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ABSTRACT

MODELING OF CHARGE INJECTION AND TRANSPORT IN ORGANIC
SEMICONDUCTORS WITH APPLICATIONS TO CONDUCTING ATOMIC FORCE

MICROSCOPY

By

Kanokkorn Pimcharoen

Charge injection and transport in organic semiconductors are key factors controlling the

device performance, and have been intensively investigated by conductive atomic force mi-

croscope (c-AFM) experiments in the space-charge-limited current (SCLC) regime. The

simplified SCLC theory, despite being widely used to describe the unipolar SCLC, has lim-

itations in explaining the current-voltage responses of c-AFM measurements due to two

major reasons. First, the conventional planar model does not include the effect of current

spreading commonly found beneath the conducting tip. Secondly, the theory only considers

drift transport, and assumes that charge diffusion can be neglected, causing discrepancies

in its predictions of transport behaviors that will be discussed thoroughly here. The focus

of this thesis is on developing numerical models for hole-only devices with the full descrip-

tion of drift and diffusion transport mechanisms, which is called the drift-diffusion (DD-)

SCLC model. The applications of the models in the analysis of c-AFM experimental data

are presented.

We generalize the theory which takes both drift and diffusion currents into account, lead-

ing to more realistic DD-SCLC models for several applications. We then develop numerical

approaches that efficiently simulate the hole-only SCLCs for one-, two-, and three- dimen-

sional systems. In the case of fully 3-D calculations, the DD-SCLC model is able to treat

inhomogeneous systems including spatially varying trap distributions, nanoscale morpholo-

gies, and the tip-plane (c-AFM) geometry. In the theoretical studies, the device simulations



elucidate a number of crucial factors that affect the charge transport in the SCLC regime, in-

cluding charge diffusion, traps, as well as, nanoscale morphology. We introduce the method-

ology of characterizing the current-voltage responses from c-AFM measurements, which has

been used in elucidating the experiments on semiconductor poly(3-hexylthiophene) (P3HT)

thin films that develop fibrous morphologies after thermal annealing.



Vita brevis,
ars longa,

occasio praeceps,
experimentum periculosum,

iudicium difficile.

— Hippocrates; c.460-c.370 BC
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Chapter 1

Introduction

1.1 Motivation

With the drastic growth of global energy consumption as well as worldwide environmental

concern, renewable energy has drawn an extensive interest in the past decades. Solar energy

is widely recognized as one of the most essential energy sources for the future sustainable

economy. Photovoltaic energy conversion has been developing to harvest solar energy and to

efficiently generate electricity. As well as well-known technologies, such as the conventional

inorganic and the emerging perovskite photovoltaic devices, organic photovoltaic (OPV)

devices are promising, owing to several attractive features [2, 3, 4, 5, 6, 7, 8]. The fabrication

processes of OPV devices involve low-temperature and low-cost deposition techniques that

easily translate to large-scale production. Since their manufacturing speed is very high and

their thermal budget is very low, the OPV devices possess advantages over their inorganic

counterparts in the aspect of ecological footprint and energy payback time, meaning that

organic materials are more environment-friendly and they need shorter operation time to

recover the energy spent in their fabrications, respectively. Furthermore, OPV devices are

light weight, flexible and semi-transparent, offering versatile applications. Over the course

of time, the power conversion efficiency of OPVs has vastly improved.

Since the basic structure of the OPVs was established as early as the mid-1950s consisted
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of a single layer of organic semiconductor with electrodes attached to its top and bottom

surfaces [9], we observed the improvement of the device performance with respect to the

large variation of the organic materials and the electrodes [10, 11, 12, 13, 14, 15, 16]. After

that, double layered OPV devices were introduced in 1986 [17], and the bulk heterojunction

(BHJ) design came about in 1995 [18]. It was found that the new structures can boost the

performance of OPV devices greatly. Many other works have been done in this direction

to achieve ever better optimization in OPV structures and morphologies, yielding over 10%

power conversion efficiency recently [19,20]. However, the underlying mechanisms regarding

how the device operates is not yet well understood due to the large variation in the device

materials and complex interactions among them. A clear understanding of this matter

will not only push forward the study of OPV materials, but will also shed light on the

investigation of other related devices, such as organic light emitting diodes (OLEDs) [21,22,

23] and organic field effect transistors (OFETs) [24,25].

Charge carrier transport is crucial in organic semiconductors, and has been investigated

broadly via various methods such as time-of-flight (TOF) methods, field-effect transistor

(FET) configurations, pulse-radiolysis time-resolved microwave conductivity (PR-TRMC),

as well as the measurement of current-voltage characteristics in the space-charge limited

current (SCLC) regime [26]. Among them, the method involving the SCLC is particularly

interesting because of its simplicity and flexibility. The experiment is based on the measure-

ment of SCLC in a diode configuration, the so called planar (plane-parallel) geometry, in

which an organic layer is fabricated on the substrate in contact with top and bottom elec-

trodes [26, 27, 28]. With the appropriate analytical and/or numerical model, these current-

voltage data in the SCLC regime can be analyzed to determine the effective carrier mobility,

as well as some other physical parameters, such as energy barriers, trap density, and trap
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energy states.

Theoretically, the drift-diffusion (DD) model describing bulk transport of charge carriers

in the SCLC regime is governed by three basic equations, including Poisson’s equation, the

continuity equation at steady state, and the drift-diffusion equations of the charge carriers.

The early theoretical work is vastly simplified by ignoring the contribution of charge diffusion

and only considering the drift driven transport, such that the theoretical model can be solved

analytically. The analytical expressions describing the dependences of trap-free SCLC and

trap-limited SCLC on applied voltage in a planar geometry are rather simple, and have been

widely used to determine charge carrier mobilities in experiments [26,27,28]. The simplified

SCLC theory for the planar-flow current will be reviewed in section 2.3.

Conductive atomic force microscope (c-AFM) has been used extensively to study organic

semiconductor devices in the past decade [29, 30, 31, 32, 33, 34]. One of the efforts is to use

the local current-voltage data measured by c-AFM to determine the local charge carrier

mobility at specific locations of the film. Many studies indicated the importance of c-AFM

tip geometry, and the existing analytical solutions for the conventional planar geometry, that

is the Mott-Gurney equation, can no longer be applied [29, 35]. Reid et al. [32] introduced

a semi-empirical formula that made a correction due to the tip geometry, which will be

reviewed in section 2.4.

However, the topic of SCLC in an organic semiconductor is more complicated than that

described by the semi-empirical formula of [32] and its predecessor, the Mott-Gurney equa-

tion. This is due to the fact that in the results of the simplified SCLC model, the effect

of charge diffusion is excluded from the theory. In many situations ignoring the diffusion

current can lead to the misinterpretation of the experiment results. With this consideration

in mind, the full description of the DD-SCLC model is not only crucial to characterize SCLC
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in experiments, but also to understand the effect of charge diffusion on the simplified SCLC

model.

1.2 Overview

The central focus of this dissertation is to develop the computational methods of DD-SCLC

model to describe charge carrier transport in hole injection systems. We will extend the

simplified model to consider the mechanism of charge diffusion and the inhomogeneity of

devices including the c-AFM tip geometry, nanoscale morphologies, and spatially-varying

trap distributions. This can be seen as a building block to gain more insight into the

SCLC transport and to better characterize the experiments. To do so, this dissertation is

constructed as follows.

Chapter 2 explains the theory of charge carrier injection in an organic semiconductor,

emphasizing the SCLC model for hole-only devices. To gain insight into the current stage of

the SCLC model, this chapter will give an overview of the theoretical works on the simplified

SCLC model that have been done in the past, including the simplified model of trap-free

SCLC and trap-limited SCLC in a planar geometry, as well as the semi-empirical model of

trap-free SCLC in a tip-plane geometry.

In chapter 3, we present our development in the DD-SCLC model for hole-only devices.

The model will be described in detail, along with the numerical methods used to achieve

numerical solutions of the models in one-, two- and three- dimensional systems. All one-, two-

and three- dimensional models are verified to be consistent with each other, and validated

against the simplified SCLC theory in the drift-dominated SCLC regime.

In chapter 4, we proceed to the simulation of hole-only devices in the SCLC regime
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using the numerical tools we successfully developed. Theoretical study on various topics of

SCLC will be presented, including the diffusion effect in planar and tip-plane geometries, the

trap effect in planar and tip-plane geometries, as well as morphological effects, particularly in

the tip-plane geometry. The fibrous morphology of semi-crystaline poly(3-hexylthiophene)

(P3HT) thin films will be used as a model system to demonstrate the mechanism enabling

c-AFM to visualize the surface morphology in experiments [1, 31, 36, 37, 38]. The model

morphologies used in the studies are generated by Dr. Daniel Olds.

In chapter 5, two- and three- dimensional DD-SCLC models will be used to elucidate the

c-AFM experiments carried out by Professor Zhang’s group at Michigan State University [1].

The experiment aims to investigate the effect of thermal annealing on the morphology of

P3HT thin films. The statistical variation in local electrical conductivity of P3HT films was

characterized by measuring the c-AFM current-voltage responses across the film surface.

These current-voltage data are analyzed using the two- and three- dimensional DD-SCLC

models, in which the effect of current spreading beneath the c-AFM tip, the effect of traps,

the mobility anisotropy and the nanoscale morphology are incorporated.

Chapter 6 presents the conclusions of this dissertation and an outlook on future research

directions.
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Chapter 2

Theory of Charge Carrier Injection -

Background

2.1 Charge Injection in Organic Semiconductors

Organic semiconductors are typically wide band gap semiconductors, where the charge carrier

concentration in thermal equilibrium at room temperature is very low, and so is its electrical

conductivity. The shortage of charge carriers can be overcome by incorporating an extrinsic

source of free charges, including doping, dissociation of photogenerated electron-hole pairs

(excitons), and charge injection at the electrodes. The topic of charge injection has drawn

a great deal of attention, due to its ability to probe the intrinsic properties of the material,

such as charge carrier mobility, defects, and traps.

Charge injection experiments are often done in the dark environment to eliminate the

exciton effect. Dark charge injection is widely used to investigate electronic properties of

organic semiconductors [27, 29, 31, 35, 39, 40, 41, 42]. The experiments involve the measure-

ment of current-voltage response in a diode device configuration (planar or plane-parallel

geometry), in which an organic layer is fabricated on the substrate in contact with top and

bottom electrodes. When voltage is applied, the amount of electric current flowing through

the organic semiconductor device primarily depends on two basic processes: (i) the charge

6



injection at the electrode/organic-semiconductor interfaces, and (ii) the charge transport in

the bulk organic semiconductor. Two mechanisms thus control the electric current in the two

distinct regimes: injection-limited current (ILC), and space-charge-limited current (SCLC),

respectively.

In the ILC regime, the dark injection current is controlled by the efficiency of charge

injection at the electrodes. An injection barrier often occurs when a metal electrode comes

into contact with an organic semiconductor, preventing charges from being injected into the

organic material, hence suppressing the current. In order to resolve this limitation, one can

select proper electrodes so that the injection barrier at the electrode/organic-semiconductor

contact is negligible. The ideal injecting contact is essentially an unlimited charge reservoir.

This contact, known as ohmic contact, can eliminate the effect of ILC.

On the other hand, in the SCLC regime, the dark injection current is governed by charge

carrier transport. In general, organic semiconductors are highly disordered, especially in

the amorphous state, and hence the charge carrier mobility is much smaller than that of

conventional inorganic semiconductors. When charges are injected into the material, they

do not spread out efficiently. Instead, they form a cloud of space charge around the contact.

The presence of space charge distorts the local electric field strength, and particularly reduces

the electric field at the injecting electrode. When the electric field strength generated by

the induced space charges is in equilibrium with the electric field strength from the applied

voltage, the device reaches steady state with constant electric current, i.e., the so-called

SCLC.

In addition to space charge, the current in the SCLC regime can also be affected by other

bulk properties of the organic semiconductor, including spatially-varying charge mobility,

nanoscale morphologies, as well as trap states. A complete model including all the relevant
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bulk properties can provide more insights into the underlying charge transport mechanism in

organic semiconductors. In the rest of this chapter, we will review the simplified theoretical

model considering only the space charge effect. An extended theoretical model will be the

focus of the later chapter.

2.2 Fundamental Equations to Describe SCLC in Hole

Injection System

To eliminate the interaction of electrons and holes, charge injection experiments are mostly

unipolar, where one carrier type is dominant. Whether it is the injection of electrons or holes

depends on the energy level alignment of the devices, the energy level mismatch between the

device material and the metal electrode in particular. The ground-state electronic structure

of organic semiconductors is described by the sequence of molecular orbitals filled by elec-

trons up to the highest occupied molecular orbital (HOMO), and from the lowest unoccupied

molecular orbital (LUMO) onward are empty. In analogy to the traditional band structure

of inorganic semiconductors, the HOMO and LUMO energies take the role of valance and

conduction band edges, respectively. When an electron is injected to the system, it will

occupy that empty orbital at the lowest energy level, i.e., the so called LUMO. Similarly,

the injection of a hole is equivalent to an electron being removed from the HOMO and ex-

tracted at the electrode. Since the topic of hole injection system is the central focus of this

dissertation, the following derivations and notations will be emphasized on hole transport,

and note that the reverse will be equally true for electron injection devices. A thorough

discussion of an electron injection device has been provided by Lampert and Mark [43].

The behavior of hole SCLC at steady state is governed by Poisson’s equation, the conti-
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nuity equation in steady state, and the drift-diffusion equation:

(ε/q)(~∇ · ~E) = p− po, (2.1)

~∇ · ~Jp = 0, (2.2)

~Jp = ~Jp,dr + ~Jp,di = qµppf ~E − qDp~∇pf , (2.3)

where ε is the dielectric constant, q is the fundamental charge, µp is the effective hole mobility,

and Dp is the hole diffusion coefficient.

Poisson’s equation (2.1) describes the instantaneous electric field produced by space

charges in the system as shown on the right hand side of the equation. po = pfo + pto

is the total hole density in thermal equilibrium, consisting of the free hole density pfo and

trapped hole density pto. After voltage is applied, a number of holes are injected into the

system, thus increasing the total hole density p. Similarly, p(~r) = pf (~r) + pt(~r), where pf

and pt are the actual, spatially varying free and trapped hole density in the steady-state

injection. As discussed in section 2.1, the pristine (undoped) organic semiconductor has a

relatively low free carrier concentration at thermal equilibrium, and most of the charges that

carry the current must be injected. Therefore, we can safely omit the thermal equilibrium

hole density p0 from Poisson’s equation, such that p− po ' p.

In addition, the transport of charges can be described by the hole current density Jp.

There are two types of hole current, drift current Jp,dr and diffusion current Jp,di, driven by

electric field ~E and the gradient of free hole density, respectively. Both of them are considered

in the drift-diffusion equation (2.3), while the total current density is conserved according

to the continuity equation (2.2).
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By simultaneously solving the set of three governing equations (2.1)-(2.3) together with

appropriate boundary conditions, the theoretical current-voltage characteristics of hole-only

devices can be determined, as well as the theoretical profiles of the electric field and hole

carrier density which can not be measured directly from experiments. We will first intro-

duce the closed form solution to the simplified equations, and dedicate the next chapter to

extensive computational studies of the problem in its complete unsimplified form. As we

shall see, the comparison between the two methods demonstrates the importance of the full

computation.

2.3 The Simplified Theory of SCLC: Planar (Plane-

Parallel) Geometry

The simplified SCLC theory of unipolar injection is based on two fundamental assumptions

[43]: (i) the injecting contact is ohmic, and (ii) the diffusion current is negligible.

In the first assumption, the ohmic contact is defined as a low-resistance contact, behaving

as an infinite source of charges available for injection. As we discussed in section 2.1, the

electric current of the dark charge injection is controlled by either the injection barrier at the

electrode, or space charges in bulk organic semiconductors. By applying the approximation

(i), the simplified theory is independent of the contact properties at the electrode/organic-

semiconductor interface, and only the bulk transport properties are considered.

Next, the assumption (ii) is directly related to the charge transport. When the electric

field is sufficiently strong, the drift current dominates, and we can safely omit the contribu-

tion of charge diffusion. It is also important to note that the two assumptions do not hold

near contacts where the diffusion current is significant. Therefore, while the theory provides
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a good approximation to the charge transport in bulk, namely the current-voltage charac-

teristics of organic semiconductor devices, one shall bear in mind that the result contains

approximations that are invalid near the electrodes.

In this section, the current-voltage characteristics of the hole-only devices in planar ge-

ometries are investigated, where the fully three-dimensional partial differential equations

(PDEs) can be reduced to one-dimensional ordinary differential equations (ODEs). We will

consider an organic semiconductor thin film of thickness L, in which holes are injected into

the device at the anode x = 0, and extracted from the device at the cathode x = L. In order

to do so, the device is grounded at the anode ψ(0) = 0, and negative bias is applied at the

cathode ψ(L) = −V . Based on the assumptions above, the set of governing equations can

be written as

(ε/q)(dE/dx) = pf + pt, (2.4)

dJp/dx = 0 or Jp = constant, (2.5)

Jp = qµppfE , (2.6)

where ~E = E x̂ and ~Jp = Jpx̂. Note an additional boundary condition arises from assumption

(i). In order to have finite current yet infinite charge density at the injecting electrode, the

electric field must vanish there, so that

E = 0 at the injecting electrode. (2.7)

This is the mathematical representation of an ohmic contact for the simplified SCLC theory.

Next, the problem of SCLC in the planar device geometry will be solved using the simplest
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model where the device is assumed to be free of traps. More realistic solution will be given

later which takes into account device traps that assume exponentially distributed density of

trap states.

2.3.1 Trap-Free SCLC

The simplest model of unipolar SCLC does not consider traps, such that pt = 0. Substituting

the free hole density pf from Poisson’s equation (2.4) into equation (2.6), we can derive the

drift current as:

Jp = εµpE(dE/dx) = (εµp/2)(dE2/dx) ⇒ dE2/dx = 2Jp/εµp. (2.8)

The general solution has the form

E2(x) = ax+ b. (2.9)

Applying the ohmic boundary condition at the injecting electrode (in eq.(2.7)), we get

E(x) =
√
ax1/2. (2.10)

To calculate the electric potential across the device, this equation may be integrated as

follows.

ψ(x) = −
∫
E(x)dx = −(2/3)

√
ax3/2 + c (2.11)

It is important to note that this electric potential is based on the flat band condition, where

there are no energy level shifts near the interface at which metal and organic semiconductor
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come into contact. However, the validity of this flat band picture needs to be thoroughly

examined, especially when the injecting electrode is ohmic. In analogy to an inorganic

semiconductor picture, when forming an ohmic contact at short-circuit condition (V = 0),

charge transfer from the ohmic electrode into the organic semiconductor occurs, resulting in

the formation of a space-charge layer near the contact at equilibrium. The contact potential

then influences the bending of the valance band edge, i.e., the so called HOMO band edge in

the case of organic semiconductors. The simplified theory clearly neglects the band bending

condition. Nevertheless it remains consistent with the initial assumption to exclude contact

behavior. Applying the boundary conditions ψ(x = 0) = 0 and ψ(x = L) = −V , the integral

constants can be determined as

a = (9/8)(V 2/L3) and c = 0. (2.12)

Substituting the constant a into the solution (2.10) and the combined differential equation

(2.8), we have the hole current

Jp =
9

8
εµp

V 2

L3
, (2.13)

which is known as Mott-Gurney equation, or the Child Law for unipolar SCLC [43]. The trap-

free SCLC can be observed as a slope 2 regime in a LogJp − LogV plot. This characteristic

is clearly observed in various unipolar injection experiments, and can be used to evaluate

the effective charge carrier mobility of organic semiconductors [27, 39,40,41,42].

Often the anode and cathode are made of different materials with different work functions,

leading to a built-in field across the device. Consider a hole-only device with asymmetric

contacts, such that the anode is ohmic while the cathode is non-ohmic with barrier potential

equivalent to built-in potential Vbi. In the high voltage regime V > Vbi, as suggested by
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Lampert and Mark [43], equation (2.13) shall be modified to handle this case by replacing

V with V − Vbi.

The equations for the electric field, the electric potential, as well as the hole density can

be derived as follows,

E(x)

EΩ
=

3

2

(x
L

)1/2
,

ψ(x)

−V
=
(x
L

)3/2
,

pf (x)

p̄f
=

1

2

(x
L

)−1/2
, (2.14)

where EΩ is the spatial average of the electric field which is in the form of the ohmic field,

EΩ = (1/L)

∫ L

0
E(x)dx = V/L, (2.15)

and p̄f is the spatial average of the hole carrier density,

p̄f = (1/L)

∫ L

0
pf (x)dx = (3/2)(εV/qL2), (2.16)

2.3.2 SCLC with The Exponential Distribution of Trap States

Trap states are commonly observed in pristine organic semiconductors with poor crystallinity,

and charge transport is often hindered by the presence of such traps. Because of the struc-

tural disorder in organic semiconductors, traps do not have a single well-defined energy state.

Rather a Gaussian distribution is employed to describe a single set of traps, whereas an ex-

ponential distribution is often used for multiple sets of traps [43]. Recently, Campbell et al.

proposed an alternative trap model for electrons and holes as the tail states of the approx-

imately Gaussian distributed LUMO and HOMO density of states respectively [44]. These

tail states are pseudo-exponential: the further the tail is away from the center of the distri-
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bution toward the energy gap, the deeper the trap it represents. An exponential distribution

is then a reasonable approximation for the distribution of traps in organic semiconductors.

The field-independent exponentially distributed traps are characterized by the total trap

density Nt and the trap energy Et, which represents their energetic depth for thermally

activated detrapping, Et = kbTt where kb is Boltzmann’s constant. The distribution of the

trap states, i.e., the density of hole trapping states per unit energy, is defined as

Gt(E) = (Nt/kbTt) e
(−E/kbTt). (2.17)

The density of trapped holes is

pt(x) =

∫ ∞
Ef (x)

Gt(E)dE = Ntexp(−Ef (x)/kbTt), (2.18)

where Ef (x) is the quasi Fermi level of holes at distance x from the anode. As long as

the temperature is sufficiently low (T << Ef (x)/kb), all the energy states below Ef (x)

are occupied, while those above Ef (x) are empty. Assuming Ef (x) >> kbT , the free hole

density is approximately

pf (x) = Nvexp(−Ef (x)/kbT ), (2.19)

and the trapped hole density can be written in terms of the free hole density as

pt(x) = NtN
−1/l
v pf (x)1/l, (2.20)

where Nv is the effective DOSs in the HOMO, and l = Tt/T >> 1.

In the particular case when trapped holes are dominant (pt >> pf ), the local electric
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field in bulk organic semiconductors are controlled by the density and the energy distribution

of the trapping states. Then Poisson’s equation (2.4) can be rewritten as

(ε/q)(dE/dx) = pt(x). (2.21)

Combining the modified Poisson’s equation (2.21) with the drift current model in equation

(2.6), we have

(ε/q)(dE/dx) = NtN
−1/l
v (Jp/µpqE)1/l ⇒ dE/dx = K[E(x)]−1/l

⇒ dE(l+1)/l/dx =
l + 1

l
K, (2.22)

where the constant K = (Nt/ε)q
(l−1)/l(Jp/Nvµp)

1/l. The general solution is in the form

E(l+1)/l(x) = ax+ b. (2.23)

Applying the ohmic boundary condition (in eq. (2.7)), we find the electric field

E(x) = al/(l+1)xl/(l+1), (2.24)

and the electric potential

ψ(x) = −
∫
E(x)dx = −al/(l+1)

(
l + 1

2l + 1

)
x(2l+1)/(l+1) + c. (2.25)

Again, this electric potential is valid when the band bending effect near contacts is negligible.

Applying the boundary condition from the device setup: ψ(x = 0) = 0 and ψ(x = L) = −V .
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The integral constants can be determined as

a =

(
2l + 1

l + 1

)(l+1)/l V (l+1)/l

L(2l+1)/l
and c = 0. (2.26)

Substituting it into the solution in equation (2.24) and the combined differential equation

(2.22), we have the hole current in the presence of a field-independent exponentially dis-

tributed traps,

Jp,TL = q1−lµpNv

(
ε

Nt

l

l + 1

)l (2l + 1

l + 1

)l+1 V l+1

L2l+1
. (2.27)

Unlike the Mott-Gurney equation, the trap-limited SCLC gives a steeper slope of (l + 1)

in the LogJp − LogV plot, and hence the characteristic trap temperature/energy can be

determined by slope fitting [28,45]. Often this characteristic slope can be observed in organic

semiconductors with low crystallinity, where traps dominate. The increasing of the applied

voltage eventually allows most trap sites to be filled. The transition from trap-limited SCLC

to trap-free SCLC occurs at voltage

VTFL =

[
9

8
N−1
v

(
Nt
l + 1

l

)l ( l + 1

2l + 1

)(l+1)
]1/(l−1)

q

ε
L2. (2.28)

The corresponding equations for the electric field, the electric potential, and the hole

density can be derived as follow,

E(x)

EΩ
=

2l + 1

l + 1

(x
L

)l/(l+1)
,
ψ(x)

−V
=
(x
L

)(2l+1)/(l+1)
,
pf (x)

p̄f
=

1

l + 1

(x
L

)−l/(l+1)
, (2.29)

where EΩ is an ohmic field defined in (2.15), and p̄f is the spatial average of the hole carrier
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density,

p̄f = (1/L)

∫ L

0
pf (x)dx = Nv(l + 1)

(
ε

qNt

l

l + 1

2l + 1

l + 1

)l V l
L2l

, (2.30)

The simplified theories of both trap-free SCLC and trap-limited SCLC in the presence

of field-independent exponentially distributed traps are summarized in table 2.1.

2.4 The Simplified Model of SCLC: Tip-Plane (c-AFM)

Geometry

The conductive atomic force microscope (c-AFM) is a type of atomic force microscope

equipped with a conductive cantilever tip. In addition to the ability to acquire topologi-

cal properties, c-AFM is capable of obtaining the local electrical transport properties of the

sample. During its operation, the conductive tip scans over the surface of the sample to

construct an image of its morphology. In the mean time, a voltage is applied between its

tip and the sample, and the induced current is measured to produce a high-resolution cur-

rent map. Due to its unique ability of simultaneous investigation of nanoscale morphology

and electronic properties, c-AFM has been used extensively to study organic semiconduc-

tors in the past decade [29, 30, 31, 32, 33, 34, 40, 41, 42, 46]. One of these efforts is to probe

the local charge transport by measuring the local current-voltage characteristic of organic

semiconductors in the SCLC regime, and quantitatively determining the local charge mobil-

ity [29,31,40,41,42,46]. For studies of the local current-voltage response, the tip is positioned

at a specific location on the surface. The working range of the applied voltage is typically

between ±10V , and the current can be of the order of picoamperes when being used to study

charge transport in organic semiconductors.
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When getting beyond the conventional planar device geometry, the theory of SCLC

meets a new challenge. In the early c-AFM work, the effective hole mobility in poly(3-

hexylthiophene) (P3HT) was found to be 1.4× 10−2cm2V −1s−1 [31], which is much higher

than what was previously observed in a planar diode configuration [27,47,48]. This discrep-

ancy brought attention to the importance of the tip geometry, especially current spread-

ing [29, 35], to which the existing analytical solutions for the conventional device geometry

can no longer be applied. Reid et al. [32] introduced a semi-empirical formula that includes a

tip geometry correction on the traditional Mott-Gurney law equation (2.13), which is written

as

Jp,c−AFM = αεµp
V 2

L3
δ

(
L

d

)1.6±0.1

(2.31)

where α and δ are two empirical dimensionless parameters, d is the diameter of the tip/sub-

strate contact area, and L is the film thickness.

The authors [32] observed that the electric current density measured by c-AFM was

much higher than that in the conventional diode configuration. The scaling exponent was

found to be 1.6 ± 0.1, which reflects the current enhancement due to the altered tip/elec-

trode geometry. The dimensionless prefactor α assumes a value of ∼ 8.2, as determined

from the numerical calculation of the standard drift-diffusion model. Although the model

includes charge diffusion, its effect is insignificant since the prefactor is achieved at quite

high applied voltage (Va = 10V ). Another scaling parameter introduced in equation (2.31)

is δ. This parameter scales the numerical solution to fit the experimental results of c-AFM

measurements, and its empirical value depends on the ratio of the tip diameter and the

sample thickness. For 0.01 ≤ d/L ≤ 2, this scaling parameter δ was found to have a value
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of 7.8± 1. Later, the effective mobilities yielded by using the semi-empirical equation (2.31)

on the c-AFM current-voltage data measured on the films of P3HT, poly[2-methoxy-5-(3’,7’-

dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV), and poly-(9,9-dioctylfluorene-co-

bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine (PFB) were shown to be con-

sistent with the one reported from analyses of diode device measurements. With growing

popularity of c-AFM technique in the research community, the formula (2.31), is utilized

in many recent studies, evaluating values of charge carrier mobility in organic semiconduc-

tors [33, 34,49].

Though the semi-empirical equation (2.31) successfully corrects the Mott-Gurney law by

taking into account the tip geometry, the formula still follows the square law (Jp ∝ V 2)

which can only be observed in low trap devices. In the next chapter, we will extend the

work by Reid et al. to cover various bulk properties, including trap states, spatially varying

mobility, and morphological effects, under relatively low applied voltages such that diffusion

cannot be neglected.
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Table 2.1: Unipolar space-charge-limited current (SCLC) for hole injection of a planar device.

No traps Field-independent exponential distributed traps
Gt(E) = (Nt/kbTt)exp(−E/kbTt), l = Tt/T

Hole current density Jp =
9

8
εµp

V 2

L3
Jp = q1−lµpNv

(
ε

Nt

l

l + 1

)l (2l + 1

l + 1

)l+1 V l+1

L2l+1

Electric field E(x) =
3

2

V

L

(x
L

)1/2
E(x) =

2l + 1

l + 1

V

L

(x
L

)l/(l+1)

Electric potential ψ(x) = −V
(x
L

)3/2
ψ(x) = −V

(x
L

)(2l+1)/(l+1)

Hole carrier density pf (x) = p̄f
1

2

(L
x

)1/2
pf (x) = p̄f

1

l + 1

(x
L

)−l/(l+1)

Spatial avg hole density p̄f =
3

2

εV

qL2
p̄f = Nv(l + 1)

(
ε

qNt

l

l + 1

2l + 1

l + 1

)l V l
L2l



Chapter 3

The Drift-Diffusion SCLC Transport

Models - New Method

In this chapter, we begin by describing the drift-diffusion (DD) SCLC model for hole-only

devices. Our theoretical model improves the simplified SCLC model, as previously described

in chapter 2, in two aspects: (i) the model will incorporate both drift and diffusion transport

mechanisms, and (ii) the model will enable the treatment of inhomogeneous systems including

c-AFM tip geometry, nanoscale morphology, as well as spatially-varying trap distributions.

As a result, this mathematical problem becomes very challenging, and impossible to solve

analytically. We will explain the numerical techniques used to achieve numerical solutions

of the DD-SCLC model. The numerical tools are written in Fortran 90 for one- two- and

three- dimensional models. All models will be verified to be consistent with each other, and

validated by reproducing the result of the simplified SCLC model in the drift-dominated

regime.

3.1 Modeling the Hole Injection System

In figure 3.1, the typical operation of hole-only devices is schematically illustrated in a

simple metal-insulator-metal (MIM) structure with ohmic contact at the electrodes. When
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Figure 3.1: The schematic representation of hole-only devices The path of hole injection and
hole transport are indicated

a positive bias Va is applied, holes are injected from the anode, travel through the device,

and are extracted at the cathode. This is the case of unipolar SCLC transport, where one

carrier type is dominant. In this particular case, the charge carrier recombination can be

ignored, and the hole transport is solely determined by the bulk properties of the organic

semiconductors.

3.1.1 Governing Equations

As discussed previously in chapter 2, the bulk transport of holes in the SCLC regime can

be described by three governing equations, including Poisson’s equation (2.1), the conti-

nuity equation (2.2), and the drift-diffusion equation (2.3). The early theoretical work is

vastly simplified by ignoring the contribution of charge diffusion and only considering the

drift driven transport, such that the current-voltage characteristic of the hole-only device

can be derived analytically. The theoretical model presented in this chapter, however, will

include both types of charge transport, drift and diffusion. Furthermore, the material in-
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homogeneity will also be studied by including the spatially-varying dielectric constant and

the spatially-varying hole mobility. The numerical calculations will be developed for one-

two- and three- dimensional models. The one-dimensional (1-D) model will use a Cartesian

coordinate system, the two-dimensional (2-D) model will use a cylindrical coordinate sys-

tem with cylindrical symmetry, and the three-dimensional (3-D) model will use a Cartesian

coordinate system. Hence, all three governing equations are rewritten in more general form

as follows

Poisson’s equation :

Differential form,

~∇ · (ε~E) = q(pf + pt) (3.1a)

Integral form, ∮
S=∂V

ε~E · d ~A = q

(∫
V
pfdV +

∫
V
ptdV

)
= Qp (3.1b)

Continuity equation at steady state :

Differential form,

~∇ · ~Jp = 0 (3.2a)

Integral form, ∮
S=∂V

~Jp · d ~A = 0 (3.2b)

Drift-diffusion equation for holes :

~Jp = qµppf ~E − qDp~∇pf (3.3)

Poisson’s equation (3.1) describes the relation between local electric field and local space
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charge. Here, we present both differential and integral forms of the equation which will later

be used in various discretization schemes. The equation is initially written in terms of the

electric field. Later the numerical calculations will be performed to determine the electric

potential ψ(~r), relating to the electric field through the relation ~E = − ~∇ψ.

Due to the energetic disorder commonly found in organic semiconductors, it is important

to include the trap states into the model. The total holes Qp(~r) shall combine both trapped

holes and free holes. Although these trapped holes do not contribute to the charge transport

of the device, they do influence the local electric field; together with free holes. The trap

DOSs is assumed to be exponentially distributed,

pt(~r) = Nt(pf/Nv)
T/TtS(~r) (3.4)

where S(~r) is the spatial distribution of traps. If trap density in the material is uniform,

S(~r) becomes unity. Nv is the effective DOSs in the HOMO, Nt is the total trap density

and and Tt is trap temperature.

While the trapped holes are localized, the free holes travel through the bulk material

as is described by the well-known drift-diffusion model, as expressed in eq.(3.3). Unlike

the simplified theory of SCLC, we conjecture that both drift and diffusion mechanisms are

locally significant in the low voltage regime. While drift current is driven by the gradient

of the electric potential (local electric field), diffusion current is driven by the gradient of

the free hole density. The hole diffusion coefficient Dp reflects the local capability of charge

diffusion, which obeys the Einstein relation

Dp(~r) = µp(~r)kbT/q (3.5)
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where kb is Boltzmann’s constant and q is the fundamental charge. Note that, per eq.(3.5),

the expression of the diffusion coefficient has been confirmed to be valid in the regime of low

electric field [50,51]. It is also important to note that, due to the fact that the generation and

recombination of charges do not occur away from the electrodes, the total hole current reaches

the steady state and becomes conserved, as described by the Continuity equation(3.2).

3.1.2 Electrode Boundary Conditions

In order for the set of governing equations (3.1)-(3.3) to have a unique solution, boundary

conditions are required. By increasing the number of degrees of freedom ranging from the

one-, two and three- dimensional models, we can simulate more complex geometry and the

suitable boundary conditions inevitably vary from model to model. Therefore, the complete

set of boundary conditions for each model will later be explained in detail. However, the

boundary condition at each electrode is similar to that of the simplified SCLC model defined

in chapter 2.

Electrode boundary conditions :

ψ = Va and pf = Nv at the hole injecting electrode (anode) (3.6a)

ψ = 0 and pf = Nv at the hole extracting electrode (cathode) (3.6b)

To inject holes into an organic semiconductor device, the positive bias Va is applied at the

injecting electrode. The injected holes then transport through the bulk material, and leave

the device at the extracting electrode which is grounded. To be consistent with the derivation

of the Mott-Gurney equation, both electrodes are assumed to be an ohmic contact, lining
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up with the HOMO level of the organic semiconductor where the hole density is enormous

(Nv ∼ 1021cm−3). These boundary conditions at the electrode are similar to those used by

Koster et al. [52].

3.1.3 Scaling Factors

In the previous section, we have introduced the governing equations and the boundary con-

ditions at the electrodes. By performing numerical calculations (to be explained in section

3.2), we will obtain the numerical solutions for electric potential and free hole carrier den-

sity, which are different by many orders of magnitude. Therefore, these variables need to

be scaled in order to increase the stability and improve the convergence of the calculations.

The electric potential and the electric field are scaled by the thermal potential Vt = kbT/q,

while the hole carrier density is scaled by the effective DOSs in the HOMO (Nv). With these

scaling factors, the three governing equations and the electrode boundary conditions can be

rewritten as

Poisson’s equation :

Differential form,

~∇ · (ε~E ′) = (qNv/Vt)(p
′
f + ftS · p′f

rt) (3.7a)

Integral form, ∮
S=∂V

ε~E ′ · d ~A =
qNv
Vt

∫
V

(p′f + ftS · p′f
rt)dV (3.7b)

where trap parameters ft = Nt/Nv and rt = T/Tt < 1.

Continuity equation at steady state :

Differential form,

~∇ · ~Jp = 0 (3.8a)
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Integral form, ∮
S=∂V

~Jp · d ~A = 0 (3.8b)

Drift-diffusion equation for holes :

~Jp = qµpNvVt(p
′
f
~E ′ − ~∇p′f ) (3.9)

Electrode boundary conditions :

ψ′ = Va/Vt and p′f = 1 at the hole injecting electrode (anode) (3.10a)

ψ′ = 0 and p′f = 1 at the hole extracting electrode (cathode) (3.10b)

In the following sections, we will develop and apply numerical methods for one-, two- and

three- dimensional DD-SCLC models, and prime(′) will be dropped to simplify the notation.

3.2 Numerical Method

First, consider the one-dimensional case, the x coordinate is divided into N mesh points,

separated by mesh size ∆xi = xi+1−xi as shown in Figure 3.2(a). Then PDEs are discretized

over the mesh points by using numerical derivative for their differential form, or numerical

integration for their integral form. These discrete equations are presented as a set of linear

equations with solutions as discrete functions. Unlike the analytical solutions, the values

of the discrete functions are only defined at mesh points. Interpolation techniques are then

applied to approximate the values of these functions away from mesh points. Here, finite

difference methods (FDM) are used to approximate derivatives and integrations.
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Figure 3.2: Numerical method: (a) illustration of spatial discretization in a one-dimensional
Cartesian coordinate system,(b) numerical derivative df/dx at the mid point xi, (c) numerical

integration
∫ xi+1
xi

f(x)dx around the mid point xi+1/2

3.2.1 Numerical Derivatives

The numerical approximations to derivatives are based on Taylor’s theorem. For the one-

dimensional case, the truncated Taylor’s series expansions of the function f(xi±1) around

x = xi are

f(xi+1) = f(xi) + ∆xi
df

dx

∣∣∣∣
x=xi

+
∆x2

i

2

d2f

dx2

∣∣∣∣
x=xi

+O(∆x3
i ) (3.11a)

f(xi−1) = f(xi)−∆xi−1
df

dx

∣∣∣∣
x=xi

+
∆x2

i−1

2

d2f

dx2

∣∣∣∣
x=xi

+O(∆x3
i−1) (3.11b)

Subtracting these two equations gives

df

dx

∣∣∣∣
x=xi

≈
f(xi+1)− f(xi−1)

∆xi + ∆xi−1
(3.12)
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This expression is the finite difference approximation of the first-order derivative, as illus-

trated in figure 3.2(b). It is important to note that the numerical approximation converges

to the analytical derivative as (∆xi+∆xi−1)→ 0. The equation (3.12) is rewritten in terms

of the mid-point values as

df

dx

∣∣∣∣
x=xi

≈
f(xi+1/2)− f(xi−1/2)

(∆xi + ∆xi−1)/2
(3.13)

In a similar way, we can approximate the higher-order derivatives, for example, the second

order derivative is given below

d2f

dx2

∣∣∣∣
x=xi

≈

df

dx

∣∣∣∣
x=xi+1/2

− df

dx

∣∣∣∣
x=xi−1/2

(∆xi + ∆xi−1)/2

≈

f(xi+1)− f(xi)

∆xi
−
f(xi)− f(xi−1)

∆xi−1

(∆xi + ∆xi−1)/2
(3.14)

When the domain is uniformly divided, such that ∆xi = ∆xi−1 = ∆x, the numerical approx-

imation of first-order and second-order derivatives, as expressed in eq.(3.12) and eq.(3.14)

respectively, are simplified to

df

dx

∣∣∣∣
x=xi

≈
f(xi+1)− f(xi−1)

2∆x
(3.15)

d2f

dx2

∣∣∣∣
x=xi

≈
f(xi+1) + f(xi−1)− 2f(xi)

∆x2
(3.16)

To treat the inhomogeneity of organic materials, multi-dimensional calculations are re-
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quired. In three-dimensional Cartesian coordinate systems, the computational domain is

discretized using constant values of ∆x, ∆y and ∆z in the x, y and z directions respectively.

Each mesh point in the domain is indexed by (xi, yj , zk). In what follows, and unless oth-

erwise stated, the mesh points are assumed to be equally separated on each dimension with

constant distance ∆x = xi+1−xi, ∆y = yj+1−yj , and ∆z = zk+1−zk. Consider the scalar

function F (x, y, z), which is discretized as F (xi, yj , zk).

~∇F (x, y, z)
∣∣∣
(xi,yj ,zk)

= x̂
∂F

∂x

∣∣∣∣
(xi,yj ,zk)

+ ŷ
∂F

∂y

∣∣∣∣
(xi,yj ,zk)

+ ẑ
∂F

∂z

∣∣∣∣
(xi,yj ,zk)

≈
F (xi+1, yj , zk)− F (xi−1, yj , zk)

2∆x
x̂

+
F (xi, yj+1, zk)− F (xi, yj−1, zk)

2∆y
ŷ

+
F (xi, yj , zk+1)− F (xi, yj , zk−1)

2∆z
ẑ (3.17)

∇2F (x, y, z)
∣∣∣
(xi,yj ,zk)

=
∂2F

∂x2

∣∣∣∣
(xi,yj ,zk)

+
∂2F

∂y2

∣∣∣∣
(xi,yj ,zk)

+
∂2F

∂z2

∣∣∣∣
(xi,yj ,zk)

≈
F (xi+1, yj , zk) + F (xi−1, yj , zk)− 2F (xi, yj , zk)

∆x2

+
F (xi, yj+1, zk) + F (xi, yj−1, zk)− 2F (xi, yj , zk)

∆y2

+
F (xi, yj , zk+1) + F (xi, yj , zk−1)− 2F (xi, yj , zk)

∆z2
(3.18)

For simplicity, we will write the discrete function with the index notation, such that F (i, j, k) =

F (xi, yj , zk) and (i, j, k) = (xi, yj , zk). Equation (3.17) and equation (3.18) are rewritten as
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~∇F
∣∣∣
(i,j,k)

= x̂
∂F

∂x

∣∣∣∣
(i,j,k)

+ ŷ
∂F

∂y

∣∣∣∣∣
(i,j,k)

+ ẑ
∂F

∂z

∣∣∣∣
(i,j,k)

≈
F (i+ 1, j, k)− F (i− 1, j, k)

2∆x
x̂+

F (i, j + 1, k)− F (i, j − 1, k)

2∆y
ŷ

+
F (i, j, k + 1)− F (i, j, k − 1)

2∆z
ẑ (3.19)

∇2F (x, y, z)
∣∣∣
(i,j,k)

=
∂2F

∂x2

∣∣∣∣
(i,j,k)

+
∂2F

∂y2

∣∣∣∣
(i,j,k)

+
∂2F

∂z2

∣∣∣∣
(i,j,k)

≈
F (i+ 1, j, k) + F (i− 1, j, k)− 2F (i, j, k)

∆x2

+
F (i, j + 1, k) + F (i, j − 1, k)− 2F (i, j, k)

∆y2

+
F (i, j, k + 1) + F (i, j, k − 1)− 2F (i, j, k)

∆z2
(3.20)

3.2.2 Numerical Integrations

We can also apply Taylor’s theorem to obtain the numerical approximation to integration.

Consider a one-dimensional integral of function f(x) from xi to to xi+1. To evaluate the

numerical integration, the function f(x) is substituted by its truncated Taylor expansions
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around the mid-point x = xi+1/2.

∫ xi+1

xi

f(x′)dx′ =

∫ xi+1

xi

[
f(xi+1/2) + (x′ − xi+1/2)

df

dx

∣∣∣∣
x′=xi+1/2

+
(x′ − xi+1/2)2

2

d2f

dx2

∣∣∣∣
x′=xi+1/2

+O(∆x3
i )

]
dx′

≈ f(xi+1/2)∆xi (3.21)

Equation (3.21) expresses the numerical integration, as illustrated in figure 3.2(c). Similarly,

the numerical integral of the function f(x) between the midpoint xi−1/2 and xi+1/2 is given

∫ xi+1/2

xi−1/2

f(x′)dx′ =

∫ xi+1/2

xi−1/2

[
f(xi) + (x′ − xi)

df

dx

∣∣∣∣
x′=xi

+
(x′ − xi)2

2

d2f

dx2

∣∣∣∣
x′=xi

+O(∆x3
i )

]
dx′

≈ f(xi)
∆xi−1 + ∆xi

2
(3.22)

We prefer this form of integral since the approximation only involves the value of the function

at the mesh point f(xi). Choosing the uniform mesh separation ∆xi−1 = ∆xi = ∆x, we

have ∫ xi+1/2

xi−1/2

f(x′)dx′ ≈ f(xi)∆x (3.23)

Notice that it is written in a form analogous to equation (3.21).

Often we need to perform two- and three- dimensional integrals. Consider the uniform

discretization in a three-dimensional domain, i.e., suppose that mesh points are located at

(xi, yj , zk), the distances between mesh points ∆x, ∆y, and ∆z along each direction are
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constant. ∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

F (x′, y′)dx′dy′ ≈ F (xi, yj)∆x∆y (3.24)

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

F (x′, y′, z′)dx′dy′dz′ ≈ F (xi, yj , zk)∆x∆y∆z (3.25)

With the index notation, the numerical approximations to the one-, two- and three- dimen-

sional integrals are rewritten as

∫ xi+1/2

xi−1/2

f(x′)dx′ ≈ f(i)∆x (3.26)

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

F (x′, y′)dx′dy′ ≈ F (i, j)∆x∆y (3.27)

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

F (x′, y′, z′)dx′dy′dz′ ≈ F (i, j, k)∆x∆y∆z (3.28)

3.2.3 Scharfetter-Gummel Discretization

Since the numerical solver of Poisson’s equation (3.7) can be achieved by following the

standard discretization discussed in section 3.2.1 and 3.2.2, one might expect to apply the

same discretization scheme to the rest of the governing equations, which are the continuity

equation (3.8) and the drift-diffusion equation (3.9). However, numerical instability limits

the effectiveness of this approach.

Consider the one-dimensional case where the domain of interest is discretized into a set

of mesh points indexed by i = xi with equal spacing ∆x. The continuity equation (3.8) is

discretized by using the numerical formula (3.13), thus we need to know the value of the

hole current at the mid-point Jp(i + 1/2) evaluated from the drift-diffusion equation (3.9).

34



Following the standard numerical discretization discussed in section 3.2.1 and 3.2.2, we have

Jp,x(i+ 1/2) = qµpNvVt

[
pf (i+ 1/2)

ψ(i)− ψ(i+ 1)

∆x
−
pf (i+ 1)− pf (i)

∆x

]
(3.29)

This is based on the assumption that the hole mobility is constant within the interval

[xi, xi+1]. The value of hole density at the mid-point is approximated by the arithmetic

average of the neighboring mesh points, such that pf (i + 1/2) ≈
[
pf (i) + pf (i+ 1)

]
/2.

Then, we have

Jp,x(i+ 1/2) = qµpNvVt

[
pf (i)

(
ψ(i)− ψ(i+ 1)

2∆x
+

1

∆x

)

+ pf (i+ 1)

(
ψ(i)− ψ(i+ 1)

2∆x
− 1

∆x

)]
(3.30)

To guarantee a smooth flow of current between mesh points, the numerical calculation is

restricted by Reynolds number [53]. Therefore, for the stability of the calculation, we need to

have ψ(i+1)−ψ(i) 6 2 in the scaled units, which is equivalent to ψ(i+1)−ψ(i) 6 2kBT/q ≈

0.052V at room temperature (300K). Then the mesh interval needs to be sufficiently small

for this condition to hold throughout the domain.

Scharfetter and Gummel have proposed the optimum solution to this problem [54]. With

their approach, two fundamental assumptions need to be made:

(i) hole current density Jp,x is constant between mesh points,

(ii) electric potential ψ is linear between mesh points, implying that electric field Ex

is also constant between mesh points.
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We can rewrite the hole current density at the mid-point as

Jp,x(i+ 1/2) = qµpNvVt

(
Ex(i+ 1/2) pf (x)−

dpf
dx

)
⇒

dpf
dx
− Ex(i+ 1/2) pf (x) = −

Jp,x(i+ 1/2)

qµpNvVt
(3.31)

where Ex(i + 1/2) = [ψ(i)− ψ(i+ 1)] /∆x = −∆ψ(i + 1/2)/∆x. Clearly, equation (3.31) is

a first-order differential equation that has general solution in the form

pf (x) = a+ becx (3.32)

Substituting this expression into equation (3.31), we have

[Ex(i+ 1/2)− c] ecx =
Jp,x

qµpNvVt
− Ex(i+ 1/2) a ⇒ 0. (3.33)

The left-hand side of the equation is x-explicitly-dependent, while the right-hand side is not.

This equation is only valid when the values on both sides are zero, so the constants a and c

are then determined as

a =
Jp,x

qµpNvVtEx(i+ 1/2)
and c = Ex(i+ 1/2). (3.34)

And, we now have

pf (x) =
Jp,x

qµpNvVtEx(i+ 1/2)
+ b · eEx(i+1/2)x (3.35)
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Let’s consider the value of hole density at mesh points i and i+ 1.

pf (i) =
Jp,x

qµpNvVtEx(i+ 1/2)
+ b · eEx(i+1/2) xi (3.36a)

pf (i+ 1) =
Jp,x

qµpNvVtEx(i+ 1/2)
+ b · eEx(i+1/2) xi+1 (3.36b)

Combining the two equations, and eliminating the constant b, we obtain,

Jp,x(i+ 1/2) =
qµpNvVt

∆x

[
B(∆ψ(i+ 1/2)) · pf (i)− B(−∆ψ(i+ 1/2)) · pf (i+ 1)

]
, (3.37)

where the Bernoulli function

B(x) =
x

ex − 1
with B(0) = 1. (3.38)

Similarly, we can also derive

Jp,x(i− 1/2) =
qµpNvVt

∆x

[
B(∆ψ(i− 1/2)) · pf (i− 1)− B(−∆ψ(i− 1/2)) · pf (i)

]
. (3.39)

The discretization given by eq.(3.37) and eq.(3.39) is known as Scharfetter-Gummel dis-

cretization; and is an important result in device physics [53,55,56,57,58,59,60].

3.2.4 Numerical Calculation Scheme

Adopting the strategy of Koster et al. [52], a self-consistent scheme will be used to solve the

set of governing equations (3.7)-(3.9). A flow diagram of the numerical calculation scheme

is shown in figure 3.3. To evaluate the current-voltage characteristic of the hole-only device,
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we first define an initial guess of the solutions, which are the electric potential ψo and free

hole carrier density pof . We then employ the numerical technique to solve the discretized

Poisson’s equation, obtaining the new values of electric potential ψnew. Next, the discretized

continuity equation coupled with the discretized drift-diffusion equation is solved using the

same numerical technique and the updated values of the electric potential, yielding the new

values of free carrier density pnewf . The correction of the resulting free hole carrier density

determines if the simulation is converged, i.e., when the relative correction of free hole carrier

density is smaller than its tolerance δ. The tolerance used in this thesis is in the range of

10−12 − 10−15. The values of free hole carrier density are updated, and the process is

repeated until convergence is reached.

To improve the rate of convergence, we will use a weighted average of the two most recent

estimates to obtain the next estimate of the solution. In general, the updated numerical

solution F is expressed as

F = w · Fn + (1− w) · Fn−1 (3.40)

where n is the iteration number and w is the weighting parameter (0 ≤ w ≤ 1). When w

is unity, we simply maintain the standard iterative scheme where the whole new value of

solution is passed to the next iteration of the calculation.

To solve this mathematical problem numerically, we developed a computer program writ-

ten in Fortran 90, which incorporates OpenMP to perform parallel computing. The calcula-

tions were carried out at the high performance computing center (HPCC) at Michigan State

University.
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Figure 3.3: A flow diagram used to calculate the current-voltage characteristic of hole-only
devices. The algorithm is based on the self-consistent scheme. We first establish the device
setup with its morphology and parameter values, and then generate initial trial values for
electric potential ψo and free hole carrier pof . Subsequently, Poisson’s equation is solved

numerically to find the estimated values of potential ψn. Utilizing the new trial values
of potential ψ, the estimated values of free hole carrier density pnf are evaluated from the

continuity equation and the drift-diffusion equation, leading to the new trial values pf . This
entire process is repeated until convergence is reached, when the relative correction of free
hole carrier density is less than the value of the tolerance δ.
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3.3 1-D DD-SCLC Model: Homogeneous Planar Ge-

ometry

Figure 3.4: Schematic illustration of a planar hole-only device made of a thin-film of organic
semiconductor. The arrows illustrate the hole current path responding to hole injection at
the top electrode. When the material is homogeneous, the vertical conductance is uniform.
A 1-D DD-SCLC model is often sufficient to describe the hole carrier transport in such a
device.

To model charge transport in an organic semiconductor device, it is common to assume

that the transport layer in a planar device is homogeneous, such that the dielectric con-

stant is uniform, the hole carrier mobility is isotropic, and trap sites are evenly distributed

throughout the device with constant trap density and trap energy. Therefore, only the verti-

cal conductivity along the transport direction from one electrode to the other is considered,

and the mathematical description is reduced to a one-dimensional problem. Shown in figure

3.4 is a schematic illustration of hole-only device that consists of an organic semiconductor

thin film of thickness L fabricated in between conventional plane-parallel electrodes, and

the scaled governing equations specifically for this 1-D DD-SCLC model, including Poisson’s

equation, the continuity equation at steady state, and the drift-diffusion equation for holes,

are written as

40



d2ψ/dx2 = (qNv/εVt)(pf + ft · pf rt) (3.41)

dJp/dx = 0 (3.42)

Jp = −qµpNvVt(pf · dψ/dx+ dpf/dx) (3.43)

The boundary conditions at the electrodes (x = 0, L) are assigned as

ψ(x = 0) = Va/Vt and pf (x = 0) = 1 (3.44a)

ψ(x = L) = 0 and pf (x = L) = 1 (3.44b)

It is worth emphasizing that this is the first step to extend the simplified SCLC theory to

include the mechanism of charge diffusion.

3.3.1 Discretization

In figure 3.5, the one-dimensional device previously shown in figure 3.4 is uniformly dis-

cretized. The one-dimensional domain of length L is replaced by the total N+2 mesh

points indexed by i = 0, 1, 2, .., N + 1 with a constant mesh spacing h = L/(N + 1) or

xi = i · L/(N + 1).

Figure 3.5: Illustration of the spatial discretization in 1-dimensional Cartesian coordinate
system. The device thickness L is discretized into the grid of N + 2 mesh points. Each mesh
point is equally separated by ∆x = L/(N + 1).
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3.3.2 Potential Solver

On a uniform mesh, Poisson’s equation (3.41) can be discretized by using the numerical

approximation of the second-order derivative (3.20)

−ψ(i− 1) + 2ψ(i)− ψ(i+ 1) = h2(qNv/εVt)
[
pf (i) + ft · pf (i)rt

]
(3.45)

where i = 1, 2, 3, .., N . We have the boundary conditions for the electric potentials as

ψ(0) = Va/Vt and ψ(N + 1) = 0 (3.46)

The mathematical treatment is straightforward. The N equations derived from equation

(3.45) together with the two boundary conditions (3.46) result in a linear system of N

equations with N unknown variables, which can be represented by



2 −1 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 −1 2 −1 0

0 · · · 0 −1 2 −1

0 · · · 0 −1 2





ψ(1)

ψ(2)

ψ(3)

...

ψ(N − 2)

ψ(N − 1)

ψ(N)



=



b(1) + ψ(0)

b(2)

b(3)

...

b(N − 2)

b(N − 1)

b(N) + ψ(N + 1)



(3.47)

where b(i) = h2(qNv/εVt)
[
pf (i) + ft · pf (i)rt

]
. Equation (3.47) can also be written in the

vector form

A~ψ = ~b (3.48)
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where the vector ~ψ contains the unknown values of the electric potential, and the vector ~b

contains the constant b(i) and the boundary conditions ψ(0) and ψ(N+1). The N×N matrix

A contains the coefficients of the variables, which are constant values and predominantly zero.

Therefore, we employ sparse matrix storing techniques to reduce the memory usage while

performing the numerical calculation.

There are two general schemes to solve the linear systems shown in equation (3.48)

numerically: (i) direct elimination method and (ii) iterative method [61, 62]. In this case,

the coefficient matrix A is a symmetric tridiagonal matrix. The inversion of A can thus be

calculated by using the explicit inversion formula suggested by R. A. Usmani [63, 64]. The

solution may be found by multiplying both sides of equation (3.48) by the matrix inverse

A−1.

~ψ = A−1~b (3.49)

3.3.3 Hole Density Solver

On a uniform mesh, the continuity equation (3.42) can be discretized by using the numerical

approximation of the first-order derivative (3.19)

dJp
dx

∣∣∣∣
i
≈
Jp(i+ 1/2)− Jp(i− 1/2)

h
= 0. (3.50)

Substituting the Scharfetter-Gummel discretization for the drift-diffusion equation (3.37)-

(3.39), we have

−B(∆ψ(i− 1/2)) · pf (i− 1) +
[
B(−∆ψ(i− 1/2)) + B(∆ψ(i+ 1/2))

]
· pf (i)

−B(−∆ψ(i+ 1/2)) · pf (i+ 1) = 0 (3.51)
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where i = 1, 2, 3, .., N and B is the Bernoulli function. The boundary conditions for the free

hole density are

pf (0) = 1 and pf (N + 1) = 1. (3.52)

Following the similar mathematics, equation (3.51) may be written as

A ~pf = ~b (3.53)

where the vector ~pf contains the unknown values of the free hole carrier density, the vector

~b contains the boundary conditions (~b = {B(∆ψ(i− 1/2)) · pf (0), 0, ..., 0,B(−∆ψ(i+ 1/2)) ·

pf (N + 1)}) , and the matrix A contains the coefficients of the variables, involving Bernoulli

functions. Again, the coefficient matrix A is a N × N matrix with predominantly zero

elements, and is stored as a sparse matrix.

The matrix A is again a tridiagonal matrix, which can be inversed using the formula

proposed by Usmani [63,64]. Subsequently, we find the solution as

~pf = A−1~b (3.54)

3.3.4 Verification

We have developed a program written in Fortran 90 to carry out the potential solver and

hole density solver simultaneously by following the algorithm of the self-consistent scheme

shown in figure 3.3. General guidelines for design and verification of the model include the

following considerations :

(i) minimize the error from numerical calculations
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(ii) verify the theoretical modeling

First of all, the result of numerical solutions are approximate. The two major sources of

errors generally found in numerical calculations are round-off error and discretization error.

Regardless of the methodology employed, the calculation usually has the round-off error,

arising from the approximation of real numbers by the standard computer representation of

the floating point numbers with finite digits. In our model, most parameters and variables

are real. They are represented by double precision values in the program to minimize the

corresponding round-off error. Discretization error, on the other hand, comes from the

numerical approximations of the equations, which are usually proportional to a power of the

mesh interval.

The effect of the discretization error can be seen from the numerical solution. To demon-

strate this effect, we perform the numerical calculation to model hole carrier transport in the

hole-only devices of 80nm thickness. Following the discretization scheme shown in figure 3.5,

we gradually increase the mesh number, relating to the mesh interval through h = L/(N+1),

where N is the number of the unknown mesh points. The current density as simulated from

our 1-D DD-SCLC model with varying numbers of mesh points is shown in figure 3.6. It ap-

proaches the saturated regime with respect to the increasing number of mesh points, whereas

the discretization error is minimized. The calculation with a fine discretization requires a

significant amount of computational time and resources, especially in the higher dimensional

models. A good compromise between the computational effort and the computational accu-

racy was found to be at 2nm mesh interval, which results in approximately a maximum of

7% difference compared to the converged numerical solution of the system with 0.1nm mesh

interval. Additionally, the 2nm mesh interval is an appropriate length scale for organic

semiconductor devices consisting of nanoscale morphologies. Lowering the mesh interval
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ever further only improves the numerical solutions quantitatively owning to the decrease

of numerical errors, but does not vary the qualitative behaviors of devices. Therefore, the

standard 2nm mesh interval will be used in the subsequent calculation.

Next, we would like to verify the capability of our model to capture the physical behavior

of charge injection and transport in hole-only devices. According to the theory of SCLC, the

injecting electrode does not limit the hole current in the devices and consequently is assumed

to be ohmic, i.e., an infinite source of charge carriers. Practically this implies a large charge

carrier density at the injecting electrode. In our DD-SCLC model, the hole carrier density

at the injecting contact is assumed to be equal to the effective DOSs in the HOMO (Nv), as

expressed in eq.(3.6). The value of this parameter is determined from the regime where the

current density is slowly varying over the value of Nv as shown in figure 3.7. A very large

value of Nv, resulting in a steep gradient of charge density around the electrode, poses a

challenge to the calculation convergence. Empirically, to have an ohmic injecting electrode

yet ensure a well converged model, calculations will be performed with the value of Nv as

1.25× 1021cm−3, which is more than sufficient for comparison with experiments.

To further verify the physical interpretation of our 1-D DD-SCLC model, we would like

to demonstrate the effect of charge diffusion which is omitted from the simplified SCLC

theory (discussed in chapter 2). Again, the calculation is performed in the absence of traps

with a low hole mobility of µp = 10−4cm2V −1s−1. Figure 3.8 shows the simulated hole

current density (Jp) as a function of applied voltage (Va). By fitting to a power law J ∝ Vm

(solid line), the current-voltage characteristic exhibit two distinct regimes. In the high

voltage regime (Va > 10) where drift current is dominant, the fit of the current-voltage

relation yields the exponent m = 2, agreeing with the number predicted by the Mott-Gurney

equation (2.13). On the other hand, in the low voltage regime (Va < 10), the exponent is
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Number of Mesh Points (N+1)
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Figure 3.6: Mesh size Verification – Convergence of the simulated hole current density with
respect to the number of mesh points, when the applied voltage Va = 0.1, 1, 10V . Hole
current density is calculated from the 1-D DD-SCLC model of the trap-free (ft = 0) hole-only
devices of 80nm thickness (Nv = 1.25 × 10−21cm−3, µp = 10−4cm2V −1s−1). Discretizing
the system into 41 mesh points with the constant 2nmmesh interval provides a well converged
solution, and results in a maximum 7% error compared to the result from 801 mesh points
(0.1nm mesh interval).
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The Effective Density of States Nv (cm-3)
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Figure 3.7: Nv Verification – Convergence of the simulated hole current density with respect
to the effective density of states in HOMO (Nv), when the applied voltage Va = 0.1, 1, 10V .
Hole current density is calculated from the 1-D DD-SCLC model of the trap-free (ft = 0)
hole-only devices of 80nm thickness (µp = 10−4cm2V −1s−1). The Nv value of 1.25 ×
1021cm−3 will be used in all following calculations.
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Figure 3.8: Mott-Gurney convergence – The theoretical current-voltage characteristic cal-
culated from the 1-D DD-SCLC model of the trap-free (ft = 0) hole-only device obeys the
power law J ∝ Vm, demonstrating the transition from the diffusion affected regime of the
fitting exponent m = 1.52 to the Mott-Gurney regime of the fitting exponent m = 2 with
increasing applied voltage.
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lowered due to the contribution of charge diffusion. The current-voltage characteristic in the

drift-dominated regime is clearly consistent to the prediction of the simplified SCLC model,

validating the 1-D DD-SCLC model and its numerical approach.

3.4 2-D DD-SCLC Model: Semi-Homogeneous Tip-

Plane Geometry

We have found that a 1-D DD-SCLC model is often sufficient to simulate the hole transport

in the case of planar organic semiconductor devices. However, the organic semiconductor film

is often composed of both amorphous and crystalline phases. Many studies have reported

the exceptionally high conductance observed along the crystallized nanofibers of the organic

semiconductor, resulting in an anisotropic mobility of hole carrier measured in thin films

[34, 65, 66, 67]. Since the planar geometry demonstrates only the vertical conductance, one

way to observe the effect of this lateral conductance is by replacing the top planar electrode by

a tip electrode. The so-called tip-plane geometry is analogous to the electrode configuration

of c-AFM measurements commonly used to study organic semiconductors.

In order to simulate the charge transport in a hole injection system of tip-plane geometry,

the calculation is performed in the cylindrical coordinate system with cylindrical symmetry.

The tip electrode is then approximated as the circular contact of radius (Rtip) as shown in

figure 3.9. When this tip radius (Rtip) is equal to the device radius (R), the device setup

reverts to the planar geometry. The governing equations for the 2-D DD-SCLC model in the
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Figure 3.9: Schematic illustration of a three-dimensional hole-only device of tip-plane ge-
ometry. The numerical calculation is performed using a cylindrical coordinate system with
the cylindrical symmetry, reducing the calculation domain to the two-dimensional system as
shown. Hole transport is then described by a 2-D DD-SCLC model.

cylindrical coordinate system are written as

∮
S=∂V

ε(ρ, z)~E(ρ, z) · d ~A =
qNv
Vt

∫
V

(
pf (ρ, z) + S(ρ, z)ft · pf (ρ, z)rt

)
dV (3.55)

∮
S=∂V

~Jp(ρ, z) · d ~A = 0 (3.56)

Jp,ξ(ρ, z) = qµp,ξ(ρ, z)NvVt
(
pf (ρ, z)Eξ(ρ, z)−∇ξpf (ρ, z)

)
(3.57)

where ~Jp(ρ, z) =
∑
ξ
Jp,ξ(ρ, z)ξ̂ and ξ = {ρ, z}. Poisson’s equation (3.55) and the conti-

nuity equation (3.56) are presented in the integral form using the divergence theorem. In

contrast, the drift-diffusion equation (3.57) is shown in the differential form. The internal

inhomogeneity of the material is included in the model by implementing the spatially varying

parameters of dielectric constant ε(ρ, z) = εr(ρ, z)εo, hole mobility ~µp(ρ, z) =
∑
ξ
µp,ξ(ρ, z)ξ̂,

and trap distribution S(ρ, z), where εo is the permittivity of vacuum.

In the two-dimensional configuration of figure 3.9, the organic semiconductor is grounded
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on the bottom electrode, driven by the top electrode with the potential Va, and bounded

elsewhere by an insulator. Similar to the 1-D DD-SCLC model, the boundary conditions at

the tip-planar electrodes are defined as

ψ(ρ, z) = Va/Vt and pf (ρ, z) = 1; where ρ ∈ [0, Rtip], z = L (3.58a)

ψ(ρ, z) = 0 and pf (ρ, z) = 1; where ρ ∈ [0, R], z = 0 (3.58b)

Due to the absence of hole transport through the insulator, the normal component of hole

current vanishes at the interface. The insulating boundary conditions for potential and hole

density are assigned as

n̂ · ∇ψ = 0 and n̂ · ∇pf = 0 (3.59)

where n̂ is the unit vector normal to the insulating interface. Consider the physical meaning

of the insulating boundary conditions. The zero-gradient of electric potential and current

density can be interpreted as ‘no electric flux’ and ‘no current flux’ through the interface,

which is the Neumann boundary condition for a fully insulating boundary.

3.4.1 Discretization

The cylindrical domain is discretized as shown in figure 3.10. The inhomogeneity of the

material is also discretized. Each discrete volume, which later is reduced to a discrete area

according to the cylindrical symmetry, has a uniform dielectric constant, hole mobility and

trap parameters. Mesh points are then defined on the edge of each discrete volume/area.

Therefore, the two-dimensional domain of radius R and thickness L shown in figure 3.9 is

replaced by discrete areas of equal size ∆ρ × ∆z and a set of mesh points (ρi, zk); i =
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Figure 3.10: Schematic illustration of the spatial discretization in a cylindrical coordinate
system. With cylindrical symmetry, the two-dimensional device is divided into the sub-area
of size ∆ρ × ∆z with mesh points located at each corner. Each sub-area carries the single
values of dielectric constant, hole mobility, and trap parameters. While it is homogeneous
within sub-area, each sub-area can have different parameter values, producing the inhomo-
geneity in the system.

Figure 3.11: Schematic illustration of Gaussian Surface of (a) axis cell for the centered mesh
at z-axis (i = 0), and (b) regular cell for the centered mesh elsewhere

{0, 1, 2, .., N} and k = {0, 1, 2, ..,M}, where ρi = i ·R/N and zk = k · L/M .

In order to solve the governing equations in the integral form, we define a Gaussian surface

(SG) bounding a finite volume surrounding each mesh point over the small angle ∆ϕ. Two

kinds of Gaussian surfaces are chosen as demonstrated in figure 3.11. The axis cell is the

wedge-like volume, corresponding to the mesh points at the z-axis (i = 0), which is adjacent

to three nearest neighbors listed in figure 3.11(a). On the other hand, the regular cell is a

parallelepipedic volume, corresponding to the mesh points elsewhere (i = {1, 2, 3, .., N}). A
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regular mesh point is surrounded by four nearest neighbors listed in figure 3.11(b).

Because Poisson’s equation and the continuity equation in the integral form evaluate the

flux of electric field and hole current density at the Gaussian surface, three fundamental

assumptions can be made:

(i) hole current density Jp is constant between mesh points,

(ii) electric potential ψ is linear between mesh points, implying that the electric field E is

also constant between mesh points.

(iii) the normal component of the electric field at the Gaussian surface is continuous across

the interface of two discrete volumes/areas.

The first two assumptions are meant to be consistent with those made in the Scharfetter-

Gummel discretization (see section 3.2.3). The last assumption is based on the commonly-

used interface boundary condition of the electric field, stating that the component of the

electric field that is tangential to the interface of two materials is continuous. Recall that

the internal inhomogeneity of the device is generated by varying the electrical and morpho-

logical properties of the discrete volumes/areas. In our numerical approach, the locations

of mesh points are specifically chosen to be at the corners of the discrete units as shown

in figure 3.10, and the correspondent Gaussian surfaces are always perpendicular to the in-

terfaces between the units as seen in figure 3.19, reasoning the assumption (iii). With the

combination of assumption (ii) and (iii), our numerical calculations selectively treat the in-

ternal heterogeneity of the devices locally through the average of the dielectric constant and

mobility over the Gaussian surface, which will be clearly seen in the following sections.
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3.4.2 Potential Solver

Poisson’s equation (3.55) in the integral form is discretized by using the numerical approx-

imation of the surface and volume integral, as expressed in eq.(3.27) and eq.(3.28) respec-

tively, on the chosen Gaussian surface as shown in figure 3.11. The axis cell is specifically

selected for the discretization of mesh points at the z-axis (i = 0), while the regular cell is

for mesh points elsewhere (i = {1, 2, 3, ..., N}). The discretized Poisson’s equation based on

two Gaussian surface are

At z-axis (ρ = 0 or i = 0)

[∮
SG

ε~E · d ~A

]
i,k

=

∫∫
SG(i+1

2)

ε(ρ, z) ρdϕdz · Eρ(i+ 1
2 , k)−

∫∫
SG(k−1

2)

ε(ρ, z) ρdρdϕ · Ez(i, k − 1
2)

+

∫∫
SG(k+1

2)

ε(ρ, z) ρdρdϕ · Ez(i, k + 1
2)

=

{
4ε̄ρ(i+ 1

2 , k) · [ψ(i, k)− ψ(i+ 1, k)]

−
(

∆ρ

∆z

)2

ε̄z(i, k − 1
2) · [ψ(i, k − 1)− ψ(i, k)]

+

(
∆ρ

∆z

)2

ε̄z(i, k + 1
2) · [ψ(i, k)− ψ(i, k + 1)]

}
· 1

8
∆ϕ∆z

≡ qNv
Vtεo

· 1

2

(
∆ρ

2

)2

∆ϕ∆z ·
[
pf (i, k) + ft(i, k) · pf (i, k)rt(i,k)

]
(3.60)
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Otherwise (ρ = i ·∆ρ where i = {1, 2, 3, .., N})

[∮
SG

ε~E · d ~A

]
i,k

= −
∫∫

SG(i−1
2)

ε(ρ, z) ρdϕdz · Eρ(i− 1
2 , k) +

∫∫
SG(i+1

2)

ε(ρ, z) ρdϕdz · Eρ(i+ 1
2 , k)

−
∫∫

SG(k−1
2)

ε(ρ, z) ρdρdϕ · Ez(i, k − 1
2) +

∫∫
SG(k+1

2)

ε(ρ, z) ρdρdϕ · Ez(i, k + 1
2)

=

{
−
(

1− 1

2i

)
· ε̄ρ(i− 1

2 , k) · [ψ(i− 1, k)− ψ(i, k)]

+

(
1 +

1

2i

)
· ε̄ρ(i+ 1

2 , k) · [ψ(i, k)− ψ(i+ 1, k)]

−
(

∆ρ

∆z

)2

· ε̄z(i, k − 1
2) · [ψ(i, k − 1)− ψ(i, k)]

+

(
∆ρ

∆z

)2

· ε̄z(i, k + 1
2) · [ψ(i, k)− ψ(i, k + 1)]

}
· i∆z∆φ

≡ qNv
Vtεo

· i(∆ρ)2∆z∆φ ·
[
pf (i, k) + ft(i, k) · pf (i, k)rt(i,k)

]
(3.61)

where the local averages of the dielectric constant over each section of Gaussian surface

around the mesh point (i, k) are

ε̄ρ(i± 1
2 , k) =

1

2
·
[
ε(i± 1

2 , k −
1
2) + ε(i± 1

2 , k + 1
2)
]
; for i = {0, 1, 2, .., N},(3.62a)

ε̄z(i, k ± 1
2) =


ε(i, k ± 1

2); for i = 0,

ε(i− 1
2 , k ±

1
2) ·

(
1− 1

4i

)
+ ε(i+ 1

2 , k ±
1
2) ·

(
1 +

1

4i

)
2

;

(3.62b)

for i = {1, 2, 3, .., N},

and k = {0, 1, 2, ...,M}. When the domain is uniformly divided (∆ρ = ∆z = h), the

discretized equations (3.60)-(3.61) are simplified as
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At z-axis (ρ = 0 or i = 0)

− 4ε̄ρ(i+ 1
2 , k) · ψ(i+ 1, k)− ε̄z(i, k − 1

2) · ψ(i, k − 1)− ε̄z(i, k + 1
2) · ψ(i, k + 1)

+ ε̄(i, k) · ψ(i, k) =
qNvh

2

Vtεo
·
[
pf (i, k) + ft(i, k) · pf (i, k)rt(i,k)

]
(3.63)

Otherwise (ρ = i ·∆ρ where i = {1, 2, 3, .., N})

−
(

1− 1

2i

)
· ε̄ρ(i− 1

2 , k) · ψ(i− 1, k)−
(

1 +
1

2i

)
· ε̄ρ(i+ 1

2 , k) · ψ(i+ 1, k)

− ε̄z(i, k − 1
2) · ψ(i, k − 1)− ε̄z(i, k + 1

2) · ψ(i, k + 1) + ε̄(i, k) · ψ(i, k)

=
qNvh

2 · i
Vtεo

·
[
pf (i, k) + ft(i, k) · pf (i, k)rt(i,k)

]
(3.64)

where the local average of the dielectric constant at center point (i, k) are

ε̄(i, k) =


4ε̄ρ(i+ 1

2 , k) + ε̄z(i, k − 1
2) + ε̄z(i, k + 1

2); for i = 0,(
1− 1

2i

)
ε̄ρ(i− 1

2 , k) +

(
1 +

1

2i

)
ε̄ρ(i+ 1

2 , k) + ε̄z(i, k − 1
2) + ε̄z(i, k + 1

2);

(3.65)

for i = {1, 2, 3, .., N},

and k = {0, 1, 2, ...,M}.

We have established the discretized Poisson’s equation (3.63) and (3.64), covering the

whole domain (∀i ∈ [0, N ], ∀k ∈ [0,M ]). In order to find the numerical solutions of the

electric potential, all boundaries need to be assigned specific conditions, subject to the

device geometry shown in figure 3.9. The boundary conditions for the electric potential at
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the electrodes are

ψ(i, k) =


Va/Vt for i ∈ [0, Rtip/h], k = M

0 for i ∈ [0, R/h], k = 0

(3.66)

Additionally, boundaries away from the electrodes are insulating, and the gradient of the

potential normal to the interfaces are zero. In order to implement these condition, we define

an additional set of mesh points along these interfaces, and we then apply the insulating

boundary condition by setting,

ψ(i, k) =


ψ(i, k + 1) for i /∈ [0, Rtip/h], k = M (top boundary)

ψ(i+ 1, k) for i = N, k = {0, 1, 2, ...,M} (side boundary)

(3.67)

These four boundary conditions (3.66)-(3.67) together with the discretized Poisson’s equa-

tion (3.63) - (3.64) result in a system of linear equation, which can be represented in the

matrix form (3.48); where vector ~b contains the values of hole carrier density and boundary

conditions, and Matrix A reflects the morphological effect of the spatially-dependent dielec-

tric constant. Unlike the 1-D DD-SCLC model, the matrix A derived from tip-plane geometry

is not a tridiagonal matrix, and the inversion formula suggested by Usmani can no longer be

used. In our study, we used the biconjugate gradient stabilized method (BiCGSTAB) [68] to

find solutions to this non-symmetric linear system iteratively.
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3.4.3 Hole Density Solver

By pursuing the Schafetter-Gummel approach [54], hole current densities at the mesh mid-

points in cylindrical coordinates are expressed as

Jp,ρ(i± 1
2 , k) = µp,ρ(i± 1

2 , k) · qVtNv
∆ρ

{
B [ψ(i± 1, k)− ψ(i, k)] · pf (i, k)

∓B [ψ(i, k)− ψ(i± 1, k)] · pf (i± 1, k)

}
≡ µp,ρ(i± 1

2 , k) · Jp,ρ(i± 1
2 , k) (3.68a)

Jp,z(i, k ± 1
2) =

qµp,z(i, k ± 1
2)VtNv

∆z

{
B [ψ(i, k ± 1)− ψ(i, k)] · pf (i, k)

∓B [ψ(i, k)− ψ(i, k ± 1)] · pf (i± 1, k)

}
≡ µp,z(i, k ± 1

2) · Jp,z(i, k ± 1
2) (3.68b)

where B is the Bernoulli function. The angular component of hole current density (Jp,ϕ) is

zero, according to the cylindrical symmetry of the system.

Similar to the numerical method used for Poisson’s equation, the flux of hole current

density is calculated on the chosen Gaussian surfaces. We then obtain
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At z-axis (ρ = 0 or i = 0)

[∮
SG

~Jp · d ~A

]
i,k

=

∫∫
SG(i+1

2)

µp,ρ ρdϕdz · Jp,ρ(i+ 1
2 , k)−

∫∫
SG(k−1

2)

µp,z ρdρdϕ · Jp,z(i, k − 1
2)

+

∫∫
SG(k+1

2)

µp,z ρdρdϕ · Jp,z(i, k + 1
2)

=

{
4µ̄p,ρ(i+ 1

2 , k) · Jp,ρ(i+ 1
2 , k)

−
(

∆ρ

∆z

)2

µ̄p,z(i, k − 1
2) · Jp,z(i, k − 1

2)

+

(
∆ρ

∆z

)2

µ̄p,z(i, k + 1
2) · Jp,z(i, k + 1

2)

}
· 1

8
∆ϕ∆z

≡ 0 (3.69)

Otherwise (ρ = i ·∆ρ where i = {1, 2, 3, .., N})

[∮
SG

~Jp · d ~A

]
i,k

= −
∫∫

SG(i−1
2)

µp,ρ ρdϕdz · Jp,ρ(i− 1
2 , k) +

∫∫
SG(i+1

2)

µp,ρ ρdϕdz · Jp,ρ(i+ 1
2 , k)

−
∫∫

SG(k−1
2)

µp,z ρdρdϕ · Jp,z(i, k − 1
2) +

∫∫
SG(k+1

2)

µp,z ρdρdϕ · Jp,z(i, k + 1
2)

=

{
−
(

1− 1

2i

)
· µ̄p,ρ(i− 1

2 , k) · Jp,ρ(i− 1
2 , k)

+

(
1 +

1

2i

)
· µ̄p,ρ(i+ 1

2 , k) · Jp,ρ(i+ 1
2 , k)

−
(

∆ρ

∆z

)2

· µ̄p,z(i, k − 1
2) · Jp,z(i, k − 1

2)

+

(
∆ρ

∆z

)2

· µ̄p,z(i, k + 1
2) · Jp,z(i, k + 1

2)

}
· i∆z∆φ

≡ 0 (3.70)
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where the local averages of the normal component of hole mobility over each section of

Gaussian surface around the mesh point (i, k) are

µ̄p,ρ(i± 1
2 , k) =

1

2
·
[
µp,ρ(i± 1

2 , k −
1
2) + µp,ρ(i± 1

2 , k + 1
2)
]
; (3.71a)

for i = {0, 1, 2, .., N},

µ̄p,z(i, k ± 1
2) =


µp, z(i, k ± 1

2); for i = 0,

µp,z(i− 1
2 , k ±

1
2) ·

(
1− 1

4i

)
+ µp,z(i+ 1

2 , k ±
1
2) ·

(
1 +

1

4i

)
2

;

(3.71b)

for i = {1, 2, 3, .., N},

and k = {0, 1, 2, ...,M}. By choosing the uniform grid where ∆ρ = ∆z = h, the discretized

equations (3.69)-(3.70) are simplified as

At z-axis (ρ = 0 or i = 0)

4µ̄ρ(i+ 1
2 , k) ·

[
B(∆ρψ(i+ 1, k)) · pf (i, k)− B(−∆ρψ(i+ 1, k)) · pf (i+ 1, k)

]
− µ̄z(i, k − 1

2) ·
[
B(∆zψ(i, k)) · pf (i, k − 1)− B(−∆zψ(i, k)) · pf (i, k)

]
+ µ̄z(i, k + 1

2) ·
[
B(∆zψ(i, k + 1)) · pf (i, k)− B(−∆zψ(i, k + 1)) · pf (i, k + 1)

]
= 0 (3.72)
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Otherwise (ρ = i ·∆ρ where i = 1, 2, 3, ...)

−
(

1− 1

2i

)
· µ̄p,ρ(i− 1

2 , k) ·
[
B(∆ρψ(i, k)) · pf (i− 1, k)− B(−∆ρψ(i, k)) · pf (i, k)

]
+

(
1 +

1

2i

)
· µ̄p,ρ(i+ 1

2 , k) ·
[
B(∆ρψ(i+ 1, k)) · pf (i, k)− B(−∆ρψ(i+ 1, k)) · pf (i+ 1, k)

]
−µ̄p,z(i, k − 1

2) ·
[
B(∆zψ(i, k)) · pf (i, k − 1)− B(−∆zψ(i, k)) · pf (i, k)

]
+µ̄p,z(i, k + 1

2) ·
[
B(∆zψ(i, k + 1)) · pf (i, k)− B(−∆zψ(i, k + 1)) · pf (i, k + 1)

]
= 0 (3.73)

where the spatial difference of electric potential is calculated as follow

∆ρψ(i, k) = ψ(i, k)− ψ(i− 1, k) (3.74a)

∆zψ(i, k) = ψ(i, k)− ψ(i, k − 1) (3.74b)

Boundary conditions are required to solve the discretized continuity equation (3.72)-(3.73)

numerically. At the electrodes, the boundary conditions are described as

pf (i, k) =


1 for i ∈ [0, Rtip/h], k = M

1 for i ∈ [0, R/h], k = 0

(3.75)

Following the same technique used when obtaining the insulating boundary conditions in

the potential solver, we have

pf (i, k) =


pf (i, k + 1) for i /∈ [0, Rtip/h], k = M (top boundary)

pf (i+ 1, k) for i = N, k = {0, 1, 2, ...,M} (side boundary)

(3.76)
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Once again, these four boundary conditions together with the discretized continuity equa-

tions (3.72)-(3.73) constitute a system of linear equations. In the corresponding matrix no-

tation (3.53), the vector ~b contains the boundary conditions, and the matrix A encompasses

the morphological effect through the spatially-dependent hole mobility. Unlike the 1-D DD-

SCLC model, the matrix A is asymmetric, and the numerical solutions of free hole carrier

density ~pf is achieved by the iterative method called BiCGSTAB [68].

3.4.4 Verification

Similar to the work done with the 1-D DD-SCLC model, we have developed a Fortran 90

program to find the unknown electric potentials and free hole densities of 2-D DD-SCLC

models in cylindrical coordinate systems with cylindrical symmetry by following the algo-

rithm shown in figure 3.3. Due to the asymmetric properties emerged from the tip-plane

geometry, the direct method of inversion used in the 1-D DD-SCLC model is no longer appli-

cable. Therefore, we have developed a Fortran 90 module to execute a routine of BiCGSTAB,

which is an iterative method to solve the non-symmetric linear system. The programing code

is written specifically to handle sparse matrices. To minimize the error associated with nu-

merical calculation, all parameters and variables are represented by double precision values

in the program.

First of all, we would like to verify the BiCGSTAB module by comparing the results with

those acquired from the direct method. By retrofitting the module into the 1-D DD-SCLC

model, we simulate charge transport of trap-free hole-only devices in planar geometry. The

comparison of the current-voltage characteristics calculated from the two distinct methods,

inversion of tridiagonal matrices and BiCGSTAB, is illustrated in figure 3.12. The error

between the two methods is negligible.
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Figure 3.12: BiCGSTAB VS Inversion – The theoretical current-voltage characteristic of
the trap-free (ft = 0) hole-only device solved iteratively by using BiCGSTAB module is
compared with that solved directly by inversion of a tridiagonal matrix. In both calculations,
we use a 1-D DD-SCLC model with L = 80nm, Nv = 1.25 × 1021cm−3,εr = 3, µp =

10−4cm2V −1s−1.
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Figure 3.13: The comparison of the theoretical current-voltage characteristics of the trap-
free (ft = 0) hole-only device calculated from 1-D and 2-D DD-SCLC models. In both
models, the transport layer (orange) is homogeneous with the constant parameters: εr = 3,
µp = 10−4cm2V −1s−1, and Nv = 1.25× 1021cm−3.
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Next, we would like to verify the 2-D DD-SCLC model by reproducing the result of

homogeneous planar device. Consider the trap-free hole-only device of thickness 80nm and

radius 300nm. To capture the planar case, the tip radius is extended to the size of the device

radius. In figure 3.13, the current-voltage characteristic simulated from the 2-D DD-SCLC

model is compared with that simulated from the 1-D DD-SCLC model. Although the 2-D

DD-SCLC model has the possibility of the additional lateral transport compared to the 1-D

DD-SCLC model where only vertical transport occurs, their current-voltage characteristics

exhibit an inconsequential error less than 0.0035%. Therefore, only vertical conductance

matters in charge transport of these planar devices, and the 2-D DD-SCLC model is verified

for this case.

Replacing one of the planar electrodes with a tip-shaped electrode, one can expect a

different amount of charge injection due to their distinct contact areas. Moreover, unlike in

the conventional planar device, the charge transport in a tip-plane device is subject to the

influence of the lateral current spreading induced by the tip geometry. As the 2-D DD-SCLC

model can only simulate the transport behavior in finite systems surrounded by insulating

boundaries, we need to ensure that the computational domain is sufficiently large to make the

boundary effect negligible. To demonstrate this effect, we perform the numerical calculations

to model the hole-only device, where holes are injected from a tip electrode of 1nm radius

into a device of 80 nm thickness. The other electrode is planar of the same size as the device

radius, which will be varied in the study. It is important to note that the approximate 1nm

tip radius is the smallest tip allowed in the discretized domain of 2nm spacing, where it

can be assigned to a single mesh point. The broadest lateral spreading corresponds to the

smallest tip size.

Unlike the case of planar geometry, the hole-only device in tip-plane geometry no longer
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maintain the uniform vertical current. Therefore, it is only informative to present the overall

hole transport in term of a total current, which is the surface integral of current density over

the device boundary. Due to the cylindrical symmetry of the 2-D DD-SCLC model, the total

current in the lateral direction is zero. Therefore, the total hole current injected at the tip

is simply the surface integral of the vertical current over the cross-sectional surface of the

device, which is

Ip = 2π

R∫
0

Jp,z(ρ, z) ρdρ. (3.77)

This is the physical quantity that can be measured from the experiments with the tip-plane

electrode configuration, e.g., the c-AFM measurements. It is also useful to emphasize that the

total current is independent of the vertical position of the device cross-section, i.e., the total

current is constant through the device. This manner is governed by the continuity equation

at the steady state. In the discretized domain (ρ ∈ [0, R] and ρ = i ·∆ρ; i = {0, 1, 2, .., N}),

total current is calculated from

Ip =
π

4
∆ρ2 Jp,z(0, k + 1

2) + 2π∆ρ2
N∑
i=1

iJp,z(i, k + 1
2) (3.78)

where Jp,z(i, k + 1
2) is the discretized current density associated to Schafetter-Gummel dis-

cretization, as written in eq.(3.68b).

Figure 3.14 plots the hole current as a function of the radius to thickness ratio (R/L) of

the device, where the simulation is carried out using a 2-D DD-SCLC model with tip-plane

geometry. The transport layer is assumed to be homogeneous with isotropic hole mobility.

For a fixed device thickness, the current approaches the saturated regime when device radius

is sufficiently large so that the finite-size effect can be safely ignored. A good balance point
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Figure 3.14: Finite-size effect–Convergence of the simulated hole current with respect to
device dimensional ratio of radius to thickness, when the applied voltage Va = 0.1, 1, 10V .
By using a 2-D DD-SCLC model, the trap-free (ft = 0) hole-only device is modeled in
tip-plane geometry (Rtip ∼ 1nm), assuming homogeneous transport layer (εr = 3, Nv =

1.25× 1021cm−3) with isotropic hole mobility (µp,ρ = µp,z = 10−4cm2V −1s−1). Using the
dimensional ratio R/L = 3.75 provides a well-converged solutions while the finite-size effect
is negligible. All the following calculations of tip-plane devices with an isotropic mobility
will be performed with this dimensional ratio.
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Figure 3.15: Finite-size effect–Convergence of the simulated hole current with respect to
device dimensional ratio of radius to thickness, when the applied voltage Va = 0.1, 1, 10V .
By using a 2-D DD-SCLC model, the trap-free (ft = 0) holse-only device is modeled in
tip-plane geometry (Rtip ∼ 1nm), assuming homogeneous transport layer (εr = 3, Nv =

1.25× 1021cm−3) with anisotropic hole mobility (µp,ρ/µp,z = 25, µp,z = 10−4cm2V −1s−1).
Using the dimensional ratio R/L = 6.25 provides a well-converged solutions while the finite-
size effect is negligible. All the following calculations of tip-plane devices with anisotropic
mobility will be performed with this dimensional ratio.
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with the feasible numerical domain and negligible finite-size effect is achieved at the device

dimensional ratio of 3.75, which incurs less than a 1% difference compared to the converged

numerical solution of a system with dimensional ratio of 10.

In addition to the isotropic system, we have also considered the case of hole-only device

with anisotropic mobility. When the lateral mobility is larger than the vertical one, we

expect an increasing amount of current spreads out beneath the tip, which consequently

enhances the finite-size effect. The evidence is shown in figure 3.15. Current predicted from

the simulation with anisotropic mobility (µρ/µz = 25) converges at higher dimensional ratio

compared to that of a homogeneous device with isotropic mobility. Empirically, to safely

omit the finite-size effect at reasonable computational overhead, the simulation of tip-plane

device with large anisotropic mobility (µρ/µz = 25) shall be conducted at the dimensional

ratio of 6.25, which results in approximately a maximum 2% difference compared to the

converged numerical solutions from devices with ratio R/L = 12.50.

The phenomena of current spreading was emphasized in the recent work by Ginger and

his coworkers [32], in which they modified the well-known Mott-Gurney equation to include

this tip-induced effect, and established a semi-empirical formula to describe current-voltage

characteristics in the SCLC regime measured from c-AFM. Because it is important to un-

derstand the c-AFM experimental results, we extend their theoretical model to include the

morphological effect, i.e., exponentially distributed trap and anisotropic mobility. We also

alter the insulating boundary condition to increase the stability and improve the convergence

of the calculation, especially in the region near the tip electrode. Here, we would like to ver-

ify that the insulating boundary of device is well described by our choice of the insulating

boundary conditions used in the model, as expressed in eq.(3.59). To explicitly insulate the

device, the top boundary that is not the injecting electrode is replaced by a vacuum layer
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Figure 3.16: Current as a function of vacuum layer thickness simulated using the given device
structure, compared to the current calculated from a 2-D DD-SCLC model with insulating
boundary conditions described by eq.(3.59), when Va = 0.5, 1, 10V . At high vacuum layer
thickness, the consistency of the numerical current between the two device geometries is
observed with approximately a maximum of 1% difference. For the transport layer (orange),
we use L = 80nm, εr = 3, µp,ρ = µp,z = 10−4cm2V −1s−1, an5d Nv = 1.25× 1021cm−3.
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of vacuum permittivity (εr = 1) and zero hole mobility ( ~µp = 0). The injecting electrode is

transformed from a circular contact of 1nm radius to a cylindrical rod of the same radius.

The conducting rod is then lengthened through the thickness of the vacuum layer, and con-

nected to the topmost planar electrode. We have confirmed that the device radius is large

enough that we can safely keep the insulating boundary condition on the side of the devices.

The schematic representation of the new device structure is shown in figure 3.16.

Similarly, we carried out the numerical calculation to model the homogeneous hole-only

device of 80nm thickness and 300nm radius with varying thickness of the insulating vacuum

layer. Figure 3.16 plots the current versus the vacuum layer thickness when the applied

voltage Va = 0.5, 1, 10V . The currents simulated from the 2-D DD-SCLC model with the

insulating boundary condition, as expressed in eq.(3.59), are plotted (dashed red line) for

the comparison. It is shown that, with the increasing thickness of the vacuum layer, the

simulated currents approach the saturated regime, demonstrating a good consistency (< 1%

difference at the 100nm vacuum layer thickness) with the current calculated using only the

insulating boundary conditions. Note that the maximum difference between the two device

geometries occurs at the high applied voltage, which is Va = 10V in our calculations. The

explanation to this observation is related to the field distortion caused by the planar electrode

at the topmost interface that becomes more severe with increasing applied voltage.

3.5 The Fully 3-D DD-SCLC Model in a Cartesian Co-

ordinate System

In the previous sections, we have introduced a 1-D DD-SCLC model to describe the vertical

charge transport in a homogeneous planar device, and a 2-D DD-SCLC model that allows us
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to observe the additional lateral transport in a tip-plane device with cylindrical symmetry.

It is already well-known that electric conductance of an disordered organic semiconductor is

considerably affected by its nanoscale morphology. Superior charge transport has been found

in semi-crystalline materials due to the presence of a nanofibrillar network. To investigate

the effect of such complex morphology, a fully three-dimensional model is obviously a good

choice. The model also permits the implementation of tip geometry and spatially-varying

traps.

Figure 3.17: Illustration of a three-dimensional hole-only device of tip-plane geometry. The
numerical calculation is performed using a three-dimensional coordinate system, allowing
full customization of trap distribution and nanoscale morphology in the transport layer.

Figure 3.17 illustrates the three-dimensional device structure modeled as a Lx×Ly×Lz

cuboid of tip-plane geometry. For simplicity, we approximate the tip electrode as a square

contact of Ltip side length. By enlarging the tip to cover the area Lx × Ly, the device

structure turns into a planar geometry. Similar to the 1-D and 2-D DD-SCLC models,

charge transport in the hole injection system can be described by three governing equations,

including Poisson’s equation, the continuity equation at steady state and the drift-diffusion
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equation. We have

∮
S=∂V

ε(~r)~E(~r) · d ~A =
qNv
Vt

∫
V

(
pf (~r) + S(~r)ft · pf (~r)rt

)
dV (3.79)

∮
S=∂V

~Jp(~r) · d ~A = 0 (3.80)

Jp,ξ(~r) = qµp,ξ(~r)NvVt
(
pf (~r)Eξ(~r)− ∂pf/∂ξ

)
(3.81)

where ~Jp(~r) =
∑
ξ
Jp,ξ(~r) · ξ̂ and ξ = {x, y, z}. The internal inhomogeneity, i.e., nanoscale

morphology and traps, is included in the model via the spatially varying parameters of

dielectric constant ε(~r) = εr(~r)εo, hole mobility ~µp(~r) =
∑
ξ
µp,ξ(~r) · ξ̂, and trap distribution

S(~r). Poisson’s equation and the continuity equation are presented in the integral form,

which is convenient to treat the inhomogeneity under the discretization.

Similar to the 2-D DD-SCLC model, the device is grounded on the bottom electrode

(z = 0), and driven at the top electrode (z = Lz) with the applied potential Va. The top

boundary is insulating. Therefore, the boundary condition at the top and bottom boundaries

are defined as

ψ(x, y, Lz) = Va/Vt and pf (x, y, Lz) = 1, where {x, y} ∈ Dtip (3.82a)

∂ψ

∂z

∣∣∣∣
(x,y,Lz)

= 0 and
∂pf
∂z

∣∣∣∣
(x,y,Lz)

= 0, where {x, y} /∈ Dtip (3.82b)

ψ(x, y, 0) = 0 and pf (x, y, 0) = 1, where x ∈ [0, Lx], y ∈ [0, Ly] (3.82c)

where Dtip is the two-dimensional domain of the tip contact area, e.g., in the case of square

tip shown in figure 3.17, we have Dtip ∈ [Ltip, Ltip]. It should be noted that the 3-D DD-
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SCLC model does not limit to this particular tip geometry, but can be generalized for any

shape of tip contact that can be discretized by the numerical approach explained in the

following section. Furthermore, for the more complex condition that the conducting tip

is penetrated into the material, which commonly occurs in the c-AFM measurements, the

tip is thus modeled by defining Dtip as the three-dimensional domain of the tip geometry

penetrated into the material domain. This is absolutely executable in the numerical tool

we developed for the 3-D DD-SCLC model. However, to keep the derivation simple, we will

assume that the penetration depth is negligible and the tip is approximated by the surface

contact area at the top boundary.

In contrast to the 2-D DD-SCLC model, we apply periodic boundary conditions on

the four sides of the device to mitigate finite-size effects. However, when considering tip-

plane geometry, the device dimensions need to be large enough to allow complete current

spreading. Based on the analysis of the 2-D DD-SCLC model (shown in figure 3.14-3.15), the

proper dimensions for the device with isotropic mobility and extreme anisotropic mobility

(µp,x = µp,y = 25 µp,z) are Lx = Ly = 3.75 Lz and Lx = Ly = 6.25 Lz respectively.

3.5.1 Discretization

Choosing a uniform mesh separation equally in all directions (∆x = ∆y = ∆z = h), the

three-dimensional device domain is replaced by a number of cube-shaped cells of volume

h3 and a set of mesh points (xi, yj , zk) located on the edge of the cell; i = {0, 1, 2, .., Nx},

j = {0, 1, 2, ..., Ny}, and k = {0, 1, 2, .., Nz}, where xi = i · h, yj = j · h, zk = k · h,

and h = Lx/Nx = Ly/Ny = Lz/Nz, as shown in figure 3.18(a). A single mesh point is

surrounded by eight adjacent cells and six nearest neighbors listed in figure 3.18(b), and

each cell is assumed to carry invariable values of dielectric constant, hole mobility, and trap
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parameters. The internal inhomogeneity of the material is then represented by the variation

of cell properties from one cell to the other.

(a) (b) (c)

Figure 3.18: Illustration of the spatial discretization in a three-dimensional Cartesian coor-
dinate system; (a) the device is divided into cube cells (h× h× h) with mesh points located
at each corner; (b) each mesh point is surrounded by six nearest neighbors, and is adjacent
to eight cells; (c) each cell containss constant values of dielectric constant, hole mobility, and
trap parameters. The inhomogeneity is generated by varying the values of these parameters
from one cell to another.

Figure 3.19: Gaussian surface SG as a cube of size h×h×h surrounding mesh point (i, j, k)

Considering Poisson’s equation and the continuity equation in the integral form, we

introduce a cube-shaped Gaussian surface (SG) bounding the finite volume h × h × h, as

shown in figure 3.19. Similar to the 2-D DD-SCLC model, the numerical surface and volume

integration of the physical variables around each mesh point will be performed with respect to

its Gaussian surface based on three assumptions: (i) hole current density is constant between
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mesh points, (ii) electric field is also constant between mesh points, (iii) the tangential

component of electric field is continuous at the interface of neighboring cells. It is worth

emphasizing that by applying the assumption (ii) and (iii), the normal component of electric

field at the Gaussian surface is constant and continuous due to the fact that the Gaussian

surface is chosen to be perpendicular to the interface of neighboring cells.

3.5.2 Potential Solver

By applying the numerical approximation of surface integral (3.27) and volume integral

(3.28) on the chosen Gaussian surface, Poisson’s equation (3.79) in the three-dimensional

Cartesian coordinate system can be discretized as

[∮
SG

ε~E · d ~A

]
i,j,k

= −
∫∫

SG(i−1
2)

ε(~r) dydz · Ex(i− 1
2 , j, k) +

∫∫
SG(i+1

2)

ε(~r) dydz · Ex(i+ 1
2 , j, k)

−
∫∫

SG(j−1
2)

ε(~r) dxdz · Ey(i, j − 1
2 , k) +

∫∫
SG(j+1

2)

ε(~r) dxdz · Ey(i, j + 1
2 , k)

−
∫∫

SG(k−1
2)

ε(~r) dxdy · Ez(i, j, k − 1
2) +

∫∫
SG(k+1

2)

ε(~r) dxdy · Ez(i, j, k + 1
2)

= − ε̄x(i− 1
2 , j, k) h2 Ex(i− 1

2 , j, k) + ε̄x(i+ 1
2 .j, k) h2 Ex(i+ 1

2 , j, k)

− ε̄y(i, j − 1
2 , k) h2 Ey(i, j − 1

2 , k) + ε̄y(i, j + 1
2 , k) h2 Ey(i, j + 1

2 , k)

− ε̄z(i, j, k − 1
2) h2 Ez(i, j, k − 1

2) + ε̄z(i, j, k + 1
2) h2 Ez(i, j, k + 1

2)

≡ qNvh
3

Vt

[
pf (i, j, k) + ftS(i, j, k) · pf (i, j, k)rt

]
. (3.83)
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Follow the numerical approximations for the first order derivative, and the discretized electric

fields are then given by

Ex(i± 1
2 , j, k) = [ψ(i, j, k)∓ ψ(i± 1, j, k)] /h (3.84a)

Ey(i, j ± 1
2 , k) = [ψ(i, j, k)∓ ψ(i, j ± 1, k)] /h (3.84b)

Ez(i, j, k ± 1
2) = [ψ(i, j, k)∓ ψ(i, j, k ± 1)] /h (3.84c)

where the local averages of dielectric constant over each Gaussian surface (SG) are

ε̄x(i± 1
2 , j, k) =

[
ε(i± 1

2 , j −
1
2 , k −

1
2) + ε(i± 1

2 , j + 1
2 , k −

1
2)

+ε(i± 1
2 , j −

1
2 , k + 1

2) + ε(i± 1
2 , j + 1

2 , k + 1
2)
]
/4 (3.85a)

ε̄y(i, j ± 1
2 , k) =

[
ε(i− 1

2 , j ±
1
2 , k −

1
2) + ε(i+ 1

2 , j ±
1
2 , k −

1
2)

+ε(i− 1
2 , j ±

1
2 , k + 1

2) + ε(i+ 1
2 , j ±

1
2 , k + 1

2)
]
/4 (3.85b)

ε̄z(i, j, k ± 1
2) =

[
ε(i− 1

2 , j −
1
2 , k ±

1
2) + ε(i+ 1

2 , j −
1
2 , k ±

1
2)

+ε(i− 1
2 , j + 1

2 , k ±
1
2) + ε(i+ 1

2 , j + 1
2 , k ±

1
2)
]
/4 (3.85c)

The discretized Poisson’s equation (3.83) is then rewritten in terms of electric potential as

− ε̄x(i− 1
2 , j, k) · ψ(i− 1, j, k) − ε̄x(i+ 1

2 , j, k) · ψ(i+ 1, j, k)

− ε̄y(i, j − 1
2 , k) · ψ(i, j − 1, k) − ε̄y(i, j + 1

2 , k) · ψ(i, j + 1, k)

− ε̄z(i, j, k − 1
2) · ψ(i, j, k − 1) − ε̄z(i, j, k + 1

2) · ψ(i, j, k + 1)

+ 6 ε̄(i, j, k) · ψ(i, j, k) =
qNvh

2

Vt

[
pf (i, j, k) + ftS(i, j, k) · pf (i, j, k)rt

]
(3.86)
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where ε̄(i, j, k) is the locally averaged dielectric constant at mesh point (i, j, k), which is

equivalent to the arithmetic average of the values from eight neighboring cells surrounding

the considering mesh point. Meanwhile, the ε̄(i, j, k) can also be expressed in term of the

locally averaged values described in equation (3.85) as follows,

ε̄(i, j, k) =
[
ε̄x(i− 1

2 , j, k) + ε̄x(i+ 1
2 , j, k) + ε̄y(i, j − 1

2 , k)

+ε̄y(i, j + 1
2 , k) + ε̄z(i, j, k − 1

2) + ε̄z(i, j, k + 1
2)
]
/6. (3.87)

In order to achieve the unique solution, the boundary conditions are required. Adopting

the technique we used when deriving the discretized boundary conditions in the 2-D DD-

SCLC, we have the complete set of electrode- and insulating- conditions for both top (k =

Nz) and bottom (k = 0) boundary as follow.

ψ(i, j, Nz) =


Va/Vt for (i, j) ∈ Dtip

ψ(i, j, Nz + 1) for (i, j) /∈ Dtip

(3.88a)

ψ(i, j, 0) = 0 for i = {0, 1, 2, .., Nx}, j = {0, 1, 2, ..., Ny} (3.88b)

Four side boundaries of the system satisfy the periodic boundary condition, such that

ψ(0, j, k) = ψ(Nx, j, k) for j = {0, 1, 2, .., Ny}, k = {0, 1, 2, ..., Nz} (3.89a)

ψ(i, 0, k) = ψ(i, Ny, k) for i = {0, 1, 2, .., Nx}, k = {0, 1, 2, ..., Nz} (3.89b)

By substituting these boundary conditions into the discretized Poisson’s equation (3.86),

we have the system of linear equations in matrix and vector notation (3.48); where vector
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~b reflects the disordered properties of the material in terms of trapped hole density, while

matrix A carries the morphological effect of the spatially varying dielectric constant. To find

the numerical solution of potential (~ψ), we carried out the iterative calculation using the

BiCGSTAB module.

3.5.3 Hole Density Solver

By pursuing the Schafetter-Gummel approach [54], hole current densities at the mesh mid-

points in the three-dimensional Cartesian coordinate system are expressed as

Jp,x(i± 1
2 , j, k) = µp,x(i± 1

2 , j, k) · qVtNv
h

{
B [ψ(i± 1, j, k)− ψ(i, j, k)] · pf (i, j, k)

∓B [ψ(i, j, k)− ψ(i± 1, j, k)] · pf (i± 1, j, k)

}
≡ µp,x(i± 1

2 , j, k) · Jp,x(i± 1
2 , j, k) (3.90a)

Jp,y(i, j ± 1
2 , k) = µp,y(i, j ± 1

2 , k) · qVtNv
h

{
B [ψ(i, j ± 1, k)− ψ(i, j, k)] · pf (i, j, k)

∓B [ψ(i, j, k)− ψ(i, j ± 1, k)] · pf (i, j ± 1, k)

}
≡ µp,y(i, j ± 1

2 , k) · Jp,y(i, j ± 1
2 , k) (3.90b)

Jp,z(i, k ± 1
2) =

qµp,z(i, j, k ± 1
2)VtNv

h

{
B [ψ(i, j, k ± 1)− ψ(i, j, k)] · pf (i, j, k)

∓B [ψ(i, j, k)− ψ(i, j, k ± 1)] · pf (i, j, k ± 1)

}
≡ µp,z(i, j, k ± 1

2) · Jp,z(i, j, k ± 1
2) (3.90c)
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where B is the Bernoulli function. Similar to the numerical method for Poisson’s equation,

the flux of hole current density is calculated on the chosen Gaussian surfaces. We obtain

[∮
SG

~Jp · d ~A

]
i,j,k

=−
∫∫

SG(i−1
2)

µp,x dydz · Jp,x(i− 1
2 , j, k) +

∫∫
SG(i+1

2)

µp,x dydz · Jp,x(i+ 1
2 , j, k)

−
∫∫

SG(j−1
2)

µp,y dxdz · Jp,y(i, j − 1
2 , k) +

∫∫
SG(j+1

2)

µp,y dxdz · Jp,y(i, j + 1
2 , k)

−
∫∫

SG(k−1
2)

µp,z dxdy · Jp,z(i, j, k − 1
2) +

∫∫
SG(k+1

2)

µp,z dxdy · Jp,z(i, j, k + 1
2)

=

[
− µ̄p,x(i− 1

2 , j, k) · Jp,x(i− 1, j, k) + µ̄p,x(i+ 1
2 , j, k) · Jp,x(i+ 1, j, k)

− µ̄p,y(i, j − 1
2 , k) · Jp,y(i, j − 1, k) + µ̄p,y(i, j + 1

2 , k) · Jp,y(i, j + 1, k)

− µ̄p,z(i, j, k − 1
2) · Jp,z(i, j, k − 1) + µ̄p,z(i, j, k + 1

2) · Jp,z(i, j, k + 1)

]
h2

≡ 0 (3.91)

where the locally-averaged hole mobilities over the Gaussian surface are written as,

µ̄p,x(i± 1
2 , j, k) =

[
µp,x(i± 1

2 , j −
1
2 , k −

1
2) + µp,x(i± 1

2 , j + 1
2 , k −

1
2)

+ µp,x(i± 1
2 , j −

1
2 , k + 1

2) + µp,x(i± 1
2 , j + 1

2 , k + 1
2)
]
/4 (3.92a)

µ̄p,y(i, j ± 1
2 , k) =

[
µp,y(i− 1

2 , j ±
1
2 , k −

1
2) + µp,y(i+ 1

2 , j ±
1
2 , k −

1
2)

+ µp,y(i− 1
2 , j ±

1
2 , k + 1

2) + µp,y(i+ 1
2 , j ±

1
2 , k + 1

2)
]
/4 (3.92b)

µ̄p,z(i, j, k ± 1
2) =

[
µp,z(i− 1

2 , j −
1
2 , k ±

1
2) + µp,z(i+ 1

2 , j −
1
2 , k ±

1
2)

+ µp,z(i− 1
2 , j + 1

2 , k ±
1
2) + µp,z(i+ 1

2 , j + 1
2 , k ±

1
2)
]
/4. (3.92c)
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This is similar to the locally-averaged dielectric constants, as in eq.(3.85), but not as simpli-

fied due to the fact that hole mobility is vector.

Substituting the discretized current density (3.90), we have the discretized continuity

equation for the 3-D DD-SCLC model.

−µ̄p,x(i− 1
2 , j, k) ·

[
B(∆xψ(i, j, k)) · pf (i− 1, j, k)− B(−∆xψ(i, j, k)) · pf (i, j, k)

]
+µ̄p,x(i+ 1

2 , j, k) ·
[
B(∆xψ(i+ 1, j, k)) · pf (i, j, k)− B(−∆xψ(i+ 1, j, k)) · pf (i+ 1, j, k)

]
−µ̄p,y(i, j − 1

2 , k) ·
[
B(∆yψ(i, j, k)) · pf (i, j − 1, k)− B(−∆yψ(i, j, k)) · pf (i, j, k)

]
+µ̄p,y(i, j + 1

2 , k) ·
[
B(∆yψ(i, j + 1, k)) · pf (i, j, k)− B(−∆yψ(i, j + 1, k)) · pf (i, j + 1, k)

]
−µ̄p,z(i, j, k − 1

2) ·
[
B(∆zψ(i, j, k)) · pf (i, j, k − 1)− B(−∆zψ(i, j, k)) · pf (i, j, k)

]
+µ̄p,z(i, j, k + 1

2) ·
[
B(∆zψ(i, j, k + 1)) · pf (i, j, k)− B(−∆zψ(i, j, k + 1)) · pf (i, j, k + 1)

]
= 0 (3.93)

where the spatial difference of electric potential is calculated as follows

∆xψ(i, j, k) = ψ(i, j, k)− ψ(i− 1, j, k) (3.94a)

∆yψ(i, j, k) = ψ(i, j, k)− ψ(i, j − 1, k) (3.94b)

∆zψ(i, j, k) = ψ(i, j, k)− ψ(i, j, k − 1) (3.94c)

Boundary conditions are needed to find the unique solutions of free hole densities. For the

hole density solver of the 3-D DD-SCLC model, the complete set of electrode- and insulating-
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conditions for the top (k = Nz) and bottom (k = 0) boundaries are discretized as follow

pf (i, j, Nz) =


1 for (i, j) ∈ Dtip

pf (i, j, Nz + 1) for (i, j) /∈ Dtip

(3.95a)

pf (i, j, 0) = 1 for i = {0, 1, 2, .., Nx}, j = {0, 1, 2, ..., Ny} (3.95b)

where Dtip is the two-dimensional domain of the tip contact. Note that the top boundary

not corresponding to the tip contact is treated with the insulating boundary conditions,

following the numerical approach previously used in the 2-D DD-SCLC model. Lastly, Four

boundaries on the sides, i.e., S(i = 0), S(i = Nx), S(j = 0) and S(j = Ny), satisfy the

periodic boundary conditions, such that

pf (0, j, k) = pf (Nx, j, k) (3.96a)

pf (i, 0, k) = pf (i, Ny, k) (3.96b)

Following similar mathematics to that used for the potential solver, the combination of the

boundary conditions (3.95)-(3.96) and the continuity equation (3.93) results in an asymmetric

system of linear equations, which can be rewritten in the simple matrix form (3.53). While

vector ~b contains the boundary conditions, matrix A captures the morphological effect in

terms of the spatially-varying hole mobility. The numerical solutions for ~pf are achieved by

the iterative method BiCGSTAB [68].
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3.5.4 Verification

We have developed a Fortran 90 program to simulate current-voltage characteristics of the

fully three-dimensional model in a Cartesian coordinate system by following the algorithm

shown in figure 3.3. Due to the similar mathematical structure, the BiCGSTAB module

previously used in the 2-D DD-SCLC model is implemented to handle both the potential

and hole density solvers. As a standard protocol, all parameters and variables are represented

by double precision values in the program, in order to minimize the error arisen from the

iterative method used in the numerical calculations. To verify the 3-D DD-SCLC model,

we carried out the numerical calculations of two limited cases that have been studied before

using the 1-D and 2-D DD-SCLC models.

First, we would like to verify the 3-D DD-SCLC model by reproducing the results of

the homogeneous planar devices. Consider the trap-free hole-only device of 600nm× 600nm

cross-sectional area and 80nm thickness. To resemble the planar geometry of the 1-D DD-

SCLC model, the tip contact area is extended to the size of device’s cross-section. Figure

3.20 shows the comparison of current-voltage characteristics of a trap-free hole-only device

simulated from 1-D and 3-D DD-SCLC models. It is clear that the numerical results from

the two different models are identical.

Secondly, we would like to include the 2-D DD-SCLC model in this part of verification

and consider the device simulations in the tip-plane geometry. As schematically shown in

figure 3.21, we portrait two possible tip designs to be constructed on the 2nm× 2nm square

grid of the 3-D DD-SCLC model, including (a) a circular contact of 6nm radius and (b)

a square contact of 10nm side length, which are chosen to be roughly consistent with a

circular tip used in the 2-D DD-SCLC model, as depicted by the red circle of 6nm radius.
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Figure 3.20: The comparison of the theoretical current-voltage characteristics of trap-free
(ft = 0) hole-only devices calculated from 1-D and 3-D DD-SCLC models. In both models,
the transport layer (orange) is homogeneous with the constant parameters: εr = 3, µp =

10−4cm2V −1s−1, and Nv = 1.25× 1021cm−3.
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Figure 3.21: The schematic representation of tip contacts in a 3-D DD-SCLC model, con-
structed on the 2nm × 2nm square grid as (a) an approximately circular geometry of 6nm
radius and (b) a square geometry of 10nm side-length. In a 2-D DD-SCLC model, the tip
contact is assigned as the circular area of 6nm radius (red dashed circle). Due to the differ-
ence in the discretization, the tip models in the 3-D model are slightly smaller that in the
2-D model, such that A3−D(a)/A2−D = 0.85 and A3−D(b)/A2−D = 0.88, respectively.

We then carried out the numerical calculations to simulate charge transport in the trap-free

hole-only devices. In figure 3.22-3.23, the current-voltage characteristics simulated from the

3-D DD-SCLC model are compared with those simulated from the 2-D DD-SCLC model.

In the models of the inset, the calculation domain is considered as a circular cylinder of

300nm radius and 80nm thickness for the 2-D DD-SCLC model, and as a rectangular prism

of 300nm× 300nm cross-sectional area and 80nm thickness for the 3-D DD-SCLC model.

As illustrated in figure 3.22-3.23, we observe a good agreement of the current-voltage

characteristics of hole-only devices calculated from the two models. In the case of the

round tip model, as shown in figure 3.22, the maximum of approximately 16% difference is

expected, and can be explained by the slightly different contact area caused by the limitation

of discretization in the cylindrical and Cartesian coordinate systems. However, we can narrow

down these differences in the numerical solutions between the two models by using the square

tip contact, as shown in figure 3.23.
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Figure 3.22: The comparison of the theoretical current-voltage characteristics of the trap-free
(ft = 0) hole-only devices calculated from 2-D and 3-D DD-SCLC models, in which the tip
electrode is approximated by a circular contact of 6nm radius, as illustrated in figure 3.21(a).
In both models, the transport layer (orange) is homogeneous with the constant parameters:
εr = 3, µp = 10−4cm2V −1s−1, and Nv = 1.25× 1021cm−3.
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Figure 3.23: The comparison of the theoretical current-voltage characteristics of the trap-
free (ft = 0) hole-only devices calculated from 2-D and 3-D DD-SCLC models, in which
the tip electrode is approximated by a circular contact of 6nm radius and a square contact
of 10nm side length, respectively. (See figure 3.21(b)) In both models, the transport layer
(orange) is homogeneous with the constant parameters: εr = 3, µp = 10−4cm2V −1s−1, and

Nv = 1.25× 1021cm−3.
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3.6 Conclusions

In this chapter the DD-SCLC model for hole injection systems was introduced. At the

center of the model are three governing equations including Poisson’s equation, the continuity

equation at steady state, and the drift-diffusion equation for holes. Adopting the numerical

technique presented by Kosteret al. [52], all governing equations are solved simultaneously

using a self-consistent scheme. We have developed the numerical tools written in Fortran

90 to carry out the numerical calculations for one-, two- and three- dimensional DD-SCLC

models, which provide the insight to charge transport of hole-only devices with different

geometries.

• The one-dimensional (1-D) DD-SCLC model is the simplest one among the three mod-

els, yet very essential. The numerical calculations are performed in a one-dimensional

Cartesian coordinate system, and capable to simulate both drift and diffusion currents

in homogeneous planar devices, in which traps are assumed to be uniformly distributed,

with dielectric constant and hole mobility being constant. According to this descrip-

tion, the one-dimensional model improves the simplified SCLC model by just including

the effect of charge diffusion. We have shown that a Log J − Log V plot simulated

from our model exhibits slope 2 in the drift-dominated regime (Va > 10V ). This is the

signature of Mott-Gurney equation, validating our DD-SCLC model.

• The two-dimensional (2-D) DD-SCLC model is constructed in the cylindrical coordi-

nate system with the cylindrical symmetry. The model is very efficient to study SCLC

in tip-plane geometry with mobility anisotropy.

• The fully three-dimensional (3-D) DD-SCLC model is a big leap forward in the simu-
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lation of SCLC. The numerical calculations are carried out using a three-dimensional

Cartesian coordinate system, enabling the treatment of inhomogeneous systems, in-

cluding the tip-plane electrode configuration, spatially-varying trap distributions, and

nanoscale morphologies. However, the simulation is highly demanding in both com-

puting time and memory.
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Chapter 4

The Drift-Diffusion SCLC Transport

Models - New Results

In this chapter, we present theoretical studies of hole-only devices, including charge diffu-

sion, traps, and nanoscale morphologies; in both planar and tip-plane (c-AFM) geometries.

Examples of the applications of the drift-diffusion (DD) SCLC model will be carried out us-

ing the numerical tools we successfully developed for the one-, two- and three- dimensional

DD-SCLC models described in the previous chapter. The parameters used in the device sim-

ulations are summarized in Table 4.1. Note that these values are the typical material and

device parameters, which should be useful to capture the general physics of organic semicon-

ductor devices. Our theoretical models do not limit to this particular system. In the next

chapter, these methods and insights will be applied to an analysis of c-AFM experimental

data provided by Dr. Pengpeng Zhang’s group at Michigan State University.

4.1 Diffusion Effects

In chapter 2, we presented the simplified SCLC model for hole injection and transport

problems in the conventional planar geometry. The exact analytical solution including the

current-voltage characteristic, as known as the Mott-Gurney equation, and other physical
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Table 4.1: Summary of parameters used in the device simulations

Parameter Symbol Numerical value

Dielectric constant εr 3.0

The effective density of states in the
HOMOa

Nv 1.25× 1021 cm−3

The effective hole mobility in the verti-
cal direction

µo 1.0× 10−4 cm2/V s

Temperature T 300 K
Device thickness L,Lz 80 nm

2-D DD-SCLC model :

Circular tip contact radius b Rtip 2 nm
Circular device radiusc R 300 nm for the isotropic transport

750 nm for the anisotropic transport

3-D DD-SCLC model :

Square tip contact side lengthd Ltip 5 nm
Square device cross-section side lengthe Lx, Ly 600 nm for the isotropic transport

1500 nm for the anisotropic transport

aThe number of Nv is determined from the regime where the current density is saturated over the value
of Nv , as shown in figure 3.7.

bFor the 2-D model, the computing domain is uniformly discretized with the 2nm mesh interval. There-
fore, we choose the smallest tip size allowed by the discretization precess to maximize the concentration of
the electric field around the tip, and pronouncing the effect of lateral spreading.

cThe circular device radius is determined from the regime where the current density is saturated over the
value of R/L, as shown in figure 3.14-3.15 for the case of isotropic- and anisotropic- hole mobility respectively.

dFor the 3-D model, the computing domain is uniformly discretized with the 5nm mesh interval. Same
as b, we choose the smallest tip size allowed by the discretization process.

eSame as c.
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variables (such as electric potential, hole carrier density, etc.) are summarized in table

2.1. In figure 4.2, we plot the analytical profiles of the electric potential and hole carrier

density in order to illustrate the characteristics of this hole-only SCLC transport model. For

simplicity, the variables are plotted in their natural scales, such that the potential is scaled

by the externally applied voltage Va, the hole density is scaled by its spatial average p̄ (from

table 2.1), and the internal device coordinate is scaled by the device thickness L.

Figure 4.1: Based on the simplified SCLC model of a trap-free hole-only device in the planar
geometry, the analytical profiles of electric potential (solid black line) and hole carrier density
(dashed red line) are demonstrated using non-dimensional scales.

Although charge diffusion is omitted from the simplified SCLC model, the exact solution

of hole charge carrier density exhibits a non-uniform distribution through the device thick-

ness. When a gradient of charge carrier density exists, a process of diffusion occurs such that

the charge carriers migrate from the regions of high density toward regions of low density.

Assuming that the hole diffusion coefficient obeys the Einstein relation, the corresponding
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hole diffusion current in the absence of traps is given by

Jp,di =
3

8
εµp

VtVa
L3

(x
L

)−3/2
(4.1)

Both drift and diffusion current densities are dependent on the externally applied voltage

Va, such that Jp,dr ∝ V 2
a and Jp,di ∝ Va, respectively. Since the drift current density

increases quadratically with the applied voltage while the diffusion current density increases

only linearly, the drift current density will dominate in the high voltage regime where the

diffusion process is negligible.

Furthermore, per eq.(4.1), the diffusion current density is also non-uniform through the

device thickness. It is infinite at the injecting electrode (x = 0), then dramatically declines,

and gradually saturates toward the extracting electrode (x = L). This behavior explains one

considerable discrepancy of the simplified SCLC model on the boundary condition at the

injecting electrode. The model assumes the injecting contact to be ohmic, whence the local

electric field E = 0 and consequently the drift current vanishes. Therefore, the model clearly

requires an additional form of charge transport to account for hole injection at the electrode.

That is where the diffusion current comes into play, which is basically infinite at the ohmic

contact of an infinite hole reservoir. In order to evaluate how significant the diffusion effect

is compared to the drift effect in the model, figure 4.2 shows the plot of the current density

ratio Jp,di/Jp,dr versus the dimensionless coordinate along the direction of device thickness

x/L. It is convenient to introduce the characteristic coordinate xc as the location where the

current density ratio is unity. The characteristic coordinate is given by

xc = L

(
3Va
Vt

)−2/3

(4.2)
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Figure 4.2: Plot of the analytical ratio of diffusion current density to drift current density of
a planar flow, trap-free, hole-only device, Jp,di/Jp,dr, versus the dimensionless coordinate,
x/L. While the drift current density is the immediate analytic solution of the simplified
SCLC model as known as Mott-Gurney equation (2.13), the diffusion current density is
obtained from the further derivation of the analytic solutions of the model. The extremely
large value of diffusion current near the injecting electrode (x = 0) suggests the diffusion
assists hole injection at the injecting contact.

In the region near xc, diffusion and drift current densities are of the same order of magnitude.

The diffusion current density then become dominant toward the injecting electrode (x < xc).

However, the dominance of charge diffusion diminishes with the increasing of the applied

voltage. When the applied voltage is sufficiently high, the hole injection system is then well

described by drift transport mechanism alone.

It is important to note that, by including the approximate diffusion current density

expressed in equation (4.1) to the total current density, the continuity equation at steady

state is indeed violated and total current is no longer conserved. This is expected since the

diffusive transport is not initially considered in the simplified SCLC model. The drift current

may dominate over the diffusion current if the externally applied voltage is sufficiently high,
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but it is not thoroughly understood whether the diffusion current can be ignored or not in

the intermediate range of applied voltage. Therefore, even where such analytical solutions

are available, it is still useful to contemplate the full SCLC model that incorporates both

drift and diffusion transport mechanisms, the so-called standard drift-diffusion model. Then

the effect of diffusion process can be studied by solving the drift-diffusion equation coupled

with Poisson’s equation under the conservation law of current density described by continuity

equation at steady state.

Now that we have developed a computer program that solves the three governing equa-

tions numerically in a self-consistent manner, it is instructive to first compare the theoretical

profiles of electric potential and hole carrier density simulated from numerical calculation to

that derived from the simplified SCLC model, previously demonstrated in figure 4.1. Using

the parameters given in table 4.1, the simulations of hole-only devices with two distinct

geometries; planar (plane-parallel) and tip-plane (c-AFM) geometries, will be investigated

in detail in the following subsections. In order to focus solely on the influence of charge

diffusion, the charge transport layer is assumed to be homogeneous and trap free, similar to

that of the simplified SCLC model.

4.1.1 Planar Geometry

To begin with, let us examine the conventional case of planar hole-only device. The the-

oretical profiles of electric potential and hole carrier density as a function of the distance

from the injecting electrode with the varying applied voltage (Va = 0.1, 1, 10V ) are shown

in figure 4.3, which have all been generated by a 1-D DD-SCLC model of a hole-only de-

vice described in section 3.3. The numerical simulation includes both drift and diffusion

transport mechanisms, resulting in the non-monotonic distributions of electric potential and
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hole carrier density. Together, the theoretical profile can be categorized into three distinct

regimes separated by two local transitions of charge-transport behaviors. The first transition

is determined by the position of a potential maximum where electric field and drift current

vanish. The second transition is located at the position of a hole density minimum where

diffusion current becomes zero. Since the calculations are performed on the device at steady

state, the total current which is the sum of drift and diffusion currents is conserved. By

keeping this fact in mind, we will be able to understand the charge-transport mechanism in

each regime qualitatively.

In the transport regime (I), space charges are built up near the injecting electrode (x = 0),

resulting in a potential barrier. By overcoming the reverse drift current, the charge diffusion

therefore is the dominant transport mechanism driving holes away from the injecting contact

into the device. After passing the potential barrier and entering into regime (II), holes then

travel forward driven by both drift and diffusion mechanisms. Finally, in regime (III), the

diffusion current is reversed, counteracting the drift current, and leading to the reduction

of the drift current toward the collecting electrode at x = 80nm. This is due to the ohmic

nature of the extracting contact.

When quantitatively comparing the theoretical profile simulated from our 1-D DD-SCLC

model (figure 4.3) to the analytical profile derived from the simplified SCLC model (figure

4.1), we observe subtle differences in the applied voltage dependence of the distribution. In

the simplified SCLC model, the electric potential and hole carrier density have monotonic

distribution along the device thickness, while the 1-D DD-SCLC model yields a more com-

plicated result consisting of three distinct regimes. A similar observation has been described

in the past by A.A. Grinberg and S. Luryi, particularly for the case of double junction (p-

i-p) diode [69]. The idea can be extended to the case of hole-only devices by introducing
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Figure 4.3: The theoretical profile of electric potential and hole carrier density as a function
of the distance from the injecting electrode for planar geometry, generated using the 1-D DD-
SCLC model described in section 3.3, using parameters given in table 4.1. The profiles exhibit
three distinct transport regimes, plotted for three different applied voltages Va = 0.1, 1, 10V ,
from top to bottom.
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a virtual anode and a virtual cathode, located at the position of zero drift current (zero

electric field) and zero diffusion current, respectively. The two virtual electrodes essentially

mark the separation of the transport regimes (I), (II), and (III) on the simulated profile.

With the increasing of the applied voltage, the virtual electrodes move toward the actual

(fixed) electrodes. This phenomenon is governed by the charge diffusion, which is a missing

transport mechanism in the simplified SCLC model.

4.1.2 Tip-Plane Geometry

Apart from the conventional planar geometry, the effect of charge diffusion is further studied

by modifying the injecting electrode into a circular conducting tip, similar to that of c-AFM

measurement. Assuming that the transport layer is homogeneous with an isotropic hole

mobility, the device will have a cylindrical symmetry around the injecting electrode. This

makes it easy to simulate the tip-plane electrode configuration using the 2-D DD-SCLC

model, as presented in section 3.4. Charge transport comprises of two components; the

lateral transport along the radial direction (ρ) and the vertical transport along the thickness

direction (z). The influence of charge diffusion on transport behavior of tip-plane electrode

configuration can be observed along the thickness direction in the same manner as that of

plane-parallel electrode configuration. By choosing the vertical path at the center of the

circular tip/electrode (ρ = 0), the lateral transport vanishes and only the vertical transport

remains. As the result, figure 4.4 shows the theoretical profile of electric potential and hole

carrier density as a function of z with the varying applied voltage Va = 0.1, 1, 10V , where

z is the coordinate along the vertical axis from tip center pointing to planar electrode. By

applying the concept of virtual electrodes, similar to that of planar geometry, the theoretical

profile of the tip-plane geometry exhibits three transport regimes:
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Figure 4.4: The theoretical profile of electric potential and hole carrier density at the center
of a circular tip (ρ = 0) as a function of the distance from the injecting electrode for tip-plane
geometry, generated by the 2-D DD-SCLC model described in section 3.4, using parameters
given in table 4.1. The profiles exhibits three distinct transport regimes, plotted for three
different applied voltages Va = 0.1, 1, 10V .
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• regime (I) where the charge diffusion is the dominant form of charge transport, located

between the actual anode (z = 0) and the virtual anode,

• regime(II) of the drift-diffusion assisted transport located between the virtual anode

and the virtual cathode,

• regime (III) where drift becomes the dominant form of charge transport, located be-

tween the virtual cathode and the actual cathode (z = L).

Similarly to what has been observed in the study of planar geometry, the virtual electrodes

of tip-plane geometry also move closer to the actual electrodes with the increasing of the

externally applied voltage.

To illustrate the effect of the applied voltage on the movement of the virtual electrodes,

we plot the displacement of virtual anode and virtual cathode as a function of applied

voltage for both plane-parallel and tip-plane electrode configurations, as illustrated in figure

4.5. Due to the absence of intrinsic charge carriers and low carrier mobility in an organic

semiconductor, without the external potential bias applied to the electrodes (the so-called

short-circuit condition), there is no actual charge transport in the device. Although no

current can be measured, theoretically we can demonstrate the non-uniform distribution

of electric potential and charge carrier density. For the planar hole-only device, this is

analogous to the case of a parallel plate capacitor filled with a dielectric, and the simulation

yields a symmetric arrangement that both virtual electrodes are located at the same position

half-way between the two actual electrodes. By applying the positive bias at the actual

anode, holes are injected into the device, traveling through the transport layer via drift

and diffusion mechanisms, and then extracted at the actual cathode. That is when the

position of the virtual electrode starts shifting toward the actual one. In the situation of
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Figure 4.5: Position of virtual anode (dashed line) and virtual cathode (solid line) as a
function of applied voltage for planar (black) and tip-plane (red) geometries, as seen in
figure 4.3 and figure 4.4 respectively. The inset shows the convergence of the virtual tip
position.
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planar geometry, by increasing the applied voltage, the virtual electrodes move away from

each other symmetrically. However, in the tip-plane electrode configuration, the symmetric

behavior no longer holds. At the short-circuit condition, the virtual electrodes of the tip-

plane geometry are located toward the injecting electrode, instead of the middle of the device

thickness. This is due to an asymmetric pair of tip and plane electrodes and a lateral current

spreading beneath the tip-like structure.

Although the concept of virtual electrodes is chosen for the explanation of charge trans-

port involving the additional charge diffusion, it is not the new to the simplified SCLC

model. But, per the chosen boundary conditions at the electrodes, the simplified SCLC

model assumes that the virtual electrodes are fixed as the actual ones. The inset of figure

4.5 shows the convergence of the virtual electrodes’ position with the externally applied volt-

age. When the virtual electrodes are co-located with the actual electrode, the influence of

charge diffusion is negligible and the current-voltage characteristic of planar and tip-plane

geometries are then well described by Mott-Gurney equation (2.13) and the semi-empirical

formula (2.31) introduced by Ginger’s group, respectively.

4.2 Trap Effects

Up to now, we have assumed that hole-only devices are free of traps. This situation typically

does not exist since an organic semiconductor is commonly known for its energetic disorder.

The topic of traps in organic semiconductors has been intensively studied by experiments on

unipolar injection devices in planar geometry when either electrons or holes are injected into

the devices. The corresponding current-voltage characteristics in the SCLC regime are then

analyzed using the theory of trap-limited SCLC, as written in eq.(2.27). This is a variation
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of the Mott-Gurney equation that has been developed to include trap effects. Therefore,

the derivation leading to eq.(2.27) is based on two assumptions: (i) the electric field at the

injecting electrode vanishes and (ii) the charge diffusion is negligible. These assumptions are

only valid when the electric field across the device is sufficiently high. More importantly,

traps often lead to the condition that diffusion current can no longer be neglected, which

makes the drift-only transport model problematic. [45,70,71]

For a more accurate description of trap-limited SCLC, we developed the theoretical model

described in chapter 3 that incorporates both drift and diffusion transport mechanisms. In

the model, the energetically distributed traps are described by an exponential distribution

within the band gap, characterized by trap density through the parameter ft = Nt/Nv and

trap temperature through the parameter rt = T/Tt, as expressed in eq.(3.4). With varying

trap parameters (ft, rt), the corresponding current-voltage characteristics will be analyzed

in the SCLC regime. We carry out the numerical calculations in two different cases; planar

and tip-electrode geometries, using parameters given in table 4.1. In this section, traps are

assumed to be uniformly distributed throughout the device.

4.2.1 Planar Geometry

The effect of traps in the hole injection system can be studied by comparing the theoret-

ical current-voltage characteristics simulated from the planar device with the presence of

the exponentially distributed traps to that simulated from the trap-free planar device. As

previously demonstrated in figure 3.8, the current-voltage characteristic of a trap-free hole

injection device obeys the power law (J ∝ Vm), showing the transition of charge transport

behavior from the diffusion-influenced regime at low applied voltage (m < 2) to the drift-

dominant regime at high applied voltage (m = 2). This characteristic slope of 2 is the key
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aspect of trap-free SCLC in the drift-only transport model, as predicted by the well-known

Mott-Gurney equation (2.13). Therefore, it shall be instructive to present and analyze the

current-voltage characteristics of hole-only devices in the double logarithmic scale where the

slope is the exponent m. We will mostly show the current-voltage characteristics in log-log

representation from this point forward.

Figure 4.6 shows the theoretical current-voltage characteristic of a hole-only device with

a low density of deep traps (ft = 0.005, rt = 0.30) generated by the 1-D DD-SCLC model

(described in section 3.3). Unlike the trap-free current-voltage characteristic, one can dis-

tinguish three distinct regimes corresponding to Ohm’s law (m = 1), trap limited SCLC

(m > 2), and trap-filled SCLC (m = 2). In the absence of injection barriers, the number

of holes injected into the device increases with an increase in the externally applied voltage.

In the low voltage regime, the amount of injected holes is low, and become negligible com-

pared to that of the intrinsic thermally activated holes. The electrical conduction in this

regime is then due to the intrinsic charge carriers, and hence can be described by Ohm’s

law (m = 1). When increasing the applied voltage, the device accommodates an increasing

number of hole carriers. The rapid growth of current with the small increment of applied

voltage is caused by the flow of injected holes through the device. In an organic semicon-

ductor device, this bulk transport is typically controlled by space charges. The intermediate

voltage regime where the exponent m > 2 is uniquely related to the exponential distribution

of traps within the band gap. When trap states are completely filled, the exponent then

reduces to 2 as predicted by the Mott-Gurney equation for trap-free SCLC. Note that the

theoretical current-voltage characteristic is plotted with the data of applied voltage up to

100V in order to observe all three key regimes. The working range of applied voltage for an

organic semiconductor device is normally below 10V , which is large enough to observe the
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Figure 4.6: The trap influenced current-voltage characteristic of a hole-only device in planar
geometry obeys the power law J ∝ Vm, exhibiting three regimes: Ohm’s law m = 1 (red),
trap-limited SCLC m > 2 (green), and trap-filled SCLC m = 2 (blue).
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trap filling regime.

In order to determine the dependence of current-voltage characteristics on traps, we

performed a large number of device simulations over the wide range of trap parameters:

ft = 0−0.05 and rt = 0.20−0.40. Examples of the theoretical current-voltage characteristics

of hole-only devices in planar geometry are shown in figure 4.7 when (a) ft = 0.005 with

varying rt, and (b) rt = 0.30 with varying ft. These data are plotted in the range of the

intermediate applied voltage regime involving the trap filling process in SCL transport, and

can be described by the semi-empirical expression

J(ft, rt) = µo · kJ (ft, rt) · Vm(ft,rt) (4.3)

with the fitting parameters kJ and m depending on trap parameters ft and rt. By using

this expression to fit all simulated current-voltage characteristics, we obtain the database

of fitting parameters kJ and m which lead to the understanding of how traps affect the

current-voltage relations. This analysis is very challenging due to its nature of nonlinear

regression and the large amount of data involved. Therefore, we have developed a program

written in Python to carry out this extensive analysis. As a result, the fitting parameters

are summarized in table A.1 of appendix A.

Although we cannot present the semi-empirical formula of the fitting parameters, we

observe a monotonic dependence of the fitting exponent m on traps as illustrated by the

contour plot in figure 4.8b. The exponent m varies from 1.89 to 5.00 corresponding to trap

parameter variations over the ranges of ft = 0 − 0.05 and rt = 0.20 − 0.40. The contour

plot demonstrates that there are many possible pairs of trap parameters {ft, rt} along the

contour line which can give the same slope of Log J − Log V curve in the SCLC regime.
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Figure 4.7: The theoretical current-voltage characteristics of planar hole-only devices in the
SCLC regime obey the power law (I ∝ Vm) when (a) ft = 0.005 with varying rt yielding
the exponent in the range m = 2.23 − 4.71, and (b) rt = 0.30 with varying ft yielding the
exponent in the range m = 1.89− 3.72
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(a) (b)

Figure 4.8: Dependence of the exponent m on the two trap parameters; trap density char-
acterized by parameter ft and trap temperature characterized by parameter rt for hole-only
devices in planar geometry based on (a) the simplified SCLC model as described by eq.(2.27),
(b) 1-D DD-SCLC model as seen in figure 4.7 and described by eq.(4.3).
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However, in the strong trap limit where the trap temperature is high and the trap density

is large, the slope depends only on the trap temperature, while in the intermediate regime,

the slope is influenced by both the trap temperature and the trap density. This dependence

is quite different from what is predicted by the simplified SCLC model described by eq(4.7),

in which the exponent m only depends on the parameter rt related to trap temperature, as

shown in figure 4.8a.

4.2.2 Tip-Plane Geometry

Taking into account the tip-plane electrode configuration, we simulate the charge injection

and transport in hole-only device using the 2-D DD-SCLC model described in section 3.4. As

the first step, the hole mobility is assumed to be isotropic. Figure 4.9 shows the theoretical

current-voltage characteristic of a hole-only device in tip-plane geometry with a low density

of deep traps (ft = 0.005, rt = 0.30), exhibiting three distinct regimes corresponding to

• Ohm’s law in the low voltage regime,

• trap-limited SCLC in the intermediate voltage regime, and

• trap-filled SCLC in the high voltage regime.

This is similar to what has been observed in the theoretical current-voltage characteristic of

the hole-only device in planar geometry (previously demonstrated in figure 4.6). The regime

of interest is the trap-limited SCLC, which typically ranges from 1V to 10V . More examples

of the theoretical current-voltage characteristics in this intermediate regime are shown in

figure 4.10 when (a) ft = 0.005 with varying rt and (b) rt = 0.30 with varying ft. This

again suggests that the slope of the Log I − Log V relations, i.e., the exponent m, depends

on trap parameters.

110



0.01 0.1 1 10 100

Applied Voltage (V)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
u

rr
e

n
t 

(p
A

)

f
t
 = 5e-3, r

t
 = 0.30

m = 1.00
m = 3.74
m = 2.00

Figure 4.9: The trap influenced current-voltage characteristic of a hole-only device in the
tip-plane geometry obeys the power law J ∝ Vm, exhibiting three regimes: Ohm’s law
m = 1 (red), trap limited SCLC m > 2 (green), and trap filled SCLC m = 2 (blue). Hole
mobility is assumed to be isotropic.
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While the system has cylindrical symmetry, the hole mobility used in the calculation can

be non-uniform. In this section, we will treat the mobility anisotropy in a simple manner,

where we assume that the mobility is uniform in the lateral (ρ-) and vertical (z-) direction,

and yet with different values of µρ and µz, respectively. The situation often occurs in

the experiments of semi-crystalline organic semiconductors (See chapter 5). The degree

of mobility anisotropy is defined by the ratio µρ/µz. As a preliminary study, we perform

the numerical calculation with varying anisotropic mobility ratio up to 25, which has been

observed in hole-transporting P3HT thin film composed of semi-crystaline whiskers [67].

Figure 4.11 shows the theoretical current-voltage characteristics in the low deep trap regime

(ft = 0.005, rt = 0.30) with varying of the mobility anisotropic ratios (µρ/µz). Interestingly,

the exponent m in the power law does not show a dependence on the mobility anisotropy.

Following the analysis previously done on the trap study in the planar geometry, we car-

ried out extensive calculations of the dependence of the theoretical current-voltage character-

istics on the trap parameters and the mobility anisotropy. We found that the current-voltage

relations can be described by the semi-empirical expression,

I(µρ/µz, ft, rt) = µo · kI(µρ/µz, ft, rt) · Vm(ft,rt) (4.4)

where kI is the fitting parameter and m is the power-law exponent. While the parameter

kI depends on both trap parameters and mobility anisotropy, the exponent m only depends

on trap parameters. We have applied our Python program to fit the simulated current-

voltage characteristics in the SCLC regime and have extracted the fitting values of kI and

m. The fitting results are summarized in table A.2 of appendix A. By analyzing the slope

of Log I − Log V curves, we observe the dependence of the exponent m on trap parameters
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Figure 4.10: The theoretical current-voltage characteristics of tip-plane devices in the SCLC
regime obey the power law (I ∝ Vm) when (a) ft = 0.005 with varying rt yielding the
exponent in the range m = 2.89 − 5.52, and (b) rt = 0.30 with varying ft yielding the
exponent in the range m = 2.00− 4.19. Hole mobility is assumed to be isotropic.
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Figure 4.11: The theoretical current-voltage characteristics of tip-plane devices in the SCLC
regime for a range of mobility anisotropic ratios, µρ/µz, with fixed trap parameters ft =
0.005, rt = 0.30.
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Figure 4.12: Dependence of the exponent m on the exponentially distributed trap DOSs
characterized by parameters ft and rt for hole-only devices in tip-plane geometry in the SCLC
regime, resulting from extensive calculations for theoretical current-voltage characteristics
as demonstrated in figure 4.10 and described by the semi-empirical expression (4.4).
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as illustrated by the contour plot in figure 4.12. The exponent m varies from 2.00 to 5.73

corresponding to trap parameter variations over the ranges of ft = 0 − 0.05 and rt =

0.20 − 0.40. The dependence of the exponent m on trap parameters resulting from device

simulations in the tip-plane geometry is qualitatively similar to that of the planar geometry

(shown in figure 4.8b).

4.3 Morphological Effects: Semi-Crystaline P3HT Thin

Films

It has been shown that the overall performance of organic semiconductor devices have

been improved significantly with the structural enhancement of their nanoscale morpholo-

gies [72, 73]. Semiconducting P3HT is among the most extensively studied polymers in

the field, being the best-known representative that exhibits highly crystalline self-assembled

nanostructures [1, 65, 66, 67, 74, 75, 76, 77]. Therefore, in this section, we carried out a the-

oretical study of the morphological effect in semi-crystalline P3HT films by analyzing the

theoretical current-voltage characteristics simulated from tip-plane device geometry in anal-

ogy to c-AFM measurements.

Figure 4.13 shows a schematic illustration of crystallized P3HT nanofiber. In general,

the self-organized P3HT exhibits a lamellar ordering via π − π interactions that lengthen

the nanofiber. Based on the alignment of P3HT lamellae with respect to the substrate,

the nanofiber can be categorized into three orientation schemes: (i) ‘face-on’ orientation

with the lamellae being parallel to the substrate, (ii) ‘edge-on’ orientation with the lamellae

being perpendicular to the substrate, and (iii) ‘end-on’ orientation with both lamellae and

polymer-backbone being perpendicular to the substrate, which are schematically shown in
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(c)

Figure 4.13: Schematic illustration of crystallized P3HT nanofibers in three possible ori-
entation schemes, including (a) ‘face-on’, (b) ‘edge-on’ and (c) ‘end-on’ orientations, corre-
sponding to the parallel and perpendicular alignments of self-organized P3HT lamellae to
the substrate, respectively.
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figure 4.13 (a),(b) and (c), respectively. While polymer crystallinity depends significantly on

regioregularity [65,78,79], molecular weight [80,81,82,83] and fabrication process [84,85,86],

P3HT typically forms micrometer long nanofibers along the π − π stacking direction with

a width of 20nm along the polythiophene backbone direction and a thickness of 5nm along

the alkyl side chain direction [1, 31, 36, 37, 38, 87]. Furthermore, it has been reported that

producing the ‘end-on’ fibers is very challenging due to the difficulty of stacking up the long

backbone direction [88, 89]. Therefore, in this study, we will focus on the ‘edge-on’ and

‘face-on’ fibers, which is commonly found in the semi-crystalline P3HT thin films.

Experimentally, it has been shown that the crystallized P3HT nanofiber exhibits mobility

anisotropy [65,67,90,91], such that the mobility along the π−π stacking direction (fiber axis)

is very high as compared to the mobility along the alkyl side chain direction, which is com-

parable to that of amorphous P3HT. Clearly, the high mobility channel through nanofibers

is preferable for charge transport. While it is straightforward to make an assumption that

the presence of nanofibers could lead to the enhancement of the overall device mobility,

experiments [34, 67] have shown that the ‘edge-on’ fibers do not significantly increase the

mobility measured in the plane-parallel electrode configuration (planar geometry) and may

slightly lower the mobility as compared to amorphous films. This observation can be ex-

plained by the characteristics of charge transport in the conventional planar geometry. In

the experiments of this particular geometry, the current-voltage response is mainly subject

to the vertical charge transport, and consequently the exceptionally high lateral mobility

of ‘edge-on’ fibers may be left undetected. To obtain the comprehensive understanding of

charge transport in both vertical and lateral directions, the current-voltage measurement in

tip-plane geometry, similar to c-AFM, is preferred.

To study the morphological effect of crystallized P3HT fibers, we carried out the nu-
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merical calculations using the fully 3-D DD-SCLC model, described in section 3.5, that is

capable of incorporating the three-dimensional morphology of nanofibers as well as handling

the device with tip-plane electrode configuration. The calculations were performed on the

cubic grid, where the conducting tip is approximated by a 5nm × 5nm square contact. In

the following theoretical study discussed in this section, two assumptions have been made:

(i) the device is free of traps; and (ii) while the anisotropic mobility is assigned to the fibers,

the background mobility of amorphous regions is isotropic. The parameters used in the

numerical calculations are summarized in table 4.1 unless stated otherwise.

4.3.1 An Isolated Fiber: ‘Face-On’ Fiber and ‘Edge-On’ Fiber

Although it is not common to selectively grow only one P3HT nanofiber in the film, the

theoretical study of an isolated single fiber can give us the fundamental understanding of its

morphological effect on the theoretical current-voltage characteristics. Also, we can investi-

gate the contribution of an individual fiber without the interference from the near-by fibers,

which cannot be observed directly from experiments.

To examine the morphological effect of an isolated crystalized P3HT nanofiber, we consid-

ered the case of a high mobility fiber embedded in an amorphous background. As schemat-

ically shown in figure 4.14, P3HT nanofibers are depicted by green wires with the cross-

sectional areas of 20nm × 5nm. To maximize the effect, the fiber is lengthened across the

entire device, which is about 80nm for ‘face-on’ fiber and 600nm for ‘edge-on’ fiber. This

is generally consistent with the P3HT nanofibers visualized in experiments [1,31,36,37,38].

When compared to the amorphous domain, it has been shown that the ordered structures

like nanofibers have at least improved the inter-molecular transport along the π−π stacking

direction [65, 67, 90, 91]. To proceed with the device simulations, the hole mobility in the

119



(a) (b)

Figure 4.14: Schematic illustration of device structures with the tip-plane electrode con-
figuration to study the morphological effect of an isolated fiber with (a) ‘face-on’ and (b)
‘edge-on’ orientations.

nanofiber needs to be parameterized.

Evidently, the mobility anisotropy of semi-crystalline P3HT films have been observed in

experiments [65, 67, 90, 91]. Hole mobilities along the direction of π − π stacking and alkyl

side chains have been investigated by using field-effect transistor experiment [65] and c-AFM

measurement [91]. These papers have reported that hole mobility along the π − π stacking

direction (µπ) is significantly larger than that along the side chain direction (µS) by 2-3

orders of magnitudes. On the other hand, the hole mobility along polythiophene backbone

direction (µB) cannot simply be determined by the same techniques. To the best of our

knowledge, there is no report on the experimental measurement of the hole mobility along the

backbone direction, and only one theoretical analysis by Lan and Haung [90] suggested that

the hole mobility along the backbone direction (µB) is approximately 2 orders of magnitude

larger than that along the π − π stacking direction (µπ). This implies that holes travel in

nanofibers along the polymer backbone with mobility of 4 orders of magnitude higher than

that along the polymer side chains. From the computational point of view, we have found
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that this drastic transport anisotropy in P3HT nanofibers impacts the numerical stability of

the calculations. To solve this issue, we need to evaluate how the high mobility anisotropy

of nanofibers affects the overall hole transport in semi-crystalline P3HT devices.

The straightforward way to examine the overall hole transport in devices is by evaluating

their current-voltage characteristic. For the present study, the conducting tip is located on

nanofibers to maximize their impact on the macroscopic transport, as schematically illus-

trated in figure 4.14. We carried out extensive calculations of the dependence of theoretical

current-voltage characteristics on the magnitude of hole mobility along the polythiophene

backbone direction of a nanofiber (µB). While varying hole mobility along the backbone

direction, hole mobility along the π− π stacking direction and the alkyl side chain direction

were fixed with the anisotropic mobility ratio µπ/µS = 100. The background mobility of

the amorphous region is chosen to be the same as that of the alkyl side chains, which is

consistent with recent experiments [1, 34,67].

Figure 4.15 shows the comparison of theoretical current-voltage characteristics simulated

from hole-only devices consisting of an isolated P3HT nanofiber embedded in an amor-

phous domain, as schematically illustrated in figure 4.14, for the different values of mobility

anisotropic ratio of the polymer backbone to the alkyl side chains (µB/µS). The theoretical

current-voltage characteristic of an amorphous device (no fiber) is plotted as the baseline.

The inset shows the same data plotted in double logarithmic scale, obeying the power law

I ∝ Vm with the exponent of m = 1.89, which is close to the trap-free value, and con-

sequently incorporating the high transport domain doesn’t change the fitting value of the

exponent.

From figure 4.15, two different fiber orientations reveal two distinct dependences of the

theoretical current-voltage characteristic on the mobility anisotropic ratio µB/µS . In the
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Figure 4.15: Based on the hole-only devices with an isolated P3HT fiber shown in figure
4.14, the theoretical current-voltage characteristics when the tip is in contact with the fiber
are plotted with varying the fiber mobility along the polythiophene backbone direction (µB).
The theoretical current-voltage characteristic of an amorphous device is plotted as the ref-
erence to demonstrate the current enhancement in the presence of a single nanofiber. The
inset shows the same data plotted in the double logarithmic scale.
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case of an isolated ‘edge-on’ fiber, the theoretical current-voltage characteristics remain un-

changed with the variation of ratio µB/µS , indicating that hole transport in the ‘edge-on’

fiber is dominated by the high mobility along the π − π stacking direction. On the other

hand, the current of a device with an isolated ‘face-on’ fiber decreases with increasing hole

mobility of the polymer backbone (µB). This setback in hole transport is associated to the

enhancement of the lateral current spreading due to an increase of in-plane mobility along the

backbone direction of the ‘face-on’ fiber. It should be noted that we verified that increasing

the mobility anisotropic ratio µB/µS to 104, as in the analysis by Lan and Haung [90], has a

very small effect on the current-voltage characteristic (< 1% difference from the case of ratio

µB/µS = 100 ). To reduce the difficulty in the numerical calculations without impacting

the mobility anisotropy effect, the hole mobility along the π − π stacking direction and the

polythiophene backbone direction is set to be 100 times larger than that along the alkyl side

chain direction. This is to be applied to all the numerical calculations on P3HT fibers from

this point onward.

To further understand the morphological effect of an isolated nanofiber contained in the

theoretical current-voltage characteristics shown in figure 4.15, we also plot the percentage

increase of current when the tip is placed on an isolated nanofiber compared to when the tip

is placed on an amorphous domain (no fiber), as a function of externally applied voltage. It

is clear that the overall hole transport in the device is enhanced when tip is in contact with

a high mobility nanofiber; approximately 200% and 500% increase of current are observed

for an isolated ‘edge-on’ and ‘face-on’ fiber, respectively. This observation demonstrates

a remarkable dependence of the overall hole transport on the orientation of a nanofiber

in this particular setup. In the case of a ‘face-on’ orientation, the high mobility fiber is

perpendicular to the substrate, and consequently improves the vertical hole transport from
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the conducting tip to the bottom electrode, resulting in a tremendous increase of current.

However, the explanation based on the improvement of vertical mobility cannot elucidate

the current enhancement observed when tip is in contact with the ’edge-on’ fiber, in which

the high mobility direction is in-plane. Moreover, as previously seen in the case of a ‘face-on’

fiber that the increasing of lateral hole mobility results in the decreasing in current, one

might wonder why we do not observe the same setback in the case of edge-on fiber when

compares to the case of amorphous P3HT device (no-fiber case). With this complication, to

consider just the theoretical current-voltage characteristics is not sufficient, and we need to

explore the detailed information on current flow.

Figure 4.16 shows a selection of current maps, demonstrating three-dimensional current

flow simulated from hole-only devices in the tip-plane geometry at the applied voltage Va =

1V . Figure 4.16(a-e) presents the vertical current at different locations along the direction of

device thickness, while figure 4.16(f-j) shows the lateral current at the top surface (z = 80nm)

in contact with the conducting tip. Due to the large amount of current injecting vertically

and laterally from the conducting tip, the tip contact area is visualized as a red dot in

current maps of the top surface. In figure 4.16, three different morphologies associated to

the semiconducting P3HT have been used in the device simulations, including (a,f) a purely

amorphous domain (no fiber), (b-c, g-h) an isolated ‘face-on’ fiber embedded in an amorphous

domain, and (d-e, i-j) an isolated ’edge-on’ fiber embedded in an amorphous domain, which

are schematically shown in figure 4.14. In the last two morphologies involving nanofibers,

we compare the case when the conducting tip is located on fiber and the case when the tip

is near but not in contact to the fiber. The current maps clearly show distinct correlation

to their morphologies.

In figure 4.16(a,f), the amorphous device exhibits the behavior of an isotropic system,
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showing the circularly symmetric distribution of the hole current. Figure 4.16 (a) shows the

vertical current spreading into the larger cross-sectional area toward the bottom electrode.

This 3-D cone of the vertical current is recognized as the signature of the tip-plane geometry

caused by the lateral current spreading beneath the conducting tip, as obviously seen in

figure 4.16(f).

In the case of an isolated ‘face-on’ fiber (figure 4.16(b-c, g-h)), we clearly observed the

superposition of two features arising from the nature of tip-plane electrode configuration

and the characteristics of high mobility fibers. First, it exhibits the circularly symmetric

current spreading from the conducting tip shown as the background; second, the number of

standout red dots in the vertical current maps indicate the intense vertical current at the

specific location, revealing the exceptionally high-transport channel through the fiber. When

the tip is located on the fiber, the fiber simply connect the upper tip to the bottom electrode.

As shown in figure 4.16(b), the alignment of red dots could be seen as the ‘tip extension’ to

the bottom electrode, which lead to the current enhancement previously observed in figure

4.15. Even when the tip is not in contact with the fiber (figure 4.16(c,h)), the lateral current

spreading brings holes to the nearby fiber where holes are able to travel faster to the bottom

electrode. In other words, the fiber assists hole transport by providing a ‘highway’ for current

flow.

The last morphology to be discussed is the one with an isolated ‘edge-on’ fiber. In figure

4.16(d-e,i-j), the spherical symmetry of current spreading from the conducting tip is no longer

maintained, and the current maps clearly characterize the surface morphology of the fiber

that lies in-plane. Adopting the intuitive picture of the ‘tip extension’ described earlier, one

can relate the enhancement of the vertical current when the tip is in contact with the fiber

(as shown in figure 4.15) to the increase of the tip contact area, as clearly depicted by the red
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wire in figure 4.16(d,i). Furthermore, in the condition that the fiber and the tip are no longer

in contact (figure 4.16(e,j)), as long as the fiber is affected by the lateral current spreading

from the tip, it is obvious that the fiber promotes current flow, behaving as a ‘highway’ for

hole transport. It is less obvious, though, that this mechanism is sufficient to significantly

raise the vertical current of the device.

In order to avoid confusion, it is worth noting that the current maps shown in figure

4.16 are not the same as the current map of c-AFM measurements, despite the similarity

in the electrode configuration. While the simulated current map illustrates the 3-D current

distribution, including both lateral and vertical currents, when the biased tip is positioned

at the point of interest on the surface; the c-AFM current map is the 2-D plot of the

vertical current measured at each location on the map by scanning the biased tip over the

surface of the sample. Although the simulated current map of a single point probe is limited

to the local morphological and electrical properties where the tip is located, these maps

essentially provide the 3-D visualization of current flow which cannot be observed directly

from experiments. Particularly, by comparing the current maps simulated from different

morphologies as illustrated in figure 4.16, we reveal how the ‘face-on’ and ‘edge-on’ fibers,

despite the difference in fiber orientation, enhance the current flow in the tip-plane geometry.

This mechanism is qualitatively consistent with the contrast seen in the c-AFM current maps

of fibrous films [1, 31,36,37,38].
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Figure 4.16: The vertical (a-e) and lateral (f-j) current of the semiconducting P3HT devices when the biasing voltage Va = 1V is
applied to the conducting tip (red dot) and the bottom electrode is grounded. Three different types of morphologies have been
used in the device simulation: (a)&(f) an amorphous (no-fiber) domain; (b-c)&(g-h) an isolated ‘face-on’ fiber embedded in an
amorphous domain; and (d-e)&(i-j) an isolated ‘edge-on’ fiber embedded in an amorphous domain. In the last two morphologies,
the comparison of current flows when tip is and is not in contact with the fiber is demonstrated.



Up to now, the current maps of a single-point probe have been helpful to qualitatively

elucidate the mechanism for c-AFM contrast in fibrous films. However, to verify the ability

of c-AFM current maps in visualizing each individual fiber, it is necessary to analyze the

contrast of the map quantitatively. Resembling the c-AFM measurement, we carried out

extensive calculations at different positions along the chosen profile trace. In this study, we

consider the same morphologies used in simulating the current map, which consists of an

isolated fiber embedded in an amorphous domain, as schematically shown in figure 4.14.

Figure 4.17 shows the dependence of the vertical current as a function of tip position on

a trace crossing the ‘face-on’ fiber along; (a) the polythiophene backbone direction and (b)

the alkyl side chain direction, at the applied voltages Va = 0.1, 1, 10V . Shown in the inset

is the surface morphology of the device in figure 4.14(a) with the profile trace indicated by

the dashed line. Because of the symmetry of the morphology, we plotted the vertical current

collected from one half of the profile trace, starting from the center of the fiber where tip

position is set to zero. The vertical currents in figure 4.17 have been normalized to the

vertical current of an amorphous (no fiber) device in order to make the comparison among

the three values of the applied voltage. Despite the difference in fiber dimensions, two obvious

similarities of the current distribution in the backbone direction and the side chain direction

are: (i) the vertical current is at its maximum value when tip position is at 0nm (the center of

fiber), (ii) the vertical current abruptly decreases when the tip is positioned outside the fiber

edge (FE). The fiber edge (FE) is the key parameter that pinpoints the interface between

the crystallized structure of the fiber and the amorphous domain, which is at the position

10nm and 2.5nm in the backbone direction and the side chain direction, respectively. To

understand the information contained in these data, the distribution of the vertical current

is parameterized in terms of the half-width at half maximum (HWHM) as marked and
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(a)

(b)

Figure 4.17: Simulating the c-AFM measurements, the dependence of the vertical current
as a function of tip position on the profile trace crossing the ‘face-on’ fiber along; (a) the
polythiophene backbone direction and (b) the alkyl side chain direction, at the applied
voltages Va = 0.1, 1, 10V . The profile trace is indicated by the dashed line shown in the
inset.
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labeled in the figure, yielding the averaged values HWHM of 14.0nm and 7.2nm in the

backbone direction and the side chain direction, respectably. To generalize this parameter,

we consider the value of HWHM − FE, which simply indicates the tip position away from

the fiber edge where the vertical current decreases to the half value of its maximum. As a

result, HWHM− FE is estimated to be 4.0nm and 4.7nm for the c-AFM simulations along

the profile trace of the backbone direction and the side chain direction, respectively. These

values are comparable to the tip size, and confirm the high lateral resolution of c-AFM

measurements on a ‘face-on’ fiber.

Figure 4.18(a) shows the dependence of the vertical current as a function of tip position

on the trace crossing the ‘edge-on’ fiber along the polythiophene backbone direction at the

applied voltages Va = 0.1, 1, 10V . In the inset, the profile trace is indicated by the dashed

line cross the surface morphology of the device schematically shown in figure 4.14(b). Similar

to the case of ‘face-on’ fiber, the vertical current is maximized when the tip is positioned at

the center of fiber (0nm), then falls off rapidly when the tip moves beyond the fiber edge

(FE) at the position of 10nm. As marked and labeled in figure 4.18(a), the values of HWHM

evaluated at the three different applied voltages are close, giving an average value of HWHM

as 16.0nm. Consequently, HWHM − FE is estimated to be 6.0nm, which is comparable to

the tip size. This confirms the high lateral resolution of c-AFM measurements on a ‘edge-on’

fiber.

Figure 4.18(b) illustrates an analysis of the vertical sensitivity of c-AFM measurement on

an isolated ‘edge-on’ fiber at the applied voltage Va = 0.1, 1, 10V . To investigate the vertical

sensitivity of the measurement, we fixed the tip position and modified the morphology by

embedding the ‘edge-on’ fiber away from the surface. In Figure 4.18(b), dependence of the

vertical current as a function of the vertical separation between tip and fiber is illustrated

130



(a)

(b)

Figure 4.18: Simulating c-AFM measurements, (a) the dependence of the vertical current
as a function of tip position on the profile trace crossing the ‘edge-on’ fiber along the poly-
thiophene backbone direction and (b) the dependence of the vertical current as a function
of tip-electrode separation, at the applied voltage Va = 0.1, 1, 10V .
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for the varying applied voltages. The vertical current decreases with the increase of the

tip-fiber separation. This is expected since the effect of the ‘edge-on’ fiber subsides as the

fiber is located further away from the surface, as well as the tip. Similarly, it is useful to

parameterize the decay of the vertical current with tip-fiber separation in term of HWHM,

as given in the figure 4.18(b). However, in this study, the physical interpretation of HWHM

is the vertical separation between tip and fiber that corresponds to reducing the vertical

current by half of the maximum current measured when tip is in contact with fiber. The

averaged HWHM over three applied voltages is estimated to be 6.9nm, indicating the vertical

sensitivity of c-AFM measurement to a buried ‘edge-on’ fiber.

4.3.2 An ‘Edge-On’ Fiber Network

In this section, we applied the numerical tool of the 3-D DD-SCLC model to study the mor-

phological effect of a nanofibrillar network. In an exemplary way, we carried out the numer-

ical calculations to simulate the charge transport through the network of ‘edge-on’ oriented

P3HT fibers in the tip-plane electrode configuration, in analogy to c-AFM measurements.

In this study, we consider three types of randomness typically observed in semi-crystalline

fiber structure in P3HT films [1,31,36,37,38], including random fiber spacing, random fiber

orientation, and random fiber length. Each model morphology is generated to meet four

conditions:

i) no in-plane fiber crossing,

ii) no out-of-plane fiber crossing,

iii) no violation of the periodic boundary condition,

iv) constant fiber fraction in each cross-sectional area.
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(a)

(b)

(c)

Figure 4.19: The 600nm × 600nm cross-sections of three model morphologies consisting of
‘edge-on’ fibers aligned in-plane with (a) random spacing (fiber fraction = 0.40), (b) random
spacing and random orientation (fiber fraction = 0.40) and (c) random spacing and random
length (fiber fraction = 0.32).
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Figure 4.20: Theoretical current-voltage characteristics of hole-only devices in the tip-plane
geometry with three model morphologies (see figure 4.19) simulated when the conducting tip
is in contact with the fiber and when it is not, as labeled by ‘ON’ and ‘OFF’, respectively. The
inset shows the same data plotted in the double logarithmic scale. Despite the differences
in model morphologies, the total currents simulated from the devices with an ‘edge-on’
fiber network increase by approximately 50% compared to those simulated from the devices
with a single With the presence of an ‘edge-on’ fiber network, the total currents, despite
the differences in model morphologies and tip locations, increases by approximately 50%
compared to those simulated from the devices with a single ‘edge-on’ fiber.
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Figure 4.19 illustrates the 600nm × 600nm cross-sections of the x − y plane for three

model morphologies, consisting of the ‘edge-on’ fibers (depicted by green wires) that are

aligned in plane with (a) random spacing, (b) random spacing and random orientation, (c)

random spacing and random length. These fibers are embedded in an amorphous domain,

colored in brown. Initially, the fraction of fiber in each cross-sectional area is chosen to

be 0.40. However, when we assigned the random fiber length to the morphology(c), the

fiber fraction in each cross-sectional area is reduced to 0.32 instead. These values of fiber

fraction are roughly consistent with the value evaluated from c-AFM current maps in the

experiment [1].

In analogy to c-AFM measurements, the local variation in hole transport of the model

morphologies is achieved by locating the tip at the spot of interest and generating a theoret-

ical current-voltage characteristic. Figure 4.20 shows the comparison of theoretical current-

voltage characteristics simulated from two distinct locations on the top surface (z = 80nm)

of the device, i.e., ON- and OFF- fiber, as marked on the surface morphologies in figure

4.19. The term ‘ON’ and ‘OFF’ are simply referred to the measurement conditions when the

c-AFM tip is in contact and not in contact with fiber, respectively. The theoretical current-

voltage characteristics of ON- and OFF- an isolated ‘edge-on’ fiber, as studied in section

4.3.1, are plotted as the baselines. Note that the data for OFF-an isolated fiber is equivalent

to the data generated from an amorphous device. The inset shows the same data plot in

double logarithmic scale, described by the power law I ∝ V 1.89, which is close to the char-

acteristic of a trap-free no-fiber device. By plotting the current-voltage characteristic this

way, we can make two qualitative observations: (i) the current flow is significantly enhanced

by the network of high-mobility fibers; (ii) the difference in the theoretical current-voltage

characteristics simulated from the three model morphologies is insignificant.
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To quantitatively evaluate the morphological effect of a nanofibrillar network shown in

figure 4.20, we also plotted the percent increase of current generated from three model

morphologies compared to the baseline (an isotropic fiber) as a function of applied volt-

age. Despite the differences in model morphology, fiber fraction, as well as the measuring

condition, we observed approximately 50% increase of current in all devices consisting of a

nanofibrillar network when compared with devices consisting of an isolated nanofiber.

4.4 Conclusions

In this chapter, we addressed the theoretical studies of DD-SCLC model for the description

of hole transport in hole-only devices. Applying the numerical tools developed in chapter

3, we demonstrated how the hole transport in the devices is affected by charge diffusion,

energetically distributed traps and nanoscale morphologies.

First, we investigated the effect of charge diffusion on the SCLC in the conventional planar

geometry, which is similar to the electrode configuration of the simplified SCLC theory, by

using the 1-D DD-SCLC model. In contrast to those of the simplified SCLC model, the

theoretical profiles of electric potential and hole carrier density simulated from the DD-

SCLC model shows the strong dependence on the externally applied voltage, exhibiting

three transport regimes: (i) diffusion-dominant transport regime, (i) drift-diffusion assisted

transport regime, and (iii) drift-dominant transport regime, along the device thickness from

the injecting electrode (an actual anode) to the extracting electrode (an actual cathode). The

three transport regimes are separated by two major transitions of the local charge transport

occurring at the position of the potential maximum, where the local electric field and drift

current vanish, and the position of the hole density minimum, where the diffusion current
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becomes zero. These conditions at the turning points are consistent with the boundary

conditions at the electrodes of the simplified SCLC theory, marking the location of the

virtual anode and a virtual cathode, respectively. We also found that the positions of the

virtual electrodes move toward those of the actual electrodes with increasing applied voltage.

The dynamics of the virtual electrodes and the corresponding transport regimes demonstrate

the crucial effect of charge diffusion and clarify the transport mechanism near the electrodes.

Furthermore, we carried out the numerical calculation of the devices in tip-plane geometry

by using the 2-D DD-SCLC model. Similar to the planar geometry, the vertical transport

along the vertical path at the center of the conducting tip exhibits three transport regimes

and two virtual electrodes. However, due to the different size of injecting and extracting

contacts, i.e., the actual anode and actual cathode, an asymmetric behavior of the virtual

electrodes is observed particularly at the low voltage regime.

Next, we examined the effect of traps on the SCLC. In both simplified SCLC model and

DD-SCLC model, trap states are assumed to be an exponential distribution of the form

(3.4), characterizing by two parameters: (i) trap density (Nt) and (ii) trap temperature (Tt).

By assuming the power relation J(or I) ∝ Vm, the theoretical current-voltage characteristic

simulated from the DD-SCLC model exhibits three distinct regimes corresponding to Ohm’s

law (m = 1), trap-limited SCLC (m > 2) and trap-filled SCLC (m = 2), ordered from low

to high applied voltage. Trap analysis is focused in the trap-limited SCLC regime where

trap states are partly filled, which is typically in the range of applied voltage 1− 10 V. We

have found that the fitting exponent m depends on both trap density and trap temperature.

However, in the strong trapping limit where the trap temperature is high and the number

of traps is large, the fitting exponent depends only on the trap temperature, as previously

described by the simplified SCLC theory in equation (2.27). Over the range of the scaled
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trap parameters ft(Nt) = 00.05 and rt(Tt) = 0.200.40, the planar geometry yields the fitting

exponent in range m = 1.89 − 5.00; and the tip-plane geometry yields the fitting exponent

in range m = 2.00 − 5.73. Particularly in the tip-plane geometry, the mobility anisotropy

does not affect the exponent m. This makes the exponent m a suitable fitting parameter for

trap characterization in the SCLC regime.

Lastly, we looked into the effect of the nanoscale morphologies on SCLC in the c-AFM

geometry. In this study, the semi-crystalline P3HT thin films, including two common fiber

orientations: (i) ‘face-on’ and (ii) ‘edge-on’ fibers, are used as the representative systems to

demonstrate the effect. The 3-D DD-SCLC model successfully models the nanofibrillar mor-

phologies of semi-crystalline materials, which are composed of isolated nanofibers embedded

in an amorphous domain, demonstrating a strongly filamentary structure of the current flow

along the percolation path of the high mobility fibers, leading to a significant current en-

hancement when the conducting tip is in contact with a fiber. The device simulations take

the mobility anisotropy of the fibers into account, showing the strong dependence of the hole

transport enhancement on the fiber orientation, such that the current simulated when the

tip is located on top of the ‘face-on’ fiber is approximately two times larger than that of

the ‘edge-on’ fiber. This quantitatively confirms the current enhancement observed in the

c-AFM measurements.

Moreover, we found that the lateral and vertical electrical responses of an isolated fiber

are very local and over a distance comparable to the tip size, confirming the high resolution

of c-AFM measurements. A clear example of this is shown in the study of the more complex

morphologies of the ‘edge-on’ fiber network embedded in an amorphous domain. We pre-

sented three model morphologies with variations in the fiber spacing, fiber orientation and

fiber length. Despite the differences in their nanoscale morphologies, the theoretical current-
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voltage characteristics simulated from all three morphologies are consistent with each other,

demonstrating the local dependence on tip location rather than the overall morphologies.

Additionally, we found that the total current simulated from the case of a fiber network

increases by approximately 50% compared to the case of an isolated fiber, owing to the

increasing percolation path along the fiber network.
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Chapter 5

The Drift-Diffusion SCLC Transport

Models - Application to an

Experimental System

The hole-only device we model in this chapter is based on the experiments conducted by

Jiebing Sun of Dr. Pengpeng Zhang’s group at Michigan State University [1]. In the ex-

periment, the effect of a thermal annealing process on P3HT thin film morphology was

investigated using c-AFM measurement. It was reported that the crystallinity of P3HT

was significantly improved by thermal annealing, based on the comparison of c-AFM im-

ages of topography and current maps collected from annealed and non-annealed samples.

This is accompanied by the current enhancement observed from the local current-voltage

measurement when c-AFM tip is located precisely on top of a crystallized P3HT fiber. Fur-

thermore, thermal annealing also improved the conductivity of P3HT thin films by reducing

traps. This is confirmed by the analysis of the current-voltage characteristics of annealed

and non-annealed samples.

In order to explain the experimental results, we apply our theoretical models, as described

in chapter 3, as well as the trap and morphology analyses presented in chapter 4. First,

following the systematic investigation of trap effects on hole-only devices presented in section
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4.2, we analyze the c-AFM current-voltage data of annealed and non-annealed samples and

also determine the effective hole mobility in the vertical direction. Secondly, the fully 3-D

DD-SCLC model was employed to study the transport mechanism leading to c-AFM contrast

of annealed samples. The morphology of the film is approximated by the three-dimensional

model morphology, as outlined in section 4.3.

5.1 Experiments and Results

According to the publication by Jiebing, et al. [1], the hole-only devices were fabricated

by the spin-coating process. Transparent indium-tin-oxide (ITO) was used as the bottom

electrode of the device. The solution of poly(3,4-ethylenedioxythiophene)/poly (styrenesul-

fonate) (PEDOT:PSS) was first spin-coated on top of the ITO substrate, followed by the

spin-coating of the P3HT solution on top of the PEDOT:PSS film. The annealed samples

were later completed by heating at 160◦ C for 20 min. A platinum (Pt) coated c-AFM tip

was selected as the top electrode. The tip contact diameter was estimated to be 12nm.

In the current-voltage measurement, the Pt tip was grounded and the biasing voltage was

applied to the ITO electrode.

The authors reported a very intriguing feature in P3HT thin films after the thermal an-

nealing process. Unlike those collected from the non-annealed sample, the c-AFM images of

topography and current map collected from the annealed sample clearly show the dense fibers

of crystallized P3HT, suggesting that these fibers were developed through the annealing pro-

cess. It was found that these fibers have width of 20 nm and length of several micrometers.

The combined techniques of X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spec-

troscopy were used to verify that P3HT formed a crystalline nanofibrillar structure with
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Figure 5.1: Reported in ref. [1], (a) an image of the topography of the annealed sample for
fixed-spot current-voltage (I-V ) measurement; (b) I-V spectra with the tip located on/off
the fibers at locations labeled in (a). The inset of (b) shows log-log plots of the I-V spectra
(Log|I| vs. Log|V |) from the negative bias regime. (c) Typical I-V curves in the negative
sample bias for annealed samples (blue) and non-annealed samples (green), and the fitting to
power laws IαVm (red). For annealed samples, the I-V spectra have three distinct segments:
Ohms law ( m = 1), space-charge limited transport with shallow traps (m = 2−2.25), and a
higher slope regime (m > 5) with increase of the applied bias. In non-annealed samples, trap
effects are pronounced in the SCLC regime as the exponent is significantly higher (m = 4−5).

142



‘edge-on’ orientation as the primary mode.

With the presence of the ‘edge-on’ fiber network, the local variation of electrical conduc-

tivity has been determined by c-AFM measurement. Figure 5.1(a) shows the topographic

image of the annealed sample marking position A as on a crystallized fiber and position B

as on an amorphous region (off fiber). In figure 5.1(b), the corresponding current-voltage

responses measured at position A and B exhibit a distinct behavior under positive and neg-

ative bias. Under the negative device bias, holes are injected into the device, transport

through the P3HT layer, and result in the negative current. The current diminishes as the

negatively applied voltage is reduced, and then vanishes when device undergoes the positive

bias, where charge transport is prohibited. Since the positively-biased voltage regime has

no physical importance, we will focus on the negative device bias case only. The inset of

figure 5.1(b) presents the Log-Log representation of the absolute values of current-voltage

responses in the negatively-biased SCLC regime, showing that c-AFM current is much larger

when the measuring tip is located on fiber, even though the fiber is of ‘edge-on’ orientation

which exhibits high in-plane mobility. This observation is well-explained by the theoretical

study discussed in section 4.3.

More information about the electrical transition of P3HT thin film through the ther-

mal annealing process was also investigated by comparing the charge transport of annealed

samples with that of non-annealed samples. To characterize the statistical variation in trans-

port properties across the surface of annealed and non-annealed samples, a number of local

current-voltage measurements at different locations on each sample were performed. Figure

5.1(c) shows the typical current-voltage responses of annealed and non-annealed samples,

respectively. Quantitatively, at the same applied voltage, the current of annealed samples

is much greater than that of non-annealed samples. Assuming the current-voltage relation
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as I ∝ Vm, the current-voltage characteristics of hole-only devices exhibit three different

regimes based on the fitting exponent m: (a) Ohm’s law regime, (b) trap limited SCLC

regime, and (c) anomalous high slope regime, ordered from low to high applied voltage.

Particularly in the intermediate voltage regime where traps affect hole transport, the fitting

of annealed samples yields the exponent m close to 2 (m = 2−2.25). Compared to annealed

samples, non-annealed samples result in a much larger value of the exponent m typically in

the range m = 4−5. It is clear from the discussion of the trap effects on current-voltage char-

acteristic in section 4.2 that the much steeper dependence of current on voltage is evidence

of the higher density of deep traps. The comparison of the c-AFM current-voltage responses

measured from annealed and non-annealed samples suggests that thermal annealing also

enhances hole transport in the P3HT film by reducing traps.

5.2 Theoretical Simulations and Analyses

Based on the fabrication method reported in the publication, the simple schematic repre-

sentation of the device structure and the corresponding energy level alignment is illustrated

in Figure 5.2. The energy alignment diagram of the interface Pt/P3HT/PEDOT:PSS/ITO,

as shown in figure 5.2(b), is based on the values of work functions and HOMO/LUMO level

of P3HT given in the literature [92,93]. It is also important to note that the actual HOMO

levels of P3HT and PEDOT:PSS do not exactly match, and a hole injection barrier at this

interface was reported [92]. By using ultraviolet photoelectron spectroscopy (UPS), the hole

injection barrier was measured to be 0.2 eV, and a much larger interface dipole of -1.0 eV

was observed [92]. These two values suggest that fermi-level pinning occurs at this interface,

and the potential barrier is negligible.
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Figure 5.2: The schematic representation of the device structure (a) and the corresponding
energy alignment (b) of the hole-only device. This device behaves similarly to a semicon-
ductor diode. When the device is positive biased, no charge carrier transport presents. Con-
versely, under the negative bias, holes are injected from Pt probe into the system, traveling
through the layer of P3HT and PEDOT:PSS, and collected at the ITO contact; while elec-
trons injected from ITO cannot transport into the system due to the layer of PEDOT:PSS.
Therefore, this is the hole only injection system.
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The device design brings an essential difference between positive- and negative- bias.

When the device is positively biased, both electron and hole transports are prohibited. In

contrast, under the negative bias, current can be observed. Holes are injected from Pt tip

into the device, traveling through the layer of P3HT, and later collected at the ITO electrode.

Electrons, on the other hand, are injected from ITO electrode, but cannot transport into the

P3HT layer due to the PEDOT:PSS electron blocking layer. Therefore, this device allows

us to investigate the single carrier transport of holes in P3HT when applying the negative

bias. These behaviors of the device under the positive and negative biases were confirmed

by the current-voltage data taken by c-AFM measurement, as previously shown in figure

5.1(b), which is the characteristic of hole-only devices.

The numerical calculations of the DD-SCLC model, as previously explained in chapter

3, were performed to study hole transport in the device. However, one minor adaptation

has been made on the electrode boundary conditions to particularly match the behavior

of the fabricated P3HT devices under the bias from c-AFM tip, assuming the perfect hole

extraction at the bottom electrode. The modified boundary conditions are written as

ψ = 0 and pf = Nv at the c-AFM tip (5.1a)

ψ = −V and pf = 0 at the bottom (planar) electrode (5.1b)

This is similar to the boundary conditions used in the simulation of hole-only device by Reid

et al. [32]. Unless stated otherwise, the parameters used in the device simulations presented

in this chapter are summarized in table 5.1.
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Table 5.1: Summary of parameters used in the device simulations to analyze c-AFM data

Parameter Symbol Numerical value

Dielectric constant εr 3.0

The effective density of states in the HOMO Nv 1021 cm−3

Tip contact diameter D 12 nm
Temperature T 300 K
Device thickness L 80 nm

5.2.1 Trap and Mobility Anisotropic Effects

Evidently, the current-voltage characteristics of hole-only devices obey power laws. In the

low and intermediate applied voltage regimes, the c-AFM current-voltage data are in good

agreement with the theoretical current-voltage relations simulated using the 2-D DD-SCLC

model with tip-plane geometry, and hole transport behaviors can be described by Ohm’s law

and the theory of SCLC in the presence of traps, respectively (See section 4.2.2 for detailed

discussion). However, in the high applied voltage regime, one can observe a much steeper

increase of current with applied voltage than predicted by the model. This discrepancy is

possibly attributed to the mobility enhancement due to the electric field, so called ‘Poole-

Frenkel’ mobility [32], which is not integrated in the model.

In this section, the systematic method to study trap effects in hole-only devices presented

in section 4.2 is used to analyze the c-AFM current-voltage responses in the intermediate

applied voltage regime, which is typically between 0.5V and 5V , and also to determine the

effective hole mobility in the vertical direction of P3HT samples. First, extensive device sim-

ulations over the wide range of traps and a considerable range of hole mobility anisotropy

were performed using the parameters summarized in table 5.1. To accommodate the spread-

ing effect, we consider the calculation domain as a circular cylinder of 750nm radius and
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80nm thickness. The c-AFM tip is approximated by a circular contact of 6nm radius. In

the model, traps are described by the energy states distributed exponentially within the

band gap, which are characterized by parameters ft = Nt/Nv and rt = T/Tt where Nt is

trap density and TT is trap temperature. The mobility anisotropy is reflected by the ratio

of the in-plane (lateral) mobility to the out-of-plane (vertical) mobility (µρ/µz). The mo-

bility anisotropic ratio ranges from 1 (isotropic case) to 25, which is the strongest mobility

anisotropy observed in P3HT thin films composed of semi-crystalline whiskers [67].

Examples of theoretical current-voltage characteristics of hole-only devices in tip-plane

electrode configuration are illustrated in figure 5.3. Figure 5.3(a) shows the dependence

of theoretical current-voltage relations on mobility anisotropy in the low deep trap regime

(ft = 0.001, rt = 0.30); figure 5.3(b-c) show the current-voltage relations simulated with an

isotropic mobility when (b) ft = 0.005 with varying rt and (c) rt = 0.35 with varying ft.

These data are plotted in the intermediate applied voltage regime involving the trap filling

process in space-charge limited transport, which can be described by the semi-empirical

expression (4.4). Afterwards, the fitting of all simulated current-voltage relations yield the

fitting parameter kI and the fitting exponent m, summarized in table A.3 of appendix A.

Figure 5.4 shows the contour plot of the exponent m as a function of trap parameters ft and

rt. The exponent m varies from 1.96 to 5.52 corresponding to trap parameter variations of

ft = 0− 0.05 and rt = 0.20− 0.40. Next, we will present how to determine the effective hole

mobility in the vertical direction through the analysis of the experimental data.

To determine the effective hole mobility in the vertical direction represented by µo in

the semi-empirical expression (4.4), we started by fitting the experimental current-voltage

relations in the intermediate applied voltage regime with a power law, then obtained the

values of the coefficient µo · kI and exponent m. Since the exponent m is fixed for each
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Figure 5.3: Based on the setup of c-AFM measurements [1], the theoretical current-voltage
characteristics in the SCLC regime are well-described by the semi-empirical expression (4.4)
when (a) trap parameters is fixed (ft = 0.001 rt = 0.30) with varying mobility anisotropic
ratios µρ/µz; (b) mobility is isotropic and ft = 0.005 with the varying rt yielding the
exponent in range m = 2.31− 5.19; and (c) mobility is isotropic and rt = 0.35 with varying
ft yielding the exponent in range m = 1.96− 3.61.
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Figure 5.4: Dependence of the exponent m on the parameters ft and rt for hole-only de-
vices in the SCLC regime, resulting from extensive calculations of theoretical current-voltage
characteristics demonstrated in figure 5.3 [1].
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current-voltage curve, the values of ft and rt can only be taken along a contour line of the

plot in figure 5.4 that has the same value of m. We then compiled a table of kI values with

respect to ft, rt and µρ/µz, and deduced the mobility µo from the fitting coefficient.

Let us begin with the analysis on c-AFM current-voltage data of the annealed samples. In

the experiment, the exponent m found from current-voltage responses at different locations

in the films exhibits a significantly larger variation as compared to the local variation of

current-voltage responses when the c-AFM tip is located on and off a fiber. This is a clear

evidence that the transport still is dominated by local traps in the amorphous regimes. Using

an average mobility anisotropy is then a reasonable approximation of fibrous morphology

in characterizing transport of the semi-crystalline P3HT film. Figure 5.5 illustrates how

the theoretical current-voltage characteristics apply to the experimental results of annealed

samples. Figure 5.5(a-b) show a representative example of c-AFM current-voltage response

measured from annealed P3HT films, i.e., both data (black dots) are identical. The dashed

red lines are fits using theoretical current-voltage characteristics simulated from two distinct

pairs of trap parameters that result in the same value of m: (a) ft = 0.0005 and rt = 0.35,

(b) ft = 0.001 and rt = 0.40. Clearly, agreement with the experimental data is excellent.

Additionally, table 5.2 lists four representative pairs of trap parameters ft and rt that provide

a good fit to the current-voltage response. As the result, the effective mobility demonstrates

a weak dependence on trap parameters ft and rt, while it is strongly dependent on the

mobility anisotropy, exhibiting approximately an order of magnitude difference from the

lowest to the highest values of anisotropic ratio. Therefore, the vertical mobility of each

current-voltage curve is approximated by averaging the values fitted over the range of valid

trap parameters.

By carrying out the extensive analysis of a total of 48 c-AFM current-voltage responses
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Figure 5.5: The representative current-voltage (I-V ) response from the annealed sample
(solid circle) is fitted to the theoretical I-V relation (solid red line) in the low trap regime
with two pairs of trap parameters that result in the same slope: (a) ft = 0.0005 and rt = 0.35,
(b) ft = 0.001 and rt = 0.40. Shown in the inset are the same plot in linear scale. (c) A
histogram of the normalized vertical hole mobility extracted from 48 I-V datasets on the
annealed P3HT film, with the comparison of an isotropic model and an anisotropic model
with µr/µz = 25. The mobility is normalized to the maximum value of each case.
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of annealed samples, we found that the exponent m is fitted in the narrow range of 2− 2.25,

suggesting that annealed samples exhibit the low deep trap regime with trap parameters

ft = 0 − 0.001 and rt = 0.30 − 0.40. Figure 5.5(c) shows the histogram of the vertical mo-

bilities found from the 48 locations on annealed films when assuming isotropic mobility and

anisotropic mobility of µρ/µz = 25. Regardless of the mobility model, the effective mobilities,

which are normalized to the maximum, demonstrates the same distribution. This scalable

property of mobility anisotropy is a signature of low deep trap regime, resulting from the lin-

ear dependence of the fitting parameter kI on the mobility anisotropic ratio. Unfortunately,

we cannot simplify the semi-empirical expression (4.4) further since this linear relation be-

tween kI and µρ/µz still depends on trap parameters. Varying the mobility anisotropic ratio

yields the effective mobility in the vertical direction, as summarized in table 5.3. Assuming

isotropic mobility, we found the effective mobility of 2.01 ± 1.46 × 10−4cm2V −1s−1. This

is consistent with the values of hole mobility measured experimentally [32, 35, 94], validat-

ing the methodology used in this study. However, it is inevitable to raise the question on

the magnitude of mobility anisotropy. The effective mobility extracted from the anisotropic

model, especially when µρ/µz > 10, is significantly lower than what has been reported. We

speculate that semi-crystalline P3HT films produced by thermal annealing may not exhibit

anisotropic conductivity as strong as that composed of whisker-type nanofibers. To prove

this statement, further measurements of hole mobility in the device geometry are needed.

Compared to annealed samples, the extensive c-AFM current-voltage measurements at

different locations on non-annealed samples yield a significantly steeper exponent m in the

range of 4−5, indicating a higher density of deep traps. From the contour plot of the exponent

m shown in figure 5.4, one can find the corresponding trap parameters in the range of ft =

0.0025− 0.05 and rt = 0.20− 0.25. In addition, the authors reported no clear visualization
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Figure 5.6: The representative current-voltage response from the non-annealed sample (solid
circle) is fitted to the theoretical current-voltage relation (solid red line) in the low trap
regime with two pairs of trap parameters that result in the same slope: (a) ft = 0.0075 and
rt = 0.25, (b) ft = 0.01 and rt = 0.25. Shown in the inset are the same plot in linear scale.
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Table 5.2: The effective mobilities in the vertical direction found from fitting a representative
examples of c-AFM current-voltage responses measured from an annealed P3HT sample for
a range of anisotropic ratios.

Table 5.3: An analysis of point-to-point variation in transport properties across the film is
presented for c-AFM data taken at 48 locations on the surface of an annealed sample. The
average, standard deviation, minimum and maximum of the effective mobility in the vertical
direction found from fitting the experimental data for a range of anisotropic ratio.

Table 5.4: The effective mobilities in the vertical direction found from fitting a representative
example of c-AFM current-voltage responses measured from a non-annealed P3HT sample
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of crystallized P3HT nanofiber observed in the c-AFM images of non-annealed samples.

Without the morphological origin of anisotropic hole transport, we assume hole mobility in

non-annealed films to be isotropic. In figure 5.6, a representative example of current-voltage

response was fitted with two theoretical current-voltage characteristic (dashed red lines)

individually simulated from two pairs of trap parameters that result in the same value of

m: (a) ft = 0.0075 and rt = 0.25, (b) ft = 0.01 and rt = 0.25. Clearly, agreement with

the experimental data is excellent. Consequently, table 5.4 lists three representative pairs

of trap parameters ft and rt that achieve a good fit to the current-voltage response. Unlike

the annealed sample, the vertical mobility is strongly dependent on trap parameters ft and

rt. It was in fact revealed that to base the estimate of vertical mobility on the fitting of

experimental current-voltage relations led to unrealistic results. Characterization of trap

parameters using thermally stimulated current [95, 96], transient spectroscopy [97, 98, 99,

100,101], or impedance spectroscopy techniques [44,102,103,104,105] will be required. If we

assume that the hole mobility of non-annealed samples is similar to that of annealed samples.

the representative example of c-AFM current-voltage response measured from non-annealed

samples can be described using trap parameters ft = 0.006 and rt = 0.25, corresponding

to significantly more concentration of traps from the deeper states of the DOS distribution

when compared to an annealed sample. Evidently, the thermal annealing process enhances

the current flow in the film by reducing traps.

5.2.2 Traps and Morphological Effects

The assumption of the cylindrical symmetry used in the analysis of c-AFM data is helpful to

elucidate the anisotropic aspect of the carrier transport without introducing the complexity

of fully three-dimensional calculations. However, to examine the ability of c-AFM to resolve
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the semi-crystalline fiber structures observed in annealed P3HT sample, it is necessary to

consider the fully 3-D DD-SCLC model presented in section 3.5. To illustrate the effect, we

carried out device simulations, incorporating the nanoscale morphology of a high mobility

fiber network embedded in a low mobility background.

In the numerical calculations, we adopted a three-dimensional device domain of 600nm×

600nm in cross-section and 80nm in thickness, and modeled the c-AFM tip as a square

contact of the size 10nm × 10nm. To illustrate the morphological effect observed in c-

AFM measurements, we considered the case of a high mobility fiber network embedded

in a low mobility background. In the study of ‘edge-on’ P3HT fiber network presented in

section 4.3, we observed a consistent theoretical current-voltage characteristic across three

model morphologies with a variety of random fiber spacing, random fiber orientation and

random fiber length. In this study, we thus choose the simplest morphology with a single

randomness of the in-plane spacing between fibers. Similar to assumptions made in the

preliminary study, both in-plane and out-of-plane fiber crossing are forbidden while periodic

boundary conditions are maintained on the four sides of the device that are not connected

to the electrodes. Figure 5.7 shows the 600nm × 600nm cross-section of the representative

morphology at the vertical position z. As depicted by green wires, each crystallized P3HT

fiber has the size of 20nm width and 5nm thickness based on the literature [1,31,36,37,38,87].

The background region in brown is then classified as amorphous P3HT. The fraction of fiber

in the cross-section area is chosen to be 0.33, which is roughly consistent with the fiber

density evaluated from c-AFM images of the annealed samples. One of the key aspects

observed in ‘edge-on’ fibers is the mobility anisotropy. In the device simulations, the lateral

mobility along the π − π stacking direction ([0 1 0]) and in the polythiophene backbone

direction ([0 0 1]) are taken to be 100 times larger than the vertical mobility along the alkyl
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Figure 5.7: The 600nm × 600nm cross-sections of the representative morphology at the
vertical position z in the device thickness direction demonstrating the crystallized P3HT
fibers of 20nm width (green wires) aligned with random spacing in the amorphous region
(brown area). The fiber fraction of cross-section surface area is 0.33. The bottom electrode is
placed at z = 0nm, and the locations of tip contact are marked on the z = 80nm cross-section
for the on-fiber and off-fiber c-AFM simulations.
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Figure 5.8: Adapted from [1], the on-fiber and off-fiber current-voltage responses of the
annealed P3HT sample are well described by the theoretical current-voltage characteristics
simulated from the representative 3-D morphology of an ‘edge-on’ fiber network shown in the
inset on the bottom-right corner. (see figure 5.7 for cross-section morphology) To described
the anisotropic transport in fibers (green), the in-plane mobility is 100 times larger than the
vertical mobility and the background mobility of amorphous region (brown). The background
mobility is fitted to be 7.78× 10−5cm2V −1s−1 with trap parameters ft = 1.00× 10−3 and
rt = 0.30. In the inset on the top-left corner, the vertical current flow when the c-AFM tip
is located on the fiber is visualized.
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side chain direction ([1 0 0]) [65, 67, 90, 91]. On the other hand, the hole transport in the

amorphous region is assumed to be isotropic with the mobility that is the same value as that

of alkyl side chains [34,67].

To simulate the c-AFM measurements, we performed the device calculations when the

tip is located on the fiber and on the amorphous region (off the fiber). The tip locations

are indicated on the cross-section image at z = 80nm, as shown in figure 5.7. Figure 5.8

illustrates how the theoretical current-voltage characteristics apply to the experimental on-

fiber and off-fiber current-voltage responses. The dashed red lines are fits using on-fiber

and off-fiber current-voltage characteristics simulated using the trap parameters ft = 0.001

and rt = 0.30, yielding the isotropic mobility of amorphous phase 7.78 × 10−5cm2V −1s−1.

Clearly, agreement with the experimental data is excellent. Evidently, a strong enhancement

of current flow can be observed when tip is located on fiber, elucidating the contrast visualized

in the c-AFM current map, as discussed in chapter 4.

5.3 Conclusions

In this chapter, we utilized the 2-D and 3-D DD-SCLC models to analyze the current-voltage

responses of c-AFM measurements on hole-only devices fabricated from semiconducting

P3HT. Experimentally, the comparison of typical current-voltage responses measured from

annealed and non-annealed films has shown the correlation between the enhancement of c-

AFM current and the thermal annealing process. By assuming the power relation I ∝ Vm,

the annealed samples yield an exponent m close to 2 (m = 2− 2.25) while the non-annealed

samples exhibit a much steeper exponent in the range of m = 4 − 5. The application of

the numerical tool based on the 2-D DD-SCLC model confirms that the thermal anneal-
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ing process has significantly enhanced the hole transport in P3HT film by alleviating the

effect of traps. Furthermore, statistical analysis of 48 annealed samples suggest that the

device corresponds to the low trap regime with trap parameter ft = 1.08± 0.28× 10−3 and

rt = 0.35 ± 0.04. By assuming that hole mobility in such devices is isotropic, the effective

mobility in the vertical direction is estimated to be 2.01± 1.46× 10−4cm2V −1s−1. This is

consistent with experiments [32, 35, 94], confirming the validity of the numerical model and

methodology used in the analysis. However, if the device mobility is anisotropic, the effec-

tive mobility in the vertical direction can be much lower. The comparison of current-voltage

data from c-AFM and device measurements is needed to determine the degree of mobility

anisotropy as well as the vertical mobility of holes in the annealed samples.

Additionally, the thermal annealing process improve the crystallinity of P3HT films.

The c-AFM image of annealed films shows a large spatial variation of the vertical current,

indicating a nanoscale morphology comprised of nanofibers and the lower conductivity back-

ground. Further characterization using X-ray diffraction and UV-Vis spectroscopy indicates

the development of self-organized P3HT nanofibers with the ‘edge-on’ orientation as the

primary mode. By incorporating the three-dimensional model morphology of a nanofibril-

lar network, the simulation based on the 3-D DD-SCLC model in tip-plane geometry has

demonstrated the current enhancement when the conducting tip is in contact with the fiber,

which visualizes the c-AFM contrast of fibrous films.
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Chapter 6

Conclusions

The simplified SCLC theory is a well-established model to explain the unipolar transport in

disordered organic semiconductors. However, a shortcoming lies within the assumption that

charge diffusion can be neglected. This can lead to the misinterpretation of experimental

data when the effect of charge diffusion in the devices is no longer negligible. In this thesis,

we developed numerical approaches that efficiently simulate the hole-only SCLC model with

the full description of hole drift and diffusion transport mechanisms, i.e., the DD-SCLC

model. In the case of fully 3-D calculations, the numerical model is able to treat inhomo-

geneous systems including spatially varying trap distributions, nanoscale morphologies, and

the tip-plane (c-AFM) geometry. The application of the model to the analysis of c-AFM

experimental data is presented.

Starting in chapter 2, we provided an overview to the fundamental concepts of injection

and transport mechanisms of charge carriers in disordered organic semiconductor devices,

and further delved into the simplified SCLC theory which describes the drift-dominated

unipolar SCLC. While the earlier work by M.A. Lampert and P. Mark [43] was focused on

electron-only SCLC, we demonstrated the analytical derivation of the simplified SCLC theory

for holes. As the result, the analytical expressions to describe the relation of hole current to

externally applied voltage for the trap-free devices, a.k.a. the Mott-Gurney equation, and for

the devices with the exponentially distributed trap density are summarized in Table 2.1. For

162



the application to c-AFM measurements, we provided a brief review of the semi-empirical

formula by O.G. Reid et al. [32] which modified the Mott-Gurney equation to include the

effect of tip geometry. While organic semiconductors are typically energetically disordered,

to the best of our knowledge, the theoretical model to describe trap-limited SCLC in the

c-AFM or tip-plane geometry has never been introduced.

In chapter 3, we introduced the drift-diffusion (DD) SCLC model, as in its name, describ-

ing hole-only SCL transport by both drift and diffusion mechanisms. The inhomogeneous

systems, including spatially varying trap distributions, nanoscale morphologies, as well as

tip-plane (c-AFM) geometry are also incorporated. As a matter of fact, traps are commonly

found in disordered organic semiconductors, and thus we modelled the trap DOSs for holes

as the tail states of HOMO DOS toward the energy gap, which is well approximated by the

exponential distribution [43, 44]. The DD- SCLC model is governed by three equations, in-

cluding Poisson’s equation, the drift-diffusion equation for holes, and the continuity equation

at steady state. To stabilize the numerical calculations, we apply the Scharfetter-Gummel

discretization [54] to the drift-diffusion equation, then numerically solve the three governing

equation simultaneously, similar to the numerical scheme used by L.J.A. Koster et al. [52].

We successfully developed the numerical tools for the DD-SCLC model in one-, two-,

and three- dimensional systems. Among the three models, the 1-D DD-SCLC model is the

simplest one and improves on the simplified SCLC model by including the mechanism of

charge diffusion. While the 1-D DD-SCLC model is numerically much more efficient than

the fully 3-D SCLC model, the trade-off is the possibility to include the spatially distributed

traps, the nanoscale morphologies, and the c-AFM geometry. Unlike the 1-D and 3-D DD-

SCLC model that are discretized in Cartesian coordinate system, the 2-D DD-SCLC model

is set up in a system with cylindrical symmetry. Thus, the 2-D DD-SCLC model is very
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efficient to simulate the SCLC in the c-AFM geometry with mobility anisotropy in the lateral

and vertical transport. All 1-D, 2-D, and 3-D DD-SCLC models are verified to be consistent

with each other, and validated to be consistent with the simplified SCLC theory in the

drift-dominated regime.

The simplified SCLC theory is only the first step to understand the SCL transport in

hole-only device, yet far from complete. We saw in chapter 4 that, while the theory has

made a major assumption that charge diffusion is negligible in the devices, the theoretical

hole carrier density is not uniformly distributed, leading to the extremely large amount

of diffusion current near the injecting electrode. This discrepancy becomes more severe

with decreasing applied voltage, demonstrating the importance of treating charge diffusion

in device modeling. What is its effect on the SCLC? To answer these question, we have

achieved the prerequisite task by successfully developing the numerical tools for the DD-

SCLC model, and the device simulations, as addressed in chapter 4, have revealed a number of

important factors that affect the SCLC, including charge diffusion, traps, as well as nanoscale

morphologies.

First, we investigated the effect of charge diffusion on the trap-free SCLC. Unlike those

predicted by the simplified SCLC theory for the hole-only device in planar geometry, the the-

oretical profiles of electric potential and hole density simulated by using the 1-D DD-SCLC

model have a non-monotonic distribution along the device thickness, exhibiting three distinct

transport regimes: (i) diffusion-dominant transport regime, (ii) drift-diffusion assisted trans-

port regime, and (iii) drift-dominant transport regime, parting from the injecting electrode

to the extracting electrode. Two separations of the three transport regimes are determined

by (I) the position of the potential maximum, where the local electric field and the corre-

spondent drift current vanish; and (II) the position of the hole density minimum, where the
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diffusion current become zero. These separations are consistent with the boundary condi-

tions at the electrode of the simplified SCLC theory, and thus we reintroduced these turning

points as the virtual electrodes since they are no longer the actual ones in the DD-SCLC

model. The extensive device simulations over the range of applied voltage have shown that

the positions of the virtual electrodes move toward the actual electrodes with increasing

applied voltage. Moreover, we have found that the diffusion current plays an important role

near the actual injecting electrode, as in transport regime (i), by overcoming the reverse

drift current and driving holes away from the contact. Furthermore, the device simulations

in tip-plane geometry have demonstrated similar transport regimes, but with an asymmetric

behavior of the virtual electrodes due to the different size of the actual injecting and extract-

ing electrodes. The dynamics of the virtual electrodes and the concurrent transport regimes

demonstrate the crucial effect of charge diffusion on the SCLC, and also clarify the transport

mechanisms near the electrodes that can never be explained by the simplified SCLC theory.

Traps affect the SCLC significantly. We found that the theoretical current-voltage char-

acteristics obey the power relation J(or I) ∝ Vm, exhibiting three distinct regimes, corre-

sponding to Ohm’s law (m = 1), trap-limited SCLC (m > 2), and trap-filled SCLC (m = 2),

ordering from low to high applied voltage. To analyze the effect of traps, we focused on the

trap-limited SCLC regime where trap states are partly filled, typically found in the range

of applied voltage 1− 10V . Extensive device simulations have shown that the fitting expo-

nent m depends on two parameters of the field-independent exponential distribution of trap

DOSs, including total trap density and trap energy level. However, in the strong trapping

limit where the trap temperature is high and the number of traps is large, the fitting expo-

nent depends only on the trap temperature. This strong trap case is previously predicted

by the simplified SCLC theory, as described in equation (2.27). Particularly in the tip-plane

165



geometry, the mobility anisotropy does not affect the exponent m. This makes the exponent

m a suitable fitting parameter to characterize traps in the SCLC regime.

Lastly, we examined the effect of the nanoscale morphologies on the SCLC in the tip-

plane geometry, in analogy to the c-AFM measurements. The semi-crystalline P3HT thin

films, which consist of a mixture of crystalized nanofiber and amorphous domain, is chosen as

the reference system to demonstrate the effect. We found that the percolation nature of hole

transport in the disordered organic semiconductor yields a strongly filamentary structure of

the current along the percolation paths of the high mobility fibers, leading to a significant

current enhancement when the conducting tip is in contact with the fibers. Moreover, it

has been shown that the lateral and vertical electrical responses of the nanofiber are very

local and in a probed distance comparable to the tip size. These observations quantitatively

confirm the high resolution of c-AFM measurements, supporting c-AFM as a very useful tool

to study the local electrical properties and local morphologies simultaneously.

On the aspect of the application to the experiments, in chapter 5, we utilized the DD-

SCLC model to elucidate the c-AFM measurements on the P3HT based hole-only devices.

The experiments addressed in this chapter were carried out by Professor Zhang’s group at

Michigan State University [1], aiming to investigate the effect of thermal annealing process on

the electrical properties and nanoscale morphologies of the P3HT thin films. With the device

simulations of the 2-D DD-SCLC model, we have shown that the thermal annealing process

has significantly improved hole transport in P3HT thin films by alleviating the effect of

traps, yielding the effective mobility of an annealed device that is consistent with previously

published experiments. Furthermore, the 3-D DD-SCLC model enables the simulation of hole

transport in the semi-crystalline P3HT thin film, consisting of a mixture of crystalized P3HT

nanofibers and amorphous P3HT domains. By incorporating the 3-D model morphology of
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the nanofibrillar network, the device simulation in the tip-plane geometry has evidently

shown the current enhancement when the conducting tip is in contact with the fiber, which

demonstrates the c-AFM contrast of fibrous films.

While the current state of DD-SCLC model is limited to the numerical solutions, the

model polishes our understanding of hole transport with the full description of drift and

diffusion, and elucidates mechanisms missing from the simplified SCLC theory. The DD-

SCLC model can be significantly improved by considering the field-dependent hole carrier

density as a boundary condition at the electrodes, based on the expression by J.C. Scott and

G.G. Malliaras [106]. Furthermore, the accuracy of the DD-SCLC model in the high voltage

regime can be enhanced by including the field- and carrier-density- dependent mobilities,

the so-called ‘Poole-Frankel’ model [39, 107] and ‘Pasveer’ model [39, 108], respectively, as

well as using the general form of Einstein relation to describe the charge diffusion coefficient.

We anticipate that these improvements will lead to more realistic models, shedding light

on the investigation of charge transport in disordered organic semiconductors. To have a

clearer understanding on the subject would be very beneficial, not only for developing future

organic photovoltaics (OPVs), but also other organic semiconductor devices such as organic

light emitting diodes (OLEDs) and organic field-effect transistors (OFETs).
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Appendix A

Fitting Parameters of Theoretical

Current-Voltage Characteristics
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Table A.1: Summary of parameters m and kJ estimated by fitting theoretical current-voltage
characteristics of planar devices in the SCLC regime (see section 4.2.1 for details of device
simulations) to the semi-empirical expression (4.3) for a range of trap parameters ft and rt.
Note that R-square of regression is high (R2 > 0.9999).
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Table A.2: Summary of parameters m and kJ estimated by fitting theoretical current-voltage
characteristics in the tip-plane geometry in the SCLC regime (see section 4.2.2 for details of
device simulations) to the semi-empirical expression (4.4) for a range of trap parameters ft
and rt and a range of mobility anisotropy µρ/µz. Note that R2 > 0.9999 for all regressions.
Table continued on the next page.
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Table A.2: (cont’d)
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Table A.3: Summary of parameters m and kJ estimated by fitting theoretical current-voltage
characteristics in the tip-plane geometry in the SCLC regime (see section 5.2.1 for details of
device simulations) to the semi-empirical expression (4.4) for a range of trap parameters ft
and rt and a range of mobility anisotropy µρ/µz. Note that R2 > 0.9999 for all regressions.
Table continued on the next page.
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Table A.3: (cont’d)
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