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ABSTRACT 

MULTI-SCALE SIMULATION OF ELECTROSTATIC CHANNELING 

By 

Yuanchao Liu 

One-pot multistep catalysis, also called tandem catalysis, denotes stepwise chemical 

reactions over sequential active sites in a single vessel. Such an approach enables efficient 

synthesis of various product molecules from simple precursors, and complete utilization of the 

energy stored in each chemical bond. Therefore, such cascade catalysis is of great significance to 

the manufacture of fine chemicals, the production of pharmaceutical intermediates, and 

electrocatalytic devices. A key factor limiting these processes is the mass transport of reaction 

intermediates, which in nature is found to be largely facilitated by substrate channeling, in which 

intermediate molecules are transferred directly to a subsequent active site instead of equilibrating 

to bulk environment. Electrostatically bound diffusion represents one such channeling 

mechanism, in which charged intermediates are transported along an oppositely charged 

pathway.  

Naturally occurring electrostatic channeling has been studied for decades, but the 

challenge of controlling molecular-level interactions along with catalytic kinetics has hindered 

its application to artificial cascades. In this work, multi-scale simulations by a combination of 

molecular dynamics (MD) and kinetic Monte Carlo (KMC) are utilized to quantify the overall 

kinetics of artificial cascades, aiming to further explore the channeling mechanism and reveal 

potential limitations for future cascade design. Taking advantage of this hierarchical model, the 

molecular complexity may be fully considered and a wide range of time and length scales can be 

effective covered to bridge the gap between microstructures and kinetic events. 



Specifically, a hopping surface diffusion mode is demonstrated by molecular dynamics 

simulation, wherein charged intermediate molecules are shuttled along a cationic oligopeptide 

bridge that is proposed to covalently conjugate hexokinase (HK) and glucose-6-phosphate 

dehydrogenase (G6PDH). Strong experimental evidence for the occurrence of electrostatic 

channeling is provided by ionic-strength dependent studies, via both simulations and 

experimental stop-flow lag time analysis. Specifically, simulations suggest that a balance 

between surface adsorption and diffusion is required for optimal channeling efficiency. To 

further quantify the energy associated with each elementary step in channeling process, advanced 

sampling methods are employed to study interactions on the cascade surface. Transition state 

theory is used to calculate the hopping energy barrier via a temperature-dependent study of 

hopping frequency. Desorption energy is calculated by umbrella sampling, further revealing 

ionic strength-independent Stern layer diffusion under the protection of an ionic strength-

dependent diffuse layer. Intermediate hopping from the peptide bridge to its binding site on 

G6PDH is analyzed by transition pathway theory, which provides sufficient sampling of the 

interactive pathways on this 2D flexible surface. The leakage in this process is evaluated by 

probability analysis. 

Finally, overall cascade kinetics is quantified by the KMC method, integrating the MD 

and experiment parameters. The KMC model enables direct comparison with stop-flow lag time 

analysis, by evaluating the product evolution over the entire experimental time scale, including 

the pre-steady state. The KMC results provide good agreement with experiment in terms of ionic 

strength dependence. Moreover, KMC reveals several key parameters limiting overall cascade 

kinetics, including the strength of surface interactions, the length of channeling pathway, and the 

energy barrier around the artificial interface of synthetic cascade.
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Chapter 1 Introduction 

1.1 Overview 

One-pot multistep catalysis, also called tandem catalysis, involves a series of catalysts in 

a single vessel.1 As compared to conventional stepwise reaction, tandem catalysis eliminates the 

isolation and purification processes that usually requires high process costs, result in yield losses, 

and generate waste. Additionally, these cooperative reactions can effectively protect unstable 

intermediates and reduce unnecessary side reactions. As a result, multistep catalysis enables high 

chemical conversion efficiency, making complex product molecules from simple and accessible 

precursors. Therefore, tandem catalysis is of great significance to the manufacture of fine 

chemicals and the production of pharmaceutical intermediates.2 Taking advantage of complete 

energy extraction from various chemical bonds in complex molecule structures, multistep 

reactions also have great potential to be applied to electrocatalytic devices, such as biofuel cells.3 

Multi-enzyme biofuel cells demonstrate a higher energy (1.4~3 fold) delivery due to the deep 

oxidation by tandem catalysis.4,5 

Figure 1-1 shows an example cascade of various catalysts anchored on a DNA scaffold, 

including metallic, organic, and bio/enzymatic catalysts. Besides finding proper catalysts and the 

conditions that fully functionalize each reaction site1,6, the mass transport of reaction 

intermediates is a key factor impacting the overall efficiency of this tandem process.7 Due to 

Brownian effects, the produced intermediate molecules tend to move in a random and non-

directional mode. In spite of a clustering of sequential catalysts, intermediate molecules still have 

a high probability to equilibrate to bulk media, where a side reaction and unfavorable binding 
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can occur. Therefore, the flux control of reaction intermediates is a key challenge to the 

development of advanced catalytic cascades. 

 

Figure 1-1 Conceptual cluster of various catalysts anchored on a DNA scaffold. (a) 

Tartronic acid oxidation to mesoxalic acid at TEMPO catalyst; (b) facilitated transport 

of mesoxalic acid along DNA; (c) oxidation of mesoxalic acid to oxalic acid via 

catalysis by PtRu nanoparticle – AldDH adduct. 

1.2 Substrate Channeling in Cascade Catalysis 

Over billions of years of evolution, nature has developed very efficient catalytic 

pathways to perform chemical reactions in the cell stepwise, utilizing transient super-molecular 

complexes termed metabolons.8,9 By these one-pot multistep catalyses, a wide range of complex 

biomolecules are synthesized from simple precursors, and energy is generated from carbohydrate 

oxidation through a metabolic pathway. Although the cell has a complex chemical environment, 

these well-defined cascades are able to maintain high catalytic efficiency and prevent the 

undesired bonding of reaction intermediates to unproductive active sites. The key was found to 

be substrate channeling, which is defined as the direct transfer of reaction intermediates from one 

catalytic active site to the next, without equilibrating into bulk media.7,10,11 Therefore, substrate 

channeling may have promising applications in chemical manufacturing and electrocatalytic 

devices. For example, with cascade catalysis, energy devices based on organic fuels may 

accommodate more fuel categories and more fully utilize the energy stored in high molecular 
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weight fuels.3 These features enable biofuel cells with high energy density and biosensors with 

enhanced sensitivity.4,5 

Under most conditions, intermediate diffusion is fast compared to reaction rate, making 

proximity alone insufficient to realize effective channeling. To illustrate this, the product 

concentration around a single active site is calculated by equation 1-1,12 where c is the 

concentration at radial distance, r, from a point active site, t is time, D is diffusion coefficient 

and  is the average time between reaction events (k-1, where k is turnover frequency).  

 𝑐(𝑟, 𝑡) = ∑
1

(4𝜋𝐷(𝑡 − 𝑖𝜏))
3/2
𝑒𝑥𝑝 (−

𝑟2

4𝐷(𝑡 − 𝑖𝜏)
)

𝑖=𝑡/𝜏−1

𝑖=0

 1-1 

Figure 1-2 shows resulted concentration profile at steady state (t = 104 ) with different 

k/D values. In a typical system with the diffusion of small molecule in aqueous solution, the k/D 

value is 0.01 m2. As shown in Figure 1-2, the spatial distribution of product concentration is 

quite uniform in most conditions, indicating that proximity alone has very little impact on the 

local concentration of reaction intermediate in cascade reactions. Brownian dynamics 

simulations also indicate that the concentration profile for most small intermediate molecule is 

raised only to a distance around 1 nm from a neutral catalytic active site.13 Recent experimental 

work on covalently conjugated enzymes also indicated that proximity alone did not have impact 

on the activity improvement, as shown in Figure 1-2b.14 These results suggest that channeling by 

proximity alone only works when sequential active sites are extremely close to each other. 

However, intermediate diffusion can be enhanced and well-controlled through the incorporation 
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of a functional surface or tunnel. For example, the channeling distance was proposed to be 

increased 10-fold in the presence of electrostatic guidance.15 

 

Figure 1-2 (a) Three dimensional diffusion field near a point source at steady state (t = 

104 τ), where k is reaction rate and D is diffusivity. (b) Comparison of experimental 

turnover frequency of free enzyme couple and covalently conjugated enzyme 

couple.12,14 

Figure 1-3 shows three natural channeling mechanisms, each featuring a functional 

surface or tunnel with reasonable spatial organization. A well-studied example of an intra-

molecular tunnel is tryptophan synthase, Figure 1-3a, which produces tryptophan through a two-

step reaction using indole as the intermediate.16 The crystal structure reveals a hydrophobic 

tunnel (2.5-3 nm) connecting the two active sites, which physically confines the indole 

intermediate and transports it to the second active site.17 As compared to intra-molecular 

tunneling, the pyruvate dehydrogenase complex (Figure 1-3b) creates a pathway by covalent 

bonding, where the acetyl group (intermediate) is transferred by a lipoamide swing arm. 

Electrostatic guidance refers to interactions between a charged intermediate and an oppositely 

charged pathway on cascade surface, and provides possibly the most straightforward channeling 

method for application in synthetic cascades. As shown in Figure 1-3, the crystal structure of 

MD-CS (malate dehydrogenase–citrate synthase) shows a positive surface (purple area) bridging 



 

5 

the two active sites, providing a diffusion path for negatively charged oxaloacetate 

(intermediate). 

 

Figure 1-3 Mechanisms of substrate channeling in nature.7,16,18,19 (a) The crystal 

structure of traptophan synthase (PDB:1A5S) with α-subunit shown in yellow and β-

subunit shown in green. (b) The crystal structure of malate dehydrogenase–citrate 

synthase with possible channeling pathway marked in dashed yellow line. (c) The 

crystal structure of eukaryotic pyruvate dehydrogenase complex with E1 enzymes in 

yellow, E2 core structures in green and linker in between marked in blue. 

In past decades, attempts were made to apply substrate channeling in artificial systems.20–

22 For example, multiple enzyme species were anchored on DNA scaffold to increase the effect 

of cluster and spatial orientation.20 A good example of artificial chemical swing arm is a glucose-

6-phoshate dehydrogenase (G6pDH) and malate dehydrogenase (MDH) cascade spatially 

organized on a DNA scaffold where a NAD+ functionalized single-stranded DNA swing arm is 

used to channel NADH to the next active site.21 Examples of synthetic electrostatic channeling 

and intra-molecular tunnel are quite limited. Local effectiveness of reaction intermediates was 

studied by introducing favorable/unfavorable electrostatic interactions between intermediate and 
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cascade scaffold.23,24 A decreased catalytic efficiency was found with either too low or too high 

binding constants. 

So far, introducing substrate channeling artificially is complicated by both the precise 

molecular-level control and the lack of experiment methods to detect the occurrence of such 

transient phenomenon (~ ns).7 Therefore, new methodology (modeling/experiment) is greatly 

needed to aid the design of channeling pathways and the quantification of overall catalytic 

kinetics. Natural channeling mechanisms utilize intramolecular tunnels16,17,25, chemical swing 

arms19, spatial organization12,26,27 and electrostatic guidance15,18,28–30 to facilitate bound diffusion 

of reaction intermediates. These mechanisms highlight a significant distinction between substrate 

channeling, which features bound or restricted diffusion, and active site proximity.  

1.3 Experimental Measurement 

Modern biochemical analyses of substrate channeling are indirect measurements, tracking 

the bulk intermediate evolution instead of the actual channeling molecules. Examples are 

transient time () analyses, isotope dilution and enrichment studies, cascade resistance to a 

competing side reaction, and cascade resistance to a reaction inhibitor.7 Transient time analysis, 

as an example, is defined as the time required to reach steady-state flux of reaction intermediate. 

If a reactant “A” is converted to intermediate “B” and finally converted to “C”, the product time 

course can be observed graphically when only “A” is input to the system, as shown in Figure 

1-4a. Transition time, also called lag time, is obtained by extrapolation of the steady state line 

back to the time axis. There are several explanations of the physical meaning of lag time; one of 

them is the average time for intermediate to reach the sequential active site. From the statistical 

point of view, on the other hand, lag time is also the time required for bulk intermediate 
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concentration to reach a constant value, such that the reaction rate of the second site equals that 

of the first site, and a steady state is achieved. 

For perfect channeling,  is zero. With insufficient leaky channeling,  tends to shift to 

the value for free standing enzyme couple, (section 1.5.1) depending on the extent of leakage. 

However, it is important to know that all these methods are indirect measurements. As a 

consequence, current experimental measurements work well with perfect channeling, but are less 

clear for leaky channeling and free diffusion. Also, owing to the phenomena observed, it is 

difficult to evaluate the contribution of channeling compound to bulk diffusion. Therefore, 

substrate channeling is a complex phenomenon that is difficult to model or analyze by single 

technique. A combination of hierarchical modeling and experimental measurement would be 

preferred to understand channeling mechanisms, and further design and quantify cascade 

reactions. From the perspective of simulation, the model should be efficient but have enough 

complexity to capture molecular-level effects and evaluate the contribution of individual event. 

This will be discussed in detail in Chapter 3. 
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Figure 1-4 Reaction scheme and example data for transient time (τ) analysis.7 

Another significant technique is the use of competing reactions, wherein bulk 

intermediates are consumed by a side reaction in bulk. The observed yield loss is thus related to 

the extent of substrate channeling, as shown in Figure 1-4b.31 When substrate channeling is high, 

the effect of competing reaction is minimal. Without channeling, the yield can be significantly 

reduced. Details of these analysis techniques will be described in the following simulation 

section. 

1.4 Intermediate Transport in Electrostatic Channeling 

Electrostatic channeling is bounded diffusion of charged intermediates along an 

oppositely charged surface, a non-specific pathway applicable to any charged intermediate. It is a 

more general mechanism, as compared to structure-specific intramolecular tunnels and chemical 

swing arms. In past decades, electrostatic channeling studies mainly focused on the bi-functional 

enzyme TS-DHFR (thymidylate synthase-dihydrofolate reductase) and the TCA cycle 

supercomplex MDH-CS (malate dehydrogenase-citrate synthase), as shown in Figure 1-3b. 
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Specifically, experimental work showed strong evidence of improved kinetics by lag time 

analysis.31,32 The occurrence of substrate channeling was also supported by apparent resistance to 

competing bulk reactions. By structural characterization (Figure 1-3), both the TS-DHFR and 

MDH-CS complexes were found to have positively charged surfaces located between the two 

active sites.18,28 Moreover, the channeling efficiency could be significantly disabled by either a 

neutralization of the channeling pathway22,29 or an increased ionic strength (IS)29,33. This 

evidence gives strong qualitative support for experimental results.  

Recently, we have reported the first cascade with artificially introduced electrostatic 

channeling (details in Chapter 2 and Chapter 3), composed of hexokinase (HK) and glucose-6-

phosphate dehydrogenase (G6PDH) covalently conjugated by a cationic oligopeptide bridge.33 In 

this work, a “hopping” surface diffusion mode was built by molecular dynamics (MD) 

simulation, and studies of ionic strength dependence (MD and Exp.) on lag time provided strong 

evidence of the occurrence of electrostatic channeling. 

1.5 Kinetic Quantification 

Kinetic quantification is a key to bridge the gap between microstructure information 

(Figure 1-3) and kinetic macroscale phenomena (Figure 1-4). It not only helps to understand the 

channeling mechanism, but also accesses time and length scales (~ns and ~nm) inaccessible to 

current experiment techniques. More importantly, it is able to identify potential rate limitations 

in elementary steps, thus providing guidelines for future cascade design. 
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1.5.1 Analytical methods 

Generally, analytical quantification is based on an assumption of steady-state conditions, 

where the intermediate flux is time independent, requiring an equivalent production and 

consumption of reaction intermediate. If 𝑉max,1 denotes the reaction rate of fully saturated 

enzyme 1 (E1) and 𝑉2 denotes the actual rate of enzyme 2 (E2) at steady state, their relationship 

can be expressed by equation 1-2. Usually, 𝑉max,2 ≥ 𝑉max,1; otherwise the system will never 

reach steady state. 

 𝑉max,1 = 𝑉2 1-2 

Michaelis-Menten kinetics is applied to a reversible binding/unbinding of substrate, S, to 

enzyme, E, followed by a non-reversible reaction to product, P. The whole process is shown by 

equation 1-3, where 𝑘des, 𝑘ads and 𝑘cat are the rate constants for substrate desorption, adsorption 

and reaction, respectively. 

 E + S 
   𝑘des, 𝑘ads   
↔         E ∙ S 

  𝑘cat  
→    E + P 1-3 

In a free standing system, as shown by equation 1-4 and 1-5, product evolution rate on 

second enzyme, 𝑉2, can be correlated to the fully saturated E2 rate through intermediate 

concentration, [I], and Michaelis constant, 𝐾M. 

 𝑉2 =
𝑑𝑃2
𝑑𝑡
=
𝑉max,2 × [I]

𝐾M,2 + [I]
 1-4 
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 𝐾M =
𝑘cat + 𝑘des
𝑘ads

 1-5 

By combining equation 1-2 and 1-4, steady state intermediate concentration, [𝐼]ss, can be 

correlated to three experimental accessible parameters as shown by equation: 

 𝑉max,1 =
𝑉max,2 × [𝐼]ss
𝐾M,2 + [𝐼]ss

 1-6 

By definition, lag time for uncoupled enzymes (Figure 1-4a), 𝜏free, is the time required 

for bulk intermediate concentration to reach a value making the reaction on E2 equal to that of 

E1, as shown by equation: 

 [𝐼]ss = 𝑉max,1 × 𝜏free 1-7 

To introduce the turnover frequency (TOF), 𝑘cat,1, as the rate constant for reaction, 

equation 1-7 can also be expressed by 

 [𝐼]ss = [𝐸] × 𝑘cat,1 × 𝜏free 1-8 

Through equation 1-6, 1-7 and 1-8, the lag time can be derived as follows: 

 𝜏free =
𝐾M,2

𝑉max,2 − 𝑉max,1
 1-9 

 𝜏free =
𝐾M,2

[E] ∙ (𝑘cat,2 − 𝑘cat,1)
 1-10 
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Therefore, the lag time for free standing system mainly depends on the concentration of 

enzyme couple, the TOF difference between two enzyme species and the Michaelis constant of 

enzyme-2. This can be used as an indication of the maximum lag time for the study of a 

channeling system. 

When introducing substrate channeling, the lag time, 𝜏ch, can be expressed as follows:34 

 𝜏ch =
𝑝c

𝑘cat,2 + 𝑘des,2
+

𝐾M,2(1 − 𝑝c𝑝r)

𝑉max,2 − 𝑉max,1(1 − 𝑝c𝑝r)
 1-11 

 𝑝r =
𝑘cat,2

𝑘cat,2 + 𝑘des,2
 1-12 

where 𝑝c is the probability for intermediate molecules to reach second enzyme through 

channeling, and 𝑝𝑟 is the reaction probability for readily adsorbed intermediates as compared to 

unbinding from E2. Since the first item in equation 1-11 is usually smaller than 1 and 𝑉max,1 is 

usually much smaller than 𝑉max,2, equation 1-11 can be simplified as follows: 

 𝜏ch =
𝐾M,2(1 − 𝑝c𝑝r)

𝑉max,2
 1-13 

As compared to free standing lag time, therefore, the lag time reduction of channeling 

system is only determined by the mass transport-related channeling efficiency, 𝑝c, and ligand 

binding/unbinding kinetics-related leakage, 𝑝r. 
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Although analytic methods can give a basic idea on the components of channeling 

parameters, it is not able to extimate the channeling efficiency, 𝑝c, the key parameter to overall 

kinetics. We are therefore motivated to use computational techniques to obtain such estimation. 

1.5.2 Continuum modeling 

Electrostatic channeling has been studied via continuum modeling, where the distribution 

of substrates/intermediates are represented by a continuous media.15,35 With pre-determined 

spatial factors (e.g., boundary conditions) and system parameters (e.g., diffusivity and reaction 

rate), the intermediates migrate under the impact of concentration gradient (e.g., Fick’s law) and 

external electric force field, as shown in Figure 1-5. Based on this, a steady state flux is used to 

evaluate the channeling effect by long-range electrostatic interaction. McCammon’s group has 

reported the electrostatic confinement model with reflecting boundary conditions. The results of 

diffusion limited system show that the attractive electrostatic force between intermediate and 

both enzyme is able to give the maximal channeling efficiency, which is similar to a 

compartment model.15 Recently, our group reported a more specific two-step cascade model with 

more detail and complexity, as shown in Figure 1-5. By setting zero boundary conditions, the 

model is mimicking a competing reaction system (Figure 1-4b), where the yield percentage is 

employed to evaluated the channeling efficiency. In addition, by fully incorporating the range of 

diffusion and reaction rate constants, the contribution of electrostatic channeling was also 

identified at high Damkohler number, which also means a diffusion limited region.35  
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Figure 1-5 Schematic of two sequential enzyme-catalyzed reactions (diffusion limited) 

in continuum model.35 (a) Base model without bridge between two spherical active 

sites. (b) Model with volumetric bridge. (c) Electrostatic model with positive charged 

bridge. (d) Adsorption model with surface diffusion on bridge. 

However, continuum modeling relies heavily on parameters estimated from experiment 

results and other simulations. Moreover, the impact of molecular-level interactions cannot be 

assessed at these length scales. 

1.5.3 Molecular simulation 

Modern molecular simulation techniques offer powerful tools to test scientific hypotheses 

and predict macroscopic properties. In addition, simulation can build understanding of 

mechanisms behind experimental phenomena and study the time and length scale inaccessible to 

experiment. In recent years, Quantum Mechanism (QM), Molecular Dynamics (MD) and Kinetic 
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Monte Carlo (KMC) simulations are increasing significant in the area of heterogeneous 

catalysis25,36–41, as shown in Figure 1-6.42  Based on the Schrödinger equation, QM deals with 

electron structure, which is able to calculate the activation energy and frequency factor for 

elementary chemical reactions. However, because of its intrinsic simulation load, QM cannot 

represent systems with large length and time scale. Using classical mechanics, MD represents 

explicit interactions between atoms with mutual potential energy (bonded and non-bonded). Due 

to larger time and length scale, MD is capable of representing the ensemble properties, the 

interaction between large biomolecules and the diffusion coefficient of small molecules. 

Therefore, MD simulation is a suitable tool to study the interaction between intermediate 

molecules and bio-molecular catalysts (e.g., enzyme) or scaffold (e.g., DNA and poly peptide). 

As a result, binding and transport behavior of reaction intermediates can be obtained for each 

catalytic system. As compared to conventional MD, reactive force field (ReacFF) 43 is originally 

developed for hydrocarbon oxidation in MD and still under development for other systems. 
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Figure 1-6 Time and length scale of different simulations techniques.42 

Over past two decades, molecular simulation has aided the study of electrostatic 

channeling mechanisms in enzymatic super-complexes. This has been demonstrated in the case 

of naturally occurring enzyme complexes (such as the Krebs cycle and the electron transport 

chain). First molecular simulation of electrostatic channeling were reported by McCammon’s 

group, using Brownian simulations to estimate transport efficiency in terms of probability that 

the explicit intermediate reaches the vicinity (~0.7 nm) of the second active site.13,29,30,44 These 

modeling results were further integrated by an analytical approach representing the second active 

site with Michaelis kinetics34. By combining with experimental results, it is demonstrated that 

restricted diffusion of intermediates caused by electrostatic interactions improved transfer 

efficiencies up to ~80% (compared to < 10% for that caused by non-electrostatic interaction). 

Low channeling leakage and high binding affinity at the second active site were highlighted as 

key factors impacting overall kinetics. 
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These simulations represent a refinement of the continuum model, but were still coarse-

grained, in that the intermediate was treated as charged sphere migrating in an electric field 

generated by cascade surface. In addition to long-range electrostatic interaction, charged and 

polarized intermediates can interact strongly with channeling surface through hydrogen bond 

interaction. However, consideration of such local interactions in electrostatic models has been 

largely absent. Therefore, MD simulation is a good candidate to study such interactions due to its 

detailed representation of various energy terms in channeling system. 

 In this context, molecular simulation has emerged as a technique that enables the study 

of electrostatic interactions that may be inaccessible to experimental detection limits or 

impractical for computationally expensive techniques, such as density functional theory. 

Additionally, these simulations provide a platform for exploring possible substrate/intermediate 

combinations by describing their interaction with a computationally-optimized electrostatic 

surface.  

1.5.4 Kinetic Monte Carlo model 

Despite several advantage, molecular dynamics has intrinsic limitations which can be 

complemented by kinetic Monte Carlo. As shown by Table 1, regular MD is not able to represent 

reactions, and so it is not by itself able to characterize the overall reaction kinetics.  
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Table 1 Kinetic Monte Carlo (KMC) vs. Molecular Dynamics (MD) 

Feature MD KMC 

Reaction No Yes 

Explicit representation atom event 

Time representation 
finite, constant and small 

time steps 

discrete time step depending on 

individual random events 

Governing factor 
Potential energy 

e.g., L-J, Coulomb 

Transition State Theory 

e.g., 𝛥𝐺𝑎𝑐𝑡, f 

Rare events 
advanced sampling 

techniques are required 
yes 

 

Moreover, because MD calculates the trajectory of individual molecules, governed by 

local potential energy, it cannot well represent rare events, as shown in Figure 1-7.36 That is, the 

MD system tends to oscillate around an energy minimum and meanwhile get the probability to 

hop to the neighboring energy minimum exponentially depending on the energy barrier in 

between. As a result, large amount simulation resource is wasted when MD system is stuck at 

such state, making MD simulation unable to well represent rare events. Enhanced sampling 

techniques45 are usually required to accelerate MD systems to overcome the energy barriers 

separating the meta-states, in order to acquire longer time scale and accurate sampling 

probability. Current enhanced sampling approaches includes Replica-exchange molecular 

dynamics46,47, Metadynamics48,49, Umbrella Sampling50, and Transition Path Analysis by Markov 

State Model51–57. 
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Nonetheless, MD simulations are still expensive and not capable to cover the time and 

length scale of real word experimental system. In comparison, KMC simulation uses given rate 

constants to randomly determine the occurrence of specific events and corresponding time 

evolutions, instead of performing the actual oscillating process in MD simulations. The 

probability of executed events depends on the weight of rate constants that are determined by the 

energy barrier of such events. More detail of  KMC method can be found in Chapter 5. 

 

Figure 1-7 Rare event in Molecular Dynamics and Kinetic Monte Carlo.36 

As a simplified model represented by explicit events and rate constants, KMC is able to 

quantify overall kinetics, achieving the time scale of experimental systems. Although KMC is a 

coarse-grained method, it allows tunable complexity to mimic experimental conditions, such as 

interactive events and changing external environment. For example, when oxygen repulsion is 

considered in CO oxidation on a RuO2 surface, the KMC result is much superior to the classical 

microkinetics theory which assumes a homogeneous surface distribution and thus underestimates 

the complexity of local conditions.41  In spite of KMC’s advantages, it is very important to know 

that KMC per se cannot predict energy barriers or frequency factors needed to calculate the rate 

constants via transition state theory (TST). These key parameters have to be measured by 

experiment or calculated by QM and/or MD. Therefore, hierarchical simulation is a proper 
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approach to model a channeling system. By the combination of MD and KMC, a bridge can be 

built between the molecular level design and the macroscopic experimental phenomena.58  

From the aspect of applications, KMC models are widely used for catalytic oxidation and 

diffusion of small molecules on lattice surfaces.41,59–63 For example, DFT parameterized ab initio 

KMC was employed to study the impact of catalyst composition, surface structure, lateral 

interactions, and environment on the overall catalytic performance of CO and NO oxidation.62 

Moreover, experimentally based KMC was used to study the CO oxidation on a RuO2 surface,60 

and a comparison between DFT and experimental parameters was made to identify the 

significant impact of lateral repulsion of adsorbent.41 Besides quantum mechanics, a KMC model 

combined with MD simulation was used to study the epitaxial growth of fcc and hcp islands on a 

fcc (111) surface, exhibiting great simulation acceleration. As a result, boundary pinning effects 

by the island of adsorbed atom was revealed, which is usually difficult to be elucidated  by 

conventional KMC methods.64 Another good example of model hybridization is a combination 

of first-principle MD and KMC simulations, where the impact of rotational coupling of the side 

groups was shown to influence the proton conduction in proton exchange membrane fuel cells 

(PEMFC).65 

1.6 Overview of Dissertation 

The goal of this work is using multi-scale simulations to further understand the 

mechanism of electrostatic channeling, quantitatively calculate the cascade kinetics and develop 

design rules for future artificial cascades. The model construction particularly focuses on the 

surface diffusion of reaction intermediates, and the quantification approaches are aiming to fully 

consider the molecular complexity of channeling pathways. Enhanced sampling techniques are 
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utilized to cover the ergodicity of the channeling system, and give a rational representation of all 

possible events with different frequency and probability. Specifically, molecular dynamics (MD) 

simulations enable the calculation of energy-determined surface equilibrium constants and 

surface diffusivity, and a kinetic Monte Carlo (KMC) model integrated all rate constants from 

MD (e.g., surface diffusion and desorption rate) and experiments (e.g., turnover frequency), to 

estimate the product evolution on experimental time scales. 

The cascade and reaction scheme employed in this work is the conversion of glucose to 

phospho-6-gluconolactone by hexokinase (HK) and glucose-6-phosphate dehydrogenase 

(G6PDH), covalently conjugated by a cationic oligopeptide bridge. The system is simulated and 

validated by comparison to stopped-flow lag time analysis. This section is in collaboration with 

Dr. Shelley D. Minteer’s lab at University of Utah. 

In Chapter 2, MD simulation is used to study the surface interaction between cationic 

oligopeptide (Lysine, Arginine and Histine) and various negatively charged intermediate species 

(oxalate, glyoxylic acid and glucose 6-phosephate). A “hopping” surface diffusion model is built, 

and the MD and experiment studies of ionic strength dependence on lag time (HK-G6PDH 

cascade) provides strong evidence of the occurrence of electrostatic channeling. In addition, the 

balance between surface adsorption and diffusion is studied to indicate an optimization of 

channeling efficiency. (1st paper published on ACS Catalysis33) 

In Chapter 3, regular MD simulation and umbrella sampling are used to quantify the 

energy barrier for surface hopping and desorption. A Stern layer diffusion under the protection of 

diffuse layer is revealed by ionic strength dependence study. As a result, the thermodynamic 
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parameters of an individual hop is quantified in great detail. This helps to further understand the 

channeling mechanism and also give support to the rate constants for kinetic models. 

In Chapter 4, the leakage between peptide bridge and enzyme binding pocket is 

considered. On this complicated 2D surface with multiple possible pathways, probability 

analysis and a Markov State model are used to map the energy profile in this area. Then, this 

energy landscape is parameterized into KMC rate constants to involve this additional leakage 

before final reaction.  

In Chapter 5, the overall kinetics of HK-G6PDH cascade was quantified by a 

combination of MD and KMC simulation. Specifically, KMC simulation enable the integration 

of all rate constants to model the evolution of bulk intermediate, particularly from the pre-steady 

state. This allows for a direct comparison to experiment results. From the resulting lag time, the 

leaking probability of each individual hop and the length of channeling bridge are found to be the 

key factors for overall kinetics. The barrier between bridge and second enzyme not only caused 

leakage by itself but also exacerbated the leakage on channeling bridge. The KMC lag time 

agrees much better to experiment as compared to the results only with leakage on peptide bridge. 

(2nd paper submitted to ACS Catalysis, in revision) 

In summary, the multi-scale simulation in this work enable a detailed quantification 

approach, fully considering the molecular-level interactions in electrostatic channeling process 

via strong surface diffusion mechanism. This is of great significance to understand the micro-

scale mechanism and identify potential limitations to be improved for cascade design. In future, 

highly interactive work between such modeling technique and experiment is greatly needed for 
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the molecular-level design of synthetic cascade with channeling efficiency comparable to or even 

better than natural cascade. 

 



 

24 

Chapter 2 Surface Diffusion by Molecular Dynamics Simulation* 

2.1 Introduction 

The phenomenon of electrostatic channeling is demonstrated naturally by coupled 

enzymes, such as dihydrofolate reductase-thymidylate synthase (TS–DHFR) and malate 

dehydrogenase- citrate synthase (MD-CS) cascades. As for structure characterization, XRD 

diffraction results reveal a charged surface between active sites for both cascades. Theoretically, 

charged intermediate molecules interact with cascade surfaces through long-range electrostatic 

forces and local, short-range interactions via Van der Waals forces and hydrogen bonds. 

Therefore, besides the migration under the electric field generated by charged cascade surface, 

intermediate molecules also potentially perform “surface diffusion” at closed proximity to a 

channeling pathway. However, the channeling process occurs at nanometer and nanosecond 

scale, which is inaccessible to current experimental techniques all of which rely on capturing 

bulk intermediate evolution at real world time and length scales.7 Given the fact that in-situ 

observation is currently impossible, molecular simulation combined with experimental kinetics is 

an optimal approach to understanding the channeling mechanism on cascade surface, particularly 

through a surface diffusion mode. 

 Using the mechanism of electrostatic guidance as an inspiration, we envisioned the use 

of a charged oligopeptide bridge as a molecular construct to facilitate restricted diffusion of a 

                                                 
* The content of this chapter has been published on ACS Catalysis, in collaboration with University of Utah. 

Experimental work in this chapter is in collaboration with David P. Hickey, Dr. Shelley D. Minteer and Dr. Matthew 

S. Sigman at University of Utah. 

Y. Liu, D. P. Hickey, J.-Y. Guo, E. Earl, S. Abdellaoui, R. D. Milton, M. S. Sigman, S. D. Minteer and S. Calabrese 

Barton, "Substrate Channeling in an Artificial Metabolon: A Molecular Dynamics Blueprint for an Experimental 

Peptide Bridge", ACS Catalysis, 7, 2486–2493 (2017). doi:10.1021/acscatal.6b03440. 
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charged intermediate between two sequential catalytic sites. In this chapter, we describe the use 

of MD simulations to design and optimize a series of theoretical cationic -helix peptides, and 

quantify their ability to transport charged intermediates across the theoretical surface. These 

optimized theoretical conditions were applied to design and construct a simple template for 

preparing artificial enzyme complexes capable of inducing restricted diffusion of a charged 

reaction intermediate between two sequential enzymes in a metabolic pathway. Stop-flow lag 

time analysis was used to experimentally examine the channeling efficiency and validate the MD 

results. These studies provide the basis for utilizing MD simulations to strategically design 

synthetic substrate channeling cascades and develop a detailed understanding of the range and 

limitations of artificial electrostatic substrate channeling. 

2.2 Simulation Methods 

GROMACS 5.1.166–72 was used as the MD simulation package. CHARMM3673,74 was 

employed as the force field governing whole simulation and CGenFF (CHARMM General Force 

Field) 75 was used to generate topology for small intermediate molecules. Periodic boundary 

conditions (PBC) were applied to all MD simulations. The peptide/intermediate couple was first 

solvated with tip3p water molecules in a dodecahedral box (~ 100 nm3) and then neutralized by 

Na+ or Cl- ions. The system energy was then minimized using a steepest descent algorithm, 

followed by a 0.1 ns NVT and 1.0 ns NPT equilibration process with position restraints for each 

molecule. Finally, the MD simulation was performed under NPT ensembles for 50 ns, repeating 

10 times for each system. For all MD simulations, the system temperature was coupled at 300 K 

by velocity-rescale thermostat 76 and the pressure was stabilized at 1 bar by Parrinello-Rahman 

barostat.77 Particle-Mesh Ewald (PME) algorithm with cubic interpolation (0.16 ns grid space) 

was used to calculated long-range electrostatic interaction.78,79 Cutoff values for both short-range 
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electrostatic and van der Waals interactions were set to 1 nm. A Verlet cutoff scheme80 is used to 

calculated non-bonded interactions on a GPU accelerator.81 

Initial -helix peptide structures was generated by Avogadro 1.1.182 with torsion angles 

 = -60° and  = -45°. Neutral terminals (-COOH and –NH2 instead of –COO- and –NH3
+) were 

applied to the helical backbone for MD simulations. From resulting backbone, the alpha-carbon 

of the N-terminus and alpha-carbon of the C-terminus (two points in total) were pinned to 

immobilize the peptide.  The fraction of basic residues was tuned by adding alanine (Ala) 

between basic residues (Arg, Lys). Accordingly, the peptide chain used in simulations were 

named based on the number of basic residues (Lys, His, Arg) and the number of interstitial Ala. 

For example, the nomenclature K4-A3 indicates a peptide with four Lys residues in total with 

three Ala between each Lys, resulting in the structure, “…KAAAKAAAK…”. Finally, four extra 

Ala were appended to the terminal Lys at each end, in order to provide pinning sites and to 

maintain the -helical structure.  

Electrostatic potential maps were prepared using APBS and PDB2PQR,83–85 and VMD 

1.9.2 (Visual Molecular Dynamics)86 was used for visualization. Intermediate molecule 

structures (.mol2 file) were downloaded from ZINC database.87,88 

The ionic strength of MD system was tuned with explicit ions. For these simulations, box 

size was increased to 325 nm3, to access lower ionic strength than the initial case. Counter ions 

were added after neutralization until the ionic strength reached a target value. For 0 mM ionic 

strength, all counter ions were removed, resulting in a non-neutral system. 
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Surface interaction was evaluated by the fraction of adsorption time, 𝑓ads, as shown by 

following equation, where 𝑡ads is the time for intermediate molecule to stay on cascade surface, 

when the short-range coulombic energy is less that 50 kJ mol-1. Similarly, 𝑡des corresponds to the 

desorption time. 

 𝑓ads =
𝑡ads

𝑡ads + 𝑡des
 2-1 

Adsorption energy, 𝐸ads, is calculated based on the radial distribution function (RDF)38,89 

of the intermediate atoms around peptide surface, which is defined as the probability to find the 

intermediate molecule at a specific distance away from the reference surface. Using the 

intermediate’s trajectories in MD simulation, the RDF was calculated by taking the distance r 

between substrate atoms and the closest peptide atom. Using the GROMACS function gmx_rdf, 

the probability density 𝑝𝑖 was obtained versus r. Then 𝑝𝑖 was normalized by bin (∆r = 5 pm) and 

summed using: 

 𝑃𝑖 = (
𝑝𝑖

∆𝑟 ∙ ∑ 𝑝𝑖
)  2-2 

where ∑𝑃𝑖 ∙ ∆𝑟 = 1. The energy level of a specific radial position was calculated by equation 

2-3, where 𝐺0 was taken at 1.0 nm away from charged peptide system and 1.5 away from non-

charged peptide. 

 ∆𝐺𝑖 = 𝐺𝑖 − 𝐺0 = −𝑅𝑇 ∙ ln (
𝑃𝑖
𝑃0
) 2-3 
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Finally, the adsorption energy was obtained by taking the integral summation of relative 

energy differences, weighted by normalized probability density: 

 ∆𝐺𝑎𝑑𝑠 = ∫ 𝑃𝑖 ∙ ∆𝐺𝑖 ∙ 𝑑𝑟
𝑟max

0

 2-4 

To quantify the diffusion rate, mean square displacement (MSD) was used to evaluate the 

mobility of intermediate in bulk or on -helix peptide surface. The relationship between MSD 

and diffusion constant, 𝐷, is shown in equation 2-5, where n is 2 for one dimension and 6 for 

three dimensions. In addition,  is the time interval (lag time) corresponding to the displacement. 

 𝑚𝑠𝑑(𝜏) = 𝑛 × 𝐷 × 𝜏 2-5 

Two diffusion modes were assumed to calculate the MSD. For bulk diffusion, 3-D 

Brownian motion was assumed and the MSD was obtained from MD trajectories by taking the 

mean square displacement according to equation 2-5, where 𝜏 is lag time and 𝑟𝑗 is the position of 

the intermediate’s mass center at simulation time j.  

 𝑚𝑠𝑑(𝜏) =
Σ
0

𝑗𝑚𝑎𝑥+1−𝜏
(𝑟𝑗+𝜏 + 𝑟𝑗)

2

𝑗𝑚𝑎𝑥 + 1 − 𝜏
 2-6 

It should be noted that the terminology “lag time” for MSD calculation is mathematically 

independent from the “lag time” used in the Experiment Section. Unless specified, the average 

bulk diffusivity, 𝐷avg, was calculated by fitting the 𝑀𝑆𝐷 vs 𝜏 curve between 200-1000 ps. Since 

the MSD was taken over the entire simulation region, it contains the average of adsorption and 

desorption components. Therefore, a subscript “avg” was appended to distinguish it from pure 
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bulk diffusivity, but when the interaction is very weak (e.g., on His peptide), 𝐷avg can represent 

the bulk diffusivity. As a result, the 𝐷avg can reflect the average mobility of intermediate in 

peptide system. 

When intermediates were closely associated with peptide surface, surface diffusivity, 

𝐷surf, can be calculated using a 1-D hopping diffusion mode, where the intermediate molecule 

can only move to one of its two nearest-neighbor sites (1-D) with equal probability. The MSD 

for hopping mode can be calculated according to equation 2-7, where 𝐿hop is the hopping 

distance to the nearest charged residue and 𝛤 is the hoping rate (s-1). 

 𝑚𝑠𝑑(𝜏) = 𝐿hop
2 × 𝛤 × 𝜏 2-7 

By combining equation 2-5 and 2-7, one dimensional surface diffusivity, 𝐷surf, can be 

correlated to 𝐿hop and 𝛤, so that 

 𝐷𝑠𝑢𝑟𝑓 =
1

2
∙ 𝐿𝑗𝑢𝑚𝑝
2 ∙ 𝛤 2-8 

As for hopping rate, the coulombic energy diagram was first slightly smoothed with 

convolution of a scaled window (win = 21). From coulombic energy distribution, two to three 

peaks (e.g., -150, -280 and -400 kJ mol-1 for the oxalate-Lys couple) could be identified, 

corresponding to the plateau in coulombic energy diagram. Detailed figures can be found in 

APPENDIX A.  Number of hops, 𝑁hop, was taken as half of the number of energy shifts between 

energy plateaus, excluding the shift involving 0 kJ mol-1 (which indicates desorption). After that, 

average hoping rate (𝛤avg) was obtained by dividing 𝑁hop by simulation time (50 ns). To exclude 
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the impact of the varying desorption period, 𝛤 (the hoping rate upon adsorption) was calculated 

by further dividing 𝛤𝑎𝑣𝑔 by 𝑓ads.  

In this way, 𝐷surf can be compared to 𝑓ads and 𝐸ads to describe the relationship between 

surface mobility and desorption probability. In order to obtain the hopping distance, 𝐿hop, the 

rise along helical axis was taken from a generally accepted value (0.15 nm per residue), which is 

then multiplied by the numbers of residues to yield 𝐿hop.  

2.3 Results and Discussion 

2.3.1 Surface hopping mechanism 

The adsorption of small charged molecules on biomolecular surfaces is due to local 

potential energy minima caused by non-specific electrostatic interactions about the bio-interface. 

Mechanistically, local potential energy minimization competes with kinetic exchange between 

adsorbed molecule and water molecules, resulting in a dynamic adsorption and desorption 

process that allows for bound diffusion across the charged biological surface.  

Figure 2-1 shows the chemical structures of charged intermediate species and the 

oppositely charged amino acid side chains. As shown in Figure 2-1a, oxalate and glucose 6-

phosphate (G6P) molecules both carry -2 charge, but oxalate has a symmetric charge distribution 

due to the two identical carboxylate groups, and G6P is polarized, with negative charge 

concentrated on its phosphate group. Glyoxylic acid has similar geometry to oxalate, with only -

1 charge. As for the amino acid side chains in Figure 2-1b, Arginine and Lysine both have +1 net 

charge as indicated by their high pKa values. But Arginine has a much stronger polarization 

degree on its guanidine group, as shown by the electrostatic potential map in Figure 2-1c.33 
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Therefore, Arginine and Lysine are expected to have the same long range electrostatic impact but 

a very different local interactions.40 In contrast, Histidine has no net charge but a high 

polarization degree. Figure 2-1f-h show several example of Lysine-Alanine peptides in an -

helix conformation. The charge density is tuned by the neutral Alanine residues (Figure 2-1b) 

placed between adjacent LYS side chains. 

 

Figure 2-1 (a) Intermediate species. (b) Amino acid side chain species. (c-e) 

electrostatic potential map of Arginine, Lysine and Histidine. (f-h) a-helix Lysine 

peptide with various charge density. 

With the mechanism of electrostatic channeling as a pretext, we used MD simulations to 

study the bound diffusion of a common small biological intermediate, oxalate, across a charged 

peptide surface. The adsorption energy, 𝐸ads, and average coulombic energy, 𝐸coul, between the 

intermediate and peptide were chosen as metrics indicating to an effective substrate channeling. 
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Specifically, 𝐸coul can be calculated for every frame of the simulation, and its time average 

indicates the degree of electrostatic interaction between charges. 𝐸ads is calculated based on the 

proximal density of oxalate around peptide surface (radial distribution function, RDF), and 

describes interactions caused by hydrogen bonding and polarization of the interacting groups.  

RDF data provides information about the proximity of an electrostatic interaction based 

on both discrete hydrogen bonding interactions and cumulative adsorption energy. Here, we use 

the RDF of oxalate about a polypeptide chain to determine the probability that oxalate will be 

stabilized at a given distance from the electrostatic peptide surface. As shown in Figure 2-2, 

corresponding RDF diagrams for oxalate with the charged amino acid residues of interest 

indicate a high density of interactions occurring at ~0.15 nm for cationic Arg- and Lys-

containing peptides. A minimum distance of 0.145 nm is also observed, which corresponds 

closely to the minimum van der Waals’ distance (~0.15) associated with hydrogen bonding 

between anionic oxalate and either the -ammonium of Lys or the guanidinium of Arg (NH+···-

O).90 These results indicate a fast adsorption process and a possible contacting surface diffusion 

process. However, peptide surfaces containing His residues primarily interact with oxalate at a 

distance between 0.5 and 1.5 nm, which extends beyond the short-range cut-off distance for 

dissociation (1.2 nm). Therefore, HIS residues do not create coulombic forces and do not 

promote electrostatic channeling. 
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Figure 2-2 Radial distribution function (RDF) diagrams of oxalate around the peptide 

surface and the corresponding diagrams for oxygen atoms and carbon atoms 

individually (inset). 

Whereas the RDF demonstrates oxalate’s proximity to peptide surface, surface mobility 

is illustrated by short-range coulombic diagram, as shown in Figure 2-3a. MD simulations 

describing coulombic energy during diffusion of oxalate along a polyarginine peptide chain 

reveal several discrete energy states that dictate its surface mobility. The corresponding 

coulombic energy diagram (Figure 2-3a) suggests that oxalate primarily exists in either a singly- 

or dually-bound ionic conformation with adjacent Arg residues (Figure 2-3b) with coulombic 

energy of -190 kJ mol-1 or  -390 kJ mol-1 , respectively, or in an unbound state of coulombic 

energy 0 kJ mol-1. As oxalate travels across the peptide surface, the coulombic energy diagram 

exhibits a period of rapid flux in energy between each state (highlighted as the shaded region of 

coulombic diagram, Figure 2-3a). During this process, the randomly oriented kinetic exchange 

between oxalate and either water molecules or adjacent charged sites results in oxalate 

“hopping” to a neighboring site (Figure 2-3b). This energy-hopping region of coulombic energy 

diagram serves as a qualitative indication that diffusion is largely confined to the oligopeptide 

surface. Additionally, the combined RDF minimum distance (0.145 nm)90 and coulombic energy 
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results suggest a diffusion mechanism that utilizes distinct hydrogen bonding interactions 

between oxalate and basic amino acid residues, which adds significant detail to previously 

reported mechanisms of locally restricted diffusion within an electrostatic field.29 

 

Figure 2-3 (a) Short-range Coulombic energy diagrams between oxalate (-2) and 

peptide composed of combinations of alanine and arginine, Lysine, and Histidine. The 

shaded area in Lys peptide figure (red) represents a frequent surface diffusion process. 

(b) Representative MD simulations corresponding to the plateau region in the 

Coulombic energy diagram between ARG side chains (blue) and oxalate (red). 

One of the primary benefits of MD simulations is the opportunity to rapidly explore 

several theoretical electrostatic peptide bridges that would be impractical to screen 

experimentally.   Using coulombic energy diagrams as described above, we sought to identify 

optimal cationic peptide residues to facilitate electrostatic channeling of an anionic intermediate. 

By tuning the type of charged amino acid (Arg, Lys, His), we studied the electrostatic 
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interactions of various peptide structures with a dianionic oxalate molecule. Despite being highly 

polarized, neutral His (pKa = 6.04) peptides do not allow for ionic stabilization and therefore do 

not enable any adsorption of oxalate. Both Arg and Lys have the same +1 net charge, but Lys has 

a much weaker polarization degree and H-bonding capability as compared to Arg.40 

Additionally, the volume of Lys’s -amino group is smaller than Arg’s guanidinium group and 

thus is not able to sterically block bulk water molecules as effectively. This results in stronger 

interactions between oxalate and water molecules, and increased kinetic exchange with the bulk 

media. Consequently, oxalate molecules displayed a shorter adsorption time fraction (𝑓ads) on 

Lys-containing peptides than their Arg counterparts (Figure 2-3a). 

Despite exhibiting smaller 𝑓ads, Lys peptides display a unique transport phenomenon in 

the exceptionally high number of energy hops exhibited in coulombic diagram. Highlighted by 

the shaded area of the energy diagram in Figure 2-3a, the coulombic energy hops 20 times over 

the 17 ns timeframe and moves frequently on the peptide surface. In this case, the Lys residues 

are separated by three alanine (Ala) residues, with 0.6 nm between adjacent Lys residues along 

the α-helix axis (assuming a normal helical increment of 0.15 nm per residue). This results in a 

surface diffusivity of 2.1 × 10-6 cm2 s-1, which is comparable to the typical bulk diffusivity of 

small molecules (10 - 20 × 10-6 cm2 s-1). In contrast, Arg peptides interact too strongly with 

oxalate, anchoring the intermediate instead of allowing transport. These data suggest that Lys 

appears to be an effective choice of charged amino acid residue for design of an electrostatic 

channel. Detailed discussion on surface diffusion constant can be seen in Section 2.3.3. 
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2.3.2 Impact of intermediate species 

With the insights afforded above by coulombic energy diagrams, we sought to identify 

characteristics that allow various charged intermediates to be efficiently shuttled between 

conjugated active sites. To this end, MD simulations were performed on three common 

biological intermediates, glucose-6-phosphate (G6P), oxalate, and glyoxylate (Figure 2-4a-c). As 

shown in Figure 2-1, both oxalate and G6P possess a -2 charge, however, G6P has a much more 

localized charge with respect to its molecular volume. 

 

Figure 2-4 System configuration and coulombic energy diagram for glucose 6-

phosphate (a), oxalate (b) and glyoxylate (c). The inserts are simplified coulombic 

energy diagram, where “0” and “2” on vertical axis stands for the energy level of dual 

association and desorption. (d) Adsorption time fraction and hopping times of 

intermediate molecules on peptides with various Lys fraction over the entire 50 ns 

simulation. The bar marked by red arrows corresponds to the coulombic diagram in 

above figures. Numerical data can be found in APPENDIX B 
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Coulombic energy diagrams of oxalate and G6P (Figure 2-4a and b) indicate that they 

both readily adsorb (𝑓ads= 71 ± 7 % and 85 ± 8 %, respectively) and diffuse across the peptide 

bridge through a double association mechanism. However, surface interactions changed 

dramatically in the case of the singly charged glyoxylic acid (Figure 2-4c). Despite having a 

similar structure to that of oxalate, hardly any dual association (1.2 ± 0.6 % time fraction) is 

observed in corresponding coulombic diagram and the intermediate remains either singly 

associated with Lys or desorbed (𝑓ads  = 12 ± 4 %). Significant desorption of glyoxylic acid arises 

because its single anionic site does not allow for simultaneous coordination between adjacent 

Lys residues. Therefore, glyoxylate depends on a dissociative jumping mechanism between 

residues that increases the probability of desorption from peptide surface. This suggests that 

singly-charged reaction intermediates should be avoided as substrate channeling targets due to a 

high propensity for dissociation with the charged peptide chain. Residues with smaller positive 

charge (e.g., + 0.5) might be an interesting subject to study the dual association and 

transportation of such intermediates. However, the natural HIS residue is only 10% charged 

given its pKa value at 6.04, and it is not supposed to be a good candidate. Therefore, synthetic 

amino acid residues might be able to give more inspiration to this issue.  Also, further 

experiment is needed to validate the channeling behavior of singly charged intermediate 

molecule, and this has the potential to add more details and evidence to the surface diffusion 

mechanism and design rules. 

2.3.3 Balance between surface adsorption and mobility 

In an ideal electrostatic channeling system, the intermediate molecule should have a 

strong adsorption and thus a long adsorption time. At the same time, the intermediate molecule 

should be very mobile on cascade surface to reach the sequential site. However, as discussed 
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above, strong interaction may decrease intermediate mobility on peptide surface. To further 

study the relationship between surface adsorption and mobility, adsorption energy and diffusivity 

were quantified for oxalate on Lys peptides. Simulated electrostatic interactions between oxalate 

and peptide bridge were described in terms of the absorption energy (𝐸ads, described above), the 

fraction of time that intermediate is adsorbed, 𝑓ads, and the diffusivity along the surface of 

peptide chain, 𝐷surf. 

As shown in Figure 2-5, MD simulations of both oxalate and G6P were analyzed in terms 

of Eads, Dsurf, and fads, where Eads was controlled by varying the ratio of charged Lys residues 

to neutral Ala residues (e.g., Figure 2-1f-h).  These simulations demonstrate that Eads for oxalate 

is enhanced with increasing Lys fraction, from ~0 kJ mol-1 to 8.91 kJ mol-1 (Figure 2-5a). As a 

result, fads increased gradually from 31%, reaching a maximum of 90% for oxalate, while fads 

for G6P ranged from 67% to 97%. This suggests that a higher fraction of Lys is required to 

prevent oxalate from desorbing from peptide surface, while G6P is not likely to desorb under any 

of the conditions studied. Additionally, we found that both oxalate and G6P maintained a high Γ 

(~1 times per ns) for all Lys-based peptides with the exception of Lys1-Ala6, wherein the 

separation of neighboring Lys residues is too great to allow for a dual association diffusion 

mechanism. This resulted in a consistently high Dsurf for most conditions. However, according 

to equation 2-8, Ljump affects Dsurf exponentially, where Dsurf decreases substantially for the 

peptide chains where Lys fraction is too high. This is due to persistent double and triple 

association of the intermediate to proximal Lys residues that dramatically slow diffusion across 

the peptide chain.  
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Figure 2-5 Effect of the Lys fraction (a, d) and thermodynamic adsorption energy, 𝐸ads, 
(b, e) on surface diffusivity, 𝐷surf, and adsorption time fraction, 𝑓ads. Effect of 𝐸ads on 

transport efficiency, characterized by 𝑓ads × 𝐷surf (c, f). Panels a−c correspond to 

oxalate, and panels d−f are for G6P. Error bars for all parameters represent the standard 

deviation of 10 parallel simulations for each individual system. 

In order to provide an optimization metric to balance adsorption energy with surface 

mobility, we simply took the product of 𝑓ads ×𝐷surf as a measure of transport efficiency. The 

resulting plots of 𝑓ads ×𝐷surf vs 𝐸ads (Figure 2-5 c, f) indicates that transport efficiency reaches 

maximum for peptides where the Lys fraction is slightly less than saturated (i.e., Lys6-Ala1). The 
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simulated transport efficiency for a Lys-saturated peptide (Lys10-Ala0) was decreased due to the 

insufficient surface mobility, while the low transport efficiency of Lys1-Ala6 was due to poor 

adsorption time. Collectively, MD simulations indicate that an electrostatic channeling surface 

with high (but less than saturated) charge density and a polyanionic intermediate would strike a 

balance between surface mobility and adsorption energy to allow for efficient electrostatic 

substrate channeling. 

2.3.4 Qualitative comparison with experiment by stop-flow lag time analysis 

In this section, MD simulation results are compared with experiments, in terms of the 

occurrence of channeling and the dependence of ionic strength. In cooperation with our partners 

from University of Utah, we selected the reaction of glucose with HK and G6PDH as a model 

system to introduce an artificial channeling bridge, as shown in Figure 2-6a. 

This enzymatic cascade utilizes HK with adenine triphosphate (ATP) to phosphorylate 

glucose to G6P, which is subsequently oxidized by G6PDH with nicotinamide adenine 

dinucleotide phosphate (NADP+) as a terminal oxidant (Figure 2-6b). The reaction rate on each 

active site (~0.01-0.1 s-1) is much slower than the diffusion rate of small ligand molecules (~10-5 

cm2 s-1), including cofactor, reactant, intermediate and product. Therefore, it can be assumed that 

there is no delay on bulk concentration change when turnover occurs at any active sites. 

Therefore, by measuring the absorbance corresponding to NADPH formation, we were able to 

indirectly monitor the activity of HK or directly measure the activity of G6PDH. Additionally, 

this reaction sequence provides G6P as a charged intermediate, which allows for the comparison 

of our experimental findings with those suggested by MD modeling. Based on the simulated 

oligopeptide chains, we synthesized an electrostatic bridge consisting of a poly(Lys) 
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oligopeptide, as shown in Figure 2-6a. Corresponding synthesis detail can be found in our 

published work.4,33  

 

Figure 2-6 (a) Illustration of the proposed channeling complex using a poly(lysine) 

bridge as an electrostatic surface between hexokinase (HK; PDB 3VF6) and glucose-6-

phosphate dehydrogenase (G6PDH; PDB 4LGV). (b) Experimental reaction scheme 

used to study electrostatic channeling of the charged intermediate (glucose-6-

phosphate) across a cationic peptide bridge. (c) Sample absorbance plot highlighting the 

determination of experimental lag time (τ) for complexes containing a 4 nm cationic 

bridge (K5), neutral bridge (G5), or free enzymes.33 

As discussed in Chapter 1.3, one of the most common methods for studying substrate 

channeling involves measuring the transition time, also called lag time, required to reach steady-

state flux of the reaction intermediate (G6P).22 The lag time, 𝜏, was determined experimentally 

by stopped-flow injection analysis, in which the absorbance of a solution containing both 

enzymes was measured following an injection of glucose. From this plot, the maximum change 

in absorbance is extrapolated to the time axis () at which absorbance = 0, which is exemplified 

in Figure 2-6c showing the experimental results of three types of enzymatic couple, including 

free standing enzymes (no channeling), neural bridge (proximity only) and charged bridge 
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(proposed channeling). The result on charged peptide bridge shows much smaller lag time than 

its uncoupled counterparts, indicating that the electrostatic surface of the peptide facilitates 

transport of reaction intermediate (G6P). In addition, the lag time of enzymes coupled by neutral 

bridge stayed at the same level of free standing enzymes, which rolled out the contribution of 

proximity alone. 

Theoretically, the ions in solution can shield the electrostatic interaction between charges, 

which should undermine the channeling efficiency in this case. As a result, the degree of 

transport efficiency could be adjusted by ions strength, which broadens the range of comparison 

between simulation prediction and experiment measurement. In order to further demonstrate the 

impact of electrostatic interaction, τ is measured with variable ionic strength, as shown in Figure 

2-7. Specifically, when IS level is increased from 0 mM to 100 mM, the lag time for K5 system 

almost increases to the same level with non-channeling system, approving the contribution of 

electrostatic interaction to the intermediate transport at low ionic strength. 

However, the K15 case has a more concentrated charge but a lower channeling efficiency 

as compared to its K5 counterpart. The quantitative reason of this will be demonstrated in 

Chapter 5. 
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Figure 2-7 Lag time of the free enzymes and 5xLysine (K5), 15xLysine (K15), 

5xGlycine (G5), and 15xGlycine (G15) complexes using 1.4 mM citrate with variable 

ionic strength, where the ionic strength is controlled by the concentration of NaCl. 

Experiments were performed by adding 275 mM glucose to 10 μgmL−1 of enzyme 

(complex) at pH 7.0 and 37 °C. Error bars represent one standard deviation; (*) 0.05 > 

p > 0.01; (**) 0.01 > p > 0.001; (***) 0.001 > p. [ref] 

The dependence of electrostatic interaction on ionic strength is also studied by MD, 

where ionic strength were tuned with explicit ions. The box size was controlled at 325 nm3, and 

extra counter ions were added after neutralization, until the ionic strength reached target values. 

For 0 mM ionic strength, all counter ions were removed, resulting in a non-neutral system. MD 

simulation on ionic strength shows that adsorption time, 𝑓ads, generally experiences a decreasing 

trend with increasing ionic concentration, where the fully saturated Lys peptide exhibits a slight 

decrease on 𝑓ads (= 4.3%) and the peptide with moderate Lys density has a severe decrease ( 

= 40%) on 𝑓ads, as shown in Figure 2-8a. This suggests that electrostatic interaction and thus 

channeling efficiency tend to decrease with increased ion concentration, particularly for the less 

saturated Lys bridge. These simulation results qualitatively agree well with experiment results in 

Figure 2-7. 
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Figure 2-8 (a) MD Simulation on ionic strength, based on the system with G6P and Lys 

peptide. The theoretical “100 % Lys” was calculated from Lys-0Ala peptide (K10), and 

“50 % Lys” was calculated from Lys-1Ala peptide (K6-A1). (b) Plot of “Free”, “G5” 

and “K5” in Figure 2-7, and analytical fit on “K5” lag time according to equation 2-9. 

In order to further compare MD and experiment results, the simulated lag time of K5, 𝜏𝑥, 

is analytically derived as shown in equation 2-9, where 𝜏0 is the lag time of free standing 

experimental lag time, 𝑐 is probability of successfully channeled intermediate, 𝑥 is the percent of 

coupled enzyme pairs as compared to their non-coupled counterparts, and 𝑉1, 𝑉2 is the maximum 

reaction rate of two enzyme. Given the fact that 𝑉2 ≫ 𝑉1, equation 2-9 is simplified to its final 

expression: 

 

𝜏𝑥
𝜏0
=

1 − 𝑥𝑐

1 + 𝑥𝑐 ∙
𝑉1

𝑉2 − 𝑉1

≈ 1 − 𝑥𝑐 
2-9 

 𝑐 = 𝑝𝑐 ∙
𝑘𝑐𝑎𝑡

𝑘𝑐𝑎𝑡 + 𝑘2
 2-10 

By assuming 𝑐 is equal to 𝑓ads in Figure 2-8a, the fitted MD lag time and experiment lag 

time are shown in Figure 2-8b. Although the lag times agree well at low ionic strength when 
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assuming a 50% contamination of uncoupled enzyme pair, the IS dependence trends show a 

significant discrepancy between the simulation and experiment results. This is due to the absent 

of quantitative parameters that can be directly correlated the rate constants of reaction on each 

active site.  

Nonetheless, by combining equation 2-9 and Figure 2-7, the 𝑥 ∙ 𝑐 value is around 50% 

percent at zero IS level. That means the channeling probability is between 50% and 100% at low 

IS level, which suggested a non-perfect but still very effective electrostatic channeling. 

2.4 Summary 

MD simulations were used to explore electrostatic interactions between cationic α-helix 

peptide surface and negatively charged reaction intermediates. Oxalate molecules was found to 

undergo a surface diffusion mechanism across cationic poly(Arg) and poly(Lys) peptide, 

whereby oxalate hops between discrete hydrogen bonding interactions between proximal charged 

residues. By varying the composition of simulated peptide bridge and the characteristics of the 

diffusing intermediate, we were able to define several rules for designing electrostatic substrate 

channels. Specifically, Lys residues were found to provide a balance of intermediate adsorption 

and surface diffusivity that allow for efficient electrostatic channeling while preventing 

dissociation of the intermediate into the bulk. Additionally, simulations suggest that a dianionic 

intermediate is required for the double associative diffusion mechanism that prevents desorption 

from the peptide surface. 

Using these simulation-derived design principles as a foundational blueprint, we 

synthesized an enzyme complex by covalently conjugated HK and G6PDH by a poly(Lys) 
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bridge. The synthetically cross-linked enzyme complex was shown to facilitate electrostatic 

substrate channeling by decreasing the lag time required to reach steady state with respect to the 

intermediate from 102 ± 10 sec for a mixture of coupled enzymes to 56 ± 11 sec for the Lys-

bridged enzymes. The study of synthetic channeling complexes allowed us to identify low ionic 

strength as ideal experimental conditions to observe electrostatic substrate channeling. 

Current MD and experiment results are able to give a strong support of the occurrence of 

artificially introduced electrostatic channeling, and also qualitatively agree well to each other. 

However, to further quantitatively compare these results and identify potential limitations in this 

channeling process, detailed MD study and advanced sampling technique are needed. 
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Chapter 3 Quantification of Thermodynamic Parameters* 

3.1 Introduction 

Surface adsorption of small ligand molecules is driven by a local energy minimum, and 

surface diffusion can be seen as a stochastic process on a given energy landscape. The charged 

surface of natural cascade18,28 promotes surface diffusion along with intermediate migration 

under a proximal electric field created by the cascade surface. Continuum modeling is able to 

give a good description of the intermediate migration with long range electrostatic 

interaction.15,35 However, there is no representation of the surface interaction. Brownian 

dynamics gives a more detailed description of the electric field and also explicit intermediate 

molecules,29 but potential local h-bond interactions are underestimated. For kinetic 

quantification, rate constants are greatly needed and are the key to evaluate overall kinetics.34 

Therefore, detailed quantification of thermodynamics parameters, such as hopping energy barrier 

and desorption energy, is of great significance to further understand the channeling mechanism 

and quantify overall kinetics. 

In this chapter, by using MD simulations, the energy barrier of an individual hop is 

calculated by transition state theory and desorption energy is calculated by umbrella sampling. 

By combining these two energy terms, as shown in Figure 3-1, the probability for intermediate to 

traverse the bridge is quantified in detail. 

                                                 
* The content of this chapter has been published on ACS Catalysis as a full paper. 

Y. Liu, I. Matanovic, D. P. Hickey, S. D. Minteer, P. Atanassov and S. Calabrese Barton, "Cascade Kinetics of an 

Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo", 8, 7719-7726 (2018). doi: 

10.1021/acscatal.8b01041 
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Figure 3-1 Poly-lysine peptide as an electrostatic bridge to transfer reaction 

intermediate (G6P, glucose 6-phosphate) from HK (hexokinase) to G6PDH (glucose 6-

phosphate dehydrogenase).22 

3.2 Model Description 

A description of the basic molecular dynamics model on the peptide bridge is given in 

Chapter 2. 

3.2.1 Transition state theory study 

Glucose 6 phosphate’s (G6P’s) hopping rate (khop) on the peptide surface was calculated 

by the short-range coulombic energy change between the levels of dual- (-400 kJ/mol) and 

single- (-200 kJ/mol) association configuration, as shown in Figure 2-3. According to transition 

state theory (TST) the rate constant, k, is related to the energy barrier G by an Arrhenius 

expression: 

 𝑘 = 𝐴 ∙ exp (−
∆𝐺

𝑅𝑇
) 3-1 
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where A is the frequency factor, R is the gas constant and T is the absolute temperature. 

Therefore, A and G could be calculated by fitting ln𝑘 as a function of 1/T, which will be further 

discussed in following section. In order to do this, the MD system was set at 10 temperatures (10, 

15, 20, 25, 30, 37, 40, 45, 50, 55 oC). At each point, 10 parallel 100-ns simulations were 

conducted to calculate the average hopping rate, khop, and its standard deviation. It should be 

noted that G and A values were calculated by fitting all of the 10×10 data points, rather than the 

average at each temperature. This enables a sufficient evaluation of the uncertainty of hopping 

rate. For ionic strength (IS) dependence study, IS values were set at 0, 20, 40, 70, and 120 mM 

explicitly represented by Na+ and Cl- ions. The IS value here represents additional ion 

concentration beyond that required for neutralization of MD system. 

3.2.2 Umbrella sampling 

From the MD trajectory of TST study, a dual association configuration was extracted for 

umbrella sampling.50 After that, the peptide was first restrained at a reference position and the 

readily adsorbed intermediate molecules (G6P) were pulled away perpendicularly from the 

peptide surface for 200 ns. In this process, a spring constant of 1000 kJ mol-1 and a pulling rate 

of 0.01 nm ps-1 were used, as shown in Figure 3-2a. The two -ammonium nitrogen atoms were 

selected as the reference group and the whole G6P molecule was selected as the pull group. As a 

result, a maximum distance of 2 nm was obtained for the center-of-mass (COM) of G6P as a 

reference to its original position. From pulling trajectories, 15 frames with a COM increment of 

0.1 nm were attempted to be selected as the initial configuration for each window in umbrella 

sampling. Such spacing distance allow sufficient overlap between the probability distribution 

within neighboring windows. This will be further discussed in section 3.2.2 
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In order to optimize the frame selection for umbrella sampling, two reaction coordinates, 

𝑥1and 𝑥2, were defined as equations:  

 𝑥1 = |𝑥⃗G6P − 𝑥⃗ref| 3-2 

 𝑥2 = |(𝑥⃗G6P − 𝑥⃗ref) ∙ 𝑣⃗| 3-3 

where 𝑥⃗g6p and 𝑥⃗ref are the coordinates of the COM of G6P molecule and associated LYS’s -

ammonium nitrogen atoms, respectively. 𝑣⃗ is the given vector perpendicular to peptide surface in 

pulling process. In other words, 𝑥2 is the projection of 𝑥1 on 𝑣⃗. Figure 3-2c shows an example on 

the time course of 𝑥1 and 𝑥2. A certain difference can be seen between these values, which is due 

to the intermediate’s lag response to the harmonic spring force during pulling process. Therefore, 

the pulling process was repeated 50 times to pick the 15 frames with |𝑥1 − 𝑥2| less than 0.01 nm. 

Usually, 20 parallel pulling enable at least one appropriate frame for each window. 
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Figure 3-2 (a) System configuration of a dual association mode. (b) An assumed 

desorption state by pulling G6P 1.5 nm away from the surface. 

For Umbrella Sampling, above mentioned reaction coordinates 𝑥1 and 𝑥2 were used for 

GROMACS “COM-distance” and “COM-direction” modules, as shown by Figure 3-3 and 

equation: 

 𝑉bias =
1

2
∙ 𝑘 ∙ (𝑥 − 𝑥0)

2 3-4 

where 𝑉𝑏𝑖𝑎𝑠 is the biased potential applied to the intermediate molecule as its reaction coordinate, 

𝑥, deviates from the energy minimum position, 𝑥0. 𝑘 is the spring constant at 500 kJ mol-1. 

Usually, 10 ns MD simulations was conducted for each window to collect G6P’s trajectory in 

umbrella sampling. 
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Figure 3-3 Gromacs biased potential for umbrella sampling. (a) gmx_distance restraints 

the pull group at a specific distance away from the reference group. (b) gmx_direction 

restraints the pull group at a plane perpendicular to given vector and also a specific 

distance away from reference group. (c) “gmx_distance” + “gmx_direction” allows the 

pull group to be restraint at the dome area above reference group. The x-axis for all 

figures are at the same scale to y-axis. 

In order to calculate the potential of mean force (PMF)91 as an indication of sorption 

energy, the sampling results were combined by weighted histogram analysis method 

(WHAM)92,93 using Grossfield-WHAM code94. As shown in Figure 3-4, a 2-D PMF with non-

independent reaction coordinates, 𝑥1 and 𝑥2, was obtained. That is, 𝑥1 was above mentioned 

GROMACS “COM-distance” and 𝑥2 was “COM-direction”. From the 2D PMF plot, a smooth 

gradient can be seen from the proximity region to desorption region. The ragged bottom of the 

band is due to the insufficient sampling on the dome edge in Figure 3-3c, where 𝑥1 and 𝑥2 were 

too far away from their energy minimum. Therefore, this region was dropped when calculating 

the 1-D PMF along 𝑥1. The average on 𝑥2 was calculated by only taking the area above the 

yellow line in Figure 3-4, where |𝑥1 − 𝑥2| ≤ 0.1 nm.  
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Figure 3-4 Two-dimensional PMF calculated by Grossfield WHAM code. 

3.3 Results and Discussion 

3.3.1 Energy barrier of surface hopping 

In Chapter 2, charged oligopeptides were demonstrated to be an effective channeling 

bridge between sequential enzymes. MD studies on G6P molecule interacting with a charged 

polylysine bridge found that the G6P associates with two lysine side chains by dynamic 

exchange with surrounding water molecules, and surface diffusion was achieved through 

hopping between neighboring association sites (Figure 3-1). Additionally, surface hopping was 

indicated by short-range coulombic energy changes between discrete levels (Figure 2-3a and 

Figure 3-5a). By counting these energy level changes, the hopping frequency, 𝑘hop, can be 

calculated. MD studies over a temperature range (Figure 3-5b) yields the hopping energy barrier, 

𝐺hop, via the Arrhenius equation: 
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 𝑘hop = 𝐴 ∙ exp (−
𝐺hop

𝑅𝑇
) 3-5 

where A is the frequency factor, 𝑅 is the gas constant and 𝑇 is temperature. The hopping 

mechanism involves significant intermolecular contact through hydrogen-bond interactions. In 

order to hop to the next association site, the G6P molecule dissociates from one LYS residue 

while still bonded to the other LYS as a swing arm. During this process, an energy penalty has to 

be overcome until G6P touches another LYS and thus reaches a new energy minimum. This is a 

Stern layer diffusion95 that is less impacted by the ionic shielding from the bulk environment. As 

shown in Figure 3-5c, despite ionic strength variation from 0 mM to 120 mM, the energy barrier 

remains fairly consistent at 12 ± 0.5 kJ/mol. Therefore, a value at 12 kJ/mol was used for all IS 

conditions in later KMC parameterization. 
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Figure 3-5 (a) Short-range coulombic diagram showing G6P hopping as indicated by 

energy fluctuation between single- and dual-association configurations. (c) Temperature 

dependence of surface hopping rate. (d) Ionic strength dependence on hopping energy 

barrier and frequency factor. 

3.3.2 Desorption energy 

Desorption energy was calculated by Umbrella Sampling.50 Figure 3-6 summarizes the IS 

dependence study on the 1-D energy profile near the peptide surface. The probability 

distributions in Figure 3-6a indicate a sufficient overlap between neighboring windows, allowing 

an effective combination of each relative energy profiles. Figure 3-6b shows the energy profile 

of G6P’s desorption from dual association to the bulk environment. Theoretically, a desorbing 

intermediate molecule has to traverse the double layer near the charged oligopeptide, comprising 

the above mentioned Stern layer and a diffuse later created by long-range electrostatic 

interactions.  At low ionic strength, the energy drop can be well separated into Stern layer and 

diffuse layer components, as shown by the blue and orange arrows in Figure 3-6b. With 

increasing ionic strength, the long-range electrostatic interaction is gradually screened out and 
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the corresponding energy region becomes a plateau just beyond the Stern layer. In contrast, the 

Stern layer potential well is less impacted by changes in ionic strength. This agrees well with the 

ionic strength independence study on hopping energy barrier Figure 3-5. 

 

Figure 3-6 (a) Biased probability distribution of G6P molecule in each window. (b) 1-D 

potential of mean force by Umbrella Sampling. The points shows the biased energy 

minimum for each sampling window. 

From Figure 3-6b, desorption energy, 𝐺des, was calculated by taking the difference 

between the energy minimum and the energy average between 1.6 and 2.0 nm. Consequently, 

hopping of an adsorbed intermediate molecule requires a climb up the IS-independent energy hill 

(dashed line in Figure 3-6b) while simultaneously having a probability to reach a desorption state 
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that is dependent on bulk ionic strength. Assuming a Boltzmann distribution, the leaking 

probability of each individual hop depends on the difference between 𝐺hop and 𝐺des:  

 
𝑝des
𝑝hop

= exp (−
𝐺des − 𝐺hop

𝑅𝑇
) 3-6 

At high IS, the leaking probability is 1/16, which means one out of 16 hops results in 

desorption. However, the low-IS leaking probability is calculated as 1/189, an order of 

magnitude lower than the 120 mM case. This means the hopping is much less prone to 

desorption at low IS and the intermediate is more likely to traverse the bridge. Table 2 

summarizes the energy constants calculated by MD simulations, which will be used to 

parameterize the KMC model. 

Table 2 Energy barriers and corresponding rate constants. 

IS 

mM 

𝝀𝒅𝒆𝒃𝒚𝒆 

nm 

 𝑮𝒉𝒐𝒑
𝑩𝒓𝑩𝒓 

kJ/mol 

𝑮𝒅𝒆𝒔
𝑩𝒓𝑩𝒓 

kJ/mol 

𝚫𝑮𝑩𝒓𝑩𝒓 
kJ/mol 

𝒌𝒉𝒐𝒑
𝑩𝒓𝑩𝒓

𝒌𝒅𝒆𝒔
𝑩𝒓𝑩𝒓

 

0 9.8  12 25.5 13.5 189 

20 2.2  12 24.9 12.9 146 

40 1.6  12 23.85 11.9 99 

70 1.2  12 21.7 9.7 43 

120 0.9  12 19.14 7.1 16 

IS: ionic strength 

𝜆𝑑𝑒𝑏𝑦𝑒: Debye length 

𝐺ℎ𝑜𝑝
𝐵𝑟𝐵𝑟, 𝑘ℎ𝑜𝑝

𝐵𝑟𝐵𝑟: energy barrier and rate constant for hopping from one dual association site to 

neighboring site on LYS bridge 

𝐺𝑑𝑒𝑠
𝐵𝑟𝐵𝑟, 𝑘𝑑𝑒𝑠

𝐵𝑟𝐵𝑟: energy barrier and rate constant for desorption from one dual association site 

Δ𝐺𝐵𝑟𝐵𝑟=𝐺𝑑𝑒𝑠
𝐵𝑟𝐵𝑟-𝐺ℎ𝑜𝑝

𝐵𝑟𝐵𝑟: energy difference from hopping transition state level to desorption level 
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3.4 Summary 

The G6P intermediate molecule was found to undergo a surface diffusion mode under the 

protection of the electric double layer created by the charged peptide surface. Specifically, 

surface hopping occurs within a Stern layer due to local hydrogen bond interaction that is less 

impact by the ionic environment of bulk media. The actual value for hopping energy barrier 

approximate the energy difference between a dual and singly association mode. Above Stern 

layer, the long range electrostatic interaction creates a diffuse layer to further protect the surface 

diffusion. However, this layer could be largely shielded at high ionic strength. Collectively, the 

overall leaking probability for each individual hop depends on the energy difference between the 

hopping transition state and desorption state. 

This detailed quantification on thermodynamic parameters not only further explore the 

surface diffusion mechanism, but also give a reasonable support for the rate constants that can be 

used to parameterize KMC model. 
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Chapter 4 Transition Pathway from Bridge to Binding Pocket* 

4.1 Introduction 

Natural cascades typically include 2D channeling surfaces between sequential active 

sites.18,28 Similarly, the area between the artificial bridge and its enzyme binding site is a flexible 

2D surface with multiple pathways and corresponding leakage. Figure 4-1 shows a proposed 

channeling pathway from peptide bridge to G6P’s binding site on G6PDH. As discussed in 

Chapter 2 and Chapter 3, the surface diffusion is a stochastic process on an energy landscape 

with discrete potential wells. As compared to the 1D hopping on the peptide bridge, with random 

motion either forward or backward, 2D surface diffusion includes multiple pathways over a 

network of hopping sites. As a result, the overall leakage cannot be simply estimated by 

thermodynamic parameters. 

Transition pathway analysis using a  Markov state model (MSM) is a good approach to 

analyze this process.51,53,54,57,96 MSM is widely used in the area of protein folding and ligand 

unbinding,53,56,57,97,98 where the transition pathway is complicated by spatial configuration with 

multiple degrees of freedom (e.g., inter-atomic distances and dihedral angles) and highly 

interconnected states of the system. Using detailed configuration discretization and combining 

states with related physical meanings (e.g., desorption or binding states), MSM converts multi-

dimensional molecular dynamics transitions to elementary pathways, allows the selection of 

dominant and long-timescale pathways, and finally human readable pathways.57,99 As a result, 

                                                 
* The content of this chapter has been published on ACS Catalysis as a full paper. The work on molecular docking in 

this chapter is in collaboration with Dr. Ivana Matanovic and Dr. Plamen Atanassov at University of New Mexico 

Y. Liu, I. Matanovic, D. P. Hickey, S. D. Minteer, P. Atanassov and S. Calabrese Barton, "Cascade Kinetics of an 

Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo", 8, 7719-7726 (2018). doi: 

10.1021/acscatal.8b01041 
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the energy landscape53,98 and committor probability 57 to minimum-energy basins can be 

calculated. 

 

Figure 4-1 Proposed channeling pathway from the last dual association site on poly-

Lysine peptide bridge to the G6P’s binding pocket on G6PDH.  

In this chapter, we further map the channeling pathway between the bridge and 

intermediate active site of G6PDH using a probability analysis based on transition state theory. 

This result is then validated by Transition Path Theory (TPT) with a Markov state model. This 

analysis helps to elucidate the intermediate’s ergodicity, transition pathways, and energy barriers 

in channeling from peptide bridge to intermediate’s binding pocket on G6PDH. 

4.2 Model Description 

Basic MD parameters follow the settings as discussed in Chapter 2. 

4.2.1 Selection of complex structure 

The crystal structure of G6PDH from Saccharomyces cerevisiae (experimental enzyme) 

is not yet available.33 In order to obtain a relevant enzyme crystal structure, a comparison was 

made between this experimental G6PDH and the four species with available crystal structure 

(Table 3). Due to charge dissimilarity, Mycobacterium Avium G6PDH (Ma_G6PDH) and 
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Leuconostoc Mesenteroides G6PDH (Lm_G6PDH) were ruled out. The secondary cofactor 

binding site of human G6PDH (Homo sapiens G6PDH) structure is very different from yeast 

G6PDH (Saccharomyces Cerevisiae G6PDH) used in experiment. Moreover, Trypanosoma 

Cruzi G6PDH (Tc_G6PDH) has multiple CYS linker sites and available complex structure with 

both substrate and cofactor readily adsorbed. Therefore, Tc_G6PDH was selected to study the 

hopping from bridge to downstream enzyme active site. CYS-528 was selected as the linker site, 

as it was fully solvent exposed and close to the G6P binding site. 

4.2.2 Hybrid topology at enzyme/linker interface  

In order to conduct MD simulation of the bridge-G6PDH complex, force field parameters 

are required for all atoms and bonds. Generally, as discussed in section 2.2, CHARMM36 all-

atom force field73,74 provides the topology for all standard residues, such as protein and DNA 

components. In addition to this, CGenFF (CHARMM General Force Field)75 can be used to 

calculate parameters for arbitrary, non-standard small molecules, such as ligands.  

Here, these two databases are combined to generate topology for the interface between 

the bridge and its linker33 and standard peptide/enzyme.† As shown in Figure 4-2, the linker 

molecule was capped with CYS residues on each side using ChemAxon Marvin Sketch. Then, the 

topology of whole complex was generated by CGenFF. The interface topology (bonds, angles, 

dihedrals) was used for the entire complex in MD simulation. The independent standard and non-

standard sections were generated by CHARMM and CGenFF, respectively. The capped linker 

                                                 
† Q&A of CGenFF web page: https://mackerell.umaryland.edu/~kenno/cgenff/faq.php#hybrid 
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structure in Figure 4-2 was applied to the HK-bridge segment and similar approach was also 

used for bridge-G6PDH interface. 

Table 3 Comparison of experimental G6PDH33 and available crystal structures. 

Enzyme Sc_G6PDH  Hs_G6PDH  Tc_G6PDH  Ma_G6PDH Lm_G6PD  

Organism 
Saccharomyces 

Cerevisiae 

Homo 

Sapiens 

Trypanosoma 

Cruzi 

Mycobacterium 

Avium 

Leuconostoc 

Mesenteroides 

Species 
Eukaryote 

yeast 

Eukaryote 

human 

Eukaryote 

parasite 

Prokaryote 

bacteria 

Prokaryote 

bacteria 

Similaritya -- 48% 49% 34% 35% 

Similarity 

+ b 
-- 64% 64% 53% 54% 

Total 

charge  

-4.6 -1.1 1.1 -18.4 -20.5 

PDB index none 2BH9  5AQ1 4LGV  1E7Y 

Ligandsc -- NADP/G6P NADP&G6P no NADP&G6P 

CYS 

number 
single multi multi single no 

CYS 

proximityd  
good medium very good medium -- 

a Similarity: residue similarity to Sc_G6PDH; b Similarity +: positive similarity to Sc_G6PDH; c 

Ligands: substrate and cofactor availability in crystal structure; d CYS proximity: the proximity 

of CYS residue to G6P binding site. 

 

To stabilize the complex, the terminal HK CYS of the bridge was first pulled away from 

the position-restrained G6PDH, extending the LYS bridge. Subsequently, the HK CYS side was 

http://www.uniprot.org/uniprot/P11412
http://www.brenda-enzymes.org/sequences.php?AC=P11413
http://www.brenda-enzymes.org/sequences.php?AC=Q4E0B2
http://www.brenda-enzymes.org/sequences.php?AC=A0A0H3A0Q9
http://www.brenda-enzymes.org/sequences.php?AC=P11411
http://protcalc.sourceforge.net/
http://protcalc.sourceforge.net/
http://www.rcsb.org/pdb/explore.do?structureId=2bh9
http://www.rcsb.org/pdb/explore/explore.do?structureId=5AQ1
http://www.rcsb.org/pdb/explore/explore.do?structureId=4LGV
http://www.rcsb.org/pdb/explore/explore.do?structureId=1E7Y
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position restrained while the rest of complex was allowed to stabilize over a 100 ns MD 

simulation. The resulting complex was used to initialize probability analysis. 

 

Figure 4-2 Chemical structure of linker molecule capped with CYS residue on each 

side, CYS-(BM-(PEG)2)-CYS. The whole complex structure was processed by CGenFF 

to obtain the topology parameters for the interface between standard residue segment 

shaded by blue color and the non-standard residue segment shaded in red color. In 

actual MD simulation, the topology for pure standard residue segment was taken from 

CHARMM, and CGenFF parameters were applied to the pure non-standard segment 

and the interface topology. 

4.2.3 Intermediate initialization on complex structure 

To choose a G6P release point, molecular docking was used to identify favorable binding 

areas between the LYS bridge and G6P binding pocket that could be ruled out as leading to long-

term adsorption, as shown in Figure 4-3. The docking simulations were performed using 

AutoDock Vina100,101 by Dr. Ivana Matanovic working at Dr. Plamen Atanassov’s group at 

University of New Mexico. Docking of G6P to G6PDH in the presence of the LYS bridge was 

performed multiple times using a range of areas (Figure 4-3a) between LYS bridge and the 

G6PDH active site. As a result, the rest of the area between the bridge and the active site was 

considered as a potential transition state area, where the position of G6P can be adjusted to find 

the points as shown in Figure 4-5.  

Subsequently, 500 parallel simulations of 2 ns duration were conducted with velocity 

regeneration at each ionic strength (0, 20, 40, 70, 120 mM). At 10 ps per frame, these 
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simulations generated 105 frames per ionic strength, to be used in analyzing the channeling 

behavior. The identification of starting points will be described in Section 4.3.1. 

 

Figure 4-3 The results of molecular docking simulations for the binding of G6P to 

G6PDH (circled positions) in the area between LYS bridge and G6P binding pocket on 

G6PDH. (a) Search boxes. (b) Several favorable binding sites were seemed as potential 

kinetic trapping spots in short MD simulation and were avoid in initializing the parallel 

simulations. 

4.2.4 Markov State Model on transition pathway on flexible 2D surface 

Python package MSMBuilder102 is used to conduct the MSM analysis in this work. 
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In order to analyze the trajectory of intermediate molecule on a flexible 2D surface, the 

atom coordinates in each 105-frame MD trajectory were featurized into a vector with 

representative coordinates, 𝑋(𝑡): 

 𝑋(𝑡) = [𝑥1 𝑥2 𝑥3] 4-1 

where 𝑡 is time step, 𝑥1 is the G6P’s distance to bridge surface, 𝑥2 is the G6P’s distance to 

complex surface and 𝑥3 is the G6P’s distance to the COM of its binding pocket on G6PDH. 

Python package MDAnalysis103,104 is used for the trajectory featurization. The actual distance to a 

reference surface was calculated by taking the distance between the COM of intermediate 

molecule and the closest atoms of reference group. Depending on user’s requirement and specific 

issues to be studied, the dimension of 𝑋(𝑡) can be increased by adding features of interest such 

as dihedral angles, distances to charged moieties, etc., to reveal more detail in channeling 

process. 

After trajectory featurization, the original vectors, 𝑋(𝑡), was grouped into 500 

clusters/states based on their conformational similarity. As a result, the trajectory of vectors is 

converted into a trajectory of 500 states, 𝑆(𝑡): 

 𝑋(𝑡)
  𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔  
⇒         𝑆(𝑡) 4-2 

Then, a Markov State Model, 𝐶(𝜏), is built by counting the transition between each state 

in 𝑆(𝑡): 
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 𝑆(𝑡)
    𝑀𝑆𝑀    
⇒     𝐶(𝜏) 4-3 

where 𝜏 is the time interval used to count the transition. Specifically, 𝐶𝑖,𝑗(𝜏) represent the 

number of counts for the system to go from state 𝑖 to state 𝑗 during time interval, 𝜏. The the count 

matrix is converted to a transition matrix according to the following equation: 

 𝑀𝑖,𝑗(𝜏) =
𝐶𝑖,𝑗(𝜏)

∑ 𝐶𝑖,𝑗(𝜏)
𝑗=𝑗_𝑚𝑎𝑥
𝑗=1

 4-4 

This makes each row of the transition matrix, 𝑀𝑖,𝑗(𝜏),  sum to one. Figure 4-4 shows an 

example of 500×500 transition matrix, where 4.25 % of the elements are non-zero. This means 

that the transition matrix is usually sparse, because mutual connections only exist among directly 

connected states. 

 

Figure 4-4 An example of transition matrix, where white color stands for zero element 

and blue color stands for non-zero items. In this case, there are 10,625 non-zero 

elements out of the total 250,000 items, resulting in a ~ 4.25% occupancy of the matrix. 
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Finally, three basins are defined to calculate the committor probability with Python 

package CSNAnalysis.‡ The energy basins were defined as: 

1. The bridge basin, including clusters where the G6P phosphate group lies within 0.3 

nm of the peptide bridge surface.  

2. The pocket basin, of clusters where the G6P phosphate group lies within 0.3 nm of 

the center of the G6PDH binding site.  

3. The desorption basin, in which the G6P phosphate group is more than 2 nm away 

from the complex surface. 

4.3 Results and Discussion 

4.3.1 Channeling process 

Unlike the LYS bridge with uniform potential wells (and thus precisely defined energy 

terms), the configuration of the peptide bridge with respect to G6PDH is flexible due to its single 

bond connection (Figure 4-1). Additionally, no single reference group can be defined along the 

multiple trajectories between the bridge and binding pocket; therefore, the leaking probability in 

this region cannot be easily assessed by umbrella sampling. Here, a direct probability 

measurement was conducted by MD to explore the leakage and estimate a corresponding energy 

barrier. 

By combining equations 3-5 and 3-6, the rate constant ratio, 𝑘des/𝑘hop, and probability 

ratio, 𝑝des/𝑝hop, are equal and can be related to the energy difference, 𝐺des − 𝐺hop, according to: 

                                                 
‡ CSNAnalysis: https://github.com/ADicksonLab/CSNAnalysis 

https://github.com/ADicksonLab/CSNAnalysis
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𝑘des
𝑘hop

=
𝐴 ∙ 𝑒𝑥𝑝(−𝐺des 𝑅𝑇⁄ )

𝐴 ∙ 𝑒𝑥𝑝(−𝐺hop 𝑅𝑇⁄ )
= 𝑒𝑥𝑝 (−

𝐺des − 𝐺hop

𝑅𝑇
) =

𝑝des
𝑝hop

 4-5 

In this chapter, the subscript “hop” in 𝑘hop and 𝐺hop refer to the hop across the energy 

barrier between last dual association site on peptide bridge and the intermediate’s binding pocket 

on G6PDH. 

The most direct approach to measuring 𝑝des/𝑝hop would be to follow the MD trajectory 

of the G6P molecule, starting from either the LYS bridge or G6PDH binding pocket, and track 

its probability to arrive at the other site. However, because of the deep potential well at each of 

those sites, such traversals are extremely rare on MD time scales. Alternatively, if the 

intermediate is initialized at a high-energy transition state (Figure 4-5 point c), it should have 

equal probability to reach the peptide bridge, 𝑝br, and the G6PDH pocket, 𝑝poc. There also exists 

a finite probability, 𝑝des, of desorption to the bulk, depending on the energy difference between 

transition and desorption state, Δ𝐺.  

More generally, the G6P molecule may be released near the transition state (Figure 4-5 

points b or d), where 𝑝br and 𝑝poc are not equal but comparable. Given point d as an example, 

𝑝poc
𝑑 > 𝑝br

𝑑  indicates the shift from transition points to enzyme pocket. Here, 𝑝br
𝑑  as well as the 

desorption probability, 𝑝des
𝑑 , can be related to their respective energy barriers, 𝐺hop

𝑑  and 𝐺des
𝑑 , by 

an Arrhenius expression: 

 
𝑝des
d

𝑝br
d
=
𝐴 ∙ 𝑒𝑥𝑝(−𝐺des

d 𝑅𝑇⁄ )

𝐴 ∙ 𝑒𝑥𝑝(−𝐺hop
d 𝑅𝑇⁄ )

= 𝑒𝑥𝑝 (−
𝐺des
d − 𝐺hop

d

𝑅𝑇
) = 𝑒𝑥𝑝 (−

Δ𝐺

𝑅𝑇
) 4-6 
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This expression suggests generally that wherever the release point, the ratio of hopping 

and leaking probabilities is given by exp(−∆G 𝑅𝑇⁄ ), where ∆G is the energy difference between 

a perfect transition point (point c in Figure 4-5) and the bulk energy level. Therefore, in order to 

calculate the value of ∆G, the G6P molecule can be released from a nearby region (Figure 4-5 

points b or d) , instead of finding a single perfect transition state (point c). 

 

Figure 4-5 Simplified energy profile from bridge to G6P binding site on G6PDH. Point 

a is the last dual association site on peptide bridge; point c is the transition state at the 

energy barrier between bridge and G6PDH; point b and d are the two states slightly 

deviating from the transition state. 

Probability analysis was conducted using a partial complex, including G6PDH (PDB: 

5AQ1, Table 3), the LYS bridge and only one interfacial CYS residue of HK, as shown in Figure 

4-6a. The HK CYS was position-restrained to mimic the existence of the HK biomolecule. Using 

the configuration of Figure 4-6a as the initial frame, the velocity of all atoms was regenerated 

and then equilibrated for 1 ns (position restraint on all G6P and complex atoms). After that, 500 

parallel MD simulations (2 ns) were conducted with position restraint only on the HK CYS 

residue.  
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Figure 4-6 (a) System configuration when G6P was released around point c in Figure 

4-5. (b) System configuration showing the distribution of G6P intermediate (green dots) 

in 500 parallel simulations. The complex structure is the 0 ns frame and the G6P 

molecules position are taken from the last frame of each parallel simulation. The 

coordinates are rotated to make the G6PDH secondary structure fit that of first frame. 

Probability was calculated for three outcomes of G6P molecule: reaching the peptide 

bridge (pbr), reaching the G6PDH pocket (ppoc) or desorbing into the bulk (pdes). Each outcome 

was determined by the distance of the G6P’s phosphate group to the corresponding residues. 

That is, when phosphate group was within 1.2 nm (short range cut-off) to the LYS bridge surface 

or the G6P binding pocket, it was assumed to reach the destination. If G6P molecule was 1.2 nm 
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away from the whole complex, it was assumed to desorb. Cases where G6P was located 

elsewhere on the complex surface after 2 ns (~20% of all simulations) were considered 

incomplete channeling, and were not included in the calculation. Finally, the initial position of 

G6P was slightly adjusted until pbr is comparable to ppoc. Figure 4-7 shows that the probability 

became fairly consistent when the simulation was repeated more than 200 times. Therefore, all 

the probability results in the main text were calculated from 500 parallel simulations. 

 

Figure 4-7 Probability results as a function of number of parallel simulations. The 

resulting probability depends on the intermediate releasing point. In this set of 

simulations, G6P molecule was released at a single point around the perfect transition 

state area, and then parallel simulations was conducted to study the convergence of 

probabilities. 

Using the release point yielding comparable values of 𝑝br and 𝑝poc, a IS dependence 

study was conducted via 500 parallel simulations. For example, at IS=20 mM (Figure 4-8), 𝑝br, 

𝑝poc and 𝑝des were found to be ~53.5%, 43.4% and 3.0%, respectively, resulting in a leaking 

probability 
𝑝des

𝑝poc
= 7.14%. Using this value in equation 4-6, we calculated the resulting ∆𝐺BrE2 

value to be 6.9 kJ/mol. As compared to the bridge, where ∆𝐺BrBr = 𝐺des
BrBr − 𝐺hop

BrBr ≈ 13 kJ/mol 

(Table 2), traversal from the bridge to G6PDH is less protected from leaking into the bulk. 



 

72 

 

Figure 4-8 (a) Ionic strength dependence of leaking probability, showing the probability 

of G6P’s final states (e.g, desorption, bridge, pocket). Up 500 parallel simulations were 

conducted to sample the rare leaking event. (b) The ration of desorption and channeling 

events in Fig.3b. 

Specifically, the energy difference between transition state and desorption level was 

calculated from the resulted probability according to Figure 4-5, Figure 4-8 and equation: 

 ∆𝐺𝐵𝑟𝐸2 = −𝑅𝑇 ln (
𝑝ℎ𝑜𝑝
𝐵𝑟𝐸2

𝑝𝑑𝑒𝑠
𝐵𝑟𝐸2) 4-7 

Assuming a uniform bulk energy level, ∆𝐺BrE2 can be used to correlate the transition 

state energy level to 𝐺des
BrBrand 𝐺hop

BrBr on LYS bridge, as shown in equation below: 

 𝐺𝑑𝑒𝑠
𝐵𝑟𝐵𝑟 = 𝐺𝑑𝑒𝑠

𝐵𝑟𝐸2 4-8 

 𝐺ℎ𝑜𝑝
𝐵𝑟𝐸2 = 𝐺𝑑𝑒𝑠

𝐵𝑟𝐵𝑟 − ∆𝐺𝐵𝑟𝐸2  4-9 

Therefore, a complete energy profile can be discerned between the LYS bridge to the 

transition state to G6PDH binding pocket. Figure 4-8b shows different 𝑝𝑑𝑒𝑠/𝑝𝑝𝑜𝑐𝑘𝑒𝑡 value as a 

function of ionic strength, indicating increased leakage under a more concentrated ionic 
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environment. It should be noted that a high energy barrier tends to keep the G6P molecule on the 

bridge, increasing the residence time of intermediates on the bridge. Below we show that this 

energy barrier results in further leakage from the bridge. 

As for the rate constants, since all hopping and desorption events on LYS bridge can be 

correlated to the last dual association site on peptide bridge, 𝑘hop
BrBr, 𝑘des

BrBr, 𝑘hop
BrE2 and 𝑘des

BrE2 are 

assumed to have the same frequency factor. Similarly to the KMC parameterization on peptide 

bridge (Table 2), rate constant ratio from bridge to E2, 𝑘hop
BrE2/𝑘des

BrE2, was calculated from 

probability analysis. 

4.3.2 Transition pathway analysis 

Given the fact that channeling on 2D surface is complicated and there could be multiple 

pathways, Transition Path Theory is conducted via Markov state model to better understand the 

channeling process and also validate the probability analysis in above section. Figure 4-6b shows 

all G6P’s final positions relative to bridge-G6PDH complex in 500 parallel simulations. In spite 

of one frame from each 200-frame trajectory, the area between peptide bridge and binding 

pocket was already fully covered, even including the desorption case. Therefore, the local 

ergodicity is good enough to build a Markov state model.  

Figure 4-9 shows the network of MSM states for the 0 mM and 120 mM case in Figure 

4-8a. Specifically, the node size corresponds to its stationary populations and the node color 

stands for its committor probability to one of the pre-defined basins. For example, the states 

belonging to “bridge basin” has a 100% committor probability to this basin and thus has a pure 

blue color. Similarly, the pure cyan nodes have an equivalent 50% probability to “pocket” and 
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“bridge” basins. The MSM results indicate separate energy basins of peptide bridge and G6P 

binding site. But these two basins are connected via a highly interactive nodes that correspond to 

the transition area in Figure 4-5 and Figure 4-6a. It is obvious that neither of these two basins has 

a good connection to the bulk, because there is a large kinetic trap due to the charge density and 

strong local h-bond interaction between G6P’s phosphate group and LYS/ARG residues at 

“bridge” and “pocket”. But the transition area (cyan) shows a relative frequent interaction to 

desorption states. This agrees well with the leakage when G6P hops from peptide bridge to its 

binding site on G6PDH. At 0 mM ionic strength (Figure 4-9a), the “pocket” and “bridge” basins 

are strongly connected by the cyan states in between, and very little network was observed to the 

“bulk” basin. For the 120 mM system, however, significant shift can be observed to the bulk 

state, as indicated by the larger red area and more apparent purple/yellow areas. This give a good 

qualitative visualization on the impact of ionic strength. 

In order to visualize the transition probability from bridge states to pocket or bulk states, 

the bridge was not defined as a basin when calculating the committor probabilities, as shown in 

Figure 4-10. In this way, the committor probabilities to “bulk” and “pocket” spread and compete 

for the original “bridge” states. Graphically, the blue color in Figure 4-9 a and b is removed in 

Figure 4-10, and the green and red spread to and paint the original blue states as circled by 

dashed oval shape. As a result, the original “bridge” states turned a very green color that is far 

from yellow, indicating that the intermediate on bridge was more like to go to the binding pocket 

(green) instead of being lost in to bulk media (red). However, when comparing the 0 mM and 

120 mM ionic strength, more yellow can be observed in original bridge states in Figure 4-10a, 

demonstrating more leakage occurred with increasing ionic strength. This agrees well with direct 

probability analysis (Figure 4-8) and the three-basin committor probability result (Figure 4-9). 
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Figure 4-9 Transition pathway visualization at 0 mM (a) and 120 mM (b). The node 

size is based on the stationary populations of each state. The colors indicates the three-

basin committor probabilities to the pre-defined basins of desorption states (red), 

peptide bridge states (blue) and binding pocket states (green). (c) Triangle color bar. (d) 

Triangle color bar with grid and probability labels. 
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Figure 4-10 Two-basin committor probabilities for transition pathways visualization at 

0 mM (a) and 120 mM (b). As compared to Figure 4-9, the “bridge” basin was not 

defined when calculating the committor probabilities, but the corresponding states were 

still recognized as an energy basin. In this way the probability to bulk/pocket states 

from “bridge” states can be visualized. (c) Triangle color bar. (d) Triangle color bar 

with grid and probability labels. 

In order to quantitatively compare the direct probability analysis and MSM result, the 

overall leakage was calculated. By studying the states with equal committor probability to 

“bridge” and “basin” in Figure 4-9, their probability to “bulk” can be used to compare with the 

probability ratio in Figure 4-8b, making a more reasonable ∆G as illustrated in Figure 4-5. 
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Specifically, the states with equal committor probability to “bridge” and “pocket” (𝑝𝑖,𝑏𝑟𝑔 and 

𝑝𝑖,𝑝𝑜𝑐) were extracted, and then only the states representing surface interactions were kept, in 

which the distance between G6P’s phosphate group and complex surface was less than 0.3 nm. 

Finally the overall desorption probability, 𝑝2𝑝, was calculated by the summation of weighted 

desorption probability at each states:  

 𝑝2𝑝 =∑
𝑝𝑖,𝑑𝑒𝑠
𝑝𝑖,𝑝𝑜𝑐

∙ 𝑤𝑡𝑖
𝑖

 4-10 

where 𝑤𝑡𝑖 is the weight of each selected state calculated from their stationary populations in 

MSM. Table 4 summarizes all energy values, key rate constant ratios and key probability ratios. 

With the ∆𝐺𝐵𝑟𝐸2 value from probability analysis and assuming a uniform bulk energy level 

(equation 4-8), the hopping energy barrier from bridge to G6PDH can be calculated From Eq.  

4-9. Given the ionic strength at 120 mM as an example, the minimum 𝑝𝑑𝑒𝑠/𝑝𝑝𝑜𝑐 for these MSM 

clusters are 30.3% (Table 4), comparable to the 31% in Figure 4-8b. 
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Table 4 Energy barriers, related rate constants and cascade kinetics. 

    TST    TPT  

IS 

mM 

𝝀𝒅𝒆𝒃𝒚𝒆 

nm 
 

𝒑𝒉𝒐𝒑
𝑩𝒓𝑬𝟐

𝒑𝒅𝒆𝒔
𝑩𝒓𝑬𝟐

 
𝚫𝑮𝑩𝒓𝑬𝟐 
kJ/mol 

𝑮𝒉𝒐𝒑
𝑩𝒓𝑬𝟐 

kJ/mol 
 

𝒑𝒉𝒐𝒑
𝑩𝒓𝑬𝟐

𝒑𝒅𝒆𝒔
𝑩𝒓𝑬𝟐

 
𝚫𝑮𝑩𝒓𝑬𝟐 
kJ/mol 

𝑮𝒉𝒐𝒑
𝑩𝒓𝑬𝟐 

kJ/mol 

0 9.8  27.0 8.5 17.0  16.6 7.24 18 

20 2.2  14.4 6.9 18.0  8.7 5.56 19 

40 1.6  10.5 6.1 17.7  11.2 6.22 18 

70 1.2  7.4 5.2 16.5  6.1 4.66 17 

120 0.9  3.3 3.1 16.0  3.3 3.26 16 

IS: ionic strength 

𝜆𝑑𝑒𝑏𝑦𝑒: Debye length 

𝑝𝑑𝑒𝑠
𝐵𝑟𝐸2: desorption probability for hopping from last dual association site to G6P binding pocket 

on G6PDH 

Δ𝐺𝐵𝑟𝐸2: energy difference between transition state level and desorption level, when hopping 

from last dual association site to G6P binding pocket on G6PDH 

𝑝ℎ𝑜𝑝
𝐵𝑟𝐸2, Δ𝐺𝐵𝑟𝐸2: probability and energy barrier for hopping from last dual association site to G6P 

binding pocket on G6PDH 

 

Figure 4-11 makes a graphical comparison between TST and TPT methods in terms of 

desorption probability and the energy difference between transition area energy and bulk energy 

level. From both plots, the TST and TPT results generally agree well, giving a good quantitative 

impact of ionic environment on the channeling from bridge to G6PDH binding site. Therefore, 

the probability analysis in above section is reasonable to parameterize KMC model to quantify 

the cascade kinetics. 
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Figure 4-11 Comparison between the leakage calculated by transition state theory 

(TST) and transition path theory. (a) Leaking probability represented by desorption 

probability and the probability to reach the G6PDH binding pocket. (b) Energy 

difference between transition state to bulk environment, corresponding to ∆G in Figure 

4-5. 

4.4 Summary 

Intermediate’s hopping from poly-lysine peptide bridge to its binding site on G6PDH is 

studied by a direct probability measurement via MD simulation. By releasing the G6P molecules 

at a transition state area with relative high energy level, three event probabilities (pbr, ppoc, pdes) 

are used to calculate the energy difference between this state and bulk energy level. Then, this 

energy difference is correlated to the desorption energy on peptide bridge, in order to complete 

the energy profile to G6P’s active site on G6PDH. Transition pathway analysis by MSM further 

elucidates the details of this process. Discrete potential basins are clarified by the visualization of 

MSM results, and the transitions states in between (cyan color) shows more propensity to desorb 

to the bulk as compared to arriving at the bridge and pocket basins. The leaking probability by 

committor probability agrees well with the direct probability analysis in Chapter 3. These 

probability results are used to estimate the kinetic parameters for the KMC model in Chapter 5. 
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Chapter 5 Cascade Kinetics by Kinetic Monte Carlo Method* 

5.1 Introduction 

In previous chapters, thermodynamic parameters were quantified in detail by molecular 

dynamics simulation combined with advanced sampling methods. In order to further reveal the 

potential limitations of channeling efficiency, quantitative kinetics is greatly needed. A 

quantitative model should not only effectively cover the time and length scales from micro-

structure to experiment, but also fully consider the molecular complexity of the cascade 

topology. 

Reported work on this includes the analytical method with assumed channeling 

efficiency, continuum modeling focusing on the charge migration under electric field and 

simplified molecular simulation on the probability for intermediate molecule to reach the second 

active site. By solving a set of equations based on mass balance, analytical methods or micro-

kinetics are able to correlate the observed cascade kinetics to channeling efficiency, which can 

not be measured directly by current experimental techniques, and are usually estimated by 

computational simulations.34 Continuum modeling represents the intermediate distribution as a 

continuous field. With predetermined spatial factors and boundary conditions, the intermediate 

migration is governed by concentration gradients and the electric field created by the cascade 

surface.15,35 As a result, steady state flux can be calculated to determine the yield as an indication 

of channeling efficiency. Recent molecular simulations were conducted under Brownian 

                                                 
* The content of this chapter has been published on ACS Catalysis as a full paper. 

Y. Liu, I. Matanovic, D. P. Hickey, S. D. Minteer, P. Atanassov and S. Calabrese Barton, "Cascade Kinetics of an 

Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo", 8, 7719-7726 (2018). doi: 

10.1021/acscatal.8b01041 
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dynamics, wherein the transport efficiency was estimated by the probability of simplified but 

explicit intermediate molecules to reach the vicinity (0.7 nm) of second active site.29,30,44 This 

probability term was integrated by the above-mentioned analytical approaches to quantify the 

cascade kinetics. 

However, these models are not able to adequately represent the surface interaction 

between charged and polarized intermediate species and channeling surface. Additionally, the 

quantification algorithm relies heavily on the estimation of channeling efficiency and ignore the 

complexity of intermediate’s interactions with cascade surface. 

Because of its focus on sequences of events rather than stepping through time, Kinetics 

Monte Carlo (KMC) model has been widely used for simulating chemical reaction and diffusion 

on the lattice surface of inorganic catalysts.41,59–63 Basic events include surface adsorption, 

desorption, hopping and reaction, which are common to intermediate channeling. Specifically, 

DFT parameterized KMC, also called first-principle KMC, is used to study the effect of catalyst 

composition, surface structure, lateral interactions, and operating conditions on the overall 

catalytic performance of chemical (e.g., CO or NO) oxidation/reduction on catalyst lattice 

surface.62 In addition, experimentally based KMC was used to study the CO oxidation on RuO2 

surface,60 and a comparison between DFT and experimental parameters was made to reveal the 

significant impact of lateral interaction of adsorbed species.41 Besides quantum mechanics, a 

combination of MD and KMC simulations was also used to study epitaxial growth of fcc and hcp 

islands on fcc (111) surface, showing great simulation acceleration and a boundary pinning effect 

by adsorbed atom islands that is difficult to reveal by conventional KMC methods.64 Another 

multi-level example is a hybrid of first-principle MD and KMC simulations, showing the impact 
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of rotational coupling of the side groups influencing the proton conduction in proton exchange 

membrane fuel cells (PEMFC).65 

In this chapter, we use the KMC method to quantify the cascade kinetics of the HK-

G6PDH cascade. Parameterized by MD and experimental results, the KMC model was built to 

estimate product evolution on the experimental time scale. This model enables a direct 

comparison between simulations and experiments, focusing on pre-steady state product 

evolution. These studies build a detailed quantitative approach, enabling us to further elucidate 

the range and limitations of electrostatic channeling. 

5.2 Model Description 

5.2.1 Kinetic Monte Carlo model 

Figure 5-1 shows the two-step KMC model for cascade reactions: 

 glucose + ATP
      HK      
→     glucose 6 − phosphate + ADP 5-1 

 
G6P + NADP+

      G6PDH      
→         5 phospho gluconolactone + NADP 

5-2 

As shown in the figure, the two active sites (E1 and E2) are connected by several discrete 

hopping sites. On each site, rate constants for all possible events (e.g., 𝑘hop
left , 𝑘hop

right
, 𝑘leak, 𝑘ads , 

𝑘cat) were assigned explicitly. All sites were allowed to exchange intermediate with the bulk 

environment. Given the fast diffusion rate of G6P (~10-5 cm2 s-1) as compared to the turnover 

frequency (TOF) of active site (~0.01-0.1 s-1), the G6P was assumed to diffuse immediately into 

a homogeneous bulk media once it left the cascade surface. Therefore, the bulk environment was 
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only represented by a changing intermediate concentration, which will in turn impact the 

adsorption rate on active sites. MD simulation of intermediate in the binding pocket is complex 

and usually handled by more detailed and advanced sampling techniques such as Markov State 

model57. Therefore, it is out of the scope of this work. To simplify the KMC system, hopping 

was assumed to be reversible between bridge sites, but was irreversible from E1 to bridge and 

bridge to E2. Reversible hopping on and off bridge is of potential interest for future work. 

 

Figure 5-1 Schematic diagram of kinetic Monte Carlo model. E1 and E2 are two active 

sites. Sites 1-4 are discrete hopping sites representing the dual association sites on 

peptide bridge. Bulk are the environment with changing intermediate concentration. 𝐾M 

is the Michaelis constant and 𝑘 values are the rate constants for various events, 

including 𝑘cat for turnover frequencies, 𝑘leak for desorption from bridge, 𝑘hop for 

hopping on bridge, 𝑘1b for hopping from enzyme-1 to bridge, 𝑘b2 for hopping from 

bridge to enyme-2. 

A zero 𝑘 value was given if an event was disallowed. Figure 5-1 indicates all allowed 

events on each site. The actual rates, 𝑟, in each KMC step were calculated by taking the product 

of rate constant, 𝑘, and the occupancy of current and neighboring sites, 𝛩 and 𝛩𝑛𝑏, represented 

by either 1 or 0. As mentioned above, bulk concentration, 𝑐, was involved in this rate/occupancy 

product when calculating the adsorption rate. Each specific calculations can be seen as follows: 

 𝑟ads = 𝑘ads ∙ (1 − 𝛩) ∙ c 5-3 
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 𝑟des = 𝑘des ∙ 𝛩 ∙ c 5-4 

 𝑟reaction = 𝑘cat ∙ 𝛩 ∙ c 5-5 

 𝑟hop = 𝑘hop ∙ 𝛩 ∙ (1 − 𝛩𝑛𝑏) ∙ c 5-6 

Having assigned all rate values (r1, r2…rn) to all available sites, a random number (ρ1) is 

generated between 0 and 1, to select a specific event according to:36,60 

 ∑ 𝑟𝑖

𝑖0−1

𝑖=1

< 𝜌1 ∙ 𝛤total ≤∑𝑟𝑖

i0

i=1

 5-7 

where  𝛤total is the summation of all 𝑟 values in current KMC step. The corresponding event 𝑖0 

was then executed and the time evolution, ∆𝑡, was calculated by: 

 ∆𝑡 = − ln(𝜌2)/𝛤total 5-8 

where 𝜌2 is another random number. After execution, the occupancy and rate values were 

updated accordingly. Then, KMC simulation entered a loop until the time reached 1000 ns 

(steady state product evolution from E2). From the time course of product evolution, lag time, , 

was calculated by extrapolating the 500-1000s segment back to the time axis. Detailed discussion 

of this is provided in section 5.3. 

In each KMC simulation, 100 parallel cascades were employed to enhance the event 

sampling and reduce the uncertainty of intermediate concentration. Normally, each KMC 

simulation took less than 107 steps, depending the parameters of KMC simulation. Finally, 5-10 
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parallel KMC simulations were performed to evaluate the error in lag time estimation. Table 5 

shows the parameters for KMC simulation.  

Table 5 KMC parameters. 

Constant Value 

𝑐E1E2, cascade concentration / mol L-1 8*10-9 

𝑉, compartment volume / L 2.07*10-14 

𝑐sub, concentration of substrate for E1 / mol L-1 2 

𝑘cat
E1 , TOF on E1 / molec s-1 0.7 

𝑘des
E1 , desorption rate on E1, s-1 0.07 

𝑘ads
E1 , adsorption rate on E1, s-1 M-1 7.7*105 

𝐾M,1, Michaelis Constant of E1, mmol L-1 10-2 

𝑘hop
1b , hopping rate from E1 to bridge, s-1 7*1015 

𝑘cat
E2 , TOF on E2 / molec s-1 6.2 

𝑘des
E2 , desorption rate on E2, s-1 0.62 

𝑘ads
E2 , adsorption rate on E2, s-1 M-1 1.26*106 

𝐾M,2, Michaelis Constant of E2, mmol L-1 5.4*10-3 

𝑘hop, hopping rate on bridge, s-1 𝑘cat
E1 × 100 

𝑘leak, desorption rate on bridge, s-1 𝑘hop / (189, 146, 99, 43, 16) 

𝑘hop
b2 , hopping rate from bridge to E2, s-1 𝑘leak × (27, 14.4, 10.5, 7.4, 3.3) 

 

Specifically, turnover frequencies (TOFs) on E1 (𝑘cat
E1 ) and E2 (𝑘cat

E2 ) was calculated by 

fitting experimental data for steady state product evolution of a fully saturated HK and 
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G6PDH.33 The Michaelis constant for E2, 𝐾M,2, was calculated from the experiment lag time of a 

free-standing system, 𝜏𝑓𝑟𝑒𝑒, according to following equation105, where [I] is the intermediate 

concentration at steady state. 

 𝑘cat
E1 = 𝑘cat

E2 ×
[𝐼]

𝐾M,2 + [𝐼]
= 𝑘cat

E2 ×
𝑘cat
E1 ∙ 𝜏free

𝐾M,2 + 𝑘cat
E1 ∙ 𝜏free

 5-9 

Specifically, the 𝐾M,2 in Figure 5-1 is a combination of 𝑘des
E2 , 𝑘ads

E2  and 𝑘cat
E2 , as show in 

following equation. In order to minimize the leakage of a readily channeled intermediate, 

substrate desorption rate constant on each active site, 𝑘des
E1  and 𝑘des

E2 , was taken as 1/10 of the 𝑘cat
E1  

and 𝑘cat
E2 , respectively. The adsorption rate constants, 𝑘ads

E1  and 𝑘ads
E2 , were calculated according 

to: 

 𝐾M,2 =
𝑘cat
E2 + 𝑘des

E2

𝑘ads
E2

 5-10 

As mentioned above, 100 parallel cascades were simulated within a single common bulk 

environment. The total volume, 𝑉,  for these simulations was 21 fL, based on the experimental 

concentration of enzymatic cascade, [E1, E2], at 8.9 nM: 

 𝑉 =
100/𝑁A
[E1, E2]

 5-11 

As a result, the concentration of leaked and hopping intermediate can be calculated for 

each event. In this way, the degree of leakage and hopping could be compared directly with 

product and intermediate evolution. E1 was assumed to be saturated in glucose substrate. 
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Rate constants for channeling on the bridge and E2 were obtained from MD results. The 

hopping rate (~ ns-1) on the peptide bridge is orders of magnitude higher than the TOF on each 

active site (~ s-1), such that enzyme turnover is rate limiting. Therefore, the channeling process 

was actually governed by equilibrium ratios of transport rates, rather the absolute values of each 

transport rate constant. In the KMC simulation, 𝑘hop was set at only two orders of magnitude 

higher than 𝑘cat
E1 , in order to improve simulation efficiency. Meanwhile, values of 𝑘leak and 𝑘hop

b2  

were varied until their ratios to 𝑘hop were equal to those of MD simulation results in Table 2 and 

Table 4.  This guarantees the leaking probability for each individual KMC event is the same as 

the dynamic behavior observed in MD. 𝑘hop
1b  was set to an infinite large value (7 × 1015) to 

make sure the intermediate goes to bridge immediately after it is produced on E1. For the IS-

dependent study, 𝑘leak was varied until its ratio to 𝑘hop was equal to that of MD results, as 

shown in Table 2, Table 4 and Table 5. 

This Kinetic Monte Carlo model was built in Python101,106, and it is available at the 

repository in APPENDIX D. 

5.3 Results and Discussion 

KMC result for singe enzyme kinetics agree perfectly with Michaelis-Menten kinetics 

and details are provided in APPENDIX E. 

5.3.1 Cascade Kinetics by KMC model 

KMC simulation was applied to the cascade model as shown in Figure 5-1. As discussed 

in section 1.3 and section 2.3.4, stop-flow lag time analysis is a widely-used experimental 

method to evaluate channeling efficiency.7,33 Figure 5-2 shows an example of product evolution 
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simulated by KMC that is comparable to a stop-flow experiment, and allows estimation of the 

lag time, 𝜏. In this figure, four types of product evolution are presented, including non-

channeling, perfect channeling and two leaking cases (K5+E2 and K15+E2). As indicated by the 

curve slope in Figure 5-2a, the reaction rate reaches a steady state value at the second half of the 

simulation. Additionally, the time course of bulk intermediate in Figure 5-2b gives a more direct 

visualization on such time period. That is, the intermediate concentration reaches a plateau level 

after 400 sec, when this concentration allows the second active site to reach a reaction rate equal 

to that of its upstream active site. Therefore, by extrapolating the 500-1000 ns curve Figure 5-2a 

to its time axis, the lag time can be calculated to compare with experiment results. 

 

Figure 5-2 (a) A example of simulated stop-flow lag time analysis, showing the product 

evolution under different channeling conditions. (b) The evolution of bulk intermediate. 

In previous work, an analytical expression was employed to estimate lag time based on 

channeling efficiency.34 In contrast, the KMC model is capable of evaluating product evolution 

on experimental time scales starting from the pre-steady state, thereby allowing direct 

comparison with experimental results. Moreover, the contribution of any elementary step can be 
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tracked over the entire simulation process, as exemplified by the bulk intermediate in Figure 

5-2b. 

5.3.2 Quantitative comparison with experiment via ionic strength dependence 

Figure 5-4a demonstrates a comparison between experimental lag time, 𝜏expt, and KMC 

lag time, 𝜏KMC, as a function of ionic strength. Here, we assume 100% hopping efficiency from 

HK to the LYS bridge, and transport from the bridge to E2 is fast with no desorption allowed. 

Bridge lengths of 5 LYS residues (K5) and 15 LYS residues (K15) are represented both in 

experiment and simulation. These polypeptides offer 4 and 14 dual-association sites, 

respectively.  

At low IS and short channeling distance (K5), both 𝜏expt and 𝜏KMC are much lower than 

that of free (uncoupled) enzyme. Based on a random walk model, the expected number of hops 

required to traverse the bridge is the square of the bridge site number, 𝑁. The leaking probability, 

𝑃leak, is the expected probability of desorption during traversal and can be expressed as: 

 𝑃leak = 1 − (
1

1 + 𝑘des/khop
)

𝑁2

 5-12 
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Figure 5-3 Plot of leaking probability based on equation 5-12. 

As shown in Figure 5-3, 𝑃leak was estimated to be 8.1% for K5 at IS=0, which means that 

electrostatic channeling is 92% successful under these conditions. At higher IS, the energy 

barrier to desorption decreases (Figure 3-6b), and 𝑃leak becomes 62.1%, resulting in an increased 

lag time. Similarly, intermediate leakage increases for a longer channeling pathway. At the 

extreme case, for IS= 120 mM and 𝑁=14, desorption probability, 𝑃leak, approaches 100% and 

both 𝜏expt and 𝜏KMC revert to values for the free-standing system.  

The lag time for K15 (~55-120 sec) is consistently higher that of K5 (~ 20-60 sec). 

Taking advantage of KMC’s capability to track all elemental steps, the time course of hopping 

and leakage is plotted for K5 and K15 in Figure 5-4b and c. With more hopping sites and thus a 

longer channeling pathway, the K15 system requires more hops that its K5 counterparts. As a 

result, a leakage increase was observed in Figure 5-4c. These agree well with the analytical result 

in equation 5-12. Therefore, the individual leaking probability and channeling distance must be 

minimized in an effective cascade. 
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Figure 5-4 (a) Comparison of experimental lag time and KMC lag time. K5 and K15 

only consider the leakage on LYS bridge. K5+E2 and K15+E2 involve the leakage 

from bridge to G6PDH pocket. (b) Time course of surface hopping on bridge. (c) Time 

course of leakage on bridge. 

Based on MD simulations on the channeling from bridge to pocket, leakage between the 

bridge and G6PDH is included, which is depicted as K5+E2 and K15+E2 plots in Figure 5-4a. 

The result of leakage between the bridge and E2 is a decrease in channeling efficiency and an 

increase in lag time. With the existence of leakage from bridge and active site, 𝜏KMC increased to 

values comparable to experimental results for both bridge lengths. As discussed above, the 

relative high energy barrier between bridge and G6PDH pocket not only increases the 

downstream leakage at this site, but increases the residence time of G6P on LYS bridge, and 

therefore increasing the probability of desorption. As shown in Figure 5-4b, bridge hopping 

times for both K5+E2 and K15+E2 were higher than that of K5 and K15 over the entire 

simulation, which resulted in further leakage on the channeling pathway (Figure 5-4c). 

The resulting IS dependence of lag time agrees well with experiment results, particularly 

in terms of the slope. Inclusion of hopping between the bridge and enzyme site in the KMC 
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model generally increases the calculated lag times, bringing them closer to experimental values. 

Additionally, whereas experimental and KMC results for the K15+E2 case compare well, there is 

some discrepancy between experimental and KMC results for the K5+E2 case. This can be 

explained by additional leakage from HK to the LYS bridge (𝑘1𝑏 in Fig. 4a), which is not studied 

in this work. Such leakage is expected to affect lag times for the shorter K5 bridge more, because 

the longer K15 bridge itself exhibits greater leaking into the bulk. 

5.3.3 Model extension to multistep cascade 

In order to broaden the application of KMC, the present model can be extended to a 

three-step cascade: 

 S1
    E1    
→   I1

    E2    
→   I2

    E3    
→   P3 5-13 

where E1, E2 and E3 are three sequential active sites. Given reaction on E1 as an example, S1 is 

the substrate for E1, and I1 is the product of E1 and also the substrate for E2. By assuming a 

same kinetics for the second site (E2) and third site (E3), the product evolution for the free 

standing system is shown in Figure 5-5a. KMC result show that the lag time of E3 is almost two 

times that of E2, because the two bulk intermediate species concentrations must be generated 

from E1. This model extension shows a potential of KMC model to study more complicated 

cascade systems.  



 

94 

 

Figure 5-5 Product and intermediate evolution in three step KMC model (Free standing 

system). All parameters for bridge-2 and enzyme-3 are the same with that of bridge-1 

and enzyme-2, respectively. 

5.4 Summary 

Using thermodynamic and kinetic parameters derived from molecular dynamics studies, 

the KMC model enables direct comparison with stop-flow lag time analysis, by evaluating the 

product evolution over the entire experimental time scale, particularly at pre-steady state.  

Moreover, it reveals several key parameters limiting overall cascade kinetics. Specifically, the 

lag time depends on the overall leakage of intermediate molecules, a result of joint action of the 

hopping and leaking probability on the bridge. A high IS environment tends to increase the 

desorption probability of each random hop, and a longer hopping pathway is found to 

dramatically decrease the likelihood that intermediates traverse the cascade surface. At given 

ionic strength, therefore, the length of channeling pathway and the strength of surface interaction 

should be balanced to achieve an efficient intermediate transport between sequential active sites. 

Parameterized by these energy terms, a KMC model is utilized to evaluate the impact of 

the leakage between peptide bridge and active site. By including such leakage, the predicted 

KMC lag time matches better with experiment results. Detailed tracking of event evolution 
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reveals that the energy barrier in this area not only resulted in leakage on the enzyme, but more 

likely pushes the intermediate back to the peptide bridge. This leads to longer retention time and 

thus more desorption on LYS bridge. 

Unlike the well-defined energy terms and channeling behavior on the peptide bridge, the 

configuration of singly bonded peptide and G6PDH need to be further sampled by advanced 

techniques. In addition, the energy barrier between LYS bridge and G6PDH pocket further 

increases the likelihood of downstream leakage. This energy barrier should be carefully 

considered, because it not only caused leakage by itself but also exacerbated the leakage on 

channeling bridge. The leakage from HK to LYS bridge is also a possible factor to further bridge 

gap between simulation and experiment results. 

The present modelling approach is applicable to the design of synthetic catalytic 

cascades, as well as natural cascades to better understand channeling mechanisms.  
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Chapter 6 Conclusion 

This work builds up a multi-scale model to quantify the kinetics of artificial cascade, 

enabling a further understanding on the channeling mechanism and an indication of potential 

limitations for future cascade design. In this hierarchical model, molecular dynamics simulation 

enables a completed consideration of molecular complexity and kinetic Monte Carlo model 

covers a wide range of time and length scale, efficiently bridging the gap between 

microstructures and phenomenon kinetics. 

Specifically, charged intermediate molecules were found to undergo a surface diffusion 

mechanism across cationic poly-Arginine and poly-Lysine peptide, which was realized by 

discrete hops between neighboring amino acid residues through hydrogen bonding interactions. 

Lys residues were found to provide a balance of intermediate adsorption and surface diffusivity 

that allow for efficient electrostatic channeling while preventing dissociation of the intermediate 

into the bulk. Additionally, simulations suggest that a dianionic intermediate is required for the 

double associative diffusion mechanism that prevents desorption from the peptide surface. Also, 

a balance between surface adsorption and mobility is required to achieve an optimal channeling 

efficiency. The comparison with stop-flow lag time analysis gave a strong support of the 

occurrence of artificially introduced electrostatic channeling. 

Further molecular dynamics study demonstrates that the surface hopping is actually under 

the protection of the electric double layer created by the charged peptide surface. The hopping in 

Stern layer was less impacted by ionic screening, but the diffuse layer protection due to long-

range electrostatic interaction could be shielded at high ionic strength. The leaking probability 

for each hop depends on the energy difference between the hopping transition state and 
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desorption state. In addition, the energy barrier around the artificial interface between LYS 

bridge and G6PDH pocket further increases the likelihood of downstream leakage, making the 

channeling even unsafe upon concentrated ionic environment. 

Using thermodynamic and kinetic parameters derived from molecular dynamics studies, 

the KMC model enables a direct comparison with experiment, by evaluating the product 

evolution over the entire experimental time scale, particularly from the pre-steady state. 

Moreover, it reveals the key parameters limiting overall cascade kinetics. Specifically, the 

number of hopping sites and strength of close-range interactions account for the leakage from the 

channeling bridge. The barrier between bridge and second enzyme should be carefully 

considered, because it not only caused leakage by itself but also exacerbated the leakage on 

channeling bridge. 

The present modelling approach is applicable to the design of synthetic catalytic 

cascades, as well as natural cascades to better understand channeling mechanisms. Furthermore, 

for natural cascades with more stable dimer interfaces and channeling surfaces, such as TS-

DHFR and MDH-CS, a complete energy profile may be mapped between active sites to reveal 

more precise mechanisms of the corresponding biological pathways.  

From a prospective point of view, kinetic quantification will continue to rely on seamless 

connection between computational techniques at different time and length scales that fully cover 

the molecular-level interactions and phenomenon kinetics. Continuum modeling and Kinetic 

Monte Carlo simulations are two powerful approaches capable of integrating such tasks. A 

hybridization of continuum and KMC models, either sequential or simultaneous, is promising to 

account for bulk concentration field and discrete surface hopping. If key meta-states can be 
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further coarse-grained into major energy basins, Markov State models have a great potential to 

bridge the energy-discrete cascade surface to an energy-continuous long-range electrostatic 

region. 

Molecular simulations are so far the most effective approach to quantify the parameters 

for KMC and continuum models, and also help to set up the geometry of these coarse-grained 

models. The key challenges of molecular simulations are the full representation of transition 

pathways, and dealing with kinetic traps in energy landscapes. Markov State models are still the 

best way to map the complex transition pathways from very elementary states to a human 

readable pattern. As for the kinetic traps, advanced sampling techniques, such as Umbrella 

Sampling50 and Metadynamics49,107, are required to assist the MD simulations for MSM purpose. 

For example, by the development and combination of various computational simulations, 

sampling techniques and even experimental crystal structures, it is possible to build a complete 

MSM that fully cover the transitions from perfect upstream binding states, to unbinding states, to 

channeling pathways, to downstream unbinding states and finally to perfect binding states at 

second active site. This promising pattern will allow us to further understand the channeling 

mechanisms and more precisely quantify cascade kinetics, both of which will enhance the design 

of synthetic cascades for various applications. 
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APPENDICES 

 

APPENDIX A. Method of counting hopping frequency 

 

(a) An example of original coulombic energy diagram (red) and corresponding 

smoothed curve (blue). (b) Evolution of discrete energy levels for counting the number 

of hops. Blue curve was normalized from the original coulombic diagram and green 

curve was from smoothed coulombic diagram. 37 hops were counted from the green 

curve.
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APPENDIX B. Various intermediates performance on LYS peptide surface 

A summary of calculated diffusion parameters for all theoretical peptide chains and intermediates studied is provided in Table 

6 

Table 6 Properties of Oxalate intermediates channeled by Lys-Ala peptides. 

  

Explanation of column headings: 𝑁ala: number of Ala residues between two Lys. 𝑅/𝑅total: fraction of Lys, equal to 1/(1 + 𝑁ala). 

𝐸ads: adsorption energy calculated from radial distribution function (RDF). 𝐸coul: average coulomb energy over entire simulation. 

𝑡𝑎𝑑𝑠: adsorption time fraction. 𝐷𝑎𝑣𝑔: average diffusivity calculated by MSD based on MD trajectory. 𝐿hop: hoping distance. 𝛤avg: 

average hoping rate (e.g., single-double-single association times) over a 50 ns simulation. 𝛤: hoping rate during adsorption, equal to 

𝛤avg/𝑓ads. 𝐷surf: surface diffusivity calculated based on 𝛤 and 𝐿hop, assuming a 1D hopping diffusion mode. **special jumping 

distance due to 𝛼-helix structure. 
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APPENDIX C. Vector transformation and dimension reduction 

Then, the dimension of the vector, 𝑋(𝑡), can be selectively transformed and reduced by 

independent component analysis (ICA)108. In order to better understand the vector 

transformation, we first introduce the principal component analysis (PCA). 

𝜇𝑖 is the time average of 𝑥𝑖 as shown by equation: 

 𝜇𝑖 = E(𝑥𝑖)|𝑡 6-1 

Then 𝑥̃𝑖 is used to denote the deviation of 𝑥𝑖 from its time average, 𝜇𝑖: 

 𝑥̃𝑖 = 𝑥𝑖 − 𝜇𝑖 6-2 

The covariance matrix, Σ, can be denoted as: 

 Σ𝑖𝑗 = cov(𝑥𝑖, 𝑥𝑗) = E(𝑥̃𝑖 ∙ 𝑥̃𝑗) 6-3 

The matrix version is expressed by the cross product of 𝛸̃ and its matrix transpose, 𝛸̃T: 

 Σ = E(𝛸̃ × 𝛸̃T) 6-4 

After that, the relationship of the 𝑖𝑡ℎ eigenvalue, 𝜆𝑖, and eigenvector, 𝑉𝑖, of covariance 

matrix can be expressed as follows: 

 Σ𝑉𝑖 = 𝜆𝑖𝑉𝑖 6-5 
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Then the matrix version of equation 6-5 can be expressed as follows, by assuming 𝑑 × 𝑑 

matrix U as the matrix of all independent eigenvectors, 𝑉𝑖, and 𝑑 × 𝑑 matrix Λ as the diagonal 

matrix of all eigenvalues, 𝜆𝑖.  

 Σ ∙ U = U ∙ Λ 6-6 

 U = [𝑉1 … 𝑉𝑑] 6-7 

 Λ = [
𝜆1

⋱
𝜆𝑑

] 6-8 

Finally, the transformation is conducted by projecting the original featurized vectors, 

𝑋(𝑡), on the eigenvectors. The eigenvectors with higher eigenvalues have a larger variance of 

data projection. As for the dimension reduction, the eigenvector matrix U is ordered according to 

a descending order of egenvectors, 𝜆𝑖. Then, a sub set of eigenvector matrix, Usub, is used 

instead as following equation. 

 𝑌(𝑡) = 𝑋(𝑡) ∙  Usub 6-9 

PCA is able to find the projecting vectors with largest variance, and time-structure 

independent components analysis (tICA)97,109,110 can be used to find the slowest-relaxing degree 

of freedom, which is more useful to analyze the system with relative slow surface hopping from 

bridge to enzyme pocket. Specifically, time-lagged covariance matrix C(𝜏) is introduced as 

follows, where the covariance is taken with a time difference, 𝜏, between the i, j entries of 

featurized vectors, 𝑋(t) 
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 C𝑖𝑗(𝜏) = E(𝑥̃𝑖,𝑡 ∙ 𝑥̃𝑗,𝑡+𝜏)|𝑡=1 … 𝑁−𝜏−1 6-10 

 C(𝜏) = E (𝛸̃𝑡 × 𝑋̃𝑡+𝜏
T
) |𝑡 6-11 

Obviously, the C(𝜏) is equal to Σ when lag time is zero. 

 C(0) = Σ 6-12 

Similarly to PCA method, the “eigenvector matrix” can be calculated by solving 

following generalized eigenfunction. Finally, the transformation and dimension reduction can be 

conducted by equation 6-9. 

 C(𝜏) ∙ U = C(0) ∙ U ∙ Λ = Σ ∙ U ∙ Λ 6-13 

Collectively, when coding the above mentioned process or using MSDbuilder, the 

dimension of reduced freedom is required to select the Usub in equation 6-9. For tICA, 

additionally, a lag time, 𝜏, usually in form of the steps of minimum time interval, is applied at the 

very beginning of the analysis. 
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APPENDIX D. Code repository 

All Python codes for KMC models and data analysis can be accessed from this GitLab 

repository: 

https://gitlab.msu.edu/scbgroup/yuanchao-dissertation-code.git 

  

https://gitlab.msu.edu/scbgroup/yuanchao-dissertation-code.git
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APPENDIX E. Mono enzyme kinetics 

To integrate all possible events and corresponding rate constants, we employed Kinetic 

Monte Carlo for quantification of cascade kinetics. But firstly, KMC simulation was applied to 

reproduce Michaelis-Menten kinetics (equation 6-14),111 which indicates a linear reaction rate 

increase within low substrate concentration region ([𝑆] ≪ 𝐾𝑀) and a constant rate value at high 

concentration region ([𝑆]≫𝐾𝑀): 

 𝑟 =
𝑘𝑐𝑎𝑡 ∙ [𝑆]

𝐾𝑀 + [𝑆]
;    𝐾𝑀 =

𝑘1 + 𝑘𝑐𝑎𝑡
𝑘2

 6-14 

where 𝑟 is the TOF of single enzyme molecule, [𝑆] is substrate concentration, 𝐾𝑀is Michaelis 

constant, 𝑘2 is the desorption rate from enzyme and 𝑘1 is the adsorption rate onto enzyme. The 

figure below shows the dependence of reaction rate on substrate concentration, where the rate 

constants are taken from E1 (KM=0.1 mM). The KMC results agrees well with conventional 

Michaelis equation, which proves KMC’s feasibility on mono-enzyme kinetics. 

 

KMC calculation Michaelis-Menten kinetics on uncoupled enzyme. Error bars 

represent standard deviation of 10 calculations.
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