
 

 

 
 
 
 
 

STUDENTS’ LOGICAL REASONING AND MATHEMATICAL PROVING OF 
IMPLICATIONS 

 
By 

KoSze Lee 

 

 

 

 

 

 

A DISSERTATION 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements 
for the degree of 

 
DOCTOR OF PHILOSOPHY 

Educational Psychology and Educational Technology 

2011 



 

 

ABSTRACT 

STUDENTS’ LOGICAL REASONING AND MATHEMATICAL PROVING OF 
IMPLICATIONS 

 
By 

KoSze Lee 

Students’ difficulties in reasoning with logical implication and mathematical proving 

have been documented widely (Healy & Hoyles, 2000; Knuth, Choppin, & Bieda, 2009). Review 

of the educational and cognitive science studies of students’ reasoning with logical implications 

and mathematical proving have revealed that their lack of cognizance of counterexamples might 

be a crucial factor. This study examined the role of logic training and counterexample in 

enhancing students’ logical reasoning and various aspects of mathematical proving, namely, 

Proof Construction, Proof Validation and Knowledge of Proof Method. In particular, the study 

hypothesized that logic training emphasizing counterexamples was better able to improve 

students’ reasoning of logical implications as well as mathematical proving, in comparison to the 

other two approaches emphasizing rule violations and truth tables.  

Using a pretest-intervention-posttest experimental design (3 conditions by 2 test trials), 

students' written and interview data (N = 60) were collected from three Singapore school sites, 

each over a four-day contact period (including the pretest and posttest administration days). 

Experimental results showed that logic training emphasizing counterexamples was significantly 

more effective in improving students’ logical reasoning of implication than the other two 

approaches (p = .0007, large effect size). However, logic training was only similarly effective or 

ineffective in improving some aspects of students’ mathematical proving across conditions.  

Interview findings from 12 selected students’ works on a new proving task conjectured 

that students improved their use of deductive inferences in all aspects of mathematical proving 



 

 
 

after logic training. Moreover, their successes in constructing mathematical proofs were also 

subjected to two conjectured factors, students’ interpretation of implication and mathematical 

knowledge. These findings suggested the importance of logic training and counterexamples in 

mathematics education and pointed to further inquiry about the role of students’ interpretation of 

implications and mathematical knowledge in mathematical reasoning and proving. 
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CHAPTER 1 INTRODUCTION 

The role of students' logical reasoning in learning mathematical proving has regained 

educational attention recently (Durand-Guerrier, 2003; Epp, 2003; Inglis & Simpson, 2004; 

Selden & Selden, 2003). Educational studies of the effects of training logical reasoning on 

students’ abilities in mathematical proving did not produce strong desirable benefits (Deer, 1969; 

Durand-Guerrier, 2003; Epp, 2003; Mueller, 1975; J. L. Platt, 1967). Observed improvements in 

proving are limited to students with better mathematics ability. Cognitive studies of the effects 

training in logic instructions had on improving students’ logical reasoning also often revealed 

little to moderate benefits (Cheng, Holyoak, Nisbett, & Oliver, 1986; Leighton, 2006). On the 

whole, logic instructions and students’ logical reasoning seems unproductive for their ability in 

mathematical proving.  

However, a closer analysis of the difficulties faced by students in both logical reasoning 

and mathematical proving suggests that a common source of difficulty lies in the students’ 

inclination for empirical verifications and their lack of cognizance of the possible 

counterexamples. To date, discussion in educational literature concerning the use of 

counterexamples to help students overcome this inclination is still in its exploratory stage and 

limited to instructional studies focusing on mathematical proof and proving (A. Stylianides & 

Stylianides, 2009a; Zazkis & Chernoff, 2008). Recognizing that students’ use of logical 

implications is foundational to their deductive proving (Harel & Sowder, 1998; Healy & Hoyles, 

2000; Hoyles & Küchemann, 2003; G. Stylianides & Stylianides, 2008), this study intends to 

examine how logic instructions with an explicit emphasis on counterexamples might help 

students improve their reasoning of logical implications and ability in proving.  
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Progress in educational and cognitive science studies of students’ use of logical 

implications warrants this study’s approach based on counterexamples. Recent cognitive science 

studies have devised ways of improving students' logical reasoning through eliciting students’ 

cognizance of possible counterexamples (Cheng, et al., 1986; Griggs & Cox, 1982; R. Platt & 

Griggs, 1993; Stenning & Lambalgen, 2004). Educational studies of students’ mathematical 

proving had also developed finer conceptual frameworks of mathematical proving, beyond proof 

writing ability in geometry, for better distinction of the different aspects of students' ability in 

mathematical proving. These additional aspects included students’ evaluation of mathematical 

proofs and logical understanding of different proof approaches (Alcock & Weber, 2005; 

Antonini & Mariotti, 2008; Balacheff, 1988; Harel & Sowder, 1998; Selden & Selden, 2003; A. 

Stylianides & Stylianides, 2009a; Weber, 2001). The aforementioned studies reporting limited 

effects of logic training, however, did not explore the use of counterexamples as an alternative of 

logic training nor the effects of such training on students’ validation of mathematical proofs and 

logical knowledge of different proof approaches (Deer, 1969; Durand-Guerrier, 2003; Epp, 2003; 

Mueller, 1975; J. L. Platt, 1967). Yet, advocacy of the benefits of logic training and which better 

training approach to adopt in mathematics classrooms had been made frequently based on 

anecdotal evidences and theoretical speculations (Epp, 1994, 2003; Selden & Selden, 2003; G. 

Stylianides & Stylianides, 2008). This study thus addresses this research gap by inquiring 

whether better alternatives in training students’ logical reasoning and students’ mathematical 

proving exist, and how these logic training approaches impact other aspects of students’ 

mathematical proving, in addition to students’ proof productions. In particular, this study aims to 

find out, through a pre-post intervention design, whether students’ construction of possible 
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counterexamples can have beneficial effects on their reasoning of mathematical implications and 

mathematical proving. 

In sum, the purpose of this study is thus important in a few ways. First, with the research 

advancements made in the area of mathematical reasoning and proving, aspects of students’ 

performance in proof and proving are no longer limited to proof productions as studied in the 

past (Alcock & Weber, 2005; Antonini & Mariotti, 2008; Deer, 1969; Epp, 2003; Mueller, 1975; 

Selden & Selden, 2003). While logic training has been increasingly advocated as central to these 

additional aspects (Epp, 2003; Selden & Selden, 2003), an empirical inquiry of the role of logic 

training is in need. Without a clear understanding of the extent of logic training with regards to 

these additional aspects, the instructional theory and goals of developing students’ logical 

reasoning and mathematical proving in classrooms remained as individual teachers’ pedagogical 

beliefs. Second, the role of counterexamples had only gained emerging research attention for the 

purpose of mathematics learning and still at the stage of theory-building via case study methods 

(A. Stylianides & Stylianides, 2009b; Zazkis & Chernoff, 2008). This study clarified further the 

role of counterexamples in developing students’ mathematical reasoning and proving in 

classrooms through experimental methods. Third, logic training had typically begun with truth 

tables followed by proof practices. This study aimed to explore the feasibility of other training 

approaches that used counterexamples, as implied by documented empirical studies (Cheng, et 

al., 1986; G. Stylianides & Stylianides, 2008).   

 

Background 

Before the reviewing the background of this study, I will first have to present an 

overview of the notions of logical implications and proving with the disciplines of logic and 
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mathematics, akin to a crash course on logic of implications, to inform the readers the nature of 

the mathematical reasoning and proving tasks situated within the scope of the study’s problem. 

Next, I will provide a literature review of the findings of students’ reasoning with logical 

implications from cognitive science studies and mathematical educational studies. I will also 

review findings about students’ difficulty in mathematical proving and the effects of logic 

training on students’ reasoning and proving, before I state and justify the problem pursued by 

this study.  

 

Mathematical Implications as Generalized Conditional 

Mathematical implication is often expressed in the form of a conditional statement of the 

sentence form "If [statement P] then [statement Q]", which relates the antecedent (statement P) 

and the consequent (statement Q). The antecedent P and consequent Q are mathematical 

propositions concerning mathematical concepts and properties. 

Various notions of logical implications have been proposed to define the truth values of 

implications as ‘True’ or ‘False’ (Quine, 1950). Of particular interest to this study is the notion 

of generalized conditional, which postulates a logical implication as a conditional relationship 

between sets of mathematical objects satisfying the antecedent and the consequent (Tarski, 

1956). The implication is considered logically and mathematically true when no mathematical 

instance that satisfies the antecedent P but not the consequent Q can be found. The implication is 

falsified when its complementary statement “a mathematical instance satisfying the antecedent 

but not the consequent can be found” is true, i.e., a counterexample to the implication exists 

(Durand-Guerrier, 2003). In other words, logical implication is characterized as a statement 

which is falsified only by the counterexample instantiating the statement P is true and the 
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statement Q is false. In essence, a mathematical implication relates a consequent Q as a logical 

consequence of the antecedent P bounded by mathematical properties which are relevant to the 

antecedent and the consequent.   

As an immediate consequence, a logical implication is true when sets of mathematical 

object are defined by the antecedent P and the consequent Q and at the same time, none of the 

defined objects constitute a falsifying counterexample of P and not Q. Inevitably, defining a set 

of objects involves the quantification of the set using “all”, “some” and “none.”  This notion of 

generalized conditional turns out to be congruent with the logico-mathematical criterion of 

justifying or rejecting conditional statements in which quantifications of the set of object are 

expressed, either implicitly or explicitly (Durand-Guerrier, 2003, 2008). Related to the 

implication statements are also other logically related statements which will be introduced when 

I frame the inquiry in the next chapter. 

A subtle difference between the use of the terms, logical implication and mathematical 

implication, in this study is warranted here. Reference to logical implication foregrounds the 

logical character of an implication, i.e., a statement is assigned ‘True’ or ‘False’ according to the 

logical criterion of whether a counterexample exists. It bears no criterion for what sets of objects 

are being considered and how that counterexample came about. Reference to mathematical 

implication foregrounds the mathematical character of an implication, i.e., mathematical rules 

and laws are used as the criterion for establishing whether a counterexample is mathematically 

possible. For example, “If a number is less than 1, then the square of the number is less than 

itself” is a logical implication with respect to the dependence of its truth value on the possibility 

of counterexample but also a mathematical implication with respect to the possibility of 

counterexample subject to mathematical laws of ‘squaring’ a number. Note that the number -1 is 
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less than 1 but its square, 1, is more than itself by mathematical laws. By logical criterion, the 

implication is false due to the existence of a counterexample of -1. 

Few if any mathematical results can be established without the use of logical 

implications. By connecting mathematically meaningful chains of logical implications, 

mathematical conclusions can be proven with certainty and stand robust to the possibility of 

mathematical counterexamples (Benacerraf & Putnam, 1964; Jahnke, 2008). However, the 

understanding of the mathematical certainty and robustness underlying mathematical proof 

originates from an understanding of logical implications as assertions of mathematical 

relationship which does not admit counterexamples (Durand-Guerrier, 2003). Hence, students’ 

ability to use and understand logical implication is essential to understand proofs as well as to 

validate mathematical conjectures and construct formal or informal mathematical proofs.  

 

Students’ Difficulty with Logical Implication – a crucial barrier 

Unfortunately, students often exhibited little competence in their understanding and use 

of logical implication in mathematical proving (Coe & Ruthven, 1994; Durand-Guerrier, 2003; 

Hoyles & Küchemann, 2003; Knuth, et al., 2009; Recio & Godino, 2001). Hoyles and 

Küchemann (2003) carried out a large-scale one-year longitudinal study to find out how the 

United Kingdom students’ understanding of the logical implications evolved over time. Students 

were presented with a mathematical implication, "if the sum of two numbers is even, then the 

product is odd" and its converse "if the product of two numbers is odd, the sum is even". The 

former was mathematically valid where the latter was not. For the latter mathematical 

implication, 36% of the students were able to falsify it by providing counterexamples – 8% used 

a specific counterexample while 28% used more generic counterexamples. As for the former 
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valid statement "if the product of two numbers is odd, the sum is even", 24% of students 

regarded the rule as correct but provided justifications based on empirical verification of 

examples. Only 9 % of students engaged in logical implications in justifying the rule, providing 

cryptic arguments like “they must both be odd” (Durand-Guerrier, 2003; Hoyles & Küchemann, 

2003). At the beginning of the study, 71% of the students treated the implication and its converse 

as mathematically equivalent implications. After a year of middle school mathematics with 

emphasis in mathematical proving, over 60% of students still maintained that the mathematical 

implication is logically equivalent to its converse. 

Knuth, Choppin, & Bieda (2009) surveyed the proofs constructed by 40 middle school 

students after a year-long of a reform-oriented curriculum. Of the six assessment items given to 

the students, three were posed as implications concerning number properties (e.g. 36% of 6th 

graders, 30% of 7th graders, and 31% of 8th graders still generated proofs based on specific 

numerical examples). Instead of producing a logical proof that showed no counterexamples were 

mathematically possible, they started with a given number and showed that it satisfied the 

antecedent and the consequent. 

Students’ difficulty with logical implications seemed to persist despite going through a 

mathematics curriculum that emphasized proof and proving (Hoyles & Küchemann, 2003). 

Further analysis of students’ interview data showed that most students could only understand 

logical implications as an implication for the case of the antecedent is true, i.e., when the 

antecedent is instantiated.  

College students’ understanding of logical implications also has been shown to be 

problematic. Durand-Guerrier (2003) surveyed a group of 273 new students and 92 repeating 

students in a logic and proof course in college mathematics to find out students’ lack of 
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understanding about logical implications. Students’ performance indicated that they failed to 

recognize when valid inferences can be made from logical implications under different 

circumstances. When the consequent is satisfied or the antecedent is not satisfied, inferences 

made based on the logical implications are invalid. When given the statement “In a rhombus, the 

diagonals are perpendicular” and asked to respond to the question “The diagonals of a 

quadrilateral (A, B, C, D) is a perpendicular. Is it (the quadrilateral) a rhombus?” About 62% of 

the new students made an invalid inference of a definite “yes” (22%) or “no” (40%) response. 

Only about 30% of the students gave an indefinite response, noting that some of the 

quadrilaterals may be rhombus. Students repeating the course did not show any significantly 

better performance as well – only about 27% gave an indefinite response.  They seemed to be 

unaware of the possible counterexamples that could invalidate their inferences which were 

derived from the consequent of logical implications. Furthermore, repeating the course in 

mathematical logic did not benefit the students’ reasoning of logical implications.  

In sum, students faced obstacles in their reasoning with logical implications that have 

negatively influenced their performance in mathematical proving. They make invalid inferences 

by assuming logical equivalence between logical implications and its converse, and by providing 

empirical verifications to reason about the truth of logical implications. Their lack of ability to 

engage in deductive reasoning of logical implications hampered their abilities to construct or 

validate proofs for mathematical statements. 

 

Conditional Reasoning in Selection tasks – Wason’s or Other versions 

Cognitive science studies have shown similar difficulties with conditional reasoning, i.e., 

reasoning of logical implications, in arbitrary and abstract contexts (Johnson-Laird & Byrne, 
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1991; Stenning & Lambalgen, 2004; Wason, 1968). These studies were mostly conducted based 

on Wason’s (1968) or other versions of selection tasks, in which people were asked to reason 

about an abstract conditional statement. In this type of choice-response task, the subjects are 

presented with four cards and a conditional statement “If P then Q.” The conditional statement 

usually states its antecedent P and its consequent Q in the form of “If there is … on one side of a 

card, then there is … on the other.” The four cards are pictorially presented with each of their 

upper faces showing either one positive or one negative instance of the specific p or q mentioned 

in the statement. Thus, the four cards instantiate p, not p, q and not q exhaustively as a whole. In 

the Wason’s version, the statement “If there is a vowel on one side of a card, then there is an 

even number on the other” and cards showing “A”, “K”, “4”, “7” on the upper faces are used 

(see Appendix E, practice item 1 for the presentation of task). 

The subjects are told that the other invisible side contains information about the 

counterpart of the conditional statement to the antecedent or consequent shown on the upper 

face. They are then asked to indicate which cards they must turn over to look for evidence 

connecting the antecedent and consequent that logically support or reject the conditional rule. In 

accordance to the notion of logical implication, a conditional rule is falsified by a 

counterexample of p and not q. The correct response thus consists of a combined choice of two 

cards, one instantiating p and the other instantiating not q, which may possibly be 

counterexamples to the statement “If p then q.” In the rule used in the Wason’s version, a card 

having a vowel on one side and an odd number on the other would constitute falsifying examples 

to the conditional statement. The possible card choices are limited to the cards “A” and “7,” one 

being an instance of a vowel and the other an instance of an odd number. The subjects who are 

aware of this logical criterion recognized that they have to turn over the “A” card, which is the 
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case of p, and the “7” card, which is the case of not q, to find out if they were possibly 

counterexamples.  

The result of the subjects’ performance in the Wason’s task was alarming. Less than 10% 

of the people tested opted the combination of the cards p and not q, which could falsify the 

conditional rule (Wason, 1968). Most people chose the card combination of p and q, apparently 

seeking for confirmatory evidence rather than disconfirmation evidence. Similar findings were 

consistently replicated with various educational levels such as undergraduates, high school 

graduates, high school and middle school students, using the similar versions of selection tasks 

(Cheng, et al., 1986; Griggs & Cox, 1982; Jackson & Griggs, 1988; Lawson, 1990; Stenning & 

Lambalgen, 2004).  

Both educational and cognitive science studies showed that students faced a common 

cognitive challenge in their reasoning with logical implications in both the arbitrary and 

mathematical context. Both type of tasks required them to justify logical implications, either 

arbitrary or mathematically meaningful, based on considerations of counterexamples. They were 

naturally inclined towards empirical verification of the implication based on empirical examples 

rather than towards refutation based on counterexamples. This posed a challenge to the teaching 

of logic in helping students overcome these difficulties. Next I will turn to the studies of the 

effectiveness of conventional logic instructions in students’ reasoning of logical implications. 

 

Effects of Instructions on Students’ Reasoning of Logical Implications 

Studies have shown that conventional instruction in logic emphasizing truth tables and 

construction of abstract proof have not influenced students’ reasoning of logical implications too 

positively. In a study by Cheng, et al. (1986), 53 students’ performance in their reasoning of 



 

11 

logical implications before and after a 40-hour introductory logic course were compared and 

found to have no difference. Considering that selection tasks were used to assess students’ 

performance, the result might be due to the difficulty of the task. However, fewer students made 

errors for a particular version of selection tasks, known as “permission tasks,” consistently 

before and after the class, indicating that task difficulty may not be the root of the cause here.  

In this type of “permission tasks”, real life contexts are introduced and the implications 

are posed as rules permitting an actor to take some particular action when some preconditions are 

fulfilled. One classical example of this type of task is the drinking age problem (Griggs & Cox, 

1982; Lawson, 1990). The task describes a real life context in which a police officer is upholding 

a drinking law, “If a person is drinking beer, the person must be over 19 years old,” and wants to 

check for violations made the customers of a restaurant. Students are asked to choose, on behalf 

the fictitious officer, which customers to check based on the provided descriptions of their age or 

drinks. Among the four cards “Drinking beer”, “Drinking soda”, “16 years old” and “22 years 

old”, significantly more students choose the cards “Drinking beer” and “16 years old” which 

instantiates the case P and the case not Q, suggesting that contexts which cue a search for 

counterexamples helped students’ reasoning with logical implications. 

Another similar study that used less difficult reasoning tasks also reported the effects of 

conventional logic training in students’ reasoning of logical implications (Leighton, 2006). 49 

students went through 12-week training in symbolic logic involving quantifiers and implications. 

Before and after the training, they were then asked to derive, by selection and construction, the 

valid conclusions from a conditional statement like “If A then B” and a premise involving the 

antecedent or consequent. They experienced little obstacles in the easier tasks, scoring an 

average of 7.84 out of 8 points during the pretest and an average of 7.76 in the post test. 
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However, their performance in difficult tasks improved modestly from an average of 2.74 to 

3.06. The effect of conventional logic training has on improving students’ conditional reasoning 

is again shown to be of little effect. 

Platt & Griggs (1993) have found that explication of the implication and provision of 

explicit instructions for seeking violations of the implication could enhance the subject’s 

performance. With clarifications about the meaning of the implication and the relevance of the 

cards to the rule, subjects tend to choose cards which may constitute possible counterexamples. 

In addition, subjects were asked to provide reasons for their card choices and to seek violations 

explicitly in order to direct their attentions to the counterexamples to the logical implication. As 

a result, over 80% of the subjects chose the logically correct responses. 

Effects of Logic Training on Students’ Mathematical Proving 

Studies of the benefits of logic training to students’ abilities in mathematical proving are 

moderately encouraging. Mueller (1975) conducted an experimental study of the effects of 

teaching logic on 146 high school students’ ability to write geometry proofs. These students are 

divided into six classes sorted into 2 different conditions. One condition had the logic unit taught 

before the geometry content. The other had the logic training inserted in between the basic and 

advanced geometry content. These classes were taught by four teachers. After 14 to 16 weeks of 

instructions in logic and geometry contents, students showed they had acquired some logical 

knowledge quite successfully and were able to interpret generic axioms to infer the validity of 

proposed model. However, the teaching of logic units was found to have little impact on 

students’ ability to construct geometry proofs – only two classes taught by the same teacher 

performed better (p=.05). Also, it remained unclear whether students did acquire logical 

reasoning ability and how this might have impacted (or not) students’ ability to construct proofs. 
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Similar studies of the minimal benefits of logic training to mathematical proving had also been 

reported previously (see Mueller, 1975 for a review of these studies). 

Yet the necessity and possible benefits of logic training to proving have been advocated 

by several mathematics educators. Epp (2003) suggested that instructions in logical reasoning are 

required for students to acquire the reasoning principles underlying proof methods such as proof 

by contradiction and proof by contraposition. Stylianides & Stylianides (2008) suggested that 

instructions of categorical and conditional reasoning principles through the selection task activity 

may be a productive approach in equipping students with the necessary skills to engage in 

deductive mode of proving. Durand-Guerrier (2003) suggested that instructions of logic based on 

Tarski’s semantic approach can benefit students in their understanding of mathematical 

implications and mathematical proving at large. A small number of studies also seemed to 

support this educational stance, though the benefits seem to be limited to students with high math 

abilities (Mueller, 1975; J. L. Platt, 1967).  

In sum, despite many educators’ support, a strong empirical case for the efficacy of logic 

training has not yet been developed, though anecdotal evidence of success was reported (Epp, 

2003; Selden & Selden, 2003). One possible explanation, that can be derived when considering 

the mismatch between the truth table approach and the required search for counterexample 

associated with logical implications, is the lack of emphasis on counterexamples in logic 

training.  

 

Students’ Difficulty with Mathematical Proving 

Similar issues seemed to persist in students’ mathematical proving. When asked to 

provide proofs to justify a mathematical assertion, most of the students engaged in empirical 
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verification, i.e., construct a number of concrete examples that verify the assertion instead of 

property-based or general deductive arguments (Balacheff, 1988; Harel & Sowder, 1998; Healy 

& Hoyles, 2000; Simon & Blume, 1996; van Dormolen, 1977).  

College and pre-college student held different conceptions of proofs but they mostly 

lacked understanding of the logical deductive character of proofs, especially at the pre-college 

level (Balacheff, 1988; Harel & Sowder, 1998; Simon & Blume, 1996). A lot of the students 

provided arguments based on external knowledge authority’s approval (e.g., the teacher in class), 

empirical verifications of selected examples (empirical proofs) (Harel & Sowder, 1998). Pre-

service teachers also struggled with deductive reasoning. They prefer to work with empirical 

examples while making sense of mathematical explanations (Simon & Blume, 1996). They seem 

not to be cognizant of possible counterexamples – the cases which satisfy the antecedent but not 

the consequent, which might falsify the mathematical statement or how to ascertain that such 

counterexamples cannot arise. 

In addition, Healy & Hoyles (2000) also found that students held two different 

conceptions of algebra proofs: one which was convincing to themselves and the other which 

would get teacher's approval in the form of high test marks. Concerning with the use of empirical 

verification with examples, the students found them useful in convincing themselves about the 

truth of the statements. This finding concurred with the majority of the first-year college 

students’ who considered empirical proofs as convincing to themselves but invalid to the public 

(Segal, 1999). Fischbein (1982) and Healy& Hoyles (2000) also reported that students who 

appear to understand correctly the deductive proof of a mathematical statement still needed to 

construct examples instantiating the statement to be convinced. 



 

15 

These studies suggested that students’ ability in mathematical proving generally faced the 

cognitive challenge of moving from empirical verification to property based or generic 

arguments. They relied on empirical examples to understanding and prove mathematical 

statements but seldom attend to the need to eliminate possible counterexamples. At the 

conceptual level, students’ difficulty with logical implications and mathematical proving 

converges towards a common source: students lacked cognizance of counterexamples and its 

roles in both the reasoning of logical implications and mathematical proving. 

 

Aim of this study: In search for an effective logic training  

 Taken together, the above review indicates that there are two parts to the question of 

whether logic training can improve students’ reasoning of logical implications and mathematical 

proving. The first concerns the students’ ability in reasoning of logical implications: Conditional 

reasoning of implication is challenging for students but the existing approach of emphasizing 

truth table and abstract rules of logical inferences showed little promise in helping students to 

transit from empirical verification to logical reasoning. The second concerns the cognitive gap 

between students’ ability reasoning of logical implications and mathematical proving: enhancing 

students’ ability in logical implications does not seem to enhance students’ proving, yet training 

students’ logical reasoning of mathematical implications were still an educational concern for 

many mathematics educators (Durand-Guerrier, 2003; Healy & Hoyles, 2000; Hoyles & 

Küchemann, 2003). Students’ proving adheres to an empirical-based scheme and the move to a 

deductive-based scheme seems to require more than traditional training in logic. At face value, 

one can claim that improving students’ logical reasoning abilities and mathematical proving 
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abilities are altogether two different issues. Yet both issues can be traced back to a fundamental 

cognitive issue related to students’ mental processing of counterexamples. 

This study adopts the educational stance that students’ reasoning in logical implications is 

central to students’ ability in mathematical proving, as do many mathematics educators, and 

work on a hypothesis that productive logic training should emphasize students’ active process of 

finding possible counterexample.  Two empirical bases lend support to this research stance. 

Recent cognitive science studies of subjects’ performance in the modified selection tasks had 

found that subjects’ familiarity with available counterexamples and the formulation of the tasks 

facilitate students’ reasoning of logical implication (Cheng, et al., 1986; Griggs & Cox, 1982; R. 

Platt & Griggs, 1993; Stenning & Lambalgen, 2004). Recent educational reviews of students’ 

understanding of logical implications and proof also concur with the cognitive science findings 

about the importance of these two factors (Durand-Guerrier, 2003; A. Stylianides & Stylianides, 

2009a; G. Stylianides & Stylianides, 2008; Zazkis & Chernoff, 2008). 

The driving questions of this study are: (1) What and how can logic training emphasizing 

counterexamples enhance students’ logical reasoning of mathematical implications, in 

comparison to conventional training approaches? (2) To what extent does logic training impact 

students’ ability in mathematical proving? (3) To what extent does students’ ability in logical 

reasoning of implications impact their ability in mathematical proving? In the following chapter, 

I will elaborate on the theoretical underpinnings of this study, in addition to the theoretical 

considerations of logical implications and proving ability. 
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CHAPTER 2 THEORETICAL FRAMEWORK 

In this chapter, I will first present the conceptualization of the study’s problem and then 

the hypotheses of the study and associated research questions. To frame the inquiry, I will first 

discuss logical implications, followed by mathematical proving. Following that, I will explain 

the factors affecting reasoning of logical implications, and finally the research questions of this 

inquiry. The conceptualization of the study’s framework is guided by the overarching theme of 

active mental processing of examples and counterexample which matter to students’ reasoning 

and proving of mathematical implications.  

 

Mathematical Implication, its Logical Variants and Counterexamples  

In the previous chapter, I have introduced the notion of logical implication as a 

Generalized Conditional. The statement of a logical implication takes the form of “If [statement 

P] then [statement Q]” where statement P is also known as the antecedent of the implication and 

statement Q the consequent. For a mathematical implication, sets of mathematical objects are 

quantified by the antecedent and consequent. Hence the logical criterion for the mathematical 

implication to be true is the non-existence of mathematical counterexample, i.e., a mathematical 

object satisfying the antecedent P but not the consequent Q; otherwise, the implication is 

falsified. Based on this notion, logical reasoning of implications is the reasoning of the statement 

in accordance with the criteria of logical truth and falsity. In particular, the statement “If P then 

Q” is concluded as false when a mathematical object satisfies the antecedent P and not the 

consequent Q and as true when such a counterexample to the implication does not exist. Other 

logical variants commonly found in logical reasoning of mathematical implications are defined. 

These are described as follows. 
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Converse, Contrapositive and Negation of Implication   

For an implication of the form "If [statement P] then [statement Q]", logical variants 

related to the implication can be constructed by altering the order and the statements P and Q. 

When the order of statement P and statement Q is reversed and becomes “If [statement Q] then 

[statement P],” the logical variant, which is still an implication, is called the converse of the 

implication. A mathematical implication is not logically equivalent to its converse since their 

counterexamples are logically different. Counterexamples to the implication satisfy the statement 

P but not statement Q but counterexamples to the converse satisfy statement Q but not statement 

P.   

 Another logical variant form "If [statement not Q] then [statement not P]" is said to be 

the contrapositive of the implication "If [statement P] then [statement Q]." In the contrapositive, 

the negated consequent of the implication becomes the antecedent and vice versa. A 

mathematical implication is logically equivalent to its contrapositive since their counterexamples 

are logically identical, that is, both satisfy the statement P but not statement Q. Note that a 

contrapositive of an implication is itself an implication. 

A negation of an implication is a statement that asserts one (or more) instance which 

constitutes a counterexample to the implication. For an implication of the form “If [statement P] 

then [statement Q],” its negation is a statement asserting the existence of one or more 

counterexamples which satisfy statement P but not statement Q. Using the implication "If the 

sum of two whole numbers is even, then their product is odd" as an illustration, a 

counterexample would be two numbers whose sum is even but their product is even. The 
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negation for the implication would thus be “There is a pair of whole numbers whose sum is even 

and product is even.” 

 

Conceptualization of Mathematical Proving Ability 

Mathematical proving ability has been regarded as proof writing ability in the past (Deer, 

1969; Mueller, 1975; J. L. Platt, 1967; Sharon, 1989). However, the focus of the inquiries then 

was about the ability to present geometric proofs in the two-column format. Recently, the notion 

of mathematical proving has been revised and expanded beyond to capture a range of abilities 

related to mathematical proving, which include Proof Construction, Proof Validations and 

Knowledge of Proof Methods  (Alcock & Weber, 2005; Moore, 1994; Selden & Selden, 2003; 

A. Stylianides & Stylianides, 2009a; Weber & Alcock, 2004). 

Some contemporary researchers had made a distinction between the conviction 

(individual cognitive level) and validity ( social aspects) when they look at students’ 

argumentation process (Healy & Hoyles, 2000; Segal, 1999).The conceptualization of 

mathematical proving in this study, however, leaned heavily towards the context of individual 

cognition than the classroom context of social interactions. The study is set in an individual 

mathematical proving environment and social aspects are assumed to be of minimal influence. 

As such, social aspects of how students regard mathematical proving and validity are excluded 

from the scope of this study and mathematical proving is considered at individual cognitive 

level. 
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Generalized Conditional and Mathematical Proof and Proving 

Built upon the Generalized Conditional notion of logical implication, mathematical 

proving is conceptualized as a task of searching for the domain in which the examples and 

counterexamples of mathematical objects satisfying a mathematical relationship, which is 

described as an implication. It involves a mathematical process of determining whether 

mathematical implications are logically true, i.e., the antecedent P will lead to the consequent Q 

by mathematical laws and no mathematical counterexamples can be found. As students 

attempted to prove or falsify mathematical implications, deductive inferences are involved and 

are carried out in a logically valid way. Every inference students make during the proving 

processes needs to be able to account for the possibility of counterexamples. Any 

counterexample that may be admitted during the process will render their proving process as 

invalid or illogical. 

At the same time, students may consider examples that verify the mathematical 

implications. In the process of mathematical proving, student made and organized their 

inferences in a written form which constituted mathematical proofs for determining the truth of 

the implications. In addition, students quantified mathematical objects using “all,” “some” or 

“none” in the implication. This allowed modifications to the proposed statement so that a 

maximally specified set of mathematical objects satisfy the proposed conditional relationship, 

should there exist one. 

Take for instance, the mathematical statement “If a number is less than 1, then the square 

of the number is less than itself.” The set of mathematical objects in the antecedent implicitly 

refers to the set of all real numbers and excludes imaginary numbers. The case of the number -1 

will falsify the implication since the square of -1 is 1 and does not satisfy the consequent “the 
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square of the number is less than 1”. However, it does hold for a set of numbers which one can 

mathematically determine to be greater than -1.  

  

Definition of Mathematical Proofs 

While some researchers have adopted a wider definition of proofs as arguments that 

“remove one’s own doubt” to include arguments based on empirical verification and crucial 

experiments (Balacheff, 1988; Harel & Sowder, 1998), this study limits the proof definition to 

those that regard deductive arguments as the only “valid modes of argumentation” (A. J. 

Stylianides, 2007) and instead uses the word “empirical proofs” to refer to proofs based on 

inductive arguments and empirical verifications. Variety and flexibility for the presentation of 

the proof still remains since the criterion for valid mode of arguments does not restrict the nature 

of the representations used to develop the proof. In other words, the symbolic and formal type of 

proofs produced by mathematicians or college mathematics seniors is not the only acceptable 

genre in this study. How the variety within and in between deductive proofs and empirical proofs 

are distinguished are achieved through a coding scheme developed more elaborately based on 

Balacheff’s (1988) classification of proof schemes or van Dormolen’s (1977) three levels of 

proof characterizations. 

Mathematical proofs are products of Mathematical proving. However, I use the term 

“Mathematical Proving” in this study, with a wider meaning than its usual connotations to proof 

productions (Harel & Sowder, 1998; Weber, 2001), to include other proof-related abilities which 

I will define in the next few sections, namely, Proof Validation and Knowledge of Proof 

Methods, or in short, Proof Knowledge. These two other abilities had been proposed as 
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important for students’ proof and proving (Alcock & Weber, 2005; Epp, 2003; Selden & Selden, 

2003) 

Proof Construction 

Proof Construction refers to the students’ ability to construct deductive arguments that 

connect the given mathematical premises to the conjectured mathematical conclusions (A. 

Stylianides, 2007). It is similar to proof writing ability with regards to the theoretical interests in 

the students’ ability to produce mathematically coherent proofs in written forms. However, Proof 

Construction places the analytic emphases on how students use their mathematical knowledge to 

connect the arguments in a proof, on top of the logical validity of the proof (Weber & Alcock, 

2004). Also, it does not limit the proof format only to the two-column format. Types of proofs 

include formal or informal representations such as mathematical notations or diagrams, 

arguments presented in a narrative form, etc. Hence Proof Construction involved the 

interpretation of mathematical objects relevant to the implication, the representations of 

mathematical objects, and the use of these mathematical representations to make logical and 

deductive connections of mathematical statements.   

 

Proof Validation 

Proof Validation refers to the students’ ability to evaluate a presented proof for its 

validity as a mathematical proof (Alcock & Weber, 2005; Selden & Selden, 2003). In Proof 

Validation, the students have to evaluate for use of invalid mathematical properties and/or 

fallacious logical principles in the proof. The cognitive demand of construction and validation of 

inferences affected students’ performance differently (Leighton, 2006). Students’ ability in 
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validation of proof was also shown to be relatively independent of their ability in construction of 

proof (A. Stylianides & Stylianides, 2009a; Weber, 2010). 

One crucial indication of students’ ability is their evaluation of Empirical Proof 

(Balacheff, 1988; Harel & Sowder, 1998). In this type of (invalid) proofs, one or more instances 

were generated and checked if they satisfied the implications. If none of the instances were 

falsifying the implication, the implication was concluded as mathematically true, which is 

logically unsound since not all instances were proven to satisfy the implication. However, 

students often made the logical error of regarding it as a valid proof because of the pattern of 

verification presented. Students’ recognition of the invalidity of the empirical proof is thus a 

positive indication of their ability to validate proofs.  

One common indirect proof method taught in transition-to-proof classes are Proof-by-

contradiction. Otherwise known as the method of reductio ad absurdum, the proof started by first 

assuming the existence of a counterexample satisfying the antecedent but defying the 

consequent, and then proceeds to conclude that such a counterexample is mathematically and 

logically impossible, thereby establishing the original implication. On the apparent surface, the 

proof seemed irrelevant and was likely to throw students off because it assumed the negation of 

the implication. Students’ ability to disregard the apparent mismatch but regard the proof as valid 

is thus a strong indication of their ability in evaluating proofs (Antonini & Mariotti, 2008). 

    

Knowledge of Proof Methods 

Another aspect of proving ability is the students’ ability to recognize the logical non- 

equivalence between the proofs for the implication and its converse as well as the equivalence 

between the proofs for the implication and its contrapositive (Epp, 2003; Moore, 1994; A. 
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Stylianides, Stylianides, & Philippou, 2004). The contrapositive statement “If not Q then not P” 

is logically equivalent to the implication “If P then Q” because both are falsified by the identical 

counterexamples satisfying “P and not Q.” The argument starts by assuming the consequent of 

the original implication is not true and proceeds to conclude the antecedent is not true. Both 

methods have been reportedly difficult for students to understand the logical principles 

underlying its equivalence to the direct proof method (Antonini & Mariotti, 2008; Epp, 2003; 

Goetting, 1995; A. Stylianides, et al., 2004). 

All three above aspects are related to the notion of mathematical proving as the search for 

examples or counterexamples of mathematical objects related to the implication. Proof 

Construction is the ability to construct a systematic and logical search for examples and 

counterexamples to the implication. Proof Validation is the ability to evaluate the logical 

coherence of the mathematical search being carried out. Knowledge of Proof Methods (Proof 

Knowledge) is the ability to recognize other logically equivalent and non-equivalent alternatives 

of the mathematical search.   

 

Leveraging the use of Counterexamples in Reasoning and Proving of Mathematical Implications 

Under the notion of generalized conditional, reasoning of logical implications inevitably 

requires students’ cognitive efforts in searching for and/or constructing mathematical examples 

and counterexamples to determine the truth of the implication. I will present cognitive science 

and educational research work which help to conceptualize the study’s proposal to leverage the 

use of counterexamples in improving students’ reasoning of logical implications and ability in 

mathematical proving. 
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Constrained Example Generation 

Educational studies have also stressed the importance of counterexample in helping 

students’ learning mathematical proving (A. Stylianides & Stylianides, 2009a; Zazkis & 

Chernoff, 2008). Counterexamples are instrumental in eliciting cognitive conflict in students to 

help them realize that empirical proofs are insufficient to establish conjectured mathematical 

implications. However, teaching experiments suggested these counterexamples must be within 

the potential cognitive reach of the students (A. Stylianides & Stylianides, 2009a). 

One way of obtaining counterexamples useful for students’ reasoning and proving is 

through the approach of constrained-example generation (CEG) (Rissland, 1991), where students 

are asked to generate mathematical instances that incorporate specific features but 

simultaneously exclude other features. In this study, generating counterexamples to a logical 

implication is considered to be a CEG process of generating instance which incorporates features 

specified by the antecedent but excludes the features specified by the consequent.  

Counterexamples generated by students suggest that these counterexamples are within 

students’ cognitive reach and mathematical expertise, and are likely to facilitate both their 

reasoning of logical implications and ability in mathematical proving. In the event that the 

logical implication is mathematically true and absent of counterexamples, students may be able 

to explain why it is impossible to have counterexamples, the success of which reflects students’ 

understanding of the principle of reductio ad absurdum and also their knowledge of the 

mathematics domain involved. Whichever is the case, with all other factors being equal, the 

cognitive task of generating examples presumably suffices to increase students’ cognizance of 

possible counterexamples and facilitate their reasoning of logical implications and ability in 
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mathematical proving, in particular, a transition from empirical-based proving to deductive-

based proving. 

 

Enhancing CEG through task formulations 

Cognitively oriented studies have also suggested that the implication statement, its 

content and subjects’ knowledge of the reasoning task guided their reasoning processes (Inglis & 

Simpson, 2006; Johnson-Laird & Byrne, 1991; Stenning & Lambalgen, 2004). As such, the 

formulation of the reasoning tasks influence students’ generation of possible counterexamples, 

which in turn facilitated students’ reasoning of logical implications (Cheng, et al., 1986; R. Platt 

& Griggs, 1993; Stenning & Lambalgen, 2004).In particular, formulations of logical implications 

as checking violations of rules in permission and obligation situations had been found to be quite 

successful in evoking students’ reasoning schemas for logical reasoning.(Cheng & Holyoak, 

1985; Cheng, et al., 1986; Stenning & Lambalgen, 2004). 

Cheng, et al. (1985) found that students’ reasoning of logical implications can be 

enhanced greatly by the evocation of certain schemas through the formulation of tasks. These 

schemas are understood to be clusters of abstract rules for situations involving permission and 

obligations. In permission situations, taking a particular action requires certain preconditions to 

be fulfilled. In obligation situations, the occurrence of certain conditions incurs the necessity of 

taking some follow-up actions (Cheng, et al., 1986). Violations of rules in permission situations 

are instantiated by cases in which an actor takes an action without the preconditions being 

fulfilled. Violations of rules in obligation situations are instantiated by cases in which an actor 

fails to take up necessary follow-up actions when the conditions do occur. These situations 

heightened the subjects’ cognizance of possible violations of the permission or obligation rule 
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and guided the subjects to choose the two correct cards. For example, a membership rule “If one 

has been a member for at least five years, then one must have voted in the past elections”  upheld 

in an obligation situation would heighten students’ cognizance to cases of possible violations in 

which either someone had been a member for five years or had not voted in the past. Guided by 

these schematic rules, the subjects tend to make correct choices of cards to turn over that 

corresponds to the general conditional requirement (Cheng, et al., 1986; G. Stylianides & 

Stylianides, 2008).  

In sum, formulations of the reasoning tasks that facilitate interpretation of the 

implications and the context enhanced subjects’ cognizance of possible violations or 

counterexamples. Some math educational researchers had also advocated for an instructional 

application of these findings to help students improve their mathematical proving (Epp, 2003; G. 

Stylianides & Stylianides, 2008). 

 

The Research Questions 

In a nutshell, this study hypothesizes that logic training emphasizing generation of 

counterexamples can bring beneficial effects to students’ reasoning of logical implications as 

well as students’ ability in mathematical proving (Cheng, et al., 1986; R. Platt & Griggs, 1993; 

Stenning & Lambalgen, 2004; G. Stylianides & Stylianides, 2008). Furthermore, the formulation 

of the reasoning tasks can further enhance their logical reasoning by evoking their reasoning 

schemas of permission and obligations rules or logical interpretation. A corollary to the main 

hypothesis is also within the scope of this study’s interests: The effect of logic training using 

formulations that evoke reasoning schemas of permission and obligations should benefit 

students’ reasoning and proving more than the other which evoke logical interpretation. In 
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addition to the above hypotheses, an exploratory inquiry of how students modify a falsifiable 

mathematical implication to a mathematically true implication using the self-generated 

counterexamples may provide additional insights about the role of counterexamples in students’ 

reasoning of logical implications as well as mathematical proving. In the event that the results of 

the study did not support the hypothesis, the analysis of the interview data might account for 

other possible factors. 

Driven by the abovementioned hypotheses, this study is inquiring the following research 

questions:  

1) Compared to the conventional approach, how does logic training emphasizing 

generation of counterexamples affect students’ reasoning with logical implications 

across different formulations? 

2) Compared to the conventional approach, how does logic training emphasizing 

generation of counterexamples affect students’ validation of proofs across different 

formulations? 

3) Compared to the conventional approach, how does logic training emphasizing 

generation of counterexamples affect students’ construction of proofs across different 

formulations? 

4) Compared to the conventional approach, how does logic training emphasizing 

generation of counterexamples affect students’ Knowledge of Proof Methods across 

different formulations? 

5) To what extent does students’ reasoning of logical implications correlate with their 

ability in mathematical proving? 
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6) How do students modify a falsifiable mathematical implication to a mathematically 

true implication based on their self-generated examples and counterexamples? 

Research question (1) explores the main hypothesis about the benefits of incorporating 

counterexamples generation into logic training on students’ reasoning of logical implications. 

Research questions (2) to (4) queries the main hypothesis about the benefits of incorporating 

counterexamples generation into logic training on students’ ability in mathematical proving, 

which is further distinguished into the three distinct aspects, construction, validation and 

Knowledge of Proof Methods, of the ability. Corollaries to the main hypothesis are also 

addressed by these four research questions. Research question (5) examines the correlation 

between students’ logical reasoning and mathematical proving, which is a rekindled longstanding 

issue (Deer, 1969; Mueller, 1975; Platt, 1969; Hoyles and Kuchemann, 2003; Durand-Guerrier, 

2003, Epp, 2003; Inglis, 2008). Research question (6) explores the strengths and limitations of 

self-generated counterexamples in students’ reasoning of logical implications and supplements 

the answers to research questions (1) through qualitative inquiry. 
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CHAPTER 3 METHOD 

In this chapter I will first describe the design of the study guided by my research 

hypothesis. Following that, I will describe the components of my data collection processes 

including the subjects involved, the design, the test instruments, the training materials and the 

procedure. Next I will elaborate on the process of coding students’ data during the assessments, 

including the coding schemes, and video and written data of the post-study interview. Finally, I 

will outline the process of analyzing the coded data. 

 

Subjects  

The subjects of this study came from three Singapore school sites. The national rankings 

of these three schools in year 2010, based on their minimal required entry scores for enrolment 

were between the upper and lower quartiles. Students participating in the study were Secondary 

3 students (equivalent to ninth graders) taking the Singapore-Cambridge General Certificate of 

Education (Ordinary Level) Mathematics (Syllabus D) as their core mathematics subject. 

Mathematics (Syllabus D) at Secondary 3 level introduced basic contents in algebra, 

trigonometry, arithmetic, rate and proportion, and graphs. In addition, the students also took 

another mathematics subject called Additional Mathematics, which placed heavy emphasis on 

algebraic thinking and computations, quadratic and trigonometric functions and graphs, and 

basic calculus at this level. 

A total of 60 students from the three sites participated in the study. 13 students came 

from the first site, 39 from the second and 8 from the third. They were recruited through in-class 

invitations and flyer distributions. I gave a short presentation and a brief question-and-answer 

session to clarify the purpose of my study and to address students’ concerns about the expected 
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time and efforts, and the level of challenge. They were assured that the study was not related to 

any academic assessments. To meet the targeted sample size for my study, I approached the third 

school for students’ participation. Their participations were voluntary and were briefed about the 

irrelevance between their academic performance and the performance in this study. Book 

vouchers were given to the participants upon completion. 

 

Design 

This study used a pretest–intervention–posttest design over a contact period of four days, 

incorporating three training conditions: Control (C), Permission/Obligation (PO) and Wason 

(W).  Table 1 below shows an overview of the study’s design. The first column stated the time 

and activities for the participants in each condition.  

 

Table 1: Overview of the design  

Procedure/ 
Condition 

Control (C) Treatment (generate counterexamples) 
Permission and Obligation 
(PO)  

Wason (W)  

Day 1 : Pretest 
 

Pre-test 

Day 2: Training 
I 
 

Training using 
Logical truth tables 
with application to 
Proof Construction.  

Training using selection 
tasks involving permission 
and obligation situations.  

Training using 
Wason selection tasks

Day 3: Training 
II 

Proof construction 
and proof evaluation  

Similar selection tasks, 
generation of violations of 
the rule and proof 
evaluation 

Similar selection 
tasks, generation of 
counterexamples to 
the implication and 
proof evaluation  

Day 4: Post test/  
Post - study 
interview 

Post-test and Semi-structured interview of randomly selected students 
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The study inquired about the impact of logic training on students’ logical reasoning and 

proving of mathematical implications. Each student was randomly assigned and distributed 

equally to each of the three (one control and two treatments) conditions (Control, Permission and 

Obligation, and Wason) with a counterbalanced design of the test sets over the test trials. Two 

sets of test instruments were used for the pretest and the post test. Based on the two-way design 

of three conditions (Control and two treatment) by two test sets (Set 1 and Set 2), 10 students 

were randomly assigned to each cell of the 3 by 2 block resulting in equal-sized sample cells 

across conditions and test sets. Each student attempted one set of test during the pretest and the 

other isomorphic set of test during the posttest. In the event that any student withdrew their 

participation unexpectedly during the study, students were randomly selected from the available 

pool to fill the vacancies.  

During the two days of training, they were trained for logical reasoning of implications 

based on different approaches that subsequently led to either Proof Construction, generation of 

violations or counterexamples to the rule. The training used in the Control condition was a 

simplified version of using logic truth tables to illustrate and apply the process of logical 

reasoning of implications to mathematical Proof Constructions using worked-out examples. 

Learning mathematical proving from worked-out examples of mathematical proofs had been 

shown to be effective (Hilbert, Renkl, Kessler, & Reiss, 2008). The worked-out examples served 

as a means of cognitive modeling when the solution did not merely present an algorithmic 

process of proving but also explained the underlying thought processes of making mathematical 

inferences (Collins, Brown, & Newman, 1989; Schoenfeld, 1985). The training used in the two 

treatment conditions (PO and W) were adapted from the approaches used by Lawson (1990) and 

Cheng et al. (1985; 1986) to elicit students’ logical reasoning based on counterexamples and rule 
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violations through solving the selection tasks. Similarly, worked-out examples illustrating the 

reasoning processes based on counterexamples and rule violations were provided. 

 In the Control (C) condition, logical truth tables were introduced to highlight the logical 

relation between the antecedent and consequent of an implication. Subjects then applied their 

understanding to construct chains of deductive inferences that derived the consequent from the 

antecedent to prove mathematical implications. In addition, subjects also worked on proof 

evaluation task(s) on the second day of training. Students’ learning outcomes in this condition 

served as a baseline for comparing the effects of the other two treatment conditions. 

In the Permission and Obligation (PO) condition, students worked on selection tasks 

formulated using contexts involving permission and obligations on the first day of logic training. 

On the next training day, students worked on similar tasks and proof evaluation tasks, each with 

an additional request of generating violations to the rules introduced.  

In the Wason (W) condition, students worked on Wason’s version of the selection tasks 

on the first day of training. Similar to the treatment in PO condition, students worked on similar 

tasks and proof evaluation tasks, each with an additional request of generating counterexamples 

to the implications introduced, on the next training day. 

After the post test, four students were randomly selected from each condition and 

interviewed about how they attempted the proof-related items in the posttest and how they 

proved or disproved the mathematical implications, and modified falsified mathematical 

implications. This exploratory inquiry provided additional insights about the role of examples 

and counterexamples in students’ logical reasoning and mathematical proving of implications. 

 



 

34 

Materials 

Pre-test and Post-test instruments 

The two sets of test instruments comprised four Wason’s selection task items, two items 

of Deductive-proof Construction for proving mathematically true implications, two items of 

Proof-by-counterexample for falsifying mathematically false implications, two Proof Validation 

items and two Knowledge of Proof Method items (Table 2). Isomorphic items were constructed 

and matched according to the nature of each item and its mathematical topic.  

 

Table 2: Composition of Test instruments 

No. Test Set 1 Test Set 2 Purpose Content of 
Implication 

1 to 
4 

Wason Selection tasks Wason Selection tasks Logical 
Reasoning of 
implication 

 Non-
mathematical 

5 Deductive-proof 
Construction 

Deductive-proof 
Construction 

Proof 
Construction 

Elementary 
Number 
Theory 

6 Proof by counterexample 
Construction 

Proof by counterexample 
Construction 

Elementary 
Number 
Theory 

7 Deductive-proof 
Construction 

Proof by counterexample 
Construction 

Quadratics 

8 Proof by counterexample 
Construction 

Deductive-proof 
Construction 

Quadratics 

9 Invalidation of Empirical 
Proof 

Invalidation of Empirical 
Proof 

Proof 
Validation 

Elementary 
Number 
Theory   10 Logical non-equivalence 

of converse 
Logical non-equivalence 
of converse 

11 Logical equivalence of 
contrapositive  

Logical equivalence of 
contrapositive 

Proof 
Knowledge 

12 Validation of Proof-by-
contradiction 

Validation of Proof-by-
contradiction 
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The first four selection task items (labeled as Questions 1 to 4 in the test instrument) 

assessed subjects’ logical reasoning of implications. As described earlier in Chapter 1 (pp. 23-

24), the subjects were presented with four cards and a conditional statement in the form of “If 

there is P on one side of a card, then there is Q on the other,” where P and Q were propositional 

statements. The four cards instantiated P, not P, Q and not Q of the implication. They were asked 

to indicate which cards they must turn over to look for evidence that supported or rejected the 

implication logically, which amounted to the correct combination of the cards that instantiated P 

and not Q (refer to Appendix A and Appendix B for details of the test sets). These tasks were 

established and widely used for assessing logical reasoning of implications (e.g., Cheng, et al., 

1986; Jackson & Griggs, 1988; Stenning & Lambalgen, 2004). 

The next four items were the Proof Construction items that assessed subjects’ ability to 

construct mathematical proofs for mathematically true and false implications. Given a 

mathematical context and a related implication, the subjects were asked to decide whether it was 

true or false. They were further asked to justify their conclusions using the most convincing 

argument. For mathematically true implications, students were expected to construct deductive 

proofs (Deductive-proof Construction). For mathematically false implications, they were 

expected to construct counterexamples (Proof-by-counterexample Construction). All four items 

were phrased similarly, as illustrated by Figure 1 below. Each item described a mathematical 

situation and posed a mathematical implication.  The students were prompted for their 

conclusion and justifications with a logically neutral tone (see Appendix A and Appendix B for 

details of the test sets) 
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Figure 1: A Proof Construction item in the test set 

Of these four items, two involved elementary number theory content whereas the other 

two involved quadratics content. Each content group consisted of one mathematically true and 

one mathematically false implication, and was numbered as shown in Table 2 above. In the other 

isomorphic test set (Test set 2), the order of the quadratics items was reversed to minimize any 

bias due to ordering. While all items of Test set 1 were isomorphic to the same-numbered item of 

Test set 2, item 7 of Test set 1 was isomorphic to item 8 of Test set 2 and likewise for item 8 of 

Test set 1. 

The last four items assessed students’ Proof Validation and Knowledge of Proof Methods 

(or Proof Knowledge). In the Proof Validation items, students were presented a mathematical 

implication and a proof, which was either an Empirical Proof or a Proof-by-contradiction, and 

asked to justify their validity. In the Empirical Proof item, three instances of numbers were 

shown to be verifying a mathematically false implication, e.g., “If n is an even number, then 

772 ++ nn  is a composite number.” Students were asked to decide if the implication could be 

concluded as true based on the three verification instances. In the Proof-by-contradiction item, 

the negation was assumed to be true and a mathematical contradiction was drawn to conclude 

that the negation is mathematically impossible. For example, students were presented with the 

implication “Let x and n be two real numbers. If x > 0 and n > 0, then 2≥+
x
n

n
x ” and its Proof-

6. A prime number is a whole number that has exactly two factors, 1 and the number itself 
(Note that 1 is not a prime number since it has only one factor). Two positive numbers, 
which may or may not be prime numbers, are added together. Decide whether the 
following rule is true or false:  

 
If two prime numbers are added together, then the sum is an even number.  

 
Justify why your conclusion must be true or false using the most convincing argument. 
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by-contradiction which assumed the negation “There exist a pair of numbers a and b such that a 

> 0, b > 0 and
 

2<+
a
b

b
a ” that led to a mathematical contradiction of (a – b)2 < 0. The original 

implication was then concluded to be true. Students were asked to justify whether and why the 

conclusion was valid. 

 In the Proof Knowledge items, students were asked to determine if a given mathematical 

implication was logically equivalent to its converse or contrapositive. In the former, students 

were presented with both an implication and its converse spoken by fictitious characters and 

asked to decide if both statements were expressing the same mathematical idea (e.g.  “Gabriel 

says, ‘If the product of two whole numbers is odd, then their sum is even.’/ Dewey says, ‘If the 

sum of two whole numbers is even, then their product is odd’”). In the latter, students were asked 

to decide whether the truth of the contrapositive was the same as the implication, as proposed by 

a fictitious character, and why (e.g., “Henry says that the truth of [‘Let N be an integer. If N2 is 

odd, then N is odd’] is the same as the truth of this statement: “Let N be an integer. If N is an 

even integer, then N2 is an even number.”). The latter implication is a contrapositive (“If not Q 

then not P”) since “not-odd” is “even.” In both sets of the test instruments, the Validation of 

Proof-by-contradiction was placed as the last item due to its bulk content (see Appendix A and 

Appendix B for details). 

The content validity of the implications in all eight proof-related items was carefully 

considered.  To avoid students’ under-performance in the assessments due to lack of 

mathematical knowledge, information were gathered from the textbooks and conversations with 

their teachers to verify that these mathematical content were taught before the study. In all cases, 

the topics and terms of Algebra, Elementary Number Theory and Quadratics used in the test sets 
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were within students’ reach since they were either introduced or revisited in the current year’s 

lessons in every school site before the time of conducting the study. 

 

Training materials 

A total of 18 training items were given in the training materials. Eight items of the 

materials were used for the first day of training, and the next ten items were used for the second 

day of training. Training in all three conditions took the form of self-paced problem solving with 

written solutions being provided for students’ learning. The first 16 items (eight for the first day 

and the next eight for the next day) were practice problems on logical reasoning and its 

application to proving of implications, either using selection tasks in the two treatment 

conditions (PO and W), or problems on logical truth tables and mathematical Proof Construction 

in the control condition. The last two items were proof evaluation problems, which were 

introduced towards the end of training on the second day. Table 3 below shows an overview of 

the design of the training materials across three conditions. Details of these 18 practice problems 

and implications used in each of the three conditions are provided as follows.  

 

Table 3: Design of training materials 

Day  Content/ truth 
of implication  

Number and Types of Practice Problems 
Control (C) PO treatment W treatment 

1 Non-
mathematical; 
false 

Two problems of 
logic truth table 

Eight selection tasks 
(real-world context); 
 
Two were different; 
Six were modified to 
permissive/ 
obligatory rules 

Eight  selection tasks 
(Wason’s version) ;  
 
Same implications 
as Control condition; 
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Table 3 (cont’d) 

 Mathematical; 
false 

Two Proof-by-
counterexample 
Constructions 

  

Mathematical; 
true 

Four Deductive-
proof 
Constructions 

2 Non-
mathematical; 
false 

Two problems of 
logic truth table 

Eight selection tasks 
(real-world context) 
with generation of 
rule violations; 
 
Two were different, 
Six were modified to 
permissive/obligatory 
rules 

Eight  selection tasks 
(Wason’s version)  
with generation of 
counterexamples; 
 
Same implications 
as Control condition 
 

Mathematical; 
false 

Two Proof-by-
counterexample 
Constructions 

Mathematical; 
true 

Four Deductive-
proof 
Constructions 
Two proof 
evaluations 

Two proof 
evaluations with 
generation of rule 
violations 

Two proof 
evaluations with 
generation of 
counterexamples 

 

Training Materials used in the Control condition 

The materials used in the control condition mirrored the typical logic training approach 

involving logic truth tables and mathematical Proof Constructions. For each day of training, the 

materials started with reading materials and worked-out examples of the logic truth table of an 

implication “If P then Q” and its rules of logical inferences, which was adapted from the 

instructional materials used by Cheng, et al.’s (1986) study (see Appendix D for the actual 

content). Following that, two practice problems of applying the logical truth table were posed 

using specific non-mathematical implications. 

The next six practice problems in each day’s training consisted of two Proof-by-

counterexample Constructions and four Deductive-proof Constructions. Each problem was 

formulated in an isomorphic manner to the Proof Construction items in the test instruments; it 

started with a concise description of the mathematical situation before prompting for justification 
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for an implication statement. A worked solution accompanied with written explanations was 

provided on the following page for students’ learning. The worked solution demonstrated the 

logical construction of a deductive proof or Proof-by-counterexample (see Figure 2). 

 

Figure 2: A Proof Construction practice problem and its solution (Control Condition) 

The last two proof evaluation practice problems, which only appeared on the second 

training day, were adapted from the proof evaluation tasks for studying students’ algebra proof 

schemes (Healy & Hoyles, 2000). Each problem presented a mathematical implication and 

“proofs” provided by fictional characters, and asked students to choose one that best justified the 

statement. Explanations were provided on the following page to explain why some of the proofs 

were logically valid (see Appendix D to Appendix F for more examples of explanations). 

 

Practice No.13 
A set of five positive whole numbers are randomly chosen and their average is 

calculated. Decide whether the following implication statement is true or false: 
If the five whole numbers are consecutive in order, then their average is a whole 
number. 

Justify why your conclusion must be true or false using the most convincing argument. 
 
Solution for Practice No.13 

 Let’s call the first whole number as n, then any five consecutive numbers are 
namely, n, n + 1, n + 2, n + 3 and n + 4. By applying algebraic rules, the average of these 
numbers is calculated as: 
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Training Materials used in the PO condition 

The materials used in the PO condition were adapted from the instructional material used 

by Cheng et al. (1985; 1986) in training students’ reasoning of implications. Eight selection tasks 

involving two non-mathematical and six mathematical implications, which were formulated in 

permissive or obligatory contexts, were used for the first day of training. Each problem began 

with a description of a real-world situation, in which an implication “If P then Q” was 

formulated as an obligatory or permissive rule to be fulfilled, before asking students to check the 

four card choices for possible rule violations. Figure 3 below shows an illustration of formulating 

the practice problem No.13 in the control condition as a selection task with an obligatory rule 

(part (i) was not given on the first day). A worked solution accompanied with written 

explanations was provided on the following page to explain why the cards that instantiated the 

antecedent (P) and the negation of the consequent (not Q) might constitute a violation to the rule 

(see Appendix F for examples of explanations of the PO condition).  
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Figure 3: Practice problem involving obligation situation 

The second day of training focused on applying the idea of rule violation to generation of 

instance of violations. Eight similar selection tasks (two non-mathematical and six mathematical 

implications again) were presented except that, in each practice problem, students were to 

generate an instance of rule violation, if possible, or explain why violations were impossible. Of 

these eight selection tasks, instances of violations to the permissive or obligatory rules in the first 

four tasks (two non-mathematical and two mathematical) could be constructed, whereas 

violations to the permissive or obligatory rules in the next four tasks were mathematically 

impossible to construct. In addition to the solutions and explanations concerning the correct card 

Practice No.13 
 You are helping your friend in checking some flash cards she made for investigating 
the average of whole numbers. She wrote any five positive whole numbers on one side of the 
flash cards and calculate their average on the other side. You want to make sure that her 
cards follow the mathematical rule, "If the five whole numbers are consecutive in order, then 
my friend must get a whole number for the average." 
 
i)  An instance violates the above rule when a set of five numbers are consecutive and 
their average is not a whole number. Can you think of such an instance of violation?  
___ Yes. ___No. 
If “Yes,” what might the five consecutive numbers be? 
If “No,” based on what you know about the average of numbers and consecutive numbers in 
general, why is it impossible to find an instance that violates the above rule? 

[---Blank Space for students’ responses---] 
 

ii)  Which of the four card(s) below would you need to turn over to check if your friend's 
work has violated the rule? Turn only those which you need to check. Tick the card(s) you 
want to turn. 

33, 34, 35, 36, 37  67, 20, 42, 54, 36  The average is 45.2  The average is 
25 

(a)  (b)  (c)  (d) 



 

43 

choices, the written explanations provided on the next page also demonstrated how an instance 

of violation was possible or impossible to construct based on the concurrent constraints of 

fulfilling the antecedent (P) but not the consequent (not Q). Establishing the mathematical 

impossibility of this constraint generation of an instance led to the conclusion of the rule being 

complied (see Figure 4). 

 

 

Figure 4: Solution for Why Violations were impossible 

The last two proof evaluation practice problems were similar to the Control condition 

except that, with respect to the PO condition, student were prompted to generate an instance of 

violation or explain why such an instance was impossible, before being asked to choose one 

“proof” that best justified why violation was impossible. Worked solutions provided also 

explained the mathematical impossibility of generating an instance of violation and which 

“proof(s)” to choose (see Appendix E for examples of explanations of the W condition). 

  

Solution for Practice No.13 part (i) 
 
 To find an instance that violates the rule, you want to look for five consecutive 
positive whole numbers whose average is not a whole number. Let’s call the first whole 
number as n, the five consecutive numbers are namely, n, n + 1, n + 2, n + 3 and n + 4. 
Since the average is not a whole number after the sum of these five numbers is divided by 5, 
it means that the sum of n, n + 1, n + 2, n + 3 and n + 4 is not a multiple of 5. That is, 

is not a a multiple of 5. So we have an 
instance of violation when we find a number n such that 5n +10 is not a multiple of 5.  
 But 5n +10 = 5(n + 2), which actually means 5 multiplies a whole number (n is a 
whole number so n + 2 is also a whole number). It’s impossible to pick a number n without 
letting 5n +10 become a multiple of 5. Thus we cannot find five consecutive whole numbers 
whose average is not a whole number. Because we have no instance that violates the rule, the 
rule is complied. 

105)4()3()2()1( +=++++++++ nnnnnn
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Training Materials used in the W condition 

The materials used in the W condition were configured similarly to the PO condition – 

eight selection tasks (two non-mathematical and six mathematical implications) on the first day 

of training, eight selection tasks (two non-mathematical and six mathematical implications again) 

with prompts for generating instances or explanations and two proof evaluation practice 

problems on the next day. However, these selection tasks were formulated according to the 

Wason’s selection tasks. The implications appeared in these problems were identical to those 

used in the Control condition (e.g., “If the five whole numbers are consecutive in order, then 

their average is a whole number” appeared in both conditions). Each practice problem, either 

non-mathematically or mathematically related, began with a description of a situation and an 

implication, before asking students to choose the cards that helped decide the truth of the 

implication. Figure 5 below shows an illustration of formulating the practice problem No.13 in 

the control condition as a Wason selection task (part (i) was not given on the first day). Worked 

solutions for the correct choices of cards were provided on the following page (see Appendix E 

for details of solutions). 



 

45 

 

 

 

 

 

Figure 5: Practice Problem in Wason Condition 

The second day of training focused on applying the idea of counterexamples to 

generation of counterexamples, instead of rule violations. Students were to generate 

counterexamples that falsified the implication, or explain why the counterexamples were 

impossible. Of these eight selection tasks, counterexamples to the implications in the first four 

tasks (two non-mathematical and two mathematical) could be constructed, whereas 

counterexamples to the implications in the other four tasks were mathematically impossible to 

construct. Similar to the PO condition on the second day, the solutions also included 

demonstrations of how a counterexample satisfying the antecedent (P) but not the consequent 

Practice No.13 
 Below is shown a set of four cards, of which you can see only the exposed face but 
not the hidden back. For each card, there is a set of five positive whole numbers written on 
one of its sides and their average written on the other. 
 Also below there is a rule which applies only to the four cards. 
Rule:  If the five whole numbers are consecutive in order, then their average is a whole 
number. 
 
i)  A counterexample makes the rule false when a set of five numbers are consecutive 
and their average is not a whole number. Can you think of such a counterexample?   
____ Yes.  ____No. 
If “Yes,” what might the five consecutive numbers be? 
If “No,” based on what you know about the average of numbers and consecutive numbers in 
general, why is it impossible to find a counterexample to the rule? 

[---Next Page---] 
 

ii)  Your task is to decide which (if any) of these four cards you must turn in order to 
decide if the rule is true. Don’t turn unnecessary cards. Tick the card(s) you want to turn. 

33, 34, 35, 36, 37  67, 20, 42, 54, 36  Their average is 
45.2  Their average is 

25 

(a)  (b)  (c)  (d) 
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(not Q) was possible or impossible to construct. Establishing the mathematical impossibility of 

generating a counterexample led to the conclusion of the implication being true (see Figure 6). 

 

 

Figure 6: Solution for Why Counterexamples were impossible 

The last two proof evaluation practice problems were similar to the other two conditions 

except that, in consistency with the W condition, student were prompted to generate a 

counterexample or explain why such a counterexample was impossible, before being asked to 

choose one “proof” that best justified why counterexample was impossible. Worked solutions 

provided also explained the mathematical impossibility of generating a counterexample and 

which “proof(s)” to choose (see the last two items Appendix E for more details).  

In sum, the training materials across the three conditions bore some similarities in their 

design and contents guided by the theoretical framework of the study. The implications of the 

Proof Construction or selection task practices and the proof evaluation practice problems were 

alike; statements were identical in both the Control and Wason condition but formulated 

differently in the PO condition. The non-mathematical implications were identical across both 

the Control and Wason conditions but different for the PO condition. 

Solution for Practice No.13 part (i) 
 To find a counterexample, you want to look for five consecutive positive whole 
numbers whose average is not a whole number. Let’s call the first whole number as n, the 
five consecutive numbers are namely, n, n + 1, n + 2, n + 3 and n + 4. 
Since the average is not a whole number after dividing the sum of these five numbers by 5, it 
means that the sum of n, n + 1, n + 2, n + 3 and n + 4 is not a multiple of 5. That is, 

is not a a multiple of 5. So we have a 
counterexample that makes the rule false when we find a number n such that 5n +10 is not a 
multiple of 5.  
 But 5n +10 = 5(n + 2), which actually means 5 multiplies a whole number (n is a 
whole number so n + 2 is also a whole number). It’s impossible to pick a number n without 
having 5n +10 being a multiple of 5. Thus we cannot find five consecutive whole numbers 
whose average is not a whole number. Because we have no counterexample that makes the 
rule false, the rule is true. 

105)4()3()2()1( +=++++++++ nnnnnn
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The practice problems in both treatment conditions (PO and W) shared common features 

in terms of the use of selection tasks for the first 16 problems, the initial focus on the logical 

reasoning and the subsequent focus on generating violations or counterexamples.  In contrary, 

the practice problems in the Control condition consisted of few logical reasoning tasks involving 

logical truth tables but focused more on demonstration of Proof Construction on tasks which 

were similar to the Proof Construction items in the test instruments. The last two proof 

evaluation practice problems were also absent of the emphasis on violations or counterexamples 

in comparison to the proof evaluation problems in the two treatment conditions.   

 

Students’ reflection of learning 

All students were asked to write down one to three things that they had learnt at the end 

of each training day. This reflection task helped students organize their training activities into 

meaningful learning experiences. Expressing their learning in words also allowed the students to 

recall what they had learnt previously. Their written summaries served as additional research 

artifacts of students’ learning in each day.   

 

Materials for Post Study Interview 

A new Proof Construction task was posed during the semi-structured interview. The task 

was a generalized version of a practice problem which concerned whether “If the five whole 

numbers are consecutive in order, then their average is a whole number” is true. The antecedent 

was generalized to  “If the set of whole numbers are consecutive in order, then their average is a 

whole number,” where the set of whole numbers had now included at least three members. This 

implication is false for cases where the set of whole numbers has even number of members, e.g., 
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two , four or six consecutive numbers. However, for cases where the set of whole numbers has 

odd number of members, e.g., three, five or seven consecutive numbers, this implication is true 

because the sum of these numbers can be shown algebraically to be a specific multiple of the 

number of members in the set, e.g., a multiple of 3 for three consecutive numbers, a multiple of 5 

for five numbers and so on. The specific multiple is in fact the middle number of the set. 

Follow-up questions were posed about students’ conclusion. For students who concluded 

the implication as true, they were asked whether counterexamples were possible and why to see 

if they could produce a proof. They would be prompted to consider other sets of consecutive 

whole numbers if they had been focusing on sets of three consecutive numbers. For students who 

falsified the implications, they were asked to elaborate how they determined so. Questions about 

how students would modify the implication into a true statement and whether they could prove it 

were asked towards the end of the interview.  

 

Procedure 

All data collection took place in the classrooms of the school sites over four to six weeks 

at each site. Each student participated in the study for four contact days over a two-week span. 

The pretest and the first day of training took place in the same week followed by the second day 

of training and posttest in the next. The pretest and the first training were at most one day apart; 

likewise for the second training and posttest. The lapse between the two training days was at 

most a week apart.  The sessions were held after school to minimize disruptions to the students’ 

class lessons. Students were assigned to different timeslots to maintain a group size of less than 

15 at any time. This was to allow the researcher to attend to students’ queries promptly and 

manage students’ activities effectively during test and training sessions.  
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During the administration of pretest and post test, students were seated individually and 

were given about 60 to 90 minutes to attempt all the twelve items in the test instruments. During 

the pretest, ten out of 20 students in each training condition were assigned to attempt one test set 

while the other ten were assigned the other test set 2. During the posttest, all students were 

assigned to attempt the other set. In situations where students were not sure of their solutions 

while attempting the tests, they were reassured that the purpose of the test was to understand 

their thinking processes rather than being correct. They were also cooperative in observing 

silence throughout the test duration. 

On the first day of training, students were given the designated training materials, as 

described in details previously. They were instructed to read the materials before attempting the 

practice problems. The students worked on their materials individually in their own pace, 

attempting each problem at a time sequentially. Once they had completed a problem, they would 

refer to the solution provided on the next page. If the students had any questions with regards to 

the contents of the problem or the worked solutions, the researcher would paraphrase the 

sentences to aid their understanding. In situations where students were unclear about certain 

mathematical terms, the researcher would provide the mathematical definitions to assist them. 

My general observation as the researcher was that the atmosphere in the room was light-mood 

and conducive during these self-learning sessions. Occasionally, students expressed concerns 

about the correctness of their responses but were reassured that the study was more interested in 

their thinking and reasoning. At the end of the training, the students were asked to write a 

summary of their learning on the last page of the materials. Depending on the training conditions 

assigned to the students, the training session lasted from 45 minutes to 70 minutes. 
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On the second day of training, students were given their materials from the last training to 

recall what they had learnt previously, after a few days’ lapse. The old materials were then 

collected from the students after about ten minutes, in exchange of the designated training 

materials for the second training. The procedure was carried out in the same manner as described 

above. Depending on the training conditions assigned to the students, the training session took 

about 70 to 85 minutes. To reduce fatigue, students were prompted to write down their best 

responses and proceed to the worked solution if they made little progress after spending too 

much time on a particular problem. Throughout the training, the students could accomplish 

individual self-paced activities satisfactorily.  

Four students were then randomly selected from each training condition for post-study 

interviews. The interview session was carried out on a one-to-one basis that lasted about nine to 

almost 23 minutes. All interview sessions were semi-structured leading to how they would 

modify a falsified statement to a true statement and justify that it is so (see Appendix G for post 

study interview task and sample interview questions). Students were presented the new Proof 

Construction task and were left to work on their own for some time until they reached a 

conclusion. Further inquiries about how students justified and how examples and 

counterexamples helped support their conclusions were also made before they were eventually 

asked to modify the provided implication to a mathematically true implication and to prove it. 

 

Data Scoring and Coding 

As there were multiple types of items, the data were scored and coded according to the 

schemes, which are elaborated as follows. 
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Scoring of selection task items 

The students’ responses in the selection task items were coded based on the logic index 

scheme (R. Platt & Griggs, 1993; Pollard & Evans, 1987). For each card choice, 1 point was 

awarded if a logically correct choice was made; otherwise, 1 point is subtracted. Students’ scores 

in each item thus ranged from -4 to +4 with two-point intervals. The median score of 0 indicated 

that the student made two logically correct and two incorrect decisions, which reflected the case 

of majority (more than 90%) choosing the cards P and Q in the past studies. The subjects’ total 

raw scores over four selection tasks hence ranged from -16 to +16 with two-point intervals, 

constituting more than 15 possible levels within. 

 

Coding schemes for Students’ responses to proof items 

Logical reasoning and mathematical proving of mathematical implications involved 

making productive deductive inferences about possible examples of and counterexamples to the 

implication (Durand-Guerrier, 2003; Stenning & Monaghan, 2004). Coding schemes were 

constructed to identify how productive students were in making chains of deductive inferences 

about the examples and counterexamples of the mathematical implication. This might range from 

almost no consideration of relevant examples, to consideration of isolated examples and 

counterexamples, and to consideration of all possible examples and counterexamples using 

deductive inferences. These coding schemes thus assumed a hierarchical ordering of the extent of 

students' competence that concurs with contemporary views with respect to different aspects of 

mathematical proving (Balacheff, 1988; Coe & Ruthven, 1994; Durand-Guerrier, 2008; A. 

Stylianides & Stylianides, 2009b). 
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Overall, six different coding schemes were developed for analyzing students’ Proof 

Constructions, Proof Validations and Proof Knowledge: (1) Deductive-proof Construction; (2) 

Proof-by-counterexample Construction; (3) Invalidation of Empirical Proof; (4) Validation of 

Proof-by-contradiction; (5) Consideration of the logical equivalence of an implication and its 

Converse; and (6) Consideration of the logical equivalence of an implication and its 

Contrapositive. Different schemes were mandated by the distinct criteria among various types of 

proof –related items for scoring students’ responses. 

 

Coding for Deductive-proof Construction 

Students' deductive- Proof Construction were distinguished into seven levels (labeled 

level 0 to 6 in an ascending order). In general, the levels can be described as a progression 

through four phases: attempts that failed to relate the antecedent with the consequent (level 0), 

proofs that were based on examples or logical errors (levels 1 to 2), proofs that were based on 

incomplete deductive inferences (levels 3 to 4), i.e., “missing a step” (Lin, 2005), and proofs that 

were based on coherent deductive inferences (levels 5 to 6). Table 4 below showed the seven 

levels in the coding scheme. Note that students’ responses that met multiple descriptors of 

different levels would suffice for the highest level code and students’ responses that met any 

descriptor of a level with multiple descriptors would suffice for that level code. 

 

Table 4: Descriptors for coding students’ Deductive-proof Constructions 

Level Description of students' proofs 

0 Irrelevant or show minimal engagement, i.e., the antecedent and consequent are not 
related 

1 • Generates an incorrect counterexample or example to conclude the statement is 
false or true incorrectly. 
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Table 4 (cont’d) 

 • Generates one or multiple examples to verify and conclude that the implication 
is true (even if the statement is false) 

• Engaged in some erroneous form of logical reasoning such as using “if not P 
then not Q" to falsify the implication "if P then Q" 

• Derive a property which is not related to the conclusion 

2 Generate one or more examples to verify the implication but also: 
• provides a rationale for the choices of examples by considering examples 

belonging to different cases of the antecedent 
• shows evident use of at least one extreme instance 
• uses mathematical properties inferred from generated examples to make 

conclusions 

3 • Deduce relevant mathematical properties for proving the implication but 
missing one or two key inferences to deduce the implication. 

• Deduce the implication to be true for some cases of the antecedent but leave 
some others out 

4 • Generate logical deductions to justify conclusions but one or two inferences 
may be interpreted as inductive due to insufficient substantiation 

• Generate logical deductions to justify conclusions but contain minor reasoning 
errors that may be interpreted as writing error from the context 

• Inferences made are not organized into a chain of logical inferences 

5 Generate logically coherent and mathematically valid proofs 

6 Generate logically coherent and mathematically valid proofs with inferences derived 
through use of mathematical symbols and notations 

 
Students’ responses exhibited little or no deductive inferences at both levels 1 and 2. The 

distinction between them was based on whether students considered examples of the implications 

in isolation or in connected groups and, in turn, made productive inferences. Students might 

consider a mathematical example as a “crucial experiment” for testing the implication or as a 

representative of various subsets of the mathematical objects in question (Balacheff, 1988; 

Chazan, 1993). Some students might relate the antecedent to the consequent via inference of 

irrelevant property or erroneous logical reasoning (empirical-based inferences or invalid form of 

logical reasoning), which only qualified their responses as level 1.  
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Students were making productive but incomplete deductive inferences from the 

antecedent at both levels 3 and 4. The distinction between them was based on whether key 

inferences were omitted. This usually occurred when one case of the antecedent or one or two 

deductive inferences were skipped in students’ proofs, e.g., deduced the implication for the case 

of even numbers but not the odd numbers, or skipped the inference of the product of odd 

numbers is an odd number (Lin, 2005). 

At level 4, the chain of inferences connecting the antecedent and the consequent was 

almost complete. Distinction between levels 4 and 5 was based on whether one or two inferences 

might be interpreted as non-deductive or had minor errors. For instance, “3 times an odd number 

x will give an odd number” was not substantiated by “product of two odd numbers is an odd 

number” and might be interpreted as an inductive inference. Minor errors were either due to 

writing errors or lack of logical organization in sequencing the chain of inferences. Students’ 

Proof Construction at levels 5 and 6 are logically valid and coherent, with the latter showing 

concise and clearer proof through the use of mathematical symbols and notations that approaches 

a formal proof (Boero, 1999; Miyazaki, 2000). 

 

Coding Proof-by-counterexamples Construction for mathematically false implications 

A similar scheme was also used for students’ Proof-by-counterexamples Constructions 

for mathematically incorrect implications, except that there were only six ordered levels (levels 0 

to 5, in ascending order). Table 5 below showed the six levels of the coding scheme in 

hierarchical order. 
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Table 5: Descriptors for coding students’ Proof-by-counterexample Constructions 

Level Description of students' proofs 

0 Irrelevant or show minimal engagement, i.e., the antecedent and 
consequent are not related. 

1 • Generated an incorrect counterexample or example to conclude the 
statement is false or true incorrectly.  

• Generated one or multiple examples to verify and conclude that the 
implication is true (even if the statement is false)  

• Erroneous logical reasoning. Engaged in some invalid form of logical 
reasoning such as using “if not P then not Q" to falsify the implication 
"if P then Q" 

• Derive a property which is not related to the conclusion 

 2 Generate one or more examples to verify the implication but also: 
• provides a rationale for the choices of examples by considering 

different cases;  
• shows evident use of at least one extreme instance; or 
• uses mathematical properties inferred from generated examples to 

make conclusions 

3 Deduced inferences based on incomplete cases of antecedent from 
misconceptions. Implication is proven true but would otherwise be 
falsified if not for the misconception 

4 Falsify the implication by constructing one or few specific 
counterexamples 

5 Falsify the implication and describe a general set of counterexamples, 
identifying the property of the set that falsifies the implication 

 

Apart from level 0, the hierarchical levels posited a general distinction between proofs 

which considered the implications using examples (coded as levels 1 to 2) and proofs which 

considered the implication by deductive inferences (levels 3 to 5), with levels 4 and 5 indicating 

logically valid Proof-by-counterexamples had been constructed by students. 

Similar to the previous coding scheme for Deductive-proof Construction, levels 1 and 2 

marked little or no deductive inferences due to the use of example-based or logically invalid 

inferences and their distinction depended on how students conceived the examples of the 
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implication and made productive inferences. This is akin to incorrect empirical proof attempts to 

prove a false implication (Ko & Knuth, 2009). 

Students' proofs showed productive use of deductive inferences but limited consideration 

of counterexamples at level 3. For whatever examples or cases of implications they had 

identified, they were able to make deductive inferences to prove the implication. However, 

students did not consider a subset of counterexamples due to their misconceptions (e.g., assumed 

that all prime numbers are odd numbers and did not consider that 2 is the only even prime 

number), which would otherwise lead to the falsification of the implication. 

At levels 4 and 5, students’ proofs had successfully constructed one counterexample to 

falsify the implication. Distinction between levels 4 and 5 was based on students’ consideration 

of counterexamples as isolated instances or as a generic counterexample representing a group of 

counterexamples sharing a common property (Hoyles & Küchemann, 2002). 

 

Coding scheme for Invalidation of empirical proof  

The coding of students' response to this question consisted of three levels (level 0 to 2, in 

ascending order) which indicated the extent to which students considered possible 

counterexamples to the mathematical implication. At level 0, students did not exhibit any 

consideration of possible counterexamples, in their reasons for rejecting or accepting the 

empirical proof. Some students who generated their own "proofs" for the implication were also 

coded as level 0. At level 1, students questioned the truth of the implication and concluded that 

the empirical proof was invalid. They might have constructed a counterexample to the 

implication, reasoned that more instances needed to be tested for possible counterexamples, or 

that an established mathematical formula was required to prove the implication. However, these 
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responses were targeted more towards the truth of the implication than the invalidity of the 

empirical proof, i.e., such a proof did not verify that all instances were not counterexamples. At 

level 2, students rejected empirical proof based on the logical ground that the process of 

empirical proving itself did not verify that all instances were not counterexamples (A. Stylianides 

& Stylianides, 2009b). Table 6 below shows the three levels of the coding scheme. 

 

Table 6: Descriptors for coding students’ Invalidation of Empirical Proof 

Level Description of students’ responses 

0 Did not reject the proof or reject without relevant reasons 

1 Reject the proof as invalid:  
• by falsifying the implication using a constructed counterexample 
• by specifying more instances or an extreme value needs to be tested. 
• due to absence of mathematical formula 

2 Reject the proof as invalid because this type of proof is invalid in general terms; all 
instances needed to be verified but were not or that counterexamples are still possible. 

  
 

Coding scheme for considering the logical equivalence between implication and converse 

The coding of students' response to this question consisted of four levels (level 0 to 3, in 

ascending order). At level 0, students interpreted converse as the reverse of an implication and 

hence logically equivalent. Some students who "proved" both the implication and the converse to 

be "true" were also coded as level 0, indicating little consideration of counterexample. At level 1, 

students concluded that the implication and its converse were not logically equivalent based on 

their falsification of the converse, or that the antecedent of both the implication and its converse 

were referring to different sets of mathematical objects. At level 2, students showed 

considerations of counterexamples in deciding whether the pair of implications was the same. 

They constructed a deductive proof for the implication and a counterexample for the converse 



 

58 

(Hoyles & Küchemann, 2002). At level 3, students showed thorough considerations of 

counterexamples targeted towards a generic implication and its converse. They inferred that the 

counterexamples for falsifying a pair of implications were not identical and hence not logically 

equivalent.  Table 7 below shows the coding scheme at each level. 

 

Table 7: Coding scheme for the implication and its converse 

Level Description of students’ responses 

0 Did not reject, reject without logical reason or with logically incorrect reasons, e.g., if 
p then q is the same as if q then p  

1 Conclude that the pair is different because: 
• one is true and the other is false, shown by counterexample, or 
• different mathematical objects were referred by different antecedents 

2 Concluded that the pair is different by providing deductive proofs for the implication 
and counterexample for the false statement.  

3 Concluded that the pair is different because the counterexamples for the implication 
and its converse are different in general 

 
 
Coding scheme for considering the logical equivalence between implication and contrapositive 

The coding of students' response to this question consisted of three levels (level 0 to 2, in 

ascending order) that generally reflected the extent to which students recognize the logical 

equivalence through comparing examples and counterexamples of the implication and its 

contrapositive. At level 0, students showed little consideration of examples and counterexamples 

and rejected the logical equivalence due to irrelevant or mathematically false reasons. Students 

who "falsified" one of the implications incorrectly using invalid counterexamples were also 

coded as level 0. 

At level 1, students concluded that the implication and its contrapositive were logically 

equivalent based on the truth of the implications. They concluded both implications were 
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mathematically true, which was an inadequate explanation of why one implication being true 

would imply the other to be true, and vice versa. In other words, they no longer relied on the 

appearances of the sentence to judge logical equivalence (Antonini & Mariotti, 2008). However, 

they had yet to recognize logical equivalence based on validity of mathematical propositions 

(Durand-Guerrier, 2008). 

At level 2, students identified the basis for logical equivalence being that the 

counterexamples to both implications was identical, which was the only logically sound 

explanation in comparison to other levels. Both implications are either true or false concurrently, 

depending on whether the shared counterexamples exist. Table 8 below shows each level of the 

coding scheme.  

 

Table 8: Coding scheme for the implication and its contrapositive 

Level Description of students’ responses 

0 • Irrelevant, mathematically false reasons 
• Use of invalid counterexample to falsify an implication 

1 Concluded that both are logically equivalent because both statements are true and thus 
both implications have same truth value; proofs are constructed 

2 Concluded that both are logically equivalent and explain the equivalence based on 
identical counterexamples that both implications have 

 
Coding scheme for the validation of Proof-by-contradiction 

The coding of students' response to this task consisted of four levels (level 0 to 3, in 

ascending order) that generally reflected the extent to which students recognized the validity of 

Proof-by-contradiction. At level 0, students failed to accept Proof-by-contradiction. Some 

responded with irrelevant remarks or ‘substitute’ proofs which were mathematically invalid, e.g., 

empirical verification or proving its converse. Some regarded the proof as “faulty”, either 
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because the negation of the implication was being “proved” or the particular statement that 

carried the mathematical contradiction was “wrong.” (Antonini & Mariotti, 2008; Thompson, 

1996) Others accepted the proof as valid because the mathematical steps in the proof are correct 

and disregarded the contradiction statement.  

At level 1, students accepted the validity of Proof-by-contradiction because they 

evaluated and agreed with the conclusion that the particular contradiction statement in the proof 

was mathematically impossible. However, such responses were short of explaining why the 

implication would then be true. 

At level 2, students based their acceptance of the proof on the basis that contradiction led 

to the falsification of the negation and thus the implication was true. Students' explications about 

the logical consequence of deriving contradiction from a negation were distinct from level 1 

because they indicated a logical relationship between the contradiction statement and the original 

implication (Antonini & Mariotti, 2008). However, they did not further substantiate why the 

falsification of the negation led to the implication being true. 

At level 3, students accepted the proof based on their recognition that the contradiction in 

the proof for the negation of the implication had logically eliminated all possible 

counterexamples and consequently, the original implication was true. Table 9 below shows the 

coding scheme at each level. 

 

Table 9: Coding scheme for validating the Proof-by-contradiction item 

Level Description 

0 • Irrelevant response or response without mathematical reasons, including affective 
remarks 

• Failed to accept Proof-by-contradiction based on logical consideration of 
counterexamples 
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Table 9 (cont’d) 

 • Accept or rejects the proof due to empirical verification or invalid 
counterexamples, the opposite of the implication is assumed or some subsequent 
algebraic steps being correct or incorrect. 

1 Accepts the proof as valid because students evaluate and agree that the particular 
statement, which contradicts some established mathematical properties, is 
mathematically impossible. 

2 Accepts the proof as valid because the derived mathematical contradiction showed 
that the logically opposite statement is mathematically incorrect and thus the 
implication is true 

3 Accepts the proof as valid because counterexamples to the implication are impossible 
due to the contradiction. 

 

Coding of Post Study Interview Data 

The interview session was intended to find out how students modify an implication after 

falsifying it and how they went about proving it. The audio-video data were transcribed. 

Episodes of each proving attempt were identified. The student’s attempts were coded for the 

conclusion and the level of the proof constructed. For coding the interviewee’s mathematical 

proving performance in each attempt, the coding scheme of Deductive-proof Construction and 

Proof-by-counterexample Constructions were used (see Tables 4 and 5 for both coding schemes). 

In addition, the implications that students had considered, whether students had been prompted 

to consider different sets of whole numbers and how they modified the given implication were 

also identified. Instances related to examples and counterexamples in these episodes were then 

coded. A coding scheme of the modifications made, examples and counterexamples used were 

then developed from the interview data. 
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Analysis 

The data analyses served to address the main hypothesis driving the study – logic training 

emphasizing generation of counterexamples can bring beneficial effects to students’ reasoning of 

logical implications as well as students’ ability in mathematical proving. Furthermore, 

formulations that evoke reasoning schemas of permission and obligations should benefit 

students’ reasoning and proving more than the other. In addition to the above hypotheses, 

analysis of post study interview also served to inquire the role of examples and counterexamples 

in students’ reasoning and proving of mathematical implications; in particular, students’ 

modification of a false mathematical implication to a mathematically true implication. Before 

presenting the data analysis plan, the preliminary data analysis is discussed.  

 

Preliminary Analyses  

 Preliminary analyses served to surface any peculiarity in the collected data that might 

cause concern or ambiguity in interpreting the main findings in the next chapter. The scope of 

the preliminary analyses encompassed students’ written data from the test instruments, video and 

written data from the interview and written data from students’ reflection of training. Three 

aspects were targeted: (1) Reliability of the coding schemes, applied to all written and video 

data; (2) internal consistency of the test instruments; and (3) Identification of systematic biases 

prior to the training sessions, if any, in students’ pretest assessment across conditions and test 

sets. To this end, inter-rater agreement on 20% of the students’ data (12 students) from test items 

no. 5 to 12, training reflections and post study interview, Cronbach’s alpha of the pretest and 

post test scores and two-way ANOVA (3 conditions by 2 test sets) of the pretest scores were 

used. 
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Interrater agreement ratings 

Table 10 shows the inter-rater agreement of the coding schemes for all the 12 items based 

on 20% of the sample, i.e., 24 out of 120 responses, including pretest and post test, for each item. 

Each response to a particular item was also coded by a second coder, who was either a 

mathematics teacher or a mathematics major graduate. The inter-rater agreement ratings for all 

the proof –related items were satisfactory though some items’ ratings are slightly lower than 80% 

(see Table 10 below). However, pooled ratings of the items using the same coding scheme, i.e., 

Deductive-proof Construction items and the Proof-by-counterexample Construction items, 

turned out to be 85.4%. 

 

Table 10: Inter-rater agreement of coding and Reliability coefficients 

Test items Interrater agreement Cronbach’s alpha 

Pretest Posttest 

Logical reasoning  
 Items 1 to 4 

 
100% for all items 

0.12 0.866 

Deductive-proof Construction  
 Item 5 
 Item 7 (test set 1)/ Item 8 (test set 2) 

 
83.3% 
87.5% 

0.523 
 

 0.597 

Proof-by-counterexample Construction 
 Item 6 
 Item 8 (test set 1)/ Item 7 (test set 2) 

 
91.7% 
79.2% 

 0.420  0.360 

Proof Validation  
 Empirical proof (Item 9) 
 Proof-by- contradiction(Item 12) 

 
83.3% 
79.2% 

Not applicable 
 

Proof Knowledge 
 Logical non-equivalence of converse 

(Item 10) 
 Logical equivalence of contrapositive 

(Item 11) 

 
79.2%  

 
100%  

Not applicable 
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Reliability coefficients 

Table 10 also shows the internal consistencies (Cronbach’s alpha) of the test items for 

logical reasoning and Proof Constructions. The internal consistencies of the pretest selection 

tasks for the logical reasoning were unusually lower (alpha = 0.12) than 0.8. The items were 

highly similar in how the task and the prompts were phrased and posed but the students’ card 

choices were not consistent and seemed random at times. 23 out of 60 students had chosen a card 

combination in at least one or two tasks which were different than their other responses. 

The Cronbach’s alpha of the Deductive-proof Construction items in pretest and posttest 

were at least 0.5. Pretest-posttest spearman correlation analysis of these two items yielded 0.47 

and 0.17, indicating small to medium but positive correlation between students’ pretest and 

posttest performance in Deductive-proof Constructions in general. The Cronbach’s alpha of the 

Proof-by-counterexample Construction items in pretest and posttest were lower than 0.5. The 

source of low consistencies may be originated from the use of two different mathematics topics, 

elementary number theory and quadratics, in these two items. Pretest-posttest spearman 

correlation analysis of these two items yielded 0.28 and 0.19, indicating small but positive 

correlation between students’ pretest and posttest performance in Proof-by-counterexample 

Constructions in general.  

 

Principal Component Analysis 

Considering the low internal consistencies and the similar task formulations between the 

two Deductive-proof Construction items, a principal component score was derived for each 

student’s score for the Deductive-proof Construction (KMO: 0.5). Likewise, a principal 
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component score was also derived for each student’s score for the proof-by counterexample 

construction (KMO: 0.5). Table 11 below shows the result of the principal component analyses 

for each type of Proof Construction. Each principal component accounted for at least 62% of the 

total variance and the factor loading was at least 0.79. Principal component scores of Deductive-

proof and Proof-by-counterexample for each subject were generated from the original raw scores 

using the statistical software SAS 9.2. The adjusted scores are reported in the next chapter. 

 

Table 11: Principal component analysis 

 Factor loading Explained Variance 
Deductive-proof 
Construction items 

0.83760 0.7016 

Proof-by-
counterexample 
Construction items 

0.79306 0.6290 

 

Biases in Pretest results  

Preliminary analyses of pretest results were carried out for detecting any systematic bias 

due to the assignments by three conditions and two test sets prior to intervention. Two-way 

ANOVA were carried out on students’ total raw scores of selection tasks, their principal 

component scores of Deductive-proof Construction and Proof-by-counterexample Construction 

and their ranked scores of each of the Proof Validation and Proof Knowledge items. The Type I 

error and the power of ANOVA would not be affected by the use of Rank Transform method on 

the ordinal scores of the items in the last group (Agresti, 2010; Akritas, 1990; Conover & Iman, 

1981). 

Overall, no pre-existing bias attributable to conditions or test sets are found in student 

pretest scores prior to training intervention (Conditions: 0.19 < F(2, 54) < 1.94, 0.1531 < p < 
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0.8287; Test sets: less than 0.001 < F(1, 54)< 3.68, 0.0603 < p <0.9458; Interaction effect:  0.06 

<  F(2, 54) < 2.15; 0.1266 < p < 0.9382). Differences observed in students’ mean pretest scores 

in each cell were not statistically significant across two test sets and three conditions. The 

assignments of conditions and test sets did not contribute any significant pre-existing bias to the 

students’ pretest scores in all items. 

 

Overview of the analyses plan 

Recall that the research questions of this study compared the benefits of logic training 

emphasizing generation of counterexamples to the conventional approach (Control condition) in 

enhancing the following student’s performance: (1) Reasoning with logical implications, (2) 

Proof Constructions, (3) Proof Validations, and (4) Knowledge of proof methods. 

In addition, the study also investigated the following research questions: (5) To what 

extent does students’ reasoning and various abilities of mathematical proving of logical 

implications correlate with each other? (6) How do students modify a falsifiable mathematical 

implication to a mathematically true implication based on their self-generated examples and 

counterexamples? 

In the research questions 2 to 4, Proof Constructions consisted of Deductive-proof and 

Proof-by-counterexamples constructions, Proof Validations consisted of Invalidation of 

Empirical Proofs and Validation of Proof-by-contradiction, and Knowledge of Proof Methods 

concerned the Logical non-Equivalence of implication and its converse and Logical Equivalence 

of implication and its contrapositive. Analyses from the study are carried out in the order of 

addressing the above research questions. Improved performances in the test items are taken as 

evidence of enhanced students’ reasoning and proving abilities.  
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To inform the effects of different training conditions on students’ logical reasoning and 

various aspects of mathematical proving ability as spelt out in research questions (1) to (4), two-

way repeated measures ANOVA (3 conditions by 2 assessments) on total scores of logical 

reasoning items, principal component scores of Proof Construction items and ranked scores of 

other proof-related items from students’ pretest and posttest data were carried out. The choice of 

ANOVA was made depending on whether the scores were interval-based or ordinal-based. 

Additionally, students’ written reflection data were also analyzed to understand the impact of 

each training condition on their logical reasoning. Table 12 below presented an overview of the 

various statistical analyses applied to the students’ pretest and post test scores and the research 

question being addressed. 

 

Table 12: Overview of the analyses of students’ test responses 

Focus of analysis Outcome variables Statistical analysis Addressing 
Logical Reasoning Sum of scores of Items 1 to 

4 (Pretest and posttest) 
Two-way repeated 
measure ANOVA on 
students’ total scores 

Question 
(1) 

Mathematical proving 
Deductive-proof 
Construction 
 

Collation of Deductive-
proof items scores (Pretest 
and posttest) 

Principal Component 
Analysis; Two-way 
repeated measure 
ANOVA on Principal 
Component Scores 

Question 
(2) 

Proof-by-
counterexample 
Construction 

Collation of Proof-by-
Counterexample items 
scores (Pretest and posttest) 

Proof Validation – 
Empirical Proof 

Rank Transform of Item 
scores No. 9 (Pretest and 
posttest) Two-way repeated 

measure ANOVA on 
ranked scores 
 

Question 
(3) 

Proof Validation – 
Proof-by-
Contradiction 

Rank Transform of Item 
scores No. 12 (Pretest and 
posttest) 

Knowledge of Proof 
Method – Converse 

Rank Sum of Item scores 
No. 10 (Pretest and posttest) 

Question 
(4) 
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Table 12 (cont’d) 

Knowledge of Proof 
Method – 
Contrapositive 

Rank Sum of Item scores 
No. 11 (Pretest and posttest) 

  

Correlation between students’ gain scores in logical reasoning and proving 
Logical Reasoning Total gain score of Items 1 

to 4 (Posttest- Pretest) 

Spearman Correlation 
Matrix 

 

Question 
(5) 

Deductive Proof Gain in Principal 
Component score (Posttest – 
Pretest) 

Proof-by-
counterexample 
Validation of 
Empirical Proof 

Gain in raw scores of Item 
9, 12, 10, 11 (Posttest minus 
Pretest) Invalidation of Proof-

by-Contradiction 
Logical non-
equivalence of 
Converse  
Logical equivalence of 
Contrapositive 

Post study interview 
Modification of false 
implications and Proof 
Construction 

Post study interview video 
and audio data 

Qualitative analyses Question 
(6) 

 

A Spearman correlational matrix comprising of the seven gain scores (students’ 

reasoning and various proof-related scores) were computed to investigate the association 

between students’ logical reasoning and various aspects of mathematical proving. Students’ gain 

scores in these seven components of the pretest and post test were calculated from their raw 

scores and then transformed into their ranked scores for computation of the correlational matrix. 

A theoretical model of Proof Construction was also developed based on the coded 

interview data to account for the role of examples and counterexamples in Proof Construction. In 

the event that the treatments which emphasized generation of counterexamples did not benefit 
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students’ mathematical proving as proposed, the analysis of the interview data might account for 

other possible factors. 
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CHAPTER 4 RESULTS 

In this chapter, I will present the main findings pertaining to students’ logical reasoning, 

Proof Construction, Proof Validation and Proof Knowledge, using data from students’ pretest 

and posttest responses to address the first five research questions set out in Chapter 2 (the sixth 

question is addressed in the next chapter). The first four questions compared the training effects 

of the logic training approach emphasizing counterexamples (Condition W) or rule violations 

(Condition PO) with that of the conventional approach (Condition C, the Control condition) 

emphasizing logical truth tables on students’ logical reasoning and mathematical proving 

abilities, in the following order: (1) Logical reasoning of implications, (2) Proof Construction 

consisting of Deductive-proof Construction and Proof-by-counterexample, (3) Proof Validation 

consisting of Invalidation of Empirical Proof and Validation of Proof-by-contradiction, and (4) 

Proof Knowledge consisting of logical non-equivalence of converse and logical equivalence of 

contrapositive. The fifth research question examined the correlation among students’ logical 

reasoning and mathematical proving abilities. 

In the next four sections, students’ responses to the total of 12 pretest and posttest items 

are presented in the order corresponding to the research questions mentioned above. Each section 

will report the students’ performance in the test items related to that ability in a two-way table 

(three conditions by two tests), the outcomes of a repeated-measure two way ANOVA on the 

students’ scores, the relative frequency distribution of students’ scores and exhibit samples of 

students’ works that might be worthy of mention. A significance-level of 0.05 was used for all 

ANOVA. Partial η2 is used as an effect size measure which qualified values of about 0.01 as 

weak effect, values of about 0.06 as medium effect, and values of about 0.14 or bigger as large 

effect (Cohen, 1988, pp. 285-287). Following that, the next section will address the fifth research 
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question by presenting the correlation analysis of students’ gain scores related to the various 

abilities using a matrix. 

According to our main hypothesis, students’ scores should show significant differences 

between all three conditions and across pretest and posttest, with students’ improved scores in 

the Conditions W and PO shown to be significantly higher than Condition C in a post-hoc 

multiple comparison test. Moreover, similar to the findings of Cheng, et al. (1986), I expected 

that students’ logical reasoning scores in the Condition PO will be better than that of Condition 

W. According to the conjecture that the logic training emphasizing rule violations is the most 

effective for enhancing students’ mathematical proving, students’ proving-related scores in 

Condition PO should also show greater improvement (G. Stylianides & Stylianides, 2008).  

As the readers will soon realize, the findings of a study seldom match what one sets out 

to find, which can be said of this study too. At the end of this chapter, I will summarize these 

findings and discuss a few issues related to the interpretation of results briefly. These discussions 

support the inquiry and report of interview findings in the next chapter. Jointly, the findings in 

these two chapters will lead to the conclusions of the study in the final chapter. 

 

Effect of training on Students’ logical reasoning 

Recall that the research question (1) concerns the effect of logic training on students’ 

reasoning of the implications. Table 13 below shows the descriptive statistics of students’ total 

raw scores in the logical reasoning component, i.e., the Wason’s selection tasks in items 1 to 4, 

before and after the training. Overall, the scores ranged from -16 to +16 with step of two-point 

intervals. 

 



 

72 

Table 13: Students’ performance in logical reasoning by condition 

Condition Pretest Posttest 
 Mean (Min, Max) SD Mean (Min, Max) SD 

C (N=20) 1.9 (0, 10) 3.21 2.0 (-8, 16) 6.12 
PO (N=20) 0.7 (-2, 8) 2.08 5.6 (0, 16) 7.50 
W (N=20) 0.3 (-2, 8) 2.77 12.6 (4, 16) 5.39 
 

The mean score of the control group (Condition C) group increased slightly while the 

mean score of the treatment groups increased more (Condition PO and Condition W) after the 

logic training. On average, the students in the Condition C performed slightly better, while the 

students in the Conditions PO and W performed much better in their logical reasoning of 

implications. The standard deviation of the posttest scores also increased for all groups. 

Students’ posttest scores varied wider than their pretest scores, with some scoring the highest 

possible points. 

A repeated measure two-way ANOVA on students’ scores was carried out to determine 

whether students in Conditions PO and W performed significantly better in logical reasoning. 

Analysis showed significant between-subject effects of condition (F (2, 57) = 8.27, p = .0007, η2 

= 0.33) and within-subject effects of repeated assessments (F (1, 57) = 45.10, p<0.0001, η2 = 

0.52) with interaction effects (F (2, 57) = 17.08, p<0.0001).  
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Figure 7: Pretest and Posttest mean scores by conditions 

Figure 7 above indicated that the treatment which emphasized the generation of 

counterexamples (condition W) was significantly more effective than the approach of 

emphasizing logical truth table (condition C) and the treatment of emphasizing rule violations 

(condition PO). Scheffe’s multiple comparison tests affirmed that the mean total score of 

students logical reasoning in condition W was significantly different from those of condition C 

and PO (minimum significant difference = 5.08, α = 0.05, mean (W) = 12.6, mean (PO) = 5.6, 

mean (C) = 2.0). This explained the main effects due to condition and assessment, as well as 

their interaction effects mentioned earlier. While the logic training in Condition PO did not make 

significantly larger impact than the training in Condition C, the training in Condition W created a 

significant impact when compared to the other two. Logic training that emphasized generation of 

counterexamples benefited students’ logical reasoning of implications significantly and better 

than the training which emphasized violations of rule and which involved logic truth tables. 
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Effects of training on Students’ Proof Construction 

Recall that the research question (2) concerns the effect of logic training on students’ 

Proof Construction, which comprised Deductive-proof Construction and Proof-by-

counterexamples Construction. Table 14 and Table 15 show the summaries of students’ total raw 

scores and principal component scores for these two types of Proof Construction by condition. 

The raw scores of Deductive-proof and Proof-by-counterexample Construction were assigned 

based on the extent to which deductive inferences were productively used. The principal 

component score for each student’s Deductive-proof and Proof-by-counterexample Construction 

was derived from the students’ two-item raw scores related to each construction by means of 

orthogonal transformation. The derived principal component scores for each type of Proof 

Construction thus reflected students’ performance, which were uncorrelated with other factors, in 

their use of deductive inferences. 

 

Table 14: Students’ total raw scores in Proof Construction by condition 

Condition Pretest Posttest 
Mean (min, max) SD Mean (min, max) SD 

C (N=20)     
Deductive-proof 3.55 (1, 10) 2.438 4.25 (1, 10) 2.954 
Proof-by-
counterexample  

5.05 (0, 10) 2.946 5.70 (1, 10) 2.227 

PO (N=20)     
Deductive-proof 3.75 (0, 8) 2.124 4.05 (1, 8) 2.089 
Proof-by-
counterexample  

5.45 (2, 10) 2.305 6.00 (2, 9) 1.919 

W (N=20)     
Deductive-proof 3.1 (0, 5) 1.586 4.15 (1, 9) 2.277 
Proof-by-
counterexample  

4.25 (0, 8) 2.314 5.50 (1, 9) 2.282 

 
Overall, students’ total raw scores ranged from 0 to 10 for Deductive-proof Construction 

and Proof-by-counterexample Construction in both pretest and posttest. Students’ principal 
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component scores for Deductive-proof Construction ranged from -1.67 to 2.75 in pretest and -

1.24 to 2.75 in posttest. Students’ principal component scores for Proof-by-counterexample 

ranged from -2.41 to 1.89 in the pretest and -1.92 to 1.89 in the posttest. The minimum and 

maximum score by each condition and assessment is provided in Table 14 and Table 15. 

 

Table 15: Students’ principal component scores in Proof Construction by condition 

Condition Pretest Posttest 
Mean (min, max) SD Mean (min, max) SD 

C (N=20)     
Deductive-proof -0.11 (-1.23, 2.75) 1.08 0.20 (-1.21, 2.75) 1.30 
Proof-by-counterexample  -0.12 (-2.41, 1.89) 1.25 0.18 (-1.93, 1.89)  0.91 

PO (N=20)     
Deductive-proof -0.02 (-1.67, 1.89) 0.94 0.10 (-1.24, 1.84)  0.91 
Proof-by-counterexample  0.05 (-1.54, 1.89) 0.95 0.30 (- 1.55, 1.50) 0.79 

W (N=20)     
Deductive-proof -0.32 (-1.67, 0.52) 0.69 0.15 (-1.24, 2.32) 1.01 
Proof-by-counterexample  -0.46 (-2.41, 1.12) 1.03 0.06 (-1.92, 1.50) 0.96 

 

For both Deductive-proof and Proof-by counterexample constructions, the mean total 

scores and the mean principal component scores increased across all conditions after the logic 

training. Hence students exhibited more productive use of deductive inferences in constructing 

proofs for proving or falsifying mathematical implications. However, closer look at the students’ 

scores were required to conclude whether the improvement was systematic and whether they 

were better in constructing mathematically valid proofs. 

 

Deductive-proof Construction 

A two-way repeated measures ANOVA (3 conditions by two tests) of students’ principal 

component scores for Deductive-proof Construction was carried out to determine whether 

students in Conditions PO and W performed significantly better. Analysis showed no significant 
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between-subject effects of conditions (F (2, 57) = 0.15, p = 0.8601, partial η2 = 0.0053) but 

significant within-subject effects of repeated assessments (F (1, 57) = 4.67, p =.0349, partial η2 

= 0.076). Interaction between condition and assessment were not significant (F (2, 57) = 0.49, p 

=.6157, partial η2 = 0.017).  Training had a medium positive effect on students’ construction of 

deductive proofs in all three Conditions. Students showed improved use of deductive inferences 

in constructing deductive proof after the respective logic training but their improvements were 

not significantly better or worse than each other across the Conditions.  

 

Deductive-proof Construction of Item related to Elementary Number Theory 

Figure 8 showed the distribution of students’ raw scores using a stacked bar graph. The 

item that students attempted posed an implication related to elementary number theory. Recall 

that the coding scheme classified irrelevant attempts as level 0, empirical or logically erroneous 

proofs as levels 1 and 2, incomplete deductive proofs as levels 3 and 4, and coherent deductive 

proofs as levels 5 and 6. Since each condition had 20 students per assessment, 5% of each 

column would represent 1 student. 
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Figure 8: Students’ Deductive-proof Construction (Elementary number theory) 

Referring to the bar legend, the bar columns representing levels 5 and 6 increased their 

proportions in all three Conditions after the logic training, indicating more coherent proofs (level 

5 and 6) were constructed across all conditions. The total number of students scoring levels 5 and 

6 increased from 1 (5% in pretest of Condition C) to 7 (15% + 10% +10% in posttest of each 

condition).  The bar columns representing levels 3 to 6 also increased from 24 (35% + 40% + 

45% in pretest of each condition) to 28 (40% + 50% +50% in pretest of each condition). 

This figure showed students’ proofs shifted towards higher level of Deductive-proof 

Construction in this number theory task with moderately more students used deductive-

inferences instead of examples and logically erroneous inferences. Note that least 50% of the 

students across all conditions had yet to make productive use of deductive inferences in 

constructing proofs (level 3 and above), which concurred with other similar studies (Healy & 

Hoyles, 2000; Hoyles & Küchemann, 2003; Knuth, et al., 2009). 
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Deductive-proof Construction of Item related to Quadratics 

 Figure 9 below is a stacked bar graph showing the distribution of students’ raw scores 

for the other item that posed an implication related to Quadratics. Recall that the implication 

posed in the pretest item was different from its counterpart in the posttest due to the isomorphic 

design of the assessment instrument.  

 

 

Figure 9: Students’ Deductive-proof Construction (Quadratics) 

Referring to the bar legend, the bar columns representing levels 0 to 2 summed up to be  

at least 85% during pretest and at least 75% during posttest in all conditions. The bar columns 

representing level 0 ranged between 25% to 45% during pretest and decreased to between 10% 

to 25% after training with a difference as large as 30% in Condition C. The bar columns 

representing levels 3 and above increased from 10% to 25% in the Condition C and 0% to 20% 

in Condition W after training. Surprisingly, the columns remained the same at 15 % in Condition 

PO with the bar columns representing levels 4 and 5 decreased from 10% to 0% after training. 
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The bar columns representing levels 4 and 5 were 10% in the other two Conditions during 

posttest. 

Majority of the students might find this item challenging. Despite the training received, at 

least 75% of the students in all conditions still relied on examples, with some general inferences 

generated at best, but had yet to make any productive use of deductive inferences to prove the 

implication. Students in Conditions C and W exhibited some progress in using deductive 

inferences. Only four students (10% of Condition C + 10 % of Condition W) were able to 

construct coherent proof after training. Overall, students’ improved use of deductive inferences 

was moderate in some conditions or little in other condition. The prevalent use of Empirical 

Proofs concurred with similar studies about students’ proof behavior when the task becomes 

more challenging (Coe & Ruthven, 1994; Healy & Hoyles, 2000; Knuth, et al., 2009; Recio & 

Godino, 2001).      

 

Students’ Indirect approach in Deductive-proof Construction 

Some students in Condition W or PO adopted an indirect approach of Proof Construction 

that resembled the approach provided in their training materials. Instead of inferring how the 

antecedent leads to the consequent, students considered whether a counterexample to the 

implication could possibly be constructed. Figure 10 below shows such an instance of Alex’s 

(pseudonym) work in deciding the truth of the implication “[For graphs of y=ax2+bx+c] If a is 

positive and c is negative, then the x-intercepts of the graphs are one positive number and one 

negative number.” 
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Figure 10: Sample of Indirect Proof approach in Deductive-proof Construction (This figure 
was hand drawn by: Alex) 

The student considered “If a is positive and c is negative, then the x-intercepts of the 

graphs are one positive number and one positive number,” a “rule” which he inferred from 

considering the original implication as “false.” In accordance with this new “rule,” he drew a 

graph which ended up as a non-quadratic graph. Thus the student concluded that it was 

impossible to produce any such instances. His proof was scored at level 3 because the other case 

of x-intercepts being both negative, which is also another possible inference if the original 

implication was false, were not ruled out. The number of students adopting indirect approach 

was, however, rare and limited to the item involving Quadratics. 
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Proof-by-counterexample Construction  

Next we turn to students’ performance in Proof-by-counterexample Construction. A two-

way repeated measures ANOVA (3 conditions by two assessments) of students’ principal 

component scores for Proof-by-counterexample Construction was carried out to determine 

whether students in Conditions PO and W performed significantly better. Analysis showed no 

significant between-subject effects of conditions (F (2, 57) = 1.52, p = 0.2275, partial η2 = 0.051) 

and within-subject effects of repeated assessments (F (1, 57= 3.71, p =.0590, partial η2 = 0.061). 

Interaction between condition and assessment were also not significant (F (2, 57) =0.21, p 

=.8077, partial η2 = 0.0075). No training condition enhanced students’ construction of Proof-by-

counterexample significantly, though the difference between students’ pretest and posttest 

performance approached significance.  

 

Proof-by-counterexample Construction of Item related to Elementary Number Theory 

Figure 11 below is a stacked bar graph showing the distribution of students’ raw scores 

for the item that posed an implication related to Elementary Number Theory. Recall that the 

coding scheme classified irrelevant attempts as level 0, empirical or logically erroneous proofs as 

levels 1 and 2, deductive proofs with misconceptions as levels 3, and successful falsification by 

counterexamples as levels 4 and 5. Likewise, 5% of each column would represent 1 student. 
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Figure 11: Students’ Proof-by-counterexample Construction (Elementary Number Theory) 

Referring to the bar legend, the bar columns representing levels 4 and 5 in all conditions 

were at least 70% during pretest. While that proportion remained constant in Condition W, its 

counterparts increased from 80% to 95% in Condition C and from 80% to 90% in Condition PO.  

Majority of the students (at least 70%) across all conditions might find this item easy. 

They might be well-versed with the implication and thus were capable of constructing specific or 

a set of counterexamples (levels 4 and 5) before training. After training, more students were able 

to identify a set of counterexamples (level 5) across all conditions in the isomorphic posttest 

item. The high success rate of constructing counterexamples in both the pretest and posttest 

indicated a possible ceiling effect.  

 

Proof-by-counterexample Construction of Item related to Quadratics 

Figure 12 below is a stacked bar graph showing the distribution of students’ raw score for 

the other item which posed an implication related to Quadratics. Likewise, the implication posed 
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in the pretest item was different from its counterpart in the posttest due to the isomorphic design 

of the assessment instrument. 

 

 

Figure 12: Students’ Proof-by-counterexample Construction (Quadratics) 

Referring to the bar legend, the bar columns representing levels 0 to 2 in all conditions 

were at least 75% during pretest. The bar columns representing level 0 in all conditions ranged 

from 40% to 50% while the bar columns representing level 1 in all conditions ranged between 

25% to 50%. After training, the bars representing levels 0 and 1 in all conditions still remained 

around 65% and 70% during post test. The bar columns representing levels 4 and 5 decreased 

from 25% to 20% in Condition C but increased from 5% to 25% in Condition W. The bar 

column representing level 5 in Condition PO also decreased from 15% to 0%. 

Majority of the students across all conditions might find this item challenging. Overall, 

25% or less of the students was able to construct the counterexamples during the pretest. They 

were only able to construct an example or make logically erroneous inferences to conclude the 

implication incorrectly as true. After training, at least 65% of the students still responded 
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similarly to a different but isomorphic item. The combined effects of the task demand and the 

content might be too great for most students and constituted possibly a floor effect, which might 

have undermined the overall training effects. 

Furthermore, the findings of students’ performance in this item contrasted sharply with 

that of the above item. A ceiling effect was observed for the implication involving elementary 

number theory while a floor effect was observed in the implication involving Quadratic. Both 

effects were likely to render the test items insensitive to any between-subject effects. This 

extreme contrast between the two items might have also contributed to the low reliability 

coefficient of these two items, as reported in the previous chapter.  

 

Students’ False Deductive Proofs with Inadequate Mathematical Considerations 

Some students proved the implication using a chain of deductive inferences falsely 

because of inadequate consideration of all mathematical objects.  There seemed to be a brief 

lapse of logical reasoning in their Proof Construction. Figure 13 below shows such an instance of 

Brady’s (pseudonym) posttest work in deciding whether the implication “If two prime numbers 

are multiplied together, then the product is an odd number” was true. 
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Figure 13: Students’ Proof-by-counterexample Construction with inadequate consideration 
(This figure was hand drawn by: Brady) 

The student started considering the set of prime numbers based on the end-digits of the 

numbers and asserted that all prime numbers were odd numbers with end-digits 1, 3, 5, 7 and 9. 

Then she deduced that when two prime numbers with odd end-digits were multiplied together, 

the resulting end-digit was also an odd number. From here she concluded that the implication 

was true. The proof was scored at level 3 due to a lapse of logical reasoning in asserting her end-

digit model of prime numbers. However, her subsequent inferences and conclusion were 

logically valid. 

In summary of the training effects on students’ Proof Construction, the study found that 

the logic training emphasizing counterexamples or rule violation benefited students’ Deductive-

proof Construction equally as the logic training emphasizing truth tables. Students used 

deductive inferences more productively in constructing deductive proofs. However, all three 

logic training approaches did not benefit students’ Proof-by-counterexample Construction. 

Existential evidence of students’ use of indirect proof approach and inadequate considerations of 

mathematical objects of a false implication were also found.  

 

Effects of training on Students’ Proof Validation 

Recall that the research question (3) concerns the effect of logic training on students’ 

Proof Validation, which comprised Invalidation of Empirical Proof and Validation of Proof-by-

contradiction. Table 16 shows the summaries of students’ raw scores for these two types of Proof 

Validations in each condition. Each type of Proof Validation was assessed with a test item. The 

raw scores of each test item were assigned based on the extent to which students considered 
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possible counterexamples when determining the validity of a given proof. These scores ranged 

from 0 to 2 for Invalidation of Empirical Proof and from 0 to 3 for Proof-by-contradiction.  

 

Table 16: Students’ performance in Proof Validation by condition 

Condition Pretest Posttest 
Mean SD Mean SD 

C (N=20)     
Empirical Proof 0.80 0.523 0.80 0.767 
Proof-by-
Contradiction 

0.30 0.732 0.50 0.760 

PO (N=20)     
Empirical Proof 0.65 0.489 0.85 0.670 
Proof-by-
Contradiction 

0.15 0.489 0.40 0.598 

W (N=20)     
Empirical Proof 0.55 0.510 0.95 0.826 
Proof-by-
Contradiction 

0.15 0.489 0.90 1.252 

 

The mean scores of the students’ Invalidation of Empirical Proof varied differently across 

all conditions after the logic training. They remained the same in Condition C but showed 

increase in the other two Conditions. In comparison, the mean scores of the students’ Validation 

of Proof-by-contradiction increased across all conditions.  

Rank Transform method and a two-way repeated measure ANOVA were each applied to 

students’ raw scores in their Invalidation of Empirical Proofs (Item 9) and Validation of Proof-

by-contradiction (Item 12) (Agresti, 2010; Akritas, 1990; Conover & Iman, 1981). As the coding 

schemes were hierarchical, the raw scores were ordinal measures in nature. Since the levels of 

the scores were too few, the ordinal scores were converted into rank sum scores before applying 

the ANOVA.  
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Invalidation of Empirical Proof 

A two-way repeated measures ANOVA (3 conditions by two tests) of the students’ 

ranked scores for Invalidation of Empirical Proof was carried out to determine whether students 

in Conditions PO and W performed significantly better. Analysis showed no significant between-

subject effects of conditions (F (2, 57) = 0.08, p = 0.9229, partial η2 = 0.0028) and within-

subject effects of repeated assessments (F (1, 57) = 2.25, p =.1388, partial η2 = 0.038). 

Interaction between condition and assessment were also not significant (F (2, 57) =1.13, p 

=.3299, partial η2 = 0.038). No training condition enhanced students’ Invalidation of Empirical 

Proof significantly across conditions and assessments. 

Figure 14 below is a stacked bar graph showing the distribution of students’ raw score for 

the item of Invalidation of Empirical Proof. Recall that the item concluded an implication was 

true based on three examples. The coding scheme classified students’ attempts which did not 

considered possible counterexamples as level 0, attempts which questioned the truth of the 

implication as level 1, and attempts which recognized that the given proof was invalid due to a 

fundamental lack of logical considerations for possible counterexamples as level 2. The 

implication posed in the pretest item was different from its counterpart in the posttest but the 

structures of the proof were isomorphic.  
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Figure 14: Students’ Invalidation of Empirical Proof 

Referring to the bar legend, the bar columns representing level 1 made up the main bulk 

of the distribution. Across all conditions, these bar columns decreased after the training. The bar 

columns representing level 2 increased from 5% to 20% in Condition C, 0% to 15% in Condition 

PO and 0% to 30% in Condition W. The bar columns representing level 0 were between 25% 

and 45% across all conditions during pretest and remained about the same (30% to 40%). In 

addition, only the bar columns representing level 0 in Condition C increased after training, while 

its counterparts decreased in Conditions PO and W. 

Majority of the students across all conditions questioned the truth of the implication of 

the proof but not the validity of the proof itself. Some students understood the logical inadequacy 

to consider possible counterexamples as the invalidity of the given proof. However, a substantial 

proportion of students’ responses did not reject the proof or reject it without relevant reasons 

during pretest and after training. Such proportion even increased after training in Condition C. 

Overall, logic training in all three conditions benefited some students in understanding 

why Empirical Proofs were invalid based on logical ground. However, such benefits was limited 
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and mixed across Conditions, which might have explained why the training effects bore no 

significant improvements. 

  

Validation of Proof-by-contradiction 

A two-way repeated measures ANOVA (3 conditions by two tests) of the students’ 

ranked scores for validation of Proof-by-contradiction was carried out to determine whether 

students in Conditions PO and W performed significantly better. Analysis showed no significant 

between-subject effects of conditions (F (2, 57) = 0.28, p = 0.7604, partial η2 = 0.0096) but 

significant within-subject effects of repeated assessments (F (1, 57) = 8.34, p =.0055, partial η2 = 

0.128). Interaction between condition and assessment were not significant (F (2, 57) =0.46, p 

=.6325, partial η2 = 0.016). Training had medium positive effect on students’ Validation of 

Proof-by-contradiction in all three Conditions. Students showed improved consideration about 

counterexamples in validating Proof-by-contradiction after logic training. However, their 

improvements were not significantly better or worse than each other across the Conditions. 

Figure 15 below is a stacked bar graph showing the distribution of students’ raw scores 

for the item of Proof-by-contradiction. Recall that the item presented a Proof-by-contradiction to 

prove an implication. The coding scheme classified attempts which failed to accept the proof-by- 

contradiction approach as level 0, attempts which accepted the proof by agreement with the 

contradiction statement as level 1, attempts which asserted that the contradiction falsified the 

negation of the implication as level 2, and attempts which asserted that the contradiction 

eliminated all possible counterexamples logically as level 3. The implication posed in the pretest 
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item was different from its counterpart in the posttest though both concerned Elementary 

Number Theory and the structures of the proof were isomorphic. 

 

 

Figure 15: Students’ Validation of Proof-by-contradiction 

Referring to the bar legend, the bar columns representing level 0 were at least 80% across 

all condition during pretest. After training, the bar columns decreased by 15 % to 30% across all 

conditions but were still at least 60%.  The bar columns representing level 1 increased across all 

condition with a moderate 5% increase in Conditions C and W but a substantial 25% increase in 

Condition PO. Bar columns representing level 2 increased moderately from 5% to 10% in 

Condition W and more substantially from 0% to 15% in Condition C. However, the latter 

increase in Condition C was compensated by a 5% decrease of the bar column representing level 

3. Note that only the bar column representing level 3 increased substantially from 0% to 20% in 

Condition W. 

Majority of the students across all conditions might find this item challenging. After 

training, 60 % or less of the students still failed to accept the proof and might constitute a floor 
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effect. They thought that the negation of the implication was “incorrectly” assumed or the 

contradiction did not proved the implication, both of which were reported cognitive difficulties 

(Antonini & Mariotti, 2008). Students’ improved performance in validating the Proof-by-

contradiction seemed to be composed of mixed characters across conditions. In Condition W, 

more students recognized the validity because of the elimination of counterexamples due to the 

mathematical contradiction. In Condition C, more students recognized the validity by the 

falsification of the negation. In Condition PO, more students recognized the validity by 

evaluating and agreeing with the contradiction statement. Overall, students improved 

performance seemed to be more substantially due to their evaluation and agreement with the 

contradiction statement. 

 

Students’ Understanding of Proof-by-Contradiction by Counterexample Elimination 

Some students were able to accept a Proof-by-contradiction because the proof justified 

the implication through eliminating possible counterexamples. They seemed to have little 

cognitive issues in understanding why the proof worked. Figure 16 below shows an instance of 

students’ work in determining whether the Proof-by-Contradiction provided by a fictitious 

character named Gabriel was valid. In the task, the implication “Let x  and n  be two real 

numbers. If 0>x  and 0>n  , then 2≥+
x
n

n
x ” was used and Gabriel began the proof by 

assuming a counterexample of a pair of positive numbers, a and b, exists, i.e., 2<+
a
b

b
a . The 

algebraic operations of this inequality later led to a contradiction of the supposition and thus 

proved the implication (see Appendix A and Appendix B for the full details of the task). Students 

were asked if they agreed with Gabriel’s way of making his conclusion and why.  
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Figure 16: Student’s justification for the Validity of Proof-by-contradiction (This figure 
was hand drawn by: Carl) 

Carl (pseudonym) regarded the proof as an attempt to find a counterexample if the 

instance can be solved. She further understood the contradiction as a result of no solution for 

such an instance. She supported Gabriel’s assertions on two bases: (1) his supposition was 

falsified by the contradiction and as a result, (2) no instance could be found to prove that the rule 

is false. Hence she made the logical conclusion that the implication is true. Her responses 

showed that she had associated the purpose of Proof–by–contradiction with the attempt of 

finding counterexample to the implication and contradiction indicated that the counterexample 

could not be “solved” or exist. 

In summary of the training effects on students’ Proof Validation, the study found that the 

logic training emphasizing counterexamples or rule violation benefited students’ Validation of 

Proof-by-contradiction equally as the logic training emphasizing truth tables. Students accepted 

the Proof-by-contradiction with varying understanding about the purpose of reasoning to a 

contradiction. All three logic training approaches did not benefit students’ Invalidation of 

Empirical Proof, though a number of students rejected Empirical proof due to its logical 

deficiency to address possible counterexamples. Existential evidence of students’ ability to 
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understand Proof-by-contradiction as a logical failure to find a counterexample was also found. 

Next we looked at the training effects on students’ Proof Knowledge. 

 

Effects of training on Students’ Proof Knowledge 

Recall that the research question (4) concerns the effect of logic training on students’ 

Proof Knowledge, which comprised knowledge about the logical non-equivalence between a 

mathematical implication and its converse as well as the logical equivalence to its contrapositive. 

Table 17 shows the summaries of students’ raw scores for these two types of Proof Knowledge 

in each condition. Each type of Proof Knowledge was assessed with a test item. The raw scores 

of each test item were assigned based on the extent to which students applied deductive 

inferences when considering the logical equivalence or non-equivalence of statements to an 

implication. These scores ranged from 0 to 3 for students’ consideration of converse and from 0 

to 2 for students’ consideration of contrapositive. 

 

Table 17: Students’ Consideration of Logical Equivalence 

Condition Pretest Posttest 
Mean SD Mean SD 

C (N=20)     
 Converse 0.35 0.670 0.60 0.753 
 Contrapositive 0.75 0.444 0.90 0.307 
PO (N=20)     
 Converse 0.40 0.680 0.80 1.056 
 Contrapositive 0.90 0.308 0.95 0.223 
W (N=20)     
 Converse 0.50 0.827 0.60 0.883 
 Contrapositive 0.65 0.489 0.95 0.394 
 

The mean scores of the students’ consideration of the logical non-equivalence between an 

implication and its converse and the logical equivalence to its contrapositive increased across all 
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conditions after training. Similar to the analysis of students’ scores for Proof Validation, the 

ordinal scores in their consideration of the logical non-equivalence of converse (Item 10) and the 

logical equivalence of contrapositive (Item 11) were converted into rank sum scores before the 

ANOVA was carried out. 

 

Logical non-equivalence between an implication and its converse 

A two-way repeated measures ANOVA (3 conditions by two tests) of the students’ 

ranked scores for Logical non-equivalence of converse was carried out to determine whether 

students in Conditions PO and W performed significantly better. Analysis showed no significant 

between-subject effects of conditions (F (2, 57) = 0.06, p = 0.9404, partial η2 = 0.0022) but 

significant within-subject effects of repeated assessments (F (1, 57) = 4.04, p =.0492, partial η2 = 

0.066). Interaction between condition and assessment were not significant (F (2, 57) =0.36, 

p=.7012, partial η2 = 0.012). Training had a medium positive effect on students’ Proof 

Knowledge about converse in all three Conditions. Students showed improved application of 

deductive inferences when considering the logical non-equivalence between an implication and 

its converse. However, their improvements were not significantly better or worse than each other 

across the Conditions. 

Figure 17 below is a stacked bar graph showing the distribution of students’ raw scores 

for the item of logical non-equivalence of converse. Recall that the item presented a 

mathematical implication and its converse for students to determine whether both implications 

were logically equivalent. The coding scheme classified responses which considered both 

implications equivalent as level 0, responses which focused on the falsification of converse or 
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the comparison of antecedents as level 1, responses which constructed deductive proofs as level 

2, and responses which compared the equivalence of counterexamples to both implications as 

level 3. Note that students’ responses at level 2 or 3 indicated that an adequate knowledge of the 

logical non-equivalence between an implication and its converse. The implication posed in the 

pretest item was different from its counterpart in the posttest but the same mathematical content 

and sentential structure were used. 

 

 

Figure 17: Students’ Consideration of Logical non-equivalence of Converse 

Referring to the bar legend, the bar columns representing level 0 were at least 65% across 

all conditions during pretest. After training, the bar columns still remained at least 55%. The bar 

columns representing level 1 only increased from 15% to 30% in Condition C, while the bar 

column representing level 2 increased 5% across all Conditions. The bar columns representing 

level 3 were found in Conditions PO and W but only the bar column increased from 0% to 10 % 

in Condition PO.   
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Despite the logic training received, more than half of the students still considered the 

converse being logically equivalent to the implication, which concurred with the well-

documented phenomenon of students’ mathematical proving (Healy & Hoyles, 2000; Hoyles & 

Küchemann, 2003; Knuth, et al., 2009). The high proportions also indicated that students might 

find the item challenging. Students’ improved performance beyond this level showed a mixed 

character in terms of their application of deductive inferences across conditions. At the very 

least, the benefits of logic training to students’ knowledge about the logical non-equivalence of 

converse were significant across all conditions to the extent that more students applied deductive 

inferences to consider logical equivalence instead of irrelevant features of the implications.  

 

Logical equivalence between implication and its contrapositive 

A two-way repeated measures ANOVA (3 conditions by two tests) of the students’ 

ranked scores for logical equivalence of contrapositive was carried out to determine whether 

students in Conditions PO and W performed significantly better. Analysis showed no significant 

between-subject effects of conditions (F (2, 57) = 1.34, p = 0.2689, partial η2 = 0.045) but 

significant within-subject effects of repeated assessments (F (1, 57) = 5.94, p=.0179, partial η2 = 

0.094). Interaction between condition and assessment were not significant (F (2, 57) =1.09, 

p=.3428, partial η2 = 0.037). Training had a medium positive effect in students’ Proof 

Knowledge about contrapositive in all three conditions. Students showed improved application 

of deductive inferences when considering the logical equivalence between an implication and its 

contrapositive. However, their improvements were not significantly better or worse than each 

other across the Conditions. 
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Figure 18 below is a stacked bar graph showing the distribution of students’ raw scores 

for the item of logical equivalence of contrapositive. Recall that the item presented a 

mathematical implication and its contrapositive for students to determine whether both 

implications were logically equivalent. The coding scheme classified responses which rejected 

the logical equivalence as level 0, responses which accepted the logical equivalence by 

comparing the truth of both implications as level 1,  and responses which accepted the logical 

equivalence by comparing the counterexamples to both implications as level 2. The implication 

posed in the pretest item was different from its counterpart in the posttest but the same 

mathematical content and sentential structure were used. 

 

 

Figure 18: Students’ Consideration of Logical equivalence of Contrapositive 

Referring to the bar legend, the bar columns representing level 1 constituted the main 

bulk of the distribution. Across all conditions, the bar columns were at least 65% during pretest 

and increased to 90% or 95% after training. In complement, the bar columns representing level 0 
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in all conditions decreased to 10 % or less after training with a magnitude of 5% to 25%. The 

only bar column representing level 2 was 5% in the posttest of Condition W.  

Majority of the students’ still considered logical equivalence between an implication and 

its converse based on identical truth-values, despite the logic training received. However, fewer 

students rejected the logical equivalence based on mathematically irrelevant or incorrect reasons 

after training. Students who would consider the logical equivalence by comparing 

counterexamples of both implications after training were rare.  

In summary of the training effects on students’ Proof Knowledge, the study found that 

logic training emphasizing counterexamples or rule violation benefited students’ consideration of 

logical equivalence involving converse and contrapositive significantly and equally as the logic 

training emphasizing truth tables. More students applied deductive inferences when comparing 

an implication and its converse or contrapositive. However, the extent of the improvement 

seemed to be only effective in shifting students’ consideration away from irrelevant features or 

mathematically false reasoning. 

 

Correlation between Logical Reasoning and Various aspects of Mathematical Proving 

Recall that research question (5) inquired about the correlation between students’ logical 

reasoning and various aspects of mathematical proving. Table 18 below shows the matrix of 

Spearman rank correlation coefficients comprising students’ ranked gain scores of the logical 

reasoning and various components of mathematical proving. In each cell below, the number at 

the top is the correlation coefficient between the two components associated to the cell while the 

number in italics is the p-value of the coefficient being non-zero. 
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Table 18: Spearman correlational matrix of students’ gain scores 

Spearman Correlation Coefficients, p-value (N = 60) 
 Ranked 

Gain 
Scores 

Logical 
reasoning 

Deductive-
proof  

Proof-by-
counter-
example 

Invalidation 
of Empirical 

Proof  

Validation of 
Proof-by-

Contradiction 

Converse Contra-
positive

Logical 
reasoning 

1 .07122 .0166 .1857 .0706 .0002 .00556
  .5887 .9 .1554 .5918 .9988 .9664

Deductive- 
Proof  

 1 -.21539
.0984

.25422
.05*

.09235 
.4828 

-.11595 
.3777 

.20671
.113

Proof-by-
counter-
example  

  1 -.03494 .27373 .15534 -.1097
    .791 .0343* .236 .404

Invalid-
ation of 

Empirical 
Proof  

  1 .09007 -.16274 -.0567
    .4937 .2141 .6667

Validation 
of Proof-

by-Contra-
diction 

  1 -.1661 .09751
    .2047 .4586

Converse    1 -.1242
     .3444

Contra-
positive 

    1
       

 *p-value is significant at 0.05 level 

Among all pairs of correlation between the seven components, only two coefficients were 

significant. Both the correlation between Deductive-proof Construction and Invalidation of 

Empirical Proof (Spearman’s ρ = 0.254, p = 0.05), and between Proof-by-counterexample 

Construction and Validation of Proof-by-contradiction (Spearman’s ρ = 0.274, p = 0.0343) 

showed medium positive correlation. The correlation between students’ gain in logical reasoning 

and the various aspects of mathematical proving were small and not significant (Spearman’s ρ < 

0.19 and p > 0.15). This suggested that students’ improvements in logical reasoning in the 

selection tasks associated weakly with their improvements in various aspects of mathematical 

proving. 
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Summary of the Experimental Results 

This chapter reported the experimental findings gathered from students’ pretest and 

posttest data to address the hypothesis of the study, i.e., logic training emphasizing generation of 

counterexamples or rule violations enhanced students’ reasoning of logical implications, as well 

as students’ ability in mathematical proving, more significantly than the logic training 

emphasizing truth tables. Each approach constituted a training condition in the design of the 

experiment. Derived from the main hypothesis were the first four research questions pertaining 

to the comparison of the benefits of three logic training approaches on students’ logical 

reasoning and various aspects of mathematical proving. These aspects were classified into Proof 

Construction, Proof Validation and Proof Knowledge, with finer distinction made within each 

aspect. The fifth research question concerned to the correlations between these abilities. 

In each section of this chapter, training effects addressing each research question were 

reported in order for its statistical significance of the between-subject effects of training 

conditions, the within-subject effects of repeated assessments and the interaction between these 

two types of effects. Detailed characteristics of students’ improved performance in the 

assessment items were also furnished to describe the extent of the training effects qualitatively. 

Table 19 below summarized the outcomes of ANOVA and the conclusions concerning 

the effects of logic training on students’ logical reasoning, Proof Construction, Proof Validation 

and Proof Knowledge. Each entry stated the statistical significance and the effect sizes for each 

of the aspects assessed. Effect sizes were reported only when the training effect was statistically 

significant (p < .05 or less). 

 

Table 19: Summary of ANOVA outcomes and Conclusions  

Effects of training Condition Assessments Interaction 
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Table 19 (cont’d) 

Logical reasoning p < .01; large effect; 
Condition W is better than 
Conditions C and PO 

p < .01; 
large effect 

p < .01;  
large effect 
 

Deductive-proof 
Construction 

p > .05 p < .05;  
moderate effect 

p > .05 

Proof-by-counterexample 
Construction  

p > .05 p > .05 p > .05 

Invalidation of Empirical 
Proof  

p > .05 p > .05 p > .05 

Validation of Proof-by- 
contradiction 

p > .05 p < .05;  
moderate effect 

p > .05 

Logical non-equivalence 
of converse 

p > .05 p < .05;  
moderate effect 

p > .05 

Logical non-equivalence 
of contrapositive 

p > .05 p < .05;  
moderate effect 

p > .05 

 
Overall, the effects of these training approaches on students’ logical reasoning exhibited 

significant differences but their effects on students’ mathematical proving were statistically 

similar across conditions, repeated assessments, as well as interaction. Students undergoing the 

logic training emphasizing counterexample showed significant improved logical reasoning over 

the other two approaches. For each aspect of mathematical proving, no statistical significance 

across training conditions and interaction effects were reported in students’ pretest and posttest 

performances. Students undergoing all three logic training approaches showed significant 

improvements over repeated assessments for Deductive-proof Construction, Validation of Proof-

by-contradiction, logical non-equivalence of converse and logical equivalence of contrapositive 

and no significant improvements for other aspects of mathematical proving. In other words, all 

three approaches were equally effective in some aspects but ineffective in other aspects of 

mathematical proving. These outcomes were opposite to the predicted outcomes derived from 

the hypothesis of the study. 
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A closer look at the distribution of students’ scores revealed more detailed characteristics 

of improvements in students’ mathematical proving. In Deductive-proof Construction, more 

students exhibited productive use of deductive inferences though not necessarily lead to 

construction of coherent proofs. In Validation of Proof-by-contradiction, more students accepted 

the proof because they agreed with the contradiction statement, or because the negation of or the 

counterexamples to the implication were shown to be false. In determining the logical 

equivalence between an implication, its converse, and its contrapositive, a lot of students focused 

on proving whether an implication was logically equivalent to the other statement (converse or 

contrapositive) over the similarities or dissimilarities in the sentence structure. 

 

Preliminary Discussion 

The three logic training approaches had dissimilar effects on students’ logical reasoning 

but similar effects on students’ mathematical proving. The contrast of these outcomes required 

further inquiry. In particular, the phenomenon of similar effects on mathematical proving, 

significant or not, across all conditions stood opposite to the hypothesis of this study and 

required some conjectured explanations. This will be carried out in the next chapter when 

students’ interview data were analyzed. However, the issue regarding concerned the practice 

effects of repeated assessments needed to be resolved before the analyses of students’ interview 

data became meaningful for conjecturing plausible explanations for the similar training effects 

on students’ mathematical proving across conditions. 
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Students’ Improved Aspects of Mathematical Proving: Practice Effect or Training Effect 

Practice effects occurred when students enhanced their abilities solely due to repeated 

attempts of a task. In this study, training approaches in all three conditions provided worked-out 

examples to serve as feedback for students’ learning in a self-paced problem-solving context. 

The design in this study did not include a condition for controlling practice effects on Proof 

Construction since prior similar studies had established that worked-out examples of problem 

solutions and mathematical proofs facilitated learning effect for enhancing students’ problems 

solving and Proof Construction (Atkinson, Derry, Renkl, & Wortham, 2000; Hilbert, et al., 2008; 

Zhu & Simon, 1987).  Students’ processing of the explanation and solution steps provided in the 

worked-out examples served as a means of cognitive modeling (Collins, et al., 1989; Schoenfeld, 

1985). 

To add another guard against practice effects, the pretest and posttest posed different 

mathematical implications across isomorphic items for Deductive-proof Construction and Proof-

by-counterexample Construction. For instance, students who were asked to prove an implication 

involving quadratic graphs in one test would be asked to prove a different implication involving 

quadratic factoring. Also, the other tasks posed implications using different combinations of 

number operations across the two test sets. 

Likewise, two worked-out examples supporting students’ performance in Proof 

Validation were provided in the training materials across all conditions. The examples explained 

why deductive proofs were valid and empirical proofs were invalid in accordance to the logical 

bases emphasized by each training condition. Moreover, different mathematical implications 

were also being posed in the assessment item of Validation of Proof-by-Contradiction across the 
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two test sets. One concerned the addition and division of two numbers and the other concerned 

the average and square roots of numbers. 

The absence of worked-out examples illustrating Proof Knowledge related to the 

converse and the contrapositive of an implication in the training materials seemed to lend suspect 

to practice effects on students’ improved performance in the assessments. However, the practice 

effects were unlikely due to the posing of different implications across isomorphic test items. 

Furthermore, the students’ responses to these tasks were unlikely improvements due to practice 

effects. Despite the logic training received, at least 55% of students’ responses still considered 

the converse as logically equivalent to the implication (Figure 17, the bar columns representing 

level 0), and that at least 75% of students’ responses were focusing on proving the contrapositive 

and the implication (Figure 18, the bar columns representing level 1), when considering their 

logical equivalence with an implication. For the former, practice effects were unlikely when 

more than half of students still failed to deduce the logical non-equivalence. Improved use of 

deductive inferences in the latter had already been established as a learning effect due to the 

worked-out examples of Proof Construction instead of practice effects. 

In sum, I considered the likelihood of practice effect being observed in students improved 

performance in the mathematical proving tasks. Based on three considerations: (1) Prior studies 

of students’ learning from worked-out examples in mathematical problem solving and 

mathematical proving, (2) the design of isomorphic test instruments, and (3) the students’ 

responses in the Proof Knowledge tasks, practice effects was assessed to be unlikely to account 

for students’ gains. Instead, their improved performances were attributed to the effects of the 

three training conditions. With this issue being resolved, we will now turn to the next chapter for 

more in-depth accounts of the experiment results based on students’ interview data. 
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CHAPTER 5 POST-STUDY INTERVIEW RESULTS 

This study hypothesizes that logic training emphasizing generation of counterexamples 

can bring beneficial effects to students’ reasoning of logical implications as well as students’ 

ability in mathematical proving, and pit this approach as a better alternative than the approach 

using truth tables. The experimental results reported in the previous chapter were mixed. On one 

hand, students’ performances were significantly improved for Deductive-proof Construction, 

Validation of Proof-by-contradiction, logical non-equivalence of converse, and logical 

equivalence of contrapositive across conditions after training. On the other hand, no significant 

improvements were found for Proof-by-counterexample Construction and Invalidation of 

Empirical Proof. Evidently, the experimental outcomes do not support the hypothesis of this 

study. An interesting question thus arises: Why did students in all three Conditions exhibited 

similar improved performance (or unaffected performance) in these outcomes?  

The purpose of this chapter is to re-examine the design of the study and the underlying 

theoretical framework of the proposed hypothesis, and generate some conjectured explanations. I 

would first explore the controlled and uncontrolled factors of the experimental design, as implied 

by the experimental results. Guided by the theoretical framework of the study, I would then 

propose plausible theoretical explanations. Using these theoretical explanations to structure the 

analysis of students’ mathematical proving works in the post-study interview data, I would next 

proceed to report the findings that provided evidences for the conjectured explanations. Posing a 

mathematical proving task in an interview setting was a credible source of evidence as it 

captured the processes of students’ Proof Constructions, including relevant characteristics which 

were otherwise unobserved in the experiment. Experimental results would be drawn upon to 

inform the inquiry process whenever they were useful. 
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Controlled and uncontrolled factors of the experimental design 

Recall that the experimental study is a two-factor study, one of which is a between-

subjects factor of three levels (three training conditions) and the other a within-subjects factor of 

two levels (two repeated assessments). The ANOVA of students’ outcomes showed that no 

significant impact of the training conditions but significant impact of the repeated assessments 

was evident. Evidently, some factors, other than the different training approaches, were the 

causes and remained to be identified.  

Since practice effect had been ruled out for Condition C (see Chapter 4, Preliminary 

Discussion), the impact could only be attributed to one or more factors controlled within 

Condition C. By the same argument, the observed impact in Conditions PO and W was attributed 

to one or more factors controlled by each Condition. These controlled factors might be unique to 

each Condition or shared by two or more Conditions. As differences between Conditions did not 

exert a differential impact, the impact of those factors uniquely controlled by each Condition 

must be comparable or such factors did not exist. 

The above possibilities only accounted for the training outcomes in which significant 

impact was observed, i.e., students’ improved performance in Deductive-proof Construction, 

Validation of Proof-by-contradiction, logical non-equivalence of converse, and logical 

equivalence of contrapositive. For the other two outcomes (Proof-by-counterexample 

Construction and Invalidation of Empirical Proof) in which no significant impact was observed, 

they were not affected by the controlled factors. However, some other uncontrolled factors of the 

experimental design might be at play.  
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The re-examination of the experimental study suggested that the underlying factors 

affecting students’ various aspects of mathematical proving could be some controlled factors 

located within and also other uncontrolled factors were located outside of the training conditions 

of the experimental study. Next we identify these factors based on the theoretical constructs of 

logical reasoning of implications and Proof Construction set out in the study. 

 

Theoretical constructs: Logical reasoning and Mathematical Proving 

This study conceptualized logical reasoning of implications as deriving a conclusion 

about the implication statement “If P then Q,” where P is the antecedent and Q is the consequent, 

according to the logical criteria of truth and falsity. The implication is false when a 

counterexample to the implication exists, i.e., a mathematical object is found to satisfy the 

antecedent P and not the consequent Q; otherwise, the statement is concluded true. Mathematical 

proving of an implication was conceptualized as the search for examples or counterexamples of 

mathematical objects related to the implication (Durand-Guerrier, 2003). The search for 

examples and counterexamples implied that the process of mathematical proving involved the 

interpretation of mathematical objects specified in the implication, the representation of these 

objects and the use of these mathematical representations in a deductive manner. 

These three theoretical causes circumscribed the sources of controlled and uncontrolled 

factors that affected students’ various aspects of mathematical proving in the experimental study. 

The training materials used in all conditions was probably the prime source of the controlled 

factors since students’ improved performances were primarily driven by the designed proving 

tasks and the worked-out examples in the materials. The theoretical cause most relevant to the 
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design of training materials would plausibly be hypothesized as the controlled factor while the 

theoretical cause least relevant would plausibly be hypothesized as the uncontrolled factor.   

All worked-out examples demonstrated the mathematical proofs using the same set of 

mathematical representations across conditions. It would then seem that the use of mathematical 

representations was a controlled factor underlying all training conditions in common. Though 

students had prior formal classroom exposure to the mathematical contents used in the training 

materials, their mathematical competence in interpreting the mathematical objects specified in 

the tasks and the implications would likely be an uncontrolled factor. In relation to that, students’ 

choice of mathematical representations was also likely uncontrolled since the training materials 

did not instruct students on how to evaluate mathematical representations for the proving 

processes. Based on the list of causes generated, there seemed to be no candidate for controlled 

factor that was unique or common to only two of three training conditions. 

Together, the theoretical inquiry and re-examination carried out thus far had hypothesized 

plausibly that students’ interpretation of implication, their choice and use of the representation 

were the factors underlying the experimental outcomes of students’ mathematical proving. 

However, the credibility of these conjectured factors remained dubious without any empirical 

substantiation. The next step is thus to verify the plausibility and provide further insights into 

these conjectured factors through an empirical inquiry, which motivated the subsequent sections 

on the analysis and findings of the students’ post-study interview data in this chapter.  

Apart from explaining why students exhibited similar improved or unaffected 

performance in Proof Construction, Proof Validation and Proof Knowledge across Conditions, 

the analysis of the students’ interview data also needed to address the sixth research question: 

How do students modify a falsifiable mathematical implication to a mathematically true 
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implication based on their self-generated examples and counterexamples? Given the 

experimental outcomes, I expected students’ processes observed in the data would look similar 

across conditions. However, the findings might provide more insights into students’ logical 

reasoning and mathematical proving of implications. 

A caveat is warranted at this point. The proposed theoretical causes were, of course, non-

exhaustive as the theoretical framework of this study might have excluded other plausible 

factors. The limitations of theoretical issues will be addressed in the last chapter. Nonetheless, 

the inquiry had laid out a framework for structuring the subsequent analyses and findings.  

 

Analysis of Interview Data 

In this section, a brief background about the logical reasoning and mathematical proving 

abilities of the selected interviewees is provided at the start.  Before going to the findings of the 

interview, the interview and the data coding are briefly described. Coding schemes and samples 

of coded transcripts showing the assignments of codes are presented to illustrate how the 

findings from the interview were generated. 

 

Background of the interviewees 

We will first look at an overview of the 12 interviewees’ mathematical proving work. 12 

students (4 boys and 8 girls; labeled with IDs S1 to S12) participating in the interviews came 

from all three school sites and across three training conditions: 4 from each site and 4 from each 

training condition. Their raw scores for each assessed component in the posttest, in terms of 

logical reasoning, Proof Construction, Proof Validation and Proof Knowledge, are shown in 

Table 20. The legend of the abbreviations in the column headings were provided at the bottom of 
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the table. The ranges of the scores for each component are shown by the parenthesized numerical 

range found in the first row. Two sub-columns, “NT” (Number Theory) and “Quad” 

(Quadratics), were created within the columns of DP (Deductive-proof) and PC (Proof-by-

counterexample). The “NT” sub-column recorded students’ scores for tasks involving 

Elementary Number Theory while the “Quad” sub-column recorded their scores for tasks 

involving Quadratics.   

 

Table 20: Post test performance of Interviewees 

ID Cond LR 
(-16 to 

16) 

DP 
(0 to 6) 

  [NT]  [Quad]

PC 
(0 to 5) 

   [NT]  [Quad]

I-EP 
(0 to 2)

V-PC 
(0 to 3) 

LnE-C 
(0 to 3) 

LE-C 
(0 to 2) 

S1 W 16 2 5 3 1 2 0 1 0 
S2 W 16 5 4 3 1 2 0 0 2 
S3 W 12 1 1 4 4 2 2 0 1 
S4 C 2 1 1 4 1 0 0 2 1 
S5 PO 16 3 2 5 0 1 0 0 1 
S6 C 0 3 1 5 2 1 0 1 1 
S7 C 0 4 4 5 4 2 2 0 1 
S8 W 16 6 1 4 4 2 3 0 1 
S9 PO 16 5 3 3 4 2 1 3 1 
S10 PO 0 4 1 5 3 2 1 1 1 
S11 PO 0 2 3 4 1 1 0 3 1 
S12 C -8 4 1 5 1 0 0 2 1 
Legend 
ID      – Identification   Cond  – Condition 
LR     – Logical Reasoning    DP     – Deductive-proof    
NT     – Number Theory   Quad  – Quadratics; 
PC     – Proof-by-Counterexample  I-EP   – Invalidation of Empirical Proof 
V-PC  – Validation of Proof-by-  LnE-C  – Logical non-Equivalence of 
    Contradiction        Converse 
LE-C  – Logical Equivalence of Contrapositive 

 

The logical reasoning and mathematical proving abilities of these interviewees were 

somewhat aligned with the experimental results. The logical reasoning scores of the interviewees 

from the Condition W (12 to 16) were generally higher than those from the Condition PO (0 to 
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16), which was in turn higher than those from the Condition C (-8 to 0). They performed better 

for the Proof Construction tasks (Deductive-proof and Proof-by-counterexample Construction) 

involving Elementary Number Theory in comparison to Quadratics. Their understanding of the 

invalidity of Empirical Proofs was not uniform across conditions – all four interviewees from 

condition W were clear about why Empirical Proofs were invalid (at level 2) while none from 

Condition C did. However, more than half of the interviewees did not accept the Proof-by-

contradiction. Their performances in the Proof Validation tasks were reflective of the post test 

results in which high proportion of students (at least 60%) did not accept the valid proof.  

The Proof Knowledge exhibited by the interviewees was also not uniform. Two out of 

four interviewees from condition PO were able to relate the logical non-equivalence of converse 

to the counterexamples (level 3), while none from condition W did. In comparison, the 

interviewees exhibited uniform knowledge of the logical equivalence of contrapositive (mostly at 

level 1). Overall, this selection of interviewees was representative of the experimental findings in 

terms of logical reasoning and most aspects of mathematical proving, except for their 

invalidation of Empirical Proofs and logical knowledge about converse. 

 

The Interview Task and Data Coding 

The video-recorded interview session was carried out by me on a one-to-one basis. 

Students were presented the following impromptu task: “A set of at least 3 whole numbers are 

randomly chosen and their average is calculated. Decide whether the following statement is true 

or false: / If the set of numbers were consecutive in order, then their average is a whole number. 

/ Justify why your conclusion must be true or false using the most convincing argument.” Note 

that the given implication referred to sets of at least three numbers and is thus false whenever an 
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even number of consecutive numbers is considered, e.g., the average of “1, 2, 3, 4” is 2.5 and not 

a whole number. However, students might consider different sets of numbers pending their 

interpretations.  

The student worked on the task for some time with paper and calculator provided. The 

interviewer then asked the student about their conclusions and justifications when they appeared 

to have reach a conclusion. If the student’s conclusion was ‘True” and had no intention of 

revision, the interviewer would prompt the student to consider other sets of numbers that would 

falsify the implication. After students had falsified the implication, they were then asked to 

modify the false implication to a mathematically true implication and to provide mathematical 

justifications for it. 

 

Coding of Students’ Proving Attempts 

The audio-video data were transcribed. The beginning of a proving attempt was marked 

by the student’s mathematical actions and its ending by the student’s response of his/her 

conclusion. The student’s attempts were coded for the conclusion and the level of the proof 

constructed. For coding the interviewee’s mathematical proving performance in each attempt, the 

coding scheme of Deductive-proof Construction was used when sets of odd number of 

mathematical objects were considered. The coding scheme of Proof-by-counterexample 

Construction was used when sets of even number of mathematical objects were considered (See 

Chapter 3, Table 4 and Table 5 for both coding schemes). 

The coding of students’ proving attempt was guided by the theoretical inquiry mentioned 

earlier. In coding for students’ interpretation of mathematical objects, the set of mathematical 

objects they considered in their attempts were identified from the transcripts. In addition, the 
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number of mathematical objects considered was also coded. The types of mathematical 

representations used in each attempt were also identified. These were mainly numerical or 

algebraic representations as preliminarily observed from students’ articulation or written work. 

Table 21 below shows the coding scheme used.  

 

Table 21: Coding scheme for students proving attempts 

Category of data Codes to be assigned 
Prove attempt Indicate the number of attempts thus far 
Conclusion of 
proof 

‘True’ 
‘False’ 

Level of Proof If the conclusion is ‘True,’ code student’s proof using the coding 
scheme for Deductive-proof Construction 
If the conclusion is ‘False,’ code student’s proof using the coding 
scheme for Proof-by-counterexample Construction  

Sets of 
mathematical 
objects considered 

Indicate the number of objects considered 

Representations ‘Numerical’ if numeric symbols were written or spoken 
‘Algebraic’ if algebraic symbols were written or spoken 

Use of 
representations 

Indicate the specific symbols used 

 

A sample of the coded transcript is shown in Table 22.  

 

Table 22: Sample of coded transcript 

Transcribed conversation and actions Codes assigned 

S11 wait a while. [takes out a calculator.]  
I so you understand the situation?  
S11 yes. [long pause, working on calculator a few times. three 

numbers added each time] 
Proof attempt 1; 
Numerical 
representations; 
True  

S11 yes, the statement will always work 
I  ok, so your conclusion is true  
S11 yeah. 
I ok, um, why? It will always work, so how? 
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Table 22 (cont’d) 

S11 [laughs, starts writing down] because if, I can try to explain or I 
can just list out the again the 15 examples? 

15 sets of three 
consecutive numbers 

I whichever way that you can support your reason, your decision 
here. 

 

S11 um, how to say? You always have 3 as a factor. Level 2 (Proof 
attempt 1) 

I Ok  
S11 because if consecutive numbers right, so it's like [writes down, 

x + (x + 1) + (x + 2)] x + x + 1 + x + 2 
Proof attempt 2; 
Algebraic 
representations;  
three terms 
considered – “x, x + 
1, x + 2” 
True 
Level 6 (Proof 
attempt 2) 

I Mmhmm 
S11 if this is the set of consecutive numbers 
I Ok 
S11 Right 
I yeah. Mmhmm 
S11 then you will always have, you will become 3x + 3 
I Ok 
S11 so this will always be divisible by 3 
I divisible by 3. ok if it is divisible by 3, then the average would 

be  
S11 [writes down 'average = (3x + 3)/3 = x + 1’] 
I which is x +1 

[Part of transcripts here were omitted for illustrative purposes] 
I but the set of whole numbers here says,' at least three whole 

numbers' 
Prompted to consider 
four numbers 
 S11 Yeah 

I so at least three whole numbers refers to three whole numbers, 
but if it can also be other numbers of whole numbers  

S11 ok, I try [use calculator to check].  
 

These codes were then further consolidated and classified for analyses. The sample of 

coded transcripts will be referenced again in some subsequent sections to highlight the typical 

aspects of interviewee’s mathematical proving attempts. 

 

Coding of Students’ Modification of Implication  

As the implication relates the antecedent to the consequent, students’ modifications to the 

implication were classified into three types: (A) modifications made to the mathematical objects 
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described by the antecedent, (C) modifications made to the mathematical objects described by 

the consequent, (M) modifications made to mathematical objects described by both antecedent 

and consequent. In the first type of modifications, students restricted the set of consecutive 

numbers being specified in the antecedent. In the second type of modifications, student extended 

the numerical property of the average as specified in the consequent. In the third type, student 

restricted the set of consecutive numbers as specified in the antecedent and altered the property 

of the average as specified in the consequent. Table 23 below shows a sample of modified 

implication of each type to illustrate the coding. The underlined words and phrases were 

students’ modifications.  

 

Table 23: Sample of Modified Implications 

Student Modified implications Type Modification 
S4 If the set of whole numbers are consecutive in order and 

are of an odd number, like 3 or 5 numbers, then their 
average is a whole number. 
 
If the set of whole numbers are consecutive in order and of 
an even number, like 4 to 6 numbers, then their average is 
not a whole number. 

A 
 
 
 

M 

Odd numbers  
 
 
 
Even 
numbers; 
non whole 
numbers 

S5 If the set of whole numbers are consecutive in order, then 
their average is a whole number or a decimal number. 

C Decimal 
numbers 

 

As the modification task was open-ended, the number of coded modifications varied 

across students as shown in the above table. 

 

Overview of students’ proving behaviors 

Table 24 below shows the frequencies of proving-related actions taken by the 

interviewees and the duration of the interviews. The number of proving attempts made in the 
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entire task, the number of modifications made to the implication and the number of attempts to 

prove the modified implications was counted from the coded data. Whether students were 

prompted to consider sets of more consecutive numbers was also noted.  

 

Table 24: Overview of Students’ proving of the impromptu task 

Interview 
events 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Number of 
attempts 

2 4 2 3 1 3 4 2 5 4 3 5 

Prompted for 
other sets 

Yes No No No No Yes No Yes No Yes Yes Yes 

Number of 
Modifications  

2 1 3 2 2 1 1 3 5 2 1 2 

Number of 
attempts after 
modifications 

3 2 3 3 4 3 3 4 3 3 3 3 

Time spent 
(min:sec) 

10:32 22:46 18:29 15:19 9:00 10:16 16:13 17:04 16:55 9:38 21:14 12:15

 

Overall, the time spent by each student varied substantially (from nine to almost 23 

minutes) and about five to nine proving attempts were made. However, the duration of the 

interview did not necessarily correspond to the number of the attempts, e.g., compare S12 and 

S2. Most students attempted three or more proofs in proving the given implication except S1, S3 

and S5. Almost all attempted three or more proofs after they had modified implications, except 

for S2.  

Recall that the analysis of interview was concerned with explaining the experiment 

outcomes of students’ mathematical proving based on the three theoretical factors as well as 

addressing the sixth research questions. In the subsequent sections of reporting the findings from 

the interview, I first turn to how students considered the sets of mathematical objects specified in 

the implication to address students’ interpretation of implication, which was conjectured as an 
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uncontrolled factor. Following that, I will examine students’ proving attempts, the 

representations used and the level of the constructed proof (Deductive-proof or Proof-by-

counterexample) scored in each attempt to address students’ representations of mathematical 

objects and their use of representations. Subsequently, I will examine the types of modifications 

student made to the implication in relation to their proving attempts. Finally, these findings were 

put together to infer conjectured explanations for the experimental results and to address the 

sixth research question. 

 

Students’ Considerations of Mathematical Objects 

Students considered different sets of mathematical objects based on their interpretation of 

the given implication which referred to sets of at least three numbers. This description was less 

specific than what they had encountered in the training materials. Hence this task appeared more 

novel. However, some students had limited considerations of the number sets and needed to be 

prompted after some attempts. Table 25 below shows the set of mathematical objects, 

specifically the number of numbers, being considered by each student in each attempt. A 

distinction between whether numbers or algebraic terms were used was also noted. Attempts in 

bold print indicated the student needed to be prompted to consider the task description “set of at 

least three numbers” for the attempt.  

 

Table 25: Students’ considerations of mathematical objects for proving implication 

ID Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5 
S1 3 numbers – “1, 2, 

3”; and “2, 3, 4” 
4 numbers – “1, 
2, 3, 4” 

   

S2 17 terms – “x, 
x+1, x+2, …, 
x+17” 

4 terms – “x, x + 
1, x + 2, x + 3” 

5 numbers – “2, 
3, 4, 5, 6” 

4 numbers – “2, 
3, 4, 5” 
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Table 25 (cont’d) 

S3 4 numbers – “7, 8, 
9, 10” 

6 numbers – “1, 
2, 3, 4, 5, 6” 

   

S4 4 terms – “x, x + 
1, x + 2, x + 3” 

3 terms – “x, x + 
1, x + 2” 

5 terms – “x, x + 
1, x + 2, x + 3, x 
+ 4” 

  

S5 4 numbers – “1, 2, 
3, 4” 

    

S6 3 terms – “x, x + 
1, x + 2” 

4 terms – “x, x + 
1, x + 2, x + 3” 

5 terms – “x, x + 
1, x + 2, x + 3” 

  

S7 Odd number of 
numbers 

3 numbers – “1, 
2, 3” 

Odd number of 
numbers 

4 numbers – “1, 
2, 3, 4” and “2, 
3, 4, 5” 

 

S8 3 numbers – “1, 2, 
3”, “2, 3, 4”, “3, 
4, 5”, “4, 5, 6” 

4 numbers – 
“1,2, 3, 4” 

   

S9 3 numbers – “1, 2, 
3”, “2, 3, 4”, “4, 
5, 6” 

3 terms – “n, n + 
1, n + 2” 

4 terms – “n, n + 
1, n + 2, n + 3” 

4 terms – “n + 1, 
n + 2, n + 3, n + 
4” 

4 numbers – 
“1, 2, 3, 4” 

S10 3 numbers – “1, 2, 
3” and “4, 5, 6” 

3 terms – “n, n + 
1, n + 2” 

4 terms – “n, n 
+ 1, n + 2, n + 
3” 

4 numbers – 
“100, 101, 102, 
103” 

 

S11 3 numbers – 15 
sets 

3 terms – “x, x + 
1, x + 2” 

4 terms – “x, x 
+ 1, x + 2, x + 
3” 

  

S12 
 

3 numbers – “1, 2, 
3” 

3 numbers – “1, 
4, 6” 

4 numbers – 
“1, 2, 3, 4” 

5 numbers – “1, 
2, 3, 4, 5” 

6 numbers – 
“1, 2, 3, 4, 5, 
6” 

 

As illustrated in Table 25, the mathematical objects considered were mostly expressed as 

numbers or algebraic terms, either verbally or in writing. Seven students started considering 

three consecutive numbers or terms and extended their consideration to sets of more objects 

subsequently. Of these students, six students were prompted to consider what “set of at least 

three numbers” meant. Only upon prompted, they inferred that sets of four or more numbers 

were meant and made another proving attempt.  

The other four students started considering sets of four or other mathematical objects 

instead. While students S7 and S9 choose other sets of numbers for unknown reasons, some 
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students made their decision because they wanted to avoid being biased, e.g., S2 chose 17 terms, 

which involved some complicated calculations for her, and S3 chose four numbers (see Table 

26). 

 

Table 26: Students’ reasons for choosing a set of numbers 

ID Reasons provided during interview (in verbatim) 
I: 
 
S2: 

So I see you do a lot of things and press the calculator, what happens, what are the 
numbers you have considered? 
just add, 1, 2, 3, 4, 5, 6, then add until some point that use calculator to divide. 

I: 
S3: 

so you try four whole numbers. 
Yeah, actually I try four and try five, I did not try three because sometimes in the 
mathematical way, you didn’t do something complicated, the number would be what 
you are thinking. 

I: 
S8: 
I: 
S8: 

So far what have you done with the calculator? 
spamming with random numbers 
random numbers. How many of them? 
for countless, all from 1-2-3, 2- 3- 4, 3-4-5, 4-5-6,  

 

I: 
 
S6: 

Ok, so if you, so now based on what you have found out about this, would you say 
this [pointing to the given implication] is true or false again? 
False. Because I didn't know it was "at least three" [underline the three words in the 
question]. 

 

S3 made a conscious decision to avoid the set of three numbers because of her concern 

that simple mathematical actions tend to confirm her prediction of mathematical outcomes. S2 

made a “random” selection of numbers by making a spontaneous stop with keying of numbers 

and proceeded with a calculation of their average. Contrast with the “random” move made by S8, 

S2 randomized her choice about the size of the number set to be considered while S8 limited his 

choice to three consecutive numbers but “randomly” selected what those numbers were. S6 

limited her choice to three consecutive numbers and did not notice more numbers were included 

until prompted. Her interpretation of the set of objects was representative of the six students.   
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Students’ consideration of mathematical objects suggested that their considerations were 

often influenced by their prior mathematical knowledge and lacked a process of logical check. 

Half of the students’ consideration of “at least three numbers” was fixated to only three numbers 

and lacked a cognizance of other sizes. Of the other six students, their considerations of numbers 

were varied and often grounded in some sophisticated heuristics of bias aversion other than 

logical reasoning.  Overall, students’ considerations of mathematical objects appeared to lack an 

effective process of logical reasoning to rectify the errors in their interpretations.  

  

Students’ Deductive-proof and Proof-by-counterexample Constructions 

In all attempts (except the first and third attempt of S7, which shall be discussed later) 

made by students, interviewees either used numerical or algebraic representations and operations 

to prove or falsify the implication with the set of mathematical objects considered and concluded 

whether the implication was true or false. Table 27 below shows what type of representations 

and operations were used by each student in each mathematical proving attempt. In each cell, the 

last number is the level of proof being scored for the particular attempt and the word, “True” or 

“False,” is the conclusion students made for that attempt. Specific numbers or terms considered 

by the students have been listed in Table 26. 

 

Table 27: Types of representations, Conclusions and Level of Proof 

ID Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5 
S1 3 numbers;  4 numbers;    
 Numerical; 

True – 1 
Numerical;
False – 4 

   

S2 17 terms; 
Algebraic; 
True – 6 

4 terms; 
Algebraic; 
False – 5 

5 numbers; 
Numerical;
True – 1 

4 numbers; 
Numerical;
False – 4 

 

S3 4 numbers;  6 numbers;    
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Table 27 (cont’d) 

 Numerical; 
False – 4 

Numerical;
False – 4 

   

S4 4 terms; 
Algebraic; 
False – 5 

3 terms; 
Algebraic; 
True – 6 

5 terms; 
Algebraic; 
True – 6 

  

S5 4 numbers; 
Numerical; 
False – 4 

    

S6 3 terms; 
Algebraic; 
True – 6 

4 terms; 
Algebraic; 
False – 5 

5 terms; 
Algebraic; 
True – 6 

  

S7 ‘Odd’; 
‘Center’; 
True – 3 

3 numbers; 
Numerical;
True – 1 

Odd; 
‘Balance’; 
True – 4 

4 numbers; 
Numerical;
False – 4 

 

S8 3 numbers; 
Numerical; 
True – 1 

4 numbers; 
Numerical;
False – 4 

   

S9 3 numbers; 
Numerical; 
True – 1 

3 terms; 
Algebraic; 
True – 6 

4 terms; 
Algebraic; 
True – 1 

4 terms; 
Algebraic; 
False – 5 

4 numbers; 
Numerical; 
False – 4 

S10 3 numbers; 
Numerical; 
True – 2 

3 terms; 
Algebraic; 
True – 6 

4 terms; 
Algebraic; 
True – 1 

4 numbers; 
Numerical; 
False – 4 

 

S11 3 numbers; 
Numerical; 
True – 2 

3 terms; 
Algebraic; 
True – 6 

4 terms; 
Algebraic; 
False – 5 

  

S12 
 

3 numbers; 
Numerical; 
True – 2 

3 numbers; 
Numerical;
True – 1 

4 numbers; 
Numerical;
False – 4 

5 numbers; 
Numerical;
True – 2 

6 numbers; 
Numerical; 
False – 4 

 

Use of Numerical Representations in Deductive Proofs or Proof-by-counterexample 

For students who adopted numerical representations and operations to prove the 

implication, their proofs were usually scored at level 1 or 2. The latter depended on whether 

students inferred additional explanations, such as observed properties, to justify why the 

implication was true. For example, S11’s first attempt was scored level 2 because he calculated 

the total of three consecutive numbers and divided by 3 for 15 sets of numbers and provided 
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additional explanations (See Table 22, proof attempt 1 by S11). For students who “proved” the 

implication false more than once, their final conclusion for the implication is false. 

For students who adopted numerical representations and operations to falsify the 

implication, they usually selected a set of four or six small consecutive numbers, e.g., 1 to 4. 

They calculated the average of the number set with a calculator, by summing the numbers and 

dividing the total by the number of consecutive numbers in the set. Their proofs were scored at 

level 4, indicating that they had falsified the given implication with isolated instances of the 

average being a non-whole number. 

 

Use of Algebraic Representations in Deductive Proofs or Proof-by-counterexample 

For students who adopted algebraic representations and operations, their proofs were 

usually scored at level 6. The algebraic representations of any consecutive numbers in algebraic 

terms similar to “x, x + 1, x + 2 …” supported the students in constructing a concise and clearer 

proof. Students applied subsequent algebraic additions and divisions to obtain the average of the 

terms in the form of x + a. For example, S11 represented three consecutive numbers in the form 

of “x, x + 1, x + 2” and obtained the average x + 1. Since x represented a whole number, he 

deduced that the average is a whole number if the set of three numbers were consecutive (See 

Table 22, proof attempt 2 by S11).   

For students who falsified the implication, they chose a set of 4 (or other even number) 

terms, n to n + 3, to represent any four (or other even number) consecutive numbers. They obtain 

an average of n + 2.5 by dividing the algebraic sum by 4 (or other even number). Their proofs 

were usually scored at level 5, indicating that they had falsified the implication based on a 
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generic set of counterexamples in which the average was not a whole number for any four (or 

other even number) consecutive numbers.  

Most students falsified the implication when they considered an even number of 

consecutive numbers. However, S9 and S10 concluded the implication to be true (see the third 

attempt of S9 and S10) due to some mathematical errors made during the computation of the 

average. Their use of incorrect mathematical examples led to logically invalid conclusions of 

being true and thus their proofs were scored at level 1.  

Students’ choice of numerical and algebraic representations appeared to have an impact 

to the types of Deductive proof and Proof-by-counterexample constructed. However, how 

students used the representations and the operations to derive a logical conclusion from the 

results also mattered. 

 

Alternative use of representations in Deductive Proofs  

Among all interviewees, S7’s attempt was atypical – she considered a generic set of odd 

number of mathematical objects and based her inferences on mathematical knowledge other than 

numerical or algebraic operations after she was briefed on the task. She held the premise that the 

average of a generic set of consecutive numbers lies exactly at the ‘center’ of the set based on her 

prior knowledge. If the set has an odd number of consecutive numbers, that ‘center’ would be the 

middle number of the set. Upon request for more explanations, she illustrated her idea of ‘center’ 

using the set “1, 2, 3” but was pressed for an explanation that applied to a generic set. S7 then 

introduced a ‘balanced’ conception in her third attempt (Excerpt 1). 
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Excerpt 1: Average is the ‘Center’ number of a ‘balanced’ set 

S7: Yeah, because basically you are just finding the, how to say, um, average, you just 
finding the, like everything then the moderate number, yeah, whereby it is 
something like constant. yeah, then, so the center one is basically the more fair, 
because both are of equal [underlines the space to the left of '2'], equal [underlines 
the space to the right of '2'] value. I mean they both have equal number of integer 
[circling '1' and '3']. 

I: Ok, so you take the middle number [points to ‘2’] and on the right hand side you 
have equal number of integers [point to the space to the right of ‘2’, including ‘3’], 

S7: Yeah. 
I: On the left side integers [point to the space to the left of ‘2’, including ‘1’],  

S7: Yeah equal number. 
I: Of integers on the left side. 

S7: Yeah. Because this one [points to '1, 2, 3'] only have 1[points to ‘1’], this one only 
have 3[points to ‘3’], so 1 and 3 equal balance. 

 

S7’s knowledge of the average being the ‘center’ number of a set having an odd number 

of consecutive numbers was grounded in a ‘balance’ conception, in which as many numbers 

were on the left side as on the right side of the middle number. The number of consecutive 

numbers was not crucial as long as there were an odd number of them. However, her 

justifications for the conception were not logically valid. Nevertheless, just as the numerical and 

algebraic representations and operations supported other students in their Proof Constructions, 

the ‘balance’ conception supported S7 in applying her knowledge of average to generic sets of 

consecutive numbers though it was unclear what the underlying mathematical operations were. 

Further analysis of students’ Deductive-proof Construction for modified implications would 

provide more insights about students’ representations and their use of representations. 

 

Students’ Deductive-proof Construction for modified implications 

In between the process of modifying implications, students constructed deductive proofs 

to justify the implication they made. These attempts in the data were identified and labeled in 
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order of appearance. Note that the number of proofs constructed by a student did not correspond 

exactly to the number of modifications. Although these attempts occurred after students’ 

modification of implication in the interview transcripts, they were reported ahead in this section 

for a coherent analysis of students’ representations and their use of representations.  

Table 28 below groups the students’ attempts according to their use of representations. 

Each entry described the representations students generated. The students were classified into 

four groups according to how the representations were used throughout these attempts: (1) Use 

of numerical representations only; (2) Use of algebraic representations only; (3) Mixed use of 

numerical and algebraic representations; and (4) Other uses. Students’ attempts often included a 

modified implication in which an odd number of consecutive numbers was specified in the 

antecedent (except for S5, see Table 29 at later section for details). Such attempts were italicized 

in print.  

 

Table 28: Students use of Mathematical Representations by groups 

ID  Representations used 
Group 1: Numerical representations only 

S1 1. Three numbers – “1, 2, 3”, “2, 3, 4”, “3, 4, 5”, “4, 5, 6”   
2. Random sets of three numbers – “55, 56, 57”, “99, 100, 101”  
3. Multiple sets of three, four, and five consecutive numbers 

S3 1. Three consecutive numbers – “1, 2, 3”; “4, 5, 6”; “7, 8, 9” 
2. Five numbers – “1, 2, 3, 4, 5” 
3. Averages of the sets – “1, 2, 3, 4, 5”, “1, 2, …, 6, 7”, “1, 2, …, 8, 9” and “1, 2, …, 

10, 11 “ 
S12 1. Each sum of three, five, seven consecutive numbers can lead to a whole number 

average – 1 + 2 + 3, 1 + 2 + 3 + 4 + 5, 1 + 2 + 3 + 4 + 5 + 6 + 7  
2. The sum of three, five, seven, nine and eleven numbers of 1 + 2 + 3 +…, is a  

 multiple of the number of the set  
3. The sum of three, five, seven, nine numbers of 1 + 2 + 3 +…, are multiples of the 

number of terms - 3 times 2, 5 times 3, 7 times 4. The second multiplicand 
increased by 1 as the odd number increased. 
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Table 28 (cont’d) 

Group 2: Algebraic representations only 
S4 1. Average of five consecutive terms, “x, x + 1, …, x + 4” 

2. Average of six consecutive terms, “x, x + 1, …, x + 5” 
3. Sum of consecutive numbers, x to x + n, is [x + (x + n)] n.  

S6 1. Three, five, seven, nine, and eleven terms – “x, x + 1, x + 2, …, “ 
2. Total of a set of consecutive terms –ax + b; b is a multiple of a 
3. Nine terms – “x, x + 1,…, x + 8”  

S10 1. Three terms – “n, n + 1, n + 2” 
2. Sum of three, five and seven consecutive terms are 3n + 3, 5n + 10, and 7n + 21. 
3. Total of an odd number of consecutive numbers is an + b; b is related to a. 

Group 3: Mix of Numerical and Algebraic Representations 
S2 1. Total of three terms to Total of eight terms – [x + x + 1 + x + 2 = 3x + 3] to [x 

+…+ x + 7 = 8x + 28] 
2. Average of 3, 5, 7 consecutive terms increased by 1 

S5 1. Four numbers – “1, 2, 3, 4” 
2. Five numbers – “1, 2, 3, 4, 5” 
3. Three terms – “x, x + 1, x + 2” 
4. Sum of a set of consecutive numbers 

S8 1. Three numbers on calculator 
2. Three terms – “x, x + 1, x + 2”; Average is x + 1. 
3. Five terms – “x, x + 1, x + 2, x + 3, x + 4”; Average is x + 2.  
4. Seven terms – “x, x + 1, …, x + 5, x + 6”; Average is x + 3. 

S9 1. Five terms – “n, n + 1, …, n + 4”; Average is n + 2. 
2. Four numbers - “1, 2, 3 ,4” 
3. Random set of consecutive numbers – 111 to 115, 10 to 14, and 11 to 17; Average 

is the middle number when the set has odd numbers. 
S11 1. Three and four terms – “x, x + 1, x + 2” and “x, x + 1, x + 2, x + 3”; 

2. Average of 1 to 11 
3. Average is “The sum of constants /constants = whole number”.  
4. Average is the algebraic formula “(1 + 2 + 3 + 4 + 5 + … + n)/n = whole 

number.” 
Group 4: Other uses 

S7 1. Repeated the ‘balance’ conception for an odd number of consecutive numbers. 
2. Three numbers – “1, 2, 3” and the average is the ‘center’ of the set. 
3. Sum and average of the last digit of consecutive numbers – “71, 72, 73” and “74, 

75, 76” 
 

Students in group 1, who used numerical representations and operations throughout, 

could only construct empirical proofs and inferred some relevant properties at most. For 
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example, S12 inferred a numerical relation between the two factors of the sum of consecutive 

numbers based on a consistent pattern among a few instances.  

Students in group 2, who used algebraic representation throughout, could construct 

deductive proofs if the set of consecutive terms was of a specific odd number. The algebraic sum 

of the set of numbers was often reduced to the form of ax + b, where a is the number of terms 

and b is the sum of the constants. However, when the sets were extended to a generic odd 

number of terms, they could at best infer a mathematical pattern of b being a multiple of a from 

their observations of a collection of instances. S4 observed that the consecutive terms can be 

paired in a way that each pair summed up to be the same term as (x + x + n) but he made an error 

in over-counting the number of pairs. 

Similar to group 2, students in group 3 could construct deductive proofs if the set was 

made up by a specific odd number of consecutive terms. However, they could at best infer from 

a number of instances that the average is the middle number of the set or in an equivalent 

algebraic form. 

S7 was the only student in group 4. As shown in Excerpt 5.1, she used a ‘balance’ 

conception to consider how the average of an odd number of consecutive numbers was the 

‘center’ number of the set but could not prove clearly how her conception worked for a generic 

set. In her last attempt, she proposed how the end-digits of the numbers might determine the 

actual average, using two triplets of numbers, “71, 72, 73” and “74, 75, 76” (Table 28). 

None of the students were able to construct a deductive proof of why the average is a 

whole number depends on whether an odd number of consecutive numbers was considered. 

Their proofs were all scored at level 4 or below. They met an impasse sooner or later as they 

tried to improve their proofs. Some were able to infer mathematical properties (e.g., the average 
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is the middle number of the set or an algebraic expression for the average of consecutive 

numbers) which, if proven, would constitute a deductive proof. 

 

Students’ representations and their uses in Proof Construction 

Students’ choice of numerical or algebraic representations seemed to be resistant to 

impasse in logical reasoning. In proving the given implication, some adhered to numerical 

representations and were limited in the proofs they produced. Others who began or later switched 

to algebraic representations were successful in producing deductive proofs for a specific odd 

number of consecutive numbers. In proving the modified implication for an odd number of 

consecutive numbers, students who used algebraic representations rarely represented the 

consecutive terms in a more general form of “x, x + 1, …, x + n”. This aspect of students’ 

mathematical proving was uncontrolled in experiment since students were not trained to evaluate 

the representations in the worked-out examples and thus contingent to the task situations and 

individual experiences. Rather, students were trained to construct a proof or evaluate whether a 

proof was valid by considering all possible examples and counterexamples expressed in a given 

type of representations. 

Students’ use of representations seemed to be generally effective in their Proof 

Constructions once they had chosen the appropriate representations. They were able to use 

numerical or algebraic representations to construct Proof-by-example and use algebraic 

representations to construct Deductive proof. Based on the numerical or algebraic results, they 

were able to deduce whether the consequent followed from the antecedent. This was likely a 

factor contributing to the training conditions since the training materials across conditions used 



 

129 

algebraic representations and operations frequently to deduce whether an implication was true or 

its counterexample or rule violation were mathematically impossible.   

  

Students’ modifications of the implication 

Upon realizing the implication was false for sets of at least three numbers, students were 

asked to modify the implications to make it true. The sets of mathematical objects in each 

modified implication were identified by its content. Table 29 shows the type of modification of 

the implication made by each student and the modified set of mathematical objects (the detailed 

modifications made in each attempt is found in Appendix I). 

 

Table 29: Modifications of Implication by Students 

ID Type Modification 
S1 A 

A 
Specify three numbers 
Specify odd numbers 

S2 A Specify odd numbers 
S3 A 

A 
A 

Specify three numbers 
Specify three or five numbers 
Specify odd numbers  

S4 A 
M 

Specify odd numbers  
Specify even numbers; Average is a not a whole 
number 

S5 C 
C 

Average is a whole number or a decimal number 
Average is a whole number if the sum has a factor 
decimal number with additional conditions 

S6 A Specify odd numbers 
S7 A Specify odd numbers 
S8 A 

A 
A 

Specify three numbers 
Specify three numbers 
Specify odd numbers 

S9 A 
C 
A 
M 
M 

Specify three numbers 
Average may be non-whole numbers 
Specify five numbers 
Specify even numbers; Average is the middle number 
Specify odd numbers; Average is the middle number 
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Table 29 (cont’d) 

S10 
 

A 
A 

Specify three numbers  
Specify odd numbers 

S11 A Specify odd numbers 
S12 A 

A 
Specify odd numbers or multiples of 3 
Specify odd numbers 

 
During the course of proving their modified implications, some students made as many as 

five attempts to modify implications. I had only made the request once but the students revised 

their modifications spontaneously. Apparently, students’ responses of making more 

modifications were motivated by some other factors than the task request. 

There were three types of modifications. For type A, modifications were made through 

insertion of words (e.g., “If the set of three whole numbers are all consecutive in order, then the 

average is a whole number”), or rephrasing of the antecedent (e.g., “If the set of numbers is an 

odd number of consecutive numbers, then the average is a whole number” [underlined words 

indicated the modifications made]). It was apparent that most of the students (N=11) made this 

type of modifications, i.e., restricting the set of consecutive numbers described by the antecedent, 

to either sets of three consecutive numbers, five consecutive numbers or an odd number of 

consecutive numbers, at least once. All students’ modified implications, except S5’s and S9’s, 

eventually directed the restriction towards the set of odd number of consecutive numbers, which 

was the maximal set of consecutive numbers for the average to be a whole number. 

For Type C, modifications were made through insertion of either words (e.g., “If the set 

of whole numbers are consecutive in order, then their average is a whole number or a decimal 

number”), or phrases (e.g., “If there is a set of n consecutive whole numbers, then their average 

would be a whole number if the sum is [has] a factor of n, or a decimal number if the sum is not 

[does not have] a factor of n” [underlined words indicated the modifications made]). S5 and S9 
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were the only two students that made this type of modifications by suggesting alternative 

outcomes for the average. However, S9 made another modification of Type A which reverted the 

average to being a whole number and restricted the set of consecutive numbers to five numbers 

subsequently. In comparison, S5 made another modification of Type C by distinguishing the 

conditions (namely, whether the sum is a factor of n or not) that led the average to be a whole 

number or a decimal number. In either case, modifications were made to the consequent to 

rephrase the outcome of the average again. 

For Type M, modifications were made either through insertion of words (e.g., “If the set 

of whole numbers are consecutive in order and of an even number, like 4 to 6 numbers, then their 

average is not a whole number”), or replacement of phrases (e.g., “If there are odd number of 

consecutive whole numbers, then the average is the middle number” [underlined words indicated 

the modifications made]). These two modifications were last made by S4 and S9 respectively. 

S9’s final modification about average being the middle number of the set, if proven, would imply 

that the average is a whole number.  

In sum, when students modified a false implication, they tended to modify the sets of 

mathematical objects described in the antecedent to satisfy the consequent, rather than to 

introduce another outcome to the consequent or alternative outcomes to both the antecedent and 

consequent. For students who modified the sets of consecutive numbers, specifying the sets to 

have an odd number of consecutive numbers was common to, if not eventually, their 

modifications. Note that this collection is the maximal collection of sets of consecutive numbers 

for the average to be a whole numbers.  

Students considered different sets of mathematical objects in making their modifications 

to the implication. Next I will explore further about the relation between these two aspects.  
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Students’ consideration of objects and modification of implications 

Students considered a wide range of sets of consecutive numbers, either in numerical or 

algebraic terms, as they modified the given implication. As mentioned earlier, majority of them, 

except S5, had considered the sets having an odd number of consecutive numbers in one of their 

modifications either on their first attempt (S2, S4, S6, S7, S11 and S12) or had eventually come 

to it (S1, S3, S8, S9 and S10). Taking students’ prior considerations of mathematical objects into 

account (Table 25), both groups of students had considered at least three different-sized sets of 

consecutive numbers by the time they modified the implication to an odd number of consecutive 

numbers. For example, S6 had considered sets of three, four and five consecutive terms prior to 

the modification task, and S8 had considered sets of three and four numbers while proving the 

given implication (Table 25), and three, five, and seven consecutive terms before making a 

similar modification.  

The excerpt of the interview with S6 below (Excerpt 2) highlighted how working with 

three, four and five consecutive terms helped her generate a tentative modification to the 

antecedent. S6 interpreted the implication as intended for a set of three numbers but was 

prompted to think of sets of more than three consecutive numbers. 

 

Excerpt 2: S6’s Proof Constructions prior to modification 

I: So what you did is only for three whole numbers. 
S6: Mmhmm. 
I: But the question says “at least three.” “At least three” meaning, 
S6: Meaning, what do you mean? 
I: “At least three” meaning this set can have four, five, six, seven, eight, nine whole 

numbers. 
S6: Oh, then it goes on then. To calculate I get x, Ok, I do with four now. I just go with the 

formula, x + 1, I see whether I have something in mind but I don't know whether it will 
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Excerpt 2 (cont’d) 

 work. 
S6: Oh, then it goes on then. To calculate I get x, Ok, I do with four now. I just go with the 

formula, x + 1, I see whether I have something in mind but I don't know whether it will 
work. 

S6: Plus 3, so I will end up getting 4x plus 6 
I: Mmhmm. 
S6: Hmm, now I add it, it's different already because if, to get this average I had to get four. 

Likewise for five, I get 5x+10. Ahh, this is another exception. The formula differs. So if 
I had to have four numbers, this is my formula [points to "4x + 6"]. 

I: Mmhmm. 
S6: And to get the average, I had to divide by four, which means cannot already. So I can't 

get whole number. But if I were to get 5x+10, I divide by 5, I would get x + 2. so this 
one must satisfy the equation but the four numbers, they are wrong. So for six numbers 
it will be x + 4, + 5, so x +  7. Ah, cannot satisfy also. From what I see is like, when 
there are even numbers, that means four is, the even numbers of [pointing to "the set of 
whole numbers"],  

I: whole numbers. 
S6: Ahh. 
I: Ok. 
S6: Yeah. Um, I can't satisfy the equation. But when I have a odd number of the set of 

numbers, I can satisfy the equation. 
I Ok, so if you, so now based on what you have found out about this, would you say this 

[pointing to the given implication] is true or false again? 
S6 False. Because I didn't know it was "at least three" [underline the three words in the 

question].  
 

As discussed earlier, S6’s interpretation of the implication seemed to lack a cognizance 

for logical verification. When she realized that the set of numbers was not limited to three 

consecutive terms, S6 continued to construct proofs for four and five consecutive terms using 

algebraic representations. As she computed the sum, she began to deduce that the implication did 

not work for four consecutive terms but work again for five consecutive terms. She seemed to 

have considered six consecutive terms and also began to infer that set having an even number of 

consecutive terms did not satisfy the consequent. Later she also inferred that sets with an odd 

number of consecutive terms satisfied the consequent. Consideration of three, four, five (and 

perhaps six) consecutive terms helped her recognize an emerging mathematical pattern, i.e., 
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three, five and seven consecutive terms yielded a whole-number average, which supported her 

modification of the implication to an odd number of consecutive numbers (Table 29). 

S5’s modifications seemed to be contradicting the above statement because she had 

explored sets of three, four and five consecutive numbers but was the only exception that did not 

make the above modification at all. However, the excerpt of my query with S5 (Excerpt 3), 

which occurred after she had falsified the implication with a single attempt (Table 27), indicated 

otherwise. 

 

Excerpt 3: S5’s first modification of the implication 

I: Ok, given that you have found some examples that show that this statement is false. Is 
there any way you change the statement to a true statement? 

S5: True ah? 
I: Yeah. 
S5: [Thinks for a while, points to the consequent statement and say] their average can be a 

whole number or decimal [laugh] 
I: Their average and be a whole number or decimal [laugh] ok. Why do you want to 

change it into this way? 
S5: Huh? 
I: Why did you want to change it into this way? 
S5: Because consecutive whole number, 
I: Mmhmm. 
S5: Like you add 1, 2, 3, 4, then you divide by 4. Because 10 might not be, like 4 might 

not be a factor of 10. 
I: Right, 
S5: So if your numbers add up together is not a factor of 4. 
I: Mmhmm, 
S5: Then you will have a decimal. 
I: I see. 
S5: Then if you add three numbers, it must be a factor of three. 

 

Throughout the interview, S5 meant “multiple” when she said “factor.” While she was 

modifying the implication, she had only considered the set of three and four consecutive 
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numbers. Each set led to two opposite properties for the average. Her modification of the 

implication thus accounted for these two opposite properties observed. 

At a macro level, all types of modifications were attempts to classify sets of numbers into 

supersets that determined whether the average of sets of consecutive numbers is a whole number 

or a decimal number. Upon identifying multiple sets of consecutive numbers that led to their 

averages being a whole number, students who recognized these sets as belonging to a single 

group revised their implications to refer to sets having an odd number of consecutive numbers. 

Similarly, students who modified their implications to specify the average being a decimal 

number classified the sets as “of an even number, like 4 to 6 numbers” (S9) or “if the sum is not 

[does not have] a factor of n” (S5).  What was obvious but worth highlighting was that no 

modification was made to the “consecutive” description. Students’ considerations of various sets 

of numbers yielded observations of mathematical properties which students recognized as 

common to various sets of mathematical objects. This constituted a mathematical pattern which 

guided students’ processes of modifications. 

 

Summary of findings from the interview 

In this chapter we looked at the students’ logical reasoning and Proof Construction in an 

impromptu task with an intention to identify conjectured explanations for the experimental 

results and to address the research question of how students modified a false mathematical 

implication to a true implication based on their examples and counterexamples. The group of 

students (N=12) selected for interview was representative of the logical reasoning and 

mathematical proving abilities of the study’s sample. They were presented with an implication 

concerning the average of a set of at least three whole numbers, namely, “If the set of numbers 
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are consecutive in order, then their average is a whole number.” The given implication is false 

but can be made true if modified. Students were asked to decide if the implication is true, and 

then modify the implication to be true. Students spent about nine to 23 minutes on the entire task. 

Students’ interpretations of the implication were examined through their considerations 

of mathematical objects. Half of the students’ considered only three numbers though “at least 

three numbers” was mentioned and needed to be prompted about other numbers. Some grounded 

their considerations in some sophisticated heuristics other than logical reasoning. Overall, 

students’ consideration of mathematical objects suggested that their interpretation of implications 

lacked logical reasoning for detecting interpretation errors. 

Students’ choice of numerical and algebraic representations appeared to have an impact 

to the types of Deductive proof and Proof-by-counterexample constructed. Their success were 

somewhat limited by their choices of representations. Algebraic representations and operations 

supported the students in constructing deductive proofs and generic counterexamples to some 

extent while numerical representations were limited to falsification of implications by isolated 

counterexamples. Yet their choice of representations might not change even when they 

encountered difficulties in Deductive-proof construction. Either the students adhered to 

numerical representations or algebraic representations but seldom considered more general 

algebraic representations or alternatives. The experimental study did not factor students’ ability 

to evaluate their choice of representations into the training materials. 

Students used the representations and the operations to derive a logical conclusion from 

the results also mattered and seemed to interact with their choice of representations. In the 

situation that they chose an appropriate representation, they were able to construct Proof-by-

example and Deductive proof, and were able to deduce whether the consequent followed from 
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the antecedent. This factor might have contributed to students’ improved performance since the 

training materials across conditions used algebraic representations and operations frequently in 

drawing mathematical conclusions. 

When students were asked to modify the given implication to a true implication, majority 

of the students restricted the set of mathematical objects described in the antecedent to satisfy the 

consequent. They modified to a reasonably generic set of mathematical objects after making 

sufficient exploration of various sets. One student who considered a limited variety of sets 

modified and further refined the consequent to match the antecedent. Overall, all types of 

modifications were guided by the mathematical patterns they recognized, as attempts to classify 

sets of mathematical objects into supersets related to the mathematical patterns. These 

mathematical patterns described the mathematical properties that students recognized as common 

to the sets of objects that gave rise to a general mathematical outcome. 

 

Account of possible Contextual factors affecting Students’ Performance  

The interviews were conducted after school, most of which were on the same day as the 

posttest. Students might be compelled to complete the interview task as soon as possible to gain 

some early rest. Certain performance lapses, such as the considerations of only three numbers, or 

the fixation on the use of numerical representations, might be contingent to the motivational and 

situational factors. 

Consider that the interviews were conducted in a one-to-one setting; the student might 

feel obliged to do the best they could, out of respect, face or other social factors at play in a 

Singapore school environment. That might have explained why students made some repeated 

attempts in proving or modifying the implications.  
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Nevertheless, the findings from the interview substantiated students’ interpretation of 

statements, their choice and use of representations as the three controlled or uncontrolled factors 

conjectured for explaining the students’ performance in the proving task. In addition, students’ 

recognition of mathematical patterns was found to be also instrumental in students’ reasoning of 

the implications. Given the empirical evidence from interview data, these factors were the most 

credible causes for explaining the experimental results and understanding students’ logical 

reasoning and mathematical proving. 
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CHAPTER 6 DISCUSSION AND CONCLUSION 

My study examined the role of logic training in students' logical reasoning and proving of 

mathematical implications, i.e., students inferred why an “If… then…” mathematics statement is 

true or false deductively. This study inquired how three logic training approaches, one 

conventional approach emphasizing truth tables and two experimental approaches emphasizing 

counterexamples and rule violations, might benefit students’ logical reasoning and three aspects 

of mathematical proving. In particular, I examined students’ logical reasoning and Proof 

Construction, Proof Validation and Knowledge of Proof Method (Proof Knowledge) and 

inquired the extent to which each approach of logic training was effective. Students’ reasoning 

and proving were examined in the context of mathematical implications, which are statements of 

the form “If P then Q,” where the statement P is the antecedent and the statement Q is the 

consequent. Additionally, the study sought to inquire the role of counterexample in enhancing 

students’ logical reasoning and mathematical proving. These inquiries aimed to contribute 

towards understanding the instructional role of logic training and counterexamples in developing 

students’ mathematical reasoning and proof in the classroom. 

In the first part of this chapter, a summary of the study and its findings is presented 

before the conclusion. Subsequently, the significance of the findings will be discussed and their 

implications for education and research are drawn. Finally, the limitations of this study will be 

reviewed and future studies will be proposed. 

  

Summary of the Study and its Findings 

In this study, the approaches of emphasizing counterexamples (Condition W) and 

violations of permissive and obligatory rules (Condition PO) were compared with the approach 
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of emphasizing truth tables (Condition C, the control condition) in training students' logical 

reasoning and mathematical proving. The analyses were driven by the hypothesis of the study: 

logic training emphasizing counterexamples benefits students’ reasoning of logical implications 

as well as their abilities in mathematical proving. Emphasizing counterexamples during logic 

training increased students’ cognizance of counterexamples and thereby enhanced their abilities 

to determine the logical truth of an implication. Emphasizing rule violations evoked students’ 

reasoning schemas through a real-life context and thereby enhanced their abilities to search for 

instances that would violate the logical truth of an implication. 

To address this hypothesis, a pretest-intervention-posttest experimental design (3 

conditions by 2 test trials) with a post-study interview was carried out. Students' written and 

interview data (N = 60) were collected from three Singapore school sites, each over a four-day 

contact period (including the pretest and posttest sessions). The test instruments assessed 

students’ logical reasoning of implications and the three aspects of their mathematical proving, 

i.e. Proof Construction, Proof Validation and Proof Knowledge. Proof Construction was further 

distinguished into Deductive-proof Construction and Proof-by-counterexample Construction. 

Proof Validation was further distinguished into the Invalidation of Empirical Proof and the 

Validation of Proof-by-contradiction. Proof Knowledge was further distinguished into the logical 

non-equivalence of a converse, and the logical equivalence of a contrapositive. These finer 

aspects were essentially related to students’ success in mathematical proving (Alcock & Weber, 

2005; Epp, 2003; Healy & Hoyles, 2000; Selden & Selden, 2003).  

 Students’ logical reasoning and mathematical proving was further examined during the 

post study interview. A representative group of 12 students worked on a new Proof Construction 
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task. They were asked to decide if the implication given in the task is true with justifications, and 

then modified the implication to become a mathematically true implication. 

The four research questions derived from the main hypothesis inquired the effects of 

logic training emphasizing counterexamples and rule violations (Condition W and PO), in 

comparison to the conventional training approach (Control condition), in enhancing the 

following students’ abilities:  

Compared to the conventional approach, 

(1) how does logic training emphasizing generation of counterexamples affect students’ 

reasoning with logical implications across different formulations? 

(2) how does logic training emphasizing generation of counterexamples affect students’ 

validation of proofs across different formulations? 

(3) how does logic training emphasizing generation of counterexamples affect students’ 

construction of proofs  across different formulations? 

(4) how does logic training emphasizing generation of counterexamples affect students’ 

Knowledge of Proof Methods across different formulations? 

In addition, the following research question was also investigated: 

(5) To what extent does students’ reasoning of logical implications correlate with their 

performances in mathematical proving?  

These research questions were addressed by the findings generated from the students’ 

pretest and posttest. Apart from explaining the findings from students’ tests, the findings 

gathered from the students’ interview data addressed the sixth research question: 

(6) How do students modify a falsifiable mathematical implication to a mathematically 

true implication based on their self-generated examples and counterexamples? 
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Experimental Findings from the Pretest and Posttest 

The logic training emphasizing counterexamples (Condition W) was found to be 

significantly more effective in improving students’ logical reasoning than the other two training 

conditions (Condition C and Condition PO). The students were better able to identify the 

counterexamples satisfying antecedent but not the consequent by which the implication might be 

falsified.  

However, for students’ mathematical proving, no significant differences were found for 

the effectiveness of the training approaches across all three Conditions. Logic training 

significantly enhanced students’ Deductive-proof Construction, Validation of Proof-by-

contradiction, and logical non-equivalence of converse and logical equivalence of contrapositive 

across all Conditions. Though not always successful in providing logically valid responses for 

these tasks, students in all three Conditions demonstrated more use of deductive inferences, as 

shown by the distribution of students’ scores in each of these tasks. In contrast, there was no 

improvement in students’ Proof-by-counterexample Construction and Invalidation of Empirical 

Proof in any Condition. Some evidence of students constructing deductive proofs using indirect 

approach or evaluating proofs based on reasoning of counterexamples was found. 

Comparison between students’ gain scores in logical reasoning and the various aspects of 

mathematical proving indicated relatively independent training effects between students’ logical 

reasoning and the finer aspects of mathematical proving. However, to some significantly positive 

extent, students’ constructions of a deductive proof were associated with their rejections of 

Empirical Proofs, and that their constructions of Proof-by-counterexample for falsifying an 

implication were associated with their acceptance of Proof-by-contradiction. 
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Put together, the hypothesis for the better effectiveness of emphasizing counterexamples 

in logic training was only substantiated for students’ logical reasoning but not their mathematical 

proving; evidence for the better improvements due to the training Condition W was only found 

in students’ reasoning scores. The hypothesis was not substantiated for students’ mathematical 

proving; logic training emphasizing counterexamples seemed to be as effective (or ineffective) as 

the other approaches. Improvements in some finer aspects of students’ mathematical proving 

were found, namely, Deductive-proof construction, Validation of Proof-by-construction, and 

both finer aspects of Proof Knowledge related to converse and contrapositive. Moreover, 

students’ logical reasoning of implication was weakly associated with their mathematical 

proving, though some finer aspects of Proof Construction were moderately associated with Proof 

Validation. 

 

Findings from the Post-study interview 

Theoretical inquiry and empirical evidence from the interview data suggested students’ 

interpretation of implication, their choice and use of representations, and their recognition of 

mathematical patterns as four most credible factors which were instrumental in students’ 

reasoning and proving of the implications. Students’ interpretation of implication refers to their 

inferences about the sets of mathematical objects meant by the implication. Students’ choice of 

representation refers to the mathematical symbols chosen to represent the interpreted 

mathematical objects. Students’ use of representations refers to how they perform mathematical 

operations on the representations to make deductive inferences from the result of operation. 

Students’ recognition of mathematical pattern refers to the mathematical properties that students 
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recognized as common to the sets of objects and that generated a consistent mathematical 

outcome.  

Students’ consideration of mathematical objects during their proving attempts suggested 

that their interpretation of implications were often influenced by their mathematical knowledge. 

Their inferences of the mathematical objects were often inadequate and needed to be prompted 

for missing objects. Students’ interpretation of implication seemed to lack a deductive process of 

checking whether the mathematical objects they had considered were logically matched to what 

were meant by the implication.   

Students’ choice of representations for the mathematical objects appeared to have an 

impact on the types of proofs constructed during their proving attempts. Their successes were 

somewhat limited by their choices of representations. Algebraic representations and operations 

supported the students in constructing deductive proofs and generic counterexamples to some 

extent while numerical representations were limited to falsification of implications by isolated 

counterexamples.  

Students’ use of representations seemed to be effective to a certain extent. They were 

able to construct connected chain of deductive inferences and deduce whether the consequent 

followed from the antecedent from the results of the mathematical operations. Based on the 

outcome, they were able to make logical conclusions about the implication. As such, they were 

able to construct Proof-by-counterexamples and deductive proofs. However, their use of 

representation for constructing mathematical proofs seemed to interact with their choice of 

representations. In the situation that they chose numerical representations, they were able to 

construct Proof-by-counterexample but not able to construct deductive proofs. In the situation 
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that they chose algebraic representations, they were able to construct deductive proofs to a 

certain extent. 

 Students’ recognition of mathematical pattern seemed to influence their reasoning of 

implication. When asked to modify a given implication, students considered various sets of 

mathematical objects interpreted from the implication and determined whether the implication 

was true. From the mathematical sets that made the implication true, they came up with a 

mathematical pattern that described the common mathematical properties of these sets and 

modified the implication to fit that pattern. Overall, all types of modifications were guided by the 

mathematical patterns they recognized, as attempts to classify sets of mathematical objects into 

supersets related to the mathematical patterns. 

In sum, students’ mathematical proving in the interview was influenced by students’ 

interpretation of implication, their choice and use of representations, and their recognition of 

mathematical patterns. Of these factors, students’ interpretation, their choice of representations 

and recognition of patterns were conjectured as uncontrolled during the experimental study as 

these were individual students’ attributes which were not monitored. Students’ use of 

representations was conjectured as commonly controlled by all training conditions since the 

worked examples provided across all conditions used algebraic representations and operations 

frequently in drawing mathematical conclusions. Students might have improved their use of 

deductive inferences in mathematical proving by learning from these worked-out examples. 

For the subsequent sections, I will first discuss the results from both the experimental 

study and interview findings. Then, I will highlight the limitations of this study and finally, 

propose future studies. 
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Discussion 

In this section I will discuss the significance of the results reported above. A few issues 

pertaining to the findings from both the experimental study and the interviews needed to be 

addressed. First, explanations were needed for students’ improved performances in various 

aspects of mathematical proving which were not significantly different across training 

conditions. Based on the findings from both the experimental study and the interviews, I will 

account for the students’ improved performance in their Deductive-proof Construction, 

Validation of Proof-by-contradiction, Proof Knowledge related to converse and contrapositive 

after training, as well as absence of improvements in their Proof-by-counterexample 

Construction and Invalidation of Empirical Proof. Second, the suitability of Wason’s tasks as 

indicators of logical reasoning is explored. Lastly, I will examine how the logic training 

emphasizing counterexamples might be more effective for developing students’ logical reasoning 

of implications. 

 

Effects of Logic Training on Various Aspects of Mathematical Proving 

Students showed improved performances in some aspects of mathematical proving across 

all conditions. Explanations had been conjectured in terms of the factors controlled or 

uncontrolled by the experiments. A central issue that needs to be addressed is: Why did students 

exhibited similarly improved performance (or unaffected performance) on the proving tasks 

across all three Conditions?  

I will propose the following explanation for students’ mathematical proving 

performances. Logic training in all conditions had enhanced students’ productive use of 

deductive inferences in mathematical proving. However, their successes were limited by other 
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factors, which were conjectured to be students’ interpretation of mathematical statements and 

their mathematical knowledge. Of the factors conjectured based on the interview findings, 

students’ choice and use of representations and their recognition of mathematical patterns were 

both considered as components of their mathematical knowledge. Figure 19 below shows a 

schematic of these conjectured factors affecting students’ mathematical proving performance, 

namely, Proof Construction, Proof Validation and Proof Knowledge. 

 

 

Figure 19: Conjecture Factors affecting Students’ Mathematical Proving performance 

Next I will argue that this proposed explanation can adequately account for the 

experimental findings and interview findings of students’ mathematical proving. 

 

Effects of Logic training on Productive Use of Deductive Inferences 

To show that logic training in all conditions enhanced students’ productive use of 

deductive inferences in their mathematical proving, I will present evidence from the 
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experimental findings comprising of students’ performance in the Deductive –proof 

Construction, Validation of Proof-by-contradiction, Proof Knowledge related to converse and 

contrapositive, and evidence from the interview findings comprising of students’ proving 

attempts for the given and the modified implications. 

Deductive-proof Construction. The significant improvement found in students’ 

Deductive-proof Construction across conditions reflected increased productive use of deductive 

inferences according the coding schemes. This was most likely due to the learning effect from 

the worked-out examples found in all three logic training Conditions. Though the examples 

emphasized different logical bases in each Condition, these worked-out examples demonstrated 

the processes of deductive inferences using the same set of representations and operations 

(usually numerical and algebraic) for proving the same mathematical idea across Conditions. 

Students’ learning from these deductive inferences based on mathematical representations might 

have enhanced their Deductive-proof Construction to the similar effect across Conditions. 

However, they were less successful (15 % or less across Conditions) in constructing coherent 

mathematical proofs for both Deductive-proof Construction items (see Figure 8 and Figure 9). 

Validation of Proof-by-contradiction. Students’ improved performance in Proof-by-

contradiction tasks also substantiated that logic training of all Conditions enhanced students’ 

productive use of deductive inferences. As mentioned previously (see Figure 15, Chapter 4), 

students improved performance in this aspect were substantially due to an increase in students’ 

responses at level 1, i.e., students evaluated and agreed that the particular statement was indeed  

a mathematical contradiction. Since the Proof-by-contradiction worked-out the inferential steps 

that deduced the contradiction statement, students’ might have learned to validate the Proof-by-

contradiction by checking the inferential steps through applying deductive inferences. This way 
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of using deductive inferences productively might have been prompted by the deductive 

inferential processes illustrated in the worked-out examples. In contrast, fewer students went 

beyond this level of validation to examine how the contradiction would falsify the assumption of 

the implication is false and led to the conclusion that the implication is true. 

Proof Knowledge related to Converse and Contrapositive. Similarly, the improved 

student performances in determining the logical equivalence or non-equivalence of 

contrapositive and converse were also plausibly due to the enhancement of students’ deductive 

inferences by logic training across all Conditions. Students’ performances in these two aspects 

were improved only to the extent that students would use deductive inferential processes to 

check the logical truth of the converse and contrapositive with the implication (see Figure 17 and 

Figure 18, Chapter 4). Enhancing students’ use of deductive inferences in all conditions had 

generally drawn them away from the illogical reliance on the sentential form to determine logical 

equivalence, as indicated by the decrease of proportion of students’ scoring level 0. Instead, 

students were more likely to construct proofs for the converse and the contrapositive statements 

to make such logical decisions. 

Students’ proving attempts in the interview. Findings from the interview seemed to help 

explain why students’ productive use of deductive inferences was enhanced. Students who used 

numerical representations were unsuccessful in proving the average of an odd number of 

consecutive numbers is a whole number. However, some students were able to use algebraic 

representations and operation to produce a general result for the average. Based on the result, 

they made deductive inferences about the average to complete their deductive proof. The 

interview findings concurred with the experimental evidence in supporting that logic training 

were successful in enhancing students’ use of deductive inferences across all Condition, possibly 
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due to their learning from the worked-out examples. However, their successes also seemed to be 

limited by the representations they chose, which will be discussed later. 

 

Effects of Students’ Interpretation of Implication on Students’ Mathematical Proving 

Though logic training in all conditions enhanced students’ productive use of deductive 

inferences, their successes in mathematical proving were limited by their interpretations of 

mathematical statements. To show that, I will present evidence from the experimental findings 

comprising of students’ performance in the Proof-by-counterexample Construction, as well as 

evidence from the interview findings comprising of students’ interpretation of the implications. 

Students’ Proof-by-counterexample Construction. Students’ Proof-by-counterexample 

Constructions suggested that students interpreted the implication based on their mathematical 

knowledge, which sometimes contained misconceptions. Yet, students who made such 

mathematical errors seemed unaware of these errors. They did not incorporate logical reasoning 

to check their interpretations (e.g., Fig 13, Chapter 4, student made a incorrect conclusion due to 

her misconception of omitting the prime number ‘2’). The training materials in all three 

Conditions did not emphasize checking the interpretation of an implication by logical reasoning. 

The worked-out examples started with an interpretation of the mathematical objects without 

devoting much explanation to establish the logical correctness of such interpretations. For 

example, in one of the worked-out examples involving five consecutive numbers, the algebraic 

representations “n, n + 1, n + 2, n + 3, n + 4” were immediately presented without a logical 

procedure of deducing that these representations represented all instances of five consecutive 

numbers. Instead, logical explanations were devoted to deriving deductive inferences from these 
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interpreted representations. In this respect, students’ successes of proof-by-counterexample 

seemed to depend on whether their interpretations were logically correct.  

Students’ Interpretation of Implications in Interview. Interview findings also showed that 

students’ interpretation of mathematical statement play a role in their proving attempts. When 

students interpreted the set of “at least three whole numbers” in the statement, a number of 

students considered only three numbers for subsequent inferences. The mathematical error in 

their interpretation needed to be prompted via external feedback so that they could make a 

logically correct conclusion.  

From the experimental and interview findings, students’ considerations of mathematical 

objects seemed to fall short of a cognizant process of logical reasoning to verify their 

interpretations. Since this process of mathematical reasoning was not controlled by the 

experimental design, its effect on students’ mathematical proving might have been distributed 

randomly across all Conditions and undermined their performance, especially on the aspect of 

Proof-by-counterexample Construction. This perhaps explained why all three logic training 

approaches did not create significant impact to students’ Proof-by-counterexample Construction. 

 

Effects of Mathematical Knowledge on Students’ Mathematical Proving 

Another factor conjectured to have limited students’ successes in mathematical proving 

was their mathematical knowledge, which comprised of choice and use of representations and 

recognition of mathematical pattern. Evidence from students’ proving attempts during the 

interview will be used to illustrate students’ choice and use of representation. Evidence from the 

experimental findings comprising of students’ performance in the Proof-by-counterexample 

Construction and Invalidation of Empirical Proof, as well as evidence from their proving 



 

152 

attempts and their modification of implications during the interview will be used to illustrate 

their recognition of mathematical pattern. 

Choice and Use of Representation. During the interview, students who adhered to 

numerical representations were not successful in producing deductive proofs. Others who used 

algebraic representations earlier or later were successful in producing deductive proofs for a 

specific odd number of consecutive numbers. In proving the modified implication for any odd 

number of consecutive numbers, students who used algebraic representations rarely represented 

the consecutive terms in a more general form of “x, x + 1, …, x + n” that represented any odd 

number of  consecutive numbers. As such, they could not come up with a deductive proof for the 

more general implication. Students’ use of representations seemed to be generally effective in 

their Proof Constructions once they had chosen the appropriate representations. They were able 

to perform numerical or algebraic operations to support their deductive inferences and Proof 

Constructions. However, a few students face obstacles in operating on the sum of 1 to n, or made 

error while operating an algebraic sum of some terms, which affected their success in proving.   

Recognition of Mathematical Pattern. Students’ performances in Proof-by-

counterexample Constructions were also likely due to their recognition of mathematical patterns 

as justifications for an implication. A counterexample that was not part of the recognized 

mathematical patterns might not have been identified for Proof-by-counterexample Construction. 

For example, the only even prime number ‘2’ was omitted while odd prime numbers were 

considered in Figure 13, Chapter 4. Moreover, the Quadratics items in the pretest and posttest 

has a mathematical pattern in which the product of two positive whole numbers is always larger 

than their sum, except when one of the numbers is 1.Omission of this counterexample would 

affect their performance. Their performances in Invalidation of Empirical Proof were also likely 
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influenced by the mathematical pattern given in the task. The three examples in the Empirical 

Proof shared a common mathematical property (odd numbers in Test set 1 or even numbers in 

Test set 2) and yielded an identical mathematical outcome. At least 30% of the students did not 

reject the proof after training (see Figure 14, Chapter 4). The well-documented prevalence of 

students’ pattern-based inferences perhaps explained the absence of students’ improvements in 

the Invalidation of Empirical Proofs plausibly (Healy & Hoyles, 2000; Knuth, et al., 2009).   

Students’ proving attempts during the interview also suggested students’ reliance on 

mathematical patterns as justifications. Some students were able to predict that the factorized 

form of the average followed a growth pattern as the number of consecutive numbers increased, 

or that there was a trend of an odd number of consecutive numbers generating a whole-number 

average. When the representations students used could not support them in making deductive 

inferences, they used that mathematical pattern as a basis for their justification. In addition, 

students’ modification of implications revealed that they searched for mathematical objects that 

satisfied an implication by the mathematical patterns they recognized, e.g., an odd number of 

consecutive numbers.  

From the experimental and interview findings, students’ choice and use of representations 

and their recognition considerations of mathematical objects seemed to affect their performance 

in mathematical proving. Since this process of mathematical reasoning was not controlled by the 

experimental design, its effect on students’ mathematical proving might have been distributed 

randomly across all Conditions and undermined their performance, especially on the aspects of 

Proof-by-counterexample Construction and Invalidation of Empirical Proof. This perhaps 

explained why all three logic training approaches did not create significant impact to students’ 

performances in these two aspects of mathematical proving.  
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Alternative Explanations 

In contest to my proposed explanation, one alternative explanation could be that students 

applied the demonstrated logical reasoning approaches in the training materials, which was 

unique to each Condition, to their Proof Constructions. For students in Condition PO and W, this 

implied that they had to approach the task indirectly by considering the possible 

counterexamples and rule violations, and reasoning subsequently to a contradiction (e.g., 

student’s work in Fig 4.10 of Chapter 4).  

Worthy of note was also the unique outcome of Validation of Proof-by-contradiction 

pertaining to Condition W (the logic training emphasizing counterexamples). Four students in 

that condition were able to justify the validity of Proof-by-contradiction based on the rationale 

that the contradiction had eliminated the possibility of counterexample to the implication. They 

regarded the proof as an attempt to find a counterexample and the deduced contradiction implied 

that no such counterexample could be found; elimination of counterexamples proved that the 

implication is true (see Figure 16, Chapter 4).  

However, such instances were infrequent to build up a systematic effect to students’ 

performances due to training conditions. To infer or generate counterexamples seemed less 

intuitive (e.g., think of numbers which are not whole numbers); most students constructed proofs 

using a direct approach, i.e., started deriving inferences from the antecedent that lead to the 

consequent. 
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Why Students exhibited Similar Performance on the Proving tasks across Conditions 

Across the students’ performances in each of the aspects of mathematical proving 

discussed above, a consistent trend seemed to emerge to account for the improved performance 

(or unaffected performance) in various aspects of mathematical proving found across conditions. 

For the aspects in which students’ improved performance were found, they were using more 

deductive inferences productively after the logic training. For the Deductive-proof Construction, 

students showed more productive use of deductive inferences but the successes of constructing a 

coherent proof were subjected to their choice of representations. For the Validation of Proof-by-

contradiction, students also showed substantial application of deductive inferences to evaluate 

and agree with the contradiction statement but lesser students went beyond to examine how that 

contradiction leads to the implication being proved. For the Proof Knowledge concerning 

converse and contrapositive, students were drawn to construct proofs for the converse and 

contrapositive statements, which indicated more use of deductive inferences, to compare their 

truth values with the implication. 

For the aspects in which students’ performance did not improve significantly, their use of 

deductive inferences seemed to be undermined by their interpretations of the implication and 

their choice and use of representations. For the Proof-by-counterexample Construction, students’ 

performances were conjectured to depend on their interpretation of implications and their 

mathematical knowledge and an apparent lack of logical check. In addition, students’ reliance on 

mathematical patterns might have undermined their search for counterexamples. For the 

Invalidation of Empirical Proof, students’ reliance on mathematical patterns when they 

interpreted the implication was conjectured to have undermined students’ use of deductive 

inferences. 
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I have proposed that logic training in all conditions enhanced students’ productive use of 

deductive inferences in their mathematical proving. In addition, I conjectured that their successes 

were limited by students’ interpretation of mathematical statements and their mathematical 

knowledge. This explanation seemed to account for students’ performance in mathematical 

proving adequately. In particular, they were better able to use deductive inferences productively 

to construct deductive proofs or indirect proofs that eliminate counterexamples, which explained 

their improved performances in some aspects of mathematical proving. However, students’ 

interpretation of implication and their mathematical knowledge, including mathematical patterns 

and choice of representations, seemed to affect their performance in the proving tasks as well. 

 

Wason’s Task as a Logical Reasoning Indicator 

Students in Condition W had shown improved performance in logical reasoning over the 

others, which was assessed using Wason’s selection tasks, but not in Proof Construction, Proof 

Validation and Proof Knowledge. One immediate question arises: Why was students’ 

performance in logical reasoning significantly better in Condition W than Conditions C and PO 

but their performance in mathematical performance was similar across Conditions? 

One plausible explanation was that Wason’s task had low sensitivity to the improvements 

achieved by students in logical reasoning. The difficulty level of the task might have generated 

false-negative assessments of their deductive reasoning (Evans & Over, 1996; Stenning & 

Lambalgen, 2004). In order to perform well in the selection task, students needed to expertise in 

logical reasoning. Logic training might have helped students make some improvements in logical 

reasoning of varying magnitude across all conditions. Some were large enough to enable them to 

perform well in the Wason’s task while others made smaller improvements which were 
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insufficient to perform well in the Wason’s task but met the threshold level needed for improving 

their productive use of deductive inferences.  

Moreover, logical reasoning is likely one of the many contributing factors to students’ 

mathematical proving. As my proposed explanation of the experimental outcomes and interview 

findings suggested, students’ successes in mathematical proving were capped by other factors 

such as their interpretations of statements and mathematical knowledge. Therefore, higher 

achievements in logical reasoning were unlikely able to make up for the shortfall of other 

conjectured contributing factors to students’ successes in mathematical proving.  

An alternative explanation was that performance in Wason’s task was simply irrelevant to 

students’ mathematical proving abilities, as suggested by the study’s findings on the correlation 

between students’ logical reasoning performance and their various aspects of mathematical 

proving (see Table 18, Chapter 4). However, this explanation did not square with the 

experimental findings that students in Condition W improved significantly both on the Wason’s 

tasks and mathematical proving tasks, just not significantly better in mathematical proving tasks 

than the students in the other Conditions. Furthermore, empirical evidence existed for the 

correlation between expertise in mathematical proving and performance in Wason’s tasks. 

Undergraduates and mathematicians with expertise in mathematical proving were found to 

performed better in Wason’s task than their non-mathematics-trained counterparts (Inglis & 

Simpson, 2004; Jackson & Griggs, 1988). The small and insignificant correlation between 

students’ scores in Wason’s tasks and proving-related tasks was perhaps due to the false 

negativity of the Wason’s tasks. Furthermore, the association might be weakened by pooling the 

sample of Condition W exhibiting significant results with the other samples exhibiting 
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insignificant results from the other two Conditions. Hence the evidence from this study and other 

related studies weighed against the alternative explanation of irrelevance. 

Put together, students trained in Conditions C and PO might have developed some logical 

reasoning abilities after completing the logic training that helped their mathematical proving 

performances. The improvements were perhaps not as robust as their counterparts in Condition 

W to exhibit significant improved performance in Wason’s tasks, due to false negativity of the 

Wason’s task. However, high performance in logic reasoning was perhaps insufficient for 

successful mathematical proving. As our experimental outcomes and interview findings 

suggested, students’ successes in mathematical proving were capped by other factors such as 

their logical interpretation and mathematical representations of the implication. 

 

Logic Training Emphasizing Counterexamples for Students’ logical reasoning 

The training approach emphasizing counterexamples significantly improved students’ 

logical reasoning than the approach emphasizing rule violations. A plausible explanation is that 

the training approach emphasizing counterexamples prompted students to think about how 

counterexamples, being instances that do not satisfy an implication, affect the logical truth of an 

implication. As argued similarly, explication of the counterexamples enhanced students’ 

reasoning about the truth of an implication (R. Platt & Griggs, 1993). When students were 

actively searching for a possible counterexample in their interpretation of the implication, they 

were likely to make logically valid conclusions about an implication. The approach emphasizing 

rule violations did not produce a significant effect possibly because evoking reasoning schemas 

associated to rule violations were more sensitive to real-life context than abstract context (Cheng, 

et al., 1986). Since the mathematical context portrayed in the implications was more similar to an 
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abstract context than to a real-life context, the training approach emphasizing counterexample 

was more effective than the approach emphasizing rule violations. 

Cheng et al.’s (1986) found that training emphasizing violations of obligatory rules were 

equally effective as training emphasizing counterexamples in students’ logical reasoning of 

implications. Based on this finding, Stylianides & Stylianides (2008) advocated the training 

approaches of emphasizing rule violation for developing students’ logical reasoning in 

mathematics. Lawson (1990) had also shown that logic training emphasizing counterexamples 

were effective for scientific reasoning.  

However, our findings about students’ logical reasoning yielded contrary empirical 

evidence. Logical reasoning emphasizing counterexamples was significantly more effective for 

students’ logical reasoning of mathematical implication than emphasizing rule violations and 

truth tables, as evidenced by the experimental outcomes of students’ logical reasoning 

performance. Unlike the implications used in Cheng et al.’s (1986), the majority of the training 

items used involved mathematical content, which were more abstract than real-life contexts. 

Thus, evoking schemas of permission and obligation for reasoning about violation of 

implications might become less sensitive in mathematical context and hence less effective than 

emphasizing counterexamples for enhancing logical reasoning of mathematical implications. 

 

Implications for Education and Research 

The discussion and the findings of this study drive a few implications with regards to the 

role of logic training and the use of counterexamples in students’ logical reasoning and 

mathematical proving. I will explore the educational implications with regards to what and how 

the logic training and the counterexamples can be used for supporting students’ logical reasoning 
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and mathematical proving. I will then explore the research implications with regards to the issues 

concerning the relationship between students’ mathematical knowledge, logical reasoning and 

mathematical proving. 

 

The Role of Logic Training in Teaching and Learning of Mathematics 

The results of the study suggested that logic training has its place in developing students’ 

logic reasoning and mathematical proving. The approaches of logic training used in this study, be 

it based on logic truth tables, emphasizing rule violations or emphasizing counterexamples, 

seemed equally helpful in enhancing students’ deductive inferential processes during 

construction of deductive proofs to justify mathematical implications, evaluation of the logical 

equivalence between similar mathematical statements (converse and contrapositive), and 

reasoning by contradiction. 

As argued in other studies (Epp, 2003; Mueller, 1975; J. L. Platt, 1967; A. Stylianides & 

Stylianides, 2009b), logic training seemed to provide students the logical foundation of proving 

mathematical statements through enhancing students’ productive use of deductive inferences. 

Contrary to Stylianides & Stylianides’ (2008) recommendation of using selection task 

emphasizing rule violations in real-life contexts, this study recommended the use of Wason’s 

version of selection task as part of the logic training for enhancing logical reasoning; 

emphasizing counterexamples improves students’ logical reasoning of “If…then…” in 

mathematical context. 

Mathematics teaching and learning should consider logical training in mathematics 

classroom, be it based on truth tables or other approaches such as the use of Wason’s tasks. 

Many mathematical concepts and relationships can be stated in as mathematical implications. 
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Since logic training enhanced students’ productive use of deductive inferences, it would support 

students’ mathematical justifications of these concepts and relationships in class (Ball & Bass, 

2003; Simon, 2000; Simon & Blume, 1996).  

 

The Role of Counterexamples in Mathematical Reasoning and Proving 

The results of the study also suggested that using counterexamples is also an effective 

approach to enhance students’ logical reasoning and mathematical proving. Representing the 

counterexamples and deducing the possibility of counterexamples supported students’ 

construction of mathematical proofs in the same way as students who were trained using the 

same approach of truth tables and proof demonstration. In some instances, students picked up the 

indirect approach of deducing the implication by the falsification of counterexample to the 

implication, which added on to their proving strategies.  

Another role for the use of counterexample might be in supporting students’ 

understanding of Proof-by-contradiction. Students often had trouble comprehending the Proof-

by-contradiction because the proof assumed the negation of implication is true and constructed 

contradiction instead of proving why the implication is true directly (Antonini & Mariotti, 2008). 

They could not comprehend the rationale of proving an implication by proving its negation to be 

false. The use of counterexamples might help explain that why Proof-by-contradiction is 

mathematically meaningful. By reframing the Proof-by-contradiction as a process of searching 

for counterexamples to the implication, the students might be able to appreciate the rationale of 

assuming the implication is false and that the deduced contradiction in the Proof-by-

contradiction meant that such search is mathematical impossible (similar to the student’s 

validation provided in Figure 16 of Chapter 4). 
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Setting Realistic Expectation of Logic Training 

The findings of this study also painted a clearer picture of what teachers and students 

could expect of logic training in mathematics classroom, if the same sort of training were 

implemented in classrooms. Students’ awareness to deductive inferences might have been 

heightened. They might have understood the relation between the truth of an implication and the 

counterexample and be able to construct deductive proofs. However, their performances were 

capped by their prior mathematical knowledge, specifically, their interpretation and 

representation of the implication. In other words, based on the findings of this study, students’ 

better logical reasoning is useful but perhaps inadequate for facilitating improved mathematical 

Proof Constructions. Conversely, attributing students’ low success in mathematical Proof 

Constructions to lack of logical reasoning competence might seem a quick jump to conclusion; 

individual factors such as prior knowledge are at play. 

Note that one of the training approaches was based on a conventional approach used in 

university courses. It first introduced the logical truth tables, the related laws of logical 

deduction, and subsequently, demonstration of its applications to mathematical proving. Hence 

the above argument also applies to university classrooms: logic training based on the 

conventional approaches is necessary but perhaps inadequate for facilitating competence in 

students’ Proof Construction. Lack of logical reasoning competence is one of the many factors at 

play.  

Likewise, students’ better logical reasoning need not necessarily translate into better 

Proof Validation and Proof Knowledge. This study’s outcomes shared some striking resemblance 

with other long-term studies of middle-school students’ mathematical proving. For example, a 
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high proportion of students’ still regarded the converse of an implication as logically equivalent 

to the original proposition (Healy & Hoyles, 2000). A lot of students also accepted empirical 

proof as valid (Healy & Hoyles, 2000; Knuth, et al., 2009). It seemed that students experienced 

difficulties in separating truth from validity (Durand-Guerrier, 2008) and logic training of the 

sort seen in this study is inadequate in address this issue. Additional instructions are needed for 

resolving this difficulty. 

 

Rethinking about Instructions of Logical Reasoning for Mathematics Classrooms 

Perhaps a bigger point and a strong critique of the current state of logic training 

(including the study’s training approaches) is this: An instructional theory of logical reasoning 

for mathematics in classroom is much needed to structure the mathematical activities and to 

attain the instructional goals pertaining to mathematical reasoning and proofs. At the minimum, 

the theory should map out the various cognitive components of students’ logical reasoning 

process and suggest the pedagogical activities most likely effective for enhancing a particular 

components. Pedagogical recommendations made by Epp (2003) and Stylianides & Stylianides 

concerning the use of selection tasks and concrete examples are specific parts of the instruction 

theory for enhancing students’ use of logical principles in mathematics. Additional components 

of the instructional theory include students’ interpretation of implication and their mathematics 

knowledge as other important components, as conjectured by this study. 

 Much of the focus in the instructions on logical reasoning had been placed on the rules 

of inferences often illustrated by logical truth tables and supplemented by informal or real-life 

applications (Epp, 1994; Mueller, 1975). At the same time, it is hope that such instructions could 

develop students’ independent ability to justify their mathematical conceptions and deepen 
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mathematical understanding through logical reasoning and proving (Ball & Bass, 2003; Simon & 

Blume, 1996). However, this study hinted at some gaps that required educators’ attentions when 

thinking about logical reasoning in mathematics. 

The first gap concerned students’ ability to interpret mathematical statements logically 

without over generalizing or under generalizing. As illustrated by the interview findings, if the 

students were unaware of his/her misinterpretation of a implication (e.g., interpreted “at least 

three” to be “three” or “prime numbers” as “odd prime numbers” in this study), they would be 

unlikely to be able to rectify their reasoning error, which was not due to errors made in the 

process of proving but rather at the interpretation stage. Developing students’ abilities to 

scrutinize their interpretation under logical reasoning before making subsequent deductive 

inferences seemed crucial. 

Related to the interpretation issue, the second gap concerned students’ prior knowledge 

of mathematical patterns (e.g., recognized that the pattern that prime numbers were all odd 

numbers except for ‘2’). Students were prone to generate mathematical sets based on the 

mathematical patterns and to regard that as convincing grounds of justifications (Coe & Ruthven, 

1994; Knuth, et al., 2009; Recio & Godino, 2001; A. Stylianides & Stylianides, 2009b). Given 

the pattern-based thinking is an inevitable part of human inferences, harnessing this thinking 

process to support logical reasoning of their interpretations seemed a sensible instructional 

consideration. One positive illustration would be students generalize the pattern they observed 

and used it to construct a deductive mathematical proof (Pedemonte & Buchbinder, 2011). 

In sum, an instructional theory of logical reasoning for mathematics needs to address the 

various cognitive components of students’ logical reasoning. While the often focused component 

is students’ logical reasoning of the interpreted mathematical statement, other often neglected 
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components needed to be identified. Enhancing students’ logical reasoning in terms of these 

components is central to development of their mathematical reasoning and proving. 

 

Role of Mathematical Knowledge in Mathematical Reasoning and Proving  

Interview findings showed that students’ successes of mathematical Proof Constructions 

were limited by their mathematical knowledge. Students’ choices of representations, which were 

part of their mathematical knowledge, mattered as much as their logical reasoning, perhaps so 

because the representations were able to classify many instances mathematically into 

manageable finite number of possibilities for logical reasoning, e.g., three consecutive numbers 

expressed as x, x + 1, x + 2. Students who were able to harness the mathematical usefulness of 

the representations were able to construct deductive proofs. Students’ who had no access to more 

useful representations most likely resorted to observed patterns as their mathematical 

justifications (Harel & Sowder, 1998; Knuth, et al., 2009). In supporting students’ proving, 

mathematics instructions in classroom need to highlight the advantages of different 

representations in reducing infinitely many instances into finitely many sets. Comparisons of the 

use of at least two different representations of a few implications might be a source for classroom 

discussions to highlight the usefulness of each representation for each implication. 

  

Research implications 

The results of the study suggested that some additional conjectured factors should be 

examined with regards to students’ logical reasoning and mathematical proving, namely, 

students’ interpretation of the implication and students’ choice of representations. Pertaining to 

students’ interpretation, one issue concerns how logic training can enhance students’ logical 
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reasoning of their interpretation worth research attentions. Students’ logical interpretations or 

detection of their interpretation errors are two possible aspects worth researching. Pertaining to 

students’ choice of representations, one issue concerns how their mathematical proving 

performance can be enhanced by making more strategic choices or developing greater flexibility 

in representations. More specifically, research is needed to inquire whether equipping students 

with more knowledge about representations and strategies of choosing representations will 

increase their chances of constructing coherent mathematical proofs. 

At a macro level, the research issue pertaining to students’ logical reasoning and 

mathematical proving needed to be widened to include inquiries about the role of students’ prior 

mathematical knowledge. There are different aspects of students’ prior knowledge conjectured as 

relevant by this study, one of which being students’ knowledge of mathematical representations 

and the other being students’ recognition of mathematical patterns. However, there might be 

other aspects that remained to be identified. Inquiries about how certain aspects of students’ prior 

mathematical knowledge affect students’ logical reasoning and mathematical proving, and 

identification of others, are likely to be important areas of research. Coupled with the 

consideration of logic training for students’ interpretation of statements and training for 

productive use of deductive inferences, the research of mathematical reasoning and proving 

would be more enriched.   

 

Limitations and Future Studies 

Finally, a few words about the limitations of the study are mandated before ending the 

chapter. 
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Specificity of Singapore Students 

Singapore students participated in this study. From recent TIMSS (Mullis, Martin, & Foy, 

2008) studies, Singapore students were found to performed well above other countries in 

mathematics. They were also highly motivated in terms of their longer hours of engagement in 

homework, as compared to their counterparts in other countries. Moreover, they were also 

responsive to the tasks requested of them in this study. These attributes certainly increased the 

feasibility of using self-paced learning in the study. For students of other countries with lower 

motivation and mathematical knowledge, the challenge of conducting self-paced learning 

increased.  

Nevertheless, Singapore students also exhibited similar barriers in their mathematical 

reasoning and proving. Like students in U.K. and U.S., they were not competent in invalidating 

Empirical proofs and recognizing that the implication and its converse were logically non-

equivalent (Hoyles & Küchemann, 2003; Knuth, et al., 2009). Follow-up studies involving other 

countries students, such as U.S. and U.K. students, might turn up similar or different findings 

about the effect of logic training on their logical reasoning and mathematical proving. 

 

Sample size and Significance of findings 

The number of students in each condition was set at 20, based on an estimation of the 

statistical power. Significant improvements with large effect sizes were found in students’ 

logical reasoning from the experimental findings. However, unlike other studies which involved 

numbers of students in the order of magnitude of hundreds, the sample size of this study may not 

be large enough to provide a stronger substantiation to the conclusions derived for the limited 
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benefits of logic training; statistical power of the inferred students’ non-significant 

improvements might be limited by the sample size. 

  

More tasks needed for reliability 

First, the lower-than-convention reliability coefficient of the test instrument may be a 

concern. Items grouped under the same assessment component might not be measuring the same 

attribute. Though less satisfactory, the analysis for the two components of Proof Construction 

(deductive-proof and proof-by-counterexample) got around this issue by a principal factor 

analysis of the principal component scores. But a relatively low reliability of proof-by-

counterexample construction (pretest: 0.420, posttest: 0.360) obscured the significance of the 

results. The reliabilities were low possibly because the items were of very different levels of 

difficulties and additional items of intermediate levels of difficulties should be introduced. 

Second, components of the proof validation and proof knowledge were assessed by single item 

in the tests. More isomorphic items need to be introduced for further inquiries involving these 

two aspects of mathematical proving. 

 

Conviction and Validation: Personal vs. Social 

There are definitely uncontrolled factors on students’ performance, which might be 

related to social issues, such as influence of external knowledge authorities (Segal, 1999; Simon 

& Blume, 1996). In this study, the social effects on their mathematical proving were not 

monitored. A couple of studies, however, had demonstrated that students’ choice of acceptable 

proofs might vary depending on whether criteria leaned more towards personal or social effects 

(Healy & Hoyles, 2000; Segal, 1999; A. Stylianides & Stylianides, 2009b). Students may find 
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empirical proofs more acceptable than formal proofs for reasons of personal conviction. 

However, if the proof were to gain teachers’ approval and validation, students might reverse their 

choices. In this study, I had stressed personal conviction over gaining my approval repeatedly to 

minimize such effects. 

  

Coding scheme for Proof Constructions 

The coding scheme for Deductive-proof Construction aimed to evaluate students’ use of 

deductive inferences in varying degrees. As such, there were other aspects of students’ proof 

which were not captured. For example, the indirect approach shown in Figure 10 of Chapter 4 

was rather innovative and exhibited a certain sophisticated level of mathematical thought, as 

feedback by a mathematics teacher. Yet the mathematical quality was not reflected but rather 

classified as a proof with inadequate logical reasoning. 

Another limitation of the coding scheme was to capture the so-called generic examples 

which had been championed for its instructional potential by mathematics educators (Balacheff, 

1988; Mason & Pimm, 1984; Zazkis & Chernoff, 2008). Generic examples were proofs using 

specific examples to model a generic deductive process that have proven the mathematical 

proposition. The specific symbols were meant as a representative placeholder for a class of 

mathematical objects. Part of the challenge was to identify from the written data that a particular 

example was used by a student to as a means to point to generic mathematical properties. 

Students’ written responses were not always elaborative and clearly tractable. To infer that 

generic mathematical properties were being referred to by the student might result in reading too 

much into the data. As such, the category of generic examples was dropped and replaced by 

other levels whose criteria were more grounded in text. Nevertheless, if one were to pinpoint the 
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occurrence of generic examples, students’ proofs being coded as level 2 would be the most 

promising group. To reliably identify the generic examples, interview data of students’ thinking 

behind these specific examples is required.  

 

Training tasks 

The tasks used in this study were, of course, not encompassing the entire possible range 

of mathematical tasks. In this study, the training tasks used only arithmetic, algebraic, Quadratics 

and Elementary Number Theory contents to pose the mathematical situations and implications. 

Geometry contents were left out due to practical constraints of carrying out the study. As such, 

we do not know whether the conclusions of this study can be extended to the case of geometric 

proving. 

Furthermore, the logical reasoning and mathematical proving were inquired using the 

implication statement as a platform. Although almost all mathematical propositions can be 

logically translated to implications, we do not know the effects of logic training would be similar 

if the study was carried out for other logical forms of mathematical statements, e.g., the 

syllogistic form of “All A are B” were used instead. Research studies in cognitive science had 

found difference of students’ logical reasoning between the implication and the syllogistic 

statements (Leighton, 2006).  

 

Laboratory-based Instructions and Classroom Instructions 

An issue to note is the different nature of laboratory-based instruction and classroom 

instructions. The laboratory-based instructions used in this study came in the form of self-paced 

problem solving with interactions between the students being controlled and discouraged. 
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Interactions between the students and the “teacher” (the researcher) were also minimal. This 

mode of instructions is quite distant from instructions in mathematics classrooms of Singapore 

and in U.S. at large. Granted that some classroom moments in Singapore (and perhaps U.S.) do 

encourage students’ independent learning through problem solving, many common features of 

day-to-day classroom instructions in Singapore and U.S. classrooms were excluded from the 

laboratory instructions. The most glaring absence was the small group or whole class discussions 

about the mathematical content at hand. Absent were also teachers’ guidance provided to 

students in understanding the contents and elaborations to unpack the content to a level within 

students’ reach. These limitations needed to be taken into consideration when one considers the 

findings in this study for classroom uses.  

 

Maintenance of Training Effects and Latent Effects  

Consider that the posttest was administered the next day or one more day after the 

training sessions, the improvements students exhibited in their logical reasoning and 

mathematical proving might be short-lived. Alternatively, their performance might hold out over 

a longer period for some or all training approaches. Unfortunately, this study did not administer a 

retention assessment to monitor students’ improvement beyond the posttest. In addition, this 

study did not monitor any latent effects due to different training approaches. Students’ learning 

from the training materials might require a longer period of time to take effect and lead to 

significant differences across conditions. Introducing a retention test two weeks after the posttest 

would provide further information about the effects (non-effects) of logic training, e.g., indicate 

whether students’ improvement was rooted in surface features or deep structure problem solving 

processes (Chi, Feltovich, & Glaser, 1981). 
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Future studies 

Further inquiries may be directed towards other factors that influence students’ success in 

these tasks related to mathematical proving, given the similar effects (or absence of effects) 

observed across all conditions. Students’ increased use of deductive inferences did not always 

translate to successful attempts in various tasks and might still produce mathematically flawed 

proofs or justifications. Studies about the role of students’ prior mathematical knowledge might 

inform the relationship between students’ logical reasoning and their mathematical knowledge in 

successful mathematical proving. Another series of promising study might be the investigation of 

logic training that improves students’ logical interpretation of the implication as well as logical 

derivation of conclusions from the interpretation. Comparison of students trained for logical 

interpretations with students who are not might reveal the importance of more comprehensive 

logic training and inform classroom instructions. In carrying out these proposed studies, 

limitations listed above should be taken into account to improve their explanatory power. 

 
Conclusion 

Logic training emphasizing counterexamples played a more effective role in improving 

students’ logical reasoning. Logic training also improved students’ mathematical proving 

through enhancing their productive use of deductive inferences. However, students’ successes in 

mathematical proving were conjectured to be limited by their interpretation of mathematical 

statements and mathematical knowledge, which includes recognition of mathematical patterns, 

and choice and use of mathematical representations. 
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Appendix A: Test Set 1 

 
1. Below is depicted a set of four cards, of which you can see only the exposed face but not the 

hidden back. On each card, there is a shape on one of its sides and a picture of a transport 
vehicle on the other. 
Also below there is a rule which applies only to the four cards. Your task is to decide which 
(if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 
unnecessary cards. Tick the card(s) you want to turn. 

 
Rule:  If there is a shape with straight edges on one side, then there is a land transport 

vehicle on the other side. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Below is depicted a set of four cards, of which you can see only the exposed face but not the 

hidden back. On each card, there is a bird on one of its sides and a symbol on the other. 
Also below there is a rule which applies only to the four cards. Your task is to decide which 
(if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 
unnecessary cards. Tick the card(s) you want to turn. 

 
Rule: If there is a flying bird on one side, then there is a punctuation mark on the other side. 
 
 
 
 

 
 
 
 
 

 
 

? 

 
 

 
 

= 

 

 
penguin 

 
sparrow
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3.  Below is depicted a set of four cards, of which you can see only the exposed face but not the hidden 
back. On each card, there is a piece of cloth on one of its sides and a stamp on the other.  
Also below there is a rule which applies only to the four cards. Your task is to decide which 
(if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 
unnecessary cards. Tick the card(s) you want to turn. 
 
Rule:  If there is a triangular stamp on one side, then there is a piece of red cloth on the 

other side.  
 
 
 
 
 
 
 
 
 
 
 

 
4.  Below is depicted a set of four cards, of which you can see only the exposed face but not the hidden 

back. On each card, there is the year of building a house on one of its sides and the construction 
material used to build the house on the other. 
Also below there is a rule which applies only to the four cards. Your task is to decide which (if any) 
of these four cards you must turn in order to decide if the rule is true. Don’t turn unnecessary cards. 
Tick the card(s) you want to turn. 
 
Rule: If there is a house built before 1969 on one side, then there is a house built by timber 

on the other side. 
 
 

 
 

1.  
2.  
3.  
4.  

 
 

Triangular 
stamp  

 
 

 
 

Circular 
stamp  

 
 

 

Red cloth 
 
 
 

 
Blue cloth 

 

  
House B is 

built by 
bricks 

  

 
House C is 

built in 
1981 

 

 
 

House A is 
built in 
1960 

 
 

 
House D is 

built by 
timber 
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5. Three times a whole number x is added to the square of x. For example, 3 times 2 is added to 

the square of 2, or, 2)(3 22 +×  .  Decide whether the following rule is true or false:   
 

If x3  is added to 2x , then the sum is an even number. 
 

Justify why your conclusion must be true or false using the most convincing argument. 
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6. A prime number is a whole number that has exactly two factors, 1 and the number itself 
(Note that 1 is not a prime number since it has only one factor). Two positive numbers, 
which may or may not be prime numbers, are multiplied together. Decide whether the 
following rule is true or false:  

 
If two prime numbers are multiplied together, then the product is an odd number.  

 
Justify why your conclusion must be true or false using the most convincing argument.  
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7. The graph of the quadratic equation y = ax2+ bx + c looks like either one of the graphs 
below, depending on whether  is greater or less than 0. The x -intercepts are the values 
where the graph ‘cuts’ the x-axis. (The y-axis is not shown in the graphs because its position 
depends on the x-intercepts). 
 

y = ax2+bx+c 

 
a > 0 

 

y = ax2+bx+c 
 

a < 0 

 

 
Figure 20: Graph of Quadratic Equation 

Here, c is the y-intercept of the graph (where the graph ‘cuts’ the y-axis) because 
when 0=x , cy = . 
Decide whether the following rule is true or false: 

 
If a  is positive and c is negative, then the x -intercepts of the graphs are one positive 
number and one negative number. 

 
Justify why your conclusion must be true or false using the most convincing argument. 
 

 
 
 

x- intercept x- interceptx- intercept x- intercept
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8. The quadratic expression x2 + Mx + N, where M and N are positive whole numbers, may be 
factorized into the form ))(( bxax ++ , where a and b are also positive whole numbers. For 

example, x2 + 7x + 12 can be factorized into )4)(3( ++ xx  but not x2 + 7x + 11. Decide 
whether the following rule is true or false: 
  

If x2 + Mx + N can be factorized, then M < N + 1. 
 

Justify why your conclusion must be true or false using the most convincing argument. 
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9. A series of numbers are generated by inserting even numbers, starting from 2, into the 

expression 772 ++ nn . Each result is checked to see if it is a composite number, that is, it is 
divisible by other numbers on top of 1 and itself. The first three instances are shown below. 
 

Take 2=n , 5525;25727)2(77 22 ×==+×+=++ nn  is a composite number  

Take 4=n , 31751;51747)4(77 22 ×==+×+=++ nn  is a composite number 

Take 6=n , 51785;85767)6(77 22 ×==+×+=++ nn  is a composite number  
 
A mathematical statement is proposed:  

 
“If n is an even number, then 772 ++ nn  is a composite number.” 
   

Can you conclude that the mathematical statement is true because of the three instances 
above? Why or why not? 
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10. Joe and Eva are thinking about pairs of whole numbers (which may be different) in their 
mind.  
 
Joe says:  If the product of two whole numbers is even, then their sum is odd.  
Eva says: If the sum of two whole numbers is odd, then their product is even.  
 
Are Joe’s and Eva’s statements saying the same mathematical idea? Please provide 
justifications for your answer. 
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11. Consider the mathematical statement “Let N be an integer. If N2 is an even number, then N is 
an even number.” 
 
Kathy says that the truth of the above statement is the same as the truth of this statement: 
“Let N be an integer. If N is an odd integer, then N2 is an odd number.” 
 
Based on what you know about odd and even numbers in general, do you agree with Kathy’s 
conclusion? Please provide justifications for your answer. 
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12. Consider the mathematical statement “Let x  and n  be two real numbers. If 0>x  and 

0>n  , then 2≥+
x
n

n
x .” 

To determine whether the statement is true, Gabriel reasons in the following way: 
 

Suppose there exists a pair of real numbers a  and b  such that both are greater than 0 but 

2<+
a
b

b
a . Let’s simplify this inequality using algebraic operations. 

Combining the fractions, 2
22
<

+
ab

ba  

Multiply ab  on both sides,  abba 222 <+  

Subtracting ab2  from both sides, the inequality becomes 0222 <−+ abba  

Factorizing the left hand side, the inequality becomes (a – b)2 < 0 

But (a – b)2 < 0 cannot be satisfied by any value of a and b because the square of any 

real number is either 0 or positive. 

So the supposition is false. This tells us that the statement “If 0>x  and 0>n  , then 

2≥+
x
n

n
x ” is true. 

Based on what you know about inequalities in general, do you agree with Gabriel’s way of 
making his conclusion? Please provide justifications for your answer. 
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Appendix B: Summary of Isomorphic Items in Test Sets 1 and 2 

 

Table 30: Isomorphic implications in Test Set 1 and 2  

Item Implications in Set 1 Implications in  Set 2 Nature of item  Topic 

1 If there is a shape with 
straight edges on one side, 
then there is a land 
transport vehicle on the 
other side. 

If there is a sea animal 
on one side, then there is 
a straight line on the 
other side 

Logical 
Reasoning of 
Implications  

Non-math 

2 If there is a flying bird on 
one side, then there is a 
punctuation mark on the 
other side 

If there is a soft drink on 
one side, then there is a 
fast food restaurant on 
the other side. 

3 If there is a triangular 
stamp on one side, then 
there is a piece of red cloth 
on the other side.  

If there is a compass 
pointing to the North on 
one side, then there is a 
coin showing heads on 
the other side. 

4 If there is a house built 
before 1969 on one side, 
then there is a house built 
by timber on the other side. 

If there is a car turning 
left on one side, then 
there is a red traffic light 
on the other side. 

5 [x is  a whole number] If 3x 
is added to x2, then the sum 
is an even number. 

If a whole number x is 
added to its square, x2, 
then the result is an even 
number.  
 

Deductive-
proof 
Construction  

Elementary 
Number 
Theory 

6 If two prime numbers are 
multiplied together, then the 
product is an odd number.  

If two prime numbers are 
added together, then the 
sum is an even number.  
 

Proof-by- 
counterexample 
Construction  

Elementary 
Number 
Theory 

7* [For graphs of 
y=ax2+bx+c] If a is positive 
and c is negative, then the x-
intercepts of the graphs are 
one positive number and 
one negative number. 

If NMxx −+2 can be 
factorized, 
then 1−≤ NM . 

Deductive-
proof 
Construction 

Quadratics 

8* If NMxx ++2 can be 
factorized, then 1+< NM . 

[For graphs of 
y=ax2+bx+c] If the x -
intercepts of the graphs 

Proof-by- 
counterexample 
Construction 

Quadratics 
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Table 30 (cont’d) 

  are both positive 
numbers, then both a  
and c  are positive. 

  

9 “If n is an even number, 
then n2 + 7n+ 7 is a 
composite number.” 
 

If n is an odd number, 
then n2 + n + 1 is a prime 
number. 

Invalidation 
of Empirical 
Proof 

Elementary 
Number 
Theory 

10 Joe says:  If the product of 
two whole numbers is even, 
then their sum is odd.  
 
Eva says: If the sum of two 
whole numbers is odd, then 
their product is even.  

Gabriel says: If the 
product of two whole 
numbers is odd, then 
their sum is even. 
 
Dewey says: If the sum 
of two whole numbers is 
even, then their product 
is odd. 
 

Logical non-
equivalence 
between an 
implication 
and its 
converse 

Elementary 
Number 
Theory  

11 “Let N be an integer. If N2 
is an even number, then N is 
an odd integer”  

 

“Let N be an integer. If N is 
an odd integer, then N2 is 
an odd number” 

“Let N be an integer. If 
N2 is an even number, 
then N is an odd integer” 

 

“Let N be an integer. If N 
is an even integer, then 
N2 is an even number.” 

Logical 
equivalence 
between an 
implication 
and its 
contrapositive 

Elementary 
Number 
Theory 

12 Let x and n be two real 
numbers. If x > 0 and n > 0, 

then 2≥+
x
n

n
x  

Let a and b be two 
numbers. If a > 0 and b 

> 0, then abba ≥+ )(
2
1

Validation of 
Proof- by-
contradiction 

Algebra 

*Note that Item 7 and Item 8 switched their order of appearance in Test set 2 
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Appendix C: Implications used in the Training Materials of all Conditions 

 

Table 31: Implications used across all Conditions 

Item Control (Baseline): 
 

Treatment* 
Permission and Obligation 
(PO) Formulation 

Wason (W) Formulation  

1 If there is a vowel on one 
side, then there is an even 
number on the other side. 

If a person is drinking beer, 
then the person must be 
over 19 years old. 

If there is a vowel on one 
side, then there is an even 
number on the other side. 

2 If there is a tree on one 
side, then there is a sea 
animal on the other side.  

If the amount of a sale is 
over $30, then the section 
manager must have 
approved it. 

If there is a tree on one side, 
then there is a sea animal on 
the other side. 

3 If the problem has the 
word 'more' to relate two 
quantities, then the answer 
is the sum of two 
quantities.  

If the problem uses the 
word 'more' to relate two 
quantities, then I must use 
addition with the two 
quantities to get the answer.

If the problem has the word 
'more' to relate two 
quantities, then the answer 
is the sum of two quantities. 

4 If the numerator of the 
fraction subtraction is a 
prime number, then both 
fractions are the simplest 
fractions.  

If the numerator of the 
fraction subtraction is a 
prime number, then I must 
have chosen two simplest 
fractions for subtraction. 

If the numerator of the 
fraction subtraction is a 
prime number, then both 
fractions are the simplest 
fractions. 

5 If a 2-digit number is 
divisible by 4, then the 
last digit of the multiple is 
an even number. 

If the 2-digit number is 
divisible by 4, then the last 
digit of the code must be an 
even number. 

If a 2-digit number is 
divisible by 4, then the last 
digit of its code is an even 
number. 

6 If both the numbers added 
together are even, then 
their sum is an even 
number. 

If any two even numbers 
are added together, then my 
friend must get an even 
number for the sum. 

If both the numbers added 
together are even, then their 
sum is an even number. 

7 If any three positive whole 
numbers multiplied 
together are consecutive 
in order, then their 
product is divisible by 6. 

If I choose three 
consecutive numbers to be 
multiplied together, then 
the product must be 
divisible by 6. 

If any three positive whole 
numbers multiplied together 
are consecutive in order, 
then their product is 
divisible by 6. 

8 If a positive number and 
its reciprocal are added 
together, then the answer 
is at least 2. 

If a positive number and its 
reciprocal are added 
together, then I must get a 
answer that is at least 2. 

If a positive number and its 
reciprocal are added 
together, then the answer is 
at least 2. 

Treatment*: Does not include prompts to search for/construct counterexamples  
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Appendix D: Training Materials for Conventional Approach (Condition C) 

[Selected number of items included for illustration, other items are posed similarly] 

In this study we are interested in how people interpret and reason about a very important 

type of logical statement, called the implications. Even though implication statements are really 

very simple, people often make errors in dealing with them. These instructions are intended to 

help you understand implications. Read through these instructions carefully; they should help 

you solve some mathematical thinking problems.  

An implication statement consists of two statements which are often joined by the 

connective “If… then.” The implication statement can be expressed in the standard form  

If P, then Q 

where the letters “P” and “Q” each represent a statement. This implication statement means “If 

statement P is true, then statement Q is also true.” For example, let P stand for “It is raining,” 

and Q stand for “The field is wet.” Then the implication becomes “If it is raining, then the field 

is wet.”  

The table below lists how different truth values of statements P and Q affect the 

statement “If P, then Q.”  

  

 

 

P Q If P, then Q 
True True True 
True False False 
False False True 
False True True 

 

 

 
 
 
Figure 21: Truth table of “If P then Q”  

Whenever one can find that an instance of P being true and Q being false, it is a 

counterexample to the implication “If P then Q” and so “If P then Q” is false. 

In the first line, when P is true 
and Q is also true, the 
implication “If P then Q” is true. 

In the second line, when P is true 
and Q is false, the implication is 
false, since P does not imply Q. 

In the third line, when P and Q are both false, the 
implication is true. For “If P then Q” to be true 
when Q is false, P cannot be true or it will go 
against the truth values shown in the second line.

In the last line, when P is false 
and Q is true, it does not mean 
that “If P then Q” is false, so 
the truth value is “true.” 
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Practice No.1 

Let us try out the truth table again using an example of implications about the cards, “If 

there is a vowel on one side, then there is an even number on the other side.” P would be “there 

is a vowel on one side” and Q would be “there is an even number on the other side.” Fill in the 

blanks in the table using the truth values “True” or “False”: 

 

there is a vowel 
on one side 

there is an even number 
on the other side 

If there is a vowel on one side, then there 
is an even number on the other side. 

True True ______ 

True ______ False 

______ False True 

False True ______ 

*Answer: 1st row – True, 2nd row – False, 3rd row – False, 4th row – True 

 

The above table tells us that the implication “If there is a vowel on one side, then there is 

an even number on the other side” is true for almost all combinations of the truth values of 

statements P and Q except in the second line, when “there is a vowel on one side” is true and 

“there is an even number on the other side” is false. Whenever there is such a counterexample, 

the implication is not logically true. 
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Practice No. 2 

Let us try out the truth table again using another implication about the sides of a card, “If 

there is a tree on one side, then there is a sea animal on the other side.” P would be “there is a 

tree on one side” and Q would be “there is a sea animal on the other side.” Fill in the blanks in 

the table using the truth values “True” or “False”: 

 

there is a tree 
on one side 

there is a sea animal 
on the other side 

If there is a tree on one side, then 
there is a sea animal on the other side. 

______ False False 

True ______ True 

False True ______ 

______ False True 

*Answer: 1st row – True, 2nd row – True, 3rd row – True, 4th row – False 

 

The above table tells us that the implication “If there is a tree on one side, then there is a 

sea animal on the other side” is true for almost all combinations of P and Q except in the first 

line, when “there is a tree on one side” is true and “there is a sea animal on the other side” is 

false. Whenever there is such a counterexample, the implication is not logically true. 

Now that you have some basic understanding about mathematical implications, you are 

ready for more practices. Please read the following problems and attempt them carefully.   



 

190 

Practice No.3 

A simple word problem is usually solved by using an addition or subtraction. Decide 

whether the following implication statement is true or false: 

If the problem has the word 'more' to relate two quantities, then the answer is the sum of 

two quantities. 

Justify why your conclusion must be true or false using the most convincing argument. 
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Solution for Practice No.3 

The above statement is false. To see this, we need an example. 

One example would be the problem that uses the word "more" and requires subtraction as 

described below.  

"John has 4 sweets and has one more sweet than Heidi. How many sweets does Heidi 

has?" 

As you can see, the correct answer is obtained from the subtraction 4 - 1 = 3 sweets even 

thought the problem uses the word ‘more.’ So the implication is not logically true.
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Practice No.8 

A reciprocal of a number n is 1 divided by that number n. Decide whether the following 

implication statement is true or false: 

If a positive number and its reciprocal are added together, then the answer is at least 2. 

Justify why your conclusion must be true or false using the most convincing argument. 
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Solution for Practice No.8 

As stated clearly in the question, the reciprocal of a number is 1 divided by that number. 

Let’s call the positive number to be p. The reciprocal is then 
p
1 . Adding them together, we have 

the sum
p

p
p

p
p

p 11
1

1 2 +
=+=+ . To say that a number is at least 2 is the same as saying the 

number minus 2 is at least 0. We will try out this idea to find out if the sum 
p

p 12 +  is at least 2. 

Subtracting 
p

p 12 + by 2, we have 212
−

+
p

p . Let’s simplify this using algebraic operations. 

p
p

p
pp

p
p

p
p

p
p

2

2

22

)1(

12

2121

−
=

+−
=

−
+

=−
+

  

The denominator is p, which is a positive number as given. The numerator 2)1( −p  is the square 

of a number 1−p . This is either 0 or a positive number, and cannot be a negative number. 

So the fraction
p

p 2)1( −  is either a zero divided by p, or a positive number divided by p. 

Either way, it is not a negative number. 

Thus we can say that the difference 212
−

+
p

p is at least 0. 

Which means that 212
≥

+
p

p . 

Therefore 
p

p 1
+ is at least 2 when p is a positive number. 

So the implication statement is logically true.  
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Appendix E: Training Materials emphasizing Counterexample (Condition W) 

[Full version is enclosed] 

Practice No.1 

Below is shown a set of four cards, of which you can see only the exposed face but not 

the hidden back. On each card, there is a letter on one of its sides and a number on the other. 

Also below there is a rule which applies only to the four cards. Your task is to decide 

which (if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 

unnecessary cards. Tick the card(s) you want to turn. 

Rule:  If there is a vowel on one side, then there is an even number on the other side. 

 

4  7 K A 

(a)  (b)  (c)  (d) 
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Solution for Practice No.1 

The conditional rule in the question is “If there is a vowel on one side, then there is an 

even number on the other side.”  

The rule is false when you can find cards that have a vowel on one side and an odd 

number on the other. The cards that need to be turned over for deciding are the cards “A” and 

“7” as they may be such instances that make the rule false. 

The card “A” obviously needs to be turned over because if the other side shows an odd 

number, we have an instance of the rule being false. If the other side shows an even number, we 

have an instance verifying the rule but it is unknown whether the rule is false in other instances.   

The card “7” also needs to be turned over because the other side may show a vowel. 

When that is the case, we have an instance of the rule being false.  

If there is a consonant on one side, like the card “K”, whatever number is on the other 

side would not matter because it would not be an instance of the rule being false.  

If an even number is shown, like the card “4”, it does not matter which letter is on the 

other side because it would not be an instance of the rule being false.
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[the contents of the remaining Practices are shown as follows] 

Practice No.2 

Below is shown a set of four cards, of which you can see only the exposed face but not 
the hidden back. On each card, there is a plant on one of its sides and an animal on the other. 

Also below there is a rule which applies only to the four cards. Your task is to decide 
which (if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 
unnecessary cards. Tick the card(s) you want to turn. 

Rule:  If there is a tree on one side, then there is a sea animal on the other side. 
Pine Tree  Lion  Whale  Hibiscus 

(a)  (b)  (c)  (d) 
Solution for Practice No.2 

The conditional rule in the question is “If there is a tree on one side, then there is a sea 
animal on the other side.”  

The rule is false when you can find cards that have a tree on one side and a land animal 
on the other. The cards that need to be turned over for deciding are the cards “Pine Tree” and 
“Lion” as they may be such instances that make the rule false.  

The card “Pine Tree” obviously needs to be turned over because if the other side shows a 
land animal, we have an instance of the rule being false. If the other side shows a sea animal, we 
have an instance verifying the rule but it is unknown whether the rule is false in other instances.   

The card “Lion” also needs to be turned over because the other side may show a tree. 
When that is the case, we have an instance of the rule being false.  

If there is a non-tree plant on one side, like the card “Hibiscus”, whatever animal is on 
the other side would not matter because it would not be an instance of the rule being false.  

If a sea animal is shown, like the card “Whale”, it does not matter which plant is on the 
other side because it would not be an instance of the rule being false. 
Practice No.3 

Below is shown a set of four worksheets, of which you can see only the exposed face but 
not the hidden back. On each sheet, there is a addition or subtraction word problem on one of its 
sides and a corresponding solution on the other. 

Also below there is a rule which applies only to the four sheets. Your task is to decide 
which (if any) of these four sheets you must turn in order to decide if the rule is true. Don’t turn 
unnecessary sheets. Tick the sheet(s) you want to turn. 
Rule:  If the problem has the word 'more' to relate two quantities, then the answer is the sum of 

two quantities. 
John has 6 

candies. Mary has 
5 more candies 
than John. How 
many candies 

does Mary have? 

 
For this problem, 
your child did 3 + 

5 = 8 books 
 

For this problem, 
your child did 7 – 

4 = 3 stickers 
 

John has 9 toys. 
Mary has 2 fewer 
toys than John. 
How many toys 
does Mary have? 

(a)  (b)  (c)  (d) 
Solution for Practice No.3 

The conditional rule in the question is “If the problem has the word 'more' to relate two 
quantities, then the answer is the sum of two quantities.”  
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The rule is false when you can find sheets that have the word 'more' to relate two 
quantities on one side and the answer is not the sum of two quantities on the other. The sheets 
that need to be turned over for deciding are the sheets (a) and (c) as they may be such instances 
that make the rule false.  

Sheet (a), which uses the word “more”, obviously needs to be turned over because if the 
other side shows a subtraction of two quantities, we have an instance of the rule being false. If 
the other side shows an addition of two quantities, we have an instance verifying the rule but it is 
unknown whether the rule is false in other instances.  

Sheet (c), which shows that subtraction is used, also needs to be turned over because the 
other side may show the problem has the word 'more' to relate two quantities . When that is the 
case, we have an instance of the rule being false.  

If the problem does not have the word “more”, like sheet (d), whatever solution would 
not matter because it would not be an instance of the rule being false.  

If the answer is the sum of the quantities, like sheet (b), it does not matter whether the 
problem has the word ‘more’ because it would not be an instance of the rule being false. 
Practice No.4 

Two fractions are formed using four different positive whole numbers. They are then 
subtracted together. The numerator of the answer is checked to see if it is a prime number. Below 
is shown a set of four cards, of which you can see only the exposed face but not the hidden back. 
On each card, the pair of fractions are shown on one of its sides and the answer of subtraction on 
the other. 

Also below there is a rule which applies only to the four cards. Your task is to decide 
which (if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 
unnecessary cards. Tick the card(s) you want to turn. 
Rule:  If the numerator of the fraction subtraction is a prime number, then both fractions are the 

simplest fractions. 
 

For 
523
198

1274
469

− , 

one of them is not 
the simplest 

fraction 

 
For 

523
198

1378
945

− , 

both are simplest 
fractions 

 

The answer for 
the subtraction is 

60
21 

 

The answer for 
the subtraction is 

105
3  

(a)  (b)  (c)  (d) 
Solution for Practice No.4 

The conditional rule in the question is “If the numerator of the fraction subtraction is a 
prime number, then both fractions are the simplest fractions.”  

The rule is false when you can find cards that have a prime number as the numerator of 
the answer on one side and one of the fractions subtracted is not a simplest fraction on the other. 
The cards that need to be turned over for deciding are the cards (d) and (a) as they may be such 
instances that make the rule false.  

The card (d) obviously needs to be turned over because if the other side shows that at 
least one fraction is not the simplest, we have an instance of the rule being false. If the other side 
shows both fractions are the simplest fractions, we have an instance verifying the rule but it is 
unknown whether the rule is false in other instances.   
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The card (a) also needs to be turned over because the other side may show a prime 
number as the numerator of the answer. When that is the case, we have an instance of the rule 
being false.  

If the numerator of the answer is not a prime number, like the card (c), whether any of the 
fraction subtracted is the simplest would not matter because it would not be an instance of the 
rule being false.  

If both fractions are the simplest fractions, like the card (b), it does not matter whether the 
numerator of the answer is a prime number because it would not be an instance of the rule being 
false. 
Practice No.5 

Below is shown a set of four labels, of which you can see only the exposed face but not 
the hidden back. On each label, there is a 2-digit number on one of its sides and a code number, 
which is a random multiple of the whole number, on the other. 

Also below there is a rule which applies only to the four labels. Your task is to decide 
which (if any) of these four labels you must turn in order to decide if the rule is true. Don’t turn 
unnecessary labels. Tick the label(s) you want to turn. 
Rule:  If a 2-digit number is divisible by 4, then the last digit of its code is an even number. 

The code is 1376  The 2 digit 
number is 23  The 2 digit 

number is 36  The code is 147 

(a)  (b)  (c)  (d) 
Solution for Practice No.5 

The conditional rule in the question is “If a 2-digit number is divisible by 4, then the last 
digit of its code is an even number.”  

The rule is false when you can find labels that have a whole number which is divisible by 
4 on one side and its code number does not end with an even digit on the other. The labels that 
need to be turned over for deciding are the labels showing “The 2-digit number is 36” and “The 
code is 147” as they may be such instances that make the rule false. 

The label “The 2-digit number is 36” obviously needs to be turned over because if the 
other side shows an odd digit as the last digit of the code number, we have an instance of the rule 
being false. If the other side the last digit to be an even number, we have an instance verifying 
the rule but it is unknown whether the rule is false in other instances.   

The label “The code is 147” also needs to be turned over because the other side may 
show a 2-digit whole number which is divisible by 4. When that is the case, we have an instance 
of the rule being false.  

If the 2-digit whole number is not divisible by 4, like the label “The 2-digit number is 
23”, whatever the code number is would not matter because it would not be an instance of the 
rule being false.  

If the last digit of the code is even, like the label “The code is 1376”, it does not matter 
which 2-digit whole number is entered because it would not be an instance of the rule being 
false. 
Practice No.6 

Below is shown a set of four cards, of which you can see only the exposed face but not 
the hidden back. On each card, two positive whole numbers are written on one of its sides and 
their sum on the other. 
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Also below there is a rule which applies only to the four cards. Your task is to decide 
which (if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 
unnecessary cards. Tick the card(s) you want to turn. 
Rule:  If both the numbers added together are even, then their sum is an even number. 

14 + 37  12 + 26  36  43 
(a)  (b)  (c)  (d) 

Solution for Practice No.6 
The conditional rule in the question is “If the two numbers added together are both even, 

then their sum is an even number.”  
The rule is false when you can find cards that have two even numbers adding together on 

one side and their sum is odd on the other. The cards that need to be turned over for deciding are 
the cards “12 + 26” and “43” as they may be such instances that make the rule false. 

The card “12 + 26” obviously needs to be turned over because if the other side shows an 
odd number as the sum, we have an instance of the rule being false. If the other side shows an 
even number, we have an instance verifying the rule but it is unknown whether the rule is false in 
other instances.   

The card “43” also needs to be turned over because the other side may show two even 
numbers adding together. When that is the case, we have an instance of the rule being false.  

If any of the numbers added is odd, like the card “14 + 37”, whatever the sum is would 
not matter because it would not be an instance of the rule being false.  

If the sum is an even number, like the card “36”, it does not matter which two numbers 
are adding together because it would not be an instance of the rule being false. 
Practice No.7 

Below is shown a set of four cards, of which you can see only the exposed face but not 
the hidden back. On each card, there is a set of three randomly chosen positive whole numbers 
on one of its sides and their product on the other. 

Also below there is a rule which applies only to the four cards. Your task is to decide 
which (if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 
unnecessary cards. Tick the card(s) you want to turn. 
Rule:  If any three positive whole numbers multiplied together are consecutive in order, then 

their product is divisible by 6. 
The product of 

multiplication is 
210 

 
The product of 

multiplication is 
315 

 
The three random 
whole numbers 
are: 4, 6 and 7 

 
The three random 
whole numbers 
are: 7, 8 and 9 

(a)  (b)  (c)  (d) 
Solution for Practice No.7 

The conditional rule in the question is “If any three positive whole numbers multiplied 
together are consecutive in order, then their product is divisible by 6.”  

The rule is false when you can find cards that have three consecutive numbers on one 
side and their product is not divisible by 6 on the other. The cards that need to be turned over for 
deciding are the cards “The three random whole numbers are: 7, 8 and 9” and “The product of 
multiplication is 315” as they may be such instances that make the rule false. 

The card “The three random whole numbers are: 7, 8 and 9” obviously needs to be turned 
over because if the other side shows that their product is not divisible by 6, we have an instance 
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of the rule being false. If the other side that shows their product is divisible by 6, we have an 
instance verifying the rule but it is unknown whether the rule is false in other instances.   

The card “The product of multiplication is 315” also needs to be turned over because the 
other side may show three consecutive numbers. When that is the case, we have an instance of 
the rule being false.  

If the three positive whole numbers are not consecutive, like the card “The three random 
whole numbers are: 4, 6 and 7”, whatever the product is divisible by 6 would not matter because 
it would not be an instance of the rule being false.  

If the product is divisible by 6, like the card “The product of multiplication is 210”, it 
does not matter whether the three numbers are consecutive because it would not be an instance of 
the rule being false. 
Practice No.8 

A reciprocal of a number n is 1 divided by that number n. Below is shown a set of four 
cards, of which you can see only the exposed face but not the hidden back. On each card, a 

positive number n and its reciprocal 
n
1 are added or subtracted together on one of its sides and 

the answer on the other. 
Also below there is a rule which applies only to the four cards. Your task is to decide 

which (if any) of these four cards you must turn in order to decide if the rule is true. Don’t turn 
unnecessary cards. Tick the card(s) you want to turn. 
Rule:  If a positive number and its reciprocal are added together, then the answer is at least 2. 

 

1.3 + 
3.1

1   The answer is 2.5.  
57.1
157.1 −   The answer is 

3
21 . 

(a)  (b)  (c)  (d) 
Solution for Practice No.8 

The conditional rule in the question is “If a positive number and its reciprocal are added 
together, then the answer is at least 2.”  

The rule is false when you can find cards that have a positive number and its reciprocal 
adding together on one side and the answer is less than 2 on the other. The cards that need to be 

turned over for deciding are the cards “1.3 + 
3.1

1 ” and “The answer is 
3
21 ” as they may be such 

instances that make the rule false.  

The card “1.3 + 
3.1

1 ” obviously needs to be turned over because if the other side shows 

the answer to be less than 2, we have an instance of the rule being false. If the other side shows 
the result to be at least 2, we have an instance verifying the rule but it is unknown whether the 
rule is false in other instances.  

The card “The answer is 
3
21 ” also needs to be turned over because the other side may 

show a positive number and its reciprocal added together. When that is the case, we have an 
instance of the rule being false.  
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If a positive number and its reciprocal are subtracted together, like the card 

“
57.1
157.1 − ”, whatever the answer is would not matter because it would not be an instance of 

the rule being false.  
If the answer is at least 2, like the card “The answer is 2.5”, it does not matter whether the 

positive number and its reciprocal are adding together because it would not be an instance of the 
rule being false. 
Practice No.9 
Below is shown a set of four cards, of which you can see only the exposed face but not the 
hidden back. For each card, there is a word written on one of its sides and a number on the other. 
Also below there is a rule which applies only to the four cards. 
Rule:  If there is a single-digit number on one side, then there is a three-letter word on the other 
side. 
i)  A counterexample makes the rule false when a single-digit number is on one side and a 
word other than three-letters long is on the other side. Can you think of such a counterexample?
 ____ Yes.  ____No. 
If “Yes”, what might the example be? 
If “No”, based on what you know about the numbers and words in general, why is it impossible 
to find a counterexample to the rule? 
ii)  Your task is to decide which (if any) of these four cards you must turn in order to decide 
if the rule is true. Don’t turn unnecessary cards. Tick the card(s) you want to turn. 

9  eat  12  jump 
(a)  (b)  (c)  (d) 

Solution for Practice No.9 part (i) 
To find a counterexample to the statement, a card has a single-digit number paired with a word 
that does not have three letters.  
The choice of the number may be from 0 to 9. 
The word can have any number of letters except three letters. One choice will be the word "am". 
As you can see, a number "3" paired with the word "am" does not satisfy the statement. 
 
Solution for Practice No.9 part (ii) 
The conditional rule in the question is "If there is a single-digit number on one side, then there is 
a three-letter word on the other side."  
The rule is false when you can find cards that have a single-digit number and a word that does 
not have three letters. The cards that need to be turned over are the cards "9" and "jump" as they 
may be such instances that make the rule false.  
The card "9" obviously needs to be turned over because if the other side shows a word that is not 
made up by three letters, we have an instance of the rule being false.  
The card "jump" also needs to be turned over because the other side may show a single-digit 
number. When that is the case, we have an instance of the rule being false.  
If there is a number of more than one digit, like the card "12", whatever word is on the other side 
would not matter because it would not be an instance of the rule being false.  
If there is a three-letter word, like the card "eat", it does not matter whether a single-digit number 
is on the other side because it would not be an instance of the rule being false. 
Practice No.10 
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Below is shown a set of four cards, of which you can see only the exposed face but not the 
hidden back. For each card, there is land vehicle on one of its sides and the name of a driver on 
the other. 
Also below there is a rule which applies only to the four cards. 
Rule:  If there is a female driver on one side, then there is a four-wheeled vehicle on the other 
side. 
 
i)  A counterexample makes the rule false when a female driver is on one side and a vehicle 
that is not four-wheeled is on the other side. Can you think of such a counterexample?  
 ____ Yes.  ____No. 
If “Yes”, what might the example be? 
If “No”, based on what you know about the drivers and vehicles in general, why is it impossible 
to find a counterexample to the rule? 
ii)  Your task is to decide which (if any) of these four cards you must turn in order to decide 
if the rule is true. Don’t turn unnecessary cards. Tick the card(s) you want to turn. 

Motorbike  Jeep  Aaron  Jane 
(a)  (b)  (c)  (d) 

 
Solution for Practice No.10 part (i) 
To find a counterexample to the rule, a female driver is paired with a vehicle that does not have 
four wheels. So a driver's name like "Alice" will indicate a female driver. 
The vehicle can have other numbers of wheels except four. One choice of such a vehicle will be 
a tricycle. 
As you can see, a female driver named "Alice" paired with a tricycle does not satisfy the 
statement. 
 
Solution for Practice No.10 part (ii) 
The conditional rule in the question is "If there is a female driver on one side, then there is a 
four-wheeled vehicle on the other side."  
The rule is false when you can find cards that have a female driver on one side and a vehicle 
which is not four-wheeled on the other. The cards that need to be turned over are the cards "Jane" 
and "Motorbike" as they may be such instances that make the rule false. 
The card "Jane" obviously needs to be turned over because if the other side shows a vehicle 
which is not four-wheeled, we have an instance of the rule being false.  
The card "Motorbike" also needs to be turned over because the other side may show a female 
driver. When that is the case, we have an instance of the rule being false.  
If there is a male driver, like the card "Aaron", whatever vehicle is on the other side would not 
matter because it would not be an instance of the rule being false.  
If there is a four-wheeled vehicle, like the card "Jeep", it does not matter whether the drive is a 
female because it would not be an instance of the rule being false. 
Practice No.11 
Two whole numbers (denoted as A and B) are added and rounded using two different methods. 
In the first method, the numbers A and B are rounded upwards or downwards to the nearest ten 
first and then added together. In the second method, the numbers are added together first and the 
sum is then rounded to the nearest ten. Below is shown a set of four worksheets, of which you 
can see only the exposed face but not the hidden back. On each worksheet, the rounding of 
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numbers are shown on one of its sides and the answers calculated using both methods are shown 
on the other. 
Also below there is a rule which applies only to the four worksheets. 
Rule:  If both numbers are rounded to the nearest ten by rounding up, then the same answer is 
calculated from both methods. 
 
i)  A counterexample makes the rule false when both numbers are rounded up to the nearest 
ten and different answers are calculated from both methods. Can you think of such a 
counterexample? ____ Yes.  ____No. 
If “Yes,” what might be the pair of numbers? 
If “No,” based on what you know about the rounding of numbers to the nearest ten in general, 
why is it impossible to find a counterexample to the rule?  
ii)  Your task is to decide which (if any) of these four worksheets you must turn in order to 
decide if the rule is true. Don’t turn unnecessary cards. Tick the worksheet(s) you want to turn. 

A is rounded up to 
40, B is rounded 
down to 30 

 
A is rounded up to 
30, B is rounded up 
to 20 

 
90 is the same 
answer calculated 
from both methods 

 

60 is calculated 
from the first 
method and 70 
from the second 
method 

(a)  (b)  (c)  (d) 
 
Solution for Practice No.11 part (i) 
You are looking for a counterexample where the pair of numbers must both be rounded up in 
order to get to the nearest ten and yet different answers are obtained from both methods. How 
can we find such a pair of numbers? If we think about which numbers are rounded upwards to 
the nearest ten, their last digits are either "5", "6", "7", "8" or "9".  
Rounding up both numbers before adding makes the sum even larger. The increase may be as big 
as a value of 10 if each number has its last digit as ‘5’ and rounded up before adding. This may 
lead to a different answer than using the second method. One probable choice of A and B are 
thus two numbers whose last digits are "5". 
Let’s say we choose 35 and 55. Using the first method, 35 + 55 is first rounded up to 40 and 60 
and their sum is equal to 100. Using the second method, 35 + 55 is first added to become 90, and 
remains the same after rounding to the nearest ten. As you can see, using these two numbers in 
both methods leads to different answers, which is a counterexample that makes the rule false. 
 
Solution for Practice No.11 part (ii) 
The conditional rule in the question is "If both numbers are rounded to the nearest ten by 
rounding up, then the same answer is calculated from both methods."  
The rule is false when you can find worksheets that have both numbers rounded to the nearest 
ten by rounding up on one side but different answers obatined from using both methods on the 
other side. The worksheets that need to be turned over are the worksheets (b) and (d) as they may 
be such instances that make the rule false.  
The worksheet (b) obviously needs to be turned over because if the other side shows different 
answers are being calculated from using both methods, we have an instance of the rule being 
false.  
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The worksheet (d) also needs to be turned over because the other side may show both numbers 
being rounded up to the nearest ten. When that is the case, we have an instance of the rule being 
false.  
If any of the numbers are not rounded to the nearest ten by rounding upwards, like the worksheet 
(a), whether the answers are the same would not matter because it would not be an instance of 
the rule being false.  
If the same answer is calculated from using both methods, like the worksheet (c), it does not 
matter whether both numbers are rounded up to the nearest ten because it would not be an 
instance of the rule being false. 
Practice No.12 
A positive whole number N and its square, N2 , give some remainders other than 0 when divided 
by 5. For example, 7 gives a remainder of 2 and 72 gives a remainder of 4 when they are divided 
by 5. Below is shown a set of four cards, of which you can see only the exposed face but not the 
hidden back. For each card, the remainder when N is divided by 5 is written on one of its sides 
and the remainder when N2is divided by 5 is written on the other. 
Also below there is a rule which applies only to the four cards. 
Rule: If N2divided by 5 give a remainder 1, then N divided by 5 also gives a remainder 1. 
A counterexample makes the rule false when N2divided by 5 gives a remainder 1 but N divided 
by 5 does not give a remainder 1. Can you think of such a counterexample? ____ Yes. 
 ____No. 
If “Yes,” what might the number N be? 
If “No,” based on what you know about remainders and division by 5, why is it impossible to 
find a counterexample to the rule? 
ii)  Your task is to decide which (if any) of these four cards you must turn in order to decide 
if the rule is true. Don’t turn unnecessary cards. Tick the card(s) you want to turn. 

N = 4576. The 
remainder is 1 
when divided by 5  

 
N2= 4023238041. 
The remainder is 
1 when divided by 
5 

 
N = 2749. The 
remainder is 4 
when divided by 5 

 
N2= 84327489. 
The remainder is 
4 when divided by 
5 

(a)  (b)  (c)  (d) 
Solution for Practice No.12 part (i) 
As stated clearly in the question, the counterexample you are looking for is a positive whole 
number N that does not give remainder 1 but its square, N2, gives a remainder 1 when divided by 
5. How can we find such a number? Let’s think about what it means to say “N2divided by 5 
gives a remainder 1” and “ N divided by 5 does not give a remainder 1.” 
Given any whole number, when the remainder is 1 after being divided by 5, the last digit of the 
number is either ‘1’ or ‘6’. N does not give a remainder 1, so the last digit of N is not ‘1’ or ‘6’. 
But 2N gives a remainder 1, so the last digit of N2is ‘1’ or ‘6’. 
Now you have a clearer idea about what N looks like. It is a positive whole number that ends 
with the digit ‘0’, ‘2’, ‘3’, ‘4’, ‘5’, ‘7’, ‘8’ or ‘9’ but its square, N2, ends with digit ‘1’ or ‘6’. 
Keeping track of how the last digit of N changes when it is squared, we can narrow down what N 
might be: 
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When the last digit of N is ‘0’ or ‘5’, the last digit of N2is ‘0’ or ‘5’. 
When the last digit of N is ‘2’ or ‘8’, the last digit of N2is ‘4’. 
When the last digit of N is ‘3’ or ‘7’, the last digit of N2is ‘9’. 
When the last digit of N is ‘4’ or ‘9’, the last digit of N2is ‘1’ or ‘6’. 
Only the last case matches what we are looking for - that last digit of N2is ‘1’ or ‘6’. 
Now what happens if you choose a number from the last group, say N = 14, and N2=196? When 
196 is divided by 5, the remainder is 1 but the remainder is 4 when 14 is divided by 5. This is a 
counterexample that makes the rule false. In fact, any number whose last digit is ‘4’ or ‘9’ is also 
a counterexample that make the rule false. 
. 
Solution for Practice No.12 part (ii) 
The conditional rule in the question is "If N2divided by 5 give a remainder 1, then N divided by 5 
also gives a remainder 1."  
The rule is false when you can find cards that show N2 with a remainder 1 on one side and 
N does not give a remainder 1 on the other. The cards that need to be turned over are the cards 
(b) and (c) as they may be such instances that make the rule false.  
The card (b) obviously needs to be turned over because if the other side shows other remainders 
when N is divided by 5, we have an instance of the rule being false.  
The card (c) also needs to be turned over because the other side may show that the remainder of 
N2 to be 1. When that is the case, we have an instance of the rule being false.  
If the remainder is not 1 when N2 is divided by 5, like the card (d), whether N gives a remainder 
1 on the other side would not matter because it would not be an instance of the rule being false.  
If the remainder is 1 when N is divided by 5, like the card (a), it does not matter what remainder 
N2 gives because it would not be an instance of the rule being false. 
Practice No.13 
Below is shown a set of four cards, of which you can see only the exposed face but not the 
hidden back. For each card, there is a set of five positive whole numbers written on one of its 
sides and their average written on the other. 
Also below there is a rule which applies only to the four cards. 
Rule:  If the five whole numbers are consecutive in order, then their average is a whole number. 
i)  A counterexample makes the rule false when a set of five numbers are consecutive and 
their average is not a whole number. Can you think of such a counterexample?   
____ Yes.  ____No. 
If “Yes,” what might the five consecutive numbers be? 
If “No,” based on what you know about the average of numbers and consecutive numbers in 
general, why is it impossible to find a counterexample to the rule? 
ii)  Your task is to decide which (if any) of these four cards you must turn in order to decide 
if the rule is true. Don’t turn unnecessary cards. Tick the card(s) you want to turn. 

33, 34, 35, 36, 37  67, 20, 42, 54, 36  Their average is 
45.2  Their average is 

25 
(a)  (b)  (c)  (d) 
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Solution for Practice No.13 part (i) 
To find a counterexample, you want to look for five consecutive positive whole numbers whose 
average is not a whole number. Let’s call the first whole number as n, the five consecutive 
numbers are namely, n, n + 1, n + 2, n + 3 and n + 4. 
Since the average is not a whole number after dividing the sum of these five numbers by 5, it 
means that the sum of n, n + 1, n + 2, n + 3 and n + 4 is not a multiple of 5. That is, 

105)4()3()2()1( +=++++++++ nnnnnn is not a a multiple of 5. So we have a 
counterexample that makes the rule false when we find a number n such that 5n +10 is not a 
multiple of 5.  
But 5n +10 = 5(n + 2), which actually means 5 multiplies a whole number (n is a whole number 
so n + 2 is also a whole number). It’s impossible to pick a number n without having 5n +10 being 
a multiple of 5. Thus we cannot find five consecutive whole numbers whose average is not a 
whole number. Because we have no counterexample that makes the rule false, the rule is true. 
 
Solution for Practice No.13 part (ii) 
The conditional rule in the question is "If the five whole numbers are consecutive in order, then 
their average is a whole number."  
The rule is false when you can find cards that have five consecutive numbers on one side and 
their average is not a whole number on the other. The cards that need to be turned over are the 
cards "33, 34, 35, 36, 37" and "Their average is 45.2" as they may be such instances that make 
the rule false.  
The card "33, 34, 35, 36, 37" obviously needs to be turned over because if the other side shows 
their average is not a whole number, we have an instance of the rule being false.  
The card "Their average is 45.2" also needs to be turned over because the other side may have 
five consecutive numbers. When that is the case, we have an instance of the rule being false.  
If the five numbers are not consecutive, like the card "67, 20, 42, 54, 36", whatever their average 
is would not matter because it would not be an instance of the rule being false.  
If the average is a whole number, like the card "Their average is 25", it does not matter whether 
the five numbers are consecutive because it would not be an instance of the rule being false. 
Practice No.14 
Below is shown a set of four cards, of which you can see only the exposed face but not the 
hidden back. For each card, there is an even number (denoted by N) on one of its sides and its 
square root on the other. 
Also below there is a rule which applies only to the four cards. 
Rule:  If the square root of N is a whole number, then the last digit of N is '0', '4' or '6'. 
i)  A counterexample makes the rule false when the square root of an even number N is a 
whole number and the last digit of N is "2" or "8". Can you think of such a counterexample? 
 ____ Yes.  ____No. 
If “Yes,” what might the even number N be? 
If “No,” based on what you know about even numbers and perfect square numbers in general, 
why is it impossible to find a counterexample to the rule? 
ii)  Your task is to decide which (if any) of these four cards you must turn in order to decide 
if the rule is true. Don’t turn unnecessary cards. Tick the card(s) you want to turn. 

The square root of 
N is 
29.39387691339814

 
The even number 
N is 2,592 
 

 
The even number 
N is 196 
 

 
The square root of 
N is 26  
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(a)  (b)  (c)  (d) 
 
Solution for Practice No.14 part (i) 
A counterexample will be an even number N whose last digit is "2" or "8" and N is a whole 
number. Now the last digit of N is not ‘1’, ‘3’, ‘5’, ‘7’ or ‘9’ because that would mean N is an 
odd number. So N is an even number and its last digit may be "2", "4", "6", "8" or "0". But 
when N is squared to become N, the last digit becomes "2" or "8".  
The last digit of N is not "0" since after squaring N , N will end with "0". 
Also, the last digit of N is not "2" or "8" since after squaring N , N will end with "4".  
Similarly, the last digit of N is not "4" or "6" since after squaring N , N will end with "6". 
So N is not an even number whose last digit is "0", "2", "4", "6" or "8". But that means we 
have no other choices! As you can see, we cannot find an even number N with the last digit being 
"2" or "8" so that the square root N is an even number. Because we have no counterexample 
that makes the rule false, the rule is true. 
 
Solution for Practice No.14 part (ii) 
The conditional rule is “If the square root of N is a whole number, then the last digit of N is '0', 
'4' or '6'."  
The rule is false when you can find cards that have a whole number for the square root of N on 
one side and the last digit of N is '2' or '8' on the other. The cards that need to be turned over are 
the cards "The square root of N is 26" and "The even number N is 2,592" as they may be such 
instances that make the rule false.  
The card “The square root of N is 26" obviously needs to be turned over because if the other side 
shows the last digit of N to be '2' or '8', we have an instance of the rule being false.  
The card "The even number N is 2,592" also needs to be turned over because the other side may 
show the square root of N to be a whole number. When that is the case, we have an instance of 
the rule being false.  
If the square root of N is not a whole number, like the card "The square root of N is 
29.39387691339814", whatever the even number N is on the other side would not matter because 
it would not be an instance of the rule being false.  
If the even number N ends in either '0', '4' or '6', like the card "The even number N is 196", it 
does not matter whether the square root is a whole number because it would not be an instance of 
the rule being false. 
Practice No.15 
A and B are two positive whole numbers. Their product AB is compared with their sum A + B. 
Below is shown a set of four cards, of which you can see only the exposed face but not the 
hidden back. For each card, the numbers chosen for A and B are shown on one of its sides and 
their product and sum are shown on the other.  
Also below there is a rule which applies only to the four cards. 
Rule:  If 2>A and 2>B , then BAAB +> . 
 
i)  A counterexample makes the rule false when both A and B are greater than 2 and 

BAAB +≤ . Can you think of such a counterexample? ____ Yes.  ____No. 
If “Yes”, what might the pair of numbers A and B be? 
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If “No”, based on what you know about products and sums in general, why is it impossible to 
find a counterexample to the rule? 
ii)  Your task is to decide which (if any) of these four cards you must turn in order to decide 
if the rule is true. Don’t turn unnecessary cards. Tick the card(s) you want to turn. 

The product 
BA× is 432 and 

the sum BA+ is 
62  

 

A is a whole 
number between 
10 and 50, B is a 
whole number 
between 45 and 
200 

 

A is a whole 
number between 
100 and 500, B is 
1 

 
The product 

BA× is 4 and the 
sum BA+ is 5 

(a)  (b)  (c)  (d) 
 
Solution for Practice No.15 part (i) 
You are looking for a counterexample where both A and B are greater than 2 and BAAB +≤ . 
How can we find such a pair of numbers for A and B? Let’s think about what happens 
when BAAB +≤ with both A and B greater than 2.  
For a number greater than 2, it can be written as 2 + n, where n is a certain positive number. 
Since both A and B are greater than 2, we can write A and B as 2 + n and 2 + m, where m and n 
are some positive numbers.  
Now BAAB +≤  can be rewritten as )4()2)(2( nmnm ++≤++ .  
Let’s try to narrow down what m and n may be to find a counterexample for A and B. We can do 
this by simplifying the inequality. 
After removing the brackets on both sides, the above inequality becomes 

nmmnnm ++≤+++ 4224  
Subtracting the sum 4 + m + n from both sides, it becomes 0≤++ mnnm . 
Now we have a clearer idea about the counterexample we are looking for. A and B are numbers 2 
+ n and 2 + m such that 0≤++ mnnm .  
However, mnnm ++  is a sum of positive numbers (m and n are positve, so does mn). So it’s 
impossible to have mnnm ++  to be less than or equal to 0! Thus we cannot find numbers that 
are greater than 2 for A and B so that BAAB +≤ . Because we have no counterexample that 
makes the rule false, the rule is true. 
 
Solution for Practice No.15(ii) 
The conditional rule in the question is "If 2>A and 2>B , then BAAB +> ."  
The rule is false when you can find cards that have both A and B are greater than 2 on one side 
and AB is less than or equal to A + B on the other. The cards that need to be turned over are the 
cards (b) and (d) as they may be such instances that make the rule false.  
The card (b) obviously needs to be turned over because if the other side shows that the product is 
less than the sum, we have an instance of the rule being false.  
The card (d) also needs to be turned over because the other side may show both A and B to be 
greater than 2. When that is the case, we have an instance of the rule being false.  
If one of the numbers A and B is less than or equals to 2, like the card (c), whether AB is greater 
than A+B would not matter because it would not be an instance of the rule being false.  
If BAAB +> , like the card (a), it does not matter whether both A and B are greater than 2 
because it would not be an instance of the rule being false. 
Practice No.16 
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A quadratic equation 02 =++ cbxax  is formed by non-zero whole numbers a, b and c. The 

solutions for x are solved by
a

acbbx
2

42 −±−
=  and the discriminant of the equation, acb 42 − , 

is calculated. Below is depicted a set of four cards, of which you can see only the exposed face 
but not the hidden back. On each card, the discriminant of the quadratic equation, acb 42 − , is 
computed on one of its sides and the solutions for x in the equation are written on the other. 
Also below there is a rule which applies only to the four cards. 
Rule:  If the solutions for x in the equation are whole numbers, then the discriminant acb 42 − is 
a perfect square. 
 
i)  A counterexample makes the rule false when the solutions of a quadratic equation are 
whole numbers and its discriminant is not a perfect square. Can you think of such a 
counterexample? ____ Yes.  ____No. 
If “Yes”, what might the quadratic equation be? 
If “No”, based on what you know about quadratic equations in general, why is it impossible to 
find a counterexample to the rule? 
ii)  Your task is to decide which (if any) of these four cards you must turn in order to decide 
if the rule is true. Don’t turn unnecessary cards. Tick the card(s) you want to turn. 

The discriminant is 
)7(64)1( 2 −××−−  

= 169 , which is the 
square of 13. 
 

 
The solutions for 
x are 2 and -3. 
 

 

The solutions for x 

are 
3
2 and 

4
31 . 

 

 

The discriminant is 
724)12( 2 ××−− = 

88, which is not a 
perfect square. 

(a)  (b)  (c)  (d) 
 
Solution for Practice No.16 part (i) 
You are looking for a counterexample where the quadratic equation 02 =++ cbxax  has whole 
number solutions, say M  and N, and the discriminant acb 42 − is not a perfect square. How can 
we find such a quadratic equation? Let’s think about the solutions M  and N and how they are 
related to the discriminant acb 42 − . 
According to the quadratic formula, the solution(s) to the quadratic equation 02 =++ cbxax  

are
a

acbb
2

42 −+− or 
a

acbb
2

42 −−− . 

So M is either equal to 
a

acbb
2

42 −+− or
a

acbb
2

42 −−−  

Multiplying both sides by 2a and then adding b, 

acboracbbaM

acbboracbbaM

442

442
22

22

−−−=+

−−−−+−=
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Since acb 42 −  is not a perfect square, its square root, acb 42 − is not a whole number. Hence 
2aM + b is not a whole number. But it’s impossible to pick whole numbers a and b without 
making 2aM + b become a whole number. Thus we cannot find non-zero whole numbers a, b 
and c for the quadratic equation 02 =++ cbxax  whose solutions M and N are whole numbers 
and the discriminant acb 42 − is not a perfect square. Because we have no counterexample that 
makes the rule false, the rule is true. 
 
Solution for Practice No.16(ii) 
The conditional rule in the question is "If the solutions for x in the equation are whole numbers, 
then the discriminant acb 42 − is a perfect square."  
To decide that the rule is false, you need to look for cards that have whole numbers as the 
solution for x on one side and the discriminant not being a perfect square on the other. The cards 
that need to be turned over for deciding are the cards (b) and (d) as they may be such instances 
that make the rule false.  
The card (b) obviously needs to be turned over because if the other side shows that the 
discriminant is not a perfect square, we have an instance of the rule being false. If the other side 
shows that the discriminant is a perfect square, we have an instance verifying a rule but it is 
unknown whether the rule is false in other instances.  
The card (d) also needs to be turned over because the other side may show non-whole number 
solutions for x. When that is the case, we have an instance of the rule being false.  
If any of the solutions for x is not a whole number, like the card (c), whatever the discriminant is 
would not matter because it would not be an instance of the rule being false.  
If the discriminant is a perfect square, like the card (a), it does not matter whether the solutions 
for x are whole numbers because it would not be an instance of the rule being false. 
Practice No. 17 
Consider the mathematical statement: 
"If two numbers multiplied together are both odd, then the product is an odd number." 
 
i)  A counterexample makes the rule false when you multiply two odd numbers together and 
the product is an even number. Can you think of such a counterexample? 
____ Yes.  ____No. 
If “Yes”, what are these numbers? 
If “No”, based on what you know about multiplications and odd numbers in general, why is it 
impossible to find an example of the statement being false? 
ii)  Arthur, Bonnie, Ceri, Duncan, Eric and Yvonne were trying to determine whether the 
following statement is true or false: 
"If two numbers multiplied together are both odd, then the product is an odd number." 
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From the above, choose one argument that best explains why it is impossible to find a 
counterexample that make the above statement false. Explain why you choose that argument. 
 
Solution to Practice No. 17 
Bonnie's answer and Yvonne's answer provide some examples that verify the statement. 
However, they did not explain why other examples can never be counterexamples that make the 
statement false. So we do not know whether the statement is true. 
Though Eric's answer describes all possible odd numbers and carries out different operations 
involving the numbers N and M correctly, he simply derives the operations from the statement 
“ PNM =× ” and later restates it as “ oddNM =× ”. His answer never provides any reason for 
why other examples can never be counterexamples that make the statement false. So we do not 
know whether the statement is true. 
Duncan's answer describes all possible types of the odd numbers based on what is immediately 
known about odd numbers. He further justified that the multiplication of the last digits of odd 

Arthur's answer: 
When an odd number is divided by 2, it will give a 
number p as the quotient and a remainder of 1. So an 
odd number can be written as 2p + 1 (p is the 
quotient). 
The multiplication of 2 odd numbers can then be 
written as 1224)12()12( +++=+×+ qppqqp  
The first three numbers have a common factor of 2 so 
their sum is an even number.  
After adding 1 to the three even numbers, the result is 
an odd number. 
So Arthur says it's true. 

Ceri's answer: 
Odd numbers are numbers that 
do not have the factor 2. When 
you multiply two odd numbers, 
both without the factor 2, the 
product will not have the factor 
2. The product is then an odd 
number. 
So the Ceri says it's true. Duncan's answer: 

Odd numbers end in 1, 3, 5, 7 or 9. When you 
multiply any two of these, the answer will still end in 
1, 3, 5, 7 or 9. 
So Duncan says it's true. Eric's answer: 

Let N = any whole number 
Let M = any whole number 
N ×M = P 
P÷ M = N 
P÷ N = M 
(P×P) ÷ (N×M) = N×M = an 
odd number. 
So Eric says it's true. 

Yvonne's answer 

*****
*****
*****
*****
*****

********** =×  

So Yvonne says it’s true. 

Bonnie's answer: 
1× 1 = 1 3× 3 = 9  5× 5 = 25 

1× 3 = 3 3× 5 = 15 5× 7 = 35 
So Bonnie says it's true. 
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numbers would still give the last digits of the product as 1, 3, 5, 7, or 9. His answer has provided 
reasons for why all examples can never be counterexamples that make the statement false. So we 
know the statement is true. 
Ceri's answer describes all possible odd numbers as numbers that do not have the factor 2. She 
further justified how multiplying odd numbers without the factor 2 can never produce a number 
with the factor 2. Her answer has provided reasons for why all examples can never be 
counterexamples that make the statement false. So we know the statement is true.  
Arthur's answer provides explanations for writing any pair of odd numbers as 2p + 1 and 2q + 1 
and carried out the multiplication of (2p + 1)(2q + 1) correctly. He further justified that the first 
three numbers in the result of multiplication are even. His answer has provided reasons for why 
all examples can never be counterexamples that make the statement false. 
Practice No. 18 
Consider the mathematical statement: 
"If any three whole numbers multiplied together are consecutive numbers, then the product is 
divisible by 6." 
i)  A counterexample makes the rule false when three consecutive numbers are multiplied 
together and the product is not divisible by 6. Can you think of such a counterexample? 
____ Yes.  ____No. 
If “Yes”, what are the three numbers? 
If “No”, based on what you know about multiplications and consecutive numbers in general, why 
is it impossible to find an example of the statement being false? 
ii)  Kate, Leon, Maria and Nisha were asked to determine whether the following statement is 
true or false: 
 "If any three whole numbers multiplied together are consecutive numbers, then the 
product is divisible by 6." 
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From the above, choose one argument that best explains why it is impossible to find a 
counterexample that make the above statement false. Explain why you choose that argument. 
 
Solution to Practice No.18 
Leon's answer provides some examples that verify the statement. However, he did not explain 
why other examples can never be counterexamples that make the statement false. So we do not 
know whether the statement is true. 
Though Maria's answer describes all possible selection of three consecutive numbers as M, M + 
1 and M + 2 and carried out the multiplication correctly, she simply cancels the M's and changes 

MMM 23 23 ++ into 1 + 3 + 2. This is the same as substituting M = 1 into the result. Her 
answer never provides any reason for why substituting other values of M can never be 
counterexamples that make the statement false. So we do not know whether the statement is true. 

Nisha's answer 
Of the three consecutive numbers, x, x + 1 and x+2, either x or x + 1 is an even number, so 
x(x + 1)(x + 2) is a multiple of 2. 
  
The first number x is either a multiple of 3 or not a multiple of 3. 

If x is a multiple of 3 then x(x + 1)(x+2) is a multiple of 3  
  
If x is not a multiple of 3, then x has a remainder of 1 or 2 when divided by 3 

If x has a remainder of 1 then x + 2 is a multiple of 3 
If x has a remainder of 2 then x + 1 is a multiple of 3 
So x(x + 1)(x+2) is a multiple of 3 since either x + 1 or x + 2 is a multiple of 3 

  
Regardless of whether x is a multiple of 3, x(x + 1)(x + 2) will be a multiple of 3. 
Since x(x + 1)(x + 2) is a multiple of 2 and also 3, it is a multiple of 6. 

So Nisha says it's true. 

Kate's answer: 
A multiple of 6 must have factors of 3 and 2. 
If you have three consecutive numbers, one will be a multiple of 3 as every third number is 
in the three times table. 
Also, at least one number will be even and all even numbers are multiples of 2. If you 
multiply the three consecutive numbers together, the answer must have at least one factor 
of 3 and one factor of 2. 
So Kate says it's true. 

Leon's answer: 
1 x 2 x 3=6  
2 x 3 x 4 = 24  
4 x 5 x 6 = 120  
6 x 7 x 8 = 336  
So Leon says it's true. 

Maria's answer: 
M is any whole number 

MMM

MMMMMM

23

)2()()2()1(
23

2

++=

+×+=+×+×
 

Cancelling the M's gives 1 + 3 + 2 = 6 
So Maria says it's true. 
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Kate's answer describes all possible multiples of 6 based on what is immediately known about 
factors of 6. She further justified why any three consecutive numbers would include a multiple of 
3 and an even number without fail. Her answer has provided reasons for why all examples can 
never be counterexamples that make the statement false. So we know the statement is true. 
Nisha's answer provides explanations for writing any triplet of numbers to be x, x + 1 and x + 2. 
She further justified that either x or x + 1 is an even number and that either x, x + 1 or x + 2 is a 
multiple of 3. She then explains that multiplying the numbers x, x + 1 and x + 2 together will 
produce a multiple of 6. Her answer has provided reasons for why all examples can never be 
counterexamples that make the statement false. So we know the statement is true.  
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Appendix F: Training Materials emphasizing Rule Violation (Condition PO) 

[Selected number of items included for illustration, other items are posed similarly] 
 
Practice No.1 

Imagine you are a police officer on duty. It is your job to ensure that people conform to a 

law about alcohol drinking in a restaurant. The cards below show information about four people 

sitting at a table. On one side of a card is the person’s age and on the other side of the card is 

what the person is drinking. The law you want to uphold is: "If a person is drinking beer, then 

the person must be over 19 years old." 

Which of the card(s) below would you have to turn over to make sure that the people 

have violated the law? Turn over only those which you need to check to be sure. Tick the card(s) 

you would have to turn over. 

 

22 years 
old  16 years 

old 
Drinking 

Soda 
Drinking 

Beer 

(a)  (b)  (c)  (d) 
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Solution for Practice No.1 

The rule in the question is: "If a person is drinking beer, then the person must be over 19 

years old." 

The people have violated the above rule when you can find cards that have a person 

drinking beer on one side but is not over 19 years old on the other. The cards that need to be 

turned over for checking are "Drinking Beer" and "16 years of age" as they may be instances of 

such violations.  

The card "Drinking Beer" obviously needs to be turned over because if the other side 

shows the person's age to be under 19, we have an instance of violation. If the other side shows 

the person's age to be over 19, we have an instance of complying with the rule but it is unknown 

whether the rule is violated in other instances.   

The card "16 years of age" also needs to be turned over because the other side may show 

a person drinking beer. When that is the case, we have an instance of violation. 

If the person is not drinking beer, like the card "Drinking Soda", whatever is on the other 

side would not matter because this would not become an instance of violation.  

And if the person is over 19 years old, like the card "22 years of age", it does not matter 

whether the person is drinking beer because it would not become an instance of violation. 
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Practice No.2 

As part of your job as an assistant at Sears, you have the job of checking sales receipts to 

make sure that they are approved by the sales clerk in accordance to the store’s policies. The 

amount is written on the front of the receipt, while the section manager’s approval is signed on 

the back of the receipt. One store policy that the sales clerk has to follow is: "If the amount of a 

sale is over $30, then the section manager must have approved it." 

Which of the receipt(s) below would you have to turn over to make sure that the sales 

clerk has followed the policy? Turn over only those which you need to check to be sure. Tick the 

receipt(s) you would have to turn over. 

 

The 
amount is 

$50 
 

The 
receipt is 
not signed

The 
receipt is 

signed 

The 
amount is 

$25 

(a)  (b)  (c)  (d) 
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Solution for Practice No.2 

The policy rule in the question is: "If the amount of a sale is over $30, then the section 

manager must have approved it." 

The sales clerk has violated the above rule when you can find receipts that have over $30 

on one side but have not been approved by the section manager on the other. The receipts that 

need to be turned over for checking are "The amount is $50" and "The receipt is not signed" as 

they may be exhibiting such violations. 

The card "The amount is $50" obviously needs to be turned over because if the other side 

shows that the receipt is not signed, we have an instance of violation. If the other side shows the 

receipt is signed, we have an instance of complying with the rule but it is unknown whether the 

rule is violated in other instances.   

The card "The receipt is not signed" also needs to be turned over because the other side 

may show an amount of over $30. When that is the case, we have an instance of violation. 

If the amount of a receipt is not over $30, like the card "The amount is $25", whatever is 

on the other side would not matter because this would not become an instance of violation.  

And if the receipt is signed, it does not matter whether the amount is over $30 because it 

would not become an instance of violation. 
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Practice No.11 

You are a textbook author sorting through worked examples of rounding additions of 

numbers to the nearest ten. You calculated different pairs of whole numbers (denoted as A and 

B) using two different methods. In the first method, you round the numbers A and B upwards or 

downwards to the nearest ten first and then add them together. In the second method, you add the 

numbers first and then round the sum to the nearest ten. The calculation steps of both methods 

are writtten on one side and their results are compared on the other. To help students see that 

rounding numbers before or after addition can produce different answers, you want to identify 

the worked examples that violate the rule: "If both numbers are rounded to the nearest ten by 

rounding up, then I must obtain the same answer using both methods." 

 

i)  An instance violates the above rule when both numbers are rounded up to the nearest ten 

and different answers are obtained using both methods. Can you think of such an instance of 

violation? ___ Yes. ___No. 

If “Yes,” what might be the pair of numbers? 

If “No,” based on what you know about the rounding of numbers to the nearest ten in general, 

why is it impossible to find an instance that violates the above rule? 

 

 

 

 

 

 

ii)  Which of the page(s) below would you have to turn over to make sure that the worked 
examples violate the rule? Turn over only those which you need to check. Tick the page(s) you 
would have to turn over. 

A is rounded up to 
40, B is rounded 

down to 30 
 

A is rounded up to 
30, B is rounded 

up to 20 
 

I obtained the 
same answer 90 

from both 
methods 

 

I obtained 60 from 
the first method 
and 70 from the 
second method 

(a)  (b)  (c)  (d) 
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Solution for Practice No.11 part (i) 
You are looking for an instance where the pair of numbers must both be rounded up in 

order to get to the nearest ten and yet different answers are obtained from both methods. How 
can we find such a pair of numbers? If we think about which numbers are rounded upwards to 
the nearest ten, their last digits must be "5", "6", "7", "8" or "9".  

Rounding up both numbers before adding makes the sum even larger. The increase may 
be as big as a value of 10 if each number has its last digit as ‘5’ and rounded up before adding. 
This may lead to a different answer than using the second method. One probable choice of A and 
B are thus two numbers whose last digits are "5". 

Let’s say we choose 35 and 55. Using the first method, 35 + 55 is first rounded up to 40 
and 60 and their sum is equal to 100. Using the second method, 35 + 55 is first added to become 
90, and remains the same after rounding to the nearest ten. As you can see, using these two 
numbers in both methods leads to different answers, which is an instance violating the rule. 
 
Solution for Practice No.11 (ii) 

The conditional rule in the question is "If both numbers are rounded to the nearest ten by 
rounding up, then I must obtain the same answer using both methods." 

A worked example has violated the above rule when you can find pages that show both 
numbers are rounded to the nearest ten by rounding up on one side but you obtain different 
answers from using both methods on the other side. The pages that need to be turned over for 
checking are pages (b) and (d) as they may be exhibiting such violations.  

Page (b) obviously needs to be turned over because if the other side shows that you 
obtain different answers from using both methods, we have an instance of the rule being 
violated. If the other side shows that you obtain the same answer, we have an instance of the rule 
being followed but it is unknown whether the rule is violated in other instances.  

Page (d) also needs to be turned over because the other side may show both numbers 
being rounded up to the nearest ten. When that is the case, we have an instance of the rule being 
violated. 

If any of the numbers are not rounded to the nearest ten by rounding upwards, like the 
page (a), whether you obtain the same answer from both methods would not matter because it 
would not be an instance of the rule being violated. 
And if you obtain the same answer using both methods, like the page (c), it does not matter 
whether both numbers are rounded up to the nearest ten because it would not be an instance of 
the rule being violated.
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Practice No.13 
You are helping your friend in checking some flash cards she made for investigating the 

average of whole numbers. She wrote any five positive whole numbers on one side of the flash 

cards and calculate their average on the other side. You want to make sure that her cards follow 

the mathematical rule, "If the five whole numbers are consecutive in order, then my friend must 

get a whole number for the average." 

 

i)  An instance violates the above rule when a set of five numbers are consecutive and their 

average is not a whole number. Can you think of such an instance of violation?  ___ Yes.

 ___No. 

If “Yes,” what might the five consecutive numbers be? 

If “No,” based on what you know about the average of numbers and consecutive numbers in 

general, why is it impossible to find an instance that violates the above rule? 

 

 

 

 

 

 

 

 

 

ii)  Which of the four card(s) below would you need to turn over to check if your friend's 

work has violated the rule? Turn only those which you need to check. Tick the card(s) you want 

to turn. 

33, 34, 35, 36, 37  67, 20, 42, 54, 36  The average is 
45.2  The average is 25 

(a)  (b)  (c)  (d) 
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Solution for Practice No.13 part (i) 
To find an instance that violates the rule, you want to look for five consecutive positive 

whole numbers whose average is not a whole number. Let’s call the first whole number as n, the 
five consecutive numbers are namely, n, n + 1, n + 2, n + 3 and n + 4. 

Since the average is not a whole number after the sum of these five numbers is divided by 
5, it means that the sum of n, n + 1, n + 2, n + 3 and n + 4 is not a multiple of 5. That is, 

105)4()3()2()1( +=++++++++ nnnnnn is not a a multiple of 5. So we have an instance 
of violation when we find a number n such that 5n +10 is not a multiple of 5.  

But 5n +10 = 5(n + 2), which actually means 5 multiplies a whole number (n is a whole 
number so n + 2 is also a whole number). It’s impossible to pick a number n without letting 5n 
+10 become a multiple of 5. Thus we cannot find five consecutive whole numbers whose 
average is not a whole number. Because we have no instance that violates the rule, the rule is 
complied. 
 
Solution for Practice No.13 (ii) 

The conditional rule in the question is "If the five whole numbers are consecutive in 
order, then my friend must get a whole number for the average."  

Your friend’s work violates the above rule when you can find cards that have five 
consecutive numbers on one side but the average calculated by your friend is not a whole number 
on the other. The cards that need to be turned over for checking are cards "33, 34, 35, 36, 37" 
and "The average is 45.2" as they may be exhibiting such violations. 

Card "33, 34, 35, 36, 37" obviously needs to be turned over because if the other side 
shows their average is not a whole number, we have an instance of the rule being violated. If the 
other side shows their average to be a whole number, we have an instance of the rule being 
followed but it is unknown whether the rule is violated in other instances.  

Card "The average is 45.2" also needs to be turned over because the other side may have 
five consecutive whole numbers. When that is the case, we have an instance of the rule being 
violated. 

If the five numbers are not consecutive, like the card "67, 20, 42, 54, 36", whatever 
average computed by your friend would not matter because it would not be an instance of the 
rule being violated. 

And if the average is a whole number, like the card "The average is 25", it does not 
matter whether the five numbers are consecutive because it would not be an instance of the rule 
being violated. 
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Appendix G: Interview Task and Sample of Questions 

Given task: 

A set of at least 3 whole numbers are randomly chosen and their average is calculated. 

Decide whether the following implication statement is true or false: 

If the set of whole numbers are consecutive in order, then their average is a whole 

number. 

Justify why your conclusion must be true or false using the most convincing argument. 
 

Follow-up action and questions: 

1) Present the task to the student 

2) How did you get the conclusion based on this statement? 

3) What do you mean by [student’s conclusion]? 

4) How did you determine that this statement is false? 

5) How did you come up with that example? 

6) Given the statement had these counterexamples that you found, is there any way you can 

change the statement into a true statement? 

7) What would you change it into? 

8) Why did you change the statement in this way? 

9) Can you show if this new statement is true, like the way you showed in [referring to a 

valid proof in the student's work]? 

10) Do you think there are still any counterexamples that would make this statement false? 

Can you explain why? 
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Appendix H: Student’ Proving Attempts for the Given Implication 

Given implication: [For a set of at least three numbers] If the set of whole numbers are all 

consecutive in order, then the average is a whole number. 

 

Table 32: Attempts made by Students to prove or falsify the Implication 

ID Trial No. (True/False) and description of Proof 
constructed 

Level of 
proof 

Prompted for other  
sets of numbers 

S1 
 

Trial 1 (True) 
By calculating a few sets of consecutive numbers 
 
Trial 2 (False) 
Based on the example 1, 2, 3 and 4, the average 
is 2.5 

1 
 
 
 
4 

Prompted after Trial 1; 
Focused on three whole 
numbers only 

S2 Trial 1 (True) 
Based on the total of x, x + 1, …, x +16 and 
divide by 17 with x being the first whole 
number; Calculated the average of 0 to 16 to be a 
whole number. 
 
Trial 2 (False) 
Calculated the average of x, x + 1, x + 3, x +4 to 
be x +1.5, which was a decimal number. 
 
Trial 3 (True) 
Calculated the average of 2, 3, 4, 5, 6 to get a 
whole number 
 
Trial 4 (False) 
Calculated the average of 2, 3, 4, 5 to get a 
decimal number 

6 
 
 
 
 
 
5 
 
 
 
1 
 
 
 
4 

No prompts given; 
focused on more than 
three numbers on her 
own 

S3 Trial 1 (False) 
Calculated the average of 7 to 10 and obtain 
decimal numbers as averages.  
 
Calculated 1, 2, 3, 4, 5, 6 and obtained 3.4 The 
latter example was corrected to include 4 and 
average 3.5. 

4 
 
 
 
4 

No prompts given; 
focused on more than 
three numbers on her 
own 

S4 Trial 1 (False) 
Started with four consecutive numbers, from x to 
x + 3, and concluded that the average x + 1.5 is 
not a whole number.  

5 
 
 
 

No prompts given; 
focused on more than 
three numbers on his 
own 
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Table 32 (cont’d) 

 Trial 2 (True) 
Tried three consecutive numbers, from x to x + 
2, and obtained the average as x +1. Could not 
conclude that the implication is true or false. 
 
Trial 3 (True) 
Tried five consecutive numbers, from x to x+4, 
and obtained the average as x+2. 

6 
 
 
 
 
6 

 

S5 Trial 1 (False) 
Calculated the average of 1 to 4 and obtained 
2.5. 

4 No prompts given 

S6 Trial 1 (True) 
Based on the total of three consecutive numbers, 
x + (x+1) + (x+2), and deduced 3x+3 is divisible 
by 3 
 
Trial 2 (False) 
Considered the total of four consecutive 
numbers, x + (x+1) + (x+2) + (x + 3), and 
deduced that (4x+6) is not divisible by 4. 
 
Trial 3 (True) 
Considered the total of five consecutive 
numbers, x + (x+1) + (x+2) + (x + 3) + (x + 4), 
and deduced that (5x+10) is divisible by 5. 

6 
 
 
 
5 
 
 
 
 
6 

Prompted after Trial 1; 
Focused on three whole 
numbers only 

S7 Trial 1 (True) 
Based on the assumption that average number of 
an odd number of consecutive numbers is the 
middle number of the set and the middle number 
is a whole number, she concluded that the 
average is a whole number. 
 
Trial 2 (True) 
Using numbers 1, 2 and 3 to illustrate why the 
the center number is the average number and 
thus a whole number. 
 
Trial 3 (True) 
Using the center number as a reference, there are 
as many integers to the right and to the left of it 
and that one number on the right is ‘balanced’ 
with one number of the left because they are the 
same difference away from the center number. 
 

3 
 
 
 
 
 
 
1 
 
 
 
 
4 
 
 
 
 
 
 

No prompts given; aware 
of more than three 
numbers on her own self.
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Table 32 (cont’d) 

 Trial 4 (False) 
Calculated the average of 1, 2, 3, 4 and obtained 
decimal number 2.5. In addition, calculated the 
average of 2, 3, 4, 5, and obtain 3.5 

4  

S8 Trial 1 (True) 
Used the smallest example of three consecutive 
numbers (1, 2 and 3) 
 
Trial 2 (False) 
Considered 4 consecutive numbers 1 to 4 and 
find that 10 cannot be divided by 4 

1 
 
 
 
4 

Prompted after trial 1; 
Focused on three 
consecutive numbers only 
before prompt 

S9 Trial 1 (True) 
Use examples of three consecutive numbers, 1 to 
3, 2 to 4, and 4 to 6 to verify the implication. 
 
Trial 2 (True)  
Based on the total of three consecutive numbers, 
n + (n +1) + (n+2), and deduced (3n+3)/3 = n +1 
 
Trial 3 (True) 
Based on four consecutive numbers, but 
considered the average as [(n + 1) + (n + 2) + (n 
+ 3)] and divide it by 3 by error. 
 
Trial 4 (False) 
Based on the total of four consecutive numbers, 
n + (n + 1) + (n + 2) + (n + 3), and deduced 
(4n+6)/4 as the average 
 
Trial 5 (False) 
Based on four consecutive numbers, 1 to 4, 
calculate the average to be 2 ½, which is not a 
fraction. 

1 
 
 
 
6 
 
 
 
3 
 
 
 
 
5 
 
 
 
 
4 

No prompts given 

S10 Trial 1 (True) 
Based on two examples, 1 to 3 and 4 to 6, 
concluded that a multiple of 3 will always be 
present for the total of three consecutive 
numbers. 
 
Trial 2 (True) 
Based on the total of three consecutive numbers, 
n + (n +1) + (n+2), and deduced (3n+3) = 3(n 
+1) and its division by 3 yields n+1, which is a 
whole number. 

2 
 
 
 
 
 
6 
 

Prompted after Trial 2; 
focused on three 
consecutive numbers 
only; thought that the 
same conclusion holds for 
4 numbers 
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Table 32 (cont’d) 

 Trial 3 (True) 
Based on four consecutive numbers, n to (n + 3), 
but considered the total as divisible by 4 by 
erroneously assuming that the number pattern 
will repeat itself. 
 
Trial 4 (False) 
Based on four consecutive numbers, 100 to 103, 
finds the total 406 is not divisible by 4. 

1 
 
 
 
 
4 

 

S11 Trial 1 (True) 
By calculating a few examples of three 
consecutive numbers 
 
Trial 2 (True) 
Based on the total of three consecutive numbers, 
x + (x+1) + (x+2), and deduced 3x+3 is divisible 
by 3 
 
Trial 3 (False) 
Considered the total of four consecutive numbers, 
x + (x+1) + (x+2) + (x + 3), and deduced that 
(4x+6) is not divisible by 4. 

2 
 
 
 
6 
 
 
 
 
5 

Prompted after trial 2; 
Focused on three 
consecutive numbers 
only before prompt 

S12 Trial 1 (True) 
Choose the smallest example 1, 2, 3 and calculate 
its average to be 2. Conclude the implication as 
true based on the smallest example. 
 
Trial 2 (True) 
Consider a set of three non-consecutive numbers 
1, 4, 6, and found that the average is not a whole 
number. Inferred that the implication is true since 
it is not true for its opposite example. 
 
Trial 3 (False) 
Considered the smallest example 1, 2, 3, 4 and 
found that the average is not a whole number. 
Concluded the implication as not true. 
 
Trial 4 (True) 
Considered the smallest example 1 to 5 and found 
that the average is a whole number. Concluded 
that the implication is true for five consecutive 
numbers. 
 

2 
 
 
 
 
1 
 
 
 
 
 
4 
 
 
 
 
2 
 
 
 
 
 

Prompted after Trial 2; 
Consider four or more 
consecutive numbers 
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Table 32 (cont’d) 

 Trial 5 (False) 
Considered the smallest example 1 to 6 and found 
that the average is not a whole number. 
Concluded that the implication is false for six 
consecutive numbers. 

4  
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Appendix I: Student’ Modification of Implications and Proving Attempts 

Given implication: [For a set of at least three numbers] If the set of whole numbers are all 

consecutive in order, then the average is a whole number. 

 

Table 33: Modifications of Implications made by Students 

ID Modification made Trial No. (True/False) and description of 
Proof constructed 

Level 
of 
proof 

S1 If the set of three whole 
numbers are all consecutive in 
order, then the average is a 
whole number. 
 
 
 
 
 
 
 
 
If the set of numbers is an odd 
number of consecutive 
numbers, then the average is a 
whole number. 

Trial 1 (True) 
Based on examples of consecutive numbers 
from 1, 2, 3 to 4, 5, 6, whose sums are all 
divisible by 3 
 
Trial 2 (True) 
Based on two more “random choices” of 
three consecutive numbers, 55, 56, 57, and 
99, 100, 101, and infer that the same will 
apply to other triplets of consecutive 
numbers. 
 
Trial 3 (True) 
Based on examples of two, three, four and 
five consecutive numbers, infer that the same 
will apply to any odd number of consecutive 
numbers, unless someone proved her wrong.  

1 
 
 
 
 
2 
 
 
 
 
1 

S2 If the set of whole numbers 
are consecutive in order and 
the number of numbers are 
odd, then their average is a 
whole number 

Trial 1 (True) 
Observed that the constant number in the 
algebraic total of the consecutive numbers 
followed a pattern of “odd, odd, even, even.” 
Attempted to infer the average was a whole 
number from division of odd and even 
numbers.  
 
Trial 2 (True) 
Observed that the average followed a pattern 
of increasing by 1, in the form of x + 1, x + 
2, x + 3, as the set of three, five, seven 
consecutive numbers were considered. 

1 
 
 
 
 
 
 
2 

S3 A set of (must be) 3 whole 
numbers are randomly 
chosen… 

Trial 1 (True) 
Tried three examples of three consecutive 
whole numbers (1, 2, 3; 4, 5, 6; 7, 8, 9) on  

1 
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Table 33 (cont’d) 

 If the set of whole numbers 
are consecutive in order, then 
their average is a whole 
number. 
[prompted to do other 
numbers] 

calculator and obtain whole numbers as 
average. 

 

 A set of (must be) 3 or 5 
whole numbers are randomly 
chosen…, [the rest remains 
the same] 
 
A set of whole numbers 
which must be in odd number 
form, …[the rest remains the 
same] 

Trial 2 (True) 
Calculated the average of the set 1 to 5 and 
obtained a whole number 
 
Trial 3 (True) 
Calculated the average of the sets, 1 to 5, 1 
to 7, 1 to 9, and 1 to 11, and obtained a 
whole number. ‘80 % sure’ about the truth of 
the modified implication. 

1 
 
 
 
1 

S4 If the set of whole numbers 
are consecutive in order and 
of an even number, like 4 to 6 
numbers, then [same 
consequent] 
 
If the set of whole numbers 
are consecutive in order and 
are of an odd number, like 3 
or 5 numbers, then [same 
consequent] 
 
If the set of whole numbers 
are consecutive in order and 
of an even number, like 4 to 6 
numbers, then their average is 
not a whole number. 

Trial 1 (True) 
Referred to the earlier proof that calculated 
the average of five consecutive numbers, 
from x to x + 4. 
 
 
Trial 2 (True) 
Calculated the average of six consecutive 
numbers, from x to x + 5, and obtained x + 
2.5. 
 
 
 
Trial 3 (True) 
Based on the observation that summing the 
first and last number equals to summing the 
second and second-last number (and so on), 
re-write the first and the last number in the 
set as x and x + n, and proposed that the sum 
of the consecutive number is [x + (x+n)]x n. 
Attempted to deduce that the average is a 
whole number when n is odd but was 
unsuccessful.  

3 
 
 
 
 
 
3 
 
 
 
 
3 

S5 If the set of whole numbers 
are consecutive in order, then 
their average is a whole 
number or a decimal number. 
 
 

Trial 1 (True) 
Based on the set of numbers 1 to 4, the 
average is 2.5. Claimed that the sum of three 
consecutive numbers is a ‘factor’ [multiple] 
of three. 
 

1 
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Table 33 (cont’d) 

 If the set of n consecutive 
whole numbers, then their 
average would be a whole 
number if the sum is a factor 
of n, or a decimal number if 
the sum is not a factor of n. 

Trial 2 (True) 
Based on the set of numbers 1 to 5, the total 
is 15, divisible by 5, and the average is 3.  
 
Trial 3 (True) 
Use x, x+1, x+2 to represent three 
consecutive numbers. Subtracted 3 from 
3x+3 and then divided by x to get 3. 
 
Trial 4 (True) 
For three, four or n consecutive numbers, 
either their sum is or is not a ‘factor’ 
[multiple] of three, four or n. If it is, then the 
average is a whole number, If it is not, then 
the average is a decimal number. 

1 
 
 
 
5 
 
 
 
 
1 

S6 If the set of integers are odd 
and are consecutive in order, 
then their average is a whole 
number. 

Trial 1 (True) 
Use x, x+1, x+2, …,  and so on to represent 
consecutive numbers. Calculated the total of 
three, five, seven, nine, and eleven 
consecutive numbers and verified that the 
total of each set of numbers is divisible by 
the number of the set. Hence the average is a 
whole number. 
 
Trial 2 (True) 
Deduced that the total of a set of consecutive 
numbers is in the form of ax+b, and 
observed that the constant b is a multiple of 
the coefficient of x, a. 
 
Trial 3 (True) 
Calculate the average of nine consecutive 
numbers using x, x+1, etc. and obtained 9x 
+36, which is divisible by 9. 

3 
 
 
 
 
 
 
 
2 
 
 
 
 
5 

S7 Let the total number of 
integers be an odd number 
and the integers must be 
greater than 1. If the set of 
integers are consecutive in 
order, then their average is a 
whole number. 

Trial 1 (True) 
Based on earlier proof of why the 
implication was true for odd number of 
numbers. 
 
Trial 2 (True) 
Based on the example of 1 + 2 + 3 = 6, show 
that the sum of consecutive numbers will 
produce the center number 2 after dividing 3. 
 

3 
 
 
 
 
1 
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Table 33 (cont’d) 

  Trial 3 (True) 
The last digits of all consecutive numbers are 
any digits from 0 to 9. Used examples of 71, 
72, 73 and 74, 75, 76, to show that the 
average of the last digits of the consecutive 
numbers is a whole number. 

2 

S8 If a set of three whole 
numbers are added in 
consecutive order, then their 
average is a whole number. 
 
[after prompting, thinking 
about 5 whole numbers, 
seven whole numbers]  
 
If the set add up [to] become 
an odd number, then the 
average would be a whole 
number. 
 
If the number of consecutive 
numbers is an odd number, 
then their average is a whole 
number. 

Trial 1 (True) 
Based on examples of three consecutive 
numbers. If the sum of the three numbers is 
odd, then the average is a whole number. 
 
Trial 2 (True) 
Use x+(x+1)+(x+2) =3x+3 and divide by 3 = 
x+1. 
 
Trial 3 (True) 
Use x+(x+1)+(x+2)+(x+3)+(x+4) =5x+10 
and divide by 5 = x+2.  
 
Trial 4 (True) 
Use x+(x+1)+… +(x+6) =7x+21 and divide 
by 7 = x+3. The average of the consecutive 
numbers will increase by 1 

2 
 
 
 
 
6 
 
 
 
3 
 
 
 
3 
 

S9 If the set of 3 whole numbers 
are consecutive in order, their 
average is a whole number. 
 
If the set of whole numbers 
are consecutive in order, their 
average may be a whole 
number. 
 
If there are five consecutive 
whole numbers, then the 
average is a whole number 
 
When it’s a even number, like 
two, four, six, eight 
consecutive numbers, you 
cannot get a middle number 
[for the average]. 
If an odd number of numbers 
are consecutive, then the  

 
 
 
 
 
 
 
 
 
Trial 1 (True) 
Use n, n +1 to n+4 and calculate their 
average as n +2, which is a whole number. 
 
Trial 2 (True) 
Based on earlier examples such as four 
consecutive numbers. 
 
Trial 3 (True) 
Choose random set of consecutive numbers, 
111 to 115, 10 to 14, and 11 to 17, and  

 
 
 
 
 
 
 
 
 
6 
 
 
 
3 
 
 
 
2 
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Table 33 (cont’d) 

 average is the middle 
number. 

calculate each average. Propose that average 
is the middle number of the set and the set of 
even number of consecutive numbers had no 
middle numbers. 

 

S10 If the set of 3 whole numbers 
are consecutive in order, then 
their average will be a whole 
number. 
 
[after prompting, thinking 
about 5 whole numbers, 
seven whole numbers] 
 
If the set of odd number of 
whole numbers are 
consecutive in order, then 
their average will be a whole 
number. 

Trial 1 (True) 
Based on the earlier proof using n + (n + 1) + 
(n + 2) and that n is a whole number. 
 
 
 
 
 
Trial 2 (True) 
Representing the first number as n, deduced 
that the sum of three, five and seven 
consecutive numbers starting from n are 3n + 
3, 5n + 10, and 7n + 21. Since each of the 
total is a multiple of the number of numbers, 
the average of three, five and seven 
consecutive numbers are whole numbers. 
 
Trial 3 (True) 
In the calculation of the sum of odd number 
of consecutive numbers, the total will be of 
the algebraic an + b. b, the constant in the 
total will be related to the coefficient of n, a. 

6 
 
 
 
 
 
 
 
3 
 
 
 
 
 
 
 
 
3 

S11 If the set has an odd number 
of consecutive numbers, then 
their average is a whole 
number. 

Trial 1 (True) 
Based on examples of three and four 
consecutive numbers, expressed in algebraic 
symbols. 
 
Trial 2 (True) 
Calculate the average of 1 to 11 and get 6. 
Proposed a formula “the sum of constants 
/constants = whole number” to justify the 
conclusion 
 
Trial 3 (True) 
Proposed an algebraic formula 
“(1+2+3+4+5+…+n)/n = whole number.” 
 

2 
 
 
 
2 
 
 
 
 
2 
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Table 33 (cont’d) 

S12 If the set of the whole number 
is either three numbers, 
multiples of three or odd 
numbers, [then their average 
is a whole number]. 
 
If the set consists of 3 whole 
numbers and any amount of 
odd numbers, their average is 
a whole number. 

No proof 
 
 
 
 
 
Trial 1 (True) 
Use numerical examples, 1+2+3+…, of an 
odd number of consecutive numbers to 
verify the implication. 
 
Trial 2 (True) 
Observed that the sum of 1+2+3+… is a 
multiple of the number of the set, when the 
number is odd, e. g., for three, five, seven, 
nine and eleven numbers. Based on this 
observation, concluded that the implication 
is true 
 
Trial 3 (True) 
The sum of 1+2+3+… followed a pattern 
when the numbers in the sum are odd. For 
three consecutive numbers, the total is 3 
times 2. For five numbers, the total is 5 
times 3. For seven numbers, the total would 
be 7 times 4. The multiplicand increased by 
1 as the odd number increased. The pattern 
showed that implication is true. 

 
 
 
 
 
 
1 
 
 
 
 
2 
 
 
 
 
 
2 

 
 



 

235 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 



 

236 

REFERENCES 

 

Agresti, A. (2010). Analysis of Ordinal Categorical Data (2nd ed.). New York: Wiley. 

Akritas, M. G. (1990). The Rank Transform Method in Some Two-Factor Designs. Journal of 
the American Statistical Association, 85(409), 73-78. 

Alcock, L., & Weber, K. (2005). Proof validation in real analysis: Inferring and checking 
warrants. Journal of Mathematical Behavior, 24, 125-134. 

Antonini, S., & Mariotti, M. (2008). Indirect proof: what is specific to this way of proving? 
ZDM, 40(3), 401-412. 

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from Examples: 
Instructional Principles from the Worked Examples Research. Review of Educational 
Research, 70(2), 181-214. 

Balacheff, N. (1988). Aspects of Proof in pupils' practice of school mathematics. In D. Pimm 
(Ed.), Mathematics, teachers and children (pp. 216-235). London: Hodder & Stoughton. 

Ball, D. L., & Bass, H. (2003). Making Mathematics Reasonable in School. In J. Kilpatrick, W. 
G. Martin & D. Schifter (Eds.), A research companion to principles and standards for 
school mathematics (pp. 27-44). Reston, VA: National Council of Teachers of 
Mathematics. 

Benacerraf, P., & Putnam, H. (1964). Philosophy of mathematics; selected readings. Englewood 
Cliffs, N.J.: Prentice-Hall. 

Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable 
relationship in mathematics and mathematics education. International Newsletter on the 
Teaching and Learning of Mathematical Proof, 7/8. 

Chazan, D. (1993). High School Geometry Students' justification for their views of empirical 
evidence and mathematical proofs. Educational Studies in Mathematics, 24, 359-387. 

Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive Psychology, 17, 
391-416. 

Cheng, P. W., Holyoak, K. J., Nisbett, R. E., & Oliver, L. M. (1986). Pragmatic versus syntactic 
approaches to training deductive reasoning. Cognitive Psychology(18), 293-328. 

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics 
problems by experts and novices. Cognitive Science, 5, 121-152. 

Coe, R., & Ruthven, K. (1994). Proof Practices and Constructs of Advanced Mathematics 
Students. British Educational Research Journal, 20(1), 41-53. 



 

237 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: 
Erlbaum. 

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: teaching the crafts 
of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and 
instruction (pp. 453-494). Hillsdale, NJ: Erlbaum. 

Conover, W. J., & Iman, R. L. (1981). Rank Transformations as a Bridge Between Parametric 
and Nonparametric Statistics. The American Statistician, 35(3), 124-129. 

Deer, G. W. (1969). The Effects of Teaching an Explicit Unit in Logic on Students' Ability to 
Prove Theorems in Geometry. Unpublished doctoral dissertation Florida State University. 

Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical 
considerations to a didactic perspective. Educational Studies in Mathematics, 53, 5-34. 

Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM, 40(3), 373-384. 

Epp, S. S. (1994). The Role of proof in problem solving. In A. H. Schoenfeld (Ed.), 
Mathematical Thinking and Problem Solving (pp. 257-269). Hove: Lawrence Erlbaum 
Associates. 

Epp, S. S. (2003). The Role of Logic in Teaching Proof. The American Mathematical Monthly, 
110(10), 886-899. 

Evans, J. S. B. T., & Over, D. E. (1996). Rationality and reasoning. Hove, UK: Psychology 
Press. 

Goetting, M. (1995). The college students’ understanding of mathematical proof. Unpublished 
doctoral dissertation, University of Maryland, College Park. 

Griggs, R. A., & Cox, J. R. (1982). The elusive thematic-materials effect in Wason’s selection 
task. British Journal of Psychology, 73(407-420). 

Harel, G., & Sowder, L. (1998). Students’ Proof Schemes. In A. H. Schoenfeld, J. Kaput & E. 
Dubinsky (Eds.), Research in College Mathematics Education III (pp. 234 - 283). 
Providence, R.I.: American Mathematical Society. 

Healy, L., & Hoyles, C. (2000). A Study of Proof Conceptions in Algebra. Journal for Research 
in Mathematics Education, 31(4), 396-428. 

Hilbert, T. S., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry: 
Learning from heuristic examples and how it can be supported. Learning and Instruction, 
18(1), 54-65. 

Hoyles, C., & Küchemann, D. (2002). Students' understanding of logical implication. 
Educational Studies in Mathematics, 51, 193-223. 



 

238 

Hoyles, C., & Küchemann, D. (2003). Students' understanding of logical implication. 
Educational Studies in Mathematics, 51, 193-223. 

Inglis, M., & Simpson, A. (2004). Mathematicians and the Selection Task. In M. J. Hoines & A. 
B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for 
the Psychology of Mathematics Education (Vol. 3, pp. 89-96 ). Bergen, Norway. 

Inglis, M., & Simpson, A. (2006). The role of mathematical context in evaluating conditional 
statements. In J. Novotna, H. Moraov, M. Kratka & N. Stehlikova (Eds.), Proceedings of 
the 30th International Conference on the Psychology of Mathematics Education (Vol. 3, 
pp. 337-344). Prague, Czech Republic. 

Jackson, S. L., & Griggs, R. A. (1988). Education and the selection task. Bulletin of the 
Psychonomic Society, 26, 327-330. 

Jahnke, H. (2008). Theorems that admit exceptions, including a remark on Toulmin. ZDM, 40(3), 
363-371. 

Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hove ; Hillsdale, USA: Erlbaum. 

Knuth, E. J., Choppin, J., & Bieda, K. (2009). Middle school students’ productions of 
mathematical justification. In M. Blanton, D. Stylianou & E. Knuth (Eds.), Teaching and 
learning proof across the grades: A K-16 perspective (pp. 153–212 ). NY: Routledge. 

Ko, Y.-Y., & Knuth, E. J. (2009). Undergraduate mathematics majors’ writing performance 
producing proofs and counterexamples about continuous functions. Journal of 
Mathematical Behavior, 28, 68-77. 

Lawson, A. E. (1990). Use of reasoning to a contradiction in grades three to college. Journal of 
Research in Science Teaching, 27(6), 541-551. 

Leighton, J. P. (2006). Teaching and Assessing Deductive Reasoning Skills. Journal of 
Experimental Education, 74(2), 109-136. 

Lin, F. (2005). Modeling Students' Learning on Mathematical Proof and Refutation. In H. L. 
Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 1, pp. 3-18 ). Melbourne: 
PME. 

Mason, J., & Pimm, D. (1984). Generic Examples: Seeing the General in the Particular. 
Educational Studies in Mathematics, 15(3), 277-289. 

Miyazaki, M. (2000). Levels of Proof in Lower Secondary School Mathematics. Educational 
Studies in Mathematics, 41(1), 47. 

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 
27(3), 249-266. 



 

239 

Mueller, D. J. (1975). Logic and the ability to prove theorems in geometry. Unpublished Thesis 
(Ph D ) - Florida State University, Mueller,, [Tallahassee, Fla.]. 

Mullis, I. V. S., Martin, M. O., & Foy, P. (2008). TIMSS 2007 international mathematics report: 
Findings from IEA's Trends in International Mathematics and Science Study at the fourth 
and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, 
Lynch School of Education, Boston College. 

Pedemonte, B., & Buchbinder, O. (2011). Examining the role of examples in proving processes 
through a cognitive lens: the case of triangular numbers. ZDM, 1-11. 

Platt, J. L. (1967). The Effect of the Use of Mathematical Logic in High School Geometry: An 
Experimental Study. Unpublished doctoral dissertation, Colorado State College. 

Platt, R., & Griggs, R. A. (1993). Facilitation in the abstract selection task; The effects of 
attentional and instructional factors. Quarterly Journal of Experimental Psychology-A, 
46(4), 591-613. 

Pollard, P., & Evans, J. S. B. T. (1987). On the relationship between content and context effects 
in reasoning. American Journal of Psychology, 100, 41-60. 

Quine, W. V. O. (1950). Methods of Logic. New-York.: Holt, Rinehart & Winston. 

Recio, A., & Godino, J. (2001). Institutional and personal meanings of mathematical proof. 
Educational Studies in Mathematics, 48(1), 83. 

Rissland, E. L. (1991). Example-based reasoning. In J. F. Voss & D. N. Perkins (Eds.), Informal 
reasoning and education (pp. 187-208): Hillsdale, NJ, Englandiates, Inc, 1991, xvii, 498. 

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, Fla.: Academic Press. 

Segal, J. (1999). Learning about mathematical proof: Conviction and validity. Journal of 
Mathematical Behavior, 18(2), 191-210. 

Selden, A., & Selden, J. (2003). Validations of Proofs Considered as Texts: Can Undergraduates 
Tell Whether an Argument Proves a Theorem? Journal for Research in Mathematics 
Education, 34(1), 4-36. 

Sharon, L. S. (1989). Van Hiele Levels and Achievement in Writing Geometry Proofs. Journal 
for Research in Mathematics Education, 20(3), 309-321. 

Simon, M. (2000). Reconsidering mathematical validation in the classroom. In Proceedings of 
24th Conference of the International Group for the Psychology of Mathematics 
Education (Vol. 4, pp. 161-168). Hiroshima, Japan. 

Simon, M., & Blume, G. W. (1996). Justification in the mathematics classroom: A study of 
prospective elementary teachers. The Journal of Mathematical Behavior, 15(1), 3. 



 

240 

Stenning, K., & Lambalgen, M. v. (2004). A little logic goes a long way: basing experiment on 
semantic theory in the cognitive science of conditional reasoning. Cognitive Science, 28, 
481-529. 

Stenning, K., & Monaghan, P. (2004). Strategies and Knowledge Representation. In R. J. 
Sternberg & J. P. Leighton (Eds.), The nature of reasoning (pp. 129-168). Cambridge, 
U.K. ; New York: Cambridge University Press. 

Stylianides, A. (2007). Proof and Proving in School Mathematics. Journal for Research in 
Mathematics Education, 38(3), 289-321. 

Stylianides, A., & Stylianides, G. (2009a). Proof constructions and evaluations. Educational 
Studies in Mathematics, Retrieved from 
http://www.springerlink.com/content/v2611945638x1763. doi:10.1007/s10649-009-
9191-3 

Stylianides, A., & Stylianides, G. (2009b). Proof constructions and evaluations. Educational 
Studies in Mathematics, 72(2), 237-253  

Stylianides, A., Stylianides, G., & Philippou, G. (2004). Undergraduate students' understanding 
of the contraposition equivalence rule in symbolic and verbal contexts. Educational 
Studies in Mathematics, 55(1), 133-162. 

Stylianides, A. J. (2007). Proof and Proving in School Mathematics. Journal for Research in 
Mathematics Education, 38(3), 289-321. 

Stylianides, G., & Stylianides, A. (2008). Proof in School Mathematics: Insights from 
Psychological Research into Students' Ability for Deductive Reasoning. Mathematical 
Thinking and Learning, 10(2), 103-133. 

Tarski, A. (1956). The concept of truth in formalized languages. In Tarski (Ed.), Logic, 
Semantics, Metamathematics: papers from 1923 to 1938. Oxford: Clarendon Press. 

Thompson, D. R. (1996). Learning and teaching indirect proof. The Mathematics Teacher, 89(6), 
474–482. 

van Dormolen, J. (1977). Learning to understand what giving a proof really means. Educational 
Studies in Mathematics, 8, 27-34. 

Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental 
Psychology(20), 273-281. 

Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic knowledge. 
Educational Studies in Mathematics, 48(1), 101 - 119. 

Weber, K. (2010). Mathematics Majors' Perceptions of Conviction, Validity, and Proof. 
Mathematical Thinking and Learning, 12(4), 306 - 336. 



 

241 

Weber, K., & Alcock, L. (2004). Semantic and Syntactic Proof Productions.(Author abstract). 
Educational Studies in Mathematics, 56(3), 209(226). 

Zazkis, R., & Chernoff, E. (2008). What makes a counterexample exemplary? Educational 
Studies in Mathematics, 68(3), 195-208. 

Zhu, X., & Simon, H.-A. (1987). Learning mathematics from examples and by doing. 


