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ABSTRACT
KNOT THEORY OF MORSE-BOTT CRITICAL LOCI
By

Metin Ozsarfati

We give an alternative proof of that a critical knot of a Morse-Bott function f : $% — R
is a graph knot where the critical set of f is a link in S3 [8] [9] [11] [12]. Our proof inducts

on the number of index-1 critical knots of f as in [12].
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Chapter 1

Introduction

We will define and study a specific type of Morse-Bott functions [1] f : S3 5 R, called a
k-function in this thesis, to study knots or links in S3 where each critical component of f
is a knot in S3. A knot or link in S3 is called k-mate if it is a sublink of the critical link
of some k-function. Our main theorem (Theorem 1) will classify all the k-mate knots in S3
which are precisely the graph knots [11] in S 3. Our treatment will be similar to the study of
an ordinary Morse function on a compact manifold and we will adopt the standard notions
of Morse theory [13] in our work .

Unfortunately, there are many different but equivalent definitions of a graph knot or link
in a compact 3-manifold M. Our definition in this work will give one equivalent definition
for a graph knot in S3 but it will slightly fall short to capture all the graph links in S3.
A standard definition can be taken as: an irreducible link L in an irreducible, compact,
connected 3-manifold M is an irreducible graph link if the JSJ-decomposition [2], [3] of
M — N (L) consists of only Seifert fibered pieces where N (L) is an open tubular neighborhood
of L in M [11]. Such 3-manifolds are called graph manifolds [4]. Another characterization
of this link L is that the Gromov volume of M — N(L) is zero [5], [6], [7]. For compact,
connected M with M being equal to a (possibly empty) union of tori or klein bottles,
another charactirization is that L C M is a graph link if L is a subset of the hyperbolic

closed orbits of a nonsingular Morse-Smale flow on M [9]. There, Morgan’s main interest



had actually been the existence of nonsingular Morse-Smale flows on M rather than studying
links in M but he proved that when M is prime, there exists such a flow on M if and only if
M is a graph manifold. For M not necessarily prime, he proved that there exists such a flow
on M if and only if each prime summand of M is a graph manifold. Such flows on M are
bijectively associatied to round handle decompositions of M [9], [10]. Here, a round handle
is either homeomorphic to a solid torus or a solid Klein bottle. We will describe in our work
how a k-function induces a round handle decomposition of S3.

It is shown in [8], [11], [12] that a graph knot K is obtained from an unknot by a finite
application of connected sum or cabling operations and we will show that all the k-mate knots
in S3 arise in the same way. We will formally emphasize this elementary perspective of graph
knots in Definition 3. In literature, [9] seems to be the earliest source to be credited for the
classification of graph knots even though the connected sum operation has been overlooked
there.

Even though our main theorem will classify the graph knots in a different way, our
topological ideas and methods will be close to the ones in [12]. The results in [11], [12]
are stronger than ours as they effectively classify all the graph links in S3. Moreover, the
classification in [11] studies graph links in a homology 3-sphere M. We will make further

remarks on these important sources in the Conclusion section.



Chapter 2

Basic Notions and Results

Definition 1. A real valued smooth function f : S — R is a k-function if:

(i) The set of critical points of f is a link L in S3
(ii)) The Hessian of f is nondegenerate in the normal direction to L.

(iii) Each knot K in L has a tubular neighborhood U in S3 with local coordinates (6, z,y)
such that f(0,z,y) = ¢?(+2? + y?) + d where (0,0,0) are the coordinates for K and

¢,d are scalars (¢ # 0).

The link L is called the critical link of f and a component of L is called a critical knot of
f. The neighborhood U in (iii) is called a k-model neighborhood of K. We make an abuse
of notation by identifying U C S3 with S1 x D? where D? is the unit disk. The notation

(0, z,y) will refer to such local coordinates of a critical knot throughout this work.
Definition 2. A link L is k-mate if L is a subset of the critical link of some k-function.

The basic question is then which knots in S3 are k-mate. Our main theorem below

answers this question. We will provide a proof of it after Theorem 9.
Theorem 1. A knot is k-mate if and only if it is a graph knot.

A critical knot K of a k-function f is called a source, sink or saddle respectively if the
signs in f(6, z,y) = (x> +y?)+d are both positive, both negative or opposite respectively.
We adopt the sign conventions in f(0,x,y) = c*(y? — 22) + d for a saddle.
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In the saddle K case, the two circles ST x (41,0) are called stable circles of K in U and
the two circles ST x (0, £1) are called the unstable circles of K in U. Similarly, the annulus
St x [~1,1] x {0} is called the stable annulus of K in U and the annulus ST x {0} x [~1,1]
is called the unstable annulus of K in U. Note that neither k-model coordinates (0, z,y)
nor stable or unstable circles of a saddle are unique. The stable and unstable circles of a
saddle K can be isotoped to K within the stable or unstable annulus so that they are parallel
cable knots of K. They homologically have +1 longitude coefficients (and some arbitrary
meridian coefficient) in Hy(0U). Note that the property (iii) of Definition 1 is not necessary
for sources or sinks but it puts a restriction on our saddles. When it is dropped, the stable
or unstable regions of a saddle can be a nontrivial line bundle over the saddle (i.e. a Mdbius
band).

A point in f(L) € R where L is the critical link of a k-function f is called a critical
value of f and a point in R — f(L) is called a regular value of f. We will define an ordered
k-function later and Lemma 6 shows that the preimage of a regular value of an ordered
k-function is a collection of disjoint tori in S°.

Given a k-function f, there exists a gradient like vector field X on S® for f. More
precisely, X,(f) is positive if p is not a critical point of f and also, X (0, z,y) = 2. (j:Qx% +
2y(%) around a critical knot of f (see e.g. [14] for the existence of a gradient like vector
field for a Morse function). The function f is increasing on the forward flow lines of X.
For any point p in S3 . the flow line X¢(p) converges to a critical point of f as t — +o0.
An important application of X is that the flow of X gives an isotopy between the regions
FY(=o0,7]) and f~((—o0,r+¢€]) in S3 (here, € > 0) when f~1([r,7+¢]) does not contain
any critical points of f.

A source of a k-function is a sink of —f and vice versa. We may always assume a k-mate



knot to be a source of some k-function by the following lemma.

Lemma 2. A knot K is a source of some k-function if and only if it is a saddle of some

k-function.

Proof. We will prove only one direction as the other one is similar. Suppose that K is a
saddle of a k-function f. Let U be a k-model neighborhood of K. Let D be the disk of radius
1/2 centered at the origin in R? and consider the smaller k-model neighborhood U = S! x D
of K inside U.

Consider the isotopic knots K1 := St x (=2/3,0) and Ky := S! x (=5/6,0) and take
a small tubular neighborhood Vj of K; in Int(U) so that Vj intersects each meridian disk
{0} x D? of U in a disk (See Fig. 2.1). Moreover, the intersections Vi N U = dV; N dU and
ViNVy = 0V3NOVa are both annuli the core of which are isotopic to K and also, VoNU = @.
We can define a k-function f; by modifying f only within U — U so that Vj contains a k-

model neighborhood of the source K; of f; and V5 becomes a k-model neighborhood of the

saddle K9 of fi. Here, K is isotopic to the source Kj.

Figure 2.1: The figure shows some of the trajectories of a gradient like vector field for fi.

]

Lemma 3. Let f be a k-function without any saddles. Then, f has a single source and a

single sink which form a Hopf link in S3.



Proof. Since S3 is closed, f has at least one source K and a sink Ky. Let X be a gradient
like vector field for f and X; be the flow of X. Take a point p in OU; where Uj is a k-model
neighborhood of K7. The point X;(p) will be in a k-model neighborhood Us of a sink K3 of
f for large enough ¢t since f has no saddles. Say, Xay (p) € Us for some ap > 0. Since 0U7 is
compact and connected and f does not have any saddles, we have X,(0U;) C Us for some
time a > a;,. We may assume that X,(0U;) = 0Us after scaling X with a positive smooth
function on S3 if necessary. Then, X,(U) U Us is an embedded, closed and connected 3-
manifold in the closed and connected S3. Therefore, Xq(Up)UUs is S3. Hence, the source
K1 and the sink K5 = Ky are the only critical knots of f. Let P; and P53 denote the core
of the solid tori of X (Uy) and Us respectively. The union X, (U;) U Us gives a lens space
description of S so that the two solid tori X4 (Up) and Us are two complementary standard
solid tori in S3 by the topological classification of lens spaces. Therefore, P; U Py ~ K1 U K3

is a Hopf link. O

The above lemma shows that an unknot is k-mate. The next two lemmas describe a way
to construct other k-mate knots and as we will show later in Theorem 1, all k-mate knots
arise in this way starting with the unknot.

A knot K is a cable knot of J if K can be isotoped into QU where U is a closed tubular
neighborhood of J in $3. Here, K is allowed to bound a disk in U so that an unknot is a
trivial cable knot of any knot J. Even when K does not bound a disk in QU so that K is
not a trivial cable knot of .J, the cable knot K can be a meridian of J or a longitude of an
unknot J so that K is still a trivial knot. We will use the notation K ~ J) ; which says that
the cable knot K of J is homologically p longitudes plus ¢ meridians of J. We will sometimes

conveniently suppress the coefficients p and ¢ and use the notation K > J instead.



Lemma 4. A cable knot K of a k-mate knot J is k-mate.

Proof. If K is trivial, then it is k-mate by Lemma 1. Otherwise, K can be isotoped to be
transverse to the meridian disks of k-model neighborhood U of J. We may assume that
J is a source of a k-function f by Lemma 2. The rest of the proof will follow exactly as
in that lemma where f gets modified only within U but still preserving a smaller tubular
neighborhood of J. The knot K becomes another source and a saddle isotopic to K gets

inserted between K and .J. O

A connected sum K1# K9 of two knots K| and Ko is not well defined in general unless
both K7 and K5 and their ambient spaces S3’s are all oriented. One can regard K and
Ky as a split link in the same ambient space S® and an orientation of this single S® can
be fixed easily. However, a k-function does not induce a natural orientation on a critical
knot of it. While we study k-functions, we will strictly work with unoriented knots. The
notation K1# K9 will then denote a knot in the set {KT#K;', Kf‘#K;} of knots where

KZ.i specifies an orientation of K.
Lemma 5. A connected sum K1# Ko of k-mate knots K1 and K9 is k-mate.

Proof. The k-mate knots K1 and Ko are sources of some k-functions fi and fo by Lemma
2 respectively. Let S be a sphere in S3 which yields the connected summands K7 and Ky of
K1#K5. Let S be a small closed tubular neighborhood of S in S3 so that SN K#K> is two
unknotted arcs in S ~ 52 x [0,1]. Let V be a small closed tubular neighborhood of K1#K»
in 3 such that V' NS is four disjoint disks and also, V U S is smoothly embedded in S3.
Let J denote the core of the annulus S — V. The region S3 — Int(V U S) has two connected
components each of which is diffeomorphic to the complement of K; or Ky in S3. Let R;

denote the component of S3 — Int(V U S) that is diffeomorphic to the complement of K.
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Let U; be a small closed k-model neighborhood of the source K; of f;. We may assume that
S8 — Int(U;) = R; by isotoping U; in S3. See Figure 2.2. By using the flow of the gradient
like vector fields for fi and f9, we may scale f| and f9 and add some constants so that they
agree in a small tubular neighborhood of U7 or 90Uy with f1(0U1) = fo(0Us) = 1 (see e.g.
[14] for such scaling of f;).

We can now define a k-function f such that:

(i) V is a k-model neighborhood of the source K1# Ko of f with f(K{#K9) =0

(ii) S —V contains a k-model neighborhood of the saddle .J of f with f(.J) = 0.5 and also,

S — V is a stable annulus of J in S — V.
(i) fju, = fiju,

Therefore, K1# K> is k-mate.

Figure 2.2: The situation for K1# K9



Chapter 3

Round Handle Decomposition of an

ordered k-function

Before studying the preimage of a regular value of f and how it changes when we pass a
critical level, we first introduce ordered k-functions where we make local modifications near
the critical link L of f without changing the critical set of f or the type of each component
of L. The number € > 0 will denote a sufficiently small positive number throughout the text.

For a source K of f with local k-model coordinates (6, z,y), we can use an increasing
smooth function h : [0,1] — (—o0,0] with h(z) = 0 near z = 1 and linear near z = 0 to
change f locally by redefining f(0,z,y) := f(0,z,y) + h(z? + y?) < f(0,z,y) so that f
can have arbitrarily small values on the source K. Similarly, f can be redefined near a sink
to have an arbitrarily large value on it. For a saddle K of f, we can use a decreasing (or
increasing) smooth A : [0, 1] — [0, €] (or [—¢,0]) and h(z) = € near z = 0 and h(z) = 0 near
z = +e. We can then redefine f near K as f(6,z,y) = f(0,z,y) + h(x? 4+ y2) which changes
the saddle value f(K) by 4e. Here, |h/(2)| is also small enough so that K remains to be a
saddle of f without creating any other critical points.

An ordered k-function f has then the following properties:

(i) The critical values of the critical knots of f are all distinct.

(ii) The critical values of f are ordered as: source values < saddle values < sink values.

9



Say, aj < -+ <aj <by--- <b <cp <--+ <y where a;,b; and ¢; correspond to a
source, a saddle and a sink of a ordered k-function f respectively. Recall the smallness of e:
if 2 is a critical value of f, then zq is the only critical value of f in [zg — €, 29 + €]. We now
describe a round handle decomposition [9] of S3 by analyzing the preimages of an ordered
k-function f. Such an analysis will be repeatedly used in our proofs.

Start with r < a1 having f~!((—o0,7]) = @. When we increase 7, each time r passes a
source value of f, the preimage f ’1([a1, r]) will have one more solid torus in S3: 4 round
0-handle is attached to the empty set. The region f~1([a1, a; + €]) will consist of 4 disjoint
solid tori.

When we pass by, the preimage V := f_l([al, b1 +¢€]) is the union of V := f~1([ay, by —€])
which consists of j disjoint solid tori and a region f~1([by — €,b1 + €¢]). One connected
component Rp of this latter region is a solid torus that contains a k-model neighborhood of
the saddle Ky where Kj is the saddle of f with f(K;) = b;. The component R; contains
a tubular neighborhood Ay of the stable annulus of Ky in f~1([by — €,b1 + €]). For an
appropriate choice of Aj, one can show that f~!([ag, by + €]) is isotopic to VU A; in S3 (see
e.g. [13] for a Morse analogue of this fact). This tubular neighborhood Aj is attached to V'
along two disjoint annuli in 8V N &A; the cores of which are isotopic to the unstable circles
of K. The region f~1([ay, by +€]) is topologically equivalent to the union of f~1([aq, b —€])
and a solid torus A; in S3 that intersect each other along two parallel annuli in 4; NV
the cores of which have 41 longitude coefficients in Hl(afll). In this case, A; is a round
1-handle that is attached to V' along two annuli that are tubular neighborhoods of stable
circles in OV'.

The consecutive passes of saddle values of f look similar. Each time we pass a saddle

value b;, the region f_l([al,bi + €]) is isotopic to the union V' := f_l([al,bi —¢€]) and a
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Figure 3.1: A {#} x D? cross section of a k-model neighborhood of K

solid torus A; in S3 where V N A; = 9V N JA; consists of two parallel annuli the cores
of which have 41 longitude coefficients in Hy(94;). Here, the solid torus A; is a tubular
neighborhood of a stable annulus of the saddle K;. When we pass b;, the boundary of the
preimage changes from 9V to (V' U fli) by a surgery on the two stable circles C'; and C9 of
K; in 8V NOA;. Specifically, a tubular neighborhood ~ S1 x 8I x I of C} and C5 in 8V gets
replaced by another two disjoint annuli ~ St x I x I which is now a tubular neighborhood
of the unstable circles of K; in d(V U Ay). They have the following identification where
I=[-1,1}:

S1x dI x (I —{0}) = S x (I —{0}) x oI

(0, z,ty) — (0,tx,y) where t € (0,1] and z,y = +1

We will use the notation s(-) to denote a surgered surface in S 3 coming from the pass of
a saddle value of f so that in the above situation, the surface s(9V) is isotopic to d(V U A;)
in S3.

When we pass the first sink value cq, a k-model neighborhood U of the sink in f *l(cl)
fills in V := f~1([a1,c1 — €]) in S3. The region f~([ag,c1 + €]) is isotopic to VU U in S3

where VNU = 9V NOU is a torus. Here, U is a round 2-handle that is attached to V along
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a torus. So, the boundary of f~1([a1,c1 — €]) is m disjoint tori and each time we pass a sink
value, one of those m tori is filled in by a solid torus coming from a k-model neighborhood
of a sink. This process ends with f~([a1, ¢n]) = S3.

As we have explained above, an ordered k-function on S? induces a round handle de-
composition of S3. The converse induction almsot holds. The only exceptions where this
induction fails depend on the round 1-handles. In our definition of a saddle, the stable and
unstable annuli of a saddle are trivial line bundles over S1. In the round 1-handles defined
in [9], such unstable and stable line bundles over S 1 may be non-trivial; i.e. they can be
Mobius bands. Our restriction on saddles implies that every k-mate link is a graph link but
not necessarily the converse. However, we will still be able to provide an alternative proof
to Theorem 1 which states that a knot is k-mate if and only if it is a graph knot. Lemma 2
shows that a knot can be realized as a saddle of a k-function if and only if it can be realized
as a source of a k-function and our definition of a source is general without any restrictions.

We briefly remark that each ordered k-function naturally defines a Morse function on
53 with the following indices of critical points: A pair of 0 and 1 from a source, a pair of
1 and 2 from a saddle and a pair of 2 and 3 from sink. For each such a {j,j + 1} critical
index pair, the attaching sphere of the j + 1-handle intersects the belt sphere of the j-handle
geometrically twice.

The converse also holds. If fy: S — R is a Morse function such that:

(i) The critical values of fy are all distinct.

(ii) The indices of the critical points of f come in adjacent pairs and their critical values
are ordered on the real line R as: First {0, 1} pairs, then {1,2} pairs and then {2, 3}

pairs

12



(iii) For each {j,j + 1} index pair of critical points pj and pjy1 of fy respectively, the
attaching sphere of the j + 1-handle of p; 1 intersects the belt sphere of the j-handle

of pj geometrically twice (also, with the same signs when {j,j + 1} = {1,2}).

Then, fq induces a ordered k-function f on S3. Each {0,1},{1,2} and {2,3} index pair
of paired critical points of fj gives rise to a source, saddle and a sink of f respectively.

An alternative proof of the below lemma is in [9].

Lemma 6. If f is an ordered k-function and r is a reqular value of f, then each connected

component of f~1(r) is an embedded torus in S3.

Proof. Let ap <--- <aj <by---<bp <cp <---<cpy denote the critical values of f where
a;,b; and ¢; correspond to a source, a saddle and a sink of f respectively. The lemma is
clear for 7 < by or r > by,. Assume now that for some by < r < by, the surface f~1(r) has a
non-torus component. Since a torus has Euler characteristic 0 and the Euler characteristic
of f _1(bi — €) does not change after a surgery during the pass of b;, there exists a sphere S
in some f_l(wl) where wq is a regular value of f.

The sphere Sl bounds a 3-ball on each side in S and let By denote the one of them such
that By N f~1(wy —e) = @. As f~1(2) is a union of tori for a regular value z with z > by,
there must be a surgery on a sphere S isotopic to Sy in By during the pass of a saddle
value but it may happen that the surface s(S7) produced by surgery contains a sphere in
Bj. Take a regular value wy > wy large enough such that f~1(ws) contains a sphere Sy in
B but the produced surface s(.S2) does not contain a sphere after the pass of a saddle value
B9. Moreover, we can find such w9 and Sy such that the 3-ball By bounded by S in S? with
By N f~Ywy — €) = @ satisfies By C By.

Let K9 be the saddle with f(K9) = 9. Let Ag denote the stable annulus of K9 and

13



{C1,C9} = 0As denote the stable circles of Ko with C7 C Ss. Then, C5 is not in Sy but
in another component ¥ of f _l(ﬁQ — €) with genus greater than 1 because s(S9) does not
contain a sphere.

The existence of such ¥ with big genus implies that By contains at least one source K and
Bon f~1(by —€) # @. Moreover, a surgery must happen on (not necessarily distinct) tori Ty
and T}, in By containing the stable circles C;, and C}, of a saddle respectively, such that both
Cy and C bound disjoint disks in 7y and 7Tp respectively. This surgery then produces also
a sphere S3. Say, S3 C f~1(ws). Let Bg denote the 3-ball bounded by S in S3 such that
B3N f~(ws — €) = @. We can find such Sg and Bs such that B3 C By and K C By — Bs.
We can now apply our last argument to S3 = 0Bj3 instead of S1 = 0Bj to conclude that Bg
contains at least one source J with J # K, By C Bs and J C By — By where By is a 3-ball
in S and the sphere 9By is in the preimage of a regular value of f. Therefore, B contains

infinitely many sources of f and we have reached the desired contradiction. m
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Chapter 4

Characterization of k-mate knots

Theorem 9 will essentially state the equivalence between k-mate knots and graph knots. Its
proof will be divided into several cases most of which will be handled locally. These local
arguments are not difficult when one studies each possible situation with a careful thought.
There is an exceptional case (the Subcase 3 of Case 3) though where a local analysis does
not suffice as in the previous cases and we will employ various technical methods to tackle
this difficult case. We first prove the below technical lemma which will provide us a nonlocal
picture in S? in certain situations. We will later define a graph kit of a graph knot (Definition
4) and strengthen the statement of Theorem 9 with parts (i), (ii) and (iii) there to obtain a
more global picture in this exceptional case. We will be able to complete the proof of this
case with these extra technical details at hand.

Suppose that K7 and K9 are two unknots such that Kj is a cable knot of K5. Since
both K and K9 are unknots, K5 is then a cable knot of K1 as well. If it is a trivial cabling
or Ky is a longitude of K71, then KU K> is a split link of two unknots. If [k(K{, K9) = +1,
then K1 U Ko is a Hopf link. The below lemma exposes such cabled two unknots K7 and
K9 in generality but we will encounter many split links of two unknots or Hopf links in its

proof.

Lemma 7. Suppose that K is a critical unknot of an ordered k-function f and Kpg s the

unknot core of an unknotted solid torus R in S3 such that K N R = @ and also, OR is in
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the preimage of a reqular value of f. Then, the unknots K and Kpg are cable knots of each

other.

Proof. If f has no saddles, then Lemma 3 shows that K U K is a Hopf link. Assume now
that f has asaddle and let a1 < -+ < a; <by <--- <bp <c1 <--- < ¢y denote the critical
values of f where a;,b; and ¢; correspond to a source, a saddle and a sink of f respectively.
Let K7 be the saddle of f with f(K7) = b;. We will induct on the number of saddles k by
analyzing the stable circles C1 and C9 of Ky in f _1(1)1 — ¢€) and also a stable annulus A of
Ky in f71([by — €,b1]). We may assume r ¢ [b; — €, by + €] where R C f~1(r). The circles
C1 and Cy are cable knots of (not necessarily distinct) sources P; and P» respectively. Let
E; denote the solid torus component of f~!([a1,b; — €]) containing P;. Let E denote the
component of f~1([ay,b; + €]) which contains Py U Py U K. In each case below, we will

define an ordered k-function f; with at most k — 1 saddles.
Case 1. Only one of C1 and Cy bounds a disk in f~ (b —€).

Say, C'1 bounds a disk D in fﬁl(bl —€) so that K1 ~ (7 is an unknot. Then, P» cannot
be nontrivial. Otherwise, C9 must be a meridian of P and Py will intersect the sphere,
which is the union of D, A and a meridian disk of Py, geometrically once. As Ho(S3) = 0,
such a single geometric intersection of a 1-cycle and a 2-cycle of 3 is not possible. So, Py is
an unknot and C9 is a longitude of P as it bounds the disk D U A in the complement of Ps.

We consider the situation P; # P, first. The region E is then isotopic to Fq in S3. 1t
K is equal to K or Py, then K is contained in a small 3-ball B containing the disk AU D
such that BN Kp = @. The link K U Kp is then a split link of two unknots.

Assume now that K is distinct from Kq and Py. We define a k-function f1 by fi(p) :=

f(p) for p ¢ E so that E becomes a k-model neighborhood of the source Py of fi. Then, fi is
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ordered because the region f~1((—o0, by +¢€]) contains just a single saddle of f. If ENR = @,
then r is a regular value of fi with R C f~ 1 (r). An application of the induction hypothesis
to the critical unknot K of f; and the unknotted solid torus R proves the lemma.

If R C FE, then R is a tubular neighborhood of P or an unknot P;. If R is a tubular
neighborhood of P>, then K ~ P> is contained in a 3-ball not containing K and K U Kp is
a split link of two unknots. If R is a tubular neighborhood of an unknot P;, then K # P;.
Also, R is isotopic to E in S3 and K ¢ E as K is distinct from K7 and P. So, the induction
hypothesis applies to the critical unknot K of fi and the unknotted solid torus E to prove
the lemma in this situation.

We now prove the lemma for the situation P = P5. Then, F is a solid torus and P; U K1
is a split link of two unknots. If K is equal to P; or Ki, then K is inside a 3-ball B in
E such that BN Kp = @ so that K U Kp is a split link of two unknots. Assume now
K ¢ E. Let Kg denote the core of E. We define f; by fi(p) := f(p) for p ¢ E so that
E becomes a k-model neighborhood of the source Kg of f1. If EN R = &, we can apply
the induction hypothesis as before. If R C E| then R is either a k-model neighborhood of
Py or Kg is an unknot and both R and F are tubular neighborhoods of K. In the former
case, KR is contained in a 3-ball within E not containing K so that K U K is a split link
of two unknots. In the latter case, we apply the induction hypothesis just as before where

KUKp~KU KR.
Case 2. Both Cy and Cy bound disks Dy and Dy in f~1(by — €) respectively.

Then, K7 is an unknot saddle. We first consider the case that the sources P; and P
are distinct. In this situation, there are two possible ways to attach the round handle

corresponding to K to the solid tori £] and Fy. One way leads to a sphere component of
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OF which is not possible by Lemma 6. We must have the other possibility where JF is a
disjoint union of two tori. The sphere D U Dy U A bounds 3-ball By and Bg on either side
in 53 and the cut of E along this sphere produces two punctured solid tori in S3.

If the interior of some B; contains only one of the knots K and Kp, then K U K is a
split link of two unknots. Otherwise, say K U Kp C Int(By). The 3-ball By contains only
one of P and P». Say, P C By and P} N By = @. The region E U By is then isotopic to
Eq in S3. We define f1 by f1(p) := f(p) for p ¢ E U By so that E U By becomes a k-model
neighborhood of the source Pj of fi. An application of the induction hypothesis finishes the
proof when R ¢ E. When R is a subset of E — Ba, it is then a tubular neighborhood of P
and it is isotopic to E U By in S3. In this situation, we apply the induction hypothesis for
the unknotted solid torus £ U By and the critical knot K of fi.

Assume now that P; = Py. The disks D; and Dy cannot be disjoint since otherwise,
f _1(b1 + €) would contain a sphere contradicting Lemma 6. Say, Dy C Dj. Let A; denote
the annulus Dy — Int(Ds). The torus Ty = Aj U A separates S3 into two closed regions and
let Ry denote the one of them such that Int(Ry) N Fq = &. Similarly, let Ry denote the the
component of $3 — Int(E) such that Ry is isotopic to Ry in S3.

As Ry in S3 is bounded by a torus, it is diffeomorphic to the complement of a knot K
in 53 (after smoothing the corners of Tp). Take a small 3-ball identified with Do x [0, 1]
coming from the push off of the disk Ds into the exterior of E| in a normal direction so
that Dy x {0} := Dy C OF] and 0D x [0,1] C A. We can first take K to be the union
of a properly embedded arc in A; and another properly embedded arc in A. We can then
slightly push off this union of two arcs into the exterior of R in a normal direction to achieve
KoN Ry = @. Then, S3 — Ry is a tubular neighborhood of Ky and Dy x {0} is a meridian

disk of Ky. Therefore, By := RgU Dy x [0, 1] is diffeomorphic to a 3-ball which intersects
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Ej in the disk D;. Hence, the region E; U Ry U Dy x [0,1] is isotopic to Fj in S3 and
similarly, so is the region F U 1:20. So, the surface s(0F7), which has two components, has
one component isotopic to dE; and another component isotopic to Tj in S3.

If K = K1, then K can be isotoped along A into the 3-ball Dy x [0, 1] and we can easily
isotope K out of this 3-ball if necessary without removing K from that 3-ball. So, K U Kp
is a split link of two unknots. We will assume K # K7 from now on.

If (KUR)N(EURy) =@, we define f1 by fi(p) := f(p) for p ¢ EU Ry so that E U Ry
becomes a k-model neighborhood of the source P; of fi. An application of the induction
hypothesis to the critical unknot K of f; and the solid torus R proves the lemma.

If (K UR) C Ry, we define fi by fi1(p) := f(p) for p € Ry so that S3 — Ry becomes a
k-model neighborhood of the source Ky of fi. We can then apply the induction hypothesis
just as before.

Assume now that only one of R and K is inside Ry and the other is outside Ry. Say,
Ko C Ry where {K,, K3} = {Kp, K}. Then, K is contained in the 3-ball By but K}, is not
so that K U Kp is a split link of two unknots.

The final possible situation is that only one of R and K is inside £ but none of them are
inside ]:30. Then, Py is either equal to K or isotopic to K g within R and in the latter case, we
may assume P} = K. Say, K, = Py where {Kg, K} = {Kp, K}. Then, K ¢ EURy. We
define fi by f1(p) := f(p) for p ¢ EU Ry so that E U Ry becomes a k-model neighborhood

of the source P of fi. An application of the induction hypothesis proves the lemma.
Case 3. None of C; and Cy bounds a disk in f~1(by — ).
Subcase 1. Both C and Cy bound meridian disks D1 and D9 of P| and Py respectively.

Then, K; is an unknot saddle. The sources P; and P are equal since otherwise, P
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would intersect the sphere S; := D1 U Dy U A geometrically once in .S 3. The sphere S} yields
Py ~ P,# P, and the region S3 — E has two components R, and Ry which are isotopic to
the complement of P, and P} in S3 respectively.

We consider the situation K = Kj first. If R C E, then P; is an unknot and R is a
tubular neighborhood of it. We see that K U Kg is a Hopf link in this setting. If R € E,
then say R C Ryp. Since K is in the 3-ball B, bounded by S7 and containing the region R,
but Kp is not in By, the link KU Ky is a split link of two unknots. We will assume K # K3
from now on.

Assume R C E so that R is a tubular neighborhood of the unknot P; and P, and P, are
unknots as well. As K # K7, the unknot K is either in R, or Ry. Say, K C R,. We define
f1 by fi(p) == f(p) for p € Ry so that S3 — R, becomes a k-model neighborhood of the
unknot source P, of fi. We can now apply the induction hypothesis to the critical unknot
K of fi and a k-model neighborhood of the source P, of f; to conclude that P, and K are
cable knots of each other. The lemma then follows because P, can be isotoped to K within
S3 — Ry so that Bb,UK ~ Kp UK.

If R¢ E, then say R C Ry. If K C Ry, we define f by fi(p) := f(p) for p € Ry so
that S3 — Ry, becomes a k-model neighborhood of the source P, of f1. An application of the
induction hypothesis proves the lemma. If K C R, then K is in the 3-ball B, not containing
R so that K U Kp is a split link of two unknots. If K ¢ R, U Ry, then K = P| because
K # K as well. This final situation is similar to the previous situation where R C E and

Subcase 2. Only C1 bounds a meridian disk Dy of Py.

Then, K7 is an unknot saddle. The sources P; and P, are distinct since Cy is a non-
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meridian, nontrivial cable knot of Py. Since C9 bounds the disk D1 U Ay, both Cy and Ps
are unknots and C9 is a longitude of Py. Also, Py is a meridian of P; and E is isotopic to
E; in S3.

We first consider the situation where K is equal to K1 or P». If R C FE, then R is a
tubular neighborhood of either Py or P». If R O P, then K U K ~ Cy U P> is a split link
of two unknots. If R O Pp, then P; is an unknot and K U Kp ~ C7 U P; is a Hopf link. If
R ¢ E, then K is contained in a small 3-ball B inside E with Kp N B = & so that K U Kp
is a split link of two unknots. We will assume that K is distinct from Ky and P, from now
on.

Assume R ¢ E. We define fi by f1(p) := f(p) for p ¢ E so that E becomes a k-model
neighborhood of the source P; of fi. The induction hypothesis can then be applied as before.

Assume now R C F so that R is a tubular neighborhood of either P; or Py. If K = Py,
then Kp is isotopic to P within R and K U Kp ~ P; U P is a Hopf link. Assume now
KNE=g. If RO P, then Kp is isotopic to P» within R where P is in the 3-ball B not
containing K so that K U Kp ~ K U P» is a split link of two unknots. If R O P;, we define
f1 by fi(p) := f(p) for p ¢ E so that E becomes a k-model neighborhood of the unknot

source P of fi. The induction hypothesis can be applied as before.
Subcase 3. None of C1 and Co is a meridian of Py and Py respectively.

The isotopic cable knots C7 and Cy are, say, C1 =~ (P1)p,q and Cy ~ (Py)y s where p, 7 # 0
as C; is not a meridian of P;. We will first consider the situation P; # Py. Let A be a closed
tubular neighborhood of the stable annulus A so that the annulus C; := A N E; becomes a
tubular neighborhood of C; in E; and also, E is isotopic to EjUFE3UA in $3. The boundary

of B1UF5UA is a torus which comes from the union of the two annuli 9F; —Int(C;) (i = 1,2)
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and the two annuli that are parallel copies of A in A. Let Ry := 53 — Int(E; U By U fl)

If p = £1, then Pj is isotopic to C] in Eq. As C] and (9 are isotopic, we get P} = Py
(i.e., Pp is a cable knot of Py). Similarly, if » = £1, then P, ~ K; and P > P;. In these
situations, E is isotopic to Fy (when Py = Pj) or Ey (when Py = Py) in S5.

We will now prove that P; U Py is a Hopf link when p,r # 0,4+1. The solid torus
Ep admits a Seifert fibration with a single singular fiber P; of multiplicity |p| so that the
annulus C] becomes a union of regular fibers because Cj is not a meridian of P;. This
fibration on Cj extends to a regular Seifert fibration on A because ] is a cable knot of
Ky with C =~ (K1)41 3. We may assume that Cy C 9A is a union of regular fibers since
the cable knots C} and Cy of K7 have the same slope. This fibration on Cy can then be
extended to a Seifert fibration of Fy with a single singular fiber Py of multiplicity |r| because
(9 is not a meridian of Py. So, the region £ U Ey U A becomes a Seifert fibered manifold
over a disk with two singular fibers of multiplicities [p| and |r|. The torus (F; U Ey U A)
bounds E; U By U A and R; in S® at least one of which must be a solid torus. Since
m1(E1UEyU A, %) ~< z w; 2P = w" >3 7Z, the region Ry must be a solid torus. A regular
fiber in O(F1 U Ey U A) = ORy is nontrivial there. It cannot bound a meridian disk in Ry
since otherwise 71 (S3, %) = m(F1 U B U AU Ry, %) ~< z,w; 2P = w" = 1 > 1. Therefore,
the Seifert fibration on JR; can be extended into R; with at most one singular fiber so that
we obtain a Seifert fibration of $3 = EyUEyUAUR; over a sphere with two or three singular
fibers. It follows now from the classification of Seifert fibered manifolds that S3 cannot have
a Seifert fibration with three singular fibers over a sphere but only two so that R; must have
a regular Seifert fibration (see e.g. [15] or [16]). Moreover, if one takes the base sphere as
the union of two disks each of which contains a point corresponding to a singular fiber P; or

P, then those two disks will correspond to two complementary solid tori in 53 so that the

22



cores P; and P> of those two complementary solid tori form a Hopf link in S 3,

We first consider the cases P; = P or Py = P; where E is isotopic to £y or Fy in S3.
Say, P, = Py where {P,, P} = {P1, P»}. Assume R ¢ E. We define fi by fi(p) :== f(p)
for p ¢ F so that E becomes a k-model neighborhood of the source P, of fi. If K is
distinct from P, and K7, then an application of the induction hypothesis proves the lemma.
If K is equal to P, or K7, then P} is also an unknot because P, ~ Kj is a nontrivial,
non-meridian cable knot of P,. Moreover, P, is isotopic to P, within E. An application of
the induction hypothesis to the critical unknot P, of f; and R proves the lemma because
KUKp~ P,UKRpR.

Assume now R C E. Then, R is a tubular neighborhood of (possibly both) P, or P,.
In either case, P is an unknot because F, is a nontrivial, non-meridian cable knot of F;,.
Also, Kp is isotopic to P, within E. If K C E, then K is equal to P, P, or K1 and also,
K U Kp ~ P, U P, which proves the lemma. If K ¢ E, we define f; by fi(p) := f(p) for
p ¢ E so that E becomes a k-model neighborhood of the source Py, of fi. We apply the
induction hypothesis just as before.

We consider the Hopf link P; U Py case now. We still have both P; = Py and Py >~ P
but E is no longer isotopic to Ej or Ey in S3. The torus knot C] ~ (P1)p,q is nontrivial
since p # 0, £1. The region V := §3 — Int(E) is a solid torus the core of which is isotopic to
C] ~ Kj.

Assume K U R C V. Since the core of V' is nontrivial, each of the unknots K and Kp
is contained in some 3-balls By and Bp inside V respectively. Let g : V — 53 be an
embedding such that ¢(V') is a standard, unknotted solid torus in S3. Then, both g(K) and
g(KpR) are unknots since each of K and Kp is contained in a 3-ball inside V. We define f;

by fi(p) == f(g~(p)) for p € g(V) so that S3 — g(V) becomes a k-model neighborhood of
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an unknot source K, of fi. The unknots g(Kp) and g(K) are then cable knots of each other
by the induction hypothesis. Therefore, so is the link ¢~ 1(g(K) U g(Kp)) = K U K.

Assume now that only one of K and R is inside V. The one inside V is then contained
in a 3-ball not containing the other one so that K U Kp is a split link of two unknots. The
final remaining case is K U R C F where K U K ~ P; U P, is a Hopf link.

We will now prove this subcase of the lemma for the situation P} = Py. Let A, C’Z and
C1 ~ (P1)p,q (p#0) be just as before where C7 is now isotopic to Cg in 0E7. The nontrivial
circles C7 and C9 separates 0F7 into two closed annuli A; and Ay and the components of
s(OE7) are isotopic to the tori ¥ := A; U A and X9 := Ay U A in S3. Let H; denote the
closed region bounded by %; in S3 such that Int(H;) N E; = @. Similarly, let H; denote the
component of S3 — Int(E) that is isotopic to H; in S3.

Assume that Hjp is not a solid torus. Then, Ej U Ho bounded by ¥; is a solid torus.
If C7 bounds a disk in F; U Ho, then C7 is a meridian of the core of E1 U Ho and also a
longitude of the unknot P; because (' is a nontrivial, non-meridian cable knot of P;. The
region E] U Ho is then isotopic to Hy in S so that Hy is a solid torus. When €y does not
bound a disk in Ej U Ho, the region E| U Ho admits a Seifert fibration with at most one
single singular fiber where the annuli A; and A in its boundary become a union of regular
fibers. As 0A9 = 0A;q consists of two regular fibers, the annulus Ay can then be isotoped
into J(E1 U Ha) relative to its boundary in the Seifert fibered solid torus Fq U Ho so that
Hy is again isotopic to £ U Hg in 53,

Therefore, at least one of H; and Hsg, say Hy, is a solid torus. Let Ky denote the core of
both Hy and Hy. The union E;UH] of two solid tori intersecting each other at an annulus in
their boundaries is then similar to the union F; U E9 U A in our previous situation P; #* Py.

Therefore, either P; U K is a Hopf link with C| being a nontrivial torus knot or one of the
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knots P; and Ky is a cable knot of the other one. In the latter case, 1 U H; is isotopic to
Eq or Hy in S3. In the former Hopf link case, the region Hy is also a solid torus the core of
which is isotopic to Cf.

We have S3 = E'U Hy U Hy where the interiors of those three regions are disjoint. There
are various possibilities about where K and R might be. We start with the assumption
RUK C Hy. The case where P; U K g is a Hopf link and (' is a nontrivial torus knot has
already been analyzed in the “Hopf link P; U Py” situation before and the lemma holds in
this case. If P = Ky or K > P; and also, Fq U Hy is isotopic to £ or Hy in 53 we
define fi by f1(p) := f(p) for p ¢ EU Hy so that E U H; becomes a k-model neighborhood
of the source P; or Kg of fi. An application of the induction hypothesis proves the lemma.

Assume now RUK C Hy. The case where Ky is nontrivial has already been analyzed in
the “Hopf link P{UP,” situation before and the lemma holds in this case. If K is an unknot,
we apply the induction hypothesis more directly by simply defining f1 by f1(p) := f(p) for
p € Hy so that S3 — Hy becomes a k-model neighborhood of an unknot source of fj.

Assume now that only one of R and K is in H; and the other one is in Hy. Say, K, C H;
where {K,, K} = {Kp, K}. If Ky is nontrivial so that Hj is a knotted solid torus, then
K U Kp is a split link of two unknots. If Ky U P is a Hopf link and C7 is a nontrivial
torus knot, then Hy is a knotted solid torus and K U K R is again a split link of two unknots.
The remaining situation is that K is trivial and F U H is isotopic to Hy in S3. Also, Ho
is an unknotted solid torus in S3. Here, each of the unknots K and Kp are in one of the
two complementary unknotted solid tori E U H; and Hy but not in the same one. Let Jy
denote the unknot core of Hy so that Ky U Jy is a Hopf link. We define f1 by f1(p) :== f(p)
for p € Hj so that E U Hy becomes a k-model neighborhood of the source Jg of fi. An

application of the induction hypothesis shows that K, is a cable knot of Jg. Since KU Jg
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is a Hopf link, K, is a cable knot of K as well by redifining the core Kz of Hy if necessary.
A similar argument shows that the other unknot K} is a cable knot of Ky as well. Since
K, C Hj but K, ¢ Hj, the unknot K, can be isotoped into an arbitrarily small tubular
neighborhood of Kp without affecting K. Therefore, the unknots in K, U K = Kp U K
are cable knots of each other as well.

The only possibility we haven’t considered so far is that R or K isinside . If KUR C E,
then R is a tubular neighborhood of P; and K = Kj. The lemma follows from K U K ~
C1 U P and C7 = P;. Assume now that only one of K and R is inside E. If R C E, we
may assume Kp = Pj. Say, K, C E where {K,, K3} = {K, Kr}. Then K|, is equal to Py
or K1 and in the latter case, Pj is also an unknot because the unknot K7 is a nontrivial,
non-meridian cable knot of Pj.

First assume Kj C Hy. If PLUK g is a Hopf link and ('] is a nontrivial torus knot, then
f[g is a knotted solid torus and K U Kp is a split link of two unknots. Otherwise, £ U H 1 is
isotopic to Ep in S? and we define fi by f1(p) := f(p) for p € Hy so that EU Hy becomes a
k-model neighborhood of the unknot source P; of fi. The unknots in P; U K} are then cable
knots of each other by the induction hypothesis. So are the unknots in K7 U Kj because K7
can be isotoped into an arbitrarily small neighborhood of P; without affecting K. Since
Kpr U K is either equal to P; U Kp or K1 U Kp, the lemma is proven in this situation.

Assume now Kj C Hy. If Ky is nontrivial, then K U Kp is a split link of two unknots.
If PUKp is a Hopf link, the unknots K and Kp are in two complementary unknotted solid
tori but not in the same one and the lemma has been proven in this situation above. The
remaining case is that Ky is trivial and E'U Hj is isotopic to both B and Hj in S3 where
the unknots K and P; are cable knots of each other. In this case, Ho is a standard solid

torus and Py U Jg ~ Ky U Jg is a Hopf link where Jg is the core of H,. We define f; by

26



fi(p) == f(p) for p € EU Hy so that Hy becomes a k-model neighborhood of the unknot
source Jp of f1. An application of the induction hypothesis shows K} > Jp so that Kj can
be isotoped into dH; within H; and hence, Ky > P;. We now see K, >~ K, as well even
when K, # Pj since in this case K, = K1 and, K; = Kp can be isotoped into an arbitrarily
small tubular neighborhood of P; without affecting K7. This completes the proof of the

lemma. O
We will take the following elementary description as a definition of a graph knot [8], [11].

Definition 3. Let Sg := {unknot}. To define S;, inductively (n € N), assume that S, is
defined for 0 < k < n and let S,, denote the set of cable knots of P where P is a connected

sum of knots in S,,_1. A knot in S := Uy Si, is called a graph knot.

We have the following facts about the set of graph knots S: The set Sy is the set of
(trivial or nontrivial) torus knots. Since the cable knot (K);, of any knot K is isotopic
to K, we have S;,11 2 Sy, for all n € N. If {Kyq,..., K} C Sy, then K # - #Kpy, ~
(K1# - #Km)1, € Sp41. If we have a sequence of cable knots U < K1 < K9 < --- < Ky,

where U is an unknot, then K; € S; for 1 <7 < m.

Definition 4. Suppose that K is a graph knot in S,. If n = 0, we define the graph knot
kit or shortly the graph kit of K to be the empty set. For n > 0, fix a (not necessarily
unique) expression of K with K =~ (P)g, and P ~ Py 1f -+ #Pf , where Py ; € Sy
for 1 < i < m. We define I'(K') corresponding to this fixed expression of K by I'(K) :=
{Pk1,--s P m}- Let @1 :=T(K). For 1 <j <n, we define ®;,; inductively by ®;, :=
®;U{J: Je€'(H) where H € ®;} where the elements P ; € I'(K) and P;, € I'(J) are
distinct elements of ®;,1 whenever K and J are distinct in ®;. Then, we say that @y, is a

graph kit of K and also, K is woven from the graph knots in ®,,.
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Note that even when the expression K >~ (P)qr and P ~ P 1# - #Pf ,, of K € Sy, is
unique, we can consider K in S, 11 O Sy and may produce a different graph kit of K. Also,
distinct graph knots in a graph kit can be isotopic. For example, for the torus knots 75 3 and
Ty 5 in Sy, the set ® := {73 3,75 5, unknotsy 3, unknotg 5} is a graph kit of Ty 3#715 5 (where
® is valid for any orientations of T 3 and T3 5 defining T 3#7T5 5).

If ® is a finite collection of unoriented knots, then ,]#@J denotes a connected sum of the

€
knots in ® which are assigned an arbitrary orientation before their connected sum is taken.
If & is a graph kit of some graph knot and P is a nontrivial graph knot in ®, then I'g(P)
will denote the finite set of graph knots such that P is a cable knot of a connected sum of
the graph knots in I'(P) and also, I's(P) C ®. In this case, the orientations of the knots
in the connected sum  # J are not arbitrary but in such a way so that the graph knot
Jelg(P)
P becomes a cable knot of the graph knot # J.
Jel'g(P)

Lemma 8. A graph knot K is k-mate.

Proof. Say, K € S;,. If n = 0, then K is an unknot which is k-mate by Lemma 3. Assume
now that K is nontrivial and n > 0. We induct on n. Each graph knot in I'(K) is k-mate
by the induction hypothesis. Applications of Lemma 4 and Lemma 5 to the graph knots in

['(K) show that K is k-mate. O

Theorem 9. Suppose that f is an ordered k-function. Then, every critical knot K of f is

a graph knot. Moreover, there exist a graph kit ® of K such that:

(i) Each graph knot P in ® is isotopic to the core of a solid torus Rp where ORp C f_l(r)

for some reqular value r of f.
(i1) For each nontrivial graph knot P in ®, there exists a solid torus Rp(p) such that the
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core of RF(P) 15 1isotopic to # J and also, aRP(P) C f_l(r) for some regqular
JEF(I)(P)

value r of f. Moreover, the core of Rp can be isotoped into aRF(P) in S3.

(11i) There exists a solid torus Rp () such that the core of Rp(f) is isotopic to 4 J
JEF@(K)
and also, aRF(K) - f_l(r) for some reqular value v of f. Moreover, K can be isotoped

mnto 8RF(K) .

Remark. Part (i) of Theorem 9 does not say that a saddle K of an ordered k-function f is
the core of a solid torus R where OR C f *1(7’) for some regular value r of f but only that
there exists a graph kit ¢ of K such that this is true for every graph knot in ®. However, K

is not in ®.

Proof. There is nothing to prove if K is trivial because we can take the empty set as a graph
kit of K. If f has no saddles, then f has a single unknot source and a single unknot sink
which form a Hopf link by Lemma 3 and the theorem holds in this case. Assume now that
K is nontrivial so that f has saddles. Let a1 <--- <a; <b <--- <b, <cy <---<op
denote the critical values of f where a;, b; and ¢; correspond to a source, a saddle and a sink
of f respectively. We will apply the proof technique in Lemma 7 to induct on the number
k of saddles of f. As we will cover the similar cases or subcases, we will omit some details
which can be found in that proof.

Let K7 be the saddle of f with f(K7) = b;. Let A be the stable annulus of Kp in
F~Y([b1 — €, b1]) and Cy and Cy be the stable circles of K7 in f~1(b; —e). The circles C; and
(' are cable knots of (not necessarily distinct) sources Py and Py respectively. Let E; denote
the solid torus component of f~1([aq,b; — €]) containing P;. Let E denote the component

of f~1([a1,b; + €]) which contains Py U Py U K.

Case 1. Only one of C; and Cy bounds a disk in f~1 (b —€).
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Say, (1 bounds a disk D in f_l(bl — €) Then, Ky and P, are unknots so that K is
distinct from Ky and P, and also, C'y is a longitude of Ps.

If P| # P», then F is isotopic to Fq in S3. We define f; by fi(p) := f(p) for p ¢ E
so that E becomes a k-model neighborhood of the source P; of fi. We apply the induction
hypothesis to the critical knot K of fi to conclude that K is a graph knot and also, there
exists a graph kit ® of K satisfying the properties stated in the theorem for f; where these
properties include a collection of various solid tori in $3. The boundary 9 of one of these
solid tori €2 is in the preimage of a regular value of f except possibly when 02 C E but
then, the solid torus €2 is a tubular neighborhood of P; and we can find another appropriate
tubular neighborhood Q of P; in E such that dQ C f_l(aj + ¢€). Therefore, the graph
kit ® together with a slightly modified collection of solid tori (if necessary) works for the
k-function f as well.

If Pj = Py, then E is a solid torus not containing K. Let Kpg denote the core of E.
We define fi by fi(p) := f(p) for p ¢ E so that E becomes a k-model neighborhood of the

source K of f1. The rest of the proof continues just as in the previous P; # Py situation.
Case 2. Both C1 and C9 bound disks D1 and Dy in f_l(bl — €) respectively.

Then, K7 is an unknot so that K # Kj. First assume that P; # P, so that F is a
connected sum of two solid tori. Let By and By denote the 3-balls bounded by the sphere
DU Dy U A in S3 where the cut of E along this sphere produces two punctured solid tori
in $3. Say, K C Int(B;) and also, say Py C By. The region E U By is then isotopic to Ej
in S3. We define f1 by fi(p) := f(p) for p ¢ E U By so that E U By becomes a k-model
neighborhood of the source P; of f;. We apply the induction hypothesis to the critical knot

K of f1 to prove that K is a graph knot and also, it has a graph kit ® together with various
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collection of solid tori satisfying the properties of the theorem for fi. This collection of solid
tori will work for f after modifying the ones in £ U By if necessary.

We now consider the situation P; = P». The disks D1 and Dy are not disjoint and say,
Dy C Dy. Let Ay denote the annulus D; — Int(D2). The torus Ty = Ay U A separates
S3 into two closed regions and let Ry denote the one of them such that Int(Ry) N Ey = @.
Similarly, let Ry denote the component of S3 — Int(E) such that Ry is isotopic to Ry in S°.
The region Ry is diffeomorphic to the complement of a knot K in Tp. Since Ej U Ry is
isotopic to By in S3, we can define an ordered k-function f by modifying f within a small
neighborhood U of Ry U Dy such that f(p) = f(p) for p ¢ U and also, f does not have any
critical points in U. So, the saddle K7 of f in U is removed.

If K ¢ Ry, we define f1 by fi(p) = f (p). The induction hypothesis applies to the
critical knot K of f; so that K is a graph knot and also, there exists a graph kit & of K
such that the solid tori corresponding to the graph knots in ® satisfy the properties stated in
the theorem for f1. For the boundary of one of those solid tori lying in f; 1(7’) for a regular
value r of f1, we will have fl_l(r) C f~1(r) if r > by + €. We may have fl_l(r) ¢ L)
for some regular value r with r < by + € but then we can use another appropriate choice of
regular value 79 < by + ¢ instead of r and we can achieve f|~ 1(7"0) = f~1(rp). Therefore, the
graph kit ® of K satisfies the properties stated in the theorem for f as well.

If K C Ry, we define fi by f1(p) :== f(p) for p € Ry so that S3 — Ry becomes a k-model
neighborhood of the source Ky of fi. We apply the induction hypothesis just as before to
conclude that K is a graph knot and also, there exists a graph kit ® of K satisfying the
properties stated in the theorem for fi. That graph kit will satisfy those properties for f as
well except that there may be a tubular neighborhood of K associated to a graph knot in .

This tubular neighborhood may not exactly work for f but it is isotopic to an appropriate
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tubular neighborhood S3 — Int(Ry) coming from f.
Case 3. None of C1 and Cy bounds a disk in f_l(bl —€).
Subcase 1. Both C1 and Co bound meridian disks D1 and Do of P; and Py respectively.

Then, K7 is an unknot with K # K{. We have P; = Py and the sphere S| := DjUDyUA
yields P, ~ P,#PF,. The region S$3 — E has two components R, and Ry, which are isotopic
to the complement of P, and P, in S3 respectively.

Assume K # P;. Say, K C Ry,. We define f; by fi(p) :== f(p) for p € Ry so that
S3 — R, becomes a k-model neighborhood of the source P, of fj. We then apply the
induction hypothesis just as before.

Assume now K = P;. We can use f1 above and similarly define fo for the regions Ry
and S° — Ry, to conclude that P, and P}, are graph knots and also, there exist graph kits @,
and @y, of P, and P, respectively such that ®, and &, satisfy the properties stated in the
theorem for fi; and fo respectively. Since Py ~ P,#PF,, the source P; is also a graph knot
and ¢ := &, U Dy U{P,, Py} is a graph kit of P;.

For each graph knot P in ®, U ®p, we already have a solid torus Rp or RF( P) associated
to it. The boundaries dRp or (9RF( p) are then in fﬁl(r) for some regular value r of f
except possibly when Rp or RF( P) is a tubular neighborhood of P, or P, but this problem
in those exceptional cases can be easily resolved by just picking a more appropriate tubular
neighborhood Rp or RF( P) of P, or Py in the beginning. For the graph knots P, and P,
in @, we associate the solid tori £'U Ry and FU R, to Rp, and R P, respectively. Finally,
we regard K as the cable knot (K); , of itself and define Rpgy = E1. The collection of
all these solid tori associated to the graph knots in the graph kit ® of K satisfies then the

properties stated in the theorem for f.
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Subcase 2. Only C'1 bounds a meridian disk D1 of Pi.

Then, Ky is an unknot so that K # K{. The sources P; and P are distinct since Cs is
a non-meridian, nontrivial cable knot of P». Also, Py is an unknot and C5 is a longitude of
Py. The region E is isotopic to Fy in S3. This subcase is then similar to Case 1 and the

proof in this case can be completed similarly.
Subcase 3. None of C1 and Cy is a meridian of P| and Py respectively.

We will first consider the situation P; # Py. The isotopic cable knots C] and C9 are,
say, C1 ~ (P1)p,q and Coy >~ (Py)r,s where p,7 # 0 as C; is not a meridian of P;.

If p or r is equal to 1, then P; = Py or P > P; and F is a tubular neighborhood of P;
or Py. Say, Py = P, where {P,, Py} = {P1, P»}. Let {Eq, Ep} := {E1, E2} be such that E,
and Ejp are tubular neighborhoods of P, and P, respectively. We define f1 by f1(p) := f(p)
for p € (S3 — E) U E}, so that E becomes a k-model neighborhood of the source P, of f1. If
K is distinct from K7 and P, we can then apply the induction hypothesis to critical knot K
of f1 to prove the theorem. If K is equal to P, or K1, then K > P;,. We apply the induction
hypothesis to the source P of fi to conclude that P} is a graph knot and there exists a
graph kit @, of P, satisfying the properties stated in the theorem for fi. Since K > P}, the
knot K is also a graph knot and also, ®, U {P,} is a graph kit of K. The solid tori Rp or
Rp(py is already defined for a graph knot P in ®;. We define R P, = Ep, and Rp(ky = Ep.
The collection of these solid tori satisfies then the properties stated in the theorem for f.

If p,r # 0,41, then P; U Py is a Hopf link so that nontrivial K is distinct from P} and
P,. If K = K1, the saddle K is a torus knot. The graph kit {P;} of K together with the
solid tori R P = Eq and RF( K) = Eq proves the theorem. Assume now that K is inside the

solid torus V := S3 — Int(FE) where the core Ky, of V is a nontrivial torus knot ~ (P})p .
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This is the situation where we will need the fact from Lemma 7 and also, the utility of
a graph kit satisfying the properties stated in the theorem as we now embed V' into S3 by
g:V — 83 such that g(V) becomes a standard, unknotted solid torus in S3. We define f;
by fi(p) == f(g~ 1 (p)) for p € g(V) so that S3 — ¢(V) becomes a k-model neighborhood of
an unknot source Ky of fi.

If g(K) is trivial, then Ky and g(K) are cable knots of each other by Lemma 7. Therefore,
K is a nontrivial, non-meridian cable knot of Ky . The graph kit {Ky -, P;} of K together
with the solid tori RKV =V, RF(KV) = Fjq, RP1 = Fq and RF(K) := V proves the
theorem.

Assume now that g(K) is nontrivial. An application of the induction hypothesis to the
critical knot g(K') of fi shows that g(K) is a graph knot and also, it produces a graph kit
®, of g(K) satisfying the properties stated in the theorem for fi. For P in ®g4, let Rp and
Rp(p (when P is nontrivial) be the solid tori as stated in the theorem. Let Rp(y4(K)) be the
solid torus for I'g, (9(K)) as stated in the theorem. If Rp is not a tubular neighborhood of
Ky, we can assume Rp C g(V). If Rp is a tubular neighborhood of Ky, then the standard
solid torus Rp can be replaced by the standard solid torus ¢g(V') because the unknotted solid
tori Rp and g(V) are isotopic in S3 and also, a cable knot of the unknot core of Rp is a
cable knot of the unknot core of g(V') as well. Hence, we can assume that Rp C g(V) for
cach P € ®4. Similarly, we can assume that Rpp) € g(V) for each nontrivial P € &4 and
also, Rp(y(xy) € 9(V).

Let Kp denote the core of Rp for P € ®4. Since the graph kit ®, is a collection of
isotopy classes of knots, the knot ¢~1(P) is not defined. However, the knot g~ (K p) is well
defined and it will do the job. If K'p is an unknot, then Lemma 7 asserts that Kp is a cable

knot of K. Therefore, the knot g (K p), which is the core of the solid torus g~ (Rp), is a
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cable knot of Ky so that it is a graph knot. Let ®1 := {g~'(Kp) : P € ®;4}. The properties
of @4 stated in the theorem imply that every knot in ®1 is a graph knot because g_l(K P)
is a graph knot for every unknot P in ®g.

Let &g := {P € &, : Kp is trivial but g1 (Kp) is not trivial}. Let ®9 := & U{(Ky)p :
P e dg} U{(P)p: P € Oy}, where the latter two sets contain just distinct copies of the
same knots Ky and Py. For each nontrivial graph knot g~ (K p) in ®1, we take I'(g~ (K p))
as {g N K ) : J € Fq)g(P)} (when P is nontrivial) or {(Ky)p} (when P is trivial). We
also take I'((Ky/)p) as {(P1)p}. So, we have I'(J) C &9 when J is a nontrivial graph knot
in ®5. To each graph knot g~ (K p) in 1, we associate the solid torus g~!(Rp). To each
graph knot (Ky/)p or (P))p in ®9, we associate the solid tori V' or Fp respectively. When
g 1(Kp) in ®5 is nontrivial, we take the solid torus g_l(RF(P)) (when P is nontrivial) or V'
(when P is trivial) for RP(g_l(KP))' Finally, we define RF((KV)P) = Fj for (Ky)p € ®9
and Rp(f) = g_l(RF(g( K)))- The collection of these solid tori associated to the trivial or
nontrivial graph knots in ®9 satisfies the properties stated in the theorem for the ordered
k-function f. These properties of the solid tori imply now that the knot ¢~ (g(K)) = K is
a graph knot that is woven from the graph knots in ®9.

We will now prove the theorem for the situation P; = Py. The nontrivial circles C
and C9 separates OF7 into two closed annuli A; and As and the components of s(OF7) are
isotopic to the tori ¥ := A; U A and X9 := Ay U A in S3. Let H; denote the closed region
bounded by ¥; in $3 such that Int(H;) N E; = @. Similarly, let H; denote the component
of §3 — Int(E) that is isotopic to H; in 53, Then, at least one of Hy and Ho, say Hy, is a
solid torus. Let Kp denote the core of Hy. The link P; U K is either a Hopf link with C
being a nontrivial torus knot or one of P; and K is a cable knot of the other one. In the

latter cable knot cases, the region Hy U Ej is isotopic to Hj or Ej in S3.
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There are now several possibilities for the location of K in regard of H{UE C S3. We start
with the assumption K ¢ H{UE. It P, = Ky or Ky = Py, let {Ku, Kp} = {P1, Ky}
be such that K, = K;. We define f; by fi(p) := f(p) for p ¢ Hy U E so that H; UE
becomes a k-model neighborhood of the source K3 of fi. An application of the induction
hypothesis proves the theorem. If P; U Kpg is a Hopf link, the region S3 _HUE is a
tubular neighborhood of a nontrivial torus knot isotopic to K and we have already proven
the theorem in this setting which was analyzed in the situation P} # Ps.

Assume now K C F so that K is equal to P; or Ki. We first consider K = P;. As
K is nontrivial, P; U K cannot be a Hopf link so that Hi U Ej is isotopic to Hy or Ej
in $3. Let {Kq4, K3} and f1 be defined just as in the previous paragraph. The induction
hypothesis applies to the source K of f1 so that Kj, is a graph knot and also, there exists a
graph kit &, of K} satisfying the properties stated in the theorem for f1. If K = Kj, then
this graph kit ®; works for f as well. Otherwise, K > K} so that K is a graph knot and
® := @, U {K}} is a graph kit of K. Set the solid tori Ry, = Hy and Rpg := Hy. The
collection of these two solid tori together with the solid tori associated to the graph knots
in ®; proves the theorem.

Assume now K = K. Our previous argument shows that Pj is a graph knot and when
Pp is not trivial, there exists a graph kit ®; of P; satisfying the properties stated in the
theorem. If P is trivial, then take ® to be the empty set. Since K > Py, the knot K is a
graph knot and ®1 U {P;} is a graph kit of K. The collection of the solid tori corresponding
to the graph knots in ®; together with Rp1 = Fq and RF(K) := F proves the theorem.

Assume now K C Hy. If P U Ky is a Hopf link, we define f; by fi(p) := f(p) for
pE Hj so that S3 — Hy becomes a k-model neighborhood of the source P;. We then apply

the induction hypothesis as usual. If P; = Ky or K = Pj, we can define { K, K} and f;
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just as before and our previous argument shows that Kj is a graph knot. Also, we get a graph
kit ®; of K}, satisfying the properties stated in the theorem for fi. Let {U,, Uy} := {E, H1}
be such that U, and Uy are tubular neighborhoods of K, and K} respectively. If K = Kj,
we simply define @7 := &p. If Ky = K, we define a graph kit g7 := &, U{K}} of Ky and
the solid tori RKb = Up and RF(KH) := Up. The graph kit & of Ky with its associated
solid tori satisfies then the properties stated in the theorem. We now embed H; into S° by
g : Hi — S3 such that g(Hj) becomes a standard, unknotted solid torus in S3. Such an
embedding g onto a standard, unknotted solid torus has been studied before in the P| # Py
situation. We can similarly prove the theorem in this situation by combining the graph kits

®pr and @4 of g(K). This completes the proof of the theorem. O

Proof of Theorem 1. Lemma 8 proves one side of the theorem and Theorem 9 proves the
other side since any k-function f can be made ordered by modifying it within a tubular

neighborhood of its critical link without changing the set of critical points of f. m
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Chapter 5

Conclusion

The classifications of graph knots in [11], [12] are better than ours in several respects. Their
classifications are stronger as they classify all the graph links in S® or in a homology 3-sphere.
Such a classification attempt demands a global picture of the whole graph link rather than
a small picture of a component of a graph link. Our own narrow perspective to classify just
the graph knots but not the graph links has limited us to work in a smaller, local setting
with deficient information where we have gathered extra technical machinery (Lemma 7 and
parts (i), (ii) and (iii) of Theorem 9) to overcome these deficiencies. As such deficiencies do
not exist in the global settings in [11] and [12], their studies and proofs seem more natural
than ours.

We conclude our work with the following final remarks. If K and J are two non-isotopic
graph knots, then one way to qualitatively distinguish them is to look at the minimal numbers
k and j such that K € S, and J € S;. The bigger the difference |k — j| gets, then one can
interpret that K and .J become more distinct from each other.

Suppose now that a knot K is not a graph knot so that we don’t have a k-function
to study it directly. How can we measure its deviation from being a graph knot? One
trivial approach is to consider all the knot diagrams of K. The over or under crossings of
a given diagram can be interchanged until the produced diagram becomes an unknot where

an unknot is a graph knot. Therefore, there exists a minimal positive integer n (similar to
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the unknotting number of K') such that one produces a graph knot after making n crossing
changes on a knot diagram of K. The bigger n gets, then one can think that K deviates
more from being a graph knot.

The perspective of [11] gives a conceptually better answer to our above question. When
K is not a graph knot, the JSJ-decomposition of the complement of K has at least one
atoroidal (non-Seifert fibered) piece. The more atoroidal pieces there are, the more K devi-

ates from being a graph knot.
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