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ABSTRACT

LONG-TIME CONVERGENCE OF HARMONIC MAP HEAT FLOWS

FROM SURFACES INTO RIEMANNIAN MANIFOLDS

By

Kwangho Choi

We study the long-time convergence of harmonic map heat flows from a closed Riemann

surface into a compact Riemannian manifold. P. Topping constructed an example of a flow

that does not converge in the infinite-time limit. Motivated by the observation that Top-

ping’s flow has accumulation points at which the Hessian of the energy function is degenerate,

we prove convergence under the assumptions that (a) the Hessian of the energy at an accu-

mulation point is positive definite, and (b) no bubbling occurs at infinite time. In addition,

we present examples of heat flows for geodesics which show that the convexity of the energy

function and convergence as t→ ∞ may not hold even for 1-dimensional harmonic map heat

flows.
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Chapter 0

Introduction

A map u between two Riemannian manifolds (M, g) and (N, h) is called a harmonic map if it

is a critical point of the energy function E(u) = 1
2

´

M |du|2 dvolg in C2(Σ, N). A harmonic

map heat flow is a gradient flow of the energy function on a space of maps. If one embeds

the target manifold N isometrically into Rr, then the harmonic map heat flow is a weak

solution u : M × [0,∞) → N to a system of nonlinear parabolic PDEs with initial condition:

u̇ = ∆u+ A(u)(du, du), (0.1)

u(·, 0) = u0(·),

where we consider u : M → N →֒ Rr to be a map into Rr, and where A denotes the

second fundamental form of N in Rr. Intrinsically, the right-hand side of (0.1) is minus the

gradient of E for the L2 Riemannian metric on the space of maps from M to N. Thus one

can consider a solution u = u(t) to be a family of maps that starts from u0 and flows in the

energy-minimizing direction.
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Standard results show the existence and smoothness of solutions to (0.1) for short time.

Eells and Sampson [6] used harmonic map heat flows to prove that if the target manifold

N is a Riemannian manifold with non-positive sectional curvature then the solution to (0.1)

exists for all time and therefore any smooth map u0 : M → N is homotopic to a harmonic

map.

For dim M = 2, the energy E is invariant under the conformal change of metrics on

Σ and it is possible that the energy density concentrates at a finite set of points. Sacks

and Uhlenbeck [16] discovered a “bubbling phenomena”, in which each point of energy

concentration yields a harmonic 2-sphere S2, called a bubble. For sequences of harmonic

maps, Parker [13] proved a “bubble tree convergence theorem,” in which the maps converge

to a limit map together with bubbles so that energy is conserved in the limit and the image

of the limit is connected.

For harmonic map heat flows, Struwe [18] showed that a global weak solution u(t) to

(0.1) exists and is smooth away from a finite set of “singular points” (x1, T1), . . . , (xk, Tk)

in spacetime Σ × R. At each singular point, energy concentrates at xi and a bubble splits

off. Struwe also showed that there is a sequence tn → ∞ such that the maps u(tn) con-

verges weakly to a harmonic map u∞ together with possibly some bubbles (see Section 1.4).

Struwe’s theorem was refined by Lin and Wang [9] and by Qing and Tian [15] to a bubble

tree convergence result. Specifically, they showed that, at both the finite and infinite times,

enough bubbles appear to make the energy function continuous and the image of the limit

map u∞ (including bubbles) is connected. Notice that all of these results require passing to

subsequences.

In general, the limit of the solution u(tn) as tn → ∞ is not unique and does depend on
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the choice of the sequence tn of time. The uniformity of convergence of the heat flow at

infinity is proved for some interesting cases. For example, Topping [19] showed convergence

of the harmonic map heat flow u(t) from S2 to S2 as t → ∞, assuming that u∞ and the

bubbles are all holomorphic or all anti-holomorphic maps as harmonic maps between two

S2’s. In case of real analytic target manifolds, the uniformity of convergence of harmonic

map heat flows follows by Simon [17].

In Chapter 2, we present details of the example of P. Topping that motivates our work

in this thesis. It is an example of a harmonic map heat flow from a 2-sphere to a compact

Riemannian manifold that exists for all time but does not converge as t → ∞. Instead, it

exhibits ‘winding behavior’ — the flow is asymptotic to a flow that moves around a circle of

harmonic maps with constant speed.

Topping outlined his construction in Section 5 of [19]. He later gave a more sophisticated

example ([20]) for domains with boundary. Section 2.1 shows how the details in [20] yield

a complete proof of the construction of [19] (and fix a small error in the original). For this,

we consider the manifold N = R2 × S2 with the warped product Riemannian metric used

by Topping in [20], and then consider the harmonic map heat flow u(t) from S2 to N of the

form Topping uses in [19], namely u(q, t) = (p(t), q) where

ṗ(t) = −∇f(p(t)). (0.2)

This gives the existence of a harmonic map heat flow from S2 into N having tension

uniformly bounded in L2, but not converging anywhere as t → ∞, although there exist

sequences {tn} such that u(tn) → u∞ in C∞ as n→ ∞. Roughly, one can think of u(t) as

S2 fibers “orbiting” the cylinder infinitely many times with orbits asymptotic to the center
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circle.

In fact, the accumulation points of the above flow are maps u∞ that lie in the set M

of absolute minima of the energy function. In Section 2.2 we show that M is a manifold

diffeomorphic to S1 × PSL(2,C) and we prove that the Hessian Hess(E) of the energy

function on the space of maps is degenerate as a bilinear form in the normal bundle along

M. The key observation of this thesis is that, in general, convergence is controlled by the

degeneracy or non-degeneracy of Hess(E) along the limiting set.

Chapters 3 - 5 develop criteria that insure a harmonic map heat flow will converge as

t → ∞. Our approach is to avoid the bad behavior of the above example by controlling

Hessian of the energy function E(u(t)) along the heat flow. Consider a harmonic map heat

flow u(t) from a compact Riemann surface Σ into a compact Riemannian manifold N . From

Struwe’s theorem, we know that supΣ |du(t)| is necessarily unbounded at each finite singular

point. We also know that as t → ∞ there is a subsequence u(tn) that converges weakly

in W1,2 to a harmonic map u∞. This limit may not involve bubbles, and there may be a

uniform bound on sup |du(t)| as t → ∞. In fact, if u(t) is very close to a stable harmonic

map u∞ for some large t then one expects that u(t) will flow to u∞ without bubbles or

energy concentration points. For such flows, we can translate time so that t = 0 corresponds

to a time, beyond the finite singular times, such that we have a uniform sup bound on |du|

valid for all t ≥ 0.

Thus we will suppose that supΣ×[0,∞) |du(t)| < C for some positive constant C. Fur-

ther, if the Hessian of the energy E is positive definite at u∞, one expects the exponen-

tial convergence of the solution, that is, there should be constants C and λ such that

dist(u(t), u∞) ≤ C eλt. Notice that this is an assumption about the Riemannian geom-
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etry of the target space N . With these two assumptions, we prove the following result:

Theorem A. Let u : Σ2× [0,∞) → N be a harmonic map heat flow such that u(t) converges

to a harmonic map u∞ weakly in W1,2. Suppose

(a) the Hessian of the energy E is positive definite at u∞.

(b) supΣ |du(t)| < C for all large t > T .

Then u(t) converges to u∞ exponentially fast in W2,2 and hence in C1.

Consequently, under the hypothesis of Theorem A, u(t) converges uniquely to a harmonic

map u∞, independent of any choice of subsequence. The proof of Theorem A is given in

Chapter 5.

The organization of this thesis is as follows.

In Chapter 2, we review Topping’s construction of a harmonic map heat flow from a two-

dimensional domain that fails to converge and that behaves problematically as described

above.

In Chapter 3 and thereafter, we assume that the energy density of the harmonic map

heat flow is uniformly bounded in t < ∞ for technical reasons. We consider the second

variation of the energy along the harmonic map heat flow u(t) to justify the definition of a

symmetric bilinear tensor B along u(t). Then we prove that if the symmetric bilinear tensor

B is positive definite along a harmonic map heat flow u(t) then u(t) converges exponentially

to a harmonic map in W2,2 norm where a parabolic estimate for harmonic map heat flows

plays an important role.
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In Chapter 4, we discuss topologies on the space of maps to work with and then prove

that the symmetric bilinear tensor B is continuous on the space of maps in the W1,2 ∩ C0

topology. Roughly, this implies that the symmetric bilinear tensor B is positive definite at

u nearby the accumulation point u∞ under the assumptions (a) and (b) of Theorem A.

Chapter 5 contains the proof of Theorem A. For the proof, we take a sequence u(tn)

converging to u∞ in W1,2 ∩ C0 and show by contradiction that, once u(tn) enters in a

W1,2 ∩ C0 δ
4-neighborhood, it stays in a W1,2 ∩ C0 δ-neighborhood for all n. Hence our

main theorem follows from the exponential convergence in Chapter 3.

Finally, in Chapter 6, we present examples of geodesic heat flows. This case is technically

simpler, but still displays interesting non-convergence behavior, and it provided motivation

for our work in Chapters 3 - 5. For the 1-dimensional domain, the harmonic map heat flows

from S1 are called geodesic heat flows. Here one can use some facts from Morse theory,

working on the (infinite-dimensional) manifold of W1,2 loops in N . It is known that Palais-

Smale compactness condition is satisfied on this loop space with itsW1,2 Riemannian metric,

but this does not insure convergence of downward W1,2 gradient flows (see [1]). The same

is true for geodesic heat flows: they may not converge as t→ ∞.

We illustrate such behavior by constructing explicit examples which show that the con-

vexity of the energy function and convergence as t → ∞ may not hold. For the first two

examples, we consider geodesic heat flows from S1 into a surface of revolution in R3 that are

equivariant under an S1 action and then derive a general solution of the geodesic heat flow.

As an application, we analyze the solution of the equivariant geodesic heat flow from S1 into

S2 and show that the energy function is not convex. For the third example, we construct

the geodesic heat flow u(t) : S1 → T3, showing that the convergence fails as t→ ∞.
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Further studies on the geodesic heat flows, including a C∞ convergence theorem, are in

progress [1].
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Chapter 1

Background

We define the basic concepts and notations of harmonic maps and give a short introduction

to harmonic map heat flows in the light of the bubble tree convergence. In this thesis we

denote by Σ a closed Riemann surface, and by N a compact Riemannian manifold unless

specified otherwise.

1.1 Energy

Let (M, g) be a compact Riemannian manifold without boundary and (N, h) a compact

Riemannian manifold. If u : M → N is a smooth map, we consider du to be a u∗TN -

valued 1-form of M . The energy density e(u) of u is defined to be e(u) = 1
2 |du|

2. In local

coordinates (xα) and (ui) around x and u(x), we have

e(u) =
1

2
gαβhij(u)

∂ui

∂xα
∂uj

∂xβ
.
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The energy E(u) of u is

E(u) =

ˆ

M
e(u) dvolg

where dvolg is the volume form on (M, g). We note that, as a rule, Greek indices are used

for tensors on the domain manifold and Latin ones for tensors on the target manifold and

we use the summation convention.

1.2 Euler-Lagrange equation and harmonic maps

In this section, we derive the Euler-Lagrange equation of the energy E.

Let V ∈ Γ(u∗TN) be a vector field along the image of u : M → N and consider a family

of maps u(t) : M → N such that u(0) = u and
∂u(t)
∂t

∣

∣

t=0 = V . We consider the family u as

a map u : M ×R → N and let u̇ denote ∂u
∂t

. Then we have

d

dt
E(u(t))

∣

∣

t=0 =
d

dt

ˆ

M
e(u(t)) dvolg

∣

∣

t=0

=
1

2

ˆ

M

∂

∂t
〈du(t), du(t)〉 dvolg

∣

∣

t=0

=

ˆ

M
〈∇ ∂

∂t

du(t), du(t)〉 dvolg
∣

∣

t=0

where ∇ is the covariant derivative in T∗(M ×R)⊗ u∗TN . For X ∈ TM , we have

(

∇ ∂
∂t

du

)

X = ∇Xu̇+ du([ ∂
∂t
,X ]) = ∇Xu̇,
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since [ ∂
∂t
,X ] = 0. Then

d

dt
E(u(t))

∣

∣

t=0 =

ˆ

M
〈∇u̇(t), du(t)〉 dvolg

∣

∣

t=0

=

ˆ

M
〈∇V, du〉 dvolg

= −
ˆ

M
〈V, τ(u)〉 dvolg

where τ(u) = trace ∇du is called the tension field of u. Hence the tension field τ(u) of

u ∈ C2(M,N) is the negative of the gradient of the energy function with respect to the L2

Riemannian metric on the space of maps. In local coordinates (xα) and (ui), the tension

field τ(u) is given by

τ(u) =

(

∆ui + gαβΓijk(u)
∂uj

∂xα
∂uk

∂xβ

)

∂

∂ui
=: τi(u)

∂

∂ui
, (1.1)

where ∆ui = 1√
det g

∂
∂xα

(√
det g gαβ ∂u

i

∂xβ

)

and Γi
jk

is the Christoffel symbol of N .

Definition 1.1. A smooth map u : M → N is harmonic if it is a critical point of the energy

E.

Note that u is a harmonic map if and only if τi(u) = 0 for all i. For systematic develop-

ments of the theory of harmonic maps we refer to [2], [3] and [4].

1.3 Existence of harmonic maps from a surface

As a generalization of the problem of finding harmonic functions, one can consider the

problem of the existence of harmonic maps. In many ways, the most interesting case is
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when the domain is a 2-dimensional Riemannian manifold (Σ, g). Then, given a Riemannian

manifold (N, h), the existence problem takes this form:

Given ϕ : Σ → N , find a harmonic map u : Σ → N with u homotopic to ϕ.

In general, the existence of nontrivial harmonic maps does not hold. For example, it is

known that there is no harmonic map of degree one from a smooth torus T2 to the round

sphere S2 (see Eells and Wood [5]).

A classical result on the existence of harmonic maps from S2 was given by Sacks and

Uhlenbeck [16]. Unlike the 1-dimensional case, the Palais-Smale compactness condition for

the energy E in general fails on the space of maps of Σ with any reasonable topology. Hence

the direct minimization method does not apply in the 2-dimensional case. To overcome this,

Sacks and Uhlenbeck considered a perturbed α-energy Eα: for α > 1

Eα(u) =

ˆ

Σ
(1 + |du|2)α dvolg

for u in the separable Banach manifold W1,2α(Σ, N) (See (1.3) below). Note that, for

α = 1, the critical points of E1 are harmonic maps. For α > 1, the α-energy Eα(u) satisfies

Palais-Smale compactness condition and hence (smooth) critical maps uα exist. Thus one

can consider a sequence uk of αk harmonic maps with αk → 1 and with Eαk
(uk) uniformly

bounded. Sacks and Uhlenbeck showed that there exists a subsequence which converges

weakly in W1,2(S2,Rr) to a limit u∞ and a further subsequence ul converges to u∞ in C1

away from a finite set of points x1, . . . , xK in Σ. It follows that (after using a removable

singularity theorem) u∞ is a smooth harmonic map. Furthermore, after renormalizing and

11



passing to a subsequence, they obtained a nontrivial harmonic 2-sphere at each singular point

xi to (partially) capture the energy loss as ul → u∞. As an application, they answered the

above problem when the fundamental group π2(N) is trivial: if π2(N) = 0, for ϕ : Σ → N ,

there exists a smooth harmonic map u : Σ → N homotopic to ϕ.

A nontrivial harmonic map of the 2-sphere S2 → N is called a bubble when it arises by

a renormalization process like the one used by Sacks and Uhlenbeck.

For technical reasons, it is convenient to fix an isometric embedding N ⊂ Rr and write

the harmonic map equation extrinsically. Then τ(u) is the tangential component of ∆u and

satisfies

τ(u) = ∆u+ A(u) (∇u,∇u) , (1.2)

where ∆u is the Laplacian of Rr (our sign convention is ∆ = gαβ∂α∂β +lower order terms)

and A is the second fundamental form of N ⊂ R
r and we abbreviate A(u) (∇u,∇u) =

gαβA(u)

(

∂u
∂xα

, ∂u

∂xβ

)

.

To proceed with the extrinsic setting, a natural choice for admissible family of maps is

the Sobolev space W1,2(Σ, N):

W1,2(Σ, N) = {u ∈ W1,2(Σ,Rr) | u(x) ∈ N for a.e. x ∈ Σ}, (1.3)

where u ∈ W1,2(Σ,Rr) if and only if ui ∈ W1,2(Σ) for each i = 1, . . . , r. It is well-known

that W1,2(Σ, N) is not embedded into C0(Σ, N) though the space C∞(Σ, N) is dense in

W1,2(Σ, N). In particular, dim Σ = 2 is the borderline case of the Sobolev embedding

theorem W1,2 →֒ C0. The “bubbling phenomena” of Sacks and Uhlenbeck is related to the

borderline failure of this Sobolev embedding and also to the invariance of the energy E(u)
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under the conformal change of metrics on Σ.

Now we consider a critical point of the energyE among variations of a map inW1,2(Σ,Rr)

composed with the nearest point projection onto the compact Riemannian manifold N ⊂ Rr.

Definition 1.2. u ∈ W1,2(M,N) is a weakly harmonic map if

∆u+ A(u) (∇u,∇u) = 0 weakly (1.4)

that is,
ˆ

M
−〈∇u,∇ϕ〉+ 〈A(u) (∇u,∇u) , ϕ〉 dvolg = 0 (1.5)

for any ϕ ∈ C∞c (M,Rr).

A weakly harmonic map is called stationary if it is also a critical point of the energy

with respect to domain variations. In general, stationary weakly harmonic maps are not

necessarily smooth. We state results on the regularity of stationary weakly harmonic maps

without proof below. Proofs and references can be found in Moser [11], and Lin and Wang

[10].

Theorem 1.3. A stationary weakly harmonic map u : M → N is smooth away from a

singular set of vanishing (m− 2)-dimensional Hausdorff measure where dim M = m.

Theorem 1.4. A continuous weakly harmonic map is smooth.

For the 2-dimensional case we have by Hélein [7]

Theorem 1.5. If dim Σ = 2, every weakly harmonic map of Σ is smooth.
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1.4 Harmonic map heat flow

Another approach on the existence of harmonic maps is the heat flow method. This approach

is the main topic of this thesis.

Let M,N be Riemannian manifolds of any dimension. A harmonic map heat flow is the

downward L2 gradient flow of the energy E(u):

u̇(t) = τ(u(t)) (1.6)

u(·, 0) = u0, (1.7)

where u0 ∈ C∞(M,N) and we abbreviate u(t) = u(·, t) for t > 0.

In a seminal paper [6], Eells and Sampson showed that the nonlinear parabolic equation

(1.6) with the initial condition (1.7) has a short-time solution which is unique, and that if the

target manifold N is a compact Riemannian manifold with non-positive sectional curvature

then the solution to (1.6) exists for all time and therefore any smooth map u0 : M → N is

homotopic to a harmonic map.

When the domain is a compact Riemann surface Σ, Struwe [18] showed the following

existence theorem:

Theorem 1.6. Given u0 ∈ C∞(Σ, N), there exists a weak solution u ∈ W
1,2
loc

(Σ×[0,∞), N)

to the harmonic map heat flow equations

u̇ = ∆u+ A(u) (∇u,∇u) (1.8)

u(·, 0) = u0.

14



satisfying

(a) u : Σ×[0,∞) → N is smooth on Σ×[0,∞) away from a finite set of points in Σ×(0,∞),

(b) At each bubble point xT , a bubble ‘separates’, so that the energy function E(u(t)) is

decreasing in t,

(c) Near t = ∞ there exist a sequence of time tn → ∞ and a smooth harmonic map

u∞ : Σ → N such that un := u(tn) converges to u∞ weakly in W1,2(Σ, N), and

strongly in W2,2 away from a finite set of bubble points x∞ of Σ at each of which a

bubble ‘separates.’

We note that there are a finite number of bubble points at each singularity time and bubbles

separate in the sense that, for each bubble point xT with possibly T = ∞, there are sequences

xn → xT , tn → T , 0 < Rn → 0 as n → ∞ such that, after precomposing exponential map

expxn at xn, rescaling un ◦ expxn with scale Rn, it converges to a nonconstant harmonic

map of R2 → N with finite energy and hence induces, by the removable singularity theorem

[16], a nonconstant harmonic map via a fixed stereographic projection.

By renormalizing sequences of harmonic maps to obtain “bubbles on bubbles”, Parker

[13] proved a “bubble tree convergence” theorem in which the limit map and bubbles are

connected for a sequence of harmonic maps from a compact Riemann surface Σ.

Qing and Tian [15], also considering maps from surfaces, proved that any Palais-Smale

sequence of the energy functional with uniformly L2 bounded tension fields τ(un) converges,

after passing to a subsequence and relabeling, pointwise to the image of the limit map, called

the bubble tree map. Building on the “bubble tree convergence” theorem of Parker and

Wolfson [14] and Parker [13], Lin and Wang [9] gave another proof of the Qing and Tian’s

15



result.

In this thesis we examine the convergence of harmonic map heat flows u(t) from Σ to N

as t→ ∞. It is natural to study the asymptotic behavior of the harmonic map heat flow as

t→ ∞. More precisely, one can ask if the weak convergence is actually convergence in C0 or

a stronger norm, and whether the convergence is independent of the choice of subsequences

as tn → ∞. The remainder of this thesis is devoted to answering these questions.
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Chapter 2

Degenerate Hessian of the energy

In this chapter, we review an example of P. Topping of a harmonic map heat flow that

exists for all time but does not converge as t→ ∞. We then observe that Topping’s flow is

asymptotic to a manifold M of limit maps u∞, and that a key feature of the flow is that

the Hessian of the energy is degenerate in the normal bundle to M.

2.1 Failure of convergence

Topping’s construction is outlined in [19], but for technical reasons it is necessary to replace

the flat metric on the torus T2 used in [19] with the modified metric that Topping uses in

[20] for a more sophisticated example. To start, consider the strip [-1, 1]×R with coordinates

(w, z) and with the metric

dw2 + 2w2dw dz + (1 + w4) dz2.

17



Let C be the cylinder obtained by taking the quotient of [-1, 1]×R by the group of isometries

Γ = {(w, z) → (w, z+n) | n ∈ Z}, and let N be the warped product C×S2 with the “warped

product” metric

h = dw2 + 2w2dw dz + (1 + w4) dz2 + f(w, z)
(

dα2 + sin2 α dθ2
)

where f is a smooth function of C defined by the equation

f(w, z) =



















1 + e
− 2π
|w|

(√
2 + sin 2π

( 1
|w| − z − 1

8

)

)

if w 6= 0

1 if w = 0.

Using coordinates x = 1
|w| − z and y = z, the metric is

h = (x+ y)−4dx2 + dy2 + f(x, y)
(

dα2 + sin2 α dθ2
)

where

f(x, y) = 1 + e−2π(x+y)
(√

2 + sin 2π(x− 1
8)
)

for w 6= 0

and satisfies
∂f
∂x

(0, ·) ≡ 0. We consider a path of maps u(t) : S2 → N in (x, y, α, θ) coordi-

nates by

u(t)(r, θ) =

(

0, y(t), arccos
−1 + r2

1 + r2
, θ

)

where we parametrize S2 by stereographic projection, so our domain is R2 with polar coor-

dinates and with the conformally euclidean metric

g =
4

(1 + r2)2

(

dr2 + r2dθ2
)

.
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Theorem 2.1. y(t) = 1
2π ln 2

√
2π2(t + t0), for t0 > 0 sufficiently large, yields a solution to

(1.6) for u(t):

ẏ(t) = −∂f
∂y

(0, y)

=
√
2πe−2πy(t) . (2.1)

Proof. Each u(t), as a map of (S2, g) → (S2, g), is the identity with respect to the metric g

on S2 and thus harmonic, that is, τα(u) ≡ 0 ≡ τθ(u). We also have ∆x = 0 = ∆y, grθ = 0,

and all partial derivatives are zero except for ∂α
∂r

= −2
1+r2

, ∂θ
∂θ

= 1. Using the formula (1.1),

we have

τx(u) = grrΓxαα(u)

(

∂α

∂r

)2
+ gθθΓxθθ(u)

(

∂θ

∂θ

)2

=
(1 + r2)2

4

(−1)

2
(x+ y)4

∂f

∂x
(0, y)

(

(−2)

1 + r2

)2

+
(1 + r2)2

4r2
(−1)

2
(x+ y)4

∂f

∂x
(0, y)

4r2

(1 + r2)2
12

= −(x+ y)4
∂f

∂x
(0, y)

= 0, since
∂f
∂x

(0, ·) ≡ 0

τy(u) = grrΓ
y
αα(u)

(

∂α

∂r

)2
+ gθθΓ

y
θθ

(u)

(

∂θ

∂θ

)2

=
(1 + r2)2

4

(−1)

2

∂f

∂y
(0, y)

(

(−2)

1 + r2

)2

+
(1 + r2)2

4r2
(−1)

2

∂f

∂y
(0, y)

4r2

(1 + r2)2
12

= −∂f
∂y

(0, y)

=
√
2πe−2πy.
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Suppose that y(t) solves (2.1). Then ÿ = −2πẏ2 and so ẏ(t) = 1
2π(t+t0)

for t0 > 0.

Write y(t) = 1
2π (C0 + ln (t + t0)). Using (2.1), we set ẏ = 1

2π(t+t0)
=

√
2πe−C0
t+t0

for t ≥ 0

and then get C0 = ln
(

2
√
2π2

)

.

The target manifold N is given [20] where Topping considered the harmonic map heat

flow from the 2-disc D into his manifold N with a suitable initial boundary condition and

proved a finite time singularity is developed at center and is “winding” in the sense of [20].

Given t0 > 0 sufficiently large, the tension field τ(u(t)) satisfies

ˆ

S2
|τ(u(t))|2dvol

S2
=

Vol(S2)

4π2
1

(t+ t0)
2
< C

for all t ≥ 0. Hence we have

Corollary 2.2. There exists a harmonic map heat flow from S2 into N having tension uni-

formly bounded in L2, but not converging anywhere as t→ ∞ although there exist sequences

{tn} such that u(tn) → u∞ in C∞ as n→ ∞.

Proof. For t0 > 0, tn = t0e
2πn yields such a sequence u(tn) → u∞ as n→ ∞.

2.2 Degenerate Hessian of the energy

Define a family of smooth variations u(s, t) : S2 → N in (w, z, α, θ) coordinates by

u(s, t)(r, θ) =

(

s, t, arccos
−1 + r2

1 + r2
, θ

)

. (2.2)
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Let W
1,2
1 (S2, N) denote the space of W1,2 maps from S2 to N whose restriction to the

second component of N = C × S2 is a degree 1 map S2 → S2. Note that the group

PSL(2,C) of complex automorphisms of P1 = S2 acts conformally on S2 and acts on

N = C × S2 by acting trivially on the first factor. Composition then gives an action of

PSL(2,C) on W
1,2
1 (S2, N): for γ ∈ PSL(2,C) and φ ∈ W

1,2
1 (S2, N) the map γ · φ is the

composition γ ◦ φ.

Lemma 2.3. The absolute minima for the energy function E(u) on W
1,2
1 (S2, N) is the set

M = { γ ◦ u(0, t) | γ ∈ PSL(2,C)},

which is diffeomorphic to S1 × PSL(2,C).

Proof. Any map u that minimizes E(u) is harmonic, and hence smooth. Writing u =

(u1, u2) : S
2 → C × S2, we have

E(u) =
1

2

ˆ

S2
|du1|2C + f |du2|2S2 dvol

≥ 1

2

ˆ

S2
f |du2|2S2 dvol

≥ 1

2

ˆ

S2
|du2|2S2 dvol

where the first inequality is strict unless u1 is a map to a point p ∈ C and the second

inequality is strict unless f(p) = 1, which occurs only if p lies on the circle S10 = {w = 0} in

C. Thus any u ∈ W
1,2
1 (S2, N) with minimal energy has the form u = (p, u2) where p ∈ S10

and u2 is a degree 1 map S2 → S2 with minimal energy. But minimal energy degree 1 maps
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P1 → P1 are holomorphic, and hence are elements of PSL(2,C).

Proposition 2.4. Along the minimum set M of the energy function E on W
1,2
1 (S2, N),

the Hessian of E is degenerate.

Proof. We will show that, for each t, the maps u(s) = u(s, t) defined by (2.2) are a smooth

1-parameter family of maps with u0 in the absolute minimum set M, d
ds
u(s)

∣

∣

∣

s=0
is not

tangent to M, and

d

ds
E(u(s))

∣

∣

∣

∣

s=0
= 0 and

d2

ds2
E(u(s))

∣

∣

∣

∣

∣

s=0

= 0. (2.3)

The energy density for u(s) is given by e(u(s)) = 1
2e(s):

e(s) = f(s, 0) =



















e−
2π
s ϕ(s) + 1 for s > 0,

1 for s ≤ 0

where ϕ(s) = sin 2π(1s − 1
8) +

√
2 for s > 0 . Direct calculation shows that the derivatives of

ϕ(s) satisfy ϕ(n) = O(s−2n) as s→ 0, and that

e′(s) = e−
2π
s
[

2πs−2 ϕ(s) + ϕ′(s)
]

e′′(s) = e−
2π
s
[

4π2s−4 − 2πs−3 + 2πs−2 ϕ′(s) + ϕ′′(s)
]

.

Thus as s → 0 we have e′(s) → 0 and e′′(s) → 0 (and in fact e(n)(s) → 0 for all n). This

gives the variations (2.3). Also note that the description of M = S1 × PSL(2,C) given in

the proof of Lemma 2.3 shows that d
ds
u(s)

∣

∣

∣

s=0
= (1, 0, 0, 0) is not tangent to M.
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Chapter 3

Hessian of the energy and W 2,2

convergence of harmonic map heat

flows

In this chapter, we prove that the harmonic map heat flow u(t) converges exponentially to a

harmonic map in W2,2 norm if the second variation of E(u(t)) is positive definite along u(t)

and the energy density e(u(t)) is uniformly bounded in t. Key ingredients of the proof are

the first and second variations formulas (3.1) and (3.9) for the energy along the harmonic

map heat flows, and W2,2 estimates (3.4) on harmonic map heat flows. For completeness

we record at the end of this chapter the proof of regularity of weakly harmonic maps from

Σ under the assumption that e(u(t)) is uniformly bounded in t.
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3.1 Preliminary lemmas

We start with the following formulas for the harmonic map heat flow.

Lemma 3.1. For a smooth harmonic map heat flow u(t) : M × [0, T ) → N , we have

d

dt
E(u(t)) = −

ˆ

M
|u̇(t)|2 dvolg (3.1)

and

E(u(t)) +

ˆ t

0

ˆ

M
|u̇(t)|2 dvol dt = E(u0) , ∀t ∈ [0, T ). (3.2)

Thus E(u(t)) is a nonincreasing function of t.

Proof. Multiplying (1.8) by u̇ and integrating over M yields

d

dt
E(u(t)) +

ˆ

M
|u̇(t)|2 dvolg = 0 ∀t ∈ [0, T ) . (3.3)

Then (3.2) follows by integrating in t.

For simplicity, we note that sup
Σ

|du| are used interchangeably with |du|∞ and numbered

constants below depend only on the geometry of Σ and N and |du|∞.

Lemma 3.2. Let u(t) : M × [0,∞) → N be a harmonic map heat flow. If sup
Σ

|du(t)| < C

∀t > T for some T ≥ 0, we have

‖u(t)− u(s)‖2,2 ≤ c1

(

‖u̇(t)− u̇(s)‖2 + ‖u(t)− u(s)‖1,2
)

∀s, t > T. (3.4)
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Proof. Regarding u(t) as maps into Rr, let v := u(t)− u(s). Then v is a weak solution of

∆v = (u̇(t)− u̇(s))− Φ(u(t), u(s)) (3.5)

where Φ(u(t), u(s)) := A(u(t))(du(t), du(t))−A(u(s))(du(s), du(s)). By the elliptic estimate

for the Laplacian, we have

‖v‖2,2 ≤ c2 (‖∆v‖2 + ‖v‖2)

≤ c2 (‖u̇(t)− u̇(s)‖2 + ‖Φ(u(t), u(s))‖2 + ‖u(t)− u(s)‖2) . (3.6)

Since A is a smooth symmetric bilinear tensor,

‖Φ(u(t), u(s))‖2 ≤ ‖ (A(u(t))− A(u(s))) (du(t), du(t))‖2

+ ‖A(u(s))(du(t)− du(s), du(t) + du(s))‖2

≤ c3 |∇A|∞ |du(t)|2∞‖u(t)− u(s)‖2

+ c4 |A|∞ |du(t) + du(s)|∞ ‖u(t)− u(s)‖1,2

≤ c5‖u(t)− u(s)‖1,2 ∀t, s > T. (3.7)

Thus (3.4) follows from (3.6) and (3.7).

Lemma 3.3. If u(x, t) satisfies the harmonic map heat flow equation then

−1

2
∂t|u̇|2 = 〈∇∗∇u̇, u̇〉+ tr 〈Ru(u̇, du)u̇, du〉, (3.8)

25



and hence

∆|u̇|2 = ∂t|u̇|2 + 2
(

|∇u̇|2 + tr 〈Ru(u̇, du)u̇, du〉
)

. (3.9)

Proof. By assumption, u(t) satisfies u̇ = tr∇du. Pick (x0, t0) ∈ M ×R and an orthonormal

frame {eα} on a neighborhood U of x0 such that [eα, et] = 0,∇eteα = 0 and∇et(∇eαeβ) =

0 at each point in U and we may assume (∇eα)x0 = 0 and hence [eα, eβ ]x0 = 0, ∀ α, β.

Then at the point (x0, t0),

∇tu̇ = ∇t (tr∇du)

= ∇t (∇α∇αu)

= ∇α (∇t∇αu) +Ru(u∗et, u∗eα)u∗eα

= ∇α (∇α∇tu) +Ru(u̇, u∗eα)u∗eα

= −∇∗∇u̇+ trRu(u̇, du)du, (3.10)

where we abbreviate ∇α = ∇eα and ∇t = ∇et . Noting that 1
2∂t|u̇|

2 = 〈∇tu̇, u̇〉 gives (3.8)

and (3.8) together with

∆|u̇|2 = −2〈∇∗∇u̇, u̇〉+ 2|∇u̇|2 (3.11)

yields (3.9).

Definition 3.4. For u ∈ C∞(M,N) a symmetric bilinear tensor B on u∗TN is defined as

Bu(V, V ) =

ˆ

M
|∇V |2 + trg〈Ru(V, du)V, du〉 dvolg ∀V ∈ u∗TN (3.12)

Remark 3.5. If u is a harmonic map then Bu is the Hessian of the energy at u, i.e. the
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usual second variation of the energy at u.

3.2 W 2,2 convergence of harmonic map heat flows

The following theorem holds for any closed Riemannian manifold M of any dimension.

Theorem 3.6. Let u(t) : M× [0,∞) → N be a smooth harmonic map heat flow and suppose

(a) there exist T ≥ 0 and λ > 0 such that

Bu(t)(u̇(t), u̇(t)) ≥ λ ‖u̇(t)‖22 ∀t > T. (3.13)

Then u(t) converges in L2 exponentially fast in t to a map u∞ ∈ L2(M,N).

(b) If further sup
Σ

|du(t)| < C ∀t > T , the convergence u(t) → u∞ is in W2,2 and u∞ is a

weakly harmonic map. If dimM ≤ 3 then the convergence is in C0 and if dimM = 2

then u∞ is a smooth harmonic map.

Proof. (a) Let E(t) denote the energy E(u(t)) of the solution u(t). Then

E′(t) = −
ˆ

M
〈τ(u(t)), u̇(t)〉 dvolg = −‖u̇(t)‖22 ≤ 0. (3.14)

Integrating both sides of (3.9) (noting that ∂M = ∅), and then using (3.13), we have

E′′(t) = 2Bu(t)(u̇(t), u̇(t)) ≥ 2λ‖u̇(t)‖22 = −2λE′(t) (3.15)
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for all t. Integrating in t,

E′(t) ≥ E′(T ) e−2λt = −‖τ(u(T ))‖22 e
−2λt, (3.16)

and so

‖u̇(t)‖2 ≤ ‖τ(u(T ))‖2 e−λt ∀t > T. (3.17)

Since the map of t ∈ [0,∞) → u(t) ∈ L2(M,Rr) is C1, we have

‖u(t)− u(s)‖2 ≤
ˆ s

t
‖u̇(τ)‖2 dτ ≤ ‖τ(u(T ))‖2

λ
e−λt (3.18)

for all T < t ≤ s (the first inequality in (3.18) is proved in Palais [12]). Hence {u(t)} is

Cauchy in L2 and so limt→∞ u(t) = u∞ exists and is unique in L2(M,Rr). Moreover,

u∞(x) ∈ N almost everywhere x, since u(t)(x) ∈ N ∀(x, t).

(b) Now suppose that |du(t)|∞ < C ∀t > T . By interpolation, let C = C(ǫ) > 0 be a

positive constant such that

‖u(t)− u(s)‖1,2 ≤ ǫ‖u(t)− u(s)‖2,2 + C(ǫ)‖u(t)− u(s)‖2. (3.19)

Taking ǫ = 1
2c1

and using (3.4), we have

‖u(t)− u(s)‖2,2 ≤ c6 (‖u̇(t)− u̇(s)‖2 + ‖u(t)− u(s)‖2)

≤ c7 e
−λt ∀t ≤ s, (3.20)

where c7 = c6‖τ(u(T ))‖2
(

2 + 1
λ

)

. Thus u(t) is also Cauchy inW2,2 and so converges
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to u∞ in W2,2 as t→ ∞. Moreover, (3.17) implies

‖∆u∞ + A(du∞, du∞)‖2 = lim
t→∞

‖∆u(t) + A(du(t), du(t))‖2 = lim
t→∞

‖u̇(t)‖2 = 0.

If dimM ≤ 3 then C0 convergence follows from the Sobolev embedding theorem. If

dimM = 2 then the well-known theorem of Hélein [7], or Lemma 3.8 below, implies

that u∞ is a smooth harmonic map.

Remark 3.7. Under the hypotheses of Theorem 3.6 with M = Σ2, u∞ is the unique har-

monic map in the weak W1,2 closure of the flow {u(t) | t > T}. In particular, the weakly

convergent subsequences {un} of Struwe’s Theorem 1.6 all converge to u∞.

Instead of using Hélein’s theorem, we can use the following bootstrap argument in the

last sentence of the proof of Theorem 3.6.

Lemma 3.8. If dimΣ = 2, any weakly harmonic W1,2 map u : Σ → N with sup
Σ

|du| < C

is smooth.

Proof. Using sup
Σ

|du| < C and Hölder inequality, we have u ∈ W2,p(Σ, N) ∀p ∈ (2,∞),

since

‖u‖2,p ≤ c8(‖∆u‖p + ‖u‖p)

≤ c9(‖A(u)(du, du)‖p + ‖u‖p)

≤ c10(1 + ‖u‖2), (3.21)

where the constant c10 depends on p > 2 and Vol(Σ). By the Sobolev embedding theorem
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W2,p →֒ C1, u ∈ C1(Σ, N).

Using the Bochner formula for functions,

|∆∇αu| = |∇α∆u+Rαβ∇βu|

≤
∣

∣∇α
(

A(u)(du, du)
)∣

∣ +
∣

∣Rαβ∇βu
∣

∣

≤ |∇A|∞|du|+ 2|A|∞|∇2u| |du|+ |R|∞|du|

≤ c11

(

|∇2u|2 + |du|2 + |du|2
)

,

where the last inequality holds by Young’s inequality. By (3.21), we have

‖u‖3,p ≤ c12‖u‖22,2p < ∞ (3.22)

for all p <∞. Hence u ∈ C2(M,N). By induction, we have

∆∇α1 · · ·∇αk+1u = ∇α1 · · ·∇αk+1∆u+ lower order terms.

Hence ‖u‖k+1,p ≤ c13
∑k
l=0 ‖u‖l,p ∀p and thus u ∈ Ck(M,N) for each k.

30



Chapter 4

Continuity of Hessian

In this chapter we discuss topologies on the space of maps to work with and then prove

that the symmetric bilinear tensor B is continuous on the space of maps in the W1,2 ∩ C0

topology. Roughly, this implies that the symmetric bilinear tensor B is positive definite at

u nearby the accumulation point u∞ under the assumptions (a) and (b) of Theorem A.

4.1 Sobolev spaces of maps

For a closed Riemann surface Σ let M denote the completion of C∞(Σ, N) with respect to

the W1,p norm (p > 2) where N is isometrically embedded in Rr as above. For dimΣ = 2,

the Sobolev embedding theorem implies that M embeds continuously in C
1−2

p (Σ, N) and

hence M is a C2 separable Banach manifold. Then TuM is the set of W1,p vector fields

along image:

TuM =
{

V ∈ Γ
(

u∗TN
)

| ‖V ‖p1,p <∞
}

, (4.1)
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where ‖V ‖p1,p =
´

M |∇V |p + |V |p dvolg. Hence M carries a weak L2 Riemannian metric

given by

〈V,W 〉2 =

ˆ

Σ
〈V,W 〉 dvolg

and a weak W1,2 Riemannian metric given by

〈V,W 〉1,2 =

ˆ

Σ
〈∇V,∇W 〉+ 〈V,W 〉 dvolg (4.2)

for V,W ∈ TuM. Note that TuM is not complete with respect to either L2 or W1,2

topology.

Lemma 4.1. Suppose that the symmetric bilinear form B is positive definite at u ∈ M with

respect to 〈 ·, · 〉2: there exists λ > 0 such that

Bu(V, V ) ≥ λ‖V ‖22 ∀V ∈ u∗(TN). (4.3)

Then B is positive definite at u with respect to 〈 ·, · 〉1,2: there exists µ > 0 depending on

Σ, N, λ and |du|∞ such that

Bu(V, V ) ≥ µ‖V ‖21,2 ∀V ∈ u∗(TN). (4.4)

The constant µ > 0 is uniform on any set of maps with a uniform bound |du|∞ < C.

Proof. Using the Hölder inequality and the interpolation inequality,

ˆ

Σ
|∇V |2 + |V |2 dvolg ≤ Bu(V, V ) + 2|R|∞

ˆ

Σ
|V |2|du|2 dvolg +

ˆ

Σ
|V |2 dvolg

≤ Bu(V, V ) + 2|R|∞‖V ‖24‖du‖
2
4 +

ˆ

Σ
|V |2 dvolg

≤ Bu(V, V ) + c14 ǫ‖∇V ‖22 + (1 + C(ǫ)) ‖V ‖22,
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where c14 = c14 (|R|∞, |du|∞,Vol(Σ)). Taking ǫ = 1
2c14

and absorbing the second term

to the left hand side,

‖V ‖21,2 ≤ 2Bu(V, V ) + c15‖V ‖22

≤
(

2 +
c15
λ

)

Bu(V, V ).

4.2 Continuity of Hessian

Fix an isometric embedding N →֒ Rr with a second fundamental formA. For small ǫ > 0 and

let Nǫ be an ǫ-neighborhood of N in Rr such that the nearest projection map proj : Nǫ →

N is well-defined. Let u, v ∈ C∞(Σ, N). For V ∈ Γ(u∗TN), there is a corresponding

V̂ ∈ v∗TN such that V̂ = πvV via the composition

u∗TN →֒ u∗TRr ⋍ Σ×R
r
⋍ v∗TRr πv→ v∗TN

where πv : v
∗Rr → v∗TN is the orthogonal projection to the image of v. Let D denote

the Levi-Civita connection on Rr. For X ∈ TΣ, A(u)(u∗X, V ) is the normal component of

DXV such that

πu = dproju,

Dπu(X, V ) = A(u)(u∗X, V ),

∇XV = DXV − A(u)(u∗X, V ).
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Note the sign convention.

Now extend A smoothly to a tensor in a neighborhood Nǫ of N in Rr. For Theorem 4.3

we estimate the difference between the second fundamental forms at two points of N .

Lemma 4.2. There exists a constant c16 > 0 depending on the geometry of N such that

∣

∣ |A(u)(V,W )| − |A(v)(V̂ , Ŵ )|
∣

∣

≤ c16
(

|u− v| |V | |W |+ |V − V̂ | |W |+ |V̂ | |W − Ŵ |
)

, (4.5)

where c16 > 0 depends on the geometry of N .

Proof. Because N is compact, both |A| and |∇A| are bounded. We can then write

A(u)(V,W )− A(v)(V̂ , Ŵ )

= (A(u)− A(v))(V,W ) + A(v)(V − V̂ ,W ) + A(v)(V̂ ,W − Ŵ ),

and note that the Mean Value Theorem implies that |A(u)− A(v)| ≤ C dist(u, v) for some

C > 0. Lemma 4.2 follows because the Riemannian distance dist(u, v) in N is uniformly

equivalent to the euclidean distance |u− v|.

Define the W1,2 ∩ C0 topology by the norm

|||u− v||| := ‖u− v‖1,2+ sup
x∈Σ

|u(x)− v(x)| (4.6)

for maps u, v : Σ → N →֒ Rr.
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Theorem 4.3. Suppose there exists λ > 0 such that

Bv(V, V ) ≥ λ‖V ‖22 ∀V ∈ Γ(v∗TN).

For C > 0 given, there exist µ = µ(Σ, N, λ, C) > 0 and a W1,2 ∩ C0 neighborhood U of v

such that

Bu(V, V ) ≥ µ‖V ‖22 ∀V ∈ Γ(u∗TN)

for all u ∈ UC := U ∩ {sup
Σ

|du| < C}.

Proof. Fix v : Σ → N and let δ1 <
1
2inj(N) be a small positive number to be chosen later

and set δ := sup
x∈Σ

dist(u(x), v(x)) < δ1. Write

Bu(V, V )−Bv(V̂ , V̂ )

=

ˆ

Σ
|∇V |2 − |∇V̂ |2 dvolg +

ˆ

Σ
trg〈Ru(V, du)V, du〉 − trg〈Rv(V̂ , dv)V̂ , dv〉 dvolg

= I + II. (4.7)

(I) Let {eα} be a local orthonormal frame. For V ∈ Γ(u∗TN), we have

∇αV̂ = DαV̂ − A(v)(v∗eα, V̂ )

= Dα(πvV )−A(v)(v∗eα, V̂ )

= Dπv(v∗eα, V ) + πv(DαV )− A(v)(v∗eα, V̂ )

= A(v)(v∗eα, V − V̂ ) + πv(DαV ),

where
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πv(DαV ) = (πv − πu)(DαV ) + πu(DαV )

= (πv − πu)(DαV ) +∇αV.

Applying the Mean Value Theorem with π = dproj, we have the bounds

|πv − πu| ≤ c17 δ,

|V − V̂ | = |(πv − πu)V | ≤ c18 δ |V |. (4.8)

Noting

|DαV | ≤ |∇αV |+ |A|∞ |du|∞|V | ≤ c19(|∇αV |+ |V |),

we have

∣

∣ |∇αV | − |∇αV̂ |
∣

∣ ≤ |A(v)(v∗eα, V − V̂ )|+ |(πv − πu)(DαV )|

≤ c20 δ(|∇αV |+ |V |), (4.9)

where c20 = c20(|A|∞, |du|, |dv|). And also,

|∇αV |+ |∇αV̂ | ≤ 2 |∇αV |+ c21 δ(|∇αV |+ |V |)

≤ c22 (|∇αV |+ |V |), (4.10)

where c22 = c22(|A|∞, |du|, |dv|). Then (4.9) and (4.10) yield
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I ≤
ˆ

Σ
(|∇V |+ |∇V̂ |)

∣

∣ |∇V | − |∇V̂ |
∣

∣ dvolg

≤ c23 δ

ˆ

Σ
(|∇V |+ |V |)2 dvolg

≤ c24 δ ‖V ‖21,2. (4.11)

(II) For N →֒ Rr the Gauss-Codazzi equation becomes

〈R(X, Y )Z,W 〉 = A(X,W ) ·A(Y, Z)− A(X,Z) · A(Y,W )

for X, Y, Z,W ∈ TN. Hence we have

∣

∣〈R(u)(V, u∗eα)V, u∗eα〉 − 〈R(v)(V̂ , v∗eα)V̂ , v∗eα〉
∣

∣ ≤ A1 + A2,

where

A1 :=
∣

∣ |A(u)(V, u∗eα)|2 − |A(v)(V̂ , v∗eα)|2
∣

∣,

A2 :=
∣

∣A(u)(V, V ) · A(u)(u∗eα, u∗eα)− A(v)(V̂ , V̂ ) ·A(v)(v∗eα, v∗eα)
∣

∣.

(A1) Noting (4.8), |V̂ | ≤ |V | and Lemma 4.2, we have

A1 ≤
(

|A(u)(V, u∗eα)|+ |A(v)(V̂ , v∗eα)|
) ∣

∣ |A(u)(V, u∗eα)| − |A(v)(V̂ , v∗eα)|
∣

∣

≤ c25 |V | ( δ |V |+ |du− dv| |V |)

= c25( δ |V |2 + |du− dv| |V |2), (4.12)

where c25 = c25(|∇A|∞, |A|∞, |du|, |dv|).
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(A2) Using Lemma 4.2,

A2 ≤
∣

∣A(u)(V, V )−A(v)(V̂ , V̂ )
∣

∣

∣

∣A(u)(u∗eα, u∗eα)
∣

∣

+
∣

∣A(v)(V̂ , V̂ )
∣

∣

∣

∣A(u)(u∗eα, u∗eα)−A(v)(v∗eα, v∗eα)
∣

∣

≤ c26 δ |V |2 + c27|V |2(δ + |du− dv|)

≤ c28 (δ|V |2 + |du− dv| |V |2), (4.13)

where c28 = c28(|∇A|∞, |A|∞, |du|, |dv|). But the Hölder inequality and the Sobolev

embedding W1,2 →֒ L4 give

ˆ

Σ
|du− dv| |V |2 dvolg ≤ ‖du− dv‖2 ‖V ‖24

≤ c29 ‖u− v‖1,2 ‖V ‖21,2 . (4.14)

Combining (4.12), (4.13) and (4.14), we have

II ≤ c30

(

δ + ‖u− v‖1,2
)

‖V ‖21,2 . (4.15)

Hence, from (4.11) and (4.15),

Bu(V, V ) ≥ Bv(V̂ , V̂ )− c31

(

δ + ‖u− v‖1,2
)

‖V ‖21,2, (4.16)

where c31 = c31(Σ, N, |dv|∞, |du|∞).

Now we prove Theorem 4.3. Using Lemma 4.1 and (4.8), one can choose a positive
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number µ1 > 0, depending on |du|∞, such that

Bv(V̂ , V̂ ) ≥ µ1‖V ‖21,2 ∀V ∈ Γ(u∗TN). (4.17)

Let δ1 > 0 be a positive number with δ1 <
µ1
2 c31

. If δ + ‖u − v‖1,2 < δ1, we have, from

(4.16) and (4.17),

Bu(V, V ) ≥ µ1 ‖V ‖1,2 − c31 δ1 ‖V ‖21,2

≥ µ1
2

‖V ‖21,2.
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Chapter 5

Proof of the main theorem

In this chapter we complete the proof of our main result Theorem A. To that end, we consider

a harmonic map heat flow u(t) : Σ → N whose energy density is uniformly bounded:

sup
Σ

|du(t)| ≤ C for all t > T0. (5.1)

Lemma 5.1 below shows that this bound implies that the flow is adherent to a smooth

harmonic map u∞ at t→ ∞. We then add the hypothesis that this limit u∞ is stable, that

is, the Hessian of the energy function is positive definite (in the sense of Definition 3.4) at

u∞. With these hypotheses, Proposition 5.2 implies that at some large time, the flow enters

and remains in a neighborhood of u∞ in which the symmetric bilinear tensor B is positive

definite. Theorem A then follows from the exponential convergence proved in Chapter 3.

To start, consider a harmonic map heat flow u(t) : Σ → N satisfying (5.1). This as-

sumption implies that the maps u(t) are uniformly bounded in W1,p for any p, so by the

compactness of the Sobolev embedding W1,p → C0 for p > 2, there is a sequence tn → ∞
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such that the maps u(tn), which we denote as un, converge in C0. In fact, using the heat

flow, we can also assume that the un converges in W1,2 as follows.

Lemma 5.1. For any harmonic map heat flow u(t) : Σ → N satisfying (5.1) , there is

a sequence tn → ∞ such that the maps un = u(tn) converge in W1,2 ∩ C0 to a smooth

harmonic map u∞.

Proof. As above let tn → ∞ be a sequence such that un converges in C0 and so does in L2.

By Lemma 3.1 we have

ˆ t+1

t

ˆ

Σ
|u̇(t)|2 dvolg → 0 as t→ ∞. (5.2)

Hence, after passing to a subsequence and relabeling, there exists a sequence tn → ∞ such

that ‖u̇n‖2 → 0 as n→ ∞. Under the assumption (5.1), the elliptic estimate for ∆ shows

‖un‖2,2 ≤ c32

(

‖u̇n‖2 + ‖un‖1,2
)

.

Interpolating the second term and absorbing to the left side, we have

‖un‖2,2 ≤ c33 (‖u̇n‖2 + ‖un‖2) .

Hence un converges to u∞ in W2,2, and so in W1,2. Moreover, u∞ is a harmonic map,

since ‖u̇n‖2 → 0 as n→ ∞.

The W1,2 ∩ C0 norm |||u||| = ‖u‖1,2+ sup
x∈Σ

|u(x)| used in (4.6) defines neighborhoods of

u∞

Uδ := {u | |||u− u∞||| < δ}.
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Proposition 5.2. Let u(t) : Σ × [0,∞) → N be a harmonic map heat flow and let δ1 > 0

be the constant in the proof of Theorem 4.3. Suppose that

(a) B is positive definite at u∞

(b) sup
Σ

|du(t)| < C ∀t.

For each δ < δ1 there exist a T > 0 such that if t > T , u(t) lies in the neighborhood Uδ,C of

u∞ defined by

Uδ,C := Uδ ∩ {u |sup
Σ

|du| < C}.

Proof. Choose a sequence tn → ∞ such that un converges to a harmonic map u∞ in

W1,2 ∩ C0 as in Lemma 5.1. By Theorem 4.3 with v = u∞ we have

Bu(V, V ) ≥ µ ‖V ‖22 ∀V ∈ Γ(u∗TN) (5.3)

for u ∈ Uδ,C . After passing to a subsequence, we can assume that

|||u(tn)− u∞||| < δ1
4

∀n.

Note that Theorem 1.6 implies that u is smooth on Σ×(0,∞) except for finitely many points

of Σ× (0,∞) and hence we can assume u ∈ C∞(Σ× [t1,∞), N). For each n, let

Tn := sup{t | |||u(s)− u∞||| < δ1 ∀s ∈ [tn, t]}.

If Tn = ∞ for some n, we are done. Suppose Tn < ∞ for each n. We then have Tn > tn

and |||u(tn) − u∞||| = δ1 for each n, since |||u(s) − u∞||| is a continuous function in s on
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[t1,∞). Note that Bu(s) satisfies the condition (5.3) for all s ∈ [tn, Tn). Then by the

Sobolev inequality and (3.20) we have

|||u(s)− u(tn)||| ≤ c34 ‖u(s)− u(tn)‖2,2 ≤ c35 e
−µtn ∀s ∈ [tn, Tn) (5.4)

for each n.

Choose n large enough that the right side of (5.4) is less than 1
4δ1. Then

|||u(s)− u∞||| ≤ |||u(s)− u(tn)|||+ |||u(tn)− u∞||| < δ1
4

+
δ1
4

=
δ1
2

for all s ∈ [tn, Tn). Hence, we have |||u(Tn)− u∞||| ≤ 1
2δ1, a contradiction.

Theorem A. Let u : Σ2 × [0,∞) → N be a smooth harmonic map heat flow such that u(t)

converges to a harmonic map u∞ weakly in W1,2. Suppose that

(a) the Hessian of the energy E is positive definite at u∞ and

(b) supΣ |du(t)| < C for all large t > T .

Then u(t) converges to u∞ exponentially fast in W2,2 and hence in C1.

Proof. By Proposition 5.2 and Theorem 4.3, one can find a T > 0 so that the symmetric

bilinear tensor B is positive definite along u(t) for all t > T . Hence Theorem A follows from

Theorem 3.6.
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Chapter 6

Examples of geodesic heat flows

A classical result in Riemannian geometry asserts that every map u0 : S
1 → M into a closed

Riemannian manifold (M,h) is homotopic to a closed geodesic. Intuitively, this can be

proven by deforming u0 by following the flow of the downward gradient vector field of the

energy function

E(u) =
1

2

ˆ

S1
|du|2 dθ (6.1)

on the free loop space of maps u : S1 →M . It is standard to do this using theW1,2 gradient

flow on the space of maps, but alternatively one can use the heat flow. Specifically, given an

W1,2 map u0 : S
1 →M , we can consider the “geodesic heat flow”

u̇ = ∇T T u(θ, 0) = u0(θ) (6.2)

One expects that this heat flow produces maps u(t) : S1 → M that converge to a closed

geodesic at t→ ∞. Standard results (cf. [8], [1]) show that the flow exists for all time, that

u(t) is smooth for each t > 0 and that there is a sequence tn → ∞ so that u(tn) converges
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in W1,2 to a closed geodesic. But, surprisingly, it is not known whether the flow converges

(without extracting a sequence).

Actually, convergence is claimed in [8]. Unfortunately, the proof relies on the assertion

that the energy E(t) = E(u(t)) along the flow is a convex function of t, and the proof of this

assertion in [8] has an error. In this chapter we give examples of geodesic heat flows that

show that

• the energy function E(t) need not be convex, and

• the geodesic flow may not converge.

Convergence results for the geodesic flow will be given in [1].

6.1 Geodesic heat flows on surfaces of revolution

In this section, we derive the equation for the harmonic map heat flow u(t) from S1 into a

surface of revolution M ⊂ R3, for u(t) being equivariant for the standard S1 action that

fixes the z-axis.

Consider a surface of revolution M in R3 obtained by rotating a curve r = f(z) ≥ 0

about the z-axis and imagine a circle S1 sitting in M as in Figure 6.1 below. Introducing

the angle coordinate θ to S1 and the cylindrical coordinates (r, θ, z) to R
3, one writes

u(θ, t) = ( f(z(t)) , θ , z(t) ) ∈M ⊂ R
3 (6.3)

Since the surface of revolution M is the graph of the map ϕ : [0, 2π) × R → M given by
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z

u

x

y

eiθ p(r, θ, z)

(M,h)

(S1, g)

Figure 6.1: u : (S1, g) → (M,h)

ϕ(θ, z) = (f(z), θ, z), we can use ϕ−1 as (global) coordinates for M as

ϕ−1 ◦ u(θ, t) = ( θ , z(t) ) := ( u1(θ, t) , u2(θ, t) ). (6.4)

In coordinates θ for S1 and (u1, u2) for M , the metric on the domain is given by

g = dθ2, (6.5)

and the metric on M is given by

h =
(

dr2 + r2dθ2 + dz2
)

|M

=

(

df

dz

)2
dz2 + f2dθ2 + dz2

= f2 dθ2 +
(

(f ′)2 + 1
)

dz2 (6.6)
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for f ′ = df
dz

. Then the geodesic heat flow equation u̇ = ∆u is given in coordinates by

u̇ = gθθ
2
∑

i=1





∂2ui

∂θ2
+

2
∑

j,k=1

Γijk(u)
∂uj

∂θ

∂uk

∂θ





∂

∂ui
. (6.7)

Using the definition of u1 and u2, the right side of (6.7) reduces to

u̇ = Γ111
∂

∂u1
+ Γ211

∂

∂u2

= 0
∂

∂u1
− 1

2
h22 h11,2

∂

∂u2

= − f f ′
(f ′)2 + 1

∂

∂u2
(6.8)

where we used the formula for the Christoffel symbols for M .

On the other hand, we have u̇ = ż ∂
∂u2

. Hence the harmonic map heat flow equation is

a nonlinear first order ODE: for z = z(t),

ż = − f(z) f ′(z)
(

f ′(z)
)2 + 1

. (6.9)

6.2 The energy function E(t) needn’t be convex.

We will find the solution of a S1 equivariant harmonic map heat flow u(t) from S1 into S2

whose energy function E(u(t)) is not convex. For future use, we present two ways of finding

the solution via cylindrical and spherical coordinates.

(Method 1) In cylindrical coordinates (r, θ, z), S2 as a surface of revolution about the z-axis

is obtained by rotating the graph r =
√

1− z2. Applying (6.9) with f(z) =
√

1− z2,
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the S1 equivariant harmonic map heat flow equation is

ż = z(1 − z2). (6.10)

Separating variables and taking integrals, we have

ˆ

dz

z(1 − z2)
=

ˆ

dt = t+ C (6.11)

for some constant C. Using the partial fraction expansion, the left integral of (6.11) is

ˆ

dz

z(1− z2)
= ln

|z|
√

1− z2
.

Noting z = cosα in spherical coordinates (θ, α) on S2, we have

et+C =
± cosα

√

1− cos2 α
= cotα.

Thus we have, for a constant C,

α = arccot et+C,

z = cos arccot et+C. (6.12)

(Method 2) Let (M,h) be the unit sphere S2 in R
3. In spherical coordinates (ρ, θ, α) in R

3,
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the harmonic map heat flow equation for maps u : S1 × [0,∞) → S2 is

u̇ = τ(u)

= gθθ
2
∑

i=1





∂2ui

∂θ2
+

2
∑

j,k=1

Γijk(u)
∂uj

∂θ

∂uk

∂θ





∂

∂ui
(6.13)

where u(θ, t) = ( θ , α(t) ) := ( u1(θ, t) , u2(θ, t) ) in spherical coordinates (θ, α) of S2

(see Figure 6.2).

Since ρ ≡ 1 on S2, the metric h on S2 is given by

h =
(

dρ2 + ρ2 sin2 α dθ2 + ρ2 dα2
)

|M

= sin2 α dθ2 + dα2. (6.14)

Then the same computation as in (6.8) shows

u̇ = α̇
∂

∂u2
= − 1

2
h22 h11,2

∂

∂u2
= −1

2
sin 2α

∂

∂u2
. (6.15)

Thus the harmonic map heat flow equation is

α̇ = −1

2
sin 2α. (6.16)

Using the relation z = cosα between two coordinates on S2, it is straightforward that

(6.16) is equivalent to (6.10).

We compute the energy function E(t) with the solution α(t) = arccot et+C where the

constant C will be determined later. From (6.5) and (6.14), the energy density e(u(t)) of
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z

u

x

y

eiθ

(S1, g)

θ

α

(S2, h)

p(1, θ, α)

Figure 6.2: u : (S1, g) → (S2, h)

u(θ, t) = ( u1(θ, t) , u2(θ, t) ) = (θ, α(t)) is

e(u(t)) =
1

2
|du(t)|2 =

1

2
h11 =

1

2
sin2 α,

since ∂u
1

∂θ
= 1 and ∂u2

∂θ
= 0. Consequently, the energy E(t) is

E(t) =
1

2

ˆ

S1
|du(t)|2 dθ = π sin2 α(t) =

π e−2(t+C)

1 + e−2(t+C)
.

This formula implies that if the initial map u(0) is a circle close to the north pole, say

α(0) = .01, then u(t) approaches the point map to the north pole exponential fast, and the

energy function is convex. However, if the initial map is a circle close to the equator in the

northern hemisphere, say α(0) = 0.49π = arccot eC , then z(t) increases slowly at first, then

rapidly, and then approaches z = 1 exponentially as in Figure 6.3(a). Correspondingly, the

energy E(t) decreases slowly at first, then rapidly, and then approaches 0 exponentially as

in Figure 6.3(b). In particular, the energy function E(t) is not convex.
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(a) z(t) for α(0) = 0.49π
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(b) E(t) for the same flow.

Figure 6.3: E(t) is not convex.

6.3 A non-converging geodesic heat flow

In this final section, we construct an explicit geodesic heat flow u(t) : S1 → (M,h) that does

not converge as t→ ∞. In this example, (M,h) is the 3-dimensional torus T3 with a warped

product metric — essentially the metric used for the harmonic map heat flow described in

Chapter 2. Again, this is based on the example of Topping in [20].

Let (w, z, θ) be the standard coordinates for the flat 3-torus T3 and fix a smooth cutoff

function η with support on [−2, 2], with 0 ≤ η ≤ 1 and with η ≡ 1 on [−1, 1]. Define a

metric h on T3 as

h = dw2 + 2η(w)w2dw dz +
(

1 + η(w)w4
)

dz2 + ψ(w, z)dθ2

where ψ(w, z) is the smooth function given by

ψ(w, z) =



















1 if w = 0,±π

1 + η(w)e
− 1
|w| (1 + sin

( 1
w − z

)

)

otherwise.
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If x = 1
w − z and y = z with 0 < w < 1, the metric is written as

h = (x+ y)−4dx2 + dy2 + ψ(x, y)dθ2

where ψ(x, y) = 1 + e−x−y(1 + sin x).

We consider the geodesic heat flow for maps u : S1 → T3 of the form

u(t)(θ) = ( 0, y(t), θ) (6.17)

in (x, y, θ) coordinates. Then the image of u(t) lies in the product of the curve {(0, y)} ⊂ T2

and S1. Noting
∂y
∂θ

= 0 and ∂θ
∂θ

= 1, we have

τx(u(t)) = gθθ Γxθθ

(

∂θ

∂θ

)2
= −1

2
hxx hθθ,x = 0, (6.18)

since hθθ,x =
∂ψ
∂x

(0, y) = 0. Similarly,

τy(u(t)) = gθθ Γ
y
θθ

(

∂θ

∂θ

)2
= −1

2
hxx hθθ,y = −1

2

∂ψ

∂y
(0, y) = e−y

τθ(u(t)) = gθθ Γθθθ

(

∂θ

∂θ

)2
= hθθ,θ = 0.

Since u̇ = (0, ẏ, 0), the geodesic heat flow equation is

ẏ = e−y. (6.19)

We take y(0) = π. Then the geodesic heat flow u(t) starts from (w, z) = ( 1π , π) and lies in

the set where η ≡ 1. Solving (6.19) for y, we have y(t) = ln(t+ eπ) and so the geodesic heat
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flow is

u(t)(θ) = (w, z, θ) =

(

1

ln(t+ eπ)
, ln(t+ eπ), θ

)

.

This flow does not converge anywhere as t → ∞ although there exist sequences {tn} such

that un → u∞ in C∞ as n→ ∞.
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