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ABSTRACT

ESSAYS ON ESTIMATION AND INFERENCE IN
MODELS WITH DETERMINISTIC TRENDS WITH

AND WITHOUT STRUCTURAL CHANGE
By

Jingjing Yang

Empirical macroeconomists who analyze typical time series, such as GDP, interest rates,

stock returns have to worry about the structural change. Possibilities of structural change

over time and the properties of structural change parameters are the focus of my disserta-

tion. It includes the choice of break point estimators between using level shift model and

trend shift model, break tests robust to I(0)/I(1) errors, and the estimation of break numbers.

I. Break Point Estimates for a Shift in Trend: Levels versus First Differences

In the first chapter I analyze the estimation of an unknown break point in a univariate

trend shift model under I(1) errors by minimizing the sum of squared residuals. Two break

point estimators are considered, one is from the original trend shift model and the other is

from its first difference, a mean shift model with I(0) errors. Simulations show a discrep-

ancy between existing asymptotic theories and finite sample distributions of the break point

estimators. To achieve a closer approximation, I derive an asymptotic theory for the break

point estimators assuming the break magnitude is within a T−1/2 neighborhood of zero.

The break point estimator from the trend break model converges to its true value at

rate T 1/2 under I(1) errors, while the break point estimator of the first difference model

converges at rate T under I(0) errors. Given this fact, many researchers would think they

should use the estimator that converges to the faster rate. However I show that when the

break magnitude is small relative to the noise magnitude, the break point estimator from



the trend shift model may have thinner tails and concentrates more on the true break point

than that from the first difference transformation. That indicates a preference of the break

point estimator from the level model.

II. Fixed-b Analysis of LM Type Tests for a Shift in Mean

We analyze lagrange multiplier (LM ) tests for a shift in mean of a univariate time series

at an unknown date. We consider a class of LM statistics based on nonparametric kernel

estimates of the long run variance and we develop a fixed-b asymptotic theory for the statis-

tics. We provide results for the case of I(0) and I(1) errors and use the fixed-b theory to

explain finite sample null rejection probabilities and finite sample power of the LM tests.

We show that the choice of bandwidth has a large impact on the size and power of the

tests. In particular we find that larger bandwidths lead to non-monotonic power whereas

smaller bandwidths give tests with monotonic power. The fixed-b theory suggests that, for

a given statistic, kernel and significance level, there exists a “robust” bandwidth such that

the fixed-b asymptotic critical value is the same for both I(0) and I(1) errors. In the case

of the supremum statistic, the robust bandwidth LM test has good power that is monotonic

whereas the power of the mean statistic is non-monotonic.

III. Consistency of Break Point Estimator under Misspecification of Break Number

In this chapter, I discuss the inconsistency of sequential trend break point estimators

in the presence of underspecification of the number of breaks. The analysis of models

with level shifts has been documented by researchers under comprehensive settings such

as allowing a time trend in the model. Despite the consistency of break point estimators

of level shifts, there are few papers on the consistency of trend shift point estimators under

misspecification. My simulation study and asymptotic analysis show that the trend break

point estimators do not converge to the true breaks points under most conditions when the

number of estimated breaks is smaller than the true number of breaks. This inconsistency

leads to a potential power loss for testing for multiple trend breaks. Taking first difference

is proposed to deal with this problem under certain circumstances.
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2 for point forecasts.) Simulation
settings: λc = 0.5; δ = 0, 0.01, 0.02, 0.03, 0.04, 0.05; ut is I(0); T =

101; and N = 10, 000. OLS∗1 and OLS∗2 assume that ut is known to
be I(0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 1.4 MSE in one-step forecast with the log real per capita GDP series
(1870-1996) with trend shift model (1.2.1) and different break point
estimators (λ̂TS and λ̂QS), where MSE of one-step forecast is calcu-
lated for 1987-1996. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 2.1 Null Rejection Probabilities Using Standard (b = 0) I(0) Critical
Values, 5% Nominal Level, 15% Trimming, QS Kernel. . . . . . . . . 45

Table 2.2 Null Rejection Probabilities Using Standard (b = 0) I(0) Critical
Values, 5% Nominal Level, 15% Trimming, Bartlett Kernel. . . . . . 46

Table 2.3 Finite Sample Behavior of Data Dependent Bandwidth to Sample
Size Ratios, T = 120, QS Kernel. . . . . . . . . . . . . . . . . . . . . 51

Table 2.4 Finite Sample Behavior of Data Dependent Bandwidth to Sample
Size Ratios, T = 120, Bartlett Kernel . . . . . . . . . . . . . . . . . . 51

viii



Table 2.5 Fixed-b Asymptotic Null Rejection Probabilities Using Standard (b =

0) I(0) Critical Values, 5% Nominal Level, 15% Trimming, QS Kernel 61

Table 2.6 Fixed-b Asymptotic Null Rejection Probabilities Using Standard (b =

0) I(0) Critical Values, 5% Nominal Level, 15% Trimming, Bartlett
Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 2.7 I(0)/I(1) Robust Bandwidths and Critical Values QS kernel, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 2.8 I(0)/I(1) Robust Bandwidths and Critical Values Bart kernel, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 2.9 Finite Sample Null Rejection Probabilities for Tests Using Size Ro-
bust Bandwidths and Fixed-b I(0)/I(1) Critical Values, 5% Nominal
Level, 15% Trimming, QS Kernel. . . . . . . . . . . . . . . . . . . . 68

Table 2.10 Finite Sample Null Rejection Probabilities for Tests Using Size Ro-
bust Bandwidths and Fixed-b I(0)/I(1) Critical Values, 5% Nominal
Level, 15% Trimming, Bartlett Kernel. . . . . . . . . . . . . . . . . . 69

Table 3.1 Sum of densities at the true break λc
1 and λc

2 where {λc
1, λ

c
2} =

{1/3, 2/3} under different ρ and M1 = M2. . . . . . . . . . . . . . . 95

Table 3.2 Sum of densities at the true break λc
1 and λc

2 where {λc
1, λ

c
2} =

{1/3, 2/3} under different ρ and M1 = −M2. . . . . . . . . . . . . . 95

Table 3.3 Sum of densities at the true break λc
1 and λc

2 where {λc
1, λ

c
2} =

{1/3, 2/3} under different ρ and |M1| 6= |M2|, where M1 = 50(δ1 =

5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 3.4 Probability of Break Number Selection m̂ for Trend Shift Model with
2 breaks: {λc

1, λ
c
2} = {1/2, 2/3}, δ1 = 1, θ = 0, T = 120. . . . . . . . 99

Table 3.5 Probability of Break Number Selection m̂ for Trend Shift Model with
2 breaks: {λc

1, λ
c
2} = {1/2, 2/3}, δ1 = 1, θ = 0.5, T = 120. . . . . . . 111

ix



LIST OF FIGURES

Figure 1.1 Comparison of the pdf of λ̂TS and λ̂MS using the asymptotics of
Bai(1994) and PZ(2005) with λc = 0.5. x-axis: λ; y-axis: pdf. The
left from top to bottom: M = 1, 3, 5, 7; the right from top to bottom:
M = 2, 4, 6, 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.2 Histograms of the break point estimators λ̂TS and λ̂MS . µ = β = 0;
λc = 0.5; δ = 0.2, 0.4, 0.6, 0.8; ut: I(1) errors; T = 100; and
N = 30, 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 1.3 The asymptotic pdfs of Bai(1994), PZ(2005) and Theorem 1.5.1
with the empirical pdf of λ̂TS and λ̂MS . λc = 0.5; M = 2, 4, 6, 8;
ut: I(1) errors; T = 100; and N = 30, 000. The left: λTS (solid:
Finite sample; dash: PZ(2005); dash-dot: Theorem 1). The right:
λMS (solid: Finite sample; dash: Bai(1994); dash-dot: Theorem 1). . 11

Figure 1.4 Asymptotic pdf of λ̂TS and λ̂MS by Theorem 1.5.1 at λc = 0.5 and
M = 1, 2, 3, 4, 5, 6, 7, 8. . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.5 Finite sample histograms and asymptotic pdf of λ̂TS and λ̂MS in
the case of no breaks. (a) Histogram of λ̂TS (N=30,000 replications
and sample length T=100). (b) Histogram of λ̂MS (N=30,000 repli-
cations and sample length T=100). (c) Asymptotic pdf of λ̂TS and
λ̂MS under no breaks. . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 1.6 G2TS(λ, λc) and G2MS(λ, λc) in equation (1.5.16) and (1.5.17)
when λc = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 1.7 The finite sample pdf and the asymptotic pdf by Bai(1994) and
PZ(2005) of λ̂TS and λ̂MS under fixed M = 2, 4, 6, 8, d(1) = 1,
and T = 100, 200, 500, 1000. solid: T = 100; dash: T = 200; dot:
T = 500; dash-dot: T = 1000; ’·’: pdf(Bai); ’o’: pdf(Theo. 1). . . . 20

x



Figure 1.8 The finite sample pdf and theoretical pdf by Bai(1994), PZ(2005),
and Theorem 1.5.1 of λ̂TS and λ̂MS under fixed δ = 0.4, d(1) = 1,
and T = 100, 200, 500, 1000. Solid: finite sample; ’·’: Theorem 1;
dash: PZ(the left) or Bai(the right). . . . . . . . . . . . . . . . . . . 21

Figure 1.9 The asymptotic pdfs of Bai(1994), PZ(2005) and Theorem 1.5.1
with the empirical pdfs of λ̂TS and λ̂MS . λc = 0.2; M = 2, 4, 6, 8;
ut: I(1) errors; T = 100; and N = 30, 000. Solid: finite sample;
dash-dot: Theorem 1; dash: PZ(left) or Bai(right). . . . . . . . . . . 23

Figure 1.10 Asymptotic pdfs of λ̂TS and λ̂MS by Theorem 1.5.1 for λc = 0.2

and M = 1, 2, 3, 4, 5, 6, 7, 8. . . . . . . . . . . . . . . . . . . . . . . 24

Figure 1.11 Pdfs of the break point estimators from the “TS-MS” models, under
I(1) u′ts, λc = 0.5, T = 100, M = 4(δ = 0.4), and different
trimmings λ∗ = 0.05, 0.1, 0.15, 0.2. . . . . . . . . . . . . . . . . . . 25

Figure 1.12 Finite and asymptotic pdf by Theorem 1.6.2 and PZ(2005) (only for
λ̂TS) of λ̂TS and λ̂QS (“TS-QS”) under I(0) u′ts, λc = 0.5, T =

100, d(1) = 1, and δ = 0, 0.02, 0.04, 0.1. Solid: finite sample; dash-
dot: Theorem 2; dash: PZ(left) or Bai(right). . . . . . . . . . . . . . 28

Figure 1.13 The real (log) per capita GDP of Italy, Norway, and Sweden, which
are of I(1) errors. x-axes: year; y-axes: (log)Per Capita GDP. . . . . 33

Figure 1.14 The real (log) per capita GDP of Australia, Canada, Germany, UK,
and US, which are of I(0) errors. x-axes: year; y-axes: (log)Per
Capita GDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.1 Finite Sample Power, QS kernel, 15% Trimming. . . . . . . . . . . . 47

Figure 2.2 Finite Sample Power, QS kernel, 15% Trimming. . . . . . . . . . . . 48

Figure 2.3 Finite Sample Power, Bartlett kernel, 15% Trimming. . . . . . . . . 49

Figure 2.4 Finite Sample Power, Bartlett kernel, 15% Trimming. . . . . . . . . 50

Figure 2.5 Finite Sample and Asymptotic Power of MeanLM , QS kernel, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 2.6 Finite Sample and Asymptotic Power of SupLM , QS kernel, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xi



Figure 2.7 Finite and Asymptotic Power of MeanLM , Bartlett kernel, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 2.8 Finite and Asymptotic Power of SupLM , Bartlett kernel, 15% Trim-
ming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 2.9 Asymptotic Fixed-b Critical Values, 5% Level, QS kernel, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 2.10 Asymptotic Fixed-b Critical Values, 5% Level, Bartlett kernel, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 2.11 Finite Sample Power of Robust Bandwidth Tests, 5% Level, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 2.12 Finite Sample Power of Robust Bandwidth Tests, 5% Level, 15%
Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 3.1 Histogram of single break point estimator λ̂MS in two breaks model:
{λc

1, λ
c
2} = {1/3, 2/3}. δ1 = 1 always. From left to right:

ν = −2(δ2 = −2),−1(δ2 = −1); from top to bottom: T =

100, 250, 500, 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 3.2 Histogram of single break point estimator λ̂MS in two breaks model:
{λc

1, λ
c
2} = {1/3, 2/3}. δ1 = 1 always. From left to right: ν =

1(δ2 = 1), 2(δ2 = 2); from top to bottom: T = 100, 250, 500, 1000. . 81

Figure 3.3 Histogram of single break point estimator λ̂TS in two breaks:
{λc

1, λ
c
2} = {1/3, 2/3}. δ1 = 1 always. The left to right:

ν = −2(δ2 = −2),−1(δ2 = −1); The top to bottom: T =

100, 250, 500, 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 3.4 Histogram of single break point estimator λ̂TS in two breaks:
{λc

1, λ
c
2} = {1/3, 2/3}. δ1 = 1 always. The left to right: ν =

1(δ2 = 1), 2(δ2 = 2); The top to bottom: T = 100, 250, 500, 1000. . 83

Figure 3.5 G2MS(λ, λc) under λc = 0.5 for mean shift model . . . . . . . . . . 86

Figure 3.6 |G2MS(λ, λc
1) + ν ·G2MS(λ, λc

2)| under different ν = 1 and -1 for
mean shift model, where {λc

1, λ
c
2} = {1/4, 3/4}. . . . . . . . . . . . 87

Figure 3.7 G2TS(λ, λc) under λc = 0.5 for trend shift model . . . . . . . . . . 88

xii



Figure 3.8 |G2TS(λ, λc
1) + ν ·G2TS(λ, λc

2)| under ν = 1 and -1 for trend shift
model, where {λc

1, λ
c
2} = {1/4, 3/4}. . . . . . . . . . . . . . . . . . 100

Figure 3.9 Finite sample distribution with the asymptotic distribution of
λ̂TS and λ̂MS at ν = −5. The left to right: {λc

1, λ
c
2} =

{1/4, 3/4}, {1/3, 2/3}; the top to bottom: T = 100, 250, 500, 1000.
ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS . . . . . . . . . . . . . . 101

Figure 3.10 Finite sample distribution with the asymptotic distribution of λ̂TS

and λ̂MS at ν = −2. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right:

{λc
1, λ

c
2} = {1/3, 2/3}; the top to bottom: T = 100, 250, 500, 1000.

ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS . . . . . . . . . . . . . . 102

Figure 3.11 Finite sample distribution with the asymptotic distribution of λ̂TS

and λ̂MS at ν = −1. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right:

{λc
1, λ

c
2} = {1/3, 2/3}; the top to bottom: T = 100, 250, 500, 1000.

ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS . . . . . . . . . . . . . . 103

Figure 3.12 Finite sample distribution with the asymptotic distribution of λ̂TS

and λ̂MS at ν = −0.5. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right:

{λc
1, λ

c
2} = {1/3, 2/3}; the top to bottom: T = 100, 250, 500, 1000.

ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS . . . . . . . . . . . . . . 104

Figure 3.13 Finite sample distribution with the asymptotic distribution of λ̂TS

and λ̂MS at ν = 0.5. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right:

{λc
1, λ

c
2} = {1/3, 2/3}; the top to bottom: T = 100, 250, 500, 1000.

ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS . . . . . . . . . . . . . . 105

Figure 3.14 Finite sample distribution with the asymptotic distribution of λ̂TS

and λ̂MS at ν = 1. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right:

{λc
1, λ

c
2} = {1/3, 2/3}; the top to bottom: T = 100, 250, 500, 1000.

ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS . . . . . . . . . . . . . . 106

xiii



Figure 3.15 Finite sample distribution with the asymptotic distribution of λ̂TS

and λ̂MS at ν = 2. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right:

{λc
1, λ

c
2} = {1/3, 2/3}; the top to bottom: T = 100, 250, 500, 1000.

ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS . . . . . . . . . . . . . . 107

Figure 3.16 Finite sample distribution with the asymptotic distribution of λ̂TS

and λ̂MS at ν = 5. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right:

{λc
1, λ

c
2} = {1/3, 2/3}; the top to bottom: T = 100, 250, 500, 1000.

ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS . . . . . . . . . . . . . . 108

Figure 3.17 λ to achieve maximal G2TS(λ, λc
1) + ν · G2TS(λ, λc

2), {λ
c
1, λ

c
2} =

{1/3, 2/3}, ν = −10, · · · , 10. . . . . . . . . . . . . . . . . . . . . . 109

Figure 3.18 λ to achieve maximal G2TS(λ, λc
1) + ν · G2TS(λ, λc

2), {λ
c
1, λ

c
2} =

{1/4, 3/4}, ν = −10, · · · , 10. . . . . . . . . . . . . . . . . . . . . . 110

xiv



CHAPTER 1

Break Point Estimates for a Shift in

Trend: Levels versus First Differences

1.1 Introduction and Motivation

The break point estimator in the mean shift model or the trend shift model is analyzed ex-

tensively by Bai (1994), Bai and Perron (1998)(BP hereafter), Perron and Zhu (2005)(PZ

hereafter). The least squares (LS) estimator is considered in these papers, and the break

points are estimated by minimizing the sum of squared residuals (SSR). Bai (1994) ana-

lyzes the break point estimator of the mean shift model under the assumption that the break

magnitude is much greater than T−1/2, where T is the sample size. He derives that, for

the mean shift model with I(0) errors, the break point estimator converges to the true break

at rate T . BP(1998) extend the single unknown break to multiple unknown breaks under

both fixed and shrinking shift magnitudes. PZ(2005) analyze the break point estimator of

the trend shift model, which allows joint breaks in both the intercept and the trend under

both I(0) and I(1) errors. They assume a fixed shift in trend, and show that the break point

estimator converges at rate T 1/2 for the trend shift model under I(1) errors.

The existing literature examines break point estimators of the mean shift model and the
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trend shift model separately. I analyze the two estimators from these two models using

the same data generating process (DGP). A trend shift model with unit root errors can be

transformed into a mean shift model with stationary errors and vice versa. In other words,

there are two ways to represent the same DGP: we could start with a trend shift model with

I(1) errors and first differencing it to obtain a mean shift model with I(0) errors; or we could

start with a level shift model with I(0) error and partial sum it to a trend shift model with

I(1) errors.

Based on the convergence rate of the estimators, many researchers would estimate the

break point using the first differenced form, which has a faster convergence rate based on

Bai and Perron (1998)’s and PZ(2005)’s results. However, it will be shown in this chapter

that first differencing is not always better, i.e., the break point estimator from the trend shift

model could be preferred though it converges slower. The finite sample results show that

the break point estimators have special tail behaviors which are not captured by the existing

asymptotic approximations. Therefore I develop a new asymptotic theory to capture the tail

behavior. I assume that the break magnitude is within a local T−1/2 neighborhood of zero

and show the following in this chapter: a) The asymptotics by Bai and Perron (1998) and

PZ(2005) indicate a certain range of break magnitudes where the level model break point

estimator behaves better than the first difference estimator. However, there is considerable

discrepancy between these asymptotics and the finite sample distributions; b) The proposed

asymptotics more closely resemble the true distributions of the break point estimators. My

results lead to the counter-intuitive result that first differencing is not always the better way

to estimate the break point under I(1) errors. In fact the break point estimator from the level

model can have thinner tails in the distribution and concentrates more at the true break point

when the break magnitude is small relative to noise.

The rest of this chapter is organized as follows. Section 2 describes the model and

lays out the assumptions. It defines the break point estimators from the level model and

the first difference model. Section 3 summarizes and compares the existing asymptotic
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results by Bai and Perron (1998) and PZ(2005). Section 4 provides the finite sample results

of the two break estimators, showing the discrepancy between existing asymptotics and

finite sample behavior. In Section 5, I develop the new asymptotic theory assuming the

break magnitude is local to 0 at rate T−1/2 and show that the new theory captures the

important finite sample patterns. Extensions to the trend shift model with I(0) errors and

its partial sum model are included in Section 6. Section 7 gives an example where using

the break point estimator from the trend shift model may reduce one-step ahead forecast

errors. Section 8 summarizes the major results of paper.

1.2 Models, Assumptions, and Two Break Point Estima-

tors

For simplicity, I use “TS-MS” to denote a pair of level model (the trend shift model under

I(1) errors) and its first difference (the mean shift model under I(0) errors). Let us start with

a simple linear trend shift model (TS model):

yt = µ + βt + δDTt(λ
c) + ut, t = 1, · · · , T (1.2.1)

where δ is the break magnitude, λc is the true break point with T c
b = λcT , and

DTt(λ
c)

.
=

{
0, t ≤ T c

b
t− T c

b , t > T c
b

.

The error is assumed to be I(1), defined by assumption (A1.a).

(A1.a) ut = ut−1 + εt,

where

εt = d(L)et; d(L) =
∞∑
i=0

diL
i,

∞∑
i=0

i|di| < ∞, d(1)2 > 0;

L is the lag operator; {et} is a martingale difference sequence with supt E(e4
t ) < ∞,

E(et|et−1, et−2, · · · )=0, and E(e2
t |et−1, et−2, · · · )=1.
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The first differenced model can be written as:

∆yt = β + δDUt(λ
c) + ∆ut, t = 2, · · · , T (1.2.2)

where DUt(λ
c)

.
= 1(t > T c

b ); and

1(t > T c
b )

.
=

{
0, t ≤ T c

b
1, t > T c

b

.

Because {ut} is I(1), GLS estimates are obtained using this first difference transformation.

The error of the first differenced model is I(0), given by

∆ut = εt.

Existing asymptotics of the break point estimators depend on assumptions about δ. Typ-

ical assumptions of δ in the literature are

(A2.a) δ = a constant scalar,

(A2.b) δ → 0, T1/2δ

(log T )1/2 →∞.

(A2.a) is the assumption used by PZ(2005). (A2.b) is the assumption used by Bai (1994),

where δ >> T−1/2.

Though trimming is not necessary in break point estimation as stated in PZ(2005), it is

commonly used in break tests. Consider the grid of possible break dates: Λ∗ .
= [Tλ∗ , Tλ∗+

1, · · · , T−Tλ∗ ]. The corresponding grid of the break points is defined as Λ = [λ∗, · · · , 1−

λ∗], where λ∗ .
=

Tλ∗
T .

Denote SSR(λ) as the sum of squared residuals (SSR) with a single break at Tb = [λT ]

and SSR0 as SSR with no break. We further define SSR0
TS and SSRTS(λ) as SSR0 and

SSR(λ) for the trend shift model (1.2.1), and SSR0
MS and SSRMS(λ) as those for the

mean shift model (1.2.2).
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SSR0
TS and SSRTS(λ) are calculated as

SSR0
TS

.
=

T∑
t=1

[yt − (µ̃ + β̃t)]2,

SSRTS(λ)
.
=

T∑
t=1

[yt − (µ̂ + β̂t + δ̂DTt(λ))]2,

where µ̃ and β̃ are the OLS estimates of model (1.2.1) with δ = 0 imposed; µ̂, β̂, and δ̂ are

the OLS estimates of model (1.2.1) with no restrictions imposed. SSR0
MS and SSRMS(λ)

are calculated likewise as:

SSR0
MS

.
=

T∑
t=2

(∆yt − β̃)2

SSRMS(λ)
.
=

T∑
t=2

[∆yt − (β̂ + δ̂DUt(λ))]2,

where δ̃ is the OLS estimate of model (1.2.2) with δ = 0 imposed; β̂ and δ̂ are the OLS

estimates of model (1.2.2) with no restrictions imposed.

The break points are estimated by minimizing SSRTS(λ) or SSRMS(λ) over the set Λ.

λ̂TS and λ̂MS denote the break point estimator for the level model and its first difference

respectively and are defined as

λ̂TS = arg min
λ∈Λ

SSRTS(λ), (1.2.3)

λ̂MS = arg min
λ∈Λ

SSRMS(λ). (1.2.4)

1.3 Existing analysis of λ̂TS and λ̂MS

Bai and Perron (1998) and PZ(2005) provide limiting distributions of λ̂TS and λ̂MS under

fixed or shrinking break magnitudes. Deng and Perron (2006) extend PZ(2005)’s results

from an “unbounded-trend” asymptotic framework to a “bounded-trend” asymptotic frame-

work where the break point estimator is restricted to [0, 1] by normalizing the range of T .
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This extension for the trend shift model under I(1) errors is of little use here since the limit-

ing distribution under the “bounded-trend” asymptotic framework is essentially equivalent

to that obtained assuming no trend shift. The point of reference in this chapter are the

results of Bai and Perron (1998) and PZ(2005) which I now review.

Under assumption (A1.a) and (A2.a), for the level model (1.2.1), PZ(2005) prove that

√
T (λ̂TS − λc)

d−→ N(0,
2d(1)2

15δ2 ). (1.3.5)

Under assumption (A1.a) and (A2.b), for the first differenced model (1.2.2), Bai (1994)

proves that

T (λ̂MS − λc)
d−→ d(1)2

δ2 arg max
r
{W1(r)−

1

2
|r|}, (1.3.6)

where r ∈ R and W1(r) is a two-sided Brownian motion on R1.

Equations (1.3.5) and (1.3.6) show that the break point estimator from the first differ-

enced model converges to zero at speed of T , faster than the T 1/2 rate in the level model.

For a given T , d(1), and δ, if we define M
.
= T1/2δ

d(1) , the limiting distributions by Bai (1994)

and PZ(2005) can be approximated in terms of M . We can describe the effect of M on the

limiting distributions and compare the performance of the two estimators as M varies.

For a given T , we have the following implications from the existing asymptotic theories.

a) Under assumption (A1.a) and (A2.a), for model (1.2.1),

λ̂TS − λc ≈ N(0,
2

15M2 ). (1.3.7)

The probability density function of λ̂TS is given by

h(λ̂TS) =

√
15M√
4π

exp(−15(λ̂TS − λc)2M2

4
); (1.3.8)

b) Under assumption (A1.a) and (A2.b), for model (1.2.2),

λ̂MS − λc ≈
1

M2 arg max
r
{W1(r)−

1

2
|r|}. (1.3.9)
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It has been shown by Yao (1987) that arg maxr{W1(r) − |r|/2} has the distribution

function

H(x) = 1 + (2π)−1/2√xe−x/8 − 1

2
(x + 5)Φ(−

√
x/2) +

3

2
exΦ(−3

√
x/2),

for x > 0 and H(x) = 1 − H(−x) for x < 0, with Φ(x) the distribution function of a

standard normal random variable. The density function can be derived as:

h(x)
.
= H(x)′

=
3

2
exΦ(−3

2

√
x)− 1

2
Φ(−

√
x

2
).

The probability density function of λ̂MS is given by

h(λ̂MS) =
3M2 exp(M2(λ̂− λc))

2
Φ(−

3M

√
λ̂MS − λc

2
)

−M2

2
Φ(−

M

√
λ̂MS − λc

2
). (1.3.10)

Based on equations (1.3.8) and (1.3.10), we can compare the densities of λ̂TS and

λ̂MS with respect to M . In Figure 1.1, the limiting densities are depicted in pairs for

M = 1, 2, · · · , 8. We can see that λ̂TS mostly (M > 1) has thinner tails than λ̂MS but the

concentrations around λc are different. For small values of M , λ̂TS is more concentrated

around λc than λ̂MS . In this situation, first differencing does not help because λ̂MS is

dominated by λ̂TS in terms of concentration. For large values of M , λ̂MS is more concen-

trated around λc. This comparison shows a crossing in the distributions of λ̂TS and λ̂MS

along M . To describe the crossing more accurately, we can define concrete criteria on how

concentrated the estimator is around λc. For a specific significance level, the critical values

(CVs) can describe how tight the estimator is, and we can compare the behaviors under a

significance level. Take the 80% significance level as an example. From Figure 1.1 when

λc = 0.5, both CVs of λ̂TS and λ̂MS decrease with the increase of M . However, λ̂MS

decreases faster than λ̂TS but starts with a much bigger value at small M . Therefore, there

exists a specific value, M0, such that for M ≤ M0, λ̂TS has smaller CVs, i.e., λ̂TS has
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higher densities around λc at the significance level of 80%; and for M ≥ M0, λ̂MS has

smaller CVs, and it is tighter around λc. Based on the probability density function (pdf)

curves in Figure 1.1, we can estimate that for the 80% significance level M0 is between 7

and 8 for λc = 0.5.

We can also observe that for small values of M , the densities of λ̂TS and λ̂MS do not

collapse to zero when λ̂ is outside of [0, 1]. Because the estimators cannot be outside [0, 1],

this implies potential problems of these asymptotic approximations in practice.

1.4 Finite Sample Behavior of λ̂TS and λ̂MS

In this section, I first use a simple simulation to illustrate the properties of λ̂TS and λ̂MS

in finite samples. I generate data based on model (1.2.1) where ut is I(1), d(L) = 1 and et

is an iid N(0, 1) process. Set µ = β = 0 without loss of generality. Equation (1.2.3) and

(1.2.4) are used to estimate λ̂TS and λ̂MS in each replication. Trimming is not necessary,

however in order to ensure the invertibility of the regression matrix I use 2% trimming,

i.e., λ∗ = 0.02. The results are reported for λc = 0.5, T = 100, and replications are

N = 30, 000 for all cases.

Figure 1.2 plots the histograms of λ̂TS and λ̂MS for δ = 0.2, 0.4, 0.6, 0.8. The left

are the histograms of λ̂TS , and the right are the histograms of λ̂MS . When δ = 0.2, the

histogram of λ̂TS has one peak at λ = 0.5 and little mass at {0.02} and {0.98}. It is not

close to normal in appearance. More interestingly, the histogram of λ̂MS has three peaks

around {0.02}, {0.5}, and {0.98}. Compared to λ̂TS , λ̂MS is less concentrated around

λc for small δ. With an increase of δ, the peaks of the histogram of λ̂MS around {0.02}

and {0.98} decrease gradually. For large δ, λ̂MS still has fatter tails but concentrates

more around λc. The comparison of the concentrations matches the asymptotic results in

Figure 1.1. However, the fact that there is a large mass on the tails of λ̂MS when δ is small

is missed by the asymptotic approximation given by (1.3.9).
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Let us further compare the two asymptotic theories to see how the asymptotic approxi-

mations do in practice. Figure 1.3 compares the asymptotic pdfs and the finite sample pdfs.

(Each of the plots contains a third density curve corresponding to the new approximation

given in Section 5 which will be discussed later.) I obtain the finite sample pdf using a

non-parametric kernel density smoothing method 1. Consistent with the histograms, under

small M , λ̂MS tends to pile up more on the tails, and less on λc. As M grows, λ̂MS is

more concentrated around λc, which is what the existing asymptotics predicts. The existing

asymptotics predict the concentration patterns well in finite samples. What these asymp-

totics do not get right is the tail behavior. Neither of the approximations captures the finite

sample tail behavior under small M . PZ(2005)’s result tends to put too little density on the

tails, as does Bai (1994)’s density. It becomes less of a concern when M is large. Techni-

cally, when M is large, the tails keep going outside [0, 1], but in a practical sense it does

not matter.

The previous discussion shows the existing theories by Bai (1994) and PZ(2005) cor-

rectly capture the concentration patterns of the two break point estimators, but both of them

miss the tail behavior and provide less accurate approximation in finite samples. Because

M is a multiplicative factor in equation (1.3.8) and (1.3.10), changes in M cannot be linked

to the bimodality or trimodality of the finite sample behavior in Figure 1.2. This suggests

that an alternative theoretical explanation for the finite sample patterns is desirable.

1 For a given set of statistics, {Xi}|i = 1, · · · , N , we estimate the pdf f̃ at x by a
kernel smooth form, f̃(x) = 1/n ·

∑
K((x − Xi)/h)|i = 1, · · · , n, where K(.) is the

kernel function and h is the bandwidth. For details see Bowman and Azzalini (1997). In
this chapter, I use the standard normal distribution as the kernel function. For the same
reason as in PZ(2005), i.e., the optimal data dependant bandwidth may not work well, I
choose a simple bandwidth h = 0.5 ∗ σ for any error. Simulations show that h does not
affect the pdf estimator much.
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1.5 Asymptotic Analysis of λ̂TS and λ̂MS when δ is Local

to 0 at Rate T 1/2

Bai (1994) and PZ(2005) assume that the break magnitude δ is outside a T−1/2 neighbor-

hood of zero. An alternative way to develop an asymptotic theory is to assume that δ is

within a T−1/2 neighborhood using the assumption

(A2.c) δ = δ∗

T1/2 , δ∗ = a constant scalar. (1.5.11)

Next the limiting distributions of λ̂TS and λ̂MS are derived under assumption (A2.c).

Theorem 1.5.1 Suppose the regressions of the level model (1.2.1) and its first difference

(1.2.2) are estimated using λ ∈ Λ ⊆ (0, 1) and T c
b

.
= λcT is the true break. Under

assumption (A1.a) and (A2.c), the break point estimators defined by (1.2.3) and (1.2.4)

have the limiting distributions as follows:

1. For the level model (1.2.1),

λ̂TS
d−→ arg max

λ∈Λ
{
[
∫ 1
0 F (r, λ)W (r)dr + δ∗

d(1)
∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
} (1.5.12)

where

F (r, λ)
.
=

{
λ3 − 2λ2 + λ− (2λ3 − 3λ2 + 1)r, if r ≤ λ,

λ3 − 2λ2 − (2λ3 − 3λ2)r, if r > λ,

which implies the approximation

λ̂TS − λc ≈ arg max
λ∈Λ

{
[
∫ 1
0 F (r, λ)W (r)dr + M

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
− λc}(1.5.13)

where M = δ∗
d(1) ≡

δT1/2
d(1) .

2. For the first difference model (1.2.2),

λ̂MS
d−→ arg max

λ∈Λ
{
[(λW (1)−W (λ)) + δ∗

d(1)Ψ(λ, λc)]2

λ(1− λ)
} (1.5.14)
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where

Ψ(λ, λc)
.
=

{
(1− λc)λ, if λ ≤ λc,

(1− λ)λc, if λ > λc,

which implies the approximation

λ̂MS − λc ≈ arg max
λ∈Λ

{ [(λW (1)−W (λ)) + MΨ(λ, λc)]2

λ(1− λ)
− λc}. (1.5.15)

The limits in Theorem 1.5.1 are different from what we have seen before, but just as

before, M shows up in the approximations, so we can directly compare them with the

existing theory. Figure 1.3 compares the finite sample pdfs with the asymptotic pdfs of

λ̂TS and λ̂MS from equations (1.3.8), (1.3.10), and Theorem 1.5.1 with λc = 0.5, when

M = 2, 4, 6, 8 (i.e. δ = 0.2, 0.4, 0.6, 0.8; T = 100.) We can see the new asymptotic theory

captures the density of λ̂TS on the boundary of [0, 1]. It also tracks the unusual tail behavior

of λ̂MS , the large mass on the boundary, and predicts the densities of λ̂TS and λ̂MS in the

middle of [0, 1] in finite sample cases as well.

Also I compare λ̂TS and λ̂MS using the new asymptotics. Figure 1.4 shows the concen-

tration patterns of λ̂TS and λ̂MS . Similar to Bai (1994) and PZ(2005), it shows that λ̂TS

concentrates more around λc for a small M . If we consider the high probability in a small

area around λc as our criterion, we can see λ̂TS can be a more precise estimator than λ̂MS

under small M .

Why does this new asymptotic theory pick up the tail behavior better? To discover the

effect of M on the limiting distributions, I decompose the terms inside arg max of equations

(1.5.12) and (1.5.14) into two parts:

GTS(λ, λc)
.
= G1TS(λ) + M ·G2TS(λ, λc)

.
=

∫ 1
0 F (r, λ)W (r)dr√∫ 1

0 F (r, λ)2dr
+ M ·

∫ 1
0 F (r, λ)F (r, λc)dr√∫ 1

0 F (r, λ)2dr
(1.5.16)

and
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Figure 1.4. Asymptotic pdf of λ̂TS and λ̂MS by Theorem 1.5.1 at λc = 0.5 and M =

1, 2, 3, 4, 5, 6, 7, 8.
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GMS(λ, λc)
.
= G1MS(λ) + M ·G2MS(λ, λc)

.
=

(λW (1)−W (λ))√
λ(1− λ)

+ M · Ψ(λ, λc)√
λ(1− λ)

(1.5.17)

For conciseness, denote G1TS(λ, λc) and G1MS(λ, λc) as G1, G2TS(λ, λc) and

G2MS(λ, λc) as G2, and GTS(λ, λc) and GMS(λ, λc) as G.

From the decomposition we can see firstly that the asymptotics in Theorem 1.5.1 is

continuous at M = 0, i.e., M could be as small as possible in the asymptotics. The

existing theories by Bai and PZ need to assume there is a break. If there is no break, their

distribution theory breaks down, generating a discontinuity in their asymptotic theory as

M converges to zero, while the new approximation is continuous w.r.t. the magnitude of

the break.

Figure 1.5 depicts the finite sample histograms and the asymptotic pdfs of λ̂TS and λ̂MS

when M = 0. The asymptotic pdfs are obtained by Theorem 1.5.1. Both finite sample

histograms and asymptotic pdfs show that when there is no break, the tail behaviors of λ̂TS

and λ̂MS are very different: λ̂TS concentrates more in the middle while λ̂MS concentrates

more around {0} and {1}. The distribution of λ̂TS when M = 0 goes less often to {0}

and {1} but more to the middle, which is consistent with the results by Nunes, Kuan and

Newbold (1995) and Bai (1998) about “spurious breaks”; while the distribution of λ̂MS

has peaks at {0} and {1}, and is flat in the middle. Theorem 1.5.1 picks up the tails as

shown in Figure 1.5, where λ̂TS has higher probability in the middle but lower probability

on the boundary, while λ̂MS has higher probability on the boundary but lower probability

in the middle, and both pdfs are flat in the middle range of [0, 1]. Although under no break

λ̂TS is spurious, it forms a major source of the preciseness of λ̂TS (in the sense of more

concentration in the pdf at certain significance levels) when M is small and λc is around

0.5.

With the form of (G1 + M · G2) in the limiting distributions, Theorem 1.5.1 provides

a bridge between the δ = 0 asymptotics and the δ 6= 0 asymptotics. When M is small,
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Figure 1.5. Finite sample histograms and asymptotic pdf of λ̂TS and λ̂MS in the case of
no breaks. (a) Histogram of λ̂TS (N=30,000 replications and sample length T=100). (b)
Histogram of λ̂MS (N=30,000 replications and sample length T=100). (c) Asymptotic pdf
of λ̂TS and λ̂MS under no breaks.
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the random component G1 dominates G2 and the distribution tends to have the null tail.

When M is significantly different from zero, G2 dominates G1 and M affects the limiting

distribution through M · G2TS(λ, λc) and M · G2MS(λ, λc). Both of the G2 parts attain

global maxima at the same place, λc, as shown in Figure 1.6. (For a detailed proof see

Appendix A.3.) If M is big enough, the G2 parts are completely dominant in (G1+M ·G2),

which makes λ̂TS and λ̂MS arbitrarily close to λc. Therefore, Theorem 1.5.1 explains why

as M grows, λ̂TS and λ̂MS are consistent to some extent. For a moderately large to small

M , the limiting distribution of λ̂TS exhibits a shape of “ ︷︸︸︷ ” and λ̂MS exhibits a shape

of “w”, resulting from the mixed effects of G1 and G2 parts in the asymptotics.

It is useful to see how the asymptotics approximates finite sample behaviors under differ-

ent sample sizes. Figure 1.7 compares the finite sample distributions with the asymptotic

theories by Bai (1994), PZ(2005), and Theorem 1.5.1 under different fixed M but various

T ′s (M = 2, 4, 6, 8 and T = 100, 200, 500, 1000). We can see that if M is fixed, increasing

the sample size does not improve the approximation of the asymptotics by Bai (1994) and

PZ(2005) in finite samples. In contrast, the compatibility of the new approximation with the

finite sample pdfs at T = 100, 200, 500, 1000 shows the approximation of Theorem 1.5.1 is

adequate no matter what T is. The reason why increasing the sample size does not improve

the approximation of the existing asymptotics in this case is because M is fixed. It is not T

per se or δ per se but the relative magnitude of them that drives the shape of finite sample

patterns of the break point estimator. This relative effect is picked up by M . For a given

value of M , the finite sample behavior of the break point estimator is the same whether T

is large and δ is small or T is small and δ is large.

Figure 1.8 looks at fixed δ with T getting bigger. In that case, M is also getting bigger.

As is expected that the asymptotic approximations of the existing theories are getting better

as M increases, while Theorem 1.5.1 continues to provide a close approximation to finite

sample behaviors of λ̂TS and λ̂MS as shown in this figure.

One additional advantage of the new asymptotics lies in the finite sample approximation
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Figure 1.7. The finite sample pdf and the asymptotic pdf by Bai(1994) and PZ(2005) of
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under different λc. The normalized asymptotics (the limiting distributions of λ̂ − λc) by

Bai (1994) and PZ(2005) are invariant to λc. (See equation (1.3.5)and (1.3.6).) In contrast,

the finite sample behavior depends on λc, and this is captured by Theorem 1.5.1. We can

see in equations (1.5.13) and (1.5.15), G1, the leading term, does not depend on λc, while

G2 does depend on λc and attains its maximum at λc; hence the limiting distributions of

λ̂TS − λc and λ̂MS − λc are functions of λc. Figure 1.9 compares the new and existing

aymptotics with finite sample pdfs for λc = 0.2. Compared to the λc = 0.5 case in

Figure 1.3, when λc 6= 0.5, the existing asymptotics miss the tail behavior to an even

greater extent, while the new asymptotics nails them down.

Figure 1.10 compares λ̂TS and λ̂MS at λc = 0.2 using the new asymptotics. Compared

to the λc = 0.5 case in Figure 1.4, where the distributions of λ̂TS and λ̂MS are symmetric

around λ = 0.5, the distributions of λ̂TS and λ̂MS here are asymmetric around λ = 0.2.

The estimator at λ < 0.2 has a lower density than that at λ > 0.2 for λ̂TS . For λ̂MS , the

behavior on the right and left side are reversed. This is fairly intuitive: when M is small,

the δ = 0 asymptotics dominates, which results in this asymmetry in the distributions. We

may also notice that GTS(λ, λc
1) − λc

1 is symmetric to GTS(λ, λc
2) − λc

2 around λ = 0,

where λc
2

.
= 1− λc

1. This analysis also holds for λ̂MS .

Trimming is used by most break tests to deal with unknown break dates. Trimming also

affects the performance of break point estimators. Theorem 1.5.1 captures the effect of

trimming well. The trimming affects the asymptotics through the set Λ in equation (1.5.12)

and (1.5.14), which explains big differences in the tail behaviors. Figure 1.11 plots the

asymptotic distributions and finite sample distributions with trimming of 0.05, 0.10, 0.15,

and 0.20. As expected, with the increase of trimming, the pile up in the tails becomes more

pronounced. Theorem 1.5.1 again captures the tail behavior well.

The pattern of concentration around λc for λ̂TS and λ̂MS changes with different trim-

ming. When trimming=0.05, λ̂TS dominates λ̂MS in the densities around λ = λc. With the

increase of trimming, this dominant effect tends to reverse. When trimming=0.2, λ̂MS has
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higher density at λ = λc. Also the tails change according to different trimmings, especially

for λ̂TS . When trimming=0.05, it has little density in the tails. But when trimming=0.2,

λ̂TS has considerable mass in the tails while λ̂MS does not change that much, which might

be the reason why λ̂MS becomes dominant.

1.6 Break Point Estimators of The Trend Shift Model and

its Partial Sum Model

Given that λ̂TS can be more accurate than λ̂MS when ut ∼ I(1), it might be possible that

when ut ∼ I(0), a more precise estimator of λc can be obtained by partial summing the

model and inducing a unit root in the error. Similar to the “TS-MS” models, I define a

second pair of models: the level trend shift model (TS), and its partial sum, the quadratic

shift model (QS). The level model is still the trend shift model (1.2.1). However, the noise

assumption is changed from I(1) errors to I(0), defined in assumption (A1.c).

(A1.c) ut = et, where t = 1, · · · , T,

and et is defined in (A1.a).

Because of I(0) errors, the break magnitude δ is assumed to be within a T−3/2 neighbor-

hood of zero using the assumption

(A2.d) δ = δ∗

T3/2 , δ∗ = a constant scalar. (1.6.18)

Under assumption (A1.c) and (A2.d), for the trend shift model under I(0) errors, PZ(2005)

prove that

T 3/2(λ̂TS − λc)
d−→ N(0,

4

λc(1− λc)

d(1)2

δ2 ). (1.6.19)

If we define M
.
= δT3/2

d(1) , PZ’s result can be rewritten as
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λ̂TS − λc ≈ N(0,
4

λc(1− λc)

1

M2 ).

Taking the partial sum of model (1.2.1), we can obtain the partial sum model:

St = αt + β
1

2
(t2 + t) + δ

t∑
j=1

DTj(λ
c) + vt (1.6.20)

vt = vt−1 + et, t = 1, · · · , T,

where St
.
=

∑t
j=1 yj , vt

.
=

∑t
j=1 uj .

We rewrite the partial sum model as

St = (α +
β

2
)t +

β

2
t2 + δ

t∑
j=1

DTj(λ
c) + εt. (1.6.21)

Define α∗ .
= α + β

2 , β∗ .
= β

2 , and DQt(λ
c)

.
=

∑t
j=1 DTj(λ

c), a quadratic shift. Equation

(1.6.21) is expressed as

St = α∗t + β∗t2 + δDQt(λ
c) + εt. (1.6.22)

Define SSR0
QS and SSRQS(λ) as SSR0 and SSR(λ) for the quadratic shift model

(1.6.22). SSR0
QS and SSRQS(λ) are calculated as

SSR0
QS

.
=

T∑
t=1

[St − (α̃∗t + β̃∗t2)]2,

SSRQS(λ)
.
=

T∑
t=1

[St − (α̂∗t + β̂∗t2 + δ̂DTt(λ))]2,

where α̃∗ and β̃∗ are the OLS estimates of model (1.6.22) with δ = 0 imposed; α̂∗, β̂∗, and

δ̂ are the OLS estimates of model (1.6.22) with no restrictions imposed.

The break point estimator λ̂QS is obtained by minimizing the SSRQS(λ):

λ̂QS = arg min
λ∈Λ

SSRQS(λ). (1.6.23)

Similar to what we see before in the distribution of λ̂TS from the trend shift model

under I(1) errors, there is also a discrepancy between their asymptotic theory and the finite
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Figure 1.12. Finite and asymptotic pdf by Theorem 1.6.2 and PZ(2005) (only for λ̂TS)
of λ̂TS and λ̂QS (“TS-QS”) under I(0) u′ts, λc = 0.5, T = 100, d(1) = 1, and δ =
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sample behaviors of this estimator. On the left column of Figure 1.12 are the finite sample

histograms (T = 100) of λ̂TS (The histograms on the right column are for the break point

estimator from the partial sum model which will be analyzed in Theorem 1.6.2). The finite

sample histograms exhibit not only non-normal distributions but also the complicated tail

behaviors of the break point estimator. The limiting distribution for λ̂QS is not available in

the literatures. Using the same approach as Theorem 1.5.1, I derive new asymptotic limits

of λ̂TS and λ̂QS from the trend shift model under I(0) errors and its partial sum model.

The proof is similar to that of Theorem 1.5.1. (See Appendix A.5)

Theorem 1.6.2 Suppose the regressions of the level model (1.2.1) and its partial sum

(1.6.20) are estimated using λ ∈ Λ ⊆ (0, 1) and T c
b

.
= λcT is the true break. Under

assumption (A1.c) and (A2.d), the break point estimators by minimizing the SSR(λ) have

the limiting distributions as follows.

1. For the level model (1.2.1) under I(0) errors (A1.c),

λ̂TS ⇒ arg max
λ∈Λ

{
[
∫ 1
0 F (r, λ)dW (r) + δ∗

d(1)
∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
} (1.6.24)

where

F (r, λ)
.
=

{
λ3 − 2λ2 + λ− (2λ3 − 3λ2 + 1)r, if r ≤ λ,

λ3 − 2λ2 − (2λ3 − 3λ2)r, if r > λ.

which implies the approximation

λ̂TS − λc ≈ arg max
λ∈Λ

{
[
∫ 1
0 F (r, λ)dW (r) + M

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
− λc},(1.6.25)

where M = δ∗
d(1) ≡

δT3/2
d(1) .

2. For the partial sum model (1.6.20),

λ̂QS ⇒ arg max
λ∈Λ

{
[
∫ 1
0 Q(r, λ)W (r)dr + δ∗

d(1)
∫ 1
0 Q(r, λ)Q(r, λc)dr]2∫ 1

0 Q(r, λ)2dr
} (1.6.26)

where
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Q(r, λ)
.
=

(r − λ)2

2
1(r > λ)− (−λ + 2λ2 − 2λ4 + λ5)r − (

1

2
− 5λ2

3
+

5λ4

2
− 4λ5

3
)r2.

which implies the approximation

λ̂QS − λc ≈ arg max
λ∈Λ

{
[
∫ 1
0 Q(r, λ)W (r)dr + M

∫ 1
0 Q(r, λ)Q(r, λc)dr]2∫ 1

0 Q(r, λ)2dr
− λc}.

(1.6.27)

Similar to Theorem 1.5.1, the distribution can be decomposed into two parts: one is

determined by the null asymptotic distribution and the other is determined by the break

magnitude. Also, the asymptotic distributions are continuous in the break magnitude. For

the same reason, both λ̂TS and λ̂QS are consistent to some extent when M is big. Fig-

ure 1.12 shows similar patterns of a comparison between the break point estimators from

the “TS-QS” models and those from “TS-MS” . Generally with small δ∗, the break point

estimator from the partial sum model has thinner tails than from the level model. This

means that for small values of the break magnitude, it would be better to use the partial

sum model to obtain the break point estimator.

1.7 Application to One-step Ahead Forecasts

The previous analysis shows λ̂TS could be more precise than λ̂MS , which means choosing

λ̂TS might be sensible in applications that use break point estimates, such as modeling,

tests, and forecasts. In this section, we will see if the thinner tails of λ̂TS can result in better

focasts compared to λ̂MS . Ng and Vogelsang (2002)(NV hereafter) discuss the forecasting

of the dynamic time series in the presence of the deterministic components, where the MSE

of the forecast is considered as a criterion to evaluate different modeling approaches. Two

approaches, OLS1 and OLS2, defined in NV(2002), are used for the trend shift model in

this chapter. The definition of these approaches are described as follows.
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Model (1.2.1) is the focus, which is the same model used by NV(2002). Let mt denote

the deterministic part of yt and mt
.
= µ + βt + δDTt(λ

c). The error is defined as

ut = αut−1 + εt. (1.7.28)

where εt ∼ i.i.d. N(0, 1). The assumption on ut is extended to cover both I(1) and I(0)

cases by allowing |α| ≤ 1.

1. OLS1

The data generating process (DGP) can be written as

yt = d0 + d1t + d2DTt(λ
c) + αyt−1 + εt. (1.7.29)

The feasible one-step forecast:

yt+1|T = d̂0 + d̂1t + d̂2DTt(λ
c) + α̂yt−1 + εt. (1.7.30)

The OLS1 approach first applies OLS to equation (1.7.29) to obtain d̂0, d̂1, d̂2, α̂, and ût;

then the estimated parameters are used in equation (1.7.30) to obtain the yT+1|T .

2. OLS2

The feasible one-step forecast is given by

ŷT+1|T = m̂T+1 + α̂(yT − m̂T ). (1.7.31)

The OLS2 approach first applies OLS to equation (1.2.1) to obtain ût, µ̂, β̂, and δ̂; then

applies OLS to equation (1.7.28) with ût to obtain α̂; finally, ŷT+1|T is obtained based on

equation (1.7.31).

The closer λ̂ is to the true break λc, the closer DTt(λ̂) is to DTt(λ
c), and hence the less

model misspecification is a concern. A smaller mismatch between the estimated model

and the true model leads to a smaller MSE of forecast. I compare the MSE of one-step

forecasts by OLS1 and OLS2 to illustrate the effect of different accuracies of the break

point estimators λ̂TS and λ̂MS on the forecasts.
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Table 1.1. Mean squared error (MSE) of one-step ahead forecasts of the trend shift model
(1.2.1) under I(1) errors (For one-step forecast ŷt+1, the MSE is defined as (ŷt+1−yt+1)

2.)
Simulation settings: λc = 0.5; δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5; ut is I(1); T = 101; and
N = 10, 000. OLS∗1 and OLS∗2 assume that ut is known to be I(1).

OLS1 OLS2 OLS∗1 OLS∗2
δ λ̂TS λ̂MS λ̂TS λ̂MS λ̂TS λ̂MS λ̂TS λ̂MS

0 1.214 1.300 1.240 1.267 1.107 1.323 1.049 1.090
0.1 1.208 1.301 1.230 1.269 1.109 1.317 1.046 1.089
0.2 1.185 1.286 1.209 1.290 1.093 1.282 1.033 1.090
0.3 1.174 1.258 1.195 1.302 1.091 1.237 1.025 1.087
0.4 1.159 1.231 1.181 1.301 1.083 1.197 1.016 1.076
0.5 1.148 1.196 1.167 1.291 1.078 1.162 1.010 1.063

First, I provide simulation results with the setting: λc = 0.5; δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5;

ut is I(1); T = 101; and N = 10, 000. Table 1.1 gives the OLS1 and OLS2 MSE of one-

step forecasts with λ̂TS and λ̂MS under different δ. The MSE of one-step forecasts using

λ̂TS are smaller than those using λ̂MS with both OLS1 and OLS2 methods for all δ′s

in this example. This happens because λ̂TS concentrates more around λc and has thinner

tails than λ̂MS , which leads to less misspecification in DTt(λ̂). With the same break point

estimator, the MSE by OLS2 are mostly bigger than OLS1, which is consistent to the

conclusion in NV(2002).

Next, I describe an empirical illustration of forecast errors using λ̂TS and λ̂MS . Similar

to PZ(2005), I estimate the break points and calculate one-step forecast of the annual (log)

real per capita GDP series between 1870 and 1996. All the data are taken from the Gronin-

gen Growth and Development Centre 2 (See Figure 1.13 and 1.14). World War I and

II along with other factors may affect the location of possible breaks in different ways on

different countries. Sweden seems to have a break in around 1920, while Italy more likely

has the break in around 1945. To choose the series with errors that are likely I(1), I follow

PZ(2005) and use the series of Italy, Norway and Sweden (See Figure 1.13). I use the trend

2 http://www.ggdc.net/maddison/Historical Statistics.
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Figure 1.13. The real (log) per capita GDP of Italy, Norway, and Sweden, which are of I(1)
errors. x-axes: year; y-axes: (log)Per Capita GDP.
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Figure 1.14. The real (log) per capita GDP of Australia, Canada, Germany, UK, and US,
which are of I(0) errors. x-axes: year; y-axes: (log)Per Capita GDP.
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Table 1.2. MSE in one-step forecast with the log real per capita GDP series (1870-1996)
with trend shift model (1.2.1) and different break point estimators (λ̂TS and λ̂MS), where
MSE of one-step forecast are calculated for 1987-1996.

OLS1 OLS2
Country λ̂TS λ̂MS λ̂TS λ̂MS

Italy 0.0016 0.0017 0.0018 0.0015
Norway 0.0003 0.0006 0.0002 0.0008
Sweden 0.0014 0.0015 0.0016 0.0014

shift model (1.2.1) for parameter estimation. The one-step forecast is only applied on the

data from year 1987 to 1996, based on estimated model using data of the whole period prior

to each forecasted year. Consider the one-step forecast in 1990 as an example. It is based

on the model estimated using the data from 1970 to 1989, and the MSE error is computed

as (ŷ1990 − y1990)
2. The overall error is the average MSE over these years. Table 1.2 lists

the average MSE errors of forecast for the real per capita GDP from 1987 to 1996 by OLS1

and OLS2. For OLS1, the MSE using λ̂TS is smaller than that using λ̂MS for all three

countries. For OLS2, it is hard to conclude which break point estimator leads to a smaller

MSE.

Since some series have I(0) errors around the trend and Theorem 1.6.2 reveals the advan-

tage of λ̂QS over λ̂TS under small break magnitude, it would be interesting to look at both

the Monte Carlo simulations and the empirical data to see how λ̂QS and λ̂TS behave in

finite samples. Table 1.3 lists the MSE of one-step forecast by OLS1 and OLS2 with λ̂TS

and λ̂QS under different δ. The setting is: λc = 0.5; δ = 0, 0.01, 0.02, 0.03, 0.04, 0.05; ut

is I(0); T = 101; and N = 10, 000. The MSE of one-step forecast using λ̂QS are smaller

than those using λ̂TS by both OLS1 and OLS2 for all δ′s, which is what we expected.

Next λ̂QS is used to see whether its more concentration around λc can lead to smaller

MSE in one-step forecast than λ̂TS for the GDP series. To choose the (log) GDP series

with I(0) errors, I follow PZ(2005) and choose Australia, Germany, United Kingdom, and

United States. Similar to the previous application, I choose the data from 1870 to 1996.
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Table 1.3. Mean squared error (MSE) of one-step ahead forecasts of the trend shift model
(1.2.1) under I(0) errors (For one-step forecast ŷt+1, the MSE is defined as (ŷt+1− yt+1)

2

for point forecasts.) Simulation settings: λc = 0.5; δ = 0, 0.01, 0.02, 0.03, 0.04, 0.05; ut is
I(0); T = 101; and N = 10, 000. OLS∗1 and OLS∗2 assume that ut is known to be I(0).

OLS1 OLS2 OLS∗1 OLS∗2
δ λ̂TS λ̂QS λ̂TS λ̂QS λ̂TS λ̂QS λ̂TS λ̂QS

0 1.454 1.158 1.453 1.155 2.539 2.204 2.124 2.031
0.01 1.417 1.152 1.416 1.149 2.502 2.202 2.114 2.030
0.02 1.336 1.134 1.335 1.132 2.400 2.197 2.091 2.026
0.03 1.261 1.110 1.260 1.108 2.303 2.188 2.068 2.024
0.04 1.191 1.098 1.190 1.096 2.238 2.179 2.049 2.022
0.05 1.150 1.094 1.149 1.092 2.204 2.173 2.037 2.022

Table 1.4. MSE in one-step forecast with the log real per capita GDP series (1870-1996)
with trend shift model (1.2.1) and different break point estimators (λ̂TS and λ̂QS), where
MSE of one-step forecast is calculated for 1987-1996.

OLS1 OLS2
Country λ̂TS λ̂QS λ̂TS λ̂QS

Australia 0.0035 0.0007 0.0033 0.0021
Germany 0.0028 0.0012 0.0031 0.0015

United Kingdom 0.0004 0.0005 0.0004 0.0009
United States 0.0003 0.0002 0.0002 0.0003

Figure 1.14 shows the raw data of the (log) real per capita GDP of these countries. I use

the same forecast methods on this data set. The one-step forecasts are provided from 1987

to 1996, and the overall error is the average MSE over 10 years. Table 1.4 lists the average

MSE of one-step forecast for the real per capita GDP from 1987 to 1996 when λ̂TS and

λ̂QS are used. We can see that, for United Kingdom and United States, the MSE of one-step

forecast is similar when λ̂TS and λ̂QS are applied under both OLS1 and OLS2 forecasts.

For Australia and Germany, MSE of one-step forecast with λ̂QS is considerably lower.
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1.8 Conclusions

In this chapter, I derive a new asymptotic theory for two break point estimators: one (λ̂TS)

is from the trend shift model and the other (λ̂MS) is from the first difference, the mean shift

model. Existing theories do not fully capture the finite sample behaviors, especially the tail

behavior of the finite sample distributions with small break magnitude. This discrepancy

is stronger when the true break is not in the middle of the sample. To better approximate

the finite sample distributions, a new asymptotic theory is developed under the assumption

that the break magnitude is within a small neighborhood of zero. The new asymptotic

theory captures the finite sample behaviors of λ̂TS and λ̂MS , especially the tails in the

densities. Under the same break magnitude, λ̂TS and λ̂MS are compared in precision

using the new asymptotics. Both theoretical analysis and simulations reveal that, under

small break magnitude, λ̂TS concentrates more around the true break. Using λ̂TS instead

of λ̂MS can decrease the MSE in one-step ahead forecasts.

There are other potentially interesting topics accompanying the comparison of the break

point estimators using the new approximation. A possible improvement of break tests could

be achieved if we choose the break estimator properly according to break magnitude in a

data dependent way. Also, this limiting distribution analysis of the single break estimators

would help the research on the multiple break point estimates, e.g. the break point estimates

in the presence of under-specification of the break numbers.
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CHAPTER 2

Fixed-b Analysis of LM Type Tests for a

Shift in Mean

2.1 Introduction

In this chapter we provide a theoretical analysis of lagrange multiplier (LM ) tests for a

shift in the mean of a univariate time series at an unknown date. We consider a class

of LM statistics based on nonparametric kernel estimators of the long run variance. The

main theoretical contribution of this part is to develop a fixed-b asymptotic theory for the

long run variance estimator. The fixed-b limit of the LM statistics depends on the kernel

and bandwidth needed to implement the long run variance estimator and the fixed-b limit

also depends on the magnitude of the mean shift under the alterative. This allows us to

theoretically capture to impact of the choice of bandwidth on both the size and power of

the tests. In particular we show that the bandwidth plays an important role on determining

whether the tests exhibit non-monotonic power (power that is not necessarily increasing as

the magnitude of the mean shift increases). Small bandwidths lead to tests with monotonic

power whereas large bandwidths lead to non-monotonic power.

We derive fixed-b results for both the case of stationary I(0) errors and nearly integrated
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I(1) errors. We obtain an unexpected and very useful finding. There exist bandwidths such

that, for a given significance level, the critical values of the LM statistics are the same for

both I(0) and I(1). Use of these ”robust” bandwidths and the associated fixed-b critical

values provides tests that are asymptotically robust to whether the errors are I(0) or I(1).

Such a simple way of obtaining robustness to the strength of serial correlation in the errors

should appeal to empirical researchers. Our robust LM tests complement the I(0)/I(1) ro-

bust tests in literature that have been developed for Wald-type tests. See Vogelsang (1997),

Vogelsang (1998) and Sayginsoy and Vogelsang (2010). While the various I(0)/I(1) ro-

bust tests are asymptotically valid whether the errors are I(0) or I(1), in finite samples

the Wald-type tests tend to over-reject when there is a negative moving average component

and an autoregressive root near one in the errors. In contrast, the robust LM tests do not

over-reject in this case although they do tend to over-reject when there is a negative mov-

ing average component but no autoregressive component is present. These complementary

finite sample properties of robust Wald and LM tests could be exploited to provide more

robust inference overall.

The approach and analysis in this chapter is related to some recent papers in the econo-

metrics literature on LM tests for a shift in mean. The possibility of non-monotonic power

of LM tests for a shift in mean where documented by Vogelsang (1999). The reason that

power can be non-monotonic is simple. LM statistics use long run variance estimators

based on residuals from the model estimated under the null hypothesis of no mean shift.

Therefore, when there is a shift in mean, the long run variance estimator is not invariant to

the magnitude of the mean shift. A large shift in mean can cause the denominator of an LM

statistic to be large and this can cause power to be low. While Vogelsang (1999) pin-pointed

the long run variance estimator as the source of non-monotonic power, he did not examine

the role played by the choice of bandwidth. A recent paper by Kejriwal (2009) proposed

the use of a hybrid long run variance estimator that can restore monotonic power to LM

tests. The hybrid estimator blends components of long run variance estimators based on
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null and alternative residuals. We show in this chapter that there is a direct link between the

statistics proposed by Kejriwal (2009) and the LM statistics based on a specific bandwidth

choice. Our theory shows that an explanation for the monotonic power of the statistics

proposed by Kejriwal (2009) is the use of a data dependent bandwidth based on alternative

residuals.

The results in this chapter on non-monotonic power add to a small but growing liter-

ature on non-monotonic power of tests for a shift mean. This literature was started by

Perron (1991) where simulation results were given for some well known tests for a shift

in mean. Vogelsang (1999) provided some theoretical explanations for non-monotonic

power for a large group of statistics. Other papers have given results for specific statis-

tics with contributions by Vogelsang (1997), Crainiceanu and Vogelsang (2007), Deng and

Perron (2008), Juhl and Xiao (2009) and Kejriwal (2009). Our research parallels the work

by Crainiceanu and Vogelsang (2007) in establishing a direct link between the bandwidth

and non-monotonic power. Crainiceanu and Vogelsang (2007) showed that the bandwidth

choice of the long run variance estimator is directly linked to non-monotonic power of

CUSUM and related tests for a shift in mean.

The remainder of the chapter is organized as follows. In the next section we describe

the model and lay out the assumptions. In Section 3 we define the statistics and their finite

sample properties are illustrated Section 4. In Section 5 we develop the fixed-b asymp-

totic theory for the LM tests and show that the fixed-b theory explains the important finite

sample patterns. In Section 6 we compute the I(0)/I(1) ”robust” bandwidths and examine

their finite sample performance when used with fixed-b critical values. For the most part,

the bandwidths effectively control the over-rejection problem caused by strong serial cor-

relation and in some cases retain good power. Section 7 establishes a direct relationship

between the hybrid Wald statistics proposed by Kejriwal (2009) and the LM statistics. The

proof of the main theoretical result of this chapter is given in an appendix.
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2.2 Model and Assumptions

Consider a simple mean shift model

yt = µ + δDUt(Tb) + ut, t = 1, 2, ..., T, (2.2.1)

where DUt(Tb) = 1(t > Tb) and 1(·) is the indicator function. We denote the true break

data as T 0
b , and following standard practice in the structural change literature, we assume

that the break point, λ0 = T 0
b /T , remains fixed as the sample size increases. Throughout

this chapter we assume that λ0 in unknown. Following Canjels and Watson (1997) and

Bunzel and Vogelsang (2005) among others we assume the error term is given by

ut = ρut−1 + εt, t = 1, · · · , T (2.2.2)

εt = d(L)et, d(L) =
∞∑
i=0

diL
i,

∞∑
i=0

i|di| < ∞, d(1)2 > 0 (2.2.3)

where L is the lag operator, {et} is a martingale difference sequence with supt E(e4
t ) < ∞,

E(et|et−1, et−2, · · · ) = 0 and E(e2
t |et−1, et−2, · · · ) = 1. When |ρ| < 1, the errors are

I(0) and when ρ = 1− c/T , where c is a constant the errors are nearly I(1). The pure unit

root error case is given when c = 0.

Under assumptions (2.2.2) and (2.2.3), some standard results are (see, for example,

Phillips (1987)):

T−1/2
[rT ]∑
t=1

ut ⇒ σW (r) if |ρ| < 1,

T−1/2u[rT ] ⇒ d(1)Vc(r) if ρ = 1− c

T
,

where σ2 = d(1)2/(1− ρ)2, W (r) is a standard Wiener process, Vc(r) =
∫ r
0 exp{−c(r −

s)}dW (s), [rT ] is the integer part of rT where r ∈ [0, 1] and⇒ denotes weak convergence.

The parameter σ2 needs to be estimated in order to test the null hypothesis that the mean

of yt is stable. Here we focus on the class of nonparametric spectral density estimators

given by,

σ̃2(m) = γ̃0 + 2
T−1∑
j=1

k(j/m)γ̃j , γ̃j = T−1
T∑

t=j+1
ũtũt−j ;
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where ũt = yt − ȳ are the OLS residuals from regression (2.2.1) with δ = 0 (no

shift in mean) imposed on the model. As usual, k(x) is the kernel function and m is

the bandwidth (or truncation lag for kernels that truncate). A kernel is labelled type

1 if k (x) is twice continuously differentiable everywhere, and as a type 2 kernel if

k (x) is continuous, twice continuously differentiable everywhere except at |x| = 1 and

k (x) = 0 for |x| ≥ 1. For type 2 kernels define the derivative from the left at x = 1 as

k′−(1) = limh→0 [(k(1)− k(1− h)) /h].

2.3 LM Tests for a Shift in Mean

We focus on testing the null hypothesis that there is no shift in mean:

H0 : δ = 0,

against the alternative

H1 : δ 6= 0.

For a given break date, Tb define the LM test as

LM(Tb, m) =
SSR0 − SSR(Tb)

σ̃2(m)

where SSR0 =
∑T

t=1 ũ2
t is the sum of squared residuals under the null hypothesis and

SSR(Tb) is the sum of squared residuals from the regression

yt = µ + δDUt(Tb) + ut. (2.3.4)

Because we treat the break date as unknown, we follow Andrews (1993) and Andrews and

Ploberger (1994) and consider supremum and mean tests of the form

MeanLMm = T−1
∑

Tb∈Λ∗
LM(Tb, m), SupLMm = sup

Tb∈Λ∗
LM(Tb, m)

42



where Λ∗ = {T ∗b , T ∗b + 1, · · · , T − T ∗b } is the set of possible break dates. The pa-

rameter λ∗ = T ∗b /T is held fixed as T increases and λ∗ determines the amount of trim-

ming used in computing the statistics. Note that because Tb only shows up through the

−SSR(Tb) component of LM(Tb, m), it follow that SupLMm = LM(T̂b, m) where

T̂b = arg minTb∈Λ∗ SSR(Tb).

2.4 Finite Sample Behavior of the LM Tests

In this section we use a simple simulation design to illustrate the impact of the bandwidth

choice on the performance of the Mean and Sup LM statistics. We generate data according

model (2.2.2) for the case where d(L) = 1 and et is an iid N(0, 1) process, i.e. a Gaussian

AR(1) model. We set µ = 0 without loss of generality. We focus exclusively on the

quadratic spectral (QS) kernel and we consider two data dependent bandwidth rules for m

based on Andrews (1991) using the AR(1) plug-in method. In the first case we use the null

OLS residuals, ũt when computing the AR(1) estimate needed for the bandwidth formula.

In the second case we compute the AR(1) estimate using the alternative OLS residuals

ût(T̂b) = yt − µ̂− δ̂DUt(T̂b)

where µ̂, δ̂ are the OLS estimates from regression (2.3.4) using the estimated break date

T̂b = arg minTb∈Λ∗ SSR(Tb) We denote the respective bandwidths by m̃ and m̂. We

report results for the sample size T = 120 and we use 5, 000 replications in all cases.

We use 15% trimming, i.e. λ∗ = 0.15. We compute rejection probabilities using critical

values taken from the I(0) asymptotic distribution of the statistics using results in Andrews

(1993) and Andrews and Ploberger (1994) which require consistency of σ̃2(m). Results

are reported for the nominal level of 0.05.

Empirical null rejections are reported in Table 2.1 and 2.2. The first column gives the

values of ρ used in the simulations. Columns two through four give results for the LM tests

using the null bandwidth, m̃ and whereas columns five through seven give results using the
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alternative bandwidth, m̂. For each bandwidth we report the average, across replications,

of the bandwidth relative to the sample size: b̃ = m̃/T and b̂ = m̂/T . Some interesting

patterns appear in the table. When the data is iid (ρ = 0), both data dependent bandwidths

are small and the tests have rejections not far from the nominal level. As ρ increases and

serial correlation becomes stronger, both bandwidths increase although b̃ increases faster

than b̂; in fact b̃ is quite large when ρ = 1. This makes sense because b̃ is based on an AR(1)

estimate that has less downward bias and is hence closer to one when ρ is close to one and

this inflates the bandwidth. For the MeanLM statistics, we see that rejections become

larger than 0.05 as ρ becomes closer to one with severe over-rejections when ρ = 1. This

is the usual over-rejection problem cased by a unit root in the error. The pattern for the

SupLM statistics are different. As ρ increases, both SupLM statistics tend to under-reject

and when ρ = 1, SupLMm̂ substantially under-rejects whereas SupLMm̃ slightly over-

rejects. It is surprising that SupLMm̂ under-rejects in the unit root case. Clearly there is a

complicated relationship between the values of ρ, the bandwidths and whether a test tends

to over-reject or under-reject.

Figures 2.1, 2.2, 2.3 and 2.4 depict finite sample power for the case where the break

occurs in the middle of the sample (λ0 = 0.5). The four panels correspond to the values of

ρ = 0.0.0.5, 0.9, 1.0. For the cases where ρ < 1, we see that power is non-monotonic when

the data dependent bandwidth is computed under the null. This finding of non-monotonic

power for LM-type tests was also documented by Vogelsang (1999) and Kejriwal (2009).

Interestingly, if the data dependent bandwidth is based on alternative residuals, we see that

the LM tests have monotonic power. This suggests the bandwidth has an important effect

on finite sample power functions. Table 2.3 and 2.4 and reports the average bandwidth

ratios (across replications) for the four values of ρ and a grid of values for the mean shift

magnitude δ. Notice that as δ increases, b̃ steadily grows and can become very large when

the mean shift is large. This is not surprising given the well known result of Perron (1990).

Because the AR(1) parameter is being estimated using null residuals, the estimated AR(1)
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Table 2.1. Null Rejection Probabilities Using Standard (b = 0) I(0) Critical Values, 5%
Nominal Level, 15% Trimming, QS Kernel.

Panel A: T = 120

ρ ave(̃b) MeanLMm̃ SupLMm̃ ave(̂b) MeanLMm̂ SupLMm̂

0 0.012 0.022 0.013 0.012 0.052 0.04
0.5 0.048 0.026 0.006 0.044 0.069 0.038
0.7 0.082 0.018 0.001 0.072 0.077 0.028
0.9 0.199 0.002 0.002 0.142 0.096 0.012
1 0.589 0.219 0.041 0.214 0.265 0.016

Panel B: Fixed-b Asymptotic Rejections

b MeanLM SupLM

I(0) 0.02 0.049 0.044

I(1), c = 60 0.04 0.092 0.047
0.06 0.065 0.016
0.08 0.051 0.006

I(1), c = 36 0.06 0.096 0.025
0.08 0.069 0.006
0.10 0.051 0.002

I(1), c = 12 0.12 0.093 0.000
0.14 0.063 0.000
0.16 0.041 0.001
0.18 0.023 0.001
0.20 0.014 0.003
0.22 0.008 0.005

I(1), c = 0 0.18 0.281 0.000
0.20 0.182 0.000
0.22 0.077 0.000
0.58 0.059 0.087
0.60 0.071 0.098
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Table 2.2. Null Rejection Probabilities Using Standard (b = 0) I(0) Critical Values, 5%
Nominal Level, 15% Trimming, Bartlett Kernel.

Panel A: T = 120

ρ ave(̃b) MeanLMm̃ SupLMm̃ ave(̂b) MeanLMm̂ SupLMm̂

0 0.012 0.051 0.037 0.013 0.056 0.042
0.5 0.055 0.079 0.042 0.050 0.090 0.058
0.7 0.088 0.085 0.023 0.078 0.104 0.051
0.9 0.185 0.066 0.002 0.140 0.162 0.035
1 0.501 0.191 0.012 0.197 0.501 0.042

Panel B: Fixed-b Asymptotic Rejections

b MeanLM SupLM

I(0) 0.02 0.048 0.041

I(1), c = 60 0.04 0.139 0.106
0.06 0.099 0.047
0.08 0.077 0.023

I(1), c = 36 0.06 0.149 0.079
0.08 0.110 0.033
0.10 0.090 0.012

I(1), c = 12 0.12 0.175 0.004
0.14 0.141 0.001
0.16 0.111 0.000
0.18 0.087 0.001
0.20 0.069 0.001
0.22 0.050 0.001

I(1), c = 0 0.18 0.478 0.000
0.20 0.434 0.000
0.22 0.382 0.000
0.50 0.016 0.020
0.52 0.019 0.026
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Table 2.3. Finite Sample Behavior of Data Dependent Bandwidth to Sample Size Ratios,
T = 120, QS Kernel.

ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 1

δ ave(̃b) ave(̂b) ave(̃b) ave(̂b) ave(̃b) ave(̂b) ave(̃b) ave(̂b) ave(̃b) ave(̂b)

0 0.012 0.012 0.048 0.044 0.082 0.072 0.199 0.142 0.589 0.214
0.5 0.014 0.012 0.051 0.044 0.085 0.072 0.201 0.142 0.589 0.214
1 0.023 0.012 0.059 0.045 0.092 0.072 0.207 0.142 0.590 0.214

1.5 0.035 0.012 0.072 0.045 0.104 0.072 0.218 0.141 0.592 0.214
2 0.049 0.012 0.088 0.045 0.120 0.073 0.231 0.141 0.594 0.214
3 0.082 0.012 0.128 0.046 0.162 0.074 0.268 0.142 0.599 0.214
4 0.120 0.012 0.176 0.046 0.212 0.075 0.314 0.143 0.607 0.216
5 0.162 0.012 0.228 0.047 0.266 0.076 0.364 0.147 0.615 0.220
6 0.207 0.012 0.282 0.047 0.322 0.077 0.416 0.152 0.625 0.227
7 0.252 0.012 0.336 0.047 0.377 0.078 0.467 0.156 0.636 0.235
8 0.297 0.012 0.388 0.047 0.429 0.078 0.515 0.161 0.647 0.245
9 0.342 0.012 0.437 0.047 0.479 0.078 0.559 0.165 0.660 0.256

10 0.385 0.012 0.484 0.047 0.524 0.078 0.600 0.167 0.673 0.268
25 0.771 0.012 0.834 0.047 0.853 0.078 0.870 0.171 0.821 0.334
50 0.921 0.012 0.942 0.047 0.947 0.078 0.947 0.171 0.905 0.334

100 0.969 0.012 0.975 0.047 0.976 0.078 0.974 0.171 0.950 0.334

parameter approaches one as δ increases and this inflates the bandwidth. In contrast, b̂

changes very little as δ increases when ρ is small and b̂ increases much more slowly as δ

increases when ρ is close to one. This reflects the fact that b̂ is based on the alternative

residuals which are nearly invariant to δ when T̂b is close to T 0
b . It appears that large

bandwidths are leading to tests with non-monotonic power.

To see the link between the bandwidth and monotonic power more clearly, we simulated

finite sample for the case of T = 120 and ρ = 0.7 using both data dependent bandwidths

and several fixed values of b. Results for the MeanLM and SupLM statistics are given,

respectively, in the top panels of Figures 2.5, 2.6, 2.7 and 2.8. For MeanLM we see that

power is monotonic for b = 0.02, 0.1. For b = 0.18 power is lower but is still monotonic.

By just increasing b to 0.2, power suddenly becomes non-monotonic. This is the equiv-

alent of changing m from 22 to 24 given the sample size of 120. As b increases further

power completely collapses. Similar patterns hold for SupLM although the change from

monotonic power to non-monotonic power happens more quickly as b increases. Because
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Figure 2.1. Finite Sample Power, QS kernel, 15% Trimming.
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Figure 2.2. Finite Sample Power, QS kernel, 15% Trimming.
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Figure 2.3. Finite Sample Power, Bartlett kernel, 15% Trimming.
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Figure 2.4. Finite Sample Power, Bartlett kernel, 15% Trimming.
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Table 2.4. Finite Sample Behavior of Data Dependent Bandwidth to Sample Size Ratios,
T = 120, Bartlett Kernel

ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 1

δ ave(̃b) ave(̂b) ave(̃b) ave(̂b) ave(̃b) ave(̂b) ave(̃b) ave(̂b) ave(̃b) ave(̂b)

0 0.012 0.013 0.055 0.050 0.088 0.078 0.185 0.140 0.501 0.197
0.5 0.014 0.013 0.058 0.051 0.090 0.078 0.187 0.140 0.502 0.197
1 0.025 0.013 0.066 0.051 0.097 0.079 0.192 0.140 0.503 0.197

1.5 0.041 0.013 0.078 0.051 0.108 0.079 0.200 0.140 0.504 0.197
2 0.056 0.012 0.093 0.052 0.122 0.080 0.210 0.140 0.505 0.197
3 0.088 0.012 0.129 0.052 0.157 0.081 0.238 0.140 0.510 0.197
4 0.122 0.012 0.169 0.053 0.196 0.082 0.271 0.141 0.515 0.199
5 0.158 0.012 0.210 0.053 0.238 0.083 0.307 0.144 0.522 0.202
6 0.193 0.012 0.250 0.053 0.279 0.083 0.344 0.148 0.530 0.207
7 0.228 0.012 0.290 0.053 0.318 0.084 0.379 0.152 0.539 0.213
8 0.262 0.012 0.327 0.053 0.355 0.084 0.412 0.155 0.548 0.220
9 0.294 0.012 0.361 0.053 0.389 0.084 0.443 0.159 0.558 0.229

10 0.324 0.012 0.393 0.053 0.420 0.084 0.470 0.161 0.568 0.238
25 0.579 0.012 0.619 0.053 0.631 0.084 0.649 0.164 0.670 0.288
50 0.673 0.012 0.686 0.053 0.690 0.084 0.695 0.164 0.707 0.288

100 0.702 0.012 0.706 0.053 0.707 0.084 0.709 0.164 0.712 0.288

the alternative data dependent bandwidth, m̂, leads to relatively small values of b, the LM

tests using m̂ are, on average, using bandwidths in the monotonic power range. In con-

trast, because m̃ increases as δ increases, LM tests based on m̃ are using bandwidths in the

non-monotonic power range when δ is large. In other words, as δ increases, the LMm̃ tests

jump from ”low b” power curves to ”high b” power curves and this results in non-monotonic

power.

In summary, the finite sample simulations show that patterns in null rejection probabili-

ties and power depend on the bandwidth and this relationship in turn depends on the value

of ρ. This suggests that a theoretical explanation for the finite sample patterns requires an

asymptotic theory that depends on the bandwidth and the strength of the serial correlation.

The natural candidate is fixed-b asymptotic theory used in conjunction with nearly I(1)

asymptotics which we explore in the next section.
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Figure 2.5. Finite Sample and Asymptotic Power of MeanLM , QS kernel, 15% Trimming.
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2.5 Fixed-b Asymptotic Analysis of LM Mean Shift Tests

In this section, we provide fixed-b asymptotic results for the LM tests. These results com-

plement the fixed-b results derived by Sayginsoy and Vogelsang (2010) for the case of

nonparametric HAC Wald statistics for testing for a shift in mean. We derive results under

the local alternative

HA : δ = δ0g(T )

where g(T ) = T−1/2 if |ρ| < 1 and g(T ) = T 1/2 if ρ = 1− c/T . Because the numerator

of LM , SSR0 − SSR(Tb), is identical to the Wald statistic, its limit follows directly

from the results of Sayginsoy and Vogelsang (2010) (Theorems 1 & 2). Our theoretical

contribution is obtaining the fixed-b limit of σ̃2(m) under HA. Obviously, results for the

null distribution of the LM tests follow by setting δ0 = 0. The following theorem gives the

limiting distribution of LM under the local alternative.

Theorem 2.5.3 Suppose the true model is given by (2.2.1) with break date T 0
b = λ0T .

Suppose the LM statistic is computed using model (2.2.1) using the break date Tb = λT .

Let m = bT , where b ∈ (0, 1] is fixed as T increases. Under the local alternative HA, as

T →∞,

LM(Tb, m) ⇒ λ(1− λ)[Pi(λ) + Ψ(λ, λ0)δ
∗]2

Φi(b, δ0)
, i = 0 if {ut} is I(0), i = 1 if {ut} is I(1)

where

P0(λ) =
1

λ(1− λ)

∫ 1

0
[1(r > λ)− (1− λ)]dW (r),

P1(λ) =
1

λ(1− λ)

∫ 1

0
[1(r > λ)− (1− λ)]Vc(r)dr,

Ψ(λ, λ0) =


1−λ0

λ(1−λ)2
, if λ ≤ λ0,

λ0
λ2(1−λ)

, if λ > λ0.

δ∗ = δ0/σ, if {ut} is I(0); δ0/d(1), if {ut} is I(1).

57



Q0(r) =
δ0
σ

[(r − λ0)1(r > λ0)− r(1− λ0)] + W (r)− rW (1),

if {ut} is I(0),

Q1(r) =
δ0

d(1)
[(r − λ0)1(r > λ0)− r(1− λ0)] +

∫ r

0
Vc(s)ds− r

∫ 1

0
Vc(s)ds,

if {ut} is I(1).

Φi(b, δ0) =

∫ 1
0

∫ 1
0 −

1
b2

k′′(r−s
b )Qi(r)Qi(s)drds,

if k(.) is of type 1;∫ ∫
|r−s|<b−

1
b2

k′′((r − s)/(b))Qi(r)Qi(s)drds + 2
bk′−(1)

∫ 1−b
0 Qi(r + b)Qi(r)dr,

if k(.) is of type 2;
2
b

∫ 1
0 Qi(r)

2dr − 2
b

∫ 1−b
0 Qi(r + b)Qi(r)dr,

if k(.) is Bartlett.

MeanLMm ⇒
∫ 1−λ∗

λ∗
λ(1− λ)[Pi(λ) + Ψ(λ, λ0)δ

∗]2

Φi(b, δ0)
dλ,

SupLMm ⇒ sup
λ∈[λ∗,1−λ∗]

λ(1− λ)[Pi(λ) + Ψ(λ, λ0)δ
∗]2

Φi(b, δ0)
.

The proof of Theorem 1 is given in the Appendix. The limits given by Theorem 1 depend

on the kernel, bandwidth and magnitude of the mean shift. In particular, the denominator

of LM depends on δ∗. This contrasts with standard asymptotic theory where σ̃2(m) would

remain consistent under the local alternative HA and the denominator of LM would not

depend on δ∗ (nor the kernel and bandwidth). Notice that as δ∗ increases, the numerator of

LM becomes larger. However, the denominator also increases and this can cause power to

fall. Whether or not power can be non-monotonic is difficult to discern from the limiting

random variables given that the relative impact of an increase of δ∗ on the numerator and

denominator depends on the kernel and bandwidth.

Because of the complicated forms of the fixed-b limits, we cannot theoretically deter-

mine the impact of kernel or bandwidth choice on null rejection probabilities when using

standard (b = 0) I(0) critical values nor can we determine when power will be monotonic

or non-monotonic. Because we can easily simulate the fixed-b asymptotic limits, we can
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easily compute null rejection probabilities and power for a given kernel and bandwidth. We

can simulate the limits for the case where the errors are I(0) and, for cases where strong

serial correlation is present in the data, can simulate the limits using the I(1) results with c

chosen to reflect the strength of the serial correlation.

Table 2.1 and 2.2 (Panel B) report simulated asymptotic null rejection probabilities using

standard (b = 0) I(0) 5% critical values. We set δ0 = 0. We simulated the fixed-b limits

using 10, 000 replications and the Wiener processes in the limits were approximated using

scaled partial sums of 1,000 iid N(0, 1) random deviates. We report results for the QS

kernel and a selection of bandwidths, b, in neighborhoods around the average finite sample

data dependent bandwidths. The first row of Panel B reports rejections for the I(0) case

with b = 0.02. Focusing on the QS kernel in Table 2.1 we see that rejections are very similar

to what was obtained in finite samples with ρ = 0 where the data dependent bandwidths

were small. The next three rows give results for I(1) errors with c = 60 which corresponds

to ρ = 0.5 in a sample with T = 120. The tendency of the MeanLM test to slightly over-

reject is captured by the asymptotics as is the tendency of the SupLM test to under-reject.

As we go farther down the table, c decreases and we see that asymptotic rejections for

MeanLM tend to fall but then increase dramatically when c = 0 and b is below the finite

sample average of the data dependent bandwidths. Rejections for SupLM remain very

small as c increases although when c = 0, SupLM tends to over-reject when b is close

to 0.6 but tends to substantially under-reject when b is close to 0.2. Overall, the fixed-b

asymptotic rejections capture all of the salient patterns in the finite sample rejections. One

thing apparent from Panel B of Table 2.1 and 2.2 is that null rejections are very sensitive to

the value of b.

To further explore the impact of the bandwidth on null rejections, we report results for

a full grid of bandwidths in Table 2.5 and 2.6. Keeping in mind that these are asymp-

totic fixed-b rejections when using standard (b = 0) I(0) critical values, several interest-

ing patterns emerge. When the errors are I(0), increasing the bandwidth tends to cause
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over-rejections and over-rejections can be very large when b is large. When the errors

are I(1), the patterns are different. When small bandwidths are used, there can be large

over-rejections especially when c = 0. As the bandwidth increases, there is tendency to

under-reject especially with the SupLM statistic. It is striking how little b has to increase

for SupLM to switch from extreme over-rejections to extreme under-rejections. As b be-

comes large, both MeanLM and SupLM again tend to severely over-reject regardless of

the value of c. The upshot of Table 2.5 and 2.6 is that fixed-b asymptotics correctly predicts

that the finite sample null behavior of both statistics will be very sensitive to the bandwidth

and the strength of the serial correlation.

We now turn to asymptotic power simulations. We focus on the case of c = 36 which

corresponds to the finite sample case of T = 120 and ρ = 0.7 as was depicted in the upper

panels of Figures 2.5, 2.6, 2.7 and 2.8. We simulated asymptotic power using standard

(b = 0) I(0) 5% critical values for the same grid of b values used in the finite sample power

simulations. The results are reported in the lower panels of Figures 2.5, 2.6, 2.7 and 2.8. We

used a grid for δ∗ that maps into the values of δ used in the T = 120 case. We see that the

fixed-b asymptotic rejections capture the salient features of the finite sample power results.

As b increases power goes from monotonic to non-monotonic. Fixed-b asymptotic theory

successfully captures the impact of b on power and correctly predicts when non-monotonic

power will occur.

2.6 Bandwidths That Control Size

A close inspection of the rejections reported in Table 2.5 and 2.6 suggests there are

bandwidths such that the critical values of a given statistic are the same in the I(0) and

I(1, c = 0) cases. For example, rejections for MeanLM decrease as b increases in both

the I(0) and I(1, c = 0) cases, but the decrease is faster in the I(1, c = 0) case. There

appears to be a value of b between 0.22 and 0.24 where rejections in the two cases are the
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Table 2.5. Fixed-b Asymptotic Null Rejection Probabilities Using Standard (b = 0) I(0)

Critical Values, 5% Nominal Level, 15% Trimming, QS Kernel

MeanLM SupLM

I(1) I(1)
b I(0) c = 60 c = 36 c = 12 c = 0 I(0) c = 60 c = 36 c = 12 c = 0

0.020 0.049 0.185 0.306 0.647 0.939 0.044 0.177 0.321 0.681 0.946
0.040 0.047 0.092 0.151 0.394 0.825 0.039 0.047 0.090 0.333 0.801
0.060 0.045 0.065 0.096 0.268 0.721 0.035 0.016 0.025 0.122 0.616
0.080 0.042 0.051 0.069 0.188 0.646 0.030 0.006 0.006 0.017 0.254
0.100 0.038 0.042 0.051 0.133 0.576 0.032 0.004 0.002 0.001 0.001
0.120 0.038 0.037 0.042 0.093 0.507 0.040 0.003 0.001 0.000 0.000
0.140 0.034 0.031 0.033 0.063 0.440 0.053 0.005 0.002 0.000 0.000
0.160 0.032 0.026 0.027 0.041 0.368 0.069 0.011 0.005 0.001 0.000
0.180 0.031 0.022 0.020 0.023 0.281 0.091 0.017 0.009 0.001 0.000
0.200 0.029 0.018 0.016 0.014 0.182 0.121 0.029 0.016 0.003 0.000
0.220 0.029 0.016 0.013 0.008 0.077 0.150 0.046 0.026 0.005 0.000
0.240 0.031 0.016 0.011 0.004 0.012 0.184 0.066 0.042 0.010 0.001
0.260 0.032 0.019 0.012 0.004 0.001 0.223 0.090 0.059 0.016 0.002
0.280 0.038 0.023 0.017 0.004 0.001 0.258 0.113 0.082 0.026 0.003
0.300 0.053 0.034 0.025 0.006 0.001 0.297 0.144 0.107 0.038 0.004
0.320 0.074 0.051 0.039 0.013 0.001 0.332 0.177 0.136 0.053 0.007
0.340 0.099 0.074 0.060 0.027 0.003 0.370 0.210 0.166 0.072 0.011
0.360 0.126 0.098 0.084 0.043 0.008 0.402 0.237 0.192 0.091 0.017
0.380 0.151 0.123 0.105 0.060 0.014 0.431 0.266 0.219 0.112 0.023
0.400 0.174 0.147 0.129 0.075 0.020 0.458 0.293 0.245 0.133 0.028
0.420 0.199 0.169 0.150 0.091 0.024 0.484 0.322 0.271 0.153 0.033
0.440 0.218 0.189 0.171 0.106 0.028 0.510 0.347 0.296 0.170 0.040
0.460 0.241 0.206 0.188 0.120 0.030 0.538 0.374 0.323 0.189 0.045
0.480 0.266 0.228 0.207 0.137 0.033 0.568 0.402 0.350 0.207 0.051
0.500 0.292 0.252 0.231 0.151 0.036 0.598 0.428 0.376 0.230 0.056
0.520 0.318 0.278 0.257 0.170 0.041 0.626 0.455 0.403 0.252 0.063
0.540 0.345 0.307 0.284 0.193 0.045 0.658 0.488 0.430 0.272 0.070
0.560 0.380 0.338 0.314 0.217 0.052 0.686 0.516 0.460 0.297 0.078
0.580 0.417 0.376 0.347 0.245 0.059 0.712 0.546 0.490 0.324 0.087
0.600 0.456 0.414 0.388 0.280 0.071 0.734 0.575 0.520 0.351 0.098
0.620 0.499 0.457 0.430 0.323 0.085 0.757 0.605 0.549 0.379 0.108
0.640 0.546 0.507 0.480 0.374 0.102 0.780 0.635 0.580 0.412 0.121
0.660 0.599 0.557 0.534 0.428 0.129 0.798 0.662 0.609 0.443 0.139
0.680 0.652 0.614 0.589 0.490 0.164 0.817 0.689 0.637 0.472 0.157
0.700 0.710 0.672 0.652 0.553 0.209 0.834 0.713 0.666 0.507 0.174
0.720 0.762 0.734 0.716 0.622 0.258 0.851 0.736 0.692 0.536 0.194
0.740 0.818 0.794 0.779 0.694 0.315 0.866 0.754 0.713 0.563 0.216
0.760 0.870 0.849 0.839 0.773 0.380 0.880 0.773 0.736 0.590 0.235
0.780 0.916 0.903 0.896 0.857 0.472 0.894 0.793 0.755 0.615 0.255
0.800 0.954 0.946 0.945 0.930 0.594 0.903 0.811 0.773 0.638 0.274
0.820 0.976 0.973 0.976 0.977 0.812 0.914 0.828 0.791 0.659 0.294
0.840 0.988 0.987 0.989 0.993 0.979 0.923 0.843 0.808 0.680 0.311
0.860 0.995 0.994 0.995 0.997 0.996 0.932 0.857 0.824 0.702 0.326
0.880 0.998 0.997 0.998 0.999 0.999 0.943 0.872 0.840 0.723 0.341
0.900 0.999 0.999 0.999 0.999 1.000 0.951 0.884 0.854 0.744 0.358
0.920 1.000 0.999 0.999 0.999 1.000 0.959 0.897 0.870 0.764 0.375
0.940 1.000 0.999 1.000 1.000 1.000 0.965 0.908 0.880 0.786 0.392
1.000 1.000 1.000 1.000 1.000 1.000 0.982 0.939 0.918 0.837 0.447
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Table 2.6. Fixed-b Asymptotic Null Rejection Probabilities Using Standard (b = 0) I(0)

Critical Values, 5% Nominal Level, 15% Trimming, Bartlett Kernel

MeanLM SupLM

I(1) I(1)
b I(0) c = 60 c = 36 c = 12 c = 0 I(0) c = 60 c = 36 c = 12 c = 0

0.020 0.048 0.269 0.415 0.754 0.966 0.041 0.301 0.475 0.805 0.975
0.040 0.044 0.139 0.222 0.502 0.883 0.037 0.106 0.192 0.491 0.876
0.060 0.042 0.099 0.149 0.367 0.793 0.030 0.047 0.079 0.282 0.757
0.080 0.040 0.077 0.110 0.281 0.724 0.024 0.023 0.033 0.131 0.613
0.100 0.036 0.065 0.090 0.224 0.668 0.018 0.009 0.012 0.038 0.350
0.120 0.033 0.052 0.073 0.175 0.618 0.014 0.005 0.004 0.004 0.024
0.140 0.029 0.045 0.059 0.141 0.572 0.013 0.002 0.002 0.001 0.001
0.160 0.026 0.039 0.049 0.111 0.525 0.013 0.002 0.001 0.000 0.000
0.180 0.023 0.034 0.042 0.087 0.478 0.016 0.003 0.002 0.001 0.000
0.200 0.019 0.028 0.034 0.069 0.434 0.021 0.004 0.003 0.001 0.000
0.220 0.015 0.022 0.027 0.050 0.382 0.027 0.006 0.004 0.001 0.000
0.240 0.010 0.017 0.021 0.034 0.329 0.035 0.009 0.006 0.002 0.001
0.260 0.008 0.011 0.014 0.024 0.267 0.045 0.012 0.009 0.003 0.001
0.280 0.005 0.009 0.010 0.016 0.199 0.056 0.017 0.013 0.004 0.001
0.300 0.003 0.006 0.007 0.010 0.134 0.074 0.025 0.019 0.007 0.001
0.320 0.002 0.004 0.005 0.005 0.076 0.089 0.032 0.026 0.010 0.002
0.340 0.001 0.002 0.002 0.003 0.039 0.107 0.041 0.032 0.013 0.003
0.360 0.001 0.001 0.001 0.001 0.017 0.128 0.051 0.039 0.017 0.003
0.380 0.001 0.001 0.001 0.000 0.008 0.153 0.060 0.049 0.022 0.004
0.400 0.000 0.000 0.000 0.001 0.004 0.177 0.074 0.058 0.027 0.006
0.420 0.000 0.000 0.001 0.002 0.005 0.202 0.090 0.072 0.034 0.008
0.440 0.001 0.002 0.003 0.006 0.008 0.227 0.104 0.086 0.043 0.010
0.460 0.001 0.004 0.007 0.010 0.010 0.255 0.122 0.102 0.053 0.013
0.480 0.003 0.007 0.010 0.015 0.012 0.279 0.137 0.115 0.063 0.016
0.500 0.006 0.011 0.014 0.019 0.016 0.302 0.153 0.131 0.074 0.020
0.520 0.008 0.015 0.018 0.022 0.019 0.326 0.169 0.145 0.084 0.026
0.540 0.012 0.018 0.022 0.027 0.021 0.352 0.186 0.159 0.093 0.030
0.560 0.015 0.022 0.026 0.030 0.022 0.376 0.203 0.171 0.103 0.033
0.580 0.017 0.025 0.030 0.032 0.022 0.406 0.220 0.184 0.112 0.036
0.600 0.019 0.027 0.033 0.033 0.022 0.434 0.238 0.201 0.123 0.039
0.620 0.021 0.030 0.033 0.034 0.021 0.460 0.260 0.218 0.133 0.041
0.640 0.022 0.030 0.033 0.034 0.020 0.489 0.279 0.237 0.142 0.044
0.660 0.022 0.030 0.033 0.033 0.020 0.518 0.301 0.258 0.151 0.047
0.680 0.021 0.029 0.033 0.032 0.018 0.550 0.325 0.277 0.163 0.051
0.700 0.021 0.030 0.032 0.031 0.017 0.581 0.346 0.298 0.176 0.055
0.720 0.019 0.029 0.030 0.029 0.016 0.612 0.370 0.319 0.192 0.060
0.740 0.018 0.027 0.028 0.028 0.014 0.642 0.399 0.344 0.209 0.066
0.760 0.019 0.025 0.028 0.027 0.011 0.669 0.429 0.369 0.227 0.072
0.780 0.020 0.028 0.031 0.030 0.010 0.695 0.459 0.397 0.247 0.080
0.800 0.027 0.039 0.043 0.042 0.012 0.718 0.484 0.423 0.268 0.089
0.820 0.040 0.060 0.070 0.069 0.019 0.741 0.511 0.451 0.292 0.097
0.840 0.069 0.101 0.116 0.124 0.038 0.762 0.538 0.476 0.316 0.109
0.860 0.117 0.165 0.186 0.208 0.087 0.782 0.568 0.505 0.341 0.118
0.880 0.187 0.254 0.284 0.341 0.238 0.805 0.596 0.536 0.366 0.127
0.900 0.288 0.364 0.404 0.507 0.620 0.825 0.621 0.562 0.390 0.138
0.920 0.391 0.479 0.528 0.646 0.816 0.842 0.645 0.584 0.412 0.150
0.940 0.489 0.583 0.634 0.754 0.889 0.859 0.669 0.610 0.437 0.162
1.000 0.701 0.771 0.812 0.898 0.960 0.897 0.735 0.677 0.509 0.199
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same. A similar phenomenon occurs for the SupLM statistic for b between 0.08 and 0.1.

This suggests that, for a given significance level, there could be a bandwidth such that the

I(0) and I(1, c = 0) critical values are the same. This is a promising situation for practice

because use of these bandwidths in conjunction with the fixed-b critical value would result

in a test that is robust to the strength of the serial correlation in the error.

To show that these robust bandwidths indeed exist, we plot in Figure 2.9 and 2.10

the 5% fixed-b asymptotic critical values for a grid of values of b using the QS kernel

with 15% trimming. The plot includes I(0) critical values and I(1) critical values for

c = 0, 12, 36, 60. There clearly exists a value of b for each statistic where the I(0) and

I(1, c = 0) critical value curves cross and for other values of c the critical value curves

are no higher. These bandwidths deliver tests with asymptotic size equal to 5% and are

appropriately labeled ”robust bandwidths”. In unreported plots we found similar patterns

at other significance levels.

Table 2.7 and 2.8 provides robust bandwidths for each statistic for a range of significance

levels. The corresponding asymptotic fixed-b critical value (which is the same for I(0) and

I(1) errors) is also reported.

To assess the performance of the robust bandwidths and associated fixed-b approximation

in practice, we simulated null rejection probabilities and finite sample power using the same

simulation design as used in Section 4. Null rejection probabilities are reported in Table 2.9

and 2.10. While reporting results for AR(1) errors as before, we also include results where

an MA(1) component is added to the error:

ut = ρut−1 + et + θet−1,

u0 = e0 = 0.

We report results for sample sizes T = 60, 120, 240 and we continue to focus on the QS

kernel and use 15% trimming. For the most part, null rejection probabilities are at or below

0.05. The exceptions occur when θ is negative and ρ is close to zero. When ρ = 0 and

θ = −0.8 large over-rejections can occur. This happens because the data is close to being
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Figure 2.9. Asymptotic Fixed-b Critical Values, 5% Level, QS kernel, 15% Trimming.
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Table 2.7. I(0)/I(1) Robust Bandwidths and Critical Values QS kernel, 15% Trimming.

MeanLM SupLM

level b cv b cv

20% 0.306 1.581 0.118 6.331
19% 0.303 1.593 0.117 6.417
18% 0.300 1.608 0.116 6.493
17% 0.297 1.622 0.115 6.576
16% 0.295 1.637 0.113 6.649
15% 0.293 1.649 0.112 6.742
14% 0.290 1.665 0.111 6.841
13% 0.287 1.678 0.109 6.932
12% 0.283 1.696 0.108 7.032
11% 0.280 1.712 0.107 7.125
10% 0.276 1.730 0.105 7.235
9% 0.272 1.749 0.104 7.347
8% 0.268 1.772 0.102 7.488
7% 0.263 1.796 0.101 7.642
6% 0.258 1.825 0.099 7.801
5% 0.250 1.864 0.096 8.018
4% 0.240 1.918 0.093 8.281
3% 0.234 1.967 0.091 8.562
2% 0.225 2.031 0.088 8.907
1% 0.212 2.136 0.081 9.659

Table 2.8. I(0)/I(1) Robust Bandwidths and Critical Values Bart kernel, 15% Trimming.

MeanLM SupLM

level b cv b cv

20% 0.905 2.015 0.166 6.102
19% 0.915 2.041 0.165 6.163
18% 0.919 2.055 0.163 6.224
17% 0.918 2.058 0.162 6.290
16% 0.887 1.995 0.160 6.358
15% 0.850 1.924 0.159 6.428
14% 0.822 1.878 0.157 6.493
13% 0.809 1.862 0.156 6.569
12% 0.794 1.844 0.154 6.648
11% 0.781 1.833 0.152 6.736
10% 0.741 1.797 0.150 6.847
9% 0.700 1.777 0.148 6.950
8% 0.686 1.782 0.145 7.065
7% 0.664 1.791 0.144 7.175
6% 0.662 1.811 0.141 7.332
5% 0.640 1.832 0.138 7.499
4% 0.629 1.867 0.134 7.705
3% 0.626 1.908 0.130 7.953
2% 0.625 1.974 0.126 8.274
1% 0.688 2.051 0.120 8.773
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over-differenced in which case the asymptotic theory breaks down. It is interesting to note

that the portion of the nuisance parameter space where over-rejections occur is different

than what was found by Sayginsoy and Vogelsang (2010) for robust versions of Wald-

type statistics. Simulations in Sayginsoy and Vogelsang (2010) show that robust Wald

statistics tend to over-reject when θ is negative but ρ is close to 1. This means that robust

versions of LM and Wald tests for a shift in mean can be used in a complementary way

if an empirical researcher is concerned about over-rejections caused by a negative moving

average component in the error.

Because we have shown that the choice of bandwidth has a substantial impact on the

power of LM tests, we need to explore the power of the LM tests when using the robust

bandwidths. Figures 2.11 and 2.12 power plots for the tests based on the robust bandwidths.

We see that for the MeanLM0.248 test, the robust bandwidth is large enough to make

MeanLM0.248 have non-monotonic power which is unfortunate. On the other hand, the

robust bandwidth for SupLM is relatively small and we see that SupLM0.096 has good

power that is monotonic. This is true for both asymptotic and finite sample power.

In practice when the QS kernel is used, we recommend that the SupLM0.096 statistic be

used because it is robust to strong serial correlation under the null hypothesis of no shift in

mean and it has good power to detect a shift in mean. If a negative moving average compo-

nent is a concern, SupLM0.096 can be used in conjunction with one of the robust Wald-type

tests of Sayginsoy and Vogelsang (2010) which have complementary over-rejection prob-

lems in the presence of a negative moving average component.

2.7 The Wald∗ Statistic of Kejriwal (2009)

In this section we establish a link between the LM tests analyzed in this chapter and a class

of ”hybrid” tests recently proposed by Kejriwal (2009). We show that the hybrid tests of

Kejriwal (2009) are transformations of the LM statistics. Therefore the fixed-b asymptotic
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Table 2.9. Finite Sample Null Rejection Probabilities for Tests Using Size Robust Band-
widths and Fixed-b I(0)/I(1) Critical Values, 5% Nominal Level, 15% Trimming, QS
Kernel.

T = 60 T = 120 T = 240

MeanLM SupLM MeanLM SupLM MeanLM SupLM
θ ρ b = 0.25 b = 0.096 b = 0.25 b = 0.096 b = 0.25 b = 0.096

0.8 0 0.045 0.012 0.045 0.021 0.046 0.031
0.5 0.030 0.006 0.036 0.012 0.040 0.019
0.7 0.019 0.005 0.028 0.007 0.034 0.013
0.9 0.011 0.010 0.013 0.005 0.019 0.006
1 0.072 0.051 0.060 0.059 0.055 0.054

0.4 0 0.046 0.014 0.046 0.024 0.047 0.033
0.5 0.031 0.007 0.036 0.013 0.040 0.020
0.7 0.020 0.005 0.028 0.007 0.033 0.013
0.9 0.012 0.011 0.013 0.006 0.019 0.006
1 0.073 0.051 0.059 0.059 0.055 0.054

0 0 0.055 0.023 0.051 0.034 0.050 0.041
0.5 0.034 0.010 0.038 0.014 0.042 0.022
0.7 0.022 0.006 0.028 0.009 0.035 0.014
0.9 0.013 0.013 0.014 0.006 0.019 0.006
1 0.073 0.055 0.059 0.060 0.055 0.054

-0.4 0 0.103 0.071 0.076 0.086 0.060 0.084
0.5 0.046 0.018 0.045 0.026 0.046 0.032
0.7 0.029 0.012 0.032 0.014 0.038 0.019
0.9 0.015 0.019 0.014 0.009 0.020 0.007
1 0.073 0.067 0.060 0.065 0.054 0.057

-0.8 0 0.524 0.308 0.433 0.574 0.285 0.614
0.5 0.187 0.049 0.157 0.151 0.112 0.195
0.7 0.088 0.024 0.083 0.055 0.069 0.078
0.9 0.035 0.032 0.026 0.028 0.027 0.020
1 0.073 0.105 0.062 0.106 0.057 0.083

-1 0 0.843 0.401 0.929 0.892 0.947 0.998
0.5 0.451 0.050 0.743 0.302 0.884 0.823
0.7 0.226 0.016 0.475 0.089 0.753 0.418
0.9 0.068 0.010 0.120 0.016 0.271 0.039
1 0.055 0.023 0.051 0.034 0.050 0.041
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Table 2.10. Finite Sample Null Rejection Probabilities for Tests Using Size Robust Band-
widths and Fixed-b I(0)/I(1) Critical Values, 5% Nominal Level, 15% Trimming, Bartlett
Kernel.

T = 60 T = 120 T = 240

MeanLM SupLM MeanLM SupLM MeanLM SupLM
θ ρ b = 0.25 b = 0.096 b = 0.25 b = 0.096 b = 0.25 b = 0.096

0.8 0 0.076 0.016 0.064 0.026 0.053 0.033
0.5 0.088 0.013 0.070 0.019 0.056 0.026
0.7 0.090 0.013 0.075 0.016 0.061 0.021
0.9 0.070 0.018 0.077 0.012 0.074 0.014
1 0.066 0.041 0.057 0.053 0.052 0.050

0.4 0 0.076 0.019 0.063 0.027 0.052 0.035
0.5 0.087 0.013 0.070 0.020 0.055 0.027
0.7 0.089 0.013 0.075 0.016 0.061 0.022
0.9 0.070 0.019 0.077 0.013 0.074 0.014
1 0.067 0.041 0.057 0.053 0.052 0.050

0 0 0.070 0.021 0.059 0.030 0.050 0.039
0.5 0.085 0.014 0.068 0.022 0.055 0.028
0.7 0.089 0.014 0.075 0.018 0.060 0.023
0.9 0.071 0.020 0.078 0.013 0.074 0.015
1 0.068 0.045 0.058 0.054 0.053 0.051

-0.4 0 0.046 0.022 0.043 0.039 0.041 0.051
0.5 0.074 0.020 0.064 0.029 0.053 0.035
0.7 0.087 0.018 0.073 0.022 0.057 0.027
0.9 0.073 0.025 0.076 0.017 0.074 0.017
1 0.066 0.056 0.058 0.060 0.052 0.054

-0.8 0 0.004 0.009 0.004 0.017 0.006 0.040
0.5 0.032 0.012 0.024 0.028 0.025 0.054
0.7 0.057 0.016 0.044 0.031 0.038 0.046
0.9 0.071 0.035 0.073 0.035 0.066 0.030
1 0.067 0.099 0.058 0.099 0.053 0.075

-1 0 0.000 0.005 0.000 0.010 0.000 0.009
0.5 0.007 0.005 0.000 0.008 0.000 0.011
0.7 0.022 0.004 0.003 0.007 0.000 0.012
0.9 0.060 0.008 0.033 0.009 0.009 0.008
1 0.070 0.021 0.059 0.030 0.050 0.039
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Figure 2.11. Finite Sample Power of Robust Bandwidth Tests, 5% Level, 15% Trimming.
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71



theory we developed for the LM tests applies directly to the tests of Kejriwal (2009). Our

results provide an alternative theoretical explanation for the monotonic power properties of

the hybrid tests that complement the theoretical explanations developed by Kejriwal (2009).

The basic idea used by Kejriwal (2009) was to construct a test statistic that blends aspects

of LM and Wald statistics in a way to maintain the relatively better size properties of LM

tests but to have the relatively better power (monotonic) properties of Wald tests. The

statistic proposed by Kejriwal (2009) is defined as

Wald∗(Tb, m) =
SSR0 − SSR(Tb)

σ̃∗2(m)

where σ̃∗2(m) is a ”hybrid” HAC estimator given by

σ̃∗2(m) = γ̂0 + 2
T−1∑
j=1

k(j/m)γ̃j , γ̂0 = T−1
T∑

t=1
ût(T̂b)

2,

and γ̃j is defined as before using null residuals. Notice that σ̃∗2(m) can be constructed

by taking σ̃2(m) and replacing γ̃0 with γ̂0. This estimator is a hybrid because it combines

parts of HAC estimators based on null and alternative residuals.

By using some straightforward algebra it follows that

σ̃∗2(m) = T−1
T∑

t=1
ût(T̂b)

2+T−1
T∑

t=1
ũ2

t + 2T−1
T−1∑
j=1

k(j/m)
T∑

t=j+1
ũtũt−j−T−1

T∑
t=1

ũ2
t

= T−1SSR(T̂b) + σ̃2(m)− T−1SSR0 = σ̃2(m)− T−1(SSR0 − SSR(T̂b))

= σ̃2(m)
[
1− T−1LM(T̂b, m)

]
= σ̃2(m)

[
1− T−1SupLMm

]
.

Plugging this formula for σ̃∗2(m) into Wald∗ gives

Wald∗(Tb, m) =
(SSR0 − SSR(Tb))

σ̃2(m)
[
1− T−1SupLMm

] =
LM(Tb, m)

1− T−1SupLMm
.

It immediately follows that

MeanW ∗
m =

MeanLMm

1− T−1SupLMm
, SupW ∗

m =
SupLMm

1− T−1SupLMm
,

72



and we see that the Wald∗ statistics are transformations of the MeanLM and SupLM

statistics. Notice that MeanW ∗
m and MeanLMm are asymptotically equivalent to first

order under fixed-b asymptotics. Hence they have the same asymptotic power. The finding

for SupW ∗
m is stronger because SupW ∗

m is a monotonic transformation of SupLMm and

the two statistics give the exact same test. Hence SupW ∗
m and SupLMm have the same

power functions (finite and asymptotic).

Because Kejriwal (2009) recommends using the alternative data dependent bandwidth,

m̂, the theoretical explanations we provide for the LMm̂ statistics directly apply to the

Wald∗m̂ statistics. In particular, our fixed-b theoretical results show that the reason

MeanW ∗
m̂ and SupW ∗

m̂ have monotonic power is because they are equivalent to LM tests

based on the bandwidth m̂ which tends to be relatively small. If the null data dependent

bandwidth, m̃, were used for the Wald∗ statistics, they would have non-monotonic power

just like the LM tests.
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CHAPTER 3

Consistency of the Sequential Trend

Break Point Estimator

3.1 Introduction

A time series can have multiple breaks, and it is common that the break number is unknown

and we misspecify it. Chong (1994), Chong (1995), and Bai (1995) analyzed the consis-

tency of change-point estimators when the number of change points is under-specified.

They pointed out that even when the number of breaks for the mean shift model is un-

derspecified, the break date estimators are still consistent to the subset of the true break

points. Although the trending components are considered by some researchers in mean

shifts model, the existing literatures have seldom detailed discussions on the consistency

of the misspecified multiple trend shifts estimator. The consistency analysis is important to

both break point estimates and the break hypothesis tests. This is one main motivation of

this chapter: there should be more concerns on the consistency of the break point estimators

for the multiple trend shifts model.

The second motivation of this chapter is to explore how to better approximate the finite

sample distributions for multiple breaks model. The existing literatures on multiple break
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point estimators only provide consistency analysis on multiple mean shifts model but no

distributions, which would be a big plus to understand how multiple breaks estimator per-

forms. Aiming at the consistency analysis, I provide the asymptotics of the multiple trend

breaks estimator under misspecified break number using Pitman shifts. This work follows

Yang (2010) which has shown that the finite sample distribution of the single break point

estimator is not normal but depends on both the break magnitude and the break date. The

asymptotics of multiple break points estimator would be more complicated. Also there is a

need to verify its approximation to the finite samples.

In the following, I will first use finite sample simulation to show the possible inconsis-

tency of the break point estimator in the multiple trend shifts model with under-specified

break number. Then a new asymptotics will be provided for the break point estimator un-

der local alternative, which is an extension of Yang (2010)’s work on the single break point

estimator. It proves that for the trend shift model, the break point estimator can be incon-

sistent with any of the true break points, while for the mean shift model, the break point

estimator converges to one of the true breaks. Furthermore, first-differencing the multiple

trend shift model is suggested to eliminate the inconsistency problem. Applying first dif-

ference to the sequential process of the multiple trend break estimation may improve the

power of the trend shift test.

The chapter is organized as follows. The second section includes the definition of model,

assumptions, and the break point estimators. The third section reviews the existing analy-

sis on the break point estimators. Finite sample simulations are introduced to demonstrate

consistency properties of different break point estimators. The fourth section provides the

asymptotic distributions of the single break point estimators when the data sequences have

two breaks under I(0) errors. Both mean shift and trend shift break point estimators are

discussed. The fifth section provides the trend shift break point estimator and the first dif-

ference estimator under I(1) errors. The asymptotic results discover how the inconsistency

can be partially solved by first differencing. The performance in the pdf of two estimators
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are compared. The sixth section provides the application of first difference break point

estimator to the sequential trend break test proposed by KP(2010).

3.2 Model Assumption

In this section, I define a mean shift and a trend shift model with multiple breaks. For

simplicity, I only include the case where a single break model is estimated while the number

of breaks is two. The results can be extended to the models with more than two breaks.

Let us start with a mean shift model with two breaks:

yt = µ + δ1DUt(λ
c
1) + δ2DUt(λ

c
2) + ut. (3.2.1)

In model (3.2.1) λc
1 and λc

2 are the true break points with T c
1 = Tλc

1 and T c
2 = Tλc

2. To

be convenient in discussion, we define ν
.
= δ2/δ1. The underspecified model (3.2.1) is

denoted by

yt = µ + δDUt(λ
c) + ut, (3.2.2)

where DUt(λ
c)

.
= I(t > T c

b ), T c
b = Tλc, T is the sample length, and

I(t > T c
b )

.
=

{
0, t ≤ T c

b
1, t > T c

b

.

As a comparison, the trend shift model with two breaks is

yt = µ + βt + δ1DTt(λ
c
1) + δ2DTt(λ

c
2) + ut, (3.2.3)

where δ1 and δ2 are the break magnitudes, λc
1 and λc

2 are the true break points. And if the

model (3.2.3) is misspecified with only 1 break, it is denoted as

yt = µ + βt + δDTt(λ
c) + ut, (3.2.4)

where
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DTt(λ
c)

.
=

{
0, t ≤ T c

b
t− T c

b , t > T c
b

.

I(0) errors are defined by assumption (A1.a).

(C1.a) ut = ρut−1 + εt,

where |ρ| < 1 and

εt = d(L)et; d(L) =
∞∑
i=0

diL
i,

∞∑
i=0

i|di| < ∞, d(1)2 > 0;

L is the lag operator; {et} is a martingale difference sequence with supt E(e4
t ) < ∞,

E(et|et−1, et−2, · · · ) = 0, and E(e2
t |et−1, et−2, · · · ) = 1.

And I(1) errors are defined by assumption (C1.b)

(C1.b) ut = ρut−1 + εt,

where ρ = 1− c
T , c ≥ 0 is a constant scalar.

The break point is obtained by minimizing the sum of squared residuals (SSR) over the

gridding set Λ
.
= {λ∗, · · · , 1− λ∗}.

λ̂MS = arg min
λ∈Λ∗

{SSRMS(λ)},

λ̂TS = arg min
λ∈Λ∗

{SSRTS(λ)},

where

SSRMS(λ)
.
=

T∑
t=1

[yt − µ̂MS − δ̂MSDUt(λ̂)]2, (3.2.5)

SSRTS(λ)
.
=

T∑
t=1

[yt − µ̂TS − β̂TSt− δ̂TSDTt(λ̂)]2. (3.2.6)

β̂MS and δ̂MS are the OLS estimates of Model (3.2.2) with no restrictions imposed. µ̂TS ,

β̂TS , and δ̂TS are the OLS estimates of Model (3.2.4) with no restrictions imposed.
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3.3 Existing Analysis and Finite Sample Simulations

Chong (1994), Chong (1995), and Bai (1995) studied the consequences of under-

specifying the number of change points in structural change models. A general case with a

single break in the intercept is estimated when the data sequence has two breaks. Their dis-

cussion covers the mean shift model with or without trending. Bai and Perron (1998)(BP

hereafter) extended the estimate of single unknown break to multiple unknown breaks un-

der both fixed and shrinking shift magnitudes. They concluded that the break point esti-

mator still converges to one of the true breaks for the mean shifts model. Based on this

argument, they proposed a sequential procedure for multi-break estimates without estimat-

ing the multiple breaks simultaneously. Dynamic programming was introduced by Bai

and Perron (2003) to deal with the computational burden in multiple break point estima-

tion. Kejriwal and Perron (2010)(KP hereafter) extended the sequential tests to the multiple

trend shifts model to be robust to the persistence in the noise.

In the following, I first use a simple simulation to illustrate the properties of λ̂MS and

λ̂TS in finite samples in the presence of under-specification of break number. I generate

data based on model (3.2.1) and (3.2.3) with two breaks, where T = 100, 250, 500, 1000,

{λc
1, λ

c
2} = {1/3, 2/3}, ν = −2,−1, 1, 2 (δ1 = 1), d(L) = 1 and εt is an iid N(0, 1)

process. And set δ1 = 1 without loss of generality. Equation (3.2.5) and (3.2.6) are used to

estimate λ̂MS and λ̂TS separately in each replication. Trimming is not necessary, however

in order to ensure the invertibility of the regression matrix, I use 2% trimming, i.e., λ∗ =

0.02. The replications N = 20000, 10000, 5000, 2500 for T = 100, 250, 500, 1000 cases.

Figure 3.1 and 3.2 plot the histograms of λ̂MS when µ = −2,−1, 1, 2, T =

100, 250, 500, 1000 and error ut is i.i.d. N(0, 1). Interestingly, when |ν| = 1 and T = 100,

the histogram of λ̂MS has a wide spread over the area around both ends or the middle

λ̂ = 0.5. This can be explained by Yang (2010) through the behavior of the mean shift
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break point estimator, where the break point estimates concentrate around the ends of the

gridding area in no break case. With the increase of T , the tails of λ̂MS decrease gradu-

ally. When T = 1000, the histogram of λ̂TS concentrates at one true break λc = 1/3 or

λc = 2/3. For µ = 1, there are two peaks in histogram because δ1 and δ2 has the same

effects on the break point estimates.

Figure 3.3 and 3.4 plot the histograms of λ̂TS when ν = −2,−1, 1, 2(δ1 = 1), T =

100, 250, 500, 1000. For ν = −2, the only peak in histogram of λ̂TS is at λ > 2/3. When

ν = −1, λ̂TS has two equivalent peaks in histogram at around λ = 0.2 and 0.8. When

ν = 1, the histogram of λ̂TS roughly has only one peak in the histograms for the stationary

cases, at around λ = 0.5. When T = 100, the break point estimates are less concentrated

around λ = 0.5. With the increase of T , the pattern of only one peak in the histograms

still holds, and the break estimates are more concentrated around λ = 0.5. When ν = 2,

the histogram of λ̂TS concentrates at 1/3 < λ < 2/3. In all these cases, the break date

estimates are mostly at 0.5. When ν = 2 and T = 1000, the histograms concentrates on the

points other than the true breaks. It shows that when the misspecification of break number

exists, the break point estimator for the trend shift model does not converge to either of the

true breaks. And if λc
1 and λc

2 are different, the concentration of the break point estimators

varies, i.e., the limits of the break point estimator λ̂TS depend on both break magnitudes

and break dates. How these parameters matters will be analyzed later.

The finite sample histograms show two interesting points: a) In the case of under-

specification of the break number, the mean shift break estimator converges to a subset

of the true break points, while the trend shift counterpart does not converge to either of the

true break points. The limits of the break point estimators depend on the break dates and

the break magnitudes. b) When break magnitude increases, the break point estimators have
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Figure 3.1. Histogram of single break point estimator λ̂MS in two breaks model:
{λc

1, λ
c
2} = {1/3, 2/3}. δ1 = 1 always. From left to right: ν = −2(δ2 = −2),−1(δ2 =

−1); from top to bottom: T = 100, 250, 500, 1000.
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Figure 3.2. Histogram of single break point estimator λ̂MS in two breaks model:
{λc

1, λ
c
2} = {1/3, 2/3}. δ1 = 1 always. From left to right: ν = 1(δ2 = 1), 2(δ2 = 2); from

top to bottom: T = 100, 250, 500, 1000.
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Figure 3.3. Histogram of single break point estimator λ̂TS in two breaks: {λc
1, λ

c
2} =

{1/3, 2/3}. δ1 = 1 always. The left to right: ν = −2(δ2 = −2),−1(δ2 = −1); The top to
bottom: T = 100, 250, 500, 1000.
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Figure 3.4. Histogram of single break point estimator λ̂TS in two breaks: {λc
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2} =

{1/3, 2/3}. δ1 = 1 always. The left to right: ν = 1(δ2 = 1), 2(δ2 = 2); The top to bottom:
T = 100, 250, 500, 1000.
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complicated distributions which have not been explained by current results.

3.4 Break Date Estimator under Multiple Breaks

I can assume that break magnitude δ1 and δ2 are within a T−1/2 neighborhood:

(C2.a) δ1 =
δ∗1

T1/2 , δ2 =
δ∗2

T1/2 , where δ∗1, δ∗2 = constant scalars. (3.4.7)

Also I can assume that break magnitude δ1 and δ2 are within a T−3/2 neighborhood:

(C2.b) δ1 =
δ∗1

T3/2 , δ2 =
δ∗2

T3/2 , where δ∗1, δ∗2 = constant scalars. (3.4.8)

The limiting distributions of λ̂MS and λ̂TS with under-specified break number are de-

rived under assumption (C2.a) or (C2.b) for different models and errors.

3.4.1 Multiple mean shifts

Theorem 3.4.4 Assume the mean shift model has two break points, λc
1 and λc

2, as in (3.2.1).

When the break number is underspecified as one and the assumptions (C1.a) and (C2.a)

hold such that δ1 = T−1/2δ∗1 and δ2 = T−1/2δ∗2 , where δ∗1 and δ∗2 are constant, the break

point estimator λ̂MS has the limiting distributions as follows:

λ̂MS
d−→ arg max

λ∈Λ
{
[(λW (1)−W (λ)) +

δ∗1
d(1)Ψ(λ, λc

1) +
δ∗2

d(1)Ψ(λ, λc
2)]

2

λ(1− λ)
} (3.4.9)

where

Ψ(λ, λc)
.
=

{
(1− λc)λ, if λ ≤ λc,

(1− λ)λc, if λ > λc,

If we define M1
.
=

δ∗1
d(1) and M2

.
=

δ∗2
d(1) ,

λ̂MS ≈ arg max
λ∈Λ

{
[(λW (1)−W (λ)) + M1Ψ(λ, λc

1) + M2Ψ(λ, λc
2)]

2

λ(1− λ)
}. (3.4.10)
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To discover the effect of M1, λc
1, M2, and λc

2 on the limiting distributions, I decompose

the terms inside arg max in equation (3.4.10) into three parts:

GMS(λ, λc
1, λ

c
2)

.
=

λW (1)−W (λ) + M1Ψ(λ, λc
1) + M2Ψ(λ, λc

2)√
λ(1− λ)

(3.4.11)

.
= G1MS(λ) + M1 ·G2MS(λ, λc

1) + M2 ·G2MS(λ, λc
2)

.
=

(λW (1)−W (λ))√
λ(1− λ)

+ M1 ·
Ψ(λ, λc

1)√
λ(1− λ)

+ M2 ·
Ψ(λ, λc

2)√
λ(1− λ)

(3.4.12)

With the form of G1MS(λ) + M1 · G2MS(λ, λc
1) + M2 · G2MS(λ, λc

2) in the limiting

distributions, Theorem 3.4.4 provides a bridge between the δ = 0 asymptotics and the

δ 6= 0 asymptotics. When M1 and M2 are small, the random component G1MS dominates

GMS and the distribution is close to the case of no break.

Theorem 3.4.4 also explains why as M grows, λ̂MS are closer to the true breaks. With

the increase of T , where M1 and M2 increase, G2MS parts will be dominant in G1MS +

M1 · G2MS(λc
1) + M2 · G2MS(λc

2). For a moderate M , the limiting distribution of λ̂MS

exhibits a shape of “w”, resulting from the mixed effects of G1MS and G2MS parts in the

asymptotics. If T →∞, both M1 and M2 increase to ∞,

lim
T→∞

λ̂MS = lim
T→∞

arg max
λ∈Λ

[G1MS(λ) + M1 ·G2MS(λ, λc
1) + M2 ·G2MS(λ, λc

2)]
2

= lim
T→∞

arg max
λ∈Λ

[G1MS(λ)/M1 + G2MS(λ, λc
1) + ν ·G2MS(λ, λc

2)]
2

→ arg max
λ∈Λ

|G2MS(λ, λc
1) + ν ·G2MS(λ, λc

2)|.

where ν
.
= M2/M1 = δ2/δ1. Therefore, the limit of λ̂MS is determined by

|G2MS(λ, λc
1) + ν · G2MS(λ, λc

2)|, which attains global maximum at either λc
1 or λc

2 as

shown in Figure 3.5 (The proof is straightforward and omitted here). Hence, λ̂MS con-

verges to λc
1 or λc

2 as T → ∞, that is the break point estimator λ̂MS is consistent to one

of the true breaks. Our results agree the existing literatures in consistency analysis, and

moreover the distribution is derived here.
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3.4.2 Multiple trend shifts

When the break number is underspecified, we estimate one break point by model (3.2.4),

while the true model is (3.2.3). In the following I explore the consistency of break points

by deriving the asymptotics under local alternative. Theorem 3.4.5 gives the limiting dis-

tribution of λ̂TS under assumption (C1.a) and (C2.b) and shows that it is inconsistent to

any of the true break points.

Theorem 3.4.5 Assume the trend shift model has two break points, λc
1 and λc

2, as in (3.2.3).

When the break number is underspecified as one and assumption (C1.a) and (C2.b) hold

such that δ1 = T−3/2δ∗1 and δ2 = T−3/2δ∗2 , the break point estimator λ̂TS has the limiting

distributions as follows:

λ̂TS ⇒

arg max
λ∈Λ

{[
∫ 1

0
F (r, λ)dW (r) +

δ∗1
d(1)

∫ 1

0
F (r, λ)F (r, λc

1)dr +

δ∗2
d(1)

∫ 1

0
F (r, λ)F (r, λc

2)dr]2/

∫ 1

0
F (r, λ)2dr} (3.4.13)

where

F (r, λ)
.
=

{
λ3 − 2λ2 + λ− (2λ3 − 3λ2 + 1)r, if r ≤ λ,

λ3 − 2λ2 − (2λ3 − 3λ2)r, if r > λ.

If we define M1 =
δ∗1

d(1) ≡
δ1T3/2

d(1) and M2 =
δ∗2

d(1) ≡
δ2T3/2

d(1) , there is

λ̂TS ⇒

arg max
λ∈Λ

{[
∫ 1

0
F (r, λ)dW (r) + M1

∫ 1

0
F (r, λ)F (r, λc

1)dr +

M2

∫ 1

0
F (r, λ)F (r, λc

2)dr]2
∫ 1

0
F (r, λ)2dr}. (3.4.14)
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For the asymptotic distribution of λ̂TS , we can also decompose the part inside arg min

into G1TS and G2TS part, where

GTS(λ, λc)

.
= G1TS(λ) + M1 ·G2TS(λ, λc

1) + M2 ·G2TS(λ, λc
2)

.
=

∫ 1
0 F (r, λ)dW (r)√∫ 1

0 F (r, λ)2dr
+

M1 ·
∫ 1
0 F (r, λ)F (r, λc

1)dr√∫ 1
0 F (r, λ)2dr

+ M2 ·
∫ 1
0 F (r, λ)F (r, λc

2)dr√∫ 1
0 F (r, λ)2dr

(3.4.15)

Similar to previous discussion on mean shifts, if M1 and M2 are small, GTS is dominated

by that of G1TS . The asymptotic distribution will be close to the distribution when there is

no break. Later on G2TS part starts to dominate. If T →∞ (M1, M2 →∞),

lim
T→∞

λ̂TS → arg max
λ∈Λ

|G2TS(λ, λc
1) + ν ·G2TS(λ, λc

2)|.

And it is still true that G2(λ, λc
i ) achieves maximum at λ = λc

i as shown in Figure 3.7.

What makes it different from the mean shifts case is: when we stack one part of G2 to the

other, the function smooths out through the two peaks at the λc
i ’s. Hence when the number

of trend breaks is two while assumed to be one, |G2TS(λ, λc
1) + ν ·G2TS(λ, λc

2)| achieves

maximum neither at λc
1 nor at λc

2. Figure 3.8 plots |G2(λ, λc
1)+ν·G2(λ, λc

2)| under different

ν when λc
1 = 1/3 and λc

2 = 2/3, which shows in both cases |G2(λ, λc
1) + ν · G2(λ, λc

2)|

reaches peak at neither of the true break points. Certainly, if |ν| is smaller than 1, λ̂TS

will be closer to λc
1; if |ν| is bigger than 1, λ̂TS will be closer to λc

2. This indicates the

inconsistency of the trend shifts estimator when the break number is underspecified.

3.4.3 Consistency/Inconsistency conclusion of λ̂MS and λ̂TS

In this section, we summarize the previous analysis on the consistency/inconsistency of

λ̂MS and λ̂TS under assumption (C1.a) and (C2.a):
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1. For mean shift model with 2 breaks, if the break magnitude δ1 6= 0 and δ2 6= 0, the

single break point estimator λ̂MS is consistent to either λ1 or λ2:

lim
T→∞

λ̂MS → λc
1 or λc

2.

2. For trend shift model with two breaks, if the break magnitude δ1 6= 0 and δ2 6= 0, the

single break point estimator λ̂TS is inconsistent to either λ1 or λ2 :

lim
T→∞

λ̂TS 6→ λc
1 and λc

2.

The limit depends on λc
1, λc

2, and ν, and will be

lim
T→∞

λ̂TS = arg max
λ∈Λ

|G2TS(λ, λc
1) + ν ·G2TS(λ, λc

2)|.

3.5 Break point estimators for level and first difference

model under multiple breaks

In this section, I first difference the trend shift model with multiple breaks to solve the

inconsistency problem under near-I(1) errors. We choose near-I(1) errors because it can

provide a good approximation to finite sample case with different persistence in the errors.

In the case of near-I(1) errors, I assume that δ1 and δ2 are within a T−1/2 neighborhood as

in (C2.a): δ1 =
δ∗1

T1/2 and δ2 =
δ∗2

T1/2 .

As we can see in the previous section, the limit of the break point estimator with under-

specified break number depends on the model, that is, the mean shift model leads to the

consistent break point estimator while the trend shift model does not. What follows is that

if we take the first difference on the trend shift model, we might solve the inconsistency

problem.

Let us start with the trend shift model with two breaks:

yt = µ + βt + δ1DTt(λ
c
1) + δ2DTt(λ

c
2) + ut. (3.5.16)
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First Difference it, we get:

∆yt = β + δ1DUt(λ
c
1) + δ2DUt(λ

c
2) + ∆ut. (3.5.17)

The asymptotics are different for λ̂TS and λ̂MS during this procedure. I extend the

results in Theorem 3.4.4 and 3.4.5 for I(0) errors to near-I(1) errors to describe the perfor-

mance of λ̂TS and λ̂MS under different λc
1, δ1, λc

1, and δ2.

Theorem 3.5.6 Assume there are two breaks in the trend shift model (3.5.16). Suppose

the regressions in the level model (3.5.16) and its first difference (3.5.17) are estimated

assuming a single break λ ∈ Λ ⊆ (0, 1) where λc
1 and λc

2 are the true breaks. Under the

assumption (C1.b) and (C2.a), the break point estimators by minimizing the SSR(λ) have

the limiting distributions as follows.

1. For the level model (3.2.3),

λ̂TS ⇒

arg maxλ∈Λ{
[
∫ 1
0 F (r,λ)Vc(r)dr+M1

∫ 1
0 F (r,λ)F (r,λc

1)dr+M2
∫ 1
0 F (r,λ)F (r,λc

2)dr]2∫ 1
0 F (r,λ)2dr

}

where Vc(r)
.
=

∫ r
0 exp(−c(r − s))dW (s), M

.
= δ∗

d(1) and F (r, λ) is defined in Theo-

rem 3.4.5.

2. For the first difference (3.2.1),

λ̂MS ⇒

arg maxλ∈Λ{[
(λW (1)−W (λ)−c

∫ 1
0 (1(r>λ)−(1−λ))Vc(r)dr)√
λ(1−λ)

+

M1(Ψ(λ,λc
1)+M2(Ψ(λ,λc

2)√
λ(1−λ)

]2}

where M
.
= δ∗

d(1) and Ψ(λ, λc) is defined in Theorem 3.4.4.

The asymptotics in Theorem 3.5.6 are the extension of the work by Yang (2010) from

single break case to multiple breaks case. Compared to Theorem 3.4.5 and 3.4.4, G1TS

and G1MS are different in Theorem 3.5.6:
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G1TS
.
=

∫ 1
0 F (r, λ)Vc(r)dr√∫ 1

0 F (r, λ)2dr
,

G1MS
.
=

(λW (1)−W (λ)− c
∫ 1
0 (1(r > λ)− (1− λ))Vc(r)dr)√
λ(1− λ)

.

Though G1 is different, when T → ∞, G1 will not show in the limit equation, therefore

the limits of λ̂TS and λ̂MS are the same as in Theorem 3.4.5 and 3.4.4. Hence λ̂TS on

the level model is inconsistent, while λ̂MS on the first difference model converges to either

λc
1 or λc

2. That is the first difference break point estimator λ̂MS solves the inconsistency

problem of λ̂TS .

Figure 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16 plot the finite sample distribution

and asymptotic distribution of λ̂TS and λ̂MS for ν = −5,−2,−1,−0.5, 0.5, 1, 2, 5 under

T = 100, 250, 500, 1000, ρ = 1, µ = β = 0, and {λc
1, λ

c
2} = {1/4, 3/4} or {1/3, 2/3}.

For all figures, without loss of generality, I assume δ1 = 1 and is fixed. In these Figures,

the pdfs of λTS and λMS are plotted in the same panel to compare the performance in

presence of under-specified break numbers. We use kernel smoothing to obtain the pdf

based on the simulations 3 .

Figures 3.9 to 3.16 show the evolution of the distributions along the increase of ν. For

ν < −1 and ν > 1, the break point estimator tends to be closer to λc
2; For |ν| < 1, the break

point estimator will be closer to λc
1. With the increase of T , we see that λ̂TS converges to

some points which are not the true ones. Therefore, from the point of the consistency to the

true break points, we prefer λ̂MS . For ν > 0 as in Figure 3.9 to 3.12, λ̂TS would converge

to point between λc
1 and λc

2, while for ν < 0 in Figure 3.13 to 3.16, λ̂TS would converge

to point in [0, λc
1] or [λc

2, 1].

3 In this chapter, I use the standard normal distribution as the kernel function. For the
same reason as in PZ(2005), that is, the optimal data dependant bandwidth may not work
well, I choose a simple bandwidth equals to 0.5σ for any error, where σ is the STD of the
data sequence. Simulations show that h does not affect the pdf estimator much.
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For either of the two estimators, whether the pdf has one peak or two peaks and the

location of the peak(s) depend on several factors: the space between the breaks, the relative

magnitude, the signs of two breaks, and the persistence of the errors as well. For example,

when break magnitudes are the same, λ̂TS tends to have one peak in pdf if the distance in

between is small, i.e. {λc
1, λ

c
2} = {1/3, 2/3}. While for {λc

1, λ
c
2} = {1/4, 3/4}, λ̂TS has

two peaks in pdf. The effect of persistence on the shapes of density seems non-monotonic.

To compare the performance of λ̂TS and λ̂MS quantitatively, we use the sum of pdf

values at the true break points as a criterion to compare the precision. We consider 3 cases:

ν = 1, ν = −1, and |ν| 6= 1. Table 3.1, 3.2, and 3.3 list the sum of pdf values at the true

break point. We can see that λ̂TS stands at an advantage when the break magnitudes are

small, disregarding the sign of the breaks and how strong the persistence in the errors is.

One exception is when we are in stationary case and the difference between the magnitudes

and the magnitudes themselves are small. In that case, we may prefer λ̂MS . This can be

explained clearly by both finite sample pdf and the theoretical limiting distributions. When

the break magnitude is small, the null hypothesis plays the major role in the distribution.

λ̂TS has high pdf around the true break, and λ̂MS has most mass around 0 and 1. Therefore

when break magnitude is small, we prefer λ̂TS . However, persistence may not be such a

dominant factor as break magnitudes. With the increase of break magnitude, this condition

changes. The pdf of λ̂MS gradually gets denser at the true breaks, while that of λ̂TS

gradually becomes smaller. When the break magnitude becomes big enough, λ̂MS has

much higher pdf at the true breaks. And eventually the inconsistency problem for λ̂TS

drives it to converge to the points other than the true break points. Then even in a stationary

case, we still want to “over-difference” the trend shift model and get a higher density at the

true values.

In Figure 3.9 to 3.16, the asymptotic distributions are plotted together with the finite

sample distributions via simulations. We can see that the asymptotic distribution approx-

imates well to the finite sample distributions. When the pdf is calculated, the bandwidth
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Table 3.1. Sum of densities at the true break λc
1 and λc

2 where {λc
1, λ

c
2} = {1/3, 2/3} under

different ρ and M1 = M2.
ρ = 0 ρ = 0 ρ = 0.5 ρ = 0.5 ρ = 1 ρ = 1

M1 = M2 λ̂TS λ̂MS λ̂TS λ̂MS λ̂TS λ̂MS

10 0.11 0.71 1.00 1.01 1.42 0.87
20 0.00 0.97 0.71 2.51 1.50 1.27
50 0.00 6.02 0.00 5.13 1.52 3.42

100 0.00 8.17 0.00 6.71 2.23 6.11
150 0.00 11.31 0.00 9.92 2.76 8.97

Table 3.2. Sum of densities at the true break λc
1 and λc

2 where {λc
1, λ

c
2} = {1/3, 2/3} under

different ρ and M1 = −M2.
ρ = 0 ρ = 0 ρ = 0.5 ρ = 0.5 ρ = 1 ρ = 1

M1 = −M2 λ̂TS λ̂MS λ̂TS λ̂MS λ̂TS λ̂MS

10 1.89 0.07 1.73 0.12 1.71 0.86
20 1.31 0.48 1.47 0.81 1.51 1.03
50 0.17 2.11 0.97 2.51 1.77 2.01

100 0.02 6.31 0.00 5.97 1.51 4.13
150 0.00 8.12 0.00 7.46 1.43 6.47

used in the kernel smooth plays an important role. To provide a comparison under the same

base, we should choose the same bandwidth in the pdf calculation. For different T , under

the same M1 and M2, our results also show that the approximation of Theorem 3.5.6 to the

finite sample distribution is pretty good. The data will be provided upon request.

Figure 3.17 and Figure 3.18 plot the λ to achieve the maximal value of |G2TS(λ, λc
1) +

ν · G2TS(λ, λc
2)| along ν at (λc

1, λ
c
2) = (1/3, 2/3) and (1/4, 3/4), which shows where the

Table 3.3. Sum of densities at the true break λc
1 and λc

2 where {λc
1, λ

c
2} = {1/3, 2/3} under

different ρ and |M1| 6= |M2|, where M1 = 50(δ1 = 5).
ρ = 0 ρ = 0 ρ = 0.5 ρ = 0.5 ρ = 1 ρ = 1

M2 λ̂TS λ̂MS λ̂TS λ̂MS λ̂TS λ̂MS

10 4.97 19.16 6.31 13.17 4.27 4.53
20 2.35 20.37 4.12 14.76 3.97 4.46
40 0.00 5.76 0.00 5.07 1.51 3.36

100 0.00 0.00 0.00 0.00 0.31 0.96
150 0.00 0.00 0.00 0.00 0.00 0.00
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limits of λ̂TS would be when T →∞. When ν = 0, the λ to achieve maximum will be λc
1,

one of the true break points. Other than that, all the limits would not be at the true break

point. With the increase of ν from -10 to 10, there are two kinks in the limit at |ν| = 1. And

when |ν| goes to ∞, the limit of the break point estimator will be the true break λc
2. Take

{λc
1, λ

c
2} = {1/3, 2/3} as an example. When ν < −1, the limiting point is greater than

2/3. When−1 < ν < 0, the limiting point is less than 1/3. In both cases, the limiting point

is between the two true break points. When ν > 0, the limiting point will be between the

true break points. And when ν = 1, the limiting point is at λ = 0.5. This can be extended

to be a general pattern.

3.6 Application to Sequential Tests of Multiple Breaks

Model

The previous analysis shows that λ̂MS can deal with the inconsistency of λ̂TS in the pres-

ence of under-specification of break numbers, which means using λ̂MS might be better than

λ̂TS in some applications with unknown break number. BP(1998) and BP(2003) proposed

the sequential process to test mean shift hypothesis and locate the break points step by step,

where the consistency of the break point estimator is critical. PY(2008) develop a test for

an unknown break point in a univariate trend break model where the noise component can

be either stationary or integrated. A bias-corrected estimate of the serial correlation param-

eter is used and a super efficient estimate of ρ is applied to choose the test for I(0) or I(1)

errors. KP(2010) applied the sequential test in BP(2003) to a multiple trend break model

and made it robust to I(0) and I(1) errors using the method in PY(2008).

A general model is defined in these papers as follows.

yt = x′tΨ + ut (3.6.18)

ut = ρut−1 + εt. (3.6.19)
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For a linear trend shift model, xt
.
= (1, t, DTt)

′, Ψ
.
= (µ, β, δ)′. Testing hypothesis H0 :

RΨ = γ, PY(2008)’s test is defined as

WFS = (RΨ̂− γ)′[s2R(X ′X)−1R](RΨ̂− γ),

where R = (0, 0, 1), γ = 0, X = (x1, (1− ρ̂)x2, · · · , (1− ρ̂)xT )′,s2 = T−1 ∑T
t=1 ε̂2

t , and

ε̂t are the residuals associated with the feasible GLS regression.

KP(2010) described the sequential way as follows: first, we obtain the estimates of the

break dates T1, · · · , Tl as global minimizers of the sum of squared residuals from the model

with l breaks estimated by OLS:

(T̂1, · · · , T̂l) = arg min
(T1,··· ,Tl)

SSR(T1, · · · , Tl).

This can be achieved using the dynamic programming algorithm proposed by BP(2003).

Second, we test for the presence of an additional break in each of the (l + 1) segments

partitioned by (T̂1, · · · , T̂l). The test statistics test the null hypothesis of, say, l breaks,

versus the alternative hypothesis of (l + 1) breaks is proposed. In practice, l starts from 0.

Break tests in each segment follows PY(2009) in details.

The inconsistency problem of the trend break point estimator with under-specified break

number is not considered by KP(2010) and other related literatures. Theorem 3.5.6 proves

the inconsistency of λ̂TS , which could hurt the sequential test. Hence instead of using

λ̂TS as in KP(2010) that does not take into account the inconsistency problem, I use λ̂MS

as break point estimates to show how solving the inconsistency problem can improve the

power of the test. To do so, we should make sure this does not change the null behavior

of the KP(2010) test. KP(2010)’s result are based on the assumption that the break point

estimators are consistent to the true breaks. Hence the null distribution of KP(2010) test

does not depend on the break point estimators, i.e. consistency of the break point estimators

ensures the break point estimators do not asymptotically show up in the null distribution.

From this point, we can use λ̂MS instead of λ̂TS to solve the inconsistency problem.
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I consider the similar variety of data generating processes as in KP(2010), especially the

setting of errors. m denotes the selected break number.

Simulation DGP can be described as follows for a two-break case (m = 2),

yt = δ1DTt(λ
c
1) + δ2DTt(λ

c
2) + ut, (3.6.20)

ut = ρut−1 + et + θet−1. (3.6.21)

In Table 3.4 and 3.5, we set δ1 = 1, λc
1 = 1/3, and λc

2 = 2/3, θ = 0 and 0.5 re-

spectively. The true break number m = 2. The results here show that, for big δ or when

ρ = 1, 0.9, 0.8, λ̂MS is always preferred in that the power is raised by introducing λ̂MS

and that the possibility to over-estimate (m̂ ≥ 3) is lowered using λ̂MS . When ρ = 0.5 and

break magnitude is small, the improvement from using λ̂MS is not as much as the other

cases. This is because when ρ and δ are both small, there is a comprehensive effect from the

over-difference and consistency problem. The effect from over-difference outweights the

value of consistency. The power comparison between choosing λ̂MS and λ̂TS at T = 240

(which will be provided upon request) is similar to when T = 120. The asymptotic result

predicts the finite sample distribution well, that is, the finite sample performance is only

a matter of M1, M2, λ
c
1, λ

c
2, and does not depend on T much. When θ = 0.5, the power

improve from λ̂MS is less than θ = 0.
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Table 3.4. Probability of Break Number Selection m̂ for Trend Shift Model with 2 breaks:
{λc

1, λ
c
2} = {1/2, 2/3}, δ1 = 1, θ = 0, T = 120.

m̂ using λ̂TS m̂ using λ̂MS
ρ δ2 0.00 1.00 2.00 ≥ 3.00 0.00 1.00 2.00 ≥ 3.00

1.00 0.50 0.00 0.58 0.30 0.12 0.00 0.63 0.31 0.06
0.60 0.00 0.43 0.43 0.14 0.00 0.47 0.48 0.05
0.70 0.00 0.33 0.52 0.15 0.00 0.38 0.54 0.08
0.80 0.00 0.23 0.60 0.17 0.00 0.27 0.64 0.09
0.90 0.00 0.16 0.67 0.17 0.00 0.18 0.70 0.12
1.00 0.00 0.10 0.72 0.18 0.00 0.16 0.78 0.06

0.90 0.50 0.00 0.63 0.30 0.07 0.00 0.66 0.33 0.01
0.60 0.00 0.44 0.46 0.10 0.00 0.49 0.48 0.03
0.70 0.00 0.27 0.58 0.15 0.00 0.28 0.60 0.12
0.80 0.00 0.16 0.71 0.13 0.00 0.18 0.76 0.06
0.90 0.00 0.07 0.79 0.14 0.00 0.10 0.81 0.09
1.00 0.00 0.05 0.80 0.15 0.00 0.09 0.83 0.08

0.80 0.50 0.00 0.58 0.37 0.05 0.00 0.61 0.38 0.01
0.60 0.00 0.40 0.52 0.08 0.00 0.42 0.53 0.05
0.70 0.00 0.23 0.65 0.12 0.00 0.26 0.68 0.06
0.80 0.00 0.10 0.79 0.11 0.00 0.13 0.82 0.05
0.90 0.00 0.05 0.84 0.11 0.00 0.08 0.88 0.04
1.00 0.00 0.02 0.86 0.12 0.00 0.03 0.86 0.11

0.50 0.50 0.00 0.03 0.88 0.09 0.00 0.06 0.87 0.07
0.60 0.00 0.02 0.87 0.11 0.00 0.03 0.85 0.12
0.70 0.00 0.01 0.88 0.11 0.00 0.03 0.86 0.11
0.80 0.00 0.01 0.90 0.09 0.00 0.02 0.88 0.10
0.90 0.00 0.00 0.90 0.10 0.00 0.01 0.91 0.08
1.00 0.00 0.00 0.90 0.10 0.00 0.00 0.93 0.07
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1) + ν · G2TS(λ, λc

2)| under ν = 1 and -1 for trend shift model,
where {λc
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2} = {1/4, 3/4}.
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Figure 3.9. Finite sample distribution with the asymptotic distribution of λ̂TS and λ̂MS

at ν = −5. The left to right: {λc
1, λ

c
2} = {1/4, 3/4}, {1/3, 2/3}; the top to bottom:

T = 100, 250, 500, 1000. ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample λ̂MS ; dot:
asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS .
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Figure 3.10. Finite sample distribution with the asymptotic distribution of λ̂TS and λ̂MS

at ν = −2. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right: {λc

1, λ
c
2} = {1/3, 2/3}; the top

to bottom: T = 100, 250, 500, 1000. ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample
λ̂MS ; dot: asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS .
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Figure 3.11. Finite sample distribution with the asymptotic distribution of λ̂TS and λ̂MS

at ν = −1. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right: {λc

1, λ
c
2} = {1/3, 2/3}; the top

to bottom: T = 100, 250, 500, 1000. ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample
λ̂MS ; dot: asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS .
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Figure 3.12. Finite sample distribution with the asymptotic distribution of λ̂TS and λ̂MS

at ν = −0.5. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right: {λc

1, λ
c
2} = {1/3, 2/3}; the top

to bottom: T = 100, 250, 500, 1000. ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample
λ̂MS ; dot: asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS .
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Figure 3.13. Finite sample distribution with the asymptotic distribution of λ̂TS and λ̂MS

at ν = 0.5. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right: {λc

1, λ
c
2} = {1/3, 2/3}; the top

to bottom: T = 100, 250, 500, 1000. ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample
λ̂MS ; dot: asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS .
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Figure 3.14. Finite sample distribution with the asymptotic distribution of λ̂TS and λ̂MS

at ν = 1. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right: {λc

1, λ
c
2} = {1/3, 2/3}; the top to

bottom: T = 100, 250, 500, 1000. ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample
λ̂MS ; dot: asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS .
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Figure 3.15. Finite sample distribution with the asymptotic distribution of λ̂TS and λ̂MS

at ν = 2. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right: {λc

1, λ
c
2} = {1/3, 2/3}; the top to

bottom: T = 100, 250, 500, 1000. ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample
λ̂MS ; dot: asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS .
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Figure 3.16. Finite sample distribution with the asymptotic distribution of λ̂TS and λ̂MS

at ν = 5. The left: {λc
1, λ

c
2} = {1/4, 3/4}; the right: {λc

1, λ
c
2} = {1/3, 2/3}; the top to

bottom: T = 100, 250, 500, 1000. ρ = 1. Solid: finite sample λ̂TS ; dash: finite sample
λ̂MS ; dot: asymptotic λ̂TS ; dot-solid: asymptotic λ̂MS .
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Figure 3.18. λ to achieve maximal G2TS(λ, λc
1)+ν ·G2TS(λ, λc

2), {λ
c
1, λ

c
2} = {1/4, 3/4},

ν = −10, · · · , 10.
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Table 3.5. Probability of Break Number Selection m̂ for Trend Shift Model with 2 breaks:
{λc

1, λ
c
2} = {1/2, 2/3}, δ1 = 1, θ = 0.5, T = 120.

m̂ using λ̂TS m̂ using λ̂MS
ρ δ2 0.00 1.00 2.00 ≥3.00 0.00 1.00 2.00 ≥3.00

1.00 0.50 0.00 0.59 0.24 0.17 0.00 0.61 0.26 0.13
0.60 0.00 0.50 0.30 0.20 0.00 0.50 0.32 0.18
0.70 0.00 0.43 0.35 0.22 0.00 0.45 0.35 0.20
0.80 0.00 0.35 0.43 0.22 0.00 0.33 0.42 0.25
0.90 0.00 0.28 0.47 0.25 0.00 0.27 0.48 0.25
1.00 0.00 0.25 0.50 0.25 0.00 0.26 0.51 0.23

0.90 0.50 0.00 0.61 0.28 0.11 0.00 0.62 0.27 0.11
0.60 0.00 0.51 0.35 0.14 0.00 0.52 0.36 0.12
0.70 0.00 0.39 0.45 0.16 0.00 0.39 0.47 0.14
0.80 0.00 0.29 0.53 0.18 0.00 0.31 0.56 0.13
0.90 0.00 0.19 0.62 0.19 0.00 0.20 0.66 0.12
1.00 0.00 0.14 0.69 0.17 0.00 0.16 0.73 0.11

0.80 0.50 0.00 0.55 0.36 0.09 0.00 0.54 0.38 0.08
0.60 0.00 0.45 0.45 0.10 0.00 0.44 0.47 0.09
0.70 0.00 0.26 0.62 0.12 0.00 0.27 0.65 0.08
0.80 0.00 0.18 0.69 0.13 0.00 0.19 0.72 0.09
0.90 0.00 0.09 0.78 0.13 0.00 0.06 0.81 0.13
1.00 0.00 0.06 0.80 0.14 0.00 0.04 0.84 0.12

0.50 0.50 0.00 0.55 0.36 0.09 0.00 0.53 0.36 0.12
0.60 0.00 0.45 0.45 0.10 0.00 0.42 0.42 0.16
0.70 0.00 0.26 0.62 0.12 0.00 0.25 0.60 0.15
0.80 0.00 0.18 0.69 0.13 0.00 0.18 0.71 0.11
0.90 0.00 0.09 0.78 0.13 0.00 0.10 0.82 0.08
1.00 0.00 0.06 0.80 0.14 0.00 0.07 0.83 0.10
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A.1 Extension of the asymptotics in Theorem 1.5.1 to

near-I(1) errors

The results in Theorem 1.5.1 are easily extended from pure I(1) errors to near-I(1) errors.

Assume

(A1.b) ut = ρut−1 + εt, where t = 2, · · · , T, 0

where ρ = 1− c
T , c ≥ 0 is a constant scalar. The asymptotics of the break point estimator

is derived under near-I(1) errors to show that the limiting distributions depend on c.

Corollary 0.1.1 Suppose the regressions in the level model (1.2.1) and its first difference

(1.2.2) are estimated by using λ ∈ Λ ⊆ (0, 1) and T c
b

.
= λcT is the true break. Under the

assumption (A1.b) and (A2.c), the break point estimators by minimizing the SSR(λ) have

the limiting distributions as follows.

1. For the level model (1.2.1),

λ̂TS ⇒ arg max
λ∈Λ

{
[
∫ 1
0 F (r, λ)Vc(r)dr + M

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
}

where Vc(r)
.
=

∫ 1
0 exp(−c(r − s))dW (s), M

.
= δ∗

d(1) and F (r, λ) is defined in Theo-

rem 1.5.1.

2. For the first difference (1.2.2),

λ̂MS ⇒

arg max
λ∈Λ

{
[(λW (1)−W (λ)− c

∫ 1
0 (1(r > λ)− (1− λ))Vc(r)dr) + M(Ψ(λ, λc)]2

λ(1− λ)
}

where M
.
= δ∗

d(1) and Ψ(λ, λc) is defined in Theorem 1.5.1.
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A.2 Proof of Theorem 1.5.1

A.2.1 Proof of part 1 in Theorem 1.5.1

The break point estimator λ̂TS is obtained by minimizing the SSRTS(λ) (See (1.2.3)).

Because SSR0 does not depend on λ, we can equivalently define λ̂TS as

λ̂TS = arg max
λ∈Λ

{SSR0
TS − SSRTS(λ)},

where SSR0
TS denotes the SSR under the assumption of no beaks. Using the Frisch and

Waugh (1933) Theorem,

δ̂ = [
T∑

t=1
D̃T t(λ)D̃T t(λ)]−1

T∑
t=1

D̃T t(λ)ỹt, (0.2.22)

where {D̃T t(λ)} and {ỹt} are the residuals from the OLS regressions of {DT t(λ)} and

{yt} on [1 t]′. There is a standard result (See Sayginsoy and Vogelsang (2010)) that

SSR0
TS − SSRTS(λ) = [

T∑
t=1

D̃T t(λ)D̃T t(λ)]δ̂2. (0.2.23)

Consider T−1D̃T t(λ). Simple algebra gives T−1D̃T t(λ)

= T−1DTt(λ)−
T∑

t=1
T−1DTt(λ)[1 t]

[
1 0

0 T−1

]
×


T∑

t=1

[
1 0

0 T−1

] [
1

t

] [
1 t

] [
1 0

0 T−1

]
−1 [

1 0

0 T−1

] [
1

t

]
⇒ (r − λ)1(r > λ)−∫ 1

0
(r − λ)1(r > λ)[1 r]dr[

∫ 1

0

[
1

r

] [
1 r

]
dr]−1

[
1

r

]

= (r − λ)1(r > λ)− [

∫ 1

0
(r − λ)1(r > λ)dr

∫ 1

0
(r − λ)1(r > λ)rdr][

4 −6

−6 12

] [
1

r

]
.
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Because ∫ 1

0
(r − λ)1(r > λ)dr =

λ2

2
− λ +

1

2
,∫ 1

0
(r − λ)1(r > λ)rdr =

λ3

6
− λ

2
+

1

3
,

we have

T−1D̃T t(λ) ⇒ (r − λ)1(r > λ) + (λ3 − 2λ2 + λ)− (2λ3 − 3λ2 + 1)r.

For simplicity, we define

F (r, λ)
.
= (r − λ)1(r > λ) + (λ3 − 2λ2 + λ)− (2λ3 − 3λ2 + 1)r

=

{
(λ3 − 2λ2 + λ)− (2λ3 − 3λ2 + 1)r, if r ≤ λ,

(λ3 − 2λ2)− (2λ3 − 3λ2)r, if r > λ.

Because {ut} is I(1),

T−1/2u[rT ] ⇒ d(1)W (r),

where W (r) is the standard Wiener process. Well known results give
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T−3/2
T∑

t=1
T−1D̃T t(λ)ut ⇒ d(1)

∫ 1

0
F̃ (r, λ)W (r)dr.

Scaling (0.2.23) by T−2 gives

T−2[SSR0
TS − SSRTS(λ)] = [T 1/2δ̂]2[T−1

T∑
t=1

T−1D̃T t(λ)D̃T t(λ)T−1].

From the previous results, it follows that

T 1/2δ̂ = [T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1]−1

[T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ

c)T−1(T 1/2δ)] +

[T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1]−1[T−3/2

T∑
t=1

T−1D̃T t(λ)ut]

⇒ [

∫ 1

0
F (r, λ)2dr]−1[δ∗

∫ 1

0
F (r, λ)F (r, λc)dr]

+[

∫ 1

0
F (r, λ)2dr]−1[d(1)

∫ 1

0
F (r, λ)W (r)dr]

=
d(1)

∫ 1
0 F (r, λ)W (r)dr + δ∗

∫ 1
0 F (r, λ)F (r, λc)dr∫ 1

0 F (r, λ)2dr
,

and

T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1 ⇒

∫ 1

0
F (r, λ)2dr,

which gives

T−2[SSR0
TS − SSRTS(λ)] ⇒

[d(1)
∫ 1
0 F (r, λ)W (r)dr + δ∗

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
.
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Furthermore using the continuous mapping theorem (CMT), we obtain the limit of the

break point estimator as

λ̂TS = arg max
λ∈Λ

{SSR0
TS − SSRTS(λ))

= arg max
λ∈Λ

{T−2[SSR0
TS − SSRTS(λ)])

⇒ arg max
λ∈Λ

{
[d(1)

∫ 1
0 F (r, λ)W (r)dr + δ∗

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
}

= arg max
λ∈Λ

{
[
∫ 1
0 F (r, λ)W (r)dr + M

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
},

where M
.
= δ∗

d(1) .

A.2.2 Proof of part 2 in Theorem 1.5.1

Using similar arguments as the level model, we have

SSR0
MS − SSRMS(λ) = [

T∑
t=1

D̃U t(λ)2]δ̂2.

Under the assumptions of Model (1.2.2), the OLS estimate of δ is given by

δ̂ = [
T∑

t=1
D̃U

2
t (λ)]−1

T∑
t=1

[D̃U t(λ)ỹt],

where

D̃U t(λ) = DUt(λ)−
T∑

t=1
DUt/T = DUt(λ)− D̄U(λ),

∆̃yt = ∆yt −
T∑

t=1
∆yt/T = ∆yt − ∆̄y.

Simple algebra gives

117



δ̂ = [
T∑

t=1
D̃U

2
t (λ)]−1

T∑
t=1

D̃U t(λ)[D̃U t(λ
c)δ + ∆ut]

= [
T∑

t=1
D̃U

2
t (λ)]−1

T∑
t=1

D̃U t(λ)D̃U t(λ
c)δ + [

T∑
t=1

D̃U
2
t (λ)]−1

T∑
t=1

D̃U t(λ)∆ut.

Because ∆ut = εt,

T 1/2δ̂ = [T−1
T∑

t=1
D̃U

2
t (λ)]−1[T−1

T∑
t=1

D̃U t(λ)D̃U t(λ
c)δ∗] +

[T−1
T∑

t=1
D̃U

2
t (λ)]−1[T−1/2

T∑
t=1

D̃U t(λ)εt];

also because

[T−1
T∑

t=1
D̃U

2
t (λ)] ⇒

∫ 1

0
[I(r > λ)− (1− λ)]2dr = λ(1− λ),

and

[T−1
T∑

t=1
D̃U t(λ)D̃U t(λ

c)] ⇒
∫ 1

0
[I(r > λ)− (1− λ)][I(r > λc)− (1− λc)]dr

=

{
(1− λc)λ, if λ ≤ λc,

(1− λ)λc, if λ > λc,
;

and

T−1/2[
T∑

t=1
D̃U t(λ)εt] ⇒ d(1)

∫ 1

0
[I(r > λ)− (1− λ)]dW (r)

= d(1)[λW (1)−W (λ)];

we obtain

T 1/2δ̂ ⇒ δ∗

λ(1− λ)
Φ(λ, λc) +

d(1)

λ(1− λ)
[λW (1)−W (λ)],

where
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Φ(λ, λc) =

{
(1− λc)λ, if λ ≤ λc,

(1− λ)λc, if λ > λc.

Using this result, it immediately follows that

SSR0
MS − SSRMS(λ) = [

T∑
t=1

D̃U t(λ)2]δ̂2

= [T−1
T∑

t=1
D̃U t(λ)2][T 1/2δ̂]2

⇒ 1√
λ(1− λ)

[d(1)(λW (1)−W (λ)) + δ∗Ψ(λ, λc)]2.

Applying the CMT theorem gives

λ̂TS = arg max
λ∈Λ

{SSR0
MS − SSRMS(λ))

⇒ arg max
λ∈Λ

{ [d(1)(λW (1)−W (λ)) + δ∗Ψ(λ, λc)]2

λ(1− λ)
}

= arg max
λ∈Λ

{ [(λW (1)−W (λ)) + MΨ(λ, λc)]2

λ(1− λ)
}

where M = δ∗
d(1) .

A.3 Proof that arg maxλ G2(λ, λc) = λc

a) First I derive G2TS(λ, λc), which is a function of λ and λc. Then I prove that it

always achieves the global maximum at λ = λc in [0, 1]. This result suggests that

arg max{G1TS(λ) + G2TS(λ, λc)} converges to λc as M increases.

Take λ ≤ λc, we have

G2TS(λ, λc) =
(1− λ)2(1− λc)2(λ + λc + 2λλc + 2)/6√

(1− λ3)(1− λc)3/3

=
(1− λc)2

2
√

3

(λ + λc + 2λλc + 2)√
λ2 + λ + 1

.
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Taking the derivative of G2TS with respect to λ gives

G2′TS(λ) =

√
3(1− λc)2

4

(λc − λ)

(λ2 + λ + 1)3/2
.

We can see that G2′TS(λ) ≥ 0 when λ ≤ λc, which proves that the maximum value of

G2TS is obtained at λ = λc for λ ≤ λc.

Now take λ ≥ λc, giving

G2TS(λ, λc) =

√
3(λc)2

4

[(6− 3λc) + (2λc − 3)λ]√
λ2 − 3λ + 3

.

The derivative of G2TS(λ, λc) with respect to λ is

G2′TS(λ) =

√
3(λc)2

4

(λc − λ)

(λ2 − 3λ + 3)3/2
.

The fact that G2′TS(λ) ≤ 0 shows that the maximum value of G2TS is obtained at λ = λc

when λ ≥ λc.

b) I calculate G2MS(λ, λc) and show that it achieves the global maximum at λ = λc in

[0, 1]. The conclusion is similar to that in part a): arg max{G1MS(λ) + G2MS(λ, λc)}

converges to λc as M increases.

When λ ≤ λc

G2MS(λ, λc) =
(1− λc)λ√

λ(1− λ)

=
(1− λc)

√
λ√

(1− λ)

≤
√

(1− λc)λc

hence G2MS(λ, λc) attains maximum at λ = λc for λ ≤ λc. It can be proved similarly for

λ ≥ λc.

Combining a) and b) we obtain that arg maxλ G2TS(λ, λc) = λc and

arg maxλ G2MS(λ, λc) = λc.
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A.4 Proof of Corollary 0.1.1

A.4.1 Proof of part 1 in Corollary 0.1.1

Under assumption (A1.b): ut = ρut−1 + εt, where ρ
.
= 1− c

T ,

T−3/2
T∑

t=1
T−1D̃T t(λ)ut ⇒ d(1)

∫ 1

0
F (r, λ)Vc(r)dr,

where Vc(r) =
∫ 1
0 exp(−c(r − s))dW (s).

A.4.2 Proof of part 2 in Corollary 0.1.1

Because ut = (1− c
T )ut−1 + εt, it follows that ∆ut = − c

T ut−1 + εt. This gives

(T − 1)−1/2
T∑

t=2
D̃U t(λ)∆ut = (T − 1)−1/2

T∑
t=2

D̃U t(λ)εt

−(T − 1)−1/2(T )−1c
T∑

t=2
D̃U t(λ)ut−1,

where

(T − 1)−1/2
T∑

t=2
D̃U t(λ)εt ⇒ d(1)[λW (1)−W (λ)],

and

(T − 1)−1/2(T )−1c
T∑

t=2
D̃U t(λ)ut−1 ⇒ d(1)c

∫ 1

0
(1(r > λ)− (1− λ))Vc(r)dr.

The rest of the proof is straightforward and follows the proof of Theorem 1.5.1.
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A.5 Proof of Theorem 1.6.2

A.5.1 Proof of part 1 in Theorem 1.6.2

The break point estimator λ̂TS is obtained by minimizing the SSRTS(λ) (See (1.2.3)).

Because SSR0 does not depend on λ, we can equivalently define λ̂TS as

λ̂TS = arg max
λ∈Λ

{SSR0
TS − SSRTS(λ)},

where SSR0
TS denotes the SSR under the assumption of no beaks. Using the Frisch and

Waugh (1933) Theorem,

δ̂ = [
T∑

t=1
D̃T t(λ)D̃T t(λ)]−1

T∑
t=1

D̃T t(λ)ỹt, (0.5.24)

where {D̃T t(λ)} and {ỹt} are the residuals from the OLS regressions of {DT t(λ)} and

{yt} on [1 t]′. There is a standard result (See Sayginsoy and Vogelsang (2010)) that

SSR0
TS − SSRTS(λ) = [

T∑
t=1

D̃T t(λ)D̃T t(λ)]δ̂2.

Consider T−1D̃T t(λ), simple algebra in the proof of Theorem 1.5.1 gives

T−1D̃T t(λ) ⇒ F (r, λ)
.
= (r − λ)1(r > λ) + (λ3 − 2λ2 + λ)− (2λ3 − 3λ2 + 1)r.

Because {ut} is I(0),

T−1/2
[rT ]∑
t=1

ut ⇒ d(1)W (r),

where W (r) is the standard Wiener process. Well known results give

T−1/2
T∑

t=1
T−1D̃T t(λ)ut ⇒ d(1)

∫ 1

0
F (r, λ)dW (r).

Scaling δ̂ by T 3/2, equation (1.2.3) is written as
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[SSR0
TS − SSRTS(λ)] = [T 3/2δ̂]2[T−1

T∑
t=1

T−1D̃T t(λ)D̃T t(λ)T−1].

From the previous results, it follows that

T 3/2δ̂ = [T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1]−1

[T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ

c)T−1(T 3/2δ)] +

[T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1]−1[T−1/2

T∑
t=1

T−1D̃T t(λ)ut]

⇒ [

∫ 1

0
F (r, λ)2dr]−1[δ∗

∫ 1

0
F (r, λ)F (r, λc)dr]

+[

∫ 1

0
F (r, λ)2dr]−1[d(1)

∫ 1

0
F (r, λ)dW (r)]

=
δ∗

∫ 1
0 F (r, λ)F (r, λc)dr + d(1)

∫ 1
0 F (r, λ)dW (r)∫ 1

0 F (r, λ)2dr
,

and

T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1 ⇒

∫ 1

0
F (r, λ)2dr,

which gives

[SSR0
TS − SSRTS(λ)] ⇒

[d(1)
∫ 1
0 F (r, λ)dW (r) + δ∗

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
.

Furthermore, using the CMT we obtain the limit of the break point estimator as

λ̂TS = arg max
λ∈Λ

{SSR0
TS − SSRTS(λ))

⇒ arg max
λ∈Λ

{
[d(1)

∫ 1
0 F (r, λ)dW (r) + δ∗

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
}

= arg max
λ∈Λ

{
[
∫ 1
0 F (r, λ)dW (r) + M

∫ 1
0 F (r, λ)F (r, λc)dr]2∫ 1

0 F (r, λ)2dr
},
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where M
.
= δ∗

d(1) ≡
δT3/2
d(1) .

A.5.2 Proof of part 2 in Theorem 1.6.2

Because SSR0 does not depend on λ, we can equivalently define λ̂QS as

λ̂QS = arg max
λ∈Λ

{SSR0
QS − SSRQS(λ)}.

Using the Frisch and Waugh (1933) Theorem,

δ̂ = [
T∑

t=1
D̃Qt(λ)D̃Qt(λ)]−1

T∑
t=1

D̃Qt(λ)S̃t,

where {D̃Qt(λ)} and {S̃t} are the residuals from the OLS regressions of {DQt(λ)} and

{St} on [t t2]′. There is a standard result (See Sayginsoy and Vogelsang (2010)) that

SSR0
QS − SSRQS(λ) = [

T∑
t=1

D̃Qt(λ)D̃Qt(λ)]δ̂2.

Consider T−2D̃T t(λ). Simple algebra gives T−2D̃Qt(λ)

= T−2DQt(λ)−
T∑

t=1
T−2DQt(λ)[t t2]

[
T−1 0

0 T−2

]
×


T∑

t=1

[
T−1 0

0 T−2

] [
t

t2

] [
t t2

] [
T−1 0

0 T−2

]
−1 [

T−1 0

0 T−2

]
[

t

t2

]

⇒ (r − λ)2

2
1(r > λ)−

∫ 1

0

(r − λ)2

2
1(r > λ)[r r2]dr[

∫ 1

0

[
r

r2

] [
r r2

]
dr]−1

[
r

r2

]

=
(r − λ)2

2
1(r > λ)− [

∫ 1

0

(r − λ)2

2
1(r > λ)rdr

∫ 1

0

(r − λ)2

2
1(r > λ)r2dr][

48 −60

−60 80

] [
r

r2

]
.
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Because ∫ 1

0

(r − λ)2

2
1(r > λ)rdr =

1

8
− λ

3
+

λ2

4
− λ4

24
,∫ 1

0

(r − λ)2

2
1(r > λ)r2dr =

1

10
− λ

4
+

λ2

6
− λ5

60
,

we have

T−2D̃Qt(λ)

⇒
(r − λ)2

2
1(r > λ)− (−λ + 2λ2 − 2λ4 + λ5)r − (

1

2
− 5λ2

3
+

5λ4

2
− 4λ5

3
)r2.

For simplicity, we define

Q(r, λ)

.
=

(r − λ)2

2
1(r > λ)− (−λ + 2λ2 − 2λ4 + λ5)r − (

1

2
− 5λ2

3
+

5λ4

2
− 4λ5

3
)r2.

Because {ut} is I(1),

T−1/2u[rT ] ⇒ d(1)W (r),

where W (r) is the standard Wiener process. Well known results give

T−3/2
T∑

t=1
T−1D̃Qt(λ)ut ⇒ d(1)

∫ 1

0
Q̃(r, λ)W (r)dr.

Scaling (0.5.25) by T−2 gives

T−2[SSR0
QS − SSRQS(λ)] = [T 3/2δ̂]2[T−1

T∑
t=1

T−2D̃Qt(λ)D̃Qt(λ)T−2].

The rest part of the proof is straight forward and follows the proof of Theorem 1.5.1 part 1.

B.1 Proofs and Additional Results of Chapter 2

Proof of Theorem 2.5.3. The result for the numerator of LM(m, Tb) follows directly from

Sayginsoy and Vogelsang (2010). All that is needed to complete the proof is the fixed-b
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limit of σ̃2(m). Because the fixed-b algebra for σ̃2(m) is the same as the algebra used by

Hashimzade and Vogelsang (2008), once we derive the limit of the partial sums of ũt the

fixed-b limits follow directly using arguments in Kiefer and Vogelsang (2005), Hashimzade

and Vogelsang (2008) and Sayginsoy and Vogelsang (2010). Define

S̃[rT ] =

[rT ]∑
t=1

ũt.

where,

ũt = yt − y = δ(DUt(T
0
b )−DU(T 0

b )) + ut − u,

giving

S̃[rT ] = δ

[rT ]∑
t=1

(DUt(T
0
b )−DU(T 0

b )) +

[rT ]∑
t=1

(ut − u).

For I(0) errors recall that under HA we have δ = T−1/2δ0 and it follows that

T−1/2S̃[rT ] = δ0T
−1

[rT ]∑
t=1

(DUt(T
0
b )−DU(T 0

b )) + T−1/2
[rT ]∑
t=1

(ut − u)

⇒ δ0[(r − λ0)1(r > λ0)− r(1− λ0)] + σ[W (r)− rW (1)]

= σ

(
δ0
σ

[(r − λ0)1(r > λ0)− r(1− λ0)] + W (r)− rW (1)

)
≡ σQ0(r).

For I(1) errors δ = T−1/2δ0 giving

T−3/2S̃[rT ]

= δ0T
−1

[rT ]∑
t=1

(DUt(T
0
b )−DU(T 0

b )) + T−3/2
[rT ]∑
t=1

(ut − u)

⇒ δ0[(r − λ0)1(r > λ0)− r(1− λ0)] + d(1)[

∫ r

0
Vc(s)ds− r

∫ 1

0
Vc(s)ds]

= d(1)

(
δ0

d(1)
[(r − λ0)1(r > λ0)− r(1− λ0)] +

∫ r

0
Vc(s)ds− r

∫ 1

0
Vc(s)ds

)
≡ d(1)Q1(r).
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C.1 Proof of Theorem 3.4.4

1) Derive the asymptotic distribution with underspecified break number

We have

RSS0
MS −RSSMS(λ) = [

T∑
t=1

D̃U t(λ)2]δ̂2
MS .

Under the assumptions of Model (3.2.1), the OLS estimate of δ is given by

δ̂MS = [
T∑

t=1
D̃U

2
t (λ)]−1

T∑
t=1

[D̃U t(λ)ỹt],

where

D̃U t(λ) = DUt(λ)−
T∑

t=1
DUt/T = DUt(λ)− D̄U(λ).

When the break number is under estimated, simple algebra gives

δ̂MS = [
T∑

t=1
D̃U

2
t (λ)]−1

T∑
t=1

D̃U t(λ)[D̃U t(λ
c
1)δ1 + D̃U t(λ

c
2)δ2 + ut]

= [
T∑

t=1
D̃U

2
t (λ)]−1

T∑
t=1

D̃U t(λ)[D̃U t(λ
c
1)δ1 + D̃U t(λ

c
2)δ2]

+[
T∑

t=1
D̃U

2
t (λ)]−1

T∑
t=1

D̃U t(λ)ut.

Multiplying both sides of the above equation by T 1/2, we have

T 1/2δ̂MS = [T−1
T∑

t=1
D̃U

2
t (λ)]−1[T−1

T∑
t=1

D̃U t(λ)(D̃U t(λ
c
1)δ

∗
1 + D̃U t(λ

c
2)δ

∗
2)] +

[T−1
T∑

t=1
D̃U

2
t (λ)]−1[T−1/2

T∑
t=1

D̃U t(λ)ut];

Because

[T−1
T∑

t=1
D̃U

2
t (λ)] ⇒

∫ 1

0
[I(r > λ)− (1− λ)]2dr = λ(1− λ),
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and

[T−1
T∑

t=1
D̃U t(λ)D̃U t(λ

c)] ⇒
∫ 1

0
[I(r > λ)− (1− λ)][I(r > λc)− (1− λc)]dr

=

{
(1− λc)λ, if λ ≤ λc,

(1− λ)λc, if λ > λc,
;

and

T−1/2[
T∑

t=1
D̃U t(λ)εt] ⇒ d(1)

∫ 1

0
[I(r > λ)− (1− λ)]dW (r)

= d(1)[λW (1)−W (λ)];

we obtain
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T 1/2δ̂MS ⇒
δ∗1

λ(1− λ)
Φ(λ, λc

1) +
δ∗2

λ(1− λ)
Φ(λ, λc

2) +
d(1)

λ(1− λ)
[λW (1)−W (λ)],

where

Φ(λ, λc) =

{
(1− λc)λ, if λ ≤ λc,

(1− λ)λc, if λ > λc.

From this result, it immediately follows that

RSS0
MS −RSSMS(λ)

= [T−1
T∑

t=1
D̃U t(λ)2][T 1/2δ̂MS ]2

⇒ 1√
λ(1− λ)

[d(1)(λW (1)−W (λ)) + δ∗1Ψ(λ, λc
1) + δ∗2Ψ(λ, λc

2)]
2.

Applying the CMT theorem gives

λ̂TS = arg max
λ∈Λ

{SSR0
MS − SSRMS(λ))

⇒ arg max
λ∈Λ

{
[(λW (1)−W (λ)) + M1Ψ(λ, λc

1) + M2Ψ(λ, λc
2)]

2

λ(1− λ)
}

where M1 =
δ∗1

d(1) and M2 =
δ∗2

d(1) .

Let’s further take a look at the M1G2(λ, λc
1)+M2G2(λ, λc

2). First take the first derivative

of G2MS w.r.t. λ.

G2′MS(λ, λc) =
(1− λc)λ

2(1− λ)
√

λ(1− λ)
, when λ ≤ λc

and

G2′MS(λ, λc) =
(1− λ)λc

2(1− λ)
√

λ(1− λ)
, when λ ≥ λc

Assume λc
1 < λc

2,

(M1G2(λ, λc
1) + M2G2(λ, λc

2))
′ = M1

(1− λc
1)λ

2(1− λ)
√

λ(1− λ)
+ M2

(1− λc
2)λ

2(1− λ)
√

λ(1− λ)
,

when λ ≤ λc
1;
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(M1G2(λ, λc
1) + M2G2(λ, λc

2))
′ = M1

(1− λ)λc
1

2(1− λ)
√

λ(1− λ)
+ M2

(1− λc
2)λ

2(1− λ)
√

λ(1− λ)
,

when λc
1 ≤ λ ≤ λc

2;

and

(M1G2(λ, λc
1) + M2G2(λ, λc

2))
′ = M1

(1− λ)λc
1

2(1− λ)
√

λ(1− λ)
+ M2

(1− λ)λc
2

2(1− λ)
√

λ(1− λ)
,

when λ ≥ λc
2.

Through simple algebras, we can show that the peak values will be obtained at either λc
1 or

λc
2.

C.2 Proof of Theorem 3.4.5

1) asymptotic distribution of λ̂c

During underspecification of the break number, the only difference with the case of cor-

rect break number estimation in the form of the RSS0−RSS1(λ) is δ̂TS . We can also get

the standard result that

SSR0
TS − SSRTS(λ) = [

T∑
t=1

D̃T t(λ)D̃T t(λ)]δ̂2
TS .

Consider T−1D̃T t(λ), simple algebra as in Yang (2010) gives

T−1D̃T t(λ) ⇒ F (r, λ)
.
= (r − λ)1(r > λ) + (λ3 − 2λ2 + λ)− (2λ3 − 3λ2 + 1)r.

Because {ut} is I(0),

T−1/2
[rT ]∑
t=1

ut ⇒ d(1)W (r),

where W (r) is the standard Wiener process. Well known results give
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T−1/2
T∑

t=1
T−1D̃T t(λ)ut ⇒ d(1)

∫ 1

0
F (r, λ)dW (r).

Now we estimate δ̂TS . Scaling δ̂TS by T 3/2, equation (3.2.6) is written as

[SSR0
TS − SSRTS(λ)] = [T 3/2δ̂TS ]2[T−1

T∑
t=1

T−1D̃T t(λ)D̃T t(λ)T−1].

From the previous results, it follows that

δ̂TS =
T∑

t=1
D̃T t(λ)D̃T t(λ)]−1

T∑
t=1

D̃T t(λ)ỹt.

Define the matrix X0 and DT (λc) be stacked [1 t] and DTt(λ
c) from t = 1, · · · , T . If

there are two breaks at λc
1 and λc

2 in the model (3.2.3)

Ỹ = Y −X0(X
′
0X0)

−1X ′
0Y

= (X0[α β]′ + δ1DT (λc
1) + δ2DT (λc

2) + U)−

X0(X
′
0X0)

−1X ′
0(X0[α β]′ + δ1DT (λc

1) + δ2DT (λc
2) + U)

= δ1(I −X0(X
′
0X0)

−1X ′
0)DT (λc

1) + δ2(I −X0(X
′
0X0)

−1X ′
0)DT (λc

2) + U

= δ1D̃T t(λ
c
1) + δ2D̃T t(λ

c
2) + U

Under I(0) errors I define the break magnitude within a T−3/2 neighborhood of 0 as in

Assumption (C2.b). Next I derive the asymptotic distribution of the λ̂TS with underspeci-

fied break number.
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From the previous results, it follows that

T 3/2δ̂TS

= [T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1]−1[T−1

T∑
t=1

T−1D̃T t(λ)D̃T t(λ
c
1)T

−1(T 3/2δ1)

+T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ

c
2)T

−1(T 3/2δ2)] +

[T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1]−1[T−1/2

T∑
t=1

T−1D̃T t(λ)ut]

⇒ [

∫ 1

0
F (r, λ)2dr]−1[δ∗1

∫ 1

0
F (r, λ)F (r, λc

1)dr + δ∗2

∫ 1

0
F (r, λ)F (r, λc

2)dr] +

[

∫ 1

0
F (r, λ)2dr]−1[d(1)

∫ 1

0
F (r, λ)dW (r)]

=
[δ∗1

∫ 1
0 F (r, λ)F (r, λc

1)dr + δ∗2
∫ 1
0 F (r, λ)F (r, λc

2)dr] + d(1)
∫ 1
0 F (r, λ)dW (r)∫ 1

0 F (r, λ)2dr
,

and

T−1
T∑

t=1
T−1D̃T t(λ)D̃T t(λ)T−1 ⇒

∫ 1

0
F (r, λ)2dr,

which gives

[SSR0
TS − SSRTS(λ)] ⇒

[d(1)
∫ 1
0 F (r, λ)dW (r) + δ∗1

∫ 1
0 F (r, λ)F (r, λc

1)dr + δ∗2
∫ 1
0 F (r, λ)F (r, λc

2)dr]2∫ 1
0 F (r, λ)2dr

.

Furthermore, using the CMT we obtain the limit of the break point estimator as

λ̂TS

= arg max
λ∈Λ

{SSR0
TS − SSRTS(λ)}

= arg max
λ∈Λ

{[
∫ 1
0 F (r, λ)dW (r)√∫ 1

0 F (r, λ)2dr
+

M1
∫ 1
0 F (r, λ)F (r, λc

1)dr + M2
∫ 1
0 F (r, λ)F (r, λc

2)dr√∫ 1
0 F (r, λ)2dr

]2},
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where M1
.
= δ∗

d(1) ≡
δ1T3/2

d(1) and M2
.
= δ∗

d(1) ≡
δ2T3/2

d(1) .

C.3 Analysis of G2TS under two breaks

In this section, we analyze the G2TS to show how the break point estimation would be in

the presence of under-specification of the break number.

First G2TS(λ, λc) is a function of λ and λc. Then I prove that in the presence of two

break points λc
1 and λc

2 it would not always achieve the global maximum at any true break

point λc
1 or λc

2 in [0, 1]. This result illustrate the inconsistency problem of the break point

estimator for the trend shift model.

When M1 and M2 are big, the break point estimator λ̂TS is dominated by the properties

of M1G2(λ, λc
1) + M2G2(λ, λc

2). Yang (2010) shows that the maximal value of G2(λ, λc)

is achieved at λ = λc, hence when there is only 1 break, λ̂TS is consistent to the true break

point. However, when the true break points are two and the break number is estimated as

one, M1G2(λ, λc
1) + M2G2(λ, λc

2) achieves the maximal values not at λc
1 or λc

2, which

causes the inconsistent break point estimator.

G2TS(λ, λc) =
(1− λ)2(1− λc)2(λ + λc + 2λλc + 2)/6√

(1− λ3)(1− λc)3/3

=
(1− λc)2(λ + λc + 2λλc + 2)/6√

(λ2 + λ + 1)/3

=
(1− λc)2

2
√

3

(λ + λc + 2λλc + 2)√
λ2 + λ + 1

.

Taking the derivative of G2TS with respect to λ gives

G2′TS(λ) =

√
3(1− λc)2

4

(λc − λ)

(λ2 + λ + 1)3/2
.

We can see that G2′TS(λ) ≥ 0 when λ ≤ λc, which proves that the maximum value of

G2TS is obtained at λ = λc for λ ≤ λc.
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Now take λ ≥ λc, giving

G2TS(λ, λc) =

√
3(λc)2

4

[(6− 3λc) + (2λc − 3)λ]√
λ2 − 3λ + 3

.

The derivative of G2TS(λ, λc) with respect to λ is

G2′TS(λ) =

√
3(λc)2

4

(λc − λ)

(λ2 − 3λ + 3)3/2
.

The fact that G2′TS(λ) ≤ 0 shows that the maximum value of G2TS is obtained at λ = λc

when λ ≥ λc.

However, if there are two breaks, λc
1 and λc

2, we need to analyze what the break point

estimation should be.

G2TS(λ, λc
1) =

(1− λ)2(1− λc
1)

2(λ + λc
1 + 2λλc

1 + 2)/6√
(1− λ3)(1− λc

1)
3/3

=
(1− λc

1)
2(λ + λc

1 + 2λλc
1 + 2)/6√

(λ2 + λ + 1)/3

=
(1− λc

1)
2

2
√

3

(λ + λc
1 + 2λλc

1 + 2)
√

λ2 + λ + 1
.

G2TS(λ, λc
2) =

(1− λ)2(1− λc
2)

2(λ + λc
2 + 2λλc

2 + 2)/6√
(1− λ3)(1− λc

2)
3/3

=
(1− λc

2)
2(λ + λc

2 + 2λλc
2 + 2)/6√

(λ2 + λ + 1)/3

=
(1− λc

2)
2

2
√

3

(λ + λc
2 + 2λλc

2 + 2)
√

λ2 + λ + 1
.

For each G2TS , we take the derivative of G2TS with respect to λ and get

[G2TS ]′|λ =

√
3(1− λc)2

4

(λc − λ)

(λ2 + λ + 1)3/2
.

We can see that [G2TS ]′|λ ≥ 0 when λ ≤ λc, which proves that the maximum value of

G2TS is obtained at λ = λc.

When λ ≥ λc, we can get
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G2TS(λ, λc) =

√
3(λc)2

4

[(6− 3λc) + (2λc − 3)λ]√
λ2 − 3λ + 3

.

The derivative of G2TS(λ, λc
1) over λ is

[G2TS ]′|λ =

√
3(λc)2

4

(λc − λ)

(λ2 − 3λ + 3)3/2
.

The fact that [G22
TS ]′|λ ≤ 0 shows that the maximum value of G2TS is obtained at λ = λc

when λ ≥ λc.

For two break at λc
1 and λc

2, define G2∗TS = [M1 ∗G2TS(λ, λc
1) + M2 ∗G2TS(λ, λc

2)]
2,

we have the following proof to show that the maximum will not necessarily to be achieved

at λc
1 or λc

2.

a) when λ < λc
1, there is

[G2∗TS ]′|λ = M1[G2TS ]′(λ, λc
1)|λ + M2[G2TS ]′(λ, λc

2)|λ

= M1

√
3(1− λc

1)
2

4

(λc
1 − λ)

(λ2 + λ + 1)3/2
+ M2

√
3(1− λc

2)
2

4

(λc
2 − λ)

(λ2 + λ + 1)3/2
.

To obtain the maximum value of G2∗TS , we have to make [G2∗TS ]′|λ = 0.

[G2∗TS ]′|λ = M1[G2TS ]′(λ, λc
1)|λ + M2[G2TS ]′(λ, λc

2)|λ

= M1

√
3(1− λc

1)
2

4

(λc
1 − λ)

(λ2 + λ + 1)3/2
+ M2

√
3(1− λc

2)
2

4

(λc
2 − λ)

(λ2 + λ + 1)3/2
.

We need

M1

√
3(1− λc

1)
2

4

(λc
1 − λ)

(λ2 + λ + 1)3/2
+ M2

√
3(1− λc

2)
2

4

(λc
2 − λ)

(λ2 + λ + 1)3/2
= 0.

a.1 both M1 > 0 and M2 > 0 or both M1 < 0 and M2 < 0.

For this case, we can see that, there is no λ to satisfy this condition. Hence there would

be no maximum under this condition.

a.2 M1 > 0 and M2 < 0 or M1 < 0 and M2 > 0.
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Under this condition, we can solve the λ that

λ =
M1(1− λc

1)
2λc

1 + M2(1− λc
2)

2λc
2

M1(1− λc
1)

2 + M2(1− λc
2)

2 .

b) when λ > λc
2

Similar, we need to get

M1G2′TS(λ, λc
1) + M2G2′TS(λ, λc

2) = 0

hence

M1

√
3(λc

1)
2

4

(λc
1 − λ)

(λ2 − 3λ + 3)3/2
+ M2

√
3(λc

2)
2

4

(λc
2 − λ)

(λ2 − 3λ + 3)3/2
= 0.

b.1 both M1 > 0 and M2 > 0 or both M1 < 0 and M2 < 0.

Similar reason, there will be result for this condition.

a.2 M1 > 0 and M2 < 0 or M1 < 0 and M2 > 0.

λ =
M1(λ

c
1)

2λc
1 + M2(λ

c
2)

2λc
2

M1(λ
c
1)

2 + M2(λ
c
2)

2 .

c) when λc
1 < λ < λc

2

Under this condition, we will need to make

M1

√
3(λc

1)
2

4

(λc
1 − λ)

(λ2 − 3λ + 3)3/2
+ M2

√
3(1− λc

2)
2

4

(λc
2 − λ)

(λ2 + λ + 1)3/2
= 0.

We can see that the solution depends M1 and M2.

Therefore our analysis shows that the break point estimator performs very different for

different M1 and M2. whether M1 and M2 are positive or negative would be important.

It shows the existence of the inconsistency problem for multiple trend shift estimation

problem.
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C.4 Proof of Theorem 3.5.6

C.4.1 Proof of part 1: λ̂TS

Under assumption (C1.b): ut = ρut−1 + εt, where ρ
.
= 1− c

T ,

T−3/2
T∑

t=1
T−1D̃T t(λ)ut ⇒ d(1)

∫ 1

0
F (r, λ)Vc(r)dr,

where Vc(r) =
∫ r
0 exp(−c(r − s))dW (s).

C.4.2 Proof of part 2: λ̂MS

Because ut = (1− c
T )ut−1 + εt, it follows that ∆ut = − c

T ut−1 + εt. This gives

(T − 1)−1/2
T∑

t=2
D̃U t(λ)∆ut = (T − 1)−1/2

T∑
t=2

D̃U t(λ)εt −

(T − 1)−1/2(T )−1c
T∑

t=2
D̃U t(λ)ut−1,

where

(T − 1)−1/2
T∑

t=2
D̃U t(λ)εt ⇒ d(1)[λW (1)−W (λ)],

and

(T − 1)−1/2(T )−1c
T∑

t=2
D̃U t(λ)ut−1 ⇒ d(1)c

∫ 1

0
(1(r > λ)− (1− λ))Vc(r)dr.

The rest of the proof is straightforward and follows the proof of Theorem 3.4.5 and Theo-

rem 3.4.4.
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