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ABSTRACT 

 

NONLINEAR RHEOLOGICAL CHARACTERIZATION AND MODELING OF 

COMPLEX FLUIDS UNDER LARGE AMPLITUDE OSCILLATORY SHEAR (LAOS) 

 

By 

 

Christopher Joseph Hershey 

 

Dynamic oscillatory shear tests have historically been one of the most common ways a 

rheologist probes the material response for complex fluid systems including neat polymer melts 

and solutions, blends, and composites.  In small angle oscillatory shear (SAOS) testing, the 

material functions 𝐺′ and 𝐺′′ describe the linear viscoelasticity of the complex fluid and may be 

related to the morphological changes occurring in the system.  However, typical processing 

conditions occur at fast flow rates and generate large deformations resulting in a strain dependence 

on the rheological properties. 

 In this research, the nonlinear viscoelastic behavior of polypropylene (PP) nanocomposite 

melts and oligomer modified polyamide (PA) blends under large amplitude oscillatory shear 

(LAOS) flows was investigated using Fourier transform (FT) rheology and stress decomposition 

(SD) techniques.  With the development of high performance data acquisition (DAQ) cards in 

recent years, raw voltages of angular displacement (strain) and torque (stress) from the rheometer 

may be Fourier transformed into discrete harmonics to probe a material’s nonlinear response.  

These higher order harmonics are strongly correlated to the chain dynamics and morphological 

changes in a polymer system. 

Polypropylene-clay nanocomposites were produced using concentrations of 3 and 5 wt% 

of silane treated nanoclay to ensure that the system was dilute, and the filler-network contribution 

was negligible. To promote particle-polymer interactions, the silane treated clay was reacted with 

a maleated polypropylene compatibilizer. The nonlinear intensity ratio 𝐼3/1 of the third order 



 
 

harmonic to the first order harmonic of the shear stress as well as the zero-strain limit nonlinearity 

parameter 𝑄0 were determined through FT rheology experiments. To describe the trends in 𝐼3/1 

and 𝑄0 for polymer nanocomposite systems, a nonlinear viscoelastic differential model was 

developed for LAOS type flows. 

 Blends consisting of a PA6/PA66 copolymer in an 80:20 mixture by weight were melt 

mixed with varying concentrations (5 and 10 wt%) and molecular weights (𝑀𝑊 = 750 and 1000) 

of an elastomeric polyisobutylene succinic anhydride (PIBSA) oligomer and tested under LAOS 

conditions.  The low molecular weight PIBSA acts as a plasticizer on the matrix blend, reducing 

its shear stress with increasing concentration.  The SD technique separates the elastic (𝜎′) and 

viscous (𝜎′′) contributions of the stress waveform, much like 𝐺′ and 𝐺′′ in SAOS flows.  It was 

found that by increasing the concentration of PIBSA, the normally viscous response of the PA 

blend matrix transitioned to an elastic response.  By combining SD with FT rheology, it was found 

that the 𝐼3/1 ratio were nearly identical for both PA blends with 0wt% and 5wt% PIBSA, while 

much larger values of 𝐼3/1 were identified for 10wt% PIBSA blends at lower strains. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background and Motivation 

Rheology describes the flow and deformation of a material under an applied mechanical 

force.  It is the branch of physics which acts as a bridge connecting fluid and solid continuum 

mechanics.  This encompasses a breadth of materials from liquids to solids particularly to complex 

fluids such as polymer melts.  Understanding the rheology of a material proves invaluable for the 

manufacturing everyday goods. 

  The manufacturing of plastic parts through polymer processing involve a variety of 

methods such as injection molding, extrusion, compression molding, film blowing, film casting 

and thermoforming.  Processing temperature, speed and part size are some of the most important 

parameters controlling the final quality of the part.  Polymer melts are highly sensitive to 

processing temperature through their viscosity.  With increasing temperatures, viscosity decreases 

resulting in less resistance to flow and faster flow rates.  Speed and dimension are directly related 

to the rate of deformation (strain rate) and deformation amplitude (strain), respectively. 

 Polymer melts are viscoelastic fluids, meaning that their stress response is both viscous 

and elastic in nature.  In a purely viscous response, stress grows proportionally to the applied strain 

rate; a purely elastic response show stress growth proportional with strain amplitude. When a 

material undergoes a deformation, the molecules or atoms making up that material need time to 

conform.  In other words, each material has a characteristic structural relaxation time.  For 

Newtonian fluids, such as water, the relaxation time is much faster than the time scale associated 

with the strain rate leading to a purely viscous response.  Conversely for elastic solids, such as 
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metals, the relaxation time is very long leading to a purely elastic response.  Due to the molecular 

weight, topology and entanglements in polymer melts, the structural relaxation times are on the 

order of the deformation rate.  Purely viscous and elastic responses are classified as linear 

responses since the stress grow proportional to the strain rate and strain, respectively.  The same 

linear response behavior is observed in viscoelastic materials when both the strain rate and strain 

are small.  However, when the strain deformation or strain rate is large enough to disrupt the 

equilibrium structure of the polymer chains, then a deformation dependent material response is 

observed: the nonlinear viscoelastic region[1]. 

 The linear viscoelastic region may be probed by a rheologist through various shear flow 

tests on a rheometer when the deformation and rate are kept small.  These include steady tests such 

as steady shear, stress relaxation and creep, as well as dynamic tests (oscillatory shear) such as 

frequency and strain sweep tests.  Material functions such as the plateau modulus, 𝐺𝑁
𝑜 , shear stress 

relaxation modulus, G(t), creep compliance, J(t), zero-shear viscosity, 𝜂0 and the dynamic storage, 

𝐺′ and loss, 𝐺′′ moduli are all obtainable through at least one of these tests.  These parameters may 

then be used to determine features such as the polymer characteristic relaxation times, molecular 

weight and even polydispersity[2]. 

 Dynamic shear strain sweep tests operate by compressing a material between two parallel 

plates or similar shear geometry in a rheometer.  One plate is then subjected to an excitation 

deformation at a set frequency, while the resulting stress is measured on the other plate.  From the 

stress-strain relationship, the dynamic moduli are obtained and as the deformation increases from 

small strains to large strains, these moduli become dependent on the strain amplitude marking the 

onset of nonlinearity and hence the nonlinear region.  This particular test probes what is now 

known as large amplitude oscillatory shear (LAOS) flows[3, 4].  Over the past 20 years, rheologists 
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have begun to investigate the nonlinear region through LAOS[5].  Before LAOS, the nonlinear 

region was only described qualitatively with an increase/decrease in 𝐺′ described as strain 

stiffening/softening and an increase/decrease in 𝐺′′ as strain thickening/thinning.  Now 

quantitative interpretations of LAOS flows through Fourier transform (FT) rheology[6-14] and 

stress decomposition (SD) methods[15-18] have been developed.  These methods have frequently 

cited in the literature for systems including: neat polymers[12], branch-type polymers[8, 9, 12], 

blends[19-21], and composites[6, 7, 20, 22-24]. 

 However, interpretations of LAOS flows using FT rheology and SD methods are still in 

their early stages.  While the method development has been refined extensively in the literature for 

various types of systems, the quantity and variety of these systems is lacking.  Particularly the area 

of polymer nanocomposites, a class of viscoelastic materials highly utilized in industry.  What 

literature that does exist are concerned primarily with highly loaded nanocomposites[6, 7, 25], 

where the nonlinear response is dominated by particle-particle interactions.  Therefore, this 

research focuses on dilute nanocomposites where particle-polymer interactions govern the 

rheology and nonlinear response.  This also requires the development of nonlinear viscoelastic 

constitutive models for polymer nanocomposites to relate the nonlinear response to particle-

polymer chain dynamics. 

1.2 Dynamics of Entangled Polymer Chains 

 The dynamics associated with entangled polymer melts are considered here.  The dynamics 

of polymers are well represented by reptation-based tube models[26].  Reptation of polymers, 

originally proposed by de Gennes[27] and later refined by Doi and Edwards[28-31], was 

developed to describe the diffusive motion of a polymer chain, i.e. “primitive chain”, around a 
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series of obstacles.  These obstacles, made up of other polymer chains, form entanglements with 

the primitive chain to create a temporary cage, i.e. “tube”.  A schematic is shown in Figure 1.1. 

 

Figure 1.1  Schematic of reptation theory showing test chain in a tube entangled with matrix 

chains. 

The number of entanglements and rate at which they are removed dictate the stress 

relaxation behavior of the polymer chain.  For linear, entangled monodisperse polymer chains, 

several stress relaxation mechanisms occur in the linear viscoelastic region: Rouse motions, 

reptation and constraint release[26].  The effect that these relaxation mechanisms have on the stress 

relaxation is best presented using a steady shear stress relaxation master curve shown in Figure 

1.2. 
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Figure 1.2  Schematic of stress relaxation test and relaxation regimes with corresponding 

relaxation timescales. 

When an instantaneous strain deformation is applied to the sample, an increase in the stress 

(shear modulus) is observed and the relaxation is recorded over time.  At very short times, polymer 

chains are frozen and behave as a glass for which this region is appropriately named the glassy 

region.  The glass transition region marks the onset of stress relaxation through Rouse motions of 

chain segments, or fast thermal vibrations, having a distribution of very short Rouse relaxation 

times 𝜏𝑅.  At the equilibration time which is twice the longest Rouse time, 𝜏𝑒 = 2𝜏𝑅, test chain 

segments begin to enter the “tube” described by tube theory resulting in the aptly named plateau 

region, characterized by the plateau modulus 𝐺𝑁
0  for which all polymer chains are now highly 

entangled with adjacent polymer chains.  Given enough time, polymers enter the terminal region 

whereby the chains diffuse out of their tube through large thermal motions.  This relaxation 

mechanism is reptation and is characterized by the reptation or disengagement time, 𝜏𝐷, until all 

remaining stress is relaxed. An additional linear mechanism, constraint release (double reptation), 

considers both the reptation of the primitive chain as well as the surrounding matrix chains which 
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form the entanglements.  With constraint release, the reptation timescale is reduced resulting in 

faster stress relaxation and an earlier onset in terminal behavior. 

When the strain deformation is large, additional nonlinear relaxation mechanisms are 

present: convective constraint release and chain retraction after stretching.  Due to the velocity 

gradient in simple shear flows, tube entanglements flow at different rates due to their position 

along neighboring streamlines.  The inclusion of convective constraint release (CCR) reduces the 

polymer stress by removing these entanglements at a rate proportional to the shear rate[32].  The 

result is a plateau in the shear stress with increasing shear rate, unlike the original Doi-Edwards 

model which predicted that stress would go through a maximum leading to excessive shear 

thinning.  In extensional flow, CCR is less significant since there is no gradient along the 

streamlines[26].  Instead, chains are subjected to stretching, leading to their stress buildup.  Only 

after chains have retracted to their equilibrium length are they then able to reptate out of their tube.  

Large amplitude shear flows are able to stretch chains to some degree, though not as severely as 

extensional flows.  In comparison with Figure 1.2, the faster relaxing chain retraction mechanism 

occurs on the order of Rouse times, while the CCR effect would be observed in the terminal region. 

1.3 Dynamics of Polymer Composites 

Polymer composites are heterogenous mixtures consisting of at least a polymer matrix and 

a filler material.  Common fillers include fibers (one-dimensional), platelet particles (two-

dimensional) and spherical particles (three-dimensional).  The filler type, concentration, size, 

shape, and chemical compatibility with the polymer matrix are all factors which affect the rheology 

of composites[33].  Composites are desired in commercial products for their increased toughness 

and large strength-to-weight ratio as well as their flame retardancy and improved barrier 

properties[34]. 
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Three types of interactions are present in polymer composites which lead to their desired 

mechanical properties: particle-particle, particle-polymer, and polymer-polymer[33, 35].  Particle-

particle interactions are prominent in highly loaded systems where the filler content is high and 

the interparticle spacing between particles are small leading to a percolated filler network[36].  

These interactions also exist if the interparticle spacing is small enough to allow attachment of 

polymer chains between two separate particles i.e. bridging.  Once a filler network forms, a sharp 

liquid-to-solid transition is present, forcing the viscoelastic properties to become elastic-dominant.  

In dynamic shear rheology, this effect is marked by an increase in the storage modulus (elastic 

response) at low frequencies relative to the unfilled polymer matrix[33].  The chain confinement 

of the polymer matrix between the filler particles lead to hindered mobility and thus longer 

relaxation times resulting in a loss of the observable terminal region.  Since the inverse of time is 

frequency, the long-time terminal behavior for steady shear in Fig. 1.2 corresponds with the low 

frequency terminal behavior in dynamic shear tests. 

Dilute polymer composites are able to have a similar rheological response to filler network 

systems through strong particle-polymer interactions.  Surface modification of the filler surface 

can create attachment sites for the polymer matrix resulting in particle-attached chains with 

reduced mobility.  Some filler types, such as montmorillonite clay, exist naturally with free oxygen 

and hydroxyl groups which provide the basis for chemical attachment.  Further silylation of these 

layered-silicate fillers have been shown to react both covalently with the hydroxyl groups and 

through hydrogen bonding with the oxygen groups on the clay edges and faces, respectively[37, 

38].  Improvements in nanocomposite properties have been shown using an amine functionalized 

silane[38, 39], which are able to further react to long chain maleated polypropylene result in 

attached chains with hindered mobility as characterized by an increase in the low frequency 
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dynamic moduli.  In addition to the reduced chain mobility, the large molecular weight of the 

maleated polypropylene compatibilizer created entanglements with the free polypropylene matrix 

chains. 

Reduced relaxation dynamics in filler networks and entanglement networks between 

particle-attached chains and free chains are also accompanied by a smaller linear viscoelastic 

processing window.   At large deformations and deformation rates, the networks break down 

resulting in  strain softening (decreased elastic response) of the material.  This is known as the 

Payne effect for the breakdown of filler networks, though more recently it has been used to 

describe the breakup of particle-attached entanglement networks[40]. 

1.4 Dynamic Shear Rheology 

 Dynamic (oscillatory) shear rheology determines both the viscous and elastic material 

response using an oscillatory excitation force at a desired strain amplitude 𝛾0 and frequency 𝜔, 

𝛾 =  𝛾0sin (𝜔𝑡) (1.1) 

The most common tests include frequency sweeps (constant strain amplitude, varied frequency) 

and strain sweeps (constant frequency, varied strain amplitude).  Illustrative examples of these 

tests are shown in Figure 1.3. 

 

Figure 1.3  Dynamic shear tests using (a) frequency sweeps and (b) strain sweeps. 
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Frequency sweeps shown in Figure 1.3(a) are useful in identifying the relaxation rates 

associated with reptation mechanisms.  As mentioned earlier, the disengagement time, 𝜏𝑑, is the 

timescale by which stress is relaxed through reptative motions.  In steady shear relaxation, for 

times greater than the reptation time, the terminal regime is observed.  Similarly, this terminal 

region is observed in dynamic shear tests at low frequencies i.e. the inverse of long scale reptation 

times.  The terminal region is easily identified by the quadratic scaling of storage modulus, 𝐺′ with 

frequency (i.e. 𝐺′ ∝ 𝜔2) and the linear scaling of the loss modulus, 𝐺′′, with frequency (i.e. 𝐺′′ ∝

𝜔).  While frequency sweep tests occur over a range of frequencies, the strain amplitude is kept 

small ensuring the sample is tested in the linear region.  The linear region is identified through 

strain sweep tests depicted in Figure 1.3(b).  At a fixed frequency, the material undergoes a series 

of increasing deformations.  The linear region is associated with a strain independent behavior in 

the viscoelastic moduli. At a critical strain, the moduli eventually show a strain dependence and 

either decrease or increase in magnitude, depending on the type of material.  This strain marks the 

onset of nonlinearity and it is a useful measure to separate out the linear and nonlinear regimes.  

Recent literature in dynamic shear rheology concerning strain sweep tests have coined the term 

small angle oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) for linear and 

nonlinear testing, respectively[5].   

During both SAOS and LAOS testing, oscillatory deformations following Equation 1.1 are 

applied and the resulting shear stress is determined, 

𝜎 = ∑ 𝜎𝑛sin (𝑛𝜔𝑡 + 𝛿𝑛)𝑛,𝑜𝑑𝑑  (1.2) 

Where 𝜎𝑛 and 𝛿𝑛 are the Fourier transform amplitude and phase angles for the 𝑛 harmonic.  In the 

linear viscoelastic regime (SAOS) only the first harmonic (𝑛 = 1) is present.  During LAOS flows, 

the nonlinear relaxation mechanisms described in the previous sections lead to increases in the 
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higher order harmonics which are quantified by FT rheology using Equation 1.2.  Before the 

designation of LAOS flows, measurements of the nonlinear response were limited to a rheometer 

effectively reporting only the first harmonic in stress across all strain amplitudes.  This restricted 

the rheologist to only qualitatively identify strain stiffening/softening (𝐺′ increase/decrease) and 

shear thickening/thinning (𝐺′′ increase/decrease) behavior as well as determine the onset of 

nonlinearity for a given material.  Relations to the structural morphology of the system were 

limited.  However, in recent years, LAOS flows are accompanied by qualitative, quantitative, and 

semi-quantitative techniques such as Lissajous-Bowditch analysis, Fourier transform (FT) 

rheology and stress decomposition.  Examples of theses analyses are given in Figure 1.4. 

 

Figure 1.4  Methods to quantify nonlinearities in (a) strain and stress waveforms using (b) 

Lissajous-Bowditch curves (c) FT rheology and (d) stress decomposition techniques. 

 A brief overview concerning the types of LAOS techniques is presented here, with a more 

complete discussion given in Chapter 2.  An essential component for any LAOS test are the strain 
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and stress waveforms from the rheometer during testing depicted in Figure 1.4(a).  Obtaining these 

waveforms from a rheometer using the raw voltages of torque and angular displacement through 

a high-speed data acquisition (DAQ) card has been the standard implementation in literature[11, 

13, 14].  In more recent years, commercial rheometers provided by companies such as TA 

instruments and Anton-Paar, have incorporated LAOS test procedures directly into their software.

 Plotting the normalized stress waveform against the normalized strain waveform yield the 

qualitative Lissajous-Bowditch curves in Figure 1.4(b).  The shape of these curves are useful in 

determining the type of response the material undergoes during deformation.  They can go from 

completely circular (purely viscous) to ellipsoidal (viscoelastic) to a straight line (purely elastic) 

as seen in Figure 1.5. 

 

 

Figure 1.5  Schematic showing trends found in Lissajous-Bowditch curves. 

An equivalent measure of viscoelasticity is provided in SAOS tests by using 𝛿1, the first 

harmonic phase angle.  Additional nonlinearities at large deformations due to microstructural 

changes[8, 12, 41], entanglement and filler network breakup[25, 42], or even systematic errors due 

to wall slip and edge fracture are all picked up through Lissajous-Bowditch curves.  A requirement 

for additional LAOS analyses, such as FT rheology, is the acquisition of oscillatory data at steady 
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state.  Lissajous-Bowditch curves provide a useful measure in the steady-state response since a 

transient response (i.e. decaying amplitude with time) lead to spiral curves instead of closed loops. 

Fourier transform rheology is the interpretation of higher order harmonics in the stress 

waveform at large deformations.  Fourier transformation translates the time-dependent stress 

response into a frequency-dependent stress response at each strain amplitude.  The result are 

intensities or stress amplitudes 𝜎𝑛 corresponding to the higher order harmonics, which are some 

integer multiple of the fundamental testing frequency i.e. the frequency imposed by the rheometer.  

An example of the intensity plot from FT rheology is given in Figure 1.4(c).  Stress is an odd 

function of strain (i.e. 𝜎(𝛾0) = −𝜎(−𝛾0)) resulting in the observance of only odd harmonics.  By 

normalizing the intensities with respect to the first harmonic, a relative intensity at each harmonic 

is obtained with the largest corresponding to the third harmonic, 𝐼3/1.  This parameter is a 

characteristic measure of FT rheology and is the basis for all other nonlinear parameters such as 

𝑄(𝜔, 𝛾0) and the zero-strain intrinsic nonlinearity 𝑄0(𝜔) [10].  More details are provided in 

Chapter 2 regarding these parameters. 

The onset of nonlinearity has been loosely defined in FT rheology to occur at the strain 

amplitude where the value of 𝐼3/1 is greater than 0.5% of stress response (i.e. 𝐼3/1 > 0.005)[5].  

This is the direct result of a major limitation in FT rheology: electronic noise.  By definition, the 

SAOS regime should only have first harmonic contributions to the stress when the strain amplitude 

is kept low.  For most polymer melts and solutions these low strains lead to low stresses (i.e. low 

voltages) which are more susceptible to electronic noise generated by the torque transducer.  

Fourier transformation of the noise can lead to erroneous data and an incorrect interpretation in the 

LAOS behavior.  Thus, a requirement for FT rheology is the oversampling of the raw voltage 

waveforms[11].  Oversampling is an averaging technique used in combination with high-speed 
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DAQ cards and multiple oscillation cycles per strain.  By averaging several thousand data points 

per second or more depending on the testing frequency and DAQ rate, the signal-to-noise (S/N) 

ratio can be significantly improved after Fourier transforming the stress waveform.  An S/N ratio 

of 10,000 is observed in Figure 1.4(c), which is typical for polymer melts, while polymer solutions 

can have S/N ratios as high as 100,000[13]. 

Stress decomposition is the final LAOS technique discussed in this section.  In SAOS 

dynamic testing, the stress waveform is decomposed into the storage modulus (elastic response) 

and the loss modulus (viscous response).  These responses can be attributed to the magnitude of 

the phase lag 𝛿1 since 𝐺′ = 𝐺∗cos (𝛿1) and 𝐺′′ = 𝐺∗sin (𝛿1) where 𝐺∗ = 𝜎1/𝛾0 is the complex 

modulus.  In a purely elastic material, an instantaneous or in-phase stress response is observed 

upon deformation (i.e. 𝛿1 = 0) while in a purely viscous material the stress response is completely 

out-of-phase with the strain deformation (i.e. 𝛿1 = 𝜋/2).  Thus, the elastic and viscous responses 

are dependent on the relative position between the stress and strain waveforms.  In the nonlinear 

regime, the stress waveform is no longer sinusoidal resulting in phase angles at higher order 

harmonics 𝛿𝑛.  Stress decomposition techniques utilize this nonlinear phase lag to decompose the 

stress waveform into elastic and viscous contributions as shown in Figure 1.4(d).  This was first 

done geometrically by Cho et. al.[15] and later a mathematical derivation using orthogonal 

Chebyshev polynomials was applied by Ewoldt et. al.[17]. The linear viscoelastic moduli are 

recovered via SD techniques; however a more accurate representation of these moduli are 

calculated in the nonlinear regime.  The nonlinear viscoelastic moduli also hold the same physical 

meaning as their linear viscoelastic counterparts.  Additionally, the example in Figure 1.4(d) show 

a total stress waveform and viscous waveform being nearly identical in amplitude and phase, 

suggesting that the material response is viscous dominant.  The elastic waveform has a much lower 
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amplitude and takes on an exotic shape allowing the rheologist to classify the nonlinearity as an 

elastic or solid-like response. 

The LAOS techniques introduced in this section are considered the most useful measures 

of nonlinear rheology developed to date.  While each have their own unique advantages, 

associating the nonlinear viscoelastic behavior with polymer architecture, morphological changes 

and chain dynamics still proves challenging due to the relative newness of this field.  Therefore, 

more variety in the systems tested as well as relationships between the nonlinear parameters to 

chain dynamics through viscoelastic models are much needed. 

1.5 Research Objectives 

 The motivation of this work stems from the lack of experimental and theoretical research 

concerning large amplitude oscillatory shear flows.  Particularly in the area of polymer 

nanocomposites, where the current research is concerned primarily with highly loaded systems 

where particle-particle interactions govern the rheology.  Dilute nanocomposites with strong 

particle-polymer interactions have been researched extensively in linear viscoelasticity, though no 

such research exists concerning nonlinear viscoelasticity under LAOS.  This also implies that the 

dynamics associated with these systems are not well understood in LAOS flows.  This research 

seeks to accomplish the following objectives: 

(1) To design and implement LAOS functionality in the current rheometer setup and 

develop a numerical framework for interpreting LAOS flows using techniques such as Lissajous-

Bowditch curves, Fourier transform rheology, and stress decomposition. 

(2) To develop a nonlinear viscoelastic model for polymer nanocomposites and relate 

the dynamics associated with free and attached chain entanglements to the nonlinear trends 

observed in nonlinear rheology particularly those concerning FT rheology. 
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(3) To test dilute polymer nanocomposites under LAOS flows to determine the effect 

of entanglement network breakdown on the nonlinear rheology and relate these effects to dynamics 

associated with model predictions. 

(4) To use FT rheology and stress decomposition methods to determine the elastic 

effect imparted by low-molecular weight oligomers in polyamide blends. 

1.6 Scope of Thesis 

This thesis is concerned with the nonlinear viscoelasticity of complex fluids.  Particularly, 

how complex fluids behave under large amplitude oscillatory shear (LAOS) flow.  In recent years, 

LAOS flows have been successfully utilized to relate the observed nonlinearity of polymers, 

blends and composites to their respective chain dynamics, molecular topology, and structural 

morphology.  Interpretations of LAOS flows are made possible through qualitative and 

quantitative methods.   

The first portion of this thesis (Chapter 2) describes the framework necessary for 

interpreting LAOS flows.  This chapter is applicable to both LAOS flows tested experimentally 

and those simulated numerically using viscoelastic constitutive models.  Firstly, experimental tests 

require an initial step in the data acquisition of the torque and angular displacement at discrete 

points in time during strain sweep testing using raw voltages from the rheometer instrument.  After 

data acquisition, the resulting voltages are then converted to their corresponding stress and strain 

values.  This pre-processing step is then followed by post-processing used for both experiments 

and simulations.  Post-processing involve several techniques to interpret LAOS flows for which 

the algorithms are discussed in detail.  Plots of shear stress versus shear strain, known as Lissajous-

Bowditch plots, offer a graphical way to evaluate the viscoelasticity of a material as a function of 

strain and frequency.  Additionally, the stress decomposition (SD) technique can further classify 
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the nonlinear mechanism by decomposing the shear stress component into its viscous and elastic 

contributions.  Finally, the most sensitive method to interpret LAOS flows is by utilizing Fourier 

transform (FT) rheology.  In FT rheology, the time-dependent stress waveform is Fourier 

transformed into higher order harmonics, giving a quantitative value to the nonlinear behavior. 

The second portion of this thesis (Chapters 3-4) is concerned with the dynamics of polymer 

nanocomposites under LAOS flows.  Graphical methods like the Lissajous-Bowditch plots are 

excellent tools for quickly interpreting the viscoelasticity of a material, however they do little in 

describing the dynamics of polymer systems.  In polymer nanocomposites, the chain dynamics 

associated with polymer-particle attached chains increase the solid-like (elastic) behavior of the 

polymer matrix as well as the nonlinearity at large strain amplitudes.  This effect is captured by 

the higher order harmonics in FT rheology.  In an effort to relate the nonlinear parameters in FT 

rheology to the chain dynamics of particle-attached chains, a nonlinear viscoelastic constitutive 

model was developed.  This model, which accounts for entanglement networks formed by free 

polymer chains and particle-attached chains, is subjected to LAOS flows using both numerical 

simulations and asymptotic solutions.  Chain relaxation mechanisms such as double reptation, 

convective constraint release, chain stretch, and finite extensibility are all accounted for in the 

model and are explained in further detail in the next section.  Chapter 4 further expands the 

experimental understanding of polymer layered silicate nanocomposites tested under LAOS flows.  

With surface treated montmorillonite clay nanofillers reacted to maleated polypropylene chains, 

particle-polymer chain dynamics are investigated using FT rheology.  Furthermore, where most 

research is concerned with the effect of particle-particle interactions, the systems presented here 

consist of primarily particle-polymer and polymer-polymer interactions. 
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The final portion (Chapter 5) investigates the formulation of polyamide blends reacted with 

a functionalized elastomeric oligomer under LAOS flows.  The oligomer of interest is 

polyisobutylene succinic anhydride (PIBSA).  For this research both FT rheology and stress 

decomposition are utilized to in the nonlinear analysis.  In viscoelastic materials, stress relaxation 

is dependent on both its viscous (energy dissipation) and elastic (energy storage) behavior.  In 

nonlinear rheology, the less dominant component is typically associated with the nonlinear 

behavior.  For polyamides, which are viscous dominant, the degree of nonlinearity is probed by 

added varying concentrations of the elastic dominant PIBSA.  Even with a low molecular weight, 

variation in PIBSA concentration show distinct transitions in the elastic nonlinear behavior 

suggesting the possibility of phase separation indicating suitable homogenous blend formulations. 
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CHAPTER 2 

NONLINEAR CHARACTERIZATION TECHNIQUES USING  

LARGE AMPLITUDE OSCILLATORY SHEAR FLOW 

 

2.1 Introduction 

The subject of this thesis is the nonlinear characterization of complex fluids under large 

amplitude oscillatory shear (LAOS) flows.  As the name suggests, LAOS tests involve dynamic 

testing of a material in a shear rheometer using large amplitude shear deformations.  While all 

dynamic shear rheometers are capable of imposing large strains onto a material, special hardware 

and software is needed to interpret the nonlinear response.  The implementation of the required 

hardware (i.e. high-speed data acquisition card) and the design of the necessary software are 

explained in detail here.  The software developed for this research was written using MATLAB.  

Similar packages to interpret LAOS flows include the MITLaos package developed by Ewoldt[43] 

as well as a LabView implementation designed by Wilhelm[13] and are freely available upon 

request. 

2.2 Data Acquisition 

The rheometer used in this study was an ARES-Classic manufactured by TA instruments.  

It is classified as a separated motor transducer (SMT) rheometer, where the two platens which 

compress the sample rotate independently from one another; the bottom plate applies the 

deformation (i.e. strain) while the top plate measures the torque (i.e. stress).  A 2K FRTN1 force 

rebalance torque transducer is equipped capable of measuring torques up to 2000 g-cm as well as 

simultaneously measuring normal forces during testing.  A schematic of the rheometer test setup 
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as suggested by Wilhelm[13] for LAOS flows is given in Figure 2.1 to help facilitate the 

discussion. 

 

 

Figure 2.1  Illustration of a typical rheometer designed for testing LAOS flows. 

A parallel plate geometry is depicted in Figure 2.1, though any shear geometry may be 

used for testing LAOS flows.  Couette geometries are useful for quantify low viscosity fluids such 

as dilute polymer solutions.  Torsion bars test solid samples that are below the glass transition 

temperature or at elevated temperatures below the melting point of the sample.  Cone and plate 

and parallel plate geometries are used for the more viscous polymer melts, with the latter being 

the subject of this research.  Giacomin et. al.[44] compared the FT rheology results between cone 

and plate and parallel plates and found that the nonlinear ratio 𝐼3/1 for parallel plates needed to be 

multiplied by 3/2 to match the nonlinear results of cone and plates.  Linear viscoelasticity needs 

no correction, though care must be taken when comparing nonlinear results. 
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In order to probe the nonlinear rheology of a sample under LAOS flows using one of the 

techniques introduced in the previous chapter (i.e. Lissajous-Bowditch, FT rheology and stress 

decomposition), raw voltages of the angular displacement (i.e. strain) and torque (i.e. stress) 

waveforms must first be acquired during testing from the rheometer.  Several components are 

required for the acquisition of these waveforms: 

(1) A rheometer capable of outputting voltages of angular displacement and torque through 

BNC (Bayonet Neill-Concelman) connectors 

(2) Double shielded BNC cables to prevent electronic noise 

(3) An analog-to-digital (A/D) BNC adapter 

(4) High-speed data acquisition (DAQ) card 

(5) A computer with sufficient random-access memory (RAM) installed 

(6) Software for communicating with rheometer, DAQ card and for post-processing LAOS 

data 

For the ARES used in this study, several BNC connections are available on the back-side 

of the rheometer depicted in Figure 2.2. 
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Figure 2.2  Rear panel connections for TA Instruments ARES-Classic rheometer.  

Doubled shielded BNC cables were connected to the Torque, Strain and Normal outputs in 

Figure 2.1.  The output voltages for each of these connections are summarized in Table 1.1. 

Table 1.1  Voltage ranges for 2K FRTN1 torque transducer equipped to ARES rheometer 

Connector Voltage Range 

Strain (angular displacement) 0 Volts = 0 radians,  ± 5 Volts = ± 0.5 radians 

Low Torque Calibration 0 Volts = 0 g-cm, ±5 Volts = ± 200 g-cm 

High Torque Calibration 0 Volts = 0 g-cm, ± 5 Volts = ± 2000 g-cm 

Normal Force 0 Volts = 0 gmf, ±10 Volts = ± 2000 gmf 

 

Identifying the range of voltages is an important step in the acquisition of accurate LAOS 

data as these can vary depending on the rheometer and transducer installed.  The torque voltages 

listed in Table 1.1 have two regimes for the 2K FRTN1 transducer: low torque and high torque.  

The rheometer automatically switches to the appropriate calibration depending on the measured 
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stress during testing.  This will be made more clearly in the next section, though it should be 

recognized that this transition can create a challenge in separating out the waveforms at individual 

strains during LAOS post-processing.  An additional input in Figure 2.2 labeled “command in” 

can be used to input a raw voltage corresponding to a strain waveform, adhering to the voltages in 

Table 1.1.  Klein et. al.[45] reconstructed stress data by mathematically superimposing several 

strain waveforms in the form of sine, rectangular, triangular and sawtooth shapes which were 

found to correspond to the linear response, strain thinning, shear thickening and wall slip 

characteristics, respectively.  By fitting these responses to the stress waveform, they were able to 

quantify each linear and nonlinear contribution based on the harmonics from FT rheology.  

Experimentally, this could be validated by testing these exotic waveforms using the “command 

in” connection, though this feature was not explored for the work presented in this thesis. 

Data acquisition was achieved using a 16-bit resolution high-speed DAQ card (PCIe-6341 

X series) by National Instruments with a 100 kS/sec/channel sampling rate (kS = kilo Samples).  

Resolution determines the number of discrete voltages that can be measured from the rheometer.  

For a 16-bit resolution, there are 216 measurable voltages for the ranges listed in Table 1.1.  

Sampling rate controls the number of voltages recorded over time.  Early high-speed data 

acquisition of LAOS flows by van Dusschoten and Wilhelm[11] used a 16-bit resolution DAQ 

card with a 33 kS/sec/channel sampling rate.  The sampling rate they suggested needed to be large 

enough to allow for oversampling of the data, taking several thousand data points (time, stress, 

strain etc.) and averaging them into a single data point.  Thus a 100 kS/sec sampling rate with an 

oversampling number of 1000 would generate 100 data points per second.  Oversampling serves 

two purposes: increasing the S/N ratio after Fourier transformation and to decrease file sizes.  The 

former is more important than the latter since large digital storage capacity has become more 
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affordable in recent years.  Oversampling is still reported as an “on-the-fly” process meaning that 

during testing the data is averaged according to a fixed oversampling number.  With larger storage 

devices and the fact that oversampling and S/N ratios are correlated, it is suggested here that 

averaging of the waveforms should occur in the pre-processing step outlined in the next section 

and not during the data acquisition step. 

The ARES rheometer is controlled by the TA Orchestrator software while data acquisition 

was accomplished via MATLAB using the built-in DAQ module.  This module is able to 

communicate directly with the National Instruments DAQ card.  Strain sweep tests are defined 

with the following parameters: frequency, initial strain, final strain, points per decade and cycles 

before measurement.  The total experiment runtime is dependent on frequency, points per decade 

and the number of cycles as follows, 

𝑡𝑒𝑥𝑝(𝑠) =
2𝜋(𝑃+1)(𝐶+1)

𝜔
 (2.1) 

Where 𝜔 is the testing frequency, P is the number of points per decade and C is the number of 

cycles before measurement.  The cycles before measurement represent a delay before the final 

measurement cycle i.e. the cycle used for determining the viscoelastic moduli.  The testing time 

should be evaluated before every test to ensure that the material will remain thermally stable.  In 

addition, file sizes generated from high-speed data acquisition may also be estimated in megabytes, 

𝑆𝑖𝑧𝑒 (𝑀𝐵) =
8𝑁𝐹𝑠𝑡𝑒𝑥𝑝

106  (2.2) 

Where N is the number of channels (i.e. time, stress, strain), 𝐹𝑠 is the DAQ sampling rate and the 

prefactor 8 are the number of bytes in a double-precision floating point number.  Clearly an 

increase in the number of strain amplitudes and cycles before measurement lead to larger file sizes, 

though these offer an increase in resolution and S/N ratios, respectively, for nonlinear analyses.  

The size of the file may be reduced significantly in the pre-processing stage after oversampling. 
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2.3 Pre-Processing 

The input for pre-processing is a single file containing the angular displacement, torque, 

and normal force voltages as well as time from a single LAOS test over several strain amplitudes.  

The pre-processing stage serves three purposes: oversampling the raw data, converting angular 

displacement and torque into strain and stress, and cropping the waveforms to their corresponding 

strain amplitudes. 

An example of the raw voltage waveforms for a polypropylene homopolymer at 1 rad/s is 

shown in Figure 2.3. 

 

Figure 2.3  Raw voltages of torque and angular displacement for an entire LAOS test. 

Inspection of the raw data show two trends that are typical in data collected during LAOS 

tests.  The first is a short dead time which is attributed to the time between starting data collection 

and beginning the strain sweep test from the TA Orchestrator software.  The time at which testing 

begins is manually recorded and the dead time is trimmed for post-processing.  The second feature 

is a sharp voltage drop in torque at 220 sec.  This corresponds to the rheometer switching between 
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low and high torque calibrations, which is unavoidable.  In addition to the voltage drop, the 

rheometer re-tests the strain amplitude which includes delaying for a set number of cycles, 

prolonging the experiment.   Post-processing is unaffected if the data is trimmed at the point where 

the high torque calibration occurs.  Hence, for raw voltage waveforms similar to Figure 2.3, the 

low torque and high torque calibrations are post-processed individually. 

As it was mentioned earlier, oversampling improves the S/N ratio by averaging over 

several thousand data points to create a smooth waveform.  This is illustrated in Figure 2.4, for a 

simple sinusoidal waveform generated statistical noise for different oversampling numbers, 𝑁𝑜., 

 

Figure 2.4.  Schematic illustrating the effect of oversampling number on a noisy waveform. 

All three cases in Figure 2.4 have features characteristic of a sine wave regardless of the amount 

of noise present.  For 𝑁𝑜. = 1, where there is no oversampling, the noise would contribute to higher 

order harmonics after Fourier transformation preventing the reconstruction of the original sine 

wave.  This noise is almost completely reduced for 𝑁𝑜. = 1000, where the original sine wave is 

recovered. 
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When interpreting real data, the choice in oversampling number is not arbitrarily made as 

in Figure 2.4.  Instead, the oversampling number is calculated based on the DAQ rate and 

excitation frequency, 

𝑁𝑜. ≡
𝐹𝑠

2𝑛𝑓0
=

𝜋𝐹𝑠

𝑛𝜔0
 (2.3) 

Where 𝐹𝑠 is the DAQ sampling frequency, 𝜔0 = 2𝜋𝑓0 is the excitation frequency and 𝑛 is the 

maximum observable harmonic in the nonlinear spectrum.  Due to the harmonic dependence on 

the oversampling number, the nonlinearity must be approximated before testing if oversampling 

were to occur “on-the-fly”.  By saving the data and oversampling after testing, a range of 

oversampling numbers can be tested to identify which harmonic generates the greatest S/N ratio. 

After oversampling the raw voltages, the data is clipped to individual strain amplitudes 

and converted from angular displacement and torque to strain and stress.  For parallel plates, the 

conversion of angular displacement 𝜃 follows to strain amplitude 𝛾0 follows, 

𝛾0 =
𝜃𝑅

𝐻
 (2.4) 

Where R is the plate radius and H is the gap height.  Converting torque 𝑀 to shear stress 𝜎 

follows, 

𝜎 =
2𝑀𝐺𝑐

𝜋𝑅3  (2.5) 

Where 𝐺𝑐 is the gravitational constant. 

Using the example polypropylene shown in Figure 2.3, the converted strain and stress 

waveforms at 𝛾0=1.56 and 1 rad/s are shown in Figure 2.5. 
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Figure 2.5  Oversampled and clipped stress and strain waveforms of polypropylene homopolymer 

at 𝛾0 = 1.56 and 1 rad/s. 

The LAOS test conducted to generate these waveforms was implemented using a 4-cycle 

delay before measurement with the rheometer running an extra cycle after delay resulting in 5 

cycles per strain shown in Figure 2.3.  Transitions between increasing strain amplitudes result in 

the occasional flow instability.  Thus, the first cycle is always neglected in LAOS analysis which 

explains why Figure 2.5 has 4 cycles.  Once the waveforms are appropriately scaled with Equations 

2.4-2.5 and clipped as in Figure 2.5, each strain is ready for LAOS analysis thus concluding the 

pre-processing step. 

2.4 Post-Processing – Representative Figures 

The MATLAB code developed for this research focuses on the three primary analyses for 

interpreting LAOS flows: Lissajous-Bowditch plots, FT rheology and stress decomposition.  This 

section details the type of curves obtained through the MATLAB code written for this thesis.  A 

full review of these methods is available elsewhere[5].   
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2.4.1 Lissajous-Bowditch Curves 

Lissajous-Bowditch plots are easily prepared by plotting the normalized stress waveform 

against the strain waveform.  They offer a quick qualitative interpretation into the viscoelasticity 

of a system.  Lissajous-Bowditch plots for polypropylene at 1 rad/s at several strains are shown in 

Figure 2.6. 

 

Figure 2.6  Lissajous-Bowditch curves for polypropylene at 1 rad/s showing effect of strain on 

viscoelasticity and steady-state behavior. 

Each strain presented in Figure 2.6 occurs in the LAOS region for this particular 

polypropylene.  From 𝛾0 = 0.3 to 1.56 the ellipsoidal shape begins to transition toward a more 

spherical behavior suggesting a viscous or liquid-like response associated with the 

disentanglement of chains at large strains.  A secondary purpose for Lissajous-Bowditch plots is 

identifying the steady state behavior of the polymer during testing.  Each Lissajous-Bowditch 

curve in Figure 2.6 is the superposition of 4 deformation cycles.  At large strains where 𝛾0 = 3, it 

is clear that a transient behavior is observed.  This transient may be due to melt edge fracture or 

sample drooling and should be neglected in a LAOS analysis such as FT rheology, since the 

transient behavior will affect the higher order harmonic contributions to stress. 
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2.4.2 Fourier Transform Rheology 

Fourier transform rheology was first introduced nearly two decades ago with the 

introduction of high speed data acquisition cards and pioneered by Wilhelm.  The LabView 

program written by Wilhelm implemented a discrete Fourier transform (DFT) algorithm to 

determine the Fourier coefficients and phase angles in Equation 1.2.  Similarly, the MATLAB 

code presented here computes the discrete Fourier transform using MATLAB’s fast Fourier 

transform (FFT) algorithm, 

𝑌(𝑘) = ∑ 𝑋(𝑗)𝑒(−2𝜋𝑖)(𝑗−1)(𝑘−1)/𝑛𝑛
𝑗=1  (2.6) 

Where 𝑋(𝑗) is a generalized discretized time-domain vector of length 𝑛, 𝑌(𝑘) is the corresponding 

imaginary frequency-domain Fourier spectrum vector.  Any imaginary number including 𝑌(𝑘) are 

generalized to the form 𝑎 + 𝑏𝑖 and the complex magnitude of this number yield the corresponding 

Fourier intensities, 

𝐼𝑛 = √𝑎2 + 𝑏2 (2.7) 

With corresponding phase angles, 

𝛿𝑛 = atan (
𝑏

𝑎
) (2.8) 

To determine the true viscoelastic phase angle, the strain waveform must also be Fourier 

transformed and the resulting phase angle subtracted from the stress phase angle. 

With the Fourier intensities determined from Equation 2.7, the corresponding intensity 

plots can be constructed as a function of the higher order harmonics.  The S/N ratio is evaluated 

from these figures and are sensitive to the choice in oversampling number.  The effect of 

oversampling number on the Fourier transform intensities are compared for the polypropylene 

sample at 𝛾0 = 1.56 and 1 rad/s in Figure 2.7. 
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Figure 2.7  Fourier intensity spectrum for polypropylene at 1 rad/s and 𝛾0=1.56 showing (a) 

correct (b) low and (c) high oversampling numbers. 

An example of an ideal oversampling number is shown in Figure 2.7(a), where the S/N 

ratio is 10,000:1, typical of polymer melts.  When the oversampling number is too low, as in Figure 

2.7(b), the S/N ratio is still quite high, however the presence of many higher harmonics results 

from the Fourier transform fitting noise instead of the true stress waveform.  Conversely, when the 

oversampling number is too large, as in Fig 2.7(c), the S/N ratio is too low and no distinguishable 

harmonics are present. 

The third harmonic intensity is the largest nonlinear contribution making it an ideal 

measure for nonlinear rheology.  This is the motivation for using the 𝐼3/1 parameter as a means to 

quantify structural morphologies and polymer topology.  For many neat polymers, 𝐼3/1 has been 

shown to increase quadratically with strain amplitude.  This feature is also predicted by all 
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constitutive models.  Due to the quadratic nature of 𝐼3/1, Hyun and Wilhelm formulated a nonlinear 

parameter Q[10], 

𝑄(𝜔, 𝛾0) =
𝐼3 1⁄

𝛾0
2  (2.9) 

Since the quadratic dependence of 𝐼3/1 is normalized in Q, a low strain plateau region is expected 

resulting in qualitative features similar to the linear viscoelastic moduli (i.e. strain 

stiffening/softening).  By taking the limit of Q at low strains, the strain dependence can be 

completely removed resulting in a frequency dependent nonlinear parameter known as the zero-

strain intrinsic nonlinearity 𝑄0, 

𝑄0(𝜔) = lim
𝛾0→0

𝑄 = lim
𝛾0→0

𝐼3/1

𝛾0
2  (2.10) 

The nonlinear parameters 𝐼3/1, Q and 𝑄0 are plotted for polypropylene at 1 rad/s in Figure 

2.8. 

 

Figure 2.8  FT rheology parameters for polypropylene at 1 rad/s showing (a) 𝐼3/1 and (b) 𝑄. 

Higher order harmonic contributions are by definition zero in the linear viscoelastic limit.  

The nonlinear harmonic contribution in Figure 2.8(a) at low strains is the result of electronic noise 

from the rheometer.  With increasing strain amplitude, the nonlinearity grows quadratically with 

strain amplitude indicating the onset of nonlinearity and the start of the LAOS regime at 𝛾0=0.4.  
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Similarly, at this strain a plateau is observed in Q which can be extrapolated to the limit of zero-

strain to get a value of the 𝑄0 parameter. 

2.4.3 Stress Decomposition 

The final LAOS analysis is a semi-qualitative technique known as stress decomposition 

where the shear stress is decomposed into elastic and viscous contributions, similar to the linear 

viscoelastic moduli except applicable to the nonlinear regime.  The original description of this 

technique was done by Cho et. al.[15] and later refined by Ewoldt et. al.[17] through the use of 

Chebyshev polynomials to calculate the elastic and viscous stresses.  An equivalent method for 

determining these stresses is by using the Fourier coefficients and phase angles from FT 

rheology[16], 

𝜎′ = ∑ 𝐼2𝑘+1 cos(𝛿2𝑘+1) sin [(2𝑘 + 1)𝜔𝑡]∞
𝑘=0  (2.11) 

𝜎′′ = ∑ 𝐼2𝑘+1 sin(𝛿2𝑘+1) cos [(2𝑘 + 1)𝜔𝑡)]∞
𝑘=0   (2.12) 

These stresses are compared to the total stress for polypropylene at 𝛾0 = 1.56 at 1 rad/s in 

Figure 2.9. The shape and magnitude of the elastic and viscous stresses relative to the overall shear 

stress is useful in determining the type of nonlinearity.  In Figure 2.9, the overall stress is most 

closely related to the viscous stress suggesting a liquid like response and the resulting nonlinearity 

is due to the elastic stress.  For more complex systems such as polymer nanocomposites where 

particle-particle interactions dominate, the elastic and viscous stresses are highly sensitive to the 

breakup of any filler network that forms[18]. 
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Figure 2.9  Elastic and viscous stress waveforms relative to total stress waveform for 

polypropylene at 1 rad/s and 𝛾0=1.56. 

2.5 Conclusions 

This chapter focuses on the necessary framework for testing the nonlinear rheology of 

complex fluids under large amplitude oscillatory shear flows.  A rheometer capable of outputting 

raw voltages of stress and strain has the capability of testing LAOS flows so long as a high-speed 

data acquisition card is used to collect the data.  Faster sampling rates provide a greater S/N ratio 

which is essential to determine the nonlinearity present in a system.  These nonlinearities are 

interpreted through several techniques such as Lissajous-Bowditch plots, Fourier transform 

rheology and stress decomposition.  The most sensitive method, FT rheology, has been recently 

cited in the literature as being able to detect structural morphologies, polymer topology such as 

long chain branching, and even percolation thresholds in polymer nanocomposites. 
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CHAPTER 3 

DYNAMICS OF ENTANGLED POLYMER CHAINS WITH  

NANOPARTICLES ATTACHMENT UNDER  

LARGE AMPLITUDE OSCILLATORY SHEAR (LAOS) 

 

3.1 Introduction 

The rheology of polymer melts reinforced with nanoparticles is of continued interest[36, 

39, 40, 46-49] because of the broad range of potential applications for these materials. In addition 

to varying the loading of nanoparticles, particle-particle interactions and polymer-particle 

interactions may be varied producing a variety of structural features with associated rheological 

signatures.  For particle volume fractions above the percolation threshold, a filler network may be 

formed by direct particle-particle interactions or indirectly through bridging chains between 

nanoparticle surfaces. The nonlinear viscoelastic behavior of such polymer nanocomposites has 

been attributed largely to the breakup of the filler networks. Polymer-particle interactions may lead 

to a shell of adsorbed chains around the particles that have greatly reduced mobility.[50-54] 

Furthermore, the attached polymer in this shell may be highly stretched.[52] Entanglement 

networks between free polymer chains and polymer chains attached to nanoparticles are also 

present.[55]  Since polymer chains may be attached to nanoparticles with varying levels of 

interaction using different coupling agents and at different sites[38, 56, 57] like edges and faces of 

nanolayers, it is important to understand the contribution that entangled chains attached to 

nanoparticles make to the rheology of the nanocomposite melts.  

When a polymer nanocomposite melt is subjected to large amplitude oscillatory shear 

(LAOS), the filler network is the first to breakdown leading to a strain amplitude dependence of 



 

35 
 

the viscoelastic moduli known as the Payne effect.[36, 40, 46] The Payne effect has also been 

reported in nanocomposites with very low volume fractions of nanoparticles[58] where polymer-

particle interactions dominate.    The stress response in large amplitude oscillatory flows may be 

analyzed using Fourier transform (FT) rheology[11, 13, 14] and stress decomposition[15-17, 20, 

59] (SD).  In FT rheology, the combination of fast data acquisition[14] rates and oversampling[11] 

allow detection of higher harmonic content in the torque response- in  particular the ratio 𝐼3/1  of 

the third harmonic to the base harmonic. Hassanabadi et al.[7] have noted that the intensity ratio 

increases progressively with volume fraction of nanoparticles in an EVA melt; the power law 

exponent of the intensity ratio against strain amplitude decreases progressively from the value of 

2 observed with the unfilled melt. An important point to note here is that the strain amplitude range 

for LAOS tests on polymer melts in rotational rheometers is limited by the onset of edge fracture. 

In another paper comparing the responses of polyethylene nanocomposites with carbon nanotube 

loading below and above the percolation threshold, Ahirwal et al.[6] report different trends in the 

intrinsic nonlinearity parameter Q0 with frequency. 

The dynamics of entangled polymer chains are well represented by reptation-based tube 

models.[26] One such model is the Marrucci-Ianniruberto[60] constitutive equation.  Reptation of 

polymers, originally proposed by de Gennes[27] and later refined by Doi and Edwards,[28-31] 

was developed to describe the diffusive motion of a polymer chain, i.e. “primitive chain”, around 

a series of obstacles.  These obstacles, made up of other polymer chains, form entanglements with 

the primitive chain to create a temporary cage, i.e. “tube”.  The timescale for the primitive chain 

to diffuse out of the tube is referred to as the reptation time or disengagement time.  The primitive 

chain and tube are progressively longer with increasing molecular weight, resulting in more 

entanglements and hence longer reptation times. Since the inception of the tube model, additional 
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relaxation mechanisms have been introduced.  Specifically, in the single mode Marrucci-

Ianniruberto model, these are: double reptation, convective constraint release (CCR), chain stretch, 

and finite extensibility effects. 

The dynamics of a mixture of free polymer chains and polymer chains attached to 

nanoparticles has been modeled recently by Sarvestani.[61] The stress was obtained by linear 

averaging over volume fractions (𝜙) of the two types of chains 

𝝈 =  𝜙𝑓𝝈𝑓 + 𝜙𝑎𝝈𝑎 (3.1) 

denoted by the indices 𝑓 and 𝑎. The stress contribution for each type of chain was predicted with 

a single mode Marrucci-Ianniruberto constitutive equation used to describe the chain dynamics. 

The relaxation times of the nanoparticle-attached chains were taken to be much greater than those 

of the free chains. Results of computations were presented to show that disentanglement of the 

attached chains by convective constraint release (CCR), a mechanism relevant to fast flows, could 

lead to strong nonlinear viscoelastic effects including the strain softening of the dynamic moduli. 

The present work seeks to address two limitations of the mixture model presented by 

Sarvestani.[61] First, linear averaging over volume fraction is inconsistent with the double 

reptation formulation of the Marrucci-Ianniruberto model required for representing the mixture of 

chains. Furthermore, the CCR parameter which was assumed to be the same for both types of 

chains in that work, will in general be different for the two types of chains, as explained in the 

following sections. 

The objective of this paper is to present a different version of the Sarvestani[61] model 

with FT rheology results from numerical computations as well as an asymptotic analysis for the 

zero-strain intrinsic nonlinearity parameter 𝑄0. This model incorporates (a) an averaging scheme 

consistent with the double reptation formulation for a mixture of different types of entangled 
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chains based on types of entanglements and (b) different CCR parameters for the two types of 

chains in describing the nonlinear viscoelastic response to large amplitude oscillatory shear of 

nanoparticle filled polymer melts.  

3.2 Theory 

3.2.1 Model for Polymer Nanocomposites 

The entanglement network in polymer nanocomposites arises from a mixture of two chain 

types: free matrix chains and particle-attached chains. A proper mixing rule is necessary to model 

the entanglement contribution to the stress. The mixing rule used here for such bi-disperse blends 

is given in Equation 2. 

𝝈 = ∑ 𝜙𝑖𝜙𝑗𝝈𝑖𝑗

𝑖,𝑗
 (3.2) 

A bilinear averaging scheme weighted with the volume fraction of chains 𝜙 is used for the stress 

tensor 𝝈𝑖𝑗 where the indexing corresponds to the i-th “test” chain entangled with the j-th “tube” 

chain.  Test chains are able to remove entanglements with tube chains by a process known as 

reptation at a time scale 𝜏𝐷, the reptation time.  Similarly, tube chains undergo the same reptative 

relaxation mechanism resulting in an additional loss of entanglements with the test chains.  The 

combined loss of entanglements between both test and tube chains through reptation is known as 

double reptation.[26]  The timescale associated with the loss of entanglements through double 

reptation is given as, 

1

𝜏𝐷
𝑖𝑗 =

1

𝜏𝐷
𝑖 +

1

𝜏𝐷
𝑗  (3.3) 

For polymer nanocomposites, the mixing rule in Equation 2 is expanded as follows. 

𝝈 = (1 − 𝜙𝑎)2𝝈𝑓𝑓 + (1 − 𝜙𝑎)𝜙𝑎𝝈𝑓𝑎 + (1 − 𝜙𝑎)𝜙𝑎𝝈𝑎𝑓 + 𝜙𝑎
2𝝈𝑎𝑎  (3.4) 
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where the superscripts 𝑖, 𝑗 have been replaced with 𝑓, 𝑎 to denote free and attached chains, 

respectively.  The free chain volume fraction is taken as 𝜙𝑓 = 1 − 𝜙𝑎, where 𝜙𝑎 is the volume 

fraction of attached chains. 

The stress tensor, 𝝈𝑖𝑗 obeys the relation given by Marrucci and Ianniruberto,[60] 

𝝈𝑖𝑗 = 3𝐺𝑁
0 𝑓𝑖𝑗𝑨𝑖𝑗 (3.5) 

where 𝐺𝑁
0  is the plateau modulus determined from linear viscoelasticity and 𝑨𝑖𝑗 is the coupled 

orientation-stretch tensor, unique to the Marrucci-Ianniruberto model.  For large amplitude flows, 

chain stretch is likely to occur and thus a complete model should incorporate a finite extensibility 

parameter[62] 𝑓𝑖𝑗, 

𝑓𝑖𝑗 =
𝑏𝑖−1

𝑏𝑖−𝑡𝑟𝑨𝑖𝑗 (3.6) 

Here, 𝑏𝑖 is comparable to the square of the maximum chain stretch of the i-th chain.   

The coupled orientation and chain stretch tensor, 𝑨𝑖𝑗, is solved using the single mode 

differential Marrucci-Ianniruberto model, 

𝑑𝑨𝑖𝑗

𝑑𝑡
= 𝜿 ∙ 𝑨𝑖𝑗 + 𝑨𝑖𝑗 ∙ 𝜿𝑻 −

𝑓𝑖𝑗

𝜏𝑜𝑟
𝑖𝑗 (𝑨𝑖𝑗 −

1

3
𝑡𝑟𝑨𝑖𝑗𝑰) −

1

3𝜏𝑆
𝑖 (𝑓𝑖𝑗𝑡𝑟𝑨𝑖𝑗 − 1)𝑰  (3.7) 

where 𝜿 is the velocity gradient tensor.  The last two terms on the right-hand side of Equation 7 

correspond to the reptation and chain stretch relaxation mechanisms, respectively.  The 

characteristic relaxation times are given as the orientation time, 𝜏𝑜𝑟
𝑖𝑗

 and the chain stretch relaxation 

time, 𝜏𝑠
𝑖 .  By taking the trace of Equation 7, the chain stretch equation takes the form, 

𝑑(𝑡𝑟𝑨𝑖𝑗)

𝑑𝑡
= 2𝜿 ∙̇ 𝑨𝑖𝑗 −

1

𝜏𝑆
𝑖 (𝑓𝑖𝑗𝑡𝑟𝑨𝑖𝑗 − 1) (3.8) 

From the derivation of the coupled orientation-stretch tensor 𝑨𝑖𝑗, the trace of 𝑨𝑖𝑗 is equivalent to 

the square of chain stretch.[60] For which it is clear that the rate of chain stretch is controlled by 

the stretch relaxation time. 
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 As a consequence of the mixing rule in Equation 4, the orientation time originally derived 

by Marrucci and Ianniruberto [60] is modified to take the form, 

1

𝜏𝑜𝑟
𝑖𝑗 = (

1

𝜏𝐷
𝑖 +

1

𝜏𝐷
𝑗 ) + [

1

𝜏𝑆
𝑖 − (

1

𝜏𝐷
𝑖 +

1

𝜏𝐷
𝑗 )]

𝛽𝑗(𝑓𝑖𝑗𝑡𝑟𝑨𝑖𝑗−1)

1+𝛽𝑗(𝑓𝑖𝑗𝑡𝑟𝑨𝑖𝑗−1)
 (3.9) 

where 𝜏𝑆 is the stretch relaxation time and 𝛽𝑗 is the CCR parameter for the tube chains.   

 For small amplitude oscillatory shear (SAOS) flows, the speed and deformation are not 

sufficient in magnitude to cause chains to stretch (i.e. 𝑡𝑟𝑨𝑖𝑗 ≈ 1) forcing the orientation time in 

Equation 3.9 to follow the double reptation timescale shown in Equation 3.3.  For LAOS flows, 

chain stretch can occur and the CCR effect, the second term on the right-hand side of Equation 

3.9, decreases the orientation time through the removal of entanglements.  The rate at which these 

entanglements are removed is controlled by the CCR parameter.  It should be noted that in SAOS 

flows, where chain stretch does not occur, there is symmetry between free-attached and attached-

free entanglements (i.e. 𝝈𝑓𝑎 = 𝝈𝑎𝑓).  This is not necessarily true, however, for LAOS flows as the 

CCR effect and chain stretch relaxation time in Equation 3.9 may reduce the orientation time at 

different rates for each entanglement.   

In this model characteristic relaxations times were defined as a set of dimensionless quantities, 

𝑐 = 𝜏𝐷
𝑎 𝜏𝐷

𝑓⁄  (3.10) 

𝑟𝑓 = 𝜏𝑆
𝑓

𝜏𝐷
𝑓

⁄  (3.11) 

𝑟𝑎 = 𝜏𝑆
𝑎 𝜏𝐷

𝑓⁄  (3.12) 

𝑠 = 𝜏𝑆
𝑎 𝜏𝑆

𝑓⁄ = 𝑟𝑎 𝑟𝑓⁄  (3.13) 

Here it should be noted ratio of reptation times, 𝑐 in Equation 3.10, was originally described by 

Sarvestani [55] and is referred to in this work as the relative strength of attachment, with strong 
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attachment yielding greater values of 𝑐.  The quantities in Equations 3.11-3.12 are referred to as 

the relative stretch times and are related by the parameter 𝑠, defined in Equation 3.13. 

3.2.2 LAOS Simulation Scheme 

The shear stress components, 𝜎12
𝑖𝑗

,  in Equation 3.4 for simple shear flows are calculated using 

the component forms of Equation 3.7 for each entanglement pair, 

𝑑𝐴12
𝑖𝑗

𝑑𝑡
= 𝜔𝛾0 cos(𝜔𝑡) 𝐴22

𝑖𝑗
−

𝑓𝑖𝑗𝐴12
𝑖𝑗

𝜏𝑜𝑟
𝑖𝑗  (3.14) 

𝑑𝐴22
𝑖𝑗

𝑑𝑡
= −

𝑓𝑖𝑗(𝐴22
𝑖𝑗

−𝑡𝑟𝐴𝑖𝑗 3⁄ )

𝜏𝑜𝑟
𝑖𝑗 −

𝑓𝑖𝑗𝑡𝑟𝐴𝑖𝑗−1

3𝜏𝑆
𝑖  (3.15) 

𝑑(𝑡𝑟𝐴𝑖𝑗)

𝑑𝑡
= 2𝜔𝛾0 cos(𝜔𝑡) 𝐴12

𝑖𝑗
−

𝑓𝑖𝑗𝑡𝑟𝐴𝑖𝑗−1

𝜏𝑆
𝑖  (3.16) 

where the orientation time, 𝜏𝑜𝑟
𝑖𝑗

 is defined in Equation 3.9.   

Two types of simulations are performed: strain sweep tests and frequency sweep tests.  Strain 

sweep tests are conducted to investigate trends at large strains.  For low and moderate strains, an 

asymptotic solution is derived and discussed in the next section.  Frequency sweep tests are 

simulated to validate the asymptotic solution.  For both tests, the shear stress component in 

Equation 3.5 is solved for each entanglement pair by first solving the coupled ordinary differential 

equations in Equations 3.14-3.16 using MATLAB.  The result are four shear stresses, each 

corresponding to a different entanglement pair, which are combined into a total shear stress 

according to the mixing rule in Equation 3.4.  Using MATLAB’s fast Fourier transformation (FFT) 

package, the total shear stress is evaluated using a Fourier series expansion,[3] 

𝜎12(𝑡) = ∑ 𝐼𝑛sin (𝑛𝜔𝑡 + 𝛿𝑛)𝑛,𝑜𝑑𝑑  (3.17) 
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where 𝐼𝑛 and 𝛿𝑛 are the Fourier coefficients and phase angles for the 𝑛𝑡ℎ harmonic, respectively.  

Representing the stress as a Fourier series as in Equation 3.17 begins the analysis known as Fourier 

transform (FT) rheology.[13] 

Using the first harmonic (𝑛 = 1), the linear viscoelastic storage modulus, 𝐺′ and loss 

modulus 𝐺′′ are obtained, 

𝐺′(𝜔, 𝛾0) = 𝐼1cos (𝛿1)/𝛾0 (3.18) 

𝐺′′(𝜔, 𝛾0) = 𝐼1sin (𝛿1)/𝛾0 (3.19) 

A characteristic measure for FT rheology is the relative third harmonic ratio, 𝐼3/1, defined as, 

𝐼3 1⁄ (𝜔, 𝛾0) ≡ 𝐼3 𝐼1⁄  (3.20) 

The relative third harmonic ratio is reported to scale quadratically with strain,[5, 10] a trend 

predicted by all constitutive models[63] including the one presented in this work, as will be 

discussed in a later section.   

Noting the quadratic dependence of 𝐼3/1 with strain, Hyun and Wilhelm[10] derived a 

nonlinear parameter 𝑄, 

𝑄(𝜔, 𝛾0) = 𝐼3 1⁄ /𝛾0
2 (3.21) 

At low strains, 𝑄 becomes independent of strain leading to a new nonlinear parameter 𝑄0, 

𝑄0(𝜔) ≡ lim
𝛾0→0

𝑄(𝜔, 𝛾0) = lim
𝛾0→0

𝐼3 1⁄ (𝜔,𝛾0)

𝛾0
2  (3.22) 

where 𝑄0 is now referred to as the zero-strain intrinsic nonlinearity, a frequency dependent 

parameter. 

3.2.3 Asymptotic Analysis for 𝑄0(𝜔) 

Since 𝑄0 is a zero-strain limit parameter, a low strain asymptotic solution is derived by 

expanding the tensor 𝑨𝑖𝑗 using a power series expansion of the strain amplitude, 𝛾0, 
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𝑨𝑖𝑗 =
1

3
[𝑰 + 𝒂𝟏

𝑖𝑗
𝛾0 + 𝒂𝟐

𝑖𝑗
𝛾0

2 + 𝑂(𝛾0
3)] (3.23) 

and the chain stretch, which is equivalent to the trace of 𝑨𝒊𝒋, is written as 

𝑡𝑟𝑨𝑖𝑗 = 1 +
1

3
[𝑡𝑟𝒂𝟏

𝑖𝑗
𝛾0 + 𝑡𝑟𝒂𝟐

𝑖𝑗
𝛾0

2 + 𝑂(𝛾0
3)] (3.24) 

Substitution of Equations 3.23-3.24 into Equations 3.7-3.8 yields a set of differential equations 

which are solved analytically and substituted into Equation 3.5 to obtain the low strain asymptote 

of shear stress, 𝜎12
𝑖𝑗

(𝑡) for each entanglement pair. 

The real, 𝐼𝑛,𝑖𝑗
′  and imaginary, 𝐼𝑛,𝑖𝑗

′′   Fourier components are determined from the stress 

waveform for the 𝑛𝑡ℎ harmonic as follows, 

𝐼𝑛,𝑖𝑗
′ =

𝜔

𝜋
∫ 𝜎12

𝑖𝑗
(𝑡) sin(𝑛𝜔𝑡) 𝑑𝑡

𝜋

𝜔

−
𝜋

𝜔

 (3.25) 

𝐼𝑛,𝑖𝑗
′′ =

𝜔

𝜋
∫ 𝜎12

𝑖𝑗
(𝑡) cos(𝑛𝜔𝑡) 𝑑𝑡

𝜋

𝜔

−
𝜋

𝜔

 (3.26) 

The real and imaginary Fourier components in Equations 3.25-3.26 are then combined using the 

mixing rule in Equation 3.2 for each 𝑛-th harmonic, 

𝐼𝑛
′ =  ∑ 𝜙𝑖𝜙𝑗𝑖,𝑗 𝐼𝑛,𝑖𝑗

′  (3.27) 

𝐼𝑛
′′ =  ∑ 𝜙𝑖𝜙𝑗𝑖,𝑗 𝐼𝑛,𝑖𝑗

′′   (3.28) 

where the storage and loss moduli for each harmonic take the form, 

𝐺𝑛
′ = 𝐼𝑛

′ /𝛾0
𝑛 (3.29) 

𝐺𝑛
′′ = 𝐼𝑛

′′/𝛾0
𝑛 (3.30) 

Finally, the asymptotic expression for 𝑄0 is obtained as, 

𝑄0(𝜔) =
√(𝐼3

′ )
2

+(𝐼3
′′)

2

√(𝐼1
′ )

2
+(𝐼1

′′)
2

∙
1

𝛾0
2 (3.31) 
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3.3 Results and Discussion 

3.3.1 Linear Viscoelasticity 

Linear viscoelastic frequency sweeps are first investigated using an asymptotic analysis as 

outlined in the previous section.  By integrating the shear stress using Equations 3.25-3.26, the real 

and imaginary first harmonic intensities for the entanglement pairs are obtained as, 

𝐼1,𝑖𝑗
′ =

𝐺𝑁
0 𝐷𝑒𝑖𝑗2

1+𝐷𝑒𝑖𝑗2 𝛾0 (3.32) 

𝐼1,𝑖𝑗
′′ =

𝐺𝑁
0 𝐷𝑒𝑖𝑗

1+𝐷𝑒𝑖𝑗2 𝛾0 (3.33) 

where, for generality, the Deborah number, 𝐷𝑒𝑖𝑗 = 𝜔𝜏𝐷
𝑖𝑗

, is defined using the characteristic 

timescale for double reptation given in Equation 3.3.  It is more convenient and practical to express 

these numbers in terms of the Deborah number defined with the free chain reptation time, 𝐷𝑒 =

𝜔𝜏𝐷
𝑓
.  The relationship between 𝐷𝑒𝑖𝑗 and 𝐷𝑒  is given in Table 3.1. 

Table 3.1 Relationship between 𝐷𝑒𝑖𝑗 and 𝐷𝑒 for each entanglement pair 

 𝑓, 𝑓 𝑓, 𝑎 𝑎, 𝑓 𝑎, 𝑎 

𝐷𝑒𝑖𝑗 
𝐷𝑒

2
 

𝑐𝐷𝑒

𝑐 + 1
 

𝑐𝐷𝑒

𝑐 + 1
 

𝑐𝐷𝑒

2
 

 

Combining Equation 3.32 with Equations 3.27 and 3.29, the linear viscoelastic storage modulus is 

given as, 

𝐺0
′

𝐺𝑁
0 = ∑

𝜙𝑖𝜙𝑗𝐷𝑒𝑖𝑗2

1+𝐷𝑒𝑖𝑗2𝑖,𝑗   (3.34) 

An expression for the loss modulus may also be obtained in the same fashion.  The storage 

modulus, which scales quadratically with frequency in the terminal region, is most sensitive to 

relaxation phenomena and is therefore investigated in this section.   
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It is evident from Table 3.1 and Equation 3.34 that two parameters govern the trends in the 

linear viscoelastic storage modulus: the strength of individual chain attachment 𝑐 and the volume 

fraction of attached chains 𝜙𝑎.  The effects of these parameters on the storage modulus are shown 

in Figure 3.1.  

 

Figure 3.1 Asymptotic solutions for linear viscoelastic storage modulus with (a) varying strength 

of attachment 𝑐 and fixed 𝜙𝑎 = 0.1; (b) varying volume fraction of attached chains 𝜙𝑎 and fixed 𝑐 

= 20. 

It is seen from Figure 3.1(a) that with increasing values of 𝑐 at a fixed value of 𝜙𝑎 = 0.1, an 

increase in the modulus is observed, particularly at lower frequencies. The increase in modulus for 

nanocomposites, particularly at low frequencies, is well known for systems where polymer-particle 

interactions occur.  Surface treatment of the filler, which increases the number of active sites for 

attachment with the matrix, is one method to promote polymer-particle interactions.  Figure 3.1(b) 
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shows that an increase in 𝜙𝑎 with a fixed value of 𝑐 = 20, also increases the magnitude of the 

storage modulus at low frequencies.  With increasing values of 𝑐 and 𝜙𝑎, the “low frequency 

plateau” in the storage modulus is  observed at low Deborah numbers, starting at De=2/𝑐. This 

corresponds to the normalized inverse of the attached chain relaxation time, where the factor of 2 

comes from double reptation. 

In the next section, the nonlinear viscoelastic regime is discussed where additional 

nonlinear relaxation mechanisms relax the stress: convective constraint release, chain retraction 

and finite extensibility. 

3.3.2 LAOS Strain Sweeps 

Strain sweep simulations conducted using 24 logarithmically spaced strain amplitudes 

ranging from 0.01 to 10 are tested over varying Deborah numbers.  For each strain, 1000 cycles 

with 216 data points per cycle are simulated.  The number of data points per cycle is chosen to 

improve the signal-to-noise ratio during Fourier transform rheology calculations.[9]  The choice 

in cycle number is necessary to reduce numerical error[8] and validate numerical simulations with 

asymptotic solutions. 

Strain sweep simulations are used to probe the nonlinear behavior of the model.  At large 

amplitudes, several nonlinear relaxation mechanisms occur: CCR, chain stretch and finite 

extensibility effects.  In slow to moderate flows (i.e. De < 1/𝜏𝑆), the CCR relaxation has a 

pronounced effect on the nonlinearity.  Uniform CCR rates having 𝛽𝑎 = 𝛽𝑓, for both free and 

attached chains are presented first and followed by independently varying CCR rates, 𝛽𝑎 ≠ 𝛽𝑓.  

Chain stretch relaxation and finite extensibility parameters are taken from Marrucci and 

Ianniruberto[60] as 𝑟𝑓 = 𝑟𝑎 = 0.01 and 𝑏𝑓 = 𝑏𝑎 = 100, respectively, and remained constant for the 
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analysis of this work.  This is a reasonable choice since chains become fully stretched only for 

flows with De > 1/𝜏𝑆, which are not discussed in this work. 

Four types of entanglements are present in the system: those in an attached chain 

environment (i.e. attached and free test chains entangled with attached tube chains) and those in a 

free chain environment (i.e. attached and free test chains entangled with free tube chains).  For 

uniform CCR rates where 𝛽𝑎 = 𝛽𝑓, the stress magnitudes follow: 𝜎𝑎𝑎 > 𝜎𝑎𝑓 = 𝜎𝑓𝑎 > 𝜎𝑓𝑓 where 

the larger stresses have slower relaxation rates.  The equality for mixed chain entanglements may 

be inferred from orientation time in Equation 3.9 when the reptation, CCR and chain stretch 

relaxation modes are equivalent.  Since these entanglements are indistinguishable, they contribute 

equally to the overall system stress and nonlinearity. 

The strain dependence of the storage modulus for the matrix (𝜙𝑎 = 0) and two 

nanocomposites (𝜙𝑎 = 0.1) having both weak (𝑐 = 5) and strong (𝑐 = 20) polymer-particle 

interactions with for 𝛽𝑎 = 𝛽𝑓 = 1 is shown in Figure 3.2. For all cases, De = 1 has an onset of 

nonlinearity near 𝛾0 = 1 and demonstrates the most intense strain softening effect.  For De = 0.1, 

the composites onset are 𝛾0 = 2 and 0.5 for 𝑐 = 5 and 20, respectively, where the matrix onset 

occurs near 𝛾0 = 4.  The decrease in onset strain amplitude with increase in particle-polymer 

attachment is similar to the Payne effect, however for dilute systems the effect is associated with 

the breakdown of entanglement networks and not a filler network.  At low Deborah numbers (De 

= 2/𝑐), the strain softening is due to the breakdown of attached-attached networks.  At high 

Deborah numbers (De > 2), all entanglements are lost resulting in the greatest degree of strain 

softening.  To further investigate the nonlinearity in Figure 3.2, the accompanying third harmonic 

ratio 𝐼3/1 from FT rheology is presented in Figure 3.3. 
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Figure 3.2 Numerical predictions of dynamic storage modulus with strain amplitude and 𝛽𝑎 = 𝛽𝑓 

= 1 for (a) matrix; (b) composite with 𝜙𝑎 = 0.1 and 𝑐 = 5; (c) composite with 𝜙𝑎 = 0.1 and 𝑐 = 20.   
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Figure 3.3 Numerical predictions of 𝐼3/1 with strain amplitude and 𝛽𝑎 = 𝛽𝑓 = 1 for (a) matrix; (b) 

composite with 𝜙𝑎 = 0.1 and 𝑐 = 5; (c) composite with 𝜙𝑎 = 0.1 and 𝑐 = 20.   
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In all cases, the 𝐼3/1 is shown to scale quadratically with strain amplitude.  Deviation from 

this scaling is considered the onset of nonlinearity,[5] shown in Figure 3.2.  Comparing the matrix 

and 𝑐 = 5 cases, a monotonic increase in the 𝐼3/1 magnitude with increasing Deborah number is 

observed, with the value for the composite being slightly greater at all Deborah numbers.  A clear 

reversal in the 𝐼3/1 trends at De = 0.1 and 0.2 for 𝑐 = 20 is shown in Figure 3.3(c).  Here, the 

nonlinearity goes through a minimum at De = 0.2 from De = 0.1 to 1 for the stronger attachment.  

The Deborah number where this minimum occurs corresponds to the low De plateau observed 

from the linear viscoelastic frequency sweeps in Figure 3.1.  For De = 0.2 in Figure 3.3(c), the 

nonlinearity deviates from a quadratic scaling with strain amplitude and exhibits a greater power 

law exponent with strain near 𝛾0 = 1  than the matrix and 𝑐 = 5 cases, which still show a power 

law exponent of 2.  The contrast between c = 20 and c = 5 is more strongly evident in the plots of 

another nonlinear parameter 𝑄, defined in Equation 3.21 and presented in Figure 3.4. 

With increasing strain amplitude, a decrease in 𝑄 is observed for all cases except 𝑐 = 20, 

where instead an overshoot is observed for De = 0.2.  This overshoot in 𝑄 is reported for comb 

polymers with highly entangled arms experimentally by Hyun and Wilhelm[10] and numerically 

predicted by Hyun et al.[9] using the pom-pom model. In comb polymers and branched polymers, 

to which the pom-pom model applies, the backbone can relax substantially only after the branches 

relax.[27]  This  is not the case in polymer nanocomposites, where both the attached chain 

entanglements and free chain entanglements are able to relax simultaneously.  Only decreases in 

𝑄 with strain amplitude have been reported for nanocomposites-- possibly because the LAOS 

testing was not done in the low frequency region.  At this time, more research in the area of 

nanocomposites is needed to verify trends in 𝑄. 
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Figure 3.4 Numerical predictions of 𝑄 with strain amplitude and 𝛽𝑎 = 𝛽𝑓 = 1 for (a) matrix; (b) 

composite with 𝜙𝑎 = 0.1 and 𝑐 = 5; (c) composite with 𝜙𝑎 = 0.1 and 𝑐 = 20. 
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Figure 3.5 Effect of uniform CCR rates for composites with 𝜙𝑎 = 0.1 and 𝑐 = 20 at De = 0.2 on 

(a) 𝐼3/1; (b) 𝑄.  Stretch parameters: 𝑟𝑎 = 𝑟𝑎 = 0.01 and 𝑏𝑎 = 𝑏𝑓 = 100. 

The effect of varying CCR on the overshoot in 𝑄 is examined first with uniform CCR rates: 

𝛽𝑎 = 𝛽𝑓 and next with independently varying CCR rates where 𝛽𝑎 ≠ 𝛽𝑓.  Two cases of uniform 

CCR rates are shown in Figure 3.5. An increase in 𝛽𝑎 = 𝛽𝑓 from 1 to 5 leads to increases in  𝐼3/1 

and 𝑄.  The qualitative trends in both parameters are preserved with an increase in the CCR 

parameter: an increase in the power law exponent of 𝐼3/1 with strain amplitude and the presence 

of an overshoot in 𝑄.  An increase in nonlinearity with increasing CCR parameter is also reported 

by Sarvestani[61] in his model computations with respect to the dynamic storage modulus at large 

strains. 
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The choice of independently varying CCR rates, where 𝛽𝑎 ≠ 𝛽𝑓, is proposed to control the 

rate of release of entanglements during flow for each network.  The motivation for this stems from 

the reported configurations of attached chains especially close to the nanoparticle surface. Holt et. 

al.[52] also simulated particle-polymer interactions of varying strengths and molecular weights 

and found that for stronger chain attachment through covalent bonding, particle-attached chains 

are stretched near the particle surface, while still entangled with the bulk matrix far away from the 

surface.  Senses and Akcora[64] derived a mechanistic model to predict the elastic stress buildup 

in polystyrene/silica nanocomposites under LAOS flows and found that the model matches well 

with experiments when chains near the filler surface are stretched.  These results imply that a 

distribution of stretching occurs along the attached chain segments during flow.  Stretched chains 

are unable to form entanglements until fully retracted,[26] thus a distribution of stretching in the 

attached chains would lead to fewer entanglements than with unstretched chains.  Hence we have 

chosen to represent this effect with a higher CCR parameter for the attached chains; i.e. 𝛽𝑎 > 𝛽𝑓. 

For large 𝛽𝑎, 𝜏𝑜𝑟
𝑓𝑎

 for the free-attached entanglements approaches 𝜏𝑆
𝑓
 resulting in faster relaxation 

than the attached-free entanglements.  This faster relaxation leads to the following ordering of 

component stresses from different types of entanglements: 𝜎𝑎𝑎  > 𝜎𝑎𝑓 > 𝜎𝑓𝑎 > 𝜎𝑓𝑓, where now the 

component stresses of mixed chain entanglements are no longer equal as they are with uniform 

CCR rates allowing each entanglement to uniquely contribute to the stress and nonlinearity.  

Conversely, it follows that attached chains convected at a slower rate will require 𝛽𝑎 < 𝛽𝑓 in which 

𝜏𝑜𝑟
𝑎𝑓

 approaches 𝜏𝑠
𝑎 and the stresses follow: 𝜎𝑎𝑎  > 𝜎𝑓𝑎 > 𝜎𝑎𝑓 > 𝜎𝑓𝑓.  It is the effect of CCR on the 

chain environment (i.e. attached and free chains entangled with attached tubes) and the mixing of 

these entanglement networks which show differences in the nonlinearity for 𝛽𝑎 > 𝛽𝑓 and 𝛽𝑎 < 𝛽𝑓. 
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Figure 3.6  𝐼3/1 predicted with (a) 𝛽𝑎 > 𝛽𝑓 and (b)  𝛽𝑎 < 𝛽𝑓 for nanocomposites with 𝜙𝑎 = 0.1 

and 𝑐 = 20 at De = 0.2. 

The third harmonic ratio predicted with 𝛽𝑎  >  𝛽𝑓 is presented in Figure 3.6(a) and the 

result predicted with 𝛽𝑎 < 𝛽𝑓 is presented in Figure 3.6(b), both at De = 0.2.  The 𝛽𝑎 = 𝛽𝑓 = 1 

case from Figure 3.5(a) is plotted for comparison.  The increase in logarithmic slope obtained with 

𝛽𝑎 = 𝛽𝑓 is not observed in either case with unequal CCR parameters.  For 𝛽𝑎 > 𝛽𝑓 in Figure 

3.6(a), a decrease from the quadratic scaling is observed near 𝛾0 = 0.6.  While for 𝛽𝑎 < 𝛽𝑓 in 

Figure 3.6(b), 𝐼3/1 follows very nearly a quadratic scaling with strain amplitude for larger strains.   
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Figure 3.7  Predicted 𝑄 with  𝛽𝑎 < 𝛽𝑓 and 𝛽𝑎 > 𝛽𝑓 for composites with 𝜙𝑎 = 0.1 and 𝑐 = 20 at 

De = 0.2. 

The effect that varying CCR rates have on the attached and free chain environments is more 

clearly depicted in a plot of 𝑄, presented in Figure 3.7.  A weak overshoot is observed in Figure 

3.7 for the 𝛽𝑎 < 𝛽𝑓 while similar low strain asymptote is observed when compared with 𝛽𝑎 = 𝛽𝑓 

= 5 in  Figure 3.5(b).  The 𝑄 plot for  𝛽𝑎 > 𝛽𝑓 however, clearly shows no overshoot and a 

progressive decrease in magnitude with increasing strain amplitude.  The disappearance of the 

overshoot may be attributed to an increase in nonlinearity in the low strain region.  This indicates 

that the nonlinearity is more sensitive to the dynamics of the slower relaxing attached chains and 

the entanglements they participate in.  It has already been mentioned that only a decrease in 𝑄 with 

increasing strain amplitude for nanocomposites are reported in the literature.  Therefore, we focus 

the discussion now on nonlinear trends caused by the removal of entanglements by CCR for the 

case 𝛽𝑎 > 𝛽𝑓. 
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For 𝛽𝑎 > 𝛽𝑓, the component stresses 𝜎𝑎𝑎 , 𝜎𝑓𝑎,  𝜎𝑎𝑓, 𝜎𝑓𝑓 are evaluated at varying strain 

amplitudes and plotted in Figure 3.8(a).   This figure illustrates the order of breakup of the 

entanglement networks and their contribution to the nonlinearity. Specifically, the onset of 

nonlinearity in Figure 3.8(a) follows the order: 𝜎𝑎𝑎 , 𝜎𝑓𝑎, 𝜎𝑎𝑓 , 𝜎𝑓𝑓. Similar trends in the 𝐼3/1 

parameter in Figure 3.8(b) confirm that attached chain entanglements contribute greatest to the 

nonlinearity at each strain amplitude. 

 

Figure 3.8  Component stresses with increasing strain amplitude and 𝛽𝑎 > 𝛽𝑓 for composites with 

𝜙𝑎 = 0.1 and 𝑐 = 20 at De = 0.2 showing (a) normalized storage modulus; (b) third harmonic ratio. 
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3.3.3 𝑄0(𝜔) Asymptotic Solution 

A low strain asymptotic solution of 𝑄0 is derived.  The asymptotic shear stress for each 

entanglement pair network is integrated using Equations 3.25-3.26 for the third harmonic (𝑛 = 3).  

The real third harmonic intensity for each entanglement is given as, 

𝐼3,𝑖𝑗
′ = 𝐺𝑁

0 [𝐼3,𝑖𝑗
′,𝐷𝑅𝐶𝑆 + 𝐼3,𝑖𝑗

′,𝐶𝐶𝑅 + 𝐼3,𝑖𝑗
′,𝐹𝐸]𝛾0

3 + 𝑂(𝛾0
5) (3.35) 

𝐼3,𝑖𝑗
′,𝐷𝑅𝐶𝑆 =

𝐷𝑒𝑖𝑗3
(1−𝑟𝑖𝑗)[(6+22𝑟𝑖𝑗)𝐷𝑒𝑖𝑗3

−(6+2𝑟𝑖𝑗)𝐷𝑒𝑖𝑗]

6(1+𝐷𝑒𝑖𝑗2
)(1+4𝐷𝑒𝑖𝑗2

)(1+4𝐷𝑒𝑖𝑗2
𝑟𝑖𝑗2

)(1+9𝐷𝑒𝑖𝑗2
)
  

𝐼3,𝑖𝑗
′,𝐶𝐶𝑅 =

𝛽𝑗𝐷𝑒𝑖𝑗3
[𝑏𝑖(1−𝑟𝑖𝑗)−1][(3+14𝑟𝑖𝑗)𝐷𝑒𝑖𝑗3

−(5+2𝑟𝑖𝑗)𝐷𝑒𝑖𝑗]

6(𝑏𝑖−1)(1+𝐷𝑒𝑖𝑗2
)

2
(1+4𝐷𝑒𝑖𝑗2

𝑟𝑖𝑗2
)(1+9𝐷𝑒𝑖𝑗2

)
  

𝐼3,𝑖𝑗
′,𝐹𝐸 =

−𝐷𝑒𝑖𝑗4
𝑟𝑖𝑗[6𝐷𝑒𝑖𝑗4

𝑟𝑖𝑗−(7+10𝑟𝑖𝑗)𝐷𝑒𝑖𝑗2
+1]

2(𝑏𝑖−1)(1+𝐷𝑒𝑖𝑗2
)

2
(1+4𝐷𝑒𝑖𝑗2

𝑟𝑖𝑗2
)(1+9𝐷𝑒𝑖𝑗2

)
  

and the imaginary third harmonic intensity,  

𝐼3,𝑖𝑗
′′ = 𝐺𝑁

0 [𝐼3,𝑖𝑗
′′,𝐷𝑅𝐶𝑆 + 𝐼3,𝑖𝑗

′′,𝐶𝐶𝑅 + 𝐼3,𝑖𝑗
′′,𝐹𝐸]𝛾0

3 + 𝑂(𝛾0
5) (3.36) 

𝐼3,𝑖𝑗
′′,𝐷𝑅𝐶𝑆 =

−𝐷𝑒𝑖𝑗3
(1−𝑟𝑖𝑗)[12𝐷𝑒𝑖𝑗4

𝑟𝑖𝑗−(11+12𝑟𝑖𝑗)𝐷𝑒𝑖𝑗2
+1]

6(1+𝐷𝑒𝑖𝑗2
)(1+4𝐷𝑒𝑖𝑗2

)(1+4𝐷𝑒𝑖𝑗2
𝑟𝑖𝑗2

)(1+9𝐷𝑒𝑖𝑗2
)
  

𝐼3,𝑖𝑗
′′,𝐶𝐶𝑅 =

−𝛽𝑗𝐷𝑒𝑖𝑗3
[𝑏𝑖(1−𝑟𝑖𝑗)−1][6𝐷𝑒𝑖𝑗4

𝑟𝑖𝑗−(7+10𝑟𝑖𝑗)𝐷𝑒𝑖𝑗2
+1]

6(𝑏𝑖−1)(1+𝐷𝑒𝑖𝑗2
)

2
(1+4𝐷𝑒𝑖𝑗2

𝑟𝑖𝑗2
)(1+9𝐷𝑒𝑖𝑗2

)
  

𝐼3,𝑖𝑗
′′,𝐹𝐸 =

−𝐷𝑒𝑖𝑗4
𝑟𝑖𝑗[(3+14𝑟𝑖𝑗)𝐷𝑒𝑖𝑗3

−(5+2𝑟𝑖𝑗)𝐷𝑒𝑖𝑗]

2(𝑏𝑖−1)(1+𝐷𝑒𝑖𝑗2
)

2
(1+4𝐷𝑒𝑖𝑗2

𝑟𝑖𝑗2
)(1+9𝐷𝑒𝑖𝑗2

)
  

As with the first harmonic ratios in Equations 3.32-3.33, the Deborah number 𝐷𝑒𝑖𝑗 is defined in 

Table 3.1. The scaled stretch time 𝑟𝑖𝑗 appearing in Equations 3.35-3.36 is defined as, 

𝑟𝑖𝑗 =
(𝑏𝑖−1)𝜏𝑆

𝑖

𝑏𝑖𝜏𝐷
𝑖𝑗  (3.37)  

and the scaled stretch time is rewritten in terms of dimensionless groups in Table 3.2. 

 

 

 



 

57 
 

Table 3.2 Definition of 𝑟𝑖𝑗 for each free and attached chain entanglement pair 

𝑖, 𝑗 𝑝𝑎𝑖𝑟 𝑟𝑖𝑗 

𝑓, 𝑓 
2(𝑏𝑓 − 1)𝑟𝑓

𝑏𝑓
 

𝑓, 𝑎 
(𝑐 + 1)(𝑏𝑓 − 1)𝑟𝑓

𝑐𝑏𝑓
 

𝑎, 𝑓 
(𝑐 + 1)(𝑏𝑎 − 1)𝑟𝑎

𝑐𝑏𝑎
 

𝑎, 𝑎 
2(𝑏𝑎 − 1)𝑟𝑎

𝑐𝑏𝑎
 

 

The third harmonic intensities for each entanglement may be separated into three terms 

arising from the following effects:  double reptation with chain stretch (DRCS), convective 

constraint release (CCR) and finite extensibility (FE).  Since both 𝐷𝑒𝑖𝑗 and 𝑟𝑖𝑗 are finite and non-

zero, the DCRS term will always remain non-zero.  However, if CCR is neglected (i.e. 𝛽𝑗 = 0) or 

the chains are considered Gaussian with infinite extensibility (i.e. 𝑏𝑖 → ∞), the CCR and FE terms 

will respectively drop out of Equations 3.35-3.36.  Combining the third harmonic contributions 

from various entanglement types into the mixing rule given in Equations 3.27-3.28 yields the third 

harmonic intensity.  Finally, combining the total first and third harmonic intensities into Equation 

3.31 yields the asymptotic solution for 𝑄0, which is discussed here. 

The zero-strain intrinsic nonlinearity 𝑄0 is a frequency dependent parameter.  Unlike the 

linear viscoelastic moduli which depend on 𝜙𝑎 and 𝑐 alone, 𝑄0 is sensitive to the CCR parameters.  

The effect of 𝑐 on 𝑄0 for the matrix and composites with 𝜙𝑎 = 0.1 is shown in Figure 3.9 using the 

asymptotic solution.  Results of numerical simulations using FT rheology are presented with the 

asymptotic solutions.  
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In Figure 3.9, for weak attachment with 𝑐 = 5, 𝑄0 is found to be higher for the composite 

than for the matrix up to De = 1.  Above De = 1, the two curves merge onto a high Deborah number 

plateau, similar to the linear viscoelastic modulus in Figure 3.1(a).  For strong attachment with 𝑐 

= 20, a peak appears in 𝑄0 at De = 0.08, with a minimum near De = 0.2.  The peak is due to the 

relaxation of entanglements with attached chains, whereas the minimum results from the 

destruction of these entanglements.  

 

Figure 3.9  Asymptotic solutions of 𝑄0 showing effect of 𝑐 for 𝜙𝑎 = 0.1 and 𝛽𝑎 = 𝛽𝑓 = 1.  Results 

of simulations are also plotted for comparison.  

The minimum is observed only for well separated relaxation times- when the particle-

polymer interactions are strong.  However, this is not unique to the double reptation averaging 

scheme used in this work.   
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Figure 3.10 Comparison of 𝑄0 plots obtained from linear averaging (Equation 3.1) and double 

reptation (Equation 3.4) mixing rules for composites with 𝜙𝑎 = 0.1, 𝑐 = 20 and 𝛽𝑎 = 𝛽𝑓 = 1.  

A comparison of 𝑄0 between double reptation averaging used in this work and the linear 

averaging presented by Sarvestani[61] is made for 𝜙𝑎 = 0.1 and c = 20, shown in Figure 3.10. Both 

linear averaging and double reptation generate a peak in 𝑄0.  The nonlinearity predicted by linear 

averaging in Equation 3.1 is higher than by double reptation in Equation 3.4 because the weighting 

is higher in Equation 3.1.  

In an effort to illustrate the differences between having uniform CCR rates and independent 

CCR rates, plots of 𝑄0 are compared for increasing various volume fraction of attached chains, 

with 𝑐 fixed at 20.  These plots are shown in Figure 3.11 for nanocomposites with uniform CCR 

rates (𝛽𝑎 = 𝛽𝑓 = 1) in Figure 3.11(a) and independent CCR rates (𝛽𝑎 = 5, 𝛽𝑓 = 1) in Figure 3.11(b). 

The 𝑄0 curves in Figure 3.11 rise in magnitude with increasing volume fraction of attached chains 

regardless of the chosen CCR parameters. 
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Figure 3.11  Asymptotic solution of 𝑄0 for 𝑐 = 20 and (a) uniform CCR rates, 𝛽𝑓 = 𝛽𝑎 = 1 and 

(b) independent CCR rates, 𝛽𝑓 = 1, 𝛽𝑎 = 5. 

For 𝛽𝑎 = 𝛽𝑓 in Figure 3.11(a), all curves merge to a high De plateau above De = 1.  This 

is consequence of 𝜎𝑓𝑎 = 𝜎𝑎𝑓 resulting in equal nonlinear contributions to 𝑄0.  For 𝛽𝑎 > 𝛽𝑓, the 

plateau at large De is also raised in magnitude with increasing volume fraction of attached chains, 

due to an increase in nonlinearity from 𝜎𝑓𝑎 entanglements shown in Figure 3.8(b).  The increased 

relaxation of 𝜎𝑓𝑎 entanglements due to an increase in the CCR rate in the attached chain 

environment shifts the nonlinearity 𝐼3/1 to lower Deborah numbers, resulting in an increase in the 

𝑄0 plateau.  Hassanabadi et. al.[7] report that 𝑄0 for EVA nanocomposites with low loadings of 

clay was greater than 𝑄0 for the matrix at larger Deborah numbers (ca. De ≈ 1.25).  Based on the 
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results of Figure 3.11(b), only when the attached chain CCR rates are faster than CCR rates for 

free chains, can the nonlinearity of the composite be greater than that of the matrix.  This shows 

that for 𝛽𝑎 > 𝛽𝑓, faster flows, indicated by higher Deborah numbers, have a greater convective 

effect on the nanoparticles resulting in the particle-attached chains contributing more to the 

nonlinearity for all Deborah numbers.  

To further illustrate that the nonlinear behavior in nanocomposites is more sensitive to 

independent CCR rates than uniform CCR rates, the peak magnitude 𝑄0 at low Deborah numbers 

relative to the 𝑄0 plateau at high Deborah numbers is calculated for 𝑐 = 20 over varying 𝜙𝑎 values.  

This ratio is plotted in Figure 3.12(a) against values of 𝛽𝑎 = 𝛽𝑓  and in Figure 3.12(b) against 

varying 𝛽𝑎 with 𝛽𝑓 fixed at 1. For all choices of 𝛽𝑎 = 𝛽𝑓 presented in Figure 3.12(a), the relative 

nonlinearity is independent of the CCR rate, showing only an increase with increasing 𝜙𝑎.  

However, Figure 3.12(b) shows an increase in the relative nonlinearity with increasing 𝛽𝑎 which 

is amplified by an increase in 𝜙𝑎. By increasing 𝛽𝑎 and the CCR rate of the attached chain 

environment, the 𝜎𝑎𝑎 and 𝜎𝑓𝑎 entanglement networks dominate the nonlinear response. 
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Figure 3.12  The low De maximum of Q0 relative to  the high De plateau of Q0 for 𝑐 = 20 with (a) 

uniform CCR rates, varying 𝛽𝑎 = 𝛽𝑓 and (b) independent CCR rates, varying 𝛽𝑎 with fixed 𝛽𝑓 = 

1.   

3.4 Conclusions 

A new nonlinear viscoelastic model is developed in this work for entangled polymer chain 

networks with attachments to nanoparticle surfaces. The stress contributions of different types of 

entanglements are averaged in a double-reptation framework with independent convective 

constraint release parameters for particle-attached chains and free chains. The nonlinearity here 

may be attributed to the breakup of entanglements between particle-attached and free chains.  

Entanglements with the particle-attached chains lead to the greatest extent of nonlinearity; this is 
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further intensified by slower relaxation dynamics and an increase in the fraction of attached chains 

present in the system.  

Numerical simulations of strain sweep tests under LAOS flows are performed and analyzed 

using Fourier transform rheology to compare the nonlinearity between nanocomposites and 

unfilled polymers.  Several measures are used to describe the nonlinearity: the onset of strain 

softening in the elastic modulus as well as the magnitude and strain dependence of 𝐼3/1 and 𝑄.  

The trends in the zero-strain intrinsic nonlinearity 𝑄0 are also investigated using a low-strain 

asymptotic solution of the model. 

The onset of strain softening in the low frequency plateau region is seen to be particularly 

sensitive to the strength of polymer-particle attachment or c. The predicted nonlinearity for cases 

where the particle-chain attachment is strong (large 𝑐) displays several distinct features.  When the 

CCR parameters are identical for attached chains and free chains, the nonlinearity including strain 

softening and a strain overshoot in Q are predicted. Specifically, there is an increase in the power 

law exponent of 𝐼3/1 with strain amplitude corresponding to an overshoot in 𝑄 at low Deborah 

numbers (De ≈ 2/𝑐) when the CCR parameters are chosen to be equal for both chain types.  When 

the CCR parameter for attached chains is larger than for the free chains, the predicted nonlinearity 

displays no overshoot in Q.   

The choice of higher CCR parameter for attached chains is motivated by reports in the 

literature that the attached chains are stretched near the particle surface during flow, leading to 

fewer entanglements.[52] This effect is modeled here using a faster CCR rate for attached chains 

than for free chains.  The latter aspect leads to a higher 𝑄0 for the composite compared to the 

matrix at all Deborah numbers.  However, when the CCR rates are equal, the same degree of 

nonlinearity is predicted for the composite and the matrix at high Deborah numbers.  Hence in 
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LAOS flows, faster convective constraint release of attached chain entanglements leads to quicker 

breakup of the entanglement network resulting in higher nonlinearities predicted for 

nanocomposite systems. 
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CHAPTER 4 

FOURIER TRANSFORM RHEOLOGY OF 

POLYPROPYLENE-LAYERED SILICATE NANOCOMPOSITES 

 

4.1 Introduction 

Polymer layered-silicate nanocomposites have been of practical interest for reinforcing the 

polymer matrix leading to an increase in both stiffness and toughness of manufactured 

products.[65]  Economic factors and commercial availability make clay and other layered-silicates 

an attractive choice for both industry and academia.  The abundance of literature on the processing 

of these materials also offer a means to fine tune the desired final composite properties by tailoring 

the interactions between the polymer and filler phases.[38, 66, 67]  Additional interactions between 

particles are also present with high filler concentrations resulting in a percolated filler network.[68-

70]  Though the filler network dominates the rheological properties, it can often lead to a brittle 

material due to early breakup of the network at large deformations i.e. the Payne effect.[40, 46, 

71]  Similar improvements in the rheology have been shown at low loadings when improved 

dispersion of the nanofiller.[38, 72] 

In general, two criteria are needed for good dispersion: intercalation of the polymer chains 

and delamination of the silicate layers.[49, 69, 73]  Montmorillonite clay, a 2:1 phyllosilicate, is 

one example of a layered silicate filler used in making nanocomposites.  Montmorillonite exists 

naturally in stacks of nanolayers having a dimension of 1 nm thickness and an aspect ratio around 

200.  To promote intercalation of the polymer matrix, the gallery spacing is first increased through 

a cation exchange process, substituting the sodium cations for larger molecular weight 

surfactant.[57, 74]  Surface treatment of the nanoclay through silane addition then provide 
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chemically reactive sites for the polymer matrix or an energetically similar compatibilizer resulting 

in particle-attached chains.[38, 66]  These particle-attached chains have reduced mobility due to 

their attachment and with sufficient molecular weight, are free to entangle with the matrix chains 

to form an entanglement network which demonstrates a liquid-to-solid transition in the rheological 

response.[33, 37, 47] 

The linear viscoelastic effect of particle-attached entanglements on the melt rheology for 

layered-silicate nanocomposites has been characterized extensively.  Most notably is the observed 

increase in the dynamic shear moduli at low frequencies due to the slower dynamics of attached 

chains.[33, 37]  When exposed to increasing deformations, these entanglements also lead to an 

earlier observed nonlinear response similar to the Payne effect for percolated filler networks.[58]  

In recent years, the nonlinear response has been probed using large amplitude oscillatory shear 

(LAOS) flows in order to relate the nonlinear behavior to the dynamics and morphology of various 

complex fluids, including nanocomposites.[4] 

Much of the literature concerning LAOS flows of nanocomposites is focused on loadings 

above the percolation threshold.[6, 7, 25]  Arguably the most sensitive method to quantify the 

nonlinearities in LAOS flows is through Fourier transform (FT) rheology, whereby the non-

sinusoidal stress waveform in the nonlinear regime is Fourier transformed into higher order 

harmonics.[5, 13, 14]  Normalizing the third harmonic intensity with the first harmonic yields 𝐼3/1, 

a characteristic measure in FT rheology.  Hassanabadi et. al.[7] used FT rheology to determine the 

nonlinear 𝐼3/1 ratio for ethyl vinyl acetate (EVA) composites using both carbon nanotubes (CNT) 

and montmorillonite clay and found that with increasing filler loading, particle-particle 

interactions raised the nonlinearity in magnitude.  The quadratic scaling of 𝐼3/1 with strain 

amplitude observed for the matrix, a trend found in many unfilled polymer systems, was no longer 
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observed for composites where particle-particle interactions were dominate.  Similar trends in FT 

rheology for highly filled nanocomposites are reported confirming the particle-particle effect on 

the nonlinear response.[6, 25] 

The aim of this work is to quantify the nonlinear response of particle-attached 

entanglements in dilute polypropylene montmorillonite clay nanocomposites under LAOS flows 

using FT rheology.  This study also tests LAOS flows over a range of frequencies to characterize 

both the strain and frequency dependence of the nonlinear FT rheology parameters.  At the 

frequencies chosen, the nonlinear response due to entanglement breakup of both particle-polymer 

and polymer-polymer interactions are explored. 

4.2 Experimental 

4.2.1 Materials 

Polypropylene (PP) homopolymer matrix (trade name: PP4792E1) with a melt flow rate 

(MFR) of 2.7 g/10 min (ASTM D1238, 230°C, 2.16kg load) was obtained from ExxonMobil.  A 

maleic anhydride grafted polypropylene-polyethylene (PP-g-MA) copolymer (trade name: 

PO1015) with an MFR of 150 g/10 min (ASTM D1238, 230°C, 2.16kg load) and a maleic 

anhydride (MA) content of 0.42% was purchased from ExxonMobil and used as a compatibilizer.  

The polypropylene homopolymer and compatibilizer were then melt mixed with an organically 

modified montmorillonite (OMMT) clay.  The OMMT (trade name: Nanomer I.44P) was obtained 

from Nanocor.  The OMMT is produced by the manufacturer with a quaternary onium surfactant 

with two C-18 tails through a cation exchange process to increase interparticle spacing between 

the clay galleries and increase exfoliation during processing.  To improve compatibility of the clay 

with the matrix, a vapor-phase silylation technique was employed to treat the clay surfaces with 

1% by weight of aminoalkyldimethoxysilane.[75]  The combined effect of silylation and 
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compatibilizer lead to the formation of particle-attached chains which have reduced chain 

dynamics relative to the matrix chains. 

4.2.2 Sample Preparation 

Nanocomposites were prepared with both 3 and 5wt% of clay with a ratio of PP-g-MA to 

OMMT held at a 1:1 compatibilizer to clay by weight.  A summary of the materials used in this 

study is found in Table 4.1. 

Table 4.1  Formulations for Different Nanocomposites 

Sample 
Polypropylene 

(PP4792E1) 

Maleic anhydride 

grafted PP 

(PO1015) 

Organically modified 

montmorillonite clay 

(I.44P) 

PP 100 wt% - - 

PPNC3 96 wt% 3 wt% 3 wt% 

PPNC5 90 wt% 5 wt% 5 wt% 

 

Polymer nanocomposites were melt blended in a Leistritz twin screw extruder.  A 

masterbatch of 54:23:23 PP:PP-g-MA:OMMT was first extruded at 200 RPM and 180°C.  The 

resulting extrudate was then cooled and pelletized.  Masterbatch pellets were then let-down with 

PP and extruded to achieve the desired clay concentrations.  Polymer nanocomposite pellets were 

compression molded into 75x75x1 mm plaques at 200°C using a Wabash compression molding 

machine.  The plaques were then used for rotational rheometry testing. 

4.2.3 Linear Rheology 

Steady and dynamic shear tests were performed in an ARES rotational rheometer with a 

2K FRTN1 torque transducer from TA instruments.  Tests were conducted using 25 mm parallel 

plates in a forced convection oven under a nitrogen atmosphere at 200°C.  Before each test, samples 

were loaded into the rheometer using a gap-closing test procedure controlled by the rheometer 

software to remove loading effects and achieve reproducible data.  Plates had an initial gap setting 
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of 2.05 mm where samples were loaded and allowed to melt for 2 min.  After melting, the gap was 

closed to 1.05 mm uniformly over 500 sec.  The sample was then trimmed, and the plates were 

then further closed to 1 mm over 25 sec at which point a 10 min annealing stage began.  The total 

sample loading time with annealing was approximately 20 min.  Dynamic time sweep tests at 1 

rad/s and 1% strain confirmed that the transients in modulus were minimized and reproducible for 

each nanocomposite tested. 

The linear region was determined through small angle oscillatory shear (SAOS) strain 

sweep tests at 1 rad/s from strains of 0.1-100% with 7 points per decade.  For all samples, 

frequency sweep tests at a strain amplitude of 1% were conducted from 0.01-100 rad/s with 7 

points per decade at 200°C. 

4.2.4 Nonlinear Rheology 

Large amplitude oscillatory shear (LAOS) tests used the same loading procedure as for the 

linear testing of polymer nanocomposites.  Several low frequencies ranging from 0.1-10 rad/s were 

tested from 30-300% strains with 7 points per decade with 5 cycles per strain.  This cycle number 

was chosen to prevent thermal degradation for low frequencies, where the testing time was much 

longer.  Additionally, the deformation history was kept constant across all frequencies.   In all 

strain sweep tests, the total testing time was kept under 1 hour which was verified through time 

sweep tests as a thermally stable operating window. 

4.2.5 Fourier Transform Rheology 

To interpret LAOS results, Fourier transform (FT) rheology was employed.[13]  Raw 

voltages of torque (stress), angular displacement (strain) and force were acquired from the 

rheometer using a 16-bit resolution high-speed data acquisition (DAQ) card (PCIe-6341 X series, 
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National Instruments) with a 100 kS/sec/channel sampling rate.  A lab-written MATLAB code for 

data acquisition and post processing was used. 

The advantage of FT rheology is in its ability to determine nonlinearities that develop in 

the stress waveform.  To reduce systematic noise from the rheometer, oversampling of the raw 

voltages acquired through the DAQ card was necessary to improve the signal-to-noise (S/N) of the 

Fourier transformed stress waveform.[11, 14]  The oversampling number is the number of raw 

voltage data points “boxcar averaged” into a single data point, defined here as, 

𝑁𝑜. ≡
𝜋𝐹𝑆

𝑛𝜔0
 (4.1) 

where 𝐹𝑠 is the DAQ sampling frequency, 𝜔0 is the testing frequency and 𝑛 is the maximum 

observable harmonic.  Wilhelm et. al.[14] suggested that the maximum harmonic is doubled in the 

oversampling number as to prevent oversampling of the nonlinear stress response.  It should be 

noted that at the time FT rheology was introduced, oversampling or “boxcar averaging” of the 

stress waveform was performed during data aquisition.  In this work, we have eliminated the need 

for “on-the-fly” averaging and instead oversample the data after testing has completed.  This then 

allows for an optimum oversampling number to be determined during post-processing so as to 

achieve large S/N ratios. 

A full review on FT Rheology and LAOS techniques is available elsewhere.[5]  In this 

work, three nonlinear parameters are of particular importance: the relative third harmonic ratio 

𝐼3/1, the nonlinear parameter 𝑄 and the zero-strain intrinsic nonlinearity 𝑄0. 

The ARES rheometer used in this study is equipped with a separated motor-transducer 

(SMT), meaning the bottom plate displaces the sample and the top plate measures the resulting 

torque.  The deformation applied is sinusoidal, 
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𝛾 = 𝛾0sin (𝜔0𝑡) (4.2) 

where 𝛾 and 𝛾0 are the strain and strain amplitude, respectively.  The resulting stress is 

mathematically represented by a Fourier series, 

𝜎 = ∑ 𝜎𝑛sin (𝑛𝜔0𝑡 + 𝛿𝑛)𝑛,𝑜𝑑𝑑  (4.3) 

where 𝜎𝑛 and 𝛿𝑛 are the Fourier coefficients and phase angles, respectively.  In the linear regime, 

only the first harmonic (𝑛 = 1) is observed.  In the nonlinear regime, higher order harmonics appear 

resulting in a non-sinusoidal stress waveform.  It is the increase in the third harmonic (𝑛 = 3) from 

which the nonlinear FT rheology parameters are derived.  The relative third harmonic is defined 

as, 

𝐼3 1⁄ (𝜔, 𝛾0) ≡
𝜎3

𝜎1
 (4.4) 

It has been shown mathematically throughout the literature[5, 9, 76] that the 𝑛𝑡ℎ harmonic 

of stress, when expanded as a power series in strain, is related to 𝛾0
𝑛.  Therefore, the relative third 

harmonic ratio 𝐼3/1 scales quadratically with strain.  These trends were also observed 

experimentally in neat systems.[10, 12]  However, deviations from a slope of 2 have been reported 

for composites,[7] strain hardening systems,[77] strain stiffening suspensions,[78] and long chain 

branching.[79] 

In an effort to develop a frequency dependent nonlinear parameter to remove the strain 

dependence of 𝐼3/1, Hyun and Wilhelm[10] first developed a new nonlinear parameter, 

𝑄(𝜔, 𝛾0) =
𝐼3 1⁄

𝛾0
2  (4.5) 

At low strains a monotonic value is observed resulting in the final nonlinear parameter 𝑄0, 

𝑄0(𝜔) = lim
𝛾0→0

𝑄 (𝜔, 𝛾0) (4.6) 
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Where the zero-strain intrinsic nonlinearity 𝑄0 is now a frequency dependent parameter which is 

sensitive to both system morphology and relaxation dynamics.  Experimentally, the 𝑄0 was shown 

to be sensitive to the percolation threshold in composites when the filler loading was increased, 

and particle-particle interactions dominated the rheology.[6, 7]  In addition, well separated maxima 

in 𝑄0 at low and high frequencies were observed for comb-type polymers which corresponded to 

the polymer backbone and arm relaxation times.[10]  The same sensitivity in 𝑄0 to relaxation 

dynamics was later shown numerically using constitutive models such as the model.[9] 

4.3 Results and Discussion 

4.3.1 Dynamic Frequency Sweep Tests 

Ren et. al.[38] compounded PP/OMMT composites using the same organically modified 

filler and compatibilizer used in this study, with a different polypropylene matrix having a higher 

melt flow rate.  It was proposed that two attachment sites are available for the dimethoxy groups: 

covalent linkages at the clay edge and hydrogen bonding in the clay galleries.  The resulting imide 

linkage between the silylated clay and  PP-g-MA compatibilizer lead to the formation of particle-

attached chains.  Entanglements with particle-attached chains generate an increased linear 

viscoelastic response in both the storage and loss moduli at low frequencies for PP/OMMT 

nanocomposites compared with the PP matrix as shown in Figure 4.1. 
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Figure 4.1  (a) Storage modulus and (b) loss modulus of nanocomposites with varying loading 

and the matrix. 

 

For highly filled systems, particle-particle interactions have been reported to dominate the 

linear viscoelasticity at low frequencies due to the formation of a filler network.[40, 69, 70]  The 

composites studied here have low concentrations where no filler network is present, though the 

possibility for chain bridging exists.  However, the increase in storage modulus in Figure 4.1(a) at 

low frequencies is primarily attributed to the entanglements with particle-attached chains. 

4.3.2 Fourier Transform Rheology 

The entanglement network formed by particle-attached chains was tested under LAOS 

flows and the nonlinear response quantified with FT rheology.  Oversampling of the stress 
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waveform is needed to achieve high S/N ratios. The oversampling number in eq. (1) must be large 

enough to reduce the electronic noise from the rheometer, but small enough as to not average out 

the true nonlinear response of the polymer.[11]  For neat systems, the deviation from electronic 

noise to the true nonlinear response is typically marked by a quadratic dependence of 𝐼3/1 with 

strain amplitude.  However, power-law scaling less than 2 have been reported for various systems, 

most notably in branched polymers[8, 10, 12] and highly loaded nanocomposites.[6, 7]  In this 

study, strain sweep tests at a fixed frequency of 1 rad/s were first tested for both composites and 

matrix across two regimes: SAOS (linear) and LAOS (nonlinear).  The resulting storage modulus 

and nonlinear parameters are presented in Figure 4.2.   

 

Figure 4.2  Dynamic storage modulus for composites and matrix at 200°C for (a) 1 rad/s with 

corresponding (b) 𝐼3/1 parameter (c) Q parameter and (d) relative intensities acquired using FT 

rheology at 𝛾0 = 0.8.  Relative intensities shift factors are 1, 10, 100 for PP, PPNC3, and PPNC5, 

respectively. 
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The onset of nonlinearity is observed from the storage modulus in Figure 4.2(a) for 

composites at 𝛾0 = 0.04 and 0.02 for 3wt% and 5wt% composites, respectively, compared to the 

matrix onset amplitude at 𝛾0 = 0.4.  However, these strains are less clear in the nonlinear 𝐼3/1 

parameter in Figure 4.2(b).  At lower strain amplitudes in the SAOS regime the electronic noise 

dominates the nonlinearity.  For the matrix, a quadratic dependence with strain amplitude at 𝛾0 = 

0.3 is clearly observed marking the true nonlinear response.  It has been suggested to consider 

strains with 𝐼3/1 > 0.005 as the starting point for the nonlinear analysis[5], however this criterion 

fails for the nanocomposites tested here.  In the nanocomposites, a region exists where the 𝐼3/1 is 

nearly independent with strain due to the competing effects of the true nonlinear response and 

electronic noise from the rheometer.  For this study, this plateau in 𝐼3/1 is considered the noise 

level criterion and only strains above this level are considered. 

Nanocomposites do not show a quadratic scaling behavior in 𝐼3/1 at large strains above the 

defined noise threshold.  As consequence, no plateau region is observed for Q in Figure 4.2(c) for 

nanocomposites.  Based on the results of Figure 4.2(b), it was determined that strain amplitudes 

above 𝛾0 = 0.3 were less affected by noise and thus only these strains were considered for LAOS 

testing.  Validation of the oversampling method are represented by shifted intensities from Fourier 

transform of the stress waveform in Figure 4.2(d) resulting in large S/N ratios of 10,000:1.   

The storage modulus for the composites and matrix under LAOS testing are presented in 

Figure 4.3.   
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Figure 4.3  Dynamic storage modulus against strain amplitude at various frequencies for (a) matrix 

(b) 3wt% clay nanocomposite and (c) 5wt% clay nanocomposite. 
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The dynamic storage modulus presented in Figure 4.1 showed the largest variation at low 

frequencies where particle-polymer interactions were dominant.  This variation is also observed 

with strain amplitude in Figure 4.3 for 0.1 rad/s in composites compared to the matrix.  Here the 

composites show an earlier onset of nonlinearity and an increase in the degree of strain softening 

with increasing filler loadings as compared to the matrix.  This behavior is similar to the Payne 

effect, where an earlier onset of nonlinearity and increase in strain softening is due to the breakup 

of a filler network.  For dilute systems, as in the nanocomposites presented in Figure 4.3(b,c), the 

Payne effect is associated with the breakdown of entanglement networks formed by particle-

attached chains.[58] 

The corresponding relative third harmonic 𝐼3/1 ratio for frequencies tested in Figure 4.3 are 

presented in Figure 4.4.   Both composites in Figure 4.4(b,c) show a greater nonlinear response 

over the matrix Figure 4.4(a) indicated by a larger 𝐼3/1 magnitude.  The 𝐼3/1 magnitude for the 

matrix increases with increasing frequency which is typically observed for unfilled polymer 

systems.[10]  However, this trend is not observed in nanocomposites, where instead an increase in 

frequency leads to a decrease in the magnitude of 𝐼3/1 especially in the low frequency regime 

where particle-attached entanglements dominate the rheology.  For all samples, the nonlinearity 

collapses at frequencies above 5 rad/s with the PPNC3 composite in Figure 4.4(b) and matrix in 

Figure 4.4(a) showing similar nonlinear behavior.  This suggests that entanglements with particle-

attached chains are removed at higher frequencies and the nonlinear response is due to polymer-

polymer interactions.  This also corresponds with linear viscoelastic results in Figure 4.1, where 

the moduli are equal for the nanocomposites and matrix.  A slightly higher nonlinearity is still 

observed at higher frequencies for the PPNC5 case in Figure 4.4(c) which may be due to 

hydrodynamic interactions caused by the increase in the number of particles present. 
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Figure 4.4  Relative third harmonic ratio against strain amplitude at various frequencies for (a) 

matrix (b) 3wt% clay nanocomposite and (c) 5wt% clay nanocomposite. 
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The value of Q defined in Equation 4.5 was determined as an intermediate step to acquire 

𝑄0 and is presented in Figure 4.5.  As consequence of the quadratic scaling in 𝐼3/1 with strain 

amplitude for the matrix in Figure 4.4(a), a plateau in Q at strain amplitudes near 𝛾0 = 0.5 is 

observed for all frequencies.  The monotonic value of Q is directly followed by a decrease in 

magnitude with increasing strain amplitude.  However, only a decrease in Q with increasing strain 

amplitude is observed for the nanocomposites in Figure 4.5(b,c).  Even over a larger strain 

amplitude range in Figure 4.2(c), no clear plateau in Q exists for the nanocomposites tested here 

due to limitations in the rheometer.  When Hyun and Wilhelm[10] originally defined 𝑄0 they 

suggested that the true value was obtained by averaging the plateau region of Q over several strain 

amplitudes.  While this was possible for monodisperse unfilled polymer systems, the lack of a 

plateau clearly presents a challenge for determining 𝑄0 in nanocomposites with strong particle-

particle and particle-attached interactions.  Hassanabadi et. al.[7] also did not observe a plateau in 

Q over several strain amplitudes for ethyl vinyl acetate nanocomposites filled with 

montmorillonite clay.  Values of 𝑄0 were calculated in this work by setting it equal to the value of 

Q at 𝛾0 = 0.5 for all samples across all frequencies.  These effective 𝑄0 values are plotted against 

frequency in Figure 4.6. 
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Figure 4.5  Nonlinear parameter Q against strain amplitude at various frequencies for (a) matrix 

(b) 3wt% clay nanocomposite and (c) 5wt% clay nanocomposite.  



 

81 
 

 

Figure 4.6  Frequency dependence of 𝑄0 ≡ 𝑄(𝛾0=0.5) for nanocomposites and matrix. 

While this may not be the true 𝑄0 value, it does provide a means for comparing the 

nonlinear frequency dependence between composites and the matrix.  As with the trends in 𝐼3/1, 

𝑄0 decreases with increasing frequency while the opposite effect is observed for the matrix.  

Ahirwal et. al.[6] tested the frequency dependence of 𝑄0 for polyethylene nanocomposites filled 

with multiwalled carbon nanotubes and found that above the percolation threshold, 𝑄0 decreased 

with increasing frequency due to the breakup of the filler network.  Without a filler network 

present, the decrease in 𝑄0 is associated to the entanglement breakup of particle-attached chains 

suggesting that FT rheology is sensitive to the surface treatment of the clay and reaction with 

compatibilizer.  This is further supported by the monotonic decrease of PPNC3 towards the matrix 

asymptote, where only polymer-polymer entanglements exist.  An increase in clay loading lead to 

an overall increase in 𝑄0, though the trends between both nanocomposites are nearly identical. 
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4.4 Conclusions 

Polypropylene-layered silicate nanocomposites with filler loadings below the percolation 

threshold were investigated under LAOS flows.  Surface modification of the organically modified 

montmorillonite clay filler with silane treatment created reactive sites for attachment with a maleic 

anhydride grafted polypropylene with sufficient molecular weight to entangle with the 

polypropylene matrix.  The resulting particle-attached chain entanglements led to an increase in 

the linear viscoelastic storage moduli at low frequencies suggesting a reduction in chain mobility 

and slower relaxation dynamics.  The nonlinear response of the nanocomposites was investigated 

using FT rheology and quantified by the relative third harmonic ratio 𝐼3/1 and 𝑄0.  In the unfilled 

polypropylene matrix, the 𝐼3/1 followed a quadratic scaling with increasing strain amplitudes and 

increased in magnitude with increasing frequency.  However, both nanocomposites displayed an 

𝐼3/1 with a power law scaling less than 2 and a decrease in the magnitude with increasing 

frequency.  These trends resulted in 𝑄0 increasing with increasing frequency for the polypropylene 

matrix while a decrease with increasing frequency was found for both nanocomposites.  This 

suggests that 𝑄0 was sensitive to the entanglement network breakup formed by the slower relaxing 

particle-attached chains.  An increase in filler concentration also increased the magnitude of 𝑄0 

while preserving the decrease with increasing frequency. 
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CHAPTER 5 

 

EFFECTS OF REACTIVE OLIGOMER ADDITIVES ON 

MELT RHEOLOGY OF NYLONS: FOURIER TRANSFORM RHEOLOGY 

 

5.1 Introduction 

Successful rubber toughening of polyamide blends has been extensively studied in the 

literature to improve the elastomeric properties of polyamide matrix through increases in impact 

strength and increase in elongation at break[80, 81].  However, polyamides generally are generally 

incompatible with natural rubber fillers leading to poor morphological structures and reduced 

mechanical properties[82].  Reactive compatibilization has been frequently used to promote 

compatibility with the dispersed rubber phase using maleated elastomers which react with the 

amine end groups and create a block copolymer with increased adhesion to the rubber phase[83]. 

 Large amplitude oscillatory shear flows combined with Fourier transform rheology is 

sensitive to polymer morphology and topology[5].   In the case of polymer blends, it has been used 

to detect the miscibility of polymer blends containing nanocomposites[19-21] as well as detecting 

the small morphological changes due to the addition of small droplets of a dispersed phase[84]. 

In this study polyamide blends reacted with an elastic oligomeric functionalized rubber are 

investigated under large amplitude oscillatory shear.  With the rheology of polyamides suggesting 

a viscous dominant response, the aim of this study is to see what changes appear in the nonlinear 

behavior with the addition of oligomer.  Fourier transform rheology and stress decomposition 

techniques are identified as the best techniques for quantifying this effect. 
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5.2 Experimental 

5.2.1 Materials 

Polyamide copolymer with an 80:20 wt% ratio of nylon-6 to nylon-6,6 was obtained from 

ExxonMobil.  The copolymer was produced via a continuous polymerization process and received 

in pelletized form.  Blends consisting of the PA copolymer with an anhydride functionalized 

oligomer were produced by ExxonMobil using 5 and 10 wt% oligomer.  Two oligomeric 

polyisobutylene succinic anhydrides (PIBSA) with varying molecular weights (Mw = 750, 1000) 

were obtained by Dover Chemicals.   

5.2.2 Blend Preparation 

Blends consisting of 5 and 10 wt% oligomer were received from ExxonMobil after melt 

mixed with polyamide copolymer via extrusion and pelletized.  Blends produced in lab using 

PIBSA were melt mixed in a Haake RheoDrive batch mixer at 80 rpm for 15 minutes with Banbury 

blades.  Polyamide copolymer and blends were then compression molded into square molds of 

dimension 75x75x1 mm at 240°C in a Wabash compression molding machine.  Samples were 

vacuum dried for 3 days before testing, to ensure all moisture was removed. 

5.2.3 Dynamic Shear Rheology 

Rheological measurements were performed in an ARES (TA Instruments) strain-controlled 

rheometer using a 25 mm parallel plate geometry.  Linear viscoelastic frequency sweeps were 

conducted at 230°C and 𝛾0=0.03 from 𝜔 = 0.1 - 100 rad/s at 7 frequencies per decade.  Strain 

sweep tests extending from small angle oscillatory shear (SAOS) flows to large amplitude 

oscillatory shear (LAOS) flows were conducted at 230°C and 1 rad/s from 𝛾0 = 0.05 – 5 with 7 

strains per decade and 5 cycles per strain amplitude. 
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5.2.4 Nonlinear Analysis 

 LAOS flows were interpreted using Fourier transform (FT) rheology[11, 13, 14] with a 

home-written MATLAB code.  Data acquisition from the ARES rheometer was performed using 

a 16-bit resolution high-speed data acquisition (DAQ) card (PCIe-6341 X series, National 

Instruments) with a 100 kS/sec/channel sampling rate.  The stress was Fourier transformed using 

the fast Fourier transform algorithm to get the higher order harmonics, 

 

𝜎 =  ∑ 𝜎𝑛sin (𝑛𝜔𝑡 + 𝛿𝑛)𝑛,𝑜𝑑𝑑  (5.1) 

 

Where 𝜎𝑛 and 𝛿𝑛 are the Fourier intensity and phase angles corresponding to the 𝑛 harmonic.  The 

nonlinear parameter 𝐼3/1 = 𝜎3/𝜎1 was used to determine the degree of nonlinearity. 

 Stress decomposition methods[16] were implemented to decompose the total stress into 

elastic and viscous stresses using the Fourier intensities and phase angles in Equation 5.1, 

𝜎′ = ∑ 𝜎2𝑘+1 cos(𝛿2𝑘+1) sin [(2𝑘 + 1)𝜔𝑡]∞
𝑘=0  (5.2) 

𝜎′′ = ∑ 𝜎2𝑘+1 sin(𝛿2𝑘+1) cos [(2𝑘 + 1)𝜔𝑡)]∞
𝑘=0   (5.3) 

Stress decomposition results were combined with Lissajous-Bowditch curves to qualitatively 

describe the nonlinear behavior. 

5.3 Results and Discussion 

5.3.1 Linear Viscoelasticity 

The linear viscoelastic frequency sweep for polyamide blends mixed with 5 wt% and 10 

wt% PIBSA oligomer is shown in Figure 5.1.   
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Figure 5.1 Dynamic storage modulus comparing effect of oligomer addition 

The linear viscoelastic data is sensitive to the morphological changes due to the addition 

of oligomer.  With 5 wt% oligomer addition, the polymer blend exhibits a greater solid-response 

to deformation, particularly at lower frequencies.  This response can be attributed to the reactive 

compatibilization between the nylon copolymer matrix and the PIBSA oligomer.  Further addition 

of oligomer to 10 wt % leads to an elastic modulus much less than the matrix response.  While the 

same extent of reaction is expected, the excess PIBSA must phase separate to form a dispersed 

region of lower viscosity due to the low molecular weight.  Nonlinear rheology was used to further 

classify the morphology of the system. 

5.3.2  Nonlinear Viscoelasticity 

 LAOS flows were used to quantify the morphological changes through reactive 

compatibilization leading to observed nonlinearities in the stress.  One technique is to use Lissajous 

plots for a qualitative inspection on the viscoelastic behavior of the stress.  From linear viscoelastic 

experiments, the low frequency regime where 𝜔 = 0.1 rad/s show the greatest variation between 

blends and matrix.  As frequency increased, the 5 wt% blend asymptotically approached the matrix 
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behavior, suggesting that the oligomer slows the relaxation dynamics at low frequencies only.  The 

Lissajous and elastic stresses determined from Equation 5.2 are presented for 𝜔 = 0.1 rad/s in 

Figure 5.2(a) and 𝜔 = 1 rad/s in Figure 5.2(b). 

 

Figure 5.2  Lissajous curves with corresponding elastic stresses for varying oligomer 

concentration and strain amplitude at (a) 𝜔 = 0.1 rad/s, and (b) 𝜔 = 1 rad/s. 

For both frequencies, it is clear that the elastic behavior is increased by oligomer.  This is 

indicated by the transition to an ellipsoidal behavior in the stress waveform from a nearly viscous 

response by the matrix.  Inspection of the elastic stress also shows this increase in elastic behavior 

through an increase in slope, where the matrix elastic stress is nearly flat.  Though a similar elastic 

behavior is observed for the oligomer containing blends, the shear stress is significantly reduced 

for the 10 wt% case.   

A quantitative analysis may be made onto the magnitude of elastic stress buildup in each 

system.  First, the waveforms plotted in Figure 5.2 are instead mapped to the time-domain and 

compared in Figure 5.3. 
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Figure 5.3  Elastic and viscous stress waveforms at 𝛾0=1.14 and 𝜔=1 rad/s for (a) nylon copolymer 

matrix (b) 5 wt% oligomer and (c) 10 wt% oligomer. 
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The viscous waveform in Figure 5.3 is similar to the overall shear stress waveform for all 

samples indicating the response is viscous dominant.  It is clear that upon addition of oligomer, 

the elastic contribution increases over the matrix response due to the increase in elastic stress 

magnitude.  The magnitude however, is similar between the oligomer cases though the waveforms 

have completely different shapes.  The maximum elastic stress was determined for each material 

and plotted against strain amplitude for 𝜔 = 1 rad/s in Figure 5.4. 

 

Figure 5.4  Normalized elastic stress against strain amplitude for 𝜔 = 1 rad/s. 

 The contribution to the elastic stress is indeed greater for the oligomer containing blends.  

Interestingly enough, though the shear stress is significantly lower for the 10 wt% oligomer 

containing blend, as shown in Figure 5.2(b), the relative increase in elasticity is independent of the 

oligomer concentration, suggesting that it is dependent more so on the copolymer structure formed 

between the amide linkages formed through reactive compatibilization.  More evidence is needed 

to determine this with certainty. 
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 A final look into the effect that reactive compatibilization has on the nonlinear response is 

the influence it has on the 𝐼3/1 parameter.  This is shown for 𝜔 = 1 rad/s in Figure 5.5. 

 

Figure 5.5 Effect of oligomer addition on the nonlinear 𝐼3/1 parameter for 𝜔 = 1 rad/s. 

The most pronounced effect the oligomer addition has on the nonlinearity is observed 

through the 𝐼3/1 parameter.  A slight increase is observed in the nonlinearity for 5 wt% oligomer 

addition, though the dependence on strain is the same.  At this point it has been speculated that the 

10 wt% oligomer containing blends were fully reacted to the nylon copolymer, leaving excess 

oligomer available to phase separate.  If this is indeed the case, then the 𝐼3/1 shows a remarkable 

sensitivity to the dispersed oligomer phase, leading to an earlier onset of nonlinearity.  The plateau 

region in 𝐼3/1 extends through a wide strain amplitude range suggesting that the dispersed phase 

is unable to contribute beyond 𝛾0 = 1.  Reasons for this are still unexplained.  Though it is clear 

that the degree of reactive compatibilization can in some way be quantified using LAOS. 
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5.4 Conclusions and Recommendations 

 The effect of reactive compatibilization of nylon copolymer with an elastomeric PIBSA 

oligomer was investigate using LAOS flows.  Fourier transform rheology and stress decomposition 

techniques showed that while an excess of oligomer led to the lowest shear stress, the relative 

elasticity was independent of the oligomer concentration.  This suggests that the elastic stress was 

dominated by the amide linkages formed in the matrix phase and had no dependence on the 

potential dispersed phase.  The suggestion that a dispersed phase exists was concluded by 

remarkable differences in the nonlinear 𝐼3/1 parameter, where excess oligomer led to an earlier 

onset of nonlinearity and a greater nonlinear over a wide range of strain amplitudes.  Suggestions 

for this research include the direct testing of amide linkages either through FT-IR methods or 

titration techniques.  This should answer if there is indeed an excess amount of oligomer present.  

Further suggestions would include the imaging of these blends to determine if regions of phase 

separation are observable. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 This research focused on investigating the nonlinear rheology of complex fluids using large 

amplitude oscillatory shear (LAOS) flows.  These flows were analyzed using several techniques 

including: Lissajous-Bowditch curves to plot stress versus strain waveforms, Fourier transform 

rheology to determine higher harmonic contributions to the stress, and stress decomposition to 

evaluate the elastic and viscous stress contributions in the nonlinear regime. 

 The rheological properties associated with polymer nanocomposites can be directly related 

to both the microstructure as well as the type of interactions present in the system.  Three types of 

interactions are possible in nanocomposites: particle-particle, particle-polymer, and polymer-

polymer.  The particle-particle interactions are dependent on the size and concentration of the filler 

phase.  For highly loaded nanocomposites, a critical concentration is reached, known as the 

percolation threshold, for which a filler network forms.  The filler network is known to dominate 

the rheology through elastic (solid-like) responses.  However, the processing range of these 

systems is limited since at large deformations the filler network breaks down leading to a transition 

into the nonlinear regime.  The breakdown of the filler network with increasing deformations is 

known as the Payne effect. 

 When nanocomposites are surface treated to promote compatibility with the matrix chains, 

stronger particle-polymer interactions dominate the rheology.  These interactions lead to hindered 

chain mobility near the interface of the filler, resulting is slower relaxation times and an increase 

in the viscoelastic moduli at low frequencies.  Consequently, the improved interactions between 
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the polymer matrix and the filler particles lead to increases in the nanocomposite properties such 

as improved mechanical strength, barrier properties and strain hardening behavior.  These 

improvements also require less filler due to the strong entanglement networks which form between 

particle-attached chains and the polymer matrix chains.  As with the breakdown of the filler 

network, the entanglement network formed by the slower relaxing particle-attached chains can 

also break down, leading to a similar Payne effect response. 

 The dynamics of these dilute nanocomposites containing strong entanglement networks 

with particle attached chains was a major subject in this work.  Fourier transform rheology on 

LAOS flows has been shown throughout the literature as a very sensitive method to determine 

polymer morphology, microstructure, and relaxation dynamics.  However, relating the trends 

found in nonlinear rheology to the dynamics of the tested material has always been a major 

challenge.  This motivated the development of the nonlinear viscoelastic model for polymer 

nanocomposites presented in this work.  Relating linear relaxation mechanisms (double reptation) 

and nonlinear relaxation mechanisms (convective constraint release and chain retraction) to trends 

observed in FT rheology resulted in a way to describe the nonlinearities in terms of chain 

dynamics.   

Three nonlinear parameters in FT rheology were used to quantify the effect of 

entanglement networks formed by particle-attached chains: the relative third harmonic 𝐼3/1, the 

nonlinear parameter 𝑄 and the zero-strain intrinsic nonlinearity 𝑄0.  Through numerical 

simulations and asymptotic expressions, the predicted nonlinearities in the viscoelastic 

nanocomposite constitutive model were explored.  The nonlinear behavior was found to be 

dependent on three parameters: the strength of attachment (i.e. slower particle-attached reptation 

dynamics), the volume fraction of attached chains, and the CCR parameter.   
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Convective constraint release had been previously derived in an effort to prevent 

constitutive models from over predicting the shear thinning behavior at larger shear rates.  Since 

this mechanism depends on the flow rate, it was uniformly applied to all polymer chains present 

in a system resulting in the same stress relaxation, regardless of the polymer architecture or 

attachment to nanoparticles.  Thus, the idea of independent CCR parameters was introduced here 

so as to allow faster removal of entanglements made with particle-attached chains.  Only when the 

CCR rate of particle-attached chains is larger than the free matrix chains, do the trends in the 

nonlinear parameters, particular 𝑄0, match with experiment. 

Large amplitude oscillatory shear tests on polypropylene layered-silicate nanocomposites 

were conducted to test the validity of the model presented in this work.  Particle-attached chains 

were created using a silane treated montmorillonite nanoclay reacted with a maleic anhydride 

grafted polypropylene.  The PP-g-MA was of substantial molecular weight to extend into the PP 

matrix and form multiple entanglements.  The reduced chain mobility due to attachment with the 

nanoclay was confirmed through linear viscoelastic frequency sweeps.  There, an increase in the 

viscoelastic moduli at low frequencies was reported for nanocomposites containing both 3 and 5 

wt% in a 1:1 PP-g-MA : clay ratio.  Nanocomposites were subjected to multiple frequencies over 

a range of strain amplitudes extending well into the nonlinear region.  As predicted by the 

viscoelastic model, the polypropylene nanocomposites experienced a decrease in nonlinearity with 

increasing frequency, characterized by a decrease in both 𝐼3/1 and 𝑄0.  The unfilled matrix showed 

the opposite trend, having an increase in nonlinearity with increasing frequency.  This implied that 

the hindered chain mobility led to an earlier breakup of the particle-attached entanglement network 

resulting in a nonlinear response that was governed by polymer-polymer interactions alone. 
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The final project was concerned with the reactive compatibilization of an elastomeric 

oligomer, PIBSA, with nylon copolymer.  The nylon copolymer was found to have a viscous 

dominant response in its rheology.  However, due to the elastic nature of PIBSA, it was speculated 

that the reaction with nylon would in some way impart some elastic behavior to the resulting blend.  

These blends were characterized using LAOS flows combined with FT rheology and stress 

decomposition methods.  The stress decomposition showed that an equivalent elastic response was 

observed, independent of the oligomer concentration.  However, the decrease in shear stress for 

the largest oligomer concentration of 10 wt% implied that excess oligomer was phase separated 

from the blend.  Upon inspection of the 𝐼3/1 parameter, the 5 wt% and nylon copolymer had similar 

magnitudes in their nonlinearity; the strain amplitude onset of nonlinearity was also comparable.  

However, in the presence of excess oligomer, the 10 wt% case had the largest 𝐼3/1 magnitude with 

an onset of nonlinearity an order of magnitude earlier than the other cases.  This suggested that FT 

rheology was sensitive to the morphology of polymer blends and could be used to determine at 

what concentration phase separation would occur. 

6.2 Recommendations 

 The present work has explored the dynamics of polymer nanocomposites in both a 

theoretical and experimental framework for LAOS flows.  One of the most useful parameters in 

describing the relaxation and breakup of the particle-attached entanglement network is the zero-

strain intrinsic nonlinearity, 𝑄0.  This parameter is a frequency dependent parameter, though 

acquiring it experimentally is tedious.  Strain sweep tests from medium to large amplitudes must 

be performed for many frequencies if a high resolution 𝑄0 curve is desired.  Each test requires a 

new sample, which can be challenging if the material is only available in low quantities.  Therefore, 

a recommendation is to investigate nonlinear frequency sweeps as a way to evaluate the relaxation 
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phenomena.  Most LAOS setups are unable to accomplish this task due to the “on-the-fly” 

oversampling of the stress and strain waveforms.  Since oversampling depends on the excitation 

frequency, most LAOS frameworks are unable to change the oversampling number “on-the-fly”.  

However, by oversampling after the experiment is complete as is done in this work, proper 

oversampling can be done on the waveforms acquired from a large amplitude frequency sweep 

test. 
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