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ABSTRACT
INTEGRATING EXPERIMENTS AND MODELS TO UNDERSTAND PLANT NUTRIENT FLUXES
By
Teresa Jane Clark
Improving the yield and efficiency of plants is an urgent goal of research, but it is difficult to understand
the functioning and regulation of these complex traits by studying individual genes and phenotypes.
Mathematical models are particularly useful in addressing multifactorial characteristics because they
embody the relations of multiple system components and can predict the quantitative effect of changing
these components. Here, | describe my collaborative work on integrating experimental data with models
of nutrient fluxes in plant systems operating at three different biological scales: plant-microbe
interactions, the central metabolism network, and within one biochemical pathway.

First, we analyzed carbon-for-nitrogen exchange in the legume-rhizobia mutualism using a trade-
based model. We found that classical symmetric interactions could not explain the observed nutrient
exchange rates and ratios. Rather, the plant had more influence on these nutrient exchange parameters
than the rhizobia and the plant’s influence rose as soil nitrogen became scarcer. This finding highlights the
importance of environmental conditions for the functioning and evolution of mutualisms. To explore
other ways in which experiments have been or could be integrated with mathematical models, we also
wrote a synthesis review. In this review, we summarized mathematical approaches that could investigate
the cellular, individual, population, and community scales of plant-microbe nutrient-exchange
mutualisms. For each scale, we addressed the potentials of integration to investigate mutualism stability,
and how resource availability and structured interactions influence these dynamics.

Second, we used isotopic labeling based metabolic flux analysis to determine the routes and rates
of fluxes through central metabolism in developing embryos of Camelina sativa—a promising oil seed

crop. By quantifying the major decarboxylation fluxes, we discovered that the oxidative phase of the



pentose phosphate pathway exhibited a very high flux. The OPP flux was also tightly correlated with the
carbon use efficiencies of C. sativa embryos grown under different light levels. Together, these results
indicate that this decarboxylation flux contributed substantially to the embryos having low carbon use
efficiency. To test how bioengineering can affect central metabolism, we also performed metabolic flux
analysis on transgenic C. sativa that had been genetically engineered to accumulate greater quantities of
medium-chain fatty acids. We found that principal component analysis could use metabolite label content
measurements to distinguish between embryos with different backgrounds, but there was much less
distinction between the lines when the net fluxes were used. However, the lines could be moderately
separated with hierarchal clustering, which could cleanly separate the transgenic lines from the wild-type
grown under different light level. This shows that there are distinct metabolic differences between the
transgenic lines that are not detected with principal component analysis, and that environmental
variances can have a stronger effect on central metabolism than fatty acid bioengineering.

Lastly, | describe our recent progress towards elucidating the network topology of triacylglycerol
synthesis in C. sativa embryos. We developed potential network topologies as systems of first-order rate
equations. The models were fit to *C glyceryl time-course data of the label content in other lipid classes
in the network. We compared how well the model explains the labeling data and found that the data was
best explained by a network that included two active diacylglycerol pools that are successive precursor to
triacylglycerol biosynthesis and the first diacylglyerol pool can exchange with the active
phosphatidylcholine pool. In addition, we performed short-term *C acetate labeling experiments to track
how newly synthesized or recently elongated fatty acids are incorporated into the different lipid classes.
We found evidence for a large phosphatidylcholine pool that is used for acyl editing and is separate from
the pool used for de novo triacylglycerol synthesis

Together, these endeavors demonstrate how models can be integrated with a broad range of data

to address questions at ecological, organismal, and metabolic scales.
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INTRODUCTION



Plants are essential to human life. Not only do they provide food for people and their animals, fiber and
other structural materials, fuels, and chemical feedstocks, but also their specialized metabolites can be
used in medicines, dyes, fragrances, and other applications (Durrett et al., 2008; Dyer et al., 2008;
Krishnaiah et al., 2011; Mosiewicki & Aranguren, 2013). The work described in this dissertation is aimed
at predicting how plants obtain and use nutrients to synthesize these or other biomass products, which
could be expanded to rationally engineer plants.

It is obvious why there is great interest in designing plant metabolism to increase the production
of compounds with significant economic value; however, plant nutrients can have other important, yet
often overlooked, roles in their environment and ecosystems. For example, microbial communities are
indirectly controlled by exudate and litter production because these compounds transfer carbon,
nitrogen, and other nutrients from the plant to the rhizosphere (Briiggemann et al., 2011). Plant nutrient
levels can also internally influence the plant’s physiology, such as potassium contributing to the
effectiveness of plant defenses against fungal diseases, bacteria, insects, viruses, and other pests (Wang
et al., 2013), and nitrogen availability has been shown to affect how plants allocate their carbon to
carbohydrates and organic acids (Nunes-Nesi et al., 2010; Xu et al., 2012).

Plant production of particular metabolites is often investigated with bioengineering. For example,
“golden rice” is a transgenic rice that accumulates provitamin A (B-carotene) in its endosperm as a counter
for vitamin A deficiency (Beyer et al., 2002). This crop was developed from research on genes in the
terpenoid pathway in daffodil and measuring precursor (e.g., phytoene) levels in experiments where
daffodil genes were expressed in rice (Burkhardt et al., 1997; Potrykus, 2001). Seed oils have also been
engineered to improve human health (e.g., to decrease the risk of inflammatory diseases) by producing
high levels of omega-3 and/or -6 long-chain polyunsaturated fatty acids (Haslam et al., 2013). In one such
endeavor, Brassica napus was transformed with fungal desaturases that led to increased accumulation of

stearidonic acid (18:4 A 6,9,12,15) and y-linolenic acid (18:3 A6,9,12; Liu et al., 2001; Haslam et al., 2013).



In addition, Siminszky (2005) identified a cytochrome P450 as being positively correlated with
accumulation of a carcinogen precursor in tobacco plants by measuring transcript abundance in low and
high carcinogen-producing plants. Knocking down this gene product was found to lower the accumulation
in tobacco plants. A focus of much current work has been to develop non-leguminous crops to form
mutualistic relationships with nitrogen-fixing bacteria in order to decrease the need for fertilizers (Saikia
& Jain, 2007; Beatty & Good, 2011). This may require the crop to be engineered to produce specific
exudates or other signals because, for example, rhizobia have been shown to form effective or ineffective
nodules in response to exudates from different plants (Currier & Strobel, 1976).

Genetic engineering is a powerful tool, but it can also have unexpected metabolic effects. For
example, Arabidopsis thaliana has been engineered to over-express a maize gene whose product down-
regulates lignin biosynthesis (Fornalé et al., 2010). The transgenic A. thaliana line was found to not only
contain less lignin, but also accumulated anthocyanin. It was suggested that the accumulation was due to
the potential lignin precursor being redirected toward anthocyanin biosynthesis. While this points to
potential approaches for investigating the role of nutrient fluxes in plants, fluxes can be quantitatively
studied in more depth with the use of isotopically labeled compounds (Briiggemann et al., 2011;
Christophe et al., 2011; Shachar-Hill, 2013). For example, nitrogen labeling has been used to investigate
nitrogen transfer in the plant-arbuscular mycorrhizal fungi symbiosis, which confirmed that the fungi are
capable of taking up and transferring nitrogen to their hosts (Govindarajulu et al., 2005). This study also
used carbon labeling and revealed that the nitrogen is incorporated into amino acids and translocated to
the plants without the transfer of carbon. Labeling experiments such as these are effective at analyzing
nutrient fluxes, but these methods tend to be limited in how many branched fluxes they can
simultaneously and quantitatively measure. Here, additional nutrition and metabolic insights that can be
obtained with isotopic labeling include mapping the carbon fluxes necessary to provide the materials and

energy required for fungal nitrogen uptake and transfer, or mapping how the plant obtains and uses the



traded nitrogen without requiring the simultaneous transfer of carbon. To investigate fluxes on a network
scale, where there can be are numerous branched reactions involved, it can be efficient to integrate

experimental data with a mathematical model.

Computational modeling approaches

Mathematical models can be designed to quantify nutrient flux networks and predict the effects of
changing the abundance of nutrients, enzyme activities, or other factors. There is a wide variety of
mathematical model types that can be applied to biological systems, each suited for different purposes,
often operating at different scales, and with different capabilities for data integration. The two main types
of computational models are statistical and mechanistic.

In general, statistical models allow biologists to identify significant trends in the data, and hence
to generate hypotheses about causal relationships from the correlations. These models tend to start with
experimental data and they try to construct a model to represent how biological processes and/or
characteristics led to the generation of that data (Oberg & Mahoney, 2007). For example, multifactorial
statistical models have been used to analyze published data on performance of plants inoculated with
mycorrhizal fungi and those that were not inoculated (Hoeksema et al., 2010). Among other trends, this
meta-analysis found that the plant’s response to inoculation was primarily explained by the plant’s
functional group (e.g., C3 or C4 grasses, a forb capable of mutualistic interactions with nitrogen-fixing
bacteria) and the degree to which the soil had been fertilized with nitrogen. Although this model does not
investigate the fluxes needed for mycorrhizal fungi to take up and translocate nitrogen, it points to
variables to be tested with labeling-based methods.

In contrast, mechanistic modeling methods typically involve constructing a model to describe the
system and gathering data to test the model’s predictions and/or assumptions (Morgan & Rhodes, 2002).

These models can be constructed to represent different biological scales (e.g., ecological, metabolic),



using different types of assumptions, such as 1) the processes that generate and maintain fitness
advantages for two organisms interacting, 2) rules concerning how metabolites are moved and
transformed in a particular network, and 3) principles of chemical reaction kinetics. This introduction gives
an overview of how models with these assumptions have been combined with experimental
measurements to study nutrient uptake, transformation, and exchange in plant systems. | then present

some of the challenges and methods of statistically analyzing model fits to data.

Models representing processes that drive organisms to interact

Organisms interact in a myriad of ways, including being members of a population, competitors for the
same resource, and part of a symbiosis where there are mutual benefits. These interactions can be studied
with Lotka Volterra, consumer-resource, and other population dynamics models (Holland & DeAngelis,
2010; Elser et al., 2012). Such studies have found, for example, that seasonal plant harvesting can prevent
competitive exclusion between plant species and thus lead to coexistence of plants that are strongly
competitive (Geijzendorffer et al., 2011), as well as the potential for species densities alone inducing shifts
between competitive, mutualistic, and parasitic interactions between populations (Holland & DeAngelis,
2010).

Game theory studies have also been fruitful in pointing to potential mechanisms influencing
nutritional interactions, showing, for example, that in a mutualism, the partner that evolves slower is likely
to benefit more from the interaction (Bergstrom & Lachmann, 2003), and that mutualisms could be
maintained even if defectors (“cheaters”) cannot be punished through a Public Gods game (Archetti &
Scheuring, 2013). However, such interaction-based models can be difficult to parameterize and integrate
or test with data because their parameters can be difficult to measure or even define, empirically (Clark
et al., 2017). Such cases include many game theory model components; for example, how long an

individual will stay in the war-of-attrition contest (Akcay & Simms, 2011), and the steepness of the



sigmoidal function that relates the frequency of cooperators to the quantity of benefits received (Archetti
& Scheuring, 2013). Due to this challenge, many of these models are considered theoretical rather than
computational because their primary function is to understand how the interactions may in principle
function rather than to quantify system traits. Game theory and other modeling approaches that have

been applied to plant-microbe nutrient-exchange mutualisms are reviewed in Chapter 1.

Models representing metabolic fluxes in biochemical networks
At the level of the cell, tissue or organism, Metabolic Flux Analysis (MFA) and Flux Balance Analysis (FBA)
are modeling methods to track how nutrients are transported and transformed at the level of biochemical
reaction networks (Niedenfiihr et al., 2015). MFA is heavily dependent on experimental data because the
models track carbon isotopic labeling within metabolites and uses isotopomer measurements for model
fitting (Wiechert et al., 2001; Libourel & Shachar-Hill, 2008; Shachar-Hill, 2013; Antoniewicz, 2015). Due
to the need for data for fitting, the modeled network is an abbreviated form of the biological network,
and only includes reactions for which data has been measured and during which there was a measureable
change in carbon positional labeling. In steady-state MFA models, the concentration of internal
metabolites (pathway intermediates) are assumed to be constant during the time interval of interest, and
the fluxes between these pools are also assumed to be constant. This type of model has been used, for
example, to analyze the effects of oxygen availability on central metabolism in A. thaliana cell cultures
(Williams et al., 2008). It was found that, although there were significant difference in metabolic profiles,
the proportions of carbon used for various reactions were unchanged between the oxygenation
conditions, suggesting that there may not be a strong connection between metabolomics data and fluxes.
13C MFA studies of developing oilseeds are the subject of Chapter 2.

FBA differs from MFA in several ways (Garcia Sanchez & Torres Saez, 2014; Junker, 2014). First,

FBA networks aim to represent the entire (genome-scale) metabolic and transport network rather than a



condensed metabolic network or sub-network. This typically causes FBA networks to have hundreds more
reactions than MFA. Second, because FBA does not track isotopic labeling, it uses much less data than
MFA. It is common for plant FBA studies to only require steady-state substrate and light uptake rates, as
well as products and biomass efflux rates. Third, due to the increased network size, FBA uses an “objective
function” or operational target such as maximizing growth in order to transform the model solution task
into a global optimization problem, which greatly reduces the very large number of potential routes and
rates through which the metabolites can move (i.e., feasible space) to a subset of flux patterns that meet
the objective. One crucial step in FBA modeling is therefore to identify the most appropriate objective
function for the system being investigated. Potential objective functions include growth rate (Chapman
et al., 2015), carbon use efficiency (Rolletschek et al., 2015), maximum production of a particular
metabolite (Savakis & Hellingwerf, 2015), or minimum use of light (Boyle & Morgan, 2009). By integrating
the network, data, and objective function, FBA can predict values for the network fluxes. FBA has been
used to determine why mixotrophic Chlamydomonas reinhardtii cultures have lower photosynthesis yet
higher growth rates than autotrophic cultures (Chapman et al., 2015). To address this question, their
objective function maximized growth rate. They found that the acetate provided to the mixotrophic cells
was able to be used in a modified tricarboxylic acid cycle that bypassed the decarboxylation reactions

(e.g., the glyoxylate cycle).

Models derived from chemical reaction kinetics

Chemical reaction kinetics have been well studied (Kramers, 1940; Hanggi et al.,, 1990) and most
biochemical network models that integrate labeling data are comprised of first-order rate equations. The
rates of these reactions are proportional to the concentrations of a reactant, which allows the dynamics
of metabolite pools and fluxes to be mathematically represented as ordinary differential equations. For

example, in the pathway A > B > C, the rate of change of metabolite B can be written as



dB . . .
— = k4[A] — k,[B], where ki and k are rate constants for the first and second, respectively, reactions,

dt

and [A] and [B] are the metabolite concentrations. Such a network of first-order rate equations was
constructed by (Hibino et al., 2011) to model how a cytoplasmic serine/threonine kinase (RAF) is activated
on the plasma membrane in response to a GTPase being activated. They integrated time-course single-
molecule imaging data with the model to predict values of the pseudo-first order rate constants and to
quantify the importance of the involvement of other enzymes in order to activate the GTPase. Values for
pseudo-first order rate constants have also been estimated on a smaller scale to compare those for starch
amylolysis for boiled potatoes, white bread, peas, and other starches to investigate if digestion rates
change over time (Butterworth et al., 2012). Chapter 3 describes how dynamic modeling constants can be
guantified in order to analyze the network topology of oil biosynthesis.

Most biochemical network models of photosynthesis are constructed using enzyme kinetic
equations. In these, all but the maximum rubisco and electron transport activity, daytime respiration and
CO, diffusion rate parameters typically have a priori estimates (Von Caemmerer, 2013). One such model
extended this approach to the leaf canopy scale to test how a leaf’s canopy position and physiological
traits affect its photosynthetic capacity (Prieto et al., 2012). It was found that variations in the capacity
due to canopy height were best predicted by leaf nitrogen content. (Nuccio et al., 2000) used an enzyme
kinetics model to test why glycine betaine synthesis (a metabolite which enhances plant stress resistance)
is limited by the transport of its choline precursor into the plastid. By using *C choline to quantify kinetic
parameters (Kmn and Vma) for comparison between low and high glycine betaine-accumulating tobacco
lines as well as between other plant species, they hypothesized that glycine betaine abundance may be

correlated with the transporter’s affinity for choline.

Challenges in statistically testing mechanistic models

In most biological studies, it is expected that the researchers perform statistical analyses on the results in



order to objectively assess if the finding is significant. These analyses often include statistic deviations, t-
tests, ANOVA, regression analyses, chi-squared tests, Pearson or Spearman correlations, etc. (Saltelli &
Marivoet, 1990) These analyses are challenging or impossible to perform on the results of many
mechanistic models because the analyses assume a normal distribution of or independence in the results,
but these characteristics are lacking in many mechanistic models:

Biological measurements are typically assumed to be normally distributed (Nakagawa &
Schielzeth, 2010), including population growth rate, organismal biomass, and nutrient uptake rate per
individual, which allows the calculation of averages and standard deviations for these traits. If a model
requires these traits to be multiplied, such as calculating the population biomass growth rate from the
population rate and organismal biomass measurements, then the results can still be expected to have
normal distribution. However, if the model requires the division of normally distributed parameters, such
as calculating the substrate uptake rate per individual biomass from the substrate uptake rate per
individual and the organismal biomass, then the result can no longer be assumed to be normally
distributed and thus is considered non-Gaussian (Nakagawa & Schielzeth, 2010).

MFA and FBA predict the value of all fluxes within the modeled network. If one reaction is
changed, such as decreasing the flux from pyruvate to acetyl CoA in the tricarboxylic acid cycle, then other
fluxes will be affected and changed in response, such as less pyruvate being produced from glycolytic
hexose or more pyruvate serving as a substrate for alanine precursors. Models built from first-order rate

equations will be similarly affected because the reactions are a network.

Statistically analyzing models with confidence intervals
An alternative statistical measure is confidence intervals. In some ways, they function similarly to standard
deviations to identify a range, centered on the average, in which the prediction is statistically likely to be

(Streiner, 1996; Nakagawa & Cuthill, 2007). For standard deviations of normally distributed systems, 68%



of the relevant values are expected to be within one standard deviation of the average and 95% are
expected to be within two. Confidence intervals are derived from the observed standard deviation and
samples size as well as the desired confidence interval. When a 90% confidence interval is obtained, then
90% of the relevant values are expected to be within one interval of the average (Streiner, 1996).

Confidence intervals are typically used to declare the statistical range of predictions, given the
observed variation in model input data. This can be done by running the model for all input data (with
deviations) and generating the set of reasonable output predictions, which would be used for determining
the average and confidence interval of the predictions. A drawback to using confidence intervals as a
statistical tool is that, unlike p-values, there is not yet an agreed-upon confidence level that is considered
to be statistically significant (Nakagawa & Cuthill, 2007). The uncertain statistical power is a challenge for
this statistical test, but | am not aware of other measures that could be used for this purpose in non-
Gaussian mechanistic models.

Another challenge in statistically analyzing complex mechanistic models is identifying the input
data to be used to generate confidence intervals. When all input parameters can be measured for each
biological replicate, then the input data to be used is simply the measured datasets. However, when the
model cannot be fully ran per individual replicate, then the input data must be used in a different way. An
example of when this would be needed is if two destructive measurements are needed for one parameter,
such as measuring a plant’s growth rate from the total biomass at two time points (see Chapter 1). If
measuring total biomass requires destruction of the plant, then at least two plants need to be used in
order to measure the plant growth rate. Another example is when the biological system needs to be
independently exposed to two or more labeled substrates at the same age (see Chapter 2). Because the
organism (or tissues or cells) can only be independently exposed to one substrate at a given age, at least
two biological samples would be needed to generate a complete dataset.

Consequently, in these situations, the input data for confidence interval determination needs to
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be simulated in order to represent observed uncertainties, without implying that the uncertainties match
up a certain way (e.g., in the above plant growth rate example, if one plant is measured to be small at the
first time point, then should the growth rate be determined by comparing this small plant to the smallest
plant at the second time point?). This can be done by generating pseudo datasets with Monte Carlo
sensitivity analysis (Doubilet et al., 1985; Saltelli & Marivoet, 1990; Alonso et al., 2007). In this method,
pseudo data is created for each of the measured values using the measured average and standard
deviation. The measured values are usually assumed to have normal distribution, so a pseudo point for
that measurement would be the measured average plus the standard deviation times a number randomly
generated to have normal distribution, a standard deviation of 1, and be centered at 0. This would cause
the pseudo data to mimic the measured because it would have the same average and standard deviation.
Pseudo data would be generated for all measurements and then used to run the model. Therefore, each
pseudo dataset would generate exactly 1 set of model predictions. By using a large number of pseudo
datasets, only appropriate variations in model predictions should be observed. Using the growth rate
example, if by chance, a small pseudo plant at the first time point is matched with a large pseudo plant at
the second time point, the pseudo growth rate would appear very large. If enough pseudo datasets are
used, then outliers like this would be outweighed by more reasonable pseudo predictions; thus the
confidence range would properly represent reasonable variation.

In the following chapters, | describe my collaborative work to integrate mechanistic models with
experimental data. First, | modeled the mutualistic relationship between legume Medicago truncatula and
rhizobial bacteria to evaluate the effects of soil nitrogen content on nutrient allocation and trade. Second,
| used MFA to determine why Camelina sativa developing embryos have low carbon use efficiency and
how their metabolism was affected by light availability and genetic engineering. Lastly, | explored
potential topologies of the triacylglycerol biosynthesis network by developing the network topologies as

sets of first-order reactions and comparing model fits with *C glyceryl and *C acyl time-course data.
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Together, these efforts demonstrate the potential of integrating experimental data with mathematical
models to understand how plants use carbon, nitrogen, and other resources to produce oils, proteins, and

other biomass products.
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CHAPTER 1

Plant-microbe nutrient exchange symbioses
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PREFACE

This chapter presents the manuscripts resulting from a collaborative project with Colleen A. Friel (CF),
Maren L. Friesen (MF), Emily Grman (EG), Yair Shachar-Hill (YSH, and myself (TJC). The project grew out of
a proposal written in a class, PLB 803: Integrative Topics in Plant Biology (Models in Plant Biology), by four
graduate students (including CF and myself) that aimed to integrate experiments and mathematical
modeling to answer a question that spanned molecular and ecological themes. Briefly, our proposal
sought to understand how plant-microbe mutualisms affect plant community dynamics using a tripartite
mutualism system (legume-rhizobia-mycorrhizal fungi), two types of models (one to predict the
mutualistic nutrient trade rates, and one to predict the effects of a mutualistic relationship on a
population’s fitness and ability to compete), and a variety of experiments to measure the model
parameters and test its predictions.

With the encouragement of the instructors (YSH and Chris Klausmeier, CK), | organized a
collaboration of three groups—TJC. & YSH, CF & MF, and EG & CK—with the intent of pursuing these ideas.
My roles in organizing the collaboration included coordinating our meetings the efforts of the
collaborators, and keeping track of our progress.

In Section 1.1, | present the manuscript describing our experimental and modeling work, which is
being revised for resubmission to New Phytologist where it received favorable reviews. In this study we
made extensive measurements on the effects of soil nitrogen content on nutrient uptake and allocation,
and partner growth and trade in the mutualistic relationship between legume Medicago truncatula and
rhizobial bacteria and used these data to parameterize and test trade-based models of nutrient exchange.
In Section 1.2, | present a published article we wrote to critically review how experiments have been and
could further be integrated with mathematical models of plant-microbe nutritional symbioses at a range
of biological scales.

Together, these endeavors demonstrate how mechanistic models can be used to better
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understand the effects of environmental conditions and partner physiology on the functioning of plant-

microbe nutrient-exchange mutualisms.
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SECTION 1.1

Unfair trade underground revealed by integrating data
with Nash bargaining models

This section includes a manuscript in revision after review at New Phytologist:
Clark TJ, CA Friel, E Grman, ML Friesen, and Y Shachar-Hill. Unfair trade underground revealed by
integrating data with Nash bargaining models
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Preface

As part of the collaboration of ecologists and molecular biologists, | adapted, tested, and refined a
mathematical model to explore the trading principles underlying the effects of soil nitrogen content on
nutrient allocation and exchange in the mutualistic relationship between legume Medicago truncatula
and nitrogen fixing bacteria. The model was originally developed to make quantitative estimates of
population growth and nutrient exchange rates in grass-arbuscular mycorrhizae mutualisms using ranges
of literature values for model parameters. | refined and applied this model to the legume-rhizobia
mutualism and our group identified experimental methods to measure the parameters.

Experiments were performed on M. truncatula grown in the presence or absence of rhizobia, and
at low to high soil nitrogen availability to test model fit under high to low, respectively, plant investment
in trade. CF and | contributed equally to the experimental work, including growing, maintaining, and
harvesting the plants. In addition to shared work on growth experiments, | was responsible for measuring
1) plant carbon fixation and respiration measurements by designing (with YSH) and using custom-built
whole-plant photosynthesis chambers and LI-COR systems, 2) sample preparation for plant nitrogen
uptake measurements with °N labeling for analysis at the Stable Isotope Lab at Utah State University, and
3) sample preparation for carbon and nitrogen elemental composition analyses of roots, shoots, and
nodules by the Robertson lab at the Kellogg Biological Station. Many of CF’s experimental contributions
were not included in this manuscript, such as leading efforts to identify four-to-six weeks as a suitable
range for our measurements, and performing PhotosynQ and root imaging measurements.

| led and performed the modeling, with important input from the other collaborators. The model
was written in Mathematica, so any tests | made to the model structure were performed in that program.
These included testing 1) whether the parameters should be per biomass carbon (i.e., specific rates) or
per plant system (i.e., organismal rates), 2) the effects of adding a nodule respiratory cost for nitrogen

fixation, and 3) the effects of allowing partners to have unequal bargaining power. Some of these tests
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included a scaling parameter, such as testing the plant’s bargaining power as it varied from 1% to 99%.
For these scaling tests, | used Python and a batch server to write and execute the Mathematica codes in
parallel and at modest intervals (e.g., | tested bargaining power at 1% increments).

| integrated our measurements into the model using Excel. | first formatted the empirical data to
be compatible with the model structure being tested. This formatting often required dividing one
measurement by a biologically different one (e.g., biomass increase divided by biomass carbon content)
and thus required analysis by Monte-Carlo type sampling to generate pseudo datasets for fitting. Some of
my model tests included testing how the data should be formatted. For example, the plant carbon uptake
parameter was primarily derived from whole-plant photosynthesis measurements. | tested how (if at all)
I should reduce the measured photosynthesis rate by plant respiratory costs (either measured under dark
conditions or extrapolated from literature findings). In addition, due to its original use, the model did not
include environmental parameters. To test the model fit at the different soil nitrogen levels, | created
separate pseudo datasets by Monte Carlo sampling for each nitrogen level.

The goodness of model fits were assessed using confidence intervals resulting from the pseudo
datasets. As a group, our collaboration identified potential model refinements to be tested and evaluated
whether they sufficiently improved the fit. The manuscript writing was a collaborative effort, with CF
leading the empirical findings writing and formatting the figures, while | led writing about the
computational findings and model context.

Our manuscript is currently being revised in response to reviewer feedback at New Phytologist. A
recent copy of our manuscript is included in this section. As coordinator of the collaboration and (co)first

author, | am handling the (re)submission process for this manuscript.
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Summary

. Mutually beneficial resource exchange is foundational to global biogeochemical cycles and plant
and animal nutrition. However, there is inherent potential conflict in mutualisms, as each organism
benefits more when the exchange ratio (“price”) minimizes its own costs and maximizes its benefits.
Understanding the bargaining power that each partner has in these interactions is key to our ability to
predict the exchange ratio and thus the functionality of the cell, organism, community, and ecosystem.

. We tested whether partners have symmetric (“fair”) or asymmetric (“unfair”) bargaining power in
the legume-rhizobia nitrogen fixing symbiosis using measurements of carbon and nitrogen dynamics in a
mathematical modeling framework derived from economic theory.

. A model of symmetric bargaining power was not consistent with our data. Instead, our data indicate
that the growth benefit to the plant has greater weight in determining trade dynamics than the benefit to
the bacteria. Quantitative estimates of the relative power of the plant reveal that the plant’s influence
rises as soil nitrogen availability decreases and trade benefits to both partners increase.

o Our finding that legumes have more bargaining power than rhizobia at lower nitrogen availabilities
highlights the importance of context-dependence for the evolution of mutualism with increasing nutrient

deposition.

Introduction

Mutualistic relationships abound in nature. They are rooted in the exchange of resources or services
between different partners whose distinct capabilities allow them to perform better together than either
could alone. Mutualisms involving the exchange of carbon for mineral nutrients between plants and
microbes are ancient interactions that have shaped the evolution of land plants and play central roles in
ecosystem functioning worldwide (Bronstein, 2015). Plants participating in these nutritional mutualisms

with microbes such as mycorrhizal fungi or nitrogen-fixing rhizobium prokaryotes must optimize their
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allocation of photosynthate between taking up nutrients directly and trading for them with mutualists
(Bloom et al., 1985). Indeed, plants exhibit considerable plasticity in partitioning carbon among shoots,
roots, and mutualistic partners in response to environmental cues (Harris et al., 1985; Wang et al., 2011).
This optimal allocation is determined by soil nutrient availability and the cost:benefit ratio of acquiring
the nutrient through trade. However, it is in each partner’s best interest to influence the carbon-for-
nutrient exchange ratio (“price”) to maximize the benefit to itself (Ak¢ay & Roughgarden, 2007; Grman et
al., 2012), conditions that should lead to a power struggle over the price. Considerable effort has been
devoted to applying economic principles to analyzing nutrient exchange, stability, and other aspects of
mutualisms (Weyl et al., 2010; Werner et al., 2014; Clark et al., 2017), but there is a major gap: we do not
understand how the exchange ratio and the quantity traded between plant and microbe are determined.

This question has been explored using mathematical models in which partners have disparate
abilities to acquire resources and divergent resource requirements (Akcay & Roughgarden, 2007; Grman
et al., 2012; Franklin et al., 2014). In these models, mutualistic partners negotiate based on the principles
of the Nash bargaining solution, an axiomatically derived result describing the expected distribution of
benefits after bargaining between self-interested partners that are able to regulate their participation in
trade in response to the benefits they receive from trade (Nash, 1950; Binmore et al., 1986; Akcay &
Roughgarden, 2007).

A central assumption underlying the Nash bargaining solution is symmetry in bargaining power
between the partners, where the bargaining power of a partner is defined as the weight given to the
benefit received by that partner in the determination of trade dynamics. The best indicator of symbiotic
benefit is reproductive fitness in the field, but biomass is conventionally used as a proxy for fitness
(Younginger et al., 2017). Consequently, the symmetric Nash product is the product of the partners’
growth gains from trade:

(gPtrade - anotrade) (gRtrade - anoTrade) (1)
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where gPiade and gRiade are the plant and rhizobial partner growth rates with trade, and gProrrade and
gRrotrade are the respective growth rates without trade. An extension of this framework allows for unequal
power between partners through the asymmetric Nash product:

(gPtrade — GProtrade)® (gRtrade — GRnotrade) ™ (2)
which arises when bargaining power differs between partners (Binmore et al., 1986). B is a scaling
exponent that assigns different weights to the gains from trade by the plant and microbe. Increases in B
correlate with increases in plant bargaining power relative to the microbial symbiont, and bargaining is
symmetrical when B = 0.5 (Binmore et al., 1986).

Previous modeling analyses of nutrient exchange symbioses have been limited by the absence of
guantitative experimental studies in which all the major relevant parameters were measured in a single
study across a range of environmental conditions and used explicitly within a mathematical framework
(Clark et al., 2017). To address this knowledge gap, we measured biomass distributions, nitrogen uptake
and exchange rates, photosynthetic carbon assimilation fluxes, and carbon and nitrogen compositions in
the model Medicago truncatula-Ensifer medicae (legume-rhizobia) symbiosis under conditions ranging
from low to high nitrogen availability. We used these measurements to quantitatively test whether trade
in a mutualism follows the predictions of the Nash bargaining solution under different conditions of
resource availability. To do this, we refined and parameterized a mechanistic model of resource trade
between a plant and microbe (Fig 1.1.1; Grman et al., 2012). This model assumes that the growth of each
partner is limited by its ability to obtain carbon and/or a mineral nutrient, and determines the exchange
ratio to be the one that maximizes the product of partner benefits from trade, consistent with the Nash
bargaining solution (Nash, 1950; Akcay & Roughgarden, 2007; Grman et al., 2012). The exchange ratio is
then used to predict per capita partner growth rates and allocation to growth versus trade. We tested the
assumption of symmetric bargaining by comparing the accuracy of predictions made by the model with

experimental measurements. The experimental results were inconsistent with predictions based on the
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Figure 1.1.1. Pictorial representation of the legume-rhizobia nutrient exchange model. Plant and nodule
growth are limited by the ability to obtain carbon (C) or nitrogen (N). In general, the growth rates are the
rates of biomass carbon increase that complement via yield parameters the net amount of carbon or
nitrogen obtained directly and/or from trade. Carbon and/or nitrogen can be lost during trade or
respiration. More information about model construction is provided in the Methods.

symmetric Nash bargaining solution, so we explored how predictions based on asymmetries in relative

bargaining power aligned with experimental measurements and determined the value of B for which

model fit was greatest.
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Materials and Methods
Experimental methods

SC10 Cone-Tainer pots (Steuwe and Sons Inc., Corvallis, OR, USA) were plugged with 3%”diameter cotton
wicks leading to opaque 50 mL reservoirs and filled with medium grain vermiculite. Pots were wetted with
25 mL deionized water, covered, and autoclaved for 45 minutes. After 24 hours, pots were wetted with a
further 25 mL of deionized water and autoclaved again for 45 minutes. 24 hours later, the pots were
wetted with 25 mL of Fahraeus nutrient solution (Fahraeus, 1957) supplemented with 8, 24, 40, or 80 mg
LY N in the form of NH4NOs.

Medicago truncatula A17 seeds (Young et al., 2011) were scarified with 600 grit sandpaper,
sterilized in commercial bleach (8.25% NaHCIPOs) for 3 minutes, and rinsed at least 6 times with sterile
deionized water. Following 3 hours of incubation in sterile deionized water at room temperature, the
seeds were re-sterilized in 0.825% NaHCIPOs; for 30 seconds and rinsed at least 6 times with sterile
deionized water. Seeds were then incubated in sterile deionized water for 48 hours at 4°C. The water was
replaced approximately every twelve hours during this incubation. The seedlings were then transferred
to sterile petri dishes, sealed with Parafilm, and germinated at room temperature for 48 hours. Seedlings
with 1 cm or longer radicles were aseptically transplanted into prepared pots. After planting, the plants
were fully randomized and grown at 22°C with a 16 hour day/8 hour night cycle at approximately 250
umol m? s, Seedlings were misted daily with sterile deionized water for the first week. Throughout the
growth period, plants were continuously supplied via their reservoirs with Fahraeus nutrient solution.

Ensifer medicae WSM419 (Reeve et al., 2010) was grown for 48 hours in tryptone-yeast broth at
30°C with rotary shaking at 200 RPM. The OD600 of the culture was measured to estimate cell density.
Half of the week old plants were inoculated with 1 mL of 10° CFU mL™ inoculum in % x phosphate buffered
saline (+ rhizobia treatment), while the other half were mock-inoculated with sterile buffer (- rhizobia

treatment). At least 7 plants per nitrogen level and inoculation status were harvested after 4 or 6 weeks
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of growth for biomass measurements (in total, 64 or 101 plants were harvested after 4 or 6 weeks,
respectively, half of which were nodulated). Roots and shoots were separated, and roots were carefully
washed in deionized water to remove vermiculite. Washed roots were checked for nodulation, and
nodules were removed and counted. All tissue was dried at 60°C for at least one week. Of these plants, 3
plants per nitrogen level, inoculation status, and age were analyzed for carbon and nitrogen elemental
compositions of roots, shoots, and nodules (48 plants in total). Dried plant tissues were ground using a
NutriBullet, LLC household blender followed by a Retsch MM301 Mixer Mill. 2-5 mg dried tissue was
weighed, packaged in tin capsules, and analyzed by the Robertson lab at Michigan State University’s
Kellogg Biological Station using a Costech ECS4010 elemental analyzer.

To measure direct nitrogen uptake with >N labeling, 24 plants (3 per nitrogen level and
inoculation status) were grown as described above until 4.5 weeks, whereupon the pots and reservoirs
were flushed with 500 mL N-free Fahraeus solution to remove soluble unlabeled nitrogen. The plants were
then watered with 25 mL of Fahraeus solution containing the appropriate concentration of >NH,>NOs,
supplied with this solution via their reservoirs for 1 week and harvested. Plants were harvested, weighed,
dried, ground, and packaged into tin capsules as described above. The nitrogen content and N
abundance were then analyzed by the Stable Isotope Lab at Utah State University using a Europa Scientific
SL-2020 system.

Photosynthesis rates were measured on 5-week-old nodulated and uninoculated plants (4-6
plants per nitrogen level and inoculation status; 41 plants total) using whole-plant (6”x6”x12")
photosynthesis chambers connected to LI-COR LI-6400 apparatuses, illuminated with LED lights, and
provided a constant airflow of 1000 umol s with 400 pmol CO, per mol of air (Fig 1.1.51a,b). CO, from
below ground was excluded using modeling clay. Assay conditions (e.g., light, humidity, temperature)
matched the growth conditions. Steady-state photosynthetic rates were measured for at least 90 minutes

after a pre-equilibration period in the chambers with the light on for at least 1 hour (Fig 1.1.S1c). The final
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steady state CO, assimilation rate (umol CO; sec?), was converted to a daily rate (mg C day), assuming a
constant rate throughout the 16h light period. After measuring photosynthesis rates, the plants were
harvested, dried, and weighed as described above.

To test the effects of soil nitrogen and rhizobia on root and shoot biomass, we used a linear model
ANOVA with Type Il sum of squares (aov and car packages, R 3.3.1) with soil nitrogen, rhizobia, and the
nitrogen by rhizobia interaction as fixed effects. Since we detected significant main effects of nitrogen and
rhizobia, we conducted post-hoc testing with the Tukey test at a significance level of 0.05 (Ismeans

package, R 3.3.1) to determine whether group means were significantly different.

Model construction
The legume-rhizobia model (Fig 1.1.1, Methods S1) was derived from the model of Grman et al. (2012)
that assumes plants adjust carbon allocation to roots or shoots on a faster timescale than the carbon-for-
nutrient exchange ratio is negotiated between the partners. Refinements to model structure equations
were made using Wolfram Mathematica 11.3 (Methods S1). Model predictions include plant and rhizobial
specific growth rates (gP and gR, respectively) as functions of biomass carbon gain, the proportion of plant
carbon allocated to roots (anp) or shoots, and the carbon-for-nitrogen exchange ratio (7). The model
assumes organismal growth is limited by the ability to obtain nitrogen and/or carbon for biomass
production. Consequently, for each partner, the predicted growth rate is the minimum growth predicted
when nitrogen (gPwiim, gRnim) or carbon (gPciim, gRcim) is limiting:

gP = min(gPclim, gPniim)

gR = min(gRcim, gRNim)-

When nitrogen is limiting, the organismal growth rates are represented as
gPwiim = (fap + X/ (P 7)) *Yinp

gRNIim = (fnr - X/(r T))*ynr;
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where X is the rate of carbon traded from the plant to the rhizobia and, for the plant and rhizobia,
respectively, p and r are the organismal carbon contents, f,, and f,r are the rates of nitrogen uptake per
organismal carbon content, and y,, and y,, are the carbon biomass yields per unit nitrogen. Briefly in the
vernacular, the growth rates are the rates of biomass carbon increase that complement (via the yield
parameters) the amount of nitrogen obtained directly and/or from trade. Comparably, when carbon is
limiting, the organismal growth rates are represented as
gPciim = fep - X/p
gRaim = X/,

where f,, is the rate of photosynthetic carbon uptake per organismal carbon content. Yield parameters
are not necessary here because the growth rates are in units of biomass carbon gain.

Respiratory costs associated with nitrogen fixation were added to the model by reducing the
rhizobial growth rate by the rate of nitrogen fixation (f,) multiplied by the biochemical stoichiometric
trade constraints of 2.57 g C g N (Phillips, 1980). Consequently, the rhizobial growth rate equations
become

gRwiim = (Far = X/ (r T))*Ynr = 2.57*for
gRcim = X/r = 2.57*fu.
Plant respiratory costs are not as well-defined (Wardlaw, 1990) and thus were incorporated via the plant
carbon uptake (f;,) measurement as described below.

In addition to serving as model predictions, the growth rate equations provide the foundation for
how the model predicts the rate of carbon trade, root-to-shoot allocation, and the carbon-for-nitrogen
exchange ratio. Because rhizobia in nodules are unable to take up external carbon, we assumed the
modeled trade is rhizobia-limited. Consequently, the rhizobial partner trades away all surplus nitrogen
(i.e., nitrogen unnecessary for growth) in exchange for carbon from the plant. The traded nitrogen and

that received by root uptake are used for plant growth and thus determine the plant surplus carbon (via
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the yield parameter y,,) that is traded to the rhizobia (i.e., X is the plant surplus carbon). As described in
Grman et al. (2012), the model predicts that the optimal root-to-shoot allocation is when, after trade, the
total carbon uptake by the shoots complements (via the yield parameter) the total nitrogen uptake by the
roots. Partner negotiations for the carbon-for-nitrogen exchange ratio are predicted to be consistent with
economic modeling methods. When bargaining is symmetric, as in the Grman et al. (2012) model, the
negotiated ratio is assumed to result in the Nash bargaining solution, in which the Nash product (Equation
1) is maximized. If bargaining is asymmetric, then negotiations should result in maximizing the asymmetric

Nash product (Equation 2).

Computational methods

The model derivation (Grman et al. 2012) does not rely on the assumption of extended steady state
because the solutions are instantaneous for any given set of input values for the plant (Medicago
truncatula) and symbiont (Ensifer medicae). However, we first confirmed that over the period in which
measurements were made (4-6 weeks), the plant per capita growth rate was near linear (Fig 1.1.1), thus
its growth and nutrient uptake rates should change slowly compared to the negotiations. Measurements
were either taken at 5 weeks of age or averaged between measurements at 4 and 6 weeks to represent
5-week-old systems. Goodness of fits for model predictions and parameters were assessed using 90%
confidence intervals from the results of modeling 50 pseudo datasets per growth condition and age
(Methods S2). The pseudo datasets were generated by Monte Carlo sampling of the experimental
measurements; i.e., for each measurement, we generated random pseudo data points with normal
distribution around the measured average with the measured standard deviation. To be consistent with
biological reality, we assumed that biomasses and nutrient uptake rates could not be negative, so any
randomly generated negative values were rounded up to zero. Each pseudo set contained one value for

every measurement, and were used as model inputs to generate one set of model predictions. This
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generated 50 sets of model predictions per nitrogen level, which were assessed using confidence intervals.
This statistical method allowed us to evaluate how variations in measurements affected model
predictions.

Because the model tracked how carbon was obtained and allocated, most model inputs (Table
1.1.51) and predictions (Table 1.1.S2) were expressed per unit of biomass carbon content. Carbon and
nitrogen contents were calculated using biomass and elemental composition measurements of carbon
and nitrogen, respectively (Table 1.1.53-5S4). Both contents were used to calculate the carbon per nitrogen
organismal yield parameters, and allocation to root biomass was calculated as the root carbon content
divided by whole plant carbon content. Per capita growth rates were calculated as the carbon content
gained between 4 and 6 weeks of age, divided by 5-week carbon content. For the plant, photosynthesis
and soil nitrogen uptake rates were expressed per shoot carbon and root carbon, respectively, while
rhizobial nitrogen fixation was per nodule carbon. Please note: when the abundance of nodule carbon is
low (e.g., at 80 mg L N), this requires dividing by a small number which amplifies the associated
uncertainties.

Nitrogen elemental composition and **N enrichment measurements were used to differentiate
between the rates of soil nitrogen uptake and nitrogen trade in nodulated plants. As described above,
nodulated and uninoculated plants were labeled by flushing the soil with nitrogen-free media and then
watering for 1 week with >NH4*NOs (plants were labeled between 4.5 and 5.5 weeks of age). Labeling
revealed that 96.7% of the variation in nitrogen uptake per total plant biomass was due to the abundance
of nitrogen in the nutrient solution (p < 0.001; Fig 1.1.52a). Consequently, we concluded that the average
5-week-old nodulated plant biomass can be used with the function shown in Fig 1.1.52a to estimate the
soil nitrogen uptake rate in nodulated plants and the remaining total nitrogen acquired can be attributed
to trade. The total nitrogen acquisition rate was obtained by subtracting the average total nitrogen

content of 4-week-old plants from that of 6-week-old plants and dividing by the time elapsed (i.e., 14
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days). When analyzing the model with pseudo datasets, these rates were determined by generating
pseudo data for uninoculated and nodulated plants using Monte Carlo sampling based on the
experimental means and standard deviations. Because uninoculated plants can only obtain nitrogen from
direct uptake and at 24, 40, and 80 mg L N, there was no significant difference in **N uptake per total
plant biomass between nodulated and uninoculated plants (Tukey post-hoc testing; p = 0.940, p = 0.665,
and p = 0.630, respectively), pseudo 5-week-old uninoculated plant biomass data was used with the
function shown in Fig 1.1.S2a to estimate the soil nitrogen uptake rate by nodulated plants at these
nitrogen levels (each nodulated pseudo replicate had a corresponding uninoculated pseudo replicate, as
shown in Methods S2). At 8 mg L N, the average >N uptake rate was 2.4-fold greater in uninoculated
plants than in nodulated plants. This average difference was incorporated into the model analysis by
dividing the predicted nodulated soil nitrogen uptake rate (per pseudo replicate) by 2.4.

A minimum of 2.57 g C is biochemically required to produce the ATP and reductant necessary for
rhizobia to fix 1 g N (Phillips, 1980). Using this biochemical minimum and the amount of nitrogen traded
to the plant, we obtained a minimum for carbon to be traded for and consumed by rhizobial respiration.
In addition to respiratory costs, the rhizobia used carbon for biomass production. We experimentally
derived the quantity of biomass carbon using biomass and carbon composition measurements.
Consequently, the predicted carbon-for-nitrogen exchange ratio was experimentally estimated as the
amount of carbon traded to the rhizobia for biomass and respiration, divided by the amount of nitrogen
traded to the plant. These estimates should be regarded as conservative (low) because they do not include
any additional respiration costs for growth or maintenance; however, we found that moderate increases
(e.g., 3.6 mg CmgtN, Ryle et al 1984) beyond the minimum had little effect on model predictions.

Measurements from uninoculated plants were used to test the effect of including plant
respiration in the model because the presence of nodules prevented accurate measurement of below-

ground (i.e., root) respiration in nodulated plants. It has been shown that when relative plant growth is
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constant (as in the near linear legume-rhizobia system), the rate of plant respiration per unit of biomass
is also constant (Lambers et al., 1983). Furthermore, the rate of whole-plant respiration has been found
to be a linear function of plant biomass and rate of gross photosynthesis. Therefore, we assumed that the
rate of respiration per unit plant biomass was the same for plants with and without rhizobia. We found
that in uninoculated plants, there was a significant correlation (R? = 0.346, p < 0.001) between biomass
carbon content and the proportion of photosynthetic carbon used for biomass (Fig 1.1.52b). We used this
relationship to estimate the amount of carbon used for plant respiration in nodulated plants. Plant
respiratory costs were included in the model by reducing the measured photosynthesis rate by the
estimated respiration rate.

Overall model fits were quantified using the sum of squared differences between predicted and
measured allocation to root biomass, plant growth, and nodule growth. The carbon-for-nitrogen exchange
ratio predictions were not used in this assessment because the ratio was experimentally estimated (as
described above) but not directly measured. The best fit value of B was identified as the one yielding the
smallest normalized sum of squares. The sum of squares for each B in a pseudo dataset was normalized
by dividing by the average sum of squares for that pseudo dataset. This allowed fit comparisons to be

between the B values without bias from differences between pseudo datasets.

Results

Changes in soil nitrogen alter carbon and nitrogen uptake and the benefits of the legume-rhizobia
mutualism

We determined the values of model input parameters (Table 1.1.S1) for the Medicago truncatula-Ensifer
medicae (legume-rhizobia) symbiosis by measuring biomasses, nutrient uptake rates, and elemental
compositions, and of the resulting model predictions, including growth rates, root-to-shoot allocation,

and the carbon-for-nitrogen exchange ratio (Table 1.1.52). The collective nodules of a single plant were
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used as a proxy for the rhizobial partner because, although nodules contain plant cells as well as rhizobia,
the plant’s investment toward trade is the whole nodule. In addition, nodule biomass correlates well with
rhizobial abundance (Ratcliff et al., 2011), thus larger nodules indicate greater plant investment as well as
greater rhizobial benefits from trade.

Plants were grown in the presence or absence of rhizobia and fertilized with 8, 24, 40, or 80 mg L
1N (Fig 1.1.2a; Valladares et al., 2002). Total plant biomass was significantly increased by soil nitrogen (p
< 0.001), and inoculation with rhizobia significantly increased total plant biomass at 8, 24, and 40 mg L
N, but not at 80 mg L N (Fig 1.1.2b), showing that rhizobia enhanced plant growth at low and
intermediate nitrogen levels. Nodule biomass significantly decreased with increasing soil nitrogen (p <
0.001, Fig 1.1.2c). Together, these findings confirm that mutualistic relationships are more beneficial for
both partners at lower nitrogen availabilities and that nitrogen is a key limiting resource in these
experiments (Regus, J et al., 2017).

Plants interacting with rhizobia have two options for acquiring nitrogen: taking it up directly from
the soil or trading for it with rhizobia. These two nitrogen acquisition routes are rarely differentiated
experimentally, but this differentiation is essential to quantifying symbiotic nutrient exchange. To do so,
we measured direct nitrogen uptake using >N enriched nutrient solution and compared it to the total
increase in plant nitrogen content. Our findings revealed that fixed nitrogen from trade adds to but does
not replace nitrogen obtained by direct uptake. On a per-plant basis, plants with rhizobia obtained at least
as much nitrogen by direct uptake as those without rhizobia at all nitrogen levels (Fig 1.1.3a).
Furthermore, in comparison to uninoculated plants, the rate of direct nitrogen uptake per root carbon
was slightly lower in nodulated plants at the lowest soil nitrogen, modestly greater at 24 and 40 mg L' N,
and the same at 80 mg L't N (Fig 1.1.4b).

In addition to increasing plant growth rates and supplementing nitrogen acquisition, the presence

of rhizobia significantly altered the pattern of carbon allocation within the plant (Voisin et al., 2002; Goh
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Figure 1.1.2. Both partners benefit more from trade at lower nitrogen availabilities. (a) Images of 5-
week-old nodulated and uninoculated M. truncatula at 8, 24, 40, and 80 mg L'* N. (b,c) Average 5-week
root (b, dark green), shoot (b, light green), and nodule (c) biomasses. Error bars indicate standard error (n
= 7-15), and bars with the same letter within the same panel do not differ significantly after post hoc
testing with the Tukey test (p < 0.05). (b) Capital letters refer to shoot biomass and lowercase letters refer
to root biomass.

et al., 2016). Increasing soil nitrogen significantly decreased root:shoot ratio in uncolonized plants (Fig
1.1.4a; Rufty Ir et al., 1984; Paponov et al., 2000), while the root:shoot ratio of nodulated plants did not

vary with soil nitrogen (Fig 1.1.4a). This shows that plants adjust their relative allocation of biomass
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Figure 1.1.3. The effect of rhizobial inoculation on plant carbon and nitrogen budgets as functions of
nitrogen availability. Whole-plant nitrogen (a) and carbon (b) uptake and allocation rates by nodulated
(+) and uninoculated (-) M. truncatula at 8, 24, 40, and 80 mg L2 N between 4 and 6 weeks of age (see
Methods). (a) Direct nitrogen uptake by roots (dark green) and nitrogen received from trade with nodules
(medium green). (b) Photosynthetic carbon allocated to plant biomass (dark green), plant respiration
(medium green), and nodule growth or respiration (light green). Values and error bars represent the
average and 90% confidence intervals, respectively, of 50 pseudo datasets generated by Monte Carlo
sampling.

between roots and shoots depending on their ability to take up nitrogen directly from the soil or trade for
it with rhizobia. However, root:shoot ratios are an incomplete measure of carbon allocation because they
do not account for allocation to mutualists, respiration, exudates, and other carbon sinks (Wardlaw,
1990). To determine how organ allocation relates to the total carbon budget, we measured total plant
carbon content and whole-plant photosynthetic carbon uptake. As expected from their larger shoot
biomasses, we measured higher rates of carbon uptake per plant in nodulated plants grown at 8, 24, and
40 mg L N than in uninoculated plants (Fig 1.1.3b, Fig 1.1.4c). Plant respiration ranged from 11-65% of
total photosynthetic carbon, and carbon allocation to nodules ranged from 2-10% (Fig 1.1.3b). The

magnitude of respiratory highlights the importance of accounting for respiration in models of plant carbon

budgets (Table 1.1.52); the strong dependence of respiration rates on nitrogen levels points to the value
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Figure 1.1.4. Plant carbon allocation to nutrient uptake. Root-to-shoot ratio (a), direct nitrogen uptake
per root carbon (b), and photosynthesis per shoot carbon (c) of 5-week-old nodulated (+) and
uninoculated (-) plants at 8, 24, 40, and 80 mg L™ N. a, Values and error bars represent the average and
standard error, respectively, of 7-15 biological replicates. Bars with the same letter do not differ
significantly after post hoc testing with the Tukey test (p > 0.05). b, ¢, Values and error bars represent the
average and 90% confidence intervals, respectively, of 50 pseudo datasets generated by Monte Carlo
sampling.

of measuring them directly.
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The benefits and exchange ratio of lequme-rhizobia trade are better explained by asymmetric bargaining
We used the measurements described above to predict the carbon-for-nitrogen exchange ratio consistent
with the Nash bargaining solution in the legume-rhizobium model. Using the biochemical stoichiometric
trade constraints for nitrogen fixation of at least 2.57 mg C mg™® N (Phillips, 1980) and measured volumes
of nitrogen traded and nodule biomass carbon contents (Fig 1.1.2-3), we estimate that the nodules
received 2.72-3.25 mg C mg?* N for growth and respiration (Fig 1.1.5a). The model-predicted exchange
ratios approached these estimates at the highest nitrogen level, but at the lowest, the predicted exchange
ratio was 2.5-fold higher than experimentally estimated (Fig 1.1.5a). These estimates are consistent with
measurements on the soybean-rhizobia mutualism, where nodules received 3.6 mg C mg™ N (Ryle et al.,
1984). In addition to comparing experimentally estimated and model-predicted exchange ratios, we also
examined how the exchange ratio influences partner benefits from trade, and thus how well the model
predicts partner growth rates and the proportion of plant carbon allocated to roots or shoots. Using the
predicted exchange ratio, the symmetric bargaining model predicted plant growth and carbon allocation
to roots within 50% of measured (Fig 1.1.5b,c), but predicted nodule growth to be 3 to 7-fold higher than
measured rates (Fig 1.1.5d). These discrepancies could not be resolved by modifications in respiratory
cost interpretations, growth rate definitions (specific versus organismal), assuming that only 50% of the
nodule biomass represents the rhizobial partner (Table 1.1.52), or assumptions concerning the timescale
of adjusting root-to-shoot allocation (Grman et al., 2012), and thus suggest that this legume-rhizobia
mutualism fails to meet fundamental conditions of the symmetric Nash bargaining solution (Nash, 1950).

Consequently, we investigated asymmetric bargaining using asymmetric Nash products in our
model (Equation 2) and found that it could better explain the observed growth rates, nutrient allocations
and trade across the range of growth conditions. We determined how values of B between 0 and 1
affected model fit for the carbon-for-nitrogen exchange ratio and other model predictions. We found that

across the soil nitrogen levels, the best fit value of B was 0.70 (Fig 1.1.6). Using this estimate, model
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Figure 1.1.5. Model fit to experimentally estimated data is improved by allowing asymmetric bargaining
power. Empirically estimated (measured) and model predicted carbon-for-nitrogen exchange ratios (a),
percent allocations toward roots (b), plant growth rates (c), and nodule growth rates (d) of 5-week-old
nodulated M. truncatula at 8, 24, 40, and 80 mg L N. The symmetric (sym) bargaining predictions
correspond to those predicted using symmetric Nash products, while the asymmetric (asym) bargaining
predictions correspond to using asymmetric Nash products with either B fitted across the soil nitrogen
levels (average B) or B fitted to individual soil nitrogen levels (variable B). The dotted line in (a) represents
the biochemical minimum value of the exchange ratio. Values and error bars represent the average and
90% confidence intervals, respectively, of 50 pseudo datasets generated by Monte Carlo sampling.

predictions of nodule growth at 8, 24, and 40 mg L'* N were improved up to 2-fold, but there was little
improvement in plant growth, root:shoot allocation, or 80 mg L N predictions (Fig 1.1.5). Next, we let B

vary among the nitrogen levels and found that the best fit value of 8 increased from 0.57 to 0.86 as soil
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Figure 1.1.6. Plant bargaining power as a function of nitrogen availability. Best fit average B (dotted line;
shaded area indicates the 90% confidence interval) and the best fit variable B at 8, 24, 40, and 80 mg L*
N (bars; error bars indicate 90% confidence intervals of 50 pseudo datasets). Best fit B were those
associated with the smallest sum of squared differences between predicted (using asymmetric Nash
products, Equation 2) and measured allocation to root biomass, plant growth, and nodule growth in 5-
week-old nodulated M. truncatula. The solid line represents symmetric bargaining.

nitrogen decreased (Fig 1.1.6, Table 1.1.52). The 90% confidence intervals of B for 8 and 80 mg L'* N were
inconsistent with the value of 0.70 obtained assuming a constant value of B across nitrogen levels.
Importantly, B for 8, 24, and 40 mg L' N indicate asymmetric trade (i.e., B # 0.50), and model fit was
dramatically improved compared to symmetric predictions (Fig 1.1.5). For example, at 8 mg L' N, nodule
growth was predicted within 3% of measured values (Fig 1.1.5d), and overall agreement between
predicted and measured growth rate and root:shoot allocation predictions was increased 7-fold (Table
1.1.S2). For all soil nitrogen levels, plant growth and root allocation predictions were improved, and the
exchange ratio was predicted within 25% of experimental estimates (Fig 1.1.5b,c). Together, these
findings indicate that plant bargaining power rises as its investment in trade and the benefits to both

partners increase.
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Discussion
Potential mechanisms underlying asymmetric bargaining

Our measurements of nutrient uptake, per capita growth, and partner composition in a legume-rhizobia
system were more consistent with the plant having greater bargaining power than its symbiotic partner,
than with a model of fair trade. Asymmetries in bargaining power can arise by three mechanisms that may
be operating in the legume-rhizobia mutualism. First, one partner can have a lower effective “discount
rate” (the rate at which benefits lose value to that partner if negotiations are prolonged), thus conferring
greater bargaining power to the partner able to endure longer negotiations (Kawamori, 2014). In the
legume-rhizobium mutualism, the plant’s longer lifespan and potentially larger nutrient reserves could
serve to provide a lower discount rate. Second, group bargaining dynamics can affect bargaining power.
In “pure bargaining” situations, groups of individuals negotiating as a single partner have less apparent
bargaining power than independent partners because group benefits would be divided among group
members after negotiation (Chae & Heidhues, 2001). In this case, if the bacteroids that comprise a nodule
(Udvardi & Poole, 2013) negotiate as a group (e.g., at the nodule level), then the rhizobial partner would
have less apparent bargaining power because the carbon received by the nodule would be divided among
the bacteroids. A third mechanism that can increase an individual’s bargaining power is the ability to
simultaneously negotiate with multiple trade partners (Chakraborty et al., 2009; Chakraborty, 2011). In
this case, the presence of multiple nodules on a plant and/or multiple bacteroids within a nodule could
lead to bargaining power asymmetry. This mechanism could be particularly important if bacteroids within
nodules bargain independently with the plant, which is consistent with the plant being able to interact
differently with different bacteroids within a nodule (Daubech et al., 2017; Regus, JU et al., 2017). Each of
these mechanisms can explain why the plant has more bargaining power than the rhizobia, but alone,
they do not explain why plant bargaining power appears to be higher when nitrogen is scarce (e.g., 8 mg

L't N). At lower soil nitrogen levels, the plant would be expected to have fewer nitrogen reserves and
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nitrogen received from trade comprises a larger proportion of the plant’s nitrogen budget (Fig 1.1.3a),
which could increase its discount rate and lower its bargaining power. However, we found that as soil
nitrogen decreases, total nodule biomass (Fig 1.1.2) increases. This apparent increase in the number of
bacteroids (i.e., trade partners) could lead to increased plant bargaining power even as the plant’s reliance
on the rhizobia increases. Studies in other systems would be important for assessing the prevalence of
asymmetric bargaining, and manipulating microbial numbers would allow the influence of partner number

to be further investigated.

Relating trade conflict to the concept of cheating

Our finding that the plant host has a high degree of control over the carbon-for-nitrogen exchange ratio
when soil nitrogen is limiting has important implications for conceptualizing conflict and cheating within
mutualisms. Cheaters have been the focus of much empirical and theoretical work as they have the
potential to lead to mutualism collapse, yet there has been debate in the literature regarding how to
identify cheaters ( Simms & Taylor, 2002; Frederickson, 2013; Ghoul et al., 2014). A recent synthesis
defines cheating as increasing one’s own relative fitness while decreasing that of the partner (Jones et al.,
2015). However, cheating is not synonymous with conflict, and in fact Jones et al. (2015) show that under
both fitness conflict and fitness alignment, cheating genotypes may be present within the population.
Within the economic model that we use in our study, there is a fundamental conflict between plant and
symbiont over the exchange ratio (Schwartz & Hoeksema, 1998; Grman et al., 2012). Our finding of
asymmetric bargaining can be interpreted as evidence of this conflict because it demonstrates that
partners may not benefit equally from trade, even if trade is mutually beneficial. However, given that the
exchange ratio seems to be determined almost entirely by the plant, this control could in effect force the
fitness interests of the symbiont to align with the host. Consequently, we predict that with multiple

genotypes of varying fixation abilities there would be a strong signal of fitness alignment—even in the
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face of underlying conflict.

Limitations and future work

The nutrient-exchange model employed connects nutrient uptake rates to partner growth by predicting
the allocation strategies that maximize growth, given the organismal stoichiometric compositions. More
sophisticated models that include detailed chemical reactions can predict the metabolic processes
involved (Resendis-Antonio et al., 2011; Zhao et al., 2012), but they also rely on observed stoichiometries
and maximizing growth rates. Consequently, one limitation of our approach is that nutrient
stoichiometries and rates are treated as constants, which is not necessarily consistent with biological
systems (Nasholm et al., 2009; Wolf et al., 2017). We addressed this challenge by independently
measuring model parameters and predictions at all four nitrogen levels. Another limitation is that
stoichiometric models do not account for other benefits of mutualisms, such as rhizobia acting as
biocontrol agents to protect the plant from fungal pathogens (Das et al., 2017) or association with rhizobia
leading to the induction of defense signaling pathways (Dean et al., 2014). We sought to minimize the
influence of these other benefits by protecting the plants from pathogens, and keeping them well-
watered and under stable conditions.

To our knowledge, the symmetry of bargaining power has not yet been directly tested in other
plant-microbe mutualisms, but researchers have proposed several mechanisms that influence the power
dynamics, such as symbionts conferring greater competitive power to more cooperative plants (Bicking
et al., 2016), partner strategies for preventing imbalances in benefits received from trade (Kiers et al.,
2011), and outside negotiator options leading to joint control of the mutualism (Akcay & Simms, 2011).
Further work in other plant-microbe symbioses is needed before it can be determined if asymmetric

bargaining power is a broad feature of nutritional symbioses and how it relates to these mechanisms.
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Conclusion

Our finding of experimental support for a model of asymmetric (“unfair”) bargaining power between
legumes and rhizobia versus a model of “fair” trade highlights the power of integrating quantitative
models with data in the study of mutualisms (Clark et al., 2017), which we believe will be broadly
applicable to other systems. This work improves our understanding of the drivers of quantitative variation
in symbiotic nitrogen fixation, a process that makes a major contribution to the global nitrogen cycle
(Fowler et al., 2013) and is critical for agricultural sustainability (Herridge et al., 2008). Our finding of a
reduction in plant bargaining power at higher nitrogen levels combined with the frequently high rates of
fertilizer application to legume crops underscores the potential evolutionary danger of relaxed host
control under anthropogenic inputs (Kiers et al., 2007; Weese et al., 2015). The ability to estimate
bargaining power using this approach will allow bargaining strength to be compared with measurements
of natural selection. We also believe these estimates contribute to investigating the genetic, metabolic,
and physiological mechanisms underlying the regulation of resource exchange and could facilitate future

efforts to breed crops that can maintain their own beneficial microbiomes (Busby et al., 2017).
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Figure 1.1.S1. Whole-plant photosynthesis chambers were used to measure carbon uptake rates. (a)
Chambers were connected to LI-COR LI-6400 apparatuses, illuminated with LED lights, and used in a
growth chamber to ensure assay conditions matched growth conditions. (b) Chambers included fans to
promote air circulation. (c) Steady-state photosynthesis was measured by collecting readings every 5 min
for at least 90 min in the light. Respiration was estimated with dark measurements. Data shown is from a
nodulated plant grown at 40 mg L™} N, but is representative of all measured plants.
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Figure 1.1.52. Regression analyses used to calculate model parameters. (a) Direct nitrogen uptake
(squares) and trade (triangles) rates per total plant biomass were experimentally estimated for
uninoculated (blue) and/or nodulated (red) plants at 8, 24, 40, and 80 mg L N. Linear or exponential
regression was used to analyze the correlation between direct uptake or trade, respectively, and nitrogen
availability. Values and error bars represent average and 90% confidence intervals, respectively, of 50
pseudo datasets generated by Monte Carlo sampling. (b) The percent of photosynthetic carbon uptake
used for biomass is directly correlated with total carbon content in uninoculated plants. This correlation
was analyzed with linear regression and used to estimate respiration rates in nodulated plants. Values
represent 50 pseudo datasets per nitrogen treatment. (a,b) The linear equations were used in model
analysis as described in the Methods
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Figure 1.1.S3. Plant growth is near linear between 4 and 6 weeks. Nodulated (triangles, dashed lines)
and uninoculated (circles, solid lines) plant dry weights were measured at 8 (a), 24 (b), 40 (c), and 80 (d)
mg LY N. Growth rates were analyzed using linear regression. All rates were found to have p < 0.001, and
equations and R? values as indicated. Error bars represent standard error (n = 7-15). Plant ages with
asterisks indicate significant differences between nodulated and uninoculated plants at that age; plant
ages without asterisks do not significantly differ after post hoc testing with the Tukey test (p < 0.05).
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Table 1.1.51. Model input parameters and measured values for nodulated plants

Parameter Biological interpretation Units 8mgL'N 24mgl*N 40mg LN 80mglL'N
p plant size mg C 172.65+1.94 229.82+2.43 288.41+2.39 392.34+3.46
r rhizobial partner size mg C 3.92+0.08 3.31+0.07 2.64+0.04 0.37+0.01
ynp plant carbon biomass yield per unit N mgC/mgN 11.80+0.07 11.47+0.04 11.30+0.06 10.35+0.02
ynr nodule carbon biomass yield perunitN mgC/mgN 6.08 +0.01 6.21+0.01 6.03+0.01 6.18 +0.02
fcp' photosynthetic carbon uptake rate mg C/shoot C /day 0.13+0.001 0.16+0.003 0.14%0.002 0.12+0.001
fnp' soil nitrogen uptake rate mgN/rootC/day 0.01+0.000 0.02+0.000 0.02+0.000 0.04+0.001
fnr' nitrogen fixation rate mg N/nod C/day 0.31+0.01 0.26+0.01 0.34+0.02 2.27+1.14

Parameters were measured and used in model construction as described in the Methods. The plant’s
collective nodules were used as a proxy for the rhizobial partner. Values correspond to the average + 90%
confidence interval by Monte Carlo sampling with 50 pseudo datasets.
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Table 1.1.52. Model predictions and corresponding values

8mg/LN T aNP gP gR B
experimentally estimated 2.96+0.02 0.267+0.004 0.098+0.001 0.085*0.002 -
symmetric, without respiration  8.86+0.11 0.651+0.007 0.066+0.002 0.962+0.044 50.00
symmetric, with respiration 7.97+0.36 0.445+0.011 0.054+0.002 0.424+0.022 50.00
average [, without respiration 5.60+0.04 0.639+0.007 0.073+0.002 0.596*0.027 69.00
average [, with respiration 5.13+0.07 0.426+0.009 0.060+0.001 0.263+0.013 69.00
variable B, without respiration 3.52+0.06 0.626+0.006 0.080+0.002 0.164+0.003 88.42+0.58
variable B, with respiration 3.52+0.06 0.405+0.008 0.066+0.001 0.083+0.002 85.97+0.75
24 mg/LN T aNP gP gR B
experimentally estimated 3.48+0.60 0.255+0.004 0.086+0.001 0.0700.002 -
symmetric, without respiration  6.69+0.09 0.547+0.009 0.106+0.002 0.613+0.029 50.00
symmetric, with respiration 5.42+0.09 0.401+0.009 0.083+0.001 0.235%0.012 50.00
average [, without respiration 4.71+£0.04 0.544+0.009 0.108+0.002 0.380%0.018 69.00
average [, with respiration 4.12+0.04 0.398+0.009 0.085+0.001 0.146+0.008 69.00
variable B, without respiration 412+0.21 0.541+£0.009 0.111+0.002 0.136+0.004 79.79x1.63
variable B, with respiration 3.82+0.13 0.395+0.009 0.086+0.001 0.067+0.002 73.44+1.94
40mg/LN T aNP gP gR B
experimentally estimated 3.51+0.67 0.262+0.003 0.093+0.001 0.083+0.002 -
symmetric, without respiration  5.78+0.07 0.472+0.006 0.106+0.001 0.704 +0.043 50.00
symmetric, with respiration 4,78+0.07 0.355+0.006 0.084+0.001 0.271+0.018 50.00
average B3, without respiration 4.29+0.03 0.469+0.006 0.108+0.001 0.437+0.026 69.00
average [, with respiration 3.80+0.03 0.352+0.006 0.086+0.001 0.168+0.011 69.00
variable B, without respiration 4.24+0.19 0.466+0.006 0.110+0.001 0.153+0.004 73.44+2.19
variable B, with respiration 3.81+0.11 0.350+0.006 0.087+0.001 0.074+0.002 67.15+2.35
80mg/LN T aNP gP gR B
experimentally estimated 2.89+0.16 0.239+0.004 0.095+0.001 0.091+0.005 -
symmetric, without respiration  3.54+0.06 0.297+0.005 0.108 +0.001 2.909 +1.561 50.00
symmetric, with respiration 3.09+0.05 0.243+0.004 0.089+0.001 1.048+0.559 50.00
average [, without respiration 3.13+0.03 0.297+0.005 0.108+0.001 1.803*0.968 69.00
average [, with respiration 2.88+0.03 0.243+0.004 0.089+0.001 0.650%0.347 69.00
variable B, without respiration 3.54+0.08 0.296+0.005 0.108+£0.001 0.120+0.032 40.38+3.35
variable B, with respiration 3.02+0.04 0.243+0.004 0.089+0.001 0.050+0.012 51.20%3.42

Experimentally estimated or model predicted carbon-for-nitrogen exchange ratio (T; mg C mg? N),
proportion of plant carbon allocated to roots (aNP; g root C g plant C), plant per capita growth rate (gP;
g Cdaytg?plant C), rhizobial partner growth rate (gR; g C day* g rhizobial partner C), and proportion of
bargaining power possessed by the plant (B). Model predictions include those predicted with or without
plant respiration, and assume symmetric power (i.e., B = 0.50), average asymmetric power across the
observed soil nitrogen range (i.e., B = 0.69), or asymmetric power which varies with soil nitrogen. Values
correspond to the average £ 90% confidence interval by Monte Carlo sampling with 500 pseudo datasets
(see Methods for further details).
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Table 1.1.S3. Plant carbon and nitrogen elemental compositions

Age (wk) [N] (mg/L) Rhizobia Root%C(%wt) Shoot%C(%wt) Root %N (%wt) Shoot %N (%wt) PlantYield (mgC mg‘1 N)

4 8 - 45.89+1.90 39.18+0.58 2.19+0.14 3.46+0.53 13.76 £1.69
4 24 - 42.89+2.40 40.49+0.76 2.31+0.19 3.34+0.13 13.74+0.69
4 40 - 43.96+0.84 39.80+0.18 2.31+0.26 3.45+0.28 13.24+1.20
4 80 - 44.19+1.89 39.06 £ 1.06 2.71+0.27 4.57 £0.55 10.00+1.65
4 8 + 44.59+1.85 41.06+0.13 2.34+0.23 4.41+0.19 10.69 +0.46
4 24 + 44.13+0.74 40.72+1.42 2.40+0.13 4.26 £0.08 10.86+0.36
4 40 + 43.51+0.49 39.81+0.43 2.82+0.08 4.38+0.31 10.21+0.59
4 80 + 45.63+0.38 39.34+1.21 3.23+0.24 4.75+0.35 9.23+0.52
6 8 - 43.43+1.41 38.40+0.78 2.00+0.36 2.60+0.52 17.16+3.12
6 24 - 44.32+£0.48 39.17+£0.43 1.99+0.26 2.52+0.09 17.48+1.14
6 40 - 41.93+4.68 39.45+0.65 2.08+0.21 2.89+0.22 15.21+1.47
6 80 - 44.43+2.32 39.56 +1.02 2.99+0.15 4.26+0.83 10.25+1.64
6 8 + 43.02+3.15 39.30+1.54 2.28+0.09 3.47+0.51 12.77+1.90
6 24 + 42.10+1.73 39.45+0.56 2.16+0.41 3.67+0.31 12.06+1.02
6 40 + 41.51+2.64 39.98+0.29 2.42+0.21 3.65+0.59 12.24+1.68
6 80 + 42.86+0.48 41.12+0.10 2.98+0.18 3.79+0.06 11.49+0.17

Carbon and nitrogen elemental compositions were measured in 4- and 6-week-old uninoculated (-) and
nodulated (+) plants at 8, 24, 40, and 80 mg L™X N. Values are average * standard deviation.

Table 1.1.54. Nodule carbon and nitrogen elemental compositions

Age (wk) [N](mg/L) Nodule %C (%wt) Nodule %N (%wt) Nodule Yield (mgC mg_1 N)

4 8 44.30+0.52 8.10+0.11 5.47+0.01
4 24 45.26 +0.06 7.85£0.48 5.78£0.36
4 40 43.02+1.14 7.50+0.42 5.74+0.27
4 80 43.150 7.170 6.020

6 8 43.53+1.14 6.52+0.36 6.69+0.36
6 24 44.56+1.10 6.72+0.24 6.64+0.15
6 40 43.57 +1.07 6.89+0.24 6.32+0.09
6 80 40.47 +0.92 6.43 +0.68 6.32+0.52

Carbon and nitrogen elemental compositions were measured in 4- and 6-week-old nodulated plant
systems at 8, 24, 40, and 80 mg L N. Values are average + standard deviation.
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SECTION 1.2

Modeling nutritional mutualisms:
Challenges and opportunities for data integration

This section includes a manuscript that was published in Ecology Letters:
Clark, T. J., Friel, C. A., Grman, E., Shachar-Hill, Y., & Friesen, M. L. (2017). Modeling nutritional
mutualisms: challenges and opportunities for data integration. Ecology letters, 20(9), 1203-1215.
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Preface

While performing experiments to test the effect of soil nitrogen availability on nutrient exchange in the
legume-rhizobia mutualism (Section 1.1), our collaborative group read and discussed articles that used
mathematical models to examine the stability or function of plant-microbe nutritional mutualisms. Due
to the limited number of relevant review articles and our collaboration’s expertise in different modeling
approaches (MLF in game theory and adaptive dynamics; EG in population dynamics; YSH in metabolic
network analyses), we decided to also write a review article on how these mutualisms have been
addressed by mathematical models.

Our initial conception of the review was to introduce readers to five mathematical approaches
commonly used to model nutritional mutualisms: metabolic networks, biological markets, game theory,
population dynamics, and ecological networks. We summarized how these models are constructed and
have addressed four foundational questions we identified concerning mutualism persistence, community
stability, nutrient availability, and structured interactions. All collaborators contributed significantly to the
writing. | took primary responsibility for the market approach section, and nutrient availability and
structured interactions foundational questions, as well as co-authoring the sections on metabolic network
and game theory approaches.

In addition to the above topics, we introduced how these modeling approaches could be
integrated with data or combined with other approaches. However, due to space limitations, we were not
able to thoroughly address these directions, and our review was initially rejected by Ecology Letters with
encouragement to resubmit. In response to reviewer feedback, we decided to pursue writing two types
of reviews: a conventional review to compile the findings of the different modeling approaches, and a
synthesis review to elaborate on how these models could be integrated with experimental data to
increase their utility. | led the revisions for, and am first author on, the synthesis review.

The synthesis review still included information about the five mathematical approaches, but was
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restructured into how the different approaches function at four biological scales: cell, individual,
population, and community. We also continued to address the foundational questions, but included more
connections to experimental studies. For each of the biological scales and foundational questions, we
included at least one reference to an experimental paper or review of experimental approaches that had
been or could be connected to a specific model. | took responsibility for connecting empirical data to
modeling approaches, selecting appropriate complementary studies from the literature, and exploring
future possibilities. | coordinated these changes using drafts from our initial review and numerous
discussions within our collaboration where we addressed how models and data could be integrated.

Our reconstructed review was published by Ecology Letters in 2017 and is included in this section.
To our knowledge, this review was the first to explore the existing and potential integrations between
experiments and theory-based computational methods across the full range of biological scales. The

previous section is one of the very few studies to integrate between these approaches.
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Abstract

Nutritional mutualisms are ancient, widespread, and profoundly influential in biological communities and
ecosystems. Although much is known about these interactions, comprehensive answers to fundamental
guestions, such as how resource availability and structured interactions influence mutualism persistence,
are still lacking. Mathematical modeling of nutritional mutualisms has great potential to facilitate the
search for comprehensive answers to these and other fundamental questions by connecting the
physiological and genomic underpinnings of mutualisms with ecological and evolutionary processes. In
particular, when integrated with empirical data, models enable understanding of underlying mechanisms
and generalization of principles beyond the particulars of a given system. Here, we demonstrate how
mathematical models can be integrated with data to address questions of mutualism persistence at four
biological scales: cell, individual, population, and community. We highlight select studies where data has
been or could be integrated with models to either inform model structure or test model predictions. We
also point out opportunities to increase model rigor through tighter integration with data, and describe
areas in which data is urgently needed. We focus on plant-microbe systems, for which a wealth of
empirical data is available, but the principles and approaches can be generally applied to any nutritional

mutualism.

Introduction

Nutritional mutualisms are both ancient and widespread, shaping life on this planet as it exists today with
innovations including the eukaryotic cell and the colonization of land by plants (Bronstein, 2015).
Substantial attention has been focused on how these mutualisms have persisted over evolutionary time
despite the potential benefits of defection (Sachs et al., 2004; Ghoul et al., 2014; Bronstein, 2015), yet this
evolutionary threat stems largely from theoretical considerations rather than empirical data

demonstrating that cheaters prosper within contemporary mutualisms (Jones et al.,, 2015) and
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phylogenetic analysis demonstrates that the evolution of parasites from within mutualistic clades occurs
rarely (Sachs et al., 2011). In wild populations, parasites of mutualisms often come from outside the focal
interaction, as illustrated by non-fixing rhizobia that originated from non-symbiotic lineages (Sachs et al.,
2010), and mutualistic symbioses are highly stable over evolutionary time (Werner et al., 2015). Together,
these observations suggest the operation of mechanisms, potentially operating at multiple scales, that
result in the evolutionary robustness of mutualisms as a whole. Further complicating our understanding
of mutualisms is the observation that interactions may be mutualistic under some contexts but parasitic
under others; this context dependence is often linked to the availability of external resources (Johnson et
al., 1997; Chamberlain et al., 2014). Contemporary evolution of rhizobia under long-term nitrogen
fertilization results in strains that fix less nitrogen, though whether these strains have higher fitness than
their beneficial relatives and are thus cheaters is still unknown (Weese et al., 2015). Critical empirical work
addressing these issues is lacking (Friesen & Heath, 2013), but larger questions about mutualism remain.

Understanding the persistence and predicting the functioning of contemporary nutritional
mutualisms cries out for mathematical modeling that is closely integrated with empirical data. Central to
predicting mutualism persistence is determining the balance between fitness costs and benefits to each
partner in natural ecosystems, which in turn depends upon the structure and operation of biochemical
and physiological networks. While many open questions about mutualism remain, two that cut across
scales of biological organization concern how mutualism is influenced by environmental nutrient ability
and how mutualism is influenced by structured interactions. Varying nutrient availability in the
environment can decisively alter the cost-benefit ratios of engaging in trade and thus lead to a mutualism-
parasitism continuum correlated with low-to-high nutrient availability (Johnson et al., 1997; Lau et al.,
2012). Therefore, nutrient availability alters the relative efficiency of direct nutrient uptake versus
exchange between partners, but the molecular and physiological basis of this phenomenon are still being

clarified. Translating the fitness consequences of varying environmental nutrients into consequences for
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population stability and community diversity also remains an open challenge. In addition, partner identity
can greatly impact an individual’s fitness (Friesen, 2012), so structured interactions, where individuals
associate with only a subset of potential partners, may influence mutualism persistence. These can arise
through mechanisms operating at multiple scales, such as molecular compatibility, partner choice, or
spatially structured populations (Noé & Hammerstein, 1994; Perret et al., 2000; Paszkowski, 2006;
Archetti et al., 2011).

Mathematical models play a key role in addressing questions about mutualism because they allow
researchers to qualitatively and/or quantitatively test the effects of hypothesized mechanisms, strategies,
and interaction structures. Although incorporation of prior knowledge is inherent in the construction of
all models, they vary widely. Models each fall somewhere in the space of generality, realism, and
precision, as discussed by Levins (1966) for population biology models. Most of the progress to date in
understanding mutualisms has leveraged general ‘proof-of-concept’ models. These models are extremely
valuable in exploring the consequences of particular assumptions about reality (Servedio et al., 2014) and
enabling a general understanding of mutualisms. However, although they may use data to make
appropriate assumptions, they are typically less realistic and therefore restricted in their
parameterizability for a specific system. Consequently, they generate conceptual predictions that cannot
be evaluated quantitatively. We argue that it is time for an increased focus on realistic, precise models to
contribute to progress towards settling the larger questions in mutualisms. Modern advances in -omic and
other analytical techniques enable close integration of models and empirical data. This tight integration
of models and data can allow researchers to measure or infer parameter values and generate quantitative
predictions which can be compared to measured values. Multiple models making contrasting predictions
could be compared either qualitatively or quantitatively using information theoretic criteria through
model selection (Burnham & Anderson, 2003) to evaluate the appropriateness of different assumptions,

model structures, or modeled mechanisms. Consequently, we believe that greater efforts to obtain and
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integrate high quality empirical data will accelerate progress in answering biological questions with
mathematical models.

Plant-microbe nutritional mutualisms are amenable systems for addressing these issues because
resource fluxes can be tracked in both directions and there are existing models at multiple biological scales
in addition to relevant empirical datasets. These mutualisms are evolutionarily important and play major
roles in global nutrient cycling. For example, mycorrhizal fungi colonize plant roots and use their hyphal
networks to supply phosphorus and other minerals in exchange for roughly five billion tons of
photosynthetically fixed carbon globally each year (Bago et al., 2000). Similarly, rhizobia, soil bacteria that
colonize plant roots, fix more than forty million tons of atmospheric nitrogen and exchange it for host
carbon (Udvardi & Poole, 2013). Understanding these interactions thus has practical implications for the
conservation and management of natural and agricultural ecosystems. We note, however, that the data
integration approaches described here are broadly applicable beyond these systems.

In emphasizing the integration of empirical data in modeling mutualism at multiple biological
scales, we present a synthetic review of how our knowledge of mutualism has expanded through
mathematical modeling of three key questions and point out opportunities to go further. We explore (i)
how mutualisms function, including molecular function, ecological dynamics and community structure,
and evolutionary persistence; (ii) how the availability of nutrients outside of the interaction affects
mutualism function; and (iii) how the existence of structured interactions influences mutualism function
and dynamics across biological and temporal scales. While many other questions remain, these have
received attention or are readily addressable at four biological scales. For each question we consider (1)
cell scale models, which characterize the genes and enzymatic reactions in a single cell that underpin
mutualisms; (2) individual scale models, which describe how individuals regulate trade and partner
interactions; (3) population scale models, which focus on the persistence and coexistence of mutualistic

host and symbiont guilds; and (4) community scale models, which assess how interactions with additional
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guilds (e.g., a predator guild) alter mutualistic interactions. Finally, we discuss explicit recommendations
to enhance integration of data and nutritional models and urge future collaborations with the aim of
iterating between models and data collections. Given the extensive mutualism literature, models and
empirical data presented are illustrative, not comprehensive, but we attempt to be as prescriptive as
possible. The productive avenues for future research that we identify will facilitate data integration into

mathematical models and further elucidate general principles governing mutualism function and stability.

How do mutualisms function?

The basic underpinning of nutrient-exchange mutualisms is the functionality whereby resources are
exchanged between partners. There are multiple inter-related questions across scales concerning the
factors underlying these fluxes and the consequences these exchanges have. We seek to understand
mechanistically how enzymes and other cell components permit the physical exchange of nutrients, and
how individuals decide when and how much to invest in trade. Nutrient exchanges between individuals
can in turn influence both how populations interact and how these interactions impact multipartite

communities.

Cell Scale

Nutritional mutualisms are founded on the operation of metabolic networks, which conduct biochemical
fluxes of energy and matter within and between partners. Cell scale models analyze the functional
capabilities of these networks, describing them at the level of enzymatic and transport reactions. Empirical
data from annotated genomic (Resendis-Antonio et al., 2007) and/or protein (Rodriguez-Llorente et al.,
2009) databases determines which biochemical and transport reactions to include in the network (Table
1.2.1). The completeness of these networks is tested by their ability to computationally use known

substrates to produce known products (including cell components). Predictions about which genes are
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Table 1.2.1. The relationship of mathematical modeling to empirical data at multiple scales.

Data for building and/or

Data for testing model

Indirect effects

the presence or absence of
additional community
members

Model scale Model component .. .
parameterizing models predictions
Reaction network Annotated genome .
Transcriptome, proteome,
Cell ] isotopic labeling, metabolic
) Gas exchange, chemical .
Nutrient uptake/efflux o . . flux analysis maps
analysis, isotopic labeling
. . Fitness of each partner Dynamics of strategies
Cost-benefit ratios ] o )
under different pairings across generations
. Isotope labeling of external
o Nutrient uptake rate
Individual resource
Growth and nutrient
Tissue weights and content of each partner
Allocation strategy elemental compositions;
Isotope labeling
Manipulation of partner
. . densities and measurements
Interaction coefficient o )
of individual fitness or
population growth rate Long-term population
dynamics
) Individual fitness or
Population Intrinsic growth rate population growth at low
density
Typical distances partners Spatial patterning of
Dispersal disperse in the field; mutualism persistence
Population genetics through time
Community network Which species interact
structure under field conditions
Long-term population
Community Abundances of partners in dynamics, diversity, and

coexistence

The construction of models involves information about the system as well as the hypotheses to be
evaluated, and the amount of data integrated in this process varies according to the modeling type. The
use of quantitative empirical data from experimental or observational studies is also important in testing
Table 1.2.1 (cont’d). model predictions, both qualitative outcomes such as persistence versus extinction
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Table 1.2.1 (cont’d) but also quantitative outcomes such as individual metabolic fluxes or nutrient
exchange ratios. Model components include the structure, constraints, predictions, and parameters.
essential for the mutualism can be tested by comparing model predictions to phenotypes of mutants that
lack a particular reaction (Zhao et al., 2012). Flux balance analysis (FBA; Box 1) of cell scale models can be
used to test “objective functions” that embody hypotheses about metabolic strategies by comparing the
model predictions to growth measurements or other empirical data. A series of studies on Rhizobium etli
(Resendis-Antonio et al., 2007; Resendis-Antonio et al., 2011) found that an objective function of
maximizing nitrogen fixation and production of known bacterial compounds (per input of carbon from the
plant) yielded results consistent with observed fixation rates. However, Zhao et al. (2012) found that an
objective function of strong coupling between nitrogen fixation and carbon-nitrogen exchange better
agreed with published literature (e.g., proteomic and biochemical analyses) on which metabolic pathways
have been reported as active or inactive in Sinorhizobium meliloti.

Although consistent with literature on the known biochemistry and gene involvement, the results
of these modeling studies concerning internal metabolic fluxes should be regarded as hypotheses until
they can be validated using experimental biochemical analyses of metabolic fluxes. Network-wide
metabolic rates can be mapped using metabolic flux analysis, which models the results of isotopic labeling
experiments to quantify metabolic and transport fluxes (Ratcliffe & Shachar-Hill, 2006). For example, Chen
et al. (2011) applied FBA to aerobically and anaerobically growing bacteria, with an objective function of
maximizing growth, and compared the predictions to findings from metabolic flux analysis. They found
that although FBA could satisfactorily predict bacterial growth and metabolite secretion rates, it greatly
under-estimated most oxidative pentose phosphate pathway fluxes. An analogous approach could be
used to rigorously test the patterns of metabolic flux in plant-microbe mutualisms predicted by FBA
modeling using different objective functions. Detailed quantitative model testing may reveal that one

objective function serves to explain metabolic and transport fluxes across a wide range of nutritional
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mutualisms, or that different partners or environmental conditions elicit different metabolic strategies.

Individual Scale

Mutualisms occur between individuals that exchange goods or services, and individual scale models have
long been used to study these interactions over both physiological and evolutionary timescales. The
general question of why mutualisms are not dominated by defectors has been a focus of the field for
decades (reviewed in Jones et al. 2015) and many individual scale models have been aimed at answering
this (Box 2). Numerous mechanisms have been proposed that result in net selection favoring mutualistic
exchange, ranging from the cross-generation fitness coupling through partner fidelity feedback,
preferential allocation/sanctions, and structured interactions mediated by spatial structure or partner
choice (Sachs et al., 2004). Individual scale modeling studies can differentiate between these mechanisms
and/or determine conditions under which they can effectively promote mutualism (West et al., 2002;
Yamamura et al., 2004; Doebeli & Hauert, 2005) For example, preferential allocation, where higher-quality
partners are given more reward, promotes mutualism in two modeling studies of plants interacting with
multiple symbionts, but only if adequate partner discrimination ensures the intended partner receives the
benefits (Cowden & Peterson, 2009; Bever, 2015). Furthermore, Cowden and Peterson (2009) tested the
effectiveness of different plant carbon regulation strategies. They found that being able to control
whether or not to engage in trade with particular symbionts maximizes plant nutrient acquisition, but in
order to maximize carbon use efficiency, this mechanism must be combined with the ability to control the
total amount of carbon allocated to belowground organs.

These and other predictions concerning the allocation of nutrients can be empirically tested using
labeling experiments (Table 1.2.1). For example, Zheng et al. (2015) investigated preferential allocation
using carbon- and phosphorus-labeling in a plant-mycorrhizae split-root system. In abundant light where

photosynthesis is maximized and carbon is not limiting, the plant allocates a larger fraction of its carbon
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to high-quality symbionts, but if light is limiting, the plant does not preferentially allocate carbon. The
authors hypothesize that this may provide opportunities for defectors to propagate, resulting in the
coexistence of defectors and cooperators. A model of the system could make quantitative predictions
regarding allocation strategies. Since exchanged nutrients can be tracked using isotopes, individual scale
models are well-suited to examining regulatory mechanisms like preferential allocation, and how abiotic

and biotic factors influence the ability to regulate trade.

Population Scale

Although cell and individual scale models can investigate mechanisms underlying mutualistic interactions,
population scale models are needed to address the impact of mutualism on ecological processes. Early
models of mutualism predicted unbounded population growth (Gause & Witt, 1935), which is clearly not
observed in natural populations, so many models incorporate additional population regulatory
mechanisms, such as density-dependence or the spread of defectors (Marco et al., 2009; Pillai et al.,
2014). For example, symbionts compete for host resources and if cooperators are competitively inferior
to defectors they can be excluded if their resource niches overlap too much. However, a model by Pillai
et al. (2014) suggests that cooperators can persist if a subset of defectors’ niches only intermediately
overlap with the cooperators’. These defectors compete weakly with both cooperators and other
defectors without excluding either. This has an indirect positive effect on cooperators by decreasing the
abundance of defectors that compete strongly with cooperators. Consequently, overlap in resource niche
may be able to serve as a proxy for the magnitudes of interaction coefficients (Box 3; Pillai et al., 2014).
The model of Pillai et al. (2014) can be tested qualitatively, but could also be extended to have
higher realism in order to facilitate empirical parameterization and the testing of quantitative predictions
(Table 1.2.1). To test the model, host fitness in association with symbiont monocultures or mixtures could

be compared. An independent experimental study found that some rhizobial monocultures increased host
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fitness, while others had no effect (Barrett et al., 2015); these observations could be attributed to
cooperator and defector monocultures, respectively. In mixed cooperator-defector cultures, host fitness
was either slightly increased or not affected compared to fitness without symbionts (Barrett et al., 2015);
this relative lack of benefit from the mixture could be explained by intermediate or strong, respectively,
overlap in resource niche between the cooperators and defectors. However, these observations could
alternatively be explained by differences in rhizobial population sizes or the host benefits obtained from
the cooperators being countered by investing in sanctions against defectors. Further empirical data to
characterize species interactions would be required to parameterize and test a more realistic extension

of the model of Pillai et al. (2014).

Community Scale

Considering mutualisms in the context of other guilds and interactions is key to understanding how they
function in natural settings. Communities with multiple guilds (e.g., host, mutualist, and antagonist guilds)
contain multiple direct and indirect interactions, including competition, predation, and commensalism
(Mougi & Kondoh, 2012). Community scale models can assess how the sum of these interactions shapes
community dynamics (Box 4). For example, mutualist species can have indirect negative effects on
antagonists by enhancing host defenses (Bachelot et al., 2015). Community scale models have found that
the mixture of these interactions yields different community dynamics than the isolated interactions in
host-mutualist subcommunities (Mougi & Kondoh, 2012; Bachelot et al., 2015). Bachelot et al. (2015)
investigated how communities are affected by the magnitudes of interaction effects in combination with
species abundances. If mutualists only provide a modest benefit to the host, then intermediate mutualist
abundance can stabilize coexistence of the three guilds by enhancing defense against the antagonist
without leading to antagonist extinction (Bachelot et al., 2015). This model could be empirically tested by

measuring how host and antagonist fitnesses are affected by mutualist abundance (Table 1.2.1).

66



An independent empirical study on plant-mycorrhizal fungi-herbivore communities found that as
fungal abundance increased, the production of plant defense compounds increased as expected, but the
growth rate of the specialist herbivore unexpectedly increased as well (Vannette & Hunter, 2013). In order
to ensure accurate measurements of all three variables (fungal abundance, defense compound
production, herbivore growth rate), these experiments were performed under controlled conditions that
limited the presence of other herbivores and predators (Vannette & Hunter, 2013). Although the
mutualist did not have the expected indirect negative effect on the antagonist as predicted by the model
(Bachelot et al., 2015), the underlying mechanism in the model may still operate in other experimental
settings because the plant defense traits may be more effective against generalist herbivores or may
function to attract herbivore predators (Vannette & Hunter, 2013). Consequently, this illustrates the
difficulty in obtaining empirical support for community scale models: controlling experimental variables
while retaining the complexity of communities. Future studies would need to be conducted with natural
herbivore communities and controlled manipulation of belowground symbionts, e.g., following methods
developed by Simonsen and Stinchcombe (2014), who created a field system for inoculation with specific

rhizobia.

How does nutrient availability affect mutualisms?

Although nutrient-exchange mutualisms are typically conceptualized as benefiting both partners,
experiments have revealed that as nutrient availability increases, these interactions can become parasitic
either due to plasticity (Johnson et al., 1997; Lau et al., 2012) or evolution (Weese et al., 2015).
Understanding the molecular and physiological bases of variation in resource exchange rates and linking
them to individual fitness has the potential to inform both ecological and evolutionary dynamics of
systems. Phylogenetic analysis demonstrates that even in high nutrient environments, the legume-

rhizobia mutualism is evolutionarily stable (Werner et al., 2015), suggesting the existence of strong
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mechanisms that stabilize this interaction. Given the ongoing massive anthropogenic perturbations of
nutrient cycling, it is crucial to able to predict population and community dynamics as a result of
environmental nutrient levels; such predictions will require a mechanistic understanding of how partners

interact.

Cell Scale

Because nutrient uptake rates are a key component of most cell scale models, it is important to
understand how nutrient availability affects model predictions concerning the metabolic basis for trade.
However, this has yet to be addressed in a plant-microbe mutualism model. Nutrient uptake rates usually
correlate with nutrient availability in a manner similar to Michaelis-Menten kinetics (Rao et al., 1993).
Therefore, a feasible range of expected uptake rates can be generated and used to determine how
nutrient availability affects internal metabolic fluxes. Alternatively, nutrient availability can be assessed
by comparing the predictions of different uptake costs. For example, at low external nitrogen levels,
ammonium can be taken up by active transport (Kraiser et al., 2011), which has a higher carbon cost than
the passive nitrogen transporters that can sustain uptake at higher nitrogen levels.

A widely used approach to assessing model predictions is to use changes in transcript or protein
levels to explore molecular responses (Resendis-Antonio et al., 2011) to environmental change. Because
gene expression is markedly different at plant-microbe interfaces, a potentially productive future avenue
would be to take advantage of localized transcriptomic or quantitative proteomic data from both host and
microbial cells to test and improve cell level modeling. This raises the wider point that plants and some of
their partners have differentiated cells and tissues with both short and long distance transport.
Grafahrend-Belau et al. (2013) addressed this challenge by constructing separate FBA models for the
leaves, stems, and seeds, and connecting these FBA models using phloem and root transport reactions.

This multi-organ FBA model was used to investigate changing carbon source-sink interactions in barley
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during senescence. This approach could be used to investigate the effect of nutrient availability on trade

mechanisms by integrating a multi-organ plant model with a mutualistic microbe model.

Individual Scale
Individual scale models can investigate how nutrient availability affects investment in trade through
nutrient uptake rates and other nutrient-dependent physiological parameters, in some cases with
fluctuating resource environments (Moeller et al., 2016). These physiological models typically assume
some form of optimality, arguing that evolution will optimize the parameters to maximize performance.
Some individual scale models (Grman et al., 2012; Franklin et al., 2014) used existing literature to obtain
empirical values for these parameters and explore the sensitivity of model outcomes to environmental
variation. For instance, the threshold of nutrient availability associated with switching between a strategy
where one nutrient is acquired by both direct uptake and from trade, and a strategy of relying entirely on
trade was determined for plant-mycorrhizae mutualisms (Grman et al., 2012; Franklin et al., 2014).
Parameter values were taken from publications on different systems and/or experimental conditions, and
varied drastically. For example, in the Grman et al. (2012) model, the fungal nutrient uptake rate varied
by two orders of magnitude. Therefore, this method of data incorporation can allow model predictions of
general patterns across diverse mutualisms to be quantitative. However, in order to make precise
predictions for a specific mutualistic interaction that could enable the model to be refined or even
falsified, and thus elucidate previously unknown features of the mutualism, data collected from a single
study system is necessary.

To test the sufficiency of a model for a specific system, the majority of parameter values should
be obtained from a single study, or at least on the same system, and care needs to be taken to use
separate data for fitting and testing the model. Jamshidi et al. (2015) took this approach to validate a

model of plant-fungus trade. Specifically, they compared the predicted and observed patterns of leaf
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biomass and carbon trade in correlation with symbiont cooperativeness. After model validation,
sensitivity analysis was performed to show that the thresholds of nutrient availability to elicit a change in
plant allocation strategy from growth to storage have significant effects on plant biomass. The use of
parameter value ranges from studies on a variety of systems has the advantage of generalizability but is
less stringent for testing the falsifiability of a model. In particular, rigorous testing of parameterized
models requires comprehensive physiological datasets that account for all model components, but there
are few such sets currently available. Therefore, there is great need for generating these in additional

plant-microbe systems and for testing additional models.

Population Scale

Population scale models can assess how resource availability affects the nutritive requirements of
individuals, thus affecting the magnitudes of negative and positive interactions and hence population
dynamics (De Mazancourt & Schwartz, 2010). The role of resource availability can also be tested through
its influence on carrying capacity or intrinsic growth rate, both of which affect population dynamics and
stability (Neuhauser & Fargione, 2004). Consequently, models at this scale can investigate the driving
force for the mutualism-parasitism continuum correlated with low to high nutrient availability as well as
the role of nutrient availability in species coexistence. These models have found that trade enables species
to coexist at greater ranges of nutrient availability, but this cooperation may decrease the population
density of one partner (De Mazancourt & Schwartz, 2010). At low host densities, the symbiont with the
faster growth rate is favored, while at high host densities, the symbiont with the greater competitive
advantage is favored (Neuhauser & Fargione, 2004).

These predictions could be empirically tested by determining host abundance, benefit from trade,
and symbiont growth rates and competitive abilities, and assessing whether the shift from mutualism to

parasitism correlates with the expected change in nutrient availability. Although host biomass is
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sometimes used as a proxy for population density (Neuhauser & Fargione, 2004), this is not feasible for
all systems (e.g., tree-ectomycorrhizal fungi systems). In systems where direct measurements of biomass
or density are not good proxies for carrying capacity, it may be desirable to estimate carrying capacity
using another model. Xia and Shao (2008) used a modeling approach to quantify carrying capacity for
plants in arid and semi-arid environments by identifying the limiting resource (water) and quantifying
processes that affect or are affected by the limiting resource (e.g., carbon allocation, photosynthetic rate)
at different timescales (e.g., hourly, daily). If applied to plant-microbe nutritional mutualisms, the limiting

resource could be the traded nutrients.

Community Scale

Similar to population scale models, community scale models have explored how nutrient availability
influences community dynamics by altering the magnitudes of interspecific interactions (Gross, 2008;
Georgelin & Loeuille, 2016). For example, because symbionts tend to be more mutualistic at lower
nutrient availabilities, selection favors traits that attract symbionts when nutrients are scarce; however,
these traits may also attract antagonists (Lopez-Raez et al., 2011; Georgelin & Loeuille, 2016). If mutualists
and antagonists are both strongly attracted to the host, then mutualists cannot invade a host-antagonist
community because the antagonist prevents the host density from increasing, but antagonists can invade
a host-mutualist community (Georgelin & Loeuille, 2016). As nutrient availability increases, it can be
advantageous to lose the trait(s) that attract mutualists to lessen the negative effects of antagonists. This
increases host abundance and enables mutualists to invade host-antagonist communities (Georgelin &
Loeuille, 2016).

A system in which the predictions of this model could be empirically tested is plant production of
strigolactones, a signaling compound that stimulates plant symbiosis with arbuscular mycorrhizal fungi

(Lépez-Raez et al., 2011). When nutrients are scarce, plants benefit from interactions with mycorrhizal

71



fungi (Johnson, 2010) and so they produce strigolactones to attract partners (Jamil et al., 2011; Lopez-
Raez et al., 2011). However, strigolactones also attract parasitic plants, so as nutrients becomes more
available and fungi become less beneficial, strigolactone production decreases (Jamil et al., 2011; Lopez-
Raez et al., 2011). Together, these studies empirically validate the model assumption that the host has a
trait (i.e., strigolactone production) that attracts both mutualists and antagonists, and correlates with
nutrient availability. Consequently, this system could be used in long-term studies to evaluate model

predictions such as conditions under which mutualists can invade host-antagonist communities.

How do structured interactions affect mutualisms?

Mutualisms occur across a heterogeneous landscape that encompasses both variation in externally-
supplied nutrients, as explored above, but also variation in the identities and states of the partners that
one associates with. The structuring of interactions can have immediate consequences for mutualism
function, such as through variation in metabolic potential of individual cells, as well as longer-term
ramifications for the evolutionary stability of mutualism, such as the effect of spatial structure in

evolutionary game theory models.

Cell Scale

There is great opportunity for leveraging the mechanistic power of cell scale models to assess how
spatially structured interactions influence mutualisms compared to the ‘well-mixed’ scenario. Each cell
can be represented by a single FBA model, and cells can be linked by allowing the metabolic outputs of
cells to diffuse into the environment and then serve as metabolic inputs for other cells. These networks
have the potential to reveal trends in metabolism that could result from local competition for nutrients
or metabolic effects from interacting in a structured manner with multiple partners. Although this method

has yet to be applied to plant-microbe mutualisms, it has led to the illumination of a cross-feeding
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relationship between bacteria growing in colonies (Cole et al., 2015). Cole et al. (2015) simulated a
bacterial colony using a three-dimensional lattice structure with literature values for parameters such as
substrate uptake, efflux, and environmental diffusion rates. Simulations showed one group of bacteria
growing in a hypoxic microenvironment using fermentation and releasing acetate, while a group not
lacking oxygen predominantly consumed that acetate via the Krebs cycle. The existence of these groups
was confirmed by imaging bacteria that express the green fluorescent protein when they consume acetate
(Cole et al., 2015).

A similar approach could be applied to rhizobial bacteria in a nodule or multiple nodules
distributed in a heterogeneous soil. Spatially structured models of single nodules could address whether
diffusion of gases through the nodule causes the formation of zones of metabolically distinct rhizobia, and
whether a nutritional relationship exists between nitrogen-fixing differentiated rhizobial cells and dividing
rhizobial cells in indeterminate nodules. The soil matrix varies in the levels of gases, water, and nutrients
and we predict that nodules in distinct microenvironments may show contrasting metabolic functionality.
FBA with multiple symbiont cells under varying conditions exchanging nutrients with a single host plant

would shed light on the metabolic constraints and potential optimal distribution of host resources.

Individual Scale

Spatial structure in individual scale models can generate conflicting predictions regarding the evolutionary
persistence of mutualistic strategies. Early individual-based simulations showed that spatial structure can
promote the evolution of mutualism because limited dispersal structures interactions in space, so that
offspring of one partner tend to occur near offspring of the other partner generating pseudo-vertical
transmission (Yamamura et al., 2004). If mutualists have increased fitness when interacting with other
mutualists, limited dispersal allows mutualists to reproduce in clusters and maintain sufficient abundance

to persist for a range of cost-benefit ratios (Yamamura et al., 2004). However, spatial structure does not
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always promote cooperative strategies: in models of intraspecific cooperation, the type of evolutionary
game is critical and while in the Prisoner’s Dilemma cooperative clusters can form, in the Snowdrift or
Hawk-Dove game cooperators form dendritic patches and the cooperator strategy is often lower than
under well-mixed conditions (Hauert & Doebeli, 2004).

Spatial structure may also negatively impact the evolutionary persistence of mutualism by
restricting the range of partners that may be selected from in a biological market model or the types of
partners that a given host has the option of preferentially allocating resources to. For example,
Verbruggen et al. (2012) modeled the effectiveness of preferential allocation with high and low symbiont
spatial structure and found that with high structure, less beneficial symbionts were favored by selection.
The authors then qualitatively tested this prediction in a plant-mycorrhizae system and found that
cooperation was more prevalent in well-mixed conditions. They attributed this outcome to the plants
being able to enforce cooperation on a fine scale, i.e., through sanctions / preferential allocation. We
suggest that spatial structuring could potentially be playing a role through the form of the payoff matrix
in the interaction, similar to the Snowdrift game within species—unlike the Prisoner’s Dilemma, in which
spatial structure promotes cooperation, in the Snowdrift game, spatial structure leads to a lower
equilibrium level of cooperation (Doebeli & Hauert, 2005). This alternative hypothesis could be tested by
measuring the fitness of symbionts in a fine-scaled manner across generations to estimate the payoff
structure of the interaction; a more detailed model could then be parameterized with this data and the

relative importance of various factors assessed by comparing model outcomes to empirical data.

Population Scale

Mutualisms at a population scale can be considered across space using a meta-population approach,
whereby populations interact locally but then undergo extinction-colonization dynamics across a

landscape. A meta-population model grounded in the rhizobia-legume mutualism found that spatial
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dynamics can lead to genetic mosaics for both partners, with specialists co-occurring in local patches
(Parker, 1999). Stanton-Geddes and Anderson (2011) empirically investigated if legume dispersal distance
is limited by the availability of rhizobia by transplanting legume seeds to areas within, at, or beyond the
legume’s natural range. They found that plants beyond the natural range were less likely to form nodules
without manual inoculation than those within, and that nodulation aided plant growth. This suggests that
host range is limited by rhizobia availability and that mutualism is promoted over ecological time-spans
at shorter dispersal distances.

Population dynamics models can be used to make predictions about the role of dispersal rates,
and subsequent spatial structure, on the prevalence of contrasting mutualistic strategies in wild
populations. For example, Abbott et al. (2015) constructed a general model of invasive species dynamics
in Californian grasslands wherein the native cooperator species is only competitively superior to the
invading defector species when interacting with mutualistic soil microbes, and both plant species disperse
between patches that either contain or lack such microbes. They found that higher dispersal rates can
lead to exclusion by preventing source populations from maintaining sufficient density to replenish sink
populations if the sink is outcompeted or otherwise disturbed. Consequently, mutualism persistence is
promoted when cooperators disperse less than defectors. These qualitative predictions could be
examined more quantitatively by altering the model to increase its realism and then incorporating data

for parameter values and predictions.

Community Scale

Community scale models can utilize network theory to explicitly examine the consequences of
interactions that occur between some pairs of populations but not others. These models can ask how the
network structure of ecological interactions affects community stability (Thébault & Fontaine, 2010) and

biodiversity (Bastolla et al., 2009). Other models investigate the development of structured interactions
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by evaluating how coevolution guides the formation of stable interaction network structure (Guimaraes
Jretal., 2011). One key property of networks is their degree of nestedness, which occurs when specialists
interact with a subset of those with which generalists interact. The role of nestedness in mutualistic
communities is controversial, but community stability and biodiversity are often attributed to highly
nested networks (Bastolla et al., 2009; Thébault & Fontaine, 2010).

The relationship between network structure and community stability is supported by plant-
pollinator mutualistic subcommunity networks, which tend to be highly nested (Vazquez et al., 2009).
However, Toju et al. (2015) recently analyzed interactions in three plant-fungal subcommunity network
studies that utilized sequencing methods to detect interactions and found that plant-fungal
subcommunity networks appear to be anti-nested; i.e., specialists interact with subsets of generalists less
frequently than expected by random chance. The authors hypothesized that the degree of anti-
nestedness is negatively correlated with the overlap in fungal host range, which may be due to
interspecific competition or differences in habitat preference. Consequently, there is great need for
community-scale modeling studies that focus on communities containing plant-microbe nutritional
mutualisms in order to understand why these mutualistic subcommunity networks may be anti-nested
and to explore the community-level consequences of anti-nestedness. Specific communities could be
assembled under controlled conditions to parameterize and test these models. In addition, empirical data
for other nutritional mutualisms is needed from diverse natural systems to understand the drivers of

network properties.

Discussion

Mathematical models of mutualism vary along Levins' (1966) dimensions of realism, generality, and
precision, which impact the extent to which data can be integrated. While we advocate for increased

attention to realistic and precise—and hence parameterizable and empirically falsifiable—models, we
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acknowledge the value of conceptual models in exploring the consequences of various simplifying
assumptions. Servedio et al. (2014) describe the utility of such 'proof-of-concept' models in evolutionary
biology and some of the ways in which data can be used in conjunction with models; these types of
integration are mirrored in much of the mutualism modeling to date. Empirical data is commonly used in
model construction and testing all biological levels, ranging from the data-rich genome-informed cell scale
models to the natural history-based population and community scale models. Models that are high in the
generality dimension are typically constructed to explain general features of mutualisms and primarily
use empirical data to justify model assumptions (e.g., (Abbott et al., 2015). These assumptions include
both the exploratory and logistical assumptions that drive the construction of the model as well as the
critical assumptions that the model is seeking to study (Servedio et al., 2014). For example, if the host is
an obligate mutualist, the host population should rapidly decline if the symbiont population drops below
a threshold level (Marco et al., 2009). This is a relatively simple principle, but the choice of threshold level
and rate of host decline should be influenced by empirical studies for that system. If assumptions cannot
be validated prior to model construction, modelers could declare these assumptions and suggest ways in
which they can be empirically validated.

Empirical data can also be readily incorporated into realistic models that only contain parameters
that are well-defined and can be directly measured (e.g., Franklin et al. 2014). These models can be
guantitatively tested and thus in principle the models could be fully falsified. When models fail in some
way, this indicates that one or more assumptions or deductive steps is unsound and prompts further
model development or replacement. We acknowledge that this is an ambitious program, particularly at
the community level where dozens of species are involved, but argue that lessons learned at lower
biological scales can be translated to higher scales. Biological data can inform interconnections between
models at different scales, and in some cases more abstract parameters, such as an individual’s capacity

to abstain from trade (Akgay & Simms, 2011), could potentially be translated into sub-models that only
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contain biologically measurable parameters. We illustrate these principles and highlight avenues for the

integration of data at each scale.

Integrating data into cell scale models

Cell scale models to date have been constructed for the rhizobial symbiosis, but the increasing
number of well-annotated plant and microbial genomes (e.g., arbuscular mycorrhizal fungi, (Kuo et al.,
2013; Tisserant et al., 2013) could be used to formulate cell scale models in other systems (Table 1.2.1).
Rhizobial FBA models have thus far been validated by comparing the objective functions to empirical data
on growth, e.g., maximizing nitrogen fixation versus maximizing biomass production (Resendis-Antonio et
al., 2011), but confirming specific predictions about patterns of metabolism and transport is most
rigorously done by labeling studies (Chen et al., 2011). Which specific hypothesis is being tested affects
which biological scale and thus labeled substrate(s) is most appropriate to use. For example, to test the
predicted carbon-phosphorus exchange rate in a plant-arbuscular mycorrhizal system, radioactive
substrates could be used at an individual scale (e.g., (Zheng et al., 2015). However, testing which metabolic
pathways are active during trade should be performed at a cell scale with stable isotopes because together
with nuclear magnetic resonance or mass spectrometry, they can yield sufficient information on the
positional labeling of metabolites to quantify fluxes through different metabolic and transport routes. If
labeling patterns at steady-state are not informative (e.g., carbon dioxide labeling in autotrophic systems
yields uniform label distribution irrespective of the patterns of metabolic flux), then time-course labeling
data can be used in isotopically dynamic flux analysis to obtain measurements of internal fluxes (Ma et
al., 2014). Dynamic flux analysis methods are an alternative modeling approach that could be used to
explore non-steady-state conditions as well as potential regulatory mechanisms and physiological
adaptation processes (Henson & Hanly, 2014). Finally, there is great potential for using cell scale models

to predict metabolic changes in response to environmental or spatial conditions using individual scale
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data. For example, nodule biomass has been measured in response to light and nutrient availability (Lau
et al., 2012). This data could serve as inputs for a validated cell scale FBA model to predict internal fluxes

and the carbon-nitrogen exchange rate, thus linking the cellular and individual scales.

Integrating data into individual scale models

Many individual scale models are physiological models and contain biologically realistic parameters that
have great potential to be integrated with detailed empirical data (Table 1.2.1), but doing so effectively
requires appropriate quantification. For example, plant photosynthetic rates are a key parameter that
determines the amount of carbon available for the plant to allocate to growth or trade (e.g., Grman et al.
2012). Photosynthetic rates are often quantified at a lower scale by measuring carbon uptake per leaf
area and extrapolating to the individual scale, but this may grossly overestimate or underestimate carbon
uptake depending on leaf age, angles, and self-shading. To avoid this scaling discrepancy, nutrient fluxes
should be measured at an individual scale whenever possible, such as using photosynthetic chambers to
measure whole-plant carbon uptake (Kolling et al., 2015). Similarly, predictions concerning carbon-
nutrient exchange rates are best tested at an individual scale with isotopic labeling, as described for cell
scale models. However, measurements at the individual scale are not always appropriate for testing
model predictions. For example, predictions of allocation strategies address metabolism within an
individual and thus may require cell scale measurements (e.g., (Nord et al., 2011). Conversely, predictions
regarding mutualism stability are more suited to population scale testing because stability timescales

exceed the lifespan of a single individual.

Integrating data into population scale models

Detailed empirical data is rarely explicitly incorporated into population scale models of mutualism, though

this type of integration has a long history in predator-prey and competitive interactions (Laska & Wootton,
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1998; Wootton & Emmerson, 2005). Interaction coefficients are key model components (Table 1.2.1), but
are challenging to quantitatively test because they are not directly observable. The relative and qualitative
strength of interaction coefficients could be assessed using the fairly simple method of growing different
sets of interacting populations and estimating fitness. More quantitative estimations of interaction
coefficients can be obtained by measuring intrinsic growth rate and population density in response to a
range of partner densities (response-surface experimental design; (Inouye, 2001) followed by use of a
general population dynamics model that mathematically relates these measurements to the interaction
coefficient. Laska and Wootton (1998) evaluated the accuracy and empirical demand of four such models
and found that the different models approach the idea of an interaction coefficient in different ways,
including total population and per capita effects. Many population scale parameters (e.g., intrinsic growth
rate) are best measured at a population scale, but some may require an individual scale approach. For
example, population density can be measured at a population scale as the number of individuals in the
population, but this approach may not be feasible for all systems (e.g., mycorrhizal fungi). Instead,
modelers may recommend using the average individual biomass to estimate the population size
(Neuhauser & Fargione, 2004) if the model applies to both interpretations (e.g., number of individuals and

population biomass).

Integrating data into community scale models

To date, most community scale nutritional mutualism models were developed using assumptions derived
from plant-animal mutualisms (e.g., plant-pollinators, (Georgelin & Loeuille, 2016). While some
assumptions may hold true across mutualism types (e.g., only some hosts are obligate mutualists), others
may differ in important ways. To have confidence in model predictions for a different system, it is
important to empirically validate model components that may vary across systems, such as the cost-

benefit ratios and the rates of dispersal. While independent validation of assumptions and predictions of
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a model in many systems may be the ultimate goal, a more efficient approach might be to perform
sensitivity analysis on the model component(s) in question. For example, this analysis may reveal that only
the cost-benefit ratios in each system need to be measured in order to estimate differences in model
predictions. Interaction coefficients are also key components in community scale models (Table 1.2.1) and
can be quantitatively estimated in an approach similar to that proposed for population scale models (Laska
& Wootton, 1998). At a community scale, the population of each species should be measured in response
to independent fluctuations in the abundance of the other guilds. Alternatively, an appropriate allometric
relationship, such as the correlation between interaction strength and body size, a metabolic rate, or
another lower scale measurement, could be identified and then used as a proxy (Wootton & Emmerson,
2005). Although conducting such experiments in nature would integrate over all naturally occurring
sources of variation, more rapid progress might be made by establishing carefully considered mesocosms
that capture key aspects of the full diversity but allow for more precise control, measurement, and

replication.

Conclusion

Parameterizable mathematical models can yield answers to fundamental questions about nutritional
mutualism that are more comprehensive, specific, and mechanistic because they can examine questions
from different biological perspectives. Together, data and modeling at different scales helps clarify how
mutualisms function, both proximately through molecular and physiological mechanisms as well as
ultimately through the selection pressures that shape evolutionary dynamics. The ecological implications
of such nutrient exchanges can be dramatic—because individuals are more willing to trade when nutrients
are scarce, mutualistic partners can persist in environments that are too harsh without trade (Neuhauser
& Fargione, 2004; De Mazancourt & Schwartz, 2010). However, traits that attract potential partners can

inadvertently attract antagonists, so community stability requires these positive and negative interactions
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to be balanced (Lopez-Raez et al., 2011; Georgelin & Loeuille, 2016). In addition, modeling at different
scales reveals that limited dispersal can promote mutualism persistence because it enables cooperators
to cluster, which increases both partners’ fitness and maintains population densities that enable
persistence in the face of competitively superior defectors (Yamamura et al., 2004; Abbott et al., 2015).
Furthermore, in plant-microbe nutritional mutualisms characterized to date, spatially structured
interactions lead to specialists interacting with subsets of generalists less frequently than expected by
chance, which may be due to interspecific competition affecting the range of potential partners (Toju et
al., 2015).

Although ‘proof-of-concept’ models can be used to generate conceptual insights, data integration
greatly strengthens models’ predictive power by providing a means for rigorous, quantitative testing of
the hypotheses they embody. We believe that the modeling and data integration approaches advocated
here will deepen our understanding of a broad range of mutualistic systems. For example, models at
different biological scales can give complementary insights into how nutrient availability, structured
interactions, and other factors influence mutualism persistence and function. These scales range from the
enzymatic reactions that underpin mutualism to the role of mutualism at community and ecosystem
scales. We envision a future in which mathematical models are frequently developed with anticipation of
empirical validation and are used iteratively to enable an integrative understanding of these crucial

species interactions.
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Box 1 - Methods in Cell Scale Models
Cell scale models representing an organism’s metabolism begin as systems of rate equations (i.e., coupled
linear ordinary differential equations), with each equation representing the rate of change of the level of
a metabolite in the system in terms of the rates of the biochemical and transport reactions that affect it
(Palsson, 2015). The elemental composition of each metabolite is included, so that balances of carbon and
mineral nutrients are quantified. Genome scale models covering the complete potential metabolic
network of a cell are assembled using published literature along with annotated genomic and protein
databases (Resendis-Antonio et al., 2007; Rodriguez-Llorente et al., 2009). In the steady-state, flux
balance analysis (FBA) models can be used to investigate the potential of a metabolic network for growth,
maintenance, or production of desired compounds when the system is constrained by substrate inputs
and a hypothesized “objective” function, which is maximized or minimized. Because FBA models contain
hundreds to thousands of reactions and comparatively few measured parameters (e.g., growth rate), if
the system was not constrained by an objective function, there would be an almost unlimited range of
possible metabolic patterns compatible with the measurements.

The most commonly assumed objective function in cell scale models of any system is maximal
growth under carbon-limiting conditions, which corresponds to maximal substrate use efficiency for the

system as a whole (Chen et al., 2011). However, this objective function is unsuitable for organisms or
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organs that cease growing at maturity. This is an important distinction in plant-microbe mutualisms
because rhizobia occupy nodules that are either indeterminate or determinate, and thus either grow
continuously or cease growing at maturity, respectively (Udvardi & Poole, 2013). Consequently, either the
objective function needs to be specific for the type of nodule the rhizobia inhabits, or the objective
function needs to be designed to not depend on the rhizobia growing through maturity. Cell scale models
that use FBA commonly seek to identify an appropriate objective function to constrain the metabolic
patterns for the system (Resendis-Antonio et al., 2011; Zhao et al., 2012). This can be used to focus the
modeling results on processes of interest. For example, the objective function maximizing nitrogen
fixation by the rhizobial symbiont and its transfer to the plant in return for a given amount of carbon-
containing metabolites could be used in future modeling efforts to reveal the maximal carbon-nitrogen

exchange rate, and the genes and pathway activities needed to realize it.

Box 2 - Methods in Individual Scale Models

Modeling mutualistic interactions on an individual scale is often conducted using game theory, which
explores situations where the fitness costs and benefits of a particular strategy depend on the prevalence
of other interacting strategies. Stemming from game theory is biological market theory, which emphasizes
market mechanisms such as the ability to select partners (Noé & Hammerstein, 1994) and establish
exchange rates based on bargaining (Akcay & Roughgarden, 2007; Akcay & Simms, 2011). Game theory
models typically have at their core a payoff matrix describing the fitness outcome from interacting with a
cooperator or defector that is derived from the costs and benefits of each type of interaction (Yamamura
et al., 2004); continuous strategies can also be modeled with a matrix of functions rather than fixed values
(Doebeli & Knowlton, 1998; Doebeli & Hauert, 2005). Mutualisms can be modeled using a variety of
games, including the Prisoner’s Dilemma (Doebeli & Knowlton, 1998) and Public Goods Games (Archetti

& Scheuring, 2013). Some individual scale models use optimality assumptions derived from evolutionary
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reasoning to solve instantaneous decision problems with empirically defined parameters. These
parameters are often physiological descriptions, such as the ability of each partner to obtain or use
nutrients, which can be interpreted in terms of nutrient uptake and exchange rates (Cowden & Peterson,
2009; Franklin et al., 2014). In some cases, the assumption that bargaining leads to a Nash equilibrium,
where the product of partners’ fitness is maximized, is used as a constraint to allow a unique solution for

a set of equations (Grman et al., 2012).

Box 3 - Methods in Population Scale Models

Most population scale mutualism models take a population dynamics mathematical approach by tracking
species distribution and abundance through consideration of births, deaths, immigration, and emigration.
Population dynamics can be captured using ordinary differential equations or discrete-time models, and
adaptive dynamics extends these equations by enabling particular ecological parameters to evolve
(Dercole & Rinaldi, 2008). Many population scale models modify Lotka-Volterra predator-prey models to
include positive interaction coefficients due to resource exchange (Vandermeer & Boucher, 1978;
Neuhauser & Fargione, 2004). Other population scale models build on resource ratio theory, i.e., R*-style
models (Tilman, 1982), to explicitly track the depletion and exchange of resources. These models predict
whether coexistence is feasible based on the availability of resources and nutritive demands of each
species, thus providing an additional level of mechanistic detail that can be empirically measured (De
Mazancourt & Schwartz, 2010). Spatially structured interactions can be modeled through the use of dual-
lattice structure (Parker, 1999) or a patch environment (Abbott et al., 2015). Under either mechanism,

populations can interact based on dispersal distances and/or rates within a population dynamics model.

Box 4 - Methods in Community Scale Models

Population dynamics and/or network theory methods are typically used to answer questions related to
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community stability and biodiversity (Golinski, 2006; Bascompte, 2009). Both methods rely on defining
the types of interactions that connect pairs of species. Population dynamics methods often approach
community scale questions by examining how the type and magnitude of interactions affect rates of
change in population abundance in the presence of biotic and abiotic factors. At the community scale, this
includes interactions between all species (Bachelot et al., 2015). Furthermore, an adaptive dynamics
approach, where population dynamics equations are incorporated into evolutionary models, can analyze
the evolutionary basis for community assembly and diversity (Georgelin & Loeuille, 2016).

In an ecological network framework, the interactions connecting pairs of species can be visualized
with each node representing a population and the links between these nodes representing interactions
between species. Network theory methods analyze the interplay between interaction characteristics and
varying network structure. This approach can use population dynamics models to represent links between
two species, but in addition to including one equation per species (McQuaid & Britton, 2013), these
models often include one equation per link in the community network to study network structure (Bastolla
et al., 2009). Consequently, by altering the network structure, the sum of interactions between species is
changed. These models often examine network characteristics such as degree distribution (the number
of links a given species is associated with) and nestedness, which occurs when specialists interact with a
subset of those with which generalists interact (Fontaine et al., 2011). Community network models can
also be used in adaptive evolutionary frameworks with a relevant optimization criterion (e.g., maximize
species abundance) to measure properties associated with optimized networks, such as network

resilience or nestedness (Suweis et al., 2013).
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CHAPTER 2

Steady-state metabolic flux analysis
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PREFACE

The Shachar-Hill lab is interested in rigorously testing the topology of networks in central metabolism and
guantitatively analyzing how their fluxes are influenced by a variety of circumstances. Before | joined the
lab, they had already started investigating why Camelina sativa embryos had poor carbon use efficiency
and how transgenic C. sativa lines metabolically respond to the accumulation of medium-chain fatty acids.
To answer these questions, my lab performed labeling experiments and other analyses on developing C.
sativa embryos to obtain the data necessary for *C-derived metabolic flux analysis (MFA). MFA is largely
centered on the use of an optimization program, where the researcher proposes a network topology and
provides data that the program can use to calculate the most likely flux values for that network. |
continued the computational MFA work that had been started by Rahul R. Deshpande (RD) and have
incorporated other analyses to strengthen our conclusions.

In Section 2.1, | present the results of my contributions to using MFA on embryos grown at three
light levels to understand why C. sativa embryos have low carbon use efficiency. In Section 2.2, | present
the current draft of our experimental and modeling manuscript, where we Identified metabolic changes
in C. sativa embryos that had been engineered to accumulate medium-chain fatty acids.

These investigations highlight the potential of analytical models to reveal effects in complex

metabolic networks due to environmental and genetic changes.
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SECTION 2.1

Analysis of low biosynthetic efficiency in an oilseed
using Metabolic Flux Analysis

This section includes text being drafted for the manuscript:
Carey LM, TJ Clark, RR Deshpande, JC Cocuron, EK Rustad, and Y Shachar-Hill. Analysis of low

biosynthetic efficiency in an oilseed using Metabolic Flux Analysis.
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Preface

When | joined the Shachar-Hill lab, my lab mates had already completed the experiments needed to use
MFA to analyze carbon use efficiency in Camelina sativa developing embryos. They had also already found
strong evidence that the inefficiency was due to a high oxidative pentose phosphate (OPP)
decarboxylation flux.

My initial role was to perform MFA only on the four transgenic C. sativa lines that were engineered
to accumulate medium-chain fatty acids. Due to some challenges in the transgenic MFA work (described
in the Section 2.2 Preface), | added several constraints to our MFA model and re-analyzed the data for
investigating the low carbon use efficiency. These constraints included 1) preventing the model from
distinguishing between glucose substrates in the uptake reaction, 2) ensuring there is a mass balance of
how much nitrogen the embryos are predicted to take up and use, and 3) loosely restricting the predicted
stoichiometry of the glyceryl and acyl precursors synthesized to be consistent with that of the dominant
lipid class in the embryo (i.e., triacylglycerol, which has a 1:3 ratio).

In addition to these constraints, | devised a method to determine flux confidence intervals for all
embryo sets (wild-type under three light levels and four transgenics) using Monte Carlo sampling. Briefly,
| modified an existing Perl script to execute the MFA program and, for each embryo set, | used MATLAB
to generate potential starting points, Excel to generate pseudo datasets, a batch server to write and
execute the MFA program scripts in parallel, and Python to collect the necessary output data. Even with
the constraints, the model had a high chance of not being able to refine the stating point fluxes because
the network was so complex. Therefore, | had to use 9,000 to 130,000 starting points per embryo set to
generate at least 100 successful refinements to verify the global best fit was obtained. The best fit told us
the flux values that best simultaneously explained the data and network. | then used the starting points
for the top 100 fits per embryo set to model 50 pseudo datasets to obtain the range of flux predictions

that could be derived from reasonable variations in our data.
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RD had tested different network topologies before | joined the lab, but because | revised the
model to have additional constraints, | re-tested the proposed topologies to verify our network was still
supported by our method. The topologies | tested included if the hexose phosphate pool used in the OPP
reaction was cytoplasmic or plastidic, and if there was an active rubisco bypass. | tested these topologies
by comparing, respectively, the model fits with either sub-cellular pool location, and with and without the
bypass.

In this section, | present one motivation for investigating carbon use efficiency in seeds, more
details on how | contributed to strengthening our MFA model, and the resulting findings from my analyses

on C. sativa embryos grown under three light levels.
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Introduction

There is interest in engineering seeds to have greater biomass because larger seeds have been found to
produce seedlings that grow faster or larger than those from smaller seeds (Howe & Richter, 1982;
Stanton, 1984), and various seed compounds are of significant economic value to pharmaceutical and
chemical companies (Howard, 2009; Howard, 2015). One factor that influences seed size is carbon use
efficiency, i.e., the percentage of carbon received by the seed from the mother plant that is converted
into biomass (Chen & Shachar-Hill, 2012). Qil seeds in particular are at risk for having low carbon use
efficiency because their oil (e.g., triacylglycerol) requires substantial production of fatty acids from acetyl
CoA, which is made from the decarboxylation of pyruvate (Bates et al., 2013). Consequently, a third of the
glycolytic carbon used for fatty acid synthesis is converted into carbon dioxide, and oilseed Brassica napus
has been found to accumulate 2000-fold more carbon dioxide in its developing seeds in comparison to
ambient air or concentrations found in leaves (Goffman et al., 2004).

Internally produced carbon dioxide can be recovered by enzymes such as phosphoenolpyruvate
carboxylase, which synthesizes oxaloacetate (Vennesland et al., 1954). Green seeds have active
photosystems (Eastmond et al., 1996) and thus rubisco can operate without the Calvin cycle to assimilate
carbon into triose precursors from ribulose-1,5-bisphosphate in a metabolic route known as the rubisco
bypass (Schwender et al., 2004a). The bypass likely contributes to green seeds generally having greater
carbon use efficiency than other seeds (Chen & Shachar-Hill, 2012) because the bypass allows 40% less
carbon dioxide to be lost during fatty acid synthesis (Schwender et al., 2004a). However, Camelina sativa,
a promising oilseed crop (Moser, 2010), has unusually low carbon use efficiency for a green seed (Chen &
Shachar-Hill, 2012), which could be due to low rubisco activity, futile carbon cycling, or other deficiencies.
The effects of different metabolic features on seed efficiencies have been assessed in maize (Alonso et
al., 2011) and brassica (Schwender et al., 2006) by quantifying central metabolism fluxes with steady-state

13C metabolic flux analysis (MFA).
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The process by which MFA operates and its potential utility in rationally engineering plant systems
have been described in recent reviews (Schwender et al., 2004b; Ratcliffe & Shachar-Hill, 2006; Shachar-
Hill, 2013). Briefly, MFA takes a mass balance approach to track how carbon moves through a network of
nonlinear biochemical reactions, which is depicted as a stoichiometric matrix. In addition to this matrix,
the model requires definitions of how the carbon moves within each reaction. For example, in the
pyruvate decarboxylation reaction, the C1 carbon of pyruvate is removed to form carbon dioxide, while
the C2-C3 carbons become part of acetyl CoA. A computer program (e.g., 13C-FLUX) uses the metabolic
network and relevant experimental data to quantify the network fluxes that best fit the model.
Experimental data inputs for MFA models include substrate uptake and metabolite production rates, as
well as NMR and/or GC-MS measurements of these compounds. Various substrates, such as *C-glucose,
Bc-glutamine, and '3C-alanine, can be used as the label source and give different information. For
example, *C-glucose can be used by glycolytic enzymes in the cytosol to synthesize hexose- or triose-
phosphates that are transported into the plastid and used in glycolysis or the pentose phosphate pathway
(Plaxton, 1996; Kruger & von Schaewen, 2003). On the other hand, 3C-glutamine enters the mitochondrial
tricarboxylic acid cycle by being converted into glutamate and then alpha-ketoglutarate, while 3C-alanine
is converted into cytosolic pyruvate, which can serve as a precursor for plastidic or mitochondrial reactions
(Wightman & Forest, 1978). Because of these different capabilities, label movement through parallel
pathways can be more rigorously assessed by using multiple, distinct substrates to obtain the MFA data
(Schwender et al., 2004b).

In this work, we used MFA to investigate the low carbon conversion efficiency in developing C
sativa seeds. We first identified metabolic sources of high CO, emission that could contribute to the low
efficiency by performing MFA with four independent labeling treatments: U-3C glutamine, U-3C alanine,
1-13C glucose, and 80% 1,2, 20% U-'3C glucose. We found that the oxidative pentose phosphate (OPP)

decarboxylation reaction was highly active and was responsible for most of the CO; produced. Next, we
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tested how strongly the OPP flux correlates with the carbon use efficiency by performing MFA on C. sativa
embryos grown under dark and high light (50 UE) because embryos grown under these conditions are
known to have lower and higher, respectively, efficiencies than embryos grown under physiological light
(10 pE in the seed) (Chen & Shachar-Hill, 2012). This supported our conclusion that OPP decarboxylation

is the major cause of C. sativa embryos having low carbon use efficiency.

Results & Discussion

Potential network topologies were quantitatively tested

Some metabolites (e.g., histidine, aromatic amino acids) are known to be synthesized in the plastid from
pentose phosphate pathway intermediates (Umbarger, 1978; Maeda & Dudareva, 2012), but there has
been uncertainty as to the subcellular location of the oxidative and nonoxidative reactions of this
pathway. Previous studies have found evidence that at least some of the reactions are present in both the
cytosol and plastid (Kruger & von Schaewen, 2003), and that the reversible nonoxidative reactions foster
rapid exchange of pathway intermediates between the cytosol and plastid (Ratcliffe & Shachar-Hill, 2006).
Furthermore, Arabidopsis thaliana, a close relative of C sativa, has been found to have phosphate-
translocator proteins capable of transporting pentose phosphates into the plastid (Kruger & von
Schaewen, 2003). Consequently, our model placed the nonoxidative reactions in the plastid to account
for plastid-specific metabolite synthesis.

We tested whether OPP decarboxylation uses cytoplasmic or plastidic hexose phosphate as a
substrate to synthesize plastidic ribulose 5-phosphate by comparing the model fits with either substrate.
The 50 best model fits when the oxidative reactions were in the plastid were all at least 50% better than
the best fit when the reactions were in the cytoplast (Fig 2.1.1a-b); therefore, we concluded that there
was insufficient evidence for a significant cytosolic pentose phosphate pathway in these embryos.

Due to its observed importance in green seeds such as rapeseed (Schwender et al., 2004a), we
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Figure 2.1.1. Testing alternative network topologies. (a- b) The sub-cellular location of the OPP
decarboxylation hexose phosphate substrate was tested in C. sativa embryos grown under in planta light
by determining the model fit (i.e., final residuum) when the substrate was in the plastid (a) or cytoplasm
(b). We found that the final residuum of these tests was 1804 and 3790, respectively. (a, c) The presence
of an active rubisco bypass was tested in embryos grown under in planta (a, c) and high light (d, e). We
found that the final residuum without the bypass (a, d) was 1804 and 2601, and was 1794 and 3845 with
the bypass (c, €) in the embryos grown under in planta and high light conditions, respectively.

tested if there was evidence for the rubisco bypass operating in developing C sativa embryos by comparing
model fits with and without this reaction as an irreversible, free flux. In the rubisco bypass, carbon dioxide
is added to the second carbon of ribulose 5-phosphate and results in two triose phosphates. At
physiological and high light, permitting carbon flow through the rubisco bypass improved model fit by up

to 5% (Fig 2.1.1), which could be explained by the model containing an extra free parameter. Together

with the experimental results, we concluded that there was insufficient evidence for a significant rubisco
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bypass flux in these embryos.

Most of the CO; in C. sativa embryos was produced via OPP decarboxylation

Most of the substrate carbon was taken up as glucose. MFA revealed that nearly all of this carbon was
transported to the plastid as hexose phosphate and used for OPP decarboxylation (Fig 2.1.2a). The
remaining pentose phosphate reactions led to a substantial production of hexoses, which were cycled
back into the OPP decarboxylation reaction, and trioses, which were primarily converted into hexoses and
then cycled into the OPP. The cycling of the carbon in this way led to an OPP decarboxylation flux of over
38,000 nmol C/embryo/day (Fig 2.1.2a). Because the decarboxylation reaction converts 1 of the 6 hexose
phosphate carbons into CO,, this high flux resulted in 86% of the total CO, produced (Fig 2.1.3a). In

comparison, the TCA and fatty acid synthesis decarboxylations only accounted for 13% of the CO,.

The OPP flux is strongly correlated with inefficiencies in carbon use

As expected from the differences in embryo growth rates and carbon conversion efficiencies, as
light availability increased, the developing embryos had higher net fluxes toward synthesizing
carbohydrates, amino acids, and fatty acids, as well as decreased carbon efflux (Fig 2.1.2). However, when
these fluxes are normalized by total carbon uptake, we can see that the embryos use similar proportions
of their carbon for synthesizing biomass products (Table 2.1.51). In contrast, on average, the proportions
of CO; efflux varied by 24% across the growth conditions, and the pentose phosphate reactions varied by
at least 90%. The OPP decarboxylation flux increased from 415% of the total carbon in the inefficient dark
embryos to 237% in the efficient high light embryos. This supports the hypothesis that OPP
decarboxylation flux greatly influences the observed carbon use efficiency. We used linear regression to
quantify how strongly the OPP flux and efficiency are correlated in the three light levels (Fig 2.1.3b). We

found this correlation to explain 89% of the variation in carbon use efficiency. Consequently, we propose
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Figure 2.1.2. C. sativa flux maps showing total carbon flux.
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Figure 2.1.2 (cont’d). C. sativa flux maps showing total carbon flux. Embryos were cultured for 6-10 days
with U-13C alanine, U-13C glutamine, 1-13C glucose , or 80% 1,2, 20% U-13C glucose to obtain labeling data
to quantify metabolic fluxes by 3C-MFA for embryos grown under (a) in planta, (b) dark, and (c) high light
conditions. Arrow sizes correlate with flux intensity and values are in units of nmol C/embryo/day. Values
show the average net flux £ 90% confidence interval as determined from the 20 best fits derived from
pseudo datasets.

that engineering C. sativa seeds to have decreased OPP decarboxylation activity will increase the seed

size and oil content.

Methods

Model construction and constraints

The four labeling treatments were integrated into the MFA model by constructing four identical metabolic
networks, each fitted to the data for one set of labeling measurements. By constraining the corresponding

reactions for each network to be equal, the model could determine fluxes that best fit all four treatments
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Figure 2.1.3. OPP decarboxylation produced most of the CO, and largely contributed to poor carbon use
efficiency. (a) The proportion of CO,, as determined by MFA, that is produced by OPP (blue), TCA cycle
(green), fatty acid synthesis (red), and other (purple) decarboxylation reactions. (b) The proportion of
embryo carbon uptake that was used for biomass production was determined experimentally and the OPP
flux was determined by MFA and normalized by total carbon uptake. The correlation was analyzed with
linear regression.

(Methods S1). The 80% 1,2, 20% U-'3C glucose treatment required two parallel glucose influx reactions.
These parallel reactions were further constrained to be within 5% of the treatment ratio (i.e., 4:1) to
disallow discrimination between the two glucose substrates. A network nitrogen balance was enforced by

constraining the predicted total nitrogenous compound production (i.e., the sum of amino acid

production fluxes, scaled by their nitrogen contents) to be within 15% of the nitrogen uptake (i.e., from
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glutamine and alanine).

Select reactions were also constrained to better reflect biological restrictions or measurements.
First, the biologically irreversible reactions, such as decarboxylase and kinase reactions, were constrained
to have net fluxes greater than or equal to zero, and an exchange flux equal to zero. Second, to
accommodate observed glycerolipid structures, the ratio of glyceraldehyde 3-phosphate to total (i.e.,
cytosolic and plastidic) acyl-CoA production fluxes was constrained to be within 30% of the measured
glyceryl:acyl moieties ratio. Lastly, for fluxes that were experimentally derived (e.g., substrate influx,

amino acid production), the predicted fluxes were constrained to be within 50% of the measured values.

Quantifying fluxes and their uncertainty

Metabolic fluxes were quantified using the 13C-FLUX software (Wiechert et al., 2001; Wiechert et al.,
2015). Initial starting points were randomly generated with MATLAB R2016a to span a region with radius
representing 10% of the total carbon influx surrounding the algebraic center of feasible space or
previously analyzed optima. Starting points were optimized with the Donlp2 program, where model fit
was quantified by the residuum; i.e., the sum of squared differences between measured and predicted
parameters, with deviations scaled by the measured standard deviation to ensure precise data weigh
more heavily than scattered data. The residua of at least 100 optima per light level were analyzed to
ensure a global minimum was reached (Fig 2.1.1), and the starting points corresponding to the 20 lowest
residua were identified. 50 pseudo datasets were generated with Monte Carlo sampling using the average
and standard deviation of all measurements. The 20 starting points were optimized with the 50 pseudo
datasets to find the best fit flux values per pseudo dataset. These optima were used to calculate the

averages and confidence intervals for the flux values (Fig 2.1.2).

Supporting Information

Supplemental File 3 — Chapter 2 Methods S1
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Table 2.1.51. Net fluxes normalized by total carbon uptake

flux dark physioloigcal high
Vgl 0.14+0.00 0.14+0.00 0.12+0.00
Vg2 0.66+0.00 0.56+0.02 0.53+0.01
Valal 0.01+0.00 0.01+0.00 0.03+0.00
Va 0.03+0.00 0.03+0.00 0.06+0.00
Vsuc 0.16+£0.00 0.26+0.02  0.25+0.01
Vsucl 0.16£0.00 0.26+0.02 0.25+0.01
Vhk1l 0.88+0.00 0.82+0.01 0.78+0.01
Vhk2 0.08+0.00 0.13+0.01 0.13+0.01
Vald -0.56+0.03 -0.17+0.09 0.16+0.07
Vglyco 0.17+0.01 0.23+0.01  0.33+0.00
Vfasa 0.00£0.00 0.00+0.00 0.01+0.00
Vfasb 0.00£0.00 0.00+0.00 0.01+0.00
Vpk 0.07+£0.00 0.05+0.00 0.07+0.00
Vg3p 0.01+0.00 0.01+0.00 0.01+0.00
Vel -0.03+0.04 -0.02+0.03 -0.02+0.04
Vhpt 1.45+0.04 1.06+0.09 0.63+0.07
Valdp 0.05+0.03 -0.21+0.10 -0.20+0.06
Vpkp 0.10£0.01 0.16+0.01 0.26+0.00
Vstsp 0.02+0.00 0.02+0.00 0.04+0.00
Vpdhp 0.13+0.01 0.19+0.01 0.28+0.00
Vfasl 0.09+0.01 0.13+0.00 0.18+0.00
Vpppl 2.30+0.03 2.08+0.03 1.32+0.03
Vppp2 2.07+0.02 1.87+£0.02 1.17+£0.02
Vppp3 2.30+£0.03 2.08+0.03 1.32+0.03
Vopp 4.15+0.05 3.74+£0.05 2.37+0.05
Vakg 0.01+£+0.00 0.02+0.00 0.03+0.00
Vcs 0.08+0.00 0.06+0.00 0.08+0.00
Vca 0.07+£0.00 0.05+0.00 0.06+0.00
Vsfal 0.03+0.00 0.03+0.00 0.04+0.00
Vsfa2 0.03+0.00 0.03+0.00 0.04+0.00
Vfum1 0.03+0.00 0.02+0.00 0.03+0.00
Vfum?2 0.03+0.00 0.02+0.00 0.03+0.00
Vme 0.01+0.00 0.02+0.00 0.00+0.00
Vpepc 0.01+0.00 0.02+0.00 0.00+0.00
Vacl 0.00£0.00 0.01+0.00 0.01+0.00
Vpyrt 0.04+0.00 0.04+0.00 0.05+0.00
Vco2 0.77+0.01 0.72+0.01 0.53+0.01
Vwall 0.06+£0.00 0.06+0.00 0.12+0.00
Vsta 0.02+0.00 0.02+0.00 0.04+0.00
Vglxn 0.06+£0.04 0.05+0.03 0.08+0.04
Vglxu -0.05+0.04 -0.04+0.03 -0.07+0.04
Vglueff 0.01£+0.00 0.01+0.00 0.02+0.00
Vasp 0.01+0.00 0.01+0.00 0.02+0.00
Vaspeff 0.00+0.00 0.00+0.00 0.01+0.00
Vser 0.00£0.00 0.01+0.00 0.01+0.00
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Table 2.1.51 (cont’d)

flux dark physiological high
Vsereff 0% £ 0% 0% + 0% 0% + 0%
Vgly 0% £ 0% 0% £ 0% 1% + 0%
Vglyeff 0% £ 0% 0% + 0% 0% + 0%
Vcheff 0% + 0% 0% £ 0% 0% £ 0%
Vala -1% £ 0% -1% + 0% -2% £ 0%
Valaeff 0% £ 0% 0% + 0% 0% + 0%
Varol 0% 0% 0% £ 0% 0% + 0%
Varo2 0% + 0% 0% + 0% 0% + 0%
Vakiv 1% + 0% 1% + 0% 2% £ 0%
Vleu 1% + 0% 1% + 0% 1% + 0%
Vleueff 0% +0% 1% + 0% 1% + 0%
Vthr 1% + 0% 1% + 0% 1% + 0%
Vthrald 0% + 0% 0% £ 0% 0% + 0%
Vthreff 0% £ 0% 0% + 0% 0% + 0%
Vile 0% £ 0% 0% £ 0% 1% + 0%
Vileeff 0% + 0% 0% + 0% 1% + 0%
Vval 0% £ 0% 0% £ 0% 1% + 0%
Vvaleff 0% £ 0% 0% + 0% 1% + 0%
Vphe 0% £ 0% 0% £ 0% 1% + 0%
Vpheeff 0% +0% 0% + 0% 1% + 0%
Vtyr 0% £ 0% 0% £ 0% 1% + 0%
Viyreff 0% + 0% 0% + 0% 0% + 0%
Vpro 0% + 0% 0% + 0% 1% £ 0%
Vproeff 0% 0% 0% + 0% 1% £ 0%
Vlysl 0% + 0% 0% + 0% 1% + 0%
Vlyseff 0% + 0% 0% + 0% 1% £ 0%
Vhis 0% + 0% 0% + 0% 0% + 0%
Vhiseff 0% +0% 0% £ 0% 0% £ 0%
Vacoa 0% + 0% 0% + 0% 0% + 0%
Vmet 0% + 0% 0% £ 0% 0% £ 0%
Vmeteff 0% £ 0% 0% + 0% 0% + 0%
Varg 0% + 0% 1% + 0% 1% + 0%
Vargeff 0% +0% 1% + 0% 1% + 0%

Net fluxes were determined with 3C-MFA for C. sativa developing embryos grown under dark,
physiological (i.e., in planta), and high light conditions. Values are the average proportions of total carbon
uptake that is used in that flux £ 90% confidence intervals as determined from the 20 best fits derived
from pseudo datasets.
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Section 2.2

The effects of transgenic alteration of oil composition on
central metabolic fluxes in developing oilseeds

This section includes a draft of the manuscript:
Clark TJ, LM Carey, RR Deshpande, JC Cocuron, EK Rustad, and Y Shachar-Hill. The effects of transgenic
alteration of oil composition on central metabolic fluxes in developing oilseed.
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Preface

While discovering that Camelina sativa embryos have poor carbon use efficiency due to a high oxidative
pentose phosphate flux (Section 2.1), my lab sought to use the developed 3*C-metabolic flux analysis
(MFA) method to investigate additional metabolic traits. A *C-acetate study on Brassica napus found that
the label in transgenic embryos with increased medium-chain fatty acid content accumulated in water-
soluble compounds rather than in the lipids as expected from the wildtype (Eccleston & Ohlrogge, 1998).
Consequently, the authors hypothesized that this was due to the transgenic embryos having higher B-
oxidation and glyoxylate cycle fluxes. My lab decided to test and quantify these flux increases using 3C-
MFA and transgenic C. sativa embryos with higher medium chain fatty acid contents.

Initially, my role in the MFA projects was to simply perform MFA on the transgenic lines using the
existing model and experimental data that other lab members—Ied by Lisa M Carey (LC)—had generated.
However, the model was not able to determine fluxes with data from the transgenic lines. YSH and |
thought the model failures could be due to the model making infeasible predictions (e.g., the
stoichiometry of the predicted products may have violated the network structure, thus the prediction
must have been wrong). To keep the model predictions in feasible space, | added the constraints described
in Section 2.1. Adding those constraints enabled the model to successfully determine fluxes for the
transgenic lines, but did not significantly change its predictions for the wild-type embryos, so to be
consistent, we chose to use the revised model for both MFA studies. As with the wild-type study (Section
2.1), l used the refined MFA model and the Monte Carlo method to determine flux maps with confidence
intervals for each type of embryo.

| tested if there was an increase in the glyoxylate cycle flux in response to the transgenic medium-
chain fatty acids by adding the glyoxylate cycle reactions to the model. | then compared the fits of the
model with this cycle to the model without. Adding a free parameter inherently improves model fit, but

only one of the tested transgenics showed a potentially significant improvement (8%). For that transgenic,
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| further tested if there was an increase in the glyoxylate cycle flux by comparing the values of all fluxes
determined by the models. | found no significant differences in the flux values, so we concluded that there
was not sufficient evidence to support there being an increase in glyoxylate cycle flux in response to
medium-chain fatty acids in these embryos.

In addition to the MFA, | also analyzed the transgenic findings with principal component analysis
(PCA), hierarchical clustering analysis (HCA), and k-means clustering using the embryo biological replicates
for most data-driven analyses, or pseudo replicates for flux or combinatorial data-driven analyses.

My PCA and HCA tests included testing how the embryos cluster in response to 1) the labeling
data factorially (i.e., all substrates, all but one, all but two, etc.), 2) the net fluxes normalized by total
substrate unit uptake or by total carbon uptake, and 3) the fatty acid species compositions. | also tested
4) different methods of dealing with missing data (e.g., exclude that data for all replicates, generate
pseudo data using the MATLAB alternating least squares algorithm), 5) if the distance matrix could be
manually created using confidence intervals for the distance between an object and itself (which is
traditionally assumed to be zero), and 6) different distance algorithms and other MATLAB parameters
(e.g., seuclidean linkage metric, Ward linkage method).

The manuscript on this project will include the experimental findings, MFA-determined fluxes,
and PCA and HCA analyses. LC was responsible for the experimental work and | was responsible for the
computational work. | am taking lead on the manuscript writing and will serve as first-author. The current
draft of this manuscript is included in this section. LC drafted the experimental methods, and Figures 1

and S2, while | drafted the remaining text, figures, and tables.
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Introduction

Either directly or indirectly as food for animals, plant seed crops provide the majority of human caloric
intake; of these, rice, maize, wheat, and soybeans are by far the largest (Dyer et al., 2008). During
development, seeds receive carbon and nitrogen from the mother plant and convert these nutrients into
biomass products, predominately carbohydrates, proteins, and triacylglycerols (TAG or oil; Borisjuk et al.,
2004; Weber et al., 2005). There is great interest in designing these oils to be compatible with automotive
applications because biodiesel use results in lower net emission of CO, and can replace petroleum, whose
availability will become limited in the future (Durrett et al., 2008; Gupta et al., 2010; Kallio et al., 2014).
In particular, aircraft would benefit from a sustainable biofuel source because unlike the situation with
terrestrial vehicles, it seems unlikely that electric power systems will be feasible for flight in the
foreseeable future (Rosero et al., 2007). Conventional jet fuels are typically comprised of Cy to Cis
hydrocarbons (Liu et al., 2013), but TAG from most plants (including the world’s major oil crop plants)
predominately contain Ci6 and Cysfatty acids, with some longer ones (Durrett et al., 2008). Consequently,
significant research effort in recent decades has been directed at increasing the medium-chain fatty acid
(Cs to Cia) content of TAG in Brassica napus (Eccleston & Ohlrogge, 1998; Stoll et al., 2005), Camelina
sativa (Kim et al., 2015; Bansal et al., 2018), Arabidopsis thaliana (Dérmann et al., 2000) and other seeds
(Thelen & Ohlrogge, 2002).

In plants, the first 16-18 fatty acid carbons are assembled in the plastid by fatty acid synthase
(FAS), which adds successive two-carbon units to the growing chain that is attached to an acyl carrier
protein (ACP; Li-Beisson et al., 2013). In order to export the fatty acid out of the plastid to be used for TAG
synthesis, a thioesterase hydrolyzes the acyl-ACP compound to release a free fatty acid (Durrett et al.,
2008; Li-Beisson et al., 2013). The specificity of the thioesterase often determines the abundant fatty acid
lengths. For example, the FatA thioesterases preferentially hydrolyze Cis-ACP compounds to release

stearate (18:0) or oleate (18:1), while FatB thioesterase can hydrolyze 16:0-ACP and release palmitate
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(Durrett et al., 2008; Li-Beisson et al., 2013; Kim et al., 2015). Some plants, such as Umbellularia californica
(California Bay), have alternative thioesterases that cause the plant to naturally accumulate medium-
chain fatty acids (Pollard et al., 1991; Voelker et al., 1992). This provides an opportunity for researchers
to engineer other plants to have these alternative thioesterases to increase their medium-chain levels
(Voelker et al., 1992; Eccleston & Ohlrogge, 1998; Kim et al., 2015).

These four lines have increased levels of medium-chain fatty acids. While this has potential
industrial benefits, C sativa does not naturally have these fatty acids, so they may induce other metabolic
changes (Hooks et al., 1995). Such effects have been observed by Eccleston and Ohlrogge (1998) in
response to B. napus being engineered to produce high levels of laureate (12:0). When wild-type
developing embryos were incubated with *C-acetate, nearly all the label was incorporated into fatty
acids. In contrast, in the transgenic high laureate embryos, 50% of the label was recovered in water-
soluble compounds, including carbohydrates, without decreasing the total seed oil content. This suggests
that much of the transgenically produced fatty acid into which the label was incorporated were broken
down by B-oxidation and their carbon recycled through the glyoxylate cycle (Canvin & Beevers, 1961;
Eccleston & Ohlrogge, 1998). In addition, isocitrate lyase and malate synthase, which are the enzymes
unique to the glyoxylate cycle, and which typically have very low activity until the seeds mature and oil is
broken down to facilitate germination (Beevers, 1980; Ettinger & Harada, 1990; Eastmond & Graham,
2001) showed activities that were elevated 6.6- and 30-fold, respectively, in the developing high laureate
embryos (Eccleston & Ohlrogge, 1998). Consequently, it was concluded that the presence of laureate-
synthesizing enzymes induced B-oxidation and the glyoxylate cycle, while also inducing fatty acid synthesis
in order to maintain oil content. This would be expected to substantially lower carbon use efficiency in
the developing seeds and limit the levels of desired fatty acids.

To address this question and to more broadly measure changes in central metabolism induced

when fatty acid composition is altered, we quantitatively mapped metabolic fluxes in developing oilseed
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embryos of C. sativa plants engineered to have increased medium-chain fatty acid content. C. sativa is a
model oilseed crop that has gained attention for studying and implementing improvements in biofuel
production because of its similarities to A. thaliana (e.g., short lifespan, ease of transformation, and the
translatability of tools and knowledge developed in A. thaliana) and its ability to grow in conditions
unsuitable for most oil-producing crop plants (Zubr, 1997; Lu & Kang, 2008; Iskandarov et al., 2014). We
analyzed four C. sativa lines that were genetically engineered in the Cahoon lab at the University of
Nebraska—Lincoln to express genes specific to medium-chain fatty acid synthesis (Kim et al., 2015). These
lines are (A) a line designated as ecthio14 that contains a Cuphea hookeriana FatB thioesterase (Thio14)
and a U. californica FatB thioesterase (UcFatB1). These enzymes are specific for 12:0- and 14:0-ACP, and
12:0-ACP (Dehesh et al., 1996; Tjellstrom et al., 2013), respectively, which cause this line to accumulate
high levels of 12:0 and 14:0. (B) a line designated as 3thio that contains Thiol4, UcFatB1, and a Cuphea
hookeriana FatB thioesterase that is specific for 8:0- and 10:0-ACP (ChFatB2; Voelker et al., 1992), with
increased levels of 8:0, 10:0, 12:0, and 14:0. (C) a line designated as ech/ that contains UcFatB1 and a Coco
nucifera lysophosphatidic acid acyltransferase (CnLPAT; (Knutzon et al., 1999). The latter enzyme
selectively attaches 12:0 to the sn-2 position of glyceraldehyde 3-phosphate (G3P), thus increasing the
abundance of 12:0 fatty acids because the native LPAT is selective for Cig fatty acids (Kim et al., 2015). (D)
a line designated as echm2 that contains Thiol4 and CnLPAT, which results in high accumulation of 14:0.

We cultured and labeled developing embryos with *C-labeled glucose, -alanine, and -glutamine,
and performed steady-state metabolic flux analysis (MFA) to quantify the central metabolic fluxes. We
found significant changes in central metabolic fluxes in the transgenics compared to the wild type but no
induction of significant glyoxylate cycle or B-oxidation fluxes. Modestly altered carbon conversion
efficiency in the transgenic lines, as well as more substantial changes induced in the wild-type embryos
by increasing or eliminating the exposure to light during culture, were strongly correlated with the size of

fluxes through the oxidative pentose phosphate (OPP) pathway.
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The range of genotypes and conditions studied as well as the number of measurements used in
this study were significantly larger than in previous metabolic flux analyses in plant systems. This enabled
the fluxes to be estimated within narrower ranges (90% confidence intervals within 10% of mean values).
The large experimental dataset and well-defined flux maps provided the opportunity to test whether and
how the measured data could be used to directly distinguish among genotypes and growth conditions
without computational modeling of fluxes. Principal component analysis successfully distinguished
between the transgenics using fatty acid or protein amino acid labeling data, but did not completely
distinguish between them using the values of metabolic fluxes. These flux distributions were more
effective in differentiating between the transgenics using hierarchical clustering analysis. We discuss how
the combination of clustering analyses of labeling data and flux maps can explain metabolic differences

between these transgenics.

Results

C. sativa developing embryos in culture imitated those in planta

C. sativa transgenic seeds were obtained from Edgar Cahoon (Kim et al., 2015) and 10 day-after-flowering
(DAF) embryos were cultured for 6 days under 10 uE in media containing 8 mM glutamine, 4 mM alanine,
130 mM glucose, and 12 mM sucrose, which are consistent with in planta light and carbon availabilities
(Carey et al., in preparation). In addition, the media contained 20 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) as a buffering agent, 20% polyethylene glycol as an osmoticum
(Schwender & Ohlrogge, 2002), and various vitamins (see Methods). After 6 days in culture, we found that
the transgenic embryos presented similar fatty acid compositions as in planta (Fig 2.2.1a, S1) and as
described by Kim et al. (2015). Furthermore, there was no significant difference in embryo dry weights
between transgenics and wildtype (Fig 2.2.52a). Consequently, we concluded that under these culture

conditions, the growth and TAG production of embryos of the different lines were close.
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Figure 2.2.1. Physiological changes from wild-type to transgenic C. sativa embryos. (a) Fatty acid
compositions were measured in wild-type or transgenic whole embryos after 6 days of culturing (10-16
DAF) with GC-FiD. Bars indicate average percent composition and standard deviation. (b) Proportion of
carbon uptake used for biomass (blue) or emitted as CO; (red) in wild-type embryos grown under dark,
physiological, or high light conditions, and in the four transgenics (echl, echm2, ecthio14, 3thio). Carbon
emission was determined by measuring total substrate (glucose, sucrose, alanine, glutamine) carbon
uptake in comparison to the biomass carbon accumulated. The difference was assumed to have been
emitted as to CO, based on C labeling experiments on wild-type embryos where emitted *CO, was
trapped and quantified (Carey et al., in preparation)

Metabolite uptake rates were measured by performing *H NMR on the culture medium before
and after culturing. We found that, in comparison to wild-type, transgenic embryos took up similar
quantities of alanine (55-97 nmol/day/embryo), and at least as much glutamine and sucrose (97-197 and

147-215 nmol/embryo, respectively, Fig 2.2.52c). In order to assess how the carbon was allocated to
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biomass products in the different lines, we measured the total protein, fatty acid, and carbohydrate
contents in cultured embryos. The transgenic lines contained 21-27% protein and 31-35% fatty acid per
embryo biomass, and embryo starch contents ranged from 7% in echm2 to 14% in echl (Fig 2.2.52b).
Carbon uptake and allocation rates were used to calculate the transgenic embryo carbon
conversion efficiencies, which were found to be 21-29% (Fig 2.2.1b). These values are between those of
wild-type embryos grown under dark and in planta light levels (21 and 32%, respectively; Carey et al., in
preparation). This indicates that the transgenic lines were less efficient at using carbon for biomass
production than wild-type and could suggest that the transgenic oxidative pentose phosphate pathway

fluxes are greater than the wild-type under in planta light.

Principal component analysis of labeling distinguished among transgenic lines

To assess metabolic differences between the transgenics and wildtype, we cultured the embryos under
multiple labeling conditions and measured label contents in the fatty acids, amino acids, and
carbohydrates. Embryos were labeled in four separate experiments with 100% U-'3C glutamine, 100% U-
B¢ alanine, 100% 1-'3C glucose, and 80% 1,2, 20% U-'3C glucose.

There was less fatty acid labeling when 3C glutamine or *3C alanine was provided to the embryos
in comparison to 80% 1,2, 20% U-13C glucose (Table 2.2.51). However, both amino acid substrates were
able to cleanly distinguish echm2 from the other lines using principle component analysis (PCA, Fig 2.2.2).
PCA is a statistical method of transforming the data using principal components to maximize differences
between the data points are maximized. Different measurements contribute to different extents to each
principal components. Measurements that are equal or vary very little across individual replicates
contribute less to PCA components so that more variable measurements are emphasized. This allows PCA
to resolve individuals based on the measures in which they have the mode biological differences;
however, it also allows measurements that are less precise or otherwise less well determined to distort

the components. The amino acid substrates were able to cleanly distinguish echm2 largely due to the Cy
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Figure 2.2.2. Clustering using PCA and fatty acid labeling data. Transgenic embryos were cultured for 6
days (10-16 DAF) with (a) U-'3C alanine, (b) U-'3C glutamine, or (c) 80% 1,2, 20% U-'3C glucose. PCA was
performed on the fatty acid labeling profiles of echl (red), echm2 (green), ecthiol4 (blue), and 3thio
(black). Fatty acid labeling was measured by transmethylating total lipid extracts of embryos after growth
in the presence of labeled substrates and measuring label content in each fatty acid species with GC-MS.
Circles represent biological replicates (n = 3).
to Cy, fatty acids being more highly labeled in echm2 (Table 2.2.51-S2). Neither of the amino acid
substrates could fully resolve echl and ecthio14, but all four transgenic lines could be separated when the
embryos were provided 80% 1,2, 20% U-13C glucose (Fig 2.2.2). The disparate abilities of the substrates to
resolve the transgenic lines from their fatty acid labeling patterns point to there being significant
differences in the fluxes under which the lines utilize hexoses and pyruvate.

PCA using the amino acid labeling data also distinguished between the lines, particularly when
glucose was used as the substrate (Fig 2.2.53). For example, when either 1-3C glucose or 80% 1,2, 20% U-

13C glucose was used, proline labeling strongly influenced the first principle component, which accounted

for over 40% of the PCA variation. In response to the 1-3C glucose substrate, Proline 2345 fragment
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labeling varied from 11% in echm2 to 31% in 3thio (Fig 2.2.3, Table 2.2.53). This altered labeling pattern
could be correlated with differences in proline synthesis fluxes and/or fluxes to synthesize its alpha-
ketoglutarate precursor in the tricarboxylic acid cycle (TCA) cycle. Similarly, starch fragments in ech/ and
ecthiol4 demonstrated higher percent labeling in comparison to cell wall fragments (Fig 2.2.54), which
could be explained by higher starch synthesis fluxes. Alternatively, this trend could be due to higher
transport fluxes to move cytoplasmic hexose (which is a cell wall precursor) into the plastid (where hexose
could be used for starch). Labeling alone could not discern why only some substrates permit PCA to
distinguish between the transgenic lines or how genetically altering the fatty acid synthesis pathway could
lead to differences in protein and carbohydrate labeling patterns. However, labeling data can be used
with steady-state metabolic flux analysis (MFA) to quantify fluxes in central metabolism and answer these

questions.

HCA distinguished between transgenic lines based on fluxes normalized by total carbon uptake
Following the method described in Carey et al. (in preparation) to analyze wild-type C. sativa embryos
cultured across three light levels, 3C MFA was performed on the four transgenic lines using metabolite
labeling, uptake, and synthesis data from culturing with 3C glutamine, 3C alanine, 1-*3C glucose, and 80%
1,2, 20% U-'3C glucose. As indicated by the confidence intervals in the flux maps (Fig 2.2.4), the
partitioning of hexose- and triose-phosphate metabolites between the cytosol and plastid was not well
resolved. The triose-phosphate sub-cellular pools were treated as one pool, and the hexose transport flux
was uncertain depending on what proportion of glycolytic flux was in each compartment.

Fatty acids are synthesized in the plastid from acetyl-CoA, which is made from the C2 and C3 of
pyruvate. Labeling differences in fatty acids with 18 or fewer carbons therefore reflect differences in
labeling of plastidic pyruvate, which can arise from differences in the origins of this pool and/or from

differences in the labeling of the precursors of plastidic pyruvate. The contribution of malate
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Figure 2.2.3. Variations in proline labeling across substrates and transgenics. Transgenic embryos were
cultured for 6 days (10-16 DAF) with (a) 80% 1,2, 20% U-'3C glucose, (b) U-13C glutamine, (c) U-'*C alanine,
or (d) 1-13C glucose. Labeling in proline and other amino acid was measured by hydrolyzing the total
protein extract, cleanup of the resultant amino acids by ion exchange, and amino acid derivatization and
GC-MS analysis. Bars represent average percent composition of the different mass isomers and the error
bars are the standard deviation (n = 3-6 biological replicates).

decarboxylation to the production of plastidic pyruvate varies by ~30 fold among the lines. Cy and Cy;
fatty acids are made by elongation in the cytosol of C;5 fatty acids from the plastid using cytosolic acetyl-
CoA. Label measurements were made using the butyl amide derivatives of fatty acids and analysis of the
resultant C2 and C3 fragments that are the last to be added to the fatty acid. Therefore, differences

between the transgenic lines in the labeling in Cyo and C,; were due to differences in labeling of cytosolic

acetyl-CoA, which is made by ATP citrate lyase in oilseeds with high contents of long-chain fatty acids,
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Figure 2.2.4. Transgenic flux maps showing total carbon flux.
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Figure 2.2.4 (cont’d). Transgenic flux maps showing total carbon flux. Embryos were cultured for 6-10
days with U-13C alanine, U-13C glutamine, 1-13C glucose , or 80% 1,2, 20% U-13C glucose to obtain labeling
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Figure 2.2.4 (cont’d) data to quantify metabolic fluxes by **C-MFA for (a) echl, (b) echm2, (c) ecthio14, and
(d) 3thio. Arrow sizes correlate with flux intensity and values are in units of nmol C/embryo/day. Values
show the average net flux £ 90% confidence interval as determined from the 20 best fits derived from
pseudo datasets.
but which can also be the product of threonine aldolase activity in the cytosol. The proportion of cytosolic
acetyl-CoA produced by these two routes (Fig. 4) does not vary as much as the origins of plastidic pyruvate
and echm2 does not appear to be different in this ratio from echl; both being intermediate between the
other two transgenic lines. Consequently, it is likely that differences in labeling of citrate and/or threonine
account for the observations.

As expected from the wild-type findings, only a moderate amount (4-7 % of the carbon taken up
from the media) of carbon in the transgenic embryos was used in glycolysis or the TCA cycle (Fig 2.2.4,
Table 2.2.54). Most of the available carbon was taken up as glucose (Fig 2.2.52c) and transported as hexose
into the plastid, where it was used for OPP decarboxylation (Fig 2.2.4). 3thio had the lowest CCE (21% to
biomass) and highest OPP flux (91% of the carbon input) of the transgenic lines, which is consistent with
the positive correlation between these traits predicted by wild-type C. sativa (Carey et al., in preparation,
Fig 2.2.5). In contrast, echm2 had a higher OPP flux (88%) yet higher CCE (29%) than either ecthio14 (83%,
26%) or echl (87%, 23%; (Table 2.2.54). This diversion from the expected trend suggests that other
decarboxylation processes (e.g., pyruvate oxidation) are more active in ecthio14 and echl. Indeed, the TCA
cycle fluxes comprised a greater proportion of the available carbon in ecthio14 and echl (6-7%) than echm2
(4%) (Fig 2.2.4, Table 2.2.54). Similarly, the flux toward cell wall synthesis represented 6% of the carbon
input in both ecthio14 and echl, but cell wall polysaccharides comprised a lower proportion of the embryo
biomass in ecthiol4 (Fig 2.2.S2). This difference was correlated with the decarboxylation flux toward
acetyl-CoA synthesis being greater in ecthiol4 (Fig 2.2.4, Table 2.2.54), which would limit how much
carbon would remain available to synthesize starch, protein, and lipids.

Because of previous reports (Eccleston & Ohlrogge, 1998), we tested whether the glyoxylate cycle
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Figure 2.2.5. Correlation between carbon use efficiency and OPP decarboxylation. Carbon use
efficiencies were determined by measuring total carbon uptake in comparison to total biomass carbon.
13C-MFA was used quantify metabolic fluxes and normalized to represent the proportion of carbon uptake.
The line of best fit was found by Carey et al., (in preparation) using linear regression and wild-type C.
sativa embryos (triangles) grown under dark, in planta, or high-light conditions. For comparison to the
transgenic lines, data points for echl, echm2, ecthiol4, and 3thio were added (indicated by circles),
without modification to the linear curve equation. Data points represent the 10 best fits derived from
pseudo datasets.
was activated in the transgenic lines due to their medium-chain fatty acids by comparing the model fit
(i.e., total residuum) between the model with and without the glyoxylate cycle. Adding the glyoxylate
cycle adds a free flux to the model and results in at least as good of a fit. Therefore, the modest increases
in model fit that we observed for echl, ecthio14, and 3thio (Fig 2.2.55) were not sufficient evidence for the
glyoxylate cycle to be prevalent in these lines. The model fit for echm2 increased by 8%, which suggests a
possible role for the glyoxylate cycle. However, the associated fluxes were not significantly changed (Table
2.2.55) and conclude that any fluxes through the glyoxylate cycle in the transgenic lines are minor.

When PCA was performed using the net fluxes normalized by total carbon uptake (i.e., the
substrate carbon input fluxes summed to 100%), there was a modest degree of clustering of the transgenic

C. sativa lines (Fig 2.2.6a), but this was insufficient to separate them from one another. The first three

principal components explained 98% of the variation in the normalized fluxes and were largely influenced
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Figure 2.2.6. Clustering using PCA and HCA with normalize net fluxes. Embryos were cultured for 6-10
days with U-13C alanine, U-13C glutamine, 1-13C glucose, or 80% 1,2, 20% U-'3C glucose to obtain labeling
data to quantify metabolic fluxes by 1*C-MFA. Net fluxes were normalized to represent the proportion of
total carbon input. PCA (a) and HCA (b) were performed on the normalized net fluxes of wild-type (yellow),
echl (red), echm2 (green), ecthio14 (blue), and 3thio (black). Colored shapes represent the 10 best fits
derived from pseudo datasets.

by the glycolytic reactions interconverting hexose and triose, and the transport reaction to move hexose
from the cytosol to the plastid (Table 2.2.56). Because these fluxes could not be quantitatively well-

defined and thus there was large variation within each line for these three fluxes (Vald, Valdp, Vhpt, Table

2.2.54), we also performed PCA on the normalized fluxes with the hexose transport reaction excluded and
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the conversion reactions summed (i.e., this analysis did not distinguish between cytosolic and plastidic
glycolysis). With this revision, the PCA clustering was a little cleaner and the variation was largely
influenced by the OPP and total glycolysis fluxes.

To further analyze the clustering relationships, in particular to explore which flux patterns are
more closely related, we performed hierarchical clustering analysis (HCA) and found that the pseudo
replicates of wild-type, echm2, ecthiol4, and 3thio lines all clustered quite cleanly within genotypes,
regardless of whether the analysis distinguished between cytosolic and plastidic glycolysis (Fig 2.2.6b). In
addition, when data from wild-type C. sativa grown under dark and high-light conditions (Carey et al., in
preparation) were included, HCA cleanly distinguished them and the transgenics (Fig 2.2.56). However,
HCA was not able to cleanly distinguish echl/ from the other transgenic lines (Fig 2.2.6, S7), which could be

due to higher variation between individual replicates in the echl/ fluxes (Table 2.2.54).

Discussion
In this study, we supplied developing embryos of transgenic C. sativa developing embryos (i.e., echl,
echm2, ecthio14, 3thio) with U-13C glutamine, U-'3C alanine, 1-13C glucose, or a combination of 80% 1,2
and 20% U-3C glucose and measured the resulting labeling in fatty acids, protein amino acids, and
carbohydrates. In combination with steady-state MFA, this allowed us to better understand the metabolic
effects of engineering C. sativa to have increased medium-chain fatty acid content (Fig 2.2.1).

As expected, we observed differences in metabolite labeling for the four substrates (Fig 2.2.3, 5S4,
Table 2.2.51). These differences led to PCA being more effective at cleanly separating the transgenics
based on the combination of substrate and type of labeled metabolite. For example, PCA could not cleanly
separate echl or ecthiol4 when either 3C glutamine or 3C alanine was used as the substrate, but the
separation was more distinct when used with fatty acid labeling data than with amino acid data (Fig 2.2.2,

S3). On the other hand, 80% 1,2, 20% U-'3C glucose enabled PCA to be quite effective at separating the
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lines with either metabolite. This could have been simply due to the embryos taking up higher quantities
of glucose than either alanine or glutamine (Fig 2.2.52c), but the MFA flux maps also revealed that the
amino acid substrates were largely restricted to the TCA cycle and fatty acid elongation (Fig 2.2.4). This
limited how strongly plastidic metabolites could be labeled and thus how distinct the label measurements
were from natural abundance levels.

In addition to testing how well PCA could cluster the transgenic lines based on their metabolite
labeling, we also performed PCA and HCA on their net fluxes normalized by total carbon uptake (Table
2.2.54). We found that PCA yielded moderate separation of the lines and HCA was able to extrapolate
these patterns to cleanly cluster echm2, ecthio14, and 3thio (Fig 2.2.6). Although HCA could not distinguish
the echl line based on its normalized fluxes, it was able to separate wild-type grown under dark, in planta,
and high-light conditions (Carey et al., in preparation, Fig 2.2.56). This could suggest that we did not obtain
sufficiently tight estimates for the normalized echl fluxes or that the genetic variation between the
transgenics did no lead to significantly different fluxes. Regardless, this demonstrates that at times, an
organism’s environment (e.g., light availability) can lead to more significant changes in metabolic fluxes
than genetic differences.

Eccleston and Ohlrogge (1998) previously found that B-oxidation and the glyoxylate cycle were
induced by the presence of laurate (C12:0) in developing transgenic B. napus embryos. Here, we measured
the metabolic fluxes of echl and ecthio14, both of which accumulate high levels of laurate (Fig 2.2.1a), but
we did not find sufficient support for an active glyoxylate cycle in either line (Fig 2.2.S5). It is possible that
the glyoxylate cycle was not prevalent due to the TCA cycle representing small proportion of the total
carbon flux (6-7%) and being overshadowed by OPP decarboxylation (over 300% of the total carbon
uptake; Table 2.2.54). Alternatively, the apparent lack of glyoxylate cycle activity could be due to the
transgenic B. napus being older than the C. sativa embryos (26-30 and 10 DAF, respectively). Poirier and

Brumbley (2010) found that laureate does not induce increases in the expression of B-oxidation genes in
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A. thaliana leaves, which suggests that the endogenous gene levels are adequate to break down the
foreign fatty acid. Because 16-21 DAF C. sativa seeds have 1.6-fold (p < 0.003) more isocitrate lyase mRNA
than 10-15 seeds (Abdullah et al., 2016), it is possible that older echl and ecthio14 embryos would have
more active glyoxylate cycles than the early developmental staged embryos that we measured.

We found that differences in metabolite labeling patterns permitted PCA to cleanly cluster C.
sativa developing embryos that have been engineered to have increased medium-chain fatty acid
contents. PCA was able to cleanly separate the transgenic lines when used with fatty acid or amino acid
labeling data obtained from labeling with 80% 1,2, 20% U-'3C glucose, but could only yield moderate
separation when the data was obtained from 100% U-'3C glutamine, 100% U-'3C alanine (Fig 2.2.2, Fig
2.2.53). We quantified metabolic fluxes using all labeling data with steady-state MFA (Fig 2.2.4). PCA could
only weakly separate the lines using the normalized net fluxes, but HCA could moderately distinguish
between the transgenics and cleanly separate the transgenics from wild-type embryos grown under
different light availabilities (Fig 2.2.6). Together, these findings point to significant changes in fluxes
through central metabolism resulting from genetic modifications of fatty acid composition and

environmental variations

Methods

Plant growth

Camelina sativa var. Sunesson plants were grown in a growth chamber (BioChambers; Winnipeg,
Manitoba, Canada) on a 16hr/8hr light/dark cycle with plants receiving 125 pmol m? s of light. Seeds
were placed in a 25% medium coarseness perlite (Sun Gro; Quincy, MI, USA) and 75% Sure-Mix Potting
soil (Michigan grower’s products Galesburg, Ml, USA) that had been autoclaved when moist. Once seeds
germinated, a 2:1 water : nutrient water (one-half strength Hoagland solution) mixture was added twice

per week. Stems were tagged daily to track silique age and harvested into 10% chlorox solution to sterilize
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siliques for culturing.

Light conditions for culture

In order to establish physiological light conditions for embryos in culture, silique walls at 10 DAF were split
and arranged in a single layer within a spectrophotometer cuvette to measure the light transmission
efficiency. The same was done with the coats of developing seeds. Percent transmittance was measured
at wavelengths of 646nm and 663nm and light levels during culture were set to 104E, which was estimated

to be the level to which embryos are exposed in planta during daylight in the growing season.

Culturing conditions

Liquid endosperm composition was analyzed via 'H NMR and GC Mass Spectrometry; media was made
using the most abundant sugars and amino acids detected, and the proportions were varied so that the
concentrations of carbon and nitrogen sources in prepared media were as follows: glutamine 8 mM,
alanine 4 mM, glucose 130 mM, and sucrose 12 mM. 20 mM HEPES was added as a buffering agent, in
addition to numerous stock solutions and vitamins with 20% polyethylene glycol (PEG 4000) provided as
osmoticum (Schwender & Ohlrogge, 2002). 1 mL medium per well was added to a 6 well plate of 30 mm
wells with two filter papers in each (EMD Millipore, USA). 5 embryos at 10 DAF were added to each well
and the plates were incubated for 6 days at physiological (10 UE) or high (50 UE) of green light (white light
from fluorescent bulbs was filtered through a layer of green celluloid filter). Other embryo cultures were
incubated for 9 days in the dark. For labeling experiments, embryos were incubated in media with either
U-13C glutamine, U-13C alanine, 1-13C Glucose, or 80%1,2, 20%U-3C glucose replacing the respective amino

acid or glucose in unlabeled media at the same concentration.
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Uptake rates

After culture period, embryos were removed from wells, rinsed with water and lyophilized. An internal
standard of 10 mM methylphosphonic acid was added to the media in each well, the media was
transferred to tubes, extracted twice with 2mL volumes of distilled water. Once dry, the PEG was extracted
with chloroform. The samples were dissolved in D,0 for *H NMR analysis of substrate levels. Fresh samples
were compared to “spent” media from culture to determine uptake rates. Carbon conversion efficiency
(CCE) was calculated as previously described (Goffman et al., 2005) as the amount of carbon assimilated
into biomass (determined by elemental analysis of %C and the dry weight increase during culture) as a

percentage of the carbon taken up from the media.

Determination of biomass components

Total lipids were extracted from lyophilized embryos using 2:1 hexane isopropanol kept at 4°C (Hara &
Radin, 1978). Embryos were ground using 5 mm tungsten beads in a Retsch (Retsch GmbH, Germany)
bead mill run at 30 Hz for three repetitions of 5 minutes. Resulting fractions from this extraction were
analyzed for composition by gas chromatography with flame ionization detection (GC-FID).

Proteins were extracted by 20 mM Tris-HCI, pH 7.5, 150 mM NacCl, and 1% SDS buffer warmed to
42°Cm as described by Schwender and Ohlrogge (2002). Total proteins were then quantified by a DC
Protein (Bio-Rad Laboratories; Hercules, CA, USA) colorimetric assay.

Starch fractions were extracted using 0.1 M acetate buffer at 120°C for 1 hour. Starch was then
hydrolyzed to glucose by alpha amylase and amyloglucosidase incubated at 50°C for 1 hour. D-glucose

was quantified using a total starch assay kit (Megazyme International; Wicklow, Ireland).

Analysis of labeling

0.78 mg dry weight lipid was suspended in 700 uL of d-chloroform for analysis on a Varian Unity-Plus
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500MHz spectrometer equipped with a 5 mm 3C-'H dual-purpose probe. 'H spectra were obtained using
a 90°C pulse angle and a relaxation delay sufficient for all detected carbon sources at 10 seconds to obtain
labeling information. The main peaks of interest in this analysis were the glycerol and sucrose peaks. and

labeling information was obtained by using gas chromatography mass spectrometry (GC-MS).

GC MS analysis
0.29 mg dry weight lipid was analyzed by butylamide derivatives for average labeling by GC-MS as
described previously (Allen et al., 2007). Butylamine derivatization was achieved by adding n-butylamine
and hexane to each sample and incubating at 80°C for 48 hours. Samples were run on a Trace GC
ultra/DSQIl GC-MS (Thermo Fisher Scientific, USA) with an Agilent VF-23MS (30 m x 0.25 mm ID x 0.27 um
film thickness) column and a ramp from 100°C to 260°C in 23 minutes. Resulting peaks were corrected for
natural abundance and labeling was calculated for fragments m/z 115 and 128 in the most abundant fatty
acids for C. sativa: C16:0, C18:0, C18:1, C18:2, C18:3, C20:0, C20:1, C22:0. Analysis of these fatty acids
gives labeling coverage of the plastidic and cytosolic pools of acetyl-CoA for MFA compartmentation.

0.29 mg dry weight lipid was also analyzed for glycerol labeling by first transmethylating with 3 M
HCl in methanol. Glycerol was separated in the aqueous phase then derivatized with TBDMS and run on a
6890N/5973 GC-MS (Agilent, USA) with a 30 m x 0.25 mm ID x 0.25 um film thickness Restek RTX-5MS
column. Stationary phase: 5% diphenyl /95% dimethylpolsiloxane (Agilent GCMS — DB5) and ran using a
temperature gradient of 135°C to 325°C at 5°C/minute.

Proteins were hydrolyzed to amino acids in 6 M HCl at 120°C for 24 hours then purified through a
cation exchange column of dowex. Derivatization for GC MS analysis was accomplished using MTBSTFA +
1%TBDMCS (Neves & Vasconcelos, 1987; Dauner & Sauer, 2000) and samples were run on Agilent GCMS-
DB5. Select ion monitoring (SIM) methods were customized each set of runs to detect only the amino

acids and fragments of interest to increase sensitivity as previously described (Dauner & Sauer, 2000).
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Peaks were integrated and quantified and natural abundance and labeling amounts were then calculated
(Allen et al., 2007).

Starch hydrolyzed as glucose was derivatized with trimethylsilyl (TMS; Sigma, USA) and analyzed
by Agilent GCMS-DBS5 for labeling in ion fragments m/z 160 (1-2C) and 364 (1-6C). After all extractions
were complete, the remaining pellet contained predominantly cell wall material. This portion was
hydrolyzed with 6 M HCl at 120°C for 24 hours to yield monosaccharides, and then TMS derivatives were

analyzed via GC-MS as described for starch.

GC FID analysis

0.4 mg dry weight lipid was analyzed by GC-FID for quantitative compositional information. 3 M HCl in
methanol was added to these fractions for transesterification and then incubated for 2 hours at 80°C. The
samples were then neutralized and the methyl esters were extracted with hexane and run on a GCMS-
Agilent 6890N/5973 GC-MS with a 30 m x 0.25 mm ID x 0.25 um film thickness Restek RTX-5MS column.
Stationary phase: 5% diphenyl /95% dimethylpolsiloxane. Quantification was made possible by

heptadecanoic acid (C17:0) internal standard at a known concentration.

Calculating network fluxes

Metabolic fluxes were quantified using the Metabolic Flux Analysis software 13C-FLUX (Wiechert et al.,
2001; Wiechert et al., 2015) with the metabolic model developed by Carey et al., (in preparation; see
Methods S1) for developing embryos of C. sativa. Initial starting points (sets of flux values) for determining
best-fit fluxes were randomly generated with MATLAB R2016a to span a region with radius representing
10% of the total measured substrate influx surrounding the algebraic center of feasible space. Subsequent
starting points were generated by random sampling of flux values within 10% distance of the best fit
values determined in the first set of optimizations. This procedure was repeated in order to widely explore

the feasible space for best-fit sets of flux values.
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Starting flux values were optimized with the Donlp2 program, where model fit was quantified by
minimizing the total residuum, which is the sum of squared differences between measured and predicted
parameters of labeling, substrate uptake rates, biomass composition, and growth rates. Each squared
deviation was divided by the standard deviation of the respective measurements to ensure that more
precisely determined data weighed more heavily. To reduce random effects in data weighting due to the
effects of chance on the standard deviations of modest numbers of measurement replicates (typically n=
3-6, always >2) and also the potential for precise but inaccurate measurements, the measured standard
deviations were increased before using as model input. The standard deviations of measured fluxes were
increased by 10% of the mean, and the standard deviations of labeling data were increased by adding 1%
to the measured deviation (mass isotopomers sum to 100% for each metabolite).

At least 100 optimizations per light level or genotype were obtained to maximize the likelihood
that the best fit flux sets represented the global best fit. The 20 flux sets with the smallest residuum total
were inspected to check that they all converged to similar residuum totals and similar flux values. The
starting points corresponding to the 20 lowest residua were identified and for each one, the optimization
was repeated using 50 pseudo datasets of measurements that were generated with Monte Carlo sampling
using the average and standard deviation of each measurement. The resulting optima were used to obtain
the mean and 90% confidence interval for each flux value.

The glyoxylate cycle includes two reactions in addition to reactions of the TCA cycle:
gluconeogenesis:isocitrate lyase (ICL; generating glyoxylate and oxaloacetate from isocitrate) and malate
synthase (MS; making malate from glyoxylate and acetyl-CoA). In non-photorespiratory tissues, glyoxylate
is used to synthesize malate (e.g., in the C4 dicarboxylate pool). Therefore, for modeling purposes the ICL
and MS reactions were represented by a single equation: citrate (ABCDEF) + AcCoA (ab) = fumarate (in
rapid exchange with malate; CDEF) + oxaloacetate (abAB) (see Methods S1). In addition, we added

transport reactions to allow either or both plastidic and cytosolic/mitochondrial AcCoA pools to be used
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in the glyoxylate cycle reaction. The transport reactions were set to be irreversible free fluxes and the

glyoxylate cycle reaction was set to be an irreversible dependent flux.

Clustering analyses

PCA was performed and plotted with MATLAB R2016a pca and scatter3 function, and HCA was performed
and plotted MATLAB R2016a dendrogram, and linkage functions. To make the HCA results be consistent
with the PCA methods (i.e., maximize differences between samples), the linkage function was run with
the ‘complete’ method, which maximizes the distance between objects in different clusters. In addition,
to prevent individual data points from skewing the clusters, the linkage function was also run with the
‘seuclidean’ metric, which standardizes the Euclidean distance between objects by dividing by the

standard deviations of their data set.

Supporting Information

Supplemental File 3 — Chapter 2 Methods S1
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Figure 2.2.51. Comparison of fatty acid compositions in culture vs. in planta. Fatty acid methyl esters
were tranmethylated from whole echl (a), ecthiol4 (b), and 3thio (c) embryos either after 6 days of
culturing (10-16 DAF; in culture) or at 16 DAF (in planta). Fatty acid species were analyzed with GC-FiD.
Bars represent average percent composition and standard deviation (n = 6-9).
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Figure 2.2.52. Physiological characteristics of in culture embryos. (a) Embryos were grown in culture for
6 days (10-16 DPA) and then briefly rinsed in deionized water, frozen in liquid nitrogen, lyophilized, and
weighed. (b) Biomass compositions were measured by extracting total lipids, transesterification, and GC-
FID analysis (blue); protein was extracted and measured using a colorimeteric bradford assay (red); starch
was measured as glucose released when biomass from which soluble metabolites had been extracted was
autoclaved in buffer and treated with amylase and glycosylase (yellow). The biomass remaining after
extraction of lipids, starch and protein was assumed to be cell wall components. (c) Substrate uptake rates
were determined by measuring substrate contents with NMR spectroscopy of fresh and spent media.
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Figure 2.2.53. Clustering using PCA and amino acid labeling data. Transgenic embryos were cultured for
6 days (10-16 DAF) with (a) 80% 1,2, 20% U-'3C glucose, (b) U-13C glutamine, (c) U-'3C alanine, or (d) 1-13C
glucose. PCA was performed on the amino acid labeling profiles of echl (red), echm2 (green), ecthiol4
(blue), and 3thio (black). Amino acid labeling was measured by hydrolyzing proteins and measuring label
content per amino acid fragment with GC-MS. Circles represent biological replicates (n = 2-3).
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Figure 2.2.54. Variations in carbohydrate labeling across substrates and transgenics. Transgenic embryos
were cultured for 6 days (10-16 DAF) with 80% 1,2, 20% U-3C glucose. Starch (a-b) glucose fragments
were obtained by derivatizing the embryos with trimethylsilyl, while cell wall (c-d) glucose fragments were
derived from the insoluble pellet remaining after all metabolites were extracted. Labeling in the 364 (a, c)
and 319 (b, d) glucose fragments was assessed with GC-MS. Bars represent average percent composition

and standard deviation (n = 3-6).
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Figure 2.2.S5. Determining if there is an active glyoxylate cycle. Evidence of an active glyoxylate cycle
would include its addition to the MFA model significantly improving model fit (i.e., beyond the modest fit
inherent to adding a free parameter to the model). The bars represent the pseudo datasets that were able
to remain in feasible space to refine the model at least once, starting from at least 10,000 starting points
per transgenic. The final residuum in (a) echl decreased from 3676 to 3645, (b) echm2 decreased from
3711 to 3408, (c) ecthiol4 decreased from 5014 to 4932, (d) 3thio decreased from 5780 to 5786.
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Figure 2.2.56. Clustering transgenic and wild-type lines using PCA and HCA with normalize net fluxes.
Embryos were cultured for 6-10 days with U-13C alanine, U-13C glutamine, 1-3C glucose, or 80% 1,2, 20%
U-13C glucose to obtain labeling data to quantify metabolic fluxes by 3C-MFA. Net fluxes were normalized
to represent the proportion of total carbon input. PCA (a) and HCA (b) were performed on the normalized
net fluxes of wild-type grown in the dark (magenta), in planta light (yellow), and high-light (cyan), as well
as echl (red), echm2 (green), ecthio14 (blue), and 3thio (black). Colored shapes represent the 10 best fits
derived from pseudo datasets.
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Table 2.2.51. Isotopomer labeling of fatty acids from cultured embryos

80% 1,2,20% U->CGlucose  100% “>C Glutamine 100% “*C Alanine
Fragment echl echm2:cthiol4 3thio echl echm2 cthiols 3thio echl echm2:cthiol4 3thio
McLafferty fragments
C8:0 M - - - - - - - - - - - 0.94
M+1 - - - - - - - - - - - 0.03
M+2 - - - - - - - - - - - 0.03
C10:.0 M - - - 0.59 - - - - - - - 0.94
M+1 - - - 0.10 - - - - - - - 0.03
M+2 - - - 0.31 - - - - - - - 0.03
C12:.0 M 0.60 - 0.58 0.59 0.96 - 0.95 - 0.93 - 0.93 0.91
M+1 0.11 - 0.12 0.12 0.03 - 0.03 - 0.03 - 0.03 0.04
M+2 0.30 - 0.30 0.28 0.01 - 0.01 - 0.04 - 0.03 0.05
C14.0 M 059 059 056 0.60 0.94 0.95 - - 092 094 093 0.93
M+1 0.11 0.10 0.11 0.11 0.04 0.04 - - 0.03 0.03 0.03 o0.04
M+2 0.30 0.30 0.32 0.30 0.02 0.02 - - 0.05 0.03 0.04 o0.03
Cl16:0 M 0.61 0.62 0.60 0.62 0.93 0.94 - 0.94 090 092 091 0.92
M+1 0.10 0.09 0.10 0.10 0.04 o0.04 - 0.04 0.04 0.03 0.04 0.04
M+2 0.29 0.29 0.30 0.28 0.02 0.02 - 0.02 0.06 0.04 0.05 0.05

C18:0 M 0.62 0.65 0.65 065 093 089 092 094 0.88 0.90 0.8 0.90
M+1 0.09 0.08 0.09 0.09 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04
M+2 0.29 0.26 0.26 0.26 0.03 0.07 0.04 0.02 0.08 0.06 0.07 0.06
C18:1 M 058 059 0.58 058 092 092 092 092 0.88 0.90 0.88 0.89
M+1 0.11 0.11 0.12 0.12 0.06 0.05 0.06 0.06 0.05 0.05 0.05 0.05
M+2 0.30 0.30 030 0.30 0.02 0.03 0.02 0.02 0.07 0.05 0.06 0.06
C18:2 M 058 0.60 0.59 060 090 090 091 0.88 0.87 0.90 0.87 0.86
M+1 0.12 0.12 0.13 0.13 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
M+2 0.29 0.28 0.28 0.27 0.03 0.03 0.02 0.04 0.06 0.03 0.06 0.06
C18:3 M 058 0.76 0.61 0.66 088 0.8 0.88 0.88 0.86 0.88 0.85 0.84
M+1 0.13 0.08 0.12 0.13 0.08 0.07 0.07 0.06 0.04 0.04 0.05 0.06
M+2 0.29 0.17 027 0.22 004 0.07 0.04 0.06 0.09 0.08 0.10 0.10
C20:0 M 071 0.76 0.71 061 0.8 0.65 086 0.85 0.85 0.85 085 0.84
M+1 0.09 0.09 0.09 0.12 0.05 0.06 0.05 0.08 0.08 0.05 0.08 0.08
M+2 0.20 0.15 020 0.27 0.09 0.29 0.09 0.07 0.07 0.10 0.08 0.08
C20:1 M 0.67 062 0.70 0.63 085 0.71 084 086 0.85 0.85 084 0.84
M+1 0.11 0.12 0.10 0.14 0.06 0.05 0.06 0.08 0.06 0.07 0.06 0.06
M+2 0.22 0.27 020 0.23 0.09 0.25 0.11 0.06 0.09 0.08 0.10 0.10

C22:0 M - 077 070 - - 072 084 087 0.84 084 0.82 0.79
M+1 - 008 010 - - 0.05 006 0.07 0.06 0.08 0.07 0.08
M+2 - 016 020 - - 023 010 0.06 0.10 008 0.12 0.12
C22:1 M 0.65 0.73 067 0.65 084 071 0.8 084 083 - 082 0.86
M+1 0.14 0.09 0.12 0.15 0.07 006 0.04 0.10 006 - 0.07 0.06
Carboxymethoxy fragments
C8:0 M - - - - - - - - - - - 77%
M+1 - - - - - - - - - - - 018
M+2 - - - - - - - - - - - 003
M+3 - - - - - - - - - - - 001
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Table 2.2.51 (cont’d)

Fragment

80% 1,2, 20% U-">C Glucose
echl echm?2 :cthiol4 3thio

100% “3C Glutamine
echl echm2 cthiol< 3thio

100% “*C Alanine
echl echm?2:cthiol4 3thio

C10:0

C12:0

C14:0

C16:0

C18:0

ci18:1

C18:2

C18:3

C20:0

C20:1

C22:0

C22:1

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

M
M+1
M+2
M+3

0.35
0.28
0.24
0.13
0.32
0.37
0.21
0.10
0.36
0.26
0.25
0.12
0.41
0.26
0.22
0.11
0.45
0.24
0.20
0.11
0.40
0.26
0.22
0.12
0.44
0.25
0.21
0.11
0.44
0.28
0.19
0.09
0.44
0.25
0.20
0.10
0.44
0.29
0.19
0.08

- - - 0.88

- - - 0.08

- - - 0.04

- - - 0.01
083 - 0.84 0.70
011 - 0.12 0.06
0.05 - 0.04 0.04
001 - 0.01 0.20
0.82 0.88 0.84 0.86
0.11 0.09 0.10 0.09
0.05 0.03 0.05 0.03
0.01 0.00 0.00 0.01
0.77 0.84 0.80 0.80
0.14 0.11 0.13 0.13
0.08 0.05 0.06 0.06
0.01 0.01 0.01 o0.01
0.75 081 0.77 0.79
0.14 0.12 0.13 0.13
0.09 0.06 0.08 0.07
0.02 0.01 0.02 0.01
0.79 0.83 0.79 0.82
0.13 0.11 0.13 0.12
0.07 0.05 0.07 0.06
0.01 0.01 0.01 o0.01
0.80 0.83 0.80 0.81
0.12 0.10 0.12 0.11
0.06 0.05 0.07 0.06
0.02 0.01 0.02 0.02
0.72 083 0.73 0.75
0.15 0.08 0.14 0.14
0.10 0.06 0.11 0.10
0.03 0.02 0.02 0.02
0.78 0.79 0.78 0.79
0.13 0.11 0.13 0.12
0.06 0.09 0.07 0.06
0.03 0.01 0.03 0.03
0.78 0.81 0.76 0.78
0.10 0.11 0.11 0.11
0.11 0.05 0.12 0.09
0.01 0.03 0.01 0.01
0.68 0.81 0.64 0.76
0.18 0.11 0.21 0.10
0.12 0.05 0.13 0.11
0.02 0.03 0.03 0.03
0.68 - 0.69 0.77
017 - 0.17 0.15
011 - 0.12 0.07
0.04 - 0.02 0.02
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Table 2.2.51 (cont’d). Fatty acid labeling was determined by GC-MS for echl, echm2, ecthiol4, and 3thio
transgenic C. sativa embryos labeled with 80% 1,2, 20% U-'3C glucose, 13C glutamine, or 13C alanine.
Values indicate the average proportion of the fatty acid species with the associated molecular ion peak.

Table 2.2.52. Contributions of fatty acid isotopomer labeling to PCA

80/20 Glucose *°C Glutamine *>C Alanine
Fragment PC1 PC2 PC1 PC2 PC1 PC2
McLafferty fragments
C:14:0 M  0.004 0.099 - - 0.043 -0.007
M+1 -0.009 -0.024 - - -0.010 -0.022
M+2  0.005 -0.075 - - -0.034 0.029
C:16:0 M 0.019 0.066 - - 0.060 0.034
M+1 -0.017 -0.017 - - -0.015 -0.012
M+2 -0.002 -0.049 - - -0.045 -0.022

C:18:0 M 0.044 0.089 0.065 -0.025 0.068 0.007
M+1 -0.020 -0.004 0.005 0.004 -0.020 -0.023
M+2 -0.024 -0.086 -0.069 0.021 -0.048 0.016
C:18:1 M 0.038 0.009 -0.005 0.001 0.067 -0.010
M+1 -0.015 0.000 0.007 0.000 -0.011 0.005
M+2  -0.023 -0.010 -0.002 -0.002 -0.056 0.005
C:18:2 M 0.016 0.070 -0.011 0.108 0.082 0.157
M+1 -0.022 0.027 0.007 -0.023 0.014 -0.006
M+2  0.007 -0.097 0.004 -0.085 -0.096 -0.150
C:18:3 M 0.407 0.404 0.034 0.038 0.065 0.212
M+1 -0.152 -0.052 -0.007 0.060 -0.028 -0.119
M+2  -0.255 -0.352 -0.027 -0.097 -0.037 -0.093
C:20:0 M 0.318 -0.387 0.324 0.181 0.000 0.059
M+1 -0.065 0.130 0.010 -0.175 -0.067 -0.106
M+2 -0.253 0.257 -0.333 -0.006 0.067 0.047
C:20:1 M -0.119 -0.268 0.230 0.023 0.013 0.062
M+1 -0.011 0.149 0.034 -0.078 0.049 0.019
M+2  0.129 0.118 -0.264 0.055 -0.062 -0.081

- - - - 0.041 0.275
- - - - 0.056 -0.017
- - - - -0.098 -0.257
C:22:1 M 0.234 0.047 0.217 0.188 - -
M+1 -0.140 0.007 0.028 -0.276 - -
M+2 -0.094 -0.054 -0.245 0.088 - -
C:14:0 M 0.032 -0.053 - - 0.158 -0.032
M+1  0.003 -0.052 - - -0.083 0.015
M+2 -0.031 0.058 - - -0.059 0.057
M+3  -0.003 0.047 - - -0.016 -0.040
C:16:0 M -0.091 -0.037 - - 0.167 0.164
M+1  0.030 0.014 - - -0.071 -0.083
M+2  0.037 -0.003 - - -0.075 -0.058
M+3  0.024 0.026 - - -0.020 -0.023
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Table 2.2.52 (cont’d)

80/20 Glucose *>C Glutamine **C Alanine
Fragment PC1 PC2 PC1 PC2 PC1 PC2
Carboxymethoxy fragments
C:18:.0 M  -0.021 0.094 - - 0.167 0.021
M+1 0.031 -0.082 - - -0.060 -0.016
M+2  0.010 -0.033 - - -0.082 -0.007
M+3  -0.021 0.022 - - -0.024 0.001

C:18:1 M -0.017 0.021 0.002 0.010 0.155 -0.031
M+1 0.009 -0.022 -0.003 -0.009 -0.070 0.011
M+2  0.012 -0.057 -0.003 0.014 -0.064 0.020
M+3  -0.003 0.057 0.004 -0.016 -0.021 0.001
C:18:2 M -0.037 0.103 -0.014 0.144 0.117 0.084
M+1 0.016 -0.051 0.008 -0.011 -0.059 -0.045
M+2  0.029 -0.080 0.002 -0.075 -0.052 -0.034
M+3  -0.007 0.028 0.004 -0.058 -0.007 -0.005
C:18:3 M  0.292 0.120 -0.053 0.658 0.339 0.321
M+1 0.004 0.096 0.014 -0.127 -0.178 -0.163
M+2 -0.166 -0.126 0.027 -0.373 -0.136 -0.146
M+3  -0.129 -0.090 0.013 -0.158 -0.025 -0.012
C:20:0 M 0.153 -0.112 0.317 -0.037 0.042 -0.020
M+l 0.122 -0.087 0.013 0.035 -0.071 -0.034
M+2 -0.166 0.083 -0.338 0.130 0.079 0.132
M+3  -0.110 0.116 0.008 -0.129 -0.050 -0.078
C:20:1 M -0.039 -0.095 0.331 -0.019 0.167 0.149
M+1 -0.106 -0.057 -0.061 -0.056 0.003 -0.097
M+2  0.098 0.095 -0.228 0.094 -0.210 -0.118
M+3  0.046 0.058 -0.042 -0.019 0.040 0.067

C:22:0 M - - - - 0.570 -0.374
M+1 - - - - -0.360 0.519
M+2 - - - - -0.218 -0.141
M+3 - - - - 0.009 -0.004

C:22:1 M 0.389 -0.289 0.339 0.183 - -
M+1 -0.180 0.099 -0.151 0.092 - -
M+2 -0.076 -0.024 -0.104 -0.134 - -
M+3  -0.133 0.214 -0.083 -0.141 - -
PCA was performed on fatty acid isotopomer labeling data from transgenic C. sativa lines that were
cultured for 6 days (10-16 DAF) with U-3C alanine, U-3C glutamine, or 80% 1,2, 20% U-'3C glucose, as
illustrated in Fig 2.2.2. Values are the coefficients for the first two principal components.
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Table 2.2.53. Isotopomer labeling of amino acids from cultured embryos

80/20 Glc Labeling GIn Labeling Ala Labeling C1-Glc Labeling
Fragment PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2
Alal23 M 0.09 0.07 0.03 0.01 0.05 0.06 - -
M+1 -0.05 -0.01 -0.01 -0.01 0.00 0.01 - -
M+2  -0.03 -0.05 -0.01 0.00 0.00 0.00 - -
M+3  -0.01 -0.01 -0.01 0.00 -0.04 -0.07 - -
Ala23 M 0.07 0.05 0.02 0.02 0.04 0.06 - -
M+1 -0.05 0.02 -0.01 -0.02 0.00 0.01 - -
M+2  -0.02 -0.07 -0.01 0.00 -0.04 -0.07 - -
Gly12 M -0.01 -0.07 0.00 0.01 0.00 -0.01 -0.02 0.08
M+1 0.04 0.08 0.00 0.00 0.00 0.00 -0.01 -0.05
M+2  -0.03 -0.01 0.00 -0.01 0.00 0.01 0.03 -0.03
Gly2 M -0.01 -0.05 0.01 0.00 0.00 -0.01 0.03 0.11
M+1 0.01 0.05 -0.01 0.00 0.00 0.01 -0.03 -0.11
Val12345 M - - 0.01 0.00 0.04 0.00 -0.10 0.16
M+1 - - 0.00 -0.01 -0.01 0.00 0.11 -0.13
M+2 - - 0.00 0.01 -0.02 0.00 0.01 -0.05
M+3 - - 0.00 0.00 -0.01 0.00 0.01 -0.01
M+4 - - 0.00 0.00 0.00 0.00 -0.01 0.01
M+5 - - 0.00 0.00 0.00 0.00 -0.01 0.02
Val2345 M  0.00 0.01 0.02 0.00 0.04 0.00 -0.05 0.17
M+1 -0.02 0.03 -0.01 -0.01 -0.01 0.00 0.00 -0.12
M+2  0.03 -0.04 0.00 0.01 -0.03 0.00 0.03 -0.08
M+3  -0.01 0.02 -0.01 0.00 0.00 0.00 0.00 0.01
M+4  0.01 -0.02 0.00 0.00 0.00 0.00 0.02 0.02
Leu23456 M -0.02 -0.02 -0.06 0.10 -0.01 -0.15 -0.03 0.29
M+1 -0.04 0.02 0.04 -0.09 0.02 0.11 0.02 -0.13
M+2  0.05 0.01 0.02 -0.01 0.00 0.04 0.01 -0.13
M+3  -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 -0.04
M+4  0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M+5  0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
Leu23456 M - - -0.01 -0.01 0.03 0.01 0.00 0.27
M+1 - - 0.00 -0.01 -0.01 0.01 0.04 -0.06
M+2 - - 0.00 0.02 -0.01 -0.02 -0.03 -0.20
M+3 - - 0.00 0.00 -0.01 0.00 -0.01 0.00
M+4 - - 0.00 0.00 0.00 0.00 0.00 0.01
M+5 - - 0.00 0.00 0.00 0.00 0.00 0.00
Leu123456 M -0.02 0.02 -0.04 0.04 0.02 -0.06 - -
M+1 -0.01 0.04 -0.01 0.00 -0.01 -0.01 - -
M+2  0.03 0.00 0.00 0.02 -0.03 -0.02 - -
M+3  -0.04 -0.06 0.04 -0.05 0.02 0.09 - -
M+4  0.03 0.00 0.01 -0.01 0.00 0.00 - -
M+5  0.00 0.00 0.00 0.00 0.00 0.00 - -
M+6  0.01 -0.01 0.00 0.00 0.00 0.00 - -
Ile23456 M  0.00 0.02 0.03 0.01 0.02 -0.05 -0.01 0.10
M+l -0.04 -0.01 0.00 -0.06 0.00 0.03 0.04 -0.06
M+2  0.03 0.01 0.00 0.02 -0.01 0.02 -0.03 -0.04
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Table 2.2.53 (cont’d)

80/20 Glc Labeling GIn Labeling Ala Labeling C1-Glc Labeling
Fragment PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2
M+3  -0.01 -0.01 -0.03 0.03 0.00 0.00 0.00 0.00
M+4  0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
M+5 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lle23456 M - - 0.03 0.01 0.03 -0.06 0.01 0.13
M+1 - - 0.00 -0.06 -0.01 0.03 0.02 -0.13
M+2 - - 0.00 0.02 -0.02 0.02 -0.02 0.01
M+3 - - -0.02 0.03 0.00 0.00 0.00 0.01
M+4 - - 0.00 0.00 0.00 0.00 0.00 -0.01
M+5 - - -0.01 0.00 0.00 0.00 0.00 0.00
Ile123456 M  -0.02 0.01 0.03 0.02 0.04 -0.06 - -
M+1 0.00 0.02 0.00 -0.04 -0.01 0.02 - -
M+2  -0.01 -0.01 -0.01 -0.04 -0.02 0.03 - -
M+3  0.03 0.00 0.00 0.06 0.00 0.01 - -
M+4  0.00 -0.01 -0.03 -0.01 0.00 0.00 - -
M+5  0.01 -0.01 0.00 0.00 0.00 0.00 - -
M+6  0.00 0.00 0.00 0.00 0.00 0.00 - -
Pro12345 M 031 0.17 0.02 -0.16 0.04 -0.08 0.36 0.12
M+1 -0.08 -0.04 0.00 -0.08 -0.01 0.03 -0.26 -0.03
M+2  -0.13 -0.07 0.00 -0.02 -0.02 0.03 -0.12 -0.03
M+3  -0.05 -0.04 -0.01 -0.03 0.00 0.01 0.01 0.01
M+4  -0.03 -0.02 0.00 0.01 0.00 0.00 0.01 0.00
M+5 -0.01 0.00 0.00 0.28 0.00 0.00 -0.01 -0.07
Pro2345 M 031 0.18 0.02 -0.17 -0.02 -0.15 0.32 0.11
M+1 -0.13 -0.08 0.00 -0.09 0.03 0.09 -0.25 -0.07
M+2  -0.11 -0.05 -0.01 -0.03 0.00 0.05 -0.05 -0.03
M+3  -0.06 -0.05 0.00 0.01 0.00 0.01 -0.01 -0.01
M+4  -0.01 0.00 0.00 0.28 0.00 0.00 0.00 -0.01
Pro2345 M 031 0.18 0.02 -0.18 0.03 -0.07 0.28 0.15
M+1 -0.13 -0.08 0.00 -0.09 -0.01 0.04 -0.25 -0.06
M+2 -0.11 -0.05 -0.02 -0.03 -0.02 0.02 -0.01 -0.11
M+3  -0.06 -0.05 0.00 0.01 0.00 0.01 -0.01 0.02
M+4  -0.01 0.00 0.00 0.28 0.00 0.00 -0.01 0.00
Met12345 M 0.00 -0.07 0.04 0.00 0.02 -0.05 0.09 0.04
M+1 0.06 -0.01 0.01 -0.03 -0.01 0.02 -0.05 -0.06
M+2  0.00 -0.04 0.00 -0.03 -0.01 0.03 -0.03 0.00
M+3  0.02 -0.01 0.00 0.06 0.00 0.00 -0.01 0.04
M+4  -0.04 0.10 -0.04 0.00 0.00 0.00 0.01 -0.02
M+5 -0.03 0.04 -0.02 0.00 -0.01 0.00 0.00 0.00
Met2345 M  -0.03 0.02 0.00 0.03 0.01 -0.06 -0.01 0.08
M+1 0.01 0.05 -0.01 -0.03 -0.01 0.03 0.07 -0.10
M+2  0.02 -0.01 0.00 0.02 -0.01 0.03 -0.05 0.00
M+3  -0.01 -0.07 0.00 -0.01 0.00 0.00 0.00 0.02
M+4  0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Met2345 M  0.06 -0.24 0.03 0.00 0.03 -0.05 -0.05 0.01
M+1 -0.05 0.16 0.00 -0.04 -0.01 0.03 0.04 0.01
M+2  -0.03 0.06 0.00 0.02 0.00 0.03 0.03 -0.03
M+3  0.01 0.02 -0.03 0.03 0.00 0.00 0.00 0.00
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Table 2.2.53 (cont’d)

80/20 Glc Labeling GIn Labeling Ala Labeling C1-Glc Labeling
Fragment PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2
M+4  0.01 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.01
Ser123 M 0.02 -0.06 0.01 -0.01 0.00 0.00 -0.06 -0.09
M+1 -0.03 0.04 -0.01 0.00 0.00 0.00 0.07 0.10
M+2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M+3  0.01 0.02 0.00 0.00 0.00 0.00 -0.01 -0.01
Ser23 M  0.01 -0.06 0.01 -0.01 0.00 -0.01 0.00 0.04
M+1 -0.03 0.05 -0.01 0.00 0.00 0.01 0.01 -0.02
M+2  0.02 0.01 0.00 0.00 0.00 0.00 -0.01 -0.03
Ser12 M 0.02 -0.01 0.00 0.01 0.00 0.00 - -
M+1 -0.01 0.01 0.00 -0.01 0.00 0.00 - -
M+2 -0.01 0.00 0.00 0.00 0.00 0.00 - -
Thrl234 M -0.04 0.05 0.03 0.01 0.03 -0.07 0.07 0.17
M+1 0.01 -0.02 0.01 -0.05 -0.01 0.02 -0.04 -0.20
M+2  -0.02 -0.04 -0.01 -0.04 -0.02 0.04 -0.02 0.01
M+3  0.05 0.01 0.00 0.08 0.00 0.01 0.00 0.01
M+4  0.00 0.00 -0.03 0.00 0.00 0.00 0.00 0.00
Thr234 M -0.03 0.05 0.04 0.01 0.02 -0.07 0.10 0.08
M+1 -0.07 -0.07 -0.01 -0.07 -0.01 0.04 -0.07 0.00
M+2  0.06 0.01 -0.01 0.02 -0.01 0.03 -0.01 -0.06
M+3  0.04 0.02 -0.02 0.04 0.00 0.00 -0.02 -0.03
Phel2 M  0.03 0.00 0.00 -0.01 0.00 0.00 - -
M+1 -0.02 -0.01 0.00 0.00 0.00 0.00 - -
M+2 -0.01 0.01 0.00 0.00 0.00 0.00 - -
Phe123456789 M 0.04 -0.03 0.00 0.01 0.00 0.00 -0.01 0.05
M+1 0.01 0.01 0.00 -0.01 0.00 0.00 0.05 -0.07
M+2  0.03 0.01 0.00 0.00 0.00 0.00 0.01 -0.04
M+3  -0.01 0.00 0.00 0.00 0.00 0.00 -0.03 0.00
M+4  -0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.02
M+5  -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M+6 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
M+7  -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M+8 -0.01 0.01 0.00 0.00 0.00 0.00 -0.01 0.02
M+9  0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00
Phe23456789 M 0.02 -0.03 0.00 0.00 0.00 -0.01 0.01 0.05
M+1  0.00 0.02 0.00 0.00 0.00 0.00 -0.05 -0.04
M+2  0.03 0.00 0.00 0.00 0.00 0.00 0.03 -0.06
M+3  -0.03 0.00 0.00 0.00 0.00 0.00 -0.03 0.01
M+4  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
M+5 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 -0.01
M+6  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M+7  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
M+8  0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03
Asp1234 M -0.10 0.02 0.02 0.01 0.04 -0.07 - -
M+1 0.01 -0.02 0.01 -0.05 -0.01 0.03 - -
M+2  0.01 -0.02 -0.01 -0.04 -0.02 0.04 - -
M+3  0.07 0.01 0.01 0.09 0.00 0.01 - -
M+4  0.01 0.00 -0.02 -0.01 0.00 0.00 - -
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Table 2.2.53 (cont’d)

80/20 Glc Labeling GIn Labeling Ala Labeling C1-Glc Labeling
Fragment PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2
Asp12 M -0.04 -0.07 0.01 -0.04 0.00 -0.06 - -
M+1  0.37 -0.22 -0.11 -0.03 0.01 0.03 - -
M+2  -0.33 0.28 0.10 0.07 -0.01 0.03 - -
Asp234 M  -0.13 0.02 -0.01 -0.02 0.05 -0.05 - -
M+1 -0.07 -0.06 -0.01 -0.06 -0.02 0.03 - -
M+2 0.14 0.03 0.05 0.02 -0.02 0.02 - -
M+3  0.06 0.02 -0.03 0.06 0.00 0.00 - -
Glu12345 M - - - - -0.01 -0.30 0.33 -0.15
M+1 - - - - 0.03 0.20 -0.21 0.14
M+2 - - - - -0.01 0.09 -0.10 0.00
M+3 - - - - -0.01 -0.01 -0.01 0.01
M+4 - - - - 0.00 0.00 0.00 0.01
M+5 - - - - 0.00 0.00 0.00 0.00
Glu2345 M 024 0.18 0.00 -0.29 0.04 -0.11 0.27 -0.09
M+l -0.14 -0.09 -0.02 -0.11 -0.03 0.07 -0.17 0.05
M+2  -0.06 -0.04 -0.02 -0.03 -0.01 0.04 -0.10 0.05
M+3  -0.06 -0.05 0.03 0.02 0.00 0.00 0.00 -0.01
M+4  0.02 0.00 0.00 0.41 0.00 0.00 0.00 0.00
Lys123456 M  0.06 -0.10 0.10 0.04 - - 0.04 -0.23
M+1 -0.19 0.24 -0.10 -0.09 - - 0.04 0.11
M+2  0.06 -0.05 0.01 -0.02 - - -0.06 0.13
M+3  0.04 -0.04 0.01 0.05 - - -0.02 -0.04
M+4  0.01 -0.04 -0.01 0.01 - - -0.01 0.01
M+5  0.02 -0.01 0.00 0.00 - - 0.01 0.02
M+6  0.00 0.00 0.00 0.00 - - 0.00 0.00
Lys23456 M  0.01 0.00 0.04 0.01 - - 0.00 0.23
M+1 -0.05 0.00 0.00 -0.06 - - 0.11 -0.23
M+2  0.03 0.02 0.00 0.02 - - -0.09 0.04
M+3  -0.01 -0.02 -0.02 0.03 - - 0.03 0.00
M+4  0.01 0.00 0.00 0.00 - - -0.02 -0.03
M+5 0.01 0.00 0.00 0.00 - - -0.02 -0.02
His123456 M  0.00 -0.09 - - -0.17 0.46 -0.13 -0.01
M+1 -0.04 0.08 - - 0.10 -0.26 0.13 -0.11
M+2  -0.11 0.00 - - 0.07 -0.18 -0.01 0.05
M+3  -0.05 -0.02 - - 0.00 -0.01 0.00 0.07
M+4  0.07 0.01 - - 0.00 0.00 0.02 -0.02
M+5  0.09 0.02 - - 0.00 0.00 -0.01 0.00
M+6 0.04 0.00 - - 0.00 0.00 0.01 0.01
His23456 M - - -0.08 -0.35 0.15 0.45 -0.09 -0.21
M+1 - - 0.04 0.24 0.08 -0.30 0.16 -0.06
M+2 - - 0.02 0.07 0.05 -0.07 0.02 0.15
M+3 - - 0.03 0.03 -0.11 -0.01 -0.03 0.08
M+4 - - 0.00 0.00 -0.02 0.00 -0.02 0.01
M+5 - - -0.01 0.00 -0.15 -0.07 -0.03 0.04
His123456 M -0.01 -0.06 0.02 -0.01 0.24 0.06 - -
M+1  0.02 0.03 -0.05 -0.02 0.00 0.02 - -
M+2  0.01 -0.01 0.00 0.00 -0.01 0.01 - -
M+3  0.00 0.01 0.01 0.02 -0.01 0.00 - -
M+4  0.03 0.00 0.00 0.00 -0.14 -0.06 - -
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Table 2.2.53 (cont’d)

80/20 Glc Labeling GIn Labeling Ala Labeling C1-Glc Labeling
Fragment PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2
M+5  -0.06 0.01 0.01 0.00 -0.05 -0.02 - -
M+6  0.01 0.03 0.00 0.00 -0.02 -0.01 - -
His23456 M 0.09 0.13 -0.26 0.13 0.55 0.04 - -
M+1  0.04 0.16 -0.01 0.03 0.01 0.04 - -
M+2  -0.02 0.14 0.01 0.00 -0.01 0.02 - -
M+3  -0.03 0.01 0.06 0.08 -0.07 0.05 - -
M+4  -0.02 -0.30 0.17 -0.23 -0.23 -0.09 - -
M+5  -0.05 -0.15 0.04 -0.02 -0.25 -0.07 - -
Tyr23456789 M  -0.04 -0.19 0.75 0.01 0.53 -0.03 - -
M+1  0.00 -0.02 0.07 0.03 0.00 0.06 - -
M+2  0.09 -0.25 0.01 0.02 0.00 0.04 - -
M+3  0.03 -0.08 -0.02 0.00 -0.08 -0.03 - -
M+4  0.08 -0.05 -0.02 0.00 -0.04 0.00 - -
M+5  0.00 0.06 -0.03 -0.01 -0.14 -0.05 - -
M+6  0.03 0.04 -0.07 -0.01 -0.05 -0.03 - -
M+7  -0.05 0.16 -0.37 -0.07 -0.04 0.04 - -
M+8 -0.14 0.33 -0.32 0.02 -0.17 0.01 - -
Tyrl2 M - - - - 0.02 0.09 - -
M+1 - - - - -0.03 -0.11 - -
M+2 - - - - 0.02 0.02 - -
Tyr123456789 M - - - - - - -0.02 0.05
M+1 - - - - - - 0.04 0.08
M+2 - - - - - - -0.02 -0.10
M+3 - - - - - - 0.00 -0.04
M+4 - - - - - - -0.01 0.00
M+5 - - - - - - 0.01 0.00
M+6 - - - - - - -0.01 0.00
M+7 - - - - - - 0.00 0.01
M+8 - - - - - - 0.00 0.01
M+9 - - - - - - 0.01 0.00

Amino acid labeling was determined by GC-MS for echl, echm2, ecthiol4, and 3thio transgenic C. sativa
embryos labeled with U-13C alanine, U-13C glutamine, 1-13C glucose, or 80% 1,2, 20% U-'3C glucose. Values
indicate the average proportion of the amino acid with the associated molecular ion peak.
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Table 2.2.54. Net fluxes normalized by proportion of carbon uptake

flux wild-type echl echm?2 ecthiol4 3thio
Vgl 0.14+£0.00 0.14+0.00 0.13+0.00 0.15+0.00 0.14+£0.00
Vg2 0.57+0.01 0.58+0.01 0.62+0.01 0.59+0.01 0.58+0.01
Valal 0.02+0.00 0.01+£0.00 0.02+0.00 0.02+0.00 0.01+£0.00
Va 0.03+0.00 0.03+0.00 0.04+0.00 0.04+0.00 0.03+0.00
Vsuc 0.24+0.01 0.23+0.01 0.20+0.01 0.21+0.01 0.23+0.01
Vsucl 0.24+0.01 0.23+0.01 0.20+0.01 0.21+0.01 0.23+0.01
Vhk1 0.83+0.01 0.84+0.01 0.85+0.01 0.84+0.01 0.84+£0.00
Vhk2 0.12+0.01 0.12+0.01 0.10+£0.01 0.10+£0.01 0.12+0.00
Vald -0.13+£0.08 0.00+0.09 -0.32£0.06 -0.19+0.05 -0.02+0.08
Vglyco  0.22+0.01 0.20+0.01 0.19+0.01 0.24+0.00 0.13+0.01
Vfasa 0.00+0.00 0.00%0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vfasb 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vpk 0.05+0.00 0.06 £0.00 0.07+0.00 0.08 £0.00 0.06£0.00
Vg3p 0.01+£0.00 0.01+£0.00 0.01+£0.00 0.01+£0.00 0.00+£0.00
Vgl -0.04+£0.03 -0.03+0.06 -0.04+0.03 -0.12+0.07 -0.03+0.03
Vhpt 1.02+£0.08 0.90+0.09 1.20+0.06 1.08 £0.05 0.90+0.08
Valdp -0.26+0.08 -0.44%+0.09 -0.12+0.06 -0.15+0.05 -0.56%0.09
Vpkp 0.15+0.01 0.12+0.01 0.11+0.01 0.15+0.01 0.06+0.01
Vstsp 0.02+0.00 0.03+0.00 0.01+0.00 0.02+0.00 0.02+0.00
Vpdhp 0.19+0.01 0.15+0.01 0.16+£0.01 0.18+0.00 0.08+0.01
Vfasl 0.12+0.00 0.100.00 0.10+0.00 0.12+0.00 0.05+0.01
Vpppl 2.09+0.03 2.19+£0.05 2.17+£0.02 2.01+£0.02 2.40+£0.04
Vppp2  1.88+0.03 1.96+£0.04 1.94+£0.02 1.80+0.01 2.15+0.03
Vppp3 2.09+0.03 2.19+0.05 2.17+£0.02 2.01+£0.02 2.40+£0.04
Vopp 3.77+£0.05 3.94+£0.08 3.90+0.04 3.62+0.03 4.32+0.07
Vakg 0.02+0.00 0.02+0.00 0.02+0.00 0.02+0.00 0.01+£0.00
Vcs 0.06+0.00 0.09%0.00 0.07+£0.00 0.11+0.00 0.11+0.00
Vca 0.05+0.00 0.08+0.00 0.06+0.00 0.09+0.00 0.09+0.00
Vsfal 0.03+0.00 0.04%0.00 0.03+0.00 0.05+0.00 0.04+0.00
Vsfa2 0.03+0.00 0.04+0.00 0.03+0.00 0.05+0.00 0.04£0.00
Vfum1 0.02+0.00 0.03+0.00 0.03+0.00 0.04+£0.00 0.03+0.00
Vfum?2 0.02+0.00 0.03+0.00 0.03+0.00 0.04+£0.00 0.03+0.00
Vme 0.02+0.00 0.02%0.00 0.00+0.00 0.01+0.00 0.00+0.00
Vpepc 0.02+0.00 0.02+0.00 0.00+0.00 0.01+0.00 0.01+0.00
Vacl 0.01+0.00 0.00+0.00 0.00+0.00 0.01+0.00 0.00+0.00
Vpyrt 0.04£0.00 0.04+£0.00 0.06£0.00 0.05+0.00 0.03+0.00
Vco2 0.72+0.01 0.75+0.01 0.74+£0.01 0.72+£0.00 0.80+0.01
Vwall 0.06 £0.00 0.06 £0.00 0.07+0.01 0.06£0.00 0.07+0.01
Vsta 0.02+0.00 0.03+0.00 0.01+0.00 0.02+0.00 0.02+0.00
Vglxn 0.07 £0.03 0.07 £0.06 0.08 +0.03 0.16 +0.07 0.06 +0.03
Vglxu -0.06£0.03 -0.06+x0.06 -0.07+0.03 -0.15+0.07 -0.05+0.03
Vglueff  0.01+0.00 0.01+0.00 0.01+0.00 0.01+£0.00 0.01+£0.00
Vasp 0.01+£0.00 0.01+£0.00 0.01+0.00 0.01+£0.00 0.01+£0.00
Vaspeff 0.00£0.00 0.00+0.00 0.01+0.00 0.01+0.00 0.00+0.00
Vser 0.01+0.00 0.01%0.00 0.01+0.00 0.01+0.00 0.00+0.00
Vsereff 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
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Table 2.2.54 (cont’d)

flux wild-type echl echm?2 ecthiol4 3thio
Vgly 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vglyeff  0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vcheff ~ 0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vala -0.01+0.00 -0.01+0.00 -0.01+0.00 -0.01+0.00 -0.01%0.00
Valaeff  0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Varol 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Varo2 0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vakiv 0.01+0.00 0.01+0.00 0.01+0.00 0.01+0.00 0.01+0.00
Vleu 0.01+0.00 0.01+0.00 0.01+0.00 0.01+0.00 0.01+0.00
Vleueff  0.01+0.00 0.01+0.00 0.01+£0.00 0.01+0.00 0.00+0.00
Vthr 0.01+0.00 0.01+0.00 0.01+£0.00 0.01+£0.00 0.01+0.00
Vthrald  0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vthreff  0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vile 0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vileeff  0.00+0.00 0.00+0.00 0.00£0.00 0.00£0.00 0.00+0.00
Vval 0.00+0.00 0.00+0.00 0.00£0.00 0.00£0.00 0.00+0.00
Vvaleff  0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vphe 0.00+0.00 0.00+0.00 0.00+0.00 0.01+0.00 0.00+0.00
Vpheeff 0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Viyr 0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vtyreff  0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vpro 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vproeff  0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vlysl 0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vlyseff ~ 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vhis 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vhiseff ~ 0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vacoa 0.00+0.00 0.00+0.00 0.00£0.00 0.00+0.00 0.00+0.00
Vmet 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Vmeteff 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Varg 0.01+0.00 0.00+0.00 0.01+£0.00 0.01+£0.00 0.00+0.00
Vargeff  0.01+0.00 0.00+0.00 0.01+0.00 0.01+0.00 0.00+0.00

Net fluxes were determined with 13C-MFA for transgenic C. sativa developing embryos labeled with U-
3¢ alanine, U-13C glutamine, 1-13C glucose, or 80% 1,2, 20% U-'3C glucose. Values are the average net
fluxes normalized by total carbon uptake £ 90% confidence intervals as determined from the 20 best fits
derived from pseudo datasets.

155



Table 2.2.S5. Net fluxes in models with and without glyoxylate cycle reactions

flux without with flux without with
Vgl 0.134 0.131 Vsta 0.016 0.015
Vg2 0.619 0.624 Vglxn 0.070 0.098
Valal 0.015 0.015 Vglxu -0.060 -0.087
Va 0.038 0.038 Vglueff 0.011 0.011
Vsuc 0.195 0.192 Vasp 0.011 0.011
Vsucl 0.195 0.192 Vaspeff 0.005 0.005
Vhk1 0.849 0.851 Vser 0.006 0.006
Vhk2 0.097 0.096 Vsereff 0.003 0.003
Vald -0.397 -0.119 Vgly 0.004 0.003
Vglyco 0.188 0.180 Vglyeff 0.003 0.003
Vfasa 0.003 0.003 Vcheff 0.001 0.001
Vfasb 0.003 0.003 Vala -0.012 -0.012
Vpk 0.071 0.068 Valaeff 0.003 0.003
Vg3p 0.006 0.007 Varol 0.003 0.003
Vgl -0.032 -0.060 Varo2 0.003 0.003
Vhpt 1.268 0.986 Vakiv 0.011 0.011
Valdp -0.050 -0.340 Vleu 0.007 0.007
Vpkp 0.112 0.110 Vleueff 0.006 0.006
Vstsp 0.016 0.015 Vthr 0.006 0.006
Vpdhp 0.153 0.152 Vthrald 0.001 0.001
Vfasl 0.100 0.101 Vthreff 0.003 0.003
Vpppl 2.166 2.183 Vile 0.004  0.004
Vppp2 1.942 1.957 Vileeff 0.003 0.003
Vppp3 2.166 2.183 Vval 0.004 0.004
Vopp 3.896 3.926 Vvaleff 0.004 0.004
Vakg 0.019 0.018 Vphe 0.005 0.005
Vcs 0.067 0.065 Vpheeff 0.004 0.004
Vca 0.055 0.026 Vtyr 0.003 0.003
Vsfal 0.032 0.020 Vtyreff 0.003 0.003
Vsfa2 0.032 0.020 Vpro 0.004 0.004
Vfum1l 0.026 0.020 Vproeff 0.004 0.004
Vfum?2 0.026 0.020 Vlys1 0.005 0.004
Vme 0.001 0.005 Vlyseff 0.004 0.004
Vpepc 0.000 -0.003 Vhis 0.002 0.002
Vacl 0.002 0.018 Vhiseff 0.002 0.002
Vpyrt 0.055 0.052 Vacoa 0.001 0.001
Vbetal - -0.001 Vmet 0.001 0.001
Vbeta2 - 0.006 Vmeteff 0.001 0.001
Vicl - 0.016 Varg 0.005 0.005
Vco2 0.736 0.732 Vargeff 0.005 0.005
Vwall 0.076 0.080

Net fluxes were determined with 13C-MFA for transgenic C. sativa developing embryos labeled with U-
13¢C alanine, U-3C glutamine, 1-'3C glucose, or 80% 1,2, 20% U-'3C glucose. We tested for an active
glyoxylate cycle by fitting the model with and without the cycle to the experimental data. In addition to
comparing the resulting total model fits (Fig 2.2.S5), we compared the net fluxes normalized by total
carbon intake to determine if there is a significant difference in how the model predicts a major flux to be
used. This table lists the average normalized net fluxes for the 20 best fits derived from pseudo datasets.

156



Table 2.2.56. Contributions of normalized net fluxes to PCA

flux PC1 PC2 PC3 flux PC1 PC2 PC3

Vgl 0.004  0.000  0.000 Vglxn 0023 0.158  -0.555
Vg2 -0.006 -0.034  -0.007 Vglxu 0.021  -0.158  0.555
Valal -0.003  0.002  0.000 Vglueff  -0.002  0.001  0.000
Va -0.007  0.002  -0.001 Vasp -0.002  0.001  0.000
Vsuc 0.012 0029  0.007 Vaspeff  -0.001  0.000  0.000
Vsucl 0.012 0029  0.007 Vser -0.001  0.000  0.000
Vhk1 0.004 -0.019 -0.003 Vsereff  0.000  0.000  0.000
Vhk2 0.006 0015  0.004 Vgly -0.001  0.000  0.000
Vald 0320 0475  0.127 Vglyeff ~ 0.000  0.000  0.000
Vglyco  -0.073  0.066  0.025 Vcheff 0.000  0.000  0.000
Vfasa -0.001  0.001  0.000 Vala 0.002  -0.001  0.000
Vfasb -0.001 0001  0.000 Valaeff ~ -0.001  0.000  0.000
Vpk -0.009  0.006  -0.010 Varol 0.000  0.000  0.000
Vg3p -0.002  0.002  0.001 Varo2 0.000  0.000  0.000
vgl 0.016 -0.156  0.554 Vakiv -0.002  0.001  0.000
Vhpt 0310  -0.468  -0.119 Vleu -0.001  0.000  0.000
Valdp -0.487 -0.335  -0.078 Vleueff  -0.001  0.000  0.000
Vpkp -0.062  0.052  0.029 Vthr -0.001  0.000  0.000
Vstsp -0.002 0011  0.005 Vthrald ~ 0.000  0.000  0.000
Vvpdhp  -0.077  0.056  0.031 Vthreff ~ 0.000  0.000  0.000
Vfasl -0.051  0.037  0.021 Vile -0.001  0.000  0.000
Vppp1l 0.298  -0.241  -0.078 Vileeff ~ -0.001  0.000  0.000
Vppp2 0270 -0217  -0.070 Vval -0.001  0.000  0.000
Vppp3 0.298 -0.241  -0.078 Vvaleff  -0.001  0.000  0.000
Vopp 0.537  -0.433  -0.140 Vphe -0.001  0.000  0.000
Vakg -0.004 0001  -0.001 Vpheeff -0.001  0.000  0.000
Ves 0.010 0022 -0.016 Viyr -0.001  0.000  0.000
Vca 0.011 0017 -0.014 Vtyreff 0,000  0.000  0.000
Vsfal 0.003  0.007 -0.006 Vpro -0.001  0.000  0.000
Vsfa2 0.003  0.007 -0.006 Vproeff ~ -0.001  0.000  0.000
Vfum1 0.002 0006  -0.005 Vlys1 -0.001  0.000  0.000
Vfum2 0.002 0006  -0.005 Vlyseff ~ -0.001  0.000  0.000
Vme -0.002  0.009  0.007 Vhis 0.000  0.000  0.000
Vpepc -0.001 0010  0.008 Vhiseff ~ 0.000  0.000  0.000
Vadl -0.002  0.002  0.001 Vacoa -0.001  0.001  0.000
Vpyrt -0.016 -0.002  -0.004 Vmet 0.000  0.000  0.000
Vo2 0.067 -0.044 -0.020 Vmeteff  0.000  0.000  0.000
Vwall 0.000 -0.011  -0.008 Varg -0.001  0.000  0.000
Vsta -0.002  0.011  0.005 Vargeff  -0.001  0.000  0.000

PCA was performed on net fluxes normailzed by total carbon uptake from transgenic C. sativa lines that
were cultured for 6 days (10-16 DAF) with U-13C alanine, U-13C glutamine, 1-'3C glucose, or 80% 1,2, 20%
U-3C glucose, as illustrated in Fig 2.2.6. Values are the coefficients for the first three pricipal components.
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Preface

As part of an ongoing project, | collaborated with Dr. Mike Pollard (MP) to analyze triacylglycerol (TAG)
biosynthesis in developing embryos of Camelina sativa. MP developed labeling and analytical methods to
track carbon movement among lipid classes, sub-classes, and individual fatty acid species (Pollard et al
2015a,b). This chapter describes my work on this project, crediting MP as appropriate for the experimental

results he provided for my modeling work.

Introduction
Seed oil is of great economic importance due to its use in food, lubrication, detergents, cosmetics,
chemical feedstocks, and biofuels (Durrett et al., 2008; Dyer et al., 2008; Mosiewicki & Aranguren, 2013).
The major seed storage lipid is triacylglycerol (TAG), which is composed of a glycerol backbone (i.e.,
glyceryl group) and three fatty acid hydrocarbon chains (i.e., acyl groups; Bates et al., 2013; Li-Beisson et
al., 2013). The composition of these chains (e.g., length and degree of saturation) influences the physical
and chemical properties of the oil (Durrett et al., 2008; Arab-Tehrany et al., 2012). For example, saturated
fatty acids have better stability to oxidation than unsaturated ones (Durrett et al., 2008). This is important
for oils used in frying and other high-temperature applications. Understanding lipid biosynthesis is an
important step in engineering seeds to have increased oil content and/or altered fatty acid composition.
In the TAG de novo synthesis pathway (Chapman & Ohlrogge, 2012; Bates et al., 2013; Li-Beisson
et al., 2013), two fatty acids are added in succession to glycerol 3-phosphate (G3P) by sn-1 glycerol-3-
phosphate acyltransferase (GPAT) and lysophosphatidic acid acyltransferase (LPAAT) ) using acyl CoA as
the acyl donor to produce phosphatidic acid (PA). The phosphate group in the sn-3 position of PA is
removed by phosphatidic acid phosphatase (PAP) to produce diacylglycerol (DAG), which can be acylated
by diacylglycerol acyltransferase (DGAT) to produce TAG. In addition, other enzymes, such as

phospholipid:diacylglycerol acyltransferase (PDAT), which acrylates DAG to make TAG using a
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phospholipid as the acyl donor, and other intermediates, such as phosphatidylcholine (PC) and other
phospholipids, are also involved in TAG biosynthesis in oilseeds (Chapman & Ohlrogge, 2012; Bates et al.,
2013; Li-Beisson et al., 2013).

PC has an important role in TAG biosynthesis because the PC sn-2 position is the major site of
fatty acid desaturation, hydroxylation, and other fatty acid modifications (Bates et al., 2013). This site
plays a critical role in acyl editing, where the PC sn-2 fatty acid is removed, yielding lyso-PC, and replaced
by lyso-PC acyltransferase (LPCAT), which permits the initial PC fatty acid to be available for de novo TAG
biosynthesis (e.g., G3P acylation; Bates et al., 2012). Consequently, PC significantly contributes to the
production of TAG with polyunsaturated or other modified fatty acids. Despite extensive research in
recent decades on genes and enzymes involved in plant lipid metabolism (Mudd, 1980; Benning, 2009;
Bates et al., 2013; Li-Beisson et al., 2013), it is still unclear how the PC and DAG pools are related in the
biosynthetic network. PC is synthesized from DAG by the addition of the choline group by PC:DAG
phosphocholine transferase (PDCT) or cholinephosphotransferase (CPT; Chapman & Ohlrogge, 2012).
These reversible reactions have been well established, but there is not yet a clear consensus on whether
there is rapid exchange between PC and DAG pools (Durrett et al., 2008; Chapman & Ohlrogge, 2012), or
if PC is synthesized from one DAG pool and used to produce a second, independent DAG pool (Bates et
al., 2013). Possible network topologies can be computationally tested with carbon labeling and
mathematical models to determine which network topology best explains measurements.

Bates et al. (2009) constructed the first, and to date only, quantitative flux map of TAG
biosynthesis in an oilseed (soybean). Using a simple kinetic model, and *C glycerol and *C acetate to
track, respectively, the lipid backbone flux from G3P and the addition of newly synthesized or recently
elongated fatty acids, they found that PC and DAG each had active and bulk pools. The active pools were
predicted to be small and used to synthesize lipids, while the bulk pools were predicted to be large and

used for storage or synthesis. Lastly, it was predicted that there were two active DAG pools, one before
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and one after PC. These researchers also found that most newly formed fatty acids were used in acyl
editing. The detached fatty acids were predicted to enter a recycled fatty acid (in the form of acyl-CoA)
pool that also contained newly synthesized fatty acids and could be used for G3P acylation, while DAG
acylation was predicted to selectively use newly synthesized fatty acids.

In this work, cultured C. sativa embryos were supplied with *C-glycerol to trace how glyceryl
groups move through the biosynthesis network. Dynamic, first-order rate equation models were
constructed to represent potential network topologies and tested using the labeling data to identify the
likely network topology and to derive a flux map. Network topologies were compared using the sum of
squared errors between predicted and measured *C contents in PC, DAG, and TAG over the time-course.
The best fit was found when one DAG pool exchanges with the active PC pool and also feeds into a second
DAG pool that serves as the immediate precursor pool for TAG synthesis (Fig 3.S2). In addition, we
performed short-term *C-acetate labeling to assess how PC acyl editing is involved in this pathway and

we explain how these findings can be integrated with the glyceryl flux map.

Results
Determining network topology with glyceryl labeling and mathematical models

Following the establishment of methods to culture C. sativa developing embryos (Chapter 2), and for
isotopic labeling of lipid precursors and for analyzing the distribution of label in different lipids (Pollard et
al 2015a,b), MP labeled cultured embryos with 1.5 mM U-1*C/*3C; glycerol for 0.5 to 24 hr, and measured
13C and *C glyceryl and acyl label content in PC, DAG, and TAG. Exogenous glycerol is believed to serve as
a substrate for a kinase that uses it to produce G3P and thus labels the glyceryl groups of lipids. In addition
to labeling the glyceryl backbone of glycerolipids, glycerol also seems to serve as a substrate for G3P
dehydrogenase, which produces a triose phosphate that can be used for acyl CoA synthesis. Consequently,

14c-glycerol labels both glyceryl and acyl groups. MP isolated these two fractions and analyzed their
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separate labeling patterns. The 0.5-24 hr time-course spanned the initial linear flux through steady-state
asymptotic labeling (Fig 3.1) and could be used to estimate some relationships between active lipid pools
and other network properties. Using first order kinetic modeling and MP’s **C glyceryl labeling data (Table
3.3.51), | extended these estimates into a flux map of glycerolipid metabolism during TAG biosynthesis by
1) finding a network topology that fits the glyceryl measurements, and 2) quantifying rate constants and
pool sizes to determine reaction fluxes.

The model that best accounted for the glyceryl labeling data (Fig 3.1) contained two active and
one bulk (e.g., storage) DAG pools (Fig 3.2). The first active DAG pool could rapidly exchange with an active
PC pool, with a reversible flux of 0.074 uCi/hr/embryo, while the second active DAG pool could serve as a
precursor for TAG synthesis (0.053 pCi/hr/embryo) or be slowly diverted into the bulk DAG pool. The
network also contained two PC pools: one active and one bulk. The flux from active to bulk PC pools was

much smaller (0.002 uCi/hr/embryo) than the de novo TAG synthesis fluxes.

Tracking fatty acids involved in de novo synthesis or acyl editing

In order to track newly synthesized fatty acids as well as those recently elongated, | performed short-term
acyl labeling with *C-acetate. Because the labeling time-course was to be significantly shorter than the
above experiment, more embryos per culture plate well were used than in the longer *C-glycerol
experiment (where 5 embryos were cultured per well). To determine how many embryos could be
simultaneously labeled in a single well without inducing changes in their lipid metabolism due to crowding
stress, between 3 and 24 embryos per well were incubated for 6 hr with *C-acetate, and total lipid and
fatty acid species labeling was measured. Between 3 and 18 embryos/well, there was no significant
difference in the amount of label per embryo in the total lipid extract (Fig 3.3a) or within the more active
fatty acid species (Fig 3.3b; Pollard et al., 2015a). At 24 embryos/well, there was a marked decrease in

total lipid content per embryo (Fig 3.3a), which indicated the embryos were too crowded. Consequently,
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Figure 3.1. Comparison of model predictions to measurements. C. sativa embryos were cultured with *C
glycerol to track the movement of the glyceryl backbone in the TAG biosynthesis pathway. Data points
indicate the measured average + standard deviation (n=3) glyceryl label content for TAG (yellow), DAG
(red), and PC (blue). Data were obtained by MP. The curves represent how much glyceryl label was
predicted for those lipid classes when the network topology in Fig 3.2 was modeled. (b) A zoomed-in view
of Panel A highlighting the DAG and PC fits.
in the short-term *C-acetate labeling experiment, only 18 embryos were cultured per well.

Cultured C. sativa embryos were labeled with 1 mM *C-acetate for 0.5 to 16 min to track how
newly synthesized or elongated fatty acids are incorporated into seed lipids. First, we measured the label

content in total lipid extracts and found that *C-acetate is incorporated linearly during this timeframe (Fig

3.4). Furthermore, TAG accumulates label at a high linear rate (0.07 DPM/pL) that persists through 16
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Figure 3.2. Current map of glyceryl backbone fluxes in the TAG biosynthesis network. Potential networks
of the TAG biosynthesis pathway were tested with first-order reaction kinetic models. This is the topology
and fluxes that had the best fit to the *C glyceryl time-course data; the model fit is shown in Fig 3.1. “Bulk”
indicates end product PC and DAG pools that accumulate for storage and/or structural functions. Numbers
indicate the fluxes in uCi/hr/embryo.

min, while PC and DAG have slower initial rates (0.03 and 0.02 DPM/uL, respectively). Neither DAG nor PC
show significant saturation of their label content, as would be expected for precursor pools. The lack of
saturation could be due to the time-course being too short, at least one of the pools being quite large, or
the existence of bulk PC and DAG pools, as suggested by the *C glyceryl model (Fig 3.2). To further
understand the route in which labeled fatty acids are being incorporated into the network, measured fatty
acid positional labeling was also measured (Fig 3.51).

The de novo synthesis of PC involves the addition of two fatty acids to G3P. These reactions are
not known to be specific for labeled or unlabeled fatty acids, thus de novo PC should contain 1:1 positional
fatty acid labeling. On the other hand, in PC acyl editing, LPCAT preferentially replaces the PC sn-2 fatty
acid with a fatty acid that may have been recently elongated, which would result in higher labeling in the
sn-2 position than in sn-1. Consequently, to differentiate between PC labeled in the de novo TAG pathway
and PC labeled via acyl editing, fatty acid positional labeling in PC was measured using phospholipase A;
(PLA;). This enzyme hydrolyzes the sn-2 fatty of PC, resulting in a free fatty acid and lyso-PC, which can be
separated with thin-layer chromatography (TLC, Fig 3.51a). We found that labeling in sn-1 PC began to

saturate by 4 min, while sn-2 labeling increased linearly through 16 min (Fig 3.5a). This suggested that the

PC pool used for acyl editing was significantly larger than the active PC pool used for de novo TAG
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Figure 3.3. Effect of increasing embryo culturing density on lipid content. C. sativa embryos were labeled
with C acetate in culture wells containing 3 to 24 embryos. (a) The label content in total lipid extracts.
Data points represent biological replicates (n = 2-4). (b) Average label content in fatty acid methyl ester
species obtained from transmethylating the total lipid extract. Legend descriptions indicate the number
of embryos per well x the number of wells per biological replicate; e.g., ‘8x2’ indicates that 8 embryos
were grown per well and two such well were combined before lipid extraction and thus represent one 16
embryo biological replicate.

synthesis.

Discerning how fatty acids are incorporated into TAG

To further understand how the PC acyl editing pool is related to de novo TAG synthesis, fatty acid

positional labeling in DAG and TAG was measured. We found that labeling in both sn-1 and sn-2 DAG
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Figure 3.4. Short-term fatty acid labeling per lipid class. C. sativa embryos were labeled with *C acetate
for 0.5 to 16 min. TAG (blue), DAG (orange), PC (yello), and phosphatidylethanolamine(PE, green) were
separated with TLC and assayed for label content with scintillation counting. Data points indicate the
measured average * standard deviation (n=3). Lines and equations represent the results of linear
regression analysis.

increased throughout the 16 min time-course (Fig 3.5b). DAG initially had more sn-2 label, but the ratio
started approaching (though did not reach) a 1:1 ratio by 16 min (Fig 3.5b). The high initial sn-2 DAG
labeling supports the acyl editing PC pool being a precursor to DAG. The trend toward 1:1 labeling was
consistent with there also being a DAG pool that served as a precursor to PC and was significantly larger
than the post-PC acyl editing DAG pool to mitigate the accumulation of sn-2 label. The precursor DAG pool
may also be significantly larger than the active PC pool used for de novo TAG synthesis because sn-1 PC
label leveled off at 3 DPM/uL, while sn-1 DAG label reached 15 DPM/puL at 16 min (Fig 3.5a-b). On average,
only 4% of the TAG fatty acid labeling was in the sn-2 position (Fig 3.5c). Labeling in the sn-1 and sn-3
positions were indistinguishable due to the isometric nature of TAG, but it is reasonable to assume the
sn-1 position contained at most 4% because both PC and DAG (the immediate precursor of TAG) had more
sn-2 label than sn-1 and additions of fatty acids to G3P are not expected to be selective for labeled or

unlabeled fatty acids (Fig 3.5a-b). Consequently, the remaining 92% of TAG label is expected to be in the

sn-3 position, which suggests most of the TAG was derived from the addition of a labeled fatty acid to a
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Figure 3.5. Fatty acid positional labeling in lipid classes. PC (a), DAG (b), and TAG (c) were isolated from
the total lipid extract with TLC and then enzymatically treated (with PLA; or pancreatic lipase) to hydrolyze
sn-2, or sn-1 and sn-3, respectively, fatty acids. Reaction products were separated by TLC and counted via
scintillation counting. (c) Comparison of the proportions of fatty acid positional labeling in PC, DAG, and
TAG, using the data shown in the other panels. The lines are provided for visualization and do not
represent regression analysis. Data points represent the average * standard deviation (n=3) for each
measurement or calculation.

pre-existing, unlabeled DAG. Preliminary analysis of the labeled TAG fatty acid composition revealed that
approximately 40% of the labeled fatty acids were newly synthesized (i.e., 16:0 or 18:1), and another 40%

were newly elongated (Fig 3.6, Table 3.3.52), both of which could be incorporated into the sn-3 position.
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Figure 3.6. Preliminary test to differentiate between de novo and elongated fatty acid labeling. TAG was
isolated from C. sativa embryos labeled with **C acetate for 10 min and transmethylated to separate the
fatty acids. Fatty acids were separated by carbon number and/or saturation with TLC. Activities were
measured with phosphorimaging. Percent labeling per fatty acid species is provided in Table 3.3.52.

Discussion

In this work, *C glycerol and '*C acetate time-course data were integrated with a model comprised of
first-order rate equations in order to assay the topology of the TAG biosynthesis pathway in C. sativa. We
found that a network containing two active DAG pools, with one being in exchange with the active PC
pool, and bulk PC and DAG pools best fit our **C-glyceryl data (Fig 3.1-2). This topology was also consistent
with our 1%C acetate data, in that the bulk PC pool could allow PC sn-2 positional labeling to significantly
increase without an equal increase in DAG sn-2 labeling (Fig 3.5). We found that most of the TAG positional
labeling was in the sn-1 or sn-3 position (Fig 3.5), 44% of which appeared to be in Cy or Cy; fatty acids

(Table 3.3.52) and 41% in 18:1 or 16:0, which seems to likely be due to pre-existing, unlabeled DAG being
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evenly acetylated with newly synthesized and recently elongated fatty acids.

A related study was performed by Yang et al. (2017) to test how the PC to DAG flux affects the
accumulation of TAG. They expressed two Arabidopsis thaliana phospholipase DT (PLDZ) genes in C. sativa.
As with the PLA; that we used to measure PC positional labeling, PLDZ hydrolyzes PC into PA and releases
a fatty acid that could be used to make TAG. Consistent with our results, they found that both the
transgenic and wild-type lines accumulated high levels of TAG sn-3 label. However, they also found that
PC sn-2 labeling only accounted for approximately 60% of the *C acetate labeling in PC, whereas we
estimated that sn-2 PC label comprises over 90% of the PC label. Our time-courses both represented short-
term *C acetate labeling (0.5-16 min vs. 3-180 min) and it is possible that this difference is due to a
difference in embryo age (15 vs. 20 DAF) because lipid content is beginning to saturate at the age of their
embryos (Pollard et al., 2015b), but we hypothesize that it is more likely due to differences in our culturing
media (e.g., osmotic pressure) or pre-intubation times (overnight vs. 20 min). These would need to be
tested by our lab imitating their methods and comparing the results.

We are currently working on methods to model acyl and glyceryl together. This could potentially
be done by modeling both the acyl and glyceryl *C glycerol components, but this measurement requires
the separation of the two compartments. Hence, while the components could both represent the same
time-course; there would not be information on whether a molecule was simultaneously labeled in the
glyceryl and acyl compartments. This could be observed with 3C glycerol and mass spectrometry, which
can quantify acyl (M+2), glyceryl (M+3), and simultaneous (M+3) labeling. However, there are limitations
on how short 3C time-courses can be to obtain enough label to clearly exceed natural abundance levels.
Another direction that should be taken is to further elucidate how the fatty acid species are labeled within
each lipid class. This would significantly increase the model complexity because there would need to be
separate reactions for each class-species combination, but this is an important future direction because

many of the lipid biosynthesis enzymes (e.g., LPCAT, PDAT, LPAAT) have some acyl substrate specificity
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(Snyder et al., 2009) and thus affect the network’s function.,

This study represents a versatile method for analyzing the network topology and fluxes. Our long-
term objective is to facilitate rational engineering of plant oils by developing a more complete and
dynamic model of the TAG biosynthesis network that represents how the lipid classes and fatty acid

species are related in oilseeds.

Methods

Growing and culturing C. sativa developing embryos

Camelina sativa var. Sunesson plants were grown in a growth chamber (BioChambers; Winnipeg,
Manitoba, Canada) on a 16hr/8hr light/dark cycle with plants receiving 125 pmol m? s of light. Seeds
were placed in a 25% medium coarseness perlite (Sun Gro; Quincy, MI, USA) and 75% Sure-Mix Potting
soil (Michigan grower’s products Galesburg, Ml, USA) that had been autoclaved when moist. Once seeds
germinated, a 2:1 water:nutrient water (one-half strength Hoagland solution) mixture was added twice
per week. Once flowering, stems were tagged to track silique age and harvested into 10% chlorox solution
to sterilize siliques for culturing.

In order to mimic in planta endosperm composition as described in Carey et al. (in preparation,
Chapter 2), media was made using the most abundant sugars and amino acids and consisted of 8 mM
glutamine, 4 mM alanine, 130 mM glucose, 12 mM sucrose, 20 mM HEPES, various vitamins, and 20%
polyethylene glycol (PEG 4000). Embryos were cultured in 30 mm wells of a 6 well plate (NEST Scientific,
USA). 1.5 mL of media was added to the well before adding 15 DAF embryos. 2mL of water was added to
the center of the plate in order to keep conditions humid. The plate was sealed with parafilm (Bemis NA,
USA) and incubated with light shaking overnight at physiological (10 uE) green light (white light from
fluorescent bulbs was filtered through a layer of green celluloid filter) to acclimate the embryos to the

culturing conditions. After this initial incubation, media containing the appropriate amount of label (e.g.,
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1.5 mM U-*C/13C; glycerol) was added to the embryos and they were inoculated as described above for

the designated amount of time.

Lipid extraction, separation and label quantification
The labeling assays were terminated by collecting and rinsing the embryos with water to remove residual
labeled media, adding hot isopropanol, and incubating the embryos at 85°C for 10-15 min. Once cooled,
the embryos were ground in the isopropanol using glass homogenizer and transferred to a new tube using
hexane. The lipids were extracted using a sodium sulfate phase a hexane/isopropanol phase separations.
Lipid classes were separated using thin-layer chromatography (TLC) on a silica plate (Analtech,
Inc., USA). Polar lipids were separated with a full development with 85:15:5:2 (v/v/v/v)
chloroform:methanol:glacial acetic acid:water, while neutral lipids were separated with a full
development with 88:12 (v/v) toluene:ethyl acetate. Polar lipids were extracted from the silica with 5:5:1
(v/v/v) chloroform:methanol:water, followed by phase separation with 0.8% (w/v) potassium chloride.
Neutral lipids were extracted from the silica with 2:1 (v/v) chloroform:methanol and phase separated with
0.8% (w/v) potassium chloride. Radioactivity were measured from extracted lipids in solution or separated

lipids in silica with a liquid scintillation counter, or measured from silica with a phosphorimager.

Lipid hydrolysis
PC that had been isolated was treated with phospholipase A, (PLA;) from porcine pancreas (P6534 Sigma)
in conjunction with 50 ug cold carrier from soybean. The PC was dissolved in diethyl ether and 100mM
sodium borate, pH 8.5, 5 mM calcium chloride, and incubated with 2 units PLA; for 30 min. The reaction
was stopped with 2:1 (v/v) chloroform:methanol.

DAG that had been isolated was chemically acetylated by incubating with 3:1 (v/v) acetic

anhydride:pyridine at 60°C for 2 hours, then at room temperature for 12 hours to form acetyl DAG
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(acDAG). Both TAG and acDAG were treated with 1,3 lipase from porcine pancreas (L3126 Sigma) by
dissolving in 1M Tris-HCl, pH 8, 2.2% (w/v) calcium chloride, and 0.5 mg/mL bile salts. The reaction was
ran with 25 ug lipase for 60 min and stopped with the addition of cold 3 M hydrochloride acid and ethanol.
Diethyl ether, 2:1 (v/v) chloroform:methanol, and water were then added to isolate the products via phase
separation.

Enzyme products were separated with a full development with 88:12 (v/v) toluene:ethyl acetate

and quantified as described above.

Testing potential network topologies

Different networks topologies were tested by writing the reactions as systems of first-order (i.e., ordinary
differential) rate equations and using MATLAB to optimize model fit to the data in a method similar to
that of (Hibino et al., 2011). In this method, the rate equations, initial label content (i.e., 0 nmol label at 0
hr), and arbitrary estimates of the rate constants (e.g., k 1= 0.5) were used as input for MATLAB ode45
This script is a differential equations solver that numerically calculated the expected label content at the
measured times (e.g., 24, 50 hr), given those rate constants. Initially, this resulted in a poor model fit
because the rate constants were chosen arbitrarily. Next, the calculated label content and time-course
data were used as input into MATLAB /sqgcurvefit . This optimizer script is a nonlinear least-squares solver
and was used to identify rate constants that permitted the model to better fit the data. The outputted
rate constants were used as input into MATLAB ode45 to obtain new calculated label content. This cycle
was repeated until the optimizer could no longer identify a better fit for the rate constants, given the
network equations. To identify a network topology to use for the preliminary flux map, we compared the
sum of squared errors between predicted and measured *C contents in PC, DAG, and TAG over the time-

course (Fig 3.52).
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Figure 3.51. Pictorial representation of the method used to measure fatty acid positional labeling. (a)
PC was isolated from total lipid extracts and treated with PLA; to hydrolyze its sn-2 fatty acid, resulting in
the free fatty acid and lyso-PC. (b) DAG and TAG were isolated from the neutral lipid component of the
total fatty acid extracts and DAG was chemically acetylated (resulting in acDAG) to prevent acyl migration.
TAG and acDAG were treated with pancreatic lipase in a two-step reaction to hydrolyze the sn-1 and sn-3
fatty acids. Pancreatic lipase does not distinguish between these positions so they were counted together
(designated above as sn1/3). Enzymatic products were separated with TLC and counted with
phosphorimaging, followed by scintillation counting.
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Figure 3.52. Examples of models tested. Three of the networks tested for goodness of fit are illustrated,
with G* indicating 14C glycerol content, “bulk” representing inactive lipid pools that may be alternatively
used for storage, and the fitted rate constants denoted with k. Goodness of fit was determined using the
sum of squared errors between model predicted and the average measured **C contents of PC, DAG, and
TAG over the 24 hr time-course. The sum-of-squares for these models were 160 (a), 230 (b), and 67 (c).
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Table 3.S1. Glyceryl label content per lipid class

Time TAG DAG PC
(min) (nmol) (nmol) (nmol)
0 0 0 0
24 0.89 2.19 1.46
50 2.02 3.62 2.7
95 5.68 5.35 4.95
183 14.24 6.62 5.96
365 37.62 8.96 6.44
669 81.23 10.98 8.93
1323 194.33 18.19 11.48

Data was measured and provided by Mike Pollard. C. sativa embryos were labeled with *C glycerol,
transmethylated, and their glyceryl label content counted. Values indicate average *C glyceryl content

per lipid class.

Table 3.52. Preliminary distribution of label in fatty acid species

FAME  Proportion of Label

16:0
18:0
18:1
20:0
20:1
20:2
22:1

9%
8%
34%
5%
32%
3%
4%

TAG was isolated from C. sativa embryos labeled with *C acetate for 10 min, then transmethylated to
separate the fatty acids in order to distinguish between label due to fatty acid synthesis and elongation.
Fatty acids were separated by carbon number and/or carbon number with TLC. Activities were measured
with phosphorimaging. Percent labeling per fatty acid species is provided in Table 3.3.52.
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CHAPTER 4

Discussion
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This dissertation depicts how experimental data can be integrated with mechanistic mathematical models
to address questions about plant nutrient fluxes at three biological scales: 1) two mutualistic organisms
exchanging nutrients, 2) one organism allocating carbon within its central metabolism, and 3) carbon flow
within a biochemical network. These models provide a means of tracking how plants use their carbon in
an ecological setting, for energy production, and to synthesize biomass products, but the different types

of models employed are associated with their own capabilities and challenges.

Plant-microbe nutrient exchange symbioses

In Chapter 1, we tested how the model legume Medicago truncatula and its rhizobial partner benefit from
exchanging photosynthetically fixed carbon for fixed nitrogen across a range of soil nitrogen availabilities.
Using a biological market model that accounted for the movement and allocation of these nutrients, we
found that when soil nitrogen was abundant and did not limit plant growth, the partners received
equivalent—though small—benefits from this interaction. In contrast, when nitrogen was scarce and
strongly limited plant growth, both partners significantly benefitted from the mutualism, yet the benefit
to the plant had greater weight in determining the trade parameters than the rhizobial benefit. We
hypothesize that this asymmetric bargaining power could be due to the plant having a lower discount rate
due its longer lifespan and potentially larger nutrient reserves, or due to the rhizobia possessing group
bargaining dynamics that limit their bargaining power.

The biological market model used in this study was adapted from a grass-mycorrhizal fungi model
(Grman et al., 2012). One of the first steps in the adaptation process was to design experiments to
measure the input parameters and predictions. At times, this was straightforward, such as determining
tissue nutrient yields in terms of carbon to nitrogen ratios. However, this process was more ambiguous
for other parameters because the model was originally developed for ecological populations and we were

applying it to a lower biological scale. For example, one parameter was the plant carbon uptake rate per
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shoot carbon biomass. Photosynthesis rates are typically measured per leaf area, which do not consider
the effects of leaf age or position, or any photosynthesis that may be performed by green stems. While
such simplifications might not strongly affect total carbon uptake in a population, they can represent
significant variations for individuals, especially of different sizes and allocation parameters. Consequently,
since we intended for the entire plant partner to be represented in the model, we built chambers to
measure whole-plant photosynthesis.

In addition to experimental challenges associated with applying models to different biological
scales (e.g., ecological to organismal), this project also pointed to challenges in parameterizing theoretical
models. Although the original model was parameterized in that it was fit to literature data (Grman et al.,
2012), it was derived from a theoretical framework of plant-microbe nutrient exchange mutualisms (Clark
et al., 2017), which affected how the mathematics operated. For example, a central assumption of the
original model was that the mutualistic trade dynamics would be consistent with the Nash bargaining
solution and that the partner benefits would be weighted equally. This is a common assumption in
ecological models, but results from a game theory analysis that assumes that the partners are consistently
self-interested, engage in bargaining, and are informed about the consequences of trade choices (Nash,
1950). Although the same bargaining solution can be obtained under other sets of assumptions, it is not
clear how these traits can be measured, particularly for plant-microbe interactions, and thus how to test
this assumption. The finding in our study that asymmetric bargaining theory better explains the observed
trade parameters than Nash’s original symmetric solution highlights the value of measuring as many

physiological and nutritional parameters as possible in the same experimental system.

Steady-state metabolic flux analysis

In Chapter 2, metabolic flux analysis (MFA) was used to understand why Camelina sativa developing

embryos have low carbon use efficiency and how genetic engineering these seeds to accumulate medium-
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chain fatty acids affects their central metabolism. By comparing C. sativa decarboxylation fluxes, we
identified the oxidative pentose phosphate (OPP) flux as being the major contributor to total carbon
dioxide production. Furthermore, the OPP net fluxes were tightly correlated with embryo carbon use
efficiencies across three light levels. Consequently, we concluded that the OPP flux was primarily
responsible for low carbon use efficiency in C. sativa embryos. The transgenic lines were analyzed with
MFA and clustering analyses. We found that the lines clustered so that the genotypes were cleanly
resolved by principal component analysis (PCA) using metabolite labeling profiles resulting from labeling
the embryos with 13C glucose, while the clustering was less effective in distinguishing them when the
embryos were labeled with 3C alanine or 3C glutamine. Regardless of the substrate, clustering analyses
yielded cleaner separation between the transgenic lines and wild-type embryos grown under different
light levels than clustering within the transgenic lines. This suggests that environmental variation had a
greater effect on these embryos’ central metabolism than the genetic modification of fatty acid
composition.

Unlike the mutualism model described above, metabolic models are rooted in the chemical
reactions that define the network; therefore, the primary assumption that requires testing (other than
checking that the system is in metabolic and isotopic steady-state) is the proposed metabolic network,
such as whether there is an active glyoxylate cycle in the transgenic C. sativa embryos. The model
reactions specify how each of the substrate carbon atoms are transformed into specific carbons in the
products. This allows the tracking of *3C and *C to yield flux values, and the necessary data (isotopomer
labeling, and metabolite uptake and efflux rates) can be measured directly with considerable precision
and accuracy. However, if more than one labelled substrate is used in separate experiments (which is
advantageous because different substrates are more informative about different processes), then the
resulting labeling from each substrate needs to be separately measured and represented with a separate

set of reactions in order to preserve the expected differences in isotopomer labeling. This greatly
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increases the model complexity because increasing the number of network reactions constrains the
feasible solution space, and leads to challenges in determining flux values that best fit the data. Briefly,
we addressed this large network challenge by first randomly generating starting points within 10% of the
total measured substrate influx from the center of feasible space. Next, we randomly selected starting
points within 10% of the previously determined starting points that were able to be optimized. We
repeated this process until at least 100 starting points yielded optimized (best fit) sets of flux values and
we observed a clear asymptotic pattern in total model fit quality (sum of weighted squared deviations of
model predictions from measured values). By exploring feasible space in this branching process, the
starting points were more representative of feasible space rather than simply being a tight cluster. This is
a crucial process in maximizing the likelihood that the flux maps obtained are true (global) best fits to the
data rather than computational local optima, which is a significant risk in multi-parametric fitting of
nonlinear systems to high dimensional datasets.

Optimized net fluxes that were normalized by total carbon uptake could not be cleanly clustered
by PCA. This may have been due to a small number of fluxes comprising a significantly larger proportion
of the carbon flux (e.g., OPP flux) and skewing the PCA results. We addressed this large network challenge
using hierarchical clustering analysis (HCA) set to scale the differences between objects by dividing by the
standard deviations. This would assign higher values to fluxes that varied more among the samples. We
also set the HCA to maximize differences between samples in order to mimic PCA. With these settings,
HCA was able to effectively, though not completely, separate the transgenic lines from each other, and to
cleanly separate wild-type grown under different light levels from each other and from the transgenic

lines.

Dynamic modeling of seed oil biosynthesis

In Chapter 3, we used a dynamic model comprised of first-order rate equations to examine the topology
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of the triacylglycerol (TAG) biosynthesis pathway in C. sativa developing embryos. We fit the model to *C
glyceryl time-course data to track how key lipid classes are made de novo and found that the data were
best explained by a model in which there were two active diacylglycerol (DAG) pools, with one being in
exchange with the active phosphatidylcholine (PC) pool, while the other serves as the immediate TAG
precursor, and bulk PC and DAG pools. In addition to *C glyceryl modeling, we performed short-term C
acetate time-course experiments to track how newly synthesized or recently elongated fatty acids were
added to lipid classes and moved through the network. These experimental results were consistent with
the model’s network topology, such as high PC sn-2 positional labeling in the absence of an equal increase
in DAG sn-2 labeling, which is explained by the bulk PC pool being the substrate of acyl exchange at sn-2.

This type of modeling has the potential to overfit the data because it works by fitting rate
constants and other parameters. Therefore, if the model is complex, the increased number of parameters
could inherently enhance the model fit and/or cause the model to describe random errors in the data.
This is a challenge for a variety of modeling types in situations where the complexity of the model is
greater than the underlying information content of the experimental data. A common way to address this
challenge is to broaden what is being measured in order to increase the information content and/or check
that the model also fits to a second set of independent data (e.g., separate training and testing sets; Chang
et al., 2013). Computationally, these are relatively straightforward, but they may be experimentally
challenging. In our study, we only obtained three biological replicates for the *C glyceryl time-course
being modeled, so it would be beneficial if this experiment is repeated in the future in order to have
testing and training sets available.

Additional experimental data can be utilized by modeling with 3C glycerol time-course data
instead of C. Glycerol labels both the glyceryl and acyl groups, but these can only be distinguished for
14C with transmethylation. 13C, on the other hand, can be measured for M+2 (acyl), M+3 (glyceryl), and

M+5 (both groups) labeling with mass spectrometry. We have 3C glycerol time-course data and its
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modeling analyses are in progress. An advantage to using *C over 13C is that the label can be detected at
smaller quantities and thus for shorter time-courses. A significant future direction for this project is to

develop methods for integrating these types of labeling and different time-course.

Conclusion

Different biological scales have distinct challenges in how modeling analysis can be integrated
with data. Ecological models tend to describe interacting populations and thus, due to system
complexities and the longevity of populations, represent theoretical predictions. This makes these models
difficult to parameterize and a method for extrapolating the model from the population scale to a scale
that is easier to measure (e.g., individual) may not be obvious. Metabolic scale models are rooted in
chemical principles, and modern analytical methods enable them to be highly parameterizable. However,
these models can face computational challenges when applied to large networks, including optimization
and potential biasing of results by a subset of the data.

Despite these challenges, the integration of models and experiments provides a valuable means
for testing hypotheses about network structure and interactions, and for estimating the values of
important biological parameters. In this dissertation, | have used different modeling approaches and
presented evidence for M. truncatula having more bargaining power than its rhizobial partner, a high OPP
flux being the cause of the low carbon use efficiency in C. sativa, environmental variation potentially
having a greater impact on central metabolism than genetic engineering in oilseeds, and the potential
existence of two active DAG pools in the oilseed TAG biosynthesis pathway. Together, modeling and

experiments open approaches to track how plant nutrients are obtained and allocated.
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