is essentially a face-to-face course that typically 

uses web-based technology such as a course management system (e.g. Desire to Learn) and/or 

web pages to post the syllabus, assignments, and for other communications. In this technological 

age, the majority of college lecture courses are “web-facilitated” in this way (Allen & Seaman, 

2011).  
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NCBMC that use Web-Based CAI Technology 

Because the use of online technology in mathematics instruction varies, descriptions of 

web-based CAI technology instructional models is required. Thus, the various instructional 

models use web-based CAI technology are defined in Table 1 below.  

Table 1. Mathematics instructional models that use internet-based technology 

Course Type Description 
Lecture 

With 
Online 

Homework  

A lecture mathematics course that is essentially a face-to-face course 
enhanced with an online homework system (e.g. Web Assign, or WeBWorK) 
or computer assisted instruction (CAI) or intelligent tutoring software (e.g. 
ALEKS, or Cognitive Tutor). 

Hybrid 
 

A hybrid mathematics course blends face-to-face and online instruction. 
There is a reduced number of face-to-face meetings and a substantial portion 
of the content is delivered online. A hybrid course may include online 
discussions and/or online homework or CAI. 

Personalized 
System of 
Instruction 

 

The PSI instructional method uses an interactive computer program and 
typically includes these components: pretesting with a customized study plan, 
mastery-based progression, post testing mastery before written tests; 
intervention by instructor, counselors, and disability services; frequent 
communication between instructor and student; and mini-lectures focused on 
critical thinking, study skills, and common areas of difficulty. (Keller, Bower, 
& Chen, 2015, p. 5) 

Math 
Emporium 

 
 

A math emporium is a course in which a large number of students are 
enrolled and CAI provides individualized instruction. It includes a number of 
additional resources, such as electronic text and video lectures. However, the 
math emporium model differs from the fully online course in that students 
may choose or be required to use a large designated computer lab that is 
staffed by tutors and instructional staff. Emporiums typically include a 
proctored testing area. Often a series of introductory courses are offered in 
the math emporium model, and in theory students may complete more than 
one course per semester to accelerate their progression through the NCBMC 
and/or introductory mathematics sequence of courses. 

Distance 
Learning 

 

In an online mathematics course, the vast majority of the content is delivered 
online, often utilizing CAI, and typically includes no face-to-face meetings. 
Tests may be proctored face-to-face or in testing centers. Online courses may 
be designed to be synchronous or asynchronous.   
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Studies comparing the technological instructional models in Table 1 have produced 

inconsistent results. Zavarella and Ingnash  (2009) compared the pass rates of basic algebra 

students enrolled in lecture classes, hybrid classes, and distance learning. Students who enrolled 

in lecture courses had the highest pass rates (80%) compared to distance learning (61%) and 

hybrid classes (58%).  Keller, Bower, and Chen (2015) conducted a large study documenting the 

pass rates of over 9,000 community college students enrolled in NCBMC (pre-algebra, 

elementary algebra, and intermediate algebra) and compared various modes of instruction along 

with demographic data. They too found that lectures had the highest pass rates for students, but 

at a much lower pass rate of 43.3%. Next the hybrid pass rate was 36.4%, followed by distance 

learning with a pass rate of 22.4% and personalized system of instruction at 22.1%. Although all 

these pass rates were low, they varied among the different instructional models. Keller and 

colleagues suggested that community colleges may want to consider providing more lecture-

based modes of instruction because the online modes may be less effective at this level of 

mathematics and for these populations of students. On the other hand, an alternative explanation 

for differing outcomes based on different delivery methods could be the impact of selection bias. 

For instance, students who enroll in lecture-based sections may be more motivated or have more 

time to study than students who choose the more flexible options, and students who are more 

motivated and who spend more time studying typically perform better.  

 Weller, Trouba, and Wood (2015) compared a traditional lecture, lecture with online 

homework, and a math emporium model of instruction for intermediate algebra. In contrast to 

Zavarella and Ingnash (2009) and Keller et al. (2015), students in the math emporium had higher 

grades and retention rates than those in the lecture related courses, and that the lecture with 

online homework had the lowest retention rate. Furthermore, Weller and colleagues used pre-post 
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department-created content tests to determine growth, and found similar results from all three 

instructional models. These results are consistent with the meta-analysis findings published by 

the United Stated Department of Education (USDE), Evaluation of Evidence-Based Practices in 

Online Learning (Means, Toyama, Murphy, Bakia, & Jomes, 2009). 

 Jaggars and Baily (2010) have offered a plausible explanation for the discrepancy in the 

research studies thus far. They noted that of the studies analyzed in the USDE meta-analysis, 

over half consisted of undergraduates and graduate students enrolled in university or professional 

courses in health and medicine and teacher education content areas. Jaggars and Baily argued 

that different student populations, different contexts, as well as different content areas are likely 

to produce different results. The contradictions in the studies mentioned here appear to confirm 

Jaggers and Baily’s argument because Keller et al. (2015) and Zavarella and Ignash (2009) were 

based in a community college context, whereas Weller et al. (2015) was based in a university 

context. Nonetheless, these contradictions warrant further research. Moreover, the existing 

research does not clearly point to a “silver bullet” solution to the challenges of mathematics 

instruction and learning in higher education.  

Programmed Instruction and Assessment of LEarning in Knowledge Spaces 

Some online mathematics courses utilize a CAI software package as the primary mode of 

instructional delivery. The CAI Intermediate Algebra course that was the context of this study 

utilized the CAI package known as Assessment of LEarning in Knowledge Spaces, or ALEKS, 

which is a widely used Web-based assessment and CAI system. CAI programs such as ALEKS 

were heavily influenced by the instructional design movement, and in particular, the ideas of 

programmed instruction (Lockee, Moore, & Burton, 2004; Park & Lee, 2004; Reiser, 2001; 

Schrock, 1995). For this reason, here I provide an overview of the learning theories underpinning 
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programmed instruction as well as the mathematical psychology theory of knowledge spaces that 

serve as the foundation for ALEKS.  

Programmed Instruction 

  Lockee, Moore, and Burton (2004) contended that term programmed instruction was 

derived from B.F. Skinner’s work (1954, 1958, 1968) and what he referred to as “teaching 

machines.” Skinner stated that programmed instructional materials should present short sections 

of content, with frequent questions, require responses to those questions, provide immediate 

feedback as to whether the response was correct, and permit the student to set their own learning 

pace (Lockee et al., 2004; Park & Lee, 2004; Reiser, 2001; Schrock, 1995; Skinner, 1968). It is 

widely known that Skinner was a behaviorist, and the steps listed above are indicative of the 

typical behaviorist stimulus—response—feedback cycle designed to reinforce desired behavioral 

responses.  

 Gagne, also a behaviorist and prolific author, made contributions to instructional design 

with his writings about the conditions of learning, events of instruction, hierarchies of learning, 

and theory of cumulative learning (Gagne, 1965, 1985; Gagne & Briggs, 1974; Gagne, Briggs, & 

Wager, 1992; Gange, 1968). Gagne’s hierarchies of learning and theory of cumulative learning 

were particularly influential in the development of programmed instruction (Reiser, 2001; 

Schrock, 1995). Although Gagne (1968) acknowledged the appeal of Piaget’s and Bruner’s 

constructivist theories cognitive development, he expressed concerns about their methods and 

proceeded to present his theory of cumulative learning as a scientifically-verifiable explanation.  

Gagne’s (1968) theory of cumulative learning merged his conceptions about hierarchies of 

learning with the accumulation of knowledge. 

Learning contributes to the intellectual development of the human being because it is 
cumulative in its effects. The child progresses from one point to the next in his 
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development, not because he acquires one or a dozen new associations, but because he 
learns an ordered set of capabilities which build upon each other in progressive fashion 
through the processes of differentiation, recall, and transfer of learning. (p.181) 

The statement from the above quote, “an order set of capabilities,” indicated Gagne’s hierarchy 

of learning. The statement, “which build upon each other in a progressive fashion,” indicated his 

belief in the accumulative effect of learning and development. Gagne believed that the analysis 

of academic topics, which included subdividing the intellectual skills into small increments to be 

learned in a prescribed order, was the best method of instruction. An example of a learning 

hierarchy is provided in Figure 1 below.  

  

 

 

 

 

 

 

 

 

 
Figure 1. A Learning Hierarchy for a Task in Elementary Mathematics  

(Gagne & Briggs, 1979, p. 148) 

 
 Current researchers, Lockee, Moore, and Burton have contended that programmed 

instruction “has never really ceased to exist. Its influence is apparent in the instructional design 

processes that have continued to serve as the standards for our field” (2004, p. 563). Park and 

Lee (2004, p. 662) stated that programmed instruction was the precursor to CAI, but highlighted 
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that the differences between the two was primarily due to the sophistication of CAI to adapt the 

learning environment to meet individual student needs. The ability of CAI, such as ALEKS, to 

provide individualized instruction is the primary draw of interest in these programs. The next 

section discusses how ALEKS accomplishes this individualization.  

ALEKS and Knowledge States 

The ALEKS software originated from Falmagne and Doignon’s applied mathematical 

theory of knowledge spaces (1985) which in turn emerged from the field of mathematical 

psychology. In short, mathematical psychology, is the use of mathematics to model, measure, and 

study various psychological phenomena, such as “development, perception, learning, cognition, 

information processing, psychophysiology, and measurement” (Grossberg, 1980, p. vii), and has 

its roots in behaviorist and cognitive theories. In 1994, Falmagne and colleagues received 

funding from the National Science Foundation to program knowledge space theory into the 

computer adaptive instruction program now known as ALEKS (ALEKS, n.d.; Ashback, 2013).  

ALEKS uses artificial intelligence (AI) and operates on an algorithm that creates a model 

of a student’s knowledge state, which consists of two lists: “what the student can do” and “what 

the student is ready to learn” (Falmagne, Doigon, Cosyn, & Thiery, 2006).  The ALEKS 

mathematical algorithm combines the student’s knowledge state with a directed combinatorial 

graph model of a complex network of mathematical problem types to make decisions about what 

problems the student is ready to solve.   

The combinatorial graph model is a directed graph because ALEKS assumes a 

“precedence relation,” implying that mastery of some problem types must precede others in 

learning. Each type of problem is represented by a node, or vertex, of the graph, and connections 

between the types of problems are represented by an arrow, or edge, of the graph. Figure 2 
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depicts a simple precedence relation for the problem types outlined in Table 2. The precedence 

relation is noted by the direction of the arrow. For instance, in this diagram, the mastery of 

problem type (d) would imply mastery of problem types (a) and (c), or type (b). Similarly, the 

mastery of problem type (f) would imply the mastery of 4 potential problem sequences: a-c-d, a-

c-e, b-d, and/or b-e.  

 
 
 
 
 
 
 
 
 
 
 

 

Table 2. Six types of problems in Elementary Algebra (Falmagne et al., 2006, p. 5) 

Problem Type Example of Instances 
(a) Word problem on proportions  A car travels on the freeway at an average 

speed of 52 miles per hour.  How many miles 
does it travel in 5 hours and 30 minutes? 

(b) Plotting a point in the coordinate plane Using the pencil, mark the point at the 
coordinates (1,3). 

(c) Multiplication of monomials Perform the following multiplication: 
     4"#$# ∙ 2" ∙ 5$(. 
Simplify your answer as much as possible. 

(d) Greatest common factor of two 
monomials 

Find the greatest common factor of the 
expressions 14*+$  and  4*,-$.. 
Simplify your answer as much as possible. 

(e) Graphing the line through a given point 
with a given slope 

Graph the line with slope -7 passing through 
the point (-3, -2). 

(f) Writing the equation of the line through a 
given point and perpendicular to a given 
line 

Write an equation for the line passes through 
the point (-5, 3) and is perpendicular to the 
line 8x + 5y = 11. 

  

Figure 2. Precedence diagram for problem types described in Table 2 
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In ALEKS, precedence relations have been determined by interviewing several experts 

and combining their answers into a precedence relation. In addition, these precedence relations 

have been verified by data from thousands of students who have used the software. However, 

Falmagne and colleagues also state: 

Some algebra problems may be solvable by a student only if some other problems have 
already been mastered by that student. This may be because some prerequisites are 
required to master a problem, but may also be due to historical or other circumstances. 
For example, in a given environment, some concepts are always taught in a particular 
order, even though there may be no logical or pedagogical reason to do so (p. 4).  
 

The authors seem to have chosen a set of problem types to exemplify this point.  In my humble 

opinion, problem types (a) through (d) of the set of problem types listed in Table 2 would not be 

necessary to solve a problem of type (f). However, it is important to note that precedence relation 

diagram depicted in Figure 2 is a subset of vertices from a larger precedence relation diagram for 

Beginning Algebra (see Falmagne et al, 2006, p. 6, Figure 2). As a result, there are even more 

problem types and paths between each of the nodes (a) through (f) listed in Table 2.  

Defining a Knowledge State  

Once a student has been assessed, ALEKS has determined a knowledge state for that 

student.  A knowledge state is a dynamic interpretation of what problem types the student solves 

correctly and those they still need to learn. A student’s knowledge state and is updated as the 

student solves problems assigned by the ALEKS algorithm. Figure 3 displays some essential 

characteristics of a knowledge state, the outer fringe and inner fringe.  When a student has 

mastered the elements of a knowledge state, then ALEKS assigns the outer fringe for the student 

to learn.  The outer fringe consists of the problem type vertices that immediately follow a 

mastered problem type. Conversely, if a student incorrectly solves the problem types from the 

outer fringe, then problems from the inner fringe of the knowledge state are assigned. The inner 
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fringe consists of the vertices that immediately precede a problem type that has been attempted 

but not mastered.  

 

 
(Falmagne et al., 2006, p. 9). 

How ALEKS Works   

 When a student first signs into their personal ALEKS account, the software uses a pre-

assessment, or knowledge check, to create a personal knowledge state (Figure 3) representing 

what the student knows about the course content. After the initial knowledge check, the ALEKS 

software utilizes a directed graph theory algorithm to determine what problem types are proximal 

for the student to attempt next, as determined by the inner and outer fringe of the student’s 

knowledge state (Falmagne et al., 2006). As the student solves problem types, their knowledge 

state is updated, and the ALEKS algorithm updates what problem types are proximal for the 

student to attempt next. 

Comparing Programmed Instruction and ALEKS 

Taking into consideration current researchers’ claims that programmed instruction “has 

never really ceased to exist” (Lockee et al., 2004) and that its practices are still prevalent current 

instructional design practices (Park & Lee, 2004), here I compare the tenets of programmed 

instruction and knowledge space theory. The design of ALEKS curriculum can be compared to 

Skinner and Gagne’s behaviorist conceptions of the design of programmed instruction. First, the 
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developers of ALEKS assembled a group of experts to delineate the content into specific ALEKS 

Topics. Next, the experts were asked to arrange these ALEKS Topics into ordered “precedence 

relations” represented by a large, complex directed graph  (Falmagne et al., 2006, p. 4). These 

two steps could be considered a version of Gagne’s content analysis methods to create a 

hierarchy of learning. Students are provided with explicit instruction and opportunities to 

practice each of ALEKS Topics and receive immediate feedback, just like the immediate 

reinforcement both Skinner and Gagne required. Lastly, a student’s mathematical understanding 

is measured by the number of ALEKS Topics the student has mastered, which parallels Gagne’s 

theory of cumulative learning. Despite these similarities, ALEKS is more advanced than the past, 

paper and pencil, manual iterations of programmed instruction because of its technological 

advancements, computing power combined with the mathematical psychological model of 

knowledge spaces. ALEKS utilizes Knowledge Space Theory, which represents the curriculum as 

a directed combinatorics graph. In this graph, the vertices represent each bite-sized mathematics 

topic which are connected by arrows and arranged in a predetermined precedence relation  

(Falmagne, Albert, Doble, Eppstein, & Hu, 2013; Falmagne et al., 2006). Student’s progress 

through the curriculum is measured by their progress through this directed graph. 

Despite these theoretical and technological advancements, the question remains as to 

whether the various modes of instruction that utilize CAI in NCBMC encourage the types of 

interactions that foster productive ways of mathematical thinking and essential algebraic 

reasoning necessary for success in requisite STEM coursework. This question cannot be 

answered by reports of average exam scores, end of course grades, and course completion rates. 

It requires different types of research that reveal more details about student thinking. A few 

studies that examine student thinking in NCBMC are summarized in the next section. 
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Students’ Mathematical Thinking in NCBMC 

Little research has examined what students enrolled in NCBMC know about mathematics 

beyond course assessments and grades. A search of several educational indices revealed only a 

few empirical studies that examine how students enrolled NCBMC think about mathematics 

(Givvin, Stigler, & Thompson, 2011; Stigler, Givvin, & Thompson, 2010; Webel et al., 2015). 

These studies are summarized here.  

Stigler, Givvin, and Thompson (2010) analyzed data from three sources:  student 

responses to the Mathematics Diagnostic Testing Project (MDTP) placement test items (n=5830 

from students taking the placement test during the 2008-09 school year), student responses to a 

researcher authored survey (n=748 from a convenience sample of students), and follow-up 

interviews with students (n=30). They summarized three findings from the MDTP placement test 

and survey data. First, students routinely called upon procedures to solve mathematics problems, 

even when they can be solved more easily by reasoning. Second, students used reasoning under 

certain conditions (i.e. the survey), but they rarely used reasoning otherwise (i.e. many 

procedural errors on the MDTP might have been corrected if students had used reasoning). Third, 

when students were able to provide conceptual explanations, they also tended to provide correct 

answers. The researchers noted that the latter may be a causal relationship, but that hypothesis 

warrants further research.   

Givvin, Stigler, and Thompson (2011) followed their analysis of the MDTP placement 

test and survey data with interviews of 30 students. Most students believed mathematics to be a 

collection of procedures to be memorized and applied. These students approached mathematical 

problems by selecting a procedure they recalled, whether the problem required a procedure or 
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not. The researchers also noted that when students were encouraged to use their intuitive 

knowledge of mathematics, they performed better on mathematical tasks. 

In another study, Webel, Krupa, and McManus (2015) interviewed 10 randomly selected 

students who had successfully completed a math emporium model of intermediate algebra —

nine out of the 10 had earned grades of A or B, and one had earned a grade of C. The interviews 

consisted of applications of algebra involving a system of equations, the maximum of a quadratic 

equation, and a rational equation. Although students may have solved the problems a number of 

ways (e.g. using tables, graphs, equations, or guess and check), they relied on remembering how 

to translate the problems to equations and then on remembering the procedures for how to 

manipulate those equations.  

Across the interviews, students’ approaches to solving the interview tasks involved 
quickly translating the problem into a symbolic form, and then trying to remember the 
correct rule to solve that type of problem. To remember the rule, students did not appear 
to think about the equations as representing relationships between the quantities given in 
the problem, but instead paid attention to the appearance of the equation. They acted on 
the symbols according to what they could remember [emphasis added] doing in problems 
that looked similar. And when students misremembered [emphasis added] the correct 
procedure, they often failed to recognize their errors or became confused. (Webel et al., 
2015, p. 9) 
 

In other words, all 10 students exhibited some sort of  “conceptual atrophy” (Stigler et al., 2010). 

The students relied on memorized procedures and were not inclined to reason about quantities to 

represent the problem, to reason through the algebraic procedures to solve the problem, or check 

that the solution made sense. Although a small qualitative study of 10 students cannot be 

generalized to the larger sample, the results of this research do lead one to question some of the 

technology-based modes of instruction outlined earlier in Table 1, such as personalized 

instruction and the math emporium models. These results point to the need for more research in 

this area.   
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Student Experiences, Identity and Mathematical Socialization in NCBMC 

Using sociocultural and sociopolitical theories and related research methods, 

phenomenology and ethnography, Martin (2000, 2009a) introduced the ideas of mathematics 

identity and mathematics socialization to represent African American students’ achievement in 

mathematics. Martin pointed out that the current emphasis on achievement gaps between White 

and African American students, discussed from the dominant paradigm of research and typically 

taken out of context, did more harm than good by normalizing White behavior and reinforcing 

existing racialized stereotypes.  

Building upon Martin’s prior research method, Larnell’s (2011, 2016) phenomenological 

case study research sought to understand and describe African American and Black students 

experiences in 4-year university non-credit-bearing remedial mathematics courses. In his 

phenomenological case study, Larnell defined “mathematics identity as a narrative construct” (p. 

238) as an alternative to the dominant cognitive methods used to document beliefs, attitudes, or 

other cognitive concepts to measure and describe students’ orientation and mathematical 

abilities. In contrast, mathematics identity as a narrative construct attends to “how learners make 

sense of their learning experiences and the contexts in which they are positioned” (p. 238). In 

other words, Martin, Larnell, and others have woven together ongoing observational data with 

multiple interviews to co-construct with the participants a narrative that illustrates their learning 

experiences within the context in which that learning occurred.  

Larnell (2011, 2016) described the fluidity of academic mathematics identity through the 

experiences of two students, Vanessa and Cedric, in a NCBMC at a large university. These two 

students both had a strong high school academic background in which they reported maximizing 

their effort and resources on almost every academic opportunity (maximizing identity). Yet, 
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when the challenge of the university placement test presented itself, each reported that they did 

not put much effort into taking the test. Larnell described this action as satisficing (Simon, 1955 

as cited in Larnell, 2016)—choosing an option that is merely adequate as opposed to the best 

option. Thus the students’ identity was demonstrated as fluid and depending upon the context. In 

their high school mathematics courses, these students identified as maximizing, but in their 

transition to the context of university mathematics, they seemed to identify as satisficing despite 

that they both had verbalized a preference for academic success.  

Larnell also described situations in which both students experienced social signals that 

indicated their marginal status as a source of racialized identity threat. For example, Cedric 

noticed the overrepresentation of Black students in the NCBMC in which he was enrolled, as 

well as the underrepresentation of Black students in courses such as calculus, and stated, “It 

kinda hurts me to see so many Black people, like me, in the classroom [NCBMC]…because it, 

kinda like, says to me, ‘Okay, African American students can’t succeed in this class,’ you know” 

(p. 257). Cedric discussed the personal pain, or racialized identity threat, that the 

disproportionate number of Black students in the NCBMC presented. According to Steele 

(2010), a racialized identity threat (also called stereotype threat) adds an additional task and 

pressure for the students who experience it. Not only do these students have the typical 

adjustments of transitioning to a large university and learning in that environment, but they also 

need to disprove “the negative stereotype and its allegations about you and your group. . . 

Disproving a stereotype is a Sisyphean task; something that you have to do over and over again 

as long as you are in the domain where the stereotype applies” (Larnell, 2011, pp. 110-111). In 

other words, larger contextual and social factors of NCBMC adds to the challenges of a 

racialized identity threat and adds stress for students of color, which is not a hurdle that can be 
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overcome one time, but a challenge that is repeatedly faced. This summary does not do justice to 

the research and detailed analyses that Martin (2000, 2009) and Larnell (2011, 2018) conducted, 

but it serves as an attempt to convey the spectrum of mathematical socialization pressures faced 

by students of color enrolled in a NCBMC at a predominately White institution.  

Background Literature Summary 

This review of the literature has revealed many challenges of teaching and learning in 

NCBMC. Because a college education has become viewed as a path to economic stability, more 

students are enrolling in community colleges and universities. With expanded enrollments in 

postsecondary education, students with more diverse mathematical backgrounds and varied 

educational needs have increased the demand for NCBMC. Although the purpose of these 

courses is to prepare students to be successful in subsequent courses, the students who enroll in 

NCBMC are less likely to complete their degrees. Mesa’s (2010) classroom research and 

Kanter’s (2009) instructor interviews revealed that instructor’s beliefs shape, and perhaps limit, 

the type of mathematics content that students enrolled in NCBMC have the opportunity to 

engage in to prepare for college-level mathematics course work.  

Community colleges and universities have begun to turn to technology to fulfill 

enrollment demands and to meet the personal instructional needs of students. Yet, recent research 

(Webel et al., 2015) has raised the concern about whether these technologically based 

instructional models are truly preparing students to succeed in the requisite mathematics 

coursework. Webel and colleagues interviewed 10 students who succeeded in math emporium 

intermediate algebra course, and noted that all of the students struggled to solve various 

application problems due to the predominant use of recall and memorization rather than 

reasoning about the quantities and making connections with algebraic representations and 
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solutions. Based on this research, one might make assumptions about the nature of students’ 

interactions in a math emporium or other web-based CAI environment, but the solution to these 

challenges require evidence supported theories, not assumptions. In addition, although the data 

from a case study involving 10 students cannot be generalized to the population, the Webel study 

contributes to the overall knowledge base and warrants further research.  

From a sociocultural perspective on learning, the environment in which student learning 

occurs has an influence on student learning experiences. Existing research about mathematics 

identity and mathematics socialization argues that understanding students learning experiences 

requires framing those experiences by students’ psychosocial experiences that occur within the 

larger sociopolitical and sociohistorical contexts. “Aside from the contribution to identity-

oriented research in mathematics education, there is still much need to study the experiences of 

learning in NCBR mathematics courses” (Larnell, 2016, p. 261). Furthermore, there is also a 

need to study student learning experiences in CAI NCBMC, and to situate this work within the 

larger socio-cultural, -political, and -historical contexts. Although this study does not specifically 

examine the socio-cultural, -political, and -historical contexts, it draws upon Kahu’s (2013) 

student engagement framework as the overarching theoretical framework because Kahu situates 

student engagement within these broader contexts. This is an important framing because 

Larnell’s research illustrates how these broader socio-cultural, -political, and -historical contexts 

may influence students’ interactions with their learning environments. 
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CHAPTER 3 
THEORETICAL ORIENTATION AND FRAMING 

 

This chapter begins with a brief overview of research literature concerning student 

engagement (SE) and describes the prevalent ways that SE has been operationalized in existing 

research. Next, I provide an overview of the overarching theoretical perspective, a sociocultural 

theory of SE that describes the influence of the sociocultural environment, the educational 

institution and psychosocial influences on SE as well as the immediate outcomes and distal 

outcomes of SE. In the last section of this chapter, the conceptual framework of SE utilized in 

this study is described.  

Overview of Student Engagement Research 

This overview of the research literature concerning SE begins with a brief history of the 

National Survey of Student Engagement (NSSE) because the NSSE has been a dominant force in 

the research concerning SE in higher education. Next, I discuss broader views of SE commonly 

found in the existing research literature.  

A Quantitative Approach to Student Engagement 

The NSSE conception of student engagement in higher education emerged from 

dissatisfaction with the growing influence of the U.S. News & World Report ranking of colleges 

and universities. One critical contention was that this ranking was based in part on entering 

student characteristics, such as SAT scores, and therefore served to perpetuate the inequities in 

higher education admissions. Also, the ranking did not take into consideration student growth as 

a result of their university learning experiences, so it did little to compare the quality of 

university educational practices. In an effort to remedy this situation, the Pew Foundation 

gathered a panel of experts to develop a survey instrument to measure SE in high quality learning 
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experiences. This group developed the National Survey of Student Engagement (NSSE), which 

was largely based on Chickering and Gamson’s (1987) Seven Principles for Good Practice in 

Undergraduate Education and Pace’s (1984) College Students’ Experiences Questionnaire (Kuh, 

2009). Kuh, Cruce, Shoup, Kinzie, and Emerson (2008) defined engagement as “both the time 

and energy students invest in educationally purposeful activities and the effort institutions devote 

to effective educational practices” (p. 542). In other words, the NSSE was designed to measure 

the degree that undergraduate students engage in activities that existing research considered 

sound educational practices (Table 3).  

Table 3. NSSE themes and engagement indicators  
              (Center for Postsecondary Research, 2017b) 

Theme Engagement Indicators 

Academic Challenge 

 

Higher-Order Learning (HO) 
Reflective & Integrative Learning (RI) 
Learning Strategies (LS) 
Quantitative Reasoning (QR) 
 

Learning with Peers 
 

Collaborative Learning (CL) 
Discussions with Diverse Others (DD) 
 

Experiences with Faculty 
 

Student-Faculty Interactions (SF) 
Effective Teaching Practices (ET) 
 

Campus Environment 
 

Quality of Interactions (QI) 
Supportive Environment (SE) 
 

 

The underlying assumption of the NSSE is that by measuring the existence and frequency 

of sound educational practices in undergraduate institutions, then SE in experiences that 

positively influence learning and personal development is also being measured. Primarily Likert-

style survey questions ask students to indicate how much they have engaged in various activities. 
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For example, see Table 4. As of 2017, 708 higher education institutions were actively using the 

NSSE (Center for Postsecondary Research, 2017b, p. 1).  

Table 4. Example of NSSE survey questions  
              (Center for Postsecondary Research, 2017a, p. 3) 

Item 
# 

Item Values and Labels 

1. 
 
 

During the current school year, about how often have you 
done the following? 

1 = Never 
2 = Sometimes 
3 = Often 
4 = Very Often 

1.a. 
 

Asked questions or contributed to course discussion in other 
ways 1     2     3     4     5 

1.b. 
 

Prepared two or more drafts of a paper or assignment before 
turning it in 1     2     3     4     5 

1.c. 
 

Come to class without completing or reading assignments 1     2     3     4     5 

1.d. 
 

Attended an art exhibit, play, or other arts performance (dance, 
music, etc.) 1     2     3     4     5 

1.e. 
 

Asked another student to help you understand course material 1     2     3     4     5 

1.e. 
 

Explained course material to one or more students 1     2     3     4     5 

1.f. 
 

Prepared for exams by discussing or working through course 
material with other students 1     2     3     4     5 

1.g. 
 

Worked with other students on course projects or assignments 1     2     3     4     5 

1.h. 
 

Given a course presentation 1     2     3     4     5 

 

Because of its widespread use, the NSSE has dominated research literature about SE in 

higher education in the United States; however, there have been many criticisms of the NSSE 

student engagement framework and survey items. For instance, Kahu (2013) argued that because 
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of the NSSE history as a tool for comparing colleges and universities and institutional 

improvement, the framework’s definition of SE in unclear because it commingles institutional 

practices with student experiences and behaviors. Also, although the NSSE authors claim the 

survey satisfies research criteria for the research validity of self-report survey data (Kuh, 2001), 

the validity of the survey results has been challenged. For instance, the survey relies heavily on 

students’ memory of the frequency of events throughout the year, which is a common limitation 

in data validity. Additionally, the context of questions and potential social bias also serve as 

validity limitations (Campbell & Cabrera, 2011; Porter, 2011). Regardless of these debates, the 

NSSE has made an important contribution by initiating widespread research regarding the 

multiple factors that may influence undergraduate SE and learning in higher education. 

The NSSE framework is “bounded within the learning institution” (Zepke, 2017, p. 7) 

and does not examine influences outside of the institution that may also influence SE. Reviews 

of SE literature have classified the NSSE as a behavioral model of SE (Fredricks, Blumenfeld, & 

Paris, 2004; Kahu, 2013; Zepke, 2017) because of its focus on institutional behaviors 

(professors, instructors, and staff) and student behaviors. A common criticism of the NSSE 

framework is that it is too narrow, and does not consider other influences on SE. Other research 

perspectives regarding SE in productive learning activities stretch the view beyond behaviors and 

the boundaries of the learning institution. 

Widening the Lens on Student Engagement  

 Many studies, particularly on K-12 education (Fredricks et al., 2004), include emotion 

and cognition, in addition to behavior, as contributing components of SE (Fredricks et al., 2004; 

Kahu, 2013; Lawson & Lawson, 2013; Zepke, 2017). Fredericks and colleagues (2004) defined 

and differentiated three components of engagement:    
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• Behavioral engagement draws on the idea of participation: it includes involvement in 

academic and social or extracurricular activities and is considered crucial for achieving 

positive academic outcomes and preventing dropping out (p. 60).  

• Emotional engagement encompasses positive and negative reactions to teachers, 

classmates, academics, and school and is presumed to create ties to an institution and 

influence willingness to do the work (p. 60). 

• Cognitive engagement draws on the idea of investment: it incorporates thoughtfulness 

and willingness to exert the effort necessary to comprehend complex ideas and master 

difficult skills (p. 60). 

Finn and Zimmer’s (2012) four components of SE (academic, social, cognitive, and affective) 

are similar to Frederick and colleagues’ framework. In Finn and Zimmer’s framework, cognitive 

engagement is similar, affective engagement parallels their definition of emotional engagement, 

and academic engagement and social engagement behaviors provided more detail for the 

definition of behavioral engagement.  

• Academic engagement refers to behaviors related directly to the learning process, for 

example, attentiveness and completing assignments in class and at home or augmenting 

learning through academic extracurricular activities (Finn & Zimmer, 2012, p. 102). 

• Social engagement refers to the extent to which a student follows written and unwritten 

classroom rules of behavior, for example, coming to school and class on time, interacting 

appropriately with teachers and peers, and not exhibiting antisocial behaviors such as 

withdrawing from participation in learning activities or disrupting the work of others 

(Finn & Zimmer, 2012, p. 102). 
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In this way, the idea of engagement moved beyond the behaviorist tradition to a broader 

psychological tradition and added the potential to provide more nuanced descriptions of the 

nature of SE. 

Unfortunately, students have sometimes been viewed from a deficit perspective in 

research that utilizes the engagement frameworks that focus only on the student. For example, 

Fredericks and colleagues (2004, p. 60) state, “The term [engagement], in both popular and 

research definitions, encapsulates the qualities that are seen as lacking in many of today’s 

students [emphasis added].” Mann (2001) takes a different perspective on SE, and argues that 

student identity and sense of agency may be the cause of student alienation from the higher 

education system due to the lack of creativity in the opportunities to learn, ownership of 

disciplinary knowledge and the related issues of power, and an emphasis on performance rather 

than learning (Mann, 2001, p. 17). Mann also suggests that prevalent definitions of SE and 

associated research methods may actually measure student compliance with the education 

institution rather than engagement with intellectual processes. Broadening the view of SE even 

further to include the sociocultural context has the potential to shift the discussion from a deficit 

model to examining the potential social and cultural influences on SE (Kahu, 2013; Lawson & 

Lawson, 2013; Zepke, 2017) as well as taking into consideration student experiences and 

perceptions (Mann, 2001).  

Theoretical Orientation: The Sociocultural Nature of Student Engagement 

The overarching theoretical orientation of this research is based upon Kahu’s (2013) 

multi-dimensional conceptual framework of undergraduate student engagement, antecedents, and 

consequences. The purpose of this framework is to describe the wide range of factors that have 

the potential to influence a student’s engagement. In addition, Kahu situates this array of factors 
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within the broader sociocultural context (social, cultural, and political discourses) to more clearly 

illustrate how the larger sociocultural climate permeates every element of SE, including the 

student’s lived experiences before, during, and after education. For example, consider the current 

nationalistic political environment in the United States since the 2016 presidential election. 

Research has indicated that racialized hostilities, such as those that have increased in number 

since the election, have had a negative impact on the mental and physical health of people who 

are members of the groups that have been targeted by hate (Venkataramani & Tsai, 2017; 

Williams & Medlock, 2017). It stands to reason that these larger social, cultural, and political 

discourses and the related rise in hate incidents also negatively impact how students who are 

members of those targeted groups engage in academic environments. In this way, highlighting 

the influences of the social, cultural, and political discourses begins to address the critique that 

prevalent definitions and research about SE have been too narrowly focused and have not taken 

into consideration “substantial ethical and political issues” (McMahon & Portelli, 2004, p. 60). 

Kahu’s framework (2013) depicts five elements related to SE (Figure 4): the sociocultural 

context, structural and psychosocial influences on engagement, and the proximal and distal 

consequences of engagement. “A key strength of envisioning engagement in this way is that it 

acknowledges the lived reality of the individual, while not reducing engagement to just that” 

(Kahu, 2013, p. 766). In making this comment, Kahu argues that individual experiences are 

unique and yet highlights the necessity to better understand particular student populations. With 

this SE framework, Kahu has taken a stance that encourages researchers to embrace the 

complexity of SE and the individual students’ lived experiences, and yet to continue to strive to 

make sense of the general relationships of the sociocultural dimensions of SE. In addition, Kahu 

argued that existing research does not make a clear distinction between antecedents, engagement, 
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and consequences, and has presented this framework as an avenue for clarification of these 

dimensions and directions of influences, to facilitate a shared understanding of the complex 

nature of SE (Kahu, 2013, p. 768). 

 

Figure 4. Kahu's (2013, p. 766) student engagement framework 

Student Engagement 

SE is at the center, or heart, of Kahu’s framework. The SE heart of the framework 

illustrates the psychological dimension by incorporating the three aspects recommended by 

Fredericks, Blumenfeld, and Paris (2004): affect, cognition, and behavior. The affect dimension 

included enthusiasm for learning, interest in content, and a sense of belonging. The cognition 

dimension included deep learning (learning with understanding as opposed to learning by rote), 

and self-regulated learning (learning strategies and monitoring understanding as well as skill 

development). The behavior dimension included time and effort devoted to studying, interaction 

with instructors and other students, and participation in the larger academic community. 

Although Kahu’s central focus on SE was based on a psychological dimension, engagement was 

Structural 
Influences

University
Culture
Policies

Curriculum
Assessment

Discipline

Student
Background

Support
Family

Lifeload

Sociocultural Influences
Political and Social Environment: Culture, power, policy, economics 

Psychosocial 
Influences

University
Teaching

Staff
Support

Workload

Relationships

Student
Motivation

Skills
Identity

Self efficacy

STUDENT 
ENGAGEMENT

Affect
Enthusiasm

Interest
Belonging

Cognition
Deep Learning
Self Regulation

Behaviour
Time and Effort

Interaction
Participation

Proximal 
Consequences

Academic
Learning

Achievement

 Affective
Satisfaction
Well-being

Distal 
Consequences

Academic
Retention

Work success
Lifelong learning

Social
Citizenship

Personal growth

(Kahu, 2013, p. 766) 



  

 37 

also portrayed as a dynamic construct that is affected by several factors within structural and 

psychosocial dimension influences.  

Structural Influences 

In Kahu’s framework, structural factors associated with the university and with the 

student have an influence on the psychosocial factors. University structural factors include 

culture, policies, curriculum, assessment, which all differ by discipline. For example, Brint, 

Cantwell, and Hanneman (2008) found that the culture of engagement differed significantly 

between the humanities/social sciences and the natural sciences/engineering majors. The 

humanities and social sciences culture valued class discussion, asking questions, and making 

connections between courses. The natural sciences and engineering culture valued mathematical 

and computer skills, and solving problems. In addition, the natural sciences and engineering 

culture valued working toward these competencies through individual study as well as studying 

with other students outside of class, but the student-faculty interaction or participation in class 

were not valued as much as they were in the humanities and social sciences. These different 

cultures in the various departments across the university also influence the curriculum that is 

offered, which in turn influences psychosocial factors such as instructors’ teaching and 

assessment practices, and the ways that students engage with the content of the curriculum.  

Structural factors related to students include student background, family, support and life 

load. It stands to reason that a student’s academic background influences how they engage with 

their college coursework. Research has also documented that first generation college students 

tend to have a more difficult transition to college due to a lack of cultural capital. Lastly, life 

load, the amount of pressures outside of school, such as work, family, health issues, etcetera 

influence the amount of time that students have to engage with coursework and extracurricular 
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activities. These structural student factors in turn influence the psychosocial student factors of 

motivation, skills, identity, and self-efficacy.  

Psychosocial Influences 

Examining the symbolism of Kahu’s framework illustration reveals the bi-directional 

relationship between psychosocial influences and SE by the connection of the two with two-way 

arrows. Within the psychosocial influences are the university factors of teaching, staff, support, 

and workload. Student relationships with these university factors influence a sense of student 

belonging at the university, as well as student factors of motivation, skills, identity, and self-

efficacy—factors that have been shown in research to influence SE. Kahu states, “It is important 

to recognize that engagement is not an outcome of any one [original emphasis] of these 

influences, but rather a complex interplay between them, as suggested by the arrows within this 

section of the framework” (2013, p. 767). In short, the interplay both within psychosocial factors 

and between psychosocial factors and SE are complex and multifaceted. Researchers may need 

to zoom in on a few of these psychosocial factors to understand their potential influence on 

student engagement, but also must keep in mind the complexity of these relationships and the 

potential to make incorrect claims of correlation because other factors may also be at play. Just 

as the influences between SE and its immediate antecedent, psychosocial factors, are bi-

directional, the influences between SE and its proximal consequences are also bi-directional.  

Proximal and Distal Consequences 

The proximal consequences are categorized into academic and affective consequences of 

engagement. Academic consequences consist of learning and achievement, and affective 

consequences consist of satisfaction and well-being. The influence of these proximal 

consequences are bi-directional with student engagement, because it has been generally accepted 
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that results of student engagement generates more engagement. In Kahu’s framework, proximal 

consequences have been assumed to lead to distal consequences, which are categorized into the 

long term academic and social effects of engagement. Academic effects are retention and 

completion of the university degree, work success after graduation, and an orientation toward 

lifelong learning. Social effects are informed and engaged citizenship and ongoing personal 

growth.  

Theoretical Orientation Summary: Revisiting the Background Literature 

In this summary of the overarching theoretical framework on the sociocultural nature of 

SE, each section of the background literature has been revisited and connected with components 

of the framework (Figure 5). The background literature sections (denoted with red font) have 

been assigned to one or more components of the theoretical framework.  

The background literature section, Why “Non-Credit Bearing Mathematics Courses?”, 

discussed the structural influence of the university culture regarding remedial/developmental 

mathematics courses. The deconstruction of the words remedial and developmental (Arendale, 

2005; Clowes, 1980; Higbee, 1996), plus student and researcher statements from existing 

research (Larnell, 2016; Piper, 1998), revealed the stigmatism associated with these terms and 

enrollment in these courses. The use of NCBMC was introduced as a rejection of the derogatory 

nature of the words remedial and developmental.  

The section, Enrollment in NCBMC, discussed the increasing enrollment trends in 

universities (Snyder et al., 2016), and subsequently enrollment in online courses (Allen & 

Seaman, 2011) and NCBMC (Engstrom & Tinto, 2008; Hill, 2006; Parsad & Lewis, 2003). In 

addition to enrollment, this section briefly discussed university admissions and mathematics 
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placement test policies, so this section of background literature corresponded with the structural 

influence of university policy on student engagement. 

 

Figure 5. Theoretical framework and background literature (in red) synthesis 

 

 The background literature section, NCBMC that use Web-Based Technologies, provided 

an overview of how community college and university mathematics departments have created 

various instructional models that incorporate different uses of web-based technologies. These 

different instructional models include: lecture courses with online homework, hybrid courses, 

personalized system of instruction courses, mathematics emporium courses, and distance 

learning. This section of the background literature falls under the theoretical framework category 

of structural influences and curriculum.  
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instructors. Classroom observations revealed that the instructors presented procedures and asked 

low cognitive demand questions (Mesa, 2010). Interviews suggested that this was because 

instructors viewed the students as anxious and less able to deal with complex problems and 

viewed the mathematics of NCBMC as simple and not worthy of exploration (Kanter, 2009).  

The background literature section, Student Thinking in NCBMC, spanned two categories, 

student engagement and cognition, and proximal consequences that are academic. One study was 

aligned with student engagement and cognition because it examined how students enrolled in 

NCBMC thought about and solved procedural problems, and found that when students were 

encouraged to reason about the problems they were more likely to solve them correctly(Stigler et 

al., 2010). The other study was aligned with proximal consequences that are academic because it 

examined how students who had successfully completed a NCBM emporium course would 

approach and solve algebra applications. Although the problems might have been solved a 

number of ways, the students relied on recall of procedures and did not verify their answers, 

oftentimes resulting in incorrect solutions (Webel et al., 2015). Although these students had 

successfully completed the course, these research results did not bode well for the students’ 

academic proximal consequences for requisite courses.  

 Lastly, the content of the background literature section, Student Experiences, Identity, and 

Mathematical Socialization in NCBMC, spans several theoretical framework components: 

sociocultural influences, structural influences, psychosocial influences, student engagement, and 

proximal consequences. This is due to the phenomenology and case study research methods, in 

which the researcher sought to understand the nature of Black students’ lived experiences in 

relation to their enrollment in a NCBMC at a large Michigan State university. In this study, the 

researcher explicitly sought to understand and described students’ racialized experiences in 
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NCBMC at the university (structural influences and psychosocial influences), observed and 

described students’ behaviors in the NCBMC (student engagement), and how these experience 

potential influenced students’ future engagement (proximal consequences) and sense of 

belonging at the university (identity), all situated within the larger sociocultural context including 

culture, power, policy and economics (Larnell, 2011, 2016). 

In this summary regarding Kahu’s framework of the sociocultural nature of student 

engagement, I have demonstrated the connections between the background literature in Chapter 

2 and the overarching theoretical framework for this study. This process has illustrated what 

some researchers may consider an advantage of this broad sociocultural approach to the SE 

framework, which is the flexibility with which the framework can be applied. On the other hand, 

this process has also illustrated what other researchers may consider a disadvantage of this broad 

sociocultural approach to the SE framework, which is its constructs overlap many areas of 

existing studies that were not originally designed as SE research. In addition, it has also been 

revealed that this broad sociocultural approach to the SE framework is a complex and at times 

unwieldy theoretical construct. Also, it is important to note that the boundaries of the theoretical 

framework on the sociocultural nature of SE are not indisputably distinct, yet may still provide a 

general guide and more specificity than prior SE theoretical frameworks.  

Although I grant that this broad sociocultural approach to the SE framework is a complex 

and at times unwieldy theoretical construct, I maintain that there is value in the complexity of the 

framework, particularly for qualitative studies as opposed to quantitative studies. Quantitative 

studies are conducted because of their predictive value, and the complexity of this sociocultural 

SE framework would be an unwieldy disadvantage. However, for qualitative studies, which seek 

to understand the nature of phenomena, the complexity of this sociocultural SE framework may 



  

 43 

provide an explanatory model. For example, in this study, situating the context of SE within the 

larger sociocultural context served the purpose of taking an approach that facilitated a richer 

description of the case studies, and yet provided a general structure that had emerged from the 

data (for more detail, see the Data Analysis section, Chapter 3). In the next section, I describe 

and illustrate the conceptual framework that I have used to document and understand the nature 

of SE in a CAI NCBMC.  

Conceptual Framework: Student Engagement in a CAI NCBMC 

 The conceptual framework for this study is set within Kahu’s larger sociocultural theory 

of SE (2013). The purpose of this theoretical framing of SE is to acknowledge the various 

influences on students’ implicit and explicit choices of how to engage with learning. In taking a 

sociocultural perspective on learning, it is important to situate the CAI environment within the 

larger sociocultural context of the students’ learning experience to acknowledge those potential 

influences, as in this study, or to explicitly examine the spectrum of influences, as in the 

phenomenological case study conducted by Larnell. In this study, the primary focus is the nature 

of student engagement itself, and I draw heavily upon Finn and Zimmer’s (2012) psychological 

perspective of student engagement for this purpose.  

Unfortunately, reviews of the literature point to a lack of clear definitions of SE 

(Fredericks, et al, 2004, Finn and Zimmer, 2012, Kahu, 2013). “The key limitations of the 

psychological perspective center on a lack of definition and differentiation between the 

dimensions” (Kahu, 2013, p. 762). For example, Jimmerson, Campos, and Grief (2003) reviewed 

45 articles about student engagement, and found that 31 lacked clear, explicit definitions 

concerning SE and aspects of SE. For this reason, I meticulously define the psychological 

dimension of SE and how it will be operationalized in the context of this study. I begin by 
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describing how I have modified Finn and Zimmer’s SE framework, followed by how each SE 

dimension is defined in the context of this study, and lastly, summarizing my definition of 

student engagement in a CAI NCBMC. 

To begin, I use subtly different language in my adapted form of Finn and Zimmer’s SE 

framework. Instead of naming each subcomponent of SE a form of ‘engagement,’ I call them 

‘interactions’ that are ‘indicators’ of student engagement. Thus, my framework of student 

engagement is composed of these indicators of student engagement: cognitive interactions, 

academic interactions, social interactions, and affective interactions. The reason for this cautious 

use of language is that ‘engagement’ is an ambiguous term, in a manner similar to the ambiguity 

of ‘understanding.’ Researchers can no more know the level of student engagement than they can 

know the depth of a students’ understanding. However, researchers can assemble and describe 

evidence that indicates a level of engagement or a depth of understanding. My modified version 

of Kahu’s (2013) framework of engagement antecedents and consequences, combined with this 

modified version of Finn and Zimmer’s (2012) framework for student engagement is illustrated 

in Figure 6.  

As stated in the prior paragraph, each dimension of the SE indicators requires a clear 

definition because of inconsistent definitions in existing research. I begin with cognitive 

interactions because this indicator was a primary focus of this study, and also because my 

construction of the cognitive interactions dimension differs the most from the typical manner in 

which the cognitive component of student engagement is described.  
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Figure 6. Overarching theoretical framework: Sociocultural nature of student engagement 

Cognitive Interactions 

Because the culture of engagement differs significantly between the humanities/social 

sciences and the natural sciences/engineering majors (Brint et al., 2008), I drew upon existing 

mathematics education literature to construct the dimension of cognitive interactions within the 

CAI NCBMC that is the context of this study. In both the SE and mathematics education 

research literature, it is generally accepted that the curriculum and mathematical tasks that 

students interact with influences how the students engage with academic content (Boston & 

Smith, 2009; Fredricks et al., 2004; Schoenfeld, 1992; Stein, Smith, Henningsen, & Silver, 

2000). Thus, in this section, the research literature on the nature of mathematical problems and 

tasks that students encounter is summarized first and followed by a summary of the research 

literature of how students solve mathematical problems. The latter is based on research about 

mathematical habits of mind that are viewed as important for success in solving mathematical 

problems encountered in STEM courses and careers.  

Structural 
Influences

University
Culture
Policies

Curriculum
Assessment

Discipline

Student
Background

Support
Family

Lifeload

Sociocultural Influences
Political and Social Environment: Culture, power, policy, economics 

Psychosocial 
Influences

University
Teaching

Staff
Support

Workload

Relationships

Student
Motivation

Skills
Identity

Self efficacy

STUDENT 
ENGAGEMENT 
INDICATORS

Cognitive 
Interactions

  
Academic 

Interactions

Affective 
Interactions

Social
Interactions

 

Proximal 
Consequences

Academic
Learning

Achievement

 Affective
Satisfaction
Well-being

Distal 
Consequences

Academic
Retention

Work success
Lifelong learning

Social
Citizenship

Personal growth

(Adapted from Kahu, 2013, p. 766; Finn & Zimmer, 2012, p. 104) 



  

 46 

Structural Influence: The Nature of Mathematical Problems and Tasks. Before 

delving into the mathematical habits of mind that are essential to solve mathematical problems, it 

is important to provide definitions for the various types of mathematics problems that people 

encounter. Schoenfeld (1992) characterized mathematical problems in three ways: problems as 

routine exercises, problems as a means to a focused end, and problems that are problematic. He 

described “problems as routine exercises” as sets of mathematical problems that have 

traditionally been present in mathematics texts and used as practice to acquire mathematical 

skills. He characterized “problem solving as a means to a focused end” as problems used by text 

authors and teachers to provide a justification for the usefulness of mathematics, to motivate 

mathematical topics, and as recreation. Lastly, Schoenfeld discussed “problems that are 

problematic”—in other words, problems that are perplexing and difficult and represent the nature 

of mathematics from a mathematician’s perspective.  

 The mathematics education researchers, Silver, Smith, and Nelson, (1995) were the first 

to distinguish between mathematical problems and mathematical tasks. Later, Smith and Boston 

(2009)  define a mathematical task as “a set of mathematical problems or a single complex 

mathematical problem that focusses students’ attention on a particular mathematical idea” 

(Boston & Smith, 2009, p. 121). They also characterized tasks as low cognitive demand and high 

cognitive demand tasks. Low cognitive demand tasks are memorization tasks or procedural tasks 

in which an algorithm is provided for students to follow.  These tasks are similar to Schoenfeld’s 

“problems as routine exercises.” They do not require students to make connections to the 

underlying mathematical concepts for performing the task. Lastly, low cognitive demand tasks 

do not require an explanation, or if there is an explanation, the focus is on the procedures that are 

used to complete the task, not why those procedures work. On the other hand, Boston and Smith 
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provided two categories of high cognitive demand tasks “procedures with connections” and 

“doing mathematics.” Procedures with connections focus student attention on underlying 

mathematical concepts, ideas, or structure, and require students to explain the relevant concepts, 

ideas, or structure involved.  Boston and Smith characterized tasks with the highest cognitive 

demand as “doing mathematics.” These tasks require complex, non-algorithmic thinking, similar 

to Schoenfeld’s “problems that are problematic.” Mathematical problems in the real world do not 

have set algorithmic solutions, so students need to encounter high cognitive demand problems so 

that they can build the mathematical habits of mind necessary to see mathematics as valuable, 

useful, and develop their abilities to solve complex problems. 

 The types of problems in a curriculum influence the mathematics that students encounter, 

interact with, and actually do during the majority of their time in a mathematics course. The 

types of problems in a mathematics curriculum also shape the form of mathematics that students 

have the opportunity to learn. Boston and Smith (2009) argue that low level cognitive demand 

tasks have their place in the curriculum, but that low level cognitive demand tasks encompass far 

too high a proportion of students’ overall mathematical experiences. In other words, students 

spend too much time merely memorizing the procedures of how to solve specific types of 

mathematics problems, without understanding why the procedures work and without making 

connections between the procedures used in one problem type with how the same or similar 

procedures might or might now apply in the next problem type. In contrast, working on complex 

mathematical tasks requires that students engage in mathematical thinking, make mathematical 

connections, and utilize important mathematical habits of mind to solve those tasks.  
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Cognitive Interactions: Problem Solving Activities. Polya’s (1945/1985) work has 

served as a foundation of the research in mathematical problem solving, heuristics, and 

metacognition. Polya characterized problem-solving as four rather linear phases: a) 

understanding the problem, b) devising a plan, c) carrying out the plan, and d) looking back 

(1985, p. 5-6). Garfalo and Lester (1985) provided what they called a “cognitive-metacognitive 

framework” that also consisted of four rather linear phases: a) orientation, b) organization, c) 

execution, and d) verification. In 2001, Pugalee adapted their framework, but the overall 

structure remained the same. Schoenfeld’s extensive research of mathematics problem solving, 

published in 1985, is also considered a seminal work. Shoenfeld illustrated the complex nature of 

problem solving through five mathematical problem solving strategies: a) analysis, b) 

exploration, c) design, d) implementation, and e) verification. Furthermore, Schoenfeld showed 

that the process of problem solving was not linear and smooth, but that problem solvers moved 

back and forth between the various problem solving strategies throughout the problem solving 

process. The last framework referenced was the National Council of Teachers of Mathematics 

(2009), which outlined four overarching, essential reasoning habits: a) analyzing a problem, b) 

implementing a strategy, c) seeking and using connections, and d) reflecting on a solution.  

The conceptual framework for this study draws upon and synthesizes these five 

frameworks into three non-linear phases: a) orientation, b) generation and production, and c) 

conclusion, with subcategories of problem solving activities that occur within each phase. A 

comparison of these referenced frameworks and their relationship to the new conceptual 

framework used in this study is provided in Table 5 below. 
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Table 5. Problem solving frameworks comparison and synthesis 

Problem Solving 
Phases 

Problem Solving 
Strategy 

Cognitive-
Metacognitive 
Framework 

Reasoning 
Habits 

Problem 
Solving Phases 
and Activities 

(Polya, 1985, pp. 
5-6) 

(Schoenfeld, 
1985, p. 110) 

(Garofalo & Lester, 
1985, p. 171) 

(NCTM, 2009, 
pp. 9-10) 

Nimtz (2016) 

Understanding 
the problem 

Analysis Orientation Analyzing a 
problem 

Orientation 
    Understand 
    Analyze 

Devising a plan 
 
Carrying out the 
plan 

Exploration 
 
Design 
 
Implementation 

 
Organization 
 
Execution 

Implementing 
a strategy 
 
Seeking & 
using 
connections 

 
Generation 
    Explore 
    Plan 
    Execute 

Looking back Verification Verification Reflecting on 
a solution 

Conclusion 
    Interpret 
    Verify 
    Reflect 

 

This synthesized conceptual framework for problem solving phases and activities for 

cognitive interactions has been summarized below in Table 6. Although these processes may 

appear linear, when observed in action, they may not be enacted in a linear fashion. The 

nonlinear manner of problem solving behavior has been demonstrated to be the case, particularly 

in cases in which the mathematical problem or task is complex, or in other words, a high 

cognitive demand task (Schoenfeld, 1985). 

The problem solving phases and activities outlined in Table 6 may be applied to any area 

of mathematics (e.g. number and operations, geometry, statistics, algebra, calculus). A challenge 

regarding the application of the problem solving phases and activities framework as an indicator 

of cognitive engagement in mathematics is that the research informing the foundational 

frameworks about problem solving heuristics from which this was synthesized was focused on 

the solving of non-routine mathematics tasks. In this study, the focus is on the nature of students’ 
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interactions with an online CAI intermediate algebra course, and the problems are prescribed 

exercises for which an example has been provided. Therefore, a predictable question is whether 

or not the problem solving phases and activities will be an appropriate framework for prescribed 

mathematics exercises. My hypothesis was that as students work on these problems, the three 

phases of mathematical problem solving (Orientation, Generation, and Conclusion) will be 

similar, but that the mathematical activities that occur within these phases will differ based on the 

types of mathematical problems students encounter (e.g. the level of cognitive demand).  

Table 6. Problem solving phases and activities when solving non-routine mathematics tasks 

Problem Solving Phases Problem Solving Activities 
• Orientation: Reading the problem 

to become familiar with the problem 
context and to determine essential 
aspects of the problem. 

o Understand: Reading the problem to understand 
what the problem is asking in the particular problem 
context. 

o Analyze: Re-reading the problem to determine 
essential aspects of the problem, such as concepts, 
procedures, variables, representations, and/or 
conditions. 
 

• Generation and Production: 
Includes exploration of the 
mathematics in the problem, 
planning, and execution of the plan 
to solve the problem. 

o Explore: Looking for patterns, relationships, 
representations, or algebraic structures that help in 
solving the problem. Considering if solutions to 
similar problems might be helpful. 

o Plan: Planning the solution steps. 
o Execute: Carrying out the plan. 

 
• Conclusion: Includes interpretation 

and verification of the solution, and 
reflection on the solution process and 
how the problem might fit in the 
larger context of mathematics. 

o Verify: Determining if the solution is correct and 
checking for extraneous solutions.  

o Interpret: Checking to see if the solution makes 
sense in the context of the problem. 

o Reflect: Examining the solution process, comparing 
different solutions to the same problem, and 
considering similarities and differences between this 
problem, its solution, and other mathematical 
problems and their solutions.   

 

Cognitive Interactions: Surface-to-Deep Continuum. Finn and Zimmer defined 

cognitive engagement as “the expenditure of thoughtful energy needed to comprehend complex 
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ideas to go beyond the minimal requirements” (2012, p.102).  This statement could be 

interpreted to say that a minimal expenditure of effort and thought does not constitute cognitive 

engagement. I take a stance more in line with Mann (2001), that students may be characterized as 

somewhere along a continuum between alienated or engaged. Furthermore, in the same vein as 

several studies that have characterized students’ approach to academic work by describing their 

orientation to learning (Biggs, 1979; Case & Marshall, 2004; Vivien Beattie IV, Collins, & 

McInnes, 1997), I draw upon Biggs initial portrayal of of three student orientations toward 

learning, utilizing, achieving, and internalizing. A summary relevant to this study outlined in 

Table 7 below. 

Table 7. Surface and deep learning approaches (adapted from Beattie et al, 1997) 

Approach to 
Learning 

Strategies Categorization 

Utilizing Limits learning to the bare essentials to 
reproduce procedures through 
memorization. 

Surface learning 

Internalizing Studies content to understand the 
concepts underlying procedures and to 
make connections between 
mathematical ideas.  

Deep learning 

Achieving Uses performative study strategies of 
the “model student” by organizing time 
and working space. 

Strategic learning   

 

The utilizing and internalizing approaches to learning represent the opposite ends of a 

spectrum of potential approaches to learn content. My hypothesis is that there may be learning 

approaches that do not clearly align with the utilizing and internalizing approaches, but lie 

somewhere on the spectrum between the two. The achieving approach to learning, sometimes 

called the strategic learning (Mann, 2001), belongs more with the SE indicator of academic 
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interactions than cognitive interactions because study strategies may be used to accomplish either 

surface learning, deep learning, or some type of learning within that continuum.  

Definition of Cognitive Interactions. For the purposes of this study, mathematical 

cognitive interactions are defined as the thinking activities that are undertaken as one solves 

mathematics problems, perhaps within, but not limited to, a school mathematics environment. 

Specifically, mathematical cognitive interactions are comprised of the thinking activities that are 

carried out during the orientation, generation, and conclusion phases of mathematical problem 

solving. Cognitive interactions may be characterized along a continuum of surface to deep, 

which is contingent upon the nature of the aforementioned thinking activities. At one end of the 

continuum, surface cognitive interactions are described as the thinking activities that are limited 

to the bare essentials to imitate or reproduce procedures through memorization. At the other end 

of the continuum, deep cognitive interactions are described as the intensive effort or study of 

mathematics to understand the concepts underlying mathematical procedures and to make 

connections between mathematical contexts, symbols, ideas and representations. In the context 

of solving a high cognitive demand mathematical problem, deep cognitive interactions would 

include all of the activities summarized in Table 6: Problem solving phases and activities when 

solving non-routine mathematics tasks. It is important to note that the nature of cognitive 

interactions is influenced by the cognitive demand of mathematical task being solved. 

Academic Interactions 

There are subtle differences between academic and cognitive interactions. Academic 

interactions are the observable behaviors demonstrated when a student participates in class or 

completes course work. Cognitive interactions are the internal thought processes that occur when 

a student participates in class or completes course work, and these thought processes are not 
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readily observable. The definition of academic interactions used in this study (see below) is quite 

similar to that of Finn and Zimmer’s definition of academic engagement, which “refers to 

behaviors related directly to the learning process, for example, attentiveness and completing 

assignments in class and at home or augmenting learning through academic extracurricular 

activities” (2012, p.102). 

Definition of Academic Interactions. For the purposes of this study, mathematical 

academic interactions are defined as researcher observed and student stated behaviors related to 

participating in class and learning course material, such as the study strategies used to learn 

mathematics content, the use of various learning resources and tools, and time management 

techniques used to complete course work. For example, study strategies may include, but are not 

limited to, memory techniques, scheduling time to study or to complete a certain proportion of 

assignments each day, taking notes and reviewing material. In addition, academic interactions 

consist of the utilization of academic resources to learn the material, which may include, but is 

not limited to, course texts, online resources, or university support services such as tutoring.  

Affective Interactions 

The definition of mathematical affective interactions used in this study (see below) is 

quite similar to that of Finn and Zimmer’s, “Affective engagement is a level of emotional 

response characterized by feelings of involvement in school as a place and a set of activities 

worth pursuing” (2012, p.103).  

Definition of Affective Interactions. For the purposes of this study, mathematical 

affective interactions are defined as emotional response to course content and class participation, 

which includes feelings of confidence (or feelings of a lack of confidence and/or anxiousness) in 

tackling various assigned mathematical problems, as well as a sense of mathematics course 
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content value and usefulness. The sense of mathematics course content value and usefulness may 

include observations of unprompted student statements (e.g. “When will I ever use this.”) or 

student statements in response to the end of course interview prompts (e.g. “Please elaborate on 

how math will play a role in your career, or not.”).  

Social Interactions 

In this study, social interactions are not a data source because the NCBMC that is the 

context of interest is an individualized online, intermediate algebra course that utilizes CAI 

technology as its primary mode of instruction. The CAI program also includes an online 

textbook and online short instructional videos on the algebra topics of the course. However, I still 

provide a definition of social interactions as an indicator of SE, which is very similar to what 

Finn and Zimmer provided (see quote below). My definition of social interactions in SE are 

observed student behaviors that are in accordance with explicit (written) and implicit (unwritten 

but generally accepted) classroom norms (rules of behavior) similar to Finn and Zimmer’s as 

stated below. 

Social engagement refers to the extent to which a student follows written and 
unwritten classroom rules of behavior, for example, coming to school and class on 
time, interacting appropriately with teachers and peers, and not exhibiting 
antisocial behaviors such as withdrawing from participation in learning activities 
or disrupting the work of others (Finn & Zimmer, 2012, p. 102). 
 
It is important to note that social interactions are influenced by the pervading socio-

cultural, socio-political, and socio-historical environment, but these are two different constructs.  

Summary: Conceptual Framework of SE and Revisiting Research Questions 

In summary, the SE indicators, which are cognitive interactions, academic interactions, 

affective interactions, and social interactions, are illustrated in Figure 7 below. Note that the SE 

indicators are centrally located in the overarching theoretical framework in a similar manner to 
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Kahu’s original framework (2013). This is to highlight the sociocultural nature of SE; however, 

the SE indicators are foregrounded in this diagram to illustrate that they are also foregrounded in 

this study. In addition, observe that the SE indicator, social interactions, is faded to indicate that 

it exists, but was not examined because students’ interactions were with an individualized CAI 

environment. Also, the categories of relevant evidence for each SE indicator are listed. For 

example, under the SE indicator, affective interactions, the categories of relevant evidence are 

level of confidence and value of math. Furthermore, I conjecture that the influence between each 

of the SE indicators is bi-directional, as illustrated by the two-way arrows in the diagram, which 

suggests even more complexity in an already complex theory.  

 

Figure 7. Conceptual framework, student engagement indicators 
(adapted from Kahu, 2013; Finn & Zimmer, 2012) 

 

 The complexity of this framework is an important contribution to this qualitative study. I 

take the perspective emphasized by Barbara Rogoff (2008) noted in the quote below. In research, 

when we examine a phenomenon, we often isolate that phenomenon and use a simplified 
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framework, in other words a foregrounded aspect of a complex framework, to analyze it. Yet, 

that event does not occur in isolation, and the simplified or foregrounded aspect of the 

framework, although allowing us to focus details, is not separate from the whole or the 

backgrounded aspects of the framework.  

The use of "activity" or "event" as the unit of analysis - with active and dynamic 
contributions from individuals, their social partners, and historical traditions and 
materials and their transformations - allows a reformulation of the relation between the 
individual and the social and cultural environments in which each is inherently involved 
in the others' definition.  None exists separately. 
Nonetheless, the parts making up a whole activity or event can be considered separately 
as foreground without losing track of their inherent interdependence in the whole. Their 
structure can be described without assuming that the structure of each is independent of 
that of the others. Foregrounding one plane of focus still involves the participation of the 
backgrounded planes of focus. (pp. 58-59) 

  

I conclude this section by revisiting and elaborating upon the research questions that were 

presented in the introduction of this study. The research questions listed below are tightly aligned 

with the foregrounded student engagement indicators conceptual framework (Figure 7 above) 

and clarify the indicators of the student engagement as framed and defined in this study.  

 

Overarching Research Question: What is the nature of students’ mathematical engagement in 

an online, CAI intermediate algebra course? 

 

1. What is the nature of students’ cognitive interactions in mathematics in an online, CAI 

intermediate algebra course? 

a. What is the potential cognitive demand of the way CAI presents the course content to 

students? 

b. What are the activities within the problem solving phases (orientation, 

implementation, verification) that students use to solve the CAI problems? 

 

2. What is the nature of students’ academic interactions in an online, CAI intermediate algebra 
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course? 

a. What academic study strategies do students use to learn the course content? 

b. What academic resources do students draw upon to learn the course content? 

 

3. What is the nature of students’ affective interactions in an online, CAI intermediate algebra 

course?  

a. In what ways do students affectively respond to mathematical tasks of an online, 

CAI intermediate algebra course? 

b. In what ways do students affectively respond to the course participation structure of 

an online, CAI intermediate algebra course? 

c. What is the nature of students’ value of mathematics in their lives and future careers? 
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CHAPTER 4 
RESEARCH METHOD 

 

There exist only a few studies that examine student experiences in NCBMC, and, more 

specifically, no studies about the nature of student experiences and mathematical interactions 

within CAI mathematics environments in NCBMC. Therefore, the purpose of this study was to 

begin to fill that gap in the research—to describe and understand the nature of students’ 

mathematical interactions within CAI mathematics environments in a NCBMC.  

To examine the nature of students’ engagement, I adapted Finn and Zimmer’s SE 

conceptual framework to be indicators of SE, which included cognitive interactions, academic 

interactions, affective interactions, and social interactions. The latter, social interactions, was not 

studied because students worked individually on a computer throughout the intermediate algebra 

course. The SE conceptual framework in the prior chapter provided a detailed definition for each 

of the indicators of SE. In this chapter, I operationalize how evidence of these indicators was 

gathered and analyzed (see Appendix B: Research Design Summary Table).  

 This chapter contains a detailed account of the case study research method used to 

examine the nature of SE with an online CAI intermediate algebra course. This includes how the 

research was conducted, beginning with a clarification of my perspective as a researcher as I 

undertook this study. Next, I describe the research context and participants, followed by a 

description of how the data was collected and analyzed. This is followed with a discussion of the 

limitations and strengths of this study design. Lastly, the chapter is concluded with a summary of 

the methods and revisiting the research questions.  
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Researcher Positioning and Assumptions 

My experiences teaching NCBMC at a community college have forged my interest in this 

topic. In addition, my personal experience as a first generation college student from a working- 

class background has contributed to my interest in this research because a large proportion of 

students in NCBMC are first generation college students from working-class backgrounds.  

My perspective of knowledge is from a sociocultural viewpoint in which “Humans 

engage with their world and make sense of it based on their historical and social perspective” 

(Creswell, 2003, p. 9). As such, I believe researchers must reflect upon and make clear their 

related experiences to remain as objective as possible, to avoid blatant subjective judgements as 

they conduct a study, and to place the study within the context of the researcher’s background.  

I enter into this research study with the assumption that all students enrolled in the 

NCBMC enter the course motivated to succeed and that each student has the intellectual capacity 

to do so. Furthermore, I counter the commonly accepted belief that verbal and mathematical 

ability constitute evidence of innate intelligence with the argument that all abilities to function in 

the world are learned in a social and cultural context, are related to opportunity to learn, and are 

strongly influenced by experientially and culturally formed beliefs about what is important and 

necessary to know and learn. For instance, an academic’s perspective may be that skilled labor 

and everyday labor is simple, overlooking the cognitive complexity of the tasks performed 

(Rose, 2009). Similarly, skilled and everyday laborers may view academic work as pretentious, 

detached from common sense, and irrelevant. Of course, these are overly broad and extreme 

generalizations of potential beliefs of these two groups, but I use them to illustrate contrasting 

culturally formed views about intelligence and work.   
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In summary, my perspective is that one’s personal interests and ability to function in a 

culture and society are formed by our experiences and do not serve as indicators of innate 

intelligence. In short, I assume a “growth mindset” (Dweck, 2009)—that intelligence, in other 

words the knowledge, actions, and interactions occurring within various cultures and situations, 

can be learned and that it is important to be open to new experiences of learning. I also assume 

the contrapositive, that intelligence is not an inherent characteristic and failure on a task or a test 

does not indicate a lack of intelligence. Similarly, my assumptions about students who place into 

NCBMC are that they are motivated, intelligent students who are more than capable of learning 

mathematics. 

Research Context  

This study took place at Michigan State University (MSU), a large Mid-Western 

university. In the school year, 2016-17, this university enrolled more than 39,000 undergraduate 

students, which included over 7,950 freshmen. All entering freshman are required to take a 

mathematics placement exam at least 4 weeks prior to freshman orientation. This requirement is 

waived if the student has taken and passed the AP Calculus exam, or earned a score of 28 on the 

ACT, or scored 640 on the SAT. Based on data from the registrar, over the last 10 years, 

approximately 12% of entering college freshman have been enrolled in an Intermediate Algebra 

course, the NCBMC that was the specific context of this study.  

Brief History of NCBMC at MSU 

In 1972, MSU was concerned about the high failure rate in College Algebra and 

Precalculus courses. In an attempt to remedy this problem, the MSU mathematics department 

was charged with developing a placement test and two new NCBMC, Beginning Algebra and 

Intermediate Algebra. In addition, the mathematics department hired a Mathematics Academic 
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Specialist to supervise course instruction and develop instructional materials and curriculum. In 

1992, when MSU switched from the quarter system to the semester system, the content of the 

two NCBMCs was reviewed and merged into one new Intermediate Algebra course. In 2000, 

leadership for Intermediate Algebra changed, and a new Mathematics Academic Specialist was 

hired. With new leadership, the course structure also began to shift to larger lectures. For 

instance, an examination of MSU’s online schedule of courses ( www.schedule.msu.edu ) 

revealed a shift from 13 lectures averaging 63 students each in Fall Semester 2003 to 4 large 

lectures averaging about 237 students each in Fall Semester 2004. In an effort to counter the 

increase in lecture size and to provide more individualized instruction, the mathematics 

department also incorporated the use of ALEKS, an online CAI program. In 2011, the 

mathematics department chose to drop the large Intermediate Algebra lectures all together and 

relied solely on the online ALEKS software to provide instruction. This online Intermediate 

Algebra course was offered in 6 sections of approximately 150 students. Two MSU instructors 

oversaw 6 undergraduate lab aids who were tasked with monitoring student progress and 

answering student questions via the ALEKS interface. I am not certain why this course structure 

change was made, but informal discussions with people in the mathematics department 

suggested that the change was motivated by low student attendance at the large lectures 

combined with the decrease in costs of running the course entirely online, which are plausible 

explanations. This paragraph has described the course options that were available for the vast 

majority of students enrolled in Intermediate Algebra at MSU. The last course structure iteration 

for Intermediate Algebra, the sole reliance on the online ALEKS software to provide instruction, 

provided the course context of this study.  



  

 62 

In addition to the Intermediate Algebra course options described above, MSU had also 

designed two types of course experiences with the intention of providing more support for 

students considered “at risk.” These particular sections of Intermediate Algebra have a long 

history at MSU, and data from MSU’s online enrollment system revealed they have existed for at 

least the past 15 years. First, MSU’s Office of Student Support has offered programs, such as 

TRIO or College Achievement Admissions Program, for student populations typically considered 

to be more “at risk” of failure or dropping out of school altogether (e.g. first-generation college 

students and/or low-income students). For these students, the mathematics department reserved 7 

Intermediate Algebra sections for face-to-face instruction and limited the class size to 

approximately 20 to 25 students. Second, the mathematics department offered 6 sections of a 

Mathematics Enrichment course to be taken concurrently with the online Intermediate Algebra 

course. Mathematics Enrichment was created to provide additional support for students who 

were deemed “at risk” of failure by their advisors. These face-to-face Mathematics Enrichment 

co-enrollment courses were also limited to approximately 20 to 25 students and were facilitated 

by undergraduate lab assistants. The number of sections of these two types of Intermediate 

Algebra support courses have remained fairly constant over the years. However, this study did 

not examine the experiences of students enrolled in either type of support courses for 

Intermediate Algebra. For more information about the experiences of students required to enroll 

in these support sections, see Larnell (2011, 2016). 

Intermediate Algebra Course Context for this Study 

In Fall Semester 2016, MSU offered 10 sections of online Intermediate Algebra with an 

average of 74 students per section. In Spring Semester 2017, MSU offered three sections of 

online Intermediate Algebra with an average of 53 students per section. These online 
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Intermediate Algebra sections relied on the online ALEKS software to provide instruction, and 

the participants in this study were enrolled solely in the online course sections and not the 

support course sections.  

ALEKS, otherwise known as Assessment and LEarning in Knowledge Spaces, is a Web-

based assessment and CAI software system. When a student first signs into their personal 

ALEKS account, the software uses a pre-assessment, or “knowledge check,” to create a personal 

“knowledge state” of what the student knows about the course content. After the initial 

knowledge check, the ALEKS software utilizes a directed graph theory algorithm to determine 

what problem types are proximal for the student to attempt next (Falmagne et al., 2006, p. vii). 

The ALEKS package provides a written example of how to solve the problem, plus additional 

resources, such as an electronic version of the course text and videos that explain how to solve 

the problems. 

Students enrolled in this course received the course instruction and completed their 

assignments through ALEKS. Also, students were able to get help from undergraduate and 

graduate tutors in a Mathematics Learning Center, which is open 40 hours per week in the hall 

that hosts the mathematics department, and 10 evening hours per week at 5 other locations 

around campus. Students’ grades were determined by 4 proctored tests (44.4% of grade) and a 

proctored final exam (22.2 % of grade), online ALEKS quizzes (11.1% of grade), and ALEKS 

homework assignments (22.2% of grade).  

Continued Efforts to Improve Introductory Mathematics 

 Collaborative efforts between the MSU Department of Teacher Education and the 

Mathematics Department have provided high quality instruction and learning experiences for 

students enrolled in this NCBMC, specifically for a subset of students who had been identified as 
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“at risk” and who were enrolled in an optional co-requisite mathematics lab to support their 

learning. These efforts consisted of providing a course section of a co-requisite lab course for the 

CAI online intermediate algebra course. This co-requisite lab included high cognitive demand, 

collaborative activities that were taught by prospective secondary mathematics education 

teachers. These prospective teachers were provided mentoring for lesson planning as well as in 

the moment coaching as they taught the intermediate algebra students enrolled in the co-requisite 

lab. The results of this collaboration have been promising and it continues even though the NSF 

funding has ended (Bieda, Herbel-Eisenmann, McCrory, & Sikorski, 2013).  

In addition, for more than 10 years MSU has engaged in various efforts to improve 

students’ learning experiences and outcomes in MTH 1825 and College Algebra. One recent 

result of these efforts has been major changes in the mathematics course options for introductory 

mathematics. For example, shortly after this study was conducted, the MSU administration 

decided to phase out MTH 1825, the CAI intermediate algebra course that utilized ALEKS as its 

primary mode of instruction. Instead, students may now elect to take Quantitative Literacy 

mathematics courses. Also, students who have STEM aspirations, but whose mathematics 

placement exam score was low, have the option of taking College Algebra at a slower pace over 

2 semesters, and with the optional addition of a support lab.  

 

Research Participants 

 The research participants consisted of a subset of volunteers recruited from intermediate 

algebra students enrolled in the course of interest in this study. Four students who voluntarily 

completed the online mathematics survey responded that they were interested in learning more 

about participating in the case study (Table 8). After the initial meeting during which the 
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expectations and risks of participating were discussed (see consent form, Appendix A), these four 

students volunteered to participate. In Fall semester of 2016, two students participated. In Spring 

semester 2017, three students participated. One of these students, Chad, failed the course in the 

fall and agreed to participate again in the spring when he retook the course.  Another student had 

agreed to participate in the study, but then withdrew, so her data was not included.  

Table 8. Participant demographics 

Pseudonym Semester Status Gender Race Prior HS 
Course Major 

Jade FS16 Freshman Female Black Calculus Molecular 
Genetics 

Chad FS16 & 
SS17 Freshman Male White Pre-Calculus Journalism 

Tia SS17 Freshman Female Black Calculus Apparel & 
Textile Design 

 

Data Collection 

This study consisted of 4 phases of data collection: participant recruitment, initial 

meeting, primary data collection, and end of course interview. These phases are outlined in 

Figure 8 below and described in detail in the subsequent paragraphs.  

 
Figure 8. Overview of data collection phases 
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Phase 1: Participant Recruitment. I used the course email system to send a 

confidential, online mathematics history questionnaire (Appendix D). In Fall semester 2016, 46 

students participated in the online mathematics history questionnaire, and 2 agreed to participate 

in the case study. In Spring semester 2017, 24 students participated in the online mathematics 

history questionnaire, and 3 agreed to participate in the case study. Later, one of these 

participants withdrew from the study. 

Phase 2: Initial Meeting. I met with the participants of the study to go over consent 

forms (Appendix A). During this meeting, I also introduced them to the website that I had 

created to serve as a resource regarding the technology included in the data collection process 

( https://sites.google.com/view/mth1825researchproject ). This website included both written and 

video recordings of how to set up and use the Screencast-O-Matic and LiveScribe pen software. 

Next, we set up software that recorded screencasts of their online work, Screencast-O-Matic, and 

the software for using the LiveScribe Pens. After the software was set up, we practiced the 

process of recording and saving their think aloud screencasts and associated written work with 

pen-cast recordings. The participant and I discussed what a “think aloud” is and why it was 

important for this study, and I asked the participant to watch a short video of me conducting a 

think aloud using the LiveScribe pen. Then I left the room and the participant used the screencast 

software and LiveScribe pen as they solved a problem in ALEKS while thinking aloud. About 15 

minutes later, when they were done, we rehearsed saving these files to their private, secure 

Google drive that was set up for this project. Lastly, we reviewed the think aloud they just 

conducted to co-create a shared meaning of the definition of think aloud.  

Phase 3: Independent Weekly Think Aloud. Each of the participants was asked to 

record at least one 15 minute think aloud screen cast per week. I created a separate, private, 
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password protected, university supported Google Drive folder for each participant so they could 

confidentially upload the files of their screen cast (Figure 9) and pen cast (Figure 10) recordings 

to save the files and share them with me. Three of the four participants preferred this 

independent method. The fourth preferred to meet with me weekly to use my computer for the 

recordings, but he independently worked in ALEKS in a separate office. In other words, outside 

of the Observed Extended Think Aloud, we did not interact while he worked in ALEKS and 

conducted his think aloud recordings. 

 

 

Figure 9. Screencast frame 
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Figure 10. Pen-cast frame 
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Phase 3: Mid-Semester Observed and Extended Think Aloud (OETA). Around the 

middle of the semester, I scheduled a time to meet with the students individually and to observe 

them working in the CAI environment, which also allowed me to observe as they solved 

problems related to more than one ALEKS topic. Up until this point, the shorter screencasts that 

participants had recorded on their own had primarily included only one topic. Based on what I 

understood about ALEKS, I wondered if the student participants made mathematical connections 

between the topics. As I observed students, I occasionally would ask questions about their choice 

of resource use in ALEKS and their mathematical thinking. These OETA sessions were recorded 

using the screen cast and pen cast. The OETA session with each participant lasted approximately 

45 minutes.  

Phase 4: End of Course Survey and Interview. The data collection concluded with an 

online survey and related end of course interview questions in which students were asked to 

describe their overall experiences of the online CAI intermediate algebra coursework. Follow-up 

questions asked what were positive and negative aspects of the online algebra course and how 

might the course be improved. These questions were intentionally open-ended to prompt the 

participants to freely share their experiences (Appendices E and F).    

Table 9. Summary of data collected in the beginning and throughout the course. 

Pseudonym Semester Math History 
Survey 

Weeks of 
Semester 

Think Aloud 
Recordings  

Observed & 
Extended 

Think Aloud  
Jade FS16 Yes 8-12 4 No 

Chad FS16 Yes 8 1 No 

Chad SS17 -- 2-11 10 Yes 

Tia SS17 Yes 3-11 11 Yes 

 

 



  

 70 

Table 10. Summary of data collected at the end of the course. 

Pseudonym Semester End of Course 
Survey 

End of Course 
Interview 

End of Course 
Grade 

Jade FS16 Yes No 3.5 

Chad FS16 No Yes 0.0 

Chad SS17 Yes Yes 2.5 

Tia SS17 Yes Yes 2.0 

 

Data Analysis 

To analyze the data of this case study, I began by reviewing the sets of data about student 

engagement for themes. The themes and codes that emerged from the data were cognitive, 

academic, and affective interactions (Figure 11). These three types of student interactions with 

the ALEKS tasks were aligned with research literature on student engagement and served as the 

theoretical framework for this study (Finn & Zimmer, 2012; Kahu, 2013). Every think aloud 

recording was revisited multiple times and the data was recorded and coded in a spreadsheet 

consisting of the heading categories: logistical data, ALEKS Topic data, cognitive interaction 

data, academic interaction data, affective interaction data (see Appendix I for more details). 

After coding the data of each individual case, I described each case by summarizing the 

data according to the three student engagement themes and indicators (Chapters 5, 6, and 7), 

which was followed by the cross-case analysis (Chapter 8). The cross-case analysis included 

comparing the student engagement indicators across the three cases, followed by examining 

potential relationships between the student engagement indicators.  

Individual Case Analysis 

SE Indicator 1: Cognitive Interactions. To analyze the think aloud screencast and pen-

cast recording data, the recordings were viewed multiple times for multiple purposes. First I 

watched each video and identified the ALEKS Topics. Each ALEKS Topic was the unit of 
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analysis, and I used the IQA rubric (Appendix G) to code for the cognitive demand of the 

mathematical task. In this study, each ALEKS Topic comprised the mathematical task. Also, for 

each ALEKS Topic I outlined the sequence of ALEKS pages that the student interacted with as 

well as whether the students answered the ALEKS problems correctly or not. Two general 

ALEKS sequence types emerged, a routinized sequence, which occurred when the all of the 

student’s answers were correct, and what was noted as a critical incident, in which the ALEKS 

Sequence was interrupted. Specifically, interrupted ALEKS Sequences included detours, 

unplanned events, application problems, or some other observer noted difference. (Tables 11 & 

12).  

 

 

Figure 11. Overview of the data analysis by SE Indicator Categories 

 
Table 11. Example of ALEKS Topic and Routinized ALEKS Sequence 
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Table 12. Example of ALEKS Topic and Critical Incident ALEKS Sequence (Interrupted) 

ALEKS Topic Critical Incident  
Converting between scientific 
notation and standard form in a real 
world application. 

ALEKS Example 
Problem 1: Incorrect 
Problem 1 Tried Again: Correct 
Problem 2: Correct 
New Topic 

 

In general, student thinking processes were more evident during the interrupted ALEKS 

sequence because students were figuring out and correcting their error(s). For this reason, 

interrupted ALEKS sequences were identified as critical incidents and transcribed. Another 

criterion for a critical incident were those times that student solution methods did not directly 

correspond with the methods presented by ALEKS. In this case, the student brought some 

personal knowledge to the problem solution method. Lastly, critical incidents were identified as 

those instances when students made statements related to their confidence about an ALEKS 

Topic, their work, and/or answer to a problem. Once the critical incidents were identified and 

transcribed, the problem solving phases (orientation, generation, conclusion) were identified in 

the lines of the transcript. Next, the student’s mathematical activities that occurred within each of 

the problem solving phases were identified, described, and later classified as patterns of 

cognitive interactions in a table (Table 13) with references to the lines of the transcript (see 

Chapters 5-7, Tables 14-17, & 19).  

Table 13. Patterns of Cognitive Interactions of Activities in Problem Solving Phases. 
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SE Indicator 2: Academic Interactions (Resources & Study Strategies). Academic 

interactions included study strategies and resources used (SE Indicators 2, Figure 11). There 

were three sources of data for academic interactions: the think aloud recordings, the end of 

course questionnaire and interview. In the think aloud recordings, students sometimes explicitly 

stated their study strategies (see Jade), and other times the strategies were observed. For instance, 

a student may have been observed taking notes on the ALEKS example and referring back to that 

example, but the student did not explicitly state that strategy. (See Appendix C). In addition, the 

end of course questionnaire and interview included questions about student study strategies and 

resources used to be successful in the course.  

SE Indicator 3: Affective Interactions (Confidence & Value of Math). Affective 

interactions included student statements of confidence (or lack of confidence) about the 

mathematics tasks they were solving, and students’ value of mathematics (SE Indicators 3, 

Figure 11). There were three sources of data for academic interactions: the think aloud 

recordings, the end of course questionnaire and interview. The think aloud recordings sometimes 

contained student statements of confidence before before beginning work on a problem. At times 

these statements were positive (e.g. “I get this.”) indicating confidence, and at times these 

statements were negative (e.g. “I have never been good at fractions.”), indicating a lack of 

confidence. Similarly, after the student had worked out a solution to one of the problems, at 

times their statements indicated confidence about their solution (e.g. “That seems right.”), and at 

times students’ statements indicated a lack of confidence about their solution (e.g. “I think that’s 

wrong.”).  

Additional information about affective interactions was gathered in the beginning and end 

of course questionnaires and the associated end of course interviews. These questionnaires and 
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interviews contained questions about the students’ perspectives of their math ability, attitudes 

toward math, and usefulness of mathematics in their everyday life and future career (Appendices 

D, E, & F). 

Cross-Case Analysis 

The cross-case analysis consisted of two types of analysis. First, a comparative analysis 

was conducted to better understand and describe the indicators of student engagement and to 

identify those indicators that varied and those that remained fairly constant. This comparative 

analysis was followed by a relational analysis. The goal of the relational analysis was “to 

establish if there are patterns of association within cases that hold true across cases, without 

losing sight of the particularities of each case” (Bazeley, 2013, p. 285).  In other words, I 

examined SE indicators that varied to see if some type of relationship between those indicators 

might exist.   

Trustworthiness and Validity 

Glesne has written that, “Most [qualitative research scholars] agree that we cannot create 

criteria to ensure that something is ‘true’ or ‘accurate’ if we believe concepts are socially 

constructed” (2011, p. 49). In other words, my interpretation of the data has been filtered through 

my own historical and social lens; however, existing accepted methods can help make the case 

that my interpretation has been trustworthy. The methods that have been included in this study 

are prolonged engagement, triangulation of the data, and researcher reflexivity. Prolonged 

engagement was a part of this study because the participants submitted weekly think aloud 

recordings throughout the semester they were enrolled in the course. The participants chose 

when, where, and how long they would conduct their think aloud recordings, so as a researcher, I 

had no control over what topics they submitted. The data was triangulated between the 
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participant think aloud recordings, extended observed think aloud recording, questionnaires, and 

interviews. Lastly, I have reflected on and included how my own life experiences have 

contributed to my interest in this research topic (Creswell, 2003; Glesne, 2011; Maxwell, 1996) 

Strengths and Limitations 

The strengths of this qualitative case study is the potential to document and describe the 

complexity of the phenomena and context under study—in particular to describe and understand 

the context and interactions between students and CAI deeply and in detail. A generally accepted 

limitation of qualitative case studies such as this is that these findings cannot be generalized to 

the wider population. Specific to this study, a limitation was that volunteer participants may not 

represent the norm. Also conducting a think aloud and screencast recordings may have 

influenced how the participants engaged with the software and the mathematics. (Creswell, 2003; 

Glesne, 2011; Maxwell, 1996) 

 Analysis Summary 

In the next three chapters I use a student engagement conceptual framework (see Chapter 

3) and the associated research questions as a guide to present descriptions of the nature of 

participants’ mathematical engagement in an online CAI Intermediate Algebra course. Drawing 

on multiple sources of data and using narrative inquiry methods and qualitative coding methods 

(Appendix B), I present a descriptive case study for each of the three participants to illustrate the 

nature of student engagement in this online CAI course. These three descriptive case study 

chapters are followed with a cross-case analysis chapter. The cross-case analysis includes a 

comparative analysis and a relational analysis. 

For each case study report, I first provide a brief overview of each participants’ 

demographic and mathematical history based upon their Math History Questionnaire responses 
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and the subsequent interview. Then I provide an illustration of the nature of each participant’s 

engagement with ALEKS, the CAI software of the Intermediate Algebra course, based upon data 

from multiple screencast and pen-cast think aloud recordings, and an end of course questionnaire 

and interview. The focus of these case study chapters is to provide rich descriptions of the nature 

of students’ mathematical engagement in this online CAI Intermediate Algebra course, using 

the following research questions as a guide: 

a) What is the nature of students’ cognitive interactions within an online CAI intermediate 

algebra course? 

b) What is the nature of students’ academic interactions within an online CAI intermediate 

algebra course? 

c) What is the nature of students’ affective interactions within an online CAI intermediate 

algebra course? 
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CHAPTER 5 
Jade “Science and math overlap …” 

 

When I first met Jade, my impression was that she was a confident, outgoing student. She 

caught on quickly to all of the technology requirements of participating in the study and seemed 

pleased that she could make the think aloud recordings independently on her own time schedule. 

Jade was a consistent participant who submitted her think aloud recordings every Saturday 

morning. This case study begins with an overview of Jade’s demographic and mathematical 

history based upon her Math History Questionnaire (MHQ) responses and the subsequent 

interview. Then I provide an illustration of the nature of Jade’s engagement with ALEKS, the 

CAI software of the Intermediate Algebra course, based upon data from multiple screencast and 

pen-cast think aloud recordings, and an end of course questionnaire and interview. The nature of 

Jade’s engagement is organized around themes of her academic, cognitive and affective 

interactions with ALEKS. 

Jade is an African American female from an urban, in-state city. During the study, she 

resided on campus in one of the dorms. When Jade completed the Mathematics History 

Questionnaire (MHQ) in the Fall of 2016, it was her first semester as a freshman undergraduate 

at Michigan State University, and she listed her major as Molecular Genetics.  

In the MHQ, Jade reported that her high school mathematics experience was a positive 

one, stating that she “had a great math teacher Sophomore through Senior year. He had an 

amazing teaching style” (MHQ, #39).  When asked to identify a statement that best described her 

high school mathematics experiences (MHQ, #18, Appendix D), she selected the statement: “My 

high school teacher primarily provided activities in which students worked together in small 

groups to learn mathematics, followed by whole class discussion.”  Prior to her enrollment at 



  

 78 

MSU, Jade had excelled academically in mathematics. She took algebra in eighth grade and four 

years of mathematics in high school, culminating with calculus her senior year. Despite this 

success, Jade stated that taking Algebra in eighth grade was detrimental to her high school 

mathematics learning. 

Jade:   What messed me up was that I had Algebra as an 8th grader and my Algebra 
teacher skipped over a lot of the basic stuff that I needed for the rest of my high 
school career. Instead of learning in 9-12th grade, I was playing catch up because 
I missed a lot of the basic stuff. (MHQ, #39) 

 
In addition, although Jade had completed through calculus in high school, she rated her 

own mathematics ability as “average” on the MHQ. Her questionnaire responses also indicated 

that she felt the MSU mathematics placement test she had taken online was “probably” a good 

indication of her knowledge of mathematics. In addition, Jade responded that although she had 

“previous exposure to the topics in this course,” she believed she “needed a refresher experience 

before proceeding to college-level mathematics.” 

In the quote below, Jade also expressed indifference to mathematics as a subject and 

seemed to believe she did not retain mathematical learning because she does not find 

mathematics interesting. 

Jade:    Math has never been a subject that I’ve liked or disliked. It’s just always been a 
course I am required to take. I do okay in math. I just am not very good at 
retaining what I’ve learned because the subject isn’t really interesting to me. I’ve 
taken all the way up to high school calculus, but I still have no interest in the 
subject. (MHQ, #1) 

 
However, in contrast to her indifference about mathematics, Jade became quite animated when 

discussing her major, Molecular Genetics, her job shadowing experiences, the competitive nature 

of the program and graduate school requirement, and her future career as a genetics counselor. 

Thus, it seemed as if Jade views mathematics merely as a “requirement,” or at most a required 

tool, for achieving her larger educational and career goals. 
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 When I first met with the Jade, we reviewed the research consent form and process, and 

discussed her school experiences while we loaded the software on her computer. In addition, we 

discussed what it means to perform a think aloud, as well as the purpose of the think aloud, 

which was that I might have an idea of what she was thinking as she solved mathematics 

problems. Next, I left the room as Jade practiced using the screencast and pen-cast software and 

rehearsed her first think aloud. After about 15 minutes, I re-entered the room, I watched as Jade 

uploaded the videos, and then she and I reviewed her think aloud. During this first think aloud, 

Jade focused on her academic interactions, in other words, her study habits, in regards to the CAI 

intermediate algebra course. This was a key aspect of Jade’s engagement with ALEKS, so I 

begin by foregrounding Jade’s academic interactions. 

Jade’s Academic Interactions 

During her first think aloud rehearsal, Jade explicitly discussed her study routines as she 

studied the examples and solved problems presented in ALEKS. Jade’s stated study routines 

included note-taking conventions and utilizing a unique memory practice. Her academic 

interactions are illustrated below in Figures 12 and 13. In these figures, a screen shot of the 

recorded pen-cast is central to the figure and surrounded by transcription of Jade’s utterances as 

she wrote.   

Jade’s Notetaking 

Jade kept organized notes as she worked in ALEKS, beginning with the section title and 

example (Figure 12) and followed by numbered problems that she solved (Figure 13). As Jade 

began a new ALEKS topic, she wrote notes about the ALEKS example. In fact, her notes and 

utterances clearly indicated the example, and although Jade had not clicked the record button on 

the screencast, her pen-cast recording and notes were sufficiently clear and easy to follow.  
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Figure 12. Jade Think Aloud 1, Example 

 

First, Jade wrote the title of the section in her notes so she could refer back to the section 

at a later time if needed.  

Jade:   The problem I am doing is Complex Fractions Involving Quadratics with Leading 
Coefficients less than 1. So I always write the title of the section so if I go back to 
look at my notes, I know what I was doing (Figure 12, transcript lines 1-8 and top 
two lines of inscriptions).  

 
Next, Jade also wrote the ALEKS Example problem as it was presented in ALEKS and 

included the direction to “simplify” (Figure 12, third line of inscription).  

Jade:    First, I write the problem as is, without changing anything (Figure 12, transcript 
lines 9-10) 
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In Figure 12, transcript lines 18-22, I assumed that Jade was reading from the ALEKS 

screen due to her change to a more rigid tone intonation, which switched to a more informal tone 

in lines 23-24 when she stated she would write the steps as shown.  

Jade:   We multiply the numerator and denominator by 2u to cancel the 2u in the 
denominator of the complex fraction. I’m gonna write that step like they show it 
(Figure 12, transcript lines 18-22). 

 
Jade appeared to rely on the solution path that was presented in ALEKS. In fact, Jade had 

begun to take a different solution path that may have been correct, but noticed the difference 

from ALEKS example and appeared to modify her approach to match the solution shown in the 

ALEKS. 

Jade:   So then you distribute the 2u to both the numerator and denominator so you get 6u 
minus… Wait. Didn’t they multiply? Oh. No. Never mind. They don’t want you to 
distribute just yet (Figure 12, transcript lines 25-31).  

 
 Jade paid close attention to the ALEKS examples. For instance, Jade spent a little over 

four minutes reading, studying, taking notes, and describing her thinking about this ALEKS 

example before proceeding to the first problem. In addition, Jade made a point to keep “all of the 

rules and properties” that were presented in ALEKS organized in her notes as well (Figure 15, 

transcript lines 23-27), indicating that Examples and “rules and properties” were important 

content to document in her notes.  
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Figure 13. Jade Think Aloud 1, Problem 1 

 

  As Jade completed the problems for each ALEKS topic, she wrote the problem number 

(Figure 13, transcript lines 42-43 and first line of inscriptions).  Second, Jade copied the 

directions and the problem as they appeared on the screen, followed by each step of her solution. 

She followed this process of documenting her work for the second problem, and in her other 

think aloud recordings of ALEKS work as well.  

In summary, Jade used this systematic method of titling sections, carefully copying 

examples, and numbering the problems she solved to organize her notes for future reference, “so 

if I go back to look at my notes, I know what I was doing” (Figure 12, transcript lines 6-8). A 

sample page of Jade’s systematic organization of her notes has been included in Appendix J.  

  

Jade’s Memory Strategy 

After solving the first problem correctly, Jade mentioned the use of a unique memory 

strategy (see quote below), which include writing out the solutions to the first two problems, and 

then attempting to do the third problem mentally, in other words without writing anything down. 
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Jade’s use of this memory strategy was demonstrated in all of her recorded sessions that involved 

solving ALEKS homework problems.  

Jade:   I only write down—work out—two practice problems, and the third one I try to do 
in my head. But that doesn’t always work out (Think Aloud 1). 

 
Jade’s Planning  

In her second think aloud recording and in the end of course interview, Jade mentioned 

another study strategy, a planning strategy in which she described dividing up the number of 

ALEKS topics assigned for the week into chunks of work to be completed each day.  

Jade:   I divide the number of [ALEKS] topics I need to do up, so I'm going to do 10 
today, 10 Monday, 10 Tuesday, 10 Wednesday, 10 Thursday, and 6 Friday. (Think 
Aloud 2) 

 
Jade: Academic Interactions Summary 

In summary, Jade used at least three academic strategies to learn in the online CAI 

environment. She systematically organized her notes and homework, utilized a unique memory 

technique, and divided up the weekly number of assigned ALEKS Topics into daily chunks. Jade 

appeared to rely solely on the mathematics resources provided by ALEKS for the course.  

 

Jade’s Cognitive Interactions 

 To explicate Jade’s cognitive interactions, I present and analyze excerpts from the 

transcripts of two think aloud recordings on two separate ALEKS Topics. I parsed the transcripts 

into Problem Solving Phases (orientation, generation, and conclusion) as discussed in the 

conceptual framework in Chapter 3 and operationalized in the methods in Chapter 4.  
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Jade: Think Aloud Recording 1 (Figures 12, 13, & 14) 

In this section, I revisit Jade’s first think aloud recording to examine and understand her 

cognitive interactions. Jade began the problem solving process by reading the example problem 

and taking notes (see Figure 12)—the orientation phase of problem solving. Next she read and 

copied the exercise problem to be solved, which is a continuation of the orientation phase (Figure 

13, transcript lines 44-45 and inscription).  

The generation phase of problem solving, which was comprised of imitating the solution 

to the problem based on the process of the example problem (Figure 13, transcript lines 46-64 

and accompanying inscriptions). The problem solving activities in this generation phase were 

designated as reproduction due to the evidence in the existing think aloud itself, plus the 

following excerpt from the video recording as we watched and discussed this first think aloud 

pen-cast.   

Jen:     You are doing a really great job of describing what you are doing. I am curious 
about why you can cross out those two [pointing to the crossed out 3w] …like 
why you do that.  

Jade:   For the example is, said that you have to multiply the numerator and denominator 
by the complex fraction denominator. So I just went in and crossed them out 
because they have common numbers, I mean factors, I guess. So I can cross them 
out. I’m not really good at explaining it. I just know how to do it. So you just 
cross off the common numbers. I know you can’t cross off those [pointing to the 
screen], but I am not sure how to say it. 

Jen:     Which ones?  

Jade:   [pointing to the screen] The 2 times the 3w and the 5 times the 3w.  
Jen:     OK. Thanks. Well, I really appreciate you doing these recordings, and you’re 

doing a great job of explaining what you are doing. If you would add the “why” 
you do something, or even if you’re not sure “why” that would be helpful.  

Jade:   O.K. 
 

In addition, in the recording of Problem 2, Jade was not confident about her answer, and 

questioned whether it was correct (Figure 14 below, transcript line numbers 88-99). Both of these 
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interactions suggested that Jade was reproducing procedures without understanding why those 

procedures were correct, or not correct. Jade’s cognitive interactions in the form of Problem 

Solving Phases and associated activities are summarized in Table 14 below. 

 

 
Figure 14. Jade Think Aloud 1, Problem 2 

 

Although Jade’s cognitive interactions with this particular ALEKS Topic provided a 

typical example of what is characterized as surface level knowledge, it is important to note that 

some recordings of her cognitive interactions with other ALEKS topics were different. In the 

next section, I illustrate how Jade’s cognitive interactions with a different ALEKS Topic varies 

from this one.  
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Table 14. Patterns of Cognitive Interactions in Jade's Think Aloud 1 (Figures 12, 13, & 14) 

Patterns of Cognitive 
Interactions 
ALEKS Example(s)  
&/or Routine Exercises  
(Figure #) 

Problem Solving Phases 
Orientation 

Activities 
(Transcript Lines) 

Generation 
Activities 

(Transcript Lines) 

Conclusion 
Activities 

(Transcript Lines) 

 
Imitate the Steps 
ALEKS Example 
(Figure 12) 

• Read & Copy 
Example (1-41) 
o Backtracking  

 (28-31) 
•    
•    

  

 
Imitate the Steps 
Problem 1 [Correct] 
(Figure 13) 
 

• Read & Copy 
Problem (42-45) 

•    
•    

•    
•    
• Imitate the Steps 

(46-62) 

• Verify 
o External Authority 

(63-69) 
o    

•    
 
Imitate the Steps 
Problem 2 [Correct] 
(Figure 14) 

• Read & Copy 
Problem (75-77) 

•    
•    
 

•    
•    
• Imitate the Steps 

(78-89) 

• Verify 
o  External Authority      

 (63-69) 
o     

•    
 
 
 
 
Jade: Think Aloud Recording 4 (Figures 15 & 16)  

The analysis of the evidence of Jade’s cognitive interactions with the ALEKS Topic, 

Solving an equation of the form x2=a using the square root property, can be characterized as 

further along the surface-to-deep continuum. I illustrate this by presenting and describing the 

evidence of Jade’ cognitive interactions in Think Aloud 4. 
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Figure 15. Jade Think Aloud 4, Example 

 
 

Jade took an active role as she read the example for this ALEKS Topic by making a 

prediction about the answer before reading the example solution method (Figure 15, transcript 

lines 14-17). After making the prediction, she continued to read the example, and again made a 

prediction about the solution based on what she had read (Figure 15, transcript lines 28-29). Jade 

continued reading and taking notes from the example and the answer that was provided. Notably, 

before proceeding to work on the first exercise, Jade also exhibited an active role as she verified 
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the example solution mathematically, even though this step was not modeled as a step in 

ALEKS.  

Jade:    And I know this is true because -5 times -5 equals positive 25, and 5 times 5 is a 
positive 25 (Figure 15, transcript lines 34-35).  

 
 So Jade autonomously brought this activity to her conclusion problem solving phase for this 

ALEKS topic.  

 In a manner similar to the example, when solving the first problem and during the 

orientation phase of problem solving, Jade made a prediction about the solution (Figure 16, 

transcript lines 41-45). Next, she recreated the solution process during the generation phase of 

problem solving. During the conclusion problem solving phase, she verified her solution 

mathematically before entering it into ALEKS (Figure 16, transcript lines 51-55). 

  

 

Figure 16. Jade Think Aloud 4, Problem 1 
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Comparing the summaries of Problem Solving Phases and activities in the two think 

aloud recordings (Table 14 above & Table 15 below) reveals that Jade engaged in different 

activities during Think Aloud 4. These activities were predicting the solution and verification of 

the solution using substitution, which indicated Jade’s internal authority for understanding and 

the solution procedure because neither of these activities were presented in the ALEKS Example.  

 

Table 15. Patterns of Cognitive Interactions in Jade's Think Aloud 4 (Figures 15 & 16) 

Patterns of Cognitive 
Interactions 
ALEKS Example(s)  
&/or Routine Exercises  
(Figure #) 

Problem Solving Phases 
Orientation 

Activities 
(Transcript Lines) 

Generation 
Activities 
(Transcript 

Lines) 

Orientation 
Activities 

(Transcript Lines) 

 
Transcend the Procedure 
ALEKS Example 
(Figure 15) 

• Read & Copy 
Example (1-33) 

• Understanding 
*Predicting (14-17) 

•    
 

 • Verify 
o External Authority (33)  
o Internal Authority 

*Substitution (34-35) 
•    

 
Transcend the Procedure 
Problem 1 [Correct] 
(Figure 16) 

• Read & Copy 
Problem (39-43) 

• Understanding 
*Predicting (41-45) 

•    

•    
•  
• Recreate the 

Procedure (45-51) 

• Verify 
o Internal Authority 

*Substitution (51-55)  
o External Authority      

(56-57) 
•    

* Note: ALEKS did not present predicting a solution or a verification procedure.  
 

Jade’s Affective Interactions 

Here I discuss the Jades affective interactions with the online ALEKS as evidenced by 

her statements related to confidence, or conversely, a lack of confidence during think aloud 

recordings and interviews. In addition, I examined the data for evidence regarding how Jade’s 

valued mathematics.  
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Jade’s Stated Confidence 

Jade expressed confidence about the mathematics she was working only a few times. One 

time, Jade made a statement that indicated a lack of confidence in her solution after she solved an 

ALEKS problem about simplifying complex rational expressions. 

Jade:    I know I can’t cross cancel anything, but I’m not sure if I can add the one or 
subtract the one or should I just leave it as 7v +1 over 3v minus 1. I think I’m 
gonna leave it like that, but it could be wrong. I think it’s wrong. [enters answer] 
No, it’s right! (Think Aloud 1, Figure 14, transcript lines 89-98) 

 
 Jade expressed confidence before beginning to work on a set of problems in a different 

ALEKS Topic, solving an equation of the form x2=a using the square root property.  

Jade:    My thoughts as I go forward are that this one section right here will be pretty 
easy. Umm. Because I feel like it’s just basic square root stuff. (Think Aloud 4, 
Figure 16, transcript lines 36-38) 

 
Jade also expressed confidence in her solution to these problems when she mathematically 

verified her answers before entering the answer into the CAI program. 

Jade:    And I know this is true because -5 times -5 equals positive 25, and 5 times 5 is a 
positive 25 (Think Aloud 4, Figure 15, transcript lines 34-35).  

 

Thus, Jade’s statements indicating confidence outnumbered her statements that indicated a lack 

of confidence.  

Jade’s Value of Mathematics and Course  

Jade offered an interesting view regarding the value of mathematics. She saw the value in 

everyday mathematics and believed that formal mathematics may likely play a role in her future 

career in Molecular Genetics, but she remained indifferent to school mathematics. She neither 

enjoyed or disliked math. It just seemed to be necessary.  

Jade:   Mathematics is in everything we do such as how many calories we eat, how long 
we sleep, how many hours we study for an exam, and so on. (ECQ, #12) 
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Jade:   Genetics is a science. Science and math overlap in many areas and I am sure 
Genetics and Genomics are no different than any other science major when it 
comes to math. (ECQ, #10) 

 
Jade:    I don’t hate math because it is necessary for day to day life, but I don’t enjoy it 

beyond class. (ECQ, #8) 
 

Jade explicitly mentioned that she liked working in the online CAI Intermediate Algebra 

course, but that she would have preferred the option of a hybrid course.  

Jade:   Math 1825 was a great experience. It helped me identify my strong suits and weak 
points when it comes to me learning math. I found that I benefited a lot from the 
online portion of the class. I liked that I could set my own pace for learning the 
material. I also found the different tools the online portion offered…The one thing 
I didn’t like was that the class was 100% online. I wish it took the hybrid form, a 
combination of online and in-class instruction. There were times that I needed that 
face to face interaction with a professor or teaching assistant. (ECQ, #3) 

 
In fact, in the end of course interview, Jade mentioned that she liked the CAI instructional 

model better than the large lecture College Algebra course she was taking Spring semester. She 

felt that College Algebra moved too fast and she did not like how the online homework 

functioned (Web Work) in comparison to ALEKS.  

 
Summarizing Jade’s Engagement 

Based on what I observed, Jade put a lot of time and effort into learning the content of the 

CAI intermediate algebra course, and her efforts in the class paid off. She earned a 3.5 grade; 

however, I note Jade’s final grade with the caveat that there is not sufficient evidence to make the 

claim that her effort and strategies are directly related to her grade in the course. 

Jade consistently demonstrated academic interactions that were comprised of three study 

strategies: note-taking, a unique memory strategy, and a planning strategy. Jade used a 

systematic, organized method of note-taking: titling sections, carefully copying examples, and 

numbering the problems she solved to organize her notes for future reference, “so if I go back to 



  

 92 

look at my notes, I know what I was doing” (Figure 12, transcript lines 6-8). Jade’s memory 

strategy consisted of solving the first two ALEKS problems in writing and solving the third 

problem mentally. Her use of systemic, organized note-taking and the aforementioned memory 

strategy was consistent in all of her think aloud recordings. Lastly, Jade planned her study time 

for the week by dividing up the number of assigned ALEKS topics into manageable amounts to 

be completed each day. The primary resources she used to learn the content were those available 

within the ALEKS environment, such as the ALEKS examples, written explanations, and videos. 

She did not report using the university Mathematics Learning Center. 

Jade’s cognitive interactions varied more than her academic interactions. Her cognitive 

interactions with the mathematics of different ALEKS topics fluctuated along the surface-to-deep 

continuum. This variation may have been related to her feelings of confidence about the 

mathematical topic. For instance, in her first think aloud recording, Jade was not confident about 

her work, and she closely followed the ALEKS example procedures and demonstrated surface 

learning characteristics (Think Aloud 1, Table 14, Figures 12-14). In contrast, in her fourth think 

aloud recording, Jade expressed confidence about a topic, and she went beyond the information 

and procedures presented by ALEKS. Jade made predictions about problem solutions and 

mathematically verified her solutions before entering them into the ALEKS software (Think 

aloud 4, Table 15, Figures 15 & 16), thus demonstrating a deeper cognitive interaction with that 

ALEKS topic.  

Despite her reported beliefs about the value and usefulness of mathematics in everyday 

life and her future career, Jade was indifferent about the study of mathematics. She seemed to 

view her study of mathematics as a requirement and a tool related to her larger academic and 

career goals related to molecular genetics. 
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CHAPTER 6 
Chad “When you fail, you pick back up and do it again.” 

 

When I first met Chad, my impression was that he is an outgoing person, and my 

observation was that he talked expressively about his mathematical experiences. In addition, 

Chad chose to meet with me on a weekly basis to conduct his think aloud recordings. Although 

he still would perform those think aloud recordings alone and in a separate space, Chad felt he 

would be more likely to follow through if he had a scheduled meeting time. Each week, we 

would chat briefly, then I would leave, and he would begin his recording.  

This case study begins with an overview of Chad’s demographic and mathematical 

history based upon his Math History Questionnaire (MHQ) responses and the subsequent 

interview. Chad was a study participant for two semesters, and because he did not pass the course 

his first semester, I provide a brief overview of his first semester in the course according to data 

from his End of Course Interview. Next I provide by more detailed exposition of his second 

semester in the course. In the latter, I provide an illustration of the nature of Chad’s engagement 

with ALEKS, the CAI software of the Intermediate Algebra course, based upon data from 

multiple screencast and pen-cast think aloud recordings, and an end of course questionnaire and 

interview. The nature of Chad’s engagement is organized around themes of his academic, 

cognitive and affective interactions with ALEKS. 

Chad is a White male from a suburban, out-of-state city. During the study, he resided on 

campus in one of the dorms. When Chad completed the Mathematics History Questionnaire the 

2016 fall semester, it was his first semester as a freshman undergraduate at Michigan State 

University, and he listed his major as Journalism. In the MHQ, Chad reported that he disliked 
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math and believed he was a weak math student. In the quote below, Chad expressed that he may 

not like math because he had never been good at it.  

Chad:  I have never been very good at math, and it has colored my perception of it. I 
think perhaps if I had always been good [at math], I would like it a lot more, and 
there would be a positive feedback cycle. (MHQ, Question, #8) 

 
When asked to identify a statement that best described his high school mathematics experiences 

(MHQ, #18, Appendix D), he selected the statement: “My high school teacher both lectured to 

the class and provided activities in which students worked together in small groups to learn 

mathematics, followed by whole class discussion.”  Prior to his enrollment at MSU, Chad had 

taken four years of high school mathematics including Pre-Calculus his senior year.  

In addition, Chad’s MHQ responses also indicated that he felt the MSU mathematics 

placement test he had taken online was “definitely” a good indication of his knowledge of 

mathematics and had he reviewed for the placement test or taken it a second time his score 

would “probably not” have improved. Chad responded that although he had “previous exposure 

to the topics in this course,” he believed he “needed a refresher experience before proceeding to 

college-level mathematics.”  

In the sections that follow, I use quotes from Chad to illustrate his experiences in the 

course Fall Semester 2016 (FS16). Then I follow this with a more in-depth discussion of his 

experiences Spring Semester 2017 (SS17) using the student engagement framework ideas of 

cognitive, academic and affective interactions. Lastly, I provide a summary of this case study.  

A Series Unfortunate Events (FS16) 

I first met Chad on October 26, 2016. We met to discuss the possibility of his 

participation in the study. Chad agreed to participate in the study. We proceeded with the math 

history questionnaire review and interview, set up the screencast and pen-cast software on his 
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computer, and Chad did a test run in ALEKS with both software. The meeting seemed to have 

gone well, but Chad never submitted any recordings in the fall semester of 2016.  

At the end of that semester, when Chad returned the LiveScribe pen, he was very 

talkative about his experiences and challenges. I asked if I could record the discussion, and Chad 

agreed. I learned that Chad had not realized the importance of the first ALEKS knowledge check, 

or the pre-assessment. He said that he did not take the ALEKS knowledge check seriously and 

responded with “I don’t know” to the questions that he was unsure about but perhaps could have 

answered correctly if he had tried. As a result, ALEKS assigned him a large number of topics to 

learn, and Chad reported that he began the course feeling overwhelmed by the number of 

ALEKS topics he needed to complete. In addition, I learned that Chad began having difficulty in 

the course shortly after our first meeting because the course content had become more 

challenging for him. This was compounded by the fact that the university had a data breach early 

in November of 2016 (Michigan State University, 2016), and Chad was one of the victims. As a 

result, Chad reported that he was unable to access his MSU accounts.  

Chad:  So my technology problems coincided with the fact that the math problems got 
harder. But my technology problem was not the program thing [ALEKS]. There 
was a data breach at MSU and the whole thing got weird. I couldn't access my 
email or accounts for over a week. (End of Course Interview, FS16)  

 
Chad had basically given up and quit doing any work in his intermediate algebra course because 

“it felt like an un-scalable mountain” (Chad, Personal Communication, June 2, 2017). Also, 

another of Chad’s quotes indicated a feeling of being overwhelmed by how the intermediate 

algebra course utilized ALEKS. 

Chad: (FS16) The ALEKS program is weird to me because it really makes it daunting. . .. 
The number of topics is overwhelming. There are a lot. I wish there were less 
problems and maybe the problems were more complicated. Does that make 
sense? . . . So 75 problems, even if they are sort of simple, is a lot, to the point 
that you start evading it. (End of Course Interview, Fall Semester 2016) 
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In addition, as noted in Chad’s first statement in the communication excerpts below, it 

seemed that in this situation, the online feature of the course and the perceived remoteness of the 

course coordinating professor posed a barrier. Here Chad said that there was no easy way to get 

help from his professor, and because he had never met his professor, it was also “a tough and 

awkward situation.”  

Chad:  There was no immediate or easy way to get help from my professor, since again, I 
never met him. So it was a tough, awkward situation. But yeah, I basically just 
stopped. I didn't know how to do it, and I didn't feel like I could. Obviously 
looking back, I could have . . . but in the moment, I felt like I couldn't. I’m not 
exactly proud of it, but whatever.  

Jen: I think I get it. It sounds like a set of circumstances made it feel impossible . . . 
So, to follow up—how did you decide to take it again right away spring semester? 

Chad:  To be honest, I didn't really consider any other option. First of all, you need to 
take a couple of math classes to even be able to take certain science classes, and I 
did not want to—or even consider the possibility of—having a math and science-
based senior year. To say that would not go well is an understatement. Look, I 
knew I could do it and I was just being lazy, so it never crossed my mind to not 
take it immediately. Also, shame and my ex-girlfriend's 4.0 at [another university] 
I'm sure had something to do with it [laughs]. In my background, when you fail, 
at anything, you immediately pick back up and do it again. When I was learning 
to drive, I wasn't good at first—obviously. But my dad took me out till midnight 
or later making sure I understood how to do it. When you fail, you pick back up 
and do it again.  

 
In the above communication, Chad responded that he immediately registered again for 

the math class because he did not want to be taking math and science classes his senior year. This 

statement could be interpreted as a type of strategic academic planning and forethought. He also 

expressed confidence, a positive emotion, that he could take and pass the course, “I knew I could 

do it.” Yet he also expressed “shame,” a negative emotion, about the fact that he had failed the 

course. Lastly, he elaborated on how his “background” influenced his decision to immediately 

re-enroll in the course spring semester 2017. Because the example Chad used to describe how his 

background influenced this decision included an experience with his father, I interpreted his use 
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of the word “background” to pertain to his family and family support during past instances of 

failure. This reference to background and family serves as an example related to the structural 

influences on student engagement from Kahu’s socio-cultural framework (see Chapter 3, Figure 

7). I interpreted Chad’s reference to this past experience and his statement, “When you fail, you 

pick up and try again.” to indicate a belief that failure was not an indication of a lack of ability to 

succeed and was, in the words of Dweck (2009), a “growth mindset.” 

 In summary, Chad did not pass the intermediate algebra course FS16 for several 

interrelated reasons. First, the mathematics content became more difficult and at about the same 

time he had technological problems due to the MSU data breach. He got behind in the 

coursework and did not feel he could catch up. Chad mentioned that he did not feel comfortable 

contacting the professor about his learning challenges and technology issues, perhaps due in part 

to the intangible virtual presence of the professor of the online course. So Chad simply gave up 

on math and focused on his other courses. However, it seemed that Chad’s family background of 

persistence provided the impetus for him to immediately re-enroll in the course. 

Chad’s Cognitive Interactions (SS17) 

Not only did Chad immediately enroll in the course again, but he changed his approach to 

the assignments in ALEKS, as noted in the quote below. 

Chad:  [In FS16,] I would like just copy the example problem and then look at the 
example problem three times so I could do it three times to get through the topic 
and, OK move on to the next topic. But then as soon as I was done with that topic, 
it was gone. Does that make sense? 

Jen:  Uhm, yeah. 
Chad:   So I wasn't cheating or anything, but it was like I wasn't getting very much out of 

it. I was just like, ‘OK same type of problem, same type of problem, same type of 
problem.’ Whereas now [SS17] I'll look at the example problem, but I'll try to do 
it without the example problem and I'll refer back to the example problem rather 
than just trying to just plug in numbers and not learn very much from it like I did 
last semester. (Chad, End of Course Interview, SS17) 
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In addition, Chad claimed this change in his approach to ALEKS homework was a major 

contributing factor for why he passed the second time he took the course. He also said, “I got less 

technically done, but it was more retained. And I could see that in my test scores” (Chad, End of 

Course Interview, SS17).  

Here I summarize and analyze what Chad said about his different approaches to his work 

in ALEKS FS16 and SS17. In FS16, Chad had copied the ALEKS Example problem and then 

referred back to the example to imitate each step as he worked on each of the three following 

problems. His goal was to get the work done as quickly as possible. In contrast, in SS17, Chad 

would still read and write the ALEKS Example problem, but then would duplicate the procedure, 

only referring back to the example if needed. This description illustrates a subtle difference in 

Chad’s approach to learning mathematics procedures, and I argue that imitating each step and 

duplicating the procedure are at different places along the surface-to-deep continuum of 

cognitive interactions. Also, I argue that duplicating is somewhat deeper than imitating. 

Imitating, copying an example and then plugging in numbers from the problems, might require 

some recognition and matching of symbolic patterns, but other than that, does not require much 

cognitive effort. Duplicating the procedure also includes copying an example, but differs in that 

duplicating requires a memory retrieval of the example symbolic pattern, thus requiring more 

cognitive effort. Although duplicating may be somewhat deeper than imitating, it remains near 

the surface in the surface-to-deep continuum of learning.  

In the next two sections, I provide excerpts of data from two different think aloud 

recordings of Chad (Think Aloud 2 and 6). Also, I provide an analysis of these two think aloud 

recordings to illustrate how Chad’s cognitive interactions varied along the surface-to-deep 

continuum based on the ALEKS topic and his confidence, or lack of confidence, about the topic. 
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Chad: Think Aloud Recording 2 (Figures 17-21) 

In Chad’s second think aloud recording he solved problems about the ALEKS topic, 

Finding the original price given the sale price and percent discount. This recording began with 

an ALEKS example solution for the problem: 

ALEKS: Amy bought a suit on sale for $589. This price was 62% of [emphasis added] 
the original price. What was the original price? (Figure 17) 

 
As noted in Figure 17, Chad copied the example problem and solution, and appeared to feel 

confident about solving these types of problems. “That makes sense, I think we can apply that 

…” (Figure 17, Transcript line 6). 

 

 
Figure 17. Chad Think Aloud 2, Example 
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However, the first problem Chad encountered was worded differently than the example. 

ALEKS: At a sale this week, a desk is being sold for $133.40. This price is a 71% 
discount from [emphasis added] the original price. What was the original price? 
(Figure 18)  

 
Chad followed the same procedure as the example problem without noticing the change in 

wording of the problem. But he did use proportional reasoning to check the reasonableness of his 

answer and determined that his answer did not make sense (Figure 18, Transcript lines 17-24). 

Despite his sense the answer was incorrect, he entered the answer into ALEKS anyway “to see 

what it says”.   

 

 
Figure 18. Chad Think Aloud 2, Problem 1 Solution  

 

ALEKS provided the feedback that his answer was incorrect, and Chad chose to examine 

the ALEKS explanation for the problem (Figure 19). At this point, he noticed that the procedures 

ALEKS presented in this problem explanation were different from the prior example procedures. 
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A key here was Chad said, “I wonder how to differentiate that” (Figure 19, Transcript line 35). 

This statement suggested that Chad may have been trying to make a connection between the 

solution procedures and the context and/or words of the problem.  

 

 
Figure 19. Chad Think Aloud 2, Problem 1 ALEKS Explanation 

 

 The next ALEKS problem was again worded differently, perhaps with the goal of 

encouraging the students to understand what the problem asks rather than just pull out the 

numbers and plug them into a predetermined formula. 

ALEKS: A sofa is on sale for $213.20, which is 74% less than [emphasis added] the 
regular price. What is the regular price? (Figure 20)  

 
Chad solved this problem correctly, but it was not clear from what he said whether he was 

making sense of the problem or imitating the prior ALEKS explanation. In addition, it was not 

clear whether Chad used proportional reasoning to check his solution because he only said, “820 

dollars. That seems plausible” (Figure 20, Transcript line 48) and did not include any statement 

that indicated associated proportional reasoning. Chad may have used incidental knowledge 



  

 102 

based on his past experience of what mathematics answers have typically looked like when he 

said, “Plus, it’s a round number” (Figure 20, Transcript line 49). 

 

 
Figure 20. Chad Think Aloud 2, Problem 2 

 

 Chad appeared to achieve greater understanding during his solution of the third problem. 

In this problem, Chad made a connection between the language of the problems and the 

calculation of the solution.  

Chad:   If it’s [writing] 76% of [original verbal emphasis] then it’s 24% off [original 
verbal emphasis] (Figure 21, Transcript lines 53-58).  

 
In addition to this connection, Chad used proportional reasoning to verify his solution with the 

statement, “Because it’s only going to be about one fourth off” (Figure 21, Transcript line 63).  
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Figure 21. Chad Think Aloud 2, Problem 3 

 

 Chad’s cognitive interactions with this ALEKS topic are notable because the problem 

solving activities he engaged in appeared to fluctuate along the surface-to-deep continuum as he 

made sense of how to solve the problems. A summary of Chad’s problem solving activities has 

been provided in Table 16 below, and bolded italicized text indicates deeper problem solving 

activities. As discussed in the prior paragraphs, Chad often used proportional reasoning to 

estimate whether his solution to the problem made sense. As Chad read the ALEKS explanation 

for Problem 1, he wondered how to differentiate the two problems and how the problems were 
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solved. As he worked on Problem 3, Chad made connections between the wording of the 

problems and the mathematical concepts they represented when he said, “If it’s 76% of then it’s 

24% off.” Chad’s cognitive interactions stabilized (as opposed to fluctuate) at a deeper level as 

he then used this connection to reason through the solution to Problems 3 and 4. 

 

Table 16. Patterns of Cognitive Interactions in Chad's Think Aloud 2 (Figures 17-21) 

Patterns of Cognitive 
Interactions 
ALEKS Example(s)  
&/or Routine Exercises  
(Figure #) 

Problem Solving Phases 
Orientation 

Activities 
(Transcript Lines) 

Generation 
Activities 
(Transcript 

Lines) 

Orientation 
Activities 

(Transcript Lines) 

 
Imitate the Steps 
ALEKS Example 
(Figure 17)  
 

• Read & Copy 
Example (1-7) 

•    
•    

  

 
Imitate the Steps AND 
Decipher the Procedure 
Problem 1 [Incorrect] 
(Figures 18 & 19) 

• Read & Copy 
Problem (8-11) 

•    
•  
 

•    
•    
• Imitate the 

Steps (12-16) 

• Verify 
o Internal Authority   

  *Estimation (17-24) 
o External Authority (25-27)  

• Reflection (Figure 16) 
o Read Explanation (28-38) 

        *Wondering (35) 
UNCLEAR 
Imitate the Steps OR 
Decipher the Procedure? 
Problem 2 [Correct] 
(Figure 20) 
 

• Read & Copy 
Problem (39) 

•    
•    

•    
•    
• Imitate OR 

Reproduce? 
(40-46) 

• Verify 
o Internal Authority? (47-49)  
o External Authority (50-51)    

•  

 
Transcend the Procedure 
Problem 3 [Correct] 
(Figure 21) 

• Read & Copy 
Problem (52) 

• Understand 
• Analyze 

*Connection (53-
58) 

•    
•    
• Recreate  

(59-62) 

• Verify 
o Internal Authority   

*Estimation (63-64) 
o External Authority (65-68) 

•    

 
Transcend the Procedure 
Problem 4 [Correct] 
 

• Read & Copy 
Problem 

• Understand 
• Analyze 

*Connection  
 

•    
•    
• Recreate  

• Verify 
o Internal Authority   

*Estimation 
o External Authority 

   

* Note: ALEKS did not present estimation using proportional reasoning or connections between the 
language in the problem and the procedures used to solve the problem. 
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Chad: Think Aloud Recording 6 (Figures 22-25) 

Chad began his sixth think aloud recording on the ALEKS topic, Power and quotient 

rules with negative exponents: Problem type A, by stating a disclosure, “I’m not good at 

exponents.”  He then pointed to the orange bars in the upper right hand corner of the ALEKS 

window to indicate that he had been having difficulty with this topic (Figure 22). Note that these 

bars turn yellow, orange, and then red as a student enters incorrect answers. Chad’s statements as 

he works on this problem indicate that he does not know the property or understand the meaning 

of a negative exponent (Figure 22, Transcript lines 16-21). He ends his solution with the 

statement, “If it’s wrong, which I expect it to be, I’ll just go to the explanation.”  

 

 
Figure 22. Chad Think Aloud 6, First Topic, Problem 1 

 

LiveScribe Pen did not 
capture this step.

Chad's written work.
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Chad’s answer was incorrect, so he read the explanation, took notes, and solved the next 

three problems correctly. However, he continued with another disclaimer, this time for his 

success, “Alright! Well, I don’t know what happened, but I got it right” (Figure 23, Transcript 

lines 72-73).  

 

 
Figure 23. Chad Think Aloud 6, First Topic, Problem 4 

 

 

Chad’s three consecutive correct answers moved him forward to the next ALEKS topic, 

Power and quotient rules with negative exponents: Problem type B, which began with an 

explanation of how to solve this new problem type, a more complex problem. Upon seeing the 

example, Chad exclaimed, “Oh, my God.” He sat back in his chair, laughed, waved his hands 

back and forth, and said, “It’s a wrap” (Figure 24, Transcript lines 1-3). But he soon got more 

serious and read and copied the example problem, stating at the end, “It looks semi-doable” 

(Figure 24, Transcript line 32). Chad proceeded to work through the first problem, but his 

solution was incorrect. He chose to read the explanation, but did not copy the explanation down 

as he had for earlier problem explanations. Next, he read the second problem, but it was a 
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slightly different exponent problem than the original example and first problem, so Chad did not 

know how begin. He decided to stop the recording and to ask for help (Figure 25).  

 

 
Figure 24. Chad Think Aloud 6, Second Topic, ALEKS Example 

 

 

 
Figure 25. Chad Think Aloud 6, Second Topic, Problem 2 

LiveScribe Pen did not 
capture these steps.
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 Chad’s cognitive interactions, Problem Solving Phases and the mathematical activities 

occurring within those phases, are summarized in Table 17 below. Chad unsuccessfully 

attempted to reproduce the solution to the Power and quotient rules with negative exponents in 

Problem 1, but after reading and copying the ALEKS explanation he was able to solve the next 

three similarly structured problems (Figures 22 & 23, & Table 17, Topic Type A, Problems 2-4). 

However, once the problem structure changed slightly, Chad was unable to transfer the skills 

from the prior problem type to a more complex problem (Figure 24 & Table 17 Topic Type B) or 

a new problem structure (Figure 25). This indicated surface level cognitive interactions. 

 

Table 17. Patterns of Cognitive Interactions in Chad's Think Aloud 6 (Figures 22-25) 

Patterns of Cognitive 
Interactions 
ALEKS Example(s)  
&/or Routine Exercises  
(Figure #) 

Problem Solving Phases 
Orientation 

Activities 
(Transcript Lines) 

Generation 
Activities 

(Transcript 
Lines) 

Orientation 
Activities 

(Transcript Lines) 

Imitate the Steps 
Topic Type A, Problem 1  
[Incorrect]  (Figure 22) 

• Read & Copy 
Problem (10-11) 

•    
•      

•    
•    
• Imitate Steps 

(12-24) 

• Verify 
o External Authority (24-27) 
o  

• Reflect  
o Read & Copy Explanation 

(28-32) 

Imitate the Steps 
Topic Type A, Problem 2  
[Correct] 

• Read & Copy 
Problem (33-36) 

•    
•    

•    
•    
• Imitate Steps 

(36-42) 

• Verify 
o External Authority (42-44) 
o  

•     

Imitate the Steps 
Topic Type A, Problem 3 
[Correct] 

• Read & Copy 
Problem (45-46) 

•    
•    

•    
•    
• Imitate Steps 

(47-56) 

• Verify 
o External Authority (57-62) 
o  

•   

Imitate the Steps 
Topic Type A, Problem 4 
[Correct]  (Figure 23) 

• Read & Copy 
Problem (63-64) 

•    
•    

•    
•    
• Imitate Steps 

(65-69) 

• Verify 
o External Authority (70-74) 
o  

•     
Imitate the Steps 
Topic Type B,  
ALEKS Example  
(Figure 24) 

• Read & Copy 
Example (1-32) 

•    
•    
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Table 17. (Cont’d) 

Imitate the Steps 
Topic Type B, Problem 1 
[Incorrect] 

• Read & Copy 
Problem (33-39) 

•    
•    
 

•    
•    
• Imitate Steps 

(40-56) 

• Verify 
o External Authority (56-59) 
o  

• Reflect  
o Read Explanation (60-73) 

Stuck àAsk for Help 
Topic Type B, Problem 2 
[No Attempt]  (Figure 25) 

• Read Problem  
(74-80) 

 

  

 

Chad’s Affective Interactions (SS17) 

Chad displayed a tendency to freely express his feelings as well as his thoughts as he 

worked in ALEKS, noticeably celebrating when he got a problem correct (e.g. loudly saying 

“Alright!” and smiling and/or fist raised). In addition, Chad may have used humor as a coping 

mechanism when he was having difficulty with an ALEKS topic (e.g. see Figure 24, Transcript 

lines 1-5, & 18-20). He also freely expressed his feelings and opinions in the interviews. 

Chad’s Stated Confidence 

Chad readily revealed his belief that he was generally “not good at math.” This theme 

came up in his Math History Questionnaire and FS16 End of Course Interview. In this quote,  

Chad:  I know I don’t have a math brain. I’ve always been good at the humanities, but 
I’m not good at math. (End of Course Interview, FS16) 

 
Chad also expressed a belief in innate mathematical ability, a “math brain,” and his lack in this 

area, but strength in the humanities. It seemed that Chad deeply held this belief that he was not 

good as mathematics, because it also was a theme in his SS17 think aloud recordings (e.g. see 

Figure 22, Transcript lines 1-4), as well as his SS17 End of Course Questionnaire and Interview.  

Chad’s Value of Mathematics and Course 

Chad did not seem to value mathematics, or at least school mathematics, because he 

viewed it as lacking any opportunity to be creative or to make mathematics personal.  
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Chad:  Journalism and math have very little in common. Math isn’t personal or creative. 
It just is. (ECQ, #10)  

 
Chad also viewed mathematics as a subject in which there was only one way to find the correct 

answer. This was a sharp contrast to his view of journalism (his major), which encouraged 

different approaches and viewpoints. 

 
Chad:  With math, well there’s just not all that much creativity in it. [laughs] It's like 

you've gotta do what you gotta do. Ummm. . .. Journalism is more like, ‘How can 
this be a different way?’ Whereas math is like, math is like, [deep Darth Vader like 
voice] ‘This is the way, so learn it or die.’ (End of Course Interview Follow-up) 

 
In addition to his general lack of interest in mathematics, Chad could not envision how 

“college-level” mathematics might play a role in his day-to-day life or career as a journalist. 

Chad:  Other than bill paying and investments, I can’t see a time where college-level 
math is going to affect me. (ECQ, #12)  

 
When I followed up with a question about this statement, in part due to my own belief about the 

importance of statistics in journalism, Chad responded that he did not consider statistics to be 

college-level mathematics, but more like middle school mathematics. Also, Chad’s response 

indicated that because statistics are typically calculated “for you,” he believed he only needed to 

know how to interpret statistical results.  

Jen:  So, the statistics part of that, do you consider that math? 
Chad:  Yeah, well but I mean, sure. But that is like 8th grade, or even lower than that, 

like addition and subtraction and multiplication and division. It's not, well there's 
no radicals. You know. And there are more complicated statistics, but basically, 
the way it works, those will be pretty much calculated for you. So, I read 
advanced statistics now because I am a nerd when it comes to sports, but I don't 
have to process them and do the math myself. I just know that if they have this 
point one percentage points, or whatever, then it’s better than if it’s this much. 
That's all I know. And I don't know how it's calculated but I know that it’s true.  

In sum, Chad seemed to possess strong beliefs about mathematics, what constitutes 

mathematics, and that some people have a “math brain” and others do not, and classified himself 

in the latter group.  
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Chad’s Other Affect Related Statements 

Chad made two additional statements about mathematics that might be categorized as 

affect related statements. These two quotes indicated that Chad seemed to feel overwhelmed by 

the number of problems that are typically assigned in mathematics classes, and particularly by 

the ALEKS program. However, Chad also mentioned that he wished there were “less problems 

and maybe the problems were more complicated.” I wish I would have followed up on this 

statement, because it is not clear to me what Chad meant by “more complicated” mathematics 

problems. Did he mean applied problems? Was he bored by the repetition of the “simple” 

problems? Those answers cannot be determined from what he said. 

Chad:  (FS16) The ALEKS program is weird to me because it really makes it 
daunting. . .. The number of topics is overwhelming. There are a lot. I wish there 
were less problems and maybe the problems were more complicated. Does that 
make sense? . . . So 75 problems, even if they are sort of simple, is a lot, to the 
point that you start evading it. (End of Course Interview, Fall Semester 2016) 

 
Lastly, Chad also said he felt like Sisyphus when it comes to mathematics, that he is always 

pushing a boulder up the hill only to have it roll back down.  

Chad:  (SS17) . . . it's not that I don't want to work hard because I work hard in my other 
classes that I am better at and I like. So, it's not a work ethic thing, I don't think. I 
think psychologically you end up just, you know, feeling like Sisyphus, that 
Greek character. You're just rolling the boulder up the hill and it’s always rolling 
right down at you. Or that is what it feels like when I do math. . . (End of Course 
Interview, Spring Semester 2017) 

 
In summary, Chad’s affective statements about mathematics appear to indicate an overall 

lack of interest in the subject due to the lack of relevance, creativity, and perhaps the ongoing 

drill of mathematical procedures involved in the school mathematics that he has experienced.  
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Chad’s Academic Interactions (SS17) 

Chad’s academic interactions included two study strategies and the use of available 

resources. First, he took notes about important information as he worked in ALEKS to help him 

remember course content, but his notes were not organized and perhaps were not used a 

reference for future study. Second, Chad planned ahead to complete his weekly assignments by 

dividing up the number of assigned ALEKS topics into manageable amounts to be completed 

each day.  

Chad:  I have this many topics and they’re due this day. What I was trying to do is plan 
and say, I will do this many this day, this many this day, and this many this day. 
But if you get behind, it is . . . extremely hard to catch up. (End of Course 
Interview, FS16) 

 
The primary resources Chad used to learn the content were those available within the ALEKS 

environment, such as the ALEKS examples, written explanations for the problems he missed, 

and short instructional videos. If he needed additional assistance, he went to the university 

Mathematics Learning Center. 

Summarizing Chad’s Engagement 

Chad did not pass the Intermediate Algebra course in Fall Semester 2016 and then retook 

the class in Spring Semester 2017 and passed with a 2.5. Consequently, his experiences provided 

a perspective of both failure and success in this online, CAI course. In FS16, the semester that he 

failed, Chad reported feeling overwhelmed by the number of ALEKS topics to be completed 

each week. To cope, he copied the ALEKS examples, imitated the example as he worked on the 

following ALEKS problems, and made little effort at understanding the content. On top of that, 

he had technological issues due to a data breach at the university, and he got behind in all of his 

classes. At the same time, the mathematics of the course was more challenging for him, so he 

gave up on his math class and focused on his other classes. When Chad re-took the course in 
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SS17, Chad took a different approach to completing the ALEKS assignments. He studied the 

ALEKS examples and solved the subsequent problems, only referring to the example if needed, 

and spoke of putting forth effort to understand the content. However, I note Chad’s SS17 passing 

grade with the caveat that there is not sufficient evidence to make the claim that his effort and 

strategies are directly related to his passing grade in the course. 

Chad’s cognitive interactions with the mathematics of different ALEKS topics fluctuated 

along the surface-to-deep continuum. This variation may have been related to whether the topic 

was directly related to a real life context involving proportions. Chad’s think aloud recordings 

included three ALEKS topics related to contexts (Think Aloud 2, 5, and 8), and two of these 

contexts were directly related to proportions (Think Aloud 2, percent discounts, and Think Aloud 

8, solving proportions). In both of these, Chad utilized proportional reasoning to verify his 

problem solutions before submitting them to ALEKS, thereby demonstrating deeper cognitive 

interactions.  Otherwise, for the most part, Chad’s cognitive interactions appeared to be generally 

surface level, reproducing the procedure (as opposed to imitating the step) the solution presented 

in the ALEKS example problems.  

Chad’s academic interactions included two study strategies and the use of course and 

university resources. First, he took notes about important information as he worked in ALEKS. 

Second, he made weekly plans to complete coursework by dividing up the number of assigned 

ALEKS topics into an amount to be completed each day. The resources he drew upon were those 

available within the ALEKS environment. If he was stuck and needed assistance, he went to the 

university Mathematics Learning Center. 

Chad displayed a tendency to freely express his feelings as well as his thoughts as he 

worked in ALEKS. He also freely expressed his feelings and opinions in the interviews. 
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Consequently, there was a substantial amount of affective interactions captured in the data. The 

number of Chad’s positive and negative expressions of confidence before solving a problem 

were relatively close (7 positive and 6 negative). His positive expressions after solving a problem 

outnumbered the negative 13 to 4, due to his tendency to celebrate his success. Yet, this positive 

affect during his work in ALEKS did not translate to an increased value of mathematics. He 

stated that college math would not be useful in his everyday life and career as a journalist and 

sports reporter. He lacked interest in mathematics because of his lack of success and because he 

felt “Math isn’t personal or creative. It just is.” However, Chad’s reflection on the course 

included positive emotion, such as “a satisfying moment” and a “significant feeling of 

accomplishment” in anticipation of passing the course as noted in the quote below. 

Chad:  I’ve never liked or been good at math, so there wasn’t really any moment of 
inspiration wherein I decided to pursue math farther than the university 
requirements, but when I got a 91 on my second test after studying really hard for 
it, it was a satisfying moment. With math, I’m just trying to get through it. I didn’t 
like [intermediate algebra], but that’s not [intermediate algebra]’s fault. I 
anticipate that when I pass, there will be a pretty significant feeling of 
accomplishment (ECQ, #3, Spring Semester 2017) 
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CHAPTER 7  
Tia “I like to get things done.” 

 

When I first met Tia, my impression was that she was rather quiet and shy. She caught on 

quickly to all of the technology requirements of participating in the study and seemed pleased 

that she could make the think aloud recordings independently on her own time schedule. Tia was 

a consistent and dedicated participant in this study, which she demonstrated by regularly 

submitting her weekly think aloud recordings and participating in the Observed and Extended 

Think Aloud Interview even though it was scheduled on her birthday.  

This case study begins with an overview of Tia’s demographic and mathematical history 

based upon her Math History Questionnaire (MHQ) responses and the subsequent interview. 

Then I provide an illustration of the nature of Tia’s engagement with ALEKS, the CAI software 

of the Intermediate Algebra course, based upon data from multiple screencast and pen-cast think 

aloud recordings, and an end of course questionnaire and interview. The nature of Tia’s 

engagement is organized around themes of her cognitive, academic and affective interactions 

with ALEKS. 

Tia is an African American female from an urban, in-state city. During the study, she 

resided on campus in one of the dorms. When Tia completed the Mathematics History 

Questionnaire (MHQ) early in the 2017 spring semester, it was her second semester as a 

freshman undergraduate at Michigan State University (MSU), and she listed her major as 

Apparel and Textile Design. In the MHQ, Tia responded “I dislike math” and that she was a 

“below average” mathematics student. In the quote below, Tia expressed that she did not like 

math because she was not good at it. 
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Tia:   I’ve never been good at math and I have always needed to find extra help outside of 
class to pass tests. I don’t like math, mostly because I’m not good at it.  

 
Prior to her enrollment at MSU, Tia took four years of mathematics in high school, 

culminating with calculus her senior year. When asked to identify a statement that best described 

her high school mathematics experiences (MHQ, #18, Appendix D), she selected the statement: 

“My high school teacher both lectured to the class and provided activities in which students 

worked together in small groups to learn mathematics.” However, in the interview, Tia said that 

statement pertained to her first three years of high school mathematics, but not her senior year. 

During her senior year, she took AP Calculus in a flipped class format in which students were 

required to watch online video lectures at home and worked in groups to solve related calculus 

problems in class the following day. Tia commented that she preferred person to person lectures 

rather than online lectures because you could ask questions. Also, Tia stated the reason she got 

through four years of high school mathematics was because she had a tutor.  

Tia:   9th grade second semester, I was getting like an F. I went to the office and they 
recommended some people. I ended up with an older woman who I met with once a 
week until the end of that year, second year, and third year. My fourth year, I had a 
friend who was really good at math, and I met with him like twice a week. He was 
better because he would meet with me whenever I needed, plus I didn't have to pay 
him. That's like the only reason I got through all of those classes. Especially with 
Calc because that teacher, he was more like, here's the assignment and work with 
your peers and if you still don't get it, then ask me a question. He wasn't like, he 
didn't write on the board and teach it. He did YouTube videos that we watched at 
home. Stuff like that.  

Because it sounded like Tia’s high school calculus class utilized an online component, YouTube 

lectures, I was curious about Tia’s impression of that format.  

Jen:   That's called a flipped classroom. How did that work for you?  

Tia:   It never worked for me. Because you can't stop the video and ask the questions you 
need.  At least in ALEKS you can press for an extra explanation or something. With 
him, I could re-watch the video, but it's not going to go into more detail or anything.  
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On the MHQ, Tia responded that she felt that although she had “previous exposure to the 

topics in this course,” she believed she “needed a refresher experience before proceeding to 

college-level mathematics.” In the interview, Tia mentioned difficulty remembering mathematics 

as the reason she did not question her enrollment in intermediate algebra even though she had 

taken calculus in high school. 

Tia:   I have a really bad memory when it comes to math, so it made sense to me that I 
would be starting over, kinda. (Initial interview, follow-up to MHQ)  

 
In one of her statements near the end of the interview, Tia again mentioned that she did not 

remember mathematics concepts, plus she makes small mistakes (e.g. miscopying a problem or 

math fact errors) as she works on math problems.  

Tia:   My main issue is remembering concepts. I make small mistakes and then after I'm 
like, ‘Why did I think that?’ (Initial interview, follow-up to MHQ) 

In the next section, an excerpt of one of Tia’s think aloud recordings illustrates what this 

challenge might look like.  

Tia’s Cognitive Interactions: Mixed Messages 

Tia expressed an orientation to things that do not interest her that may have influenced 

and limited her cognitive interactions with the online CAI Intermediate Algebra course.  

 Tia:    I never think too much about it, like why is it like that? I'm more like one of those 
people, who, like when you flick the light switch, I don't need to know how it 
happens. (Tia, Observed Extended Think Aloud) 

 
In other words, in the case of algebra, Tia was not concerned with understanding algebraic 

procedures, but was more inclined to put her efforts toward remembering what do do without 

considering how the procedures worked or why the procedures were correct.  

In this section, I provide excerpts of data from three different think aloud recordings of 

Tia (Think Aloud 3, 5, and 7). Also, I provide an analysis of these three think aloud recordings to 
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illustrate how Tia’s cognitive interactions appeared to remain at the surface level of the surface-

to-deep continuum regardless of her degree of confidence about the ALEKS topic. 

Tia’s Think Aloud Recording 3 (Figures 26 & 27): Miscopied 

 In this think aloud recording, Tia was solving problems from the ALEKS topic, Solving 

for a variable in terms of other variables using addition or subtraction with division. In general, 

solving for a variable was an algebraic procedure Tia was adept at carrying out, as demonstrated 

by her utterances and written work in Figures 26 and 27.  

 
Figure 26. Tia Think Aloud 3, Problem 2 

 

 Although Tia performed the procedures correctly for these two problems, there are two 

aspects of her interactions with ALEKS that one might consider concerning. First, in Problem 2 

(Figure 26), Tia performed the correct calculation, entered her final answer into ALEKS as 

 / = 1#1+2
3+ , and ALEKS responded that this was correct. However, later in ALEKS and on 

exams in this course, Tia would be asked to answer this same question in simplified form, 

 / = 1(142
. , otherwise it would be considered incorrect. Some might argue that students need to 

pay attention to directions when answering mathematics problems. Others might argue that 
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students need a consistent message about simplifying rational expressions. An additional 

argument might question whether simplifying rational expressions is a necessary skill to begin 

with. Based on these think aloud recordings, it was not obvious whether this ALEKS generated 

problem was intentional or a random fluke in the ALEKS algorithm. In the end, inconsistencies 

or unclear expectations such as this may potentially perpetuate student perceptions of algebraic 

manipulations as a set of rules without meaning. 

 

 
Figure 27. Tia Think Aloud 3, Problem 3 

 

Original Problem

First Attempt

Second Attempt
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Tia’s interactions with this second problem illustrated the issue she mentioned in her first 

interview, her tendency to miscopy or make simple arithmetic errors. In this particular situation, 

although Tia had answered the problem correctly on paper, she mistyped her answer into the 

ALEKS program twice. The issue here is that ALEKS was not able to assess whether Tia was 

mistyping her answers and mistakenly attributed incorrect student responses to a lack of 

mathematical skill as opposed to other reasons (e.g. distraction, fatigue). 

 Tia’s Think Aloud Recording 5 (Figures 28 – 30): I did it all wrong! 

 In this think aloud recording, Tia was solving problems from the ALEKS topic, Solving 

two-step equations with signed fractions. As stated in the section before, Tia was proficient with 

the skills of solving for a variable (Figure 28, Transcript lines 4-13), but when reading the 

solution to this problem, she got confused about fraction operations (Figure 28, Transcript lines 

14-20). She recognized that the ALEKS example included finding the least common 

denominator (LCD) to subtract two fractions, “They did the LCD of these” (Figure 28, Transcript 

line 18). However, she did not appear to understand the equivalent fractions used to find the least 

common denominator, “How did they get 12 over 9?” (Figure 28, Transcript lines 19-20). In the 

end, Tia said, “I don’t get it [inaudible]. I’ll try the next one” (Figure 28, Transcript lines 28-29).  

 In the next problem (Figure 29), the first few steps of Tia’s solution method mirrored the 

prior ALEKS Example just discussed (Figure 29). Despite her confusion in the prior example, for 

this problem she found the LCD and the associated equivalent fractions correctly (Figure 29, 

Transcript lines 32-39). Unfortunately, in her next steps, she conflated the algorithm for addition 

of fractions with the algorithm for multiplying fractions, which produced the incorrect answer 

(Figure 29, Transcript Lines 40-46). As Tia entered her answer into ALEKS, she said, “I feel like 
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that’s wrong. I’m not good with fractions” (Figure 29, Transcript line 50). Next, Tia chose to 

look at the explanation for this problem to learn what errors she had made.  

 
Figure 28. Tia Think Aloud 5, ALEKS Example 
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Figure 29. Tia Think Aloud 5, Problem 1 

 

When Tia reviewed the ALEKS Explanation for the problem for which she made an error, 

she exclaimed, “Oh. I wasn’t simplifying with the LCD. Oh. I did this all wrong [original verbal 

emphasis]” (Figure 30, Transcript lines 56 & 57). But Tia had not done the problem all wrong. 

She had been correct in her calculations up to the point where she conflated the fraction addition 

and multiplication algorithms (Figure 30, Transcript lines 40-46). Furthermore, Tia had 

attempted to follow the procedures that ALEKS had provided in the initial example problem 

(Figures 28), solving a linear equation using fraction operations. However, the solution method 

that ALEKS presented for this problem began by eliminating the fractions of the equations by 

multiplying both sides by the LCD (Figure 30). Tia did not appear to recognize that the ALEKS 

Example she had studied (Figure 28) and attempted (Figure 29) was an equivalent but different 

method than the ALEKS Explanation (Figure 30). The ALEKS Explanation (Figure 30) 

presented the fraction elimination method, and Tia then used this method to solve the next three 

problems correctly.  
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Figure 30. Tia Think Aloud 5, Problem 1 Explanation 

   

 The issue here is that ALEKS did not help Tia understand and correct her error. Worse 

yet, this ALEKS sequence may have reinforced unproductive beliefs about mathematics. These 

potentially reinforced unproductive beliefs are contrasted with productive beliefs in Table 18. 

 

Table 18. Unproductive and Productive Beliefs about Learning Mathematics 

Unproductive Belief Productive Belief 

Correct answers are the sole purpose of 
mathematics learning. 

Understanding mathematics is a primary 
purpose of mathematics learning and 
typically results in correct answers. 

There is one best method to solve a 
mathematics problem. 

There are multiple ways to solve a 
mathematics problem. Some methods may be 
more efficient than others.  
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Tia’s Think Aloud Recording 7 (Figure 31): Misconception 

 In this think aloud recording, Tia was Factoring a linear binomial. In this excerpt, Tia 

switched the order of two terms in her answer without paying attention to the operation, which 

was subtraction. Her answer was incorrect because subtraction is not commutative. When Tia 

read the ALEKS explanation for this problem, she exclaimed, “Wow! They marked it wrong 

because I switched the order . . . I’m pretty sure the answer would have been the same but OK. 

Note to self. Don’t switch the order” (Figure 31, Transcript lines 12-18). The issue here was that 

although ALEKS marked Tia’s answer as incorrect and presented a solution for her to review, Tia 

did not reconcile her incorrect solution with the ALEKS solution. In this way, Tia maintained the 

incorrect belief that the operation of subtraction is commutative, but at the same time, she 

resolved to abide by the meaningless rule, “Don’t switch the order.” Thus, in this case, ALEKS 

did not address Tia’s misconception.  

 
Figure 31. Tia Think Aloud 7, Problem 3 
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Tia’s Cognitive Interactions Summary 

In all of Tia’s think aloud recordings, her cognitive interactions with ALEKS remained at 

the surface level. In addition, due to the nature of the problems presented in ALEKS, Tia was 

never required to move beyond surface level thinking. An overview of Tia’s cognitive 

interactions discussed in this section is provided in Table 19 below. 

Table 19. Patterns of Cognitive Interactions in Tia's Think Aloud 3, 5, & 7 (Figures 26-31) 

Patterns of Cognitive 
Interactions 
ALEKS Example(s)  
&/or Routine Exercises  
(Figure #) 

Problem Solving Phases 
Orientation 

Activities 
(Transcript Lines) 

Generation 
Activities 

(Transcript 
Lines) 

Orientation 
Activities 

(Transcript Lines) 

Imitate the Steps 
Think Aloud 3, Problem 2  
[Correct]  
(Figure 26) 

• Read & Copy 
Problem (24-26) 

•    
•      

•    
•    
• Imitate Steps 

(27-30) 

• Verify 
o External Authority (31-33) 
o  

•  
Imitate the Steps 
Think Aloud 3, Problem 3 
[Miscopied Her Correct 
Answer]  
(Figure 27) 

• Read & Copy 
Problem (34-35) 

•    
•    

•    
•    
• Imitate Steps 

(36-39) 

• Verify 
o External Authority (41-49) 
o  

•     

Imitate the Steps 
Think Aloud 5,  
ALEKS Example  
(Figure 28)  

• Read & Copy 
Example (1-29) 
o Backtracking  

 (14-17) 
•    
•    

   

Imitate the Steps 
Think Aloud 5, Problem 1  
[Incorrect]  
(Figures 29 & 30) 

• Read & Copy 
Problem (30-31) 

•    
•    

•    
•    
• Imitate Steps 

(32-49) 

• Verify 
o External Authority (50-55) 
o  

•  Reflect (Figure 27) 
o Read Explanation (56-70)   

Imitate the Steps 
Think Aloud 7, Problem 3  
[Incorrect]  
(Figure 31) 

• Read & Copy 
Problem (1) 

•    
•    
 

•    
•    
• Imitate Steps 

(2-4) 

• Verify 
o External Authority (5-11) 
o  

• Reflect  
o Read Explanation (12-18) 
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Tia’s Academic Interactions 

Tia was a dedicated student who “liked to get things done.” For instance, I learned that 

she met with me for the Observed Extended Think Aloud interview on her birthday even when 

friends had tried to convince her otherwise.   

 [During the Mid Semester Interview OETA, Tia got a text] 
Tia:   Oh, I'm sorry. Let me respond to this. [pause while texting] I told my friends I 

wouldn't be done until 1:30pm, but they're ready to go. [Laughs] You see, it's my 
birthday.  

Jen:  Thank you so much for doing this on your birthday!  
Tia:   Oh, it's no problem. I don't mind. I'm the kind of person who likes to get things done. 

So, well, if it's gotta get done, I'm not going to push it back. My friends can wait. It's 
my [emphasis original] birthday anyway. [laughs] 

 
In addition to her dedication and “get it done” attitude, Tia’s academic interactions 

included two academic strategies. First, to help her remember course content, she took notes 

about important information as she worked in ALEKS.  

 
Figure 32. Tia Note Taking Example (Think Aloud Recording 3) 

 

Second, Tia planned ahead to complete her weekly assignments by dividing up the number of 

assigned ALEKS topics into manageable amounts to be completed each day. Tia was also 

resourceful. She utilized the ALEKS online resources, but she also set up weekly appointments 

with a mathematics tutor, would ask a friend for help, and went to the university Mathematics 

Learning Center. 

Download this PDF to your computer and go to
www.livescribe.com/player

On iOS, open the PDF in Livescribe+.

02.07.2017 11:52p Tiffanie Recording 3 2/7/17, 6:53 PM, 18m 34s
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Tia’s Affective Interactions 

Tia generally demonstrated a lack of confidence in her ability to do mathematics. This 

was evident by saying, as she entered her answer into ALEKS, “Please be right.” or “I hope 

that’s right.” This lack of confidence was corroborated by some of Tia’s responses to the MHQ.  

Tia responded that she was a “below average” mathematics student and that she did not like math 

because she was not good at it. 

Tia:   I’ve never been good at math and I have always needed to find extra help outside of 
class to pass tests. I don’t like math, mostly because I’m not good at it.  

 
Despite her lack of confidence in the course, Tia said that she liked structure of the course 

because she could learn at her own pace, appreciated the ALEKS explanations, was not required 

to go to class, and could set her own schedule. She reported these aspects reduced the pressure of 

the course and she felt more relaxed learning mathematics. 

 
Tia:   I like [intermediate algebra ALEKS] because I could learn the lessons at my own 

pace and work around my schedule. I also liked the explanations and being able to 
get help on campus if I wanted – not being required to go to a class. My attitude with 
math changed because of these circumstances. I didn’t feel as pressured and it was 
more relaxed. (ECQ, #3) 

 
Tia:   It [intermediate algebra ALEKS] made math more tolerable, but I still dislike it. 

(ECQ, #8) 
 
  

Tia reported that mathematics will play “somewhat” of a role in her career, Apparel and 

Textile Design. “When I have to measure out pattern pieces or make my own, I will use math.” 

She also reported that mathematics will play “somewhat” of a role in her everyday life, because 

“We all have to deal with finances.” (ECQ, Questions, #9-12).  
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Summarizing Tia’s Engagement 

Based on what I observed, Tia put a lot of effort and was persistent in her work in the 

CAI intermediate algebra course, and her efforts paid off. Tia earned a 2.0 grade; however, I note 

her final grade with the caveat that there is not sufficient evidence to make the claim that her 

effort and persistence are directly related to her grade in the course. 

As I reported at the beginning of the section on Tia’s cognitive interactions, Tia expressed 

that she did not concern herself with why things worked in general and this orientation that may 

have influenced and limited her cognitive interactions with the online CAI Intermediate Algebra 

course. Tia was not concerned with understanding algebraic procedures, but was more inclined to 

put her efforts toward remembering what do do without considering how the procedures worked 

or why the procedures were correct. As a result, in all of Tia’s think aloud recordings, her 

cognitive interactions with ALEKS remained at the surface level. In addition, due to the nature of 

the problems presented in ALEKS, Tia was never required to move beyond surface level 

thinking. Furthermore, Tia’s apparent view of mathematics as a set rules without meaning 

seemed to be reinforced by the ALEKS environment. This was more evident when Tia’s 

misconceptions were not addressed during her interactions with ALEKS (e.g. Figure 31, Think 

Aloud 7, Problem 3).  

Tia’s academic interactions included effort, persistence, and resourcefulness. She put 

effort into the use of two academic strategies. First, she took notes to refer back to as she worked 

in ALEKS. Second, she planned ahead to complete her weekly assignments by dividing up the 

number of assigned ALEKS topics into manageable amounts to be completed each day and was 

persistent until she had completed her goal. In her own words, Tia likes “to get things done.” The 

resources she used to learn the content were those available within the ALEKS environment, 
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such as the ALEKS examples, written explanations, and videos. Tia demonstrated further 

resourcefulness through the avenues that she used to get academic assistance with her 

mathematics. She applied for a personal mathematics tutor and they met for an hour once a week. 

If she needed further assistance, she would ask a friend or go to the university Mathematics 

Learning Center. Tia mentioned that she learned mathematics best when someone was sitting 

with her and teaching her how to do the problems.  

 In Tia’s affective interactions, she demonstrated a lack confidence about mathematics. 

For example, as she entered her answers into ALEKS, she often made statements such as, “I 

hope that’s right,” or even seemed to plead at times saying, “Please be right.”  In spite of her lack 

of confidence, Tia appreciated the flexible structure of the online course and said “It made math 

more tolerable, but [she] still disliked it.” Lastly, Tia stated that mathematics would play 

“somewhat” of a role in her everyday life and future career in Apparel and Textile Design.  

 

 

  



  

 130 

CHAPTER 8 
CROSS-CASE ANALYSIS 

 

Each of the prior three chapters consisted of a descriptive case of an individual 

participant’s interactions with ALEKS. The purpose of this chapter is to provide a cross-case 

analysis of these three descriptive cases. First, to better describe and understand students’ 

experience in ALEKS, this chapter begins with a comparative analysis. In the comparative 

analysis, I summarized and compare the student engagement indicators across the three cases. In 

the comparison, I identified those indicators that varied and those that remained constant. The 

comparative analysis is followed by a relational analysis of those student engagement indicators 

that were found to vary. The chapter concludes with a summary of the findings from the analysis. 

  

Comparative Analysis 

To analyze the data, I used an adapted form of Finn and Zimmer’s student engagement 

framework described earlier in Chapter 3, cognitive, academic, and affective interactions. It 

follows, then, that the comparative analysis has been organized into three corresponding sections, 

cognitive interactions, academic interactions, and affective interactions. Each section begins by 

revisiting the definitions of the relevant interaction theme (cognitive, academic, affective) 

specific to this research study and then summarizes the similarities and differences of the data 

across the three case studies. The purpose of this summary and comparative analysis is to better 

understand and describe the indicators of student engagement and to identify those indicators 

that vary and those that remain fairly constant.  
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Cognitive Interactions 

For the purposes of this study, mathematical cognitive interactions are defined as the 

thinking activities that are undertaken as one solves mathematics problems, perhaps within, but 

not limited to, a school mathematics environment. Specifically, mathematical cognitive 

interactions are the thinking activities that are carried out during the orientation, generation, and 

conclusion phases of mathematical problem solving. Cognitive interactions may be characterized 

along a continuum of surface to deep, which is contingent upon the nature of the aforementioned 

thinking activities. At one end of the continuum, surface cognitive interactions are described as 

the thinking activities that are limited to the bare essentials to memorize or imitate the steps of 

procedures. At the other end of the continuum, deep cognitive interactions are described as the 

intensive effort or study of mathematics to understand the concepts underlying mathematical 

procedures, and to make connections between mathematical contexts, symbols, ideas and 

representations. In the context of solving a high cognitive demand mathematical problem, deep 

cognitive interactions would include all of the activities summarized in Table 6: Problem solving 

phases and activities when solving non-routine mathematics tasks (p. 50). It is important to note 

that the nature of cognitive interactions is influenced by the cognitive demand of mathematical 

problem being solved. 

Cognitive Demand of Mathematical Tasks. The mathematics education researchers, 

Silver, Smith, and Nelson, (1995) were the first to distinguish between mathematical problems 

and mathematical tasks. Later, Boston and Smith (2009)  define a mathematical task as “a set of 

mathematical problems or a single complex mathematical problem that focuses students’ 

attention on a particular mathematical idea” (Boston & Smith, 2009, p. 121). For the purpose of 

this study, a mathematical task corresponds to the set of mathematical problems organized within 
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an ALEKS Topic. Mathematical tasks have been characterized as either low cognitive demand or 

high cognitive demand tasks. Low cognitive demand tasks are memorization tasks or procedural 

tasks in which an algorithm is provided for students to follow and do not require students to 

explain or make connections to the underlying mathematical concepts for performing the task. 

On the other hand, high cognitive demand tasks are described as “procedures with connections” 

and “doing mathematics.” Procedures with connections require student attention on underlying 

mathematical concepts, ideas, or structure. Doing mathematics tasks require students to “create 

meaning for mathematical concepts, procedures and/or relationships” (Boston & Wolf, 2006).  

Because the task itself influences how students interact with the task, I first evaluated the 

cognitive demand of the ALEKS Topics using the IQA Potential of the Task Rubric (Boston & 

Wolf, 2006) (Appendix G). In ALEKS, each topic began with a worked out example on the 

ALEKS Learning Page (Appendix I), which was followed by a similar problem to be solved. As 

a result, each task was “limited to engaging students in using a procedure that is specifically 

called for or its use is evident based on prior instruction, experience, or placement of the task” 

(Boston & Wolf, 2006) (Appendix G). Therefore, all 57 ALEKS Topic recordings I viewed were 

low cognitive demand tasks.  

Although all of the recorded ALEKS Topics can be described as low cognitive demand 

tasks, this categorization did not capture the effort I observed in the recordings of students as 

they worked in ALEKS. However, my prior review and synthesis of the research literature about 

mathematical problem solving provided a way to parse students’ mathematical activities into 

problem solving phases that proved useful for categorizing and generalizing student approaches 

to solving the routine exercises in ALEKS. 
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Patterns of Cognitive Interactions. I had synthesized the idea of problem solving 

phases, orientation, generation, and conclusion, from prior theoretical and research literature 

(Polya, 1985; Schoenfeld, 1985; Garofalo & Lester, 1985; and NCTM, 2009), with the caveat 

that these phases do not necessarily occur in a linear order. In addition, the activities within each 

of these phases would be required to solve high cognitive demand mathematics tasks (Table 6, p. 

50). Nevertheless, I posited problem solving phases would apply to all types of mathematics 

problems, but that the activities within these phases would vary based on the cognitive demand 

of the task. The usefulness of this framework for analyzing the nuances of student engagement in 

tasks is evident in the prior Chapters 5, 6, and 7 (see Tables 14 – 19). The observed patterns of 

cognitive interaction are provided in Table 20.  

Table 20. Observed Patterns of Cognitive Interactions with ALEKS problems. 

  
 
 
 
  

 Patterns of 
Cognitive 
Interactions   
Example(s) &/or  
Problem Set(s) 

Problem Solving Phases 

Orientation 
Activities 

Generation 
Activities 

Conclusion 
Activities 

Imitate Each Step of 
Procedure 
Provided Example(s) 
Routine Exercises 

• Read & Copy 
Example 

•    
•    

•      
•    
• Imitate Each 

Step 

• Verify 
o  External 

Authority 
o      

•    
 

Decipher the 
Procedure 
Provided Example(s) 
Routine Exercises 

• Read & Copy 
Example 

• Understand 
•  

•      
•    
• Reproduce 

Procedure 

• Verify 
o  External 

Authority 
o  Internal Authority 

• Reflect & Connect 
 

Transcend the 
Procedure 
Provided Example(s) 
Routine Exercises 

• Read & Copy 
Example 

• Understand 
• Analyze & 

Connect 

•     
  

•    
• Recreate 

Procedure 

• Verify 
o  External 

Authority 
o  Internal Authority 

• Reflect & Connect 
 

•  •  •  •  
•  •  •  •  
•  •  •  •  

Problem Solving 
Novel Problems 

• Read 
• Understand 
• Analyze & 

Connect 

• Explore 
• Plan 
• Execute Plan 

• Verify 
o  External 

Authority 
o  Internal Authority 

• Reflect & Connect 
 

	

SU
R

FA
C

E 
D

EE
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 The three patterns of cognitive interaction outlined above require brief definitions and 

some elaboration, so here I define them and in the next paragraph I elaborate with references to 

some examples in this study.  Imitating the steps of the procedure is defined as reading the 

problem and copying the presented procedure, using these notes to imitate each step of the 

procedure with no evidence of attempts to understand why the procedure works, and culminating 

with a reliance on an external authority to verify whether the solution is correct. Deciphering the 

procedure is defined as as reading the problem and copying the presented solution method, but 

with some evidence of effort in recognizing patterns in order to duplicate the complete 

procedure, and culminating with a reliance on an external authority to verify correctness and the 

potential use of internal authority primarily using intuition. Transcending the procedure is 

defined as reading the problem and copying the presented solution method, understanding why 

the procedure works as demonstrated by carrying out the solution method and culminating with 

internal verification that mathematically determines the solution is correct. I define imitating as 

surface level understanding and deciphering as just below the surface, because neither 

demonstrates knowing why the solution method is correct. I define transcending as a deeper 

level of understanding because mathematical verification demonstrates knowing why the 

solution method is correct. 

Due to the nature of the mathematical tasks presented in ALEKS, student interactions 

with 53 of the 57 ALEKS Topics were at the surface level. In other words, the students either 

imitated each step of the procedure, or deciphered the ALEKS Example to duplicate the 

complete procedure. In both of these patterns of cognitive interaction, students primarily relied 

on the External Authority of ALEKS to check the correctness of their solution. Furthermore, in 

two think aloud recordings, students acquiesced to the solution method presented in ALEKS, 
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thus relying on the external authority of ALEKS even when they may have been on a different, 

yet correct, solution path (Jade, Think Aloud 1, Figure 12, Transcript Lines 25-31; and Tia, Think 

Aloud 5, Figure 28, Transcript Lines 14-17).  

In 4 of the 57 ALEKS Topics I observed, two of the students, Jade and Chad, interacted 

with the mathematics at a deeper cognitive level. Two examples of these deeper cognitive 

interactions were illustrated in earlier chapters (Jade, Think Aloud 4, Figures 15 & 16; and Chad, 

Think Aloud 2, Figures 17-21). In these instances, the students brought their own knowledge and 

reasoning about procedures or real life contexts to solve the problem. In addition, students used 

their prior knowledge to verify their solutions before entering their answer into ALEKS, thus 

relying on their own Internal Authority. The key point here is that the students brought their own 

cognitive resources to their interactions with the mathematics and went beyond, or transcended, 

the procedure that was presented by the ALEKS program. In addition, due to the nature of the 

tasks presented in ALEKS, the students were never required to move beyond surface level 

cognitive interactions to be “successful” as defined by ALEKS. Thus, my hypothesis is that when 

students did engage in deeper cognitive interactions, it was due to their prior knowledge and 

experiences.  

Academic Interactions 

For the purposes of this study, mathematical academic interactions are defined as 

researcher observed and student stated behaviors related to interacting in class and with course 

material, such as study strategies and the use of various resources and tools to learn course 

content. For example, study strategies may include, but are not limited to, memory techniques, 

scheduling time to study, planning to complete a certain portion of their assignments each day, 
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taking notes and reviewing material. Use of resources may include, but are not limited to, the use 

of course texts, online resources, or university support services such as tutoring. 

Academic Study Strategies. All three participants utilized study strategies such as 

planning for assignment completion and note-taking. For instance, all three participants reported 

planning ahead to complete their ALEKS assignments. They each determined a daily goal for 

their ALEKS work by dividing the total number of ALEKS Topics to be completed each week by 

the number of days they planned to work in ALEKS. In addition, all three students took notes as 

they solved problems, but with varying degrees of organization. As noted in Jade’s descriptive 

case (Figures 12 & 13), she discussed and consistently demonstrated how she systematically took 

notes and presented her problem solutions in an organized manner (Appendix J, Figures 41 & 

42). Likewise, Tia took notes as she worked in ALEKS and presented her problems solutions in 

an organized manner (Appendix J, Figures 45 & 46). Chad also took notes as he worked in 

ALEKS, but his work was not as easy to follow (Appendix J, Figures 43 & 44). As a result, the 

LiveScribe pen-cast recording was often necessary for me to interpret Chad’s written work.  

In addition to her systematic, organized note-taking, Jade used a unique memory strategy. 

She solved the first two of the three ALEKS problems using pencil and paper. Then for the third 

ALEKS problem, she solved the problem in her head, without writing anything down. Her stated 

belief was that this would help her remember how to solve similar problems in the future. 

Academic Resource Use. All three participants’ think aloud recordings revealed the sole 

use of ALEKS resources. These ALEKS resources included the use of Examples that introduced 

ALEKS Topics and ALEKS Explanations, which were available for each problem. Most often, 

participants utilized the ALEKS Explanations after they had entered an answer into ALEKS and 

their answer was incorrect. However, in the interviews all three participants reported that if they 
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could not figure out how to solve a particular problem using ALEKS resources, they would go to 

the Mathematics Learning Center. One participant, Chad, reported that he also utilized the 

ALEKS Instructional Videos and found them helpful. Another student, Tia, reported that she 

sometimes asked a friend for help with her mathematics.  

Surprisingly, none of the participants in this study were observed or reported using online 

resources that were outside of the ALEKS or university environment (e.g. Khan Academy, 

Wolfram Alpha). This research result contradicts the results of prior research conducted by Kraus 

and Putnam (2016), who found that students engaging with the online homework system, 

WebWork, regularly utilized other online resources, yet differed in their approach to the use of 

these additional online resources. However, a critical difference between ALEKS and WebWork 

is that ALEKS provides a suite of related tutorial resources (examples, explanations, tutorial 

videos) within the program, whereas WebWork does not.  

Affective Interactions 

For the purposes of this study, mathematical affective interactions are defined as 

emotional response to course content and participation, which includes feelings of confidence (or 

feelings of a lack of confidence and/or anxiousness) in tackling various assigned mathematical 

tasks, as well as a sense of mathematics course content value and usefulness. The sense of 

mathematics course content value and usefulness may include observations of unprompted 

student statements (e.g. “When will I ever use this.”) or student statements in response to the end 

of course interview prompts (e.g. “Please elaborate on how math will play a role in your career, 

or not.”). 

Affective Response to Mathematical Tasks. Student affective response, as exhibited by 

levels of confidence, to each set of problems in an ALEKS Topic varied widely. I categorized 
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student’s confidence on a continuum from low confidence to high confidence based on explicit 

confidence related statements that students made. Students sometimes made statements of 

confidence when they first saw the ALEKS Topic and Example, which was categorized as 

Confidence Before. An example of a statement of confidence before was, “I already know this, so 

this should be easy.” An example of a statement of a lack of confidence before was, “I don’t like 

exponents. This is already not going to be my chapter.” Students sometimes made statements of 

confidence after they solved an ALEKS problem as they entered their solution into ALEKS, 

which was categorized as Confidence After. An example of a statement of confidence after was, 

“I know this is true because…” An example of a statement of a lack of confidence after was, “If 

it’s wrong, which I expect it to be, then I’ll just go to the explanation.” At times, one student 

almost seemed to plead to some higher authority, saying, “Please be right.” as she entered her 

solution into ALEKS for verification, and these instances were recorded as a lack of confidence 

in her answer. 

To analyze the extent of students’ confidence regarding a specific ALEKS Topic, I 

quantified confidence by the number of explicit statements participants uttered that conveyed a 

level of confidence. Participants uttered explicit statements regarding confidence during 

interactions with 17 out of the total data set of 57 ALEKS Topics. At times multiple statements 

of confidence were uttered during interactions with the set of problems in a single ALEKS Topic. 

The number of statements of higher confidence per ALEKS Topic were quantified as a positive 

number, and the number of lower confidence statements were quantified as a negative number 

(Table 21). The data in this table suggests that Jade and Chad’s confidence varied, and that Tia 

appeared to generally lack confidence in mathematics. 
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Table 21. Quantification of Confidence Statements per ALEKS TOPIC in Critical Incidents 

 
 

Affective Value of Mathematics. Another indicator of affective interactions was how 

students valued mathematics. In general, how the students valued mathematics seemed to be 

Name Recording 
Session #  

ALEKS Topic
Confidence 
Statements 

Before

Confidence 
Statements 

After

Jade 1
Dividing rational exressions involving quadratics 
with a leading coefficient of 1. -1

Jade 2 Introduction to square root mutliplication. 1

Jade 4
Solving and equation of the form x^2=a using the 
square root property. 3

Chad 2 Finding the original price given sale price and 
percent discount

2

Chad 4
Solving a system of linear equations using 
elimination with addition. -1 1

Chad 5 Power rules with positive exponents: Multivariate 
products

-1 1

Chad 6 Power and quotient rules with negative exponents: 
Problem type 1

-1 -3

Chad 6 Power and quotient rules with negative exponents: 
Problem type 2

-1 -1

Chad 8 Word problem on proportions: Problem type 2 1

Chad 8 Word Problem involving multiple rates 1

Chad 10
Finding the nth root of a perfect nth power 
monomial 3

Tia 1 Multiplicative property of equality with fractions. -1

Tia 3 Find x and y intercepts of a line given the equation 
in Standard [Ax+By=C] form.

-2

Tia 3 Solving for a variable in terms of other variables 
using addition or subtraction with division.

-1

Tia 5 Solving a two step equation with signed fractions -2

Tia 7 Factoring a linear binomial -1

Tia OETA Adding rational expressions with common 
denominators and monomial numerators

1
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based on their prior experiences and their beliefs about the nature of mathematics rather than by 

their experience with mathematics in this one course. For example, two of the students (Jade and 

Tia) reported that they felt mathematics would be useful in their everyday life and future career. 

Jade specifically mentioned that “math and science are closely related” and she expected algebra 

to play a role in her future career of molecular genetics. Tia’s view of how math would be useful 

did not include algebra but the everyday use of mathematics in finances and measurement of 

fabric in her future career of textile design. On the other hand, Chad did not view everyday 

mathematics or statistics as college-level content, so although statistics would be relevant to his 

future career of journalism, he did not see any relevance in what he viewed as “college-level 

mathematics” content in his life.   

Affective Response to Course Participation Structure. All three students mentioned 

that they generally felt that ALEKS helped them to learn the course content. However, two 

students (Jade and Chad) mentioned that they would have preferred a hybrid course structure. On 

the other hand, Tia appreciated the flexibility of the online course and said that she “didn’t feel as 

pressured” and that this structure and resources provided by ALEKS “made math more 

tolerable.” 

It is important to note that Chad spoke positively about his experience in ALEKS during 

the semester when he was passing the course. However, in the prior semester immediately after 

he had failed the course and stopped working in ALEKS, he mentioned feeling overwhelmed by 

the number of ALEKS topics he had to complete. Yet, even during the semester when Chad 

experienced success in the course, he reported that the ALEKS mathematics assignments made 

him feel like Sisyphus pushing the boulder uphill only to have it roll down at him again. For 

instance, when a student completes a certain number of ALEKS Topics, the program responds, 
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“Congratulations, [student name]! You have unlocked [some number] ALEKS Topics!” Often 

student responses to this message was a despondent or sarcastic, “Oh, yay…” 

Summary of Comparative Analysis 

 In summary, I analyzed the data for student engagement in three categories, cognitive 

interactions, affective interactions, and academic interactions. I first examined the cognitive 

demand of the tasks, and found that all 57 of the ALEKS Topics recorded in this study were low 

cognitive demand tasks. Thus, it came as no surprise that the evidence of students’ cognitive 

interactions with ALEKS Topics indicated that 94% were surface level interactions largely 

because the ALEKS tasks did not require anything more. On the other hand, 6% of the students’ 

cognitive interactions with the ALEKS Topics were deeper along the surface-to-deep continuum, 

although still not what could be characterized as deep interactions. Furthermore, two of the 

students’ cognitive interactions varied along the surface-to-deep interactions perhaps depending 

their confidence about the ALEKS Topic, and the third student’s cognitive interactions appeared 

to remain at the surface level. Similarly, two of the students’ affective interactions with the 

ALEKS Topic varied between low and high confidence, and the third student’s confidence 

generally remained low. Lastly, the academic interactions of all three students remained constant 

throughout the semester. In summary, two dimensions of the analysis framework varied 

(cognitive interactions and affective interactions-confidence), and the third dimension 

(academic) remained constant for each student. Thus, in the next section, we analyze potential 

relationships between those two dimensions that vary, cognitive interactions and affective 

interactions-confidence. 
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Relational Analysis 

Thus far, I have described each student’s cognitive and affective interactions in the cases 

(Chapters 5, 6, and 7). Plus, the comparative analysis in the prior section of this chapter showed 

that cognitive interactions and confidence varied for two of the three study participants. This 

relational analysis extends that comparative analysis to examine the potential relationship 

between patterns of cognitive interactions and levels of confidence.  

Confidence and Cognitive Interactions 

 Here I briefly describe how the data related to confidence and cognitive interactions were 

coded for this relational analysis. To analyze and code the extent of students’ confidence 

regarding a specific ALEKS Topic, I quantified confidence by the number of participants’ 

explicit utterances that conveyed some level of confidence. Of the 57 ALEKS Topics in this 

study, a subset of 17 included explicit utterances related to confidence. Participant utterances 

regarding confidence occurred both before and after solving one or more problems in that 

ALEKS Topic (Tables 21 and 22, fourth and fifth columns). For this relational analysis, I totaled 

the before and after confidence utterances to calculate the student’s general confidence level for 

that ALEKS Topic (Table 22, sixth column). In addition, I observed and coded three patterns of 

students’ cognitive interactions: imitating each step of a procedure, deciphering and reproducing 

a procedure, and transcending the procedure (Table 20).  

To analyze for a potential relationship between confidence and cognitive interactions, the 

data described above was recorded and represented in Table 22. However, the tabular 

representation did not provide a clear picture of the data. To further examine for potential 

relationships between confidence and patterns of cognitive interactions, a two dimensional 

graphic form was used (Figure 34). In this graphic representation, the horizontal axis represents 
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the level of confidence codes, and the vertical axis represents surface-to-deep cognitive 

interactions. The latter included the observed patterns of cognitive interactions: imitating steps, 

deciphering procedure, and transcending procedure. 

Table 22. Relationship between Confidence and Patterns of Cognitive Interaction 

 
      *Indicate those Critical Incidents illustrated in Chapters 5, 6, & 7 of this report. 

Name
Recording 
Session #  ALEKS Topic

Confidence 
Statements 

Before

Confidence 
Statements 

After

Sum of 
Confidence 
Statements 

Patterns of 
Cognitive 

Interactions

Jade* 1*
Dividing rational exressions 
involving quadratics with a 
leading coefficient of 1.

-1 -1 Imitate

Jade 2 Introduction to square root 
mutliplication. 1 1 Transcend

Jade* 4*
Solving and equation of the form 
x^2=a using the square root 
property.

3 3 Transcend

Chad* 2* Finding the original price given 
sale price and percent discount 2 2 Imitate to 

Transcend

Chad 4
Solving a system of linear 
equations using elimination with 
additi...

-1 1 0 Decipher

Chad 5 Power rules with positive 
exponents: Multivariate products -1 1 0 Imitate

Chad* 6*
Power and quotient rules with 
negative exponents: Problem 
type 1

-1 -3 -4 Imitate

Chad 6
Power and quotient rules with 
negative exponents: Problem 
type 2

-1 -1 -2 Imitate

Chad 8 Word problem on proportions: 
Problem type 2 1 1 Transcend

Chad 8 Word Problem involving multiple 
rates 1 1 Imitate

Chad 10 Finding the nth root of a perfect 
nth power monomial 3 3 Decipher

Tia 1 Multiplicative property of 
equality with fractions. -1 -1 Imitate

Tia 3
Find x and y intercepts of a line 
given the equation in Standard 
[Ax+By=C] form.

-2 -2 Imitate

Tia 3 Solving for a variable in terms of 
other variables using addition or -1 -1 Imitate

Tia* 5* Solving a two step equation with 
signed fractions -2 -2 Imitate

Tia* 7* Factoring a linear binomial -1 -1 Imitate

Tia OETA Adding rational expressions with 
common denominators and 1 1 Imitate
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In Figure 33 below, the data points in the lower left hand quadrant suggests that when 

students have low confidence, they are more likely to imitate the steps of the procedure presented 

in ALEKS. This stands to reason, particularly due to the course participation structure of 

ALEKS, which reinforces the imitation pattern of behavior.  

 

 
 

Figure 33. Representation of Relationship: Confidence and Patterns of Cognitive Interaction  
 

 

In contrast, the data points in the right hand quadrant indicate that as student confidence 

level increases, it is hard to determine from the data whether the student would imitate the steps 

of the procedure, decipher and duplicate the procedure, or transcend the procedure. However, 

only when students expressed confidence about the ALEKS Topic did they progress to the 

somewhat deeper cognitive interactions of deciphering and reproducing procedures, and 
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transcending procedures presented to them. This suggests that in these instances, when students 

engaged in some type of mathematical reasoning, there may have been other influences on their 

learning interactions.  

 One anomalous data point is particularly interesting because it represents the only 

instance in which the evidence indicated that the student progressed from deciphering and 

duplicating the steps of a procedure to transcending the procedure within a single ALEKS Topic 

(see dashed arrow in Figure 33). This example of progression in mathematical thinking was from 

the Chad’s Think Aloud Recording 2 (Figures 17-21). Chad’s cognitive interactions with this 

ALEKS Topic, Finding the original price given the sale price and percent discount, are notable 

because the problem solving activities he engaged in appeared to fluctuate along the surface-to-

deep continuum as he made sense of how to solve the problems. As discussed in the prior 

chapter, Chad often used proportional reasoning to estimate whether his solution to the problem 

made sense, and even though his solution to Problem 1 did not make sense to him, he submitted 

his answer to ALEKS for verification. Then he chose to study the ALEKS explanation for 

Problem 1, and he wondered how to differentiate between the example problem and Problem 1 

and how they were solved. As he worked on Problem 3, Chad made connections between the 

wording of the problems and the mathematical concepts they represented when he said, “If it’s 

76% of then it’s 24% off.” Chad’s cognitive interactions stabilized (as opposed to fluctuate) at a 

deeper level as he then used this connection to reason through the solution to Problems 3 and 4. 

This anomaly in the data is somewhat similar to what a mathematics teacher might desire as 

result of student engagement in solving a mathematics task.  
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Research Questions and Findings Summary 

 
Overarching Research Question: What is the nature of students’ mathematical engagement in 

an online, CAI intermediate algebra course? 

 

1.   What is the nature of students’ cognitive interactions in mathematics in an online, CAI 

intermediate algebra course? 

 
a.   What is the potential cognitive demand of the way CAI presents the mathematical 

tasks to students? 

Finding 1.a. All 57 of the mathematical tasks (ALEKS Topics) were Low 

Cognitive Demand. 

 
b.   What is the nature of the patterns of cognitive interactions within the problem 

solving phases (orientation, implementation, verification) that students use to solve 

the CAI problems? 

Finding 1.b. Patterns of cognitive interactions varied but were mostly Imitating 

the Steps of the Procedure and Deciphering and Duplicating the Procedure. Only 

in four instances did participants Transcend the Procedure. 

 
2.   What is the nature of students’ academic interactions in an online, CAI intermediate 

algebra course? 

 
a.   What academic study strategies do students use to learn the course content? 

Finding 2.a. All three students consistently used the study strategies of note-

taking and planning and setting goals for studying. One student, Jade, used a 

memory strategy.  

 
b.   What academic resources do students draw upon to learn the course content? 

Finding 2.b. All three students consistently used the resources provided by 

ALEKS and sought assistance from the Math Learning Center as needed. One 

student, Tia, arranged for a weekly tutoring appointment. 
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3.   What is the nature of students’ affective interactions in an online, CAI intermediate 

algebra course?  

 
a.    In what ways do students affectively respond to mathematical tasks of an online, 

CAI intermediate algebra course? 

Finding 3.a. Students’ expression of level of confidence in response to the 

ALEKS Topic varied. 

 
b.    In what ways do students affectively respond to the course participation structure 

of an online, CAI intermediate algebra course? 

Finding 3.b. All three students reported ALEKS generally helped them learn 

course content. In addition, two reported that they would prefer having some type 

of face-to-face instruction in addition to ALEKS, and the third had arranged 

weekly appointments with a tutor. 

 
c.   What is the nature of students’ value of mathematics in their lives and future careers? 

Finding 3.c. Students’ value of mathematics remained consistent between pre- 

and post- questionnaires. One student valued mathematics due to its connection 

with science and her future career. Another student valued everyday mathematics. 

The third student beliefs about the separation of school mathematics and everyday 

mathematics seemed to influence his belief that school mathematics is not useful. 

  
4.    Question Resulting from Cross-Case Analysis: What is the relationship between 

Confidence and Patterns of Cognitive Interactions as students engage with an online, CAI 

Intermediate Algebra Course? 

Finding 4. Participants’ expression of low confidence was related to the Imitating 

Steps pattern of cognitive interactions. Yet, participants’ expression of high 

confidence did not appear to be specifically related any of the three patterns of 

cognitive interactions.  
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CHAPTER 9 
DISCUSSION—TYING IT ALL TOGETHER 

 

In Chapters 5 through 7 of this study, I presented the results from each individual case 

study, and Chapter 8 consisted of the cross-case analysis. In these chapters the student 

engagement indicators of cognitive interactions, academic interactions, and affective 

interactions, were foregrounded and were the the primary focus of my research (Figure 34 

below). This focus was imperative to illuminate the nature of student engagement, but it is also 

important to consider other influences on students’ academic success so that we do not miss “the 

forest for the trees” so to speak. 

 

Figure 34. Conceptual framework, student engagement indicators 
 (adapted from Kahu, 2013; Finn & Zimmer, 2012) 

 

To rephrase this, the larger framework also includes sociocultural influences, as well as 

antecedents and consequences to student engagement (Figure 35). In this chapter, I discuss the 
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research findings from the prior chapters in relation to this larger sociocultural framework of 

student engagement as well as in relation to relevant research literature and theories of 

mathematics education.  

 
Figure 35. Sociocultural Antecedents, and Consequences of Student Engagement 

 
Sociocultural Influences 

Sociocultural influences permeate the context of this study. This framework recognizes 

that the larger national political and social climate influences the nature of student engagement. 

However, this study focusses on sociocultural influences related directly to mathematics 

education, power and privilege associated with mathematical success, and cultural assumptions 

about the nature of mathematical activities. 

Power and Privilege Associated with Mathematical Success 

In the prevalent United States culture, people who are successful at mathematics are 

generally believed to be more intelligent than those who are not successful at mathematics. 

Sociocultural Influences
Political and Social Environment: Culture, power, policy, economics 

(Adapted from Kahu, 2013, p. 766; Finn & Zimmer, 2012, p. 104) 
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These sociocultural dynamics allocate power to mathematical prowess and privilege 

mathematical success. In addition, a common myth is that some people possess an innate 

mathematics ability and that others do not. This mathematics ability myth permeates U.S. culture 

and is perpetuated in the schooling system, in part due to tracking students by their perceived 

ability. As a result, students who do not experience mathematical success early on in their 

schooling typically surmise they simply are not smart enough to learn mathematics (Gutierrez, 

2013). These sociocultural and sociohistorically constructed beliefs are perpetuated by the 

educational system in K-12 standardized testing and university placement testing practices 

because these tests often result in tracking students. Regarding this research study, consider the 

fact that all three of these students had taken either precalculus or calculus in high school, yet 

none of them questioned their placement exam score and none chose to retake the placement 

exam with the hope of placing into a more advanced course of study. This finding is consistent 

with prior research conducted by Larnell (2011, 2016). Two participants, Chad and Tia, chose to 

remain in intermediate algebra due to their belief that they were not good mathematics students 

who needed the review. For example, Chad had explicitly stated that he did not have a “math 

brain.” On the other hand, the third participant in this study, Jade, chose to remain in 

intermediate algebra even though she was confident she could succeed in college algebra. She 

had considered the pros and cons of this decision and deliberately made this choice to ease her 

transition to college. This deliberate choice could be interpreted as an act of agency on her part.  

In addition, the sociohistorically constructed perception that White males are more 

inclined to be mathematically talented may positively influence or negatively constrain students’ 

identity in relation to mathematics (Stinson, 2013). These sociocultural and sociohistorically 

constructed beliefs are perpetuated by the realities of institutional disparities in our educational 
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system. In the United States education system, working-class and poor students, as well as Black 

and Brown students, are more often relegated to K-12 schools with few resources and less 

experienced teachers. Additionally, mathematics education research rarely documents or 

analyzes the success stories of Black and Brown students, and by this omission has perpetuated 

these sociohistorically constructed belief systems (Martin, 2009b). Thus, these and other 

sociohistorically constructed beliefs about inherent mathematical ability were also influences that 

permeated the context of this study. A limitation of this study was that it did not include explicit 

documentation of these sociocultural influences on students’ experiences in this online, CAI 

intermediate algebra course. This study draws upon prior research conducted by Larnell (2011, 

2016) which documented Black student experiences and identity development in a NCBMC, as 

well as the work of other critical perspectives in mathematics education (e.g. Gutierrez, 2013; 

Martin, 2009; Stinson, 2013) to substantiate these claims of sociocultural influences.  

Cultural Assumptions About the Nature of Mathematical Activity 

Commonly, mathematics is associated with certainty: knowing it, with being able to get 
the right answer quickly (Ball; 1988, Schoenfeld, 1985b; Stodolsky, 1985). These cultural 
assumptions are shaped by school experience, in which doing mathematics means 
following the rules laid down by the teacher; knowing mathematics means remembering 
and applying the correct rule when the teacher asks a question; and mathematical truth is 
determined when the answer is ratified by the teacher. Beliefs about how to do 
mathematics and what it means to know it in school are acquired through years of 
watching, listening, and practicing. (Lampert, 1990, p. 32) 

 
Lampert’s quote regarding cultural assumptions about mathematics is still relevant today, 

almost 30 years later. This quote from Lampert can serve as a lens through which to view the 

student interactions with ALEKS as documented in this research study. The ALEKS program 

appeared to be designed in accordance with these cultural assumptions about mathematics. 

Doing mathematics in ALEKS meant following the procedures presented by the program. 

Knowing mathematics in ALEKS meant remembering the procedure and applying it to similar 
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exercises. Mathematical truth was determined when students entered their answers into ALEKS 

for ratification. As such, student interactions with ALEKS software likely served to reinforce 

these cultural assumptions about the nature of mathematics.   

Antecedents to Student Engagement 

 For this study, two documented antecedents to student engagement were the nature of the 

mathematics curriculum and related mathematics instruction, or in this study, CAI. A limitation 

of this study was that other antecedents to student engagement were not documented.  

Structural Influence: The ALEKS “Bite-Sized Pieces” Curriculum  

Mathematics curriculum design can be approached from several perspectives. Schoenfeld 

(1992) described one such perspective that he dubbed the content perspective of mathematics 

curriculum design. According to the content perspective of curriculum development, 

…the route to learning consists of delineating the desired subject-matter content as 
clearly as possible, carving it into bite-sized pieces, and providing explicit instruction and 
practice on each of those pieces so that students master them. From the content 
perspective, the whole of a student’s mathematical understanding is precisely the sum of 
these parts. (Schoenfeld, 1992, p. 342) 
 
The design of ALEKS curriculum can be compared to what Schoenfeld described as the 

content-focused perspective of mathematics curriculum. First, the developers of the program 

assembled a group of experts to delineate “the desired subject-matter content as clearly as 

possible into bite-sized pieces” (Schoenfeld, 1992, p. 342), in other words the specific ALEKS 

Topics. Next ALEKS Topics were arranged into ordered “precedence relations” represented by a 

large, complex directed graph  (Falmagne et al., 2006, p. 4). Students are provided “explicit 

instruction and practice on each of those pieces [ALEKS Topics] so that students master them.” 

Lastly, the “whole of a student’s mathematical understanding” is related to the number of 

ALEKS Topics the student has mastered (Schoenfeld, 1992, p. 342). ALEKS utilizes Knowledge 
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Space Theory, which represents the curriculum as a directed combinatorics graph. In this graph,  

the vertices represent each bite-sized mathematics topic which are connected by arrows that are 

arranged in a predetermined precedence relation  (Falmagne et al., 2013; Falmagne et al., 2006).  

In summary, the ALEKS curriculum is composed of bite-sized ALEKS Topics, and each 

topic includes explicit instruction followed by practice on similarly structured exercises. As a 

result of this inherent ALEKS participation structure, all 57 of the ALEKS Topics recorded in 

this research study were categorized as low-cognitive demand mathematical tasks according to 

the IQA rubric definition because “students follow demonstrated procedures” (Boston & Smith, 

2009; Boston & Wolf, 2006). 

Psychosocial Influence: ALEKS Instruction and Participation Structure 

More than 25 years ago Schoenfeld (1992) described prevalent teaching practices and the 

related assumptions about teaching and learning, and these teaching practices continue to be 

prevalent today. These teaching practices include the presentation of techniques and related 

routine problems in the three steps.  

1. A task is used to introduce a technique. 
2. The technique is illustrated. 
3. More tasks are provided so that the student may practice the illustrated skills. (p. 338) 
 

Similarly, the instruction provided by ALEKS also consists of the three steps described in 

Schoenfeld’s quote in the prior paragraph.  

1. A specific ALEKS Topic is used to introduce a technique. 
2. The technique is illustrated on the ALEKS Learning Page. 
3. More tasks are provided so that the student may practice the illustrated skills. 
 

Schoenfeld went on to describe the basic assumptions about mathematical learning that relies on 

this 3-step sequence of instruction and associated participation structure.  

Having worked this cluster of exercises, the student will have a new technique in their 
mathematical toolkit. Presumably, the sum total of such techniques (the curriculum) 



  

 154 

reflects the corpus of mathematics the student is expected to master; the set of techniques 
the student has mastered comprises the student’s mathematical knowledge and 
understanding. (Schoenfeld, 1992, p. 339) 
 
In other words, the assumption of this instructional model and participation structure is 

that knowledge can be transferred to the students by demonstrating techniques. Another 

assumption is that when students practice the demonstrated techniques and produce correct 

answers they demonstrate mastery of that technique. Furthermore, this participation structure 

assumes that the number of techniques that students can recall and reproduce correctly indicates 

the mathematical knowledge and understanding they have attained. Schoenfeld’s description of 

prevalent teaching practices and the assumptions about learning that underlie these practices can 

be aligned with ALEKS methods of instruction as well as the earlier forms of programmed 

instruction based on Gagne’s theories of hierarchy of content and cumulative learning.  

The Nature of Student Engagement in this Study 

 In Chapter 8, I presented the cross-case analysis of the three individual case studies and 

the nature of student engagement they demonstrated. The patterns of cognitive interactions 

students demonstrated primarily included imitating each step of the procedure or duplicating the 

procedure. This was not surprising considering the low cognitive demand of the tasks in ALEKS. 

In only a few instances, when students explicitly expressed confidence, did their patterns of 

cognitive interactions demonstrate transcending the procedure. I posit that in these instances, it 

was the student’s own prior mathematical knowledge and experience that facilitated the 

transcending pattern of cognitive interaction. Furthermore, in one instance, Chad utilized 

proportional reasoning in relation to a real life context, to learn from and transcend the ALEKS 

procedure (see Chapter 6, Figures 17-21, Chad Think Aloud 2). In this instance, I claim that 
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Chad was able to learn and generalize from his interaction with ALEKS due to the combination 

of his own proportional reasoning and the real life context of the problem. 

Consequences of Student Engagement 

In the Kahu (2013) framework on the sociocultural nature of student engagement, there 

are proximal and distal consequences of student engagement. Here I focus primarily on the 

proximal consequences with the understanding that the proximal has an influence on the distal 

consequences. Kahu described two primary proximal consequences of student engagement, 

affective in relation to satisfaction and well-being, and academic in relation to learning and 

achievement. Although I acknowledge that student satisfaction and well-being are an important 

proximal consequence, those two aspects of affect seem to be related to marketing the benefits of 

higher education rather than reflection of the deeper purpose of higher education. Also, in Kahu’s 

framework, the affective and academic are presented as separate, yet I argue that they are 

inherently intertwined. Affective consequences of educational student engagement include 

beliefs about the nature and practices of disciplinary knowledge, the academic consequences.  

Affective Consequences: Beliefs about Mathematics 

In constructivist and sociocultural perspectives on learning, it is generally accepted that 

our life experiences help to form our knowledge and beliefs. Regarding beliefs about 

mathematics, Schoenfeld (1988, 1992) has expressed concern about how the K-12 students’ 

experiences solving literally thousands of routine exercises may result in unproductive beliefs 

about the nature of mathematics. Table 23 below, includes an adapted version of Schoenfeld’s 

unproductive beliefs and corresponding evidence of how student engagement with ALEKS may 

have only served to reinforce these unproductive beliefs. The students of this study likely had 

developed their own beliefs about the nature of mathematics before they entered this 
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mathematics class, and this study did not directly examine their beliefs about mathematics. Yet, 

in a few instances statements indicating beliefs about mathematics emerged unsolicited in the 

interviews with students. Also, the nature of the problem types in ALEKS and how students 

interacted with ALEKS corresponded with the unproductive beliefs outlined by Schoenfeld. 

  

Table 23. Unproductive Beliefs about Mathematics and Evidence from this Research  
    (Adapted from Schoenfeld, 1992, p. 359) 

Unproductive Beliefs about 
Mathematics (Schoenfeld, 1992) 

Related Evidence from this Research Study  
(Reference to Specific Evidence) 

Mathematics problems have one and only 
one right answer. 

In ALEKS, problems have only one correct answer.  

There is only one correct way to solve 
any mathematics problem—usual the rule 
the teacher has most recently 
demonstrated to the class. 

Two of the three participants acquiesced to the solution 
method provided by ALEKS during their recorded Think 
Aloud sessions. 
(Figure 13. Jade, Think Aloud 1, Example, Transcript 
Lines 25-41) 
(Figure 14. Jade, Think Aloud 1, Problem 1, Transcript 
Lines 46-50) 
(Figures 30 & 31. Tia, Think Aloud 5)  
Chad stated, “Math is like, [deep Darth Vader like voice] 

‘This is the way, so learn it or die’” (p. 100). 
Ordinary students cannot expect to 
understand mathematics; they expect 
simply to memorize it and apply what 
they have learned mechanically and 
without understanding. 

The participants’ most prevalent patterns of cognitive 
engagement were Imitating Steps and Duplicating 
Procedures, which suggests that interactions with 
ALEKS did not help to facilitate learning with 
understanding. 
In addition, during her OETA Tia explicitly stated that 
she needed to remember how to do the procedures, but 
not why the procedure worked.  

Mathematics is a solitary activity, done 
by individuals in isolation. 

ALEKS is designed for individualized student learning 
and for students to work in isolation. 

Student who have understood the 
mathematics they have studied will be 
able to solve any assigned problem in 
five minutes or less. 

The average time participants spent on each ALEKS 
problem was calculated to be less than 5 minutes per 
problem.  
(Jade’s average time per problem was approximately 3 ¼   
minutes.) 
(Chad’s average time per problem was approximately 2 
½ minutes.) 
(Tia’s average time per problem was approximately 3 ½ 
minutes.)  
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Table 23. (Cont’d)  
The mathematics learned in school has 
little or nothing to do with the real world. 

In the EOC Questionnaire two participants (Tia and 
Chad) did not see connections between the course 
content and the real world.  
The third participant (Jade) believed the course content 
would be useful in her science-based career because math 
and science are related. 

Mathematics is not a creative endeavor. In the EOC Interview, one participant, Chad, explicitly 
stated that mathematics is not creative.  

 

Based on the evidence indicated in Table 23 above, it is likely that the students’ 

mathematical engagement with ALEKS would have reinforced unproductive beliefs about the 

nature of mathematics that the students may have already possessed. If unproductive beliefs 

about the nature of mathematics remain unchallenged, and if students ascribe to these 

unproductive beliefs about the nature of mathematics, an additional consequence of student 

engagement with ALEKS is that students who have successfully completed this course are not 

likely to be prepared to successfully engage in the type of mathematical thinking that is required 

in subsequent coursework or careers.  

Academic Consequences: Learning Goals for Collegiate Mathematics 

Obviously, it is important for introductory collegiate mathematics courses to prepare 

students to succeed in potential requisite multi-disciplinary coursework as well as requisite 

mathematics coursework. To help design courses to meet this goal, the MAA convened five 

groups of professors each from the following disciplinary content areas: agriculture, the arts, 

economics, meteorology, and the social sciences. These five disciplinary groups of professors 

served as content experts and each disciplinary group discussed the mathematical competencies 

necessary to be successful in their courses. The list of mathematical learning goals (see summary 

below) were strikingly consistent even though they were independently developed by each of 

these five disciplinary content areas (Ganter & Haver, 2011).  
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• Conceptual understanding and problem solving—communicating solutions to diverse 
audiences; precise and correct use of mathematics in presentations and reports � 

• Arithmetic and basic mathematical equations—relationships between variables; 
percentages, proportion, and measurement; translation of words into appropriate formulas 
and equations; graphical representations; unit conversions � 

• Problems in context—building analytical models and testing their viability; applying 
theory to real problems and evaluating alternative solutions; communicating and 
coordinating with disciplinary faculty to develop alternative problems; using context to 
inspire and create a need for mathematics (i.e., mathematics as a common technical 
language) � 

• Estimation and approximation—use of experimentation and exploration to discover 
mathematical concepts � 

• Statistics and quantitative data—measures of central tendency and standard deviation; 
analyzing data to make inferences and draw conclusions; presenting data as pictures 
(such as bar graphs, line graphs, and scatter plots) � 

• Appropriate use of technology—spreadsheets; geometrical/graphical software � 
(Ganter & Haver, 2011, p. 39)  

Unfortunately, the potential consequences of student engagement with ALEKS does not appear 

to support the learning outcomes recommended for collegiate mathematics by the Mathematical 

Association of America (MAA).  

Promises and Pitfalls of CAI 

The ALEKS program represents a notable technological achievement in the development 

of computer adaptive instructional software. Yet, as with any type of promising educational 

practice or technology, it is important to carefully examine the assumptions underlying those 

promising practices and consider alternative views. Johannes and Lagerstrom (2017) provided 

such an analysis of some “promises and pitfalls” of CAI, which are outlined in Table 24 below. 

Table 24. Summary of Promises and Pitfalls currently apparent in CAI 
    (Johanes & Lagerstrom, 2017, p. 11) 

Promises Pitfalls 
Clarification Promise. Clarify the underlying 
content, skills, and dispositions needed to master a 
certain domain. 

Epistemological Pitfall. Limits the instructor, 
learner, and researcher conceptions of knowledge 
and knowing. 

Personalization Promise. Find personalized paths 
through the learning process for each and every 
student. 

Ownership/Security Pitfall. Mishandling learner 
data legally, ethically, and economically 
(intentionally or not). 
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Table 24. (Cont’d)  
Optimization Promise. Increase learning gains 
while reducing the time durations needed to 
achieve them. 

Development Pitfall. Creating an adaptive 
learning system can bankrupt an institution due to 
high cost in expertise, time, and capital. 

Equalization Promise. Learners from all 
backgrounds can receive the education they want 
in a manner they need. 

Discrimination Pitfall. Biased, opaque, and 
inscrutable models can discriminate against 
certain learners. 

Instruction Promise. Teachers can be empowered 
and better supported in facilitating high-quality 
learning. 

Learning Pitfall. The models focus on a particular 
interpretation of learning that can be neglectful of 
social and physical learning. 

Research Promise. The scale and nature of the 
collected data open up new research avenues in 
data as well as learning science. 

Deluge Pitfall. While the systems are collecting a 
lot of data, much of that data might not be 
mission-critical and/or meaningful for analysis.  

 

The promise and pitfalls that are central to this study are the clarification promise and 

epistemological pitfall. The clarification promise is related to earlier discussions about the nature 

of the content/curriculum that is comprised by CAI and that students interact with. The 

epistemological pitfall is related to the earlier discussions about beliefs regarding the nature of 

mathematics and knowing mathematics.  

Although ALEKS presents mathematics content in clearly delineated, easily digestible 

bite-sized bits, it is not clear that students make mathematical connections between these bits of 

mathematics. This is the essential epistemological pitfall of ALEKS—that learning and 

understanding mathematics is narrowly defined as the ability to recall and reproduce isolated bits 

of procedures. To clarify this issue, I draw upon Skemp’s (1977) definitions of “instrumental 

understanding” and “relational understanding” of mathematics. Instrumental understand is 

solving mathematical exercises using “rules without reason” (p.89). In contrast, relational 

understanding is solving mathematical exercises by “knowing both what to do and why” (p.89). 

Due to the nature of its design, ALEKS can only guarantee that students attain an instrumental 

understanding of mathematics under the tutelage of the program alone.  
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Implications 

 There are many implications of this dissertation study, the first of which is the 

importance of “looking under the hood” of quantitative data analysis, so to speak, to investigate 

the same phenomenon using qualitative methods. The results of this research reveal that even if 

quantitative data may indicate positive outcomes regarding student learning, a deeper qualitative 

investigation may illuminate unforeseen results. Additional implications specifically for 

policymakers and mathematics departments, curriculum and CAI development, mathematics 

instructors, and mathematics education researchers are presented in the subsequent paragraphs. 

Implications for Policymakers and Mathematics Departments 

When considering developing or adopting CAI, it is important for policymakers and 

mathematics departments to consider the premises of CAI as well as both the promises and 

pitfalls of CAI (Johanes & Lagerstrom, 2017). Because CAI programs are commercially owned 

and marketed, policymakers and mathematics departments need to take the claims that are made 

about student learning in CAI with a grain of salt. For instance, current recommendations for 

undergraduate mathematics teaching and learning included calls for practices that encourage 

active learning environments. As a result, ALEKS has been marketed as being “based on active 

learning” (https://www.aleks.com/about_aleks/tour_ai_intro). It is important to pause and ask—

What does “active learning” actually mean in the ALEKS CAI environment? Furthermore, in 

administrative journals specific to higher education, CAI has been touted as a “silver bullet” to 

the dilemma of undergraduate mathematics attrition and failure rates (Twigg, 2011). Perhaps 

student pass-fail rates for mathematics may improve with the use of CAI (this is not necessarily 

the case), but the question remains whether CAI adequately prepares students to apply 

mathematical knowledge outside of the CAI environment and to succeed in requisite courses and 
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careers. Thus, when evaluating research about CAI, it is important to ask—Does this research 

provide evidence that students can apply this knowledge outside of the CAI environment and in 

requisite coursework?  

Implications for Curriculum and CAI Development 

Curriculum and CAI developers need to also consider the implicit messages that their 

products convey about the nature of mathematics and learning. CAI software also needs to 

incorporate methods that help students develop conceptual understanding as well as skill 

development. This may be possible by incorporating mathematical tasks that require students to 

make mathematical connections in CAI software. For example, problems may ask students to 

make connections between mathematical representations (words, expressions and equations, 

tables, and graphs), or to evaluate multiple solution methods. The inclusion of more problems 

based in a real life context also may help students make sense of the mathematics, as Chad was 

able to do in his Think Aloud Recording 2. Furthermore, CAI software needs to include 

metacognitive components that encourage students to verify their solutions and reflect on their 

solution process in relation to the mathematical whole. For instance, a glaring shortcoming in the 

ALEKS presentation of mathematics is that students are not encouraged or instructed to verify 

their own solutions. This overt omission needs to be rectified by the ALEKS software 

developers. Also, the inclusion of prompts to facilitate student reflection would at least begin a 

move toward the inclusion of metacognitive processes that may nurture a more relational 

understanding of mathematics.  

Implications for Mathematics Instructors 

Mathematics instructors who are required to utilize CAI such as ALEKS need to be aware 

of the implicit messages about the nature of mathematics, as well as message about the nature of 
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learning and knowing mathematics, that their students receive from these programs. In addition, 

it is imperative that mathematics instructors explicitly work to counteract any unproductive 

implicit messages their students may receive through CAI. Instructors may choose to conduct 

whole class discussions about the strengths and weaknesses of the CAI program. Also, it is 

important to make students aware of what requisite courses will expect so students can make 

informed decisions about their learning interactions with the CAI program. Furthermore, 

instructors may want to use class time to log into the CAI program to model and encourage 

effective metacognitive learning strategies for students. Last but not least, it is imperative that 

mathematics instructors engage their students in high cognitive demand tasks that require 

students to make mathematical connections and to “do mathematics” (Bieda et al., 2013; Boston 

& Smith, 2009; Boston & Wolf, 2006).  

Implications for Mathematics Education Research 

This dissertation study demonstrated novel research methodology to document, analyze 

and illustrate student interactions with CAI software. This cutting-edge research is significant 

owing to the fact that few studies have investigated this phenomenon. To document student 

interactions within a CAI environment, the data collection method included the innovative, 

combined use of screencast and pen-cast video recordings.  

In addition, this dissertation study presents an original framework, Problem Solving 

Phases, with which to analyze the nature of an individual’s mathematical work. Although the 

foundation of this framework was based on research concerning the solving of non-routine 

mathematics tasks, I posited that the general overarching phases of the framework (orientation, 

generation, and conclusion) would be applicable to any type of mathematical task, even routine 
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exercises, but that the activities within these phases would differ. The results of this study 

suggest that this is the case, yet further research is required. 

The cross-case analysis revealed the potential relationship between confidence and 

patterns of cognitive interactions. A strength of this analysis was this potential relationship 

emerged unprompted from the data. In other words, students spontaneously made explicit 

statements concerning confidence about 17 of the 57 ALEKS Topics recorded in this study. 

Although the natural emergence of the confidence measure represented a strength of the study, at 

the same time this small number of ALEKS Topics with a confidence measure was a limitation 

of the confidence measure. Future research about the relationship between confidence and 

patterns of cognitive interactions in the context of ALEKS, as well as other contexts, is 

warranted. Furthermore, for future research it may be advantageous to utilize a Likert scale 

question about confidence regarding mathematical tasks students solve to obtain more 

comprehensive data. In addition, the results of this study are task specific. In other words, a 

potential limitation of this study is that the 57 tasks, or ALEKS Topics, that were analyzed 

represented approximately 13% of the over 428 ALEKS Topics that comprised this Intermediate 

Algebra course.  

Due to the nature and presentation of the ALEKS Topics, or mathematical tasks, that 

students solved in this study, it was surprising to find that for a few of the tasks students engaged 

with the mathematics at a deeper level. Further examination of these instances is warranted to 

determine what may have been contributing factors for those deeper interactions.  

Future Research and Conclusion 

 Can students engage in deep learning of mathematics from worked examples? The results 

of this dissertation study thus far imply the answer is no. However, based on prior research I had 
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conducted with others (Gilbertson et al., 2016; Nimtz et al., 2015), I was confident that the 

answer to this question was that students can learn important mathematics from worked 

examples if those examples are carefully designed as hypothetical student work. Thus, I 

performed a thought experiment using the Phases of Problem Solving framework, my past 

research experience, and research conducted by Rittle-Johnson and Star (2011) to explore this 

question further (Table 25, p. 165). Note that the above cited research about examples of 

hypothetical student work is quite different from the plethora of research that exists on student 

learning from worked examples (Atkinson, Derry, Renkl, & Worthham, 2000). In contrast to the 

research summarized by Atkinson and colleagues, the research cited above examined examples 

of hypothetical student work and often includes multiple worked solutions that required students 

to compare, contrast, and analyze different solution methods. 

When examining the Table 25 below, keep in mind that the first three Patterns of 

Cognitive Interaction (Imitating, Deciphering and Duplicating, and Transcending), located 

above the dark, horizontal line in the middle of the table, were obtained empirically in this study.  

The three Patterns of Cognitive Interactions following this dark line in the middle of Table 25 are 

the result of a thought experiment. Lastly, I caution the reader that the list of Patterns of 

Cognitive Interactions in Table 25 is not intended to imply a linear curriculum or linear learning 

process. For example, a lesson or mathematical task involving Problem Solving may precede a 

lesson or mathematical task involving Compare and Evaluate Representations, Solutions, and/or 

Structure.  
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Table 25. Patterns of Cognitive Interactions: Observed and Thought Experiment  

 

 My point in creating this thought experiment is two-fold. The first purpose was to 

illustrate how multiple examples of hypothetical student work might be designed to facilitate 

deeper student interactions with mathematics. The second purpose was to illustrate how the 

Problem Solving Phases framework might be used to design mathematical tasks with specific 

goal of a deeper student interactions and to shift the authority for verifying solutions to the 

student as opposed to relying on the instructor or CAI program for verification. In these last 

pages, I provide a few examples and discuss some of the purpose and goals of the examination of 

hypothetical student work.  

	

SU
R

FA
C

E
 

D
E

E
P 

 
 
 
 
 

 Patterns of Cognitive 
Interactions 
Example(s) &/or  
Problem Set(s) 

Problem Solving Phases 

Orientation 
Activities 

Generation 
Activities 

Conclusion 
Activities 

 Imitate Each Step of 
Procedure 
Provided Example(s) &  
Routine Exercises 

• Read & Copy 
Example 

•    
•    

•      
•    
• Imitate Each 

Step 

• Verify 
o  External Authority 
o      

•    
 

Decipher the Procedure 
Provided Example(s) &  
Routine Exercises 

• Read & Copy 
Example 

• Understand 
•  

•      
•    
• Reproduce 

Procedure 

• Verify 
o  External Authority 
o  Internal Authority 

• Reflect & Connect 
 

Transcend the 
Procedure 
Provided Example(s) &  
Routine Exercises 

• Read & Copy 
Example 

• Understand 
• Analyze & 

Connect 

•      
•    
• Recreate 

Procedure 

• Verify 
o  External Authority 
o  Internal Authority 

• Reflect & Connect 
 

Identify & Differentiate 
Provided Examples &  
Routine Exercises  
Followed by Quiz or Test 
 

• Read 
• Understand 
• Analyze & 

Connect 

•  
• Plan (Identify 

Procedures) 
• Execute Plan 

• Verify 
o  External Authority     
o  Internal Authority 

• Reflect & Connect 
 

Compare & Evaluate 
Representations, 
Solutions, &/or 
Structure 
2 or More Examples of 
the Same or Similar 
Problems 

• Read 
• Understand 
• Analyze & 

Connect 

•  
• Plan 

(Discriminate 
Procedures)  

• Execute Plan 

• Verify 
o  External Authority     
o  Internal Authority 

• Reflect & Connect 
 

Create & Assemble 
Representations, 
Solutions, &/or 
Structure 
Definition & 1 or More 
Examples  

• Read 
• Understand 
• Analyze & 

Connect 

• Explore 
• Plan 
• Execute Plan 

• Verify 
o  External Authority     
o  Internal Authority 

• Reflect & Connect 
 

Problem Solving 
Novel Problems 

• Read 
• Understand 
• Analyze & 

Connect 

• Explore 
• Plan 
• Execute Plan 

• Verify 
o  External Authority     
o  Internal Authority 

• Reflect & Connect 
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 The mathematical task of examining hypothetical student work in Figure 36 was inspired 

by Tia’s interactions with ALEKS recorded in her Think Aloud Recording 5 (see Chapter 7) and 

falls under the category of Compare and Evaluate in Table 25. Recall that the excerpts from Tia’s 

Think Aloud Recording 5 suggested that she may have believed there is only one way to solve a 

mathematics problem. She stated, “I did it all wrong!” because her solution method did not 

follow the ALEKS Explanation, when in fact, her work was correct up until the last step of her 

solution. To counter this unproductive belief, that there is only one correct solution to a 

mathematics problem, this mathematics task presents two different, yet correct solution methods 

and asks the student to determine if both methods are correct, to explain how they know they are 

correct or not, and explain which method they prefer.  

 

 

Figure 36. Compare and Evaluate Two Correct Solutions 

Using Mathematics Examples
to Increase Students’ Mathematical Engagement

Jennifer (Jen) Nimtz

June 1, 2018

1 Compare and Evaluate: Example of 2 Solution Methods, Both Cor-
rect

Topic: Solving a two-step equation involving fractions.

Two students solved this problem using two di↵erent methods. Are both methods correct? How do you know?

Which method do you prefer? Explain your reasoning.

Solve for v.

�2

9
= �4

5
v +

4

3

Simplify your answer as much as possible.

Jackie’s Solution

�2

9
= �4

5
v +

4

3

�2

9
� 4

3
= �4

5
v +

4

3
� 4

3

�2

9
� 12

9
= �4

5
v

�14

9
= �4

5
v

✓
�5

4

◆✓
�14

9

◆
=

✓
�5

4

◆✓
�4

5
v

◆

35

18
= v

Diontae’s Solution

�2

9
= �4

5
v +

4

3

45

✓
�2

9

◆
= 45

✓
�4

5
v +

4

3

◆

45

✓
�2

9

◆
= 45

✓
�4

5
v

◆
+ 45

✓
4

3

◆

5(�2) = 9(�4)v + 15(4)

�10 = �36v + 60

�10� 60 = �36v + 60� 60

�70 = �36v

�70

�36
=

�36

�36
v

35

18
= v

1
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 The mathematical task presented in Figure 37 is another type of Compare and Evaluate 

task. Two different solution methods with different answers are presented. In this task, the 

student is asked to determine which method is correct, to find the error and correct it, and explain 

their reasoning. The purpose of this mathematical task is to encourage students to conduct their 

own error analysis of a commonly seen error, and to make connections between symbolic and 

graphical representations.   

 

 

Figure 37. Verifying and Evaluating Two Solutions, One Correct, and One Incorrect 

 

2 Compare and Evaluate: Example of 2 Solution Methods with Di↵er-
ent Representations

Topic: Finding the intercepts of a radical function.

Two students solved this problem using two di↵erent representations, one symbolic and the other graphical. They

came up with di↵erent answers. Who is correct? Find the error and correct it. Explain your reasoning.

Find the x� and y�intercepts, if they exist, for the graph of the function:

f(x) =
p
x+ 9 + 2

Jake’s Solution

The y�intercept is when x = 0.

f(0) =
p
0 + 9 + 2

f(0) =
p
9 + 2

f(0) = 3 + 2

f(0) = 5

So, the y�intercept is the point (0, 5).

The x�intercept is when f(x) = 0.

0 =
p
x+ 9 + 2

0� 2 =
p
x+ 9 + 2� 2

(�2)
2
=

�p
x+ 9

�2

4 = x+ 9

4� 9 = x+ 9� 9

�5 = x

So, the x�intercept is the point (�5, 0).

Del Juan’s Solution

�10�9 �8 �7 �6 �5 �4 �3 �2 �1 1 2

�2

�1

1

2

3

4

5

6

7

8

x

y = f(x)

f(x) =
p
x+ 9 + 2

When I graphed the equation, I found one intercept,

the y�intercept of (0, 5). There is no x-intercept.

2
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 The mathematical task presented in Figure 38 requires the student to Create and 

Assemble a mathematical example of a polynomial with roots at x = 1, 2, and 3. This is an 

intentionally open ended task that has multiple solutions—actually infinitely many solutions. The 

goal of this task is to facilitate discussion and evaluation of another student’s work. At the same 

time, depending on where this task is located in the curriculum, this task has the potential to 

introduce basic ideas of roots and polynomial factors that are essential to understand the 

Fundamental Theorem of Algebra. 

 

Figure 38. Creating and Assembling Examples 

 

In summary, I agree with Boston and Smith (2009) who argued that low level cognitive 

demand tasks that are so prevalent in CAI mathematics environments have their place in the 

curriculum, but that these low level cognitive demand tasks encompass far too high a proportion 

of students’ overall mathematical experiences. In other words, students spend too much time 

merely memorizing the procedures of how to solve specific types of mathematics problems, 

without understanding why the procedures work and without making connections between the 

procedures used in one problem type with how the same or similar procedures might or might 

not apply in the next problem type.  

3 Compare and Evaluate: Example of 3 Answers, Correct and Incor-
rect

Topic: Composition of Functions

Given the following two functions, find g � f and identify the domain of the composition.

f(x) = x2

g(x) = 1
x�4

YOUR TASK: Three students solved this problem and came up with the following

answers. Which student is correct? How do you know? Please explain.

Bob’s Answer

g(f(x)) = 1
(x�4)2

Domain: All Real Numbers EXCEPT x = 4.

Malika’s Answer

g(f(x)) = 1
x2�4

Domain: All Real Numbers EXCEPT x = �2, x = 2,

and x = 4.

Jane’s Answer

g(f(x)) = 1
x2�4

Domain: All Real Numbers EXCEPT x = �2 and

x = 2.

4 Create and Assemble an Example

Topic: Polynomials and Roots of Polynomials

• Create an example of a function equation with a graph that has roots at x = 1, 2, and 3.

• Swap your example with another student.

• Evaluate and give feedback on your colleague’s problem

• Together, come up with a di↵erent third example.

3



  

 169 

In contrast, working on complex mathematical tasks requires that students engage in 

mathematical thinking, make mathematical connections, and utilize important mathematical 

habits of mind to solve those tasks. Yet these types of mathematical tasks pose a longstanding 

challenge to educational technology. For instance, due to the open response design of the 

mathematical tasks outlined in Figures 36-38, they are not transferable to a CAI individualized 

learning environment such as ALEKS. In general, mathematical tasks that involve activities that 

encourage deeper student engagement (e.g. comparing, evaluating, exploring, creating, 

assembling) are more challenging to facilitate and assess in a computerized environment. 

Furthermore, communicating mathematics in online educational environments has been an 

ongoing challenge for online educators and program designers. Nason and Woodruff (2004) 

presented an overview of the challenges regarding facilitating mathematics discussions in an 

online class environment. 

1.   Inability of most “textbook” math problems [such as those prevalent in most CAI 
programs] to elicit ongoing discourse and other knowledge-building activity either during 
or after the process of problem-solving. 

2.  Limitations inherent in most [computer-supported collaborative learning] CSCL 
environments’ math representational tools and their failure to promote constructive 
discourse or other mathematical knowledge-building activities. (p. 104).  

 
To improve the potential of online mathematics instruction, Nason and Woodruff called for two 

primary innovations: 

1.   Authentic mathematical problems that involve students in the production of mathematical 
models that can be discussed, critiqued and improved.  

2.  Comprehension modeling tools that: (a) enable students to adequately represent 
mathematical problems and to translate within and across representational modes during 
problem solving, and (b) facilitate online student-student and teacher-student 
hypermedia-mediated discourse. (p. 104) 

 

 It seems that Nason and Woodruff’s comprehension modeling tools would be necessary 

for online mathematics instruction and curriculum to incorporate authentic mathematical 
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problems. Fortunately, recent technological innovations such as online synchronously shared 

whiteboards, some with palettes for mathematics, are now becoming more widely available 

(Hodges & Hunger, 2011). Until these curriculum changes and mathematical 

communication/modeling tools are incorporated into online mathematics courses, these courses 

will remain limited regarding the mathematical learning opportunities that online environments 

provide for students. 
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Appendix A: Research Participation Consent Form 

Case Studies of Undergraduate Students’ Interactions with an Online Computer Adaptive 
Instruction Intermediate Algebra Course 

 
Researchers:   
Jennifer L. Nimtz 
Doctoral Candidate 
Program in Mathematics 
Education 
A-721 Wells Hall,  
Michigan State University  
517-862-2489 
nimtzjen@msu.edu 

Sandra Crespo 
Professor 
Department of Teacher 
Education 
362 Erickson Hall, 
Michigan State University 
517-353-3035 
crespo@msu.edu 
 
 

Ralph Putnam 
Associate Professor 
Department of 
Counseling, Educational 
Psychology and Special 
Education 
511 Erickson 
517-353-9285 
ralphp@msu.edu 

 
Purpose:  
This form represents a request for your participation in a research study of an online intermediate 
algebra course (MTH 1825 at Michigan State University). The goal of this study is to gain more 
understanding of students’ experiences and learning interactions in an online intermediate 
algebra environment (MTH 1825) to develop theories about how students experience and learn 
about mathematics in this and similar courses. The study has been designed and is being 
conducted by a doctoral student in the Program in Mathematics Education (College of Education 
and the College of Natural Science) to fulfill the partial requirements of a doctoral program. 
 
Your Participation and Rights to Say “No” or Withdraw from the Study: 
As part of this project, you are being asked to participate in several ways. You may refuse to 
answer particular questions. You may terminate your involvement in any part of this study 
at any time. In other words, you have the right to say no. 
 
Overview of the Study Structure: 
First, the the researcher will distribute a questionnaire to all MTH 1825 students via the course 
email system. The purpose of the questionnaire is to help the researcher learn more about your 
personal and mathematics background as well as your attitudes towards mathematics. Following 
the questionnaire, 5 to 10 students will be asked to participate in a case study of this MTH 1825. 
The case study entails making a weekly 15 minute think aloud screen casts of your work in 
ALEKS using a free internet software called Screen-Cast-O-Matic. In addition, there will be a 
minimum of 3 interviews that last from 30 to 60 minutes. The time and commitment will vary; 
interviews will be arranged with the researcher.  
 
Please sign your initials if you understand and consent to the following: 
 
_____I may terminate my participation in this study at any time. 
 
_____I give my consent to be interviewed if asked. Each interview (maximum of four) will not 
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exceed 60 minutes. For the interviews, I also consent to be video-recorded for research purposes 
only. The interview will include topics related to personal experiences in schools, mathematics 
education background, and mathematical tasks (i.e., doing math problems related to the course 
content). 
 
_____Any information gathered from these interviews and used in this research will be reported 
under a false name (confidentiality). You may choose not to answer specific questions or to 
stop participating at any time. 
 
_____I agree to complete a questionnaire related to this project. None of my responses to this 
questionnaire will be shared with anyone associated with this course in ways that identify me. 
Any information gathered from my questionnaire will be reported under a false name. 
I give my consent for Jen to collect copies of my homework, quizzes, or tests (or other class 
materials) for the study if I am asked. Complete copies of these materials will not be shared with 
anyone. I give Jen permission to use portions of my work in her research, understanding that my 
real name will not be associated with those materials. 
 
_____I agree to return the Live Scribe Pen and Live Scribe Paper to Jen Nimtz at the end of the 
semester. 
 
Costs and Compensation: 
There is no financial cost to participate in this study. Similarly, you will not receive any 
monetary compensation, formal compensation (e.g., extra credit) for completing the survey.  
However, Students who are selected for the case study and commit their time and energy to 
record screen casts and participate in interviews will receive a $20 Amazon Gift Card and up 
to 4 hours of free one-to-one mathematics tutoring from the researcher, an experienced 
mathematics teacher and tutor. This tutoring can be scheduled near the end of this semester 
(November 28 through December 11) before final exams, or during the following semester. 
 
Potential Benefits to You: 
If you do choose to participate, this is an opportunity for you to reflect on your own 
mathematical experiences and other math-related experiences as a MTH 1825 student. Research 
shows that discussing academic experiences can be empowering, and our hope is that this will be 
an empowering experience. Over the course of the interviews, students who particulate will also 
be asked to talk about and do mathematics with the researcher. The mathematics will be directly 
related to the course material, and extra attention to the course content during these interviews 
will reinforce what students are learning course.  
 
Potential Risks to You: 
Just as discussing academic experiences can be empowering, discussing negative experiences in 
mathematics can also be a potential stressor. As part of the purpose of this study, however, we 
are supportive of students’ struggles and hope to help whenever possible. Otherwise, there are no 
foreseeable risks associated with participation in this study. 
 
Privacy and Confidentiality: 
Any materials we collect, any interview recordings, and any personal information will be kept 



  

 174 

confidential to the maximum extent allowable by law. Data will be stored in the researcher’s 
university office; electronic information will be password-protected and physical data (e.g., notes 
on paper, written materials) will be locked in a file cabinet to which only the researchers have 
access. Your real name will not be associated with any personal information; instead, false 
names will be used. The results of this study will be published and/or presented at professional 
meetings, but the identities of all research participants will remain anonymous. 
 
Contact Information for Questions and Concerns: 
If you have any questions about this study, such as scientific issues, your role, or to report an 
injury, please contact the investigators, Jennifer (Jen) Nimtz, A-721 Wells Hall, MSU;   
 
If you have questions or concerns about your role and rights as a research participant, would like 
to obtain information or offer input, or would like to register a complaint about this study, you 
may contact, anonymously if you wish, the Michigan State University's Human Research 
Protection Program at 517-355-2180, Fax 517-432-4503, or e-mail irb@msu.edu or regular mail 
at 207 Olds Hall, MSU, East Lansing, MI 48824. 
 
Documentation of Informed Consent: 
Your signature below means that you voluntarily agree to participate in this research study. You 
will be given a copy of this form to keep. 
 
 
 __________________________________________________ 

Student’s Name (Printed) 

 

 
___________________________________________________  __________________ 
Student’s Signature         Date 
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Appendix B: Research Design Summary Table  

Overarching Research Question: What is the nature of students’ engagement (SE) with an online CAI intermediate algebra course? 

Table 26. Research Questions, Student Engagement Indicators, Definitions, and Evidence 

Specific Research 
Questions 

SE Indicator Short Definition Researcher Observed 
Evidence 
(Screencast & Pen-cast  
Think Aloud Recordings) 

Student Reported 
Evidence 
(Surveys and Interviews) 

What is the nature of 
students’ cognitive 
interactions within an 
online CAI intermediate 
algebra course? 
 
 

Cognitive 
Interactions 

Student problem solving 
and thinking activities 
while solving 
mathematics problems 

Phases and Activities of 
Problem Solving 
 
SurfaceßàDeep Learning  

!"#$	ßà &'($!)#*'(+',	*'(	-"''$-#+"')  
 

Responses to researcher  
questions during Observed 
Extended Think Aloud 
(OETA). 

What is the nature of 
students’ academic 
interactions within an 
online CAI intermediate 
algebra course? 

Academic 
Interactions 

Student activities related 
to learning course 
material. 

Study Strategies 

Use of Resources and Tools 

Study Strategies 

Use of Resources and Tools 

What is the nature of 
students’ affective 
interactions within an 
online CAI intermediate 
algebra course? 

Affective 
Interactions 

Student emotional 
responses to course 
content and class 
participation 

Explicit statements about 
confidence or lack of 
confidence 

 

 

Confidence level about 
mathematics and course 

Value of mathematics and 
course 

Not applicable  
in this context 

Social 
Interactions 

Student activities that 
are in accordance with 
explicit and implicit 
academic/class norms 

Not applicable  
in this context 

Not applicable  
in this context 
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Appendix C: Research Design by Student Engagement Indicator 

Table 27. SE Indicator 1: Cognitive Interactions 
    Data Source A: Think Aloud Recordings 

Coding Pass Unit of Analysis Analysis  Activity Type of Code 

1.A.Pass (i) Each Complete 
Think Aloud 
Recording 

a. Identify ALEKS Topics in 
each recording.  
 
b. Identify the ALEKS 
Sequence.  
 
c. Identify Problems as 
correct, incorrect, or not 
attempted/completed. 

a. Predetermined by 
ALEKS software 
 
b. Observed Student & 
CAI interactions, such as: 
ALEKS Example 
Problem 1 Incorrect 
ALEKS Explanation 
Problem 2 Correct 
Problem 3 Correct 
Problem 4 Correct 
Next Topic 
 

1.A.Pass (ii) ALEKS Topic Identify Cognitive Demand  
of the Task. The math task 
is defined as the ALEKS 
Topic. 

Predetermined by IQA 
Potential of the Task 
Rubric (Appendix F) 
 

1.A.Pass (iii) Each Complete 
Think Aloud 
Recording 

Identify & Transcribe 
Critical Incidents. These are 
those ALEKS Topics in 
which the recording showed 
explicit evidence of student 
thinking.  Document the 
beginning time and ending 
time for each ALEKS Topic 
and each problem within the 
topic. 
 

Emergent:  
Critical incidents typically 
occurred when students’ 
got a problem wrong and 
was trying to correct their 
error.  
Critical incidents also 
occurred when the 
student’s work went over 
and above expectations in 
ALEKS 
 

1.A.Pass (iv) Utterances and 
actions in each 
ALEKS Topic 

Identify Problem Solving 
Phases (PSP) by analyzing 
student utterances and 
actions in the ALEKS topic. 

PSP (Orientation, 
Generation, Conclusion) 
from synthesis of research 
literature  
 

 Utterances and 
actions within 
each Phase of 
Problem Solving 

Identify Activities for 
Critical Incidents. 

Emergent & Descriptive: 
Imitate 
Reproduce 
Recreate 
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Table 28. SE Indicator 2: Academic Interactions 

    Data Source A: Think Aloud Recordings 

Indicator & 
Data 

Unit of Analysis Coding Activity Type of Code 

2.A Utterances and actions 
within each ALEKS Topic 

Identify and code 
Study Strategies 
 
 

Emergent & Descriptive: 
Notetaking 
Planning 
Memory  
 
 

2.A Identify resources used via 
screen cast for each ALEKS 
Topic 
 

Identify and code 
Resources 
 

Emergent & Descriptive: 
ALEKS Environment 
Personal Tutor 
Friend 
Mathematics Learning 
Center 

 

 

Table 29. SE Indicator 2: Academic Interactions 
    Data Source B: End of Course Survey and Interview 

Indicator & 
Data 

Unit of Analysis Coding Activity Type of Code 

2.B Student Response to 
Interview Questions: #4 & 5 
 

Identify and code 
Study Strategies 
 

Emergent & Descriptive: 
Notetaking 
Planning 
Memory  
 

2.B Student Response to 
Interview Questions: #4 & 5 
 

Identify and code 
Resources 
 

Emergent & Descriptive: 
ALEKS Environment 
Personal Tutor 
Friend 
Mathematics Learning 
Center  

 

 

 

 



  

 178 

 
Table 30. SE Indicator 3: Affective Interactions 

    Data Source A: Think Aloud Recordings 

Indicator & 
Data 

Unit of Analysis Analysis Activity Type of Code 

3.A Utterances and 
actions within each 
ALEKS Topic 

Identify and code 
explicit statements 
evidencing Confidence  
 

Emergent & Descriptive: 
Confidence Before  
Lack of Confidence Before 
Confidence about Answer 
Lack of Confidence about 
Answer 

 

 

 

 

Table 31. SE Indicator 3: Affective Interactions  
    Data Source B: End of Course Survey and Interview 

Indicator & 
Data 

Unit of Analysis Analysis  Activity 

3.B Student Response to Math History 
Questionnaire (Appendix D): #19, 22-25 
 
Student Response to End of Course 
Questionnaire (Appendix E): #5-12 
 

Transcribe and compare pre- 
and post- responses. 

3.B Student Response to End of Course Interview 
Questions (Appendix F): #2 & 3 
 

Transcribe responses. 
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Appendix D: Mathematics History Questionnaire 
(Adapted from Larnell, 2011) 

 

FS16 Survey Introduction_____________________________________________________ 
This survey is part of a research project documenting the experiences of students taking 
online Intermediate Algebra courses, such as MTH 1825. This study is being conducted by 
Jennifer (Jen) Nimtz, a doctoral student in the Program in Mathematics Education and to 
fulfill the dissertation requirements of a doctoral program.  
 
This survey will take about 10 minutes. 
 
Survey Contact: Jennifer (Jen) Nimtz, Program in Mathematics Education, Michigan State 
University, nimtzjen@msu.edu 
 
Your participation in this project is welcomed, but you are not required to participate. 
Also, this questionnaire is not connected to your grade or coursework in this or any 
courses that you are taking or may take in the future. Your responses to these items will 
be kept confidential and data will be assigned to a fake name. By completing and 
submitting this online survey, you are volunteering your responses. There is no 
monetary compensation associated with completing this survey. You may refuse to 
answer any questions or stop the survey at any time.  
 
Thank you in advance for your participation! 

SS17 Survey Introduction_____________________________________________________ 
Complete this survey to be entered to win a $50 Amazon gift card! 
 
This survey will help to improve students’ learning experiences in MTH 1825 and similar 
courses. 
 
This survey will take about 15 minutes. 
 
Survey Contact: Jennifer (Jen) Nimtz, Program in Mathematics Education, Michigan State 
University, nimtzjen@msu.edu 
 
Your participation in this project is important, but you are not required to participate. 
This questionnaire is not connected to your grade or course work in this or any course 
you are taking or may take in the future. Your response to these items will be kept 
confidential. By completing and submitting this online survey, you are volunteering 
your responses. You may choose not to answer any questions or stop the survey at any 
time. However, only those surveys with at least 75% of the questions accurately 
completed will be entered into the Amazon gift card drawing. You must be at least 18 
years old to participate in this research and to win the drawing. 
 
Thank you in advance for your participation! 
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1. Are you 18 years of age or older?  
 
 Yes __________ No __________ 
 
2. Are you also enrolled in MTH 100E this semester? 
 
     Yes _____ No _____ Unsure_____ 
 
3. Would you be interested in learning more about participating in further research (a case 

study) about your experiences in this online MTH 1825 course? 

 
 

 
 
 
 
 
 
 
     
 

 Yes _____ Maybe ______ No______ 
 
 
4. What is your name? (your preferred name) 
 
5. What is your MSU email? (required for entry into the drawing) 
___________________________________________________________________ 
 
6. What is your cell phone number? (required for entry into the drawing) 
___________________________________________________________________ 
 
7. What is the best way to contact you? 
 Email __________ Text __________ 
 

SS17 Additional Text to this question: 
Benefits of participating in the research:  

• a $75 Amazon gift card,� 
• up to 2 hours of free tutoring for the MTH 1825 Final Exam,� 
• the activities of the research project may help you remember and learn the 

course content,  
• your participation would help future students who take similar courses.  

For more details, please see the information on the website at:  
 sites.google.com/view/mth1825researchproject  
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8. Please take a few moments to write about your experiences with mathematics both in 

school and outside of school. If you are having a hard time starting, consider the 
following questions:  
• Was there a particular time when your attitude toward math changed for the better 

or worse?  
o When was that? What happened? 
o Do you like math?  
o Why or why not?  

 
9. What is your gender? (check all that apply)  
 _____ Male  
 _____ Female 
 _____ Other  
 
10. If you answer other to the question, “What is your gender?” above, please specify. 
 
11. With which racial/ethnic group do you identify? (check all that apply) 
 
  _____ American Indian, Native American, or Alaska Native; 
 _____ Asian or Asian-American;  
 _____ Black (not of Hispanic origin) or African-American;  
  _____ Hispanic, Latino, or Latino-American:  
 _____ White (not of Hispanic origin) or Caucasian;  
 _____ Other/None of the above.  
     
12. Please specify further about the racial/ethnic group with which you identify.   
  
______________________________________________________________ 
 
 
13. When did you graduate from high school? (month/year) _______/__________ 
 
 
14. What is your current university classification? 
 
 _____Freshman    
 _____Sophomore    
 _____Junior    
 _____Senior (+) 
 
15. Were you admitted to the university under the College Achievement Admissions  

Program (CAAP) or any other student service programs at MSU? 
 
 Yes, CAAP _____ No _____ Unsure_____  
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16. If you were you admitted to the university under a program other than CAAP, please 

state that program here. 
 
________________________________________________________________ 
 
 
17. What is your major? ________________________________________ 
 
 
18. Which statement below best describes your high school mathematics experience. 
 
_____ My high school math teacher primarily lectured to the class and sometimes asked 

students questions related to the lecture. 
 
_____ My high school math teacher both lectured to the class and provided activities in 

which students worked together in small groups to learn mathematics. 
 
_____ My high school math teacher primarily provided activities in which students 

worked together in small groups to learn mathematics followed by whole class 
discussion. 

 
 
19. How would you best describe your view of mathematics in high school?  
 _____ I liked math. 
 _____ Indifferent (It was ok; no big deal)  
 _____ I disliked math 
 _____ I did not have an opinion about math 
 
20. In what year(s) did you take mathematics in high school? (Check all that apply.) 
 _____Freshman 
 _____ Sophomore 
 _____ Junior 
 _____ Senior 
 _____ Additional Year(s)     
 
21. What was the last mathematics classes you took in high school?  
 
 _____Advanced Algebra or Algebra 2 
 _____ Integrated Math 
 _____ Statistics 
 _____ Pre-Calculus 
 _____ Calculus 
 _____ Financial Math 
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22. How would you describe your math ability?  
 _____Strong� 
 _____Above Average  
 _____Average� 
 _____Below Average  
 _____Weak  
 
23. How would you describe your attitude toward math?  
 _____I enjoy math� 
 _____I am indifferent about math  
 _____I dislike math  
24. How much do you think mathematics will play a role in your career?  
 _____a lot  
 _____somewhat  
 _____not at all  
 
25. How much do you think mathematics will play a role in your everyday life?  
 _____a lot  
 _____somewhat  
 _____not at all  
 
26. Did you take the SAT test?  
 _____Yes  
 _____No  
 _____Not Sure  
 
27. If you took the SAT test, what was your mathematics score on the SAT? (If you can 

remember it.)  
 
 __________________________________________________ 
 
28. Did you take the ACT test?  
 _____Yes  
 _____No  
 _____Not Sure  
 
29. If you took the ACT test, what was your mathematics score on the SAT? (If you can 

remember it.)  
 
 __________________________________________________ 
 
30. Do you think your score on tests like the SAT and/or ACT accurately reflects your 

mathematics ability?  
 _____Definitely yes� 
 _____Probably yes  
 _____Might or might not� 
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 _____Probably not  
 _____Definitely not  
 
31. Did you take the MSU Mathematics Department Placement Exam? 
 _____Yes  
 _____No  
 _____Not Sure  
32. If yes, how did you take the MSU Mathematics Department Placement Exam?  
 _____On-line  
 _____On campus with a proctor 
 _____Not Sure  
 
33. How influential do you feel your score on the MSU Mathematics Department 

Placement Exam on your placement into MTH 1825?  
 _____Definitely influential� 
 _____Probably yes influential 
 _____Maybe influential � 
 _____Probably not influential 
 _____Definitely not influential 
 
34. Do you feel the MSU Mathematics Department Placement Exam was a good 

indication of your knowledge about mathematics?  
 _____Definitely yes� 
 _____Probably yes  
 _____Might or might not� 
 _____Probably not  
 _____Definitely not  
 
35. Do you feel with better high school preparation your score on the MSU Mathematics 

Department Placement Exam would have improved?  
 _____Definitely yes� 
 _____Probably yes  
 _____Might or might not� 
 _____Probably not  
 _____Definitely not  
 
36. Do you feel that if you reviewed more before taking the MSU Mathematics 

Department Placement Exam, that your score would have improved?  
 _____Definitely yes� 
 _____Probably yes  
 _____Might or might not� 
 _____Probably not  
 _____Definitely not  
37. What best describes the reason for your placement into MTH 1825?� 
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_____ I had previous exposure to the topics in this course, but need a refresher 
experience before proceeding to college-level mathematics courses.� 

 
_____ I had no previous exposure to the topics in this course, and this experience will 

help me develop the skills to enter college-level mathematics courses.  
 
_____ Neither of the above.  
 
 
 
38. Would you be interested in learning more about participating in further research (a 

case study) about your experiences in this online MTH 1825 course? 

 
 

 
 
 
 
 
 
 
     
 

 Yes _____ Maybe ______ No______ 
 
 
39. Is there anything else that you’d like to say that we didn’t ask? We’d like to know! 
 
 
 
 
 
 
THANK YOU FOR COMPLETING THIS QUESTIONNAIRE!!!!!  

SS17 Additional Text to this question: 
Benefits of participating in the research:  

• a $75 Amazon gift card,� 
• up to 2 hours of free tutoring for the MTH 1825 Final Exam,� 
• the activities of the research project may help you remember and learn the 

course content,  
• your participation would help future students who take similar courses.  

For more details, please see the information on the website at:  
 sites.google.com/view/mth1825researchproject  

 



  

 186 

Appendix E: End of Course Questionnaire 

This survey is part of a research project documenting the experiences of students taking online 
Intermediate Algebra courses, such as MTH 1825. This study is being conducted by Jennifer 
(Jen) Nimtz, a doctoral student in the Program in Mathematics Education and to fulfill the 
dissertation requirements of a doctoral program.  

 
Survey Contact: Jennifer (Jen) Nimtz, Program in Mathematics Education, Michigan State 
University, nimtzjen@msu.edu 

 
This survey will take about 10 minutes. 

 
Your participation in this project is welcomed, but you are not required to participate. Also, this 
questionnaire is not connected to your grade or coursework in this or any courses that you are 
taking or may take in the future. Your responses to these items will be kept confidential and data 
will be assigned to a fake name. By completing and submitting this online survey, you are 
volunteering your responses. There is no monetary compensation associated with completing this 
survey. You may refuse to answer any questions or stop the survey at any time.  

 
Thank you in advance for your participation! 
 
 
Section 1. Personal Information and Background 
 
1. Are you 18 years of age or older?   
  
 Yes __________ No __________ 
 
 
2. What is your name? (your preferred name) 
 
 
 
3. Please take a few moments to share about your experience in MTH 1825. If you are 
    having a hard time getting started, consider the following two questions: 

• What there are particular time when your attitude toward mathematics changed 
for the better or for the worse? If so, when was that? What happened? 

• Did you like MTH 1825? Why or why not? 
 
 
 
 
 
 
 
4. What is your major? Has your major changed this semester? 
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5. How would you describe your math ability?  
 _____Strong� 
 _____Above Average  
 _____Average� 
 _____Below Average  
 _____Weak  
 
6. Please elaborate on how you describe your math ability in relation to MTH 1825. 
 
 
7. How would you describe your attitude toward math?  
 _____I enjoy math� 
 _____I am indifferent about math  
 _____I dislike math  
 
8. Please elaborate on how your experience in MTH 1825 influenced your attitude toward 

math (or not). 
 
 
9. How much do you think mathematics will play a role in your career?  
 _____a lot  
 _____somewhat  
 _____not at all  
 
10. Please elaborate on how mathematics will play a role in your career (or not). 
 
 
11. How much do you think mathematics will play a role in your everyday life?  
 _____a lot  
 _____somewhat  
 _____not at all  
 
12. Please elaborate on how mathematics will play a role in your everyday life (or not). 
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Appendix F: Interview Protocols 
 

Math History Questionnaire Follow-Up Potential Questions 

(Use the Math History Questionnaire to structure this interview) 

1. In your survey, I noticed that you answered that____. Would you please tell me more 

about that? 

 

 

 

Observed and Extended Think Aloud Potential Questions 

1. Here I noticed that you wrote _____. Would you tell me more about your thinking? 

2. I noticed that you said _____. Would you tell me more about your thinking? 

3. Based on the topic you just completed, and the topic you are just starting, how are the 

two related?  

a. When you work in ALEKS, do you think about how the topics might be related? 

Do you consider what connections there might be between the topics? 

4. I noticed that you were having some difficulty on this problem. What do you do in this 

online course when you are having difficulty solving a problem?  

a. What resources do you draw upon? For example, do you read the electronic text? 

Watch a video? Do you go to the Math Tutoring Center for help? Do you ask a 

friend for help? 

5. As you’ve worked in ALEKS, I noticed this (ALEKS feature). Have you ever used it?  
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End of Course Interview 

(Also discuss the End of Course Questionnaire)  

1. So, you are almost done with this online Intermediate Algebra course. What would you 

like to share about your experiences?  

a. What worked best for you in this course? 

b. What did not work very well for you in this course? 

2. What about this course needs to change and what needs to stay the same? 

a. Do you appreciate how the course was structured?  

b. Do you feel like working in ALEKS helped you learn what you needed to know? 

3. Was the mathematics you needed to know valuable or useful to you? 

4. Because you did not have a lecture class, how did you learn the material?  

a. What resources do you draw upon? 

5. What did you do when you had difficulty?  

a. What resources did you use when you had difficulty with the work? For instance, 

did you go to the MLC for help? Did you ask a friend for help? 
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Appendix G: IQA Task Potential 
(Boston & Wolf, 2006) 

 

IQA Mathematics Lesson Observation Rubrics and Checklists, Melissa Boston ©2012 
For permission to use, contact Melissa Boston, bostonm@duq.edu, 412-396-6109 
 

8 

Academic Rigor 
 

RUBRIC 1: Potential of the Task 
Did the task have potential to engage students in rigorous thinking about challenging content? 
 

4 

The task has the potential to engage students in exploring and understanding the nature of mathematical 
concepts, procedures, and/or relationships, such as: 
x Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a predictable, well-rehearsed 

approach or pathway explicitly suggested by the task, task instructions, or a worked-out example); OR  
x Procedures with connections: applying a broad general procedure that remains closely connected to mathematical 

concepts. 
 
The task  must  explicitly  prompt  for  evidence  of  students’  reasoning  and  understanding.   
For example, the task MAY require students to:   
x solve  a  genuine,  challenging  problem  for  which  students’  reasoning  is  evident  in  their  work  on  the  task;; 
x develop an explanation for why formulas or procedures work;  
x identify patterns and form and justify generalizations based on these patterns; 
x make conjectures and support conclusions with mathematical evidence; 
x make explicit connections between representations, strategies, or mathematical concepts and procedures. 
x follow a prescribed procedure in order to explain/illustrate a mathematical concept, process, or relationship. 

3 

The task has the potential to engage students in complex thinking or in creating meaning for mathematical 
concepts,  procedures,  and/or  relationships.  However,  the  task  does  not  warrant  a  “4”  because:   
x the  task  does  not  explicitly  prompt  for  evidence  of  students’  reasoning  and  understanding. 
x students may be asked to engage in doing mathematics or procedures with connections, but the underlying 

mathematics in the task is not appropriate for the specific group of students (i.e., too easy or too hard to 
promote engagement with high-level cognitive demands);  

x students may need to identify patterns but are not pressed for generalizations or justification; 
x students may be asked to use multiple strategies or representations but the task does not explicitly prompt 

students to develop connections between them; 
x students may be asked to make conjectures but are not asked to provide mathematical evidence or explanations 

to support conclusions 

2 

The potential of the task is limited to engaging students in using a procedure that is either specifically called for or its 
use is evident based on prior instruction, experience, or placement of the task. There is little ambiguity about what 
needs to be done and how to do it. The task does not require students to make connections to the concepts or 
meaning underlying the procedure being used. Focus of the task appears to be on producing correct answers 
rather than developing mathematical understanding (e.g., applying a specific problem solving strategy, 
practicing a computational algorithm). 
 
OR There is evidence that the mathematical content of the task is at least 2 grade-levels below the grade of the 
students in the class. 

1 

The potential of the task is limited to engaging students in memorizing or reproducing facts, rules, formulae, 
or definitions. The task does not require students to make connections to the concepts or meaning that underlie 
the facts, rules, formulae, or definitions being memorized or reproduced. 
 

0  The task requires no mathematical activity. 

N/A  Students did not engage in a task. 

ATTACH OR DESCRIBE THE TASK. 
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Appendix H: ALEKS Learning Mode 
(ALEKS, 2016, pp. 31-32) 

 

Figure 39. ALEKS Learning Mode Reference  
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Figure 40. ALEKS Learning Mode Reference 

©2016 McGraw-Hill Education   |   Reference Guide: Student Module | Last Updated: 12.21.2016 32

Example of a Problem Page in Learning Mode

Below is an example of a problem in Learning Mode that points out key areas of the page with a description. For more 
details, please select on the links to go to the applicable section in this document.

1 | Home: Returns students to the homepage. 

2 | Slice Name.

3 | Topic Name.

4 |  Topic Carousel Tab: Opens/closes the Topic Carousel 
where students can choose other topics to work on. 

5 |  Underlined Mathematical Terms: Links to the 
dictionary. Students can select any term to get a 
complete definition.

6 |  Progress Indicator: Displays immediate feedback 
messages and a counter to show how many correct 
answers students need in a row.

7 |  Resources: Students will have access to learning 
resources (i.e. tools on the right side of the page) while 
they are working on problems. 

8 |  Explanation: Opens a pop-up with an 
explanation of how to solve the problem. Using this 
 button does not count against the student’s score. 

9 |  Check: Checks the answer submitted by the student.

1

2
3

4

5

6

7

8 9
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Appendix I: Think Aloud Recording Data Table Headings 
 

Data from each think aloud recording was organized in a table with headings as listed below.  

• Logistical Information  
o Semester (FS16 -or- SS17) 
o Semester Week Number 
o Student First Name (Pseudonym) 
o Recording Type (Think Aloud -or- Observed Extended Think Aloud) 
o Recording Session Number 
o Date of Recording 
o Length of Recording (Minutes and Seconds) 

• ALEKS Topic (Topic as listed in the software) 
o Problems Per Topic  
o ALEKS Sequence  

ALEKS Example       
Problem 1: Correct          
Problem 2: Correct      
Problem 3: Correct        
Next Topic 

o Context (Real World Application) 
o Problems Correct 
o Problems Incorrect 
o Problems Not Attempted 

• Cognitive Interactions 
o Cognitive Demand of the Task (IQA Rubric) 
o Routinized (ALEKS Sequence proceeds smoothly) 
o Critical Events (ALEKS Sequence included detours, unplanned events, 

application problems, and observer noted difference.) 
• Academic Interactions 

o Resources (e.g. ALEKS Example, ALEKS Explanation, ALEKS Video, other 
online resources) 

o Study Strategies (e.g. Note-taking, memory strategies, planning strategies) 
• Affective Interactions 

o Before Problem Confidence Statement (before beginning work on a problem) 
§ Positive (e.g. “I get this.”) 
§ Negative (e.g. “I have never been good at fractions.”) 

o After Problem Confidence Statement (after completing a problem and as the 
problem is entered into ALEKS for evaluation) 

§ Positive (e.g. “That seems right.”) 
§ Negative (e.g. “I think that’s wrong.”) 
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Appendix J: Sample Pages of Each Participant’s Written Work 
 

 
Figure 41. Sample Page of Jade's Written Work (Think Aloud 1, p. 1) 
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Figure 42. Sample Page of Jade's Written Work (Think Aloud 1, p. 2) 

  

Jade solved Problem 3 mentally. 
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Figure 43.Sample Page of Chad’s Written Work (Think Alouds 1 & 2, p. 1) 
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Figure 44. Sample Page of Chad’s Written Work (Think Aloud 2, p. 2) 
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Figure 45. Sample Page of Tia’s Written Work (Think Aloud 3, p. 1) 
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Figure 46. Sample Page of Tia’s Written Work (Think Aloud 3, p. 2) 
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