
A DIFFERENTIAL EVOLUTION APPROACH TO FEATURE SELECTION IN GENOMIC
PREDICTION

By

Ian Whalen

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Master of Science

2018

ABSTRACT

A DIFFERENTIAL EVOLUTION APPROACH TO FEATURE SELECTION IN GENOMIC
PREDICTION

By

Ian Whalen

The use of genetic markers has become widespread for prediction of genetic merit in agricultural

applications and is a beginning to show promise for estimating propensity to disease in human

medicine. This process is known as genomic prediction and attempts to model the mapping

between an organism’s genotype and phenotype. In practice, this process presents a challenging

problem. Sequencing and recording phenotypic traits are often expensive and time consuming.

This leads to datasets often having many more features than samples. Commonmodels for genomic

prediction often fall victim to overfitting due to the curse of dimensionality. In this domain, only

a fraction of the markers that are present significantly affect a particular trait. Models that fit to

non-informative markers are in effect fitting to statistical noise, leading to a decrease in predictive

performance. Therefore, feature selection is desirable to remove markers that do not appear to

have a significant effect on the trait being predicted. The method presented here uses differential

evolution based search for feature selection. This study will characterize differential evolution’s

efficacy in feature selection for genomic prediction and present several extensions to the base search

algorithm in an attempt to apply domain knowledge to guide the search toward better solutions.

ACKNOWLEDGEMENTS

I would first like to thank my referee committee: Cedric Gondro, PhD, Charles Ofria, PhD, and my

advisor Wolfgang Banzhaf, Dr.rer.nat. You have each contributed to my academic journey through

unique and invaluable ways. This thesis topic would not have been possible without Dr. Gondro’s

collaboration and genomics expertise. Dr. Ofria was first to spark my interest in evolutionary

computation and the process of conducting research. I will always think back fondly of my time

at the Devolab. Finally, Dr. Banzhaf has shown nothing but unwavering support for me during

my whirlwind tour of graduate school. I cannot express my gratitude enough for his guidance and

encouragement.

More generally, I would like to thank the BEACON Center for the Study of Evolution in

Action. The multidisciplinary spirit inspired by BEACON has contributed volumes to my personal

and professional life. BEACON funded this work under NSF Cooperative Agreement No. DBI-

0939454. Thanks also to Michigan State University’s Institute for Cyber Enabled Research. Their

high performance computing center—and its timely software update—was a cornerstone for the

completion of this thesis. Finally, thanks to my family and friends. I hope to see more of you now

that this document is complete.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 4
2.1 Microarray Data . 4
2.2 Genome Wide Association Studies . 4
2.3 Genomic Prediction . 5

2.3.1 Linear Methods . 6
2.3.2 Non-Linear Methods . 7
2.3.3 Heritability . 9

2.4 Microarray Feature Selection . 10
2.4.1 Filter Methods . 10
2.4.2 Embedded Methods . 11
2.4.3 Wrapper Methods . 12

2.5 Differential Evolution . 14
2.5.1 Real Valued Optimization . 15
2.5.2 Feature Selection . 15

CHAPTER 3 METHODS . 17
3.1 Differential Evolution . 17

3.1.1 Evaluation . 17
3.1.1.1 Random Keys . 18
3.1.1.2 SNPBLUP . 20
3.1.1.3 GBLUP . 20

3.1.2 Mutation . 21
3.1.3 Crossover . 21
3.1.4 Selection . 22

3.2 Self-adaptive Differential Evolution . 22
3.2.1 SaDE . 23
3.2.2 MDE_pBX . 23

3.3 Local Search . 25
3.4 Coevolution of Subset Size . 25
3.5 Seeded Initial Population . 26
3.6 Heritability Thresholding . 27

3.6.1 Simple Halting . 27
3.6.2 Marker Removal . 27

3.7 Data . 28

iv

3.7.1 Simulation . 28
3.7.2 Splitting . 28

CHAPTER 4 RESULTS . 30
4.1 Experimental Setup . 30
4.2 Data . 30
4.3 Fixed Subset Results . 31

4.3.1 Baseline . 31
4.3.2 Local Search . 32
4.3.3 Cross-validation . 33
4.3.4 Heritability Thresholding . 35

4.3.4.1 Simple Halting . 35
4.3.4.2 Marker Removal . 36

4.3.5 Self-adaptive Differential Evolution . 38
4.3.6 Seeding . 39
4.3.7 Combining Components . 41
4.3.8 Subset BayesR . 42

4.4 Coevolution Results . 43
4.4.1 Tuning Gamma . 43
4.4.2 Baseline . 45
4.4.3 Local Search . 46
4.4.4 Cross-validation . 46
4.4.5 Heritability Thresholding . 48

4.4.5.1 Simple Halting . 48
4.4.5.2 Marker Removal . 48

4.4.6 Self-adaptive Differential Evolution . 50
4.4.7 Seeding . 51
4.4.8 Combining Components . 52
4.4.9 Subset BayesR . 54

4.5 System Validation . 54

CHAPTER 5 CONCLUSION . 57

APPENDICES . 59
APPENDIX A . 60

BIBLIOGRAPHY . 66

v

LIST OF TABLES

Table 4.1: A table of evolutionary parameters used for DE. 31

Table 4.2: Results for the fixed subset cross-validation strategies. The mean validation
and testing accuracy columns are the mean of the maximum of each replicate’s
population. The p-value column is obtained by using a Mann-Whitney U test
to compare the testing accuracy of any other method to Monte Carlo cross-
validation, i.e. the alternative hypothesis is Ha : µother < µmonte carlo.
Significant results are bold where the threshold used is 0.05/3 = 0.0167. 35

Table 4.3: Detailed results for non-negative values of α in the heritability threshold
formula h(1+α) for the fixed subset experiments. The mean testing accuracy
column is the mean of the maximum of each replicate’s population. The
p-value column is obtained by performing a Mann-Whitney U test to compare
the testing accuracy of each value of α to α = 0, i.e. Ha : µother < µα=0.
Bold p-values are significant at a threshold of 0.05/2 = 0.025. All statistics
are gather by combining the results of the mean, median, minimum, and
maximum strategy, i.e. each column has 40 samples. 36

Table 4.4: Detailed results for the fixed subset self-adpative method experiments. The
mean testing accuracy takes the mean of the maximum accuracy of each
replicate. The p-value column is obtained by performing a Mann-Whitney U
test comparing SaDE to the other two methods, i.e. Ha : µother < µsade.
Bold p-values are significant at a threshold of 0.05/2 = 0.025. 38

Table 4.5: Detailed results for the fixed subset component combination experiments.
As before, the mean testing accuracy is the average of the maximum testing
accuracy of each replicate. Again, as in previous tables, the p-value col-
umn is calculated with the Mann-Whitney U test with alternative hypothesis
Ha : µother < µmonte + sade + seeding. Significant results are in bold, using
0.05/5 = 0.01 as a threshold. 41

Table 4.6: Detailed results for the subset BayesR experiment. The p-value column
was generated by the usual Mann-Whitney U test is performed comparing
mean testing accuracy with alternative hypoethsis Ha : µother < µbayesr .
Significant results are in bold using a threshold of 0.05/2 = 0.025. 43

vi

Table 4.7: Detailed results of the gamma tuning experiments. The mean testing accu-
racy column takes the average over the maximum testing accuracy in each
replicate. As before, the p-value column is obtained with a Mann-Whitney
U test comparing the testing accuracy of γ = 0.75 to the other values of γ,
i.e. Ha : µother < µγ=0.75. Bold p-values are significant at a threshold of
0.05/3 ≈ 0.0167 . 44

Table 4.8: Table showing detailed coevolutionary DE results for each cross-validation
experiments. The mean accuracy columns take the average of the maximum
validation/testing accuracy for each replicate. The average length column
refers to the average of the highest fitness individuals at final generation of each
replicate. The p-value column is calculated with the usual significance testing
using the Mann-Whitney U test with alternative hypothesis Ha : µother <
µmonte carlo. Significant results are shown in bold using a threshold of
0.05/3 ≈ 0.0167. 47

Table 4.9: Detailed results for non-negative values of α in the heritability threshold
formula h(1+α) in the coevolutionary experiments. Themean testing accuracy
column is the mean of the maximum of each replicate’s population. The p-
value column is obtained by performing a Mann-Whitney U test to compare
the testing accuracy of each value of α to α = 0, i.e. Ha : µother < µα=0.
Bold p-values are significant at a threshold of 0.05/2 = 0.025. All statistics
are gather by combining the results of the mean, median, minimum, and
maximum strategies, i.e. each column has 40 samples. 49

Table 4.10: Detailed results for the coevolution self-adaptive experiments. The mean
testing accuracy column is obtained by taking the mean of the maximum
testing accuracy of each replicate. As in previous tables, the p-value column
was generated with the Mann-Whitney U test with alternative hypothesis
Ha : µother < µvanillade. Significant results are in bold using threshold
0.05/2 = 0.025 . 51

Table 4.11: Detailed results for the coevolutionary component combination experiments.
As before, the mean testing accuracy is the average of the maximum testing
accuracy of each replicate. Again, as in previous tables, the p-value column
is calculated with the Mann-Whitney U test with alternative hypothesis Ha :
µother < µmonte + mde_pbx + seeding. Significant results are in bold, using
0.05/5 = 0.01 as a threshold. 53

Table 4.12: Detailed results for the coevolutionary subset BayesR experiment. As before,
the p-value columnwas generatedwith theMann-WhitneyU test by comparing
themean testing accuracieswith alternative hypothesisHa : µother < µbayesr .
Significant results at the threshold 0.05/2 ≈ 0.025 are in bold. 54

vii

Table 4.13: Detailed results of the system validation experiments. The p-value column is
generated with the usual U test on the mean testing accuracy with alternative
hypothesis Ha : µother < µ f ixed + monte + sade + seeding. Note that fi is the
randomly initialized value of the coevolution subset size for each vector, Xi.
Significant results are in bold using a threshold of 0.05/5 = 0.01 56

viii

LIST OF FIGURES

Figure 3.1: An example of the random key decoding used for the DE fitness function.
Here, the dimensionality of the problem is 5 and a subset of size 2 is selected
from the data matrix. The top vectors represent the unsorted DE vector and
its corresponding indices. The bottom vectors are the result of sorting and
the red line denotes the choice of the largest two values in the DE vector. . . . 19

Figure 4.1: Boxplots comparing fixed subset vanilla DE with commonly used genomic
prediction methods trained with the entire feature set. 32

Figure 4.2: (a) Boxplots comparing the fixed subset vanilla DE experiment before and
after the devised local searchmethod. (b) Convergence plot for the maximum
fitness at each generation for each replicate in the fixed subset vanilla DE
experiment. 33

Figure 4.3: (a) Boxplots comparing the different cross-validation schemes for the fixed
subset experiments. (b) Convergence plot for the maximum fitness at each
generation in the fixed subset Monte Carlo cross-validation experiment. 34

Figure 4.4: (a) A scatter plot with correlation analysis between final validation accuracy
and testing accuracy for 50 fixed subset vanilla DE replicates. (b) A plot
of the value of alpha used for each stopping condition statistic in the fixed
subset experiments, i.e. each search stops when the statistic equals h(1 + α).
Standard deviation is shown by error bars. 36

Figure 4.5: (a) Boxplots comparing fixed subset vanilla DE and the results of the removal
experiment. (b) The convergence plots of each replicate in themarker removal
experiment. 37

Figure 4.6: (a) Boxplots comparing the self-adaptive methods to vanilla DE in the fixed
subset experiments. (b) Convergence plots showing the mean of the maxi-
mumvalidation accuracies for fixed subsetMDE_pBXandSaDE.The shaded
region shows the standard deviation of the maximum fitness. 39

Figure 4.7: (a) Boxplots comparing seeded and unseeded DE in the fixed subset experi-
ments. (b) Convergence plot showing the fixed subset seededDE experiment.
Note the initial maximum fitness of the population is much higher than the
unseeded counterpart in Figure 4.2b. 40

Figure 4.8: Boxplots comparing the results of the fixed subset combination experiments. . . 40

ix

Figure 4.9: Boxplots comparing the results of the best found fixed subset DE method,
BayesR trained with the subset found using the best DEmethod, and standard
BayesR trained on the full dataset. 42

Figure 4.10: Results of the gamma tuning experiment, excluding experiments that failed
due to memory limitations. 44

Figure 4.11: (a) Boxplots comparing coevolutionary DE against commonly used genomic
prediction methods using the entire feature set. (b) Boxplots comparing
coevolutionary and fixed subset vanilla DE. 45

Figure 4.12: (a) Boxplots comparing the testing accuracy pre and post-local search for
coevolutionary DE. (b) The convergence plot for eight replicates of coevolu-
tionary DE (two failed due to memory limits). 46

Figure 4.13: (a) Boxplots comparing the different cross-validation methods for the coevo-
lution experiments. (b) The convergence plot for the coevolutionary approach
with Monte Carlo cross-validation. Note the similarity to Figure 4.3b. 47

Figure 4.14: A plot of the value of alpha and mean testing accuracy for each stopping
condition statistic in the coevolutionary DE experiments. The search halted
when a given statistic reaches h(1+α). Standard deviation is shown by error
bars. 48

Figure 4.15: (a) Boxplots comparing the testing accuracy of the coevolutionary marker
removal experiments. (b) The convergence plot for the coevolutionarymarker
removal experiment. 49

Figure 4.16: (a) Boxplots comparing the self-adaptive methods to vanilla DE in the co-
evolutionary case. (b) Convergence plots showing the mean of the maximum
validation accuracies for coevolutionary MDE_pBX and SaDE. The shaded
region shows the standard deviation of the maximum fitness. 50

Figure 4.17: (a) Boxplots comparing the seeded and unseeded coevolutionary experi-
ments. (b) Convergence plot of the seeded coevolutionary experiment. 51

Figure 4.18: Boxplots comparing the results of the coevolution combination experiments. . . 52

Figure 4.19: Boxplots comparing the results of BayesR trained with the subset found using
the best DE method, the best found coevolutionary DE method, and standard
BayesR trained on the full dataset. 53

Figure 4.20: Boxplots showing the results of the system validation experiments. Note that
fi is the randomly initialized value of the subset size for each vector Xi. 55

x

Figure A.1: Manhattan plot of the simulated data. The y-axis shows the − log10 of
each effect’s p-value. The x-axis describes the marker’s location on the
chromosome. Change in color denotes change in chromosome. The dotted
line shows the Bonferonni threshold, i.e. − log10(0.05/48588) ≈ 5.9876.
Due to the simulation process and the fact that this simple plot does not
account for population structure, most markers appear to be significant. 60

Figure A.2: (a) Fixed subset intergenerational cross-validation convergence plot. (b)
Fixed subset intragenerational cross-validation convergence plot. 61

Figure A.3: (a) Boxplots comparing the testing error of the fixed subset Monte Carlo
cross-validation experiment with 5,000 and 10,000 generations. The differ-
ence between the two is not significant, with p = 0.2990, though there is a
higher maximum testing accuracy of 0.5350. (b) Convergence plot of the
fixed subset Monte Carlo cross-validation experiment with 10,000 genera-
tions. Compare to Figure 4.3b. 61

Figure A.4: (a) Convergence plot of fixed subset MDE_pBX with Monte Carlo cross-
validation. (b) Convergence plot of fixed subset SaDE with Monte Carlo
cross-validation. (c) Convergence plot of fixed subset seeded MDE_pBX
with Monte Carlo cross-validation. (d) Convergence plot of fixed subset
seeded SaDE with Monte Carlo cross-validation. Note that none of the plots
exceed the heritability threshold h ≈ 0.6325. 62

Figure A.5: (a) Convergence plot of intergenerational cross-validation in the coevolution
setting. (b) Convergence plot of intragenerational cross-validation in the
coevolution setting. Missing replicates are due to memory overflow in both
cases. 63

Figure A.6: (a) Convergence plot of coevolutionary MDE_pBX with Monte Carlo cross-
validation. (b) Convergence plot of coevolutionary SaDE with Monte Carlo
cross-validation. (c) Convergence plot of coevolutionary seeded MDE_pBX
with Monte Carlo cross-validation. (d) Convergence plot of coevolutionary
seeded SaDE with Monte Carlo cross-validation. Note that none of the plots
exceed the heritability threshold h ≈ 0.6325. 64

Figure A.7: Manhattan plot of theWECdata. The y-axis shows the− log10 of each effect’s
p-value. The x-axis describes the marker’s location on the chromosome.
Change in color denotes change in chromosome. The dotted line shows the
Bonferonni threshold, i.e. − log10(0.05/48588) ≈ 5.9876. 65

xi

LIST OF ALGORITHMS

1 Differential Evolution . 18

2 Knockout Local Search . 26

xii

CHAPTER 1

INTRODUCTION

Using DNA markers for prediction of genetic merit has become widespread in plant and animal

breeding and is gaining momentum as a prognostic tool for susceptibility to disease in human

medicine. Meuwissen et al. [1] introduced the idea of using a very large number of markers

to predict phenotypes. This process is known as genomic prediction and tasks a system with

estimating the effects that thousands of markers have on a trait. For agricultural applications, these

effect estimations can be used to predict phenotypes or breeding values for new individuals that

do not have trait information but do have marker information. Over the past ten years, genomic

prediction has been widely adopted for genomic selection [2] in agriculture [3, 4, 5, 6] and in

human studies [7, 8]. Hayes, Bowman, Chamberlain, and Goddard [9] emphasize its value, touting

genomic selection as the most significant advancement for the dairy industry in the last two decades

with the potential to double the rate of genetic gain in particular yield indices. Hayes, Lewin, and

Goddard further emphasize its utility in [10] by pointing out valuable future objectives of genomic

prediction like reducing methane emission by ruminants1 to potentially mitigate the contribution

the livestock industry has to climate change.

Although conceptually straightforward, genomic prediction is a very challenging problem.

Genotyping and trait recording are costly and time demanding processes. The result is that most

genomic datasets will have hundreds of thousands or even millions of markers for which effects

need to be simultaneously estimated from usually only a few thousand phenotyped individuals. This

means that the datasets are underdetermined (also known as the p � n problem in bioinformatics).

Models trained on such data suffer from overfitting due to the curse of dimensionality. In effect,

genomic prediction can be treated as a high dimensionality, sparse data problem and, consequently,

suffers from the same issues as other problems of the same type. Statistical prediction models are

1Animals that digest through the rumination process which ferments normally indigestible plant
matter into useful byproducts [11].

1

suboptimal in this case since the accuracy marker effect estimates rapidly decays as the number of

features to be estimated increases. The accuracy of prediction is also conditional on the genetic

architecture of the traits – the interplay between genotypes and phenotypes is complex and varies

widely from trait to trait; e.g. highly heritable traits regulated by a few genes of large effect are easier

to predict than traits regulated by many genes with small effects and with a low heritability [12].

Moreover, there are still various other factors that will also influence the accuracy of prediction such

as marker density (if the data is not at full sequence resolution), measures of linkage disequilibrium

and family relationships [13, 14, 15], population stratification [16], sample size, reliability of

phenotypes [17], and, of course, the methodology used to estimate marker effects [14].

Since they are characteristically underdetermined, genomic datasets are prime candidates for

feature selection techniques. However, popular methods for genomic feature selection are often

statistically-based; e.g. genome wide association studies (GWAS) which aim to identify, in the case

of sequence data, the causal variants of a given trait or, when single-nucleotide polymorphism (SNP)

arrays are used, the markers that are in high linkage disequilibriumwith the causal variants [18, 19].

Such approaches are limited to local searches of the feature space since they are conditioned on

the supporting statistical evidence. Without feature selection, all markers must be simultaneously

estimated for an effect value without knowledge of their possible influence on a trait.

Even though quantitative traits are largely polygenic, with hundreds or thousands of variants

influencing a trait, it still stands to reason that not every single genetic variant across the genome

will have a real effect on a trait. This suggests that current methods lead to suboptimal accuracy

in genomic prediction due to background noise introduced by the large number of uninformative

effect estimations included in a model. Under this rationale, it stands to reason that better models

are attainable by using subsets of markers. Hence, genomic prediction should be treated as a

feature selection problem that is amenable to non-statistical methods since they are potentially

better at performing global searches of the feature space. The following study will discuss a

non-statistical approach for genomic prediction through the use of an evolutionary computation

(EC) technique called differential evolution (DE) [20] and compare its performance to mainstream

2

genomic prediction methods.

3

CHAPTER 2

BACKGROUND

2.1 Microarray Data

Microarray data is a general term used to describe data that represents something about organ-

ism’s genome. The use of microarray data has been the bedrock of many in human medicine and

agricultural. There are many types of microarrays such as protein, peptide, antibody, and DNA.

One of particular interest in this study is called a single-nucleotide polymorphism (SNPs) microar-

ray. As the name suggests, SNPs describe the phenomenon of a nucleotide in DNA switching to

another base, e.g. a "C" changing to "A" in some percent of a population. This results in ternary

datasets, where 0 and 2 represent to the homozygous genotypes (AA, BB) and 1 represents to the

heterozygous genotype (AB). SNP markers are one of the most commonly used ways to measure

genetic variation [21]. Forgoing the details of SNP detection, it suffices to say that SNPs allow

for a more compact representation of an organism’s genotype that highlights parts of the genome

that vary. SNPs are numerous in any organism’s genome. For reference, the human genome has

upwards of 11 million SNPs [22], and have been estimated to occur in about every 500 to 1000

base pairs [21].

2.2 Genome Wide Association Studies

Genome wide association studies (GWAS) seek identify which markers significantly affect a

particular trait. In human trials, this comes in the form of identifying genetic risk factors for a

particular disease [18, 23]. For agriculture and livestock applications, GWAS can discover genetic

factors that affect economically desirable traits like crop yield per hectare [6] or cattle muscle

marbling [24]. More concretely, a GWAS attempts to find what are called the quantitative trait loci

(QTL). A quantitative trait is a phenotype that is the cumulative effect of many markers and the

environment [21].

4

Asimplemethod forGWAS is to use a trait and single SNP regression tests to determine a p-value

for each marker [25]. Such a test lacks the ability to estimate or consider the interactions between

traits since each SNP is regressed independently. Such tests can be carried out by calculating

common statistics like ANOVA or an F-regression with the standard null hypothesis being that all

SNPs have an effect of 0 on the trait in question [25]. Normal significance testing would allow for

a threshold of, for example, 0.05 to reject the null hypothesis of a zero effect. However, each test

is an independent trail. Many such trials increase the probability of a false positive when rejecting

the null hypothesis. Therefore, some adjustment must be made in order to sort out which SNPs

are actually significant. This is done using the Bonferroni adjustment [26]. The adjustment is a

simple ratio of the chosen significance threshold and the number of SNPs used in the statistical

trials, namely,

αGW AS =
α

nSNPs
. 2.1

This results in a dramatic change in the significance threshold, for example a human trial using 11

million SNPs would have αGW AS ≈ 5x10−9.

2.3 Genomic Prediction

Genomic prediction is the process of a system predicting an organism’s phenotype given

information about its genotype—usually in the form of SNPs. Meuwissen, Hayes, and Goddard

first introduced the idea of using a large number of genotypemarkers to predict a trait [1]. In contrast

to GWAS, genomic prediction usually attempts to use all of a population’s markers at once to predict

a trait, rather than analyze the significance any one marker has on a trait. Genomic prediction has

been shown to outperform simple GWAS in predicting complex traits and is hypothesized to value

the relationships between a population of animals more than specific markers [27]. Genomic

prediction has shown recent success across both agricultural application and human trials.

In agriculture, genomic prediction is mainly used for a process called genomic selection. Ge-

nomic selection seeks to automate the selection process using genetic markers to predict desirable

traits—i.e., estimated breeding values (EBVs)—of a population of plants or animals [2]. His-

5

torically, the selection process was accomplished with selective breeding. This practice is well

documented by classical naturalists like Darwin [28]. In the 20th century, selective breeding was

formalized by Henderson to use pedigree information to predict EBVs [29]. The current state of

the art replaces simple pedigree descriptions of relatedness with genomic relatedness described

by what is known as the genomic relationship matrix [21]. See Sections 3.1.1.2 and 3.1.1.3 for

specifics on how this prediction is carried out.

Genomic prediction for human trials is relatively new and is used for computing genetic risk

values for particular complex diseases. Diseases like coronary heart disease [30], diabetes [31],

cancer [32], schizophrenia [33], and celiac disease [34] are affected by many markers. Predicting

such diseases is a classification task that can usemethods like logistic regression [30] to discriminate

by outputting the probability a certain individual has or will develop a disease. Risk prediction

can be seen as a classical machine learning problem, where predictive accuracy metrics like area

under ROC curve are maximized [34]. Recently, agricultural techniques discussed above have been

applied to predicting celiac disease [34]. Human research has been mostly confined to the study of

disease through genetic risk, although some work has been done to predict quantitative traits like

height and heel bone density [35].

2.3.1 Linear Methods

Linear methods follow the standard assumptions found in any linear regression model. More

concretely, such methods approximate an infinitesimal model that assumes all markers contribute

some nonzero effect to genetic variance. Furthermore, it is assumed that all marker effects are

normally distributed. The following discussion presents the functionally equivalent [36] methods:

SNPBLUP [37] and GBLUP [38, 39]. These methods are well studied and have been applied to

many tasks [40, 41, 42].

SNP best linear unbiased predictor (SNPBLUP) is a simple method that applies classical ridge

regression [43] to marker assisted selection [37]. The original motivation for SNPBLUP was to

askew the necessity for marker subset selection and allow the optimization process to determine

6

important features. Genomic best linear unbiased predictor (GBLUP) takes a similar approach,

but rather than using the full data matrix, employs a genomic relationship matrix to estimate effect

values. See Sections 3.1.1.2 and 3.1.1.3 for specifics on how these processes are carried out on

SNP data.

It is important to point out that these methods share a common flaw. As mentioned above, they

both assume that each marker contributes a nonzero effect value. This leads to markers that do not

affect a trait being assigned an effect value. Though the value may be small, two problems arise

when fitting to uninformative markers. First, the effect value assigned is essentially fit to statistical

noise and has no meaning. Second, genomic datasets often have tens or hundreds of thousands

of markers. This causes these uninformative marker effect values to compound and reduce model

performance. Therefore, feature selection is desirable to attempt to remove markers that appear to

have effect on trait before building a model.

2.3.2 Non-Linear Methods

Mainstream non-linear methods for genomic prediction include BayesA, BayesB [1], BayesC [44],

Bayesian Lasso [45], and BayesR [46]. These methods—among others—are known as the Bayesian

alphabet [44]. Such techniques mainly differ in their assumptions about what prior distributions

the marker effects should follow. Even though a large proportion of markers might be allocated to

a distribution with very small to zero effects, these methods will still assign a nonzero posterior

density to most variants. Hence, the number of markers to be used for prediction is still large. Like

linear methods, this causes Bayesian methods to struggle to discriminate between markers with and

without an actual effect. Furthermore, these methods often become computationally intractable

at very high dimensionalities due to iterative sampling of each effect distribution. The following

presents the motivation of the original BayesA and B [1] as well as background on the more state

of the art BayesR [46].

The original motivation of applying Bayesian regression to genomic prediction in [1] was

to allow for estimation to reliably assign a zero effect value to uninformative markers [46]. In

7

summary, BayesA and B construct a more reliable posterior distribution for marker effects and

iteratively sample from the distribution with Gibbs sampling and assign SNP effect values with

a Metropolis-Hastings algorithm [1]. Erbe et al. critique this method in [46], pointing out that

BayesA and B are more computationally taxing than necessary and the assigned effect values too

closely follow the assumed prior distribution. Their proposed method, BayesR, has SNP effects

follow a simple mixture of Gaussians and showed an increase in predictive accuracy over BayesA

[46]. The computational efficiency of this method was later improved through an expectation

maximization approach rather than Gibbs sampling [47].

Recently, non-linear machine learning approaches have been applied to genomic prediction

as well. Li et al. [48] show promising results using random forest [49, 50], gradient boosting

machines [51], and extreme gradient boosting [52] to effectively identify subsets of SNPs and

predict traits in cattle. These methods identify SNPs through intrinsic methods discussed more

thoroughly in Section 2.4.2. Grinberg et al. also show similar results with random forests, finding

that the technique outperforms GBLUP in some cases on an agricultural application [53]. Machine

learning applications that compare with traditional methods (e.g. [53]) like SNPBLUP and state of

the art methods such as BayesR often present the most compelling results since they have a frame of

reference to the community at large. A future unification of the principles in machine learning and

quantitative genomics would likely further model performance. To conclude non-linear methods

for genomic prediction, background on deep learning methods is presented.

Deep learning for genomic prediction is in very early stages and is mostly valued for its

ability to extract marker embeddings. This is a form of dimensionality reduction that learns some

mapping between the genotype space and a lower dimensional space, often through convolutional

neural networks (CNNs). Zhou and Troyanskaya present one of the earliest attempts to apply

deep learning to marker data with the deep learning-based sequence analyzer (DeepSEA) [54].

DeepSEA uses a CNN to extract features and showed improvement over traditional GWAS when

identifying functional SNPs and predicting human traits. However, the dataset used in [54] was

small in comparison to standard deep learning datasets. Since deep learning is well-known for

8

needing massive amounts of data, it is likely performance was affected. More recently, Bellot, de

los Campos, and Pérez-Enciso [55] applied deep learning to the well-known UK Biobank (www.

ukbiobank.ac.uk) dataset. Their specific subset of the original data contained 102,221 samples

and 567,867 usable SNPs, a dramatic increase in sample size over typical genomic prediction

datasets. Genotypes were fed into a CNN and showed a competitive performance when compared

to traditional genomic predictionmethods [55]. Finally, methods that treat the genome as a sequence

(like text or audio) rather than a fixed set of features have also shown some success. For example,

Quang and Xie showed that a CNN paired with a special type of network called a recurrent neural

network showed a 50% increase in performance over related models in predicting the function of

non-coding regions of DNA [56]. However, models that treat markers as a sequence have not yet

been applied to genomic prediction.

2.3.3 Heritability

Discussion on genomic prediction is not complete without defining the concept of heritability.

Specifically, this definition focuses on “narrow sense” heritability, which is the total phenotypic

variance that is captured by only additive effects in the genotype [21], i.e. the effect of certain

markers being present is cumulative—rather than depending on particular combinations of markers

(epistatic effects). To define this heritability two other measures of variance must be discussed first.

First, σ2
A, is the contribution to genetic variance from individual alleles. Second, is σ2

P = σ
2
G +σ

2
E ,

where σ2
G is the total variance from the genome and σ2

E is the variance from the environment.

Then, heritability is defined by

h2 = σ2
A/σ

2
P, 2.2

as shown in [21]. Heritability is a fairly unique characteristic to genomic prediction, as it can be

used as a proxy for maximum performance. The value h (i.e.,
√

h2) is effectively the theoretical

limit on predictive performance for any genomic prediction model. This will be revisited in later

discussion, see Section 3.6. In practice, heritability can only be estimated. The true variance of the

9

www.ukbiobank.ac.uk
www.ukbiobank.ac.uk

genotype and environment are hard—if not impossible—to directly study. Heritability estimation

is done through analyzing the behavior of a trait through familial lines using a restricted maximum

likelihood technique [57, 58].

2.4 Microarray Feature Selection

Feature selection is a subset of a broad group of techniques known as dimensionality reduction.

Feature selection seeks to select a single “best” subset of a d dimensional dataset from 2d possible

subsets. This is in contrast to feature extraction (or transformation) that, in general, attempts to

apply a function to the set of all features to reduce the overall dimension. Feature selection can

be separated into three distinct classes: filter, embedded, and wrapper methods [59]. Recently,

non-statistical wrapper and embedded methods have gained popularity as they can often perform

global feature space searches and more easily take into account possible epistatic interactions, i.e.

interactions that are conditional on pairs, triplets, or larger tuples of markers all being a specific

value. This section will focus specifically on methods for feature selection in microarray data.

Some background included here is tangential to genomic prediction, but is included to give an

overview of methods for feature selection in bioinformatics.

2.4.1 Filter Methods

Filter methods are the most straightforward of the feature selection methods. These methods use

statistical properties of data and function independently of learning, which makes them useful as a

preprocessing step to remove noise. A feature is selected based on some statistical relationship it

has with the output being predicted—like correlation [60]—or its relationship with other features—

like redundancy [61]. Filter methods work by suppressing the least interesting variables, leaving

the more promising variables to be used to train a predictive model. Filter methods tend to be

computationally efficient and are robust to overfitting, making them a popular choice for genomic

prediction tasks involving classification [62, 63, 64].

The standard GWAS discussed in Section 2.2 can be used as a filtering method. For SNP data,

10

the standard single SNP regression (SSR) can be carried out to obtain p-values for each marker.

Then a model can be trained using the markers that are deemed significant. For certain traits, this

is likely to perform well. However, for most quantitative traits studied in genetic risk and genomic

selection problems, this is often suboptimal. Most critically, a SSR technique does not take into

account population structure, which is imperative to accurate prediction [65]. More subtly, an

SSR also does not take into account interactions between markers. Though some attempts have

been made at using mutual information filtering for microarray data [66]. Extensions of these

ideas to regression—e.g. RReliefF [67]—often do not generalize well and fall short in very high

dimensional problems with weak signals [68, 69] that are characteristic in genomic prediction.

2.4.2 Embedded Methods

Embedded methods—as their name suggests—are built into an existing prediction model. As

the model is optimized, a feature subset is naturally extracted through various properties of the

learning model. Such models include Lasso regression [70, 71], random forest (RF) [49, 50],

gradient boosting machine [51], and support vector machine (SVM) [72]. The following discussion

will focus on the use of RF and SVM for feature selection in microarray datasets.

Breiman explains the process of extracting a feature importance ordering using the original

implementation of RF, in [50]. The technique hinges on bagging which is the process of sampling

the dataset with replacement to train the decision trees in a random forest. To compute the

importance measure of each feature, its order is randomly permuted, and the samples are bagged

again to compute “out-of-bag” error for each decision tree in the forest. This error is then averaged

across all trees. Features with the highest mean error are considered most important because model

performance decreased the most when those particular features were randomly permuted. Since

this error is computed anyway during training a RF, some implementations report these feature

importance orderings without requiring any extra work, e.g. [73]. Some improvements to the

training process have been proposed to help select markers in disease prediction tasks [74] and

work has been done to optimize RF for higher dimensional datasets [75]. Li et al. [48] demonstrated

11

the performance of RF on a cattle genomic prediction task which, in certain cases, outperformed

common genomic prediction methods.

The SVM was first introduced by Boser, Guyon, and Vapnik in [72]. Its benefits to high

dimensional problems are two-fold. First, through the dual of the SVM objective function, di-

mensionality has little bearing on how quickly the model can be optimized. Second, the SVM is

inherently self-regularizing and thus the largest weights can be observed after training to extract a

feature subset—similar to the non-zero weights in Lasso regression. The SVM can be repeatedly

trained and non-important features removed until accuracy does not improve in a process called

SVM recursive feature elimination [76]. This technique has shown success in eliminating gene re-

dundancy in cancer classification sets [77, 78]. However, it does not consider interactions between

features [77, 76] and, again, no significant work has been done in regression tasks.

2.4.3 Wrapper Methods

A wrapper method iteratively updates its feature subset over time, preferring subsets that perform

better according to some measure—usually performance metrics of a predictive model trained with

the selected subset. The simplest wrapper method is an exhaustive search of the entire feature

space. For a given predictive model, this is guaranteed to select the optimal subset from the 2d

possible subsets of a d dimensional dataset. However, this is obviously an impossible task due to

computational limits as d grows to any size typical of microarray datasets. Therefore, approximate

methods that obtain a suboptimal feature subset are necessary in practice. The two main wrapper

methods that scale well in practice are sequential methods and population-based methods [76, 79].

Sequential methods are a deterministic way of selecting feature subsets. Sequential methods

either select features in a forward manner—starting from an empty set and adding features—or

a backward manner—starting from evaluating all features at once and removing features. For

simplicity, consider sequential forward selection (SFS) [80]. At every update of SFS, each feature

not included in the current subset is added, the objective value of the subset is calculated, then the

feature is removed. This process repeats until each feature is tested. Whichever feature increased

12

the objective function the most is added permanently and the process repeats. In the end, the

objective function will be evaluated d ∗ (d + 1)/2 times for a d dimensional dataset. Furthermore,

permanent addition of features in SFS leads to an issue known as “nesting” that can be addressed

with a “floating” method as described by Pudil, Novovičová, and Kitter in [81] that allows for

the removal of past features. Sequential forward selection is well-known in cancer applications

involving microarray data [76] and is often used along with some cross-validation scheme like

k-fold cross-validation to reduce selection bias in the validation set [82]. A common predictive

model in many wrapper methods is SVM which is sometimes combined with the recursive scheme

described in Section 2.4.2 to accelerate feature selection [77, 83].

Population-based methods include evolutionary computation (EC) approaches and particle

swarm optimization (PSO) [84]. Evolutionary computation includes a diverse catalog of meth-

ods like genetic algorithms (GAs) [85], genetic programming [86], evolutionary strategies [87],

differential evolution (DE) [20], and ant colony optimization [88]. See Section 2.5 for more on

DE and its use in feature selection. These techniques are biologically influenced heuristic based

search techniques that are valued for their abilities to search both globally and locally on difficult

problems. Furthermore, EC and PSO have the luxury of being able to use almost any objective

function—non-differentiable or otherwise—due to their gradient-free nature. There are consistent

themes across both of these paradigms. A group of solutions to a problem, sometimes called a

population of individuals, each have a fitness assigned to them based on a given objective function.

Solutions then somehow combine—or share information—to guide the search toward the global

optimum.

Evolutionary computation has been used to successfully select feature subsets on gene expres-

sion microarray data. Luque-Baena et al. [89] showed that a simple GA could outperform the state

of the art on a cancer pathway identification and classification task. Furthermore, it was shown in

[90] that a GA outperforms simple sequential feature selection methods. Feature subsets discovered

in [90] were also deemed more biologically relevant, potentially furthering the understanding about

the traits being predicted. The SVM makes an appearance in successful EC approaches as well.

13

Perez andMarwala present a hybrid approach that combines an SVM, GA, and simulated annealing

for feature selection in cancer datasets [91].

Feature selection with PSO has also shown success in microarray applications. Tang, Sugan-

than, and Yao [92] showed a PSO approached using an SVM for selecting features outperformed

sequential selection schemes as well as the recursive SVM scheme used in [77]. Li, Wu, and

Tan combined PSO and a traditional GA in [93] for a cancer classification task. Their results

outperformed almost all methods compared against, including the use of PSO and a GA separately.

This speaks to an important feature of EC and PSO-like approaches: they are often easily combined

with other approaches and domain knowledge of a particular problem to improve performance.

2.5 Differential Evolution

Differential evolution was originally proposed by Storn and Price as a greedier alternative to

stochastic optimization methods of the time [20]. Moreover, they proposed four criteria for a

practical optimization method: (1) the ability to handle non-differentiable objective functions, (2)

ease of parallelization, (3) few hyperparameters, and (4) consistent convergence. The authors go

on to demonstrate that DE satisfies these properties and show its efficacy compared to algorithms

like GAs when optimizing an array of test functions, e.g. Rastrigin’s function [94, 95]. DE is

well-known for its simplicity—requiring only 3 hyperparameters: mutation factor (F), crossover

rate (Cr), and population size (Np)—and fast convergence properties [96].

Advances inDE have focused on alleviating the choice of hyperparameter and crossover scheme,

leaving population size as the sole hyperparameter. Three well-known algorithms that remove

these choices are JADE [97], SaDE [98], and MDE_pBX [99]. These methods hinge on sampling

a mutation rate and/or crossover rate from a distribution for each individual in the population and

creating a new individual with the sampled rates. The distributions are then updated based on some

formula involving the number of “successful” offspring, i.e. newly created solutions that enter the

next population. See Section 3.2 for more detail. These methods are convenient and have shown

success on the usual battery of test problems, however some recent criticism has been made of

14

their efficacy in practice. Al-Dabbagh et al. [100] point out that some adaptive strategies have

begun to venture into the realm of ad hoc solutions that are sometimes problem dependent and

often lack analysis into the effect they have on sensitive hyperparameters. Self-adaptive methods

leave population size to be chosen by the practitioner. This choice has been a major DE research

area over the past decade and different algorithms behave quite differently with varying population

sizes [96]. The following is a brief review of common real valued optimization tasks DE has been

applied to and the applications of DE in feature selection. See Section 3.1 for a formal description

of the DE algorithm.

2.5.1 Real Valued Optimization

As mentioned, DE is prized for its convergence properties in real valued optimization problems.

Though the no free lunch theorems [101] lay out the fact that DE cannot be the best optimization

algorithm in all problems, it has shown success across many applications. The first “application”

that new DE algorithms are often applied to are the Congress on Evolutionary Computation (CEC)

benchmarks titled CEC2005 [102] and CEC2011 [103]. These benchmarks were established to en-

force consistency and create a common ground for comparison across a quickly expanding number

of stochastic optimization algorithms. CEC2005 is a catalog of unimodal, multimodal, and com-

position functions that are difficult to optimize. CEC2011 is a collection of real-world optimization

tasks gathered from various studies. DE has shown success outside of these benchmarks as well

in tasks like power grid management [104], clustering [105], and various microarray applications

[106, 107, 108].

2.5.2 Feature Selection

In order to do feature subset selection, a real valued vector must be somehow converted into a list

of integers corresponding to indices of features in a data matrix. This is done using a technique

known as random keys. First introduced by Bean, random keys was originally a technique to

adapt real valued GAs to be a general, robust encoding and decoding scheme for combinatorial

15

problems [109]. Random keys can be used for problems like as feature subset selection, the traveling

salesman problem [110], and scheduling. See Section 3.1.1.1 for a formal description. In summary,

the random key encoding allows for any standard genetic operations like crossover and mutation to

be carried out without violating the constraints defined in a problem.

Feature selection using DE is relatively new, with first successes being shown in 2008 [111].

In that work, DE was shown to outperform other wrapper methods like PSO and GAs in an

electroencephalogram classification task. The method presented here is the technique in [107, 108].

Both works deal with using DE to do feature selection in cattle applications. Esquivelzeta-Rabell et

al. show in [108] that DE feature selection performs well in selecting small, functional SNP panels

when compared to random search in a breed prediction task. Al-mamun et al. [107] further show

that a DE approach can outperform both BLUP and Bayesian Lasso on a simulated dataset task.

16

CHAPTER 3

METHODS

3.1 Differential Evolution

Differential evolution is a real-valued optimization technique originally introduced by Storn and

Price [20]. The strategy for DE introduced here is the original implementation. See Algorithm 1

for an overview which is abstracted into four main parts: evaluation, mutation, crossover, and

selection. These operations are carried out on a population of possible solutions to a problem. As

is true with all evolutionary algorithms, the population is the foundation of DE. It is comprised of

Np candidate solutions, all of which are vectors in Rd , where d is the dimensionality of the given

problem. Each solution, Xi =
[
x1,i, . . . , xd,i

]
has an associated fitness, which is assigned by an

objective function. Before a DE search begins, each vector is randomly initialized according to a

uniform random distribution, so that 0 ≤ x j,i < 1, ∀ j. Traditionally, in an evolutionary algorithm,

Xi would be referred to as a genome. However, given the application presented in this paper,

solution or solution vector will be preferred to avoid confusion with biological genomes.

As mentioned, an abstraction of DE is favored in Algorithm 1 as there are many possible way

to perform each of the operations. The rest of this section is organized into the descriptions of

operations applied to the population: Section 3.1.1 covers assigning each solution vector a fitness,

Sections 3.1.2 and 3.1.3 cover mutation and crossover, and Section 3.1.4 presents selection. Each

repetition of these stages is called a generation. Most often, this process is repeated until some

fixed number of generations, g.

3.1.1 Evaluation

Each vector in the population has an associated fitness that is assigned by an objective function.

Here, to obtain a fitness value we first subset the genotype matrix using a solution vector from

the population. See Section 3.1.1.1 for discussion on obtaining this subset. Next, we compute a

17

Algorithm 1 Differential Evolution
Input: Population size Np, dimensionality d, generations g
Output: Solution Pbest
1: P = {Xi |Xi ∈ [0, 1)d, 1 ≤ i ≤ Np}
2: evaluate(P)
3: for 1 to g do
4: P′ = {}
5: for i = 1 to Np do
6: Vi = mutate(Xi)
7: Ui = crossover(Vi, Xi)
8: P′ = P′ ∪ {Ui}
9: end for
10: evaluate(P′)
11: P = selection(P, P′)
12: end for
13: return Pbest

best linear unbiased prediction (BLUP) on the subset genotype matrix and the phenotype being

predicted. The fitness of a particular solution is then the absolute value of the Pearson’s correlation

between the predicted phenotypes and the true phenotypes. Then, of course, all fitnesses will be in

the range [0, 1]. For computational purposes, we dynamically choose between two BLUP strategies:

if the number of SNPs in the subset is smaller than the number of samples in the genotype matrix

we perform SNPBLUP (see Section 3.1.1.2), otherwise, we perform GBLUP (see Section 3.1.1.3).

3.1.1.1 Random Keys

Differential evolution in its standard form is a real valued optimization technique. Therefore, some

accommodation must be made to obtain indices of a feature subset from a vector of real numbers. A

well-known technique to accomplish this is known as random keys [109]. The randomkey technique

is well-known in EC due to its use in combinatorial optimization tasks such as scheduling [112].

Random keys represent solutions to a combinatorial problem as a real valued vector that is somehow

decoded to produce a solution that is always valid in the objective space. This is in contrast to a

traditional binary encoding that, when acted on by operators like mutation and crossover, may no

longer be a valid solution (e.g., a solution selects more than the desired number of features after

18

0.08 0.53 0.91 0.34 0.18 1 2 3 4 5

0.91 0.53 0.34 0.18 0.08 3 2 4 5 1

Figure 3.1: An example of the random key decoding used for the DE fitness function. Here, the
dimensionality of the problem is 5 and a subset of size 2 is selected from the data matrix. The top
vectors represent the unsorted DE vector and its corresponding indices. The bottom vectors are the
result of sorting and the red line denotes the choice of the largest two values in the DE vector.

crossover).

To demonstrate random keys, consider the example in Figure 3.1. In this case, imagine the

overall problem has a dimensionality of d = 5 and the desired subset size is two. In other

words, the data matrix X has five columns, two of which must be selected. Then, each solution

in the DE population will be a vector Xi ∈ R
5. In order to decode the corresponding feature

subset from a given vector, namely Xi = [0.08, 0.53, 0.91, 0.34, 0.18], it must be sorted to obtain

[0.91, 0.53, 0.34, 0.18, 0.08]. The choice of descending order is arbitrary—although it is intuitive

that larger values in the random key vector are “more important”. Then, the indices in the original

list that correspond to the two largest values in sorted list are chosen. More concretely, columns 3

and 2 of X will be used as the subset. If the desired effect occurs, over time DE should increase

the random key values of the feature subset indices that are most likely to correlate to a higher

fitness. Once a feature subset is obtained, either GBLUP or SNPBLUP is applied using the subset

data matrix and the Pearson’s correlation between the predicted and true phenotypes is calculated

by the following formula

rp =
n
∑n

i=1 yi ŷi −
∑n

i=1 yi
∑n

i=1 ŷi√∑n
i=1 y

2
i − nȳ

√∑n
i=1 ŷi

2
− n ¯̂y

. 3.1

where y is the vector of true phenotypes and ŷ is vector of predicted phenotypes.

19

3.1.1.2 SNPBLUP

SNPBLUP is a regression directly on the SNP data after adjustment for allele frequencies. More

concretely, we use the original data matrix X ∈ {0, 1, 2}n×d to construct p ∈ R1×d , the allele

frequency row vector,

p =
∑n

i=1Xi,·

2n
, 3.2

where Xi,· is the ith row of X. Then Z = X − p, where the subtraction here denotes a row-wise

subtraction. The SNPBLUP model is then denoted by

y = Zw + ε 3.3

where w ∈ Rd is a vector of effect values (weights) and ε is normally distributed noise. It is well

know that we can solve for the optimal ridge regression weight vector, w∗, using the Moore-Penrose

inverse (pseudoinverse), i.e.

w∗ = (ZTZ − λI)−1ZTy, 3.4

where I is the identity matrix. For SNPBLUP, λ is calculated using p,

λ =
2(1 − h2)p(1 − p)T

h2 3.5

where 1 is a vector of ones.

3.1.1.3 GBLUP

GBLUP is mathematically equivalent to SNPBLUP [36] and uses the genomic relationship matrix

(GRM), G ∈ Rn×n, rather than Z for prediction. The GRM is again calculated calculated using the

allele frequencies p. First, we calculate an intermediate W for brevity,

W = (X − 1) − (2p − 1). 3.6

Here, 1 denotes a matrix of ones and the middle subtraction is again row-wise. The GRM is then

G =
WWT

2p(1 − p)T
. 3.7

20

The regression model then becomes,

y = Gw + ε, 3.8

which can be solved again using the inverse of G+λI, where λ = (1− h2)/h2, which exists and will

be stable due to the regularization constant. In both SNPBLUP and GBLUP, the datasets used are

often manageable enough to compute the appropriate inverses directly. If this were not the case, w∗

can be just as easily obtained with gradient descent since linear regress has a convex loss function.

3.1.2 Mutation

The mutation operator uses a solution vector, Xi, to create a donor vector, Vi. This is done through

some linear combination of members of the population. There are many proposed methods for this

process. The two presented here are known as DE/rand/1,

Vi = Xa + F · (Xb − Xc) , 3.9

and DE/current-to-best/1,

Vi = Xi + F · (Xbest − Xi) + F · (Xa − Xb) . 3.10

Where a, b, and c are uniformly sampled random integers in the range [1, Np], a , b , c , i, for

DE population size Np, and Xbest is the vector with the best associated fitness. Finally, F > 0

is a hyperparameter known as the mutation factor which can intuitively be seen as how large the

"jumps" are in a DE update. DE/rand/1 is the original mutation method presented by Storn and

Price [20]. Both methods combine some sort of information from the population to guide the

search. Next, the information in the donor vector is shared with its associated solution vector.

3.1.3 Crossover

Crossover uses donor vector Vi =
[
v1,i, v2,i, . . . , vd,i

]
and parent vector Xi =

[
x1,i, x2,i, . . . , xd,i

]
to create a trial vector, Ui =

[
u1,i, u2,i, . . . , ud,i

]
. There are two methods for this: binomial (or

21

uniform) and exponential crossover [20]. For this study, only binomial crossover is used and in

general exponential crossover is less widely studied1. For each entry in the trial vector,

u j,i =


v j,i if rand[0, 1) < Cr or j = jrand

x j,i otherwise.
3.11

Here, Cr ∈ [0, 1] is the crossover rate hyperparameter, rand[0, 1) is a uniform random number in

the half-open range [0, 1), and jrand is a uniform random integer from [1, d] that is generated once

per generation for each solution in the population. The purpose of jrand is to ensure at least one

index is crossed-over with the donor vector for each vector in the population. This is as defined in

[20], however at higher dimensions jrand becomes less necessary.

3.1.4 Selection

The standard selection operator at each generation is a simple tournament selection between Xi and

Ui. If the fitness of Ui is greater than the fitness of Xi, it replaces Xi and continues on to the next

generation in the ith index of the population. This is a “greedy” feature of DE. Often in evolutionary

algorithms, having a better fitness increases a particular solution’s chances of continuing to the next

generation or creating new solutions, but does not always guarantee it.

3.2 Self-adaptive Differential Evolution

The above description of DE leaves out discussion on tuning the associated hyperparameters

F,Cr, and Np. These values often have a dramatic influence on the convergence of DE [98, 99]. As

a result, some effort has gone into alleviating the choice of F and Cr through self-adaptivemethods

that “learn” these values throughout the course of a DE experiment. In the methods presented

below, this is done by observing which particular settings create trial vectors that successfully enter

the next population.

1Exponential crossover is analogous to point based crossover common in GAs. This type of
crossover is done to exploit underlying structure in optimization problems.

22

3.2.1 SaDE

Qin and Suganthan present Self-adaptive Differential Evolution (SaDE) in [98] as a way to learn

not only the F and Cr parameters, but which mutation method to use as well. For each individual,

a donor vector has probability p of being created with DE/rand/1 and probability 1 − p of being

created with DE/current-to-best/1. Where p is initialized to be 0.5 and updated by calculating

p =
ns1 · (ns2 + n f2)

ns1 · (ns2 + n f2) + ns2 · (ns1 + n f1)
. 3.12

Where ns1 and n f1 are the number of trial vectors that were produced with donor vectors from

DE/rand/1 that entered the next population (a success) and the number that did not (a failure),

respectively. The values ns2 and n f2 have the same definition, but count the number of successes

and failures for DE/current-to-best/1. Finally, the first 50 generations of the search do not update

p to allow some time for the algorithm to stabilize and learn meaningful success and failure rates

[98].

Values of F and Cr are newly generated for each individual solution vector at each generation.

F is not learned using any particular scheme in SaDE, and is simply randomly sampled from the

normal distribution N(0.5, 0.32), then clipped to fall in the range (0, 2]. The authors state that Cr

is much more important to the performance of DE and chose to adjust it based on the trajectory of

the search [98]. To do so, a Cr is sampled for each index in the population every 5 generations from

N(Crm, 0.12). Then, similarly to the mutation strategy, every 25 generations, Crm is recalculated

based on the values of Cr that successfully produced trial vectors that entered the next population.

This method has proved successful on many test problems, so it will be applied here as well.

3.2.2 MDE_pBX

Islam et al. presented the MDE_pBX method in [99]. The main features of this approach are

a new mutation scheme called DE/current-to-gr_best/1, p-Best crossover, and a novel parameter

adaption scheme for both F and Cr . As its name suggests, DE/current-to-gr_best/1 is similar to the

23

DE/current-to-best/1 scheme and is expressed as

Vi = Xi + F · (Xgr_best − Xi) + F · (Xa − Xb). 3.13

The only difference from Equation 3.10 is using Xgr_best instead of Xbest . Here, the index gr_best

is the best solution vector chosen from a random q% of the population. Islam et al. show that this

encourages target solutions to be attracted to good solutions but not always the best solution in the

population, avoiding premature convergence [99].

The crossover scheme employed in MDE_pBX, namely p-best crossover, uses regular binomial

crossover with the caveat that the solution vector Xi is no longer chosen in order of the population

to be a the parent vector. Instead, the vector is randomly chosen from the p top-fitness vectors in

the population. Then, regular crossover is carried out as described in Equation 3.11. Parameter p

is calculated with the following expression

p = ceil
[

Np

2
·

(
1 −

gi − 1
g

)]
. 3.14

Where Np is the population size, gi is the current generation, and g is the total number of generations.

This formula results in parent vectors initially being chosen randomly from the entire population

and gradually decreases to only the best half of the population.

Finally, MDE_pBX also employs a parameter optimization scheme. A mutation rate factor is

sampled for each index in the population, following Cauchy(Fm, 0.1), where Fm is calculated using

the previous successful generations of trial vectors. Using the notation in [99], let Fsuccess be the

set of successful mutation factors, then

Fm = wF · Fm + (1 − wF) ·
∑

x∈Fsuccess

(
x2/3

|Fsuccess |

)2/3

. 3.15

Where wF = 0.8 + 0.2 · rand(0, 1) is a random weighting parameter. Similarly, crossover rates are

chosen from N(Crm, 0.1) where

Crm = wCr · Crm + (1 − wCr) ·
∑

x∈Cr_success

(
x2/3

|Cr_success |

)2/3

. 3.16

24

and wCr = 0.9 + 0.1 · rand(0, 1). These update functions are intended to gradually change Fm and

Crm throughweighting the previous stored values. All parameters here are shown to be good general

choices in [99] and Islam et al. show MDE_pBX performs well on the 2005 CEC benchmarks

[102] and a trajectory planning problem included in the 2011 CEC benchmarks [103].

3.3 Local Search

Local search is a common addition to EC algorithms to perform optimizations during or after

the search. Modern DE implementations often carry out a full search, then finish with local search

[98, 99] to fine tune the solution obtained. The local search method presented here is described

in Algorithm 2. Local search serves to relax the hyperparameter corresponding to the size of the

feature subset to select. Before the search begins we may only have an estimate of how many

features to select from the original set. As long as we overestimate, local search can serve to prune

out unnecessary features. The search operates by choosing the best solution by fitness, X, and

decoding it to obtain feature subset T = [t1, . . . , ts]. Binary mask m = [m1, . . . ,ms] determines

which indices of T to choose. More concretely T(m) defines a subset of T according to the

following rules,

mi = 0 =⇒ remove ti

mi = 1 =⇒ keep ti .
3.17

Local search is intended to determine which indices to retain by iteratively checking if the perfor-

mance of T(m) increases when index i is removed. If performance increases, index i is removed

permanently.

3.4 Coevolution of Subset Size

To further alleviate hyperparameter choice, one can include the size of the feature subset, s, in

the solution vector. This results in a mixed valued vector with entries 1 through d being in R and

entry d + 1 being an integer. During the decoding process described in Section 3.1.1.1, the value at

entry d+1 is rounded to the nearest integer and used as the subset size. This results in a coevolution

25

Algorithm 2 Knockout Local Search
Input: Final population {X1, . . . ,XNp}, population size Np, desired feature subset size s.
Output: Locally optimal solution T(m)
1: X = max1≤i≤Np fitness(Xi)

2: T = decode(X)
3: f = evaluate(T)
4: m = [1, . . . , 1]
5: for i = 1 to s do
6: mi = 0
7: fmask = evaluate(T(m))
8: if fmask > f then
9: f = fmask
10: else
11: mi = 1
12: end if
13: end for
14: return T(m)

scheme where both the subset contents and size are both optimized during the search. The simplest

solution to this new problem is to include all markers in the subset and do a full GBLUP on the

entire genome. As discussed previously, this results in the model fitting to uninformative markers.

Therefore, we impose a linear combination of objectives that maximizes accuracy and minimizes

subset size. More concretely, the fitness function, J, becomes

J(Xi) = accuracy_o f _model(Xi) − γ
s
d
, 3.18

where γ is a weight that must be tuned.

3.5 Seeded Initial Population

In order to incorporate domain knowledge, the results of a GWAS can be included in the initial

DE population. Through seeding, the indices corresponding to the s most significant SNPs are

marked with a value of 1 in some vector in the population. Since all solution vectors are initialized

in the range [0, 1), these indices will form the subset for that particular vector. Due to the greedy

nature of DE, the search will never reach a fitness value that is worse than the seeded initial vector.

26

3.6 Heritability Thresholding

As mentioned previously, the estimated heritability of a trait can be used to somehow augment

the DE search. Reaching values equal to or greater than h means the search has begun to overfit

to the validation set (see Section 3.7.2) since it has gone above the highest possible accuracy. The

peculiarity of h should be emphasized. It is quite uncommon for any predictive modeling problem

to have a hard threshold for performance. Usually a practitioner shoots for some value that is as

high as possible. The methods explored here are an initial look into using this value for preventing

overfitting in search based feature subset selection.

3.6.1 Simple Halting

A rudimentary method is to simply stop the search when some statistic of the population reaches

h(1 + α) for some small α ∈ (−1, 1). Where these possible measures could be the maximum,

minimum, median, or mean fitness of the population. This method is based on the fact that we can

treat h as a hard threshold and the idea that it could be better to simply stop searching rather than

continue a search that is already known to be overfit to the validation set.

3.6.2 Marker Removal

Another possibility is to remove some amount of the available SNPs when h(1 + α) is reached.

Let Xbest be the current best solution vector and its decoded vector be Tbest . From Tbest some r

SNPs are removed and combined with the current set of removed SNPs, R. Then, for every fitness

evaluation, the decoded vector sent to be evaluated is no longer simply Ti, for solution vector i,

but Ti \ R, where \ denotes set difference. When this occurs, the current population must also be

reevaluated to get new fitnesses based on the removed markers. Any vector that is empty after this

difference is simply assigned a fitness of 0. This method is employed to encourage selecting SNPs

that are less overfit to the dataset. At the end of the search, when evaluating each vector on the

testing set, Ti ∪ R is evaluated for each i.

27

3.7 Data

3.7.1 Simulation

To demonstrate the performance of DE, simulated data is favorable to control the complexities

introduced in genomic data. Specifically, the number of QTL, desired trait heritability, h2
in, and

absence of epistatic effects are controlled for through the following process. Using the genotype

matrix X ∈ {0, 1, 2}n×d , q columns are uniformly chosen the QTL. Let β∗ = [β1, . . . , βq]
T be

the true, simulated QTL effects. First, βi ∼ N(0, 1), ∀i. Then, β∗ is adjusted by calculating the

variance of each allele. For diploid organisms, there are three alleles: heterozygous (AB) and

homozygous (AA, BB). To determine the genetic variance, we calculate the rate that each allele

occurs (i.e. total occurrences of a particular allele divided by total number of sample in X). Then

the genotypic variance is simply the variance of these three values, namely VG. The true genetic

values are then calculated by

tg =
Xqβ

∗

VGh2
intv

, 3.19

where Xq ∈ {0, 1, 2}n×q is the matrix consisting of the q columns that were chosen to be QTL,

tv is the desired output trait variance, and the division corresponds to an element-wise division of

Xqβ
∗ ∈ Rn. The vector tg is then centered at zero by subtracting its mean. Finally, to calculate the

actual phenotypes, y, “environmental” noise is added to tg. This is done by calculating y = tg + ε .

To calculate ε , e =
[
e1, . . . , eq

]
, ei ∼ N(0,

[
tv(1 − h2

in)
]2
) is first sampled, then

ε = e ·

√
(1 − h2

in)tv
var(e)

. 3.20

When estimated, the heritability of the simulated trait will be approximately equal to the desired

heritability, h2
in.

3.7.2 Splitting

Data splitting is an important part of wrapper based feature selection as it can control some

overfitting the method displays. Here, the data is split into three groups. First, a testing set is

28

removed from the data that will not be used in any way during the search. This will serve as

external validation for the DE search process to report results. Then, with the remaining data a

few choices can be made. The simplest method uses no cross-validation and splits the data again

into training and validation. The training set is then used to train the BLUP model in the fitness

evaluation and the validation set is used to obtain the prediction accuracy (see Section 3.1.1).

However, since the DE search assigned fitness based on the same the same validation set for the

entire experiment, it is likely that the search will overfit to the validation set. To combat this, three

cross-validation schemes are proposed: (1) intergenerational cross-validation which does k-fold

cross-validation over the course of the search, changing the validation set at each generation. More

concretely, at generation gi, validation set k modgi will be used to calculate prediction accuracy,

and the of the data used as training. (2) Intragenerational cross-validation performs k-fold cross-

validation at every fitness evaluation. This method increases the computation time required by a

factor of k. But, intuitively, may provide a more reliable fitness value. (3) Monte Carlo cross-

validation uniformly samples a random subset of the data to be used as validation. The intuition

behind this method is to drive the search through obtaining solutions that better generalize across

the entire validation set.

29

CHAPTER 4

RESULTS

4.1 Experimental Setup

This results section is split into two main experiments in Sections 4.3 and 4.4. Each presents

results outlining the behavior of the baseline DE system and how it improves when certain features

are added to the system. These results should be seen as an exploratory study into the behavior

of DE for feature selection in genomic prediction. Once the best DE strategy is determined, a

completely separate dataset will be used to validate the exploratory results. For clarity, DE with

no added components will be referred to as vanilla DE, and those with added components will be

given appropriate monikers. Section 4.3 presents results for a fixed subset size and Section 4.4

shows results for coevolutionary DE, where the size of the subset is also searched. See Table 4.1

for a list of general evolutionary parameters which apply to the fixed subset and coevolutionary

experiments.

All significance testing was performed with the Mann-Whitney U test [113] implemented in

the SciPy statistics library [114]. The Mann-Whitney U test is a popular choice for stochastic

optimization due to the fact that it has no assumptions on the distribution of the random variables

being tested. All accuracy measures—excluding BayesR—were obtained with linear regression,

which has normally distributed error. This suggests that a t-test [115] should be used. However,

DE obtains a subset of the data stochastically, which has an unknown effect on the distribution of

final testing accuracy. Hence, the safer choice of the U test was preferred.

4.2 Data

The data used for both exploratory studies is a population of 7,539 sheep with 48,588 SNP

markers. In other words, the genotype matrix, X ∈ {0, 1, 2}7539×48588. These genotypes were

not gathered as a part of this study, only analyzed after the fact. Using this genomic data, a

30

Table 4.1: A table of evolutionary parameters used for DE.

Parameter (symbol) Value

Generations (g) 5000
Population Size (Np) 50
Crossover Rate (Cr) 0.8
Mutation Factor (F) 0.5

Replicates 10

phenotype was simulated by the method described in Section 3.7.1 with q = 100 QTL and

desired heritability h2
in = 0.4. The data was split regardless of cross-validation scheme using a

64%/16%/20% train/validation/test split (see Section 3.7.2; the split was a result of a 80%/20% split

on the whole dataset, then another 80%/20% split on the remaining non-test set data). Both k-fold

cross-validation schemes used k = 5. For the comparison methods—namely GWAS, GBLUP,

and BayesR—a 5-fold cross-validation scheme was used to present an average accuracy across the

dataset. To visualize the structure of the data and results of a simple GWAS, a Manhattan plot

is provided in Appendix Figure A.1. From this plot, it is apparent that this simulation process

produced data with many markers well above the Bonferroni threshold.

4.3 Fixed Subset Results

In the fixed subset results, a size of 1000 is used across all experiments. Since we later show

results on the coevolutionary method that searches the subset size as well as the subset contents, a

simple experimental set for only one subset size is presented here rather than exploring many fixed

subset possibilities.

4.3.1 Baseline

As a baseline, vanilla DE will be compared to the three following baseline genomic prediction

methods using the entire genome: (1) GWAS; a simple genome-wide association study on the data

is computed (see Section 2.2). Predictions are then made using the effect values calculated in

the single SNP regressions. (2) GBLUP; see Section 3.1.1.3. (3) BayesR; this is considered the

31

GWAS GBLUP DE BayesR
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

T
es

ti
n
g

A
cc

u
ra

cy

Figure 4.1: Boxplots comparing fixed subset vanilla DE with commonly used genomic prediction
methods trained with the entire feature set.

state-of-the-art method in this study. The BayesR experiments use 50,000 iterations with a burn-in

of 20,000.

See Figure 4.1 for the results of this baseline study. It is clear that DE alone on this problem

was not enough to be competitive with the state of the art method. However, there is something

to be said for the comparison against GBLUP. GBLUP is essentially the fitness function for DE,

which shows that the same accuracy was obtained using 50× less markers. The GWAS performed

poorly in comparison due to the fact that it does not account for any population structure in the

prediction and only uses the raw effect values. Now that this baseline has been established, the goal

is to reduce the gap between DE and BayesR.

4.3.2 Local Search

The local search results on vanilla DE pre and post-local search are presented in Figure 4.2a. The

mean and standard deviation of testing accuracy across the ten replicates for pre-local search are

32

Pre-local Post-local

0.38

0.40

0.42

0.44

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.4

0.5

0.6

0.7

0.8

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure 4.2: (a) Boxplots comparing the fixed subset vanilla DE experiment before and after the
devised local search method. (b) Convergence plot for the maximum fitness at each generation for
each replicate in the fixed subset vanilla DE experiment.

0.4232 ± 0.0174, and 0.4180 ± 0.0188 for post-local search. Post-local search is no better than

pre-local search with p = 0.3421, by the Mann-Whitney U test. The number of features selected

after local search was reduced to 753.4 ± 11.7234. This is an uninformative result since it is

obvious from Figure 4.2b that DE had likely overfit to the validation set. Since local search is also

carried out using the validation data, the result does not change significantly. Reducing subset size

while not significantly reducing accuracy is still, however, beneficial since a smaller subset is the

goal of this method. Moving forward in results, if a post-local search result showed a statistically

significant increase in performance, it will be reported instead of its pre-local search counterpart.

See Section 4.3.4 for more results and discussion on overfitting in the fixed subset experiments.

4.3.3 Cross-validation

As described in Section 3.7.2, three cross-validation schemes were compared: intergenerational,

intragenerational, and Monte Carlo cross-validation. See Figure 4.3a for boxplots comparing the

performance of each method and see Table 4.2 for more detailed results, including significance

testing. From Figure 4.3b, it appeared that the Monte Carlo search did not converge and did not

cross the h threshold of 0.6325. At this point, there are to confounding factors that seem to govern

33

None Interg. Intrag. Monte Carlo
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.35

0.40

0.45

0.50

0.55

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure 4.3: (a) Boxplots comparing the different cross-validation schemes for the fixed subset
experiments. (b) Convergence plot for the maximum fitness at each generation in the fixed subset
Monte Carlo cross-validation experiment.

overfitting: convergence of the search and final validation accuracy. A “close to” converged search

will likely have a validation accuracy over h. However, does this mean the search is overfit because

it has converged or because its fitness is greater than h? It is also possible that Monte Carlo

cross-validation presents a more difficult search problem and more generations are needed for DE

to begin to overfit to the validation data.

See Appendix Figure A.2 for the convergence plots of inter and intragenerational cross-

validation. These plots both closely resemble the convergence of vanilla DE in Figure 4.2b.

This further confounds the above discussion on convergence and final validation accuracy. In the

following section a test is presented to untangle these factors. Further evidence of Monte Carlo not

being overfit to the validation set comes from the local search results. None of the ten replicates

showed local search remove any of the 1000 features selected during the search. Possibly suggesting

that the subset found with this method generalizes better due to the randomization. See Appendix

Figure A.3 for an investigation into the convergence of Monte Carlo cross-validation. After 10,000

generations, no significant improvement was observed, suggesting that the Monte Carlo is fairly

converged after 5,000 generations, similar to the other cross-validation methods.

34

Table 4.2: Results for the fixed subset cross-validation strategies. The mean validation and testing
accuracy columns are themean of themaximum of each replicate’s population. The p-value column
is obtained by using a Mann-Whitney U test to compare the testing accuracy of any other method
to Monte Carlo cross-validation, i.e. the alternative hypothesis is Ha : µother < µmonte carlo.
Significant results are bold where the threshold used is 0.05/3 = 0.0167.

Method Mean Validation Accuracy
± Standard Deviation

Mean Testing Accuracy
± Standard Deviation P-value

No cross-validation 0.7913 ± 0.0106 0.4232 ± 0.0174 0.0
Intergenerational 0.7108 ± 0.0563 0.4208 ± 0.0388 0.0041
Intragenerational 0.6750 ± 0.0066 0.4252 ± 0.0287 0.0045
Monte Carlo 0.5427 ± 0.0157 0.4686 ± 0.0284 N/A

4.3.4 Heritability Thresholding

4.3.4.1 Simple Halting

As discussed in Section 4.3.3, there are likely two main confounding factors that contribute to

overfitting. To explore this, two experiments were devised: (1) 50 replicates of vanilla DE were run

and correlation between final validation and testing accuracies was calculated; (2) the heritability

stopping experiments described in Section 3.6 were carried out with α ∈ {−0.2,−0.1, 0, 0.1, 0.2}.

Meaning the search was stopped when some statistic—mean, median, minimum, or max—of the

population’s fitness reaches h(1 + α).

See Figure 4.4a for the correlation experiment results. The data clearly showed no correlation

between final validation accuracy and testing accuracy. This serves as evidence to conclude that

a higher validation accuracy alone did not indicate an overfit search. The convergence of the

search was considered next. Figure 4.4b shows the testing accuracy for varying values of α in the

heritability threshold formula h(1 + α). For a nonnegative α, the accuracy linearly decreased past

α = 0. However, the signal was less clear for negative values and no particular fitness statistic

seemed give better performance than another. See Table 4.3 for a significance testing on nonnegative

α values.

35

0.75 0.76 0.77 0.78 0.79 0.80 0.81
Final Validation Accuracy

0.36

0.38

0.40

0.42

0.44

T
es

ti
n
g

A
cc

u
ra

cy

r = 0.0621

(a)

−0.2 −0.1 0.0 0.1 0.2
α

0.42

0.43

0.44

0.45

0.46

0.47

T
es

ti
n

g
A

cc
u

ra
cy

Max

Min

Mean

Median

(b)

Figure 4.4: (a) A scatter plot with correlation analysis between final validation accuracy and testing
accuracy for 50 fixed subset vanilla DE replicates. (b) A plot of the value of alpha used for each
stopping condition statistic in the fixed subset experiments, i.e. each search stops when the statistic
equals h(1 + α). Standard deviation is shown by error bars.

Table 4.3: Detailed results for non-negative values of α in the heritability threshold formula h(1+α)
for the fixed subset experiments. The mean testing accuracy column is the mean of the maximum
of each replicate’s population. The p-value column is obtained by performing a Mann-Whitney U
test to compare the testing accuracy of each value of α to α = 0, i.e. Ha : µother < µα=0. Bold
p-values are significant at a threshold of 0.05/2 = 0.025. All statistics are gather by combining the
results of the mean, median, minimum, and maximum strategy, i.e. each column has 40 samples.

Value of α Mean Testing Accuracy
± Standard Deviation P-value

0 0.4499 ± 0.0180 N/A
0.1 0.4394 ± 0.0163 0.0045
0.2 0.4301 ± 0.0152 0.0

4.3.4.2 Marker Removal

The SNP removal strategy is intended to enforce diversity in solutions by removing features from

the possible solution set. See Section 3.6.2 for more details. At each removal, r = 1000 SNPs

are removed. Meaning the indices selected by the best performing vector are removed entirely.

Since this is a less aggressive strategy than halting the search completely, the SNP removal process

was performed when the maximum fitness of the population reaches h ≈ 0.6325. As a result,

this experiment did not consider a more stringent study involving α shown in Section 4.3.4.1.

Figure 4.5a shows the results of this experiment compared to vanilla DE. The convergence plots in

36

No Removal Removal

0.38

0.40

0.42

0.44

0.46
T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure 4.5: (a) Boxplots comparing fixed subset vanilla DE and the results of the removal experi-
ment. (b) The convergence plots of each replicate in the marker removal experiment.

Figure 4.5b show the sudden drops in fitness that were caused by reevaluating the entire population

after SNPs were removed. The mean testing accuracy of the SNP removal experiment was 0.4322

± 0.0149 which is better than vanilla DE (0.4232 ± 0.0174; p = 0.0058 by the Mann-Whitney U

test).

Though SNP removal does seem to be useful, the exact behavior of the subsets obtained and

the nature of the search convergence remains unclear. Each SNP removal experiment saw two to

four “SNP removal events.” Meaning that, at a maximum, the final combined genome size could be

3000 to 5000 SNPs. However, for two, three, and four removal events, the final combined genome

length was on average 2,732, 3,673, and 4,121 SNPs, respectively. This may suggest that even

with only a few removal events, the most informative SNPs were already discovered toward the

beginning of the search. This is supported further by the fact that, as the number of removal events

increased, the average combined genome length decreased in respect to its possible maximum. In

other words, the SNP removals were less effective as more occurred. The gradual increase in the

number of generations required to reach h shown in Figure 4.5b also supports this idea. If all SNPs

were equally as informative—which is known to not be the case from the simulation process—it is

expected that a convergence behavior seen before the first removal event would be observed after

37

each removal.

4.3.5 Self-adaptive Differential Evolution

In lieu of a parameter sweep on the mutation factor, F, and crossover probability, Cr , self-adaptive

DEmethods are preferred. See Section 3.2 for further elaboration on the benefit and efficacy of self-

adaptivemethods. Though theywere proposed as amethod to remove hyperparameter choice, SaDE

and MDE_pBX do both have hyperparameters, but their values effect the search much less than

setting static values for F and Cr [98, 99]. For both methods, the initial values are chosen to be the

same as their original settings. Namely, for SaDE the mutation factor distribution was N(0.5, 0.3)

and the crossover rate distribution is N(Crm, 0.1), where Crm was initially set to be 0.5. Other

parameters are the Crm recalculation interval, Crm regeneration interval, and initial learning period

which were set to 25, 5, and 50 generations respectively. The initial strategy choice probability, p,

was set to 0.5. For MDE_pBX, the mutation factor distribution was set to Cauchy(Fm, 0.1), the

crossover distribution followedN(Crm, 0.1), and the q parameter for determining group size during

crossover was set to 15%. The initial values for Fm and Crm were 0.5 and 0.6, respectively.

Table 4.4: Detailed results for the fixed subset self-adpative method experiments. The mean testing
accuracy takes the mean of the maximum accuracy of each replicate. The p-value column is
obtained by performing a Mann-Whitney U test comparing SaDE to the other two methods, i.e.
Ha : µother < µsade. Bold p-values are significant at a threshold of 0.05/2 = 0.025.

Method Mean Testing Accuracy
± Standard Deviation P-value

Vanilla DE 0.4232 ± 0.0174 0.0284
MDE_pBX 0.4093 ± 0.0241 0.0142

SaDE 0.4329 ± 0.0329 N/A

See Figure 4.6a for a comparison of vanilla DE to the self adaptive methods. Table 4.4 shows a

similar significance testing to previous results under the alternative hypothesis that SaDE performs

best. Though the significance testing indicates that MDE_pBX performed significantly worse

that SaDE, due to its convergence plot in Figure 4.6b it will be included in further experiments.

MDE_pBX showed an unusually fast convergence to a low validation accuracy. This suggests

38

Vanilla DE MDE pBX SaDE

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.4

0.5

0.6

0.7

0.8

M
ea

n
V

al
id

at
io

n
A

ac
cu

ra
cy

MDE pBX

SaDE

(b)

Figure 4.6: (a) Boxplots comparing the self-adaptive methods to vanilla DE in the fixed subset
experiments. (b) Convergence plots showing the mean of the maximum validation accuracies
for fixed subset MDE_pBX and SaDE. The shaded region shows the standard deviation of the
maximum fitness.

the search found a local minimum quickly that it could not escape from. On the other hand,

SaDE showed an expected convergence curve, similar to its non-self-adaptive counterpart shown

in Figure 4.2b.

4.3.6 Seeding

The seeding process described in Section 3.5 is intended to start the population out at a relatively

good neighborhood, rather than a completely random start that is usual of DE—and evolutionary

algorithms in general. The GWAS used for seeding was carried out on the remaining internal

validation data, i.e. 80% of the data after the 20% testing set was removed. The indices of the

most significant effect values were then used to seed the indices of a single individual in the initial

population.

See Figure 4.7 for the results of the seeding experiments. It is clear from the convergence plot

in Figure 4.7b that seeding gave the search an initial boost in validation accuracy, although this

may have simply led to the search overfitting more rapidly as it neared the h threshold. The slight

difference in performance shown in Figure 4.7a was not significant using the usual Mann-Whitney

39

Unseeded Seeded

0.38

0.40

0.42

0.44

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure 4.7: (a) Boxplots comparing seeded and unseeded DE in the fixed subset experiments.
(b) Convergence plot showing the fixed subset seeded DE experiment. Note the initial maximum
fitness of the population is much higher than the unseeded counterpart in Figure 4.2b.

Monte +
MDE pBX

Monte +
Seeding

Monte Monte +
MDE pBX +

Seeding

Monte +
SaDE

Monte +
SaDE +
Seeding

0.375

0.400

0.425

0.450

0.475

0.500

0.525

T
es

ti
n
g

A
cc

u
ra

cy

Figure 4.8: Boxplots comparing the results of the fixed subset combination experiments.

U test (p = 0.1941). Further experiments that combine components of previous methods will also

combine seeding to observe the effect of a warm start.

40

4.3.7 Combining Components

This section will investigate the effect of combining certain components presented in the preceding

experiments. In order to control overfitting in these experiments, it is opted to use Monte Carlo

cross-validation instead of a stopping or marker removal scheme. In all experiments presented

here, no replicate exceeded the heritability threshold due Monte Carlo cross-validation. Hence, no

stopping or removal schemewould have had a chance to be applied. See Figure 4.8 and Table 4.5 for

the results of these experiments. Convergence plots for the coevolutionary self-adaptive methods

combined with seeding are presented in Appendix Figure A.6.

From these final fixed subset experiments, it is clear that SaDE is the preferred self-adaptive

method. TheMDE_pBX approach’s aggressive convergence seems to be poorly suited for the more

difficult problem of feature selection when compared to the results on real parameter optimization

in [99]. Furthermore, seeding played a more beneficial role when combined with SaDE and Monte

Carlo cross-validation. Figure 4.8 shows that Monte Carlo cross-validation alone did not perform

well with seeding. Once it was combined with SaDE, the search found a solution with testing

accuracy 0.5408, the best out of all fixed subset experiments.

Table 4.5: Detailed results for the fixed subset component combination experiments. As before,
the mean testing accuracy is the average of the maximum testing accuracy of each replicate.
Again, as in previous tables, the p-value column is calculated with the Mann-Whitney U test with
alternative hypothesis Ha : µother < µmonte + sade + seeding. Significant results are in bold, using
0.05/5 = 0.01 as a threshold.

Method Mean Testing Accuracy
± Standard Deviation P-value

Monte + MDE_pBX 0.4178 ± 0.0309 0.0001
Monte + Seeding 0.4669 ± 0.0225 0.0010

Monte 0.4686 ± 0.0284 0.0108
Monte + MDE_pBX

+ Seeding 0.4822 ± 0.0123 0.0064

Monte + SaDE 0.4915 ± 0.0149 0.0766
Monte + SaDE
+ Seeding 0.5040 ± 0.0171 N/A

41

Monte +
SaDE+
Seeding

Subset BayesR BayesR
0.48

0.50

0.52

0.54

0.56

0.58

0.60

T
es

ti
n
g

A
cc

u
ra

cy

Figure 4.9: Boxplots comparing the results of the best found fixed subset DE method, BayesR
trained with the subset found using the best DE method, and standard BayesR trained on the full
dataset.

4.3.8 Subset BayesR

BayesR proved to be a more powerful method than DE in the fixed subset experiments. However,

due to its computational complexity, it is not suitable for use as an objective function. In an

attempt to leverage BayesR in combination with DE, the subset discovered in the DE experiment

using Monte Carlo cross-validation, SaDE, and a seeded initial population was used to subset

the data before building a model with BayesR. But first, some special considerations were made

concerning the data used to train the BayesR model. Specifically, measures were taken to prevent

from validating a BayesR model on data that was searched by DE. The BayesR model was trained

on the combination of the training and validation datasets used for the DE search and then the

accuracy of the model was reported on the DE search’s testing dataset. The subset used in the

BayesR experiment was chosen by taking the solution with the highest validation accuracy at the

last generation. This process was repeated five times among the best five DE experiments based on

testing accuracy. Results are presented in Figure 4.9 and Table 4.6. In both cases, standard BayesR

42

Table 4.6: Detailed results for the subset BayesR experiment. The p-value column was generated
by the usual Mann-Whitney U test is performed comparing mean testing accuracy with alternative
hypoethsis Ha : µother < µbayesr . Significant results are in bold using a threshold of 0.05/2 =
0.025.

Method Mean Testing Accuracy
± Standard Deviation P-value

Monte + SaDE
+ Seeding 0.3644 ± 0.0285 0.0031

Subset BayesR 0.5222 ± 0.0187 0.0056
BayesR 0.5564 ± 0.0332 N/A

performed better than the DE methods. Further investigation and discussion on the performance of

BayesR relative to the best found DE methods is presented in Section 4.5.

4.4 Coevolution Results

As mentioned, a preferable alternative to tuning the size of the subset chosen is to also search

the subset size. This alleviates a hyperparameter choice, but introduces new complexities discussed

in Section 3.4. More specifically, the coevolution fitness function in Equation 3.18,

J(Xi) = accuracy_o f _model(Xi) − γ
s
d
,

introduces the hyperparameter γ that must be tuned before repeating the above experiments. The

rest of this section is organized the same as the fixed subset experiments, with the addition of a

section presenting the results on tuning γ. Across all coevolution studies, the initial subset size fi

was sampled uniformly from range [90, 110].

4.4.1 Tuning Gamma

An unexpected complexity that arose during tuning γ was the memory requirement that unbounded

subset sizes presents. If γ was too small, not enough penalty was applied to the subset size and the

search tended toward using the entire marker set in the fitness evaluation. Evaluating individuals

in parallel causes the memory limits of the machine used for this study to be met very quickly. The

results presented in Figure 4.10 show replicates before this memory limit arose, and have a weak

43

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

γ

0.34

0.36

0.38

0.40

0.42

0.44

T
es

ti
n
g

A
cc

u
ra

cy

Figure 4.10: Results of the gamma tuning experiment, excluding experiments that failed due to
memory limitations.

Table 4.7: Detailed results of the gamma tuning experiments. The mean testing accuracy column
takes the average over the maximum testing accuracy in each replicate. As before, the p-value
column is obtained with a Mann-Whitney U test comparing the testing accuracy of γ = 0.75 to
the other values of γ, i.e. Ha : µother < µγ=0.75. Bold p-values are significant at a threshold of
0.05/3 ≈ 0.0167

Value of γ Mean Testing Accuracy
± Standard Deviation P-value

0.625 0.3634 ± 0.0315 0.0306
0.75 0.3994 ± 0.0354 N/A
0.875 0.3903 ± 0.0279 0.3257
1.0 0.3852 ± 0.0302 0.2067

suggestion that γ = 0.75 may have been preferable to a smaller γ. The values of γ used for this

study were 1.0, 0.875, 0.75, 0.625, 0.5, 0.375, and 0.25. See Table 4.7 for detailed results and

significance testing. Though γ = 0.75 was not significantly better than any other value of γ, 0.75

was chosen to move forward with the coevolution study.

44

GWAS GBLUP Coevolution DE BayesR
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
T
es

ti
n
g

A
cc

u
ra

cy

(a)

Fixed Subset, s=1000 Coevolution, γ=0.75

0.34

0.36

0.38

0.40

0.42

0.44

0.46

T
es

ti
n
g

A
cc

u
ra

cy

(b)

Figure 4.11: (a) Boxplots comparing coevolutionaryDE against commonly used genomic prediction
methods using the entire feature set. (b) Boxplots comparing coevolutionary and fixed subset vanilla
DE.

4.4.2 Baseline

In Figure 4.11a the same baselines are compared to the coevolution approach as in Figure 4.1.

Each experiment keeps track of the average subset size of the population. The mean and standard

deviation of the final subset size across each replicate of this experiment was 526.63 ± 158.35.

The subset size was quite variable, and was likely tied to the overall variability of the mean testing

accuracy displayed in Figure 4.11a.

Similar to the fixed subset results, coevolutionary DE alone was not competitive with BayesR.

However, coevolutionary DE obtained results on par with GBLUP, using (on average) 100× less

features. Figure 4.11b compares fixed subset and coevolutionary DE. The fixed subset results

showed that DE alone was quite variable without any operators to control overfitting. Hence, the

comparison of the two basic methods is not very informative. See Section 4.5 for a more “fair”

comparison of the two search methods that includes components to control overfitting.

45

Pre-local Search Post-local Search
0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.3

0.4

0.5

0.6

0.7

0.8

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure 4.12: (a) Boxplots comparing the testing accuracy pre and post-local search for coevolu-
tionary DE. (b) The convergence plot for eight replicates of coevolutionary DE (two failed due to
memory limits).

4.4.3 Local Search

Local search was performed using the same technique for the fixed subset approach described in

Section 3.3. Figure Figure 4.12a shows the results of pre and post-local search for coevolutionary

DE. This, combined with the results in Figure 4.2 provide clear evidence that the local search

method presented in 3.3 did not perform well. Through a feature selection lens, this does make

sense. The original motivation for such a simple method was to remove noisy SNPs from the fixed

subset method that were only chosen because there was no room to not choose them. However, this

method was much too greedy, a concept that is well known and pointed out in original sequential

feature selection literature such as [81]. As in the fixed subset experiments, if a better result is

obtained with local search, it will be reported.

4.4.4 Cross-validation

Cross-validation results paralleling the fixed subset experiments for the coevolutionary approach

are presented in this section. Figure 4.13a shows the relative performance of each cross-validation

method. Monte Carlo showed a marginal improvement over intragenerational cross-validation.

46

None Interg. Intrag. Monte Carlo

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.30

0.35

0.40

0.45

0.50

0.55

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure 4.13: (a) Boxplots comparing the different cross-validation methods for the coevolution
experiments. (b) The convergence plot for the coevolutionary approach with Monte Carlo cross-
validation. Note the similarity to Figure 4.3b.

Furthremore, Monte Carlo cross-validation in the coevolutionary setting (Figure 4.13b) showed a

similar convergence plot to the fixed subset case in Figure 4.3. Significance testing is presented in

Table 4.8. Table 4.8 also displays the mean length of the experiments. Interestingly enough, the

better performing methods ended with a shorter mean length and smaller standard deviation across

the replicates. The convergence plots for inter and intragenerational cross-validation appear similar

to the vanilla DE convergence plot in Figure 4.2b and are presented in Appendix Figure A.5.

Table 4.8: Table showing detailed coevolutionary DE results for each cross-validation experiments.
The mean accuracy columns take the average of the maximum validation/testing accuracy for each
replicate. The average length column refers to the average of the highest fitness individuals at final
generation of each replicate. The p-value column is calculated with the usual significance testing
using the Mann-Whitney U test with alternative hypothesis Ha : µother < µmonte carlo. Significant
results are shown in bold using a threshold of 0.05/3 ≈ 0.0167.

Method Mean Val. Acc.
± Stdev

Mean Test. Acc.
± Stdev

Mean Length
± Stdev P-value

No cross-validation 0.7450 ± 0.0258 0.3994 ± 0.0354 656.4 ± 249.9 0.0117
Intergenerational 0.6755 ± 0.0450 0.3859 ± 0.0363 438.1 ± 199.9 0.0141
Intragenerational 0.5804 ± 0.0304 0.4274 ± 0.0227 265.1 ± 72.6 0.1309
Monte Carlo 0.5075 ± 0.0301 0.4399 ± 0.0278 266.3 ± 95.4 N/A

47

−0.2 −0.1 0.0 0.1 0.2
α

0.36

0.38

0.40

0.42

0.44
T

es
ti

n
g

A
cc

u
ra

cy

Max

Min

Mean

Median

Figure 4.14: A plot of the value of alpha and mean testing accuracy for each stopping condition
statistic in the coevolutionary DE experiments. The search halted when a given statistic reaches
h(1 + α). Standard deviation is shown by error bars.

4.4.5 Heritability Thresholding

4.4.5.1 Simple Halting

The same analysis of α is presented in Figure 4.4b is repeated for the coevolutionary setting to

investigate the effect of stopping a search early on testing accuracy. See Figure 4.14 for the results

of this experiment. Again, there was no appreciable difference between each population statistic,

as well as no real difference when using a negative alpha. Detailed results and significance testing

for the alpha tuning experiments are presented in Table 4.9. Achieving essentially the same result

in both fixed and coevolutionary DE shows that the h threshold is an important metric. Search

methods not applying some means to stay below h are likely to overfit

4.4.5.2 Marker Removal

Marker removal for the fixed subset case simply removed s—the size of the subset—markers from

the “allowed” feature set at each removal. Since this subset size changes in the coevolution case,

48

Table 4.9: Detailed results for non-negative values of α in the heritability threshold formula h(1+α)
in the coevolutionary experiments. The mean testing accuracy column is the mean of the maximum
of each replicate’s population. The p-value column is obtained by performing a Mann-Whitney U
test to compare the testing accuracy of each value of α to α = 0, i.e. Ha : µother < µα=0. Bold
p-values are significant at a threshold of 0.05/2 = 0.025. All statistics are gather by combining the
results of the mean, median, minimum, and maximum strategies, i.e. each column has 40 samples.

Value of α Mean Testing Accuracy
± Standard Deviation P-value

0 0.4203 ± 0.0230 N/A
0.1 0.4077 ± 0.0371 0.03830
0.2 0.3979 ± 0.0393 0.0044

No Removal Removal

0.34

0.36

0.38

0.40

0.42

0.44

0.46

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.3

0.4

0.5

0.6

0.7

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure 4.15: (a) Boxplots comparing the testing accuracy of the coevolutionary marker removal
experiments. (b) The convergence plot for the coevolutionary marker removal experiment.

each removal simply takes the away entire subset of the best individual when the maximum fitness

of the population reaches h. Again, since this is a less aggressive strategy than stopping the search,

a study on α is forgone to focus on the simpler case of α = 0.

Figure 4.15 shows the results of the marker removal experiments for the coevolutionary setting.

The mean testing accuracy for the removal experiment was 0.3965 ± 0.0279. In comparison

to the vanilla DE run, there was no significant difference between the replicates (p = 0.5354).

Figure 4.15b shows the convergence plot for the removal experiment. This plot may explain the

lack of performance compared to the fixed subset experiments. Compared to the fixed subset case

49

MDE pBX SaDE Vanilla DE

0.25

0.30

0.35

0.40

0.45

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000

Generation

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
ea

n
V

al
id

at
io

n
A

ac
cu

ra
cy

MDE pBX

SaDE

(b)

Figure 4.16: (a) Boxplots comparing the self-adaptive methods to vanilla DE in the coevolutionary
case. (b) Convergence plots showing the mean of the maximum validation accuracies for coevolu-
tionary MDE_pBX and SaDE. The shaded region shows the standard deviation of the maximum
fitness.

in Figure 4.5b, a marker removal event was much less disruptive to the convergence of the search,

and in some cases does not disrupt the search at all. This causes a SNP removal to happen every

generation, which becomes useless over time. The average final length across each replicate was

1960.5 ± 903.8—quite a large variance. The maximum total length from any run was 2929.

4.4.6 Self-adaptive Differential Evolution

The coevolutionary experiments used the same parameter distribution initialization as described

in Section 4.3.5. The results of these experiments are shown in Figure 4.16 and Table 4.10.

Compared to the fixed subset experiments, these methods were much more variable and unreliable.

Figure 4.16b showsMDE_pBX converged to a local optimum very early in its search, which follows

with the fixed subset case as well. From Table 4.10 it is clear that a self-adaptive method alone was

not enough to reach a testing accuracy that is competitive with even vanilla DE.

50

Table 4.10: Detailed results for the coevolution self-adaptive experiments. The mean testing
accuracy column is obtained by taking the mean of the maximum testing accuracy of each replicate.
As in previous tables, the p-value column was generated with the Mann-Whitney U test with
alternative hypothesis Ha : µother < µvanillade. Significant results are in bold using threshold
0.05/2 = 0.025

Method Mean Testing Accuracy
± Standard Deviation

Mean Length
± Standard Deviation P-value

MDE_pBX 0.3237 ± 0.0524 100.0 ± 4.9 0.0019
SaDE 0.3791 ± 0.0367 208.1 ± 59.1 0.1754

Vanilla DE 0.3994 ± 0.0354 656.4 ± 249.9 N/A

Unseeded Seeded

0.34

0.36

0.38

0.40

0.42

0.44

0.46

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.50

0.55

0.60

0.65

0.70

0.75

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure 4.17: (a) Boxplots comparing the seeded and unseeded coevolutionary experiments. (b)
Convergence plot of the seeded coevolutionary experiment.

4.4.7 Seeding

The coevolutionary experiments used the same seeding process as the fixed subset experiments,

i.e. indices were set to 1 based on GWAS results. However, since there was a small element of

random initialization, when a vector was chosen to seed, the number of indices seeded was based

on its randomly initialized length. This was the only change when compared to the fixed subset

experiment.

Figure 4.17 shows the results of the coevolution seeding experiments. The mean testing

accuracy for the seeded results was 0.3817 ± 0.0439, which is less than the unseeded results

(0.3994 ± 0.0354), but not significantly (p = 0.1993). It seems apparent that the coevolution

51

Monte +
MDE pBX

Monte Monte +
SaDE

Monte +
Seeding

Monte +
SaDE +
Seeding

Monte +
MDE pBX +

Seeding

0.30

0.35

0.40

0.45

0.50

T
es

ti
n
g

A
cc

u
ra

cy

Figure 4.18: Boxplots comparing the results of the coevolution combination experiments.

scheme was more fragile to the overfitting spurred on by seeding. Similar to the fixed subset case,

without any measures to prevent the search from overfitting, the final performance of the method

suffered.

4.4.8 Combining Components

The same analysis presented in the fixed subset experiments is provided here for the coevolutionary

experiments as well. Figure 4.18 shows the results of these experiments. It is apparent that

the discussion on seeding and overfitting in Section 4.4.7 holds true. When a method to control

overfitting was applied, seeding outperformed unseededmethods. Table 4.11 shows amore detailed

result table, with significance testing under the assumption that themethod usingMonte Carlo cross-

validation, MDE_pBX, and seeding was the best performing method. In reality, there was no real

difference between the self-adaptive methods and the vanilla DE alternative.

52

Table 4.11: Detailed results for the coevolutionary component combination experiments. As
before, the mean testing accuracy is the average of the maximum testing accuracy of each replicate.
Again, as in previous tables, the p-value column is calculated with the Mann-Whitney U test with
alternative hypothesis Ha : µother < µmonte + mde_pbx + seeding. Significant results are in bold,
using 0.05/5 = 0.01 as a threshold.

Method Mean Testing Accuracy
± Standard Deviaiton

Mean Length
± Standard Deviation P-value

Monte + MDE_pBX 0.3644 ± 0.0285 100.5 ± 4.4 0.0001
Monte 0.4399 ± 0.0278 266.3 ± 95.4 0.0001

Monte + SaDE 0.4362 ± 0.0273 112.6 ± 9.3 0.0001
Monte + Seeding 0.5115 ± 0.0166 132.4 ± 42.2 0.3957
Monte + SaDE
+ Seeding 0.5136 ± 0.0134 102.9 ± 7.8 0.5451

Monte + MDE_pBX
+ Seeding 0.5159 ± 0.0116 97.7 ± 4.7 N/A

Subset BayesR Monte +
MDE pBX+

Seeding

BayesR

0.50

0.52

0.54

0.56

0.58

0.60

T
es

ti
n
g

A
cc

u
ra

cy

Figure 4.19: Boxplots comparing the results of BayesR trained with the subset found using the best
DE method, the best found coevolutionary DE method, and standard BayesR trained on the full
dataset.

53

Table 4.12: Detailed results for the coevolutionary subset BayesR experiment. As before, the
p-value column was generated with the Mann-Whitney U test by comparing the mean testing
accuracies with alternative hypothesis Ha : µother < µbayesr . Significant results at the threshold
0.05/2 ≈ 0.025 are in bold.

Method Mean Testing Accuracy
± Standard Deviaiton P-value

Subset BayesR 0.5068 ± 0.0104 0.0108
Monte + MDE_pBX

+ Seeding 0.5159 ± 0.0116 0.0117

BayesR 0.5564 ± 0.0332 N/A

4.4.9 Subset BayesR

The same subset experiment carried out in Section 4.3.8 is presented here for the coevolution study

as well. Here, the “best” identified strategy used to obtain a subset was DE with Monte Carlo

cross-validaiton, MDE_pBX, and seeding. Results are presented in Figure 4.19 and Table 4.12.

In the coevolution case, the DE subset reduced the accuracy of BayesR, furthering the suggestions

made in the fixed subset case, see Section 4.3.8.

4.5 System Validation

The preceding results investigated the behavior of feature selection with DE for genomic

prediction on a specific simulated dataset. To validate these results, it is necessary to begin again

with a new dataset. Results on new data will ensure the best determined methods are not somehow

only suited to the simulated data. The genotypes used for this experiment are the same as before: a

population of 7,539 sheep with 48,588 SNPs. However, a real phenotype was used for validation.

This phenotype is calledworm egg count (WEC).WEC is a proxy for an animal’s immune resistance

to parasites and is not very heritable. The heritability of WEC was estimated using a restricted

maximum likelihood method—implemented in the NAM R package [116]—to be h2 ≈ 0.1600.

Hence, the theoretical limit on accuracy is h ≈ 0.4000. Furthermore, WEC is difficult to predict due

its polygenic nature illustrated in the results of a GWAS shown in Appendix Figure A.7 where only

two SNPs were identified as significant. It should be noted that the phenotypes were preexisting

54

G
W
A
S

Bay
es
R

G
BLU

P

Coe
vo

lv
e
+

M
on

te
+

M
D
E

pB
X

+
Se

ed
in
g

f i
∈ [9

0,
11

0]

Coe
vo

lv
e
+

M
on

te
+

M
D
E

pB
X

+
Se

ed
in
g

f i
∈ [4

50
, 5

50
]

Fi
xe

d
+

M
on

te
+

Sa
D
E

+
Se

ed
in
g

0.0

0.1

0.2

0.3

0.4
T
es

ti
n
g

A
cc

u
ra

cy

Figure 4.20: Boxplots showing the results of the system validation experiments. Note that fi is the
randomly initialized value of the subset size for each vector Xi.

and not gathered as a part of this study.

To validate the “best” strategies identified in the simulated environment, one strategy from

the fixed subset study—SaDE with Monte Carlo cross-validation and seeding—and one from the

coevolutionary study—MDE_pBX with Monte Carlo cross-validation and seeding—were applied

to the WEC data. No hyperparameters were changed in either case. See Figure 4.20 for the

results of this validation experiment and Table 4.13 for the usual detailed analysis. First, the initial

coevolution experiment was relatively unsuccessful in comparison to the simulated environment.

Under suspicion that the initial subset size was too small, the initial range was changed to [450, 550]

and better results were observed. Further investigation into subset size initialization may lead to

even better results, though the current result set is close to the theoretical maximum.

All DE methods performed much better than the common genomic prediction methods. The

maximum obtained accuracy in the fixed subset validation experiment was 0.3993, which is on par

with the estimated theoretical maximum of 0.4. However, this does not suggest DE is always better

55

than the common methods in a non-simulated environment. As was pointed out previously, the

trait being predicted is not very heritable and has only two significant SNPs identified by a GWAS

(see Figure A.7). Because of this, it is likely that the performance of BayesR suffered greatly in

comparison to the simulated environment where the effects of the QTL—and markers in linkage

disequilibrium with the QTL—were large and well defined. That said, these results do suggest

that DE based feature selection may be better at identifying marker subsets that better capture

relationships between animals, while removing noisy markers.

Table 4.13: Detailed results of the system validation experiments. The p-value column is generated
with the usual U test on the mean testing accuracy with alternative hypothesis Ha : µother <
µ f ixed + monte + sade + seeding. Note that fi is the randomly initialized value of the coevolution
subset size for each vector, Xi. Significant results are in bold using a threshold of 0.05/5 = 0.01

Method Mean Testing Accuracy
± Standard Deviation P-value

GWAS 0.0274 ± 0.0454 0.00131
BayesR 0.0735 ± 0.01825 0.00131
GBLUP 0.1646 ± 0.0267 0.00131

Coevolve + Monte +
MDE_pBX + Seeding

fi ∈ [90, 110]
0.2353 ± 0.0223 0.0001

Coevolve + Monte +
MDE_pBX + Seeding

fi ∈ [450, 550]
0.3384 ± 0.0290 0.032

Fixed + Monte +
SaDE + Seeding 0.3631 ± 0.0213 N/A

1These p-values appear much larger due to the fact that they were generated with only 5 samples
from 5-fold cross-validation. In reality a p-value much lower than 0.0013 is appropriate.

56

CHAPTER 5

CONCLUSION

The preceding results have shown that DE alone can reliably select feature subsets that perform on

par with—and in some cases better than—common linear methods. Most searches converge fairly

quickly, avoiding the computational strain imposed by more sophisticated genome-wide prediction

methods like BayesR. When more operators are added to the search, DE becomes a reliable feature

selection for genomic prediction in general. When validated on real data, the best performing DE

systems presented here outperform existing methods and approach the neighborhood of maximum

theoretical performance. Combining various components such a seeding highlights the potential

to apply domain knowledge to DE—and in general, most EC methods.

The most effective applications of domain knowledge in this study were seeding and heritability

thresholding. Seeding is a simple process that lends itself well to DE since it begins the search

from a good starting point. However, the relationship of the search to h is more nuanced. Results

were explored that observed simply stopping a search when validation accuracy reaches h is better

than letting the search continue its trajectory. This idea may be beneficial in other applications

of genomic prediction as well. It is likely that future search based methods involving genomic

prediction will benefit from taking advantage of this unique value.

Adding to the nuance of DE and the theoretical accuracy is the performance of Monte Carlo

cross-validation. For the simulated data set, this simple technique limited the convergence of all

search methods below h. At a high level, this cross-validation process encourages generalization

of the search as a whole. Where simple blocks of validation sets in k-fold schemes can be overfit

to quickly, there is not a clear pattern in validation sets to exploit in the Monte Carlo case. Exactly

how this relates to overfitting and the value h is likely a fruitful topic for future research.

Genomic prediction has had a profound impact on the agricultural industry in the past and is

slated to become a cornerstone in personalized medicine as research involving genetic risk pro-

gresses. As complex non-linear methods become popular in bioinformatics and biomedicine,

57

a precise and readable result provided by a method like DE could lead to a more complete

understanding of the complex genotype-pheotype mapping. This study has presented an in-

vestigation into the behavior of one simple search method, though avenues for more complex

EC and machine learning approaches are endless. The code for this method is available at

https://github.com/ianwhale/tblup.

58

https://github.com/ianwhale/tblup

APPENDICES

59

APPENDIX A

A.1 Further Results

0 10000 20000 30000 40000 50000
Chromosome Position

0

20

40

60

80

100

120

140

−
lo

g
1
0
(p

-v
al

u
e)

Figure A.1: Manhattan plot of the simulated data. The y-axis shows the − log10 of each ef-
fect’s p-value. The x-axis describes the marker’s location on the chromosome. Change in
color denotes change in chromosome. The dotted line shows the Bonferonni threshold, i.e.
− log10(0.05/48588) ≈ 5.9876. Due to the simulation process and the fact that this simple
plot does not account for population structure, most markers appear to be significant.

60

0 1000 2000 3000 4000 5000
Generation

0.4

0.5

0.6

0.7

V
al

id
at

io
n

P
ea

rs
on

R

(a)

0 1000 2000 3000 4000 5000
Generation

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure A.2: (a) Fixed subset intergenerational cross-validation convergence plot. (b) Fixed subset
intragenerational cross-validation convergence plot.

g = 5000 g = 10000

0.42

0.44

0.46

0.48

0.50

0.52

0.54

T
es

ti
n
g

A
cc

u
ra

cy

(a)

0 2000 4000 6000 8000 10000
Generation

0.35

0.40

0.45

0.50

0.55

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

FigureA.3: (a)Boxplots comparing the testing error of the fixed subsetMonteCarlo cross-validation
experiment with 5,000 and 10,000 generations. The difference between the two is not significant,
with p = 0.2990, though there is a higher maximum testing accuracy of 0.5350. (b) Convergence
plot of the fixed subsetMonte Carlo cross-validation experiment with 10,000 generations. Compare
to Figure 4.3b.

61

0 1000 2000 3000 4000 5000
Generation

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

V
al

id
at

io
n

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.35

0.40

0.45

0.50

0.55

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

0 1000 2000 3000 4000 5000
Generation

0.46

0.48

0.50

0.52

0.54

0.56

V
al

id
at

io
n

A
cc

u
ra

cy

(c)

0 1000 2000 3000 4000 5000
Generation

0.46

0.48

0.50

0.52

0.54

0.56

0.58

V
al

id
at

io
n

A
cc

u
ra

cy

(d)

Figure A.4: (a) Convergence plot of fixed subset MDE_pBX with Monte Carlo cross-validation.
(b) Convergence plot of fixed subset SaDE with Monte Carlo cross-validation. (c) Convergence
plot of fixed subset seeded MDE_pBX with Monte Carlo cross-validation. (d) Convergence plot of
fixed subset seeded SaDE with Monte Carlo cross-validation. Note that none of the plots exceed
the heritability threshold h ≈ 0.6325.

62

0 1000 2000 3000 4000 5000
Generation

0.3

0.4

0.5

0.6

0.7

V
al

id
at

io
n

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

Figure A.5: (a) Convergence plot of intergenerational cross-validation in the coevolution setting.
(b) Convergence plot of intragenerational cross-validation in the coevolution setting. Missing
replicates are due to memory overflow in both cases.

63

0 1000 2000 3000 4000 5000
Generation

0.30

0.35

0.40

0.45

V
al

id
at

io
n

A
cc

u
ra

cy

(a)

0 1000 2000 3000 4000 5000
Generation

0.30

0.35

0.40

0.45

0.50

0.55

V
al

id
at

io
n

A
cc

u
ra

cy

(b)

0 1000 2000 3000 4000 5000
Generation

0.48

0.50

0.52

0.54

0.56

0.58

V
al

id
at

io
n

A
cc

u
ra

cy

(c)

0 1000 2000 3000 4000 5000
Generation

0.48

0.50

0.52

0.54

0.56

0.58

V
al

id
at

io
n

A
cc

u
ra

cy

(d)

Figure A.6: (a) Convergence plot of coevolutionary MDE_pBXwith Monte Carlo cross-validation.
(b) Convergence plot of coevolutionary SaDE with Monte Carlo cross-validation. (c) Convergence
plot of coevolutionary seededMDE_pBXwith Monte Carlo cross-validation. (d) Convergence plot
of coevolutionary seeded SaDE with Monte Carlo cross-validation. Note that none of the plots
exceed the heritability threshold h ≈ 0.6325.

64

0 10000 20000 30000 40000 50000
Chromosome Position

0

1

2

3

4

5

6

7

8

−
lo

g
1
0
(p

-v
al

u
e)

Figure A.7: Manhattan plot of theWEC data. The y-axis shows the − log10 of each effect’s p-value.
The x-axis describes the marker’s location on the chromosome. Change in color denotes change in
chromosome. The dotted line shows the Bonferonni threshold, i.e. − log10(0.05/48588) ≈ 5.9876.

65

BIBLIOGRAPHY

66

BIBLIOGRAPHY

[1] T. H. E. Meuwissen, B. J. Hayes, and M. E. Goddard, “Prediction of total genetic value using
genome-wide dense marker maps,” Genetics, vol. 157, no. 4, pp. 1819–1829, 2001.

[2] M. E. Goddard and B. J. Hayes, “Genomic selection,” Journal of Animal Breeding and
Genetics, vol. 124, no. 6, pp. 323–330, 2007.

[3] R. Dalton, “No bull: genes for better milk,” doi:10.1038/457369a, 2009.

[4] E. L. Heffner, M. E. Sorrells, and J.-L. Jannink, “Genomic selection for crop improvement,”
Crop Science, vol. 49, pp. 1–12, 2009, 1.

[5] E. L. Heffner, J. Jannink, andM. E. Sorrells, “Genomic selection accuracy using multifamily
prediction models in a wheat breeding program,” The Plant Genome, vol. 4, no. 1, pp. 65–75,
2011.

[6] Q. B. Kwong, A. L. Ong, C. K. Teh, F. T. Chew, M. Tammi, S. Mayes, H. Kulaveerasingam,
S. H. Yeoh, J. A. Harikrishna, and D. R. Appleton, “Genomic selection in commercial
perennial crops: Applicability and improvement in oil palm (Elaeis guineensis Jacq.),”
Scientific Reports, vol. 7, no. 2872, 2017.

[7] G. Abraham, J. A. Tye-Din, O. G. Bhalala, A. Kowalczyk, J. Zobel, andM. Inouye, “Accurate
and robust genomic prediction of celiac disease using statistical learning,” PLoS Genetics,
2014.

[8] A. C. J. Janssens and C. M. van Duijn, “Genome-based prediction of common diseases:
advances and prospects,” Human Molecular Genetics, vol. 17, no. R2, pp. R166–R173,
2008.

[9] B. Hayes, P. Bowman, A. Chamberlain, andM.Goddard, “Invited review: Genomic selection
in dairy cattle: Progress and challenges,” Journal of Dairy Science, vol. 92, no. 2, pp. 433 –
443, 2009.

[10] B. J. Hayes, H. A. Lewin, and M. E. Goddard, “The future of livestock breeding: genomic
selection for efficiency, reduced emissions intensity, and adaptation,” Trends in Genetics,
vol. 29, no. 4, pp. 206 – 214, 2013.

[11] R. R. Hofmann, “Evolutionary steps of ecophysiological adaptation and diversification of
ruminants: a comparative view of their digestive system,” Oecologia, vol. 78, no. 4, pp.
443–457, Mar 1989.

[12] B. J. Hayes, J. Pryce, A. J. Chamberlain, P. J. Bowman, and M. E. Goddard, “Genetic
architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat
percentage, and type in holstein cattle as contrasting model traits,” PLoS Genetics, vol. 6,
2010.

67

[13] M. Goddard, B. Hayes, and T. Meuwissen, “Using the genomic relationship matrix to predict
the accuracy of genomic selection,” Journal of Animal Breeding andGenetics, vol. 128, no. 6,
pp. 409–421, 2011.

[14] S. A. Clark, J. M. Hickey, and J. H. van der Werf, “Different models of genetic variation and
their effect on genomic evaluation,” Genetics Selection Evolution, vol. 43, no. 1, p. 18, May
2011.

[15] Y. C. J. Wientjes, R. F. Veerkamp, and M. P. L. Calus, “The effect of linkage disequilibrium
and family relationships on the reliability of genomic prediction,” Genetics, vol. 193, no. 2,
pp. 621–631, 2013.

[16] N.Moghaddar, A. A. Swan, and J. H. J. VanDerWerf, “Comparing genomic prediction accu-
racy from purebred, crossbred and combined purebred and crossbred reference populations
in sheep,” Genetics Selection Evolution, vol. 46, no. 58, 2014.

[17] M. Goddard, “Genomic selection: prediction of accuracy and maximisation of long term
response,” Genetica, vol. 136, no. 2, pp. 245–257, Jun 2009.

[18] D. A. van Heel, L. Franke, K. A. Hunt, R. Gwilliam, A. Zhernakova, M. Inouye, M. C.
Wapenaar, M. C. N. M. Barnardo, G. Bethel, G. K. T. Holmes, C. Feighery, D. Jewell,
D. Kelleher, P. Kumar, S. Travis, J. R. Walters, D. S. Sanders, P. Howdle, J. Swift, R. J.
Playford, W. M. McLaren, M. L. Mearin, C. J. Mulder, R. McManus, R. McGinnis, L. R.
Cardon, P. Deloukas, and C.Wijmenga, “A genome-wide association study for celiac disease
identifies risk variants in the region harboring il2 and il21,” Nature Genetics, vol. 39, pp.
827–829, Jun 2007.

[19] P. M. Visscher, N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy, M. A. Brown, and J. Yang,
“10 years of GWAS discovery: Biology, function, and translation,” The American Journal
of Human Genetics, vol. 101, no. 1, pp. 5 – 22, 2017.

[20] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp.
341–359, Dec 1997.

[21] C. Gondro, Primer to Analysis of GenomicDataUsing R. Springer International Publishing,
2015.

[22] The 1000 Genomes Project Consortium, “A map of human genome variation from
population-scale sequencing,” Nature, vol. 467, pp. 1061–1073, Oct 2010.

[23] L. C. Kottyan, B. P. Davis, J. D. Sherrill, K. Liu, M. Rochman, K. Kaufman, M. T. Weirauch,
S. Vaughn, S. Lazaro, A. M. Rupert, M. Kohram, E. M. Stucke, K. A. Kemme, A.Magnusen,
H. He, P. Dexheimer, M. Chehade, R. A. Wood, R. D. Pesek, B. P. Vickery, D. M. Fleischer,
R. Lindbad, H. A. Sampson, V. A. Mukkada, P. E. Putnam, J. P. Abonia, L. J. Martin, J. B.
Harley, andM. E. Rothenberg, “Genome-wide association analysis of eosinophilic esophagi-
tis provides insight into the tissue specificity of this allergic disease,”NatureGenetics, vol. 46,
pp. 895–900, Jul 2014.

68

[24] S.-H. Lee, B.-H. Park, A. Sharma, C.-G. Dang, S.-S. Lee, T.-J. Choi, Y.-H. Choy, H.-C.
Kim, K.-J. Jeon, S.-D. Kim, S.-H. Yeon, S.-B. Park, and H.-S. Kang, “Hanwoo cattle: origin,
domestication, breeding strategies and genomic selection,” Journal of Animal Science and
Technology, vol. 56, no. 1, p. 2, May 2014.

[25] W. S. Bush and J. H. Moore, “Chapter 11: Genome-wide association studies,” PLoS Com-
putational Biology, vol. 8, no. 12, December 2012.

[26] R. C. Johnson, G. W. Nelson, J. L. Troyer, J. A. Lautenberger, B. D. Kessing, C. A. Winkler,
and S. J. O’Brien, “Accounting for multiple comparisons in a genome-wide association study
(GWAS),” BMC Genomics, vol. 11, pp. 724–724, Dec 2010.

[27] B. S. F. Müller, L. G. Neves, J. E. de Almeida Filho, M. F. R. Resende, P. R. Muñoz, P. E. T.
dos Santos, E. P. Filho, M. Kirst, and D. Grattapaglia, “Genomic prediction in contrast to a
genome-wide association study in explaining heritable variation of complex growth traits in
breeding populations of eucalyptus,” BMC Genomics, vol. 18, p. 524, Jul 2017.

[28] C. Darwin, On the Origin of Species by Means of Natural Selection. London: Murray,
1859.

[29] C. Henderson, “Use of all relatives in intraherd prediction of breeding values and producing
abilities,” Journal of Dairy Science, vol. 58, no. 12, pp. 1910 – 1916, 1975.

[30] S. Ripatti, E. Tikkanen, M. Orho-Melander, A. S. Havulinna, K. Silander, A. Sharma,
C. Guiducci, M. Perola, A. Jula, J. Sinisalo, M.-L. Lokki, M. S. Nieminen, O. Melander,
V. Salomaa, L. Peltonen, and S. Kathiresan, “A multilocus genetic risk score for coronary
heart disease: case-control and prospective cohort analyses,” The Lancet, vol. 376, no. 9750,
pp. 1393–1400, Oct 2010.

[31] J. B. Meigs, P. Shrader, L. M. Sullivan, J. B. McAteer, C. S. Fox, J. Dupuis, A. K. Manning,
J. C. Florez, P.W.Wilson, R. B. D’Agostino Sr et al., “Genotype score in addition to common
risk factors for prediction of type 2 diabetes,” New England Journal of Medicine, vol. 359,
no. 21, pp. 2208–2219, 2008.

[32] M. R. Cooperberg, E. Davicioni, A. Crisan, R. B. Jenkins, M. Ghadessi, and R. J. Karnes,
“Combined value of validated clinical and genomic risk stratification tools for predicting
prostate cancer mortality in a high-risk prostatectomy cohort,” European Urology, vol. 67,
no. 2, pp. 326 – 333, 2015.

[33] M. Ayalew, H. Le-Niculescu, D. F. Levey, N. Jain, B. Changala, S. D. Patel, E. Winiger,
A. Breier, A. Shekhar, R. Amdur, D. Koller, J. I. Nurnberger, A. Corvin, M. Geyer, M. T.
Tsuang, D. Salomon, N. J. Schork, A. H. Fanous, M. C. O’Donovan, and A. B. Niculescu,
“Convergent functional genomics of schizophrenia: from comprehensive understanding to
genetic risk prediction,” Molecular Psychiatry, vol. 17, p. 887, May 2012.

[34] G. Abraham and M. Inouye, “Genomic risk prediction of complex human disease and its
clinical application,” Current Opinion in Genetics & Development, vol. 33, pp. 10 – 16,
2015.

69

[35] L. Lello, S. G. Avery, L. Tellier, A. I. Vazquez, G. de los Campos, and S. D. H. Hsu, “Accurate
genomic prediction of human height,” Genetics, 2018.

[36] D. Habier, R. L. Fernando, and J. C. M. Dekkers, “The impact of genetic relationship
information on genome-assisted breeding values,” Genetics, vol. 177, no. 4, pp. 2389–2397,
2007.

[37] J. C. Whittaker, R. Thompson, and M. C. Denham, “Marker-assisted selection using ridge
regression,” Genetical Research, vol. 75, no. 2, p. 249–252, 2000.

[38] P. M. VanRaden, “Efficient methods to compute genomic predictions,” Journal of Dairy
Science, vol. 91, no. 11, pp. 4414–4423, 2008.

[39] D. Habier, R. L. Fernando, and D. J. Garrick, “Genomic BLUP decoded: A look into the
black box of genomic prediction,” Genetics, vol. 194, no. 3, pp. 597–607, 2013.

[40] G. Su, R. Brøndum, P. Ma, B. Guldbrandtsen, G. Aamand, and M. Lund, “Comparison of
genomic predictions using medium-density (∼54,000) and high-density (∼777,000) single
nucleotide polymorphism marker panels in nordic holstein and red dairy cattle populations,”
Journal of Dairy Science, vol. 95, no. 8, pp. 4657 – 4665, 2012.

[41] J. Zapata-Valenzuela, R. W. Whetten, D. B. Neale, S. E. McKeand, and F. Isik, “Genomic
estimated breeding values using genomic relationship matrices in a cloned population of
loblolly pine,” G3: Genes, Genomes, Genetics, 2013.

[42] K. G. Dodds, B. Auvray, S.-A. N. Newman, and J. C. McEwan, “Genomic breed prediction
in New Zealand sheep,” BMC Genetics, vol. 15, no. 1, p. 92, Sep 2014.

[43] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal
problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[44] D. Habier, R. L. Fernando, K. Kizilkaya, and D. J. Garrick, “Extension of the bayesian
alphabet for genomic selection,” BMC Bioinformatics, vol. 12, no. 1, p. 186, May 2011.

[45] G. De Los Campos, H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi, K. Weigel,
and J. M. Cotes, “Predicting quantitative traits with regression models for dense molecular
markers and pedigree,” Genetics, vol. 182, no. 1, pp. 375–385, 2009.

[46] M. Erbe, B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bowman, C. M. Reich, B. A.
Mason, andM. E. Goddard, “Improving accuracy of genomic predictions within and between
dairy cattle breeds with imputed high-density single nucleotide polymorphism panels,”
Journal of Dairy Science, vol. 95, no. 7, pp. 4114–4129, 1 2011.

[47] T. Wang, Y.-P. P. Chen, M. E. Goddard, T. H. Meuwissen, K. E. Kemper, and B. J. Hayes,
“A computationally efficient algorithm for genomic prediction using a bayesian model,”
Genetics Selection Evolution, vol. 47, no. 1, p. 34, Apr 2015.

[48] B. Li, N. Zhang, Y.-G. Wang, A. W. George, A. Reverter, and Y. Li, “Genomic prediction
of breeding values using a subset of SNPs identified by three machine learning methods,”
Frontiers in Genetics, vol. 9, p. 237, 2018.

70

[49] T. K. Ho, “Random decision forests,” in Proceedings of the Third International Conference
on Document Analysis and Recognition, ser. ICDAR ’95, vol. 1. Washington, DC, USA:
IEEE Computer Society, 1995, pp. 278–282.

[50] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1, pp. 5–32, Oct 2001.

[51] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals of
Statistics, vol. 29, pp. 1189–1232, 2000.

[52] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’16. New York, NY, USA: ACM, 2016, pp. 785–794.

[53] N. F. Grinberg, A. Lovatt, M. Hegarty, A. Lovatt, K. P. Skøt, R. Kelly, T. Blackmore,
D. Thorogood, R. D. King, I. Armstead, W. Powell, and L. Skøt, “Implementation of
genomic prediction in Lolium perenne (l.) breeding populations,” Frontiers in Plant Science,
vol. 7, p. 133, Feb 2016.

[54] J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants with deep learning-
based sequence model,” Nature Methods, vol. 12, pp. 931 – 934, Aug 2015.

[55] P. Bellot, G. de los Campos, and M. Pérez-Enciso, “Can deep learning improve genomic
prediction of complex human traits?” Genetics, 2018.

[56] D. Quang and X. Xie, “DanQ: a hybrid convolutional and recurrent deep neural network for
quantifying the function of dna sequences,” Nucleic Acids Research, vol. 44, no. 11, p. e107,
Jun 2016.

[57] H. D. Patterson and R. Thompson, “Recovery of inter-block information when block sizes
are unequal,” Biometrika, vol. 58, no. 3, pp. 545–554, 1971.

[58] N. S. Forneris, A. Legarra, Z. G. Vitezica, S. Tsuruta, I. Aguilar, I. Misztal, and R. J. C.
Cantet, “Quality control of genotypes using heritability estimates of gene content at the
marker,” Genetics, vol. 199, no. 3, pp. 675–681, Mar 2015.

[59] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of
Machine Learning Research, vol. 3, pp. 1157–1182, Mar 2003.

[60] J. Biesiada and W. Duch, “A Kolmogorov-Smirnov correlation-based filter for microarray
data,” in Neural Information Processing, M. Ishikawa, K. Doya, H. Miyamoto, and T. Ya-
makawa, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 285–294.

[61] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[62] W. Altidor, T. M. Khoshgoftaar, and J. Van Hulse, “Robustness of filter-based feature
ranking: A case study.” in Proceedings of the Twenty-Fourth International Florida Artificial
Intelligence Research Society Conference, 2011.

71

[63] V. Bolón-Canedo, N. Sánchez-Marono, A. Alonso-Betanzos, J. M. Benítez, and F. Her-
rera, “A review of microarray datasets and applied feature selection methods,” Information
Sciences, vol. 282, pp. 111–135, 2014.

[64] C. Ding and H. Peng, “Minimum redundancy feature selection from microarray gene ex-
pression data,” Journal of Bioinformatics and Computational Biology, vol. 3, no. 02, pp.
185–205, 2005.

[65] H. D. Pereira, J. M. Soriano Viana, A. C. B. Andrade, F. Fonseca e Silva, and G. P. Paes,
“Relevance of genetic relationship in gwas and genomic prediction,” Journal of Applied
Genetics, vol. 59, no. 1, pp. 1–8, Feb 2018.

[66] W. Zhou, C. Zhou, G. Liu, and H. Zhu, “Feature selection for microarray data analysis using
mutual information and rough set theory,” in IFIP International Conference on Artificial
Intelligence Applications and Innovations. Springer, 2006, pp. 492–499.

[67] M. Robnik-Šikonja and I. Kononenko, “An adaptation of relief for attribute estimation in
regression,” inMachine Learning: Proceedings of the Fourteenth International Conference
(ICML’97), vol. 5, 1997, pp. 296–304.

[68] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast correlation-based
filter solution,” in Proceedings of the 20th International Conference on Machine Learning
(ICML-03), 2003, pp. 856–863.

[69] Q. Song, J. Ni, and G. Wang, “A fast clustering-based feature subset selection algorithm for
high-dimensional data,” IEEE Transactions on Knowledge and Data Engineering, vol. 25,
no. 1, pp. 1–14, Jan 2013.

[70] F. Santosa and W. Symes, “Linear inversion of band-limited reflection seismograms,” SIAM
Journal on Scientific and Statistical Computing, vol. 7, no. 4, pp. 1307–1330, 1986.

[71] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[72] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin clas-
sifiers,” in Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
ser. COLT ’92. New York, NY, USA: ACM, 1992, pp. 144–152.

[73] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R.Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Ma-
chine Learning Research, vol. 12, pp. 2825–2830, 2011.

[74] L. Sheng, R. Pique-Regi, S. Asgharzadeh, and A. Ortega, “Microarray classification using
block diagonal linear discriminant analysis with embedded feature selection,” inProceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 04 2009,
pp. 1757–1760.

72

[75] D. F. Schwarz, I. R. König, and A. Ziegler, “On safari to random jungle: A fast imple-
mentation of random forests for high-dimensional data,” Bioinformatics, vol. 26, no. 14, pp.
1752–1758, 2010.

[76] Z. M. Hira and D. F. Gillies, “A review of feature selection and feature extraction methods
applied on microarray data,” Advances in Bioinformatics, vol. 2015, p. 198363, Jun 2015.

[77] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification
using support vector machines,” Machine Learning, vol. 46, no. 1, pp. 389–422, Jan 2002.

[78] S. Maldonado, R. Weber, and J. Basak, “Simultaneous feature selection and classification
using kernel-penalized support vector machines,” Information Sciences, vol. 181, no. 1, pp.
115 – 128, 2011.

[79] N. E. Aboudi and L. Benhlima, “Review on wrapper feature selection approaches,” in 2016
International Conference on Engineering MIS (ICEMIS), Sept 2016, pp. 1–5.

[80] A. WayneWhitney, “A direct method of nonparametric measurement selection,” Computers,
IEEE Transactions on, vol. 20, pp. 1100 – 1103, 10 1971.

[81] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in feature selection,” Pattern
Recognition Letters, vol. 15, no. 11, pp. 1119 – 1125, 1994.

[82] C. Ambroise and G. J. McLachlan, “Selection bias in gene extraction on the basis of
microarray gene-expression data,” Proceedings of the National Academy of Sciences, vol. 99,
no. 10, pp. 6562–6566, 2002.

[83] Q. Liu, A. H. Sung, Z. Chen, J. Liu, X. Huang, and Y. Deng, “Feature selection and
classification of MAQC-II breast cancer and multiple myeloma microarray gene expression
data,” PLoS One, vol. 4, no. 12, pp. 1–24, 12 2009.

[84] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 -
International Conference on Neural Networks, vol. 4, Nov 1995, pp. 1942–1948.

[85] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Machine
Learning, vol. 3, no. 2, pp. 95–99, Oct 1988.

[86] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge, MA, USA: MIT Press, 1992.

[87] A. Huning, ARSP: Archiv für Rechts- und Sozialphilosophie / Archives for Philosophy of
Law and Social Philosophy, vol. 62, no. 2, pp. 298–300, 1976.

[88] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a colony of cooper-
ating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 26, no. 1, pp. 29–41, 1996.

[89] R. Luque-Baena, D. Urda, M. G. Claros, L. Franco, and J. Jerez, “Robust gene signatures
from microarray data using genetic algorithms enriched with biological pathway keywords,”
Journal of Biomedical Informatics, vol. 49, pp. 32 – 44, 2014.

73

[90] R. M. Luque-Baena, D. Urda, J. L. Subirats, L. Franco, and J. M. Jerez, “Application of
genetic algorithms and constructive neural networks for the analysis of microarray cancer
data,” Theoretical Biology and Medical Modelling, vol. 11, no. Suppl 1, pp. S7–S7, May
2014.

[91] M. Perez and T. Marwala, “Microarray data feature selection using hybrid genetic algorithm
simulated annealing,” in 2012 IEEE 27th Convention of Electrical and Electronics Engineers
in Israel, Nov 2012, pp. 1–5.

[92] E. K. Tang, P. N. Suganthan, and X. Yao, “Feature selection for microarray data using least
squares svm and particle swarm optimization,” in 2005 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology, Nov 2005, pp. 1–8.

[93] S. Li, X. Wu, and M. Tan, “Gene selection using hybrid particle swarm optimization and
genetic algorithm,” Soft Computing, vol. 12, no. 11, pp. 1039–1048, Sep 2008.

[94] L. Rastrigin, Systems of extremal control. Moscow: Nauka, 1974, p. 632.

[95] H. Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic algorithm as function
optimizer,” Parallel Computing, vol. 17, no. 6, pp. 619 – 632, 1991.

[96] A. P. Piotrowski, “Review of differential evolution population size,” Swarm and Evolutionary
Computation, vol. 32, pp. 1 – 24, 2017.

[97] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external
archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945–958, Oct
2009.

[98] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical
optimization,” in 2005 IEEE Congress on Evolutionary Computation, vol. 2, Sept 2005, pp.
1785–1791 Vol. 2.

[99] S.M. Islam, S.Das, S.Ghosh, S. Roy, and P.N. Suganthan, “An adaptive differential evolution
algorithm with novel mutation and crossover strategies for global numerical optimization,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2,
pp. 482–500, April 2012.

[100] R. D. Al-Dabbagh, F. Neri, N. Idris, and M. S. Baba, “Algorithmic design issues in adaptive
differential evolution schemes: Review and taxonomy,” Swarm and Evolutionary Computa-
tion, 2018.

[101] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, April 1997.

[102] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y.-p. Chen, A. Auger, and S. Tiwari, “Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on real-parameter
optimization,” Natural Computing, pp. 341–357, Jan 2005.

74

[103] S. Das and P. Suganthan, “Problem definitions and evaluation criteria for CEC 2011 com-
petition on testing evolutionary algorithms on real world optimization problems,” Jadavpur
University, Tech. Rep., Sept 2018.

[104] W. S. Sakr, R. A. EL-Sehiemy, and A. M. Azmy, “Adaptive differential evolution algorithm
for efficient reactive power management,” Applied Soft Computing, vol. 53, pp. 336 – 351,
2017.

[105] W. Kwedlo, “A clustering method combining differential evolution with the k-means algo-
rithm,” Pattern Recognition Letters, vol. 32, no. 12, pp. 1613 – 1621, 2011.

[106] D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis, “Differential evolution algorithms for
finding predictive gene subsets inmicroarray data,” inArtificial Intelligence Applications and
Innovations, I. Maglogiannis, K. Karpouzis, and M. Bramer, Eds. Boston, MA: Springer
US, 2006, pp. 484–491.

[107] H. A. Al-Mamum, P. Kwan, S. Clark, S. H. Lee, K. D. Song, S. H. Lee, and C. Gondro,
“Genomic best linear unbiased prediction using differential evolution,” in Proceedings of the
AAABG 21st Conference, 2015, pp. 145–148.

[108] C. Esquivelzeta-Rabell, H. A. Al-Mamum, S. H. Lee, K. D. Song, and C. Gondro, “Evolving
to the best SNP panel for hanwoo breed proportion estimates,” in Proceedings of the AAABG
21st Conference, 2015, pp. 473–476.

[109] J. C. Bean, “Genetic algorithms and random keys for sequencing and optimization,” ORSA
Journal on Computing, vol. 6, no. 2, pp. 154–160, 1994.

[110] M. M. Flood, “The traveling-salesman problem,” Operations Research, vol. 4, no. 1, pp.
61–75, 1956.

[111] R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily, “Differential evolution based feature subset
selection,” in 2008 19th International Conference on Pattern Recognition, Dec 2008, pp.
1–4.

[112] A. C. Nearchou and S. L. Omirou, “Differential evolution for sequencing and scheduling
optimization,” Journal of Heuristics, vol. 12, no. 6, pp. 395–411, Dec 2006.

[113] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is
stochastically larger than the other,” The Annals of Mathematical Statistics, no. 1, pp. 50–60,
03 1947.

[114] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools for Python,”
2001–.

[115] STUDENT, “The probable error of a mean,” Biometrika, vol. 6, no. 1, pp. 1–25, 1908.

[116] A. Xavier, S. Xu, W. Muir, and K. Rainey, “NAM: Association studies in multiple popula-
tions,” Bioinformatics, vol. 31, no. 23, pp. 3862–3864, 2015.

75

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Background
	Microarray Data
	Genome Wide Association Studies
	Genomic Prediction
	Linear Methods
	Non-Linear Methods
	Heritability

	Microarray Feature Selection
	Filter Methods
	Embedded Methods
	Wrapper Methods

	Differential Evolution
	Real Valued Optimization
	Feature Selection

	Methods
	Differential Evolution
	Evaluation
	Random Keys
	SNPBLUP
	GBLUP

	Mutation
	Crossover
	Selection

	Self-adaptive Differential Evolution
	SaDE
	MDE_pBX

	Local Search
	Coevolution of Subset Size
	Seeded Initial Population
	Heritability Thresholding
	Simple Halting
	Marker Removal

	Data
	Simulation
	Splitting

	Results
	Experimental Setup
	Data
	Fixed Subset Results
	Baseline
	Local Search
	Cross-validation
	Heritability Thresholding
	Simple Halting
	Marker Removal

	Self-adaptive Differential Evolution
	Seeding
	Combining Components
	Subset BayesR

	Coevolution Results
	Tuning Gamma
	Baseline
	Local Search
	Cross-validation
	Heritability Thresholding
	Simple Halting
	Marker Removal

	Self-adaptive Differential Evolution
	Seeding
	Combining Components
	Subset BayesR

	System Validation

	Conclusion
	Appendices
	
	Bibliography

