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ABSTRACT 

COMPLEX MODAL ANALYSIS OF CARANGIFORM SWIMMING KINEMATICS 

By  

Mahdieh Tanha 

The overall purpose of this study is to do a complex modal analysis of the kinematic data 

of carangiform swimming. The research considers the midline motion in itself, leaving 

out the causes to which the initiation of motion is ascribed. Today, motion analysis is 

commonly based on the FFT (fast Fourier transform). Instead, this research examines a 

more recent technique, COD (complex orthogonal decomposition), to perform complex 

modal analysis. This analysis describes the main modes of the lateral displacement, and 

the associated frequency and wavelength. Body center lines were used for the kinematic 

analysis of the swimming motion. We acquired raw data of midline lateral movements 

from the resources available in the literature for three carangiform fish: whiting, 

mackerel, and saithe. The midline motion data for these fish was originally available in 

photo form, so it had to be digitized in order to be used as input to COD. Using COD, the 

total motion was decomposed into the main modes (eigenvectors) with the corresponding 

contribution (eigenvalues). Each mode, in addition, was decomposed to its standing and 

traveling parts. COD was used also to do accurate measurement of amplitude, wavelength 

and frequency (as functions of location or time). The main focus of this analysis is to 

compare the traveling wave model with the true motion (raw data). In this regard, a 

traveling wave model was also built based on amplitude profile, average wavelength, and 

frequency of raw data, and the same analysis that was applied to the raw data was applied 

to this model. The results for both cases (raw data and the traveling wave model) were 



then compared.  The results show that in both cases, there is only one main mode which 

incorporates more than 99% of the energy. The other finding is that if we consider the 

main mode of carangiform motion in the context of amplitude(x)×cos(ωt - cx), then the 

coefficients ω and c in the argument of harmonic function are not constant, but functions 

of time and location, respectively. Also, this analysis shows that the standing part for both 

cases has non-zero amplitude, which challenges the notion of a pure traveling wave 

suggested in nearly all literature for the kinematics of fish swimming. COD can be 

performed with the goal of isolating a single mode of interest, and then representing the 

mode by the real and imaginary parts of the extracted complex mode, quantifying the 

motion parameters based on the complex mode and modal coordinate, enabling 

visualization and computation of additional quantities of interest, and “purifying” or 

isolating the motion in terms of the extracted mode. 
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CHAPTER I

Introduction

In this research, we analyzed the kinematics of the carangiform swimming mid-

line. Kinematics is a subdivision of classical mechanics concerned with the motion of

moving bodies. It considers the various possible types of motion in themselves, leav-

ing out the causes to which the initiation of motion may be ascribed. In comparison,

analytical dynamics is that branch of knowledge in which the motions of material

bodies are considered as due to the mutual interactions of the bodies (Whittaker

(1988)). Fish kinematic analysis is the process of measuring the kinematic quantities

used to describe swimming motion without any regards to the forces and masses. In

comparison, in dynamic analysis of fish swimming, the motion is regarded by taking

into account all force interactions between the body and external environment, to

investigate the time evolution and spatial distribution of displacement field and the

vibration of continua.

Carangiform swimming is one of aquatic propulsion modes that generates lat-

eral undulatory non-synchronous waves propagating down the body and through the

caudal fin. Because of the parts contributing in the propulsion, it is count as a

BCF (body and caudal fin) modes. The same trend is observed in some other BCF

aquatic locomotion types such as anguilliform and sub-carangiform. What discretize

the various BCF modes is the amplitude envelope representing a body part’s extend

of participation in the swimming. Specifically in carangiform mode, the vast ma-

jority of movement is concentrated in the very rear of the body and tail, leading to
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appearance of a rapidly oscillating tails (Breder (1926)). This study aims to show

that other than the amplitude envelope, there are other kinematic features that are

common among the species in a same category. We are going to evaluate this for

three carangiform fish species: whiting (Gadus merlangus or Merlangius merlangus),

mackerel (Scomber scombrus, fam. Scombridae), and saithe (Pollachius virens, fam.

Gadidae). The evaluation is based on the wave parameters like modal shape, am-

plitude, frequency, wavenumber, and traveling index discussed later. However, we

cannot judge if these features are unique to this category until we do the same study

on further carangiform species and on the other locomotion types and compare the

results. Among all the particles of the body, we chose the midline points for the

kinematic analysis. This selection is because according to Shadwick et al. (1998),

mackerel fish body acts like a simple thin beam in bending when swimming at low

to moderate speeds. On this basis, displacement of other points can be expressed in

terms of displacement of midline points. Regarding the whiting and saithe, we do

not know if the pure bending is governing the lateral motion or at least there is not

such an evaluation in the literature. However, we consider the midline in these cases,

because we have access to only midline data.

The swimming kinematics is a necessary part of the investigation of any dynamical

study on the subject of swimming. Swimming dynamics is a puzzle with the pieces

such as locomotor kinematics, muscle dynamics, neuromuscular activation, and fluid

dynamics. The kinematic model is often used as input to computational models of

the fluid flow around the fish. The kinematics of swimming fish is an important topic

to investigate since it can be the underlying scientific support for nature-inspired

aquatic robot construction. Kinematic analysis may be used to find the range of

movement for a fish, and working in reverse, to design a robot for a desired range of

motion. Recently, there has been increasing interest in the study of aquatic robots

with applications like exploration in challenging environment. A good reason to in-
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spire from the natural motions is the high efficiency of propulsion (in terms of energy

consumption), and maneuverability, especially in BCF swimming. BCF swimming

which is known to be inherently stable, has good acceleration performance and good

cruising performance (Blake (2004)). With a known kinematics, robots can be con-

structed that emulate natural fish, and so establish a high propulsive efficiency or a

high maneuverability (in terms of mission requirements).

In the following sections, we aim to trace the intellectual progression of the field

of swimming kinematics and the application of the only model proposed for it in

hydrodynamic and dynamic studies and in robot fish design.

1.1 Background on fish kinematic analysis

The current understanding of fish swimming kinematics is indebted to the triple

research paper of Gray (1933a,b,c). These were the first scientific studies on kine-

matics of fish swimming. He recorded photographically the top view of body and

fin (if any) movements of various swimming fish species. These photographs are still

being used as a source of experimental data for current research. He developed an

accurate inter-frame timing circuit to ensure having precise knowledge of the time

between each film frame for the final purpose of calculating velocities of points on

the fish body. He found out that every point on the body follows a wave track in

space in the swimming direction at an average speed equal to the whole fish. He also

measured several characteristic features like wavelength and period.

Following Gray’s work, Bainbridge (1963), in an attempt to gain a much more

precise knowledge of the extent and variability of the lateral movements of the body

and the relationship of these to the speed of forward movement, made observations

on bream, goldfish and dace swimming by means of the ‘Fish Wheel’ apparatus. He

measured several kinematic quantities such as complex changes in curvature of the

caudal fin during different phases of the locomotory cycle and the associated angles
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of attack. Based on these measurements, he determined the extent of the lateral

propulsive movements in some parts of the body, the wavelength of this movement

and the rate of progression of the wave down the body.

Gray’s three papers on aquatic animal locomotion continue to be a foundation

to many later research activities in this field even after 85 years. The idea of us-

ing the traveling wave in describing the kinematics of swimming has flourished after

Gray and has been validated by many scientific experiments. As a prominent ex-

ample, Videler and Hess (1984) developed a method of describing the kinematics of

lateral displacements and body curvature in straight forward swimming of saithe and

mackerel. They tried to decompose the total lateral motion of each point along the

midline to its main modes. Through the fast Fourier transform (FFT), they found

three Fourier main terms for the transverse midline displacement, y(x, t), as

y(x, t) =
∑
j=1,3,5

hj(x) cos(jω[t− τj(x)])

where, hj(x) is the amplitude at point x belonging to frequency j, and τj(x) is the

phase function; In their model, the phase was considered as a function of x, not

necessarily a linear one. The parameters of the harmonic function (amplitude, fre-

quency and phase) were estimated using least square algorithms to minimize the error

between the actual and predicted motions in time.

Use of a traveling wave in the kinematic model was not limited to straight swim-

ming; Akanyeti and Liao (2013) adopted a similar approach as Videler and Hess

(1984) for analyzing the kinematics of Kármán gaiting midlines using the FFT. They

developed their model of Kármán gaiting based on the traveling wave equation and

decomposed the midlines into four fundamental motion components, concluding that

the Kármán gaiting is a superposition of undulatory swimming with translational and

rotational motion. They computed the FFT of the lateral motion for each point along

the midline and found out that the lateral motion of all midline points could be rep-
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resented by the same fundamental frequency and analyzed the changes in amplitude

and phase as a function of position along the body. They obtained a linear phase-

position relationship and confirmed that a traveling wave was present during Kármán

gaiting like the case of free-stream swimming kinematics in work of Videler and Hess

(1984). However, for each behavior, the amplitude, wavelength and frequency values

of the traveling wave equation are substantially different.

In two above works, like it is common in applied physics, the analysis of the

signals typically relies on Fourier analysis. When processing signals, Fourier analysis

can isolate individual components of a compound waveform, concentrating them for

easier detection or removal. However, a new method proposed by Feeny (2008) called

complex orthogonal decomposition (COD) can also decompose a total oscillation to

its main modes and even further dissect a wave mode into its traveling and standing

parts. Like a complex singular value decomposition, the decomposition is based on the

complex eigen-solution of a complex correlation matrix formed from a wave’s sampling

data. Generally, the application of this method is in the analysis of the waves from

the vibrational point of view. This can be used to find the relationship between the

complex modes and wave motion. From the complex modes and modal coordinates,

the frequencies, wavelengths, amplitude envelope, and characteristic wave speeds can

be obtained. As mentioned before, one of the deterministic factors in accuracy of

a CFD computation is the accuracy of the kinematic model input to it. Since the

affecting factors on efficiency of the kinematic model are the amplitude envelope, the

harmonic function and its argument used in the model, COD can give the accurate

data on the wave parameters. Another side benefit of this method can be the filtration

of experimental data from noise. This application is shown in the work of Feeny and

Feeny (2013). They performed a complex modal analysis of the kinematics of the

transverse motion of a swimming fish by applying COD to the digitized data of

midline extracted from the cinematographic images of a swimming whiting from the
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work of Gray (1933c). They extracted the dominant modal coordinates and used it

to estimate the frequency, wavelength, and wave speed.

The literature mentioned so far conducted a kinematical analysis of midline dis-

placement data. However, a more comprehensive kinematics would consider all the

body points motion. In this regard, Shadwick et al. (1998) investigated the kinemat-

ics of several reference points in different depths and lengths. They related the body

kinematics, muscle contractile properties, strain, and patterns of muscle activation

that produce the transmission of muscular waves along the body. They presented

kinematic data for mackerel obtained by videoradiography (an x-ray technique) for

the first time to study skeletal muscle in fish. They visualized motion of radio-opaque

markers placed within the muscle mass of a swimming fish and subsequently deter-

mined muscle deformation. From the lateral motion of markers at several depths,

they recognized the traveling wave of deformation on the body, characterized by a

progressive delay in peaks and increase in amplitude from anterior to posterior sites.

They observed at each axial location all markers moved in synchrony with each other

and with the body midline, regardless of depth. They concluded that these observa-

tions to a first approximation, support the idea that the fish body can be modeled

as a homogeneous bending beam during slow swimming1. So treating the fish body

as a homogeneous beam, they calculated the local midline (as neutral axis) curvature

(or an approximation of it) for swimming mackerel, and the lateral distance from this

axis, to predict local muscle strain. A similar study has been done on saithe (Videler

and Hess (1984)).

Shadwick et al. (1998) also used electromyographic (EMG) recordings in vivo to

measure neuronal activation patterns. They observed for each tail beat cycle, the

electrical activity proceeds like a wave from anterior to posterior, with the two sides

of body side showing alternating EMG activity. By a coupled analysis of electromyo-
1slow swimming occurs when red muscle is active and white muscle is passively deformed
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graphic and videoradiographic data, they identified that the temporal relationship

between muscle strain and neuronal activation varies with position along the body

and suggested that in most cases it appears that the EMG signal progresses along

the body faster than the wave of body deformation. From the analysis of electromyo-

graphic data collected and their measurement of the strain distribution, they quanti-

fied muscle contractile properties of cyclic contractions in vitro. They also calculated

work done by the red muscles based on muscle forces and displacement rates and

concluded that the neuronal activation patterns are consistent with red muscle per-

forming net positive work at all axial positions. They measured the cross-section of

red muscle along much of the body and observed that it is relatively constant, so

suggesting that positive power for swimming is generated fairly uniformly along the

length of the fish.

1.2 The role of kinematics in fluid mechanics studies

A group of researchers has made kinematic measurements for the interest of hy-

drodynamics. Kinematic measurements of this kind indeed enables mathematician or

hydrodynamicist to embark on the subsequent calculations. Gray (1933c), from his

quantitative analysis made on the successive film frames, recognized a body wave and

a propulsive wave and linked this kinematics to the forces that propel the fish for-

ward. Based on identification of wave crests and velocity calculations, he concluded

that the wave speed of bending that travels down the body length must always be

greater than the forward velocity of the fish through the water in order to produce

forward thrust, an idea also proposed by Breder (1926). Gray recognized this feature

as being involved in the production of forward thrust in steady swimming. Based on

the kinematic quantities measured, he concluded that the magnitude of the forward

thrust depends on speed and amplitude of the undulatory waves generated during

locomotion, as well as on the transverse velocity and orientation of body segments
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along the fish while swimming.

Although Gray’s general conclusions greatly enhanced our understanding of how

undulatory movements of fish lead to forward movement during swimming, there

remained a lack of detailed quantitative kinematic analyses regarding undulatory

locomotion with technical advances since the 1930s. In this regard, Gillis (1996)

examined the generality of Gray’s conclusions by analyzing data from his own high-

speed videos of swimming eels and salamanders. Based on his measurements, he

concluded some facts about the kinematics of swimming that were in contrast to

Gray’s general conclusions. As an example of one of these discrepancies, the relative

velocity of the traveling waves is not necessarily faster the swimming velocity but

depends greatly upon swimming speed and species, despite what Gray and others

previous to him had described that the velocity of these traveling waves is faster than

the velocity of the swimming animal.

Among the first scientific fluid models, the work of Taylor (1952) can be men-

tioned. He presented laboratory measurements of forces acting on a long straight cir-

cular cylinder set obliquely to a stream of fluid. He examined these aerodynamic data

and formulated the lateral and longitudinal components of forces acting on straight

smooth and rough cylinders, and tried to generalize this for the flexible cylinder down

which waves of bending of constant amplitude were being propagated, and compared

this geometry with measurements of Gray’s photographs of smooth animals swim-

ming. He calculated the energy required for propulsion of smooth and rough animals

and found the amplitudes of the waves which drive them fastest for a given output

of energy is found.

Taylor’s drag model was used by some swimming dynamics researchers likeMcMillen

and Holmes (2006) and Bhalla et al. (2013). McMillen and Holmes (2006) decom-

posed the drag force into normal and tangential components for smooth oblique cylin-

ders based upon Taylor’s fitting of drag coefficients and used it in the development of
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a continuum mechanical model for anguilliform (eel-like) swimming. They analyzed

the periodic traveling waves in uniform rods in terms of the effects of bending stiff-

ness, body geometry, and activation patterns on swimming speed, turning behavior,

and acceleration to steady swimming. They considered the feedforward problem of

seeking body traveling wave solution motions in response to imposed activation in

the form of a time-dependent preferred curvature in a coupled elastic-fluid system. In

their study the fish body was modeled by an elastic rod actuated via time-dependent

intrinsic curvature and subject to hydrodynamic drag forces. They employed a ge-

ometrically exact theory and discretized the resulting nonlinear partial differential

evolution to perform numerical simulations.

Bhalla et al. (2013) used Taylor’s resistive model for the hydrodynamic forces.

They applied a forced damped oscillation framework to a chain-link model for undu-

latory swimming to understand how the forcing leads to deformation and movement.

They showed that the forcing triggers the first few deformation modes of the body,

which in turn causes the translational motion. They also showed that relatively sim-

ple forcing patterns can trigger seemingly complex deformation kinematics that lead

to movement. They proposed an approach to analyze qualitatively the optimal defor-

mation kinematics for fast swimming and confirmed their results by a computational

fluid dynamics (CFD) simulations.

Taylor’s model, although based on experimental data, was precise only for the

straight rod and in the case of curved flexible rods, it only could give an approxima-

tion. This model may be called a ‘resistive’ theory in that the forces water exerts on

a small section of the animal was regarded a resistive force depending on the instan-

taneous value of the relative velocity of that section. A newer inviscid-flow theory

was proposed by Lighthill (1960) for the forces produced by swimming movements

that may be called a ‘reactive’ theory in that the forces from the water on parts of

animal’s surface in contact with it were regarded as reactive forces. Comparing to the
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resistive models, the reactive forces were considered proportional to rate of change of

the relative velocity of animal surface. These forces were neglected in the resistive

theories.

In development of the theory described in Lighthill (1960), Lighthill followed the

idea of the travelling wave introduced by Gray and utilized it as a simplifying as-

sumption in hydrodynamic force modeling in that he considered the whole motion

of surface as superposition of a forward motion and an oscillation in the form of

traveling wave. He evaluated reactive forces between body and the water surround-

ing it and regarded the flow as compounded of the steady flow around the stretched

straight body and the flow due to the displacements h(x, t). Then he sought a kind

of transverse oscillatory movement that generates an efficient thrust. He concluded

that the simple movement of a standing wave cannot satisfy his criteria for efficient

thrust while the form of a traveling wave which moves down the fish’s body can be

a satisfactory shape for the displacements and can generate an efficient thrust. This

travelling wave can be written as

h(x, t) = f(x)g(t− x

c
) (1.1)

where h(x, t) is transverse displacement, f(x) is wave amplitude envelope that may

vary with position along the fish, and g is an oscillatory function like sinusoid pro-

viding velocity c > U where U is the swimming speed. It should be mentioned that

the validity of Lighthill’s theory is restricted to lateral oscillations of the fish body

with an amplitude small in comparison to the body length. It is based on a perturba-

tion expansion in powers of an amplitude parameter ε and derives thrust and energy

consumption as multiples of ε2 with terms of order ε4 neglected. The inadequacy of

such an expansion in powers of amplitude led him to concentrate upon the possible

improvement of elongated-body theory. He claimed (Lighthill (1971)) that depending

on the mode of swimming, one of reactive forces or resistive forces dominates over the
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other. He combined the resistive-reactive theory for motions of large amplitude that

finally led to development of “large-amplitude elongated-body" theory. The new the-

ory could be applied to interpret observational data on animal movements of arbitrary

large amplitude, regular or irregular.

Lighthill’s large amplitude elongated body theory was used by Videler and Wardle

(1977) in their kinematic analysis. They developed a practical method of accurate

measurement of the parameters of the body wave like speed, wavelength, wave period

and parameters of the sinusoidal track in space of different points of the body of a

swimming fish, like speed, wavelength, wave period and amplitude. These charac-

teristic wave parameters were measured from high speed cine recordings of straight

forward swimming behavior of one cod.

Using the kinematic data obtained in the analysis of Videler and Hess (1984),

Hess and Videler (1984) continued with a dynamic analysis of the straigth forward

swimming of saithe. They used models for the hydrodynamic forces between fish and

water, the bending moments generated inside a fish and calculated the mechanical

work done by the fish body on water during swimming. They treated the fish as a

flexible elongated body and used Lighthill’s elongated-body theory. They used the

assumption of linearity to imply the total lateral hydrodynamic force distribution is

obtained by summing the force distributions belonging to each Fourier term. The

lateral bending moments inside the fish were analyzed similarly. Their major result

was that the bending moment does not travel as a running wave from head to tail

like the lateral body curvature does, but behaves as a standing wave.

Following in Lighthill’s footsteps, many people contributed to modeling the hy-

drodynamics of fish swimming. For example, Wu (1961) treated a simplified model

of two-dimensional potential flow over a waving flexible and thin plate of finite chord.

The plate was capable of performing the motion which consists of a traveling wave.

He solved the problem by applying the general theory for oscillating deformable air-
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foils and calculated the thrust, power required, and energy imparted to the wake, and

also evaluated propulsive efficiency.

In 1964, Uldrick and Siekmann (1964) developed a theory for a flexible thick body

undergoing preassigned undulations on the basis of the complex velocity potential

method. They formulated the flow-field around a plate or hydrofoil undergoing a

perturbation motion of small amplitude in the transverse direction and simulated

the propulsion of the fish. The problem was linearized in that they assumed the

unsteady perturbation theory. The plate was a flexible solid of constant depth and

of infinite length (two-dimensional) with arbitrary finite thickness immersed in an

inviscid incompressible fluid in an uniform flow of constant velocity in the direction

of swimming. The thrust was assumed to be generated by displacements forming a

train of travelling waves of small amplitude which pass down the body of the fish

from the head to the tail with the envelope of these waves varying arbitrarily along

the length of the plate. They took the amplitude of these displacement waves to be

a harmonic function of time and concluded the magnitude of the thrust depends on

the propagation velocity of these waves.

Later a moderate generalization of Lighthill’s slender body theory was proposed

by Wu (1971) by shedding an oscillating vortex sheet to trail the body in swimming.

He considered the same problem of finding an optimal shape of transverse oscillatory

movements that produces a prescribed thrust. He found the solution to be a trav-

eling wave with phase speed c greater than the desired swimming speed U , with an

amplitude nearly uniform from the maximum span section to the tail.

Contributions by Lighthill and Wu strongly influenced later developments of invis-

cid hydromechanics of fish-like propulsion. Cheng et al. (1991) developed the three-

dimensional waving plate theory with application in hydrodynamics of undulatory

propulsion in anguilliform and carangiform modes. They used the vortex ring panel

method to calculate the unsteady potential flow over model rectangular and triangular
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flexible plates performing a motion as sum of traveling waves with variable ampli-

tudes in the form h(x, y, t) =
∑M

n=−M anx
n−lei(ωt−kx), with an a complex constant.

Based on this motion, the rest of the calculations were done leading to a formulation

of propulsive effectiveness.

The 3D waving plate theory was used by Cheng et al. (1998) as the model for the

unsteady fluid force acting on the swimming body in their development of continuous

dynamic beam model for the saithe. They followed the work of Hess and Videler

(1984) in showing how the transverse hydrodynamic forces together with fish body

inertia combine to require the generation of a certain distribution of bending moment

by the fish. They assumed a linear visco-elastic passive behavior for the internal

tissues, skin and backbone. The input to their model was the muscle activation

patterns and a single frequency oscillation as input to their linear dynamic model

similar to the work of Hess and Videler (1984). They analyzed the dynamic response

of the system in steady swimming as output and calculated muscle bending moment

distribution due to the various components and from the whole dynamic system acting

together.

Cheng and Blickhan (1994) in their dynamic analysis of body undulation for the

saithe and eel used as their hydrodynamic model two theories: the three-dimensional

unsteady waving plate theory and the slender body theory. For the kinematic waving

pattern, they chose a traveling wave motion format. They quantified the distribu-

tion of bending moment along the body and compared them with electromyographic

records with respect to amplitude and phase. At the end, they concluded a better

momentum balance is resulted with waving plate theory.

Mchenry et al. (1995) studied the mechanical control of speed in steady undula-

tory swimming with the controlling variables as flexural stiffness, driving frequency

and driving amplitude. They swam their pumpkinseed sunfish models by powering

them via the input of an oscillating sinusoidal bending couple at the posterior margin
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of head in a flow tank. To simulate the hydrodynamic conditions of steady swim-

ming, drag and thrust acting on the model were balanced by adjusting flow speed.

To calculate wave speed, Froude efficiency and the relative mechanical power, they

measured the kinematic response variables from the digitized midlines of the video-

taped models and interpreted them as traveling waves. They predicted that a live

sunfish double the flexural stiffness of their bodies in order to swim at fast speeds.

Through the evolution of swimming hydrodynamics studies from resistive to re-

active theories and waving plate theory, several investigators turned to experimental

visualization of the flow. Anderson (1996) employed flow visualization techniques to

demonstrate the mechanism of vorticity origination near fluid boundary. She showed

that with the body motion having the form of a traveling wave along the fish, vor-

tices are generated that are characterized by spatially traveling waves of body-bound

curved trajectories.

Alben (2009) used the periodic traveling-wave model for body motions to formulate

a new theoretical model for swimming using a vortex street. He solved optimization

problems in finding body wave which maximizes efficiency for a given output power.

This work is limited to small amplitude of oscillation.

Meanwhile, several researchers were interested in the boundary layer flow field

since it can lead to computation of hydrodynamic forces and the hydrodynamic forces

are highly dependent on the surface motions since they affect the boundary layer

quantities. There is no escaping the fact that the boundary layer flow field can be de-

scribed fully by the boundary layer equations that are special cases of Navier-Stokes

equation. However, the analytical solutions for the boundary layer equations exist

only for simple cases with stationary surfaces. This is why the boundary layer equa-

tions of a moving surface like the swimming fish body seems impossible. This is firstly

because the exact motion is not identified in form of a well-behaved mathematical

model. Secondly, even if the motion was known, the high complexity of the problem
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makes the analytical solution impossible. Therefore, a possible approach was to em-

ploy flow-visualization techniques to measure the flow around fish body, like in the

work of Wolfgang et al. (1999). They gathered experimental data from sequences of

images taken over three giant danio straight-line swimming cycles using digita particle

tracking velocimetry (DPTV). On the other hand, they developed a computational

tool for investigating the velocity and vorticity fields around a fish model performing

the same motions to clarify the basic propulsive mechanisms used by the fish. They

imposed a transverse motion from the nose to tail having the form of traveling wave.

The parameters were derived by applying curve fitting to the experimental data to

be purely sinusoidal and to consist of a smooth amplitude-modulated traveling wave

along the body length with constant phase speed and constant swimming speed.

They compared the unsteady two-dimensional velocity fields from the experimental

flow-visualization with their analytical results showing a good agreement.

Techet (2001) in her thesis performed experiments on the near boundary flow

about fish-like swimming bodies up to Reynolds number 106 using laser Doppler ve-

locimetry and particle imaging techniques. She created a traveling wave motion down

the fish-like body and investigated the mechanism of control of both the turbulence

production and the boundary layer development by motion of the boundary.

Anderson et al. (2001) determined the tangential and normal velocity profiles of

the boundary layer surrounding live swimming fish by DPTV. They measured velocity

components at several locations over the surfaces of two species in carangiform and

anguilliform categories throughout complete undulatory cycles of their propulsive

motions. They concluded that the local friction coefficients, boundary layer thickness

and fluid velocities at the edge of the boundary layer have oscillatory behavior with

relative position along the fish. This suggests that the streamwise distributions of

these variables can be represented as traveling waves moving in the same direction as

the fish body wave and also are suggestive of local oscillatory and mean streamwise
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acceleration of the boundary layer. In addition, the clockwise procession of maximum

values in the phase plots reveals an ever-increasing downstream shift in the streamwise

distributions of these variables with respect to the phase of the body travelling wave.

Also, the regular periodic behavior of these variables at fixed positions on the fish

reveals that these ‘distribution waves’ and the body travelling wave have the same

frequency. They concluded that the increasing streamwise phase shift of the variable

distributions with respect to the body wave is therefore due to the distribution waves

having a longer wavelength and higher wave speed than the body travelling wave.

Assuming a traveling wave model for the kinematics of motion, Müller et al. (2002)

studied modulation of thrust production in mullet by changing the ratio between its

swimming speed U and the phase speed v (the speed with which the body wave

travels down the body). They investigated the wake of the fish in which the variation

in thrust is reflected. For this purpose, they conducted subimage cross-correlations

on pairs of consecutive images to obtain a velocity vector field from the particle

displacement and analyzed some areas in the flow using particle tracking velocimetry

(PTV) to track the particle centroids manually.

1.3 The role of kinematics in CFD studies and robotics

The classical fluid mechanics studies mainly used the principle of superposition

to solve the Navier-Stokes equations with the boundary conditions at the fish body

surface (see the work of Dong and Lu (2007)). However even with a simple traveling

wave model at the fluid-structure boundary, the mathematics was still complex. With

the emergence of computational fluid dynamics (CFD) a detailed investigation of the

flow was made possible, which allows for a more thorough analysis of the propulsion

mechanisms (Liu et al. (1996); Lamas et al. (2011)).

In general, research shows that undulating fish movement has high propulsive effi-

ciency more and less in all fish categories. On the other hand, the differences between
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body shapes and the types of motion produced a large range of achievable velocities,

power and thrust production in various fish species. This fact attracted the attention

of several researchers. Borazjani and Sotiropoulos (2010) carried out fluid-structure

interaction simulations of virtual swimmers to investigate the effects of body shape

and swimming kinematics on the hydrodynamics of undulatory swimming. They used

the hybrid Cartesian immersed boundary (HCIB) method to numerically solve the

coupled fluid-structure system of equations with boundary conditions applied to com-

plex 3-D flexible body moving with prescribed kinematics of the form of a traveling

wave. Consequently, they computed the components of the hydrodynamic force by

integrating the pressure and viscous forces acting on the body to calculate ultimately

the hydrodynamic forces and Froude propulsive efficiency based on the thrust force

for constant speed swimming.

The benefit of a numerical approach is to create a more complete time-dependent

data-set for the entire flow field, which allows for a more thorough analysis of the

propulsion mechanisms. So the accuracy of CDF studies and other numerical or

analytical methods to model the hydrodynamics depends on the accuracy of the

traveling wave model in describing the real kinematics.

It should be noted that although CFD is a very powerful tool, it is exposed to com-

putational errors and inaccurate modeling of physical phenomena. For this reason, it

should be accompanied by an experimental verification. Under these circumstances,

the emergence of biomimetics can make it possible to construct fish-like mechanisms,

which provides additional means for studying undulating fish movement in the labo-

ratory. Another benefit is that a higher variety of motion parameters can be applied

to the robot mechanism. Thus it can make up for the limitations in the laboratory

data for real fish that are confined to individual fish and individual modes of motion.

Recently, many researchers have used the traveling wave model originally proposed

by Lighthill to develop their robot fish. Among the first works in the field of robofish
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is the work of Barrett et al. (1999). In his thesis, he presented the design and con-

struction of a robotuna, in which he used the traveling wave model of Lighthill as the

kinematic model of flexible body swimming motion. He used the genetic algorithm to

find the optimizing value of parameters in traveling wave model that he guessed they

affect the swimming performance. Then he fully tested the instrumented tuna-like

vehicle to substitute a lacking analytic description of the flow about this complex

three dimensional body propelling with oscillating foil at high speed.

Barrett (1996) performed experimental measurements of force and power on a

fish-like robotic mechanism covered with a flexible skin and equipped with a tail with

induced lateral motion of the body in the form of a traveling wave with constant

wavelength and varying amplitude along the length, smoothly increasing from the

front to the tail end. They demonstrated that the power required to propel an actively

swimming, streamlined, fish-like body is significantly smaller than the power needed

to tow the body straight and rigid at the same speed.

Yu et al. (2005) presented a simplified kinematics propulsive model for carangi-

form propulsion in straight swimming. They modeled the fish by a serial multi-joint

oscillating mechanism and an oscillating foil. For the kinematics of the carangiform

motion, they used a traveling body-wave originally suggested by Lighthill. They used

a set of seven key parameters for the kinematics model of a RoboTuna in the literature

and used a genetic algorithm to guide the search for an optimal swimming efficiency.

For simplification, their model consisted of two parts; a time-independent spline curve

sequences and a time-dependent oscillation frequency controlled by changing time in-

terval between displacements due to each sequence and its next sequence.

A same kinematic model was used by Liu and Hu (2004) for the Joint kinematics

model in the simulator except that virtual servo motors are used instead of real

ones. They presented a 3D simulator to develop and test autonomous navigation

algorithms and motion control algorithms for a four-joint robot fish that is able to
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swim like a real fish and realize autonomous navigation. Their objective was to realize

and mimic real fish behavior such as decelerating/accelerating swimming, constant

swimming, turning and hovering. The complex hydrodynamic model for the fish was

simplified to allow real-time computation in the simulator. They used limited joints

to approximate the traveling wave of a real fish.

Yeo et al. (2014) designed a biomimetic robotic fish and in their model, used

the traveling wave model of Lighthill along the fish body as the fundamental fish

swimming kinematics. They investigated the effects of parameters like the swimming

speed, tail beat amplitude and Strouhal-Number on their kinematic model and com-

pared the real Blacktip shark and simulated biomimetic robot fish. Results showed

that Blacktip shark produce a more elongated body displacement shape as compared

to the biomimetic robotic fish. Doubling the swimming speed or doubling the tail

beat frequency caused no change in body motion. The effect of doubling the tail beat

frequency had also shown similar behavior as doubling the swimming speed.

Chowdhury et al. (2014) formulated the biological fish propulsion mechanism by

using the kinematic model of Lighthill for a bio-inspired robotic fish. They investi-

gated the ability of a machine mimicking real fish behavior in maintaining a good

balance of speed and maneuverability. Different mathematical propulsive waveforms

are combined with an inverse kinematics-based approach for generating fish body mo-

tion. The simulation and experimental plots are compared and found to be similar

to the kinematic behavior study of the biological yellowfin tuna.

Coral Cuéllar (2015) presented the development of bio-inspired robotic fish in-

cluding development of mathematical models for the kinematics, dynamics and hy-

drodynamics of swimming. He modeled a robotic fish with a stiff head, oscillating

fins and a flexible rear body consisting of multi-link mechanism with oscillating hinge

joints. The transverse displacements of multi-link joints was considered to match to

an approximate traveling wave.
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1.4 Effect of kinematical parameters on the propulsive perfor-

mance

There is no escaping of the fact that there is a relationship between the midline

motions of the fish body and swimming performance. That is why the experimental

data of midline whether it is from a real or robot fish, have been used as input to

the CFD algorithms. This has been done already in the form of a traveling wave,

which is the simplest and closest description of real swimming kinematics so far, with

parameters identified from the real data by curve fitting. However, it is worthwhile

to change the parameters and see the effect on the final CFD calculations. Lighthill

(1960), in his work on finding the motion that can optimize the swimming efficiency,

tried standing waves and traveling waves. He concluded a pure standing wave cannot

produce propulsion efficiently, just the opposite of a traveling wave. However, it is

not certainly clear that if there is a combination of these two forms that can optimize

the propulsion.

In this regard, Cui et al. (2017) studied in their CFD model the effect of changing

the traveling index (introduced by Feeny (2008)) in the traveling wave model on the

swimming performance. They found that the forward speed is closely related to the

traveling index and tail-beat frequency and the swimming efficiency depends on the

tail-beat frequency and amplitude coefficient.

1.5 Thesis overview and contribution

The result of the later research supports the hypothesis behind our research, that

is there can be some small details in the kinematics, disregarded by the traveling wave

model, that can affect swimming efficiency and propulsion to some degree.

The research conducted in this thesis aims to provide a more realistic and precise

kinematic model comparing the traveling wave model. For this purpose, the more
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recent technique COD proposed by Feeny (2008) is used to reveal some detailed

aspects of kinematics of swimming. One of COD’s applications is modal analysis of

a signal ensemble which is in this research the midline motion data as the response

of the fish body plus fluid to the neural excitation. Midline data is the result of

measurements already done by other researchers in work of Gray (1933c) and Videler

and Hess (1984). Data belonging to the former was already digitized in the work of

Feeny and Feeny (2013). However, we had to digitize data in latter. In Chapter II, the

methods used to digitize data in the format of a photo, and to process the data, such

as interpolations, are described. In Chapter II, the methodologies used to examine the

research problem is explained. In this chapter, we applied COD to both the real data

of swimming midline transverse motions and to the traveling wave model presented

for the real motion. Chapter III outlines the potential outcomes of this study. The

major findings as a result of this analysis are that in the dominant complex mode

related to real data, the phase change rate with respect to axial coordinate, x, and

with respect to time is not fixed; in other words, the phase speed and frequency (and

therefore, wavelength) are not constant through one cycle of motion. This means that

the traveling wave model that is commonly proposed for the swimming motion could

consider a variable phase speed and frequency for higher fidelity.
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CHAPTER II

Methodology

This research consists of a complex modal analysis on the time histories of midline

points’ lateral motion for three swimming carangiform fish. In the following, the

procedures or techniques used in this research to collect data and the techniques used

to process and analyze the data are discussed. A bulk of the analysis done is related to

decomposition of the total oscillation. To decompose a total harmonic motion to its

main modes, a common method used in the literature is to apply the FFT. However,

in this research a more recent technique COD is used to decompose the total motion

to its main modes. The rest of the chapter emphasizes the methods used to calculate

amplitude and wavelength as functions of location, and the frequency as a function

of time, based on the results of complex modal decomposition.
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2.1 Data collection

2.1.1 Raw data

Modern experimental modal analysis systems are composed of 1) sensors that can

be contact or non contact; 2) a data acquisition system and an analog-to-digital con-

verter, and 3) host personal computer for viewing the data and a technique for data

analysis. This study did not do the first and second part of data gathering; rather it

used the midline data already gathered by two sources. The average characteristics

of three fish used in this research is summerized in table 2.1 with data compiled from

Feeny and Feeny (2013); Gray (1933c); Videler and Hess (1984).

Length speed cycle period Angular frequency sampling rate
whiting 12 in 3.95 in/s 0.6 s 5.2 rad/s 20 Hz
mackerel 0.32 m 2.08 m/s 0.153 s 41 rad/s 34.4 1/m
saithe 0.37 m 1.26 m/s 0.278 s 22.60 rad/s 29.7 1/m

Table 2.1 Average characteristics of three fish used in this research. Data
compiled from Feeny and Feeny (2013); Gray (1933c); Videler and Hess (1984).

2.1.1.1 Whiting fish

For whiting, we were provided with the digitized data by the author of Feeny and

Feeny (2013), who in turn had digitized data from the successive cinematographic

images of top views of swimming fish in the work of Gray (1933c). Figure 2.1 shows

the original successive top view images from the work of Gray (1933c). Each photo

in the figure shows a moment of swimming and it represent an individual fish, rather

than the average of all whitings. Feeny and Feeny (2013) have processed these photos

in order to determine the midline and done the other adjustments to finally digitize the

curves of midlines for 49 virtual body markers along the midline. Gray’s photographic

data included one half cycle, and so symmetry was applied to obtain one cycle of
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swimming data. Data were generated in two coordinate systems: an inertial system

and an anterior-body fixed system. the latter produces data relative to an undeformed

but possibly rotated and translated midline. For details of this process, the reader

is referred to Feeny and Feeny (2013). For both frames, the whiting has 49 body

markers and 12 time samples.

Using the digitized data from whiting raw data in an anterior-body fixed coor-

dinates (body frame), Figure 2.2 is produced showing superposed snapshots for one

period of motion, wherein, each curve shows the mid-line at specific instance of time.

The color of the curves are adjusted from red to blue based on time sequence. Com-

pare this figure with Figure 2.3 that is produced using the digitized data from whiting

raw data in an inertial coordinates (Newtonian frame), showing superposed snapshots

for one period of motion. Again, each curve shows the mid-line at specific instance of

time. The color of the curves are adjusted from red to blue based on time sequence.

Figure 2.4 shows time histories of oscillation for each body marker produced using

the digitized data from whiting raw data in an anterior-body fixed coordinates (body

frame). For better clarity, curves are shown for every five body markers. It is because

there were 49 time history curves that made the plot crowded and hard to distinguish.

The color of the curves are adjusted from red to blue, based on body-marker sequence

from nose to tail. Compare this figure with Figure 2.5 that is produced using the

digitized data from whiting raw data in an inertial coordinates (Newtonian frame),

showing time histories of oscillation for each body marker. For better clarity, curves

are shown for every five body markers. The color of the curves are adjusted from red

to blue, based on body-marker sequence from nose to tail.
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Figure 2.1 Successive cinematographic images of top views of swimming
whiting. Figure from Gray (1933c).
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Figure 2.2 Superposed snapshots for one period of motion from whiting
(body frame) raw data. The color of the curves are adjusted from red to blue
based on time sequence.

Figure 2.3 Superposed snapshots for one period of motion from whiting
(Newtonian frame) raw data. The color of the curves are adjusted from red to
blue based on time sequence.
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Figure 2.4 Time history curves for body markers from whiting (body
frame) raw data. The curves are shown for every five body markers. The color of
the curves are adjusted from red to blue, based on body-marker sequence from nose
to tail

Figure 2.5 Time history curves for body markers from whiting (Newtonian
frame) raw data. For better clarity, curves are shown for every five body markers.
The color of the curves are adjusted from red to blue, based on body-marker sequence
from nose to tail
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2.1.1.2 Mackerel and saithe fish

For mackerel and saithe, we used a set of plots related to the lateral temporal

oscillation in time of some midline reference points from the work of Videler and

Hess (1984). Figure 2.6 shows these plots from the work of Videler and Hess (1984)).

Each plot is pertaining to a single reference point on the midline. These reference

points include the nose and the tail. The plots were generated by high-speed filming of

the top views of several swimming fish in the laboratory; However, the plots represent

the average saithe and the average mackerel. The position of the midline for each

image was determined by digitizing the outline of the fish image on each frame with

an HP 9874A digitizer and using a programmed applications within an image-analysis

environment.

They smoothed the plots by splines using 20 segments along the body. This

resolution turns out to be quite sufficient, considering the noise in the data. The

resulting, smoothed function y(x, t) can also be written as sum of Fourier terms up

to the fifth frequency such as

y(x, t) =
∑
j=1,3,5

hj(x) cos(jω[t− τj(x)])

It took into account the differences in h(x, t) for time points separated by T/20

and for body points separated for distances down to L/20. Figure 2.7 shows the

superimposed generated outlines of fish in different imaging times, from Videler and

Hess (1984). The reader is referred to method section of Videler and Hess (1984) for

details of these processes.

While producing their plots, Videler and Hess (1984) used a Newtonian frame of

reference whose x-axis is the mean path of motion, and the z-axis is perpendicular

to the x-axis. The x-axis is calculated by using the coordinates of the reference

points. Figure 2.8 shows the coordinate system used in generation of the above
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Figure 2.6 Lateral deflection (drawn curves) for ‘average’ saithe (A) and
‘average’ mackerel (B), at 11 equidistant points including nose and tail
points. Numbers at left indicate position along body (in units of body length, L)
from nose. Vertical subdivisions: 0.02 L for drawn curves. The dashed curves and
stippled curves are not of this research’s interest and represent the lateral velocity
and local angle of incidence, respectively. Figure from Videler and Hess (1984).
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Figure 2.7 Digitized superimposed outlines of a saithe with computed cen-
tre lines. Figure from Videler and Hess (1984).

Figure 2.8 Coordinate system x, z. The water moves with velocity U in the
x-direction. Figure from Videler and Hess (1984).

mentioned plots in the work of Videler and Hess (1984). This figure implies that

in the coordinate system which moves with the fish at speed U , the body points

move in a lateral (z) direction only. The x-component of the motion is ignored. The

numerical data underlying these curves were extracted in this study using the software

“WebPlotDigitizer". This software is a semi-automated tool that has a precision of 5

digits after the point.
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2.1.2 Interpolation

Since the number of body markers was low in the digitized data of mackerel and

saithe (M = 11), so imposing a low resolution, it was preferred to increase the spatial

resolution for visual interpretations. For this reason, interpolation in terms of cubic

splines is made along the length to increase M from 11 to 41. It means that the

fish’s centre line is divided into 40 segments by 41 equidistant points including nose

and tail. As a result, 41 body markers and 20 time samples are considered for the

mackerel, and 41 body markers and 51 time samples are considered for the saithe.

Using the digitized data from raw data of the average mackerel, Figure 2.9 was

produced showing superposed snapshots for one period of motion, wherein, each curve

shows the mid-line at specific instance of time. For better clarity, curves are shown

for every other sampling times, because there were 21 snapshots making the plot

crowded and hard to interpret. The curves are adjusted based on time sequence in

the colour spectrum from red to blue. Figure 2.10 shows time histories of oscillation

for each body marker from mackerel raw data. For better clarity, curves are shown

for every four body markers, because there were 41 time history curves that made

the plot crowded and hard to discern. The color of the curves are adjusted from red

to blue, based on body-marker sequence from nose to tail.

Using the digitized data from raw data of average saithe, Figure 2.11 is produced

showing superposed snapshots for one period of motion, wherein, each curve shows

the mid-line at specific instance of time. For better clarity, curves are shown for every

four sampling times, because there were 41 snapshots making the plot crowded. The

curves are adjusted based on time sequence in the colour spectrum from red to blue.

Figure 2.12 shows time histories of oscillation for each body marker from saithe raw

data. For better clarity, curves are shown for every four body markers, because there

were 41 time history curves that made the plot crowded. The color of the curves are

adjusted from red to blue, based on body-marker sequence from nose to tail.
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Figure 2.9 The superposed snapshots for one period of motion, from mack-
erel raw data. Each curve shows the mid-line at a specific instance of time. For
better clarity, curves are shown for every other sampling times. The curves are ad-
justed based on time sequence in the colour spectrum from red to blue (nose to tail).

Figure 2.10 Time history curves for body markers from mackerel raw data
(nose to tail). For better clarity, curves are shown for every four body markers. The
curves are adjusted based on body-marker sequence in the colour spectrum from red
to blue.
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Figure 2.11 The superposed snapshots for one period of motion, from
saithe raw data. Each curve shows the mid-line at a specific instance of time. For
better clarity, curves are shown for every five sampling times. The curves are adjusted
based on time sequence in the colour spectrum from red to blue.

Figure 2.12 Time history curves for body markers from saithe raw data.
For better clarity, curves are shown for every four body markers. The color of the
curves are adjusted from red to blue, based on body-marker sequence from nose to
tail.
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2.1.3 Traveling wave model data

In addition to the raw data, data was built for a kind of model used in much of

the literature for the kinematics of fish. This model is based on a traveling wave of

the format a(x) sin(γx−ωt+φ), where a(x) is amplitude as function of location and

ω and γ are considered to be constant values.

In order to generate sampling data, for each fish, the same reference body markers

and same sampling times are considered in the total length or a complete time cycle.

Thus, simply the location of these body markers or the sampling times was put in the

traveling wave model. As a result, for the traveling wave models, 49 body markers

and 12 time samples are considered for the whiting, 41 body markers and 20 time

samples for the mackerel, and 41 body markers and 51 time samples for the saithe.

The amplitude is calculated based on the digitized data in section 2.1.1. a(x) is also

determined at each body marker from the maximum displacement of the point in

digitized data. A curve was fitted also to these maximum values to obtain the am-

plitude as function of x. The parameter γ was adjusted to produce the same phase

difference between the nose and tail in the traveling wave model as in the raw data.

The parameter ω was found using the relation ω =
2π

T
with T based on calculations

of Feeny and Feeny (2013) for whiting and Videler and Hess (1984) for mackerel and

saithe. Table 2.2 summarizes the resulting parameter settings.
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Amplitude, a(x) ω γ

whiting (body

frame)

4.2124×10−8x10−2.2139×10−6x9+4.8896×

10−5x8 − 0.0006x7 + 0.0044x6 − 0.0210x5 +

0.069x4− 0.15736x3 + 0.22897x2− 0.1691x+

0.05868

4.836
rad

sec
0.4

rad

in

whiting (Newto-

nian frame)

0.0010677x3 − 0.004265x2 − 0.03544x +

0.22853

4.736
rad

sec
0.62

rad

in

mackerel 8.3972 × 105x9 − 1.1544 × 106x8 + 6.519 ×

105x7 + −1.9472 × 105x6 + 32897x5 −

3079.2x4 + 138.72x3 − 1.035x2 − 0.1154x +

0.0063153

41.06
rad

sec
20

rad

m

saithe −168.01x6 + 124.08x5 − 25.275x4 +

0.064692x3 + 0.68674x2 − 0.077994x +

0.006046

22.2
rad

sec
17.8

rad

m

Table 2.2 Average characteristics of three fish used in this research. Data
compiled from Feeny and Feeny (2013); Gray (1933c); Videler and Hess (1984).

Time period used in this research is based on:

1. for whiting, Feeny and Feeny (2013) used the fact that the seventh sample in

Figure 2.1 would represent the start of the second half cycle, and would serve as

the cyclic opposite of the first sample, regardless of the phase of the oscillation,

meaning that the sampling is nearly commensurate with the oscillation period.

2. for mackerel and saithe, Videler and Hess (1984) calculated the time period

using two methods. In the first method, the time intervals between successive

extreme lateral positions were estimated for half of the time period T . In the

second method, the lateral position was approximated as a function of time.
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Using the digitized data from traveling wave model data of the whiting in an anterior-

body fixed coordinates, a traveling wave model is built based on data in Table 2.2.

Figure 2.13 is produced for the traveling wave model (body frame) showing superposed

snapshots for one period of motion. Each curve shows the mid-line at specific instance

of time. The color of the curves are adjusted from red to blue based on time sequence.

Using the digitized data from traveling wave model data of the whiting in an

inertial coordinate system, a traveling wave model is built based on data in Table

2.2. Figure 2.14 is produced for the traveling wave model (Newtonian frame) showing

superposed snapshots for one period of motion. Each curve shows the mid-line at

specific instance of time. The color of the curves are adjusted from red to blue based

on time sequence.

Figure 2.15 shows time histories of body markers’ oscillation from whiting (body

frame). For better clarity, curves are shown for every five body markers. The color of

the curves are adjusted from red to blue, based on body-marker sequence from nose

to tail. Figure 2.16 shows time histories of body markers’ oscillation from whiting

(Newtonian frame). For better clarity, curves are shown for every five body markers.

The color of the curves are adjusted from red to blue, based on body-marker sequence

from nose to tail.

Using the digitized data from traveling wave model data of the average mackerel

in a Newtonian frame, Figure 2.17 is produced showing superposed snapshots for one

period of motion, wherein, each curve shows the mid-line at specific instance of time.

For better clarity, curves are shown for every other sampling times. It is because

there was 21 snapshots making the plot crowded and hard to discern. The curves

are adjusted based on time sequence in the colour spectrum from red to blue. Also,

Figure 2.18 shows time histories of oscillation for each body marker from mackerel

traveling wave model data in a Newtonian frame. For better clarity, curves are shown

for every four body markers. The color of the curves are adjusted from red to blue,
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Figure 2.13 Superposed snapshots for one period of motion from whiting
traveling wave model data in an anterior-body fixed frame. The color of the
curves are adjusted from red to blue based on time sequence.

Figure 2.14 Superposed snapshots for one period of motion from whiting
(Newtonian frame) traveling wave model. The color of the curves are adjusted
from red to blue based on time sequence.
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Figure 2.15 Time history curves for every five body markers from whiting
(body frame) traveling wave model. The color of the curves are adjusted from
red to blue, based on body-marker sequence from nose to tail.

Figure 2.16 Time history curves for every five body markers from whiting
(Newtonian frame) traveling wave model. The color of the curves are adjusted
from red to blue, based on body-marker sequence from nose to tail.
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Figure 2.17 The superposed snapshots for one period of motion, from
mackerel traveling wave model data in a Newtonian frame. Each curve
shows the mid-line at specific instance of time. For better clarity, curves are shown
for every other sampling time. The curves are adjusted based on time sequence in
the colour spectrum from red to blue.

based on body-marker sequence from nose to tail.

Using the digitized data from traveling wave model data of average saithe in a

Newtonian frame, Figure 2.19 is produced showing superposed snapshots for one

period of motion of the saithe. For better clarity, curves are shown for every five

sample times. The curves are adjusted based on time sequence in the colour spectrum

from red to blue. Figure 2.20 shows time histories of oscillation for each body marker

from saithe traveling wave model data in a Newtonian frame. For better clarity,

curves are shown for every four body markers. The color of the curves are adjusted

from red to blue, based on body-marker sequence from nose to tail.
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Figure 2.18 Time history curves for body markers from mackerel traveling
wave model data in a Newtonian frame. For better clarity, curves are shown
for every four body markers. The color of the curves are adjusted from red to blue,
based on body-marker sequence from nose to tail.

Figure 2.19 The superposed snapshots for one period of motion, from
saithe traveling wave model data in a Newtonian frame. Each curve shows
the mid-line at specific instance of time. For better clarity, curves are shown for every
five sampling time. The curves are adjusted based on time sequence in the colour
spectrum from red to blue.
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Figure 2.20 Time history curves for body markers from saithe traveling
wave model data in a Newtonian frame. For better clarity, curves are shown
for every four body markers. The color of the curves are adjusted from red to blue,
based on body-marker sequence from nose to tail.
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2.2 Preparation of COD inputs

This study performs a complex model analysis by means of the technique COD.

COD can receive as input, the signals of lateral oscillation from various reference

points on the midline. We considered signals are coming from virtual markers dis-

tributed along the midline of the fish. The position of these virtual body markers is

the same as:

1. for whiting, the locations Feeny and Feeny (2013) digitized from the analogue

data from Gray (1933c)

2. for mackerel and saithe, the locations that each lateral oscillation plot in Videler

and Hess (1984) belongs to.

Since for each fish, there are M virtual markers (or sensors) distributed on the

specimen, there will be M real oscillatory signals, yj, j = 1, ..., M . The vectors

yj = [yj(t1), ..., yj(tN)]T are obtained by sampling at times t1 through tN , where

N is the number of equidistant points in time, which are the sampling times. The

sampling rate is N/T samples per second (the sampling interval is T/N), where T is

the principal period. We omitted the time t = T when processing the data, so the

periodic point is not doubled. By periodicity, the signal values are equal at t = 0 and

t = T . That way, an M ×N real ensemble matrix is built so that Y = [y1 ... yM ]T .

As a result, for both the real motion and the traveling wave model, digitized data of

49× 12 was produced for whiting, 41× 20 for mackerel, and 41× 51 for saithe.
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2.2.1 Complexification of the real oscillatory signals

In order to apply COD, the real signals are first converted to complex signals. The

process of complexification is done by the half-spectrum inversion method or Hilbert

transform (Wolfgang et al. (1999)). To be more specific, if y(t) is a real signal, and

z(t) is its complexfied signal, then y(t) = Re(z(t)) and then the Hilbert transform of

y is yH(t) = Im(z(t)) (Feeny and Feeny (2013)). Thus the complex analytic signal

is z(t) = y(t) + iyH(t). On this basis, the real vectors yj, that are already generated,

can be complexified to zj, and from these, an M ×N complex ensemble matrix can

be built so that Z = [z1 ... zM ]T .
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2.3 Application of COD

2.3.1 Complex modal decomposition

The complex “correlation” matrix is then constructed as R = ZZ̄
T
/N , where the

overbar indicates complex conjugation. The matrix R ∈ CM×M , where C is the set

of complex numbers. We used COD to extract the eigenvalues, αi, and eigenvectors,

wi, i = 1, ..,M , through the eigenvalue problem associated with R. Since R is

Hermitian (R̄T = R, the αi are real and wi are normalized (w̄T
i wj = δij). The

eigenvectors or COMs (complex orthogonal modes) represent the principal shapes of

complex modal waveforms. A modal motion is associated with one COM and the total

motion is a sum of modal motions. The eigenvalues or COVs (complex orthogonal

values) represent the mean squared amplitude of modulations corresponding to each

COM (Feeny (2008)). The total motion, Z, then can be expressed by the following

matrix multiplication,

Z = WQ (2.1)

where W is the matrix whose columns are COMs and the matrix matrix Q is the

complex modal coordinate ensemble. If the modes in W are normalized, then by

complex orthogonality, the matrix Q becomes

Q = W−1Z = W̄TZ

This is a complex modal coordinate (COC) ensemble matrix, the rows of which

are the samples of each modal coordinate, qj(t), sampled at t = t1, ..., tN (Feeny

(2008)).
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2.3.2 Modally reduced motion

2.3.2.1 Single-mode motion from dominant COC

In our case study, fewer than N meaningful modes were contributing to the total

motion while the other modes were noise dominated and insignificant. This partly

has to do with the rank of matrix R that is bounded by the minimum of N and M .

It means that at most, N meaningful modes can be expected (Feeny (2008)). It turns

out that in each case, only one mode was dominant over other modes, and it captured

more than 99 percent of the energy for both raw data and for traveling wave model.

Reduced modal motion can be constructed by building the M ×N modally reduced

motion ensemble, Zr,

Zr = WrW
T
r Z (2.2)

where Wr = [w1; . . . ; wr], is M × r, where r < M . Also, the matrix Zr can be

expressed in the equivalent form,

Zr = WrQr (2.3)

where Qr can be obtained by the following equation:

Qr = WT
r Z (2.4)

The rows of Qr are samplings of the associated modal coordinates qj(t), j =

1, . . . , r. In r = 1, and the only dominant COC, Q1, and Z1 are needed in the

re-animation of single (dominant) modal motion. In this case, Q1 is 1×N , and the

dominant mode W1 is M × 1.
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2.3.2.2 Single-mode motion from harmonic modulation

A harmonic-based re-animation of single mode motion is made as Z1 = W1Qh,

where W1 is the dominant mode (M × 1), and the 1 × N vector Qh is a harmonic

function of time defined by Qhk = ei41tk for k = 1, ..., N using for example a frequency

of ω = 41 rad/sec from the work of Videler and Hess (1984). The single-mode motion

from harmonic modulation can be obtained Y1 = real(Z1).

2.3.3 Dissection of main modes into traveling and standing addends

The COMs contain information about the degree that the motion is traveling

(Feeny (2008) and Feeny and Feeny (2013)). COD was also used to dissect the

dominant COM into traveling part and standing part for raw data and the traveling

wave motion, such that

w = wt + ws (2.5)

where wt is the traveling part and ws is the standing part and both are in general

complex. Then ws = cs + ids, etc. Feeny (2008). In this regard, in order to evaluate

the contribution of each traveling and standing parts in the total motion, a traveling

index is proposed in Feeny (2008). This is the reciprocal of the condition number of

the matrix whose two columns are the real and imaginary components of the complex

mode.
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2.3.4 COD calculation of wavelength, amplitude, frequencies, and wave

speeds

The complex modes and modal coordinates can obtain many information like

wavelength, amplitude, frequencies, and wave speeds Feeny (2008). The wavelength,

designated by λ is the spatial period of a periodic wave, or in other words, the

distance over which the wave’s shape or the wave’s phase repeats. Wavelength is a

characteristic of both traveling waves and standing waves. So, based on this definition,

in the traveling wave of this research’s interest, a(x) cos(ωt− x
λ

), one way to calculate

λ is by considering the snapshots of swimming midline and seeking for the distance

between two consecutive crests, troughs, or zero crossings (since the argument of

cosine function is the same for each of these couples).

Another way is to use COD and calculate the phase corresponding to each COM

element, since the i-th element have the phase and amplitude information related to

the i-th body marker (Feeny and Feeny (2013)). Since COMs and COCs are complex

vectors, each of their elements can be expressed as ρieφ(xi), where ρ is the magnitude

and φ is the phase. For COMs, this magnitude is proportional to the oscillation

amplitude of corresponding body marker. The φ’s show the relative phase of body

markers. The COM thus can be expressed as vector of exponential functions of body

markers location,

wi =



ρ(x1)e
φ(x1)

ρ(x2)e
φ(x2)

...

ρ(xM)eφ(xM )


This shows that the amplitude and phase of every main mode at i-th body marker

can be calculated from ρ(xi) and φ(xi). In turn, the computations based on the phase

φ(xi) can be made to estimate modal wave number.
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The wave number or the spatial frequency of a wave, γ is defined as γ =
2π

λ

with the unit of radians per unit distance. Differentiation of φ with respect to x

will determine γ (
∂φ

∂x
= γ). Since we had discrete data at sampling locations, the

central finite difference scheme was used to approximate the rate φ(x) varies with x

as follows,

∂φ

∂x
=

∆φj
∆x

= γj (2.6)

The more number of body markers, the more precise will be the calculation of

γ. COCs also are complex quantities. Each COC element corresponds to one of the

sampling time. One basic way to obtain ω is to consider the time histories related to

each body marker (constant location) in the traveling wave model, a(x) cos(ωt− x

λ
),

and calculate the time distance between two times that generate a same argument in

the cosine function.

Another method is to use COD to generate the complex modal coordinates, COC

(rows in ensemble Q), and calculate phase corresponding to each COC element. The

frequency information can be calculated by finding two sampling times giving the

same argument. The phase speed is calculated based on ω and γ. The wave speed c

of a traveling wave is given by

c =
ω

γ
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CHAPTER III

Results

This research applied a complex modal analysis to signals of lateral oscillation

sampled from a number of reference points on midline of three swimming carangiform

fish. In the following, the findings of this study based upon the methodology applied

is described for the forward swimming motion of three fish: a whiting, a mackerel,

and a saithe.

3.1 Whiting fish - body frame

3.1.1 Complex modes from swimming midline data

3.1.1.1 Eigenvalues (COVs) and the number of dominant modes

Figures 3.1 and 3.2 show the plots of the COVs in descending order in the linear

scale and logarithmic scale, respectively. It can be seen in Figure 3.1 that only one

mode (the first) captures most (more than 99 percent) of the energy and the other

modes are insignificant compared to the first mode.
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Figure 3.2 Plots of the COVs in descending order in a logarithmic scale
for whiting (body frame) raw data (blue) and the traveling wave model
(red).

Figure 3.1 Plots of the COVs in descending order in a linear scale for
the whiting (body frame) raw data (blue) and the traveling wave model
(red) for whiting (body frame). Only one mode (the first) captures more than
99 percent of the energy.

It was observed that the values of COVs in the traveling wave model (especially
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the first COV) are dependent on the amplitude function used in building the traveling

wave model. Thus, a more precise curve fitting (of the amplitude function) produces

a better traveling wave model. The precision of the amplitude function depends on

the number of body markers. The higher the number of body markers, the more

precise the amplitude function will be.

3.1.1.2 Dominant COM

Since the first mode is the dominant mode, the focus of the study will be on the

first COM. Figure 3.3 shows the plots of the dominant COM in the complex plane

for the whiting (body frame) raw data (blue) and the traveling wave model (red).

Based on chapter II, COMs contain the information of the phase and amplitude of

oscillation of each body marker. Figure 3.4 shows the plots of COM elements phase

(φ) vs. body marker for the whiting (body frame) raw data (blue) and the traveling

wave model (red). It can be seen that there are two jumps in phase plot in the head

region body markers (first 17 body markers). These jumps are related to the very

small magnitude of oscillation, in which the phase is less meaningful and less clearly

calculated and the associated quick phase change between body markers 4 and 5 (the

first jump) and between body markers 16 and 17 (the second jump). This can be

better illustrated in Figure 3.5, which shows the COM elements belonging to the

head region for the whiting (body frame) raw data, wherein the COM wraps quickly

around the origin (first 17 body markers). On the other hand, the slope of the phase

plot is nearly constant for the whiting (body frame) traveling wave model but variable

in the raw data. It can be seen that the absolute values of the slopes in the head

regions between the two jumps are similar (0.17 rad/in and 0.11 rad/in), and these

are less than the slope of the plot in the posterior region (0.4 rad/in). It should be

noted that in building the traveling wave model, the value of phase plot slope in the

posterior region is used. If using an average value of γ = 0.32 rad/in in the traveling
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wave model, the resulting COM is plotted in Figure 3.6. Comparing the Figures 3.3

and 3.6, it can be concluded that a value of γ = 0.4 rad/in obtains a closer resulting

COM between the traveling wave model and the raw data, so this value is chosen for

the traveling wave model for whitings all plots (body frame).

Figure 3.3 Dominant COM in raw data (blue) and traveling wave model
(red) for the whiting (body frame) (γ = 0.4 rad/in).
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Figure 3.4 Plot of the COM elements’ phases for the whiting (body-frame)
raw data (blue) and the traveling wave model (red).

Figure 3.5 Dominant COM elements belonging to the head region (first
17 body markers) wrap quickly around the origin in whiting (body-frame)
raw data.
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Figure 3.6 Dominant COM in raw data (blue) and traveling wave model
(red) for the whiting (body frame) (γ = 0.32 rad/in).

COM elements’ magnitude is representative of oscillation amplitude of each body

marker. Figure 3.7 is the plot of COM elements’ magnitudes vs. body marker for raw

data and the traveling wave model. The small differences can be due to the amplitude

function chosen in building the traveling wave model. The real part and imaginary

part of COM is shown vs. body marker in Figure 3.8. Depending on the time, the

midline shape is in transition between the shapes of real part and the imaginary part.

The phase difference between the real and imaginary parts shows that the wave is

not pure standing wave.
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Figure 3.7 Plot of the COM elements’ magnitude in the raw data (blue)
and the traveling wave model (red) for the whiting.

Figure 3.8 Plot of the COM’s real and imaginary parts for the whiting
(body frame) raw data (blue) and traveling wave model (red).

3.1.1.3 Dominant COC

Figure 3.9 shows a plot of the dominant modal coordinate, COC, in the complex

plane, for the whiting (body frame) raw data and the traveling wave model. As
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discussed in chapter II, phase change rates with respect to time is calculated by

computing the dominant COC and its elements’ phase. Figure 3.10 shows the phase

changes with respect to time. Figure 3.11 shows plots of the real and imaginary parts

of dominant COC, in different colors for the whiting (body frame) raw data and the

traveling wave model.

Figure 3.9 Plot of dominant COC (complex orthogonal coordinate) in com-
plex plane in the raw data (blue) and the traveling wave model (red) for
the whiting (body frame).
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Figure 3.10 Plot of the COC elements’ phase, θ, vs. sampling time for the
whiting (body frame) raw data (blue) and traveling wave model (red).

Figure 3.11 Plots of the real and imaginary parts of dominant COC, for
the whiting (body frame) raw data (blue) and the traveling wave model
(red).
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3.1.2 Single mode harmonic motion from dominant COC

Using the dominant COC, the dominant modal motion is reanimated. Figures

3.12 and 3.13 show the snapshots of single mode motion (Y1) for the whiting (body

frame) raw data and the traveling wave (the top subfigure). For comparison, the

difference between the single mode motion and total motion (Y − Y1), and the total

motion (Y ), are shown in the middle and bottom subfigures, respectively. The colors

of the curves are adjusted from red to blue based on the time sequence. From Figures

3.12 and 3.13, it can be seen that Y − Y1 in the middle subfigure is not random-

looking, suggesting that although the dominant mode is significantly dominant, the

second mode is not just noise.

Figures 3.14 and 3.15 show the time histories of single mode harmonic motion (Y1)

for the whiting (body frame) raw data and the traveling wave (the top subfigure).

For comparison, the difference between the single mode motion and total motion

(Y − Y1), and the total motion (Y ), are shown in the middle and bottom subfigures,

respectively. For better clarity, the colors of the curves are adjusted based on the

body-marker sequence from red to blue. In all cases, the axis scale shows that Y −Y1

is very small, consistent with mode one be strongly dominant (99%).
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Figure 3.12 Superposed snapshots of single mode motion Y1 (top), the
difference between the single mode motion and the total motion Y − Y1
(middle), and the total motion Y (bottom), for the whiting (body frame)
raw data. The colors of the colors of the curves are adjusted from red to blue based
on the time sequence.

3.1.2.1 Single mode motion from harmonic modulation

Based on chapter II, the modal coordinate from harmonic modulation are built into

Qh and the dominant modal motion is reanimated. Figure 3.16 shows the dominant
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Figure 3.13 Superposed snapshots of single mode motion Y1 (top), the
difference between the single mode motion and the single mode motion
Y − Y1 (middle), and the total motion Y (bottom), for the whiting (body
frame) traveling wave model. The colors of the curves are adjusted from red to
blue based on the time sequence.
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Figure 3.14 Superposed time histories of single mode harmonic motion Y1
(top), the difference between the single mode harmonic motion and the
total motion Y − Y1 (middle), and the total motion Y (bottom), for the
whiting (body frame) raw data. For better clarity, the curves are shown for every
five body markers. The colors of the curves are adjusted based on the body-marker
sequence from red to blue.
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Figure 3.15 Superposed time histories of single mode harmonic Y1 (top),
the difference between the single mode and total motion Y − Y1 (middle),
and the total motion Y (bottom), for whiting (body frame) traveling wave
model. For better clarity, the curves are shown for every five body markers. The
colors of the curves are adjusted based on the body-marker sequence from red to blue.
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COC for the whiting (body frame) raw data (blue) and the traveling wave model

(red) and Qh (purple). It can be seen that COC of the traveling wave model is quite

close to Qh. However, COC of the raw data periodically approaches Qh and gets

behind it, suggesting that in the former, the rate of change of its elements’ phases

is not constant over time (based on how Qh is constructed, the rate of change of its

elements’ phases is constant).

Figure 3.16 Dominant COC for the whiting (body frame) raw data (blue)
and the traveling wave model (red) and Qh (green).

Figures 3.17 and 3.18 show the snapshots of single mode harmonic motion (Yh)

for the whiting (body frame) raw data and the traveling wave (the top subfigure)

from harmonic modulation. For comparison, the difference between the single mode

harmonic motion and the single mode motion (Y1− Yh), and the single mode motion

(Y1) are shown in the middle and bottom subfigures, respectively. The colors of the

curves are adjusted from red to blue based on the time sequence.
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Figures 3.19 and 3.20 show the time histories of single mode harmonic motion

(Yh) for the whiting (body frame) raw data and the traveling wave (the top subfigure)

from harmonic modulation. For comparison, the difference between the single mode

harmonic motion and the single mode motion (Y1− Yh), and the single mode motion

(Y1) are shown in the middle and bottom subfigures, respectively. For better clarity,

the colors of the curves are adjusted based on the body-marker sequence from red to

blue.
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Figure 3.17 Superposed snapshots of single mode harmonic motion Yh
(top), the difference between the single mode harmonic motion and the
single mode motion Y1− Yh (middle), and the single mode motion Y1 (bot-
tom) for the whiting (body-frame) raw data. The colors of the curves are
adjusted from red to blue based on the time sequence.
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Figure 3.18 Superposed snapshots of single mode harmonic motion Yh
(top), the difference between the single mode harmonic motion and the
single mode motion Y1− Yh (middle), and the single mode motion Y1 (bot-
tom) for the whiting (body-frame) traveling wave model. The colors of the
curves are adjusted from red to blue based on the time sequence.
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Figure 3.19 Superposed time histories of single mode harmonic motion
Yh (top), the difference between the single mode harmonic motion and
the single mode motion Y1 − Yh (middle), and the single mode motion Y1
(bottom) for the whiting (body-frame) raw data. For better clarity, curves
are shown for every five body markers. The colors of the curves are adjusted based
on the body-marker sequence from red to blue.
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Figure 3.20 Superposed time histories of single mode harmonic motion
Yh (top), the difference between the single mode harmonic motion and
the single mode motion Y1 − Yh (middle), and the single mode motion Y1
(bottom) for the whiting (body-frame) traveling wave model. For better
clarity, curves are shown for every five body markers. The colors of the curves are
adjusted based on the body-marker sequence from red to blue.
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3.1.3 Dissection of COM into traveling and standing parts

Based on chapter II, the dominant COM was dissected into its traveling and

standing parts. The traveling index of 0.4832 was obtained for the whiting (body

frame) raw data, while for the traveling wave model, the traveling index was calculated

as 0.3869. Figure 3.21 shows the traveling parts of dominant modes of the raw data

and traveling part of dominant mode of the traveling wave model. Figure 3.22 shows

the standing part of dominant mode for the whiting (body frame) raw data and

standing part of dominant mode for the whiting (body frame) traveling wave model.

It can be seen that the plots are straight lines, meaning that in the standing part

of the motion, all the body markers have the same phase during oscillation. It can

be observed also that the angle of red and blue plots are different, meaning at the

same time instant, the standing part of the traveling wave model is at a higher angle

comparing to the standing part of the raw data. The closeness of these angles can be

chosen as a criteria for closeness of the traveling wave model to the real motion and

can be adjusted by tuning some parameters in the traveling wave model. However, it

may be impossible to have all criteria 100 % complied and we considered an optimum

final model wherein all criteria are to some extent satisfied. Figures 3.23 and 3.24

show the dominant COM with its standing and traveling parts for the whiting (body

frame) raw data and the traveling wave model. Note that forr each body marker, the

vector sum of the standing and traveling parts equals to the dominant COM.
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Figure 3.22 The standing part of dominant mode for the whiting (body-
frame) raw data (blue) and the traveling wave model (red).

Figure 3.21 The traveling parts of dominant modes for the whiting (body-
frame) raw data (blue) and the traveling wave model (red).

Based on calculation of the traveling and standing parts of COM, the total motion

was dissected into its traveling and standing parts. Figure 3.25 shows the snapshots

of traveling (top) and standing (bottom) parts of single mode motion for the whiting
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Figure 3.23 Dominant COM (red) with its traveling (blue) and standing
(purple) parts parts in complex plane for the whiting (body-frame) raw
data.

Figure 3.24 Dominant COM (red) with its traveling (blue) and standing
(purple) parts in complex plane for the whiting (body-frame) the traveling
wave model.
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(body frame) raw data. Figure 3.26 shows the time histories of traveling (top) and

standing (bottom) parts of single mode motion for the whiting (body frame) raw

data.

Figure 3.25 Superposed snapshots for the traveling (top) and standing
(bottom) parts of single mode motion for the whiting (body-frame) raw
data. The colors of the curves are adjusted from red to blue based on the time
sequence.
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Figure 3.26 Superposed time histories for the traveling (top) and standing
(bottom) parts of single mode motion for the whiting (body-frame) trav-
eling wave model. For better clarity, curves are shown for every five body markers.
The colors of the curves are adjusted based on body markers sequence in the colour
spectrum, from red to blue.
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3.1.4 Wave number, frequency and wave speed

The modal wave speed through the fish can be investigated via the complex mode

for both the raw data and the traveling wave model. From chapter II, the information

for the oscillation phase 1, φ, as a function of x can be derived from the dominant

mode. Previously in Figure 3.4, φ vs. x was plotted for the whiting (body frame) raw

data and the traveling wave model. Based on chapter II, the wave number, γ, can

be calculated by differentiation of φ with respect to x. However, since these data are

discrete, the wave number was calculated by using the central finite difference scheme.

For the first and last body marker, the forward and backward finite difference is used

respectively.

Figure 3.27 shows the plot of γ vs. x. The traveling wave model, based on how

it is constructed, will have a constant wave number. The calculations show also the

the traveling wave’s dominant COM has a constant phase change. The jumps in the

figure are due to the jumps in φ vs. body marker plot between body marker 4 and

5, and between body markers 16 and 17. After body marker 17, there is a oscillation

in γ plot around the value −0.4 rad/in which is the γ used in building the traveling

wave model.

Previously in Figure 3.10, φ vs. time, t was plotted for the whiting (body frame)

raw data and the traveling wave model. Based on chapter II, the frequency, ω, can

be calculated by differentiation of φ with respect to t. However, since these data are

discrete, the frequency is calculated by using the central finite difference scheme. For

the first and last sampling time, the forward and backward finite difference is used

respectively. The result is shown in Figure 3.28.

Based on the approximation of γ and the parameter ω used in building the trav-

eling wave model (the slope of the red line in Figure 3.10, the wave speed can be
1Hereinafter we use φ to indicate the phase of oscillation that can be function of time and

space. For example, according to this definition, in the traveling wave model equation y(x, t) =
a(x) cos (ωt+ γx), the argument of cos function is count as φ
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Figure 3.27 Wave number vs. body marker for the whiting (body-frame)
raw data (blue) and traveling wave model (red), calculated by using finite
difference scheme applied to the φ plot.

Figure 3.28 Plot of frequency, ω, vs. sampling time for the whiting (body
frame) raw data (blue) and traveling wave model (red).
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Figure 3.29 Plot of wave speed based on γ calculated from COM phase for
the whiting (body frame) raw data (blue) and traveling wave model (red).

calculated from chapter II. Figure 3.29 shows the plot of wave speed for the whiting

(body frame) raw data based on γ calculated from COM phase, and the traveling

wave model. Again, the jumps in the figure are due to the jumps in phi vs. body

marker plot between body marker 4 and 5, and between body markers 16 and 17.

After body marker 17, there are oscillations in γ plot around the value −26 rad/in

which is the γ used in building the traveling wave model.
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3.2 Whiting fish - Newtonian frame

3.2.1 Complex modes from swimming midline data

3.2.1.1 Eigenvalues (COVs) and the number of dominant modes

Figures 3.30 and 3.31 show the plots of the COVs in descending order in the linear

scale and logarithmic scale, respectively. It can be seen in Figure 3.30 that only one

mode (the first) captures most (more than 99 percent) of the energy and the other

modes are insignificant compared to the first mode.

It was observed that the value of COVs in the traveling wave model (especially

the first COV) is dependent on the amplitude function used in building the traveling

wave model. Thus, a more precise curve fitting (to amplitude function) produces a

better traveling wave model.

3.2.1.2 Dominant COM

Since the first mode is the dominant mode, the focus of the study will be on the

first COM. Figure 3.32 shows the plots of the main COM in the complex plane for

the whiting (Newtonian frame) raw data (blue) and the traveling wave model (red).

Based on chapter II, COMs contain the information of the phase and amplitude of

oscillation of each body marker. Figure 3.33 shows the plots of COM elements phase

(φ) vs. body marker for the whiting (Newtonian frame) raw data (blue) and the

traveling wave model (red).

Plots of COM elements’ magnitude vs. body marker is shown in Figure 3.34.

The small differences can be due to the amplitude function chosen in building the

traveling wave model. The optimum amplitude function (table 2.2 is obtained by trial

and error in fitting curves, with the optimality criteria being the closeness of COVs

and COMs (between the two data sets). In order to compare the real and imaginary

parts of the two data sets, see Figure 3.35. It can be seen that the undulation of the
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Figure 3.30 Plots of the COVs in descending order in a linear scale for the
whiting (Newtonian frame) raw data (blue) and the traveling wave model
(red) for the whiting (body frame). Only one mode (the first) captures more
than 99 percent of the energy.

Figure 3.31 Plots of the COVs in descending order in a logarithmic scale
for the whiting (Newtonian frame) raw data (blue) and the traveling wave
model (red) for the whiting (body frame).
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Figure 3.32 Dominant COM in raw data (blue) and traveling wave model
(red) for whiting (Newtonian frame) (γ = 0.4 rad/in).

Figure 3.33 Plot of the COM elements’ phases in the raw data (blue) and
the traveling wave model (red) for whiting (Newtonian frame).
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Figure 3.34 Plot of the COM elements’ magnitude for the whiting (New-
tonian frame) raw data and the traveling wave model.

real parts lag the imaginary parts by about 90◦.
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Figure 3.35 Plot of the COM’s real and imaginary parts in the raw data
(blue) and the traveling wave model (red) for whiting (Newtonian frame).

3.2.1.3 Dominant COC

Figure 3.36 shows a plot of the dominant modal coordinate, COC, in the complex

plane, for the whiting (Newtonian frame) raw data and the traveling wave model.

Based on calculation of COC elements’ phase, Figure 3.37 is produced. The figure

shows the COC elements’ phase, φ, vs. sampling time for the whiting (Newtonian

frame) raw data (blue) and traveling wave model (red). Figure 3.38 shows plots of

the real and imaginary parts of dominant COC, in different colors for the whiting

(Newtonian frame) raw data and the traveling wave model.
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Figure 3.36 Plot of dominant COC (complex orthogonal coordinate) in
complex plane in the raw data (blue) and the traveling wave model (red)
for whiting (Newtonian frame).
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Figure 3.37 Plot of the COC elements’ phase vs. sampling time for the
whiting (Newtonian frame) raw data (blue) and traveling wave model
(red).
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Figure 3.38 Plots of the real and imaginary parts of dominant COC, for
whiting (Newtonian frame) raw data (blue) and the traveling wave model
(red).
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3.2.2 Single mode motion from dominant COC

Using the dominant COC, the dominant modal motion is reanimated. Figures 3.39

and 3.40 show the snapshots of single mode motion (Y1) for the whiting (Newtonian

frame) raw data and the traveling wave (the top subfigures). For comparison, the

difference between the single mode motion and total motion (Y − Y1), and the total

motion (Y ), are shown in the middle and bottom subfigures, respectively. The colors

of the curves are adjusted from red to blue based on the time sequence. From Figures

3.39 and 3.40, it can be seen that Y −Y1 in the middle subfigure is not random-looking,

suggesting that although the dominant mode is significantly dominant, however the

second mode is not just noise.

Figures 3.41 and 3.42 show the time histories of single mode motion (Y1) for

the whiting (Newtonian frame) raw data and the traveling wave (the top subfigure).

For comparison, the difference between the single mode motion and total motion

(Y − Y1), and the total motion (Y ), are shown in the middle and bottom subfigures,

respectively. For better clarity, the colors of the curves are adjusted based on the

body-marker sequence from red to blue. In all cases, the axis scale shows that Y −Y1

is very small, consistent with mode one be strongly dominant (99%).
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Figure 3.39 Superposed snapshots of single mode motion Y1 (top), the
difference between the single mode motion and the total motion Y − Y1
(middle), and the total motion Y , (bottom) for the whiting (Newtonian
frame) raw data. The colors of the curves are adjusted from red to blue based on
the time sequence.
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Figure 3.40 Superposed snapshots of single mode motion Y1 (top), the
difference between the single mode motion and the total motion Y − Y1
(middle), and the total motion Y (bottom), for whiting (Newtonian frame)
traveling wave model. The colors of the curves are adjusted from red to blue based
on the time sequence.
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Figure 3.41 Superposed time histories of single mode motion Y1 (top), the
difference between the single mode motion and the total motion Y − Y1
(middle), and the total motion Y , (bottom) for the whiting (Newtonian
frame) raw data. For better clarity, curves are shown for every five body markers.
The colors of the curves are adjusted based on the body-marker sequence from red
to blue.
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Figure 3.42 Superposed time histories of single mode motion Y1 (top),
the difference between the single mode and total Y − Y1 (middle), and
the total motion Y (bottom), for the whiting (Newtonian frame) traveling
wave model. For better clarity, curves are shown for every five body markers. The
colors of the curves are adjusted based on the body-marker sequence from red to blue.
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3.2.2.1 Single mode harmonic motion from harmonic modulation

Based on chapter II, the modal coordinate time histories from harmonic modu-

lation are built into Qh and the dominant modal motion is reanimated. Figure 3.43

shows the dominant COC for the whiting (Newtonian frame) raw data (blue) and the

traveling wave model (red) and Qh (purple). It can be seen that COC of the trav-

eling wave model is quite close to Qh. However, COC of the raw data periodically

approaches Qh and gets behind it, suggesting that in the former, the rate of change

of its elements’ phase is not constant over time (based on how Qh is constructed, the

rate of change of its elements’ phase is constant).

Figure 3.43 Dominant COC for the whiting (Newtonian frame) raw data
(blue), the traveling wave model (red) and Qh (green).

Figures 3.44 and 3.45 show the snapshots of single mode harmonic motion (Yh) for

the whiting (Newtonian frame) raw data and the traveling wave (the top subfigure)

from harmonic modulation. For comparison, the difference between the single mode
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harmonic motion and total motion (Y − Yh), and the total motion (Y ), are shown in

the middle and bottom subfigures, respectively. The colors of the curves are adjusted

from red to blue based on the time sequence.

Figures 3.46 and 3.47 show the time histories of single mode harmonic motion

(Yh) for the whiting (Newtonian frame) raw data and the traveling wave (the top

subfigure) from harmonic modulation. For comparison, the difference between the

single mode harmonic motion and total motion (Y − Yh), and the total motion (Y ),

are shown in the middle and bottom subfigures, respectively. For better clarity, the

colors of the curves are adjusted based on the body-marker sequence from red to blue.
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Figure 3.44 Superposed snapshots of single mode harmonic motion Yh
(top), the difference between the single mode harmonic motion and the
single mode motion Y1 − Yh (middle), and the total motion Y (bottom),
for whiting (Newtonian frame) raw data. The colors of the curves are adjusted
from red to blue based on the time sequence.
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Figure 3.45 Superposed snapshots of single mode harmonic motion Yh
(top), the difference between the single mode harmonic motion and the
single mode motion Y1− Yh (middle), and the single mode motion Y1 (bot-
tom) for whiting (Newtonian frame) traveling wave model. The colors of the
curves are adjusted from red to blue based on the time sequence.
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Figure 3.46 Superposed time histories of single mode harmonic motion
Yh (top), the difference between the single mode harmonic motion and
the single mode motion Y1 − Yh (middle), and the single mode motion Y1
(bottom) for whiting (Newtonian frame) raw data. For better clarity, curves
are shown for every five body markers. The colors of the curves are adjusted based
on the body-marker sequence from red to blue.
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Figure 3.47 Superposed time histories of single mode harmonic motion Yh
(top), the difference between the single mode harmonic motion and the
single mode Y1 − Yh (middle), and the single mode motion Y1 (bottom) for
whiting (Newtonian frame) traveling wave model. For better clarity, curves
are shown for every five body markers. The colors of the curves are adjusted based
on the body-marker sequence from red to blue.

95



Figure 3.48 The traveling parts of dominant modes for whiting (Newtonian
frame) raw data (blue) and the traveling wave model (red).

3.2.3 Dissection of COM into traveling and standing parts

Based on chapter II, the dominant COM was dissected into its traveling and

standing parts. The traveling index of 0.5205 was obtained for the whiting (Newtonian

frame) raw data, while for the traveling wave model, the traveling index was calculates

0.5634. Figure 3.48 shows the traveling parts of dominant modes of the raw data and

traveling part of dominant mode of the traveling wave model. Figure 3.49 shows the

standing part of dominant mode for whiting (Newtonian frame) raw data and standing

part of dominant mode for whiting (Newtonian frame) traveling wave model. Figures

3.50 and 3.51 show the dominant COM with its standing and traveling parts for

whiting (Newtonian frame) raw data and the traveling wave model.
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Figure 3.50 Dominant COM (red) with its traveling (blue) and standing
(purple) parts parts in complex plane for whiting (Newtonian frame) raw
data.

Figure 3.49 The standing part of dominant mode for whiting (Newtonian
frame) raw data (blue) and the traveling wave model (red).

Based on calculation of COM’s traveling and standing parts, the total motion
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Figure 3.51 Dominant COM (red) with its traveling (blue) and standing
(purple) parts in complex plane for whiting (Newtonian frame) the trav-
eling wave model.

was dissected into its traveling and standing parts. Figure 3.52 shows the snapshots

of traveling (top) and standing (bottom) parts of single mode motion for whiting

(Newtonian frame) raw data. Figure 3.53 shows the time histories of traveling (top)

and standing (bottom) parts of single mode motion for the whiting (Newtonian frame)

raw data.
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Figure 3.52 Superposed snapshots for the traveling (top) and standing
(bottom) parts of single mode motion for whiting (Newtonian frame) raw
data. The colors of the curves are adjusted from red to blue based on the time
sequence.
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Figure 3.53 Superposed time histories for the traveling (top) and standing
(bottom) parts of single mode motion for whiting (Newtonian frame) raw
data. For better clarity, curves are shown for every five body markers. The colors of
the curves are adjusted based on body markers sequence from red to blue.
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Figure 3.54 Plot of Wave number, γ vs. body marker for the whiting (New-
tonian frame) raw data (blue) and traveling wave model (red), calculated
by using finite difference scheme applied to the φ plot.

3.2.4 Wave number, frequency and wave speed

The modal wave speed through the fish can be investigated via the complex mode

for both the raw data and the traveling wave model. From chapter II, the information

for the phase, φ, as a function of x can be derived from the dominant mode. Previously

in Figure 3.33, φ vs. x was plotted for the whiting (Newtonian frame) raw data and

the traveling wave model. Based on chapter II, the wave number, γ, can be calculated

by differentiation of φ with respect to x. However, since these data are discrete, the

wave number was calculated by using the central finite difference scheme. For the first

and last body marker, the forward and backward finite difference is used respectively.

Figure 3.54 shows the plot of γ vs. x. The traveling wave model, based on how it

is constructed, will have a constant wave number. The calculations show also the

the traveling wave’s dominant COM has a constant phase change. Based on this

approximation of γ, the wavelength and wave speed can be calculated from chapter

II.
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Figure 3.55 Plot of frequency, ω, vs. sampling time for the whiting (New-
tonian frame) raw data (blue) and traveling wave model (red).

Previously in Figure 3.37, φ vs. time, t was plotted for the whiting (Newtonian

frame) raw data and the traveling wave model. ω is calculated by differentiation of φ

with respect to t. Since these data are discrete, the frequency is calculated by using

the central finite difference scheme. For the first and last sampling time, the forward

and backward finite difference is used respectively. The result is shown in Figure 3.55.

Figure 3.56 shows the plot of wave speed for the whiting (Newtonian frame) raw data

based on γ calculated from COM phase (Figure 3.37, and the average ω (see chapter

II).
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Figure 3.56 Plot of wave speed based on γ calculated from COM phase for
the whiting (Newtonian frame) raw data (blue) and traveling wave model
(red).
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3.3 Mackerel fish

3.3.1 Complex modes from swimming midline data

3.3.1.1 Eigenvalues, COVs, and the number of dominant modes

Figures 3.57 and 3.58 show the plots of the COVs in descending order in the linear

scale and logarithmic scale, respectively. It can be seen in Figure 3.57 that only one

mode (the first) captures most (more than 99 percent) of the energy and the other

modes are insignificant compared to the first mode.

It was observed that the value of COVs in the traveling wave model (especially

the first COV) is dependent on the amplitude function used in building the traveling

wave model. Thus, a more precise curve fitting (to amplitude function) produces a

better traveling wave model. The precision of the amplitude function depends on the

number of body markers.

3.3.1.2 Dominant COM

Since the first mode is the dominant mode, the focus of the study will be on

the first COM. Figures 3.59 shows the plots of main COM in complex plane for the

mackerel raw data and the traveling wave model. For comparison, COMs are shown

in different colors for the mackerel raw data and the traveling wave model. Plots of

COM elements’ phases and COM elements’ magnitude vs. body marker are shown

in Figures 3.60 and 3.61 for the mackerel raw data and the traveling wave model. It

can be seen that the slope of the phase plot is constant for the traveling wave model

but variable in the raw data. Figure 3.62 shows the real and imaginary parts of the

COMs for both data sets.
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Figure 3.57 Plots of the COVs in descending order in a linear scale for the
whiting (Newtonian frame) raw data (blue) and the traveling wave model
(red). Only one mode (the first) captures more than 99 percent of the energy.

Figure 3.58 Plots of the COVs in descending order in a logarithmic scale
for the mackerel raw data (blue) and the traveling wave model (red).
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Figure 3.59 Plot of dominant COM in complex plane for the mackerel raw
data (blue) and traveling wave model (red).

Figure 3.60 Plot of the COM elements’ phases for the mackerel raw data
(blue) and the traveling wave model (red).
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Figure 3.61 Plot of the COM elements’ magnitude for the mackerel raw
data (blue) and the traveling wave model (red).

Figure 3.62 Plot of the COMs’ real and imaginary parts for the mackerel
raw data (blue) and the traveling wave model (red).
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3.3.1.3 Dominant COC

Figure 3.63 shows plot of the dominant modal coordinate, COC, in the complex

plane, for the mackerel raw data and traveling wave model. Based on calculation of

COC elements’ phase, Figure 3.64 is produced. The figure shows the COC elements’

phase, φ, vs. sampling time for the mackerel raw data (blue) and traveling wave

model (red). Figure 3.65 shows plots of the real and imaginary parts of dominant

COC, in blue for the mackerel raw data and red for the traveling wave model. The

real and imaginary parts of COCs provide the two time-modulation components of

the complex wave, representing the time modulations of the 90o-phased components

of the wave.

Figure 3.63 Plot of dominant COC (complex orthogonal coordinate) in
complex plane for the mackerel raw data (blue) and the traveling wave
model (red).
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Figure 3.64 Plot of the COC elements’ phase, θ, vs. sampling time for the
mackerel raw data (blue) and traveling wave model (red).

Figure 3.65 Plots of the real and imaginary parts of dominant COC, for
the mackerel raw data (blue) and the traveling wave model (red).
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3.3.2 Single mode motion from dominant COC

Using the dominant COC, the dominant modal motion is reanimated. Figures 3.66

and 3.67 show the snapshots of single mode motion (Y1) for the mackerel raw data

and the traveling wave (the top subfigure). For comparison, the difference between

the single mode motion and total motion (Y − Y1), and the total motion (Y ), are

shown in the middle and bottom subfigures, respectively. The colors of the curves

are adjusted from red to blue based on the time sequence.

Figures 3.68 and 3.69 show the time histories of single mode motion (Y1) for the

mackerel raw data and the traveling wave (the top subfigure). For comparison, the

difference between the single mode motion and total motion (Y − Y1), and the total

motion (Y ), are shown in the middle and bottom subfigures, respectively. For better

clarity, the colors of the curves are adjusted based on the body-marker sequence from

red to blue. In all cases, the axis scale shows that Y − Y1 is very small, consistent

with mode one be strongly dominant (99%).
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Figure 3.66 Superposed snapshots of single mode motion Y1 (top), the
difference between the single mode and total Y −Y1 (middle), and the total
motion Y (bottom), for the mackerel raw data. For better clarity, curves are
shown for every other sampling time. The colors of the curves are adjusted from red
to blue based on the time sequence.
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Figure 3.67 Superposed snapshots of single mode motion Y1 (top), the
difference between the single mode and total Y − Y1 (middle), and the
total motion Y (bottom), for the mackerel traveling wave model. For better
clarity, curves are shown for every other sampling time. The colors of the curves are
adjusted from red to blue based on the time sequence.
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Figure 3.68 Superposed time histories of single mode motion Y1 (top), the
difference between the single mode and total Y −Y1 (middle), and the total
motion Y (bottom), for the mackerel raw data. For better clarity, curves are
shown for every four body markers. The colors of the curves are adjusted based on
the body-marker sequence from red to blue.
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Figure 3.69 Superposed time histories of single mode harmonic motion
Y1 (top), the difference between the single mode and total motion Y − Y1
(middle), and the total motion Y (bottom), for the mackerel traveling wave
model. For better clarity, curves are shown for every four body markers. The colors
of the curves are adjusted based on the body-marker sequence from red to blue.

3.3.2.1 Single mode motion from harmonic modulation

The modal motion is reanimated using harmonic modulation in place of the modal

COC. Figure 3.70 shows the harmonic commplex coordinate (green) with the traveling

wave model COC (red) and raw data COC (blue) for mackerel. It can be observed
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that the green and red points are quite close all the time. Figures 3.71 and 3.72 show

the snapshots of single mode harmonic motion (Yh) for the mackerel raw data and

traveling wave (the top subfigure). For comparison, the difference between the single

mode harmonic motion and the total motion (Y −Yh), and the total motion (Y ), are

shown in the middle and bottom subfigures, respectively. The colors of the curves

are adjusted from red to blue based on the time sequence.

Figures 3.73 and 3.74 show the time histories of single mode harmonic motion (Yh)

for the mackerel raw data and the traveling wave (top subfigure). For comparison, the

difference between the single mode harmonic motion and total motion (Y − Yh), and

the total motion (Y ), are shown in the middle and bottom subfigures, respectively.

For better clarity, the colors of the colors of the curves are adjusted from red to blue

based on the body-marker sequence.

Figure 3.70 The harmonic complex coordinate (green) with the traveling
wave model COC (red) and raw data COC (blue) for the mackerel.
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Figure 3.71 Superposed snapshots of single mode harmonic motion Yh
(top), the difference between the single mode harmonic motion and the
total motion Y − Yh (middle), and the total motion Y (bottom), for the
mackerel raw data. For better clarity, curves are shown for every other sampling
time. The colors of the curves are adjusted from red to blue based on the time
sequence.

116



Figure 3.72 Superposed snapshots of single mode harmonic motion Yh
(top), the difference between the single mode and total motion Y − Yh
(middle), and the total motion Y (bottom), for the mackerel traveling
wave model. For better clarity, curves are shown for every other sampling time.
The colors of the curves are adjusted from red to blue based on the time sequence.
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Figure 3.73 Superposed time histories of single mode harmonic motion Yh
(top), the difference between the single mode and total Y − Yh (middle),
and the total motion Y (bottom), for the mackerel raw data. For better
clarity, curves are shown for every four body markers. The colors of the curves are
adjusted based on the body-marker sequence from red to blue.
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Figure 3.74 Superposed time histories of single mode harmonic motion
Yh (top), the difference between the single mode and total motion Y − Yh
(middle), and the total motion Y (bottom), for the mackerel traveling wave
model. For better clarity, curves are shown for every four body markers. The colors
of the curves are adjusted based on the body-marker sequence from red to blue.
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Figure 3.75 The traveling parts of dominant modes of the raw data (blue)
and the traveling wave model (red) for the mackerel.

3.3.3 Dissection of COM into traveling and standing parts

Based on chapter II, the dominant COM was dissected into its traveling and

standing parts. The traveling index of 0.4904 was obtained for the mackerel raw

data, while for the traveling wave model, the traveling index was calculates 0.5651.

Figure 3.75 shows the traveling part of dominant mode of the raw data and traveling

part of dominant mode of the traveling wave model. Figure 3.76 shows the standing

part of dominant mode of the raw data and standing part of dominant mode of

the traveling wave model. Figures 3.77 and 3.78 show the dominant COM with its

standing and traveling parts of the raw data and the traveling wave model. In both

cases, the sum of the traveling and standing produced the full mode.

Based on calculation of the traveling and standing parts of COM, the total motion

was dissected into its traveling and standing parts. Figure 3.79 shows the snapshots

of traveling (top) and standing (bottom) parts of single mode motion for the mack-

erel raw data. Figure 3.80 shows the time histories of traveling (top) and standing
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Figure 3.76 The standing part of dominant mode of the raw data (blue)
and the traveling wave model (red) for the mackerel.

Figure 3.77 Dominant COM (red) with its traveling (blue) and standing
(purple) parts for the mackerel raw data.
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Figure 3.78 Dominant COM (red) with its traveling (blue) and standing
(purple) parts for the mackerel traveling wave model.

(bottom) parts of single mode motion for the mackerel raw data.

122



Figure 3.79 Superposed snapshots of the traveling (top) and standing (bot-
tom) parts of single mode motion for the mackerel raw data. For better
clarity, curves are shown for every other sampling time. The colors of the colors of
the curves are adjusted from red to blue based on the time sequence.
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Figure 3.80 Superposed time histories for the traveling (top) and standing
(bottom) parts of single mode motion for the mackerel traveling wave
model. For better clarity, curves are shown for every four body markers. The colors
of the colors of the curves are adjusted based on body markers sequence in the colour
spectrum, from red to blue.
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Figure 3.81 Wave number vs. body marker for the mackerel raw data
(blue) and traveling wave model (red), calculated by using finite difference
scheme applied to the φ plot.

3.3.4 Wave number, frequency and wave speed

The modal wave speed through the fish can be investigated via the complex mode

for both the raw data and the traveling wave model. From chapter II, the information

for the phase, φ, as a function of x can be derived from the dominant mode. Previously

in Figure 3.60, φ vs. x was plotted for the mackerel raw data and the traveling wave

model. Based on chapter II, the wave number, γ, can be calculated by differentiation

of φ with respect to x.

Figure 3.81 shows the plot of γ vs. x. The traveling wave model, based on how

it is constructed, will have a constant wave number. The calculations show also the

the traveling wave’s dominant COM has a constant phase change. Based on this

approximation of γ, the wavelength and wave speed can be calculated from chapter

II.

Previously in Figure 3.64, φ vs. t was plotted for the mackerel raw data and

traveling wave model. ω is calculated by differentiation of φ with respect to t. Since
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Figure 3.82 Plot of frequency, ω, vs. sampling time for the mackerel raw
data (blue) and traveling wave model (red). It can be seen that the red plot is
not fully constant.

these data are discrete, the frequency is calculated by using the central finite differ-

ence scheme. For the first and last sampling time, the forward and backward finite

difference is used respectively. The result is shown in Figure 3.82. Figure 3.56 shows

the plot of wave speed for the mackerel raw data based on γ calculated from COM

phase, and the traveling wave model. Figure 3.83 shows the plot of wave speed for the

mackerel raw data based on γ calculated from COM phase, and the traveling wave

model.
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Figure 3.83 Plot of wave speed based on γ calculated from COM phase for
the mackerel raw data (blue) and traveling wave model (red).

3.4 Saithe fish

3.4.1 Complex modes from swimming midline data

3.4.1.1 Eigenvalues, COVs, and the number of dominant modes

Figures 3.84 and 3.85 show the plots of the COVs in descending order in a linear

scale and logarithmic scale, respectively. It can be seen in Figure 3.84 that only one

mode (the first) captures most (more than 99 percent) of the energy and the other

modes are insignificant comparing to the first mode.
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Figure 3.84 Plots of the COVs in descending order in a linear scale for the
saithe raw data (blue) and the traveling wave model (red). Only one mode
(the first) captures more than 99 percent of the energy.

Figure 3.85 Plots of the COVs in descending order in a logarithmic scale
for the saithe raw data (blue) and the traveling wave model (red).
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3.4.1.2 Dominant COM

Since the first mode is the dominant mode, the focus of the study will be on the

first COM. Figures 3.86 shows the plots of main COM in complex plane for the saithe

raw data and the traveling wave model. For comparison, COMs are shown in blue

for the raw data and in red for the traveling wave model. Figure shows that for the

saithe, the dominant COMs of the raw data and the traveling wave model are very

similar.

Plots of COM elements’ phases and COM elements’ magnitudes vs. body marker

is shown in Figures 3.87 and 3.88 for the saithe raw data and the traveling wave

model. It can be seen that the slope of phase plot is constant for the traveling wave

model but variable in raw data. Figure 3.89 shows the real and imaginary parts of

the COMs for both data sets.

Figure 3.86 Dominant COM for the saithe raw data (red) and traveling
wave model (blue).
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Figure 3.87 Plot of the COM elements’ phases for the saithe raw data
(blue) and the traveling wave model (red).

Figure 3.88 Plot of the COM elements’ magnitudes for the saithe raw data
(blue) and the traveling wave model (red).
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Figure 3.89 Plot of the COMs’ real and imaginary parts for the saithe raw
data (blue) and the traveling wave model (red).

3.4.1.3 Dominant COC

Figure 3.90 shows plot of the dominant modal coordinate, COC, in the complex

plane, for the saithe raw data and traveling wave model. Based on calculation of

COC elements’ phase, Figure 3.91 is produced. The figure shows the COC elements’

phase, φ, vs. sampling time for the saithe raw data (blue) and traveling wave model

(red). Figure 3.92 shows plots of the real and imaginary parts of dominant COC,

in different colors for the saithe raw data and traveling wave model. The real and

imaginary parts of COCs provide the two time-modulation components of the complex

wave, representing the time modulations of the 90o-phased components of the wave.
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Figure 3.90 Plot of dominant COC (complex orthogonal coordinate) for
the saithe raw data (blue) and the traveling wave model (red).
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Figure 3.91 Plot of the COC elements’ phase, φ, vs. sampling time for the
saithe raw data (blue) and traveling wave model (red).

Figure 3.92 Plots of the real and imaginary parts of dominant COC, for
the saithe raw data (blue) and the traveling wave model (red).
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3.4.2 Single mode motion from dominant COC

Using the dominant COC, the dominant modal motion is reanimated. Figures

3.93 and 3.94 show the snapshots of single mode motion (Y1) for the saithe raw data

and traveling wave (the top subfigure). For comparison, the difference between the

single mode motion and total motion (Y −Y1), and the total motion (Y ), are shown in

the middle and bottom subfigures, respectively. For better clarity, curves are shown

for every five sampling times. The colors of the curves are adjusted from red to blue

based on the time sequence.
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Figure 3.93 Superposed snapshots of single mode motion Yh (top), the
difference between the single mode and total Y − Yh (middle), and the
total motion Y (bottom), for the saith raw data. For better clarity, curves
are shown for every five sampling times. The colors of the colors of the curves are
adjusted from red to blue based on the time sequence.
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Figure 3.94 Superposed snapshots of single mode motion Y1 (top), the
difference between the single mode and total motion Y − Y1 (middle), and
the total motion Y (bottom), for the saithe traveling wave model. For better
clarity, curves are shown for every five sampling times. The colors of the curves are
adjusted from red to blue based on the time sequence.

Figures 3.95 and 3.96 show the time histories of single mode motion (Y1) for the

saithe raw data and the traveling wave (the top subfigure). For comparison, the

difference between the single mode motion and total motion (Y − Y1), and the total

motion (Y ), are shown in the middle and bottom subfigures, respectively. For better
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clarity, curves are shown for every five body markers. The colors of the colors of the

curves are adjusted based on the body-marker sequence from red to blue.

Figure 3.95 Superposed time histories of single mode motion Y1 (top), the
difference between the single mode and total Y −Y1 (middle), and the total
motion Y (bottom), for the saith raw data. For better clarity, curves are shown
for every four body markers. The colors of the colors of the curves are adjusted based
on the body-marker sequence from red to blue.
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Figure 3.96 Superposed time histories of single mode motion Y1 (top), the
difference between the single mode and total Y −Y1 (middle), and the total
motion Y (bottom), for the saithe traveling wave model. For better clarity,
curves are shown for every four body markers. The colors of the curves are adjusted
based on the body-marker sequence from red to blue.

In all cases, the axis scale shows that Y − Y1 is very small, consistent with mode

one be strongly dominant (99%).
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3.4.2.1 Single mode motion from harmonic modulation

The modal motion is reanimated using harmonic modulation in place of the modal

COC. Figure 3.97 shows the harmonic commplex coordinate (green) with the traveling

wave model COC and raw data COC for saithe. It can be observed that the green

and red points are quite close all the time. The single mode harmonic motion is

reanimated from harmonic modulation. Figures 3.98 and 3.99 show the snapshots

of single mode harmonic motion (Yh) for the saithe raw data and the traveling wave

(the top subfigure). For comparison, the difference between the single mode harmonic

motion and total motion (Y −Yh), and the total motion (Y ), are shown in the middle

and bottom subfigures, respectively. For better clarity, curves are shown for every

five sampling times. The colors of the colors of the curves are adjusted from red to

blue based on the time sequence.

Figures 3.100 and 3.101 show the time histories of single mode harmonic motion

(Yh) for the saithe raw data and the traveling wave (the top subfigure). For com-

parison, the difference between the single mode harmonic motion and total motion

(Y − Yh), and the total motion (Y ), are shown in the middle and bottom subfigures,

respectively. For better clarity, the colors of the colors of the curves are adjusted

based on the body-marker sequence from red to blue.
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Figure 3.97 The harmonic complex coordinate (green) with the traveling
wave model COC (red) and raw data COC (blue) for the saithe.
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Figure 3.98 Superposed snapshots of harmonic modulation-based single
mode harmonic motion Yh (top), the difference between the single mode
harmonic motion and total motion Y − Yh (middle), and the total motion
Y (bottom), for the saithe raw data. For better clarity, curves are shown for
every five time samples. the colors of the colors of the curves are adjusted from red
to blue based on the time sequence.
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Figure 3.99 Superposed snapshots of single mode harmonic motion Yh
(top), the difference between the single mode harmonic motion and to-
tal motion Y − Yh (middle), and the total motion Y (bottom), for the
saithe traveling wave model. For better clarity, curves are shown for every five
sampling times. The colors of the colors of the curves are adjusted from red to blue
based on the time sequence.
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Figure 3.100 Superposed time histories of single mode harmonic motion Yh
(top), the difference between the single mode harmonic motion and total
motion Y − Yh (middle), and the total motion Y (bottom), for the saithe
raw data. For better clarity, curves are shown for every four body markers. The
colors of the colors of the curves are adjusted based on the body-marker sequence
from red to blue.
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Figure 3.101 Superposed time histories of single mode harmonic motion
Yh (top), the difference between the single mode harmonic motion and
total motion Y − Yh (middle), and the total motion Y (bottom), for the
saithe traveling wave model. For better clarity, curves are shown for every four
body markers. The colors of the colors of the curves are adjusted based on the
body-marker sequence from red to blue.

144



3.4.3 Dissection of COM into traveling and standing parts

Based on chapter II, the dominant COM was dissected into its traveling and

standing parts. The traveling index of 0.5993 was obtained for the saithe raw data,

while for the traveling wave model, the traveling index was calculates 0.6017. Figure

3.102 shows the traveling parts of dominant modes of the raw data and traveling

part of dominant mode of the traveling wave model. Figure 3.103 shows the standing

part of dominant mode of the raw data and standing part of dominant mode of the

traveling wave model. Figures 3.104 and 3.105 show the dominant COM with its

standing and traveling parts of the raw data and the traveling wave model.

Figure 3.102 The traveling parts of dominant modes for the saithe raw
data (blue) and the traveling wave model (red).
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Figure 3.103 The standing part of dominant mode for the saithe raw data
(blue) and the traveling wave model (red).

Figure 3.104 Dominant COM (red) with its traveling (blue) and standing
(purple) parts for the saithe raw data.
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Figure 3.105 Dominant COM (red) with its traveling (blue) and standing
(purple) parts for the saithe traveling wave model.

Based on calculation of the traveling and standing parts of COM, the total motion

was dissected into its traveling and standing parts. Figure 3.106 shows the snapshots

of traveling (top) and standing (bottom) parts of single mode motion for the saithe

raw data. Figure 3.107 shows the time histories of traveling (top) and standing

(bottom) parts of single mode motion for the saithe raw data.
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Figure 3.106 Superposed snapshots for the traveling (top) and standing
(bottom) parts of single mode motion for the saithe raw data. For better
clarity, curves are shown for every five sampling times. The colors of the colors of the
curves are adjusted from red to blue based on the time sequence.
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Figure 3.107 Superposed time histories for the traveling (top) and standing
(bottom) parts of single mode motion for the saithe raw data. For better
clarity, curves are shown for every four body markers. The colors of the colors of the
curves are adjusted based on body markers sequence in the colour spectrum, from
red to blue.
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3.4.4 Wave number, frequency and wave speed

The modal wave speed through the fish can be investigated via the complex mode

for both the raw data and the traveling wave model. From chapter II, the information

for the phase, φ, as a function of x can be derived from the dominant mode. Previously

in Figure 3.87, φ vs. x was plotted for the saithe raw data and the traveling wave

model. Based on chapter II, the wave number, γ, can be calculated by differentiation

of φ with respect to x. However, since these data are discrete, the wave number was

calculated by using the central finite difference scheme. For the first and last body

marker, the forward and backward finite difference is used respectively.

Figure 3.108 shows the plot of γ vs. x. The traveling wave model, based on how

it is constructed, will have a constant wave number. The calculations show also the

the traveling wave’s dominant COM has a constant phase change.

Figure 3.108 Plot of wave number vs. body marker for the saithe raw data
(blue) and traveling wave model (red), calculated by using finite difference
scheme applied to the φ plot.

Previously in Figure 3.91, φ vs. t was plotted for the mackerel raw data and

traveling wave model. ω is calculated by differentiation of φ with respect to t. Since
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Figure 3.109 Plot of frequency, ω, vs. sampling time for the saithe raw
data (blue) and traveling wave model (red).

these data are discrete, the frequency is calculated by using the central finite differ-

ence scheme. For the first and last sampling time, the forward and backward finite

difference is used respectively. The result is shown in Figure 3.82.

Based on this approximation of γ, the wavelength and wave speed can be calcu-

lated from chapter II. Figure 3.110 shows the plot of wave speed for the saithe raw

data based on γ calculated from COM phase, and the traveling wave model.
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Figure 3.110 Plot of wave speed based on γ calculated from COM phase
for the saithe raw data (blue) and traveling wave model (red).
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CHAPTER IV

Discussion

We have extracted some of the kinematical features of carangiform fish swimming

overlooked by simple existing models. It is possible that fine details of the fish may

have a significant impact on achieving a high efficiency in its propulsion. The small

details in the kinematics of fish swimming may have significant role in low drag or

low energy consumption per unit of forward translation.

The technique used, COD decomposes a total motion, that is sampled in space

and time into its characteristic complex modes. This is done by solving an eigenvalue

problem described in chapter II. After decomposing the motion into its characteris-

tic complex coordinates modes, the frequency and wave number information can be

extracted from the complex modal coordinates and modes. Since it does not make

any preselected assumption about the motion parameters (frequencies), it can reveal

an underlying relationship between the motion phase and time or location (frequency

and wave number). So it can lead to estimations of parameters related to the motion

phase and modal amplitudes. Another application is that it can be used to compute

a traveling index for the periodic motions to quantify the relative degree of traveling

and standing in a waveform. COD can also serve as a filtering tool for the signal

data that are accompanied by noise. Altogether, this study concludes that COD can

propose a more accurate description of swimming kinematics. In the following, the

above-mentioned aspects of this analysis is discussed in the context of comparison

done between the modes from raw data and the traveling wave model.
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4.1 The main mode shapes and the number of main modes

As a result of this analysis, we found that for all three fish, both the raw data and

the traveling wave model have a single dominant mode that captured more than 99

percent of the energy contain in each mode. The other modes tend to have insignifi-

cant participation and are noise dominated. The modal amplitudes are proportional

to the square root of the eigenvalues. Unlike in the linear scale, the figures that show

the eigenvalues in logarithmic scale can make a better distinction between the sec-

ond mode and the others after it, showing that the second mode, although negligible

comparing to the first mode, can contain meaningful information. Finally, this is the

mode shape that can be used to judge if the other modes are something other than

noise.

This is interesting that the same fact about the eigenvalues (only one dominant

mode) holds for the traveling wave model as for the raw data. When building the

traveling wave model, the parameters like amplitude function, γ, and ω were adjusted

by trial and error to give COV values and COM shapes similar to those in raw data

case. The amplitude function was extracted from the raw data and using curve fitting.

We observed that the eigenvalues’ quantities (especially the first one) were sensitive

and dependent on the amplitude function used in the traveling wave model, so that

even small changes affected the dominant eigenvalue. Thus, it can be concluded that

the amplitude function is an affecting parameter on COVs. On the other hand, the

carangiform categorization is made based on the amplitude variation along the fish

length. We observed that for these three species, the nature of their amplitude (vs.

body marker) beside other possible factors, led to having one dominant mode, either

for the raw data or for the traveling wave model. We have neither examined other

species in carangiform category nor in other categories (like anguilliform) to comment

on the number of dominant COVs as a function of category as a rule. Thus, further

analysis on other fish in this or other categories is needed to make a more general
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conclusion about the number of main modes in carangiform swimming.

4.1.1 Whiting fish

For the whiting considered in body frame, Figures 3.1, 3.2 clearly shows that

there is only one dominant mode. In a Newtonian frame, Figures 3.30 and 3.31 show

a similar result, however, the dominant eigenvalues in the Newtonian frame (for the

raw data and the traveling wave model) are about 2 in2, compared to that in the

body frame of 4 in2. For both frames raw data, there is a possibility that the second

and the third modes are meaningful for raw data. For the traveling wave model, the

second mode may be meaningful only due to discretization effects of the continuous

fish body.

4.1.2 Mackerel fish

Figures 3.57 for mackerel shows that the dominant eigenvalue is about 4×10−3 m2

for both the raw data and the traveling wave model. Figure 3.58 shows that other than

the first dominant mode, the second to tenth modes may be meaningful, although

they have far less participation in energy contain comparing to the first mode.

4.1.3 Saithe fish

For the saithe fish, Figure 3.84, shows that the first eigenvalue is far dominant over

the other modes and is about 8 × 10−3 m2 for both the raw data and the traveling

wave model. Figure 3.85 shows that the eigenvalues second to tenth do not have

absolute zero participation and may be meaningful.

This is interesting that all the three species have one dominant mode of motion.

Actually, it simplifies the models that can be proposed for the swimming kinematics.

However, not to mention that the conclusion should not be generalized to all carangi-

form swimmers. Even more, the data used belong to ‘average’ fish for mackerel and
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saithe. It means that different fish in one species can perform different motions and in

this research we just considered an average motion that leads to an average forward

speed.

For the mackerel and saithe fish, these results can be compared to the results of

Videler and Hess (1984). They used the FFT to decompose the total motion and

found three considerable modes (the first, third, and fifth frequencies) that among

them the first one is dominant (Figure 4.1). Their interpretation of the results in

this figure is that the first frequency accounts for most of the lateral motion, the

third frequency contributes something in the posterior part of the fish and the fifth

frequency contributions can hardly be distinguished from noise.
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Figure 4.1 Lateral displacement for ‘average’ saithe and ‘average’ mack-
erel. (A) Amplitude and phase functions for ‘average’ saithe: first frequency (drawn
curves), third frequency (dashed), fifth frequency (stippled) contribution. (B) The
same for ‘average’ mackerel. Figure from Videler and Hess (1984).
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4.2 Dominant COMs and their information about the modal

amplitude and phase

The complex orthogonal modes, COMs, resulting from COD technique, contain

the information for amplitude distribution among the modes. They also contain

information of phase change with body markers (location). To some extent, the

traveling wave is not a very high accurate model since it is not expressive of small

details about the amplitude distribution and phase change along the fish length. The

factors affecting the traveling wave COM shapes are: the amplitude function used, the

wave number γ, and the frequency ω. We used trial and error to find a combination of

these parameters that obtain the closest COMs to the raw data COMs. Our criteria

were: coincidence of the dominant eigenvalue (can be seen in Figures 3.1, 3.30, 3.57,

and 3.84), visual closeness of COM shapes between the raw data and the traveling

wave model (can be seen in Figures 3.3, 3.3, 3.59, and 3.86), closeness of the phase

plots vs. body marker with respect to the slope and location of the corresponding

data points (can be seen in Figures 3.4, 3.33, 3.60, and 3.87), and closeness of the

phase plots vs. time with respect to the slope and location of the corresponding data

points (can be seen in Figures 3.10, 3.37, 3.64, and 3.91). An exact or even match

between the COMs in raw data and the traveling wave model was not possible.

As an example, variation of COM (traveling wave model) in complex plane with

value changes of γ is shown for mackerel in Figure 4.2. In this figure, we tried to

tune the value of γ in the traveling wave model to see the effect. The figure shows

the resultant COMs corresponding to γ = 21, 21, 22.3, 24, 18 rad/m and COM

corresponding to raw data. For the rest of the study, the value 20 rad/m was selected

because it produced the same phase difference in body length as in raw data.
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Figure 4.2 Effect of γ on dominant COM in traveling wave model.

4.2.1 Whiting fish

Figures 3.3 and 3.32 show the dominant COMs in complex plane for the raw data

and the traveling wave model, respectively for the whiting body frame and Newtonian

frame.

In both figures, slight different in COMs’ shape between the blue and the red plot

is seen, especially in the anterior region. This is expressive of small difference between

the real motion and the traveling wave model. The differences can be described as

follows; each point in the plot is an element of COM vector (1 ×M). The points

closer to the center of the spiral belong to anterior regions of fish body, and the outer

points belong to posterior regions. Each element in complex plane is expressed as

ρiφ(xi), where ρ is the magnitude and φ is the phase. The magnitude is equivalent to

the oscillation amplitude of the corresponding body marker. The φs show the relative

phase of body markers. The COM thus can be expressed as vector of exponential
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functions of body markers location,

wi =



ρ1e
φ1(x1)

ρ2e
φ2(x2)

. . . . . . . . . .

ρMe
φM (xM )


Comparing the red and blue curves in these figures reveals that the corresponding

points in complex plane for raw data and traveling wave model differ in their place-

ment in the complex plane. In Figures 3.4 and 3.33 that are produced based on the

placement of data points, it can be seen that the slope of phase vs. body marker plot

is not constant for raw data. An interesting observation about the traveling wave

model is that the slope of COM phase vs. body marker calculated to be constant.

In Figures 3.7 and 3.34 it can be seen that the slope of phase vs. body marker

plot is not constant for raw data, unlike the traveling wave model. Figures 3.35 and

3.35 show the real and imaginary parts of the COMs vs. body marker. These figures

give information about amplitude and phase for each body marker. First of all, a

couple of through and crest can be seen for each plot, indicating that the wave length

is less than the fish length. Second, the real parts and the imaginary parts differ in

phase for less than 90 degrees. Finally, in Figure 3.35, the imaginary parts differ in

amplitude in the interior region, while the real parts are close. In 3.8 there is a nearly

good match for the phase and amplitude of rel/imaginary parts between the blue and

red plots. The two last observations may indicate that for the body frame data we

could find a better matched traveling wave.
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4.2.2 Mackerel fish

Figure 3.59 shows that the dominant COMs of the raw data and the traveling

wave model does not match in amplitude of data points. Also, with respect to the

phase, the data points in blue plot get behind and then ahead of the red data points,

showing the wave number is not constant in the raw data. This result is confirmed

in Figure 3.60 by comparing the slope of the red and blue plots. An interesting

observation about the traveling wave model is that the slope of COM phase vs. body

marker calculated to be constant.

With respect to the amplitude, however, it can be seen in Figure 3.61 that a nearly

good match exist between the blue and red plots. Again, these plots are dependent

on the amplitude function, γ, and ω chosen for the traveling wave model. Thus,

the optimality of the traveling wave may depend on the raw data of each fish that

is representing the nature of the fish motion. In figure 3.62, a nearly good match

between the phase and amplitude of real/imaginary parts can be seen between the

blue and red plots. Also, in the imaginary part plots, it can be seen that there is more

than a complete cycle (a through and a crest are included in the plot) indicating that

the wavelength is less than the fish length.
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4.2.3 Saithe fish

COMs of raw data and the traveling wave model are quite close in Figure 3.86.

Again, for the saithe too, the wave number is not constant in the raw data; however

it is closer to constant value comparing saithe with mackerel and whiting. This result

is confirmed in Figure 3.87 by comparing the slope of the red and blue plots. In the

case of saithe fish also, the slope of traveling wave model’s COM phase vs. body

marker is observed to be constant.

With respect to the amplitude, there is a good match too in Figure 3.88. Al-

together, these results show that for the saithe we could find easier a good model

parameters (amplitude function, γ, and ω for the traveling wave model) comparing

to the other fish. A good match also exist in 3.89 between the real/imaginary plots

of raw data and the traveling wave model with respect to the phase and amplitude.

Also, in the imaginary part plots, it can be seen that there is more than a complete

cycle (a through and a crest are included in the plot) indicating that the wavelength

is less than the fish length.

Videler and Hess (1984) obtained a similar result regarding the phase change over

body length for the dominant mode. In Figure 4.1, the right plots show the phase

change over body length for average mackerel and saith for three modes of motion.

It can be seen that for the first (dominant) mode, the phase change trend is close to

a straight line but not exactly straight; a result quite similar to the results of this

research. For the second mode, there is a standing wave in the anterior body (zero

slope) and positive varying slope for the posterior body. For the third mode, the

phase plot has a zero slope, showing a standing wave all over the body length. The

modal amplitude is far more significant for the first mode, showing a typical trend in

carangiform swimmers.
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4.3 COCs and their information about phase change attributes

in time

The complex orthogonal coordinates, COCs, resulting from COD technique, con-

tain the information of phase change in time. To some extent, the traveling wave is

not a very high accurate model since it is not expressive of small details about the

phase change with time in raw data.

4.3.1 Whiting fish

Figure 3.9 and 3.36, show respectively for the body frame and Newtonian frame

that the phase difference between the consecutive red points is uniform, while the

blue points get ahead and behind of the corresponding red points periodically. The

same conclusion can be made from Figures 3.10 and 3.37. It can be seen that in

the traveling wave, plot of COC elements’ phase vs. time has nearly constant slope,

ω, but in raw data, the rate of phase change in time, is not constant over the time.

Figures 3.28 and 3.55 show the same fact about the frequency ω.

4.3.2 Mackerel fish

During the digitization of mackerel raw data, we used 20 sampling times. Figure

3.63 shows that the blue points (raw data COC) get ahead and behind the red points

(traveling wave model COC) periodically with respect to phase. Figure 3.64 shows

a good match between the phase plots of raw data and the traveling wave model.

Figure 3.82 shows better the fluctuations in the frequency ω in time. Figure 3.65

shows a good match between the imaginary parts of both data sets and between the

real parts of both data sets. It can be seen that the real and imaginary parts are

exactly 90◦ apart.
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4.3.3 Saithe fish

For the saithe fish we used 50 sampling times, so a better resolution in time

comparing to the mackerel case was examined. Figure 3.90 shows a nearly good match

between the blue and red data points. Figure 3.91 shows a good match between the

phase plots of raw data and the traveling wave model. Figure 3.109 shows better the

fluctuations in the frequency ω in time. Figure 3.92 shows a good match between the

imaginary parts of both data sets and between the real parts of both data sets. It

can be seen that the real and imaginary parts are exactly 90◦ apart.

4.4 Extraction of the phase speed information

As a result of applying COD to raw data, a variable phase speed is calculated

over the body length. This can be observed in Figures 3.29, 3.56, 3.83, and 3.110

(the blue curves). This result was predictable since we saw that γ is variable over the

body length, and the phase speed is given in terms of the wave’s angular frequency

ω and wave number γ, as c =
ω

γ
. It should be noted that in this formula, a constant

average value of ω was used to plot the phase speed. For the whiting (Newtonian

frame), mackerel, and saithe, the phase speed is higher in the anterior region and

correspondingly the wave number and wavelength are lower and higher respectively

in this region (the absolute values). It may be related to this fact that muscular

activation does not occur at head region, or the anterior region is probably stiffer.

In the posterior region, there is lower phase speed, lower wave number, and lower

wavelength (the absolute values). It may be because there is nonzero continuous

muscular activation in the posterior region.
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4.5 Reanimation of the motion based on the dominant COMs

and COCs

We reanimated the motion based on only the dominant mode for both the raw

data and the traveling wave model. A typical pattern observed was that the difference

between the total motion and the single mode-based motion, Y −Y1, always is within

less than 10% of the total motion. This observation confirms that the dominant mode

has more than 99% of the total energy (0.99 = 1 − 0.12). In some of the cases, this

difference seems to have a non-random shape, meaning that the difference may be not

just a noise. This leads us to the conclusion that the modes other than the dominant

one may be not just a noise recorded in data collection process.

4.5.1 Whiting fish

4.5.1.1 Body frame

Figures 3.12 and 3.14 show the single-mode motion in comparison to the total

motion for whiting (body frame) raw data. The snapshots show that the difference

between the single-mode motion and the total motion, Y −Y1, does not look random,

so maybe it is not just noise. Thus, the modes other than the dominant one can be

meaningful. Also, Y −Y1 looks like a standing wave in which at all the body markers,

the oscillation has nearly the same phase. For example in Figure 3.12, the red plot has

the highest amplitude at all body markers, meaning that all body markers reached

their highest displacement at the same time. This seems to be true for curves at other

snapshots (other colors). Also, Y −Y1 has higher amplitude in the body markers from

25 to 40 and right at the tail. The time histories for Y − Y1 confirm this.

Figures 3.13 and 3.15 shows the single-mode motion in comparison to the total

motion for the whiting (body frame) traveling wave model. First of all, comparing

Y − Y1 for raw data and the traveling wave model, shows that application of COD
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resulted in different patterns for these two data sets (raw data and the traveling wave

model). Second, the snapshot plots show that the dominant mode simulates very

well the motion of body markers 1 to 20, but for the tail body markers, Y − Y1

reaches to 0.1 of the total motion. This is confirmed by the time-histories. Again for

the traveling wave model, Y − Y1 nearly looks like a standing wave with the same

reasoning.

4.5.1.2 Newtonian frame

Figures 3.39 and 3.14 show the single-mode motion in comparison to the total

motion for whiting (body frame) raw data. The snapshot plot shows that Y − Y1

looks like a standing wave without randomness. However, the time history plot shows

that a group of body markers are in-phase and the rest are out-of-phase with the first

group.

Figures 3.40 and 3.42 show the single-mode motion in comparison to the total

motion for the whiting (body frame) traveling wave model. The snapshots and time

histories of Y − Y1 show neither a fully random trend nor a special trend.

4.5.2 Mackerel fish

Figure 3.66 shows the snapshots of single-mode motion in comparison with the

total motion for mackerel raw data. The snapshots of Y − Y1 do not look random.

It can be seen that the amplitude of Y − Y1 oscillation gets smaller from the head to

the tail. No special trend is found in the time histories of Y − Y1 in Figure 3.68 for

raw data. Also, no special trend is observed for the snapshots and time histories in

Figures 3.67 and 3.69.
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4.5.3 Saithe fish

In Figures 3.93 and 3.95, which show the single-mode motion in comparison to the

total motion for saithe raw data, Y −Y1 plots do not look fully random nor is a special

trend seen in them. This is while, for the traveling wave model, the corresponding

Y −Y1 plots show a far smaller amplitude (Figures 3.94 and 3.96, middle subfigures).

4.6 Reanimation of the motion based on harmonic modulation

The complex coordinates that are built by using harmonic modulation are closer

to the COC in traveling wave model than the COC in the raw data. The reason may

be the way the traveling wave model is constructed and harmonic modulation is done

(see Figures 3.16, 3.43, 3.70, and 3.97).

4.6.1 Whiting fish

For the whiting (body frame), the single mode harmonic motion is compared

with the single mode based on the COC of the raw data in Figures 3.17 and 3.19.

These figures are compared with their corresponding figures that compare the single

mode harmonic motion with the single mode based on the COC of the traveling wave

(Figures 3.18 and 3.20), the observation is that the single mode harmonic motion is

far closer to the single mode based on the COC of the traveling wave.

For the whiting (Newtonian frame), the single mode harmonic motion is compared

with the single mode based on the COC of the raw data in Figures 3.44 and 3.46. If

these figures are compared with their corresponding figures that compare the single

mode harmonic motion with the single mode based on the COC of the traveling wave

(Figures 3.45 and 3.47, the observation is that the single mode harmonic motion is

far closer to the single mode based on the COC of the traveling wave. Actually, by

noting to the Y1 − Yh plot, it seems that the difference can be reducible to zero by
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adjustment of phase difference between Q1 and the COC, so that the two latter are

coincident.

4.6.2 Mackerel fish

For the mackerel, the single mode harmonic motion is compared with the total

motion in the traveling wave model in Figures 3.71 and 3.73. If these figures are

compared with their corresponding figures that compare the single mode harmonic

motion with the total motion in traveling wave model (Figures 3.72 and 3.74), the

observation is that there is no accuracy difference between them. The only difference

is in time histories where Y − Yh is not smooth in Figure 3.73, but they are smooth

in Figure 3.74.

4.6.3 Saithe fish

The single mode harmonic motion is compared with the total motion (traveling

wave model) for the saithe in Figures 3.98 and 3.100. If these figures are compared

with their corresponding figures that compare the single mode harmonic motion with

the total motion in traveling wave model (Figures 3.99 and 3.101), the observation is

that the single mode harmonic motion is far closer to the motion in traveling wave

model. accuracy difference between them. Also, the time histories of Y − Yh are not

smooth in Figure 3.100, but they are smooth in Figure 3.101.

4.7 Dissection of the total motion based on dissection of COM

into its traveling and standing parts

An important quantity regarding complex mode is the traveling index. It quan-

tifies the relative degree of traveling and standing in a waveform. A traveling index

of “1" means a pure traveling wave, whereas a traveling index of “0" means a pure
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standing wave. A value of traveling index between 0 and 1 means a combination of

traveling and standing waves. This parameter can be an important parameter affect-

ing the propulsive efficiency. As a reminder from chapter I, Lighthill (1960) tried to

find the optimal motion with regard to swimming efficiency. Trying both standing

waves and traveling waves, he concluded that a pure standing wave cannot produce

considerable propulsion efficiently, unlike a traveling wave. As mentioned in chapter

I, the effect of the traveling index on the fluid forces and propulsive efficiency was

investigated by Cui et al. (2017). Their conclusion was that the traveling index is one

of the factors affecting the forward speed and the swimming efficiency.

The swimming mechanisms in nature proved to be efficient. In this regard, we

chose three species in the carangiform category and calculated their traveling indices.

As a result, we observed that all three have a traveling index between 0 and 1. More

specifically, the traveling indices 0.4832, 0.5205, 0.4904, and 0.5993 were obtained for

whiting (body frame), whiting (Newtonian frame), mackerel, and saith, respectively,

for raw data.

An interesting fact is that the traveling index of the traveling wave models we

built were calculated to be some value between 0 and 1. More specifically, traveling

indices 0.3869, 0.5634, 0.5651, and 0.6017 were obtained for whiting (body frame),

whiting (Newtonian frame), mackerel, and saith traveling wave model, respectively.

A first conclusion that can be made is that the traveling index is different among

different carangiform species. In other words, the difference between the traveling

indices of whiting, mackerel and saithe is expressive of a difference in motions they use.

It is not known yet however, if there is significant variation within a species, or within

an individual. Different motions may be related to different neuromuscular activation

in each species or different muscle properties (for example elasticity coefficient, and

cross-sectional muscle distribution through the body length). Not to mention that the

traveling index can be different between various fish in one species. As a reminder,
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we got the raw data for one specific whiting, average mackerel, and average saithe.

This subject can be further investigated in future research. For example one probable

research can be applying COD on electromyographic (EMG) recordings in vivo and

dissecting it to traveling and standing parts. Furthermore, studies can be done on

other species in the carangiform category or other categories.

The second conclusion that can be made is that the traveling wave model used

in most of the literature indeed has a standing wave component. In other words, the

traveling wave model that was intuitively thought to be purely traveling turns out to

contain both a standing and a traveling part. This can be explained theoretically.

Third, comparing the traveling index for whiting in body frame and Newtonian

frame, we observe that the former is less than the latter. This fact could be antici-

pated, because in the body frame, all the distances and angles of rotation are measured

with respect to one reference point. Thus, comparing to the Newtonian frame, the

rotation of the reference point is added to the rotation of other body markers and

this would affect the contribution of traveling index for the total motion.

As it is seen in regarding the standing part of COM in Figures 3.22, 3.49, 3.76,

and 3.103, the plots are straight lines passing through the origin. It is expressive of

the fact that all points in standing wave are either in-phase or 180◦ out-of-phase.

The phase vs. body marker however is changing as can be seen in Figures 3.21,

3.48, 3.75, and 3.102. The plot of phase vs. body marker for the traveling part

for whiting (Newtonian frame) is shown in Figure 4.3. Comparing this figure with

Figure 3.33, it can be seen that the wave number of the traveling wave model’s COM

is not constant in Figure 4.3. The phase difference between the corresponding plots

in these two Figures is because the total COM can be regarded as the vector sum

of the traveling and standing parts in complex plane (see Figures 3.50 and 3.51 for

example).

Based on the snapshots and time-histories of dissected parts of total motion (Fig-
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Figure 4.3 Plot of phase vs. body marker for dominant COM’s traveling
part for raw data (blue) and traveling wave model (red).

ures 3.25, 3.52, 3.79, 3.106, 3.26, 3.53, 3.80, and 3.107), the following information can

be obtained:

• The location of nodes in standing part of motion may be used as side information

in studies done on EMG recordings to relate it maybe to the muscle activity

over the body length.

• The amplitude of the traveling and standing parts. An interesting observation

made by comparing the total motion amplitude with amplitude of traveling part

and standing part is that at every body marker location, the amplitude of total

motion is approximately equal to scalar sum of standing part amplitude and

traveling part amplitude.
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4.8 Potential limitations

The limitation encountered in this research was mainly due to raw data, since

specially for whiting, the midline data was available for only 12 sampling times.

Also, in the case of mackerel and saithe, time histories were available for only 11

body markers. This certainly affects the precision and accuracy of COD results. For

example, according to Feeny (2008), as the number of sampling times, N , increases,

the matrix RQ = 1
N

QQ̄T gets more diagonal leading to a more accuracy of the results.

A low number of body markers (and consequently a ow number of signals sampled

from body markers) does not lead to an accurate curve fitting for amplitude. This is

while the accuracy of amplitude as function of body marker locations highly affects

the accuracy of the traveling wave model. In this study, we used polynomial of order

10 produced by MATLAB. However, using the same order, various processors gave

different coefficients.

The other limitation affecting the digitization accuracy is the software used. As

mentioned previously in chapter II, we used “WebPlotDigitizer”. To work with this

software, the photo should be uploaded and the axis should be determined. Then

the data points on the plot should be located manually. Although the precision of

this software to digitize the selected data points is 5 digits after the point, manually

loading the data points decreased the accuracy. Actually the software is equipped

with automatic mode for data point selection, but the quality of some photos were

so low that it affected badly the accuracy of the automatic mode.
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4.9 Summary

This research provides some measures of evaluation of traveling wave models com-

pared to true motion (raw data). Traveling wave model is quite good (single mode,

general shape, traveling index). But fine details are missed ( the wave speed varia-

tions c(x), γ(x), and ω(x)). These fine details were hypothesized to affect the thrust

and propulsive efficiency (to be studied in the future). To improve the motion model,

either can incorporate γ(x) and ω(x) into the traveling wave model, or use COMs,

perhaps with the harmonic modulation.

Also, we believe that COD can lead to more efficient modal analysis of fish midline

data rather than FFT, since it does not assume a preselected frequency prior to

decomposition. As a recommendations for further research, we consider producing a

more set of signals with more advanced filming technology today. Also, we can use a

more digitizer and use a software that computes more accurately the midline in the

photos. The last recommendation is to apply COD to the EMG recorded data for

mackerel in the literature to decompose it into traveling and standing parts, since It

may help to increase information about the neuromuscular activation.
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CHAPTER V

Conclusion

The purpose of our study was to decompose the lateral motion of midline points

into its main modes, and use the modes to identify parameters of the motion, including

oscillation amplitude and phase as functions of time or position. In a few other works,

this has been done using a two dimensional FFT. Both the FFT and COD are suitable

for this problem since the measurements are from sensors in practice. However, the

FFT assumes that the harmonics’ arguments have a constant derivative with respect

to time. In contrast, COD is not constrained by such an assumption. It should be

noted that as a result of applying the COD, time and position are automatically

decoupled, which may be not true in real motion, since various points may not follow

an independent trend in time. In addition, COD is a linear matrix decomposition

method and the swimming motion may contain non-linearities to an extent that

depends on the species.

5.1 Summary of the results

The results of this study show that for all of the three carangiform swimmers

analyzed, the dominant mode shape and phase rates follow a similar trend. However

for the other modes the trends were not meaningful, leading to this conclusion that

the other modes are noise. Our findings support the results of Videler and Hess

(1984), in that the phase rate is not constant with respect to position. However, we

also observe a small fluctuations about a constant phase rate with respect to time.
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This may be because of using discrete data or because of the nature of the real motion.

To certainly judge about this and whether it is significant, we should use a better

temporal and spacial resolution, and also consider additional species.

5.2 Contributions of this research

As a result of applying COD, common features were observed in COMs of three

carangiform swimmers. For all the three fish, the COM plot had the shape of a spiral,

meaning that at the body anterior regions, the oscillation amplitude was lower and at

the posterior regions it gets large. In all fish, γ(x) shows lower at the anterior regions

with a jump to a maximum at regions nearly behind the head. Then it undergoes

fluctuations around the average value. Notice that γ is always negative, meaning the

phase is strictly decreasing moving from head to tail. ω(t) shows fluctuations around

an average frequency. The amplitude of fluctuations is at maximum 20 percent of the

average value. The wave speed c(x) has a trend opposite to the wave number. It is

higher at the anterior regions and then drops to lower values at the posterior regions

where it fluctuates around an average. Another contribution of this study is the

traveling index, which seems to be a significant factor affecting the propulsion. The

traveling index for these three fish was around 0.6 on average, so there is a noticeable

standing wave part in the total motion referring to the fact that the motions in

nature, which are assumed to be optimal, are a combination of both traveling waves

and standing waves. Furthermore, the results show that there may be a relationship

between the swimming speed, traveling index and frequency since the fish in order

of higher swimming speed (mackerel > saithe > whiting), had lower traveling indices

(mackerel < saithe < whiting) and higher frequencies (mackerel > saithe > whiting).

It is worthwhile also noticing the differences between the three fish. Considering

the COM plots in the Newtonian frame, whiting is observed to have a wavelength

smaller than the body length, while in mackerel and Saithe, the wavelength almost
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equals the body length.

A comparison of the results for the whiting body fixed frame vs. the Newtonian

frame is also useful. In the anterior regions of fish body, γ has more fluctuations in the

body frame compared to the Newtonian frame. The average γ, wave speed and ω are

higher for the body frame. It is expressive of the fact that the frame which is selected

to evaluate the motion affects the phase difference between two body markers at a

time instant, or phase difference at a specific body marker between two different time

instants. A larger traveling index is calculated for the Newtonian frame, meaning

that the traveling part is more prominent in the Newtonian frame compared to the

traveling part in the body frame.

Comparing the raw data vs. the traveling model would reveal the deficiencies of

this model which is used in almost all studies done on fish hydrodynamics. Clearly,

γ vs. body marker, ω vs. sampling time, and wave speed vs. body marker are not

constant in the raw data while they are chosen constant in the traveling wave model.

An interesting observation is that in the Newtonian frame, the traveling index is

higher for the traveling wave model compared to the real motion. However, in the

body frame, the traveling index is much lower for the traveling wave model compared

to the real motion.

In conclusion, the method COD fits back very well to vibration studies specially

where there is a continuum structure undergoing oscillation in position and time.

Comparing COD to manual analysis based on the FFT, it is easier to apply and needs

less effort for the task of modal decomposition. In total, we believe that COD obtains

accurate wave characteristics at the sampling positions and times, and yields more

realistic model parameters that would certainly provide a better kinematic model of

the swimming motion. The kinematic models are usually served as input to hydro-

dynamic studies of swimming and in fish robot design. In the traveling wave model

used in almost all of the literature, the phase change rates are constant, which is in
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contrast to the real motion. Based on the results of this research, the traveling wave

model can be rectified by considering variations in the frequency and wave number.

On the other hand, based on Taylor, Lighthill, and Gray, the hydrodynamic forces

depend on ẏ and y′, and y′′, where y = a(x)f(ω(t)t − γ(x)x)) models the lateral

oscillations. Thus, ω̇(t) and γ′(x), which are not zero in real motion, may have a con-

siderable effect on the hydrodynamic forces. Consequently, ignoring them may lead

to significant calculation errors, and can lead to sub-optimal propulsion efficiency in

robot designs that emulate natural swimmers.

5.3 Future works

To make sure about the observed relationships between the swimming speed, trav-

eling index and frequency, one recommendation for future research is to evaluate more

carangiform species, as well as various swimming speeds among species and even in-

dividuals. Also, similarities between the various parameter trends in these three fish

suggest that these may be characteristics of all carangiform swimmers. Confirm-

ing this requires gathering enough information necessary to get a general conclusion

about the carangiform mode. Furthermore, quantitative distinction of carangiform

swimming would also involve the evaluation of anguiliform or subcarangiform species

to compare the parameter trends in order to distinguish unique properties of each

mode. Opportunities for future research can be also include a separate evaluation

of the head and tail body markers to confirm Gray’s idea that a traveling wave is

initiated at some intermediate point, then going forward toward head and backward

toward tail.

177



BIBLIOGRAPHY

178



  

179 
 

  



Chowdhury, A. R., V. Kumar, B. Prasad, R. Kumar, and S. K. Panda (2014), Kine-
matic study and implementation of a bio-inspired robotic fish underwater vehicle
in a lighthill mathematical framework, Robotics and Biomimetics, 1 (1), 15.

Coral Cuéllar, W. (2015), Br3: a biologically inspired fish-like robot actuated by
sma-based artificial muscles, Ph.D. thesis, Industriales.

Cui, Z., X. Gu, K. Li, and H. Jiang (2017), Cfd studies of the effects of waveform on
swimming performance of carangiform fish, Applied Sciences, 7 (2), 149.

Dong, G.-J., and X.-Y. Lu (2007), Characteristics of flow over traveling wavy foils in
a side-by-side arrangement, Physics of fluids, 19 (5), 057,107.

Feeny, B. F. (2008), A complex orthogonal decomposition for wave motion analysis.,
Journal of Sound and Vibration.

Feeny, B. F., and A. K. Feeny (2013), Complex modal analysis of the swimming
motion of a whiting, Journal of Vibration and Acoustics, 135 (2), 021,004.

Gillis, G. B. (1996), Undulatory locomotion in elongate aquatic vertebrates: anguil-
liform swimming since sir james gray, American Zoologist, 36 (6), 656–665.

Gray, J. (1933a), Studies in animal locomotion: I. The movement of fish with special
reference to the eel., Journal of experimental biology.

Gray, J. (1933b), Studies in animal locomotion: II. The relationship between waves
of muscular contraction and the propulsive mechanism of the eel. , Journal of
experimental biology.

Gray, J. (1933c), STUDIES IN ANIMAL LOCOMOTION: III. THE PROPULSIVE
MECHANISM OF THE WHITING (GADUS MERLANGUS)., Journal of experi-
mental biology.

Hess, F., and J. Videler (1984), Fast continuous swimming of saithe (pollachius
virens): a dynamic analysis of bending moments and muscle power, Journal of
Experimental Biology, 109 (1), 229–251.

Lamas, M., J. Rodríguez, C. Rodríguez, and P. González (2011), Three-dimensional
cfd analysis to study the thrust and efficiency of a biologically-inspired marine
propulsor, Polish Maritime Research, 18 (1), 10–16.

Lighthill, M. J. (1960), Note on the swimming of slender fish., Journal of fluid Me-
chanics.

Lighthill, M. J. (1971), Large-amplitude elongated-body theory of fish locomotion.,
Proceedings of the Royal Society of London. Series B, Biological Sciences.

Liu, H., R. Wassersug, and K. Kawachi (1996), A computational fluid dynamics study
of tadpole swimming, Journal of Experimental Biology, 199 (6), 1245–1260.

180



Liu, J., and H. Hu (2004), A 3d simulator for autonomous robotic fish, International
Journal of automation and computing, 1 (1), 42–50.

Mchenry, M. J., P. C. A., and J. H. LONG (1995), MECHANICAL CONTROL OF
SWIMMING SPEED: STIFFNESS AND AXIAL WAVE FORM IN UNDULAT-
ING FISH MODELS., The Journal of Experimental Biology, 198.

McMillen, T., and P. Holmes (2006), An elastic rod model for anguilliform swimming,
Journal of mathematical biology, 53 (5), 843–886.

Müller, U. K., E. J. Stamhuis, and J. J. Videler (2002), Riding the waves: the role of
the body wave in undulatory fish swimming, Integrative and Comparative Biology,
42 (5), 981–987.

Shadwick, R. E., J. F. Steffensen, S. L. Katz, and T. Knower (1998), Muscle Dy-
namics in Fish During Steady Swimming, Integrative and Comparative Biology, 38,
755–770.

Taylor (1952), Analysis of the swimming of long and narrow animals., In Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences.

Techet, A. H. (2001), Experimental visualization of the near-boundary hydrodynamics
about fish-like swimming bodies, Tech. rep., MASSACHUSETTS INST OF TECH
CAMBRIDGE.

Uldrick, J., and J. Siekmann (1964), On the swimming of a flexible plate of arbitrary
finite thickness, Journal of Fluid Mechanics, 20 (1), 1–33.

Videler, J. J., and F. Hess (1984), Fast continuous swimming of two pelagic predators,
saithe (Pollachius virens) and mackerel (Scomber scombrus): a kinematic analysis.,
Journal of experimental biology.

Videler, J. J., and C. S. Wardle (1977), New kinematic data from high speed cine film
recordings of swimming cod (Gadus morhua)., Netherlands Journal of Zoology.

Whittaker, E. T. (1988), A treatise on the analytical dynamics of particles and rigid
bodies, 456 pp., Cambridge University Press, Cambridge, UK.

Wolfgang, M., J. Anderson, M. Grosenbaugh, D. Yue, and M. Triantafyllou (1999),
Near-body flow dynamics in swimming fish, Journal of Experimental Biology,
202 (17), 2303–2327.

Wu, T. Y.-T. (1961), Swimming of a waving plate, Journal of Fluid Mechanics, 10 (3),
321–344.

Wu, T. Y.-T. (1971), Hydromechanics of swimming propulsion. part 3. swimming
and optimum movements of slender fish with side fins, Journal of Fluid Mechanics,
46 (3), 545–568.

181



Yeo, K. B., W. W. Loong, and K. T. K. Teo (2014), Biomimetic robot fish modelling
base on shark swimming kinematics, Journal of Applied Sciences, 14 (23), 3242–
3248.

Yu, J., S. Wang, and M. Tan (2005), A simplified propulsive model of bio-mimetic
robot fish and its realization, Robotica, 23 (1), 101–107.

182


	LIST OF TABLES
	LIST OF FIGURES
	KEY TO ABBREVIATIONS
	  Introduction
	Background on fish kinematic analysis
	The role of kinematics in fluid mechanics studies
	The role of kinematics in CFD studies and robotics
	Effect of kinematical parameters on the propulsive performance
	Thesis overview and contribution

	Methodology
	Data collection
	Raw data
	Whiting fish
	Mackerel and saithe fish

	Interpolation
	Traveling wave model data

	Preparation of COD inputs
	Complexification of the real oscillatory signals

	Application of COD
	Complex modal decomposition
	Modally reduced motion
	Single-mode motion from dominant COC
	Single-mode motion from harmonic modulation

	Dissection of main modes into traveling and standing addends
	COD calculation of wavelength, amplitude, frequencies, and wave speeds


	Results
	Whiting fish - body frame
	Complex modes from swimming midline data
	Eigenvalues (COVs) and the number of dominant modes
	Dominant COM
	Dominant COC

	Single mode harmonic motion from dominant COC
	Single mode motion from harmonic modulation

	Dissection of COM into traveling and standing parts
	Wave number, frequency and wave speed

	Whiting fish - Newtonian frame
	Complex modes from swimming midline data
	Eigenvalues (COVs) and the number of dominant modes
	Dominant COM
	Dominant COC

	Single mode motion from dominant COC
	Single mode harmonic motion from harmonic modulation

	Dissection of COM into traveling and standing parts
	Wave number, frequency and wave speed

	Mackerel fish
	Complex modes from swimming midline data
	Eigenvalues, COVs, and the number of dominant modes
	Dominant COM
	Dominant COC

	Single mode motion from dominant COC
	Single mode motion from harmonic modulation

	Dissection of COM into traveling and standing parts
	Wave number, frequency and wave speed

	Saithe fish
	Complex modes from swimming midline data
	Eigenvalues, COVs, and the number of dominant modes
	Dominant COM
	Dominant COC

	Single mode motion from dominant COC
	Single mode motion from harmonic modulation

	Dissection of COM into traveling and standing parts
	Wave number, frequency and wave speed


	Discussion
	The main mode shapes and the number of main modes
	Whiting fish
	Mackerel fish
	Saithe fish

	Dominant COMs and their information about the modal amplitude and phase
	Whiting fish
	Mackerel fish
	Saithe fish

	COCs and their information about phase change attributes in time
	Whiting fish
	Mackerel fish
	Saithe fish

	Extraction of the phase speed information
	Reanimation of the motion based on the dominant COMs and COCs
	Whiting fish
	Body frame
	Newtonian frame

	Mackerel fish
	Saithe fish

	Reanimation of the motion based on harmonic modulation 
	Whiting fish
	Mackerel fish
	Saithe fish

	Dissection of the total motion based on dissection of COM into its traveling and standing parts
	Potential limitations
	Summary

	Conclusion
	Summary of the results
	Contributions of this research
	Future works

	BIBLIOGRAPHY



