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ABSTRACT

CAYLEY GRASSMANNIAN AND DEFORMATIONS IN COMPLEX G, MANIFOLDS
By
Ustiin Yildirim

Geometric objects related to the exceptional lie groups G, and Spin(7) have become increasingly
popular in the recent years. Especially so after Bryant’s (and others’) work which showed the
existence of riemannian manifolds with holonomy group equal to one of these groups [Bry87].
However, not much attention is given to the complex manifestations of these objects. This thesis
consists of two parts which fills some of these gaps.

In the first part of this thesis, we investigate the Cayley Grassmannian (over C) which is the
set of four-planes that are closed under a three-fold cross product in C8. We define a torus action
on the Cayley Grassmannian. Using this action, we prove that the minimal compactification is a
singular variety. We also show that the singular locus is smooth and has the same cohomology ring
as that of CP°. Furthermore, we identify the singular locus with a quotient of ng by a parabolic
subgroup.

In the second part of this thesis, we introduce the notion of (almost) Gg—manifolds with
compatible symplectic structures. Further, we describe “complexification” procedures for a Gy
manifold M C Mg. As an application we show that isotropic deformations of an associative
submanifold Y of a G, manifold inside of its complexification M is given by Seiberg-Witten type

equations.
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CHAPTER 1

INTRODUCTION

The existence of Riemannian manifolds with exceptional holonomy groups (G, or Spin(7)) is shown
by Bryant in 1987 [Bry87]. Later, Bryant and Salamon found complete examples [BS89] and Joyce
found compact ones [JoyOO]. These advancements naturally motivated many questions among
which is how to distinguish two such manifolds. The main methods that may yield to invariants are
gauge theoretic approach of counting instantons, counting minimal submanifolds or possibly some
combination of the two [DT98, Wall3].

We say that a seven (resp. eight) manifold M has a G (resp. Spin(7)) structure if the manifold
is equipped with a special three (resp. four) form ¢ (resp. ®). These are calibration forms in the
sense of [HL82]. So, they define calibrated submanifolds called associative submanifolds in the
case of G, and Cayley submanifolds in the case of Spin(7). These calibration forms naturally define
subvarieties, called associative Grassmannian and Cayley Grassmannian, of Gr(3,7) and Gr(4, 8),
respectively. We can explain these more concretely as follows. The form ¢ (resp. @) determines
a unique Riemannian metric g on the manifold M. Then, by setting g(u X v,w) = ¢(u,v,w) (resp.
gluxvxw,z) = ®u,v,w,z)) one can define a two (resp. three)-fold cross product operation
on TM. The associative (resp. Cayley)-submanifolds are three (resp. four)-submanifolds whose
tangent spaces are closed under the corresponding cross product operation. Fix a single tangent
space Tp,M, then a three (resp. four)-plane in 7, M is called an associative (resp. Cayley)-plane
if it is closed under the corresponding cross product operation. The set of all associative (resp.
Cayley)-planes is called the associative (resp. Cayley) Grassmannian.

The associative and Cayley Grassmannians are the homogeneous spaces G, /SO(4) and Spin(7)/K
(where K = (SU(2) x SU(2) x SU(2)) /{*1}) respectively, and they have been studied in [HL82,
SW10, AK16]. Over real numbers, they are compact spaces. Although over complex numbers they
are not compact spaces, they admit natural compactifications. Some natural compactifications of

the associative Grassmannian have been studied in [AC15].



The first part of this thesis is an investigation of the (compactified) Cayley Grassmannian (over
the complex numbers). We study the Cayley Grassmannian using a torus action which has finitely
many fixed points. First, we introduce octonions and multiple cross products. Then, using three-
fold cross product, we define Cayley planes precisely and describe an equivalent formulation. The
latter formulation allows one to express Cayley planes as solutions to some polynomial equations (in
P(A*C®) via Pliicker embedding). We call the closure of this variety the minimal compactification
of the Cayley Grassmannian. We show that the variety is singular, the singular locus is smooth and
it is a cohomology P>. Further, we identify the singular locus as a quotient of ng by a parabolic
subgroup P;.

The second part of this thesis is a joint work with Akbulut [AY18]. In this part, the main
objects of our study are (almost) Gg manifolds. An (almost) Gg manifold is a (real) 14-manifold
whose structure group is Gg c GL(14,R). In other words, its frame bundle admits a ng subbundle
and one such subbundle is fixed. We provide examples of such manifolds through two different
constructions. They are described as complexification procedures starting with a G, manifold.
Given a G, manifold (M, ¢), we consider the cotangent bundle 7*M as a complexification of M
and construct Géc structures (¢c, Bc, ) on it in two different ways. Furthermore, we describe
a compatibility condition for Gg structures and symplectic structures. In both complexification
procedures, we obtain G(g manifolds with symplectic structures. However, in one of the procedures
the symplectic form is not necessarily closed. On the other hand, we use the canonical symplectic
structure weqn on T*M in the other construction.

It is possible to extend the notion of associative submanifolds to the complex case as well.
Further, having a compatible symplectic structure allows one to define a new type of special
submanifold which we call isotropic associative submanifolds. These are (real) three dimensional
submanifolds which are isotropic with respect to the symplectic form w and satisfy an associativity
condition defined using ¢c. As an application, we investigate infinitesimal deformations of isotropic
associative submanifolds and relate them to Seiberg-Witten type equations.

The organization of the thesis is as follows. In Chapter 2 we collect the background material



common to both parts of the thesis. Chapter 3 is devoted to Cayley Grassmannian and Chapter 4 is

devoted to Gg manifolds.



CHAPTER 2

PRELIMINERIES

In this preparatory chapter, the background material necessary for both parts of the thesis is given.

2.1 Octonions

In this section, we define an octonion algebra and various cross products. All the constructions
of this chapter can be done over R or over C. In fact, they can be generalized to other fields.

However, that is beyond the scope of this thesis.

Definition 2.1.1 ([SV13]). A composition algebra C over a field k is an algebra over k with identity

element and a nondegenerate quadratic form N such that
Nuv) = N(u)N(v)

for u,v € C. The quadratic form N is often referred to as the norm on C, and the associated bilinear
form B(-,-) is called the inner product.
A four dimensional composition algebra is called a quaternion algebra, and an eight dimensional

composition algebra is called an octonion algebra.

A specific example of an octonion algebra O (over R) is given as follows. Let S = {1,1,j, k,L1i,1j, 1k}
be an orthonormal basis for (the vector space) O. For each (oriented) line (or the circle) in Figure 2.1

from x to y to z, set
Xy =27=-Yyx, yZ=Xx=-2), X =y =—-Xxz, and x“=y =72 =-1.

Note that the subspace H generated by {1,1i, j,k} is closed under multiplication and therefore, it is
a subalgebra. To ease notation later on, we set eg = 1,e; =Ley =j,e3 =Keq =Les =li,eq =1j
and e7 = lk. We also set ek = ¢l A+ -+ A 'k where {ei} is the dual basis of {e; }.The octonions

are non-associative but they are alternative, i.e., the subalgebra generated by any two elements is



li

j

Figure 2.1: Multiplication table for octonions

associative. We denote the projection map from O to the span of 1 by Re, and projection to the

orthogonal complement 1+ by Im. This allows us to define an involution
u +— u = Re(u) — Im(u).

The bilinear form B associated to N can be expressed as B(u,v) = Re(uv). So N(u) = B(u,u) =
Re(uu).

A key fact one can verify on the basis elements is

V=Vu. 2.1

Note that (2.1) implies

that is uu € Re(Q). Thus,
N(uv) = Re(uvuv) = Re(v(uu)v) = Re(uu)Re(vv) = N(u)N(v)

proving directly that the above multiplication table defines an eight-dimensional composition
algebra (also proving H is a quaternion algebra.) We may complexify O to get a complex octonion
algebra which we denote by O or if the field is clear from the context simply by O again. (Here,
we complexify B by extending it as a complex bilinear form on both entries and N is extended so

that it is the (complex) quadratic form associated to B.)



Next, we would like to define various cross product operations using octonions but, first, we

justify their name.

Definition 2.1.2. Let (V, B) be a vector space with a (non-degenerate) symmetric bilinear form. A

multilinear map L : V" — V is called an r-fold cross product if

N(L(vi,...,vp)) =NV A---Avy) (2.2)
with the induced norm on AV and

B(L(vi,...,vn),v;) =0 for all i. (2.3)

Remark 2.1.3. If L is an alternating multilinear map, then it is enough to check (2.2) on orthogonal

vectors in which case (2.2) becomes

N(L(vi,...,vp))=N(Wy)...N(vp). 2.4)

Remark 2.1.4. The usual cross product operation on R3 is naturally a (two-fold) cross product

according to this definition.

In [BG67], Brown and Gray proved that an r-fold cross product exists on an n-dimensional

vector space only in the following cases:
1. niseven,r =1

2. nis arbitrary,r =n -1

We say that the last two cases are exceptional as they occur only in specific dimensions. Below, we

give concrete description of the exceptional two-fold and three-fold cross products using octonions.



Then, we introduce a “four-fold cross product” operation on O. Although it is not a cross product
according to Definition 2.1.2, it is conventionally called so [HL82, SW10]. A two-fold cross
product (or simply a cross product) can be defined as the restriction of octonionic multiplication to

the imaginary part, Im(O):
Definition 2.1.5. For u,v € Im(Q), let
uxv=Im(uv). (2.5)
To be able to prove this is a cross product operation, the following lemma is needed.
Lemma 2.1.6. For u,v,v’ € O,
N@w)B(v,v") = B(uv,uv’) = B(vu,v'u). (2.6)
In particular, for unit u, (left or right) multiplication by u is an orthogonal transformation of O.

Proof. Since B(v,V’) = % (N(v +Vv') = N(v) — N(v')), we have

L (NG@NG +v) = NN G) = NN e)
= % (N(uv +uv’) = N(uv) - Nw"))

= B(uv,w").

N@wu)B(v,V")

The second equality can be proved similarly. O
Proposition 2.1.7. The map (u,v) — u X v = Im(uv) is a two-fold cross product on Im(Q).

Proof. Since uu € Re(0), u X u = Im(uu) = —Im(uu) = 0. So, u X v is an alternating map. By
Remark 2.1.3, we may assume u,v € Im(Q) are orthogonal, that is, B(u,v) = 0. Then, by Lemma

2.1.6 we get

0 = N(u)B(u,v)
= —B(uu,uv)

= —B(N(u),uv).



Thus, uv € Im(Q0). This gives us

N(uxv)

N(Im(uv))

N(uv)

Nu)N(®v).

To prove (2.3), we once again use Lemma 2.1.6.

B(uxv,u) = B(Im(uv),u)
= B(uv —Re(uv),u)
= B(uv,u) — B(Re(uv),u)
= N@u)B(v,1)
=0
since u and v are orthogonal to 1. O

Next, following [SW10] we define a three-fold cross product and a four-fold “cross product” as

follows:

Definition 2.1.8. For u,v,w € O, let
1 _ _
UXVXW = 3 (uv)w — (wv)u) . 2.7)
Definition 2.1.9. For u,v,w,x € O, let
1 _ _ _ _
quXva=—Z[(xxuxv)w—(waXu)v+(v><w><x)u—(u><v><w)x]. (2.8)

Remark 2.1.10. In fact, the four-fold cross product operation (2.8) does not satisfy (2.3) but it is
conventionally called cross product [HL82, SW10]. However, it is alternating and satisfies (2.2).

Hence, for orthogonal vectors x,u, v, and w we have

NxxXuxvxw)=Nx)Nu)NWV)N(w). (2.9



2.2 Calibration forms and calibrated planes

In this section, we define two calibration forms in the sense of [HL82] and calibrated planes
associated to these forms that are relevant to this thesis. The base field is again either R or C for
this section. Reader may consult [HL.82] for the general theory of calibrated geometries.

A k-form w € AXV* is called a calibration form if for every orthonormal set of vectors
{vi,...,vi} we have |w(vy,...,vy)| < 1. Given a k-plane ¢ generated by an orthonormal basis
{vi,...,vi}, & is called calibrated if w(vy,...,vy) = x£1. Using the two-fold (resp. three-fold)
cross product, we define a calibration three-form (resp. four-form) ¢ (resp. @) called associative

(resp. Cayley) calibration on Im(Q) (resp. O) as follows:

Definition 2.2.1. For u,v,w € Im(Q), let
o(u,v,w) = B(u,v X w) (2.10)

and for x,u,v,w € O, let

O(x,u,v,w) = B(x,u X v X w). (2.11)
For a proof of the following proposition see [SW10].

Proposition 2.2.2. The equations (2.10) and (2.11) define calibration forms and they satisfy
d(u,v,w) = Re(u x v xXw) (2.12)

and

O(x,u,v,w) =Re(x Xu X v Xw). (2.13)

By (2.4) and (2.12), it is clear that ¢(u,v,w) = =1 if and only if Im(u X v X w) = 0 for
orthonormal u,v,w € ImQ. Similarly, by (2.9) and (2.13), it is clear that ®(x,u,v,w) = +1 if and

only if E(x,u,v,w) := Im(x X u X v X w) = 0 for orthonormal x,u,v,w € O.

Definition 2.2.3. A three-plane (resp. four-plane) & generated by orthonormal {u,v,w} (resp.

{x,u,v,w}) is called an associative (resp. Cayley) plane if ¢(u,v,w) = £1 (resp. O(x,u,v,w) = +1)



or, equivalently, Im(u X v X w) = 0 (resp. ZE(x,u,v,w) = 0). The set of all associative (resp.
Cayley) planes is called the associative (resp. Cayley) Grassmannian. We denote the associative

Grassmannian by Gr(¢) and the Cayley Grassmannian by Gr(®).

Remark 2.2.4. Over C, not every three-plane (resp. four-plane) is generated by an orthonormal
basis (with respect to B). Strictly speaking, this is why the associative (resp. Cayley) Grassmannian

is not compact when defined over C.

It is helpful to express ¢, @ and Z in coordinates. The associative calibration form is given by

6= 123 _ o145 | 167 _ 246 | 257 _ 347 _ 356

the Cayley calibration form is given by

O = 0123 _ 0145 _ 0167 _ 0246 _ L0257 _ 0347 _ 0356

1247 _ 1256 1346 _ 1357 _ 2345 _ 2367 4567

and the imaginary part of the four-fold cross product is given by

[1]
I

(_60247 — 0256  ,0346 _ 0357 1246 _ 1257 | 1347 61356) e

+ (+eOl47 + 60156 _ 80345 _ 60367 _ 81245 _ 61267 + 62347 + 62356) e
+ (_e0146 + 0157 4 0245 | 0267 _ 1345 _ 1367 _ ,2346 62357) es
+ (—80127 + 60136 _ 80235 + 60567 + 81234 _ 61467 + 6'2457 _ 63456) eq (2.14)
+ (_80126 — 0137 0234 _ 0467 1235 _ 1567 | ,2456 63457) es
+ (+60125 _ 0134 _ 0237 | 0457 | 1236 _ 1456 _ 2567 €3467) e
+ (+60124 + Q0135 | 0236 _ L0456 | 1237 _ 1457 _ 2467 _ 63567) er.
Using these expressions, one can immediately see that
O=e"Ag+xg (2.15)

where * is the Hodge star operator.

10



2.3 Groups G, and Spin(7)

In this section, we define groups G, and Spin(7) (over R and C). Definitions we give (following
Bryant [Bry87]) are somewhat unusual but better suited for our purposes. Then, we describe a
(maximal) torus of Spin(7) and three subgroups of Spin(7) each of which is isomorphic to SL(2,C)
(over C and SU(2) over R). By restriction, we also get a (maximal) torus of G, and subgroups that

are isomorphic to SL(2,C) (or SU(2) depending on the field).

Definition 2.3.1. 1. Spin(7,R) is the stabilizer of ® in SO(8,R),
2. Spin(7,C) is the identity component of the stabilizer of @ in SO(8, C),
3. Gy is the stabilizer of ¢ in SO(7,R), and
4, Gg is the stabilizer of ¢ in SO(7,C).

Given A € Gg:, we can extend it linearly so that it fixes 1 € O. Then, it is easy to see that ng is
a subgroup of Spin(7,C) using (2.15).

By definition, an element of Spin(7,C) acts on O preserving orthonormality and the values of
®. Thus, it takes a Cayley plane to a Cayley plane. In other words, it defines an action on the
Cayley Grassmannian Gr(®).

Consider the following matrix

P, —iM,

L, =
iM, P,

-1 -1
where Py = /l+/21 My = /1—31 ,and A € C*. Note that its determinant is 1. In fact, it has

eigenvalues A and A~ with eigenvectors

and

respectively.

11



Considering L, as a block matrix, we define the following 8 X8 matrices Ay = Ly® L ®L®L,,
By=L,® L#_l ®lyandCy = 14O Ly @ Ly—l and view them as transformations of O with respect

to the standard basis {e;} where I, is the n X n identity matrix.

Lemma 2.3.2. The image of / : (C*)3 —SL(8,C) defined by
is a maximal torus T of Spin(7,C).

Proof. It is easy to prove that L)L, = Ly, and if L) = I then 4 = 1. It follows that A), B, and
Cy commute with each other. Hence, & is a well defined homomorphism. Furthermore, the kernel
of h is given by {%(1,1,1)} and thus, the image T = (C*)3/Zz is isomorphic to (C*)3. Since the
rank of Spin(7,C) is 3, we only need to show that 7 c Spin(7,C).

A simple computation shows that (L /1)_1 =L L/{. In other words, L, € SO(2,C) which

-l =
implies T c SO(8,C). Finally, we need to show that for M € T, M*® = ®. We verify this by a

direct computation with the help of a software. O

We identify SL(2,C) as the subgroup of the multiplicative group of H with N = 1. More

explicitly, u € H is identified with the matrix A, given by

a—id -b+ic
u=al+bi+cj+dk— A, =
b+ic a+id

Note that A, : H — C2*2 is a linear isomorphism and it satisfies
AMAV = Auv.

Moreover, N(u) = det(A,). Hence, (C2*2, det) is a quaternion algebra isomorphic to (H, N) via

(u — Ay). Thus, SL(2,C) can be identified with the unit sphere of H, i.e., {v € H | N(v) = 1}.

Proposition 2.3.3. There are three SL(2,C) actions on O which preserve B and ®. To describe

these actions we express O as a direct sum O = He IH. Letv = (x,y) € O.

12



Ly)

1. g-v=(xg~
2. g-v=(xygh
3. g-v=1(gx,gy)

Proof. Since g € SL(2,C) is identified with an element of H with norm 1, multiplication by g is an
orthogonal transformation by Lemma 2.1.6. Thus, B is preserved in all three actions.

To show that @ is also preserved, we instead look at the corresponding action of the Lie algebra
s1(2,C) = Im(H) = (i,j,Kk). It is enough to show thati-® = j- ® = k- ® = 0. We verify this by a

direct computation for all three actions. m|

Remark 2.3.4. Note that all three actions are faithful and thus, provide three different embeddings

of SL(2,C) into Spin(7,C). Furthermore, we can define an action of the group (SL(2,C))> on O by
(a,b,c) - (x,y) = (cxa_l,cyb_l) (2.16)

for a, b,c € SL(2,C) and (x,y) € Q. The kernel of this action is {+(1,1,1)}.

13



CHAPTER 3

CAYLEY GRASSMANNIAN

In this chapter we investigate a natural compactification of the Cayley Grassmannian over C. We
show that this compactification is singular, its singular set is a cohomology CP? and we identify

the singular locus as a quotient of Gg by one of its parabolic subgroups.

3.1 Charts of Gr(4,0)

We would like to be able to do some computations in order to learn more about the Cayley Grass-
mannian. For this purpose, we recall some elementary facts about the charts of a Grassmannian in
this section.
ijkl

Setp;jr; = €/ so they are coordinate functions on A*O and recall that Gr(4, Q) can be thought

of as a subvariety of P(A4C8) cut out by the Pliicker relations (see [KL72]):

Piyiyizj1Pjpjziais = PiyinizinPi1jziajs ~PiriaizjzPiriziais T PiviaizjaPiriaizis ~PitizizisPi1inizia
(3.1

Since Gr(®) lives inside Gr(4,0), Gr(®) is also a subvariety of P(A*0). More precisely, Gr(®) lie

in the intersection of Gr(4,0) and the zero locus of Z. By (2.14), the zero locus of Z is given by

these seven linear equations:

J1 1= —P0247 = P0256 *+ P0346 — P0357 + P1246 — P1257 + P1347 + P1356 = O (3.2)
J2 = +P0147 + P0156 — P0345 — P0367 — P1245 — P1267 + P2347 + P23s6¢ = 0 (3.3)
f3 1= =Po146 + P0157 + P0245 + P0267 — P1345 — P1367 — P2346 + P2357 = O (3.4)
fa = =po127 + P0136 — P0235 + P0567 + P1234 — P1467 + P2457 — P3456 = 0 (3.5)
f5 = =Po126 = P0137 + P0234 — P0467 + P1235 — P1567 + P2456 + P3457 = 0 (3.6)

Jo := +P0125 = P0134 = P0237 + P04sT + P1236 ~ P1456 — P2567 T P3467 = 0 (3.7)

J1:= +P0124 + P0135 + P0236 — P04se + P1237 — P1457 — P2467 —P3se7 = 0. (3.8)

14



We call the Zariski closure of this variety the minimal compactification of the Cayley Grassmannian
and denote it by Xnin. It is at least 12-dimensional as it contains the Cayley Grassmannian which
is 12-dimensional [HL82]. Later, we shall see that X,i, is indeed 12-dimensional (see Theorem
3.2.3).

Once we choose a chart Ugyyy, = {x € P(A4<O)) | pstun(x) # O}, we use the following notation

for local coordinates (suppressing the indices s, ¢, u, n).

Pijkl
dijkl = .
Pstun

For example, over U123, using Pliicker relations (3.1), we have

P4567 _ Po456 P1237  P1456 P0237 n P2456 P0137 _ P3456 P0127 (3.9)
P0123  P0123 P0123  P0123 P0123  P0123 P0123  P0123 P0123

or, more concisely,

44567 = 9045691237 — 91456490237 + 9245690137 — 4345690127- (3.10)

After fixing a chart Ug,;,,, one can show that any coordinate function can be expressed only in
terms of the variables g;x; with [{i, j, k, [} N {s,7,u,n}| = 3 by using (3.1) (repeatedly if necessary).
There are exactly 16 such variables corresponding to the fact that dim(Gr(4,0)) = 16 and they give

us the charts of Gr(4,0), see [KL72, AC15].

3.2 Torus fixed points and the minimal compactification

Recall that Spin(7,C) acts on Gr(®) and we have described a specific torus of Spin(7,C)
earlier. By restricting the action to the torus 7', we would like to obtain more information about
Xmin = Gr(®). In this section, we prove some facts about this torus action.

From our discussion in Section 2.3 for L,, it is easy to find eigenvalues and eigenvectors for

h(A, u,7y). They are given in the following table.

15



eigenvalue | eigenvector

Au 1 +ii
A1t 1—ii
Ap! j+ik
Ay j—ik
Ay 1+ li
A1yl 1-ili
Ay~ 1j + ik
Ay lj - ilk

(3.11)

Weseteg=1+il,e;=1—ii,er =j+ikes =j—ikey =1+ili,es =1—ili,eg = Ij + ilk, and

e7 = 1j —ilk. We also set epgrs = €p A eg A ey A eg and consider the action of h(4, u,y) on A%O

(or its projectivization). If we denote by py4rs the transformed Pliicker coordinates, the equations

(3.2)-(3.8) can be rewritten as

h
A
f3
fa
fs
e

P0257 — P1346 = 0

P0146 — P0157 — P0245 — P0267 * P1345 + P1367 + P2346 — P2357 = 0
P0146 * P0157 — P0245 — P0267 — P1345 — P1367 + P2346 + P2357 = 0
P0127 — P0136 + P0235 — P0567 — P1234 + P1467 — P2457 + P3456 = 0
P0127 * P0136 — P0235 + P0567 — P1234 + P1467 — P2457 — P3456 = 0
P0125 — P0134 — P0237 + P0457 *+ P1236 — P1456 — P2567 + P3467 = 0

P0125 + P0134 + P0237 — P0457 + P1236 — P1456 — P2567 — P3467 = 0
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Theorem 3.2.1. The following eigenvectors of A(A4, u,y) lie in Xpin.

eigenvalue eigenvector
1 €0123» €0145 €0167 €2345 €2367 €4567
Y~ €0156>€2356
y A €1356
y €0256
Y u? €1256
s €0356
y a2t €1235,€1567
y A2y €0135 €3567
y Lzt €0126> €2456
y 1% €0236> €0456
yA 2! €1237,€1457
YA €0137 €3457
yA2u! €0124- €2467
yA2u €0234> €0467
y? €0147 €2347
y A €1347
Y €0247
yiu? €1247
s €0347
2 €137

17



eigenvalue | eigenvector
-2 -2 ~
A p €1257
-2 2 ~
A p €0357
2,2 >
A p €1246
2.2 =
A p €0346
4 —_~
Z €0246
) ~ ~
H €1245,€1267
2 —_~ —_~
H €0345-€0367

Proof. Once we evaluate all the eigenvectors on the transformed defining equations (3.12)-(3.18),

we see that exactly the above list of vectors satisfy them. O

Theorem 3.2.2. The fixed point set X r]r;i , of the maximal torus action is only the above set of points.

Proof. We only need to verify that in eigenspaces of dimension greater than one, there are no other

fixed points. We prove this for the eigenspace associated to the eigenvalue 1. Let

X = C0123€0123 + C0145€0145 + C0167€0167 + C2345€2345 + C2367€2367 + C4567€4567 € Xmin

be a torus fixed point that is different from e(123, €145, €0167> €2345, €2367, and e4567. Then, at
least two of the coordinates cj, and ¢ are nonzero for index sets I # J. Let I = {iyipi3j;}, and

J ={Jj2j3j4j5} If X € Xpmin C Gr(4,0) than it has to satisfy the Pliicker relation (3.1)

Ciyigizj) Ciaiziais = CivigiziaCiriziais T CiviizizCiviniais T CivigiziaCivinizis T CivigizisCivini3ia-
Now, the left hand side of this relation is nonzero by choice. However, the right hand side has to
be zero as the index sets of eigenvectors associated to eigenvalue 1 differ by at least two elements.

This means that x does not belong to Gr(4,0) and hence, X ¢ Xpmin.

The same argument also works for all the other eigenspaces of dimension greater than one. O
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Theorem 3.2.3. Xy,jj is a singular variety of dimension 12. Moreover, among the torus fixed points

listed in Theorem 3.2.1, all but the following six of them are smooth points.

€0246> €0347 €0356> €1247 €1256> €1357
Proof. We need to analyze neighborhoods of fixed points by using affine charts. We start with the
fixed point m = eg123, which lies on the open chart l~]0123 asits origin. Recall that Xpjj is cut-out on
170123 by the vanishing of the seven linear equations (3.12)-(3.18). At first, it may seem that it is nec-
essary to express these equations inlocal variables go124, 40125, 90126> 90127 90134 90135- 90136 401375

40234 90235 90236 40237- 41234- 41235. 41236, and g1237. However, the Pliicker relations (in local

coordinates) replace linear terms with higher order terms (see, for example, (3.10)) and we compute
Jacobian at the origin. So, there will be no contribution to Jacobian matrix from other variables.

The Jacobian matrix at m is given by

0000 0O0O0O0OO0OO0OO 0000
0000000 O0O0DOO0O 0000
0000 0O0O0O0OOOO0OO 0000

Joizz = {0001 0 0-100100 -1000
0001 001 00-100 -1000
0100-1000000--11020T10
0100100000 O0T1 0010

which is of rank four. So, it is at most 12-dimensional. However, it contains the 12-dimensional
Cayley Grassmannian. So, it must be 12-dimensional, that is, codimension four in Gr(4,0). Hence,
€p123 is a smooth point of Xpjp.

We repeat this computation for the other points and see that their Jacobian matrices are all rank

four, except for the six points we have listed above. Thus, they are all smooth points of X, O

3.3 Singular locus

Next, we turn our attention to the singular locus X := Sing(Xmin) of Xmin. The torus action

on Xpip restricts to X. By Theorem 3.2.3, we know that there are six points in T, We quote the
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following lemma from [BBCMO02].

Lemma 3.3.1. If Y ¢ P(V) is a projective T-variety, then Y7 contains at least dim ¥ + 1 points.
Therefore, we have the following corollary.

Corollary 3.3.2. The singular locus X is at most five-dimensional.

As we did with Xy, we can check whether X is singular or not, by using Jacobian criterion on

these six torus fixed points X7,
Theorem 3.3.3. The singular locus X is smooth and five-dimensional.

Proof. We start with the point epy4¢. This point lies at the origin of the chart
Uooas = {x € P(A*0) | pooas(x) # 0} :

On this chart the local variables are o124, 40126> 90146> 90234> 90236> 90245, 902475 902565 40267

40346> 40456> 40467- 41246 42346> 42456 and G2467 Where g; k1 = Pijki/Po246- Since the codimension

of Xmin in Gr(4,0) is four, X is locally the vanishing locus of the equations (3.12)-(3.18) localized
to l70246 and all 4 X 4 minors of the Jacobian of these localized equations. These equations by
themselves do not generate a radical ideal, so we take the radical ideal generated by those equations

with the help of a software called Singular. It turns out the ideal is generated by

q1246>  40346> 40267 — 92346>  40256> 40247 40245 — 42346 40236 — 904565

40234 — 40467> 90146 — 92346 40126 — 42456> and o124 — G2467-

So, X is just cut out by some hyperplanes in l~]0246ﬂGr(4,©). Therefore, it is clearly smooth at the
origin and of dimension five. We repeat this computation for the other fixed points and see they are

all smooth points of X. Hence, X is smooth and five-dimensional. O
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Theorem 3.3.4. The singular locus X has the same cohomology ring (over Q) as CP°.

Proof. By Theorem 3.3.3, we see that X is a smooth projective variety and hence, it is Kahler.
Thus, 2i'" Betti number is at least one for i = 0,...,5. So, the sum of its Betti numbers is at least
six. On the other hand, there is a torus action on X (induced from T-action on Xpi,) with exactly
six fixed points. Thus, by Biatynicki-Birula decomposition [BB73], the sum of Betti numbers is

exactly six. O

Next, we restrict the action of Spin(7,C) on X to the subgroup ng. A maximal torus for ng
is given by T N G(Zj. Let g denote the Lie algebra of Gg and b denote the Cartan subalgebra
corresponding to our choice of maximal torus. Choose a set of positive roots ST so that epp4
has the highest weight and let A = {aj,ap} be the set of simple roots corresponding to this
choice where a5 is the longer root. Let P; be the parabolic subgroup of Gg whose Lie algebra is
3—a; PoP (®,cq+3a) where g, = {X € g | [H,X] = a(H)X forall H € h}. A straight-forward,
albeit lengthy, calculation shows that the stabilizer subgroup of eg4¢ is P>. Hence, we get the

following theorem.

Theorem 3.3.5. ng acts on the singular locus X and the stabilizer group of eyp4¢ is P>. So, by

dimensional reasons, X = Gg /Ps.
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CHAPTER 4

DEFORMATIONS IN COMPLEX G, MANIFOLDS

This chapter is based on a joint work with Akbulut [AY18]. The main object of this chapter are
(almost) ng manifolds. These are manifolds with a fixed ng subbundle of their frame bundle. The
constructions in this chapter are first described in a linear algebraic setting. Then, we extend them
to a global setting. More specifically, compatibility of symplectic and Gg: structures are introduced
which allows us to define the notion of isotropic associative submanifolds. Examples of ng
manifolds are provided by “complexifying” any (almost) G, manifold. In fact, this complexification
also admits a compatible symplectic structure. Therefore, we can consider isotropic associative
submanifolds of the complexification. Finally, we discuss the (infitesimal) deformations of such

submanifolds.

4.1 Linear algebra

4.1.1 Non-degenerate three-forms in seven-space

Let (V,Q) be an oriented seven-dimensional vector space over C.

Definition 4.1.1. An alternating three form ¢ € A3V* is called non-degenerate if for every pair of

linearly independent vectors (i, v) there exists w € V such that
o(u,v,w) # 0. 4.1)
Example 4.1.2. The associative calibration ¢ is a non-degenerate three-form on Im(0).
We define a symmetric bilinear form B using the equation
(w)e) A (L(v)p) A @ = 6B(u,v)Q. (4.2)

For the rest of the discussion, we will only consider non-degenerate ¢ which defines a non-

degenerate B.
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Note that if we scale Q by A, we scale B by A~1. Furthermore, B induces a norm on A"V*.
So by scaling Q by a positive constant, we may require that the norm of Q is of magnitude 1. We
will implicitly assume this for the rest of the thesis. Also, to simplify our notations and discussions

later on, we abbreviate the following quadruple (V, ¢, Q, B) satisfying (4.2) as Gg—(vector) space.

Remark 4.1.3. One can also define real G-spaces in a similar manner. In fact, over R, ¢ determines
both a metric and a volume form uniquely. In that case the metric need not be positive definite.

The 3-form ¢ is called positive if the metric is positive definite.

4.1.2 The complexification of a G,-space

In this section, we exhibit the linear version of some constructions starting with a real 7-dimensional
vector space with a positive 3-form ¢. Although it is possible to do a similar construction with
any non-degenerate 3-form, in this section and for the rest of the thesis, we will focus on positive
¢ (see Remark 4.1.3). Recall that ¢ determines a (real) Gp-space (V,¢,Q,g). Let Vo = V @ iV.
Furthermore, we can extend all of the structures complex linearly and the equation (4.2) continues
to hold. This implies that the complexified three-form is still non-degenerate. Therefore, we get a
(complex) G-space (Ve, oc, Qc, gc) where we extend each form complex linearly in every entry.

We can also extend g as a hermitian form 4. Explicitly, we define

h(x +iy,z +iw) = g(x,2) + gy, w) +i(g(y,2) — g(x,w)).

Then, the real part of 4 is a positive definite metric and the imaginary part is a symplectic form w
on V.

If V is a half dimensional subspace of W with an almost complex structure J such that V@ JV =
W, we could use J in place of i in the above construction. This flexibility will be important later

on.
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4.1.3 Compatible structures on a Gg:-space

Kihler geometry is often said to be at the intersection of Riemannian geometry, symplectic geometry
and complex geometry because it comes with these three structures that are compatible with each
other. Moreover, any (compatible) two of those structures determines the third one. At the group

level, we can state this as follows
GL(n,C) N O(2n) = O(2n) N Sp(2n) = Sp(2n) N GL(n,C) = U(n), 4.3)

see [MS17]. Our construction (see subsection 4.1.2) of a positive-definite metric g, a symplectic
form w and a (complex) non-degenerate three-form ¢¢ from a given (real) non-degenerate three-
form ¢ allows us to talk about compatibility between these structures related to G, geometry. In

this section, we describe this relation for a complex 7-dimensional vector space (V, J).

Definition 4.1.4. We say that the triple (g, w, ¢c) is compatible if there is a real 7 dimensional

subspace A of V and a positive ¢ on A (determining a metric g’ on A) such that
1. V=A®JA = Ac
2. ¢c is the complex linear extension of ¢
3. g + iw is the hermitian extension of g’.

In this case, we say they are induced from (A, ¢, J).

Proposition 4.1.5.
GSNU(T) =G,

Proof. 1tis clear from the definition that G, C Gg. Since G, € O(7,R) c U(7), G, C Géc NU(7).
For the converse, first note that U(7) N O(7,C) = O(7,R) since a matrix whose inverse is both

its conjugate transpose and transpose, must be a real matrix. Therefore, G(ZC NU(7) c O(7,R), since
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Gg c O(7,C). So, the intersection consist of real 7 X 7 matrices preserving ¢c. In particular, they
preserve ¢ and we get

G5 NU(7) = Gy.

Now, using (4.3) and Proposition 4.1.5, it is easy to see that we have
G5 N0(14) = G5 N Sp(14) = G,.
We will need the following technical lemma later.

Lemma 4.1.6. Given a symplectic form w on R4 a Lagrangian subspace A and a positive 3-form
@ on A, let J (w, A, ¢) be the space of almost complex structures J such that the triple (g’, w’, ¢c)

induced from (A, ¢, J) satisfies

2.8In=¢
Then, J (w, A, ¢) is contractible.
The proof of this lemma will follow from the next lemma.

Lemma 4.1.7. Given a symplectic form w on R a Lagrangian subspace A and a metric g on A,
let J (w, A, g) be the space of almost complex structures compatible with w and g(x,y) = w(x,Jy)

for x,y € A. Then, J (w, A, g) is contractible.

Remark 4.1.8. Lemma 4.1.7 says that the set of almost complex structures compatible with a given

symplectic form and a fixed metric on some Lagrangian subspace is contractible.

Proof. First, we choose an orthonormal basis {¢;} for A and extend it to w-standard basis {¢;, f;}.
So, wg = Z;lzl e A fi. We think of J € J(w, A, g) as an 2n X 2n matrix with respect to this basis.

Note that J € J(w, A, g) if and only if
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1. J? = -1y,

2. J' ), J = Jp, where Jy,, =
I, O
I, B
3. = = is symmetric positive definite.
BT C

Let P = —J,,J. Note that

P P = I hpdandond
SN

= Jy,.

I tB
This implies C =1 + BBT. Define the path P; = " . Clearly, PtT = P;. Next, we
tBT I+1’BBT

check if P; is a symplectic matrix.

tB 1,+2BB"|\l, 0 |\:B"T 1,+#BB"

I, tBT —tBT -1, -2BBT
tB 1,+*BB"|\ 1, tB

O _In

I, O

Therefore, P; is invertible for all ¢. Since it is always symmetric and at # = 0 (or ¢ = 1) it is positive
definite, P; is positive definite for all z. Hence, J;,,P; is a path in J (w, A, g) from J,,, to J. Clearly,

the path depends continuously on J. i

Proof of Lemma 4.1.6. The first two properties imply that J (w, A, ¢) = J (w, A, g) where g is the
metric induced from ¢ on A. Thus, Lemma 4.1.7 shows that it is contractible. The third property

is trivially satisfied by definition of complex linear extension. O
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4.2 Gg manifolds and complexification of a G, manifold

In this chapter we define (almost) ng manifolds and provide examples of them. The examples
are obtained by complexifying a G, manifold (M,¢). In fact, two different complexification
procedures are described. The advantage of the first procedure is that an almost complex structure,
a metric and a symplectic form on the complexification can be written explicitly. However, the
symplectic form is not necessarily closed. In the second procedure one obtains a closed symplectic

form at the cost of losing some control over the corresponding almost complex structure and metric.

Definition 4.2.1. A (real) 14-dimensional manifold M is called an (almost) G(g-manifold if its

frame bundle admits a reduction to a principal Gg—bundle.
Proposition 4.2.2. A Gg—manifold M naturally has the following structures
* an almost complex structure J € I'(M; End(TM))
« a C-linear three-form ¢ € Q3(M;C)
* a C-linear seven-form Q € Q7(M ;C)
* a symmetric bilinear form B € I'(M; S%(TM)® C)
* two signature (n,n) pseudo-Riemannian metrics g; = ReB and g, = ImB.

Proof. Since ng preserves each one of these structures, one may pull them back onto M by using

a Gg—frame. O

Next, we reformulate the above definition. Since ng is the stabilizer of ¢ in SO(ImQO) (by

Definition 2.3.1), one may also use the following definition of (almost) ng—manifolds.

Definition 4.2.3. A (real) 14 dimensional manifold (M, J, ¢, Q, B) with an almost complex structure
J, a C-multilinear three form ¢, a C-multilinear seven-form  and a symmetric C-bilinear form
B is called an (almost) ng—manifold if for every m € M, there is an R-linear isomorphism

(TiuM, J,¢,Q) = (Im(0),1, ¢y, Q).
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Next, we describe examples of ng manifolds with compatible (almost) symplectic structures.
We start with a usual G, manifold and construct two different G§ manifold structures on its
cotangent bundle.

Our first construction is as follows. Let (M, ¢) be a (real) 7-dimensional G, manifold. Recall

that M is naturally equipped with a Riemannian metric g and a volume form € satisfying
) A (v)e A ¢ = 6g(u, v)Q. 4.4)

We can think of the Levi Civita connection on the cotangent bundle as a horizontal distribution and

hence, it induces the isomorphism
T,T"M = oM @ T;M 4.5)

where a € T; M and p € M. To define an almost complex structure on 77*M, we view the metric

as a vector bundle isomorphism g : TM — T*M and we set

JX +B)=-g 1 (B) +g(X) (4.6)

for (X,8) € Ty,M & TyM = T,T*M. Clearly, J? = ~Ipps .
Next, we “extend ¢ complex linearly” to TT*M, i.e. we define ¢¢ to be the unique C-valued

3-form satisfying
I. ¢c(X.Y,Z) = ¢(X,Y,Z) and
2. 9c(J(X),Y,Z) = ig(X.Y, Z)

for horizontal vectors X, Y, Z; where we identify T, M with horizontal part of T,T*M using (4.5).
Similarly, we extend g and 2 complex linearly and we denote the complexifications by B and Q¢,

respectively. Then, from (4.4), we immediately get

Ué)pc A Ue)pe A e = 6B(£,£)Qc 4.7)

for £, € TT*M. Note that B is non-degenerate and Q¢ is a non-vanishing complex volume form.

Therefore, by (4.7), ¢c is non-degenerate. We extend g as a hermitian form 4 as well. So, Reh is a
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positive definite metric and w = Im# is an almost symplectic form on 7M. More explicitly,
wX +a,Y+B)=aY) - B(X).

From the construction it is clear that ¢¢ is compatible with w.

In the above example, the symplectic form we obtained is not necessarily closed. Our next
example is a similar construction but the symplectic form we obtain at the end is the canonical
symplectic form on 7*M. We obtain this result at the cost of losing some control of the almost
complex structure.

Again, we start with a (real) 7-dimensional G, manifold (M, ¢) and we think of g as an isomor-
phism between TM and T*M. Using this isomorphism, we think of ¢ as an element of (AT M).
Therefore, (Tl;“ M, ) is a Gy-space. The vertical subspace of T,T*M is canonically defined and

isomorphic to T; M. The vertical subbundle defines a Lagrangian 7-plane distribution on

(@)
(T*M, wcan)- The space of compatible almost complex structures on (T,TM, A = T;(Q)M , ¥, Wean)
is contractible by Lemma 4.1.6. Therefore, one can find a global almost complex structure J such

that the complexification of (A, ¢) with respect to J gives us a compatible triple (wcan,@c,g)-

Compatibility here means compatibility at every point in the sense of subsection 4.1.3.

4.3 Isotropic associative submanifolds and their deformations

Recall the following two definitions that are well-known in the literature. A submanifold X
of a symplectic manifold (V,w) is called isotropic if w| x = 0. Also, a three-submanifold ¥ of a
G, manifold (M, ¢) is called associative if the restriction 90|Y is the riemannian volume form on
Y. In this section, we define what we call isotropic associative submanifolds of a Gg manifold
with a compatible symplectic structure. The definition is a little subtle. The natural notion of
associative submanifold of a Gg manifold is, strictly speaking, a complex three-submanifold but
complex submanifolds are not isotropic with respect to a compatible w. Instead we consider the
“real part” of an associative submanifold. The notion of real part can be made precise using the

symplectic form.
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Definition 4.3.1. Let L be a (real) 3-dimensional subspace of ImO = C’. We call L isotropic

associative if
1. a)| . = 0,
2. B| Lo is non-degenerate.
3. ¢(u,v,w) = £1 for u,v,w € L¢ orthonormal (with respect to B)

where L = L @ iL. We denote the space of all isotropic associative planes by I,f c GrR(3,14).
Moreover, let Y be a (real) 3-dimensional submanifold of a Gg—manifold M. We call Y isotropic

associative submanifold if 7Y is an isotropic associative plane in T, M for every p.

Note that an associative submanifold ¥ of a G, manifold M, naturally sits as an isotropic
associative submanifold in the zero section of 7*M. We consider the infinitesimal deformations
of Y in which Y stays isotropic associative. We obtain Seiberg-Witten type equations from these
deformations.

We denote the normal bundle of Y in M (resp. T*M) by vgY (resp. vcY) and set V =

vrY & JyrY. Then we have the following decomposition
veY = JTY & V. (4.8)

Let 07 : Y — T*M be a one parameter family of embeddings. Without loss of generality, we
may assume that oy is a section of I'(vcY). Let f € T'(JTY), v € I'(V) withnp := f +v = dy. Also,
let G := Gr(3,TT*M) — T*M denote the Grassmann 3-plane bundle over T*M. We can lift the
embedding Y < T*"M toY — G using the Gauss map. Then, the infinitesimal deformation of Y
by 77 induces an infinitesimal deformation of the lift as in [ASO8].

For a tangent space L = TyY = (eq, 3, e3), infinitesimal deformation is given by

L= ¢ Lye)eTG.

M

i=1

So, the conditions for Y to stay isotropic associative are given by
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1. Zei X .Ev(ei) =0
2. ocfw=0
[ASO8, AY18].
Using the Levi-Civita connection V of (T*M, g), we define a Dirac type operator
lDAO . QO(VCY) - QO(VCY)
Dagv) = ) ei X Ve, (v). (4.9)

Note that in the role of Clifford multiplication we are using the cross product operation. So, the

first condition can be expressed as

0= Z ei x Ly(e;)
= Z ei X (Vye; = Ve,v)

:Zeixvvei—Zeixveiv

We set the perturbation parameter a(v) = — ), ¢; X Vye;. So, the last equation becomes
Dav) = lZ)AO(v) +a(v)=0 (4.10)

where A = Ag + a.

For the isotropy condition, we choose a standard coordinate chart (¢’ p') for the symplectic
form so that w = Y, dq' A dp' where (¢') are coordinates on the base space and (p') are fiber
directions. Write 0't = O't(x xZ,x3) = q Hop(x1, x%,x3)) for 1 <i <7 and O't =03 (x x2,x3) =
pl (o (x!, x2,x3)) for 8 < j < 14 where (x!, x2, x3) are local coordinates on Y. Note that (possibly
after reparametrization) we may assume that (O‘tl,O't, 3y = (x x2, x3). Furthermore, since the

image of o7 lies in the O-section of 7*M, we may also assume 0' =0for8 <j < 14.
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During the deformation Y stays isotropic if 0w = 0. Since

+7
d Zaat a a9
= +

ox! = ox! dq/ oxt opl

_23:6,- 9 +Z7:0<r{ 9 +iaaf” 9
o L oql = ox! dq/ = oxi opl

0y 0n o bl o

- oq' o ox! dq/ = axt opl’

we have
0 = W(or(-2). Tre( )
= W\Otx P l.,O't* o)

(4.11)

oo*T ol L dok ookt aok ookt
: by

Coox) ox  Hox ox) ox ox

Note that the last equation is of the form da = —q(y¥/1 ® ) where a is a 1-form on Y given by
a= 0't8dx1 + (T?dxz + (Ttlodx3,

Y and yy are spinors living as sections of Ql(ygY) and Q' (JvgY) given by

3
9 4 TN g
l/’lzz—-(O},---,O})dX,
im0
34 _
Yo = Z E(O'H,. . .,O‘t14)dxj,

and ¢ is a bilinear map given by

g1 ® ) = Y1 X Yo

here the cross product is taken in the 1-form parts with metric identification.
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