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ABSTRACT

A POPULATION-GUIDED APPROACH TO IDENTIFY GENETIC MODULATORS OF
TCDD-ELICITED TOXICITY

By
Peter William Dornbos

Traditional toxicological studies have not incorporated genetic variability, but rather have
focused on homogenous models, such as inbred mouse strains. The lack of incorporation of
genetic heterogeneity provides a challenge in defining safe-exposure limits that encompass all
individuals within the population. The goal of this dissertation was to use a population-based
approach to characterize the impact of genetic heterogeneity within TCDD-induced toxicity. TCDD
is a pervasive and persistent environmental contaminant that is associated with a plethora of
adverse health effects in humans. TCDD-elicited toxicity is mediated through activation of a
ligand-activated transcription factor called the aryl hydrocarbon receptor (AHR). While the Ahr
gene sequence inherited is known to impact TCDD-induced toxicity, we hypothesize that other
genomic factors will impact susceptibility to TCDD-elicited toxicity. To test this hypothesis, a
mixture of in vitro and in vivo-based methods were employed to quantify the variability in response
across heterogeneous individuals and to identify genetic modulators of TCDD-induced
immunosuppression and alterations in liver homeostasis.

First, an in vitro-based approach was used to identify the inherent variability in the human
population to TCDD-elicited suppression of B cells. The results showed that there was a wide
range of response (>70-fold) at high doses of TCDD. B cells were isolated from a genetically-
diverse mouse panel and exposed to TCDD to scan for genetic modulators that may explain the
wide-degree of variability across human individuals. Our study implicated Serpinb2, which
encodes for serine peptidase inhibitor, clade B, member 2, as a modulator of TCDD-elicited
suppression of the B cell. Further downstream functional analysis identified that Serpinb2 plays a

protective role against TCDD-elicited suppression of the B cell in mice.



Secondly, an in vivo mouse population-based approach was used to scan for genetic
modulators of TCDD-elicited alterations in liver homeostasis. Hepatic sequestration of TCDD was
found to be dependent on AHR-mediated transcription. Inter-strain differences in expression of
AHR-responsive genes implicated Tgfbr2, which encodes for transforming growth factor
receptor Il (TGFBR2), as a potential modulator of TCDD-elicited liver toxicity. Functional analyses
suggested that TGFBR2-activity protects against TCDD-elicited inflammation, but increases
hepatic lipid accumulation in the livers of male, but not female, mice.

Finally, TCDD-elicited change in body weight across our mouse panel implicated Hmgcr,
which encodes the rate-limiting enzyme of cholesterol biosynthesis called HMG-CoA reductase
(HMGCR). While reports indicate that TCDD-impacts cholesterol homeostasis in rodents, the
phenotype has not been demonstrated in the human population. Multiple linear regression
analysis using data derived from the National Health and Nutrition Examination Survey (NHANES)
suggests that, like in previous rodent studies, serum TCDD levels are also associated with
cholesterol levels in humans in a sex-specific manner. Further functional mouse analyses suggest
that HMGCR is a modulator of TCDD-elicited liver phenotypes. More specifically, inhibition of
HMGCR was found to protect against AHR-mediated steatosis in both sexes, but increase TCDD-
elicited liver injury in males and alters glycogen metabolism in females.

The results outlined in this dissertation indicate the power in using population-based
models in characterizing the degree of variability and identifying modulating genes within adverse
responses to chemical exposures, such as TCDD. We hope that our data will impact real-world
risk assessment in ensuring that safe-exposure guidelines for TCDD reflect population-wide
variability. While many of the findings outlined still need confirmation in the human population, our
results may be used to identify individuals within the human population that may be more

susceptible to TCDD-induced toxicity which, ultimately, has potential to impact public health.
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1.1. 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) Exposure in Humans
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a pervasive contaminant of environmental
concern. With exception of small volumes that are synthesized for academic research, TCDD is
primarily created as a byproduct of industrial processes (Gilpin et al. 2003). TCDD is most well-
known as a contaminant created during the synthesis of an herbicide called 2,4,5-
trichlorophenoxyacetic acid (2,4,5-T or Agent Orange) which was used during the Vietnam war.
Other industrial processes that result in TCDD creation include manufacturing of herbicides and
pesticides, waste incineration, and chlorine bleaching of paper and pulp. Beyond industrial
processes, TCDD is also created during natural processes such as volcanic eruptions and forest
fires (Srogi 2008). Once in the environment, TCDD is quite persistent and resistant to degradation
in soil. The half life of TCDD is estimated to be between 9 and 15 years for surface soil and up to

100 years for sub-surface soil (Kimbrough et al. 1984; Paustenbach et al. 1992).

TCDD is lipophilic and, thus, can accumulate within the food chain (Gilpin et al. 2003;
Jackson et al. 1993). The primary mode of exposure within the general human population is
through consumption of high lipid-containing foods, such as fish and dairy products (Gilpin et al.
2003). Typically, background exposures within the human population are low with lipid-adjusted
TCDD levels of 1 to 10 ppt in serum (Nault et al. 2016). It must be noted that, while day-to-day
exposures are typically low, TCDD bioaccumulates in organisms. As such, the level of TCDD is
highly-correlated with age (Chen et al. 2010; Chen et al. 2013). There also have been several
unfortunate cases where humans were exposed to TCDD at high-levels. The most famous of
these was through use of Agent Orange during the Vietnam war. There have also been other
several documented cases of accidental, heavy exposures that have occurred in the human sub-
populations including an industrial accident in Seveso, Italy (Cole et al. 2003; Warner et al. 2013)
and industrial workers exposed to chemical byproducts. The most unique case of TCDD exposure

was the purposeful poisoning of Victor Yushchenko while a presidential-candidate in Ukraine in



2004 (Sorg et al. 2009). Once exposed, the half-life of TCDD has been found to be quite long in
humans. Previous reports indicate that elevated levels of TCDD can be found in adipose tissue
of humans after over 30 years post-exposure (Schecter and Ryan 1988). In a study of human
individuals that were exposed to TCDD, the average half-life of TCDD in the serum of humans

(n=36) was found to be 7.1 years (Pirkle et al. 1989).

There is strong epidemiological evidence that TCDD exposures drive adverse health
outcomes in humans. The most notable of these is chloracne. TCDD-induced chloracne has been
established in multiple exposures, including those exposed in Seveso, in industrial settings, and
in the poisoning of Victor Yushchenko (Baccarelli et al. 2002; Kerger et al. 2006; McKee 2009;
Sorg et al. 2009). TCDD is also known to induce immune suppression. Previous exposures
indicate that sub-populations exposed to high-levels of TCDD have Ilower-levels of
Immunoglobulin G (IgG) in the blood (Baccarelli et al. 2002). Furthermore, in vitro work has
established that human immune cells are clearly impacted by TCDD (Lu et al. 2010; Lu et al.
2011). Exposures to TCDD and other dioxin-like compounds are known to be associated with
increased incidence of metabolic disorders including nonalcoholic fatty-liver disease (NAFLD),
diabetes, and metabolic syndrome (Cave et al. 2010; Lee et al. 2007; Taylor et al. 2013). TCDD
is also associated with several cancers in humans, including Non-Hodgkins Lymphoma, renal,
prostate, testicular, and bladder cancers (Chang et al. 2017; Leng et al. 2014; O'Brien et al. 1991).
This association, however, has been somewhat debated as the cancer risk in highly-exposed
populations have not been found to much higher than other populations (Boffetta et al. 2011; Cole

et al. 2003).

1.2. The Aryl Hydrocarbon Receptor as Mediator of TCDD-induced Toxicity
Most, if not all, of TCDD-mediated toxicity is through activation of the aryl hydrocarbon

receptor (AHR). Ahr null mouse models indicate that TCDD-mediated toxicity, such as immune



suppression and liver toxicity, is dependent on the AHR (Fernandez-Salguero et al. 1995;
Thurmond et al. 1999). The AHR is a transcription factor that falls within the Per-Arnt-Sim (PAS)
domain family of environmental sensors. PAS proteins regulate responses to many environmental
changes within the cell including hypoxia, xenobiotic exposure, and the light/dark cycles
(MclIntosh et al. 2010). While there are many differences across the PAS domain protein family in
higher-eukaryotes, there are several domains that are consistently found across all PAS members
(Gu et al. 2000)(Figure 1.1). In higher organisms, the most unique feature carried by PAS proteins
is the PAS domain, consisting of PAS A and PAS B. The PAS A domain mediates homotypic
interactions between PAS domain-containing proteins. In comparison to PAS A, the PAS B
domain is much more-versatile providing heterotypic interactions between non-PAS containing
protein classes as well as natural and non-natural ligands. Most PAS domain proteins also contain
a basic helix-loop-helix (bHLH) domain which, as compared to the PAS domains, are located on
the N-terminus of the protein (Gu et al. 2000). The bHLH domain mediates dimerization and DNA
binding. Finally, PAS domain proteins also contain a transcriptional activation domain (TAD)
which, as compared to PAS domains, is located towards the C-terminus and is involved in
recruitment and interactions with other transcriptional co-activators. Unlike the PAS and bHLH
domains, the TAD has less sequence homology and, thus, has been lesser-conserved across

evolution in the PAS family.

The AHR is ligand activated and its prototypical ligand is TCDD. Interestingly enough, the
AHR has been strongly conserved through evolution suggesting an endogenous role beyond a
xenobiotic response (Hahn 2002). Ahr orthologs can be found in species that likely existed
millions of years prior to the evolution of the first vertebrate (Hahn 2002). For example, orthologs
of the Ahr are present in invertebrate species including roundworms (C. elegens) and flies (D.

melanogaster)(Duncan et al. 1998; Powell-Coffman et al. 1998). Ahr orthologs have also been



Figure 1.1. General organization of the aryl hydrocarbon receptor. The figure outlines the
general positioning and several known functions of four conserved domains found on the AHR
(bHLH, PAS-A, PAS-B, and TAD). This figure is an adapted version of Figure 5 from Okey,

2007 (Okey 2007).
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found in several mollusc species, such as the soft shell clam (M. arenaria), zebra mussel (D.

polymorpha), and blue mussel (M. edulis)(Butler et al. 2001; Hahn 2002).

For decades, endogenous ligands of the AHR remained elusive. Several studies in the
late 1990’s and early 2000’s identified a diverse set of probable AHR ligands. Such ligands include
indoles which are tryptophan break-down products, bilirubin and other tetrapyroles which are
likely products of heme break-down, and metabolites of arachidonic acid such as prostaglandins
(Bittinger et al. 2003; Denison and Nagy 2003; Rannug and Fritsche 2006; Sinal and Bend 1997).
While the ligands are diverse, the AHR clearly plays important roles in several physiological
processes beyond the xenobiotic response including hematopoiesis as well as liver and T cell
development (Bunger et al. 2008; Gasiewicz et al. 2010; Lahvis et al. 2005; Quintana et al. 2008).
The AHR has also been recently found to play a key role within the immune system (Moura-Alves

et al. 2014).

The AHR-mediated transcription pathway has been-well characterized (Figure 1.2.). Prior
to activation, the majority of the AHR pool is found in the cytoplasm bound to several chaperone
proteins including a heat-shock protein 90 (HSP90) homodimer and AH receptor-associated
protein (ARA9)(Carver et al. 1998; Heid et al. 2000; Meyer and Perdew 1999). The chaperones
have been found to stabilize AHR prior to activation (Petrulis and Perdew 2002). Upon ligation,
the AHR separates from chaperones and translocates to the nucleus. Once in the nucleus, the
AHR dimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT) to form a
functional transcription factor (Abel and Haarmann-Stemmann 2010; Sorg 2014). The AHR:ARNT
complex binds to dioxin response elements (DREs) that are located throughout the genome
(Swanson et al. 1995). In the late 1980’s, the DREs in the Cyp1a1 promoter were found to contain
the core sequence of 5-GCGTG-3’ with more-variable flanking regions (Denison et al. 1988a, b).

Genomic-wide searches and AHR chromatin immunoprecipitation approaches in mouse liver later



identified the presence of DREs located throughout the genome (Dere et al. 2011). Gene
expression arrays using both in vitro and in vivo models later identified that activation of AHR
results in aberrant gene expression of many genes which drives the adverse responses to TCDD
(Boverhof et al. 2005; Boverhof et al. 2006; Martinez et al. 2002; Puga et al. 2000). Mice carrying
mutated-AHR that are unable to translocate to the nucleus are resistant to TCDD-mediated
toxicity (Bunger et al. 2003). While technologies are constantly improving to analyze which genes
are dysregulated at differing points of time post-exposure, much remains unknown regarding how
AHR-mediated aberrant expression leads to the complex diseases associated with TCDD

exposures in humans.

1.3. Susceptibility to TCDD-Mediated Toxicity

Differing species have vastly-different sensitivity to TCDD-mediated toxicity with nearly
600-fold differences in the LDsy values (Geyer et al. 1990). Guinea pigs have been found to be
the most sensitive of mammals that have been exposed to TCDD with an estimated LDs, values
of < 2 yg TCDD per kg of body weight (pg/kg). Hamsters are on the other side of the spectrum
with an estimated LDsq values of = 1,157 pg/kg. For reference, non-human primates, such as the
rhesus macaque, have an estimated LDs, value of 50 pg/kg suggesting that humans, in
comparison to some species, are quite sensitive to TCDD-induced toxicity. Beyond the intra-
species differences in susceptibility, previous studies with rodents have shown that there are also
clear inter-species differences (Chapman and Schiller 1985). For example, C57BL/6J mice that
were treated with TCDD for 10-12 weeks had an estimated LDs value of 182 ug/kg. In the same
study, however, DBA/2J mice had estimated LDs, value of 2,570 ug/kg. As such, there are = 14

fold differences in the estimated LDs, values for differing strains of the same species.



Figure 1.2. The aryl hydrocarbon receptor-mediated transcription pathway. The AHR
resides in the cytoplasm bound to several chaperone proteins prior to activation. Once activated
by a ligand, such as TCDD, the AHR disassociates from the chaperone proteins and translocates
to the nucleus. Once in the nucleus, the AHR dimerizes with another PAS protein called the aryl
hydrocarbon receptor nuclear translocator (ARNT). The hetereodimer, then, binds to dioxin

response elements (DREs) throughout the genome altering gene transcription.
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The mouse has been used for decades for toxicological screens. One obvious advantage
of the use of rodents is that the vast majority of environmental factors can be controlled. As such,
most of the inter-strain differences will be driven by genetic background. Over the past 30 years,
the Ahr gene has been well-characterized in a large number of mouse strains (Figure 1.3).
Previous reports have indicated that mice carry 1 of 4 independent alleles of the Ahr which are
structurally and functionally unique: 1) Ahr™', 2) Ahr*?, 3) Ahr™®, and 4) the Ahr® (Poland and Glover
1990; Poland et al. 1994; Thomas et al. 2002). Several nonsynonymous substitutions within the
murine Ahr are of particular interest. The most influential SNP drives an A375V substitution in
strains that carry the Ahr* allele (Poland et al. 1994). Previous radioligand-binding studies have
reported that the dissociation constant (Kd) of TCDD for the AHR carried by Ahr* allele mice, such
as the DBA/2J, is an estimated 16 nM as compared to 1.8 nM for Ah/*" allele mice, such as the
C57BL/6J (Okey et al. 1989; Poland et al. 1994). As such, strains that carry the Ahr allele are
sometimes inaccurately referred to as ‘non-responsive’ to TCDD. Another SNP of interest induces
a premature stop codon unique to the Ahr*" allele which results in a protein that is 95 kilodalton
(kDA) as compared to the 104 kDA protein encoded by the Ahr*®> and Ahr® allele (Thomas et al.
2002). The Ahr™ allele is only carried by wild-derived strains which tend to be more polymorphic
as compared to classical inbred strains. While there is less Ahr sequence homology in the strains
that carry the Ahr* allele, these strains carry an alanine at position 375 and, thus, have high

affinities for TCDD that are similar to the protein encoded by the Ahr* allele.

Similar to the rodent models, there are established differences in human responses to
TCDD exposures. For example, previous studies using isolated B cells have identified a sub-
population of the humans that do not appear to respond TCDD-induced immunosuppression (Lu
et al., 2010). Previous studies using human placental tissues have indicated that the AHR binding
affinity for TCDD in humans can vary up to 10-fold with Kd’s that range from < 1 to =215 nM in

extreme cases (Ema et al. 1994; Harper et al. 2002). Other studies have suggested interindividual



Figure 1.3. Comparison of the general aryl hydrocarbon receptor gene structure across

mouse strains and human. Mice have been found to carry 4 independent alleles of the Ahr: 1)

Ahr”' 2) Ahr?, 3) Ah™, and 4) the Ahr". While the gene is highly-conserved, an A375V

substitution indicated by the

“*’ in the PAS-B domain of protein encoded by the Ahr* allele greatly

decreases the affinity for TCDD. The AHR is heavily-conserved across species. While the human

AHR is known to have a higher affinity for TCDD as compared to the Ahr” allele. The human AHR

contains a valine in position 381 which is equivalent to position 375 in the mouse AHR.
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variability in response to another AHR ligands such as polycyclic aromatic hydrocarbons
(PAHs)(Smart and Daly 2000) and identified a wide-range in half-life of TCDD in differing
individuals (Pirkle et al. 1989). While the average half-life is 7.1 years, the 95% confidence
intervals span from 5.8 to 9.6 years across 36 individuals. The variability in the degradation and
excretion rate across individuals is likely dependent on many factors. For example, previous
reports have established a positive correlation between BMI and increased half-life of TCDD in
humans (Kerger et al. 2006). Rodent-based studies indicate that genetics likely plays a major role
in driving the interindividual variability in the half-life of TCDD. The half-life of TCDD in mice is
quite variable; ranges have been reported that span 11 to 24.4 days depending on the strain
(Gasiewicz et al. 1983). Strains that are sensitive to TCDD-mediated toxicity, such as the
C57BL/6J (i.e. Ahr"' allele mice), were found to have shorter half-lives as compared to less-

sensitive strains, such as the DBA/2J (i.e. Ahr” allele mice).

Unlike differing mouse strains, polymorphisms in the AHR gene assert a modest impact
on the human response to TCDD (Harper et al. 2002). There is no AHR sequence variability at
position 381 in humans which is equivalent to murine position 375 where the high-impact variant
is found. Interestingly enough, human AHRs carry a valine at this position which, as previously
mentioned, is most similar to the less sensitive mouse strains (i.e. Ah* allele mice)(Ema et al.
1994). While the valine suggests the human AHR should have a higher Kd for TCDD, the vast
majority of the individuals are found to have Kd’s that range from 2 and 8 nM (Harper et al. 2002).
While carrying the valine, human AHR appears to behave most similarly to the AHR encoded by
the mouse Ahr” alleles. The valine in position 381, however, was found to be important as a
directed substitution to asparagine abolished TCDD binding for the human AHR (Ema et al. 1994).
Other SNPs in the human AHR gene have been found to impact the response to TCDD. A

previous study where AHR constructs with known human AHR SNPs were expressed in a liver
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cell line indicated that a combined A554K and V570l substitution had less TCDD-induced
expression of the AHR-target gene CYP1A1 (Wong et al. 2001). Similarly, expression of
constructs containing known human SNPS in a human B cell line indicated that a single R554K
substitution can reduce the induction of CYP1A71 and CYP1B1 mRNA induction as well as
CYP1B1-regulated reporter activity (Kovalova et al. 2016). The same study also showed that a
construct containing a combination of SNPs that result in P517S, R554K, and V570l substitutions
reduced the sensitivity to TCDD-mediated suppression of secretion of Immunoglobulin-M (IgM).
Though several studies suggest that SNPs in the human AHR gene impact the response to TCDD,
this variation is likely driving a modest impact on downstream TCDD-mediated responses (Okey
2007). Given the interindividual variability in response to TCDD, the modest effect of
polymorphisms in the human AHR gene, and previous reports indicating that genetic variability
can have profound impacts on individual’s response to chemicals (Evans and Relling 2004; Kalow
et al. 1998), we hypothesize that there are likely other genomic variation beyond the AHR
sequence that likely impact an individual’'s response. Understanding of which genetic variants
may increase individual’s susceptibility to TCDD would have direct impacts on risk assessment in

a diverse population.

1.4. Current State of Assessing Exposure Risk in Heterogeneous Populations

The goal of exposure-based risk assessment is to characterize the potential hazardous
nature of a chemical within the heterogeneous human population. Knowledge of the dose-
response relationship (DRR) between any given chemical, from pharmaceuticals to
environmental contaminants, and an adverse physiological response is valuable to accurate risk
assessment. Much of the exposure-to-response DRRs have been established using traditional
laboratory models. Results from these common models are used to address the level at which an

exposure would lead to adverse outcome in the humans. As such, these values derived from
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laboratory models are used to calculate safe-exposure limits of the respective chemicals, such as

a reference dose (RfD) or an acceptable daily intake (ADI) (IPCS 2005).

In extrapolating exposure from laboratory models to the human population, the World
Health Organization’s International Programme on Chemical Safety (IPCS) has suggested that
acceptable exposure limits be adjusted by a generic total ‘uncertainty factor of 100. This
uncertainty factor breaks down into two separate categories each consisting of a 10-fold
adjustment: A) interspecies variation that account for physiological differences between animal
models and humans and B) interindividual variation that account for differences in susceptibilities
across human individuals. The interspecies variation adjustment further breaks down into two
categories: A) toxicodynamics (2.5 fold) and B) toxicokinetics (4.0 fold). Similarly, interindividual
differences also break down into the same categories, but with slightly different adjustments per
category: A) toxicodynamics (3.2 fold) and B) toxicokinetics (3.2 fold) (IPCS 2005). While
interspecies variation is a difficult problem to fully-solve without epidemiological data for the
chemical exposure and timeline of interest, several aspects that drive interindividual differences

can and should be incorporated in toxicological screens.

As the human population is heterogeneous, there are some individuals that are more
susceptible to chemically-induced toxicity than others. While uncertainty factors are used to
account for these differences in susceptibility, there is certainly a non-zero chance that all
individuals are accounted for within the current exposure guidelines. On the contrary, the use of
uncertainty factors may also result in exposure-guidelines that are far too conservative and, thus,
lead to unnecessary industrial and municipal financial burdens. As such, lack of empirical data in
regards to the impact of interindividual variability in DRRs has potential to negatively impact
decision-making. A recent report published by the NRC entitled “Science and Decisions:

Advancing Risk Assessment” highlights the need for empirical interindividual variability data prior
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to risk-assessment decision-making. The report suggested that the incorporation of inter-
individual variability present within the human population would effectively linearize the low-dose
region of non-cancer DRRs which have, in the past, been considered nonlinear functions (Figure
1.4)(NRC 2009). The proposal by the NRC was based primarily on theoretical evidence and has
not been properly tested. If put into practice for risk assessment, the low-dose linearity assumption

could lead to unwanted environmental impacts.

1.5. Incorporating Genetic Heterogeneity into Toxicological Screens

Many factors impact individual responses to environmental exposures including
concurrent exposures and/or stressors, age, sex, disease-state, and genetic variability. Recent
technological advances provided the opportunity to probe the impact of genetic variability in
response to chemical exposures. Results have indicated that genetic polymorphisms can have
profound impacts on individual responses. In some extreme cases, = 90% of the observed
variability in the human population have been attributed to genetic diversity (Evans and Relling
2004; Kalow et al. 1998). As such, there is growing interest in incorporating genetic variability into

toxicological screens (Zeise et al. 2013).

The obvious reason for the exclusion of genetic diversity in classical laboratory models is
to reduce experimental variability. Inclusion of genetic variability will increase variability and, from
an academic standpoint, increase the risk of a poor association within a study. An excellent
example of this is the use of knock-out (KO) rodent models to establish the mechanism in which
a particular gene is driving a phenotype. From a purely academic standpoint, the results may be
noisier when genetic variability is included. It should be noted that we are not arguing for the
replacement of isogenic models in toxicology. In many cases, inclusion of genetic variability may

not be economically and technically feasible. Isogenic models clearly have a role to play in
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Figure 1.4. The National Research Council’s (NRC) Low-Dose Linearity Hypothesis. As
published in a report in 2009 call “Science and Decisions: Advancing Risk Assessment,” the
NRC suggest that, in considering population-level genetic variability, the low-dose region of non-
cancer dose-response relationships will linearize. As such, the NRC recommends that there are

no safe exposures of chemicals that induced adverse, non-cancer endpoints.
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toxicology. However, as highlighted in the studies reviewed below, genetic variability clearly

influences dose-response relationships and cannot be ignored.

1.6. Proof of Principle: Advances Driven by Genetically-Diverse Models

As genetic background impacts responses to chemicals, incorporation of genetic diversity
into toxicological screens provides an avenue to quantify the influence of genetic diversity within
population-level dose-response relationships. Unlike homogenous models, the results from
studies using population-based models likely better inform risk assessors of safe-exposure limits
that will account for susceptible individuals within the human population. Genetic reference
models also have potential to identify genetic variants that may be more susceptible to chemical-
induced toxicity (Harrill and McAllister 2017). Genetically diverse populations provide the
opportunity to map the differences in responses to areas of the genome that potentially impact
susceptibility. As many genetic differences across panels have been analyzed, these models can
be used to perform quantitative trait locus analysis that may indicate regions of the genome that
are inherited by individuals that were found to be more susceptible to chemical-induced toxicity
based on a quantitative phenotype (Figure 1.5). Here, several examples are outlined to indicate
the power of incorporating genetic variability into toxicological screens using several distinct
laboratory-based models: 1) genetically-diverse cell lines, 2) primary human cells, and 3)

genetically-diverse mouse panels.

1.6.1. Genetically Diverse Cell lines

Clonal cell lines have been used in toxicological studies for decades. From an
experimental standpoint, these cell lines are excellent in reducing variability in responses to
chemical exposures and to gain a mechanistic understanding of chemical-induced toxicity.
Furthermore, as cell lines are immortal and can be cryopreserved, they provide a resource that

can be studied over long periods of time and can be readily distributed for research purposes.
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Figure 1.5. General overview of quantitative trait locus (QTL) analysis. The purpose of QTL
analysis is to associate a quantitative trait with a region of the genome. A quantitative
trait/phenotype is used to categorize groups of individuals that responded similarly. Software will
scan for genetic differences that may indicate a region of the genome that is inherited by
individuals that have a similar quantitative phenotype. Such regions may indicate genes or

pathways that impact the quantitative trait.
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Human lymphoblastoid cell lines (LCLs) can easily and efficiently be derived from a large number
of individuals and, by assaying a large number of individual cell lines, can be used to assay
population-level variability in responses to exposures (Dolan et al. 2004; Watters et al. 2004).
LCLs have been established from individuals of diverse heritages from locations throughout the
world. The true power of these LCLs lies in the plethora of genomic and demographic data freely-
available, such as through the 1,000 genomes project website, to probe links between genotype
and phenotype. Specifically, LCLs can be used to link variant responses to genomic difference

amongst cell lines without the need for further genotyping.

Previous studies have shown that LCLs can be successfully used to probe variations in
chemicals responses. For example, a recent study indicated that 146 lymphoblastoid cell lines
were exposed to multiple concentrations of two separate mixtures of pesticides: 1) a current-use
pesticide mixture (n=36 chemicals) and 2) an organic pesticide mixture (n=10 chemicals) (Abdo
et al. 2015a). Curve-fitting clearly shows that, within the population of LCLs, there is a large range
of susceptibility in the chemically-induced cytotoxic responses. Furthermore, the results were also
used to calculate a toxicodynamic uncertainty factor (VF4) of around 3-fold for each pesticide
mixture which, as noted in the report, is analogous to the level of interindividual variability for the
pesticide mixtures. Within these individual differences, a polymorphism on chromosome 17 was
found to be highly correlated with differences in susceptibility of the cell lines. The polymorphism
was found within an open reading frame (i.e. C170rf54) and, in further detail, a major allele (AA)
was found to me more sensitive than either the heterozygous genotype (AT) or the minor allele
(TT). One of the most innovative aspects of this paper, however, is the use of in vitro-to-in vivo
extrapolation (IVIVE) to estimate the corresponding cumulative oral equivalent dose of the
chemical mixtures to reach the EC4, in the underlying cytotoxic phenotypes being assayed.

Notably, a primary challenge of incorporating in vitro data within human risk assessment is
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determining the in vivo dose required to result in the in vifro concentrations at hand (Judson et al.
2011). Results indicated that, with data available for 31 of 36 pesticides in the current-use mixture
and 4 of 10 pesticides within the organic mixture, the organic pesticide mixture required
significantly less exposure to reach the EC of the cytotoxic phenotype. Furthermore, the authors
estimate that population variability would require a 5-fold margin of safety for the organic pesticide
while, in comparison, the current-use pesticide mixture would require less than a 2-fold margin of
safety to account for inter-individual differences (Wetmore et al. 2014). While the IVIVE
calculations required several assumptions, the methodology provides a method to estimate the
chemical exposures required to reach toxicity seen in vitro and, furthermore, the influence that

population variability plays in defining safe exposure limits (Abdo et al. 2015a).

In a similar study, cytotoxicity of 1,086 LCLs was assayed following exposure to 179
different chemicals found within the National Toxicology Program’s (NTP) chemical library (Abdo
et al. 2015b). This study also calculated toxicodynamic variability factors (VF4) for 149 chemicals.
In assessing population variability, nearly half of the individual EC+, values have interindividual
ranges that fall below the generic 3.2-fold adjustment. These results suggest that, in some cases,
uncertainty factors can be too conservative. More interestingly, a subset of these chemicals within
the study were found to produce EC+, value ranges that were much greater than the generic 3.2-
fold adjustment indicating the need for chemical-specific data in setting exposure guidelines for
the human population. These results also suggest the inherent risks associated with relying on
generic uncertainty factors. Furthermore, the authors used multivariate association analysis
(MAGWAS) to scan for genetic loci associated with the differences seen in the concentration-
responses amongst the individual cell lines for each chemical. The results revealed several
patterns and potential key players in chemical-induced cytotoxicity. For example, transmembrane
proteins and solute carriers appear to play a key role in mediating chemical-induced cytotoxicity

as they are consistently found in the most-significant associated loci. Similarly, a SNP
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(rs13120371) in 3’ UTR of SLC7A11 was found to be significantly associated with interindividual
differences in 2-Amino-4-methylphenol, methyl mercuric (lll) chloride, and N-methyl-p-
aminophenol sulfate-induced cytotoxicity. In further detail, the results indicate which alleles
appear to be more sensitive to chemical-induced cytotoxicity and, thus, can be used to predict
which individuals may be more susceptible to chemical-induced toxicity. For example, a minor
allele (AA) was found to be more sensitive to 2-amino-4-methylphenol as compared to the

hetereozygous (AT) and major allele (TT) within the 3° UTR of SLC7A11 (Abdo et al. 2015b).

1.6.2. Primary Human Cells

The ‘gold standard’ in analyzing human responses to chemical exposure in vitro is with
primary cells taken from blood or tissue. Human primary cell cultures are more likely to mirror an
in vivo response than immortalized human cell lines. On the other hand, primary cells typically
can only be cultured for a short time and are more sensitive to the freeze-thaw cycles as compared
to cell lines. Furthermore, individuals within a study would need to be genotyped to assess genetic
variability. The most challenging aspect of working with primary human cells to assess population
variability lies with obtaining samples from a large number of individuals. While some methods
are quite noninvasive, such as obtaining leukocytes from blood, other tissue samples relevant to
toxicological outcomes can be quite invasive, such as the liver. However, such tissues can be
obtained through many methods including biopsies, surgical waste products, organ donations, or,

in some cases, long-term cultures in cell types less sensitive to cryopreservation.

While resting primary human leukocytes are short-lived and need to be processed within
24 hours of collection, previous studies have indicated that cells obtained from blood donations
can be cultured within a few hours preventing the need for a freeze-thaw cycle (Phadnis-Moghe
and Kaminski 2017). More specifically, previous reports indicate that B cells can be isolated from

whole blood obtained from commercial vendors and activated with CD40-ligand and cytokines to
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induced an antibody response (Lu et al. 2009). This model has been used to establish that
exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses the activation and
differentiation of human B cells (Lu et al. 2010; Lu et al. 2011; Phadnis-Moghe et al. 2015). Results
from these studies have indicated that a subset (~15%) of the human donors do not respond to
increasing concentrations of TCDD suggesting this model might be valuable in modeling inter-

individual variability in response to immunotoxicants (Lu et al., 2010).

Reports have also established that adherent, monolayer primary tissue cells can be used
to assay interindividual variability in response to chemicals (den Braver-Sewrad] et al. 2016;
Martelli et al. 2003; Schuetz et al. 1995). A recent study using both monolayer culture and
suspension culture of hepatocytes established a high-level of interindividual variation in phase I-
and phase ll-mediated metabolism. Their results suggest the presence of up to 3 and 4-fold
differences between donors in the cytochrome P450-mediated metabolism of diclofenac in
suspension and monolayer culture, respectively. First, the report provides evidence that, even
with the same cell type, the level of human interindividual variability measured can be culture
model-specific (i.e. suspension vs. adherent cells). Secondly, this article highlights the complexity
of human variability as there can be interindividual differences in the rate of metabolism of
chemicals (den Braver-Sewradj et al. 2016). Thus, depending on the individual, there can be
differences in the rate in which toxic chemicals are metabolized into benign compounds or,

differences in the accumulation and excretion rates of toxic metabolites.

1.6.3. Genetically Diverse Mouse Panels

Rodent-based studies provide a financially-reasonable in vivo model that can control for
many environmental factors and, yet, support complex study design. More importantly, many
inbred mouse genomes have been completely sequenced (Adams et al. 2015; Doran et al. 2016;

Keane et al. 2011; Morgan et al. 2016). As such, genetically-diverse mouse panels provide an
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opportunity to better understand the effect of genetic variation within complex etiologies and
identify genetic variants that effect susceptibility to a particular phenotype (e.g. chemical-induced
toxicity). The lack of genetic variation within inbred strains provide the opportunity for mice with
identical genomes to be assayed over periods of time and differing experimental conditions
(Bogue et al. 2015; Rusyn et al. 2010). Most importantly, there is significant diversity across
strains. For example, within the Mus musculus subspecies it has been estimated that the number
and distributions of polymorphisms is greater than found within human population (Ideraabdullah
et al. 2004; Rusyn et al. 2010). The creation of genetic diverse reference populations, such as
the Collaborative Cross (CC) and the Diversity Outbred (DO) mouse populations, provide the
opportunity to assay genetic variability similar to that found in the human population and, to map
the differences in responses to places within the genome with high-resolution (CCC 2012;
Churchill et al. 2004; Churchill et al. 2012; Logan et al. 2013; Svenson et al. 2012; Threadgill et
al. 2011; Threadgill and Churchill 2012; Welsh et al. 2012). The CC is significantly more diverse
than previous, commonly used mouse panels, as it was created from 8 diverse founding strains
of 3 differing Mus musculus subspecies (M. m. musculus, domesticus, castaneous) that
encompass 90% of genetic variation in laboratory mice: 1) A/J, 2) C57BL/6J, 3) 129S1/SvimJ, 4)
NOD/ShiLtJ, 5) NZO/HILtJ, 6) CAST/EiJ, 7) PWK/PhJ, and 8) WSB/EiJ (Roberts et al. 2007;
Threadgill and Churchill 2012). While the statistical power of CC is somewhat limited by the
number of fully-inbred strains available, the inbred nature of the panel only requires one round of
genotyping per strain (Bogue et al. 2015; Churchill et al. 2004; Threadgill et al. 2011; Threadgill
and Churchill 2012). The CC panel has been used to analyze a range of complex traits (Abu-
Toamih Atamni et al. 2017; Aylor et al. 2011; Kelada et al. 2012; Kelada 2016; Nashef et al. 2017,
Smith et al. 2016; Xue et al. 2016). Similarly, the DO stock was created from early pre-CC strains
and, while containing the same level of allelic diversity as the CC, are maintained with a high-
level of heterozygosity (Bogue et al. 2015; Chesler 2014; Churchill et al. 2012). While the nature

of the DO stock requires genotyping for each mouse, the heterozygosity provides the opportunity
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to analyze additivity while the high level of fecundity and large stock population provide an ideal
model for high-resolution mapping and selective-breeding studies (Church et al. 2015; Logan et
al. 2013; Svenson et al. 2012). These diverse populations of mice provide an in vivo method to
analyze the impact of population-level genetic variability and to identify variants within populations

that may be more or less susceptibility in chemical-induced phenotypes.

Mouse population-based studies have already begun impacting human risk-assessment
(Cichocki et al. 2017; French et al. 2015; Harrill et al. 2009; Venkatratnam et al. 2017). For
example, a double-blind study in which 49 healthy humans who were exposed to maximum
recommended therapeutic range of acetaminophen (4 gram/day for 7 days) found that 31%
showed = 2 fold increase of alanine aminotransferase (ALT) serum levels. Thus, within the
recommended therapeutic range, some human individuals appear to experience mild liver injury.
To identify potential loci associated with increased risk to acetaminophen-induced toxicity, 36
inbred mouse strains were dosed with a range of acetaminophen. Results indicated interstrain
differences in several endpoints including the rate of acetaminophen metabolism, ALT levels in
the serum, and liver necrosis. The results show that genetic variation amongst the mouse strains
profoundly changed the dose-response curves in the degree of necrosis and the level of ALT in
the serum. Haplotype-association mapping suggested several genes, such as Cd44 and Capn10,
were associated with inter-strain differences in ALT release. These genes were then related to
human susceptibility. For example, a nonsynonymous polymorphism in the CD44 gene was found
to be statistically correlated with an individual’s level of acetaminophen-induced ALT release.
Similarly, a synonymous SNP in CAPN10 was found to be moderately-associated with an
individual’s ALT-release. These results demonstrate the usefulness of mouse panels in identifying
genes that likely contribute to human population-level variability in response to chemicals (Harrill

et al. 2009).
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In another study, 50 inbred strains were used to assay the influence of population
variability on the toxicokinetics of cytochrome-mediated oxidation of trichloroethylene (TCE)
(Venkatratnam et al. 2017). Results indicated that the levels of trichloroacetic acid (TCA), the
most abundance metabolite of TCE, varied by an order of magnitude in a strain-specific manner.
The results, along with another previous study of perchloroethylene, show the power of the
collaborative cross in assaying toxicokinetic population variability (Cichocki et al. 2017). More
interestingly, the empirical values measured in the current study were compared to the predicted
levels of TCA in tissues by a physiologically-based pharmacokinetic model (PBPK) based on
results from 16 inbred mouse strains (Chiu et al. 2014). The CC panel suggests that the PBPK
model may be under-estimating the TCA level in tissues highlighting the need for individual-
specific data for chemical exposures. More specifically, the 800 mg/kg dose groups in the CC
panel were found beyond the PBPK’s predicted 95% confidence levels of TCE burden in the liver
for more than half of the strains, a third of the strains in the kidney, and nearly half of the strains
for the serum. As TCE and TCA are ligands of PPARq, the authors also looked at the expression
of two PPARa-inducible genes, Acox1 and Cyp4a10, and found significant induction at the
population level of all CC strains with notable interstrain differences as has been previously
reported (Bradford et al. 2011). As the expression of Acox7 was found to be correlated with the
level of TCA in the liver, the authors postulate that TCE-mediated effects may be altering TCE
metabolism in a strain-specific manner. Furthermore, QTL analysis on the variability in TCA levels
in the liver of the differing strains identified a list of potential genes that might explain the response
differences. The gene list was narrowed down based on the function of the genes and potential
links to TCE-mediated effects. QRTPCR analysis indicated that expression of Acot8 and Fitm2
positively correlated with the levels of TCA in the liver and, thus, may be associated with the
differences in TCE metabolism and the susceptibility to TCE-mediated toxicity (Venkatratnam et

al. 2017).
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In a study using DO mice, 600 mice were exposed to varying amounts of benzene via an
inhalation chamber (French et al. 2015). The authors used micronucleus (MN) frequency in
reticulocytes (RET) derived from the peripheral blood (PB) or bone marrow (BM) to assay the
extent of chromosomal damage induced by benzene. The MN frequency was found to be
significantly elevated for mice exposed to 100 ppm benzene in PB-RETs and for mice exposed
to 1, 10, and 100 ppm for BM-RETSs. Interestingly, a large range in the MN frequency in RETs
derived from both PB and BM for the 100 ppm dose-group was reported. The most interesting
aspect of this report was found in the statistical modeling of the dose-response to estimate the
thresholds required to reach toxicity (Crump 1984). The results indicated that 0.205 ppm of
benzene could reach the lower-bound confidence interval in the concentration-response (BMCL)
found in this stock of DO mice. This BMCL was an order of magnitude lower than found in a
previous report using a similar study design in the inbred B6C3F1 mouse strain (Farris et al.
1996). The difference in BMCLs between the studies suggest that incorporation of genetic
variability may greatly impact safe-exposure assessments (Farris et al. 1996). In genotyping the
mice and running QTL analysis, a locus on chromosome 10 was found to be significantly
associated with the MN frequency derived from both the PB and BM within the 100 ppm benzene
dose group. More specifically, mice that inherit a gene-duplication event in a region of
chromosome 10 from the CAST/EiJ founder strain showed less benzene-induced chromosomal
damage. The authors hypothesize that the gene-duplication likely leads to increased expression
of several genes in this area, such as Sult3a1 and Gm4794, which are involved in sulfating toxic
benzene metabolites. Notably, copy number variation is also found in human population that
potentially plays a role in driving interindividual variation in the metabolism of benzene (French et

al. 2015; Gaedigk et al. 2012; Yu et al. 2013).
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1.7. Overarching Hypothesis and Specific Aims

The impact of genetic variability on individual’s susceptibility to TCDD has not been
thoroughly addressed. While past reports have established genes and pathways involved in
TCDD-induced toxicity, that vast majority have used homogenous models (i.e. single inbred
mouse strains and clonal cell lines). Given the complex etiologies associated with disease-states
induced by TCDD, homogenous models will likely not encompass the variability in physiological
responses seen across diverse human populations. Previous reports on environmental
contaminants, such as benzene, have indicated that results are heavily-dependent on the mouse
strain chosen (French et al. 2015). The strain-dependence is particular true for the response to
TCDD which has been found to be very strain-specific (Chapman and Schiller 1985; French et al.
2015; Shen et al. 1991). In many cases, the response from a differing mouse strain could greatly
alter the perceived risk associated with a chemical exposure. Inter-strain differences in response
to chemicals and other stressors can also be leveraged to identify genetic determinants that drive

differing susceptibilities.

The overall goal of this dissertation was to use several population-based models to assess
the impact of genetic variability on the response to TCDD. A mixture of in vitro- and in vivo-based
laboratory models were used to assay the impact that TCDD has on multiple endpoints including
the IgM response of B cells and liver homeostasis. The overarching hypothesis of the project
is that a population-guided approach will identify genetic modulators of TCDD-mediated

toxicity. The project consisted of four independent specific aims:

1.7.1. Specific Aim 1. Characterizing the impact of interindividual variability in TCDD-
mediated suppression of the human B cell. The primary goal of this aim was to establish the
level of interindividual variability in response to TCDD in humans. Previous reports have identified

individual differences in response to TCDD, but have not quantified the differences across a large
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number of individuals. Furthermore, previous reports have not characterized the impact of
interindividual variability on TCDD-mediated dose-response relationships. To address these
knowledge gaps, B cells were isolated from 51 unique human donors and exposed to increasing
concentrations of TCDD to induce a dose-response. Statistical modeling was used to assess the
impact of interindividual variability within the low-dose region of the TCDD-mediated dose-

response.

1.7.2. Specific Aim 2. Identifying and characterizing the impact of Serpinb2 as modulator
of TCDD-mediated suppression of the B cell. The vast majority of the mechanistic
understanding of TCDD-mediated suppression of the B cell has been characterized using
homogenous models. The goal of this aim was to use genetic variability to identify novel genes
and/or pathways that impact the immunosuppressive response to TCDD. B cells were isolated
and exposed to TCDD from twelve genetically-diverse mouse strains. Quantitative trait locus
(QTL) analysis was used to identify genetic regions that are potentially driving differences in
sensitivity across the population of mice. A gene called Serpinb2, which has previously been
shown as dysregulated by TCDD in mouse and human B cells, was found in a genomic region of
interest. Further downstream functional analysis was used to assess the role of Serpinb2 in

TCDD-mediated suppression of the B cell.

1.7.3. Specific Aim 3. Characterizing the toxicodynamics of hepatic accumulation of TCDD
and identifying Tgfbr2 as a modulator of TCDD-mediated liver toxicity. The purpose of this
aim was three fold. The first goal was to analyze the level of inter-strain variability in the
accumulation of TCDD and expression of a subset of the known AHR-responsive genes in the
liver. The second goal was to assess whether the accumulation of TCDD is correlated with the
AHR-mediated expression. Previous reports have established genes, such as Cyp7a2, that are

regulated by the AHR and involved in sequestration of TCDD in the liver. However, these studies
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have used homogenous mouse models and, thus, potentially have missed other genes and
pathways involved. As such, we sought to use QTL analysis to potentially identify modulators of
TCDD accumulation and AHR-mediated expression. To address these goals, fourteen mouse
strains were dosed with 1 or 100 ng of TCDD / kg of body weight (ng/kg) for 10 consecutive days.
Following, the total level of hepatic TCDD was analyzed with GC/MS and TCDD-mediated
expression of 9 hepatic AHR-responsive genes were analyzed using NanoString Technology. The
results indicate that hepatic accumulation of TCDD is heavily-dependent on genotype and is
correlated with AHR-mediated gene expression. QTL analysis identify several genomic regions
of interest including an area on Chromosome 9 near a gene called Tgfbr2. Further functional
analysis was used to identify the role of Tgfbr2-related activity in the TCDD-mediated

steatohepatitis in the liver of mice that are sensitive to TCDD exposure.

1.7.4. Specific Aim 4. Identifying and characterizing the impact of TCDD-mediated
repression of Hmgcr in modulating TCDD-mediated liver toxicity. This aim was based
primarily on the inter-strain differences in the change in body weights across fourteen genetically-
diverse strains following exposure to 100 ng/kg for 10 consecutive days. QTL analysis indicated
a strong association in Chromosome 13 near a gene called Hmgcr. Previous reports have
indicated that the AHR regulates Hmgcr mRNA expression and, ultimately, the level of cholesterol
in the serum of mice. To assess whether this endpoint is relevant to humans, multiple linear
regression models were created using lipid-adjusted levels of TCDD in serum along with total
cholesterol data from the Center for Disease Control (CDC) National Health and Nutrition
Examination Survey. Models were adjusted for potential confounding variables including age,
race, body mass index (BMI), and usage of drugs that impact cholesterol levels. Finally, mice
were exposed to TCDD for 10 days in the presence of absence of an HMG-CoA reductase (i.e.
the protein encoded by Hmgcr) inhibitor called simvastatin to characterize the functional role of

Hmgcr repression in TCDD-mediated liver pathology.
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1.8. Overall Significance

The primary significance of this dissertation lies in proof-of-principle. Previous studies
have shown the power of using genetic reference rodent panels to better characterize risk
association with environmental exposures (Cichocki et al. 2017; French et al. 2015; Venkatratnam
et al. 2017). This is the first population-based approach to assess the impact of genetic variation
in response to TCDD exposure. First, a human cell-based in vitro model was used to establish a
wide-range of interindividual variability in response to TCDD exposure. Secondly, a rodent
population-guided approach was used to identify several novel genes that were found to impact
the TCDD-mediated suppression of the B cell and liver pathology. This provides proof that a
rodent population-based approach has potential to shed light into the mechanism of TCDD-

mediated toxicity beyond what has been previously uncovered using homogenous models.

Beyond proof-of-principle, the results clearly show a large-level of interindividual human
and inter-mouse strain variation in the response to TCDD. These experiments provide quantitative
differences in multiple endpoints across genetically-diverse population of individuals. As current
risk assessment relies on the aforementioned 10-fold uncertainty factors to account for
interindividual differences, the data from this dissertation have potential to better inform risk
assessors of range in responses for a diverse set of phenotypes. Interestingly, several endpoints
assayed in this dissertation suggest that a 10-fold adjustment is quite conservative. The results
from this set of experiments may be used in future risk assessment to create guidelines that truly
encompass the range of responses in the human population. These results could be used to
create safe-exposure guidelines grounded in empirical data as opposed to generic uncertainty

factors of 10.
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Finally, this research provides evidence that genomic factors beyond the Ahr allele impact
strain specific responses to TCDD. While the Ahr allele was found to have significant impact on
strain-specific response to TCDD, several others genes were found modulate phenotype-specific
responses. Such responses include TCDD-mediated suppression of the IgM response, hepatic
accumulation of TCDD, AHR-target gene expression, and several TCDD-induced liver
pathologies. While these results need to be confirmed in the human population, we hypothesize
that expression- or function-altering variants of these modulating genes may ultimately alter
individual human responses to TCDD exposures. As such, the results from these experiments
may provide risk assessors with information used to identify individuals or sub-populations of

humans that may be more susceptible to TCDD-mediated toxicity.
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2.1. Abstract

The influence of interindividual variability is not typically assessed in traditional toxicological
studies. Given that chemical exposures occur in heterogeneous populations, this knowledge gap
has the potential to cause undue harm within the realms of public health and industrial and
municipal finances. A recent report from the National Research Council (NRC) suggests that,
when accounting for interindividual variation in responses, traditionally assumed nonlinear dose-
response relationships (DRRs) for non-cancer causing endpoints would better be explained with
a linear relationship within the low-dose region. To directly test the NRC’s assumption, this study
focused on assessing the DRR between 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) exposure
and immune suppression in a cohort of unique human donors. Human B cells were isolated from
51 individual donors and treated with increasing concentrations of TCDD (0 through 30 nM
TCDD). Two endpoints sensitive to TCDD were assessed: 1) number of Immunoglobulin-M (IgM)
secreting B cells and 2) quantity of IgM secreted. The results show that TCDD significantly
suppressed both the number of IgM secreting cells and the quantity of IgM secreted. Statistical
model comparisons indicate that the low-dose region of the two DRRs is best explained with a
nonlinear relationship. Rather than assuming low-dose linearity for all non-cancer causing DRRs,
our study suggests the need to consider the specific mode-of-action of toxicants and

pharmaceuticals during risk-management decision-making.
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2.2, Introduction

The B cell has been well-established as a sensitive target of TCDD-induced toxicity.
Briefly, the mammalian immune system consists of two branches: 1) the innate immune system
and 2) the adaptive immune system. The primary difference between these branches are within
specificity of response; the innate response is a non-specific defense while the adaptive response
is specific against an antigen presented. The specificity of the adaptive immune response relies
on the production of antibodies, known as immunoglobulins (Ig), which are produced by the B

cell.

B cell antibody secretion is initiated through ligation with surface proteins, including the B
cell, CD40, and various cytokine receptors. Ligation of these receptors drive the B cell to
proliferate and differentiate into an antibody secreting plasma cell. While there are five
independent Ig isotypes in mammals, the first wave of the humoral antibody response is release
of IgM. TCDD exposures have been found to directly suppress the Immunoglobulin-M (IgM)
response of the B cell. More specifically, in vitro exposures have shown that, with increasing
concentrations of TCDD, there are significant reductions in the number of B cells that secrete IgM
and the concentrations of IgM secreted into culture media (Crawford et al. 2003; Sulentic et al.
1998). While much of the current understanding of TCDD-induced B cell dysfunction has been
derived from mouse studies and murine cell lines, recent publications using primary cells have
confirmed that TCDD suppresses the activation and differentiation of human B cells in vitro (Lu et

al. 2010; Lu et al. 2011; Phadnis-Moghe et al. 2015).

The level of TCDD-mediated impairment of the IgM response in human B cells has been
shown to vary across individuals. More specifically, previous reports have shown that a subset of
the human population’s B cell response is non-responsive to increasing concentrations of TCDD

(Lu et al., 2010). However, much remains unknown in regards to range of interindividual
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responses to TCDD as well as the influence that interindividual variability plays within the
population-level dose response. The primary aim of this study was to better characterize the
influence of human interindividual variability within the TCDD-mediated suppression of the B cell.
B cells were isolated from a large number of human donors (n=51) and activated with CD40-
ligand in the presence of increasing concentrations of TCDD. Two TCDD-sensitive endpoints
were analyzed: 1) the number cells secreting IgM and 2) the amount of IgM secreted during the
period of culture (Lu et al., 2010; Crawford et al., 2003). The results from the endpoints were
statistically modeled at the individual level and as an averaged population to address the influence
of increasing interindividual variability in the shape of a DRR. As receptor-mediated processes
contain thresholds prior to receptor saturation (Kenakin 2004), an AHR-mediated response serves
as an excellent platform in assessing whether variation within individual DRRs will linearize the
low-dose region of a population-level DRR. Study results were found to directly address the

NRC'’s ‘low-dose linearity assumption’.
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2.3. Results
2.3.1. TCDD-induced suppression of IgM secretion in human primary B cells

Results from the population of donors assayed indicate a significant reduction in both
endpoints tested: a) the number of IgM-secreting cells as determined by ELISPOT (p < 0.05,
n=51; Figure 2.1A) and b) the quantity of secreted IgM in the supernatant at the end of the culture
period as determined by ELISA (p < 0.05, n=49; Figure 2.1B). Notably, statistically significant
suppression was found at TCDD levels = 0.3 nM for the number of cells secreting IgM (Figure
2.1A, p < 0.05, effect size (n) = 0.14) and at = 0.01 nM for the quantity of IgM present in the
culture supernatant (Figure 2.1B, p < 0.05, effect size (n:) = 0.10). There were no significant
differences between non-treated CD40 ligand-activated B cells (i.e naive) and the vehicle (i.e.

DMSO-treated) controls for either endpoint.

2.3.2. Variability in IgM response across individuals

A high-degree of interindividual variability was found across individual’'s response to
increasing [TCDD] (Figure 2.2). At 30 nM of TCDD, differences across donors were found to be
2 70 fold in the number of cells secreting IgM and = 16 fold for the concentration of IgM in the
culture media (Figure 2.2A and 2.2B). Interestingly, 11% (6 of 51) of the donors appeared
nonresponsive to TCDD-induced decrease in the number of B cells secreting IgM. This is similar
to previously published research (Lu et al. 2010). In contrast to “responsive” donors whose B cells
displayed significant suppression at = 0.1 nM, the ‘nonresponsive’ donors displayed no significant
change in response at any TCDD concentration. There is a significant difference in the number
of B cell secreting IgM when comparing the ‘nonresponsive’ and ‘responsive’ cohorts following
exposure to the vehicle control (p<0.05)(Figure 2.3A). Such results suggest that the
‘nonresponsive’ cohort’s B cells activate to a lesser degree in the presence of CD40 ligand. In
analyzing the concentration of IgM secreted into the media, the number of donors deemed

‘nonresponsive’ dropped to approximately 8% (4 of 49)(Figure 2.3B). Again, the concentration of
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Figure 2.1. TCDD-induced suppression of IgM response in primary human B cells.

Increasing levels of TCDD induces a dose-dependent decrease in the number of IgM secreting

cells (A; n=51) and the concentration of IgM secreted into culture medium (B; n=49). Stars (*)

indicate a p<0.05 as compared to the vehicle and error bars indicate standard error of the mean

response.
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Figure 2.2. Interindividual variability in response to TCDD-induced suppression of IgM
secretion. Percent inhibition for each individual donor was calculated by normalizing results from
each dose to that individual’'s vehicle control (100%). The black line indicates the mean response
of all donors. Results indicate a large degree of differences amongst individual donor’s B cells
response to increasing concentrations of TCDD within the number of cells secreting IgM (A;

ELISPOT data) and the concentration of IgM secreted into the culture media (B; ELISA data).
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Figure 2.3. Responsive and nonresponsive donors to increasing concentrations of TCDD.
Six donors were found to be nonresponsive to TCDD in enumerating the number of cells secreting
IgM (A; ELISPOT). Nonresponsive donors displayed a significantly decreased number of IgM
expressing cells when compared to the mean response of the responsive donors exposed to
vehicle control (* indicates a p<0.05). Four of the six nonresponsive donors identified in the
ELISPOT were confirmed in the concentration of IgM secreted (B; ELISA). These four
nonresponsive donors did not display a significantly decreased IgM in the media when compared

to responsive donors exposed to DMSO.
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IgM secreted in ‘responsive’ cohort was found to be statistically lower at [TCDD] = 0.01 while the
‘nonresponsive’ cohort was not statistically affected by TCDD. Unlike the previous endpoint that
showed a statistical difference between the mean numbers of cells secreting IgM exposed to the
vehicle control, this endpoint did not have statistical differences in comparing the ‘responsive’ and
‘nonresponsive’ cohort. The lack of statistical difference is likely due to lack of statistical power in

the ‘nonresponsive’ cohort (n=4) for this particular endpoint.

2.3.3. Modeling the DRRs of the individual donors

Individual responses for both endpoints were fit to the models available in the BMD
software. In all cases during modeling of the individual responses, the best fitting model was
chosen by the lowest Akaike Index Criterion (AIC) value (Akaike 1974). For the number of cells
secreting IgM (ELISPOT data), most of the individual responses best fit to the Exponential 4 model
(29.4% Table 2.1) with a small percentage of donors that were best fit to the linear model (3.9%,
Table 2.1). For the quantity of IgM secreted (ELISA data), an equal percentage of individuals best
fit to the Hill and Power model (30.6%, Table 2.1) while only a small number of individual donors
fit to the linear model (2.0%, Table 2.1). The donors that best fit to linear models were all within
the ‘nonresponsive’ cohorts previously noted. Thus, as expected for a TCDD-induced receptor-

mediated response, the vast majority of the individual responses best fit to nonlinear models.

2.3.4. Determining low-dose regions of dose-response relationships

The goal of this study is to determine the shape of the DRR in the low-dose region of a
non-cancer DRR. In defining the low-dose region, the DRR of the number of IgM secreting B cells
(ELISPOT) and the quantity of IgM secreted (ELISA) data were first fit to a 4-parameter logistic
model using maximum likelihood estimation with R code written in-lab (Prentice 1976). Results

indicate that the TCDD-induced ICsg of the ELISPOT and ELISA data were 0.533 + 0.954 and
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Table 2.1. Results of modeling the individual donor DRRs. Results indicate the majority of

the donors fit best to nonlinear models as opposed to the linear model. The results were acquired

via the BMD software and were confirmed via maximum likelihood estimation R code written in-

lab.

Percentage of Individuals

Model Type
ELISPOT (n=51) ELISA (n=49)

Exponential 4 29.4% 16.3%
Power 17.6% 30.6%
Exponential 2 17.6% 6.1%
Hill 15.7% 30.6%
Polynomial 2° 11.8% 14.3%
Linear 3.9% 2.0%

Exponential 5 3.9% 0%

Exponential 3 0% 0%
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0.003 = 0.007 nM, respectively (Table 2.2). The ICsy values were further confirmed by the
coefficient estimations from the fitting of the endpoints of interest to the Hill function using the
BMD software (Table 2.2). Results were confirmed by visual inspection of a graphical
representation of the models overlaying the log-transformed data (Figure 2.4A and 2.4B). The
calculated 1Cs, values were used to define the cut-off point for the low-dose region of the DRR.
Specifically, all doses below the next available dose of the ICso were considered part of the low-

dose region of the curve.

2.3.5. Statistical modeling the low-dose region of a DRR

The low-dose region of the number of B cells secreting IgM (ELISPOT) and the
concentration of IgM secreted (ELISA) datasets were fit to the models available in the BMD
software to determine the best fitting statistical model. In comparing linear and nonlinear models,
our results suggest that the low-dose region of both DRRs were best explained by the power
model (Table 2.3). Based on the AIC values of the models available in the BMD software, the
linear model was the least adequate in explaining the data (Table 2.4). Results are also presented
by overlaying the graphical representation of best-fitting power model and the linear model over
the log-transformed response variable further suggesting that the power model fits better to the
observed data (Figure 2.5A and 2.5B). The results from the power and linear model of both DRRs
were also reverse-transformed to visualize the shape within the low-dose region on a continuous,

non-transformed scale (Figure 2.6A and 2.6B).
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Table 2.2. Maximum-likelihood estimates of coefficients for the 4-Parameter Logistic and
Hill models fit to the log-transformed TCDD-induced DRRs. Results indicate the I1Cs, values
for both endpoints measured: 1) the number of cells secreting IgM (ELISPOT) and 2) the

concentration of IgM secreted in the culture media (ELISA).

ELISPOT Results (n=51) [ ELISA Results (n=49)
Model Type Coefficient Standard Standard
Estimate Estimate
Error Error
Upper (d) 3.555 0.037 1.860 0.061
4-P ter Logisti
arameter Logistic Lower (a) 3.131 0.137 1.375 0.132
a—
fe=d+ 1+ Slope (b) -0.409 0.229 -0.275 0.185
C
ICs (c) 0.533 0.954 0.004 0.010
Intercept (y) 3.558 0.036 1.863 0.060
Hill Model Slope (v) -0.431 0.158 -0.477 0.122
* dm
fx)=y+ T an Hill Coefficient (n) 0.415 0.227 0.286 0.165
ICs (k) 0.555 0.984 0.003 0.006
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Figure 2.4. Graphical representation of the statistical models used to calculate the ICs,.
Graphs indicate the 4-parameter and hill model estimations used to calculate the ICs, for two
endpoints of interest adequately fit the observed means of the number of cells secreting IgM (A;
ELISPOT data) and the concentration of IgM secreted into the culture media (B; ELISA data).
Graphed models and observed means are plotted as an overlay over a scatterplot of the raw log-

transformed data for each individual.
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Table 2.3. Coefficient estimates and Akaike Criterion results of the low-dose regions of the
log-transformed response variables. Table indicates the model fit, coefficient estimates, and
the AIC values of the TCDD-induced DRRs of interest suggest that power model best explains
the low-dose region of the DRRs of interest: 1) number of B cells secreting IgM (ELISPOT) and
2) the concentration of IgM secreted into culture media (ELISA). All results were derived using
the BMD software. All coefficient estimates were confirmed via maximum likelihood estimation R

code written in-lab.

ELISPOT Results (n=51) ELISA Results (n=49)

Model Type Coefficient Standard Standard
Estimate Estimate
Error Error
Intercept 3.502 0.019 1.763 0.038
Linear Model
Slope -0.199 0.049 -20.912 7.544
f(x) =By + (B, *x)
Akaike Criterion -463.96 1171
Intercept 3.565 0.036 1.860 0.062
Power Model Slope -0.245 0.049 -0.704 0.435
fx) = [30 + (Bl * xn) Power -0.242 0.103 0.186 0.118
Akaike Criterion -470.6 -119.8
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Table 2.4. The AIC values from fitting dataset to all available models in the BMD software.
Table indicates the AIC values of fitting each model available in the BMD software to the low-
dose regions of the two endpoints of interest: 1) number of B cells secreting IgM and the
(ELISPOT data) and 2) the concentration of IgM secreted during the period of culture (ELISA

data). Results suggest that the power model best fits the data.

Model Type ELISPOT (n=51) ELISA (n=49)

Power -470.36 -119.82
Exponential 4 -469.56 -118.54
Exponential 5 -469.56 -118.57
Polynomial 2 -468.83 -118.33
Hill -467.33 -117.82
Exponential 2 -464.10 -117.64
Exponential 3 -464.10 -117.64
Linear -463.96 -117.62
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Figure 2.5. Statistical models fit to the low-dose region of TCDD-induced dose-response
relationship. Graphs indicate the estimated fit of the power model better explains the low-dose
region of the DRRs as opposed to the linear model of the two endpoints of interest: the number
of B cells secreting IgM (A) and the concentration of IgM secreted during the period of culture (B).
Graphed models along with the observed means were plotted as an overlay over a scatterplot of

the raw log-transformed data for each individual.
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Figure 2.6. Reverse Log-transformed Model Results on Continuous, Non-transformed
Scale. Graphs indicate that the observed means are best fit by a nonlinear model as compared
to a linear model for the TCDD-induced DRRs of interest: the number of cells secreting IgM (A;

ELISPOT data) and the concentration of IgM secreted into the culture media (B; ELISA data).
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2.4. Discussion

In a recent report entitled “Science and Decisions: Advancing Risk Assessment,” the NRC
suggested that, during risk-management decision-making, the low-dose region of non-cancer
DRRs should be assumed as linear without the presence of thresholds. As reviewed by Rhomberg
et al. in 2011, the NRC has based their assumption on three primary arguments: 1) the ‘additivity
to background argument’ that indicates that increasing exposure to chemicals will lead to linear
increases of response over the spontaneous background levels in a population; 2) the ‘population
heterogeneity argument’ that suggests that, regardless of the shape of the individual DRRs, the
dose-response curve will linearize when incorporating the interindividual variability of the human
population; and 3) the ‘epidemiological evidence argument’ which cites epidemiological studies
that have suggested a no-threshold response to increasing exposures (NRC 2009; Rhomberg
2011; White et al. 2009). The focus of this report is on the argument regarding population
heterogeneity. Notably, as toxicological studies often focus on mechanistic details in single cell
lines or inbred mouse strains, there is little data to inform on the influence of population
heterogeneity on the shape of DRRs (Rhomberg 2011). The NRC did not evaluate the potential
effect of population heterogeneity with adequate peer-reviewed datasets (NRC 2009). Foremost,
the NRC’s assumption generalizes the shape of the low-dose region for all chemical exposures;
however, as chemicals have different modes of action, it is unlikely that all chemically affected
biological processes, such as receptor-mediated events, will result in a linear low-dose region
(Bogen 2015). Given the potential risks associated with invalid assumptions in regards to the low-
dose regions of non-cancer DRRs, such as unsafe exposures in susceptible individuals and
financial burden associated with the chemical monitoring and cleanup, the NRC’s assumption

warrants further scrutiny and evaluation.

Receptor mediated responses, from a biochemical standpoint, are a nonlinear signaling

process that contain thresholds (i.e. receptor saturation); such processes are traditionally
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modeled with a sigmoidal, Hill model (Kenakin 2004). The nonlinear nature of receptor-mediated
events provides an excellent platform to determine whether individual nonlinear responses will
linearize in the low-dose region of a DRR when human interindividual variability is considered. In
this study, we used AHR-mediated suppression of the IgM response of CD40L-activated human
primary B cells to model the effect of increasing interindividual variability. Two endpoints of
interest were measured following a 7-day exposure period: 1) the number of IgM secreting cells
and 2) the quantity of IgM secreted into the culture media. These two endpoints displayed
concentration-dependent suppression of B cell function following TCDD treatment
(p=<0.05)(Figure 2.1A and 2.1B). The results are in accordance with a previous report showing
that TCDD significantly suppresses the number of cells secreting IgM (Lu et al. 2011). As
determined by maximum likelihood-estimation, the 1Cs, for TCDD was found to differ over 150
fold between the two endpoints: 1) 0.533 + 0.954 nM for the number of B cells secreting IgM and
2) 0.003 £ 0.007 nM for the quantity of IgM secreted (Table 2.2). Such results suggest that the
endpoint measuring TCDD-induced suppression of IgM secreted by human B cells is more
sensitive when compared to the decrease in IgM-secreting B cells. Notably, the disassociation
constant (Kq4) of the human AHR with TCDD is estimated between 1 and 12 nM and is dependent
on the individual donor’'s AHRs that were tested (Ema et al. 1994; Harper et al. 2002; Lorenzen
and Okey 1991). The ICs, found for the concentration of IgM secreted into culture media in this
study is well below the K, of the human AHR. Such results suggest that very little AHR activation

is required to see a robust response in the concentration of IgM secreted from human B cells.

As previously mentioned, variability in the sensitivity of individual’s AHR-induction by
TCDD suggest that some individuals are more susceptible to TCDD-induced toxicity (Harper et
al. 2002; Lorenzen and Okey 1991). Given that the AHR mediates most of the TCDD-induced
toxic responses and as polymorphisms in differing mouse strains affect sensitivity to TCDD,

polymorphisms in the human AHR gene have been postulated to play a role in the interindividual
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variability in responses to TCDD (Okey et al. 2005; Okey 2007). A previous report suggested that
some human donors did not have B cells that responded to increasing concentrations of TCDD
and this might be due to polymorphisms found in the transactivation domain of the AHR of these
‘nonresponsive’ individuals (Harper et al. 2002; Lu et al. 2010). Similarly, a cohort of 6
‘nonresponsive’ donors appears to be activated to a lesser degree than the cohort of ‘responsive’
donors in the present study (Figure 2.3A). We hypothesize that the lack of response in the number
of cells secreting IgM to TCDD is due to a lesser degree of CD40L-mediated activation of the B
cells from these individuals as the number of cells secreting IgM was significantly decreased in
these donors. Differences in CD40L-activation amongst our cohort of donors may be due to a
plethora of reasons including polymorphisms within CD40 receptor gene, previous and present
exposures, infections, inflammation, and many other factors of which we are unable to gather
information due to the anonymity of blood donation (Blanco-Kelly et al. 2010; Jacobson et al.
2005; Orozco et al. 2010; Raychaudhuri et al. 2008; Teruel et al. 2012). Surprisingly, 2 of the 6
‘nonresponsive’ donors were deemed ‘responsive’ in assaying the concentration of IgM secreted
into the media (i.e. ELISA; Figure 2.3B). Thus, even with a seemingly lesser number of cells
secreting IgM, the concentration of IgM secreted is still affected by increasing [TCDD]. Such
results may be confounded as the ELISA is measuring the concentration of IgM being secreted
over the seven-day period of exposure while the ELISPOT enumerates the absolute number of
cells secreting IgM at a specific time following exposure. Furthermore, these results suggest that,
along with the 1Cs values, the colorimetric ELISA is a more sensitive measure of the IgM response
from activated B cells as compared to enumerating the number of IgM secreting cells by

ELISPOT.

The low-dose regions of the two dose response curves were fit to all models available in
the BMD software and comparison metrics were used to assess goodness of fit. Our results

indicate that the low-dose region of the TCDD-induced DRR for both endpoints of interest fit better
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to the power model as compared to the linear model (Table 3.3, Figure 3.5A and 3.5B). As such,
a nonlinear relationship best describes the low-dose region. To our knowledge, this is the largest
study using unique donors to assess the effect of human interindividual variability within the low-
dose region of a DRR. Based on the DRR data collected from this cohort, our statistical models
of best fit to the low-dose region of these DRRs are contrary to the assumptions made by the
NRC (NRC 2009). However, we do acknowledge that our sample set of 51 unique donors does
not model the genetic diversity in the human population and further studies are needed to
definitively test the NRC’s assumption. This present study, however, makes significant steps
towards better risk-management decision-making in regards to the effect of interindividual
variability within TCDD-mediated endpoints as well as other receptor-mediated responses. The
results of this study are also contrary to the adoption of a generalized model for linear low-dose
effects in all non-cancer endpoints as suggested by the NRC. Our results provide evidence that
some chemical exposures, such as receptor-mediated toxicants, elicit non-linear responses in the
low-dose region of DRRs. Finally, the results from this study indicate a large range in individual’s

susceptibility to TCDD-induced toxicity.
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3.1. Abstract

Recent technological advances have indicated that genetic variability can greatly impact
interindividual responses to chemical exposures. Previous studies have identified a profound
amount of interindividual variability in the 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD)-mediated
immunosuppression in CD40 ligand-activated human B cells. To identify genetic modulators of
TCDD response, B cells were isolated from 12 genetically diverse mouse strains, activated with
CD40-ligand, and dosed with increasing concentrations of TCDD. Quantitative trait locus analysis
implicated a region of mouse Chromosome 1 to be associated with inter-strain differences in
TCDD-mediated suppression of the Immunoglobulin-M (IgM) response. Within this locus,
Serpinb2, which encodes for the serine peptidase inhibitor, clade B, member 2 whose human
ortholog is plasminogen activator inhibitor 2 (PAI2), was found to be dysregulated by TCDD at
the gene and protein expression level. Furthermore, Serpinb2'/' mice were found to be significantly
more sensitive to TCDD-mediated suppression in the number of cells secreting IgM as compared
to littermate controls. As such, this study not only suggests a protective role of human PAI2 within
TCDD-mediated immunosuppression, but also implicates a role for PAI2 in regulating B cell

function.
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3.2 Introduction

The goal of this aim was to follow-up on the wide-range of responses seen in the study
outlined in Chapter 2. In the previous study, CD40L-activated human primary B cells were used
to identify up to 71-fold differences across individual’s responses at the highest dose of TCDD
(30 nM)(Dornbos et al. 2016). While interindividual variability in toxicant-induced signaling can be
driven by many factors, genetic background has been found to have profound impacts on
individual responses. Advances in technologies for genetic analysis have not only improved our
understanding of complex etiologies associated with diseases, but have shown that sub-
populations with specific genetic variants may be more susceptible to stressor-induced injury. The
use of population-based models, such as genetically-diverse panels of inbred mouse strains, have
provided the means to effectively pinpoint genes and pathways that impact susceptibility to

environmental exposures (Dornbos and LaPres 2017; Harrill and McAllister 2017).

To address whether there are genetic factors that may be impacting individual responses,
a mouse population-guided approach was used to scan for potential genetic modulators that may
impact susceptibility to TCDD-mediated suppression of the B cell. As CD40 signaling is highly
conserved across mouse and human (Spriggs et al. 1992), the same human-CD40 ligand model
was used to expose B cells isolated from 12 genetically-diverse mouse strains. Analysis of the
inter-strain differences suggested that genomic factors beyond the Ahr allele impact strain-
specific responses. More specifically, a gene called Serpinb2, which encodes the ortholog of the
human plasminogen activator inhibitor-2 (PAI2), was found within a genomic region that was
implicated by QTL analysis. Further downstream analysis confirmed that Serpinb2-related activity
has a significant impact on TCDD-mediated suppression of the B cell. While Serpinb2 has been
shown to play a role within the immune system, this is the first report linking its activity to a

phenotype within the B cell (Schroder et al. 2011).
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3.3 Results
3.3.1. Inter-strain Differences in Response to TCDD

All 12 strains had a decrease in the number of cells secreting IgM at the high dose of
TCDD (30 nM), each mouse strain displayed a unique dose-dependent response to TCDD (Figure
3.1A). Comparison between the percent inhibition induced at the high dose of TCDD (30 nM)
within the mice included in the current study with a previous study with TCDD-induced
suppression of human B cells from 51 unique human donors, an overlapping histogram suggests
the interindividual differences between the two datasets are comparable (Figure 3.1B)(Dornbos
et al. 2016). Of the 12 strains, 2 were found to contain a statistically significant decrease as
indicated with ANOVA and Dunnett’'s posthoc with the log-transformed response: 1) C57BL/6J
(n=6; p<0.05) and 2) FVB/nJ (n=5; p<0.05) (Figure 3.1C and 3.1D, respectively). There was also
a 10-fold difference in the number of cells secreting IgM at the highest dose of TCDD for the most-
and least-suppressed mice. As such, results show that mice within the genetic screen have a

wide-range in sensitivities to TCDD.

3.3.2. Differences amongst Ahr allelic categories

A linear regression model with individual strains as the independent variables and the
percent inhibition of the IgM response at [30nM] TCDD as the dependent variable was used to
estimate the observed variance that is due to inter-strain differences (Table 3.1). The multiple R?
value was 0.33 with 95% confidence intervals that span from 0.20 to 0.40. As such, we estimate
that ~33% of the observed variance is due to genetic differences across strains. Previous reports
have established that mouse strains carry one of four different Ahr alleles that encode for
receptors with differing binding affinities for TCDD (Poland and Glover 1990; Poland et al. 1994;
Thomas et al. 2002). A multiple global sequence alignment indicates that the strains in this panel
carry 3 different Ahr alleles: 1) Ah®' (n=1; grey), 2) Ahr"? (n=5; blue), and 3) Ahr* (n=6;

green)(Figure 3.2A). Allelic clustering was used to group mice of the same allele together to
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Figure 3.1. Inter-strain differences in the response to TCDD-mediated
immunosuppression. B cells isolated from 12 genetically-diverse strains of mice were exposed
to increasing concentrations of TCDD (0 to 30 nM) for 6 days and the percentage of cells secreting
IgM was determined by ELISPOT. Each strain was normalized to its own vehicle control to
compare TCDD-mediated effects within the IgM response across strains (A). The distributions of
the percentage of cells secreting IgM at the high dose of TCDD (30 nM) as normalized to the
vehicle control for all mice (blue) and humans (red) was created to visualize overlap (maroon)
between the mouse and previous human study (B). The dose-response analysis for the C57BL/6J
(C, n=6) and FVB/nJ (D, n=5) strains indicate statistically significant, concentration-dependent
decreases in the number of cells secreting IgM as compared to the vehicle control as indicated
with an ANOVA with a Dunnett’s posthoc. Stars (*) indicate a p<0.05 and error bars indicate

standard error.
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Figure 3.2. The Ahr allele does not drive all inter-strain differences to TCDD-mediated
suppression of the IgM response. Genomic data was used to predict the AHR amino acid
sequence for each mouse strain included in the study. A multiple sequence alignment of the AHR
protein sequences from the 12 mouse strains assayed indicates that 3 unique alleles are present
in this panel: 1) Ahr"" (grey), 2) Ahr"? (blue), and 3) Ahr® (green) (A). The average percent
decrease in IgM secreting B cells at 30 nM TCDD as normalized to the vehicles control was
determined from all the mice within their respective Ahr allele (B). Comparison of the TCDD-
induced suppression of IgM secretion in B cells from the individual strains (Ahr’’ (grey), Ahr*?
(blue), and Ahr® (green)) indicates that some strains do not respond like strains within their
respective AHR allelic categories (C). Stars (*) indicate a p<0.05 and error bars indicate standard

error.
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Table 3.1 The Ahr allele does not drive all inter-strain differences to TCDD-mediated
suppression of the IgM response. All estimates are relative to the TCDD-mediated inhibition in

129S1/SvimJ (i.e. the least affected strain). Stars (*) indicate significant differences.

Coefficient Estimate Standard Error t value Pr (>]t])
Intercept 80.222 12.739 6.297 <0.001*
AlJ -36.909 15.602 -2.366 0.022*
BALB/cJ -25.666 15.602 -1.645 0.107
C3HeB/Fed -24.068 16.114 -1.494 0.142
C57BL/6J -39.417 15.602 -2.526 0.015*
CBA/J -25.840 18.015 -1.414 0.164
CC019 -27.320 16.852 -1.621 0.112
CC041 -4.568 16.114 -0.283 0.778
DBA/1J -2.534 16.114 -0.157 0.876
FVB/NJ -33.709 16.114 -2.092 0.042*
NOD/ShiLtJ -2.232 15.602 -0.143 0.887
NZO/HILTJ -25.527 16.114 -1.584 0.120

Residual Standard Error: 22.06 on 47 degrees of freedom.
Multiple R% 0.313; Adjusted R% 0.175

F Statistic: 2.118 on 11 of 47 degrees of freedom; p = 0.0374
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compare the percentage of cells secreting IgM at 30 nM TCDD across the 3 Ahr alleles. The
results indicate that mice carrying the Ahr”’ and Ahr*?alleles have a significantly lower percentage
of cells secreting IgM as compared to the Ahr" mice (p<0.05; Figure 3.2B). There was no
significant difference when comparing the of Ahr’" and Ahr*? allelic categories. These results
agree with previous reports (Poland et al. 1994). In comparing percentage of cells secreting IgM
across the individual strains at the 30 nM treatment of TCDD, several strains were found to
behave differently than what might be predicted based on the Ahr allele carried (Figure 3.2C). For
example, the NZO/HILTJ and CC019 strains, which both carry the Ahr” allele, appear to respond
similarly to the majority of Ahr®? mice. Similarly, the A/J strain, which carries the Ahr*? allele,

appear to respond quite similarly to the C57BL/6J strain which carry Ahr”’ allele.

3.3.3. QTL Analysis of Percent Inhibition Identifies Significant Association

Exploratory QTL analysis was performed using the percent inhibition at the high dose of
TCDD (30 nM) where statistical significant inhibition was present amongst several mouse strains.
The genome-wide scan indicated a significant association with Chromosome 1 (LOD=5.61;
p<0.05)(Figure 3.3). Genes within 1 Mb of the marker with the maximal LOD score were compiled
into lists of potential candidates that may be modulating the TCDD-induced suppression in the
number of antibody secreting cells (Table 3.2). While several candidate genes near the interval
identified may contribute TCDD-mediated immunosuppression, only one, Serpinb2, is
dysregulated by TCDD at the level of mRNA expression in both mouse and human B cells
(Kovalova et al. 2017). Furthermore, the Serpinb2 gene is located within 60 kb of the marker
significantly associated with the B cell phenotype. As such, Serpinb2 was selected for further
confirmatory analysis and to evaluate potential roles in modulating inter-strain differences in

susceptibility to TCDD-mediated suppression of the immune response.
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Figure 3.3. Quantitative Trait Loci (QTL) analysis indicates a significant association within
Chromosome 1. The TCDD-mediated percent suppression in the number of cells secreting IgM
at 30 nM TCDD as normalized to the vehicle control was determined with an ELISPOT assay.
The percent suppression was used to scan the genome for quantitative trait loci (QTLs) that
potentially drive inter-strain differences using the WebQTL software from GeneNetwork. A
significant association was identified on chromosome 1 at a marker located at 107.584 Mb (LOD
= 5.611; p=0.031). The horizontal black-dotted line indicates the threshold of significance based

on a permutation test (n=1000).
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Table 3.2. Candidate genes associated with TCDD-induced suppression of the B cell.

Genes located within 1 Mb upstream or downstream of the statistically significant association on

chromosome 1 were considered. A literature search indicated that Serpinb2 (bolded), which is

located from 107.500-107.526 Mb on Chromosome 1 (i.e. within 59,000 bp of the significant

marker), is dysregulated by TCDD within pokeweed mitogen-activated mouse and human B cells.

Logs of
Location
Chromosome Difference P-value Genes Within Region
(Mb)
(LOD)
Bcl2, Kdsr, Vps4d, Serpinb5,
Pou2f3-rs1, Serpinb12,
Serpinb13, Serpinb3a,
Chr 1 107.584 5.611 0.031

Serpinb3d, Serpinb3b,
Serpinb3c, Serpinb11, Serpinb7,

Serpinb2, Serpinb10, Serpinb8
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3.3.4. Time course of TCDD-mediated Serpinb2 Expression

B cells were compared from a sensitive (C57BL/6J; Ahr"’ allele) and a less-sensitive strain
(DBA/1J; Ahr” allele) to TCDD-mediated immunosuppression to investigate for the presence of
inter-strain differences in Serpinb2 mMRNA expression. Results indicated a significant increase in
Serpinb2 expression following 2 days of exposure to TCDD in DBA/1J mice (p<0.05), but not
C57BL/6J mice (Figure 3.4A). More notably, Serpinb2 expression was found to be significantly
higher in DBA/1J as compared to C57BL/6J (p<0.05, Figure 3.4A). In addition, Cyp1a1 expression
was also assessed as a biomarker for AHR activation. Expression of Cyp7a’ mRNA was
significantly increased at day 2 in DBA/1J (p<0.05) and at day 2, 3, and 4 for C57BL/6J (p<0.05;
Figure 3.4B). Interestingly, DBA/1J mice were found to have a significantly higher TCDD-induced
fold change in Cyp7a1 expression on day 2 as compared to C57BL/6J strain (p<0.05), but the
upregulation dissipates by day 3 (Figure 3.4B). In contrast, C57BL/6J had significantly more
Cyp1at expression induced by TCDD as compared DBA/1J at day 3 and day 4 (p<0.05; Figure
3.4B). As such, results indicate statistically significant inter-strain differences in TCDD-mediated

expression of Serpinb2 and Cyp1a1 within B cells.

3.3.5. Time-course of TCDD-dysregulated Intracellular SERPINB2 and IgM Expression

To assess whether the differential Serpinb2 gene expression is also found at the protein
level, SERPINB2 protein expression was analyzed over a 4-day time-course with a focus on the
time-points where expression of Serpinb2 and Cyp1al mRNA was dysregulated. Results
indicated significant TCDD-induced increases in the fold change of the percentage of SERPINB2"
cells after TCDD treatment as compared to the vehicle control for DBA/1J mice at day 3 and 4
(p<0.05; Figure 3.5A). Similarly, there was a significant increase in mean fluorescent intensity
(MFI) of SERPINB2 in DBA/1J at day 3 and day 4 following TCDD treatment (p<0.05; Figure

3.5B). In contrast, there were no significant changes in the percentage SERPINB2" cells or the
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Figure 3.4. Serpinb2 gene expression was found to be dysregulated by TCDD in the DBA/1J
and not in the C57BL/6J. Total RNA was extracted from B cells isolated from C57BL/6J (Ahr"’
allele) and DBA/1J (Ahr” allele) mice that were exposed to TCDD (30 nM) for 0.33, 1, 2, 3, 4, 5,
and 6 days. QRTPCR was used to assess whether expression of Serpinb2 mRNA is affected by
TCDD exposure in the both strains (A). QRTPCR was also used to analyze Cyp7a’ mRNA
induction as a biomarker of AHR activation (B). All fold changes are reported for TCDD-treated
cells that are normalized to the vehicle control (not shown). Stars (*) indicate a p<0.05; stars
directly over bars indicate differences in the TCDD treatment as compared to the vehicle control
or, when over bracket, indicate a comparison of TCDD treatments across strains. Error bars

indicate standard error.
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Figure 3.5. TCDD exposure increased the percentage of SERPINB2' and level of
intracellular SERPINB2 expression in DBA/1J, but not C57BL/6J mice. B cells isolated from
a C57BL/6J and DBA/1J mice were exposed to TCDD (30 nM) for 2, 3, 4, and 5 days. Flow
cytometry was used to assess the level of intracellular SERPINB2 protein expression. The
percentage of cells that are SERPINB2" were assessed at each timepoint (A). Similarly, mean
fluorescence intensity for the SERPINB2 antibody was used to assess the level of SERPINB2
expression at each timepoint (B). A representative sample for DBA/1J (C) and C57BL/6J (D) was
chosen to visualize the shift of SERPINB2 expression in the population of B cells treated with
TCDD as compared to the vehicle. All fold changes are reported for TCDD-treated cells that are
normalized to the vehicle control (not shown). Stars (*) indicate a p<0.05; stars directly over bars
indicate differences in the TCDD treatment as compared to the vehicle control or, when over

bracket, indicate a comparison of TCDD treatments across strains. Error bars indicate standard

error.
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SERPINB2 MFI for C57BL/6J mice (Figure 3.5A and 5B). In comparing the strains, the percentage
of SERPINB2" cells were significantly higher in the DBA/1J at day 2 and day 3 (p<0.05,
respectively; Figure 3.5A). Similarly, DBA/1J also had significantly higher TCDD-induced
SERPINB2 expression as indicated by the SERPINB2 MFI at day 3 and day 4 (p<0.05; Figure
3.5B). A representative sample for each strain was chosen to visualize the increase in the
expression of SERPINB2 in DBA/1J as compared to the slight decrease seen within C57BL/6J
(Figure 3.5C and 5D, respectively). Results suggest that, along with the mRNA expression data,
the protein expression data also suggests inter-strain differences in the levels of intracellular

SERPINB2.

As the QTL analyses were based on TCDD-induced inter-strain differences in the number
of cells secreting IgM, intracellular IgM expression was also assessed to potentially identify a
correlation with SERPINB2 expression. The TCDD-induced fold change in the frequency of
SERPINB2*, SERPINB2’, IgM*, and IgM" cells were compared at each timepoint across the two
strains. Results indicate that on day 2 post-TCDD exposure, there is a significantly smaller fold
change in the number of cells that are SERPINB2"/IgM* induced by TCDD in DBA/1J as
compared to C57BL/6J (p<0.05; Figure 3.6A). However, on day 3 post-exposure, TCDD-induced
a significantly higher fold change of SERPINB2*/IgM" cells in DBA/1J as compared to C57BL/6J
(p<0.05; Figure 3.6B). Notably, while TCDD-induced an increase in SERPINB2*/IgM" DBA/1J
mice on day 3, the C57BL/6J was found to have a decrease (i.e. > 6 fold difference between
mice). As such, there appears to be a time-dependent correlation between SERPINB2 expression
and higher levels of intracellular IgM in the DBA/1J. This trend continues on Day 4 as DBA/1J
was found to have a significantly higher fold change in SERPINB2'/IgM" as compared to
SERPINB2'/IgM" in C57BL/6J (p<0.05; Figure 3.6C). However, the TCDD-induced frequency of

SERPINB2*/IgM" cells in the DBA/1J also increases on day 4 as compared to the C57BL/6J
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Figure 3.6. Intracellular SERPINB2 expression correlates with high level of intracellular IgM
in a time-dependent manner. B cells isolated from C57BL/6J and DBA/1J mice were exposed
to TCDD (30 nM) for 2, 3, 4, and 5 days. Flow cytometry was used to assess the TCDD-induced
fold change in the frequency of cells that are SERPINB2" and high IgM* on day 2 (A), day 3 (B),
day 4 (C), and day 5 (D). All fold changes are reported for TCDD-treated cells that are normalized
to the vehicle control (not shown). Stars (*) indicate a p<0.05; stars directly over bars indicate
differences in the TCDD treatment as compared to the vehicle control or, when over bracket,

indicate a comparison of TCDD treatments across strains. Error bars indicate standard error.
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(p<0.05; Figure 3.6C). Finally, on day 5, where the TCDD-induced increase in SERPINB2 levels
has dissipated, there was a significantly larger TCDD-induced fold change in SERPINB2/IgM*
cells in DBA/1J compared to the C57BL/6J (p<0.05). Consequently, there appears to be a
correlation with TCDD-induced expression of intracellular SERPINB2 and IgM on day 3 in

DBA/1J, but not C57BL/6J.

3.3.6. Serpinb2” mice are more sensitive to TCDD-induced Inmunosuppression

While the above comparison suggests the Serpinb2 gene and SERPINB2 protein
expression display significant inter-strain variation, the results do not provide a functional
relationship for SERPINB2 in TCDD-induced suppression of the IgM response. To test this
relationship directly, a SERPINB2 knockout mouse on a C57BL/6J background was used. B cells
from Serpinb2” mice along with wild type controls were isolated and treated with TCDD using the
same model as for the genomic screen (i.e. 6 total days of culture). Results indicated that both
Serpinb2” mice and wild type controls had significant decreases in the percentage of cells
secreting IgM (p<0.05; Figure 3.7A). More notably, Serpinb2” mice were significantly more
sensitive to TCDD-mediated suppression with significantly lower percentages of cells secreting
IgM as compared to wild type controls (p<0.05; Figure 3.7A). The Serpinb2” and wild type mice
both were found to significantly induce Cyp7a1 mRNA expression on day 2 (p<0.05; Figure 3.7B).
The expression of Cyp1a1 mRNA for the TCDD treatments were not different between strains
suggesting that, while the AHR is activated in both strains, the difference in sensitivity between

the Serpinb2”and wild type mice is likely not due to differing levels of AHR activity (Figure 3.7B).

3.3.7. Serpine1” mice are not more susceptible to TCDD-induced Inmunosuppression
To determine if the above results were specific to SERPINB2 activity, B cells were also
analyzed from SERPINE1 null mice. Similar to the results from the Serpinb2” study, there was a

significant TCDD-induced decrease in the percentage of cells secreting IgM in Serpine1” and wild
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Figure 3.7. Serpinb2”™ mice, but not Serpine1’ mice, are more sensitive to TCDD-induced
immunosuppression. B cells isolated from Serpinb2”™ and Serpine1”™ mice along with the
respective wild type controls were exposed to TCDD (30 nM) for 6 days. An ELISPOT assay was
used to assess for TCDD-mediated percent suppression as normalized to the vehicle control in
the Serpinb2’ and wild type controls (A). RNA was isolated from Serpinb2” and wild type controls
that were exposed to TCDD (30 nM) for 2 days. QRTPCR was used to assess the level of TCDD-
mediated Cyp7a7 induction in both strains as a marker of AHR activation (B). An ELISPOT was
also used to assess the percentage of cells secreting IgM as normalized to the vehicle control in
the Serpine1™ mice and wild type controls (C). RNA was isolated from Serpine1™ and wild type
controls that were exposed to TCDD (30 nM) for 2 days. QRTPCR was used to assess the level

of TCDD-mediated Cyp7a7 induction in both strains (D).
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type controls (p<0.05; Figure 3.7C). Significant increases in TCDD-induced Cyp7a?l mRNA
expression were found in both strains as well (p<0.05; respectively; Figure 3.7D). However, in
comparing the TCDD treatments between the Serpine1"' mice with wild type controls, there was
no significant differences in either the percentage of cells secreting IgM or in the induction of
Cyp1al mRNA (Figure 3.7C and 7D). As such, the loss of SERPINE1 did not appear to affect
sensitivity to TCDD-induced suppression in the number of antibody-secreting cells with similar
levels of AHR activation between the Serpine1"'and wild type controls. Thus, the aforementioned

differences in sensitivity appear to be specific to the activity of SERPINB2.
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3.4. Discussion

Traditional toxicological studies focused on environmental contaminants have rarely
considered the influence of genetic variability when assessing risk associated with exposures. As
genetic background has been shown to play an important role in influencing individual’s
responses to chemicals, this lack of population-level testing provides a challenge for risk
assessment. With the use of population-based models, genetic information can be leveraged to
better understand which sub-populations may be more at-risk for adverse health outcomes
following chemical exposures. In this study, we used to a mouse population-guided approach to
scan for potential genetic modifiers that impact the interindividual variability in TCDD-mediated

immunosuppression observed in human B cells (Dornbos et al. 2016),

Results from this study indicated, similar to our human B cell study, a wide-range in
response to TCDD-induced B cell suppression (Figure 3.1A and 1B). Furthermore, QTL analysis
identified a region of the genome that was significantly correlated with inter-strain differences
(Figure 3.2C and Figure 3). A gene within this region, Serpinb2, had previously been reported to
be influenced at the level of MRNA expression by TCDD in mouse and human B cells (Kovalova
et al. 2017). The TCDD-inducible expression results were confirmed at the mRNA and protein
level with our CD40 ligand-activation model in the DBA/1J strain, but not in the C57BL/6J strain
(Figure 3.4A, Figure 3.5A and 5B). Furthermore, a Serpinb2” mouse strain was found to be more
sensitive to TCDD-mediated suppression in the percentage of cells secreting IgM, suggesting that
SERPINB2 plays a protective role in TCDD-mediated immunosuppression of the B cell (Figure
3.7A). The induction of SERPINB2 in DBA/1J was found to correlate with a higher level of
intracellular IgM on day 3, but not on day 4, which may suggest some time-dependence as to

when the protection of TCDD-mediated suppression may occur (Figure 3.6B and 6C). Finally, this
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response was found to be specific to Serpinb2, as the same phenotype was not observed in

Serpine1” mice (Figure 3.7C).

Based on the expression patterns of PAI2, the human ortholog of Serpinb2, during
infection and inflammatory stimuli (i.e. cytokines), PAI2 has been suggested to play an important
role within the immune response (Schroder et al. 2010; Zhao et al. 2013). Previous reports,
however, have primarily focused on the role of Serpinb2 in the macrophage where, after
activation, SERPINB2 is one of the most abundant proteins (Costelloe et al. 1999; Gan et al.
2008; Kruithof et al. 1995; Losick and Isberg 2006; Medcalf and Stasinopoulos 2005; Schroder et
al. 2010; Sekine et al. 2009). While TCDD-induced Serpinb2 mRNA expression has been reported
in human and mouse B cells activated with pokeweed mitogen (Kovalova et al. 2017), this is the
first report indicating a TCDD-elicited increase in Serpinb2 mRNA and SERPINB2 protein
expression in CD40 ligand-activated B cells. As such, these findings suggest a novel role of
Serpinb2 in B cell function and further confirms that Serpinb2 plays a key role within multiple-

levels of immune function.

While SERPINB2/PAI2 has been extensively studied, its role in immune function still
remains elusive (Medcalf and Stasinopoulos 2005). Here, we have shown that loss of the gene
results in a greater sensitivity to TCDD-mediated immune suppression in mice. In speculating on
the potential mechanism to explain this suppressed immunity, previous reports have identified
that human PAI2 binds directly to proteasome subunit 1 which may provide some insight into
the phenotype we observed (Fan et al. 2004). Past studies have also shown that CD40 signaling
activates and promotes translocation of NFKB into the nucleus (Berberich et al. 1994). As the
proteasome has been shown to play a key role in regulating NFKB signaling in several cell types,
including human B cells, previous reports have suggested that PAI2’s association with the

proteasome may be involved in regulation of NFKB signaling (Berberich et al. 1994; Karin and
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Ben-Neriah 2000; Kosaka et al. 1999; Schroder et al. 2010; Schroder et al. 2011). Similarly,
Serpinb2”" mice have also been reported to have enhanced levels of NFKB activity (Schroder et
al. 2010). Interestingly, the AHR and NFKB have been previously reported to interact both
physically and via downstream signaling cascades (Tian et al. 1999; Tian 2009; Vogel and
Matsumura 2009). Furthermore, a recent paper has shown that, upon TCDD treatment, altered
expression of NFKB/REL members may, along with AHR activation, mediate a decrease in Ig
expression (Salisbury and Sulentic 2015). Increased PAI2 expression may provide protection to
less-sensitive strains via regulation of NFKB/REL signaling. Human PAI2 has also been reported
to bind and protect retinoblastoma protein (RB1) from calpain cleavage ultimately leading to
increase RB1 levels within the cell leading to increased cell survival (Tonnetti et al. 2008). A
physical interaction between AHR and RB1 has also been reported and this interaction might
modulate the cell cycle (Murray et al. 2014; Puga et al. 2000). The increase in the PAI2 pool
within activated B cells may promote cell survival in an RB1-dependent manner. Finally, human
PAI2 has been shown to bind and stabilize CDKN1A in human fibroblasts (Hsieh et al. 2017).
Previous reports have noted B cells accumulate CDKN1A upon CD40 ligation (Mullins et al.
1998). While CDKN1A is known to promote cell senescence, it also has been found to be
necessary for the assembly and nuclear localization of cyclin D/CDK4 and, thus, progression to
G1 phase of replication (LaBaer et al. 1997; Zhang et al. 1994). Increased PAI2 expression,
therefore, might increase the pool of CDKN1A to a level high-enough in the nucleus to move to
the G1 phase contributing to the separation seen between the number of IgM secreting cells of

sensitive and less-sensitive strains (Mullins et al. 1998).

Mouse population-based studies have been used to inform human-based risk assessment
in the past (Chiu et al. 2014; Cichocki et al. 2017; Harrill et al. 2009). Here, a genetically-diverse
mouse panel was used to characterize the functional role of Serpinb2 in TCDD-mediated

suppression of the mouse B cell. The results from this study suggest that human PAI2 plays a
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role in mediating the IgM response. Notably, a number of Serpinb2 polymorphisms within the
human population have been identified that impact a plethora of disease-states (Andraweera et
al. 2014; Buyru et al. 2003; Corsetti et al. 2016; Palafox-Sanchez et al. 2009; Vazquez-Del
Mercado et al. 2007). While further research is needed, we speculate that polymorphisms that
impact human PAI2 activity will alter individual's susceptibility to TCDD-mediated

immunosuppression and, more broadly, the CD40-mediated IgM response.
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4.1. Abstract

As traditional toxicology studies typically use homogenous models, we used a genetically-diverse
mouse population-based approach to scan for novel genetic modulators that impact hepatic
sequestration of TCDD and TCDD-elicited hepatotoxicity. A panel of 14 strains of mice were
treated with 1 or 100 ng/kg TCDD for 10 days. Significant inter-strain differences in hepatic TCDD
burden appear heavily-driven by genetic background. Of 9 AHR-responsive genes analyzed, the
TCDD-induced gene dysregulation of 4 genes were found to correlate with TCDD burden. Three
of these genes are classical AHR-battery genes suggesting that AHR-mediated transcription
drives hepatic TCDD sequestration. TCDD burden and TCDD-induced gene expression were
used to scan for genetic modulators of TCDD-induced toxicity. Quantitative trait loci (QTL)
analysis identified several novel genomic regions that potentially modulate TCDD-induced gene
dysregulation. Tgfbr2, which encodes for transforming growth factor  receptor Il (TGFBR2), was
found within one genomic region of interest. Inhibiting TGFBR2 activity decreased TCDD-elicited
inflammation, but increased lipid accumulation, in the livers of male, but not female, C57BL/6
mice. Our results suggest that TGFBR2 activity modulates TCDD-elicited liver toxicity in male
mice. These results, while providing further understanding of AHR biology, have the potential to

identify sub-populations more susceptible to TCDD-induced toxicity.
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4.2 Introduction

Previous studies indicate that the liver is a sensitive target of TCDD-induced toxicity.
TCDD exposures in mice lead to increased levels of alanine aminotransferase (ALT) in the serum,
inflammation, and liver weight (Boverhof et al. 2005; Kopec et al. 2013; Pierre et al. 2014). TCDD-
elicited increase in liver weight is likely driven, at least in part, by induction of fatty liver disease.
Previous reports show that a single, bolus dose of TCDD (30 pg/kg) results in an increased
deposition of fatty acids in the liver of mice that are sensitive to TCDD (Boverhof et al. 2005). If
exposure to TCDD is prolonged, the increased fatty acid uptake in the liver has been shown to
progress to steatohepatitis with fibrosis (Nault et al. 2016a; Nault et al. 2016¢; Nault et al. 2017;
Pierre et al. 2014). Epidemiological studies indicate that exposures to TCDD and other dioxin-like
compounds are associated with increased incidence of liver disease in humans as well. More
specifically, exposures to TCDD and other dioxin-like chemicals are associated with increased
levels of liver enzymes, diabetes and metabolic syndrome (Cave et al. 2010; Dietrich and

Hellerbrand 2014; Lee et al. 2007; Taylor et al. 2013).

Previous rodent-based studies show that TCDD accumulates in the liver in a dose-
dependent manner (Nault et al. 2016a). Furthermore, genes that are regulated by the AHR are
involved in the hepatic sequestration of TCDD. For example, CYP1A2, which is a part of the AHR
gene-battery, is known to bind the contaminant (Voorman and Aust 1989). Hepatic sequestration
of TCDD is greatly reduced following a single dose of TCDD in Cyp7a2” mice (Diliberto et al.
1997; Hakk et al. 2009). Notably, hepatic TCDD sequestration has not been addressed using
heterogeneous models that mirror the variability in the human population. Similarly, TCDD-
induced gene expression has been heavily-studied in mice using homogenous models. The
impact of incorporating genetic variability has not yet been characterized for either the

accumulation of TCDD or AHR-mediated transcription.
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To address this knowledge gap, 14 genetically-diverse mouse strains were exposed to
vehicle control, 1, or 100 ng/kg/day of TCDD for 10 consecutive days. Following exposure, gas
chromatography-mass spectrometry (GC/MS) was used to analyze the level of hepatic TCDD
accumulation. Expression of 9 AHR-responsive genes were also analyzed in the liver. These
results were used to further characterize the toxicodynamics of AHR-mediated sequestration.
QTL analysis implicated a region on mouse Chromosome 9 that has potential to modulate TCDD-
induced toxicity in the liver. Amongst the genes within this region, Tgfbr2, which encodes for
transforming growth factor 8 receptor type Il, was found to modulate the level of inflammation and
fat accumulation in the liver of TCDD-exposed C57BL/6 mice. While a ligand of TGFBR2 called
TGFB1 is altered by TCDD, this is the first report with functional data that suggests TGFBR2

activity plays a role in TCDD-induced liver pathology.
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4.3 Results
4.3.1. Inter-strain variability in TCDD liver burden

There is wide variability in the level of TCDD burden in the liver of mice that received
TCDD. Within the 1 ng/kg/day dose group, the population mean level of TCDD was 22.7 ng/kg of
liver with 95% confidence intervals that range from 6.0 to 39.4 ng/ kg of liver (Figure 4.1). Notably,
there is a > 40-fold difference in the accumulation of TCDD in the livers in the 1 ng/kg/day group
with the lowest levels in NZO/HILtJ (2.8 ng/kg liver) and highest in DBA/1J (119.5 ng/kg
liver)(Figure 4.1). Within the 100 ng/kg/day dose group, the population mean level of TCDD was
1909.7 ng/kg of liver with the 95% confidence interval ranging from 955.1 to 2864.2 ng/kg of liver
(Figure 4.1). The mean level of TCDD accumulation is > 84-fold higher in mice that received 100
ng/kg/day dose group as compared to the 1 ng/kg/day mice. Within the higher dose group, there
is > 30-fold difference in the mean levels of TCDD in the livers across strains with the lowest in
NOD/ShiLtd (159.2 ng/kg liver) and highest in BXD91 (5286.7 ng/kg liver; Figure 4.1). The
heritability estimate (h?) for accumulation of TCDD within the 100 ng/kg/day dose group is 0.94
with 95% confidence intervals that span from 0.90 to 0.96 (Table 4.1). The h? estimate suggests
that genetic variance in this mouse panel drives roughly 15 times more of the observed variance
as compared to environmental factors. These results suggest that accumulation of TCDD in the
liver of mice is highly genotype-dependent. In comparison with serum lipid adjusted toxic
equivalent factors (TEQs) for TCDD and dioxin-like compounds previously reported, the levels of
hepatic TCDD measured in this study suggest that the dosing scheme provided environmentally
relevant physiological levels of TCDD for the 1 and 100 ng/kg/day dose groups (Nault et al.
2016a). The mean level of TCDD in the vehicle control group was 2.8 ng/kg of liver and is not

genotype-dependent.

As inbred mouse strains are known to carry one of four distinct Ahr alleles that impact

affinity for AHR-ligands, an AHR amino acid sequence alignment was performed to determine the
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Figure 4.1. Mean hepatic TCDD levels in 14 genetically-diverse mouse strains. GC/MS was
used to assess the hepatic TCDD burden in mice (n=3) treated with 1 ng/kg or 100 ng/kg of TCDD
for 10 consecutive days. Levels are reported as ng of TCDD per kg of liver (ng/kg). Bars indicate
mean level of TCDD; error bars indicate standard error. Orange and blue box indicates the 95%
confidence intervals of population-level mean TCDD levels for the 1 ng/kg/day and 100 ng/kg/day
dose group, respectively. White dotted lines within colored boxes indicate the population-level

means for respective dose group.
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Table 4.1. Coeffecient estimates for regression model comparing inter-strain differences
in hepatic TCDD accumulation for the 100 ng/kg/day dose group. All coefficient estimates
are relative to the NOD/ShiLtJ which had the lowest mean level of hepatic TCDD across the 14

mouse strains. Stars (*) indicate a p <0.05.

Coefficient Estimate Standard Error t value Pr (>]t|)
Intercept 159.27 315.46 0.505 0.618
129S1/Svimj 588.07 446.13 1.318 0.198
Al 457.07 446.13 1.025 0.314
BALB/cJ 536.93 446.13 1.204 0.239
BXD100 4653.15 446.13 10.430 <0.001*
BXD40 1474.07 446.13 3.304 0.002*
BXD91 5127.40 446.13 11.493 <0.001*
C3HeB/Fed 2284.07 446.13 5.120 <0.001*
C57BL/6J 4064.07 446.13 9.110 <0.001*
CBA/J 3374.07 446.13 7.563 <0.001*
CC019 104.73 446.13 0.235 0.816
DBA/1J 1307.40 446.13 2.931 0.006*
FVB/NJ 514.40 446.13 1.153 0.259
NZO/HILTJ 20.17 446.13 0.045 0.964

Residual Standard Error: 22.06 on 47 degrees of freedom.

Multiple R% 0.939; Adjusted R*: 0.911

F Statistic: 33.37 on 13 of 28 degrees of freedom; p = <0.001*
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Ahr allele carried by each strain (Poland and Glover 1990; Poland et al. 1994; Thomas et al.
2002). Phylogenetic analysis indicates that mice in this study carry one of three distinct Ahr alleles:
1) Ahr"" (grey), 2) Ahr*? (blue), and 3) Ahr” (green)(Figure 4.2A). On average, the level of TCDD
sequestered in the liver is impacted by the Ahr allele carried by the mouse strain (Figure 4.2B).
The mean level of TCDD in Ahr”" mice is significantly higher than the mean levels found in Ahr*?
and Ahr” mice (p<0.05). Similarly, Ahr"? mice sequester more TCDD than Ahr* mice (p<0.05).
Notably, allelic differences in TCDD burden were only present in mice treated with 100 ng/kg/day

TCDD and not at the lower dose of TCDD.

While there are significant differences in the mean levels of TCDD across Ahr alleles in
the 100 ng/kg/day dose group, there is clearly intra-allelic variability (Figure 4.2C). For example,
DBA/1J and BXD40 were found to have significantly higher TCDD burdens than other Ahr” mice
such as NOD/ShiLtJ, NZO/HILtJ, and CC019 (p<0.05). Similarly, CBA/J had significantly higher
TCDD burden than all the other Ahr"? mice (p<0.05). C3HeB/FeJ were found to accumulate
significantly higher levels of TCDD as compared to A/J (p<0.05). Notably, in comparing individual
strains across allelic categories, several Ahr” allele mice, such as the 129S1/SvimJ, DBA/1J, and
BXD40, were found to accumulate higher levels of TCDD than Ahr®? mice, such as A/J, FVB/NJ,
and BALB/cJ. These results suggest that, while the Ahr allele affects<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>