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ABSTRACT 

UNDERSTANDING TRANSIENT TECHNOLOGY USE AMONG SMALLHOLDER  
FARMERS IN AFRICA 

By 

Maolong Chen 

The objective of this dissertation is to study African smallholder farmers’ transient technology 

use. Transient use refers to the situation where farmers switch back and forth between two or 

more technologies. To better understand transient technology use, I first specify a dynamic 

theoretical model to investigate farmers’ optimal decision rules given the availability of modern 

and traditional technologies under a range of productivity and market scenarios. The model is 

then calibrated and solved using a dynamic programming algorithm. Numerical results show that 

expected profitability and costs of switching between technologies are the two main driving 

forces influencing the patterns of transient technology use. Next I turn to econometric insights 

about transient technology use in Africa. The sample data utilized in this dissertation is an 

irregularly spaced four-wave panel data set, making all existing traditional discrete choice 

estimators inconsistent for dynamic panel estimation. Therefore, before conducting the empirical 

analysis, I develop and evaluate the performance of three possible estimators (gap-dummy 

approach, linear probability model, and indirect inference method) for discrete choice dynamic 

panel data models with irregular spacing. Monte Carlo simulations reveal that traditional 

estimators generate downward bias in estimates for the state dependence parameter. Adding gap 

dummies indicating if the panel period is irregularly spaced could potentially reduce the bias. 

The other two estimators, linear probability model and indirect inference, fail to reduce the bias 

of irregular spacing effectively in our simulations. The final task is to undertake an empirical 

analysis of Kenyan smallholder farmers’ decision to use hybrid maize seed. The gap dummy 



  

approach is applied to reduce the bias from the irregular spacing problem. Our findings provide 

empirical evidence that hybrid maize seed use is a dynamic process with a high degree of state 

dependence. However transient use does occur regularly and switching is influenced by the 

expected relative profitability between hybrid and traditional varieties, but that the choice is also 

highly state dependent consistent with the existence of switching costs and/or learning by doing 

effects.  
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INTRODUCTION 

 

Development and adoption of new crop varieties and other technological 

improvements have led to massive increases in agricultural productivity in many parts of the 

world. However, the progress of technology development and adoption in Africa remains 

slow, due partly to the high rate of disadoption and switching back and forth between modern 

and traditional technologies. This dissertation aims at studying this transient technology use 

in a dynamic context.  

 The first chapter investigates the patterns of transient technology use through a 

dynamic programming approach. A dynamic conceptual model is developed to explain 

transient use, and the model is then calibrated and solved using a dynamic programming 

algorithm. Numerical results show that relative profitability, yield uncertainty, and switching 

costs are important influences on the pattern of adoption and disadoption. Switching costs 

play a role in preventing households from both entering and exiting modern technology use, 

and the profitability of modern technologies determines if the switching cost will encourage 

or discourage long-run adoption.  

 The second chapter attempts to improve estimation of dynamic panel data discrete 

choice models with irregular spacing. The panel data used in this dissertation is irregularly 

spaced in four periods, making all commonly used dynamic discrete choice panel data 

estimators inconsistent. Thus, before conducting the empirical analysis of Kenyan hybrid 

maize adoption, I first develop three estimators for discrete choice dynamic panel data 

models with irregular spacing, and evaluate the performance of these estimators using Monte 

Carlo methods. Monte Carlo simulations reveal that traditional estimators (Correlated-

Random-Effect Probit) generally produce downward bias in estimates for the state 

dependence parameter in the dynamic model because of missing lagged dependent variables. 
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Adding dummies to indicate if the period is irregularly spaced could potentially reduce the 

bias, but the effectiveness relies on the panel structure: having at least two consecutively 

observed periods enables the dummy variable approach to account for irregular spacing 

effects more effectively. Also, simulation results show that, in most scenarios, the estimates 

of the contemporaneous effects of covariates in dynamic panels are unbiased or have only 

small bias.  

 The third chapter explores the determinants of transient technology use in Africa. A 

four-wave panel data, from the Tegemeo Agricultural Monitoring and Policy Analysis 

(TAMPA) Project between Tegemeo Institute at Egerton University, Kenya and Michigan 

State University, is used to investigate Kenyan smallholder farmers’ decision on hybrid 

maize seed. The panel is irregularly spaced, thus the approach developed in Chapter 2 is used 

to reduce the bias from irregular spacing. Our findings provide empirical evidence to support 

the findings from Chapter 1, that transient seed technology use in Africa is determined by 

both profitability and adoption persistence (either switching costs or learning effects). On the 

one hand, fluctuations in maize and fertilizer prices can reverse the relative profitability of 

hybrids traditional seeds and lead households to switch back and forth between hybrid and 

traditional varieties. On the other hand, adoption persistence pushes households to persist 

with their recent seed use choice, despite the apparent profitability of changing. These two 

effects jointly determine the patterns and rate of adoption of hybrid maize seed in Africa.  

 Taken together, these chapters shed light on transient technology use in Africa. The 

first chapter provides a deeper understanding of transient technology use. The second chapter 

improves the econometric approaches to estimating irregularly spaced dynamic discrete 

choice panel models. The third chapter provides empirical evidence to support the importance 

of the key factors influencing transient technology use that were identified in the dynamic 

programming model of Chapter 1.   
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CHAPTER 1. UNDERSTANDING TRANSIENT TECHNOLOGY USE AMONG 

SMALLHOLDER FARMERS IN AFRICA: A DYNAMIC PROGRAMMING 

APPROACH 

 
 
1.1. Introduction 

Development and adoption of new crop varieties and other technological improvements have 

led to massive increases in agricultural productivity in many parts of the world. However, 

productivity gains in Africa have been disappointing (Mwangi 1996; Duflo, Kremer, and 

Robinson 2008). Given apparent land scarcity and low land fertility in Africa, many view 

intensive agriculture based on modern technologies as crucial for Africa to reach its 

development potential (De Groote et al. 2002; Lee 2005; Pannell and Vanclay 2011).  

A number of policies have been implemented to encourage the adoption of new 

technologies and modern inputs throughout Africa, including direct input subsidies (primarily 

fertilizer), government-facilitated provision of input credit, and centralized control of input 

procurement and distribution (Ouma et al. 2002). Even with these initiatives, however, the 

progress of technology development and adoption in Africa remains slow (Spencer 1996; 

Moser and Barrett 2003; Dercon and Christiaensen 2011). 

There is considerable existing research on technology adoption (Byerlee 1994; 

Mwangi 1996; Zeller, Diagne, and Mataya 1998; Sunding and Zilberman 2001; Doss 2006; 

Suri 2011). This research has focused on explaining technology adoption based on farmer 

characteristics, farmer information, expected profitability, risk, the existence of marketing 

and transportation infrastructure, and the availability of credit and liquidity for seed and 

fertilizer purchases. For example, Mwangi (1996) identified liquidity constraints as one of the 

key factors affecting the adoption decision, especially when farmers with little cash are 

planting under high risk. Byerlee et al. (1994) comment “the profitability of using 
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technologies is highly site-specific, depending on land pressure, agro-climatic variables, 

fertilizer costs, and farm-gate crop prices”. Suri (2011) provides empirical evidence of 

heterogeneous profitability of technologies to explain low adoption rates in some areas of 

Africa. 

Most of the existing research on technology adoption assumes that adoption is a one-

time decision so that, once adopted, a new technology will continue to be used until a better 

one becomes available. There has been some work on technology adoption in a dynamic 

context which makes allowance for learning effects and the option to delay adoption (e.g. 

Foster and Rosenzweig 1995; Conley and Udry 2010). Even in this framework, however, the 

decision to adopt is still typically viewed as a one-time decision.1 This is at odds with what 

we observe in some technology adoption environments where farmers switch back and forth 

between two or more technologies. This is particularly true for hybrid seed use in Africa 

where panel data sets reveal individual farmers commonly switching back and forth between 

modern varieties and traditional local varieties (Ouma et al. 2002; Tura et al. 2010). We 

provide descriptive data below that support these observations for maize production in Kenya 

and Zambia. We term this technology switching behavior “transient technology use” and it 

has been little studied to date. 

Because technology switching behavior is clearly a dynamic process, this paper 

develops a dynamic switching model to explain and study transient technology use. Dynamic 

switching models study optimal sequential choice patterns among a potential set of activities. 

They have been studied in various areas in economics, such as labor participation, brand 

choice, asset replacement, and industrial organization (Wolpin 1984; Eckstein and Wolpin 

                                                

1  There is also a small literature on technology disadoption as well but again disadoption is viewed as a one-
time decision.  
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1989a; Hyslop 1999; Rust 1989; Dixit 1989; Das and Das 1997; Ackerberg 2003; Kim 2006; 

Das, Roberts, and Tybout 2007). One important feature of this type of model is that switching 

from one choice to another is costly, and the existence of switching creates an incentive to 

wait which significantly influences the optimal decision path. For example, Eckstein and 

Wolpin (1989) developed a dynamic labor force participation model to study married 

women’s decisions on whether or not to work in each period over a finite horizon. The 

dynamics arise from the effect of work experience on wages, and thus on future work 

decisions. Dixit (1989) investigated a firm’s decision to enter and exit production when 

facing a random-walk output price and sunk costs. The resulting optimal decision rules 

depend on switching costs and the sunk cost of investment, explaining the phenomenon of 

hysteresis.  

In the model developed in this chapter, transient technology use is driven by the 

relative profitability of different technologies, the costs of switching between them, and a 

learning process that reduces switching costs as experience with new technologies grows. 

The switching costs and learning effect introduce a degree of irreversibility into technology 

adoption choices, but do not restrict adoption to be fully irreversible, as is implicitly assumed 

in much of the existing technology adoption literature. The conceptual model is then 

calibrated and solved numerically using a dynamic programming algorithm. Simulations of 

the model illustrate how changes in switching costs, relative profitability, and the learning 

process can lead to different patterns and duration of transient technology use. The 

contribution of the paper is that it leads to several new insights into the process of transient 

technology adoption and the factors that cause it, as well as suggesting potential policy levers 

to discourage persistent disadoption cycles. 
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1.2. Background 

The model in this paper is motivated by, and calibrated to, farmer data from the TAMPA 

Project between Tegemeo Institute at Egerton University, Kenya and Michigan State 

University. It is a four-wave household level panel survey (2000, 2004, 2007, 2010), 

representative of rural maize-growing areas in Kenya.  

The sample has 1207 observations tracked in all four waves. Table 1-1 lists all the 

possible four period transitions of hybrid seed use, and the corresponding number of the 1207 

households that fall into each transition category. Table 1-2 then classifies the households 

according to their adoption history (never adopted, always adopted, adopted and continued, 

adopted and disadopted, and transient use). Two observations are worth noting. First, while 

over 90% of households used hybrids in at least one sample year, almost 23% of the sample 

subsequently disadopted them. Second, almost 15% of the sample displayed transient use 

(switching back and forth between hybrids and traditional varieties). These data show that 

transient use of hybrid seeds is an important phenomenon in Kenya and suggests that 

transient technology use may be important in other technology adoption contexts as well.   

Of course, transient technology use may occur simply because the relative returns 

from using the alternative technologies fluctuate over time, and the costs of switching 

between them are minimal. In most technology environments, however, it is not costless to 

switch technologies. As well as the financial investment required, production processes and 

practices may have to be adjusted and an investment has to be made in learning how to use 

the new technology, at least until some experience has been gained. This suggests that 

transient technology use is a dynamic process and we need a dynamic model to characterize 

it.   
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1.3. Conceptual Model 

Consider a farmer with two maize seed technologies available—hybrid and traditional seeds. 

If the hybrid variety is used, realized profits per acre are given by !"# = %"&"# − ("# where p 

is maize price, y is maize yield, c is cost of production per acre, and superscript H indicates 

hybrid. Similarly, if the traditional variety is used, realized profits per acre are given by !") =

%"&") − (") where the superscript T indicates traditional variety seed. We assume maize output 

price is the same irrespective of whether maize is produced from hybrid or traditional seed, 

and that price and yield are uncertain at planting time when the seed technology choice has to 

be made. We keep other resource allocation decisions in the background by assuming that, 

once a seed choice has been made, production practices and other input use are set to 

recommended levels for that seed technology (i.e., seed is the only explicit choice variable). 

In addition to production costs, there are costs from switching from one seed type to 

the other. The cost of switching from traditional to hybrid seeds includes costs of searching 

for and establishing a relationship with hybrid vendors, screening to ensure seed quality, and 

investing in learning about differences in recommended production practices. The cost of 

switching from hybrid to traditional seeds include the cost of adjusting back to traditional 

production practices, re-acquainting with traditional farming practices, learning about 

changes to soil quality brought on by hybrid production practices, etc. It is logical that the 

cost of switching from traditional to hybrid seeds is higher than the cost of switching from 

hybrid to traditional seeds, and for switching costs to be decreasing in the number of times 

hybrids have been used in the past (a learning effect). Per acre switching costs are therefore 

denoted by *")→#(-" ) for switching from traditional to hybrids and *"#→)(-") for switching 

from hybrids to traditional varieties, where -" is the number of times hybrids have been used 

in the past. 
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We assume the farmer is risk-neutral (or can insure risks) and chooses traditional or 

hybrid seed to maximize the discounted sum of expected lifetime profits over an infinite 

horizon:2 

 

max
{34}

	789 :";
"<= {	d" !"# − *")→# -" d" − d"89 + 1 − d" !") − 	*"#→) -" d"89 − d" ,  

subject to -"A9 = -" + B"          (1) 

 

where d" is a binary decision variable with d" = 1 indicating hybrid seed is chosen and d" =

0 indicating traditional seed is chosen. Switching costs are incurred only when d" ≠ d"89 (i.e. 

the technology is switched). The model is solved using dynamic programming. The relevant 

value function takes the form, 

 

E" B"89 = max E"# B"89 , E") B"89 ,       (2) 

 

where  E"# B"89  and E") B"89  are the conditional value functions for hybrid and traditional 

seed use given by, 

 

E"# B"89 = 7"89(!"#) − *")→# -" 1 − d"89 + :7"89E"A9(1),    (3a) 

 

E") B"89 = 7"89(!")) − *"#→) -" d"89 + :7"89E"A9(0),     (3b) 

 

                                                

2 Most households in the Kenya data chose to plant only one type of seed in each season so profit is normalized 
to a per acre basis and the seed decision is assumed to be binary.  
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where E"A9 B"  is the discounted value of future profits from choosing hybrid (B" = 1) or 

traditional (B" = 0)	seed today, assuming optimal seed choices are made in the future. 

 There are two cases to consider. First, suppose the traditional variety was used last 

planting period (dG89 = 0). Then the switch to hybrids will occur if, 

 

EG89 πGJ − EG89 πGK > sGK→J nG + β[EG89vGA9 0 − EG89vGA9 1 ],   (4) 

 

otherwise, traditional seeds will continue to be used. Without switching costs the right-hand 

side of (4) is zero and the decision rule reduces to the simple static condition that the switch 

to hybrids occurs if the expected current production profits under hybrids exceeds expected 

current production profits from using traditional seeds. With switching costs, however, the 

difference in expected current production profit must exceed a premium composed of two 

parts. The first part is the (always positive) switching costs. The second part is the discounted 

expected future profit premium from sticking with the traditional seeds today. The second 

part may be positive or negative, depending on the expected future profitability of hybrids 

compared to traditional varieties, and on the expected magnitude and frequency of future 

switching costs. If the premium is positive we may observe the farmer continuing to use 

traditional varieties, even when the current expected return from switching to hybrids is 

positive. The model is therefore capable of explaining the often-claimed-to-be-observed 

phenomenon of non-adoption even when adoption should increase current profits. The reason 

is essentially that non-adoption now eliminates the cost of switching back to traditional 

varieties at some point in the future. 

Second, suppose the hybrid variety was used last planting period (B"89 = 1). Then 

the switch to traditional varieties will occur if: 
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7"89 !") − 7"89 !"# > *"#→) -" + :[7"89E"A9 1 − 7"89E"A9 0 ],    (5) 

 

otherwise, hybrids will continue to be used. With no switching costs the rule again collapses 

to the simple static result that whichever seed type is expected to provide the most current 

production profit is used. With switching costs, however, the difference in expected current 

production profit from switching to traditional varieties must exceed a premium composed of 

(positive) switching costs and a (positive or negative) discounted expected future profit 

premium from sticking with the hybrids today. If the premium is negative we may observe 

the farmer switching back to traditional varieties, even when the current expected profits 

from using traditional seeds is lower than the current expected profits from sticking with 

hybrids. The model is therefore capable of explaining disadoption, even when continuing to 

use hybrids would be expected to generate increased current profits. The reason is essentially 

that disadopting now reduces the costs of having to switch back to traditional varieties in the 

future. 

 A number of results emerge from this conceptual model. First, because of switching 

costs the history of adoption decisions has an important influence on current adoption choice 

(current seed choice is conditioned on past practice). However, if switching costs decline as 

more experience is gained with hybrids (learning effect), then dependence on the history of 

past seed use will also decline. Second, the relative yields and costs from using hybrid versus 

traditional seeds will continue to play a major role in hybrid adoption and disadoption, 

because these will have a major impact on current and future profitability from adoption. 

Hence, the stochastic processes driving prices, yields, and costs, as well as the magnitude and 

dynamics of switching costs, will have a major impact on the prevalence of transient 

technology use. Third, there will be a band of inaction (waiting) in the optimal seed use rule. 

If traditional varieties (hybrids) are being used and the returns from adoption (disadoption) 
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get high enough adoption (disadoption) will occur. However, there will also be a band of 

inaction where returns that are not too far apart will lead to maintaining the status quo 

(continuing to use the current technology), despite the fact that switching may lead to higher 

expected current production profits. 

 

1.4. Numerical Model and Parameterization 

The empirical analysis focuses on a representative farm household’s maize seed decision in 

Kenya. We parameterize and solve the conceptual model numerically to highlight a number 

of important implications of switching costs and learning for transient technology use. A 

numerical model requires information on: (1) maize price expectations; (2) different yield 

expectations for hybrid and traditional seeds; (3) production costs for each seed type; and (4) 

the costs of switching between seed types. Calibration of each of these model components are 

discussed in turn. We start with a simplified model where switching costs are assumed to be 

constant, and then extend the model to allow switching costs to decrease with experience to 

examine how learning might influence the transient hybrid adoption process.   

 

1.4.1. Modeling Maize Price Expectations  

Maize price expectations are estimated from a univariate time series model of monthly 

Kenyan wholesale maize prices in Nairobi 3 from 2000 to 2010 in Kenyan Shillings per 

kilogram. 4 There were five missing prices (February-June 2005). These missing prices were 

interpolated using cubic spline interpolation and 2005 data from Mombasa (the second 

largest city of Kenya in population and for which complete data was available for 2005). 

                                                

3 Nairobi is one of the major maize markets in Kenya and therefore has the longest and most reliable monthly 
data. 
4 Source: Republic of Kenya, Ministry of Agriculture, Market Research and Information.  
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Unit root and stationarity tests on the Nairobi monthly maize price data are reported 

in Table 1-3. The null hypothesis of a unit root fails to be rejected at the 10% significance 

level based on both the Dickey-Fuller (DF) and Phillips-Perron (PP) tests. The null 

hypothesis of stationarity is rejected at the 1% level based on the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test. Therefore, the price data are differenced and results of optimal lag 

order selection tests for first differenced maize price are shown in Table 1-4. The evidence 

suggests a simple random walk process for the monthly maize price:  

 

%" = %"89 + ST",          (6) 

 

where εVG~N(0, σVZ) is a random monthly price shock. We also tested for a time trend and 

seasonality by adding monthly dummies. The estimation results show no evidence of a time 

trend and little seasonality in price movements (Table 1-5). There is some evidence 

supporting a seasonal price jump in May but the effect is small and no seasonality is assumed 

as a simplification to keep the dynamic programming model as tractable as possible. The null 

hypothesis of no autoregressive conditional heteroskedasticity in the errors fails to be rejected 

at the 10% significance level based on Lagrange multiplier (LM) tests (Breusch and Pagan 

1980) provided in Table 1-6.  Therefore, the results suggest no significant heteroscedasticity 

in the price distribution. 

We use equation (6) to represent monthly maize price movements but harvest price 

expectations are formed at planting which may be several months prior to the harvest. The 

main harvest season for Kenyan maize production is from January to March while planting 

occurs in October. Thus, the time gap between planning and harvesting is four to six months. 

Denoting the planting month (October) as %9" then %[" would be the last harvest month when 
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the majority of sales are occurring. Consistent price expectations would then be formed 

using:  

 

7 %[" %9" = %9",           (7) 

 

so the October (planting) price is the conditional expectation. 

 

1.4.2. Modeling Maize Yield Expectations 

Detailed time series data on individual farm maize yields for Kenya is not available. 

However, annual aggregate maize yield data for all Kenya is available from 1961 to 2014 

from FAOSTAT in kilograms per acre. Our procedure is to estimate a model for the 

aggregate maize yield data and then make appropriate adjustments to the model to estimate 

farm-level maize yield distributions for both traditional and hybrid maize seeds.  

  The first step is to estimate a time series model for the aggregate maize yield data. 

Stationarity tests for aggregate maize yields provided mixed results (see Table 1-7). The null 

hypothesis of a unit root is rejected at the 5% level based on the Dickey-Fuller and Phillip-

Perron tests. However, the null hypothesis of stationarity is also rejected at the 1% level 

based on the Kwiatkowski-Phillips-Schmidt-Shin test. Nevertheless, since most yield data 

have been found to be (trend) stationary, and a unit root in yields seems unlikely a priori, 

stationarity is assumed.  

The aggregate maize yield model is then specified as: 

 

&"\ = &\ + :9(&"89\ − &\) + S]"\ ,         (8a) 
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where the superscript A denotes the aggregate yield; :9 characterizes the speed of mean 

reversion; &\ is the long-run mean; and S]"\ ~^(0, _`]Z ) is a random shock. Because this 

model appears to have residual autocorrelation when fitted to the data, we also investigate the 

possibility of allowing an MA(1) error process. However, the simple AR(1) model in (8a) fits 

the data well, is parsimonious, and tractable for inclusion in the numerical dynamic 

programming model, so this is the stochastic aggregate yield process assumed for the 

dynamic programming model . 

No strong evidence of a significant trend was found in the aggregate maize yield 

results. This may appear somewhat surprising but is consistent with observations that there 

has been very little maize yield growth in Kenya for many decades (Nyoro, Ayieko, and 

Muyanga 2007). Estimation results for the aggregate Kenyan maize yield data are provided in 

Table 1-8. The hypothesis of no autoregressive conditional heteroskedasticity fails to be 

rejected at the 10% significance level based on LM test (see Table 1-9). Therefore, 

heteroscedasticity does not need to be accounted for in the aggregate yield distribution. 

The aggregate maize yield model is then calibrated to farm level maize yield 

distributions for hybrid and traditional seeds using the Kenyan farm-level panel data. Farm-

level yields are assumed to follow similar processes as aggregate yield but with different 

means and variances:  

 

&"# = &# + :9(&"89# − &#) + S]"# ,         (8b) 

 

&") = &) + :9(&"89) − &)) + S]") ,         (8c) 
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where &# and &) are the long-run average yield of hybrid and traditional seeds, respectively; 

S]"# ~^(0, _#]Z ) and S]") ~^(0, _)]Z ) are random shocks to hybrid and traditional yields, and 

yield shocks are allowed to be correlated with price shocks with correlation coefficient a.5 

 To estimate the variances for household-level hybrid and traditional maize shocks, we 

first use equation (8a) to estimate the variance of the aggregate yield shock. This estimate is 

then scaled to approximate the conditional variance of the hybrid and traditional yields at the 

individual household level by multiplying by five and two, respectively (Just and Weninger 

1999).6 To estimate the long-run means for household-level hybrid and traditional maize 

seeds, we first employ a propensity score matching (PSM) method to predict the 

counterfactual yield for every household assuming they used the other seed type.7 The PSM 

method is implemented as follows.  First, a logit model is used to predict each household’s 

adoption decision given the household’s demographic and farm characteristics. The 

probability of adopting hybrids is used as the propensity score.  The validity of PSM relies on 

the conditional independence assumption (CIA) and overlap assumption. Only covariates that 

are either fixed or measured before participating are selected to ensure the CIA, and the 

overlap assumption test is passed (Caliendo and Kopeinig 2008).  Second, we then use 

nearest-neighbor matching (NNM) to generate weights and predict counterfactual yields. We 

select five nearest neighbors (closest in terms of propensity score) that used the other seed 

type and generate weights based on the distance of propensity scores between the treated 

farm and neighbors. Counterfactual yields are generated by the weighted sum of neighbors’ 

yields that used the other seed type. We then calculate the average yields for hybrid and 

                                                

5 We assume both yield shocks have the same correlation with price in the base model but this is relaxed in 
sensitivity analysis. 
6 The root-mean-square error of the aggregate yield estimation is 0.79, thus the estimated aggregate yield shock 
variance is 0.62. The estimated hybrid yield shock is 0.62*5=3.10, the estimated traditional yield shock is 
0.62*2=1.24. 
7 We only observe one type of yield at a time for most households in the sample. 
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traditional seeds, respectively, among all households using both actual and counterfactual 

yields and the results are given in Table 1-10.  

 

1.4.3. Modeling Production and Switching Costs  

Production costs consist of seed, fertilizer, labor, and land preparation costs and differ by 

seed type. In the dynamic programming model production costs are assumed to be constants, 

(# and (), for production with hybrid and traditional seeds, respectively. We use panel data 

to estimate average costs for Kenyan maize production in Kenyan Shillings per acre. Using a 

similar procedure applied to estimate average yields at the household level, we predict 

counterfactual production costs for every household assuming they used the other seed type. 

Counterfactual production costs are estimated as the weighted sum of nearest neighbors’ 

production costs that used the other seed type.8 We then calculate the average production 

costs for hybrid and traditional seeds, respectively, among all households using both actual 

and estimated counterfactual production costs and the results are provided in Table 1-11. 

Per acre switching costs are defined as a sum of transaction costs and learning costs, 

assumed to be constants,	*")→# and *"#→), in the base model but allowed to be different 

depending on the direction of the switch. Renkow, Hallstrom, and Karanja (2004) defined the 

sum of searching costs, bargaining costs, and screening and monitoring costs as fixed 

transaction costs and found that the magnitude of fixed transaction costs for Kenyan semi-

subsistence households is equivalent to approximately 15% of the market price. Using this 

                                                

8 The same weights described above for predicting counterfactual yields are used. 
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estimate, we set the constant switching cost9 from traditional to hybrid seeds at 1.4,10 and the 

constant switching cost from hybrid to traditional at 1.2. 

From these results, the base numerical dynamic programming model was 

parameterized as shown in Table 1-11. The base parameterizations were used to simulate the 

expected paths of yield and profit differentials between hybrid and traditional seeds, and then 

changed in various ways (as discussed below) and the model re-solved to illustrate various 

effects. The numerical model was solved using DPSOLVE in the Compecon Toolbox 

programmed in Matlab (Miranda and Fackler 2002).  The family basis function we use is a 

Chebychev polynomial basis. 

 
1.5. Numerical Results 

1.5.1. Value Function and Decision Rules 

Figure 1-1 graphs the conditional value functions for current adopters and non-adopters as a 

function of current expected prices and yield differentials between hybrid and traditional 

seeds under the base parametrization. Two observations stand out. First, both conditional 

value functions are increasing in current expected price and the yield differential, holding 

other state variables constant. This indicates that higher prices and yield differentials increase 

the discounted profit stream for both current adopters and non-adopters alike (since current 

non-adopters still benefit from the option to adopt in the future). Second, the value function 

differential between adopters and non-adopters is increasing in the expected current yield 

differential, showing the higher the current expected yield differential the more likely current 

adoption is the dominant strategy.   

                                                

9 Given the sample mean of maize price is approximately 1.50 ksh/kg, and average hybrid yield is 5.53 kg/acre, 
the average transaction cost would be 1.50*5.53*0.15=1.24. Adding in an approximation for learning costs we 
set switching cost to hybrid as 1.4, given. Switching cost to traditional seed is calibrated in the same way.  
10 Note that the magnitudes of price and costs are both divided by 10 in dynamic programming (the average of 
maize price is approximately 15 ksh/kg in the sample). 
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Figure 1-2 shows optimal seed use rules under higher and lower switching costs as a 

function of current expected price and yield differentials. The optimal adoption rule takes the 

form of pair of threshold lines indicating the boundary between using hybrids and using 

traditional varieties. If the current expected price and yield differential are high enough, 

hybrids will always be used. Similarly, if the current expected price and yield differential are 

low enough traditional seeds will always be used. At intermediate levels of current price and 

yield differentials the decision is to wait and continue using the existing technology 

(whatever it is). The waiting area is due to switching costs that slow down adjustment to 

changing relative profitability of hybrids versus traditional seeds.  As the switching cost is 

lowered, the waiting area shrinks and it is optimal for households to switch more often in 

response to changing relative profitability.  

 

1.5.2. Fluctuations in Relative Profitability of Hybrid vs. Traditional Seeds 

The optimal seed use rules imply that transient technology use is encouraged by fluctuations 

in relative profitability of hybrid versus traditional seeds, and discouraged by switching costs. 

Given that the relative profitability is determined by the hybrid-traditional expected yield and 

cost differentials, along with the maize selling price, changes in these factors will determine 

the pattern of seed use switching.  Maize hybrids were introduced into Africa to improve 

agricultural productivity, but it has long been recognized that the potential of hybrids is only 

realized under intensive input management (Ojiem, Ransom, and Wakhonya 1996; Coulter et 

al. 2010; Macharia et al. 2010; Omondi, Norton, and Ashilenje 2014). Therefore, hybrids 

may not always lead to higher yields. Furthermore, even if hybrid maize is always more 

productive, higher productivity does not always translate into higher profitability. Hybrid 

maize may require higher production costs that traditional varieties, which can be particularly 
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problematic if farm households are credit constrained. Fluctuating maize selling price may 

also impact relative profitability. 

To illustrate the potential influence of these factors we conducted Monte Carlo seed 

choice simulations over 1000 production periods with 200 replications. Figure 1-3 shows the 

expected paths of yield and profit differentials between hybrid and traditional seeds, starting 

from a negative value because hybrid is a newly introduced variety and optimal productivity 

will not be achieved until several trials. In the long run, the expected yield differential 

between hybrid and traditional seeds is always positive, but the expected profit differential 

flips several times indicating that hybrids are consistently more productive but could also be 

less profitable for farmers in some periods.  

 To further show that hybrids could be both more productive and less profitable, we 

vary the levels of production cost differentials and maize prices and hold other variables 

constant. The corresponding expected paths of profit differential are presented in Figure 1-4 

and 1-5. Although hybrids are more productive, a higher production cost differential or a 

lower maize selling price could significantly lower the hybrid’s profitability and lead to more 

frequent flips of the relative profit between the two technologies. This happens when the 

premium generated from the surplus yield of hybrids declines due to a lower maize price, and 

then fails to offset the additional production costs of hybrids.  

 

1.5.3. Scenario Analysis 

In the scenario analysis, we run Monte Carlo simulations under different parameterizations to 

evaluate how different factors influence the transitory nature of the adoption process. For 

each scenario, the simulation is run for 1000 periods with 200 replications. We assume 

households have never adopted hybrids before at period zero, so the path of the adoption 

starts from traditional seeds at the beginning of the simulation.  
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1.5.3.1. Alternative Hybrid Yield Scenarios 

Figure 1-6 illustrates the expected path of adoption under different expected yield differential 

scenarios. Holding other variables constant, a higher level of expected yield differential 

between hybrid and traditional seeds encourages households to adopt hybrid seeds over time 

and achieve a higher expected adoption rate in a long run. However, notice that there are still 

episodes of disadoption, even in the high yield differential scenario. Table 1-12 shows that a 

higher current yield differential also enlarges the duration of adoption, and shortens the 

duration of disadoption, but has little effect on the number of switches. This occurs because 

higher yield differentials decrease the role of switching costs. Hence, with a higher yield 

differential the household optimally extends the adoption duration and shortens the 

disadoption duration. In terms of the number of switches these two effects then 

approximately cancel to leave little change in the total number of switches.  Hence, unless the 

expected yield differential becomes very large, we still get transient technology use. It is just 

that the duration of adoptions is higher and the duration of disadoptions is lower. 

 

1.5.3.2. Alternative Hybrid Yield Variance Scenarios 

Figure 1-7 illustrates how the transient technology use process evolves under different yield 

variance scenarios. A higher hybrid yield variance implies higher probability of extreme 

hybrid yield realizations, causing more frequent breakthroughs of the threshold boundaries of 

the optimal decision rule, leading to more switches between hybrids and traditional seeds, 

and eventually incurring higher total costs of switching back and forth over the period. Thus, 

even in a risk neutral scenario, a higher hybrid yield variance gives rise to a slightly lower 

adoption rate in the long run, shorter durations of both adoption and disadoption, and more 

switches, all of which are shown in Table 1-12. 
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1.5.3.3. Alternative Switching Cost Scenarios 

In this scenario, we adjust the size of the switching costs. Figures 1-8 and 1-9 illustrate how 

different levels of switching costs influence the adoption process, given high and low 

expected yield differentials, respectively. In general, higher switching costs discourage earlier 

use of hybrids and switching is less frequent. This can be seen from second panel of Table 1-

12 where higher switching costs give rise to fewer switches between hybrids and traditional 

seeds, and longer durations of both adoption and disadoption. This is because switching costs 

play a key role in preventing entry into the hybrid seed market. While the switching cost 

influences the speed of adoption, it does not solely determine the level of adoption. Figure 1-

8 and 1-9 show that the switching cost effect on adoption rate varies for different levels of 

profitability. When the profitability of hybrids is relatively high, higher switching costs will 

maintain farmers in hybrids, and the adoption path converges more slowly but to a higher 

expected level. When the profitability of hybrids is relatively low, higher switching costs will 

cause farmers to delay adoption, and the adoption path converges more slowly and to a lower 

level. This implies a complex relationship between switching costs, profitability, and the 

adoption process.  

 

1.5.3.4. Alternative Price Yield Correlations and Price Variance 

Figure 1-10 shows how the adoption rate varies when the correlation between price and yield 

changes. Figure 1-11 shows how the adoption rate changes under different price variances.  

Under positive price/yield correlation and higher price volatility there is little effect on the 

adoption path. This can be seen from third panel of Table 1-12 which shows that changing 

price variability or the price-yield correlation has little impact on adoption duration or the 

frequency of switching. This can be attributed to the fact that when price is the same for 



 22 

 

maize produced from either hybrid or traditional seeds, uncertainties solely from price have 

little effect on farmers’ optimal seed decision in a risk neutral scenario.     

 

1.5.3.5. Learning and Reductions in Switching Costs 

In this section the model is extended to allow switching costs to be decreasing in experience 

with hybrid use. The objective is to examine how learning effects can potentially influence 

the adoption process. Instead of assuming constant switching costs these costs are now 

allowed to change over time according to, 

*")→# -" = b)→# +

c=				de	-" = 0	
c9				de	-" = 1

⋮
0					de	-" ≥ 6

,        (9a) 

 

*"#→) -" = b#→) +

c=				de	-" = 0	
c9				de	-" = 1

⋮
0					de	-" ≥ 6

,       (9b) 

 

where c= > c9 > ⋯ > 0. This allows for switching costs to start high and decline with 

experience using hybrids, up to 5 instances of hybrid use. After five instances switching costs 

remain fixed at their lowest level. The fixed lower levels after learning (b)→j and bj→)) are 

allowed to be different depending on the direction of the switch. The parameterization for the 

learning model is given in Table 1-13. 

 Similar to previous scenarios, Monte Carlo simulations were used to evaluate how 

different factors influence the adoption process. As switching costs will be constant after 5 

instances of hybrid use, steady states in this scenario are equivalent to those under constant 

switching costs. Hence, we only run each simulation for 50 periods with 200 replications, and 

concentrate on evaluating how learning that reduces switching costs affects adoption and 
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transient hybrid use in the early stages of the process. We vary the levels of yield differential, 

hybrid yield variance, correlation between price and yield, as well as price uncertainty, based 

on the same parameterizations used when assuming constant switching costs.  

 Figure 1-12 illustrates how learning which leads to reductions in switching costs 

affect early adoption. The path of switching costs is presented on the left, while the adoption 

rate path is presented on the right. Holding other variables constant, a higher level of 

expected yield differential and hybrid yield uncertainty, and positive correlation between 

price and yields are found to encourage households to adopt hybrids at an earlier stage. This 

is because learning and reductions in switching costs strengthen the role of relative 

profitability of hybrids in influencing the adoption process, triggering more adoption at 

earlier periods, pushing the adoption process to converge faster, and leading to more switches 

over time in response to the profitability fluctuations. These findings provide another 

perspective to explain the phenomenon of transient hybrid use: occasionally high expected 

hybrid yield (high expected revenue of producing with hybrids) encourages adoption at an 

earlier stage. Then, the accumulation of experience with hybrids reduces the cost of switching 

between both seeds and gives rise to more switching or transient use in the future as their 

relative profitability fluctuates.  

 

1.6. Conclusions 

This paper investigates complex dynamic patterns of adoption and disadoption of new 

technologies that are sometimes observed in practice. In contrast to much of the literature on 

technology adoption, this research abandons the assumption on the irreversibility of adopting 

modern varieties, and instead develops a dynamic switching model to study farmers’ 

behavior of non-adopt, disadopt, and switch back and forth among two seed technologies. 

The model is solved using a numerical dynamic programming algorithm, and optimal 
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decision rules imply that the transient technology use is encouraged by switches in relative 

profitability between alternative seed technologies and discouraged by switching costs. 

Evidence that hybrids could be both more productive and less profitable was provided using 

Monte Carlo simulations, which leads to transient technology due to the fluctuations in 

relative profitability. Focusing on the role of relative profitability and switching costs, the 

effects of various factors influencing adoption, disadoption, and transient technology use are 

modeled and explained. In particular, the profitability of adoption, the variance of hybrid 

yield shocks, and the size of switching costs are all found to be significant factors influencing 

the pattern of transient technology use. In long-run equilibrium, high hybrid yield variance 

encourages more switching and therefore causes higher switching costs, lowering the long-

run adoption rate. Profitability and switching costs jointly determine the level of adoption in 

the long run. Switching costs play a role in preventing households from both entering and 

exiting the hybrid seed market, and the profitability of hybrids determines if the switching 

cost will maintain or exclude households from using the new technology. 

Learning effects that reduce switching costs when experience is gained using hybrids 

provides an additional perspective: the accumulation of hybrid use experience reduces 

switching costs and encourages households to manage their seed choice based more on 

relative profitability among technologies, rather than switching costs. Therefore, from the 

perspective of maximizing total expected profits, policy could pay more attention to reducing 

and overcoming these switching costs as they play a role in preventing farmers from 

choosing higher yielding hybrids, especially at an early stage of experience when 

productivity increases of hybrids have not been fully demonstrated. Once the profitability 

advantage of hybrids has been recognized, higher switching costs help maintain farmers in 

the hybrids.  
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Table 1-1 Possible transitions across hybrid/non-hybrid use 
              Hybrid Use Transitions No. Fraction of Sample (%) 

(2000 2004 2007 2010)   (N=1207 Households) 
N     N     N     N 99 8.20 
N     N     N     H 70 5.80 
N     N     H     H 67 5.55 
N     N     H     N 21 1.74 
N     H     H     H 53 4.39 
N     H     H     N 9 0.75 
N     H     N     H 14 1.16 
N     H     N     N 10 0.83 
H     H     H     H 643 53.27 
H     H     H     N 13 1.08 
H     H     N     N 9 0.75 
H     N     N     N 34 2.82 
H     H     N     H 27 2.24 
H     N     H     H 79 6.55 
H     N     H     N 18 1.49 
H     N     N     H 41 3.40 

Note: “H” denotes the use of hybrid seed and “N” denotes the use of non- hybrid seed. 
 

 
Table 1-2 Proportion of households by adoption history category 
  No. of 

Households 

Proportion of the 
Sample  

 (%)   
Total 1207                 100 
1. Never Adopted    99 8.20 
2. Adopted at least once 1108 91.80 
    2.1 Always Adopted   643 53.27 
    2.2 Adopted and continued   190 15.74 
    2.3 Adopted and then Disadopted    96 7.95 
    2.4. Transient use (back and forth)   179 14.83 
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Table 1-3 Unit root and stationarity tests for monthly maize price 
Variable DF statistic PP statistic KPSS statistic  

Monthly maize price -1.542 -1.554 0.868*** 
Note: ***, **, and * denote rejection at the 1%, 5%, and 10% significance levels, respectively. 

 

Table 1-4 VAR lag order selection criteria for first differenced maize price 
Lag LL LR p-value FPE AIC HQIC SBIC 

0 57.154 NA NA   0.024#    -0.898#   -0.889#   -0.876# 
1 57.289 0.270 0.603 0.024  -0.885 -0.866 -0.839 
2 58.205 1.832 0.176 0.024  -0.883 -0.856 -0.815 
3 58.205 0.000 0.987 0.025  -0.867 -0.831 -0.777 
4 58.298 0.186 0.667 0.025  -0.853 -0.807 -0.740 
5 58.813 1.029 0.310 0.025  -0.845 -0.790 -0.709 
6 60.351 3.077 0.079 0.025  -0.854 -0.789 -0.695 

Note: Criteria are likelihood ratio (LR), final prediction error (FPE), Akaike information criterion 
(AIC), Hannan and Quinn information criterion (HQIC), and Schwarz’s Bayesian information 
criterion (SBIC). # denotes the optimal lag selection.  
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Table 1-5 Regression results for monthly maize prices 

Variables 

Regression 
with time 
trend and 

seasonality 

Regression for 
random walk 

process 

Trend 0.001  
 (0.001)  

Lagged first difference of maize price 0.027  
 (0.093)  

Dummy for January 0.040  
 (0.066)  

Dummy for February -0.058  
 (0.066)  

Dummy for March -0.003  
 (0.064)  

Dummy for April 0.013  
 (0.013)  

Dummy for May 0.136**  
 (0.064)  

Dummy for June 0.020  
 (0.065)  

Dummy for July -0.022  
 (0.064)  

Dummy for August  -0.050  
 (0.064)  

Dummy for September -0.079  
 (0.064)  

Dummy for October -0.004  
 (0.065)  

Dummy for November 0.001  
 (0.064)  

Constant -0.003 0.003 
		 (0.052) (0.013) 

Observations 129 130 
R-squared 0.123 0.000 
Adj R-squared 0.025 0.000 
F statistic 1.250 0.000 

Note: Robust standard errors in parentheses. *** p<0.01, **p<0.05, *p<0.1 
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Table 1-6 LM test for autoregressive conditional heteroscedasticity in monthly maize prices 
  lag chi-square p-value 

Squared errors 

1 1.552 0.213 
2 1.655 0.198 
3 1.650 0.199 
4 1.687 0.194 
5 2.135 0.144 

 

 

Table 1-7 Unit root and stationarity tests for aggregate maize yield 
Variable DF statistic PP statistic KPSS statistic   

Aggregate maize yield -3.305** -3.100** 0.536***   
Note: ***, **, and * denote rejection at the 1%, 5%, and 10% significance levels, respectively. 

 

 

Table 1-8 Regression results for aggregate maize yields 
Variables Regression with time trend Regression without time trend 
lagged maize yield 0.500*** 0.657*** 

 (0.123) (0.104) 
year 0.018**  

 (0.008)  
constant -33.421** 2.139*** 
  (16.262) (0.647) 
Observations 53 53 
R-squared 0.489 0.440 
Adj R-squared 0.468 0.429 
F statistic 23.88 40.01 

Note: Robust standard errors in parentheses. *** p<0.01, **p<0.05, *p<0.1 
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Table 1-9 LM test for autoregressive conditional heteroscedasticity in aggregate maize yields 
  lag chi-square p-value 

Squared errors 

1 0.247 0.619 
2 0.330 0.566 
3 0.349 0.555 
4 0.239 0.625 
5 0.334 0.564 

 
Table 1-10 Household-Level Yield Parameterization Results 

Parameter   Description  Value 
kl  Long-run mean of hybrid yield  5.53 
km  Long-run mean of traditional yield  4.28 
no  Mean reversion parameter 0.66 
pqkr   Hybrid yield shock variance 3.10 
pskr   Traditional yield shock variance 1.24 

 

 

Table 1-11 Baseline dynamic programming parameterization 
Parameter   Description    Base 

Value 
ptr  Monthly price shock variance  0.02 
kl  Long-run mean of hybrid yield   5.53 
km  Long-run mean of traditional yield   4.28 
no  Yield mean reversion parameter  0.66 
pqkr   Hybrid yield shock variance  3.10 
pskr   Traditional yield shock variance  1.24 
u   Price-Yield correlation   0 
vl  Constant hybrid production cost   2.92 
vm  Constant traditional production cost   1.19 
wsm→l	  Constant switching cost from traditional to hybrid  1.4 
wsl→m	  Constant switching cost from hybrid to traditional  1.2 
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Table 1-12 Number of switching, and adoption/disadoption duration over 1000 periods 
Scenario: hybrid 

yield 
yield differential hybrid yield uncertainty  

low mid high low mid high 
Number of switches 185 196 176 166 196 213 
Adoption duration 18.80 26.76 38.06 32.03 26.76 26.45 

Disadoption duration 37.83 25.55 18.35 27.70 25.55 21.44 

Scenario: 
switching cost 

switching cost 
 (high profitability) 

switching cost 
 (low profitability) 

low mid high low mid high 
Number of switches 196 6.76 1.36 174 7.08 0.71 
Adoption duration 26.76 447 667 19.33 134 110 

Disadoption duration 25.55 112 298 42.04 412 831 
Scenario: revenue 

variability 
price/yield correlation price uncertainty 

positive zero negative low mid high 
Number of switches 165 157 164 194 196 198 
Adoption duration 29.44 29.85 28.37 27.17 26.76 26.58 

Disadoption duration 33.60 34.04 31.95 24.64 25.55 24.49 
 

 

Table 1- 13 Parameterization for the learning model 
Parameter   Description    Base 

Value 
xm→l  Long-run cost of switching to hybrid seed  0.4 
xl→m  Long-run cost of switching to traditional seed  0.2 
yz  Additional cost for first switch  1 
yo  Additional cost for second switch  0.8 
yr  Additional cost for third switch  0.6 
y{  Additional cost for fourth switch  0.4 
y|  Additional cost for fifth switch  0.2 
y}  Additional cost for sixth and more switches  0 
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Figure 1-1 Conditional value functions for adopters and non-adopters 
 

 

 
Figure 1-2 Optimal adoption rules under alternative switching costs 
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Figure 1-3 Expected paths of yield and profit differentials between hybrid and traditional 
seeds 
 

 

 
Figure 1-4 Expected path of profit differential under different production cost differentials 
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Figure 1-5 Expected path of profit differential under different maize price 
 

 

 
Figure 1-6 Adoption rate under alternative hybrid yield scenario 
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Figure 1-7 Different hybrid yield variance scenarios 
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Figure 1-8 Adoption rate under alternative switching cost scenarios given high profitability of 
hybrids 
 

 

 
Figure 1-9 Adoption rate under alternative switching cost scenarios given low profitability of 
hybrids  



 36 

 

 
Figure 1-10 Adoption rate under different price-yield differential correlation 
 

 

 
Figure 1-11 Adoption rate under different price variance 
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Figure 1-12 Influences on the adoption process when switching costs are decreasing in hybrid 
use 
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CHAPTER 2. ESTIMATING DYNAMIC DISCRETE CHOICE PANEL MODELS  

USING IRREGULARLY SPACED DATA  

 

2.1. Introduction 

Irregular spacing refers to the situation where the unit period of data is not equal to the 

observation interval (Millimet and McDonough 2013). This situation occurs frequently in 

panel data sets from developing countries where the time and expense required for data 

collection often preclude data collection in every observation period. For example, the third 

chapter in this dissertation uses a four-wave panel data set on Kenyan smallholder farmers 

with data collected in 2000, 2004, 2007, and 2010. The unit period for this data set is one 

(crop) year, but the observation intervals are either three or four years. Thus, panel model 

applications using this data set feature irregular spacing. Irregular spacing occurs in many 

other panel data sets as well, including some data from developed countries (Millimet and 

McDonough 2013). 

As Millimet and McDonough (2013) have shown, all commonly used dynamic panel 

data (DPD) estimators are inconsistent if the data is irregularly spaced. These authors have 

studied the irregular spacing problem in situations where the dependent variable is 

continuous and arrived at a number of results and conclusions to improve inference in this 

environment. However, many applications of DPD involve discrete choice models, 

particularly in the developing country context where discrete technology choices are an 

important focus of study. To our knowledge, estimation of dynamic discrete choice models 

under irregular spacing has yet to be addressed in the literature. Hence, the objective of this 

chapter is to investigate the inference problem in discrete choice DPD models with irregular 

spacing. We propose a number of alternative approaches to improving inference in discrete 

choice DPD models, and investigate their performance via Monte Carlo simulation. The 
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Monte Carlo study provides important results on how to best deal with the irregular spacing 

problem in different application environments.  

The remainder of this chapter is organized as follows. In section 2, we first review the 

literature on conventional methods for estimating continuous dependent variable DPD 

models with regularly spaced data. Then we discuss the irregular spacing problem, 

maintaining the focus on continuous dependent variable DPD models, and review the existing 

literature on estimation approaches that have been developed so far. In section 3, we turn to 

discrete choice DPD models and review the traditional approaches to identification and 

estimation with regularly spaced data.  We then show specifically how traditional discrete 

choice DPD estimators become inconsistent or not feasible in the presence of irregular 

spacing. Although this result is not surprising, it has not appeared in the literature to date. In 

section 4, a number of alternative estimators for discrete choice DPD models for irregularly 

spaced data are proposed. Although our proposed estimators are somewhat related to the 

irregular spacing estimators for continuous dependent variable DPD models that have already 

appeared in the literature (Sasaki and Xin 2014), the discrete choice environment has some 

additional complications that need to be addressed.  Section 5 outlines Monte Carlo 

experiments used to compare the finite sample performances of our proposed discrete choice 

DPD estimators, and discusses the results and implications from the experiments. 

Conclusions on the advantages and disadvantages of alternative approaches to estimation and 

inferences in dynamic discrete choice panel models using irregularly spaced data are 

provided in section 6.  
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2.2. Dynamic Panel Data Models with Continuous Dependent Variables 

2.2.1.  Regularly Spaced Data 

Regularly spaced continuous dependent variable DPD models were first studied by Balestra 

and Nerlove (1966) and have been applied in many contexts. Lagged values of the dependent 

variable are incorporated as a covariate to account for the feedback from the current state to 

future states. Heckman (1981a) termed such persistence as ‘true’ or ‘structural’ state 

dependence. However, the observed persistence could also result from permanent unobserved 

heterogeneity across individuals, which might be viewed as ‘spurious’ state dependence. 

Thus, DPD model users also want to control for unobserved heterogeneity to distinguish 

these two sources of persistence.  

 The inclusion of both non-strictly exogenous covariates (the lagged dependent 

variable) and unobserved heterogeneity in DPD models invalidates many estimation methods 

(Wooldridge 2010). To see this, consider the following continuous dependent variable DPD 

model: 

 

&~" = �&~"89 + Ä~": + (~ + S~",        (1) 

 

where &~" is the continuous dependent variable for individual d in period Å, � is the state 

dependence parameter on the lagged dependent variable, Ä~" is a vector of covariates with 

corresponding parameter vector :, (~ is the individual-specific unobserved effect, and S~" is 

the idiosyncratic error term. 

Due to the correlation between &~"89 and (~, the least squares estimator is inconsistent, 

irrespective of whether the unobserved effects are treated as random or fixed effects. The 

“Within Groups” estimator eliminates this source of inconsistency by transforming the 

equation using time averages to eliminate the effects of the unobserved heterogeneity. 
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However, for panels where the number of time periods is small, this transformation induces 

another non-negligible correlation between the transformed lagged dependent variable, 

&~"89 −
9

)89
(&~9 + ⋯+ &~" + ⋯+ &~)89) and the transformed error term, S~" −

9
)89

(S~Z +

⋯+ S~"89 + ⋯+ S~)). Thus, the “Within Groups” estimator is also inconsistent.  

Anderson and Hsiao (1982) generated a consistent estimator by using first-

differencing along with IV estimation. While eliminating the unobserved effects by first 

differencing induces correlation between the differenced lagged dependent variable, ∆&~"89 

and the differenced error, ∆S~", using the lagged level &~"8Z as an instrument for ∆&~"89 

provides consistent estimation. The validity of this approach relies on assumptions that  S~" is 

serially uncorrelated and the initial conditions are predetermined. Extending this approach, 

Arellano and Bond (1991) obtained asymptotically efficient estimators by using additional 

moment conditions in a Generalized Method of Moments approach. The Arellano and Bond 

approach is currently the standard method for estimating regularly spaced DPD models with 

continuous dependent variables. 

 

2.2.2. Irregularly Spaced Data 

The presence of irregularly spaced data makes all commonly used DPD estimators for 

continuous dependent variable models inconsistent for the following three reasons (Millimet 

and McDonough 2013). First, typical transformations fail to eliminate the observation-

specific unobserved heterogeneity due to its time-varying factor structure. Second, the 

coefficient on the lagged dependent variable depends on the ‘gap’ structure (the number of 

missing periods between the observed irregularly spaced data). Third, covariates and the 

idiosyncratic errors are contained in the error term, which causes endogeneity problems.  
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To understand how the irregular spacing affects finite sample performance and 

consistency, consider the continuous dependent variable DPD in equation (1).11 Given 

irregular spacing, observed periods are not consecutive and there are missing periods between 

at least some of the observed periods (&~"89 is unobserved for some &~"). To eliminate the 

unobserved &~"89, Millimet and McDonough (2013) repeatedly substitute equation (1) to 

generate an autoregressive equation between two consecutively observed periods: 

 

&~" = �É&~"8É + Ä~"8Ñ�ÑÉ
Ñ<= : + �Ñ(~ + �ÑS~"8ÑÉ89

Ñ<=
É89
Ñ<= ,    (2) 

 

where * is the number of missing periods between two consecutively observed periods. If we 

use Ö = 0,1,2… ,à to index the observed periods, we can re-write the above equation as: 

 

&~â = �äâ&~â89 + Ä~"(â)8Ñ�Ñ
äâ89
Ñ<= : + �Ñ(~ + �ÑS~"(â)8Ñ

äâ89
Ñ<=

äâ89
Ñ<= ,  (3) 

 

where ãÖ is the ‘gap size’ or the number of missing periods between period Ö and period 

Ö + 1, and t(Ö) is the actual time period Ö period stands for. Then we can transform 

equation (3) as: 

 

&~â = �äâ&~â89 + Ä~â: + [ Ä~" â 8Ñ�Ñ
äâ89
Ñ<9 : + 98çéè

98ç
(~ + �ÑS~"(â)8Ñ

äâ89
Ñ<= ], (4) 

 

where all the terms in the square brackets are unobserved in the missing periods. The 

correlations between observed covariates and unobserved ones in the square brackets will 

                                                

11 We use the same notations from Millimet and McDonough (2013) for the following illustrations. 



 47 

 

lead to biased and inconsistent estimators (omitted variable bias). To address the irregular 

spacing problem, correlations between covariates and unobserved terms in the square 

brackets in equation (4) need to be properly accounted for.  

Millimet and McDonough (2013) suggest two main approaches to handling the 

correlations between covariates and the unobserved terms. First, they suggest a Mundlak 

(1978) correlated-random-effects (CRE) type estimator which specifies (~ as a function of Ä~, 

and uses Ä~â89 as an IV for &~â89 to deal with the correlation between &~â89 and the random 

effects. Second, they suggest using a quasi-differencing approach to eliminating (~, and using 

Ä~â89 as an IV for &~â89 to deal with the correlations between &~â89 and Ä~â8Z.12 However, 

the validity of Ä~â89 as an IV for &~â89 relies on the assumptions of strict exogeneity 

(7[Ä~"S~É] = 0	∀*, Å) and no serial correlations of Ä~, which could be very restrictive.  

Sasaki and Xin (2014) suggest another way to deal with irregular spacing using a 

transformation approach to identify and estimate parameters of fixed-effect continuous 

dependent variable DPD models. The idea behind this approach is to use available 

information to predict the missing data. The approach assumes weak stationarity13 and 

predeterminedness14 of &~" and Ä~". Under these assumptions previously observed data can be 

used as multipliers to transform the regression equation. When stationarity holds, the 

covariance between unobserved variables can be predicted by the observed ones, which 

identifies the parameters in the regression model.  

To illustrate Sasaki and Xin’s approach, consider the continuous dependent variable 

DPD model (1). Taking the difference of the dynamic model between two observed periods 

(Ö9 and ÖZ) to difference out the unobserved heterogeneity: 

                                                

12 Ä~â8Z and covariates prior to period m-1 are included in the regression because of the quasi-differencing. 
13 7~ &~"S~É = 0 and 7~ Ä~"S~É = 0 whenever s > t. 
14 Variances of &~", Ä~", and covariance between &~" and &~É, Ä~" and Ä~É, and &~" and Ä~É are all time invariant.  
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&~âë − &~âí = �(&~âë89 − &~âí89) + :(Ä~âë − Ä~âí) + (S~âë − S~âí).   (5) 

 

Multiplying both sides by &~âí898ì and Ä~âí898ì from another observed period where î+1 is 

the gap periods between two observed periods in the panel, and taking expectations 7~ across 

individuals yields: 

 

7~ &~âí898ì &~âë − &~âí  

= �7~ &~âí898ì &~âë89 − &~âí89 + :7~ &~âí898ì Ä~âë − Ä~âí  

					+7~ &~âí898ì S~âë − S~âí         

            (6a) 

 and 

7~ Ä~âí898ì &~âë − &~âí  

= �7~ Ä~âí898ì &~âë89 − &~âí89 + :7~ Ä~âí898ì Ä~âë − Ä~âí  

				+7~ Ä~âí898ì S~âë − S~âí .        (6b) 

 

Expressions for (�, :) are obtained as a function of variances and covariance among &~â, 

Ä~â, and S~â in equations (6a) and (6b). Then based on the assumptions of weak stationarity 

and predeterminedness, all the cross-sectional moments in (6a) and (6b) are approximated by 

sample variance and covariance and the structural parameters (�, :) are identified.   

It is important to note, however, that the Sasaki and Xin (2014) approach is only 

practical for certain panel structures. Because the approach uses previous information on 

covariates to predict unobserved covariates, it requires a strict structure on how the data is 

spaced (i.e., the spacing structure of the panel). Sasaki and Xin define two spacing structures, 
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UK and US spacing, that satisfy the identification requirements.15 Both spacing structures 

require at least three waves of data, and must have adequate variations in gaps between each 

wave of the panel. The spacing structure is the US spacing if the panel satisfies ï(1) ≠ ∅, 

ï(∆Å) ≠ ∅, and ï(∆Å + 1) ≠ ∅, for some gap ∆Å ∈ Ν, where ï(∆Å) indicates observed 

periods have ∆Å gaps between them.16  

Given that the above approaches rely on restrictive assumptions on either serially 

uncorrelated covariates or the panel structure, and given that the focus thus far has been on 

continuous dependent variable models, there is a need for further investigation of discrete 

choice DPD models with unstructured irregular spacing. 

 

2.3. Discrete Choice Dynamic Panel Data Models  

2.3.1. Regularly Spaced Data 

While the econometric literature on continuous DPD models has been well established, the 

identification and estimation of discrete choice DPD models (even under regular spacing) 

remain tenuous. Addressing the correlation between lagged dependent variable and 

unobserved heterogeneity, as well as the initial condition problem, are more difficult in 

discrete choice models. To illustrate this, suppose we have the following dynamic binary 

response panel data model: 

 

&~" = 1 &~"∗ > 0 = 1(�&~"89 + Ä~": + (~ + S~" > 0),     (7a) 

ö &~= = 1 Ä~", (~ = %=(Ä~", (~),        (7b) 

ö &~" = 1 Ä~", (~, &~=, … , &~"89 = F(�&~"89 + Ä~": + (~),     (7c) 

                                                

15 Because this approach has been shown to perform better, and be more robust for US spacing (see Sasaki and 
Xin, 2014), we only evaluate the performance of the US spacing structure in the Monte Carlo experiments 
below. 
16 For example, ï = 1,2,4  is the US spacing, where ∆Å = 2 and ï ∆Å = 	 {2,4}.  
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where 1(∙) is an indicator function which equals 1 if the enclosed statement is true and 0 

otherwise; &~"∗ is the latent variable that guides the binary decision; %= is the initial 

probability of &~= = 1; and F(∙) is the distribution function of the idiosyncratic error term, S~". 

Identification and estimation of this model relies on several assumptions (Chay and Hyslop 

1998). First, the lagged dependent variable and other observable covariates must be jointly 

exogenous conditional on the individual effects. Second, the form of the conditional mean of 

the latent variable, &~"∗, must be correctly specified. Third, the idiosyncratic error term, S~", 

must be serially uncorrelated over time. Finally, the functional form of the distribution of S~" 

has to be specified.   

Unlike in continuous dependent variable models, traditional transformations are not 

capable of eliminating the unobserved heterogeneity.17 Therefore, the conventional approach 

of transformation and then GMM will not work in discrete choice models such as (7). 

Nevertheless, it is still possible to identify discrete choice DPD models that allow for fixed 

unobserved heterogeneity, but only under some restrictive conditions. Chamberlain (1985) 

showed that if the idiosyncratic errors follow an i.i.d. logistic distribution, then a proper 

conditioning statement can ‘condition out’ the unobserved heterogeneity and the initial 

conditions. To see this, consider the following logit binary response model with lagged 

dependent variable and unobserved heterogeneity, but no other exogenous covariates: 

 

&~= = 1 Ä~", (~ = %= (~ ,         (8a) 

ö &~" = 1 Ä~", (~, &~=, … , &~"89 = ûüV	(ç]†4°ëA¢†)
9AûüV	(ç]†4°ëA¢†)

,      (8b) 

 

                                                

17 Traditional transformations (such as first differencing) requires linearity, which can only be maintained is 
discrete choice models by implementing the linear probability assumption, which puts unpalatable restrictions 
on the heterogeneity distribution (Wooldridge 2010).  
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It follows that: 

 

ö &~= = B~=, &~9 = 1, &~Z = 0, &~£ = B~£ (~, &~9 + &~Z = 1 = ûüV	[ç §†•8§†¶ ]
9AûüV	[ç §†•8§†¶ ]

,  (9) 

 

where B~= and	B~£ ∈ {0,1}.18 The parameter � is identified as long as the joint probability in 

(9) is independent of (~. This approach does not require parametric assumptions about the 

conditional distribution of the unobserved effects and initial conditions. Using the same idea, 

Honore and Kyriazidou (2000) added one more restriction, Ä~Z = Ä~£, on the subsample 

selection in addition to the above conditional statement19, and developed a conditional logit 

fixed effects estimator for the dynamic logit model in the presence of other strictly exogenous 

explanatory variables. While the two approaches can generate consistent estimators, they still 

have a drawback: the estimation only utilizes a subsample in which the decisions made by 

individuals are consistent with the conditioning statement. While the information from other 

observations is omitted, such approaches are likely to understate the amount of true state 

dependence (Chay and Hyslop 1998).   

Because failure to utilize the full sample makes the fixed effects approach less 

desirable, a consistent estimator which can also be applied to a full sample would be helpful. 

A correctly specified random effects approach satisfies this requirement. Furthermore, the 

random effects approach can be used under a wide variety of assumptions, while the fixed 

effects approach can only be used when the idiosyncratic errors are logistically distributed.20 

                                                

18 The conditional probability in (9) is on the subsample in which individuals make different choices in period 1 
and 2 (either ‘1’ or ‘0’ and &~9 + &~Z = 1), and it is the conditional probability of individuals choosing ‘1’ in 
period 1 and ‘0’ in period 2, then making either choice in period 0 and 3.  
19 The conditional probability becomes ö &~= = B~=, &~9 = 1, &~Z = 0, &~£ = B~£ (~, &~9 + &~Z = 1, Ä~Z = Ä~£  in 
Honore and Kyriazidou (2000).  
20 The closed forms of conditional probabilities in Chamberlain (1985) and Honore and Kyriazidou (2000) can 
only be characterized under the logit assumption.  
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The random effects approach requires specification of the initial conditions and the 

conditional distribution of the unobserved heterogeneity. Hsiao (1986) summarized three 

alternative assumptions about the initial conditions. The simplest but most naïve assumes that 

the initial conditions, &~= (or the pre-sample history of the process), are strictly exogenous 

and nonrandom. This implies that the initial state &~= is independent of the unobserved effects 

and can be ignored in the estimation. A more realistic assumption is to allow the initial 

conditions to be random. There are two main approaches to specifying the distribution of the 

initial condition. One assumes that the dynamic process is in equilibrium at the beginning of 

the sample period, and thus the distribution of the initial condition is a steady state 

distribution. However, this assumption is unlikely to hold if any determinants of the decision 

are time-varying. The other one proposed by Heckman (1981b) is to approximate the initial 

condition for the dynamic discrete model. The main step in this approach is specifying the 

initial state as a function of covariates in the dynamic model, and then approximating the 

probability of the initial state by a probit model. This approach overcomes the difficulty of 

finding the conditional distribution of the initial condition. 

Once the distribution of the idiosyncratic errors and the conditional distribution of the 

initial condition are correctly specified, the conditional density of all the observations on 

individual i is generated as21: 

 

e &~9, &~Z, … , &~)|&~= = &=, Ä~ = Ä, (~ = ( = e"(&"|&"89, Ä", ())
"<9 ,   (10) 

e &~=, &~9, … , &~)|Ä~ = Ä, (~ = ( 	 

= e &~9, &~Z, … , &~)|&~= = &=, Ä~ = Ä, (~ = ( ∙ e(&~=|Ä~ = Ä, (~ = ().   (11) 

                                                

21 The two assumptions of the correct dynamic specification and strict exogeneity of covariates are made for this 
generalization. See Wooldridge (2005) for details. 
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To obtain the density e &~=, &~9, … , &~)|Ä~ = Ä , one can specify the conditional distribution 

of the unobserved effects e((|Ä) and integrate them: 

 

&~=, &~9, … , &~)|Ä~ = Ä = e &~=, &~9, … , &~)|Ä~ = Ä, (~ = (;
8; ∙ e((|Ä)B(.  (12) 

 

Maximizing the sum of loge &~=, &~9, … , &~)|Ä~ = Ä  across individuals generates consistent 

Maximum Likelihood Estimators (MLE).  

The random effects approach assumes that the unobserved effects are uncorrelated 

with covariates and the conditional distribution of the unobserved effects is e ( Ä = e((), 

which could be restrictive. To relax this assumption, Chamberlain (1979) and Mundlak 

(1978) developed the correlated-random-effects approach which allows correlation between c 

and x, and specifies the conditional distribution of c as a function of x or the average of x.22 In 

the following discussions, we utilize this assumption and focus on the correlated-random-

effects approach sometimes comparing it to fixed effects.  

 The correlated-random-effects approach relies on correctly specifying the conditional 

distribution of the initial condition to find the density of (y©=, y©9, … , y©K|x©). Wooldridge 

(2005) proposed a simple approach to finding this density by specifying an auxiliary 

distribution of the unobserved effects conditional on the initial state and model covariates, 

e((|&~=, Ä). The resulting conditional MLE estimators are ^-consistent and asymptotically 

normal under regularity conditions.  

 

                                                

22 Mundlak (1978) specified c as a function of the time average of x, while Chamberlain (1979) incorporated all 
x and in all periods to allow more generality.  
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2.3.2. Irregularly Spaced Data  

To our knowledge, there is no existing literature discussing the irregular spacing problem in 

discrete choice DPD models. In this section, we show that commonly used discrete choice 

DPD estimators are either infeasible or inconsistent when data is irregularly spaced. We have 

outlined two main approaches to estimating regularly spaced discrete choice DPD models: 

fixed effects and correlated-random-effects. The main idea behind the fixed effects approach 

is to ‘condition out’ the unobserved effects and the initial condition under a proper 

conditioning statement, which requires that the decision choices follow a specific order. 

When the panel data is not consecutively observed (irregularly spaced), we are unable to 

select the subsample satisfying the conditioning statement. Therefore, the fixed effects 

approach is not feasible in the presence of irregularly spaced panel data.  

The main idea behind the correlated-random-effects approach is to define the log-

likelihood function by assuming initial conditions and the conditional distribution of the 

unobserved heterogeneity. Suppose we have a four-wave irregularly spaced panel data set 

indexed by (Ö=,Ö9,ÖZ,Ö£).23 The correlated-random-effects approach requires 

identification of f &â•, &âë, &âí, &â¶ &89, (  for the specification of the log-likelihood 

function24, where &89 is the choice state prior to the sample period, and c is the unobserved 

heterogeneity. Following Wooldridge (2005) we assume that the dynamics are correctly 

specified and transform the joint density function as: 

 

f &â•, &âë, &âí, &â¶ &89, ( = f &â¶ &âí, ( 	f &âí &âë, ( f &âë &â•, ( f &â• &89, ( , (13) 

 

                                                

23 Recalling that Ö=,Ö9,ÖZ,Ö£ are irregularly spaced with missing periods between each wave. 
24 As the unobserved heterogeneity will be integrated out and covariates do not affect the following deduction, 
we omit both of them in this illustration and focus on the identification of the joint density.  
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Then consider the following transformation for the conditional density:  
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f "#$ "#%, '  

= f "#$ "#%)*
∗ = 1, "#%, ' + f "#$ "#%)*

∗ = 0, "#%, '   

= f "#$ "#%)*
∗ = 1, ' / "#%)*

∗ = 1 "#%, ' + f "#$ "#%)*
∗ = 0, ' / "#%)*

∗ = 0 "#%, '   

= f "#$ "#%)0
∗ = 1, "#%)*

∗ = 1, ' + f "#$ "#%)0
∗ = 0, "#%)*

∗ = 1, ' / "#%)*
∗ = 1 "#%, ' 1 + f "#$ "#%)0

∗ = 1, "#%)*
∗ = 0, ' +

f "#$ "#%)0
∗ = 0, "#%)*

∗ = 0, ' / "#%)*
∗ = 0 "#%, '   

= f "#$ "#%)0
∗ = 1, ' / "#%)0

∗ = 1 "#%)*
∗ = 1, ' + f "#$ "#%)0

∗ = 0, ' / "#%)0
∗ = 0 "#%)*

∗ = 1, ' / "#%)*
∗ = 1 "#%, ' +

					 f "#$ "#%)0
∗ = 1, ' / "#%)0

∗ = 1 "#%)*
∗ = 0, ' + 	f "#$ "#%)0

∗ = 0, ' / "#%)0
∗ = 0 "#%)*

∗ = 0, ' / "#%)*
∗ = 0 "#%, '   

= f "#$ "#%)0
∗ = 1, ' / "#%)0

∗ = 1 "#%)*
∗ = 1, ' / "#%)*

∗ = 1 "#%, ' + 

					f "#$ "#%)0
∗ = 0, ' / "#%)0

∗ = 0 "#%)*
∗ = 1, ' / "#%)*

∗ = 1 "#%, ' + 

					f "#$ "#%)0
∗ = 1, ' / "#%)0

∗ = 1 "#%)*
∗ = 0, ' / "#%)*

∗ = 0 "#%, ' + 

					f "#$ "#%)0
∗ = 0, ' / "#%)0

∗ = 0 "#%)*
∗ = 0, ' / "#%)*

∗ = 0 "#%, ' +   ⋮  

= ⋯ {f "#$ "#$6*
∗ = 7#$6*, ' / "#$6*

∗ = 7#$6* "#$60
∗ = 7#$60, ' ⋯

/ "#%)0
∗ = 7#%)0 "#%)*

∗ = 7#%)*, ' / "#%)*
∗ = 7#%)* "#%, ' }

*

9:%;<=>

*

9:%;%=>

*

9:$?%=>

*

9:$?<=>
 

(14) 
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where !
"
#
$%

∗  denotes the decision in period '
(

− 1 is not observed, and so forth. The 

conditional density f !
"
#

!
"
,

, .  is specified as a sum of conditional probabilities in all 

possible outcome combinations from period '
/

 to '
(

, and all possible outcomes of decisions in 

unobserved periods are explicitly accounted for. Other conditional density functions can be 

transformed in the same way. 

After specifying the index model as P !
1

= 1 !
1$%

, . = F(5!
1$%

+ 7
1

8 + .), the 

transformed conditional densities in equation (14) and the log-likelihood function are explicitly 

specified and the parameters (5, 8) are identified as long as 7
1

 is observed in the missing 

periods. However, if covariates are not observed in the missing periods (which will usually be 

the case), the above approach is not feasible. Obviously, the likelihood function constructed 

above is different from the one constructed by assuming f !
"
:

, !
"
;

, !
"
,

, !
"
#

!
$%

, . =

f(!
"
:

, !
"
:
<%

, !
"
:=
/

, !
"
:=
(

|!
$%

, .). In other words, if we ignore irregular spacing and apply the 

random effects approach by assuming the periods are consecutive, the estimates are 

inconsistent. 

 

2.4. Alternative Estimation Approaches for Discrete Choice DPD models under Irregular  
Spacing 

To derive alternative estimation approaches to discrete choice DPD models under irregular 

spacing, consider a dynamic probit model with unobserved heterogeneity: 

 

!
@1

= 1 !
@1

∗

> 0 = 1(5!
@1$%

+ 7
@1

8 + .
@

+ C
@1

> 0), C
@1

~E(0,1)    (15a) 

F !
@1

= 1 7
@1

, .
@

, !
@G

, … , !
@1$%

= Φ(5!
@1$%

+ 7
@1

8 + .
@

).     (15b) 

 

 A number of estimators could be used 
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2.4.1. Correlated-Random-Effects Probit (CRE-P)  

The CRE-P estimator, ignoring irregular spacing issues, assumes unobserved heterogeneity is a 

function of initial !
@G

, initial 7
@G

, and the average of covariates 7
@

. Dynamic probit is applied to 

the estimating equation: 

 

F !
@"

= 1 7
@1

, J
@

, !
@G

, … , !
@"$%

= Φ(5
G

!
@"$%

+ 7
@"

8
G

+ .
@

),    (16a) 

.
@

= J
G

+ J
%

!
@G

+ J
/

7
@

+ J
(

7
@G

+ J
@

,  J
@

~E(0,1).     (16b) 

 

Recalling that m indexes observed periods in the panel and that the CRE-P estimator is 

consistent in estimating regular spacing panels, using CRE-P and simply ignoring the irregular 

spacing is one way to proceed. While this estimator would be inconsistent with irregularly 

spaced data, it is straightforward to apply with existing econometric software and would 

certainly be the simplest way to proceed. Hence, we evaluate its performance under irregular 

spacing using Monte Carlo methods. 

 

2.4.2. Correlated-Random-Effects Probit with Gap Dummies (CRE-PGD) 

The CRE-PGD estimator applies dynamic probit along with dummy variables indicating if there 

is a gap between the two observed waves of the panel: 

 

F !
@"

= 1 7
@1

, J
@

, !
@G

, … , !
@"$%

 

= Φ(5
G

!
@"$%

+ 5
%

K
"$%

+ 5
/

!
@"$%

K
"$%

+ 7
@"

8
G

+ 8
%

7
@"

K
"$%

+ .
@

),  

= Φ[5
G

!
@"$%

+ (5
%

+ 5
/

K
"$%

)!
@"$%

+ (8
G

+ 8
%

K
"$%

)7
@"

+ .
@

],     (17a) 

.
@

= J
G

+ J
%

!
@G

+ J
/

7
@

+ J
(

7
@G

+ J
@

,  J
@

~E(0,1)      (17b) 
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where K
"$%

 equals 1 if there is a more-than-one-year gap between wave m and m-1, and equals 

0 otherwise. Incorporating gap dummies to indicate if the observations belong to regularly 

spaced or irregularly spaced waves25 would allow us to compare the difference between these 

two groups of data, which could potentially account for the effects of irregular spacing on 

estimation. To see this, incorporating gap dummy K
"$%

 in equation (17a) allows us to separate 

the state dependence into two parts: 5
%

+ 5
/

 is the state dependence of irregularly spaced data; 

and 5
%

 is the state dependence of regularly spaced data. 

 

2.4.3. Linear Probability Model Estimator Using a US Spacing Structure (LPM-US) 

Another alternative is the linear approach based on gap structure developed by Sasaki and Xin 

(2014). It has been shown that this approach can identify parameters in fixed-effect continuous 

DPD models under certain conditions. Because this approach requires linearity, however, it can 

only be applied to the linear probability model approximation of the dynamic probit model. 

Hence, there may be a trade-off between the linear probability approximation and the ability of 

Sasaki and Xin (2014) approach to accommodating the irregular spacing. We will use Monte 

Carlo simulation to evaluate this trade off and the performance of this estimator.  

 

2.4.4. Indirect Inference Approach (IIA) 

Given the fact that all existing discrete choice DPD estimators are inconsistent under irregular 

spacing, it is worthwhile considering whether we could correct the bias resulting from irregular 

spacing using indirect inference. This is the fourth estimation approach we evaluate.  

Everaert and Pozzi (2007) have developed an iterative bootstrap procedure to correct the 

bias of the least squares dummy variable estimator in dynamic panel models with moderate T. 

                                                

25 In terms of dynamic models, observations belonging to regularly spaced wave means there is only a one-year gap 
between !

@"

 and !
@"$%

, and vice versa. 
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The idea is to use the biased estimates of the true population parameters as the baseline and 

search over the parameter space to reduce the bias using a simulation process. Unbiased 

estimates are obtained when simulated data sets generated from searching over the parameter 

space recover the original baseline estimates. This approach is very similar to the indirect 

inference method, which was first introduced by Smith (1993) and Gourieroux, Monfort and 

Renault (1993), and has been found to be useful when the moments and the likelihood function 

of the true model are hard to define. Gouriéroux, Phillips and Yu (2010) have shown that the 

indirect inference approach can correct the bias of fixed effects estimation with dynamic panel 

data sets that occurs due to the incidental parameter problem. 

While the approach proposed by Gouriéroux, Phillips and Yu (2010) is only applicable 

in a linear model, Bruins et al. (2015) developed a generalized indirect inference procedure for 

discrete choice models, which is applicable in our case. The simulation-based method they 

developed is fast, robust, and nearly as efficient as maximum likelihood when maximum 

likelihood is consistent. The next question is whether such a method can generate unbiased and 

consistent estimators when maximum likelihood is inconsistent (our case). We illustrate the 

application of the IIA below. 

The basic idea of indirect inference is to compare the observed data and the simulated 

data from alternative parameters in the parameter space through a descriptive statistical 

(auxiliary) model. The simulated data is generated by the structural model (the original 

estimation model) but using alternative parameter values. Given a binary dependent variable, 

we need a continuous one to make the simulation and iteration easier to compute. Thus, we 

employ a latent utility model as follows. 

Suppose the index model and the latent utility model, respectively, are: 

 

P !
@1

= 1 !
@1$%

= Φ(5!
@1$%

+ 7
@1

8 + .
@

),       (19a) 
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N
@1

= 5!
@1$%

+ 7
@1

8 + .
@

+ C
@1

.        (19b) 

 

Without loss of generality, we set N
@G

= 0 if !
@G

= 0.26 Then the IIA is as follows: 

 

1. Estimate model (19a) via CRE-P to obtain the inconsistent estimator P = (5, 8).	

	

2. Set N
@G

R  and randomly draw C
@1

 from its distribution and generate J sets of simulated N
@1

R  
through N

@1

R

= 5N

@1$%

R

+ 7
@1

8 + J
@

+ C
@1

.  
 

3. Estimate the actual data set (!
@1

, 7
@1

) and J sets of simulated data sets (N
@1

R , 7
@1

) via a 
linear probability model27 and obtain auxiliary parameters S P  and J sets of S

R

(P). 
 

4. The indirect inference estimator is defined as: PTT = UVW'XY S P −

%

Z

S
R

(P)

Z

R[%

28 
 

2.5. Evaluating Estimator Performance 

2.5.1. Monte Carlo Experiments 

To investigate how irregular spacing will affect the performance of traditional estimators and 

compare the performance of the alternative estimators that have been discussed, we conduct 

Monte Carlo experiments. The general structure for the data generating process (DGP) used in 

the Monte Carlo simulations is: 

 

!
@^

~Bernouli (0.5), for _ = −24,        (20a) 

                                                

26 One can set !
@G

= 0	as the initial value for the dynamic model. Otherwise there is an “initial condition problem” 
at this step. 
27 It is not necessary to use linear probability model as the auxiliary model and other models could potentially 
perform better. For the discrete choice DPD model with irregular spacing, however, there is not a good alternative 
to using the linear probability model. 
28 The choice of the distance metric can be Wald, Likelihood Ratio, and Lagrange Multiplier. An example of the 
iteration procedure to optimize the criterion function is quasi-Newton routine. 
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!
@1

= 1{5!
@1$%

+ 7
@1

8 + .
@

+ C
@1

≥ 0},  C
@1

~E 0,1 ,
29 ; X = 1,… ,E; e = −23,… , g (20b) 

c
i

~N(0,1)																								exogenous	7
@1

~N(0.5x
s

, 1)													endogenous	7
@1

       (20c) 

7
@1

~E 0,1 													independent	normal

~ |

/

1 − 1 			independent	skewed

= �7
@1$%

+ Ä
@1

												AR 1 process	

	 	 	 	 	 	 	 (20d)	

 

 We utilize the basic Monte Carlo design in Rabe-Hesketh and Skrondal (2013). The 

process starts at _ = −24 where the initial !
@^

 follows a Bernouli distribution. The subsequent 

!
@1

 are generated using (20b) and is assumed to be potentially observable only after time t=0. 

The unobserved heterogeneity follows two normal distributions, determining if the covariate 7
@1

 

is exogenous or endogenous. We specify three different DGPs for 7
@1

, including independent 

normal, independent skewed, and autoregressive one (AR1) process.  

 Four experiments are conducted to investigate estimator performance under irregular 

spacing. In the first experiment, the performance of CRE-P in estimating a regularly spaced 

panel is evaluated. This provides a baseline for the simulations because CRE-P is the standard 

estimation approach for discret choice DPD models with regularly spaced data. In the second 

experiment, some observations are assumed missing to impose irregular spacing and the 

performance of CRE-P, CRE-PGD, LPM-US, and IIA estimators are compared under a number 

of alternative assumptions about the nature of the covariate and its relationship with unobserved 

heterogeneity. In the thrid experiment, the covariate 7
@1

 is assumed to follow an AR(1) process 

and the state dependence parameter (5) is varied to evaluate the effects of different 5 on 

estimator performance. In the fourth experiment, we again assume serial correlation in the 

covariate 7
@1

but vary the persistence parameter (�) of the AR(1) process for 7
@1

 to evaluate how 

                                                

29 We have conducted experiments in heteroskedastic case by allowing C
@1

 to change over time and the results do 
not change much.  
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different � affects the the performance of the estimators in an irregularly spaced panel data 

model. For experiment 1,2, and 4, the parameters are set at 5 = 0.5, and 8 = 0.5. For 

experiment 1,2, and 3, the persistence parameter of 7
@1

 is set at � = 0.5. In all cases, we set E =

1000 and perform 100 repetitions for each experiment using GAUSS and the Maxlik library. 

For each repetition, we run 300 iterations to integrate out random errors in unobserved 

heterogeneity in the probit model. The estimated average relative bias in percentage and root 

mean square errors (RMSE) are the two main indicators 30 to evaluate the performance of each 

estimator. 

 

2.5.2. Monte Carlo Results 

Results from the first experiment provide a baseline by evaluating the performance of CRE-P in 

estimating a regularly spaced panel given under alternative assumptions on covariate and 

unobserved heterogeneity with three different T (3,4, and	10).  Later these results will be 

compared to other results from alternative estimators when irregular spacing is incorporated. 

The results reported in Table 2-1 show CRE-P performs well in estimating coefficients 

in regularly spaced DPD models (as expected). In most scenarios, the bias of coefficient 

estimates is not significantly different from zero using one-sample t tests at the 5% level (only 

DGP2, which features a skewed covariate with T=3, shows evidence of bias). These results are 

consistent with the theoretical fact that CRE-P estimates are unbiased and consistent under 

regular spacing. However, in Table 2-2, the estimates of average partial effects (APE) of CRE-P 

in regularly spaced DPD models are mostly found to be biased, even though the bias is not 

extremely large. The bias of APE estimates could be partially resulted from the biased estimates 

of unobserved heterogeneity 

                                                

30 Results of estimates of both coefficients and average partial effects are presented in the following result section. 
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In the second experiment, the performances of CRE-P, CRE-PGD, LPM-US, and IIA 

are evaluated under two different irregularly spaced panels (Pattern 1: e = 1,5,8,11; Pattern 2:  

e = 1,2,5,8). The patterns of irregular spacing are chosen based on the following reasoning: (1) 

the sample data utilized in Chapter 3 of this dissertation  is collected in 2000, 2004, 2007, and 

2010, which is consistent with panel structure Pattern 1; (2) panel structure pattern 2 is the US 

spacing panel to which the LPM-US estimator could be applied; and (3) pattern 2 has two 

consecutively observed waves, allowing us to use gap dummies to deal with the  irregular 

spacing using the CRE-P estimator (CRE-PGD). 

Monte Caro results for the four estimators are presented in Table 2-3 to Table 2-6. Table 

2-3 and 2-4 feature exogenous 7
@1

  while Table 2-5 and 2-6 show results for endogenous 7
@1

. 

Results of estimates of coeffients and APE are very similar, while the bias of APE estimates is 

slightly larger than that of coeffients estimates. In terms of estimating the state dependence 

parameter 5, CRE-P generally produces downward biased estimates under both irregular 

spacing patterns 1 and 2. Due to the missing periods, CRE-P uses the lagged observed period 

instead of the actual value lagged one period to predict the state dependence of !
@1

. The gap 

between two observed periods diminishes the estimated state dependence of !
@1

, leading to the 

downward bias of the estimates. Also, comparing pattern 1 and pattern 2, adding a 

consecutively observed period in the panel improves the performance of CRE-P considerably 

(average relative bias is decreased by about 50%). This indicates that having at least two 

consecutively observed periods will reduce the bias of CRE-P estimates under irregular spacing.  

As for CRE-PGD, the estimates in pattern 1 do not change much due to the fact that no 

two periods are consecutively observed and only dummies indicating if the gap is three or four 

years could be incorporated into the CRE-PGD estimator. Thus, the effect of irregular spacing is 

not fully taken into account by adding gap dummies in this case. However, in pattern2, where 

there are two consecutively observed periods, the CRE-PGD estimator performs much better 



 65 

 

(average relative bias is decreased by about 85%). This confirms the importance of having at 

least two consecutively observed periods in irregularly spaced panels, which significanly 

improves the performance of both CRE-P and CRE-PGD.31 

The estimates of 8 are not severely biased in most cases for either CRE-P or CRE-PGD, 

and in many cases the bias is not significantly different than zero. This could be due to the fact 

that the bias from irregular spacing manifests itself mainly in the dynamics of the panel model 

(the incorporation of unobserved lagged !
@1

 in some periods). Thus, the estimates of the 

contemporaneous effect of 7
@1

 is not affected much by the unobserved lagged !
@1

.  

The LPM-US and IIA estimators do not perform well in discrete choice DPD models 

(see results in Table 2-3 to Table 2-6). Even though the average relative bias in some cases are 

not significantly different from 0 using one-sample t tests, the high RMSE suggests that LPM-

US is not very efficient in estimating discrete choice DPD models under irregular spacing. The 

IIA  does not significantly reduce the bias of CRE-P and its performance in estimating 8 is even 

worse than CRE-P. One potential explanation for the poor performance of the IIA approach is 

that, the only option for an auxiliary model in step 3 of the IIA is LPM-US. However LPM-US 

itself performs poorly in estimating the irregularly spaced discrete choice DPD models. 

Therefore, further refinement of the IIA approach could be focused on developing more 

efficient auxiliary models in step 3. 

In the third experiment, 5 is varied from 0.1 to 0.9 to evaluate how the magnitude of the 

state dependence of !
@1

 will affect the performance of CRE-P and CRE-PGD.32 Accoridng to 

Table 2-7 to Table 2-10, the performances of all estimators are similar to what we observe in 

                                                

31 Having two consecutively observed periods improves the performance of CRE-P, and adding gap dummies can 
additionally improve the performance. Thus, it is still worthwhile using CRE-PGD in panels with two 
consecutively observed periods.  
32 As the performances of LPM-US and IIA are weak, we focus on investigating the patterns of the CRE-P and 
CRE-PGD in the following experiments. Also, note that in this experiment, the covariate 7

@1

 follows an AR(1) 
process in all cases. 
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experiment 2. One thing worth noting is that the magnitude of the bias of estimating 5 tends to 

be  U-shaped:. the bias is smaller when 5 is low or high, and it is larger when 5 is intermediate. 

This may be because when 5 is low, the dynamics of the model are relatively minor and thus the 

effect of irregular spacing is small. When 5 is high, the higher state dependence of !
@1

 means 

smaller variation of the !
@1

 sequence (more similarity between !
@"$%

and !
@1$%

), and thus 

smaller bias of estimating 5 from using !
@"$%

 as the proxy of !
@1$%

.33 

In the fourth experiment, the covariate 7
@1

 follows an AR(1) process with the AR 

coefficient � varied from 0.1 to 0.9 to evaluate how the degree of covariate persistence will 

affect the performance of estimators when the panel is irregularly spaced. Results are presented 

in Table 2-11 to Table 2-14. Generally, the results of experiment 4 are consistent with results 

from experiment 2. One thing worth noting is that, higher � produces smaller bias in estimating 

5. A potential explanation is that, according to (14), the log-likelihood function can be correctly 

specified if no other covariates are incorporated. Higher � reduces the variation of 7
@1

, which in 

turn decreases the role of 7
@1

 in the identification of the log-likelihood function (and thus the 

patameters).   

 

2.6. Conclusions 

This study investigates the irregular spacing problem in estimation of dynamic panel discrete 

choice models. Comparing simulations of both regularly and irregularly spaced panels, we 

illustrate how irregular spacing affects the performance of existing discrete DPD estimators. 

Generally, CRE-P produces downward biased estimates for the state dependence of the dynamic 

model, due to the diminishing effect of using former observed periods as the proxy for the 

                                                

33 In this illustration, given irregular spacing, !
@"

 (also !
@1

) and !
@"$%

 are observed, and !
@1$%

 lies between !
@1

 and 
!
@"$%

 and is unobserved. In the dynamic regression model, we use !
@"$%

 as the proxy of !
@1$%

 to predict the state 
dependence parameter 5.   
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unobserved one-lagged period. This finding suggests that any empirical work ignoring irregular 

spacing would underestimate the true state dependence in discrete choice DPD models. Adding 

gap dummies to the CRE-P approach could potentially reduce the bias. However, the 

effectiveness of CRE-PGD relies on the panel structure and simulation results suggest it is 

crucial to have at least two consecutively observed periods in the panel for CRE-PGD to 

account for irregular spacing effectively. This is an important finding because even if panel data 

cannot be collected every period due to budget constraints, making sure there are at least two 

consecutive periods of data collection will increase the effectiveness of the CRE-PGD as well as 

the traditional CRE-P estimator. 

The estimates of the parameters of the covariates are unbiased in most cases. Even 

though in some cases the estimates are still biased, the magnitude of the bias is not severe. This 

indicates that the bias from estimating discrete choice DPD models under irregular spacing is 

mainly from the dynamics. Thus, irregular spacing may not be a major problem in estimating 

contemporaneous effects of covariates in dynamic panels. Also, the persistence of both 

dependent variable and the covariate have been varied in experiments to characterize alternative 

patterns of how irregular spacing affects the estimations. We have found that higher persistence, 

corresponding to smaller variation of outcomes, tends to reduce the bias from irregular spacing. 

These patterns of irregular spacing effects would be useful when empirical researchers predict 

and interpret their estimation results. 

In addition to traditional estimators, we also propose two new estimators to address 

irregular spacing issues in discrete choice DPD models. LPM-US, which has been found to 

work effectively in continuous DPD models, performs poorly in discrete choice DPD models. 

Indirect inference also fails to reduce the bias of irregular spacing effectively in our simulations. 

Further refinements of the IIA approach could be focused on developing more efficient 

auxiliary models to compare the observed and simulated data sets.  
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Table 2-1 Monte Carlo results for regularly spaced CRE-P (Estimates of Coefficients) 

Exogenous Time 
Periods 

! " 
Average Relative Bias (%) RMSE Average Relative Bias (%) RMSE 

DGP1: independent normal 
3 

5.05 0.15 0.58 0.15 
DGP2: independent skewed 11.11 0.18 0.30 0.06 
DGP3: Autoregeressive one 6.78 0.20 0.03 0.07 
DGP1: independent normal 

4 
0.21 0.10 -0.55 0.10 

DGP2: independent skewed -0.74 0.11 -1.52 0.04 
DGP3: Autoregeressive one 2.32 0.09 0.56 0.04 
DGP1: independent normal 

10 
0.89 0.04 0.45 0.04 

DGP2: independent skewed 0.24 0.04 0.47 0.02 
DGP3: Autoregeressive one 1.50 0.04 -0.47 0.02 

Endogenous Time 
Periods 

! " 
Average Relative Bias (%) RMSE Average Relative Bias (%) RMSE 

DGP1: independent normal 
3 

2.35 0.15 0.70 0.06 
DGP2: independent skewed 11.17 0.18 0.57 0.07 
DGP3: Autoregeressive one 5.38 0.19 1.04 0.07 
DGP1: independent normal 

4 
-0.91 0.10 -0.28 0.03 

DGP2: independent skewed 0.47 0.11 -1.15 0.05 
DGP3: Autoregeressive one 2.73 0.09 0.83 0.04 
DGP1: independent normal 

10 
0.61 0.04 0.47 0.02 

DGP2: independent skewed 0.61 0.04 0.47 0.02 
DGP3: Autoregeressive one 1.03 0.04 -0.47 0.02 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-2 Monte Carlo results for regularly spaced CRE-P (Estimates of APEs) 

Exogenous Time 
Periods 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 

DGP1: independent normal 
3 

-13.43 0.05  -17.71 0.03 
DGP2: independent skewed -11.41 0.06  -20.77 0.04 
DGP3: Autoregeressive one -11.01 0.06  -17.96 0.03 
DGP1: independent normal 

4 
-16.75 0.04  -17.55 0.03 

DGP2: independent skewed -19.52 0.05  -20.36 0.04 
DGP3: Autoregeressive one -14.20 0.03  -15.90 0.03 
DGP1: independent normal 

10 
-15.04 0.03  -15.42 0.03 

DGP2: independent skewed -17.80 0.03  -17.59 0.03 
DGP3: Autoregeressive one -13.55 0.02  -15.24 0.03 

Endogenous Time 
Periods 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 

DGP1: independent normal 
3 

-8.17 0.05  -10.46 0.02 
DGP2: independent skewed -7.03 0.05  -16.74 0.03 
DGP3: Autoregeressive one 2.63 0.05  -3.27 0.02 
DGP1: independent normal 

4 
-12.85 0.03  -12.45 0.02 

DGP2: independent skewed -15.04 0.04  -16.65 0.03 
DGP3: Autoregeressive one -0.84 0.03  -2.90 0.01 
DGP1: independent normal 

10 
-13.31 0.02  -13.41 0.02 

DGP2: independent skewed -16.44 0.03  -16.48 0.03 
DGP3: Autoregeressive one -8.91 0.02  -10.27 0.02 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-3 Results of experiment 2 for irregular spacing evaluation with exogenous xit (Estimates of Coefficients) 

! Panel 
Structure 

Average Relative Bias (%)  RMSE 

CRE-P CRE-
PGD 

LPM-
US II  CRE-P CRE-

PGD 
LPM-

US II 

DGP1: independent normal 
1,5,8,11 

-96.06 -93.13 NA NA  0.49 0.49 NA NA 
DGP2: independent skewed -95.30 -91.58 NA NA  0.49 0.48 NA NA 
DGP3: autoregeressive one -94.83 -90.46 NA NA  0.48 0.47 NA NA 
DGP1: independent normal 

1,2,5,8 
-49.24 -15.93 291.53 -50.85  0.27 0.14 5.42 0.27 

DGP2: independent skewed -45.98 -14.81 18.55 -49.19  0.25 0.14 0.53 0.26 
DGP3: autoregeressive one -47.50 -13.96 -8.62 -44.81  0.26 0.14 0.08 0.25 

" Panel 
Structure 

Average Relative Bias (%)  RMSE 

CRE-P CRE-
PGD 

LPM-
US II  CRE-P CRE-

PGD 
LPM-

US II 

DGP1: independent normal 
1,5,8,11 

-1.52 -2.08 NA NA  0.04 0.05 NA NA 
DGP2: independent skewed -2.25 -1.38 NA NA  0.05 0.05 NA NA 
DGP3: autoregeressive one 3.63 4.07 NA NA  0.04 0.05 NA NA 
DGP1: independent normal 

1,2,5,8 
-3.57 5.42 -714.47 -43.58  0.05 0.07 23.84 0.22 

DGP2: independent skewed -5.02 2.28 -116.51 -46.72  0.05 0.08 1.99 0.24 

DGP3: autoregeressive one -0.46 1.11 -29.47 -41.05  0.04 0.06 0.06 0.21 
Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-4 Results of experiment 2 for irregular spacing evaluation with exogenous xit (Estimates of APEs) 

! Panel 
Structure 

Average Relative Bias (%)  RMSE 

CRE-P CRE-
PGD 

LPM-
US II  CRE-P CRE-

PGD 
LPM-

US II 

DGP1: independent normal 
1,5,8,11 

-96.41 -93.63 NA NA  0.16 0.16 NA NA 
DGP2: independent skewed -95.82 -92.56 NA NA  0.17 0.17 NA NA 
DGP3: autoregeressive one -95.32 -91.31 NA NA  0.16 0.15 NA NA 
DGP1: independent normal 

1,2,5,8 
-55.99 -29.00 291.53 -50.85  0.10 0.06 5.42 0.27 

DGP2: independent skewed -54.29 -29.67 18.55 -49.19  0.10 0.06 0.53 0.26 
DGP3: autoregeressive one -53.94 -26.55 -8.62 -44.81  0.09 0.06 0.08 0.25 

" Panel 
Structure 

Average Relative Bias (%)  RMSE 

CRE-P CRE-
PGD 

LPM-
US II  CRE-P CRE-

PGD 
LPM-

US II 

DGP1: independent normal 
1,5,8,11 

-14.81 -15.34 NA NA  0.03 0.03 NA NA 
DGP2: independent skewed -17.39 -16.59 NA NA  0.03 0.03 NA NA 
DGP3: autoregeressive one -9.32 -8.90 NA NA  0.02 0.02 NA NA 
DGP1: independent normal 

1,2,5,8 
-16.84 -11.14 -714.47 -43.58  0.03 0.03 -714.47 -43.58 

DGP2: independent skewed -19.94 -15.70 -116.51 -46.72  0.04 0.04 -116.51 -46.72 

DGP3: autoregeressive one -13.06 -13.78 -29.47 -41.05  0.02 0.03 -29.47 -41.05 
Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-5 Results of experiment 2 for irregular spacing evaluation with endogenous xit (Estimates of Coefficients) 

! Panel 
Structure 

Average Relative Bias (%)  RMSE 

CRE-P CRE-
PGD 

LPM-
US II  CRE-P CRE-

PGD 
LPM-

US II 

DGP1: independent normal 
1,5,8,11 

-95.04 -95.27 NA NA  0.49 0.50 NA NA 
DGP2: independent skewed -94.24 -93.89 NA NA  0.48 0.49 NA NA 
DGP3: autoregeressive one -92.66 -90.31 NA NA  0.47 0.47 NA NA 
DGP1: independent normal 

1,2,5,8 
-50.12 -16.95 62.09 -49.06  0.27 0.16 1.33 0.26 

DGP2: independent skewed -45.66 -11.45 126.49 -47.21  0.25 0.15 2.48 0.26 
DGP3: autoregeressive one -48.96 -16.67 4.34 -44.56  0.26 0.16 0.08 0.24 

" Panel 
Structure 

Average Relative Bias (%)  RMSE 

CRE-P CRE-
PGD 

LPM-
US II  CRE-P CRE-

PGD 
LPM-

US II 

DGP1: independent normal 
1,5,8,11 

-3.10 -2.64 NA NA  0.04 0.05 NA NA 
DGP2: independent skewed -1.38 -1.18 NA NA  0.05 0.05 NA NA 
DGP3: autoregeressive one 3.17 3.87 NA NA  0.04 0.05 NA NA 
DGP1: independent normal 

1,2,5,8 
-5.11 1.68 375.32 -43.73  0.04 0.06 11.19 0.22 

DGP2: independent skewed -3.93 5.30 -1351.09 -46.78  0.05 0.08 24.19 0.24 
DGP3: autoregeressive one -0.54 0.23 -23.94 -40.96  0.04 0.05 0.05 0.21 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-6 Results of experiment 2 for irregular spacing evaluation with endogenous xit (Estimates of APEs) 

! Panel 
Structure 

Average Relative Bias (%)  RMSE 

CRE-P CRE-
PGD 

LPM-
US II  CRE-P CRE-

PGD 
LPM-

US II 

DGP1: independent normal 
1,5,8,11 

-95.27 -95.33 NA NA  0.15 0.16 NA NA 
DGP2: independent skewed -94.66 -94.13 NA NA  0.16 0.16 NA NA 
DGP3: autoregeressive one -92.81 -90.51 NA NA  0.14 0.14 NA NA 
DGP1: independent normal 

1,2,5,8 
-53.88 -25.19 62.09 -49.06  0.09 0.06 1.33 0.26 

DGP2: independent skewed -52.09 -24.11 126.49 -47.21  0.09 0.06 2.48 0.26 
DGP3: autoregeressive one -50.89 -22.06 4.34 -44.56  0.08 0.05 0.08 0.24 

" Panel 
Structure 

Average Relative Bias (%)  RMSE 

CRE-P CRE-
PGD 

LPM-
US II  CRE-P CRE-

PGD 
LPM-

US II 

DGP1: independent normal 
1,5,8,11 

-10.51 -10.25 NA NA  0.02 0.02 NA NA 
DGP2: independent skewed -13.51 -13.48 NA NA  0.03 0.03 NA NA 
DGP3: autoregeressive one -3.16 -2.55 NA NA  0.01 0.01 NA NA 
DGP1: independent normal 

1,2,5,8 
-12.65 -8.47 375.32 -43.73  0.02 0.02 11.19 0.22 

DGP2: independent skewed -15.80 -9.91 -1351.09 -46.78  0.03 0.03 24.19 0.24 

DGP3: autoregeressive one -4.92 -6.54 -23.94 -40.96  0.01 0.02 0.05 0.21 
Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-7 Results of experiment 3 for different state dependence of y$% with exogenous xit (Estimates of Coefficients) 
State 

dependence of 
&'( 

Panel 
Structure 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 
CRE-P CRE-PGD CRE-P CRE-PGD  CRE-P CRE-PGD CRE-P CRE-PGD 

! = 0.1 

1,5,8,11 

-91.58 -85.00 0.13 0.16  0.45 0.93 0.04 0.04 
! = 0.3 -94.33 -92.37 0.30 0.30  3.83 4.04 0.04 0.04 
! = 0.5 -92.86 -89.91 0.48 0.47  4.45 4.28 0.05 0.05 
! = 0.7 -91.20 -87.81 0.65 0.63  4.49 4.52 0.04 0.05 
! = 0.9 -84.30 -80.19 0.77 0.74  2.31 2.70 0.04 0.04 
! = 0.1 

1,2,5,8 

-39.89 -8.10 0.11 0.12  -0.46 -0.65 0.04 0.06 
! = 0.3 -50.42 -17.82 0.18 0.12  1.48 2.75 0.03 0.06 
! = 0.5 -46.69 -14.30 0.26 0.15  0.43 2.93 0.04 0.06 
! = 0.7 -42.76 -8.93 0.32 0.15  -1.36 3.03 0.03 0.06 
! = 0.9 -40.09 -8.70 0.38 0.16  -4.51 0.20 0.04 0.06 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-8 Results of experiment 3 for different state dependence of y$% with exogenous xit (Estimates of APEs) 
State 

dependence of 
&'( 

Panel 
Structure 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 
CRE-P CRE-PGD CRE-P CRE-PGD  CRE-P CRE-PGD CRE-P CRE-PGD 

! = 0.1 

1,5,8,11 

-92.26 -85.81 0.04 0.05  -11.04 -10.73 0.02 0.02 
! = 0.3 -94.83 -92.80 0.10 0.10  -9.48 -9.39 0.02 0.02 
! = 0.5 -93.49 -90.71 0.16 0.15  -9.17 -9.34 0.02 0.02 
! = 0.7 -92.15 -89.09 0.20 0.20  -8.95 -8.79 0.02 0.02 
! = 0.9 -85.86 -81.99 0.22 0.22  -9.16 -8.57 0.02 0.02 
! = 0.1 

1,2,5,8 

-46.28 -18.76 0.04 0.04  -11.89 -12.50 0.02 0.03 
! = 0.3 -56.57 -29.23 0.06 0.04  -11.73 -11.80 0.02 0.03 
! = 0.5 -53.39 -27.07 0.09 0.06  -12.81 -12.70 0.02 0.03 
! = 0.7 -49.68 -23.27 0.11 0.06  -13.67 -13.34 0.02 0.03 
! = 0.9 -46.08 -22.35 0.12 0.07  -14.31 -14.82 0.02 0.03 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-9 Results of experiment 3 for different state dependence of y$% with endogenous xit (Estimates of Coefficients) 
State 

dependence of 
&'( 

Panel 
Structure 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 
CRE-P CRE-PGD CRE-P CRE-PGD  CRE-P CRE-PGD CRE-P CRE-PGD 

! = 0.1 

1,5,8,11 

-72.46 -80.31 0.12 0.15  -0.06 0.08 0.04 0.05 
! = 0.3 -89.07 -83.37 0.29 0.29  3.68 3.37 0.04 0.05 
! = 0.5 -91.08 -87.57 0.47 0.45  3.37 3.36 0.04 0.04 
! = 0.7 -88.94 -84.53 0.63 0.61  3.57 2.95 0.04 0.05 
! = 0.9 -87.20 -80.67 0.79 0.74  4.05 3.45 0.05 0.05 
! = 0.1 

1,2,5,8 

-41.51 -6.83 0.11 0.12  -0.89 -0.84 0.04 0.05 
! = 0.3 -45.05 -14.77 0.17 0.12  1.30 2.78 0.03 0.05 
! = 0.5 -44.09 -9.53 0.24 0.15  -0.71 0.70 0.04 0.06 
! = 0.7 -43.36 -11.46 0.32 0.16  -1.97 2.03 0.04 0.06 
! = 0.9 -41.64 -11.14 0.39 0.17  -2.77 2.88 0.04 0.06 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-10 Results of experiment 3 for different state dependence of y$% with endogenous xit (Estimates of APEs) 
State 

dependence of 
&'( 

Panel 
Structure 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 
CRE-P CRE-PGD CRE-P CRE-PGD  CRE-P CRE-PGD CRE-P CRE-PGD 

! = 0.1 

1,5,8,11 

-72.68 -79.87 0.04 0.04  -3.39 -3.49 0.01 0.01 
! = 0.3 -89.24 -83.63 0.09 0.09  -1.62 -1.91 0.01 0.01 
! = 0.5 -91.32 -87.91 0.14 0.13  -2.74 -2.71 0.01 0.01 
! = 0.7 -89.41 -85.06 0.18 0.17  -2.43 -2.78 0.01 0.01 
! = 0.9 -87.83 -81.37 0.21 0.20  -2.16 -2.10 0.01 0.01 
! = 0.1 

1,2,5,8 

-42.16 -9.09 0.03 0.04  -3.05 -3.54 0.01 0.01 
! = 0.3 -46.84 -18.95 0.05 0.04  -2.52 -2.37 0.01 0.01 
! = 0.5 -46.47 -15.94 0.07 0.04  -5.22 -6.39 0.01 0.02 
! = 0.7 -45.29 -17.94 0.09 0.05  -5.70 -5.50 0.01 0.02 
! = 0.9 -43.18 -18.17 0.10 0.05  -5.61 -5.27 0.01 0.01 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 

 
  



 78 

 

Table 2-11 Results of experiment 4 for different persistence of x$% and with exogenous xit (Estimates of Coefficients) 

Persistence of 
*'( 

Panel 
Structure 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 
CRE-P CRE-PGD CRE-P CRE-PGD  CRE-P CRE-PGD CRE-P CRE-PGD 

ρ = 0.1 

1,5,8,11 

-97.07 -93.00 0.50 0.49  -1.69 -0.85 0.04 0.05 
ρ = 0.3 -96.01 -93.60 0.49 0.48  2.47 2.99 0.04 0.04 
ρ = 0.5 -92.86 -89.50 0.48 0.47  4.45 4.18 0.05 0.05 
ρ = 0.7 -89.74 -85.01 0.46 0.44  6.74 6.69 0.05 0.05 
ρ = 0.9 -79.92 -73.03 0.41 0.39   5.28 5.06 0.04 0.04 
ρ = 0.1 

1,2,5,8 

-45.19 -9.63 0.25 0.14  -4.18 1.60 0.04 0.07 
ρ = 0.3 -49.07 -14.70 0.26 0.14  -0.51 3.96 0.04 0.06 
ρ = 0.5 -46.69 -14.30 0.26 0.15  0.43 2.93 0.04 0.06 
ρ = 0.7 -44.61 -12.50 0.25 0.14  1.32 1.65 0.03 0.05 
ρ = 0.9 -39.71 -10.32 0.23 0.15   -1.11 -2.79 0.03 0.04 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 

  



 79 

 

Table 2-12 Results of experiment 4 for different persistence of x$% and with exogenous xit (Estimates of APEs) 

Persistence of 
*'( 

Panel 
Structure 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 
CRE-P CRE-PGD CRE-P CRE-PGD  CRE-P CRE-PGD CRE-P CRE-PGD 

ρ = 0.1 

1,5,8,11 

-97.33 -93.61 0.17 0.16   -14.98 -14.27 0.03 0.03 
ρ = 0.3 -96.44 -94.20 0.16 0.16  -11.45 -11.07 0.02 0.02 
ρ = 0.5 -93.49 -90.37 0.16 0.15  -9.17 -9.38 0.02 0.02 
ρ = 0.7 -90.74 -86.39 0.14 0.14  -6.01 -5.91 0.01 0.01 
ρ = 0.9 -81.17 -74.32 0.10 0.10   -2.74 -2.62 0.01 0.01 
ρ = 0.1 

1,2,5,8 

-52.49 -23.72 0.09 0.05  -17.25 -14.36 0.03 0.03 
ρ = 0.3 -55.88 -28.09 0.10 0.06  -14.19 -12.51 0.03 0.03 
ρ = 0.5 -53.39 -27.07 0.09 0.06  -12.81 -12.70 0.02 0.03 
ρ = 0.7 -50.93 -24.67 0.08 0.05  -10.81 -12.76 0.02 0.02 
ρ = 0.9 -43.46 -18.93 0.06 0.04   -7.72 -11.94 0.01 0.02 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-13 Results of experiment 4 for different persistence of x$% and with endogenous xit (Estimates of Coefficients) 

Persistence of 
*'( 

Panel 
Structure 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 
CRE-P CRE-PGD CRE-P CRE-PGD  CRE-P CRE-PGD CRE-P CRE-PGD 

ρ = 0.1 

1,5,8,11 

-95.38 -96.82 0.49 0.50  -2.05 -1.60 0.04 0.05 
ρ = 0.3 -94.43 -91.43 0.48 0.48  1.64 1.40 0.04 0.04 
ρ = 0.5 -91.08 -86.77 0.47 0.45  3.37 3.26 0.04 0.04 
ρ = 0.7 -86.21 -82.46 0.44 0.43  4.95 4.94 0.04 0.05 
ρ = 0.9 -85.90 -76.73 0.45 0.42   5.64 5.10 0.05 0.05 
ρ = 0.1 

1,2,5,8 

-47.61 -10.28 0.26 0.15  -4.56 2.18 0.05 0.06 
ρ = 0.3 -47.56 -14.27 0.26 0.14  -1.39 4.02 0.04 0.06 
ρ = 0.5 -44.09 -9.53 0.24 0.15  -0.71 0.70 0.04 0.06 
ρ = 0.7 -45.54 -14.68 0.25 0.16  -0.03 -0.98 0.04 0.05 
ρ = 0.9 -47.00 -19.21 0.27 0.20   -0.57 -2.82 0.03 0.05 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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Table 2-14 Results of experiment 4 for different persistence of x$% and with endogenous xit (Estimates of APEs) 

Persistence of 
*'( 

Panel 
Structure 

!  " 
Average Relative Bias (%) RMSE  Average Relative Bias (%) RMSE 
CRE-P CRE-PGD CRE-P CRE-PGD  CRE-P CRE-PGD CRE-P CRE-PGD 

ρ = 0.1 

1,5,8,11 

-95.51 -96.70 0.15 0.16   -9.64 -9.54 0.02 0.02 
ρ = 0.3 -94.59 -91.59 0.15 0.15  -6.02 -6.28 0.01 0.02 
ρ = 0.5 -91.32 -87.13 0.14 0.13  -2.74 -2.71 0.01 0.01 
ρ = 0.7 -86.01 -82.15 0.11 0.11  4.63 4.71 0.01 0.01 
ρ = 0.9 -83.70 -72.80 0.07 0.07   16.46 16.55 0.01 0.02 
ρ = 0.1 

1,2,5,8 

-51.39 -19.26 0.09 0.05  -11.84 -8.13 0.02 0.02 
ρ = 0.3 -50.88 -21.95 0.08 0.05  -8.03 -5.37 0.02 0.02 
ρ = 0.5 -46.47 -15.94 0.07 0.04  -5.22 -6.39 0.01 0.02 
ρ = 0.7 -43.90 -14.71 0.06 0.04  2.32 -1.22 0.01 0.01 
ρ = 0.9 -38.44 -10.37 0.04 0.03   13.70 7.34 0.01 0.01 

Note: underlined estimates are significantly different from 0 at the 5% significance level. 
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CHAPTER 3. TRANSIENT USE OF HYBRID MAIZE: IRREGULARLY SPACED  

DYNAMIC PANEL EVIDENCE FROM KENYA  

 

3.1. Introduction 

Intensive agriculture based on adoption of modern technologies has been viewed as crucial for 

Africa to reach its development potential, given apparent land scarcity and low land fertility (De 

Groote et al. 2002; Lee 2005; Pannell and Vanclay 2011). However, the progress of technology 

development and adoption in Africa remains slow, even after experience with a number of 

incentive programs, such as fertilizer subsidies, government-facilitated provision of input credit, 

and centralized control of input procurement (Spencer 1996; Ouma et al. 2002; Moser and 

Barrett 2003; Dercon and Christiaensen 2011). Considerable research has been conducted on the 

causes and consequences of low adoption of technologies like hybrid maize and fertilizer in 

Africa. This literature has focused on explaining technology adoption based on farmer/farm 

characteristics and agricultural production information, and has identified a number of 

constraints to adoption such as low expected profitability, risk aversion, lack of marketing and 

transportation infrastructure, and low availability of credit and liquidity for seed and fertilizer 

purchases (Byerlee 1994; Mwangi 1996; Zeller, Diagne, and Mataya 1998; Sunding and 

Zilberman 2001; Doss 2006; Suri 2011).  

 However, most of the existing research on technology adoption is conducted in a static 

framework, assuming that adoption is a one-time decision so that, once adopted, a new 

technology will continue to be used until a better one becomes available. This is at odds with 

what we observe in some technology adoption environments where farmers switch back and 

forth between two or more technologies. This is particularly true for hybrid seed use in Africa 
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where panel data sets reveal individual farmers commonly switch back and forth between 

modern varieties and traditional local varieties (Ouma et al. 2002; Tura et al. 2010). We provide 

some descriptive data below that support these observations for maize production in Kenya and 

Zambia. We term this technology switching behavior “transient technology use” and it has been 

little studied to date. 

 Therefore, the objective of this chapter is to investigate the phenomenon of transient 

hybrid maize use in Africa. As one of the first attempts to study transient hybrid use, we first 

develop a dynamic theoretical model to characterize household switching behavior between 

hybrid maize and traditional maize varieties. Then we apply a dynamic binary response model to 

panel data from Kenya to investigate the determinants of transient hybrid maize use in this 

environment. Given that the panel data is irregularly spaced, the persistence of hybrid adoption 

would be underestimated by traditional dynamic panel estimators (see Chapter 2). Thus, we 

apply a gap dummy approach to deal with the irregular spacing. Simulation results in Chapter 2 

suggest the gap dummy estimator should provide useful improvements in inference over standard 

correlated random effect probit estimation, given the irregularly spaced panel (downward bias 

reduction).  

The remainder of this Chapter is structured as follows. Section 2 describes the data and 

presents descriptive statistics. Section 3 outlines the conceptual model. Section 4 illustrates the 

empirical implementation of the correlated random effects gap dummy estimator. Section 5 

presents and compares results from both traditional correlated random effects probit estimation 

and the gap-dummy estimator suggested here. Section 6 concludes. 
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3.2. Data and Descriptive Statistics 

The household panel data used in this chapter was collected as a joint project between the 

Tegemeo Institute at Egerton University, Kenya and Michigan State University. It is a four-wave 

household level panel survey (2000, 2004, 2007, 2010), representative of rural maize-growing 

areas in Kenya. The surveys collect demographic and socio-economic characteristics, input use, 

crop and livestock production data, and off-farm activities, assets and income.  

Maize is the main staple crop in Kenya and planted in main and short seasons. We restrict 

the sample to households planting maize in the main seasons of all four panel waves. The total 

number of households used is 1207. Table 3-1 lists all possible four period seed type transitions, 

and the corresponding number of households that fall into each transition category. Table 3-2 

then classifies the households according to their adoption history (never adopted, always 

adopted, adopted and continued, adopted and disadopted, and transient use). While over 90% of 

households adopted hybrids at least once, almost 23% of the sample subsequently disadopted 

them. Transient use of hybrid seeds accounts for about 15% of the sample, indicating that 

transient use of hybrid seeds is an important phenomenon in Kenya and suggesting that transient 

technology use may be important in other technology adoption contexts as well. 

Household descriptive statistics are presented in Table 3-3, dividing households into 

groups by hybrid adoption patterns (full sample, never adopted, always adopted, and transient 

use). Three observations are worth noting. First, households who always use hybrids have the 

highest average maize yield, while households who never used hybrids have the lowest. Second, 

households who adopt and use hybrids are more likely to use fertilizer and higher amounts of 

fertilizer. Third, hybrid adopters are more likely to be net maize sellers, even though the average 

maize selling price does not vary much across seed use categories.  
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 Household income information is provided by seed use pattern in Table 3-4. Along with 

the highest yields, households adopting hybrids also have the highest asset value and highest 

income, irrespective of whether it is from crop, livestock, or off-farm income. Transient 

technology user’s asset value was the lowest in the beginning of the sample period, but surpasses 

that of households who never adopt hybrids in later periods.  

 Market infrastructure information, including household’s distance to hybrid and fertilizer 

sellers, as well as distance to motorable and tarmac road, is compared across hybrid use groups 

in Table 3-5. Households who always adopt hybrids have the shortest distance to hybrids and 

fertilizer, and to motorable and tarmac road, suggesting that their transportation costs are the 

lowest.  

 

3.3. Conceptual Model 

The conceptual model for this chapter is similar to the model in Chapter 1, except that farmers’ 

decisions on fertilizer are included explicitly.  

Suppose a household maximizes expected discounted sum of expected lifetime net 

returns over an infinite horizon: 

 

max 	%&' ()*
)+, -)	           (1) 

 

where ( is the household’s rate of time preference; -) is net return per acre from maize 

production. Each period the household chooses whether to use hybrid seed, whether to use 

fertilizer, and the amount of fertilizer to use. The net return per acre from maize production 

depends on seed and fertilizer choices according to: 
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-)(d), f), x); 3)) = d) 6)7(f), x); 3)) − 9):→7 d) − d)&' +  
           1 − d) 6):(f), x); 3)) − 	9)7→: d)&' − d)    (2)  

 

where d) is a binary decision variable with d) = 1 indicating hybrid seed is chosen and d) = 0 

indicating traditional seed is chosen; f) is a binary decision variable with f) = 1 indicating 

fertilizer is used and f) = 0 indicating fertilizer is not used; x) is the amount of fertilizer used; 3) 

is a vector of household and market characteristics that can influence the net return from maize 

production; superscript H(T) denotes hybrids (traditional seeds); 6)
7(:) is per acre profits from 

maize production with hybrids (traditional seeds), which depends on the fertilizer participation 

decision and the amount of fertilizer used; and per acre switching costs are denoted by 9):→7 for 

switching from traditional to hybrids and 9)7→: for switching from hybrids to traditional 

varieties. Switching cost is incurred only when d) ≠ d)&' (i.e. the seed technology is switched). 

 The dynamic programming solution to the household’s optimization problem is 

characterized by the value function: 

 

@(d)&', 3)) = max
{BC,DC,EC}

E){-)(d), f), x); 3)) + (@(d), 3)H')}      (3) 

 

subject to transition equations for the state variables 3). To facilitate the empirical implementation, 

we break the decision problem into three hurdles including whether to use hybrids, whether to use 

fertilizer, and how much fertilizer to use.  

In the third and final stage the household chooses the amount of fertilizer use conditional 

on seed and fertilizer participation decisions. This is a purely static problem defined as: 
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@I(d)&', dJ, f), 3)) = max
EC
E)-)(d), f), x); 3))         (4)34 

 

The solution to this problem takes the form of a set of conditional (on technology and fertilizer 

participation decisions) fertilizer demand equations: 

 

ln x) =
M7 d)&', 3) 													if	d) = 1	and	f) = 1
M: d)&', 3) 													if	d) = 0	and	f) = 1

      (5a) 

 

and 

 

 x) = 0							OP	f) = 0           (5b) 
 

Moving backwards, in the second stage the household chooses whether to participate in 

fertilizer use conditional on the seed decision. Conditional on hybrids being chosen, the second-

stage decision of whether to use fertilizer is characterized by: 

 

@Q d) = 1, d)&', Z) = max	{@Q d) = 1, f) = 1, d)&', Z) + (E)@Q d) = 1, f) = 1, Z)H' , 
                      	@Q d) = 1, f) = 0, d)&', Z) + (E)@Q d) = 1, f) = 0, Z)H' } 

(6) 
 

The sure current payment that would have to be made to the household at time t when no 

fertilizer is used in order to make the household indifferent to using the optimal fertilizer 

allocation or not is given by an S)
TU that satisfies: 

 

@Q d) = 1, f) = 1, d)&', Z) + (E)@Q d) = 1, f) = 1, Z)H' ≡ 

                                                

34 Subscript of V denotes the stage of the production decision making.  
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  @Q d) = 1, f) = 0, d)&', Z),S)
TU + (E)@Q d) = 1, f) = 0, Z)H'      (7)35 

 

Conditional on hybrid use the optimal fertilizer participation decision is given by: 

 

f) d) = 1 = 1(S)
TU > 0)         (8) 

 

where 1(∙) is the indicator function that is equal to 1 if hybrids and fertilizer are both used and 0 

otherwise. 

 Similarly, conditional on traditional seeds being used the second-stage decision of 

whether to use fertilizer is characterized by: 

 

@Q d) = 0, d)&', Z) = max	{@Q d) = 0, f) = 1, d)&', Z) + (E)@Q d) = 0, f) = 1, Z)H' , 
                   	@Q d) = 0, f) = 0, d)&', Z) + (E)@Q d) = 0, f) = 0, Z)H' } 

(9) 
 

The sure current payment that would have to be made to the household at time t when no 

fertilizer is used in order to make the household indifferent to using the optimal fertilizer 

allocation or not is given by an S)
)U that satisfies: 

 

@Q d) = 0, f) = 1, d)&', Z) + (E)@Q d) = 0, f) = 1, Z)H' ≡ 
    @Q d) = 0, f) = 0, d)&', Z),S)

)U + (E)@Q d) = 0, f) = 0, Z)H'    (10) 
 

Conditional on traditional seed use the optimal fertilizer participation decision is given by: 

                                                

 
35 Having S)

TU in the value function does not affect the optimal decisions, but increases the optimal value  
	@Q d)&', Z), S)

TU = max
{BC,DC,EC}

E){-) d), f), x); 3) + S)
TU + (@Q(d), 3)H')}. 
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f) d) = 0 = 1(S)
)U > 0)         (11) 

 

with f) d) = 0 = 1 indicating fertilizer use conditional on traditional seed use. 

 Continuing backwards in time the first stage decision of whether to use hybrids is 

characterized by: 

 

@' d)&', Z) = max	{@' d) = 1, d)&', Z) , @' d) = 0, d)&', Z) }     (12) 
 

and the sure current payment that would have to be made at time t when hybrids are not used in 

order to make the household indifferent to the seed choice is given by an S)
T that satisfies: 

 

@' d) = 1, d)&', Z) ≡ @' d) = 0, d)&', Z),S)
T        (13) 

 

The optimal seed decision is therefore: 

 

d) = 1(S)
T > 0)           (14) 

 

with d) = 1 indicating a hybrid is used. 

 The complete production decisions consist of the seed adoption rule (14), the two 

conditional fertilizer participation rules (8) and (11), and the fertilizer intensity rules (5a) and 

(5b). 

 

3.4. Empirical Implementation 

To investigate transient seed technology use, we focus on seed decisions in the first stage. Since 

the sample used in this Chapter was collected in 2000, 2004, 2007, and 2010, the data are 



 93 

 

irregularly spaced and this needs to be accounted for during estimation. We will employ the 

single-equation (gap-dummy) approach proposed in Chapter 2 to reduce the downward bias from 

irregular spacing. Therefore, instead of using system equations to analyze both seed and fertilizer 

decisions simultaneously, we use a single adoption model for hybrid seed participation 

conditional on household’s expectations of fertilizer allocation for each type of seed. The 

empirical implementation is in the context of irregularly spaced panel data. We define the 

explanatory variable vector XZ) = dZ)&', fZ)
∗ , \Z)

∗ , ZZ)  where O = 1,2, … , _ indexes households 

and ` = 1,2, … , a indexes years. Taking linear stochastic approximations for SZ)
T  in the above 

conceptual model gives rise to the specification of the empirical model: 

 

dZ)|fZ)
∗ , \Z)

∗ = 1(XZ)c + dT,Z) > 0)        (15) 
 

Without loss of generality, the variances of the d errors can be normalized to 1 and the 

errors are assumed to be normally and independently distributed. The log-likelihood function for 

seed adoption model is specified as: 

 

ee = ln f gZ)cBC+' + ln 1 − f gZ)cBC+,       (16) 

 
where Φ(∙) is density function for the standard normal distribution.  

Four econometric issues complicate estimation of equation (15) with the panel data set 

used in this research. First, there may be omitted household characteristics (unobserved 

heterogeneity). Given the binary dependent variable, correlated-random-effects probit (CRE-P) 

would be the standard approach to addressing the unobserved heterogeneity. CRE-P restricts the 



 94 

 

correlation between the unobserved heterogeneity and other covariates (Mundlak 1978; 

Chamberlain 1985). 

Second, the inclusion of the lagged dependent variable (seed adoption decision) leads to 

the initial conditions problem (Wooldridge 2005). Wooldridge (2005) suggested addressing this 

problem by using the value of the dependent variable in the first wave as the ‘initial condition’ 

correction factor. Following Wooldridge’s method and the CRE-P approach, we specify the 

auxiliary conditional distribution of the unobserved heterogeneity as a function of the first wave 

of dependent variable and the time averages for the time varying covariates, and apply 

correlated-random-effects probit model. 

Third, incorporating fertilizer decisions in the seed adoption model would cause an 

endogeneity problem. To avoid the potential endogeneity problem, household’s fertilizer use 

expectations will be modeled and incorporated in the model instead of the actual fertilizer use.  

Fourth, we have an irregular spacing problem. Therefore, the CRE-P estimators of the 

seed adoption model will be corrected through the gap-dummy approach developed in Chapter 2. 

 

3.4.1. Modeling Maize Price Expectations 

The explanatory variable vector XZ) includes household expectations of maize selling price at the 

harvest time, conditional on information available at planting time. As discussed in Chapter 1, 

profitability and switching costs are the two main driving forces leading to household seed 

adoption decisions in each production period. Given that hybrid seed is generally more 

productive, maize selling price will influence the value of the premium attributable to the 

additional yield gain from hybrids over traditional seeds. Thus, one of the goals in this Chapter is 

to evaluate how household’s subjective maize selling price assessment will affect their seed 
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adoption decision. One thing worth noting from Table 3-3 is that, not every Kenyan maize 

farmer is a net maize seller: some of them consume more than they produce. And for net maize 

buyers, the relevant maize price is buying price rather than selling price.  In this case, adopting 

hybrids can reduce maize net buyer’s cost of buying additional maize, which is influenced by 

maize buying price. Therefore, to model household’s maize price expectations, we distinguish 

households by net seller and net buyer and estimate net sellers’ expectations of maize selling 

prices and net buyers’ expectations of maize buying prices. 

 To model household price expectations, let iZ) be the maize selling price (or buying 

price36) received by household i at the harvest time t and j) be a vector of relevant wholesale 

maize selling prices37 observable at the planting time and useful for predicting harvest prices. 

Also, let 3Z) be the vector of household characteristics observed at planting time that can 

influence price expectations. Then the reduced form model for maize price iZ) used to predict 

price expectations for each household takes the panel form: 

 

iZ) = kZ + j)c + 3Z)l + mZ)         (17) 
 

where mZ)~_(0, oZ)). Estimating equation (17) via correlated-random-effects regression to 

account for unobserved heterogeneity allows estimating price expectations iZ)p  conditional on 

available information at the planting time, as: 

 

                                                

36 Since household’s maize buying price is not collected in the survey, we use district market prices as proxies of 
maize buying price. 
37 We have conducted robustness check to evaluate the optimal length for lagged price. The evaluated lags are 
ranging from 5 to 12 and all results are robust. Thus, we choose to use 12 lagged prices assuming farmers are 
building price expectations based on the previous prices since the last planting time. The result of robustness check 
is reported in Table 3A-1.  
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 iZ)p = kZ + j)c + 3Z)l         (18) 
 

 We separate the sample according to whether households are net seller or net buyer and 

run two separate regressions to predict household’s expectations of maize selling (buying) prices. 

The estimation results of the fixed-effects regression are presented in Table 3A-2. Average maize 

selling and buying prices and prices expectations are presented in Table 3-6.  

 

3.4.2. Modeling Fertilizer Use and Fertilizer Cost Differential Expectations 

According to the conceptual model, household’s fertilizer decisions are made differently for 

different seed technologies. Thus, we model household’s expectations of fertilizer use for both 

hybrid and traditional seeds conditional on information available at the planting time. Let \Z)7 and 

\Z)
:  be the amount of fertilizer household i uses for hybrids and traditional seeds, respectively, at 

time t. Recalling that superscript H(T) denotes hybrids (traditional seeds). The amount of 

fertilizer use \Z)
7(:) ≥ 0 has a corner at zero. The reduced form model for fertilizer use takes the 

form: 

 

\Z)
7 = max	(\Z)&'(7 + j)c7 + 3Z)l7 + rZ + sZ)

7, 0)      (19a)  

\Z)
: = max	(\Z)&'(: + j)c: + 3Z)l: + rZ + sZ)

: , 0)      (19b) 

 

where \Z)&' is the amount of fertilizer used in the last period; j) is a vector of relevant price 

information available at the planting time38; 3Z) is the vector of household characteristics 

                                                

38 We define j) in a very general way in equation (19) and (20), but only relevant price variables will enter relevant 
equations. We could impose relevant exclusion restrictions in each equation.  
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observed at the planting time that can influence fertilizer use decisions;39 rZ is household’s 

unobserved heterogeneity correlated with fertilizer use; sZ)7~_(0, o7)  and sZ):~_(0, o:). Notice 

that the parameters in equations (19a) and (19b) are different indicating that the fertilizer use 

decisions may differ depending on seed choices.   

 Given the corner-solution nature of fertilizer use and the existence of unobserved 

heterogeneity and lagged dependent variable, correlated-random-effects tobit will be applied to 

estimate equation (19a) and (19b). We separate the sample according to whether hybrids or 

traditional seed is used and run two separate tobits on each subsample. Household’s fertilizer use 

expectation for hybrid or traditional seed is given below and regression results are presented in 

Table 3A-3: 

 

\)∗
7 = max	(\Z)&'(7 + j)c7 + 3Z)l7 + rZ, 0)      (20a) 

\)∗
: = max	(\Z)&'(: + j)c: + 3Z)l: + rZ, 0)      (20b) 

 

 Because most households only plant one type of maize seed in each production period, 

we can only generate a household’s fertilizer use expectation for one type of seed. To predict the 

counterfactual fertilizer use expectation for the other type of seed, we employ propensity score 

matching (PSM) and nearest-neighborhood matching (NNM) methods. The matching methods 

are implemented by first using a logit model to predict each household’s seed adoption decision 

given household demographic variables and farm characteristics. The probability of adopting 

hybrids (participation treatment) is used as the propensity score. The validity of PSM relies on 

                                                

39 Last period hybrid use decision is incorporated to indicate which type of seed fertilizer was allocated to.  
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the conditional independence assumption (CIA) and overlap assumption. Only covariates that are 

either fixed or measured before participating are selected to ensure the CIA, and the overlap 

assumption test is passed (Caliendo and Kopeinig 2008). Next we use NNM to generate weights 

and predict counterfactual fertilizer use expectations. We select five nearest neighbors (closest in 

terms of propensity score) and generate weights based on the distance of propensity scores 

between the treated farmer and neighbors. Counterfactual fertilizer use expectations are 

generated by the weighted sum of neighbors’ fertilizer use expectations. Average fertilizer use 

expectations for hybrids and traditional seeds are presented in Table 3-7. From Table 3-7, 

households expect to allocate more fertilizer to hybrids than traditional seeds, and the amount of 

expected fertilizer use is increasing over time.  

 To evaluate the effects of fertilizer use expectations on seed adoption decisions, we 

specify two more profitability factors, fertilizer cost differentials and yield differentials, and 

substitute fertilizer use expectations to generate fertilizer cost differential expectations and yield 

differential expectations, respectively. Specifically, fertilizer cost differential expectation is 

defined as:  the differential between expected fertilizer use for hybrid and expected fertilizer use 

for traditional seed multiplies the fertilizer price. With this definition, we only evaluate the effect 

of the cost differential from fertilizer on seed adoption. Yield differential expectations are 

modeled in the next section.  

 

3.4.3. Modeling Yield Differential Expectations 

As shown in Chapter 1, profitability and switching costs are the two main drivers influencing the 

adoption of hybrids, and profitability is jointly determined by maize price and yield differential 
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between hybrids and traditional seeds. Therefore, the effect of yield differential expectations on 

seed adoption decisions is of great interest. 

To model yield differential expectations, let vZ)7 and vZ):  be the yield from hybrids and 

traditional seeds received by household i at time t. The yield response models for hybrid and 

traditional seeds take the form: 

 

vZ)
7 = \Z)

7w'7 + \Z)
7QwQ7 + 3Z)Θ7 + yZ)

7        (21a) 

vZ)
: = \Z)

:w': + \Z)
: QwQ: + 3Z)Θ: + yZ)

:         (21b) 

 

where \Z)7 and \Z):  are the amount of fertilizer household i uses for hybrid and traditional seeds, 

respectively; 3Z) is a vector of relevant household characteristics that affect yield responses; and 

yZ)
7~_(0, ozZ

7 )  and yZ): ~_(0, ozZ: ). Notice that the parameters in equations (21a) and (21b) are 

different indicating that the yield responses may differ depending on seed choice.  

 As most households only obtain yields for one type of seed, we separate the sample based 

on whether hybrids or traditional seed is used and run two separate OLS regressions on equation 

(21a) and (21b) on each subsample40. Substituting household fertilizer use expectations for 

endogenous fertilizer use and estimating enables predicting household’s expectations for hybrid 

maize yield and traditional maize yield, vZ)7
p and vZ):

p, respectively: 

 

vZ)
7p = \)∗

7w'7 + \)∗
7QwQ7 + 3Z)Θ7        (22a) 

                                                

40 In this approach, we assume that the yield response is homogeneous among households. Thus, the yield 
expectation is mainly determined by household’s expectation of fertilizer use.  
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vZ)
:p = \)∗

:w': + \)∗
:QwQ: + 3Z)Θ:        (22b) 

 

and the yield differential expectation is given by vZ)7
p
− vZ)

:p. The results of the yield response 

regression are presented in Table 3A-4, and the predicted yield differential expectations of each 

sample year are given in Table 3-8.  

 

3.5. Results 

To study transient seed adoption, we apply a binary response model to investigate factors 

affecting household’s hybrid seed adoption decisions. For comparative purposes, we estimate 

three versions of the model: (1) conventional static which does not allow for state dependence; 

(2) dynamic discrete choice ignoring irregular spacing (CRE-P), and (3) the CRE-P with gap 

dummies estimator to account for the irregular spacing.  For each estimator we specify two 

specifications: (1) a basic specification which incorporates basic household characteristics and 

infrastructure variables; and (2) an “expectations” specification which also includes the 

expectation variables derived in Section 4. The initial condition problem for the CRE-P 

estimators is addressed by including the first period as the correction factor. We employ the 

bootstrapping method to model standard errors. The main results of estimates of coefficients and 

average partial effects are present in Table 3-9 and Table 3-10, respectively, and the full 

estimates are given in Table 3A-5. Because the profitability expectation variables are strongly 

statistically significant, irrespective of the estimator used, we focus attention on results from the 

models that include the profitability expectation variables.   
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3.5.1. Determinants of Hybrid Adoption 

The contemporaneous effect of an increase in maize price expectations is significantly positive 

on the probability of adopting hybrids at the 1% significance level under all estimators. This is 

consistent with the idea that increased maize price will enlarge the premium from additional 

gains of hybrids over traditional seeds, and in turn encourage the adoption of hybrids. The effects 

of yield differential expectations are also significantly positive at the 1% significance level, 

indicating that the productivity advantage of hybrids is another key driver triggering the adoption 

process. The effects of fertilizer cost differential are significantly negative at the 1% significance 

level, indicating that a higher input cost expectation from hybrids will discourage the adoption of 

hybrids. 

 The effects of household head education, household size, and infrastructure variables are 

estimated and the results are robust in all models. Specifically, the education level of the 

household head increases the probability of adopting hybrids at the 1% significance level, 

implying that education would significantly improve the adoption of new technologies. The 

effect of the distance to the nearest motorable/tarmac road is significantly negative indicating 

that transportation costs will slow down the adoption of hybrids. The negative effect of 

household size indicates that larger households are less likely to adopt hybrids. This is contrary 

to our expectation as the increased availability of family labor should increase the probability of 

using the more labor-intensive production plan, hybrids.41 

 

                                                

41 One potential explanation is that we did not account for the labor supply in this regression due to data constraints, 
therefore potential omitted variable bias contaminates the estimates of household size effects.  
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3.5.2. Static vs. Dynamic Estimation 

An estimate of the state dependence of hybrid adoption is obtained from all four dynamic 

models. In most specifications, the estimates of the state dependence are around 0.4 and 

significantly different from zero at the 1% significance level.42 This indicates that households 

adopting hybrids in the last period are more likely to keep using hybrids in the next period, and 

households using traditional seeds in the last period are more likely to continue using traditional 

seeds. The estimation of hybrid adoption persistence demonstrates the existence of either 

learning effect from using hybrids or switching costs between two seed technologies or both. 

With learning, households would adopt hybrids if the current loss is less than the future gain 

from the additional trial of hybrids (Foster and Rosenzweig 1995). With switching costs, 

households are motivated to continue using the existing varieties (whatever it is) due to the 

costly adjustment (Dixit 1989). 

 Also, the estimates of profitability factors, as well as the other relevant covariates that 

have significant effects on hybrid adoption decisions, are larger (in absolute value) in static 

models than in dynamic models. This is due to the fact that static models assume that the hybrid 

adoption decision will respond immediately to changes in relevant exogenous shocks, while 

dynamic models allow for adjustment costs and current adoption decisions to be made based not 

only on current economic conditions but also expected future outcomes.  

The comparison between static and dynamic models illustrates the importance of using 

dynamic approaches to investigating the hybrid adoption process. First, the identification of state 

dependence in dynamic models implies the existence of learning effects and/or switching costs. 

                                                

42 The state dependence is only about 0.2 in 10% significance level in the dynamic profitability model and this will 
be corrected later in irregular spacing model. 
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This suggests policies should be designed to reduce or overcome the costs of switching from 

traditional varieties to hybrids to improve hybrid adoption. For example, institutional and 

physical infrastructure (transportation, distribution, contract design, etc.) could be improved to 

ensure sufficient and low-cost access to hybrids and reduce new adopter’s cost of establishing 

relationships with hybrid vendors (Barrett 2008). Also, education and training services could be 

implemented to reduce new hybrid user’s cost of screening seed quality and learning to achieve 

optimal productivity. On the other hand, policies could be developed to increase the costs of 

switching back from hybrids to traditional varieties, to encourage new hybrid adopters to at least 

experiment with the new varieties for several periods.43 For example, encouragement and 

subsidies could be offered to farmers who keep using hybrids at least for some period.   

Second, while the observed transient hybrid use suggests that the hybrid adoption is 

clearly a dynamic process, research conducting in a static context tends to ignore the long-run 

effects and exaggerate the short-run effects of the determinants of hybrid adoption. For example, 

we generate short-run and long run price elasticities of adoption from all three models and 

present them in Table 3-11. The estimated short-run price elasticity is about 0.34 in the static 

model, but is reduced to 0.21 in the dynamic model (accounting for irregular spacing), where the 

estimated long-run price elasticity is 0.36. Similarly, in Table 3-10, the average partial effect of 

yield expectation on adoption in the short run is about 0.14, which in the long run is about 0.24. 

These results could explain why we do not appear to get the adoption response we expect from 

higher maize prices or incentive programs: the importance of higher maize prices or yield 

                                                

43 Even though the costs of switching back may reduce the incentives of non-adopters’ switching into the hybrid 
market in the first place, increasing switching back costs could help maintain current adopters in the hybrids market 
and it will work more effectively with decreasing switching-in costs 
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advantages effects on hybrid adoption in the short run is overestimated because farmers need 

time to respond to the changes in price or yield expectations.  

 

3.5.3. Irregular Spacing Effects 

In irregular spacing models, we incorporate the gap dummy as well as its interactions with other 

covariates to account for irregular spacing effects. The estimates of the state dependence increase 

from 0.19 to 0.43 in the preferred specification (with profitability variables) when irregular 

spacing is accounted for. This result is consistent with the findings in Chapter 2, that ignoring 

irregular spacing will underestimate the state dependence of the dynamic model due to the 

missing lagged periods. Hence, incorporating gap dummies appears to reduce the downward 

bias.  

Properly estimating the state dependence of hybrid adoption enables the correct 

prediction of (expected) price elasticities of adoption and the effects of other relevant adoption 

determinants in both the short run and long run. From Table 3-11, the estimated short-run price 

elasticity is about 0.35 if irregular spacing is ignored and reduces to 0.21 when the gap dummies 

are included. The over-estimated short-run price elasticity from ignoring irregular spacing 

implies that the importance of maize price on hybrid adoption in the short run could be 

overestimated when irregular spacing is not properly accounted for. Also, the estimated long-run 

price elasticity is 0.44 in the CRE-P model ignoring irregular spacing and 0.36 in the irregular 

spacing model, indicating that long-run effects could be overestimated also.  

The estimates of the effect of other covariates do not change much after the gap dummies 

are included, which is consistent with findings in Chapter 2 that irregular spacing does not affect 

the estimates of the contemporaneous effects much in terms of the significance and the 
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magnitude.44 One thing worth noting is that the significance and even the sign of the estimates of 

yield differential expectations changes much after incorporating gap dummies. This is because 

the dummy we incorporate equals 1 if the period gap is four years and 0 otherwise, 

distinguishing two groups of data (2004, and 2007/2010).45 The coefficient of the yield 

differential is therefore for waves 2007 and 2010, and the coefficients of both the yield 

differential and the interaction term with gap dummy are the estimates for the 2004 wave. The 

significant positive effect of the interaction term indicates that the yield differential effect is 

significantly positive on hybrid adoption in 2004, and not significant in 2007 and 2010. In static 

and dynamic models, the estimates show that the effects of the yield differential are positive in 

general. We would be able to fully account for the irregular spacing effects and predict the 

contemporaneous effects of the yield differential if we have at least two consecutively observed 

periods in the panel. However, given the sample data in this research, the best we could do is to 

distinguish the effects by different data spacing groups.  

 

3.6. Conclusion 

This paper provides new information on transient seed technology use in Africa. We employ a 

dynamic conceptual model to explain transient use, and apply the model empirically to a four-

wave panel data to obtain quantitative estimates of the determinants of transient hybrid maize use 

in Kenya. Profitability effects are identified as important factors in the adoption process. 

                                                

44 We know the true parameterization of the model in Chapter 2, but we do not in Chapter 3. Therefore, in Chapter 
3, we can only evaluate the effect of irregular spacing through comparing the differences of the estimates 
with/without accounting for irregular spacing. It is not sufficient to prove that irregular spacing does not affect the 
estimates of contemporaneous effects in Chapter.  
45 Given our sample data is in 2000, 2004, 2007, and 2010, the period gap in 2004 is four years (2004-2000), and the 
period gap in 2007 and 2010 is three years (2007-2004, and 2010-2007). 
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Specifically, the effects of maize price expectations and yield differential expectations on hybrid 

adoption are significantly positive, and the effects of fertilizer cost differential expectations are 

significantly negative. The significantly positive effects of maize price expectations imply that 

Kenyan maize farmers have perceived that an increase (decrease) in profitability of adopting 

hybrids due to the increased (decreased) maize selling price will encourage (discourage) hybrid 

adoption. In addition to price effects, the other factors that also affect hybrid adoption include the 

perceived yield advantage of hybrids, the education of household heads, and distance to a 

motorable road.  

More importantly for the contribution of this paper, the persistence of hybrid adoption is 

estimated in the dynamic specifications, and irregular spacing is corrected for using the gap 

dummy approach. The finding of statistically significant adoption persistence implies the 

existence of either switching costs or learning effects in the process of hybrid adoption, 

demonstrating the importance of using dynamic approaches to studying transient technology use. 

These results are quite different to those obtained using static models or dynamic models that do 

not account for irregular spacing. Analysis conducted in dynamic contexts with properly 

estimated persistence facilitates correctly distinguishing short run and long run effects of the 

adoption determinants, improving the richness of empirical insights.  

Our findings provide empirical evidence that transient hybrid seed use in Kenya is 

determined by both profitability of hybrids and adoption persistence (either switching costs or 

learning effects). On the one hand, the fluctuations of maize selling prices and fertilizer prices 

reverse the profitability of using hybrids and lead to household’s switching back and forth 

between hybrid and traditional varieties. Adoption persistence pushes farmers to stay with 

current seed use (whatever it is). Therefore, to expand adoption of modern inputs in Africa, 
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policy could pay more attention to enhancing the expected profitability of adopting hybrids (such 

as stabilizing the maize selling price, encouraging hybrid productivity improvement research and 

training, and implementing fertilizer subsidies) and overcoming the costs of switching from 

traditional to new varieties (programs that reduce the costs of searching and establishing 

relationships with seed providers, screening seed quality, and learning about differences in 

recommended production practices).   
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Table 3-1 Possible transitions across hybrid/non-hybrid use 
Hybrid Use Transitions No. Fraction of Sample (%) 
(2000 2004 2007 2010)  (N=1207 Households) 

N     N     N     N 99 8.20 
N     N     N     H 70 5.80 
N     N     H     H 67 5.55 
N     N     H     N 21 1.74 
N     H     H     H 53 4.39 
N     H     H     N 9 0.75 
N     H     N     H 14 1.16 
N     H     N     N 10 0.83 
H     H     H     H 643 53.27 
H     H     H     N 13 1.08 
H     H     N     N 9 0.75 
H     N     N     N 34 2.82 
H     H     N     H 27 2.24 
H     N     H     H 79 6.55 
H     N     H     N 18 1.49 
H     N     N     H 41 3.40 

Note: “H” denotes the use of hybrid seed and “N” denotes the use of non- hybrid seed. 
 

 

Table 3-2 Proportion of households by adoption history category 
  No. of 

Households 

Proportion of the 
Sample  

 (%)   
Total 1207 100 
1. Never Adopted 99 8.20 
2. Adopted at least once 1108 91.80 
    2.1 Always Adopted 643 53.27 
    2.2 Adopted and continued 190 15.74 
    2.3 Adopted and then Disadopted 96 7.95 
    2.4. Transient use (back and forth) 179 14.83 
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Table 3-3 Maize production summary statistics by adoption pattern 
 Year Full sample Never 

adopted  
Always 
adopted 

Transient 
use 

# of household  1207 120 617 196 

net maize seller 
(share) 

2000 0.37 0.24 0.50 0.22 
2004 0.43 0.19 0.58 0.29 
2007 0.44 0.20 0.56 0.30 
2010 0.31 0.24 0.38 0.22 

average 0.39 0.22 0.51 0.26 

yield (kg/acre) 

2000 678 316 960 432 
2004 698 293 963 495 
2007 784 376 1030 547 
2010 622 349 766 458 

average 695 333 929 483 

maize selling 
price (ksh/kg) 

2000 $1,064 $939 $1,107 $933 
2004 $1,132 $886 $1,160 $1,071 
2007 $1,054 $1,008 $1,065 $1,096 
2010 $1,824 $1,747 $1,865 $1,909 

average $1,234 $1,169 $1,254 $1,232 

fertilizer use 
(share) 

2000 0.58 0.11 0.82 0.48 
2004 0.61 0.18 0.82 0.47 
2007 0.65 0.25 0.85 0.49 
2010 0.66 0.24 0.84 0.53 

average 0.63 0.20 0.83 0.49 

fertilizer use 
(kg/acre) 

2000 63.39 29.28 72.41 41.14 
2004 60.78 14.69 70.86 45.94 
2007 59.84 21.88 71.71 40.09 
2010 65.74 30.61 75.29 55.96 

average 62.44 23.91 72.58 45.99 
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Table 3-4 Income information by adoption pattern 
 Year Full sample Never 

adopted  
Always 
adopted 

Transient 
use 

# of household  1207 120 617 196 

total income (ksh) 

2000 $151,344 $85,828 $191,610 $118,798 
2004 $167,586 $101,137 $208,385 $142,385 
2007 $198,740 $120,747 $248,467 $162,427 
2010 $281,897 $143,123 $363,756 $223,128 

average $199,892 $112,709 $253,055 $161,685 

crop income (ksh) 

2000 $77,488 $48,345 $101,455 $53,840 
2004 $66,470 $30,582 $90,810 $46,953 
2007 $72,341 $43,723 $90,909 $52,194 
2010 $106,644 $45,390 $145,617 $70,571 

average $80,735 $42,010 $107,198 $55,890 

livestock income 
(ksh) 

2000 $19,212 $4,796 $27,935 $11,971 
2004 $27,582 $12,838 $39,665 $18,733 
2007 $22,922 $7,132 $34,534 $11,631 
2010 $31,216 $7,577 $46,567 $19,976 

average $25,233 $8,086 $37,175 $15,578 

off farm income 
(ksh) 

2000 $54,645 $32,687 $62,221 $52,988 
2004 $73,534 $57,717 $77,910 $76,698 
2007 $78,308 $58,146 $84,532 $85,582 
2010 $113,010 $86,119 $124,219 $113,246 

average $79,874 $58,667 $87,220 $82,129 

asset (ksh) 

2000 $139,327 $110,900 $177,308 $97,060 
2004 $170,416 $122,252 $224,053 $103,551 
2007 $220,716 $160,808 $265,821 $177,714 
2010 $273,673 $147,039 $347,158 $208,388 

average $201,033 $135,250 $253,585 $146,678 
 

  



 111 

 

Table 3-5 Market infrastructure statistics by adoption pattern 
 Year Full sample Never 

adopted  
Always 
adopted 

Transient 
use 

# of household  1207 120 617 196 

distance to fertilizer 
seller (km) 

2000 5.46 12.23 3.38 6.02 
2004 3.60 6.59 2.61 4.11 
2007 3.09 4.43 2.91 2.65 
2010 3.67 3.93 3.77 3.38 

average 3.96 6.81 3.17 4.04 

distance to hybrid 
seller (km) 

2000 \ \ \ \ 
2004 3.33 6.02 2.57 3.38 
2007 3.14 3.80 3.06 2.87 
2010 4.25 4.80 4.16 4.02 

average 3.57 4.87 3.26 3.42 

distance to a 
motorable road (km) 

2000 1.28 1.29 1.38 1.15 
2004 1.05 1.47 0.80 1.24 
2007 0.52 0.53 0.51 0.56 
2010 0.43 0.60 0.33 0.57 

average 0.82 0.97 0.75 0.88 

distance to a tarmac 
road (km) 

2000 7.58 11.58 6.79 6.53 
2004 7.52 11.38 6.65 6.71 
2007 7.56 11.39 6.64 6.79 
2010 7.04 9.51 6.21 6.60 

average 7.43 10.97 6.57 6.66 
 

 

Table 3-6 Household’s expectations of maize selling and buying prices 
 Obs Mean Std. Dev. Min Max 
Selling price 1,871 1295 412 500 4000 
Selling price expectation 1,871 1291 306 870 2198 
      

Buying price 2,957 1573 357 1000 2222 
Buying price expectation 2,957 1573 337 1001 2313 
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Table 3-7 Household’s expectations of fertilizer use for hybrid and traditional seeds 
 Obs Mean Std. Dev. Min Max 
Traditional 2004 1,207 15.46 11.24 0.00 108.17 
Hybrid 2004 1,207 38.59 22.84 0.14 150.70 
Traditional 2007 1,207 17.01 11.70 0.00 95.13 
Hybrid 2007 1,207 39.39 24.12 0.11 114.82 
Traditional 2010 1,207 20.32 12.79 0.00 117.03 
Hybrid 2010 1,207 42.21 24.66 0.14 118.94 

 

Table 3-8 Household’s yield differential expectations between hybrids and traditional seeds 
 Obs Mean Std. Dev. Min Max 
2004 1,207 245 283 -706 2377 
2007 1,207 354 259 -337 1292 
2010 1,207 260 205 -555 1544 
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Table 3-9 Main estimates of hybrid adoption models (coefficients) 
 Static 

basic 
Static 
profit 

Dynamic 
basic 

Dynamic 
profit 

Irregular 
Spacing basic 

Irregular 
Spacing profit 

Used hybrid previous period   0.400*** 0.194 0.471*** 0.426*** 
   (0.114) (0.150) (0.137) (0.151) 

Profitability factors       
Price expectation  0.887***  0.833***  0.455*** 

  (0.098)  (0.093)  (0.122) 
Fertilizer cost differential  -0.291***  -0.280***  -0.211** 

  (0.078)  (0.101)  (0.092) 
Yield differential  0.820***  0.768***  -0.591 

  (0.287)  (0.293)  (0.402) 
Yield differential*G-Dummy      1.040* 

      (0.619) 
Household characteristics       
Age of head in years 0.021*** 0.008 0.018*** 0.007 0.005 -0.005 

 (0.008) (0.006) (0.007) (0.007) (0.007) (0.008) 
Education of head 0.066*** 0.053*** 0.062*** 0.050*** 0.050*** 0.038** 

 (0.018) (0.016) (0.016) (0.015) (0.019) (0.019) 
Landholding size -0.002 0.023 0.002 0.025 0.017 0.039* 

 (0.018) (0.018) (0.016) (0.019) (0.020) (0.023) 
Real value of assets 0.037* 0.023 0.039** 0.026 0.013 0.003 

 (0.021) (0.019) (0.018) (0.022) (0.015) (0.022) 
Household size -0.067*** -0.051*** -0.054** -0.044** -0.031* -0.007 

 (0.025) (0.019) (0.023) (0.019) (0.017) (0.021) 
Transportation costs       
Distance to fertilizer seller -0.016 -0.018 -0.017 -0.017 0.006 -0.007 

 (0.010) (0.013) (0.011) (0.014) (0.021) (0.019) 
Distance to hybrid seller 0.006 -0.002 0.005 -0.003 0.006 0.005 

 (0.010) (0.011) (0.012) (0.013) (0.016) (0.015) 
Distance to motorable road -0.145*** -0.104*** -0.138*** -0.109*** -0.036 0.037 

 (0.034) (0.033) (0.031) (0.036) (0.057) (0.053) 
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Table 3-9 (cont’d) 
Distance to tarmac road -0.016** -0.012** -0.008* -0.006 -0.012** -0.003 

 (0.007) (0.006) (0.005) (0.006) (0.006) (0.007) 
Constant -0.977** 3.176** -0.996*** 1.726* -1.153*** 1.525** 

 (0.420) (1.299) (0.348) (1.016) (0.323) (0.758) 
       

Observations 3,621 3,621 3,621 3,621 3,621 3,621 
Number of hhid 1,207 1,207 1,207 1,207 1,207 1,207 
chi2 129.5 128.3 6.385 18.00 5.821 6.107 

Note1: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note2: G-Dummy stands for gap dummy.  
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Table 3-10 Main estimates of hybrid adoption models (average partial effects) 
 Static 

basic 
Static 
profit 

Dynamic 
basic 

Dynamic 
profit 

Irregular 
Spacing basic 

Irregular 
Spacing profit 

Used hybrid previous period   0.079*** 0.035 0.090*** 0.077*** 
   (0.024) (0.028) (0.028) (0.030) 

Profitability factors       
Price expectation  0.154***  0.148***  0.082*** 

  (0.016)  (0.017)  (0.021) 
Fertilizer cost differential  -0.051***  -0.050***  -0.038** 

  (0.014)  (0.018)  (0.017) 
Yield differential  0.143***  0.137**  -0.106 

  (0.050)  (0.053)  (0.071) 
Yield differential*G-Dummy      0.187* 

      (0.111) 
Household characteristics       
Age of head in years 0.004*** 0.001 0.004*** 0.001 0.001 -0.001 

 (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 
Education of head 0.012*** 0.009*** 0.012*** 0.009*** 0.010*** 0.007** 

 (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) 
Landholding size -0.000 0.004 0.000 0.004 0.003 0.007* 

 (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) 
Real value of assets 0.007* 0.004 0.008** 0.005 0.003 0.001 

 (0.004) (0.003) (0.003) (0.004) (0.003) (0.004) 
Household size -0.012*** -0.009*** -0.011** -0.008** -0.006* -0.001 

 (0.004) (0.003) (0.004) (0.003) (0.003) (0.004) 
Transportation costs       
Distance to fertilizer seller -0.003 -0.003 -0.003 -0.003 0.001 -0.001 

 (0.002) (0.002) (0.002) (0.003) (0.004) (0.003) 
Distance to hybrid seller 0.001 -0.000 0.001 -0.000 0.001 0.001 

 (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 
Distance to motorable road -0.027*** -0.018*** -0.027*** -0.019*** -0.007 0.007 

 (0.007) (0.006) (0.006) (0.006) (0.011) (0.009) 
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Table 3-10 (cont’d) 
Distance to tarmac road -0.003** -0.002** -0.002* -0.001 -0.002** -0.001 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
       

Observations 3,621 3,621 3,621 3,621 3,621 3,621 
Number of hhid 1,207 1,207 1,207 1,207 1,207 1,207 

Note1: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note2: G-Dummy stands for gap dummy.  
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Table 3-11 Predicted price elasticities of hybrid adoption 

 Short-run 
Elasticities 

Standard 
Error 

Long-run 
Elasticities 

Standard 
Error 

Static 0.335 0.041 NA NA 
Dynamic 0.353 0.045 0.438 0.070 
Irregular spacing  0.206 0.062 0.360 0.187 
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Table 3A-1 Robustness check for modeling price expectation with different lag length 
# of price lags 12 11 10 9 8 7 6 5 
Used hybrid previous period 0.194* 0.197* 0.195* 0.199* 0.198* 0.198* 0.203* 0.204* 

 (0.115) (0.115) (0.115) (0.115) (0.115) (0.115) (0.114) (0.114) 
Used hybrid in 2000 0.855*** 0.854*** 0.858*** 0.859*** 0.856*** 0.856*** 0.851*** 0.850*** 

 (0.120) (0.120) (0.121) (0.121) (0.121) (0.121) (0.120) (0.120) 
Fertilizer cost differential -0.280*** -0.279*** -0.286*** -0.288*** -0.292*** -0.293*** -0.300*** -0.298*** 

 (0.094) (0.094) (0.094) (0.095) (0.095) (0.095) (0.095) (0.095) 
Price expectation 0.833*** 0.827*** 0.858*** 0.897*** 0.898*** 0.900*** 0.907*** 0.902*** 

 (0.108) (0.107) (0.108) (0.109) (0.110) (0.111) (0.112) (0.112) 
Yield differential 0.768*** 0.770*** 0.782*** 0.770*** 0.766*** 0.762*** 0.750*** 0.750*** 

 (0.257) (0.256) (0.257) (0.256) (0.256) (0.257) (0.256) (0.255) 
Age of head in years 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

 (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 
Education of head 0.050*** 0.050*** 0.049*** 0.049*** 0.048*** 0.048*** 0.048*** 0.048*** 

 (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) 
Distance to fertilizer seller -0.017 -0.017 -0.018 -0.019* -0.019* -0.019* -0.019* -0.019* 

 (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 
Distance to hybrid seller -0.003 -0.003 -0.004 -0.003 -0.003 -0.003 -0.003 -0.003 

 (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 
Distance to motorable road -0.109*** -0.109*** -0.108*** -0.107*** -0.107*** -0.106*** -0.105*** -0.105*** 

 (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) 
Distance to tarmac road -0.006 -0.006 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005 

 (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 
Zone dummy one 0.225 0.231 0.235 0.246 0.234 0.237 0.219 0.221 

 (0.218) (0.218) (0.219) (0.220) (0.220) (0.220) (0.219) (0.218) 
Zone dummy two 0.161 0.165 0.165 0.161 0.159 0.159 0.148 0.148 

 (0.229) (0.229) (0.230) (0.231) (0.231) (0.231) (0.229) (0.228) 
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Table 3A-1 (cont’d) 
Zone dummy three 1.307*** 1.315*** 1.326*** 1.320*** 1.305*** 1.306*** 1.292*** 1.294*** 

 (0.327) (0.327) (0.328) (0.329) (0.328) (0.328) (0.327) (0.326) 
Zone dummy four 2.246*** 2.249*** 2.281*** 2.294*** 2.279*** 2.281*** 2.269*** 2.271*** 

 (0.441) (0.440) (0.442) (0.444) (0.443) (0.444) (0.441) (0.441) 
Zone dummy five 0.810*** 0.816*** 0.813*** 0.807*** 0.800*** 0.800*** 0.784*** 0.784*** 

 (0.290) (0.290) (0.291) (0.292) (0.291) (0.292) (0.290) (0.290) 
Zone dummy six 1.013*** 1.016*** 1.029*** 1.041*** 1.032*** 1.034*** 1.019*** 1.021*** 

 (0.278) (0.278) (0.279) (0.279) (0.279) (0.279) (0.278) (0.278) 
Zone dummy seven 1.010*** 1.018*** 1.056*** 1.088*** 1.059*** 1.065*** 1.046*** 1.050*** 

 (0.332) (0.332) (0.333) (0.337) (0.334) (0.334) (0.334) (0.332) 
Landholding size 0.025 0.025 0.025 0.026 0.027 0.027 0.029* 0.028 

 (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) 
Real value of assets 0.026 0.026 0.026 0.024 0.025 0.025 0.025 0.026 

 (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 
Household size  -0.044** -0.044** -0.044** -0.043** -0.043** -0.043** -0.043** -0.043** 

 (0.021) (0.021) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) 
Time-average of head age -0.016** -0.016** -0.016** -0.016** -0.016** -0.016** -0.015* -0.015** 

 (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) 
Time-average of head -0.019 -0.019 -0.018 -0.017 -0.017 -0.017 -0.017 -0.017 
education (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) 
Time-average of household 0.082*** 0.082*** 0.083*** 0.082*** 0.082*** 0.082*** 0.082*** 0.082*** 
size (0.029) (0.029) (0.029) (0.029) (0.029) (0.029) (0.029) (0.029) 
Time-average of distance 
seller 

-0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 
to fertilizer (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) 
Time-average of distance 
seller 

-0.011 -0.010 -0.010 -0.011 -0.011 -0.011 -0.010 -0.011 
to hybrid (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) 
Time-average of distance  0.190*** 0.190*** 0.192*** 0.191*** 0.192*** 0.192*** 0.192*** 0.191*** 
to motorable road (0.066) (0.065) (0.066) (0.066) (0.066) (0.066) (0.066) (0.066) 
Time-average of landholding 0.080*** 0.081*** 0.081*** 0.080*** 0.080*** 0.080*** 0.078*** 0.078*** 
size (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) 
Time-average of real value -0.027 -0.027 -0.027 -0.025 -0.025 -0.025 -0.026 -0.026 
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Table 3A-1 (cont’d)         
of assets (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) 
Time-average of fertilizer cost  0.965*** 0.962*** 0.977*** 0.973*** 0.981*** 0.983*** 0.991*** 0.988*** 
differential expectation (0.176) (0.175) (0.175) (0.176) (0.176) (0.176) (0.175) (0.175) 
Time-average of maize price  -2.644*** -2.603*** -2.599*** -2.633*** -2.737*** -2.722*** -2.754*** -2.724*** 
expectation (0.541) (0.538) (0.536) (0.544) (0.540) (0.540) (0.544) (0.541) 
Time-average of yield -3.381*** -3.369*** -3.419*** -3.397*** -3.422*** -3.414*** -3.420*** -3.410*** 
differential expectation (0.879) (0.875) (0.877) (0.883) (0.883) (0.882) (0.878) (0.876) 
Constant 1.726* 1.665* 1.596* 1.574* 1.746* 1.718* 1.765* 1.725* 

 (0.929) (0.924) (0.923) (0.935) (0.928) (0.929) (0.931) (0.924) 
         

Observations 3,621 3,621 3,621 3,621 3,621 3,621 3,621 3,621 
Number of hhid 1,207 1,207 1,207 1,207 1,207 1,207 1,207 1,207 
chi2 607.0 608.2 606.3 605.5 605.7 605.6 610.3 611.0 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3A-2 Estimates of Maize Price Expectations 
 Net seller Net buyer 
District price lagged one month  0.196 1.134*** 

 (0.147) (0.043) 
District price lagged two month  -0.103 -1.347*** 

 (0.217) (0.053) 
District price lagged three month  0.377** 0.857*** 

 (0.183) (0.051) 
District price lagged four month  -0.820*** -0.016 

 (0.220) (0.054) 
District price lagged five month  1.449*** 0.482*** 

 (0.496) (0.181) 
District price lagged six month  -2.140*** -1.846*** 

 (0.432) (0.091) 
District price lagged seven month  1.585*** 0.213** 

 (0.368) (0.091) 
District price lagged eight month  -0.660 1.075*** 

 (0.440) (0.181) 
District price lagged nine month  0.074 -0.884*** 

 (0.322) (0.126) 
District price lagged ten month  0.139 0.438*** 

 (0.378) (0.155) 
District price lagged eleven month  0.282 1.048*** 

 (0.224) (0.074) 
District price lagged twelve month 0.165 

 
-0.388*** 

  (0.191) 
 

(0.080) 
 Age of head in years -0.834 -0.858** 

 (1.753) (0.389) 
Education of head 2.011 -0.177*** 

 (1.866) (0.047) 
Landholding size 0.075 0.103 

 (0.554) (1.114) 
Real value of assets -3.905 -0.193 

 (3.050) (1.119) 
Household size -0.992 1.981 

 (4.029) (1.253) 
Distance to fertilizer seller -1.752 0.492 

 (1.664) (0.597) 
Distance to motorable road 0.540 4.922** 

 (3.639) (2.164) 
Distance to tarmac road 4.586** -1.983** 

 (2.065) (0.784) 
Zone dummy one -66.183 -176.602*** 
 (139.103) (21.507) 
Zone dummy two -25.212 -176.553*** 
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Table 3A-2 (cont’d)   
 (137.802) (30.429) 
Zone dummy three -127.160 -364.960*** 
 (137.302) (29.566) 
Zone dummy four -269.767** -363.047*** 
 (135.128) (25.463) 
Zone dummy five 8.265 -224.023*** 
 (142.973) (29.877) 
Zone dummy six -103.628 -317.653*** 
 (138.235) (22.265) 
Zone dummy seven -86.537 -376.857*** 
 (186.688) (37.188) 
Time-average of district price -2.669*** -3.419*** 
lagged one month (0.808) (0.253) 
Time-average of district price 3.377* 6.167*** 
lagged two month (1.809) (0.695) 
Time-average of district price -3.202*** -3.073*** 
lagged three month (0.593) (0.256) 
Time-average of district price 0.466 -1.033*** 
lagged four month (0.984) (0.358) 
Time-average of district price 1.307* 2.576*** 
lagged five month (0.732) (0.210) 
Time-average of head age 0.326 0.077 
 (1.920) (0.444) 
Time-average of head 0.097 0.313 
education (0.761) (0.236) 
Time-average of landholding 3.599** 3.991*** 
size (1.400) (1.398) 
Time-average of real value 6.248* -0.741 
of assets (3.244) (1.284) 
Time-average of household 3.149 -0.714 
size (5.503) (1.623) 
Time-average of distance seller 0.965 -7.058*** 
to fertilizer (3.433) (1.313) 
Time-average of distance  -24.604** 3.540 
to motorable road (10.336) (3.855) 
Time-average of distance  -4.652* 2.123** 
to tarmac road (2.499) (0.863) 
Constant 1,868.895 -1,393.941* 

 (1,483.041) (778.477) 
   

Observations 1,871 2,957 
Adjusted R2 0.636 0.915 
Number of hhid 822 1,069 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3A-3 Estimates of fertilizer use expectations 
 Fertilizer for 

traditional seed 
Fertilizer for hybrids 

Used fertilizer previous period 0.033 0.016 
 (0.037) (0.015) 

Fertilizer price 0.651** 0.379* 
 (0.319) (0.227) 

Maize price expectation -0.010 -0.001 
 (0.009) (0.006) 

Net seller dummy (=1) 13.028*** 5.580* 
 (4.617) (3.177) 

Used hybrid previous period 3.391 9.122** 
 (3.963) (4.519) 

Age of head in years 0.151 -0.147 
 (0.292) (0.247) 

Education of head 0.338 0.998*** 
 (0.770) (0.310) 

Household size 0.490 1.703** 
 (0.956) (0.746) 

Zone dummy one 21.028* 57.794*** 
 (12.558) (13.597) 

Zone dummy two -19.409* 0.701 
 (10.208) (14.004) 

Zone dummy three 23.591* 88.285*** 
 (14.221) (13.735) 

Zone dummy four 53.834*** 120.125*** 
 (14.428) (15.108) 

Zone dummy five 28.855** 98.397*** 
 (12.430) (13.656) 

Zone dummy six 36.892*** 84.029*** 
 (12.691) (14.298) 

Zone dummy seven 30.231 19.606 
 (20.422) (20.993) 

Distance to fertilizer seller 0.887 0.455 
 (0.690) (0.563) 

Distance to hybrid seller -0.199 -0.120 
 (0.527) (0.496) 

Distance to motorable road -0.346 -0.938 
 (1.364) (1.357) 

Distance to tarmac road -1.348*** -0.835*** 
 (0.340) (0.244) 

Landholding size -2.471*** 0.061 
 (0.954) (0.360) 

Real value of assets 0.000 -0.000 
 (0.000) (0.000) 

Fertilizer use previous period 0.120*** 0.033*** 
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Table 3A-3 (cont’d)   
 (0.041) (0.011) 

Time-average of fertilizer price 7.684*** 6.853*** 
 (2.812) (1.348) 

Time-average of maize price expectation 0.054 0.117*** 
 (0.045) (0.035) 

Time-average of net seller dummy 20.658* 29.323*** 
 (12.311) (8.870) 

Time-average of used hybrid previous 20.222** 12.266 
 (8.321) (8.308) 

Time-average of head age -0.339 0.334 
 (0.350) (0.274) 

Time-average of head education 1.025 0.251 
 (0.971) (0.164) 

Time-average of Household size -0.505 -1.302 
 (1.286) (0.964) 

Time-average of distance to fertilizer seller -4.587*** 1.048 
 (1.385) (0.918) 

Time-average of distance to hybrid seller 1.487 -1.421 
 (1.120) (0.897) 

Time-average of distance to motorable road 2.783 -6.055*** 
 (3.290) (2.120) 

Time-average of landholding size 1.388 -0.693 
 (1.490) (0.446) 

Time-average of real value of assets -0.270 0.914* 
 (1.209) (0.550) 

Constant -393.134*** -522.214*** 
 (124.677) (91.065) 
   

Observations 1,044 2,577 
Number of household 549 1,047 
Chi2 317 1954 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3A-4 Estimates of yield response model 
 Trad 2004 Hybr 2004 Trad 2007 Hybr 2007 Trad 2010 Hybr 2010 
Fertilizer use 9.212*** 3.918*** 4.507 3.052*** 8.477*** 1.955** 

 (2.608) (0.758) (2.834) (0.850) (2.708) (0.985) 
Fertilizer squared -0.041*** -0.007*** 0.001 0.006 -0.028 0.007 

 (0.014) (0.002) (0.024) (0.004) (0.023) (0.006) 
Landholding size -26.613** -7.625 -44.457*** -7.811 -23.023 3.869 

 (11.999) (7.722) (15.417) (14.349) (18.209) (19.664) 
Age of head in years -1.646 1.855 0.022 -0.552 2.394* -1.101 

 (1.229) (1.672) (1.384) (1.430) (1.282) (1.307) 
Education of head -1.223 4.844 7.216 8.729* 8.037 10.012** 

 (3.057) (4.031) (4.397) (4.938) (4.997) (4.557) 
Household size 1.957 3.565 -0.145 11.937 -3.975 10.756* 

 (5.297) (8.551) (5.169) (8.309) (4.541) (6.422) 
Distance to fertilizer seller 1.747 9.374 6.981 9.132 -4.757* -7.224 

 (2.081) (7.960) (5.345) (9.749) (2.686) (6.052) 
Distance to hybrid seller 6.829** 2.219 -7.942 -10.252 0.443 -0.765 

 (3.050) (8.601) (6.403) (8.384) (1.869) (4.213) 
Distance to motorable road -10.253 0.687 3.168 65.323*** -29.400** 17.322 

 (11.496) (15.808) (16.873) (20.725) (11.393) (23.105) 
Distance to tarmac road -1.525 -2.336 0.248 0.958 2.062 12.102*** 

 (1.591) (3.298) (1.974) (3.376) (1.669) (2.436) 
Landholding size -5.465 8.611* 21.659 2.333 8.948 8.828 

 (8.410) (5.022) (13.430) (9.364) (15.932) (9.072) 
Real value of assets 17.519** 10.180** 7.796 -1.541 -4.715 -1.446 

 (6.841) (4.595) (7.215) (4.461) (4.569) (4.622) 
Zone dummy one 105.573  -70.292 160.765* 48.943 272.200*** 

 (67.867)  (68.864) (84.924) (70.551) (65.955) 
Zone dummy two -14.044 -22.917 -22.412 367.192*** 46.876 192.077*** 

 (49.839) (74.024) (63.187) (66.476) (53.721) (61.322) 
Zone dummy three 218.407*** 423.503*** 41.289 473.711*** 95.962 486.293*** 

 (63.521) (72.168) (88.382) (63.418) (92.238) (75.951) 
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Table 3A-4 (cont’d) 
Zone dummy four 505.481*** 767.974*** -21.152 715.882*** -226.600*** 272.517*** 

 (83.883) (64.912) (94.252) (61.825) (83.588) (64.926) 
Zone dummy five 100.131 196.002*** 22.470 315.111*** 62.568 295.707*** 

 (70.972) (60.701) (84.222) (62.759) (80.417) (71.175) 
Zone dummy six 463.785*** 366.619*** 88.707 485.704*** 139.063* 503.418*** 

 (89.413) (69.747) (105.705) (78.676) (83.673) (75.843) 
Zone dummy seven 148.862* 119.381* -90.729 153.032 -248.613*** -30.706 

 (86.184) (66.177) (86.711) (105.050) (83.515) (90.844) 
Constant 306.174*** 43.119 350.187*** 143.715 129.183 80.510 

 (95.853) (146.759) (131.236) (126.907) (98.936) (121.530) 
Observations 449 758 347 860 248 959 
Adjusted R2 0.333 0.301 0.134 0.244 0.325 0.161 

Note: Trad 2004 is maize yield with traditional in 2004, Hybr 2004 is maize yield with hybrids in 2004
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Table 3A-5 Full estimates of hybrid adoption model 
  Static 

basic 
Static 
profit 

Dynamic 
basic 

Dynamic 
profit 

Irregular 
Spacing basic 

Irregular 
Spacing profit 

       Used hybrid previous period   0.400*** 0.194 0.471*** 0.426*** 
   (0.114) (0.150) (0.137) (0.151) 

Profitability factors       
Price expectation  0.887***  0.833***  0.455*** 

  (0.098)  (0.093)  (0.122) 
Fertilizer cost differential  -0.291***  -0.280***  -0.211** 

  (0.078)  (0.101)  (0.092) 
Yield differential  0.820***  0.768***  -0.591 

  (0.287)  (0.293)  (0.402) 
Yield differential*G-Dummy      1.040* 

      (0.619) 
Household characteristics       
Age of head in years 0.021*** 0.008 0.018*** 0.007 0.005 -0.005 

 (0.008) (0.006) (0.007) (0.007) (0.007) (0.008) 
Education of head 0.066*** 0.053*** 0.062*** 0.050*** 0.050*** 0.038** 

 (0.018) (0.016) (0.016) (0.015) (0.019) (0.019) 
Landholding size -0.002 0.023 0.002 0.025 0.017 0.039* 

 (0.018) (0.018) (0.016) (0.019) (0.020) (0.023) 
Real value of assets 0.037* 0.023 0.039** 0.026 0.013 0.003 

 (0.021) (0.019) (0.018) (0.022) (0.015) (0.022) 
Household size -0.067*** -0.051*** -0.054** -0.044** -0.031* -0.007 

 (0.025) (0.019) (0.023) (0.019) (0.017) (0.021) 
Transportation costs       
Distance to fertilizer seller -0.016 -0.018 -0.017 -0.017 0.006 -0.007 

 (0.010) (0.013) (0.011) (0.014) (0.021) (0.019) 
Distance to hybrid seller 0.006 -0.002 0.005 -0.003 0.006 0.005 

 (0.010) (0.011) (0.012) (0.013) (0.016) (0.015) 
Distance to motorable road -0.145*** -0.104*** -0.138*** -0.109*** -0.036 0.037 

 (0.034) (0.033) (0.031) (0.036) (0.057) (0.053) 
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Table 3A-5 (cont’d) 
Distance to tarmac road -0.016** -0.012** -0.008* -0.006 -0.012** -0.003 

 (0.007) (0.006) (0.005) (0.006) (0.006) (0.007) 
Zone dummy one 0.449* 0.203 0.370** 0.225 0.416* 0.393* 

 (0.233) (0.237) (0.183) (0.223) (0.220) (0.225) 
Zone dummy two -0.042 0.345 -0.101 0.161 -0.073 0.402** 

 (0.218) (0.248) (0.177) (0.215) (0.198) (0.199) 
Zone dummy three 1.947*** 1.757*** 1.271*** 1.307*** 1.339*** 1.500*** 

 (0.275) (0.374) (0.231) (0.334) (0.234) (0.301) 
Zone dummy four 2.714*** 3.087*** 1.748*** 2.246*** 1.810*** 2.496*** 

 (0.248) (0.525) (0.240) (0.463) (0.249) (0.409) 
Zone dummy five 1.800*** 1.277*** 1.045*** 0.810** 1.089*** 0.914*** 

 (0.251) (0.348) (0.243) (0.332) (0.273) (0.306) 
Zone dummy six 1.844*** 1.575*** 1.048*** 1.013*** 1.111*** 1.192*** 

 (0.271) (0.331) (0.260) (0.291) (0.257) (0.280) 
Zone dummy seven 1.683*** 1.619*** 0.906*** 1.010*** 1.002*** 1.160*** 

 (0.343) (0.482) (0.254) (0.369) (0.275) (0.334) 
Time-average of head age -0.026*** -0.019*** -0.023*** -0.016* -0.009 -0.007 

 (0.009) (0.007) (0.007) (0.008) (0.008) (0.009) 
Time-average of head education -0.020 -0.011 -0.034* -0.019 -0.012 -0.009 

 (0.019) (0.019) (0.017) (0.018) (0.018) (0.020) 
Time-average of Household size 0.090*** 0.110*** 0.065** 0.082*** 0.056** 0.064** 

 (0.029) (0.026) (0.027) (0.029) (0.023) (0.027) 
Time-average of distance to  -0.028 -0.026 -0.021 -0.023 -0.028 -0.027 
fertilizer seller (0.023) (0.026) (0.020) (0.025) (0.019) (0.021) 
Time-average of distance to  -0.005 -0.012 -0.007 -0.011 -0.006 -0.013 
hybrid seller (0.019) (0.028) (0.020) (0.020) (0.018) (0.018) 
Time-average of distance to 0.127* 0.237** 0.109* 0.190*** 0.059 0.145*** 
motorable road (0.070) (0.093) (0.063) (0.070) (0.050) (0.056) 
Time-average of landholding size 0.118*** 0.116*** 0.077*** 0.080*** 0.058** 0.067** 

 (0.027) (0.030) (0.027) (0.023) (0.023) (0.030) 
Time-average of real value of assets -0.020 -0.032 -0.022 -0.027 -0.005 -0.014 
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Table 3A-5 (cont’d) 
 (0.029) (0.031) (0.023) (0.029) (0.020) (0.024) 

Time-average of fertilizer cost  1.253***  0.965***  0.936*** 
differential expectation  (0.209)  (0.190)  (0.161) 
Time-average of maize price  -3.560***  -2.644***  -2.024*** 
expectation  (0.716)  (0.566)  (0.463) 
Time-average of yield  -4.432***  -3.381***  -2.956*** 
differential expectation  (1.025)  (0.937)  (0.915) 
G-Dummy * used hybrid      -0.001 -0.027 
previous period     (0.169) (0.183) 
G-Dummy * age of head     -0.004 0.008 

     (0.003) (0.005) 
G-Dummy * head education     -0.019 -0.000 

     (0.014) (0.016) 
G-Dummy * distance to      -0.025 -0.003 
fertilizer seller     (0.025) (0.022) 
G-Dummy * distance to     -0.019 -0.015 
hybrid seller     (0.019) (0.020) 
G-Dummy * distance to     -0.060 -0.085 
motorable road     (0.070) (0.072) 
G-Dummy * distance to      0.011 0.004 
tarmac road     (0.008) (0.009) 
G-Dummy * landholding size     0.012 -0.008 

     (0.027) (0.031) 
G-Dummy * real value of assets     0.032 0.029 

     (0.022) (0.025) 
G-Dummy * household size     -0.036 -0.029 

     (0.022) (0.027) 
G-Dummy * fertilizer cost      0.093 
differential expectation      (0.256) 
G-Dummy * maize price expectation      -0.832** 

      (0.371) 
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Table 3A-5 (cont’d)       
Used hybrid in 2000   0.729*** 0.855*** 0.732*** 0.725*** 

   (0.107) (0.133) (0.089) (0.115) 
Constant -0.977** 3.176** -0.996*** 1.726* -1.153*** 1.525** 

 (0.420) (1.299) (0.348) (1.016) (0.323) (0.758) 
       

Observations 3,621 3,621 3,621 3,621 3,621 3,621 
Number of hhid 1,207 1,207 1,207 1,207 1,207 1,207 
chi2 129.5 128.3 6.385 18.00 5.821 6.107 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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