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ABSTRACT 
 

A POPULATION-GUIDED APPROACH TO IDENTIFY GENETIC MODULATORS OF  
TCDD-ELICITED TOXICITY 

 
By 

 
Peter William Dornbos 

 
 Traditional toxicological studies have not incorporated genetic variability, but rather have 

focused on homogenous models, such as inbred mouse strains. The lack of incorporation of 

genetic heterogeneity provides a challenge in defining safe-exposure limits that encompass all 

individuals within the population. The goal of this dissertation was to use a population-based 

approach to characterize the impact of genetic heterogeneity within TCDD-induced toxicity. TCDD 

is a pervasive and persistent environmental contaminant that is associated with a plethora of 

adverse health effects in humans. TCDD-elicited toxicity is mediated through activation of a 

ligand-activated transcription factor called the aryl hydrocarbon receptor (AHR). While the Ahr 

gene sequence inherited is known to impact TCDD-induced toxicity, we hypothesize that other 

genomic factors will impact susceptibility to TCDD-elicited toxicity. To test this hypothesis, a 

mixture of in vitro and in vivo-based methods were employed to quantify the variability in response 

across heterogeneous individuals and to identify genetic modulators of TCDD-induced 

immunosuppression and alterations in liver homeostasis.  

 First, an in vitro-based approach was used to identify the inherent variability in the human 

population to TCDD-elicited suppression of B cells. The results showed that there was a wide 

range of response (>70-fold) at high doses of TCDD. B cells were isolated from a genetically-

diverse mouse panel and exposed to TCDD to scan for genetic modulators that may explain the 

wide-degree of variability across human individuals. Our study implicated Serpinb2, which 

encodes for serine peptidase inhibitor, clade B, member 2, as a modulator of TCDD-elicited 

suppression of the B cell. Further downstream functional analysis identified that Serpinb2 plays a 

protective role against TCDD-elicited suppression of the B cell in mice.  



 Secondly, an in vivo mouse population-based approach was used to scan for genetic 

modulators of TCDD-elicited alterations in liver homeostasis. Hepatic sequestration of TCDD was 

found to be dependent on AHR-mediated transcription. Inter-strain differences in expression of 

AHR-responsive genes implicated Tgfbr2, which encodes for transforming growth factor β 

receptor II (TGFBR2), as a potential modulator of TCDD-elicited liver toxicity. Functional analyses 

suggested that TGFBR2-activity protects against TCDD-elicited inflammation, but increases 

hepatic lipid accumulation in the livers of male, but not female, mice. 

 Finally, TCDD-elicited change in body weight across our mouse panel implicated Hmgcr, 

which encodes the rate-limiting enzyme of cholesterol biosynthesis called HMG-CoA reductase 

(HMGCR). While reports indicate that TCDD-impacts cholesterol homeostasis in rodents, the 

phenotype has not been demonstrated in the human population. Multiple linear regression 

analysis using data derived from the National Health and Nutrition Examination Survey (NHANES) 

suggests that, like in previous rodent studies, serum TCDD levels are also associated with 

cholesterol levels in humans in a sex-specific manner. Further functional mouse analyses suggest 

that HMGCR is a modulator of TCDD-elicited liver phenotypes. More specifically, inhibition of 

HMGCR was found to protect against AHR-mediated steatosis in both sexes, but increase TCDD-

elicited liver injury in males and alters glycogen metabolism in females. 

 The results outlined in this dissertation indicate the power in using population-based 

models in characterizing the degree of variability and identifying modulating genes within adverse 

responses to chemical exposures, such as TCDD. We hope that our data will impact real-world 

risk assessment in ensuring that safe-exposure guidelines for TCDD reflect population-wide 

variability. While many of the findings outlined still need confirmation in the human population, our 

results may be used to identify individuals within the human population that may be more 

susceptible to TCDD-induced toxicity which, ultimately, has potential to impact public health. 
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1.1. 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) Exposure in Humans 

 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a pervasive contaminant of environmental 

concern. With exception of small volumes that are synthesized for academic research, TCDD is 

primarily created as a byproduct of industrial processes (Gilpin et al. 2003). TCDD is most well-

known as a contaminant created during the synthesis of an herbicide called 2,4,5-

trichlorophenoxyacetic acid (2,4,5-T or Agent Orange) which was used during the Vietnam war. 

Other industrial processes that result in TCDD creation include manufacturing of herbicides and 

pesticides, waste incineration, and chlorine bleaching of paper and pulp. Beyond industrial 

processes, TCDD is also created during natural processes such as volcanic eruptions and forest 

fires (Srogi 2008). Once in the environment, TCDD is quite persistent and resistant to degradation 

in soil. The half life of TCDD is estimated to be between 9 and 15 years for surface soil and up to 

100 years for sub-surface soil (Kimbrough et al. 1984; Paustenbach et al. 1992). 

 

 TCDD is lipophilic and, thus, can accumulate within the food chain (Gilpin et al. 2003; 

Jackson et al. 1993). The primary mode of exposure within the general human population is 

through consumption of high lipid-containing foods, such as fish and dairy products (Gilpin et al. 

2003). Typically, background exposures within the human population are low with lipid-adjusted 

TCDD levels of 1 to 10 ppt in serum (Nault et al. 2016). It must be noted that, while day-to-day 

exposures are typically low, TCDD bioaccumulates in organisms. As such, the level of TCDD is 

highly-correlated with age (Chen et al. 2010; Chen et al. 2013). There also have been several 

unfortunate cases where humans were exposed to TCDD at high-levels. The most famous of 

these was through use of Agent Orange during the Vietnam war. There have also been other 

several documented cases of accidental, heavy exposures that have occurred in the human sub-

populations including an industrial accident in Seveso, Italy (Cole et al. 2003; Warner et al. 2013) 

and industrial workers exposed to chemical byproducts. The most unique case of TCDD exposure 

was the purposeful poisoning of Victor Yushchenko while a presidential-candidate in Ukraine in 
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2004 (Sorg et al. 2009). Once exposed, the half-life of TCDD has been found to be quite long in 

humans. Previous reports indicate that elevated levels of TCDD can be found in adipose tissue 

of humans after over 30 years post-exposure (Schecter and Ryan 1988). In a study of human 

individuals that were exposed to TCDD, the average half-life of TCDD in the serum of humans 

(n=36) was found to be 7.1 years (Pirkle et al. 1989).  

 

 There is strong epidemiological evidence that TCDD exposures drive adverse health 

outcomes in humans. The most notable of these is chloracne. TCDD-induced chloracne has been 

established in multiple exposures, including those exposed in Seveso, in industrial settings, and 

in the poisoning of Victor Yushchenko (Baccarelli et al. 2002; Kerger et al. 2006; McKee 2009; 

Sorg et al. 2009). TCDD is also known to induce immune suppression. Previous exposures 

indicate that sub-populations exposed to high-levels of TCDD have lower-levels of 

Immunoglobulin G (IgG) in the blood (Baccarelli et al. 2002). Furthermore, in vitro work has 

established that human immune cells are clearly impacted by TCDD (Lu et al. 2010; Lu et al. 

2011). Exposures to TCDD and other dioxin-like compounds are known to be associated with 

increased incidence of metabolic disorders including nonalcoholic fatty-liver disease (NAFLD), 

diabetes, and metabolic syndrome (Cave et al. 2010; Lee et al. 2007; Taylor et al. 2013). TCDD 

is also associated with several cancers in humans, including Non-Hodgkins Lymphoma, renal, 

prostate, testicular, and bladder cancers (Chang et al. 2017; Leng et al. 2014; O'Brien et al. 1991). 

This association, however, has been somewhat debated as the cancer risk in highly-exposed 

populations have not been found to much higher than other populations (Boffetta et al. 2011; Cole 

et al. 2003). 

 

1.2. The Aryl Hydrocarbon Receptor as Mediator of TCDD-induced Toxicity 

 Most, if not all, of TCDD-mediated toxicity is through activation of the aryl hydrocarbon 

receptor (AHR). Ahr null mouse models indicate that TCDD-mediated toxicity, such as immune 
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suppression and liver toxicity, is dependent on the AHR (Fernandez-Salguero et al. 1995; 

Thurmond et al. 1999). The AHR is a transcription factor that falls within the Per-Arnt-Sim (PAS) 

domain family of environmental sensors. PAS proteins regulate responses to many environmental 

changes within the cell including hypoxia, xenobiotic exposure, and the light/dark cycles 

(McIntosh et al. 2010). While there are many differences across the PAS domain protein family in 

higher-eukaryotes, there are several domains that are consistently found across all PAS members 

(Gu et al. 2000)(Figure 1.1). In higher organisms, the most unique feature carried by PAS proteins 

is the PAS domain, consisting of PAS A and PAS B. The PAS A domain mediates homotypic 

interactions between PAS domain-containing proteins. In comparison to PAS A, the PAS B 

domain is much more-versatile providing heterotypic interactions between non-PAS containing 

protein classes as well as natural and non-natural ligands. Most PAS domain proteins also contain 

a basic helix-loop-helix (bHLH) domain which, as compared to the PAS domains, are located on 

the N-terminus of the protein (Gu et al. 2000). The bHLH domain mediates dimerization and DNA 

binding. Finally, PAS domain proteins also contain a transcriptional activation domain (TAD) 

which, as compared to PAS domains, is located towards the C-terminus and is involved in 

recruitment and interactions with other transcriptional co-activators. Unlike the PAS and bHLH 

domains, the TAD has less sequence homology and, thus, has been lesser-conserved across 

evolution in the PAS family.  

 

 The AHR is ligand activated and its prototypical ligand is TCDD. Interestingly enough, the 

AHR has been strongly conserved through evolution suggesting an endogenous role beyond a 

xenobiotic response (Hahn 2002). Ahr orthologs can be found in species that likely existed 

millions of years prior to the evolution of the first vertebrate (Hahn 2002). For example, orthologs 

of the Ahr are present in invertebrate species including roundworms (C. elegens) and flies (D. 

melanogaster)(Duncan et al. 1998; Powell-Coffman et al. 1998). Ahr orthologs have also been  
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Figure 1.1. General organization of the aryl hydrocarbon receptor. The figure outlines the 

general positioning and several known functions of four conserved domains found on the AHR 

(bHLH, PAS-A, PAS-B, and TAD). This figure is an adapted version of Figure 5 from Okey, 

2007 (Okey 2007). 
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found in several mollusc species, such as the soft shell clam (M. arenaria), zebra mussel (D. 

polymorpha), and blue mussel (M. edulis)(Butler et al. 2001; Hahn 2002).  

 

 For decades, endogenous ligands of the AHR remained elusive. Several studies in the 

late 1990’s and early 2000’s identified a diverse set of probable AHR ligands. Such ligands include 

indoles which are tryptophan break-down products, bilirubin and other tetrapyroles which are 

likely products of heme break-down, and metabolites of arachidonic acid such as prostaglandins 

(Bittinger et al. 2003; Denison and Nagy 2003; Rannug and Fritsche 2006; Sinal and Bend 1997). 

While the ligands are diverse, the AHR clearly plays important roles in several physiological 

processes beyond the xenobiotic response including hematopoiesis as well as liver and T cell 

development (Bunger et al. 2008; Gasiewicz et al. 2010; Lahvis et al. 2005; Quintana et al. 2008). 

The AHR has also been recently found to play a key role within the immune system (Moura-Alves 

et al. 2014). 

 

 The AHR-mediated transcription pathway has been-well characterized (Figure 1.2.). Prior 

to activation, the majority of the AHR pool is found in the cytoplasm bound to several chaperone 

proteins including a heat-shock protein 90 (HSP90) homodimer and AH receptor-associated 

protein (ARA9)(Carver et al. 1998; Heid et al. 2000; Meyer and Perdew 1999). The chaperones 

have been found to stabilize AHR prior to activation (Petrulis and Perdew 2002). Upon ligation, 

the AHR separates from chaperones and translocates to the nucleus. Once in the nucleus, the 

AHR dimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT) to form a 

functional transcription factor (Abel and Haarmann-Stemmann 2010; Sorg 2014). The AHR:ARNT 

complex binds to dioxin response elements (DREs) that are located throughout the genome 

(Swanson et al. 1995). In the late 1980’s, the DREs in the Cyp1a1 promoter were found to contain 

the core sequence of 5’-GCGTG-3’ with more-variable flanking regions (Denison et al. 1988a, b). 

Genomic-wide searches and AHR chromatin immunoprecipitation approaches in mouse liver later 
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identified the presence of DREs located throughout the genome (Dere et al. 2011). Gene 

expression arrays using both in vitro and in vivo models later identified that activation of AHR 

results in aberrant gene expression of many genes which drives the adverse responses to TCDD 

(Boverhof et al. 2005; Boverhof et al. 2006; Martinez et al. 2002; Puga et al. 2000). Mice carrying 

mutated-AHR that are unable to translocate to the nucleus are resistant to TCDD-mediated 

toxicity (Bunger et al. 2003). While technologies are constantly improving to analyze which genes 

are dysregulated at differing points of time post-exposure, much remains unknown regarding how 

AHR-mediated aberrant expression leads to the complex diseases associated with TCDD 

exposures in humans. 

 

1.3. Susceptibility to TCDD-Mediated Toxicity  

 Differing species have vastly-different sensitivity to TCDD-mediated toxicity with nearly 

600-fold differences in the LD50 values (Geyer et al. 1990). Guinea pigs have been found to be 

the most sensitive of mammals that have been exposed to TCDD with an estimated LD50 values 

of ≤ 2 µg TCDD per kg of body weight (µg/kg). Hamsters are on the other side of the spectrum 

with an estimated LD50 values of ≥ 1,157  µg/kg. For reference, non-human primates, such as the 

rhesus macaque, have an estimated LD50 value of 50 µg/kg suggesting that humans, in 

comparison to some species, are quite sensitive to TCDD-induced toxicity. Beyond the intra-

species differences in susceptibility, previous studies with rodents have shown that there are also 

clear inter-species differences (Chapman and Schiller 1985). For example, C57BL/6J mice that 

were treated with TCDD for 10-12 weeks had an estimated LD50 value of 182 µg/kg. In the same 

study, however, DBA/2J mice had estimated LD50 value of 2,570 µg/kg. As such, there are ≥ 14 

fold differences in the estimated LD50 values for differing strains of the same species. 
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Figure 1.2. The aryl hydrocarbon receptor-mediated transcription pathway. The AHR 

resides in the cytoplasm bound to several chaperone proteins prior to activation. Once activated 

by a ligand, such as TCDD, the AHR disassociates from the chaperone proteins and translocates 

to the nucleus. Once in the nucleus, the AHR dimerizes with another PAS protein called the aryl 

hydrocarbon receptor nuclear translocator (ARNT). The hetereodimer, then, binds to dioxin 

response elements (DREs) throughout the genome altering gene transcription.  
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 The mouse has been used for decades for toxicological screens. One obvious advantage 

of the use of rodents is that the vast majority of environmental factors can be controlled. As such, 

most of the inter-strain differences will be driven by genetic background. Over the past 30 years, 

the Ahr gene has been well-characterized in a large number of mouse strains (Figure 1.3). 

Previous reports have indicated that mice carry 1 of 4 independent alleles of the Ahr which are 

structurally and functionally unique: 1) Ahrb1, 2) Ahrb2, 3) Ahrb3, and 4) the Ahrd (Poland and Glover 

1990; Poland et al. 1994; Thomas et al. 2002). Several nonsynonymous substitutions within the 

murine Ahr are of particular interest. The most influential SNP drives an A375V substitution in 

strains that carry the Ahrd allele (Poland et al. 1994). Previous radioligand-binding studies have 

reported that the dissociation constant (Kd) of TCDD for the AHR carried by Ahrd allele mice, such 

as the DBA/2J, is an estimated 16 nM as compared to 1.8 nM for Ahrb1 allele mice, such as the 

C57BL/6J (Okey et al. 1989; Poland et al. 1994). As such, strains that carry the Ahrd allele are 

sometimes inaccurately referred to as ‘non-responsive’ to TCDD. Another SNP of interest induces 

a premature stop codon unique to the Ahrb1 allele which results in a protein that is 95 kilodalton 

(kDA) as compared to the 104 kDA protein encoded by the Ahrb2 and Ahrd allele (Thomas et al. 

2002). The Ahrb3 allele is only carried by wild-derived strains which tend to be more polymorphic 

as compared to classical inbred strains. While there is less Ahr sequence homology in the strains 

that carry the Ahrb3 allele, these strains carry an alanine at position 375 and, thus, have high 

affinities for TCDD that are similar to the protein encoded by the Ahrb2 allele.  

 

 Similar to the rodent models, there are established differences in human responses to 

TCDD exposures. For example, previous studies using isolated B cells have identified a sub-

population of the humans that do not appear to respond TCDD-induced immunosuppression (Lu 

et al., 2010). Previous studies using human placental tissues have indicated that the AHR binding 

affinity for TCDD in humans can vary up to 10-fold with Kd’s that range from ≤ 1 to ≥15 nM in 

extreme cases (Ema et al. 1994; Harper et al. 2002). Other studies have suggested interindividual  
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Figure 1.3. Comparison of the general aryl hydrocarbon receptor gene structure across 

mouse strains and human. Mice have been found to carry 4 independent alleles of the Ahr: 1) 

Ahrb1, 2) Ahrb2, 3) Ahrb3, and 4) the Ahrd. While the gene is highly-conserved, an A375V 

substitution indicated by the ‘*’ in the PAS-B domain of protein encoded by the Ahrd allele greatly 

decreases the affinity for TCDD. The AHR is heavily-conserved across species. While the human 

AHR is known to have a higher affinity for TCDD as compared to the Ahrd allele. The human AHR 

contains a valine in position 381 which is equivalent to position 375 in the mouse AHR. 
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variability in response to another AHR ligands such as polycyclic aromatic hydrocarbons 

(PAHs)(Smart and Daly 2000) and identified a wide-range in half-life of TCDD in differing 

individuals (Pirkle et al. 1989). While the average half-life is 7.1 years, the 95% confidence 

intervals span from 5.8 to 9.6 years across 36 individuals. The variability in the degradation and 

excretion rate across individuals is likely dependent on many factors. For example, previous 

reports have established a positive correlation between BMI and increased half-life of TCDD in 

humans (Kerger et al. 2006). Rodent-based studies indicate that genetics likely plays a major role 

in driving the interindividual variability in the half-life of TCDD. The half-life of TCDD in mice is 

quite variable; ranges have been reported that span 11 to 24.4 days depending on the strain 

(Gasiewicz et al. 1983). Strains that are sensitive to TCDD-mediated toxicity, such as the 

C57BL/6J (i.e. Ahrb1 allele mice), were found to have shorter half-lives as compared to less-

sensitive strains, such as the DBA/2J (i.e. Ahrd allele mice).  

 

 Unlike differing mouse strains, polymorphisms in the AHR gene assert a modest impact 

on the human response to TCDD (Harper et al. 2002). There is no AHR sequence variability at 

position 381 in humans which is equivalent to murine position 375 where the high-impact variant 

is found. Interestingly enough, human AHRs carry a valine at this position which, as previously 

mentioned, is most similar to the less sensitive mouse strains (i.e. Ahrd allele mice)(Ema et al. 

1994). While the valine suggests the human AHR should have a higher Kd for TCDD, the vast 

majority of the individuals are found to have Kd’s that range from 2 and 8 nM (Harper et al. 2002). 

While carrying the valine, human AHR appears to behave most similarly to the AHR encoded by 

the mouse Ahrb alleles. The valine in position 381, however, was found to be important as a 

directed substitution to asparagine abolished TCDD binding for the human AHR (Ema et al. 1994). 

Other SNPs in the human AHR gene have been found to impact the response to TCDD. A 

previous study where AHR constructs with known human AHR SNPs were expressed in a liver 
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cell line indicated that a combined A554K and V570I substitution had less TCDD-induced 

expression of the AHR-target gene CYP1A1 (Wong et al. 2001). Similarly, expression of 

constructs containing known human SNPS in a human B cell line indicated that a single R554K 

substitution can reduce the induction of CYP1A1 and CYP1B1 mRNA induction as well as 

CYP1B1-regulated reporter activity (Kovalova et al. 2016). The same study also showed that a 

construct containing a combination of SNPs that result in P517S, R554K, and V570I substitutions 

reduced the sensitivity to TCDD-mediated suppression of secretion of Immunoglobulin-M (IgM). 

Though several studies suggest that SNPs in the human AHR gene impact the response to TCDD, 

this variation is likely driving a modest impact on downstream TCDD-mediated responses (Okey 

2007). Given the interindividual variability in response to TCDD, the modest effect of 

polymorphisms in the human AHR gene, and previous reports indicating that genetic variability 

can have profound impacts on individual’s response to chemicals (Evans and Relling 2004; Kalow 

et al. 1998), we hypothesize that there are likely other genomic variation beyond the AHR 

sequence that likely impact an individual’s response. Understanding of which genetic variants 

may increase individual’s susceptibility to TCDD would have direct impacts on risk assessment in 

a diverse population. 

 

1.4. Current State of Assessing Exposure Risk in Heterogeneous Populations 

 The goal of exposure-based risk assessment is to characterize the potential hazardous 

nature of a chemical within the heterogeneous human population. Knowledge of the dose-

response relationship (DRR) between any given chemical, from pharmaceuticals to 

environmental contaminants, and an adverse physiological response is valuable to accurate risk 

assessment. Much of the exposure-to-response DRRs have been established using traditional 

laboratory models. Results from these common models are used to address the level at which an 

exposure would lead to adverse outcome in the humans. As such, these values derived from 
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laboratory models are used to calculate safe-exposure limits of the respective chemicals, such as 

a reference dose (RfD) or an acceptable daily intake (ADI) (IPCS 2005).  

 

 In extrapolating exposure from laboratory models to the human population, the World 

Health Organization’s International Programme on Chemical Safety (IPCS) has suggested that 

acceptable exposure limits be adjusted by a generic total ‘uncertainty factor’ of 100. This 

uncertainty factor breaks down into two separate categories each consisting of a 10-fold 

adjustment: A) interspecies variation that account for physiological differences between animal 

models and humans and B) interindividual variation that account for differences in susceptibilities 

across human individuals. The interspecies variation adjustment further breaks down into two 

categories: A) toxicodynamics (2.5 fold) and B) toxicokinetics (4.0 fold). Similarly, interindividual 

differences also break down into the same categories, but with slightly different adjustments per 

category: A) toxicodynamics (3.2 fold) and B) toxicokinetics (3.2 fold) (IPCS 2005). While 

interspecies variation is a difficult problem to fully-solve without epidemiological data for the 

chemical exposure and timeline of interest, several aspects that drive interindividual differences 

can and should be incorporated in toxicological screens.  

 

 As the human population is heterogeneous, there are some individuals that are more 

susceptible to chemically-induced toxicity than others. While uncertainty factors are used to 

account for these differences in susceptibility, there is certainly a non-zero chance that all 

individuals are accounted for within the current exposure guidelines. On the contrary, the use of 

uncertainty factors may also result in exposure-guidelines that are far too conservative and, thus, 

lead to unnecessary industrial and municipal financial burdens. As such, lack of empirical data in 

regards to the impact of interindividual variability in DRRs has potential to negatively impact 

decision-making. A recent report published by the NRC entitled “Science and Decisions: 

Advancing Risk Assessment” highlights the need for empirical interindividual variability data prior 
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to risk-assessment decision-making. The report suggested that the incorporation of inter-

individual variability present within the human population would effectively linearize the low-dose 

region of non-cancer DRRs which have, in the past, been considered nonlinear functions (Figure 

1.4)(NRC 2009). The proposal by the NRC was based primarily on theoretical evidence and has 

not been properly tested. If put into practice for risk assessment, the low-dose linearity assumption 

could lead to unwanted environmental impacts.  

 

1.5. Incorporating Genetic Heterogeneity into Toxicological Screens 

 Many factors impact individual responses to environmental exposures including 

concurrent exposures and/or stressors, age, sex, disease-state, and genetic variability. Recent 

technological advances provided the opportunity to probe the impact of genetic variability in 

response to chemical exposures. Results have indicated that genetic polymorphisms can have 

profound impacts on individual responses. In some extreme cases, ≥ 90% of the observed 

variability in the human population have been attributed to genetic diversity (Evans and Relling 

2004; Kalow et al. 1998). As such, there is growing interest in incorporating genetic variability into 

toxicological screens (Zeise et al. 2013). 

 

 The obvious reason for the exclusion of genetic diversity in classical laboratory models is 

to reduce experimental variability. Inclusion of genetic variability will increase variability and, from 

an academic standpoint, increase the risk of a poor association within a study. An excellent 

example of this is the use of knock-out (KO) rodent models to establish the mechanism in which 

a particular gene is driving a phenotype. From a purely academic standpoint, the results may be 

noisier when genetic variability is included. It should be noted that we are not arguing for the 

replacement of isogenic models in toxicology. In many cases, inclusion of genetic variability may 

not be economically and technically feasible. Isogenic models clearly have a role to play in  
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Figure 1.4. The National Research Council’s (NRC) Low-Dose Linearity Hypothesis. As 

published in a report in 2009 call “Science and Decisions: Advancing Risk Assessment,” the 

NRC suggest that, in considering population-level genetic variability, the low-dose region of non-

cancer dose-response relationships will linearize. As such, the NRC recommends that there are 

no safe exposures of chemicals that induced adverse, non-cancer endpoints.   
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toxicology. However, as highlighted in the studies reviewed below, genetic variability clearly 

influences dose-response relationships and cannot be ignored.  

 

1.6. Proof of Principle: Advances Driven by Genetically-Diverse Models 

 As genetic background impacts responses to chemicals, incorporation of genetic diversity 

into toxicological screens provides an avenue to quantify the influence of genetic diversity within 

population-level dose-response relationships. Unlike homogenous models, the results from 

studies using population-based models likely better inform risk assessors of safe-exposure limits 

that will account for susceptible individuals within the human population. Genetic reference 

models also have potential to identify genetic variants that may be more susceptible to chemical-

induced toxicity (Harrill and McAllister 2017). Genetically diverse populations provide the 

opportunity to map the differences in responses to areas of the genome that potentially impact 

susceptibility. As many genetic differences across panels have been analyzed, these models can 

be used to perform quantitative trait locus analysis that may indicate regions of the genome that 

are inherited by individuals that were found to be more susceptible to chemical-induced toxicity 

based on a quantitative phenotype (Figure 1.5). Here, several examples are outlined to indicate 

the power of incorporating genetic variability into toxicological screens using several distinct 

laboratory-based models: 1) genetically-diverse cell lines, 2) primary human cells, and 3) 

genetically-diverse mouse panels. 

 

1.6.1. Genetically Diverse Cell lines 

 Clonal cell lines have been used in toxicological studies for decades. From an 

experimental standpoint, these cell lines are excellent in reducing variability in responses to 

chemical exposures and to gain a mechanistic understanding of chemical-induced toxicity. 

Furthermore, as cell lines are immortal and can be cryopreserved, they provide a resource that 

can be studied over long periods of time and can be readily distributed for research purposes.  
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Figure 1.5. General overview of quantitative trait locus (QTL) analysis. The purpose of QTL 

analysis is to associate a quantitative trait with a region of the genome. A quantitative 

trait/phenotype is used to categorize groups of individuals that responded similarly. Software will 

scan for genetic differences that may indicate a region of the genome that is inherited by 

individuals that have a similar quantitative phenotype.  Such regions may indicate genes or 

pathways that impact the quantitative trait.  
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Human lymphoblastoid cell lines (LCLs) can easily and efficiently be derived from a large number 

of individuals and, by assaying a large number of individual cell lines, can be used to assay 

population-level variability in responses to exposures (Dolan et al. 2004; Watters et al. 2004). 

LCLs have been established from individuals of diverse heritages from locations throughout the 

world. The true power of these LCLs lies in the plethora of genomic and demographic data freely-

available, such as through the 1,000 genomes project website, to probe links between genotype 

and phenotype. Specifically, LCLs can be used to link variant responses to genomic difference 

amongst cell lines without the need for further genotyping.  

 

 Previous studies have shown that LCLs can be successfully used to probe variations in 

chemicals responses. For example, a recent study indicated that 146 lymphoblastoid cell lines 

were exposed to multiple concentrations of two separate mixtures of pesticides: 1) a current-use 

pesticide  mixture (n=36 chemicals) and 2) an organic pesticide mixture (n=10 chemicals) (Abdo 

et al. 2015a). Curve-fitting clearly shows that, within the population of LCLs, there is a large range 

of susceptibility in the chemically-induced cytotoxic responses. Furthermore, the results were also 

used to calculate a toxicodynamic uncertainty factor (VFd) of around 3-fold for each pesticide 

mixture which, as noted in the report, is analogous to the level of interindividual variability for the 

pesticide mixtures. Within these individual differences, a polymorphism on chromosome 17 was 

found to be highly correlated with differences in susceptibility of the cell lines. The polymorphism 

was found within an open reading frame (i.e. C17orf54) and, in further detail, a major allele (AA) 

was found to me more sensitive than either the heterozygous genotype (AT) or the minor allele 

(TT). One of the most innovative aspects of this paper, however, is the use of in vitro-to-in vivo 

extrapolation (IVIVE) to estimate the corresponding cumulative oral equivalent dose of the 

chemical mixtures to reach the EC10 in the underlying cytotoxic phenotypes being assayed. 

Notably, a primary challenge of incorporating in vitro data within human risk assessment is 
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determining the in vivo dose required to result in the in vitro concentrations at hand (Judson et al. 

2011). Results indicated that, with data available for 31 of 36 pesticides in the current-use mixture 

and 4 of 10 pesticides within the organic mixture, the organic pesticide mixture required 

significantly less exposure to reach the EC10 of the cytotoxic phenotype. Furthermore, the authors 

estimate that population variability would require a 5-fold margin of safety for the organic pesticide 

while, in comparison, the current-use pesticide mixture would require less than a 2-fold margin of 

safety to account for inter-individual differences (Wetmore et al. 2014). While the IVIVE 

calculations required several assumptions, the methodology provides a method to estimate the 

chemical exposures required to reach toxicity seen in vitro and, furthermore, the influence that 

population variability plays in defining safe exposure limits (Abdo et al. 2015a).  

 

 In a similar study, cytotoxicity of 1,086 LCLs was assayed following exposure to 179 

different chemicals found within the National Toxicology Program’s (NTP) chemical library (Abdo 

et al. 2015b). This study also calculated toxicodynamic variability factors (VFd) for 149 chemicals. 

In assessing population variability, nearly half of the individual EC10 values have interindividual 

ranges that fall below the generic 3.2-fold adjustment. These results suggest that, in some cases, 

uncertainty factors can be too conservative. More interestingly, a subset of these chemicals within 

the study were found to produce EC10 value ranges that were much greater than the generic 3.2-

fold adjustment indicating the need for chemical-specific data in setting exposure guidelines for 

the human population.  These results also suggest the inherent risks associated with relying on 

generic uncertainty factors. Furthermore, the authors used multivariate association analysis 

(MAGWAS) to scan for genetic loci associated with the differences seen in the concentration-

responses amongst the individual cell lines for each chemical. The results revealed several 

patterns and potential key players in chemical-induced cytotoxicity.  For example, transmembrane 

proteins and solute carriers appear to play a key role in mediating chemical-induced cytotoxicity 

as they are consistently found in the most-significant associated loci. Similarly, a SNP 
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(rs13120371) in 3’ UTR of SLC7A11 was found to be significantly associated with interindividual 

differences in 2-Amino-4-methylphenol, methyl mercuric (III) chloride, and N-methyl-p-

aminophenol sulfate-induced cytotoxicity. In further detail, the results indicate which alleles 

appear to be more sensitive to chemical-induced cytotoxicity and, thus, can be used to predict 

which individuals may be more susceptible to chemical-induced toxicity. For example, a minor 

allele (AA) was found to be more sensitive to 2-amino-4-methylphenol as compared to the 

hetereozygous (AT) and major allele (TT) within the 3’ UTR of SLC7A11 (Abdo et al. 2015b). 

 

1.6.2. Primary Human Cells 

 The ‘gold standard’ in analyzing human responses to chemical exposure in vitro is with 

primary cells taken from blood or tissue. Human primary cell cultures are more likely to mirror an 

in vivo response than immortalized human cell lines. On the other hand, primary cells typically 

can only be cultured for a short time and are more sensitive to the freeze-thaw cycles as compared 

to cell lines. Furthermore, individuals within a study would need to be genotyped to assess genetic 

variability. The most challenging aspect of working with primary human cells to assess population 

variability lies with obtaining samples from a large number of individuals. While some methods 

are quite noninvasive, such as obtaining leukocytes from blood, other tissue samples relevant to 

toxicological outcomes can be quite invasive, such as the liver. However, such tissues can be 

obtained through many methods including biopsies, surgical waste products, organ donations, or, 

in some cases, long-term cultures in cell types less sensitive to cryopreservation.  

 

 While resting primary human leukocytes are short-lived and need to be processed within 

24 hours of collection, previous studies have indicated that cells obtained from blood donations 

can be cultured within a few hours preventing the need for a freeze-thaw cycle (Phadnis-Moghe 

and Kaminski 2017). More specifically, previous reports indicate that B cells can be isolated from 

whole blood obtained from commercial vendors and activated with CD40-ligand and cytokines to 
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induced an antibody response (Lu et al. 2009). This model has been used to establish that 

exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses the activation and 

differentiation of human B cells (Lu et al. 2010; Lu et al. 2011; Phadnis-Moghe et al. 2015). Results 

from these studies have indicated that a subset (~15%) of the human donors do not respond to 

increasing concentrations of TCDD suggesting this model might be valuable in modeling inter-

individual variability in response to immunotoxicants (Lu et al., 2010). 

 

 Reports have also established that adherent, monolayer primary tissue cells can be used 

to assay interindividual variability in response to chemicals (den Braver-Sewradj et al. 2016; 

Martelli et al. 2003; Schuetz et al. 1995). A recent study using both monolayer culture and 

suspension culture of hepatocytes established a high-level of interindividual variation in phase I- 

and phase II-mediated metabolism. Their results suggest the presence of up to 3 and 4-fold 

differences between donors in the cytochrome P450-mediated metabolism of diclofenac in 

suspension and monolayer culture, respectively. First, the report provides evidence that, even 

with the same cell type, the level of human interindividual variability measured can be culture 

model-specific (i.e. suspension vs. adherent cells). Secondly, this article highlights the complexity 

of human variability as there can be interindividual differences in the rate of metabolism of 

chemicals (den Braver-Sewradj et al. 2016). Thus, depending on the individual, there can be 

differences in the rate in which toxic chemicals are metabolized into benign compounds or, 

differences in the accumulation and excretion rates of toxic metabolites.  

 

1.6.3. Genetically Diverse Mouse Panels 

 Rodent-based studies provide a financially-reasonable in vivo model that can control for 

many environmental factors and, yet, support complex study design.  More importantly, many 

inbred mouse genomes have been completely sequenced (Adams et al. 2015; Doran et al. 2016; 

Keane et al. 2011; Morgan et al. 2016). As such, genetically-diverse mouse panels provide an 
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opportunity to better understand the effect of genetic variation within complex etiologies and 

identify genetic variants that effect susceptibility to a particular phenotype (e.g. chemical-induced 

toxicity). The lack of genetic variation within inbred strains provide the opportunity for mice with 

identical genomes to be assayed over periods of time and differing experimental conditions 

(Bogue et al. 2015; Rusyn et al. 2010). Most importantly, there is significant diversity across 

strains.  For example, within the Mus musculus subspecies it has been estimated that the number 

and distributions of polymorphisms is greater than found within human population (Ideraabdullah 

et al. 2004; Rusyn et al. 2010). The creation of genetic diverse reference populations, such as 

the Collaborative Cross (CC) and the Diversity Outbred (DO) mouse populations, provide the 

opportunity to assay genetic variability similar to that found in the human population and, to map 

the differences in responses to places within the genome with high-resolution (CCC 2012; 

Churchill et al. 2004; Churchill et al. 2012; Logan et al. 2013; Svenson et al. 2012; Threadgill et 

al. 2011; Threadgill and Churchill 2012; Welsh et al. 2012). The CC is significantly more diverse 

than previous, commonly used mouse panels, as it was created from 8 diverse founding strains 

of 3 differing Mus musculus subspecies (M. m. musculus, domesticus, castaneous) that 

encompass 90% of genetic variation in laboratory mice: 1) A/J, 2) C57BL/6J, 3) 129S1/SvImJ, 4) 

NOD/ShiLtJ, 5) NZO/HILtJ, 6) CAST/EiJ, 7) PWK/PhJ, and 8) WSB/EiJ (Roberts et al. 2007; 

Threadgill and Churchill 2012). While the statistical power of CC is somewhat limited by the 

number of fully-inbred strains available, the inbred nature of the panel only requires one round of 

genotyping per strain (Bogue et al. 2015; Churchill et al. 2004; Threadgill et al. 2011; Threadgill 

and Churchill 2012). The CC panel has been used to analyze a range of complex traits (Abu-

Toamih Atamni et al. 2017; Aylor et al. 2011; Kelada et al. 2012; Kelada 2016; Nashef et al. 2017; 

Smith et al. 2016; Xue et al. 2016). Similarly, the DO stock was created from early pre-CC strains 

and, while containing the same level of allelic diversity as the CC, are maintained with a high-

level of heterozygosity (Bogue et al. 2015; Chesler 2014; Churchill et al. 2012). While the nature 

of the DO stock requires genotyping for each mouse, the heterozygosity provides the opportunity 
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to analyze additivity while the high level of fecundity and large stock population provide an ideal 

model for high-resolution mapping and selective-breeding studies (Church et al. 2015; Logan et 

al. 2013; Svenson et al. 2012). These diverse populations of mice provide an in vivo method to 

analyze the impact of population-level genetic variability and to identify variants within populations 

that may be more or less susceptibility in chemical-induced phenotypes. 

 

 Mouse population-based studies have already begun impacting human risk-assessment 

(Cichocki et al. 2017; French et al. 2015; Harrill et al. 2009; Venkatratnam et al. 2017).  For 

example, a double-blind study in which 49 healthy humans who were exposed to maximum 

recommended therapeutic range of acetaminophen (4 gram/day for 7 days) found that 31% 

showed ≥ 2 fold increase of alanine aminotransferase (ALT) serum levels. Thus, within the 

recommended therapeutic range, some human individuals appear to experience mild liver injury. 

To identify potential loci associated with increased risk to acetaminophen-induced toxicity, 36 

inbred mouse strains were dosed with a range of acetaminophen. Results indicated interstrain 

differences in several endpoints including the rate of acetaminophen metabolism, ALT levels in 

the serum, and liver necrosis. The results show that genetic variation amongst the mouse strains 

profoundly changed the dose-response curves in the degree of necrosis and the level of ALT in 

the serum. Haplotype-association mapping suggested several genes, such as Cd44 and Capn10, 

were associated with inter-strain differences in ALT release.  These genes were then related to 

human susceptibility. For example, a nonsynonymous polymorphism in the CD44 gene was found 

to be statistically correlated with an individual’s level of acetaminophen-induced ALT release. 

Similarly, a synonymous SNP in CAPN10 was found to be moderately-associated with an 

individual’s ALT-release. These results demonstrate the usefulness of mouse panels in identifying 

genes that likely contribute to human population-level variability in response to chemicals (Harrill 

et al. 2009). 
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 In another study, 50 inbred strains were used to assay the influence of population 

variability on the toxicokinetics of cytochrome-mediated oxidation of trichloroethylene (TCE) 

(Venkatratnam et al. 2017). Results indicated that the levels of trichloroacetic acid (TCA), the 

most abundance metabolite of TCE, varied by an order of magnitude in a strain-specific manner. 

The results, along with another previous study of perchloroethylene, show the power of the 

collaborative cross in assaying toxicokinetic population variability (Cichocki et al. 2017). More 

interestingly, the empirical values measured in the current study were compared to the predicted 

levels of TCA in tissues by a physiologically-based pharmacokinetic model (PBPK) based on 

results from 16 inbred mouse strains (Chiu et al. 2014). The CC panel suggests that the PBPK 

model may be under-estimating the TCA level in tissues highlighting the need for individual-

specific data for chemical exposures. More specifically, the 800 mg/kg dose groups in the CC 

panel were found beyond the PBPK’s predicted 95% confidence levels of TCE burden in the liver 

for more than half of the strains, a third of the strains in the kidney, and nearly half of the strains 

for the serum. As TCE and TCA are ligands of PPARα, the authors also looked at the expression 

of two PPARα-inducible genes, Acox1 and Cyp4a10, and found significant induction at the 

population level of all CC strains with notable interstrain differences as has been previously 

reported (Bradford et al. 2011). As the expression of Acox1 was found to be correlated with the 

level of TCA in the liver, the authors postulate that TCE-mediated effects may be altering TCE 

metabolism in a strain-specific manner. Furthermore, QTL analysis on the variability in TCA levels 

in the liver of the differing strains identified a list of potential genes that might explain the response 

differences. The gene list was narrowed down based on the function of the genes and potential 

links to TCE-mediated effects. QRTPCR analysis indicated that expression of Acot8 and Fitm2 

positively correlated with the levels of TCA in the liver and, thus, may be associated with the 

differences in TCE metabolism and the susceptibility to TCE-mediated toxicity (Venkatratnam et 

al. 2017). 
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 In a study using DO mice, 600 mice were exposed to varying amounts of benzene via an 

inhalation chamber (French et al. 2015). The authors used micronucleus (MN) frequency in 

reticulocytes (RET) derived from the peripheral blood (PB) or bone marrow (BM) to assay the 

extent of chromosomal damage induced by benzene. The MN frequency was found to be 

significantly elevated for mice exposed to 100 ppm benzene in PB-RETs and for mice exposed 

to 1, 10, and 100 ppm for BM-RETs. Interestingly, a large range in the MN frequency in RETs 

derived from both PB and BM for the 100 ppm dose-group was reported. The most interesting 

aspect of this report was found in the statistical modeling of the dose-response to estimate the 

thresholds required to reach toxicity (Crump 1984). The results indicated that 0.205 ppm of 

benzene could reach the lower-bound confidence interval in the concentration-response (BMCL) 

found in this stock of DO mice. This BMCL was an order of magnitude lower than found in a 

previous report using a similar study design in the inbred B6C3F1 mouse strain (Farris et al. 

1996). The difference in BMCLs between the studies suggest that incorporation of genetic 

variability may greatly impact safe-exposure assessments (Farris et al. 1996). In genotyping the 

mice and running QTL analysis, a locus on chromosome 10 was found to be significantly 

associated with the MN frequency derived from both the PB and BM within the 100 ppm benzene 

dose group. More specifically, mice that inherit a gene-duplication event in a region of 

chromosome 10 from the CAST/EiJ founder strain showed less benzene-induced chromosomal 

damage. The authors hypothesize that the gene-duplication likely leads to increased expression 

of several genes in this area, such as Sult3a1 and Gm4794, which are involved in sulfating toxic 

benzene metabolites. Notably, copy number variation is also found in human population that 

potentially plays a role in driving interindividual variation in the metabolism of benzene (French et 

al. 2015; Gaedigk et al. 2012; Yu et al. 2013). 
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1.7. Overarching Hypothesis and Specific Aims 

 The impact of genetic variability on individual’s susceptibility to TCDD has not been 

thoroughly addressed. While past reports have established genes and pathways involved in 

TCDD-induced toxicity, that vast majority have used homogenous models (i.e. single inbred 

mouse strains and clonal cell lines). Given the complex etiologies associated with disease-states 

induced by TCDD, homogenous models will likely not encompass the variability in physiological 

responses seen across diverse human populations. Previous reports on environmental 

contaminants, such as benzene, have indicated that results are heavily-dependent on the mouse 

strain chosen (French et al. 2015). The strain-dependence is particular true for the response to 

TCDD which has been found to be very strain-specific (Chapman and Schiller 1985; French et al. 

2015; Shen et al. 1991). In many cases, the response from a differing mouse strain could greatly 

alter the perceived risk associated with a chemical exposure. Inter-strain differences in response 

to chemicals and other stressors can also be leveraged to identify genetic determinants that drive 

differing susceptibilities.  

 

 The overall goal of this dissertation was to use several population-based models to assess 

the impact of genetic variability on the response to TCDD. A mixture of in vitro- and in vivo-based 

laboratory models were used to assay the impact that TCDD has on multiple endpoints including 

the IgM response of B cells and liver homeostasis. The overarching hypothesis of the project 

is that a population-guided approach will identify genetic modulators of TCDD-mediated 

toxicity. The project consisted of four independent specific aims: 

 

1.7.1. Specific Aim 1. Characterizing the impact of interindividual variability in TCDD-

mediated suppression of the human B cell.  The primary goal of this aim was to establish the 

level of interindividual variability in response to TCDD in humans. Previous reports have identified 

individual differences in response to TCDD, but have not quantified the differences across a large 
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number of individuals. Furthermore, previous reports have not characterized the impact of 

interindividual variability on TCDD-mediated dose-response relationships. To address these 

knowledge gaps, B cells were isolated from 51 unique human donors and exposed to increasing 

concentrations of TCDD to induce a dose-response. Statistical modeling was used to assess the 

impact of interindividual variability within the low-dose region of the TCDD-mediated dose-

response.  

 

1.7.2. Specific Aim 2. Identifying and characterizing the impact of Serpinb2 as modulator 

of TCDD-mediated suppression of the B cell. The vast majority of the mechanistic 

understanding of TCDD-mediated suppression of the B cell has been characterized using 

homogenous models. The goal of this aim was to use genetic variability to identify novel genes 

and/or pathways that impact the immunosuppressive response to TCDD. B cells were isolated 

and exposed to TCDD from twelve genetically-diverse mouse strains. Quantitative trait locus 

(QTL) analysis was used to identify genetic regions that are potentially driving differences in 

sensitivity across the population of mice. A gene called Serpinb2, which has previously been 

shown as dysregulated by TCDD in mouse and human B cells, was found in a genomic region of 

interest. Further downstream functional analysis was used to assess the role of Serpinb2 in 

TCDD-mediated suppression of the B cell. 

 

1.7.3. Specific Aim 3. Characterizing the toxicodynamics of hepatic accumulation of TCDD 

and identifying Tgfbr2 as a modulator of TCDD-mediated liver toxicity.  The purpose of this 

aim was three fold. The first goal was to analyze the level of inter-strain variability in the 

accumulation of TCDD and expression of a subset of the known AHR-responsive genes in the 

liver. The second goal was to assess whether the accumulation of TCDD is correlated with the 

AHR-mediated expression. Previous reports have established genes, such as Cyp1a2, that are 

regulated by the AHR and involved in sequestration of TCDD in the liver. However, these studies 
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have used homogenous mouse models and, thus, potentially have missed other genes and 

pathways involved. As such, we sought to use QTL analysis to potentially identify modulators of 

TCDD accumulation and AHR-mediated expression. To address these goals, fourteen mouse 

strains were dosed with 1 or 100 ng of TCDD / kg of body weight (ng/kg) for 10 consecutive days. 

Following, the total level of hepatic TCDD was analyzed with GC/MS and TCDD-mediated 

expression of 9 hepatic AHR-responsive genes were analyzed using NanoString Technology. The 

results indicate that hepatic accumulation of TCDD is heavily-dependent on genotype and is 

correlated with AHR-mediated gene expression. QTL analysis identify several genomic regions 

of interest including an area on Chromosome 9 near a gene called Tgfbr2. Further functional 

analysis was used to identify the role of Tgfbr2-related activity in the TCDD-mediated 

steatohepatitis in the liver of mice that are sensitive to TCDD exposure. 

 

1.7.4. Specific Aim 4. Identifying and characterizing the impact of TCDD-mediated 

repression of Hmgcr in modulating TCDD-mediated liver toxicity. This aim was based 

primarily on the inter-strain differences in the change in body weights across fourteen genetically-

diverse strains following exposure to 100 ng/kg for 10 consecutive days. QTL analysis indicated 

a strong association in Chromosome 13 near a gene called Hmgcr. Previous reports have 

indicated that the AHR regulates Hmgcr mRNA expression and, ultimately, the level of cholesterol 

in the serum of mice. To assess whether this endpoint is relevant to humans, multiple linear 

regression models were created using lipid-adjusted levels of TCDD in serum along with total 

cholesterol data from the Center for Disease Control (CDC) National Health and Nutrition 

Examination Survey. Models were adjusted for potential confounding variables including age, 

race, body mass index (BMI), and usage of drugs that impact cholesterol levels. Finally, mice 

were exposed to TCDD for 10 days in the presence of absence of an HMG-CoA reductase (i.e. 

the protein encoded by Hmgcr) inhibitor called simvastatin to characterize the functional role of 

Hmgcr repression in TCDD-mediated liver pathology.  
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1.8. Overall Significance   

 The primary significance of this dissertation lies in proof-of-principle. Previous studies 

have shown the power of using genetic reference rodent panels to better characterize risk 

association with environmental exposures (Cichocki et al. 2017; French et al. 2015; Venkatratnam 

et al. 2017). This is the first population-based approach to assess the impact of genetic variation 

in response to TCDD exposure. First, a human cell-based in vitro model was used to establish a 

wide-range of interindividual variability in response to TCDD exposure. Secondly, a rodent 

population-guided approach was used to identify several novel genes that were found to impact 

the TCDD-mediated suppression of the B cell and liver pathology. This provides proof that a 

rodent population-based approach has potential to shed light into the mechanism of TCDD-

mediated toxicity beyond what has been previously uncovered using homogenous models. 

 

 Beyond proof-of-principle, the results clearly show a large-level of interindividual human 

and inter-mouse strain variation in the response to TCDD. These experiments provide quantitative 

differences in multiple endpoints across genetically-diverse population of individuals. As current 

risk assessment relies on the aforementioned 10-fold uncertainty factors to account for 

interindividual differences, the data from this dissertation have potential to better inform risk 

assessors of range in responses for a diverse set of phenotypes. Interestingly, several endpoints 

assayed in this dissertation suggest that a 10-fold adjustment is quite conservative. The results 

from this set of experiments may be used in future risk assessment to create guidelines that truly 

encompass the range of responses in the human population. These results could be used to 

create safe-exposure guidelines grounded in empirical data as opposed to generic uncertainty 

factors of 10.   
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 Finally, this research provides evidence that genomic factors beyond the Ahr allele impact 

strain specific responses to TCDD. While the Ahr allele was found to have significant impact on 

strain-specific response to TCDD, several others genes were found modulate phenotype-specific 

responses. Such responses include TCDD-mediated suppression of the IgM response, hepatic 

accumulation of TCDD, AHR-target gene expression, and several TCDD-induced liver 

pathologies. While these results need to be confirmed in the human population, we hypothesize 

that expression- or function-altering variants of these modulating genes may ultimately alter 

individual human responses to TCDD exposures. As such, the results from these experiments 

may provide risk assessors with information used to identify individuals or sub-populations of 

humans that may be more susceptible to TCDD-mediated toxicity.   
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2.1. Abstract 

The influence of interindividual variability is not typically assessed in traditional toxicological 

studies. Given that chemical exposures occur in heterogeneous populations, this knowledge gap 

has the potential to cause undue harm within the realms of public health and industrial and 

municipal finances. A recent report from the National Research Council (NRC) suggests that, 

when accounting for interindividual variation in responses, traditionally assumed nonlinear dose-

response relationships (DRRs) for non-cancer causing endpoints would better be explained with 

a linear relationship within the low-dose region. To directly test the NRC’s assumption, this study 

focused on assessing the DRR between 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) exposure 

and immune suppression in a cohort of unique human donors. Human B cells were isolated from 

51 individual donors and treated with increasing concentrations of TCDD (0 through 30 nM 

TCDD). Two endpoints sensitive to TCDD were assessed: 1) number of Immunoglobulin-M (IgM) 

secreting B cells and 2) quantity of IgM secreted.  The results show that TCDD significantly 

suppressed both the number of IgM secreting cells and the quantity of IgM secreted. Statistical 

model comparisons indicate that the low-dose region of the two DRRs is best explained with a 

nonlinear relationship. Rather than assuming low-dose linearity for all non-cancer causing DRRs, 

our study suggests the need to consider the specific mode-of-action of toxicants and 

pharmaceuticals during risk-management decision-making. 
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2.2. Introduction  

 The B cell has been well-established as a sensitive target of TCDD-induced toxicity. 

Briefly, the mammalian immune system consists of two branches: 1) the innate immune system 

and 2) the adaptive immune system. The primary difference between these branches are within 

specificity of response; the innate response is a non-specific defense while the adaptive response 

is specific against an antigen presented. The specificity of the adaptive immune response relies 

on the production of antibodies, known as immunoglobulins (Ig), which are produced by the B 

cell.  

 

 B cell antibody secretion is initiated through ligation with surface proteins, including the B 

cell, CD40, and various cytokine receptors. Ligation of these receptors drive the B cell to 

proliferate and differentiate into an antibody secreting plasma cell. While there are five 

independent Ig isotypes in mammals, the first wave of the humoral antibody response is release 

of IgM. TCDD exposures have been found to directly suppress the Immunoglobulin-M (IgM) 

response of the B cell. More specifically, in vitro exposures have shown that, with increasing 

concentrations of TCDD, there are significant reductions in the number of B cells that secrete IgM 

and the concentrations of IgM secreted into culture media (Crawford et al. 2003; Sulentic et al. 

1998). While much of the current understanding of TCDD-induced B cell dysfunction has been 

derived from mouse studies and murine cell lines, recent publications using primary cells have 

confirmed that TCDD suppresses the activation and differentiation of human B cells in vitro (Lu et 

al. 2010; Lu et al. 2011; Phadnis-Moghe et al. 2015).   

 

 The level of TCDD-mediated impairment of the IgM response in human B cells has been 

shown to vary across individuals. More specifically, previous reports have shown that a subset of 

the human population’s B cell response is non-responsive to increasing concentrations of TCDD 

(Lu et al., 2010). However, much remains unknown in regards to range of interindividual 
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responses to TCDD as well as the influence that interindividual variability plays within the 

population-level dose response. The primary aim of this study was to better characterize the 

influence of human interindividual variability within the TCDD-mediated suppression of the B cell. 

B cells were isolated from a large number of human donors (n=51) and activated with CD40-

ligand in the presence of increasing concentrations of TCDD. Two TCDD-sensitive endpoints 

were analyzed: 1) the number cells secreting IgM and 2) the amount of IgM secreted during the 

period of culture (Lu et al., 2010; Crawford et al., 2003). The results from the endpoints were 

statistically modeled at the individual level and as an averaged population to address the influence 

of increasing interindividual variability in the shape of a DRR. As receptor-mediated processes 

contain thresholds prior to receptor saturation (Kenakin 2004), an AHR-mediated response serves 

as an excellent platform in assessing whether variation within individual DRRs will linearize the 

low-dose region of a population-level DRR. Study results were found to directly address the 

NRC’s ‘low-dose linearity assumption’.  
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2.3. Results  

2.3.1. TCDD-induced suppression of IgM secretion in human primary B cells 

 Results from the population of donors assayed indicate a significant reduction in both 

endpoints tested: a) the number of IgM-secreting cells as determined by ELISPOT (p ≤ 0.05, 

n=51; Figure 2.1A) and b) the quantity of secreted IgM in the supernatant at the end of the culture 

period as determined by ELISA (p ≤ 0.05, n=49; Figure 2.1B). Notably, statistically significant 

suppression was found at TCDD levels ≥ 0.3 nM for the number of cells secreting IgM (Figure 

2.1A, p ≤ 0.05, effect size (η2) = 0.14) and at ≥ 0.01 nM for the quantity of IgM present in the 

culture supernatant (Figure 2.1B, p ≤ 0.05, effect size (η2) = 0.10). There were no significant 

differences between non-treated CD40 ligand-activated B cells (i.e naïve) and the vehicle (i.e. 

DMSO-treated) controls for either endpoint.  

 

2.3.2. Variability in IgM response across individuals  

 A high-degree of interindividual variability was found across individual’s response to 

increasing [TCDD] (Figure 2.2). At 30 nM of TCDD, differences across donors were found to be 

≥ 70 fold in the number of cells secreting IgM and ≥ 16 fold for the concentration of IgM in the 

culture media (Figure 2.2A and 2.2B). Interestingly, 11% (6 of 51) of the donors appeared 

nonresponsive to TCDD-induced decrease in the number of B cells secreting IgM. This is similar 

to previously published research (Lu et al. 2010). In contrast to “responsive” donors whose B cells 

displayed significant suppression at ≥ 0.1 nM, the ‘nonresponsive’ donors displayed no significant 

change in response at any TCDD concentration. There is a significant difference in the number 

of B cell secreting IgM when comparing the ‘nonresponsive’ and ‘responsive’ cohorts following 

exposure to the vehicle control (p≤0.05)(Figure 2.3A). Such results suggest that the 

‘nonresponsive’ cohort’s B cells activate to a lesser degree in the presence of CD40 ligand. In 

analyzing the concentration of IgM secreted into the media, the number of donors deemed 

‘nonresponsive’ dropped to approximately 8% (4 of 49)(Figure 2.3B). Again, the concentration of  
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Figure 2.1. TCDD-induced suppression of IgM response in primary human B cells.  

Increasing levels of TCDD induces a dose-dependent decrease in the number of IgM secreting 

cells (A; n=51) and the concentration of IgM secreted into culture medium (B; n=49).  Stars (*) 

indicate a p≤0.05 as compared to the vehicle and error bars indicate standard error of the mean 

response. 
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Figure 2.2. Interindividual variability in response to TCDD-induced suppression of IgM 

secretion.  Percent inhibition for each individual donor was calculated by normalizing results from 

each dose to that individual’s vehicle control (100%). The black line indicates the mean response 

of all donors. Results indicate a large degree of differences amongst individual donor’s B cells 

response to increasing concentrations of TCDD within the number of cells secreting IgM (A; 

ELISPOT data) and the concentration of IgM secreted into the culture media (B; ELISA data).  
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Figure 2.3. Responsive and nonresponsive donors to increasing concentrations of TCDD. 

Six donors were found to be nonresponsive to TCDD in enumerating the number of cells secreting 

IgM (A; ELISPOT). Nonresponsive donors displayed a significantly decreased number of IgM 

expressing cells when compared to the mean response of the responsive donors exposed to 

vehicle control (* indicates a p≤0.05). Four of the six nonresponsive donors identified in the 

ELISPOT were confirmed in the concentration of IgM secreted (B; ELISA). These four 

nonresponsive donors did not display a significantly decreased IgM in the media when compared 

to responsive donors exposed to DMSO.  
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IgM secreted in ‘responsive’ cohort was found to be statistically lower at [TCDD] ≥ 0.01 while the 

‘nonresponsive’ cohort was not statistically affected by TCDD. Unlike the previous endpoint that 

showed a statistical difference between the mean numbers of cells secreting IgM exposed to the 

vehicle control, this endpoint did not have statistical differences in comparing the ‘responsive’ and 

‘nonresponsive’ cohort. The lack of statistical difference is likely due to lack of statistical power in 

the ‘nonresponsive’ cohort (n=4) for this particular endpoint.  

  

2.3.3. Modeling the DRRs of the individual donors 

 Individual responses for both endpoints were fit to the models available in the BMD 

software. In all cases during modeling of the individual responses, the best fitting model was 

chosen by the lowest Akaike Index Criterion (AIC) value (Akaike 1974). For the number of cells 

secreting IgM (ELISPOT data), most of the individual responses best fit to the Exponential 4 model 

(29.4% Table 2.1) with a small percentage of donors that were best fit to the linear model (3.9%, 

Table 2.1). For the quantity of IgM secreted (ELISA data), an equal percentage of individuals best 

fit to the Hill and Power model (30.6%, Table 2.1) while only a small number of individual donors 

fit to the linear model (2.0%, Table 2.1). The donors that best fit to linear models were all within 

the ‘nonresponsive’ cohorts previously noted. Thus, as expected for a TCDD-induced receptor-

mediated response, the vast majority of the individual responses best fit to nonlinear models. 

 

2.3.4. Determining low-dose regions of dose-response relationships 

 The goal of this study is to determine the shape of the DRR in the low-dose region of a 

non-cancer DRR. In defining the low-dose region, the DRR of the number of IgM secreting B cells 

(ELISPOT) and the quantity of IgM secreted (ELISA) data were first fit to a 4-parameter logistic 

model using maximum likelihood estimation with R code written in-lab (Prentice 1976). Results 

indicate that the TCDD-induced IC50 of the ELISPOT and ELISA data were 0.533 ± 0.954 and  
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Table 2.1.  Results of modeling the individual donor DRRs.  Results indicate the majority of 

the donors fit best to nonlinear models as opposed to the linear model. The results were acquired 

via the BMD software and were confirmed via maximum likelihood estimation R code written in-

lab. 

 
 

  

Model Type 
Percentage of Individuals 

ELISPOT (n=51) ELISA (n=49) 

Exponential 4 29.4% 16.3% 

Power 17.6% 30.6% 

Exponential 2 17.6% 6.1% 

Hill 15.7% 30.6% 

Polynomial 2° 11.8% 14.3% 

Linear 3.9% 2.0% 

Exponential 5 3.9% 0% 

Exponential 3 0% 0% 
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0.003 ± 0.007 nM, respectively (Table 2.2). The IC50 values were further confirmed by the 

coefficient estimations from the fitting of the endpoints of interest to the Hill function using the 

BMD software (Table 2.2). Results were confirmed by visual inspection of a graphical 

representation of the models overlaying the log-transformed data (Figure 2.4A and 2.4B). The 

calculated IC50 values were used to define the cut-off point for the low-dose region of the DRR. 

Specifically, all doses below the next available dose of the IC50 were considered part of the low-

dose region of the curve. 

 

2.3.5. Statistical modeling the low-dose region of a DRR 

 The low-dose region of the number of B cells secreting IgM (ELISPOT) and the 

concentration of IgM secreted (ELISA) datasets were fit to the models available in the BMD 

software to determine the best fitting statistical model. In comparing linear and nonlinear models, 

our results suggest that the low-dose region of both DRRs were best explained by the power 

model (Table 2.3). Based on the AIC values of the models available in the BMD software, the 

linear model was the least adequate in explaining the data (Table 2.4). Results are also presented 

by overlaying the graphical representation of best-fitting power model and the linear model over 

the log-transformed response variable further suggesting that the power model fits better to the 

observed data (Figure 2.5A and 2.5B). The results from the power and linear model of both DRRs 

were also reverse-transformed to visualize the shape within the low-dose region on a continuous, 

non-transformed scale (Figure 2.6A and 2.6B).  
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Table 2.2. Maximum-likelihood estimates of coefficients for the 4-Parameter Logistic and 

Hill models fit to the log-transformed TCDD-induced DRRs.  Results indicate the IC50 values 

for both endpoints measured: 1) the number of cells secreting IgM (ELISPOT) and 2) the 

concentration of IgM secreted in the culture media (ELISA). 

 
  

	

Model Type Coefficient 

ELISPOT Results (n=51) ELISA Results (n=49) 

Estimate 

Standard 

Error 

Estimate 

Standard 

Error 

4-Parameter Logistic 

! " = $ + & − 	$
) + ("+)-

 

Upper (d) 3.555 0.037 1.860 0.061 

Lower (a) 3.131 0.137 1.375 0.132 

Slope (b) -0.409 0.229 -0.275 0.185 

IC50 (c) 0.533 0.954 0.004 0.010 

Hill Model 

! " = . + / ∗	$1
21 +	$1 

Intercept (y) 3.558 0.036 1.863 0.060 

Slope (v) -0.431 0.158 -0.477 0.122 

Hill Coefficient (n) 0.415 0.227 0.286 0.165 

IC50 (k) 0.555 0.984 0.003 0.006 
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Figure 2.4. Graphical representation of the statistical models used to calculate the IC50.  

Graphs indicate the 4-parameter and hill model estimations used to calculate the IC50 for two 

endpoints of interest adequately fit the observed means of the number of cells secreting IgM (A; 

ELISPOT data) and the concentration of IgM secreted into the culture media (B; ELISA data). 

Graphed models and observed means are plotted as an overlay over a scatterplot of the raw log-

transformed data for each individual. 
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Table 2.3. Coefficient estimates and Akaike Criterion results of the low-dose regions of the 

log-transformed response variables.  Table indicates the model fit, coefficient estimates, and 

the AIC values of the TCDD-induced DRRs of interest suggest that power model best explains 

the low-dose region of the DRRs of interest: 1) number of B cells secreting IgM (ELISPOT) and 

2) the concentration of IgM secreted into culture media (ELISA). All results were derived using 

the BMD software. All coefficient estimates were confirmed via maximum likelihood estimation R 

code written in-lab. 

 
 

 

 

  

	

Model Type Coefficient 

ELISPOT Results (n=51) ELISA Results (n=49) 

Estimate 
Standard 

Error 
Estimate 

Standard 

Error 

Linear Model 

! " = $% + $' ∗ "  

Intercept 3.502 0.019 1.763 0.038 

Slope -0.199 0.049 -20.912 7.544 

Akaike Criterion -463.96 -117.1 

Power Model 

! " = $% + $' ∗ ")  

Intercept 3.565 0.036 1.860 0.062 

Slope -0.245 0.049 -0.704 0.435 

Power -0.242 0.103 0.186 0.118 

Akaike Criterion -470.6 -119.8 
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Table 2.4. The AIC values from fitting dataset to all available models in the BMD software.  

Table indicates the AIC values of fitting each model available in the BMD software to the low-

dose regions of the two endpoints of interest: 1) number of B cells secreting IgM and the 

(ELISPOT data) and 2) the concentration of IgM secreted during the period of culture (ELISA 

data). Results suggest that the power model best fits the data.  

 
 

  

Model	Type	 ELISPOT	(n=51)	 ELISA	(n=49)	
Power	 -470.36	 -119.82	

Exponential	4	 -469.56	 -118.54	
Exponential	5	 -469.56	 -118.57	
Polynomial	2	 -468.83	 -118.33	

Hill	 -467.33	 -117.82	
Exponential	2	 -464.10	 -117.64	
Exponential	3	 -464.10	 -117.64	

Linear	 -463.96	 -117.62	
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Figure 2.5. Statistical models fit to the low-dose region of TCDD-induced dose-response 

relationship.  Graphs indicate the estimated fit of the power model better explains the low-dose 

region of the DRRs as opposed to the linear model of the two endpoints of interest: the number 

of B cells secreting IgM (A) and the concentration of IgM secreted during the period of culture (B). 

Graphed models along with the observed means were plotted as an overlay over a scatterplot of 

the raw log-transformed data for each individual. 
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Figure 2.6. Reverse Log-transformed Model Results on Continuous, Non-transformed 

Scale.  Graphs indicate that the observed means are best fit by a nonlinear model as compared 

to a linear model for the TCDD-induced DRRs of interest: the number of cells secreting IgM (A; 

ELISPOT data) and the concentration of IgM secreted into the culture media (B; ELISA data). 
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2.4. Discussion  

 In a recent report entitled “Science and Decisions: Advancing Risk Assessment,” the NRC 

suggested that, during risk-management decision-making, the low-dose region of non-cancer 

DRRs should be assumed as linear without the presence of thresholds. As reviewed by Rhomberg 

et al. in 2011, the NRC has based their assumption on three primary arguments: 1) the ‘additivity 

to background argument’ that indicates that increasing exposure to chemicals will lead to linear 

increases of response over the spontaneous background levels in a population; 2) the ‘population 

heterogeneity argument’ that suggests that, regardless of the shape of the individual DRRs, the 

dose-response curve will linearize when incorporating the interindividual variability of the human 

population; and 3) the ‘epidemiological evidence argument’ which cites epidemiological studies 

that have suggested a no-threshold response to increasing exposures (NRC 2009; Rhomberg 

2011; White et al. 2009). The focus of this report is on the argument regarding population 

heterogeneity. Notably, as toxicological studies often focus on mechanistic details in single cell 

lines or inbred mouse strains, there is little data to inform on the influence of population 

heterogeneity on the shape of DRRs (Rhomberg 2011). The NRC did not evaluate the potential 

effect of population heterogeneity with adequate peer-reviewed datasets (NRC 2009). Foremost, 

the NRC’s assumption generalizes the shape of the low-dose region for all chemical exposures; 

however, as chemicals have different modes of action, it is unlikely that all chemically affected 

biological processes, such as receptor-mediated events, will result in a linear low-dose region 

(Bogen 2015). Given the potential risks associated with invalid assumptions in regards to the low-

dose regions of non-cancer DRRs, such as unsafe exposures in susceptible individuals and 

financial burden associated with the chemical monitoring and cleanup, the NRC’s assumption 

warrants further scrutiny and evaluation.   

 

 Receptor mediated responses, from a biochemical standpoint, are a nonlinear signaling 

process that contain thresholds (i.e. receptor saturation); such processes are traditionally 
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modeled with a sigmoidal, Hill model (Kenakin 2004). The nonlinear nature of receptor-mediated 

events provides an excellent platform to determine whether individual nonlinear responses will 

linearize in the low-dose region of a DRR when human interindividual variability is considered. In 

this study, we used AHR-mediated suppression of the IgM response of CD40L-activated human 

primary B cells to model the effect of increasing interindividual variability. Two endpoints of 

interest were measured following a 7-day exposure period: 1) the number of IgM secreting cells 

and 2) the quantity of IgM secreted into the culture media. These two endpoints displayed 

concentration-dependent suppression of B cell function following TCDD treatment 

(p≤0.05)(Figure 2.1A and 2.1B). The results are in accordance with a previous report showing 

that TCDD significantly suppresses the number of cells secreting IgM (Lu et al. 2011). As 

determined by maximum likelihood-estimation, the IC50 for TCDD was found to differ over 150 

fold between the two endpoints: 1) 0.533 ± 0.954 nM for the number of B cells secreting IgM and 

2) 0.003 ± 0.007 nM for the quantity of IgM secreted (Table 2.2). Such results suggest that the 

endpoint measuring TCDD-induced suppression of IgM secreted by human B cells is more 

sensitive when compared to the decrease in IgM-secreting B cells. Notably, the disassociation 

constant (Kd) of the human AHR with TCDD is estimated between 1 and 12 nM and is dependent 

on the individual donor’s AHRs that were tested (Ema et al. 1994; Harper et al. 2002; Lorenzen 

and Okey 1991). The IC50 found for the concentration of IgM secreted into culture media in this 

study is well below the Kd of the human AHR.  Such results suggest that very little AHR activation 

is required to see a robust response in the concentration of IgM secreted from human B cells. 

 

 As previously mentioned, variability in the sensitivity of individual’s AHR-induction by 

TCDD suggest that some individuals are more susceptible to TCDD-induced toxicity (Harper et 

al. 2002; Lorenzen and Okey 1991).  Given that the AHR mediates most of the TCDD-induced 

toxic responses and as polymorphisms in differing mouse strains affect sensitivity to TCDD, 

polymorphisms in the human AHR gene have been postulated to play a role in the interindividual 
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variability in responses to TCDD (Okey et al. 2005; Okey 2007).  A previous report suggested that 

some human donors did not have B cells that responded to increasing concentrations of TCDD 

and this might be due to polymorphisms found in the transactivation domain of the AHR of these 

‘nonresponsive’ individuals (Harper et al. 2002; Lu et al. 2010).  Similarly, a cohort of 6 

‘nonresponsive’ donors appears to be activated to a lesser degree than the cohort of ‘responsive’ 

donors in the present study (Figure 2.3A). We hypothesize that the lack of response in the number 

of cells secreting IgM to TCDD is due to a lesser degree of CD40L-mediated activation of the B 

cells from these individuals as the number of cells secreting IgM was significantly decreased in 

these donors. Differences in CD40L-activation amongst our cohort of donors may be due to a 

plethora of reasons including polymorphisms within CD40 receptor gene, previous and present 

exposures, infections, inflammation, and many other factors of which we are unable to gather 

information due to the anonymity of blood donation (Blanco-Kelly et al. 2010; Jacobson et al. 

2005; Orozco et al. 2010; Raychaudhuri et al. 2008; Teruel et al. 2012). Surprisingly, 2 of the 6 

‘nonresponsive’ donors were deemed ‘responsive’ in assaying the concentration of IgM secreted 

into the media (i.e. ELISA; Figure 2.3B). Thus, even with a seemingly lesser number of cells 

secreting IgM, the concentration of IgM secreted is still affected by increasing [TCDD]. Such 

results may be confounded as the ELISA is measuring the concentration of IgM being secreted 

over the seven-day period of exposure while the ELISPOT enumerates the absolute number of 

cells secreting IgM at a specific time following exposure. Furthermore, these results suggest that, 

along with the IC50 values, the colorimetric ELISA is a more sensitive measure of the IgM response 

from activated B cells as compared to enumerating the number of IgM secreting cells by 

ELISPOT. 

 

 The low-dose regions of the two dose response curves were fit to all models available in 

the BMD software and comparison metrics were used to assess goodness of fit. Our results 

indicate that the low-dose region of the TCDD-induced DRR for both endpoints of interest fit better 
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to the power model as compared to the linear model (Table 3.3, Figure 3.5A and 3.5B). As such, 

a nonlinear relationship best describes the low-dose region. To our knowledge, this is the largest 

study using unique donors to assess the effect of human interindividual variability within the low-

dose region of a DRR. Based on the DRR data collected from this cohort, our statistical models 

of best fit to the low-dose region of these DRRs are contrary to the assumptions made by the 

NRC (NRC 2009). However, we do acknowledge that our sample set of 51 unique donors does 

not model the genetic diversity in the human population and further studies are needed to 

definitively test the NRC’s assumption. This present study, however, makes significant steps 

towards better risk-management decision-making in regards to the effect of interindividual 

variability within TCDD-mediated endpoints as well as other receptor-mediated responses. The 

results of this study are also contrary to the adoption of a generalized model for linear low-dose 

effects in all non-cancer endpoints as suggested by the NRC. Our results provide evidence that 

some chemical exposures, such as receptor-mediated toxicants, elicit non-linear responses in the 

low-dose region of DRRs.  Finally, the results from this study indicate a large range in individual’s 

susceptibility to TCDD-induced toxicity. 
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3.1. Abstract 

Recent technological advances have indicated that genetic variability can greatly impact 

interindividual responses to chemical exposures. Previous studies have identified a profound 

amount of interindividual variability in the 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD)-mediated 

immunosuppression in CD40 ligand-activated human B cells. To identify genetic modulators of 

TCDD response, B cells were isolated from 12 genetically diverse mouse strains, activated with 

CD40-ligand, and dosed with increasing concentrations of TCDD. Quantitative trait locus analysis 

implicated a region of mouse Chromosome 1 to be associated with inter-strain differences in 

TCDD-mediated suppression of the Immunoglobulin-M (IgM) response. Within this locus, 

Serpinb2, which encodes for the serine peptidase inhibitor, clade B, member 2 whose human 

ortholog is plasminogen activator inhibitor 2 (PAI2), was found to be dysregulated by TCDD at 

the gene and protein expression level. Furthermore, Serpinb2-/- mice were found to be significantly 

more sensitive to TCDD-mediated suppression in the number of cells secreting IgM as compared 

to littermate controls. As such, this study not only suggests a protective role of human PAI2 within 

TCDD-mediated immunosuppression, but also implicates a role for PAI2 in regulating B cell 

function.  
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3.2 Introduction 

 The goal of this aim was to follow-up on the wide-range of responses seen in the study 

outlined in Chapter 2. In the previous study, CD40L-activated human primary B cells were used 

to identify up to 71-fold differences across individual’s responses at the highest dose of TCDD 

(30 nM)(Dornbos et al. 2016). While interindividual variability in toxicant-induced signaling can be 

driven by many factors, genetic background has been found to have profound impacts on 

individual responses. Advances in technologies for genetic analysis have not only improved our 

understanding of complex etiologies associated with diseases, but have shown that sub-

populations with specific genetic variants may be more susceptible to stressor-induced injury. The 

use of population-based models, such as genetically-diverse panels of inbred mouse strains, have 

provided the means to effectively pinpoint genes and pathways that impact susceptibility to 

environmental exposures (Dornbos and LaPres 2017; Harrill and McAllister 2017). 

 

 To address whether there are genetic factors that may be impacting individual responses, 

a mouse population-guided approach was used to scan for potential genetic modulators that may 

impact susceptibility to TCDD-mediated suppression of the B cell. As CD40 signaling is highly 

conserved across mouse and human (Spriggs et al. 1992), the same human-CD40 ligand model 

was used to expose B cells isolated from 12 genetically-diverse mouse strains. Analysis of the 

inter-strain differences suggested that genomic factors beyond the Ahr allele impact strain-

specific responses. More specifically, a gene called Serpinb2, which encodes the ortholog of the 

human plasminogen activator inhibitor-2 (PAI2), was found within a genomic region that was 

implicated by QTL analysis. Further downstream analysis confirmed that Serpinb2-related activity 

has a significant impact on TCDD-mediated suppression of the B cell. While Serpinb2 has been 

shown to play a role within the immune system, this is the first report linking its activity to a 

phenotype within the B cell (Schroder et al. 2011).  
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3.3 Results 

3.3.1. Inter-strain Differences in Response to TCDD 

 All 12 strains had a decrease in the number of cells secreting IgM at the high dose of 

TCDD (30 nM), each mouse strain displayed a unique dose-dependent response to TCDD (Figure 

3.1A). Comparison between the percent inhibition induced at the high dose of TCDD (30 nM) 

within the mice included in the current study with a previous study with TCDD-induced 

suppression of human B cells from 51 unique human donors, an overlapping histogram suggests 

the interindividual differences between the two datasets are comparable (Figure 3.1B)(Dornbos 

et al. 2016). Of the 12 strains, 2 were found to contain a statistically significant decrease as 

indicated with ANOVA and Dunnett’s posthoc with the log-transformed response: 1) C57BL/6J 

(n=6; p<0.05) and 2) FVB/nJ (n=5; p<0.05) (Figure 3.1C and 3.1D, respectively). There was also 

a 10-fold difference in the number of cells secreting IgM at the highest dose of TCDD for the most- 

and least-suppressed mice. As such, results show that mice within the genetic screen have a 

wide-range in sensitivities to TCDD.  

 

3.3.2. Differences amongst Ahr allelic categories 

 A linear regression model with individual strains as the independent variables and the 

percent inhibition of the IgM response at [30nM] TCDD as the dependent variable was used to 

estimate the observed variance that is due to inter-strain differences (Table 3.1). The multiple R2 

value was 0.33 with 95% confidence intervals that span from 0.20 to 0.40. As such, we estimate 

that ~33% of the observed variance is due to genetic differences across strains. Previous reports 

have established that mouse strains carry one of four different Ahr alleles that encode for 

receptors with differing binding affinities for TCDD (Poland and Glover 1990; Poland et al. 1994; 

Thomas et al. 2002). A multiple global sequence alignment indicates that the strains in this panel 

carry 3 different Ahr alleles: 1) Ahrb1 (n=1; grey), 2) Ahrb2 (n=5; blue), and 3) Ahrd (n=6; 

green)(Figure 3.2A). Allelic clustering was used to group mice of the same allele together to  
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Figure 3.1. Inter-strain differences in the response to TCDD-mediated 

immunosuppression. B cells isolated from 12 genetically-diverse strains of mice were exposed 

to increasing concentrations of TCDD (0 to 30 nM) for 6 days and the percentage of cells secreting 

IgM was determined by ELISPOT.  Each strain was normalized to its own vehicle control to 

compare TCDD-mediated effects within the IgM response across strains (A). The distributions of 

the percentage of cells secreting IgM at the high dose of TCDD (30 nM) as normalized to the 

vehicle control for all mice (blue) and humans (red) was created to visualize overlap (maroon) 

between the mouse and previous human study (B). The dose-response analysis for the C57BL/6J 

(C, n=6) and FVB/nJ (D, n=5) strains indicate statistically significant, concentration-dependent 

decreases in the number of cells secreting IgM as compared to the vehicle control as indicated 

with an ANOVA with a Dunnett’s posthoc. Stars (*) indicate a p<0.05 and error bars indicate 

standard error.  
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Figure 3.2. The Ahr allele does not drive all inter-strain differences to TCDD-mediated 

suppression of the IgM response.  Genomic data was used to predict the AHR amino acid 

sequence for each mouse strain included in the study. A multiple sequence alignment of the AHR 

protein sequences from the 12 mouse strains assayed indicates that 3 unique alleles are present 

in this panel: 1) Ahrb1 (grey), 2) Ahrb2 (blue), and 3) Ahrd (green) (A).  The average percent 

decrease in IgM secreting B cells at 30 nM TCDD as normalized to the vehicles control was 

determined from all the mice within their respective Ahr allele (B). Comparison of the TCDD-

induced suppression of IgM secretion in B cells from the individual strains (Ahrb1 (grey), Ahrb2 

(blue), and Ahrd (green)) indicates that some strains do not respond like strains within their 

respective AHR allelic categories (C). Stars (*) indicate a p<0.05 and error bars indicate standard 

error.  
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Table 3.1 The Ahr allele does not drive all inter-strain differences to TCDD-mediated 

suppression of the IgM response. All estimates are relative to the TCDD-mediated inhibition in 

129S1/SvlmJ (i.e. the least affected strain). Stars (*) indicate significant differences. 

 

 
Residual Standard Error: 22.06 on 47 degrees of freedom.  

Multiple R2: 0.313; Adjusted R2: 0.175 

F Statistic: 2.118 on 11 of 47 degrees of freedom; p = 0.0374 

  

Coefficient Estimate Standard Error t value Pr (>|t|) 

Intercept 80.222 12.739 6.297 <0.001* 

A/J  -36.909 15.602 -2.366 0.022* 

BALB/cJ -25.666 15.602 -1.645 0.107 

C3HeB/FeJ -24.068 16.114 -1.494 0.142 

C57BL/6J -39.417 15.602 -2.526 0.015* 

CBA/J -25.840 18.015 -1.414 0.164 

CC019 -27.320 16.852 -1.621 0.112 

CC041 -4.568 16.114 -0.283 0.778 

DBA/1J -2.534 16.114 -0.157 0.876 

FVB/NJ -33.709 16.114 -2.092 0.042* 

NOD/ShiLtJ -2.232 15.602 -0.143 0.887 

NZO/HILTJ -25.527 16.114 -1.584 0.120 
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compare the percentage of cells secreting IgM at 30 nM TCDD across the 3 Ahr alleles. The 

results indicate that mice carrying the Ahrb1 and Ahrb2 alleles have a significantly lower percentage 

of cells secreting IgM as compared to the Ahrd mice (p<0.05; Figure 3.2B). There was no 

significant difference when comparing the of Ahrb1 and Ahrb2 allelic categories. These results 

agree with previous reports (Poland et al. 1994). In comparing percentage of cells secreting IgM 

across the individual strains at the 30 nM treatment of TCDD, several strains were found to 

behave differently than what might be predicted based on the Ahr allele carried (Figure 3.2C). For 

example, the NZO/HILTJ and CC019 strains, which both carry the Ahrd allele, appear to respond 

similarly to the majority of Ahrb2 mice. Similarly, the A/J strain, which carries the Ahrb2 allele, 

appear to respond quite similarly to the C57BL/6J strain which carry Ahrb1 allele.  

 

3.3.3. QTL Analysis of Percent Inhibition Identifies Significant Association  

 Exploratory QTL analysis was performed using the percent inhibition at the high dose of 

TCDD (30 nM) where statistical significant inhibition was present amongst several mouse strains. 

The genome-wide scan indicated a significant association with Chromosome 1 (LOD=5.61; 

p<0.05)(Figure 3.3). Genes within 1 Mb of the marker with the maximal LOD score were compiled 

into lists of potential candidates that may be modulating the TCDD-induced suppression in the 

number of antibody secreting cells (Table 3.2). While several candidate genes near the interval 

identified may contribute TCDD-mediated immunosuppression, only one, Serpinb2,  is 

dysregulated by TCDD at the level of mRNA expression in both mouse and human B cells 

(Kovalova et al. 2017). Furthermore, the Serpinb2 gene is located within 60 kb of the marker 

significantly associated with the B cell phenotype. As such, Serpinb2 was selected for further 

confirmatory analysis and to evaluate potential roles in modulating inter-strain differences in 

susceptibility to TCDD-mediated suppression of the immune response.  
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Figure 3.3. Quantitative Trait Loci (QTL) analysis indicates a significant association within 

Chromosome 1. The TCDD-mediated percent suppression in the number of cells secreting IgM 

at 30 nM TCDD as normalized to the vehicle control was determined with an ELISPOT assay. 

The percent suppression was used to scan the genome for quantitative trait loci (QTLs) that 

potentially drive inter-strain differences using the WebQTL software from GeneNetwork. A 

significant association was identified on chromosome 1 at a marker located at 107.584 Mb (LOD 

= 5.611; p=0.031). The horizontal black-dotted line indicates the threshold of significance based 

on a permutation test (n=1000).  
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Table 3.2. Candidate genes associated with TCDD-induced suppression of the B cell. 

Genes located within 1 Mb upstream or downstream of the statistically significant association on 

chromosome 1 were considered. A literature search indicated that Serpinb2 (bolded), which is 

located from 107.500-107.526 Mb on Chromosome 1 (i.e. within 59,000 bp of the significant 

marker), is dysregulated by TCDD within pokeweed mitogen-activated mouse and human B cells.  

 
 

Chromosome 
Location 

(Mb) 

Logs of 

Difference 

(LOD) 

P-value Genes Within Region 

Chr 1 107.584 5.611 0.031 

Bcl2, Kdsr, Vps4d, Serpinb5, 

Pou2f3-rs1, Serpinb12, 

Serpinb13, Serpinb3a, 

Serpinb3d, Serpinb3b, 

Serpinb3c, Serpinb11, Serpinb7, 

Serpinb2, Serpinb10, Serpinb8 
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3.3.4. Time course of TCDD-mediated Serpinb2 Expression  

 B cells were compared from a sensitive (C57BL/6J; Ahrb1 allele) and a less-sensitive strain 

(DBA/1J; Ahrd allele) to TCDD-mediated immunosuppression to investigate for the presence of 

inter-strain differences in Serpinb2 mRNA expression. Results indicated a significant increase in 

Serpinb2 expression following 2 days of exposure to TCDD in DBA/1J mice (p<0.05), but not 

C57BL/6J mice (Figure 3.4A). More notably, Serpinb2 expression was found to be significantly 

higher in DBA/1J as compared to C57BL/6J (p<0.05, Figure 3.4A). In addition, Cyp1a1 expression 

was also assessed as a biomarker for AHR activation. Expression of Cyp1a1 mRNA was 

significantly increased at day 2 in DBA/1J (p<0.05) and at day 2, 3, and 4 for C57BL/6J (p<0.05; 

Figure 3.4B). Interestingly, DBA/1J mice were found to have a significantly higher TCDD-induced 

fold change in Cyp1a1 expression on day 2 as compared to C57BL/6J strain (p<0.05), but the 

upregulation dissipates by day 3 (Figure 3.4B). In contrast, C57BL/6J had significantly more 

Cyp1a1 expression induced by TCDD as compared DBA/1J at day 3 and day 4 (p<0.05; Figure 

3.4B). As such, results indicate statistically significant inter-strain differences in TCDD-mediated 

expression of Serpinb2 and Cyp1a1 within B cells. 

 

3.3.5. Time-course of TCDD-dysregulated Intracellular SERPINB2 and IgM Expression 

 To assess whether the differential Serpinb2 gene expression is also found at the protein 

level, SERPINB2 protein expression was analyzed over a 4-day time-course with a focus on the 

time-points where expression of Serpinb2 and Cyp1a1 mRNA was dysregulated. Results 

indicated significant TCDD-induced increases in the fold change of the percentage of SERPINB2+ 

cells after TCDD treatment as compared to the vehicle control for DBA/1J mice at day 3 and 4 

(p<0.05; Figure 3.5A). Similarly, there was a significant increase in mean fluorescent intensity 

(MFI) of SERPINB2 in DBA/1J at day 3 and day 4 following TCDD treatment (p<0.05; Figure 

3.5B). In contrast, there were no significant changes in the percentage SERPINB2+ cells or the  
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Figure 3.4. Serpinb2 gene expression was found to be dysregulated by TCDD in the DBA/1J 

and not in the C57BL/6J. Total RNA was extracted from B cells isolated from C57BL/6J (Ahrb1 

allele) and DBA/1J (Ahrd allele) mice that were exposed to TCDD (30 nM) for 0.33, 1, 2, 3, 4, 5, 

and 6 days. QRTPCR was used to assess whether expression of Serpinb2 mRNA is affected by 

TCDD exposure in the both strains (A). QRTPCR was also used to analyze Cyp1a1 mRNA 

induction as a biomarker of AHR activation (B). All fold changes are reported for TCDD-treated 

cells that are normalized to the vehicle control (not shown). Stars (*) indicate a p<0.05; stars 

directly over bars indicate differences in the TCDD treatment as compared to the vehicle control 

or, when over bracket, indicate a comparison of TCDD treatments across strains. Error bars 

indicate standard error. 
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Figure 3.5. TCDD exposure increased the percentage of SERPINB2+ and level of 

intracellular SERPINB2 expression in DBA/1J, but not C57BL/6J mice. B cells isolated from 

a C57BL/6J and DBA/1J mice were exposed to TCDD (30 nM) for 2, 3, 4, and 5 days. Flow 

cytometry was used to assess the level of intracellular SERPINB2 protein expression. The 

percentage of cells that are SERPINB2+ were assessed at each timepoint (A). Similarly, mean 

fluorescence intensity for the SERPINB2 antibody was used to assess the level of SERPINB2 

expression at each timepoint (B). A representative sample for DBA/1J (C) and C57BL/6J (D) was 

chosen to visualize the shift of SERPINB2 expression in the population of B cells treated with 

TCDD as compared to the vehicle. All fold changes are reported for TCDD-treated cells that are 

normalized to the vehicle control (not shown). Stars (*) indicate a p<0.05; stars directly over bars 

indicate differences in the TCDD treatment as compared to the vehicle control or, when over 

bracket, indicate a comparison of TCDD treatments across strains. Error bars indicate standard 

error. 
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SERPINB2 MFI for C57BL/6J mice (Figure 3.5A and 5B). In comparing the strains, the percentage 

of SERPINB2+ cells were significantly higher in the DBA/1J at day 2 and day 3 (p<0.05, 

respectively; Figure 3.5A). Similarly, DBA/1J also had significantly higher TCDD-induced 

SERPINB2 expression as indicated by the SERPINB2 MFI at day 3 and day 4 (p<0.05; Figure 

3.5B). A representative sample for each strain was chosen to visualize the increase in the 

expression of SERPINB2 in DBA/1J as compared to the slight decrease seen within C57BL/6J 

(Figure 3.5C and 5D, respectively). Results suggest that, along with the mRNA expression data, 

the protein expression data also suggests inter-strain differences in the levels of intracellular 

SERPINB2.  

 

 As the QTL analyses were based on TCDD-induced inter-strain differences in the number 

of cells secreting IgM, intracellular IgM expression was also assessed to potentially identify a 

correlation with SERPINB2 expression. The TCDD-induced fold change in the frequency of 

SERPINB2+, SERPINB2-, IgM+, and IgM- cells were compared at each timepoint across the two 

strains. Results indicate that on day 2 post-TCDD exposure, there is a significantly smaller fold 

change in the number of cells that are SERPINB2+/IgM+ induced by TCDD in DBA/1J as 

compared to C57BL/6J (p<0.05; Figure 3.6A). However, on day 3 post-exposure, TCDD-induced 

a significantly higher fold change of SERPINB2+/IgM+ cells in DBA/1J as compared to C57BL/6J 

(p<0.05; Figure 3.6B). Notably, while TCDD-induced an increase in SERPINB2+/IgM+ DBA/1J 

mice on day 3, the C57BL/6J was found to have a decrease (i.e. > 6 fold difference between 

mice). As such, there appears to be a time-dependent correlation between SERPINB2 expression 

and higher levels of intracellular IgM in the DBA/1J. This trend continues on Day 4 as DBA/1J 

was found to have a significantly higher fold change in SERPINB2+/IgM+ as compared to 

SERPINB2+/IgM+ in C57BL/6J (p<0.05; Figure 3.6C). However, the TCDD-induced frequency of 

SERPINB2+/IgM- cells in the DBA/1J also increases on day 4 as compared to the C57BL/6J  
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Figure 3.6. Intracellular SERPINB2 expression correlates with high level of intracellular IgM 

in a time-dependent manner. B cells isolated from C57BL/6J and DBA/1J mice were exposed 

to TCDD (30 nM) for 2, 3, 4, and 5 days. Flow cytometry was used to assess the TCDD-induced 

fold change in the frequency of cells that are SERPINB2+ and high IgM+ on day 2 (A), day 3 (B), 

day 4 (C), and day 5 (D). All fold changes are reported for TCDD-treated cells that are normalized 

to the vehicle control (not shown). Stars (*) indicate a p<0.05; stars directly over bars indicate 

differences in the TCDD treatment as compared to the vehicle control or, when over bracket, 

indicate a comparison of TCDD treatments across strains. Error bars indicate standard error. 
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(p<0.05; Figure 3.6C). Finally, on day 5, where the TCDD-induced increase in SERPINB2 levels 

has dissipated, there was a significantly larger TCDD-induced fold change in SERPINB2-/IgM+ 

cells in DBA/1J compared to the C57BL/6J (p<0.05). Consequently, there appears to be a 

correlation with TCDD-induced expression of intracellular SERPINB2 and IgM on day 3 in 

DBA/1J, but not C57BL/6J.  

 

3.3.6. Serpinb2-/- mice are more sensitive to TCDD-induced Immunosuppression 

 While the above comparison suggests the Serpinb2 gene and SERPINB2 protein 

expression display significant inter-strain variation, the results do not provide a functional 

relationship for SERPINB2 in TCDD-induced suppression of the IgM response. To test this 

relationship directly, a SERPINB2 knockout mouse on a C57BL/6J background was used.  B cells 

from Serpinb2-/- mice along with wild type controls were isolated and treated with TCDD using the 

same model as for the genomic screen (i.e. 6 total days of culture). Results indicated that both 

Serpinb2-/- mice and wild type controls had significant decreases in the percentage of cells 

secreting IgM (p<0.05; Figure 3.7A). More notably, Serpinb2-/- mice were significantly more 

sensitive to TCDD-mediated suppression with significantly lower percentages of cells secreting 

IgM as compared to wild type controls (p<0.05; Figure 3.7A). The Serpinb2-/- and wild type mice 

both were found to significantly induce Cyp1a1 mRNA expression on day 2 (p<0.05; Figure 3.7B). 

The expression of Cyp1a1 mRNA for the TCDD treatments were not different between strains 

suggesting that, while the AHR is activated in both strains, the difference in sensitivity between 

the Serpinb2-/- and wild type mice is likely not due to differing levels of AHR activity (Figure 3.7B).  

 

3.3.7. Serpine1-/- mice are not more susceptible to TCDD-induced Immunosuppression 

 To determine if the above results were specific to SERPINB2 activity, B cells were also 

analyzed from SERPINE1 null mice. Similar to the results from the Serpinb2-/- study, there was a 

significant TCDD-induced decrease in the percentage of cells secreting IgM in Serpine1-/- and wild  
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Figure 3.7. Serpinb2-/- mice, but not Serpine1-/- mice, are more sensitive to TCDD-induced 

immunosuppression. B cells isolated from Serpinb2-/- and Serpine1-/- mice along with the 

respective wild type controls were exposed to TCDD (30 nM) for 6 days. An ELISPOT assay was 

used to assess for TCDD-mediated percent suppression as normalized to the vehicle control in 

the Serpinb2-/- and wild type controls (A). RNA was isolated from Serpinb2-/- and wild type controls 

that were exposed to TCDD (30 nM) for 2 days. QRTPCR was used to assess the level of TCDD-

mediated Cyp1a1 induction in both strains as a marker of AHR activation (B). An ELISPOT was 

also used to assess the percentage of cells secreting IgM as normalized to the vehicle control in 

the Serpine1-/- mice and wild type controls (C). RNA was isolated from Serpine1-/- and wild type 

controls that were exposed to TCDD (30 nM) for 2 days. QRTPCR was used to assess the level 

of TCDD-mediated Cyp1a1 induction in both strains (D). 
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type controls (p<0.05; Figure 3.7C). Significant increases in TCDD-induced Cyp1a1 mRNA 

expression were found in both strains as well (p<0.05; respectively; Figure 3.7D). However, in 

comparing the TCDD treatments between the Serpine1-/- mice with wild type controls, there was 

no significant differences in either the percentage of cells secreting IgM or in the induction of 

Cyp1a1 mRNA (Figure 3.7C and 7D). As such, the loss of SERPINE1 did not appear to affect 

sensitivity to TCDD-induced suppression in the number of antibody-secreting cells with similar 

levels of AHR activation between the Serpine1-/- and wild type controls. Thus, the aforementioned 

differences in sensitivity appear to be specific to the activity of SERPINB2. 
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3.4. Discussion 

 Traditional toxicological studies focused on environmental contaminants have rarely 

considered the influence of genetic variability when assessing risk associated with exposures. As 

genetic background has been shown to play an important role in influencing individual’s 

responses to chemicals, this lack of population-level testing provides a challenge for risk 

assessment. With the use of population-based models, genetic information can be leveraged to 

better understand which sub-populations may be more at-risk for adverse health outcomes 

following chemical exposures. In this study, we used to a mouse population-guided approach to 

scan for potential genetic modifiers that impact the interindividual variability in TCDD-mediated 

immunosuppression observed in human B cells (Dornbos et al. 2016),  

 

 Results from this study indicated, similar to our human B cell study, a wide-range in 

response to TCDD-induced B cell suppression (Figure 3.1A and 1B). Furthermore, QTL analysis 

identified a region of the genome that was significantly correlated with inter-strain differences 

(Figure 3.2C and Figure 3). A gene within this region, Serpinb2, had previously been reported to 

be influenced at the level of mRNA expression by TCDD in mouse and human B cells (Kovalova 

et al. 2017). The TCDD-inducible expression results were confirmed at the mRNA and protein 

level with our CD40 ligand-activation model in the DBA/1J strain, but not in the C57BL/6J strain 

(Figure 3.4A, Figure 3.5A and 5B). Furthermore, a Serpinb2-/- mouse strain was found to be more 

sensitive to TCDD-mediated suppression in the percentage of cells secreting IgM, suggesting that 

SERPINB2 plays a protective role in TCDD-mediated immunosuppression of the B cell (Figure 

3.7A). The induction of SERPINB2 in DBA/1J was found to correlate with a higher level of 

intracellular IgM on day 3, but not on day 4, which may suggest some time-dependence as to 

when the protection of TCDD-mediated suppression may occur (Figure 3.6B and 6C). Finally, this 
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response was found to be specific to Serpinb2, as the same phenotype was not observed in 

Serpine1-/- mice (Figure 3.7C). 

 

 Based on the expression patterns of PAI2, the human ortholog of Serpinb2, during 

infection and inflammatory stimuli (i.e. cytokines), PAI2 has been suggested to play an important 

role within the immune response (Schroder et al. 2010; Zhao et al. 2013). Previous reports, 

however, have primarily focused on the role of Serpinb2 in the macrophage where, after 

activation, SERPINB2 is one of the most abundant proteins (Costelloe et al. 1999; Gan et al. 

2008; Kruithof et al. 1995; Losick and Isberg 2006; Medcalf and Stasinopoulos 2005; Schroder et 

al. 2010; Sekine et al. 2009). While TCDD-induced Serpinb2 mRNA expression has been reported 

in human and mouse B cells activated with pokeweed mitogen (Kovalova et al. 2017), this is the 

first report indicating a TCDD-elicited increase in Serpinb2 mRNA and SERPINB2 protein 

expression in CD40 ligand-activated B cells. As such, these findings suggest a novel role of 

Serpinb2 in B cell function and further confirms that Serpinb2 plays a key role within multiple-

levels of immune function.  

 

 While SERPINB2/PAI2 has been extensively studied, its role in immune function still 

remains elusive (Medcalf and Stasinopoulos 2005). Here, we have shown that loss of the gene 

results in a greater sensitivity to TCDD-mediated immune suppression in mice. In speculating on 

the potential mechanism to explain this suppressed immunity, previous reports have identified 

that human PAI2 binds directly to proteasome subunit β1 which may provide some insight into 

the phenotype we observed (Fan et al. 2004). Past studies have also shown that CD40 signaling 

activates and promotes translocation of NFKB into the nucleus (Berberich et al. 1994). As the 

proteasome has been shown to play a key role in regulating NFKB signaling in several cell types, 

including human B cells, previous reports have suggested that PAI2’s association with the 

proteasome may be involved in regulation of NFKB signaling (Berberich et al. 1994; Karin and 
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Ben-Neriah 2000; Kosaka et al. 1999; Schroder et al. 2010; Schroder et al. 2011). Similarly, 

Serpinb2-/- mice have also been reported to have enhanced levels of NFKB activity (Schroder et 

al. 2010). Interestingly, the AHR and NFKB have been previously reported to interact both 

physically and via downstream signaling cascades (Tian et al. 1999; Tian 2009; Vogel and 

Matsumura 2009). Furthermore, a recent paper has shown that, upon TCDD treatment, altered 

expression of NFKB/REL members may, along with AHR activation, mediate a decrease in Ig 

expression (Salisbury and Sulentic 2015). Increased PAI2 expression may provide protection to 

less-sensitive strains via regulation of NFKB/REL signaling. Human PAI2 has also been reported 

to bind and protect retinoblastoma protein (RB1) from calpain cleavage ultimately leading to 

increase RB1 levels within the cell leading to increased cell survival (Tonnetti et al. 2008). A 

physical interaction between AHR and RB1 has also been reported and this interaction might 

modulate the cell cycle (Murray et al. 2014; Puga et al. 2000).  The increase in the PAI2 pool 

within activated B cells may promote cell survival in an RB1-dependent manner. Finally, human 

PAI2 has been shown to bind and stabilize CDKN1A in human fibroblasts (Hsieh et al. 2017). 

Previous reports have noted B cells accumulate CDKN1A upon CD40 ligation (Mullins et al. 

1998). While CDKN1A is known to promote cell senescence, it also has been found to be 

necessary for the assembly and nuclear localization of cyclin D/CDK4 and, thus, progression to 

G1 phase of replication (LaBaer et al. 1997; Zhang et al. 1994). Increased PAI2 expression, 

therefore, might increase the pool of CDKN1A to a level high-enough in the nucleus to move to 

the G1 phase contributing to the separation seen between the number of IgM secreting cells of 

sensitive and less-sensitive strains (Mullins et al. 1998).  

 

 Mouse population-based studies have been used to inform human-based risk assessment 

in the past (Chiu et al. 2014; Cichocki et al. 2017; Harrill et al. 2009). Here, a genetically-diverse 

mouse panel was used to characterize the functional role of Serpinb2 in TCDD-mediated 

suppression of the mouse B cell. The results from this study suggest that human PAI2 plays a 
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role in mediating the IgM response. Notably, a number of Serpinb2 polymorphisms within the 

human population have been identified that impact a plethora of disease-states (Andraweera et 

al. 2014; Buyru et al. 2003; Corsetti et al. 2016; Palafox-Sanchez et al. 2009; Vazquez-Del 

Mercado et al. 2007). While further research is needed, we speculate that polymorphisms that 

impact human PAI2 activity will alter individual’s susceptibility to TCDD-mediated 

immunosuppression and, more broadly, the CD40-mediated IgM response. 
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4.1. Abstract 

As traditional toxicology studies typically use homogenous models, we used a genetically-diverse 

mouse population-based approach to scan for novel genetic modulators that impact hepatic 

sequestration of TCDD and TCDD-elicited hepatotoxicity. A panel of 14 strains of mice were 

treated with 1 or 100 ng/kg TCDD for 10 days. Significant inter-strain differences in hepatic TCDD 

burden appear heavily-driven by genetic background. Of 9 AHR-responsive genes analyzed, the 

TCDD-induced gene dysregulation of 4 genes were found to correlate with TCDD burden. Three 

of these genes are classical AHR-battery genes suggesting that AHR-mediated transcription 

drives hepatic TCDD sequestration. TCDD burden and TCDD-induced gene expression were 

used to scan for genetic modulators of TCDD-induced toxicity. Quantitative trait loci (QTL) 

analysis identified several novel genomic regions that potentially modulate TCDD-induced gene 

dysregulation. Tgfbr2, which encodes for transforming growth factor β receptor II (TGFBR2), was 

found within one genomic region of interest. Inhibiting TGFBR2 activity decreased TCDD-elicited 

inflammation, but increased lipid accumulation, in the livers of male, but not female, C57BL/6 

mice. Our results suggest that TGFBR2 activity modulates TCDD-elicited liver toxicity in male 

mice. These results, while providing further understanding of AHR biology, have the potential to 

identify sub-populations more susceptible to TCDD-induced toxicity. 
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4.2 Introduction 

 Previous studies indicate that the liver is a sensitive target of TCDD-induced toxicity. 

TCDD exposures in mice lead to increased levels of alanine aminotransferase (ALT) in the serum, 

inflammation, and liver weight (Boverhof et al. 2005; Kopec et al. 2013; Pierre et al. 2014). TCDD-

elicited increase in liver weight is likely driven, at least in part, by induction of fatty liver disease. 

Previous reports show that a single, bolus dose of TCDD (30 µg/kg) results in an increased 

deposition of fatty acids in the liver of mice that are sensitive to TCDD (Boverhof et al. 2005). If 

exposure to TCDD is prolonged, the increased fatty acid uptake in the liver has been shown to 

progress to steatohepatitis with fibrosis (Nault et al. 2016a; Nault et al. 2016c; Nault et al. 2017; 

Pierre et al. 2014). Epidemiological studies indicate that exposures to TCDD and other dioxin-like 

compounds are associated with increased incidence of liver disease in humans as well. More 

specifically, exposures to TCDD and other dioxin-like chemicals are associated with increased 

levels of liver enzymes, diabetes and metabolic syndrome (Cave et al. 2010; Dietrich and 

Hellerbrand 2014; Lee et al. 2007; Taylor et al. 2013). 

 

 Previous rodent-based studies show that TCDD accumulates in the liver in a dose-

dependent manner (Nault et al. 2016a). Furthermore, genes that are regulated by the AHR are 

involved in the hepatic sequestration of TCDD. For example, CYP1A2, which is a part of the AHR 

gene-battery, is known to bind the contaminant (Voorman and Aust 1989). Hepatic sequestration 

of TCDD is greatly reduced following a single dose of TCDD in Cyp1a2-/- mice (Diliberto et al. 

1997; Hakk et al. 2009). Notably, hepatic TCDD sequestration has not been addressed using 

heterogeneous models that mirror the variability in the human population. Similarly, TCDD-

induced gene expression has been heavily-studied in mice using homogenous models. The 

impact of incorporating genetic variability has not yet been characterized for either the 

accumulation of TCDD or AHR-mediated transcription. 
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 To address this knowledge gap, 14 genetically-diverse mouse strains were exposed to 

vehicle control, 1, or 100 ng/kg/day of TCDD for 10 consecutive days. Following exposure, gas 

chromatography-mass spectrometry (GC/MS) was used to analyze the level of hepatic TCDD 

accumulation. Expression of 9 AHR-responsive genes were also analyzed in the liver. These 

results were used to further characterize the toxicodynamics of AHR-mediated sequestration. 

QTL analysis implicated a region on mouse Chromosome 9 that has potential to modulate TCDD-

induced toxicity in the liver. Amongst the genes within this region, Tgfbr2, which encodes for 

transforming growth factor β receptor type II, was found to modulate the level of inflammation and 

fat accumulation in the liver of TCDD-exposed C57BL/6 mice. While a ligand of TGFBR2 called 

TGFB1 is altered by TCDD, this is the first report with functional data that suggests TGFBR2 

activity plays a role in TCDD-induced liver pathology.  
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4.3 Results 

4.3.1. Inter-strain variability in TCDD liver burden 

 There is wide variability in the level of TCDD burden in the liver of mice that received 

TCDD. Within the 1 ng/kg/day dose group, the population mean level of TCDD was 22.7 ng/kg of 

liver with 95% confidence intervals that range from 6.0 to 39.4 ng/ kg of liver (Figure 4.1). Notably, 

there is a > 40-fold difference in the accumulation of TCDD in the livers in the 1 ng/kg/day group 

with the lowest levels in NZO/HlLtJ (2.8 ng/kg liver) and highest in DBA/1J (119.5 ng/kg 

liver)(Figure 4.1). Within the 100 ng/kg/day dose group, the population mean level of TCDD was 

1909.7 ng/kg of liver with the 95% confidence interval ranging from 955.1 to 2864.2 ng/kg of liver 

(Figure 4.1). The mean level of TCDD accumulation is > 84-fold higher in mice that received 100 

ng/kg/day dose group as compared to the 1 ng/kg/day mice. Within the higher dose group, there 

is > 30-fold difference in the mean levels of TCDD in the livers across strains with the lowest in 

NOD/ShiLtJ (159.2 ng/kg liver) and highest in BXD91 (5286.7 ng/kg liver; Figure 4.1). The 

heritability estimate (h2) for accumulation of TCDD within the 100 ng/kg/day dose group is 0.94 

with 95% confidence intervals that span from 0.90 to 0.96 (Table 4.1). The h2 estimate suggests 

that genetic variance in this mouse panel drives roughly 15 times more of the observed variance 

as compared to environmental factors. These results suggest that accumulation of TCDD in the 

liver of mice is highly genotype-dependent. In comparison with serum lipid adjusted toxic 

equivalent factors (TEQs) for TCDD and dioxin-like compounds previously reported, the levels of 

hepatic TCDD measured in this study suggest that the dosing scheme provided environmentally 

relevant physiological levels of TCDD for the 1 and 100 ng/kg/day dose groups (Nault et al. 

2016a). The mean level of TCDD in the vehicle control group was 2.8 ng/kg of liver and is not 

genotype-dependent.  

 

 As inbred mouse strains are known to carry one of four distinct Ahr alleles that impact 

affinity for AHR-ligands, an AHR amino acid sequence alignment was performed to determine the  
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Figure 4.1. Mean hepatic TCDD levels in 14 genetically-diverse mouse strains. GC/MS was 

used to assess the hepatic TCDD burden in mice (n=3) treated with 1 ng/kg or 100 ng/kg of TCDD 

for 10 consecutive days. Levels are reported as ng of TCDD per kg of liver (ng/kg). Bars indicate 

mean level of TCDD; error bars indicate standard error. Orange and blue box indicates the 95% 

confidence intervals of population-level mean TCDD levels for the 1 ng/kg/day and 100 ng/kg/day 

dose group, respectively. White dotted lines within colored boxes indicate the population-level 

means for respective dose group. 
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Table 4.1. Coeffecient estimates for regression model comparing inter-strain differences 

in hepatic TCDD accumulation for the 100 ng/kg/day dose group. All coefficient estimates 

are relative to the NOD/ShiLtJ which had the lowest mean level of hepatic TCDD across the 14 

mouse strains. Stars (*) indicate a p <0.05. 

 

Coefficient Estimate Standard Error t value Pr (>|t|) 

Intercept 159.27 315.46 0.505 0.618 

129S1/Svlmj 588.07 446.13 1.318 0.198 

A/J  457.07 446.13 1.025 0.314 

BALB/cJ 536.93 446.13 1.204 0.239 

BXD100 4653.15 446.13 10.430 <0.001* 

BXD40 1474.07 446.13 3.304 0.002* 

BXD91 5127.40 446.13 11.493 <0.001* 

C3HeB/FeJ 2284.07 446.13 5.120 <0.001* 

C57BL/6J 4064.07 446.13 9.110 <0.001* 

CBA/J 3374.07 446.13 7.563 <0.001* 

CC019 104.73 446.13 0.235 0.816 

DBA/1J 1307.40 446.13 2.931 0.006* 

FVB/NJ 514.40 446.13 1.153 0.259 

NZO/HILTJ 20.17 446.13 0.045 0.964 

 Residual Standard Error: 22.06 on 47 degrees of freedom.  

 Multiple R2: 0.939; Adjusted R2: 0.911 

 F Statistic: 33.37 on 13 of 28 degrees of freedom; p = <0.001* 
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Ahr allele carried by each strain (Poland and Glover 1990; Poland et al. 1994; Thomas et al. 

2002). Phylogenetic analysis indicates that mice in this study carry one of three distinct Ahr alleles: 

1) Ahrb1 (grey), 2) Ahrb2 (blue), and 3) Ahrd (green)(Figure 4.2A). On average, the level of TCDD 

sequestered in the liver is impacted by the Ahr allele carried by the mouse strain (Figure 4.2B). 

The mean level of TCDD in Ahrb1 mice is significantly higher than the mean levels found in Ahrb2 

and Ahrd mice (p<0.05). Similarly, Ahrb2 mice sequester more TCDD than Ahrd mice (p<0.05). 

Notably, allelic differences in TCDD burden were only present in mice treated with 100 ng/kg/day 

TCDD and not at the lower dose of TCDD.  

 

 While there are significant differences in the mean levels of TCDD across Ahr alleles in 

the 100 ng/kg/day dose group, there is clearly intra-allelic variability (Figure 4.2C). For example, 

DBA/1J and BXD40 were found to have significantly higher TCDD burdens than other Ahrd mice 

such as NOD/ShiLtJ, NZO/HlLtJ, and CC019 (p<0.05). Similarly, CBA/J had significantly higher 

TCDD burden than all the other Ahrb2 mice (p<0.05). C3HeB/FeJ were found to accumulate 

significantly higher levels of TCDD as compared to A/J (p<0.05). Notably, in comparing individual 

strains across allelic categories, several Ahrd allele mice, such as the 129S1/SvlmJ, DBA/1J, and 

BXD40, were found to accumulate higher levels of TCDD than Ahrb2 mice, such as A/J, FVB/NJ, 

and BALB/cJ. These results suggest that, while the Ahr allele affects the sequestration of TCDD, 

other genomic factors likely also impact accumulation.  

 

4.3.2. TCDD-induced expression of nine AHR-responsive genes 

 TCDD-induced expression (i.e. relative to vehicle control) of nine AHR-responsive genes 

were assessed with a customized NanoString PlexSet. Of the 243 total gene expression vs. dose 

group vs. mouse strain combinations, 36 combinations were found to have statistically significant  

increases in expression as compared to the strain’s respective vehicle control (p<0.05; Table 4.2). 

A sensitive (i.e. expressing the Ahrb1 allele, BXD100) and less-sensitive strain (i.e. expressing the  
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Figure 4.2. Genotype-dependent differences in accumulation of TCDD in the liver. AHR 

amino acid sequence alignment was used to identify the allele carried by each strain: 1) Ahrb1 

(grey), 2) Ahrb2 (blue), and 3) Ahrd (green)(A). TCDD concentrations in the liver for each strain 

were used to calculate the mean level of TCDD found to accumulate within each Ahr allelic 

category. Results were used to compare mean TCDD levels across Ahr alleles (B); asterisk (*) 

indicates p<0.05. Mean TCDD levels in each strain were also compared within Ahr allelic 

categories (C). Letters over bars indicate significant differences (p<0.05) with the mean of: 

aNOD/ShiLtJ, bNZO/HlLtJ, cCC019, dA/J, eFVB/NJ; fBALB/cJ, gC3HeB/FeJ (p<0.05). In all cases, 

grey indicates an Ahrb1 allele (very high affinity), blue indicates an Ahrb2 allele (high affinity), and 

green indicates an Ahrd allele (low affinity). Bars indicate means and error bars indicate standard 

error. 
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Table 4.2. TCDD-induced fold changes of 9 AHR-responsive hepatic genes in 14 

genetically-diverse mice relative to the intra-strain vehicle control. Yellow highlights genes 

differentially expressed compared to the intra-strain vehicle control (Fold change ≥ 1.5; p ≤ 0.05). 

Grey indicates an Ahrb1 allele (very high affinity), blue indicates an Ahrb2 allele (high affinity), and 

green indicates an Ahrd allele (low affinity). 

  

Ahr  Allele Strain Dose (ng/kg/day) Ahrr Cyp1a1 Cyp1a2 Cyp1b1 Gpnmb Mt2 Pmm1 Serpinb2 Slc15a2

BXD91 100 1.5 1,693.91 15.59 1.15 2.48 1.05 2.52 1.04 3.74
C57BL6/J 1 1.59 1.43 1.65 1.28 1.43 1.1 1 3.15 1.09

100 1.74 988.86 13.3 3.31 3.17 1 1.73 4.07 3
1 -1.38 3.5 1.35 1.11 -1.08 -1.5 1.01 1.67 -3.25

100 -1.47 1,678.36 11.17 1.44 1.75 1.18 1.9 5.32 1.29
1 -2.13 1.04 1.09 -1.81 -4.7 -1.11 -1.11 -3.13 1.5
100 -1.95 20.34 6.34 -1.39 -2.03 -1.13 1.28 1.01 1.42
1 -1.29 2.17 1.39 2.04 2.4 1.28 -1.01 2.54 1.49

100 1.03 260.56 8.12 1.4 1.42 -1.12 1.5 3.21 1.36
1 1.62 1.36 1.51 1.49 -1.06 1.37 -1.14 -2 1.06

100 1.96 34.21 5.48 1.33 1.41 1.41 1.12 -3.31 1.65
1 1.67 1.45 2.09 1.69 -1.16 1.03 -1.09 -1.04 1.48

100 1.52 373.63 11.53 2.88 1.71 -1.08 1.49 2.14 2.51
1 1.11 1.81 1.14 1.49 1.79 -1.33 1.38 1.53 -2.57

100 1.41 636.5 12.72 2.61 4.37 -1.11 1.98 2.25 1.37
1 1.57 1.13 -1.04 -1.17 1.37 1.34 -1.32 1.29 4.05
100 -1.42 1.43 1.75 -1.01 1.11 1.32 -1.32 1.87 1.17
1 1.3 -1.85 1.28 1.49 -1.04 1.36 1.22 -5.57 1.41

100 -1.2 2.27 3.4 1.54 1.19 1.02 1.18 -5.87 2.08
1 1.15 1.24 1.22 -1.09 1.8 -1.59 1.01 4.25 1.1

100 1.33 4.57 2.73 -1.08 2.15 -1.14 -1.05 4.79 -1.21
1 -1.04 1.08 1.08 -1.41 1.3 -1.14 -1.15 2.54 -2.01

100 -1.25 -1.73 1.4 -1.95 -1.21 -1.62 1.08 -1.29 -1.09
1 1.36 2.04 -1.01 1.28 -2.3 -1.6 1.06 8.96 1.43

100 -1.05 1.3 1.09 1.58 -2.38 -1.91 1 2.35 1.49
1 -1.24 1.54 1.06 1.33 -1.38 -1.27 1.04 1.09 -1.53

100 1.82 3.29 3.12 -1.03 -1.28 -1.47 -1.1 -1.62 1.45

Ahr b1

Ahr b2

Ahr d

CC019

DBA/1J

BXD40

NOD/ShiLtJ

NZO/HiltJ

129S1/Svlm
J

BXD100

A/J

Balb/cJ

FVB/nJ

C3HeB/FeJ

CBA/J
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Ahrd allele, NOD/ShiLtJ) were chosen to confirm NanoString Technology PlexSet results using 

QRTPCR. Both technologies indicate a significant induction of Cyp1a1 expression in BXD100 at 

100 ng/kg/day dose group (p<0.05; Figure 4.3A). Similarly, both technologies indicate repression 

in the expression of Cyp1a1 at 100 ng/kg/day in NOD/ShiLtJ (Figure 4.3B). There were no 

significant differences in comparing technologies at either dose group for either the BXD100 and 

NOD/ShiLtJ.  

 

 The greatest TCDD-induced changes were found in Cyp1a1 expression with up to 1,694-

fold increases (Table 4.2). The largest number of statistically significant changes were found in 

Cyp1a2 expression across strains (p<0.05; n=10; Table 4.2). All genes were found to contain at 

least one strain that had a significant change in gene expression with the exception of Mt2 

(p<0.05; Table 4.2). The vast majority of significantly dysregulated fold changes were found at 

the higher-dose (100 ng/kg/day) of TCDD (p<0.05: Table 4.2). The greatest percentage of 

significantly TCDD-dysregulated genes were found in Ahrb1 mice; of 45 gene expression vs. 

TCDD dose vs. strain combinations, 15 genes were significantly dysregulated by TCDD (33.3% 

of total; p<0.05; Table 4.2).  Within the Ahrb2 mice, 16 of 90 combinations were significantly 

dysregulated (17.8% of total; p<0.05; Table 4.2). Within the Ahrd mice, 5 of 108 combinations 

were found significantly dysregulated (4.6% of total p<0.05; Table 4.2). The mean fold changes 

of Cyp1a1 and Cyp1a2 expression in 100 ng/kg/day dose group were chosen to directly compare 

the TCDD-induced gene expression across alleles. Results indicate that, for both genes, there 

are significant differences across Ahr alleles that adhere to previously published reports (Figure 

4.4A and 4B)(Poland et al. 1994). In both cases, TCDD induced significantly more expression in 

Ahrb1 and Ahrb2 as compared to Ahrd mice (p<0.05; Figure 4.4A and 4B). Similarly, Ahrb1 mice 

were found have significantly higher induction as compared to the Ahrb2 mice (p<0.05; Figure 

4.4A and 4.4B). 
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Figure 4.3. Nanostring Technology-based PlexSet confirmation with QRTPCR. TaqMan-

based QRTPCR was used to confirm the results acquired from the Nanostring PlexSet (n≥4). An 

ANOVA was used to compare TCDD-induced expression of Cyp1a1 for a strain that is sensitive 

(BXD100; A) and a strain that is less-sensitive (NOD/ShiLtJ; B) to TCDD. Asterisks (*) indicate a 

significant difference (p<0.05) compared to the vehicle control for that respective technology. 

Black bars indicate QRTPCR data and grey bars indicate Nanostring data; error bars indicate 

standard error.  

	

	 	



	 103	

Figure 4.4. Genotype-dependent differences in TCDD-induced expression of hepatic 

Cyp1a1 and Cyp1a2 in 14-genetically diverse mouse strains. TCDD-induced fold change in 

Cyp1a1 (A) and Cyp1a2 (B) expression within Ahr allelic categories. Mean TCDD-induced fold 

changes in the expression of Cyp1a1 (C) and Cyp1a2 (D) for each strain compared to Ahr allelic 

category. Asterisk (*) indicates a significant difference (p<0.05) compared to the vehicle control 

and, if over bracket, indicates a comparison across alleles. Letters over bars indicate significant 

differences (p<0.05) as compared to means of:  aNOD/ShiLtJ, bNZO/HiLtJ, cCC019, dDBA/1J, 

eA/J, fFVB/NJ; gBALB/cJ, hC57BL/6J, iBXD100, jBXD91 (p<0.05). In all cases, grey indicates an 

Ahrb1 allele, blue indicates an Ahrb2 allele, and green indicates an Ahrd allele. In all cases, bars 

indicate means and error bars indicate standard error. 
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 While there are significant differences across Ahr alleles in TCDD-induced Cyp1a1 and 

Cyp1a2 expression, there are also intra-allelic differences across strains as well (Figure 4.4C and 

4.4D). For example, 129S1/SvlmJ and BXD40 were found to have more TCDD-induced Cyp1a1 

expression than several other Ahrd mice (p<0.05; Figure 4.4C). CBA/J mice were found to have 

significantly higher TCDD-induced Cyp1a1 expression than several other Ahrb2 mice (p<0.05; 

Figure 4.4C). Similarly, BXD100 and BXD91, which carry the Ahrb1 allele, were found to have 

significantly higher TCDD-induced Cyp1a1 expression as compared to the C57BL/6J (p<0.05; 

Figure 4.4C). TCDD-induced Cyp1a2 expression was found to having differing patterns of intra-

allelic variability. For example, Ahrd mice, such DBA/1J, have significantly more TCDD-induced 

expression as compared to NOD/ShiLtJ and NZO/HlLtJ (p<0.05; Figure 4.4D). Similarly, 

129S1/SvlmJ had significantly more TCDD-induced Cyp1a2 expression as compared to the 

NZO/HlLtJ, but not NOD/ShiLtJ which was seen in the Cyp1a1 expression profile (p<0.05; Figure 

4.4D). For Ahrb2 mice, C3HeB/FeJ was found to have significantly more TCDD-induced Cyp1a2 

expression to other Ahrb2 mice (p<0.05; Figure 4.4D). Finally, all three Ahrb1 mice have 

significantly different levels of TCDD-induced expression of Cyp1a2 (p<0.05; Figure 4.4D). Most 

notably, several Ahrb1 mice, such as C57BL/6J and BXD100, have very similar or less TCDD-

induced expression of Cyp1a2 as compared to mouse strains that carry the Ahrb2 allele, such as 

the C3HeB/FeJ and the CBA/J. These results suggest that other genomic factors that are 

independent of the inherited Ahr allele likely impact TCDD-induced expression of AHR-responsive 

genes. 

 

4.3.3. Dynamics of TCDD burden and AHR-mediated expression in the liver 

 The mean hepatic TCDD burden and the mean number of probe counts (i.e. transcripts) 

as normalized to 3 house-keeping genes for each AHR-responsive gene was used to analyze the 

dynamics of TCDD-induced gene expression for each dose group. In the 1 ng/kg/day TCDD dose 

group, no significant correlations between gene expression and hepatic TCDD burden were 
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identified. For the higher-dose of TCDD, however, 4 of the 9 AHR-target genes were found to 

correlate with the hepatic levels of TCDD in a statistically significant and positive manner (Figure 

4.5). The strongest correlation with hepatic TCDD burden was with Cyp1a1 expression (p<0.05, 

r=0.951; Figure 4.5A). Cyp1a2 expression was the second-highest correlation found with TCDD 

burden (p<0.05, r=0.899; Figure 4.5B). Expression of Cyp1b1 and Pmm1 were also significantly-

associated with hepatic TCDD burden (p<0.05; r=0.805 and r=0.612, respectively; Figure 4.5C 

and 4.5D). The correlations of hepatic TCDD burden and expression of Ahrr and Serpinb2 were 

trending towards significance (Figure 4.5E and 4.5F). Expression of Ahrr, Gpnmb, and Mt2 were 

not associated with hepatic TCDD burden which is most likely due to the limited TCDD-induced 

changes (Figure 4.5G, 4.5H, and 4.5I). Thus, Pearson correlation analysis indicates that, amongst 

the 9 AHR-target genes assessed, higher levels of TCDD-induced activation of AHR-battery 

genes tend to positively correlate with the levels of TCDD in the liver. This is further confirmed by 

the lack of correlation at the lower dose where minimal numbers of significant differences in 

TCDD-induced expression were present.  

 

4.3.4. Quantitative trait locus analysis 

 QTL analysis was used to identify potential genes and pathways associated with the inter-

strain differences in TCDD accumulation in the liver. For the lower-dose group of TCDD, four 

significant QTL peaks were identified in the 1 ng/kg/day TCDD dose group (p<0.05). More 

interestingly, in scanning for QTLs that may drive inter-strain differences in accumulation of TCDD 

within the 100 ng/kg/day dose group of TCDD, a strong, statistically significant association was 

identified in mouse Chromosome 1 (p<0.001). As this region may be involved in modulating inter-

strain differences in TCDD accumulation, genes within 1.5 Mb of the significant peak were 

compiled into a candidate gene list for further analyses (Table 4.3). QTL analysis was also used 

to identify potential genetic modifiers that drive inter-strain differences in TCDD-induced gene 

dysregulation. As very few of the genes were significantly dysregulated at the lower-dose of TCDD 
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Figure 4.5. Correlation between TCDD-induced gene dysregulation and TCDD burden in 

the liver of 14 genetically-diverse mouse strains. Pearson’s correlation (r) analysis between 

log-transformed hepatic TCDD levels of and TCDD-induced gene expression for: 1) Cyp1a1 (A), 

2) Cyp1a2 (B), 3) Cyp1b1 (C), 4) Pmm1 (D), 5) Serpinb2 (E), 6) Slc15a2 (F), 7) Ahrr (G), 8) 

Gpnmb (H), and 9) Mt2 (I). In all cases, p values and r values for the respective gene are reported 

within the graph. 
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Table 4.3. Candidate genes associated with inter-strain differences in TCDD-induced 

endpoints. Genes located within 1.5 Mb of all significantly associated markers are lists. Grey 

highlighting indicates genomic regions associated with multiple TCDD-induced endpoints in this 

study. Bolded genes were prioritized for further analysis. 

 

  

Endpoint Chromosome Location (Mb) Logs of Difference 
(LOD) P-value Genes Within Region

Liver Burden of TCDD 1 133.189 >50 <0.001

Slc15a2 1 133.189 >50 <0.001

Cyp1a2 1 133.189 >50 <0.001

Ahrr 1 133.189 >50 <0.001

Pmm1 9 117.389 >50 <0.001

Ahrr 9 117.389 >50 <0.001

Pmm1 X 139.214 >50 <0.001

Tex13a, Il1rapl2, Nrk, Serpina7, 
Mum1l1, Platr21, Trap1a, Rnf128, 
Tbc1d8b, Ripply1, Cldn2, Morc4, 

Rbm41, Nup62cl, Pih1h3b, Mir3475, 
Frmpb3, Prps1, Tsc22d3, Mid2 

Rab7b, Slc26a9, Slc41a1, Rab29, 
Nucks1, Slc34a3, Elk4, Mfsd4a, 

Cdk18, Lemd1, Mir135b, Klhdc8a, 
Nuak2, Tmcc2, Dstyk, Rbbp5, 

Tmem81, Cntn2, Nfasc, Lrrn2, Mdm4, 
Pik3c2b, Ppp1r15b, Plekha6, Golt1a, 

Ren2, Kiss1 , Sox13, Etnk2 , 
Zc3h11a, Zbed6, Lax1, Atp2b4, Optc, 

Prelp, Fmod, Btg2, Chit1, Chil1, 
Mybph, Adora1, Ppfia4, Tmem183a, 

Myog, Adipor1 , Klhl12, Rabif, Kdm5b, 
Syt2

Gad11, Tgfbr2 , Rbms3, Zcwpw2, Azi2, 
Cmc1, Platr11, Eomes, Golga4, Itga9 

Cyp1a1 11 69.478 6.119 0.022

Ntn1, Myh10, Ndel1, Aurkb, Vamp2, 
Per1 Hes7, Alox8,  Kdm6b, Efnb2, 

Trp53, Atp1b2, Cd68, Eif4a1, Tnfsf13, 
Tnfsf12, Polr2a, Nlgn2, Slc2a4, Dvl2, 
Acadvl, Dlg4, Asgr1, Alox12, Alox15, 
Arrb2, Cxcl16, Pld2, Chrne, Gp1ba, 

Pfn1
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(3.4% of total; Table 4.3), QTL analysis was focused on the data from the higher-dose group 

where significant gene dysregulation was more prevalent (Table 4.3). Furthermore, Mt2 data was 

not included in QTL analysis due to lack of statistically significant changes induced by TCDD. 

QTL analysis of inter-strain differences in TCDD-induced dysregulation of 9 AHR-responsive 

genes identified 9 statistically significant QTL peaks (Table 4.3). There are 3 statistically 

significant associations in Chromosome 1, 2 associations in Chromosome 9, and 1 association in 

Chromosome 11 and X. Candidate gene lists of genes within 1.5 Mb of the significant marker 

were compiled for each dose group (Table 4.3). Interestingly, several significantly associated 

markers were identified for ≥ 2 endpoints. For example, a region of Chromosome 1 was identified 

while scanning for modulators of hepatic TCDD accumulation and expression of 3 AHR-

responsive genes: Slc15a2, Cyp1a2, and Ahrr (Table 4.3). Similarly, QTL analysis also identified 

a marker on mouse Chromosome 9 that potentially impacts TCDD-induced Pmm1 and Ahrr 

expression (Table 4.3).  

 

4.3.5. Potential genetic modulators of TCDD burden and TCDD-induced gene expression 

 Genomic regions where ≥ 2 significant associations were identified by QTL analysis were 

prioritized for further investigation. Several genes within these regions have previously been 

associated with TCDD-induced gene dysregulation or phenotypes seen with TCDD exposures. 

Within the region of Chromosome 1, Kiss1 and Entk2 expression have been reported as 

dysregulated by TCDD (Table 4.3)(Forgacs et al. 2012; Mueller and Heger 2014). Similarly, while 

Adipor1 has not been shown to be dysregulated by TCDD, the adiponectin pathway has been 

previously implicated in TCDD-induced phenotypes (Table 4.3)(Angrish et al. 2013). In this mouse 

panel, TCDD was not found to dysregulate mRNA expression of these genes in a subset of strains 

that were analyzed (Table 4.4). Similarly, polymorphisms in coding regions were not found to be 

associated with inter-strain differences in response to TCDD. Another of gene interest is Tgfbr2 

which resides in the overlapping associations found on mouse Chromosome 9 (Table 4.3).  
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Table 4.4. TCDD-induced fold changes of the expression of genes within genomic regions 

identified with QTL analysis. Mean fold changes (n=5) are reported with standard error in 

parenthesis. Grey indicates an Ahrb1 allele (very high affinity) and green indicates an Ahrd allele 

(low affinity). 

 

  

Tgfbr2 Kiss1 Etnk2 Adipor1
Fold Change (SE) Fold Change (SE) Fold Change (SE) Fold Change (SE)

0 1.00 (0.08) 1.00 (0.33) 1.00 (0.29) 1.00 (0.21)
1 0.56 (0.02) 1.58 (0.33) 1.14 (0.33) 0.80 (0.09)

100 0.80 (0.02) 0.85 (0.23) 1.10 (0.22) 0.99 (0.07)
0 1.00 (0.21) 1.00 (0.21) 1.00 (0.11) 1.00 (0.04)
1 1.01 (0.09) 2.46 (0.68) 1.70 (0.23) 1.08 (0.12)

100 0.98 (0.22) 2.10 (0.57) 1.14 (0.19) 1.05 (0.12)
0 1.00 (0.11) 1.00 (0.24) 1.00 (0.12) 1.00 (0.05)
1 0.64 (0.08) 2.20 (0.57) 1.16 (0.11) 0.74 (0.08)

100 0.34 (0.15) 1.27 (0.53) 1.10 (0.21) 0.81 (0.19)
0 1.00 (0.21) 1.00 (0.45) 1.00 (0.19) 1.00 (0.16)
1 1.14 (0.25) 0.80 (0.22) 1.02 (0.42) 1.49 (0.12)

100 0.77 (0.13) 0.69 (0.15) 0.85 (0.21) 0.88 (0.10)

TCDD (ng/kg/day)

NZO/HlLtJ

C57BL/6

BXD100

NOD/ShiLtJ

Strain
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Previous reports indicate that this gene is dysregulated by TCDD (Fraser et al. 2002; Gaido et al. 

1992). In this study, the coding regions of Tgfbr2 were found to be highly-conserved. While there 

were not differences in TCDD-induced fold changes of Tgfbr2 mRNA found across a subset of 

strains, there were clear differences in basal expression of Tgfbr2 mRNA expression (Table 4.4). 

Furthermore, previous literature has implicated the TGF-β pathway in TCDD-induced toxicity. 

Given the collective evidence, Tgfbr2 was selected for further analysis.  

 

4.3.6. Tgfbr2 modulates TCDD-induced inflammation and lipid deposition in the liver 

 To test whether Tgfbr2 is modulating TCDD-induced liver toxicity, a TGFBR2-Fc fusion 

protein previously shown to trap TGFBR2 ligands (i.e. TGFB1 and TGFB3) was used to inhibit 

TGFBR2 activity in vivo (Yung et al. 2016). Male and female C57BL/6 mice (i.e. Ahrb1 allele mice) 

were gavaged with either vehicle or 10 µg/kg/day of TCDD in the presence or absence of the 

TGFBR2-Fc fusion protein over 10 days. The hepatic expression of AHR-battery genes, such as 

Cyp1a1, Cyp1a2, and Cyp1b1, were significantly induced in all groups treated with TCDD. The 

TGFBR2 inhibitor did not affect the induction of Cyp1a1, Cyp1a2, and Cyp1b1 by TCDD (Figure 

4.6). As indicated by H&E staining of liver sections, male mice that received TCDD alone (i.e. 

without the TGFBR2-Fc protein) exhibited higher levels of infiltrating cells as compared to females 

using this dosing scheme (Figure 4.7A). Oil red O staining indicates that, for both males and 

females, TCDD induced significant increases in the lipid deposited in the liver which adheres to 

previously published reports (Figure 4.7A, 4.7B, and 4.7C)(Kopec et al. 2013; Nault et al. 2016a; 

Pierre et al. 2014). In comparison across treatment groups, treatment with a TGFBR2-Fc protein 

reduces the level of infiltrating immune cells in the liver of male, but not female, C57BL/6 mice 

treated with TCDD (Figure 4.6A). Interestingly, males that received TCDD and TGFBR2-Fc 

protein accumulate significantly more lipid in the liver as compared to TCDD alone (Figure 4.7A 

and 4.7B). While not significant, female mice also accumulated higher levels of lipid (Figure 4.7C). 
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Figure 4.6. TCDD-induced expression of AHR-target genes in the liver. QRTPCR was used 

to analyze the impact of TCDD, TGFBR2-FC fusion protein, and TCDD + TGFBR-Fc fusion 

protein co-treatment on expression of AHR-target genes for females (Cyp1a1 (A), Cyp1a2 (B) 

Cyp1b1 (C)) and males (Cyp1a1 (D), Cyp1a2 (E) Cyp1b1 (F)). Sample size (n) is ≥ 4 for all groups. 

Asterisk (*) indicates a p<0.05 as compared to the respective vehicle control: sesame oil vs. 

TCDD or sesame oil + TGFBR2-FC fusion protein vs. TCDD + TGFBR2-FC fusion protein. 

 

  



	 112	

Figure 4.7. Hepatic histological effects of TCDD and TGFBR2 inhibitor co-treatment in 

C57BL/6 mice liver. Male and female C57BL/6 mice were treated with vehicle (sesame oil) or 10 

µg/kg/day of TCDD for 10 consecutive days, along with an interperitoneal (IP) injection of vehicle 

(saline) or 15 mg/kg of an inhibitor of TGFBR2 activity every three days. Hematoxylin and eosin 

(H&E) staining was used to assess infiltrating immune cells and general tissue morphology and 

oil red O (ORO) was used to quantify lipid deposition. Representative samples were chosen for 

each treatment group (A). Scale bar represents 100 µm for H&E and 50 µm for ORO. Arrows 

indicate infiltrating immune cells in the H&E stain. Percent area stained with ORO was quantified 

using the Quantitative Histological Analysis Tool (QuHAnT) for males (B) and females (C)(Nault 

et al. 2015). All groups had sample sizes ≥ 4. Stars (*) indicate a p<0.05; stars directly over bars 

indicate differences in the TCDD treatment as compared to the vehicle control or, when over 

bracket, indicate a comparison of TCDD treatments across strains. Error bars indicate standard 

error. 
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 The impact of the TGFBR2-Fc protein on TCDD-induced gene expression was assessed 

with QRTPCR. In the absence of the TGFBR2-Fc protein, TCDD induce hepatic Tgfbr2 levels in 

male C57BL/6 mice (p<0.05; Figure 4.8A). Similarly, TCDD-induced a significant increase in 

Tgfb1 expression as previously reported (p<0.05; Figure 4.8B)(Pierre et al. 2014). In comparing 

across treatment groups, TCDD-induced expression of Tgfbr2 and Tgfb1 were found to be 

significantly lower in the liver of male mice that received TCDD and the TGFBR2-Fc protein as 

compared to TCDD alone (p<0.05; Figure 4.7A and 4.8B). While TCDD-induced expression of 

Tgfb3, another ligand of TGFBR2, was found to be significantly higher in male mice that received 

TCDD and the TGFBR2-Fc protein, the basal expression of Tgfb3 was >250 fold lower as 

compared to the other ligand of TGFBR2, Tgfb1 (Figure 4.8C). The increase in Tgfb3 expression 

induced by TCDD is likely negligible in comparison to the decrease in Tgfb1 expression. TCDD-

induced expression of several pro-inflammatory genes, such as Tnf, Il6, and Ccl2, were also lower 

in the male mice found to have less immune cell infiltration (p<0.05; Figure 4.8D, 4.8E, and 4.8F). 

The inflammatory mRNA expression data further confirms that the TGFBR2-Fc protein decreases 

TCDD-induced hepatic inflammation in males. In contrast to the male C57BL/6J mice, the 

TGFBR2-Fc protein did not impact the TCDD-induced expression of Tgfbr2, TGF-β ligands, or 

pro-inflammatory cytokines in females. 
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Figure 4.8. Altered TCDD-induced mRNA expression in the liver by inhibition of TGF-β 

receptor type II (TGFBR2) activity. QRTPCR was used to analyze the effect of inhibiting 

TGFBR2 activity on TCDD-induced expression of Tgfbr2 (A), Tgfb1 (B) Tgfb3 (C), Tnf (D), Il6 (E), 

and Ccl2 (F). All groups had sample sizes ≥ 4. Asterisk (*) indicates a p<0.05; stars directly over 

bars indicate differences in the TCDD treatment as compared to the vehicle control or, when over 

bracket, indicate difference between treatment group. Error bars indicate standard error. 
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4.4. Discussion 

 In this study, a mouse population-based study was used to characterize the dynamics of 

TCDD accumulation and AHR-mediated transcription in the liver of pregnant mice. The results 

indicate > 40-fold differences in the mean level of hepatic TCDD burden across strains (Figure 

4.1). Both TCDD burden and TCDD-induced transcription of AHR-responsive genes appear to be 

highly-dependent on genotype (Figure 4.3B; Figure 4.4A and 4.4B). On average, strains which 

are more susceptible to TCDD-induced toxicity, such as Ahrb1 and Ahrb2 mice, accumulate 

significantly higher levels of TCDD in the liver over 10 days of consecutive exposure (Figure 4.3B). 

Overall, higher levels of TCDD-induced transcription of AHR-responsive genes correlate with 

higher levels of TCDD burden in the liver (Figure 4.5). The results suggest that the TCDD-induced 

gene dysregulation likely drives hepatic sequestration during repeated TCDD exposure.  

 

 These results build upon previous studies that have indicated that AHR-mediated 

transcription of Cyp1a2 drives sequestration of TCDD  (Diliberto et al. 1997; Hakk et al. 2009; 

Voorman and Aust 1989). Our study further confirms these findings as Cyp1a2 expression is 

highly-correlated with hepatic TCDD burden over repeated TCDD exposure (Figure 4.5B). 

However, several strains, such as BXD40 and BXD100, appear to be exceptions, as they 

accumulate higher levels of TCDD in the liver than can be explained by Cyp1a2 expression alone 

(Figure 4.3C, Figure 4.4D, Figure 4.5B). Exceptions were also found in correlations of hepatic 

TCDD burden with other TCDD-induced expression of AHR-responsive genes, such as Cyp1a1, 

Cyp1b1, and Pmm1 (Figure 4.5A, 4.5C, and 4.5D). Such exceptions suggest that other genomic 

factors impact AHR-signaling beyond the Ahr allele inherited by the strain.  

 

 QTL analysis was used to scan for genetic modifiers that may impact inter-strain 

differences in TCDD accumulation and AHR-mediated expression across the mouse panel. 

Several regions of the mouse genome, such as Chromosome 1 and 9, were found to be 
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associated with the inter-strain differences seen in multiple endpoints (Table 4.2). A region of 

Chromosome 1 was associated with the inter-strain differences in TCDD accumulation and 

TCDD-induced expression of 3 AHR-target genes: Slc15a2, Cyp1a2, and Ahrr. Several genes 

within this region are of particular interest: 1) Etnk2, 2) Kiss1, and 3) Adipor1. Etnk2, which 

encodes for ethanolamine kinase 2, has been previously reported to be dysregulated following 

TCDD exposure within mouse liver (Forgacs et al. 2012). This gene is expressed highly in the 

liver and has been shown to be involved in catalyzing the first step of cytidine diphosphate (CDP)-

ethanolamine pathway that results in phosphatidylethanolamine, a common phospholipid within 

the mammalian cell membrane (Tian et al. 2006; Vance and Vance 2004). Kiss1, which encodes 

for Metastasis-suppressor 1 (aka Kisspeptin1) is also dysregulated by TCDD (Mueller and Heger 

2014). While KISS1 has been found to be a key regulator of Gonadotropin-releasing hormone 

(GnRH) in humans, a recent rodent study has suggested that hepatic Kiss1 is involved in 

regulating insulin secretion (Skorupskaite et al. 2014; Song et al. 2014). Previous reports have 

associated TCDD exposures with hyperinsulinemia in humans exposed to TCDD (Cranmer et al. 

2000). Adipor1, which encodes for adiponectin receptor 1, is involved in the adiponectin pathway 

which has been previously implicated in toxicity induced by TCDD and other dioxin-like 

compounds (Angrish et al. 2013; Wahlang et al. 2013). Adipokines and their associated signaling 

cascades play important roles in pathologies that are associated with TCDD exposures in 

humans, such as metabolic syndrome and diabetes (Combs and Marliss 2014; Lopez-Jaramillo 

et al. 2014). In a subset of mouse strains analyzed in this study, TCDD did not alter the expression 

of these genes. Genetic sequence analysis did not indicate any causative polymorphisms that 

appear to drive differing phenotypes. Further analysis is required to elucidate the significance of 

these genes in modulating TCDD-induced toxicity. 

 

 A region of Chromosome 9 was also of particular interest where overlapping associations 

were identified for TCDD-induced Pmm1 and Ahrr expression (Table 4.2). Tgfbr2, which was 
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located near the significant marker, was of particular interest as the TGF-β pathway has previously 

been implicated within TCDD-elicited liver toxicity (Pierre et al. 2014). The AHR is likely involved 

in regulating the TGF-β pathway as Ahr-/- mice secrete higher levels of TGF-β ligands (Guo et al. 

2004; Zaher et al. 1998). Furthermore, TGF-β signaling has been implicated in promoting liver 

steatohepatisis and fibrosis, which are phenotypes observed in rodents following TCDD exposure 

(Bernasconi et al. 1995; Border and Noble 1994; Friedman 1993; Yang et al. 2014). Previously 

published datasets also indicate the presence of putative DREs with bound AHR (i.e ChIP peaks) 

near the Tgfbr2 promoter region (Fader et al. 2017; Nault et al. 2016b). To investigate the role of 

TGFBR2 within TCDD-induced liver toxicity, C57BL/6 mice (i.e. Ahrb1 allele) were treated with 

TCDD along with a TGFBR2-Fc protein that traps TGFBR2 ligands (Yung et al. 2016). Results 

suggest that upon repeated exposure to 10 µg/kg of TCDD for 10 days, TGFBR2 activity is 

involved in modulating TCDD-elicited liver toxicity in male, but not female, C57BL/6 mice. Male 

mice that received TCDD along with TGFBR2 inhibitor, as compared to TCDD alone, have less 

infiltrating immune cells (Figure 4.7A) and lower levels of expression of pro-inflammatory genes 

(p<0.05; Figure 4.8D, 4.8E, and 4.8F). The TGFBR2 pathway is likely involved in increasing 

TCDD-induced inflammation in the liver of male C57BL/6 mice. This trend was not present in 

females (Figure 4.7A). Notably, females that received TCDD alone had mild inflammation and, 

while TGFBR2 inhibitor slightly decreased the level of inflammatory cells, the difference was not 

statistically significant. We hypothesize that, with exposure to higher levels of TCDD, females 

would display a similar phenotype to males upon inhibition of TGFBR2 activity. Interestingly, 

hepatic lipid accumulation is higher in mice that received TCDD and the TGFBR2 inhibitor 

(p<0.05; Figure 4.7A and 4.7B). Female mice, while not significant, also have higher lipid levels 

following co-treated with TCDD and the TGFBR2 ligand trap (Figure 4.7A and 4.7C). Our results 

suggest, upon TCDD exposure, TGFBR2-mediated activity is, along with driving increases in the 

level of inflammation, protecting against lipid accumulation in the liver of male C57BL/6. The 
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mechanism behind the TGFBR2-mediated modulation of TCDD-induced inflammation and lipid 

accumulation requires further investigation. These results, along with further characterization of 

AHR biology, have potential to impact real-world risk assessment in identifying genetic variants 

within the human population that may be more susceptible to TCDD-induced toxicity. 
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5.1. Abstract 

Previous rodent-based studies have shown that AHR-ligand exposure represses expression of 

genes involved in cholesterol homeostasis, including Hmgcr which encodes the rate-limiting 

enzyme called 3-hydroxyl-3-methylglutaryl (HMG)-CoA reductase. QTL analysis of the TCDD-

induced change in body weight across 14 genetically-diverse mouse strains mapped to an area 

of Chromosome 13 within 1 Mb of Hmgcr (p<0.001). We hypothesized, therefore, that AHR-

mediated repression of cholesterol biogenesis might play a role in TCDD-induced injury. The first 

goal of this study was to use data from the 2003-2004 National Health and Nutrition Examination 

Survey (NHANES) to test for an association between lipid-adjusted TCDD and cholesterol in 

humans. Results identified a reduction in total cholesterol with increasing serum TCDD in the 

male-stratified cohort that reached statistical significance upon adjusting for age, body mass 

index, and race. Low-density lipoprotein (LDL) levels were also negatively associated with 

increasing TCDD levels in the serum of the full cohort and did not appear to be sex-specific. The 

second goal was to determine if AHR-mediated modulation of cholesterol biogenesis could impact 

TCDD-elicited liver injury.  C57BL/6 mice were exposed to TCDD in the presence or absence of 

simvastatin, a competitive inhibitor of HMG-CoA reductase. Simvastatin exposure was found to 

decrease hepatic TCDD-induced lipid accumulation in a non-sex-specific manner. However, 

simvastatin and TCDD co-treatment increased AHR-battery gene expression and liver 

inflammation in a male-specific manner (p<0.05). In addition, the simvastatin and TCDD co-

treatment led to a significant increase in hepatic glycogen content that coincides with heavier liver 

in a female-specific manner (p<0.05). While further research is needed to better understand the 

mechanistic details, our results suggest that statins, which are amongst the most prescribed 

pharmaceuticals, may protect from AHR-mediated steatosis, but increase risk of TCDD-elicited 

liver damage and inflammation and altered glycogen metabolism in a sex-specific manner. 
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5.2. Introduction 

 Several rodent-based studies have indicated that the AHR regulates cholesterol 

biosynthesis. Exposure to an AHR-ligand called β-naphthoflavone suppresses expression of 

genes involved in cholesterol synthesis in mice and human hepatocytes, including Hmgcr which 

encodes the rate-limiting enzyme 3-hydroxyl-3-methylglutaryl-CoA Reductase (HMGCR)(Tanos 

et al. 2012). TCDD-treatment also suppresses expression of genes involved in cholesterol 

biosynthesis leading to marked-reductions in total cholesterol (TC), high-density lipoprotein 

(HDL), and low-density lipoprotein (LDL) in the serum in mice (Angrish et al. 2013). Another study 

reported that, while hepatic cholesterol biosynthesis is repressed in the liver, prolonged exposure 

to TCDD drives significant increases in hepatic cholesterol ester (CE) accumulation in mice (Nault 

et al. 2017). The CE accumulation has been suggested to be due to TCDD-mediated repression 

of genes involved in VLDL secretion and a decrease of bile acid secretion (Fader et al. 2017; 

Nault et al. 2017).  

 

 While the vast-majority of evidence has been collected via culture- or rodent-based 

models, there is compelling evidence that the AHR regulates cholesterol homeostasis. Given the 

complex regulation of cholesterol biosynthesis and important functions of cholesterol in 

organisms, we sought to establish whether cholesterol levels are impacted by TCDD exposures 

in the human population. Growing evidence suggests that TCDD and other dioxin-like chemicals 

are associated with increased incidence of metabolic disorders in the human population, such as 

nonalcoholic fatty-liver disease (NAFLD) (Cave et al. 2010; Lee et al. 2007). In rodents, TCDD 

exposures leads to accumulation of lipids in the liver and, ultimately, steatohepatitis and fibrosis 

(Nault et al. 2016a; Nault et al. 2016b; Nault et al. 2017; Pierre et al. 2014). Notably, cholesterol 

accumulation in the liver has been shown to impact NAFLD (Arguello et al. 2015). As such, TCDD-

induced alterations in cholesterol homeostasis may be playing a role in AHR-mediated NAFLD in 

humans. 
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 To test for human relevance to TCDD-induced alterations in cholesterol homeostasis, data 

from the National Health and Nutrition Examination Survey (NHANES), a nationally-

representative cross-sectional epidemiological survey, were used to test for an association 

between TCDD and cholesterol levels. Based on regression models created for TC, LDL, and 

HDL, TC and LDL appear to be negatively correlated with lipid-adjusted TCDD levels in serum of 

American adults in a significant manner. As such, the results suggest that environmentally-

relevant TCDD exposures may impact cholesterol homeostasis in the human population. 

Following, C57BL/6 mice were co-treated with TCDD and simvastatin, a competitive inhibitor of 

HMGCR, to characterize a potential functional role of HMGCR in modulating TCDD-mediated 

NAFLD. Results indicate that TCDD-induced repression of HMGCR appears to protect against 

hepatic lipid accumulation in both males and females. However, the simvastatin and TCDD co-

exposure appears to increase susceptibility to TCDD-mediated liver injury in a male-specific 

manner and alter glycogen metabolism in a female-specific manner.  
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5.3. Results  

5.3.1. Inter-strain differences in TCDD-induced change in body weight implicates Hmgcr 

 In the study outlined in Chapter 4 where female mice from 14 genetically-diverse strains 

were treated with TCDD (100 ng/kg/day) for 10 days, the change in weight in comparing TCDD-

treated and vehicle mice was quite variable across strains (Figure 5.1A).  While some strains 

were found to have a decrease in body weight, such as FVB/NJ and DBA/1J, other strains, such 

as CC019 and C3HeB/FeJ, were found to gain weight. A multiple sequence alignment of the Ahr 

gene outlined in Chapter 4 established that 3 independent alleles of the Ahr are found within the 

panel of 14 strains. As sequence-variation in the murine Ahr impacts susceptibility to TCDD 

(Poland et al. 1994), the mean change in weight across Ahr alleles were compared (Figure 5.1B). 

Results indicated that, unlike many TCDD-mediated responses in the mouse, the Ahr allele 

inherited does not have a significant impact on the change in weight in this mouse panel 

suggesting that other genomic factors may be impacting the response. The inter-strain differences 

in weight change over the dosing period were used to scan for potential genomic regions that 

might explain the variability. The results indicate a strong association in Chromosome 13 within 1 

Mb of Hmgcr (p<0.001; Figure 5.1C). These results suggest that Hmgcr may be modulating inter-

strain susceptibility to TCDD-mediated weight loss amongst our mouse panel. 

 

5.3.2. TCDD and cholesterol levels in serum of the 1999-2004 NHANES cohort 

 To test for an association between serum lipid-adjusted TCDD and cholesterol in humans, 

3 independent analytical datasets were created for a) TC (n=1,094), b) HDL (n=1,094), and c) 

LDL (n=520) using data from the 2003-2004 NHANES. TC and HDL were measured in the same 

subjects and, thus, are the same datasets with differing response variables. The TCDD detection 

frequency in the TC and HDL cohorts was 43.0% while the LDL cohort was 44.3% (Table 5.1). 

The NHANES imputed values were used for samples that fell below detection limits. The weighted 
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Figure 5.1. QTL analysis of the inter-strain variability in TCDD-mediated change in body 

weight.  The average change in body weights induced by a 100 ng/kg/day TCDD exposure for 

each strain (n=14) are layered over a boxplot which indicates the median and interquartile range 

across all strains (A). The mean change in weight response of all mice within each Ahr allelic 

were averaged to indicate the impact of the Ahr allele on the change in body weight (B). QTL 

analysis indicated a significant association within Chromosome 13 (p<0.001)(C). The dotted line 

indicates the threshold of genome-wide significance which was determined with permutation 

testing (n=10,000).  
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Table 5.1. Detection frequency and levels of serum TCDD and lipid-adjusted serum TCDD. 

All data were derived from the 2003-2004 nationally-representative and cross-sectional U.S. 

National Health and Nutrition Examination Survey (NHANES). Analytical datasets were created 

for total cholesterol (TC; n=1,094), high-density lipoprotein (HDL; n=1,094), and low-density 

lipoprotein (LDL; n=520). Weighted means, standard error, and percentiles are reported for the 

full and sex-stratified cohorts.    

 
 

  

   

Full Male Female Full Male Female Full Male Female
Detection Frequency 43.0 35.6 49.5 43.0 35.6 49.5 44.3 40.4 47.5

Mean 11.69 10.22 13.00 11.69 10.22 13.00 12.00 10.77 13.00
St. Error 0.35 0.46 0.51 0.35 0.46 0.51 0.55 0.77 0.77

Minumum 2.76 3.11 2.76 2.76 3.11 2.76 2.83 3.25 2.83
5% 3.46 3.68 3.39 3.46 3.68 3.39 3.46 3.68 3.32
10% 3.75 3.96 3.68 3.75 3.96 3.68 3.82 4.03 3.68
25% 4.38 4.52 4.24 4.38 4.52 4.24 4.46 4.60 4.17
50% 6.08 5.59 7.70 6.08 5.59 7.70 6.44 6.01 7.14
75% 16.30 13.90 19.20 16.30 13.90 19.20 16.90 15.90 19.10
90% 26.70 22.20 29.80 26.70 22.20 29.80 26.90 24.80 28.60
95% 31.80 28.20 36.40 31.80 28.20 36.40 32.70 28.00 38.10

Maximum 235.80 235.80 128.20 235.80 235.80 128.20 235.80 235.80 128.20
Mean 1.78 1.55 1.98 1.78 1.55 1.98 1.89 1.73 2.03

St. Error 0.05 0.06 0.07 0.05 0.06 0.07 0.08 0.11 0.11
Minumum 0.30 0.30 0.30 0.30 0.30 0.30 0.40 0.40 0.40

5% 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.60 0.50
10% 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
25% 0.70 0.70 0.70 0.70 0.70 0.70 0.80 0.80 0.70
50% 1.10 1.00 1.30 1.10 1.00 1.30 1.10 1.10 1.20
75% 2.50 1.90 2.90 2.50 1.90 2.90 2.70 2.30 3.00
90% 3.80 3.40 4.20 3.80 3.40 4.20 4.00 3.60 4.20
95% 4.70 4.30 5.10 4.70 4.30 5.10 5.00 4.50 5.20

Maximum 27.00 27.00 12.50 27.00 27.00 12.50 27.00 27.00 12.50
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mean ± standard error for serum TCDD (fg/g) and lipid-adjusted serum TCDD (LA-TCDD; pg/g) 

in the TC and HDL datasets were found to be 12.00 ± 0.55 and 1.89 ± 0.08, respectively, while 

the LDL dataset was found to be 11.69 ± 0.35 and 1.78 ± 0.05, respectively. 

 

 In comparing sexes across the TC, HDL, and LDL cohorts, the full samples were found to 

have similar proportions of male and females (Table 5.2). Each cohort was found to have a 

significantly-greater proportion of non-Mexican White individuals (p<0.05). Given the detection 

frequency of TCDD, the continuous LA-TCDD variable was split into sample-weighted tertiles 

based on increasing TCDD levels (T1 as low-TCDD, T2 as mid-TCDD, and T3 as high-TCDD) 

prior to regression analysis (p<0.05; Table 5.2). While there were not differences in HDL or LDL 

across tertiles, T2 was found to have significantly lower levels of TC as compared to T1 and T3 

(p<0.05). T3 was found to contain individuals with a significantly higher ages as compared to T1 

and T2 in all 3 datasets (p<0.05). BMI is significantly higher in T3 as compared to T1 and T2 in 

TC and HDL cohorts (p<0.05), but not the LDL cohort. In comparing sample-weighted proportions 

across tertiles, all tertiles had a significantly higher proportion of non-Hispanic white individuals 

which was consistent with the full sample in each cohort (p<0.05). T3, but not T1 or T2, was found 

to have a significantly-lower proportion of Mexican-American individuals within the LDL cohort 

(p<0.05). In comparing proportions of sexes across tertiles, T2 contains significantly more males 

while T3 contains significantly less males in the TC and HDL cohorts (p<0.05). In the LDL cohort, 

T3 contains a significantly-lower proportion of males (p<0.05).  

 

 Each dataset was also stratified by sex. Females were found to have significantly higher 

levels of HDL as compared to males (p<0.05; Table 5.3). There were no differences in comparing 

TC or LDL levels across sexes. In the TC and HDL cohort, females were found to have 

significantly higher levels of LA-TCDD. Females in the TC and HDL cohorts were also found to 

have a significantly higher age as compared to males (p<0.05). There were no differences in age   
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Table 5.2. Demographic statistics for NHANES-derived analytical datasets.  All data was derived from the 2003-2004 nationally-

representative and cross-sectional U.S. National Health and Nutrition Examination Survey (NHANES). Data were used to created 3 

independent and balanced analytical datasets: total cholesterol (TC; n=1,094), high-density lipoprotein (HDL; n=1,094), and low-density 

lipoprotein (LDL; n=520). Weighted median and interquartile range (IQR) in parenthesis are reported for each continuous variable. 

Sample size (n) and weighted percentage in parenthesis are reported for the categorical variables. Superscript letters indicate 

significant differences (p<0.05) as indicated by a kruskal wallice test: aTertile 1, bTertile 2, cTertile 3. Asterisks (*) indicate greater while 

number signs (#) indicate a smaller weighted proportion than expected as indicated with a chi-squared test. 

 

 

 

 

Full Cohort Tertile 1 Tertile 2 Tertile 3 Full Cohort Tertile 1 Tertile 2 Tertile 3 Full Cohort Tertile 1 Tertile 2 Tertile 3

Total Cholesterol, HDL, or LDL 200 (55) 204 (51) 186 (54)a,c 207 (58) 117 (47) 119 (46) 110 (43) 120 (44) 52 (20) 52 (19) 51 (19) 55 (23)
Lipid-Adjusted TCDD (pg/g) 1.1 (1.8) 0.7 (0.2) 1.2 (0.4)a 3.3 (1.7)a,b 1.1 (1.9) 0.7 (0.2) 1.2 (0.7)a 3.5 (1.5)a,b 1.1 (1.8) 0.7 (0.2) 1.2 (0.4)a 3.3 (1.7)a,b

Age (months) 516 (275) 451 (222) 434 (218) 649 (240)a,b 529 (302) 424 (218) 485 (254) 693 (234)a,b 516 (275) 451 (222) 434 (218) 649 (240)a,b

Body Mass Index 26.8 (7.6) 26.7 (7.2) 26.2 (7.6) 27.7 (7.8)a,b 27.1 (7.3) 26.5 (7.2) 27.1 (7.2) 28.3 (8.2) 26.8 (7.6) 26.7 (7.2) 26.2 (7.6) 27.7 (7.8)a,b

Race 
Non-Hispanic White 575 (70.0)* 207 (69.6)* 140 (64.6)* 228 (74.4)* 297 (74.1)* 98 (70.5)* 88 (72.2)* 111 (80.4)* 575 (70.0)* 207 (69.6)* 140 (64.6)* 228 (74.4)*

African American 205 (10.9) 60 (8.4) 58 (11.9) 87 (12.9) 84 (9.6) 30 (9.0) 26 (10.0) 28 (9.9) 205 (10.9) 60 (8.4) 58 (11.9) 87 (12.9)
Mexican American 217 (8.4) 93 (10.8) 68 (11.9) 56 (3.6) 98 (6.7) 45 (9.5) 30 (7.8) 23 (2.3)# 217 (8.4) 93 (10.8) 68 (11.9) 56 (3.6)

Other 97 (10.8) 40 (11.2) 29 (12.4) 28 (9.02) 41 (9.6) 20 (11.0) 13 (10.0) 8 (7.4) 97 (10.8) 40 (11.2) 29 (12.4) 28 (9.02)
Sex

Male 520 (47.3) 200 (51.1) 166 (57.0)* 154 (35.3) 235 (44.6) 87 (43.4) 83 (53.9) 65 (36.1) 520 (47.3) 200 (51.1) 166 (57.0)* 154 (35.3)
Female 574 (52.7) 200 (48.9) 129 (43.0) 245 (64.7)* 285 (55.4) 106 (56.6) 74 (46.1) 105 (63.9)* 574 (52.7) 200 (48.9) 129 (43.0) 245 (64.7)*

HDL (mg/dL)

Weighted Median (IQR) or Sample Size 
(Weighted %)

Total Cholesterol (mg/dL)

Weighted Median (IQR) or Sample Size 
(Weighted %)

Independent Variable 

LDL (mg/dL)

Weighted Median (IQR) or Sample Size 
(Weighted %)
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Table 5.3. Sex-stratified demographic statistics.  All data was derived from the 2003-2004 nationally-representative and cross-

sectional U.S. National Health and Nutrition Examination Survey (NHANES). Stratification data is reported for 3 independent analytical 

datasets: total cholesterol (TC; n=1,094), high-density lipoprotein (HDL; n=1,094), and low-density lipoprotein (LDL; n=520). Weighted 

median and interquartile range (IQR) in parenthesis are reported for each continuous variable. Sample size (n) and weighted 

percentage in parenthesis are reported for the categorical variables. An asterisk (*) indicates a significant difference (p<0.05) as 

compared to males as indicated by a T-test. For categorical data, asterisks (*) indicate greater weighted proportion than expected as 

indicated with a chi-squared test. 

male (n=520) female (n=574) male (n=235) female (n=285) male (n=520) female (n=574)
Total Cholesterol, HDL, or LDL 200 (50) 201 (57) 120 (46) 112 (46) 47 (16) 58 (23)*
Lipid-Adjusted TCDD (pg/g) 1.0 (1.2) 1.3 (2.0)* 1.1 (1.5) 1.2 (2.3) 1.0 (1.2) 1.3 (2.0)*

Age (months) 501 (270) 529 (283)* 519 (294) 538 (317) 501 (270) 529 (283)*
Body Mass Index 27.4 (6.8) 26.3 (8.7) 27.6 (6.5) 26.8 (8.5) 27.4 (6.8) 26.3 (8.7)

Race 
Non-Hispanic White 270 (67.6)* 305 (72.0)* 133 (72.4)* 164 (75.4)* 270 (67.6)* 305 (72.0)*

African American 97 (10.3) 108 (11.4) 39 (9.0) 45 (10.0) 97 (10.3) 108 (11.4)
Mexican American 98 (9.4) 119 (7.6) 42 (7.7) 56 (6.0) 98 (9.4) 119 (7.6)

Other 55 (12.7) 42 (9.1) 21 (10.9) 20 (8.5) 55 (12.7) 42 (9.1)

LDL (mg/dL)

Weighted Median (IQR) or 
Sample Size (Weighted %)

HDL (mg/dL)

Weighted Median (IQR) or 
Sample Size (Weighted %)

Independent Variable 

Total Cholesterol (mg/dL)

Weighted Median (IQR) or 
Sample Size (Weighted %)
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between sexes in the LDL cohort. There was not a statistical difference in LA-TCDD between 

sexes in the LDL cohort. There were no differences across sexes in comparing BMI in any cohort. 

Male- and female-stratification results in a significantly-higher proportion of non-Hispanic White 

individuals in all datasets (p<0.05).  

 

5.3.3. Association of serum TCDD and total cholesterol in humans  

 In testing for potential associations between LA-TCDD and TC, HDL, or LDL levels, we 

created 3 crude models followed by final models which were adjusted for age, BMI, and race. 

Each model was used to assess the full and sex-stratified cohorts for each dependent variable. 

In analyzing the TC levels, crude regression models estimate that the T2 (mid-TCDD) category 

has lower levels of TC as compared to T1 (low-TCDD; p<0.05; Table 5.4) for the full and sex-

stratified cohorts with statistical significance that was robust to adjustment (p<0.05; Table 5.5, 

Figure 5.2A). Adjusted models estimate 8.9%, 9.7%, and 9.1% reductions in TC in comparing T2 

with T1 for the full, male-, and female-stratified cohorts, respectively. In comparing T3 (high-

TCDD) to T1 (low-TCDD), the male-stratified cohort had a reduction in TC that was near statistical 

significance in the crude model (p=0.16). Adjustment for confounding variables pushed the male-

specific 6.2% reduction in TC into statistical significance as compared to T1 (p<0.05; Table 5.5; 

Figure 5.2A). The crude model also estimated a female-specific increase in TC in comparing T3 

with T1 (p<0.05; Table 5.4). Similarly, an increase in TC from T3 to T1 in the full cohort was near 

conventional significance (p=0.17; Table 5.4). The increase in TC, however, dissipated in both 

the female-stratified and the full cohort when adjusting for confounding variables (Table 5.5; 

Figure 5.2A).  

 

 In comparing the LDL levels across TCDD tertiles, crude models suggest that the male-

stratified cohort has a significant reduction (p<0.05) and full cohort has a reduction close to 

significance (p=0.06) in comparing T2 to T1 (Table 5.4). Adjustment for confounding variables  
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Table 5.4. Crude associations of lipid-adjusted serum TCDD levels with total cholesterol (TC), high-density lipoprotein (HDL), 

and low-density lipoprotein (LDL) levels. Regression coefficient estimates and 95% confidence intervals (CI) are reported for each 

model. Coefficient estimates are relative to tertile 1 (low-TCDD). Asterisks (*) indicate statistically significant association (p<0.05).  

  

 
 
 
  

Lower Upper Lower Upper Lower Upper
Intercept 205.60 (2.62)* 200.01 211.19 210.90 (3.60)* 203.22 218.58 200.06 (3.56)* 192.47 207.66

Lipid-Adjusted TCDD (pg/g)
Tertile 2 (Mid-TCDD) -15.85 (4.28)* -24.97 -6.73 -18.25 (6.44)* -31.97 -4.53 -14.15 (3.39)* -21.38 -6.91

Tertile 3 (High-TCDD) 5.76 (3.98)  -2.72 14.23 -6.20 (4.34)  -15.44 3.04 14.92 (5.07)* 4.11 25.74
Intercept 120.69 (3.16)* 113.95 127.43 129.09 (5.06)* 118.30 139.87 114.25 (3.07)* 107.69 120.82

Lipid-Adjusted TCDD (pg/g)
Tertile 2 (Mid-TCDD) -9.13 (4.46) -18.64 0.38 -15.11 (7.27)* -30.59 0.38 -5.52 (5.78)  -17.83 6.80

Tertile 3 (High-TCDD) 2.10 (5.03)  -8.63 12.83 -8.53 (5.10)  -19.40 2.32 9.80 (6.19)  -3.40 23.00
Intercept 54.18 (1.00)* 52.06 56.31 49.21 (0.76)* 47.60 50.82 59.38 (1.45)* 56.30 207.66

Lipid-Adjusted TCDD (pg/g)
Tertile 2 (Mid-TCDD) -0.74 (1.80)  -4.57 3.08 0.01 (1.23)  -2.62 2.63 -0.34 (3.63)  -8.09 -6.91

Tertile 3 (High-TCDD) 3.14 (1.47)* 0.02 6.28 0.09 (1.62)  -3.38 3.56 2.32 (2.08)  -2.10 25.74

Model Independent Variable 
Total Cohort Males Females

Estimate           
(St. Error)

95% CI Estimate               
(St. Error)

95% CI Estimate           
(St. Error)

95% CI
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Table 5.5. Adjusted associations of lipid-adjusted serum TCDD levels with total cholesterol (TC), high-density lipoprotein 

(HDL), and low-density lipoprotein (LDL) levels. Final regression coefficient estimates and 95% confidence intervals (CI) are 

adjusted for age in months, body mass index, and race. Categorical coefficient estimates are relative to tertile 1 (low-TCDD) for TCDD 

tertiles and to non-Hispanic White category for race. Asterisks (*) indicate statistically significant association (p<0.05). 

Lower Upper Lower Upper Lower Upper
Intercept 163.92 (6.83)* 149.36 178.48 173.86 (11.31)* 149.75 197.98 152.22 (6.33)* 138.74 165.72

Lipid-Adjusted TCDD (pg/g)
Tertile 2 (Mid-TCDD) -14.61 (4.82)* -24.89 -4.33 -16.90 (6.66)* -31.08 -2.71 -13.84 (3.97)* -22.30 -5.37

Tertile 3 (High-TCDD) -4.95 (3.95)  -13.37 3.48 -10.85 (4.37)* -20.17 -1.53 -2.61 (5.39) -14.11 8.89
Age (Months) 0.06 (0.01)* 0.041 0.074 0.03 (0.01)* 0.005 0.054 0.08 (0.01)* 0.058 0.101

Body Mass Index 0.54 (0.19)* 0.13 0.95 0.77 (0.44) -0.15 1.70 0.50 (0.21)* 0.05 0.95
Race
African American -1.86 (3.67)  -9.67 5.95 5.51 (5.07) -5.30 16.33 -7.85 (4.68) -17.83 2.12

Mexican American -1.67 (2.86)  -7.77 4.43 0.35 (3.37) -6.84 7.54 -4.05 (4.62) -13.90 5.80
Other -1.61 (8.97)  -20.72 17.50 3.94 (6.19) -9.25 17.13 -8.24 (12.64) -35.19 18.71

Intercept 74.41 (6.08)* 61.45 87.36 96.12 (11.41)* 72.09 120.74 55.95 (7.34)* 40.31 71.59
Lipid-Adjusted TCDD (pg/g)

Tertile 2 (Mid-TCDD) -10.52 (4.72)* -20.59 -0.46 -14.98 (7.17) -30.26 0.30 -9.85 (5.86) -22.34 2.64
Tertile 3 (High-TCDD) -9.67 (4.46)* -19.18 -0.17 -11.87 (6.33) -25.36 1.62 -10.65 (5.26) -21.87 0.57

Age (Months) 0.04 (0.01)* 0.02 0.06 0.01 (0.02)  -0.03 0.04 0.07 (0.01)* 0.05 0.09
Body Mass Index 0.94 (0.18)* 0.55 1.32 1.02 (0.40)* 0.17 1.88 0.96 (0.23)* 0.46 1.45

Race
African American -0.97 (3.19)  -7.77 5.84 2.01 (6.50)  -11.83 15.86 -4.15 (4.85)  -14.48 6.19

Mexican American 0.24 (4.84)  -10.08 10.57 0.64 (4.94)  -9.89 11.17 -3.00 (6.53)  -16.92 10.93
Other -3.24 (15.84)  -37.00 30.51 6.01 (15.51)  -27.06 39.08 -39.2 (6.80)* -53.68 -24.70

Intercept 75.86 (4.29)* 66.71 85.02 70.58 (4.96)* 60.01 81.16 77.70 (4.90)* 67.25 88.14
Lipid-Adjusted TCDD (pg/g)

Tertile 2 (Mid-TCDD) -1.24 (1.82)  -5.13 2.65 -0.67 (1.39)  -3.63 2.28 -0.61 (3.45)  -7.96 6.74
Tertile 3 (High-TCDD) 2.66 (1.68)  -0.92 6.24 0.80 (1.63)  -2.68 4.27 0.05 (2.39)  -5.05 5.15

Age (Months) 0.005 (0.004)  -0.003 0.013 0.001 (0.002)  -0.005 0.006 0.01 (0.005)  -0.001 0.024
Body Mass Index -0.87 (0.11)* -1.11 -0.62 -0.79 (0.15)* -1.11 -0.47 -0.85 (0.11)* -1.09 -0.62

Race
African American 3.64 (0.86)* 1.80 5.49 4.93 (1.47)* 1.81 8.06 2.48 (1.35)  -0.40 5.36

Mexican American -1.70 (1.09)  -4.03 0.62 -0.94 (1.82)  -4.81 2.94 -1.99 (2.15)  -6.57 2.59
Other -0.55 (3.11)  -7.18 6.08 0.02 (4.13)  -8.79 8.82 -0.71 (3.14)  -5.99 7.40
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Figure 5.2. Association of lipid-adjusted TCDD tertiles with total cholesterol (TC), low-

density lipoprotein (LDL), and high-density lipoprotein (HDL). Regression estimates from 

models adjusted for age, BMI, and race are presented for tertile 1 (low-TCDD), tertile 2 (mid-

TCDD), and tertile 3 (high-TCDD). Model estimates are reported for the full cohort and male- and 

female-stratified cohorts for all 3 datasets: TC (A), LDL (B), and HDL (C). Asterisks (*) indicate a 

significant difference (p≤0.05) relative to the Tertile 1. 
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pushed the male-specific trend just above the threshold of significance (p=0.054). Adjustment, on 

the other hand, pushed the 14.1% reduction in LDL below the threshold of statistical significance 

for the full cohort (p<0.05; Table 5.5; Figure 5.2B). In comparing T3 with T1, a reduction in LDL 

was found to be near statistical significance (p=0.11) in the male-stratified cohort, but not the 

female-stratified or full cohort (Table 5.4). Upon adjustment for confounding variables, the male-

specific trended closer to significance (p=0.08) (Table 5.5; Figure 5.2B). In comparing T3 to T1 in 

the full cohort, adjustment for confounding variables drove the 13.0% reduction in LDL into 

statistical significance (p<0.05; Table 5.5; Figure 5.2B). While the crude models did not suggest 

an association between TCDD and LDL in the female-stratified cohort, the adjusted models 

suggest reductions in LDL from T2 to T1 (p=0.11) and T3 to T1 (p=0.06) were close to the 

threshold of significance (Table 5.5; Figure 5.2B). 

 

 In testing for an association between TCDD and HDL levels, there were no significant 

associations in HDL levels when comparing T2 and T1. In comparing T3 with T1, the crude model 

estimated an increase in HDL levels in the full cohort (p<0.05; Table 5.4). The statistical 

significance dissipated upon adjusted for confounding variables (Table 5.5; Figure 5.2B). There 

were no significant trends in the crude or adjusted models in comparing T3 and T1 for the male- 

or female-stratified cohorts.   

 

5.3.4. Impact of TCDD exposure and HMGCR inhibition on cholesterol synthesis in mice 

 To characterize a potential role of Hmgcr activity in TCDD-elicited toxicity, C57BL/6 mice 

(i.e. Ahrb1 allele) were treated with either sesame oil (i.e. vehicle) or 10 µg/kg/day of TCDD for 10 

consecutive days in the presence of absence of chow containing simvastatin (500 mg simvastatin 

per kildogram chow), a competitive inhibitor of HMGCR. In this study, TCDD exposure repressed 

expression of hepatic Hmgcr mRNA for male and female mice fed standard or simvastatin-laced 

chow, but not in a statistically significant manner (Figure 5.3A and 5.3B). Western blot  
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Figure 5.3. Simvastatin and TCDD-mediated effects of the expression of HMG-CoA 

reductase. Expression of Hmgcr was analyzed by QRTPCR for females (A) and males (B). For 

QRTPCR analysis, all samples are reported as fold changes which are relative to vehicle control 

(i.e. sesame oil); in all cases, sample sizes (n) were ≥ 7 for gene expression analysis. Western 

blot analysis was used to assess protein expression of HMGCR (C). Densitometry analysis of 

western blots was used to assess relative protein expression of HMGCR for males (D) and 

females (E). Densitometry analysis is reported as fold changes relative to vehicle control (i.e. 

sesame oil); in all cases, sample sizes (n) were 5 for densitometry analysis. Asterisks (*) indicate 

statistically significant differences (p≤0.05). 
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densitometry analysis confirmed TCDD-mediated repression of HMGCR at the protein-level, but 

was only found statistically significant in males (p<0.05; Figure 5.3C, 5.3D, and 5.3E). In 

comparing standard and simvastatin-laced chow groups, simvastatin and simvastatin + TCDD co-

treatment (S+T) increased hepatic Hmgcr mRNA expression as compared to vehicle or TCDD-

treatment, respectively (p<0.05; Figure 5.3A). The Hmgcr mRNA expression in males was 

significantly higher in the S+T group as compared to TCDD alone (p<0.05; Figure 5.3B). However, 

densitometry analysis did not confirm the simvastatin-mediated increased expression of HMGCR 

at the protein level (Figure 5.3C, 5.3D, and 5.3E).  

 

 Female and male serum total cholesterol levels were impacted by TCDD exposure. TCDD 

and S+T co-treatment led to significantly less TC as compared to either vehicle or simvastatin-

treated mice (p<0.05, Table 5.6). There were no differences in TC levels across TCDD treatments. 

Serum LDL, while slightly increased by simvastatin, was not significantly impacted in females 

(Table 5.6). In males, LDL was significant lower in comparing S+T co-treatment with simvastatin 

alone (p<0.05; Figure 4F). Along these lines, hepatic gene expression of the LDL receptor (Ldlr) 

was not altered by any treatments in males or females (Table 5.7). The most dramatic changes 

were found in the serum HDL levels. TCDD treatment led to significant reductions in HDL levels 

in both sexes (p<0.05, Table 5.6). Interestingly, simvastatin alone led to a significant decrease 

the level of HDL in females, but not males (p<0.05 Table 5.6). As such, the HDL:LDL ratio (~2.1) 

in the standard chow fed females was nearly double the HDL:LDL ratio (~1.1) in simvastatin-

treated females. HDL:LDL ratios did not change in simvastatin-treated males. Expression of the 

scavenger receptor class B type 1 gene (Scarb1) which serves as the HDL receptor was not 

altered in the liver by any treatment in females (Table 5.7). While HDL levels were lower in TCDD-

treated males, Scarb1 was found significantly repressed by TCDD (p<0.05), but not different 

across TCDD-treatment groups (Table 5.7). Expression of the apolipoprotein gene A1 (Apoa1)  
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Table 5.6. Cholesterol levels, organ weights, and serum clinical chemistry data for TCDD and simvastatin co-treatment study. 

Results are presented as mean weights with standard error in parenthesis. In all cases, sample size (n) ≥ 5 in all groups. Superscript 

letters indicate significant differences (p<0.05) as indicated by an ANOVA in comparison to: avehicle (sesame oil), bTCDD treatment, 

or csimvastatin treatment. Statistical comparisons were not made across sexes. 

 
 
  

Sesame Oil TCDD Sesame Oil TCDD Sesame Oil TCDD Sesame Oil TCDD

Low-Density Lipoprotein (mg/dL) 38.1 (1.5) 34.8 (1.0) 52.7 (3.2) 35.6 (1.0) 40.4 (0.7) 33.1 (0.5) 43.2 (0.8) 29.3 (1.6)c

High-Density Lipoprotein (mg/dL) 80.0 (3.8) 43.7 (1.5)a 58.1 (2.1)a 37.9 (0.9)c 63.2 (2.3) 35.1 (1.2)a 70.2 (2.1) 39.1 (2.5)c

Total Cholesterol (mg/dL) 136.7 (1.9) 120.4 (1.5)a 137.3  (1.3) 120.5 (0.9)c 151.7 (1.5) 122.9 (1.7)a 170.0 (1.0) 133.6 (2.7)c

Hepatic Free Cholesterol (mg/g) 2.3 (0.1) 3.9 (0.1)a 2.2 (0.1) 3.2 (0.2)b,c 2.1 (0.1) 3.2 (0.1)a 2.1 (0.1) 2.8 (0.1)b,c

Liver Weight (g) 0.76 (0.02) 0.99 (0.02)a 0.80 (0.02) 1.12 (0.04)b,c 1.13 (0.04) 1.27 (0.07) 1.18 (0.03) 1.31 (0.05)

Normalized Liver Weight (mg/kg) 48.48 (0.86) 65.89 (0.63)a 50.83 (0.45) 73.47 (1.83)b,c 58.58 (1.39) 71.27 (2.67)a 59.38 (1.33) 73.80 (1.69)c

Body Weight (g) 15.6 (0.3) 15.1 (0.3) 15.7 (0.3) 15.2 (0.3) 19.5 (0.3) 17.8 (0.4)a 19.9 (0.2) 17.7 (0.5)c

GWAT Weight (g) 0.12 (0.02) 0.1 (0.01) 0.10 (0.009) 0.10 (0.01) 0.23 (0.01) 0.22 (0.01) 0.25 (0.005) 0.22 (0.01)
Normalized GWAT Weight (mg/kg) 7.7 (1.39) 7.09 (0.57) 6.17 (0.60) 6.85 (2.08) 11.79 (0.76) 12.39 (0.24) 12.39 (0.24) 12.65 (0.42)
Alanine Aminotransferase (mg/dL) 44.3 (2.2) 335.1 (21.0) 34.6 (0.6) 345.6 (19.5) 34.0 (1.4) 1844.5 (91.5) 94.2 (3.1) 3010.9 (256.9)
Free Fatty Acids (mmol/mL) 662.7 (19.5) 591.0 (14.4) 470.3 (26.2) 266.6 (25.6) 437.4 (8.1) 472.9 (33.2) 325.4 (20.6) 397.0 (32.4)
Ketone Bodies (mg/dL) 300.6 (11.3) 208.2 (11.2) 263.7 (11.6) 72.2 (2.0) 85.6 (3.2) 145.5 (3.8) 83.6 (2.4) 130.0 (5.1)
Glucose (mg/dL) 165.4 (2.2) 153.7 (3.9) 165.2 (2.4) 142.0 (3.3) 223.7 (4.1) 158.8 (2.7) 221.9 (3.4) 156.6 (3.0)
Triglycerides (mg/dL) 99.9 (1.3) 107.5 (0.7) 99.0 (1.2) 104.7 (1.8) 115.6 (1.5) 108.4 (1.2) 108.4 (1.3) 101.5 (1.3)

Females Males
Standard Chow Statin Chow Standard Chow Statin Chow
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Table 5.7. Simvastatin and TCDD-mediated changes in gene expression. Results are presented as fold changes with standard 

error in parentheses which are relative to vehicle control mice. In all cases, sample size (n) ≥ 7 in all groups for gene expression 

analysis. Superscript letters indicate significant differences (p<0.05) as indicated by an ANOVA in comparison to: avehicle (sesame 

oil), bTCDD treatment, or csimvastatin treatment. Statistical comparisons were not made across sexes. 

 

Sesame Oil TCDD Sesame Oil Sesame Oil TCDD Sesame Oil TCDD
Apoa1 1.00 (0.11) 0.26 (0.02)a 0.97 (0.12) 0.22 (0.02)c 1.00 (0.14) 0.33 (0.05)a 1.93 (0.05)b 0.36 (0.07)c

Cyp1a1 1.00 (0.26) 2959.93 (104.63)a 1.08 (0.86) 2625.40 (315.80)c 1.00 (0.13) 2514.14 (343.20)a 1.46 (0.15) 4070.06 (405.41)b,c

Cyp1a2 1.00 (0.04) 16.51 (1.13)a 0.76 (0.11) 14.44 (1.19)c 1.00 (0.06) 12.85 (2.00)a 0.98 (0.06) 17.56 (1.99)b,c

Cyp1b1 1.00 (0.21) 505.86 (60.38)a 0.81 (0.19) 377 (20.43)c 1.00 (0.10) 701.56 (95.72)a 0.99 (0.09) 1320.70 (167.30)b,c

Cyp4a10 1.00 (0.15) 0.36 (0.04)a 0.51 (0.08)b 0.19 (0.03)b,c 1.00 (0.22) 0.32 (0.06)a 1.11 (0.14) 0.78 (0.14)b

Cyp4a14 1.00 (0.24) 0.57 (0.08)a 0.71 (0.12) 0.27 (0.03)b,c 1.00 (0.29) 0.11 (0.02)a 1.4 (0.20) 0.35 (0.08)b,c

Gys2 1.00 (0.15) 0.49 (0.04)a 0.78 (0.10) 0.28 (0.03)b,c 1.00 (0.18) 0.24 (0.04)a 1.05 (0.16) 0.36 (0.08)c

Lcat 1.00 (0.31) 0.70 (0.05) 0.63 (0.04) 0.57 (0.06) 1.00 (0.11) 1.19 (0.14) 1.42 (0.14) 1.48 (0.24)
Ldlr 1.00 (0.11) 0.87 (0.05) 0.97 (0.11) 1.26 (0.14) 1.00 (0.15) 0.75 (0.06) 0.95 (0.10) 0.92 (0.23)

Ppara 1.00 (0.20) 0.54 (0.05)a 0.63 (0.08) 0.32 (0.05)b,c 1.00 (0.16) 0.44 (0.04)a 0.96 (0.11) 0.85 (0.10)b

Pygl 1.00 (0.14) 0.32 (0.03)a 0.53 (0.05)b 0.24 (0.02)c 1.00 (0.11) 0.37 (0.10)a 1.01 (0.15) 0.39 (0.05)c

Scarb1 1.00 (0.09) 0.75 (0.11) 1.01 (0.14) 0.81 (0.16) 1.00 (0.09) 0.48 (0.10)a 1.06 (0.11) 0.63 (0.10)c

Gene
Females Males

Standard Chow Statin Chow Standard Chow Statin Chow
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was repressed by TCDD in males and females regardless of simvastatin treatment (p<0.05; Table 

5). Interestingly, Apoa1 was found to induced by simvastatin treatment as compared to vehicle in 

males, but not females (p<0.05; Table 5.7). Repression of lecithin cholesterol acyltransferase 

(Lcat) gene expression, which is involved in maturation of HDL, was trending-towards statistical 

significance in the females, but not males (p=0.06; Table 5.7). Hepatic total cholesterol levels 

were also significantly impacted by TCDD. TCDD and S+T co-treatment led to significantly more 

hepatic cholesterol as compared to vehicle and simvastatin-treated mice, respectively (p<0.05; 

Table 5.6). Interestingly, S+T co-treatment resulted in significantly less hepatic cholesterol 

accumulation as compared to TCDD-treated male and female mice (p<0.05; Table 5.6).  

 

5.3.5. The effect of TCDD and statin co-treatment on TCDD-elicited pathology  

 In assessing gross pathology, TCDD and S+T co-treatment led to significantly higher total 

liver weight (TLW) and body-weight normalized liver weights (NLW) in females as compared to 

the respective controls (p<0.05; Table 5.6). While TLW was not affected in males, TCDD and S+T 

co-treatment led to significantly-heavier NLWs (p<0.05; Table 5.6). The S+T co-treatment led to 

significantly-heavier TLWs and NLWs as compared to TCDD alone in females, but not males 

(p<0.05, Table 5.6).  

 

 Hematoxylin and eosin (H&E) stain was used to visualize liver morphology. In comparing 

across groups, TCDD exposure led to infiltration of immune cells and to vacuolization (Figure 

5.4A). TCDD-mediated liver damage was confirmed by increases in serum alanine 

aminotransferase (ALT) levels (p<0.05; Table 5.6). The S+T co-treated males were found to have 

more infiltrating cells as compared to TCDD alone, along with higher serum ALT (p<0.05, Table 

5.6). The increase in ALT correlates with significantly more expression of AHR-battery genes in 

S+T co-treated male mice as compared to TCDD-treatment, such as Cyp1a1, Cyp1a2, and 

Cyp1b1 (p<0.05; Table 5.7). The most notable morphological difference across TCDD groups,  
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Figure 5.4. Impact of simvastatin and TCDD co-exposure on hepatic lipid accumulation. 

Hematoxylin and eosin (H&E) staining of liver was used to assess general morphology and oil red 

O (ORO) staining was used to assess neutral lipid. Representative samples for each stain were 

chosen for each treatment group (A). Scale bars represents 100 µm for H&E and 50 µm for ORO. 

Percent area of tissue stained with ORO was quantified with QuHAnT software for females (B) 

and males (C). Triglycerides levels in hepatic lipid extracts were quantified with commercially-

available reagents in females (D) and males (E). Triglyceride results are reported as fold changes 

relative to vehicle control (i.e. sesame oil). In all cases, sample sizes (n) were ≥ 5. Asterisks (*) 

over bars indicate statistically significant differences (p≤0.05) as compared to the respective 

vehicle control (i.e. sesame oil vs. TCDD treatment or simvastatin-treatment vs. simvastatin + 

TCDD co-treatment) or between means indicated by brackets. 
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however, was an increase in vacuolization in S+T co-treated females, but not males, as compared 

to TCDD-treatment alone (Figure 5.4A).  

  

 Given that TCDD exposure mediates increase in hepatic lipid accumulation in mice, we 

hypothesized that the differences in hepatic weight and vacuolization in the S+T co-treated 

females was due to discrepancies in lipid accumulation. While there were no differences in serum 

triglyceride levels across exposures (Table 5.6), hepatic oil red O (ORO) staining suggests 

differences in neutral lipid accumulation across treatments (Figure 5.4A). Quantification of percent 

area stained with ORO confirmed that, as seen in previous studies, TCDD exposure increased 

lipids in the liver for both sexes regardless of simvastatin exposure (p<0.05; Figure 5.4B and 

5.4C)(Nault et al. 2015). These results were confirmed in quantifying triglyceride content in 

hepatic lipid extract (p<0.05, Figure 5.4D and 5.4E). However, in comparing across TCDD 

treatments, livers from S+T co-treated males and females have significantly less ORO-stained 

tissue as compared to TCDD-treatment alone (p<0.05, Figure 5.4B and 5.4C). The S+T-mediated  

decrease in lipid accumulation was confirmed in females in quantifying triglycerides in hepatic 

lipid extracts (p<0.05; Figure 5.4D). While not statistically significant, results suggest that S+T co-

treatment likely also reduces triglyceride content in males (p=0.19; Figure 5.4E). 

 

 Serum free fatty acids (FFA), ketone body (i.e. beta-hydroxybutyrate; BH) levels, and 

expression of hepatic peroxisome proliferator-activator alpha (Ppara) were assayed to investigate 

whether lipids are being utilized for energy production. While male FFA levels were unaffected by 

treatments, the S+T co-treatment led to significantly lower levels of free fatty acids in the serum 

as compared to simvastatin and TCDD alone in females (p<0.05; Table 5.6).  For females, serum 

BH levels were also lower in S+T co-treatment as compared to simvastatin and TCDD-treatment 

(p<0.05, Table 5.6). The BH levels in males, however, were significantly increased in TCDD and 

S+T co-treated groups as compared to their respective controls (p<0.05), but not different across 
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TCDD-treated groups (Table 5.6). Hepatic expression of the peroxisome proliferator-activator 

alpha (Ppara) gene was repressed by TCDD regardless of simvastatin treatment (p<0.05; Table 

5.7). Interestingly, S+T co-treated females, but not males, were found to have significantly more 

repression of Ppara expression as compared to TCDD alone (p<0.05; Table 5.7). Expression of 

genes exclusively regulated by PPAR-alpha, such as Cyp4a10 and Cyp4a14, follow a similar 

pattern suggesting that PPAR-alpha activity is also further repressed in S+T co-treated females 

as compared to TCDD treatment (p<0.05; Table 5.7). For males, however, S+T co-treatment led 

to less repression of PPAR-alpha target genes as compared to TCDD alone (p<0.05; Table 5.7).  

 

5.3.6. TCDD and simvastatin co-treatment-mediated increases in hepatic glycogen  

 As the increased hepatic weight and histological differences between TCDD and S+T co-

treated females was not due to lipid accumulation, we sought to analyze the hepatic glycogen 

levels in each group. As compared to TCDD alone, we found significantly more hepatic glycogen 

in the female S+T co-treatment group (p<0.05; Figure 5.5A). While TCDD treatment alone did not 

impact hepatic glucose, S+T co-treatment led to significantly less hepatic glucose as compared 

simvastatin-treated female mice (p<0.05; Figure 5.5B). As such, the glycogen:glucose ratio is > 

2 fold higher in S+T co-treated females as compared to TCDD-treated females. In the male mice, 

TCDD-treatment led to a significant drop in hepatic glycogen (p<0.05; Figure 5.5C). Furthermore, 

TCDD and S+T co-treatment both led to significant reductions in hepatic glucose in males 

(p<0.05; Figure 5.5D). While the difference between TCDD and S+T co-treatment was not 

significant for males, the glycogen:glucose ratio is ~1.5 fold higher in S+T co-treated males as 

compared to TCDD alone. A periodic acid-Schiff stain, which stains polysaccharides such as 

glycogen, confirmed that S+T co-treatment in females, but not males, led to a notable increase in 

hepatic glycogen levels as compared to TCDD alone (Figure 5.5E). Hepatic expression of 

glycogen synthase (Gys2) which is involved in glycogen anabolism was found to be significantly  
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Figure 5.5. Impact of simvastatin and TCDD co-exposure on hepatic glycogen metabolism. 

Hepatic glycogen was inferred based on background glucose in females (A and B) and males (C 

and D). In both non-amyloglucosidase-treated (A and C) and amyloglucosidase-treated (B and 

D) samples, glucose was measured with commercially-available reagents. Results are reported 

as fold changes relative to vehicle control (i.e. sesame oil). Sample sizes (n) were ≥ 5 in all cases. 

Asterisks (*) indicate statistically significant differences (p≤0.05) between means indicated by 

brackets. Periodic acid-Schiff stain (PAS) was used to confirm differences in glycogen levels; a 

representative sample was chosen for each treatment group (E). Scale bars represents 20 µm. 
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repressed by TCDD regardless of simvastatin treatment in males and females (p<0.05; Table 

5.7). In comparing across TCDD treatments, S+T co-treated females, but not males, were found  

to have a lower level of Gys2 expression as compared to TCDD alone (p<0.05; Table 5.7). Like 

Gys2, expression of the glycogen phosphorylase gene (Pygl) which is involved in regulating 

glycogen catabolism was significantly repressed by TCDD in males and females regardless of 

simvastatin exposure (p<0.05; Table 5.7). However, unlike Gys2, there were not differences in 

Pygl expression across TCDD treatments.  
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5.4. Discussion 

 Previous in vitro and rodent-based studies have indicated that exposures to AHR ligands 

repress expression of genes involved in cholesterol biosynthesis ultimately leading to reductions 

of circulating TC, HDL, and LDL in serum (Angrish et al. 2013; Tanos et al. 2012). Using the 

nationally-representative 2003-2004 NHANES data, regression analysis suggests that TCDD-

mediated repression of cholesterol biosynthesis may be relevant in the human population and 

sex-specific. More specifically, regression models adjusted for age, BMI, and race estimate a 

male-specific 6.2% reduction in TC from T1 (i.e. low-TCDD) to T3 (i.e. high-TCDD) that was not 

present in the female-stratified or full cohort (Table 5.5; Figure 5.2A). Regression models also 

indicate that LDL levels are associated with serum TCDD with an estimated 13.0% reduction from 

T1 to T3 in the full-cohort, respectively (p<0.05; Table 5.5; Figure 5.2B). Estimations for male- 

and female-stratified cohorts were also negative and near statistical significance in comparing 

LDL from T3 to T1 (p=0.08 and p=0.06, respectively) suggesting that the reduction in LDL is not 

sex-specific (Table 5.5; Figure 5.2B). Lack of significance for the male- and female-stratified LDL 

dataset is likely due to smaller sample sizes relative to the full-cohort. Regression models indicate 

that HDL is not associated with TCDD. Overall, our statistical models suggest that AHR-mediated 

alteration in cholesterol homeostasis is relevant to humans. More importantly, the regression 

results suggest that environmentally-relevant TCDD exposure levels are altering cholesterol 

homeostasis in the American population.  

 

 To characterize the impact of TCDD-induced repression of cholesterol biosynthesis in 

TCDD-elicited liver pathology, C57BL/6 mice were gavaged with TCDD in the presence or 

absence of simvastatin, a competitive inhibitor of HMG-CoA reductase. While not statistically 

significant as seen in previous studies (Angrish et al. 2013; Tanos et al. 2012), TCDD-induced a 

consistent decrease in Hmgcr mRNA expression (Figure 5.3A and 5.3B). The decrease was 

confirmed at the protein level and was significant in males, but not females (Figure 5.3D and 
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5.3E). While the TCDD-induced repression of Hmgcr was modest, the TC and HDL levels were 

significantly lower in serum, which adheres to previous reports suggesting that TCDD alters 

cholesterol homeostasis in mice (Table 5.6)(Angrish et al. 2013). Unlike previous studies, 

however, LDL levels, were mostly unaffected in this study which is likely due to differences in 

study design (Angrish et al. 2013). 

 

 Simvastatin, while increasing Hmgcr mRNA expression, did not alter HMGCR protein 

levels (Figure 5.3D and 5.3E). Similarly, the level of serum TC and LDL was not impacted by 

simvastatin in serum at the time of sacrifice (Table 5.6). Notably, statins primarily reduce LDL 

levels in humans (Baigent et al. 2010). Previous studies have shown that statins are less effective 

in lower circulating LDL in mice since, unlike humans, HDL is their predominant lipoprotein 

(Schonewille et al. 2016). Along these lines, simvastatin was found to have a significant impact 

on serum HDL in females, but not males (p<0.05; Table 5.6). As the primary role of HDL is in 

reverse-cholesterol transport (RCT), these results suggest that simvastatin-treated female mice 

down-regulate transport of cholesterol from tissues to the liver. Gene expression of the scavenger 

receptor B1 (Scarb1) which serves as the HDL receptor was not impacted by simvastatin in the 

liver (Table 5.7). Expression of the apolipoprotein A1 gene (Apoa1), which is the primary 

lipoprotein component of HDL, was significantly increased in males, but not females, treated with 

simvastatin as compared vehicle mice (p<0.05; Table 5.7). Previous reports have established that 

APOA1 is essential for HDL formation and that Apoa1-/- mice have lower circulating levels of HDL 

(Plump et al. 1997). As such, a reduction in HDL found in females, but not males, could be due 

to discrepancies in the level of hepatic expression of APOA1 in response to simvastatin. Similarly, 

simvastatin-mediated repression of lecithin cholesterol acyltransferase (Lcat) was found to be 

near statistical significance in the females, but not males (p=0.06; Table 5.7). LCAT is primarily 

expressed by the liver and, once excreted, esterifies cholesterol and promotes HDL maturation 

(Zhou et al. 2015). LCAT deficiency is associated with decreased HDL and, ultimately, catabolism 
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of APOA1 (Simonelli et al. 2013). As such, lack of up-regulation of Apoa1 and/or down-regulation 

of Lcat at the transcriptional level might play a mechanistic role in the simvastatin-mediated 

decrease in HDL in females.  

 

 Histological assessment and serum ALT levels suggest that the S+T co-treatment 

increases severity of TCDD-induced liver injury in males, but not females (p<0.05; Table 5.6; 

Figure 5.4A). As compared to TCDD alone, the S+T co-treated males have a greater-degree of 

AHR-mediated transcription as indicated by significant increases in expression of several AHR-

battery genes, such as Cyp1a1, Cyp1a2, and Cyp1b1 (p<0.05; Table 5.7). As TCDD-mediated 

liver injury is AHR-dependent (Fernandez-Salguero et al. 1996; Pierre et al. 2014), we 

hypothesize that the increase in liver damage in the male S+T co-treatment group is AHR-

mediated. The mechanism behind increased AHR-mediated transcription which is unique to S+T 

co-treated males requires further research. 

 

 As seen in previous studies, TCDD exposure drove significant increases in hepatic 

cholesterol and lipid accumulation (p<0.05; Figure 5.4; Table 5.6)(Nault et al. 2017). S+T co-

treatment, however, led to significantly-lower levels of hepatic cholesterol as compared to TCDD 

in both sexes (Table 5.6). These results correlate with lower-levels of lipid accumulation in the 

S+T co-treated group (Figure 5.4). Previous reports have associated NAFLD with higher-levels of 

HMGCR expression and accumulation of hepatic free cholesterol in humans (Min et al. 2012). 

Epidemiological studies have also suggested that statin-usage protects against hepatic steatosis 

(Dongiovanni et al. 2015). Collectively, these results suggest that AHR-mediated repression of 

Hmgcr and other genes involved in cholesterol biosynthesis might protect against TCDD-elicited 

steatosis. Our results confirm this hypothesis as simvastatin, an inhibitor of HMGCR, reduced 

hepatic cholesterol and lipid accumulation in mice that were treated with TCDD.  
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 The simvastatin-mediated protection against TCDD-elicited hepatic lipid deposition 

appears to be somewhat sex-specific as it was more pronounced in females as compared to 

males (Figure 5.4). The decreased levels of FFAs in the serum of the S+T co-treated females 

suggest that S+T co-treated female mice have less mobilized lipids which may contribute to the 

lower-level of hepatic lipid accumulation (p<0.05; Table 5.6). Interestingly, S+T co-treated females 

have significantly lower levels of hepatic peroxisome proliferator-activator alpha (Ppara) gene 

expression, a master regulator of fatty acid oxidation, which coincides with decreases in exclusive 

PPAR-alpha target genes, such as Cyp4a10 and Cyp4a14 (p<0.05; Table 5.7)(Mandard et al. 

2004). Furthermore, ketone bodies are also significantly lower in serum of S+T co-treated females 

as compared to the TCDD-treatment (p<0.05; Table 5.6). As such, the S+T co-treated females 

are likely not utilizing lipids as an energy source. These results suggest that the reduction in 

hepatic lipid as compared to TCDD-treated females is due to accumulation and not an increase 

in fatty acid metabolism. While having comparable levels of ORO and triglyceride levels in the 

liver as the females, male mice appear to be in a different metabolic state. Gene expression of 

Ppara, while not statistically significant, was slightly increased while PPAR-alpha target genes 

were significantly higher in S+T co-treated males as compared to TCDD alone (p<0.05; Table 

5.7). As such, the gene expression results suggest that S+T co-treated males have less TCDD-

mediated repression of fatty acid oxidation in the liver as compared to TCDD alone. While TCDD 

exposures are thought to repress beta-oxidation, male mice in our study had increases in the 

levels of ketone bodies in the serum suggesting that fatty acids are being utilized for energy 

production. However, while the hepatic gene expression suggests that S+T co-treated males have 

more PPAR-alpha-related activity, there is not a difference across TCDD treatments. As such, the 

increases in PPAR-alpha-related activity in the S+T co-treated males does not appear to be 

severe enough to induce a systemic increase in ketone body levels in the blood.  
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 The most surprising phenotype was a significant increase in hepatic glycogen content 

found within the S+T co-treated females as compared to TCDD alone (p<0.05; Figure 5.5A and 

5.5E). The phenotype coincides with an increase in liver weight (p<0.05; Table 5.6). While not as 

pronounced in females, the S+T co-treated males had a similar glycogen deposition and liver 

weight trend suggesting that the phenotype could also be present in males, but less severe 

(Figure 5.5B; Table 5.6). As previous reports have established that TCDD exposure depletes 

hepatic glycogen stores (Nault et al. 2016a), we hypothesize that the S+T co-treatment is driving 

a metabolic phenotype that is similar to a glycogen storage disease (GSD). GSDs are a diverse-

set of autosomal recessively inherited metabolic disorders mediated through enzyme deficiencies 

(Ozen 2007). As the mice were fasted prior to sacrifice, we are hypothesizing that the greater 

level of glycogen content in S+T co-treated females as compared to TCDD-treatment is due to an 

impairment of glycogen catabolism. Gene expression of glycogen phosphorylase (Pygl), which is 

the rate-limiting enzyme of glycogenolysis, supports this hypothesis. While simvastatin treatment 

alone was found to decrease gene expression of Pygl (p<0.05), Pygl was repressed further in 

S+T co-treated females as compared to TCDD-treatment, but was not statistically significant 

(p=0.27; Table 5.7). Notably, much of the glycogen phosphorylase activity is regulated through 

post-translational modifications and allosteric interactions which we did not assay (Han et al. 

2016). Glycogen synthase (Gys2) expression follows a similar pattern. Gys2 expression was 

found to be lower in the S+T treated females, but not males, as compared to TCDD alone (p<0.05; 

Table 5.7). We hypothesize that reduction in gys2 expression in the S+T-treated females may be 

a feedback mechanism due to the inability to catabolize hepatic glycogen. Notably, like glycogen 

phosphorylase, much of the glycogen synthase activity is regulated post-translationally (Han et 

al. 2016). Further studies are required to screen the expression and activity of enzymes involved 

glycogen catabolism in further detail to test our hypothesis and unravel the mechanism behind 

this phenotype.  
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 In conclusion, the novelty of this study is two-fold. First, regression analysis of the 

NHANES 2003-2004 dataset suggests that environmentally-relevant TCDD exposures in the 

American population impact cholesterol homeostasis. Secondly, a functional mouse-based 

experiment characterized several roles of HMGCR in TCDD-mediated toxicity in the liver. Results 

suggest that TCDD-mediated repression of cholesterol biosynthesis protects against lipid 

accumulation in the liver of both sexes. While lipid accumulation is reduced, the S+T co-treatment 

appears to increase AHR-mediated liver injury in a male-specific manner. The S+T co-treatment 

resulted in greater levels of hepatic glycogen as compared to TCDD-treated mice in a female-

specific manner. While further research is needed to better understand the mechanism and 

differences across sexes, our results suggest that human individuals who take statins may be 

protected from AHR-mediated steatosis, but more at risk for TCDD-mediated liver injury and 

alterations in glycogen metabolism in a sex-specific manner.  
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Chapter 6: Conclusions and Future Directions 
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6.1. Overall Goal 

 The primary goal of this dissertation was to use a population-guided approach to 

characterize the impact of population-level heterogeneity in response to TCDD and identify novel 

modulators that impact susceptibility to TCDD-elicited adverse health outcomes. First, we 

confirmed the presence of profound interindividual variability in response to TCDD across human 

individuals. Second, a mouse panel was used to scan for genetic modifiers that may be involved 

in driving human interindividual variability in response to TCDD. Specific endpoints of focus were 

TCDD-mediated suppression of the B cell, hepatic sequestration of TCDD, and TCDD-mediated 

non-alcoholic fatty liver disease (NAFLD). Quantitative trait locus (QTL) analysis was used to 

identify regions of the genome that potentially modulate inter-strain differences in the responses 

to TCDD. Specific genes within these regions were chosen based on physiological processes and 

previous implications in AHR-mediated biology to characterize potential functional roles within 

TCDD-mediated toxicity.  

 

6.2. Primary Findings and Future Directions 

6.2.1. Specific Aim 1. Characterizing the impact of interindividual variability in TCDD-

mediated suppression of the human B cell.  

 The primary novelty of this project was in the large number of individual human donors 

that were assayed. To our knowledge, this is the largest study of human primary leukocytes. B 

cells were isolated from 51 unique human donors, activated with CD40 ligand, and exposed to a 

TCDD dose-response for a total of 7 days. Following, we assayed the impact of TCDD on the 

number of B cells secreting IgM and the concentration of IgM secreted during the culture period.  

 

 First and foremost, results suggest that humans respond to TCDD to differing degrees. 

For example, there was ≥ 70 fold differences in the number of cells secreting IgM following 

exposure to 30 nM TCDD between individuals in our human B cell study. As the results suggest 
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that some individuals are more-susceptible to TCDD-mediated immunosuppression than others, 

the number of individuals assayed should be considered during chemical-based risk assessment 

of heterogeneous populations. Future work could entail a paradigm within risk-assessment that 

requires larger-scale studies to better encapsulate the response across heterogeneous 

populations. Larger studies would provide data that would better identify and protect individuals 

who are susceptible to chemical-induced toxicity, but would also ensure that exposure guidelines 

and required clean-up of contaminated sites is reasonable and based on empirical evidence. 

 

 Secondly, the data from the large number of human donors were used to assess the 

impact of population heterogeneity within the low-dose region of a TCDD-mediated dose-

response relationship. Results suggest that the population of 51 donors do not have a linear low-

dose relationship. Our results have direct implications within risk assessment as a recent report 

from the National Research Council (NRC) suggested that population-level dose-response curves 

would linearize for all non-cancer mediated endpoints (NRC 2009). Our data for TCDD-mediated 

repression of the human B cell does not support the NRC’s hypothesis. However, future work 

would require a larger-scale study with > 51 human donors to empirically-disprove the low-dose 

no-threshold (LNT) hypothesis for our endpoints of interest. Future work is also required to test 

the LNT hypothesis for other TCDD-mediated endpoints and, beyond, other chemically-mediated 

adverse health outcomes. While ambitious, such results would ensure that exposure guidelines 

are set that are safe for the heterogeneous human population.  

 

6.2.2. Specific Aim 2. Identifying and characterizing the impact of Serpinb2 as modulator 

of TCDD-mediated suppression of the B cell.  

 The primary goal of this study was to use a genetics-based approach to screen for genetic 

modulators of TCDD-mediated suppression of CD40 ligand-activated B cells. B cells were isolated 

from 12 genetically-diverse strains and exposed to TCDD using the same model as used in our 
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previous human B cell study. QTL analysis of the number of cells secreting IgM from each strain 

at 30 nM was used to screen for potential genetic modulators of TCDD-mediated suppression of 

the B cell.  

 

 Results suggested that a region of chromosome 1 was associated with inter-strain 

differences in TCDD-mediated immunosuppression. A gene called Serpinb2 that encodes for the 

serine peptidase inhibitor, clade B, member 2 was found to be within the genomic region of 

interest.  Moreover, Serpinb2 expression is altered upon TCDD exposures in mouse and human 

B cells (Kovalova et al. 2016). Our results suggest that TCDD-mediated dysregulation of Serpinb2 

is most-prominent in Ahrd mice (i.e. strains less-sensitive to TCDD) and occurs in a time-

dependent manner. Further downstream analysis suggested that Serpinb2-/- mice were 

significantly more sensitive to TCDD-mediated suppression of the number of cells secreting IgM. 

These results suggest that TCDD-mediated induction of Serpinb2 activity is likely playing a 

protective role against TCDD-mediated suppression of the B cell. 

 

 Further work is required to better understand the role of Serpinb2 in B cell biology. Our 

study is the first to link Serpinb2-related activity to B cell function. Immunological challenges of 

Serpinb2-/-  mice have indicated a key role in immune function, but further work is needed to place 

more specific focus on the B cell (Schroder et al. 2010; Schroder et al. 2011). Furthermore, a 

more comprehensive study is required that can dissect the role of Serpinb2 in TCDD-mediated 

suppression of IgM secretion. Given the time dependence of TCDD-mediated suppression, such 

a study would likely require a time-course over the 6-day period of culture. Such a study might 

elucidate whether Serpinb2 activity is mitigating TCDD-mediated suppression of B cell activation 

or secretion of IgM.  
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 The most pertinent future work is to translate our findings to human B cells to establish 

whether inhibition of Serpinb2-related activity increases the level of TCDD toxicity in humans. A 

viable method to translate would lie in a large-scale screen of the Serpinb2 gene in human B cells 

which are exposed to TCDD. Such a study, while quite ambitious, might suggest whether 

Serpinb2 polymorphisms that impact expression of functionality of plasminogen activator 2 (PAI2), 

the human ortholog of mouse SERPINB2, impacts susceptibility to TCDD-mediated 

immunosuppression. The results would have potential to identify individuals in the human 

population that may be more susceptible to TCDD-mediated immunosuppression. 

 

6.2.3. Specific Aim 3. Characterizing the toxicodynamics of hepatic accumulation of TCDD 

and identifying Tgfbr2 as a modulator of TCDD-mediated liver toxicity.  

 The primary goal of this study was to use a population-based approach to characterize 

the role of the AHR-mediated transcription in hepatic sequestration of TCDD. Mice from 14 

genetically-diverse strains were exposed to TCDD over a 10-day period. The level of TCDD and 

the expression of 9 AHR-responsive genes were assessed in the liver following the exposure 

period. Furthermore, QTL analysis was used to scan for genetic modulators that potentially impact 

TCDD sequestration and AHR-mediated gene expression. 

 

 First and foremost, the level of TCDD in the livers were vastly-different across the 14 

mouse strains with difference ≥ 30-fold. Heritability analysis suggests that genetic variability within 

our mouse panel drives ~15 times more of the observed variance as compared to environmental 

factors. As such, our results suggest that genetic background plays a strongly-influential role in 

the accumulation of TCDD. Overall, mice which carry sensitive Ahr alleles, such as the Ahrb1, 

were found to have higher levels of hepatic TCDD sequestration suggesting an AHR-dependence 

in sequestration. Pearson correlation analysis of TCDD burden and hepatic expression further 

suggests that the TCDD sequestration is dependent on AHR-mediated transcription. Of the 9 
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genes assessed, the expression of classical AHR-battery genes, such as Cyp1a1, Cyp1b1, and 

Cyp1a2, were highly correlated with TCDD burden and adheres to previous studies (Diliberto et 

al. 1997; Hakk et al. 2009). Interestingly enough, we often found strains which were exceptions 

to the overall endpoint-specific findings. The most interesting discrepancy, however, were several 

strains (DBA1/J and BXD40) which appear to accumulate more TCDD than can be explain by the 

expression of the AHR-battery genes. We hypothesized, therefore, that other genomic factors 

beyond the inherited Ahr allele are likely impacting the hepatic sequestration of TCDD. Our QTL 

analysis supports this hypothesis as several areas of the genome were found to potentially 

modulate the accumulation of TCDD. Further research is needed to focus on these unique strains 

to establish whether genes or pathways associated with these QTLs explain discrepancies in 

TCDD burden. Such patterns may suggest why these strains fall away from the over-arching 

response of other strains and, furthermore, identify individuals that may be more susceptible to 

hepatic TCDD accumulation. 

 

 QTL analysis of the inter-strain differences in gene expression profiles pointed to several 

areas of the genome that may impact response to TCDD. Of these regions, we had particular 

interest in a significant association found in Chromosome 9 near the gene encoding transforming 

growth factor beta receptor type 2 (Tgfbr2). As the TGF-beta pathway had been previously 

implicated in TCDD-mediated liver toxicity by several groups (Nault et al. 2016; Pierre et al. 2014), 

we decided to conduct a study where TCDD-sensitive (i.e. Ahrb1) mice were exposed to TCDD in 

the presence or absence of a TGFBR2-based antibody ligand trap. Results indicate that TCDD 

and TGFBR2-neutralizing antibody co-treatment led to increased hepatic steatosis and was most 

pronounced in males as compared to females. As male mice are known to be more sensitive to 

TCDD, we would suspect that a similar result in female mice would be found at a higher dose of 

TCDD. Previous reports have suggested that hepatocyte-specific Tgfbr2-/- mice fed a choline-

deficient diet have decreased steatosis that corresponds with increased expression of genes 



	 163	

involved in beta-oxidation (Yang et al. 2014). As such, further research should investigate why 

TCDD treatment and choline-deficient diet, which both induce NAFLD, drive the opposite result 

in mouse models with reduced TGFBR2 activity. Notably, TCDD is well-known to reduce the 

expression of genes involved in beta-oxidation (Nault et al. 2016; Nault et al. 2017) that were 

found to increase in Tgfbr2-/- mice fed the choline-deficient diet (Yang et al. 2014) which might 

explain the discrepancy across models. A future experiment in which the hepatocyte-specific 

Tgfbr2-/- mice are treated with TCDD to confirm our results from the TGFBR2-neutralizing antibody 

co-treatment experiment might also be valuable.  

 

 The TCDD and TGFBR2-neutralizing antibody co-treatment was also found to decrease 

the level of infiltrating cells in the livers of males, but not females. These results coincide with 

previous reports in which NAFLD was induced in hepatocyte-specific Tgfbr2-/- mice (Yang et al. 

2014). The expression of the Tgfb1 gene along with several other pro-inflammatory RNAs which 

are primarily mediated through infiltrating cells were found to be lower in males treated with TCDD 

and TGFBR2-neutralizing antibody co-treatment compared to TCDD alone. As such, we 

hypothesize that intercepting ligands of TGFBR2 reduces the recruitment of inflammatory cells 

into the liver. Further experiments are needed to characterize the cell type where Tgfb1 and 

Tgfbr2 are being expressed within our experimental models (i.e. immune cells, hepatocytes, 

Kupffer cells, etc.). Such results may provide a means to treat individuals exposed to NAFLD-

causing agents. However, while inflammation appears to be decreased in mice treated with 

TCDD, there is also an increase in steatosis which requires further mechanistic research prior to 

using the TGFBR2-neutralizing antibody as a viable treatment in humans.  
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6.2.4. Specific Aim 4. Identifying and characterizing the impact of TCDD-mediated 

repression of Hmgcr in modulating TCDD-mediated liver toxicity.  

 QTL analysis of the change in total body weight induced by TCDD across 14 genetically-

diverse strains mapped to chromosome 13 near Hmgcr. Previous reports had suggested that 

TCDD represses genes involved in cholesterol biosynthesis, including Hmgcr which encodes 

HMG-CoA reductase that serves as the rate-limiting step (Angrish et al. 2013; Tanos et al. 2012). 

The TCDD-induced repression of these genes in mice coincides with lower levels of cholesterol 

in the blood (Angrish et al. 2013). As these previous reports have only focused on the mouse, we 

sought to test whether the phenotype was relevant in humans using epidemiological data from 

the Center for Disease Control’s (CDC) National Health and Nutrition Examination Survey 

(NHANES)(Center for Disease Control 2005). 

 

 Results indicated that the phenotype is relevant within the human population. Males were 

found to have reduced total cholesterol in serum that were associated with increasing levels of 

lipid-adjusted TCDD following adjustment for confounding variables, such as race, age, and body 

mass index (BMI). Reductions in low-density lipoprotein (LDL) were associated with increasing 

lipid-adjusted TCDD levels in the full cohort (i.e. males and females) in a seemingly sex-

independent manner. Overall, there is compelling evidence that TCDD is negatively associated 

with cholesterol levels in serum in the human population which coincides with previous rodent-

based studies (Angrish et al. 2013; Tanos et al. 2012). Notably, cholesterol plays a wide-range of 

roles in physiology, such as a necessary component of cell membranes and precursor for sex-

steroids, bile acid, and vitamin D. As cholesterol biosynthesis is highly-regulated, we hypothesize 

that reductions seen in the NHANES dataset will likely have an adverse effect in humans. 

However, future studies are required to focus on whether the reductions found within the NHANES 

dataset have physiological consequences. 
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 To assess the potential role of Hmgcr in modulating TCDD-mediated toxicity, TCDD-

sensitive (i.e. Ahrb1) mice were exposed to TCDD in the presence or absence of simvastatin, a 

competitive inhibitor of HMG-CoA reductase. First, we found a reduction in lipid accumulation in 

the TCDD and simvastatin co-treatment as compared to TCDD treatment in both sexes. These 

results coincide with a simvastatin-mediated reduction in serum and liver total cholesterol in both 

sexes that were treated with TCDD. Such results coincide with several previous reports that have 

linked accumulation of cholesterol with severity of NAFLD (Arguello et al. 2015; Min et al. 2012). 

Future experiments should test whether simvastatin-mediated reduction in TCDD-elicited hepatic 

lipid accumulation carries across other statins. Furthermore, a Hmgcr-/- hepatic cell models might 

determine if the reduction in lipid accumulation is specific to HMG-CoA reductase activity in the 

liver or whether there are off-target effects of statins driving the phenotype. 

 

 While simvastatin appears to protect against TCDD-elicited steatosis, male, but not 

female, mice that were co-treated with simvastatin and TCDD were more susceptible to TCDD-

mediated liver injury. Such results coincide with significantly more expression of AHR-battery 

genes which may indicate that, as TCDD-mediated liver injury is AHR-dependent (Pierre et al. 

2014), increased AHR-mediated expression may be driving the increase in susceptibility. Future 

experiments could focus on genome-wide RNA expression and see if genes and pathways appear 

to different in the TCDD vs. TCDD and simvastatin co-treatment. Our results suggest that males 

who take statins may be at a greater-risk to TCDD-induced liver injury. Future research is needed 

to establish if the simvastatin and TCDD co-treatment is impacting expression and/or degradation 

of AHR which may explain the increase in liver injury. Other projects might focus on the 

transcriptomic and proteomic response to establish whether there are co-exposure-mediated 

gene expression profiles that recruit inflammatory cells to the liver in a male-specific manner. 

Finally, this phenotype needs to be confirmed in humans. 
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 While simvastatin and TCDD co-treated males were more susceptible to liver injury, 

female mice that were co-treated were found to have significantly more hepatic glycogen as 

compared to TCDD alone. These results coincide with heavier livers and with a greater-degree of 

vacuolization in the simvastatin and TCDD co-treated females. While males appear to have a 

similar trend, the results were not statistically-significant or as severe. We are hypothesizing that 

the TCDD and simvastatin co-treatment is mimicking a glycogen storage disease that is much 

more prominent in females. Further research is needed to confirm our hypothesis and explore the 

sex-specific nature of the phenotype. Such a study would require screens for enzyme expression 

and activity that are involved in glycogen anabolism and catabolism. Further research is needed 

to establish whether this phenotype is present in humans as this may suggest that individuals 

who take statins may be more susceptible to TCDD-mediated disruption of glycogen metabolism. 

 

6.3. Overall Conclusion 

 Overall, we hope that this thesis serves as an example of the power behind population-

based approaches in understanding the variability and mechanisms behind chemical-induced 

toxicity. We have shown that responses are dependent on the individual or strain tested. Lack of 

data from genetically-diverse models that are used to assess risk of chemical exposures is 

destined to miss individuals that are most-susceptible to adverse health effects. Furthermore, 

homogenous models do not inform of the range in response across differing individuals. The 

current state of risk-assessment is to account for this variability with a generic 10-fold adjustment. 

The data in this thesis adds to a body of evidence suggesting that a 10-fold uncertainty factor is 

too conservative for some endpoints. As opposed to generic uncertainty factors, population-based 

approaches provide the means to more-accurately estimate the level of variability included in 

safe-exposure estimations with empirical evidence.  
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 The results from these set of experiments not only serve as a proof of principle, but also 

adds to our understanding of the mechanisms behind TCDD-mediated toxicity. The data provided 

compliments a growing body of AHR-related literature as it provides links between genes and 

pathways that modulate AHR-mediated physiological processes. Such links provide a better 

understanding of AHR biology. We also speculate that information provided by this thesis work 

could be used to better understand how individuals exposed to TCDD may be treated to mitigate 

adverse health effects.  

 

 Beyond mechanistic toxicology, our results have the potential to impact real-world risk 

assessment. First, we have characterized the presence of a wide-degree of interindividual 

variability in response to TCDD using human primary cells. Such information can be used to better 

estimate safe-exposure limits of TCDD across heterogeneous populations. This aspect of the 

thesis is at the heart of the current-state of toxicology as it provides empirical data to keep 

populations safe from TCDD-mediated adverse health effects. Second, the mouse panel indicates 

that genetic background is playing a pivotal role in impacting the response to TCDD. While much 

of the aforementioned mouse work remains to be confirmed in humans, we have provided 

evidence that genetic background has profound impacts on susceptibility to TCDD-mediated 

toxicity. This aspect of the thesis, in my opinion, is at the heart of toxicology of the future. As we 

enter the age of personalized and precision medicine where characterizing individual’s genetic 

background becomes more and more feasible, I speculate that genetic information can also be 

used for personalized risk assessment that will, ultimately, improve public health. Thus, 

individuals who are genetically-predisposed to TCDD-mediated toxicity can be forewarned prior 

to consumption of foods that may be high in TCDD and other AHR ligands.  
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Chapter 7: Materials and Methods 
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7.1. Human Leukocyte Packs 

Human leukocytes packs from 51 unique, anonymous non-smoking human donors were acquired 

from the Gulf Coast Regional Blood Center (Houston, TX).  Blood was screened for human 

immunodeficiency virus and hepatitis prior to shipment.  Sex and age were not controlled.  Given 

the anonymity of blood donation, institutional review board (IRB) approval was not necessary. 

 

7.2. Single Cell Splenocyte Suspension 

Twelve inbred mouse strains were assessed: 1) C57BL/6J (n=6), 2) 129S1/SvlmJ (n=3), 3) 

NOD/ShiLtJ (n=6), 4) A/J (n=6), 5) NZO/HILTJ (n=5), 6) C3HeB/FeJ (n=5), 7) CBA/J (n=3), 8) 

DBA/1J (n=5), 9) FVB/NJ (n=5), 10) BALB/CJ (n=6), 11) CC019 (n=4), and 12) CC041 (n=5). 

Ages ranged between 2 and 5 months at the time when spleens were processed. Technical 

replicates contain pools of splenocytes from male and female mice in all cases with the exception 

of C3HeB/FeJ and CBA/J which only contained male mice. A replicate was considered a 

biological replicate (i.e. n=1) following isolation of B cells from the splenocyte pools. Table 7.1 

outlines the total number of male and female mice used for each strain. In all cases, mice were 

anesthetized with 2,2,2-tribromoethanol (225 mg/kg of bodyweight) and euthanized via CO2 

asphyxiation at Texas A&M. Spleens were sent to Michigan State University overnight on wet ice 

for B cell isolation. Spleens were mashed in a culture dish to create a single cell suspension. The 

single cell suspension was washed with 10 mL of Hank’s Balanced Salt Solution (HBSS) and 

resuspended in 1 mL of HBSS per mouse spleen included in the pool. The number of cells were 

quantified with an automated cell counter (Beckman Coulter Inc., Brea, CA) following treatment 

with 2 drops of Zapaglobin to lyse red blood cells (Beckman Coulter Inc). 
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Table 7.1. Sample sizes of males and females from each mouse strain used in B cell 

pools. 

  

Strain Number of Females Number of Males 

A/J  8 24 

BALB/cJ 5 5 

C3HeB/FeJ 0 18 

C57BL/6J 16 14 

CBA/J 0 10 

CC019 10 9 

CC041 9 7 

DBA/1J 5 10 

FVB/NJ 5 5 

NOD/ShiLtJ 4 22 

NZO/HILTJ 4 15 
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7.3. B Cell Isolation 

7.3.1. Human B Cell Study  

Human naïve B cells were isolated from the peripheral blood mononuclear cells (PBMCs) 

acquired via density gradient centrifugation of the blood in the presence of Ficoll-Paque Plus (GE 

Healthcare, Piscatawy, NJ).  The PBMCs were subjected to negative selection of naïve B cells 

using magnetic-activated cell sorting (MACS) Naïve human B cell II isolation kits per the 

manufacturer’s instructions (MiltenyiBiotec, Auburn, CA).  Naïve B cell purity was measured via 

flow cytometry following staining for CD19+ cells; B cell purity averaged ~90%.  Following 

isolation, B cells were cultured in RPMI 1640 supplemented with 10% human AB Serum (Atlantic 

Biologicals, Atlanta, GA), 100 U/ml of penicillin, 100 μg/ml of streptomycin, and 50 μM of 2-

mercaptoethanol. 

 

7.3.2. Mouse B Cell Study 

B cells were subject to negative selection using the magnetic-activated cell sorting (MACS) mouse 

B cell II isolation kits per the manufacturer’s instructions (MiltenyiBiotec, Auburn, CA). B cell purity 

for all samples included in this study (i.e. percentage of CD19+ cells) averaged 98.08% ± standard 

deviation of 2.25. Following isolation, B cells were cultured at 1x106 cells/mL in RPMI 1640, 

supplemented with 10% HyClone Cosmic Calf Serum (CCS; GE Healthcare, Piscatawy, NJ), 100 

U/ml of penicillin, 100 μg/ml of streptomycin, and 50 μM of 2-mercaptoethanol. 

 

7.4. TCDD Exposure for Primary B Cells 

TCDD (99.1% pure) was purchased from AccuStandard, Incorporated (New Have, CT).  Isolated 

naïve B cells (106 cells/mL) were then left untreated (control), exposed to DMSO (0.04%, vehicle 

control), or TCDD (0.0001, 0.001, 0.01, 0.1, 0.3, 1, 3, 10, and 30 nM). This dose-response 

provides environmentally relevance as the concentration range overlaps serum lipid-adjusted 
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TEQ values for TCDD and dioxin-like compounds that were reported across the human population 

(Nault et al. 2016a). 

 

7.5. CD40 Ligand Activation 

Naïve human primary B cells and mouse primary B cells were activated via co-culture in the 

presence of a mouse fibroblast cell line that expresses membrane-bound human CD154/CD40-

ligand (CD40L-L).  CD40L-L cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

as previously described (Lu et al. 2009).  In all cases, culture conditions were maintained at 37°C 

and 5% CO2 . 

 

7.5.1. Human B Cell Study 

For the human B cells, CD40L cells were irradiated and seeded on 48 well dishes at 104 cells/mL 

for the human study for a minimum of 24 hours.  Immediately following TCDD treatment, the naïve 

human B cell culture was supplemented with recombinant human interleukin-2 (IL-2, 0.2 U/mL; 

Roche Applied Sciences, Indianapolis, IN), interleukin-6 (1 U/mL; Roche Applied Sciences, 

Indianapolis, IN), interleukin-10 (0.2 ng/mL; Bender Medsystems, Burlingame, CA), and co-

cultured for 4 days with irradiated CD40L-expressing cells and an additional 3 days without 

CD40L-expressing cells (i.e. 7 days).  

 

7.5.2. Mouse B Cell Study 

For the mouse study, CD40L cells were plated on 96-well plates at a concentration of 5x104 

cells/mL for a minimum of 24 hours. Primary mouse B cells were supplemented with recombinant 

interleukin 2 (5 ng/mL, Cell Signaling Technologies, Danver, MA), interleukin 6 (0.0375 ng/mL, 

Biolegend, San Diego, CA), and interleukin 10 (2 ng/mL, Cell Signaling Technologies). Mouse B 

cells were co-cultured with the CD40L cells for 3 days and then an additional 3 days (i.e. 6 days) 

in the absence of the CD40L cells.  
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7.6. Enzyme-Linked ImmunoSpot (ELISPOT) Assay 

The number of IgM secreting cells were assessed with an ELISPOT as previously described (Lu 

et al., 2009).  Briefly, 96-well multiscreen filter plates (Millipore, Billerica, MA) were coated with 

anti-human IgM antibody (5 μg/mL; Sigma Aldrich, St. Louis, MO) or anti-mouse IgM antibody (5 

μg/mL; Sigma Aldrich, St. Louis, MO) overnight at 4°C. The plates were washed 3X with 

phosphate-buffered saline with 0.1% Tween-20 (0.1% PBST; Sigma), 3X with nanopure H2O, and 

blocked with 5% bovine serum albumin (Sigma). Plates were then washed 3X with PBST and 3X 

with nanopure H2O. The treated B cells were washed 2X in RPMI 1640 and resuspended in RPMI 

1640 supplemented with 10% CCS (GE Healthcare) and incubated over the primary antibody 

overnight at 37°C and 5% CO2. The culture plates were then washed 6X with 0.1% PBST, 3X 

with nanopure H2O, and coated with biotin-conjugated antihuman IgM antibody (Sigma) or anti-

mouse IgM antibody (Sigma) for a 1-hour incubation at 37°C and 5% CO2.  The culture plates 

were then washed 3x with 0.1% PBST, 3X with nanopure H2O, and coated with ultrasensitive 

streptavidin-conjugated horseradish peroxidase (Sigma) for 1 hour at 37°C and 5% CO2. The 

culture plates were washed 3X with 0.1% PBST, 3X with nanopure H2O, and spots were 

developed with an aminoethylcarbazole staining kit (Sigma) per the manufacturer’s instructions. 

Spots were enumerated with Immunospot Software (Cellular Technology, Ltd, Shaker Heights, 

OH). Each biological replicate (i.e. n of 1) consisted of 4 experimental replicates at each dose of 

TCDD and, in all cases, the datasets analyzed are complete and balanced at each concentration 

of TCDD tested. The number of spots were normalized to the total number of cells plated in each 

well of the ELISPOT plate which was quantified with an automated cell counter (Beckman Coulter 

Inc.).  
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7.7. Enzyme-Linked Immunosorbant Assay (ELISA) 

The amount of IgM secreted into the culture media was analyzed via a sandwich ELISA.  Briefly, 

Immulon 4 HBX 96-well microtiter plates (VWR International, Radnor, PA) were coated with anti-

human IgM antibody (1 μg/mL; Sigma Aldrich, St. Louis, MO) overnight.  Culture media was 

incubated over primary antibody coated plates (1 hour, 37oC) and was followed by exposure to 

an anti-human IgM-horseradish peroxidase conjugate (Sigma, 1 hour, 37°C).  Incubations were 

followed with 3 washes with phosphate-buffered saline (pH 7.4) containing 0.05% Tween-20 

(Sigma) and one wash with nanopure H2O.  2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 

acid) (ABTS, Roche Diagnostics, Indianapolis, IN) was then added as a colorimetric substrate for 

the HRP.  The rate of colorimetric change was quantified with a Synergy HT microplate reader 

(BioTek, Winooski, VT) at 405 nM for 1 hour.  Concentration of IgM in media was calculated based 

on a standard curve created in each plate.  

 

7.8. Statistical Modeling in the Human B Cell Study 

7.8.1 Individual Human DRRs  

All dose-response endpoints from the 51 donors were fit to statistical models at the individual (i.e. 

1 biological replicate) level.  A series of models were fit using the BMD Software (U.S. 

Environmental Protection Agency or EPA) including the Hill, Exponential 1, Exponential 2, 

Exponential 3, Exponential 4, Exponential 5, polynomial 2°, power, and a linear model (Table 7.2). 

Model fit and statistical assumptions were assessed to ensure adherence to recommendations 

outlined by the EPA (Davis et al. 2011).  All data was log-transformed to achieve a normal 

distribution and equal variance across dose groups prior to statistical analyses.  All best fit model 

coefficients acquired from the BMD software were validated with maximum-likelihood estimation 

using code developed in-lab with the version 1.0.17 of the bbmle package in R (Bolker 2010; R 

Core Team 2015).  
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Table 7.2. Models available in the BMD software. Table indicates the model type, model 

equation, and coefficients associated with each model. 

 
  

	

Model Type Parameters Equation 

Exponential 2 

Dose (!) 
Intercept (") 

Direction of Change (#$%&) 
Slope (')  

( ) = + ∗ (. /012∗ 3∗) ) 

Exponential 3 

Dose (!) 
Intercept (") 

Direction of Change (#$%&) 
Slope (') 
Power (5) 

( ) = + ∗	(.(/012∗ 3∗) )7) 

Exponential 4 

Dose (!) 
Intercept (") 

Direction of Change (#$%&) 
Slope (') 
Power (5) 

( ) = + ∗ (8 − (8 − :)(. /012∗ 3∗) ) 

Exponential 5 

Dose (!) 
Intercept (") 

Direction of Change (#$%&) 
Slope (') 

Asymptote (;)  
Power (5) 

( ) = + ∗	(8 − (8 − :)(.(/012∗ 3∗) )7) 

Hill 

Dose (!) 
Intercept (<) 

Slope (=) 
ED50 (>)  
Power (&) 

( ) = ? +
A ∗	)2

B2 +	)2 

Linear 
Dose (!) 

Intercept (βD) 
Slope (βE) 

( ) = 	FG + F: ∗ )  

Polynomial 2 
Dose (!) 

Intercept (βD) 
Slope (βE) 

( ) = 	FG + F: ∗ ) +	 FH ∗ )
H + FI ∗ )

2 

Power 

Dose (!) 
Intercept (βD) 

Slope (βE) 
Power (&) 

( ) = 	FG + F: ∗ )
2  



	 179	

7.8.2. Statistical Modeling of the Low-dose Region of the Human Dose-response 

The mean values for each dose group of each individual were combined (i.e. 51 biological 

replicates) and used for assessing the shape of the low-dose region of a DRR.  First, the half- 

maximal inhibitory concentrations (IC50) for the all DRRs was determined with maximum-likelihood 

estimations of the coefficients in a 4-parameter logistic model using code developed in-lab using 

bbmle package in R (Bolker 2010; R Core Team 2015).  IC50 values were confirmed with hill model 

coefficients that were acquired with the BMD software.  Low-dose region of the dose-response 

were defined as those below the established IC50 values.  The BMD software was then used to 

identify the best fitting model for the low-dose region of the DRRs.  In all instances, statistical 

assumptions and model fit were assessed via the previously mentioned recommendations of the 

EPA (Davis et al. 2011). All coefficients acquired from the BMD software were validated with 

maximum-likelihood estimation using the bbmle package in R (Bolker 2010; R Core Team 2015) 

 

7.9. Phylogenetic Analysis 

Genomes which were freely-available were downloaded from the Collaborative Cross website 

(http://csbio.unc.edu/). For the BXD strains, C3HeB/FeJ strain, and DBA/1J strain, sequenced or 

imputed genomes have not been reported. As the BXD panel is a cross between C57BL/6J and 

DBA/1J, genetic sequences were inferred for the BXD mice based on single nucleotide 

polymorphism (SNP) data reported on the University of Tennessee’s GeneNetwork website 

(http://www.genenetwork.org/genotypes/BXD.geno). A region of Chromosome 1 of BXD100 near 

the location of Etnk2, Kiss1, and Adipor1 was found to be hetereozygous and, thus, the strain 

was removed prior to the phylogenetic analysis of these genes. For DBA/1J and C3HeB/FeJ, SNP 

and INDEL data was used to compare the genetic regions of interest with closely-related strains 

that have been sequenced (i.e. DBA/2J and C3H/HeJ) using the Sanger SNP querying tool 

(Keane et al. 2011; Yalcin et al. 2011). In all cases, no differing SNPs or indels between DBA/1J 

vs. DBA/2J or C3Heb/FeJ vs. C3H/HeJ and, thus, the sequenced genome of the closely-related 
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strains was used for genetic analysis. Gene sequences were extracted from genomes by flanking 

the coordinates based on the reference mouse genome (C57BL/6J mm10) using a custom python 

script (https://github.com/PeterDornbos/Extracting_Gene_Sequences). The extracted sequences 

were then processed manually to remove the flanking sequences around the gene of interest. 

The extracted gene sequence was then aligned to the cDNA sequence of the gene of interest 

using EMBOSS Stretcher. The alignment output was used to extract the exons of the gene and 

remove intronic regions (i.e. predict the cDNA sequence for each individual strain). The predicted 

cDNA sequence was translated into the protein sequence using EMBOSS Transeq software. The 

predicted protein sequences were manually trimmed to remove untranslated amino acids. 

Predicted protein sequences from all strains were aligned via Multiple Alignment using Fast 

Fourier Transform (MAFFT) software (Katoh et al. 2005). Phylogenetic trees were built based on 

MAFFT outputs using FigTree v1.4.2. In all cases, custom python scripts were written in-lab using 

Python version 2.7.10. Statistical differences between allelic category phenotypes were assess 

with an ANOVA with a Tukey’s posthoc.  

 

7.10. Heritability Analysis 

As the R2 of a linear regression model reflects the proportion of experimental variance in the 

dependent variable that is attributed to the variability within the independent variable replicates, 

the heritability (h2) estimate of 1) percent inhibition of the IgM response of primary mouse B cells 

induced at 30 nM of TCDD and 2) hepatic accumulation of TCDD at the high-dose (100 

ng/kg/day). 

 

7.10.1. Mouse B Cell Regression Model 

The multiple R2 of the following regression model was used to estimated the heritability (h2) of 

percent inhibition in the IgM response of the mouse B cell at 30 nM TCDD: 
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Percent inhibition at the high dose of TCDD =  β0 + β1*x1 + β2*x2 + β3*x3  + β4*x4  + 

β5*x5  + β6*x6  + β7*x7 + β8*x8 + β9*x9 + β10*x10 + β11*x11 + εi  

 

In this regression model, β0 is the intercept while the remaining coefficients reflect the response 

seen within each strain set as categorical variables. The regression coefficient estimates are 

relative to the 129S1/SvlmJ (i.e. the least responsive strain to TCDD): β1 = A/J, β2 = BALB/CJ,  β3 

= C3HeB/FeJ,  β4 = C57BL/6J,  β5 = CBA/J,  β6 = CC019,  β7 = CC041,  β8 = DBA/1J,  β9 = FVB/NJ,  

β10 = NOD/ShiLtJ,  and β11 = NZO/HILTJ. The 95% confidence intervals associated with multiple 

R2 of the regression model were calculated via bootstrapping with 1,000 replications using bias 

corrected and accelerated method in the boot library in R (Canty and Ripley 2017).   

 

7.10.2. Hepatic Accumulation of TCDD Regression Model 

The multiple R2 of the following regression model was used to estimated the heritability (h2) 

associated with TCDD accumulation at the high dose of TCDD (100 ng/kg/day):  

 

TCDD Accumulation (ng/kg) = β0 + β1*x1 + β2*x2 + β3*x3  + β4*x4  + β5*x5  + β6*x6  + 

β7*x7 + β8*x8 + β9*x9 + β10*x10 + β11*x11 + β12*x12+ β13*x13 εi  

 

In the model, the coefficient estimates are relative to the NOD/ShiLtJ (i.e. the strain with the lowest 

level of TCDD): β1 = 129S1/SvlmJ, β2 = A/J, β3 = BALB/CJ, β4 = BXD100,  β5 = BXD40,  β6 = BXD91,  

β7 = C3HeB/FeJ, β8 = C57BL/6J,  β9 = CBA/J,  β10 = CC019, β11 = DBA/1J,  β12 = FVB/NJ, and β13 

= NZO/HILTJ. β0 represent the model intercept. The 95% confidence intervals of the multiple R2 

from the regression model were calculated with bias corrected and accelerated method via the 

boot library in R (Canty and Ripley 2017). 
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7.11. Quantitative Trait Locus Analysis (QTL)  

QTL analysis was performed using Gene Network’s online-based WebQTL program 

(http://www.genenetwork.org/webqtl/main.py)(Wang et al. 2003). Scans for QTLs were performed 

using several differing endpoints:  

A)  percent inhibition in the number of cells secreting IgM (i.e. ELISPOT data) at the high 

dose (30 nM) of TCDD (mouse B cells study).  

B)   mean level of TCDD accumulation in the liver (Toxicodynamics of TCDD accumulation 

study) 

C) mean fold change in hepatic gene expression of AHR-responsive genes 

(Toxicodynamics of TCDD accumulation study) 

D)   mean change in total body weight (HMGCR functional study) 

The mapping was performed using the data from the 10 strains that are members of the Mouse 

Diversity Panel: 1) C57BL/6J, 2) 129S1/SvlmJ, 3) NOD/ShiLtJ, 4) A/J, 5) NZO/HILTJ, 6) 

C3HeB/FeJ, 7) CBA/J, 8) DBA/1J, 9) FVB/nJ, 10) BALB/cJ. The whole-genome interval mapping 

was performed using the default settings of 2000 bootstrap tests. The threshold of significance 

was determined via permutation test (n=10,000). In all cases, log of the odds (LOD) ratio is 

reported which was calculated as outlined in the WebQTL glossary of terms (i.e. LRS/4.61).  

 

7.12. RNA Isolation  

7.12.1. Mouse B Cells 

Total RNA was extracted from B cells isolated from male C57BL/6J (n=3) and DBA/1J (n=3) mice 

that were treated with DMSO (0.01%) or TCDD (30 nm) for 0.33, 1, 2, 3, 4, 5, or 6 days. Isolated 

B cells were diluted to 1X106 cells/mL, supplemented with cytokines, and activated using CD40L 

cell co-culture scheme as previously outlined with the exception that 6 well dishes were used in 

this exposure (i.e. larger volumes of cells at the same density). RNA was extracted with Qiagen 
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RNeasy Mini Kits per the manufacturer’s instructions. RNA quality (i.e. A260/A280 ratio) and 

quantity was assessed with a NanoDrop 1000 spectrophotometer.  

 

7.12.1. Mouse Liver 

Frozen liver (~50 mg) was homogenized in 1 mL of TriZOL with chrome-steel beads using a Mixer 

Mill 300 (Life Sciences, Carlsbad, CA) for 4 minutes. Following, total RNA was extracted per the 

manufacturer’s instructions with an additional 5:1 phenol:chloroform extraction step (Sigma 

Aldrich, St. Louis, MO). The quantity and quality (260/280 ratio) of RNA was analyzed with a 

NanoDrop 1000 spectrophotometer prior to cDNA conversion. The quantity of total RNA was 

assessed using the Quant-iT RNA Assay Kit prior to gene expression analysis with the Nanostring 

nCounter.  

 

7.13. Quantitative Real-Time Polymerase Chain Reation (QRTPCR) 

In all cases, Oligo dT primers and reverse transcriptase superscript III were used for the cDNA 

conversion. QRTPCR was performed using a DNA Engine Opticon 2 (Bio-Rad, Hercules CA). 

Expression was normalized to housekeeping genes and, following, a vehicle control group. Fold 

changes were calculated using the 2−∆∆CT method.  

 

7.13.1. Mouse B Cells 

500 ng of total RNA was used for the cDNA conversion. SYBR green Mastermix (Life 

Technologies) was used for all QRTPCR in the mouse B cell study. Primer sequences are located 

in Table 7.3. Expression was normalized to Hprt. 

 

7.13.2. Mouse Liver 

For hepatic gene expression analysis, 2 µg of total RNA was used for cDNA conversion. TaqMan 

Mastermix (Thermo Fisher) and FAM-based probe for Cyp1a1  
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Table 7.3. Primer Sequences used for SYBR green-based QRTPCR. 

  

Gene ID 
Official 
Gene 

ID 
Forward Sequence (5' to 3') Reverse Sequence (5' to 3') 

Actb 11461 TGTTACCAACTGGGACGACA GGGGTGTTGAAGGTCTCAAA 
Apoa1 11806 GTGGCTCTGGTCTTCCTGAC ACGGTTGAACCCAGAGTGTC 
Ccl2 20296 CAGGTCCCTGTCATGCTTCT TCTGGACCCATTCCTTCTTG 

Cyp1a1 13076 AAGTGCAGATGCGGTCTTCT AAAGTAGGAGGCAGGCACAA 
Cyp1a2 13077 CACTAACGGCAAGAGCATGA AGCTTGCTGACGAGATGGTT 
Cyp1b1 13078 TGCTTTTGTTTCTGCCACAG GGGGCATGAATTCTTGTGAT 

Cyp4a10 13117 ACCACAATGTGCATCAAGGA CTGAGAAGGGCAGGAATGAG 
Cyp4a14 13119 ACCTGTCACCTTCCCAGATG AGCAAACTGTTTCCCAATGC 

Gusb 110006 GAGGATCAACAGTGCCCATT AGGTAAGGCCACCAGAGGTT 
Gys2 232493 GGGACACTGTGCATTGTTTG CCGATTCGTCTAATGGTGCT 
Hprt 15452 GCTTACCTCACTGCTTTCCG ATCGCTAATCACGACGCTGG 
Il1b 111343 GTACAAGGAGAACCAAGCAACG TGGGATCCACACTCTCCAGC 
Il6 16193 TCCTCTCTGCAAGAGACTTCCATCC ACAGGTCTGTTGGGAGTGGTATCC 

Lcat 16816 GCTCCTCAATGTGCTCTTCC AATCCAGCCAGATGGTGAAG 
Ldlr 16835 TCCTGGAGATGTGATGGACA GAGCCATCTAGGCAATCTCG 

Ppara 19013 GAGGGTTGAGCTCAGTCAGG GGTCACCTACGAGTGGCATT 
Pygl 110095 ACCAAATCGACAATGGCTTC CCATTGTGTTCCAGGCTTTT 

Scarb1 20778 CAGGCTGTGGGAACTCTAGC GAAAAAGCGCCAGATACAGC 
Serpinb2 20778 CTGCTACCCGAAGGTTCTG GGAAGCAACAGGAGCATGC 

Tgfb1 21803 TGCGCTTGCAGAGATTAAAA CTGCCGTACAACTCCAGTGA 
Tgfb3 21809 CTGGGAGTCCTGAAGCTCAC TGGTGCAAGTGGACAGAGAG 
Tgfbr2 21813 CCAGAACCCACGACAAAAGT GTTCCCAGAACAGGGTGAAA 

Tnf 21926 CCACGTCGTAGCAAACCACC ACAAGGTACAACCCATCGGC 
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(Mm00487218_m1; Thermo Fisher) and VIC-based probe for eukaryotic Rn18s (Thermo Fisher) 

were used to verify Nanostring Plexset-based expression levels. SYBR green Mastermix (Life 

Technologies) was used for all other SYBR-based gene expression analysis. Primer sequences 

used in the SYBR green analysis can be found in Table 7.3. Expression was normalized to an 

intra-well Rn18s for the TaqMan-based analysis or the geometric mean of Hprt, Actb, and Gusb 

for the SYBR green-based analysis.  

 

7.14. Intracellular Protein Expression Analysis  

For flow cytometry analysis, B cells, isolated from C57BL/6J (n=4) and DBA/1J (n=4) mice and 

were activated with cytokines and CD40L cells as previously outlined with the exception that 12 

well dishes were used for this exposure.  Activation was performed in the presence of DMSO 

(0.01%) or TCDD (30 nm) for 0, 2, 3, 4, and 5 days. Following exposure, cells were washed with 

HBSS and treated with Fc Block (BD Pharminogen, San Diego, CA) and unlabeled anti-mouse 

IgM (BD Pharminogen) for 15 minutes at 4°C to ensure surface receptors were blocked. Following 

3 washes with FACS buffer, cells were fixed with Cytofix (BD Pharminogen) for 20 minutes at 

room temperature. Cells were washed 2X with FACS buffer and then treated with Perm/Wash 

(BD Pharminogen) for 10 minutes. Intracellular SERPINB2 and IgM were stained simultaneously 

with anti-mouse SERPINB2 conjugated to biotin (LS Bioscience, Seattle, WA) and anti-mouse 

IgM conjugated to FITC (BD Pharminogen), respectively for 20 minutes at 4°C. Cells were then 

washed 4X with 3mL of Perm/Wash and treated with streptavidin-conjugated Alexa Fluor 647 

(AF647) for 20 minutes at 4°C.  Cells were then washed 4X with 3 mL of Perm/Wash and 

resuspended in FACS buffer and analyzed with a BD FACSCanto II. Data was analyzed with 

FlowJo Software version 10.2 (Treestar Software, Ashland, OR). Gates were created to isolate 

singlets and B cells (Figure 7.1). In all cases, a 1:1 mixture of vehicle and TCDD treated cells that 

were stained with an isotype control including streptavidin-conjugated AF647 to determine AF647  
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Figure 7.1. Overview of B cell gates. Figure indicates a visual representation of how B cells 

were gated in flow cytometry data analysis. Gates were drawn for singlets and, following for B 

cells within the singlet gate. 
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and FITC background levels. Potential statistical differences for each time-point were assessed 

with an ANOVA and a Tukey’s posthoc. 

 

7.15. Serpinb2-/- and Serpine1-/- Mouse Studies 

The Serpinb2-null (Serpinb2-/-) mice and wildtype controls were graciously provided by the lab of 

Dr. Toni Antalis (University of Maryland School of Medicine, Baltimore, MA). The mice were 

originally developed by the lab of Dr. David Ginsburg (University of Michigan Medical School, Ann 

Arbor, MI) and have been further backcrossed onto C57BL/6 background for a total of 13 

generations (Dougherty et al. 1999; Siefert et al. 2014). The Serpine1-null (Serpine1-/-) mice were 

graciously provided by the lab of Dr. Jim Luyendyk (Michigan State University, East Lansing, MI). 

The mice were originally donated to Jackson Labs (JAX stock #002507) by Dr. Peter Carmeliet 

(University of Leuvin, Leuvin, Belgium)(Carmeliet et al. 1993). The mice were backcrossed onto 

C57BL/6J background until congenic. All mice included in knockout studies were male ranging 

from 14 and 17 weeks of age. All mice were anesthetized with isoflurane and euthanized via 

cervical dislocation. Statistical differences were calculated with an ANOVA and Tukey’s posthoc. 

 

7.16. Mouse Panel and TCDD Exposure 

All animal handling was in accordance with Texas A&M University’s Institutional Animal Care and 

Use Committee (IACUC). Fourteen mouse strains were used: 1) C57BL/6J, 2) A/J, 3) BALB/cJ, 

4) FVB/nJ, 5) C3HeB/FeJ, 6) CBA/J, 7) DBA/1J, 8) NOD/ShilTJ, 9) NZO/HilTj, 10) 129S1/SvlmJ, 

11) BXD40, 12) BXD91, 13) BXD100, 14) CC019/TauUNC. Animals were obtained from Jackson 

Laboratory (Bar Harbor, Maine) and mated in plastic cages at 6-8 weeks of age. Females were 

checked daily for vaginal plugs. If plug was present, mice were separated, weighed, and randomly 

placed into a TCDD dose group: vehicle control, 1, or 100 ng/kg/day. TCDD was administered to 

mice using peanut butter as the vehicle. Administration of daily gavage was found to result in 

spontaneous abortion of embryos, regardless of TCDD. Mice were treated with vehicle or TCDD 
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daily for 10 days. On day 11, mice were anesthetized with avertin, euthanized via cervical 

dislocation, and tissues were snap frozen in liquid nitrogen. Pregnancy success was assessed by 

the presence of absorption sites or embryos within the uterus under a dissection microscope; only 

pregnant mice were included in downstream analysis. Standard mouse chow and water was 

provided ad libitum during mating and throughout the TCDD treatment. Mice were exposed to 

constant 12-hour light/dark cycles, temperature, and humidity during mating and TCDD treatment.  

 

7.17. TCDD Burden Analysis 

TCDD accumulation was measured in liver tissue via gas chromatography-mass spectrometry 

(GC/MS). TCDD was measured in the livers of all 14 strains of the mouse panel that were treated 

with 1 ng/kg/day (n=3) or 100 n/gkg/day (n=3) of TCDD. A subset of strains (n=9) were randomly 

chosen to assess the level of TCDD in the vehicle control groups. Sample extraction and 

purification procedure were developed in-house based on U.S. Environmental Protection Agency 

method 8290. Briefly, 50 ml of 5% benzene in a hexane solution, 10 ng of 13C-TCDD (Wellington, 

Lot# MD0480912), and 30 ml of concentrated HCl (trace metal grade) were added to each sample 

in sequence. Lab control spike (LCS) sample, which contains 10 ng of native TCDD (Wellington, 

Lot #90STN1013) and 0.5 g of corn oil, and method blank (MB) sample (0.5 g of corn oil) were 

analyzed along with each set of samples.  All samples were shaken for 1 hour on a shaking bed, 

vented to release pressure, and then shaken overnight. After shaking, the organic layer was 

transferred to new bottle for subsequent sample purification (column clean-up). Acid/base silica 

column and alumina column were utilized for sample purification. The samples extracts were then 

purged to dryness and reconstituted with 20 µl of 13C-1,2,7,8-TCDF (Wellington, Lot# 020701), 

which was treated as the injection standard to account for the recovery of internal standard (13C-

TCDD). All samples were quantified using either gas chromatograph/high efficiency triple-

quadrupole system (GC/MS/MS, Agilent 7000 series) or low-resolution single-quadrupole GC/MS 

(HP 5973/6890), depending on the dosing level of TCDD. Both instruments were equipped with 



	 189	

30 m × 0.25 mm DB-5ms column and data were quantified via isotopic dilution approach using 

either chemstation (Agilent) or masshunter (Agilent) software. Results of all quality control 

samples (MB and LCS) have passed method criteria indicating satisfying analytical quality. The 

average level of TCDD in the vehicle control group was 2.8 ng/kg liver and, in comparing strains, 

does not appear be genotype-dependent.  

 

7.18. Gene Expression Profiling with NanoString nCounter Technology 

Per manufacturer’s instructions, an RNA titration was performed prior to running the PlexSet 

assay. Briefly, RNA was pooled into two treatments: 1) three C57BL/6J mice that were treated 

with TCDD and 2) three C57BL/6J mice that were treated with the vehicle control. RNA was 

titrated to assess optimum concentration needed for this customized probe set. 500 ng of total 

RNA was found to provide detection for all probes in the two treatment pools. The customized 

probe-set was designed by Nanostring technicians to target nine AHR-target genes and three 

housekeeping (HK) genes: 1) Cyp1a1, 2) Cyp1a2, 3) Cyp1b1, 4) Ahrr, 5) Gpnmb, 6) Pmm1, 7) 

Mt2, 8) Slc15a2, 9) Serpinb2, 10) Hprt (HK), 11) Gusb (HK), and 12) Eef1g (HK). A list of the 

putative DREs (pDREs) with matrix similarity scores ≥ 0.856 (Nault et al. 2016b) and hepatic AHR 

ChIP-Seq peaks (Fader et al. 2017) from previous reports along with citations of AHR-mediated 

gene dysregulation can be found for each of the 9 AHR-target genes in Table 7.4. In short, the 

NanoString PlexSet assay uses a hybridization-based technology were two probes (probe A and 

probe B) target an RNA sequence of interest. Sequences used for probe A can be found within 

Table 7.5 and sequence for probe B are found within Table 7.6. The nCounter workstation 

digitizes an image of the SPRINT cartridge. In all cases, a 555 field of vision was chosen for each 

cartridge to analyze the number of individual reporter tags detected (i.e. one reporter tag detected 

is equivalent to one transcript for the respective target RNA). Intra-codeset probe variability was 

calibrated using a reference sample across the differing codesets using nSolver 3.0 software. The 

transcript numbers were normalized to the geometric mean of the three housekeeping genes. The  
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Table 7.4. Presence of pDRES, AHR ChIP peaks, and previous reports that identified AHR-

mediated gene dyresgulation of the 9 genes analyzed in this study. DREs and AHR ChIP 

Peaks are reported if found within gene or within 10 Kb upstream of the transcription start site. 

 
     

Official Gene 
Symbol Putative DREs? AHR Chip Peaks? Previous Reports showing 

TCDD-induced Dysregulation 

Ahrr Yes Yes (Brauze et al. 2006; Harrill et al. 
2013) 

Cyp1a1 Yes Yes (Boutros et al. 2008; Hao et al. 
2012; Nault et al. 2016a) 

Cyp1a2 Yes Yes (Boutros et al. 2008; Harrill et al. 
2013) 

Cyp1b1 Yes Yes (Hao et al. 2012; Harrill et al. 
2013; Nault et al. 2016a) 

Gpnmb Yes Yes (Nault et al. 2016a) 

Mt2 Yes Yes (Frueh et al. 2001; Nishimura et 
al. 2001) 

Pmm1 Yes Yes (Boutros et al. 2008) 

SerpinB2 No No (Brauze et al. 2017; Hao et al. 
2012) 

Slc15a2 Yes No GEO: GSE87519 
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Table 7.5. Primer sequences used for probe set A in toxicodynamics and TGFBR2 

inhibition study. 

 

Official	
Gene	
Symbol	

Official	Gene	
ID	 Accession	 Target	Sequence	A	

Cyp1a1	 13076 NM_009992.3	
AACAATCGTGATGACCTTATCATCTGACAGCTGGACAT
TGGCATTCTCGTCCTCAAGACCTAAGCGACAGCGTGAC

CTTGTTTCA	

Cyp1a2	 13077 NM_009993.3	
TGTGGTGACTGTGTCAAAGCCAGCTCCAAAGATGTCAT
TGACAATGTTGACATCCTCTTCTTTTCTTGGTGTTGAGA

AGATGCTC	

Cyp1b1	 13078	 NM_009994.1	
CGCATTGATTCATAAAGAAAAGCCATGACATATGGCAG
GTTGGGCTGGTCCACAATTCTGCGGGTTAGCAGGAAG

GTTAGGGAAC	

Ahrr	 11624	 NM_009644.3	
GTCCAGCAGGCAGCGAACACGACAAATGAAGCAGCGT
GTCAAGAAGGCCGCTGTTGAGATTATTGAGCTTCATCA

TGACCAGAAG	

Gpnmb	 93695	 NM_053110.4	
CATCTTTCACCTTCGAGATGGGAATGTATGCCCGGCCG
TATCTTCGAAAGCAAAGACGCCTATCTTCCAGTTTGATC

GGGAAACT	

Pmm1	 29858	 NM_013872.4	 GGATCTTCTCCTTCTTGTCCAGTTCCGAGAACTCGCGAA
CCTAACTCCTCGCTACATTCCTATTGTTTTC	

Mt2	 17750	 NM_008630.2	
CGCGGAGCGCGACCTTTATAGCGGAGAGTATTGGGTC
GAGCGCAAAAGCCAATTTGGTTTTACTCCCCTCGATTAT

GCGGAGT	

Slc15a2	 57738	 NM_001145899.1	
GCATTTTTCCTCCCAGTATTGGTATGGCACCCAAAGACT
TGAATACATGGCTTTCGGGTTATATCTATCATTTACTTG

ACACCCT	

SerpinB2	 18788	 NM_001174170.1	
TCTGGACAGGTATGCTCTCATGCGAGTTCACACGGAAA
GGATAAAGCCCACAACAGCCACTTTTTTTCCAAATTTTG

CAAGAGCC	

Hprt	 15452	 NM_013556.2	 CTCCGGAAAGCAGTGAGGTAAGCCCAACGCTCTCCCAC
CGTGTGGACGGCAACTCAGAGATAACGCATAT	

GusB	 110006	 NM_010368.1	
GTTCGTCATGAAGTCGGCGAAATTCCAGATGAGCTCTC
CGACCACGTATTCCTGGAGTTTATGTATTGCCAACGAG

TTTGTCTTT	

Eef1g	 67160	 NM_026007.4	
CTCTCAAACACACAGAATCCATCATCACCCTCAAATGCT
GGAACCTTGCCCAGATAAGGTTGTTATTGTGGAGGATG

TTACTACA	
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Table 7.6. Primer sequences used for probe set B in toxicodynamics and TGFBR2 

inhibition study. 

 

Official 
Gene 

Symbol 
Official 
Gene ID Accession Target Sequence B 

Cyp1a1 13076 NM_009992.3 
CGAAAGCCATGACCTCCGATCACTCCACGAGATA
GCAGTTGTGACTGTGTCAAACCCAGCTCCAAAGA

GGTCCAA 

Cyp1a2 13077 NM_009993.3 
CGAAAGCCATGACCTCCGATCACTCCACGTTAG

GCCATGTCACAAGTAGCAAAATGCTCCAGGTGAT
GGC 

Cyp1b1 13078 NM_009994.1 
CGAAAGCCATGACCTCCGATCACTCTGTTGGCG
GTGGTGGCGTGTGGAATGGTGACAGGCAAAAAG

CTGGAGAAT 

Ahrr 11624 NM_009644.3 
CGAAAGCCATGACCTCCGATCACTCAGGAATTTT
AGTTTTCCTTGGAACTGCATGGTCAGAAAGCCAG

AGGTGCT 

Gpnmb 93695 NM_053110.4 
CGAAAGCCATGACCTCCGATCACTCCTTCTGGGA
CATGGTCACGAATACAGGGATCTGATCTGTTATC

ACATACA 

Pmm1 29858 NM_013872.4 CGAAAGCCATGACCTCCGATCACTCCCAGCAAA
CTCTGTCTTCAAGGCTTCCACAAACTTCTCCC 

Mt2 17750 NM_008630.2 
CGAAAGCCATGACCTCCGATCACTCTCGACGAG
AGATCGGTTTGAAGAGTTCTAGGAGCGTGATGG

AGAGAAGCA 

Slc15a2 57738 NM_001145899.
1 

CGAAAGCCATGACCTCCGATCACTCTGTTCCCAG
AGCTATGAGACTCAGGCCAACCAATGATAAGATT

GTATGTA 

SerpinB2 18788 NM_001174170.
1 

CGAAAGCCATGACCTCCGATCACTCCAGGTCCTT
TATGTATCCAATGTTCAGCTTTGCATGGAGGAAC

ATCA 

Hprt 15452 NM_013556.2 
CGAAAGCCATGACCTCCGATCACTCCAAAAAGC
GGTCTGAGGAGGAAGCCGGCGGAGGAGGTGCT

ACCG 

GusB 110006 NM_010368.1 
CGAAAGCCATGACCTCCGATCACTCTGGCGAGT
GAAGATCCCCTTCTTGTTTCCGATTACTCTCAGC

GGTGACTG 

Eef1g 67160 NM_026007.4 
CGAAAGCCATGACCTCCGATCACTCTACTTCCTC
GCAGCTCCTCATTGCTTACATAATAGGCAATGGC

ATTG 
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transcript levels were normalized to vehicle control group for that respective gene and mouse 

strain to calculate fold changes. A ≥ 1.5 fold change cutoff was used to define dysregulated gene 

transcription.  

 

7.19. TGFBR2 Mouse Study 

All animal handling was in accordance with Michigan State University’s Committee on Animal Use 

and Care guidelines. Male and female C57BL/6 mice were ordered from Charles River 

Laboratories (Kingston, NY). Mice were delivered on postnatal day 25 (PND25) and acclimated 

for 7 days prior to treatment. Mice were housed in Innocages (Innovive, San Diego, CA) containing 

ALPHA-dri bedding (Shepherd Specialty Papers, Chicago, IL) with constant 12-hour light/dark 

cycles, temperature, and humidity. Standard mouse chow (Harlan Teklad Rodent Diet 8940) and 

Aquavive water (Innovive) were provided ad libitum throughout the period of acclimatization and 

treatment. Following acclimation, mice were treated with a daily oral gavage of sesame oil (i.e. 

vehicle control) or 10 µg/kg of TCDD daily for 10 consecutive days. During the TCDD treatment 

regime, mice were given an intraperitoneal (IP) injection of phosphate-buffered saline or 15 mg/kg 

of a TGFBR2-Fc fusion protein (i.e. a TGFBR2 ligand trap) dissolved in phosphate-buffered saline 

every 3 days based on previous reports (days 1, 4, and 7)(Yung et al. 2016). Mice were sacrificed 

on day 11. Tissues were either fixed in 10% phosphate-buffered formalin (Thermo Fisher) or snap 

frozen in liquid nitrogen.  

 

7.20. Histological Analyses 

Histological processing and staining was performed by the Michigan State University Investigative 

HistoPathology Laboratory. Fixed liver was processed and vacuum infiltrated with paraffin using 

a Tissue-Tek VIP 2000 (Sakura) and embedded with the HistoCentre III Embedding Center 

(Thermo Fisher). Blocks were sectioned at 4-5 µm with a Rechert Jung 2030 rotary microtome 

(Reichert, Depew NY).  Sections from fixed tissues were dried for 2-24 h at 56°C on slides. Liver 
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sections were stained with hematoxylin and eosin (H&E) for general morphometric analysis and 

and with periodic acid–Schiff (PAS) to detect glycogen. Frozen tissues were sectioned at 6 µm 

and stained for presence of neutral lipids with oil red O (ORO) as previously described (Kopec et 

al. 2010). Slides were digitized at 20x magnification using an Olympus Virtual Slide System 

VS110 (Olympus, Center Valley, PA). Virtual slides were sampled (100% coverage) using the 

Visiomorph Microimager (Visiopharm, Denmark). ORO staining was quantified (i.e percent area 

of tissue positive for ORO) using the Quantitative Histological Analysis Tool (QuHAnT) as 

previously described (Nault et al. 2015). Using ImageJ (https://imagej.nih.gov/ij/), optimal hue, 

saturation, and value (HSV) image segmentation thresholds for feature (ORO) extraction were 

determined to be 0 to 50 and 225 to 255 (hue), 30 to 255 (saturation), and 0 to 255 (value), while 

optimal total tissue feature extraction thresholds were 0 to 255 (hue), 20 to 255 (saturation), and 

0 to 255 (value). 

 

7.21. General Statistical Analyses 

With the exception of the NHANES analysis, all statistical analyses were performed using version 

3.0.2 in R (R Core Team 2015). Histograms and q-q plots were used to assess distributions prior 

to all statistical analyses. In all cases, a p-value ≤ 0.05 was considered statistically significant. 

 

7.21.1. Dose-Response Analysis 

Analysis of Variance (ANOVA) with Dunnett’s two-tailed post hoc was used to assess the potential 

differences between dose groups and the vehicle controls. All dose-response data was log-

transformed to achieve a normal distribution prior to statistical analyses for the human and mouse 

B cell study.   
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7.21.2. T test and Analysis of Variance (ANOVA) 

Outliers within dose-groups were assessed with a Grubbs’ test; significant outliers (i.e. p<0.05) 

were removed prior to downstream analysis. Potential significant differences across dose groups 

and strains were calculated with a t-test or ANOVA where appropriate.  

 

7.21.3. Pearson Correlation Analysis 

Potential associations between gene expression (housekeeper-normalized transcript numbers) 

and TCDD burden were assessed via Pearson correlation analysis. Pearson’s correlation 

coefficient (r) and p-values are reported in Figure 4.5 for all genes of which expression was 

assessed. 

 

7.22. National Health and Nutrition Examination Survey (NHANES) Study Design 

Human survey and laboratory data were acquired from the 2003-2004 nationally-representative 

and cross-sectional U.S. National Health and Nutrition Examination Survey (NHANES)(Center for 

Disease Control 2005a). The NHANES laboratory examination data were used to assess the body 

mass index (BMI; weight in kg / height in m2) and serum levels of lipid-adjusted TCDD (pg/g), total 

cholesterol (TC; mg/dL), high-density lipoprotein (HDL; mg/dL), and low-density lipoprotein (LDL; 

mg/dL). In all cases, the CDC outlines detailed methodology of these analyses. Briefly, serum 

TCDD was measured with high resolution gas chromatography-high resolution mass 

spectrometry (Center for Disease Control 2008). Total serum cholesterol and high-density 

lipoprotein (HDL) levels were measured using an enzymatic assay and direct immunoassay, 

respectively, at Johns Hopkins University Lipoprotein Analytical Laboratory (Center for Disease 

Control 2006b). Low-density lipoprotein levels (LDL) were inferred via the Friedewald calculation 

[LDL = Total Cholesterol – (triglyceride level / 5)]; triglyceride levels were measured enzymatically 

at Johns Hopkins University Lipoprotein Analytical Laboratory (Center for Disease Control 2006a). 

Survey data were used to acquire demographic data including sex, race, and age for each sample 
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included in the analyses (Center for Disease Control 2005b). Statin usage was determined based 

on self-reporting of study participants (Center for Disease Control 2016); all statin users (included 

statin combination medicines) were identified based on reported generic drug codes (Table 7.7.) 

and removed prior to analysis. Ethnicity/race was divided into four categories: 1) Caucasian, 2) 

African American, 3) Mexican American, or 4) Other Race. Only adults ≥ 20 years of age were 

included in the dataset. Samples with missing data were removed prior to analysis to create a 

complete and balanced dataset for each variables of interest. Three independent datasets were 

created to test for an association of lipid-adjusted TCDD with 1) LDL (n=520), 2) HDL (n=1,094), 

and 3) TC (n=1,094). Detection limits (DLs) for serum TCDD were variable across the analysis. 

For samples that were below DL, the CDC-reported imputed serum lipid-adjusted TCDD value 

was used (DL/√2)(Center for Disease Control 2008). Prior to all statistical analyses, histograms 

and normal q-q plots were used to assess distributions of the continuous variables. Lipid-adjusted 

TCDD levels were log transformed (log10) prior to downstream statistical analyses to adjust for a 

extreme right-skew. In all cases, data was merged, transformed, and analyzed using SAS version 

9.4 (SAS Institute Inc., Cary, NC). As recommended by the documentation, all statistical analyses 

were performed using sample weights reported in the dioxin dataset. 

 

7.23. NHANES Demographic Statistics 

Demographic statistics were calculated with the SAS SURVEYMEANS or SURVEYFREQ 

function. As the detection frequency was ~50% for serum TCDD, the log-transformed lipid-

adjusted TCDD levels were used to divide samples into sample-weighted tertiles. The SAS PROC 

SURVEYREG function was used to compare demographic across the TCDD tertiles with a one-

way Kruskal Wallis test followed by a Dwass-Steel-Crichtlow-Fligner pair-wise posthoc and to 

compare frequencies with chi-squared test. Each dataset was stratified by sex. The SAS PROC  
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Table 7.7. Generic drug codes used to identify statin-users in NHANES. 

  

Statin Generic Drug Code
atorvastatin + amlodipine d05048

atorvastatin d04105
cerivastatin d04140

ezetimibe + simvastatin d05348
fluvastatin d03183
lovastatin d00280

lovastatin + niacin d04787
niacin + simvastatin d07110

pitavastatin d07537
pravastatin d00348
rosuvastatin d04851
simvastatin d00746

simvastatin + sitagliptin d07850
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SURVEYREG function was used to compare across the sexes with a t-test. In all cases, a p ≤ 

0.05 was considered significant. 

 

7.24. NHANES Multiple Linear Regression Modeling 

Multiple linear regression models were fit using the SAS PROC SURVEYREG function. Crude 

regression models were made during primary analyses (i.e. no adjustments) to assess whether 

TCDD tertiles were associated with TC, HDL, and LDL. Subsequent final regression models were 

adjusted for age, BMI, and race. Regression estimates are reported for the full cohort and sex-

stratified cohorts for each dataset. In all cases, sample weights were derived from the dioxin 

dataset and a p ≤ 0.05 was considered significant.  

 

7.25. Statin and TCDD Co-Treatment Study 

Age-matched C57BL/6 mice were ordered from Charles River Laboratories (Kingston, NY) and 

delivered to Michigan State University on postnatal day 25 (PND25) and acclimated to the 

Michigan State University facility for 7 days prior to treatment. Mice were housed in Innovive 

Innocages (Innovive, Sand Diego, CA) with ALPHA-dri bedding (Shepherd Specialty Papers, 

Chicago, IL) under constant 12-hour light/dark cycles, temperature, and humidity. Mice were 

provided either standard mouse chow (Harlan Teklad Rodent Diet 8940) or standard mouse chow 

(Harlan Teklad Rodent Diet 8940) containing 500 mg of simvastatin per kg of food (Sigma Aldrich, 

St. Louis, MO) ad libitum. The simvastatin-laced chow was prepared at Envigo (Huntingdon, UK). 

Mice were acclimated to the simvastatin-laced chow for 3 days prior to treatment with TCDD. The 

average (mg/kg body weight) and standard deviation of simvastatin exposure for females and 

males over the 13-day period was 77.2 ± 2.8 and 73.6 ± 1.2, respectively. Sesame oil (vehicle 

control) or TCDD (10 µg/kg) treatment was administered with a daily oral gavage for 10 

consecutive days. TCDD treatment did not impact consumption of simvastatin-laced chow. 
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Following the dosing regime, the mice were sacrificed on day 11 following a 6 hour fasting-period. 

Tissues were either frozen in liquid nitrogen or fixed in 10% phosphate-buffered formalin (Thermo 

Fisher, Waltham, MA). 

 

7.26. Western Blot Analysis 

Frozen liver was homogenized in radioimmunoprecipitation assay (RIPA) buffer using a Mixer Mill 

300 (Life Sciences, Carlsbad, CA). The protein concentration in the supernatant was determined 

with a Bradford Assay following a 10 min centrifugation (16,000 x g)(Lowry et al. 1951). Sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate 15 µg of 

total protein which was subsequently transferred to a nitrocellulose membrane. The membrane 

was blocked with 5% non-fat dry milk dissolved in Tris-Buffered Saline with 0.05% tween 20 

(TBST) and probed with monoclonal anti-mouse HMGCR antibody (1:1000; Abcam, Cambridge,  

MA) or a monoclonal Beta-actin antibody (1:3000; Santa Cruz Biotechnology, Dallas, TX) 

overnight at 4°C. Following 3x5-minute washes with TBST, the membrane was exposed to a 

monoclonal mouse anti-rabbit IgG-HRP (1:1000; Santa Cruz Biotechnology, Dallas, TX) or a 

mouse IgG kappa binding protein-HRP (1:3000; Santa Cruz Biotechnology, Dallas, TX). Following 

3x5-minute washes with TBST, the blots were developed using the Pierce enhanced 

chemiluminescence (ECL) Western Blotting Substrate (Thermo Fisher, Waltham, MA. The Image 

Studio Lite software (LI-COR, Lincoln, NE) was used for the densitometry analysis. HMGCR 

expression was normalized to ACTB prior to statistical analysis.  

 

7.27. Serum Clinical Chemistry 

Serum total cholesterol, low-density lipoprotein (LDL), alanine aminotransferase (ALT) and 

glucose levels were measured using commercially-available reagents (FUJIFILM Wako 

Diagnostics, Richmond, VA). Serum triglycerides were measured with commercially-available 

reagents (Pointe Scientific, Canton, MI). Serum high-density lipoprotein (HDL) was quantified with 
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a commercially-available kit (Crystal Chemical, Houston, TX). Serum free fatty acids and ketone 

bodies (i.e. beta hydroxybutyrate) were measured using commercially-available kits (Cayman 

Chemical, Ann Arbor, MI). In all cases, a SpectraMax M2 microplate reader was used (Molecular 

Devices, San Jose, CA). 

 

7.28. Hepatic Lipid Extraction 

Hepatic lipids were extracted as previously described (Luyendyk et al. 2010). Frozen liver was 

homogenized in 10x volume of extraction buffer (18 mM Tris (pH 7.5), 300 mM D-Mannitol, 50 

mM EGTA, and 0.1 mM phenylmethylsulfonyl fluoride) using a Mixer Mill 300 (Life Sciences, 

Carlsbad, CA). 500 µL of homogenate was added to 4 mL of 2:1 chloroform:methanol and mixed 

end-over-end shaking overnight at room temperature. Following, 800 mL of H20 was added with 

vortexing and spun at 3000 x g for 5 min. 2 mL of the organic phase was transferred to a new 

tube and evaporated over nitrogen to dryness. Following an incubation at 45°C for 5 min, the lipid 

residue was dissolved in 300 uL of isopropyl alcohol with 10% Triton X-100. Commercially-

available reagents were used to analyze triglycerides (Pointe Scientific, Canton, MI) and total 

cholesterol (FUJIFILM Wako Diagnostics, Richmond, VA) with a SpectraMax M2 microplate 

reader (Molecular Devices, San Jose, CA). 

 

7.29. Hepatic Glycogen and Glucose Assay 

The level of glycogen and free glucose were determined as previously described (Nault et al. 

2016a). Frozen liver (~50 mg) was homogenized in 250 µL of 6% perchloric acid using a Polytron 

PT21000 (Kinematica AG, Luzern, Switzerland). A subset of homogenate was used to measure 

background glucose while another subset of homogenate (50 µL) was combined with 25 µL of 1M 

NaHCO3 and 125 µL of amyloglucosidase solution (2 mg/mL; Sigma Aldrich, St. Louis, MO). The 

mixtures were incubated with shaking at 37°C for 2 hours. Background-corrected glucose levels 

were used to infer hepatic glycogen levels. Glucose was assessed using commercially-available 
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reagents (FUJIFILM Wako Diagnostics, Richmond, VA) and a SpectraMax M2 microplate reader 

(Molecular Devices, San Jose, CA). 

 

 

  



	 202	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
  



	 203	

REFERENCES 
 
 
 
 

Bolker B. 2010. Bbmle: Tools for general maximum likelihood estimation.R package version 0.9. 

Boutros PC, Yan R, Moffat ID, Pohjanvirta R, Okey AB. 2008. Transcriptomic responses to 
2,3,7,8-tetrachlorodibenzo-p-dioxin (tcdd) in liver: Comparison of rat and mouse. BMC Genomics 
9:419. 

Brauze D, Widerak M, Cwykiel J, Szyfter K, Baer-Dubowska W. 2006. The effect of aryl 
hydrocarbon receptor ligands on the expression of ahr, ahrr, arnt, hif1alpha, cyp1a1 and nqo1 
genes in rat liver. Toxicol Lett 167:212-220. 

Brauze D, Zawierucha P, Kiwerska K, Bednarek K, Oleszak M, Rydzanicz M, et al. 2017. Induction 
of expression of aryl hydrocarbon receptor-dependent genes in human heparg cell line modified 
by shrna and treated with beta-naphthoflavone. Mol Cell Biochem 425:59-75. 

Canty A, Ripley B. 2017. Boot: Bootstrap r (s-plus) functions. R package version 13-20. 

Carmeliet P, Kieckens L, Schoonjans L, Ream B, van Nuffelen A, Prendergast G, et al. 1993. 
Plasminogen activator inhibitor-1 gene-deficient mice. I. Generation by homologous 
recombination and characterization. J Clin Invest 92:2746-2755. 

Center for Disease Control. 2005a. National health and nutrition examination survey data. Nhanes 
2003–2004. Available: 
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2003 
[accessed August 21 2018]. 

Center for Disease Control. 2005b. National health and examination survey: 2003-2004 data 
documentation, codebook, and frequencies: Demographic variables & sample weights Available: 
https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/DEMO_C.htm [accessed August 21 2018]. 

Center for Disease Control. 2006a. National health and examination survey: 2003-2004 data 
documentation, codebook, and frequencies: Triglycerides and ldl. Available: 
https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L13AM_C.htm [accessed August 21 2018]. 

Center for Disease Control. 2006b. National health and examination survey: 2003-2004 data 
documentation, codebook, and frequencies: Total cholesterol and hdl. Available: 
https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L13_C.htm [accessed August 21 2018]. 

Center for Disease Control. 2008. Health and examination survey: 2003-2004 data 
documentation, codebook, and frequencies: Dioxins, furans, and coplanar pcbs. Available: 
https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L28DFP_C.htm [accessed August 21 2018]. 

Center for Disease Control. 2016. National health and examination survey: 1988-2016 data 
documentation:  
prescription medications - drug information. Available: 
https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/RXQ_DRUG.htm [accessed August 21 2018]. 



	 204	

Davis JA, Gift JS, Zhao QJ. 2011. Introduction to benchmark dose methods and u.S. Epa's 
benchmark dose software (bmds) version 2.1.1. Toxicol Appl Pharmacol 254:181-191. 

Dougherty KM, Pearson JM, Yang AY, Westrick RJ, Baker MS, Ginsburg D. 1999. The 
plasminogen activator inhibitor-2 gene is not required for normal murine development or survival. 
Proc Natl Acad Sci U S A 96:686-691. 

Fader KA, Nault R, Kirby MP, Markous G, Matthews J, Zacharewski TR. 2017. Convergence of 
hepcidin deficiency, systemic iron overloading, heme accumulation, and rev-erbalpha/beta 
activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicol Appl Pharmacol 321:1-17. 

Frueh FW, Hayashibara KC, Brown PO, Whitlock JP, Jr. 2001. Use of cdna microarrays to analyze 
dioxin-induced changes in human liver gene expression. Toxicol Lett 122:189-203. 

Hao N, Lee KL, Furness SG, Bosdotter C, Poellinger L, Whitelaw ML. 2012. Xenobiotics and loss 
of cell adhesion drive distinct transcriptional outcomes by aryl hydrocarbon receptor signaling. 
Mol Pharmacol 82:1082-1093. 

Harrill JA, Hukkanen RR, Lawson M, Martin G, Gilger B, Soldatow V, et al. 2013. Knockout of the 
aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice. 
Toxicol Appl Pharmacol 272:503-518. 

Katoh K, Kuma K, Toh H, Miyata T. 2005. Mafft version 5: Improvement in accuracy of multiple 
sequence alignment. Nucleic Acids Res 33:511-518. 

Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. 2011. Mouse genomic 
variation and its effect on phenotypes and gene regulation. Nature 477:289-294. 

Kopec AK, Burgoon LD, Ibrahim-Aibo D, Mets BD, Tashiro C, Potter D, et al. 2010. Pcb153-
elicited hepatic responses in the immature, ovariectomized c57bl/6 mice: Comparative 
toxicogenomic effects of dioxin and non-dioxin-like ligands. Toxicol Appl Pharmacol 243:359-371. 

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol 
reagent. J Biol Chem 193:265-275. 

Lu H, Crawford RB, North CM, Kaplan BL, Kaminski NE. 2009. Establishment of an 
immunoglobulin m antibody-forming cell response model for characterizing immunotoxicity in 
primary human b cells. Toxicol Sci 112:363-373. 

Luyendyk JP, Sullivan BP, Guo GL, Wang R. 2010. Tissue factor-deficiency and protease 
activated receptor-1-deficiency reduce inflammation elicited by diet-induced steatohepatitis in 
mice. Am J Pathol 176:177-186. 

Nault R, Colbry D, Brandenberger C, Harkema JR, Zacharewski TR. 2015. Development of a 
computational high-throughput tool for the quantitative examination of dose-dependent 
histological features. Toxicol Pathol 43:366-375. 

Nault R, Fader KA, Ammendolia DA, Dornbos P, Potter D, Sharratt B, et al. 2016a. Dose-
dependent metabolic reprogramming and differential gene expression in tcdd-elicited hepatic 
fibrosis. Toxicol Sci 154:253-266. 



	 205	

Nault R, Fader KA, Kirby MP, Ahmed S, Matthews J, Jones AD, et al. 2016b. Pyruvate kinase 
isoform switching and hepatic metabolic reprogramming by the environmental contaminant 
2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 149:358-371. 

Nishimura N, Miyabara Y, Suzuki JS, Sato M, Aoki Y, Satoh M, et al. 2001. Induction of 
metallothionein in the livers of female sprague-dawley rats treated with 2,3,7 ,8-
tetrachlorodibenzo-p-dioxin. Life Sci 69:1291-1303. 

R Core Team. 2015. R: A language and environment for statistical computing [internet]. Vienna, 
austria: R foundation for statistical computing; 2013. Document freely available on the internet at: 
http://wwwr-projectorg/. 

Siefert SA, Chabasse C, Mukhopadhyay S, Hoofnagle MH, Strickland DK, Sarkar R, et al. 2014. 
Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice. J 
Thromb Haemost 12:1706-1716. 

Wang J, Williams RW, Manly KF. 2003. Webqtl: Web-based complex trait analysis. 
Neuroinformatics 1:299-308. 

Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, et al. 2011. Sequence-based 
characterization of structural variation in the mouse genome. Nature 477:326-329. 

Yung LM, Nikolic I, Paskin-Flerlage SD, Pearsall RS, Kumar R, Yu PB. 2016. A selective 
transforming growth factor-beta ligand trap attenuates pulmonary hypertension. Am J Respir Crit 
Care Med 194:1140-1151. 
 


