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ABSTRACT 

ENVIRONMENTAL CONTROLS ON PHENOREGIONS ACROSS AN EASTERN AFRICA MEGATRANSECT 

By 

Gloria Desanker 

Semi-arid and savanna-type (SAST) systems in East Africa have unique plant species 

compositions and characteristics that make quantifying this area’s seasonality and inter-annual 

variability difficult. Phenoregion classification offers a way to use seasonality of vegetation growth 

dynamics to help understand the phenology of complex landscapes. Here, we used Normalized 

Difference Vegetation Index (NDVI) time series from the Landsat 8 imagery to map phenoregions in 

scenes centered around national parks from Mt. Kenya National Park (Kenya) to Limpopo National Park 

(Mozambique) to assess whether landscape-scale controls on phenology are consistent across the 

region or if they differ on a latitudinal gradient. We used MODIS Land Cover to assess land cover 

composition in each phenoregion, and discriminant analysis to determine the role that elevation, slope 

and aspect play in driving phenological differences. There was no clear latitudinal pattern seen in land 

cover or geologic composition. Most of the site’s phenoregions showed no unique composition of either 

of the variables, meaning that land cover or geology type did not help in differentiating phenoregions. 

The discriminant analysis showed that topography was a strong predictor of many of the phenoregions, 

however, these also did not reveal any clear latitudinal pattern. Using seasonality of the NDVI time 

series to generate phenoregions provides different and even in some cases more ecologically relevant 

information, compared to past studies that use only land cover to generate ecoregions. With a 

significant population of humans and animals that live in and depend on SAST ecosystems, it is 

important to better understand vegetation processes and the factors that affect them as climate change 

becomes an increasingly pertinent issue in dry systems. 
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1. INTRODUCTION 
 

Landscape scale vegetation seasonality reveals information about ecosystem processes and 

responses to changing environments and climates (Wang et al., 2016). As the impacts of climate change 

become increasingly indisputable, the need to identify vulnerable ecosystems has resulted in increased 

scientific research in environmental controls of vegetation dynamics (Archibald et al., 2007). Patterns in 

vegetation growth are influenced by processes involving water, energy exchanges, and land and 

atmospheric systems (Ma, 2013). The evidence found from studying the short and long-term vegetation 

dynamics across time and space confirms the effects of climate change on ecosystems (Cleland et al., 

2007). Past studies have shown correlations between rising temperatures, shifting precipitation, rising 

CO2 concentrations and other aspects of global change, to changes in timing of species and ecosystem 

level phenology, species-specific phenological shifts, and shifts in species ranges (Cleland et al., 2006; 

Dunne et al., 2011; Penuelas et al., 2004; Chuine, 2000; Chuine et al., 2001; Chuine et al., 2004). For 

many systems, small changes in temperature, precipitation and climatic patterns lead to large changes 

in the carbon cycle via changing timing and duration of leaf display (Archibald et al., 2007).  

The study of seasonal changes in plant leaf growth is known as land surface phenology, though 

‘phenology’ can also refer to other life cycle events like flowering and fruiting (Verbesselt et al., 2010). 

Ecosystem-scale phenology provides information on seasonality and inter-annual variability of 

vegetation over time and space (Bajocco et al., 2015). Other phenological measures include green-up 

(the onset photosynthetic activity), green-down or senescence (the decrease or end of photosynthetic 

activity), and peak greenness when leaf area is at its maximum (Zhang et al., 2003). Many field-based 

and remote studies have demonstrated the connectedness of phenological patterns to climatic patterns 

(e.g. Zhang et al., 2003). 

Studies have shown correlation between plant shifting phenology and climate change or 

changing weather patterns such as rising temperatures and shifting precipitation (Cleland et al., 2007; 
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Ma et al., 2013; White et al., 2009; Keenan et al., 2014). Past research has focused on climatic factors 

such as temperature and aridity (Rial et al., 2017), rainfall (Ogutu et al., 2008; Archibald et al.,2007), and 

snow melt onset date (White et al., 2009) because there is an abundance of temporal and spatial data 

for these variables. Even though climate change is a dominating factor in many cases, there is little 

research showing how geophysical factors impact observed phenology (White et al., 2005). 

Understanding ecosystem processes in geophysically heterogeneous landscapes is not only helpful for 

plant conservation, but also humans (Dahlin et al., 2016). 

Globally there are more than three billion people living in semi-arid and savanna type (SAST) 

ecosystems (Dahlin et al., 2016), which cover more than 60% of the African continent (Guan et al., 

2014). Savannas typically consist of woodland with varying mixtures of trees, shrubs and graminoids 

(Walker & Gillison, 1982). These SAST systems are also home to some of the largest populations of 

grazing animals in the world (Pimm et al., 2014). Fire disturbances due to drought and agriculture are 

common (Giglio et al., 2013). Both people and animals are reliant on SAST systems so it is important to 

understand baseline patterns of variation so you can detect change. 

SAST systems in East Africa have unique characteristics that make studying this area challenging. 

The relationship between regional rainy seasons and growing seasons across much of this region is 

driven primarily by the Intertropical Convergence Zone (ITCZ) (Jonsson & Eklundh, 2002, 2004; Guan et 

al., 2014). Northern Hemisphere Africa shows latitudinal correspondence in onset dates for rainy and 

growing season, whereas Southern Hemisphere Africa shows relatively lower correspondence and has a 

more complex weather system including east-west orient of the ITCZ (Guan et al., 2014; Ziegler et al., 

2013). In a study done by Potter et al. (2017), annual mean precipitation, mean annual temperature, and 

cloud cover amount differences are mapped across the globe. This complexity makes the spatial pattern 

of rainfall onset and offset complicated and makes savannas one of the most temporally and spatially 

dynamic global biomes (Guan et al., 2014; Ma et al., 2013). 
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This complexity likely contributes to poor performance of phenological models that perform 

well in other landscapes. Land cover or plant functional type is typically used as the main determinant of 

phenological classification. For example, the Community Land Model (CLM) groups plant functional 

types into either seasonally deciduous or stress deciduous algorithms (Dahlin et al., 2015). These models 

are used for local and global decision making that affects wildlife, ecotourism, climate change mitigation 

and more (e.g. Kay et al., 2015; Poulter et al., 2015; Reid et al., 2016; Bluwstein 2017). Carbon and 

vegetation models like the CLM are based off of coarsely derived phenoclusters for homogenous 

landscapes that experience more predictable seasonality but do not capture the seasonal variation that 

can be seen in the NDVI time series for SAST ecosystems. Other reasons that models fail to perform in 

SAST regions are because the models themselves are substantially influenced by the chosen study 

design and statistical methodologies. There is no established standard for phenological data collection 

or methodological framework for analyzing the data and there are assumptions and errors that need to 

be considered when using a model on any landscape (Parmesan, 2007). The climate in SAST regions that 

drives temporal vegetation growth would require the use of non-parametric approaches to fit a model 

(Ma et al., 2013). 

An analytical tool that has the potential to improve our understanding of SAST phenology is the 

identification of phenoregions. Phenoregions are discrete groupings in a landscape based on similarities 

in phenological cycles (White et al., 1997). The majority of land surface phenology studies focus on 

extracting critical points in the seasonal Normalized Difference Vegetation Index (NDVI) trajectory that 

correspond with, for example, peak greenness during the growing season (Verbesselt et al., 2010) or 

categorize the NDVI signals by plant functional type (Geerken, 2009). These analyses consider 

information contained in the NDVI signal but fail to take into account seasonal and interannual growth 

dynamics that can improve vegetation classification (Geerken, 2009). Phenoregions have been used to 
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show the heterogeneity of seemingly similar or consistent areas reflecting spatial and temporal 

characteristics that other methods may leave out (White et al., 2005). 

The NDVI is a commonly used metric that differentiates green vegetation from abiotic objects in 

satellite imagery (e.g. Verbesselt et al., 2010; Liu et al., 2017; Zhou et al., 2015; Braget et al., 2014). NDVI 

has been widely used to monitor and assess vegetation changes in savanna systems (e.g. Chamaille-

Jammes et al., 2006; Guan et al., 2014) as well as to study a variety of global and local scale processes 

(Tucker et al., 2005). NDVI time series can be used to bridge the gap of knowledge about savanna 

phenology in East Africa, especially with the use of high spatial resolution satellite imagery. 

Remote sensing, measuring the Earth’s surface from a distance, is the only feasible means of 

cross-scale phenology monitoring as it can be used at a local, region or global scale (Ma et al., 2013). 

Space-borne instruments like the Landsat 8 satellite collect high resolution images of the Earth’s surface 

that can be used to produce a finer scale representation of NDVI phenological patterns in SAST systems. 

Vegetation indices such as the NDVI calculated in Landsat 8 data are used in time series analyses of 

greenness patterns over multiple year time periods (see, e.g., Chen et al., 2005; Ma et al., 2013; Scrivani, 

2015). These Earth observation systems examine broader scale phenomena that allow retrievals of 

whole-system phenological metrics, such as the timing and magnitudes of greening, peak activity, and 

drying phases of the growing season (Tucker et al., 2005). When calculated at the Landsat 8 30 m x 30 m 

resolution, NDVI can accurately represent vegetation coverage and be used to understand the links 

between changing vegetation greenness and the environment. 

 The primary objective of this study is to determine which abiotic variables impact phenoregion 

patterns in SAST regions. We are also interested in the number of phenoregions per site, their land 

cover and geological composition, and any visible patterns in their NDVI time series. The following list of 

sub-objectives are used to accomplish our overarching goal:  
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1. Understand if the environmental controls, elevation, slope and aspect, explain variation 

in phenology in SAST regions. 

2. Identify phenoregions using only the NDVI signals as opposed to using land cover. 

3. Evaluate the relationship between the spatial and temporal patterns, and the 

environmental controls, and what information can be extracted from these relationships 

to inform us about SAST vegetation dynamics? 
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2. METHODS 

Study Sites 

The study sites follow a latitudinal transect along East Africa from Kenya to Mozambique (Figure 

1). This ‘megatransect’ was selected because it captures the diversity of climate, geography, topography 

and composition of SAST ecosystems in East Africa. The Landsat scenes used are completely or nearly 

completely overlapping with national parks, and for convenience we refer to the scene by the name of 

the dominant national park it contains (geographic information listed in Table 1). These scenes were 

selected because they have minimal anthropogenic disturbance on vegetation cover (conversion to 

agriculture or deforestation), relative to more populated areas. The NDVI, environmental controls, land 

cover and geology maps can be found in Appendix (Figures S1a- S1f). 
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Figure 1: Study site megatransect. Geographic Information on Study Sites. The five sites used in this 

study (red outlines) which run along a megatransect of East Africa. From south to north, Limpopo, 

Luangwa, Ruaha, Serengeti and Mt. Kenya. The inset map is mid rainy season NDVI for Serengeti. The 

background is the Google Maps (April 5, 2017). 
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Table 1: Geographic Information on Study Sites. In order of south most study site to north most study 

site. The latitude (lat) and longitude (lon) coordinates are taken from the top left corner of Landsat 8 

scenes used in study. We included environmental control ranges and the top two land cover and 

geology types found in each of the study site locations.  

Study site Mt. Kenya Serengeti Ruaha Luangwa Limpopo 

Country Kenya Tanzania Tanzania Zambia 
South Africa/ 

Mozambique 

Lat 31.6 30.85 33.66 34.6 36.75 

Lon -22.06 -11.95 -6.18 -1.85 1.06 

Landsat Path, Row 168,60 169, 62 169,65 179,69 168,76 

# scenes analyzed 64 57 56 55 59 

# phenoregions 

determined 
5 6 6 10 4 

Precipitation range 

(mm) 1 
490 to 900 500 to 1000 450 to 750 800 to 950 100 to 600 

Temperature range 

(degrees C) 2 
10.5 to 28.9 12.7 to 27.5 18 to 28 10.1 to 33.4 13 to 33 

Rainy season 3 

April to June 

and October to 

December 

June to 

October 
October to May 

December to 

February 

October to 

March 

Max elevation (m) 4 5054 3618 1915 1728 505 

Max slope (%) 4 76.69 73.24 45.65 51.61 31.24 
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Table 1 (cont’d) 

Major geologies 
5 

precambrian, 
quartenary 

igneous, tertiary 
igneous 

precambrian, 
tertiary, tertiary 

igneous 

precambrian, 
quartenary 
(undivided) 

precambrian, 
jurassic-

carboniferous, 
paleozoic-

precambrian 

mesozoic 
igneous, 

pleistocene, 
tertiary 

Land cover 
composition 6 

grassland, open 
shrubland, 

woody savannn 

woody savanna, 
croplands 

savanna, 
woody savanna 

woody savanna, 
barren ground 

savanna, 
woody 

savanna 
1 Precipitation derived from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 

for 1980 to 2009. 
2 Temperature from Hijmans et al., 2005; Hijmans et al., 2005; Mbungu et al., 2017; Hijmans et al., 2005; 

Cambula et al., 2012.  
3 Rainy season from Recha et al., 2012; Byrom et al., 2015; Yang et al., 2018;  Chabwela et al., 2017; 

Reason et al., 2005. 
4 Elevation and slope derived from the Shuttle Radar Topography Mission (SRTM). 
5 Geology derived from The Geology, Oil and Gas Map showing geology published by the U.S. Geological 

Survey in 2002 was obtained from the Atlas of Cultural and Environmental Change in Arid Africa. 
6 Land cover derived from the MODIS Land Cover Type product (2005). 

 

 Mt. Kenya, in the northernmost scene in this study, is the second tallest mountain in Africa and 

serves as a critical water source for the surrounding agricultural fields, natural areas and pastures 

(Notter et al., 2007). This area in East Africa generally has two rainy seasons from April to June and 

October to December. Across the scene, the average total annual precipitation is around 900 mm, with 

rains in the first rainy season of the year being much heavier (Recha et al., 2012). The average 

temperature is 19.2oC, with an average annual maximum of 28.9°C and minimum of 10.5°C (Hijmans et 

al., 2005). The Landsat scene includes Mt. Kenya and land just north of Kenya’s capital, Nairobi. There 

are two main highways that pass through some smaller cities and villages. Vegetation around Mt. Kenya 

is predominantly grass plains and savanna woodlands (Ogutu et al., 2008). 

 The Serengeti National Park is at the center of the Serengeti ecosystem, with elevation ranging 

from 1140 m to 2000 m (Byrom et al., 2015).  The dry season occurs from June to October when 

precipitation is around 50 mm; the wet season is from November to May when precipitation is around 

1200 mm (Byrom et al., 2015). The annual average precipitation in the southern Serengeti is around 500 
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mm and around 1,000 mm in the northern portion (Morrison et al., 2016). Temperatures range from 

12.7 to 27.5oC with an annual average of 20.4oC across the scene (Hijmans et al., 2005). Serengeti 

National Park is composed of grasslands, savanna, woodlands and dense woodland/forest (Byrom et al., 

2015). The Landsat scene falls just under the northern border of Tanzania, includes Lake Natron, Lake 

Manyara and Lake Eyasi, and a highway cutting east-west. 

 Ruaha is the largest national park in Tanzania and the Great Ruaha River is the only source of 

water for wildlife during the dry season (Yang et al., 2018). Ruaha National Park experiences its dry 

season from June to September and wet season from October to May. In the past few decades, 

decreased streamflow and an increasing number of days with “zero-flow” during the dry season have 

been observed and is a threat to biodiversity in the park (Yang et al., 2018). Ruaha receives an average 

of 450 to 750 mm of rainfall per rainy season (Kangalawe et al., 2011).  The Landsat scene includes the 

majority of the national park, including the adjacent game reserves. The eastern half of Ruaha National 

Park is dominated by miombo woodland, while the western half is dominated by Acacia, Commiphora, 

and Combretum species (Barnes 1983). The average annual precipitation is around 685 mm (Hijmans et 

al., 2005). The mean annual temperature in the scene ranges from 18oC at higher altitudes to 28oC 

(Mbungu et al., 2017). Elevation ranges from 698 m to over 2300 m (Mbungu et al., 2017) 

South Luangwa is one of the three national parks in the Luangwa River Valley. South Luangwa is 

primarily comprised of a mixture of Miombo woodlands and Mopane woodlands, corresponding to 

changes in topographic position (Astle, 1969). Mean annual precipitation is around 800 mm with peak 

rainfall in the summer months of December through February (Chabwela et al., 2017). The average 

annual precipitation is 950 mm and the average temperatures range from 10.1 to 33.4oC (Hijmans et al., 

2005). The Landsat scene also includes surrounding reserves and parks that are mostly a mix of 

seasonally inundated wetlands and agriculture. The Luangwa River runs through the scene and South 

Luangwa National Park. 
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Limpopo National Park forms part of the trans-frontier park with South Africa, Zimbabwe and 

Mozambique (Cambule et al., 2014; Cambula et al. 2012). The Landsat scene also includes Banhine 

National Park, Mozambique and some of South Gonarezhou National Park, Zimbabwe. There are a few 

major highways that criss-cross across the scene, but it is mostly conserved land. Altitudes in Limpopo 

range from 50 m to 500 m above sea level (Stalmans et al. 2004). The mean annual precipitation is 

around 400 mm and ranges from 100 to 600 mm during the rainy season (van Vegten et al., 1983). Rainy 

season for Limpopo occurs from October to March (Reason et al., 2005). The mean maximum 

temperature is around 33oC and minimum temperature is 13oC, with peak rainfall from October to 

March (Cambula et al. 2012). Limpopo is composed of floodplains, mixed woodlands, and shrublands, 

with some villages practicing low-impact farming (Cambula et al. 2012). 

Analysis Workflow 

Phenoregion classification considers the variability within different phenology types. This is 

especially important for SAST regions which consist of mixed landscapes and varying vegetation growth. 

In this study, we use imagery from Landsat 8 to analyze regional scale vegetation on a North-South 

gradient to capture the diversity of SAST regions across East Africa. NDVI time series from the Landsat 8 

imagery are used to identify and map phenoregions in these study sites. The phenoregions are 

compared to land cover and geology maps to assess differences in vegetation composition. Multivariate 

statistics are used to determine which topographically derived environmental controls contribute to 

these distinct classes of phenology. Results are compared across the five study sites to assess whether 

landscape-scale controls on phenology are consistent across the region or if they differ along latitudinal 

gradient. 

The objectives of this study were to map phenoregions in each Landsat scene, compare these 

phenoregions to an existing map of land cover, then ask which abiotic gradients contribute to the 
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phenoregion patterns. Figure 2 shows the process used to define and analyze each site’s phenoregions. 

The initial raw inputs are the Landsat 8 NDVI satellite imagery, Shuttle Radar Topography Mission 

(SRTM) Digital Elevation Model (DEM) (Farr et al. 2007) imagery and The Geology, Oil and Gas Map 

showing geology published by the U.S. Geological Survey in 2002. Statistical analyses were conducted on 

gap-filled NDVI time series and included Principal Component Analysis (PCA), K-means clustering, and 

Discriminant Analysis (DA). Outputs from the statistical methods are phenoregion NDVI profiles, 

phenoregion maps, and inference about the impact of environmental controls on phenology. 

Subsequent sections detail data and methods applied within each of the steps illustrated in Figure 2.  

 

 
 

Figure 2: Phenoregion analysis flow chart. Flow chart showing the process used to define and analyze 

phenoregions for each site. The initial inputs are Landsat 8 NDVI, SRTM DEM imagery, and geology. 

Three environmental controls, aspect, slope, and elevation, are extracted from the SRTM DEM. We used  

Principal Components Analysis (PCA) to reduce the dimension of the gap-filled NDVI time series prior to 

applying a K-means clustering algorithm to identify phenoregions. Inference about the association 

between environmental controls and the phoregion clusters was then assessed via Discriminant Analysis 

(DA), dimension reduced phenoregion NDVI profiles, and map-based visualization.  
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Satellite Imagery 

Open source Landsat data provided by USGS/EROS (Wulder et al., 2012) is utilized globally to 

map small- and large-scale terrestrial ecosystem dynamics. Since remotely sensed data started being 

used to understand ecosystems over 40 years ago, the technology and its applications have drastically 

changed. Remote sensing techniques have improved the way data collection is performed. Traditionally 

data is collected manually in the field, which is time and resource consuming. Now, open source satellite 

imagery is available to the public, as well as GIS methodologies that provide simple and time effective 

solutions for data analytics (Mosleh et al., 2016). Satellite imagery is available at multiple spatial and 

temporal resolutions. Many previous studies in SAST regions use MODIS, which has a minimum spatial 

resolution of 250 m, or other coarse resolution remotely sensed data (e.g., Guan et al., 2014). Climate 

and phenology are highly variable in SAST regions, so the higher spatial resolution of Landsat images 

(relative to MODIS) should more accurately capture regional ecosystem changes.  

Google Earth Engine 

 Google Earth Engine (GEE) is a GIS tool that performs large scale environmental data driven 

analysis (Gorelick et al., 2017). GEE is unique because it provides a suite of highly efficient geospatial 

data processing algorithms (and facilities for using user-defined algorithms) able to run on massive 

cloud-based remote sensing datasets such as Landsat time series.  This open source tool is helpful for 

large scale analysis and processing such as done in this study. GEE makes calculating indices and 

downloading the resulting image data products quick and efficient. After calculating NDVI for around 60 

Landsat 8 images, we downloaded them from GEE for each study site (see Table 1 for exact number for 

each site). Elevation, slope, and aspect were calculated from the SRTM DEM images and downloaded for 

each site.  
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Also, in GEE, we calculated NDVI for each of the Landsat 8 images that were available at the 

time of download for a 3 to 4 year period. We used a mask based on the C Function of Mask (CFMask) 

algorithm that uses decision trees to estimate pixels that contain snow, clouds or cloud shadows (Foga 

et al., 2017). Slope and aspect were calculated using SRTM 30 m images. Given that aspect was 

computed in degrees (i.e., aspect of 0° and 360° are non-unique) the sine of aspect was calculated and 

used in the subsequent analysis (Burkhart et al., 2012; Coulston et al., 2013; Kröber et al., 2012). We 

then exported the 300+ images out of GEE and further processing and analysis was done in R version 

3.4.1 (R Core Team, 2018) using the packages ‘raster’ (Hijmans, 2017), ‘sp’ (Pebesma et al., 2005; Roger 

et al., 2013), ‘stats’ (R Core Team, 2017), ‘dplyr’ (Wickham et al., 2017), ‘knitr’ (Xie, 2018; Xie, 2015; Xie, 

2014), ‘rgdal’ (Bivand et al., 2018), and ‘data.table’ (Dowle & Srinivasan, 2018). Additional packages for 

each method are listed in corresponding sections. 

Gapfilling 

 Satellite imagery has many benefits for landscape scale geospatial analysis’ but also comes with 

some caveats. Satellite sensors detect reflected wavelengths of light from the Earth’s surface, but 

atmospheric interference, like clouds, can cause incorrect measurements or gaps in observations of 

NDVI (Jonsson & Eklundh, 2002). Many different approaches have been developed for addressing and 

overcoming flaws in data, for example geospatial curve fitting or smoothing methods have been used for 

phenological time series (Filippa et al., 2016, Zhang et al., 2003, Beck et al., 2006, Gu et al., 2009).  

In this study, we used the ‘greenbrown’ R package to linearly interpolate missing values in the 

NDVI time series (Forkel et al., 2015). Greenbrown has been used to gap fill pixels of snow, water and 

cloud in NDVI data and phenological studies such as Forkel et al., 2013 and 2015, and Filippa et al., 2016. 

Here we used greenbrown to fill masked pixels in the NDVI images. There are still some permanent gaps 

in the Landsat scenes of pixels that did not fit the criteria for the interpolation chosen; the gapfilling 
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linear interpolation only worked for pixels that had an NDVI value for the first and last date in the time 

series. As a result, we had to vary the end dates for each scene to use the most cloud free ones 

available, leading to slight differences in the overall number of images used per site (Table 1). 

Principal Component Analysis 

 Principal Component Analysis (PCA) is one of the most commonly used data reduction 

techniques in spatial analysis (Parveen et al., 2016), and commonly applied to high-dimensional 

remotely sensed data, including phenology data (Potter et al., 2017; Parveen et al., 2016; Verbesselt et 

al., 2010; Liu et al., 2017). PCA is a linear transformation that reduces the dimensionality of a dataset by 

extracting the most important information into Principal Components (PC) (Parveen et al., 2016; Jolliffe 

2002; MacGarigal et al. 2000).  

 In this study, we used PCA to reduce the amount of information in the NDVI time series that 

was inputted in the K-means algorithm. For each site, a stack of ~60 rasters with upwards of 30 million 

pixels per layer is a very large dataset that is slow to work with, so reducing the data size ensured that 

the rest of the analysis was feasible. To prepare the data for PCA, the NDVI rasters for the three years 

were stacked and converted to the necessary format, accomplished mostly through using the ‘raster’, 

‘readr’ and ‘dplyr’ packages. A scree plot of the PCs against the percent variance explained was used to 

help select the PC subset size (i.e., number of PCs to retain). It was decided to use a cut off of 90% 

variance explained to select the number of PCs that would enter the K-means clustering algorithm.  

Determining Number of Clusters 

 The number of clusters used in the K-means clustering algorithm determines the number of 

phenoregions for each study site. There are many unsupervised statistical methods that have been used 

to determine an “ideal” number of clusters, such as Bayesian statistics (Senthilnath et al., 2017) and the 
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Hierarchical method (Corstanje et al. 2016; Grafius et al., 2018; Chen et al., 2005). The elbow and 

silhouette methods (Scharsich et al., 2017; Rial et al., 2017; Subbalakshmi et al., 2015; Wang et al., 2017; 

Wang et al., 2017; Pascucci et al., 2018) were used in this study and chosen because of their ease of 

interpretation and reasonable processing time. 

 The elbow method considers within group sum of squares against possible number of clusters, 

and an ideal number of clusters is visually selected from a resulting “elbow” plot. This method calculates 

the sum of squares (SS) or within cluster dissimilarities for each cluster centroid, which decreases as 

number of centroids increases (Scharsich et al., 2017). SS is largest between dissimilar clusters and 

smaller between similar clusters. The optimal number of clusters corresponds to where SS is minimum, 

which creates an “elbow” on the resulting plot creates an elbow (Rial et al., 2017). The ‘gclus’ (Hurley, 

2012) packages were used to perform the elbow method. 

The silhouette method provides a graphical representation of how well observations belong to 

“natural” clusters in the data (Subbalakshmi et al., 2015). This method calculates the difference between 

the minimum Euclidean distance between cluster centroid and observation, and the average distance 

within the cluster (Wang et al., 2017). A hierarchical and nested clustering tree is constructed by 

calculating the similarity between the different clusters (Wang et al., 2017). An overall clustering quality 

is given between 1 and -1, good clustering and poor clustering solutions, respectively (Subbalakshmi et 

al., 2015). The clustering quality is based on similarity (shorter Euclidean distances between observation 

and cluster centroid) and dissimilarity (larger nearest neighbor distances between clusters) (Pascucci et 

al., 2018). The ‘fpc’ (Hennig, 2018) package was used to perform the silhouette method. 

Our goal was to use the clustering method to delineate meaningful and practical phenoregions.  

Some of these methods returned a very large number of clusters so we followed the process outlined in 

White et al., (2005) to reduce the number of clusters. The following clusters were removed: clusters that 
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had 100 pixels or fewer, and cluster categories with the highest percentage of non-natural land cover 

such as agriculture or urban area. 

In the case of Serengeti, there were some data processing errors with the gapfilling that needs 

to be addressed. There were many unreasonably high NDVI values for Serengeti (potentially due to 

processing errors) which were clustered into the same phenoregion. The NDVI values in this 

phenoregion were not replaced because of the magnitude of pixels that would need to have been 

replaced before gapfilling; rather, the resulting cluster was simply removed from the analysis. 

K-means Clustering 

 We used a clustering algorithm to delineate phenoregions based on phenological patterns (Mills 

et al., 2011). K-means partitions observations into intra-similar clusters while maximizing inter-cluster 

dissimilarity (Tzortzis et al., 2014).  Centroids are established randomly, and the Euclidean distance is 

found from the centroids to each observation; all observations are assigned to the cluster centroid it is 

closest to (Hoffman et al., 2008). New centroids are calculated for each iteration and continues until the 

number of observations that change cluster assignment converges (Hoffman et al., 2008). 

The simplicity and efficiency of the K-means clustering algorithm has resulted in its application 

across many disciplines (Bradley & Bradley, 1998; Pascucci et al., 2018; Kumar et al., 2011; Mills et al., 

2011; Wang et al., 2017; Hoffman et al., 2008; Senthilnath et al., 2017). Because K-means is independent 

of location, the algorithm can categorize pixels in a Landsat scene that are not spatially close but belong 

to the same phenoregion (Kumar et al., 2011). K-means requires a user defined number of clusters to be 

specified (Tzortzis et al., 2014). Exhaustively searching for an optimal number of clusters is 

computationally infeasible with large datasets, so to avoid arbitrary specification of cluster number we 

used a few statistical based selection methods detailed in the subsequent section. The ‘clusterR’ 

package was used to perform the K-means clustering algorithm. 
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Geology 

The Geology, Oil and Gas Map showing geology published by the U.S. Geological Survey in 2002 

was obtained from the Atlas of Cultural and Environmental Change in Arid Africa (available for download 

at http://www.uni-koeln.de/sfb389/e/e1/e1_download_e.htm#geology). The shapefile of geological 

classes was rasterized in ArcMap 10.4 (ESRI, Redlands, California, USA) at 30 m resolution and stacked 

bar plots were made to visualize the geological composition of each phenoregion. Since SAST regions are 

subject to irregular weather regimes, the ability of the geological strata to retain water plays a role in 

vegetation growth (Rodriguez-Moreno et al., 2015). For plants with short roots such as grasses, soil 

moisture can be the only source of water outside of the rainy season, whereas larger plants like trees 

can access groundwater (Rodriguez-Moreno et al., 2015). The hydrogeological heterogeneity of a 

landscape affects the movement or storage of water belowground, which affects the distribution of 

vegetation on the surface (Maxwell, 2010).  

Landcover 

 The MODIS Land Cover Type product (2005) at a resolution of 500m was downloaded from GEE 

which classified 17 global vegetation classification types by the International Geosphere Biosphere 

Programme (IGBP) (Friedl et al., 2015). The MODIS image was resampled in ArcMap to a spatial 

resolution of 30 m and stacked bar plots were made to visualize the land cover composition of each 

phenoregion. 

Discriminant Analysis 

 The general climate across each of the Landsat scenes is relatively constant due to the scenes’ 

small size relative to large scale climate patterns like the ITCZ. As such, many discernible variations in 

NDVI time series within a scene will likely be due to local environmental factors like topography and 

http://www.uni-koeln.de/sfb389/e/e1/e1_download_e.htm#geology
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geology. NDVI profiles from each of the sites should have the same overall shape due to similarities in 

seasonality, but differ within a season. We expected that environmental factors, elevation, slope and 

sine(aspect) will influence NDVI seasonal profiles, but we also sought to understand which of these 

drivers has the greatest influence. 

 We used discriminant analysis (DA) to better understand how environmental drivers influence 

on the interannual variation among phenoregions. DA is a commonly used statistical method that tests 

the ability of variables to discriminate among group membership and then explain differences among 

the groups (Chambers et al., 2014; Hoagland et al., 2018; MacGarigal et al., 2000). The predictor 

variables: elevation, slope and sine(aspect) are evaluated for their ability to inform phenoregion 

classification of NDVI. A set of training samples were generated from the phenoregion assignment and 

predictor variables to determine probability of a pixel belonging to one of the phenoregion 

classifications (Jakubauskas et al., 2003).  

The training sample was also used to measure accuracy of the DA model. Cohen’s Kappa statistic 

(Kappa) and the overall accuracy were calculated for each combination of predictor variables in the DA 

models. Kappa is a measure of ‘change-corrected classification’ that represents the ratio of correctly 

classified observations to the total number of observations (MacGarigal et al., 2000). A Kappa of zero 

indicates no correct classifications of observations and a kappa of one indicates all observations are 

correctly classified (MacGarigal et al., 2000). The ‘MASS’ (Venables & Ripley, 2002) package was used to 

perform the DA. 

 Although geology influences NDVI seasonal profiles, this variable does not work with DA 

because this analysis uses linear combinations of the predictor variables to maximize the difference 

among group membership (MacGarigal et al., 2000). Geology is a categorical variable and a linear 

combination of categorical variables is not possible because there is no logical ordering of geological 
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values. Instead, stacked bar plots were made to visualize the geologic composition of each phenoregion, 

similar to land cover. 

Phenoregions 

 Phenologically and climatically self-similar clusters can be used to monitor climate change 

impacts (White et al., 2005). Clusters are pixels in a scene that have a distinguishable similar seasonal 

NDVI signal and therefore share similar vegetation phenology (White et al., 2005). Termed 

phenoregions, these can provide a basis for effectively classifying areas with high heterogeneity and 

phenological variability. Phenoregions is a relatively new concept that has been used to create a global 

(White et al., 2005) and national (Kumar et al., 2011) ecosystem classification scheme. 

 In this study, we expect the phenoregions to represent the different plant functional types in 

each study site. Overall, we expect to see the same general trend in the NDVI time series representing 

the growing seasons. Landcover, geology and the environmental controls should be main drivers of 

phenoregion classification since these environmental factors influence vegetation growth and 

distribution. Study sites with higher land cover heterogeneity are expected to have more phenoregions 

(White et al., 2005). Interannual variability within a growing season is what differentiates a 

phenoregion’s profile from others. 

Mapping Phenoregions and Landcover 

Once maps of phenoregion clusters were developed, we intersected them with the MODIS land 

cover classification to assess cluster land cover type composition. The MODIS land cover rasters were 

resampled from 500m x 500m to match that of the Landsat derived 30m x 30m phenoregion product in 

QGIS (Development Team, 2017) . In R, an empty raster of the same resolution and extent as the 

phenoregion raster was used to extract values from the land cover raster so that pixel values matched 
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up. Once resampled, the count of each land cover type was calculated for each phenoregion. Due to 

cloud cover in many of the scenes, even with gapfilling we were unable to produce wall-to-wall 

phenoregion maps. As a result, we present the land cover composition as a percentage of each 

phenoregion, and we do not report the overall area of each phenoregion class in each scene. 
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3. RESULTS 

 

 Geospatial and temporal analysis were conducted using PCA to reduce the NDVI time series 

dimensionality. Given the time series principal components, K-means algorithm assigned pixels to 

phenoregions. The Elbow and Silhouette methods were used to determine the number of phenoregions. 

Phenoregion assignment for each pixel in the scene was mapped. Given pixel assignments, DA was 

applied to determine the extent to which environmental controls explained variation among 

phenoregions. 

Phenoregion Numbers and Composition 

 Numbers of phenoregions in each site varied from a low of 4 at the Limpopo site to a high of 10 

at the Luangwa site (Table 1). Phenoregions at each site varied in composition to different extents. For 

example, the woody savanna land cover type was found in all four phenoregions in the Limpopo, 

whereas for Mt. Kenya, the same land cover type was found in at most two of the phenoregions (Figure 

3).  

The six phenoregions in Ruaha are composed of croplands, woody savannas, cropland/natural 

vegetation mosaic and are late season. Phenoregion composition for Serengeti and Mt. Kenya are more 

heterogeneous than the other sites. Serengeti phenoregions are composed of either savanna, 

cropland/natural vegetation mosaic, woody savannas and grasslands, though to varying extents. 

Whereas the phenoregions for Mt. Kenya vary in composition and percentage of land cover type.  

Land cover composition was very similar for Limpopo, Luangwa and Ruaha.  The phenoregions 

were mostly composed of woody savanna which makes up at least 50% of the mapped area in each of 

these three sites (Figure 3). The remaining land cover types made up less than 10% of a phenoregion’s 

composition. Phenoregions in Mt. Kenya are mostly comprised urban built-up area, grasslands, barren 
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or sparsely vegetated land, and open shrubland cover classes. Among these phenoregions, the 

percentage varies from around 5% to 60%. Mt. Kenya phenoregions are composed of grasslands, 

cropland/natural vegetation mosaic, savannas and woody savannas. 
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a)

 

b)

 

c)

 

d)

 

Figure 3: Land cover stacked bar plots. Stacked bar plots of percent land cover type for each study site’s 

phenoregions. a) Mt. Kenya, b) Serengeti, c) Ruaha, d) Luangwa and e) Limpopo. 
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Figure 3 (cont’d) 

e)

 

f)

 
 

 

a)

 

b)

 

Figure 4: Geology stacked bar plots. Stacked bar plots of percent geology type for each study site’s 

phenoregions. a) Mt. Kenya, b) Serengeti, c) Ruaha, d) Luangwa and e) Limpopo. 
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Figure 4 (cont’d) 

c)

 

d)

 
e)

 

f) 

 
 

 

Geology composition for Ruaha and Limpopo are relatively homogeneous (Figure 4). There are only two 

geologic types in the Ruaha scene and three of the six phenoregions are all or mostly Precambrian. 

Phenoregions four through six have around 18 to 45% Holocene. Limpopo is composed of mostly 

Pleistocene and varying amounts of Tertiary, Mesozoic Igneous, Holocene and Cretaeous. Phenoregion 2 

is about 5% Precambrian. Geologic composition is more heterogeneous for Mt. Kenya, Serengeti and 
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Luangwa. Mt. Kenya has only three geology types whose compositions vary across phenoregions. Most 

of Serengeti’s phenoregions have a large composition of Precambrian geology with varying amounts of 

Tertiary Igneous, Quartenary Igneous, Holocene and Tertiary. Similarly, in Luangwa, most of the 

phenoregions were composed of Precambrian and Jurassic Carboniferous and varying amounts of 

Kimberlites, Permian Carboniferous and Holocene. 

Spatial Trends 

 The number of phenoregions per study site ranged from 4 to 10, Luangwa National Park having 

the most and Limpopo National Park having the least. Phenoregion assignment for each site can be seen 

in Figure 5.  
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a)

 

b)

 

c)

 

d)

 

e)

 

 

 

Figure 5: Phenoregion maps. Phenoregion maps for each study site derived from the clustered Landsat 8 

NDVI time series. a) Mt. Kenya has 5 phenoregions, b) Serengeti has 7 phenoregions, c) Ruaha has 6 

phenoregions, d) Luangwa has 10 phenoregions and e) Limpopo has 4 phenoregions. 
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Temporal Trends 

 Average NDVI profiles for Limpopo National Park indicate that phenoregions 1, 3 and 4 had the 

highest values across the time period (Figure 6e). Whereas the average NDVI profile for phenoregion 2 is 

always below the three others. This phenoregion has a slightly higher composition of open shrublands 

than the others. All four phenoregions reach maximum NDVI during the same month that precipitation 

is at maximum. Interannual variation can be seen in the phenoregions after the first peak in NDVI and 

precipitation between January and April 2015. As NDVI drops, another peak NDVI value is reached 

before decreasing during the dry season. Phenoregions 1 and 4 show more variation between July 2015 

and January 2016, just before the next peak in NDVI.  

Phenoregions in Serengeti also showed some interannual variation, though not as strongly. 

Between July and October 2014, average NDVI values for phenoregions 1, 3, 5, and 7 do not increase at 

the same rate. Phenorgion 2 does not follow the same pattern as the rest of the phenoregions in 

Serengeti. It experiences a peak in NDVI a month or two before the rest, then dips when the others 

increase. Phenoregion 2 also starts increasing and reaches a peak about four months before the rest. 

Phenoregions in Ruaha, Luangwa and Mt. Kenya have relatively smooth average NDVI profiles 

with subtle distinctions between the phenoregion patterns. Mt. Kenya’s phenoregions are very similar in 

pattern but not in value; phenoregion 4 having the highest values of NDVI and phenoregion 2 having the 

lowest. The phenoregions in Ruaha have the same or very similar average NDVI values across the three 

years. There is a slight bump in NDVI between November and December 2014 and then the six profiles 

split and increase at different rates after August 2016. The average NDVI values for Luangwa’s 

phenoregions are also very similar but a little more spread out. They all reach their maximum average 

NDVI about a month after maximum precipitation. Phenoregions 3 and 8 do not decrease in NDVI as far 

as the rest, and phenregion 6 does not reach the same peak NDVI as the others. 
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Each phenoregion is also classified as either early or late season, specifying when in the rainy 

season NDVI peaks or starts to first increase (Figure 3). Mt. Kenya phenoregions are all early season 

though their land cover compositions are relatively heterogeneous. Serengeti has one late season 

phenoregion which is composed of grasslands and cropland/natural mosaic vegetation type. Whereas 

the other phenoregions are composed mostly of grasslands and woody savanna. Ruaha phenoregions 

are all late season with homogeneous land cover compositions. Luangwa has two early season 

phenoregions though they have the same land cover composition as the late season phenoregions. The 

one late season phenoregion in Limpopo is composed more of closed/open shrublands, woody savanna 

and mixed forest. Whereas the early season phenoregions are composed of open shrublands, woody 

savanna and mixed forest. 

Figure 6 shows the average NDVI profiles for each phenoregion. All phenoregions’ profiles have 

the same green up and green down pattern, and interannual variability can be seen for Mt. Kenya’s, 

Serengeti’s and Limpopo’s profiles. Phenoregions in Ruaha and Luangwa have relatively smooth and 

similar profiles. Ruaha’s profiles fall on top of each other for most of the three years. Luangwa’s profiles 

differ a little more than Ruaha’s but are still very similar. 
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Figure 6: Average NDVI time series. Landsat 8 NDVI time series for phenoregions in each site (solid 

colored lines) and annual site precipitation (mm) (dotted line); a) Kenya National Park, b) Serengeti 

National Park, c) Ruaha National Park, d) Luangwa National Park, e) Limpopo National Park. 
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Discriminant Analysis 

 In this study, we used DA to determine how well environmental controls explain variability 

among pheoregions. The coefficients of linear discriminants (LD) represent the ability of an 

environmental control to discriminate; the magnitude of the LD represents the size of the effect and the 

sign of the LD shows you the direction of the effect. In this study, we are interested in the size of the 

effect which tells us how an environmental control ranks relative to the others. Table 2 shows the Kappa 

and overall accuracy of the DA using all combinations of predictor values in the model. High Kappa and 

overall accuracy values indicate higher accuracy or more correctly classified pixels.  ‘klaR’ (Weihs et al., 

2005) and ‘greenbrown’ were used to calculate Kappa and the overall accuracy. The magnitude of Kappa 

and overall accuracy represent the size of effect for each environmental control across the seven model 

combinations. 
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Table 2: Kappa and Overall Accuracy. Linear discriminant analysis accuracy results. Kappa statistic and 

overall accuracy are used to evaluate discriminant analysis performance.  

 
Predictor 
variables 

Kappa 
Overall 

Accuracy 

Mt. Kenya 
Elevation 0.1874237 0.3880505 

Slope 0.06143426 0.3118948 

Sine(aspect) 0.00 0.2790556 

Elevation, 
slope 

0.2509996 0.4280711 

Elevation, 
sine(aspect) 

0.2067745 0.397117 

Slope, 
sine(aspect) 

0.06744764 0.312914 

Elevation, 
slope, 

sine(aspect) 
0.2605014 0.4334669 

Serengeti 
Elevation -0.04334203 0.4499683 

Slope 0 0.4783009 

Sine(aspect) 0 0.4783009 
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Table 2 (cont’d) 

 
Elevation, 

slope 
0 0.4783009 

Elevation, 
sine(aspect) 

-0.02968986 0.4589568 

Slope, 
sine(aspect) 

0 0.4783009 

Elevation, 
slope, 

sine(aspect) 
-0.0154618 0.4682615 

Ruaha 
Elevation 0.4688608 0.6241138 

Slope 0 0.4002127 

Sine(aspect) 0 0.4002127 

Elevation, 
slope 

0.4620553 0.6191012 

Elevation, 
sine(aspect) 

0.4683218 0.6236376 

Slope, 
sine(aspect) 

0 0.4002127 

Elevation, 
slope, 

sine(aspect) 
0.4616824 0.6188615 

Luangwa 
Elevation 0.1507137 0.2573611 
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Table 2 (cont’d) 

 
Slope 0.01659345 0.156719 

Sine(aspect) 0.1298471 0.2381282 

Elevation, 
slope 

0.143551 0.2514325 

Elevation, 
sine(aspect) 

0.2307524 0.3258883 

Slope, 
sine(aspect) 

0.1564591 0.2685392 

Elevation, 
slope, 

sine(aspect) 
0.2307858 0.3263145 

Limpopo 
Elevation 0.1719816 0.4012388 

Slope 0.001396537 0.2949705 

Sine(aspect) 7.871149e-17 0.2947516 

Elevation, 
slope 

0.178772 0.4064999 

Elevation, 
sine(aspect) 

0.1724915 0.4029027 

Slope, 
sine(aspect) 

0.00174670 0.2950897 
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Table 2 (cont’d) 

 Elevation, 
slope, 

sine(aspect) 
0.1768206 0.4054055 

 

 

 

Figure 7: Box and whisker plots. Box and whisker plots showing variability of environmental controls in 

each phenoregion. The ends of the box are the upper and lower quartiles and the ends of the 

whiskers/points show the maximum and minimum observations. The horizontal line in the boxes 

represents the mean. The box and whisker colors correspond to phenoregion colors used in Figure 5. 

 

Figure 7 and Table 3 show the ranges of elevation, slope and sine(aspect) for each phenoregion. 

We can see a lot more variability in elevation for each phenoregion in Mt. Kenya, Serengeti, Ruaha and 
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Luangwa. Slope is more variable for Serengeti and Luangwa. Aspect is most variable for Serengeti, Ruaha 

and Limpopo. 

 

Table 3: Whisker Box Plot Summary. This table summarizes the box plots in Figure 7 and phenoregion 

characteristics. We use low, medium or high to describe elevation and slope relative to other 

phenoregions in a site. We use the direction that the slope is facing for aspect. And we list the top two 

land cover and geology types and the phenoregion’s seasonality. 

  Phenoregion Elevation Slope Aspect Land cover Geology Season 

Mt. 

Kenya 

1  low medium   southeast grassland, 

open 

shrubland  

Holocene, 

precambrian  

 early 

2  low  medium   southeast grassland, 

cropland  

 Holocene, 

precambrian  

early  

3  medium  high   southeast woody 

savanna, 

cropland 

Holocene, 

precambrian  

 early  

4  medium  medium   southeast  grassland, 

cropland 

 Tertiary 

igneous, 

precambrian 

 early  

5  high  low   southeast  open 

shrubland, 

grassland 

 Precambrian, 

holocene 

 early  

Serengeti 1 low medium medium croplands, 

woody 

savannas 

Precambrian, 

tertiary 

igneous   

 early 

 2 low low low croplands, 

woody 

savannas 

Precambrian, 

quartenary 

igneous  

 early 

 3 medium medium medium croplands, 

woody 

savannas 

 Precambrian, 

paleozoic 

precambrian 

 late 
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Table 3 (cont’d) 

 4 high high high croplands, 

woody 

savannas 

  Quartenary 

igneous, 

paleozoic 

precambrian 

 early 

 5 low low low croplands, 

woody 

savannas 

 Precambrian, 

tertiary 

igneous  

 early 

 6 low low low croplands, 

woody 

savannas 

 Precambrian, 

paleozoic 

precambrian  

 early 

Ruaha 1  high  low  north savanna, 

woody 

savanna  

Precambrian    late 

 2  high  low  north  savanna, 

woody 

savanna   

 Precambrian   late 

 3  low  high east savanna, 

woody 

savanna  

 Precambrian, 

holocene 

 late 

 4  low  high west   savanna, 

woody 

savanna  

 Precambrian, 

holocene 

 late 

 5  medium  medium  southeast savanna, 

woody 

savanna  

 Precambrian, 

holocene 

 late 

 6  medium  medium west  savanna, 

woody 

savanna  

 Precambrian, 

holocene 

 late 

Luangwa 1  low  low  southeast  woody 

savanna, 

barren 

 Jurassic 

carniferous, 

precambrian 

 late 

 2  medium  medium south  woody 

savanna, 

barren 

  Precambrian, 

jurassic 

carniferous 

 late 
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Table 3 (cont’d) 

 3  low  medium  south  woody 

savanna, 

barren 

  Jurassic 

carniferous, 

precambrian 

 late 

 4  low  low  south  woody 

savanna, 

barren 

  Jurassic 

carniferous, 

precambrian 

 early  

 5  low  low  south  woody 

savanna, 

barren 

  Jurassic 

carniferous, 

precambrian 

 late 

 6  medium  low  southeast  woody 

savanna, 

barren 

 Jurassic 

carniferous, 

precambrian  

 late 

 7  medium  high south  woody 

savanna, 

barren 

Precambrian, 

jurassic 

carniferous 

 late 

 8  high 

 

 medium  south  barren, 

savanna 

Precambrian, 

jurassic 

carniferous 

 early  

 9  low medium  south  woody 

savanna, 

barren 

Precambrian, 

jurassic 

carniferous 

 late 

 10  low  low  southeast  woody 

savanna, 

barren 

  Jurassic 

carniferous, 

precambrian 

 late 

Limpopo 1 medium  high  medium  savanna, 

woody 

savanna  

Pleistocene, 

tertiary  

early   

 2  high  medium  low  savanna, 

woody 

savanna  

Pleistocene, 

mesozoic igneous  

 late 

 3  low  medium  high  savanna, 

woody 

savanna  

 Pleistocene, 

tertiary 

 early  
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Table 3 (cont’d) 

 4  high  low  low  savanna, 

woody 

savanna  

 Pleistocene, 

tertiary 

 early  
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4. DISCUSSION 

Spatial Patterns 

Overall, the distribution of mapped phenoregions show the heterogeneity of vegetation 

patterns within the study sites. There was a visible gradient in phenoregion assignment and average 

NDVI. The ends of the transect, Mt. Kenya, Serengeti and Limpopo, were more different than the middle 

sites. The spacing between the phenoregion’s average NDVI profiles were greater for the end sites and 

showed more interannual variability. Where as the average NDVI profiles were mostly identical or 

showed little to no interannual variability for Ruaha and Luangwa. The mapped phenoregions were also 

relatively good representations of the topographic heterogeneity seen in the environmental control 

figures (Appendix, Figures S1a- S1f).  

Temporal Patterns 

 We found that the central site, Ruaha, has the least variation among phenoregion classes and 

average NDVI, while the extreme ends, Limpopo and Mt. Kenya, are much more variable. This result 

highlights the importance within-land cover type variation in SAST ecosystems that is not captured by 

coarse land cover classifications. Serengeti and Mt. Kenya had the most heterogeneous phenoregions in 

terms of both land cover composition and NDVI profiles. Ruaha National Park was the only site that had 

almost the same land cover composition for all phenoregions and very similar NDVI profiles. Even 

though the phenoregions are the same in terms of land cover composition, the K-means algorithm still 

grouped NDVI-based PCs into six different clusters, suggesting subtle but still significant phenological 

differences across this landscape. This could be better understood with a longer time series. The 

average NDVI profiles start to branch out at the end of the time series around July 2016, which could be 

a result of a drought response.  
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While beyond the scope of this study, these differences suggest that broad-scale climatological 

patterns may drive the number and type of phenological strategies in these systems. The site with the 

largest number of phenoregions, Luangwa, is also the furthest inland site and one of the most 

topographically variable in terms of aspect which could influence the phenological variations here. 

Environmental Controls 

Land cover and geology did not reveal very much about the variability seen in the average NDVI 

curves. The land cover barplots for Ruaha, Luangwa and Kruger show that there were no unique 

combinations of composition showing that ‘ecoregions’ which only use land cover, does not represent 

phenological differences in a landscape. Geology did not reveal anything about phenoregion assignment 

for Ruaha, Luangwa and Limpopo either. The land cover and geology compositions for Mt. Kenya and 

Serengeti show more heterogeneity in type and percent of each type. As seen in Serengeti, 

phenoregions one and two are composed mostly of savanna, woody savanna and cropland, where as 

the rest of the phenoregions have a lot more grassland and cropland. This could mean that land cover 

contributes to phenoregion assignment for Mt. Kenya and Serengeti, though not strongly. 

Topography did, however, show a significant influence on phenoregion patterns. The Kappa and 

overall accuracy values show the probability of correctly classified pixels if one were to randomly assign 

classes; we want higher Kappa and overall accuracy values. Kappas that are less than zero, mean that 

the classification is worse than random. For Mt. Kenya, elevation did the best at explaining phenoregion 

assignment, having the highest Kappa and overall accuracy values. The values improved with elevation 

and slope in the discriminant model, and the addition of sine(aspect), though having a Kappa of zero by 

itself, resulted in the strongest combination of controls. In Figure 7 and Table 3, elevation has the most 

variation compared to slope and aspect. Though the distribution of all three environmental controls is 

relatively variable for all three. Elevation was the only control that explained phenoregion assignment 
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for Serengeti and adding either of the other environmental controls to the model weakened it. This is 

not seen in the whisker box plots; we see variability across all three controls even though most of the 

phenoregions are all under the low category. Elevation also explains phenoregion assignment the best 

for Ruaha, and the addition of other controls weakens the discriminant model although we see variation 

in the distribution of means in Figure 7.  Elevation and sine(aspect) together explained the most for 

Luangwa though the whisker box plots for aspect are all relatively the same. Elevation and slope for 

Limpopo explained phenoregion assignment the best though all three controls show little variation. 

Even though we do or do not see much variability in the distribution of means, DA is telling us whether 

that variation is significant. 

Management Implications 

 The results from this study are applicable for on-the-ground management of SAST regions. 

Knowing and understanding how vegetation growth patterns change over time can be used to inform 

decisions on ecological conservation, agriculture and climate change mitigation strategies. The fine scale 

variability seen in this study’s phenoregions, reflects the different ways that phenology influences 

environmental processes that humans and animals rely on. 

Land cover or plant functional type is typically used as the main determinant of phenological 

classification. For example, the Community Land Model groups plant functional types into either 

seasonally deciduous or stress deciduous algorithms (Dahlin et al., 2015). Carbon and vegetation models 

are based off of coarsely derived phenoclusters but do not capture the seasonal variation that can be 

seen in the NDVI time series. These models are used for local and global decision making that affects 

wildlife, ecotourism, climate change mitigation and more (e.g. Kay et al., 2015; Poulter et al., 2015; Reid 

et al., 2016; Bluwstein, 2017). Our results show that even if there is shared land cover composition, 
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there are still differences between phenoregions that land cover misses. This is accounted for by the 

seasonality seen among phenoregion profiles as well as the environmental controls that are present. 

Caveats and Future Work 

 Apart from the interannual and annual NDVI variations, and environmental control variables 

used in this study, other factors that could influence the vegetation patterns include human and animal 

interactions. Cropland and urban built-up areas composed of around 5% for Ruaha phenoregions and 

0% to 30% of phenoregions in Serengeti and Mt. Kenya. We chose to focus on scenes that overlapped 

with national parks to reduce the amount of human interaction on the vegetation, but there will always 

be some level of human disturbance in a landscape. In addition, many of these landscapes are inhabited 

by wildlife that impact vegetation patterns in ways that may or may not correspond to environmental 

gradients. Nevertheless, understanding local-scale phenological variation is an important part of 

understanding ecosystem patterns in process across space and through time. 

The phenoregion maps for Luangwa and Mt. Kenya National Park (Figure 3) have a lot of cloudy 

pixels or pixels that did not work with the gapfilling algorithm and where hence masked out. This 

resulted in what looks like relatively sparse maps. Even so, both sites retained millions of pixels 

(compared to the tens of million pixels for other study sites) that were enough to continue the statistical 

analysis, given the assumption that masked pixels were not conditional on phenoregion. Even though 

the maps are not visually appealing, we are more interested in the relationship between phenoregion 

assignment and the environmental controls. 

 This study could be expanded by using another gapfilling algorithm to fill gaps in the NDVI time 

series.  There are studies that have created phenology smoothing NDVI models that not only fill gaps but 

also smooth out the NDVI curves (Jönsson et al., 2004; Jönsson et al., 2002; Braget, 2017). NDVI curve 

smoothing is also possible using the ‘greenbrown’ package in R. Though it is possible to fill gaps in NDVI 
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curves, the smoothing would not have been ideal for this study because it would have removed the 

interannual variability that we were analyzing. 

 Future work could be to determine a discriminant method that can take both continuous and 

categorical variables. Since geological heterogeneity influences vegetation (Cleverly et al., 2016; 

Githumbi et al., 2018; Muvengwi et al., 2018), being able to statistically show the impact of geology on 

phenoregion assignment could improve inference. We could also include other environmental control 

variables or metrics such as the Compound Topographic Index (Marthews et al., 2015) or a combination 

of variables that can be used to indicate moisture availability or other soil characteristics. This study 

could also be expanded by continuing the analysis on other national parks in East Africa along the 

megatransect. And as more Landsat images are taken and made available, a longer time series of NDVI 

could lead to an even more accurate representation of vegetation seasonality in SAST regions. 
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5. CONCLUSION 

 

The latitudinal gradient of phenoregion assignment and composition is apparent in the chosen 

Landsat scenes. Across the latitudinal gradient, there was more phenoregion heterogeneity at the ends 

of the megatransect with Mt. Kenya, Serengeti and Limpopo, than in the middle study sites, Ruaha and 

Luangwa. Variability in phenoregion composition and interannual variation seen in their NDVI time 

series indicate the importance of seasonality on phenoregion classification, especially since the 

environmental controls, land cover and geology compositions did not show any clear pattern in 

explaining phenoregion assignment. This study suggests the addition of phenoregion classification can 

improve ecological understanding about SAST regions. 
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Geology 

 

a)

 

b)

 

c)

 

d)

 

e)

 

 

 

Figure S1a: Geology maps. Geology maps of the five study sites. a) Kenya National Park, b) Serengeti 

National Park, c) Ruaha National Park, d) Luangwa National Park, e) Limpopo National Park. 
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Landcover 

 

a)  b)  

c)  d)  

e)  
f)  

 

Figure S1b: Land cover maps. Land cover maps of the five study sites. a) Kenya National Park, b) 

Serengeti National Park, c) Ruaha National Park, d) Luangwa National Park, e) Limpopo National Park. 
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NDVI 

a)

 

b)

 

c) 

 

d) 

 

e)

 

 

 
Figure S1c: NDVI maps. NDVI calculated from the first date of each site. a) Kenya National Park, b) 

Serengeti National Park, c) Ruaha National Park, d) Luangwa National Park, e) Limpopo National Park. 
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Aspect 

 

a)

 

b) 

 

c)

 

d)

 

e)

 

 

 

Figure S1d: Transformed aspect maps. Transformed aspect map for each of the five study sites. a) Kenya 

National Park, b) Serengeti National Park, c) Ruaha National Park, d) Luangwa National Park, e) Limpopo 

National Park. 
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Slope 

a)

 

b)

 

c)

 

d)

 

e)

 

 

Figure S1e: Slope maps. Slope (degrees) maps for each of the five study sites. a) Kenya National Park, b) 

Serengeti National Park, c) Ruaha National Park, d) Luangwa National Park, e) Limpopo National Park. 
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Elevation 

a)

 

b)

 

c)

 

d)

 

e)

 

 

 

Figure S1f: Elevation maps. Elevation maps for each of the five study sites. a) Kenya National Park, b) 

Serengeti National Park, c) Ruaha National Park, d) Luangwa National Park, e) Limpopo National Park. 
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Kenya 

PCA 

 
Figure S2a: Mt. Kenya scree plot. Scree plot of principal components (PCs) showing which PCs capture 

50%, 90%, 95% and 99% of the variance in the NDVI time series. The first 4 PCs explain 90% of variability 

so are used in the rest of the analysis. 
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Determining number of clusters 

 

 

Figure S2b: Mt. Kenya elbow method. Within groups sum of squares vs. number of clusters. The 

inflection point at 5 clusters represents the optimal number of clusters to be obtained. 
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Figure S2c: Mt. Kenya silhouette method. Silhouette method plot. There are 5 silhouette widths greater 

than or equal to 0 which represent the number of optimal clusters to be obtained. 
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Phenoregion profiles 

 

 
Figure S2d: Mt. Kenya phenoregion 1 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S2e: Mt. Kenya phenoregion 2 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S2f: Mt. Kenya phenoregion 3 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S2g: Mt. Kenya phenoregion 4 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S2h: Mt. Kenya phenoregion 5 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Serengeti 

PCA 

 
Figure S3a: Serengeti scree plot. Scree plot of principal components (PCs) showing which PCs capture 

50%, 90%, 95% and 99% of the variance in the NDVI time series.The first PC explains 90% of variability so 

is used in the rest of the analysis. 
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Determining number of clusters 

 
Figure S3b: Serengeti elbow method. Within groups sum of squares vs. number of clusters. The 

inflection point at 7 clusters represents the optimal number of clusters to be obtained. 
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Figure S3c: Serengeti silhouette method. There are 2 silhouette widths greater than or equal to 0 which 

represent the number of optimal clusters to be obtained. 
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Phenoregion profiles 

 

 
Figure S3d: Serengeti phenoregion 1 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S3e: Serengeti phenoregion 2 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S3f: Serengeti phenoregion 3 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S3g: Serengeti phenoregion 4 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S3h: Serengeti phenoregion 5 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S3i: Serengeti phenoregion 6 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Ruaha 

PCA 

 
Figure S4a: Ruaha scree plot. Scree plot of principal components (PCs) showing which PCs capture 50%, 

90%, 95% and 99% of the variance in the NDVI time series.The first 2 PCs explain 90% of variability so 

are used in the rest of the analysis. 
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Determining number of clusters 

 
Figure S4b: Ruaha elbow method. Within groups sum of squares vs. number of clusters. The inflection 

point at 7 clusters represents the optimal number of clusters to be obtained. 
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Figure S4c: Ruaha silhouette method. There are 5 silhouette widths greater than or equal to 0 which 

represent the number of optimal clusters to be obtained. 
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Phenoregion profiles 

 

 
Figure S4d: Ruaha phenoregion 1 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S4e: Ruaha phenoregion 2 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S4f: Ruaha phenoregion 3 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S4g: Ruaha phenoregion 4 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S4h: Ruaha phenoregion 5 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S4i: Ruaha phenoregion 6 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Luangwa 

PCA 

 
Figure S5a: Luangwa scree plot. Scree plot of principal components (PCs) showing which PCs capture 

50%, 90%, 95% and 99% of the variance in the NDVI time series.The first 8 PCs explain 90% of variability 

so are used in the rest of the analysis. 
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Determining Number of clusters 

 
Figure S5b: Luangwa elbow method. Within groups sum of squares vs. number of clusters. The 

inflection point at 10 clusters represents the optimal number of clusters to be obtained. 
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Figure S5c: Luangwa silhouette method. There are 10 silhouette widths greater than or equal to 0 which 

represent the number of optimal clusters to be obtained. 

 

  



83 
 

Phenoregion profiles 

 

 
Figure S5d: Luangwa phenoregion 1 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S5e: Luangwa phenoregion 2 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S5f: Luangwa phenoregion 3 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S5g: Luangwa phenoregion 4 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S5h: Luangwa phenoregion 5 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S5i: Luangwa phenoregion 6 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S5j: Luangwa phenoregion 7 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S5k: Luangwa phenoregion 8 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S5m: Luangwa phenoregion 9 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S5n: Luangwa phenoregion 10 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Limpopo 

PCA 

 

Figure S6a: Limpopo scree plot. Scree plot of principal components (PCs) showing which PCs capture 

50%, 90%, 95% and 99% of the variance in the Limpopo NDVI time series.The first 6 PCs explain 90% of 

variability so are used in the rest of the analysis. 
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Determining number of clusters 

 
Figure S6b: Limpopo elbow method. Within groups sum of squares vs. number of clusters. The inflection 

point at 4 clusters represents the optimal number of clusters to be obtained. 
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Figure S6c: Limpopo silhouette method. There are 8 silhouette widths greater than or equal to 0 which 

represent the number of optimal clusters to be obtained. 
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Phenoregion profiles 

 

 
Figure S6d: Limpopo phenoregion 1 NDVI profile. Phenoregion NDVI profile across three years. The 

solid black line is the average NDVI profile for the entire scene. The dotted gray line is monthly 

precipitation (mm). 
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Figure S6e: Limpopo phenoregion 2 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S6f: Limpopo phenoregion 2 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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Figure S6g: Limpopo phenoregion 4 NDVI profile. Phenoregion NDVI profile across three years. The solid 

black line is the average NDVI profile for the entire scene. The dotted gray line is monthly precipitation 

(mm). 
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