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ABSTRACT

CONTRIBUTIONS TO BIOMETRIC RECOGNITION:
MATCHING IDENTICAL TWINS AND LATENT FINGERPRINTS

By
Alessandra Aparecida Paulino

Automatic recognition of a person by the use of distinctibggical and behavioral charac-
teristics is called biometrics. Two of the important chatjes in biometrics are recognition of
identical twins and matching of latent fingerprints to theiemplar prints (rolled or slap prints).
The contributions of this dissertation are focused on tih@sdopics.

Identical (monozygotic) twins are a result of a single featid egg that splits into two cells,
each one giving birth to one individual. Identical twins Bahe same deoxyribonucleic acid
(DNA), thus their genotypic features (features influencgdhe genetic material) are the same.
However, some of their phenotypic features (features inflad by the fetal environment) may
be different. Thus, it is essential to determine which bitriodraits (either by themselves or in
combination with other traits) have the ability to distimgluidentical twins and the extent of their
ability for this discrimination.

The first contribution of this dissertation is an evaluatidthe performance of biometric sys-
tems in the presence of identical twins for the three mostrmaonly used biometric modalities,
namely fingerprint, face and iris. Identical twins are shawrbe a challenge to current face
recognition systems. On the other hand, fingerprint andrggching of identical twins show per-
formance comparable to those with unrelated persons. Therfwf different samples from the
same modality of a subject (e.g., left and right iris, fingers of multiple fingers) yields the best
matching performance for identical twins, similar to whastbeen shown for unrelated persons.
Biometric traits can also be used to determine whether twests enrolled in a biometric database

are identical twins. By using face and iris modalities tbgetfor example, we can correctly iden-



tify 80% of such identical twin pairs, while only 2% of subjgmairs who are not identical twins
will be incorrectly considered identical twins.

The second contribution of this work is focused on improvatgnt fingerprint matching per-
formance. Latent fingerprints are partial fingerprint imageat typically contain only a small
area of friction ridge pattern and large non-linear distortare blurred or smudged, and contain
complex background noise. Due to these characteristies)tiaare a particularly challenging for
matching to their mates (reference prints) in a databasenGi latent print in which minutiae have
been marked by a human expert (as is the current practicegandics), we have proposed two ap-
proaches to improve the latent matching performance. Thedpproach consists of enhancing
the latent image and fusing the matching score obtained fhenenhanced latents with the score
based on manually marked minutiae. This approach outpesfarcommercial fingerprint matcher
on the public latent database NIST SD 27. The second appremawists of developing a latent
fingerprint matcher that utilizes minutiae as well as themtation field information. The proposed
matching algorithm outperforms three fingerprint matchafgprithms on two different latent fin-
gerprint databases (NIST SD 27 and WVU latent databases).

The latent fingerprint identification accuracy generalliederates as the size of the fingerprint
database grows. To alleviate this problem and to reduceuwbrlb search time of latent match-
ing, we propose to combine various level 1 and level 2 featureluding minutia cylinder code,
minutia triplets, singular points, orientation field andge period, to efficiently filter out a large
portion of the reference fingerprint database. The propappdbach outperforms state-of-the-art
indexing techniques on the public domain latent databa§d D27 against a large background
database of 267K rolled prints. The experimental resute ahow that the proposed filtering
scheme has the desirable property of attaining improvegaotational efficiency of latent search

(20% penetration rate) while maintaining the latent matglaccuracy.
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CHAPTER 1

INTRODUCTION

The first systematic capture of biometric data for identifarapurpose was done by Sir William
Herschel in 1858, when he captured a handprint of each werkénat, later at payday, he could
verify each worker’s identity to avoid a worker receivingnsgone else’s pay [12]. In 1870,
Alphonse Bertillon [13] developed a method of person ideration based on body measurements
known as “Bertillonage” (see Fig. 1.1). This method was ttgved to identify criminals who have
been previously arrested, repeat offenders, and who wearg aglifferent name to avoid harsher
penalties. The Bertillon system recorded the precise nmeasants of various attributes of human
body such as height, length of the arm and geometry of the, lemsadiell as a listing of marks
present on the body surface such as scars, moles and tattossnformation was then stored and
separated into categories for fast matching and retridtas system was believed to be very reli-
able and it was indeed used in law enforcement from the latecEhtury to the early 20th century.
According to [14], the French police used the Bertillon systto capture 241 repeat offenders in
the year of 1884; after that, this system was adopted by ldareament agencies both in Europe
and in the Americas. However, it was later discovered thagehmeasurements were not unique to
each person; furthermore, two measurements of the samecstdken by different officers were
not always consistent. Thus, Bertillon system was consiatlenreliable and abandoned by the

police authorities to be replaced by fingerprint identifiwat



Figure 1.1: lllustration of Bertillon system for person mtiéication based on numerous body mea-
surements, which was used in the United States and in Europethe end of the 19th century
to the beginning of the 20th century. From left to right andrtiiop to bottom the figures show
measurement of height, reach, trunk, length of head, witltiead, right ear, left foot, left middle

finger, and left forearm.



A few years after Bertillon system was developed, severhbligations on the use of finger-
prints as a mean of person identification started to app&adf, 17]. According to Cummins and
Midlo [18], the first scientific publication related to fingeemt identification appeared Nature in
1880 [15]. In [15], Faulds suggested that fingerprints leftrane scenes could be used to identify
criminals or to exclude suspects. Soon after this article published, a letter written by Herschel
was published itNature[16] stating that he had been using fingerprint as a methagkaoitification
in India for about 20 years, with different applications lsas to avoid personification. In 1888,
Sir Francis Galton introduced the idea of using minutiaéuiiess to compare two fingerprints [17].
Sir Francis Galton also introduced a categorization fordipgnts into three major classes (arch,
loop and whorl), and the classes were further divided inbrksses.

After reading Sir Francis Galton’s work on using fingerpsias a mean of identification, Juan
Vucetich started collecting fingerprints from arrested ma&iong with measurements from the
Bertillon system. Juan Vucetich was a police official in Amgea [19], and, in 1892, he used
fingerprint evidence to identify a suspect of first-degreeday who was then convicted. This was
the first use of fingerprint as forensic evidence.

In 1893, the acceptance of the hypothesis by the Home Wyn@ffice, UK, that any two
individuals have different fingerprints made many law ecéonent agencies aware of the potential
of using fingerprints as a mean of identification [1]. Someheflaw enforcement agencies started
collecting fingerprints from offenders so that they couldntify them later in case they used an
alias (changed their names) to evade harsher penalties.fifigerprints collected from crime
scenes were compared to fingerprints collected from prewdfenders in order to identify repeat
offenders.

In 1900, Edward Henry has refined the fingerprint classificesicheme introduced by Galton
by adding more categories [1]. This resulting classificaBoheme (referred to as Galton-Henry
classification) was adopted by several law enforcementa@gein various countries and it has
been widely used.

The initial interest in recognition technologies were nhabyy law enforcement agencies; more



recently, the concerns about security and identity frawe ivacreased, therefore creating a need for
biometric recognition technologies in non-forensic aggtiions [1] (e.g. border control, national
ID, etc.). Over the years, several physical and behavidralacteristics have been explored, lead-
ing to the development of new recognition technologies thaseface, fingerprint, hand geometry
and voice that have been successfully deployed.

The use of physical or behavioral characteristics (e.ggefiprint, iris, signature, etc.) to au-
tomatically recognize a person is referred to as biometnidiometric system. A biometric char-
acteristic (or trait) is a measurable physical or behavVioharacteristic of an individual that is
distinguishable and repeatable. A biometric trait shoadehfour main characteristics: (i) be uni-
versal, meaning most people should have the trait; (ii) berditive, meaning it should be different
from person to person; (iii) be permanent, meaning it shbeldthvariant (respective to matching
criteria) over time; and (iv) be collectable (measurabitedaning it can be measured quantitatively
[1]. These characteristics make biometrics a reliabletsmido person recognition. Additionally,
biometric traits cannot be transferred, forgotten, gudssigared or lost like other means of person
recognition such as passwords, ID-cards, etc.

Biometric recognition can be very challenging because toéinlass variability and inter-class
similarity of biometric traits [5]. Intra-class variahiyirefers to how a biometric trait can appear
very different in multiple acquisitions of the same indival, and inter-class similarity refers to
how a biometric trait can be very similar for different parsolntra-class variability is exemplified
in Fig. 1.2a, in which two different impressions of the sanmgdir are shown, and inter-class
similarity is exemplified in Fig. 1.2b, in which two face imagof a pair of identical twins are
shown. Although the two images shown in Fig. 1.2a are imjwassof the same finger of the
same person (same class), the second impression in thedmpuia@ns a large amount of distortion
compared to the first one. In Fig. 1.2b, the two face images$rane different persons (different

classes) but since they are identical twins, their facigleapance is extremely similar.



(b)

Figure 1.2: Examples of intra-class variability and int&ss similarity. (a) Two different impres-
sions of the same finger of the same subject and (b) face intdgepair of identical twins. For
interpretation of the references to color in this and alleotfigures, the reader is referred to the

electronic version of this dissertation.

1.1 Biometric Systems

A biometric recognition system involves two basic phasesok#ment and recognition [5]. In the
enrollment phase, a sensor collects the biometric data Wbioh a set of features are extracted
(template) and stored in a database along with the indiVgligientity (hame, ID number, etc.). In
the recognition phase, the identity of an individual is eitbonfirmed (verification) or determined

(identification) by collecting the biometric data againtraxting the same features and comparing



them to the features stored in the database. From this casopaa match (similarity) score is
generated and used to make a decision to whether the twofsiestares came from the same

subject or not. An overview of a biometric system is shownim E.3.

Biometric Biometric
Trait Trait
A 4
Biometric Biometric
Sensor Sensor
A 4 \ 4
| R 1 | Eon 1
. Recognition ! Feature i Enrollment !
____________ Extractor Tttt

b

< Matcher Template

Database

Figure 1.3: An overview of a biometric system.

A biometric system can be designed to work in two differentde® (i) verification mode or
(ii) identification mode. In the verification mode, the usel wlaim his/her identity by using a
personal identification number, a user name, a token, egr, tthe system will verify whether
the subject is the person he/she is claiming to be (genumedto(impostor) by using biometric
traits. In this case, only the stored data related to thenddiidentity is compared to the data of
the person making the claim to an identity. A threshold onrttaéch score is usually applied to
decide whether the two biometric samples are true mateselfitatch score is higher than the
system threshold, then the samples are considered to beatsmsame source. Otherwise, they are
considered to be an impostor pair. An example of the veritinatcenario occurs when you try
to use the ATM at a bank and you have to provide biometrics alatag with your ATM card to
verify your identity. In this case, the owner of the ATM casdknown, so the biometric system
needs to ensure that the true owner is the one who is usingittiéaperform the transaction.

In the identification mode, the user does not claim any idgnfhe user only provides his/her



biometric data, and the data is compared to the stored téenpfeevery subject in the system
database. In the ATM example cited above, now the ATM accbalaer will not insert his ATM
card in the machine, but simply provide his biometric dataidientification. If the system can
find a subject in the database for whom the query biometria datlose enough, then the query
is considered to be from the same subject. Otherwise, theraywill output that the user is not
enrolled in the database. For example, when a fingerprintasgon is found at a crime scene,
forensic examiner usually does not know to whom the fingetgrelongs. So, the crime scene
fingerprint is compared to the reference (rolled) printsexddan the database. If a match is found,
the identity of the suspect is determined.

A match score is called a genuine score if it is computed betweated samples and an im-
postor score if it is computed between non-mated samplesrdier to evaluate and compare the
performance of biometric systems, the most commonly usedhtgative measures are Receiver
Operating Characteristic (ROC) curve in the verificationd@and Cumulative Match Character-
istic (CMC) curve in the identification mode [5].

The ROC is a plot of the Genuine Accept Rate (GAR) versus tleeRecceptance Rate (FAR)
as the match score threshold is varied. The GAR refers todh@p of true mated subjects who
are correctly accepted by the system, while FAR refers tgtrgon of impostor mates who are
falsely accepted by the system at a specified threshold.eAtel desired values of GAR and FAR
are application dependent, a biometric system, operatinigel verification mode with high GAR
at low FAR is, in general, preferred.

In the identification mode, given a query, it is desirablé tha match score between this query
and its true mate be the highest score compared to the maiobsdoetween the query and any
impostor. For each query, the database can be ordered bagskd match score. The identity in
the database corresponding to the highest score is coeditter rank-1 match, while the identity
corresponding to the second highest score is consideraamnke?2 match and so on. Ideally, we
want the true mate to be in the rank-1 position. The CMC cus\eeplot of the identification rate

versus the rank. Given a number of queries and atrank can measure the percentage of the true



mates that are retrieved at ranky higher; this percentage is the identification rate at #ankhe

system with higher identification rates for given queriethesmost desirable system.

1.2 Common Biometric Traits

Several biometric traits have been used for recognitiooh si$ face, fingerprint, iris, palmprint,
hand geometry, voice, ear shape, signature, key strokeahfbly We focus on fingerprint, face
and iris, which are the most prominent traits and are usetisrdissertation.

Each biometric trait has its strengths and weaknesses,hendhbice of a biometric trait is
usually dictated by the application requirements. Tablesimmarizes advantages and disadvan-
tages of the three biometric traits (fingerprint, face arg) {i]. For each trait, the authors in [1]
provided a perceived measure of the four characteristiusetsality, distinctiveness, permanence
and collectability. For example, the high collectabilifyface means it is very easy to collect this
biometric trait.

It is generally known that fingerprints are very distinctigad the overall ridge structure does
not change significantly over time (from infants to old ag&en after superficial cuts on the finger,
the fingerprint pattern reappears after the healing prodéss is supported by the high matching
performance of state of the art systems in rolled/slap fprgygr matching [20]. Fingerprints are
relatively easy to acquire, but require some degree of aatipa from the subjects (collectability
is “medium” in Table 1.1). Also, some people might not haversy fingerprint pattern suitable
for automatic recognition due to genetic factors, occupaiaging, etc [5].

Face is one of the most convenient biometrics in terms ofiaitgun and it does not even re-

Table 1.1: Comparison of the characteristics of the threstrcommonly used biometric traits
from [1]. (H = high, M = medium, L = low)

Biometric Trait| Universality | Distinctivenesg Permanence Collectability
Fingerprint M H H M
Face H L M H
Iris H H H M




Table 1.2: False reject and false acceptance rates assbuith fingerprint, face and iris verifica-

tion systems.

Biometric Test Test conditions | False reject| False accept
trait rate (%) rate (%)
Fingerprint | FVC 2006 Heterogeneous 4.2 0.1
population
including manual
workers and
elderly people
FpVTE Operational 0.6 0.01
2003 quality
Face FRVT 2012 Mugshots 4.0 0.1
FRVT 2012 Visa Photos 1.0 0.1
Iris ICE 2006 Controlled 1.1-14 0.1
illumination

quire cooperation from the subject. Face images can beyeasjlired, even from a distance and
without the subject’s knowledge. This advantage is spigaieeful in surveillance applications.
However, many variations in face images such as pose, Highéixpression, and changes in ap-
pearance such as make-up and accessories, make face tiecognery challenging problem [5].
This explains the low distinctiveness of state-of-theface recognition systems in unconstrained
scenarios. Furthermore, face characteristics might netdige over time (e.g., due to weight gain
or aging).

Iris image capture requires a more sophisticated and ek@esensor because the useful texture
patterns are better captured in near-infrared imagesatralquires the subject’s cooperation (sub-
ject must stand at a specified distance from the iris cameauhjtee iris quality can be influenced
by a number of factors such as partially closed eyelids,asfes, contact lenses, etc. However,
studies on large scale databases suggest that iris reicogsystems can achieve extremely low
error rates [21].

Table 1.2 shows false reject and false acceptance ratesatssowith fingerprint, face and iris
verification systems [5].

In the next section, we review the representation (featytr@etion) and matching techniques

of fingerprint, face and iris biometric modalities.



1.2.1 Fingerprint Representation and Matching

A fingerprint is the impression of the friction ridge skin ofirger tip. Friction ridge skin presents
raised ridges because their function is related to graspidgyripping; this explains their presence
in the palms of our hands and sole of our feet. The charatiterisf a fingerprint are determined
during fetal development and its formation starts at apipnately 6 or 7 weeks of gestational age
[22]. The fingerprint pattern is mostly determined by thetgtsnal environment, since minor
changes in the flow of amniotic fluids are responsible for tHier@nces in the skin structures
around palm or finger tips. Thus, the fingerprints of evergperare different among themselves,
and different from fingerprints of other persons.

There are essentially three types of fingerprint imagesafgadicquired for matching: (i) rolled,
which is obtained by rolling the finger from “nail-to-nailitkeer on a paper (in this case ink is first
applied to the finger surface) or the platen of a scanneml@in, which is obtained by placing the
finger flat on a paper or the platen of a scanner without ralémgl (iii) latent, which is lifted from
surfaces of objects that are inadvertently touched or legholy a person typically at crime scenes
(see Fig. 1.4). Rolled and slap fingerprints are generafiyurad under controlled conditions and
by cooperative subjects. On the other hand, latent prietéedtr by criminals at crime scenes. For
this reason, rolled and plain prints (collectively referte as reference prints) are of much better
quality than latents. The two first types (rolled and plair asually collected in the form of a
tenprint card, which is a card that contains rolled and pilaipressions of the ten fingers of a

subject, along with their identity information (see Fig2)3.

1.2.1.1 Representation

The structure present in a fingerprint is composed of ridges\valleys. In a rolled fingerprint
image obtained by using ink (e.g. Fig. 1.4 (a)), the ridgestlae dark areas corresponding to the
raised ridges in our fingers and valleys are the bright ategtscorrespond to the space between
the raised ridges.

Fingerprint characteristics or features can be categbiie three different levels (from coarse
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Figure 1.4: Three types of fingerprint images.

to fine): Level 1 (ridge flow), Level 2 (minutiae) and Level 3(ps, incipient ridges, dots, etc) [1].

Fig. 1.5 shows examples of features in the three levels.
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Figure 1.5: Examples of fingerprint features belonging tottiree levels: (a) orientation field and
singular points and (b) minutiae shown in fingerprints frohf$N Special Database 4 [2], and (c)
sweat pores shown on part of a rolled print image from the W\dteht Database [3].

e Level 1 features

This is the coarsest level representation and consistdyradithe ridge orientation map and
ridge frequency map of the fingerprint. The ridge orientafiadge frequency) map consists
of the local orientation (frequency) of the ridges in the @ngint. The local orientation of
a ridge at pointx, y) in the fingerprint image is defined as the orientation of the tangent

to the ridge passing throudlx,y), and it is in the rang¢0, 7). The local ridge frequency
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at point(x,y) is defined as the average number of ridges passing througte @égment

centered atx,y) and of unit length that is normal to the local ridge orierdati

Ridge orientation is mostly smooth in fingerprints. Howevkere can be a few areas of
the fingerprint in which the ridge orientations change atlyuprhese locations are called
singular points. There are two types of singular pointsecor which a set of ridges enters
and exits from the same direction, and delta, in which thete sf ridges appear to meet.
The number of cores and deltas in a fingerprint is determiryetthd fingerprint type. The

maximum number of cores and deltas in a fingerprint is 4, angigefprint always contains
an even number of singular points because cores and depasrajm pairs. Therefore, a
fingerprint might have no singular points (arch or tentedh aype fingerprint), one core and
one delta (loop type fingerprint), or two cores and two deltamible loop or whorl type).

Examples of ridge orientation map and singular points aosvatin Fig. 1.6.

Figure 1.6: Examples of Level 1 features in fingerprints. @ajentation field and (b) singu-
lar points (core in red and delta in green) shown in rolleddipgnt images from NIST Special
Database 27 [4].

Ridge orientation is also referred to as orientation fieldidge flow. We will mainly use

the term orientation field throughout this dissertationefer to this fingerprint feature. The

12



orientation field is commonly extracted by using a gradigaged method in local neigh-
borhoods [8]. The fingerprint image is usually divided intoail non-overlapping blocks
(usually 8x 8) and one dominant orientation is computed for each blodcke®rthogonal
orientation of the gradient angle, the latter being thedlio® of the maximum intensity
change. Ridges and valleys are more than one pixel wide, sonsider only one angle at

a given pixel position makes it sensitive to noise. Themfan average of the gradient in

a small neighborhood (window) is computed as the gradiegieagstimate at a given pixel.
This averaging is performed with following restriction$) the angles are doubled so that
the circularity of the orientations is maintained — for exaenthe average of the angles 5
and 178 is O° instead of 90 and (ii) the sin and cos components are used instead of angle

values.

Based on the ridge structure, fingerprints can be classifiedfive classes: left loop, right
loop, whorl, arch and tented arch [23] (see Fig. 1.7). Lobtgfs 4nd right) are characterized
by the ridge flow that enters from one side of the fingerpriantyes and returns on the same
side from which it came; whorls are characterized by theeaifigw forming a complete
circuit; arches are characterized by the ridge flow thatrerftem one side and exits the
opposite side; and tented arches are similar to archest lrast one ridge presents a high

curvature.

Level 2 features

The ridges in a fingerprint exhibit discontinuities in varsoways. The locations where the
discontinuities occur are called minutiae (minute or srdathil). The most commonly used
discontinuities are the locations where a ridge ends andbttsgions where a ridge bifur-
cates. A rolled print typically has about 100 minutiae pgjrthe exact number depends
upon the finger surface condition and image capture proéegssnutia can be represented
by its location k andy coordinates), direction (the orientation of the ridge asged with the

minutia), and type (ending or bifurcation). Minutiae chaeaistics of permanence, unique-
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Figure 1.7: Example fingerprints belonging to each of the finagor fingerprint classes (finger-
prints from NIST Special Database 4 [2].)

ness and ease of representation make minutiae the most adyunsed feature in fingerprint
matching. Minutia type is often not reliable because dependn the pressure that is ap-
plied to make the impression, a bifurcation can look like adieg and vice versa. The
minutia direction definition is illustrated in Fig. 1.8; thilefinition ensures that the error in

minutia type does not influence the direction estimation.

The most common method of extracting minutiae is to use k@aton and thinning tech-

niques to obtain the fingerprint ridge skeleton (one pixelendark ridges on a white back-
ground). The binarization consists of thresholding thedrpgnt image so that the ridges
are separated from the rest of the image (black ridges on & Wwhckground). Then, mor-
phological operations using the ridge orientation areiadpb reduce the width of the ridges

to one pixel. From the skeleton, minutiae can be extractefinoyng the endings and bi-
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Figure 1.8: An illustration of how minutia direction is deduh for (a) minutia ending and (b)
minutia bifurcation [5].

furcations of the one pixel wide ridges. Usually some typemdge enhancement (such as
applying Gabor filters) is necessary before the binaripaéind thinning procedures. The
goal of this enhancement step is to correct degradationgieg in ridge patterns that are
very noisy and/or corrupted. As an example, parallel ridgéaght not be well separated

because of the noise.

e Level 3 features

The Level 3 features can be viewed as micro level charatterisf a fingerprint. Level 3
features include pores (sweat pores), incipient ridgets, diomensional attributes of ridges
such as width and shape, etc. [1, 5]. These features are maliyusbserved in low resolu-
tion images (less than 1000 ppi). Level 3 features are veppitant for latent fingerprint
examiners, especially when the number of minutiae in latetdo small (e.g. less than 5),
because they are highly distinctive and easily observedjimfesolution images (over 1000
ppi). However, they are not widely used in automatic fingetpnatching systems because,
even in high resolution images, their extraction is both potationally demanding and not
as reliable as level 1 and level 2 features. In [24], the udewal 3 features is supported
for latent print matching because forensic experts oftihae additional information, es-
pecially when the number of minutiae in latents is small,dmpare latents to rolled prints.

Fig. 1.5 (c) shows examples of sweat pores, which are rdg@dpaced along the ridges.
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1.2.1.2 Matching

Most published fingerprint matching algorithms are basednamutiae. A few techniques are
based on image correlation methods (e.g., [25, 26]). Indtterl the features are mostly the pixel
intensities. In this case, the correlation between two fimgiet images is computed for alignment,
which can be performed globally or locally. The images ofedtént impressions of the same finger
might appear very different due to pressure variationg@ithickness, contrast, global structure,
etc), which largely affects the correlation between twoges Also, the methods included in this
category might be computationally very expensive [1].

There are other methods that are feature-based, where ahgds include singular points,
level 3 features, texture information, etc. (e.g., [27,)28]hese methods sometimes are used in
combination with minutiae to improve the matching perfonc@and they are especially useful in
cases where it is very difficult to extract minutiae or the bemof minutiae is small, as often is
the case with latents. However, these non-minutiae feqinme not as distinctive as minutiae, so
they can only be used in conjunction with minutiae.

As mentioned before, the most common fingerprint matchiggréhms are minutiae-based.
There are three main steps in fingerprint matching using tisieualignment, pairing and score
computation. Alignment refers to estimating the paransdbetween two minutiae sets that can be
used to transform one of the sets to the same coordinatarsgstéhe second set; pairing refers to
finding corresponding minutiae; and score computationrseafieassigning a match score to a pair
of fingerprints usually based on the number of correspongtimyitiae.

Two common fingerprint alignment methods are based on (i3 jphimatched minutiae and (ii)
Generalized Hough Transform. In the first method, a pair athed minutiae is found using, for
example, a minutia descriptor. A minutia descriptor is adtire that contains information about
the local neighborhood of the minutia. This information t&based on neighboring minutiae, or
the texture around minutia, etc. The local minutiae desarpare matched and a small number of
most similar minutiae candidate pairs are used for inifighenent. The rotation in the alignment

is derived from the direction difference between the meipair, and translation parameters are
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estimated as the distancexmandy coordinates between the two minutiae.

Alignment based on the Generalized Hough Transform [29%ists10f finding the peaks in the
parameter space associated with the rigid transformagtmden the two sets. In this case, each
pair of minutiae (one in each fingerprint) will vote for a sifiecset of translation and rotation pa-
rameters computed as mentioned above. Then, the peak iatlm@eter space (Hough Transform)
is obtained — usually more than one peak is selected for tobss.

After the fingerprints are aligned, the pairing consistsmdifig the minutiae correspondences
between the two fingerprints. The simplest way of finding threespondences is to consider a pair
of minutiae as matched minutiae if the distance between teartheir directional difference are
smaller than some pre-specified thresholds (e.g., 15 pixétanslation and 20in rotation). Fig.

1.9 shows an example of minutiae correspondences in a fingigpair (latent and its true mate).

Figure 1.9: Example of matched minutiae from a fingerprinmt @atent and rolled print).

Score computation can be done in a number of ways. Howewemtst influential feature
in the scoring process is the number of matched minutiae erQttajor features used in match
score computation include ridge flow, ridge frequency, €e simple way of generating a score
between two fingerprints is to count the number of matchedutida, and to normalize this num-
ber by the average number of minutiae in both fingerprintscalses where the overlapping area
between the two fingerprints is small, the score will be esiwety penalized by this normalization

scheme; so, the number of minutiae in the overlapping ar@aldibe used in the averaging instead
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of the total number of minutiae in the fingerprints. Some ptbatures might also be useful in the

scoring, such as the quality of minutiae and the similaritipoal minutiae descriptors.

1.2.1.3 Indexing

In the identification mode, a search fingerprint is compacethé reference prints in the back-
ground database to find the true identity of the subject,ekpnt. When the background finger-
print database is extremely large (say, tens of millionsyjdiprint matching becomes a challenge
in terms of computational load. A common approach to altemiais problem is to quickly exclude
a large number of reference fingerprints with low similatiiythe search fingerprint before per-
forming the more detailed one to one matching. This procEBkering out a large percentage of
the background database quickly (e.g., based on level Gréegtbefore fine level matching is re-
ferred to as database filtering, fingerprint indexing or fipget retrieval. Indexing usually refers
to an approach that provides continuous classificatioreratian exclusive classes or categories,
while the terms filtering and retrieval can be used in botlesas

Approaches that have been proposed for fingerprint indesamgoe mainly divided into three
categories: minutiae-based, orientation field-basedbasdd on other features (e.g. SIFT [30]).

In the minutiae-based indexing case, descriptors basedimutiae are utilized (e.g. triplets,
minutia cylinder code). The most common approach is baseadioutiae triplets, or the triangles
formed by sets of three minutiae in the fingerprint. Rotatom translation invariant features
such as the side lengths of the triangles, the differencedsst minutiae direction and one side
of the triangle, handedness of the triangle, minutiae tgpe, are quantized into bins to generate
a unique key or index for each triangle. Given a search onyiregerprint, triplets in the query
are generated and quantized in the same way to obtain the kbgs, triplets in the background
database are retrieved as matched triplets if they haveatine &ey as the search triplets (e.g.
[31, 32]). The number or matched triplets between the seandheach fingerprint in the database
can be used to retrieve the fingerprints that are most sitoildre search print.

Orientation field-based indexing usually involves alignihe fingerprints with respect to some
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reference point (e.g. singular points), and then clusgeiie background database so that the ori-
entation field of the search print only needs to be compareditaited number of representative
orientation fields (e.g. [33]). All fingerprints in the clastecluster center are retrieved. Another
approach involves representing the orientation field byffments of an orientation field model,
using the coefficients to search the background databadeg#ieving the fingerprints with ori-
entation field coefficients similar to the ones of the searaft {34].

Indexing performance is usually measured by computing theate at various penetration
rates. A hit rate at a given penetration rateefers to the portion of the search prints for which the
true mates are retrieved withjpPo of the background database (penetration rate). The désira
outcome for fingerprint indexing is high hit rates at low peagon rates, which means that only a
small portion of the database needs to be searched (or firchewgtin order to find the true mate
for a high percentage of the given search prints; high coatfmnal efficiency is also desired so
that the overall search time is reduced compared to fine nmattie search print to every reference
print in the background database.

In order to be useful, indexing must be much faster than thesrdetailed one-to-one match-
ing. However, it still needs to have a good performance sbthematching performance is not
degraded. There is a tradeoff between the penetration matéha hit rate. If a very small pene-
tration rate is chosen, some true mate fingerprints mighkble@ed from the finer matching, thus
the identification performance will drop. On the other hahd, large penetration rate is chosen,
the true mate is more likely to be in the retained backgrouatdlzhse, but a large portion of the

database will need to be searched, thus making the totalrgapeed very small.

1.2.14 Latent Fingerprints

The sweat and the contact of a finger touching a surface leavespression of the ridges on these
surfaces. This type of fingerprint impressions are callezhts. Although latents can refer to any
impressions lifted from surfaces touched by a person, wallysuse this term for impressions of

fingers lifted at crime scenes. The moisture in the fingersithwansferred to object surface is
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not usually visible. Thus, some processing methods, tigichemical [35], must be applied to
make them visible so that a copy of the impression can ballfitem the objects and scanned.
Alternatively, a digital photograph can be taken directlyénerate a latent fingerprint image.
Latent prints can be lifted from a variety of objects and miate such as metal, paper, plas-
tic, human skin, glasses, etc. Some of the characteristilzgemt fingerprints that makes latent
matching a very difficult problem compared to reference tersmce print matching include: (i)
the uneven pressure of the finger and the non-flatness of tfeesican generate a distorted im-
pression of the finger; (ii) the area of the fingerprint ridgacture contained in a latent impression
is usually very small; (iii) the way the object was touchedthg finger might generate a blurred
or smudged impression; and, (iv) in the case of a digital pipatph of the latent, the image might
contain a very noisy background. All these factors heavifiuence the quality of the latent, and
pose a major challenge to latent matching. Some examplesaritifingerprints are shown in Fig.

1.10.

(a) (b) (©) (d)
Figure 1.10: Examples of latent fingerprints in NIST SD 27atlase [4].

Due to the aforementioned factors, latent fingerprint insaage generally of very poor quality
compared to rolled and plain fingerprint, which makes it \difffcult to automatically extract reli-
able features from them. Thus, features in latents are lysuahually marked by latent examiners.
Features that are commonly marked by latent examiners ametiae, singular points and region
of interest (ROI). Furthermore, because latents captuseaopartial impression of the finger, the
number of minutiae in latents compared to plain or rolledfsris small. For example, in NIST SD

27 [4], the average number of minutiae is 21 in the latentsl&@&dn the mated rolled prints. Since
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latent prints can be lifted from a variety of object surfagesincontrolled environments, latents
are also more likely to contain large amount of distortiome Teature extraction in latents and
the matching of latent prints to reference prints are chgileg and they require more specialized
algorithms than the ones available for matching referemggefprints (rolled to rolled or slap to
slap).

NIST evaluation of reference fingerprint matching techggleeports excellent performance.
In the Fingerprint Vendor Technology Evaluation (FpVTEP]2nultiple fingerprint recognition
systems were evaluated on different types of data and soen@he experiments were divided into
three main groups: large-scale test (LST), medium-scale(k8ST) and small-scale test (SST).
The best performing fingerprint recognition system, evadan a medium-scale test and using
single fingerprints of operational quality, reached a troeept rate of 99% at 001% false ac-
ceptance rate. Latent fingerprint matching technology hastaeen evaluated. In Phase | of the
Evaluation of Latent Fingerprint Technologies (ELFT), theerage reported rank-1 identification
accuracy (100 latents against, 000 rolled prints) was 67%. In Phase I, the best reportekl-fan
identification accuracy (835 latents against XD rolled prints) was 92%. It is important to
clarify that in Phase Il, the latent images selected wereeof good quality compared to Phase |,
which explains the impressive performance of Phase Il teswer Phase | results.

A tentative benchmark was established for fingerprint imaigxout no systematic evaluation is
yet available [36]. Several researchers have reporteddtiermance of their indexing approaches
on publicly available databases such as NIST SD4 [2] and Fst@ldhses [37]. For example, at
20% penetration rate, the hit rate is around 98% for NIST Sbd @ high as 100% for FVC
databases [38]. The indexing performance for latents iasgbod as for the reference prints. The
reported hit rates for latents in NIST SD27 (the only pubboin latent database) are: 97.3% at
39% penetration rate [11], and 92.7% at 40% penetration[i®fe The results reported in [10]
could not be verified by us since by applying the algorithmli@][(code was provided to us by
the authors) to our background database of similar sizehithrate was only around 82% at 40%

penetration rate.
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1.2.2 FaceRepresentation and Matching

Face is composed of the skull characteristics and the matstaland associated soft tissue [22].
These structures influence the variation among human fadmsg with gender and age. Some
challenges to face recognition systems include matchintpenpresence of variations in pose,

lighting, expression, occlusion, weight changes, haiesstc.

1.2.2.1 Representation

The first step in many face-related applications is faceatietg, in which the face location in the
sensed image is determined. This process is usually donéabyng masks or filters of varying
size in the image and solving the two-class classificatioblem: face vs non-face for each patch.
After the face is detected and localized inside the imagaalféeatures can be extracted. Face
images are usually aligned based on the eye positions anthfined (w.r.t. size and illumination)
prior to matching.

Similar to fingerprint features, facial features can bed#d into three levels [39]. Level 1
features consist of gross facial characteristics such msrgegeometry of the face. These coarse
features are usually the global face features. They candiy eatained even from low resolution
images, and they can be used, for example, to quickly distshgbetween an elongated and a
round face. Level 2 features consist of more localized fhegacteristics. Some examples of level
2 features include the structure of facial components (aauth), the spatial relationship between
facial components, etc. As in fingerprints, level 2 feataesthe most important features for face
recognition. Level 3 features consist of the finest detdilthe face, which include scars, moles,

freckles, etc. [5]. These different levels of facial feasiare illustrated in Fig. 1.11.

1.2.2.2 Matching

There are three main approaches to match face images: @aere-based, (i) model-based and

(iii) texture-based approaches [5].
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Gabor

(b)
Figure 1.11: Examples of facial features at the three leya)dacial geometry (Level 1), (b) facial
landmarks, Gabor filter, local binary pattern (LBP), andpghé_evel 2) and (c) moles (Level 3)
[5]-

Appearance-based techniques refer to mapping a face imtge low dimensional sub-space.
The set of representative vectors is learned based on antgaset of face images. Examples of
approaches in this category includes Principal Componeatysis (PCA) [40] and Linear Dis-
criminant Analysis (LDA) [41]. In both of these approachasiew face image can be represented
in terms of the learned basis vectors (as a weighted sum diasis vectors). The weights associ-
ated with a test image can be compared to the weights of refelienages in a database by using
the Euclidean distance, a measure of the dissimilarity detwihe two face images. The difference
between PCA and LDA representation is that LDA incorporatass information in the training
stage (supervised technique) while PCA does not (unsugeehtechnique). PCA projects the data
so that the overall variance is maximized while the LDA petgethe data so that the ratio of the
inter-class variance to the intra-class variance is minguahi

Model-based approaches refer to the the use of face modeésexample is graph matching,
where the face is represented based on a model graph. A miagl,gn which fiducial points
(landmarks) of the face are associated with the nodes inrdqghgsee Fig. 1.12), is fitted to a
face to generate a representation of that face. The modeh g@ntains several local descriptors
(bunch) at each fiducial point to account for the variatianthie local neighborhoods in the face

image. At each fiducial point of a query face image, a locatdp®or is extracted and compared to
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the descriptors in the stored model; the descriptor of thesfad point in the query image is chosen

as the most similar descriptor in the bunch.

Figure 1.12: An illustration of a graph model fitted to a fabg [

Texture-based approaches use local features such as Limeal Batterns (LBP) and Scale
Invariant Feature Transform (SIFT). Both these local dpsars can be extracted at pre-specified
points in the image (fixed if we assume the faces are rouglehapgned using the eyes) and fea-
ture vectors can be generated for both descriptors. Tharéesaectors can then be compared to
generate a similarity or dissimilarity. SIFT is a histografigradient orientations in a neighbor-
hood, whereas LBP is a representation of the relationshipngnthe intensities of neighboring
pixels. Fig. 1.13 shows schematic diagrams of SIFT and LBRIfes.

In the last decade, advances in face recognition techndilagg been reported by several third
party evaluations, for example, Face Recognition Grandi€ige (FRGC) [42] and Multiple Bio-
metrics Evaluation (MBE) [43]. In FRGC, the performancese¥eral face recognition systems
were measured in the verification mode. The best verificaitmat a fixed false acceptance rate
(FAR) of 0.001 was 99% for frontal face images in a controlled enviromingstudio lighting).
However, the verification rate dropped t080% at the same FAR of.001 when frontal face
images from uncontrolled environment were used as queMBE evaluated face recognition

systems in an identification mode. The results from thisteu&n showed a rank-1 accuracy of
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Figure 1.13: Schematic diagram of (a) SIFT [6] and (b) LBPd&%criptor construction.

92% on a background database (gallery) & thillion criminal records, and a rank-50 accuracy

of 97%.

1.2.3 IrisRepresentation and Matching

The human iris is an annular shaped part of the eye that dertr® amount of light entering the
eye through the pupil [5]. The iris texture pattern is fornsedl stable after the eighth month
of the gestational period. It is commonly believed that fhastern is mostly determined by the
gestational environment and not the genetic factors, theisris pattern of left and right eyes of
the same person are different. It should be noted that theMattern of a human iris includes
both color and texture. However, iris color has very limitescriminating power for recognition.

So gray-level iris images, captured under near infraredhihation, are used to record iris texture
pattern for person identification. Fig. 1.14 shows two ex@pf irises captured using near-

infrared lighting.
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() (b)

Figure 1.14: Examples of two irises of two different subgdovm the CASIA twins database. The
image on the right (b) is not of very high quality since the id partially occluded by hair.

In the next section, we present a brief overview of iris feestand matching

1.2.3.1 Representation

The first method to match two irises was designed and prasdytdohn Daugman [44]. This
method is well known and many of the commercial iris recagmigystems still use its algorithms
[5].

The first step in the extraction of iris features is the segatem of the iris. Segmentation
aims to detect the inner and outer boundaries of the iriss&@ beundaries are usually represented
as circles or ellipses. The segmentation also generateslaahtéhe valid regions of the iris. The
second step is the normalization of the segmented irismedibis step is accomplished by using a
transformation that maps the cartesian coordinates ofithtia pseudo-polar coordinate system.
Each concentric region of the iris is mapped to a row in a reptar image of the iris. In other
words, the distance of a point in the iris image to the centéheiris is associated with a row in
the rectangular representation, and the angles formedtéthorizontal axis are associated with
the columns. This mapping is also called “unwrapping of tig?.iThis normalization process is

necessary to account for the variations in the size of tlsetéxture. For example, if a pupil is

1For a more detailed description, please refer to Chaptef[%] of
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dilated, the captured texture area will be small, while & pupil is contracted, the captured texture
area will be large.

After the normalization step, two dimensional Gabor watge#ge convolved with the normal-
ized image. Then, a demodulation is performed by takingitpe af the real and imaginary parts
of the convolution output, thus yielding a two-bit repretsgion for each point in the normalized
image. This two-bit representation is basically a repriegdem of which quadrant the phase falls
into. The size of the normalized image is usually 1024 bibsthe resulting binary output is a

vector of size 2048 and this binary vector is called the indec

1.2.3.2 Matching

Two iris codes can be compared by using the Hamming DistasjcdBpsically, each valid bit in
the iris code is compared to its corresponding valid bit i& d¢ither iris, and the number of bits
that differ normalized by the total number of valid bits inth@odes is considered as the distance

between the two iris codes. Fig. 1.15 shows an example ofsarerognition system.

Enrollment

Iris Image . |Localization &| Image .| Feature
Acquisition| “|Normalization| ~|Enhancement| | extraction

Enrolled
Database

S

QA5 95

Iris Image Localization & Image Feature
Acquisition| |Normalization Enhancement extraction

Compare

Authentication Match
Score

Figure 1.15: An overview of an iris recognition system [5].
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NIST has evaluated 95 iris recognition algorithms in thentdiation scenario; iris images
from over 2 million subjects were used [21]. When only onewgs used, the false negative error
rates (the percentage of cases in which the true mate waslemtified) are at 1.5% or higher;
when both eyes were considered, this number dropped to OTT#se error rates are extremely
low and are mostly due to poor quality images, abnormalsrigeound truth errors, etc.. When
a threshold was set to produce no more than 25 false matciss ffositive errors) in every 19

comparisons, the false positive rate was still low (belo®?2).

1.3 Applications of Biometric Systems

The increasing concern with security and identity fraud $#gported the growth in the use of
biometric recognition technology for applications othwart forensic ones. Also, due to the great
advancements in technology, nowadays it is more reliabtenanch less expensive to incorpo-
rate biometric recognition into several applications hsas border control, ATM access, national
identification, voting access, health care access, crimmé victim identification, etc. Biometric
recognition can be used in small and large scale applicatiéor example, one can use fingerprint
to protect one’s laptop or other device; on the other hantharunique Identification Authority of
India (UIDAI) program, biometric data (fingerprint, facedainis) were collected from hundreds of
millions of subjects and this number keeps growing [45].

Other applications of biometric systems include:

e Health care access

According to [46], estimates indicate that, in 2006, apprately 20% of the cost incurred
by health insurance providers involves some type of fraudo Ahe cost of health insurance
could go down as much as 3.5% if the persons who have the healtrance and are au-
thorized to receive the health insurance benefits were tlyeomres to actually benefit from
it. To avoid fraud by an unauthorized person receiving heedire under another person’s

health insurance, automated fingerprint verification isiugahe health care providers.
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e Elections

In Brazil, every adult must vote in all elections (federafts and city levels). In 2000, the
election was fully automated. The next step was to includgefiprint technology to effi-
ciently and correctly verify whether the person who wagimgytio vote was the actual person
registered to vote. It is expected that all the ballot boxdshave biometric recognition

systems by 2020 [47].

e Finger vein recognition

A finger vein recognition system was commercialized by Buijittd. to be placed in ATMs
in Japan. The bank client still has an ATM card, but insteaithjpditting a personal identifi-
cation number (PIN), the client will place his/her hand otver finger vein sensor [48]; the
collected data is compared to the data stored in the cardhanaccess is granted based on
the verification result. The entire verification processén the ATM card and verify finger

veins) takes about the same time as if someone inserts thecafdland input a PIN.

1.4 Contributions

The contributions of this dissertation are as follows:

1. Biometric-based identification of identical twins

e An analysis of the discriminative ability of the three mostranon biometric modal-
ities (face, fingerprint and iris) of identical twins is camded, including results of

combining different biometric traits.

e An analysis of using multiple biometrics to quantitativelgtermine whether two sub-

jects are identical twins is performed.

2. Latent fingerprint matching
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e To improve latent fingerprint matching performance by theagrcement of the latent
image.

e Toimprove latent fingerprint matching performance by usinigscriptor-based Hough

Transform.

3. Latent fingerprint indexing

¢ Anindexing approach for latent fingerprints that reducegeoal search computational

time by a factor of 5 while still maintaining the matching acacy.

1.4.1 Distinguishing Identical Twins

One of the challenges in biometric identification is relateddistinguishing twins, especially
identical twins. There are two types of twins: monozygoticiflentical) and dizygotic (or non-
identical) [49]. Monozygotic twins are a result of a singetilized egg that splits into two cells,
each one giving origin to one individual. Dizygotic twinseaa result of two different fertilized
eggs. Monozygotic twins have the same deoxyribonucleid @NA), thus their genotypic fea-
tures (features influenced by the genetic material) areaheessince they share the same genetic
material, while some phenotypic features (features infladrby the environment) may be differ-
ent. Therefore, identical twins are more likely to have bebnc features with somewhat higher
degree of similarity compared to non-identical twins oraelated persons. Because of this, an
analysis of the ability of a biometric system to distinguidéntical twins is essential. In recent
years, the Federal Bureau of Investigation (FBI) has shawinterest in further investigating the
biometrics of twins by supporting the collection of twingbmetric data. A pair of face images of
identical twins is shown in Fig. 1.16.

In this dissertation, we study the performance of biomedyistems in the presence of iden-
tical twins for the three most commonly used biometric mitigal, namely fingerprint, face and
iris, as well as an analysis of the performance of multimayatems, which use a combination

of biometric traits to make a decision. Face recognitiordehtical twins is shown to be a chal-
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Figure 1.16: A pair of identical twins from CASIA Twins data®e Version 2.

lenge to current face recognition systems, while finget@id iris mathcing results for identical
twins show performance comparable to unrelated persors fudion of different instances from
the same modality (e.g., multiple fingers and left and rigis) iyields the best performance for
distinguishing identical twins as well as for unrelatedgogrs. We also provide an analysis of how
multiple biometrics can be used to determine whether twgestdbare identical twins. The simi-
larities between the biometrics of identical twins can by weseful to advance the state-of-the-art

biometric systems.

1.4.2 Latent Fingerprint Matching

Fingerprints have been successfully used for person réomgifor over a century. Latent finger-
prints constitute a valuable source of evidence in law eeiment agencies to help solve crimes.
However, a majority of the processing (e.g. feature mankimgplving latent prints is done manu-
ally by forensic (latent) experts. While progress has beadeno automate this process, according
to the latest evaluations by NIST [50], the state-of-thet@chnology for fully automated latent
matching (lights out processing) is not mature. The curpeattice involves latent examiners to
manually mark the features in the latent and then input iheogystem for automatic matching
with reference prints. The matcher returns a list of cartéslghat are manually checked by a
latent examiner who then makes the final identification. Tireetce of manually marking fea-

tures in latents is labor intensive, but it is neverthelessantly more reliable than state-of-the-art
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systems.

Latents are a particularly challenging to match becauseatreeusually of poor quality, contain
a small friction ridge area, present large non-linear digin, can be blurred or smudged, and
usually contain complex background noise. All these chaglis make it very difficult to reliably
extract features in latents; unreliable features leadwortatching performance. Given that the
minutiae are the most commonly used features in fingerpraching, latents contain significantly
fewer number of minutiae than a reference fingerprint. Thékes rolled-to-rolled fingerprint
matching algorithms unsuitable for latent matching. Irsthissertation, our efforts are focused
on improving latent fingerprint matching performance, giveliable manually marked features in
latents.

The first method consists of enhancing the latent image asidguhe matching score of the
enhanced latents with the score based on manually markedieen This first method outperforms
a commercial fingerprint matcher on the publicly availabkeht database NIST SD 27.

The second method consists of developing a new latent fingerpatcher based on manu-
ally marked minutiae that uses minutiae and orientatiowl fielormation in the matching. The
proposed matching algorithm outperforms three fingerpnatching algorithms on two different

latent fingerprint databases (NIST SD 27 and WVU Latent detef).

1.4.3 Latent Fingerprint Indexing

The identification of a person requires that his/her fingetfye compared to all the fingerprints in
the database [1]. If the database is very large, matchingeydingerprint to the entire database
might become computationally unfeasible. Thus, stratemiejuickly filter out a large portion of
the database without degradation in the matching perfoceare very useful.

Given manually marked features in latents, our indexing@ggh consists of using singular
points, minutiae, orientation field and frequency to sigaifitly reduce the background database
size. By applying our indexing approach, we are able to foter80% of the reference database

while maintaining the latent matching accuracy.
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1.5 Dissertation Organization

This dissertation is organized as follows. In Chapter 2, tuelysthe problem of distinguishing
identical twins based on unimodal (face, fingerprint argltnait alone) and multimodal (based on
multiple traits) biometric systems. also analyze the gmktsi of using multibiometrics to provide

a quantitative measure to determine whether two subjectdled in the database are identical
twins. In Chapter 3, two different approaches to improvenaftingerprint matching performance
using minimal amount of manually marked features in latanéspresented and discussed. The
proposed techniques perform better than some of the comah&ngerprint matchers on two dif-
ferent latent fingerprint databases. In Chapter 4, an imgeapproach is presented to filter out
a large portion of the background database, thus greatlydspg up the search while maintain-
ing comparable matching accuracy. Finally, summary of esearch and some ideas for future

research are presented in Chapter 5.

33



CHAPTER 2

BIOMETRIC TRAITSOF IDENTICAL
TWINS

2.1 Introduction

A twin is “one of two offspring produced in the same pregndrjd®]. Twins can be categorized
into two types with respect to the number of eggs fertilizednozygotic (or identical) and dizy-
gotic (or non-identical) [49]. Monozygotic twins are a risaf a single fertilized egg that splits
into two cells, each one giving origin to one individual; shumonozygotic twins have the same
deoxyribonucleic acid (DNA). Dizygotic twins are a resufttwo different fertilized eggs, and
therefore they do not have the same DNA. Face images of a paiemtical twins and of a pair
of non-identical twins are shown in Fig. 2.1. Three offsgrproduced in the same pregnancy
are called triplets, four are called quadruplets, and solarthis dissertation we are primarily
interested in the ability of biometric traits to distingliisientical twins.

In the year 2009, approximately 153 of every 100,000 binithe United States were triplets
or more [51]. This birth rate increased 400% during the 198t$ 1990s [52], and it has been
fluctuating since 1999, with a slight downward trend [51] wéwer, the rate in the year 2009 rep-

resented a significant increase from 2008 (4%) comparecktibuttuations in this rate in previous
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Figure 2.1: Face images of (a) a pair of identical (monozgydtvins and (b) a pair of non-
identical (dizygotic) twins from the University of Notre Bee ND-Twins database [7].

years [51]. The rapid increase of multiple births in the 19808d 1990s has been associated with
the increase in the use of fertility therapies and “the okt at childbearing”, the latter because
“women in their 30s are more likely than younger women to edrec multiples spontaneously
[52]."

The twin birth rate (33.2 per 1000 births in the United State®009) increased at an average
rate of 3% per year between 1990 and 2004 [51]. Then, the geerde of increase slowed to
less than 1% per year over the period 2005-2009 and incréaszw from 2008 to 2009 [51].
Although the average rate of increase has decreased, thaldweén birth rate in the United States
has increased by 76% since 1980 [51]. The number of dizygwtichirths varies depending on
the ethnic group [53], while the nhumber of monozygotic twirths is believed to be constant
worldwide. According to Norat al. [54], the frequency of identical twins ranges fron38% to
0.4% among all births. This, in turn, has created a requirerfoeftiometric identification systems
to accurately determine the identity of a person who has amtichl twin.

Accurately distinguishing identical twins has importaggél ramifications. In 1985, a woman
was accused of making fraudulent money transfers from ablvanks by simply making telephone
calls. She was acquitted of those charges after claiminghitrasister — who was her identical

twin but disappeared before the trial — committed the frdodhe end, both twins were convicted.
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Based on an analysis of their voice samples, a speech stiant voice examiner testified that
indeed both women had placed the fraudulent telephone [&H]s In this case, an ability to
distinguish identical twins based on the voice biometris wasential to the convictions.

In another incident, a rape suspect won two mistrials becthese was no way of determining
whether the key DNA evidence came from him or his identicaitwlowever, in the third trial held
in 2006, the accused was convicted after the prosecutovideabevidence that he had committed
a series of sexual assaults over time and had attempted sessaalts with characteristics similar
to the rape for which he was being tried [56]. A failure to siguish the twins was the reason for
the charges being dropped in the first two mistrials.

The similarity in facial appearance of identical twins mégoagive them a greater incentive to
commit fraud than an average person. Imagine a scenarie@wberhave an identical twin sibling,
who is covered by health insurance while you are not. If yd¢isfek and need medical treatment,
you need health insurance. While the health care providsed to establish your identity using a
photo identification, you could use your twin’s health iresure without being caught. But, suppose
the health insurance company requires that you need to h#fidd using fingerprints (this is the
case for some of the health insurance companies in Brazil) j6the fingerprint recognition
system can distinguish identical twin fingerprints, then yall not be able to get health care using
your twin’s photo ID and insurance policy.

The above facts and scenario indicate that the ability ahleimic systems to identify identical
twins is necessary. Since monozygotic twins have the sami, B¢y cannot be distinguished
using DNA alone [58]. Thus, it is necessary to use other fapiridentification for monozygotic
twins.

Recognition using biometric traits is now a well accepted jproven method. A biometric sys-
tem relies on the distinctiveness of the biometric charattes to perform the recognition. While
many biometric techniques are extremely accurate, soni&izars in sensing data, noise, etc. can
cause the matching performance to drop significantly. Onddcargue that it is more difficult to

discriminate identical twins than unrelated persons beeai their genetic similarity. Although
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identical twins cannot be distinguished from each othatgiBINA, some of the biometric modal-
ities, such as fingerprints, iris, and palmprints, can bllused to distinguish them [59]. Some
studies have shown that face and voice can also be used itogdish identical twins [60, 61].
Due to the difficulty in obtaining a large biometric databa$éentical twins, most experiments
reported in the literature are based on small databases.

This chapter explores the ability of unimodal and multimddametric systems to distinguish
identical twins. In Section 2.2 of this chapter, we presamdiges on biometric twin data reported in
the literature. In Section 2.3, we present the underlyiragatteristics of the three biometric traits
that will be used in our experiments, namely fingerprintefaand iris. In Section 2.4, we analyze
the experimental results on matching individual biomdtads as well as various combinations of

modalities. In Section 2.5, we end this chapter by presgmur conclusions.

2.2 Reated Work

In order to design a robust and efficient biometric systera,system must be able to handle a
variety of situations like noisy data, limitations of thensers, environmental conditions, and the
presence of identical twins. Due to the similarity of thaorhetric characteristics, identical twins
are more likely to pose a challenge to a biometric systemréfbee, it is important to address this
problem when designing a biometric system. Table 2.1 suiassathe studies on discrimination
of identical twins that have been reported in the litergttlrese studies are also discussed below.
Daugman and Downing [62] assessed the distinctiveness glittern as a biometric identifier.
The authors compared unrelated irises (irises from diffepersons), and genetically identical
irises (irises that came from the same DNA), for example phirises of the same person or the
irises of identical twins. They observed that the iris patseof genetically identical eyes were
as uncorrelated as the patterns of unrelated eyes. For éxating similarity of the six pairwise
comparisons they performed between identical twins shdhwedame mean as for eyes that were

not genetically related.

Litis not clear in this work how many pairs of identical twinene used.
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Table 2.1: Summary of studies on the biometrics of identigals. Sets can include identical twin
pairs as well as non-identical twin pairs.

STUDY YEAR | BIOMETRIC TRAIT | DATABASE SIZE
Daugman and Downing [62] 2001 Iris 1 set
Jainet al. [58] 2002 Fingerprints 94 sets
Kodateet al. [60] 2002 Face 10 sets
Hanet al. [63] 2004 Fingerprints 66 sets
Patil and Basu [64] 2004 \Voice 12 sets
Bronsteinet al. [65] 2005 Face (3D) 1 set
Konget al. [59] 2006 Palmprints 53 sets
Srihariet al. [66] 2008 Fingerprints 298 sets of twins
Ariyaeeiniaet al. [61] 2008 Speech 49 sets
Sunet al. [67] 2010 | Face, Fingerprints, Irig 51 sets
Hollingsworthet al. [68] 2011 Iris 76 sets
Phillips et al. [7] 2011 Face 126 sets
Pruittet al. [69] 2011 Face 126 sets
Biswaset al. [70] 2011 Face 186 subjects
Klareet al. [71] 2011 Face 126 sets
Vijayanet al. [72] 2011 Face (3D) 107 sets
Srinivaset al. [73] 2012 Face 126 sets
Taoet al. [74] 2012 Fingerprints 83 sets

In a study of identical twins’ palmprints, Korgt al. [59] used 1,028 palmprint images from
53 pairs of identical twins. They performed two differenivmatches. In the first experiment,
they matched the palmprints of identical twins, which thajled real twin match. In the second
experiment, they matched the left and right palmprints @f shme person, which they called
virtual twin match. Note that in both the experiments thengaints shared the same genetic
information. The matching algorithm was based on the amglifferences of orientation fields (of
the palmprint ridge pattern) in the two palmprints being paned. The authors observed that while
these genetically equivalent palmprints have correlagadufes, they can still be distinguished

based on features extracted from palmprint patterns.
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The above observation concerning palmprints is also truérfgerprints, as a study based on
94 pairs of identical twin fingerprints showed [58]. Jairal. showed that fingerprint verification
systems can be used to distinguish identical twins, evargitheir fingerprints are generally more
correlated than fingerprints coming from two geneticallyalated persons. As an example, at a
False Rejection Rate (FRR) of 1.05%, the twin-twin matchiagd a False Acceptance Rate (FAR)
of 8.51%, while the twin-nontwin matching had a FAR of 2.20B6r another threshold value (FRR
of 3.49%), the twin-twin FAR dropped to 1.06% and the twimtvain FAR dropped to 0.29%. In
another analysis of fingerprints from 66 pairs of twins [6BJvas also concluded that fingerprints
can be used to identify identical twins with an insignificanbp in the matching performance:
the Equal Error Rate (EER) reportedly increased by only 1e¢¥ipared to nontwin impostor
matching. The authors also extended their studies to afisessmilarities among families of
nontwins (52 families of four persons — parents and two cbil)l. They observed that the largest
similarity occurred between identical twins, followed bgtiveen two siblings, between parents
and their children, and between unrelated persons.

Srihariet al. [66] analyzed the similarity between twins’ fingerprintsarstudy using finger-
print images from 298 pairs of twins (74 fraternal twins arifl 2dentical twins). The authors
analyzed this similarity based on Level 1 and Level 2 feat\ftieat is, pattern of the ridge flow,
and minutiae, respectively). With the level 1 featuresy thieserved that twin fingers with the same
label occurred approximately 55% of the time and approxaiya&2% for non-twins, which means
twins’ fingers are much more likely to have the same pattgoe than non-twins’ fingers. With
the level 2 features, they concluded that the similarityeein twin fingers is higher than between
two arbitrary fingers (with identical twin fingers similgribeing not significantly different from
fraternal one), but twins can still be distinguished usingérprints.

Although it is believed that it is difficult for face and voicalong with hand geometry, to
distinguish between identical twins [58], some researchave obtained encouraging results using
face and voice to distinguish monozygotic twins [60, 65,. 6A]verification experiment with 10

sets of identical twins was performed using a 2D face re¢mgnsystem; the experiment consisted
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of enrolling one of the twins, and asking the other to try tg Ioto the system. On this small
database, the rejection threshold was always satisfiedinigdo a rejection of all the impostor
twins [60].

Another face recognition experiment for twins was based@iia®e images [65]. The recog-
nition task was to distinguish between two identical twithe authors tested three different algo-
rithms: a 2D algorithm based on eigenfaces, a 3D algoritheadban rigid surface, and another 3D
algorithm based on canonical forms. The test consistedroflerg one of the twins and matching
the enrolled subject to the other twin. All the other sulgestrved as impostors. For the first
algorithm (2D eigenfaces), the rank-1 accuracy was 70.58&wenrolling the first twin and 75%
when enrolling the other twin. In the second experiment,rirk-1 accuracy was 82.36% and
100.0%, respectively, while the third algorithm achievedf@ect matching performance. Accord-
ing to the Web site Digital World Tokyo [75], the Japanese pany Sagawa Advance has invented
an infra-red based face recognition technology that is @hiigstinguish identical twins.

Ariyaeeiniaet al. [61] performed recognition experiments using voice datanfd9 pairs of
identical twins. The authors performed basically two d#éfe experiments: a general experiment,
in which any two persons in the dataset were considered itopsand the twin experiment,
in which the impostor tests consisted of comparing a persahhés/her twin. The Equal Error
Rate reported was 1.0% for the twin experiment using sheetrval voice pattern (each person
saying his/her date of birth), and 0.5% for the general condition. Other authors have tried to
distinguish identical twins based on voice in a multilingeavironment [64]. Using a database
of 12 twins, Patil and Basu reported the highest successasabeing 100% for a particular size
(60 seconds) of the training speech, and particular sizeg@onds) of the test speech. They also
observed that the majority of errors were due to matchingattteal speaker with his/her twin
brother/sister.

However, in most of the previous studies, the identical tswometric database is very small and
an in-house biometric matcher instead of COTS matchers ussd. This affects the reliability

of conclusions. Furthermore, no previous study was corduti compare the performance of
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different biometric traits and fuse multiple biometricitseof identical twins.

A number of studies and methods related to biometrics ofdwigs been published since our
work in multibiometrics of twins appeared [67]. They are soanized below.

Hollingsworthet al. [68] suggested that genetically identical irises (fromnitdieal twins or
left and right irises of a person) might be more similar thameagically unrelated irises. They
conducted experiments on iris texture similarity in whialmans viewed pairs of iris images.
There were basically two experiments: in the first experimeolunteers had to provide their
opinion on whether the pair of irises they were viewing wasrfithe same person (left and right)
or from different persons; in the second experiment, vaerg had to provide their opinion on
whether the pair of irises they were viewing was from ideadtiein pair or from unrelated persons.
The results showed that humans were successful in thesask®inh more than 80% of the cases.
These results imply that, although iris biometrics caniligtish between identical twins, some
similarity is still present. It should be noted that humaresrgot necessarily good at matching iris
textures.

Taoet al. [74] analyzed the performance of two state-of-the-art fipget matchers on iden-
tical twins by using a database of 83 identical twin pairsngdrs per person, and 6 impressions
per finger. Their conclusion that fingerprint matchers catirjuish between identical twins with
a small drop in performance agrees with previous studiegy Bfso analyzed and compared the
probability of fingerprints from identical twins having teame pattern. This probability was found
(as in [58]) to be much higher compared to the probability wdérprints from unrelated persons
having the same pattern — 0.7440 vs. 0.3215. Another canalwd this study is that all fingers
have the same probability of being of the same fingerpring ipgdentical twins.

Phillips et al. [7] conducted matching experiments using face images ofps28 of identical
twins. They used three state-of-the-art face recognity@tesns, and the experiments were con-
ducted on face images captured under two different lightorgditions, indoor (or studio lighting)
and outdoor (or ambient lighting), and with two facial exgsens, neutral and smile. Their exper-

iments led to the conclusion that the changes in ambientifigland expression largely affect the
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performance of the systems; the studio to studio lightingchiag yielded the best performance,
while the ambient light conditions matching yielded the stgrerformance. As an example, at a
False Acceptance Rate of 0.01, the verification rate of sttalistudio lighting with neutral ex-
pression is about 0.85, while for the ambient lighting alsthweutral expression is about 0.05.
Their experiments also showed that, if we fix the lighting tiadgo conditions, the Equal Error
Rate (EER) in the case of expression changes is significhigher for the three algorithms. In
summary, recognition of identical twins in studio lightimgth neutral expression is promising,
while when the lighting or the expression change, the perémice is drastically reduced.

Pruittet al. [69] conducted experiments similar to [7]. They used theesdatabase used in [7],
and also analyzed the influence of different expressiondighting using four face recognition
systems, and reaching the same conclusions as in [7]. Iti@ddihey analyzed the influence of
the presence of eyeglasses, and they found that the perfoenimabout the same.

Biswaset al. [70] also concluded that uncontrolled environment affélatsability to distin-
guish between identical twins, but their experiments aredythe human ability. Their experiments
were conducted using face images from a database of 186cti?@ volunteers were asked to
look at pairs of face images for a limited time and to decidethhr the pair of face images came
from the same person or from identical twins. Humans coutdectly distinguish between iden-
tical twins with an average accuracy of almost 79%. Anothe&resting result was that humans
used moles/scars/freckles as the most important featutegir correct decisions.

Park and Jain [76] applied their facial marks detection aatthing algorithm to a few identi-
cal twins face images, and showed that facial marks helpdiimguishing between twins. More
recently, Srinivagt al. [73] presented an analysis and algorithm to distinguistveen identical
twins by using facial marks. In their work, they analyzed amatched manually marked and auto-
matically extracted facial marks. Their results showed thaal marks can help in distinguishing
between identical twins; however, it is more difficult to tthguish identical twins than distin-
guishing between unrelated persons. Their results alsgestigd a correlation in the distribution

of facial marks in twins.
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Klare et al. [71] analyzed the effect of different features in the idealttwin recognition based
on face images in the database used in [7]. They analyzedihariance of different components
of the face, the improvement using facial marks, and thewifices in performance when the sys-
tems were trained on images of identical twins compared telated persons. Their conclusions
include: (i) all facial components seem to have the same iitapoe in identical twins matching
scenario as in the standard matching one, (ii) the use dlfararks improves the discriminability
of identical twins without reducing the accuracy on unredigpersons, and (iii) regarding discrim-
inative learning, it appears that training on twins doesh@p the overall system, but this might
be only because the number of twins available for trainingpissufficiently large.

Vijayan et al. [72] presented the results of applying four state-of-the3® face recognition
algorithms to an identical twins dataset (3D Twins Expr@s$hallenge) containing 3D scans of
neutral and smiling expressions of 107 pairs of identicah$w They conducted experiments on
different cases based on the expressions of the probe dedygadans of each of the twins. In the
two scenarios in which the gallery had one expression angrtitee had a different expression, the
best performing algorithm presented an Equal Error RateR{Ed 0.2% and 0.5% and a rank-1
identification rate of 98.1% for both scenarios. In the scesavith uncontrolled expressions (one
twin in the gallery has the same expression as the other twthrei probe, and vice versa), the EER
was 0.8% for both the cases, and the rank-1 identificati@wat 91.6% and 93.5%, respectively.
Their results argue that 3D face recognition remains an ppasiem if different facial expressions

are present.

2.3 Multibiometrics

A multibiometric system uses multiple sources of biometrformation in order to recognize an
individual. For example, a multibiometric system may usgédiprint and face, the left and right
iris, or a fusion of different fingerprint matching algomtls to recognize a person. In the next
subsections, we focus our attention on the distinctiveoifsgerprints, face, and iris for identical

twins. These three modalities will then be used in our midtietric experiments.
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2.3.1 Fingerprint Discriminability

A fingerprint is the impression of the friction skin on a fing@e individual characteristics of
friction ridge skin are determined during fetal developtmeiiheir formation is similar to the
formation of blood vessels or capillaries during the growftthe fetus in the uterus. The fingerprint
formation starts at approximately 6 or 7 weeks of gestatiagea and it is due to the flow of
amniotic fluids in a micro-environment [22]. A minor changethis flow and in the position
of the fetus in the uterus cause the minute skin structur@snar palm, finger tips and soles to
differentiate. Friction ridge skin can be distinguisheahfrthe skin of the rest of the body due to
a variety of factors, such as the presence of raised ridgeeased sensory abilities, absence of
hair and sebaceous glands, and a thicker and more complgsreps. Friction ridges are useful
for grasping and gripping objects, which explains theiisprece in our hands and feet.

As mentioned in Chapter 1, a fingerprint pattern has someélslttat are present in each indi-
vidual fingerprint, like ridge endings, the point where agedends abruptly, or a ridge bifurcation
or trifurcation, where the ridges are divided into differénanches. However, collectively, these
details (minutiae) are supposedly different in every fipget, even in prints of identical twins,
since a very small difference in micro-environment is sidfit to change the process of cell for-
mation, causing minutiae points to be different. As a redmigerprint is considered very reliable
in terms of biometric identification because of its distinehess. Another property of fingerprint
that makes them useful in biometric identification is thagjérprints do not change significantly
over time, an essential characteristic of a biometric midsince a biometric system is typically

meant to be used to identify a person over a long period of.time

2.3.2 FaceDiscriminability

Face is composed of the skull characteristics and the matscaland associated soft tissue. To
study the variation among human faces, itis necessarydy #tese structures. The facial skeleton
serves as the bony framework for the mimetic musculatureceSthese muscles are stretched

across the facial skeleton like a mask, the variation ireleagppearance is caused mostly because
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of the form of the facial bones. A majority of individuals che divided in three categories in
terms of facial appearance: (i) a long, narrow head, (ii)@prtional length to width head and
(i) a short, wide head; these differences in facial shagresdue to the form of the cranial base
[22].

Facial form is influenced by gender. Males are more likelyaweenarger faces because of their
usually larger bodies and their need for more air in ordemfapsrt larger muscles and visceras,
causing them to also have a larger nose. Males also usually danore protrusive forehead.
Besides the gender influences in the face of an individualca &lso changes when a person ages.
Infant faces tend to be wide and short because of the develapai the brain; over time, the
face develops and this wide and short face of the baby tencisatage. Other effects of aging are
dehydration of the dermis and reabsorption of subcutan@bdgposits, which result in a decrease
in the facial volume and wrinkling [22].

The muscles may vary in their presence (not everyone hakalhuscles that could be in a
face), form, location, and control. These factors influetieekind of facial movement that an
individual can create. Furthermore, the facial movemehendndividual change his/her face as
he/she ages. With aging, the elasticity of the skin deceeasd the face then is marked with the
expressions that occur frequently, becoming relativelynament features. This fact may explain
why identical twin faces are more likely to be distinguistaedthey are older than when they are
infants [22].

There are a number of factors that influence the performafrecéagial recognition system. Be-
sides those already cited above, there are differencessi, dlumination, expression, occlusion,
accessories like glasses, weight changes, hair style esaatg. All these variations make facial
recognition systems not as accurate as some other biomdikie fingerprint and iris. ldentical
twins present a particularly difficult situation for facecognition systems, since they are usually

extremely similar in facial appearance.
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2.3.3 IrisDiscriminability

The iris is an annular shaped part of the eye between the pogithe sclera (see Fig. 2.2) that
regulates the amount of light entering the eye through tipd pUhe iris is physically small in size
(about 11 mm) but well-designed optical systems can magnifyman iris into a high-resolution
image that is 200 to 300 pixels in diameter. There are manytaifeatures such as freckles,
coronas, stripes, furrows and crypts, etc. randomly thsted in the iris region, which constitute

the unique iris texture for each eye.
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Figure 2.2: A diagram of the human ege

The iris texture pattern is formed and becomes stable dfteeighth month of gestation. It is
commonly believed that the formation of iris pattern is deti@ed by the gestation environment,
i.e. iris is a phenotypic biometric trait [62]. So even ideal twins can be discriminated using

suitable iris features; even the irises of left and rightseykethe same person are different.

2Figure fromht t p: / / www. nei . ni h. gov/ phot o/ .
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Random processes involved in iris development determméatbgular shape and random spa-
tial layout of micro anatomical structures (MAS). The MASI iris surface may exhibit different
reflectance properties in the near infrared light, leadmgharp intensity variations across iris im-
age region. We can regard each iris region as a piece of 2Rcgunh a 3D coordinate system.
So the surface shape from valley to peak resembles an odd Gladroand the shape from valley
to peak then valley resembles an even Gabor filter, and vicgaveDaugman [62] proposed to
match each iris region with even or odd Gabor filters and timeode positive correlation as 1 and
negative correlation as 0. Thereby, an iris image can besepted by 256 bytes, called the iris
code. The iris codes of twins (or non-twins) have only 50%nclesof being matched because their
corresponding regions independently have an equal priitlyabi be either 1 or O in iris feature
coding. In contrast, multiple iris images of the same eyestammnuch higher probability than 50%
to be matched in their iris codes, even though noise may fiiestume parts of iris codes. A more
general explanation of the effectiveness of iris recognifor twins is based on ordinal measures

[77].

2.4 Experimental Resultsand Analysis

In this section, we first describe the databases used in qariexents, followed by an analysis
of the ability of biometric systems in distinguishing betmeidentical twins and their ability in
determining whether two subjects are identical twins basetheir biometric traits, namely face,

fingerprint and iris.

2.4.1 Databases

The first version of the CASIA Multimodal Biometrics Datakasf Twins (CASIA-TwinsV1) was
collected in October 2, 2007 at the Beijing Chaoyang Parinduhe Fourth Annual Festival of
Beijing Twins Day. Figure 2.3a shows the kiosk where the ltrio acquisition was performed

and Figure 2.3b shows the face acquisition device. Thidda®includes face, iris, and fingerprint

a7



images from 92 pairs of twins and 2 sets of triplets. All theges were captured indoors (inside

a tent) on the same day (i. e., single data capture session).

(b)

Figure 2.3: The kiosk for biometric acquisition (a) and thed acquisition device (b).

Not all of the 94 sets of twins or triplets provided imagesdtithe modalities. Since some of
our experiments involved combinations of units/modaditie considered only those individuals
who have a complete set of images (face, two irises and fogerfprints) in the database, and
whose twin’s images were also present in the database as pleterset. As a result, the total
number of subjects used in our experiments consisted of W3¢ cs (66 families, including two
families of triplets — 51 pairs of identical twins and 15 gaof non-identical twins). For all biomet-
ric modalities (four fingers, two irises, and face), the nembf genuine matches performed was
134, the number of identical twin impostor matches was 168,the number of general impostor
matches was 17,720.

The second version of the CASIA Multimodal Biometrics Datsd of Twins (CASIA-TwinsV?2)
was collected in 2009. This second version also includes fas, and fingerprint images from 59
pairs of twins and 1 set of triplets. Not all of the 60 famil@evided images for all the modalities.
This version is more challenging than the first one sincerttegies were captured indoor and out-
door, and the face images contain variations such as lighpiose and expression. By themselves,
these variations already pose a great challenge to facgmiticm.

Most of the twins are identical (or monozygotic twins), botree are non-identical (or dizy-

gotic) twins. This information was not recorded, so we dedtithis information based on observing
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whether the face images of a set of twins were very similaoo?nin the FBI's collection of bio-
metric data from twins, the information whether the twingevielentical or not was revealed by
the subjects, i.e., the subjects were asked whether theyidemntical or non-identical twins. Both
methods are not perfect and subject to errors. For examplejdentical twins can have very
similar appearance which would cause them to be classifigkatcal twins based on facial sim-
ilarity; or twins might report identical or non-identicavinning based on their guesses or similar
appearance rather than based on DNA testing. We dividedatabdse into two groups, identical
twins and non-identical twins. Most of the subjects in theatase are children, but there are some
adults as well. The subject age ranges from 5 to 65 (5 to 68),tive average age being 16.8 (16.2)
in the first (second) version of the database. There are 1i#i¢arfor which their biometrics were
collected in both versions. We used matching scores framaird face images to find the subjects
who were present in both collections.

In the following sections, we present more detailed detionp of the two databases separated
by the biometric modality, the experiments performed, afmeemental results on the two topics:

distinguishing identical twins and finding similaritiesttveen identical twins.

2.4.2 Distinguishing Identical Twins

24.2.1 Fingerprint

The fingerprint images were captured using Symwave sw68884&weep sensor, with a resolu-
tion of 500 dpi. This dataset contains images from four d#ife: fingers and the number of images
per finger is not fixed, but varies from 6 to 31. Because of ngd variability and the poor quality
of many images, we selected one image per finger as the teargoldt another image from the
same finger as the query image that contain the largest nushb@nutiae.

Figure 2.4 shows some fingerprint images from the twin dat&sgure 2.4a shows images of

the four fingers 1, 2, 3, and 4 for the first twin of an identicaint pair; Figure 2.4b shows the

3The ideal method to distinguish identical or non-identtedhs should be based on DNA.
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fingerprints of the corresponding fingers for the second wiithe pair. Figures 2.4c and 2.4d
follow the same scheme for a non-identical twin pair. Theilsirty between ridge flow patterns
of corresponding fingers of identical twins is evident. V&all four pairs of corresponding fingers
of identical twins have the same fingerprint pattern typ# [d®p, left loop, right loop, right loop

for fingers 1 to 4, respectively), only two pairs of corresgioiy fingers of non-identical twins have

the same pattern type (left loop, right loop for fingers 1 anae8pectively).

o

(©)

Figure 2.4: Fingerprint images of fingers 1, 2, 3, and 4 of tte fwin (a), and the four images
of the corresponding fingers of the second twin in an idehtiga pair (b); similarly, (c) and

(d) show fingerprint images of a non-identical twin pair. &ltie similarity in ridge flow pattern
between identical twins. All four corresponding fingers admtical twins in (a) and (b) have the

same pattern type. But for non-identical twins in (c) and ¢ahly two corresponding fingers (no.
1 and 3) have the same pattern type.

A minutiae based commercial matcher, VeriFinger 4.2 [7¥swsed to obtain the matching
scores in the fingerprint experiments. In our experienck Werifinger 4.2 match scores, there are
no impostor scores greater than 300, so scores greater Bane3e set to this number, and then
the scores were normalized frdit 300 to the rang€0, 1].

Three different match score distributions were generatemtder to analyze the results of the

experiments. The genuine distribution was obtained by Iniagche gallery image of one modality
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of one individual to the probe image of the same modality &edsame individual. Identical twin
impostor distribution was generated by matching each intdgme person to his/her identical
twin. The general impostor distribution was generated lbyha impostor matches except the
identical twin impostor matches described above. Thismeheas used for all the experiments.

Figures 2.7a and 2.7b show the genuine, identical twin, bedjéneral impostor distributions
of finger no. 3, which had the worst performance among the fiogers, and finger no. 4, the
best performing finger, respectively. We can see that, atfhadentical twin impostor distribution
of finger no. 3 is similar to the general impostor distribatiof this same finger, there are some
peaks in the right tail of the identical twin impostor dibtrtion that differentiates them. This is an
indicator of the larger similarity between fingerprints d@éntical twins compared to the similarity
between fingerprints of unrelated persons. This is alsodke for finger no. 4. The Kolmogorov-
Smirnov 2-sample test [80] indicates that the two samptiEnfical twin and general impostors)
do not come from the same population with a significance d@.0.0

Another indicator of this large similarity between ideaditwin fingerprints is the number of
matched minutiae. For example for finger no. 4, the mean ofitimeber of matched minutiae for
genuine pairs is 22.06H 9.50), for identical twin pairs, 6.44H 3.97) and for general impostor
pairs, 4.22 { 2.82). For the other three fingers, these numbers of matchedgtiae are about
the same. Although the number of matched minutiae for idahtwin pairs is much smaller
than for genuine pairs, it is still larger than the number aftched minutiae for general impostor
pairs, which indicates the similarity between identicainst fingerprints is larger than between
unrelated persons. The distribution of the number of matechenutiae between fingerprints of
identical twins is significantly different from the disttibon of the number of matched minutiae

between general impostors (based on the Kolmogorov-Smiasb).

24.2.2 Face

The face images were captured in color, all of them from a U&Bera. The image size is 480

640 pixels, but the face area in the image varies from 2&D0 to 300x 400 pixels. The images
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contain non-uniform background, and some variations umilhation. The images were captured
in a sequence and over a short time interval. There are aBdat@ images per subject. Some face
image examples are shown in Figure 2.5. The first two imagew $&ce images of an identical
twin pair (Figure 2.5a), while the other two are face imagea non-identical twin pair (Figure

2.5h).

(b)

Figure 2.5: Face images of the first and second twin in (a) entical twin pair, and (b) a non-
identical twin pair.

The face subset used in the experiments contained 134 ssilbgach one having around 20
images. The commercial matcher used to perform the faciathirey was FaceVACS 7.1 [81],
and the scores from this matcher are in the rdfgH. We considered two face images per person
(the template and the query) in our experiment, mainly beedoe pictures were taken over a very
short time interval, which makes them very similar. The fastl the last images of each person
were used, since they are expected to be the least similguré-R.7c shows identical twin and

general impostor distributions, along with the genuineritistion for the face experiments. In
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the genuine distribution, we can see that there is almostihartd that about 90% of the genuine
match scores are of more than 0.95. This is due to the highledegjrsimilarity between the two
face images of the same person, since they were taken inrssgjaed in a very short time interval.
Also, we can observe that the identical twin impostor distion is more similar to the genuine
distribution than to the general impostor distributiongaming identical twins are a real challenge

to face recognition systems.

2423 lris

The iris images were captured using an IKEMB-100 cameraywmed by IrisKing [82]. The size

of the images is 48& 640 pixels, but the approximate iris diameter is 200 pixé&&EMB-100

is an embedded dual-eye iris camera and has an LCD displagaigime iris images for user

convenience. The iris images were captured in sequencevanéahort time interval. There are
10 images for most of the subjects, with a few individualsihg\a smaller number of images.
Some examples of iris images are shown in Figure 2.6. Figlssand 2.6b show iris images of
an identical twin pair, where the two images in 2.6a are thtealed right iris images of the first

twin, and the two images in 2.6b are the left and right irisgesmof the second twin. Similarly,

Figures 2.6¢c and 2.6d show iris images of a non-identical pwaiir.

The iris feature representation method based on ordinasumes [77] is used to test the per-
formance of iris recognition for twins. The match scoreggeafrom 0 to 1. Two iris images were
randomly selected as probe and gallery for each eye. Figddesshows the genuine, identical twin,
and general impostor distributions of the right iris, whpeghrformed slightly better than the left iris.
The identical twin impostor distribution is very similar tioe general impostor distribution. How-
ever, the peaks that are present in the identical twin ingpakstribution tail may indicate that the
irises of identical twins have some correlation. The Kolmay-Smirnov statistical test indicates
that the identical twin and general impostor distributiars significantly different (significance of

0.05).
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(a) (b)
(© (d)

Figure 2.6: The left and right iris images of identical ((aplgb)) and non-identical twin pairs ((c)
and (d)).

2.4.2.4 Multibiometric Experimental Results

In our multibiometric experiments, we first combined unitth@ same modality, like the two irises
or all the four fingers of a person. We performed a simple fusging scores from the four fingers
by summing them. The identical twin and general impostdritistions, along with the genuine
distributions, are shown in Figure 2.8a. A fusion using bibkh irises was also performed, and
the distributions are shown in Figure 2.8b. We can obsexwa fihese figures that the matching
results are extremely good; genuine and impostor distabatare well-separated. This indicates
that multimodal biometric systems can work very well evethie presence of identical twins in
the biometric database.

Two different Receiver Operating Characteristic (ROC)vesrwere generated for each ex-
periment. Identical twin impostor ROC curve means the inosiatches considered were just
identical twin impostor matches, while a general impostod=curve means we considered all the
impostor matches, except the identical twin impostor medclkrigure 2.9a shows the ROC curves

for fingers nos. 3 and 4, the best and worst performing fingesgpectively, and the ROC curves
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Figure 2.7: Identical twin, general impostor distribusoand genuine distributions for fingers 3

and 4, face, and right iris.

of the 4-finger fusion. The performance of the fingerprinnitfecation system in distinguishing
genuine matches from general impostor matches is alwayerlibéin the performance in distin-
guishing genuine matches from identical twin impostor mesc It is important to note that the
4-finger fusion had the highest performance among the expets involving fingerprints.

The iris matching experiment results show that the iris @t system can distinguish iden-
tical twins as much as it can distinguish any two differentspas who are not identical twins, as

shown in Figure 2.9b. Iris experiments presented the be&irpgance among all the experiments
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that used just one biometric characteristic (one finger,jiser face). This may be because irises
from identical twins are more uncorrelated than fingergrirdm identical twins, or may be due to
the fact that iris images in our dataset have a very good tyudhlie to automatic rejection of poor
quality images by quality control software, while the qtyabf many fingerprint images is very
poor due to improper sweep operation by some of the childred the image area is very small.
Also, the 2-iris fusion showed improvements compared t@#réormance of each iris alone.

We also fused face and finger no. 4, where the fingerprint scgege appropriately normal-
ized, and the results are shown in Figure 2.9d. We did not amenibs with another biometric
modality because iris results are already really good aad#tabase is not large enough for mea-
suring lower error rate. The ROC curves of the face experisare shown in Figure 2.9c. The
face experiment shows that the presence of identical twirntke face database causes the face
recognition performance to drop. Although the performanes good based on the general im-
postors (no identical twins in the data involved), we carygdt a True Acceptance Rate (TAR) for
the identical twin data greater than zero at a false acceptate of over 10% for identical twins.
Compared to face matcher, the fusion of face and finger nos 4 letter performance in dealing

with identical twin and general impostors. Compared to fipgat matcher, this fusion degraded
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the performance on identical twin impostors, but improvezigerformance on general impostors.
It should be noted that the inferior performance of fingerpmatcher compared to face matcher
in our experiments is due to the specific fingerprint senseipgs sensor) used for data collection
and the difficulty of obtaining good quality fingerprint imegyof younger subjects using the swipe
sensor. On the other hand, there is very small intra-clasatian for face images.
Table 2.2 shows the equal error rates for the worst and bdstrpeng fingers (finger numbers

3 and 4), 4-finger fusion, left and right irises, iris fusidace, and face and finger 4 fusion; the
equal error rates are shown based on the identical twin itoand general impostors separately.
It can be observed that all the modalities have a better pedce on the general population than
on the identical twin population.

Table 2.2: Equal Error Rate (%) for distinguishing (i) gemivs. impostor identical twins and (ii)
genuine vs. general impostors based on different biomietaitires.

Modality | Finger| Finger| 4-finger| Left | Right| 2-iris | Face | Face+
3 4 fusion | Iris | Iris | fusion Finger 4

Identical | 13.95| 6.79 049 |135| 0.86| 049 | 13.67| 7.65

twins

General | 10.71| 4.40 0.00 |0.75| 0.75| 000 | 3.79 2.48

impostors

2.4.25 Discussion

In the previous sections, we presented experimental sebalted on state-of-the-art biometric
recognition systems available in 2009. In this section, ¥8euss more recent results to indicate
the development of the systems overtime. In Fig. 2.11, wevdROC curves for face recognition
using FaceVacs 8.6, applied to both versions of CASIA Twatsblase (see Fig. 2.10 for examples
of face images in CASIA Twins V2). It can be noted that faceoggttion performance shows
an overall improvement given the controlled environmenC&SIA Twins V1. However, the

challenge of the illumination, pose and expression vanmtiis evidenced in Fig. 2.11b, which
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Figure 2.9: ROC curves for fingerprint, iris and face, andsadim example (face + finger 4). Due
to the small number of identical twin impostor (102), FARdéisan 1/102 cannot be estimated.

shows the true acceptance rates at various false acceptaesén the CASIA Twins V2 database.
In this unconstrained environment, it is even more difficoldistinguish between identical twins.
In the iris and fingerprint cases, we repeated the expersnemg VeriEye [83] and Verifinger

6.3 [79]. The ROC curves considering identical twin impeostand general impostors are very
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Fig. 2.9 (cont'd)
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similar for iris, as it was the case in our previous experitagfor fingerprints, the small drop in

the performance is still present when identical twins imipssare considered compared to general

impostors.

59



Figure 2.10: Examples of face images in CASIA Twins V2 dasaba

2.4.3 Finding Similarities between Identical Twins

In the previous section, we discussed the ability of bioraslystems to distinguish between iden-
tical twins to answer the following question: can biometiti@ used to distinguish identical twins?
A complementary question of interest is: can biometrics $eduo detect identical twins? The
answer to this question is not known. The goal of this sed8do provide quantitative measures
that will help in answering this second question.

Identical twins are the most genetically similar personseathey share the same DNA. Studies
on the characteristics of identical twins can generallgl lsaimprovements in the overall knowl-
edge about unrelated persons. For example, the knowledgg i@ influence of the genetics in
the occurrence of a certain disease can lead to the discoferywironmental factors in addition
to genetic factors. This type of knowledge can also be usetibmetric recognition. In [68], the
authors discussed the similarity between irises of idahtwins. In their paper, they found that
humans can envision some type of texture similarity betweases of identical twins, and there-
fore to determine genetic relations from iris images mighpbssible. This, in turn, could help in
identifying victims without any form of identification, byrftling genetically related persons.

In general, studies on the similarities between biomewicsvins can lead to a broader un-
derstanding of the similarities between biometrics of tkaeagal population. Starting with twin
similarities, it can possibly be extended to find other bl¢@anilial) relations. In addition, the

protection of biometric data should be taken seriouslyesing stealing a template, one might be
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able to find genetically related persons. In the generalrebescenario, identical twins are of

great interest. If biometrics can be used to correctly deitez whether two subjects are identical
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twins, it might be much less expensive and quicker than DNAarison.

Suppose we havll genuine biometric sample pair, identical twin impostor pairs, an

general impostor pairs. Among these pairs, how well can vierohene the identical twin pairs?
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By using face and iris modalities together, we are able toectly detect 80% of the identical
twins while falsely accepting 2% and 10% of genuine or gdnenaostor pairs as identical twins in
database CASIA Twins V1 and V2, respectively (see Fig. 2.D2E to the different characteristics
of the databases, it can be said that, in conditions clodeontal face images and indoor lighting,
we can correctly determine 80% of the identical twin pairkilefalsely accepting 2% of general
subject pairs as identical twins. When the lighting, pos# expression conditions vary, the false
acceptance rate goes up to 10%.

We considered the following scheme to detect identical$wifiris score between the subjects
is more than a threshold, the pair is considered a genuimegual the measure for identical twin
determination is set to zero. If iris score is less than sdmeshold, then the pair is considered
an impostor pair (note that identical twins fall under thasegory). Because of the high similarity
between faces of identical twins, the measure for identiwal determination is then set to the
similarity between the faces of the subjects. For this arpant, we randomly choose two face
images and two images of the same iris (right) for each stubjgben using fingerprints to deter-
mine genuine pairs instead of iris, the performance is atfmisame for the CASIA Twins V2,
while the performance drops for CASIA Twins V1 mainly becadise quality of the fingerprint
images in V1 is worse than in V2 (see Fig. 2.13).

Fig. 2.14(a) shows face images of an identical twin pair fbiol the identical twin evidence is
extremely high due to the similarity in their facial appea@and dissimilarity in their iris textures.
However, the twin pair shown in Fig. 2.14(b) who was clasgibig us as a non-identical twin pair
also shows an extremely high evidence of being identicalswaiccording to face and iris.

Our work focused on answering the question: given a pair bfestis, can we determine
whether they are identical twins by means of biometrics?tA@omore general way of approach-
ing the problem is to come up with a likelihood that a giverr disubjects is an identical twin

pair based on their biometrics.
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b

(a) Match score: 0.99954

(b) Match score: 0.99951

Figure 2.14: Face images of pairs of (a) identical and (b}identical twins with extremely high
face match scores considering the range of scor@lsusing FaceVacs 8.6.)
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2.5 Summary and Conclusions

We have presented a study of the distinctiveness of biomelvaracteristics of identical twins
(fingerprint, iris and face). The discriminability of thedeee biometric traits is supported by
anatomy and the formation process of the biometric chatatitss, as discussed in Section 2.3.
We have assessed the capacity of state-of-the-art comahkei@metric matchers in distinguishing
identical twins based on fingerprint, iris, and face.

The unimodal face biometric system can distinguish twoeddht persons who are not iden-
tical twins much better than it can distinguish identicainsv More recent studies support this
conclusion, and it becomes even more challenging whenlfag@ession changes or different
lighting conditions are involved during the image capturgcess. Some efforts have been made to
improve the face recognition performance for identicahtsyifor example, by using facial marks.
As described in Section 2.3, face undergoes change over@sed on usual facial expressions,
environment, diet, etc. At the same time, face recognity@tesns are evolving, so, in future, they
are expected to have a better performance.

Although the unimodal fingerprint biometric system also decriminate two different persons
who are not identical twins better than it can discrimindtniical twins, this difference is not as
large as for the face biometric system. In the fingerprinteeixpents, the identical twin impostor
distribution is shifted to the right, getting closer to thengine distribution. This suggests a higher
correlation between fingerprints of identical twins congghto fingerprints of unrelated persons.
Previous studies have shown that the fingerprint type is muate likely to be the same in twins
than in unrelated persons, and more recent studies confism th

The iris matching experiment results show that the perfocaaf the biometric system for the
identical twin data and for the general data are very simiéiich means the iris biometric system
can distinguish identical twins to the same extent as it ¢stingduish any two persons who are not
identical twins. However, the shift in the identical twinpwstor distribution for iris also suggests
a higher level of similarity between irises from identioalrs than from unrelated persons.

Among all the unimodal biometric systems considered hbeeiris performed the best. Again,
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this may be due to the fact that irises from identical twiresraiore uncorrelated than fingerprints
from identical twins, or may be due to the fact that iris im&ge our dataset have a very good
guality, while the quality of many fingerprint images is tataly poor and the friction ridge area
is small due to the age of the subjects.

Multimodal biometric systems that combine different urdfsthe same biometric modality
(fusion of 4 fingers or 2 irises) lead to an almost perfect s#jmm between genuine and impostor
distributions. For both the general population and idehtiwins, multimodal biometric systems
that combine different modalities, one being face, showrawgments in the performance on the
general population compared to individual traits. Howevlee performance of multibiometric
systems drop on the identical twin data compared to the bigberformance modality that is
being combined. This is because in the fusion of finger anel fiaatchers, the performance of the
face matcher for identical twins is extremely poor.

Biometric traits can also be used to determine whether twgests are identical twins. By us-
ing face and iris modalities together, for example, we careotly determine 80% of the identical
twin pairs as such, while only 2% of subject pairs who are dentical twins will be incorrectly
considered identical twins.

To our knowledge, although multibiometric databases fam$vinave been collected before (the
ten fingers and/or the two palmprints), no previous studydeasbined different units/modalities
to study the multibiometric matching performance. We haagggmed the multibiometric experi-
ments and showed that the performance of a multibiometstegy that uses different units of the
same modality is significantly better compared to unimogatesms, approaching almost perfect
accuracy on our database. Also, there have not been anppssstudies of identical twin irises on
a database this large. In addition, we have used commereaiahmrs for the face and fingerprint
experiments, which are usually more accurate than in-hmagehers — used in previous studies.
Based on our experiments on this relatively small twin dasahwe can conclude that the presence

of identical twin data poses a real challenge to commera@@ fecognition systems.
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CHAPTER 3

LATENT FINGERPRINT MATCHING

3.1 Introduction

Fingerprint identification was a completely manual apphaattil 1970s. Due to growing demands
on fingerprint matching, and the large size of the fingergtatabase of criminals, research was ini-
tiated to automate fingerprint recognition, which led todlegelopment oAutomated Fingerprint
Identification System@FIS). These systems are now used worldwide not only by laferee-
ment agencies but also in many other government applicgtiocluding background check of
certain employees (e.g., those serving in the militaryjdbocontrol and national ID cards. The
use of fingerprint recognition in civilian applicationsdelogical/physical access control) is also
gaining more widespread acceptance [84].

There are essentially three types of fingerprints encoedtir law enforcement applications
(see Fig. 3.1): rolled, plain and latents. Rolled prints@tained by rolling the finger from nail-
to-nail, while plain (or slap) fingerprints are obtained bgging the finger flat on a surface. It
is common practice in law enforcement agencies to collegefiorints from all the ten fingers of
a subject. An example of a tenprint card is shown in Fig. $12ylich the first two rows show
rolled prints of the ten fingers of a subject, while the last ghows plain fingerprints also from
the ten fingers of a subject. Plain fingerprints are colletigdirst placing the four fingers of

one hand, then the four fingers of the other hand, followedheycapture of the impressions of
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the two thumbs (4-4-2 process). Latents are impressionsa@éffs lifted from surfaces of objects
that are inadvertently touched or handled by a person tijpiabcrime scenes. Lifting of latents
may involve a complicated process, and it can range fromlgiptptographing the print to more

complex dusting or chemical processing [35].

(a) Rolled (b) Plain (c) Latent

Figure 3.1: Three types of fingerprint impressions. Rolled plain fingerprints are also called
reference fingerprints.

Two types of matching are of interest to law enforcement aigsn tenprint-to-tenprint and
latent-to-tenprint. Tenprint-to-tenprint matching isedsin border control, background checks,
etc., while latent-to-tenprint matching is used to idgnstispects from impressions lifted from
crime scenes.

Rolled prints contain the largest amount of informationwiibe ridge structure on a finger-
print since they capture the largest finger surface areantgausually contain the least amount of
information for matching or identification because of treimall size (they capture only a subset
of the complete friction ridge pattern) and inherent noBempared to rolled or plain fingerprints,
latents are smudgy and blurred and have large nonlineartist due to pressure variations. Due
to their poor quality and small area, latents have a sigmifiggsmaller number of minutiae com-
pared to rolled or plain prints (the average number of mawiitn NIST Special Database 27 (NIST
SD27) [4] images is 21 for latents versus 106 for their mat#ied prints). These characteristics

make the latent fingerprint matching problem very challeggi
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Figure 3.2: An example of a tenprint card containing two g/p&impressions (rolled and plain)

of the ten fingers. The first portion of the card contains psasmformation related to the person
being fingerprinted, such as name, date of birth, place d¢f,bgender, race, height, weight, etc.
The second portion of the card contains impressions of thirtgers. The first and second rows of
impressions consist of rolled impressions of the fingemftoe left and right hands, respectively
(from left to right: thumb, index, middle, ring, little). Ehthird row contains plain impressions
of the left four fingers taken simultaneously, left thumightithumb, and right four fingers taken

simultaneously.

Fingerprint examiners who perform manual latent fingetpdentification follow a procedure

referred to as ACE-V (analysis, comparison, evaluatiomnvamification) [85]. Because the ACE-V
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procedure is quite tedious and time consuming for lateninéxers, latents are usually matched
against reference prints of a small number of suspectsifahby other means, such as eye wit-
ness description or M.O. (mode of operation). With the anamlity of AFIS, fingerprint examiners
are now able to match latents against a large fingerprinbdatausing a semi-automatic procedure
that consists of following stages: (i) manually mark thetdees (region of interest, minutiae and
singular points) in the latent, (ii) launch an AFIS searal &ii) visually verify the topN (N is
typically 50) candidate fingerprints returned by AFIS. Tleewracy and throughput of this latent
matching procedure is still not satisfactory. It certaidlyes not meet the “lights-out modedf
operation desired by the FBI and which is the goal of the NesttéBation Identification [86].

It is our opinion that research efforts in latent fingerpri@ntification should focus on improv-
ing the matching accuracy based on existing mark-ups bgtlatgerts, rather than on completely
eliminating manual input, or asking examiners for too mugbuk. This opinion is supported by
the following facts: (i) latent matching accuracy is sthletmajor concern of law enforcement
agencies, (i) manually marking extended features is vabpi extensive, and (iii) state of the
art “lights-out” latent identification systems cannot y#eosatisfactory accuracy for most latents
of casework quality. We believe latent matching will notaledahe same level of performance of
tenprint-to-tenprint matching due to some of the charaties of the latents: (i) in tenprint acqui-
sition, if the quality of the fingerprint image is not goodetfingerprint can be re-captured; in the
latents case, this option is not available; (ii) for someraprints, there might not be enough infor-
mation to make an identification, for example, if the frictiodge area is extremely small and the
ridges are not prominent or faded. Our goal of improvingrafamgerprint matching performance
aims to reduce the manual labor involved in identifying @mat This is achieved by providing
higher retrieval accuracy at top ranks, thus reducing tmelar of latent and rolled print pairs that

need to be manually verified.

ILights-out identification refers to a system requiring mial or zero human assistance
in which an image is presented as input, and the output dsnefsa short candidate list
(definition fromht t p: // bi onetri cs. ni st. gov/cs_links/| atent/wor kshop09/
proc/ Def i neLPl i ght sout . pdf).
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Our efforts to improve latent fingerprint matching performoa are concentrated on two differ-
ent directions: (i) enhance the latent image and fuse thehimaf score of the enhanced latent with
the score based on manually marked minutiae [87]; (ii) dgvel new latent fingerprint matcher
based on manually marked minutiae [88]. In the current practatent examiners are required
to mark minutiae and optionally mark singular points (cdedta). In the enhancement approach,
manually marked features in the latents include minutiegpin of interest, and singular points; in
the latent matching approach, we reduce the manual inputlyatioe manually marked minutiae.

Orientation field information is critical in the fingerpriehhancement process. Orientation
field can usually be reliably estimated from the fingerpmmage itself in the case of rolled or plain
fingerprints of good quality. In latent fingerprint imagesieatation field estimation is not very
reliable because of their poor quality. Fig. 3.3 shows thieneded orientation field of a latent and
its mated rolled print in NIST SD27 latent database usingligra-based approach [8]. Manually
marked orientation field, although reliable, is not easytitam; it requires a lot of effort and prior
training. Therefore, for the enhancement process, we steart the orientation field based on
manually marked features (minutiae, singular points, awion of interest) [89]. Gabor filters
are then used to enhance latent images, which are autothyaticached to the reference print
database. We show that the performance of manually markegtiaxe matching can be improved
by combining scores from both the matching of manually mamkénutiae and of automatically
extracted minutiae from enhanced latents. It is importarppdint out that the performance of
fully automated minutiae extraction and matching basedheninput image is very poor. The
experiments were conducted on a public domain fingerpritstbdese, NIST SD27, consisting of
258 latents along with their rolled mates. To make the caiclumore reliable, the gallery size
was increased by including 2000 rolled images from NIST SD14 [90].

For fingerprint matching, there are two major problems wimebd to be solved. The firstis to
align the two fingerprints to be compared and the second isrtgpate a match score between the
two fingerprints. Alignment between a latent and a rolledtps a challenging problem because la-

tents often contain a small number of minutiae and underge Iskin distortion. To deal with these
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Figure 3.3: Examples of estimated orientation field ((b) &)l by gradient-based approach [8]
for a (a) latent and (c) its mated rolled print in NIST SD27.

two problems, we propose the descriptor-based Hough ttlemgDBHT), which is a combination
of the generalized Hough transform and a local minutiaerg@se, called the Minutia Cylinder
Code (MCC) [91]. The MCC descriptor improves the distinetiess of minutiae while the Hough
transform method can accumulate evidence as well as impheveobustness against distortion.
Match score computation between a latent and a rolled ialsio challenging because the num-
ber of mated minutiae is usually small. To address this issedurther consider orientation field
as a factor in computing the match score. Since we only censidnually marked minutiae for
latents, a reconstruction algorithm based on minutiaesa®nsed to estimate the orientation field

[89]. The proposed matcher was tested on two latent fingerdatabases, NIST SD27 database
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and West Virginia University latent fingerprint databaseMWLFD). Two COTS matchers and
a state-of-the-art non-commercial fingerprint matchirggpathm (MCC SDK) were evaluated on
these two databases. Our algorithm was found to perforrerttétn these three matchers on both
the databases. Extensive experiments on fusion of matahdreffect of fingerprint quality were
also conducted and reported here.

The rest of this chapter is organized as follows: in Secti@) &lated work is reviewed; in
Section 3.3, the features used in the matching experimeatdescribed; in Section 3.4, the two
approaches for improving latent matching performance gregmnted; in Section 3.5, the databases
used are described; in Section 3.6, experimental reswescban the two proposed approaches are

presented and discussed; in Section 3.7, our work on lategerfdrint matching is summarized.

3.2 Reated Work

In this section, we review related work in four areas: (i) lmled research on rolled fingerprint
matchind, (i) published research on latent fingerprint matchini), {IST evaluation of latent fin-
gerprint technologies (ELFT), and (iv) evaluation of laterkaminers. Rolled fingerprint matching
technology is very advanced, and there exist commerciatimeas with excellent matching perfor-
mance; however, there is very little information availadib®ut the details of these algorithms and,

therefore, we do not discuss them here.

3.2.1 Rolled Fingerprint Matching

The majority of the algorithms developed for fingerprint aiihg are based on minutiae. Although
minutiae carry a great amount of discriminatory informatiadditional features may be necessary
to achieve the desired level of accuracy. Most proposedighgas for fingerprint matching that use
non-minutiae features also use minutiae. For example, stgoeithms combine ridge orientation

with minutiae information either at feature level by indlnglridge orientation information in local

2See Chapter 4 in [1] for a more comprehensive review of thiito
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minutiae descriptors [27, 92] or at score level by combirsngres from minutiae matching and
global orientation field matching [92, 93].

Several recent studies on fingerprint matching have focosetthe use of local minutiae de-
scriptors [91, 27, 92, 94, 95, 96, 97]. In most of these stydiee initial step consists of using
local minutiae descriptors to obtain the alignment betwwem fingerprints by considering the
most similar minutiae pair; then, a global consolidatia@pss performed to obtain a better match-
ing performance. Since these algorithms are usually tunddesaluated using FVC databases
(plain fingerprints) or NIST Special Database 4 (rolled fipgats), their performances on latent

fingerprints are unknown.

3.2.2 Latent Fingerprint Matching

Recent research and development efforts on latent fingespran be classified into three streams
according to the manual input required from fingerprint eixeaars: consistent with existing prac-
tice, increasing the amount of manual input, or reducingaitm®unt of manual input. Because
of large variations in latent fingerprint quality and speciquirements of practical applications
(crime scenes, border crossing points, battle fields), e&ttte three streams has its value.
Improved latent matching accuracy has been reported by @sitended features, which are
manually marked for latents [28, 98, 99, 11]. However, magkextended features (orientation
field, ridge skeleton, etc.) in poor quality latents is venyd-consuming and might be only feasible
in rare cases when there are none or very few minutiae. Thus studies have concentrated on
latent matching using a reduced amount of manual input, sgchmanually marked region of
interest (ROI) and singular points [100, 101], or no manapaut [102]. However, the reported
performance of these approaches is not very good. Henceropoged matcher takes manually
marked minutiae as input and, therefore, it is consistetit @xisting practice in forensics. There
have also been some studies on fusion of multiple match88j find use of multiple latent prints

[104].
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3.2.3 NIST Evaluation of Latent Fingerprint Technologies

B

(@)Good (b) Bad (©) Ugly

Figure 3.4: Latent fingerprints of three different qualigyels in NIST SD27.

NIST has been conducting a multi-phase project on EvalonaifoLatent Fingerprint Tech-
nologies (ELFT) to evaluate latent feature extraction aradcimnng techniques [105]. Since all
participating algorithms in ELFT are proprietary, no digidiinformation about these algorithms
is available. The purpose of ELFT-Phase | was to assessabiilty of latent fingerprint iden-
tification systems using Automated Feature Extraction aatchng (AFEM), while the purpose
of ELFT-Phase Il was to actually measure the performanc¢até-of-the-art AFEM technology
and evaluate whether it was viable to have those systemseiratipnal use to reduce the amount
of time needed by latent examiners to manually mark latémiseby increasing the throughput.

In Phase I, latent images were selected from both operatzmthnon-operational scenarios.
The average reported accuracy at rank-1 was of 67% (100tsateatched with 1®00 rolled
prints) [106]. In Phase II, latent images were selected fooy operational environments. The
rank-1 accuracy of the most accurate system wa®%81{835 latents matched with 1@DO rolled
prints) [50]. The Phase | and Phase Il accuracies cannotrbetlgi compared since the Phase |
and Phase Il evaluations used different latent databasethefmore, the quality of latents used
in Phase Il is much better compared to Phase |. As shown inF#y.the quality of operational
latents can vary significantly.

The impressive matching accuracy reported in ELFT, spgdpddase Il, does not support that
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the current practice of manually marking minutiae in lagesttould be changed. Although latents
in Phase Il were selected from operational scenarios, thesesent successful identifications in
actual case examinations using existing AFIS technolagihé ACE-V process, when the exam-
iner analyzes the latent image he decides whether the lagsnti) value for exclusion only, (ii)
value for individualization or (iii) no value. If a latent dassified as of “no value”, no comparison
is performed. If the latent is classified in one of the othey bategories, then a comparison is car-
ried out and the examiners can make a decision on indivizii#din and exclusion, or determine
the comparison to be inconclusive. So the latents whichwareessfully identified constitute only
a small part of all latents, which are of reasonable quakty this reason, in the ELFT-Phase II
report [50] the authors concluded that only a limited clalskat@nts can benefit from the AFEM
technology.

NIST has conducted another evaluation of latent fingerpeictinologies using extended fea-
ture sets (EFS) manually marked by latent examiners, cBId€l-EFS [107]. In this evaluation,
the purpose was to investigate the matching accuracy whdatént images and/or (ii) sets of
manually marked latent features were provided to the matdtres evaluation suggested that the
highest accuracy was obtained when the input included bettatent image and manually marked

latent features.

3.2.4 Evaluation of Latent Examiners

A latent examiner can be viewed as a very accurate “matcBeit;.there is the issue of subjectivity
in the human decision making process along with low througihipecause of the time consuming
process of manual decision making, quantitatively esiimgahe accuracy of latent examiners is
not easy. Hence the numbers of fingerprint pairs used in aeltdack box” studies of latent
examiners are not large [108, 109, 110]. Although the exawthers reported in these studies may
not reflect the real practice, the qualitative conclusiamsvery useful. It was found that latent
examiners’ conclusions are not always in agreement, eaperi the case of poor quality latents

[108]. In addition, the same examiner can change his/hatlgsions on the same fingerprint pair
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at a later time [109]. These inconsistences may even inen@ader bias [110].

These issues associated with including latent examinereifatent identification process will
only be resolved when the automatic matcher can outperfatemi examiners in accuracy. No
matter how successful the application of automatic fingetpecognition technology might be,
we cannot say fingerprint matching is a “solved problem” befge can reach the goal of outper-

forming latent examiners.

3.3 Latent Fingerprint Features

In both of our approaches to improve latent matching peréoe, minutiae and orientation field
are extracted from latent as well as rolled prints. Minugae marked by latent examiners in
the latent, and automatically extracted using commercatthers in the rolled print. Orientation
field in the latents is reconstructed from minutiae locadod direction, as proposed in [89], and
orientation field is automatically extracted from the rdljgrint images by using a gradient-based
method [8]. In the matching using descriptor-based Hougim3iorm, local minutia descriptors
are used. In this section, the orientation field reconstvaalgorithm is described, followed by

the description of the local minutia descriptors used i tork.

3.3.1 Orientation Field Estimation

The value of an orientation field at a given pixel is the ank the fingerprint ridges form with
the horizontal axis in a small neighborhood around thatlsee Fig. 3.5). The simplest and the
most natural approach for computing orientation field iseldasn the gradient values. Because of
the computational effort and the presence of noise, thentati®n field is usually computed in a

small neighborhood instead of at each pixel [1].
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Figure 3.5: lllustration of the orientation field computadamall block.

Another approach to compute the orientation field that diffeom this image-based approach
is the model-based approach (e.g. zero-pole model [111,11113), which uses the location of
singular points to estimate the orientation field based odah

In the latent fingerprint case, since the images are usugfipar quality, it is very difficult to
estimate the orientation field based only on the image itéd#fo, in many cases, the friction ridge
area of the latent fingerprint is small and does not contaigusar points, which makes the model-
based orientation field unreliable. A combination of im&gesed and model-based approaches can
be very useful for latents. In [100], such a combination weeduto enhance the latent fingerprint
images and it was shown to improve the matching performamrgared to the performance based
on latent image alone.

In [89], the authors proposed a method to reconstruct thentaiion field assuming (i) only
the minutiae information (location and direction) is giyemd (ii) both minutiae and singular
point information is given. The advantages of this appraaar the approaches described earlier
[111, 112, 113] are: it can be used in cases where no singalatspare available (small area
latents) and it uses minutiae information that is reliab@ur experiments show that when this
reconstructed orientation field is used for latent enhamceithe matching performance of the
enhanced image is comparable to the matching performangeagfes enhanced by manually

marked orientation field. This reconstructed orientatiedfis also useful for orientation field
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matching. Therefore, we adopt this approach which is desdrin detail below.

3.3.1.1 Minutiae based Orientation Field Reconstruction

In this section, we describe the method proposed in [89]¢onstruct the orientation field based
on minutiae and singular points, if available. Here we asstimat a latent expert has marked
the available features (minutiae, singular points, regibimterest). Also, in cases where an odd
number of singular points were marked in the region of irggrpaired singular points outside
of the region of interest are guessed (referred to as vigimgular points [100]) to satisfy the
constraints of singularity number, which states the totamhber of singular points is even, and the
cores and deltas appear in pairs.

Because of the reasons mentioned in Section 3.3.1, thetatimmfield is also computed in
non-overlapping blocks of a predefined size (e.g,8or 16x 16). Now, consider lines passing
through the non-overlapping blocks, that divides the image8 equally spaced sectors as shown
in Fig. 3.6. Then, a local orientation field estimate is ofal, for each block, based on the

direction of the nearest minutia in each of the 8 sectors.
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Figure 3.6: Local ridge orientation estimation based omi@rest minutiae in each sector.

Let {Xn,Yn,an}, 1< n <N, be a set oN fingerprint minutiae marked by a latent expert, where
(Xn,Yn) is the location andxy, is the direction of thea minutia. Then, by doubling the minutia
directionan, which means taking&, instead ofa, as the minutia direction, it becomes equivalent
to an + 1T (this is necessary since fingerprint ridges are not origntear theK minutiae selected

in eight sectors (in our experiments, one minutia per sgctoisine and sine components can be
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computed and summed as follows:

K
u= Z cos(2ay ) Wy, (3.1)
k=1
K
V= z sin(2ay)wy, (3.2)
k=1

wherew is a weighting function based on the Euclidean distanceédmatvhe block center and the
k!h minutia; this makes the closest minutia direction domisitte ridge orientation of neighboring
blocks.

The orientation at blockm, n) is then computed as:

1
D(m,n) = 5 arctan:—j. (3.3)

If we consider that marked singular points are also avalabthe latent fingerprints, then the

direction field ofNs singular points is given by the Zero-Pole model [111], [112]

Ns n—ng
Ds(m,n) = Z ts arctanmi, (3.4)
i=1 -
wherems, ns, andts, (core: 1, delta—1) are the location and type of tif8 singular point.
Orientation field is first estimated using minutiae whosedtion is subtracted bs. The

reconstructed orientation field is then given by

2D(m,n) +Dg(m,n)
5 :

O(m,n) = (3.5)

The orientation field is reconstructed simplyl@@n, n) (Eq. 3.3) in the enhancement case in
which there are no marked singular points, and in the magchging Descriptor-Based Hough
Transform in which we consider only minutiae are marked. ®hentation field is only recon-
structed in the region of interest (ROI). In the first apploé&nhancement) we assume region of
interest is manually marked. In the second approach, wenatdithe region of interest as the
convex hull of minutiae.

Figs. 3.7 and 3.8 show some examples of reconstructed atiemtfield. In both figures,

(a) shows the original latent image, (b) shows the oriemafield estimated directly from the
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gray scale image, (c) shows the reconstructed orientatsieh &ind (d) shows manually marked
orientation field. We can observe that it is not easy to edérttee orientation field from the latent
image. But, the reconstructed orientation field from miaei@&nd singular points is quite reliable,

although it is not as smooth as manually marked orientatedd.fi
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Figure 3.7: Comparison of orientation field estimation roeh (a) Original latent fingerprint
image, (b) orientation field estimated directly from theagivmage, (c) orientation field estimated
from minutiae and singular points, and (d) manually markeeidation field.
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Figure 3.8: Comparison of orientation field estimation roeth (a) Original latent fingerprint
image, (b) orientation field estimated directly from theagivmage, (c) orientation field estimated
from minutiae and singular points, and (d) manually markeeipation field.
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3.3.2 Local Minutia Descriptor

Local descriptors have been widely used in fingerprint matcte.g. [94, 27, 95, 11, 91]). Feng
and Zhou [114] evaluated the performance of local desasssociated with fingerprint matching
in four categories of fingerprints: good quality, poor gtyalsmall common region, and large
plastic distortion. They also coarsely classified the ldeaicriptors as image-based, texture-based,
and minutiae-based descriptors. Their results show tleatrtimutiae-based descriptor, Minutia
Cylinder Code (MCC) [91], performs better in three of the rf@ategories (good quality, poor
quality and large plastic distortion), and texture-basedcdptor performs better for the small

common region category.

3.3.21 Minutia Cylinder Code (MCC)

A minutia cylinder records the neighborhood informatiomahinutia as a 3D function. A cylinder
contains several layers and each layer represents thetydehsieighboring minutiae along the
corresponding direction. The cylinder can be concateragexivector, and therefore the similarity
between two minutia cylinders can be efficiently computedy. B.9(b) shows the sections of
two valid cylinders associated with the two correspondingutiae (in the latent and in the rolled
print) indicated in Fig. 3.9(a). A more detailed descriptaf the cylinder generation and of the
similarity between two cylinders can be found in [91].

A cylinder is divided into sections (height), and each setts divided into cells (base). Each
cell in the cylinder receives contribution from two diffaetesources: the first is related to the
distance of neighboring minutiae to the center of the call,the second is related to the directional
difference between the neighboring minutiae and the cemitemtiae (the main minutiae for which
the cylinder is being built). Sections correspond to diewl differences, and a cell receives a
contribution only from those neighboring minutiae that éavdirectional difference to the center
minutia similar to the directional difference corresporgiio the section where the cell is located.
A cell is only valid if it is inside the cylinder and if it is inde the convex hull of minutiae (with

some tolerance for the last condition). Smoothing fundi¢gg. sigmoid functions) are used
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th a mated mawipair indicated.

(b) Sections of the cylinder corresponding to the minutididated in the
latent (first row) and in the rolled print (second row).

Figure 3.9: Sections of two cylinders associated with theed¢arresponding minutiae, one in latent
and other in rolled print.

to compute directional differences between minutiae aedctnter minutia, and to compute the
distance among neighboring minutiae and cell center poirtie contributions of all neighboring
minutiae to a cell are combined under another smoothingtimmdo limit the contribution of
noisy regions, which usually contain a large number of maeutThis contribution is compared to
a threshold so that the final cylinder is a binary represemtgbit-based implementation).

Only valid cylinders and cells are used in the similarity guation. Ifcg andcy, are two cylin-
ders represented as vectarg, indicates which cells are valid in both cylindecgy, = ca ANDCyp,

andcya = cp ANDCyp, then the similarity between the two cylinders in the bisédimplementa-
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tion case is given by

C4pXOR
— | alb (B|a|| if caandcyare matchable
S(Ca, Cp) = |ICaypll + lICpjal | (3.6)

0 otherwise
wherecy andcy are matchable if (i) the directional difference betweentthe minutiae is less
than some predefined threshold (maximum rotation allow@dithere is a minimum number of
corresponding elements in the two cylinder (minimum sizéhefvalid intersection), and (iii) the

denominator is different from zero.

3.4 Latent Matching Approaches

In this section, we present our two proposed approaches fiooira latent fingerprint matching
performance. The first approach accomplishes that by usihgreement of the latent images,
while the second approach improves the performance by asaescriptor-based Hough Trans-

form alignment in the matching algorithm.

3.4.1 Latent Matching with Enhanced Image

The feature extraction process in latent fingerprints Ugdales not yield reliable features because
of the poor quality of the latents. One way of improving thietda feature extraction process is by
enhancing the latent image so that more reliable featunredeaxtracted and a better matching
performance can be achieved. In [115], the authors propmsedhance fingerprint images using
Gabor filters to improve the clarity of ridges and valleysisTénhancement is performed in local
blocks of the image, and, for each block, an orientationggiired. In this approach, orientation
field reconstructed from minutiae and singular points (déikable) as described in Section 3.3.1
is used to enhance the latent image. Then, a commercial erxdichsed to extract minutiae and
perform the matching. The scores from manually marked raeund from the automatically

extracted minutiae from the enhanced images are then cehlbinimprove the latent matching

86



performance. The overall scheme of the latent matchingyuesihanced image is illustrated in Fig.

3.10.

Latent
Image
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Figure 3.10: Overview of the latent matching with enhanecedge approach.

Fig. 3.11 shows some examples of enhanced latent imagew) alith their skeletons, the
corresponding enhanced images and their enhanced imalgtosise It can be noted from the
figure that the clarity of the ridges improves and the noiggestly reduced.

Another approach that is often used to improve the matchiegracy consists of combining
different sources of information. Information fusion canimplemented at a variety of levels, such
as feature level, score level, and rank level. Feature fegen in our context would involve both
manually marked minutiae and automatically extracted taeuor matching. In our preliminary
experiments, feature level fusion did not show promisirguits, so we focus on the other two

fusion levels, rank and score.
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(9) (h)

Figure 3.11: Examples of enhanced latent images. (a) aratéejriginal latent images, (b) and
(f) are the skeletons of the original latent images extdhtig VeriFinger 4.2 SDK, (c) and (g)
are enhanced images using reconstructed orientation diettl(d) and (h) are the skeletons of the
enhanced images extracted by VeriFinger.

3.4.1.1 Rank-level Fusion

For rank-level fusion, we considered two techniques: Bardant [116] and the highest rank
method.

Borda count is a generalization of the majority vote. In caseewhere we have two different
matchers (classifiers), one matching manually marked tiaderolled and the other matching en-
hanced latent image to rolled, the Borda count for a giveledgbrint in the database will be the
sum of the number of rolled prints that are ranked below the tnate by each matcher. Then, the
ranking is performed by sorting the rolled prints in desdéegdrder based on their Borda count.
The magnitude of the Borda count for each rolled print in theadase measures how much the
two matchers agree on whether the input comes from the trte ohi¢he latent.

In the highest rank approach, each rolled print in the dalmassigned the highest rank as

computed by the two matchers [117]. If there are any ties;dlited prints are sorted by their lower
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rank. If both higher and lower ranks are the same, the tieakesr randomly.
Our experiments show that while Borda count does not imptiogenatching performance of
manually marked minutiae, the highest rank fusion showsesomprovement. These results will

be discussed in Section 3.6.1.1.

3.4.1.2 Score-leve Fusion

Min, max, product and weighted sum rules are some of the kvelivn score-level fusion rules.
Lets; ands, be the two match scores obtained for the same (latent, ydifegerprint pair by using
two different matchers, called matcher 1 and matcher 2. Tloenthe match score pag andsy

we can compute fused scores based on the score level fusgsmnentioned above as follows:

Smin = min(SL SZ)
Snax = max(sy,sp) 3.7)
Sprod = S1S2

Swvsum = W3S +WoSp,
wherewq +wp = 1.

In addition to the above score fusion rules, we also consadleombining the two match scores
by applying a slight modification of the boosted max fusioprapch proposed in [98]. The main
purpose of boosted max is to boost the scores of genuine egtdhrelies on the assumption
that the spatial transformations among the given latetizeced latent and rolled fingerprints are
consistent for genuine matches and inconsistent for ingposatches.

In general, given a transformation matfiixand a two dimensional vecter= (x,y), the coor-

dinates fow, V = (X,y), after the transformation is applied is givenWy= Tv.

X cosf sind Ax X
y | =| —sin@ cosf Ay y |> (3.8)
1 0 0 1 1

where@ is the rotation andx andAy are translation parametersxrandy, respectively.
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The parameter8, Ax, andAy in the transformation matrix can be estimated by using pirs
corresponding minutiae points. Note here that scalingrpater is not considered due to the fact
that the fingerprints are all in the same resolution (500. ppi)

Let Tyr, TEr and Ty be the estimated transformations between manually marked-m
tiae and rolled fingerprints, enhanced latent images teddihgerprints, and manually marked
minutiae to enhanced latent images, respectively. Giggpand Tyyg, we can computdyer =
Terx TmE, Which denotes the spatial transformation of the manuadlyked latent to the automat-
ically extracted minutiae in the enhanced latent, whichéntmatched to the rolled fingerprint im-
age. It is expected that the transformatidfg andTygr should be similar for genuine pairs and
different for impostor pairs. This would be likely the casece the two minutiae sets (manually
marked and extracted from enhanced image) are differenaendxpected to match to different
parts of the impostor rolled prints, while the two sets angeeted to be correctly matched to their
true corresponding minutiae in the true mate rolled prite Similarity between the two transfor-
mation matrices is measured in terms of the rotation angldétamEuclidean distance between the
translations irx andy directions of each transformation. If the difference betwéhe two rotation
angles in the two matricefyr andTygr is less than some threshold and the Euclidean distance
between the two translations in those same matrices isHassanother threshold, then the pair is
considered consistent. In our study, the rotation and katios thresholds were set to 30 degrees

and 140 pixels, respectively. The boosted max score forengrair of match scoreg ands; is

Wy max(sy,Sp) +Womin(sy,sp), if consistent
= (3.9)
max(s1,Sp), otherwise

In Section 3.6 we discuss the results obtained by using eeldaimages and different fusion

schemes.

3.4.2 Latent Matching with Descriptor-Based Hough Transform

Another way of improving matching performance is to designaicher especially for latent fin-

gerprint matching, which takes into account the specialatttaristics of latents such as small
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number of minutiae. Our goal is to develop an algorithm foemé fingerprint matching that uses
as few manually marked features as possible.

Given a latent fingerprint (with manually marked minutiaegia rolled fingerprint, we extract
additional features (besides minutiae coordinates) froth prints, align them in the same coor-
dinate system, and compute a match score between them. ffinesesteps are described in the

following subsections. An overview of the proposed aldoritis shown in Fig. 3.12.

g Orientation
Field -
o T e Reconstruction —
Latent Minutiae Orientation Field
—> Alignment
_ - v
e R 5 ®m )

2 [y ] i Scorin
’5 Automatic|| . . ;" &
/ - Extraction|| .~ ", - . ,l,

— - T T score
® R R
Rolled Print Minutiae Orientation Field

Figure 3.12: Overview of the proposed latent matching aggno

34.2.1 Alignment

Fingerprint alignment or registration consists of estingthe parameters (rotation and transla-
tion) that align two fingerprints. A scale parameter can bwigd here because all the images
have the same resolution. There are a number of featuremthabe used to estimate alignment
parameters between two fingerprints, including singulartgporientation field, ridges, and minu-

tiae. There are also a number of methods to align two fingaipriGeneralized Hough Transform
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(e.q., [29]), local descriptors (e.qg., [91]), energy miigation, eté.

In the latent matching case, singular points are not alwagsemt in latents, making it diffi-
cult to base the alignment of the fingerprint on singular tsoalone. As state earlier, obtaining
manually marked orientation field is expensive, and to aatarally extract reliable orientation
field from a latent image is difficult. Since manually markihg minutiae in a latent is a common
practice for latent matching, our approach to align two frpgets is based on minutiae.

Local descriptors can also be used to align two fingerpritsthis case, usually the most
similar minutiae pair is used as a base for estimating thiimiansformation parameters (rotation
and translation); the most similar minutiae pair is chos&sebl on a measure of similarity between
the local descriptors of the minutiae pair.

Rathaet al. introduced an alignment method for minutiae matching tiséitreates rotation,
scale, and translation parameters using the GeneralizagiHbransform [29]. Given two sets of
points (minutiae), a matching score is computed for eaalsfaamation in the discretized set of
all allowed rigid transformations. For each pair of minatiane minutia from each image (latent
or reference), and for given scale and rotation parameteigue translation parameters can be
computed. Each parameter receives “a vote" that is prapatito the matching score for the
corresponding transformation. The transformation thagegthe maximum score is considered to
be the best one. In our approach, the alignment is conduci@gimilar way, but the evidence for
each transformation parameter is accumulated based omthargy between the local descriptors
of the two minutiae being matched, with the similarity anda@tor being the ones described in
Section 3.3.2.1.

The descriptor-based Hough transform alignment algortdkas as input two sets of minutiae,
M. andMR, and two sets of local descripto@g andCr, one set corresponding to the latent and
one to the rolled print. Each set contains a local descriptazach minutia. A high level algorithm
of the proposed approach to align two fingerprints given #is sf minutiae and local descriptors

is shown in Algorithm 1, and an illustrative scheme is showFkig. 3.13.

SRefer to Chapter 4 of [1] for details and published work.

92



Two sets of minutiae: manually

MCC Local Minutia Descriptors marked in latent; automatically
extracted in rolled

v
Minutia A Candidate
Descriptor >»— —— > alignment
Similarity Each minutia palr votes parameter sets
for translation and

rotation parameters

Figure 3.13: Illustration of the MCC descriptor-based Holgansform alignmerﬂ.

Given two sets of minutiae, one from the latent and the ottwen the rolled print being com-
pared, translation and rotation parameters can be obt&mezhch possible minutiae pair (one
minutia from each set). L€t(x,y;, 6)} and{(xr,yr, 6 )} be the minutiae sets for latent and rolled

prints, respectively, centered at their means. Then, foh gair of minutiae, we have

6 — 6, if |6, — 6 <180
AB =14 6 —6 —360, if 6 —6 >180 (3.11)
6 — 6 +360, if 6 —6 < —180

AX Xy cosAB  sinAb X|
= — , (3.12)
Ay Vr —sinAB@ cosAB Y|

where Ax and Ay are translation parameters xnandy, respectively, and\8 is the rotation
parameter.
Since the scale (resolution) is fixed in fingerprint matchjaljimages have the same resolu-

tion), unique translation parameters can be obtained fdr pair based on the rotation difference

4MCC Local descriptors figure is extracted frohtt p: // bi ol ab. csr. uni bo.it/
research. asp?organi ze=Acti vi ti es&sel ect =&sel Obj =81&pat hSubj =111%
7C% C8% C% C81&Req=&.

93



Algorithm 1 Descriptor-based Hough Transform.
Input: {my} ={(x,y,6)} € ML, {mr} = {(xr,yr,6r)} € MR, C, andCr
Output: A set of 10 rigid transformation matrices
Initialize the accumulator arraf
Compute local minutiae descriptor similarity/§ for every possible minutiae pair usi@y and
Cr
for all possible minutiae paingy, my do
Compute their direction differend® = (6 — )
if Ag < maxg then
Compute translation parametersc(Ay) and increase the voting for this set of alignment
parameters:

A(AX7AY7 AG) = A(AX7 Ay,AG) +W(| ’ r) (310)

end if
end for
SmoothA using a Gaussian low-pass filter
Find the 10 highest peaks /A
for each peak do
Compute a rigid transformation between two fingerprintagisninutiae pairs that contributed
to peakk and its immediate neighborhood
if the estimated rigid transformation is not reliable (notwegtonon-colinear pointghen
Repeat the voting in pedkand its neighborhood using a refined range
Find the highest peak in the small neighborhood of geak
end if
end for

between the two minutiae in the pair. The translation anatiart parameters need to be quantized
to the closest bins. After the quantization, evidence isiaedated in the corresponding bin based
on the similarity between the local minutiae descriptoree &ssumption here is that true mated
minutiae pairs will vote for very similar sets of alignmerarpmeters, while non-mated minutiae
pairs will vote randomly throughout the parameter spaceaAasult, the set of parameters that
presents the highest evidence is considered the best omerolitstness, ten sets of alignment
parameters with strong evidence are considered.

In order to make the alignment computationally efficient afgb more accurate, we use a
two-step approach to compute the alignment parametersfiogerprint pair. The first step is to
perform the voting using the Descriptor-based Hough Ti@nsf If the bins are too small, the true

peak in the Hough Transform space is not likely to receivéigant votes. On the other hand, if
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the bins are too large, they will not provide accurate aligntpparameters because of the possible
non-linear deformation. The strategy we adopted is to kbebins relatively large (10 pixels),
and to include a second step to compute reliable alignmeatpeters. This second step consists
of using the minutiae pairs that vote for a peak to computgid ttansformation between the latent
and rolled fingerprints. The use of voting minutiae pairsampute the transformation gives more
accurate alignment parameters than directly using the paekmeters. In cases where a rigid
transformation matrix cannot be reliably obtained, thengts repeated inside a neighborhood of
the corresponding peak, but with a smaller bin size (2 pjxégpeak is chosen from this refined

Hough Transform space, and used as the alignment parameters

3.4.2.2 Similarity Measure

For each of the 10 different alignments, a matching scorevdst the latent and the rolled fin-
gerprints is computed by comparing minutiae and oriemdiields. The maximum value of the
10 scores corresponding to the 10 different alignments aseh as the final matching score be-
tween the latent and rolled fingerprints. The details for poting matching scores of minutiae and
orientation field are given below, and the final score contpurtascheme is shown in Fig. 3.14.

To compute minutiae matching score under a given alignmenfjrst find the corresponding
minutiae pairs (one in the latent, one in the rolled prin®r this purpose, we align the minutiae
sets of the two fingerprints and then find an one-to-one mageHietween the two minutiae sets
using a greedy algorithm. For each minutm in the latent, a set of candidate minutiae in the
rolled print is found. A minutiany in the rolled print is called a candidate if it has not yet been
matched to any minutia, and both its location and angle dfeigmtly close tomy. The threshold
valuesTg for spatial distance antly for angle distance were determined empirically to measure
the proximity between two minutiae. Among all candidatég, one closest tay in location is

chosen as the matching minutiarof.

SOne-to-one matching means that each minutia in the latenatshed to at most one minutia
in the rolled print, and vice versa.
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Figure 3.14: Final score computation scheme combining ti@awand orientation field informa-
tion.

After the corresponding minutiae are found, we compute &iniag) score between the latent
and the rolled print. Suppose thapairs of matching minutiae between the latent and the rolled

print are found. The minutiae matching sc&g between the two fingerprints is given by

Sm = sc(i)ss(i), (3.13)

M=

1
N5

wheresc(i) denotes the similarity between the minutia cylinder codeb@ith pair of matched
minutiae,ss(i) = 1—dg(i)/2Tg maps the spatial distandg(i) of theith pair of matched minutiae
into a similarity score, antl denotes the number of minutiae in the latent.

According to equation (3.13), the matching score dependise®number of matching minutiae,
which itself is affected by the distance threshdil However, due to large distortion present in
many latents, it is difficult to choose an appropriate valeTs. While a large threshold value
will lead to more matching minutiae for distorted mated paithe number of matching minutiae
for non-mated pairs will increase as well. Hence, we use tifferdnt values (15 pixels and 25

pixels) for Tg and for each threshold, a set of matching minutiae is fourtiaamatching score
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is computed using equation (3.13) at a fixed of 20°. The mean of the two scores is used as
the minutiae matching score. Fig. 3.15 shows an example iohathe score of the genuine pair
is slightly reduced when the smaller threshold is used coetpé the larger threshold, while the
score of the latent and the rank-1 non-nfatsing the larger threshold is greatly reduced when the
smaller threshold is used.

We use a simple orientation field matcher that basically mmegsthe consistency of the ori-
entation field differences between the latent and rolledtgrilf we use the Euclidean distance,
for example, to measure the orientation field differencesmall error in the rotation alignment
between the latent and the rolled will contribute a small ant@o the orientation field difference
for every block being compared, resulting in a large oveddierence or small similarity score.

In [33], the authors proposed a distance measure for otientéield matching that can handle
small rotation alignment errors. Given the aligned latemgrdation fieldO, and the rolled ori-
entation fieldOR, each containingl blocks, namelyO, (k) andORr(k), the similarity between the
two orientation fields is given by

| zEZlvkejz(oL(k)_oR(k))\
N Z|I<<:1Vk

whereyy is 1 if both corresponding blocksare valid, and O otherwise.

S , (3.14)

The overall matching score between the latent and rollettpbased on minutiae matching

and orientation field matching is given by

S=(1-wp)Sv +WoSo, (3.15)

where the weightvg is empirically set as @. Fig. 3.16 shows an example in which the fusion of
minutiae matching and orientation field matching scorepighprove the retrieval rafflof the
true mate due to the higher orientation field matching scetevéen the latent and the true mate

orientation fields, compared to the score between the |lateththe non-mate orientation fields.

5The rank-1 non-mate refers to the non-mated rolled printsghmatch score with the latent
ranks first among all the rolled prints in the database.

"Retrieval rank of a rolled fingerprint refers to its rank iretvhole candidate list which is
sorted in the decreasing order of matching scores with teetla
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Figure 3.15: Latent print for which the matching score ofgkauine pair is slightly reduced when
a smaller threshold value is used compared to a larger thicestalue, while impostor score is

greatly reduced. (a)-(c) show the latent, the true matetl@dank-1 non-mate according to large
threshold, respectively. (d)-(g) show latent minutiae thare matched to rolled print minutiae

in the following cases: (d) true mate using small thresh@l true mate using large threshold,
() non-mate using small threshold, and (g) non-mate usanggel threshold. In (d)-(g), the scores
corresponding to each case are included. Filled-in mireutidicate the matching minutiae.

The retrieval rank of the true mate improved from 2 to 1 after fusion, while the retrieval rank

of the rank-1 non-mate according to minutiae matcher wasgedfrom 1 to 3 after the fusion.
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Fig. 3.15 (cont'd)
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Figure 3.16: Latent print identified at a higher rank aftesifig minutiae matching scores with
orientation field matching scores. The rank of the true mats improved from 2 to 1 after the
fusion, and the rank of the highest ranked non-mate was Btaftefusion. (a)-(c) show minutiae
and the image of (a) a latent, (b) its true mate, and (c) thedsgranked non-mate according to
minutiae matching. (d) and (f) show latent minutiae andrgagon field (in blue) aligned with
minutiae and orientation field of the true mate. (e) and (@wshatent minutiae and orientation
field (in blue) aligned with minutiae and orientation fieldtbé rank-1 non-mate.
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3.5 Databases

Matching experiments were conducted on two different ligfiegerprint databases: NIST Special
Database 27 (NIST SD27) and West Virginia University Latengerprint Database (WVU LFD).

In this section, we present some characteristics of theséet@wnt databases.

3.5.1 NIST Special Database 27 (NIST SD27)

NIST Special Database 27 is the only publicly available late comprising latent fingerprints
from operational scenarios (latents collected at crimaegp It consists of 258 latent fingerprint
images and 258 corresponding (mated) rolled prints. Baémta and rolled prints are available at
500 and 1000 ppi — we used 500 ppi for consistency with therath@bases. The quality of the
latents in NIST SD27 varies, reflecting the operationaldeask) quality.

NIST SD27 contains latent prints of three different questitermed “good”, “bad”, and “ugly”,
which were classified by latent examiners. Some examplegerts from those three qualities are
shown in Fig. 3.4. Although this classification of latentrjpsi as “good”, “bad”, and “ugly”
is subjective, it has been shown that such a classificatieon®lated with the latent matching
performance [28].

Another indicator of fingerprint quality that affects thetetang performance is the number of
minutiae in the latent print [28]. In other words, while tlaédnt may have clear and sharp edges,
it may have relatively few minutiae available for matchirBased on the number of minutize
in latents in NIST SD27, Jain and Feng [28] classified latamtNIST SD27 into three groups:
large number of minutiaen(> 22), medium number of minutiae (:3n < 21), and small number
of minutiae ( < 13), containing 86, 85, and 87 prints, respectively. We gmesur experimental
results for each of the six quality groups based on subgectiality (good, bad and ugly) and the
number of minutiae.

We use manually marked minutiae — provided with NIST SD27 feasures in latent fin-

gerprints. For rolled fingerprint images, the minutiae aromatically extracted using the two
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commercial matchers.

3.5.2 West Virginia University Latent Database (WVU LFD)

West Virginia University Latent Databa&eonsists of 449 latent fingerprint images collected in a
laboratory environment and 440 rolled prints, including the 449 mated rolled prints lod 449
latents. The latent images in this database are at 1000mpthay were converted to 500 ppi for
our experiments so that all the databases used in our exg@isrhad the same resolution. Fig.
3.17 shows a latent with its corresponding rolled print ia WVU latent database. Similar to
NIST SD27 database, manually marked minutiae were alsagedwith these latents. Minutiae

were automatically extracted from the rolled prints usimg two commercial matchers.

5SS
R

- 2 v
- e

Figure 3.17: A latent and its corresponding rolled printhie tWVU latent database. The NFIQ
quality [9] of the rolled print is 4, which is one above the wONFIQ quality.

There is no subjective quality value assigned to the laiaritee WVU database. As mentioned
earlier, one way to assign an objective quality measure tatent is based on the number of
minutiae in the latent, so any latent can be assigned antolgegquality. If we apply the same
objective quality classification scheme as in NIST SD27 toWdatabase, we obtain 208, 80, and
161 latent fingerprints in the objective qualities of largeedium, and small number of minutiae,

respectively.

8To request WVU latent fingerprint database, please contact DArun A. Ross
(http://www.csee.wvu.edu/ross/) at Integrated Pattern Recognition and Biometrich La
(http://www.csee.wvu.edu/ross/i-probel/).
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The two latent databases used in our experiments, NIST SB@WA/U, have different char-
acteristics: most of the latent images in NIST SD27 contagjnicant background noise, while
in WVU latent images, collected in a laboratory environmehnére is a uniform background in
most latents. However, overall, based on NFIQ quality [9, quality of the rolled prints in WVU
database is worse than the quality of rolled prints in NISR8DFig. 3.18 shows the histograms
of NFIQ values [9], one of the very well recognized measuréraferprint quality, of the rolled
prints which have corresponding latents in NIST SD27 and W \databases (258 and 449 rolled
prints, respectively). NFIQ defines five quality levels ie tlangg1, 5] with 1 indicating the high-
est quality. The overall worse rolled print quality of WVUtdbase compared to NIST SD 27
could be explained because in the operational databaseasusthST SD27, rolled prints were
captured by experienced law enforcement officers whichutaiaderstanding, is not the case for
the WVU database. Further, if the rolled prints correspogdo the latents are of poor quality,
the number of mated minutiae will be small and, therefor@oitild be much more challenging to

identify the true mates of the latents at rank-1.
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Figure 3.18: Histograms of NFIQ values of rolled prints irf¥ISD27 and WVU databases.
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3.6 Experimental Results

3.6.1 Latent Matchingwith Enhanced Images

Matching experiments were conducted on the NIST Speciahthete 27, which consists of 258
latent fingerprint images and 258 mated rolled fingerprirages. The manually marked fea-
tures in the latents in this database are region of inteRE3t)( minutiae, visible singular points
(inside the ROI) and “virtual” singular points (outside tR®I). To make the matching problem
more challenging and realistic, the background databaske(g) was increased from 258 mated
rolled fingerprints to 2258 total rolled fingerprints by adding Z¥00 fingerprint images from
the database NIST SD14 [90]. For the rolled fingerprint insa@aly minutiae were needed for
matching and they were automatically extracted using Vi [79]. For boosted max fusion, the
transformations were computed based on the matched mermutiput by Verifinger for each pair
of fingerprints being matched.

The latent images from NIST SD27 were enhanced using thevapprdescribed in [115]. In
addition, since latent images are usually of poor qualitjge frequency values were estimated for
each image block [115], and the median of those values waseahas the ridge frequency for the
entire image. We also evaluated the use of a constant ridgaéncy value for all the images, and
different ridge frequency values in each block of the imagke median ridge frequency value
provided the best performance and therefore the resultgrshere are based on it.

The matching performance of enhanced latent images ustans&ucted orientation field
against rolled fingerprints is much better than the matcperormance using minutiae automat-
ically extracted from the original latent image. While thatehing performance of enhanced im-
ages is worse than the performance of manually marked ramuttiis performance is comparable
to the matching performance of enhanced images using migmoatked orientation field, which
requires significantly more manual labor. Fig. 3.19 shovwesG@amulative Matching Characteris-
tic curves on NIST SD 27 for manually marked minutiae, enlkednages using reconstructed

orientation field, automatically extracted minutiae fraateht image, and enhanced images using
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manually marked orientation field. Minutiae in the latenergveither manually marked (MMM)

or automatically extracted by Verifinger 4.2 [79].
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Figure 3.19: CMC curves for manually marked minutiae, eskdnimage using reconstructed
orientation field, automatically extracted minutiae byikeger from latent image and enhanced
image using manually marked orientation field.

3.6.1.1 Fusion methods

We performed experiments using different fusion levels mr@thods. These fusion scenarios al-
ways used manually marked minutiae-based information ahdreced images using reconstructed
orientation field-based information (scores, ranks, eW® found that Borda count (rank-level)
could not improve the matching performance of manually rdriiinutiae. This might be be-
cause Borda count method assumes all the matchers perfaratlyegell, which is not true in
our case involving two matchers. However, the highest rasloh improved the matching perfor-
mance most of the time, as can be seen in Fig. 3.20. The higirdsfusion explores the strength
of each matcher more effectively, since being assignedlaraigk from only one of the matchers

increases the likelihood of receiving a high rank after #ngosid sorting.
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Figure 3.20: CMC curves for manually marked minutiae, eskdnmage using reconstructed
orientation field, highest score rank-level fusion and Bocdunt fusion.

Min and product fusion rules do not improve the matching grenince while the Max rule
provides very minor improvement. The best results wereinbthusing the weighted sum rule
and boosted max fusion (Fig. 3.21). At rank 1, the improvengere to boosted max fusion is
approximately 10% compared to the two individual matcheer all latent image quality levels
as well as for each specific quality level separately. Thiamseboosted max fusion was able to
correctly find the mates of 25 additional latents than usimgually marked minutiae alone. In
the case of latent search, since the AFIS accuracy is notieumffiy high, the output is a list dfl
candidates for manual comparison by a latent examiner.

For good quality latent images, although the boosted makodgberformed better than man-
ually marked minutiae in the top few ranks, its performanegpgded for some ranks (Fig. 3.21b).
This might indicate that the best approach for good quaditgrits is the simple sum rule. For bad
guality images, the boosted max method outperformed mpnualrked minutiae by an average
of 10% at all ranks (Fig. 3.21c). In the ugly quality imagesosted max fusion shows consistent
improvement at all ranks compared to manually marked maeuand performs better for the first

30 ranks compared to the sum rule (Fig. 3.21d).
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Figure 3.21: CMC curves for score level fusion for latentslbfjualities.

As discussed in Section 3.4.1.2, we modified the boosted mpproach to include a second

weight. Therefore, two different parameters (weighfsandw,) must be specified in order to

107



Fig. 3.21 (contd)
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apply the boosted max. These two weights were empiricaligrdened and they do not need to
sum to one because the purpose is to boost the scores of irmiagéyat are found to be consistent.

The computation of the transformation matrices used todgeitie consistency between a pair of
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fingerprints in boosted max approach is based on the matchhmdtiae output by VeriFinger.
Ideally, Tyye should be the Identity matrix because the two sets of miawtra extracted from the
same image. However, in practice manually markings andaatioally extracted minutiae differ
in their positions, which leads to a transformation mateanto the Identity matrix, but not exactly
the same.

We observed that in almost all the cases, if the mated rolhegfiwas ranked first in one of the
matching experiments (manually marked minutiae or entdhimaages), it was also ranked first in
the boosted max approach. Fig. 3.22a shows an example aaseswhere the latent was ranked

1 by manually marked minutiae, ranketdP3 by enhanced image, and ranked 1 by boosted max.

(b)

Figure 3.22: Matched minutiae shown for manually marketledoand enhanced latent images.
(a) Boosted max retrieved the true mate for this latent & car@ even though one of the retrieved
ranks (enhanced image) wasAR3 and (b) the retrieved rank for the true mate for this laten
rank one after boosted max was applied even though neiteemtimually marked minutiae nor
enhanced image retrieved the true mate at rank one.
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Boosted max ranked true mated rolled fingerprints at a loasek m only two cases that were
ranked first by manually marked minutiae (two good qualitgges). It also corrected the retrieved
rank in eleven cases (4 good quality, 3 bad and 4 ugly qualignts). This means the mated rolled
was neither ranked first in manually marked minutiae nor inaerced images, but it was ranked
first after boosted max fusion. Fig. 3.22b shows an exampéelatent that was ranked as 268 by

manually marked minutiae, ranked 2 by enhanced image, akeédal by boosted max.

3.6.2 Latent Matching with Descriptor-Based Hough Transform

We first provide a description of the baseline algorithmsdabmpared with the proposed algo-
rithm. Then we report the performances of alignment and inwadgc This is followed by the fusion

of matchers and the effect of fingerprint quality. Then, wscdss the issue of computational cost.

3.6.2.1 Commercial Matchers

In order to compare the performance of the proposed lategérfomint matcher, we used two
commercial fingerprint matchers, Verifinger 4.2 [79] and ptur as baseline. In addition, we also
used the algorithm presented in [91, 118] as a baseline, iichathe SDK was provided by the
authors (MCC SDK). It should be pointed out that none of thtbsee baseline matchers were
designed specifically for the latent matching case. Butpitkesur efforts, we could not find any
latent fingerprint matching SDK or a forensic AFIS that isikfze for evaluation purposes by a
research lab. Still, the matchers we are using in our corntiparstudy are well known: one of
the COTS (VeriFinger) [79] has been widely used as a bendhimdingerprint publications, and

MCC is one of the best performing algorithms in FVC-onGoih9].

3.6.2.2 Alignment Performance

In order to estimate the alignment error, we use ground tmaked minutiae pairs from NIST

SD27, which are marked by fingerprint examiners, to compuwteaierage distance between the
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true mated pairs after alignm@nuf the average Euclidean distance for a given latent istless

a pre-specified number of pixels in at least one of the tenddiggtments (peaks in the Descriptor-
Based Hough Transform), then we consider it a correct alggrtmr his alignment performance is
shown in Fig. 3.23 for the NIST SD27 latent database. Theigshows the misalignment thresh-
old19, and the y-axis shows the percentage of correctly aligrtedtdingerprints in at least one of
the ten top alignments. For comparison, we show the accufaaljgning the minutiae sets based
on the peaks of the Generalized Hough Transform (GHT) aneidbas the most similar minutiae
pair (according to the MCC similarit}y}. Two latent alignment examples are given in Figs. 3.24
and 3.25 to show the alignment results by DBHT and GHT. As wesee from these figures, the

proposed algorithm is superior to GHT for difficult latenteeve the number of minutiae is small.
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80r
75¢
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65

-+~Generalized Hough Transform
60 --MCC Most Similar Pair

Percentage of Correctly Aligned Latents

sl +Descriptqr—Based Hough Transform

10 15 20 25 30
Misalignment Threshold (in pixels)

Figure 3.23: Alignment Accuracy: percentage of corredilyreed latents vs. misalignment thresh-
old.

9Here we use the term ground truth minutiae to refer to mieutiaich are marked by latent
examiners by looking at the latent and the correspondirgdgrint at the same time, and we use
the term manually marked minutiae to refer to minutiae wtaoh also marked in the latent by
latent examiners, but without looking at the true mate @ablbrint).
10The alignment is deemed as incorrect if the average distaetveeen mated minutiae pairs
after alignment is larger than this threshold.
in this case, each alignment is based on one of the ten moikisininutiae pairs.
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Figure 3.24: Example in which DBHT (Descriptor-Based Hodgansform) alignment is better
than GHT (Generalized Hough Transform) alignment. (a) hiatgth manually marked minutiae,
(b) corresponding rolled print with automatically extedtminutiae, (c) rolled print with latent
minutiae aligned by GHT, and (d) aligned by DBHT.

There are very few errors in alignment if we set the threshvalde of misalignment as 20
pixels. One of the reasons for these failure cases is thera gery small number of true mated

minutia pairs in the overlapping area between the latentraatkd rolled print. As a result, not
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Figure 3.25: Example in which DBHT (Descriptor-Based Hodgansform) alignment is better
than GHT (Generalized Hough Transform) alignment. (a) hiatdgth manually marked minutiae,
(b) corresponding rolled print with automatically extredtminutiae, (c) rolled print with latent
minutiae aligned by GHT, and (d) aligned by DBHT.

many true mated pairs vote for the correct alignment pararseThe absence of true mated pairs
is due to a limited number of minutiae in latents and the a@moninutiae detection in the rolled

print. One such example is shown in Fig. 3.26. Blue squamgsent manually marked minutiae
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in the latent print (left), red squares represent autoraliyiextracted minutiae in the rolled print
(right), and the green line indicates the only true matedutime pair available for this (latent,

rolled) image pair.

Figure 3.26: Example of alignment error due to the small nemab true mated minutia pairs in
the overlapping area between a latent and its mated rollet! plote that there is only one aligned
minutiae pair here.

3.6.2.3 Matching Performance

In the identification scenario, the size of the backgrourtdlase (or gallery) significantly affects
the identification accuracy. Therefore, to make the probheone challenging and realistic, we
built a large background database of rolled prints comagird58 mated rolled prints from NIST
SD27, 4740 rolled prints from WVU database, and, @0 rolled prints from the NIST Special
Database 14 [90]. Therefore, the total number of rolledtpiimthe background database is 338
from a combination of the rolled prints in the three database

Minutia Cylinder Code (MCC) is used as the local descriptomhinutiae in our experiments.
The local descriptors are built using MCC SDK, which useditdddased implementation (binary

descriptors) [118]. The parameters used for MCC are setggested in [118], with the number
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of cells along the cylinder diameter as I%). In our method, the local descriptor similarities are

used in both the alignment and scoring modules.
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Figure 3.27: Performance of Morpho, MCC SDK, and ProposettMa when the union of man-
ually marked minutiae (MMM) extracted from latents and awétdically extracted minutiae by
Morpho from rolled prints is input to the matchers.

Our matcher and MCC SDK both take minutiae as input. In thenkatases, we use man-
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ually marked minutiae. For the rolled prints, we used both @OTS to extract minutiae. The
performance of the proposed matcher using minutiae ertladcom rolled prints using Morpho
is slightly worse on the NIST SD27 database compared to tHerpgance using minutiae ex-
tracted using Verifinger; however, for WVU LFD, using Morpimnutiae yielded a significantly
better performance compared to the performance using rm@éaktracted using Verifinger. This
demonstrates that the performance of COTS can be significaifiécted by the image quality.
Overall, since minutiae extracted from Morpho resulted imetter performance, we only report
the results in which minutiae are extracted using Morpha. .27 shows the performance of
Morpho, MCC SDK, and the proposed matcher using manualljketeminutiae in latents and
automatically extracted minutiae by Morpho in rolled psinThe proposed approach outperforms
the other fingerprint matchers used in our study.

In our earlier study [120], we did not use the bit-based imm@atation of MCC representation
and we only evaluated the algorithm on NIST SD27. We used aarimplementation of MCC
with the parameters suggested in [91]. However, the biethanplementation and the more op-
timized parameters suggested in [118] yielded a much bpé&dormance on WVU LFD, and a
decrease in performance on the NIST SD27 database. We ddoidse the bit-based implemen-
tation with the new parameters because of its better oveealbrmance, and because we wanted
to use a consistent framework for both the databases.

It is worth noting that the matching performance on WVU LFDemtmanually marked minu-
tiae are used is generally worse than the performance on BIZ17. We believe this is due to
a number of factors: (i) there are 14 latents with less tharaBually marked minutiae in WVU
LFD, while the minimum number of manually marked minutiaeNtST SD27 latents is 5; (ii)
while the genuine (latent, rolled) pairs were provided whith database, after we examined the im-
ages in the WVU database we identified some that appearedwcdogly paired; (iii) the quality
of the mates (rolled prints) is slightly worse in WVU LFD thenNIST SD27. We did not exclude
any of the latents or (latent, rolled) mated pairs from theWlatabase (from cases (i) and (ii)) to

allow for a fair comparison by other researchers with ouultss
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The performance of the COTS matchers, each using its owrriptagy templates for latents
(including automatically extracted minutiae and possdiher features), is worse than using man-
ually marked minutiae for both the databases. However, #pelgptween the performances of
manually marked minutiae and of proprietary template ismlacger in the case of NIST SD27
than in the case of WVU latent database. This is probably dulee characteristics of these two
databases. Note that WVU is a laboratory collected databadeso most of the latents in it do
not contain background noise. On the other hand, in NIST Stb&7mages are of operational
casework quality and most of the latents contain a large atmafibackground noise, which poses
a challenge in automatic feature extraction. Fig. 3.28 shithe performance of the two COTS
matchers using both manually marked minutiae and propyietanplates (automatically extracted
minutiae) for NIST SD27 and WVU databases.

There have been several studies on latent matching reporteelliterature. Almost all of them
are based on NIST SD27. Table 3.1 shows the reported resutteeanatching performance for
NIST SD27 database. There is no reported performance on YHg Mtent database. It should be
noticed that most of the reported results cannot be direottypared mainly because of two factors:
(i) the amount of input information related to the latent &ngrint, which could be automatically
extracted features, or manually marked features such agiamn singular points, quality map, etc,
or a combination of both; and (ii) some differences in the position of the background databases
and their size. In Table 3.1 we show the reported rank-1 acguthe manually marked latent
features used in each method, and the size of the backgratatate used. One of the results
that could be almost directly compared to our results is éported rank-1 accuracy (3%0) in
[28] where only manually marked minutiae was used as inphi;vis the same scenario as in our
proposed matcher. The proposed matcher achieves a sigtlifibagher rank-1 accuracy of %%
with similar background database size and images as in [28}. other approach presented here
(Paulinoet al. [87]) can also be compared to this proposed matcher, alththegformer requires

additional manually marked input features beyond minutiae
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Figure 3.28: Performance comparison using manually markedtiae (MMM) and automatically
extracted minutiae from latents.

Fig. 3.29 shows two examples of latent prints in WVU LFD cotleidentified at rank-1 by

125p: singular points, ROI: region of interest, RQM: ridge liyanap, RFM: ridge flow map,
RWM: ridge wavelength map.
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Table 3.1: Comparison of rank-1 accuracies reported int@ture for the NIST SD27 database.

Work Manually Marked Background Rank-1
Latent Features Database Size | Accuracy (%)

Jain and Feng [28] Minutiae, Skeleton, SR, 29,257 74.0
ROI, RQM, RFM, RWM2

Proposed Matcher [88] + Minutiae 31,998 57.4

Morpho

Proposed Matcher [88] | Minutiae 31,998 535

Paulinoet al. [87] Minutiae, SP, RO2 27,258 48.0

Jain and Feng [28] Minutiae 29,257 34.9

Yoonetal. [101] SP, RO}2 27,258 26.0

Fenget al. [102] None 27,258 250

the proposed matcher. Even though the number of minutideeiset latents is small, they could
still be correctly identified. The ranks of the true matesgslorpho matcher are 1871 and 181,
respectively, and the matched minutiae shown are from ampqsed matcher.

Fig. 3.30 shows examples of latent prints in NIST SD27 and VWNLFD whose mated refer-
ence prints are not included in the top 20 candidates by thiegsed matcher, but were correctly
identified at rank-1 by Morpho matcher. The ranks of thesenkstusing the proposed matcher
are 3626 and 64, respectively, and the matched minutiaershmfrom our proposed matcher. In
the first latent, a large number of minutiae do not have matedtae due to missing minutiae in
the rolled print, and therefore the score is not as high agiipostor pairs in which many more
minutiae could be matched. In the second case, we can seth¢hatinutiae marked in the la-
tent are relatively sparse, while the minutiae automdsieadtracted in the rolled print are denser.
These facts make local neighborhoods (and descriptorg)ditterent between the latent and its

true mate, leading to a low match score.

3.6.2.4 Fusion of Matchers

We noticed that the two most accurate matchers (the propoagther and Morpho) perform dif-

ferently on different latents, meaning they are complem@ugnio each other. This suggests that a

119



= s i -
A - e

SRy e ( # ors a AA oy
e T e B 1t

Figure 3.29: Two latent prints from the WVU database colyadentified at rank-1 by the pro-
posed matcher but ranked below 20 by Morpho.

fusion of these two matchers would result in a better peréoree. We performed a score-level
fusion of these two matchers. The scores from Morpho mataleee normalized to the range
[0,1] for each latent (local min-max normalization) becausellnoamalization was shown to per-
form better than global normalization in the identificatemenario [121]. Although the proposed
matcher and Morpho matcher have similar matching accutheyfusion weights selected.g
and 02) were not equal because of the large range of the scorebddvibrpho matcher. The

performance improvement obtained by the score-level fusidviorpho matcher and the proposed
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Figure 3.30: Latent prints ((a) from NIST SD27 and (b) from WMD) whose mates were not
retrieved in the top 20 candidates by the proposed matcherdotectly identified at rank-1 by
Morpho matcher.

matcher is shown in Fig. 3.31 for both the databases. Sometsator which the fusion of the two

matchers (Morpho and proposed matcher) improved the rantkeedrue mates compared to the
retrieval ranks by the individual matchers separately hoeve in Figs. 3.32 and 3.33. Note that
like those mated pairs (shown in Fig. 3.29 and Fig. 3.30)tifled at rank-1 by either one the two
matchers, mated pairs (shown in Fig. 3.32 and Fig. 3.33)whath matchers failed to identify at
rank-1 also benefit from the fusion. The reason is the scdresremated pairs given by the two
matchers are not consistent.

Improvements in matching accuracy were also obtained bybatnyg the proposed matcher
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Figure 3.31: Score-level fusion of the proposed matcherMarpho for NIST SD27 and WVU
databases.

and other matchers in our study (Verifinger and MCC SDK), baytare not reported here because
the fusion performance with Morpho was consistently bdttan the performance of Verifinger

and of MCC SDK. We also performed rank-level fusion usinghighest rank and Borda Count
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Table 3.2: Rank-1 accuracies for various subjective qubitels of latents in NIST SD27.

Quality | Verifinger (%) | Morpho (%) | MCC (%) | Proposed (%
All 38.0 47.3 42.6 53.5
Good 55.7 70.5 69.3 75.0
Bad 36.5 36.5 31.8 47.1
Ugly 21.2 34.1 25.9 37.6

Table 3.3: Rank-1 accuracies for various objective quakityies of latents in NIST SD27 (large,
medium and small refer to the number of minutiae in the Iatent

Quality | Verifinger (%) | Morpho (%) | MCC (%) | Proposed (%
All 38.0 47.3 42.6 53.5
Large 59.3 73.3 70.9 75.6
Medium 43.5 45.9 43.5 56.5
Small 11.5 23.0 13.8 28.7

methods [122]. However, since score-level fusion showedttebperformance, we only report

here results for score-level fusion.

3.6.2.5 Effect of Fingerprint Quality

In Section 3.5, we discuss how the quality of the latent fipgets can be measured subjectively
(assigned by latent experts as in NIST SD27) and objectiflEdged on the number of minutiae
available). Rank-1 accuracies are shown for each qualfigrsg¢ely in Tables 3.2, 3.3, and 3.4
for both the latent databases. We can see that the matchifigrpance is highly correlated with
the number of minutiae available in the latent prints. Thegseance of the proposed matcher is
consistently better over all qualities and for both the dases.

The quality of reference prints also has a large impact omtaihing accuracy. In Fig. 3.18,
the histograms of NFIQ quality values for the correspondwited prints in each latent database
are shown. According to the NFIQ quality measure, the qualitthe rolled prints in WVU
database is slightly worse than the quality of the rolledtgrin NIST SD27. The NFIQ quality

measure is an integer value in the range 1 to 5, where 1 is gt quality and 5 is the worst
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Table 3.4: Rank-1 accuracies for various objective quaiiiyes of latents in WVU LFD (large,
medium and small refer to the number of minutiae in the latent

Quality | Verifinger (%) | Morpho (%) | MCC (%) | Proposed (%
All 35.6 45.4 44.3 47.9
Large 63.5 73.1 74.0 74.5

Medium 28.8 45.0 37.5 45.0
Small 3.1 9.9 9.3 14.9

Table 3.5: Rank-1 accuracies for latents grouped accotdind-1Q quality values of correspond-
ing rolled prints in NIST SD27.

Quality | Verifinger (%) | Morpho (%) | MCC (%) | Proposed (%
All 38.0 47.3 42.6 53.5
NFIQ <3 42.1 54.9 494 60.4
NFIQ > 3 30.9 34.0 30.9 41.5

Table 3.6: Rank-1 accuracies for latents grouped accotdifd-1Q quality values of correspond-
ing rolled prints in WVU LFD.

Quality | Verifinger (%) | Morpho (%) | MCC (%) | Proposed (%
All 35.6 45.4 44.3 47.9
NFIQ < 3 36.9 50.0 48.0 52.4
NFIQ > 3 34.4 41.1 40.6 43.3

guality. We observed a significant difference in the matghparformance when the latents were
divided into the following two quality groups: (i) rolledipts are of good quality (NFIQ value of
1,2 and 3), and (ii) rolled prints are of poor quality (NFIQ vaduof 4 and 5). The difference in
matching performance between good NFIQ and poor NFIQ aeslior all matchers ranges from
11— 21% for NIST SD27, while it ranges from-29% for WVU database (see Tables 3.5 and 3.6).
As an example, the rank-1 accuracy of Morpho matcher on NIBZ73s 549% and 340% for

good and poor NFIQ quality, respectively.
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3.6.26 Computational Cost

The implementation of our matching algorithm is in MatlatheTaverage speed of our matcher
running on a PC with Intel Core 2 Quad CPU and Windows XP opeyaystem is around 10
matches per second and it depends on the number of mindt&sr(taller the number of minutiae,
the faster the matching speed). Multi-thread capability wat utilized. The majority of the
running time (70%) is spent matching the local minutiae dpgwrs. In a C/C++ implementation,
this matching would be much faster than in Matlab becauskeohature of the MCC descriptors

(binary). We have not optimized the code for speed.

3.6.2.7 Comparison of the two proposed methods

The manually marked input features are essentially the $anbeth the proposed methods: minu-
tiae, singular points and region of interest in the enhamcgnand minutiae in the descriptor-based
Hough transform approach. The performance of the latentmraj approach using descriptor-
based Hough Transform is better than the performance aitlatatching approach by enhance-
ment. However, the improvement by enhancement has the &de&m terms of computational
efficiency, because of the use of the commercial matchertim &teps (matching using manually
marked minutiae and matching using minutiae automatiaatlyacted from enhanced images).
Furthermore, by simply combining the two approaches at tioeeslevel, the rank-100 accuracy
increases from 72% to 81% compared to the descriptor-basedtHTransform matching alone

(see Fig. 3.34).
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Figure 3.32: Latent print mate from NIST SD 27 identified aikd after score-level fusion of

Morpho and proposed matcher. The first column shows (a) atldi® its true mate, (e) rank-1

non-mate by the proposed matcher, and (g) rank-1 non-matddspho matcher. The second
column shows (b) latent minutiae, (d), (f), and (h) latentuatiae (in blue) aligned by the proposed
matcher to the rolled print minutiae shown in (c),(e) and (t5) (c), (e), and (g), the numbers
in parentheses indicate the ranks at which true mated rpHiedl was retrieved by the proposed
matcher and Morpho matcher, respectively.
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Fig. 3.32 (contd)
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(b)

(d)

Figure 3.33: Latent print mate from WVU LFD identified at rahlkafter score-level fusion of
Morpho and proposed matcher. The first column shows (a) atldi®) its true mate, (e) rank-1
non-mate by the proposed matcher, and (g) rank-1 non-matddspho matcher. The second
column shows (b) latent minutiae, (d), (f), and (h) latentuatiae (in blue) aligned by the proposed
matcher to the rolled print minutiae shown in (c),(e) and (t5) (c), (e), and (g), the numbers
in parentheses indicate the ranks at which true mated rpHiedl was retrieved by the proposed

matcher and Morpho matcher, respectively.
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Fig. 3.33 (contd)
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Figure 3.34: Score-level fusion of the two proposed apgreac by enhancement and using
descriptor-based Hough Transform (DBHT) matching apgroa®y combining the two ap-
proaches, the rank-100 accuracy is 81%.
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3.7 Summary and Conclusions

Latent fingerprint matching is a very challenging problene ¢l the characteristics of latent fin-
gerprints (poor quality, small area, small number of miagtinoisy background, etc). While a
fully automatic latent matching system is desired, but gittee difficulty of the problem and the
relatively low matching performance of available AFIS, mahinput is still needed. Thus, we
have presented two different methods of improving latemgeiprint matching performance in the
case where manually marked features are used.

We have shown that the performance of manually marked naieuni latents can be improved
by utilizing automatically extracted minutiae from enhaddatent images. This framework con-
sists of the following steps: (i) reconstruct the orierttatiield based on manually marked minutiae
and singular points; (ii) enhance the latent using medidgrerfrequency computed in small image
blocks and the reconstructed orientation field; (iii) matcimanced latents and rolled fingerprints;
(iv) combine the scores from two matchers using boosted msiori. This framework improved
the latent matching performance with a large backgrounaldese irrespective of latent quality.

We have also presented a fingerprint matching algorithmgdesl for matching latents to
rolled/plain fingerprints which is based on a descriptsdshHough Transform alignment. A
comparison between the alignment performance of the pegpakjorithm and the well-known
Generalized Hough Transform shows the superior performahthe proposed method. We also
reported matching results for two different latent fingerpdatabases with a large background
database of about 32K rolled prints. We compared the petnom of the proposed matcher with
three different state-of-the-art fingerprint matcherspé&imental results show that the proposed
algorithm performs better than the three baseline fingetrpnatchers used in the study across all
image qualities. Furthermore, a score-level fusion of tleppsed matcher and the best performing

commercial matcher shows a further boost in the matchinippeance.
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CHAPTER 4

LATENT FINGERPRINT INDEXING

4.1 Introduction

Law enforcement agencies routinely collect tenprint rdsaf all apprehended criminals in two
forms: rolled and plain. Latents — fingerprints lifted frohetsurfaces of objects at crime scenes
— are regarded as an extremely important source of evidenderttify suspects since they can be
compared to rolled or plain fingerprints in the backgroun@ase of known identities. Compared
to rolled and plain fingerprints that are obtained in an akeihmode (see Figs. 4.1 (a) and (b)),
latents typically have poor quality in terms of ridge charédind complex background noise, and
contain only a small part of a finger (friction ridge patteany large non-linear skin distortion (see
Fig. 4.1 (c)).

Due to these characteristics of latents, the search fordbecs of a latent is a challenging
problem in terms of both efficiency and identification accyr§l06, 50], especially when the
background fingerprint database is extremely large. Theedfithe fingerprint database maintained
by just the police department of a typical large city can btheforder of a few millions. The Inte-
grated Automated Fingerprint Identification System (IAFM&intained by the Federal Bureau of
Investigation (FBI) contains fingerprint records of overmidlion subjects [123] (approximately
740 million images) and this figure keeps growing on a dailyi9as more individuals are added

to the database. The identification accuracy generallyrideages as the size of the fingerprint
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e PN\
(a) Rolled (b) Plain (c) Latent

Figure 4.1: Examples of fingerprints. (a) Rolled print (Mg State Police database), (b) plain
or slap print (FVC 2002) and (c) latent print (NIST SD27).

database grows. Under simplifying assumptions, the padiace in the identification mode can
be estimated based on the FAR and FRR [5]. Assuming the sapshtiid is used in both the iden-
tification and verification scenarios, and that all ideastfor which the match score is above the
aforementioned threshold is returned by the identificagigsiem, we have that the False Negative
Identification Rate (FNIR)is the same as the FRR. Furthermore, the False Positivefidation
Rate (FPIR3 relates to FAR by

FPIR=1- (1—FARN (4.1)

, WhereN is the number of subjects in the background database. Thuesn the value oN
increases, the FPIR increases and the True Positive |datitin Rate (TPIR) decreases, which
means the matching accuracy of the identification systeragsadied.

This problem of large background database can be alleviateglickly filtering out a large
number of fingerprints from the database that have very lavilaiity to the search latent before
performing detailed one to one matching. Therefore, arcefie scheme for fingerprint indexing,
also referred to as retrieval or database filtering, is lyigbkirable to reduce the search space while

maintaining or possibly even improving the identificatiarcaracy. Fingerprint indexing is also

IFENIR is the rate of subjects enrolled in the database whoatriglentified by the system.
2FPIR is the rate of subjects not enrolled in the database whmastakenly identified by the
system as one of the subjects enrolled in the database.
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receiving more attention in recent years due to the linategiof the traditional Henry classification
system. The Henry system of fingerprint classification aptisrto divide the background database
into a fixed number of classes — usually based on the five fingetgpes: right loop, left loop,
whorl, arch and tented arch). The major problem with thisgikcation approach lies in the fact
that 90% of the fingerprints belong to only three of these flasses [124], thus the background
database to be searched is not significantly reduced for questes. Furthermore, some finger-
prints cannot be reliably assigned to only one of these fitegaaies. Indexing is the term used in
the fingerprint recognition literature to refer to a sigrafit reduction in the number of fingerprints
in the background database to be considered in the finer mgtstage [125, 124], or, in other
terms, to retrieve a subset of fingerprints in the backgralatdbase that are most similar to the
search fingerprint. Here we use the term indexing to refentapgproach that provides continuous
classificatior® rather than exclusive classes or categories, while thestelatabase filtering and
fingerprint retrieval can be used in both cases.

As mentioned in Chapter 1, fingerprint friction ridge feasiare generally described at three
different levels. While level 3 features, like pores andgeadcontours, are frequently adopted
to assist in identification by latent print examiners [126]s the level 1 (i.e., orientation field,
singular point and type ) and level 2 (i.e., minutiae) feasuthat are widely used in Automated
Fingerprint Identification Systems (AFIS). It is believédt minutiae are the most discriminating
and reliable features. However, the information providgdninutiae set alone is limited.

In the case of indexing involving rolled/slap fingerprintse use of one type of feature alone
is usually sufficient to achieve good indexing performareg.( [38]), and the use of additional
feature types might not significantly increase the indexyjegformance to justify the added fea-
tures. However, in the case of latent fingerprints, one featpe alone might not be sufficient in
most cases, since the availability and reliability of featuin latents vary widely depending on the

specific latent characteristics.

3Given the features of a search fingerprint, a distance ofagittyito the features of reference
prints in the database is computed and most similar fingespaire retrieved based on the distance
or similarity values.
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We propose to use both level 1 and level 2 features to imptoweénidexing performance for
latents. Firstly, orientation field in the neighborhood atke minutia is encoded into a rotation-
and translation-invariant fixed length bit vector. The kettors are then indexed by means of
Locality-Sensitive Hashing (LSH) [127]. Then, a conventbminutiae triplet based indexing [31]
is boosted by incorporating rotation constraints. Origotefield indexing and triplet indexing are
fused with fingerprint indexing technique based on the MaQylinder-Code (MCC) representa-
tion [38], and this fusion is further boosted by combiningggilar points and ridge period filtering.
The proposed indexing algorithm is tested by searching 28%ht fingerprints in NIST SD27
against a background database that contains 267,258 folfgerprints (including 258 rolled fin-
gerprints in NIST SD27, 27,000 rolled fingerprints in NIST BDand 240,000 rolled fingerprints
from the Michigan State Police). The experimental residtadnstrate that the proposed algorithm
outperforms the state-of-the-art indexing methods phbtisn the literature. After filtering out a
large fraction of background fingerprints for the finer maighstage, the overall identification
accuracy is maintained while the computational efficiescsignificantly improved.

The rest of this chapter is organized as follows: Sectiorg#@s a brief review of the related
work; Section 4.3 presents feature extraction for bothnkstand rolled prints; Section 4.4 de-
scribes in detail the proposed indexing approach; experiaheesults are provided in Section 4.5;

conclusions are drawn in Section 4.6.

4.2 Related Work

Fingerprint indexing techniques can be roughly categdriato three classes based on the types of
features used: minutiae-based, orientation field-basédemniques based on other features (see
Table 4.1).

Indexing based on some salient characteristics of the fingeéias opposed to ancillary infor-
mation such as gender, race, age, etc.) is more importaheitatent fingerprint case than in the
rolled print case because ancillary information is usuatiyavailable with the latents. Rolled-to-

rolled or plain-to-plain matching is usually performed fmackground checks or de-duplication.
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In this case, a large portion of the database can be filtereldyousing the subject’s demographic
information (e.g. gender, ethnicity, age range, date dhirln the latent case, this information
is usually not available because the latent comes from anavmk subject. In addition, there is a
huge gap between the matching performance of rolled-fegehatching compared to latent-to-
rolled matching due to the partial and noisy nature of thenes; this makes the latent matching
problem — and thus the latent indexing problem — much mordeging than the rolled print
matching problem.

Among the published works on indexing, only two of them répdthe indexing performance
on latent fingerprints. Since the focus of our research éntahdexing, we will briefly summarize
only these two studies. Feng and Jain [11] proposed a ntafjediltering scheme whose first stage
depends on the fingerprint pattern type, followed by the @isengular points and orientation field.
The features are manually marked for the latents, and atitcatia extracted in the rolled prints.
The reported performance on NIST Special Database 27 [4hstgarelatively small background
of 10,258 rolled prints is 93% hit rate at a 39% penetration rate. This means that thertates of
2.7% of the latents (among the 258 latents in NIST SD 27) wet@resent in the filtered database
(39% of the 10,258 rolled prints).

Yuan et al. [10] improved the performance of triplet indexing techreduy using triplets to
count the number of polygons of various sides. Like [11]ythiso used manually marked minutiae
in the latents and automatically extracted minutiae in tiked prints. Yuaret al. reported an
accuracy of 927% hit rate at a 40% penetration rate (B at 10% penetration rate) for the NIST
SD27 database against a large background database of 240J& prints. This results [10]
could not be verified by us since by applying the algorithmli@][(code was provided to us by
the authors) to our background database of similar sizéjitirate was only around 82% at 40%

penetration rate.
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Table 4.1: Summary of studies on fingerprint indexing fokew| plain and latent prints.

Author(s) Fingerprint | Approach Fingerprint Database | HR @
Features PR =
10%
Germain et al. | Minutiae Triplets
[31]

o | Lumini et al. | OF 1,204 queries and 1,20484%

%’ [124] templates (NIST SD4)

@ | Bhanu and Tan Minutiae Triplets 2,000 queries and 2,00085.5%
[32] templates (NIST SD4)
Leeetal.[128] | OF + RF Histogram 1,204 queries and 1,20488%

templates (NIST SD4)
Liuetal.[129] | OF Complex Filter| 2,000 queries and 2,00090%
Responses templates (NIST SD4)
Li et al.[130] OF Complex Filter| 1,204 queries and 1,20496%
Responses templates (NIST SD4)
Jiangetal.[33] | OF + RF | OF Clustering 2,000 queries and 2,00089.5%
templates (NIST SD4)
Wanget al.[34] | OF Fingerprint Ori-| 2,700 queries and 2,70098%
entation Model| templates (last 2,700
based on 2D pairs of NIST SD14)
Fourier Expan-
sion
Gyaourova and Scores Set of Reference 2,000 queries and 2,00084% @
Ross [131] Prints templates (NIST SD4) | PR=25%
Cappelli et al. | Minutiae MCC 2,700 queries and95%
[38] 24,000 templates
(NIST SD14)
Cappelli [132] OF + RF 1,000 queries and99.6%
1,000,000 templates
(generated by SFinGe
v4.1)
Cappelli [133] Minutiae +| MCC 2,700 queries and 2,70098.7%
OF templates (last 2,700
pairs of NIST SD14)
Liu and Yap| OF Polar Complex 2,000 queries and 2,00088%
[134] Moments templates (NIST SD4)

OF: orientation field, SP: singular points, SIFT: scale irasat feature transform, MCC: minu-

tia cylinder code, RF: ridge frequency, HR: hit rate, PR:qieation rate.
*The images used as templates were randomly selected fromfieger.
**Feng and Jain [11] only reported the hit rate at a singlegbeation rate of 39%.

***The hit rate of algorithm in [10] evalua

PR=10%.

tfgl7on the databassed in this paper is 58.1% @




Table 4.1 (contd)

Author(s) Fingerprint | Approach Fingerprint Database | HR @
Features PR =
10%
Bhanu and Tan Minutiae Triplets 400 queries and 600100%
[32] templates (collected by
FIU-500-F01 sensor)
Jianget al.[33] | OF + RF OF Clustering 600 queries and 20092.5%
c templates (FVC2000
‘T DB2a & DB3a)
o Liang et al. | Minutiae Triplets 550 queries and 33099%
[135] templates (FVC2004
DB1*)
Wanget al.[34] | OF Fingerprint Ori-| Queries and tem} 99.9%
entation Model| plates not indicated
based on 20 FVC2002 DBla)
Fourier Expan-
sion
Shuaiet al. [30] | SIFT 500 queries and 30098%
templates (FVC2000
DB2&)
Gyaourova and Scores Set of Reference 2,400 queries and 2,40085%
Ross [131] Prints templates (WVU)
Cappelli et al. | Minutiae MCC 700 queries and 10099%
[38] templates (FVC2002
DB1la)
lloanusi et al.| Minutiae Quadruplets 400 queries 400 tem-98%
[136] plates (FvC2004
DB1&)
Cappelli [132] OF + RF 500 queries and 30099.9%
templates (FVC2002
DB14&")
Cappelli [133] Minutiae +| MCC 700 queries and 100100%
OF templates (FVC2002
DB1la)
Liu and Yap| OF Polar Complex 700 queries and 10085%
[134] Moments templates (FVC2002
DB1la)
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Table 4.1 (contd)

Author(s)

Fingerprint
Features

Approach

Fingerprint Database

HR
PR
10%

@

Latent

Feng and Jairn

1 Fingerprint

Multi-stage filter-

258 latent

gueries 97.3% @

[11] Type + SP| ing and 10,258 templatesPR=39%"
+ OF (NIST SD27 and NIST|
SD14)
Yuanet al.[10] | Minutiae Triplets 258 latent queries and80.7%6**
240,258 templates
(NIST SD27 and 4
private database)
Proposed Ap- | Minutiae + | Triplets + MCC +| 258 latent queries and81.8%
proach [137] OF + SP +| OF Descriptor In-| 267,258 templates (95.7%
RF dexing (NIST SD27, NIST| @

SD14 and MSP)

PR=39%)
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4.3 Feature Extraction

In this section we describe various features that are aertidoom reference prints and latents for
indexing purposes. More specifically, the following feasiare extracted: minutiae, orientation
field, singular points and ridge period. Note these feataresssentially the same that are used
in latent matching. The difference between latent indexing matching is the order in which the
features are used and the multistage nature of indexingacin $ome will argue that an efficient
fingerprint matcher(both for rolled prints and latent) hias indexing scheme implicitly built in
the matcher itself. However, in this dissertation, we viedeaxing and matching as two separate

modules.

43.1 ReferencePrints

For reference (rolled) prints in the background database,dommercial off-the-shelf (COTS)
matchers are used to automatically extract all the featuBased on our experience with the
characteristics and performance of these two matchersyfaghe COTS matcher is used to extract
the minutiae and the other one is used to extract the skeletage. Fig. 4.2 shows a reference
print from Michigan State Police database, along with thedetkn, orientation field and minutiae.
The orientation field and ridge period of a reference priatextracted from the skeleton image as

follows:

1. Morphological operations (dilation and erosion) areligpipto the skeleton image to get a

region of interest (ROI) of the reference print.

2. The skeleton image is filtered with an averaging filter o€ $x 5 pixels to convert a binary

skeleton image to a grayscale image (see Fig. 4.3).

3. The gradient based algorithm proposed in [8] is used taeibrientation field from the

ROI region of the grayscale image (see Fig. 4.3).
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4. The X-signature proposed in [115] is used to estimateitigeeperiod from the ROI region

of the grayscale image.
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Figure 4.2: (a) Reference print from Michigan State Polietaliase, (b) its skeleton extracted
by a commercial matcher, (c) orientation field extractednfrekeleton image, and (d) minutiae
extracted by a commercial matcher.

From the orientation field, the singular points are extrddfgresent in the reference print, by
the complex filtering approach proposed in [138]. For botte@nd delta points, their directions

can also be extracted.
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Figure 4.3: (a) Skeleton of a reference print from Michigéat&Police database, (b) the grayscale
image obtained after applying image filtering and (c) theaeted orientation field.

4.3.2 Latents

Feature extraction in latents is a challenging problem dusetvy background noise. Since the
objective of our study is indexing, we assume, similar toghdier studies in [11] and [10], that
minutiae features have been manually marked in the latgnés lexpert. This is the case for the
NIST SD27 database, where manually marked minutiae have freeided along with singular
points. The orientation field and ridge period informatiariatents were marked by the authors

in [28] and are available to us. Fig. 4.4 shows some of the ml§nmarked features (orientation
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field, singular points and minutiae) available on a latemtgrom NIST SD27 latent database.

Figure 4.4: (a) Latent print from NIST SD27 latent database, some manually marked features:
(b) orientation field, (c) singular points and (d) minutiae.

4.4 Indexing Approach

We propose to combine different features and indexing teci@s to improve latent fingerprint

indexing performance. For full (rolled, slap) fingerprintse feature type alone (e.g. minutia
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cylinder code) has been shown to be successful for indeag.in the case of latents, availability
of features is limited due to small area, distortion, etcerBfore, the proposed indexing approach
using a combination of features is more appropriate fonlste

Our approach consists of combining (i) a constrained varsiotriplet indexing, (i) MCC
indexing as proposed in [38], (iii) a new orientation fieldsdeptor indexing technique that uses
hash function, (iv) filtering based on singular points agppsed in [11], and (v) averaged ridge
period comparison. Basic triplets indexing technique igriowved by applying a rotation constraint
to the matched triplets. Orientation field descriptor indgxs carried out first by converting the
descriptor to a binary vector, and then by applying hashtfans, similar to the approach proposed
in [38]. Each of these specific features used outputs an ingexore, which are then combined to
obtain the final indexing score. A description of the techiesjused in our approach is presented

below, and the overall scheme is shown in Fig. 4.5.
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Figure 4.5: Overview of the proposed indexing scheme.
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441 Triplets

Features extracted from the triangles (triplets) formediy subset of three minutia points have
been popular for fingerprintindexing [31]. Several modiii@as of the first triplet-based algorithm
[31] are now available [32, 135, 10]. The basic features i} {dnsisted of the length of the sides
of the triangles, the ridge count between every pair of ni@eun the triplet, and the angle between
minutiae direction and the side of the triangle. The ordgeafithe sides of the triangle was defined
in the clockwise direction.

In our approach, we use the three side lengths of the triaglé the difference between
minutiae direction and one side of the triangle for indexirRjdge count between minutiae in
latents is not sufficiently reliable so we do not use thisdeat As proposed in [32], we order
the three sides alsmax, Lmin, Lmeq Pased on their lengths (see Fig. 4.6). Each minutia point
m; = (X;,¥i,Bj),1 = 1,2,3, is associated with a vertex of the triangle by the follayvinle: Py is the
point associated with the largest angle, which is oppositke largest length sid&; is associated
with the minimum angle in the triangle, which is oppositetie minimum length side, ang; is
associated with the median angle in the triangle, which osjte to the median length side, as
illustrated in Fig. 4.6. After the ordering of the sides anohutiae, the directional differences
(6,i =1,2,3) between each minutiae and one side of the triangle canrsestently obtained.

We also use the handedness of the triangle proposed in [3#fjeasf the triplet features. Let
P = (x,Y;) be the point corresponding to tHB minutiae in the tripletZ; = x; + jy; be the complex
number associated with;, i =1,2,3, j = /1, andZy1 = Zy — 21, Z3p = 23— Zp, Z13= 21 — Za.

Then, the triangle handednegss defined as

@ = sign(Zp1 x Z3p), (4.2)

wheresign(-) € {—1,1} is the sign function anck is the cross product.
In summary, given a set of minutiae points in a latent, théufe@avector extracted for every

possible triplet with side length in the rang@min,Imaxy — in our implementation, 20 and 150
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Figure 4.6: lllustration of triplets features.
respectively — is given by
R = (Lmax Lmin Lmed 61, 62, 83, ). (4.3)

These triplet features are quantized into bins (bin sizeDi$o2 both triplet side lengths and
directional differencesgp, which can be either-1 or 1, is mapped td0,1}). A key is gener-
ated based on the possible values of each bin and assocideglaeh triplet. We have that each
bin j,j =1,...,7 can assume possible valugsk = 1,...,Mj, and these values are mapped to
1,...,Mj,j=1,...,7. Assumeby =1, bj =bj_1Mj_1,j = 2,...,7 andy; is the value corre-

sponding to thejth bin for triplett, then the key to tripletis computed as
7
Kt = Z vjbj. (4.4)
=1

During the indexing or search, triplets in reference primiih the same key as triplets in the
latents are considered as matched triplets.

Latent examiners can usually position or align a latent whoge to its true position in the fin-
ger based on their knowledge of fingerprint structure. Aleted prints in background databases

usually present only a small rotation compared to the fingeight position. Thus, an additional
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step is added to further improve the indexing performandaaetriplets by constraining the pos-
sible rotation between the two matched triplets. We cal #s the constrained triplets approach.
The constraint is imposed by first computing the rotation mgneach pair of matched triplets.
Given a matched triplets pair, the differences in the dioacof the corresponding three minutiae
are averaged and taken as the rotation between that matgsietstpair. If this difference is larger
than a threshold (60 degrees in our implementation), thantttplet pair is excluded from the
set of matched triplets. The triplet indexing score betwienlatent and a reference print in the

background database is computed as the number of matcpledstetween them.

4.4.2 Minutia Cylinder Code (M CC) Indexing

In [38], the authors proposed an indexing technique basedl lonal minutiae descriptor, called
Minutia Cylinder Code (MCC). MCC descriptor [91] represetiie neighborhood minutiae in-
formation in the form of a 3D function (cylinder). Each lewdl the cylinder corresponds to a
direction difference range, and for each direction diffeerange, the descriptor contains spatial
information about the neighboring minutiae relative to teater minutia (refer to Chapter 3 for
details of MCC). MCC descriptor has been successfully usdabth rolled-to-rolled fingerprint
matching [91] and latent-to-rolled fingerprint matchin§]8

Hash functions are utilized to calculate an indexing scoretwo given fingerprints (search
and reference print). The indexing score is computed byaaweg the estimate of the Hamming
distance between the descriptors, without the need toattplperform the distance computations.
The estimate of the Hamming distance is based on the colidietween two descriptors under
the hash functions so that the indexing is more efficient theattly comparing the descriptors.

More specifically, given two fingerprint templat&s andT,, with V; andV, being the sets of

cylinders for each minutia in each template, the indexirayesproposed in [38] is given by

p
ZVEV]_ (maXIJ EVz{CF (V7 Vj )}) h

P
V1] x (Hw)h

Sv (T, T2) = ) (4.5)
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where|V| is the number of cylinders in the search pritify is the number of hash tabldsis the
number of bits selected in each hash talplés a parameter of the distance function (set to 30),
andCr represents the number of collisions over all hash functi@teeen cylinders andv;. We
used MCC SDK provided by the authors [38] with the defauliapaeters, with the exception of
the number of hash tables that was increased to 64 instehd default 32 because we found that

the former worked better for the latent indexing.

4.4.3 Orientation Field Descriptor Indexing

Given a set of minutia®l = {(xi,yi,Bi)}i'\‘:l and orientation fieldf (x,y), whereN is the number
of minutiae,x; andy; are the coordinates of tHE" minutia, respectively, an@; is the direction

of minutia, a set of descriptol® = {01,0p,...,0N} is extracted, wherej = {0j 1,0; 2,...,0j n}

is the descriptor for thé" minutia andn is the total number of sample points in the orientation
descriptor [27].

Given a minutiaL concentric circles are centered at the minutia with jﬂ’i'ecircle of radius
Rx | . : . o .
I andK; sample points are equally spaced on each circle startingthe projection location
of the reference minutia along its direction on the circle.tHis paper, the number of circlés
is 4 and the numbers of sample points from inner circle torocitele are 10, 16, 22 and 28,
respectively, the maximum radilsfor the outer most circle is 80 pixels. So, the total number
of sample points for each orientation descriptonis le'zl Kj = 76. The feature value at each
sample point is computed as the counter-clock wise rotatiagie from local orientation field at
the sample point to the local orientation at the central nignu

In the indexing algorithm, given a seed, a sett péirs of sample point§(hj, bj)}'j:1 from the

orientation descriptor is randomly generated, whgtd; € {1,2,...,n} andhj # bj. Then, a bit

vectorr = {rq,ro,...,1}, is generated as

1, ifojh >0p:s .
r= ! I j=12,.. I (4.6)

0, otherwise,
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The random generation of the bit vectors is repeated sohtbabtal number of hash functions
is Hp, and the number of bits in each hash function is fix@d Each bit vector corresponds to a
decimal number, which is then used as one of the index keys.g€heration of the orientation
field descriptor indexing tables is illustrated in Fig. 4Given two sets of orientation descriptors

0O, andO», similar to the MCC index score computation, the index séorerientation descriptor

is computed as

p
Zreoy (Max; o, {Cr(r,r)HT
So(T1,T2) = P ; (4.7)
[O1] x (Ho) T
whereCg represents the number of collisions over all hash functasnis Equation 4.5.
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r=1if o> 0
otherwise r,=0

Figure 4.7: lllustration of the key generation in the oraitn field descriptor indexing scheme.

4.4.4 Singular Points

Singular points provide useful characterization of a fipget. Given a list of core points and

delta points with each singular point containing coorceretd direction information, three types
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of singular point pair features can be extracted [11]: 1equmair; 2) delta pair; and 3) core-delta
pair.

To order the singular points in a pair of singular points he@are point pair generates two pairs
with each core point being ranked first once. For delta ptiesdelta points are ordered based on
thex-coordinate, and for core-delta pairs, the core points etdered first. For each singular pair,
three features are computed: 1) the distamydoétween the singular points; 2) the counter-clock
wise rotation angled) from the direction of the first singular point to the line o@ating singular
points; 3) the counter-clock wise rotation angly {rom the direction of the second singular point
to the line connecting singular points.

The singular pair similarity score between latent and esfee print is defined as

1 Nsp 4.8)
Sp=1— ) maxs j, 4.8
Nsp igl i

whereNspis the number of singular pairs in latent asgl is the similarity between thiéh singular

pair in latent and theith singular pair of the same type in reference print, which cadmputed

as

1
S,j=75 f20760(Adi’j)+ f]_‘[ T[(ACYH)‘F frr H(ABLJ') ) (4.9)

3 — ey
6’3 6’3
whereAd; ; is the distance differencéa; j andAp; j are the angle differences between the first

and second singular points, respectively, &gg(x) is a piece-wise linear function:

X < a,

fap(X) = x> b, (4.10)

o O Bk

—X .
otherwise.

(on

D

445 RidgePeriod

Given a fingerprint (either latent or reference print), therage ridge period is computed within
a circle of radius 10 blocks centered at the core point, waitheblock being 16 16 pixels; only

foreground blocks are used. If there is no core point in ti ghe center point of the foreground
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region is used. The ridge period similarity is then compated

K= exp(—M) , (4.11)

OR
whereR, andR; are the average ridge periods in the latent and the refegamu respectively,

andor is a normalization term which is usually set to the averag®of Ry|. In this paperpr is

setto 2.

4.4.6 Fusion of Indexing Scores

The indexing scores based on different features (trip®&C, orientation field descriptor, singular
points and ridge period) take values in different rangesisThormalization of individual indexing
scores is done before the fusion. lset {51,32,...,5,\]R} be the list of scores corresponding to
a latent, and\R be the number of reference prints in the background datab&se normalized

scores = {s;,S), ... ,s’NR} is obtained as

d = s — min(s)
~ max(s) —min(s)’

(4.12)
The fusion is based on the saliency of individual featuregpldts, MCC and orientation field
descriptor provide similar individual performances; thwéth proper normalization, the simple
sum rule is successful [139]. Singular points are not alwagsent in fingerprints, especially in
latents that usually contain a partial area. Thereforeirtiexing score from the other features is
increased based on whether singular points are availabletinthe prints being compared.
Given the indexing scores from the constrained tripl&t9,(MCC indexing Gv), and orienta-

tion field descriptor %), we obtain locally normalized scor&, S, andS,. Given the indexing

scores from singular point&§p) and ridge periodSg), the final indexing scor8is computed as

=(S;+S+p) x (1+Ssp) x Sk (4.13)

The final indexing scores are then used to order the backdrdatabase such that, for each

latent, the topk reference prints that are most similar to the latent priatratrieved.
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45 Experimental Results

451 Databases

Indexing experiments were performed on the only publiclgilable latent fingerprint database,
NIST Special Database 27 [4]. This database consists ofé&B8tlfingerprint images from oper-
ational scenarios (i.e., latents collected from crime sesgand 258 rolled prints corresponding to
the mates of the latent fingerprints. We used 500 ppi resoldtr both latents and rolled prints.
Features (i.e., minutiae) marked by latent examiners araged with this database.

The purpose of latent fingerprint indexing is to filter out eg&aportion of the background
database so that the speed of matching stage is enhancedildbiimportant to ensure that this
gain in matching speed is not at the cost of loss in matchimippeance. To show the effective-
ness of the proposed indexing scheme, we build a large bagchdrdatabase of 267,258 rolled
fingerprints. This background database includes the 25&dnatled prints from NIST SD27,
27,000 rolled prints from NIST SD 14 [90], and 240K rolledrnis from a database provided by

the Michigan State Police (see Fig. 4.8).

\h\p ruunw‘:%i;é?z) 1.R. T;d
(a) (b)

Figure 4.8: Rolled prints in (a) NIST SD27, (b) NIST SD14, &) Michigan State Police
databases.
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45.2 Indexing Results

Indexing performance is usually measured by computing theate at various penetration rates.
A hit rate at a given penetration raferefers to the portion of the search prints for which the
true mates are retrieved withjpbo of the background database (penetration rate). The désira
outcome is high hit rates at low penetration rates and highpcaational efficiency. Further, it is
also desired that the matching accuracy with indexing b@wel than matching accuracy without
indexing.

As a baseline, the hit rates at the fixed penetration rate¥%f@@ 62.0%, 73.6%, and 74.0% for
indexing schemes based on basic triplets, MCC indexinglamddnstrained triplets, respectively.
The hit rates at varying penetration rates are shown in Fig. Mote that for the three methods

shown, only minutiae features are used.
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v Triplets Indexing
3075 -4-Constrained Triplets
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20 40 60 80 100
Penetration Rate (%)

v 1
200

Figure 4.9: Comparison of the indexing performance of bagitets, constrained triplets and
MCC indexing.

Fig. 4.10 shows the performance of the proposed indexingoapp along with the perfor-

mance of two state-of-the-art approaches proposed in [Id[¥0]. The results of the algorithm in
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[10] shown here are based on an executable file provided bguthers [10], applied to the same
database and features as used in our approach. The hit eafgeaetration rate of 39% reported
in [11] is shown here for Feng and Jain 2008, which is based loackground database of only
10,258 rolled prints. Note that our approach cannot be tifreompared with Feng and Jain’s ap-
proach [11] because they used a much smaller backgrounledataize compared to our approach
and Yuaret al’s approach [10]. However, in our experiments we observatlttie differences in
background database size do not significantly affect theates (usually about 2-3% difference).
Thus, if we fix the penetration rate at 39%, both performanecess and that reported in [11], are
comparable. Furthermore, we will show that the overallHateatching performance is improved
by using our approach that filters out 80% of the referencetggrcompared to filtering out only

61% in [11].
100
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Hit Rate (%)
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® Feng and Jain 2008
—+—Yuan et al. 2012
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0 20 40 60 80 100
Penetration Rate (%)
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Figure 4.10: Comparison of indexing performance based emptbposed approach against Yuan
et al. [10] and Feng and Jain [11] on the NIST SD27 latent databaste tdat Feng and Jain [11]

used only a small background database of 10,258 versusdpesed approach and [10] that use
267,258 reference prints in the background database. drufng and Jain [11] did not provide
the complete hit rate vs. Penetration rate curve, but onigglespoint at a penetration rate of 39%

().
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Given that the proposed approach combines different festamd techniques for indexing, we
also determine the incremental contributions to hit ratiés thie addition of different features at a
fixed penetration rate (20%). This is shown in Fig. 4.11, whbex-axis denotes the successive
utilization of different fingerprint features, with the tefost feature CTrip being the constrained
triplets. It can be observed that the incremental additideatures steadily improves the indexing

performance.

(00) (o]
ol o

o0]
o

Hit Rate at 20% Penetration Rate

~
o1

Q

CTrip OFDesc  MCC SP RP

Figure 4.11: Increase in the cumulative hit rate at a fixedepation rate (20%) as we incre-
mentally add features for indexing (from left to right), waeCTrip denotes constrained triplets,
OFDesc denotes orientation field descriptor, SP denotgsisinpoints, RP denotes ridge period.
The plot shows that we can achieve about 91% hit rate at 20%it@ion rate when we use all
five features (CTrip, OFDesc, MCC, SP and RP) for indexing.

In order to further evaluate the performance of the propaseexing algorithm, we also an-
alyzed the influence of the filtering on the latent matchingggenance. For this purpose, three
fingerprint matchers were used: (i) an in-house matcher (DB88], (ii) a commercial fingerprint
matcher (Morpho) and (iii) a commercial latent fingerprirdtoher (here referred to as LCOTS).

The input to the two first matchers consisted of manually mankinutiae in the latents and
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automatically extracted minutiae in the rolled print, whis the same set of minutiae that was
used in the indexing experiments. For the LCOTS, the raw @weas provided as input.

For this experiment, for computational efficiency we usednalier background database of
27,258 rolled prints (258 from NIST SD27 and 27K from NIST SP10ur indexing approach
consisted of not only filtering out a portion of the databdmse,also of combining both the match
scores and indexing scores to improve the matching perfacemaAfter retaining a small portion
of the background database, we combine the indexing scdinelvé match score by the sum rule.
Then, the overall latent matching performance is improved.

For the DBHT and Morpho matchers, the overall latent matgiperformance on NIST SD27
before and after filtering out 80% of the background datalfpsaetration rate of 20%) is im-
proved, as shown in Fig. 4.12. This demonstrates that owexing scheme has the desirable
property, namely a significant reduction in matching timelevimproving the matching accuracy.
While our indexing is not perfect, most of the errors in thdexing are also errors in the latent
matching stage as well. By filtering out 80% of the databdse,tdtal computational time for
the search is reduced by a factor of 5 for both the in-houseleatand Morpho, while the latent
matching performance is improved.

In the case where the indexing is applied, three scenarepassible regarding the retrieval
rank before and after the filtering: (i) the retrieval ranktloé true mate stays the same, (ii) the
retrieval rank of the true mate improves, or (iii) the truetens excluded from the background
database. The first case occurs when none of the non-matzdneé prints with match scores
higher than the true mate match score are excluded from #lgb@und database. In the second
case, the retrieval rank improves because of the exclugioeference prints with higher match
scores to the latent compared to the true mate match scoeethird scenario occurs when the
true mate is incorrectly filtered out by the indexing moduike first and second cases are a great
advantage due to the fact that the search time is greatlceedwhile the true mate retrieval rank
is maintained or improved. The third scenario might redbheenbatching performance, unless the

true mate was not going to be retrieved at higher ranks by igerfprint matcher.
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Figure 4.12: Latent matching performance of two differerdgtchers (DBHT in-house latent
matcher and Morpho matcher) before and after applying thpgsed indexing to filter out 80% of
the background database. Note that after the filtering améLtdion of indexing and match scores,

the overall matching performance is improved while the miatg time is reduced by a factor of
five (20% penetration rate).

Two latents and their true mates are shown in Fig. 4.13. Ih bases, the retrieval rank of the
true mate by the in-house matcher was improved after thefigievas applied (3 to 1 and 142 to
49, respectively). In the second case, the true mate wasiribeitop-100 candidates before the
filtering, while it became the top 49 candidate after filtgriltsround truth matched minutiae are
shown for reference.

For the commercial latent fingerprint matcher, the oveaadiht matching performance on NIST
SD27 before and after filtering out two thirds of the backgmbwatabase (penetration rate of
33.33%) is improved, as shown in Fig. 4.14. Thus, our progpasgexing scheme improves the
matching accuracy of one of the top commercial latent masche

In the cases for which the commercial latent matcher pravibro score between the latent
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1. N. 1nTwivie

Figure 4.13: Examples of latents for which the true mate veaectly retrieved when 20% of the
background database was considered are shown. Note thpplyyrag the indexing, the retrieval
rank went from (a) 3 to 1 and (b) 142 to 49 due to the exclusiarof mated reference prints with
high match scores to the latent. In (b), the true mate onlyagga in the top-100 candidate list
after the filtering.

and its true mate, we consider that the true mate is retrievélde last rank. Fig. 4.15 shows
two latents and their true mates for which the true mate cobeldorrectly retrieved at rank 1
after the indexing scheme proposed here was applied anddleging scores and match scores

were combined. The true mates were both ranked last by theneoomal latent matcher before the
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Figure 4.14: Latent matching performance of a commerctehlafingerprint matcher before and
after applying the proposed indexing and retaining oneltbirthe background database. The
filtering improves the overall matching performance of thenmercial latent fingerprint matching

while reducing the matching time.

filtering.

In Fig. 4.16, two latents and their true mates are shown. th bases, the true mates were
excluded by the indexing, while they were both ranked firstigycommercial latent matcher. The
manually marked minutiae and the minutiae extracted by Maoip the rolled print provide only
a small number of corresponding minutiae, therefore thexmdy approach is not successful and
the true mates are excluded during the filtering.

The proposed approach is more suitable for latent indextog.indexing of reference prints,
the state of the art indexing methods [38] already repont tiggh hit rate at very low penetration
rate. For example, the indexing performance of MCC appliedtST SD4 (the 2,000 second

impressions are searched against the 2,000 first impresamh10,000 reference prints from the
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Figure 4.15: Examples of latents for which the true mate veasectly retrieved when one third
of the background database was considered are shown. Natbytlapplying the indexing, the
retrieval rank went from last to 1 due to the fusion of indgxamd match scores.

Michigan State Police database) shows a hit rate of 97.8%ogténetration rate. Including addi-
tional features made only a minor improvement to the indgxyi@rformance in this case. Most of

the failure cases in the rolled print indexing are due to pp@lity of one of the two impressions.

161



(b)
Figure 4.16: Examples of latents for which the true mate vagetrieved when one third of the

background database was retained. The true mates retréanke before the filtering were 1, so
the indexing degrades the matching performance for theséatents.

4.5.3 Implementation Details

Here we report the implementation details of each modulel useur indexing scheme. The
triplets indexing algorithm, singular point and ridge perestimation modules are implemented in

Matlab; MCC SDK (implemented in C#) is provided by the authoir [38] and can be downloaded
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from their Webpag@ the orientation field descriptor-based indexing alganitis implemented
in C++. MCC indexing timing was obtained on a PC (Intel(R) €adiM)2 Quad CPU Q9650
3.00GHz, 3GB memory), and the timing for all the other modwiere obtained on a server with
48 cores (AMD Opteron(tm) Processor 6176, 2.3GHz, 193GB amginno parallel computing
resource was used, thus only one core was used when meahaicgmputation time.

Table 4.2 reports the computation time for each search neodlihe modules are all inde-
pendent and can be run in parallel; in this case, the tota fon the indexing would be 28,667
reference prints searched per second, per latent, plusibespent extracting features from the la-
tentimage (less than 3 seconds for all the 258 latents, ¢iemanually marked features minutiae,

orientation field, singular points and ridge frequency).

Table 4.2: Computation time for individual indexing modaile

Module # of reference prints searched per secoitogramming languagg
Basic triplets 39,509 Matlab
Constrained triplets 30,777 Matlab

MCC SDK 58,604 C#
Orientation descriptof 28,667 C++

Singular points 38,444 Matlab

Ridge period 382,960 Matlab

46 Summary

We have presented an indexing approach for latent fingesghat outperforms state-of-the-art in-
dexing techniques on the public domain latent database S[37 against a background database
of ~267K rolled prints. The proposed approach combines vateued 1 and level 2 features, in-
cluding minutia cylinder code, minutia triplets, singupaints, orientation field and ridge period.

Improvement in the overall indexing accuracy due to the tamtdiof each individual feature is

“http://biol ab. csr.unibo.it/
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shown. The experimental results show that filtering not amiproves the computational effi-
ciency of latent search, but the latent matching accuraoyaimtained. For the NIST SD 27, the
matching accuracy of two different matchers, with and witthfdtering, remains the same at 20%
penetration rate. While the proposed indexing scheme ipexdéct, the indexing errors reflected

in the hit rate are also reflected in the matching errors.
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CHAPTERS

SUMMARY AND FUTURE WORK

5.1 Summary

This dissertation studied two very challenging problemisiometric recognition: biometric traits
of identical twins and latent fingerprint matching. The paiy contributions of this dissertation
are (i) to provide a better understanding of the similasitiad dissimilarities of the biometric traits
of identical twins and (ii) to advance latent fingerprintéxéhg and matching performance.

In Chapter 2, we have presented an analysis of the bioméizi@acteristics of identical twins
(fingerprint, face and iris). The discriminability of thedeee biometric traits is supported by
anatomy and the formation process of the biometric chatatitss. \We have assessed the capacity
of state-of-the-art commercial biometric matchers inidgishing identical twins, as well as their
capacity to determine whether two subjects are identicaiser not.

Face biometric system can distinguish two different pesseho are not identical twins much
better than it can distinguish identical twins. More recgdies support this conclusion, and the
face recognition becomes even more challenging when dodlusxpression changes or different
lighting conditions are involved.

Fingerprint biometric system also can discriminate twéetlént persons who are not identical
twins only slightly better than it can discriminate ideafitwins, this difference is not as large as

for the face biometric system. In the fingerprint matchingesikments, the identical twin impostor
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distribution is shifted to the right (indicating higher slamity) compared to the general impostor
distribution; a statistical hypothesis test shows thatdifference between these two distributions
is significant.

The iris matching experiment results show that while thera significant difference in the
performance of the biometric system for the identical twatadand for the general population
data, the iris biometric system can successfully distisigidentical twins.

Multimodal biometric systems that combine different urdfsthe same biometric modality
(e.g., fusion of four fingers or fusion of two irises) lead toamost perfect separation between
genuine and impostor distributions for identical twins.

Biometric traits can also be used to determine whether twgests are identical twins. By us-
ing face and iris modalities together, for example, we careotly determine 80% of the identical
twin pairs as such, while only 2% of subject pairs who are dentical twins will be incorrectly
considered identical twins.

In Chapter 3, we have presented two different methods ofamipg latent fingerprint matching
performance. It is assumed, as is the current practice nthaually marked features (minutiae,
singular points and ROI) are available for latents.

We have shown that the matching performance based on mamouatked minutiae in latents
can be improved by utilizing automatically extracted miaetfrom enhanced latent images. This
framework consists of the following steps: (i) reconstriet orientation field based on manually
marked minutiae and singular points; (ii) enhance the tatemg median ridge frequency com-
puted in small image blocks and the reconstructed oriemtdigld; (iii) match minutiae extracted
from enhanced latents and rolled fingerprints; (iv) comlirescores from the two matchers us-
ing boosted max fusion technique. This framework improves latent matching performance
irrespective of latent quality.

We have also presented a latent fingerprint matching algonthich is based on a descriptor-
based Hough Transform alignment. Experimental resultg/ghat the proposed algorithm per-

forms better than the three fingerprint matchers (that oediwo COTS matchers) used as baseline

166



across all latent image qualities. Furthermore, a scare-fasion of the proposed matcher and the
best performing COTS matcher shows a further boost in tleetahatching performance.

In Chapter 4, we have presented an indexing approach fort lagerprints that outperforms
state-of-the-art indexing techniques on the public dontatient database NIST SD27 against a
large background database ©267K rolled prints. The proposed approach combines a humber
of level 1 and level 2 features to boost the indexing perfarcea Contribution to the overall
indexing accuracy from each individual feature is showdeking experimental results show that
filtering not only improves the computational efficiency atdnt search, but also improves the

latent matching accuracy when indexing scores are combwtadnatch scores.

5.2 Contributions
In Chapter 2, an analysis of the biometric traits of idertiaéns provides:

e Capability of state-of-the-art biometric systems to sgsbdly distinguish between identical

twins using the three most common biometric traits: fingatpface and iris.

o Capability of state-of-the-art biometric systems to sssbdly determine whether two sub-

jects are identical twins based on their biometric trags€f fingerprint, iris) alone.

In Chapter 3, we studied the latent matching problem and wsegmted two different ap-
proaches to improve the matching performance given manenaiked features (minutiae, singular

points, ROI) in the latents. The contributions of this cleaatre as follows:

e An approach that combines manually marked features withnaatically extracted features
from enhanced latents to obtain a better matching perfocmarsing a COTS fingerprint

matcher.

e Orientation field reconstructed from minutiae along wittggilar points are used to enhance

the latent image to obtain reliable automatically extrdectenutiae.
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e A fusion scheme that combines match scores based on mamualked minutiae and au-
tomatically extracted minutiae from enhanced latents Ie &b increase the performance

consistently over all latent fingerprint qualities in NISDZ/.

e A latent fingerprint matcher is developed using a descrpssed Hough Transform for
alignment (between latent and reference print) and manuoairked minutiae from the la-

tents as input.

e The proposed latent matcher advances the matching pemicemtampared to three baseline

matchers (that includes two COTS matchers).

In Chapter 4, we presented an indexing approach that comblifferent features to advance
the performance of latent fingerprint indexing. In latesiace there is no guarantee that all the
features will be present, a combination of different feasufor indexing makes more sense than

rolled/plain fingerprints. The contributions of the propdsndexing approach are:

e An analysis of the contribution of different features fatelat indexing.

e A reduction in the total search time while improving the fdtenatching accuracy on the

NIST SD27 database with a background of 267,258 referenotspr

5.3 FutureWork

In Chapter 2, we presented an analysis of the biometristoditentical twins. ldentical twins are
the most similar persons in terms of genetics. The next goomgidering the degree of similarity
would be siblings. To extend the study on the similarity adrbetrics of identical twins, the use
of siblings data would be the next step. For example, can &incs be used to find siblings of
unidentified victims? We used matching scores to derive assaredor identical twin determina-
tion. However, additional features need to be investigidedentical twin determination. Some
possible features to consider include fingerprint pattgpe and number of matched minutiae. It

has been shown in the literature that fingerprint pattera typnore correlated between fingerprints
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of identical twins and the number of matched minutiae is algtly higher compared to matched
minutiae from general impostor pairs.

In Chapter 3, our purpose was to improve the latent matcharfppnance by developing a
matcher based on the availability of a limited amount ofatgié features, i.e., manually marked
features. Research on extracting reliable features framatents would be very beneficial to
further improve state-of-the-art in latent fingerprint ofang.

In Chapter 4, our indexing technique assumes the availabilimanually marked features in
latents, and it considers all the features in parallel fdexing. A better fusion scheme would take
into account the differences in the latents so that the weigésigned to different features used in

indexing can be adaptively determined. Further, diffefeatures could be used sequentially as

opposed to in parallel as implemented here.
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