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ABSTRACT
MULTI-SCALE SIMULATION OF ELECTROSTATIC CHANNELING
By
Yuanchao Liu

One-pot multistep catalysis, also called tandem catalysis, denotes stepwise chemical
reactions over sequential active sites in a single vessel. Such an approach enables efficient
synthesis of various product molecules from simple precursors, and complete utilization of the
energy stored in each chemical bond. Therefore, such cascade catalysis is of great significance to
the manufacture of fine chemicals, the production of pharmaceutical intermediates, and
electrocatalytic devices. A key factor limiting these processes is the mass transport of reaction
intermediates, which in nature is found to be largely facilitated by substrate channeling, in which
intermediate molecules are transferred directly to a subsequent active site instead of equilibrating
to bulk environment. Electrostatically bound diffusion represents one such channeling
mechanism, in which charged intermediates are transported along an oppositely charged
pathway.

Naturally occurring electrostatic channeling has been studied for decades, but the
challenge of controlling molecular-level interactions along with catalytic kinetics has hindered
its application to artificial cascades. In this work, multi-scale simulations by a combination of
molecular dynamics (MD) and kinetic Monte Carlo (KMC) are utilized to quantify the overall
kinetics of artificial cascades, aiming to further explore the channeling mechanism and reveal
potential limitations for future cascade design. Taking advantage of this hierarchical model, the
molecular complexity may be fully considered and a wide range of time and length scales can be

effective covered to bridge the gap between microstructures and kinetic events.



Specifically, a hopping surface diffusion mode is demonstrated by molecular dynamics
simulation, wherein charged intermediate molecules are shuttled along a cationic oligopeptide
bridge that is proposed to covalently conjugate hexokinase (HK) and glucose-6-phosphate
dehydrogenase (G6PDH). Strong experimental evidence for the occurrence of electrostatic
channeling is provided by ionic-strength dependent studies, via both simulations and
experimental stop-flow lag time analysis. Specifically, simulations suggest that a balance
between surface adsorption and diffusion is required for optimal channeling efficiency. To
further quantify the energy associated with each elementary step in channeling process, advanced
sampling methods are employed to study interactions on the cascade surface. Transition state
theory is used to calculate the hopping energy barrier via a temperature-dependent study of
hopping frequency. Desorption energy is calculated by umbrella sampling, further revealing
ionic strength-independent Stern layer diffusion under the protection of an ionic strength-
dependent diffuse layer. Intermediate hopping from the peptide bridge to its binding site on
G6PDH is analyzed by transition pathway theory, which provides sufficient sampling of the
interactive pathways on this 2D flexible surface. The leakage in this process is evaluated by
probability analysis.

Finally, overall cascade Kkinetics is quantified by the KMC method, integrating the MD
and experiment parameters. The KMC model enables direct comparison with stop-flow lag time
analysis, by evaluating the product evolution over the entire experimental time scale, including
the pre-steady state. The KMC results provide good agreement with experiment in terms of ionic
strength dependence. Moreover, KMC reveals several key parameters limiting overall cascade
kinetics, including the strength of surface interactions, the length of channeling pathway, and the

energy barrier around the artificial interface of synthetic cascade.
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Chapter 1 Introduction
1.1 Overview

One-pot multistep catalysis, also called tandem catalysis, involves a series of catalysts in
a single vessel.! As compared to conventional stepwise reaction, tandem catalysis eliminates the
isolation and purification processes that usually requires high process costs, result in yield losses,
and generate waste. Additionally, these cooperative reactions can effectively protect unstable
intermediates and reduce unnecessary side reactions. As a result, multistep catalysis enables high
chemical conversion efficiency, making complex product molecules from simple and accessible
precursors. Therefore, tandem catalysis is of great significance to the manufacture of fine
chemicals and the production of pharmaceutical intermediates.? Taking advantage of complete
energy extraction from various chemical bonds in complex molecule structures, multistep
reactions also have great potential to be applied to electrocatalytic devices, such as biofuel cells.’
Multi-enzyme biofuel cells demonstrate a higher energy (1.4~3 fold) delivery due to the deep

oxidation by tandem catalysis.*®

Figure 1-1 shows an example cascade of various catalysts anchored on a DNA scaffold,
including metallic, organic, and bio/enzymatic catalysts. Besides finding proper catalysts and the
conditions that fully functionalize each reaction site*®, the mass transport of reaction
intermediates is a key factor impacting the overall efficiency of this tandem process.” Due to
Brownian effects, the produced intermediate molecules tend to move in a random and non-
directional mode. In spite of a clustering of sequential catalysts, intermediate molecules still have

a high probability to equilibrate to bulk media, where a side reaction and unfavorable binding



can occur. Therefore, the flux control of reaction intermediates is a key challenge to the

development of advanced catalytic cascades.

Figure 1-1 Conceptual cluster of various catalysts anchored on a DNA scaffold. (a)
Tartronic acid oxidation to mesoxalic acid at TEMPO catalyst; (b) facilitated transport
of mesoxalic acid along DNA,; (c) oxidation of mesoxalic acid to oxalic acid via
catalysis by PtRu nanoparticle — AIdDH adduct.

1.2 Substrate Channeling in Cascade Catalysis

Over billions of years of evolution, nature has developed very efficient catalytic
pathways to perform chemical reactions in the cell stepwise, utilizing transient super-molecular
complexes termed metabolons.®® By these one-pot multistep catalyses, a wide range of complex
biomolecules are synthesized from simple precursors, and energy is generated from carbohydrate
oxidation through a metabolic pathway. Although the cell has a complex chemical environment,
these well-defined cascades are able to maintain high catalytic efficiency and prevent the
undesired bonding of reaction intermediates to unproductive active sites. The key was found to
be substrate channeling, which is defined as the direct transfer of reaction intermediates from one
catalytic active site to the next, without equilibrating into bulk media.”%! Therefore, substrate
channeling may have promising applications in chemical manufacturing and electrocatalytic
devices. For example, with cascade catalysis, energy devices based on organic fuels may

accommodate more fuel categories and more fully utilize the energy stored in high molecular
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weight fuels.® These features enable biofuel cells with high energy density and biosensors with

enhanced sensitivity.*®

Under most conditions, intermediate diffusion is fast compared to reaction rate, making
proximity alone insufficient to realize effective channeling. To illustrate this, the product
concentration around a single active site is calculated by equation 1-1,2 where c is the
concentration at radial distance, r, from a point active site, t is time, D is diffusion coefficient

and ris the average time between reaction events (k*, where k is turnover frequency).

i=t/t-1

1 r
c(r,t) = Z (4mD(t - ir))3/2 P <_ M) -

i=0

Figure 1-2 shows resulted concentration profile at steady state (t = 10* 7) with different
k/D values. In a typical system with the diffusion of small molecule in aqueous solution, the k/D
value is 0.01 um?. As shown in Figure 1-2, the spatial distribution of product concentration is
quite uniform in most conditions, indicating that proximity alone has very little impact on the
local concentration of reaction intermediate in cascade reactions. Brownian dynamics
simulations also indicate that the concentration profile for most small intermediate molecule is
raised only to a distance around 1 nm from a neutral catalytic active site.*®> Recent experimental
work on covalently conjugated enzymes also indicated that proximity alone did not have impact
on the activity improvement, as shown in Figure 1-2b.2* These results suggest that channeling by
proximity alone only works when sequential active sites are extremely close to each other.

However, intermediate diffusion can be enhanced and well-controlled through the incorporation



of a functional surface or tunnel. For example, the channeling distance was proposed to be

increased 10-fold in the presence of electrostatic guidance.™®
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Figure 1-2 (a) Three dimensional diffusion field near a point source at steady state (t =
10% 1), where k is reaction rate and D is diffusivity. (b) Comparison of experimental
turnover frequency of free enzyme couple and covalently conjugated enzyme
couple.1214

Figure 1-3 shows three natural channeling mechanisms, each featuring a functional
surface or tunnel with reasonable spatial organization. A well-studied example of an intra-
molecular tunnel is tryptophan synthase, Figure 1-3a, which produces tryptophan through a two-
step reaction using indole as the intermediate.'® The crystal structure reveals a hydrophobic
tunnel (2.5-3 nm) connecting the two active sites, which physically confines the indole
intermediate and transports it to the second active site.!” As compared to intra-molecular
tunneling, the pyruvate dehydrogenase complex (Figure 1-3b) creates a pathway by covalent
bonding, where the acetyl group (intermediate) is transferred by a lipoamide swing arm.
Electrostatic guidance refers to interactions between a charged intermediate and an oppositely
charged pathway on cascade surface, and provides possibly the most straightforward channeling
method for application in synthetic cascades. As shown in Figure 1-3, the crystal structure of

MD-CS (malate dehydrogenase—citrate synthase) shows a positive surface (purple area) bridging



the two active sites, providing a diffusion path for negatively charged oxaloacetate

(intermediate).
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Figure 1-3 Mechanisms of substrate channeling in nature.”*6181° () The crystal
structure of traptophan synthase (PDB:1A5S) with a-subunit shown in yellow and -
subunit shown in green. (b) The crystal structure of malate dehydrogenase—citrate
synthase with possible channeling pathway marked in dashed yellow line. (c) The
crystal structure of eukaryotic pyruvate dehydrogenase complex with E1 enzymes in
yellow, E2 core structures in green and linker in between marked in blue.

In past decades, attempts were made to apply substrate channeling in artificial systems.2%-
22 For example, multiple enzyme species were anchored on DNA scaffold to increase the effect
of cluster and spatial orientation.?’ A good example of artificial chemical swing arm is a glucose-
6-phoshate dehydrogenase (G6pDH) and malate dehydrogenase (MDH) cascade spatially
organized on a DNA scaffold where a NAD+ functionalized single-stranded DNA swing arm is
used to channel NADH to the next active site.?! Examples of synthetic electrostatic channeling
and intra-molecular tunnel are quite limited. Local effectiveness of reaction intermediates was

studied by introducing favorable/unfavorable electrostatic interactions between intermediate and



cascade scaffold.?>2* A decreased catalytic efficiency was found with either too low or too high

binding constants.

So far, introducing substrate channeling artificially is complicated by both the precise
molecular-level control and the lack of experiment methods to detect the occurrence of such
transient phenomenon (~ ns).” Therefore, new methodology (modeling/experiment) is greatly
needed to aid the design of channeling pathways and the quantification of overall catalytic
kinetics. Natural channeling mechanisms utilize intramolecular tunnels®172° chemical swing
arms?®, spatial organization!??52” and electrostatic guidance!>828-30 to facilitate bound diffusion
of reaction intermediates. These mechanisms highlight a significant distinction between substrate

channeling, which features bound or restricted diffusion, and active site proximity.

1.3 Experimental Measurement

Modern biochemical analyses of substrate channeling are indirect measurements, tracking
the bulk intermediate evolution instead of the actual channeling molecules. Examples are
transient time (z) analyses, isotope dilution and enrichment studies, cascade resistance to a
competing side reaction, and cascade resistance to a reaction inhibitor.” Transient time analysis,
as an example, is defined as the time required to reach steady-state flux of reaction intermediate.
If a reactant “A” is converted to intermediate “B” and finally converted to “C”, the product time
course can be observed graphically when only “A” is input to the system, as shown in Figure
1-4a. Transition time, also called lag time, is obtained by extrapolation of the steady state line
back to the time axis. There are several explanations of the physical meaning of lag time; one of
them is the average time for intermediate to reach the sequential active site. From the statistical

point of view, on the other hand, lag time is also the time required for bulk intermediate



concentration to reach a constant value, such that the reaction rate of the second site equals that

of the first site, and a steady state is achieved.

For perfect channeling, zis zero. With insufficient leaky channeling, ztends to shift to
the value for free standing enzyme couple, (section 1.5.1) depending on the extent of leakage.
However, it is important to know that all these methods are indirect measurements. As a
consequence, current experimental measurements work well with perfect channeling, but are less
clear for leaky channeling and free diffusion. Also, owing to the phenomena observed, it is
difficult to evaluate the contribution of channeling compound to bulk diffusion. Therefore,
substrate channeling is a complex phenomenon that is difficult to model or analyze by single
technique. A combination of hierarchical modeling and experimental measurement would be
preferred to understand channeling mechanisms, and further design and quantify cascade
reactions. From the perspective of simulation, the model should be efficient but have enough
complexity to capture molecular-level effects and evaluate the contribution of individual event.

This will be discussed in detail in Chapter 3.
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Figure 1-4 Reaction scheme and example data for transient time (t) analysis.’

Another significant technique is the use of competing reactions, wherein bulk
intermediates are consumed by a side reaction in bulk. The observed yield loss is thus related to
the extent of substrate channeling, as shown in Figure 1-4b.3* When substrate channeling is high,
the effect of competing reaction is minimal. Without channeling, the yield can be significantly
reduced. Details of these analysis techniques will be described in the following simulation

section.

1.4 Intermediate Transport in Electrostatic Channeling

Electrostatic channeling is bounded diffusion of charged intermediates along an
oppositely charged surface, a non-specific pathway applicable to any charged intermediate. It is a
more general mechanism, as compared to structure-specific intramolecular tunnels and chemical
swing arms. In past decades, electrostatic channeling studies mainly focused on the bi-functional
enzyme TS-DHFR (thymidylate synthase-dihydrofolate reductase) and the TCA cycle

supercomplex MDH-CS (malate dehydrogenase-citrate synthase), as shown in Figure 1-3b.



Specifically, experimental work showed strong evidence of improved kinetics by lag time
analysis.®>32 The occurrence of substrate channeling was also supported by apparent resistance to
competing bulk reactions. By structural characterization (Figure 1-3), both the TS-DHFR and
MDH-CS complexes were found to have positively charged surfaces located between the two
active sites.'#?8 Moreover, the channeling efficiency could be significantly disabled by either a
neutralization of the channeling pathway?22° or an increased ionic strength (1S)?%%. This

evidence gives strong qualitative support for experimental results.

Recently, we have reported the first cascade with artificially introduced electrostatic
channeling (details in Chapter 2 and Chapter 3), composed of hexokinase (HK) and glucose-6-
phosphate dehydrogenase (G6PDH) covalently conjugated by a cationic oligopeptide bridge.3 In
this work, a “hopping” surface diffusion mode was built by molecular dynamics (MD)
simulation, and studies of ionic strength dependence (MD and Exp.) on lag time provided strong

evidence of the occurrence of electrostatic channeling.

1.5 Kinetic Quantification

Kinetic quantification is a key to bridge the gap between microstructure information
(Figure 1-3) and kinetic macroscale phenomena (Figure 1-4). It not only helps to understand the
channeling mechanism, but also accesses time and length scales (~ns and ~nm) inaccessible to
current experiment techniques. More importantly, it is able to identify potential rate limitations

in elementary steps, thus providing guidelines for future cascade design.



1.5.1 Analytical methods

Generally, analytical quantification is based on an assumption of steady-state conditions,
where the intermediate flux is time independent, requiring an equivalent production and
consumption of reaction intermediate. If V,,,,, ; denotes the reaction rate of fully saturated
enzyme 1 (E1) and V, denotes the actual rate of enzyme 2 (E2) at steady state, their relationship
can be expressed by equation 1-2. Usually, Vipax 2 = Vinax 1; Otherwise the system will never

reach steady state.

Vmax,l =V, 1-2

Michaelis-Menten kinetics is applied to a reversible binding/unbinding of substrate, S, to
enzyme, E, followed by a non-reversible reaction to product, P. The whole process is shown by
equation 1-3, where kges, kags and k., are the rate constants for substrate desorption, adsorption
and reaction, respectively.

kges, Kads kcat
E+Se——E-S—>E+P 1-3

In a free standing system, as shown by equation 1-4 and 1-5, product evolution rate on
second enzyme, V,, can be correlated to the fully saturated E2 rate through intermediate
concentration, [I], and Michaelis constant, Ky;.

dPZ Vmax,z X [I]

V, = = 1-4
27 dt T Kua + 1[I
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_ kcat + kdes

1-5
kads

M

By combining equation 1-2 and 1-4, steady state intermediate concentration, [I]ss, can be

correlated to three experimental accessible parameters as shown by equation:

V. — Vmax,z X [I]ss
max1 KM,Z + [I]ss

By definition, lag time for uncoupled enzymes (Figure 1-4a), T.ce, IS the time required
for bulk intermediate concentration to reach a value making the reaction on E2 equal to that of

E1, as shown by equation:
[I]ss = Vmax,l X Tfree 1-7

To introduce the turnover frequency (TOF), k., 1, as the rate constant for reaction,

equation 1-7 can also be expressed by
[I]ss = [E] X kcat,l X Tfree 1-8

Through equation 1-6, 1-7 and 1-8, the lag time can be derived as follows:

Ky,2
T = - 1-9
ree Vmax,z - Vmax 1
K,
Tfree = =2 1-10

[E] ' (kcat,z - kcat,l)

11



Therefore, the lag time for free standing system mainly depends on the concentration of
enzyme couple, the TOF difference between two enzyme species and the Michaelis constant of
enzyme-2. This can be used as an indication of the maximum lag time for the study of a

channeling system.

When introducing substrate channeling, the lag time, T, can be expressed as follows:**

T = Pc + KM,Z(]- - pcpr) 1-11
ch kcat,z + kdes,z Vmax,z - Vmax,l(l - pcpr)
k
p, = cat,2 1-12

kcat,z + kdes,z

where p. is the probability for intermediate molecules to reach second enzyme through
channeling, and p,. is the reaction probability for readily adsorbed intermediates as compared to
unbinding from E2. Since the first item in equation 1-11 is usually smaller than 1 and V.« 4 IS
usually much smaller than V},,,y >, equation 1-11 can be simplified as follows:

_ Km2(1—pepr)
Tech =

1-13

Vmax,z

As compared to free standing lag time, therefore, the lag time reduction of channeling
system is only determined by the mass transport-related channeling efficiency, p, and ligand

binding/unbinding kinetics-related leakage, p,.
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Although analytic methods can give a basic idea on the components of channeling
parameters, it is not able to extimate the channeling efficiency, p., the key parameter to overall

kinetics. We are therefore motivated to use computational techniques to obtain such estimation.

1.5.2 Continuum modeling

Electrostatic channeling has been studied via continuum modeling, where the distribution
of substrates/intermediates are represented by a continuous media.*>3® With pre-determined
spatial factors (e.g., boundary conditions) and system parameters (e.g., diffusivity and reaction
rate), the intermediates migrate under the impact of concentration gradient (e.g., Fick’s law) and
external electric force field, as shown in Figure 1-5. Based on this, a steady state flux is used to
evaluate the channeling effect by long-range electrostatic interaction. McCammon’s group has
reported the electrostatic confinement model with reflecting boundary conditions. The results of
diffusion limited system show that the attractive electrostatic force between intermediate and
both enzyme is able to give the maximal channeling efficiency, which is similar to a
compartment model.*® Recently, our group reported a more specific two-step cascade model with
more detail and complexity, as shown in Figure 1-5. By setting zero boundary conditions, the
model is mimicking a competing reaction system (Figure 1-4b), where the yield percentage is
employed to evaluated the channeling efficiency. In addition, by fully incorporating the range of
diffusion and reaction rate constants, the contribution of electrostatic channeling was also

identified at high Damkohler number, which also means a diffusion limited region.®®
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Figure 1-5 Schematic of two sequential enzyme-catalyzed reactions (diffusion limited)
in continuum model.* (a) Base model without bridge between two spherical active
sites. (b) Model with volumetric bridge. (c) Electrostatic model with positive charged
bridge. (d) Adsorption model with surface diffusion on bridge.

However, continuum modeling relies heavily on parameters estimated from experiment
results and other simulations. Moreover, the impact of molecular-level interactions cannot be

assessed at these length scales.

1.5.3 Molecular simulation

Modern molecular simulation techniques offer powerful tools to test scientific hypotheses
and predict macroscopic properties. In addition, simulation can build understanding of
mechanisms behind experimental phenomena and study the time and length scale inaccessible to

experiment. In recent years, Quantum Mechanism (QM), Molecular Dynamics (MD) and Kinetic

14



Monte Carlo (KMC) simulations are increasing significant in the area of heterogeneous
catalysis?®>%-4 as shown in Figure 1-6.2 Based on the Schréilinger equation, QM deals with
electron structure, which is able to calculate the activation energy and frequency factor for
elementary chemical reactions. However, because of its intrinsic simulation load, QM cannot
represent systems with large length and time scale. Using classical mechanics, MD represents
explicit interactions between atoms with mutual potential energy (bonded and non-bonded). Due
to larger time and length scale, MD is capable of representing the ensemble properties, the
interaction between large biomolecules and the diffusion coefficient of small molecules.
Therefore, MD simulation is a suitable tool to study the interaction between intermediate
molecules and bio-molecular catalysts (e.g., enzyme) or scaffold (e.g., DNA and poly peptide).
As a result, binding and transport behavior of reaction intermediates can be obtained for each
catalytic system. As compared to conventional MD, reactive force field (ReacFF) *® is originally

developed for hydrocarbon oxidation in MD and still under development for other systems.
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Figure 1-6 Time and length scale of different simulations techniques.*?

Over past two decades, molecular simulation has aided the study of electrostatic
channeling mechanisms in enzymatic super-complexes. This has been demonstrated in the case
of naturally occurring enzyme complexes (such as the Krebs cycle and the electron transport
chain). First molecular simulation of electrostatic channeling were reported by McCammon’s
group, using Brownian simulations to estimate transport efficiency in terms of probability that
the explicit intermediate reaches the vicinity (~0.7 nm) of the second active site.32%3044 These
modeling results were further integrated by an analytical approach representing the second active
site with Michaelis kinetics®*. By combining with experimental results, it is demonstrated that
restricted diffusion of intermediates caused by electrostatic interactions improved transfer
efficiencies up to ~80% (compared to < 10% for that caused by non-electrostatic interaction).
Low channeling leakage and high binding affinity at the second active site were highlighted as

key factors impacting overall kinetics.
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These simulations represent a refinement of the continuum model, but were still coarse-
grained, in that the intermediate was treated as charged sphere migrating in an electric field
generated by cascade surface. In addition to long-range electrostatic interaction, charged and
polarized intermediates can interact strongly with channeling surface through hydrogen bond
interaction. However, consideration of such local interactions in electrostatic models has been
largely absent. Therefore, MD simulation is a good candidate to study such interactions due to its

detailed representation of various energy terms in channeling system.

In this context, molecular simulation has emerged as a technique that enables the study
of electrostatic interactions that may be inaccessible to experimental detection limits or
impractical for computationally expensive techniques, such as density functional theory.
Additionally, these simulations provide a platform for exploring possible substrate/intermediate
combinations by describing their interaction with a computationally-optimized electrostatic

surface.

1.5.4 Kinetic Monte Carlo model
Despite several advantage, molecular dynamics has intrinsic limitations which can be
complemented by kinetic Monte Carlo. As shown by Table 1, regular MD is not able to represent

reactions, and so it is not by itself able to characterize the overall reaction kinetics.
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Table 1 Kinetic Monte Carlo (KMC) vs. Molecular Dynamics (MD)

Feature MD KMC

Reaction No Yes

Explicit representation atom event

. . finite, constant and small discrete time step depending on
Time representation : A
time steps individual random events
. Potential energy Transition State Theory

Governing factor e.g., L-J, Coulomb e.g., 4Gy, f

advanced sampling

Rare events . .
techniques are required

yes

Moreover, because MD calculates the trajectory of individual molecules, governed by
local potential energy, it cannot well represent rare events, as shown in Figure 1-7.%¢ That is, the
MD system tends to oscillate around an energy minimum and meanwhile get the probability to
hop to the neighboring energy minimum exponentially depending on the energy barrier in
between. As a result, large amount simulation resource is wasted when MD system is stuck at
such state, making MD simulation unable to well represent rare events. Enhanced sampling
techniques® are usually required to accelerate MD systems to overcome the energy barriers
separating the meta-states, in order to acquire longer time scale and accurate sampling
probability. Current enhanced sampling approaches includes Replica-exchange molecular
dynamics*®4’, Metadynamics*#°, Umbrella Sampling®, and Transition Path Analysis by Markov

State Model®* 7,
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Nonetheless, MD simulations are still expensive and not capable to cover the time and
length scale of real word experimental system. In comparison, KMC simulation uses given rate
constants to randomly determine the occurrence of specific events and corresponding time
evolutions, instead of performing the actual oscillating process in MD simulations. The
probability of executed events depends on the weight of rate constants that are determined by the

energy barrier of such events. More detail of KMC method can be found in Chapter 5.

Kinetic
Monte Carlo

0 FD
N0 >
a 4 "—.‘—’
B
: M
Molecular Molecular Dynamics: Kinetic Monte Carlo:

Dynamics ! the whole trajectory coarse-grained hops

Figure 1-7 Rare event in Molecular Dynamics and Kinetic Monte Carlo.3®

As a simplified model represented by explicit events and rate constants, KMC is able to
quantify overall kinetics, achieving the time scale of experimental systems. Although KMC is a
coarse-grained method, it allows tunable complexity to mimic experimental conditions, such as
interactive events and changing external environment. For example, when oxygen repulsion is
considered in CO oxidation on a RuO- surface, the KMC result is much superior to the classical
microkinetics theory which assumes a homogeneous surface distribution and thus underestimates
the complexity of local conditions.* In spite of KMC’s advantages, it is very important to know
that KMC per se cannot predict energy barriers or frequency factors needed to calculate the rate
constants via transition state theory (TST). These key parameters have to be measured by

experiment or calculated by QM and/or MD. Therefore, hierarchical simulation is a proper
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approach to model a channeling system. By the combination of MD and KMC, a bridge can be

built between the molecular level design and the macroscopic experimental phenomena.>®

From the aspect of applications, KMC models are widely used for catalytic oxidation and
diffusion of small molecules on lattice surfaces.**%%3 For example, DFT parameterized ab initio
KMC was employed to study the impact of catalyst composition, surface structure, lateral
interactions, and environment on the overall catalytic performance of CO and NO oxidation.5?
Moreover, experimentally based KMC was used to study the CO oxidation on a RuO; surface,®
and a comparison between DFT and experimental parameters was made to identify the
significant impact of lateral repulsion of adsorbent.*! Besides quantum mechanics, a KMC model
combined with MD simulation was used to study the epitaxial growth of fcc and hcp islands on a
fce (111) surface, exhibiting great simulation acceleration. As a result, boundary pinning effects
by the island of adsorbed atom was revealed, which is usually difficult to be elucidated by
conventional KMC methods.®* Another good example of model hybridization is a combination
of first-principle MD and KMC simulations, where the impact of rotational coupling of the side
groups was shown to influence the proton conduction in proton exchange membrane fuel cells

(PEMFC).55

1.6 Overview of Dissertation

The goal of this work is using multi-scale simulations to further understand the
mechanism of electrostatic channeling, quantitatively calculate the cascade kinetics and develop
design rules for future artificial cascades. The model construction particularly focuses on the
surface diffusion of reaction intermediates, and the quantification approaches are aiming to fully

consider the molecular complexity of channeling pathways. Enhanced sampling techniques are
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utilized to cover the ergodicity of the channeling system, and give a rational representation of all
possible events with different frequency and probability. Specifically, molecular dynamics (MD)
simulations enable the calculation of energy-determined surface equilibrium constants and
surface diffusivity, and a kinetic Monte Carlo (KMC) model integrated all rate constants from
MD (e.g., surface diffusion and desorption rate) and experiments (e.g., turnover frequency), to

estimate the product evolution on experimental time scales.

The cascade and reaction scheme employed in this work is the conversion of glucose to
phospho-6-gluconolactone by hexokinase (HK) and glucose-6-phosphate dehydrogenase
(G6PDH), covalently conjugated by a cationic oligopeptide bridge. The system is simulated and
validated by comparison to stopped-flow lag time analysis. This section is in collaboration with

Dr. Shelley D. Minteer’s lab at University of Utah.

In Chapter 2, MD simulation is used to study the surface interaction between cationic
oligopeptide (Lysine, Arginine and Histine) and various negatively charged intermediate species
(oxalate, glyoxylic acid and glucose 6-phosephate). A “hopping” surface diffusion model is built,
and the MD and experiment studies of ionic strength dependence on lag time (HK-G6PDH
cascade) provides strong evidence of the occurrence of electrostatic channeling. In addition, the
balance between surface adsorption and diffusion is studied to indicate an optimization of

channeling efficiency. (1st paper published on ACS Catalysis®)

In Chapter 3, regular MD simulation and umbrella sampling are used to quantify the
energy barrier for surface hopping and desorption. A Stern layer diffusion under the protection of

diffuse layer is revealed by ionic strength dependence study. As a result, the thermodynamic
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parameters of an individual hop is quantified in great detail. This helps to further understand the

channeling mechanism and also give support to the rate constants for kinetic models.

In Chapter 4, the leakage between peptide bridge and enzyme binding pocket is
considered. On this complicated 2D surface with multiple possible pathways, probability
analysis and a Markov State model are used to map the energy profile in this area. Then, this
energy landscape is parameterized into KMC rate constants to involve this additional leakage

before final reaction.

In Chapter 5, the overall kinetics of HK-G6PDH cascade was quantified by a
combination of MD and KMC simulation. Specifically, KMC simulation enable the integration
of all rate constants to model the evolution of bulk intermediate, particularly from the pre-steady
state. This allows for a direct comparison to experiment results. From the resulting lag time, the
leaking probability of each individual hop and the length of channeling bridge are found to be the
key factors for overall kinetics. The barrier between bridge and second enzyme not only caused
leakage by itself but also exacerbated the leakage on channeling bridge. The KMC lag time
agrees much better to experiment as compared to the results only with leakage on peptide bridge.

(2" paper submitted to ACS Catalysis, in revision)

In summary, the multi-scale simulation in this work enable a detailed quantification
approach, fully considering the molecular-level interactions in electrostatic channeling process
via strong surface diffusion mechanism. This is of great significance to understand the micro-
scale mechanism and identify potential limitations to be improved for cascade design. In future,

highly interactive work between such modeling technique and experiment is greatly needed for
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the molecular-level design of synthetic cascade with channeling efficiency comparable to or even

better than natural cascade.
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Chapter 2 Surface Diffusion by Molecular Dynamics Simulation®
2.1 Introduction

The phenomenon of electrostatic channeling is demonstrated naturally by coupled
enzymes, such as dihydrofolate reductase-thymidylate synthase (TS-DHFR) and malate
dehydrogenase- citrate synthase (MD-CS) cascades. As for structure characterization, XRD
diffraction results reveal a charged surface between active sites for both cascades. Theoretically,
charged intermediate molecules interact with cascade surfaces through long-range electrostatic
forces and local, short-range interactions via Van der Waals forces and hydrogen bonds.
Therefore, besides the migration under the electric field generated by charged cascade surface,
intermediate molecules also potentially perform “surface diffusion” at closed proximity to a
channeling pathway. However, the channeling process occurs at nanometer and nanosecond
scale, which is inaccessible to current experimental techniques all of which rely on capturing
bulk intermediate evolution at real world time and length scales.” Given the fact that in-situ
observation is currently impossible, molecular simulation combined with experimental kinetics is
an optimal approach to understanding the channeling mechanism on cascade surface, particularly

through a surface diffusion mode.

Using the mechanism of electrostatic guidance as an inspiration, we envisioned the use

of a charged oligopeptide bridge as a molecular construct to facilitate restricted diffusion of a

* The content of this chapter has been published on ACS Catalysis, in collaboration with University of Utah.
Experimental work in this chapter is in collaboration with David P. Hickey, Dr. Shelley D. Minteer and Dr. Matthew
S. Sigman at University of Utah.

Y. Liu, D. P. Hickey, J.-Y. Guo, E. Earl, S. Abdellaoui, R. D. Milton, M. S. Sigman, S. D. Minteer and S. Calabrese
Barton, "Substrate Channeling in an Artificial Metabolon: A Molecular Dynamics Blueprint for an Experimental
Peptide Bridge", ACS Catalysis, 7, 2486-2493 (2017). doi:10.1021/acscatal.6b03440.
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charged intermediate between two sequential catalytic sites. In this chapter, we describe the use
of MD simulations to design and optimize a series of theoretical cationic a-helix peptides, and
quantify their ability to transport charged intermediates across the theoretical surface. These
optimized theoretical conditions were applied to design and construct a simple template for
preparing artificial enzyme complexes capable of inducing restricted diffusion of a charged
reaction intermediate between two sequential enzymes in a metabolic pathway. Stop-flow lag
time analysis was used to experimentally examine the channeling efficiency and validate the MD
results. These studies provide the basis for utilizing MD simulations to strategically design
synthetic substrate channeling cascades and develop a detailed understanding of the range and

limitations of artificial electrostatic substrate channeling.

2.2 Simulation Methods

GROMACS 5.1.1%"2 was used as the MD simulation package. CHARMM3673* was
employed as the force field governing whole simulation and CGenFF (CHARMM General Force
Field) ° was used to generate topology for small intermediate molecules. Periodic boundary
conditions (PBC) were applied to all MD simulations. The peptide/intermediate couple was first
solvated with tip3p water molecules in a dodecahedral box (~ 100 nm®) and then neutralized by
Na* or CI" ions. The system energy was then minimized using a steepest descent algorithm,
followed by a 0.1 ns NVT and 1.0 ns NPT equilibration process with position restraints for each
molecule. Finally, the MD simulation was performed under NPT ensembles for 50 ns, repeating
10 times for each system. For all MD simulations, the system temperature was coupled at 300 K
by velocity-rescale thermostat ’® and the pressure was stabilized at 1 bar by Parrinello-Rahman
barostat.”” Particle-Mesh Ewald (PME) algorithm with cubic interpolation (0.16 ns grid space)

was used to calculated long-range electrostatic interaction.”®” Cutoff values for both short-range
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electrostatic and van der Waals interactions were set to 1 nm. A Verlet cutoff scheme® is used to

calculated non-bonded interactions on a GPU accelerator.®!

Initial o-helix peptide structures was generated by Avogadro 1.1.182 with torsion angles
® =-60°and ¥ = -45< Neutral terminals (-COOH and —NH instead of -COO" and —NH3") were
applied to the helical backbone for MD simulations. From resulting backbone, the alpha-carbon
of the N-terminus and alpha-carbon of the C-terminus (two points in total) were pinned to
immobilize the peptide. The fraction of basic residues was tuned by adding alanine (Ala)
between basic residues (Arg, Lys). Accordingly, the peptide chain used in simulations were
named based on the number of basic residues (Lys, His, Arg) and the number of interstitial Ala.
For example, the nomenclature K4-A3 indicates a peptide with four Lys residues in total with
three Ala between each Lys, resulting in the structure, “... KAAAKAAAK...”. Finally, four extra
Ala were appended to the terminal Lys at each end, in order to provide pinning sites and to

maintain the o-helical structure.

Electrostatic potential maps were prepared using APBS and PDB2PQR, 2% and VMD
1.9.2 (Visual Molecular Dynamics)® was used for visualization. Intermediate molecule

structures (.mol2 file) were downloaded from ZINC database.®"®

The ionic strength of MD system was tuned with explicit ions. For these simulations, box
size was increased to 325 nm?, to access lower ionic strength than the initial case. Counter ions
were added after neutralization until the ionic strength reached a target value. For 0 mM ionic

strength, all counter ions were removed, resulting in a non-neutral system.
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Surface interaction was evaluated by the fraction of adsorption time, f,4s, as shown by
following equation, where t, 4 is the time for intermediate molecule to stay on cascade surface,
when the short-range coulombic energy is less that 50 kJ mol™. Similarly, 4.5 corresponds to the

desorption time.

tads
fads = T 21
acs tads + tdes

Adsorption energy, E.qs, is calculated based on the radial distribution function (RDF)388
of the intermediate atoms around peptide surface, which is defined as the probability to find the
intermediate molecule at a specific distance away from the reference surface. Using the
intermediate’s trajectories in MD simulation, the RDF was calculated by taking the distance r
between substrate atoms and the closest peptide atom. Using the GROMACS function gmx_rdf,
the probability density p; was obtained versus r. Then p; was normalized by bin (Ar =5 pm) and

summed using:

bi
P. == —— -
' (AT Zpl) 22

where ), P; - Ar = 1. The energy level of a specific radial position was calculated by equation
2-3, where G, was taken at 1.0 nm away from charged peptide system and 1.5 away from non-

charged peptide.

P.
AG; = G, — Gy = —RT - In (—l) 2.3
Py
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Finally, the adsorption energy was obtained by taking the integral summation of relative

energy differences, weighted by normalized probability density:
Tmax
AGads = f Pi ' AGl -dr 2-4
0

To quantify the diffusion rate, mean square displacement (MSD) was used to evaluate the
mobility of intermediate in bulk or on a-helix peptide surface. The relationship between MSD
and diffusion constant, D, is shown in equation 2-5, where n is 2 for one dimension and 6 for

three dimensions. In addition, t is the time interval (lag time) corresponding to the displacement.
msd(t) =nXDXT 2-5

Two diffusion modes were assumed to calculate the MSD. For bulk diffusion, 3-D
Brownian motion was assumed and the MSD was obtained from MD trajectories by taking the

mean square displacement according to equation 2-5, where 7 is lag time and r; is the position of

the intermediate’s mass center at simulation time j.

jmax+1-t

2
msd(r) = —2 (42 +7) 2.6

jmax+1_T

It should be noted that the terminology “lag time” for MSD calculation is mathematically
independent from the “lag time” used in the Experiment Section. Unless specified, the average
bulk diffusivity, D,,q, Was calculated by fitting the MSD vs T curve between 200-1000 ps. Since
the MSD was taken over the entire simulation region, it contains the average of adsorption and
desorption components. Therefore, a subscript “avg” was appended to distinguish it from pure
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bulk diffusivity, but when the interaction is very weak (e.g., on His peptide), D, can represent
the bulk diffusivity. As a result, the D, can reflect the average mobility of intermediate in

peptide system.

When intermediates were closely associated with peptide surface, surface diffusivity,
Dq.r, Can be calculated using a 1-D hopping diffusion mode, where the intermediate molecule
can only move to one of its two nearest-neighbor sites (1-D) with equal probability. The MSD

for hopping mode can be calculated according to equation 2-7, where Ly, is the hopping

distance to the nearest charged residue and I" is the hoping rate (s).
msd(t) = Ljo, X ' X T 2-7

By combining equation 2-5 and 2-7, one dimensional surface diffusivity, D, Can be
correlated to Ly, and I', so that
1 2
Dgyry = 2 ’ Ljump I 2-8
As for hopping rate, the coulombic energy diagram was first slightly smoothed with
convolution of a scaled window (win = 21). From coulombic energy distribution, two to three
peaks (e.g., -150, -280 and -400 kJ mol™ for the oxalate-Lys couple) could be identified,
corresponding to the plateau in coulombic energy diagram. Detailed figures can be found in
APPENDIX A. Number of hops, Ny,,p,, was taken as half of the number of energy shifts between

energy plateaus, excluding the shift involving 0 kJ mol™ (which indicates desorption). After that,

average hoping rate (I7,,) was obtained by dividing Ny, by simulation time (50 ns). To exclude
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the impact of the varying desorption period, I (the hoping rate upon adsorption) was calculated

by further dividing I, by fads-

In this way, D, ¢ can be compared to f, 45 and E,q4s to describe the relationship between
surface mobility and desorption probability. In order to obtain the hopping distance, Ly, the
rise along helical axis was taken from a generally accepted value (0.15 nm per residue), which is

then multiplied by the numbers of residues to yield Ly,qp.

2.3 Results and Discussion

2.3.1 Surface hopping mechanism

The adsorption of small charged molecules on biomolecular surfaces is due to local
potential energy minima caused by non-specific electrostatic interactions about the bio-interface.
Mechanistically, local potential energy minimization competes with kinetic exchange between
adsorbed molecule and water molecules, resulting in a dynamic adsorption and desorption

process that allows for bound diffusion across the charged biological surface.

Figure 2-1 shows the chemical structures of charged intermediate species and the
oppositely charged amino acid side chains. As shown in Figure 2-1a, oxalate and glucose 6-
phosphate (G6P) molecules both carry -2 charge, but oxalate has a symmetric charge distribution
due to the two identical carboxylate groups, and G6P is polarized, with negative charge
concentrated on its phosphate group. Glyoxylic acid has similar geometry to oxalate, with only -
1 charge. As for the amino acid side chains in Figure 2-1b, Arginine and Lysine both have +1 net
charge as indicated by their high pKa values. But Arginine has a much stronger polarization

degree on its guanidine group, as shown by the electrostatic potential map in Figure 2-1¢.%®
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Therefore, Arginine and Lysine are expected to have the same long range electrostatic impact but
a very different local interactions.*° In contrast, Histidine has no net charge but a high
polarization degree. Figure 2-1f-h show several example of Lysine-Alanine peptides in an a-

helix conformation. The charge density is tuned by the neutral Alanine residues (Figure 2-1b)

placed between adjacent LY'S side chains.

a
Arginine Lysine Histidine Alanine
oxalate glyoxylate glucose 6-phosphate (Arg, R) (Lys, K) (His, H) (Ala, A)
(2) 1 (2) . - ;
H
o o o o o
/\P\go NH, NH, NH, {NHz
[e] \ =
o o NQNH
HO' H H
H HZN‘<V . HaN' pKa 6.04
o pKa 10.67 Datph=7
pKa 12.10 ‘+1"at pH =7
‘+1" at pH=7
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g :%
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e A Rty "SR
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Figure 2-1 (a) Intermediate species. (b) Amino acid side chain species. (c-e)
electrostatic potential map of Arginine, Lysine and Histidine. (f-h) a-helix Lysine
peptide with various charge density.

With the mechanism of electrostatic channeling as a pretext, we used MD simulations to
study the bound diffusion of a common small biological intermediate, oxalate, across a charged
peptide surface. The adsorption energy, E,q4s, and average coulombic energy, E.oy, between the
intermediate and peptide were chosen as metrics indicating to an effective substrate channeling.
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Specifically, E.., can be calculated for every frame of the simulation, and its time average
indicates the degree of electrostatic interaction between charges. E, 4 is calculated based on the
proximal density of oxalate around peptide surface (radial distribution function, RDF), and

describes interactions caused by hydrogen bonding and polarization of the interacting groups.

RDF data provides information about the proximity of an electrostatic interaction based
on both discrete hydrogen bonding interactions and cumulative adsorption energy. Here, we use
the RDF of oxalate about a polypeptide chain to determine the probability that oxalate will be
stabilized at a given distance from the electrostatic peptide surface. As shown in Figure 2-2,
corresponding RDF diagrams for oxalate with the charged amino acid residues of interest
indicate a high density of interactions occurring at ~0.15 nm for cationic Arg- and Lys-
containing peptides. A minimum distance of 0.145 nm is also observed, which corresponds
closely to the minimum van der Waals’ distance (~0.15) associated with hydrogen bonding
between anionic oxalate and either the e-ammonium of Lys or the guanidinium of Arg (NH* --=
0).%° These results indicate a fast adsorption process and a possible contacting surface diffusion
process. However, peptide surfaces containing His residues primarily interact with oxalate at a
distance between 0.5 and 1.5 nm, which extends beyond the short-range cut-off distance for
dissociation (1.2 nm). Therefore, HIS residues do not create coulombic forces and do not

promote electrostatic channeling.
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Figure 2-2 Radial distribution function (RDF) diagrams of oxalate around the peptide
surface and the corresponding diagrams for oxygen atoms and carbon atoms
individually (inset).

Whereas the RDF demonstrates oxalate’s proximity to peptide surface, surface mobility
is illustrated by short-range coulombic diagram, as shown in Figure 2-3a. MD simulations
describing coulombic energy during diffusion of oxalate along a polyarginine peptide chain
reveal several discrete energy states that dictate its surface mobility. The corresponding
coulombic energy diagram (Figure 2-3a) suggests that oxalate primarily exists in either a singly-
or dually-bound ionic conformation with adjacent Arg residues (Figure 2-3b) with coulombic
energy of -190 kJ mol™ or -390 kJ mol?, respectively, or in an unbound state of coulombic
energy 0 kJ mol™. As oxalate travels across the peptide surface, the coulombic energy diagram
exhibits a period of rapid flux in energy between each state (highlighted as the shaded region of
coulombic diagram, Figure 2-3a). During this process, the randomly oriented kinetic exchange
between oxalate and either water molecules or adjacent charged sites results in oxalate
“hopping” to a neighboring site (Figure 2-3b). This energy-hopping region of coulombic energy
diagram serves as a qualitative indication that diffusion is largely confined to the oligopeptide

surface. Additionally, the combined RDF minimum distance (0.145 nm)* and coulombic energy
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results suggest a diffusion mechanism that utilizes distinct hydrogen bonding interactions

between oxalate and basic amino acid residues, which adds significant detail to previously

reported mechanisms of locally restricted diffusion within an electrostatic field.?°
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Figure 2-3 (a) Short-range Coulombic energy diagrams between oxalate (-2) and
peptide composed of combinations of alanine and arginine, Lysine, and Histidine. The
shaded area in Lys peptide figure (red) represents a frequent surface diffusion process.
(b) Representative MD simulations corresponding to the plateau region in the
Coulombic energy diagram between ARG side chains (blue) and oxalate (red).

One of the primary benefits of MD simulations is the opportunity to rapidly explore

several theoretical electrostatic peptide bridges that would be impractical to screen

experimentally. Using coulombic energy diagrams as described above, we sought to identify

optimal cationic peptide residues to facilitate electrostatic channeling of an anionic intermediate.

By tuning the type of charged amino acid (Arg, Lys, His), we studied the electrostatic
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interactions of various peptide structures with a dianionic oxalate molecule. Despite being highly
polarized, neutral His (pKa = 6.04) peptides do not allow for ionic stabilization and therefore do
not enable any adsorption of oxalate. Both Arg and Lys have the same +1 net charge, but Lys has
a much weaker polarization degree and H-bonding capability as compared to Arg.*
Additionally, the volume of Lys’s e-amino group is smaller than Arg’s guanidinium group and
thus is not able to sterically block bulk water molecules as effectively. This results in stronger
interactions between oxalate and water molecules, and increased kinetic exchange with the bulk
media. Consequently, oxalate molecules displayed a shorter adsorption time fraction (f,4s) ON

Lys-containing peptides than their Arg counterparts (Figure 2-3a).

Despite exhibiting smaller f,45, LYys peptides display a unique transport phenomenon in
the exceptionally high number of energy hops exhibited in coulombic diagram. Highlighted by
the shaded area of the energy diagram in Figure 2-3a, the coulombic energy hops 20 times over
the 17 ns timeframe and moves frequently on the peptide surface. In this case, the Lys residues
are separated by three alanine (Ala) residues, with 0.6 nm between adjacent Lys residues along
the a-helix axis (assuming a normal helical increment of 0.15 nm per residue). This results in a
surface diffusivity of 2.1 x10° cm? !, which is comparable to the typical bulk diffusivity of
small molecules (10 - 20 <10 cm? s1). In contrast, Arg peptides interact too strongly with
oxalate, anchoring the intermediate instead of allowing transport. These data suggest that Lys
appears to be an effective choice of charged amino acid residue for design of an electrostatic

channel. Detailed discussion on surface diffusion constant can be seen in Section 2.3.3.
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2.3.2 Impact of intermediate species

With the insights afforded above by coulombic energy diagrams, we sought to identify
characteristics that allow various charged intermediates to be efficiently shuttled between
conjugated active sites. To this end, MD simulations were performed on three common
biological intermediates, glucose-6-phosphate (G6P), oxalate, and glyoxylate (Figure 2-4a-c). As
shown in Figure 2-1, both oxalate and G6P possess a -2 charge, however, G6P has a much more

localized charge with respect to its molecular volume.

d 100

Adsorption Time
Fraction / %

Hops per50 ns 25

0
Glucose-6 Phosphate Oxalate Glyoxylic Acid

Figure 2-4 System configuration and coulombic energy diagram for glucose 6-
phosphate (a), oxalate (b) and glyoxylate (c). The inserts are simplified coulombic
energy diagram, where “0” and “2” on vertical axis stands for the energy level of dual
association and desorption. (d) Adsorption time fraction and hopping times of
intermediate molecules on peptides with various Lys fraction over the entire 50 ns
simulation. The bar marked by red arrows corresponds to the coulombic diagram in
above figures. Numerical data can be found in APPENDIX B
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Coulombic energy diagrams of oxalate and G6P (Figure 2-4a and b) indicate that they
both readily adsorb (f,qs= 71 %7 % and 85 %8 %, respectively) and diffuse across the peptide
bridge through a double association mechanism. However, surface interactions changed
dramatically in the case of the singly charged glyoxylic acid (Figure 2-4c). Despite having a
similar structure to that of oxalate, hardly any dual association (1.2 0.6 % time fraction) is
observed in corresponding coulombic diagram and the intermediate remains either singly
associated with Lys or desorbed (f,qs = 12 £4 %). Significant desorption of glyoxylic acid arises
because its single anionic site does not allow for simultaneous coordination between adjacent
Lys residues. Therefore, glyoxylate depends on a dissociative jumping mechanism between
residues that increases the probability of desorption from peptide surface. This suggests that
singly-charged reaction intermediates should be avoided as substrate channeling targets due to a
high propensity for dissociation with the charged peptide chain. Residues with smaller positive
charge (e.g., + 0.5) might be an interesting subject to study the dual association and
transportation of such intermediates. However, the natural HIS residue is only 10% charged
given its pKa value at 6.04, and it is not supposed to be a good candidate. Therefore, synthetic
amino acid residues might be able to give more inspiration to this issue. Also, further
experiment is needed to validate the channeling behavior of singly charged intermediate
molecule, and this has the potential to add more details and evidence to the surface diffusion

mechanism and design rules.

2.3.3 Balance between surface adsorption and mobility
In an ideal electrostatic channeling system, the intermediate molecule should have a
strong adsorption and thus a long adsorption time. At the same time, the intermediate molecule

should be very mobile on cascade surface to reach the sequential site. However, as discussed
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above, strong interaction may decrease intermediate mobility on peptide surface. To further
study the relationship between surface adsorption and mobility, adsorption energy and diffusivity
were quantified for oxalate on Lys peptides. Simulated electrostatic interactions between oxalate
and peptide bridge were described in terms of the absorption energy (E,qs, described above), the
fraction of time that intermediate is adsorbed, f,q4s, and the diffusivity along the surface of

peptide chain, Dgy -

As shown in Figure 2-5, MD simulations of both oxalate and G6P were analyzed in terms
of E.qs, Dsurs, @nd f,4s, Where E_ 45 Was controlled by varying the ratio of charged Lys residues
to neutral Ala residues (e.g., Figure 2-1f-h). These simulations demonstrate that E, 4 for oxalate
is enhanced with increasing Lys fraction, from ~0 kJ mol™ to 8.91 kJ mol (Figure 2-5a). As a
result, f, 4 increased gradually from 31%, reaching a maximum of 90% for oxalate, while f, 4
for G6P ranged from 67% to 97%. This suggests that a higher fraction of Lys is required to
prevent oxalate from desorbing from peptide surface, while G6P is not likely to desorb under any
of the conditions studied. Additionally, we found that both oxalate and G6P maintained a high T
(~1 times per ns) for all Lys-based peptides with the exception of Lys;-Alas, wherein the
separation of neighboring Lys residues is too great to allow for a dual association diffusion
mechanism. This resulted in a consistently high D¢, for most conditions. However, according
to equation 2-8, Lj,m affects Dy, exponentially, where Dg,.¢ decreases substantially for the
peptide chains where Lys fraction is too high. This is due to persistent double and triple
association of the intermediate to proximal Lys residues that dramatically slow diffusion across

the peptide chain.
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Figure 2-5 Effect of the Lys fraction (a, d) and thermodynamic adsorption energy, Ea.qs,
(b, €) on surface diffusivity, Dy, ., and adsorption time fraction, f,qs. Effect of E 45 On
transport efficiency, characterized by f,4qs X Dsyrs (¢, ). Panels a—c correspond to
oxalate, and panels d—f are for G6P. Error bars for all parameters represent the standard
deviation of 10 parallel simulations for each individual system.

In order to provide an optimization metric to balance adsorption energy with surface
mobility, we simply took the product of f_ . X Dy, as a measure of transport efficiency. The
resulting plots of f_, X Dgy VS Eaqs (Figure 2-5 ¢, f) indicates that transport efficiency reaches
maximum for peptides where the Lys fraction is slightly less than saturated (i.e., Lyss-Alai). The
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simulated transport efficiency for a Lys-saturated peptide (Lysio-Alaog) was decreased due to the
insufficient surface mobility, while the low transport efficiency of Lys:-Alas was due to poor
adsorption time. Collectively, MD simulations indicate that an electrostatic channeling surface
with high (but less than saturated) charge density and a polyanionic intermediate would strike a
balance between surface mobility and adsorption energy to allow for efficient electrostatic

substrate channeling.

2.3.4 Qualitative comparison with experiment by stop-flow lag time analysis

In this section, MD simulation results are compared with experiments, in terms of the
occurrence of channeling and the dependence of ionic strength. In cooperation with our partners
from University of Utah, we selected the reaction of glucose with HK and G6PDH as a model

system to introduce an artificial channeling bridge, as shown in Figure 2-6a.

This enzymatic cascade utilizes HK with adenine triphosphate (ATP) to phosphorylate
glucose to G6P, which is subsequently oxidized by G6PDH with nicotinamide adenine
dinucleotide phosphate (NADPY) as a terminal oxidant (Figure 2-6b). The reaction rate on each
active site (~0.01-0.1 s) is much slower than the diffusion rate of small ligand molecules (~107
cm? s1), including cofactor, reactant, intermediate and product. Therefore, it can be assumed that
there is no delay on bulk concentration change when turnover occurs at any active sites.
Therefore, by measuring the absorbance corresponding to NADPH formation, we were able to
indirectly monitor the activity of HK or directly measure the activity of GGPDH. Additionally,
this reaction sequence provides G6P as a charged intermediate, which allows for the comparison
of our experimental findings with those suggested by MD modeling. Based on the simulated

oligopeptide chains, we synthesized an electrostatic bridge consisting of a poly(Lys)
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oligopeptide, as shown in Figure 2-6a. Corresponding synthesis detail can be found in our

published work.*%
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Figure 2-6 (a) Hllustration of the proposed channeling complex using a poly(lysine)
bridge as an electrostatic surface between hexokinase (HK; PDB 3VF6) and glucose-6-
phosphate dehydrogenase (G6PDH; PDB 4LGV). (b) Experimental reaction scheme
used to study electrostatic channeling of the charged intermediate (glucose-6-
phosphate) across a cationic peptide bridge. (c) Sample absorbance plot highlighting the
determination of experimental lag time (1) for complexes containing a 4 nm cationic

bridge (K5), neutral bridge (G5), or free enzymes.*

As discussed in Chapter 1.3, one of the most common methods for studying substrate

channeling involves measuring the transition time, also called lag time, required to reach steady-

state flux of the reaction intermediate (G6P).?? The lag time, T, was determined experimentally

by stopped-flow injection analysis, in which the absorbance of a solution containing both

enzymes was measured following an injection of glucose. From this plot, the maximum change

in absorbance is extrapolated to the time axis (z) at which absorbance = 0, which is exemplified

in Figure 2-6¢ showing the experimental results of three types of enzymatic couple, including

free standing enzymes (no channeling), neural bridge (proximity only) and charged bridge
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(proposed channeling). The result on charged peptide bridge shows much smaller lag time than
its uncoupled counterparts, indicating that the electrostatic surface of the peptide facilitates
transport of reaction intermediate (G6P). In addition, the lag time of enzymes coupled by neutral
bridge stayed at the same level of free standing enzymes, which rolled out the contribution of

proximity alone.

Theoretically, the ions in solution can shield the electrostatic interaction between charges,
which should undermine the channeling efficiency in this case. As a result, the degree of
transport efficiency could be adjusted by ions strength, which broadens the range of comparison
between simulation prediction and experiment measurement. In order to further demonstrate the
impact of electrostatic interaction, t is measured with variable ionic strength, as shown in Figure
2-7. Specifically, when IS level is increased from 0 mM to 100 mM, the lag time for K5 system
almost increases to the same level with non-channeling system, approving the contribution of

electrostatic interaction to the intermediate transport at low ionic strength.

However, the K15 case has a more concentrated charge but a lower channeling efficiency
as compared to its K5 counterpart. The quantitative reason of this will be demonstrated in

Chapter 5.
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Figure 2-7 Lag time of the free enzymes and 5xLysine (K5), 15xLysine (K15),
5xGlycine (G5), and 15xGlycine (G15) complexes using 1.4 mM citrate with variable
ionic strength, where the ionic strength is controlled by the concentration of NaCl.
Experiments were performed by adding 275 mM glucose to 10 pgmL—1 of enzyme
(complex) at pH 7.0 and 37 <C. Error bars represent one standard deviation; (*) 0.05 >
p >0.01; (**) 0.01 > p > 0.001; (***) 0.001 > p. [ref]

The dependence of electrostatic interaction on ionic strength is also studied by MD,
where ionic strength were tuned with explicit ions. The box size was controlled at 325 nm?, and
extra counter ions were added after neutralization, until the ionic strength reached target values.
For 0 mM ionic strength, all counter ions were removed, resulting in a non-neutral system. MD
simulation on ionic strength shows that adsorption time, f,4s, generally experiences a decreasing
trend with increasing ionic concentration, where the fully saturated Lys peptide exhibits a slight
decrease on f,4s (4 = 4.3%) and the peptide with moderate Lys density has a severe decrease (4
= 40%) on f,4s, @ Shown in Figure 2-8a. This suggests that electrostatic interaction and thus
channeling efficiency tend to decrease with increased ion concentration, particularly for the less
saturated Lys bridge. These simulation results qualitatively agree well with experiment results in

Figure 2-7.
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Figure 2-8 (a) MD Simulation on ionic strength, based on the system with G6P and Lys
peptide. The theoretical “100 % Lys” was calculated from Lys-0Ala peptide (K10), and
“50 % Lys” was calculated from Lys-1Ala peptide (K6-Al). (b) Plot of “Free”, “G5”
and “K5” in Figure 2-7, and analytical fit on “K5” lag time according to equation 2-9.

In order to further compare MD and experiment results, the simulated lag time of K5, t,,
is analytically derived as shown in equation 2-9, where t, is the lag time of free standing
experimental lag time, c is probability of successfully channeled intermediate, x is the percent of
coupled enzyme pairs as compared to their non-coupled counterparts, and V;, V, is the maximum
reaction rate of two enzyme. Given the fact that V, > V;, equation 2-9 is simplified to its final

expression:

Ty 1—xc

To W
1+ xc /—a

kcat
=p, —— 2-10
¢ Pe kcat + k2

By assuming c is equal to f,4s in Figure 2-8a, the fitted MD lag time and experiment lag

time are shown in Figure 2-8b. Although the lag times agree well at low ionic strength when
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assuming a 50% contamination of uncoupled enzyme pair, the IS dependence trends show a
significant discrepancy between the simulation and experiment results. This is due to the absent
of quantitative parameters that can be directly correlated the rate constants of reaction on each

active site.

Nonetheless, by combining equation 2-9 and Figure 2-7, the x - ¢ value is around 50%
percent at zero IS level. That means the channeling probability is between 50% and 100% at low

IS level, which suggested a non-perfect but still very effective electrostatic channeling.

24 Summary

MD simulations were used to explore electrostatic interactions between cationic a-helix
peptide surface and negatively charged reaction intermediates. Oxalate molecules was found to
undergo a surface diffusion mechanism across cationic poly(Arg) and poly(Lys) peptide,
whereby oxalate hops between discrete hydrogen bonding interactions between proximal charged
residues. By varying the composition of simulated peptide bridge and the characteristics of the
diffusing intermediate, we were able to define several rules for designing electrostatic substrate
channels. Specifically, Lys residues were found to provide a balance of intermediate adsorption
and surface diffusivity that allow for efficient electrostatic channeling while preventing
dissociation of the intermediate into the bulk. Additionally, simulations suggest that a dianionic
intermediate is required for the double associative diffusion mechanism that prevents desorption

from the peptide surface.

Using these simulation-derived design principles as a foundational blueprint, we

synthesized an enzyme complex by covalently conjugated HK and G6PDH by a poly(Lys)
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bridge. The synthetically cross-linked enzyme complex was shown to facilitate electrostatic
substrate channeling by decreasing the lag time required to reach steady state with respect to the
intermediate from 102 %10 sec for a mixture of coupled enzymes to 56 +11 sec for the Lys-
bridged enzymes. The study of synthetic channeling complexes allowed us to identify low ionic

strength as ideal experimental conditions to observe electrostatic substrate channeling.

Current MD and experiment results are able to give a strong support of the occurrence of
artificially introduced electrostatic channeling, and also qualitatively agree well to each other.
However, to further quantitatively compare these results and identify potential limitations in this

channeling process, detailed MD study and advanced sampling technique are needed.
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Chapter 3 Quantification of Thermodynamic Parameters”
3.1 Introduction

Surface adsorption of small ligand molecules is driven by a local energy minimum, and
surface diffusion can be seen as a stochastic process on a given energy landscape. The charged
surface of natural cascade®®? promotes surface diffusion along with intermediate migration
under a proximal electric field created by the cascade surface. Continuum modeling is able to
give a good description of the intermediate migration with long range electrostatic
interaction.’>3 However, there is no representation of the surface interaction. Brownian
dynamics gives a more detailed description of the electric field and also explicit intermediate
molecules,?® but potential local h-bond interactions are underestimated. For Kinetic
quantification, rate constants are greatly needed and are the key to evaluate overall kinetics.>*
Therefore, detailed quantification of thermodynamics parameters, such as hopping energy barrier
and desorption energy, is of great significance to further understand the channeling mechanism

and quantify overall kinetics.

In this chapter, by using MD simulations, the energy barrier of an individual hop is
calculated by transition state theory and desorption energy is calculated by umbrella sampling.
By combining these two energy terms, as shown in Figure 3-1, the probability for intermediate to

traverse the bridge is quantified in detail.

* The content of this chapter has been published on ACS Catalysis as a full paper.

Y. Liu, I. Matanovic, D. P. Hickey, S. D. Minteer, P. Atanassov and S. Calabrese Barton, "Cascade Kinetics of an
Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo", 8, 7719-7726 (2018). doi:
10.1021/acscatal.8b01041
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Figure 3-1 Poly-lysine peptide as an electrostatic bridge to transfer reaction
intermediate (G6P, glucose 6-phosphate) from HK (hexokinase) to G6PDH (glucose 6-
phosphate dehydrogenase).22

3.2 Model Description

A description of the basic molecular dynamics model on the peptide bridge is given in

Chapter 2.

3.2.1 Transition state theory study

Glucose 6 phosphate’s (G6P’s) hopping rate (Knop) On the peptide surface was calculated
by the short-range coulombic energy change between the levels of dual- (-400 kJ/mol) and
single- (-200 kJ/mol) association configuration, as shown in Figure 2-3. According to transition
state theory (TST) the rate constant, k, is related to the energy barrier AG by an Arrhenius
expression:

AG
k =A-exp(—ﬁ) 3-1
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where A is the frequency factor, R is the gas constant and T is the absolute temperature.
Therefore, A and AG could be calculated by fitting Ink as a function of 1/T, which will be further
discussed in following section. In order to do this, the MD system was set at 10 temperatures (10,
15, 20, 25, 30, 37, 40, 45, 50, 55 °C). At each point, 10 parallel 100-ns simulations were
conducted to calculate the average hopping rate, knop, and its standard deviation. It should be
noted that AG and A values were calculated by fitting all of the 1010 data points, rather than the
average at each temperature. This enables a sufficient evaluation of the uncertainty of hopping
rate. For ionic strength (1S) dependence study, IS values were set at 0, 20, 40, 70, and 120 mM
explicitly represented by Na* and CI" ions. The IS value here represents additional ion

concentration beyond that required for neutralization of MD system.

3.2.2 Umbrella sampling

From the MD trajectory of TST study, a dual association configuration was extracted for
umbrella sampling.>® After that, the peptide was first restrained at a reference position and the
readily adsorbed intermediate molecules (G6P) were pulled away perpendicularly from the
peptide surface for 200 ns. In this process, a spring constant of 1000 kJ mol™ and a pulling rate
of 0.01 nm ps* were used, as shown in Figure 3-2a. The two s-ammonium nitrogen atoms were
selected as the reference group and the whole G6P molecule was selected as the pull group. As a
result, a maximum distance of 2 nm was obtained for the center-of-mass (COM) of G6P as a
reference to its original position. From pulling trajectories, 15 frames with a COM increment of
0.1 nm were attempted to be selected as the initial configuration for each window in umbrella
sampling. Such spacing distance allow sufficient overlap between the probability distribution

within neighboring windows. This will be further discussed in section 3.2.2
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In order to optimize the frame selection for umbrella sampling, two reaction coordinates,

x;and x,, were defined as equations:

- -
X1 = 1 XGgep — xrefl 3-2

Xy = |(5C)G6P - Q_C)ref) ’ ﬁl 3-3

where Xgq,, and X,.¢ are the coordinates of the COM of G6P molecule and associated LYS’s -

ammonium nitrogen atoms, respectively. v is the given vector perpendicular to peptide surface in
pulling process. In other words, x, is the projection of x; on . Figure 3-2¢c shows an example on
the time course of x; and x,. A certain difference can be seen between these values, which is due
to the intermediate’s lag response to the harmonic spring force during pulling process. Therefore,
the pulling process was repeated 50 times to pick the 15 frames with |x; — x,| less than 0.01 nm.

Usually, 20 parallel pulling enable at least one appropriate frame for each window.
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Figure 3-2 (a) System configuration of a dual association mode. (b) An assumed
desorption state by pulling G6P 1.5 nm away from the surface.

For Umbrella Sampling, above mentioned reaction coordinates x; and x, were used for

GROMACS “COM-distance” and “COM-direction” modules, as shown by Figure 3-3 and

equation:

1
Vbias = 2 k- (x = x0)? 3-4

where V4 is the biased potential applied to the intermediate molecule as its reaction coordinate,
x, deviates from the energy minimum position, x,. k is the spring constant at 500 kJ mol™,

Usually, 10 ns MD simulations was conducted for each window to collect G6P’s trajectory in

umbrella sampling.
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Figure 3-3 Gromacs biased potential for umbrella sampling. (a) gmx_distance restraints
the pull group at a specific distance away from the reference group. (b) gmx_direction
restraints the pull group at a plane perpendicular to given vector and also a specific
distance away from reference group. (c) “gmx_distance ” + “gmx_direction” allows the

pull group to be restraint at the dome area above reference group. The x-axis for all
figures are at the same scale to y-axis.

In order to calculate the potential of mean force (PMF)®! as an indication of sorption
energy, the sampling results were combined by weighted histogram analysis method
(WHAM)®2% ysing Grossfield-WHAM code®. As shown in Figure 3-4, a 2-D PMF with non-
independent reaction coordinates, x, and x,, was obtained. That is, x; was above mentioned
GROMACS “COM-distance” and x, was “COM-direction”. From the 2D PMF plot, a smooth
gradient can be seen from the proximity region to desorption region. The ragged bottom of the
band is due to the insufficient sampling on the dome edge in Figure 3-3c, where x; and x, were
too far away from their energy minimum. Therefore, this region was dropped when calculating
the 1-D PMF along x,. The average on x, was calculated by only taking the area above the

yellow line in Figure 3-4, where |x; — x,| < 0.1 nm.
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Figure 3-4 Two-dimensional PMF calculated by Grossfield WHAM code.

3.3 Results and Discussion

3.3.1 Energy barrier of surface hopping

In Chapter 2, charged oligopeptides were demonstrated to be an effective channeling
bridge between sequential enzymes. MD studies on G6P molecule interacting with a charged
polylysine bridge found that the G6P associates with two lysine side chains by dynamic
exchange with surrounding water molecules, and surface diffusion was achieved through
hopping between neighboring association sites (Figure 3-1). Additionally, surface hopping was
indicated by short-range coulombic energy changes between discrete levels (Figure 2-3a and

Figure 3-5a). By counting these energy level changes, the hopping frequency, ky,qp,, can be

calculated. MD studies over a temperature range (Figure 3-5b) yields the hopping energy barrier,

Ghop, Via the Arrhenius equation:
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G
knop = A - exp (— ﬁ) 3-5

where A is the frequency factor, R is the gas constant and T is temperature. The hopping
mechanism involves significant intermolecular contact through hydrogen-bond interactions. In
order to hop to the next association site, the G6P molecule dissociates from one LY'S residue
while still bonded to the other LYS as a swing arm. During this process, an energy penalty has to
be overcome until G6P touches another LY'S and thus reaches a new energy minimum. This is a
Stern layer diffusion® that is less impacted by the ionic shielding from the bulk environment. As
shown in Figure 3-5c, despite ionic strength variation from 0 mM to 120 mM, the energy barrier
remains fairly consistent at 12 +0.5 kJ/mol. Therefore, a value at 12 kJ/mol was used for all IS

conditions in later KMC parameterization.
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Figure 3-5 (a) Short-range coulombic diagram showing G6P hopping as indicated by
energy fluctuation between single- and dual-association configurations. (c) Temperature
dependence of surface hopping rate. (d) lonic strength dependence on hopping energy
barrier and frequency factor.

3.3.2 Desorption energy

Desorption energy was calculated by Umbrella Sampling.*® Figure 3-6 summarizes the 1S
dependence study on the 1-D energy profile near the peptide surface. The probability
distributions in Figure 3-6a indicate a sufficient overlap between neighboring windows, allowing
an effective combination of each relative energy profiles. Figure 3-6b shows the energy profile
of G6P’s desorption from dual association to the bulk environment. Theoretically, a desorbing
intermediate molecule has to traverse the double layer near the charged oligopeptide, comprising
the above mentioned Stern layer and a diffuse later created by long-range electrostatic
interactions. At low ionic strength, the energy drop can be well separated into Stern layer and
diffuse layer components, as shown by the blue and orange arrows in Figure 3-6b. With

increasing ionic strength, the long-range electrostatic interaction is gradually screened out and
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the corresponding energy region becomes a plateau just beyond the Stern layer. In contrast, the
Stern layer potential well is less impacted by changes in ionic strength. This agrees well with the

ionic strength independence study on hopping energy barrier Figure 3-5.
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Figure 3-6 (a) Biased probability distribution of G6P molecule in each window. (b) 1-D
potential of mean force by Umbrella Sampling. The points shows the biased energy
minimum for each sampling window.

From Figure 3-6b, desorption energy, G4es, Was calculated by taking the difference
between the energy minimum and the energy average between 1.6 and 2.0 nm. Consequently,
hopping of an adsorbed intermediate molecule requires a climb up the 1S-independent energy hill

(dashed line in Figure 3-6b) while simultaneously having a probability to reach a desorption state
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that is dependent on bulk ionic strength. Assuming a Boltzmann distribution, the leaking

probability of each individual hop depends on the difference between Gyop and Gges:

3-6

Ddes ( Ges — Ghop)
=exp|———

Phop B RT

At high IS, the leaking probability is 1/16, which means one out of 16 hops results in
desorption. However, the low-IS leaking probability is calculated as 1/189, an order of
magnitude lower than the 120 mM case. This means the hopping is much less prone to
desorption at low IS and the intermediate is more likely to traverse the bridge. Table 2
summarizes the energy constants calculated by MD simulations, which will be used to

parameterize the KMC model.

Table 2 Energy barriers and corresponding rate constants.

IS Adebye Ghog" G5TBr AGBTBT ﬁ
mM nm kJ/mol kJ/mol kJ/mol BrBr
0 9.8 12 25,5 13.5 189
20 2.2 12 24.9 12.9 146
40 1.6 12 23.85 11.9 99
70 1.2 12 21.7 9.7 43
120 0.9 12 19.14 7.1 16

IS: ionic strength

Agebye: Debye length

Ghon'+ kg - €nergy barrier and rate constant for hopping from one dual association site to
neighboring site on LY'S bridge

GETBT |BTBT: energy barrier and rate constant for desorption from one dual association site

AGBTBT=GZT3T-GRy BT energy difference from hopping transition state level to desorption level
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3.4 Summary

The G6P intermediate molecule was found to undergo a surface diffusion mode under the
protection of the electric double layer created by the charged peptide surface. Specifically,
surface hopping occurs within a Stern layer due to local hydrogen bond interaction that is less
impact by the ionic environment of bulk media. The actual value for hopping energy barrier
approximate the energy difference between a dual and singly association mode. Above Stern
layer, the long range electrostatic interaction creates a diffuse layer to further protect the surface
diffusion. However, this layer could be largely shielded at high ionic strength. Collectively, the
overall leaking probability for each individual hop depends on the energy difference between the

hopping transition state and desorption state.

This detailed quantification on thermodynamic parameters not only further explore the
surface diffusion mechanism, but also give a reasonable support for the rate constants that can be

used to parameterize KMC model.
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Chapter 4  Transition Pathway from Bridge to Binding Pocket™
4.1 Introduction

Natural cascades typically include 2D channeling surfaces between sequential active
sites.’828 Similarly, the area between the artificial bridge and its enzyme binding site is a flexible
2D surface with multiple pathways and corresponding leakage. Figure 4-1 shows a proposed
channeling pathway from peptide bridge to G6P’s binding site on G6PDH. As discussed in
Chapter 2 and Chapter 3, the surface diffusion is a stochastic process on an energy landscape
with discrete potential wells. As compared to the 1D hopping on the peptide bridge, with random
motion either forward or backward, 2D surface diffusion includes multiple pathways over a
network of hopping sites. As a result, the overall leakage cannot be simply estimated by

thermodynamic parameters.

Transition pathway analysis using a Markov state model (MSM) is a good approach to
analyze this process.>*3°457% MSM is widely used in the area of protein folding and ligand
unbinding,>3°657:9798 where the transition pathway is complicated by spatial configuration with
multiple degrees of freedom (e.g., inter-atomic distances and dihedral angles) and highly
interconnected states of the system. Using detailed configuration discretization and combining
states with related physical meanings (e.g., desorption or binding states), MSM converts multi-
dimensional molecular dynamics transitions to elementary pathways, allows the selection of

dominant and long-timescale pathways, and finally human readable pathways.>"% As a result,

* The content of this chapter has been published on ACS Catalysis as a full paper. The work on molecular docking in
this chapter is in collaboration with Dr. Ivana Matanovic and Dr. Plamen Atanassov at University of New Mexico

Y. Liu, I. Matanovic, D. P. Hickey, S. D. Minteer, P. Atanassov and S. Calabrese Barton, "Cascade Kinetics of an
Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo™, 8, 7719-7726 (2018). doi:
10.1021/acscatal.8b01041
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the energy landscape®*®® and committor probability °” to minimum-energy basins can be

calculated.

NADP*

/
LYS peptide
linker

G6P binding site

Figure 4-1 Proposed channeling pathway from the last dual association site on poly-
Lysine peptide bridge to the G6P’s binding pocket on GOPDH.

In this chapter, we further map the channeling pathway between the bridge and
intermediate active site of G6PDH using a probability analysis based on transition state theory.
This result is then validated by Transition Path Theory (TPT) with a Markov state model. This
analysis helps to elucidate the intermediate’s ergodicity, transition pathways, and energy barriers

in channeling from peptide bridge to intermediate’s binding pocket on G6PDH.

4.2  Model Description

Basic MD parameters follow the settings as discussed in Chapter 2.

4.2.1 Selection of complex structure

The crystal structure of G6PDH from Saccharomyces cerevisiae (experimental enzyme)
is not yet available.® In order to obtain a relevant enzyme crystal structure, a comparison was
made between this experimental GGPDH and the four species with available crystal structure
(Table 3). Due to charge dissimilarity, Mycobacterium Avium G6PDH (Ma_G6PDH) and
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Leuconostoc Mesenteroides G6PDH (Lm_G6PDH) were ruled out. The secondary cofactor
binding site of human G6PDH (Homo sapiens G6PDH) structure is very different from yeast
G6PDH (Saccharomyces Cerevisiae GGPDH) used in experiment. Moreover, Trypanosoma
Cruzi G6PDH (Tc_G6PDH) has multiple CY'S linker sites and available complex structure with
both substrate and cofactor readily adsorbed. Therefore, Tc_G6PDH was selected to study the
hopping from bridge to downstream enzyme active site. CYS-528 was selected as the linker site,

as it was fully solvent exposed and close to the G6P binding site.

4.2.2 Hybrid topology at enzyme/linker interface

In order to conduct MD simulation of the bridge-G6PDH complex, force field parameters
are required for all atoms and bonds. Generally, as discussed in section 2.2, CHARMM36 all-
atom force field”®"* provides the topology for all standard residues, such as protein and DNA
components. In addition to this, CGenFF (CHARMM General Force Field)” can be used to

calculate parameters for arbitrary, non-standard small molecules, such as ligands.

Here, these two databases are combined to generate topology for the interface between
the bridge and its linker®® and standard peptide/enzyme.” As shown in Figure 4-2, the linker
molecule was capped with CYS residues on each side using ChemAxon Marvin Sketch. Then, the
topology of whole complex was generated by CGenFF. The interface topology (bonds, angles,
dihedrals) was used for the entire complex in MD simulation. The independent standard and non-

standard sections were generated by CHARMM and CGenFF, respectively. The capped linker

T Q&A of CGenFF web page: https://mackerell.umaryland.edu/~kenno/cgenff/faq.php#hybrid
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structure in Figure 4-2 was applied to the HK-bridge segment and similar approach was also

used for bridge-G6PDH interface.

Table 3 Comparison of experimental GGPDH? and available crystal structures.

Enzyme Sc_G6PDH Hs G6PDH Tc G6PDH Ma_G6PDH Lm_G6PD

Oraanism Saccharomyces Homo Trypanosoma Mycobacterium Leuconostoc
g Cerevisiae Sapiens Cruzi Avium Mesenteroides

Species Eukaryote Eukaryote Eukaryote Prokaryote Prokaryote

P yeast human parasite bacteria bacteria

Similarity? -- 48% 49% 34% 35%

Similarity 0 @ 0 0

L b - 64% 64% 53% 54%

Iﬁ—?e 46 11 1.1 184 205

PDB index none 2BH9 5AQ1 4LGV 1E7Y

Ligands®  -- NADP/G6P NADP&G6P no NADP&G6P

CYS : . . :

number single multi multi single no

gr\(()iimi ty good medium very good medium -

aSimilarity: residue similarity to Sc_ G6PDH; P Similarity +: positive similarity to Sc_. GGPDH; ©
Ligands: substrate and cofactor availability in crystal structure; ¢ CYS proximity: the proximity
of CYS residue to G6P binding site.

To stabilize the complex, the terminal HK CY'S of the bridge was first pulled away from

the position-restrained G6PDH, extending the LY'S bridge. Subsequently, the HK CYS side was
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position restrained while the rest of complex was allowed to stabilize over a 100 ns MD

simulation. The resulting complex was used to initialize probability analysis.

CHARMM CHARMM

Figure 4-2 Chemical structure of linker molecule capped with CYS residue on each
side, CYS-(BM-(PEG)2)-CYS. The whole complex structure was processed by CGenFF
to obtain the topology parameters for the interface between standard residue segment
shaded by blue color and the non-standard residue segment shaded in red color. In
actual MD simulation, the topology for pure standard residue segment was taken from
CHARMM, and CGenFF parameters were applied to the pure non-standard segment
and the interface topology.

4.2.3 Intermediate initialization on complex structure

To choose a G6P release point, molecular docking was used to identify favorable binding
areas between the LY'S bridge and G6P binding pocket that could be ruled out as leading to long-
term adsorption, as shown in Figure 4-3. The docking simulations were performed using
AutoDock Vinal®1% py Dr. lvana Matanovic working at Dr. Plamen Atanassov’s group at
University of New Mexico. Docking of G6P to G6PDH in the presence of the LYS bridge was
performed multiple times using a range of areas (Figure 4-3a) between LY'S bridge and the
G6PDH active site. As a result, the rest of the area between the bridge and the active site was
considered as a potential transition state area, where the position of G6P can be adjusted to find

the points as shown in Figure 4-5.

Subsequently, 500 parallel simulations of 2 ns duration were conducted with velocity

regeneration at each ionic strength (0, 20, 40, 70, 120 mM). At 10 ps per frame, these
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simulations generated 10° frames per ionic strength, to be used in analyzing the channeling

behavior. The identification of starting points will be described in Section 4.3.1.

Favorable sites

active site

Figure 4-3 The results of molecular docking simulations for the binding of G6P to

G6PDH (circled positions) in the area between LY'S bridge and G6P binding pocket on
G6PDH. (a) Search boxes. (b) Several favorable binding sites were seemed as potential
kinetic trapping spots in short MD simulation and were avoid in initializing the parallel

simulations.

4.2.4 Markov State Model on transition pathway on flexible 2D surface

Python package MSMBuilder!® is used to conduct the MSM analysis in this work.
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In order to analyze the trajectory of intermediate molecule on a flexible 2D surface, the
atom coordinates in each 10°-frame MD trajectory were featurized into a vector with

representative coordinates, X (t):

X(t)=[x1 X2 X3] 4-1

where t is time step, x; is the G6P’s distance to bridge surface, x, is the G6P’s distance to
complex surface and x5 is the G6P’s distance to the COM of its binding pocket on GO6PDH.
Python package MDAnalysis'®1% is used for the trajectory featurization. The actual distance to a
reference surface was calculated by taking the distance between the COM of intermediate
molecule and the closest atoms of reference group. Depending on user’s requirement and specific
issues to be studied, the dimension of X (t) can be increased by adding features of interest such
as dihedral angles, distances to charged moieties, etc., to reveal more detail in channeling

process.

After trajectory featurization, the original vectors, X(t), was grouped into 500
clusters/states based on their conformational similarity. As a result, the trajectory of vectors is

converted into a trajectory of 500 states, S(t):

X(t) clustering S(t) 4-2

Then, a Markov State Model, C (7), is built by counting the transition between each state

in S(t):
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S() —= C(7) 4-3

where 7 is the time interval used to count the transition. Specifically, C; ;(7) represent the
number of counts for the system to go from state i to state j during time interval, . The the count
matrix is converted to a transition matrix according to the following equation:

Ci (1)

— 4-4
j.:‘i_max Cl'] (T)

M; i(7) =

This makes each row of the transition matrix, M; ;(t), sum to one. Figure 4-4 shows an
example of 500>500 transition matrix, where 4.25 % of the elements are non-zero. This means
that the transition matrix is usually sparse, because mutual connections only exist among directly

connected states.

State Index, next
0 100 200 300 400

100 +:

200

State Index, current

Figure 4-4 An example of transition matrix, where white color stands for zero element
and blue color stands for non-zero items. In this case, there are 10,625 non-zero
elements out of the total 250,000 items, resulting in a ~ 4.25% occupancy of the matrix.
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Finally, three basins are defined to calculate the committor probability with Python

package CSNAnalysis.* The energy basins were defined as:

1. The bridge basin, including clusters where the G6P phosphate group lies within 0.3
nm of the peptide bridge surface.

2. The pocket basin, of clusters where the G6P phosphate group lies within 0.3 nm of
the center of the GGPDH binding site.

3. The desorption basin, in which the G6P phosphate group is more than 2 nm away

from the complex surface.

4.3 Results and Discussion

4.3.1 Channeling process

Unlike the LY'S bridge with uniform potential wells (and thus precisely defined energy
terms), the configuration of the peptide bridge with respect to G6PDH is flexible due to its single
bond connection (Figure 4-1). Additionally, no single reference group can be defined along the
multiple trajectories between the bridge and binding pocket; therefore, the leaking probability in
this region cannot be easily assessed by umbrella sampling. Here, a direct probability
measurement was conducted by MD to explore the leakage and estimate a corresponding energy

barrier.

By combining equations 3-5 and 3-6, the rate constant ratio, kges/knop, and probability

ratio, pges/Pnop, are equal and can be related to the energy difference, Gges — Gnop, according to:

T CSNAnalysis: https://github.com/ADicksonLab/CSNAnalysis
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Kdes _ A - exp(— Gqes/RT) _ (_ Gges — Ghop) __ Ddes

= = ex
khop A - exp(— GhOp/RT) RT phop

In this chapter, the subscript “hop” in ky,p, and Gyep refer to the hop across the energy

barrier between last dual association site on peptide bridge and the intermediate’s binding pocket

on G6PDH.

The most direct approach to measuring pges/phop Would be to follow the MD trajectory
of the G6P molecule, starting from either the LYS bridge or GBPDH binding pocket, and track
its probability to arrive at the other site. However, because of the deep potential well at each of
those sites, such traversals are extremely rare on MD time scales. Alternatively, if the
intermediate is initialized at a high-energy transition state (Figure 4-5 point c), it should have
equal probability to reach the peptide bridge, py,,, and the G6PDH pocket, p,,,.. There also exists
a finite probability, pq4es, Of desorption to the bulk, depending on the energy difference between

transition and desorption state, AG.

More generally, the G6P molecule may be released near the transition state (Figure 4-5

points b or d), where py, and pp, are not equal but comparable. Given point d as an example,
pf}oc > p. indicates the shift from transition points to enzyme pocket. Here, pg. as well as the
desorption probability, pS.., can be related to their respective energy barriers, G{fop and G, by

an Arrhenius expression:

pf}r A exp(— Gﬁop/RT) B

pges A- exp(_ Géles/RT) < Gges B GSOD) ( AG)
= exp|\ —————— ) = exp
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This expression suggests generally that wherever the release point, the ratio of hopping
and leaking probabilities is given by exp(— AG/RT), where AG is the energy difference between
a perfect transition point (point ¢ in Figure 4-5) and the bulk energy level. Therefore, in order to
calculate the value of AG, the G6P molecule can be released from a nearby region (Figure 4-5

points b or d) , instead of finding a single perfect transition state (point c).

Bulk Bulk

a
Gdes

Br

Figure 4-5 Simplified energy profile from bridge to G6P binding site on G6PDH. Point
a is the last dual association site on peptide bridge; point c is the transition state at the
energy barrier between bridge and G6PDH; point b and d are the two states slightly
deviating from the transition state.

Probability analysis was conducted using a partial complex, including G6PDH (PDB:
5AQ1, Table 3), the LYS bridge and only one interfacial CYS residue of HK, as shown in Figure
4-6a. The HK CYS was position-restrained to mimic the existence of the HK biomolecule. Using
the configuration of Figure 4-6a as the initial frame, the velocity of all atoms was regenerated
and then equilibrated for 1 ns (position restraint on all G6P and complex atoms). After that, 500
parallel MD simulations (2 ns) were conducted with position restraint only on the HK CYS

residue.
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active site

active site

Figure 4-6 (a) System configuration when G6P was released around point ¢ in Figure
4-5. (b) System configuration showing the distribution of G6P intermediate (green dots)
in 500 parallel simulations. The complex structure is the 0 ns frame and the G6P
molecules position are taken from the last frame of each parallel simulation. The
coordinates are rotated to make the G6PDH secondary structure fit that of first frame.

Probability was calculated for three outcomes of G6P molecule: reaching the peptide
bridge (por), reaching the G6PDH pocket (ppoc) Or desorbing into the bulk (pges). Each outcome
was determined by the distance of the GO6P’s phosphate group to the corresponding residues.
That is, when phosphate group was within 1.2 nm (short range cut-off) to the LYS bridge surface
or the G6P binding pocket, it was assumed to reach the destination. If G6P molecule was 1.2 nm
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away from the whole complex, it was assumed to desorb. Cases where G6P was located
elsewhere on the complex surface after 2 ns (~20% of all simulations) were considered
incomplete channeling, and were not included in the calculation. Finally, the initial position of
G6P was slightly adjusted until por is comparable to ppoc. Figure 4-7 shows that the probability
became fairly consistent when the simulation was repeated more than 200 times. Therefore, all

the probability results in the main text were calculated from 500 parallel simulations.

100

mm Bridge
80} Bl Pocket|

Em Bulk
601 -

40t .

Probability / %

50 100 200 300 500 1000

Num of parallel simulations

Figure 4-7 Probability results as a function of number of parallel simulations. The
resulting probability depends on the intermediate releasing point. In this set of
simulations, G6P molecule was released at a single point around the perfect transition

state area, and then parallel simulations was conducted to study the convergence of
probabilities.

Using the release point yielding comparable values of py, and py,., a IS dependence
study was conducted via 500 parallel simulations. For example, at 1IS=20 mM (Figure 4-8), py,

Ppoc aNd pqes Were found to be ~53.5%, 43.4% and 3.0%, respectively, resulting in a leaking

probability =2 = 7.14%. Using this value in equation 4-6, we calculated the resulting AG BE2

p
Ppoc

value to be 6.9 kJ/mol. As compared to the bridge, where AGB™®" = GFIP" — GpiB* ~ 13 ki/mol

(Table 2), traversal from the bridge to G6PDH is less protected from leaking into the bulk.
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Figure 4-8 (a) lonic strength dependence of leaking probability, showing the probability
of G6P’s final states (e.g, desorption, bridge, pocket). Up 500 parallel simulations were

conducted to sample the rare leaking event. (b) The ration of desorption and channeling
events in Fig.3b.

Specifically, the energy difference between transition state and desorption level was

calculated from the resulted probability according to Figure 4-5, Figure 4-8 and equation:

BrE2

BTE2
AGB™E2 = _RTIn (p’“’” ) 4-7
pdes

Assuming a uniform bulk energy level, AGB™2 can be used to correlate the transition

state energy level to Gse and Giso™ on LYS bridge, as shown in equation below:

BrBr _ BTE2 _
Gdes - Gdes 4-8
BrE2 _ o~ BrBr BrE2
Ghop —_ Gdes - AG 4'9

Therefore, a complete energy profile can be discerned between the LY'S bridge to the
transition state to G6PDH binding pocket. Figure 4-8b shows different pges/Ppocker Value as a

function of ionic strength, indicating increased leakage under a more concentrated ionic
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environment. It should be noted that a high energy barrier tends to keep the G6P molecule on the
bridge, increasing the residence time of intermediates on the bridge. Below we show that this

energy barrier results in further leakage from the bridge.

As for the rate constants, since all hopping and desorption events on LYS bridge can be
correlated to the last dual association site on peptide bridge, kjsp", kgse" Khap- and kgss~ are
assumed to have the same frequency factor. Similarly to the KMC parameterization on peptide

bridge (Table 2), rate constant ratio from bridge to E2, kjso? /kges~, Was calculated from

probability analysis.

4.3.2 Transition pathway analysis

Given the fact that channeling on 2D surface is complicated and there could be multiple
pathways, Transition Path Theory is conducted via Markov state model to better understand the
channeling process and also validate the probability analysis in above section. Figure 4-6b shows
all G6P’s final positions relative to bridge-G6PDH complex in 500 parallel simulations. In spite
of one frame from each 200-frame trajectory, the area between peptide bridge and binding
pocket was already fully covered, even including the desorption case. Therefore, the local

ergodicity is good enough to build a Markov state model.

Figure 4-9 shows the network of MSM states for the 0 mM and 120 mM case in Figure
4-8a. Specifically, the node size corresponds to its stationary populations and the node color
stands for its committor probability to one of the pre-defined basins. For example, the states
belonging to “bridge basin” has a 100% committor probability to this basin and thus has a pure

blue color. Similarly, the pure cyan nodes have an equivalent 50% probability to “pocket” and
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“bridge” basins. The MSM results indicate separate energy basins of peptide bridge and G6P
binding site. But these two basins are connected via a highly interactive nodes that correspond to
the transition area in Figure 4-5 and Figure 4-6a. It is obvious that neither of these two basins has
a good connection to the bulk, because there is a large kinetic trap due to the charge density and
strong local h-bond interaction between G6P’s phosphate group and LYS/ARG residues at
“bridge” and “pocket”. But the transition area (cyan) shows a relative frequent interaction to
desorption states. This agrees well with the leakage when G6P hops from peptide bridge to its
binding site on G6PDH. At 0 mM ionic strength (Figure 4-9a), the “pocket” and “bridge” basins
are strongly connected by the cyan states in between, and very little network was observed to the
“bulk” basin. For the 120 mM system, however, significant shift can be observed to the bulk
state, as indicated by the larger red area and more apparent purple/yellow areas. This give a good

qualitative visualization on the impact of ionic strength.

In order to visualize the transition probability from bridge states to pocket or bulk states,
the bridge was not defined as a basin when calculating the committor probabilities, as shown in
Figure 4-10. In this way, the committor probabilities to “bulk” and “pocket” spread and compete
for the original “bridge” states. Graphically, the blue color in Figure 4-9 a and b is removed in
Figure 4-10, and the green and red spread to and paint the original blue states as circled by
dashed oval shape. As a result, the original “bridge” states turned a very green color that is far
from yellow, indicating that the intermediate on bridge was more like to go to the binding pocket
(green) instead of being lost in to bulk media (red). However, when comparing the 0 mM and
120 mM ionic strength, more yellow can be observed in original bridge states in Figure 4-10a,
demonstrating more leakage occurred with increasing ionic strength. This agrees well with direct

probability analysis (Figure 4-8) and the three-basin committor probability result (Figure 4-9).
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186

Figure 4-9 Transition pathway visualization at 0 mM (a) and 120 mM (b). The node
size is based on the stationary populations of each state. The colors indicates the three-
basin committor probabilities to the pre-defined basins of desorption states (red),
peptide bridge states (blue) and binding pocket states (green). (c) Triangle color bar. (d)
Triangle color bar with grid and probability labels.
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Figure 4-10 Two-basin committor probabilities for transition pathways visualization at
0 mM (a) and 120 mM (b). As compared to Figure 4-9, the “bridge” basin was not
defined when calculating the committor probabilities, but the corresponding states were
still recognized as an energy basin. In this way the probability to bulk/pocket states
from “bridge” states can be visualized. (c) Triangle color bar. (d) Triangle color bar
with grid and probability labels.

10

In order to quantitatively compare the direct probability analysis and MSM result, the
overall leakage was calculated. By studying the states with equal committor probability to
“bridge” and “basin” in Figure 4-9, their probability to “bulk” can be used to compare with the

probability ratio in Figure 4-8b, making a more reasonable AG as illustrated in Figure 4-5.
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Specifically, the states with equal committor probability to “bridge” and “pocket” (p; 4 and
Dipoc) Were extracted, and then only the states representing surface interactions were kept, in
which the distance between G6P’s phosphate group and complex surface was less than 0.3 nm.
Finally the overall desorption probability, p2p, was calculated by the summation of weighted

desorption probability at each states:

p2p = Z Dides .y, 4-10
: pi,poc

where wt; is the weight of each selected state calculated from their stationary populations in
MSM. Table 4 summarizes all energy values, key rate constant ratios and key probability ratios.
With the AGB"E2 value from probability analysis and assuming a uniform bulk energy level
(equation 4-8), the hopping energy barrier from bridge to G6PDH can be calculated From Eq.
4-9. Given the ionic strength at 120 mM as an example, the minimum pg.s/ppo. for these MSM

clusters are 30.3% (Table 4), comparable to the 31% in Figure 4-8b.
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Table 4 Energy barriers, related rate constants and cascade Kinetics.

TST TPT

IS Adebye Phop.  AGETEZ  GPE Phop.  AGETEZ  GRTE?
mM nm p5re? kd/mol  kJ/mol phrE? kd/mol  kJ/mol

0 9.8 27.0 8.5 17.0 16.6 7.24 18
20 2.2 14.4 6.9 18.0 8.7 5.56 19
40 1.6 10.5 6.1 17.7 11.2 6.22 18
70 1.2 7.4 5.2 16.5 6.1 4.66 17
120 0.9 3.3 3.1 16.0 3.3 3.26 16

IS: ionic strength
Adenye: Debye length

p5TE2: desorption probability for hopping from last dual association site to G6P binding pocket

on G6PDH

AGBTEZ; energy difference between transition state level and desorption level, when hopping
from last dual association site to G6P binding pocket on GGPDH

Phop s AGETEZ: probability and energy barrier for hopping from last dual association site to G6P

binding pocket on G6PDH

Figure 4-11 makes a graphical comparison between TST and TPT methods in terms of
desorption probability and the energy difference between transition area energy and bulk energy
level. From both plots, the TST and TPT results generally agree well, giving a good quantitative
impact of ionic environment on the channeling from bridge to G6PDH binding site. Therefore,
the probability analysis in above section is reasonable to parameterize KMC model to quantify

the cascade kinetics.
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Figure 4-11 Comparison between the leakage calculated by transition state theory
(TST) and transition path theory. (a) Leaking probability represented by desorption
probability and the probability to reach the GEBPDH binding pocket. (b) Energy
difference between transition state to bulk environment, corresponding to AG in Figure
4-5,

4.4 Summary

Intermediate’s hopping from poly-lysine peptide bridge to its binding site on G6PDH is
studied by a direct probability measurement via MD simulation. By releasing the G6P molecules
at a transition state area with relative high energy level, three event probabilities (por, Ppoc, Pdes)
are used to calculate the energy difference between this state and bulk energy level. Then, this
energy difference is correlated to the desorption energy on peptide bridge, in order to complete
the energy profile to G6P’s active site on G6PDH. Transition pathway analysis by MSM further
elucidates the details of this process. Discrete potential basins are clarified by the visualization of
MSM results, and the transitions states in between (cyan color) shows more propensity to desorb
to the bulk as compared to arriving at the bridge and pocket basins. The leaking probability by
committor probability agrees well with the direct probability analysis in Chapter 3. These

probability results are used to estimate the kinetic parameters for the KMC model in Chapter 5.
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Chapter 5  Cascade Kinetics by Kinetic Monte Carlo Method”
5.1 Introduction

In previous chapters, thermodynamic parameters were quantified in detail by molecular
dynamics simulation combined with advanced sampling methods. In order to further reveal the
potential limitations of channeling efficiency, quantitative kinetics is greatly needed. A
quantitative model should not only effectively cover the time and length scales from micro-
structure to experiment, but also fully consider the molecular complexity of the cascade

topology.

Reported work on this includes the analytical method with assumed channeling
efficiency, continuum modeling focusing on the charge migration under electric field and
simplified molecular simulation on the probability for intermediate molecule to reach the second
active site. By solving a set of equations based on mass balance, analytical methods or micro-
kinetics are able to correlate the observed cascade kinetics to channeling efficiency, which can
not be measured directly by current experimental techniques, and are usually estimated by
computational simulations.3* Continuum modeling represents the intermediate distribution as a
continuous field. With predetermined spatial factors and boundary conditions, the intermediate
migration is governed by concentration gradients and the electric field created by the cascade
surface.’™>3° As a result, steady state flux can be calculated to determine the yield as an indication

of channeling efficiency. Recent molecular simulations were conducted under Brownian

* The content of this chapter has been published on ACS Catalysis as a full paper.

Y. Liu, I. Matanovic, D. P. Hickey, S. D. Minteer, P. Atanassov and S. Calabrese Barton, "Cascade Kinetics of an
Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo", 8, 7719-7726 (2018). doi:
10.1021/acscatal.8b01041
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dynamics, wherein the transport efficiency was estimated by the probability of simplified but
explicit intermediate molecules to reach the vicinity (0.7 nm) of second active site.2®3044 This
probability term was integrated by the above-mentioned analytical approaches to quantify the

cascade Kkinetics.

However, these models are not able to adequately represent the surface interaction
between charged and polarized intermediate species and channeling surface. Additionally, the
quantification algorithm relies heavily on the estimation of channeling efficiency and ignore the

complexity of intermediate’s interactions with cascade surface.

Because of its focus on sequences of events rather than stepping through time, Kinetics
Monte Carlo (KMC) model has been widely used for simulating chemical reaction and diffusion
on the lattice surface of inorganic catalysts.*1*°%% Basic events include surface adsorption,
desorption, hopping and reaction, which are common to intermediate channeling. Specifically,
DFT parameterized KMC, also called first-principle KMC, is used to study the effect of catalyst
composition, surface structure, lateral interactions, and operating conditions on the overall
catalytic performance of chemical (e.g., CO or NO) oxidation/reduction on catalyst lattice
surface.®? In addition, experimentally based KMC was used to study the CO oxidation on RuO
surface,®® and a comparison between DFT and experimental parameters was made to reveal the
significant impact of lateral interaction of adsorbed species.*! Besides quantum mechanics, a
combination of MD and KMC simulations was also used to study epitaxial growth of fcc and hcp
islands on fcc (111) surface, showing great simulation acceleration and a boundary pinning effect
by adsorbed atom islands that is difficult to reveal by conventional KMC methods.®* Another

multi-level example is a hybrid of first-principle MD and KMC simulations, showing the impact
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of rotational coupling of the side groups influencing the proton conduction in proton exchange

membrane fuel cells (PEMFC).%

In this chapter, we use the KMC method to quantify the cascade kinetics of the HK-
G6PDH cascade. Parameterized by MD and experimental results, the KMC model was built to
estimate product evolution on the experimental time scale. This model enables a direct
comparison between simulations and experiments, focusing on pre-steady state product
evolution. These studies build a detailed quantitative approach, enabling us to further elucidate

the range and limitations of electrostatic channeling.

5.2 Model Description

5.2.1 Kinetic Monte Carlo model

Figure 5-1 shows the two-step KMC model for cascade reactions:

HK
glucose + ATP —— glucose 6 — phosphate + ADP 5-1

G6PDH 5.2
G6P + NADP* ———— 5 phospho gluconolactone + NADP

As shown in the figure, the two active sites (E1 and E) are connected by several discrete

hopping sites. On each site, rate constants for all possible events (e.g., kllfof;, kfllg;‘t, Kieak, Kads »
k..t) were assigned explicitly. All sites were allowed to exchange intermediate with the bulk
environment. Given the fast diffusion rate of G6P (~10° cm? s) as compared to the turnover

frequency (TOF) of active site (~0.01-0.1 s%), the G6P was assumed to diffuse immediately into

a homogeneous bulk media once it left the cascade surface. Therefore, the bulk environment was
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only represented by a changing intermediate concentration, which will in turn impact the
adsorption rate on active sites. MD simulation of intermediate in the binding pocket is complex
and usually handled by more detailed and advanced sampling techniques such as Markov State
model®’. Therefore, it is out of the scope of this work. To simplify the KMC system, hopping
was assumed to be reversible between bridge sites, but was irreversible from E1 to bridge and

bridge to E2. Reversible hopping on and off bridge is of potential interest for future work.

Bulk varying T, IS, etc.
il o] o I8
kleak kho kleak leak
14
kéat* % ¥~ O\ k *kc%at
el N ey B e Ty B
E, 1213 —14] E,

Figure 5-1 Schematic diagram of kinetic Monte Carlo model. E1 and E2 are two active
sites. Sites 1-4 are discrete hopping sites representing the dual association sites on
peptide bridge. Bulk are the environment with changing intermediate concentration. Ky
is the Michaelis constant and k values are the rate constants for various events,
including k. for turnover frequencies, ke, for desorption from bridge, ki, for
hopping on bridge, k,, for hopping from enzyme-1 to bridge, ky,, for hopping from
bridge to enyme-2.

A zero k value was given if an event was disallowed. Figure 5-1 indicates all allowed
events on each site. The actual rates, r, in each KMC step were calculated by taking the product
of rate constant, k, and the occupancy of current and neighboring sites, ® and 0,,;,, represented
by either 1 or 0. As mentioned above, bulk concentration, ¢, was involved in this rate/occupancy

product when calculating the adsorption rate. Each specific calculations can be seen as follows:

Tads = Kags (1 —0) - c 5-3
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Tdes = kdes -0-c 5-4

Treaction = Kcat 0 " C 5-5

rhop = khop -0 - (1 - @nb) *C 5-6

Having assigned all rate values (r1, r2...rn) to all available sites, a random number (p,) is

generated between 0 and 1, to select a specific event according to:*¢%°

ip—1 i

0
Z 7 < P1 - Tioral < z T 5-7
i=1 i=1

where [i,:q IS the summation of all » values in current KMC step. The corresponding event i,

was then executed and the time evolution, At, was calculated by:

At = — ln(pz)/ﬂotal 5-8

where p, is another random number. After execution, the occupancy and rate values were
updated accordingly. Then, KMC simulation entered a loop until the time reached 1000 ns
(steady state product evolution from E2). From the time course of product evolution, lag time, 7,
was calculated by extrapolating the 500-1000s segment back to the time axis. Detailed discussion

of this is provided in section 5.3.

In each KMC simulation, 100 parallel cascades were employed to enhance the event
sampling and reduce the uncertainty of intermediate concentration. Normally, each KMC

simulation took less than 107 steps, depending the parameters of KMC simulation. Finally, 5-10
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parallel KMC simulations were performed to evaluate the error in lag time estimation. Table 5

shows the parameters for KMC simulation.

Table 5 KMC parameters.

Constant Value
Ce1E2, Cascade concentration / mol L 8*10°
V, compartment volume / L 2.07*101
Csub, CONcentration of substrate for E1 / mol L 2
kEL, TOF on E1/molec s 0.7
kEL  desorption rate on E1, s 0.07
kE1  adsorption rate on E1, st M 7.7%10°
Ku 1, Michaelis Constant of E1, mmol L 107
k}lgp, hopping rate from E1 to bridge, s* 7*10%
kE2, TOF on E2 / molec s 6.2
k52, desorption rate on E2, s 0.62
kE2  adsorption rate on E2, st M 1.26*10°
Ky 2, Michaelis Constant of E2, mmol L 5.4*10°3
knop, hOpping rate on bridge, s™ kEL x 100
kjeax, desorption rate on bridge, s knop / (189,146,99,43,16)
hop, hopping rate from bridge to E2, s* kieax X (27,14.4,10.5,7.4,3.3)

Specifically, turnover frequencies (TOFs) on E1 (kEL) and E2 (kE2) was calculated by
fitting experimental data for steady state product evolution of a fully saturated HK and
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G6PDH.*® The Michaelis constant for E2, Ky ,, was calculated from the experiment lag time of a
free-standing system, 7., according to following equation'®, where [1] is the intermediate

concentration at steady state.

5-9

[1] kEL -1
_ 1,E2 cat ‘free
= Kcar X

kEl k _—
cat = Kcat X Ku, + [1] Kuz + k&t Trree

Specifically, the Ky , in Figure 5-1 is a combination of k52, kZ2 and kEZ, as show in
following equation. In order to minimize the leakage of a readily channeled intermediate,
substrate desorption rate constant on each active site, k51 and k52, was taken as 1/10 of the kEL
and kEZ, respectively. The adsorption rate constants, k23 and kE2_, were calculated according

to:

kcat + kdes
kEZ

ads

5-10

As mentioned above, 100 parallel cascades were simulated within a single common bulk
environment. The total volume, V, for these simulations was 21 fL, based on the experimental

concentration of enzymatic cascade, [E1, E2], at 8.9 nM:

~ 100/N,

- 11
[E1, E2] >

As a result, the concentration of leaked and hopping intermediate can be calculated for
each event. In this way, the degree of leakage and hopping could be compared directly with

product and intermediate evolution. E1 was assumed to be saturated in glucose substrate.
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Rate constants for channeling on the bridge and E2 were obtained from MD results. The
hopping rate (~ ns™) on the peptide bridge is orders of magnitude higher than the TOF on each
active site (~ s1), such that enzyme turnover is rate limiting. Therefore, the channeling process
was actually governed by equilibrium ratios of transport rates, rather the absolute values of each

transport rate constant. In the KMC simulation, ky,,,, Was set at only two orders of magnitude

b2
hop

higher than kEL, in order to improve simulation efficiency. Meanwhile, values of kjqq and k
were varied until their ratios to ky,,, were equal to those of MD simulation results in Table 2 and

Table 4. This guarantees the leaking probability for each individual KMC event is the same as

b

the dynamic behavior observed in MD. k),

was set to an infinite large value (7 x 10%°) to
make sure the intermediate goes to bridge immediately after it is produced on E1. For the IS-
dependent study, kjeai Was varied until its ratio to ky,,, Was equal to that of MD results, as

shown in Table 2, Table 4 and Table 5.

This Kinetic Monte Carlo model was built in Python®% and it is available at the

repository in APPENDIX D.

5.3 Results and Discussion

KMC result for singe enzyme kinetics agree perfectly with Michaelis-Menten kinetics

and details are provided in APPENDIX E.

5.3.1 Cascade Kinetics by KMC model
KMC simulation was applied to the cascade model as shown in Figure 5-1. As discussed
in section 1.3 and section 2.3.4, stop-flow lag time analysis is a widely-used experimental

method to evaluate channeling efficiency.”* Figure 5-2 shows an example of product evolution
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simulated by KMC that is comparable to a stop-flow experiment, and allows estimation of the
lag time, 7. In this figure, four types of product evolution are presented, including non-
channeling, perfect channeling and two leaking cases (K5+E2 and K15+E2). As indicated by the
curve slope in Figure 5-2a, the reaction rate reaches a steady state value at the second half of the
simulation. Additionally, the time course of bulk intermediate in Figure 5-2b gives a more direct
visualization on such time period. That is, the intermediate concentration reaches a plateau level
after 400 sec, when this concentration allows the second active site to reach a reaction rate equal
to that of its upstream active site. Therefore, by extrapolating the 500-1000 ns curve Figure 5-2a

to its time axis, the lag time can be calculated to compare with experiment results.

[ - - - Ideal

= K5+E2 7
2F = K15+E2
= Free

[P]/ uM
[/ uM

0 250 500 0 500 1000
Time /s Simulation Time / s

Figure 5-2 (a) A example of simulated stop-flow lag time analysis, showing the product
evolution under different channeling conditions. (b) The evolution of bulk intermediate.

In previous work, an analytical expression was employed to estimate lag time based on
channeling efficiency.3* In contrast, the KMC model is capable of evaluating product evolution
on experimental time scales starting from the pre-steady state, thereby allowing direct

comparison with experimental results. Moreover, the contribution of any elementary step can be
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tracked over the entire simulation process, as exemplified by the bulk intermediate in Figure

5-2b.

5.3.2 Quantitative comparison with experiment via ionic strength dependence

Figure 5-4a demonstrates a comparison between experimental lag time, Teypt, and KMC
lag time, txmc, as a function of ionic strength. Here, we assume 100% hopping efficiency from
HK to the LYS bridge, and transport from the bridge to E2 is fast with no desorption allowed.
Bridge lengths of 5 LY'S residues (K5) and 15 LYS residues (K15) are represented both in
experiment and simulation. These polypeptides offer 4 and 14 dual-association sites,

respectively.

At low IS and short channeling distance (K5), both 7y, and T are much lower than
that of free (uncoupled) enzyme. Based on a random walk model, the expected number of hops
required to traverse the bridge is the square of the bridge site number, N. The leaking probability,

Pieak, 1S the expected probability of desorption during traversal and can be expressed as:

1 N®
P, =1 - 5-12
feak <1 + kdes/khop>
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Figure 5-3 Plot of leaking probability based on equation 5-12.

As shown in Figure 5-3, P,k Was estimated to be 8.1% for K5 at 1IS=0, which means that
electrostatic channeling is 92% successful under these conditions. At higher IS, the energy
barrier to desorption decreases (Figure 3-6b), and P, becomes 62.1%, resulting in an increased
lag time. Similarly, intermediate leakage increases for a longer channeling pathway. At the
extreme case, for 1IS= 120 mM and N=14, desorption probability, P,.,x, approaches 100% and

both 7expe and g revert to values for the free-standing system.

The lag time for K15 (~55-120 sec) is consistently higher that of K5 (~ 20-60 sec).
Taking advantage of KMC’s capability to track all elemental steps, the time course of hopping
and leakage is plotted for K5 and K15 in Figure 5-4b and c. With more hopping sites and thus a
longer channeling pathway, the K15 system requires more hops that its K5 counterparts. As a
result, a leakage increase was observed in Figure 5-4c. These agree well with the analytical result
in equation 5-12. Therefore, the individual leaking probability and channeling distance must be

minimized in an effective cascade.
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Figure 5-4 (a) Comparison of experimental lag time and KMC lag time. K5 and K15
only consider the leakage on LYS bridge. K5+E2 and K15+E2 involve the leakage
from bridge to G6PDH pocket. (b) Time course of surface hopping on bridge. (c) Time
course of leakage on bridge.

Based on MD simulations on the channeling from bridge to pocket, leakage between the
bridge and G6PDH is included, which is depicted as K5+E2 and K15+E2 plots in Figure 5-4a.
The result of leakage between the bridge and E2 is a decrease in channeling efficiency and an
increase in lag time. With the existence of leakage from bridge and active site, Txyc increased to
values comparable to experimental results for both bridge lengths. As discussed above, the
relative high energy barrier between bridge and G6PDH pocket not only increases the
downstream leakage at this site, but increases the residence time of G6P on LYS bridge, and
therefore increasing the probability of desorption. As shown in Figure 5-4b, bridge hopping
times for both K5+E2 and K15+E2 were higher than that of K5 and K15 over the entire

simulation, which resulted in further leakage on the channeling pathway (Figure 5-4c).

The resulting IS dependence of lag time agrees well with experiment results, particularly

in terms of the slope. Inclusion of hopping between the bridge and enzyme site in the KMC
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model generally increases the calculated lag times, bringing them closer to experimental values.
Additionally, whereas experimental and KMC results for the K15+E2 case compare well, there is
some discrepancy between experimental and KMC results for the K5+E2 case. This can be
explained by additional leakage from HK to the LYS bridge (k, in Fig. 4a), which is not studied
in this work. Such leakage is expected to affect lag times for the shorter K5 bridge more, because

the longer K15 bridge itself exhibits greater leaking into the bulk.

5.3.3 Model extension to multistep cascade
In order to broaden the application of KMC, the present model can be extended to a

three-step cascade:

E1l E2 E3 5-13

where E1, E2 and E3 are three sequential active sites. Given reaction on E1 as an example, S; is
the substrate for E1, and I is the product of E1 and also the substrate for E2. By assuming a
same kinetics for the second site (E2) and third site (E3), the product evolution for the free
standing system is shown in Figure 5-5a. KMC result show that the lag time of E3 is almost two
times that of E2, because the two bulk intermediate species concentrations must be generated
from E1. This model extension shows a potential of KMC model to study more complicated

cascade systems.
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Figure 5-5 Product and intermediate evolution in three step KMC model (Free standing
system). All parameters for bridge-2 and enzyme-3 are the same with that of bridge-1
and enzyme-2, respectively.

5.4 Summary

Using thermodynamic and kinetic parameters derived from molecular dynamics studies,
the KMC model enables direct comparison with stop-flow lag time analysis, by evaluating the
product evolution over the entire experimental time scale, particularly at pre-steady state.
Moreover, it reveals several key parameters limiting overall cascade kinetics. Specifically, the
lag time depends on the overall leakage of intermediate molecules, a result of joint action of the
hopping and leaking probability on the bridge. A high IS environment tends to increase the
desorption probability of each random hop, and a longer hopping pathway is found to
dramatically decrease the likelihood that intermediates traverse the cascade surface. At given
ionic strength, therefore, the length of channeling pathway and the strength of surface interaction

should be balanced to achieve an efficient intermediate transport between sequential active sites.

Parameterized by these energy terms, a KMC model is utilized to evaluate the impact of
the leakage between peptide bridge and active site. By including such leakage, the predicted

KMC lag time matches better with experiment results. Detailed tracking of event evolution
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reveals that the energy barrier in this area not only resulted in leakage on the enzyme, but more
likely pushes the intermediate back to the peptide bridge. This leads to longer retention time and

thus more desorption on LYS bridge.

Unlike the well-defined energy terms and channeling behavior on the peptide bridge, the
configuration of singly bonded peptide and G6PDH need to be further sampled by advanced
techniques. In addition, the energy barrier between LYS bridge and G6PDH pocket further
increases the likelihood of downstream leakage. This energy barrier should be carefully
considered, because it not only caused leakage by itself but also exacerbated the leakage on
channeling bridge. The leakage from HK to LYS bridge is also a possible factor to further bridge

gap between simulation and experiment results.

The present modelling approach is applicable to the design of synthetic catalytic

cascades, as well as natural cascades to better understand channeling mechanisms.
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Chapter 6  Conclusion

This work builds up a multi-scale model to quantify the kinetics of artificial cascade,
enabling a further understanding on the channeling mechanism and an indication of potential
limitations for future cascade design. In this hierarchical model, molecular dynamics simulation
enables a completed consideration of molecular complexity and kinetic Monte Carlo model
covers a wide range of time and length scale, efficiently bridging the gap between

microstructures and phenomenon kinetics.

Specifically, charged intermediate molecules were found to undergo a surface diffusion
mechanism across cationic poly-Arginine and poly-Lysine peptide, which was realized by
discrete hops between neighboring amino acid residues through hydrogen bonding interactions.
Lys residues were found to provide a balance of intermediate adsorption and surface diffusivity
that allow for efficient electrostatic channeling while preventing dissociation of the intermediate
into the bulk. Additionally, simulations suggest that a dianionic intermediate is required for the
double associative diffusion mechanism that prevents desorption from the peptide surface. Also,
a balance between surface adsorption and mobility is required to achieve an optimal channeling
efficiency. The comparison with stop-flow lag time analysis gave a strong support of the

occurrence of artificially introduced electrostatic channeling.

Further molecular dynamics study demonstrates that the surface hopping is actually under
the protection of the electric double layer created by the charged peptide surface. The hopping in
Stern layer was less impacted by ionic screening, but the diffuse layer protection due to long-
range electrostatic interaction could be shielded at high ionic strength. The leaking probability

for each hop depends on the energy difference between the hopping transition state and
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desorption state. In addition, the energy barrier around the artificial interface between LYS
bridge and G6PDH pocket further increases the likelihood of downstream leakage, making the

channeling even unsafe upon concentrated ionic environment.

Using thermodynamic and kinetic parameters derived from molecular dynamics studies,
the KMC model enables a direct comparison with experiment, by evaluating the product
evolution over the entire experimental time scale, particularly from the pre-steady state.
Moreover, it reveals the key parameters limiting overall cascade kinetics. Specifically, the
number of hopping sites and strength of close-range interactions account for the leakage from the
channeling bridge. The barrier between bridge and second enzyme should be carefully
considered, because it not only caused leakage by itself but also exacerbated the leakage on

channeling bridge.

The present modelling approach is applicable to the design of synthetic catalytic
cascades, as well as natural cascades to better understand channeling mechanisms. Furthermore,
for natural cascades with more stable dimer interfaces and channeling surfaces, such as TS-
DHFR and MDH-CS, a complete energy profile may be mapped between active sites to reveal

more precise mechanisms of the corresponding biological pathways.

From a prospective point of view, kinetic quantification will continue to rely on seamless
connection between computational techniques at different time and length scales that fully cover
the molecular-level interactions and phenomenon kinetics. Continuum modeling and Kinetic
Monte Carlo simulations are two powerful approaches capable of integrating such tasks. A
hybridization of continuum and KMC models, either sequential or simultaneous, is promising to

account for bulk concentration field and discrete surface hopping. If key meta-states can be
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further coarse-grained into major energy basins, Markov State models have a great potential to
bridge the energy-discrete cascade surface to an energy-continuous long-range electrostatic

region.

Molecular simulations are so far the most effective approach to quantify the parameters
for KMC and continuum models, and also help to set up the geometry of these coarse-grained
models. The key challenges of molecular simulations are the full representation of transition
pathways, and dealing with kinetic traps in energy landscapes. Markov State models are still the
best way to map the complex transition pathways from very elementary states to a human
readable pattern. As for the Kinetic traps, advanced sampling techniques, such as Umbrella
Sampling®® and Metadynamics*®1%7, are required to assist the MD simulations for MSM purpose.
For example, by the development and combination of various computational simulations,
sampling techniques and even experimental crystal structures, it is possible to build a complete
MSM that fully cover the transitions from perfect upstream binding states, to unbinding states, to
channeling pathways, to downstream unbinding states and finally to perfect binding states at
second active site. This promising pattern will allow us to further understand the channeling
mechanisms and more precisely quantify cascade kinetics, both of which will enhance the design

of synthetic cascades for various applications.
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APPENDICES

APPENDIX A. Method of counting hopping frequency
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(@) An example of original coulombic energy diagram (red) and corresponding
smoothed curve (blue). (b) Evolution of discrete energy levels for counting the number
of hops. Blue curve was normalized from the original coulombic diagram and green
curve was from smoothed coulombic diagram. 37 hops were counted from the green
curve.
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APPENDIX B. Various intermediates performance on LYS peptide surface

A summary of calculated diffusion parameters for all theoretical peptide chains and intermediates studied is provided in Table

6
Table 6 Properties of Oxalate intermediates channeled by Lys-Ala peptides.
. E. E, tads D D %
Peptide. Naw  RRwot )\ :;IZ|'1 /kJ cr:gﬂ I% 1109 ome sec!  Lump /O Tavg r/ns’ /108 c:‘:g sec! 'ads Dsurt
K10 0 1:1 -8.91 -243 89.5 2.62 0.15 ' 4.01 1.13 0.13 0.1
K6-A1 1 1:2 -5.58 -142 71.2 5.16 0.60** NS0.72 1.01 1.82 1.29
Oxalate K5-A2 2 1:3 -3.40 -97.3 50.7 8.59 0.45 0.37 0.73 0.74 0.38
K4-A3 3 1:4 -4.87 -126 62.3 6.75 0.60 0.69 1.1 2.00 1.25
K4-A6 6 1:7 -2.23 -47.0 30.7 11.96 1.05 0.16 0.50 2.77 0.90
His 3 0 0.84 -0.51 0.92 15.97 -- -- -- 0.00 0.00
K10 0 1:1 -8.59 -266 97.2 1.77 0.15 0.51 0.52 0.059 0.06
K6-A1 1 1:2 -6.14 207 85.3 2.65 0.60** 0.36 0.42 0.764 0.65
G6P K5-A2 2 1:3 -5.66 -189 78.1 3.32 0.45 0.21 0.28 0.281 0.21
K4-A3 3 1:4 -6.75 -195 84.4 3.01 0.60 0.37 0.44 0.784 0.67
K4-A6 6 1:7 -5.36 -127 67.2 4.62 1.05 0.28 0.41 2.26 1.54
His 3 0 0.84 -1.22 2.97 9.33 -- -- -- 0.00 0.00
K10 0 1:1 -1.75 -44.5 31.0 15.30 - - -- -- --
K6-A1 1 1:2 -0.22 -16.5 12.9 18.88 -- -- - -- --
Glyoxylate K5-A2 2 1:3 -0.13 -14.4 10.4 19.90 - - - - -
K4-A3 3 1:4 0.08 -12.3 9.31 19.79 -- -- -- - --
K4-A6 6 1.7 0.25 -5.86 4.81 22.56 -- -- -- -- --
His 3 0 0.62 -1.06 1.58 22.23 -- -- -- - --

Explanation of column headings: N;,: number of Ala residues between two Lys. R/R;.ta: fraction of Lys, equal to 1/(1 + Ny,)-
E.q4s: adsorption energy calculated from radial distribution function (RDF). E,,;: average coulomb energy over entire simulation.
tqaqs: adsorption time fraction. Dg,,: average diffusivity calculated by MSD based on MD trajectory. Ly,p: hoping distance. Iy,:
average hoping rate (e.g., single-double-single association times) over a 50 ns simulation. I': hoping rate during adsorption, equal to
yg/ fads Dsurs: surface diffusivity calculated based on I and Ly, assuming a 1D hopping diffusion mode. **special jumping
distance due to a-helix structure.
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APPENDIX C. Vector transformation and dimension reduction

Then, the dimension of the vector, X(t), can be selectively transformed and reduced by
independent component analysis (ICA)*%. In order to better understand the vector

transformation, we first introduce the principal component analysis (PCA).

; is the time average of x; as shown by equation:

wi = E(x;)|, 6-1

Then X; is used to denote the deviation of x; from its time average, y;:

The covariance matrix, X, can be denoted as:

Zij = COV(Xi, X]) = E(fl ' f]) 6-3

The matrix version is expressed by the cross product of X and its matrix transpose, XT:

T =E(X xX") 6-4

After that, the relationship of the i*" eigenvalue, 1;, and eigenvector, V;, of covariance

matrix can be expressed as follows:

ZVL' == /1i Vi 6'5
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Then the matrix version of equation 6-5 can be expressed as follows, by assuming d x d
matrix U as the matrix of all independent eigenvectors, V;, and d X d matrix A as the diagonal

matrix of all eigenvalues, A;.

X-U=U-A 6-6
U = [V1 Vd] 6'7
A
A= 6-8
Aa

Finally, the transformation is conducted by projecting the original featurized vectors,
X(t), on the eigenvectors. The eigenvectors with higher eigenvalues have a larger variance of
data projection. As for the dimension reduction, the eigenvector matrix U is ordered according to
a descending order of egenvectors, 4;. Then, a sub set of eigenvector matrix, Ug,, IS used

instead as following equation.

Y(t) = X(t) - Uy 6-9

PCA is able to find the projecting vectors with largest variance, and time-structure
independent components analysis (tICA)®"1%%110 can be used to find the slowest-relaxing degree
of freedom, which is more useful to analyze the system with relative slow surface hopping from
bridge to enzyme pocket. Specifically, time-lagged covariance matrix C(t) is introduced as
follows, where the covariance is taken with a time difference, t, between the i, j entries of

featurized vectors, X (t)
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Cij (D) = E(%ir - %jrar)le=1 . N-1-1 6-10
C(r) =E (X, x XHTT) I, 6-11

Obviously, the C(7) is equal to £ when lag time is zero.
C(0)=2Z 6-12

Similarly to PCA method, the “eigenvector matrix™ can be calculated by solving
following generalized eigenfunction. Finally, the transformation and dimension reduction can be

conducted by equation 6-9.
C(r)'U=C(0)-U-A=X-U-A 6-13

Collectively, when coding the above mentioned process or using MSDbuilder, the
dimension of reduced freedom is required to select the Ug,, in equation 6-9. For tICA,
additionally, a lag time, 7, usually in form of the steps of minimum time interval, is applied at the

very beginning of the analysis.
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APPENDIX D. Code repository

All Python codes for KMC models and data analysis can be accessed from this GitLab

repository:

https://gitlab.msu.edu/schgroup/yuanchao-dissertation-code.qit

105


https://gitlab.msu.edu/scbgroup/yuanchao-dissertation-code.git

APPENDIX E. Mono enzyme kinetics

To integrate all possible events and corresponding rate constants, we employed Kinetic
Monte Carlo for quantification of cascade kinetics. But firstly, KMC simulation was applied to
reproduce Michaelis-Menten kinetics (equation 6-14),'! which indicates a linear reaction rate
increase within low substrate concentration region ([S] < K,,) and a constant rate value at high

concentration region ([S]>»>Ky):

_ Kcas - [S] . _ ki + Keat

—_cat V1. g = 6-14
TRy S]] M k,

where r is the TOF of single enzyme molecule, [S] is substrate concentration, K,,is Michaelis
constant, k, is the desorption rate from enzyme and k; is the adsorption rate onto enzyme. The
figure below shows the dependence of reaction rate on substrate concentration, where the rate
constants are taken from E1 (Km=0.1 mM). The KMC results agrees well with conventional

Michaelis equation, which proves KMC'’s feasibility on mono-enzyme kinetics.

08 T T T 1
— Michaelis-Menten
= e KMC Simulation 5
° 0.6 &
D
©
e
c 04} b
.0
©
3
m 02 [™ N
OO 1 1 L 1
01 2 3 4 5
0 1 1 1 1

.0
0.0 0.2 0.4 0.6 0.8 1.0

Concentration, [S]/ mM

KMC calculation Michaelis-Menten kinetics on uncoupled enzyme. Error bars
represent standard deviation of 10 calculations.
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