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ABSTRACT

CAYLEY GRASSMANNIAN AND DEFORMATIONS IN COMPLEX G2 MANIFOLDS

By

Üstün Yıldırım

Geometric objects related to the exceptional lie groups G2 and Spin(7) have become increasingly

popular in the recent years. Especially so after Bryant’s (and others’) work which showed the

existence of riemannian manifolds with holonomy group equal to one of these groups [Bry87].

However, not much attention is given to the complex manifestations of these objects. This thesis

consists of two parts which fills some of these gaps.

In the first part of this thesis, we investigate the Cayley Grassmannian (over C) which is the

set of four-planes that are closed under a three-fold cross product in C8. We define a torus action

on the Cayley Grassmannian. Using this action, we prove that the minimal compactification is a

singular variety. We also show that the singular locus is smooth and has the same cohomology ring

as that of CP5. Furthermore, we identify the singular locus with a quotient of GC2 by a parabolic

subgroup.

In the second part of this thesis, we introduce the notion of (almost) GC2 -manifolds with

compatible symplectic structures. Further, we describe “complexification” procedures for a G2

manifold M ⊂ MC. As an application we show that isotropic deformations of an associative

submanifold Y of a G2 manifold inside of its complexification MC is given by Seiberg-Witten type

equations.
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CHAPTER 1

INTRODUCTION

The existence of Riemannian manifolds with exceptional holonomy groups (G2 or Spin(7)) is shown

by Bryant in 1987 [Bry87]. Later, Bryant and Salamon found complete examples [BS89] and Joyce

found compact ones [Joy00]. These advancements naturally motivated many questions among

which is how to distinguish two such manifolds. The main methods that may yield to invariants are

gauge theoretic approach of counting instantons, counting minimal submanifolds or possibly some

combination of the two [DT98, Wal13].

We say that a seven (resp. eight) manifold M has a G2 (resp. Spin(7)) structure if the manifold

is equipped with a special three (resp. four) form ϕ (resp. Φ). These are calibration forms in the

sense of [HL82]. So, they define calibrated submanifolds called associative submanifolds in the

case of G2 and Cayley submanifolds in the case of Spin(7). These calibration forms naturally define

subvarieties, called associative Grassmannian and Cayley Grassmannian, of Gr(3,7) and Gr(4,8),

respectively. We can explain these more concretely as follows. The form ϕ (resp. Φ) determines

a unique Riemannian metric g on the manifold M . Then, by setting g(u × v,w) = ϕ(u, v,w) (resp.

g(u × v × w, z) = Φ(u, v,w, z)) one can define a two (resp. three)-fold cross product operation

on T M . The associative (resp. Cayley)-submanifolds are three (resp. four)-submanifolds whose

tangent spaces are closed under the corresponding cross product operation. Fix a single tangent

space TpM , then a three (resp. four)-plane in TpM is called an associative (resp. Cayley)-plane

if it is closed under the corresponding cross product operation. The set of all associative (resp.

Cayley)-planes is called the associative (resp. Cayley) Grassmannian.

The associative and Cayley Grassmannians are the homogeneous spaces G2/SO(4) and Spin(7)/K

(where K = (SU(2) × SU(2) × SU(2)) /{±1}) respectively, and they have been studied in [HL82,

SW10, AK16]. Over real numbers, they are compact spaces. Although over complex numbers they

are not compact spaces, they admit natural compactifications. Some natural compactifications of

the associative Grassmannian have been studied in [AC15].
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The first part of this thesis is an investigation of the (compactified) Cayley Grassmannian (over

the complex numbers). We study the Cayley Grassmannian using a torus action which has finitely

many fixed points. First, we introduce octonions and multiple cross products. Then, using three-

fold cross product, we define Cayley planes precisely and describe an equivalent formulation. The

latter formulation allows one to express Cayley planes as solutions to some polynomial equations (in

P(Λ4C8) via Plücker embedding). We call the closure of this variety the minimal compactification

of the Cayley Grassmannian. We show that the variety is singular, the singular locus is smooth and

it is a cohomology P5. Further, we identify the singular locus as a quotient of GC2 by a parabolic

subgroup P2.

The second part of this thesis is a joint work with Akbulut [AY18]. In this part, the main

objects of our study are (almost) GC2 manifolds. An (almost) GC2 manifold is a (real) 14-manifold

whose structure group is GC2 ⊂ GL(14,R). In other words, its frame bundle admits a GC2 subbundle

and one such subbundle is fixed. We provide examples of such manifolds through two different

constructions. They are described as complexification procedures starting with a G2 manifold.

Given a G2 manifold (M, φ), we consider the cotangent bundle T∗M as a complexification of M

and construct GC2 structures (φC,BC,Ω) on it in two different ways. Furthermore, we describe

a compatibility condition for GC2 structures and symplectic structures. In both complexification

procedures, we obtain GC2 manifolds with symplectic structures. However, in one of the procedures

the symplectic form is not necessarily closed. On the other hand, we use the canonical symplectic

structure ωcan on T∗M in the other construction.

It is possible to extend the notion of associative submanifolds to the complex case as well.

Further, having a compatible symplectic structure allows one to define a new type of special

submanifold which we call isotropic associative submanifolds. These are (real) three dimensional

submanifolds which are isotropic with respect to the symplectic form ω and satisfy an associativity

condition defined using φC. As an application, we investigate infinitesimal deformations of isotropic

associative submanifolds and relate them to Seiberg-Witten type equations.

The organization of the thesis is as follows. In Chapter 2 we collect the background material
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common to both parts of the thesis. Chapter 3 is devoted to Cayley Grassmannian and Chapter 4 is

devoted to GC2 manifolds.
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CHAPTER 2

PRELIMINERIES

In this preparatory chapter, the background material necessary for both parts of the thesis is given.

2.1 Octonions

In this section, we define an octonion algebra and various cross products. All the constructions

of this chapter can be done over R or over C. In fact, they can be generalized to other fields.

However, that is beyond the scope of this thesis.

Definition 2.1.1 ([SV13]). A composition algebra C over a field k is an algebra over k with identity

element and a nondegenerate quadratic form N such that

N(uv) = N(u)N(v)

for u, v ∈ C. The quadratic form N is often referred to as the norm on C, and the associated bilinear

form B(·, ·) is called the inner product.

A four dimensional composition algebra is called a quaternion algebra, and an eight dimensional

composition algebra is called an octonion algebra.

A specific example of an octonion algebraO (overR) is given as follows. Let S = {1, i, j,k, l, li, lj, lk}

be an orthonormal basis for (the vector space)O. For each (oriented) line (or the circle) in Figure 2.1

from x to y to z, set

xy = z = −yx, yz = x = −zy, zx = y = −xz, and x2 = y2 = z2 = −1.

Note that the subspace H generated by {1, i, j,k} is closed under multiplication and therefore, it is

a subalgebra. To ease notation later on, we set e0 = 1, e1 = i, e2 = j, e3 = k, e4 = l, e5 = li, e6 = lj

and e7 = lk. We also set ei1...ik = ei1 ∧ · · · ∧ eik where
{
ei} is the dual basis of {ei}.The octonions

are non-associative but they are alternative, i.e., the subalgebra generated by any two elements is

4



i j

k

l

lj

lk

li

Figure 2.1: Multiplication table for octonions

associative. We denote the projection map from O to the span of 1 by Re, and projection to the

orthogonal complement 1⊥ by Im. This allows us to define an involution

u 7→ u = Re(u) − Im(u).

The bilinear form B associated to N can be expressed as B(u, v) = Re(uv). So N(u) = B(u,u) =

Re(uu).

A key fact one can verify on the basis elements is

uv = v u. (2.1)

Note that (2.1) implies

uu = uu

that is uu ∈ Re(O). Thus,

N(uv) = Re(uvuv) = Re(v(uu)v) = Re(uu)Re(vv) = N(u)N(v)

proving directly that the above multiplication table defines an eight-dimensional composition

algebra (also proving H is a quaternion algebra.) We may complexify O to get a complex octonion

algebra which we denote by OC or if the field is clear from the context simply by O again. (Here,

we complexify B by extending it as a complex bilinear form on both entries and N is extended so

that it is the (complex) quadratic form associated to B.)

5



Next, we would like to define various cross product operations using octonions but, first, we

justify their name.

Definition 2.1.2. Let (V,B) be a vector space with a (non-degenerate) symmetric bilinear form. A

multilinear map L : Vr → V is called an r-fold cross product if

N(L(v1, . . . , vn)) = N(v1 ∧ · · · ∧ vn) (2.2)

with the induced norm on ΛnV and

B(L(v1, . . . , vn), vi) = 0 for all i. (2.3)

Remark 2.1.3. If L is an alternating multilinear map, then it is enough to check (2.2) on orthogonal

vectors in which case (2.2) becomes

N(L(v1, . . . , vn)) = N(v1) . . . N(vn). (2.4)

Remark 2.1.4. The usual cross product operation on R3 is naturally a (two-fold) cross product

according to this definition.

In [BG67], Brown and Gray proved that an r-fold cross product exists on an n-dimensional

vector space only in the following cases:

1. n is even, r = 1

2. n is arbitrary, r = n − 1

3. n = 7, r = 2

4. n = 8, r = 3.

We say that the last two cases are exceptional as they occur only in specific dimensions. Below, we

give concrete description of the exceptional two-fold and three-fold cross products using octonions.
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Then, we introduce a “four-fold cross product” operation on O. Although it is not a cross product

according to Definition 2.1.2, it is conventionally called so [HL82, SW10]. A two-fold cross

product (or simply a cross product) can be defined as the restriction of octonionic multiplication to

the imaginary part, Im(O):

Definition 2.1.5. For u, v ∈ Im(O), let

u × v = Im(uv). (2.5)

To be able to prove this is a cross product operation, the following lemma is needed.

Lemma 2.1.6. For u, v, v′ ∈ O,

N(u)B(v, v′) = B(uv,uv′) = B(vu, v′u). (2.6)

In particular, for unit u, (left or right) multiplication by u is an orthogonal transformation of O.

Proof. Since B(v, v′) = 1
2 (N(v + v′) − N(v) − N(v′)), we have

N(u)B(v, v′) = 1
2
(
N(u)N(v + v′) − N(u)N(v) − N(u)N(v′)

)
=

1
2
(
N(uv + uv′) − N(uv) − N(uv′)

)
= B(uv,uv′).

The second equality can be proved similarly. □

Proposition 2.1.7. The map (u, v) 7→ u × v = Im(uv) is a two-fold cross product on Im(O).

Proof. Since uu ∈ Re(O), u × u = Im(uu) = −Im(uu) = 0. So, u × v is an alternating map. By

Remark 2.1.3, we may assume u, v ∈ Im(O) are orthogonal, that is, B(u, v) = 0. Then, by Lemma

2.1.6 we get

0 = N(u)B(u, v)

= −B(uu,uv)

= −B(N(u),uv).
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Thus, uv ∈ Im(O). This gives us

N(u × v) = N(Im(uv))

= N(uv)

= N(u)N(v).

To prove (2.3), we once again use Lemma 2.1.6.

B(u × v,u) = B(Im(uv),u)

= B(uv − Re(uv),u)

= B(uv,u) − B(Re(uv),u)

= N(u)B(v,1)

= 0

since u and v are orthogonal to 1. □

Next, following [SW10] we define a three-fold cross product and a four-fold “cross product” as

follows:

Definition 2.1.8. For u, v,w ∈ O, let

u × v × w =
1
2
((uv)w − (wv)u) . (2.7)

Definition 2.1.9. For u, v,w, x ∈ O, let

x × u × v × w = −1
4
[(x × u × v)w − (w × x × u)v + (v × w × x)u − (u × v × w)x] . (2.8)

Remark 2.1.10. In fact, the four-fold cross product operation (2.8) does not satisfy (2.3) but it is

conventionally called cross product [HL82, SW10]. However, it is alternating and satisfies (2.2).

Hence, for orthogonal vectors x,u, v, and w we have

N(x × u × v × w) = N(x)N(u)N(v)N(w). (2.9)
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2.2 Calibration forms and calibrated planes

In this section, we define two calibration forms in the sense of [HL82] and calibrated planes

associated to these forms that are relevant to this thesis. The base field is again either R or C for

this section. Reader may consult [HL82] for the general theory of calibrated geometries.

A k-form ω ∈ ΛkV∗ is called a calibration form if for every orthonormal set of vectors

{v1, . . . , vk } we have |ω(v1, . . . , vn)| ≤ 1. Given a k-plane ξ generated by an orthonormal basis

{v1, . . . , vk }, ξ is called calibrated if ω(v1, . . . , vk ) = ±1. Using the two-fold (resp. three-fold)

cross product, we define a calibration three-form (resp. four-form) ϕ (resp. Φ) called associative

(resp. Cayley) calibration on Im(O) (resp. O) as follows:

Definition 2.2.1. For u, v,w ∈ Im(O), let

ϕ(u, v,w) = B(u, v × w) (2.10)

and for x,u, v,w ∈ O, let

Φ(x,u, v,w) = B(x,u × v × w). (2.11)

For a proof of the following proposition see [SW10].

Proposition 2.2.2. The equations (2.10) and (2.11) define calibration forms and they satisfy

ϕ(u, v,w) = Re(u × v × w) (2.12)

and

Φ(x,u, v,w) = Re(x × u × v × w). (2.13)

By (2.4) and (2.12), it is clear that ϕ(u, v,w) = ±1 if and only if Im(u × v × w) = 0 for

orthonormal u, v,w ∈ ImO. Similarly, by (2.9) and (2.13), it is clear that Φ(x,u, v,w) = ±1 if and

only if Ξ(x,u, v,w) := Im(x × u × v × w) = 0 for orthonormal x,u, v,w ∈ O.

Definition 2.2.3. A three-plane (resp. four-plane) ξ generated by orthonormal {u, v,w} (resp.

{x,u, v,w}) is called an associative (resp. Cayley) plane if ϕ(u, v,w) = ±1 (resp. Φ(x,u, v,w) = ±1)
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or, equivalently, Im(u × v × w) = 0 (resp. Ξ(x,u, v,w) = 0). The set of all associative (resp.

Cayley) planes is called the associative (resp. Cayley) Grassmannian. We denote the associative

Grassmannian by Gr(ϕ) and the Cayley Grassmannian by Gr(Φ).

Remark 2.2.4. Over C, not every three-plane (resp. four-plane) is generated by an orthonormal

basis (with respect to B). Strictly speaking, this is why the associative (resp. Cayley) Grassmannian

is not compact when defined over C.

It is helpful to express ϕ, Φ and Ξ in coordinates. The associative calibration form is given by

ϕ = e123 − e145 − e167 − e246 + e257 − e347 − e356

the Cayley calibration form is given by

Φ = e0123 − e0145 − e0167 − e0246 + e0257 − e0347 − e0356

−e1247 − e1256 + e1346 − e1357 − e2345 − e2367 + e4567

and the imaginary part of the four-fold cross product is given by

Ξ =
(
−e0247 − e0256 + e0346 − e0357 + e1246 − e1257 + e1347 + e1356

)
e1

+
(
+e0147 + e0156 − e0345 − e0367 − e1245 − e1267 + e2347 + e2356

)
e2

+
(
−e0146 + e0157 + e0245 + e0267 − e1345 − e1367 − e2346 + e2357

)
e3

+
(
−e0127 + e0136 − e0235 + e0567 + e1234 − e1467 + e2457 − e3456

)
e4 (2.14)

+
(
−e0126 − e0137 + e0234 − e0467 + e1235 − e1567 + e2456 + e3457

)
e5

+
(
+e0125 − e0134 − e0237 + e0457 + e1236 − e1456 − e2567 + e3467

)
e6

+
(
+e0124 + e0135 + e0236 − e0456 + e1237 − e1457 − e2467 − e3567

)
e7.

Using these expressions, one can immediately see that

Φ = e0 ∧ ϕ + ∗ϕ (2.15)

where ∗ is the Hodge star operator.
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2.3 Groups G2 and Spin(7)

In this section, we define groups G2 and Spin(7) (over R and C). Definitions we give (following

Bryant [Bry87]) are somewhat unusual but better suited for our purposes. Then, we describe a

(maximal) torus of Spin(7) and three subgroups of Spin(7) each of which is isomorphic to SL(2,C)

(over C and SU(2) over R). By restriction, we also get a (maximal) torus of G2 and subgroups that

are isomorphic to SL(2,C) (or SU(2) depending on the field).

Definition 2.3.1. 1. Spin(7,R) is the stabilizer of Φ in SO(8,R),

2. Spin(7,C) is the identity component of the stabilizer of Φ in SO(8,C),

3. G2 is the stabilizer of ϕ in SO(7,R), and

4. GC2 is the stabilizer of ϕ in SO(7,C).

Given A ∈ GC2 , we can extend it linearly so that it fixes 1 ∈ O. Then, it is easy to see that GC2 is

a subgroup of Spin(7,C) using (2.15).

By definition, an element of Spin(7,C) acts on O preserving orthonormality and the values of

Φ. Thus, it takes a Cayley plane to a Cayley plane. In other words, it defines an action on the

Cayley Grassmannian Gr(Φ).

Consider the following matrix

Lλ =
©­­«

Pλ −iMλ

iMλ Pλ

ª®®¬
where Pλ = λ+λ−1

2 ,Mλ =
λ−λ−1

2 , and λ ∈ C∗. Note that its determinant is 1. In fact, it has

eigenvalues λ and λ−1 with eigenvectors

©­­«
1

i

ª®®¬ and
©­­«

1

−i

ª®®¬
respectively.
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Considering Lλ as a block matrix, we define the following 8×8 matrices Aλ = Lλ⊕Lλ⊕Lλ⊕Lλ,

Bµ = Lµ ⊕ L
µ−1 ⊕ I4 and Cγ = I4 ⊕ Lγ ⊕ L

γ−1 and view them as transformations ofOwith respect

to the standard basis {ei} where In is the n × n identity matrix.

Lemma 2.3.2. The image of h : (C∗)3 →SL(8,C) defined by

h(λ, µ, γ) = AλBµCγ

is a maximal torus T of Spin(7,C).

Proof. It is easy to prove that LλLµ = Lλµ and if Lλ = I2 then λ = 1. It follows that Aλ,Bµ and

Cγ commute with each other. Hence, h is a well defined homomorphism. Furthermore, the kernel

of h is given by {±(1,1,1)} and thus, the image T � (C∗)3/Z2 is isomorphic to (C∗)3. Since the

rank of Spin(7,C) is 3, we only need to show that T ⊂ Spin(7,C).

A simple computation shows that (Lλ)−1 = L
λ−1 = LT

λ
. In other words, Lλ ∈ SO(2,C) which

implies T ⊂ SO(8,C). Finally, we need to show that for M ∈ T , M∗Φ = Φ. We verify this by a

direct computation with the help of a software. □

We identify SL(2,C) as the subgroup of the multiplicative group of H with N = 1. More

explicitly, u ∈ H is identified with the matrix Au given by

u = a1 + bi + cj + dk 7→ Au =
©­­«
a − id −b + ic

b + ic a + id

ª®®¬ .
Note that Au : H→ C2×2 is a linear isomorphism and it satisfies

Au Av = Auv .

Moreover, N(u) = det(Au). Hence, (C2×2,det) is a quaternion algebra isomorphic to (H,N) via

(u 7→ Au). Thus, SL(2,C) can be identified with the unit sphere of H, i.e., {v ∈ H | N(v) = 1}.

Proposition 2.3.3. There are three SL(2,C) actions on O which preserve B and Φ. To describe

these actions we express O as a direct sum O = H ⊕ lH. Let v = (x, y) ∈ O.

12



1. g · v = (xg−1, y)

2. g · v = (x, yg−1)

3. g · v = (gx,gy)

Proof. Since g ∈ SL(2,C) is identified with an element of H with norm 1, multiplication by g is an

orthogonal transformation by Lemma 2.1.6. Thus, B is preserved in all three actions.

To show that Φ is also preserved, we instead look at the corresponding action of the Lie algebra

sl(2,C) � Im(H) = ⟨i, j,k⟩. It is enough to show that i · Φ = j · Φ = k · Φ = 0. We verify this by a

direct computation for all three actions. □

Remark 2.3.4. Note that all three actions are faithful and thus, provide three different embeddings

of SL(2,C) into Spin(7,C). Furthermore, we can define an action of the group (SL(2,C))3 on O by

(a, b, c) · (x, y) = (cxa−1, cyb−1) (2.16)

for a, b, c ∈ SL(2,C) and (x, y) ∈ O. The kernel of this action is {±(1,1,1)}.

13



CHAPTER 3

CAYLEY GRASSMANNIAN

In this chapter we investigate a natural compactification of the Cayley Grassmannian over C. We

show that this compactification is singular, its singular set is a cohomology CP5 and we identify

the singular locus as a quotient of GC2 by one of its parabolic subgroups.

3.1 Charts of Gr(4,O)

We would like to be able to do some computations in order to learn more about the Cayley Grass-

mannian. For this purpose, we recall some elementary facts about the charts of a Grassmannian in

this section.

Set pi j kl = ei j kl so they are coordinate functions onΛ4O and recall that Gr(4,O) can be thought

of as a subvariety of P(Λ4C8) cut out by the Plücker relations (see [KL72]):

pi1i2i3 j1 p j2 j3 j4 j5 = pi1i2i3 j2 p j1 j3 j4 j5−pi1i2i3 j3 p j1 j2 j4 j5+pi1i2i3 j4 p j1 j2 j3 j5−pi1i2i3 j5 p j1 j2 j3 j4

(3.1)

Since Gr(Φ) lives inside Gr(4,O), Gr(Φ) is also a subvariety of P(Λ4O). More precisely, Gr(Φ) lie

in the intersection of Gr(4,O) and the zero locus of Ξ. By (2.14), the zero locus of Ξ is given by

these seven linear equations:

f1 := −p0247 − p0256 + p0346 − p0357 + p1246 − p1257 + p1347 + p1356 = 0 (3.2)

f2 := +p0147 + p0156 − p0345 − p0367 − p1245 − p1267 + p2347 + p2356 = 0 (3.3)

f3 := −p0146 + p0157 + p0245 + p0267 − p1345 − p1367 − p2346 + p2357 = 0 (3.4)

f4 := −p0127 + p0136 − p0235 + p0567 + p1234 − p1467 + p2457 − p3456 = 0 (3.5)

f5 := −p0126 − p0137 + p0234 − p0467 + p1235 − p1567 + p2456 + p3457 = 0 (3.6)

f6 := +p0125 − p0134 − p0237 + p0457 + p1236 − p1456 − p2567 + p3467 = 0 (3.7)

f7 := +p0124 + p0135 + p0236 − p0456 + p1237 − p1457 − p2467 − p3567 = 0. (3.8)
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We call the Zariski closure of this variety the minimal compactification of the Cayley Grassmannian

and denote it by Xmin. It is at least 12-dimensional as it contains the Cayley Grassmannian which

is 12-dimensional [HL82]. Later, we shall see that Xmin is indeed 12-dimensional (see Theorem

3.2.3).

Once we choose a chart Ustun =
{

x ∈ P(Λ4O) | pstun(x) , 0
}
, we use the following notation

for local coordinates (suppressing the indices s, t,u,n).

qi j kl =
pi j kl

pstun
.

For example, over U0123, using Plücker relations (3.1), we have

p4567
p0123

=
p0456
p0123

p1237
p0123

− p1456
p0123

p0237
p0123

+
p2456
p0123

p0137
p0123

− p3456
p0123

p0127
p0123

(3.9)

or, more concisely,

q4567 = q0456q1237 − q1456q0237 + q2456q0137 − q3456q0127. (3.10)

After fixing a chart Ustun, one can show that any coordinate function can be expressed only in

terms of the variables qi j kl with |{i, j, k, l}∩ {s, t,u,n}| = 3 by using (3.1) (repeatedly if necessary).

There are exactly 16 such variables corresponding to the fact that dim(Gr(4,O)) = 16 and they give

us the charts of Gr(4,O), see [KL72, AC15].

3.2 Torus fixed points and the minimal compactification

Recall that Spin(7,C) acts on Gr(Φ) and we have described a specific torus of Spin(7,C)

earlier. By restricting the action to the torus T , we would like to obtain more information about

Xmin = Gr(Φ). In this section, we prove some facts about this torus action.

From our discussion in Section 2.3 for Lλ, it is easy to find eigenvalues and eigenvectors for

h(λ, µ, γ). They are given in the following table.
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eigenvalue eigenvector

λµ 1 + ii

λ−1µ−1 1 − ii

λµ−1 j + ik

λ−1µ j − ik

λγ l + ili

λ−1γ−1 l − ili

λγ−1 lj + ilk

λ−1γ lj − ilk

(3.11)

We set ẽ0 = 1 + ii, ẽ1 = 1 − ii, ẽ2 = j + ik, ẽ3 = j − ik, ẽ4 = l + ili, ẽ5 = l − ili, ẽ6 = lj + ilk, and

ẽ7 = lj − ilk. We also set ẽpqrs = ẽp ∧ ẽq ∧ ẽr ∧ ẽs and consider the action of h(λ, µ, γ) on Λ4O

(or its projectivization). If we denote by p̃pqrs the transformed Plücker coordinates, the equations

(3.2)-(3.8) can be rewritten as

f̃1 := p̃0257 − p̃1346 = 0 (3.12)

f̃2 := p̃0146 − p̃0157 − p̃0245 − p̃0267 + p̃1345 + p̃1367 + p̃2346 − p̃2357 = 0 (3.13)

f̃3 := p̃0146 + p̃0157 − p̃0245 − p̃0267 − p̃1345 − p̃1367 + p̃2346 + p̃2357 = 0 (3.14)

f̃4 := p̃0127 − p̃0136 + p̃0235 − p̃0567 − p̃1234 + p̃1467 − p̃2457 + p̃3456 = 0 (3.15)

f̃5 := p̃0127 + p̃0136 − p̃0235 + p̃0567 − p̃1234 + p̃1467 − p̃2457 − p̃3456 = 0 (3.16)

f̃6 := p̃0125 − p̃0134 − p̃0237 + p̃0457 + p̃1236 − p̃1456 − p̃2567 + p̃3467 = 0 (3.17)

f̃7 := p̃0125 + p̃0134 + p̃0237 − p̃0457 + p̃1236 − p̃1456 − p̃2567 − p̃3467 = 0 (3.18)
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Theorem 3.2.1. The following eigenvectors of h(λ, µ, γ) lie in Xmin.

eigenvalue eigenvector

1 ẽ0123, ẽ0145, ẽ0167, ẽ2345, ẽ2367, ẽ4567

γ−2 ẽ0156, ẽ2356

γ−2λ−2 ẽ1356

γ−2λ2 ẽ0256

γ−2µ−2 ẽ1256

γ−2µ2 ẽ0356

γ−1λ−2µ−1 ẽ1235, ẽ1567

γ−1λ−2µ ẽ0135, ẽ3567

γ−1λ2µ−1 ẽ0126, ẽ2456

γ−1λ2µ ẽ0236, ẽ0456

γλ−2µ−1 ẽ1237, ẽ1457

γλ−2µ ẽ0137, ẽ3457

γλ2µ−1 ẽ0124, ẽ2467

γλ2µ ẽ0234, ẽ0467

γ2 ẽ0147, ẽ2347

γ2λ−2 ẽ1347

γ2λ2 ẽ0247

γ2µ−2 ẽ1247

γ2µ2 ẽ0347

λ−4 ẽ1357

17



eigenvalue eigenvector

λ−2µ−2 ẽ1257

λ−2µ2 ẽ0357

λ2µ−2 ẽ1246

λ2µ2 ẽ0346

λ4 ẽ0246

µ−2 ẽ1245, ẽ1267

µ2 ẽ0345, ẽ0367

Proof. Once we evaluate all the eigenvectors on the transformed defining equations (3.12)-(3.18),

we see that exactly the above list of vectors satisfy them. □

Theorem 3.2.2. The fixed point set XT
min of the maximal torus action is only the above set of points.

Proof. We only need to verify that in eigenspaces of dimension greater than one, there are no other

fixed points. We prove this for the eigenspace associated to the eigenvalue 1. Let

x̃ = c̃0123ẽ0123 + c̃0145ẽ0145 + c̃0167ẽ0167 + c̃2345ẽ2345 + c̃2367ẽ2367 + c̃4567ẽ4567 ∈ Xmin

be a torus fixed point that is different from ẽ0123, ẽ0145, ẽ0167, ẽ2345, ẽ2367, and ẽ4567. Then, at

least two of the coordinates c̃I, and c̃J are nonzero for index sets I , J. Let I = {i1i2i3 j1}, and

J = { j2 j3 j4 j5}. If x̃ ∈ Xmin ⊂ Gr(4,O) than it has to satisfy the Plücker relation (3.1)

c̃i1i2i3 j1 c̃ j2 j3 j4 j5 = c̃i1i2i3 j2 c̃ j1 j3 j4 j5 − c̃i1i2i3 j3 c̃ j1 j2 j4 j5 + c̃i1i2i3 j4 c̃ j1 j2 j3 j5 − c̃i1i2i3 j5 c̃ j1 j2 j3 j4 .

Now, the left hand side of this relation is nonzero by choice. However, the right hand side has to

be zero as the index sets of eigenvectors associated to eigenvalue 1 differ by at least two elements.

This means that x̃ does not belong to Gr(4,O) and hence, x̃ < Xmin.

The same argument also works for all the other eigenspaces of dimension greater than one. □
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Theorem 3.2.3. Xmin is a singular variety of dimension 12. Moreover, among the torus fixed points

listed in Theorem 3.2.1, all but the following six of them are smooth points.

ẽ0246, ẽ0347, ẽ0356, ẽ1247, ẽ1256, ẽ1357

Proof. We need to analyze neighborhoods of fixed points by using affine charts. We start with the

fixed point m = ẽ0123, which lies on the open chart Ũ0123 as its origin. Recall that Xmin is cut-out on

Ũ0123 by the vanishing of the seven linear equations (3.12)-(3.18). At first, it may seem that it is nec-

essary to express these equations in local variables q̃0124, q̃0125, q̃0126, q̃0127, q̃0134, q̃0135, q̃0136, q̃0137,

q̃0234, q̃0235, q̃0236, q̃0237, q̃1234, q̃1235, q̃1236, and q̃1237. However, the Plücker relations (in local

coordinates) replace linear terms with higher order terms (see, for example, (3.10)) and we compute

Jacobian at the origin. So, there will be no contribution to Jacobian matrix from other variables.

The Jacobian matrix at m is given by

J̃0123 =

©­­­­­­­­­­­­­­­­­­«

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 −1 0 0 1 0 0 −1 0 0 0

0 0 0 1 0 0 1 0 0 −1 0 0 −1 0 0 0

0 1 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

ª®®®®®®®®®®®®®®®®®®¬
which is of rank four. So, it is at most 12-dimensional. However, it contains the 12-dimensional

Cayley Grassmannian. So, it must be 12-dimensional, that is, codimension four in Gr(4,O). Hence,

ẽ0123 is a smooth point of Xmin.

We repeat this computation for the other points and see that their Jacobian matrices are all rank

four, except for the six points we have listed above. Thus, they are all smooth points of Xmin. □

3.3 Singular locus

Next, we turn our attention to the singular locus Σ := Sing(Xmin) of Xmin. The torus action

on Xmin restricts to Σ. By Theorem 3.2.3, we know that there are six points in ΣT . We quote the
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following lemma from [BBCM02].

Lemma 3.3.1. If Y ⊂ P(V) is a projective T-variety, then YT contains at least dim Y + 1 points.

Therefore, we have the following corollary.

Corollary 3.3.2. The singular locus Σ is at most five-dimensional.

As we did with Xmin, we can check whether Σ is singular or not, by using Jacobian criterion on

these six torus fixed points ΣT .

Theorem 3.3.3. The singular locus Σ is smooth and five-dimensional.

Proof. We start with the point ẽ0246. This point lies at the origin of the chart

Ũ0246 =
{
x ∈ P(Λ4O) | p̃0246(x) , 0

}
.

On this chart the local variables are q̃0124, q̃0126, q̃0146, q̃0234, q̃0236, q̃0245, q̃0247, q̃0256, q̃0267,

q̃0346, q̃0456, q̃0467, q̃1246, q̃2346, q̃2456,and q̃2467 where q̃i j kl = p̃i j kl/p̃0246. Since the codimension

of Xmin in Gr(4,O) is four, Σ is locally the vanishing locus of the equations (3.12)-(3.18) localized

to Ũ0246 and all 4 × 4 minors of the Jacobian of these localized equations. These equations by

themselves do not generate a radical ideal, so we take the radical ideal generated by those equations

with the help of a software called Singular. It turns out the ideal is generated by

q̃1246, q̃0346, q̃0267 − q̃2346, q̃0256, q̃0247, q̃0245 − q̃2346, q̃0236 − q̃0456,

q̃0234 − q̃0467, q̃0146 − q̃2346, q̃0126 − q̃2456, and q̃0124 − q̃2467.

So, Σ is just cut out by some hyperplanes in Ũ0246∩Gr(4,O). Therefore, it is clearly smooth at the

origin and of dimension five. We repeat this computation for the other fixed points and see they are

all smooth points of Σ. Hence, Σ is smooth and five-dimensional. □
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Theorem 3.3.4. The singular locus Σ has the same cohomology ring (over Q) as CP5.

Proof. By Theorem 3.3.3, we see that Σ is a smooth projective variety and hence, it is Kähler.

Thus, 2ith Betti number is at least one for i = 0, . . . ,5. So, the sum of its Betti numbers is at least

six. On the other hand, there is a torus action on Σ (induced from T-action on Xmin) with exactly

six fixed points. Thus, by Białynicki-Birula decomposition [BB73], the sum of Betti numbers is

exactly six. □

Next, we restrict the action of Spin(7,C) on Σ to the subgroup GC2 . A maximal torus for GC2

is given by T ∩ GC2 . Let g denote the Lie algebra of GC2 and h denote the Cartan subalgebra

corresponding to our choice of maximal torus. Choose a set of positive roots S+ so that ẽ0246

has the highest weight and let ∆ = {α1, α2} be the set of simple roots corresponding to this

choice where α2 is the longer root. Let Pi be the parabolic subgroup of GC2 whose Lie algebra is

g−αi
⊕
h
⊕ (

⊕α∈S+gα
)

where gα = {X ∈ g | [H,X] = α(H)X for all H ∈ h}. A straight-forward,

albeit lengthy, calculation shows that the stabilizer subgroup of ẽ0246 is P2. Hence, we get the

following theorem.

Theorem 3.3.5. GC2 acts on the singular locus Σ and the stabilizer group of ẽ0246 is P2. So, by

dimensional reasons, Σ = GC2 /P2.
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CHAPTER 4

DEFORMATIONS IN COMPLEX G2 MANIFOLDS

This chapter is based on a joint work with Akbulut [AY18]. The main object of this chapter are

(almost) GC2 manifolds. These are manifolds with a fixed GC2 subbundle of their frame bundle. The

constructions in this chapter are first described in a linear algebraic setting. Then, we extend them

to a global setting. More specifically, compatibility of symplectic and GC2 structures are introduced

which allows us to define the notion of isotropic associative submanifolds. Examples of GC2
manifolds are provided by “complexifying” any (almost) G2 manifold. In fact, this complexification

also admits a compatible symplectic structure. Therefore, we can consider isotropic associative

submanifolds of the complexification. Finally, we discuss the (infitesimal) deformations of such

submanifolds.

4.1 Linear algebra

4.1.1 Non-degenerate three-forms in seven-space

Let (V,Ω) be an oriented seven-dimensional vector space over C.

Definition 4.1.1. An alternating three form φ ∈ Λ3V∗ is called non-degenerate if for every pair of

linearly independent vectors (u, v) there exists w ∈ V such that

φ(u, v,w) , 0. (4.1)

Example 4.1.2. The associative calibration ϕ is a non-degenerate three-form on Im(O).

We define a symmetric bilinear form B using the equation

(ι(u)φ) ∧ (ι(v)φ) ∧ φ = 6B(u, v)Ω. (4.2)

For the rest of the discussion, we will only consider non-degenerate φ which defines a non-

degenerate B.
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Note that if we scale Ω by λ, we scale B by λ−1. Furthermore, B induces a norm on ΛnV∗.

So by scaling Ω by a positive constant, we may require that the norm of Ω is of magnitude 1. We

will implicitly assume this for the rest of the thesis. Also, to simplify our notations and discussions

later on, we abbreviate the following quadruple (V, φ,Ω,B) satisfying (4.2) as GC2 -(vector) space.

Remark 4.1.3. One can also define real G2-spaces in a similar manner. In fact, overR, φ determines

both a metric and a volume form uniquely. In that case the metric need not be positive definite.

The 3-form φ is called positive if the metric is positive definite.

4.1.2 The complexification of a G2-space

In this section, we exhibit the linear version of some constructions starting with a real 7-dimensional

vector space with a positive 3-form φ. Although it is possible to do a similar construction with

any non-degenerate 3-form, in this section and for the rest of the thesis, we will focus on positive

φ (see Remark 4.1.3). Recall that φ determines a (real) G2-space (V, φ,Ω,g). Let VC = V ⊕ iV .

Furthermore, we can extend all of the structures complex linearly and the equation (4.2) continues

to hold. This implies that the complexified three-form is still non-degenerate. Therefore, we get a

(complex) G2-space (VC, φC,ΩC,gC) where we extend each form complex linearly in every entry.

We can also extend g as a hermitian form h. Explicitly, we define

h(x + iy, z + iw) = g(x, z) + g(y,w) + i (g(y, z) − g(x,w)) .

Then, the real part of h is a positive definite metric and the imaginary part is a symplectic form ω

on VC.

If V is a half dimensional subspace of W with an almost complex structure J such that V ⊕ JV =

W , we could use J in place of i in the above construction. This flexibility will be important later

on.
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4.1.3 Compatible structures on a GC2 -space

Kähler geometry is often said to be at the intersection of Riemannian geometry, symplectic geometry

and complex geometry because it comes with these three structures that are compatible with each

other. Moreover, any (compatible) two of those structures determines the third one. At the group

level, we can state this as follows

GL(n,C) ∩ O(2n) = O(2n) ∩ Sp(2n) = Sp(2n) ∩ GL(n,C) = U(n), (4.3)

see [MS17]. Our construction (see subsection 4.1.2) of a positive-definite metric g, a symplectic

form ω and a (complex) non-degenerate three-form φC from a given (real) non-degenerate three-

form φ allows us to talk about compatibility between these structures related to G2 geometry. In

this section, we describe this relation for a complex 7-dimensional vector space (V, J).

Definition 4.1.4. We say that the triple (g,ω, φC) is compatible if there is a real 7 dimensional

subspace Λ of V and a positive φ on Λ (determining a metric g′ on Λ) such that

1. V = Λ ⊕ JΛ =: ΛC

2. φC is the complex linear extension of φ

3. g + iω is the hermitian extension of g′.

In this case, we say they are induced from (Λ, φ, J).

Proposition 4.1.5.

GC2 ∩ U(7) = G2

Proof. It is clear from the definition that G2 ⊂ GC2 . Since G2 ⊂ O(7,R) ⊂ U(7), G2 ⊂ GC2 ∩U(7).

For the converse, first note that U(7) ∩ O(7,C) = O(7,R) since a matrix whose inverse is both

its conjugate transpose and transpose, must be a real matrix. Therefore, GC2 ∩U(7) ⊂ O(7,R), since
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GC2 ⊂ O(7,C). So, the intersection consist of real 7 × 7 matrices preserving φC. In particular, they

preserve φ and we get

GC2 ∩ U(7) = G2.

□

Now, using (4.3) and Proposition 4.1.5, it is easy to see that we have

GC2 ∩ O(14) = GC2 ∩ Sp(14) = G2.

We will need the following technical lemma later.

Lemma 4.1.6. Given a symplectic form ω on R14, a Lagrangian subspace Λ and a positive 3-form

φ on Λ, let J(ω,Λ, φ) be the space of almost complex structures J such that the triple (g′,ω′, φC)

induced from (Λ, φ, J) satisfies

1. ω = ω′

2. g′|Λ = g

Then, J(ω,Λ, φ) is contractible.

The proof of this lemma will follow from the next lemma.

Lemma 4.1.7. Given a symplectic form ω on R2n, a Lagrangian subspace Λ and a metric g on Λ,

let J(ω,Λ,g) be the space of almost complex structures compatible with ω and g(x, y) = w(x, Jy)

for x, y ∈ Λ. Then, J(ω,Λ,g) is contractible.

Remark 4.1.8. Lemma 4.1.7 says that the set of almost complex structures compatible with a given

symplectic form and a fixed metric on some Lagrangian subspace is contractible.

Proof. First, we choose an orthonormal basis {ei} for Λ and extend it to ω-standard basis {ei, fi}.

So, ω0 =
∑n

i=1 ei ∧ f i. We think of J ∈ J(ω,Λ,g) as an 2n × 2n matrix with respect to this basis.

Note that J ∈ J(ω,Λ,g) if and only if
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1. J2 = −I2n,

2. JTJ2nJ = J2n where J2n =
©­­«

0 −In

In 0

ª®®¬
3. −J2nJ =

©­­«
In B

BT C

ª®®¬ is symmetric positive definite.

Let P = −J2nJ. Note that

PTJ2nP = −JTJ2nJ2nJ2nJ

= JTJ2nJ

= J2n.

This implies C = I + BBT. Define the path Pt =
©­­«

In tB

tBT I + t2BBT

ª®®¬. Clearly, PT
t = Pt . Next, we

check if Pt is a symplectic matrix.

©­­«
In tBT

tB In + t2BBT

ª®®¬
©­­«

0 −In

In 0

ª®®¬
©­­«

In tB

tBT In + t2BBT

ª®®¬
=
©­­«
In tBT

tB In + t2BBT

ª®®¬
©­­«
−tBT −In − t2BBT

In tB

ª®®¬
=
©­­«

0 −In

In 0

ª®®¬
Therefore, Pt is invertible for all t. Since it is always symmetric and at t = 0 (or t = 1) it is positive

definite, Pt is positive definite for all t. Hence, J2nPt is a path in J(ω,Λ,g) from J2n to J. Clearly,

the path depends continuously on J. □

Proof of Lemma 4.1.6. The first two properties imply that J(ω,Λ, φ) = J(ω,Λ,g) where g is the

metric induced from φ on Λ. Thus, Lemma 4.1.7 shows that it is contractible. The third property

is trivially satisfied by definition of complex linear extension. □
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4.2 GC2 manifolds and complexification of a G2 manifold

In this chapter we define (almost) GC2 manifolds and provide examples of them. The examples

are obtained by complexifying a G2 manifold (M, ϕ). In fact, two different complexification

procedures are described. The advantage of the first procedure is that an almost complex structure,

a metric and a symplectic form on the complexification can be written explicitly. However, the

symplectic form is not necessarily closed. In the second procedure one obtains a closed symplectic

form at the cost of losing some control over the corresponding almost complex structure and metric.

Definition 4.2.1. A (real) 14-dimensional manifold M is called an (almost) GC2 -manifold if its

frame bundle admits a reduction to a principal GC2 -bundle.

Proposition 4.2.2. A GC2 -manifold M naturally has the following structures

• an almost complex structure J ∈ Γ(M; End(T M))

• a C-linear three-form φ ∈ Ω3(M;C)

• a C-linear seven-form Ω ∈ Ω7(M;C)

• a symmetric bilinear form B ∈ Γ(M; S2(T M) ⊗ C)

• two signature (n,n) pseudo-Riemannian metrics g1 = ReB and g2 = ImB.

Proof. Since GC2 preserves each one of these structures, one may pull them back onto M by using

a GC2 -frame. □

Next, we reformulate the above definition. Since GC2 is the stabilizer of ϕ in SO(ImO) (by

Definition 2.3.1), one may also use the following definition of (almost) GC2 -manifolds.

Definition 4.2.3. A (real) 14 dimensional manifold (M, J, φ,Ω,B)with an almost complex structure

J, a C-multilinear three form φ, a C-multilinear seven-form Ω and a symmetric C-bilinear form

B is called an (almost) GC2 -manifold if for every m ∈ M , there is an R-linear isomorphism

(TmM, J, φ,Ω) � (Im(O), i, φ0,Ω0).
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Next, we describe examples of GC2 manifolds with compatible (almost) symplectic structures.

We start with a usual G2 manifold and construct two different GC2 manifold structures on its

cotangent bundle.

Our first construction is as follows. Let (M, φ) be a (real) 7-dimensional G2 manifold. Recall

that M is naturally equipped with a Riemannian metric g and a volume form Ω satisfying

ι(u)φ ∧ ι(v)φ ∧ φ = 6g(u, v)Ω. (4.4)

We can think of the Levi Civita connection on the cotangent bundle as a horizontal distribution and

hence, it induces the isomorphism

TαT∗M � TpM ⊕ T∗
p M (4.5)

where α ∈ T∗
p M and p ∈ M . To define an almost complex structure on TT∗M , we view the metric

as a vector bundle isomorphism g : T M → T∗M and we set

J(X + β) = −g−1(β) + g(X) (4.6)

for (X, β) ∈ TpM ⊕ T∗
p M = TαT∗M . Clearly, J2 = −ITT∗M .

Next, we “extend φ complex linearly” to TT∗M , i.e. we define φC to be the unique C-valued

3-form satisfying

1. φC(X,Y, Z) = φ(X,Y, Z) and

2. φC(J(X),Y, Z) = iφ(X,Y, Z)

for horizontal vectors X,Y, Z; where we identify TpM with horizontal part of TαT∗M using (4.5).

Similarly, we extend g and Ω complex linearly and we denote the complexifications by B and ΩC,

respectively. Then, from (4.4), we immediately get

ι(ξ)φC ∧ ι(ε)φC ∧ φC = 6B(ξ, ε)ΩC (4.7)

for ξ, ε ∈ TT∗M . Note that B is non-degenerate and ΩC is a non-vanishing complex volume form.

Therefore, by (4.7), φC is non-degenerate. We extend g as a hermitian form h as well. So, Reh is a
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positive definite metric and ω = Imh is an almost symplectic form on T∗M . More explicitly,

ω(X + α,Y + β) = α(Y ) − β(X).

From the construction it is clear that φC is compatible with ω.

In the above example, the symplectic form we obtained is not necessarily closed. Our next

example is a similar construction but the symplectic form we obtain at the end is the canonical

symplectic form on T∗M . We obtain this result at the cost of losing some control of the almost

complex structure.

Again, we start with a (real) 7-dimensional G2 manifold (M, φ) and we think of g as an isomor-

phism between T M and T∗M . Using this isomorphism, we think of φ as an element of Γ(Λ3T M).

Therefore, (T∗
p M, φ) is a G2-space. The vertical subspace of TαT∗M is canonically defined and

isomorphic to T∗
π(α)M . The vertical subbundle defines a Lagrangian 7-plane distribution on

(T∗M,ωcan). The space of compatible almost complex structures on (T∗
αT M,Λ = T∗

π(α)M, φ,ωcan)

is contractible by Lemma 4.1.6. Therefore, one can find a global almost complex structure J such

that the complexification of (Λ, φ) with respect to J gives us a compatible triple (ωcan, φC,g).

Compatibility here means compatibility at every point in the sense of subsection 4.1.3.

4.3 Isotropic associative submanifolds and their deformations

Recall the following two definitions that are well-known in the literature. A submanifold X

of a symplectic manifold (N,ω) is called isotropic if ω
��
X = 0. Also, a three-submanifold Y of a

G2 manifold (M, φ) is called associative if the restriction φ
��
Y is the riemannian volume form on

Y . In this section, we define what we call isotropic associative submanifolds of a GC2 manifold

with a compatible symplectic structure. The definition is a little subtle. The natural notion of

associative submanifold of a GC2 manifold is, strictly speaking, a complex three-submanifold but

complex submanifolds are not isotropic with respect to a compatible ω. Instead we consider the

“real part” of an associative submanifold. The notion of real part can be made precise using the

symplectic form.
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Definition 4.3.1. Let L be a (real) 3-dimensional subspace of ImO = C7. We call L isotropic

associative if

1. ω
��
L ≡ 0,

2. B |LC is non-degenerate.

3. ϕ(u, v,w) = ±1 for u, v,w ∈ LC orthonormal (with respect to B)

where LC = L ⊕ iL. We denote the space of all isotropic associative planes by Iφ3 ⊂ GrR(3,14).

Moreover, let Y be a (real) 3-dimensional submanifold of a GC2 -manifold M . We call Y isotropic

associative submanifold if TpY is an isotropic associative plane in TpM for every p.

Note that an associative submanifold Y of a G2 manifold M , naturally sits as an isotropic

associative submanifold in the zero section of T∗M . We consider the infinitesimal deformations

of Y in which Y stays isotropic associative. We obtain Seiberg-Witten type equations from these

deformations.

We denote the normal bundle of Y in M (resp. T∗M) by νRY (resp. νCY ) and set V =

νRY ⊕ JνRY . Then we have the following decomposition

νCY = JTY ⊕ V. (4.8)

Let σt : Y → T∗M be a one parameter family of embeddings. Without loss of generality, we

may assume that Ûσ0 is a section of Γ(νCY ). Let f ∈ Γ(JTY ), v ∈ Γ(V) with η := f + v = Ûσ0. Also,

let G̃ := Gr(3,TT∗M) → T∗M denote the Grassmann 3-plane bundle over T∗M . We can lift the

embedding Y ↪→ T∗M to Y ↪→ G̃ using the Gauss map. Then, the infinitesimal deformation of Y

by η induces an infinitesimal deformation of the lift as in [AS08].

For a tangent space L = TxY = ⟨e1, e2, e3⟩, infinitesimal deformation is given by

ÛL =
3∑

i=1
ei ⊗ Lη(ei) ∈ TLG̃.

So, the conditions for Y to stay isotropic associative are given by
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1.
∑

ei × Lv(ei) = 0

2. σ∗
t ω = 0

[AS08, AY18].

Using the Levi-Civita connection ∇ of (T∗M,g), we define a Dirac type operator

/DA0 : Ω0(νCY ) → Ω0(νCY )

/DA0(v) =
∑

ei × ∇ei (v). (4.9)

Note that in the role of Clifford multiplication we are using the cross product operation. So, the

first condition can be expressed as

0 =
∑

ei × Lv(ei)

=
∑

ei × (∇vei − ∇eiv)

=
∑

ei × ∇vei −
∑

ei × ∇eiv

We set the perturbation parameter a(v) = −∑
ei × ∇vei. So, the last equation becomes

/DA(v) = /DA0(v) + a(v) = 0 (4.10)

where A = A0 + a.

For the isotropy condition, we choose a standard coordinate chart (qi, pi) for the symplectic

form so that ω =
∑

dqi ∧ dpi where (qi) are coordinates on the base space and (pi) are fiber

directions. Write σi
t = σ

i
t (x1, x2, x3) = qi(σt(x1, x2, x3)) for 1 ≤ i ≤ 7 and σ j

t = σ
j
t (x1, x2, x3) =

p j(σt(x1, x2, x3)) for 8 ≤ j ≤ 14 where (x1, x2, x3) are local coordinates on Y . Note that (possibly

after reparametrization) we may assume that (σ1
t ,σ

2
t ,σ

3
t ) = (x1, x2, x3). Furthermore, since the

image of σ0 lies in the 0-section of T∗M , we may also assume σ j
0 = 0 for 8 ≤ j ≤ 14.
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During the deformation Y stays isotropic if σ∗
t ω = 0. Since

σt∗
∂

∂xi =
7∑

j=1

∂σ
j
t

∂xi
∂

∂q j +
∂σ

j+7
t
∂xi

∂

∂p j

=

3∑
j=1

δ
j
i
∂

∂q j +
7∑

j=4

∂σ
j
t

∂xi
∂

∂q j +
7∑

j=1

∂σ
j+7
t
∂xi

∂

∂p j

=
∂

∂qi +
7∑

j=4

∂σ
j
t

∂xi
∂

∂q j +
7∑

j=1

∂σ
j+7
t
∂xi

∂

∂p j ,

we have

0 = ω(σt∗(
∂

∂xi ),σt∗(
∂

∂x j ))

=
∂σi+7

t
∂x j −

∂σ
j+7
t
∂xi +

7∑
k=4

∂σk
t

∂xi

∂σk+7
t
∂x j −

∂σk
t

∂x j

∂σk+7
t
∂xi . (4.11)

Note that the last equation is of the form da = −q(ψ1 ⊗ ψ2) where a is a 1-form on Y given by

a = σ8
t dx1 + σ9

t dx2 + σ10
t dx3,

ψ1 and ψ2 are spinors living as sections of Ω1(νRY ) and Ω1(JνRY ) given by

ψ1 =
3∑

i=1

∂

∂xi (σ
4
t , . . . , σ

7
t )dxi,

ψ2 =
3∑

j=1

∂

∂x j (σ
11
t , . . . , σ14

t )dx j,

and q is a bilinear map given by

q(ψ1 ⊗ ψ2) = ψ1 × ψ2

here the cross product is taken in the 1-form parts with metric identification.
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