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ABSTRACT 

A MULTISCALE APPROACH TO UNDERSTAND  COMPLEX GROUNDWATER SYSTEMS AND 

SUSTAINABILITY 

By 

Zachary Kristopher Curtis  

Sustainable groundwater use is a growing and relatively ubiquitous concern. Yet, managing groundwater 

sustainably remains a significant societal challenge, largely because management must address a variety of 

issues across a multitude of scales. With rare exceptions, groundwater investigations have allocated limited 

resources to a narrow range of scales, in many cases ignoring important process interactions. Local-scale 

management is often done without proper understanding of the larger system controls, while system-based 

studies may not be sufficiently supplemented by subscale data collection and analysis, making it difficult 

to provide concrete, site-specific recommendations for management. This dissertation addresses a concrete 

example of a complex multiscale sustainability problem, namely, widespread salinization of shallow 

groundwater in southern Michigan, U.S.A, which appears to be due to natural basin-scale upwelling of deep 

brines, but is complicated by regional and local-scale human activities (e.g., pumping, road salting and land 

development). An integrated, end-to-end approach is developed and applied to investigate the complex 

interplay of upwelling brines, human activity, and climate variability at and across vastly disparate scales. 

Included are perspectives of basin-scale contamination, regional groundwater-surface water connections, 

local human-environment interactions, and well-scale analysis of water availability (quantity and quality). 

Data of different types, qualities, and resolutions/coverages (most of which are pre-existing and ‘big’) are 

integrated and critically evaluated with various modeling tools (data-driven, process-based and analytical 

solutions) to understand complex system dynamics and provide a basis for strategic regional planning, local 

operational management, and site-specific problem-solving. Data-driven approaches are used to 

characterize spatial patterns and temporal trends and provide diagnostic screening of different groundwater 

environments across multiple scales. Regional and local-scale process-based flow simulations are used to 

describe and quantify the relative importance of different processes controlling groundwater sustainability, 



 

 

and to estimate future groundwater conditions by integrating detailed county-and township-level 

projections of water use and land use into model development. Through this integrated, multi-scale and 

multi-perspective analysis, several key scientific conclusions emerge: 1) slow, natural upwelling of brines 

is the dominant source of shallow saline groundwater in low-lying discharge areas across southern 

Michigan; 2) locally, impacts of brines are most severe where relatively continuous confining materials 

occur near or at the surface (precluding freshwater recharge as a freshwater flushing mechanism) and where 

groundwater levels are low; 3) cumulative impacts of gradual (multi-decadal) but significant increases in 

distributed water well networks have caused large declines (>15 m) in groundwater levels across broad 

subregions, which in turn is inducing movement of brine-influenced groundwater into areas historically 

less/not affected and worsening the severity and extent of shallow groundwater salinization; and 4) 

impacted aquifer systems will begin to stabilize as the rate of increase in pumping slows down, but local 

groundwater availability will still be limited by acceptable water quality of the user and/or required yield. 

The multi-scale, big data-enabled approach applied here provides a generalized framework for developing 

holistic understanding of groundwater systems important to sustainability, and for prioritizing limited 

resources needed for analysis in key areas to inform subregional and local-scale resource management.  
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OVERVIEW: MOTIVATION, APPROACH & KEY CONTRIBUTIONS 

Sustainable groundwater use is a growing and relatively ubiquitous concern. Yet, managing groundwater 

sustainably remains a significant societal challenge, largely because management must address a variety of 

issues across a multitude of scales. With rare exceptions, groundwater investigations have allocated limited 

resources to a narrow range of scales, in many cases ignoring important process interactions. Local-scale 

management is often done without proper understanding of the larger system controls, while system-based 

studies may not be sufficiently supplemented by subscale data collection and analysis, making it difficult 

to provide concrete, site-specific recommendations for management.  

The objective of this dissertation is to address a real-world groundwater sustainability problem that exhibits 

the above-mentioned characteristics. The specific issue is widespread salinization of shallow groundwater 

in southern Michigan, U.S.A, which appears to be due to natural basin-scale upwelling of deep brines, but 

is complicated by regional and local-scale human activities (e.g., pumping, road salting and land 

development).  Specific research questions addressed are:  

• How do different processes (natural and anthropogenic) interact to control the long-term sustainability 

of southern Michigan’s shallow groundwater resources? How do interactions at local scales shape 

global system dynamics, and how do those macro-level dynamics determine long-term sustainability? 

To what extent are natural upwelling brines responsible? What is the relative importance of human 

activity?   

• Is it even practical to try to characterize/model the entire system?  How can we possibly find enough 

data to characterize groundwater conditions across large areas and different scales? How can we 

represent complex geology and dynamic stress frameworks in ways that do not over-parameterize 

groundwater flow models used to develop and test system understanding? How can we calibrate models 

of such systems in ways that allows evaluating long-term sustainability?  How can we estimate location-

specific groundwater availability (current or future) in ways that account for larger (and longer term) 

system dynamics?  
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An integrated, end-to-end approach is developed and applied to investigate the complex interplay of 

upwelling brines, human activity, and climate variability at and across vastly disparate scales. Included are 

perspectives of basin-scale contamination, regional groundwater-surface water connections, local human-

environment interactions, and well-scale analysis of water availability (quantity and quality). Data of 

different types, qualities, and resolutions/coverages (most of which are pre-existing and ‘big’) are integrated 

and critically evaluated with various modeling tools (data-driven, process-based and analytical solutions) 

to understand complex system dynamics and provide a basis for strategic regional planning, local 

operational management, and site-specific problem-solving. Data-driven approaches are used to 

characterize spatial patterns and temporal trends and provide diagnostic screening of different groundwater 

environments across multiple scales. Regional and local-scale process-based flow simulations are used to 

describe and quantify the relative importance of different processes controlling groundwater sustainability, 

and to estimate future groundwater conditions by integrating detailed county-and township-level 

projections of water use and land use into model development  

Chapter 1 describes a novel approach for data-driven modeling of high-density water well datasets – which 

are deemed by many too crude to be useful – that allows characterizing hidden patterns of groundwater 

quantity and quality across different spatial scales. A non-stationary kriging technique that automatically 

filters out errors and characterizes dominant spatial signals is applied at basin-, regional- and local-scales 

to identify prevailing spatial configurations of flow systems (i.e., occurrence of discharge zones and 

recharge zones) and areas of significantly (and statistically) elevated dissolved chloride (Cl) concentrations 

(as a proxy for salinity).  

Chapter 2 investigates the integration and relative importance of data of different types, qualities, and 

resolutions for process-based modeling of groundwater systems. Generalized methods are applied to build 

a suite of process-based flow models of different sizes, types, and in different hydrologic regimes in 

Michigan, taking advantage of a comprehensive, preprocessed groundwater database. Performance is 

examined at different scales and model sensitivity is evaluated with respect to model parameters and 
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structure. Results show that, although groundwater is invisible and lots of data are required for simulation, 

those representing the land surface (topography, lakes, streams and surface seeps) are the most important 

for providing a system context to model perturbations across scales.  

Chapter 3 presents innovative approaches for simulating complex aquifer systems in ways that avoid issues 

related to flow model over-parameterization.  In particular, above-mentioned water well datasets were used 

to 1) implement a ‘zone-based’ Transition-Probability (TP) geostatistical approach to conceptualize 

complex three-dimensional spatial variability using a relatively small set of geologic material types; 2) 

model the intricate spatiotemporal evolution of water well withdrawals across several decades using a 

sector-based water use parameterization 3) capture long-term groundwater level declines in different parts 

of the aquifer system using a large amount of noisy groundwater level data. 

Chapter 4 describes a holistic analysis of Cl dynamics in southern Michigan to understand and characterize 

links between water quality, groundwater pumping, and natural hydrogeologic controls. Multi-scale data-

driven modeling of massive amounts of groundwater and geologic information is combined with detailed 

analysis of Cl patterns and results from process-based flow modeling at regional and local scales to not only 

explain water quantity-quality dynamics, but also perform diagnostic screenings and develop ‘groundwater 

severity’ rankings of at-risk counties across southern Michigan.  

Chapter 5 presents the application of the calibrated groundwater flow model discussed in Chapter 3 to 

estimate future groundwater sustainability, informed by best estimates of projected land use/land cover 

(LULC) and future groundwater use developed by county-level planning and utilities departments in Ottawa 

County, Michigan.  Likely long-term (2016-2036) simulated changes of groundwater levels due to human 

activity and climate change (recharge dynamics) are adjusted with well-scale analytical corrections to 

estimate sustainable yield (pumping rates) at different locations during “limiting situations” – when 

groundwater pumping will be at its largest and recharge is lowest. The framework enables calculation of 

available drawdown and sustainable groundwater yield (pumping) under different management criteria 

(water availability and acceptable water quality). 
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Through this integrated, multi-scale and multi-perspective analysis, several key scientific conclusions 

emerge: 

• slow, natural upwelling of brines is the dominant source of shallow saline groundwater in low-lying 

discharge areas across southern Michigan, demonstrated by parallel, hierarchical spatial structures of 

water quality and water quantity across different scales (basin-, regional- and local-scale), namely, 

relatively frequent occurrence of elevated Cl concentrations in groundwater discharge zones and 

relatively infrequent occurrence of elevated Cl concentrations in recharge zones; 

• in different counties in different regions of southern Michigan, the occurrence of brine-influenced 

groundwater coincides with declining groundwater levels and occurrence of clay lenses revealed 

through data-driven modeling, suggesting both natural and human controls are important at regional 

and local scales; 

• process-based modeling of causal relationships between flow, geology and aquifer stress (pumping) in 

Ottawa County, Michigan shows that cumulative effects of decades of distributed small-scale pumping 

has drastically reduced groundwater levels across large subareas (so much so that a large ‘cone of 

depression’ continues to deepen and widen in the central part of Ottawa County) significantly altering 

flow system dynamics. In some areas, flow directions and groundwater-surface water interactions have 

actually reversed (e.g., stream stretches converting from gaining to losing), significantly changing 

subregional water balances; 

• the current distribution of elevated Cl concentrations in Ottawa County coincides with areas where deep 

groundwater naturally discharges (matching the results from multi-scale analysis of prevailing spatial 

patterns of water quantity and quality), but also with the above-mentioned cone of depression, 

suggesting that pumping is making the problem worse; 

• temporal analysis of Cl data augmented by flow model application (particle tracking of deep 

groundwater flow) confirms that Cl concentrations are increasing with time and salinization is 

becoming more widespread in some subareas in response to pumping; and  
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• based on best estimates of future groundwater use and land development, the calibrated flow model of 

the Ottawa County aquifer systems suggests that groundwater levels will begin to stabilize as the rate 

of increase in pumping slows down, but local groundwater availability will still be limited by acceptable 

water quality of the user and/or required yield (e.g., large-scale pumping used to support agriculture or 

industry may face challenges producing required yields without utilizing an unacceptable portion of the 

local saturated aquifer thickness). 

The multi-scale, big data-enabled approach applied here provides a generalized framework for developing 

holistic understanding of groundwater systems important to sustainability, and for prioritizing limited 

resources needed for analysis in key areas to inform subregional and local-scale resource management. 

Chapters 1-4 are written as research papers that are either currently published or in the peer-review process. 

As such, contributing authors are listed at the beginning of each Chapter (1-4).  Chapter 1 is published in 

the Journal of Groundwater (Volume 56, Issue 3). Chapters 3 and 4 have been submitted to a 2nd round of 

peer-review and expected to be published soon (both in the Journal of Groundwater). Chapter 2 will soon 

be sent out for a first round of peer-review. Chapter 5 will soon be incorporated into a paper describing the 

integrated, end-to-end approach to understand complex groundwater systems and sustainability described 

here through application of addressing brine-influenced groundwater in southern Michigan. At this time, 

the contributing author list for Chapter 5 has not been fully determined.  
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CHAPTER 1  

Data-Driven Approach for Analyzing Hydrogeology and Groundwater Quality across Multiple Scales 

Contributing authors: Zachary Curtis, Shu-Guang Li, Hua-sheng Liao, David Lusch 

1.1 Executive Summary of Ch. 1 

Recent trends of assimilating water well records into statewide databases provide a new opportunity for 

evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely 

rigorously analyzed to address larger scientific problems because they are of lower quality and massive.  

We develop an approach for utilizing well databases to analyze physical and geochemical aspects of 

groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride 

(Cl) in the near-surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water 

levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long-term, average 

groundwater flow patterns using a non-stationary kriging technique at the basin-scale (i.e., across the entire 

peninsula). Two regions identified as major basin-scale discharge zones – the Michigan and Saginaw 

Lowlands – were further analyzed with regional- and local-scale SWL models.   Groundwater valleys 

(‘discharge’ zones) and mounds (‘recharge’ zones) were identified for all models, and the proportions of 

wells with elevated Cl concentrations in each zone were calculated, visualized, and compared. 

Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are 

consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the 

Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies 

of the Saginaw Lowlands. These strong, consistent SWL and Cl distribution patterns across multiple scales 

suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride 

concentrations observed in discharge areas across the peninsula. 

1.2 Ch. 1 Introduction 

In recent years, a number of U.S. states have assembled statewide water well databases in an effort to 

improve the characterization and management of their groundwater resources. In some states, the process 
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of sorting, filtering, and merging data from various state and federal agency inventories is still on-going 

and the datasets are not yet ready for use (see, e.g., the Virginia Department of Environmental Quality well 

database), while in many states the databases are now being linked to GIS web-applications  and data portals 

where data can easily be viewed and downloaded for further analysis (see, e.g., the Illinois State Geological 

Survey repository (ISGS 2015), Kansas’ WIZARD water well levels database (KGS 2002), Michigan’s 

Wellogic database (MDEQ 2014), and the Geosam Database for the State of Iowa (IGS 2015)).  These 

datasets contain massive amounts of high-density physical groundwater data (water levels), and in some 

cases, water quality information. However, these datasets are scarcely rigorously analyzed to address larger 

scientific problems primarily because they are of lower quality and are massive in size.  In this study,   we 

develop an approach for utilizing these massive (but noisy) water well databases to better understand 

physical and geochemical aspects of groundwater systems, and apply it to an investigation of  groundwater 

quality across multiple spatial scales in the Lower Peninsula of Michigan, namely, the sources and dynamics 

of chloride (Cl) in the near-surface groundwater. 

 Michigan Groundwater Salinity 

In sedimentary basins across North America, groundwater exhibiting high salinities at great depths has been 

reported (e.g., Carpenter et al. 1974; Land and Prezbindowski 1981; Stueber and Walter 1991). The 

Michigan Basin (Figure 1.1) – an ovate, bowl-shaped accumulation of sedimentary rock with a maximum 

thickness of more than 5,300 m in the basin center (Lilienthal 1978) – is unique because, in addition to very 

high total dissolved solids concentrations (TDS > 450,000 mg/L) in the deep bedrock formations (Wilson 

and Long 1993a and 1993b),  saline groundwater (TDS > 1000 mg/L) has been reported in shallower 

bedrock formations and glacial-drift aquifers in some areas of the basin. Several studies published as part 

of the U.S. Geological Survey (USGS) Regional Aquifer-System Analysis (RASA) program documented 

high dissolved-solids and dissolved-chloride (Cl) concentrations (TDS > 100,000 mg/L) within the 

Mississippian and Pennsylvanian bedrock formations (i.e., from the Marshall Sandstone unit up through 

the Saginaw  Formation shown in Figure 1.1), with concentrations that increase toward the basin center 



8 

(e.g., Ging et al. 1996; Meissner et al. 1996; Westjohn and Weaver 1996b; Lampe 2009).  Lane (1899) and 

Long et al. (1988) documented saline near-surface (<100 m) groundwater in east-central Lower Peninsula 

of Michigan – the Saginaw Lowlands (Figure 1.2). At discrete locations further inland, “salt springs” were 

reported (Albert 2001; Kost et al. 2007). More recently, analysis of drinking water wells in the west-central 

Lower Peninsula of Michigan – the Michigan Lowlands (seeFigure 1.2) – revealed significant occurrence 

of Cl concentrations elevated above the US Environmental Protection Agency (EPA) secondary maximum 

contaminant level (SMCL) of 250 mg/L (IWR 2013; Long et al. 2015). Such elevated Cl concentrations 

make groundwater unfit for human consumption and for many agricultural uses, and are detrimental to the 

environment (Ayers and Westcot 1985).  
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Figure 1.1: Lower Peninsula of Michigan bedrock geology plan-view map, with a selected cross-section (A 

- B) of the shallow bedrock geology. 

Research probing the origin of the shallow saline groundwater has primarily involved site-specific 

geochemical approaches. Long et al. (1988) studied groundwater in the glacial and bedrock aquifers of the 

Saginaw Lowlands and found increasing Cl concentrations with increasing depth, as well as evidence of 

mixing between modern day, meteoric water and water that is much older. Analysis of pore water from the 

Saginaw Lowlands yielded strong vertical gradients in Cl concentrations and chloride:bromide ratios 

indicative of brine as the source for the chloride (Kolak et al. 1999). Steep gradients in Cl  concentrations 
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with depth and evidence of brine-influenced groundwater were also observed along the basin margins in 

southwestern Ontario (Weaver et al. 1995) and in the formation waters of the Antrim Shale unit (McIntosh 

et al. 2004). Ma et al. (2005) used helium and major-ion data from bedrock aquifer samples in south-central 

Lower Michigan to demonstrate the influence of deeper brines on shallow bedrock aquifers in the study 

area. Although a careful geochemical study of the cause of chloride contamination in the groundwater of 

the Michigan Lowlands is lacking, a few studies suggest that mixing of brines and shallow fresh 

groundwater is responsible for saline groundwater in the area (Ging et al. 1996; Fitzpatrick et al. 2007; 

Long et al. 2015). Importantly, these separate geochemical studies in different areas of the Michigan Basin 

suggest upwelling brines are preferentially impacting some areas of Lower Michigan.  

 

Figure 1.2: Lower Peninsula of Michigan 10m Digital Elevation Model (NED, 2006) showing the 

location of the Saginaw and Michigan Lowlands. 

Natural brine upwelling and subsequent mixing with fresh groundwater as the source of saline near-surface 

groundwater in parts of the Michigan Basin requires vertical head gradients to drive advection of denser 

brines towards the land surface.  Indeed, there has been some attempt to understand the groundwater 

hydrology of areas in which geochemical analyses inferred the upwelling of brine. Hoaglund et al. (2004) 



11 

used numerical models to show that, at present conditions, modern lake elevation in Saginaw Bay is 

exceeded by the head in the underlying Marshall aquifer by as much as 21 m, creating a significant potential 

for upward flow. Others studying the general basin-scale groundwater processes noted that the Michigan 

Lowlands and Saginaw Lowlands represent two major regional discharge zones, (e.g., Westjohn and 

Weaver 1996a; Westjohn et al. 1994; Hoaglund et al., 2002). The findings of the site-specific geochemical 

studies, coupled with knowledge of the basin-scale hydrogeology, suggest that the upwelling of brines 

systematically impacts the near-surface environment and its water resources in the Lower Michigan.  

However, it is still not clear to what extent the brines are responsible for elevated groundwater salinity 

across the peninsula, which has important implications for sustainable management of groundwater 

resources in this region. This is because a system-based understanding – one that addresses groundwater 

quality and quantity at different scales across the peninsula – is lacking. 

 Objectives 

In this study, we develop and apply an approach for utilizing massive (but noisy) water well datasets to 

holistically evaluate hydrogeologic systems, examining correlations and patterns of groundwater quantity 

and quality at and across different spatial scales. In particular, we 1) map the two-dimensional (2D), 

vertically-integrated spatial  distribution of groundwater levels in surficial aquifers; 2) identify groundwater 

mounds (‘recharge zones’) and valleys (‘discharge zones’); 3) characterize the occurrence of elevated 

concentrations of Cl in shallow water wells (as a tracer of salinity); and 4) visualize, compare and analyze 

the groundwater and Cl dynamics. This process was applied at three different spatial scales: the basin scale 

(i.e., across the entire peninsula), regional scale, and local scale, with the two regions identified as major 

basin-scale discharge zones – the Michigan and Saginaw Lowlands – being further analyzed through the 

development of regional- and local-scale SWL models.  Results from a field sampling campaign are 

presented to understand the three-dimensional (3D) Cl spatial structure within the Michigan Lowlands, 

which is then compared with results from previous studies in the Saginaw Lowlands where shallow, saline 

groundwater has been attributed to brine upwelling. 
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It is worth noting the necessity of a multi-scale approach in this study. The Lower Peninsula of Michigan 

is characterized by strong topographic variability and complex geology, which leads to the development of 

multi-scale groundwater flow systems (Toth 1963; Freeze and Witherspoon 1967; Meyboom 1967; Winter 

1988, Sampath et al 2016). A particular flow system might be important at one scale in the study area, but 

may play no role at other scales. Different residence time distributions, source areas, and flow paths 

transmitted through different geologic materials may lead to high variability in the spatial distribution of 

groundwater quality (Toth, 2009; Huggenberger et al., 2013).  Moreover, certain patterns may not be 

discernable when viewed at smaller scales, although their recognition at larger scales may spark new 

insights. In light of these considerations, this study evaluated the near-surface groundwater levels and Cl 

concentrations at the multiple spatial scales noted above. 

1.3 Ch. 1 Methods 

Recently assembled statewide groundwater databases were employed to delineate groundwater levels and 

Cl concentrations of the near-surface environment at different spatial scales. We apply an automated, 

continuously moving window statistical analysis   to generate hydraulic head maps using Static Water 

Levels (SWLs) from drinking water well records.   To evaluate Cl variability with respect to depth and 

bedrock geology within the Michigan Lowlands, 467 wells were sampled across Ottawa County, Michigan, 

which lies almost entirely within the Michigan lowlands. 

 Data-driven Groundwater Modeling 

The traditional groundwater modeling approach typically implements process-based numerical models to 

simulate groundwater conditions, using a limited amount of data to verify the model at specific points in 

space and/or time.   This is challenging because: 1) most natural systems are complex, and the development 

of multi-scale flow systems adds yet another layer of complexity; 2) data are expensive to collect; and 3) 

typically modelers have incomplete datasets to accurately characterize all of the parameters in the system. 

Even when sufficient data are available, significant time and effort is required for calibration. An 

opportunity is presented by considering that, when abundant data are available, reasonable estimation of 
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physical phenomena, including those related to hydrology, can be accomplished without developing a 

calibrated model (Cunge 2003; Garcia and Shigidi 2006).  Although limited in nature (e.g., transient 

simulations and the estimations of water budgets and fluxes are not possible), data-driven groundwater 

models based on numerous head measurements across space and time and dependent on correlations 

between variables provide an efficient method for estimating the prevailing, long-term hydrogeological 

conditions. This affords the opportunity to concentrate more on understanding the natural processes rather 

than the issues related to numerical modeling of groundwater systems.  

In this study, we apply a data-driven approach to generate statistical models of groundwater conditions in 

the Lower Peninsula of Michigan, capitalizing on substantial geospatial data integration completed by the 

Michigan Department of Environmental Quality (MDEQ) and Michigan State University that resulted in 

two extensive, high-resolution, statewide groundwater databases with records that go back several decades: 

(1) Wellogic, which includes information on static water levels (SWL) from over 550,000 water wells, 

including private domestic wells, public supply wells, and wells used for agriculture and industry (MDEQ 

2014); and (2) WaterChem, which contains water quality information from over 1 million samples collected 

from water wells and analyzed at the State of Michigan’s Drinking Water Analysis Laboratory (MDEQ 

2010). Spatial coverage of the Wellogic (SWL) and WaterChem (Cl) wells (Figure 1.3) is very high 

throughout most of the peninsula, and especially for areas in and near the Michigan Lowlands (i.e., one 

location used for regional and local analysis). This provides an unprecedented amount of spatial information 

regarding groundwater across the study area. However, there are significant challenges that make using the 

datasets problematic, which are discussed next. 
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Figure 1.3: Spatial coverage of (a) Wellogic database and (b) WaterChem database. 

1.3.1.1 Challenges Sources of Error 

There are a number of sources of error and variability embedded in the SWL dataset that must be addressed 

during processing and analysis. First, there are sources of procedural error to address, including: ‘black and 

white’ errors, or data that are physically-impossible or so badly mislocated that they are many standard 

deviations outside of the local trend. These errors result from poor record keeping at the time of collection 

or transcription problems during data entry. There are also significant sources of uncertainty embedded in 

the SWL calculations.  For example, each data point represents the SWL or Cl concentration at a single 

point in time, and therefore this study - which does not differentiate SWL or Cl data from different time 

periods, but rather uses all processed data from different times - presents long-term average groundwater 

level distributions and Cl spatial dynamics. Using SWL from different seasons, years or even decades, 

potentially results in relatively large SWL variability for locations in close proximity to one another, or 

between measurements taken at different times from a single well. Other sources of inaccuracy in SWL 

calculations include:  1) approximate well locations – most older well records lack GPS information 

required the use of geocoding or indirect information reported by the driller to estimate position; 2)  the 

presence of vertical head gradients, which will impact the depth-to-water measurement depending on the 

depth of the well screen, resulting in SWL variability for adjacent wells, even if temporal trends are not 

present and especially when wells terminate in different aquifer units (note  that Wellogic contains wells 

completed in both the glacial and bedrock aquifers of Lower Michigan, and in principle these aquifers could 
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be analyzed individually in areas of dense data coverage; however, in this study it was deemed appropriate 

to analyze glacial and bedrock wells together – see Appendix A at end of this chapter); 3) measurement 

uncertainty introduced by inconsistencies from driller to driller; and, 4) the use of 10m resolution DEM 

(the best available across all areas of study), which in areas of steep topographic gradients may result in the 

use of an inaccurate datum for calculation of the SWL.   

These potential sources of inaccuracy in the SWL calculations raise a number of important questions related 

to using them to delineate groundwater levels. What is the cumulative impact of the sources of uncertainty 

in SWL calculations? How can we quantify and separate the noise from the SWL trend (or ‘signal’)?  And 

how do we map the noise and signal at different spatial scales? Our systematic approach for addressing 

these important questions is presented next, which is the first step in the integrated workflow for utilizing 

the SWL and Cl datasets to address the study objectives (see Figure 1.4).  For analysis at a given scale, the 

major components of the workflow include: 1) pre-processing the SWL data to remove blatant errors and 

incomplete data; 2) assessing and modeling SWL spatial structure and local variability from locale to locale 

(cell-by-cell variogram development); 3) SWL interpolation and delineation of groundwater mounds and 

valleys (referred to as recharge zones and discharge zones, respectively); and graphical and statistical 
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analysis of Cl point data.  The following subsections provide details for each component of the integrated 

water quantity-quality workflow. 

 

Figure 1.4: Workflow diagram for integrated water quantity-quality data-driven modeling. 

 Spatial Interpolation of Massive Noise SWL Datasets 

Interactive Groundwater software – introduced by Li and Lui (2006), but being continuously updated 

(see, e.g., Li et al. 2006; Liao et al. 2015) – was used for the SWL spatial analysis. 

1.3.2.1 Filtering Procedural Errors 

The first step for delineating spatial SWL variations was to select a domain and model cell resolution, which 

determines the number of model nodes. After reading SWL data and subtracting the depth-to-water 

recorded in the well logs from the 10m DEM available in the National Elevation Dataset (NED USGS 

20006), data that clearly wrong or incomplete were removed and a moving statistical analysis was used to 

identify and remove values that were more than three standard deviations from the local average, using the 

nearest 30 points to establish the local trend.  Table 1.1 provides details of the basin-scale model and the 
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regional and local data-driven models developed for the Michigan Lowlands and Saginaw Lowlands. Note 

the large number of SWL data points involved for each model. The percentage of points removed at the 

basin-scale was 1.48%. For the Michigan Lowlands regional and local models, 1.89%, and 1.43% were 

removed, respectively. In the Saginaw Lowlands regional and local models, 1.38% and 1.41% were 

removed, respectively. 

Table 1.1: Details of the basin-scale SWL model (BW), the regional and local models developed for the 

Michigan Lowlands (ML-R and ML-L, respectively), and the regional and local models developed for the 

Saginaw Lowlands (SL-R and SL-L, respectively). Each model cell at a given scale was approximately 

square and of the same size. 

Model 

Area 

(km2) 

Grid 

size 

(m) NX NY 

SWL 

Data 

Points 

BW 106751 4500 81 102 489,894 

ML-R 17026 1480 80 112 110,760 

SL-R 13,227 1490 88 79 44,803 

ML-L 1108 250 150 130 6555 

SL-L 1378 275 161 138 4374 

 

1.3.2.2 Separating Noise from Signal 

The general approach for quantifying and separating noise from SWL spatial trends is to assess the sub-cell 

variability and local (cell-to-cell) spatial structure for each estimation point of the SWL models, taking 

advantage of the high density SWL data available essentially ‘everywhere’ to quantify variations at very 

close distances (relative to the model size), and to use this critical information during spatial interpolation. 

This is sometimes generally referred to as nonstationary modeling or the automatic moving window 

approach, and has been used in recent geostatistical studies involving datasets of meteorological or 

environmental parameters distributed across space (see, e.g., Walter et al. 2001 Pardo-Iguzquiza et al. 2005; 

Lloyd 2010, Harris et al. 2010).   

This approach implements kriging, an optimal interpolation method in geostatistics (Sun et al. 2009, 

Varouchakis and Hristopulos 2013) that provides estimates of values at any given point as a weighted sum 

of input values at surrounding points, with weights assigned based on spatial trends and correlations (Isaaks 
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and Srivastava 1989; Bossong et al. 1999). The weights are derived from fitting a model variogram to the 

empirical variogram, which are graphical depictions of separation distance, or lag, and semivariance (or 

dissimilarity) in values between pairs of input data (see Figure 1.5). For this study, the nugget represents 

the SWL variability (i.e., noise) across a single model grid cell (i.e., the impact of all sources of uncertainty 

in the SWL calculations for a given grid cell location); the partial sill is difference of the maximum modeled 

semivariance and the nugget, interpreted as the SWL signal, or the spatial trend across grid cells; and the 

range is the lag distance at which the variogram maximum modeled semivariance is (approximately) 

reached (i.e., semivariance no longer increases with separation distance). 

 

Figure 1.5: Schematic of a variogram (model and data) with annotations clarifying the nugget, partial sill 

and range terms of the model variogram. 

When modeling an area with sparse data coverage, a single model variogram is typically developed using 

the global dataset. Traditionally, studies mapping groundwater elevations make use of many fewer high 

quality groundwater level measurements spread across relatively large distances because of the high costs 

associated with constructing monitoring wells to collect precise physical groundwater data. Thus, a single, 

global variogram is utilized for spatial interpolation. In some cases, data subsets in the vicinity of a cluster 

of estimation points are used to develop several local variograms rather than apply a single variogram 

derived from the global dataset, thereby improving interpolation results (see, e.g., Haas 1990 and 1995; 

Abedini et al. 2008). In this study, we capitalize on the very high data density of the SWL dataset to create 

a unique model variogram at each estimation point, using the nearest N points to develop the model 



19 

semivariogram and perform kriging estimation (see the process loop in Figure 1.4).  The number of points, 

N, at each scale was determined by multiplying the average well density within the SWL model, ρwells, by 

the area to be used for kriging analysis, assumed to be a circular area with a diameter that is one-tenth the 

extent of the SWL model, L: 

       𝑁 =  𝜌𝑤𝑒𝑙𝑙𝑠 ∗  
𝜋

4
(

1

10
𝐿)

2

                                                              (2.1) 

Values of ρwells, L and N for all SWL models are provide in Table 1.2. Although the selection of 

one-tenth of L as the ‘range of interest’ for variogram model development was chosen in a 

somewhat arbitrary manner, the general approach used here is a pragmatic way to ensure that the 

number of points is large enough to develop a model variogram that is statistically significant, but 

not so large as to overburden the computations,   as O(n3) computations are required to solve the 

kriging equations involving n data (Cressie and Johannesson 2006).  

Table 1.2: Values of ρwells, L and N for all SWL models.  See Table 1.1 for model abbreviation 

clarifications. 

Model 

ρwells 

(well per 

sq. km) 

L  

(km) N 

BW 4.6 459 7594 

ML-R 6.7 166 1440 

SL-R 3.4 130 450 

ML-L 5.9 37.5 66 

SL-L 3.2 44 48 

 

1.3.2.3 Example Variograms 

Illustrative examples of the developed variograms from each spatial scale are shown in Figure 1.6, where 

the semivariance is plotted on the y-axes and lag distance is plotted on the x-axes. The data shown on each 

plot represent the average semivariance at each of the 15 lags. The Gaussian variogram model fitted to the 

data using least-square regression optimization is shown as a solid line.     Table 1.3 provides information 
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on the nugget, range and partial sill of each example variogram model shown in Figure 1.6. Several 

important points can be made  from these results: (1) for all variogram models, the nugget, or SWL 

variability (noise) at the grid cell location (node), was captured and was less than grid-to-grid SWL 

variability revealed by partial sill values; (2) the nuggets, partial sills, and ranges are not only different for 

the different variograms at a given scale, articulating the non-stationary spatial structure from grid cell to 

grid cell, but also are larger for larger models; 3) at each scale, the variograms are relatively well defined 

by the data, although for  larger models the data best matches the model because of the larger number of 

data points available for assessing the spatial structure and the relative insensitivity of large area 

delineations to individual SWL points; and 4) the ranges at a given scale are approximately equal to the 

length of a few adjacent grid cells at that particular scale, which confirms that the approach captures the 

local spatial structure, where the relative size of ‘local’ depends on the scale of analysis. Note that the 

increase in nugget magnitude across scales is expected, since sub-grid variability increases as scales change 

from fine to coarse, reflecting a ‘scale-smoothing’ effect: smaller-scale variabilities are not represented in 

the variogram model structure, but are lumped in with the nugget.  

Importantly, these examples from the non-stationary kriging approach demonstrate the relatively low 

impact of the sources of uncertainty embedded in the SWL calculations for the purposes of delineating the 

SWL spatial structure at a given modeling scale (i.e., the nugget magnitude is small compared to the total 

observed SWL variability). In addition, this technique fully utilizes the massive SWL dataset while 

remaining computationally feasibly by solving many simplified problems rather than one set of kriging 

equations for the global dataset. Although this approach has been used in other geospatial studies (see 

above), the authors do not know of another groundwater mapping study that had sufficient data density 

available to implement the development of local variograms at each estimation point. Moreover, the 

previous geostatistical studies did not examine how variogram parameters differ across spatial scales as 

was shown here. 
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Figure 1.6: Illustrative variograms at the (a) local scale (LV1, LV2, LV3); (b) regional scale (RV1, RV2, 

RV3) for the Michigan Lowlands analysis, and also at (c) basin-scale (BV1, BV2, BV3).   

Table 1.3: Information for the model variograms shown in Figure 1.6. 

Vario-

gram 

Model 

Node 

(i,j) Nugget 

Partial 

Sill Range 

LV1 83,72 2 20.5 144 

LV2 142,99 2.9 6.1 756 

LV3 41,47 7.1 11.7 604 

RV1 58,27 10.9 11.1 2276 

RV2 69,54 13.8 30 3960 

RV3 30,51 15.1 16.7 4442 

BV1 55,73 29.1 190.8 12328 

BV2 28,49 26 123.6 8320 

BV3 35,30 32.5 103.2 9123 
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 Delineating Recharge and Discharge Areas  

The results from the 2D SWL interpolation were used to delineate groundwater mounds surrounded by 

lower groundwater elevations, as well as areas where the lowest groundwater elevations are found. In this 

study, these areas are referred to as recharge and discharge zones, respectively, although it should be noted 

that this definition is different from the theoretical definition concerning vertical head at the water table 

(Freeze and Cherry, 1979). Characterizing vertical gradients would require nested wells with precise 

knowledge of the land surface elevation – such data were not available in this study.  Nonetheless, the 

practical approach of delineating groundwater mounds and valleys provides the necessary qualitative 

distinction between areas where groundwater is expected to have a relatively greater downward or upward 

flow component.   

At each scale, head maps were displayed, and polygons were generated encircling continuous areas with 

head values above or below threshold values of the hydraulic head distribution considered to be associated 

with recharge areas or discharge areas, respectively. For discharge areas, the threshold value was the head 

that roughly separated the lower and middle tertiles of the head distribution; for recharge areas, the head 

that roughly separated the middle and upper tertiles was used as the threshold value.  The exception is the 

local-scale analysis. Because fewer WaterChem data points were available within the local study area, the 

entire local model domain was classified as either within a zone of discharge or a zone of recharge in order 

to perform meaningful statistical analysis (see next subsection). The local-scale threshold value was the 

head that roughly separated the lower and middle tertiles of the head distribution.  Effectively, this assumes 

that at local scales, lateral components of flow are dominated by vertical components. Note that the use of 

tertiles was a pragmatic approach and not necessarily founded in theory, although the authors experimented 

with different threshold values, e.g. based on quartiles, and the results from the integrated Cl/SWL analysis 

did not change significantly (e.g., see Appendix B at the end of this chapter). The process was done using 

geospatial analysis tools in ArcMap version 10.1 (ESRI, 2011). 
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 Elevated Cl Overlays 

Point measurements of Cl concentrations from water well samples were overlaid on the head maps and a 

series of graphics using different thresholds to filter the Cl data were generated at each scale investigated.  

The thresholds used for graphical analysis were [Cl] >250, [Cl] >500, and [Cl] >1000 mg/L, and hereafter, 

the term ‘elevated’ refers to Cl data points present after filtering with a given threshold.  These thresholds 

were considered to be well above natural concentrations that are typically less than 15 mg/L for most 

shallow aquifers in the mid-continent region of North America (Hem 1985, Wahrer et al., 1996). After 

some experimentation, these thresholds were deemed to be the most appropriate to illustrate changes in 

spatial patterns at different concentrations. Of course, other potential sources might cause chloride 

concentrations to be elevated, e.g., halite from roadway deicing or infiltration of septic tank wastewater.  In 

the Discussion section below, the impact of other Cl sources on the analysis is briefly explored.  

When displayed in conjunction with the discharge and recharges zones delineated in the manner described 

above, this overlay analysis allows easy identification of Cl concentration clusters in hydrologically-distinct 

regions within the study domain. However, the number of wells completed in one zone as compared to the 

other is not always equal. At the basin-scale, there were 228,967 and 43,311 Cl data points available in 

discharge and recharge zones, respectively, but at the local scale (Saginaw Lowlands) 825 and 5222 points 

were available in discharge and recharge zones, respectively. To account for this, a quantitative analysis 

was implemented that considered the percentage of Cl data points above a given threshold relative to the 

total number of data points within the zone under analysis (discharge or recharge). The process was as 

follows: at all scales, quantify 1) the total number of Cl  data points present in the discharge and recharges 

zones; 2) the number of data points present after filtering the Cl dataset for different thresholds; 3) the 

percentage of data points in the discharge and recharge zones that are above different thresholds by using 

the values obtained in steps 1 and 2; and 4) calculate the ratio of percentages (discharge:recharge). This 

also removes the potential bias related to multiple samples from a single well being used in the analysis. 

The thresholds used for these statistical analysis were [Cl] >100, [Cl] >150, [Cl] >200, [Cl] >250, [Cl] 

>500, [Cl] >1000, and [Cl] >1500 mg/L. 
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 Field Sampling in the Michigan Lowlands  

Because the WaterChem dataset does not contain depth information, a synoptic countywide sampling 

campaign was conducted to gain an understanding of the present-day three-dimensional structure of the Cl 

concentrations in the near-surface environment of the Michigan Lowlands. Groundwater samples were 

collected from water wells at 468 locations in Ottawa County, Michigan. Wells completed in either the 

glacial deposits or the Marshall bedrock aquifer were used in the analysis, and well depths were obtained 

by cross-referencing information from the Wellogic driller logs and local water well records compiled by 

the Ottawa County Environmental Health Department (Ottawa County 2014). Well location (latitude, 

longitude) was measured at the wellhead when possible - otherwise it was measured at the sampling point 

- and was acquired using GPS-enabled smart-phones which delivered sub-10m accuracy. Samples were 

collected primarily during the fall months of 2014, although roughly one fourth of the samples were 

collected during the summer months of 2015. After the fall 2014 data were analyzed, they were used to 

guide the 2015 into critical areas: the fall 2014 data collection was relatively evenly dispersed across the 

aquifer system (both in lateral and vertical directions), and once analyzed, was used to identify locations 

where more data were needed (i.e., in areas where Cl concentrations were high and Cl gradients were large). 

Nonetheless, the slow advection and/or diffusion of solutes in groundwater justifies the assumption that 

sampling over roughly 9 months is considered a reasonable ‘temporal snap-shot’ of current water quality 

conditions across the county.  

Samples were collected from outdoor spigots or indoor faucets into polypropylene, wide-mouth bottles that 

had been pre-rinsed with de-ionized water. Although the scientific standard for purging a well (flushing out 

stagnant water from the system) is to monitor the pumped water until the pH, electric conductivity, and 

temperature stabilize, we adopted a more practical standard of 5 minutes of flushing, since mineral salt 

content is not usually affected by residence time in the piping system (Harter, 2003). However, special care 

was made to sample from discharge points delivering untreated well water, i.e., groundwater that has not 

passed through a water softener, as periodic regeneration of such devices using brine solutions may 

artificially elevate chloride concentrations until the freshwater flushes through the system. In order to 
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minimize artificial Cl contamination of the samples, bottles remained capped until the very moment of 

sampling and were recapped immediately following sampling. During sampling, the bottles were always 

held at the bottom to avoid contamination from the technician’s perspiration.   Duplicate samples were 

taken at roughly 10% of the sampling locations, yielding an average error of -2.62 mg/L and a RSME (root-

mean-square-error) of 12.1 mg/L. Field and lab blanks were utilized to ensure samples were not 

contaminated during the collection or analysis.  All blanks yielded concentrations below 3 mg/L, with an 

average of 1.75 mg/L.  Capped samples were stored in large plastic bags and transported back to Michigan 

State University for laboratory analysis, which was completed within 10 days of when the sample was 

obtained. 

 Analytical Methods for Cl Measurement  

The measurement of Cl concentrations in the collected samples followed EPA Standard Method 9212 – 

Potentiometric determination of chloride in aqueous samples with ion-selective electrode (ISE). A chloride 

ISE (Cole-Parmer item number EW-27502-13) filled with 10% KNO3 reference solution was used in 

conjunction with an electrode/benchtop meter to measure the mV response of the standards and collected 

samples. Although the samples were not stored in ice coolers during transportation, they were all were 

stored at room temperature for at least 24 hours with the stock solution (1000 ppm chloride, Cole-Parmer 

item number WU-27503-09)  to ensure all solutions were at the same temperature during analysis (± 1• C). 

Standards and samples were mixed 50:1 with an ionic strength adjustment solution (5 molarity NaNO3), 

and calibration was performed by analyzing a series of standards and plotting mV vs. chloride concentration 

on semi-log plots.  Sample chloride concentrations were determined from the calibration curve. 

1.4 Ch. 1 Results 

 Multiscale Hydraulic Head Distribution  

The results of the SWL spatial interpolation across multiple scales is shown in Figures Figure 1.7 and Figure 

1.8.  Recharge and discharge zones are also delineated, although at the local scale the unshaded area is 

considered all discharge, as mentioned previously. Clearly the SWL patterns exhibit a hierarchical structure: 



26 

basin-scale recharge areas in the northern and southern highlands of Lower Michigan clearly contrast with 

the basin-scale discharge areas in the Saginaw Lowlands, Michigan Lowlands and along the coastal zone 

(Figure 1.7), consistent with the findings of previous studies (see Barton et al. (1996), Hoaglund et al. 

(2002) and Feinstein et al. 2010)). Regional SWL distributions developed for the Michigan Lowlands and 

the Saginaw Lowlands (Figure 1.8a and Figure 1.8b) exhibit strong SWL variability with clear recharge 

zones in regional highlands and discharge zones in the lowlands and along the coasts. The local models 

developed within the regional discharge zones again showed significant SWL variability characterized by 

local recharge and discharge areas not discernible at the regional or peninsula-wide scale (Figure 1.8c and 

Figure 1.8d). 

 

 

Figure 1.7: Long-term average SWL distributions delineated at the basin-scale.  Third order and higher 

streams are included, as well as the delineated recharge and discharge zones. 

In the Michigan Lowlands, the influence of streams in more pronounced than at the basin-scale, as many 

stream corridors coincide with relative depressions in the SWL surface, and clearly the larger streams are 

a dominant sink of groundwater in the region (Figure 1.8a).  Similar to the regional analysis, the influence 
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of streams at the local scale is significant, with almost all 2nd-order stream valleys or higher representing 

local discharge areas and most 2nd-order interfluves primarily representing local recharge areas (Figure 

1.8c).  Note that the results from the Michigan Lowlands regional and local groundwater mapping are 

consistent with the simulation results of pre-development heads in the glacial aquifer system completed by 

Feinstein et al. (2010), which involved numerical simulation of a 20-layer model characterizing interactions 

between surface water bodies, glacial deposits and the underlying bedrock of the Lake Michigan watershed.  

It is encouraging that the relatively simple 2D, long-term average delineations of regional and local 

groundwater levels presented here agree with the results from a complex, process-based approach that 

considered the deeper aspects of the groundwater system. 
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Figure 1.8: Long-term average SWL distributions delineated at the regional scale for the (a) Michigan 

Lowlands and (b) Saginaw Lowlands, as well as at the local scale for the (c) Michigan Lowlands and (d) 

Saginaw Lowlands.  Second order and higher streams are included for the regional scale graphics, while all 

order streams are included in the local scale graphics. 

The regional and local discharge zones of the Saginaw Lowlands are more expansive than those seen in 

the Michigan Lowlands (Figure 1.8b and Figure 1.8d).  Moreover, the range of SWL variability 

(especially for the local scale) is less than that of the SWL models of the Michigan Lowlands.  This 

indicates relatively low regional and local recharge to the Saginaw Lowlands shallow aquifer system, 

which was inferred also from geochemical analyses complete by Long et al (1988). The glacial sediments 



29 

underlying the Saginaw Lowlands are notably fine-textured and strongly contribute to the paucity of 

shallow recharge. 

 Multiscale Analysis of Elevated Cl Concentrations 

The multiscale graphical analysis of elevated chloride concentrations is presented in Figure 1.9, Figure 1.10 

and Figure 1.11, where the occurrence of wells yielding Cl concentrations above prescribed thresholds are 

overlaid on the hydraulic head maps described in the previous subsection. For each threshold and at each 

scale, a pattern emerges: the occurrence of elevated Cl concentrations is spatially associated with the 

discharge zones. At the basin scale (Figure 1.9), elevated concentrations occur predominately occur in the 

Saginaw Lowlands, Michigan Lowlands, and in clusters along the coastline (e.g., along Lake Huron in 

southeast Michigan), while in the northern basin-scale recharge zone, and to a lesser degree in southern 

counterpart, there are significantly fewer elevated Cl data points, especially at the >500 and >1000 mg/L 

thresholds.  There is also a significant clustering of elevated Cl concentrations near the groundwater 

recharge mound in southeast Michigan, an exception to the pattern of significant clustering in discharge 

zones relative to recharge zones. This area is further examined below.  

 

Figure 1.9: Occurrence of elevated Cl (>250, >500, >1000 mg/L) wells with respect to basin-scale SWL 

distributions. 
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Figure 1.10: Occurrence of elevated Cl (>250, >500, >1000 mg/L) wells with respect to regional-scale 

SWL distributions for the (a) Michigan Lowlands and (b) the Saginaw Lowlands. 

At the regional scale (Figure 1.10), the occurrence of elevated Cl concentrations for the >250 mg/L 

threshold is clustered in the regional discharge zones along the coast and in stream valleys, some of which 

cut through or near recharge zones. However, for the >500 mg/L threshold and especially for the >1000 

mg/L threshold, the recharge zones and the interfluves between major streams are mostly devoid of elevated 

Cl concentrations. The Michigan Lowlands local-scale analysis (Figure 1.11a) demonstrates again, for each 

threshold, clusters of elevated Cl concentrations primarily occur within local discharge zones. The most 

prominent clustering appears in the central and northwest regions where the SWLs are lowest.   Similar to 

the regional analysis, few elevated Cl concentrations are seen in recharge areas or in between stream 

corridors for the >500 and >1000 mg/L thresholds.  For the Saginaw Lowlands local analysis (Figure 1.11b), 



31 

elevated Cl concentrations for all thresholds are seen in both local recharge and discharge areas, which 

could be due to a sampling bias (e.g. many fewer Cl points in the local discharge zone, as noted above), 

and/or because the paucity of shallow recharge in this area noted above (i.e., essentially all groundwater is 

discharging within the area chosen for local analysis). 

 

Figure 1.11: Occurrence of elevated Cl (>250, >500, >1000 mg/L) wells with respect to local-scale SWL 

distributions for the (a) Michigan Lowlands and (b) the Saginaw Lowlands. 

The results of the basin-scale, regional and local quantitative analyses of elevated Cl concentrations and 

their occurrence in discharge and recharge zones are presented in Table 1.4. The percentage of wells with 

elevated Cl concentrations in the discharge and recharge zones is given, as well as the ratio of these 

percentages (discharge to recharge). In general, the results are consistent with the graphical analyses: at 

each scale and for all models, there are a consistently a higher percentage of wells with elevated Cl 

concentrations in discharge zones than in recharge zones (as indicated by the ratios greater than one).     

Furthermore, as the threshold value increases, i.e., smaller concentrations are removed from the analysis, 

the ratio of percentages increases, e.g., from 3.22 at the >100 threshold to 18.56 at the >1500 threshold for 
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the basin-scale analysis; 1.94 to 5.14 for the Michigan Lowlands regional scale analysis, etc. All ratios for 

the >500, >1000, and >1500 mg/L thresholds are at least 3 or larger, demonstrating a particularly strong 

statistical relationship between relatively low SWL elevations and the frequent occurrence of high Cl 

concentrations (i.e., above 500 mg/L). Note that the ratios are all greater than one for even the Saginaw 

Lowlands local model, which confirms that the graphical analysis (Figure 1.11b) was probably skewed by 

many more wells being sampled in what was designated as the local recharge area, and hence the need for 

evaluating percentages of wells with elevated Cl rather than just the absolute number of wells within 

discharge and recharge zones.  

Table 1.4: Statistics from the multiscale elevated Cl-SWL analysis. 

Cl 

dataset 

Wells with 

elevated Cl, 

discharge 

zones 

Wells with 

elevated Cl, 

recharge 

zones 

% of wells 

with elevated 

Cl, discharge 

zones 

% of wells 

with elevated 

Cl, recharge 

zones 

% ratio  

(discharge: 

recharge) 

Peninsula-wide 

>100 35693 2032 15.59 4.69 3.32 

>150 25282 1013 11.04 2.34 4.72 

>200 19448 628 8.49 1.45 5.86 

>250 15321 405 6.69 0.94 7.16 

>500 6504 81 2.84 0.19 15.19 

>1000 1612 14 0.70 0.03 21.78 

>1500 785 8 0.34 0.02 18.56 

Michigan Lowlands - Regional Scale 

>100 6685 1912 11.96 6.15 1.94 

>150 4098 991 7.33 3.19 2.30 

>200 2691 582 4.82 1.87 2.57 

>250 1806 392 3.23 1.26 2.56 

>500 463 84 0.83 0.27 3.06 

>1000 79 12 0.14 0.04 3.66 

>1500 37 4 0.07 0.01 5.14 

Saginaw Lowlands - Regional Scale 

>100 8692 638 23.91 4.71 5.07 

>150 7403 360 20.36 2.66 7.66 

>200 6229 248 17.13 1.83 9.35 

>250 5323 179 14.64 1.32 11.08 

>500 2707 31 7.45 0.23 32.52 

>1000 730 9 2.01 0.07 30.21 
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Table 1.4 (cont’d) 

      

>1500 341 7 0.94 0.05 18.14 

Michigan Lowlands - Local Scale 

>100 1576 583 16.33 9.67 1.69 

>150 1055 309 10.93 5.12 2.13 

>200 695 191 7.20 3.17 2.27 

>250 454 113 4.70 1.87 2.51 

>500 123 14 1.27 0.23 5.49 

>1000 20 2 0.21 0.03 6.25 

>1500 7 1 0.07 0.02 4.37 

Saginaw Lowlands - Local Scale 

>100 510 2789 61.82 53.41 1.16 

>150 486 2386 58.91 45.69 1.29 

>200 465 1997 56.36 38.24 1.47 

>250 447 1649 54.18 31.58 1.72 

>500 322 763 39.03 14.61 2.67 

>1000 81 162 9.82 3.10 3.16 

>1500 30 63 3.64 1.21 3.01 

 

 Three-Dimensional Cl Structure in the Michigan Lowlands 

The results from the synoptic field sampling are presented in Figure 1.12, Figure 1.13 and Figure 1.14. A 

plan view overlay of the Cl point measurements, major streams and a bedrock subcrop map of the area is 

presented in Figure 1.12.  The distribution of Cl concentrations is generally consistent with that derived 

from the analysis of the WaterChem data, with clustering of elevated (>250 mg/L) Cl concentrations in the 

central region of the Michigan Lowlands. Note that almost all samples with [Cl] > 100 mg/L occur within 

the Marshall Formation subcrop, including all samples with [Cl] > 250 mg/L. However, a number of wells 

yielded water with low (<100 mg/L) Cl concentrations in close proximity to wells with high Cl 

concentrations, suggesting a strong vertical structure is present.  

Indeed, a vertical analysis of measured Cl concentrations demonstrated that Cl concentration generally 

increased with decreasing elevation of the well bottom, i.e., with increasing depth (Figure 1.13). This trend 

was observed in geochemical studies of upwelling brines in the Saginaw Lowlands (Long et al.,1988), and 

helps to explain the presence of strong lateral Cl gradients seem in Figure 1.12, i.e., neighboring wells that 
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are completed at different depths can have significantly different concentrations of Cl. To further test this 

interpretation, three-dimensional visualizations of the Cl concentrations and the bedrock top elevation 

surface were utilized (Figure 1.14).  The bedrock top was delineated using lithologic information from the 

Wellogic records of wells located in Ottawa County (MDEQ 2014), and the 10m DEM was generated from 

the NED dataset (NED USGS 2010). Clearly, elevated Cl concentrations are concentrated in the Marshall 

bedrock aquifer, and all but a few of the glacial wells with elevated Cl concentrations are screened at or 

near the bedrock surface.  In principle, this deeper groundwater has a longer residence time than shallow 

groundwater in the aquifer system, and therefore dissolved Cl concentrations are expected to be somewhat 

higher in the bedrock aquifer. However, the very high Cl concentrations observed in the field-collected and 

WaterChem datasets suggests this mechanism is relatively weak compared to the source of hypersaline 

groundwater down-dip from the subcropping units beneath the Michigan Lowlands. 

 

Figure 1.12: Cl point measurements from Ottawa County, Michigan (central portion of the Michigan 

Lowlands) overlaid on a bedrock subcrop map. 
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Figure 1.13: Graphical relationship between well bottom elevation and chloride concentration from the field 

sampling dataset. 

 

Figure 1.14: Three-dimensional view of Cl point measurements (a) from above, transparent land surface 

and bedrock surface shown; (b) from below, with bedrock surface shown; (c) from the west, with the 

DEM and bedrock surface shown. 



36 

1.5 Ch. 1 Discussion 

 Cl-SWL Structure and Natural Brine Upwelling 

The multi-scale analysis of SWL distributions and occurrence of elevated Cl concentrations in water wells 

revealed a significant spatial relationship coupling the hydrology and near-surface groundwater salinity 

distribution. In particular, there is a multi-scale, hierarchical spatial structure of relatively frequent 

occurrence of elevated Cl concentrations in ‘discharge zones’ (including along stream corridors), and 

relatively infrequent occurrence of elevated Cl concentrations in ‘recharge zones’ and in interfluves. 

Moreover, this nested relationship becomes stronger as higher chloride concentration thresholds were 

considered.   

In discharge areas, a component of the groundwater flow is moving upwards, whereas in recharge areas a 

component of the groundwater flow is moving downward (Freeze and Cherry, 1979).   Thus, the results of 

the multi-scale Cl-SWL analyses are interpreted as follows: deep flow patterns naturally deliver brackish 

water towards the statewide shallow groundwater discharge areas; undulations in the regional topography 

and the major stream networks form regional flow patterns that act as ‘natural pumps’ of the brine-

influenced groundwater, concentrating the Cl contamination along large stream corridors; and  locally,  both 

large and small streams largely control the distribution of chloride. More succinctly, the natural process of 

upwelling brine is controlled by the peninsula-wide, multi-scale flow system, which in turn controls the 

nested, multi-scale structure of the elevated Cl concentrations.  This interpretation is consistent with Heath’s 

(1984) overview of the hydrogeology of the glaciated central region of the U.S., which included the entire 

Lower Peninsula of Michigan: “… the depth to saline water is less under valleys than under uplands, both 

because of lower altitudes and because of the upward movement of saline water to discharge.” This study, 

however, provides greater spatial details for the Lower Peninsula of Michigan, new statistical evidence for 

this interpretation, and new insight into the multi-scale nature of the groundwater dynamics of the region 

obtained through the use of data-driven modeling. 
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The results from the field sampling are consistent with the brine upwelling hypothesis for the elevated 

groundwater salinity in the Michigan Lowlands, notably that Cl  concentrations increase with depth 

(consistent with a deep source), and that almost all samples yielding high Cl  concentrations, i.e., above 

250 mg/L, came from wells completed in the Marshall bedrock aquifer (which is known to contain brines 

down-dip of the subcrop area in the Michigan Lowlands – see Ging et al., 1996).  This pattern is consistent 

with that observed in the Saginaw Lowlands, where geochemical analyses implied upwelling brine as the 

source of elevated Cl.  This comparison, along with the similar Cl–SWL structures seen in the regional- 

and local- scale analyses, confirms the premise that brines are systematically impacting both of these major 

peninsula-wide discharge areas. 

1.5.1.1 Anomaly of Southeast Michigan 

It is worth nothing that the basin-scale analysis revealed that, with the exception of a major cluster near the 

recharge area in southeast Michigan, significant clusters of elevated Cl are focused within statewide 

discharge areas. However, consideration of the regional hydrogeology provides a reasonable explanation 

of the apparent anomaly in the basin-scale Cl-SWL spatial structure.  The eroded crests of two anticlines 

(Freedom Anticline and Howell Anticline) underlie this area, abruptly pinching out the bedrock formations 

overlying the Coldwater Shale aquitard unit. Several formations form the regional bedrock surface, 

including those that make up the Saginaw Aquifer, Parma-Bayport Aquifer, and Marshall Aquifers, all of 

which are known to yield saline water (Apple and Reeves, 2007). In Shiawassee County – which sits at the 

core of this cluster –approximately 59 percent of the wells are completed in the bedrock units, and thus, 

completion of a relatively large number of bedrock wells in this area may contribute to the clustering of 

elevated Cl wells in this area as seen in the peninsula-wide analysis. There also appears to be a significant 

potential for vertical flow connections between bedrock and the large number of streams in the area. The 

glacial geology in the area is characterized by strong three-dimensional heterogeneity that resulted from a 

complex depositional history (Westjohn et al. 1994), and it is therefore possible that saline bedrock water 

is upwelling through preferential flow paths primarily in the vicinity of gaining streams. Thus, although the 
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region was not classified as a statewide discharge area, knowledge of the regional hydrogeology suggests 

that brines are likely the dominant source of the elevated Cl, at least for Cl concentrations near or greater 

than 1000 mg/L. 

 Potential Influence of Other Cl Sources  

Note that the basin-scale database analysis did yield come exceptions (e.g., wells with elevated Cl 

concentrations were present in recharge zones for all thresholds, albeit to a lesser degree than in discharge 

zones) and that spatial patterns connecting near-surface groundwater hydrology to the elevated Cl  

concentrations were not as easily discernable at lower Cl thresholds.  While a small portion of these may 

be considered “bad” Cl data with erroneous spatial locations as a result of poor record keeping, patterns of 

elevated Cl around population centers in Figure 1.9 suggests an anthropogenic surface source for some of 

the lower Cl  (i.e., 250 mg/L and less) contamination and potentially some of the local points or clusters of 

higher levels of contamination.  Roughly 15 million metric tons of halite are used for roadway deicing each 

year in the U.S., a majority of which is applied in northern states, including Michigan (USGS 2012).   Most 

studies quantifying Cl concentrations due to road salt application have focused on surface water bodies 

(e.g., Kaushal et al. 2005; Kelly et al.  2007, Corsi et al., 2010), but those including groundwater have 

reported mean groundwater concentrations ranging from roughly 100 mg/L (Huling and Hollocher 1972; 

Williams et al. 2000) to 275 mg/L (Perera et al. 2010) and up to 476 mg/L (Howard and Haynes, 1993) and 

640 mg/L (Foos 2003), although higher concentrations were generally localized to specific areas along 

major roads.  Michigan also has approximately 1.2 million septic systems (Sacks and Falardeau 2004), that 

can raise Cl concentrations above natural conditions. Harman et al. (1996) measured a Cl concentration of 

207 mg/L in septic tank effluent, higher than the 53 mg/L reported by Viraraghavan and Warnok (1975).  

A comprehensive analysis by Katz et al. (2011) reported concentrations ranging from 20 to 100 mg/L in an 

analysis of 1848 samples from domestic wells from 19 aquifers that were in the vicinity of a septic system. 

Finally, agricultural sources may contribute Cl to the groundwater system, e.g., from livestock excretion or 
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fertilizer application (KCl), but the expected concentrations are typically below 30 mg/L (Kelly et al., 

2012). 

In light of these findings, we performed a simple geospatial analysis of the potential impact of 

anthropogenic sources on this study by overlying elevated Cl  concentrations (>250, >500, and >1000 

mg/L) over a map of the Lower Michigan highway network (Figure 1.15). The clustering around population 

centers for the >250 mg/L threshold , e.g., the suburbs of Detroit (southeast Lower Michigan) and the 

Greater Lansing area (south-central Lower Michigan), and the slight association for the >500 mg/L 

threshold,  when considered with the expected concentrations found  in the aforementioned literature, 

suggests that anthropogenic  sources are at least partially responsible for the clustering of elevated Cl 

concentrations at these thresholds, although the ClSWL analysis shown earlier suggests brines are a major 

(if not the dominant) source.  For the >1000 mg/L threshold, elevated Cl concentrations are not associated 

with areas of dense road and highway networks, suggesting brines are responsible for the very high Cl 

concentrations. In other words, the ‘signal’ from brines is most obvious at higher concentrations, which is 

consistent with the large ratios shown in Table 1.4 at the >500 L threshold and higher.  

Another source of Cl potentially impacting the analyses are leaky/fractured natural gas and oil wells. Figure 

1.16 presents overlays of elevated Cl concentrations and oil and gas wells across the Lower Michigan.  

Although there are instances where elevated Cl concentrations are near oil/gas wells - even for the >1000 

mg/L threshold - there are large clusters of oil/gas wells that are not associated any significant clustering of 

elevated Cl. Thus, there may be localized instances where leaky oil/gas wells are impacting the near-surface 

environment, e.g., in southeast Michigan along the coastline as shown in Figure 1.16, but there does not 

seem to be a significant peninsula-wide spatial correlation between oil/ gas wells and elevated Cl 

concentrations for the thresholds considered. 
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Figure 1.15: Occurrence of elevated Cl (>250, >500, >1000 mg/L thresholds) wells and the Michigan 

highway network. 

 

Figure 1.16: Occurrence of elevated Cl (>250, >500, >1000 mg/L thresholds) and oil/gas wells. 

 Management Implications & Future Work 

The data-driven, integrated water quantity-quality approach applied here confirms that the underlying 

process controlling the occurrence of elevated Cl concentrations in the shallow groundwater across the 

Lower Peninsula of Michigan is  the mixing of deep brines and shallow freshwater, particularly in areas 

where groundwater elevations are low. This system-based understanding of brine-influenced shallow 
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groundwater in Lower Michigan has important implications for groundwater resource development in a 

state that currently uses roughly 700 million gallons of groundwater per day (NGWA 2016). Determining 

if and where wells might be at risk to elevated Cl concentrations can be aided by an understanding of the 

local and regional hydrology, and in particular, the locations of recharge and discharge zones. Considering 

the spatial and statistical structures of different Cl concentration thresholds can help communities identify 

the source(s) of contamination of the near-surface groundwater (e.g., road deicing versus brine-influenced 

groundwater).  

Of course, a limitation of the multiscale analysis is that it considers long-term, average conditions of the 

near-surface environment, and, therefore, does not consider temporal trends in hydrology or water quality. 

Similarly, the synoptic field sampling in the Michigan Lowlands provided an understanding of only the 

current conditions. A few questions that naturally emerge from this study include: Has the brine upwelling 

become worse in recent decades? Is it subject to influence from external system stresses, e.g., human 

activity such as groundwater pumping or climate change? The answers to these questions would be 

scientifically important and of practical use to groundwater resource managers, but require more 

sophisticated analyses, including the use of time-series datasets and the use of process-based models to 

better understand system response under different scenarios. In forthcoming work, we consider further 

aspects of brine-influenced groundwater in Michigan by using detailed regional and local scale datasets and 

process-based numerical approaches. 

1.6 Ch. 1 Conclusions 

We investigated the extent and severity of brine-influenced shallow groundwater across the Lower 

Peninsula of Michigan by capitalizing on massive, recently assembled statewide water well databases that 

include information on groundwater levels and groundwater quality. We developed a generalized approach 

for filtering, processing and analyzing the water well datasets, and applied it at multiple scales (peninsula-

wide, regionally, and locally) for two major peninsula-wide discharge zones – the Michigan and Saginaw 

Lowlands - to characterize the long-term average static water level (SWL) distributions and their 
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relationship to the occurrence of elevated concentrations of dissolved-chloride (Cl). An automated, non-

stationary kriging approach was used to perform spatial interpolations of SWLs, and areas of groundwater 

lows and highs (interpreted as discharge and recharge zones, respectively) were delineated at each scale 

and used to evaluate and compare the proportion of elevated Cl wells (>100, >150, >200, >250, >500, 

>1000 and >1500 mg/L) in the different zones. A synoptic field sampling campaign was conducted to better 

understand the three-dimensional structure of Cl  in one of the major peninsula-wide discharge zones – the 

Michigan Lowlands. Anthropogenic sources were briefly considered to better understand their potential 

impact on the analyses done in this study.  

The results show that, at each scale, the Cl concentrations in the discharge areas, where groundwater flows 

primarily upwards, are consistently and significantly higher than those in the recharge areas. An exception 

to this pattern was noted in southeast Lower Michigan; however, careful consideration of the regional and 

local hydrogeology suggests brines are preferentially impacting discharge areas in this region of the state 

as well.  Analysis of field samples collected from the central portion of the Michigan Lowlands showed 

that Cl  concentrations in groundwater increase with depth and that almost all samples yielding 

concentrations above 250 mg/L were drawn from wells completed in the Marshall bedrock aquifer, 

consistent with patterns observed in the Saginaw Lowlands where upwelling brines are the source of saline 

or near-saline shallow groundwater. This strong, consistent Cl distribution patterns across multiple scales 

suggests that brine upwelling from the deep bedrock formations is a dominant source of chloride 

contamination observed in the near-surface environment of Lower Michigan.  

The multiscale, integrated water quantity-quality analysis done here was previously difficult to conduct 

because of the costs of traditional hydrogeological field investigations which require invasive data 

collection and extensive water quality sampling. However, it was demonstrated here that massive (but 

noisy) statewide groundwater databases can yield important hydrogeological insights if the data are 

processed and modeled appropriately. Therefore, in addition to providing practical knowledge useful to 

resource managers in the Lower Peninsula of Michigan, this study is an important example of how to take 
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advantage of emerging GIS-enabled, statewide water well databases in a way that enables system-based 

understanding of complex, multi-scale groundwater problems.   
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APPENDIX A: Motivation for utilizing bedrock and drift wells for SWL delineation 

The choice to use wells terminated in both glacial aquifers and near-surface bedrock aquifers (rather than 

analyze them individually) was motivated, in part, by the fact that a large portion Lower Michigan does not 

contain bedrock wells, e.g., in southwest and southeast Lower Michigan where the underlying bedrock 

formations are of very low transmissivity or in north-central where the glacial deposits are hundreds of 

meters thick.  However, ignoring bedrock wells altogether would remove a significant amount of useful 

data, especially in areas where the glacial drift is absent or very thin (e.g., in northeast Lower Michigan). 

Thus, using data from both aquifers provides a more complete dataset for the basin-scale interpolation and, 

as shown does not inflate the sub-grid variability to problematic levels. Additionally, in our experience this 

approach does not significantly impact the delineated SWL spatial patterns (see Figure 1.17 and Figure 1.18 

for an example), i.e., the SWL variability from aquifer to aquifer is small relative to the range of SWLs 

observed across the model domain. Moreover, Cl data extracted from WaterChem does not differentiate 

between aquifers, the Cl and SWL datasets are ‘similar’ in that they capture overall dynamics of the shallow 

groundwater. 
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Figure 1.17: Regional-scale groundwater elevations delineated using moving-window, non-stationary 

kriging of (a) bedrock wells; and (b) drift wells.  The domain used for the local model is shown as a red 

rectangle.    
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Figure 1.18: Regional-scale groundwater elevations delineated using moving-window, non-stationary 

kriging of (a) bedrock wells; and (b) drift wells.  The domain used for the local model is shown as a red 

rectangle.    
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APPENDIX B: Example of using different cutpoints 

Table 1.5: Statistics from the Michigan Lowlands regional elevated Cl-SWL analysis using quartiles rather 

than tertiles as cutpoints for delineating recharge areas and discharge areas.  Note that the percent ratios 

reported here are generally consistent with those reported in the Regional section of Table 1.3. 

Cl 

dataset 

% of wells 

with 

elevated 

Cl, 

discharge 

zones 

% of wells 

with 

elevated 

Cl, 

recharge 

zones 

% ratio 

(discharge: 

recharge) 

>100 11.71 5.87 1.99 

>150 7.20 2.95 2.44 

>200 4.73 1.74 2.71 

>250 3.11 1.16 2.68 

>500 0.81 0.29 2.85 

>1000 0.15 0.03 4.58 

>1500 0.07 0.02 3.03 
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CHAPTER 2  

Groundwater modeling in a Spatially-rich World: Reassessing Data Needs, Availability, and Value 

Contributing authors: Zachary Curtis, Shu-Guang Li, Hua-Sheng Liao 

2.1 Executive Summary of Ch. 2 

Lack of data has long been a source difficulty in groundwater modeling. Ongoing advancements in 

geospatial data collection – such as remote sensing, in situ sensor networks, and digitization of traditional 

information – has drastically increased data availability. However, these data are underutilized because they 

are: of variable quality, coverage and resolution; scattered across different databases; and massive, making 

them time-consuming to process. This study focuses on applying big data for groundwater modeling and 

understanding groundwater systems across scales. We define big data in the context of groundwater 

modeling and discuss ways they can be used to model different systems. We apply generalized methods to 

build a suite of process-based flow models of different sizes, types, and in different hydrologic regimes in 

Michigan, U.S.A, taking advantage of a comprehensive, preprocessed groundwater database to eliminate 

or significantly relax data management and processing bottlenecks. We examine their performance at 

different scales and evaluate model sensitivity with respect to model parameters and structure. Results show 

existing data alone enable effective modeling of prevailing conditions of regional and subregional 

groundwater systems. Of all the existing datasets, those representing topography, lakes, streams and surface 

seeps are the most important. Digital Elevation Models (DEMs) are especially useful for mapping surface 

drainage features. In fact, DEM-based treatment of groundwater surface seepage may be the most robust 

approach for initial modeling of a large groundwater systems, which can then be used as a: 1) starting point 

for system-based management; 2) context to study local perturbations; and 3) guide for local data collection. 

2.2 Ch. 2 Introduction 

Managing environmental sustainability requires understanding the underlying systems that connect the 

integrated components of the environment and human society (NRC 2002; Miller et al. 2008; Pahl-Wostl 

2005; Liu et al. 2007a, 2007b; Bhaduri et al. 2016). In the context of sustainable groundwater management, 
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it is therefore necessary to study the larger groundwater systems that underlie and influence our site-specific 

groundwater resources. Developing a holistic characterization of groundwater systems is, however, a 

challenging task. One long-standing difficulty is the lack of data, needed both for the analysis or 

characterization of the system and for conceptualizing, building, calibrating and validating numerical 

models used to probe, test, and further develop system understanding.  This is especially the case when a 

system exhibits complex heterogeneity and multi-scale behavior. For many years, hydrogeological field 

investigations simply lacked resources to collect enough data across space and time to properly characterize 

groundwater systems.  

Recently, however, a global movement of spatial data integration has drastically increased the amount of 

environmental data that are available. Much of this information is useful for investigating groundwater 

systems - both for the analysis or characterization of the system and for building and calibrating numerical 

models. Yet, the implementation of ‘big groundwater data’ is not widespread, especially in groundwater 

management and practice. This is in part because of data management and processing bottlenecks: the 

massive size of big data renders them difficult to maneuver (e.g., download, store and access), process and 

assemble all information needed to conceptualize and characterize groundwater systems.   On the other 

hand, inconsistencies and variabilities between different datasets (e.g., different spatial coverages and 

resolutions, different levels of completeness, etc.) makes application to modeling groundwater systems a 

challenging task, especially given the lack of research systematically addressing this particular issue. 

In this study, we address challenges associated with groundwater modeling applications of big data, 

reserving considerations of data management and processing issues for separate studies. We investigate 

how big data-enabled groundwater modeling can be used for understanding groundwater systems across 

scales, and for systematically guiding subscale analysis, monitoring network design, data collection, and 

model refinement.  We build a suite process-based flow models of different sizes, types, and in different 

hydrologic regimes, taking advantage of a recently assembled, comprehensive database of pre-processed, 

‘ready-to-go’ groundwater information.  (In this way, processing and data management/processing 
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bottlenecks are relaxed/eliminated so that present focus may remain on aspects of data implementation.). 

We compare these diverse models with data, examine their performance at different scales, and perform 

systematic sensitivity analysis with respect to model parameters and model structure. We use these 

comparisons and analyses to explore the power and limitations of existing data, and to understand the 

importance of different data components.  

The rest of this chapter is organized as follows: we first define what big data are in the context of 

groundwater modeling, raising key research questions related to how these data can be used to model 

groundwater systems. We discuss generalized big data groundwater modeling approaches, and illustrate 

them by generating a diverse set of groundwater models for 8 large watersheds (‘test beds’) in different 

parts of Michigan, U.S.A. The results are presented to evaluate data worth and modeling implications. We 

finish with a brief discussion of how these models can be modified, extended, improved, and further 

customized based on study objectives and other available (local) data, as well as user experience and 

expertise. 

2.3 Modeling with Big Groundwater Data 

Process-based numerical simulations are a primary means for investigating groundwater systems, as they 

allow: probing of important processes that control system dynamics; evaluating the relative strength of 

interactions in the system and their uncertainties; and testing the impact of potential perturbations. 

Essentially, groundwater modeling consists of estimating where (and how much) water is entering and 

leaving the aquifer system, and describing (qualitatively and quantitatively) how water moves through 

subsurface material.    The aquifer framework (i.e., top surface and bottom surface geometry, lateral 

boundaries) and sources and sinks of water (recharge, evapotranspiration, surface water exchange, or even 

pumping) control where (and how much) water is entering and leaving the aquifer system (Figure 2.1), and 

aquifer properties (hydraulic conductivity, storage) and their spatial variabilities control flow directions and 

groundwater fluxes through the subsurface.  
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Figure 2.1: Conceptual schematic of the key components of natural groundwater system. 

 Opportunities & Questions 

Ongoing advancements in geospatial data collection has drastically increased the amount of groundwater-

centric data available for characterizing above-mentioned aspects of groundwater system. Parallel 

development of Geographic Information Systems (GIS) and web-based data acquisition from big data 

repositories provides modelers with an unprecedented opportunity to integrate data collected from various 

sources (e.g., traditional hydrogeological field studies, remote sensing products, etc.) within a common 

spatial framework. Table 2.1 presents examples of various types of big datasets related to groundwater 

modeling, including: Digital Elevation Models (DEMs); climate forcing data (e.g., precipitation or air 

temperature); hydrography (lakes, streams, watersheds), and groundwater level and lithology records from 

massive water well datasets. Table 2.1 is not meant to be an exhaustive list of big datasets useful for 

groundwater modeling, but rather an illustrative summary of the rich amount of information that is 

available. Details are referenced throughout the following subsections, but for now, note the different 

variety of data types, qualities, resolutions and coverages (spatial and/or temporal coverage).   Generally 

speaking, the various big groundwater datasets can be categorized as 1) remote sensing products (e.g., 

DEMs, hydrography, land use/land cover, or even GRACE land water storage and MODIS 

evapotranspiration estimates), which tend to provide seamless spatial information with excellent spatial 

coverage but varying degrees of quality; 2)  in-situ sensors and field instrumentation (monitoring wells, 
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stream gages, etc.), which provide accurate historical and present-day observations needed for modeling 

and analysis but are scatted across distinct locations; and 3) high-density compilations of point-base 

subsurface information from water wells, oil and gas wells, etc. (static water levels, lithology, soil type, 

etc.), which often provide excellent spatial coverage but are noisy (i.e., they have significant sources of 

error and uncertainty that should be addressed); and 5) data layers of aquifer characteristics (e.g., 

permeability maps, long-term mean recharge maps, etc.) derived from various sources of traditional or site-

specific local information, which offer statewide/provincial, national or even global spatial coverage, but 

may be of provide little information for local groundwater studies because of low quality/resolution or 

incompleteness (spatial ‘gaps’ or clearly wrong estimates based on limited input data for deriving aquifer 

characteristics). Thus, while this wealth of spatially-rich information provides much needed data for 

groundwater modeling, the variety and inconsistencies between datasets presents a new set of challenges. 

Table 2.1: Example big datasets useful for modeling groundwater systems. *MWs = monitoring wells 

Parameter / 
 Data Type 

Example Dataset,  
Source 

Spatial 
Coverage 

Resolution / 
Sizes / # of 

Samples 
Modeling 

Usage 

Digital Elevation 

Models  

National Elevation Dataset, 

NED USGS (2006) 

 National 

(U.S.A) 
30, 10 m 

Input  
LiDAR-based  

(various sources- see Summary 

and Conclusions) 

Statewide / 

Local 
3, 1, <1 m 

ASTER Global DEM, NASA 

LP DAAC (2015) 
Global 90 m 

Lakes / Wetlands 

National Hydrography Dataset 

NHD USGS (2010) 

National 

(U.S.A) 

Size 1 (< 3,000 m2) - 

Size 5 (> 500,000 m2)  Input / 

Analysis / 

Calibration HydroLAKES,  

Messager et al. (2016) 
Global >10,000 m2 

Streams / Rivers NHD USGS (2010) 
National 

(U.S.A) 

Order 1 (small) – 

Order 10 (large)  

Input / 

Analysis / 

Calibration 

Watersheds 
NHD USGS (2010) 

National 

(U.S.A) 

2 digit (large) - 12 digit 

(small) Input 

HydoBASINS, Lehner (2013) Global > 100 km2 

Static Water Levels 

(SWLs) 

Wellogic (MDEQ) 

WIZARD (KGS 2002) 

Geosam (IGS) 

Statewide  ~600,000 wells 
Input/Analysis/ 

Calibration 



61 

Table 2.1 (cont’d)     

Surficial geology, 

depths, aquifers 

ORNL DAAC Soil Collections 

archive, Pelletier et al. (2016) 
Global 1 km Input / 

Analysis 

Shangguan et al. (2016) Global 250 m (depth only) 

Lithology  

GLiM, Hartmann 

 and Moosdorf (2012) 
Global > 1.2 million polygons 

Input / 

Analysis GWIM, State of  

Michigan (2006) 
Michigan 

≈500 million data 

points 

Bedrock geology, 

depths, aquifers 

GWIM, State of  

Michigan (2006) 
Michigan 500 m 

Input / 

Analysis 

Permeability / 

Conductivity 

GLJYMPS, Huscroft et al. 

(2018) and Gleeson et al. (2011) 
Global 

10 km  

(sediment layers) 
Model Input  

Climate Data 
PRISM Climate Group, PRISM 

(2004) 

National 

(U.S.A) 

8000 m 

(Daily/Monthly), 400 

m (35-year Normal)  

Input (recharge 

modeling) 

Land Use / 

 Land cover 

USGS LULC Dataset  

(Fry et al. 2011) 

National 

(U.S.A) 
30 m Input (recharge 

modeling) 
WaterBase Global 800 and 400 m 

Soil Type / Root Zone 

Depth 

USDA SSURGO,  

SSS NRCS (2016) 

National 

(U.S.A) 
60 m 

Input (recharge 

modeling) Harmonized World Soil 

Database, Fischer et al. (2008) 
Global 1 km 

Recharge 
NHDPlus USGS (2002) 

Reitz et al. (2017) 

National 

(U.S.A) 

1 km Mean Annual ε 

800 m Mean Annual ε 

Input / 

Calibration 

ET MODIS, ORNL DAAC (2018) Global 

1 km2 at 8-day, 

monthly, annual 

intervals 

Input / 

Calibration 

Groundwater storage GRACE, Swenson (2012) Global 100 km, monthly 
Analysis / 

Calibration 

Sensor Data (MWs 

and SW*) 

USGS Water Data, USGS 

(2016). 

National 

(U.S.A) 

Variable spatial density 

and temporal coverage 
Calibration 

 

Research Questions. The foregoing discussion raises several important questions that have yet to be 

systematically addressed: 

•         How can the various types of big data be used for modeling groundwater systems? 

•         Can big data alone be used to model groundwater systems and asses model accuracy? If so, at what 

scales? 
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•        What is the impact of combining big data of different qualities, resolutions, and different levels of 

completeness?  Which ones are most important for proper representation of prevailing groundwater 

system conditions? 

•         What does big-data enabled modeling mean for site-specific data collection, modeling and analysis? 

In the following subsections, we discuss generalized approaches for using big data to model groundwater 

systems, focusing primarily on modeling of surficial (unconfined) aquifers critical to water resourced and 

sustaining of groundwater-dependent ecosystems. We also present ways in which big data enable evaluation 

of groundwater model performance and model calibration (fine-tuning of parameters and model structure). 

This is followed by real-world applications and evaluations. 

 Capturing the Aquifer Framework 

Aquifer Top Surface. The top boundary of surficial/unconfined aquifers follow the land surface, which can 

now be represented with detailed Digital Elevation Models (DEMs). DEMs are grid-formatted, continuous 

datasets with high spatial resolution (90m, 30m, or 10 m) and (typically) seamless coverage. Even 1m or 

sub-meter LiDAR- (Light Detection and Ranging) based DEM products are in development or already 

available across large areas.  For instance, the U.S. States of Delaware, Indiana, Iowa, Minnesota, Ohio, 

and Pennsylvania have completed statewide DEMs using LiDAR (see, e.g., OSPC 2007, IOLEP 2011, 

IDNR 2017), and a number of others are in various stages of development. There are also several national 

movements in progress, e.g., see Finland’s National DEM (NLS Finland 2015), Switzerland’s 

swissSURFACE3D (FOT Switzerland 2015), or England’s National LIDAR database (EA UK 2018). 

Accurate, detailed representation of the land surface improves model structure and calculations related to 

aquifer top surface (e.g., aquifer thickness, groundwater level elevation computed as land surface minus 

measured distance to water level in a monitoring well, etc.). As we discuss below, high-resolution 

delineation of a surficial aquifer’s top surface is also useful for estimating the spatial occurrence and 

magnitude of groundwater discharge to streams, lakes, and wetlands/seeps (see Representing Sources and 

Sinks below).  
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Aquifer Bottom Surface. The bottom surface of near surficial/unconfined aquifers is commonly represented 

as a data layer that follows the interface between unconsolidated sediments and consolidated rock material 

(usually assumed to be a ‘no-flow’ boundary condition when the yield of rock is expected to be low relative 

to that of the overlying sediments).  This interface has traditionally been estimated site-by-site using 

available geologic information, geophysical methods (e.g., electric resistivity mapping, borehole seismic 

profiles, etc.) and limited intrusive subsurface data (cores and lithologic descriptions from deep boreholes). 

Large-scale maps of surficial aquifer thickness (which implicitly contain aquifer bottom surface 

information) have recently been generated by integrating different subsurface data (see examples in Table 

2.1: Shangguan, 2017, Pelletier et al. 2016), although quality varies spatially depending on local data 

availability, in some cases rendering the estimates inaccurate (or even useless). With the digitization of 

historical water well information, increasingly dense datasets of borehole data (and lithologic descriptions) 

allow for direct spatial interpolation of the surface representing the interface between surficial sediments 

and underlying bedrock.  This data-intensive approach is applied for delineating aquifer bottom boundaries 

in real-world examples (see Real-world Illustrations).  

Lateral Boundaries. Datasets of distributed zones (polygons) containing geologic, lithologic, and 

hydrogeologic descriptions of surficial geology are useful for delineating groundwater lateral aquifer 

extents. In some places, direct data layers of aquifer extents are available, e.g., shallowest principal aquifers 

in the conterminous United State (USGS 2003). Watershed and sub-catchment boundaries available in 

hydrography datasets (e.g., USGS NHD 2010) may also be useful for choosing a groundwater model 

domain (see Real-World Illustrations below).  

 Characterizing Aquifer Properties  

Permeability. The permeability of the subsurface is parameterized with hydraulic conductivity (K) model 

inputs that typically vary in space and may typically require fine-tuning through model calibration.  Big 

data products consisting of distributed zones of lithologic descriptions of surficial geology are useful for 

estimating variabilities in K, but recently big data layers with direct estimates of K have become available 

at statewide, national, or even global scales (see, e.g., State of Michigan, 2006; Gleeson et al. (2011). 
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However, like global data sets of aquifer bottom surface, quality of broad coverage K layers depends on 

local data availability, and resolutions are typically relatively coarse for the purpose of modeling 

subregional groundwater systems. For detailed characterization of intra-aquifer geologic variability that 

influences K distributions, spatial interpolation methods such as kriging and transition probability (Markov 

chain) geostatistics have been increasingly popular as more borehole data are generated and compiled into 

databases (see, e.g., Weissmann and Fogg 1999; Traum et al. 2014 He et al. 2014 Sampath et al 2015; 

2016).  Detailed representations of aquifer heterogeneity are necessary for common management practices 

such of site-scale plume modeling and groundwater remediation, which depends critically on small-scale 

subsurface heterogeneities not captured by large-scale data layers (Heinz et al. 2003, Zheng and Gorelick 

2003, Ronayne et al. 2010) 

Storage. For transient simulations of groundwater systems, characterization of aquifer storage (specific 

yield or storativity) is needed. The GLobal HYdrogeology MaPS (GLHYMPS) database provides 10 km 

resolution data layers of porosity, and GRACE satellite data (Swenson 2010) provides gridded data layers 

(100 km resolution ) of monthly land water mass. Each of these datasets can used to estimate aquifer storage 

anywhere on earth, although 10 km (and especially 100 km) resolution is problematic for many site-specific 

studies of groundwater systems. (Another utility of GRACE data is the analysis of large-scale temporal 

trends – see Calibrating to Temporal Trends and Long-term Patterns). 

 Representing Surface Water Interactions  

There are two general approaches for representing groundwater interactions with surface water bodies 

(lakes, streams, wetlands, and springs/seeps): i) integrated surface water-groundwater modeling; and ii) 

assigning boundary conditions. In both approaches, implementation of big datasets enables generalized 

modeling of groundwater-surface water interactions, although there are modeling trade-offs worth 

considering.   

Integrated Modeling. Groundwater-surface water exchange can be simulated with integrated surface water-

groundwater modeling approaches that computes surface water dynamics (stage and flows) as part of the 
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solution process. In this approach, the surface water continuity equation is coupled to the groundwater 

system via a groundwater source/sink term. The surface water continuity equation is: 

𝜕𝑉

𝜕𝑡
= 𝑆𝑊𝑖𝑛 − 𝑆𝑊𝑜𝑢𝑡 − 𝐺𝑊                                                           (2.1) 

    

𝜕𝑉

𝜕𝑡
= 𝐴

𝜕𝑠

𝜕𝑡
+ 𝑠

𝜕𝐴

𝜕𝑡
                                                                      (2.2) 

where V is the volume of the surface water body, t is time, SWin and SWout are the surface water inputs and 

outputs, respectively, GW is the incoming (GW<0) or outgoing (GW>0) flux of groundwater computed 

using Eq. (4) (see below), A is the surface area of the surface water body, and s is the stage. Big data 

products provide key surface water inputs - including surface water inflows (from stream gage networks), 

precipitation (from climate forcing datasets), surface run-off (estimated based on land use/type or as output 

from an integrated watershed model) – and outputs – including surface water outflows (sensor networks) 

and evaporation (e.g., MODIS satellite ET products).  

Coupling of surface water-groundwater interactions may be included as part of an integrated, distributed-

parameter watershed model that simulates – in addition to as surface water flows – land  runoff, recharge, 

groundwater and vadose zone dynamics by solving the near-surface water balance (see, e.g., Tuppad et al. 

2011, He et al. 2014, Davison et al. 2015). Governing equations for different physical processes (saturated 

flow, unsaturated flow, evapotranspiration) are coupled and solved simultaneously. Detailed big data 

representations of watershed characteristics (land use and land cover, soil type, root zone depth, lithology, 

topography – see  Table 2.1) and climate forcing data (precipitation, air temperatures, irradiance, etc.) 

provide necessary inputs to the governing equations, and time-series streamflow measurements from 

distributed sensor networks help to improve model details and to constrain simulated fluxes.   However, 

because coupled process-based models are data-intensive and require time-steps on the order of minutes (or 

even seconds) to resolve the numerous surface processes impacting watershed interactions, computational 

costs associated with this approach may be impractical for the purposes of long-term modeling of 
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groundwater systems important to water resources (where flows are characterized by residence times of 

months, years and decades).  

Assigning Boundary Conditions. An alternative approach for representing groundwater-surface water 

interactions is through representing lakes, stream, etc. as conceptual features in the groundwater model (or 

as ‘internal’ boundary conditions). Surface water stages are provided as input for calculations of 

groundwater head or flux in/out of the model in the appropriate model cells. Prescribed head conditions are 

expressed as:  

ℎ𝑖,𝑗(𝑡) = 𝑠 𝑖,𝑗(𝑡)                                                                    (2.3) 

where hi,j is the head in the i,jth (x,y) model cell at time-step t, and  si,j(t) is the stage for the corresponding 

cell and time-step. Although in general stage may vary in space or time, big hydrography datasets (e.g., 

NHD 2010 or Messager et al. 2016 - see Table 1), typically provide long-term average stages (or single 

measurements assumed to be representative of long-term conditions), or spatially-variable stage 

information (particularly in the case of streams) that may be used in Eq. (3).  Time-varying stages are 

typically available in sensor records (e.g., USGS time-series stream gages), but obviously these are for 

discrete locations. Adopting these considerations, head-dependent flux conditions are expressed as: 

𝑞𝑆𝑊 = 𝐿𝑆𝑊(ℎ − 𝑠)                                                                (2.4) 

where qSW [LT-1] is the flux per unit area infiltrating (+qSW) or exfiltrating (-qSW) the aquifer through the 

surface water-groundwater interface, h [L] is the head in the aquifer cell, s is the surface water stage, and 

LSW the leakance of the streambed/lakebed/etc. (hydraulic conductivity per unit thickness). Leakance is 

typically fine-tuned during calibration or estimated from other properties (e.g., stream order or lake size, 

gradient, etc.).  

A few limitations to these approaches are worth noting. First, caution should be used when applying 

prescribed head conditions, as they are unresponsive to stresses in the groundwater system.   For example, 

if a constant-head boundary is used for a lake that is near a pumping well, it will continue to supply water 

and maintain a constant head, even though the continued pumping would eventually result in a cone of 
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depression that would expand and lower the head where the lake is located (i.e., the lake becomes an 

‘infinite’ supply of groundwater).  Second, while Eq. (4) allows flux to vary in response to changes in head, 

slight errors in leakance can lead to large errors in flux calculations, especially in the case of infiltration 

(see Real-World Illustrations). 

Land Surface as a Seep Surface. To avoid problems associated with artificially supplying water through 

excess infiltration, Eq. (4) may be altered so that water is restricted from leaving the surface water body 

and entering the aquifer (‘one-way’ head-dependent flux): 

𝑞𝑆𝑊 = {
 𝐿𝑆𝑊(ℎ − 𝑠)        𝑖𝑓 ℎ > 𝑠

            0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                   (2.5)                               

By extension, the entire land surface may be treated as a one-way head dependent boundary condition 

(seepage) that allows groundwater to discharge to the surface where the groundwater level intercepts the 

land surface: 

𝑞𝑠𝑒𝑒𝑝 = {
 𝐿(ℎ − 𝑧)        𝑖𝑓 ℎ > 𝑧

            0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                         (2.6) 

where qseep [LT-1] is the flux per unit area leaving the aquifer through the land surface, z is the land elevation, 

and L is the leakance (hydraulic conductivity per unit thickness) of the land surface. Given the high-

resolution DEMs currently available for representing the land surface, z can be assigned with a high degree 

of accuracy and the spatially-constant leakance term can be calibrated, e.g., if the leakance is too low, the 

flooded area will be large, and vice versa. Essentially, this approach predicts where the water table intersects 

the land surface as part of the solution process, rather than assume complete knowledge of where this 

condition is satisfied. In other words, it is able to account for seeps not identified in hydrography datasets, 

while also ‘automatically’ capturing discharge to surface water bodies (whose long-term, average stage 

levels are reflected in high-resolution DEMs). Of course, some actual infiltration will not be captured with 

this approach, thereby introducing error into the water balance.  However, as we show later, this error is 

expected to be small in areas where surface water bodies are predominantly gaining (e.g., regional discharge 
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areas). In fact, the ‘one way’ treatment may be the most robust approach for modeling extensive surface 

water networks of large watersheds (see example in Detailed Methodology in subsection below).    

 Estimating Recharge 

Net infiltration of precipitation, or aquifer recharge, is represented as input to cells in topmost groundwater 

model layers. Depending on the modeling application, recharge may be constant, spatially-variably, and/or 

time-varying. We briefly review the links between big data and the range of choices for estimating recharge. 

Empirical approaches. Historically, aquifer recharge has been estimated by relating observations of 

precipitation to net infiltration via mathematical models with relatively few model parameters that can be 

adjusted (see Yu et al. 1999). As more hydrologic data have become available, other have applied statistical 

regression techniques involving observed stream flow hydrographs, water tables fluctuations, etc. and 

information related to land use, soil conditions, and watershed characteristics (see Risser et al. 2008, or 

Holtschlag 1997). Although local improvements are typically needed, the emergence of national or global 

datasets of land/watershed characteristics and hydrological observables (see Table 2.1) means that empirical 

approaches can be applied for many different places to provide reliable first‐order estimates of recharge.  

Semi-empirical approaches. Another approach is to solve the vadose zone water balance by considering 

precipitation, snowmelt and sublimation, accumulation/surface storage, surface water run-on, 

evapotranspiration, redistribution within the vadose zone, and net infiltration (recharge). The water balance 

parameters can be derived empirically from precipitation and temperature data, topography, soil 

type/lithology, and land use/land cover datasets.  These semi-empirical approaches allow modeling both 

spatially-varying and time-varying recharge, but the large number of parameters used to compute the water 

balance terms can make their implementation tedious and the model insensitive to adjustments. An example 

of this type of model is the INFIL 3.0 – a grid-based, distributed-parameter watershed model by USGS 

(USGS, 2008). Also see Reitz et al. (2017) 

Process-based simulations. Similar to semi-empirical approaches, process-based approaches solve the near-

surface water balance, providing estimates of recharge as a simulation output. However, rather than derive 
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water balance terms from empirical relationships, coupling of governing physical equations is used to 

calculate water balance terms. Process-based models are capable of producing detailed estimates of 

recharge in time and space and are useful for probing potential impacts of climate change or abstracting of 

water, but may be computationally impractical when for the purposes of long-term modeling of 

groundwater systems important to water resources (see more details above in Representing Surface Water 

Interactions).  

 Calibrating to Temporal Trends and Long-term Patterns  

Sensor Data. Spatially-distributed sensor networks linked to web-based data repositories provide crucial 

information needed for characterizing temporal trends and calibrating groundwater models, namely: 

historic and present-day groundwater levels; surface water stages; and stream/reservoir flows. For the 

steady-state groundwater modeling, typically groundwater levels collected at different times (but across 

large areas) are compared to simulated head and model parameters (conductivity, recharge, etc.) are 

adjusted to improve overall model performance. In many long-term studies of aquifer systems (e.g., 

regional investigations by USGS), monitoring well networks are established and operated for several/many 

years so that long-term groundwater level data are available for transient model calibration, among other 

uses (see Taylor and Alley 2001).  When available, stream flows and surface water stage are useful for 

constraining fluxes (especially baseflow and recharge). However, for many areas with a growing (or 

emerging) dependence on groundwater, monitoring wells and/or surface water sensors are not available (or 

do not span the appropriate times and/or locations). 

Water Well Data. Another, more universal source of physical groundwater data (water levels) are Static 

Water Level (SWL) measurements, which are water levels measured in wells at the time of installation 

(prior to pumping). Massive SWL datasets are becoming increasingly available in different U.S. States and 

elsewhere (see, e.g., Illinois State Geological Survey repository (ISGS, 2015), Kansas’ WIZARD water 

well levels database (KGS, 2002), and the GeoSam Database for the State of Iowa (IGS, 2016)), and 

although there are a number of sources of error and variability embedded in them (e.g., approximate well 
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locations, measurement uncertainty due to QA/QC variabilities from well driller to well driller, and 

physically impossible data due to procedural error),  recent research shows systematic processing and 

critical evaluation of SWLs yields important insights into groundwater systems. We briefly discuss these 

next.  

Spatial Interpolation of SWLs. Using Static Water Levels (SWLs) as input data, an automated, continuously 

moving window statistical analysis can be used to delineate large-scale, prevailing flow patterns. The 

approach follows a nonstationary kriging technique described in Curtis et al. (2018), in which many noisy 

water level measurements taken across space and time are used to generate maps of long-term mean head 

distributions. This approach assesses sub-grid variability and local spatial structure for each estimation 

point; this information is then used to assign weights to the input values used for spatial interpolation. 

Although SWL data are noisy and temporal variations are assimilated into the spatial analysis (introducing 

SWL variability at location), the nonstationary kriging technique has been shown to be effective for the 

purposes of delineating long-term, prevailing SWL spatial structures (Curtis et al. 2018), and has also been 

used in geostatistical studies involving meteorological datasets or environmental parameters (see, e.g., 

Walter et al. 2001, Lloyd 2010, Harris 2010). This approach is demonstrated below as part of Real-World 

Illustrations. 

Temporal Analysis of SWLs. Because each SWL represents one measurement made at one time, time-series 

analysis at a single point is not possible with SWL datasets. However, by spatially aggregating SWLs, it is 

possible to detect long-term temporal trends that are larger than the SWL variability caused by spatial 

aggregation and noise in the measurements themselves. Examples of this applying this approach for 

detecting multi-decadal trends in a complex aquifer subjected to increase in distributed groundwater 

withdrawals are presented in Chapter 3  and Chapter 4.  

We next illustrate and evaluate some of the generalized big data modeling approaches described in 

preceding subsections through application to a series of real-world test beds 
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2.4 Real World Illustrations  

The modeling objective of the real-world illustrations is to simulate natural groundwater conditions in near-

surface aquifers (i.e., the unconfined, water table aquifer) critical to water resources and sustaining of 

groundwater-dependent ecosystems. Through this application we explore relative importance of different 

data components and discuss implications of incomplete datasets, inconsistent data qualities, and scale of 

analysis. 

 Detailed Methodology 

Database and Test Beds. The State of Michigan was chosen as the study area because of the unique 

opportunity to utilize large volumes of pre-processed, ready-to-go GIS and hydrologic data layers available 

across the state.  Over the past 15 or so years, significant efforts to assemble, digitize, and properly process 

massive amounts of data by Michigan’s Department of Environmental Quality (MDEQ), the U.S. 

Geological Society, and Michigan State University resulted in several statewide groundwater databases 

(State of Michigan 2006, MDEQ 2010, 2014; MNFI 2010).  These databases allow for modeling 

groundwater flow in almost any part of the state using pre-processed data layers, e.g., statewide maps of 

aquifer elevations and spatially-explicit hydraulic conductivity and recharge estimates. 

Figure 2.2 shows the locations and extents of the watersheds used for real-world illustrations, and Table 

2.2 provides additional details (formal name and area). The watershed boundaries are derived from the 2-

digit watershed boundaries available in the National Hydrography Dataset (NHD) (NHD 2010). The 

watersheds vary in size (from 2147 to 5238 km2) and shape (e.g., long and thin or short and wide).  Six 

watersheds have surface water outlets into one of the North American Great Lakes (Lake Superior, Lake 

Huron, Lake Michigan or Lake Erie), while one of the watersheds (Pine, watershed ID=8 from Table 2.2) 

is ‘land-locked’ (i.e., its outlet is an inlet for a downstream 2-digit NHD watershed).  All watersheds are 

drained by strong surface water networks and contain unconsolidated glacial deposits, in many places 

characterized by strong heterogeneity and three-dimensional (3D) structure due to their chaotic depositional 

history (Westjohn et al. 1994) (e.g., the Huron and Lower Grand watersheds).  The surficial sediments are 
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underlain by interbedded sequences of bedrock, some of some of which act as productive aquifer units and 

others that are considered aquitards.  At least some portion of the surficial sediments are underlain by 

bedrock aquifers in each of the studied watersheds, but especially for the   Kalamazoo (ID=6), Au Sable 

(ID=3) and Lower Grand (ID=7) watersheds (State of Michigan 2006). Types of land cover includes 

developed or other human use (e.g., throughout the Huron watershed, or in parts of the Kalamazoo and 

Lower Grand watersheds), but most of the combined study area is covered in agricultural vegetation or 

forest and woodland (USGS 2011).  

 

Figure 2.2: Watershed chosen for study. Background image source: National Geographic Society, i-cubed 

(2013). 

Table 2.2: Michigan watersheds chosen for study. The ID numbers correspond to the number labels 

presented in Figure 2.2. 

ID Name Area (sq. km.) 

1 Escanaba 2392 

2 Tahquamenon  2147 

3 Au Sable 5328 

4 St. Claire 3098 

5 Huron 2358 

6 Kalamazoo 5257 

7 Lower Grand  5216 

8 Pine 2687 
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The following subsections provide details on the development of the process-based groundwater flow 

models and the methods for comparing simulated head outputs to water level measurements taken across 

space and time.  

Software and Data. The flow models were created with an integrated, GIS-enabled groundwater modeling 

system, Interactive Groundwater (Li and Liu 2006; Li et al. 2009; Liao et al. 2015a;b), which uses the finite 

difference approximation of the governing partial differential equation to solve confined and unconfined 

flow conditions. The modeling environment is live-linked to a database containing terabytes of raw and 

derived information on groundwater systems, with several sources of statewide information useful for the 

purposes of this real-world illustration: 1) high-resolution (10 m) resolution DEM (NED USGS 2006) for 

mapping topographic variations and simulating groundwater surface seeps; 2) water well records from 

Wellogic (MDEQ 2015), which contain valuable physical groundwater data (static water level 

measurements and borehole lithologies) collected during past decades from over 530,000 locations, useful 

for evaluating model performance and delineating the spatially-variable bottom boundary of the 

unconsolidated sediments (i.e., the bedrock top surface); 3) a spatially-variable, two-dimensional (2D) 

raster of  horizontal hydraulic conductivity (K); and 4) a spatially-variable raster of natural (long-term 

average) groundwater recharge (ε), (State of Michigan 2006).  The bedrock top elevation raster (500 m 

resolution) was interpolated from Wellogic borehole records. The conductivity raster (540 m resolution) 

was generated by interpolating estimates of K from records in the Wellogic database, MDEQ public water 

supply and U.S. Geological Society aquifer-tests, and aquifer properties reported in literature (State of 

Michigan 2006). The recharge raster (1609 m resolution) was generated following empirical methods 

presented in Holtschlag (1997) involving observed stream flow hydrographs and information related to land 

use, soil conditions, and watershed characteristics. 

Model Types.  The statewide datasets were used to create 1-layer, 2D steady groundwater flow models of 

the unconfined aquifer layer for the eight selected watersheds in Michigan. For each watershed, two types 

of models were created: Model Type II, informed by the statewide big data products; and Model Type I, 
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informed by accurate land surface representation, but no other big groundwater data. More specifically, 

while both models utilize the 10 m DEM, Model Types II apply the spatially-explicit bottom aquifer 

elevation, conductivity, and recharge inputs, whereas Model Types I models utilize a single, effective value 

for conductivity and recharge for all cells in the model and a constant bottom aquifer elevation, computed 

as the minimum DEM elevation minus a user-prescribed length, Z. (Note that, after some trial and error, 

28.3m = 60 ft. was chosen as Z, however, this value could be determined during model calibration – see 

Examples of Further Model Utilization.) Figure 2.3 provides example cross-sections for each type of model 

for the Lower Grand watershed (ID=7) to help illustrate the key conceptual differences between model 

types. A summary of the two types of groundwater flow models generated for each watershed is provided 

in Table 2.3. 
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Figure 2.3: Example cross-sections to illustrate the two process-based modeling approaches used in this 

study.  Arrows indicate groundwater velocity vectors. The red lines along the top and bottom of the models 

are the model boundaries.   

Table 2.3: Summary of inputs for the two types of process-based models used in this study. 

Parameter or 

Feature 

Model Type 

I 

Model Type 

II 

Top elevation 10m DEM 10m DEM 

Bottom 

elevation 

Min. DEM 

minus Z  

Bedrock top 

raster 

Conductivity (K) Mean K  K raster 

Recharge (ε) Mean ε  ε raster 

 

The primary purpose of developing these two types of models for each watershed was to evaluate the 
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relative importance of capturing additional details of the system framework beyond the topographic 

variability, namely spatially-explicit recharge, conductivity and aquifer bottom elevation.  

Grid Properties. The two types of models utilize the same 2D grid configuration, i.e., the number of cells 

in the x-direction, NX, and the number of cells in the y-direction, NY, is the same for both types of models 

for a given watershed. Grid cells are approximately square (DX, the cell length in the x-direction, is 

approximately equal to DY, the cell length in the x-direction). Table 2.4 provides grid properties of the 

process-based models created for each watershed.  The mean recharge and mean conductivity values, 

computed from the raster cell values within each model domain, are also provided. These values were 

applied as the single effective K and ε values for the Type I models, although these two parameters could 

be fine-tuned during calibration (see Examples of Further Model Utilization subsection below).  

Table 2.4: Grid properties of the models of the different watersheds, and the mean recharge (ε) and mean 

hydraulic conductivity (K). 

 

 

  

ID NX NY 

DX 

(m) 

Mean ε 

(in./yr.) 

Mean K 

(ft./day) 

1 80 100 947 10.7 11.7 

2 100 66 796 13.4 11.5 

3 100 69 1260 10.2 29.2 

4 56 99 1184 5.7 8.7 

5 100 92 865 8.3 26.3 

6 100 65 1478 11.6 26.1 

7 100 83 1102 10.4 22.8 

8 100 81 874 8.6 22.8 
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Lateral and Bottom Boundary Conditions. The lateral boundaries and bottom for all models were assigned 

as no-flow boundary conditions (i.e., groundwater flux across them is zero), under the assumption that 

significant groundwater does not flow across watershed divides or from the underlying bedrock.  Of course, 

this may not reflect actual groundwater conditions; some watersheds overlie productive bedrock units with 

significant flux transfer between the unconsolidated sediments and bedrock, and groundwater divides do 

not necessarily coincide with watershed boundaries (especially when pumping is present). As a result, the 

models may provide poor estimates of head near the model boundaries.  However, rather than focusing on 

acquiring accurate boundary conditions through data collection, nested flow modeling, etc., the lateral 

boundary conditions used here offer a quick starting point for building a model and evaluating its 

performance.  Boundary location/type can then be updated in areas where the model is clearly under- or 

overestimating head (again, see Examples of Further Model Utilization subsection). 

Representing Groundwater Discharge at the Surface. In the previous section, a number of ways for 

representing groundwater-surface water interactions were presented. The ‘one-way’ head-dependent flux 

approach (i.e., treating land surface as a seepage surface – see Eq. 6) was selected for the real-world 

modeling applications - which, as we show next, may be the most robust approach for modeling extensive 

surface water networks of large watersheds.  

As a comparative example, water balance results for two Type II process-based models representing the Au 

Sable watershed (ID=3) were generated, with one model representing surface water features using the ‘one-

way’ approach described above, and the other utilizing two-way head dependent boundary conditions (see 

Eq. 4). For this example, different leakances, LSW, were assigned to stream segments (or lake feature) based 

on stream order (or lake size), i.e., smaller lakes and lower order stream segments utilize smaller LSW values 

compared to the larger lakes and higher order stream segments. A comparison of the simulated aquifer 

water balances of the different models is shown in Figure 2.4. Consider that the annual average precipitation 

spread across the watershed is about 28 in./yr., or 10,400,000 m3/day (PRISM 2004), and the 28-year 

average annual discharge at the Au Sable river mouth (i.e., where it discharges to Lake Huron) is about 
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3,700,000 m3/day (USGS 2016), the following can be said about the results from two-way representation 

of surface water bodies: a groundwater outflow to rivers (or baseflow) of 6,900,000 m3/day, which is  over 

70% of total average river outflow, seems unreasonably high and (2) a river inflow (source term) of 

4,200,000 m3/day across the watershed, or about 40% of the total precipitation, is not likely for water-

abundant places such as Michigan with water tables close to (or at) the land surface (and thus most streams 

are gaining).  This, together with the fact that the simulated seepage areas (Figure 4b) generally coincide 

the spatial configuration of the stream network (Figure 4b), suggests that the two-way treatment of surface 

water bodies requires careful implementation and additional data for constraining the water balance as 

compared to one-way seep treatment. Of course, further testing is needed for rigorous comparison of these 

two (and other) techniques for representing surface water bodies when modeling larger groundwater 

systems, which we explore in forthcoming work (Curtis et al., in prep.).  
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Figure 2.4: Comparison of the spatial occurrence of groundwater seep areas (top) and water balances 

(bottom) for the Au Sable watershed (ID=3). (a) Model utilizing two-way head dependent flux boundary 

conditions (BCs) for lakes and rivers/streams; and (b) one-way head-dependent flux for the entire land 

surface. Streams and lakes shown in (a) are from NHD USGS (2010). 

(No) pumping stresses. None of the models included pumping used to support human activities. Obviously, 

this is an oversimplification of reality, as groundwater is withdrawn from all of the watersheds examined 

in this study, albeit mostly for small-use, domestic water wells. Later in the Results and Discussion, we 

discuss how comparisons of these ‘pre-development’ steady-state simulations with water level data 

collected across space and time can be used to guide model refinement and data collection (e.g., in areas of 

the model where prediction accuracy is clearly suffering from neglecting pumping). 
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Evaluating Model Performances. The performance of each model was evaluated by mapping water levels 

measurements for each watershed using the non-stationary kriging approach described above, and 

comparing the data-driven flow patterns (in the form of head contour maps) with the flow patterns output 

from the process-based models. Each data-driven flow representation utilizes the same grid (NX and NY) 

as the process-based models for a given watershed (see Table 2.4: Grid properties of the models of the 

different watersheds, and the mean recharge (ε) and mean hydraulic conductivity (K).). Following Curtis et 

al. (2018), the number of nearest points, M, used for assessing spatial structure and performing kriging 

estimation was computed as: 

M = ρwells ∗
π

4
(

1

10
L)

2
                                                                    (2.7) 

where ρwells is the well density (per sq. km) and L is the model extent. Values of ρwells, L, and M for all 

watersheds are provided in Table 2.5 Parameters used for non-stationary kriging and spatial interpolation., 

in addition to the total number of points available for kriging and the number of outliers removed during 

analysis.  The total number of points includes SWL outside of the model domain (as ignoring these points 

may result in biased estimated values near the boundary) and the outliers were identified and removed using 

a moving window statistical analysis, i.e., data values that were more than 3 standard deviations from the 

local average (computed using the nearest 30 points) were removed before kriging 

Table 2.5 Parameters used for non-stationary kriging and spatial interpolation. 

ID 

well density  

(per sq. km) L (km) 

M  

(NS krig) 

Total 

Points 

Outliers 

removed 

1 0.47 114.3 48 1711 26 (1.52%) 

2 0.61 81.2 32 1878 35 (1.90%) 

3 1.79 139.5 274 14013 313 (2.28%) 

4 1.65 118.7 183 10598 131 (1.45%) 

5 143.23 78.8 6985 45483 683 (1.56%) 

6 4.79 160.0 962 33071 504 (1.55%) 

7 5.28 108.6 489 37678 515 (1.39%) 

8 3.62 78.6 176 13135 190 (1.45%) 
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Each SWL measurement available in each watershed was compared to the simulated head at that location 

to graphically and statistically evaluate the goodness of fit between the process-based models and observed 

Static Water Levels.   The simulated head was computed from a weighted average (traditional bi-linear 

interpolation) of values at surrounding nodes.  Statistical indicators - namely, the root-mean-square error 

(RMSE), mean error, and Nash-Sutcliffe coefficient (E) were computed to assess the predictive abilities of 

the process-based flow models. Mean error and RMSE error are common indicators in regression statistics, 

and E is typically used for comparing simulated discharge to observed discharge. For the purposes of this 

study, E was computed as:  

𝐸 = 1 −
∑ (ℎ𝑠𝑖𝑚

𝑠 −ℎ𝑜
𝑠 )2𝑆

𝑠=1

∑ (ℎ𝑜
𝑠 −ℎ𝑜

̅̅̅̅ )2𝑆
𝑠=1

                                                                      (2.8) 

where ℎ𝑠𝑖𝑚
𝑠  and ℎ𝑜

𝑠  is the simulated head and observed head (SWL), respectively, of the sth pair (s=1,2,…,S, 

where S the total number of data pair), and ℎ𝑜
̅̅ ̅ is the mean of the head observations.  

 Results and Discussion  

The results for each watershed are presented in Figure 2.5 – Figure 2.12, beginning with the Escanaba 

watershed (ID=1) and proceeding in order through the Pine watershed (ID=8) (see Table 2.2 for watershed 

IDs).  Each figure contains head maps (upper section) generated from (a) the Type I model; (b) the Type II 

model; and (c) non-stationary kriging.  All head maps for a given watershed share the same color scheme 

and legend for easy comparisons.  Also included in Figures 2.5 – 2.12 are (d) calibration plots (lower 

section) comparing the results of the Type I models with SWLs (left-side chart) and similarly for the Type 

II models (right-side chart). Confidence intervals of 2 standard deviations and moving window averages 

(‘band mean’) were computed and added to assist with graphical analysis of the sets of data pairs for each 

watershed.   Table 2.6 contains the statistical indicators used to evaluate model performance and will be 

referred to during the following discussion.  
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Figure 2.5: Head distributions and calibration charts for the Escanaba watershed (ID=1). 
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Figure 2.6: Head distributions and calibration charts for the Tahquamenon watershed (ID=2). 
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Figure 2.7: Head distributions and calibration charts for the Au Sable watershed (ID=3). 
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Figure 2.8: Head distributions and calibration charts for the St. Clair watershed (ID=4). 
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Figure 2.9: Head distributions and calibration charts for the Huron watershed (ID=5). 
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Figure 2.10: Head distributions and calibration charts for the Kalamazoo watershed (ID=6). 
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Figure 2.11: Head distributions and calibration charts for the Grand River watershed (ID=7).. 
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Figure 2.12: Head distributions and calibration charts for the Grand River watershed (ID=8). 
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Table 2.6: Model performance for Type I and Type II process-based simulations. Model ID indicates the 

watershed (by the beginning number) and model type (I or II following the dash). 

Model 

ID 

Calib. 

Pts. 

RMSE 

(m) 

Mean 

Error 

(m) 

Nash-

Sutcliffe 

1-I 
1042 

8.54 -1.37 0.99 

1-II 8.17 -0.80 0.99 

2-I 
1286 

7.48 -2.07 0.72 

2-II 8.41 3.35 0.62 

3-I 
9435 

9.86 -1.97 0.97 

3-II 10.14 2.20 0.97 

4-I 
4982 

6.35 -4.76 0.91 

4-II 6.58 -4.10 0.92 

5-I 
33049 

6.09 2.44 0.82 

5-II 6.19 2.36 0.82 

6-I 
24831 

6.83 -1.51 0.94 

6-II 7.50 0.17 0.92 

7-I 
27262 

7.46 -0.60 0.93 

7-II 8.85 3.64 0.88 

8-I 
9392 

5.71 0.26 0.98 

8-II 7.34 2.99 0.95 

 

Flow Patterns. In general, flow patterns are consistent between both the Type I and Type II models as well 

as the process-based models and the results from non-stationary kriging, e.g., the highest heads and lowest 

heads are found in similar areas of the different flow representations, and head contours converge to major 

streams and rivers or coastlines. The most noticeable differences between flow representations are 

concerned with local areas of a given watershed, see, e.g., the northwest portion of the Escanaba watershed 

(Figure 2.5), the south-central portion of the Tahquamenon watershed (Figure 2.6), and the eastern portion 

of the Kalamazoo watershed (Figure 2.10).  

Some watersheds have remarkably similar patterns between the Type I and Type II process-based models, 

namely, Tahquamenon (Figure 2.6), Au Sable (Figure 2.7), St. Claire (Figure 2.8), Huron (Figure 2.9), and 

Pine (Figure 2.12). In some cases, the Type I model yielded flow patterns more similar to those from non-

stationary kriging than compared to the Type II process-based model: Escanaba watershed (ID=1), 
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Kalamazoo watershed (ID=6), and the Lower Grand watershed (ID=7).  In these cases, the Type II process-

based model yielded small-scale variability not seen in the data-driven modeling.  This is likely related to 

the more spatially-detailed inputs of aquifer thickness, conductivity, and/or recharge in the Type II models, 

which may cause more abrupt changes in head. The Type II process-based model even yielded some dry 

cells (whereas the Type I models did not, e.g., see Tahquamenon watershed (ID=2), Kalamazoo (ID=6)). 

This may be related to modeling issues created by unreasonable or inconsistent values of aquifer thickness, 

recharge, and/or conductivity assigned to a cell (or set of cells) from big data input.   

To further test the accuracy of the spatial flow patterns from the Type I models, Wellhead Protection Areas 

(WHPAs) delineated by the MDEQ (State of Michigan, 2006) were compared to results from reverse 

particle tracking applications in the watersheds.  Examples from the Lower Grand watershed (ID=7) are 

shown in Figure 2.13. The Traditional WHPAs were delineated using a network of monitoring wells 

installed by MDEQ.  Particles were placed at the location of wellhead locations, and allowed to advect 

backwards along the flow field using the velocity vectors output from the Type I simulation.  The collections 

of particle pathlines, shown as purple zones in Figure 2.13, match well with the traditional WHPAs, which 

was found elsewhere in the State (not shown here).   This demonstrates that a simple surface framework 

model provides a robust initial characterization of flow patterns for a large groundwater system, even when 

considering relatively local (or subregional) application.  

Importantly, the Type I models – despite the lack of detailed spatial inputs (K, ε, and aquifer bottom 

elevation) – were able to reproduce the overall flow patterns exhibited by the observation data and from the 

more detailed Type II models. This important conclusion is consistent with theoretical and empirical studies 

indicating that water tables generally mimic variations in the of land surface (Toth 1963, Witherspoon 1967, 

Winter 1988, Haitjema and Mitchell-Bruker 2005). 
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Figure 2.13: Comparison of reverse particle tracking results and traditional Wellhead Protection Area 

(WHPA) delineations completed by the Michigan Department of Environmental Quality (MDEQ). 

Statistical Indicators & Calibration Plots. In almost all of the watersheds, both the Type I and Type II 

process-based models performed reasonably well, as indicated by the strong Nash-Sutcliffe coefficients (E) 

of >0.90 for 11 of the 16 flow representations (see Table 2.6) and E>0.8 for all flow representations of all 

watershed except for the Tahquamenon watershed (Model IDs 2-I and 2-II in Table 2.6). The Tahquamenon 

watershed has relatively flat terrain, and thus, the driving potential for unsaturated flow is low.  The result 

is that the range of head variability relative to SWL noise is small for this watershed as compared to the 

others. 

The general agreement between both the Type I and Type II models and data can also be seen visually, as 

a majority of the many thousands of data points used for evaluation fall within 2 standard deviation, and 

the band mean (moving average) data markers generally fall on or close to the 45⁰ lines of ‘perfect 

agreement’ (all points on this line have the same simulated and observed heads).  In a few watersheds –  

such as the Au Sable, (Figure 2.7), St Clair (Figure 2.8), and Pine (Figure 2.12), calibration plots both the 

Type I and Type II have at least one band mean data marker that suggests over- or underestimation of head 

by the model for a localized region of the watershed.  This suggests a key system feature (structural 

component or flow process) that is not represented by the model is needed to reproduce real-world 
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conditions (see more details in next subsection). Similarly, although there is a large spread in the “data 

clouds”, the spread is generally centered about the line of perfect agreement.  This is supported by the 

absolute mean error of < 2.5 m for 11 of the 16 process-based flow representations.  Models 4-I and 4-II 

(St. Clair watershed) yielded the only absolute mean errors of 4-5 m.  For 5 of the 8 watersheds, the Type 

II model yielded a smaller absolute mean error, although the values are largely similar for each watershed.  

The large spread in the data clouds is reflected both visually and in the RSME values ranging from 5.71 to 

10.14 m (see Table 2.6).  These large RSME values partially reflect the significant noise embedded in the 

SWL dataset described in the previous section (see Curtis et al. 2018 for more details). The large spread in 

plots and large RSME values are also related to the inability of the model to resolve sub-grid variabilities 

or system structures that are reflected in the observational data.  For example, the watersheds with the 

largest RSME values – the Escanaba (1-I and 1-II), Au Sable (3-I and 3-II), and Lower Grand (7-I and 7-

II) – overlie productive sub-cropping bedrock units that may lead to vertical head gradients not captured by 

the models. Also, as stated earlier, many of the glacial deposits in Michigan exhibit strong heterogeneity 

and three-dimensional (3D) structure (Westjohn et al. 1994), which would also contribute to significant 

variability not captured by the models used here. Similarly, neglecting transient processes (e.g., pumping, 

dynamic recharge, etc.) may lead to considerable spread in the data cloud seen in the calibration plots of 

Figures 2.5 – 2.12. Nonetheless, although the RSME values are relatively large when compared to precise 

measurements collected for scientific purposes (e.g., from a monitoring well), they generally represent less 

than 10% of the head variability across an entire model.  The graphical comparison of the many head 

measurements across space and time is therefore a useful reasonable approach for understanding the overall 

system dynamics (long-term mean head for different places across a large area). Moreover, it is an effective 

way to analyze the level of model complexity needed to capture real-world variabilities, e.g., more spread 

in the calibration chart usually indicates more significant spatial and/or temporal variabilities exist than 

what is currently being modeled. This is discussed in more detail next. 
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 Examples of Further Model Utilization 

The following examples help to illustrate how the models and SWL datasets can be used to improve system 

understanding and guide subscale data collection and model development. 

Issues with Systematic Bias. Recall that, for each watershed, mean K and mean ε values were computed 

from the spatially-explicit rasters, and then used as the effective K and ε values for the all cells in the Type 

I models.  This pragmatic approach may not be available in all cases (e.g., for watersheds with little 

subsurface data available for estimating mean K), forcing modelers to use educated guesses for the effective 

K and ε values.  In addition, after some trial and error, the Z parameter for computing the aquifer bottom 

elevation, was chosen as 60 ft., but again, this may be difficult or time-consuming to estimate.  As an 

example, an arbitrary set of parameters was chosen for a Type I simulation of the Au Sable watershed 

(ID=3):  K=100 ft/day; ε=10 in./yr., and Z=200 ft.  The calibration results are presented in Figure 2.14. 

Clearly, the model is biased towards underpredicting head, as evidenced by the majority of band mean data 

markers falling below the 45⁰ line and the large mean error value of 8.70 m. Additionally, the RMSE error 

has increased to 12.88 m (compare to 9.86 m of model DEM-3). As before, the measurements of head 

distributed across space and time can be used to guide model refinement to reduce the RMSE and remove 

systematic model bias.  In this case, the process of ‘system-wide’ calibration (adjusting K, ε, and Z to the 

values used in model DEM-3) improves the model’s ability to capture overall system dynamics.  
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Figure 2.14: Calibration plot for the Au Sable watershed (ID: 3) utilizing arbitrary parameters: K=100 

ft/day; ε=10 in./yr.; Bottom elevation=Min. DEM – 200 ft. 

Issues Near Model Boundaries. In the calibration plots for the St. Clair watershed (Figure 2.8), there were 

many data points at high heads for which the simulated head was significantly less than the observed head. 

There were also many data points at low heads for which the simulated head was significantly more than 

the observed head. Figure 2.15 provides the spatial locations of the underestimated points (simulated head 

less than observed) and overestimated points within the St. Clair watershed. All of the underestimated points 

occur near the southwest model boundary, which was consistently predicted as the ‘recharge area’, i.e., the 

area of highest head within the watershed (see Figure 2.8). This suggests that the choice of no-flow 

boundaries along this portion of the model domain is artificially blocking groundwater flux that would 

otherwise raise heads to the values reflected in the observation data. This problem can be alleviated by 1) 

expanding boundaries to the ensure the actual groundwater divide is captured; or 2) assign new boundary 

conditions (e.g., prescribed head or prescribed flux), although, as mentioned earlier, the latter should be 

done with caution to prevent unreasonable sources of water along this boundary.  
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Figure 2.15: Location of significantly overestimated and underestimated simulated SWLs, St. Clair 

watershed (ID= ). Red dots (left) are locations of overestimated points; blue dots (right) are locations of 

underestimated points; green dots are locations of all other points in the calibration plot (center). 

Within the St. Clair watershed the cloud of overestimated points occurs near the southeast model boundary 

along the St. Clair River (Figure 2.15).  This suggests that the model is missing important system 

variabilities/processes that act to lower actual heads in the aquifer, which could include: groundwater 

pumping; lower stages of the St. Clair River, which sets the baseline groundwater levels within the 

watershed, or lateral outflows through the eastern boundary of the model (which are assumed to be zero by 

the simulation).  Further data collection or review of available information on historical river stages, 

groundwater withdrawals, or groundwater heads east of the east-northeast watershed boundary could then 

guide the model refinement process.  

Issues with Local  Structure. Another example of probing and improving a model with big data is illustrated 

by considering the calibration plot (Type II model) for the Kalamazoo watershed (Figure 2.10, ID=6). For 

heads between ≈240 and ≈290 m, simulated head was significantly less than the observed head.  Figure 

2.16 shows that watershed the cloud of underestimated points occurs within the central region of the model 

domain. It may be that the values in the K and ε rasters used in the Type II model have unreasonable values 

for this part of the model, namely, K is too high and/or ε is too low. Or, it may be related to the treatment 

of the underlying bedrock. In this area, the glacial deposits are thin overlie two bedrock units – the 
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Coldwater Shale (confining unit) and Marshall Formation (very transmissive aquifer unit) – occur along a 

NW-SE striking direction. It is possible that significant amounts of groundwater moves through the bedrock 

into the glacial layer along margins of the interface between bedrock units, thereby raising actual heads 

reflected in the observation data.  This suggests that modeling the transmissive Marshall formation is an 

important part of reproducing real-world groundwater conditions in the Kalamazoo watershed. Note that 

the Type I model performs better than the Full model for this part of the watershed, probably because of 

the larger thickness being applied that more effectively captured the actual transmissivity of the aquifer 

system. In any case, the ability to locate the systematically underestimated simulated heads provides a 

means for prioritizing further investigation and research. 
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Figure 2.16: Location of significantly underestimated simulated SWLs, Kalamazoo watershed (ID: 6).; 

blue dots (bottom) are locations of underestimated points; green dots are locations of all other points in 

the calibration plot (top). 

Importantly, for these examples and others, once the overall system dynamics are consistent with 

observations (e.g., the clouds of data fall along the 45⁰ line and within 2 standard deviations), more detailed 

analyses such as nested, local-scale modeling can be made based on the system-wide flow patterns as 

appropriate boundary conditions. 
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2.5 Ch. 2 Conclusions 

In this study, we defined what big data are in the context of groundwater modeling, and discussed how 

these data can be used to model groundwater systems. We capitalized on a statewide, comprehensive 

groundwater database – created through years of effort and collaboration – to generate a diverse set of 

groundwater models for 8 large watersheds (‘test beds’) in different parts of Michigan for the purposes of 

exploring different ways of using big groundwater data  for systems modeling.  Through spatial and 

statistical comparisons of model outputs (head) and data (observed water levels), the relative importance of 

the different inputs were assessed.   

The analyses provided here demonstrate that existing data alone enables modeling of overall system 

dynamics, i.e., the prevailing spatial distribution of regional or subregional groundwater flow patterns, upon 

which local (short-term) and cumulative long-term changes occur. And while groundwater modeling 

requires a significant amount of data, those representing topography, lakes, streams and other surface seeps 

are the most important. In other words, at regional scales, detailed system framework inputs, namely 

spatially-explicit recharge, conductivity, and bottom aquifer thickness are less important, although in 

localized subregions representing these variabilities (or other structures/processes not captured by the 

simulation) is necessary for accurate reproduction of observations. This study also demonstrates the 

usefulness of Digital Elevation Models (DEMs) for representing critical surface drainage effects. In fact, 

DEM-based treatment of groundwater seepage may be the most robust approach for modeling large 

groundwater systems, although this was not rigorously tested here but will be investigated in forthcoming 

work.  

The implication of these findings is that a model that can properly represent the surface drainage effects 

provides an initial solution that can be used as: 1) a starting point for system-based management; 2) a 

context to study local perturbations (e.g., geological & stress variability); and 3) a guide for local data 

collection. This approach allows modelers to incrementally add details and perform testing to improve the 

model and better represent real-world complexities when/where the initial model is inconsistent with other 
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knowledge (observations, antidotal evidence, perspectives from other disciplines, e.g., ecology, geology, 

etc.).  This affords greater opportunity for model testing and re-conceptualizing – a vital part of model 

development – than is possible with fully assembling a complicated groundwater model that, in the end, 

may be narrowly applicable. Importantly, of all the big datasets related to groundwater, those representing 

the land surface geometry (DEMs and hydrography) are typically of the highest resolution and accuracy, 

widely available, and relatively easy to use.  

One limitation of this study was the relatively large spread in the observation data used to evaluate model 

performance, which in turn required larger models to permit meaningful comparisons, i.e., it was not 

possible to develop local-scale models and evaluate their performance because the observational noise 

would be of similar (or perhaps larger) magnitude to the range of head variability at that scale. Therefore, 

it was not necessary to utilize a high-resolution DEM (e.g., 10m or 3m) given the relatively large cell sizes. 

However, high-resolution (10m or better) DEM products are becoming increasingly available across the 

globe; even 1m or sub-meter LiDAR- (Light Detection and Ranging) based DEM products are in 

development or already available across large areas across the globe. These high-resolution DEMs will be 

powerful tools for efficiently developing system-based models of groundwater systems and guiding data 

collection across different scales – from regional, to subregional (as was done here), or even at site-scale.    
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CHAPTER 3  

Simulation of Flow in a Complex Aquifer System Subjected to Long-term Well Network Growth 

Contributing Authors: Zachary Curtis, Hua-sheng Liao, Prasanna Sampath, Shu-Guang Li 

3.1 Executive Summary of Ch. 3 

In west-central Lower Peninsula of Michigan, population growth and expanded agricultural activities have 

resulted in significant increases in distributed groundwater withdrawals. The well network growth and 

anecdotes of water shortages (dry wells) have raised concerns over the groundwater sustainability of the 

region. We developed an unsteady, three-dimensional (3D) groundwater flow model to describe system 

dynamics over the last 50 years and evaluate long-term impacts of groundwater use. Simulating this large 

aquifer system was challenging; the geologic framework is strongly heterogeneous and 3D, making it 

difficult to avoid over-parameterization using traditional approaches for conceptualizing and calibrating a 

flow model. Moreover, pumping and water level data were lacking and prohibitively expensive (or 

impossible) to collect given the large-scale and long-term nature of this study. An approach was developed 

to develop and calibrate the flow model through innovative use of high-density (yet severely underutilized) 

water well datasets, which allowed 1) implementation of a ‘zone-based’, non-stationary stochastic approach 

to conceptualize complex 3D spatial variability using a small set of geologic material types; and 2) modeling 

the spatiotemporal evolution of many water well withdrawals across several decades using sector-based 

parameterization. The model’s ability to reproduce long-term trends of groundwater decline suggests that  

these new approaches offer a significant improvement for capturing complex spatial structure of subsurface 

geology and well network growth that controls overall aquifer system response to distributed pumping. 

High-density water well datasets are becoming increasingly available in different U.S. States and elsewhere, 

and thus, methods presented here have general applicability elsewhere.   

3.2 Ch. 3 Introduction 

The State of Michigan, USA – although surrounded by four North American Great Lakes – relies heavily 

on groundwater. Over 700 million gallons are withdrawn each day (NGWA, 2016) to support agricultural 
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and industrial activities and provide drinking water supplies to roughly half of all Michigan citizens 

(MDEQ, 2018).  In the Michigan Lowlands of west-central Lower Peninsula (LP) of Michigan, the fastest 

growing area in the State, increases in groundwater withdrawals have helped meet mounting water supply 

demands. Ottawa County, which sits squarely within the Michigan Lowlands, has experienced a 7.0 % 

population increase from 2010 to 2016 and recent expansion of agricultural activities (US Census Bureau 

2017; IWR 2013).  To support increases in water supply demands, it is estimated that aggregated 

groundwater use in Ottawa County nearly doubled in recent decades - from 8 million gallons per day 

(MGD) in 1985 to about 15 MGD in 2010 (USGS 2012).   

Historically, this region is not perceived as water stressed because of an abundance of surface water and 

regional discharge of groundwater in the surficial aquifers and the deeper bedrock formations of Michigan’s 

Lower Peninsula (e.g., Westjohn et al. 1994; Curtis et al. 2017). The area is bordered to the west by Lake 

Michigan, and the land surface contains a number of streams (including Grand River, a large 6th-order 

stream) and several inland lakes ranging from 7.2 km2 to less than 0.02 km2 (see Figure 3.1). However, a 

screening-level analysis of Static Water Levels (SWLs) obtained from the water wells showed modest to 

significant decline in parts of the aquifer system in recent years (IWR 2013), raising serious concerns over 

the long-term sustainability of the groundwater resources of the region. In particular, local and state officials 

want to know: what is the timescale of the aquifer system sustainability (i.e., how quickly is the aquifer 

being depleted due to systematic increases in groundwater withdrawals across space and time)? and how 

can we proactively manage to promote long-term sustainability of groundwater in the region? 

This study addresses a crucial first step in the problem-solving process of managing long-term sustainability 

of groundwater resources in this region: characterizing overall groundwater system dynamics – or how 

groundwater flow patterns emerge over space and time in response to the geologic setting and system 

stresses (e.g., groundwater pumping network growth). Specifically, we seek to identify and reproduce, via 

process-based numerical simulation, multi-decadal temporal trends of groundwater level for all subregions 

of the study area shown in Figure 3.1. This system-based characterization will serve as the basis for more 

detailed analysis of sustainability, including: subscale data collection, modeling and analysis in key areas 
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of concern (i.e., where groundwater levels have declined significantly); scenario testing to evaluate impacts 

of potential perturbations or different management scenarios; and probing relationships between flow and 

groundwater quality dynamics. Other published and forthcoming work (Curtis et al., 2018 and Curtis et al. 

in review) addresses these additional aspects of sustainability analysis in west-central Michigan, and more 

broadly, the Lower Peninsula of Michigan so that present focus may remain on technical challenges of 

investigating this natural groundwater system over the past 50 years of groundwater development (1966-

2015). 

 

Figure 3.1: Study area in west-central Lower Peninsula of Michigan (nearly 3400 km2).  The 10m digital 

elevation model (DEM) was obtained from USGS NED (2006), and the surface water network is from 

USGS NHD (2010). 

The technical challenges of simulating the long-term aquifer system dynamics arise from the fact that: (1) 

the geologic framework exhibits strong three-dimensional (3D) variability and comprises both stochastic 

and deterministic geologic structures that impact groundwater flow; (2) data related to pumping are limited 

to recent times or are available at insufficient spatial scales needed for understanding spatial dynamics; and 

(3) there is no established monitoring well network for calibration of model parameters through comparison 

of simulated outputs with real-world observations, nor was it practical (or even possible) to establish a 

monitoring network for the purposes of this study. These data-limited conditions made it difficult to use 

traditional modeling approaches – such as deterministic, layer-based zonation of aquifer variability or 

assigning well-specific pumping rates as model inputs – without requiring fine-tuning of many model 
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parameters with inverse approaches.  As such, over-parameterization and its related issues (numerical 

instability, impractical computational costs, ill-posed groundwater problems, and non-unique calibration – 

see Carrera et al. 2005; Zhou et al. 2014 for detailed reviews of this topic) plagued model development 

despite significant effort to test and apply different conceptual models. 

This struggle to apply traditional approaches with limited data prompted a deeper look at existing data and 

creative ways to use them for model development. We explored approaches for utilizing information 

embedded in thousands of water well records, such as lithologic descriptions, well auxiliary data (times of 

construction, water use sectors, etc.) and physical groundwater level measurements (Static Water Levels, 

or SWLs), to capture critical aspects of aquifer system structure and responses to disturbed stress.  Transient 

model calibration was performed using noisy but plentiful SWL datasets to determine the potential 

usefulness of proposed approaches for modeling long-term groundwater system dynamics.  

The rest of this chapter is organized as follows:  details of technical challenges and proposed approaches 

associated with the aquifer system conceptualization and parametrization are provided next; a discussion 

of flow model development follows; and results of model calibration flow simulations and next steps for 

using the model as a tool for reaching long-term sustainability are discussed. 

3.3 Modeling Challenges and Overview of Approach 

In the following subsections, further details are provided for above-mentioned aspects that makes 

modeling this system difficult using traditional approaches, followed by an overview of the proposed 

methods for addressing these challenges. Details of implementing approaches for model development are 

discussed in the next section. 

 Conceptualization of a Complex Geologic Framework 

The study area is underlain by a shallow aquifer of unconsolidated glacial deposits and a deeper aquifer 

consisting of fractured bedrock.  Along the coast, many wells are screened in thick, sandy eolian and 

lacustrine sediments (Figure 3.2a and Figure 3.2c).  Throughout central and east-central portions of the 

study area – where thin, coarse-grained lacustrine deposits occur above the thick, relatively continuous 
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layer of fine-grained sediments (e.g., clay, silt, etc.) – most wells are completed in the fractured bedrock 

aquifer.  The unconsolidated deposits in the eastern portion exhibit strong lateral and vertical heterogeneity 

that resulted from a complex depositional history, a phenomena seen throughout many parts of Michigan 

(Westjohn et al. 1994). The bedrock formations strike NW – SE (see Figure 3.2b and Figure 3.2c) and 

generally pinch out along their western subcrop extents, increasing in thickness in the WNW direction. 

Most of the wells that terminate in the bedrock do so in the Marshall Formation, as the other units of relevant 

thickness within the study area (Coldwater Shale and Michigan Formation) are composed primarily of 

shales and siltstones and are therefore unproductive.  

The brief review of the study area geology highlights some two important aspects to consider during model 

conceptualization: 1) bedrock geology is more or less deterministic; 2) glacial geology is more chaotic, 

non-stationary, and strongly heterogeneous, especially in eastern portion of the study domain. However, 

there is important large-scale structure controlling groundwater flow in the glacial aquifer as well (e.g., the 

thick sand deposits along the shoreline and the relatively continuous clay and silt deposits in the central 

part of Ottawa County). Simulating flow in the bedrock aquifer therefore requires a proper delineation of 

the large-scale geometry of the bedrock units, whereas simulation of flow in the glacial aquifer requires 

understanding both small- and large-scale details, as well as complex  transition between the regions 

dominated by different scales of heterogeneity. 
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Figure 3.2: Large-scale geology underlying the study area: (a) glacial land systems (GWIM 2006) and (b) 

bedrock subcrop map (GWIM, 2006); and (c) representative cross-sections A-A’, B-B’, and C-C’, with 

aquifer material types shown in the vertical borehole profiles. Wells and associated lithologic descriptions 

were extracted from Wellogic (MDEQ 2014) using the Michigan Groundwater Management Tool (MGMT) 

developed by Michigan State University (MSU, 2014). 
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Previous Deterministic Approaches. Historically, the most common approach to representing geologic 

variability is deterministic zonation, which consists of explicitly subdividing the model into several areas 

(zones) based on available geological and geophysical information.  Typically, a single, homogenous 

effective parameter value is assigned each zone, such that all model nodes within the same zone share the 

same parameter value and changes in parameter values occur between zones (Anderson et al. 2015).   In 

this approach, smaller-scale heterogeneities and variabilities are implicitly ignored, which may have 

important impacts on flow and, especially, solute transport (Zheng and Gorelick 2003;).  If the modeler 

attempts to capture more variabilities, e.g., by adding more layers and/or zones, more parameters must be 

estimated, and above-mentioned issues related to over-parameterization may arise. Although advanced 

inverse modeling techniques or multistage and multiscale calibration approaches have been put forth to 

handle large number of parameters used to describe complex aquifer structure (see, e.g., Zhu and Yeh 2006; 

Liu and Kitanidis 2011), ultimately the delineation of zones is subjective and data rarely (or perhaps never) 

suffice for unequivocal definition of the ‘correct’ zonation.  Moreover, it has been shown that incongruous 

delineation of zones can lead to misleading results in model applications (Sun et al 1998). Nonetheless, 

zonation remains the preferred approach amongst practitioners and for large (regional or basin-scale) 

groundwater studies (e.g., Best and Lowry 2014). 

Previous Stochastic Approaches. Others have explored stochastic approaches that utilize randomly varying 

fields described by probabilistic distributions to incorporate the effects of small-scale heterogeneity during 

inverse modeling. The properties of the hydraulic conductivity (K) values are estimated from prior estimates 

of K using geostatistics and/or available head or concentration measurements.  Stochastic approaches 

recognize the impossibility of fully and precisely describing the spatial characterization of hydraulic 

parameters and enables the quantification of uncertainty that is not available in a deterministic approach. 

However, contrary to deterministic methods, the stochastic approach has had relatively limited application 

in large scale problems dealing with site-specific geologic frameworks, sources and sinks, and poorly 

understood boundary conditions (Neuman 2004; Renard 2007). Instead, most studies focus on general 
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insights and small-scale problems and applications (see, e.g., Li and McLaughlin 1991; Li et al. 2004; 

Alcolea et al. 2007). 

Integrated Stochastic-Deterministic Approach. The initial approach was to utilize a deterministic 

framework for both the bedrock and glacial aquifers, given the relatively limited application of stochastic 

approaches for real-world, large scale sites.  Because geophysical data and direct field measurements of K 

(e.g., from aquifer pump tests or slug tests) were lacking and collecting new data was not possible given 

the resources available for this study, significant time was spent studying water well boreholes and maps 

of large-scale glacial land systems (see Figure 3.2a) in an attempt to delineate zones consistent with 

geological understanding and raw borehole data.  Yet, during model testing it became clear that this was a 

futile effort:  the addition of a new zone or layer might improve the model locally, but other regions would 

then perform worse than before the zone/layer was added (often in ways not clear). For these reasons, the 

deterministic, layer-based approach was reserved for the bedrock aquifer, while the glacial aquifer geologic 

conceptualization utilized a conditional stochastic approach, transition probability (TP) geostatistics, for 

mapping heterogeneity and calibrating the flow model.  After generating a continuous, stochastic ensemble 

representation of small-scale heterogeneity across the entire glacial aquifer, we delineated separate ‘TP 

zones’ for a few different areas defined by distinct geomorphologies.  Each zone has its own set of hydraulic 

properties for different aquifer materials types (which are later calibrated), but retains the spatial structure 

determined from the aquifer-wide geostatistical analysis.  In this way, a relatively few number of parameters 

describing the complex, non-stationary geologic structure needed to be estimated during model calibration.  

More details of geologic conceptualization are provided in the Stochastic-Deterministic Representation of 

Subsurface Geology subsection below. 

 Conceptualization of Long-term, Distributed Stress Dynamics 

A Growing, Extensive Well Network. Figure 3.3 presents the spatiotemporal evolution of water wells within 

the study domain extracted from Wellogic, a statewide database with information from over 500,000 water 

wells, including private domestic wells, public supply wells, and wells used for agriculture and industry 
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(MDEQ 2014). The raw well dataset was filtered and geo-coded, and latitude and longitude and 

construction date information were extracted for wells within the study domain to generate Figure 3.3. 

Roughly 5% of the wells installed over the past 50 years are high-capacity wells, while the remaining are 

small-capacity, private-use wells.  Note the significant increase in the number of wells from 2000 to 2015, 

which coincides with the significant population increase during the same time (US Census Bureau 2017). 

The absence of wells in the east-central portion of the study domain is where Grand Rapids is located, 

which uses water from Lake Michigan to meet its water demand. 

 

Figure 3.3: Evolution of water wells within the study domain.  Data were extracted from Wellogic 

(MDEQ 2014). 

Limitations of Space-Time Aquifer Stress Data. Groundwater pumping is a spatially-distributed process 

(Ruud et al. 2004), but may also have significant temporal variations (e.g., seasonal irrigation in northern 

latitude U.S. states or the growth of well networks across decades) that need to be quantified during model 
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development.  In some of the most intensely used aquifer systems (e.g. the Ogallala Aquifer  of the central 

United States), long-term pumping meter data from large-capacity wells are available, largely from the 

USGS water use website (USGS 2016), but also from long-standing state or provincial public databases 

developed for the purposes of permitting and water use regulation (see, e.g. Ontario’ Permit to Take Water 

program [Kreutzwiser et al. 2004]) .  However, the State of Michigan has historically lacked regulation 

requiring reporting of large-capacity commercial/industrial/agricultural wells; as a result, little historical 

data exists. During the time of model development, the only years of data made available from state 

agencies (Michigan Department of Environmental Quality – MDEQ and Department of Rural and 

Agricultural Development – MDARD) were 2012 and 2013. Clearly this temporal coverage was 

insufficient for a study of the past 50 years of groundwater conditions.  We considered “extrapolating” the 

reported pumping rates backward in time, but it was not clear when to ‘turn on’ different wells as the 

datasets lacked information related to time of operation (e.g., well construction date).  These datasets also 

lack well depth information. Because of the multi-layer, strongly 3D nature aquifer system, it was critical 

to know the depth of the well screen for accurately simulating groundwater conditions. Additionally, 

countywide aggregated groundwater use data are available from USGS for earlier years (e.g., 1985, 1990, 

etc.), but lack the temporal and (especially the) spatial resolution needed to accurately characterize 

groundwater dynamics relevant to the scale of this study. Thus, traditional pumping data with sufficient 

coverage and resolution were not available.  

Also problematic is the treatment of domestic pumping in the aquifer system. Although this pumping uses 

relatively small amounts of groundwater and the drawdown cone around each well is commonly buffered 

by nearby surface water (Feinstein et al. 2016), ignoring domestic pumping in areas around high-density 

residential communities may lead to simulation errors. This is especially the case when simulating across 

periods of significant population growth and a corresponding increased dependence on groundwater 

pumping to meet new water demands – which was needed for this study.   However, domestic pumping is 

often omitted, largely because simulating domestic well withdrawals requires many detailed data that are 
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typically not available, and even if such data were available, including (the potentially very large number 

of) domestic wells in models requires time and effort for pre-processing.   

Sector-Based Water Use Parametrization.  Given the lack of actual pumping data, an alternative water use 

parameterization scheme was developed – one that capitalized on the wealth of spatiotemporal information 

embedded in statewide water well datasets. Knowledge of the well type (domestic use, public supply, etc.) 

location, screen depth interval, and construction data – which are commonly available in such datasets – 

allows populating the groundwater model with extraction wells at the correct time and 3D location and 

assigning the pumping rate based on the well type.  All wells are classified as part of a distinct water use 

sector (e.g., domestic, public supply, etc.), and pumping rates of different well types are adjusted during 

calibration and constrained by sector-specific water use data collected locally, as well as countywide 

estimates from USGS.  Of course, it is possible that water use for a given sector will change across years 

or decades. Moreover, different wells within a given water use sector operate at their unique pumping rates 

and thus, the approach presented here is a simplification of the actual water use dynamics.  However, we 

assumed that observed long-term trends (i.e., groundwater level declines) are driven by the extensive 

growth of wells across the entire system (see Figure 3.3) rather than year-by-year increases in pumping 

rates of existing/historical wells, and that seasonal or year-to-year variations (or variations within a water 

sector) are smaller than (and superimposed on) the long-term, overall groundwater level dynamics. As 

shown later, the calibration results support that this is a valid assumption (see Results and Discussion 

below). More details on model implementation are provided in the Water Use Model subsection below. 

 Characterization of System Dynamics 

Limitations of Space-Time Aquifer Response Data.  Ideally, numerous monitoring wells distributed 

relatively evenly throughout the aquifer would be used to collect time-series of groundwater levels for flow 

model calibration. Indeed, in many long-term studies of aquifer systems, e.g., regional investigations by the 

U.S. Geological Survey (USGS) (see Taylor and Alley 2001), monitoring well networks are established 

and operated for several/many years so that long-term groundwater level data are available for model 
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calibration (among other uses).  However, for many areas with a growing (or emerging) dependence on 

groundwater, monitoring wells are not available (or do not span the appropriate times and/or locations). In 

addition, many groundwater management units face budget constraints and depend on modeling and 

analysis to be completed relatively quickly (i.e., within a few years), making it infeasible to establish a new 

monitoring network for the purposes of the groundwater management. 

Alternative Source for Long-Term, Spatially-Distributed Head Data. It is for the above-mentioned reasons 

that thousands of Static Water Level (SWL) measurements – made at single points in time but distributed 

throughout the aquifer system – were used to identify long-term changes in water levels and calibrate the 

groundwater model. Static Water Level(s) are water levels measured in wells at the time of installation 

(prior to pumping) and almost universally available in water well records such as those contained in 

Wellogic. By aggregating many SWLs taken at different times within a relatively small area (e.g., for an 

entire township), it was possible to detect systematic changes in groundwater.  This is because in many 

cases decreases in groundwater levels that have occurred over many years are larger than the SWL 

variability caused by spatial aggregation of observation data and noise in the measurements themselves 

(more details in the Model Calibration subsection below). Traditionally, detecting such groundwater 

dynamics would require a few monitoring wells at key locations, which would collect precise data. In the 

absence of such data, the proposed approach was the best available option. 

3.4 Detailed Methodology and Model Development 

A 3D unsteady groundwater flow model was developed for the last five decades (1966-2015), which 

represents the period over which a vast majority of the water wells were installed for groundwater use.  The 

workflow integrating the datasets used for model inputs and calibration and the models needed to develop 

the numerical flow model is shown in Figure 3.4. Well information from Wellogic and local water well 

records compiled by the Ottawa County (Ottawa County, Michigan 2014) were used to 1) develop a water 

use model that provided yearly water use configurations, and 2) calibrate the groundwater model using 

Static Water Levels (SWLs) measured at the time of well installation.  Lithologic information from 
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Wellogic borehole records was used to develop a Transition Probability (TP) geostatistical model to 

characterize the glacial aquifer heterogeneity.   Spatially-explicit annual recharge distributions were 

simulated using PRISM Climate Group precipitation and temperature data and land surface data from USGS 

and the United State Department of Agriculture (USDA), e.g., soil type, root zone depth, etc. The number 

of cells and grid size for each model is shown in Table 3.1. Interactive GroundWater (IGW), a modeling 

software introduced by Li and Liu (2006) but being periodically updated (see, e.g., Li et al 2006; Liao et 

al. 2015a;b), was used for simulating the saturated groundwater flow. Each of the components shown in 

Figure 3.4 are discussed in further detail in the following subsections. 

 

Figure 3.4: Workflow diagram of the models and data used for model input and calibration. 
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Table 3.1: Number of cells and grid size of the geologic TP model, recharge (ε) model, and groundwater 

flow model. 

Model NX NY NZ 
DX 

(m) 

TP model 136 196 118 500 

ε model 210 302 -- 300 

Flow model 210 302 7 300 

 

 Stochastic-Deterministic Representation of Subsurface Geology 

Zone-based Geostatistical Approach for the Glacial Aquifer. The Transition Probability Geo-statistical 

Software (T-PROGS) was used to apply the TP approach (Carle, 1999) for modeling the glacial aquifer 

heterogeneity. Transition Probability methods have been used in several studies attempting to model spatial 

distributions of aquifer heterogeneity (see, e.g., Weissmann and Fogg 1999; He et al. 2014), and have 

recently been integrated into flow and transport models of natural aquifer systems (see e.g., Traum et al. 

2014; Sampath et al 2015; 2016). However, most previous flow modeling studies focused on providing 

general insights and understanding of flow systems and were not necessarily concerned with quantifying 

system dynamics for addressing long-term sustainability. 

Roughly 19,000 Wellogic borehole records were available for TP analysis.  First, lithologic descriptions 

for given depth intervals were classified into four different geologic material types following the approach 

described by Sampath et al (2015; 2016). ‘Sand’, ‘Gravel’, ‘Coarse stones’ or similar descriptions were 

classified as aquifer material (AQ); ‘Silt’, ‘Clay’, etc. were classified as confining material (CM); and 

descriptions that were a mix of AQ and CM materials, were classified as marginal aquifer (MAQ) or 

partially confining material (PCM), respectively.  The boreholes with re-classified stratums were mapped 

(see step (1) of Figure 3.5), and each of the re-classified boreholes were analyzed to create a transition 

probability matrix of auto- and cross- correlations between the material types as a function of vertical lag 

spacing. Graphical depictions of the spatial correlations versus vertical lag distance were generated and 

geostatistical models were fit to the data using Markov chain analysis (see Carle and Fogg 1996; 1997 for 

more details on Transition Probability geostatistics). The vertical (‘Z-direction’) analysis was used to create 
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a 3D realization of glacial aquifer material distribution that extends from the 10m DEM top boundary to 

the top of the bedrock surface (500m resolution) interpolated from lithologic records in Wellogic.  The was 

done by assuming a ratio of horizontal extent of a material to its vertical extent – or an anisotropy ratio – 

and applying the geostatistical models derived from Z-direction Markov chain analysis.  The anisotropy 

ratios for AQ, MAQ, PCM and CM were chosen as 10, 10, 10, and 8.4, respectively, which are similar to 

the values chosen by Sampath et al (2016) when implementing the Transition Probability approach for a 

geologically similar region in south-central Lower Michigan. The geologic model cells had a vertical length 

of 4m and a horizontal length of 500m (see Table 1), and each cell was assigned as one of the four material 

types for each model realization.  One thousand realizations were executed to produce an ensemble mean 

model by assigning the most frequently occurring material at each grid cell (see step (2) of Figure 3.5).    

Provided in Figure 3.6 are cross-section views of the glacial aquifer material model and borehole lithologies 

along segments A-A’, B-B’ and C-C’ from Figure 3.2. Note that the results from the TP simulation are 

generally consistent with the observed lithologies at the borehole locations.  Also note that the TP results 

can capture the large-scale structures discussed above, namely, the thick aquifer material layer in the 

western portion of the study area, the thick confining layer underling the thin aquifer materials in the central 

portion; and the chaotic mixture of different aquifer materials in the western portion.   

Using the large-scale glacial land system delineations presented in Figure 3.2 as a guide, three distinct zones 

were created to account for different geomorphologies that may alter the hydraulic properties for similar 

material types (see step (3) in Figure 3.5). In other words, this zonation allows for AQ to take on three 

different K values that are all orders of magnitude greater than those used for CM, but different enough to 

account for differences in large-scale depositional history across different areas of the model domain.  The 

three zones created were: 1) the “River zone” (with materials AQ1, MAQ1, PCM1, CM1) –  a narrow 

region following Grand River and its largest local tributaries with a relatively high hydraulic conductivity 

and a connection to the bedrock (see Appendix A at the end of this chapter); 2) the “Ice-marginal till zones” 

(with materials AQ2, MAQ2, PCM2, CM2) – areas of relatively high elevation, strong heterogeneity 

(especially in the vertical direction) and composed primarily of ice-marginal till zones; and 3) the “base 
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zone” (with materials AQ3, MAQ3, PCM3, CM3) – all remaining areas of the model domain with a 

relatively more ‘restrained’ depositional history and more continuity of geologic materials (e.g., a 

continuous clay layer across the west-central portion of the study domain). 

 

 

Figure 3.5: Workflow for developing a three-dimensional hydraulic conductivity (K) field using the zone-

based transition probability approach. The K-field shown here represents ln(K) variations. 
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In the flow model, horizontal and vertical conductivities were used to calculate parallel flow (along a layer) 

and series flow (across a layer) flow according to Freeze and Cherry (1979). To incorporate the TP 

simulation results into the flow model, a horizontal conductivity (Kh) and horizontal to vertical anisotropy 

ratio (Kh/Kz, respectively) value for each material type was assigned (hereafter referred to as 𝐾ℎ
𝑇𝑃 and 

𝐾ℎ
𝑇𝑃/𝐾𝑧

𝑇𝑃). Horizonal to vertical anisotropy ratios were interpreted to represent sub-cell 

layering/interbedding of different material types within a cell dominated by one material type. For all 

material types, and 𝐾ℎ
𝑇𝑃 and 𝐾ℎ

𝑇𝑃/𝐾𝑧
𝑇𝑃 were assigned reasonable estimates based on typical aquifer and 

confining unit properties (Freeze and Cherry, 1979), which were then fine-tuned during calibration.  These 

values were used to calculate the horizontal hydraulic conductivity 𝐾ℎ
𝑀𝑜𝑑𝑒𝑙 and anisotropy ratio 

𝐾ℎ
𝑀𝑜𝑑𝑒𝑙/𝐾𝑧

𝑀𝑜𝑑𝑒𝑙 in each model grid cell.  For example, if one groundwater model cell contained two or 

more geologic model cells in the horizontal direction, the resulting  𝐾ℎ
𝑀𝑜𝑑𝑒𝑙 of the groundwater cell was the 

arithmetic average of the 𝐾ℎ
𝑇𝑃 values from the geologic model cells.  If the groundwater cell contained two 

or more geologic model cells in the vertical direction, a harmonic average was utilized to calculate  𝐾ℎ
𝑀𝑜𝑑𝑒𝑙 

for the groundwater cell.  The result is a complex 3D hydraulic conductivity field to be used in groundwater 

flow modeling, which is exemplified in step (4) of Figure 3.5. A single value of specific yield was applied 

to all glacial aquifer materials, the final value of which was determined during calibration.  
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Figure 3.6: Cross-sections of the 3D glacial aquifer material model, overlaid with borehole lithologies from 

water wells. The approximate locations and horizontal/vertical extents of cross-sections A-A’, B-B’, and 

C-C’ are shown in Figure 3.2. 

Deterministic Representation of the Bedrock Aquifer. As shown in Figure 3.7, the Marshall Formation was 

represented using two layers:  a shallow ‘fractured’ (weathered) portion extending 18.3 m (60 ft.) into the 

bedrock aquifer, and a deeper ‘unfractured’ portion that varied in thickness according to the geometry of 

the confining layers above and below (detailed rationale is presented in Appendix B of this chapter). The 

Marshall dips toward NE direction as the Michigan formation becomes the top interface to the Marshall in 

place of the glacial sediments, creating confining conditions.  Directly beneath the Marshall is the 

Coldwater Shale, which also acts as a confining unit and was therefore assumed a ‘no-flow’ lower boundary 

condition for the model domain. All zones in both bedrock layers were assigned an effective hydraulic 

conductivity, which was later calibrated. The sloping interface between the different bedrock formations 

was conceptually simplified by having ‘transition zones’ (e.g. Kave,1) to represent portions of a bedrock layer 

where Marshall or Michigan Formation are less than 60 ft. (~ 18.3 m) thick and include a different bedrock 

unit (Coldwater Shale or Marshall Formation, respectively) within the layer-based zone. A single storage 

coefficient was assigned to each layer (fractured and unfractured), which was also later calibrated.  
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Figure 3.7: Conceptualization of the bedrock aquifer: (a) conceptual cross-section indicating the vertical 

extent of the different zones within the 1st (top-most) and 2nd bedrock layer; and (b) areal extent of the 

zones shown in (a) for the 1st and 2nd bedrock layer. 

 Water Use Model 

Two sources of data were used for developing the water use model: Wellogic and the Ottawa County 

Department of Public Health (Environmental Health) – which maintains a system that organizes, on a 

property-by-property basis, borehole records and well logs from city or township government agencies (or 

even directly from the well drillers themselves).  The choice to supplement the statewide dataset with local 

records was motivated by the fact that many wells installed during the 1990s have mostly not been added 

to Wellogic database. Approximately 2600 well data points were extracted from the local water well records 

to ‘fill in the gap’, including information of latitude and longitude, well depth, and date of well installation 

for the water use model, as well as SWLs for model calibration. 

All compiled wells were classified as ‘domestic’, ‘irrigation’, ‘public supply’, or ‘industrial/commercial’ 

(based on information provided in driller logs), and the pumping rates of different well types were adjusted 

during calibration. In other words, all domestic wells pumped at the same rate, all irrigation wells pumped 
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at the same rate, etc.  Because this study is concerned with long-term (multi-decadal) groundwater flow 

dynamics, seasonal fluctuations were ignored and  wells were assumed to pump at a continuous rate 

throughout the remainder of the simulation once they were installed (note that this was problematic for a 

few relatively small areas where municipal surface water supply became available in recent years – see 

Appendix C at the end of this chapter for more details on the treatment applied here). As discussed above, 

the primary goal of the modeling exercise was to reproduce long-term trends over which seasonal or year-

to-year variations in pumping rates of individual wells are superimposed.  

Importantly, the approach used here was able to keep the number of parameters related to groundwater 

pumping relatively low, but the complex spatiotemporal structure of the well network (i.e., when and where 

the wells of a certain type should be operating) was well represented.   This is somewhat similar to the 

zone-based TP approach used for parametrizing the glacial aquifer, where the spatial complexity of the 

hydraulic conductivity distribution was captured (i.e., the hydraulic conductivity varied in each 

groundwater model cell), by using a fairly small number of parameters.  The results of model calibration 

indicate that capturing the spatiotemporal structure of many wells and the relative pumping rates between 

sectors is more important than prescribing the exact rates of all the different types of wells when attempting 

to simulate dominant, long-term trends in groundwater level declines (see Calibration Results subsection 

below).  

 Recharge Model 

Estimating recharge to the aquifer system can be done using process-based simulations which integrate 

groundwater and surface water across the unsaturated zone (see, e.g., Shen and Phanikumar, 2010 or 

Davison et al. 2015) or empirical approaches (see Risser et al. 2008 or Reitz et al. 2017). Process-based 

models – although capable of producing detailed estimates of recharge in space and time and useful for 

probing impacts of potential changes in climate or abstracting of water – require time-steps on the order of 

minutes (or even seconds) to resolve the numerous surface processes impacting recharge. Such time-steps 

are impractical for the purposes of this long-term, large-scale groundwater study. On the other hand, most 
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empirical approaches provide long-term, average annual groundwater recharge estimates that lack temporal 

resolution. In this study, yearly recharge rates (as input to the flow model) was  simulated following the 

procedure used in the USGS model INFIL 3.0 – a grid-based, distributed-parameter, semi-empirical/semi-

process-based watershed model used to estimate net infiltration below the root zone (USGS, 2008).  

Drainage basin characteristics and daily climate records of precipitation and air temperature are used to 

estimate the daily near-surface water balance, including precipitation as either rain or snow; snowfall 

accumulation, sublimation, and snowmelt; infiltration into the root zone; evapotranspiration from the root 

zone; drainage and water-content redistribution within the root-zone profile; surface-water runoff from/to 

adjacent grid cells; and net infiltration across the bottom of the root zone.   

Daily precipitation and minimum and maximum air temperature data were obtained from the PRISM 

Climate Group, which offers nationwide coverage at 4km spatial resolution for all years since 1981 (PRISM 

2004).     Surface topography was modeled using 10m DEM from USGS NED (2006), and land use and 

land cover (LULC) was represented using a modified version of the 16-class land cover classification 

scheme from the USGS National Land Cover 2006 Dataset (Fry et al. 2011).  The modification was a 

greatly reduced hydraulic conductivity for ‘Developed’ LULC types due to the large extent of impervious 

surfaces present within such areas of the model domain (e.g., Grand Rapids in the eastern subregion).  Soil 

type distribution and root zone depth across the model domain was obtained from the United States 

Department of Agriculture (USDA) Soil Survey Geographic (SSURGO) Database (SSS NRCS 2016). Soil 

type distribution was represented by applying the 12 classifications of USDA Soil Textural Triangle with 

percentages of sand, silt and clay obtained from the SSURGO Database. 

Daily recharge to the aquifer system was computed from 1 Jan. 1981 to Dec. 31 2015. Annual averages 

were calculated at each grid cell location and used as input into the groundwater flow model at each time-

step.  Recharge from 1981 was applied for the 1966-1980 period of groundwater simulation, because the 

4km PRISM climate data did not extend back beyond 1981.  Figure 3.8 presents annual recharge 

distributions for selected time-steps. Although the magnitude of recharge at most of the grid cells varies 

from year to year (largely reflecting annual changes in precipitation and air temperature), the large-scale 
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patterns that are primarily controlled by the topography and surface lithology are consistent across the 

simulation period.  In other words, the areas of relatively high and low recharge do not change significantly 

across the period of investigation.   

 

 

Figure 3.8: Simulated recharge distributions for select time-steps. 

 Groundwater Flow Model 

Governing Flow Equations & Model Set-up. The groundwater flow model consisted of three ‘conceptual 

layers’ – the glacial drift aquifer and the fractured and unfractured bedrock aquifers. These were discretized 

using seven computational layers for solving the unsteady groundwater flow equation: 

𝑆𝑠
𝜕ℎ

𝜕𝑡
= ∇(𝐾 ∙ ∇𝐻) + 𝑞                                                                  (4.1) 

where Ss is the specific storage coefficient, h is the hydraulic head [L], t is time [T], K is the saturated 

hydraulic conductivity tensor [LT-1], ∇ is the gradient mathematical operator, and q is the net source 
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(positive) or sink (negative) term, including pumping, recharge, and surface seepage [LT-1] (see details 

below).  The glacial layer, which needs to resolve the strong vertical structure of the aquifer material 

distribution derived from the TP geologic model, was subdivided into five computational layers of equal 

thickness. The fractured and unfractured bedrock conceptual layers were not subdivided, and thus flow was 

assumed to be predominantly horizontal within these units.  Interactive GroundWater uses the finite 

difference approximation of the governing partial differential equation to solve confined and unconfined 

flow conditions (see Li and Liu 2006; Li et al 2006; Liao et al. 2015a;b for details on algorithms/schemes).  

Model Boundary Conditions. The northern, eastern, and southern lateral boundaries (see Figure 3.1) were 

constructed using 12-digit (small) watershed boundaries from USGS NHD (2010), and were assigned as 

no-flow boundaries conditions for all layers under the assumption that significant groundwater does not 

flow across local topographic divides.  Of course, this may not reflect actual groundwater conditions, and 

for this reason calibration of the model to SWL temporal trends was done in areas far enough from the no 

flow boundaries to limit its influence. The western lateral boundary for all layers was a constant head that 

represented the long-term average lake level of 176.6m (579.3ft) obtained from Great Lakes Water Level 

Dashboard (Gronewold, et al. 2013).   

DEM-Based Seepage Modeling.  The land surface, modeled using the 10m DEM from USGS NED (2006), 

was treated as a one-way head dependent boundary condition (seepage) that allows groundwater to 

discharge to the surface where the groundwater level intercepts/exceeds the land surface:  

𝑞𝑠𝑒𝑒𝑝𝑎𝑔𝑒 = {
𝐿(ℎ − 𝑧)      𝑖𝑓 ℎ > 𝑧

          0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                       (4.2)  

where qseepage [LT-1] is the flux per unit area leaving the aquifer through the land surface, h [L] is the head 

in the aquifer cell, and L [T-1] is the leakance (hydraulic conductivity per unit thickness) of the land surface. 

Note that this technique ‘automatically’ accounts for the discharge of groundwater to surface water bodies 

such as streams, lakes, and wetlands, including the high-discharge Grand River. However, this process 

could be modeled in alternative ways, e.g., as prescribed head boundary conditions, two-way head 

dependent boundary conditions, or coupled surface water-groundwater modeling.  The approach used here 
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was deemed most suitable for the purposes of the studying long-term groundwater sustainability because: 

1) the other mentioned approaches require significantly more data as input and/or verification (e.g., stream 

or lake stages collected in space and time), without which significant errors in the groundwater balance 

may occur, especially as pumping lowers groundwater head in the underlying aquifer system; 2)  the entire 

County of Ottawa  is known to lie within a major groundwater discharge region (see Curtis et al. 2018), and 

therefore it is reasonable to assume that a vast majority of surface water bodies are gaining as opposed to 

losing;;  and 3) the relatively high-resolution (10m) DEM from USGS NED effectively captures the long-

term average surface water stages used as the z term in eq. (4.2).  

The spatially-constant leakance term (1 day-1) was calibrated and applied for the entire modeling domain, 

e.g., if the leakance is too low, the flooded area will be large, and vice versa. Surface seepage maps at 

different time-steps were compared to the surface water network features obtained from USGS NHD (2010) 

to ensure that this approach effectively captured the spatial patterns of groundwater discharge to lakes, 

streams and wetlands in the model.  

Curvilinear Vertical Discretization Scheme & Time-Marching. The initial groundwater head distribution 

was generated by simulating steady-state groundwater flow for 1966 conditions, which incorporated all 

Wellogic wells completed prior to 1967 as pumping withdrawals.  An iterative, curvilinear vertical 

discretization scheme was proposed to avoid the issue of “dry” cells when sub-dividing one layer into 

multiple sub-layers: first the glacial aquifer was discretized using one vertical layer to solve the head 

distribution, which was then used in the next iteration to subdivide the saturated thickness of the aquifer 

into multiple computational layers, say 2 or 3, which are solved. The process was repeated until a steady-

state head distribution was solved for 5 glacial layers and 2 bedrock layers. The resulting layer configuration 

was used for the rest of the simulation computations. 

With the initial head distribution obtained from the 1966 steady-state solution, the simulation was advanced 

in time by solving Eq. (4.1) with 2-year time-steps.  Annual recharge distributions were included in the 

source/sink term at each time step.  Withdrawals from wells constructed during the period over which the 

time-step extends contribute to the source/sink term of the groundwater model cells for that time-step.  Once 
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added to the model, wells pumped ad infinitum at the calibrated pumping rate determined by its well type 

(see Water Use Model subsection and Appendix C at the end of this chapter). The approach to ignore sub-

annual variabilities and model every 2-years reasonably is based on the assumptions described in the 

Conceptualization of Long-term Distributed Stress Dynamics subsection. (Note that a time-step of 1-year 

was tested and compared the results to those generated using a 2-year time-step. Resolving yearly details 

made no impact on being able to predict the observed drawdown ‘cloud’.) 

Numerical Treatment of Well Discharge. It was possible that some of the well screen intervals spanned 

across multiple computational layers.  Thus, it was necessary to apply a scheme for properly allocating 

withdrawals from a single well, Q, to different computational layers, Qi (i.e., Q = ΣQi). In this study, the 

approach was to use ‘screen transmissivity’ as a weighting factor to divide one physical well into multiple 

computational wells depending on number of computational layers included within the screen interval:  

𝑄𝑖 =
𝑇𝑖

∑ 𝑇𝑖
𝑄                                                                              (4.3) 

where Ti is the transmissivity of the ith layer through which the well’s screen goes (note that screen intervals 

were available in well logs used for this study). The hydraulic conductivity (Ki) and interval length thickness 

(Bi) at the cell location of each computational layer was used to compute the transmissivity for each layer 

(Ti = BiKi ). Additionally, well withdrawals often needed to be mapped to multiple model nodes because of 

the proximity of multiple nodes to one physical well in the submodel.  A similar scheme was also applied 

in the horizontal direction as was applied in the vertical direction, i.e., withdrawals from a single well were 

allocated to the nearest four nodes, where weightings were assigned based on the distance to the node and 

the hydraulic conductivity of the model cell.   

 Model Calibration 

The key objective of model calibration was to capture the long-term water level trends (for different 

locations) in the aquifer system using a relatively small number of effective parameters. Because a network 

of established monitoring wells was lacking (i.e., there were no point-specific time-series data to use), 

thousands of SWL measurements from water well records in Wellogic and the local well files records 
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compiled by the Ottawa County (Ottawa County, Michigan 2014) were used characterize the temporal 

dynamics across the aquifer system. More specifically, a comparison of SWL trends across time with model 

trends was made on a township-by-township basis to evaluate the model’s ability to simulate long-term 

groundwater dynamics in different areas of the study area.  Manual calibration was used to determine the 

final parameter values. In other words, trial-and-error was used to fit the ‘cloud’ of data about the line of 

best agreement in the case of the scatterplot comparing simulated head to observed SWLs or similarly, to 

fit the simulated model results through the center of the SWL data cloud for the SWL trend comparisons. 

Of course, SWL spatial variations within a township will create significant variability in SWL observations 

for a given time, and other sources of inaccuracy in SWL measurements contribute to variability – such as 

approximate wells location derived from geocoding or indirect information reported by the driller, 

measurement uncertainty introduced by inconsistencies from driller to driller (see Curtis et al. 2018 for 

more details), and inability of the model to resolve sub-grid or sub-time step (e.g., sub-annual) variabilities 

that are reflected in the observation data – albeit to a lesser degree.  However, in some cases the decreases 

in groundwater levels that have occurred over the past 50 years are larger than the SWL variability caused 

by aggregation of observation data and noise in the measurements themselves (especially for the central 

portion of the model domain).   

To summarize, the following parameters were calibrated to improve model performance: hydraulic 

conductivities of each glacial aquifer material set (‘AQn’, ‘MAQn’, ‘PCMn’, ‘CMn’) for three zones, 

including the horizontal conductivity (Kh) and the ratio of horizontal to vertical conductivity (Kh/Kz); the 

specific yield of the glacial aquifer materials; hydraulic conductivities of different bedrock zones and the 

specific storage for the fractured and unfractured layers; and sector-specific pumping rates for domestic, 

public supply, irrigation, industrial/commercial wells used in the water use model as inputs into the 

groundwater flow model. Note that this approach required a relatively low number of calibration 

parameters, but still was able to capture the complex spatiotemporal structure of the well network as well 

as the 3D spatial structure of the hydraulic conductivity distribution through the use of effective – or 

‘system’ – parameters  (e.g., sector-specific pumping rates, hydraulic conductivities of the aquifer material 
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sets). The results from model calibration indicate that such system parameters are effective for 

characterizing generalized flow systems dynamics if the complex geologic and stress configurations are 

captured with reasonable completeness.  

3.5 Ch. 3 Results and Discussion 

 Calibration Results 

Comparison of Observations and Simulated Outputs. The comparisons of all observed SWLs with 

simulated hydraulic head from the calibrated model is shown in Figure 3.9. SWL observations from 19,387 

glacial wells and 1965 bedrock wells were used to calibrate the model.  The solid line in each plot represents 

the 45◦ line of ‘perfect agreement’ (all points on this line have the same simulated and observed SWLs), 

and the dashed lines represent confidence intervals of one standard deviation.   The results show that, for 

both the glacial and bedrock layers, the model performed reasonably well across both space and time, as 

indicated by strong correlation coefficients (R2) of 0.969 and 0.937 and Nash-Sutcliffe model efficiency 

coefficients of 0.94 and 0.88 for the glacial and bedrock layers, respectively. And although there is a 

relatively large spread in the “data cloud”, the spread is centered about the line of perfect agreement (note 

the small mean error values of 0.06m, and 0.04m). This demonstrates that the model was able to capture 

the dominant spatial and temporal trends of the large groundwater system.  The relatively large spread in 

the data (as indicated by the large standard deviation values of and 5.59m and 5.67m for the glacial and 

bedrock layers, respectively) primarily reflects the significant noise embedded in the SWL observations 

(Curtis et al., 2018).  To a lesser degree, the RMSE values are impacted the inability of the model to resolve 

sub-grid or sub-time step (e.g., sub-annual) variabilities that are reflected in the observation data. Note that 

for both aquifers the RMSE values due to all sources of error are significantly smaller than the overall range 

of head variability in the aquifer. 
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Figure 3.9: Comparison of simulated groundwater head with observation (SWL): (a) all glacial drift 

wells; and (b) all bedrock wells. 

To calibrate the model to long-term changes in water levels, subsets of the SWL dataset were created by 

aggregating SWLs within each township of Ottawa County (for both the glacial and bedrock aquifer), which 

were then plotted against time. A few illustrative examples of areas with temporal trends stronger than the 

SWL spread is shown in Figure 3.10.  Also shown in the simulated head for each measurement time and 

location.  The model is able to reproduce the general downward trend observed in the SWL subsets from 

the bedrock aquifer in the central part of the model domain, although the spread in the simulated dataset is 

less because the values are exact, i.e., there are no sources of observation error, although the effects of 

spatial aggregation is apparent. For many of these charts created for the glacial aquifer (and for some for 

the bedrock aquifer), a temporal trend could not be detected, either because the noise was larger than the 

trend, or because a significant trend did not exist. Nonetheless, this township-by-township temporal analysis 

provided an additional constraint on the calibration that could not be discerned through inspection of  Figure 

3.9 alone.  
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Figure 3.10: Static Water Level (SWL) trend comparison (observations vs. simulated head) for the 

bedrock aquifer of four central townships in Ottawa County, MI. 

Calibrated Water Use.  Table 3.2 presents the calibrated pumping rates of the different well types as well 

as average observed pumping rates as a comparison. The observed pumping rate for irrigation wells was 

derived from 2012-2013 self-reported agricultural withdrawals compiled by MDARD; the observed rate 

for public and industrial/commercial wells was calculated using 2012-2013 data made available by MDEQ; 

and the observed rate for domestic wells was based on an analysis of water meter data provided by Ottawa 

County Public Utilities Department.  Calibrated and observed pumping rates are somewhat comparable, 

with a ratio of calibrated pumping rate to observed pumping rate of just over one for public supply, irrigation 

and industrial/commercial water use sector (1.03, 1.61, and 1.68, respectively).  The overestimation may 

be because users are underreporting their water use, incentivized by strict laws recently passed regulating 

large-capacity groundwater withdrawals in Michigan, or it may be because some wells are missing in well 

dataset used to create the water use model and thus, a higher simulated pumping rate was needed to reach 

an equivalent total water use that could reproduce the observed drawdown exemplified in  Figure 3.10 (this 

latter point is addressed in further detail in Appendix D at the end of this chapter). 
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Table 3.2: Calibrated and mean observed pumping rates for domestic, public supply, irrigation and 

industrial/commercial water use sectors. 

Well Type 

Calibrated 

(GPM) 

Observed 

(GPM) 

Domestic 0.65 0.19 

Public 

Supply 8.00 7.76 

Irrigation 13.50 8.36 

Industrial/ 

commercial 13.50 8.03 

 

As a final constraint on the calibrated water use parameters, a comparison was made of aggregated 

simulated water use with reported countywide water use in Ottawa County (Figure 3.11).  The solid lines 

represent the different simulated water use curves as well as the total water use (blue). The water use 

attributed to irrigation has significantly increased since 2000, consistent with recent report of expanded 

agricultural activity. Also note the importance of domestic well withdrawal increases (the 2nd largest user 

of groundwater since 2002).  Overall, the total simulated water use is similar to the reported water use in 

recent years (2000-2013).  Given the averaging of pumping rates required because of data limitations, it is 

encouraging that there is some level of agreement between the observations and simulated water use.  

Examples of the final water use distribution for selected time-steps is shown in Figure 3.12. 

 

Figure 3.11: Calibrated water use curves and estimates of aggregated groundwater withdrawals for Ottawa 

County, Michigan from USGS (2005, and 2010) and MDARD/MDEQ (2012 and 2013). The red markers 

represents estimated water use, and the solid lines are simulated water use (IRRI = irrigation; 

HOSHLD=domestic; PUB = public supply; and INDUS = industry/commercial). 
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Figure 3.12: Simulated water use for 1995, 2005 and 2015, using the calibrated pumping rates presented 

in Table 2: (a) drift aquifer; and (b) bedrock aquifer. 

Calibrated Hydraulic Parameters. The calibrated specific yield for all glacial materials was 0.1, and the 

final calibrated hydraulic conductivities for the glacial aquifer are presented in Table 3.3.   The ‘River Zone’ 

(AQ1, MAQ1, etc.) has the largest horizontal conductivities and relatively small 𝐾ℎ
𝑇𝑃/𝐾𝑧

𝑇𝑃, i.e., higher 

vertical hydraulic conductivities, which confirms that the underlying bedrock layer is connected to the 

Grand River. The ‘Ice-marginal till zones (AQ2, MAQ2, etc.) and ‘Base Zone’ (AQ3, MAQ3, etc.) have 

the same Kh and 𝐾ℎ
𝑇𝑃/𝐾𝑧

𝑇𝑃values for aquifer materials (AQ and MAQ), but the confining materials for the 

‘Base Zone’ are less transmissive than those of the ‘Ice-marginal till zones’.  These patterns are consistent 

with the conceptual understanding of the three TP zones used to delineate areas of distinct 

geomorphologies. 

The final horizontal hydraulic conductivity distributions for the five glacial layers is presented in Figure 

3.13.  There is a relatively continuous unit of low 𝐾ℎ
𝑀𝑜𝑑𝑒𝑙  extending across multiple layers in the central 
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portion of the model domain, which has implications for groundwater recharge (or lack thereof) to the 

underlying bedrock. The eastern portion of the modeling domain is highly heterogeneous, while the western 

portion consists primarily of high 𝐾ℎ
𝑀𝑜𝑑𝑒𝑙  material. Note that these large-scale patterns are consistent with 

the understanding of the large-scale geology. Also note that the spatial complexity of the 𝐾ℎ
𝑀𝑜𝑑𝑒𝑙 

distribution was achieved using a fairly small number of parameters.  Moreover, this was done using an 

unbiased geostatistical representation of the aquifer material distribution rather than being done  arbitrarily 

or subjectively, which, as mentioned, was time-consuming  and impractical (if not impossible) to calibrate.  

Table 3.3: Calibrated hydraulic conductivities (𝐾ℎ
𝑇𝑃) of the aquifer material sets, including the ratio of 

horizontal conductivity to vertical conductivity (𝐾ℎ
𝑇𝑃/𝐾𝑧

𝑇𝑃). 

 

 

 

 

 

 

 

Material 

type 

𝐾ℎ
𝑇𝑃 

(ft/d) 

𝐾ℎ
𝑇𝑃

𝐾𝑣
𝑇𝑃 

AQ1 160 4 

MAQ1 10 4 

PCM1 1 500 

CM1 1 500 

AQ2 80 20 

MAQ2 10 20 

PCM2 0.1 300 

CM2 0.1 300 

AQ3 80 20 

MAQ3 10 20 

PCM3 0.05 1500 

CM3 0.05 1500 
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Figure 3.13: Hydraulic conductivity (K_x^Model) distribution in the six computational layers of the 

glacial aquifer. 

The final calibrated horizontal hydraulic conductivities of the bedrock zones are presented in Table 3.4. 

The values are relatively consistent with previous studies. For example, the transmissivity for the Marshall 

Formation in western Lower Michigan was estimated at approximately 2.7x10-3 m2/s (2500 ft2/d) by 

Feinstein et al. (2010), and given that the Marshall Formation is relatively thin (<100 ft.) throughout a large 

portion of the study domain, the estimates of 7 ft/d and 2.5 ft/d for Kmarsh,1 and Kmarsh,2, respectively, appear 

to be realistic.  The values for the confining units (Kcold,1, Kcold,2, KMI) are at least two orders of magnitude 
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less than those of the aquifer units, consistent with the conceptual understanding of the local hydrogeology.  

The calibrated specific storage coefficient for the fractured and unfractured bedrock layers was 9.7x10-5 m-

1 (3x10-5 ft-1) and 9.7x10-6 m-1 (3x10-6
 ft-1), respectively.  

Table 3.4: Calibrated hydraulic conductivities (Kx) of the bedrock zones. 

Zone Kx (ft/d) 

Kmarsh,1 7 

Kcold,1 0.005 

KMI 0.01 

Kave,1 2.5 

Kave,3 5 

Kmarsh,2 2.5 

Kcold,1 0.001 

Kave,2 1.25 

 

The process for calibration used here differed from the traditional approach in that SWL data were available 

everywhere in in the aquifer system (consider that over 21,000 SWL measurements from wells were used 

in the calibration) but required spatial aggregation to detect temporal trends given the inconsistent temporal 

coverage across space (recall that each SWL represented one measurement made at one time). This, along 

with other sources of noise (see above) made it difficult to assess model performance at local scales (i.e., 

scales smaller than that used for spatial aggregation of SWLs). More importantly, although the “cloud” of 

data was fitted about the line of best agreement in the case of the scatterplot comparing simulated head to 

observed SWLs (Figure 3.9) or similarly, to fit the simulated model results through the center of the SWL 

data cloud for the SWL trend comparisons (Figure 3.10) –  the set of final calibrated parameters is not 

unique in the sense that other sets with similar values (i.e., within an order of magnitude or less) could 

probably satisfy the criteria used for manual calibration. However rigorous testing of this is beyond the 

scope of the current study. Thus, we recommend two courses of future action to reduce uncertainty in final 

model parameters using the approaches described here:  
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• systematically test the geologic and water use parameterization schemes proposed here with numerical 

experiments, where the modeler control the quality and type of observation (e.g., regional head 

measurements, time-series monitoring well data, flux measurements along model boundaries, etc.) 

available for calibration - as well as the input data available for the calibrated model – and the complexity 

of the original model. This provides a flexible approach for probing impacts and uncertainties of model 

parameterization because the true model is entirely known (i.e., all components of the model are 

prescribed).  Additionally, model output uncertainties associated with modeling structure (i.e., the 

geologic representation) of the present model may be evaluated a with Monte Carlo approach, in which 

head results are generated for each realization of the TP geostatistical model and estimates of mean head 

and  head variance are calculated from the model output distribution and assessed spatially.  

• Collect high quality data (i.e., data with less noise and time-series information) and perform systematic 

calibration and sensitivity analysis using the model developed for this study. An efficient way to 

approach this would be to focus data collection, modeling and analysis for an important subregion(s), 

using the current model to provide boundary conditions (at different times) that are consistent with the 

overall system dynamics. This would be of interest to local groundwater resource managers and larger 

sustainability investigations (see the Toward Sustainability: Next Steps subsection). The model could 

also be improved by constraining the geological model with additional sources of geophysical 

information (e.g., electric resistivity maps, seismic reflection profiles), geologic information (sediment-

texture analysis, mineralogy, etc. from sedimentological studies), and/or geochemical information (e.g., 

major ion and isotope analyses).  See Bajc et al. (2014), He et al. (2014) and Traum et al. (2014) as 

examples of studies utilizing these types of data for improving geologic models of the subsurface.  

 Groundwater Head Dynamics 

The outputs from the transient groundwater model are the hydraulic head distributions and resulting 

velocity vectors for each computational layer from 1966-2015. Figure 3.14 presents the three-dimensional 

head distribution for the last time-step (2015).  There is strong 3D variability in the head distribution, 
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especially near the local recharge nears of the glacial aquifer and where groundwater is converging to major 

streams and discharge areas. The central subregion with a portion of the head distribution made transparent 

is also shown to illustrate the area of relatively low hydraulic head in the deep (bedrock) aquifer south of 

Grand River.   

 

Figure 3.14: Three-dimensional head distribution for final time-step (2015).  The magnified region is shown 

to highlight the significant depression in the central portion of the model domain due to significant increases 

in pumping. 

Analysis of the simulated bedrock head distribution across time indicates that this ‘cone of depression’ has 

developed over time (see Figure 3.15), especially in the last 15 years.  This part of the study area is where 

dramatic increases in water use have occurred over the same time period (see Figure 3.12), and where the 

relatively continuous, low K unit overlies the bedrock aquifer and effectively restricts recharge from the 

surface (see Figure 3.13).  We interpret that this, coupled with the relatively low Kh of the bedrock aquifer, 

has caused the significant drawdown seen in the SWL dataset and the simulation results.  Clearly, the 
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groundwater sustainability of the region is long-term water resource sustainability of this region is 

threatened because of unchecked increases in groundwater withdrawals being used to support rapid 

population growth and expanded agricultural activities.  

 

Figure 3.15: Simulated groundwater head distribution (bedrock aquifer) for representative time-steps. 

A quantitative estimate of the impact of the long-term changes in the bedrock head distribution was obtained 

by performing bedrock aquifer water balance analyses for each township in Ottawa County over the past 

50 years. Examples of transient bedrock aquifer flux balances for three townships over which most of the 

significant drawdown has occurred is shown in Figure 3.16. The values plotted represent net flux values 

(where positive fluxes represent water added to the township from the specified source and negative fluxes 

represent water removed). Recall that the bedrock aquifer was modeling using two computational layers, 

with the top-most layer representing the top 60 ft. of the fractured bedrock where most wells are screened, 
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hence the presence of bottom boundary fluxes (i.e., water moving vertically to/from the deeper bedrock 

aquifer).  

 

Figure 3.16: Graphical representation of flux dynamics in the three central townships exhibiting significant 

drawdown from 1966-2015. 

For all three townships in Figure 3.16, the net flux out all of the boundaries of analysis was equal to zero 

during pre-development (i.e., inputs and outputs along boundaries were balanced). However, as the amount 

of groundwater being withdrawn from the bedrock has increased, particularly from domestic wells and 

irrigation wells, inputs from surrounding aquifer units have increased to balance the water budget, as 

evidenced by the growing, significant positive fluxes for ‘All Boundaries’. For Olive Twp. and Blendon 

Twp., net increases in flux through lateral boundaries is observed, particularly for Blendon Twp., whose 

lateral fluxes changes from -125 GPM in 1966 to over +125 GPM in 2015. Consequently, the bedrock 
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aquifer in Blendon Twp. has been converted from a local recharge area to a local discharge area.  In Olive 

Twp. most of the increase in net boundary flux appears to have been satisfied with contributions from the 

glacial layer above. For Allendale Twp., whose northern boundary includes the Grand River (GR), net top 

boundary flux has increased from -520 GPM (water leaving the bedrock to the glacial layer above) to 

roughly zero as pumping withdrawals have significantly increased. Due to the connectivity between GR 

and the bedrock, and the relative isolation of other smaller streams from the bedrock due to the continuous 

clay layer, a majority of this change in top boundary flux can be considered a net loss in baseflow to the 

GR along the segment cutting through Allendale Twp. Overall, this loss is baseflow is represents a small 

amount of the overall flow in the lower GR, although it is surprising that a portion of such a large, 6th-order 

stream located in a major regional discharge area could essentially lose its natural connection to the deeper 

aquifer system because of deep water well withdrawals.  

 Toward Sustainability: Next Steps 

The simulations results are generally consistent with concerns raised by local policy makers and resource 

managers: cumulative impacts of gradual but steady increases in distributed groundwater pumping are 

lowering groundwater levels across large areas of the aquifer system. Although it is beyond the scope of 

study to develop a master resource plan for the region, we briefly review how the present model can be 

directly used for further analysis and what further steps are needed for reaching the overall goal of long-

term sustainability of groundwater resources.  

Subscale Data Collection, Modeling and Analysis. With a system-wide representation of the dominant 

driver of groundwater level decline (spatiotemporal well network growth and geologic variability), future 

efforts should focus on capturing finer spatial and temporal resolutions (e.g., seasonality in pumping and 

recharge, well-specific pumping rates, etc.) within key areas, especially for “limiting situations” that control 

sustainability (e.g., when recharge is lowest and pumping is most intense). The approach would prioritize 

resources for improving submodel structure (e.g., by integrating new field estimates of hydraulic 

conductivity from aquifer pump tests and/or seismic profiles into the geologic model, compiling well-

specific pumping rates, etc.) and model calibration (e.g., strategically placed time-series groundwater level 
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data, streamflow measurements for constraining recharge, etc.), using the time-dependent boundary 

conditions of the parent model to effectively capture the ‘background’ effects of a dynamic pumping stress 

configuration propagating through the system over time. A better constrained submodel could then be 

utilized for scenario testing under a variety of future groundwater use scenarios, which could be idealized 

in nature or based on carefully planned well and land use build-outs complete by planners and resource 

managers. These simulations should be applied to quantify expected changes in flow patterns and water 

balances in the aquifer systems under different scenarios, and, in particular, to evaluate if future pumping 

may cause water levels in wells to fall below sage operating levels or cause unacceptable groundwater 

reductions to streams and other groundwater-dependent ecosystems (see Meyer et al. 2014 for an illustrative 

example).  Continued monitoring would help verify and improve the submodel(s) simulations, which could 

then be used to improve the larger scale model for characterizing cumulative impacts to the system due to 

climate change, land use/cover change, etc.  

Connections to Water Quality. In related work, it was demonstrated that a statistically significant number 

of wells in the Michigan Lowlands exhibit salinity levels well above expected natural levels, primarily 

because of mixing of deep, highly mineralized groundwater (brines) with fresh groundwater near the surface 

Resulting concentrations in groundwater often make it unfit for drinking consumption or use in agricultural 

activities (Curtis et al., 2018). Thus, it is natural to ask whether deep pumping in this aquifer system is 

inducing migration of saline groundwater into parts of the aquifer system traditionally not impacted by the 

deep brines. In forthcoming work, we address this question by compiling groundwater quality (salinity) 

data across space and time and use integrated spatial (2D and 3D) overlays and statistical analyses to probe 

connections between water quality and simulated flow dynamics (Curtis et al. in review). This work also 

presents statewide and regional characterizations of groundwater salinity and more details on impacts of 

local geology and water quality.   

Socio-political Considerations. In addition to a solid science-based understanding of the aquifer system, 

consideration of socio-political aspects of water governance is needed for developing a master water 

resource plan (Frind and Middleton, 2014; Wheater and Gober, 2015). This includes but may not be limited 
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to: an accurate quantification of the current and future water demand for the region and exploration of water 

conservation options to reduce future demands; evaluation of costs for expanding alternative sources of 

water (a pipeline already exists that services Grand Rapids) now and in the future; complete inventory of 

important or protected surface features (e.g., groundwater-dependent ecosystems, potential contamination 

sites, etc.); master land use and build-out policy, including a means for protecting important groundwater 

recharge areas; and delineation and protection of capture zones of major well fields. Readers are referred 

to comprehensive investigations of sustainability of the Waterloo Moraine for an illustrative example of 

integrating socio-political aspects of water governance with a sound science-based understanding of a 

geologically similarly, complex groundwater system (see, e.g., Blackport and Dorfman, 2014; Frind and 

Middleton, 2014; Friend et al. 2014).   

3.6 Ch. 3 Conclusions 

A groundwater model of a complex and strongly heterogeneous aquifer system in west-central Lower 

Michigan was developed for the 50 last years. The ability to successfully simulate past conditions required 

a detailed characterization of the spatiotemporal evolution of water withdrawals and the strong 3D spatial 

structure of the subsurface.  Parametrizing this model was challenging, given the lack of historical pumping 

and water level data and the multiple scales of geologic variability to consider (i.e., important large- and 

small-scale heterogeneities).  To overcome these challenges we 1) implemented a ‘zone-based’ Transition-

Probability (TP) geostatistical approach to conceptualize complex three-dimensional spatial variability 

using a relatively small set of geologic material types; 2) modeled the spatiotemporal evolution of water 

well withdrawals across several decades using a sector-based water use parameterization 3) used a large 

amount of noisy groundwater level data to capture long-term groundwater level declines in different parts 

of the aquifer system.  

The ability of the model to reproduce long-term SWL trends across space and time suggests the proposed 

approaches are promising for the purposes of characterizing long term, groundwater system dynamics 

where data are limited and the subsurface is geologically complex. In particular, this study suggests that, 
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for the purposes of reproducing long-term groundwater level declines, it is less important to have 

quantitative data for ‘every’ well (i.e., specified pumping rates) or at many locations in the subsurface (e.g., 

hydraulic characteristics derive from aquifer pumping tests); what seems more important is having enough 

data to capture the space-time dynamics of the well network – or similarly, the complex spatial 

configurations of aquifer material types – which can be quantified using a limited number of system 

(effective) parameters. As shown here, detailed, high-density water well datasets, which have rarely been 

used for larger scientific groundwater analysis, are an excellent source of information for characterizing 

complex aquifer structures (geology and well network growth). Fortunately, these datasets are becoming 

increasingly available in different U.S. States and elsewhere (see, e.g., Illinois State Geological Survey 

repository (ISGS, 2015), Kansas’ WIZARD water well levels database (KGS, 2002), and the GeoSam 

Database for the State of Iowa (IGS, 2016), and thus, methods presented here have general applicability 

elsewhere. 

With a proper representation of long-term dynamics based on existing data alone, limited resources and can 

be prioritized for 1) improving the model or subregions of the model through additional data collection, 

both for representation of the geology and pumping stresses as well as model verification (particularly at 

local/shorter scales important to sustainability); 2) performing risk and vulnerability assessment to 

groundwater resource supply and groundwater-dependent ecosystems and 3) quantifying uncertainties 

associated with all model applications and reconciling these with actionable policy decisions.  This coupling 

of system-based flow modeling using massive space-time water well datasets with detailed local-scale 

monitoring and data collection represents an improved framework for sustainable management of regional 

groundwater resources in areas where historical monitoring and oversight has been lacking. 
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APPENDIX A: Connection between the deep bedrock aquifer and the Grand River 

The connection between the bedrock aquifer and the “River Zone” was an important but necessary 

conceptualization; temporal analysis of bedrock SWLs along the river and narrow bands north and south of 

the river confirms the natural hydraulic connection to the bedrock (see Figure 3.17).  If the Grand River 

were not well connected to the bedrock, the trend along the Grand River would be similar to the trend south 

of the river (where significant pumping has occurred).  However, a relatively flat trend is observed along 

the river and north of the river, which is consistent with the Grand River being connected to the bedrock 

aquifer (see the final vertical anisotropy values for the River Zone in Calibration Results).  The 

conceptualization used here is supported by the known existence of relatively thin alluvium deposits (<40m) 

over the bedrock surface and localized occurrences of boulder-rich alluvial deposits along the Grand River 

throughout the study domain (Churches and Wampler 2013).     

 

Figure 3.17: Comparison of SWL trends for bands north and south of the Grand River, and along it.  Data 

are from Wellogic (MDEQ, 2014). 
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APPENDIX B: Justification for using two separate layers to represent the bedrock aquifer 

The choice of using a separate layer to represent the ‘fractured zone’ of the Marshall Formation is based on 

the standard geologic rule that fracturing decreases with depth, so that the effective transmissivity of the 

aquifer changes by roughly an order of magnitude when going from fractured to non-fractured.    The depth 

of the fractured zone was estimated by examining the penetration depth of water wells extracted from 

Wellogic into the bedrock, assuming that the wells would not be drilled into non-fractured (and thus, non-

productive) depths of the Marshall.  Many cross-sections were taken utilizing the IGW software to 

determine 18.3m (60 ft.) as a reasonable ‘fracture depth’. The Bayport Limestone and Saginaw Formation 

units shown in Figure 3.2 are relatively thin (<30m) in this part of the Michigan basin (Apple and Reeves 

2007), and therefore were not explicitly modeled.  Note that a minimum thickness of 60 ft. was assigned 

for both bedrock layers, even in eastern portions of the model domain where the only unit present is the 

Coldwater Shale, which is not an effective transmitter of water, and calibration data are lacking.  This was 

done to alleviate issues related to numerical stability when trying to solve hydraulic head across a 

computational layer with significant variability in thickness. 
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APPENDIX C: Accounting for switches to municipal water supply 

During model development it became clear that the assumption of all wells pumping ad infinitum 

once installed was problematic in some areas of the study domain where municipal surface water 

supply became available in recent years.  In these areas, many older wells were abandoned as 

properties tapped into nearby public water distribution systems. Therefore, we carefully examined 

the evolution of the water distribution system for a key area in the central portion of the study area 

to terminate pumping at the appropriate times and locations (see Figure 3.18).  Scanned drawings 

made available from the Ottawa County Public Utilities Department were converted into 

shapefiles, and wells constructed in polygons with installation dates prior to the year assigned to 

the polygons were terminated (i.e., turned off) in the year indicated by the polygon. If a well was 

installed within a polygon after the year assigned to polygon, it was assumed that the property was 

choosing to use groundwater over municipal surface water supply, and the pumping would 

continue throughout the groundwater simulation. In two areas of the study domain, detailed maps 

of the water system distribution were not available, but municipal water supply was first provided 

in 1995, and thus, the simplest treatment was to terminate wells installed prior to 1995 in these 

areas (see the smaller map in Figure 3.18)  once the simulation proceeded through 1995.  
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Figure 3.18: Polygons use to represent areas where municipal water supply became available at different 

times since 1992. “GW-> SW” is a shortened form of “groundwater to municipal water supply.” 
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APPENDIX D: Model well density vs. actual well density 

There are roughly 1.3 million water wells in Michigan (MDEQ 2015), but thus far only about 550,000 wells 

have be incorporated into the Wellogic database.  Although some areas of the state are more ’complete’ 

than others, undoubtedly some domestic wells are missing from the model, and thus it is reasonable to have 

a simulated domestic pumping rate a few times higher than the observed pumping rate, assuming the relative 

spatial density distribution of the well dataset used for modeling represents the actual relative spatial density 

distribution.  This assumption was checked for a portion of the model domain by completely exhausting 

information from local water well records compiled by the Ottawa County Environmental Health 

Department and ‘visually’ adding wells to the analysis: if properties did not have a well record and were 

not in proximity to a public water distribution line, a well was assumed to exist on the property (see Figure 

3.19).  Indeed, the relative spatial density distribution of the dataset used for modeling and that of the 

‘actual’ well network is similar.  Moreover, there are roughly 3 times as many wells in the latter dataset 

(most of which are domestic wells) as compared to the former dataset, suggesting that the ratio of 3.39 for 

simulated domestic pumping rate to observed pumping rate is accurate in terms of producing the overall 

impact of domestic well withdrawals. 
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Figure 3.19: Comparison of well distribution in Blendon Township, Michigan (central portion of model 

domain): (a) from Wellogic only (834 wells); and (b) from Wellogic, Ottawa County Dept. of 

Environmental Health, and “visually added wells” (about 2500 wells). 
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CHAPTER 4  

A Multiscale Assessment of Shallow Groundwater Salinization in Southern Michigan 

Contributing authors: Zachary Curtis, Hua-Sheng Liao, Shu-Guang Li, Prasanna Sampath, David Lusch 

4.1 Executive Summary of Ch. 4 

Managing non-point-source (NPS) pollution of groundwater systems is a significant challenge because of 

the heterogeneous nature of the subsurface, high costs of data collection, and the multitude of scales 

involved. In this study, we assessed a particularly complex NPS groundwater pollution problem in southern 

Michigan, namely, the salinization of shallow aquifer systems due to natural upwelling of deep brines. We 

applied a system-based approach to characterize, across multiple scales, the integrated groundwater 

quantity-quality dynamics associated with the brine upwelling process, assimilating a variety of modeling 

tools and data - including massive statewide water well datasets scarcely used for larger scientific analysis. 

Specifically, we combined 1) data-driven modeling of massive amounts of groundwater/geologic 

information across multiple spatial scales with 2) detailed analysis of groundwater salinity dynamics and 

process-based flow modeling at local scales. Statewide "hot-spots" were delineated and county-level 

severity rankings were developed based on dissolved chloride (Cl) concentration percentiles. Within local 

hot spots, the relative impact of upwelling was determined to be controlled by: i) streams - which act as 

'natural pumps' that bring deeper (more mineralized) groundwater to the surface; ii) the occurrence of nearly 

impervious geologic material at the surface - which restricts freshwater dilution of deeper, saline 

groundwater; and iii) the space-time evolution of water well withdrawals – which appears to slowly induces 

migration of saline groundwater from its natural course. This multi-scale, data-intensive approach 

significantly  improved our understanding of the brine upwelling  processes in Michigan, and has 

applicability elsewhere given the growing availability of statewide water well databases. 

4.2 Ch. 4 Introduction  

In coastal and low-lying regions of the Lower Peninsula of Michigan (hereafter referred to as Lower 

Michigan), shallow, saline groundwater occurs, with total dissolved solids (TDS) concentrations 
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approaching and, in some cases, exceeding 1000 mg/L (Lane 1899; Long et al., 1988; Rheaume, 1991; 

Ging et al. 1996; Meissner et al. 1996; Westjohn and Weaver 1996b; Wahrer et al. 1996). More recently, 

the presence of a number of “salt springs” occurring on mineral soil saturated by sodium- and chloride-

laden groundwater have been reported at isolated inland locations along major river valleys of central Lower 

Michigan (Albert 2001; Kost et al. 2007). Such saline groundwater is unfit for human consumption and 

many agricultural uses, and is detrimental to the environment (Ayers and Westcot, 1985).  

In the absence of ocean influences and salt deposits, natural concentrations of dissolved Cl for most shallow 

aquifers in the mid-continent region of North America are typically less than 15 mg/L (Hem 1985). Of 

course, anthropogenic sources such as septic tanks, agricultural fertilizers (KCl) or roadway deicers – of 

which NaCl is the dominant type in Michigan (see Rustem et al. 1993) – may contribute to Cl contamination 

of groundwater.   However, the resulting groundwater concentrations of dissolved Cl from such sources is 

expected to be well below the reported concentrations approaching (or exceeding) 1000 mg/L (Curtis et al. 

2018). There is, however, mounting evidence from site-specific, geochemical studies that salinization in 

parts of Lower Michigan is due to the natural upward movement of deep brines, which are hypersaline 

pools of groundwater in the deep geologic formations of the Michigan Basin (TDS > 100,000 mg/L). 

Geochemical and isotopic analyses, geochemical modeling and an interpretation of groundwater flow was 

used to show that upwelling brine is the source for the high-salinity groundwater in the Saginaw Lowlands 

(Long et al. 1988; Kolak et al. 1999) (see Figure 1.2 in Chapter 1) – a major basin-scale groundwater 

discharge area (Westjohn et al. 1994; Hoaglund et al., 2002). Geochemical indicators of brine-influenced 

groundwater were also observed in the formation waters of the Antrim Shale bedrock unit in northern Lower 

Michigan (McIntosh et al. 2004) and from the shallower Marshall Formation in south-central Lower 

Michigan (Ma et al. 2005). In the Michigan Lowlands of west-central Lower Michigan (Figure 1.2) – also 

a major regional groundwater discharge area – chloride:sodium molar ratios derived from well water 

analyses suggest that brines are at least partially responsible for elevated groundwater salinity observed in 

this region (Long et al. 2015).  
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Westjohn and Weaver (1996b) suggested that the distribution of shallow, saline groundwater in the regional 

aquifer system is controlled largely by the broad-scale geology:  discharge of saline water from bedrock 

aquifers into these regional lowlands coupled with the impedance of freshwater recharge by low K glacial 

deposits. Indeed, the findings of geochemical studies of the sources of shallow, saline groundwater in Lower 

Michigan suggests that the seemingly scattered occurrences are actual symptomatic of a larger, system-

wide problem, namely, brines preferentially upwelling into coastal low-lying areas (i.e., regional 

groundwater discharge areas).   Curtis et al. (2017) probed this interpretation with a multi-scale, data-driven 

analysis of chloride (Cl) concentrations (as a proxy for salinity) and long-term Static Water Level (SWL) 

spatial dynamics across Lower Michigan, focusing on the Michigan and Saginaw Lowlands for subregional 

and local-scale analyses. The primary finding from this study was that, at each scale, chloride 

concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are 

consistently and significantly higher than those in recharge zones (see Figure 4.1). A synoptic sampling 

campaign in the Michigan Lowlands showed Cl concentrations generally increase with depth (Curtis et al. 

2018), a trend noted in previous studies of brine upwelling in the Saginaw Lowlands (Long et al., 1988). 

These consistent Cl distribution patterns across multiple spatial scales – along with the findings from 

previous geochemical studies – strongly suggest that natural upwelling of brines is the primary cause for 

the elevated chloride concentrations observed in discharge areas across the Lower Peninsula. 
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Figure 4.1: Occurrence of wells with elevated Cl concentrations (>500 mg/L) and static water level (SWL) 

distributions at the (a) basin-scale; (b) regional scale (Michigan Lowlands); and (c) local scale (central 

Michigan Lowlands).  Adapted from Curtis et al. (2018). 

The previously mentioned studies were critical for developing a conceptual understanding of the natural 

hydrogeologic process that largely controls the occurrence of shallow, saline groundwater in parts of Lower 

Michigan, namely, the upwelling of deep brines into low-lying discharge areas. However, translating these 

findings into ‘operational’ information for resource managers and planners proves challenging. Data, maps, 

and analyses from different studies related to the brine upwelling process in Lower Michigan have been 

completed at one particular scale and for one particular time, but an overarching investigation linking them 

as a unified body of work is lacking.  As a result, a number of important management questions are left 

unanswered, including: 

• Where is contamination is the worst? How can we prioritize resources for further study and sustainable 

management? 

• To what degree does the local environment (geology, surface network, etc.) impact the 3D spatial 

characteristics of the pollution? 
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• Is human activity (e.g., pumping of groundwater) making the pollution worse, i.e., are we inducing the 

migration of brine-influenced groundwater into new areas? 

In this chapter, these key management questions are addressed by performing a multi-scale, integrated 

analysis of groundwater flow and water quality dynamics associated with the brine upwelling process.  

Statewide characterization of groundwater salinity and hydrogeology is supplemented with a detailed 

modeling study of the shallow aquifer underling Ottawa County, Michigan – which sits squarely and almost 

entirely within the Michigan Lowlands (see Figure 1.2). The specific tasks are to: 1) characterize, at 

multiple spatial scales, groundwater salinity dynamics (and its controls) across the Lower Peninsula of 

Michigan, 2) delineate the three-dimensional (3D) spatial distribution (extent and severity) of the 

groundwater salinity in a county-wide aquifer system to better understand local  sources and controls of the 

groundwater salinity; 3) evaluate long-term temporal trends of groundwater quality (salinity) and describe 

the impacts of pumping.  

4.3 Overview of Ch. 4 Methods 

To address the specific tasks of this study, it is necessary to account for the various mechanisms controlling 

the subsurface dynamics of brine-influenced groundwater, including aspects of geology (e.g., extent and 

distribution of geologic materials that control large- and small-scale flow patterns), hydrology (e.g., head 

distribution, pumping and the flow system response), and water quality (spatial and temporal dynamics of 

groundwater salinity). Because the current (and relatively recent) water quality and flow system 

observations reflect impacts of both humans and the natural upwelling processes, a characterization of past 

conditions is needed to determine if (and how) human activity affects the severity and extent of 

contamination. Yet, even for a regional or subregional analysis, data collected for scientific purposes 

typically lacks sufficient spatial and temporal coverage to characterize the system across years or decades 

because of the undocumented and strongly heterogeneous nature of the subsurface, the high costs of data 

collection, and the multitude of scales involved with the brine pollution process. This is problematic, as 
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changes in water quality due to migration of lower quality groundwater from adjacent/underlying geologic 

units may be slow (i.e., occurring across many years or decades). 

This study capitalized on a vast storehouse of pre-existing groundwater/environmental data integrated into 

recently assembled federal and statewide databases, including two high-density water well datasets 

maintained by the State of Michigan.  The Wellogic database contains massive amounts of physical 

groundwater data (e.g., static water levels in water wells and borehole lithology) (MDEQ 2015). The 

WaterChem database contains water quality information from over 1 million samples collected from water 

wells and analyzed at the State of Michigan’s Drinking Water Analysis Laboratory (MDEQ 2010).   These 

datasets contain many errors and sources of inaccuracy and have rarely been used for larger scientific 

investigations, but they can yield important hydrogeologic and geochemical insights when properly 

processed and critically evaluated (Sampath et al. 2015; Sampath et al. 2016; Curtis et al. 2018). Local-

scale analyses requiring more detailed information were augmented with field-collected data and historical 

water well and water use information compiled by county-level planning departments and municipalities.   

These massive groundwater databases enabled two distinct yet complimentary approaches for 

understanding groundwater conditions across multiple scales: data-driven modeling and process-based 

simulation. Data-driven modeling provides an efficient method for identifying patterns, relationships, and 

key areas across different scales without the need for understanding the underlying processes. Process-

based simulation – although requiring significant expertise and resources – allows you to test and refine 

your understanding of the processes that control the observed patterns and relationships discovered through 

data-driven modeling.  

The datasets and workflow used for data-driven modeling in this study are shown in Figure 4.2. The primary 

steps were to : 1) map groundwater salinity levels at the statewide, regional and local (county-wide) to 

identify “hot-spots’ at different spatial scales; 2) delineate long-term, average groundwater levels and  

aquifer material distributions and extents; 3) characterize temporal trends in groundwater levels and 

salinity; and 4) model water use to determine its impact on groundwater levels via process-based modeling 

(see below).  TDS concentrations are used in most geochemical studies as a measure of groundwater 
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salinity. In our study, we used dissolved-chloride (Cl) concentrations as a proxy for salinity because Cl 

concentrations were available in the historical  water quality records used for this study, while TDS 

concentrations were not. Also, it was possible  to collect far more Cl field samples than TDS samples given 

the resources available for this study. Nonetheless, because the brines down-dip from the Marshall subcrop 

are composed primarily of calcium chloride (CaCl2) and sodium chloride (NaCl) (Ging et al. 1996), Cl was 

considered an effective indicator of groundwater salinity for the purposes of this study. Groundwater levels 

were determined from analysis of Static Water Level (SWL) measurements on the well logs, which were 

made at the time of installation of a water well.  

 

Figure 4.2: Multi-scale, data-driven modeling approach: datasets (cylinders), workflow (arrows), and 

resulting datasets/maps/analyses (rectangles). 

The datasets and workflows associated with our process-based modeling are shown in Figure 4.3. The main 

goals were to: 1) evaluate the impact of long-term, distributed pumping on groundwater levels; 2) compare 
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Cl concentrations to groundwater level dynamics; and 3) visualize deep groundwater flow. Some of the 

results from the data-driven analysis were used as input for calibration of the process-based flow simulator  

(e.g., space-time water use model, changes in groundwater levels with time), while others (e.g., Cl point 

data) were used for comparative analysis with outputs of the process-based flow simulation.  The details of 

the process-based flow model development are provided in Liao et al (in review).  The model integrated a 

complex, fully three-dimensional (3D) glacial geologic material model, a sector-based dynamic water use 

model  for the years 1966-2015, and a transient recharge model based on temperature and precipitation 

observations from the PRISM Climate Group and created using INFIL 3.0 (USGS, 2008). Water well 

records were used to develop a Transition Probability (TP) geostatistical model of the glacial aquifer system 

(Carle, 1999) and provided the necessary information to develop a sector-based water use model, including 

well type (domestic, public supply, irrigation, or industrial/commercial), well construction date, well screen 

interval, and well location (latitude and longitude). Thousands of SWLs from water well records across 

space and time were used to calibrate the model.  

 

Figure 4.3: Multi-scale, process-based modeling approach and integrated analyses and spatial overlays. 
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The following sections provide more details on the different analyses, results and interpretations. The 

data-driven characterization of statewide groundwater conditions is presented first, followed by the 

detailed modeling, visualization, and analysis of groundwater in Ottawa County.   

4.4 Statewide Data-Driven Characterization of Groundwater Conditions 

To delineate statewide and regional salinity ‘hot-spots’, chloride concentrations were spatially interpolated 

from samples in the WaterChem database at both a 3x3 km and a 1x1 km cell size. Interpolation used a 

non-stationary kriging technique described in Curtis et al. (2018) that utilizes the nearest N points for 

modeling spatial variability and estimating values at node locations in a two-dimensional grid.   No 

differentiation was made between samples collected from wells completed in shallow glacial deposits and 

deeper bedrock aquifers, as this information is not contained in the WaterChem records. 

As shown in Figure 4.4, four regions stand out as statewide hot-spots with elevated (>20 mg/L)  and severely 

elevated (>250 mg/L) Cl concentrations. These areas of elevated chloride concentrations are consistent with 

the spatial pattern of shallow mineralized groundwater that Rheaume (1991) compiled. In Region 1, the 

nearly N-S trending hotspot occurs in Ottawa County, and the easternmost hotspot is within the Grand 

Rapids, high- and medium-density urban area, all of which is served by a water supply system that uses 

Lake Michigan as its source. Region 2 contains the largest, contiguous area of elevated and severely 

elevated Cl concentrations in groundwater in the State. Elevated chloride concentrations are pervasive 

throughout much of Bay and Saginaw counties, are common in coastal Tuscola and Arenac counties, and 

occur in central Midland and southern Iosco counties. As a result, most communities in this region rely on 

surface water from Saginaw Bay for their water-supply needs. The large area of elevated Cl concentrations 

in Region 3 occurs in southeastern Lenawee County.  This phenomenon was studied by Caetta (1991), who 

concluded "... that deep bedrock brines are upwelling at specific locations and mixing with local meteoric 

waters, increasing total dissolved solids in unconsolidated aquifers." (Caetta, 1991, p. iii). In Region 4, the  

large areas of elevated chloride concentrations in southern St. Clair County, northeastern Sanilac County 

and eastern Huron County are all notable.  The elevated chloride concentrations in southern St. Clair County 
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may be due, in part, to the legacy effects of poor well closure practices associated with early oil, gas and 

mineral wells (Curtis et al., 2017).  

 

Figure 4.4: Chloride concentrations in groundwater, interpolated at the 3 km x 3 km cell size (center 

graphic) and at the 1 km x 1 km cell size (peripheral graphics). 

The results from the statewide and regional mapping of Cl concentrations were used to identify 17 counties 

with notably elevated Cl concentrations. Groundwater quality ‘severity indicators’ were then developed 

based on countywide statistical analysis of Cl concentrations from samples in WaterChem. In particular, Cl 

concentrations were computed for 50th, 75th, and 95th percentile (e.g., the 75th Cl percentile represents the 

concentration that 75% of the Cl samples are less than and 25% are greater than).  The 95th percentile 

analysis was included to give a sense of the concentrations of “extremely high” values in the datasets, while 

the 50th and 75th percentiles give a sense of the average and above-average concentrations, respectively.  

Percentiles were computed for two sets of analyses: i) using all Cl data points within an entire county; and 

ii) using only Cl data points existing within cropland (“cropland ony” cases).  The latter analysis is useful 

for groundwater irrigation planning, given the above-mentioned susceptibility of agricultural crops to 
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elevated levels of salinity. The number of data points available for analysis in each county is provided in 

Table 4.1.  The areal extent of cropland within the seventeen counties is shown in Figure 4.5. Note that, for 

even the 95th percentile concentrations, a significant number of points were available for analysis (with 

exception to the cropland analysis of Wayne County).  In other words, 95th percentile concentrations that 

are elevated or severely elevated represent a real problem in the aquifer system (i.e., 5% of thousands of 

data points are elevated or very elevated), and do not just represent outliers in the dataset.   

Table 4.1: Total number of Cl scatter points available for countywide analysis and the number within 

cropland for each of the counties with notably elevated chloride concentrations in groundwater. 

County 

Number of 

data points 

Number of data 

points in 

cropland 

Saginaw 1113 436 

Macomb 8485 1135 

Bay 1663 665 

Saint Clair 3597 781 

Midland 5684 892 

Huron 2516 1270 

Genesee 6936 785 

Sanilac 3488 1683 

Ottawa 12179 2970 

Arenac 1917 528 

Lenawee 4170 1289 

Wayne 752 20 

Gladwin 4002 418 

Lapeer 6802 1349 

Shiawassee 5921 2123 

Iosco 2437 225 

Tuscola 5747 1919 
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Figure 4.5: Cropland (green) within the seventeen counties analyzed for water quality severity. Source: 

USDA, NASS Cropland Data Layer (2014). 

An illustrative example of the Cl percentile results is shown in Figure 4.6, which presents spatial mapping 

of 95th percentile concentrations (cropland only) for each county in the Lower Peninsula of Michigan. The 

complete results for both the countywide and “cropland only” analyses are shown in graphical form in  

Figure 4.7. Regarding the countywide results, Saginaw County ranks first for the 50th and 75th percentiles, 

with concentrations of 78 mg/L and 314 mg/L, respectively.  St. Clair County ranks first for the 95th 

percentile with a concentration of 811 mg/L. Five counties (Saginaw, Macomb, Bay, St. Clair and Midland) 

had 75th percentile Cl concentrations above 200 mg/L, while 12 counties had 95th percentile Cl 

concentrations above 250 mg/L. Regarding the “cropland only” results, three counties (Saginaw, Bay and 

Midland) had 75th percentile Cl concentrations above 200 mg/L, while ten counties had 95th percentile Cl 
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concentrations above 500 mg/L. The remaining seven counties had 95th percentile Cl concentrations above 

250 mg/L. 

 

Figure 4.6: Spatial mapping of Cl concentrations for the 95th percentiles, using only scatter points existing 

within cropland for each county. 
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Figure 4.7: Graphical depiction of Cl concentration percentiles computed using all Cl data points available 

in each county (50%, 75%, 95%) and using only scatter points existing within cropland for each county 

(50%-crops, 75%-crops, 95%-crops). 

The mapping of Cl concentrations and development of groundwater salinity severity indicators provides 

an improved characterization of the relative salinization of shallow groundwater supplies in different parts 

of Lower Michigan, which helps resource managers and decision-makers prioritize resources for future 

sustainability and management.   

 Screening-Level Evaluations of Local Conditions 

The 17 counties used for developing countywide Cl concentration percentiles were also assessed using the 

data-driven approach to identify local-scale patterns and relationships between hydrogeology and 

groundwater salinity. For each county, we mapped: 1) Cl concentrations (point data); 2) Static Water Levels 

(shallow groundwater levels; 3) the 3D borehole lithology of unconsolidated sediments; and 4) bedrock 

formation subcrop extents.  Cl concentrations were extracted from the WaterChem database. Long-term, 

average groundwater levels were mapped using spatial interpolation of SWL measurements from the 

Wellogic database.  A non-stationary kriging technique using the nearest N=50 points  modeled spatial 
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variability and estimated values at node locations (see Curtis et al. 2018 for more details). Borehole 

lithologic descriptions from Wellogic records are classified into four different geologic material types: 

aquifer (‘AQ’); marginal aquifer (‘MAQ’); partially confining material (‘PCM’), and confining material 

(‘CM’). Bedrock subcrop extents  were obtained from the Groundwater Inventory and Map Project 

completed for the State of Michigan (GWIM 2006). Modeling and visualization was completed using the 

Interactive Groundwater modeling software (Li and Lui, 2006, 2008) and  the Michigan Groundwater 

Management Tool developed for the Michigan Department of Environmental Quality (MDEQ) by 

Michigan State University (MSU, 2014).  

The 17 counties used for developing countywide Cl concentration percentiles were also assessed using the 

data-driven approach to identify local-scale patterns and relationships between hydrogeology and 

groundwater salinity. For each county, we mapped: 1) Cl concentrations (point data); 2) Static Water Levels 

(shallow groundwater levels; 3) the 3D borehole lithology of unconsolidated sediments; and 4) bedrock 

formation subcrop extents.  Cl concentrations were extracted from the WaterChem database. Long-term, 

average groundwater levels were mapped using spatial interpolation of SWL measurements from the 

Wellogic database.  A non-stationary kriging technique using the nearest N=50 points  modeled spatial 

variability and estimated values at node locations (see Curtis et al. 2017 for more details). Borehole 

lithologic descriptions from Wellogic records are classified into four different geologic material types: 

aquifer (‘AQ’); marginal aquifer (‘MAQ’); partially confining material (‘PCM’), and confining material 

(‘CM’). Bedrock subcrop extents  were obtained from the Groundwater Inventory and Map Project 

completed for the State of Michigan (GWIM 2006). Modeling and visualization was completed using the 

Interactive Groundwater modeling software (Li and Lui, 2006, 2008) and  the Michigan Groundwater 

Management Tool developed for the Michigan Department of Environmental Quality (MDEQ) by 

Michigan State University (MSU, 2014).  

Four illustrative examples of the screening-level evaluations of Cl concentrations, groundwater levels, and 

subsurface geology are presented in Figure 4.8.  Note that each county (Tuscola, Lenawee, Ottawa and St. 

Clair) is from one of the four Regions identified as a statewide Cl hotspot (and thus the selection of counties 



177 

is representative of conditions across Michigan’s Lower Peninsula).  In each example, Cl concentrations 

are highest in areas where groundwater levels are lowest (i.e., where groundwater flow is predominantly 

upward and discharging to the surface) along stream corridors and along freshwater coastlines. Conversely, 

the interfluves between major streams are mostly lacking elevated Cl concentrations. This is consistent with 

the multi-scale (statewide, regional, and countywide) ClSWL patterns revealed by Curtis et al. (2018) – 

which included local-scale analysis in Bay County (not shown here) – and supports the premise that the 

major source of salinity is deeper brines. Further examination of Figure 4.8 shows that the pollution is worst 

in areas typically associated with occurrence of low-permeability CM and PCM  (e.g., clays and silts) at 

the surface  and subcropping bedrock aquifers below. Together, these results provide further evidence that 

brines are preferentially impacting low-lying areas where  groundwater is discharging and suggests that the 

relative severity and extent of groundwater salinization at local-scales  is controlled in large-part by the 

distribution of geologic materials in the subsurface. Although these findings are not surprising or different 

from past studies of hydrogeology and groundwater salinity in Michigan (e.g., Long et al. 1988; Westjohn 

and Weaver 1996b, Curtis et al. 2018), the amount of data we used to provide detailed spatial information 

at these scales is unprecedented. Such detailed mapping may enable managers to prioritize resources and 

make management plans related to their water-supply needs.  
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Figure 4.8: (from left to right) Screening-level mapping of chloride concentrations, SWL distributions and 

the stream network (gray-blue lines), glacial layer lithology, and bedrock formation subcrops: (a) Tuscola 

County (region 2 from Figure 4.4); (b) Lenawee County (region 3); (c) Ottawa County (region 1); and (d) 

St. Clair County (region 4). ‘AQ’ = aquifer, ‘MAQ’= marginal aquifer, ‘PCM’ = partially confining 

material, and ‘CM’ = confining material. 
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Temporal analysis of subsets of SWL data aggregated from selected townships were completed to identify 

potential impacts of pumping in these counties of concern.  In many cases, it was difficult to identify a 

temporal trend because of the relatively large spread in SWLs due to variability introduced by spatial 

aggregation of observation data and noise in the measurements themselves (see Curtis et al. 2017 for more 

details).  However, for some townships a trend was suggested for either wells screened in glacial deposits 

or wells completed in fractured bedrock.   Figure 4.9 presents the results for the four counties analyzed in 

Figure 4.8. Although the estimates are approximate, and the trends were fit subjectively (by manually 

drawing a linear trend line that is centered about the cloud of data), as much as 9m (Tuscola County), 8m 

(Lenawee County), 7m (Ottawa County), and 11m (St. Clair County) of SWL decline is suggested by the 

analyses.  In fact, water well records from 15 of the 17 counties analyzed presented evidence of SWL 

declines; 9 of these counties showed more than 5 meters of SWL decline.  The complete results of the most 

compelling SWL declines are presented in Table 4.2: Compelling static water elevation declines observed 

within townships of the seventeen counties that were analyzed.. Clearly, in many of the seventeen counties 

where Cl concentrations in shallow groundwater are high (largely because of mixing with deeper brines), 

groundwater levels are declining.  Therefore, it is possible that pumping-induced migration of brine-

influenced groundwater is making the problem worse. This is explored in greater detail in the next section.  
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Figure 4.9: Static water level trends from selected townships in: (a) Tuscola County (b) Lenawee County; 

(c) Ottawa County; and (d) St. Clair County. The inset maps show the locations of wells extracted from 

Wellogic for the analysis. Green dots are glacial wells; blue dots are bedrock wells. 
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Table 4.2: Compelling static water elevation declines observed within townships of the seventeen counties 

that were analyzed. 

County 

Glacial 

Aquifer 

Time 

Period of 

Analysis 

Bedrock 

Aquifer 

Time 

Period of 

Analysis 

Ottawa - 3 m 1970-2009 - 12 m 1967-2009 

Saginaw - 10 m 1967-2009 - 6 m 1966-2012 

Iosco - 6 m 1972-2009 - 6 m 1975-2008 

Arenac - 5 m 1968-2009 - 2 m 1995-2009 

St. Clair - 3 m 1999-2009 - 2 m 1986-2008 

Macomb --- --- - 10 m 1969-2009 

Tuscola --- --- - 9 m 1976-2009 

Lenawee --- --- - 7 m 1966-2009 

Gladwin --- --- - 6 m. 1971-2009 

Genesee --- --- - 4 m 1965-2009 

Wayne --- --- - 3 m 1969-2009 

Sanilac --- --- - 3 m 1972-2009 

Bay - 7 m 1966-2009 --- --- 

Shiawassee ---  --- - 2 m 1965-2009 

Lapeer --- --- - 2 m 1998-2009 

 

The findings of the statewide data-driven characterization of groundwater levels can be summarized as 

follows: 1) four hotspots of elevated or very elevated  Cl concentrations exist in Lower Michigan, and a 

significant amount of cropland overlies groundwater of elevated or very elevated salinity; 2) across the 

Southern Peninsula,  low-lying areas where groundwater is discharging systematically yield high Cl 

concentrations; 3) areas of continuous clay/silt glacial deposits overlying bedrock aquifers typically yield 

the highest  Cl concentrations in groundwater; and 4) groundwater levels are declining, likely in response 

to pumping, and potentially aggravating the  Cl problem. Note that all mapping and analyses were 

completed using entirely pre-existing data, most of which came from water well databases typically not 

utilized for multi-scale modeling.  This was crucial, as many of the traditional sources for groundwater data 

(e.g., USGS monitoring wells) are not available in many of the counties in Michigan (and elsewhere).  

Therefore, the data-driven approach used here offers a significant ‘first step’ for efficiently and effectively 

characterize long-term, prevailing hydrogeologic and geochemical conditions.  In this way, available (but 
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often limited) resources can be used to prioritize data collection and detailed analyses in key areas of 

concern identified from the system-based understanding of groundwater conditions.  

4.5 Detailed Subregional Modeling, Visualization, and Analysis 

Process-based flow modeling, coupled with field sampling, historical data mining, geostatistical analyses, 

and  geospatial visualizations were used to better understand the underlying mechanisms controlling the 

patterns observed through data-driven modeling, and in particular, to characterize the impact of pumping. 

Ottawa County, Michigan was chosen for detailed local-scale analysis because: 1) groundwater in Ottawa 

County is clearly influenced by deeper brines, as demonstrated by the data-driven modeling presented here; 

2)  from a statewide perspective, it is an ‘emerging’ (and therefore relatively unknown) problem, as the  Cl 

concentrations are generally lower than in areas along the Saginaw Bay and southeastern coastline of Lower 

Michigan; and 3) there is evidence from data-driven modeling of declining groundwater levels, likely due 

to pumping, as the area has experienced significant population growth in recent years whose water supply 

was mostly distributed groundwater withdrawals.   

This reliance on groundwater to support a growing population has significantly increased the number of 

wells from 393 to 3247 to 9234 wells in the years 1970, 2000 and 2015, respectively (MDEQ 2015). The 

total volumetric pumping rates in Ottawa County, Michigan  have almost doubled from 8 million gallons 

per day (MGD) in 1985 to about 15 MGD in 2010 (USGS 2012).  As part of the transient flow modeling 

effort, we characterized and quantified the impact of the expanding well network in Ottawa County (for 

more details see Liao et al.. in review). The simulated bedrock aquifer drawdown (difference between the 

1966 head distribution and the distribution of the year indicated) and water use (which was used as input 

for the groundwater model) are shown in Figure 4.10. Clearly, the significant drawdown in the central 

portion of the bedrock aquifer has become systematically deeper and more extensive with time, especially 

since 1990  (Figure 4.10a).   The evolution of water use for this area is fairly consistent with the drawdown 

evolution: during early periods of simulation (1970-1990), water use was relatively low and isolated to a 

few different areas, but since 1990, water use has increased in spatial extent and intensity, especially in the 
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central and eastern portions of the study area (Figure 4.10b). For temperate regions such as Ottawa County, 

recharge to shallow aquifer systems is typically assumed to be very large relative to the quantity pumped 

by wells and therefore drawdown can stabilize rather quickly due to significant diversions of baseflow from 

surface water to wells (Winter et al 1998; Alley and Leake 2004; Watson et al. 2013; Feinstein et al. 2016). 

The relatively continuous clay layer in central Ottawa County, however, precludes freshwater recharge 

from the glacial aquifer to the bedrock aquifer.  Thus, the impact of deep bedrock pumping is localized 

within the deeper bedrock aquifer, at least in most of the central portion of the study area. 

 

Figure 4.10: Key outputs from the modeling effort described in Liao et al. (in review) for the years 1970, 

1980, 1990, 2000, 2010, and 2015. (a) Simulated drawdown in the bedrock aquifer and (b) simulated water 

use in the bedrock aquifer. 

 3D Spatial Characteristics of Cl Concentrations  

A large dataset of Cl  concentrations across space and time was compiled from field-collected water well 

samples and historical data mined from water well records in order to characterize current conditions and 

evaluate temporal dynamics.  Over 545 groundwater samples from 467 locations during the fall of 2014 

and the summer of 2015 were collected from both the glacial and bedrock aquifers. For each sampling 
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location, the latitude and longitude, well depth (i.e., aquifer sampling depth), and time of collection were 

recorded. See Curtis et al. (2018) for details on the collection protocols and analytical methods.  

Historical Cl data and the associated latitude, longitude, well depth, and collection time were extracted from 

a file management system maintained by Ottawa County Department of  Public Health.  This parcel-based 

system organizes well logs with documentation from standard water quality testing (Fluoride, Chloride, 

Hardness, Nitrate, Nitrite, Sulfate, Sodium, and Iron). These so-called Partial Chemical tests are typically 

completed in Michigan at the time of well installation, following well or pump maintenance, at the time of 

property sale, or when property owners are experiencing water problems.  Samples are analyzed by the 

State of Michigan Drinking Water Analysis Laboratory (MDEQ 2010) or by certified private testing labs.  

Well depth was extracted from the well log associated with each property.  Well location (latitude, 

longitude) was often recorded on the well logs, but in some cases was estimated using the Ottawa County 

Interactive Mapping tool to obtain the coordinates of the centroid of the property (Ottawa County, 2016).  

This method introduced some locational uncertainty associated with the Cl data, but it was much less than 

the distance between most sampling locations used in the countywide analysis. In total, 2,832 Cl data points 

were extracted from roughly 1800 locations (some locations had more than one water quality test result). 

Records were extracted for the years 1966-2015, but most of the data are from 1990 or later. 

Contemporaneous geospatial analysis of Cl concentrations revealed that the highest concentrations and 

concentration gradients occurred in the bedrock aquifer and that Cl concentrations were generally low in 

the glacial aquifer. Therefore, the data mining effort was steered towards wells completed in the bedrock 

aquifer. 

A plan-views and 3D side views of the results from the water-quality data mining and field sampling are 

shown in Figure 4.11.  The bedrock surface (brown) and Coldwater Shale surface (light green) were 

delineated using lithologic information from water and oil/gas wells located in Ottawa County (MDEQ 

2014). The areal distribution of the historical and field-collected Cl concentrations are consistent, with 

relatively high concentrations clustered primarily in the central and north-central portions of the County. 

The perspective views (Figure 4.11b and Figure 4.11c) of the combined dataset clearly demonstrate that 
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the majority of the samples with Cl concentrations above 250 mg/L – the US Environmental Protection 

Agency (EPA) secondary maximum contaminant level (SMCL) – occur within the bedrock aquifer or the 

basal glacial aquifer just above the bedrock surface.  This distribution is consistent with a deep source, i.e., 

Michigan brines, as the primary cause of elevated groundwater salinity in the aquifer system, although 

anthropogenic sources may be responsible for the few isolated occurrences of Cl > 250 mg/L near the land 

surface. 
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Figure 4.11: Chloride (Cl) concentration point data for Ottawa County.  (a) plan-view of Cl data collected 

in the field (adapted from Curtis et al. 2017); (b) plan-view of Cl  mined from historical water quality 

records; (c) 3D visualization of Cl point data from the combined dataset, viewed from the west with the 

10m DEM and bedrock surface (brown); and (d) 3D visualization of Cl point data viewed from the north, 

with the 10m DEM, bedrock surface, and the Coldwater Shale surface (green). 
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The stark contrast in Cl concentrations above and below the bedrock top as shown in Figure 4.11 suggests 

that very little mixing is occurring between the glacial and bedrock aquifers throughout much of the system. 

To further test this premise, the sodium (Na) concentration was measured in 248 samples from 175 of the 

locations checked during the data mining of  historical Cl concentrations.  This allowed for an analysis of 

Cl/Na ratios, which can be indicative of the controls on the environmental behaviors of Cl and Na (Neal 

and Kirchner, 2000; Long et al. 2015).  At soil pH values typically encountered in the environment, Cl is 

usually considered conservative, i.e., non-reactive (Foth, 1999), but Na can be sequestered in soils and 

sediments by cation exchange or released from exchange sites depending on the salinity of the groundwater 

(Werner and DiPretoro, 2006; Sun et al. 2012). 

Figure 4.12 provides a graphical depiction of the molar ratio of Cl/Na verses Cl concentration, with the 

dataset was subdivided into samples from wells completed in the upper glacial aquifer and those completed 

in the bedrock aquifer or in the deep glacial aquifer just above the bedrock surface. The groundwater 

samples used in this analysis were only from systems that had been carefully checked to ensure that the 

well water did not pass through a water softener before discharge, as effluent from many softeners will 

contain artificially high levels of Na as a byproduct of the ion exchange process used to remove hardness 

ions, e.g., calcium. Most bedrock aquifer samples in Figure 4.12 plot below a Cl/Na ratio of one and a show 

a clustering along a potential mixing curve between solutions containing low Cl concentrations and Cl/Na 

ratios approaching zero with solutions containing higher ratios (about 1) and high Cl concentrations. We 

interpret these relationships to suggest that, at higher salinity levels (i.e., deeper in the bedrock aquifer), 

cation exchange capacity of the solids is reached (or exceeded) such that little or no Na removal takes place, 

producing Cl/Na values approaching 1. At lower salinity levels (i.e., closer to the surface), Na is released 

from exchange sites and ratios of Cl/Na in groundwater decrease to levels below 1.   The samples from the 

upper glacial aquifer, however, do not appear to be part of this mixing curve. Rather, all samples from the 

upper glacial aquifer have low Cl concentrations and a wide range of Cl/Na ratios ranging from just above 

zero to over 4. (Values of Cl/Na larger than 1 are interpreted to be a result from Na sequestration by soils 

and sediments by cation exchange).    This shows that groundwater from the upper glacial aquifer is subject 
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to complex exchange processes with soils and sediments. Importantly, the pattern of the upper glacial 

aquifer samples suggests that the interaction (mixing) between groundwater in the upper glacial and 

bedrock aquifers is weak (or even negligible) due to the thick, relatively continuous aquitard separating 

them (especially in the center of the county).    

 

Figure 4.12: Graphical representation of Cl/Na molar ratio vs. Cl concentration for 248 locations yielding 

historical records of Na and Cl concentrations. 

 

All field-collected data and the most recent historical  Cl data were used to create a 3D spatial interpolation 

of the current  Cl ‘plume’. In most areas, data from 2010 or later were used for the 3D interpolation.  In a 

few cases, earlier data were used although these represented only a small proportion of the 1,048 historical 

samples used. The total number of samples used was 1,593, 338 of which were from wells completed in 

the glacial aquifer and 1,255 from wells completed in the bedrock aquifer. Spatial interpolation was 

completed using 3D Inverse Distance Weighting (IDW). Weighting utilized a  vertical exaggeration of 150, 

based on geometric anisotropy ratio between vertical thickness and lateral model/domain extent. 

One key aspect of the 3D interpolation was the need to account for the thick, confining layer that occurs 

throughout the central portion of the study area (Apple and Reeves, 2007). This layer is expected to have 

relatively low Cl concentrations (i.e., close to zero) other than in locations directly adjacent to aquifer 

materials with high Cl concentrations, in which case diffusion may allow Cl to move a relatively short 
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distance into the clay layer.  However, there are almost no water wells completed in this layer because of 

its impractical yield. Thus, Cl observations in this layer are unavailable.  For this reason, we created ‘clay 

control points’ that were assigned a Cl concentration of zero and located systematically throughout the 

glacial aquitards and aquicludes in Ottawa County (see Figure 4.13). The 3D geologic model of the glacial 

sediments in the county was produced using the Transition Probability (TP) geostatistical method 

introduced by Carl and Fogg (1996; 1997). All lithologic descriptions in the Wellogic database are also 

classified into one of four material types: aquifer; marginal aquifer; partially confining material, and 

confining material. The vertical extents of these classified lithologies were used to develop a transition 

probability matrix of auto- and cross-correlations between material types and modeled using Markov Chain 

analysis. The original conditional 3D material distribution used 500 m by 500 m horizontal resolution and 

4 m vertical resolution.   Complete details of the TP modeling of the glacial aquifer in the study area are 

provided in Liao et al. (in review). (Also, see Chapter 3).  

Clay control points were extracted from locations where the 3D geologic model predicted partially 

confining or confining material on a 1000 m by 1000 m grid (horizontal direction). We experimented with 

both 400 m by 400 m and 800 m by 800 m grids, but a graphical comparison of interpolated Cl 

concentrations verses observed Cl concentrations showed that the 1000 m by 1000 m grid was most 

appropriate, which also is close to the observed transverse (areal) Cl data density. The locations of the ‘clay 

control’ cells (Cl = 0 mg/L) are shown in Figure 4.13b. A comparison of the Cl ‘plume’ – defined as the 

spatial extent of Cl > 250 mg/L in the glacial deposits – with and without clay control points is shown in 

Figure 4.13c.  Note that the Cl plumes generated without control cells are generally over-estimated in 3D 

extent and inconsistent with the point Cl data. When clay control cells were used, the Cl plume largely does 

not spread into the glacial deposits, which is what is suggested by the available point data. 
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Figure 4.13: ‘Clay control cells’ used for 3D Cl interpolation. (a) 3D visualizations of the geologic material 

model characterizing the heterogeneity of the glacial deposits (from Liao et al., in review); (b) 3D depictions 

of control cell locations; and (c) Cl plume comparison. 

The results from the 3D interpolation are shown in Figure 4.14. At each grid cell location, the aquifer system 

thickness (DEM surface elevation minus the Coldwater Shale top elevation) was computed and sub-divided 
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into 9 layers of equal thickness. The Cl concentration was extracted from the midpoint of each of these 

vertical layers (Figure 4.14b-g).    The 2D distributions reveal that the extent and severity of the 

Clcontamination increases with depth into the aquifer system, e.g., in the northwest, central and east-central 

portions of the study domain.   This 3D Cl spatial structure resembles “upconing” of saline water in the 

bedrock aquifer towards the surface, in which plumes of groundwater with relatively high Cl concentrations 

migrate from deeper saline regions of the regional groundwater system and mix with the overlying fresh 

groundwater. This phenomenon is discussed in several saltwater intrusion studies in which pumping 

induces a localized rise in the freshwater–saltwater interface underneath areas of groundwater withdrawals 

(Schmork and Mercado 1969; Paster and Dagan 2008; Werner et al. 2009; Jakovovic et al. 2011).  While 

the extensive surface water network undoubtedly acts as ‘natural pumps’ to draw deeper, chloride-laden 

groundwater to the surface (Curtis et al. 2018), the following subsections explore the possibility of localized 

upconing of saline water toward pumping wells as the freshwater head is locally decreased due to pumping.   

 

Figure 4.14: Results from the 3D interpolation of Cl concentrations, shown as 2D distributions at various 

depths from the land surface. (a)  3D plume and representative cross-sections through the domain used for 

interpolation  (b)-(d) 2D distributions of Cl in the glacial deposits (top layer, 3rd layer and bottom layer,  



192 

Figure 4.14 (cont’d) 

respectively); and (d)-(f) 2D distributions from the bedrock aquifer (top layer, middle layer, and bottom 

layer, respectively). 

 Impacts of Pumping 

With a characterization of the flow system dynamics and a compiled dataset of Cl concentrations across 

space and time, an analysis of the possible causal relationship between pumping and water quality was 

possible. One approach might have constructed a 3D interpolation of Cl concentrations for different time 

periods in an attempt to identify locations of significant changes. Although a significant amount of Cl 

concentration data were available for analysis, applying this approach with reasonable statistical confidence 

for different time periods was not possible given the large spatial scales involved. Alternatively, modeling 

Cl mass transport using the velocity vectors from the numerical flow modeling requires an accurate 

treatment of the boundary (source) conditions, which was an impractical (if not impossible) task given the 

scale and complexity of the problem.  However, as shown next, by using 2D graphical overlays and 

aggregated statistical analyses, it becomes increasingly clear that pumping has exacerbated the brine 

upwelling in the region.  

Overlays of all Cl concentration point data extracted from bedrock wells (field collected and historical) on 

the simulated drawdown (1966-2015) and the 2015 SWL distributions are presented in Figure 4.15. In 

general, many of the elevated samples (Cl > 250 mg/L) occur within the ‘drawdown cone’ (drawdown of 5 

m or more) in central Ottawa County, although there are a number of samples with Cl < 125 mg/L also 

occurring within this area, especially along the eastern flank (Figure 4.15a).  Moreover, there are a number 

of samples with very high concentrations occurring in areas with very little or no drawdown, e.g. northwest 

or east Ottawa County.  There is a somewhat better spatial correlation between the occurrence of elevated 

Cl concentrations and  groundwater ‘valleys’ or areas of low SWLs (Figure 4.15b) where groundwater is 

expected to have a relatively greater upward flow component.  All of the elevated Cl samples occur in 

groundwater valleys, including those samples from the northwest and east portions of the study domain.   

As demonstrated from the simulated drawdown results (see Figure 4.10), some of the areas in the bedrock 
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aquifer have historically  contained naturally low SWLs, for example, along the Grand River and in 

northwest Ottawa County, whereas some areas are “artificially low” of because increased groundwater 

withdrawals, e.g. south of the Grand River in central Ottawa County.  

 

 

Figure 4.15: Spatial relationship between Cl concentration and groundwater flow dynamics. (a) simulated 

drawdown (1966-2015) in the bedrock aquifer and all Cl point data collected from the bedrock aquifer (field 

sampling and data mining); and (b) 2015 head distribution in the bedrock aquifer and all Cl point data 

collected from the bedrock aquifer. 

The large concentration gradients within the groundwater valleys indicate preferential upwelling to discrete 

points or sub-regions rather than a widespread salinization of the near-surface environment.  This is 

consistent with the upconing structure revealed in the 3D spatial interpolation of Cl concentrations. 

Consideration of subsurface geology suggests that aquifer geometry plays an important role as well.  

Denser, more saline groundwater will occupy the bottom portion of the aquifer system (i.e., along the 

Coldwater Shale-Marshall aquifer interface). However, the top surface of the Coldwater Shale unit is highly 

irregular, and thus, wells completed at a similar elevation (but at different locations) may yield significantly 

different  Cl concentrations.  In other words, in areas where the Marshall aquifer is relatively thick, 
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concentrations may be lower because the underlying ‘plume’ is occupying the basal portion of the aquifer 

further away from the well bottom than in the case of wells completed in areas where the Marshall aquifer 

is thin.  

From the proceeding analysis, it appears that that the spatial distribution of Cl concentrations are controlled 

primarily by two mechanisms: 1) natural discharge of high-Cl groundwater into the bedrock aquifer beneath 

the County; and 2) pumping-induced migration of high-Cl groundwater into areas of significant drawdown.  

For areas impacted by the latter mechanism, increases in Cl concentrations with time are expected. Using 

the entire historical Cl dataset (glacial (drift) and bedrock wells), concentrations were plotted as a function 

of time (Figure 4.16). This analysis shows that the number of samples yielding very high Cl concentrations 

increased with time and that, on average, the Cl concentrations in bedrock wells also increased with time.  

Conversely, the drift wells do not exhibit a trend of increasing Cl concentrations, although there are more 

drift wells with high concentrations in recent times.  

 

 

Figure 4.16: Graphical comparison of Cl concentrations vs. time. (a) dataset consisting of mined data 

from historical water well records; and (b) dataset from (a) shown with a reduced Cl concentration scale 

and linear regression trendlines. 

Although pumping-induced migration of brines toward the land surface may be responsible for the general 

upward trend in Cl concentrations in groundwater from bedrock wells, it is possible that some newer wells 

are drilled deeper than older wells thus penetrating into the deeper saline groundwater.  To investigate this 

possibility, an analysis was completed using samples taken at different times from the same wells  (i.e. 
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historical water quality data and field-collected data). Comparing the field-collected Cl concentrations 

versus the historical Cl concentrations  for 248 wells (Figure 4.17a) shows a general increase in Cl 

concentrations (i.e., most of the data points fall above the 45 degree line of perfect agreement).  This is 

especially the case for wells with a field-collected Cl concentration of 250 mg/L or more, with 62 of the 75 

(83%) such locations showing an increasing Cl concentration with time. Most of these locations occur in 

central Ottawa County, and analysis of Cl concentration residuals (field-collected Cl concentration minus 

the historical Cl concentration) and well bottom elevations shows that most of the significant increases in 

Cl concentrations are occurring in deeper portions of the aquifer system (Figure 4.17b).  Of the 59 wells 

with Cl residuals of 50 mg/L or more, 40 of them (68%) were completed at bottom elevations of 160 m or 

lower, which is a reasonable approximation of the average bedrock top surface in Ottawa County (Churches 

and Wampler 2013).  

 

Figure 4.17: Temporal analysis at wells with both historical and field-collected Cl concentration data. (a) 

comparison of Cl concentrations from field-collected data and historical water quality records at 248 

locations (see inset map in Figure 4.11 for map of locations used in analysis); and (b) graphical comparison 

of Cl residual (field-collected mg/L – historical mg/L) as a function of well bottom elevation (amsl). 

The interpretation of the results shown in Figure 4.17 is that deep groundwater pumping is causing an 

upward movement of deeper, more saline water into the upper portions of the bedrock aquifer system. Over 

time, this water mixes with and/or displaces the fresh groundwater originally occupying the region around 
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the well, thereby significantly increasing the  Cl concentration.  Modest (< 50 mg/L) increases or decreases 

in Cl concentration that are seen at predominantly lower concentrations may be due to short-term 

fluctuations caused by surface processes (e.g., infiltration of dissolved road salts, periodic water 

withdrawals, etc.). To test this interpretation, the simulated flow in the deep part of the bedrock aquifer 

system was visualized using a forward 3D particle tracking technique.  Particles were placed on a surface 

interpolated from scatter points created 10 m directly below all bedrock well bottoms, and moved based on 

the velocity vector results of the transient simulation.  The particle path represents the flow direction in that 

part of the groundwater system.  

To provide greater vertical details, a submodel was developed from the countywide flow model for just the 

central portion of the County where significant changes in groundwater levels and fluxes were observed 

and where the highest Cl concentrations generally occur.  The submodel consisted of 15 computational 

layers (as compared to 7 in the parent model) and derived its boundary and initial conditions (in the form 

of head values) from the 2015 simulation results (see Liao et al. 2015 for more details about this multi-scale 

modeling approach). The 2015 pumping configuration and recharge distribution was applied ad infinitum 

and the simulation was run for 20 consecutive years with one year time-steps.   

As shown in Figure 4.18, deep upwelling can be observed toward 1) the Grand River (GR) in the western 

and eastern portions of the submodel; 2) local capture zones around high-capacity wells where deep 

groundwater is upwelling towards well bottoms; and 3) major capture zones created by clusters of many 

small-capacity wells (not shown here for aesthetic reasons) and high-capacity wells (e.g., in the western 

portion of the submodel).  These patterns are consistent with the idea that slow upwelling of deeper, more 

saline groundwater is responsible for the significant increases in Cl concentrations, especially in the deeper 

bedrock wells.  
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Figure 4.18: Results from 3D particle tracking. (a) initial particle positions and the position of high-capacity 

wells existing in 2015; and (b) particle flow paths after 20 years of steady-state simulation (2015 pumping 

and recharge simulated ad infinitum). 

A final step in evaluating the impacts of pumping was to determine if the 3D spatial extent of elevated Cl 

concentrations is increasing in response to pumping. As previously mentioned, constructing and visualizing 

countywide 3D interpolations of Cl concentrations for different time periods was not possible.  However, 

there was enough data in the key area in central Ottawa County to  perform separate 3D interpolations for 

the past three decades.  The spatial interpolations shown in Figure 4.19 present the transverse (areal) data 

density for Allendale Twp. for the time periods: up to 1995; 1996-2005, and 2006-2015 (note the relatively 

even distribution of Cl data across space and time).  Also shown are the 250 mg/L and 400 mg/L Cl  iso-

surfaces for the three specified time periods.  Clearly, the extent and severity of Cl contamination is 

becoming  worse, especially in the western portion of the aquifer where it is relatively thin and drawdown 

is significant.  This is additional evidence for the pumping-induced migration of brine-influenced 

groundwater over the recent-past years of development. 
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Figure 4.19: Cl plume modeling in Allendale Township (central Ottawa County) for three time periods: up 

to 1995 (left column), 1996-2005 (center column), and 2006-2015 (right column). (a) transverse data 

density across the three time periods; (b) 250 mg/L iso-surfaces for the three time periods; and (c) 400 mg/L 

iso-surfaces for the three time periods. 

While the analysis of many Cl measurements from water wells distributed across the county and from past 

decades provided compelling evidence that, in general, concentrations are increasing with time, the 

quantification of Cl changes across time proved difficult to address. There was no consistent interval of 

analysis available (*i.e., each comparison had its own unique set of sampling dates that may be very close 
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or very far apart in time), and at lower concentrations, there appeared to be no clear decreasing or increasing 

trend – likely the result of the complex interplay between natural variability, anthropogenic sources, and 

the complex, dynamic structures of the Cl ‘plume’.  These aspects related to water quality dynamics and 

data availability made it difficult to quantify the rate of  salinization in the aquifer system at a given location 

or across a specific time period; and ii) the coupling between pumping rates and changes in Cl 

concentrations. Such characterization requires a network of strategically-placed 2ater quality sensors 

delivering long-term measurements of groundwater salinity.  

4.6 Ch. 4 Conclusions 

In this study, we investigated the widespread salinization of shallow groundwater in the Lower Peninsula 

of Michigan due to natural upwelling of deep brines. We performed a holistic, system-based evaluation of 

the groundwater conditions across the southern two-thirds of the peninsula, unifying data-driven modeling 

of massive amounts of hydrogeologic information across multiple spatial scales with detailed analysis of 

groundwater salinity dynamics and process-based groundwater flow modeling for an emerging area of 

concern (Ottawa County, Michigan). The key findings are as follows: 

• Brines are systematically impacting low-lying areas where groundwater is discharging (moving 

upwards) in different regions and subregions across the Lower Peninsula. 

• Within local hot spots, the relative impact of upwelling was determined to be controlled by: i) streams 

acting as ‘natural pumps’ that bring deeper (more mineralized) groundwater to the surface; ii) the 

occurrence of nearly impervious geologic material at or near the surface which restricts freshwater 

flushing of deeper groundwater; and iii) the space-time evolution of water well withdrawals which 

slowly induces migration of saline groundwater from its natural course. 

• Four regions were identified as statewide hot spots:  west-central Lower Michigan, the Saginaw Bay 

region of east-central Lower Michigan; southeastern Lower Michigan; and the coastal plain of 

southeastern Michigan and the ‘Thumb region’. 
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• The salinization is most severe in the Saginaw Bay region and along the southeastern coastline of Lower 

Michigan.  In west-central Michigan, the pollution is less severe, but increased groundwater use 

threatens the long-term sustainability of the region because of pumping-induced migration of saline 

groundwater from its natural course.  

Although some of these findings are not surprising or different from past studies of groundwater salinity in 

Michigan, especially those related to the natural sources and  hydrogeologic controls of the pollution (e.g., 

Long et al. 1988; Westjohn and Weaver 1996b, Curtis et al. 2017),  the amount of data used in this study 

to provide detailed information at and across different scales is unprecedented. Detailed mapping and 

characterizations of groundwater conditions across space and time is what enables managers to prioritize 

resources and make management plans for water-supply needs. As demonstrated here, a new opportunity 

is afforded by the recent assimilation of water well datasets by state and local agencies that contain massive 

amounts of physical groundwater data, geological information, and in some cases, water quality information 

(e.g., the Illinois State Geological Survey repository (ISGS 2015), the Kansas WIZARD water well levels 

database (KGS 2002), the Geosam Database for the State of Iowa (IGS 2015), the Water Data Library for 

the State of California (WDL 2017), and the Virginia Department of Environmental Quality well database). 

Combined and integrated with process-based models, field-sampling, and geospatial or geochemical 

analyses, these data support the detailed aquifer system characterizations required to manage NPS 

groundwater pollution.  
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CHAPTER 5  

Well-scale Predictions of Groundwater Sustainability that Account for Human-environment System 

Dynamics 

5.1 Executive Summary of Ch. 5 

This chapter presents the application of the calibrated groundwater flow model discussed in Chapter 3 to 

estimate future groundwater sustainability in Ottawa County, Michigan.  A systematic process is developed 

and applied for providing operational, well-scale estimates of current and future groundwater availability 

at key locations of concern, utilizing the future model results to account for detailed human-environment 

system dynamics. Specifically, it augments (1) long-term (2016-2036) simulated changes of groundwater 

levels due to and human activity (e.g., expected countywide groundwater use and land development.) and 

climate change (recharge dynamics);  with (2) well-scale analyses of groundwater levels to estimate 

sustainable yield (pumping rates) at different locations during  ‘limiting situations’ – when groundwater 

pumping will be at its largest and recharge is lowest. The modeling framework enables calculation of 

available drawdown and sustainable groundwater yield (pumping) under different management criteria 

(water availability and acceptable water quality). The approach is applied at 10 locations of interest. The 

results suggest that future groundwater availability is largely controlled by acceptable water quality of the 

intended user, although large-capacity water wells used to support agriculture or industry may face 

challenges producing required yields without utilizing an unacceptable portion of the local saturated aquifer 

thickness.  The results from the future modeling effort will be provided to Ottawa County to guide future 

data collection and augment policy and community planning based on evaluation of likely future conditions. 

5.2 Ch. 5 Introduction  

The calibrated groundwater flow model of the subregional aquifer system underlying Ottawa County, 

Michigan (and immediate surrounding areas) described in Chapter 3 was applied to estimate countywide 

groundwater flow conditions 20 years into the future (2016-2036). The future simulations were informed 

by best estimates of projected land use/land cover (LULC) and future groundwater use developed by 
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county-level planning and utilities departments. Analysis of long-term temperature and precipitation 

observations from the National Climate Data Center was used d to estimate temperature and precipitation 

patterns needed to project future recharge conditions. A framework using future model results and different 

management criteria (water availability and acceptable water quality) was developed and applied for well-

scale analyses of available drawdown and sustainable yield at 10 different locations of interest during  

‘limiting situations’ – when groundwater pumping will  be at its largest and recharge is lowest during the 

summer months of Michigan (July, August and September). In this way, the local analysis considers larger 

human-environment interactions by considering ‘background’ groundwater level dynamics controlled by 

expected groundwater use, land development, and recharge.   

5.3 Countywide Estimates of Future Groundwater Conditions   

Figure 5.1 presents the work-flow relating different components of the countywide future modeling effort. 

The following subsection discusses i) how future groundwater use and land development was estimated, 

and ii) preparing flow model inputs (water use and recharge).  
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Figure 5.1: Work-flow of preparing projections provided by Ottawa County into future recharge and water 

use models needed for application of calibrated flow model. 

 

 Planning and Projections  

Land use projections. Ottawa County Planning and Performance Improvement Department (PPID) and 

Public Utilities Department (PUD) worked with township-level officials and decision-makers to carefully 

plan land development (zoning build-out) and translate this information into county-wide spatial maps of 

LULC for every five years for the 2015-2035 period. These maps were converted into input for the future 

recharge modeling. The projected LULC is not expected to undergo significant large-scale changes during 

the next 20 years, although small-scale changes may have important impacts on water use (see details about 

projecting well-dependent land parcels below). Chapter 3 provides more details of land use/land cover in 

Ottawa County and its use in recharge modeling completed for this integrated study.  

Projecting Future Water Use. Ottawa County PPID provided two important sets of information required 

for modeling future groundwater use: 1) projected pumping rates of specific industrial, commercial and 
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public supply wells based on adjustments to calibrated pumping rates (see Chapter 3); and 2) locations of 

new water wells based on detailed zoning and infrastructure planning completed at the township levels.   

Estimated pumping rates of currently existing wells. Expected changes in water use for 

industrial/commercial wells were calculated by Ottawa County PPID and PUD based on Gross Domestic 

Product (GDP) growth projections for different industrial/commercial categories from the UpJohn Institute 

for Employment Research of southwest Michigan. For example, if a 16% increase in the GDP was expected 

for the period 2015-2020 for a well supporting a particular type of industry, the pumping rate was increased 

by 16% from the calibrated rates (see Table 5.1). In a similar way, expected changes in public supply wells 

(e.g., those serving schools, small residential communities, etc.) were based on predicted changes in student 

enrollment, expansions/constrictions in residential development, etc. In most cases, significant changes in 

expected water use were not expected for existing public supply wells (rather, increases in water use are 

expected to come primarily from installation of new wells on converted land parcels – see below). A simple 

treatment of high-capacity irrigation wells was applied: existing wells were allowed to continue pumping 

ad infitium at their calibrated rates determined from model development (see Chapter 3), and no new wells 

were added to the model nor were any wells removed (‘turned off’) during future simulation.  The approach 

applied here was considered pragmatic and reasonable considering that: 1)  the large number of socio-

economic and biophysical factors controlling crop production and related water demand makes projecting 

irrigation patterns difficult  and time-consuming); 2) the extent and spatial distribution of agricultural lands 

is not expected to change significantly in coming decades; and 3)  based on discussions with several 

authorities on local agriculture, it is predicted that the number of agricultural wells will actually decrease 

over time due to the movement from small-scale to large operation farming in Ottawa County (internal 

communications – Ottawa County PPID).  However, it is not clear when and where this will occur. Thus, 

the analysis provided was considered a conservative analysis in the context of sustainability – a ‘worst case 

scenario’ which is ultimately for what management hopes to prepare.  For those existing irrigation wells 

that continue to operate, long-term monitored and/or site-specific problem solving is recommended (see 
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Well-Scale Analysis of Sustainability).   Existing private wells also continued pumping with rates 

determined through model calibration.  

Table 5.1: Projected percent change in GDP and estimated groundwater pumping rates for large-use 

industrial/commercial wells in Ottawa County. Source: Ottawa County Planning and Performance 

Improvement Department (Ottawa County 2017).  

Company 

% 

Change 

in GDP 

(2015-

2020) 

% 

Change 

in GDP 

(2021-

2025) 

% 

Change 

in GDP 

(2026-

2035) 

Number 

of wells 

 

2015 

Water 

Use 

(GPM) 

Projected 

water 

use 

(GPM) 

(2015-

2020) 

Projected 

water 

use 

(GPM) 

(2015-

2020) 

Projected 

water 

use 

(GPM) 

(2015-

2020) 

Applied 

Mechanics 

Corporation 

-2% 16% 59% 1 

 

13.5 13.2 15.6 21.4 

Autumn Hills 

Landfill 
-7% -9% -2% 1 

 
13.5 12.6 12.3 13.2 

Blink Lumber 

Company 
13% 22% 57% 1 

 
13.5 15.2 16.5 21.2 

Consumers 

Energy 
8% 12% 21% 9 

 
121.5 131.4 136 146.6 

Dewitt Barrels 

Incorporated 
8% 14% 26% 1 

 
13.5 14.6 15.4 17 

DeWys 

Manufacturing 
-2% 16% 59% 2 

 
27 26.4 31.2 42.8 

Grassmid 

Transport 
4% 11% 40% 2 

 
27 28 30 37.8 

Holland Pallet 

Repair 
6% 13% 34% 1 

 
13.5 14.3 15.2 18.1 

Hudsonville 

Truck and 

Trailer 

4% 11% 40% 1 

 

13.5 14 15 18.9 

J&R 

Automation 
22% 40% 68% 2 

 
27 32.8 37.8 45.4 

Landscape 

Design 
4% 3% 10% 1 

 
13.5 14 13.9 14.9 

Leprino Foods 19% 19% 21% 3  40.5 48.1 48.2 49.1 

Superior Steel 

Components 
-2% 16% 59% 1 

 
13.5 13.2 15.6 21.4 

Trailpoint 

Brewing 
7% 14% 37% 1 

 
13.5 14.4 15.4 18.5 
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Future well-dependent parcels. Ottawa County PPID used an ArcGis add-on called CommunityViz (ESRI 

2011) and compiled and translated township data and regulations into a format that could be used by the 

program to predict occurrence (in space and time) of future parcels requiring new wells. The overall process 

consisted of, on a countywide basis: identifying developable land; defining structure density for differently 

zoned land; prescribing layout patterns of development; determining growth rates of development; and 

excluding parcels that will likely connect to municipal water supply (water mains from urban centers, e.g., 

Grand Rapids, Holland or Grand Haven).  

The process of identifying developable land consisted of eliminating land that would be unsuitable for 

development: park land, cemeteries, bodies of water, wetlands, 100-year floodplains, and roads and existing 

structures. Structure density was calculated by considering floor area ratios (FAR), allowable building 

height, open space requirements, and setbacks from roadways. The analysis also included an efficiency 

factor as a percent of developable land that will actually be developed. Factors, such as future roads, 

development patterns, typical lot size, or other barriers to development reduce the efficiency rating for each 

zoning district. Each zoning type was carefully assigned a layout pattern based on current development 

trends. For instance, mobile home parks are generally laid out in a grid pattern, while commercial properties 

tend to develop along roads. Growth rates were calculated by analyzing population projections and 

historical building permit data and reaching out to local organizations for input regarding growth rates (e.g., 

Lakeshore Advantage, Michigan Department of Environmental Quality, and the Upjohn Institute). In order 

to determine which parcels would likely connect to surface water, it was assumed that any development 

that occurs within 250 ft. of an existing water main would connect to that source. (Water main extensions 

planned for the future were also considered as part of the master build-out completed by Ottawa County 

PPID and PUD). Large, dense groupings of development within 1000 ft. of water mains were also excluded, 

as these larger developments would likely opt to extend the main to their location for cost effectiveness. 

Local input was also collected by speaking with township officials to identify proposed developments, 

locate future utility connections, and to verify the overall buildout process for that specific township. The 
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output from analysis was a map of future well-dependent parcels with 3800 new wells. Parcel attributes 

included: expected well type, development period (2015-2020, 2021-2025, or 2026-2035), and number of 

wells expected. A vast majority of these parcels will support private domestic wells, but a handful are 

associated with commercial/industrial development. All new wells were assigned pumping rates derived in 

the development of the calibrated flow model (see Chapter 3). 

Conversion of wells into model inputs. The aquifer from (and depth at) which new wells extract groundwater 

is important and must be provided as input the 3D groundwater flow model. The subsurface geology, 

mapped during the county-wide geologic modeling (see Chapter 3) was used as a guide for determining 

depth to each well provided by Ottawa County PPID. The first step was to determine where the glacial 

aquifer likely not productive (because of extensive fine-grained material, e.g., clay) and the Marshall 

aquifer is accessible below.  The wells that satisfied these criteria were added to the fractured bedrock layer 

(see Figure 5.2). Of course, in some of the locations (e.g., southeast Ottawa County) is it possible that 

productive “pockets” of the glacial aquifer will be encountered. But as previously mentioned, the goal was 

to provide a conservative analysis of long-term sustainability, which is consistent with the approach used 

here.   

After assigning wells to the bedrock aquifer, the remaining wells were assigned to one of the five glacial 

layers utilized in the countywide flow model.  The hydraulic conductivity distributions from the five glacial 

layers were used to determine which layer was most appropriate for well screen location.  First – considering 

that wells will go deep enough to avoid surface contamination and/or water table fluctuations/drawdown 

but no deeper (to save costs) – wells were overlaid to the K map of the 4th deepest glacial layer. Wells that 

fell in places of high expected yield (high K values) were assigned to the 4th glacial layer.  The remaining 

wells were then overlaid to the 5th deepest layer, and the process was repeated.  Any wells that were in 

locations of low K in the 4th and 5th deepest glacial layers were forced to go to a shallower glacial layer 

(layer 3 or layer 2, depending on the K distribution). The wells assigned to each glacial layer are shown in 

Figure 5.2. 
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Figure 5.2: Assigning new future wells to different vertical layers in the calibrated flow model. The ‘5th 

glacial layer’ is the deepest of the layers representing the unconsolidated glacial deposits. 
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It was also necessary to convert the estimated time period of installation (e.g., 2015-2020) to a specific 

installation date for input to the flow model.  A reasonable assumption is that the well installation dates are 

distributed evenly across the estimated time period of installation (i.e., the percentage of wells added to the 

model during the time period follows a linear trend). Without additional information, however, it is difficult 

to determine which wells (in which locations) to ‘turn on’ at the appropriate date. A mathematically similar 

approach was used which added all wells at the half-way point of a time period of. This approach was 

deemed sufficient given that the key objective of the future modeling was to determine the long-term impact 

of additional water use relative to 2015 conditions. 

Temperature and precipitation trends for recharge modeling. The National Climatic Data Center operates 

351 temperature stations and 857 precipitation throughout the Lower Peninsula of Michigan. In recent work 

by Zhang (2014), 10-year annual averages for southwest Michigan were calculated using data from 1972-

2012.  Linear regression was applied to the 10-year averages to provide an estimate of long-term temporal 

trends. The analysis revealed a warming trend of 0.228◦ C per decade and 0.190◦ per decade for maximum 

and minimum air temperature, respectively. No clear trend was detected for long-term precipitation. The 

air temperature trends were used to estimate future air temperatures via the Delta-method. In this approach, 

short-term (e.g., day-by-day) temperature or precipitation variations are repeated in future extrapolations, 

but each temperature is offset using the trend from the analysis of historical data, the magnitude of the offset 

depending on how far into the future one wishes to estimate (see, e.g., Gago Da Silva et al. 2012). Daily, 

4km estimates of maximum and minimum temperature from the PRISM Climate Group (PRISM 2004)    

from the past decade (2006-2016) were ’recycled’ two times to generate daily temperature data for 2016-

2036 (with the appropriate offset applied via the Delta method). Because there was clear long-term trend, 

precipitation patterns from the last decade (2006-2016) were simply recycled without using an offset. 

 Estimates of Future Groundwater Flow Patterns 

The future recharge scenario and water use model were used as input to the calibrated flow model to 

estimate mean annual flow patterns across Ottawa County from 2016-2036. The results suggest that future 
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wells withdrawals and expected recharge are not expected to significantly impact shallow groundwater 

levels in unconsolidated glacial deposits, at least at the scales modeled in this study (300m x 300m).  

However, noticeable change is expected for the deeper bedrock aquifer in response to the addition of new 

wells. In particular, decreases in groundwater levels are predicted for the central region of the county in 

response to the addition of new wells (see bottom portion of Figure 5.3). To quantify the impact of adding 

new wells to the aquifer system over the next 20 years, a ‘baseline’ simulation was executed and compared 

to the future simulation. In the baseline model, new wells were not added for the 2016-2036 time period 

(i.e., the 2015 pumping configuration was applied ‘as is’ throughout the simulation). Both simulations used 

as input the future recharge estimates based on changes in LULC and projected temperature, and thus, and 

differences in their results can be attributed to additional groundwater withdrawals.  A spatial differencing 

of simulated head distributions was computed by subtracting the baseline simulation head results from the 

future simulation head results for each year of simulation.  Figure 5.3 (upper portion) shows results for 

select years to demonstrate how water level decline is expected to evolve over time. The most significant 

decline (3-5 m) due to pumping is likely to occur in south-central Ottawa County, while modest pumping-

induced decline (1-3 m) is expected for the rest of central Ottawa County.  
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Figure 5.3: Estimates of future groundwater levels based on application of the calibrated flow model: (top-

right) countywide spatial mapping of additional groundwater decline expected over next 20 years; (bottom) 

detailed head dynamics in an area of concern.   

 

While the projected increases in groundwater withdrawals are expected to result in groundwater level 

decline in parts of the bedrock aquifer, it is insightful to consider the impact relative to historical trends. 

Figure 5.4 show the bedrock aquifer head output from each simulation (‘baseline’ and future) for two-point 

locations in central Ottawa County from 1966-2036. Clearly, these plots suggest that SWL decline 

experienced over the previous 50 years (1966-2015) is much more than the SWL decline expected to occur 

over the next 20 years (2016-2036) based on projections of well buildouts provided by Ottawa County 

PPID. (Also note that the SWL variability due to recharge – as expressed in the baseline simulation curves 

– is significantly less than the SWL decline caused by pumping in the bedrock aquifer). The graphics in the 

bottom-half of Figure 5.4  shows simulated drawdown (groundwater level decline) at all locations in the 

bedrock layer of the groundwater model.  The left-most graphic provides a spatial map of the drawdown 

occurring during the 1966-2015 time period, while the right-most graphic shows the expected drawdown 
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over the next 20 years (relative to 2015 conditions).  Clearly, the changes during the past 50 years are 

greater in magnitude and extent.   

In short, increases in groundwater use in the deep aquifer will cause additional water level decline, although 

the rate of decline will diminish in response to checks on groundwater increases in parts of the system. 

However, groundwater will still be significantly less than “natural” (1966) SWLs in many parts of the 

bedrock aquifer. This has important implications for water quality: the low SWLs may continue to induce 

migration of C-laden water away from its natural path of discharge to the Grand River and its tributaries 

(see Chapter 4).  
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Figure 5.4: Groundwater level dynamics for 70 year of analysis (1966-2036): (top): Time-series of 

simulated heads at two different areas undergoing significant temporal change; (bottom): countywide 

spatial analysis of simulated groundwater level change for 1966-2015 (left) and 2016-2036 (right). 

 

5.4 Well-Scale Analysis of Future Groundwater Availability 

The results of the future simulations helped illustrate the expected cumulative impacts of projected water 

use and land development on groundwater levels in Ottawa County, which is predicted to be less significant 

than changes in previous decades. A natural question raised by this analysis is: given the understanding of 

the subregional groundwater system, what is the available drawdown at a particular location, and what is 

maximum sustainable yield (pumping)?  Although the applied groundwater model is expected to reproduce 
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systematic decline (or drawdown) in groundwater levels, drawdown at a single well is larger than what was 

simulated. This is because: a) the model used representative cells for contiguous areas, which tends to 

smooth out the sharp changes in water levels near a well, despite correct predictions of head further from 

the well (Anderson and Woessner, 1992); and b) wells in our model used long-term “effective rates” (as if 

the pumping was spread out over an entire year).  In reality, water wells pump at rates higher than the 

effective rates for discrete amounts of time (see Chapter 3), during which drawdown will be larger than the 

“background” decline characterized by the groundwater model. In light of the foregoing, a well-scale 

analysis was applied to provide guidance on “limiting situations” – when groundwater pumping will be at 

its largest and recharge is lowest during the summer months of Michigan (July, August and September). 

Specifically, local analytical corrections were applied to 2036 simulated bedrock head at key locations in 

order to assess available drawdown and maximum sustainable yield. In this way, systematic long-term 

decline of ‘background’ groundwater levels over 20 years was captured with the subregional future 

simulation, while location-specific limits on pumping are provided through straight-forward analytical 

groundwater analysis. (Note that this analysis could be done for any future time of interest simulated by the 

calibrated model). 

 Analytical Approach 

The analytical solution used here was the Cooper and Jacob (1946) approximation of the Theis (1935) 

solution for radial groundwater flow to a well in confined aquifers: 

𝑠 =
2.3𝑄

4𝜋𝑇
log

2.25𝑇𝑡

𝑟2𝑆
                                                                          (5.1) 

where s is the drawdown (or decline in water level relative to pre-pumping levels) (m), Q is the applied 

pumping rate (m3/day), T is the local aquifer transmissivity (m2/day), t is the duration of pumping (days), r 

is the radial distance (m) from the well center at which the analysis is being made, and S is the local aquifer 

storage coefficient (dimensionless). Use of this equation for estimating well-specific drawdown in the 

bedrock aquifer is justified because negligible local recharge to the aquifer system is expected for the 

analysis of interest, due to the combined effect of the thick continuous layer of confining material in the 
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overlying sediments and low recharge expected during summertime months in Michigan. Further, it is 

known that the Jacob-Cooper approximation provides good estimates of drawdown when input to the Theis 

well function, u, is small: 

𝑢 =
𝑟2𝑆

4𝑇𝑡
                                                                               (5.2) 

This condition was satisfied at all locations, as drawdown at the well location was of the analysis of interest 

(i.e., values of r were very small).  

The process of estimating available drawdown and is maximum sustainable yield (pumping) at a particular 

location is presented in Figure 5.5. First specific capacity, Q/s, was calculated by re-arranging equation 

(5.1):  

𝑄

𝑠
=

4𝜋𝑇

2.3
(log

2.25𝑇𝑡

𝑟2𝑆
)

−1
                                                                  (5.3) 

Local bedrock aquifer properties (T and S) were derived from the calibrated groundwater flow model (see  

Table 5.2 in next subsection), a value of 0.0508 m (2 in.) was used as the well radius (although this could 

change based on well type), and 90 days (≈3 months) was used for pumping duration. (Note that, in this 

analysis, it is assumed that pumping would operate continuously for 3 months; in reality, pumping would 

be intermittent and more intense than the 3-month continuous values reported here. However, using smaller 

values of t would yield larger values of maximum sustainable yield, and thus, the approach used here is 

conservative in the context of sustainability evaluation, consistent with the approach used for countywide 

estimates of future groundwater conditions (see above). Well losses due to turbulent flow through the well 

screen and inside the borehole were applied through the use of a well efficiency factor, E, to calculate the 

effective specific capacity, (Q/s)eff, as Q/s multiplied by E.  Well efficiency was assumed to be 0.75, but 

again, this this could change based on well type and could be fine-tuned based on further information.    

Next, available drawdown was calculated by considering the 2036 local bedrock head and management 

criteria for acceptable use of available drawdown, savail. Four management scenarios were considered: 
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• Scenario 1: well water level drops to elevation at a distance of 5% of total depth from the bedrock top 

surface (i.e., just when the local bedrock aquifer switches from confined to unconfined conditions). 

• Scenario 2:  well water level drops to elevation at a distance of 50% of total depth from the bedrock top 

surface, representing an aggressive use of the saturated aquifer thickness. (Note that, in this case, the 

bedrock aquifer transmissivity changes during unconfined conditions. An average transmissivity 

calculated with a saturated thickness of 0.75B was used, where B is the local aquifer thickness. See 

Appendix at the end of this chapter.) 

• Scenario 3: water level drops to elevation where present-day dissolved chloride concentrations are 100 

mg/L 

• Scenario 4: water level drops to elevation where present-day dissolved chloride concentrations are 250 

mg/L 

The results from 3D interpolation of Cl concentrations (see Chapter 4) were used to determine appropriate 

elevations for scenarios 3 and 4. Finally, a maximum sustainable yield, Qmax, was calculated for each 

management scenario by multiplying effective specific capacity by available drawdown.  

 

 

Figure 5.5: Work-flow for estimating available drawdown and maximum sustainable yield (pumping) at a 

specific location using results from the future simulations.  
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 Illustrative Application to Several Key Areas 

The well-scale analysis was applied at 10 locations across Ottawa County which exhibited problems related 

to groundwater decline and/or high Cl concentrations bedrock aquifer in the central portion of Ottawa 

County (see section 4.5 of Chapter 4). Figure 5.6 shows the locations used in the analysis with an example 

conceptual schematic of available drawdown and maximum allowed pumping under different management 

scenarios.  The local values for local bedrock aquifer properties (T and S) are shown in Table 5.2, and 

analysis results for all 10 locations are provided in Table 5.3. There is significant variability between 

different locations and management scenarios. Specific capacity varies from 8.2 m2/day to 39.0 m2/day, 

available drawdown from 10.5 m to 183.8 m, and maximum sustainable yield from 21.4 GPM (gallons per 

minute) to 387.6 GPM. Locations 2, 6, 7 and 8 are predicted to have the lowest maximum sustainably yields 

(25-35 GPM).  Some locations are water quantity-limited (smaller savail and Qmax for scenarios 1 and 2 than 

those for scenarios 3 and 4), e.g., Locations 4, 7 8 – while others are water quality-limited, e.g., Locations 

9 and 10. In all cases, Qmax is expected to be well above rates typical of private domestic pumping, although 

supporting large-capacity irrigation or industrial wells may be problematic, especially Locations 2, 6, 7 and 

8. 
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Figure 5.6: Locations used for well-scale analysis (left) and an example conceptual schematic of available 

drawdown and maximum allowed pumping under different management scenarios (right). 

Table 5.2:  local transmissivity (T) and local effective specific capacity (Q/s)eff
  utilized for well-scale 

analysis. 

Monitoring 

Area 

Local T 

(m2/day) 

Local 

(Q/s)eff 

(m2/day) 

Local 

thickness 

(m) 

Bedrock 

top Z 

(m) 

2036 

Head 

(m) 

MA-1 80.8 29.9 14.3 148.2 167.7 

MA-2 20.9 8.2 12.9 146.7 168.6 

MA-3 97.1 35.2 57.9 144.1 174.1 

MA-4 80.8 29.9 27.2 161.3 170.4 

MA-5 88.0 32.2 46.0 172.1 211.0 

MA-6 20.9 8.2 1.9 158.0 177.3 

MA-7 20.9 8.2 6.9 153.5 173.0 

MA-8 20.9 8.2 6.2 154.6 176.5 

MA-9 90.8 33.1 49.7 132.5 177.1 

MA-10 109.3 39.2 74.0 133.3 183.8 
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Table 5.3: Results from the well-scale analysis. Sc.1 = Scenario 1, Sc.2 = Scenario 2, etc. Empty entries for 

Sc.3 and Sc.4 indicate that concentrations of Cl¬ were not measured at or above 100 mg/L or 250 mg/L 

during the analysis of subregional water quality. 

Location 

Specific 

capacity 

(m2/day) 

savail (m)  

Sc.1 

savail (m)  

Sc.2 

savail (m)  

Sc.3 

savail (m)  

Sc.4 

Qmax 

(GPM) 

Sc. 1 

Qmax 

(GPM) 

Sc. 2 

Qmax 

(GPM) 

Sc. 3 

Qmax 

(GPM) 

Sc. 4 

1 29.9 20.3 26.7 17.7 31.8 111.2 111.2 97.4 174.7 

2 8.2 22.5 28.3 14.3 18.7 33.7 32.2 21.4 28.0 

3 35.2 32.9 59.0 19.5 21.9 212.3 288.5 125.8 141.6 

4 29.9 10.5 22.7 29.5 -- 57.4 94.5 128.8 -- 

5 32.2 41.2 56.9 -- -- 243.5 255.1 -- -- 

6 8.2 19.4 61.9 -- -- 29.1 70.4 -- -- 

7 8.2 19.9 23.0 21.1 -- 29.8 26.1 31.6 -- 

8 8.2 22.2 25.1 23.9 -- 33.3 28.5 35.8 -- 

9 33.1 47.1 69.5 44.8 127.0 286.3 320.3 271.7 288.5 

10 39.2 47.5 183.8 48.1 127.8 341.0 476.3 345.5 387.6 

 

The final Qmax values reported above are meant to be indicators of sustainable use at different locations 

rather than absolute, strictly-enforceable values. This is because the inputs used for calculating specific 

capacities and available drawdowns are derived from relatively course model parameters/outputs, that tend 

smooth out (or fail to capture) important local variabilities. For example, aquifer thickness was based on 

500 m resolution data layer representing the bedrock top surface raster, 2036 bedrock groundwater levels 

were captured at 300 m and 90m resolution (parent model and submodel, respectively), and transmissivity 

was calculated using representative hydraulic conductivity values for large regions of the bedrock aquifer 

(see Chapter 3). And as mentioned before, well efficiency may vary significantly, which leads to a wide 

range of calculated effective specific capacities. For more accurate calculations of Q/s, Savail, and Qmax 

(especially in areas with low values for savail and Qmax), long-term monitoring of groundwater levels and 

field measurements and should be implemented to improve accuracy of calculations inputs (e.g., estimates 

of hydraulic conductivity and aquifer thickness from aquifer pump tests and/or seismic profiles into the 

geologic model).  

Nonetheless, the work-flow developed and applied here is an effective use of the calibrated flow model 

results, most directly by providing necessary inputs for well-scale calculations of available drawdown and 
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sustainable pumping rates, but also by ensuring the local analysis considers larger human-environment 

interactions by considering ‘background’ groundwater level decline caused by expected future pumping 

dynamics.  

5.5 Ch. 5 Conclusions 

The calibrated flow model described in Chapter 3 was applied to generate future groundwater simulations 

informed by best estimates of projected groundwater use, land development and recharge dynamics. The 

results suggest that the rate of groundwater level decline will slow down as future developments/structures 

make careful use of existing and planned water infrastructure (water mains). However, groundwater will 

still be significantly less than “natural” (1966) SWLs in many parts of the bedrock aquifer. This has 

important implications for water quality: the low SWLs may continue to induce migration of Cl-laden water 

away from its natural path of discharge to the Grand River and its tributaries.  

A framework using calibrated model results and different management criteria (water availability and 

acceptable water quality) was developed and applied for well-scale analyses of available drawdown and 

sustainable yield at 10 different locations of interest. Future groundwater sustainability is largely controlled 

by acceptable water quality of the intended user, although large-capacity water wells used to support 

agriculture or industry may face challenges producing required yields without utilizing an unacceptable 

portion of the local saturated aquifer thickness. 

Results from the analysis done here are being used to guide long-term monitoring  and influence policy and 

continued community planning in Ottawa County, Michigan. Key socioeconomic factors will be 

considered, including but may not be limited to: an exploration of water conservation options to reduce 

future demands; evaluation of costs for expanding municipal water supply beyond its currently planned 

build-out; complete inventory of important or protected surface features (e.g., groundwater-dependent 

ecosystems, potential contamination sites, etc.); master land use and build-out policy, including a means 

for protecting important groundwater recharge areas; and delineation and protection of capture zones of 
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major well fields. This work will be integrated into a research paper to be submitted to a policy-oriented 

environmental journal in the near future. 
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Table 5.4: Average local transmissivity (T) and local effective specific capacity (Q/s)eff  utilized for 

evaluation of management scenario 2. 

Monitoring 

Area 

Local T 

(m2/day) 

Local (Q/s)eff 

(m2/day) 

MA-1 60.6 22.7 

MA-2 15.7 6.2 

MA-3 72.8 26.7 

MA-4 60.6 22.7 

MA-5 66.0 24.4 

MA-6 15.7 6.2 

MA-7 15.7 6.2 

MA-8 15.7 6.2 

MA-9 68.1 25.1 

MA-10 82.0 29.7 
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