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ABSTRACT

MULTISCALE GAUSSIAN-BEAM METHOD FOR HIGH-FREQUENCY
WAVE PROPAGATION AND INVERSE PROBLEMS

By

Chao Song

The existence of Gaussian beam solution to hyperbolic PDEs has been known to the pure

mathematics community since sometime in the 1960s [3]. It enjoys popularity afterwards

due to its ability to resolve the caustics problem and its efficiency [49, 28, 31]. In this thesis,

we will focus on the extension of the multi-scale Gaussian beam method and its application

to seismic wave modeling and inversion.

In the first part of thesis, we discuss the application of the multi-scale Gaussian beam

method to the inverse problem. A new multi-scale Gaussian beam method is introduced for

carrying out true-amplitude prestack migration of acoustic waves. After applying the Born

approximation, the migration process is considered as shooting two beams simultaneously

from the subsurface point which we want to image. The Multi-scale Gaussian Wavepacket

transform provides an efficient and accurate way for both decomposing the perturbation

field and initializing Gaussian beam solution. Moreover, we can prescribe both the region

of imaging and the range of dipping angles by shooting beams from a subsurface point in

the region of imaging. We prove the imaging condition equation rigorously and conduct

error analysis. Some numerical approximations are derived to improve the efficiency further.

Numerical results in the two-dimensional space demonstrate the performance of the proposed

migration algorithm.

In the second part of thesis, we propose a new multiscale Gaussian beam method with



reinitialization to solve the elastic wave equation in the high frequency regime with different

boundary conditions. A novel multiscale transform is proposed to decompose any arbitrary

vector-valued function to multiple Gaussian wavepackets with various resolution. After the

step of initializing, we derive various rules corresponding to different types of reflection cases.

To improve the efficiency and accuracy, we develop a new reinitialization strategy based on

the stationary phase approximation method to sharpen each single beam ansatz. This is

especially useful and necessary in some reflection cases. Numerical examples with various

parameters demonstrate the correctness and robustness of the whole method. There are two

boundary conditions considered here, the periodic and the Dirichlet boundary condition.

In the end, we show that the convergence rate of the proposed multiscale Gaussian beam

method follows the convergence rate of the classical Gaussian beam solution, i.e. O
( 1√

ω

)
.
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Chapter 1

Introduction

Hyperbolic PDEs arise in a variety of practical applications, ranging from acoustics,

elasticity, electromagnetics to geophysics. Therefore, it is desirable to develop fast

and efficient algorithms to solve this family of PDEs. Moreover, efficient algorithms

are also desirable in a lot of inverse problems modeled by hyperbolic PDEs. The

term ’high frequency’ in the high frequency wave propagation is defined relative to the

low-frequency background slowness in the model. Therefore, all medium appeared in

this thesis is smooth, if not specified.

It is very costly for the direct method, the finite difference method or the finite element

method for example, to simulate the high frequency wave propagation, since fine grid

mesh is required by these methods to capture the oscillation. Therefore, some alterna-

tive methods have been developed, such as the traditional geometrical-optics method

(WKBJ ansatz), which is required to solve a pair of equations. The first one, which

is called eikonal equation, is a first-order nonlinear PDE. The second one is the trans-

port equation relying on the differentiability of the result of eikonal equation. It yields

faithful asymptotic solutions before caustics occur. However, the amplitude function

governed by the transport equation breaks down around the caustics [6, 22, 36], where

the phase function is multi-valued [36, 39]. The appearance of caustics is inevitable

1



even in the smooth medium [54].
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Figure 1.1: Caustics Appearance in Gaussian Velocity

One of the alternatives is the Gaussian beam method [49, 51, 55, 15]. To resolve the

caustics problems automatically, the Gaussian beam method relaxes the restriction

that the phase term is real-valued. The single Gaussian beam ansatz is made up of

a complex-valued phase function and a complex-valued amplitude function near its

central ray. Away from the ray path, the beam decays rapidly as a Gaussian profile.

The superposition of many single beams will be an asymptotically correct solution of

the hyperbolic PDE in the sense that both the initial condition and the boundary

condition are satisfied asymptotically as well as the PDE itself.

There are two methods based on Gaussian beam method presented in this thesis to

resolve two related problems. The first one is about the simulation of the elastic wave

in a bounded domain. The second one is using a novel Gaussian beam method to

reconstruct reflectors under the surface by the data received along the boundary.
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1.1 Prestack Inversion Process

In the first part, we propose a novel inversion and imaging procedure for finding the

parameter of the medium by solving the linearized inverse scatter problem. There

is a wide range of applications including seismic exploration, medical imaging and

underwater acoustics, etc.

There are many different migration methods existed to explore the geological structure.

The very early one was using the one-way wave equation [16, 17] to recover the accurate

travel time and locations of reflectors. However, the popular finite difference and finite

element method require extremely refined grid mesh in the high frequency regime to

prevent dispersion error. This is also found in the modeling process.

Kirchhoff method [7, 8, 28], which bases on the asymptotic method, is mostly investi-

gated and widely applied to resolve the high frequency pattern. The Kirchhoff method

and all other similar ray-based methods are using the asymptotic approximation (high

frequency) of the Green’s function for the acoustic wave equation.

G(x, x0, ω) = Aeiωτ(x,x0), (1.1)

where τ(x, x0) is the traveltime from the point x0 to the point x.

There exist several other problems in the Kirchhoff migration, although it is efficient

and flexible. The first obstacle is the presence of caustics points. It is not able to

characterize the structure in the presence of caustics, since they rely on the first-arrival

traveltime [18, 27] instead of multivalued traveltime. Its usefulness was questioned by

3



[25, 27, 43] since the first-arrival traveltime in complex media usually do not correspond

to the most energetic traveltimes crucial for imaging complex structures.

To overcome this issue, we use the Gaussian beam migration method [3, 45, 14].

The first obstacle is the way to initialize each beam solution efficiently, in other words,

how to characterize the wave propagator by beam solution in a sparse form. Another

closely related issue is the way to describe the wavefront of the perturbation. The

wavefront defines the singularities of a function not only in spatial space but also with

respect to its Fourier transform at each point. It is naturally adaptable to the high

frequency wave propagation which can be considered as the propagation of singular-

ity. From this point of view, the way to generate the decomposition should consider

both the optimal representation of the wave propagator and the sufficient condition

to reconstruct the target perturbation media. In some sense, some tradeoff should be

obtained.

The second obstacle is about the rigorous mathematical analysis of the imaging con-

dition. In this paper, the spread loss has to be proved to be compensated for in our

new imaging method. It is well known that the Gaussian beam solution has O(1/
√
ω)

convergence rate as an asymptotic solution. We will take advantage of this convergence

rate and the fact that the parabolic scaling principle is preserved along the propagation

to conduct a rigorous error analysis. Besides, we assume that a set of geodesics (rays)

have a consistent direction. The assumption simply means that the overturn rays don’t

exist in our model and this assumption is natural in the practical applications.

Our method enjoys several advantages. First, the flexibility of the Kirchhoff migration

is preserved and imaging without losing multi-arrival in the general slowness is possible.

4



Second, due to the Multi-scale Gaussian wavepacket transform and the parabolic scal-

ing principle employed, the sparse representation of the wave propagator is obtained.

This decomposition also makes the reinitialization feasible during the propagation so

that we have more control over the width of beam solution. Third, there is some re-

dundancy in the data in the view of our imaging condition. In practice, the error is

unavoidable, then this redundancy can help us to reduce the impact brought by the

noise since the average value is employed to cancel the variation caused. Fourth, our

imaging condition is performed in the time domain to avoid the extra Fourier trans-

form on the data set. This feature makes our algorithm more applicable considering the

large size of the trace dataset in the real world. The last feature is that the wavefront

set being characterized by the Gaussian wavepacket enables us to image the subsurface

partially in the sense of controlling the range of dipping angles.

There are some other true amplitude migration methods different from the ray-based

method described above. Zhang et al. [56, 57] developed true-amplitude common-shot

migration for heterogeneous media. Again, only the geometric spreading loss is re-

covered in these works. Other types of compensations, for example transmission loss

compensation, are discussed in [21].

1.2 Elastic Wave Equation

The elastic wave equation is a good model to describe the seismic wave propagation

in a uniform whole space and it has been used widely in the seismology community in

both inverse and modeling problem [1]. Similar to its simpler form, i.e. the acoustic
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wave equation, the elastic wave equation will propagate oscillations in space and time

when the initial or boundary condition contains oscillation of the small wavelength.

We will develop a multi-scale Gaussian beam method to simulate the elastic wave in a

bounded domain.

The first problem to apply the Gaussian Beam method is how to decompose any

general initial condition to the form suitable to the beam profile. It is resolved by

the Multiscale Gaussian Wavepacket transform developed in [48, 5] for the acoustic

wave equation and single-scale transform for the Schrodinger equation [47]. Since the

Hamiltonian of the wave equation is homogeneous of order one, a Gaussian beam

should satisfy the parabolic scaling principle at any given time if it is satisfied at the

first place. The wavepacket satisfying the parabolic scaling principle is defined as the

wavelength of the typical oscillation of this wavepacket being equal to the square of

the width of this wavepacket.

To propagate each wavepacket, the dynamics system can be obtained in the typical

way. In this paper, we extend this idea further to the decomposition of the vector-

valued initial value and preserve all the optimal properties of the Multiscale Gaussian

Wavepacket transform.

The second problem is to derive the reflection dynamics. Unlike the Cauchy problem,

we have to consider the reflected beams. Most recently in [4], a numerical method

has been proposed for the acoustic wave equation. Other discussions can be found in

[9, 49]. There will be more complex situations concerned in the elastic wave model

as there are two different types of wave modes in the process. The difference between

different wave modes requires extra efforts to preserve the accuracy.
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The third problem is how to reinitialize Gaussian beams efficiently. Gaussian beam

solutions behave well around the caustics, however, not so well in the long-term wave

propagation. See more details illustrated in [48, 32, 42].

Therefore, there have been various methods developed to control the width of beams.

One method, for example, is to call the Multiscale Gaussian wavepacket algorithm

repeatedly during the propagation [48, 4]. A global time T is set at prior such that

beams will be summarized after propagating for T and then decompose the resulting

temporary wavefield to a new system of wavepackets. This process will be repeated

several times.

A new reinitialization method is proposed in this thesis which claims to have more

freedom and remains to be the asymptotic solution to the elastic wave equation. Instead

of decomposing the general wavefield after summation each time, we target on each

single beam in this new reinitialization method. It will give us more freedom to choose

which beams needed to be reinitialized rather than all of them. Moreover, with applying

the reinitialization strategy to each single beam, there exists the explicit expression.

1.3 Related Work

The fact that the Gaussian beam ansatz can be used to solve the wave equation has

been known to the pure mathematical community since sometime in the 1960s [3].

Then it is applied to simulate the propagation of the singularity [49, 30]. A single

Gaussian beam ansatz is an asymptotic solution concentrated on a single ray curve.

The critical point is to have a global solution to the Hessian of the phase function so
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that the transport equation is well-defined. Moreover, the fact that imaginary part of

the Hessian remains to be S.P.D. leads to a well-localized solution. The localization is

justified theoretically [49, 40, 52].

Considering its ability to resolve multi-valued phase function automatically, the Gaus-

sian beam method was firstly introduced as a seismic imaging method by Hill in the

form of the poststack [28] and then the prestack migration procedure [29]. The perfor-

mance of the Gaussian beam migration is further tested by the common shot geometry

[26]. Most recently, a purely Eulerian computational approach was proposed in [33]

which improves the numerical method’s efficiency and its application in the semiclas-

sical quantum mechanics has been proposed in [31]. See [9, 42] for other recent works.

Besides the Gaussian beam method, there are several possible ways to construct global

asymptotic solutions for the wave equation even in the presence of caustics. The first

approach is based on Ludwigs uniform asymptotic expansions at caustics [35, 10] which

requires that the caustic structure is given. The second approach is is based on the

Maslov canonical operator theory [41], which requires to identify where the caustics

are at prior.

There is some recent advance in resolving the multi-valued traveltime problem. A

new method called fast Huygens sweeping method has been proposed in [37, 38] to

solve the Helmholtz equations in the inhomogeneous media and then it is used to solve

Schrodinger equation [34]. They take advantage of the fact that eikonal equation is

well-defined around the source point and Huygens-Kirchhoff secondary source principle.

There have been some recent advance in the optimal representation of the wave propa-
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gator [52, 11, 50]. It is closely related to the Fourier integral operator representation of

the hyperbolic system and the special proposition of its phase function. The multiscale

Gaussian Wavepacket transform is developed [48] for the wave equation and the single

scale transform for the Schrodinger equation [47] which is also the fundamental basis

of our algorithm. This difference comes from the different Hamiltonian for these two

equations. Other paper also apply the Gaussian beam method in their true ampli-

tude migration [46, 2], however, they do not require the parabolic scaling principle for

Gaussian beams as our prestack inversion method does.

The parabolic scaling principle provides the theoretical basis for our new reinitialization

method as well as the proof of the correctness of the imaging operator in our new

multi-scale inversion algorithm. Other methods using the similar idea can be found in

[11, 50]. There are various types of such wavepackets, curvelet [13, 12] and wave atoms

[19, 20] for example. However, the Multi-scale Gaussian beam method is different

from these methods in that the single Gaussian wavepacket corresponds to the single

Gaussian beam at final time T , while the curvelet frame does not have this one-to-one

relationship.

On the other hand, the Gaussian wavepacket transform has been proved a stable and

efficient decomposition of the arbitrary function [48], equivalently, the wavepacket is a

good characterization of the wavefront set. The Gaussian window function or Gabor

frame [24] are both well-localized in the phase space as the Fourier transform of a

Gaussian profile function is again a Gaussian profile function. The size of the Gaussian

window function in the phase space can be determined by the Heisenberg Uncertainty

Principle.
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1.4 Contents

The remainder of this thesis is organized as follows. In Chapter 2 we present a brief in-

troduction of constructing and propagating a single Gaussian beam, which is the foun-

dation to the following derivation. We then describe the original multi-scale Gaussian

wavepacket transform [48] in Section 2.2.

In Chapter 3, we propose a new prestack inversion process based on the multi-scale

Gaussian beam method. We then modify the Gaussian wavepacket transform in Section

3.1 to adapt to the imaging operator. We then develop the new imaging operator with

the help of Gaussian wavepacket transform and the Gaussian beam functions. Based

on this operator, we propose the main inversion algorithm in Section 3.2.4. The next

part is devoted to proving the correctness of this new algorithm in Section 3.3. In

Section 3.4, we discuss the fast method to calculate the imaging operator. In the last

section of this chapter, we select several well-designed numerical examples to justify

the correctness of our analysis and the approximations mentioned earlier.

In Chapter 4 we propose the Multiscale Gaussian beam method to solve the elastic

wave equation with highly oscillated initial condition. We first extend the Multiscale

Gaussian wavepacket transform to the vector-valued initial condition in Section 4.3

and develop a new propagating dynamics for each single beam. After proposing the

decomposition scheme, the reflection dynamics for the homogeneous Dirichlet Bound-

ary value is derived in Section 4.5. The difference among various types of reflection

is analyzed in Section 4.7.2 and a new efficient reinitialization method is proposed

to resolve the problem from S-wave reflection in Section 4.6 and Section 4.7.3. The

reference solution to the elastic wave equation in general case is provided by the Finite-
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Difference Time-Domain (FDTD) with staggered grid [53] and is justified in Section B.

In Section 4.8, several numerical experiments are conducted to show the correctness

and the convergence rate of our new multi-scale Gaussian beam method.
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Chapter 2

Single Gaussian beam ansatz and

Multiscale Gaussian wavepacket

Transform

2.1 Single Gaussian beam ansatz

The Gaussian beam solution itself is an asymptotic solution of the acoustic wave equa-

tion even around caustics.

1

c2(x)
∂2t u(x, t)−∆u(x, t) = 0, (2.1)

where x is the point coordinate in the space Rd and c(x) is smooth, positive and

bounded away from zero. Similar to the Geometric-Optics ansatz, the Gaussian beam

also assumes that the solution follows the form,

u(x, t) = A(x, t)eiωτ(x,t), (2.2)
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where ω is a large wavenumber, τ(x, t) is the phase function and A(x, t) is the amplitude

function. The asymptotic solutions means u(x, t) (2.2) satisfies the wave equation (2.1)

with small error when frequency ω is large. After inserting equation (2.2) into equation

(2.1) and organize all terms according to the order of ω, there will be two equations

obtained, which are eikonal and transport equations, governing τ(x, t) and A(x, t)

respectively. They come from the leading orders in inverse power of the frequency ω.

τ2t (x, t)− c2|∇τ(x, t)|2 = 0 (2.3)

2Atτt − 2c2∇A · ∇τ + A(τtt − c2trace(τxx)) = 0. (2.4)

Phase function τ :

After factoring out equation (2.3), there are two branches generated,

τt ± c(x)|∇τ | = 0. (2.5)

Equation (2.6) is a Hamilton-Jacobi equation with the HamiltonianG±(x, p) = ±c(x)|p|.

We consider the generic situation for the eikonal equation,

τt +G(x,∇τ(x, t)) = 0. (2.6)
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We apply the method of the characteristics to solve the eikonal equation (2.6).

dx

dt
= Gp(x(t), p(t)), x

∣∣∣
t=0

= x0;

dp

dt
= −Gx(x(t), p(t)), p

∣∣∣
t=0

= p0. (2.7)

where we define the ray trajectory γ = {(x(t), p(t)) : t ≥ 0}, whose initial point is

(x0, p0) in the phase space. We have that the momentum p(t) = ∇τ(x(t), t) along the

ray.

To derive the dynamics of Hessian matrices, we first differentiate the eikonal equation

(2.6) with respect to t and x:

τtx(x, t) +Gx(x,∇τ(x, t)) + τxx(x, t)Gp(x(t),∇τ(x, t)) = 0, (2.8)

τtt(x, t) +Gp(x(t),∇τ(x, t)) · τxt(x, t) = 0, (2.9)

Differentiating equation (4.13) with respect to x yields

τtxx +Gxx + τxxGxp + (Gxp)
T τxx + τxxGppτxx + τxxxGp = 0. (2.10)

Therefore, the Hessian M(t) = ∇∇τ(x(t), t) satisfies the following Riccati equation,

dM

dt
+Gxx +MGxp +GTxpM +MGppM = 0. M

∣∣∣
t=0

= iεI (2.11)

The size parameter ε will be given after introducing the Gaussian wavepacket trans-

form.
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One of the most significant differences between the Gaussian beam and other ray-ansatz

methods is that beams’ phase functions τ(x, t) are complex-valued. Complexifying the

equation guarantees a well-defined Hessian and a well-defined transport equation as

a result. This is not true in general case [49]. Furthermore, the positive definite

imaginary part is always true throughout the propagation for smooth ray trajectories.

Lemma 2.1.1. If the Hamiltonian G is smooth enough, then the Hessian M(t) along

the ray path γ has a positive-definite imaginary part, provided that it initially does.

Transport Equation A(x, t):

With (x(t), p(t),M(t)) well-defined along the way, we can solve the transport equation

(2.4). Taking advantage of the fact that

dA(x(t), t)

dt
= At +∇A ·Gp(x(t), p(t)),

equation (2.4) is reduced to

dA

dt
+

A

2G
(v2trace(M )−Gx ·Gp −GT

p MGp) = 0 . A
∣∣∣
t=0

= A0 (2.12)

A single beam solution is in the following form,

U
x0
p0

(x, t) = A(x, t)eiωτ(x,t), (2.13)

and the phase function is approximated by applying Taylor expansion around the
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central trajectory {x(t) : t ≥ 0} at time t,

τ(x, t) = p(t) · (x− x(t)) +
1

2
(x− x(t))TM(t)(x− x(t)), (2.14)

and the amplitude is approximated by its value at trajectory γ at the same moment,

A(x, t) = A(x(t), t) = A(t). (2.15)

2.2 Multiscale Gaussian Wavepacket Transform

After constructing a single beam solution, the next problem is how to set up the

initial condition for the ODE system. The answer is Multiscale Gaussian wavepacket

transform, which will be introduced briefly in this section. More details about this

phase space decomposition can be found in paper [48] and its single scale application

can be found in paper [47]. The wavepacket transform is applied to L2 functions f in

the Rd space.

We first partition the Fourier space Rd into several Cartesian coronae Cl for l ≥ 1 as

Cl = {ξ = (ξ1, ξ2, · · · , ξd) : max
1≤i≤d

|ξi| ∈ [4l−1, 4l]}.

Now it is obvious to see that the L2 norm of ξ in Cl is O(4
l). For each Cl, we can

further partition it into multiple windows with width 2l,

Bl,i =
d∏
s=1

[2lis, 2
l(is + 1)],
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where the integer multiindex (i1, i2, · · · , id) is any possible choice such that the box is

in the lth layer, i.e. Bl,i ⊂ Cl. After defining these cell boxes Bl,i, we can define the

Gaussian profile function gl,i associated with the box Bl,i by the following formula,

gl,i(ξ) ≈ e
−

(
|ξ−ξl,i|
σl

)2
, (2.16)

where ξl,i is the center of the box Bl,i and σl = 2l is the width of the box Bl,i.

The scale listed here is designed carefully following the parabolic-scaling principle.

This is the key to the success of our multi-scale imaging process as it provides the

theoretical justification of the size of each Gaussian wavepacket. The later proof and

error analysis will rely on this conclusion heavily.

To have a partition of unity, one also needs the conjugate filters hl,i, such that

hl,i(ξ) =
gl,i(ξ)∑
l,i g

2
l,i(ξ)

, (2.17)

The proof that the functions hl,i are well defined and well-localized can be found in

paper [48]. It is easy to see that
∑
l,i gl,ihl,i = 1. By shifting the central point,

φ̂l,i,k(ξ) =
1

L
d/2
l

e
−2πi

kξ
Ll gl,i(ξ),

ψ̂l,i,k(ξ) =
1

L
d/2
l

e
−2πi

kξ
Ll hl,i(ξ).
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Taking the inverse Fourier transforms yields their definitions in the spatial domain:

φl,i,k(x) =
1

L
d/2
l

∫
Rd

e
2π(x− k

Ll
)·ξ
gl,i(ξ)dξ (2.18)

ψl,i,k(x) =
1

L
d/2
l

∫
Rd

e
2π(x− k

Ll
)·ξ
hl,i(ξ)dξ (2.19)

The approximation expression of the wavepacket φl,i,k,

φl,i,k(x) ≈
(√

π

Ll
σl

)d
e
2πi(x− k

Ll
)ξl,i

e
−σ2l π

2|x− k
Ll

|2
. (2.20)

We list the lemma from paper [48] without proof to show that our decomposition is

correct.

Lemma 2.2.1. For any f ∈ L2(Rd), we have

f(x) =
∑
l,i,k

〈ψl,i,k, f〉φl,i,k(x). (2.21)

The idea of decomposing discrete signals into wavepackets is very similar to the contin-

uous case, therefore, we skip this part and provide the pseudo code below. The total

Algorithm 1 Discrete Gaussian Wavepacket Decomposition

1. Apply the Fast Fourier Transform(FFT) to the discrete signal f . 2. Compute hl,i(ξ)f̂(ξ).
3. Wrap the result to the domain [−2σl, 2σl]. 4. Apply the Inverse Fourier Transform to
obtain the coefficients cl,i,k.

cost of this algorithm is O(Nd log(N)).
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2.2.1 Multiscale Gaussian Beam Method

With the Mutiscale Gaussian Wavepacket transform defined above, the initial con-

dition (x0, p0,M0, A0) for a single beam solution will be defined corresponding to a

wavepacket φl,i,k,

dx

dt
= Gp(x(t), p(t)), x0 =

k

Ll
;

dp

dt
= −Gx(x(t), p(t)), p0 = 2π

ξl,i
|ξl,i|

,

dM

dt
= −Gxx −MGxp −GTxpM −MGppM, M0 = i(2π2σ2l /|ξl,i|)I,

dA

dt
= − A

2G
(v2trace(M )−Gx ·Gp −GT

p MGp), A0 =

(√
π

LlN
σl

)d

. (2.22)

and

u(x, t) = A(x(t), t)e
i|ξl,i|τ(x,t), (2.23)

Then we can use the dynamic system (2.7)-(2.12) to propagate beams. The large

wavenumber |ξl,i| serves as the key point of asymptotic methods. However, through-

out the following derivation, we will combine this constant |ξl,i| into the phase for

convenience.

We argue that there’s no difference. Denote the beam solution using initial condition

(x0, p0,M0, A0) as (x(t), p(t),M(t), At) and the one using initial condition

(x0, |ξl,i|p0, |ξl,i|M0, A0) as (x̂(t), p̂(t), M̂(t), Â(t)). With respect to the ray trajectory,

dx(t)

dt
= v(x(t))

|ξl,i|p(t)
|ξl,i||p(t)|

, x0 =
k

Ll

d(|ξl,i|p(t))
dt

= ∇v(x(t))|ξl,i||p(t)|, |ξl,i|p0 = 2πξl,i
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Since (x(t), |ξl,i|p(t)) is the solution of the same Hamiltonian system equipped with the

same initial condition as (x̂(t), p̂(t)), by the uniqueness of the initial value problem,

p̂(t) = |ξl,i|p(t) and x̂(t) = x(t).

In terms of Hessian M , again we multiply |ξl,i| on both sides of equation (2.11).

d(|ξl,i|M)

dt
= −∇∇v(x(t))|ξl,i||p(t)| − |ξl,i|M∇v

|ξl,i|p(t)
|ξl,i||p(t)|

− |ξl,i|∇v

(
|ξl,i|p(t)
|ξl,i||p(t)|

)T
M

− (|ξl,i|M)

(
v(x(t))

|ξl,i||p(t)|
I − v(x(t))

|ξl,i||p(t)|3
p(t)pTt

)
(|ξl,i|M)

= −∇∇v(x̂(t))|p̂(t)| − M̂Gxp(x̂(t), p̂(t))−GTxp(x̂(t), p̂(t))M̂

− M̂Gpp(x̂(t), p̂(t))M̂

Again, by the uniqueness of the initial value problem, M̂t = |ξl,i|M(t). The derivative

term Gpp is given by

Proposition 2.2.1. The second order derivative of the Hamiltonian about the momen-

tum variable is

G±
pp(x, p) = ±v(x)

|p|3
(
|p|2Id − ppT

)
, (2.24)

where Id is the identity matrix.

The proof is easy, so we omit it here.

dÂ

dt
= − Â

2|ξl,i|G(x(t), p(t))
(v2|ξl,i|M(t)− |ξl,i|Gx(x(t), p(t)) ·Gp(x(t), p(t)))

+
Â

2|ξl,i|G(x(t), p(t))

(
|ξl,i|GTp (x(t), p(t))M(t)Gp(x(t), p(t))

)
. (2.25)

Apparently, A(t) and Â(t) share the same ODE and initial condition.
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Chapter 3

Multiscale Gaussian-Beam

Transforms for True Amplitude

Prestack Migration

3.1 Modified Multiscale GaussianWavepacket Trans-

form

We have so far finished introducing the Gaussian wavepacket transform in [48]. To meet

our inversion algorithm’s requirements, we have to substitute 〈ψl,i,k, f〉 in equation

(2.21) with 〈φl,i,k, f〉.

Several new notations are needed in the following arguments. We first define a set for

each frequency ξ as its cover set S(ξ),

S(ξ) = {(l, i) : gl,i(ξ) > 0}. (3.1)
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Bl is defined as the border of the partitioning,

Bl ≡

{ξ : max
1≤s≤d

|ξs| ∈ [4l−1, 4l]} ∩ {ξ : max
1≤s≤d

|ξs| − 4l−1 ≥ 2l} ∩ {ξ : 4l − max
1≤s≤d

|ξs| ≤ 2l}.

(3.2)

The remainder part Cl \ Bl is defined as the major part of Cl. Obviously, the border

part Bl is much smaller compared with the major part. We will focus on the major

part first.

All frequencies in the major part of Cl will not interact with those from different levels,

that is, the cover sets of all frequency ξ in the major part Cl \ Bl will only contain

the compact support functions gl,i from the same level. This allows us to prove the

following claims.

Proposition 3.1.1. If ξ ∈ Cl \Bl, we have

∑
l
′
,i
′
g2
l
′
,i
′ (ξ) =

∑
l
′
<l,i

′
g2
l
′
,i
′ (ξ) +

∑
l
′
=l,i

′
g2
l
′
,i
′ (ξ) +

∑
l
′
>l,i

′
g2
l
′
,i
′ (ξ) =

∑
l
′
=l,i

′
g2
l
′
,i
′ (ξ). (3.3)

Proof. We assume that the concerned frequency ξ = (ξ1, ξ2, · · · , ξd) satisfies,

ξ1 = max
1≤s≤d

|ξs|. (3.4)
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We first check the first term in equation (3.3), where l
′
< l,

∑
l
′
<l,i

′
g2
l
′
,i
′ (ξ) = 0. (3.5)

The nearest central frequency ξ
l
′
,i
′ in the lower level l

′
< l should have

||ξ − ξ
l
′
,i
′ || ≥ |ξ1 − ξ

l
′
,i
′
,1
| ≥ 2l, (3.6)

On the other hand, g
l
′
,i
′ is a compact support function in the box centered at ξ

l
′
,i
′

with side length 2l
′
+1. Since

2l
′
+1 ≤ 2l, (3.7)

the frequency ξ in the level l is at most on the edge of the box B
l
′
i
′ .

We then check the third term in equation (3.3) where l
′
> l. We denote,

ξ
l
′
,i
′
,s0

= max
1≤s≤d

|ξ
l
′
,i
′
,s
|. (3.8)

Therefore,

||ξ − ξ
l
′
,i
′ || ≥ |ξs0 − ξ

l
′
,i
′
,s0

| ≥ |ξ
l
′
,i
′
,s0

| − |ξs0| ≥ |ξ
l
′
,i
′
,s0

| − |ξ1| ≥ 2l+1. (3.9)

To summarize, for any ξ
l
′
,i
′ on the higher level, we have

|ξs0 − ξ
l
′
,i
′
,s0

| ≥ 2l+1, (3.10)
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along the s0 direction. We notice that the compact support area of g
l
′
,i
′ along the

direction s0 has side length 2l+2, however, ξ must be on the left side of ξ
l
′
,i
′ along

the s0 direction. Then, ξ will be at most on the edge of support area of the function

g
l
′
,i
′ .

For any central frequency ξl,i ∈ Cl \Bl, we define Jl,i

Jl,i ≡
∑
l
′
,i
′
g2
l
′
,i
′ (ξl,i). (3.11)

By Proposition 3.1.1,

Jl,i ≡
∑
l
′
=l,i

′
g2
l
′
,i
′ (ξl,i). (3.12)

Proposition 3.1.2. Jl,i is independent of the index i, that is

Jl,i = Jl =
∑
l
′
=l,i

′
g2
l
′
,i
′ (ξl,i), ∀ξl,i ∈ Cl \Bl. (3.13)

Proof. Suppose there are two different central frequencies ξl,i and ξl,i∗ in the same

major part of Cl. By Proposition 3.1.1, we should only consider gl,i from the same

level.

On the other hand, in the fixed level l, the compact support area of each box function

gl,i has side length 2l+1 along each dimension. In fact, each (l, i) will have overlapping

support with only two other i-indexes in each direction, since the central frequency ξl,i

in the level l is chosen as 2li with all possible integer multi index i.
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Using Proposition 3.1.1, we have

∑
l
′
,i
′
g2
l
′
,i
′ (ξl,i) ≈

 i1+1∑
i
′
1=i1−1

exp

−2

( |ξl,i,1 − ξ
l,i
′
,1
|

σl

)2


d

=

 i
′
=1∑

i
′
=−1

exp

−2

(
i
′

σl

)2


d

=


i∗1+1∑

i
′
1=i

∗
1−1

exp

−2

( |ξl,i∗,1 − ξ
l,i
′
,1
|

σl

)2


d

≈
∑
l
′
,i
′
g2
l
′
,i
′ (ξl,i∗). (3.14)

Two summations are the same since Gaussian functions are only about the distance

between two frequencies.

Proposition 3.1.3. For all frequency ξ ∈ Cl \Bl,

∑
i
′∈Zd

e
−2

(
||ξ−2li

′
||

σl

)2
=

∑
||2li′ ||∞≤4l−1

e
−2

(
||ξ−2li

′
||

σl

)2
+

∑
||2li′ ||∞>4l

e
−2

(
||ξ−2li

′
||

σl

)2

+
∑

4l−1<||2li′ ||∞≤4l

e
−2

(
||ξ−2li

′
||

σl

)2

=
∑
i
′
e

−2

 ||ξ−ξ
l,i
′ ||

σl

2

+ ε, (3.15)

where ||x||∞ ≡ max1≤s≤d |xs| and ξl,i′ is the central frequency defined in the wavepacket

transform at the level l. ε is a small number which can be ignored.
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Proof.

∑
||2li′ ||∞≤4l−1

e
−2

(
||ξ−2li

′
||

σl

)2
≤

2σ−dl

∫
· · ·
∫ 4l−1−2l−1

0

s=d∏
s=1

e
−
(
|ξs−cs|
σl

)2
dc1dc2 · · · dcd

≤
√
πerfc(3), (3.16)

where erfc(·) is the complementary error function. Here we assume c is the central

frequency at the lower level, therefore,

c1 ≤ 4l−1 − 2l−1. (3.17)

Meanwhile, we assume that ξ1 = max1≤s≤d |ξs| ≥ 4l−1 + 2l, then

ξ1 − c1 ≥ 2l + 2l−1. (3.18)

With σl = 2l−1, we have the upper bound specified in equation (3.16).

Similarly, we have

σ−dl
∑
l
′
>l,i

′
e

−

 ||ξ−ξ
l
′
,i
′ ||

σl

2

≤
√
πerfc(5). (3.19)
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Then

∑
i
′∈Zd

e
−

(
||ξ−2li

′
||

σl

)2
=
∑
l
′
=l,i

′
e

−

 ||ξ−ξ
l
′
,i
′ ||

σl

2

+
√
πerfc(3) +

√
πerfc(5). (3.20)

Proposition 3.1.4. For any frequency ξ in the major part Cl \Bl, we have

∑
l
′
,i
′
g2
l
′
,i
′ (ξ) ≈ Jl =

∑
l
′
=l,i

′
g2
l
′
,i
′ (ξl,i), ∀ξ ∈ Cl \Bl. (3.21)

Proof. We have already proved in Proposition 3.1.1 that any frequency ξ in the major

part Cl \Bl satisfies, ∑
l
′
,i
′
g2
l
′
,i
′ (ξ) =

∑
l
′
=l,i

′
g2
l
′
,i
′ (ξ). (3.22)

Meanwhile, according to the Poisson summation formula,

(
a√
2π

)d ∑
m∈Zd

e−
σ2
2 ||x+ma||2 =

∑
m∈Zd

e
− 1
2σ2

||2πma ||2
= const. (3.23)

Then we have,

∑
i
′∈Zd

e
−2

(
||ξ−2li

′
||

σl

)2
=
∑
i
′∈Zd

e

−2

 ||ξl,i−2li
′
||

σl

2

. (3.24)

27



Using equation (3.15),

∑
l
′
,i
′
g2
l
′
,i
′ (ξ) ≈

∑
l
′
=l,i

′
e

−2

 ||ξ−ξ
l
′
,i
′ ||

σ
l
′

2

≈
∑
i
′∈Zd

e
−2

(
||ξ−2li

′
||

σl

)2

=
∑
i
′∈Zd

e

−2

 ||ξl,i−2li
′
||

σl

2

≈
∑
l
′
=l,i

′
e

−2

 ||ξl,i−ξl′ ,i′
||

σl

2

≈ Jl. (3.25)

The proposition is proved.

For the frequency ξ on the border of the partitioning, their sums satisfy

Jl−1 ≤
∑
l,i

g2l,i(ξ) ≤ Jl. (3.26)

Using Jl as an approximation will yield an overestimation, however, it is negligible

since Bl is much smaller compared with the major area away from the border.

To summarize,

Jl ≈
∑
l,i

g2l,i(ξ), ∀ξ ∈ Cl. (3.27)

Then,

hl,i(ξ) ≈
1

Jl
gl,i(ξ). (3.28)

We therefore have a modified inverse wavepacket transform as the following,

Lemma 3.1.1. For any f ∈ L2(Rd), we have

f(x) ≈
∑
l,i,k

1

Jl
〈φl,i,k, f〉φl,i,k(x). (3.29)
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To end this part, we would like to display some numerical results to justify Lemma

3.1.1. The denominator in the expression of hl,i (2.17) should be a step function

about the index l, suggested by Lemma 3.1.1. The range of the frequency concerned

is [64 : 320]× [64 : 320].

Figure 3.1:
∑
l,i g

2
l,i in different level l

3.2 Multiscale Gaussian Wavepacket Inversion

3.2.1 Setup of the True Amplitude Migration Problem

Let us suppose the wave propagation is governed by the scalar wave equation (2.1)

with the wave propagation velocity decomposed as,

c = v(1 + α), (3.30)

where v is the macro velocity being responsible for the traveltime and amplitude.

Moreover, it is assumed to be smooth and does not provide the significant energy back

to the boundary data. The rapid perturbation α is small but reflects the wave signal

back to the boundary data. In our inversion model, v is known at prior and our target
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is to image α.

We simplify our model as a constant density fluid occupying a half-space X ≡ {x ∈

Rd : xd ≥ 0}. The boundary data D(r, s, t) used in this paper is organized as the

common-shot trace, for example, Fig. 3.2, r parametrizes receiver positions on the

surface ∂X ≡ {x ∈ Rd : xd = 0}, while s parametrizes source positions. We also

assume that the sources are contained in an open set Os ⊂ ∂X and receivers are

in an open set Or ⊂ ∂X. Therefore, the boundary data D is a function defined at

Os ×Or × [0, T ]. Similar to [44], we make some assumptions about rays.

−2 0 2
0

0.5

1

1.5

2

2.5

x
r

t

Figure 3.2: A typical source gather in Gaussian slowness

Assumption 3.2.1. There are no rays leaving points in the subsurface {x ∈ X : xd >

0} and returning to graze Os or Or. Moreover, there exists an universal lower bound

b, such that

|pd| ≥ b||p||, (3.31)

for any rays hitting the surface where p is the momentum variable and pd is the dth

component of p.
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Assumption 3.2.2. Rays departing from a source in Os and traveling into the sub-

surface do not return to receivers in Or.

Assumption 3.2.3. There exists δ > 0, such that v(x) is a constant if 0 ≤ xd ≤ δ.

3.2.2 Born Approximation for the Trace Data

Denote the wave propagator with background velocity v as L0 and the wave propagator

with true velocity c as L. Meanwhile, the corresponding Green’s functions are written

as G0 and G, respectively,

G = −L−1; G0 = −L−1
0 , (3.32)

and by some formal computations,

G = G0 +G0(L− L0)G = G0 +G0V G, (3.33)

where V = −L0 + L. The Born approximation assumes the whole scattering process

as the following. The signal is initiated from the source and travel through a smooth

medium afterwards. Then at some moment, it hits the reflector under the surface and

is reflected back. Therefore, the boundary data D(r, s, t) is the reflection data, or the

wavefield along the boundary minus the direct wave. During the whole process, we

assume that the reflection or scattering only happens once so that we ignore multiple

reflections.
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Define the incident wavefield G0(x, t; s) generated by the source point s,

L0G0(x, t; s) = −δ(t)δ(x− s), G0|t<0 = 0. (3.34)

Then the reflection signal is obtained by total differentiation. We assume the true

velocity c = v + αv = v + δv and the total wavefield u = u0 + δu, where L0u0 = 0,

1

c2
∂2t u−∆u ≈ (

1

v2
− 2δv

v3
)∂2t (u0 + δu)−∆(u0 + δu). (3.35)

Considering the first order term, we have

L0δu =
2δv

v3
∂2t u0. (3.36)

Now the perturbed wavefield δG [7, 46] satisfies,

L0δG =
2α

v2
∂2G0

∂t2
. (3.37)

This perturbed wavefield δG is the data recorded along the surface based on the Born

approximation, that is,

D

[
2α

v2

]
(r, s, t) = δG =

∫
dx

2α

v2

∫
dhĜ0(r, t− h;x)

∂2G̃0

∂t2
(x, h; s), (3.38)

where both G̃ and Ĝ are Green’s functions. The Green’s function Ĝ0(r, t − h;x)

represents the perturbation received at the receiver r at the moment t − h, and its

source is the subsurface point x. G̃ is about source points s and Ĝ is about receivers
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r. The same rules are applied to other functions.

D

[
2α

v2

]
(r, s, t) =

∂2

∂t2

∫
dx

2α

v2

∫
dhĜ0(r, t− h;x)G̃0(x, h; s). (3.39)

To make things easier, we would like to develop our algorithm in the frequency domain

instead of the time domain so that we can simplify the convolution operator above.

Applying the following Fourier transform in time, we have,

D

[
2α

v2

]
(r, s, ω) = −ω2

∫
dx

2α

v2
Ĝ0(r, ω;x)G̃0(s, ω;x). (3.40)

Here we abuse the notation by writing the Fourier transform of the Green’s function

Ĝ0(r, t;x) about the time variable t by Ĝ0(r, ω;x). In equation (3.40), the reciprocity

of the Green’s function is involved as we replace G̃0(x, ω; s) with G̃0(s, ω;x).

3.2.3 Multiscale Gaussian Beam Approximation of the Green’s

Function

We then approximate the Green’s function in the high frequency regime by the summa-

tion of Gaussian beams so that we can define the following multiscale Gaussian-beam

transform of the perturbation of the velocity,

D

[
2α

v2

]
(r, s, ω) = −ω2

∫
dx

2α

v2

∫∫
dξdηÛGB(r, ω;x, ξ)ŨGB(s, ω;x, η), (3.41)
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where without confusion, we sometimes shorten D
[
2α
v2

]
(r, s, ω) to be D(r, s, ω) so that

we use D(r, s, ω) to denote the Fourier transform of the boundary data D with respect

to the time variable t. ÛGB(r, ω;x, ξ) is the beam solution in the frequency domain

starting at the point x with the initial momentum ξ. From now on, the following

notation is used to the end,

ÛGB(r, ω;x, ξ) = Ûxξ (r, ω); ŨGB(s, ω;x, η) = Ũxη (s, ω).

The Green’s function can be considered as the solution to the acoustic wave equation

whose initial velocity is a Dirac-delta function by Duhamel’s principle and the mul-

tiscale Gaussian wavepacket transform can be applied to decompose the Dirac-delta

function.

1

v2(x)
∂2tG0(x, t; s)−∆G0(x, t; s) = 0, G0

∣∣∣
t=0

= 0,
∂G0

∂t

∣∣∣
t=0

= −δ(t)δ(x− s).

(3.42)

Although the multiscale transform introduced in Section 2.2 and reference [48] is de-

signed to decompose any general L2 functions, the Dirac-delta function can be approx-

imated by some L2 functions.

3.2.4 True-Amplitude Migration Process

A new operator Kpq applied to the perturbation α can be defined, which is correspond-

ing to the certain pair of Gaussian beams,

(
Kpq

2α

v2

)
(r, s, ω) =

∫
dx

2α

v2
Ûxp (r, ω)Ũ

x
q (s, ω), (3.43)
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which will be called the atomic Gaussian-beam transform. The operator Kpq maps the

subsurface information to the boundary data.

(K∗
pqg)(y, ω) =

∫∫
drds

¯̂
U
y
p
¯̃U
y
q g(r, s, ω), (3.44)

which is the adjoint of the atomic Gaussian-beam transform. Applying K∗
pq to the

boundary data D yields a single-frequency prestack angle-gather imaging function Ipq,

Ipq(y, ω) =
(
K∗
pqD

)
(y, ω), (3.45)

or to write it completely,

Ipq

[
2α

v2

]
(y, ω) =

(
K∗
pqD

[
2α

v2

])
(y, ω).

Substitute equation (3.41) about the surface data D into equation (3.45),

Ipq

[
2α

v2

]
(y, ω) = −ω2

∫∫
drds

¯̂
U
y
p (r, ω)

¯̃U
y
q (s, ω)∫

dx
2α

v2

∫∫
dξdηÛxξ (r, ω)Ũ

x
η (s, ω). (3.46)

We will later show that the following approximation (3.47) is correct,

−
∫∫∫∫

dωdrdsdξdηω2
¯̂
U
y
p (r, ω)

¯̃U
y
q (s, ω)Û

x
ξ (r, ω)Ũ

x
η (s, ω)

≈ E(p, q, y)ei(p+q)(y−x)e(y−x)
T iM0

2 (y−x), (3.47)

where E(p, q, y) is a constant related to the parameters of the corresponding wavepacket,
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and M0 is a symmetric matrix with a positive definite imaginary part as defined in

the Multiscale Gaussian beam propagation. The integral
∫
dω should be interpreted

as
∫
χ(ω)dω, where χ is an arbitrary C∞ function which is zero in the low frequency

region and is 1 for the high frequency.

If we integrate (3.46) further with respect to ω, then we will have the wavepacket

transform about 2α
v2

,

∫
Ipq

[
2α

v2

]
(y, ω)dω = E(p, q, y)

∫
dx

2α

v2
ei(p+q)(y−x)ei(y−x)

T M0
2 (y−x). (3.48)

As we can see in equation (3.48),
∫
dωIpq is essentially the Gaussian wavepacket trans-

form of the function 2α
v2

in the direction of p + q. The integral
∫
dωIpq(y, ω) can be

considered as taking the inverse Fourier transform to obtain Ipq(y, t) at t = 0. Accord-

ing to Claerbout imaging principle [29], Ipq(y, t) at t = 0 yields the initial state of the

subsurface that we want to image.

By using the modified wavepacket transform (3.29), we can reconstruct perturbation

2α
v2

through the imaging function (3.48).

2α

v2
=
∑
l,i,k

1

Jl
〈2α
v2
, φl,i,k〉φl,i,k(x)

=
∑
l,i,k

∑
p+q=ξl,i

∫
Ipq

[
2α
v2

]
( kLl

, ω)dω

EJl
φl,i,k(x). (3.49)

Based on equation (3.49) ,
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Algorithm 2 Multiscale Gaussian Beam True-Amplitude Migration

1.Run the multiscale Gaussian wavepacket transform to get the dictionary of central points

y and central momentum p+ q.

2. Separate p+q into two different wavepackets and shoot them from the subsurface point y

to the acquisition surface.

3. Angle-gather prestack image by calculating Ipq(y, ω) =
∫∫

dsdr
¯̂
U
y
p
¯̃U
y
qD(r, s, ω).

4. Stack all partial image Ipq with the same p+ q to reduce the noise.

5. Use equation (3.48) to get the coefficient of each wavepacket expansion of the perturbation

2α
v2

.

6. Run the inverse multiscale Gaussian wavepacket transform to recover the rapid pertur-

bation 2α
v2

.

3.2.5 Motivation for Inverting the multiscale Gaussian-beam

transform

Hereby we provide some intuitive justifications of the inversion process of the multiscale

Gaussian-beam transform, which may provide some theoretical guideline for carrying

out further analysis of our new methodology and extending our methodology to other

applications.

We start with considering the function b(r, s, t) defined by the linear operator D,

D[f ](r, s, t) = b(r, s, t), (3.50)

where the function f is defined at subsurface points. To solve this linear operator
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equation rapidly and efficiently, we would like to diagonalize the operatorD by carrying

out a certain frame representation. Since the argument f of the operator D does not

sit in the same space as the right-hand side b, we first apply the adjoint operator D∗

to both sides, so that we have

D∗D[f ] = D∗b. (3.51)

Let W be the multiscale Gaussian wavepacket transform defined in Section 2.2, which

satisfies W∗W = I. Then we apply W to both sides of equation (3.51), yielding

W(D∗D)W∗Wf = WD∗b. (3.52)

Our results in Section 3.2.4 indicate that the above diagonalization is justified. The

operator WD∗b is essentially equation (3.46), and the operator W(D∗D)W∗ is essen-

tially captured by the diagonal factor E(p, q, y) in equation (3.47). The overall effects

of the diagonalization process are epitomized in equation (3.48).

Therefore, we have

Wf = (W(D∗D)W∗)−1WD∗b,

f = W∗ (W(D∗D)W∗)−1WD∗b, (3.53)

which results in our fast reconstruction formula (3.49).

To establish the theoretical foundation for our new methodology in terms of the Fourier

Integral Operator (FIO) theory, we need to carry out symbolic calculus to establish

several facts by following the works in [50, 23]:
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1. the forward operator D belonging to a certain class of FIO;

2. the conjugation process W(D∗D)W yielding a diagonal operator in the frame de-

fined by W .

On the other hand, since the FIO theory is originated from the asymptotic of geometric

optics and a Gaussian-beam solution provides a globally defined asymptotic solution for

wave equations, we will carry out brute-force calculations to justify our new methodol-

ogy by heavily relying on the structure of multiscale Gaussian-beam transform, which

is composed of Gaussian beams and multiscale Gaussian wavepacket transform.

3.3 Theoretical Validation: The Proof about The

Imaging Operator

3.3.1 Road Map of The Theoretical Analysis

We will prove the approximation (3.47) holds. Since it involves the interaction of four

beams in time, we will carry out the analysis essentially in two main steps.

The first step consists of analysis of the following two integrals dealing with the beam

interactions on the receiver side and the source side respectively,

∫∫
drdξ

¯̂
U
y
p (r, ω)Û

x
ξ (r, ω),

∫∫
dsdη ¯̃U

y
q (s, ω)Ũ

x
η (s, ω).

Since receivers and sources are reciprocal in wave propagation, we just need to focus

on analysis of beam interaction on the receiver side, and the analysis of the source side
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is essentially analogous.

Our analysis of the two beams’ interaction yields the following approximations

∫∫
drdξ

¯̂
U
y
p (r, ω)Û

x
ξ (r, ω) ≈ eip·(y−x)Ĥ(x, ξ, ω; y, p),∫∫

dsdη ¯̃U
y
q (s, ω)Ũ

x
η (s, ω) ≈ eiq·(y−x)H̃(x, η, ω; y, q).

where the functions Ĥ and H̃ will be defined later.

Based on the first step, the second step consists of analyzing the left-hand side of

approximation (3.47) so that we have

∫∫∫∫
drdsdξdη

¯̂
U
y
p (r, ω)

¯̃U
y
q (s, ω)Û

x
ξ (r, ω)Ũ

x
η (s, ω)

≈ ei(p+q)(y−x)Ĥ(x, ξ, ω; y, p)H̃(x, η, ω; y, q). (3.54)

After carrying out the integral about ω, the above approximation reduces to

−
∫∫∫∫

dωdrdsdξdηω2
¯̂
U
y
p (r, ω)

¯̃U
y
q (s, ω)Û

x
ξ (r, ω)Ũ

x
η (s, ω) =

ei(p+q)(y−x)K(p, q, y)Ĥ(x, y, p, q)H̃(x, y, p, q). (3.55)

where K(p, q, y), Ĥ and H̃ are defined later.

After making an essential assumption on the invertibility of the imaging operator, we
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are able to approximate functions Ĥ and H̃ by

Ĥ(x, y, p, q) ≈ e

i
4 ||y−x||

2
M̂(0)K̂(y, p, q),

H̃(x, y, p, q) ≈ e
i
4 ||y−x||

2
M̃(0)K̃(y, p, q),

where K̂(y, p, q) and K̃(y, p, q) can be easily computed.

These latter approximations allow us to obtain our main theorem,

∫
−ω2dω

∫
drds

¯̂
U
y
p (r, ω)

¯̃U
y
q (s, ω)

∫
dξdηÛxξ (r, ω)Ũ

x
η (s, ω) ≈

K(p, q, y)K̂(y, p, q)K̃(y, p, q)ei(p+q)·(y−x)e
i||y−x||2

M0/2 ,

which says that the four-beam interaction in time yields a weighted Gaussian wavepacket

centered at the scattering point y in the direction p+ q, where (y, p) is the ray param-

eter for the beam from the scattering point y to the boundary receiver in the direction

p, and (y, q) is the ray parameter for the beam from the scattering point y to the

boundary source in the direction q.

The rest of the analysis will follow the above road map.

We will prove equation (3.47) in this section. Throughout the proof, the amplitude

function A is not involved as it is more smooth compared with the phase function

part. Denote the beam as (ŷ(t), p̂(t), M̂(t), Â(t)), whose initial value is (y, p,M,A),

and (x̂(t), ξ̂(t), N̂(t), Ĉ(t)) whose initial value is (x, ξ,N,C). Moreover, Ξ̂ and κ̂ are
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defined according to a fixed beam Û
y
p ,

ξ̂(t) = κ̂(t;x, ξ, y, p)p̂(t) + Ξ̂(t;x, ξ, y, p), (3.56)

and

Ξ̂(t;x, ξ, y, p) · p̂(t) = 0. (3.57)

On the source side, we have similar notation (ỹ(t), q̃(t), M̃(t), Ã(t)), whose initial value

is (y, q,M,A), and (x̃(t), η̃(t), Ñ(t), C̃(t)) whose initial value is (x, η,N,C).

3.3.2 Approximation of Gaussian Beams along the Surface

The beam functions Û
y
p (r, ω) and Ũ

y
p (s, ω) are used in the inversion process to link the

data to the unknown perturbation. We would like to explore more about the beam

function’s structure to build the foundation for the future proof and calculation.

||x||2M denotes xTMx in this paper for all vectors x and all symmetric matrices M .

For each beam Û
y
p , we define the hitting time t̂0 = t̂0(y, p) and hitting point r̂0 =

ŷ(t̂0(y, p)) according to the arrival time of its central ray at the boundary so that

r̂0 = ŷ(t̂0(y, p)) ∈ {x ∈ Rd : xd = 0}.

In [49], the single beam is propagating by treating the time variable same as the spatial

components, see also [24]. The complete Hessian matrix is S.P.D. along the directions

transversal to the ray direction. Therefore, by Assumption 3.2.1, we have a Gaussian

profile if intersecting the beam solution at the surface xd = 0.

Proposition 3.3.1. The Gaussian beam Û
y
p (r, t) along the surface for r ∈ {x =
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(x1,··· ,d) : xd = 0} can be represented as

Û
y
p (r, t) ≈ Â(t̂0) exp

(
i
(
τ̂x(t̂0; y, p) · (r − r̂0) + τ̂t(t̂0; y, p)(t− t̂0)

))
×

exp

i
||r − r̂0||2M̂(t̂0)

2

+
1

2
τ̂tt(t̂0; y, p)(t− t̂0)

2 + (t− t̂0)τ̂
T
tx(t̂0; y, p)(r − r̂0)

 .

(3.58)

where t̂0 = t̂0(y, p) and all partial derivatives about the phase function τ are on the

central ray. The proposition is equivalent to intersecting the complete (t, x) beam ansatz

at the surface xd = 0.

We first introduce the way to compute the terms τ̂tx and τ̂tt, which can be obtained

by inserting corresponding ray parameters into equations (4.13)-(4.14).

τ̂t(t; y, p) = −Ĝ(ŷ(t), p̂(t)), (3.59)

τ̂tx(t; y, p) = −Ĝx(ŷ(t), p̂(t))− M̂(t; y, p)Ĝp(ŷ(t), p̂(t)), (3.60)

τ̂tt(t; y, p) = −Ĝp(ŷ(t), p̂(t)) · τ̂tx(t; y, p), (3.61)

where (ŷ(t), p̂(t)) = (ŷ(t; y, p), p̂(t; y, p)). We also denote M̂∗ as the complete Hessian

43



matrix about (t, x) at (t; y, p) and t = t̂0(y, p),

M̂∗(t; y, p) =

 τ̂tt(t; y, p), τ̂Ttx(t; y, p)

τ̂tx(t; y, p), M̂(t; y, p)

 ,
F̂ (r, t; y, p) = τ̂t(t; y, p) +Re(τ̂tx(t; y, p)) · (r − ŷ(t)),

θ̂(r, t; y, p) = p̂(t) · (r − ŷ(t)) + ||r − ŷ(t)||2
Re(M̂(t))

2

,

Q̂(r, t; y, p) = −(Im(τ̂tx)(t; y, p))
T (r − ŷ(t))

Im(τ̂tt)(t; y, p)
.

Similarly, we denote (x̂(t), ξ̂(t)) = (x̂(t;x, ξ), ξ̂(t;x, ξ)), N̂∗(t;x, ξ), F̂ (r, t;x, ξ), θ̂(r, t;x, ξ)

and Q̂(r, t;x, ξ).

The following proposition is needed when taking the Fourier transform of Û
y
p (r, t) about

time t,

Proposition 3.3.2. For any complex number γ with positive real part, i.e. Re(γ) > 0,

∫ ∞

−∞
e−γt

2
e−iωtdt =

√
π

γ
e
−ω

2
4γ . (3.62)

Lemma 3.3.1. The Fourier transform of Û
y
p (r, t) with respect to time t is

Û
y
p (r, ω) = Û

y
p (r, ω; t)

∣∣∣
t=t̂0(y,p)

= ei%̂(r,t;y,p)e−iωteiβ̂(t;y,p)|ω−τ̂t(t;y,p)−ζ̂(t;y,p)
T (r−ŷ(t))|2

√
i2π

τ̂tt(t; y, p)
Â(t)e

−||r−ŷ(t)||2
M̂(t;y,p,M0)

2 , (3.63)
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where

M̂(t; y, p) = Im(M̂)(t; y, p)− Im(τ̂tx)Im(τ̂tx)
T

Im(τ̂tt(t; y, p))
(3.64)

β̂(t; y, p) = − 1

2τ̂tt(t; y, p)
= − 1

2iIm(τ̂tt(t; y, p)) + 2Re(τ̂tt(t; y, p))
, (3.65)

ζ̂(t; y, p) = Re(τ̂tx(t; y, p))−
Re(τ̂tt(t; y, p))

Im(τ̂tt(t; y, p))
Im(τ̂tx(t; y, p)), (3.66)

%̂ (r, t; y, p) = θ̂(r, t; y, p) + (F̂ (r, t; y, p)− ω)Q̂(r, t; y, p)

+
Re(τ̂tt(t; y, p))

2
Q̂(r, t; y, p)2. (3.67)

Here t in Û
y
p (·; t) serves as a fixed parameter, since all terms defined above is defined

at this fixed moment.

Proof. We still abbreviate t̂0(y, p) as t̂0 in this proof since we only concern the single

beam Û
y
p here. From Proposition 3.3.1,

Û
y
p (r, ω) ≈ Â(t̂0)e

iθ̂(r,t̂0;y,p)
∫
e−iωteiF̂ (r,t̂0;y,p)(t−t̂0)ei

1
2Re(τ̂tt(t̂0;y,p))(t−t̂0)

2

× e
−||(t−t̂0,r−ŷ(t̂0))||2Im(M̂∗(t̂0;y,p,M0))/2dt, (3.68)

After expanding the term e
−||(t−t̂0,r−ŷ(t̂0))||2Im(M̂∗/2) , we have

Û
y
p (r, ω) ≈ Â(t̂0)e

iθ̂e−iωt̂0e

−||(0,r−ŷ(t̂0))||2Im(M̂∗)(t̂0;y,p,M0)
2∫

e−i(−F̂+ω)(t−t̂0)ei
1
2Re(τ̂tt(t̂0;y,p))(t−t̂0)

2
e−

Im(τ̂tt(t̂0;y,p))
2 (t−t̂0)2

e−(t−t̂0)(Im(τ̂tx)(t̂0;y,p))
T (r−ŷ(t̂0))dt. (3.69)
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To make a complete square term in equation (3.69), we have

− Im(τ̂tt)(t̂0; y, p)

2
(t− t̂0)

2 − (t− t̂0)Im(τ̂tx(t̂0; y, p))
T (r − ŷ(t̂0)) =

|(Im(τ̂tx)(t̂0; y, p))
T (r − ŷ(t̂0))|2

2Im(τ̂tt(t̂0; y, p))
− Im(τ̂tt)

2

(
t− t̂0 +

(Im(τ̂tx))
T (r − ŷ(t̂0))

Im(τ̂tt)

)2

.

Since Q̂(r, t̂0; y, p) = − (Im(τ̂tx)(t̂0;y,p))
T (r−ŷ(t̂0))

Im(τ̂tt)(t̂0;y,p)
,

Û
y
p (r, ω) = Â(t̂0)e

iθ̂e−iωt̂0ei(F̂−ω)Q̂ei
1
2Re(τ̂tt)Q̂

2

e

|(Im(τ̂tx)(t̂0;y,p))
T (r−ŷ(t̂0))|2

2Im(τ̂tt)(t̂0;y,p) e

−||r−ŷ(t̂0)||2Im(M̂)(t̂0)
2

∫
ei(F̂−ω+Re(τ̂tt)Q̂)(t−t̂0−Q̂)

ei
1
2Re(τ̂tt)(t−t̂0−Q̂)2e−

Im(τ̂tt)(t̂0;y,p)
2 (t−t̂0−Q̂)2dt+O(|t− t0|2)

≈ eiF̂ Q̂ei
1
2Re(τ̂tt)(Q̂)2e−iω(t̂0+Q̂)e

|(Im(τ̂tx)(t̂0;y,p))
T (r−ŷ(t̂0))|2

2Im(τ̂tt)(t̂0;y,p) e

−||r−ŷ(t̂0)||2Im(M̂)(t̂0)
2

×

√
i2π

τ̂tt(t̂0; y, p)
Â(t̂0)e

iθ̂e−ε̂|−τ̂t+ω−Re(τ̂tx)(t̂0;y,p)·(r−ŷ(t̂0))−Re(τ̂tt)(t̂0;y,p)Q̂|2 . (3.70)

Equation (3.70) is obtained by Proposition 3.3.2 where

ε̂(t̂0; y, p) =
1

2Im(τ̂tt)(t̂0; y, p)− i2Re(τ̂tt)(t̂0; y, p)
. (3.71)

After replacing β̂ = iε̂, we have the lemma proved.
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Corollary 3.3.1. The Fourier transform of Ûxξ (r, t) with respect to time t is

Ûxξ (r, ω) = Ûxξ (r, ω; t)
∣∣∣
t=t̂0(x,ξ)

= ei%̂(r,t;x,ξ)e−iωteiγ̂(t;x,ξ)|ω−τ̂t(t;x,ξ)−ϑ̂(t;x,ξ)
T (r−x̂(t))|2

√
i2π

τ̂tt(t;x, ξ)
Ĉ(t)e

−||r−x̂(t)||2
N̂ (t;x,ξ,N0)

2 , (3.72)

where

N̂ (t;x, ξ) = Im(N̂)(t;x, ξ)− Im(τ̂tx)Im(τ̂tx)
T

Im(τ̂tt(t;x, ξ))
(3.73)

%̂ (r, t;x, ξ) = θ̂(r, t;x, ξ) + (F̂ (r, t;x, ξ)− ω)Q̂(r, t;x, ξ)

+
1

2
Re(τ̂tt(t;x, ξ))Q̂(r, t;x, ξ)

2, (3.74)

γ̂(t;x, ξ) = − 1

2iIm(τ̂tt(t;x, ξ)) + 2Re(τ̂tt(t;x, ξ))
,

ϑ̂(t;x, ξ) = Re(τ̂tx(t;x, ξ))−
Re(τ̂tt(t;x, ξ))

Im(τ̂tt(t;x, ξ))
Im(τ̂tx(t;x, ξ)). (3.75)

We have the same conclusion for Ũ
y
q (s, ω) and Ũ

x
η (s, ω) as Lemma 3.3.1 and all terms

involved are defined accordingly.

3.3.3 Asymptotic Analysis of Two Beams’ Interaction

In this section, we would like to explore the interaction between two Gaussian beams,

that is ∫∫
drdξ

¯̂
U
y
p (r, ω)Û

x
ξ (r, ω),

∫∫
dsdη ¯̃U

y
q (s, ω)Ũ

x
η (s, ω).
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The rest of Section 3.3.3 is organized as the following. We will first discuss the distance

between two beams Û
y
p and Ûxξ satisfying the parabolic scaling principle in the phase

space. In Section 3.3.3.2, we will evaluate the error caused by replacing Ûxξ (·; t̂0(x, ξ))

with Ûxξ (·; t̂0(y, p)). After that, the difference between the exponents at different times

is evaluated and it will allow us to map the phase term to the initial moment. In

Section 3.3.3.4 and 3.3.3.5, we will compute the integral about r and show that there

exists a Gaussian profile centered at ŷ(t̂0(y, p)). And the analysis can all be applied to

the source side similarly.

Here we require that there is a significant interaction between two beams concerned,

which means the distance between two central rays, (ŷ(t), p̂(t)) and (x̂(t), ξ̂(t)) is less

than the width of the beam Û
y
p and the width of a beam is defined as 1/

√
ε, where ε

is the smallest eigenvalue of Im(M̂(t)).

3.3.3.1 Parabolic Scaling Principle

A wavepacket satisfying the so-called parabolic scaling principle means the wavelength

of the typical oscillation of the wavepacket being equal to the square of the width of

the wavepacket, and a Gaussian beam will satisfy parabolic scaling principle at any

given time if it does initially. The following graph shows a single Gaussian wavepacket

in R2 satisfying the parabolic scaling principle.

The following asymptotic analysis is needed throughout the proof.

Lemma 3.3.2. Consider two scattering beams (ŷ(t), p̂(t), M̂(t), Â(t)) and
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Figure 3.3: Real Part of Single Wavepacket φl,i,k

(x̂(t), ξ̂(t), N̂(t), Ĉ(t)) satisfying the parabolic scaling principle at the initial time, then

||M̂(t)|| ∼ O(||p||), ||N̂(t)|| ∼ O(||ξ||). (3.76)

If there exists significant interaction effects between two beams, then

||ŷ(t)− x̂(t)|| ∼ O

(
1√
||p||

)
. (3.77)

Moreover, if we have ||p− ξ|| ∼ O(
√

||p||) at the beginning,

|κ̂(t)| ∼ 1 +O(||p||−
1
2 ), ||Ξ̂(t)|| ∼ O(

√
||p||). (3.78)

Proof. The assumption ||p− ξ|| ∼ O(
√

||p||) is a reasonable assumption, as we will see

later ||p − ξ|| will be controlled by a Gaussian profile, which means the value will be

exponentially decaying when p and ξ are far from each other.

First, the Hamiltonian G(x, p) = v(x)||p|| remains as a constant along the ray. This

implies that the order of the momentum ||p|| will not change as the velocity v is a

smooth function and bounded away from zero, that is ||p̂(t)|| ∼ ||p||.
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Second, we will evaluate M̂(t). The homogeneous of degree one Hamiltonian guarantees

that Gaussian wavepackets satisfy the parabolic scaling principle at any given time.

This implies that the size of Hessian M̂ is around O(||p̂(t)||) and equation (3.76) is

correct.

Due to the fact that Û
y
p is well-localized around ŷ(t) in the physical space, Ûxξ will

have small interaction with Û
y
p , if x̂(t) is beyond this localized region. And equation

(3.77) is correct.

Third,

∣∣∣∣∣∣d(p̂(t)− ξ̂(t))

dt

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∇∇v(ŷ(t))(ŷ(t)− x̂(t))||p̂(t)||
∣∣∣∣∣∣

+ ||∇v(ŷ(t))
(

p̂(t)

||p̂(t)||

)T
(p̂(t)− ξ̂(t))||

≤ C2||ŷ(t)− x̂(t)||||p̂(t)||+ C1||p̂(t)− ξ̂(t)||,

where C1 and C2 are the upper bound of ||∇v|| and ||∇∇v|| respectively. Moreover,

d||p̂(t)− ξ̂(t)||2

dt
= 2

d(p̂(t)− ξ̂(t))

dt
· (p̂(t)− ξ̂(t)) ≤ 2||d(p̂(t)− ξ̂(t))

dt
||||p̂(t)− ξ̂(t)||,

by Cauchy-Schwartz inequality. We further get,

d||p̂(t)− ξ̂(t)||2

dt
≤ C1||p̂(t)− ξ̂(t)||2 + C2(||ŷ(t)− x̂(t)||)(||p̂(t)||)(||p̂(t)− ξ̂(t)||)

≤ C1||p̂(t)− ξ̂(t)||2 + 1

2
(C2||p̂(t)||||ŷ(t)− x̂(t)||)2 + ||p̂(t)− ξ̂(t)||2

2
.
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By Gronwall inequality, we have

||p̂(t)− ξ̂(t)||2 ∼ O(||p||),

since C2||p̂(t)||||ŷ(t) − x̂(t)|| is uniformly bounded. Consequently, equation (3.78) is

correct.

3.3.3.2 Difference between Two Interacted Beams’ Traveltime

In this part, we would like to calibrate the beam Ûxξ (r, ω; t̂0(x, ξ)) according to the

beam Û
y
p (r, ω) by shifting time t̂0(x, ξ) to time t̂0(y, p).

By Corollary 3.3.1,

Ûxξ (r, ω) = ei%̂(r,t̂0(x,ξ);x,ξ)e−iωt̂0(x,ξ)

eiγ̂(t̂0(x,ξ);x,ξ)|ω−τ̂t(t̂0(x,ξ);x,ξ)−ϑ̂(t̂0(x,ξ);x,ξ)
T (r−x̂(t̂0(x,ξ)))|2

√
i2π

τ̂tt(t̂0(x, ξ);x, ξ)
Ĉ(t̂0(x, ξ))e

−||r−x̂(t̂0(x,ξ))||2N̂ (t̂0(x,ξ);x,ξ,N0)
2 . (3.79)

The difference |t̂0(x, ξ) − t̂0(y, p)| is around O

(
1√
||p||

)
. To see this, the following

bound can be obtained using Lemma 3.3.2,

|ŷd(t)− x̂d(t)| ≤ ||ŷ(t)− x̂(t)|| ∼ O(
1√
||p||

). (3.80)
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By Assumption 3.2.1, we have

|t̂0(x, ξ)− t̂0(y, p)| ≤
|ŷd(t)− x̂d(t)|

b
∼ O

(
1√
||p||

)
. (3.81)

The following proof is essentially comparing each term of equation (3.79) at two dif-

ferent times t̂0(x, ξ) and t̂0(y, p).

First, e−iωt̂0(x,ξ) becomes,

e−iωt̂0(x,ξ) = e−iωt̂0(y,p)e−iω(t̂0(x,ξ)−t̂0(y,p)). (3.82)

Second, we will discuss eiγ̂(t̂0(x,ξ);x,ξ)|ω−τ̂t(t̂0(x,ξ);x,ξ)−ϑ̂(t̂0(x,ξ);x,ξ)
T (r−x̂(t̂0))|2 .

Proposition 3.3.3.

iγ̂(t̂0(x, ξ);x, ξ)|ω − τ̂t(t̂0(x, ξ);x, ξ)− ϑ̂(t̂0(x, ξ);x, ξ)
T (r − x̂(t̂0(x, ξ)))|2 =

iγ̂(t̂0(y, p);x, ξ)|ω − τ̂t(t̂0(y, p);x, ξ)−
(
ϑ̂(t̂0(y, p);x, ξ))

)T
(r − x̂(t̂0(y, p)))|2

+O

(
1

||p||

)
. (3.83)

Proof. See Appendix A.

Third, we will discuss ||r − x̂(t̂0(x, ξ))||2N̂ .

Proposition 3.3.4.

||r − x̂(t̂0(x, ξ))||2N̂ (t̂0(x,ξ))
= ||r − x̂(t̂0(y, p))||2N̂ (t̂0(y,p))

+O

(
1√
||p||

)
. (3.84)
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Proof. According to Lemma A.0.1, we have,

N̂ (t̂0(x, ξ);x, ξ) = Im(N̂)(t̂0(x, ξ);x, ξ)−
Im(N̂)ξ̂ξ̂T Im(N̂)

ξ̂T Im(N̂)ξ̂
(t̂0(x, ξ);x, ξ)).

Then,

N̂ (t̂0(x, ξ);x, ξ)ξ̂(t̂0(x, ξ))

= Im(N̂)(t̂0(x, ξ);x, ξ)ξ̂(t̂0(x, ξ))− Im(N̂)(t̂0(x, ξ);x, ξ)ξ̂(t̂0(x, ξ)) = 0. (3.85)

This is also correct for any vector parallel to ξ̂(t̂0(x, ξ)). On the other hand,

r − x̂(t̂0(x, ξ)) = r − x̂(t̂0(y, p)) + x̂(t̂0(y, p))− x̂(t̂0(x, ξ))

= r − x̂(t̂0(y, p)) +G±
p (x̂(t̂0(y, p)), ξ̂(t̂0(y, p)))(t̂0(y, p)− t̂0(x, ξ))

= r − x̂(t̂0(y, p))± v(x̂(t̂0(y, p)))(t̂0(y, p)− t̂0(x, ξ))
ξ̂(t̂0(x, ξ))

||ξ̂(t̂0(x, ξ))||
. (3.86)

Consequently,

||r − x̂(t̂0(x, ξ))||2N̂ (t̂0(x,ξ))
= ||r − x̂(t̂0(y, p)) + λξ̂(t̂0(x, ξ))||2N̂ (t̂0(x,ξ))

= ||r − x̂(t̂0(y, p))||2N̂ (t̂0(y,p))
+ ||r − x̂(t̂0(y, p))||2N̂ (t̂0(x,ξ))−N̂ (t̂0(y,p))

= ||r − x̂(t̂0(y, p))||2N̂ (t̂0(y,p))
+O

(
1√
||p||

)
. (3.87)

Finally, about %̂(r, t̂0(x, ξ);x, ξ) defined in equation (3.74). All other terms are at
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constant order, except for ξ̂(t̂0(x, ξ)) · (r − x̂(t̂0(x, ξ))),

ξ̂(t̂0(x, ξ)) · (r − x̂(t̂0(x, ξ))) = ξ̂(t̂0(y, p)) · (r − x̂(t̂0(x, ξ)))

= ξ̂(t̂0(y, p)) ·
(
r − x̂(t̂0(y, p))

)
± v(x̂(t̂0(y, p)))(t̂0(y, p)− t̂0(x, ξ))||ξ̂(t̂0(y, p))||)

= ξ̂(t̂0(y, p)) ·
(
r − x̂(t̂0(y, p))

)
± v||p̂(t̂0(y, p))||(t̂0(y, p)− t̂0(x, ξ)) +O(1)

= ξ̂(t̂0(y, p)) · (r − x̂(t̂0(y, p))− τ̂t(t̂0(y, p); y, p)(t̂0(y, p)− t̂0(x, ξ)) +O(1). (3.88)

The asymptotic analysis in the last step comes from Lemma 3.3.2, that is ||p̂(t) −

ξ̂(t)|| ∼ O(
√

||p||).

To expedite the discussion, we will use the following notations:

t̂c = t̂0(y, p),

∆t̂0(x, ξ; y, p) = t̂0(y, p)− t̂0(x, ξ),

t̃c = t̃0(y, q),

∆t̃0(x, η; y, q) = t̃0(y, q)− t̃0(x, η).

Lemma 3.3.3. By Proposition 3.3.3, Proposition 3.3.4 and equation (3.82) and (3.88),

Ûxξ (r, ω; t̂0(x, ξ)) =

√
i2π

τ̂tt(t̂c;x, ξ)
Ĉ(t̂c)e

i%̂(r,t̂c;x,ξ)−iξ̂(t̂0(x,ξ))·(r−x̂(t̂0(x,ξ)))e−iωt̂c

ei(ω−τ̂t(t̂c;x,ξ))∆t̂0(x,ξ;y,p)eiξ̂(t̂c)·(r−x̂(t̂c))eiγ̂(t̂c;x,ξ)|ω−τ̂t(t̂c;x,ξ)−ϑ̂(t̂c;x,ξ)
T (r−x̂(t̂c;x,ξ))|2

e

−||r−x̂(t̂c;x,ξ)||2N̂ (t̂c)
2 +O

(
1√
||p||

)
. (3.89)

Now, since two beams are using the same traveltime, we will abbreviate parameter t̂0
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in Ûxξ (r, ω; t̂0(x, ξ)). On the source side,

Corollary 3.3.2. When we calibrate the beam Ũxη (s, ω; t̃0(x, η)) according to the beam

Ũ
y
q (s, ω) by shifting time t̃0(x, η) to time t̃c, we have

Ũxη (s, ω; t̃0(x, η)) =

√
i2π

τ̃tt(t̃c;x, η)
C̃(t̃c)e

i%̃(s,t̃c;x,η)−iη̃(t̃0(x,η))·(s−x̃(t̃0(x,η)))e−iωt̃c

ei(ω−τ̃t(t̃c;x,η))∆t̃0(x,η;y,q)eiη̃(t̃c)·(s−x̃(t̃c))

eiγ̃(t̃c;x,η)|ω−τ̃t(t̃c;x,η)−ϑ̃(t̃c;x,η)
T (s−x̃(t̃c;x,η))|2e

−||s−x̃(t̃c;x,η)||2Ñ (t̃c)
2 +O

(
1√
||q||

)
.

(3.90)

3.3.3.3 Difference between Two Interacted Beams’ Phase and Hessians

We will compare the difference between M̂(t)− N̂(t) in this section. We first have the

following inequality

Proposition 3.3.5. Consider two scattering beams (ŷ(t), p̂(t), M̂(t), Â(t)) and

(x̂(t), ξ̂(t), N̂(t), Ĉ(t)), and assume that there exists significant interaction effects be-

tween these two beams. There exists two bounded positive constants C∗
1 and C∗

2 related

to the background velocity, such that

d||M̂(t)− N̂(t)||
dt

≤ C∗
1

√
||p||+ C∗

2 ||M̂(t)− N̂(t)||. (3.91)

where ||M̂(t)− N̂(t)|| is defined as the matrix norm induced by the vector 2-norm.

Proof. See Appendix A.
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Lemma 3.3.4. Consider two scattering beams (ŷ(t), p̂(t), M̂(t), Â(t)) and

(x̂(t), ξ̂(t), N̂(t), Ĉ(t)), and there exists significant interaction effects between these two

beams. Then

||M̂(t)− N̂(t)|| ∼ O
(√

||p||
)
, ∀t ∈ [0, T ], (3.92)

Proof. First, M̂(t)− N̂(t) is zero at t = 0, since they satisfy the same initial condition.

Using Proposition 3.3.5 and the fact that the norm ||M̂(t)− N̂(t)|| is positive and both

C∗
1 and C∗

2 are positive,

||M̂(t)− N̂(t)|| ≤ C∗
1

√
||p(0)||T +

∫ t

0
C∗
2 ||M̂(s)− N̂(s)||ds, (3.93)

since the boundary dataD(r, s, t) is measured in the time interval [0, T ]. With Gronwall

inequality,

||M̂(t)− N̂(t)|| ≤ C∗
1Te

C∗2 t
√

||p||. (3.94)

Moreover, we have the same conclusion for other related terms,

Corollary 3.3.3.

||M̂(t)− N̂ (t)|| ∼ O(
√

||p||), ||M̃(t)− Ñ (t)|| ∼ O(
√

||q||);

||τ̂tx(t̂c; y, p)− τ̂tx(t̂c;x, ξ)|| ∼ O(
√

||p||), ||τ̃tx(t̃c; y, q)− τ̂tx(t̃c;x, η)|| ∼ O(
√

||q||);

|τ̂tt(t̂c; y, p)− τ̂tt(t̂c;x, ξ)| ∼ O(
√

||p||), |τ̃tt(t̃c; y, q)− τ̃tt(t̃c;x, η)| ∼ O(
√

||q||).

Consequently, by Lemma A.0.1, both Û
y
p (r, ω) and Ûxξ (r, ω) are well-localized along
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the boundary, and we have

1

2
||r − x̂(t)||2M̂−N̂ ∼ O(||p||−

1
2 ),

which will be used in equation (3.101) when we replace N̂ with M̂. Similarly,

1

2
||s− x̃(t)||2M̃−Ñ ∼ O(||q||−

1
2 ).

Lemma 3.3.5. Consider two scattering beams (ŷ(t), p̂(t), M̂(t), Â(t)) and

(x̂(t), ξ̂(t), N̂(t), Ĉ(t)), and there exists significant interaction effects between these two

beams. Suppose the function g(t) is

g(t) = p̂(t) · (ŷ(t)− x̂(t)), (3.95)

then we have

g(t) = g(0) +O(1), (3.96)

and

g
′
(t) = v(x̂(t))

(
1

2

||Ξ̂(t)||2

κ̂(t)2||p̂(t)||

)
. (3.97)

Proof. See Appendix A.

Lemma 3.3.6. Consider two scattering beams (ŷ(t), p̂(t), M̂(t), Â(t)) and

(x̂(t), ξ̂(t), N̂(t), Ĉ(t)), and there exists significant interaction effects between these two

beams. Suppose the pure imaginary matrix M̂(0) has a symmetric positive definite
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imaginary part and is the initial condition of the Hessian for the beam, then

(y − x)T M̂(0)(y − x) = (ŷ(t)− x̂(t))T M̂(t)(ŷ(t)− x̂(t)) +O(1). (3.98)

Proof. See Appendix A.

3.3.3.4 Approximation of Two Beams’ Interaction

In this section, we will use the conclusion obtained in previous sections to get the

explicit formula of
∫∫

dξdr
¯̂
U
y
p (r, ω)Û

x
ξ (r, ω). We first have the proposition below which

will be used in approximation,

Proposition 3.3.6. The real-valued phase terms, %̂(r, t̂c; y, p)−θ̂(r, t̂c; y, p) and %̂(r, t̂c;x, ξ)−

θ̂(r, t̂c;x, ξ), can be ignored since they are constant order terms with respect to the large

wavenumber ||ξl,i|| = ||p+ q||.

Proof. See Appendix A.
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According to equation (3.89), (3.63),

∫∫
dξdr

¯̂
U
y
p (r, ω)Û

x
ξ (r, ω) = eiO(1)∫∫

drdξeiωt̂c−iωt̂ce−i%̂(r,t̂c;y,p)+iθ̂(r,t̂c;y,p)e−iθ̂(r,t̂c;y,p)e(iβ̂)|ω−τ̂t(t̂c;y,p)−ζ̂(r−ŷ(t̂c))|
2

ei%̂(r,t̂c;x,ξ)−iθ̂(r,t̂c;x,ξ)eiθ̂(r,t̂c;x,ξ)eiγ̂|ω−τ̂t(t̂c;x,ξ)−ϑ̂(r−x̂(t̂c))|
2
ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p)

e

−||r−x̂(t̂c)||2N̂ (t̂c)
2 e

−||r−ŷ(t̂c)||2M̂(t̂c)
2

= eiO(1)
∫
dξe−iωt̂c+iωt̂ce

−1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c)e

i12 ||ŷ(t̂c)−x̂(t̂c)||
2
Re(M̂)(t̂c)

×
∫
dre

(
iβ̂
)
|ω−τ̂t(t̂c;y,p)−ζ̂T (r−ŷ(t̂c))|2eiγ̂|ω−τ̂t(t̂c;x,ξ)−ϑ̂

T (r−x̂(t̂c))|2eiχ̂(r,t̂c;y,p,x,ξ)

× eiξ̂(t̂c)·(r−x̂(t̂c))−ip̂(t̂c)·(r−ŷ(t̂c))ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p)

× e
−1
2 ||r−ŷ(t̂c)||

2
M̂(t̂c)e

−1
2 ||r−x̂(t̂c)||

2
N̂ (t̂c)e

1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c) , (3.99)

where

χ̂(r, t̂c; y, p, x, ξ) = −1

2
||ŷ(t̂c)− x̂(t̂c)||2Re(M̂)(t̂c)

− 1

2
||r − ŷ(t̂c)||2Re(M̂)(t̂c)

+
1

2
||r − x̂(t̂c)||2Re(N̂)(t̂c)

. (3.100)

Here we neglect some constant order real-valued phase terms by Proposition 3.3.6,

which can be considered as a smooth residual.
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Then we replace N̂ with M̂, and the inner integral becomes,

∫
dre(iβ̂)|ω−τ̂t(t̂c;y,p)−ζ̂

T (r−ŷ(t̂c))|2eiγ̂|ω−τ̂t(t̂c;x,ξ)−ϑ̂
T (r−x̂(t̂c))|2

× eiξ̂(t̂c)·(r−x̂(t̂c))−ip̂(t̂c)·(r−ŷ(t̂c))eiχ̂e
−1
2 ||r−ŷ(t̂c)||

2
M̂(t̂c)

× e
−1
2 ||r−x̂(t̂c)||

2
N̂ (t̂c)e

1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c)ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p) (3.101)

= ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p)eip̂(t̂c)·(ŷ(t̂c)−x̂(t̂c))e−i
p̂(t̂c)−ξ̂(t̂c)

2 ·(ŷ(t̂c)−x̂(t̂c))∫
eiχ̂ei

ξ̂(t̂c)−p̂(t̂c)
2 ·(2r−x̂(t̂c)−ŷ(t̂c))e

−1
4 ||2r−x̂(t̂c)−ŷ(t̂c)||

2
M̂(t̂c)

e(iβ̂)|ω−τ̂t(t̂c;y,p)−ζ̂
T (r−ŷ(t̂c))|2eiγ̂|ω−τ̂t(t̂c;x,ξ)−ϑ̂

T (r−x̂(t̂c))|2dr +

(
1√
||p||

)
. (3.102)

The difference of replacing Hessian matrix has been evaluated in Lemma 3.3.4 and its

Corollary. Obviously, now the integral about the receiver variable r is well-defined.

We denote its result as B̂(x, ξ, ω; y, p),

B̂(x, ξ, ω; y, p) =

∫
eiχ̂ei

ξ̂(t̂c)−p̂(t̂c)
2 ·(2r−x̂(t̂c)−ŷ(t̂c))e

−1
4 ||2r−x̂(t̂c)−ŷ(t̂c)||

2
M̂(t̂c)

× e(iβ̂)|ω−τ̂t(t̂c;y,p)−ζ̂
T (r−ŷ(t̂c))|2eiγ̂|ω−τ̂t(t̂c;x,ξ)−ϑ̂

T (r−x̂(t̂c))|2dr. (3.103)

Similarly,

B̃(x, η, ω; y, q) =

∫
eiχ̃ei

η̃(t̃c)−q̃(t̃c)
2 ·(2s−x̃(t̃c)−ỹ(t̃c))e

−1
4 ||2s−x̃(t̃c)−ỹ(t̃c)||

2
M̃(t̃c)

× e(iβ̃)|ω−τ̃t(t̃c;y,q)−ζ̃
T (s−ỹ(t̃c))|2eiγ̃|ω−τ̃t(t̃c;x,η)−ϑ̃

T (s−x̃(t̃c))|2ds. (3.104)

We can see that the integral about r and s is accounted for in the computation of B̂

and B̃.
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3.3.3.5 Integral about Boundary Points r and s

In this section, we will evaluate B̂ and B̃ defined in equation (3.103) and (3.104) to

show that they are essentially Gaussian functions. Continuing from the expression

(3.103) of B̂(x, ξ, ω; y, p), we first simplify the exponent χ̂(r, t̂c; y, p, x, ξ),

χ̂ = −1

2
||ŷ(t̂c)− x̂(t̂c)||2Re(M̂)(t̂c)

− 1

2
||r − ŷ(t̂c)||2Re(M̂)(t̂c)

+
1

2
||r − x̂(t̂c)||2Re(M̂)(t̂c)

= −1

2
||ŷ(t̂c)− x̂(t̂c)||2Re(M̂)(t̂c)

+
1

2
(ŷ(t̂c)− x̂(t̂c))

TRe(M̂)(t̂c)(2r − x̂(t̂c)− ŷ(t̂c)),

(3.105)

so that we have

B̂(x, ξ, ω; y, p) = e
−i12 ||ŷ(t̂c)−x̂(t̂c)||

2
Re(M̂)(t̂c)

∫
e
−i
(
p̂(t̂c)−ξ̂(t̂c)

2 −Re(M̂)(t̂c)
2 (ŷ(t̂c)−x̂(t̂c))

)
·(2r−x̂(t̂c)−ŷ(t̂c))

× e
−1
4 ||2r−x̂(t̂c)−ŷ(t̂c)||

2
M̂(t̂c)F̂(r, x, ξ, ω; y, p)dr, (3.106)

where

F̂(r, x, ξ, ω; y, p) =

e−Im(β̂)|ω−τ̂t(t̂c;y,p)−ζ̂T (r−ŷ(t̂c))|2e−Im(γ̂)|ω−τ̂t(t̂c;x,ξ)−ϑ̂T (r−x̂(t̂c))|2eiĝ(r,x,ξ,ω;y,p),

(3.107)
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and

ĝ(r, x, ξ, ω; y, p) = −Re(β̂)|ω − τ̂t(t̂c; y, p)− ζ̂T (r − ŷ(t̂c))|2

+Re(γ̂)|ω − τ̂t(t̂c;x, ξ)− ϑ̂T (r − x̂(t̂c))|2. (3.108)

Proposition 3.3.7. The sum of first two terms in the exponent of F̂ in (3.107) satisfy,

− Im(β̂)|ω − τ̂t(t̂c; y, p)− ζ̂T (r − ŷ(t̂c))|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)− ϑ̂T (r − x̂(t̂c))|2

= −||r − x̂(t̂c) + ŷ(t̂c)

2
||2
2Im(β̂)ζ̂ ζ̂T

− Im(β̂)

2
||ŷ(t̂c)− x̂(t̂c)||2ζ̂ ζ̂T

− Im(β̂)|ω − τ̂t(t̂c; y, p)|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)|2 +O

(
1√
||p||

)
, (3.109)

where β̂, γ̂, ζ̂ and ϑ̂ are all defined at t̂c. Similarly, ĝ in equation (3.108) is an O(1)

term.

Proof. See Appendix A.

Lemma 3.3.7. The integral B̂(x, ξ, ω; y, p) defined in (3.106) has a Gaussian profile

centered at ŷ(t̂c) and p̂(t̂c),

B̂(x, ξ, ω; y, p) = e
− i
2 ||ŷ(t̂c)−x̂(t̂c)||

2
Re(M̂)(t̂c)−iIm(β̂)ζ̂ ζ̂T

e−Im(β̂)|ω−τ̂t(t̂c;y,p)|2−Im(γ̂)|ω−τ̂t(t̂c;x,ξ)|2
√√√√ (2π)d−1

det(M̂(t̂c) +
Im(β̂)

2 ζ̂ ζ̂T )

e
−||
(
p̂(t̂c)−ξ̂(t̂c)−Re(M̂)(t̂c)(ŷ(t̂c)−x̂(t̂c))

)
||2
(M̂(t̂c)+

1
2Im(β̂)ζ̂ ζ̂T )−1

eiO(1),

where we ignore the real-valued phase term ĝ.
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Proof. Using Proposition 3.3.7, the integral B̂ in (3.106) becomes the Fourier transform

of Gaussian functions, so that we have

B̂(x, ξ, ω; y, p) = e
−i12 ||ŷ(t̂c)−x̂(t̂c)||

2
Re(M̂)(t̂c)−iIm(β̂)ζ̂ ζ̂T

e−Im(β̂)|ω−τ̂t(t̂c;y,p)|2−Im(γ̂)|ω−τ̂t(t̂c;x,ξ)|2
√√√√ (2π)d−1

det(M̂(t̂c) +
Im(β̂)

2 ζ̂ ζ̂T )

e
−||
(
p̂(t̂c)−ξ̂(t̂c)−Re(M̂)(t̂c)(ŷ(t̂c)−x̂(t̂c))

)
||2
(M̂(t̂c)+

1
2Im(β̂)ζ̂ ζ̂T )−1

. (3.110)

Corollary 3.3.4. Similarly, on the source side,

B̃(x, η, ω; y, q) = e
−i12 ||ỹ(t̃c)−x̃(t̃c)||

2
Re(M̃)(t̃c)−iIm(β̃)ζ̃ ζ̃T

e−Im(β̃)|ω−τ̃t(t̃c;y,q)|2−Im(γ̃)|ω−τ̃t(t̃c;x,η)|2
√√√√ (2π)d−1

det(M̃)(t̃c) +
Im(β̃)

2 ζ̃ ζ̃T )

e
−||
(
q̃(t̃c)−η̃(t̃c)−Re(M̃)(t̃c)(ỹ(t̃c)−x̃(t̃c))

)
||2
(M̃(t̃c)+

1
2Im(β̃)ζ̃ ζ̃T )−1

eiO(1). (3.111)

3.3.3.6 Conclusion of Two Beams’ Interaction

To summarize,

∫
dr

¯̂
U
y
p (r, ω)

∫
dξÛxξ (r, ω) ≈

∫
dξe

−1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c)e

i12 ||ŷ(t̂c)−x̂(t̂c)||
2
Re(M̂)(t̂c)

ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p)eip̂(t̂c)·(ŷ(t̂c)−x̂(t̂c))ei
ξ̂(t̂c)−p̂(t̂c)

2 ·(ŷ(t̂c)−x̂(t̂c))B̂(x, ξ, ω; y, p).

(3.112)
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By Lemma 3.3.5 and Lemma 3.3.6, equation (3.112) reduces to

∫∫
drdξ

¯̂
U
y
p (r, ω)Û

x
ξ (r, ω) = eip·(y−x)Ĥ(x, ω; y, p), (3.113)

where

Ĥ(x, ω; y, p) =

∫
dξei(ψ̂1(t̂c)−ψ̂1(0))ei(ψ̂2(t̂c)−ψ̂2(0))e

−1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c)

ei
1
2(ξ̂(t̂c)−p̂(t̂c))·(ŷ(t̂c)−x̂(t̂c))B̂(x, ξ, ω; y, p)ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p),

(3.114)

and

ψ̂1(t;x, ξ, y, p) = p̂(t) · (ŷ(t)− x̂(t)); ψ̂1(0;x, ξ, y, p) = p · (y − x);

ψ̂2(t;x, ξ, y, p) =
1

2
||ŷ(t)− x̂(t)||2

Re(M̂)(t)
; ψ̂2(0;x, ξ, y, p) =

1

2
||y − x||2

Re(M̂)(0)
.

(3.115)

The extra term e
−i14 ||y−x||

2
Re(M̂)(0) = 1, since M̂(0) is a pure imaginary matrix in

Gaussian wavepacket transform. We denote

L̂(x, ξ, t̂c; y, p) =
∑
i=1,2

ψ̂i(t̂c)− ψ̂i(0)−
1

2
(p̂(t̂c)− ξ̂(t̂c)) · (ŷ(t̂c)− x̂(t̂c)). (3.116)

Lemma 3.3.5 and Lemma 3.3.6 guarantees L̂ is O(1).

Lemma 3.3.8. The receiver-side beam interaction reduces to,

∫∫
drdξ

¯̂
U
y
p (r, ω)Û

x
ξ (r, ω) ≈ eip·(y−x)Ĥ(x, ξ, ω; y, p),
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where

Ĥ(x, ξ, ω; y, p) =

∫
dξeiL̂(x,ξ,t̂c;y,p)e

−1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c)e

−i12 ||y−x||
2
Re(M̂)(0)

× B̂(x, ξ, ω; y, p)ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p).

Corollary 3.3.5. The source-side beam interaction reduces to,

∫∫
dsdη ¯̃U

y
q (s, ω)Ũ

x
η (s, ω) ≈ eiq·(y−x)H̃(x, η, ω; y, q),

where

H̃(x, η, ω; y, q) =

∫
dηeiL̃(x,η,t̃c;y,q)e

−1
4 ||ỹ(t̃c)−x̃(t̃c)||

2
M̃(t̃c)e

−i12 ||y−x||
2
Re(M̃)(0)

× B̃(x, η, ω; y, q)ei(ω−τ̃t(t̃c;y,q))∆t̃0(x,η;y,q),

where L̃ is defined accordingly.
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3.3.4 Asymptotic Analysis of Four Beams’ Interaction

Using Lemma 3.3.8 and Corollary 3.3.5, the left-hand side of equation (3.47) now

becomes,

−
∫∫∫∫

dωdrdsdξdηω2
¯̂
U
y
p (r, ω)

¯̃U
y
q (s, ω)Û

x
ξ (r, ω)Ũ

x
η (s, ω)

≈ −ei(p+q)(y−x)Ĥ(x, ξ, ω; y, p)H̃(x, η, ω; y, q)

= −ei(p+q)(y−x)∫∫
dξdηeiL̂(x,ξ,t̂c;y,p)+iL̃(x,η,t̃c;y,q)e

−1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c)e

−1
4 ||ỹ(t̃c)−x̃(t̃c)||

2
M̃(t̃c)∫

ω2B̂B̃ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p)ei(ω−τ̃t(t̂c;y,q))∆t̃0(x,η;y,q)dω. (3.117)

We will discuss the interaction between four beams in this subsection.

3.3.4.1 Integral about Wavenumber ω

We will evaluate the first layer of integral (3.117) about frequency ω in this subsection.

Before that, we define a function K(p, q, y),

K(p, q, y) ≡ −

(
Im(β̂)

(
τ̂t(t̂c; y, p)

)
+ Im(β̃)

(
τ̃t(t̃c; y, q)

)
Im(β̂) + Im(β̃)

)2

e
−2

Im(β̂)Im(β̃)(τ̂t(t̂c;y,p)−τ̃t(t̃c;y,q))2

Im(β̂)+Im(β̃) , (3.118)
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a function B̂(x, ξ; y, p, q) on the receiver side,

B̂ = e
−|∆t̂0(x,ξ;y,p)|2

4Im(β̂+β̃) e−Im(β̂)|τ̂t(t̂c;y,p)−τ̂t(t̂c;x,ξ)|2e
−Im(β̂)

2 ||ŷ(t̂c)−x̂(t̂c)||2
ζ̂ ζ̂T

×

√√√√ (2π)d−1

det(M̂(t̂c) +
Im(β̂)

2 ζ̂ ζ̂T )

e

−
∣∣∣∣∣∣p̂(t̂c)−ξ̂(t̂c)−Re(M̂)(t̂c)(ŷ(t̂c)−x̂(t̂c))

∣∣∣∣∣∣2(
M̂(t̂c)+2Im(β̂)ζ̂ ζ̂T

)−1

, (3.119)

and a function B̃(x, η; y, p, q) on the source side,

B̃ = e
−|∆t̃0(x,η;y,q)|2

4Im(β̂+β̃) e−Im(β̃)|τ̃t(t̃c;y,q)−τ̃t(t̃c;x,η)|2e
−Im(β̃)

2 ||ỹ(t̃c)−x̃(t̃c)||2
ζ̃ ζ̃T

×

√√√√ (2π)d−1

det(M̃(t̃c) +
Im(β̃)

2 ζ̃ ζ̃T )

e

−
∣∣∣∣∣∣q̃(t̃c)−η̃(t̃c)−Re(M̃)(t̃c)(ỹ(t̃c)−x̃(t̃c))

∣∣∣∣∣∣2(
M̃(t̃c)+2Im(β̃)ζ̃ ζ̃T

)−1

. (3.120)

Lemma 3.3.9. The result after taking the integral about ω can be approximated,

−
∫
ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p)ei(ω−τ̃t(t̂c;y,q))∆t̃0(x,η;y,q)ω2B̂B̃dω

= eiO(1)K(p, q, y)B̂(x, ξ; y, p, q)B̃(x, η; y, p, q)e
− i
2 ||ŷ(t̂c)−x̂(t̂c)||

2
Re(M̂(t̂c))

e
− i
2 ||ỹ(t̃c)−x̃(t̃c)||

2
Re(M̃(t̃c)) , (3.121)

where both B̂ and B̃ have phase functions with pure imaginary part only.

Proof. See Appendix A.
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3.3.4.2 Integral about Momentum ξ and η: Evaluation of Real Part of

Phase

We can define the following integral directly from equation (3.117),

Ĥ(x; y, p, q) =

∫
eiL̂(x,ξ,t̂c;y,p)

e
−i12 ||ŷ(t̂c)−x̂(t̂c)||

2
Re(M̂)(t̂c)B̂(x, ξ; y, p, q)e

−1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c)dξ,

where

L̂(x, ξ, t̂c; y, p) =
∑
i=1,2

ψ̂i(t̂c)− ψ̂i(0)−
1

2
(p̂(t̂c)− ξ̂(t̂c)) · (ŷ(t̂c)− x̂(t̂c)),

and recall that

ψ̂1(t;x, ξ, y, p) = p̂(t) · (ŷ(t)− x̂(t)); ψ̂1(0;x, ξ, y, p) = p · (y − x);

ψ̂2(t;x, ξ, y, p) =
1

2
||ŷ(t)− x̂(t)||2

Re(M̂)(t)
; ψ̂2(0;x, ξ, y, p) =

1

2
||y − x||2

Re(M̂)(0)
.

(3.122)

Define functions φ̂1 and φ̂2 as derivatives of equation (3.122),

φ̂1(t;x, ξ, y, p) =
dψ̂1(t;x, ξ, y, p)

dt
, φ̂2(t;x, ξ, y, p) =

dψ̂2(t;x, ξ, y, p)

dt
. (3.123)

In this subsection, we will explore the real part of the phase function in Ĥ, i.e., L̂ −

1
2 ||ŷ(t̂c)− x̂(t̂c)||2

Re(M̂)
.
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Proposition 3.3.8. The function φ̂1 satisfies

φ̂1(t;x, ξ, y, p) =
1

2
||p̂(t)− ξ̂(t)||2Gpp +O

(
1√
||p||

)
. (3.124)

Proof. See Appendix A.

Define a 2d by 2d real-valued matrix R̂,

R̂(t; y, p) =

 0, −1
4I

−1
4I, tGpp(ŷ(t), p̂(t))

 . (3.125)

Proposition 3.3.9. Ĥ(x, y, p, q) satisfies

Ĥ(x, y, p, q) = eiO(1)
∫
dξB̂(x, ξ; y, p, q)e

−1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂e

i||(ŷ−x̂,p̂−ξ̂)( t̂c2 )||2
R̂
(
t̂c
2

)
.

Proof. First,

L̂− 1

2
||ŷ(t̂c)− x̂(t̂c)||2Re(M̂)(t̂c)

=

ψ̂1(t̂c)− ψ̂1(0)− ψ̂2(0)−
1

2
(p̂(t̂c)− ξ̂(t̂c)) · (ŷ(t̂c)− x̂(t̂c))

= ψ̂1(t̂c)− ψ̂1(0)−
1

2
(p̂(t̂c)− ξ̂(t̂c)) · (ŷ(t̂c)− x̂(t̂c)), (3.126)

since Re(M̂)(0) = 0.

We approximate L̂ as,

ψ̂1(t̂c)− ψ̂1(0) =

∫ t̂c

0
φ̂1(t)dt ≈ φ̂1

(
t̂c
2

)
t̂c. (3.127)
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Moreover, by using Lemma 3.3.5 twice,

(p̂(t̂c)− ξ̂(t̂c)) · (ŷ(t̂c)− x̂(t̂c)) =

(
p̂

(
t̂c
2

)
− ξ̂

(
t̂c
2

))
·
(
ŷ

(
t̂c
2

)
− x̂

(
t̂c
2

))
+O(1).

(3.128)

To summarize,

L̂− 1

2
||ŷ(t̂c)− x̂(t̂c)||2Re(M̂)(t̂c)

≈

2
t̂c
2
φ̂1

(
t̂c
2

)
− 1

2

(
p̂

(
t̂c
2

)
− ξ̂

(
t̂c
2

))
·
(
ŷ

(
t̂c
2

)
− x̂

(
t̂c
2

))
=
t̂c
2
||p̂
(
t̂c
2

)
− ξ̂

(
t̂c
2

)
||2Gpp −

1

2

(
p̂

(
t̂c
2

)
− ξ̂

(
t̂c
2

))
·
(
ŷ

(
t̂c
2

)
− x̂

(
t̂c
2

))
.

= ||(ŷ − x̂, p̂− ξ̂)||2
R̂( t̂c2 )

(3.129)

Corollary 3.3.6.

H̃(x, y, p, q) ≈
∫
dηB̃(x, η; y, p, q)e

−1
4 ||ỹ(t̃c)−x̃(t̃c)||

2
M̃ exp

(
i||(ỹ − x̃, q̃ − η̃)(

t̃c
2
)||2

R̃( t̃c2 )

)
.

All terms are defined accordingly.

Now the right hand side of equation (3.117) is equal to ei(p+q)(y−x)ĤH̃. Therefore,

we will focus on Ĥ and H̃ next.
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3.3.4.3 Integral about Momentum ξ and η: Evaluation of Imaginary Part

of Phase

After seeing the real part of the phase function in Proposition 3.3.9 is a complete

quadratic term, we will explore more about the imaginary part in this section. Similar

to the real part, we will prove the imaginary part is a complete quadratic term as well

as a non-degenerate quadratic term.

We start with rewriting B̂(x, ξ; y, p, q) in (3.119),

B̂(x, ξ; y, p, q) =

√√√√ (2π)d−1

det(M̂(t̂c) +
Im(β̂)

2 ζ̂ ζ̂T )
e
−||(ŷ(t̂c)−x̂(t̂c),p̂(t̂c)−ξ̂(t̂c))||2Î(t̂c;y,p)

e
−|∆t̂0(x,ξ;y,p)|2

4Im(β̂+β̃) e−Im(β̂)|τ̂t(t̂c;y,p)−τ̂t(t̂c;x,ξ)|2 .

where Î(t̂c; y, p) is a symmetric matrix depending on the fixed beam’s parameters (y, p).

Î(t̂c; y, p) =

−Re(M̂)

I

 (M̂+ 2Im(β̂)ζ̂ ζ̂T )−1
[
−Re(M̂) I

]
+

Im(β̂)
2 ζ̂ ζ̂T , 0

0, 0

 .
(3.130)

Using Proposition 3.3.9, we have
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Lemma 3.3.10.

Ĥ(x; y, p, q) =

√√√√ (2π)d−1

det(M̂(t̂c) +
Im(β̂)

2 ζ̂ ζ̂T )

∫
dξe

−1
4 ||ŷ(t̂c)−x̂(t̂c)||

2
M̂(t̂c)

× e−Im(β̂)|τ̂t(t̂c;y,p)−τ̂t(t̂c;x,ξ)|2e
−|∆t̂0(x,ξ;y,p)|2

4Im(β̂+β̃)

× exp

i [ŷ( t̂c2 )− x̂( t̂c2 ), p̂( t̂c2 )− ξ̂( t̂c2 )

]
R̂

ŷ( t̂c2 )− x̂( t̂c2 )

p̂( t̂c2 )− ξ̂( t̂c2 )




× exp

−
[
ŷ(t̂c)− x̂(t̂c), p̂(t̂c)− ξ̂(t̂c)

]
Î

ŷ(t̂c)− x̂(t̂c)

p̂(t̂c)− ξ̂(t̂c)


 . (3.131)

Before proving Ĥ has a non-degenerate Gaussian profile, we need one extra assumption.

Transformation U between Two Phase Spaces: Suppose there is a transfor-

mation U between two phase spaces governed by the certain Hamiltonian flow. The

bi-characteristic of the beam Ûxξ is initially in the phase space P1 = {(x, ξ), x ∈ Rd, ξ ∈

Rd}, then after propagating to the surface, the bi-characteristic is in the phase space

P2 = {((t, x∗), (ω, ξ∗)), t, ω ∈ R, x∗, ξ∗ ∈ Rd−1}.

U(x, ξ) =
(
(t̂0(x, ξ), x̂∗(t̂0(x, ξ))),

(
−G

(
x̂(t̂0(x, ξ)), ξ̂(t̂0(x, ξ))

)
, ξ̂∗(t̂0(x, ξ))

))
,

(3.132)

where t̂0(x, ξ) is the hitting time defined before, and

x̂(t̂0(x, ξ)) = (x̂∗(t̂0(x, ξ)), 0) is the corresponding hitting point on the boundary.

G(x, ξ) is the associated Hamiltonian for the central ray and ξ̂∗ is the component of the

ray direction corresponding to the tangential direction of the surface {x ∈ Rd, xd = 0},
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that is

ξ̂∗(t̂0(x, ξ)) = (ξ̂1(t̂0(x, ξ)), · · · , ξ̂d−1(t̂0(x, ξ))). (3.133)

The component ξ̂d corresponding to the normal direction of the surface can be uniquely

defined by (−G, ξ̂∗) according to eikonal equation (2.6), so the degree of freedom won’t

change. We need an extra assumption about the bi-characteristic,

Assumption 3.3.1. U is invertible.

The Gaussian profile is only related to the imaginary part of the phase function, there-

fore, we first ignore the term associated with R̂ in (3.131).

Lemma 3.3.11. There exists a full-rank 2d by 2d S.P.D. matrix Ê, such that

− 1

4
||ŷ(t̂c)− x̂(t̂c)||2M̂(t̂c)

− Im(β̂)|τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ)|2 −
|∆t̂0(x, ξ; y, p)|2

4Im(β̂ + β̃)

−
[
ŷ(t̂c)− x̂(t̂c), p̂(t̂c)− ξ̂(t̂c)

]
Î

ŷ(t̂c)− x̂(t̂c)

p̂(t̂c)− ξ̂(t̂c)

 = −||(y − x, p− ξ)||2Ê . (3.134)

Proof. There are three steps to justify the non-degenerate Gaussian profile. First,

we will use some approximations to move the left-hand side of equation (3.134) to the

phase space P2, since x̂(t̂c) is not on the boundary. Second, we will prove that equation

(3.134) in the phase space P2 is non-degenerate. Finally, we will use the transformation

defined in Assumption 3.3.1 to move the left-hand side term from the phase space P2

to P1.
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Recall that t̂c = t̂0(y, p),

− 1

4
||ŷ(t̂c)− x̂(t̂c)||2M̂(t̂c)

− Im(β̂)|τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ)|2 −
|∆t̂0(x, ξ; y, p)|2

4Im(β̂ + β̃)

−
[
ŷ(t̂c)− x̂(t̂c), p̂(t̂c)− ξ̂(t̂c)

]
Î

ŷ(t̂c)− x̂(t̂c)

p̂(t̂c)− ξ̂(t̂c)


= −1

4
||ŷ(t̂0(y, p))− x̂(t̂0(x, ξ))||2M̂(t̂0(y,p))

− Im(β̂)|τ̂t(t̂0(y, p); y, p)− τ̂t(t̂0(x, ξ);x, ξ)|2

− |∆t̂0(x, ξ; y, p)|2

4Im(β̂ + β̃)
−
[
ŷ(t̂c)− x̂(t̂c), p̂(t̂c)− ξ̂(t̂c)

]
Î

ŷ(t̂c)− x̂(t̂c)

p̂(t̂c)− ξ̂(t̂c)

+O

(
1√
||p||

)

(3.135)

= −1

4
||ŷ(t̂0(y, p))− x̂(t̂0(x, ξ))||2M̂(t̂0(y,p))

− |∆t̂0(x, ξ; y, p)|2

4Im(β̂ + β̃)

− Im(β̂)|τ̂t(t̂0(y, p); y, p)− τ̂t(t̂0(x, ξ);x, ξ)|2

−
∣∣∣∣∣∣ [ŷ(t̂0(y, p))− x̂(t̂0(x, ξ))±∆t̂0v

ξ̂

||ξ̂||
, p̂(t̂0(y, p))− ξ̂(t̂0(x, ξ))

] ∣∣∣∣∣∣2
Î
+O

(
1√
||p||

)
,

(3.136)

where v in equation (3.136) is defined at ŷ(t̂0(y, p)). The first step (3.135) is due to

the following derivation. Using Corollary 3.3.3,

||ŷ(t̂c)− x̂(t̂c)||2M̂(t̂c)
= ||ŷ(t̂c)− x̂(t̂c)||2N̂ (t̂c)

+O

(
1√
|p||

)
.

Using Proposition 3.3.4,

||ŷ(t̂c)− x̂(t̂c)||2N̂ (t̂c)
= ||ŷ(t̂0(y, p))− x̂(t̂0(x, ξ))||2N̂ (t̂c)

+O

(
1√
|p||

)
,
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since ŷ(t̂0(y, p)) is on the boundary. Use Corollary 3.3.3 again,

||ŷ(t̂0(y, p))− x̂(t̂0(x, ξ))||2N̂ (t̂0(y,p))
=

||ŷ(t̂0(y, p))− x̂(t̂0(x, ξ))||2M̂(t̂0(y,p))
+O

(
1√
|p||

)
.

The second step (3.136) is due to Assumption 3.2.3 as the ray direction ξ̂ remains as

a constant near the boundary.

Now we will prove equation (3.136) is non-degenerate in P2.

If Û
y
p and Ûxξ have different hitting points ŷ(t̂c) 6= x̂(t̂0(x, ξ)), then equation (3.136) is

obviously negative. This is also true for the nonzero difference of travel time ∆t̂0 and

τ̂t(t̂0(y, p); y, p)− τ̂t(t̂0(x, ξ);x, ξ).

If we have all difference mentioned above is zero and p̂−ξ̂ is nonzero along the tangential

directions of the boundary, then equation (3.136) becomes,

||(0, p̂(t̂0(y, p))− ξ̂(t̂0(x, ξ)))||2Î = ||p̂(t̂c)− ξ̂(t̂c)||2(M̂+2Im(β̂)ζ̂ ζ̂T )−1 > 0, (3.137)

since M̂ and its pseudo-inverse M̂−1 are S.P.D. if restricted to the tangential directions

by Lemma A.0.1.

Finally, due to the existence of Û−1, we can define a non-degenerate Gaussian profile

about (x, ξ) accordingly, that is

Ê = Û−T ĈÛ−1, (3.138)
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where Ĉ makes the following term

||
[
(∆t̂0, ŷ(t̂c)− x̂(t̂0(x, ξ))), (τ̂t(t̂c; y, p)− τ̂t(t̂c; y, p), p̂(t̂c)− ξ̂(t̂0(x, ξ)))

]
||2Ĉ

equal to the equation (3.136).

Remark 3.3.1. Although the real part of the phase function in equation (3.131) is

ignored in this part of the computation, it will not affect the above computation essen-

tially, especially the existence of the Gaussian profile.

3.3.4.4 Integral about Momentum ξ and η

After justifying the existence of a non-degenerate Gaussian profile centered at (y, p),

the next question is how to calculate Ê in Lemma 3.3.11 numerically. We first define

a matrix Â(t̂c; y, p, q) depending only on fixed beam’s parameters (y, p)

Â(t̂c; y, p, q) = Î(t̂c; y, p) +


1
4M̂(t̂c) +

||p̂(t̂c)||2ede
T
d

4
(
v(ŷ(t̂c))p̂d(t̂c)

)2Im(β̂+β̃)
, 0

0, Im(β̂)v2(ŷ(t̂c))

(
p̂(t̂c)

||p̂(t̂c)||

)(
p̂(t̂c)

||p̂(t̂c)||

)T
 , (3.139)

where ed = (0, · · · , 0, 1) ∈ Rd.

Lemma 3.3.12. There exists a S.P.D. 2d by 2d matrix Â, such that

||(y − x, p− ξ)||2Ê = ||(ŷ(t̂c)− x̂(t̂c), p̂(t̂c)− ξ̂(t̂c))||2Â, (3.140)

and Â is defined in equation (3.139).

Proof. Firstly, we would like to approximate ∆t̂0(x, ξ; y, p) and τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ).
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By the definition of hitting time and Assumption 3.2.3,

0 = ŷd(t̂c)− x̂d(t̂0(x, ξ))

= ŷd(t̂c)− x̂d(t̂c)± v(ŷ(t̂c))
p̂d(t̂c)

||p̂(t̂c)||
∆t̂(x, ξ; y, p). (3.141)

Here ± is determined by the sign of the Hamiltonian. To summarize,

−|∆t̂0(x, ξ; y, p)|2

4Im(β̂ + β̃)
= −

||p̂(t̂c)||2|eTd (ŷ(t̂c)− x̂(t̂c))|2

4
(
v(ŷ(t̂c))p̂d(t̂c)

)2
Im(β̂ + β̃)

. (3.142)

Similarly,

−Im(β̂)|τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ)|2 = −Im(β̂)v2(ŷ(t̂c))
∣∣∣||p̂(t̂c)|| − ||ξ̂(t̂c)||

∣∣∣2. (3.143)

Furthermore, it can be approximated by,

−Im(β̂)|τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ)|2 ≈ −Im(β̂)v2(ŷ(t̂c))
∣∣∣ p̂(t̂c)
||p̂(t̂c)||

· (p̂− ξ̂)
∣∣∣2. (3.144)

The Lemma is proved.

The integrand (3.131) now is a quadratic term about (ŷ(t̂c) − x̂(t̂c), p̂(t̂c) − ξ̂(t̂c)).

Furthermore, we have the following proposition.

Proposition 3.3.10. There exists a linear map Ĵ (t̂c; y, p), such that

ŷ(t̂c)− x̂(t̂c)

p̂(t̂c)− ξ̂(t̂c)

 ≈ Ĵ (t̂c; y, p)

y − x

p− ξ

 . (3.145)
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Proof. See Appendix A.

Similarly, the matrix Ã(t̃c; y, p, q) and the map J̃ (t̃c; y, q) on the source side are defined

accordingly.

Now Ĥ becomes,

Ĥ(x; y, p, q) =

√√√√ (2π)d−1

det(M̂(t̂c) +
Im(β̂)

2 ζ̂ ζ̂T )∫
dξe

−||Ĵ (t̂c;y,p)(y−x,ξ−p)||2Â(t̂c;y,p,q)e
i||Ĵ ( t̂c2 ;y,p)(y−x,ξ−p)||2

R̂(t̂c;y,p) . (3.146)

Therefore, Ê under Assumption 3.2.3 is

Ê ≈ Ĵ (t̂c; y, p)
T Â(t̂c; y, p, q)Ĵ (t̂c; y, p). (3.147)

The above equation provides an efficient way to approximate Ê . Now let’s compute

the integral about ξ. We suppose the S.P.D. matrix Ê ,

Ê =

Ê11, Ê12

ÊT12, Ê22

 . (3.148)
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Now we would like to show that there’s a Gaussian profile about x centered at y,

∫
dξe

−||(y−x,p−ξ)||2
Ê

= e
−||y−x||2

Ê11e
||y−x||2

Ê12Ê
−1
22 ÊT12

∫
dξe

−||p−ξ+Ê−1
22 ÊT12(y−x)||

2
Ê22

= e
−||y−x||2

Ê11e
||y−x||2

Ê12Ê
−1
22 ÊT12

∫
dξe

−||p−ξ||2
Ê22

= e
−||y−x||2

Ê11e
||y−x||2

Ê12Ê
−1
22 ÊT12

∫
dξe

−||(0,p−ξ)||2
Ê . (3.149)

Ê11−Ê12Ê−1
22 ÊT12 is S.P.D by the fact that it is the Schur complement of Ê22 in Ê . This

displays that Ĥ contains a Gaussian profile about y − x.

Together with equation (3.147), we have

∫
dξe

−||(y−x,p−ξ)||2
Ê

= e
−||y−x||2

Ê11e
||y−x||2

Ê12Ê
−1
22 ÊT12

∫
dξe

−||Ĵ (t̂c;y,p)(0,p−ξ)||2Â .

Together with equation (3.146), we obtain a way to calculate Ĥ(x; y, p, q). The real

part of the phase function associated with R̂ will not affect the final result essentially

and it can be compensated by a constant order phase term.

Ĥ(x; y, p, q) = eiO(1)

√√√√ (2π)d−1

det(M̂(t̂c) +
Im(β̂)

2 ζ̂ ζ̂T )
e

i
4 ||y−x||

2
M̂(0)

∫
dξe

i||Ĵ (t̂c;y,p)(0,p−ξ)||2Âe
i||Ĵ ( t̂c2 ;y,p)(y−x,p−ξ)||2

R̂(t̂c;y,p) . (3.150)

Here we use 1
4M0 to approximate the Schur complement of Ê .
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Lemma 3.3.13. Ĥ can be approximated by the following equation,

Ĥ(x; y, p, q) ≈ K̂(y, p, q)e

i
4 ||y−x||

2
M̂(0) , (3.151)

where

K̂(y, p, q) =

√√√√ (2π)d−1

det(M̂(t̂c) +
Im(β̂)

2 ζ̂ ζ̂T )∫
dξe

−||Ĵ (t̂c;y,p)(0,ξ−p)||2Â(t̂c;y,p,q)e
i||Ĵ ( t̂c2 ;y,p)(0,ξ−p)||2

R̂(t̂c;y,p) . (3.152)

Similarly, H̃ can be approximated by the following equation,

Corollary 3.3.7.

H̃(x; y, p, q) ≈ K̃(y, p, q)e
i
4 ||y−x||

2
M̃(0) (3.153)

where

K̃(y, p, q) =

√√√√ (2π)d−1

det(M̃(t̃c) +
Im(β̃)

2 ζ̃ ζ̃T )∫
dηe

−||J̃ (t̃c;y,q)(0,η−q)||2Ã(t̃c;y,p,q)e
i||J̃ ( t̃c2 ;y,q)(0,η−q)||2

R̃(t̃c;y,q) . (3.154)

The real part R̂(t̂c; y, p) and R̃(t̃c; y, q) can be compensated by a constant phase term

and will not affect the result essentially.

Remark 3.3.2. In equation (3.151), we essentially approximate the Schur complement

Ê11 − Ê12Ê−1
22 ÊT12 by

M0
4 . However, it is costly to use the exact value (3.146) since
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we have to store all matrices Â(t̂c; y, p, q), Ã(t̃c; y, p, q) generated by different pairs of

{(p, q) : p + q = ξl,i} to apply the inverse Gaussian wavepacket transform (3.49). On

the other hand, the difference between equation (3.151) and equation (3.146) will be at

constant order guaranteed by Lemma 3.3.6.

To summarize, the central direction and central point of the wavepacket will not be

affected by approximation (3.151) and the width of wavepacket is at the same scale.

The exact Hessian information (3.146) can be covered but it is costly to compute.

Theorem 3.3.1.

∫
−ω2dω

∫
drds

¯̂
U
y
p (r, ω)

¯̃U
y
q (s, ω)

∫
dξdηÛxξ (r, ω)Ũ

x
η (s, ω) ≈

K(p, q, y)K̂(y, p, q)K̃(y, p, q)ei(p+q)·(y−x)e
i||y−x||2

M0/2 , (3.155)

where K(p, q, y) is defined in equation (3.118), K̂ and K̃ are defined in equation

(3.152)-(3.154). The distance between τ̂t(t̂c; y, p) and τ̃t(t̃c; y, q) is controlled by K(p, q, y).

3.4 Implementation of the Prestack Imaging Oper-

ator

By equations (3.46), (3.47) and (3.48), we conclude that the partial imaging function

Ipq(y, ω) is related to the Gaussian wavepacket transform of 2α
v2

centered at y in the
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direction p+ q.

∫
Ipq(y, ω)dω = E(p, q, y)

∫
dx

2α

v2
ei(p+q)·(y−x)e

−||y−x||2
M0/2 , (3.156)

where E(p, q, y) = K̂(y, p, q)K̃(y, p, q)K(p, q, y). The numerical scheme to calculate

E(p, q, y) is given by equation (3.118) and equations (3.152)-(3.154). Therefore, this

section will be devoted to illustrating how to compute the integral of the imaging

function Ipq(y, ω) efficiently.

∫
Ipq(y, ω)dω =

∫
dω

∫
drds ¯̃U

y
q (s, ω)

¯̂
U
y
p (r, ω)D(r, s, ω). (3.157)

We start with the integral about the wavenumber ω. Using Corollary 3.3.1,

Φ̂(r, t̂c; y, p) = τ̂t(t̂c; y, p) + ζ̂T (r − ŷ(t̂c)),

Φ̃(s, t̃c; y, q) = τ̃t(t̃c; y, q) + ζ̃T (s− ỹ(t̃c)).

By considering the terms containing ω in Ũ
y
q (s, ω) and Û

y
p (r, ω) only,

∫
dω ¯̃U

y
q (s, ω)

¯̂
U
y
p (r, ω)D(r, s, ω) =

eiO(1)
∫
D(r, s, ω)eiω(t̂c+t̃c)e−Im(β̂)|ω−Φ̂|2e−Im(β̃)|ω−Φ̃|2dω. (3.158)

Here we neglect the real part of the exponent, Re(β̂)|ω − Φ̂|2 and Re(β̃)|ω − Φ̃|2,

since they are constant order terms by Proposition 3.3.7. Consequently, they are small

compared with the term ω(t̂c + t̃c).
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The integral now can be considered as an inverse Fourier transform about wavenumber

ω,

∫
D(r, s, ω)eiω(t̂c+t̃c)e−Im(β̂)|ω−Φ̂|2e−Im(β̃)|ω−Φ̃|2dω

=

e
−Im(β̂)Im(β̃)(Φ̃−Φ̂)2

Im(β̂+β̃) eiS(t̂c+t̃c)
∫
D(r, s, ω)ei(ω−S)(t̂c+t̃c)e−Im(β̂+β̃)(ω−S)2dω,

(3.159)

where

S(r, s, t̂c, t̃c; y, p, q) =
Im(β̂)Φ̂(r, t̂c; y, p) + Im(β̃)Φ̃(s, t̃c; y, q)

Im(β̃ + β̂)
. (3.160)

The integral in equation (3.159) is indeed a convolution,

eiS(t̂c+t̃c)e
−Im(β̂)Im(β̃)(Φ̃−Φ̂)2

Im(β̂+β̃)

∫
D(r, s, ω)ei(ω−S)(t̂c+t̃c)e−Im(β̂+β̃)(ω−S)2dω

=

√
π

Im(β̂ + β̃)
eiS(t̂c+t̃c)

e
−Im(β̂)Im(β̃)(Φ̃−Φ̂)2

Im(β̂+β̃)

∫
e
− h2

4Im(β̂+β̃) eiShD(r, s, t̂c + t̃c − h)dh. (3.161)

Notice the data D in the above formula is in the time domain, which means there is no

need to apply the Fourier transform to the data at prior. Moreover, the convolution

integral is conducted in a small range, i.e. O

(
1√

|τ̂tt(t̂c;y,p)|+|τ̂tt(t̃c;y,q)|

)
.
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Naturally, use Corollary 3.3.1 and equation (3.157)

∫
Ipq(y, ω)dω =

√
π

Im(β̂ + β̃)
Â(t̂c)Ã(t̃c)

∫
drdse

−||r−ŷ(t̂c)||2M̂
2 e

−||s−ỹ(t̃c)||2M̃
2 e

−Im(β̂)Im(β̃)(Φ̂−Φ̃)2

Im(β̂+β̃) eiS(t̂c+t̃c)e−i(%̂(r)+%̃(s))

× 2π

√
1

τ̂tt(t̂c; y, p)τ̃tt(t̃c; y, q)

∫
e
− h2

4Im(β̂+β̃) eiShD(r, s, t̂c + t̃c − h)dh. (3.162)

The integral about r and s is easy due to the existence of Gaussian profiles which will

constrain the integral range. Therefore, the regular integration scheme is enough.

Here we notice that the value of the imaging function is controlled by |Φ̃ − Φ̂| ∼

|τ̃t(t̃c; y, q)− τ̂t(t̂c; y, p)|. Therefore, an efficient way is needed to avoid computing pairs

of beams with little illumination or imaging function
∫
dωIpq(y, ω) (3.162) which is

small. Therefore, we should select pairs of beams (y, p) and (y, q) such that

|Φ̂(r, t̂c)− Φ̃(s, t̃c)| ≤ 2
√

||p||+ 2
√

||q||. (3.163)

Fortunately, the time derivative of the phase function does not change along the ray,

which means we can estimate equation (3.163) without propagating beams.
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3.5 Numerical Results

3.5.1 Approximation of Beams along the surface

The numerical examples in this subsection are provided to justify the approximation

in Section 3.3.2. The following tests are done by comparing our approximation results

to the results obtained by the numerical integration method.

The velocity used here is v = 0.8 + 0.4x2 and the initial beam is initiated at the

subsurface point (0, 0.5). The initial momentum is set as 30π[cos(0.1π), sin(0.1π)] and

the initial amplitude is 1 + i.
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Figure 3.4: Numerical test for fast approximation of Gaussian beam along the surface. Left:
ω = -110 Right: ω = -100.

The blue line represents the result achieved from the numerical integration method

and the red star is the one from our fast approximation algorithm.
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3.5.2 The Correctness of Prestack Imaging Operator

We conduct the numerical test to justify Theorem 3.3.1.

We first fix a direction e and the point y so that x is acquired by moving along this

certain fixed direction, i.e. x = y + ∆he. We compare our proposed result with

the numerical integration result after removing the highly oscillated term eip·(y−x).

The initial subsurface point is the point y = (0, 0.5) and the initial ray direction is

p = (6π,−30π). Two different directions are picked here. The first one is e = (1, 1),

while the second is chosen as (1, 2). The x-axis in each plot is ∆h , y-axis in each plot

−0.05 0 0.05
3.5

4

4.5

5

5.5

dx
1

y

−0.05 0 0.05
1.5

2

2.5

3
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1

y

Figure 3.5: Constant Slowness: Theorem 3.3.1. Left: dx1 = dx2 Right: dx1 = 2dx2.

is the value of integral. As we can see in the constant slowness, the approximation

proposed in Theorem 3.3.1 has only a small amount of error.

The second velocity used for test is 1 + 0.1x2 + 0.1x1. Other setups are the same. As

we can see in Fig. 3.6, the imaging operator does not perform as well as it does in the
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Figure 3.6: General Speed: Theorem 3.3.1. Left: dx1 = dx2 Right: dx1 = 2dx2.

constant slowness. However, the central momentum is captured correctly as stated in

Remark 3.3.2.

3.5.3 Single Source Migration Test

We will recover the reflector by the single-source data trace in this section.

3.5.3.1 Example 1: Constant Background Slowness

Fig. 3.7 is the true slowness we employ, and there is a dipped layer. The source point

here is at x = (0, 0). As the Fig. 3.7 shows, the migration result shows the ability of

our algorithm to detect the correct location and dipped angle.
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Figure 3.7: Example 1: Constant Slowness with Dipped layer. Left: True Slowness Right:
Migration Result with single source trace.

3.5.3.2 Example 2: Multiple Flat Reflectors

In this numerical example, our migration algorithm is tested by two flat reflectors at

different depth, The migration result is, The red dashed line is the true value while

x
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x
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Figure 3.8: Example 2: True Slowness Model with Multiple Layers

the blue line the migration result. The deeper layer is not captured as well as the first

layer. The error here is due to the Born approximation assumption.
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Figure 3.9: Example 2: Constant Slowness with Multiple Layers. Left: Migration Result
over the Whole Space Right: Migration Result V.S. True Value at x1 = 0.

3.5.3.3 Example 3: Linear Background Slowness

To see the amplitude information, we plot the slowness at x1 = 0 and compare it with

the true value. And the red dashed line is the true value while the blue line is our

migration result.

3.5.4 Multiple Source Migration Test

We will use multiple-source data trace in this section.

3.5.4.1 Example 4: Constant Slowness with Dipped Layer

The background slowness is same as the one in Example 1. Sources are a series of

points along the surface −1
4 : 1

16 : 1
4 . This is applied to all multiple-source tests. The

dipped layer is displayed correctly in Fig. 3.12.
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Figure 3.10: Example 3: Gradient Slowness Model. Left: True Slowness, Right: Smoothed
Macro Slowness
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Figure 3.11: Example 3: Gradient Slowness Model. Left: Migration Result over the Whole
Space, Right: Migration Result V.S. True Value at x1 = 0.
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Figure 3.12: Example 4: Constant Slowness with the Dipped Layer (Multiple Sources)

3.5.4.2 Example 5: Flat Layer in Lateral Background Velocity

We add some lateral variation to the background slowness, i.e. v = 0.8+0.1 sin(0.5πy) sin(3π(x+

0.05)). The reflector is a horizontal reflector.
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Figure 3.13: Example 5: Flat Layer in Lateral Background Velocity
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3.5.4.3 Example 6: Slowness with Caustics

The next two examples in the section are both using the Gaussian velocity as the

macro velocity shown in Fig. 3.14 (a). This is more complex as the caustics will show

up. As we can see in Fig. 3.14, there is a caustics around the level x2 = 0.46. Our
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Figure 3.14: Example 6: Gaussian Slowness and its ray tracing. Left: Gaussian Slowness
with Flat Reflector Right: Ray Tracing

flat reflector is below this caustics at x2 = 0.6. The multi-value problem caused by

caustics is resolved automatically by the Gaussian beam solution in Fig. 3.15.

3.5.4.4 Example 7: Polluted Trace Data

In the end, we would like to test our inversion process using the polluted data. We

add 5% Gaussian noise into the synthetic data. See Fig. 3.16 for more details. The

red dot line is the trace with extra Gaussian error, while the blue line is the original

trace.
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Figure 3.15: Example 6: Migration Result in the Gaussian Slowness with Caustics (Multiple
Sources)
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Figure 3.16: Example 7: True Trace V.S. Trace with Gaussian Error

The migration result is displayed in Fig. 3.17. There is no much difference in resulting

images, especially around the reflector. To see more details, we compare two results at

x2 = 0.65 in Fig. 3.18, The red dot line comes from the non-polluted data while the

blue line is from the polluted boundary data.
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Figure 3.17: Example 7: Gaussian Slowness with polluted trace. Left: Migration result
from Non-polluted Data; Right: Migration result from Polluted data
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Figure 3.18: Example 7: Gaussian Slowness with polluted trace.Two Migration Results at
x2 = 0.65
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Chapter 4

Fast Multiscale Gaussian Beam

Method for Elastic Wave Equations

in Bounded Domains

4.1 Asymptotic Method for the Elastic Wave equa-

tion

The problem considered in this paper is the initial-boundary value problem of the

elastic wave equation.

0 = ρü−∇λ(∇ · u)−∇µ · (∇u+∇uT )− (λ+ µ)∇(∇ · u)− µ∆u, (4.1)

where the parameters λ and µ are known as the Lame parameters.

u̇ =
∂u

∂t
; ü =

∂2u

∂t2
(4.2)
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and this notation is applied to all functions. They are assumed to be smooth, positive

and bounded away from zero. The initial condition is defined as the following,

u(x, 0) = f; ut(x, 0) = g, (4.3)

where the functions f and g are compactly supported vector-valued functions in the

space L2(R
d). We are looking for the asymptotic solution for the elastic wave equation

(4.1) with two different types of boundary conditions, the periodic boundary condition

and the homogeneous Dirichlet boundary condition, i.e.

u(x, t)

∣∣∣∣∣
∂Ω×[0,T ]

= 0. (4.4)

4.2 The Asymptotic Ansatz Solution to the Elastic

Wave

We firstly derive the eikonal and the transport equation for the elastic wave equation.

Same as the Geometrical-optics form, we consider the solution as the following series

expansion,

u(x, t) = eiωτ(t,x)
∞∑
n=0

A(n)(t,x)(iω)−n, (4.5)

where the wavenumber ω is assumed to be a large parameter relative to the elastic

moduli λ and µ’s changing rate, i.e. ωL
min(λ,µ)

>> 1, where L is the characteristic

distance defined as the scale over which the velocity changes slowly. The asymptotic

solution for equation (4.1) is defined in the sense that both the equation itself and
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initial-boundary conditions are satisfied approximately with a small error when ω is

large. To construct two equations governing the phase function τ and amplitude func-

tion A(0) respectively, we substitute the ansatz form A(0)eiωτ into equation (4.1). For

convenience, we write A(0) as A. The jth component of the elastic wave equation will

then be

O

(
1

ω

)
= eiωτ

{
λ,j(Ak,k + iωAkτ,k) + µ,k[Ak,j + Aj,k + iω(τ,jAk + Ajτ,k)]

+ (λ+ µ)[
(
Ak,k

)
,j + iω

(
(Akτ,k),j + τ,jAk,k

)
− ω2τ,jAkτ,k]

+ µ[(Aj,kk) + iω(2Aj,kτ,k + Ajτ,kk)− Ajω
2τ2,k]

+ ρAjω
2(τ̇)2 − 2iωρτ̇ Ȧj − iωρAj τ̈ − ρÄj

}
, (4.6)

here | · | denotes the Euclidean norm in Rd and

∇ =


∂
∂x1
...

∂
∂xd

 .

Other notations used frequently in this paper are · representing the inner product

between two column vectors and vT representing the transpose of vector v. Other

notations we use in the above equation (4.6) are,

τ,k = ∂τ/∂xk.

To make our derivation simpler, we let ρ = 1 without losing any generality.

97



4.2.1 P-wave and S-wave’s Eikonal Equations

To cancel out the leading term ω2 in equation (4.6), we set its coefficient to be zero,

0 = τ̇2Aj −
(
(λ+ µ)τ,jAkτ,k + µAjτ,kτ,k

)
. (4.7)

After concatenating j = 1, 2, · · · , d as a vector, we will get

(λ+ µ)∇τ∇τTA = (τ̇2 − µτ,kτ,k)A, (4.8)

so the amplitude vector A will be the eigenvector of the matrix ∇τ∇τT . Notice that

this simple matrix is rank one matrix by some linear algebra calculations, and the

eigenvector corresponding to the single nonzero eigenvalue must be parallel to the

vector ∇τP , while other two associated with the zero eigenvalues are orthogonal to

∇τS . The superscript here represents the category of their wave modes. We have

(τ̇P )2 − (λ+ 2µ)(τP,k τ
P
,k ) = 0. (4.9)

This is the eikonal equation for the P-wave whose amplitude vector AP is parallel to

the ray direction ∇τP . Another two eigenvectors are corresponding to the S-wave,

(τ̇S)2 − µ(τS,kτ
S
,k) = 0. (4.10)

whose the amplitude vector AS is perpendicular to the ray direction ∇τS .

With the eikonal equation at our disposal, we can apply the method of characteristics
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to the nonlinear eikonal equations (4.9) and (4.10). These two eikonal equations (4.9)

and (4.10) are essentially the same, consequently, we consider them in the generic

situation as a Hamilton-Jacobi equation.

τ̇P,S +GP,S(x,∇τ) = 0, (4.11)

where the Hamiltonian of the P-wave GP (x, p) = ±
√
λ+ 2µ|p| and the Hamiltonian

of the S-wave GS(x, p) = ±√
µ|p|. We consider the P-wave case for the illustration,


dx
dt = GPp (x(t), p(t)), x(0) = x0;

dp
dt = −GPx (x(t), p(t)), p(0) = p0.

(4.12)

where t is the running parameter of a bicharacteristic.

Solving this ODE system yields a bicharacteristic in the phase space

{(x(t), p(t)) : t ≥ 0}

and the associated ray γ = {x(t) : t ≥ 0}, which is its x-component. Moreover, it is

noticed that we have the equation p(t) = ∇τ(t, x(t)) along the ray γ due to the method

of characteristics.

One of the most significant difference between the Gaussian beam and other ray-ansatz

methods is that beams’ phase functions are complex-valued. To be more specific, its

second order derivative is complex-valued. To derive the dynamics of the Hessian

matrix, we first differentiate the eikonal equation (4.11) with respect to t and x near
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the ray γ:

τ̇Px +GPx + τPxxG
P
p = 0, (4.13)

τ̈P + (GPp )
T τ̇Px = 0. (4.14)

Differentiating the first equation above (4.13) with respect to x again yields

τ̇Pxx +GPxx + τPxxG
P
xp + (GPxp)

T τPxx + τPxxG
P
ppτ

p
xx + τPxxxG

P
p = 0. (4.15)

Since the equations (4.14), (4.13) and (4.15) are all valid everywhere in the phase space,

it will still be valid if we concentrate them along the ray. Let MP (t) be the Hessian of

the phase function along the ray

dMP

dt
+GPxx +MPGPxp + (GPxp)

TMP +MPGPppM
P = 0. (4.16)

And the same rule can be applied to the S-wave with GS(x, p) = ±√
µ|p|. One in-

teresting property of the Gaussian beam solution is that it will remain well-localized

throughout the propagation, which means the imaginary part of the HessianM should

always be symmetric positive definite. The following lemma [49] guarantees this prop-

erty throughout the propagation for all smooth ray trajectories,

Lemma 4.2.1. If the Hamiltonian G is smooth enough, then the Hessian M(t) along

the ray path γ has a positive-definite imaginary part, provided that it initially does.

Accordingly, the Hessian of beam ansatz’s phase functions is well-defined at all points

even the caustics.
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4.2.2 Transport Equation Governing P-wave’s Amplitude Vec-

tors

Setting the coefficient of O(ω) term in equation (4.6) equal to zero will yield the

transport equation about the amplitude vector A. We first see the jth component,

0 = (2Ȧj τ̇ + τ̈Aj)− λ,j(Akτ,k)− µ,k(τ,jAk + Ajτ,k)

− (λ+ µ)
(
(Akτ,k),j + Ak,kτ,j

)
− µ(2Aj,kτ,k + Ajτ,kk). (4.17)

Although it is complex at first glance, especially compared with the transport equation

of the scalar wave equation, the complexity can be reduced by properties of the P-wave

and S-wave.

We start with deriving the amplitude vectorAP for the P-wave, which is parallel to the

ray direction ∇τP . Therefore, the P-wave’s amplitude can be separated as A = a∇τP .

To make derivation more readable, we write τP as τ in this part. We will yield the jth

component by inserting A = a∇τ into equation (4.17)

0 = (2ȧτ,j τ̇ + 2aτ̇ τ̇,j + aτ̈τ,j)− λ,jaτ
2
,k − 2a(µ,kτ,k)τ,j

− (λ+ µ)
(
τ,ja,kτ,k + aτ,jτ,kk + a,jτ

2
,k + 2aτ,kτ,kj

)
− µ

(
aτ,jτ,kk + 2τ,ja,kτ,k + 2aτ,kτ,kj

)
.
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Then we multiply the above equation with τ,j and then sum over j,

(2ȧτ̇ + aτ̈)τ2,k + aτ̇ |∇τ |2t = a|∇τ |2((λ+ 2µ),kτ,k) + a(λ+ 2µ)τ2,kτ,kk

+ 2(λ+ 2µ)τ2,k(τ,ka,k) + 2a(λ+ 2µ)(τ,jτ,jkτ,k).

The term aτ̇ |∇τ |2t on the left hand side of the above equation is equal to

aτ̇ |∇τ |2t = 2aτ̇(τ,k τ̇,k)

= aτ,k(τ̇)
2
,k

= aτ,k((λ+ 2µ)|∇τ |2),k

= a|∇τ |2τ,k (λ+ 2µ),k + 2a(λ+ 2µ)τ,jτ,jkτ,k, (4.18)

since we are talking about the P-wave mode now and its phase τ satisfies the Hamiltonian-

Jacobi equation τ̇2 − (λ + 2µ)|∇τ |2 = 0. Consequently, the transport equation about

the norm of the P-wave’s amplitude vector A is

ȧ+
(λ+ 2µ)a,kτ,k

G
+

a

2G
((λ+ 2µ)trace(M)− τ̈) = 0. (4.19)

Notice the second order derivatives of the phase function τ is involved, and the trans-

port equation will be undefined if the phase function is not smooth. Lemma 4.2.1

guarantees a well-defined transport equation, while the classical Geometrical-Optical

ansatz fails at the caustics region. Following [48], the ODE about the norm of ampli-
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tude can be added into the P-wave’s dynamics by using equation (4.19) and dx
dt = Gp,

da(t, x(t))

dt
+

a

2G
((λ+ 2µ)trace(M)−Gx ·Gp −GTpMGp) = 0. (4.20)

4.2.3 Transport Equation Governing S-wave’s Amplitude Vec-

tors

Now let’s see the S-wave’s case. We abbreviate τS as τ until the end of this section.

Again, we first separate the amplitude vector as AS = aD, where D is a vector which

is orthogonal to the ray direction ∇τS and its norm is fixed to be a constant. After

substituting A = aD into equation (4.17), we will have the following equation for the

amplitude’s jth component,

0 = 2(ȧDj + aḊj)τ̇ + aτ̈Dj − a(µ,kDk)τ,j − a(µ,kτ,k)Dj

− (λ+ µ)((aD)k,kτ,j)− 2µ(aDj),kτ,k − µaDjτ,kk, (4.21)

for j = 1, 2, 3. After multiplying Dj with the above equation (4.21), we sum over the

index j.

(
aµ,kτ,k + aµτ,kk + 2µa,kτ,k

)
|D|2+2µaτ,k|D|2,k = aτ̈ |D|2+2ȧτ̇ |D|2+aτ̇ ˙|D|2, (4.22)

since D is orthogonal to ∇τ . The last term in the above equation is zero as the norm

of D is fixed, we have

(∇τ · ∇)|D|2 = 0. (4.23)

103



Therefore, the above equation can be simplified as,

aµ,kτ,k + aµτ,kk + 2µa,kτ,k = 2ȧτ̇ + aτ̈ . (4.24)

We fix the norm of D to be one for convenience and the above equation (4.24) provides

the way to calculate the amplitude’s norm a. It is not the same equation as the

transport equation in the scalar wave equation. To yield the same equation, we divide

√
µ on both sides of equation (4.24),

2ȧτ̇ + aτ̈
√
µ

=
a

µ
µ,kτ,k + a

√
µτ,kk + 2

√
µa,kτ,k

= 2τ,k(
√
µa),k + (

√
µa)τ,kk

If we set ã =
√
µa as new amplitude, then

2 ˙̃aτ̇ + ãτ̈ = µ(2τ,kã,k + ãτ,kk) (4.25)

After yielding the same transport equation, we can obtain the same ODE as the P-wave

(4.20).

Unlike the P-wave, we still need one more equation in the S-wave’s ray system to

describe the amplitude vector AS ’s direction D. To obtain the equation about the

amplitude direction D, we would like to plug equation (4.24) into equation (4.21) and

the coeeficients in front of the direction D is zeros suggested by equation (4.24),

2aτ̇Ḋj − 2µa(Dj,iτ,i) = τ,j
(
aµ,iDi + (λ+ µ)(aD)k,k

)
(4.26)
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The left hand side of equation (4.26) is equal to the term
dDj(t,x(t))

dt , since

τ̇
dDj
dt

= τ̇ Ḋj + τ̇Dj,i
dxi
dt

= τ̇ Ḋj −G(x(t), p(t))DTGp(x(t), p(t))

= τ̇ Ḋj − µDj,iτ,i(t, x(t)) (4.27)

We know that the left hand side of equation (4.26) is 2aτ̇
dDj
dt , and the right hand side

of equation (4.26) is parallel to ∇τ . Therefore, dDdt is parallel to ∇τ . Together with

the fact that the amplitude’s direction D is always perpendicular to the ray direction

p(t) = ∇τ(t, x(t)),

0 =
dDkpk(t)

dt

0 =
dDk
dt

pk(t) +
dpk(t)

dt
Dk

dDk
dt

= −
(
dpj(t)

dt
Dj

)
pk(t)

|p(t)|2
(4.28)

4.2.4 Single Beam Solution for P and S-wave

To summarize the ODE dynamics generated by the method of characteristics, we have

dx

dt
= Gp(x(t),p(t)), x(0) = x0

dp

dt
= −Gx(x(t),p(t)), p(0) = p0

dM

dt
= −(Gxp)

TM −MGpx −MGppM −Gxx, M(0) = iεI

da

dt
= − a

2G
(c2trace(M)−Gx ·Gp −GTpMGp, A(0) = A0 (4.29)

105



where the velocity term c2 = λ+2µ for the P-wave and c2 = µ for the S-wave. The term

G is the corresponding Hamiltonian. There is one extra equation about the direction

D in the S-wave’s dynamics,

dDk
dt

= −
(
dpj(t)

dt
Dj

)
pk(t)

|p(t)|2
, D(0) = D0.

The initial condition of the system above will be given by the Multiscale Gaussian

Wavepacket transform, which will be specified in the later section. Now the way of

propagating the phase functions τP,S and the amplitude vectors AP,S is provided, and

it allows us to finish the construction of a single-beam asymptotic solution,

ΦP (t,x) = a(t)∇τ(t,x(t))eiωτ(t,x) (4.30)

ΦS(t,x) = a(t)Deiωτ(t,x), (4.31)

and the phase function is approximated by the Taylor expansion near the central ray,

τP,S(t,x) = ∇τP,S · (x− x(t)) +
1

2
(x− x(t))TMP,S(t)(x− x(t))

= p(t) · (x− x(t)) +
1

2
(x− x(t))TMP,S(t)(x− x(t)). (4.32)

The Gaussian profile is offered by the imaginary part of the Hessian matrix M

exp
(
−ω
2
(x− x(t))T Im(M(t))(x− x(t))

)
. (4.33)

Suggested by Lemma 4.2.1, a beam ansatz will be always well localized throughout the

propagation.

106



4.3 Multiscale Gaussian Wavepacket Transform for

Elastic Waves

The initial condition of the elastic wave equation (4.3) can be any general L2 vector-

valued function, and it is not necessary to take the exact form like,

A exp

(
iω

(
p(0)T (x− x0) +

1

2
(x− x0)

TM(0)(x− x0)

))
. (4.34)

The problem here is that how to decompose any general L2 function to multiple Gaus-

sian wavepackets like the above form (4.34) efficiently and make the total number of

beams to be calculated as small as possible.

We will provide a very brief introduction of the Multiscale Gaussian Wavepacket Trans-

form [48] for the scalar functions first in this section. More details can be found in

[48]. Then its extension designed for the vector-valued initial conditions is presented

afterwards.

4.3.1 Multiscale GaussianWavepacket Transform: Vector Func-

tions

After proposing the Multiscale Gaussian Wavepacket transform for the scalar function

in Section 2.2, we would like to extend this idea to the vector-valued function f . Here

we assume that each component of the vector fj is a L2 function.
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4.3.1.1 Decomposition of the Single Wavepacket

Suppose we have already applied the wavepacket transform to each component of the

initial condition f , i.e.

f =



f1

f2

...

fd


=
∑
l,i,k

κl,i,kφl,i,k.

The idea here is to decompose each single Gaussian wavepacket into the sum of the

P-wave and the S-wave. Let the unit vector vl,i,k be
ξl,i
|ξl,i|

, then

κl,i,k =
(
κTl,i,kvl,i,k

)
vl,i,k +

(
Id − vl,i,k(vl,i,k)

T
)
κl,i,k. (4.35)

The first term on the right hand side of equation (4.35) is the P-wave component, and

the initial condition for its amplitude vector can then be written as

(
κTl,i,kvl,i,k

)
vl,i,k =

(
κTl,i,k

ξl,i

|ξl,i|2

)
ξl,i. (4.36)

To initialize the S-wave, we have to specify initial directions which are orthogonal to

each other and all of them are supposed to be orthogonal to vl,i,k.
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Therefore, we choose the first direction D(1) as the unit vector of the first column

vector of the matrix
(
Id − vl,i,k(vl,i,k)

T
)

and apply the Gram-Schmidt process to

generate the rest D(m) for m = 2, · · · , d− 1. And we notice that every column vector

of the matrix
(
Id − vl,i,k(vl,i,k)

T
)
is orthogonal to vl,i,k, therefore, so are their linear

combinations. The corresponding amplitude norm am,

am = κTl,i,k

(
Id − vl,i,k(vl,i,k)

T
)
D(m), m = 1, 2, · · · , d− 1. (4.37)

4.3.1.2 Preprocessing the Initial Condition

Before applying the method described above, we pre-process the initial condition first.

Following the same technology employed in [47], there are supposed to be two different

branches κ+
l,i,k and κ−

l,i,k for each wavepacket corresponding to different signs of the

Hamiltonian ±c(x)|p|, where c(x) is the corresponding velocity.

To satisfy both the initial wavefield f and the initial velocity g, we define

(κ+
l,i,k + κ−

l,i,k)φl,i,k = κl,i,kφl,i,k = f . (4.38)

Taking the derivative of the wavefield about the time variable t yields

(κ−
l,i,k − κ+

l,i,k)
(
i|ξl,i|G+(x0,p0)

)
φl,i,k ≈ Ξl,i,kφl,i,k = g, (4.39)

where Ξl,i,k is the coefficients generated from decomposing the initial velocity g. Here
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the left hand side of equation (4.39) is not the complete form of the beam’s time

derivative, instead, we pick the leading order term to approximate.

After solving the coefficients κ+
l,i,k and κ−

l,i,k based on equation (4.38) and equa-

tion (4.39), we can apply the decomposition described by equations (4.35) - (4.37)

to κ+
l,i,k and κ−

l,i,k respectively. The summary of the vector-version Multiscale Gaus-

sian Wavepacket is provided below.

Algorithm 3 Discrete Vector-Valued Gaussian Wavepacket Transform

1.Call the Discrete Gaussian Wavepacket Transform for each component in the discrete signal

f and g

2. Use equations (4.38) and (4.39) to compute κ+
l,i,k and κ−

l,i,k

3. Generate P-wave with the amplitude vector

(
κ±
l,i,k ·

ξl,i

|ξl,i|2

)
ξl,i

4. Generate S-waves amD(m) by equation (4.37), for m = 1, 2, · · · , d− 1.

The above process defines the initial amplitude vectors for the P-wave and the S-wave,

and the initial value of the phase function and its derivatives are given by the Multiscale

Gaussian Wavepacket transform of the scalar form, that is

dx

dt
= Gp(x(t),p(t)), x(0) =

k

Ll

dp

dt
= −Gx(x(t),p(t)), p(0) = 2π

ξl,i
|ξl,i|

,

dM

dt
= −(Gxp)

TM −MGpx −MGppM −Gxx, M(0) = i(2π2σ2l /|ξl,i|)I.

da

dt
= − a

2G
(c2trace(M)−Gx ·Gp −GTpMGp, a(0) =

(√
π

LlN
σl

)d
.

dDj
dt

= (
dτ,k
dt

Dk)
τ,j

|∇τ |2
D(m)(0) = D(m).
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4.4 Multiscale Gaussian Beam Method for Periodic

Boundary Value Problem

In the above section, we have demonstrated the way to decompose the vector-valued

initial conditions in the L2 space. To solve the periodic boundary problem,each param-

eters and solutions are assumed to be periodic functions. Meanwhile, the central ray

in the periodic boundary problem will be smooth along the propagation in the sense

of modules.

The principle shown in Figure 4.1 will be employed to solve the periodic boundary value

problem. The red dashed line represents the wavepacket leaving the domain [0, 0.5], as

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4
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0.9

1

x
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Figure 4.1: Periodic Boundary Problem: The Case Wavepacket leaving the Boundary.

the left half goes beyond the domain, while the right half still shows up. The missing

left half of the beam solution will enter from the other side with the same shape, which

is the blue line in the graph suggested by the periodic boundary condition. The cubic

region [0, 0.5]3 is chosen to test the correctness of our algorithm. We show numerical

results in Section 4.8.
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4.5 Multiscale Gaussian beam method for Homo-

geneous Dirichlet Boundary Condition

In this section, we would like to explore the solution to the homogeneous Dirichlet

Boundary condition. From now on, we use the 3-D space {x = (x, y, z) : x, y, z ∈ R}

as our model.

The wavefield on the boundary is assumed to be zero in this section. When the

reflection happens, the sum of all wavefields at time tr and the central point x(tr)

of the ray should vanish, i.e. u(tr,x(tr)) = 0. The time when the central point x(tr)

of the ray is on the boundary is defined as the reflection time. From now on, all

equations below in this section are defined on the point (tr,x(tr)), if not specified.

The Hamiltonian used in this section is assumed to be positive G = c(x)|p|, and the

negative Hamiltonian will be treated similarly.

4.5.1 P-wave Reflecting Beams: Ray Direction

When the P-wave reflection happens, the total wavefield is made up by three different

sources, the original P-wave Gaussian beam, the new P-wave beam after the reflection

(PP-wave) and the new S-wave beam (PS-wave). At the reflection point x(tr),

−aP eiτ
P
∇τP = aPP eiτ

PP
∇τPP + aPSeiτ

PS
DPS . (4.40)

Both P and S-wave will be generated after reflection.

All phase functions should have the same value at the reflection point, τP = τPP =
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τPS . Otherwise, if we change the value of large wavenumber |ξl,i|, the homogeneous

boundary condition will be violated.

The principle to derive new phase functions τPP and τPS is to take advantage of the

continuity conditions, i.e. the continuity of the tangential components of the first order

derivatives of τ , so

τPy = τPPy = τPSy ,

τPz = τPPz = τPSz , (4.41)

where we assume the reflection happens along the surface {x = (x, y, z) : x = 0}.

Besides the spatial variables, the partial derivative of the phase function with respect

to the time variable t should also follow,

τ̇P = τ̇PP = τ̇PS

⇒ cP |∇τP | = cS |∇τPS |,

cP |∇τP | = cP |∇τPP |. (4.42)

where cP =
√
λ+ 2µ is the velocity of the P-wave and cS =

√
µ is the velocity of the

S-wave. The partial derivatives along the tangential directions of the boundary can be

obtained directly from equation (4.41). To obtain the momentum along the reflection

direction or the normal direction of the boundary, one needs to use equations (4.42)

and (4.41) collectively.

τPSx = −sign(τPx )

√(
cP

cS

)2

|∇τP |2 − (τPSy )2 − (τPSz )2. (4.43)
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Here we focus our derivation on the reflection from P-wave to S-wave, while the rule

of the reflection between the same mode can follow the same way, so we skip it here.

The only ambiguity left here is the case when a beam hits the boundary at a corner

since it causes diffraction and the above derivation does not apply any more. Here

we simply ignore the situation when a beam hits a corner of the domain since the

Gaussian method is asymptotic. The numerical accuracy will not be degraded without

those beams as those diffractions have exponentially small effects.

4.5.2 P-wave Reflecting Beams: The Hessian of the Phase

To illustrate the derivation of the second order derivative terms, we pick three entries

among six distinct entries in the Hessian for explanation, τyy, τxy and τxx, since all

other entries can be classified into one of these three types. Again, the reflection is

assumed to happen along the surface {x = (x, y, z) : x = 0} and all terms without

arguments are defined at the reflection point.

To start with the first type τyy, which is tangential component

τPyy = τPSyy = τPPyy . (4.44)

τzz and τyz will also stay the same.

To derive the second type of terms τPSxy , we use the partial derivatives about the time
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variable t,

τ̇Py = cPy |∇τP |+ cP
(∇τPy )T∇τP

|∇τP |
(4.45)

τ̇PSy = cSy |∇τPS |+ cS
(∇τPSy )T∇τPS

|∇τPS |
, (4.46)

The notation used here is τ̇y =
∂2τ
∂t∂y . We have

τ̇Py = τ̇PSy , (4.47)

due to the continuity of the tangential and time component. Now substitute equation

(4.45) and equation (4.46) into equation (4.47),

cPy |∇τP |+ cP
(∇τPy )T∇τP

|∇τP |
= cSy |∇τPS |+ cS

(∇τPSy )T∇τPS

|∇τPS |

(∇τPSy )T∇τPS =
|∇τPS |
cS

(
cPy |∇τP |+ cP

(∇τPy )T∇τP

|∇τP |
− cSy |∇τPS |

)

τPSxy =
|∇τPS |
cSτPSx

(
cPy |∇τP |+ cP

∇τPy · ∇τP

|∇τP |
− cSy |∇τPS |

)

− 1

τPSx
(τPSy τPSyy + τPSz τPSyz ). (4.48)

To obtain the last type of the term τPSxx , we need to derive the formula of τPStx first.

τ̇P = cP |∇τP | ⇒ τ̈P = cP
(∇τ̇P )T∇τP

|∇τP |
, (4.49)

τ̇PS = cS |∇τPS | ⇒ τ̈PS = cS
(∇τ̇PS)T∇τPS

|∇τPS |
. (4.50)
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We then have the following equation from equation (4.50) and equation (4.49),

cP
(∇τ̇P )T∇τP

|∇τP |
= cS

(∇τ̇PS)T∇τPS

|∇τPS |

(∇τ̇PS)T∇τPS =
|∇τPS |
cS

cP
(∇τ̇P )T∇τP

|∇τP |

τ̇PSx =
1

τPSx

(
|∇τPS |
cS

cP
(∇τ̇P )T∇τP

|∇τP |
− τ̇PSy τPSy − τ̇PSz τPSz

)
(4.51)

With the formula about the term τ̇PSx given above, the term τPSxx can be obtained by

solving the following equation,

τ̇PS = cS |∇τPS | ⇒ τ̇PSx = cSx |∇τPS |+ cS
(∇τPSx )T∇τPS

|∇τPS |
. (4.52)

To remark, τPSx will not be zero as we assumed our initial conditions are compactly

supported.

4.5.3 P-wave Reflecting Beams: Amplitude Vector

We have so far already derived the initial condition of all terms involved with the

phase function for our new ODE dynamic system after P-wave reflection. Since the

phase function itself does not change after reflection in the center of the beam, we will

have the following equation about the amplitude to satisfy the homogeneous boundary

condition at the reflection point x(tr),

−aP∇τP = aPP∇τPP + aPSDPS . (4.53)
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We know that the PS-wave’s amplitude direction DPS is orthogonal to its ray direction

∇τPS by the definition and with unit norm by our restriction. Consequently, the

following equation can be obtained if we project both sides of equation (4.53) to the

vector ∇τPS at the same time.

−aP (∇τP )T∇τPS = aPP (∇τPP )T∇τPS ,

aPP = −aP (∇τP )T∇τPS

(∇τPP )T∇τPS
. (4.54)

Like the initial condition, aPSDPS is the summation of two S-waves.

aPSDPS =
∑
i

αPSi D(i). (4.55)

Similar to the initial condition, we pick the first direction D(1) to be the first column

vector of the matrix I3 − vvT and v = ∇τPS
|∇τPS |

. Then, the second vector D2 will be

D(2) = D(1) × v, where × represents the cross product between two vectors. After

normalizing each direction, we can project the residual −aP∇τP − aPP∇τPP to each

direction to obtain the amplitude αPSi .

4.5.4 S-wave Reflecting Beams: the Phase term

Similar to the P-wave reflection, we have the following equation to satisfy the homo-

geneous boundary condition for the S-wave wavepacket at the reflection point x(tr).

−aSeiτ
S
DS = aSP eiτ

SP
∇τSP + aSSeiτ

SS
DSS . (4.56)
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After taking first glance of the above equation, the S-wave reflection dynamics seems

to be the same as the P-wave reflection developed in the last section. However, we

will find that there will be some significant difference between the S-wave reflection

and the P-wave reflection. To begin with, let us still use the case hitting the surface

{x = (x, y, z) : x = 0} as an example,

τSy = τSSy = τSPy , (4.57)

τSz = τSSz = τSPz , (4.58)

τSt = τSSt = τSPt , (4.59)

⇒ cS |∇τS | = cP |∇τSP |. (4.60)

With all these equations combined, we will get

τSPx = −sign(τSx )

√(
cS |∇τS |
cP

)2

− (τSy )
2 − (τSz )

2, (4.61)

and the S-wave’s velocity cS =
√
µ is less than the P-wave’s cP =

√
λ+ 2µ. This

leads to the possibility that the part inside the square root in equation (4.61) will be

negative, or equivalently, τSPx can be in general a pure imaginary number. It will be

a disaster, since there will be some exponentially increasing wave on one side of the

boundary.

Let’s consider the regular situation first, in which case, equation (4.61) is a real number.

It is same as the one employed in the P-wave reflection as illustrated above, so we skip

it here.
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The second case is when the term τSPx is a pure imaginary number, i.e.

∇τsp =


i

√
−
(
cS |∇τS |
cP

)2

+ (τSy )
2 + (τSz )

2

τSy

τSz


. (4.62)

This phenomenon is called the evanescent wave and the energy will fade away quickly

around the boundary in this case. Therefore, there is no need to derive its Hessian due

to its small energy.

4.5.5 S-wave Reflecting Beams: the Amplitude Vector

The evanescent wave fades away quickly, however, we will still include SP-wave’s am-

plitude vector in our derivation so as to make the derivation easier. Moreover, we need

the nonzero amplitude vector ASP to make the homogeneous boundary assumption

true at the reflection point x(tr). To summarize,

−aSDS = aSP (Re(∇τsp) + iIm(∇τsp)) + aSSDSS . (4.63)

The way we get the amplitude vector ASP is still from the same idea by using the fact

that the SS wave’s amplitude direction DSS is orthogonal to its ray direction v,

(
Re(ASP )Re(∇τSP )− Im(ASP )Im(∇τSP )

)
· v = −Re(aS)DS · v; (4.64)(

Re(ASP )Im(∇τSP ) + Im(ASP )Re(∇τSP )
)
· v = −Im(aS)DS · v. (4.65)
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The amplitude of the SP-wave’s amplitude ASP can be obtained by solving the above

system. Consequently, the residual −aSDS−aSP∇τSP is now well defined. Following

the same process defined in the PS wave case, we can set up the amplitudes and

directions easily for SS-wave.

Notice that the ray after reflection is no longer smooth, which means that Lemma

4.2.1 is not applicable when reflections happen. Naturally, one needs to show that

the imaginary part of the Hessian after reflections defined above will still be positive

definite, especially for the PS wave and the SP wave case. In [4], authors have already

proved this is true for the PP wave and the SS wave, i.e. the conversion between same

wave modes. The proof about the conversion between different wave modes is provided

in Appendix B.

4.5.6 Method of Images for Boundary Conditions

In [4], authors have proposed a method to tackle the problem caused by partially

reflected beams. The partial reflection problem means the frontier part of a beam is

needed to be reflected back even when its central ray has not hit the boundary yet and

consequently the reflection dynamics has not been called. This is due to the fact that

beams have nonzero width and illustrated in the following graph.

Therefore, some modifications should be added to these partial reflection cases so that

the homogeneous boundary condition is always satisfied as well as our wavefield remains

to be continuous. Our strategy presented here is that the outer part is considered to

be reflected back, which is carried by some artificial beams. So we essentially apply

the odd extension to those beams, like what Figure 4.3 shows. The trajectory of the
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Figure 4.2: Partially Reflected beams
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Figure 4.3: Partially Reflected Beams with Odd Extension

blue dashed wavepacket in the graph is completely determined by its associates, the

red solid wavepacket in the graph. It implies that we don’t use any extra assumption

of the velocity outside the domain. The blue dashed wavepacket only serves as a

supplementary beam to satisfy the vanishing boundary condition.
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4.6 Stationary Phase Analysis of Beams

To reinitialize or sharpen the single Gaussian beam ansatz, we need to apply some

stationary phase analysis to the single beam. So we first list some lemmas and com-

putations here which are needed to implement the reinitialization process in the next

section.

For any function u in L2(Rd), there is a phase space decomposition method such that,

u(x) =
( ω
2π

)3d/2 ∫
R3d

2d/2eiω(p(x−x
′
)−p(x̃−x

′
))e−

ω|x−x
′
|2

2 e−
ω|x̃−x

′
|2

2 u(x̃)dx̃dpdx
′
.

(4.66)

Here x, x̃ and x
′
are points in the spatial space Rd and p is the dual momentum

variable in the frequency space. ω is a fixed parameter determining the size of Gaussian

window functions.Here we would like to explore how to apply representation (4.66) to

Gaussian beams without considering its amplitude’s direction. Using P-wave as an

example, consider ΦP (t,x) = a(t)eiτ(t,x) instead of a(t)eiτ(t,x)p(t). Moreover, all

beam functions considered here are treated as single-variable functions by assuming a

principal variable while other variables are fixed.

In all the following derivations, the principal variable is assumed to be the variable y,

while other variables x and z are fixed.
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4.6.1 Stationary Phase Approximation with Respect to Spa-

tial Variables

The Gaussian beams u with y as the principal variable considered in this section are

in the following form,

u(y;x, z, t) = A(x, z, t)eiΦ(y−y0)e−
1
2Im(τyy)(y−y∗0)

2
, (4.67)

where
(
x0, y0, z0

)
is the central point of the beam ansatz. All functions below are

defined at this point if not specified, and

Φ(y−y0) = τy(y−y0)+
Re(τyy)(y − y0)

2

2
+Re(τxy)(y−y0)(x−x0)+Re(τzy)(y−y0)(z−z0).

(4.68)

τ is the phase function. To define the scalar y∗0, we have the following equation where

all second order derivative terms are imaginary part only,

(
x− x0, y − y0, z − z0

)

τxx τxy τxz

τxy τyy τyz

τxz τzy τzz




x− x0

y − y0

z − z0


= τyy(y − y0)

2 + 2(τxy(x− x0) + τxz(z − z0))(y − y0) +B(x, z)

= τyy

(
y − y0 +

τxy(x− x0) + τxz(z − z0)

τyy

)2

+ B̃(x, z). (4.69)

The complete square term in equation (4.69) is defined as (y − y∗0)
2 and B̃(x, z) is a

constant with respect to y.
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To make the expression clear, we denote R = Re(τyy) and I = Im(τyy) throughout

this section. Applying decomposition (4.66) to u(y;x, z, t), we have

u(y;x, z, t) = A(x, z, t)
( ω
2π

)3/2 ∫
R2

√
2eiωp(y−y

′
)e−

ω
2 |y−y

′
|2ψ(p, y

′
)dpdy

′
, (4.70)

and

ψ(p, y
′
) = eiB̃(x,z)

∫
e−iωp(ỹ−y

′
)e−

ω
2 |ỹ−y

′
|2eiΦ(ỹ−y0)e−

I
2 |ỹ−y

∗
0 |
2
dỹ. (4.71)

We will apply the stationary phase approximation described in the following lemma to

calculate ψ(p, y
′
).

Lemma 4.6.1. We consider the behavior of I(ω) =
∫ b
a f(t)e

iωg(t)dt, where f and g are

smooth enough to admit Taylor approximation near some appropriate points in [a, b],

and g is real-valued. Suppose there is some point c0 ∈ [a, b] and g
′
(t) 6= 0 everywhere

else in the closed interval [a, b]. Moreover, g
′′
(c0) 6= 0. When ω >> 1, we have

I(ω) =

∫ b

a
f(t)eiωg(t)dt = f(c0)e

iωg(c0)eiπδ/4
√

2π

ω|g′′(c0)|
+O

(
1

ω

)
, (4.72)

where δ is the sign of g
′′
(c0).

To use Lemma 4.6.1, we first substitute y
′
= y0 +ma into u(y;x, z, t), and the value

of a and ω will be defined later. By equation (4.71), we have

e−iB̃(x,z)ψ(p, y0 +ma) =

∫
e
iω

(
Φ(ỹ−y0)

ω −p(ỹ−y0−ma)
)
e−

ω
2 |ỹ−y0−ma|

2
e−

I
2 |ỹ−y

∗
0 |
2
dỹ.

(4.73)
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To compute the critical point ỹ0 of the phase term
Φ(ỹ−y0)

ω − p(ỹ− y0−ma), we have

0 =
Φ
′
(ỹ − y0)

ω
− p,

0 =
R(ỹ − y0) +Re(τxy)(x− x0) +Re(τyz)(z − z0)

ω
+
τy
ω

− p. (4.74)

that is

ỹ0 = y0 +
ωp− τy −Re(τxy)(x− x0)−Re(τyz)(z − z0)

R
. (4.75)

We denote

E(x, z) =
−Re(τxy)(x− x0)−Re(τyz)(z − z0)

R
, (4.76)

ỹ0 − y0 =
ωp− τy
R

+ E.

Notice that E(x, z) is independent of the variable y, together with Lemma 4.6.1, the

term ψ(p, y0 +ma) is equal to

e−iB̃(x,z)ψ(p, y0 +ma) = e
iω
(Φ(ωp−τyR +E)

ω −p(ωp−τyR +E−ma)
)
e
−ω2 |

ωp−τy
R +E−ma|2

× e
−I2 |

ωp−τy
R +E−y∗0+y0|

2
e
iπ4

R
|R|

√
2π

|R|
.

Substitute the expression of the term Φ into the above equation,

ψ(p, y0 +ma) = eiB̃e
iπ4

R
|R|

√
2π

|R|
e
−I2 |

ωp−τy
R −y∗0+y0+E|2

e
−ω2 |

ωp−τy
R +E−ma|2

× e
iω
(τy
ω

(ωp−τy
R +E

)
−(R·Eω )

(ωp−τy
R +E

)
−p
(ωp−τy

R +E−ma
)
+ R
2ω (

ωp−τy
R +E)2

)
. (4.77)
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We insert equation (4.77) into equation (4.70),

u(y;x, z, t) = aA(x, z, t)

√( ω
2π

)3 ∫ √
2eiωp(y−y0−ma)e−

ω
2 |y−y0−ma|

2
ψ(p, y0 +ma)dpdm

≈ 2Aa

√( ω
2π

)3√ π

|R|
e
iπ4

R
|R| eiB̃

∫
eiωp(y−y0−ma)e−

ω
2 |y−y0−ma|

2
e
−I2 |

ωp−τy
R −y∗0+y0+E|2

× e
−ω2 |

ωp−τy
R +E−ma|2

e
iω
(τy
ω

(ωp−τy
R +E

)
−R·Eω

(ωp−τy
R +E

)
−p
(ωp−τy

R +E−ma
))

× e
iR2

(ωp−τy
R +E

)2
dpdm. (4.78)

By applying the stationary phase approximation to the variable ỹ, we reduce the triple

integral (4.66) to the double integral (4.78).

Notice that in Lemma 4.6.1, the assumption R 6= 0 is required. In general, it is not

true. However, if R = 0, then the integral about the function ψ(p, y
′
) is nothing but

the Fourier transform of a Gaussian function about y, so we omit it here.

4.6.2 Stationary Phase Approximation with Respect to Mo-

mentum Variables

Starting from the double integral (4.78), we would like to apply the stationary phase

approximation again. However, this time the variable we apply over is the momentum
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variable p.

u(y;x, z, t) = A(x, z, t)eiB̃
√( ω

2π

)3√ 4π

|R|
e
iπ4

R
|R|a

∫
e−

ω
2 |y−y0−ma|

2
dm

×
∫
eiωp(y−y0−ma)e−

I
2 |
ωp−τy
R −y∗0+y0+E|2

e
−ω2 |

ωp−τy
R +E−ma|2

× e
iω

(
τy
ω

(ωp−τy
R +E

)
−R·Eω

(ωp−τy
R +E

)
−p
(ωp−τy

R +E−ma
)
+ R
2ω

(ωp−τy
R +E

)2)
dp.

(4.79)

For the inner integral of equation (4.79), the phase function g(p) is

g(p) = p(y − y0 −ma) +
τy
ω

(
ωp− τy
R

+ E

)
− R · E

ω

(
E +

ωp− τy
R

)
− p

(
E −ma+

ωp− τy
R

)
+

R

2ω

(
ωp− τy
R

+ E

)2

,

and the smooth function f(p) is,

f(p) = e
−ω2 |

ωp−τy
R +E−ma|2

e
−I2 |

ωp−τy
R −y∗0+y0+E|2

. (4.80)

To compute the critical point,

g
′
(p) = y−y0−ma+

τy
R

−E−
(
E −ma+

ωp− τy
R

)
− pω

R
+

(
ωp− τy
R

+ E

)
, (4.81)
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then the critical point p0 is

ωp

R
= y − y0 − E +

τy
R

⇒ p0 =
R

ω

(
y − y0 − E

)
+
τy
ω

⇒
ωp0 − τy

R
= y − y0 − E. (4.82)

The second order derivative of the phase function g at the critical point p0 is

g
′′
(p0) = −ω

R
. (4.83)

So the approximation of the inner integral of equation (4.79) is

∫
eiωp(y−y0−ma)e−

I
2 |
ωp−τy
R −y∗0+y0+E|2

e
−ω2 |

ωp−τy
R +E−ma|2

× e
iω

(
τy
ω

(ωp−τy
R +E

)
−R·Eω

(ωp−τy
R +E

)
−p
(ωp−τy

R +E−ma
)
+ R
2ω

(ωp−τy
R +E

)2)
dp

=√
πR

ω2
e
−i πR

4|R| eiωp0(y−y0−ma)e−
I
2 |y−y

∗
0 |
2
e−

ω
2 |y−y0−ma|

2

× e
iω

(
(y−y0)

(
τy−R·E

ω

))
e
iω
(
−p0(y−y0−ma)+

R
2ω (y−y0)

2
)
.

We summarize the stationary analysis conducted in this section in the following lemma,

Lemma 4.6.2. Suppose the principal variable selected for the function u(y;x, z, t) is y

u(y;x, z, t) = A(x, z, t)eiΦ(y−y0)e−
1
2Im(τyy)(y−y∗0)

2
, (4.84)
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and R = Re(τyy) is nonzero, then the following decomposition can be obtained,

u(y;x, z, t) = aA(x, z, t)eiB̃(x,z)

√
ω

2π∫
e−ω|y−y0−ma|

2
e−

I
2 |y−y

∗
0 |
2
eiτ̃y(y−y0)ei

R
2 (y−y0)2dm+O

(
1

ω

)
(4.85)

where τ̃y = τy −R · E and

R · E = −Re(τxy)(x− x0)−Re(τyz)(z − z0). (4.86)

The fixed parameter a is defined as a = 1√
I
. The value of ω will be specified later, but

its order is O(I).

4.7 Sharpening Beams by Reinitialization

In this section, we would like to propose a new reinitialization strategy based on Lemma

4.6.2 from Section 4.6. Again, we base our proof on the assumption that the variable

y is the principal variable. We first illustrate the reason why proposing a new reini-

tialization strategy is necessary.

4.7.1 The First Motivation for Developing a New Reinitial-

ization Strategy

It is necessary to add a reinitialization process into the propagation since the width

of a beam will increase exponentially in some generic medium [48]. We use the linear

velocity and 1-D problem for explanation. Suppose c(x) = α + βx where α and β are
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constants, then the Riccati equation about the Hessian M will be

dM

dt
+ 2Mβ = 0, M(0) = iε. (4.87)

Solving this simple linear ODE, we have

M(t) = iεe−2βt. (4.88)

If the slope β > 0, then the width of the beam solution will be exponentially increasing.

As we can see, the beam solution will lose its accuracy in the simple linear velocity,

and each smooth velocity can be approximated by a linear function locally, therefore,

the same phenomenon can be expected in other situations.

4.7.2 The Second Motivation for Developing a New Reinitial-

ization Strategy

The second motivation is to resolve the problem caused by reflection beams. The idea

in Section 4.5 we have used to derive the reflection formula is theoretically correct,

however, it will cause some problems when implementing it numerically, especially in

the S-wave reflection case. The difference is that the SP-wave is more likely to be a

grazing beam.

To see this, we employ the 2D model for the illustration and let’s suppose the ray

hitting the line {x = (x, y) : x = 0}. Then, according to the analysis in Section 4.5,
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the y-component of the ray direction τy does not change. For the PS reflection,

(cSτPSx )2 = (cP |τPx |)2 +
(
(cP )2 − (cS)2

)
τ2y

(τPSx )2 =
(λ+ 2µ)|τPx |2 + (λ+ µ)τ2y

(cS)2
, (4.89)

while the SP reflection follows,

(τSPx )2 =
µ|τSx |2 − (λ+ µ)τ2y

(cP )2
. (4.90)

We then compute the angle θPS and θSP between the ray direction and the reflecting

boundary {x = (x, y) : x = 0},

tan(θPS) =
τPSx
τPSy

=

√√√√(λ+ 2µ)|τPx |2 + (λ+ µ)τ2y

(cS)2τ2y

=

√
λ+ µ

µ
+

(λ+ 2µ)|τPx |2
µτ2y

. (4.91)

Similarly,

tan(θSP ) =

√
µ|τSx |2

(λ+ 2µ)τ2y
− λ+ µ

λ+ 2µ
. (4.92)

We claim that for the PS reflection, the angle between the ray direction and the

boundary will be increasing after reflection, while for the SP reflection, this value will
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be decreasing. To see this,

(
tan(θPS)

tan(θP )

)2

=

λ+µ
µ +

(λ+2µ)|τPx |2

µτ2y(
τPx
τy

)2

=
λ+ 2µ

µ
+
λ+ µ

µ

(
τy

τPx

)2

. (4.93)

Apply the same idea to the SP reflection,

(
tan(θSP )

tan(θS)

)2

=
µ

λ+ 2µ
− λ+ µ

λ+ 2µ

(
τy

τSx

)2

. (4.94)

As we can see from equation (4.93) and equation (4.94), as τy is increasing or the

incidence angle is decreasing, the ratio for the PS reflection is increasing, which means

that the angle after reflection is larger than the incidence angle, while the angle for

the SP reflection is decreasing as a quadratic function of τy. It means that the angle

for the SP wave θSP will be closer to zero even when the incoming S-wave’s incidence

angle θ is away from zero. The grazing beam with larger width will interact with the

boundary. Therefore, it is needed to be sharpened to guarantee the accuracy.

To remark, there’s no problem with the reflection in the acoustic wave as the velocity

is the same. We have conducted the experiment to justify the analysis in 3-D space

and we show the result in the next section.
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4.7.3 Sharpened Wavepackets and Convergence Analysis

By taking advantage of Lemma 4.6.2, we have

u(y) = aAeiB̃
√

ω

2π
e−

I
2 |y−y

∗
0 |
2
eiτ̃y(y−y0)ei

R
2 (y−y0)2

∫
e−ω|y−y0−ma|

2
dm+O

(
1

ω

)
,

(4.95)

The term τ̃y is the modified y-direction of the central ray, that is

τ̃y = τy −R · E, (4.96)

To sharpen Gaussian beams, we have the following lemma,

Lemma 4.7.1.

u(y) ≈ AeiB̃
q∑

k=0

lka

√
ω

2π
eiτ̃y(y−y0)e−ωk|y−y

∗
0 |
2
e−

I
2 |y−y

∗
0 |
2
ei
R
2 (y−y0)2 . (4.97)

where a = 1√
I
. Parameters ωk and q will be given in the proof.

As we can see the extra term e−ωk|y−y
∗
0 |
2
reduces the size of beams. And positive ωk

is obtained by choosing parameter ω appropriately.
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Proof. To obtain equation (4.97), we first

∫
e−ω|y−y0−ma|

2
dm =

∫
e−ω|y−y

∗
0+y

∗
0−y0−ma|

2
dm

=

∫
e−ω|y−y

∗
0 |
2
e−ω|y

∗
0−y0−ma|

2
e−2ω(y−y∗0)(y

∗
0−y0−ma)

= e−ω|y−y
∗
0 |
2
∫
e−ω|y

∗
0−y0−ma|

2
e−2ω(y−y∗0)(y

∗
0−y0−ma)dm.

(4.98)

The integral part above is

∫
e−ω|y

∗
0−y0−ma|

2
e−2ω(y−y∗0)(y

∗
0−y0−ma)dm =

∑
k̃

∫ k̃+1
2

k̃−1
2

e−ω|y
∗
0−y0−ma|

2
e−2ω(y−y∗0)(y

∗
0−y0−ma)dm

=
∑
k∈Z

∫ 1
2

−1
2

e−ω|(k+δ)a|
2
e2ω(y−y

∗
0)((k+δ)a)dδ. (4.99)

We require k to be integers, which means the value of k̃ satisfies k = k̃ +
y0−y∗0
a .

Notice first that we can truncate the above summation to finite terms, |k| ≤ q, since

e−ω|y−y0−ma|
2
is a L1 function. By monotone convergence theorem,

lim
N→∞

∫ ∞

N
e−ω|y−y0−ma|

2
dm = 0 (4.100)

.

Case 1: k = 0
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∫ 1
2

−1
2

e−ω|(k+δ)a|
2
e2ω(y−y

∗
0)((k+δ)a)dδ =

∫ 1
2

−1
2

e−ω|δa|
2
e2ω(y−y

∗
0)(δa)dδ

≈
∫ 1

2

−1
2

e−ω|δa|
2
(∑

n

2nωn(y − y∗0)
n(δa)n

n!

)
dδ

≈
∫ 1

2

−1
2

e−ω|δa|
2
(∑

n

(2ω)2n(y − y∗0)
2n(δa)2n

(2n)!

)
dδ (4.101)

The odd power terms in δ vanish in the last step above since e−ω|δa|
2
is an even

function about δ and all odd power functions are odd functions. The integral of all

odd functions in [−1
2 ,

1
2 ] will be zero.

∫ 1
2

−1
2

e−ω|δa|
2
e2ω(y−y

∗
0)(δa)dδ ≈

∫ 1
2

−1
2

e−ω|δa|
2 (

1 + 2ω2(y − y∗0)
2(δa)2

)
dδ

≈
∫ 1

2

−1
2

e−ω|δa|
2
e2ω

2(y−y∗0)
2(δa)2dδ. (4.102)

The leading order error from equation (4.102) is O

(
(2ω)4(y−y∗0)

4(δa)4

4!

)
.

Case 2: k 6= 0
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When k < 0,

∫ 1
2

−1
2

e−ω|(k+δ)a|
2
e2ω(y−y

∗
0)((k+δ)a)dδ =

∫ 1
2

−1
2

e−ω|−|k|a+δa|2e2ω(y−y
∗
0)(−|k|a+δa)dδ

=

∫ 1
2

−1
2

e−ω|−|k|a−δ̃a|2e2ω(y−y
∗
0)(−|k|a−δ̃a)dδ̃

=

∫ 1
2

−1
2

e−ω||k|a+δa|
2
e−2ω(y−y∗0)(|k|a+δa)dδ,

(4.103)

by setting δ̃ = −δ.

When k > 0

∫ 1
2

−1
2

e−ω|(k+δ)a|
2
e2ω(y−y

∗
0)((k+δ)a)dδ =

∫ 1
2

−1
2

e−ω|(|k|+δ)a|
2
e2ω(y−y

∗
0)((|k|+δ)a)dδ

(4.104)

Given k > 0, we add (4.104) for k > 0 and (4.103) for −k < 0, so that we have

∫ 1
2

−1
2

e−ω|ka+δa|
2 (
e2aω(y−y

∗
0)(k+δ) + e−2aω(y−y∗0)(k+δ)

)
dδ

=

∫ 1
2

−1
2

2e−ω|ka+δa|
2 (

1 + 2ω2(y − y∗0)
2(k + δ)2a2

)
dδ (4.105)

Here we use the Taylor expansion of the exponential function. Furthermore,

∫ 1
2

−1
2

2e−ω|ka+δa|
2 (

1 + 2ω2(y − y∗0)
2(k + δ)2a2

)
dδ

≈
∫ 1

2

−1
2

2e−ω(k+δ)
2a2e2ω

2(y−y∗0)
2((k+δ)a)2dδ. (4.106)
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The error term is O

(
(2ω)4(y−y∗0)

4(δa+ka)4

4!

)
. The error of approximations (4.106) and

(4.102) can be summarized as an universe form, i.e, O

(
(2ω)4(y−y∗0)

4(δa+ka)4

4!

)
.

Now integral (4.99) becomes

∫
e−ω|y

∗
0−y0−ma|

2
e−2ω(y−y∗0)(y

∗
0−y0−ma)dm =∫ 1

2

−1
2

e−ω||k|a+δa|
2
e−2ω(y−y∗0)(|k|a+δa)dδ

+
∑
k>0

∫ 1
2

−1
2

2e−ω(k+δ)
2a2e2ω

2(y−y∗0)
2((k+δ)a)2dδ. (4.107)

To get the value lk and ωk, we start with k > 0,

e−ω|y−y
∗
0 |
2
∫ 1

2

−1
2

2e−ω(k+δ)
2a2e2ω

2(y−y∗0)
2((k+δ)a)2dδ ≈

2e−ω|y−y
∗
0 |
2
e2ω

2(y−y∗0)
2(ka)2e−ω|ka|

2

= lke
−ω|y−y∗0 |

2
e2ω

2(y−y∗0)
2(ka)2 (4.108)

First, the first step above is obtained by choosing δ = 0. Second, the value of lk is

defined by

lk = 2e−ω|ka|
2
, (4.109)

Similarly, when k = 0,

lk = 1. (4.110)
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The next step is to compute the value of ωk and define the parameter ω. We start

with making the exponent in equation (4.108) negative,

−ω + 2ω2k2a2 ≤ 0

ω ≤ 1

2a2k2
, k = 1, 2, · · · , q (4.111)

and a is previously defined as 1√
I
in Lemma 4.6.2. If we choose ω = I

3q2
, then ωk in

equation (4.97) is

ωk =

(
3q2 − 2k2

9q4

)
I. (4.112)

After defining the values lk and ωk, we will characterize the size of the error term,

max
k≤q

(2ω)4(y − y∗0)
4(δa+ ka)4

4!
=

(2ω)4(y − y∗0)
4(δa+ qa)4

4!

≤ 2

3

(
I

3q2

)4( 1√
I

)4

(qa)4

≤ 2

243

1

q4
(4.113)

Although this is only the leading order in the series we truncated, the rest of them will

be easily controlled from the following two concerns. The first concern is the rest of

the series will have high power about q, i.e. 1
q2n

, for n = 3, 4, · · · . The second concern

is that the coefficient 22n

(2n)!
will decay exponentially.
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4.8 Numerical Examples

In this section, we present all numerical experiments conducted to justify the proposed

method through some complex velocity and general initial conditions. All the refer-

ence solution in this section are provided by the FDTD method with staggered grid.

Reference solution’s correctness will be examined in Appendix B.

4.8.1 Beam Reinitialization

4.8.1.1 SP Reflection V.S. PS Reflection

In the subsection, we will provide the numerical results of the analysis in Section

4.7.2 and Section 4.7.3. We firstly conduct the following experiment to illustrate the

difference between the SP reflection and the PS reflection. The experiment’s setup for

the S-wave is,

fS =


− sin(α) sin(36πx+ 36π sin(α)(y − 0.25))e

−36π2
(
x2+(y−0.25)2+(z−0.25)2

)
sin(36πx+ 36π sin(α)(y − 0.25))e

−36π2
(
x2+(y−0.25)2+(z−0.25)2

)
0

 ,

(4.114)

and

gS = 0. (4.115)
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The experiment’s setup for P-wave is,

fP =


sin(36πx+ 36π sin(α)(y − 0.25))e

−36π2
(
x2+(y−0.25)2+(z−0.25)2

)
sin(α) sin(36πx+ 36π sin(α)(y − 0.25))e

−36π2
(
x2+(y−0.25)2+(z−0.25)2

)
0

 ,

and

gP = 0 (4.116)

The initial width of the beams are all set to be 36π2 and λ = µ = 1. The experiment’s

result is displayed in Figure 4.4. The red star line in Figure 4.4 is the ratio
sin(θPS)
sin(α)

,
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Figure 4.4: PS Reflection V.S. SP Reflection: Different Ratio Behaviors.
PS Reflection(’o’), SP Reflection (’-’)

and the blue line is the ratio
sin(θSP )
sin(α)

. Same as the analysis in Section 4.7.2, the angle

for the SP reflection will decrease to zero compared with the original hitting angle.

Therefore, the SP reflection wave should be modified to be more focused.
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Figure 4.5: Sharpened Beams V.S. the Original Beam on Fixed (y, z).
Left: y=0.1, z=0.1 Right: y=0.08, z=0.13.
Beam Solution after Reinitialization(’o’), Original Beam Solution (’-’).

4.8.1.2 Sharpened Beams V.S. Original Beams

The second experiment in this subsection is conducted to show the fact that the pre-

cision will not be impacted after adding the new reinitialization (4.97) process. We

compare the wavefield after the reinitialization with the original one. Suppose the

S-wave hits at the boundary x = 0 with the central point (0, 0.1, 0.1) and the Hessian

equals to 
36π + 36π2i 12π2i 0

12π2i 7π2 + 36π2i 0

0 0 4π2 + 36π2i

 .

Its amplitude norm is set as 100. We choose two different sets of the y-value and

z-value to show our reinitialization method’s correctness, The wavefield in Figure 4.5

is plotted along the x-axis. As we can see, the reinitialization algorithm won’t affect

the accuracy of the result, while the width of each new beam has been decreased.
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4.8.2 Periodic Boundary Condition

In this subsection, we would like to display some numerical results to the periodic

boundary problem.

4.8.2.1 Example 1: The Single Wavepacket in the Constant velocity

We first test our algorithm via the constant elastic moduli λ = µ = 1, and the nonzero

initial velocity g.

f =


sin(36πx+ 9πy)e−36π2

(
(x−0.25)2+(z−0.25)2+(z−0.25)2

)
sin(36πx+ 9πy)e−36π2

(
(x−0.25)2+(z−0.25)2+(z−0.25)2

)
0

 , (4.117)

and the initial velocity g is

g = 0.5f . (4.118)

We exhibit our result at the plane z = 0.25. The comparison between two results

shows that the propagation dynamics, including the eikonal equation and the transport

equation are correct. The Multi-scale Gaussian Wavepacket Transform is also justified,

although this is a single wavepacket initial value. We will test the transform further

with some more general initial condition.

4.8.2.2 Example 2: General Initial Condition in the Constant velocity

The next thing we would like to try is some general initial condition other than the

single Gaussian wavepacket to verify our initial decomposition. The initial value is
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Figure 4.6: Example 1:
Single Wavepacket Propagation with the Periodic Boundary Condition.
Left: FDTD Solution Right: Gaussian Beam Solution.

defined as

f =


sin(72πx2)e−36π2

(
(x−0.25)2+(z−0.25)2+(z−0.25)2

)
sin(72πx2)e−36π2

(
(x−0.25)2+(z−0.25)2+(z−0.25)2

)
0

 (4.119)

and

g = 0; (4.120)

Let’s compare the result along the x-axis by setting z = 0.25 and y = 6
32 . Now let’s

compare 2-D wavefields at z = 0.25.

For other more complex velocity, we will exhibit those results in the Dirichlet boundary

condition, since the periodic boundary problem essentially tests the correctness of

propagation dynamic and the decomposition process of the initial condition as proposed
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Figure 4.7: Example 2:
General Initial Value Propagation with Periodic Boundary Condition along x-axis
FDTD Solution(’o’), Gaussian Beam Solution (’-’)

x

y

 

 

0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

y

 

 

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 4.8: Example 2:
General Initial Value Propagation with Periodic Boundary Condition.
Left: FDTD Solution Right: Gaussian Beam Solution.

in Section 4.4. This can be examined in the Dirichlet boundary problem as well.
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4.8.3 Reflection: P-wave

We have so far used the periodic boundary condition to justify our decomposition

process and the dynamic system, now we would like to test our reflection scheme on

the pure P-wave initial condition. In this subsection, we fix our initial condition as the

following and test our algorithms over the different velocity.

f =


sin(32πx+ 8πy)e

−36π2
(
(x−0.15)2+(y−0.25)2+(z−0.25)2

)
1
4 sin(32πx+ 8πy)e

−36π2
(
(x−0.15)2+(y−0.25)2+(z−0.25)2

)
0

 (4.121)

and the initial velocity g is

g =


2 sin(32πx+ 8πy)e

−36π2
(
(x−0.15)2+(y−0.25)2+(z−0.25)2

)
1
2 sin(32πx+ 8πy)e

−36π2
(
(x−0.15)2+(y−0.25)2+(z−0.25)2

)
0

 (4.122)

4.8.3.1 Example 3: P-wave Reflection in the Constant velocity

Our first setting is still under the constant elastic moduli, λ = 1 and µ = 2. We

compare the wavefield at z = 0.25 and T = 0.14, after the primary reflection happens.

The P-wave reflection dynamics can be justified after this numerical experiment.

Here the mesh size of the FDTD method employed is 1
640 and this scale will be used

for all the FDTD results in the rest of the paper.
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Figure 4.9: Example 3:
P-wave Reflection in Constant velocity with Dirichlet Boundary Condition.
Left: FDTD Solution Right: Gaussian Beam Solution.

4.8.3.2 Example 4: P-wave Reflection in the Linear velocity

The second velocity in the P-wave reflection section we use is µ = 2 and λ = 1+ 0.2x.

We first compare the result at the fixed (y, z) = (0.125, 0.25) along x-axis. Then we

set z fixed as 0.25, The P-wave reflection dynamics in some general velocity has been

justified further. As we can see in Figure 4.10, the Gaussian beam solution performs

quite well in the major region, and the tolerable error shows up near the boundary.

4.8.3.3 Example 5: P-wave Reflection in the Sinusoidal velocity

Now let’s try the sinusoidal elastic moduli λ = 1 + sin(4πx), in which there will be

some caustics points. Again, we compare the result along the x-axis first by fixing

y = z = 0.25.
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Figure 4.10: Example 4:
P-wave Reflection in the Linear velocity with Dirichlet Boundary Condition.
FDTD Solution (’o’), Beam Solution(’-’)

Then we fix z = 0.25, To remark, the reinitialization scheme is not involved in all the

P-wave reflection results shown above. The small error implies that the P-wave reflec-

tion does not require the reinitialization, while it is necessary in the S-wave reflection.

4.8.4 Reflection S-wave

In this subsection, we will test the reinitialization process, but at first we will justify

the necessity of adding reinitialization process.

4.8.4.1 Example 6: S-wave Reflection with Orthogonal Hitting Angle

Firstly, we see the S-wave reflection with orthogonal hitting angle, that is sin(α) = 0

in Figure 4.4. It is displayed by Figure 4.14 showing that the original method without

the reinitialization is good enough.
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Figure 4.11: Example 4:
P-wave Reflection in Linear velocity with Dirichlet Boundary Condition.
Left: FDTD Solution Right: Gaussian Beam Solution.
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Figure 4.12: Example 5:
P-wave Reflection in Sinusoidal velocity along x-axis.
FDTD Solution(’o’), Beam Solution (’-’)

The setup of our experiment is

f =


sin(36πy)e−36π2((x−0.25)2+(y−0.15)2+(z−0.25)2)

0

0

 . (4.123)
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Figure 4.13: Example 5:P-wave Reflection in Sinusoidal velocity with Dirichlet Boundary
Condition. Left: FDTD Solution, Right: Gaussian beam Solution

and there is no initial velocity, i.e. g = 0. Two velocity parameters λ and µ here are

both constants,

λ = 1;µ = 2;

Figure 4.14 compares the wave field generated by our method to the one from FDTD

method at z = 0.25, x = 0.25 and T = 0.2. Now we fix z = 0.25 and y = 5
32 , As we

can see from Figure 4.4, when sin(α) = 0, the regular reflection method is expected to

be well enough and the experiment result above justifies our conclusion.

4.8.4.2 Example 7: S-wave Reflection with Non-Orthogonal Hitting Angle

Now if we change the ray direction to increase the width of the SP-wave, we will see

that the regular reflection dynamics fails in this case. To make that happen, we specify
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Figure 4.14: Example 6:
S-wave Reflection with Orthogonal hitting Angle along y-axis
FDTD Solution (’o’), GB Solution (’-’).
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Figure 4.15: Example 6: S-wave Reflection with Orthogonal hitting Angle along x-axis.
FDTD Solution (’o’), GB Solution (’-’).

our initial value as,

f =


2 sin(36πy + 18πx)e

−36π2
(
(x−0.25)2+(y−0.15)2+(z−0.25)2

)
− sin(36πy + 18πx)e

−36π2
(
(x−0.25)2+(y−0.15)2+(z−0.25)2

)
0

 . (4.124)
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Figure 4.16: Example 7: S-wave Reflection with Non-orthogonal Hitting Angle. Left:
Gaussian Beam Solution without reinitialization, Right: Gaussian Beam Solution with
reinitialization. FDTD Solution (’o’), GB Solution (’-’)

We first see that the result generated without the extra reinitialization. The above

left Figure 4.16 is plotted along the x-axis with z = 0.25, y = 0.125. As we mentioned

before, although the main pattern is captured with good accuracy, the tail region of

the Gaussian beam wavefield is not clean enough due to the fact that the SP-wave is

involved.

After adding the reinitialization, in the above right Figure 4.16, the beam solution

with the reinitialization shows the better result in the tail region without hurting the

accuracy of other parts.

The experiment shown in Figure 4.16 illustrates that the analysis in Section 4.7 is

correct. The SP-wave reflection will lose the accuracy to some degree such that adding

the reinitialization scheme is necessary.
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4.8.4.3 Example 8: S-wave Reflection: Linear velocity

Let’s see the comparison under some more complicated elastic moduli µ = 2 + 0.2y

and λ = 1. We compare the wavefield without the reinitialization to the FDTD result

first at z = 0.25.
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Figure 4.17: Example 8: S-wave Reflection in Linear velocity without Reinitialization.
Left: FDTD Solution Right: Gaussian Beam Solution without Reinitialization.

As we can see in the upper left corner of Figure 4.17, there is some significant per-

turbations in the FDTD result, while the beam method without the reinitialization,

which is shown in Figure 4.17, is not able to cover that part.

Now we will see the result after using the reinitialization process. As we can see

from the right Figure 4.20, the missing part in the upper left region is covered by the

reinitialization algorithm.
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Figure 4.18: Example 8: S-wave Reflection in Linear velocity with Reinitialization. Left:
FDTD Solution Right: Gaussian Beam Solution with Reinitialization.

4.8.4.4 Example 9: S-wave Reflection: Sinusoidal velocity

In this example, we set the elastic moduli µ = 2 + 0.2 sin(x) to make the Hessian of

the velocity nonzero. And all the other components remain the same as the last one,

including the initial value, λ and the terminal time T .

Compare two wavefields on the plane z = 0.25,

In this more complex velocity, the advantage of the Gaussian beam ansatz has shown

up as the caustics problem is resolved automatically. There will be caustics in this

sinusoidal velocity as the eikonal equation will be multivalued in some region. As

Figure 4.20 suggests, the beam solution will perform well even when the caustics shows

up.
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Figure 4.19: Example 9: S-wave Reflection in Sinusoidal velocity. GB Solution(’o’), FDTD
Solution(’-’)
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Figure 4.20: Example 9: S-wave Reflection in Sinusoidal velocity with Reinitialization.
Left: FDTD Solution Right: Gaussian Beam Solution with Reinitialization.

4.8.5 General Initial Condition

Now after showing the effect of the reinitialization, especially after comparing it to the

result without the reinitialization, it is confident to say that the proposed reinitializa-
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tion algorithm is correct and necessary in this problem. We will end our numerical

tests with some more general initial conditions.

4.8.5.1 Example 10: The General Initial Condition in The Sinusoidal ve-

locity

We test Multiscale Gaussian Wavepacket method via the general initial condition and

sinusoidal elastic moduli λ = 1 + sin(4πx), µ = 2. The initial condition is

f =


sin(32πx+ 32πy2)e

−36π2
(
(x−0.15)2+(y−0.25)2+(z−0.25)2

)
sin(32πx+ 10πy)e

−36π2
(
(x−0.15)2+(y−0.25)2+(z−0.25)2

)
sin(16πz)e

−36π2
(
(x−0.15)2+(y−0.25)2+(z−0.25)2

)

 . (4.125)

Here we let our wavefield propagate until T = 0.2.

We first display the first component in the resulting wavefield. Let’s see the second

component of the resulting wavefield, and see the comparison between two methods

along the x-axis by fixing y = z = 0.25. With more general initial value, we include

P and S-wave at the same time, meanwhile, different types of the reflection happen

simultaneously, so as the different reflection modes.

Remark 4.8.1. Compared with the FDTD algorithm with parallel computing scheme,

our asymptotic algorithm has the larger time complexity. However, as the wavenumber

of the initial value is increasing, the FDTD scheme requires finer grid size, leading to

the requirement of some larger storage. This is impossible in the current GPU units,

while our method’s storage complexity is independent of the wavenumber as well as the

time complexity.
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Figure 4.21: Example 10: General Initial Condition Propagation with Reinitialization
(First Component). Left: FDTD Solution Right: Gaussian Beam Solution with Reinitial-
ization.
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Figure 4.22: Example 10:
General Initial Condition Propagation with Reinitialization (Second Component).
Left: FDTD Solution Right: Gaussian Beam Solution with Reinitialization.

156



0 0.1 0.2 0.3 0.4 0.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

u

Figure 4.23: Example 10: General Initial Condition Propagation with Reinitialization
(Second Component). FDTD Solution (’o’), GB Solution(’-’).

4.8.5.2 Convergence Rate Analysis

In the end, we propose the convergence rate analysis. The initial condition is set as

f =


sin(η(16πx+ 8πy))e

−42π2
(
(x−0.25)2+(y−0.15)2+(z−0.25)2

)
sin(η(16πx+ 8πy))e

−42π2
(
(x−0.25)2+(y−0.15)2+(z−0.25)2

)
0

 (4.126)

The velocity here are all constants,

λ = 1;µ = 2;

The amplifying factor η is a geometric series, 1, 1.5, 2.25, · · · , 1.55.

The blue star line is the logarithm of the L2 norm of the error at different η, while

the red line is the linear function with the slope as 1
2 log(1.5). It is well known that

the convergence rate of the Gaussian beam is 1√
ω
, and as proved in the paper [5], the
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Figure 4.24: Log-log plot: Convergence Rate of the New Gaussian Beam Method
GB Method Error Curve(’-*’), Line with the slope = 1

2 log(1.5)(’-’)

Multiscale Gaussian wavepacket transform also follows O( 1√
ω
). This pattern can be

seen in Figure 4.24.
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Chapter 5

Conclusion

We propose two methods based on multi-scale Gaussian beam method in this thesis.

The first one is solving the elastic wave propagation in the bounded domain and the

second one is for the prestack inversion process, which is an inverse problem in geo-

physical applications. These two methods are both based on the multiscale Gaussian

beam method described in Chapter 2. Therefore, both methods are capable of re-

solving caustics problem automatically and they both take advantage of the parabolic

scaling principle for efficiency.

In the first part (Chapter 3), we present a new prestack inversion process, which con-

nects the boundary data to the wavefront set of the perturbation. We first modify

the multiscale Gaussian wavepacket transform [48] appropriately to suit to the imag-

ing operator. Secondly, the multi-valued traveltime information is preserved due to

the Gaussian beam function. This improves the quality of resulting migration image.

Another big advantage of our multiscale Gaussian beam inversion method is its ro-

bustness to the polluted data. Since we recover the reflector by its wavefront set, the

noise in the boundary data, which is far from the target frequency, won’t affect the

imaging result. Lastly, our imaging condition is performed in the time domain to avoid

the extra Fourier transform on the data set. This feature makes our algorithm more
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applicable considering the large size of the trace dataset in the real world.

In the second part (Chapter 4), we present a novel Multiscale Gaussian beam method

to solve the elastic wave equation in the bounded domain. Firstly, a new vector-valued

wavepacket transform is developed to adapt to the highly oscillated vector-valued initial

condition following the parabolic scaling principle. Secondly, a novel reinitialization

strategy is added in the process to improve the efficiency and accuracy. There are

several advantages about this new reinitialization method. The first one is that the

new reinitialization is applied to the single wavepacket instead of the whole wavefield.

This will improve the efficiency greatly. The second one is that the center of each new

wavepacket after the reinitialization is same to the center before, which guarantees

all computation happening inside the domain without extra assumption outside the

domain. Although the typical FDTD (Finite Difference Time Domain) method is

faster by implementing in parallel, the requirement of large storage will still make

FDTD method unfeasible in the high frequency regime.
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Appendix A

Proof in Inverse Process

Hessian Matrix in Corollary 3.3.1

In Corollary 3.3.1, the quadratic term ||r − r̂0||2M̂(t̂c)
in the phase function is not

necessary to be a Gaussian profile, since M̂ is only the Schur complement of a semi

positive definite matrix.

Lemma A.0.1. For any boundary points r = {x = (x1, · · · , xd) : xd = 0}, we have

rT

(
Im(M̂)(t̂c)−

Im(τ̂tx)(t̂c)Im(τ̂tx)
T (t̂c)

Im(τ̂tt)(t̂c)

)
r ≥ arT Im(M̂)(t̂c)r, (A.1)

for some constant a, if there is no grazing ray,

|p̂d(t̂c)| ≥ b||p̂(t̂c)||, (A.2)

where b is an universal lower bound.

By equation (3.60) and (3.61), we have

Im(τ̂tx)(t̂c; y, p) = ∓v(ŷ(t̂c))Im(M̂)(t̂c)
p̂(t̂c)

||p̂(t̂c)||
, (A.3)
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and

Im(τ̂tt)(t̂c; y, p) = v2(ŷ(t̂c))
p̂T (t̂c)

||p̂(t̂c)||
Im(M̂)(t̂c)

p̂(t̂c)

||p̂(t̂c)||
. (A.4)

From now on, we let all functions be defined at t = t̂c without writing it out explicitly.

Then,

rT
Im(τ̂tx)Im(τ̂tx)

T

Im(τ̂tt)
r = rT

Im(M̂)p̂p̂T Im(M̂)

p̂T Im(M̂)p̂
r. (A.5)

We introduce the following notation,

p
′
=

p̂√
p̂T Im(M̂)p̂

. (A.6)

Then equation (A.1) can be translated to the following optimization problem. We can

instead prove that the optimal value of the following optimization problem with fixed

p
′
is a,

min
r

1−
(
rT Im(M̂)p

′)2
, (A.7)

subject to rT Im(M̂)r = 1, rT ed = 0,

where ed = (0, · · · , 0, 1)T . It is equivalent to,

min
r

1− rT Im(M̂)p
′
, (A.8)

subject to rT Im(M̂)r = 1, rT ed = 0,

since the optimization problem (A.7) is the square term of problem (A.8). Using
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Lagrange multipliers,

L(r;λ1, λ2) = 1− rT Im(M̂)p
′
+ λ1r

T Im(M̂)r + λ2r
T ed. (A.9)

Differentiate L with respect to r,

−Im(M̂)p
′
+ 2λ1Im(M̂)r + λ2ed = 0, (A.10)

then

2λ1r = −λ2Im(M̂)−1ed + p
′
. (A.11)

By the second restriction rT ed = 0,

λ2 =
eTd p

′

eTd Im(M̂)−1eTd
(A.12)

We denote A =

√
p̂T Im(M̂)p̂ and D = eTd Im(M̂)−1eTd . Therefore,

λ2 =
eTd p

′

AD
. (A.13)

and the optimizer r? satisfies,

r? ‖ r0, (A.14)

where r0 is defined as,

r0 ≡ p
′
−
eTd p

′

AD
Im(M̂)−1ed. (A.15)
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By restriction rT Im(M̂)r = 1, we have,

r? =
r0√

rT0 Im(M̂)r0

, (A.16)

Equivalently, 2λ1 =
√
rT0 Im(M̂)r0. Equation (A.7) then becomes,

min
r

1−
(
rT Im(M̂)p

′)2
= 1−

 rT0√
rT0 Im(M̂)r0

Im(M̂)p
′
2

. (A.17)

The first term needed to be evaluated above is,

rT0 Im(M̂)p
′
= (p

′
−
eTd p

′

AD
Im(M̂)−1ed)

T Im(M̂)p
′

= (p
′
)T Im(M̂)p

′
−

(eTd p
′
)2

A2D
.

The second term is

rT0 Im(M̂)r0 = (p
′
−
eTd p

′

AD
Im(M̂)−1ed)

T Im(M̂)(p
′
−
eTd p

′

AD
Im(M̂)−1ed)

= (p
′
)T Im(M̂)p

′
+

(eTd p
′
)2

(AD)2
eTd Im(M̂)−1ed −

2eTd p
′

AD
eTd p

′

= (p
′
)T Im(M̂)p

′
+

(eTd p
′
)2

(AD)2
D −

2eTd p
′

AD

eTd p
′

A

= (p
′
)T Im(M̂)p

′
+

(eTd p
′
)2

A2D
−

2(eTd p
′
)2

A2D

= (p
′
)T Im(M̂)p

′
−

(eTd p
′
)2

A2D
. (A.18)
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1−

 rT0√
rT0 Im(M̂)r0

Im(M̂)p
′
2

= 1−

 rT0 Im(M̂)p
′√

rT0 Im(M̂)r0

2

= 1−

(
(p

′
)T Im(M̂)p

′ −
(eTd p

′
)2

A2D

)2

(p
′
)T Im(M̂)p

′ −
(eT
d
p
′
)2

A2D

=
(eTd p

′
)2

A2D
. (A.19)

To summarize,

rT

(
Im(M̂)− (r − r̂0)

T Im(τ̂tx)Im(τ̂tx)
T

Im(τ̂tt)

)
r ≥ arT Im(M̂)(t̂c)r (A.20)

and

a =
b2

A2D
=

b2

(p̂T Im(M̂)p̂)(eTd (Im(M̂))−1ed)
. (A.21)

Proof of Proposition 3.3.5

Proposition A.0.1. Consider two scattering beams (ŷ(t), p̂(t), M̂(t), Â(t)) and

(x̂(t), ξ̂(t), N̂(t), Ĉ(t)), and assume that there exists significant interaction effects be-

tween these two beams. There exists two constants C∗
1 and C∗

2 related to the background

velocity, such that

d||M̂(t)− N̂(t)||
dt

≤ C∗
1

√
||p||+ C∗

2 ||M̂(t)− N̂(t)||. (A.22)

where ||M̂(t)− N̂(t)|| is defined as the matrix norm induced by the vector 2-norm.
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Proof. Both M̂(t) and N̂(t) satisfy

dM̂

dt
= −Gxx(ŷ(t), p̂(t))− M̂Gxp(ŷ(t), p̂(t))−GTxp(ŷ(t), p̂(t))M̂ − M̂Gpp(ŷ(t), p̂(t))M̂,

dN̂

dt
= −Gxx(x̂(t), ξ̂(t))− N̂Gxp(x̂(t), ξ̂(t))−GTxp(x̂(t), ξ̂(t))N̂ − N̂Gpp(x̂(t), ξ̂(t))N̂ .

(A.23)

Take the difference between above equations, we have

− d(M̂(t)− N̂(t))

dt
=(

Gxx(ŷ(t), p̂(t))−Gxx(x̂(t), ξ̂(t))
)
+ 2N̂(t)

(
Gxp(ŷ(t), p̂(t))−Gxp(x̂(t), ξ̂(t))

)
+ N̂(t)

(
Gpp(ŷ(t), p̂(t))−Gpp(x̂(t), ξ̂(t))

)
N̂(t)

+ 2(M̂(t)− N̂(t))Gxp(ŷ(t), p̂(t)) + (M̂(t)− N̂(t))Gpp(ŷ(t), p̂(t))(M̂(t) + N̂(t)).

(A.24)

The first term in equation (A.24),

||Gxx(ŷ(t), p̂(t))−Gxx(x̂(t), ξ̂(t))|| =
∣∣∣∣∣∣∇∇v(ŷ(t))||p̂(t)|| − ∇∇v(x̂(t))||ξ̂(t)||

∣∣∣∣∣∣
≤ C3(||ŷ(t)− x̂(t)||)||p̂(t)||+ C2(||p̂(t)− ξ̂(t)||), (A.25)

where C3 is the maximum value of the third order derivative of the velocity v and C2

maximum value of the second order derivative of the velocity v. According to Lemma

3.3.2, we have

||Gxx(ŷ(t), p̂(t))−Gxx(x̂(t), ξ̂(t))|| ∼ O(
√

||p̂(t)||). (A.26)
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The second term in equation (A.24),

2
∣∣∣∣∣∣N̂(t)

(
Gxp(ŷ(t), p̂(t))−Gxp(x̂(t), ξ̂(t))

) ∣∣∣∣∣∣
= 2
∣∣∣∣∣∣N̂(t)

∇v(ŷ(t))
(

p̂(t)

||p̂(t)||

)T
−∇v(x̂(t))

(
ξ̂(t)

||ξ̂(t)||

)T∣∣∣∣∣∣
≤ 2||N̂(t)||

(
C2||ŷ(t)− x̂(t)||+ C1

(
||Ξ̂(t)||
||p̂(t)||

))
, (A.27)

where C1 is the largest value of ||∇v||. Therefore,

2
∣∣∣∣∣∣N̂(t)

(
Gxp(ŷ(t), p̂(t))−Gxp(x̂(t), ξ̂(t))

) ∣∣∣∣∣∣ ∼ O(
√
||p̂(t)||). (A.28)

The third term in equation (A.24),

∣∣∣∣∣∣N̂(t)
(
Gpp(ŷ(t), p̂(t))−Gpp(x̂(t), ξ̂(t))

)
N̂(t)

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(v(ŷ(t))||p̂(t)||
− v(x̂(t))

||ξ̂(t)||

)∣∣∣∣∣∣∣∣∣∣∣∣N̂(t)N̂(t)
∣∣∣∣∣∣

+
∣∣∣∣∣∣N̂(t)

v(ŷ(t))
||p̂(t)||

(
p̂(t)

||p̂(t)||

)(
p̂(t)

||p̂(t)||

)T
− v(x̂(t))

||ξ̂(t)||

(
ξ̂(t)

||ξ̂(t)||

)(
ξ̂(t)

||ξ̂(t)||

)T N̂(t)
∣∣∣∣∣∣.

(A.29)

First, we have

∣∣∣∣∣∣v(ŷ(t))||p̂(t)||
− v(x̂(t))

||ξ̂(t)||

∣∣∣∣∣∣∣∣∣∣∣∣N̂(t)N̂(t)
∣∣∣∣∣∣ ≤(

C1
||ŷ(t)− x̂(t)||

||p̂(t)||
+ v(ŷ(t))

||p̂(t)− ξ̂(t)||
||p̂(t)||2

)
||N̂(t)N̂(t)|| ∼ O(

√
||p̂(t)||). (A.30)
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Second,

∣∣∣∣∣∣v(ŷ(t))||p̂(t)||

(
p̂(t)

||p̂(t)||

)(
p̂(t)

||p̂(t)||

)T
− v(x̂(t))

||ξ̂(t)||

(
ξ̂(t)

||ξ̂(t)||

)(
ξ̂(t)

||ξ̂(t)||

)T ∣∣∣∣∣∣ ≤
C1

∣∣∣∣∣∣ ||ŷ(t)− x̂(t)||
||p̂(t)||

∣∣∣∣∣∣+ C1

∣∣∣∣∣∣v(ŷ(t))(1− κ̂(t))||p̂(t)||2

||p̂(t)||3
∣∣∣∣∣∣ ≤ O(||p̂(t)||−3/2). (A.31)

To summarize,

∣∣∣∣∣∣N̂(t)
(
Gpp(ŷ(t), p̂(t))−Gpp(x̂(t), ξ̂(t))

)
N̂(t)

∣∣∣∣∣∣ ∼ O(
√
||p̂(t)||). (A.32)

Insert these asymptotic analysis equations (A.26), (A.28), (A.32) into equation (A.24),

we have

− d(M̂(t)− N̂(t))

dt
= O(

√
||p̂(t)||) + 2(M̂(t)− N̂(t))Gxp(ŷ(t), p̂(t))

+ (M̂(t)− N̂(t))Gpp(ŷ(t), p̂(t))(M̂(t) + N̂(t))

= O(
√

||p̂(t)||) + (M̂(t)− N̂(t))
(
2Gxp(ŷ(t), p̂(t)) +Gpp(ŷ(t), p̂(t))(M̂(t) + N̂(t))

)
.

(A.33)

The coefficient matrix in front of M̂(t)− N̂(t) satisfies,

||2Gxp(ŷ(t), p̂(t)) +Gpp(ŷ(t), p̂(t))(M̂(t) + N̂(t))|| ≤ 2||∇v(ŷ(t))||+ 2
||M̂(t) + N̂(t)||

||p̂(t)||

≤ O(1). (A.34)

Then, M̂(t)− N̂(t) satisfies,

d||M̂(t)− N̂(t)||
dt

≤ C∗
1

√
||p||+ C∗

2 ||M̂(t)− N̂(t)||, ||M̂(0)− N̂(0)|| = 0. (A.35)
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Proof of Lemma 3.3.5

Lemma A.0.2. Consider two scattering beams (ŷ(t), p̂(t), M̂(t), Â(t)) and (x̂(t), ξ̂(t), N̂(t), Ĉ(t)),

and there exists significant interaction effects between these two beams. Suppose the

function g(t) is

g(t) = p̂(t) · (ŷ(t)− x̂(t)), (A.36)

then we have

g(t) = g(0) +O(1), (A.37)

and

g
′
(t) = v(x̂(t))

(
1

2

||Ξ̂(t)||2

κ̂(t)2||p̂(t)||

)
. (A.38)

Proof. We start with calculating the derivative
dg(t)
dt and assume the Hamiltonian to

be positive, i.e. G(x, p) = v(x)||p||. Negative branch will be the same.

dg

dt
=
dp̂(t)

dt
· (ŷ(t)− x̂(t)) + p̂(t) ·

(
dŷ(t)

dt
− dx̂(t)

dt

)
(A.39)

= −∇v(ŷ(t)) · (ŷ(t)− x̂(t))||p̂(t)||+ p̂(t) ·

(
v(ŷ(t))

p̂(t)

||p̂(t)||
− v(x̂(t))

ξ̂(t)

||ξ̂(t)||

)
.
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Use the Taylor expansion of the velocity v at the point ŷ(t),

dg

dt
= ||p̂(t)|| (v(x̂(t))− v(ŷ(t))) + ||p̂(t)||v(ŷ(t))− v(x̂(t))

p̂(t) · ξ̂(t)
||ξ̂(t)||

+O(||x̂(t)− ŷ(t)||2)

= ||p̂(t)||v(x̂(t))− v(x̂(t))
p̂(t) · ξ̂(t)
||ξ̂(t)||

+O(||x̂(t)− ŷ(t)||2)

= v(x̂(t))

(
||p̂(t)|| − p̂(t) · ξ̂(t)

||ξ̂(t)||

)
+O(||x̂(t)− ŷ(t)||2).

Substitute decomposition (3.56) into the fraction term
p̂(t)·ξ̂(t)
||ξ̂(t)||

. Since Ξ̂(t) is orthogonal

to p̂(t),

p̂(t) · ξ̂(t)
||ξ̂(t)||

=
κ̂(t)||p̂(t)||2√

κ̂(t)2||p̂(t)||2 + ||Ξ̂(t)||2

=
κ̂(t)||p̂(t)||2

κ̂(t)||p̂(t)||
1

1 + 1
2

||Ξ̂(t)||2
||κ̂(t)p̂(t)||2

= ||p̂(t)|| − 1

2

||Ξ̂(t)||2

|κ̂(t)|2||p̂(t)||
.

Here we use the Taylor expansion of the square root function and Geometric series to

approximate. Then

dg

dt
= v(x̂(t))

(
||p̂(t)|| − κ̂(t)||p̂(t)||2

κ̂(t)||p̂(t)||

)
+
v(x̂(t))

2

||Ξ̂(t)||2

|κ̂(t)|2||p̂(t)||
(A.40)

= O(1).

Naturally, after finite time,

g(t) = g(0) +O(1). (A.41)
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Proof of Lemma 3.3.6

Lemma A.0.3. Consider two scattering beams (ŷ(t), p̂(t), M̂(t), Â(t)) and (x̂(t), ξ̂(t), N̂(t), Ĉ(t)),

and there exists significant interaction effects between these two beams. Suppose the

pure imaginary matrix M̂(0) has a symmetric positive definite imaginary part and is

the initial condition of the Hessian for the beam, then

(y − x)T M̂(0)(y − x) = (ŷ(t)− x̂(t))T M̂(t)(ŷ(t)− x̂(t)) +O(1). (A.42)

Proof. We denote the function g(t) as

g(t) = ||ŷ(t)− x̂(t)||2
M̂(t)

Throughout this proof, we use the Hamiltonian G(x, p) = v(x)||p|| and the negative

Hamiltonian will be the same. The derivative of g is,

dg(t)

dt
= 2(Gp(ŷ(t), p̂(t))−Gp(x̂(t), ξ̂(t)))

T M̂(t)(ŷ(t)− x̂(t))

+ (ŷ(t)− x̂(t))T
dM̂(t)

dt
(ŷ(t)− x̂(t))

= 2
(
Gpx(ŷ(t), p̂(t))(ŷ(t)− x̂(t)) +Gpp(ŷ(t), p̂(t))(p̂(t)− ξ̂(t))

)T
M̂(t)(ŷ(t)− x̂(t))

+ (ŷ(t)− x̂(t))T
dM̂(t)

dt
(ŷ(t)− x̂(t)). (A.43)

From Riccati equation (2.11), we have

dM

dt
= −Gxx −MGxp −GTxpM −MGppM.
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Insert the above equation into equation (A.43) and abbreviate G = G(ŷ(t), p̂(t)), if

there’s no variable specified,

dg(t)

dt
= −(ŷ(t)− x̂(t))TGxx(ŷ(t)− x̂(t))− 2(ŷ(t)− x̂(t))T M̂(t)Gxp(ŷ(t)− x̂(t))

+ 2(ŷ(t)− x̂(t))T M̂(t)Gpx(ŷ(t)− x̂(t))

+ 2(p̂(t)− ξ̂(t))TGppM̂(t)(ŷ(t)− x̂(t))−
(
M̂(t)(ŷ(t)− x̂(t))

)T
Gpp

(
M̂(t)(ŷ(t)− x̂(t))

)
= −(ŷ(t)− x̂(t))TGxx(ŷ(t)− x̂(t)) + 2(p̂(t)− ξ̂(t))TGppM̂(t)(ŷ(t)− x̂(t))

−
(
M̂(t)(ŷ(t)− x̂(t))

)T
Gpp

(
M̂(t)(ŷ(t)− x̂(t))

)
= −(ŷ(t)− x̂(t))TGxx(ŷ(t)− x̂(t))− ||M̂(t)(ŷ(t)− x̂(t))− (p̂(t)− ξ̂(t))||2Gpp

+ ||p̂(t)− ξ̂(t)||2Gpp . (A.44)

The first term in equation (A.44) satisfies,

(ŷ(t)− x̂(t))T (Gxx(ŷ(t), p̂(t)))(ŷ(t)− x̂(t)) ∼ O(1). (A.45)

First, Gxx(ŷ(t), p̂(t)) ∼ O(||p̂(t)||), since v is smooth. On the other hand, ŷ(t)− x̂(t)’s

order is O(1/
√

||p̂(t)||) by Lemma 3.3.2.

The second term in equation (A.44) satisfies,

||M̂(t)(ŷ(t)− x̂(t))− (p̂(t)− ξ̂(t))||2Gpp(ŷ(t),p̂(t)) ∼ O(||p̂(t)||1/2||p̂(t)||−1||p̂(t)||1/2).

(A.46)

The term Gpp(ŷ(t), p̂(t)) is of the order O(1/||p̂(t)||) implied by Gpp’s expression.

Again, Lemma 3.3.2 demonstrates that M̂(t)(ŷ(t)− x̂(t))−(p̂(t)− ξ̂(t)) ∼ O(
√

||p̂(t)||).
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The third term in equation (A.44) satisfies,

||p̂(t)− ξ̂(t)||2Gpp(ŷ(t),p̂(t)) ∼ O(||p̂(t)||1/2||p̂(t)||−1||p̂(t)||1/2) ∼ O(1). (A.47)

It can be justified by combining Gpp’s expression and the fact that ||p̂(t) − ξ̂(t)|| ∼

O(
√

||p̂(t)||).

Proof of Proposition 3.3.3

Proposition A.0.2.

iγ̂(t̂0(x, ξ);x, ξ)|ω − τ̂t(t̂0(x, ξ);x, ξ)− ϑ̂(t̂0(x, ξ);x, ξ)
T (r − x̂(t̂0(x, ξ)))|2

≈ iγ̂(t̂0(y, p);x, ξ)|ω − τ̂t(t̂0(y, p);x, ξ)−
(
ϑ̂(t̂0(y, p);x, ξ))

)T
(r − x̂(t̂0(y, p)))|2

+O

(
1

||p||

)
. (A.48)

Proof. The coefficient γ̂ satisfies,

γ̂(t̂0(x, ξ);x, ξ) = − 1

2τ̂tt(t̂0(x, ξ);x, ξ)
.

By Assumption 3.2.3, it is safe to say that the background velocity v around x̂(t̂0(y, p))

is a constant function. Consequently, we have Hamiltonian satisfying Gx = 0, and

Ĝp(x̂(t̂0(x, ξ);x, ξ), ξ̂(t̂0(x, ξ);x, ξ)) = ±v(x̂(t̂0(y, p)))
ξ̂(t̂0(y, p)))

||ξ̂(t̂0(y, p))||

= Ĝp(x̂(t̂0(y, p);x, ξ), ξ̂(t̂0(y, p);x, ξ)), (A.49)
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since ray direction does not change in the constant slowness. Then

τ̂tt(t̂0(x, ξ);x, ξ) = ĜTp (x̂(t̂0(x, ξ)), ξ̂(t̂0(x, ξ)))M̂(t̂0(x, ξ);x, ξ)Ĝp(x̂(t̂0(x, ξ)), ξ̂(t̂0(x, ξ)))

= ĜTp (x̂(t̂0(y, p)), ξ̂(t̂0(y, p)))

(
M̂(t̂0(y, p);x, ξ) +

dM̂

dt
(t̂0(x, ξ)− t̂0(y, p))

)

Ĝp(x̂(t̂0(y, p)), ξ̂(t̂0(y, p)))

= τ̂tt(t̂0(y, p);x, ξ) +O(
√
||p||), (A.50)

since we have dM̂
dt ∼ O(||p||) by Lemma 3.3.6. On the other hand, |t̂0(y, p)− t̂0(x, ξ)| ∼

O(||p||−1/2).

We then have

γ̂(t̂0(x, ξ);x, ξ) =
1

2(τ̂tt(t̂0(y, p);x, ξ) +O(
√

||p||))

=
1

2(τ̂tt(t̂0(y, p);x, ξ)

(
1

1 + (
√
||p||)−1

)

≈ 1

2(τ̂tt(t̂0(y, p);x, ξ)
= γ̂(t̂0(y, p);x, ξ). (A.51)

Inside the quadratic term, we first have an invariant,

ω − τ̂t(t̂0(x, ξ);x, ξ) = ω − τ̂t(t̂0(y, p);x, ξ), (A.52)

since τ̂t will be a constant along the ray.
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The next term is ϑ̂(t̂0(x, ξ);x, ξ).

Re(τ̂tx(t̂0(x, ξ);x, ξ)) = −Re(M̂)(t̂0(x, ξ);x, ξ)Gp(x̂(t̂0(x, ξ);x, ξ), ξ̂(t̂0(x, ξ);x, ξ))

= −Re(M̂)(t̂0(y, p);x, ξ)Gp(x̂(t̂0(y, p);x, ξ), ξ̂(t̂0(y, p);x, ξ))

+
dRe(M̂)(t̂0(y, p);x, ξ)

dt
(t̂0(x, ξ)− t̂0(y, p))Gp(x̂(t̂0(y, p);x, ξ), ξ̂(t̂0(y, p);x, ξ))

= Re(τ̂tx(t̂0(y, p);x, ξ)) +O(
√

||p||). (A.53)

We have the similar conclusion for imaginary part,

Im(τ̂tx(t̂0(x, ξ);x, ξ)) = Im(τ̂tx(t̂0(y, p);x, ξ)) +O(
√
||p||). (A.54)

Consequently, by equation (3.75)

ϑ̂(t̂0(x, ξ);x, ξ)) = ϑ̂(t̂0(y, p);x, ξ)) +O(
√

||p||). (A.55)

Next,

r − x̂(t̂0(x, ξ)) = r − x̂(t̂0(y, p)) + x̂(t̂0(y, p))− x̂(t̂0(x, ξ))

= r − x̂(t̂0(y, p)) +G±
p (x̂(t̂0(y, p)), ξ̂(t̂0(y, p)))(t̂0(y, p)− t̂0(x, ξ))

= r − x̂(t̂0(y, p))± v(x̂(t̂0(y, p)))(t̂0(y, p)− t̂0(x, ξ))
ξ̂(t̂0(y, p))

||ξ̂(t̂0(y, p))||
(A.56)

= r − x̂(t̂0(y, p)) +O(1/
√

||p||). (A.57)
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G± represents the different Hamiltonian by its sign. Therefore,

iγ̂(t̂0(x, ξ);x, ξ)|ω − τ̂t(t̂0(x, ξ);x, ξ)− ϑ̂(t̂0(x, ξ);x, ξ)
T (r − x̂(t̂0(x, ξ)))|2 = iγ̂(t̂0(y, p);x, ξ)

|ω − τ̂t(t̂0(y, p);x, ξ)−
(
ϑ̂(t̂0(y, p);x, ξ) +O(

√
||p||)

)T
(r − x̂(t̂0(x, ξ))|2 +O

(
1√
||p||

)

≈ iγ̂(t̂0(y, p);x, ξ)|ω − τ̂t(t̂0(y, p);x, ξ)−
(
ϑ̂(t̂0(y, p);x, ξ))

)T
(r − x̂(t̂0(y, p)))|2.

(A.58)

Proof of Proposition 3.3.6

Proposition A.0.3. Some real-valued phase terms, %̂(r, t̂c; y, p) − θ̂(r, t̂c; y, p) and

%̂(r, t̂c;x, ξ) − θ̂(r, t̂c;x, ξ), can be ignored since they are constant order terms with

respect to the large wavenumber ||ξl,i|| = ||p+ q||.

Proof. The first term: (F̂ − ω)Q̂

(τ̂t(t̂c; y, p)− ω +Re(τ̂tx)(t̂c; y, p))

(
Im(τ̂tx(t̂c; y, p))

T (r − ŷ(t̂c))

Im(τ̂tt(t̂c; y, p))

)

− (τ̂t(t̂c;x, ξ)− ω +Re(τ̂tx)(t̂c;x, ξ))

(
Im(τ̂tx(t̂c; t, ξ))

T (r − x̂(t̂c))

Im(τ̂tt(t̂c;x, ξ))

)

≈ (τ̂t(t̂c;x, ξ)− ω)(ŷ(t̂c)− x̂(t̂c)) + (τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ))(r − ŷ(t̂c)) +O(1).

By Corollary 3.3.1, we notice the scale of |τ̂t(t̂c;x, ξ) is controlled by Im(γ̂) ∼ O( 1
||p||).
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Therefore, by Lemma 3.3.2,
∣∣∣τ̂t(t̂c;x, ξ)− ω

∣∣∣||ŷ(t̂c)− x̂(t̂c)|| ∼ O(1).

|τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ)| =
∣∣∣v(ŷ(t̂c))||p̂(t̂c)|| − v(x̂(t̂c))||ξ̂(t̂c)||

∣∣∣
≤ |∇v(ŷ(ŷ(t̂c))|||(ŷ(t̂c)− x̂(t̂c)||||p̂(ŷ(t̂c))||

+ v(ŷ(t̂c))(||p̂(t̂c)|| − ||ξ̂(t̂c)||).

By Lemma 3.3.2, |τ̂t(t̂c; y, p) − τ̂t(t̂c;x, ξ)| ∼ O(
√

||p||), and ||r − ŷ(t̂c)|| is controlled

by Hessian M̂(t̂c). So (τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ))(r − ŷ(t̂c)) ∼ O(1).

The second term: 1
2Re(τ̂tt)Q̂

2

1

2
Re(τ̂tt)Q̂

2 ≈ 1

2
Re(τ̂tt)(r − ŷ(t̂c))

2 ∼ O(1), (A.59)

by Lemma 3.3.2. And the same analysis can be applied to the term associated with

the beam (x, ξ).

Proof of Proposition 3.3.7

Proposition A.0.4. For the first two terms in equation (3.107), their exponents sat-

isfy,

− Im(β̂)|ω − τ̂t(t̂c; y, p)− ζ̂T (r − ŷ(t̂c))|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)− ϑ̂T (r − x̂(t̂c))|2

= −||r − x̂(t̂c) + ŷ(t̂c)

2
||2
2Im(β̂)ζ̂ ζ̂T

− Im(β̂)

2
||ŷ(t̂c)− x̂(t̂c)||2ζ̂ ζ̂T

− Im(β̂)|ω − τ̂t(t̂c; y, p)|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)|2 +O

(
1√
||p||

)
, (A.60)
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where β̂, γ̂, ζ̂ and ϑ̂ are all defined at t̂c. Similarly, ĝ in equation (3.108) is an O(1)

term.

Proof. The quadratic term about r in equation (A.60) is,

−rT
(
Im(β̂)ζ̂ ζ̂T + Im(γ̂)ϑ̂(ϑ̂)T

)
r. (A.61)

The matrix in the parentheses is positive semi-definite matrix as it is the sum of two

positive semi-definite matrices. We apply the eigenvalue decomposition

Im(β̂)ζ̂ ζ̂T + Im(γ̂)ϑ̂(ϑ̂)T = QTΛQ, (A.62)

where Λ is a diagonal matrix with non-negative entries and QTQ = I.

The cross term about r in equation (A.60) is

2Im(β̂)(ω − τ̂t(t̂c; y, p))ζ̂
T r + 2Im(β̂)ŷ(t̂c)

T (ζ̂ ζ̂T )r

+2Im(γ̂)(ω − τ̂t(t̂c;x, ξ))ϑ̂
T r + 2Im(γ̂)x̂(t̂c)

T (ϑ̂ϑ̂T )r

= 2ĴT1 (t̂c, ω; y, p, x, ξ)r + 2ĴT2 (t̂c, ω; y, p, x, ξ)r, (A.63)

where

Ĵ1(t̂c, ω; y, p, x, ξ) = Im(β̂)(ω − τ̂t(t̂c; y, p))ζ̂ + Im(γ̂)(ω − τ̂t(t̂c;x, ξ))ϑ̂; (A.64)

Ĵ2(t̂c, ω; y, p, x, ξ) = Im(β̂)ζ̂ ζ̂T ŷ(t̂c) + Im(γ̂)ϑ̂ϑ̂T x̂(t̂c). (A.65)
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Combine the cross term (A.63) and second order term (A.61),

−(Qr)TΛ(Qr) + 2ĴT1 Q
TQr + 2ĴT2 Q

TQr. (A.66)

To make a complete quadratic term, its central point rc is,

rc = QTΛ−1Q(Ĵ1 + Ĵ2)

= QTΛ−1QĴ2 +O

(
1√
||p||

)
, (A.67)

since

||Ĵ1|| ≤ ||Im(β̂)(ω − τ̂t(t̂c; y, p))ζ̂||+ ||Im(γ̂)(ω − τ̂t(t̂c;x, ξ))ϑ̂||

≤ O

(
1

||p||

)
O
(√

||p||
)
O (||p||) ≤ O

(√
||p||

)
,

and

||Ĵ2|| ≤ ||Im(β̂)ζ̂ ζ̂T ŷ(t̂c)||+ ||Im(γ̂)ϑ̂ϑ̂T x̂(t̂c)||

≤ O

(
1

||p||

)
O
(
||p||2

)
O(1) ≤ O(||p||).

Here the inverse matrix is defined as the pseudo-inverse matrix for a rank-deficient

matrix, that is Λ−1
ii = 0, if Λii = 0. If the diagonal term in Λ−1

ii is zero, then

we set its center rc’s i
th coordinate to be the same as

ŷ(t̂c)+x̂(t̂c)
2 ’s, since we have

exp

(
−1

4 ||2r − x̂(t̂c)− ŷ(t̂c)||2M̂(t̂c)

)
in the expression of B̂. Therefore, we carry out
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calculation by assuming Λ invertible.

QTΛ−1Q = (Im(β̂)ζ̂ ζ̂T + Im(γ̂)ϑ̂(ϑ̂)T )−1

= (2Im(β̂)ζ̂ ζ̂T + Im(γ̂)ϑ̂(ϑ̂)T − Im(β̂)ζ̂ ζ̂T )−1.

To evaluate the order of Im(γ̂)ϑ̂(ϑ̂)T − Im(β̂)ζ̂ ζ̂T , we first have

|β̂ − γ̂| = 1

2

∣∣∣ 1

τ̂tt(t̂c; y, p)
− 1

τ̂tt(t̂c;x, ξ)

∣∣∣
≤
∣∣∣ τ̂tt(t̂c; y, p)− τ̂tt(t̂c;x, ξ)

τ̂tt(t̂c; y, p)τ̂tt(t̂c;x, ξ)

∣∣∣. (A.68)

By Corollary 3.3.3, we have |τ̂tt(t̂c; y, p)− τ̂tt(t̂c;x, ξ)| ∼ O(
√

||p||). Consequently,

|β̂ − γ̂| ≤ O(||p||−
3
2 ). (A.69)

On the other hand, by using Corollary 3.3.3,

||ζ̂ − ϑ̂|| ≤ O(
√

||p||). (A.70)

Then

||Im(γ̂)ϑ̂(ϑ̂)T−Im(β̂)ζ̂ ζ̂T || ≤ ||Im(β̂)
(
ζ̂ ζ̂T − ϑ̂ϑ̂T

)
||+ ||Im(β̂ − γ̂)ϑ̂ϑ̂T ||

≤ O(
√

||p||). (A.71)
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Therefore,

QTΛ−1Q = (2Im(β̂)ζ̂ ζ̂T +O(
√
||p||))−1 ≈ (2Im(β̂)ζ̂ ζ̂T )−1. (A.72)

Similarly,

Ĵ2 = Im(β̂)ζ̂ ζ̂T (ŷ(t̂c) + x̂(t̂c))− Im(β̂)ζ̂ ζ̂T x̂(t̂c) + Im(γ̂)ϑ̂(ϑ̂)T x̂(t̂c)

= Im(β̂)ζ̂ ζ̂T (ŷ(t̂c) + x̂(t̂c)) +O(
√

||p||).

≈ Im(β̂)ζ̂ ζ̂T (ŷ(t̂c) + x̂(t̂c)). (A.73)

The central point rc becomes,

rc ≈ QTΛ−1QĴ2 ≈ (2Im(β̂)ζ̂ ζ̂T )−1Im(β̂)ζ̂ ζ̂T (ŷ(t̂c) + x̂(t̂c)) =
x̂(t̂c) + ŷ(t̂c)

2
. (A.74)

Equation (A.60) now becomes,

− Im(β̂)|ω − τ̂t(t̂c; y, p)− ζ̂T (r − ŷ(t̂c))|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)− (ϑ̂)T (r − x̂(t̂c))|2

= −Im(β̂)|ω − τ̂t(t̂c; y, p)|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)|2 − ||r − x̂(t̂c) + ŷ(t̂c)

2
||2
2Im(β̂)ζ̂ ζ̂T

+ ĴT2 (2Im(β̂)ζ̂ ζ̂T )−1Ĵ2 − Im(β̂)|ζ̂T ŷ(t̂c)|2 − Im(γ̂)|(ϑ̂)T x̂(t̂c)|2.
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Using equation (A.71),

ĴT2 (2Im(β̂)ζ̂ ζ̂T )−1Ĵ2 − Im(β̂)|ζ̂T ŷ(t̂c)|2 − Im(γ̂)|(ϑ̂)T x̂(t̂c)|2

≈ ||ŷ(t̂c) + x̂(t̂c)||2Im(β̂)ζ̂ ζ̂T

2

− ||ŷ(t̂c)||2Im(β̂)ζ̂ ζ̂T
− ||x̂(t̂c)||2Im(β̂)ζ̂ ζ̂T

= −||ŷ(t̂c)− x̂(t̂c)||2Im(β̂)ζ̂ ζ̂T

2

. (A.75)

Equation (A.60) now becomes,

− Im(β̂)|ω − τ̂t(t̂c; y, p)− ζ̂T (r − ŷ(t̂c))|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)− (ϑ̂)T (r − x̂(t̂c))|2

≈ −Im(β̂)|ω − τ̂t(t̂c; y, p)|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)|2

− ||r − x̂(t̂c) + ŷ(t̂c)

2
||2
2Im(β̂)ζ̂ ζ̂T

− Im(β̂)

2
||ŷ(t̂c)− x̂(t̂c)||2ζ̂ ζ̂T .

By applying the similar computation, the exponent of the last term in equation (3.107)

denoted as ĝ contains two O(1) terms.

Proof of Proposition 3.3.8

Proposition A.0.5. The function φ̂1 satisfies

φ̂1(t;x, ξ, y, p) =
1

2
||p̂(t)− ξ̂(t)||2Gpp +O

(
1√
||p||

)
. (A.76)

Proof. Using Lemma 3.3.5 for φ̂1(t),

φ̂1(t;x, ξ, y, p) = v(x̂(t))

(
1

2

||Ξ̂(t)||2

κ̂(t)2||p̂(t)||

)
.
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We then would like to explore the term ||p̂(t)− ξ̂(t)||2
Gpp(ŷ(t),p̂(t))

by taking advantage

of Gpp’s expression.

||p̂(t)− ξ̂(t)||2Gpp(ŷ(t),p̂(t)) = (p̂(t)− ξ̂(t))T
(
Gpp(ŷ(t), p̂(t))

)
(p̂(t)− ξ̂(t))

=
v(ŷ(t))

||p̂(t)||3
(p̂(t)− ξ̂(t))T

(
||p̂(t)||2I − p̂(t)p̂(t)T

)
(p̂(t)− ξ̂(t))

=
v(ŷ(t))

||p̂(t)||
(−ξ̂(t) + κ̂(t)p̂(t))T (p̂(t)− ξ̂(t))

=
v(ŷ(t))

||p̂(t)||
(−Ξ̂(t))T

(
(1− κ̂(t))p̂(t)− Ξ̂(t)

)
= v(ŷ(t))

||Ξ̂(t)||2

||p̂(t)||
. (A.77)

Then,

1

2
||p̂(t)− ξ̂(t)||2

Ĝpp
=
v(ŷ(t))

2

||Ξ̂(t)||2

||p̂(t)||
. (A.78)

Compare φ̂1(t) with equation (A.77),

v(x̂(t))

(
1

2

||Ξ̂(t)||2

κ̂(t)2||p̂(t)||

)
− 1

2
v(ŷ(t))

||Ξ̂(t)||2

||p̂(t)||
≈ −1

2

(
v(ŷ(t))− v(x̂(t))

κ̂(t)2

)
||Ξ̂(t)||2

||p̂(t)||

= O(||ŷ(t)− x̂(t)||). (A.79)

This is because κ̂(t) ∼ 1 + O(||p̂(t)||−
1
2 ) and Ξ̂(t) ∼ O(

√
||p̂(t)||) followed by ||p̂(t) −

ξ̂(t)|| ∼ O(||p||1/2) in Lemma 3.3.2.

Then the derivative φ̂1 becomes,

φ̂1(t;x, ξ, y, p) ≈
1

2
||p̂(t)− ξ̂(t)||2Gpp
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Proof of Proposition 3.3.10

Proposition A.0.6. There exists a linear map Ĵ (t̂c; y, p), such that

ŷ(t̂c)− x̂(t̂c)

p̂(t̂c)− ξ̂(t̂c)

 ≈ Ĵ (t̂c; y, p)

y − x

p− ξ

 . (A.80)

Proof. We consider (ŷ(t)−x̂(t), p̂(t)−ξ̂(t)) as a function about t and its initial condition

(y − x, p − ξ). We denote this initial condition as (∆x,∆ξ) and Ĵ (t; y, p) as the

dynamical variational system,

ŷ(t̂c)− x̂(t̂c; ∆x,∆ξ)

p̂(t̂c)− ξ̂(t̂c; ∆x,∆ξ)

 ≈ Ĵ (t̂c; y, p)

∆x
∆ξ

 . (A.81)

It is well known that Ĵ (t; y, p) satisfies,

dĴ (t)

dt
=

 Gxp(ŷ(t), p̂(t)) Gpp(ŷ(t), p̂(t))

−Gxx(ŷ(t), p̂(t)) −GTxp(ŷ(t), p̂(t))

 Ĵ (t), (A.82)

and its initial condition is an identity matrix,

Ĵ (0) = I2d. (A.83)
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By solving Ĵ (t), we can get

ŷ(t)− x̂(t; y − x, p− ξ)

p̂(t)− ξ̂(t; y − x, p− ξ)

 = Ĵ (t; y, p)

y − x

p− ξ

 . (A.84)

The transform Ĵ defined above is invertible due to the uniqueness of ODE system’s

solution.

Proof of Lemma 3.3.9

Lemma A.0.4. The result after taking the integral about ω can be approximated,

−
∫
ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p)ei(ω−τ̃t(t̃c;y,q))∆t̃0(x,η;y,q)ω2B̂(x, ξ, ω; y, p)B̃(x, η, ω; y, q)dω

= eiO(1)K(p, q, y)B̂(x, ξ; y, p, q)B̃(x, η; y, p, q)e
− i
2 ||ŷ(t̂c)−x̂(t̂c)||

2
Re(M̂(t̂c))

e
− i
2 ||ỹ(t̃c)−x̃(t̃c)||

2
Re(M̃(t̃c)) .

Proof. All terms containing ω in B̂(x, ξ, ω; y, p) (3.110) are as the following,

exp
(
−Im(β̂)|ω − τ̂t(t̂c; y, p)|2 − Im(γ̂)|ω − τ̂t(t̂c;x, ξ)|2

)
≈

exp

(
−Im(β̂)

(
2

(
ω − τ̂t(t̂c; y, p) + τ̂t(t̂c;x, ξ)

2

)2

+ (τ̂t(t̂c; y, p)− τ̂t(t̂c;x, ξ))
2

))

≈ e
−2Im(β̂)

(
ω− τ̂t(t̂c;y,p)+τ̂t(t̂c;x,ξ)2

)2
e−Im(β̂)|τ̂t(t̂c;y,p)−τ̂t(t̂c;x,ξ)|2 . (A.85)
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Similarly, for B̃,

exp
(
−Im(β̃)|ω − τ̃t(t̃c; y, q)|2 − Im(γ̃)|ω − τ̃t(t̃c;x, η)|2

)
≈ e

−2Im(β̃)

(
ω− τ̃t(t̃c;y,q)+τ̃t(t̃c;x,η)2

)2
e−Im(β̃)|τ̃t(t̃c;y,q)−τ̃t(t̃c;x,η)|2 . (A.86)

Combine the terms containing ω in equations (A.85) and (A.86) with −ω2, and denote

− ℵ(t̂c, t̃c;x, ξ, η, y, p, q) =
∫
dωe

−2Im(β̃)

(
ω− τ̃t(t̃c;y,q)+τ̃t(t̃c;x,η)2

)2
ω2

e
−2Im(β̂)

(
ω− τ̂t(t̂c;y,p)+τ̂t(t̂c;x,ξ)2

)2
ei(ω−τ̂t(t̂c;y,p))∆t̂0(x,ξ;y,p)ei(ω−τ̃t(t̃c;y,q))∆t̃0(x,η;y,q).

(A.87)

Then the target integral becomes,

−
∫
ei(ω−τ̂t(t̂0;y,p))∆t̂0(x,ξ;y,p)ei(ω−τ̃t(t̃c;y,q))∆t̃0(x,η;y,q)ω2B̂(x, ξ, ω; y, p)B̃(x, η, ω; y, q)dω

= ℵe−Im(β̃)|τ̃t(t̃c;y,q)−τ̃t(t̃c;x,η)|2e−Im(β̂)|τ̂t(t̂c;y,p)−τ̂t(t̂c;x,ξ)|2 , (A.88)

without considering the constant terms in B̂ and B̃. If we can approximate ℵ by the

product of a constant K(p, q, y), functions on the receiver side and functions on the

source side, then the proposition is proved.
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Compute the expression (A.87),

−ℵ(t̂c, t̃c;x, ξ, η, y, p, q) = e−iτ̂t(t̂c;y,p)∆t̂0(x,ξ;y,p)−iτ̃t(t̃c;y,p)∆t̃0(x,η;y,q)e
−2

Im(β̂)Im(β̃)S22
Im(β̂)+Im(β̃)∫

ω2eiω(∆t̂0(x,ξ;y,p)+∆t̃0(x,η;y,q))e−2(Im(β̂)+Im(β̃))(ω−S1)2dω,

(A.89)

where

S1(t̂c, t̃c;x, ξ, η, y, p, q) =

Im(β̂)

(
τ̂t(t̂c;y,p)+τ̂t(t̂c;x,ξ)

2

)
+ Im(β̃)

(
τ̃t(t̃c;y,q)+τ̃t(t̃c;x,η)

2

)
Im(β̂) + Im(β̃)

,

(A.90)

S2(t̂c, t̃c;x, ξ, η, y, p, q) =
τ̂t(t̂c; y, p) + τ̂t(t̂c;x, ξ)

2
− τ̃t(t̃c; y, q) + τ̃t(t̃c;x, η)

2
. (A.91)

We then have,

ℵ = e−iτ̂t(t̂c;y,p)∆t̂0(x,ξ;y,p)−iτ̃t(t̃c;y,p)∆t̃0(x,η;y,q)e
−2

Im(β̂)Im(β̃)S22
Im(β̂)+Im(β̃)

d2

eiS1te− t2

2Im(β̂+β̃)


dt2

∣∣∣
t=∆t̂0(x,ξ;y,p)+∆t̃0(x,η;y,q)

.

(A.92)

Proposition A.0.7. Both S1 and S2 can be approximated as constants only related to
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the fixed parameter (y, p) and (y, q), that is

S1(t̂c, t̃c;x, ξ, η, y, p, q) ≈
Im(β̂)

(
τ̂t(t̂c; y, p)

)
+ Im(β̃)

(
τ̃t(t̃c; y, q)

)
Im(β̂) + Im(β̃)

,

S2(t̂c, t̃c;x, ξ, η, y, p, q) ≈ τ̂t(t̂c; y, p)− τ̃t(t̃c; y, q).

Proof. For S1,

S1(t̂c, t̃c;x, ξ, η, y, p, q) =
Im(β̂)

(
τ̂t(t̂c; y, p)

)
+ Im(β̃)

(
τ̃t(t̃c; y, q)

)
Im(β̂) + Im(β̃)

+
Im(β̂)(τ̂t(t̂c;x, ξ)− τ̂t(t̂c; y, p)) + Im(β̃)(τ̃t(t̃c;x, η)− τ̃t(t̃c; y, q))

2Im(β̂) + 2Im(β̃)

=
Im(β̂)

(
τ̂t(t̂c; y, p)

)
+ Im(β̃)

(
τ̃t(t̃c; y, q)

)
Im(β̂) + Im(β̃)

+O(
√

||p̂t||) +O(
√

||q̃t||)

≈
Im(β̂)

(
τ̂t(t̂c; y, p)

)
+ Im(β̃)

(
τ̃t(t̃c; y, q)

)
Im(β̂) + Im(β̃)

, (A.93)

since the term in the last step above is about O(||p||+ ||q||), and

Im(β̂)(τ̂t(t̂c;x, ξ)− τ̂t(t̂c; y, p)) + Im(β̃)(τ̃t(t̃c;x, η)− τ̃t(t̃c; y, q))

2Im(β̂) + 2Im(β̃)

≤ |τ̂t(t̂c;x, ξ)− τ̂t(t̂c; y, p)|+ |(τ̃t(t̃c;x, η)− τ̃t(t̃c; y, q)| ≤ O(
√
||p̂t||+ ||q̃t||). (A.94)

S1(t̂c, t̃c;x, ξ, η, y, p, q) ≈
Im(β̂)

(
τ̂t(t̂c; y, p)

)
+ Im(β̃)

(
τ̃t(t̃c; y, q)

)
Im(β̂) + Im(β̃)

. (A.95)

For S2,

S2(t̂c, t̃c;x, ξ, η, y, p, q) = τ̂t(t̂c; y, p)− τ̃t(t̃c; y, q) +O(
√

||p||), (A.96)

due to the fact that |τ̂t(t̂c; y, p) − τ̂t(t̂c;x, ξ)| = v(y)||p|| − v(x)||ξ|| and ||p − ξ|| ∼
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O(
√

||p||). Then,

e
−2

Im(β̂)Im(β̃)S22
Im(β̂)+Im(β̃) ≈ e

−2
Im(β̂)Im(β̃)(τ̂t(t̂c;y,p)−τ̃t(t̃c;y,q))2

Im(β̂)+Im(β̃) eO(1), (A.97)

since Im(β̂) ∼ O( 1
||p||) and Im(β̃) ∼ O( 1

||q||). We then approximate S2 by

S2(t̂c, t̃c;x, ξ, η, y, p, q) ≈ τ̂t(t̂c; y, p)− τ̃t(t̃c; y, q). (A.98)

We also obtain |τ̂t(t̂c; y, p)− τ̃t(t̃c; y, q)| is around O(max(
√

||p||,
√

||q||)).

Proposition A.0.8.

ℵ ≈ −S21e
−|∆t̂0(x,ξ;y,p)|2

4Im(β̂+β̃) e
−|∆t̃0(x,η;y,q)|2

4Im(β̂+β̃) e
−2

Im(β̂)Im(β̃)(S2)
2

Im(β̂)+Im(β̃) (A.99)

Proof. The second order time derivative in equation (A.92),

(iS1 − ∆t̂0(x, ξ; y, p) + ∆t̃0(x, η; y, q)

Im(β̂ + β̃)

)2

− 1

Im(β̂ + β̃)


eiS1(∆t̂0(x,ξ;y,p)+∆t̃0(x,η;y,q))e

−|∆t̂0(x,ξ;y,p)+∆t̃0(x,η;y,q)|2

2(Im(β̂+β̃)) .

We now conduct some asymptotic analysis about the terms in the above equation,

S1 ∼ O(||p||+ ||q||), 1

Im(β̂ + β̃)
∼ O(||p||+ ||q||), (A.100)
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since β̂ = 1
2τ̂tt(t̂c;y,p)

and β̃ = 1
2τ̃tt(t̃c;y,q)

. On the other hand,

∆t̂0(x, ξ; y, p) + ∆t̃0(x, η; y, q)

Im(β̂ + β̃)
∼ O

(
1√
||p||

+
1√
||q||

)
O(||p||+ ||q||). (A.101)

Moreover, we have

−|∆t̂0(x, ξ; y, p)−∆t̃0(x, η; y, q)|2

2(Im(β̂ + β̃))
= −|∆t̃0(x, η; y, q)|2

4Im(β̂ + β̃)
− |∆t̂0(x, ξ; y, p)|2

4Im(β̂ + β̃)

+
|∆t̂0(x, ξ; y, p)−∆t̃0(x, η; y, q)|2

4Im(β̂ + β̃)

= −|∆t̃0(x, η; y, q)|2

4Im(β̂ + β̃)
− |∆t̂0(x, ξ; y, p)|2

4Im(β̂ + β̃)
+O(1).

Consequently,

ℵ ≈ −S21e
i(S1−τ̂t)(∆t̂0(x,ξ;y,p))ei(S1−τ̃t)(∆t̃0(x,η;y,q))e

−|∆t̂0(x,ξ;y,p)|2

4Im(β̂+β̃)

e
−|∆t̃0(x,η;y,q)|2

4Im(β̂+β̃) e
−2

Im(β̂)Im(β̃)S22
Im(β̂)+Im(β̃) . (A.102)

With respect to two real-valued phase terms in equation (A.102),

ei(S1−τ̂t)(∆t̂0(x,ξ;y,p)) = e
i
Im(β̃)(τ̂t(t̂c;y,p)−τ̃t(t̃c;y,q))

Im(β̂+β̃)
∆t̂0(x,ξ;y,p)

∼ eiO(1), (A.103)

and

ei(S1−τ̃t)(∆t̃0(x,η;y,q)) ∼ eiO(1). (A.104)
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To summarize,

ℵ ≈ −S21e
−|∆t̂0(x,ξ;y,p)|2

4Im(β̂+β̃) e
−|∆t̃0(x,η;y,q)|2

4Im(β̂+β̃) e
−2

Im(β̂)Im(β̃)(τ̂t(t̂c;y,p)−τ̃t(t̃c;y,q))2

Im(β̂)+Im(β̃)

≈ K(p, q, y)e
−|∆t̂0(x,ξ;y,p)|2

4Im(β̂+β̃) e
−|∆t̃0(x,η;y,q)|2

4Im(β̂+β̃) . (A.105)

This is exactly the goal (A.88) we want to achieve.
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Appendix B

Proof in Elastic Wave

Proof of Positive Definite Hessian Matrix

Theorem B.0.1. The imaginary part of the Hessian for every beam preserves the

S.P.D property after reflection, if it is neither grazing ray nor evanescent wave after

reflection.

Proof. In this appendix, we consider the reflection happens on the surface {x =

(x, y, z) : x = 0} without the loss of generality. We denote the phase function of

both P and S-wave as τ . The same rule can be applied to the velocity c. To simplify

the presentation, all Hessian matrices mentioned below are about the imaginary part

only, if not specified. We assume the reflection point is x0 = (x0, y0, z0), and all terms

below are defined at this point, if not specified. The last simplification is that we follow

the positive Hamiltonian throughout this proof, and the negative Hamiltonian will be

treated similarly.
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Transformation between Hessian matrices

We first define a new matrix M̃ at the reflection point

M̃ =


τtt τty τtz

τty τyy τyz

τtz τyz τzz

 . (B.1)

Therefore, we can define a transform between the Hessian matrix M and M̃ following

the certain eikonal equation.

ℵ(M̃) =


τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

 =M. (B.2)

The terms involved with the variable x are defined by following the certain eikonal

equation and in the way shown in Section 4.5. Moreover, ℵP means that the transform

follows the P-wave eikonal equation and ℵS follows the S-wave eikonal equation.

If we can prove the transform ℵ and its inverse transform ℵ−1 preserve the S.P.D.

property, then the theorem is proved sinceMnew = ℵP (M̃) = ℵP (ℵ−1
S (M)) orMnew =

ℵS(M̃) = ℵS(ℵ−1
P (M)). To prove this, instead of considering two types of matrix in

equation (B.2) directly, we would like to base our proof first on the complete matrix

Mc.

Mc =

 τtt ∇τTt

∇τt M

 ,
where ∇τt is the gradient of the phase function’s time derivative τt and M is the
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original Hessian. Both M̃ and M are submatrix of Mc.

Proof by Contradiction: ∇c = 0

We start with the simpler case, i.e. ∇c = 0 at the point x0.

Lemma B.0.5. If ∇c vanishes at x0, then Mc is a positive semi-definite matrix and

with rank-three.

Proof. We write the complete matrix Mc first,

 τtt ∇τTt

∇τt M

 =

c2∇τT|∇τ |M
∇τ
|∇τ | c∇τ

TM
|∇τ |

cM∇τ
|∇τ | M

 . (B.3)

To show that the matrix Mc is positive semi-definite, we use v = (α,p)T ,

vTMcv = α2c2
∇τT

|∇τ |
M

∇τ
|∇τ |

+ 2αc
∇τTMp

|∇τ |
+ pTMp, (B.4)

=

(
αc

∇τ
|∇τ |

+ p

)T
M

(
αc

∇τ
|∇τ |

+ p

)
. (B.5)

Equation (B.5) shows that the null space of Mc is an one-dimensional space and its

basis is ṽ,

ṽ =


1√
1+c2

− c√
1+c2

∇τ
|∇τ |

 . (B.6)

The assumption that there are no grazing rays guarantees that τx 6= 0 for both beams

before and after reflection.
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We now start to prove the transform ℵ and its inverse transform preserve the S.P.D.

property when ∇c = 0. In other words, if M is S.P.D, then M̃ = ℵ−1(M) is S.P.D.

On the other hand, if we have M̃ is S.P.D, then ℵ(M̃) is also S.P.D. for both P-wave

and S-wave eikonal equations.

Case I: M̃ = ℵ−1(M)

There are several steps involved to prove M̃ is S.P.D. We first consider M̃ is a submatrix

of the corresponding complete matrix Mc. Then we use Lemma B.0.5 to show this

submatrix is S.P.D.

For any vector u = (u1, u2, u3) ∈ R3,

uT M̃u =

(
u1 0 u2 u3

)
Mc



u1

0

u2

u3


, (B.7)

if the reflection happens on the surface {x = (x, y, z) : x = 0}. Since there’s only a

single basis ṽ in the null space of the matrixMc, all vectors in the form (u1, 0, u2, u3)
T

is not parallel to ṽ. Moreover, the complete matrix Mc is a positive semi-definite

matrix. Then for any vector {u = (u1, · · · , u4) : u2 = 0}, equation (B.7) will be

positive. Consequently, uT M̃u > 0 for any u and M̃ is S.P.D.

Case 2: M = ℵ(M̃)

Similar idea will be applied here. The Hessian M firstly is treated as a submatrix

of the complete matrix Mc and then use the fact that Mc is a positive semi-definite
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matrix.

In terms of the transform M = ℵ(M̃), for any vector u ∈ R3,

uTMu =

(
0 uT

)
Mc

0

u

 . (B.8)

Obviously, all the vectors concerned above (0,u)t is not in the null space of the complete

matrix Mc. In other words, for any vector (0,u),

(0,u)T 6= βṽ, ∀β ∈ R6=0 (B.9)

Consequently, uTMu > 0 for any u and M is positive definite.

Proof by Contradiction: ∇c 6= 0

We will follow the similar path as the constant velocity case. First, we prove the

imaginary part of the complete matrix Mc is a positive semi-definite matrix.

Lemma B.0.6. The imaginary part of the complete matrix Mc is a positive semi-

definite matrix and with rank-three. Moreover, the single basis ṽ in its null space is

ṽ =

 1

−c ∇τ
|∇τ |

 (B.10)
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Proof. We first prove ṽ is in the null space

Im(Mc) =

c2
∇τT Im(M)∇τ

|∇τ |2
c
∇τT Im(M)

|∇τ |

c
Im(M)∇τ

|∇τ | Im(M)

 (B.11)

Here, although the gradient of the velocity ∇c 6= 0, this will only affect the real part.

Therefore, we can apply the same argument in Lemma B.0.5 to prove.

To prove that the transform ℵ and its inverse transform will preserve S.P.D property,

we can use the same idea in the case ∇c = 0. The reason is that we only care about

the imaginary part of the matrix and their imaginary parts are exactly the same thing

as the ones in constant velocity case.

FDTD

As we mentioned previously, the reference solution is generated by the FDTD solution

with the staggered grid. Its correctness will be checked here.

To test this, we compare the FDTD solution with the exact solution in the general

boundary value problem. If this more general problem is solved correctly, then our

reference solution is justified. The parameters used here are,

λ = 2;

µ = 1;

ρ = 1;
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while the initial condition f here is zero vector
−→
0 , and the initial velocity g is


0

8π cos(8πt) sin(8πx)

0


With the appropriate boundary condition, we know its exact solution is sin(8πt) sin(8πx).

We compare the result at T = 0.8, In Figure B.1, the blue line is the correct result,

0 0.1 0.2 0.3 0.4 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure B.1: FDTD solution justify.

while the red star curve is the FDTD result with mesh size h = 0.01. Furthermore, we

display its convergence rate in Figure B.2.

We start the mesh size from 1
50 to 1

400 and each time the grid size is reduced by half.

The blue line in Figure B.2 shows the logarithm of L2-error on each mesh size, while

the red star line is a linear function with the slope log(1/2) for comparison.
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Figure B.2: Convergence Rate of FDTD algorithm
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