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ABSTRACT 
 

THE TAXONOMIC AND FUNCTIONAL MICROBIAL DIVERSITY IN LAKE BAIKAL 
AND OTHER NORTH TEMPERATE LAKES 

 
By 

 
Paul Wilburn 

 
Microorganisms cycle nutrients in every environment on Earth, and their importance in 

aquatic environments has been recognized for at least 75 years. However, many 

systems key to better understanding the role specific microbes play in natural 

environments remain poorly characterized. Lake Baikal is a UNESCO world heritage 

site. It is the planet’s deepest (1642 m), most voluminous (23615 km3), and oldest (25 to 

30 my) lake, containing about 20% of world’s unfrozen freshwater. Baikal’s size and 

millions of years of evolutionary development have turned this ancient system into a 

biodiversity hotspot; however, little is known about its microbial communities. I describe 

what is the first -omic based survey the microbial communities of Lake Baikal, covering 

all three basins, multiple depths, and including measured environmental covariates. 

In Chapter One, I show that temperature, stratification, nutrients, and dissolved 

oxygen define major microbial habitats and influenced patterns of community diversity in 

summer Lake Baikal. The environment, not geographical distance, structured microbial 

communities in Lake Baikal. The overall main driver of community dissimilarity was 

temperature. Increases in community diversity are driven by richness in the upper mixed 

layer and evenness in the deep waters, and those aspects of diversity were associated 

with different environmental drivers. Next, we used a co-occurrence network to identify 

lake habitats consistently preferred by groups of co-occurring microorganisms, 



 

 

discovering two sets of candidate resident and two sets of candidate transient habitat-

cohort pairs. Taxonomic makeup reflected the abiotic conditions of those clusters, 

suggesting key microbial players in each one. 

In Chapter Two, I expand microbial community and functional surveys to thirteen 

additional lakes across Michigan, Minnesota, and Wisconsin, sampled in summer and 

winter seasons. Lake Baikal indeed harbored microbial communities that were distinct 

from other north temperate lakes in both seasons, with the next closest communities 

supported by oligotrophic epilimnia of lakes Superior, Portsmouth, and La Salle. In 

summer epilimnion of Lake Baikal, which was N-P co-limited at the time of the survey, 

the enzymes responsible for assimilatory reduction of N species to ammonium and 

assimilation of ammonium into glutamate were present in ferredoxin-dependent at the 

low end of N availability gradient, in a trade-off with NADH-dependent, isoforms. 

Chapter Three presents 369 high quality draft genomes of microorganisms from 

Lake Baikal, assembled using computational tools that are currently at the cutting edge 

of bioinformatics. The metagenome assembled genomes (MAGs) were culture-

independent and included the archaea domain, as well as 15 bacterial phyla, four of 

which have no previously sequenced lineages from Lake Baikal. Most MAGs were small 

but with large variation. At the same time, genomes assembled from the most stable, 

aseasonal, and resource environment in the Lake Baikal hypolimnion harbored the 

smallest genomes with remarkably little size variation, reflecting the oligotrophic 

environment.
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INTRODUCTION 
 
 
Habitat change and biodiversity loss are some of the most pressing issues in modern 

times. Addressing these issues echoes fundamental questions in ecology, such as 

characterizing the mechanisms that organize ecological communities, identifying key 

community members, and explaining how member traits mediate community function. 

At the base of arguably every ecosystem are microorganisms. Microbial communities 

are the ones most responsible for assimilation of inorganic nutrients and 

remineralization of organic compounds, forming the base of natural food webs. This 

dissertation focuses on microbial communities in Lake Baikal, Siberia - the world’s 

largest and most ancient lake with many ocean-like properties, such as oligotrophic 

waters, hydrothermal vents, and the astounding biodiversity at multiple trophic levels. 

This makes Baikal a candidate connecting piece between what we understand of 

freshwater and marine ecology. And that is especially important in microbial ecology, 

which, as a discipline, is presently at an important milestone, attempting to organize a 

deluge of -omic data from natural systems into a unifying framework. 

 

State of aquatic microbial ecology 

Microbial ecology was conceived in the late 19th century when the scientific 

community realized that microorganisms were pivotal in the “cycle of life”. That was 

remarkable, given the contemporary methods, which were limited to relatively simple 

models and experiments, and confined to microorganisms that could be observed in 

culture. Pasteur was first to show a fundamental maxim - that a chemical process 
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(fermentation of wine) was executed by living bacteria, thus establishing that microbes, 

in principle, can perform chemical transformations. That was in 1857. The next two 

decades included multiple discoveries that identified specific microbial taxa capable of 

key biogeochemical processes, notably sulfur reduction by Desulfovibrio desulfuricans 

and nitrogen fixation by rhizobia – both by M.W. Beijerinck. However, Sergei 

Winogradsky is now considered by many as the first microbial ecologist for postulating 

nutrient cycles. By 1880, having discovered microbial sulfur oxidation by Beggiatoa and 

nitrification by Nitrosomonas, Nitrosococcus, Nitrobacter in his early work, he heard of 

Beijerinck’s success with nitrogen-fixing rhizobia. Winogradsky realized that the various 

microbially-driven transformations of nitrogen and sulfur species were all part of closed 

nutrient cycles, with cycle components executed by specialized bacterial taxa. During 

later work in Zurich, he discovered the microbial basis of nitrification, thus completing 

the understanding of the N cycle that was the paradigm for over 100 years, until the 

discovery of anammox in 1999 (Strous et al. 1999). Winogradsky was the first to isolate 

nitrifying bacteria and show that the steps necessary for oxidation of ammonia to nitrite 

and of nitrite to nitrate were separate and could be performed by different bacterial 

species. Thus, his contribution to microbial ecology was the concept of microbial-

mediated nutrient cycling. However, the role of microbes in real natural systems, such 

as lakes or oceans, remained difficult to quantify. 

Early aquatic microbial ecologists acknowledged that, while a key component of 

natural ecosystems, microorganisms were largely terra incognita. Although Lindeman 

placed microbial “ooze” at the center of Fig. 1 in his landmark publication on the trophic 
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food web in Cedar Bog Lake, he had little understanding of what controlled microbial 

dynamics in his study system (Lindeman, 1942). At the nearly the same time, Riley 

recognized the importance of microorganisms in marine biogeochemistry, and was 

more outspoken in his dismay that methods to advance understanding of microbial 

communities did not yet exist (Riley, 1951). 

The leap forward came about a decade later with the development of dyes and 

radioactive tracers. Stains, when combined with isotopes, can be used to measure 

processes, such as bacterial production rates, independently from other food web 

constituents. Among the main conclusions was that, across multiple freshwater and 

marine environments, the large surface-to-area values of bacteria make them the best 

competitors for scarce dissolved nutrients, compared to phytoplankton, making them 

particularly important for biogeochemistry in oligotrophic systems (Cotner and 

Biddanda, 2002). For example, Fuhrman et al. (1989) calculated that heterotrophic 

bacteria accounted for 70% of carbon and over 80% of particulate nitrogen in the photic 

zone of the oligotrophic Sargasso Sea. However, the limiting nutrients for primary and 

bacterial production seemed to differ between freshwater and marine systems. 

Nitrogen (N) was established as limiting in most of the oceans, while phosphorus (P) 

was determined limiting in north temperate lakes (Sterner, 2008). In the realm of 

freshwater systems, Schindler (1977) used whole-lake manipulations (well-known lake 

#226) to demonstrate the primacy of P limitation. In his seminal paper, he reasoned that 

transient or conditional N limitation in lakes is possible, but, given its abundance in the 

atmospheric reservoir, plankton will ultimately overcome the shortage (Schindler, 1977). 
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Meanwhile, oceanographers in the mid 1960s already recognized the ammonium 

deficits in marine anoxic zones (Richards, 1965). Numerous subsequent studies 

measuring rates of denitrification and the more recently discovered anammox (Strous et 

al. 1999), confirmed widespread N-limitation in the oceans (Francis et al., 2007). 

However, as is the case with many simple explanations, the paradigms of P and N 

limitation in freshwater and marine systems came with multiple exceptions. Since 

Schindler’s lake manipulations, a number of experimental studies pointed to co-

limitation by nitrogen and phosphorus, during periods of peak productivity (Elser et al., 

1990; Guildford and Hecky, 2000; Sterner, 2008; Harpole et al., 2011; Elser et al., 

2007). O’Donnell et al. (2017) demonstrated such case for Lake Baikal. Thus, even if 

the role of N in freshwater systems is transient or conditional, the consistency of 

exceptions to P limitation clearly makes N an important factor in determining year-round 

ecosystem productivity and functioning. 

The next major advance in aquatic microbial ecology was enabled by environmental 

DNA sequencing. Surveys of taxonomic diversity came first in the wake of amplicon 

sequencing of the 16s rRNA gene (Schmidt et al., 1991). By the early 2000s, 

introduction of next-generation sequencing technologies allowed high throughput 

characterization of genetic material directly from environmental sources without the use 

of primers. This ushered an onslaught of the -omic surveys of numerous marine and 

freshwater environments, where various high-throughput approaches revealed the 

astounding taxonomic and functional diversity of aquatic microorganisms (Rappé and 

Giovannoni, 2003; Riesenfeld et al., 2004; DeLong, 2009; Newton et al., 2011). Several 
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key bacterial and archaeal taxa were associated with specific functions in particular 

environments. For example, the deep water marine anammox has been associated with 

Crenarchaeota and about a dozen bacterial genera, which were shared between marine 

and permanently anoxic freshwater environments (Humbert et al., 2010). At the same 

time, some clades, like the marine SAR11 and freshwater Actinobacteria acI are, as far 

as we can tell, globally widespread (Rappé et al., 2002; Giovannoni et al., 2005; Šimek 

et al., 2010). A comprehensive review of the taxonomic and functional discoveries is 

outside the scope of this introduction. Suffice it to point out that the function (genes) 

following the form (taxonomy) happens only sometimes, with the connection seemingly 

mediated by the many abiotic and biotic interactions, opening the door to staggering 

complexities (Shade, 2017). 

In the largest meta-analysis of aquatic organisms to date, Louca et al. (2016) found 

that, while the distribution of functional genes followed abiotic conditions, microbial 

taxonomic composition had no such trends. However, the authors suggested that both 

function and form should be considered when characterizing processes in the 

environment because some genes could catalyze different – and sometimes reverse – 

processes. For example, variants of the sulfite reductase gene could be involved in 

either respiratory sulfur reduction or lithotrophic sulfur oxidation. However, sulfite 

oxidizers were found to be generally more abundant than sulfate respirers in the 

mesopelagic zone, indicating that dsrAB genes detected there mainly carried out sulfur 

oxidation. Winogradsky would be excited about that story. In 2005, DeLong expressed 

hope that “In the near future, ocean microbial genomics will continue to mine complex 



 

 6 

community datasets to better understand how community gene content maps onto 

taxonomic composition, metabolic repertoire and phenotypic expression.” After over a 

decade, that statement is more true than ever before. 

 

This dissertation 

Today, many systems with potential treasure troves of biodiversity and evolutionary 

insights still remain poorly characterized. Even more sorely needed are attempts to 

formulate the mechanistic explanations for the observed trends in bacterioplankton 

taxonomy and function. In this dissertation I explore planktonic microorganisms of Lake 

Baikal and place their diversity and functional repertoire in the context of other north 

temperate lakes. 

Lake Baikal is a UNESCO world heritage site. It is the planet’s deepest (1642 m), 

most voluminous (23615 km3), and oldest (25 to 30 my) lake, holding as much water as 

all Laurentian Great Lakes combined or about 20% of world’s unfrozen freshwater 

reserves (Moore et al., 2009). Baikal’s size and millions of years of evolutionary 

development have turned this ancient system into a biodiversity hotspot. Of the 

approximately 2600 animal species, two-thirds are endemic to the lake and are not 

found anywhere else (Sherbakov, 1999). This high degree of endemism makes Lake 

Baikal especially vulnerable to biodiversity loss. Indeed, Baikal has been undergoing 

warming since long-term monitoring began in 1941, leading to decline in zoo- and 

phytoplankton species with a concurrent increase of cosmopolitan competitors 

(Hampton et al., 2008). In addition, as recently as within the last five years, Baikal has 
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drawn international attention for emerging human-caused (tourism, farming practices, 

and railroad industry) environmental issues, hallmarked by explosive Spirogyra blooms 

in previously pristine parts of the lake (Volkova et al., 2018). Now, more than at any 

other time, it is important to advance our knowledge and ability to predict how 

ecosystems will respond to interacting anthropogenic stressors. 

In Chapter One, I show that temperature, stratification, nutrients, and dissolved 

oxygen define major microbial habitats and influence patterns of community diversity. 

Co-authors and I show, first of all, that the environment, not geographical distance, 

structures microbial communities in Lake Baikal. The overall main driver of community 

dissimilarity is temperature. However, a closer look at the two stratified layers revealed 

multiple layers of complexity. We used exhaustive model averaging of multiple linear 

models, to show that increases in community diversity are driven by richness in the 

upper mixed layer and evenness in the deep waters, and that those aspects of diversity 

are associated with different environmental drivers. Next, we use data-guided 

approaches, i.e., a co-occurrence network analysis, to show which lake habitats are 

consistently preferred by groups of co-occurring microorganisms, rather than assume 

that habitats are assigned based on its phyto- and zooplankton composition carry over. 

We contrast environmental preferences of those co-occurring microbial clusters, 

demonstrate that the taxonomic makeup reflects the abiotic conditions of those clusters, 

and highlight the potential key microbial players in each one. 

In Chapter Two, I expand microbial community and functional surveys to thirteen 

other lakes across Michigan, Minnesota, and Wisconsin, sampled in summer and winter 
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seasons. My co-authors and I show that Lake Baikal indeed harbors microbial 

communities that are distinct from other north temperate lakes, with the next closest 

communities inhabiting the oligotrophic epilimnia of lakes Superior, Portsmouth, and La 

Salle. We also show how seasonal “collapse” in the variability of abiotic factors is 

reflected in microbial communities of most lakes, except those that maintain strong 

stratification into the winter season. Perhaps the most interesting part of this chapter is 

the association between N limitation and the preferred mechanisms for N assimilation. 

In Lake Baikal, the enzymes responsible for assimilatory reduction of N species to 

ammonium and assimilation of ammonium into glutamate were present in ferredoxin-

dependent, as opposed to NADH-dependent, isoforms. Lake Baikal was experimentally 

shown to be N and P co-limited by O’Donnell et al. (2017) at the exact same time the 

samples for this work were collected. Total nitrogen to phosphorus ratios suggested that 

in other surveyed lakes N-limitation was unlikely. We argue that N scarcity in Baikal was 

reflected in the abundance of N-poor ferredoxin-dependent N assimilation enzymes, in a 

trade-off with N-rich NADH-dependent isoforms. Additionally, we speculate that 

reducing power available in the particularly oligotrophic summer epilimnia could select 

for Fd-utilizing microbial taxa, which are mostly photosynthetic, in the summer season. 

For detailed discussion, see Chapter 3. 

Chapter Three presents 369 high quality draft genomes of microorganisms from 

Lake Baikal, assembled using computational tools that are currently at the cutting edge 

of bioinformatics. The metagenome assembled genomes (MAGs) are culture-

independent and cover the Archaea domain, as well as 15 bacterial phyla, four of which 
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have no previously sequenced lineages from Lake Baikal. Most MAGs are small but 

there is a significant variation in genome size. At the same time, genomes assembled 

from the most stable, aseasonal, and resource (labile carbon)-poor environment in Lake 

Baikal hypolimnion harbored the smallest genomes with remarkably little variation in 

genome size. Small genome size and genomic streamlining are common in prokaryotes 

that thrive in oligotrophic environments, such as Prochlorococcus in the oceans 

(Fernandez-Garcia et al., 2004) and Actinobacteria acI in freshwater systems (Ghylin et 

al., 2014; Kang et al., 2017). Streamlining is thought to conserve scarce nutrients by 

minimizing DNA synthesis and expression requirements, while at the same time 

shrinking the overall cell size, which maximized the surface area to volume ratio. Our 

Baikal MAGs could, therefore, reflect the lake’s overall oligotrophic environment, where 

millions of years allowed microorganisms to optimize the occupancy of available 

resource niches. 

Overall, this dissertation aims to place results from contemporary molecular 

sequencing approaches into ecological context. Results of Chapters One and Two 

present biological insights into microbial plankton through a lens of abiotic covariates 

and biotic co-occurrences between numerous taxa. Chapter Three sets the stage for 

future model-based work on relationships between phylogenetic diversity and metabolic 

function in Lake Baikal and other natural systems. My hope is that the dissertation’s 

overall scope will contribute ecological thinking to analyses of microbial communities, as 

well as help narrow the gap between microbial limnology and oceanography. 
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CHAPTER ONE 
 

ENVIRONMENTAL DRIVERS DEFINE CONTRASTING MICROBIAL HABITATS, 
DIVERSITY AND FUNCTIONAL REDUNDANCY IN LAKE BAIKAL 

 
 
Abstract 

Understanding how microbial communities respond to environmental change requires 

the knowledge of the main drivers of their community structure, diversity and potential 

resilience. For many rapidly changing ecosystems this information is still not available. 

Lake Baikal in Siberia is the most ancient, deep, voluminous, and biologically diverse 

lake in the world, with 20 percent of global unfrozen fresh water, that is undergoing 

rapid warming. Little is known about its bacterioplankton communities and their drivers. 

In the first extensive survey of Baikal’s microbial communities, we show that 

temperature, stratification, nutrients, and dissolved oxygen, and not the geographic 

distance, define major microbial habitats and microbial community similarity. 

Communities in the mixed layer and deep waters exhibited contrasting patterns of 

richness, diversity and evenness and comprised different cohesive modules in the 

whole Baikal OTU co-occurrence network. The network exhibited small-world properties 

that may make it resistant to perturbations but sensitive to changes in the abundances 

of central, most connected OTUs. Functional redundancy, often associated with higher 

resilience, was low in cold, open water communities and increased with temperature in 

the upper mixed layer and with depth in the deep-water samples. Our results suggest 

that bacterial communities of open waters in Lake Baikal may be more sensitive to 

warming and other anthropogenic stressors than the littoral communities and may 
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reorganize significantly in the changing climate. A better understanding of factors 

structuring bacterial communities in ecosystems that undergo rapid changes, including 

Lake Baikal and other northern lakes, will allow us to better predict the overall 

ecosystem responses to anthropogenic stressors. 

 

Significance 

This study is the first to identify distinct bacterial assemblages in Lake Baikal during 

summer stratification and link them to specific environments. Multiple linear regression 

and model averaging show that community diversity is driven by richness in the mixed 

layer (ML) and evenness in the deep waters (DW), and we identify environmental 

covariates that explain these contrasting trends. Network analyses reveal assemblages 

specific to ML and DW, where phylogeny reflects preferred environments. We then use 

PICRUSt to predict metagenomes and reveal that redundancy is lowest in the coolest 

areas of ML, placing them at the greatest risk of microbial functional diversity loss. This 

is a significant step towards understanding and addressing ongoing challenges faced by 

biological communities in a changing world. 

 

Introduction 

The ecological importance of microorganisms in aquatic systems has been 

recognized at least since the appearance of “ooze” in Lindeman’s trophic energy 

transfer diagram (Lindeman, 1942). Their central place in material and energy fluxes is 

now recognized for nearly all nutrient cycles, with greater relative importance of 
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prokaryotic organisms in more oligotrophic systems (Cotner and Biddanda, 2002). The 

advent of next-generation sequencing, combined with environmental monitoring, 

enabled new discoveries of microbial diversity and function in various aquatic habitats. 

However, the environmental drivers of microbial community diversity, community 

structure, function, and stability remain poorly characterized in many aquatic 

ecosystems, including the world’s most ancient (25 My) Lake Baikal – a UNESCO 

heritage site and known hotspot for endemism of its biota. Baikal is the world’s deepest 

(1643 m) and most voluminous lake, holding about 20% of world’s surface unfrozen 

freshwater (Moore et al., 2009). Of the approximately 2600 plant and animal species in 

the lake, two-thirds are endemic, including the dominant primary producers, grazers, 

benthic and pelagic fish and the top predator – world’s only freshwater seal (Moore et 

al., 2009; Hampton et al., 2008). 

Hampton et al. (Hampton et al., 2008) showed that water temperatures have risen 

by 1.2 °C over 60 years of high-resolution time series, contributing to an increase in 

numbers and kinds of non-endemic zooplankton and algal species, with potential 

consequences for nutrient cycling, food web structure (Moore et al., 2009) and microbial 

communities. Moreover, the Lake Baikal region is predicted to warm by 3-4°C in the 

next century (Team et al., 2014), with ongoing changes likely to continue and even 

accelerate. Because the biota of Lake Baikal, including microbial communities, is 

adapted to cold temperatures, it may be especially vulnerable to warming. Additionally, 

other changing environmental factors may also alter the lake’s microbial communities. 
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The vulnerability of communities to environmental change depends in part on their 

functional redundancy (FR), linked to the number of species that perform a similar 

function (Holtzendorff et al., 2008). High number of functionally similar species, i.e., high 

FR, is usually thought of as a mechanism that preserves community functions during 

disturbance. High bacterial diversity, rapid generation times, and the mobility of bacterial 

genes through genome rearrangement and horizontal gene transfer enables relatively 

quick functional loss or gain within a phylogenetic lineage, and, conversely, sharing 

among phylogenetic lineages. Indeed, prokaryotic functional genes are promiscuous 

when it comes to species boundaries and are often found in multiple taxa adapted to 

similar environmental conditions (Martiny et al., 2006), resulting in functional 

redundancy. The degree to which Lake Baikal microbial communities exhibit such 

redundancy, and how it may vary over the multiple environmental and geographic 

gradients is unknown.  

Here we present the first comprehensive survey and analysis of microbial plankton 

in Baikal, spanning all three basins, from open waters to the shallow bays, multiple 

depths, including the surface layer and depths below 300 m. We reveal major 

community composition trends that correlate with continuous environmental gradients in 

a spatial context. We then identify strongest environmental covariates to community 

composition in a multivariate framework. We use co-occurrence network analyses to 

reveal clusters of OTUs with contrasting environmental associations and identify clades 

and taxa most responsible for maintaining the structure of each network cluster. Finally, 

we use functional prediction tool PICRUSt to estimate functional redundancy and show 
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that it correlates with temperature and is lowest in open Baikal and in communities 

resident in its hypolimnion. 

 

Materials and Methods 

Our survey was guided by the recorded natural history of Baikal (Kozhov, 1963; 

Kozhova and Izmest’eva, 1998; Moore et al., 2009) that divides the lake into eight 

distinct regions (Fig. 1.1a, S1.13). Among them, are Chivirkuy Bay, Proval Bay, and 

Selenga river plume. Chivirkuy Bay was sampled extensively to capture transition from 

the shallow innermost bay (9 m depth) to open waters. Proval Bay and Selenga plume 

stations represented the two most eutrophic areas in Baikal. In total, we collected 

samples from 24 stations, of which 10 were sampled at various depths for a total of 46 

samples. 

 
 
Figure 1.1: (A) Baikal sampling locations. Stations in outside of Chivyrkuy Bay, Proval 
Bay, and Selenga Plume were sampled at multiple depths. (B) Taxonomic composition 
of the free-living (0.22 μm, top) and particle-attached (3 μm, bottom) size fractions 
across s surface samples. While both fractions were mostly dominated by common 
freshwater phyla, Actinobacteria were enriched in the 3 μm fraction. 
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Temperature and dissolved oxygen profiles were measured with a YSI Instruments 

sonde (YSI, Inc., Yellow Springs, OH, USA). Whole water was taken using a Van Dorn 

sampler (Wildco, Inc., Yulee, Florida, USA), and 5 L were filtered onto 3 μm and 0.22 

μm mixed nitrocellulose acetate membranes (EMD Millipore, Billerica, MA, USA) and 

stored at −20°C in RNAlater (Life Technologies, Grand Island, NY, USA) to capture 

particle-attached (3 µm filter) and free-living (0.22 μm filter) fractions of microorganisms. 

Genomic DNA was extracted using the Mo-Bio PowerSoil Kit (Mo-Bio Laboratories, 

Carlsbad, CA), following manufacturer’s protocol. Then, the V4 region of the 16S rRNA 

gene was sequenced on a MiSeq platform (250PE), as described previously (Kozich et 

al., 2013). Raw sequences were processed generally following the closed-reference 

mothur pipeline. Statistical analyses were performed in the R (3.2.2) environment, 

unless noted otherwise. Multiple regression search and model selection were done with 

the glmulti package (Calcagno and Mazancourt, 2010). Distance matrices, ordinations, 

and correlations with environmental variables we calculated with vegan (Oksanen et al., 

2018) and phyloseq (McMurdie and Holmes, 2013) packages. We constructed the co-

occurrence network using sparCC (Friedman and Alm, 2012), following recommended 

best practices by Berry and Widder (Berry and Widder, 2014). Next, we identified 

network modules with the optimum modularity algorithm in the iGraph package (Csárdi 

and Nepusz, 2006). We followed the WGCNA package (Langfelder and Horvath, 2008) 

to generate eigenvectors for each module and correlate the first eigenvector (first 

principal component, PC1) with environmental variables to generate plots and a 

heatmap (Fig. 1.5). For the functional redundancy measure, the per sample number of 
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OTUs was divided by the gene content, estimated using PICRUSt software, with the 

nearest sequenced taxon index (NSTI) cutoff at 0.15, as recommended by the package 

authors, to select accurate gene copy number predictions (Langille et al., 2013). Next, 

we validated the predictions using an in-house shotgun dataset available for a subset of 

samples. For genes that had greater than 10X mean shotgun coverage (4012 genes), 

PICRUSt predictions had a significant correlation (r2 = 0.35, p=0.017) with the 

metagenomic community characterization, which was consistent with values reported in 

the original publication (Langille et al., 2013). Detailed explanation of bioinformatics and 

statistical analyses is in the Supplement. 

 

Results and Discussion 

Taxonomic diversity 

At a depth of 28059 sequences per sample, we detected 38457 OTUs in the 

combined 3.0 μm and the 0.22 μm fractions. Non-singletons (6099 in 3.0 µm and 3346 

in 0.22 µm) were classified into 61 phyla, dominated by typical freshwater 

Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia (Fig. 

1.1). 

Microbial community composition notably differed from previous studies at Lake 

Baikal, which explored pelagic communities on Sanger (Bel’kova et al., 2003; Denisova 

et al., 1999) and Roche 454 (Parfenova et al., 2013; Kurilkina et al., 2016) platforms. In 

the most recent effort, Kurilkina and colleagues sampled one station depth profile in 

September and June (Kurilkina et al., 2016) to reveal the main taxonomic groups as 
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Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Acidobacteria, 

and Cyanobacteria in both seasons, and Caldiserica in September only. Our study did 

not detect Caldiserica and revealed only a very minor presence of Chloroflexi, while 

showing a substantial Verrucomicrobia presence (absent in Kurilkina et al.) in every 

sampled region (Fig. 1.1). 

Our study revealed compositional differences between the 0.22 µm (free-living) and 

3 µm (mostly particle-attached) fractions. Actinobacteria were significantly enriched on 

the 0.22 µm fraction (Table S1.1), similar to results from lakes in Michigan, USA 

(Schmidt et al., 2016). Proteobacteria were only marginally more prevalent in the 0.22 

µm fraction. We also found enrichment of Bacteroidetes and Cyanobacteria on the 3 µm 

fraction, the latter owing to filamentous taxa. Indeed, the top three most differentially 

abundant taxa identified with permutation-based analyses (Cáceres and Legendre, 

2009) were all classified as the Nostocales genus Dolichospermum and contributed up 

to 90% of Cyanobacteria in the 3 μm fraction. 

Free-living (0.22 μm) surface samples in the open Baikal were dominated by 

betaproteobacterium Limnohabitans sp. Littoral zones were more variable, represented 

by multiple OTUs classified as Limnohabitans, Synechococcus and Actinobacteria acI. 

Surface samples of the shallow Proval Bay and the Selenga river plume represented 

the extreme end of the eutrophic gradient and were dominated by Actinobacteria acI 

and Verrucomicrobia Chthoniobacter. The latter is reportedly incapable of growth on 

amino acids or organic acids other than pyruvate, suggesting the taxon is likely involved 

in the breakdown of partially oxidized organic carbon. Together with Bacteroidetes 
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Sediminibacterium and Cytophagia, and Betaproteobacteria Limonhabitans and 

Polynucleobacter, the six OTUs make up ~46% of each Proval Bay and Selenga River 

plume’s relative abundance. The deepest samples in this study, collected at 500 m and 

300 m, were dominated by Actinobacteria acI and acIV clades as well as ammonia 

oxidizing Group 1a Crenarchaeota Nitrosopumilus, commonly found in oligotrophic 

marine environments. 

 

Community Richness and Diversity 

Free-living community diversity showed opposing trends in the upper mixed layer 

(ML) and deeper waters (DW). Overall, richness and evenness strongly correlated with 

temperature in the ML and with depth in DW. For each sample, we calculated the 

effective number of species (ENS), a measure of diversity (Hill, 1973; Jost, 2006; 

Leinster and Cobbold, 2012). Hill (Hill, 1973) identified ENS as the number of equally-

common species that yields a given value of a diversity index, such as the Shannon H’. 

Jost et al. (Jost, 2006) have argued that because ENS scales linearly with richness of 

equally-common species, it is the preferred metric for quantitative analyses (see 

Supplementary Methods). We show that the ENS increased with depth in DW (Fig. 

1.2A) and was driven by an increase in evenness (Fig. 1.2C) with no accompanying 

trend in OTU richness (Fig. 1.2B). In the ML, ENS showed a modest increase at the 

surface in samples collected at 0 m (Fig. 1.2B). Unlike in DW, higher ML diversity was 

generated by higher OTU richness (Fig. 1.2B), while evenness remained unaffected. 

Mixed layer diversity was positively correlated with temperature (Fig. 1.2D), along with 
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OTU richness (Fig. 1.2E). Deep water diversity and richness were marked by high 

variability with respect to temperature, and richness showed a marginally significant 

increase in samples from cooler water. Evenness was not directly correlated with 

temperature in either layer (Fig. 1.2F). Furthermore, in mixed layer, richness had a 

greater response (slope) to temperature than diversity did, suggesting that samples at 

higher temperatures and shallower depths, while supporting the greatest richness, were 

dominated by a few successful OTUs. This could be due to variable and high resource 

conditions leading to coexistence of more taxa, including the persistence of rare taxa. 

 

 
 
Figure 1.2: Diversity and evenness trends across depth and temperature in the upper 
mixed layer and deep waters. Effective Number of Species (ENS) was driven by 
richness in mixed layer and by evenness in deep waters. 
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Deep waters offer the opposite story. While richness had a significant but weak 

relationship with depth, ENS and Pielou evenness were very strongly positively 

correlated with depth (R2=0.79, p=2.2x10-8; R2=0.70, p=7.6x10-7), indicating that a 

substantial increase in diversity in the deep hypolimnion was not driven by richness but 

by an even community structure. 

 

 
 
Figure 1.3: Model-averaged importance of environmental predictors for ENS diversity 
(top), OTU richness (middle) and Pielou Evenness (bottom) in the upper mixed layer 
(left) and deep waters (right). 
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evenness. The trends were similar for the 3 µm size fraction (Fig. S1.12, S1.13). To 

better resolve underlying drivers that underpin these contrasting community features, 

we modeled ENS diversity, richness, and evenness with measured environmental 

variables using iterative multiple regression and model averaging (Calcagno and 

Mazancourt, 2010). 

Diversity trends in the ML were different, compared with deep waters. Diversity in 

the mixed layer correlated the most with temperature and total dissolved silica (TDS, 

Fig. 1.3A). These covariates were also responsible for driving the OTU richness, while 

no measured environmental variable was a reliable predictor of ML evenness (Fig. 

1.3B). Depth was not an important predictor for any ML community feature (Fig. 1.3C). 

These results highlighted the importance of temperature and silica in driving the ML 

diversity, by elevating OTU richness. In the deep waters, total phosphorus (TP) and 

depth correlated with ENS (Fig. 1.3D). Furthermore, only TP was a significant predictor 

for the deep water OTU richness, while only depth was for evenness (Fig. 1.3E, F). 

Temperature, when controlling for other covariates, was not an important community 

feature predictor in deep water. The importance of temperature in ML and depth in DW 

was not unexpected, considering that the surveyed ML spanned hundreds of kilometers 

across all three Baikal’s basins and multiple bays, where temperature ranged from a 

median 9.5°C in open waters to 21°C in Proval Bay (Fig. S1.7), while DW was 

characterized by a large range of depths from 10 to 500 m and a relatively constant 

temperature environment. Additionally, nutrients appeared to associate specifically with 

OTU richness. Dissolved silica, combined with light availability in ML, is known to 
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promote diatom growth. Diatom exudates, acting as resources, could create additional 

niches, enabling coexistence of a greater number of OTUs. In deep waters, TP could 

promote OTU richness by supporting higher phosphorus demands often attributed to 

fast-growing copiotrophic organisms (Klausmeier et al., 2004). Logue and colleagues 

(Logue et al., 2012) found TP alone to be significantly correlated with OTU richness in a 

survey of Swedish lakes. Our results suggest that eutrophication leads primarily to an 

increase in the overall number of OTUs, but also to dominance of those with 

opportunistic lifestyles. 

 

Multivariate trends 

Ordination of the Bray-Curtis dissimilarity matrix of the 0.22 μm samples revealed 

clear grouping, which we designated into four significant clusters (Fig. 1.4A, 

permANOVA p<0.001). The first cluster (eutrophic) comprised samples from shallow 

and warm areas, specifically inner Chivyrkuy and Proval bays. The second cluster 

(transition) included samples from the Chivyrkuy Bay to open Lake Baikal gradient, the 

main tributary Selenga River plume, and the two samples collected in Barguzin Bay – 

the deepest and most open of the three examined bays. The third cluster (open) 

contained the bulk of our samples collected in open waters that largely separated in 

ordination space along a depth gradient. The last cluster (deep) comprised the three 

deep water samples from 300 and 500 m. Post hoc pairwise comparisons of cluster 

centroids revealed significant differences between each cluster pair (FDR corrected 

p<0.05). Thus, the clusters broadly captured the different habitats of Lake Baikal, 
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separated by depth and the transitions between open lake waters and bays. Given the 

confounding effects of abiotic forcing and spatial autocorrelation, we used reciprocal 

causal modeling (Cushman and Landguth, 2010; Cushman et al., 2013) to test whether 

selection by abiotic environment or spatial dispersal/distance better explained 

community composition trends in mixed layer. 

Environmental conditions, and not the distance, played a dominant role in structuring 

free-living mixed layer communities. Reciprocal causal effects models test the 

hypotheses for significant correlation between the community dissimilarity matrix and 

each of the geographic distance and environmental distance matrices, while controlling 

for the other. We found that, when controlling for environment, geographic distance had 

no correlation with community dissimilarity. However, when controlling for geographic 

distance, community structure did show a significant correlation with the environment 

(R2=0.33, p<1x10-6). Our results are consistent with the majority of other studies in 

freshwater (Logue and Lindström, 2010; Lindström et al., 2006) and marine systems 

(Sjöstedt et al., 2014), which usually note stronger effects of environment on species 

composition, compared with dispersal. 

Temperature, depth, and total dissolved nitrogen (TDN) were the strongest 

environmental covariates with multivariate dissimilarity trends among free-living 

communities (Fig. 1.4). The temperature vector (Fig 4A, R2=0.71, p=1x10-4) indicated 

the direction of greatest temperature variability along the open waters to bays gradient. 

We also confirmed presence of the depth covariate among samples collected in the 

open waters (R2=0.52, p=1x10-4). Interestingly, open water community dissimilarities 



 

 28 

also revealed correlation with TDN in approximately the same direction as depth. 

Because depth can confound the effects of various environmental factors, we further 

considered an ordination of samples just from the ML (Fig. 1.4B). Among the ML 

samples, temperature was still the strongest predictor of community dissimilarity 

(R2=0.56, p=2x10-4), and TDS was also significant (R2=0.36, p=0.012). Notably, these 

were also the only two model-averaged important predictors of OTU richness and ENS 

in ML (Fig. 1.2A, B). However, TN and TDP were also significant predictors of 

community dissimilarity in ML (Fig. 1.4B), although they did not show an association 

with alpha diversity metrics (Fig. 1.2A,B,C). As expected, depth was a not a significant 

predictor of community dissimilarity in the ML. Lastly, we investigated whether the same 

environmental variables that predicted differences in microbial community structure also 

accounted for major abiotic differences between sampled sites. For this, we constructed 

a PCA of ML samples using all measured environmental factors (Fig. 1.4C). The first 

two principal components captured 89.8% of the variation. TDS and light had the 

highest scores of all environmental variables. Furthermore, they were almost parallel to 

PC1 and PC2, respectively, suggesting that the two were responsible for explaining 

most of the measured abiotic differences between sampled ML sites. While TDS was a 

significant environmental covariate in ordination of biotic community structure, light was 

not (Fig. 1.4B). Indeed, light was also not a significant predictor of biotic alpha diversity 

metrics (Fig 2). In an opposing example, TDP was the least important predictor of 

abiotic differences in ML (Fig. 1.4C); however, it was the second most significant 

predictor of biotic dissimilarity in ML (Fig. 1.4C). These features highlight that changes 
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in microbial community structure were not correlated with simply the most variable 

environmental covariates, and that significant associations of particular environmental 

factors warrant attention in further studies. 

 

 
 
Figure 1.4: Ordination of the Bray-Curtis dissimilarity matrix for all 0.22 μm fraction 
samples (A) and the mixed layer only samples (B). (C) Principal component analysis of 
the mixed layer samples in environmental space using all measured covariates. In all 
panels, colors reflect major recognized regions of Lake Baikal (15, 22). In (A) and (B), 
numbers below bubbles indicate sample depth (m), and arrows show correlation of 
environmental covariates with the layout of sample points in ordination space. Each 
arrow length = R2; p-values were obtained using permutations. In (A), ellipses were 
drawn to aid visualization. 

 
OTU co-occurrence networks 

To gain more insight into bacterial community structure in Lake Baikal and its 

dependence on the abiotic drivers and to identify OTUs that tend to co-occur, we 
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constructed an OTU co-occurrence network. Co-occurrence networks enable data-

guided identification of OTU assemblages and correlation of their abundance with 

continuous environmental variables. In contrast to ANOVA-based permutation 

procedures, networks do not carry a user bias of arbitrarily defining sample categories, 

which, even if chosen wisely, result in information loss.  

Our network captured the bulk of Baikal’s OTUs. We constructed a co-occurrence 

network for OTUs present in at least 80% of samples (105 nodes and 819 edges, Fig. 

1.5; see Supplementary Methods). Importantly, although 105 OTUs appeared to be a 

large reduction from the total >38,000 detected in Baikal, the network OTUs amounted 

to over >81% of cumulative relative abundance of every sample in >85% of samples. 

For the remainder of the samples, coverage averaged 63% ± 17%. Environments that 

were better observed had more OTUs in the networks. Lower coverage environments 

included the notable outliers collected at 500 m, 300 m in Southern Basin and at the 

surface of the eutrophic Proval Bay and Selenga River plume. Thus, with network 

analyses we used non-categorized continuous data to directly capture the vast majority 

of microbial community and environmental covariate data, revealing the dominant 

groups of co-occurring OTUs and their association with major environmental drivers. 

The resulting network exhibited the “small world” properties. Small world networks are 

characterized by high connectivity between neighboring nodes and low connectivity 

between distant nodes (Watts and Strogatz, 1998), creating clusters or modules of 

consistently co-occurring OTUs. Within each module, OTUs with many connections 

(central nodes) are thought to reflect the processes that bring together module 
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members. Small world networks may be more robust to perturbations but changes to 

the abundances of the central, well-connected OTUs may disproportionately affect the 

whole modules (Comte et al., 2015). 

 

 
 
Figure 1.5: (A) Co-occurrence network of OTUs across all samples. Edge grayscale 
hue reflects pairwise correlation strength (darker edges show stronger correlations), and 
thickness indicates edge betweenness score. Modules were defined using maximum 
modularity optimization. For each module, the first principal component (eigenvector, 
PC1) of just that module’s constituent OTUs abundance matrix was used to summarize 
the dominant abundance trends across sampled sites. (B) PC1 trends are summarized 
in a heatmap, where numbers are Spearman correlation coefficients with p-values in 
parentheses below. Empty cells indicate non-significant results. (C) Example PC1 
trends are shown with respect to temperature. 

 

Using the optimal modularity approach (Brandes et al., 2008; Csárdi and Nepusz, 

2006), we identified four modules of OTUs that tend to co-occur across sampled sites 

(Fig. 1.5A). Strong cohesion (see Supplementary Methods) within Module 1 (M1; 

clustering coefficient, CCM1=0.68; Table S1.8) and Module 3 (M3; CCM3=0.82) 

suggested common drivers for the consistently co-occurring OTUs. In contrast, low 
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cohesion within Module 2 (M2; CCM2=0.54) and Module 4 (M4; CCM4=0.58) pointed to a 

looser internal structure. 

Module eigenvectors (Langfelder and Horvath, 2008) or M1 and M3 revealed 

opposing monotonic relationships with respect to environmental covariates (detailed 

introduction in Supplementary Methods). M1 showed a negative monotonic relationship 

with depth (Spearman ρ=-0.70, p=3x10-6) and a positive relationship with temperature 

(ρ=0.71, p=3x10-6). In contrast, M3 had a strong positive relationship with depth 

(ρ=0.82, p=5x10-10) and a negative relationship with temperature (ρ=-0.82, p=5x10-10). 

As expected, the direction of the opposing trends for the two clusters was reversed for 

light, owing to its inverse relationship with depth (Fig. 1.5B). Thus, we found that a large 

fraction of Baikal’s planktonic prokaryotes can be classified into one of the two cohesive 

clusters: mixed layer “warm” M1 and deeper waters “cold” M3 cluster. 

Modules M2 and M4 (Fig. 1.5a) showed inverse opposing unimodal (non-monotonic) 

trends with depth, temperature and light (Fig. 1.5B, C). Weaker clustering within these 

modules suggested less cohesion, possibly due to the inclusion of taxa with weaker 

habitat preferences or terrestrial or riverine dispersal. M2 showed highest cumulative 

relative abundance at an intermediate temperature of about 10°C, with a strongly 

positive relationship with oxygen. In contrast, M4 showed a negative relationship with 

oxygen, abundance peaks at low and high temperature extremes and minimum 

abundance at approximately 11°C. Specifically, M4 was high in abundance in the 

immediate surface (0 m) and deep water, but with a sharp drop in abundance at 5 m 

depth. 
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Phylogenetic signal in modules 

Membership in the modules had a weakly significant phylogenetic signal (Fig. 

S1.17). This, combined with different habitat preferences among the modules, 

suggested different taxonomic groups displayed preferential environmental 

associations, thus supporting the importance of niche differences and phylogenetic 

niche conservatism. 

M1 and M4 had a high percentage of Bacteroidetes, known as opportunistic 

degraders of high molecular weight organic matter, such as proteins and carbohydrates, 

with genomes containing numerous carbohydrate-active enzymes covering a large 

spectrum of substrates from plant, algal and animal origin (Thomas et al., 2011). In 

aquatic systems, Bacteroidetes have been noted to follow pulses of organic matter 

inputs and cyanobacterial blooms (Newton et al., 2011). This further casts M1 as a 

warm water ML module and M4 as the loose product of sediment and terrestrial input. 

M1 is the only module to contain members (three OTUs) of the Chloroflexi phylum. 

Although Chloroflexi have been found in diverse environments, including oxygenated 

(its type genus) and anoxic (Overmann, 2008) hot springs, the CL500-11 clade – a 

subclass of the deep-ocean SAR202 clade – has been suggested as characteristic of 

oxygenated hypolimnia in deep lakes, including Crater Lake (Urbach et al., 2007), Lake 

Biwa (Okazaki et al., 2013) and the Laurentian Great Lakes (Denef et al., 2015). 

However, the three Chloroflexi OTUs detected in our Lake Baikal network were from the 

Chloroflexi class (two OTUs) and Roseiflexales order (one OTU), and, as part of M1, 

appear to prefer warmer and shallower environments in the lake. 
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The cold deep-water cluster M3 had the highest relative abundance of OTUs in 

unclassified phyla. While the module also contained characteristically terrestrial 

Gammaproteobacteria Pseudomonas and Acinetobacter, their low connectivity 

suggested they are unlikely to play a central role in M3 processes. 

M2 is the only module with Cyanobacteria; the module’s three most abundant OTUs 

– indeed, second and fourth most abundant in the entire >38,000 OTU dataset – 

classified as Synechococcus. Cumulative relative abundance of Synechococcus OTUs 

peaked at ~15 m, reflecting the approximate location of deep chlorophyll maximum at 

stratified stations. To further understand internal structure of the four modules, we 

focused on central OTUs that played important roles in creating the module structure. 

 

Central otus in each module reflect module ecology 

The meaning of a node (in our case OTU) position in the network is the subject of 

much discussion. A central OTU has a significant positive correlation with a large 

number of that cluster’s OTUs. We offer one abiotic and one biotic interpretation, 

resulting from two explanations for the presence of network clusters in the first place. 

First, clusters of OTUs that correlate with important environmental covariates, like 

temperature, could reflect abiotic habitat filtering. In this case, OTUs in modules with 

higher clustering coefficients would more consistently reflect environmental conditions 

associated with that module. For example, every OTU in M3, which has the highest 

clustering coefficient (Table S1.8), shows clear negative relationship with temperature 

(Fig. 1.5C). A second explanation requires an assumption that co-occurrences reflect 
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biotic species interactions. Then, a central OTU could be hypothesized to directly 

increase the abundance of other OTUs, e.g., by synthesizing or otherwise making 

available a limiting resource. It is important to point out that the two explanations are not 

mutually exclusive and could both be parts of ecological mechanisms that give rise to 

observed clusters of co-occurring microbial species. 

The most globally central (most connected) OTUs are likely to belong to most 

populous module with the greatest number of connections (M1). The most central OTU 

in the network is OTU137, classified as an autotrophic methylotroph LD19, which was 

previously reported as a summer-fall bloomer in Lakes Michigan and Muskegon, MI 

(Fujimoto et al., 2016). Although not very abundant in our dataset, its high centrality 

suggests it is indicative of an ecological process that is at least partially responsible for 

supporting other OTUs in the ML. 

OTU001 (Limnohabitans) – also in M1 – has a high overall abundance and the 

network position that straddles the balance between centrality in M1 and connectedness 

to M2. Its high relative abundance and ubiquity across the lake suggest important roles 

in lake ecology. Connectedness to two modules could reflect this ubiquity and further 

indicate an influence of OTU001 on OTUs that occupy both niches. More broadly, 

Limnohabitans genus has many ecotypes. Its fine-scale phylogeny and functioning, 

shown experimentally with isolates (Salcher, 2014), revealed diverse lifestyles. In fact, 

three OTUs out of 105 in our network were classified as Limnohabitans, and one of the 

other OTUs (OTU104) was in the hypolimnetic M3. Separation of different 

Limnohabitans OTUs into M1 and M3 with opposing spatial occurrences and 
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environmental preferences suggests they are indeed ecotypes (Fuhrman, 2009) with 

distinct functions. Future studies can experimentally assess Limnohabitans ecotype 

responses to temperature and other environmental drivers. 

The most connected OTU in the hypolimnetic M3 was Planctomycetes OTU022, 

classified into the Phycisphaerales order. Little is known about the ecological role of 

Planctomycetes in aquatic environments (Newton et al., 2011). The order is known for 

its distinct visual appearance, and a recent report of a 3D reconstruction of 

Phycisphaerales cellular membrane revealed characteristic deep invaginations in the 

cellular envelope (Santarella-Mellwig et al., 2013). It is possible the increased surface 

area of Phycisphaerales becomes useful in the oligotrophic hypolimnion of Baikal. In 

contrast to the most central but not abundant OTU in M1, OTU022 is also the most 

abundant in M3, which is the most tightly clustered module in the network (Table S1.8). 

These data suggest Phycisphaerales may substantially contribute to nutrient cycling 

below the thermocline with direct impacts for the rest of M3. 

 

Functional redundancy 

FR was calculated as the ratio of the number of OTUs in the sample that could be 

characterized using PICRUSt to the number of unique KEGG orthologs (KOs) in each 

sample, increased with temperature in the mixed layer (Fig. 1.6) and was highest in 

bays. This may be because littoral (nearshore) zones are expected to exhibit more 

variable environments, supporting co-existence of functionally redundant species. 
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In deep waters, functional redundancy increased with depth (Fig. 1.6). Our results 

warrant further in-depth analyses of microbial communities using techniques like isotope 

probing of phylogenetic microarrays, that track resource utilization, to reveal potential 

trade-offs between resource partitioning in unstable and streamlining in constant 

conditions. Functional redundancy, where more than one species perform a similar 

function, enables greater functional stability of ecosystems in the face of perturbations, 

including environmental change (Walker, 1992). 

 

 
 
Figure 1.6: Functional redundancy (number of OTUs/number of KOs) across sampled 
temperature (A) and depth (B) gradients. The number of OTUs are the number of OTUs 
that had the PICRUSt-inferred genomes and KOs were determined using the PICRUSt 
tool. 

 
Our first extensive survey of Lake Baikal’s bacterioplankton revealed that 

temperature and nutrients are the major drivers of the microbial community composition, 

diversity and functional redundancy, so that the anthropogenic changes in these factors 

would likely significantly alter planktonic microbial communities. The OTU co-

occurrence network analysis identified two major clusters, associated with the upper 
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mixed layer and deep waters, with a detectable phylogenetic signal in each cluster 

composition. The “small world” properties of the network suggest that the communities 

may be resilient to perturbations but the changes in abundances of the central OTUs 

may result in the network rearrangement. The lower functional redundancy in cold, low 

nutrient open water communities compared to warmer, higher nutrient waters may result 

in their higher vulnerability to changing environment.  
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APPENDIX 
 

SUPPLEMENTARY INFORMATION FOR CHAPTER ONE 
 
 
Supplementary Materials and Methods 

Sampling and environmental contextual data 

The survey was guided by the recorded natural history of Baikal (Kozhova and 

Izmest’eva, 1998; Moore et al., 2009) that divides the lake into eight distinct regions. We 

collected samples from 24 spatial locations, where 10 of those locations were sampled at 

various depths for a grand total of 46 samples across the lake (Fig. S1.1). The cruise took 

place on board the R.V. Treskov on August 3-17, 2013. 

Temperature and dissolved oxygen profiles were measured with a YSI Instruments 

sonde (YSI, Inc., Mod4 Springs, OH, USA). Light profiles were measured using Walz 

model US- SQS/L model Li-185B light probe (Heinz Walz GmbH, Germany), connected 

to a Li-Cor Quantum photometer (LI-COR Biosciences, Lincoln, NE, USA). 

Whole water was taken using a Van Dorn closing bottle (Wildco, Inc., Yulee, Florida, 

USA). From each sample, (a) 1L was filtered onto a GF/F glass fiber filter (GE Healthcare 

Bio-Sciences, Pittsburgh, PA, USA) for Chl a measurements and frozen at −20°C; (b) 5 

L were sequentially filtered onto 3 μm and 0.22 μm mixed nitrocellulose acetate 

membranes (EMD Millipore, Billerica, MA, USA) and stored at −20°C in RNAlater (Life 

Technologies, Grand Island, NY, USA) to capture particle-attached and free-living 

fractions of microorganisms (Lincoln et al., 2014); (c) 50 mL were frozen at −20°C for total 

nutrient analysis; and (e) 15 mL were filtered through a 0.22 μm mixed nitrocellulose 

acetate membrane (EMD Millipore) and frozen at −20°C for dissolved nutrient analysis. 
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Samples were transported to the USA in insulated containers cooled with liquid 

nitrogen. In the USA, samples for molecular analyses were stored at −80°C and samples 

for nutrient analyses were stored at −20°C. 

 

Temperature and light profile modeling 

Temperature values at collection sites were estimated from YSI instruments sonde 

profiles. YSI sonde profiled temperature at each station down to between 40 m to 50 m. 

Five temperature values per second were recorded on the downcast (lowering 

approximately 1 m per second) and used for modeling. For each station, high-order 

polynomial functions were fit to the data, and point estimates were used to infer 

temperature values at exact depths used for water sample collection (Fig. S1.8). For sites 

samples collected at 75 m, 300 m and 500 m, temperature was assigned a value of 4°C, 

based on literature values (Kozhov, 1963, 41). 

Light values at collection sites were estimated from profiles collected using the Li-Cor 

Quantum photometer (LI-COR Biosciences, Lincoln, NE, USA). Profiles were measured 

down to site bottom or maximum 20 m depth. The light extinction function ID = I0e-kD, 

where ID = light intensity at depth, I0 = light intensity at the surface, k = extinction 

coefficient (0.035 for pure water) and D = depth, was fit to the to the data to estimate light 

values at collection sites (Fig. S1.9). 
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Nutrient Measurements 

Samples for nutrient analysis were thawed and digested with potassium persulfate at 

120°C for 30 min. Total and dissolved nitrogen were measured colorimetrically on a 

Shimadzu UV-240-PC spectrophotometer (Shimadzu Scientific Instruments, Columbia, 

Maryland, USA) at 224 nm using the 2nd derivative method (Crumpton et al., 1992). Total 

and dissolved phosphorus was measured using the orthophosphate method on a Lachat 

Instruments Quick Chem 8500 autoanalyzer (Lachat Instruments, Loveland, Colorado, 

USA). Chl a filters were extracted with ethanol, and Chl a was determined fluorimetrically 

(Welschmeyer, 1994). 

 

DNA extraction and amplicon sequencing 

Genomic DNA was extracted using the Mo-Bio PowerSoil Kit (Mo-Bio Laboratories, 

Carlsbad, CA), following manufacturer’s protocol. Then, the V4 region of the 16S rRNA 

gene was sequenced using dual-index primers as described previously (Kozich et al., 

2013). After PCR amplification, the products were normalized and pooled. The pool was 

loaded on an Illumina MiSeq v2 flow cell and sequenced with a standard 500 cycle 

reagent kit for paired-end 250 bp reads (PE250). Base calls were done with Real Time 

Analysis software v1.18.54. Output of RTA was demultiplexed and converted to FastQ 

with Illumina Bcl2Fastq v1.8.4. 
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Amplicon sequence processing 

The FastQ output files were processed using mothur, following general MiSeq protocol 

and the options below (Kozich et al., 2013; Schloss and Westcott). Sequences were 

aligned to a full SILVA v.119 database. Chimeras were removed with UCHIME in mothur 

environment. The remaining sequences were classified with a naïve Bayesian RDP 

classifier (Wang et al., 2007) and the Greengenes (August 2013 release) database. 

Sequences classified as Mitochondria, Chloroplasts and Eukaryota were removed, 

resulting in 197,738 unique sequences that were clustered into OTUs at 97% similarity. 

Consensus taxonomy for each OTU was determined following mothur protocol. Coverage 

for sequenced samples varied between 24348 and 76838 (Fig. S1.11, left), and was 

rarefied to the lowest coverage sample i.e. 24348 reads (Fig. S1.11, right). 

 

Multiple regression 

We used the brute force approach to multiple linear regression (exhaustive search, 

followed by model selection) to determine the relationship of community richness, 

diversity, and evenness with measured environmental variables. Richness was taken as 

the number of OTUs in each sample. This comparison was possible because our 

sampling effort was rarefied in mothur (see above). The effective number of species 

(ENS), represented diversity and was calculated by raising the natural number e to the 

power equal to the Shannon diversity index H’ (Jost, 2006; Leinster and Cobbold, 2012). 

It was important to use ENS because, unlike diversity indices, such as Shannon and 

Simpson, ENS has a linear response to change in community diversity – a necessary 
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property of a response variable in quantitative modeling (Jost, 2006; Leinster and 

Cobbold, 2012). Statistical modeling and model selection were performed with the glmulti 

package in R (Calcagno and Mazancourt, 2010). 

 

Multivariate statistical analyses 

Distance matrix. Ordination of the OTU abundance matrix was performed in the R 

environment (version 3.2.2) using vegan (Oksanen et al., 2016) and phyloseq (McMurdie 

and Holmes, 2013) packages. First, we compared different techniques for calculating 

community dissimilarities. We used the Mantel test to reveal correlations between the 

Bray-Curtis, Jaccard, unweighted Unifrac, and weighted Unifrac distance matrices. 

Results showed greatest differences between presence-absence distance metrics and 

abundance-weighted distance metrics. However, within each of the two categories, the 

metrics were approximately interchangeable. Thus, we decided to use the Bray-Curtis 

metric for better compatibility with other studies. The high correlation of weighted Unifrac 

matrix indicated that phylogenetic information did not largely affect distance matrix 

results. 

Test for dispersion (geographic distance) was done with reciprocal causal modeling 

using partial Mantel tests. The use of reciprocal partial mantel tests for reciprocal causal 

modeling is advocated in the literature by Cushman (Cushman and Landguth, 2010; 

Cushman et al., 2013), where he criticized simple Mantel tests for their Type I error rates, 

and proposed reciprocal partial mantel as a solution (Cushman and Landguth, 2010), 

later expanding to a more sophisticated "relative support" technique - also based on 
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partial Mantel tests (Cushman et al., 2013). Rousset criticized all Mantel-based options 

in favor of mixed effects regression methods (Guillot and Rousset, 2013) because they 

are not robust when there is autocorrelation in the environment matrix. In a summary 

review, Cushman conceded that LME is indeed the best method for decoupling the effect 

of spatial dispersal and selection; however, that doesn't mean reciprocal partial mantel 

tests are inappropriate, especially if autocorrelation in data is weak (Shirk et al., 2017). 

Cushman pointed out that reciprocal partial mantel tests performed almost as well as 

mixed linear models if conclusions were based on R2 effect sizes, and not just p-values. 

Fortunately, our data does not have significant spatial autocorrelation with respect to 

environment (Moran's I > 0.05). Thus, we proceeded using Cushman’s method for its 

simplicity. 

Geographic distance between sampled sites was calculated with the geosphere R 

package using the Vincenty Ellipsoid model. Mantel test was performed using the vegan 

R package. Because the geographic distance matrix was not normally distributed (Fig. 

S1.20), we used the rank-based Kendall test statistic option in the Mantel tests. 

Ordination was done in the phyloseq package (McMurdie and Holmes, 2013) and 

modified for visualization with a custom R script. NMDS plots are freely rotatable and 

scalable, and Fig. 1.4 panels A and B were thus adjusted for greater visual clarity. 

Correlation with environmental variables was done with the envfit function in the vegan 

package, which correlates continuous environmental values with separation of points in 

ordination space. Significance was calculated by bootstrapping using 9999 permutations. 
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Network construction and analyses 

Co-occurrence matrix and network construction. The OTU co-occurrence matrix was 

calculated for OTUs that were present in 80% of all samples (109 OTUs) with sparCC 

software (Friedman and Alm, 2012), as recommended in best practices for co-occurrence 

network construction by Berry and Widder (Berry and Widder, 2014). Significance values 

for correlations were bootstrapped, as described by sparCC authors, and then corrected 

for multiple testing using FDR manually in R with a custom script. Positive co-occurrences 

with adjusted p < 10-5 were used for downstream analyses. The network was constructed, 

displayed and analyzed using the iGraph package (Csárdi and Nepusz, 2006) in the R 

environment. Two pairs of OTUs that were only connected to each other but not the rest 

of the network were removed, resulting in 105 OTUs in all subsequent analyses. 

Comparison with simulated networks. We compared basic network statistics with null 

distributions of two types of simulated networks. First, we created 10,000 random Erdös-

Rényi networks, which were undirected, without loops and used the gnm model with the 

same number of nodes (105) and edges (814) as our Baikal network. We also created 

10,000 small-world Watts-Strogatz networks with 105 nodes and replacement probability 

p=0.05. Average path length and the clustering coefficient (transitivity) of the Lake Baikal 

network were compared to distributions of simulated networks (Fig. S1.16). Two-tailed p-

values for Baikal network statistics were calculated as the number of simulated 

observations greater than the absolute values of the Baikal network divided by the total 

number of simulations. 
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The network exhibited small world properties. Both overall CS (0.618) and the average 

path length (AP=2.62) were much higher than random Erdös-Rényi simulations (CC 

mean=0.150, p=0, n=10,000; AP mean=1.93, p=0, n=10,000; Fig. S1.16a) and higher 

than small-world Watz-Strogatz simulations (CC mean=0.514; p=0, n=10,000; AP 

mean=2.27, p=0, n=10,000; Fig. S1.16b). The basic network statistics are summarized in 

Table S1.2. 

Small-world properties place greater topological importance on central nodes (nodes 

with many connections) and to a lesser extent bottlenecks in maintaining the network 

structure. Hubs can be defined as nodes with high eigenvector centrality, and bottlenecks 

as high betweenness nodes. Hubs are well-connected, in many cases to other well-

connected nodes and are therefore considered topologically more central. In an 

ecological co-occurrence network, they have been hypothesized to mediate processes 

important to their neighbors (Fuhrman, 2009). For example, a central OTU may produce 

a common good limiting resource, like a vitamin. 

Bottleneck nodes are positioned along a high number of shortest paths between pairs 

of other nodes. This is called high betweenness. Fig. 1.4 displays betweenness values 

for each edge as proportional to its width. In a small world network with few bridges 

between modules, bottlenecks are the only way one module can interact with another. 

Therefore, bottlenecks have been hypothesized to mediate feedbacks between 

ecologically meaningful OTU assemblages (Fuhrman, 2009). These features emphasize 

the strength of network methods to detect candidate keystone taxa not necessarily based 

on their large abundance but on how they affect other network players. 
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Community (module) detection. Network modules were identified using the optimal 

modularity algorithm (Brandes et al., 2008) in the iGraph package. Optimal modularity 

calculates the arrangement and membership of clusters that gives the highest modularity 

score, as defined by Newman et al (Newman and Girvan, 2004) and adopted by the 

iGraph authors. 

Environmental trends of modules. To summarize OTU abundance trends across 

sampled sites, we used the first principal components of OTU abundance matrices 

(eigenOTUs (Langfelder and Horvath, 2008)) for OTU members of each of the four 

modules. The resulting four eigenOTUs were used to assess correlation of modules with 

environmental factors, such as temperature, nutrients, oxygen, and chlorophyll levels. For 

example, module M1 has 39 member OTUs. They are together because, by definition, 

they have similar occurrence patterns across samples (see exact abundances in Fig. 

S1.18, S1.19). But how can we summarize all OTU abundances in one vector? One 

option is to sum their relative abundances in each sample and get per sample cumulative 

values. However, this option is heavily biased towards the more abundant OTUs. Indeed, 

the difference between the most and least abundant OTUs in M1 is approximately two 

orders of magnitude. A better option is to use the widely practiced principal component 

analysis (PCA), which weighs OTUs by their power to explain variation in other OTUs. In 

PCA, the first principal component (PC1) is the best summary of OTU abundances in 

each sample. Thus, we ran an independent PCA for OTU members of each of the four 

modules and used PC1 for each module as a summary of its abundance across samples. 

The PC1s were correlated with measured environmental variables (Fig 5b, c). 
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Phylogenetic signal calculation. We first constructed a phylogenetic tree of OTUs by 

computing pairwise DNA distances using the K80 model and constructing a tree with the 

bionj algorithm (Gascuel, 1997). Phylogenetic signal was detected using a modified 

phylo.signal.disc R script developed by Enrico Rezende (Universidad Autònoma de 

Barcelona). This function was used in several studies to reveal a phylogenetic signal in 

discrete traits (Nichols et al., 2013; Montesinos-Navarro et al., 2012; Bauer et al., 2012; 

Moro et al., 2015; Valiente-Banuet and Verdú, 2007; Verdú and Pausas, 2007). It works 

with a tree of network OTUs and treats module assignment of each OTU as a character 

state with random transitions. The strongest possible phylogenetic signal in the OTU tree 

would be indicated by num - 1 transitions, where num is the number of modules. To 

quantitatively assess the phylogenetic signal, the script first uses maximum parsimony to 

generate a null model by calculating the minimum number of character transitions needed 

to create permuted character states of the OTUs for 10,000 simulations. Then, the actual 

number of transitions in the tree of Baikal OTUs with known module membership is 

compared with a distribution of transitions obtained from the permuted simulations. A p-

value for a phylogenetic signal is calculated from comparing the true number of transitions 

with a null distribution of transitions obtained from the permuted simulations (Fig. S1.16). 

 

Gene content and functional redundancy calculations 

Gene content estimation. Gene content per sample was estimated using the PICRUSt 

(Langille et al., 2013) python package. PICRUSt functional inference works in three steps. 

It uses a reference tree(McDonald et al., 2012), constructed from the entire Greengenes 
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database (DeSantis et al., 2006) of 408,315 curated full-length 16s sequences, and a 

table of 6910 KEGG ortholog (KO) abundances for 2,590 known genomes that have 

identifiers in the Greengenes tree. First, PICRUSt prunes the full reference tree to known 

genomes and uses phylogenetic modeling to reconstruct ancestral states. The result is 

estimated copy numbers for each KO in each ancestor in the pruned tree. Second, 

PICRUSt infers gene content for the tips of the entire Greengenes reference tree. This 

prediction is generated by an average of the contents of extant and inferred ancestral 

genomes, both weighted exponentially by the reciprocal of phylogenetic distance, in line 

with previous research that reported an inverse exponential relationship between 16s 

phylogenetic distance and gene content conservation (Zaneveld et al., 2010). In the last 

step, user-supplied OTUs are matched to identifiers in the reference tree, their 

abundances are normalized by predicted 16s copy numbers, and a table containing copy 

numbers of their KOs is created. Prediction of the sample-wide genome content 

(metagenome) is a simple addition of KO copy numbers for all OTUs in the sample, 

weighted by their relative abundances. Our preliminary comparison of the PICRUSt-

inferred metagenomes with the sequenced metagenomes from a subset of our samples 

(Langille et al., 2013) reveals a good agreement (Wilburn et al. in prep.), verifying the 

reliability of the PICRUSt approach. 

PICRUSt offers a quality control metric NSTI (nearest sequenced taxon index) for the 

per-OTU accuracy of gene content prediction. For example, because OTUs are clustered 

at 97% sequence similarity, an OTU with NSTI < 0.03 is identical to a known sequenced 

genome. Since phylogenetic distance from known genomes is the best indicator of 
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predicted genome quality, we worked with PICRUSt results based on OTUs with NSTI < 

0.15, as per PICRUSt authors recommendation (Langille et al., 2013). 

In Baikal dataset, OTUs compatible with the PICRUSt pipeline were identified within 

mothur using the make.biom command as described in the MiSeq SOP. Of the PICRUSt-

compatible OTUs, 486 non-singleton OTUs with NSTI < 0.15 were used to predict 

metagenomic content of samples for redundancy analysis. 

Functional redundancy was calculated by dividing the number of non-zero OTUs by 

the number of unique non-zero KOs in each sample. This calculation ensures that each 

KO present in the sample is counted only once and does not depend on the number of 

gene copies. With more OTUs contributing the same KOs, the ratio (functional 

redundancy) goes up. 

 

Supplementary Results 

Temperature, light and nutrient profiles 

Most stations were thermally stratified, while others exhibited weaker stratification 

because of the storm at the end of the cruise (Fig. S1.8). At the surface, temperature 

ranged from 7.0°C in northernmost SB to 21°C in Proval Bay with a median at 17.4°C. In 

the open waters, the median temperature was 9.5°C, consistent with expected values 

(Kozhova and Izmest’eva, 1998). 

Light profiles with models are shown in Fig. S1.9, top. Light extinction coefficients (Fig. 

S1.9, bottom) were greatest at the single station in the eutrophic Proval Bay, high in the 
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Selenga River plume and lowest in Maloe More. Central Baikal stations, sampled along 

the gradient from shallow bay to open lake conditions, showed variable values. 

Nutrient profiles are shown in Fig. S1.10. Total nitrogen (TN) ranged from 3.0 μM in 

southern Maloe More Straight to 25.2 μM in Proval Bay with both an overall and open 

waters medians at 10.0 μM. TP ranged from 0.16 μM in northernmost South Baikal to 1.4 

μM in Proval Bay with lakewide and open waters medians at 0.35 and 0.38 μM. Molar 

TN/TP ratios varied from 5.6 in southern Maloe More to 56.9 in southern Central Baikal; 

median TN/TP was 26.1. Chl a ranged from 0.66 μg L1 in mid-Chivirkuy Bay to 10.5 μg 

L-1 in Proval Bay with the median at 2.0 μg μg L-1. Nutrients increase, but with mild trends 

at depths above 80 m (not significant) with a visible increase at the deeper stations at 300 

and 500 m. While relationships with TN, TP, DN, DP, DS and chlorophyll were all 

significant using all samples, only TN and chlorophyll remained significant with two high 

nutrient outlier stations (Proval Bay and Selenga Shallow) removed. The remaining 

positive relationship illustrated an expected correlation between nutrient load and primary 

productivity. 

 

Multiple regression 

Trends on the particle-attached 3um fraction were similar to the free-living 0.22 um 

fraction (Fig. S1.12, S1.13) 
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Multivariate statistical analyses 

Dissimilarity matrices based on phylogenetic distance metrics (unweighted and 

weighted unifrac) correlated very highly with phylogeny-free Jaccard and Bray-Curtis 

matrices (Fig. S1.14) and were concluded not to add significant additional information to 

modeling the multivariate community structure. 

Ordination of the 3um fraction showed similar results to the 0.22um fraction (Fig. 

S2.16). 
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Supplementary Figures 
 

 
Figure S1.7: Sampling sites at Lake Baikal. Colors reflect major recognized regions of 
Lake Baikal (Kozhov, 1963; Kozhova and Izmest’eva, 1998). 
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Figure S1.8: Temperature profiles and location of collected samples in the water 
column.   



 

 56 

 
 
Figure S1.9: Light profiles, fitted models and extinction coefficients.  
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Figure S1.10: Nutrients show non-significant increase with depth. 
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Figure S1.11: Rarefaction curves showing sampling depth per sample (left) and 
rarefied samples (right) 
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Figure S1.12: OTU richness and Shannon diversity on the 3 um fraction size, showing 
the same trends as the 0.22 um fraction. 
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Figure S1.13: Model-averaged importance of environmental predictors for OTU richness 
(top) and Shannon diversity (bottom) in the mixed layer and the hypolimnion – on the 3 
µm size fraction. 
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Figure S1.14: Pairwise Mantel test correlations between distance matrices based on 
phylogeny-free and phylogenetically-informed metrics for the 0.22 um (left) and 3um 
(right) size fractions. Unweighted distance calculators treat all OTUs equally, while 
weighted versions emphasize differences among the more abundant OTUs. 
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Figure S1.15: NMDS ordination of the particle-attached 3um fraction 
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B 

 
 
Figure S1.16: Network statistics comparison with simulated Erdos-Renyi (A) and Watts-
Strogatz (B), run for 10,000 simulations each. Red arrows indicate statistics for Baikal 
networks. 
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Figure S1.17: Phylogenetic signal for co-occurrence network modules as discrete 
character states for individual OTUs. 
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Figure S1.18: OTU abundance (scaled to 0-1 range) in the M1 (ML module) are shown 
in bubbles. The PC1 trend for M1 (scaled to 0-1 range) is shown as a black line in each 
panel. OTU panels are arranged in order of decreasing centrality (connectedness). 
Bubble sizes indicate actual relative abundance values of the OTUs to communicate 
which OTUs were generally more or less abundant in Baikal. 
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Figure S1.19: OTU abundance (scaled to 0-1 range) in the M3 (DW module) are shown 
in bubbles. The PC1 trend for M1 (scaled to 0-1 range) is shown as a black line in each 
panel. OTU panels are arranged in order of decreasing centrality (connectedness). 
Bubble sizes indicate actual relative abundance values of the OTUs to communicate 
which OTUs were generally more or less abundant in Baikal. 
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Figure S1.20: The non-normal frequency distribution of the geographic distance matrix. 
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Table S1.1: Differential relative abundances of the top 5 phyla on the 0.22 μm and 3 
μm size fractions. Student’s t-test identified significant differences between mean 
abundances of four phyla. 
  

0.22 μm 
mean(sd) % 

3 μm 
mean(sd) % 

df t-stat p 

Actinobacteria 22.828(6.04) 5.361(2.38) 11.731 8.514 2.31E-06 
Bacteroidetes 25.656(5.11) 34.2(8.21) 15.064 -2.793 0.01360339 
Cyanobacteria 8.238(7.27) 19.4(8.22) 17.733 -3.217 0.00485304 
Proteobacteria 26.204(5.09) 20.77(5.76) 17.731 2.235 0.03854459 
Verrucomicrobia 14.442(4.8) 12.457(2.55) 13.709 1.155 0.26766726 

 
 
Table S1.2: Statistics for the four detected modules in the Baikal co-occurrence 
network. M1 and M3 have the highest transitivity (clustering coefficient) values. 
 
Module Average Path Clustering Coefficient 
M1 1.626 0.684 
M2 1.797 0.540 
M3 1.410 0.823 
M4 1.795 0.583 
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CHAPTER TWO 
 

ESTIMATED NITROGEN ASSIMILATION STRATEGIES REFLECT SUMMER 
RESOURCE LIMITATION IN NORTH TEMPERATE LAKES 

 
 
Abstract 

Microorganisms are critical facilitators of biogeochemical and trophic processes in 

aquatic systems. Understanding drivers of their community composition in different 

systems and seasons is an active area of research. We present a 16s sequencing 

survey (139 samples) covering the world's oldest, most voluminous and deepest Lake 

Baikal, ten diverse lakes in Minnesota (including Lake Superior, prairie and Canadian 

shield lakes and a flooded meromictic iron mine), and three lakes in southwest Michigan 

during the summer and ice-covered periods. This survey places Baikal microbial 

communities at an end of a gradient of microbial composition, with the most similar 

microbial samples in the dataset collected from other oligotrophic areas, such as Lake 

Superior and the epilimnia of highly stratified lakes in the summer season. Total 

nitrogen and phosphorus, and oxygen were strong environmental covariates with 

community trends in winter. In contrast, temperature was the strongest environmental 

covariate in the summer with no significance in winter. Oxygen was also important only 

in the summer hypolimnion, but not in the mixed layer. Predicted functional repertoire at 

surveyed sites revealed that nitrogen availability strongly influenced the metabolic 

strategy of inorganic N uptake and assimilation via the glutamate pathway. Low N 

availability was associated with higher per-sample abundance of nitrogenase and the 

nitrate/nitrite transporters. N limitation also favored organisms that source electrons for 
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reduction and assimilation of N species from photosynthetic activity with Ferredoxin-

dependent isoforms, in a direct trade-off with those that use NADH-dependent 

enzymes, coupled to electrons from catabolic processes. We propose that N 

conservation and the reducing power sources available in summer epilimnia are 

important factors that select microbial taxa in the summer season. 

 

Introduction 

The ecological impact of microorganism-driven nutrient cycling has long been 

recognized in aquatic systems, and various -omics approaches recently revealed the 

incredible taxonomic and functional diversity of aquatic microorganisms. In freshwater 

systems, microbial research efforts often focus on time-series collection at a single 

location (e.g., lake Mendota) or examining particular systems, like bog lakes (Linz et al., 

2017), alpine lakes (Urbach et al., 2001), or lakes in the high Arctic. However, fewer 

studies attempt to contextualize findings across diverse habitats and large spatial scales 

(but see recent (He et al., 2017; Mehrshad et al., 2018). 

Furthermore, our understanding of the functioning of aquatic ecosystems in general, 

and their microbial processes in particular, is largely restricted to the summer ice-free 

season. Of the world’s 117 million lakes, the majority lie between 45° and 75° latitude 

and experience seasonal ice cover (Verpoorter et al., 2014). However, academic 

schedules, assumptions about winter dormancy, and the logistics of winter field work 

have all but prevented systematic studies of under-ice aquatic habitats (Hampton et al., 

2015, 2017). Ongoing worldwide reduction in the duration of lake ice cover (Benson et 
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al., 2012) has been shown to influence phytoplankton ecology, including phenology and 

trophic role (Weyhenmeyer et al., 1999), but many questions about the consequences 

of ice loss remain. Particularly little is known about the under-ice microbiome, restricting 

our understanding of the year-round functioning of aquatic systems and precluding 

accurate prediction of their response to ongoing climate change.  

Resource limitation is one of the main forces that structure communities. The 

dominant paradigm for freshwater lakes is that phosphorus limits productivity. The 

canonical explanation for the primacy of P, as opposed to N, is the abundance of N in 

the atmospheric reservoir and its availability to aquatic systems through N-fixation. In 

the seminal work on this subject, Schindler speculated that transient N limitation in lakes 

is indeed possible, but that plankton ultimately overcome the shortage (Schindler, 

1977). However, since then, a number of experimental studies suggested numerous 

exceptions, most commonly pointing to co-limitation by nitrogen and phosphorus, during 

periods of peak productivity (Elser et al., 1990; Guildford & Hecky, 2000; Sterner, 2008; 

Harpole et al., 2011; Elser et al., 2007). O’Donnell et al. demonstrated such case for 

Lake Baikal in Siberia (O’Donnell et al., 2017) – the world’s deepest and most ancient 

freshwater lake, which holds about as much water as the Laurentian Great Lakes 

combined (Moore et al., 2009). Even if the role of N is transient or conditional, the 

consistency of exceptions to P limitation clearly makes N an important factor in 

determining year-round ecosystem productivity and functioning. Given these important 

roles of N, it is vital to improve the mechanistic understanding of the way microbial 

communities affect the dynamics of N in freshwater systems. 
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Bacterial assimilation of inorganic N is a process of N species reduction, where 

reducing power is sourced from photosynthesis or catabolic pathways. Its first three 

enzymatically committed steps are catalyzed by nitrate reductase, nitrite reductase, and 

glutamate synthase (GS). There are two known isoforms of each one of these enzymes 

that differ in their electron cofactors. Multiple lines of evidence, coming from diverse 

phylogenies, including sequenced cyanobacteria and microeukaryotes, and the location 

and expression of the different enzyme isoforms in higher plants, have associated the 

ferredoxin-dependent (Fd) forms with nitrogen assimilation coupled to photosynthesis, 

and the NADH-dependent enzymes with obtaining reducing power from respiration 

(García-Gutiérrez et al., 2018; Esteves-Ferreira et al., 2018; Bernard & Habash, 2009). 

Community-wide prevalence of one enzyme isoform over another would reflect 

community shift in the direction of the most competitive N assimilation strategy in N-

limited systems. 

Here we present an amplicon survey (139 samples) of microbial communities 

covering a wide range of temperate lakes, the world's oldest, most voluminous and 

deepest Lake Baikal and thirteen diverse lakes in Minnesota, Wisconsin and Michigan 

(including Lake Superior, prairie and the Canadian Shield lakes, a flooded meromictic 

former iron mine, and the oligotrophic, mesotrophic and eutrophic lakes in MI) during 

the summer and ice-covered periods. We extend our previous findings from Lake Baikal 

to place its community composition in the context of other lakes, which were chosen to 

span a gradient of several environmental factors. We also identify and contrast main 

environmental drivers of community composition between the summer and winter 
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seasons in the study lakes. Finally, we use a functional prediction tool PICRUSt 

(Langille et al., 2013) to estimate the functional repertoire in each sample and report two 

results. First, we confirm that nitrogen limitation, as inferred by TN:TP ratios, was 

associated with community shifts towards enrichment in nitrogenase genes – a trend 

consistent across all surveyed lakes. To our knowledge, we are first to report a trade-off 

between Fd-based and NADH-based nitrogen assimilation in N-limiting conditions, 

possibly brought on by N conservation and bioenergetics of acquiring reducing power. 

 

Materials and Methods 

Study sites 

Summer sampling of Lake Baikal was guided by its recorded natural history 

(Kozhov, 1963) that divides the lake into eight distinct regions. We collected samples 

from 24 spatial locations, covering all eight regions, where 10 locations were sampled at 

various depths for a total of 46 samples across the lake (Fig. 2.1). The cruise took place 

on board the R.V. Treskov on August 3-17, 2013. Winter sampling at Baikal was done 

on two days (March 18 and 26, 2013) at the site of long-term monitoring “Station 1”, 

which was also part of the Summer survey, in the Southern Basin approximately 2.2 km 

offshore from Irkutsk State University Baikal Biological Station in Bolshie Koty. 

Thirteen additional lakes (Table 2.1, Fig. 2.1) were sampled during the period of 

winter ice cover (March 16-20, 2015) and during the open water summer period (July 8-

14, 2015). Lakes were chosen to represent a range of physical, chemical and biological 

conditions in order to assess how winter and summer microbial communities differ in a 
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diverse set of north temperate lakes. Two Lake Superior stations were selected in part 

due to logistical reasons, specifically ease of access over stable ice cover in winter. The 

Madeline Ice Road site (near Bayfield, WI; station 5 on Fig. 2.1) is near a maintained ice 

road connecting Madeline Island to the mainland and allowed us easy access to an ice-

covered portion of Lake Superior. The Vandecraig Bay station (near Washburn, WI; 

station 4 on Fig. 2.1), situated in Chequamegon Bay, also has regular ice-cover with 

easy access. These two stations differ in physical, chemical and biological parameters 

(deep, oligotrophic site vs. shallow, oligo-mesotrophic nearshore site). Lakes Barrs, 

Briar, and Pike were chosen for their proximity to urban areas but different water clarity 

and depth. Lakes Burntside and Nels are both on the Canadian Shield, and, while 

Burntside is well-developed with vacation houses on its shores, Nels Lake is remote, 

accessible only by all wheel drive vehicles and has no shore development. Mille Lacs is 

the largest inland lake by surface area in Minnesota, but is relatively shallow. In 

contrast, lake La Salle is one of the deepest in MN with high water clarity. Lastly, lake 

Portsmouth is the deepest inland lake in Minnesota (137 m), and is a former iron pit 

mine. It was flooded in 1964 and since turned into a recreational lake, stocked with fish. 

Its depth, combined with small surface area, led us to hypothesize that it is meromictic 

with year-round stratification. Sampling was conducted from the surface of the ice in 

March and from a small boat during the ice-free period in July. In both seasons we 

collected water column CTD sonde profiles, and water samples from different depths for 

chemical and biological analyses. 
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Table 2.1: Sampled lakes in Michigan, Minnesota, and Wisconsin 
 

Number 
on Fig. 
1 

Lake, Location Lake 
Size, 
km2 

Site 
depth, 
m 

Water sampling 
depths, m 

Summer 
sampling 
date 

Winter 
sampling 
date 

1 Barrs, MN 0.52 6 0, 5 7/12/15 3/16/15 

2 Briar, MN 0.3 5.5 0, 4.5 7/12/15 3/16/15 

3 Pike, MN 1.97 13 0, 6, 12 7/8/15 3/16/15 

4 Superior 
(Vandecraig 
Bay), WI 

82102.6 8 0, 7.5 7/9/15 3/17/15 

5 Superior 
(Madeline Ice 
Road), WI 

82102.6 47 0, 15, 30, 45 7/9/15 3/17/15 

6 Portsmouth, 
MN 

0.5 93 0, 15, 25, 35, 80 7/10/15 3/18/15 

7 Mille Lacs, MN 536.1 8.5 0, 7 7/10/15 3/18/15 

8 Burntside, MN 28.9 26 0, 5, 14, 25 7/13/15 3/19/15 

9 Nels, MN 0.74 8 0, 7 7/13/15 3/19/15 

10 La Salle, MN 0.9 60.5 0, 7, 20, 35, 57 7/14/15 3/20/15 

11 Gull, MI 8.8 31 0, 10, 13, 17, 25, 32 7/21/15 2/09/15 

12 Wintergreen, 
MI 

0.15 7 0, 4, 5.5, 6 7/29/15 2/12/15 

13 Lawrence, MI 0.049 13 0, 3.5, 10.5, 12 7/29/15 2/11/15 

 
Sample collection 

We are reporting results based on data from several sampling expeditions. Methods 

for Lake Baikal are described in Chapter 1, and lakes in Michigan were sampled 
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following those protocols. Minnesota and Wisconsin lakes were sampled using similar 

techniques, as described in detail below. 

 

 
 
Figure 2.1: Map of sampled locations 

 
Several physical characteristics were measured during winter and summer periods. 

In the ice-covered period, we visually estimated a percentage of snow cover on the ice. 

Average snow thickness was determined from measurements at 5 locations near the 

sampling site. The thickness and clarity of ice were recorded as well. Water and 

ice+snow light attenuation was measured with LI-COR probe equipped with a quantum 

LI-192 cosine sensor (LI-COR Biosciences., Lincoln, USA). Light attenuation by 

ice+snow was estimated by measuring light levels in air and directly under the ice+snow 

surface, pressing the surface of the light sensor to the underside of the ice. The 

sampling hole in the ice was covered with a black, light-proof plastic during the light 

measurements to avoid light contamination. Water column profiles of water 

temperature, dissolved oxygen, chlorophyll fluorescence, pH, fluorescent DOM and 
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conductivity were measured by EXO2 multiparameter sonde (YSI Inc., Yellow Springs, 

USA), recording approximately five values per second on the downcast (lowering 

approximately 1 m per second) and used for modeling (see below). 

Water samples were collected for chlorophyll a, total phosphorus (TP), total nitrogen 

(TN), soluble reactive phosphorus (SRP), and nitrate and ammonia (NO3- and NH4+) 

with a 3.7L Van Dorn Water Sampler at discrete depths (Table 1). At minimum, water 

was collected at lake surface (or immediately under the ice in winter) and 0.5 m above 

lake bottom. For nutrient measurement, water was collected into 2 L acid-washed 

bottles and stored in dark coolers until return to the lab and processing. 

Chlorophyll a analysis was performed in duplicate; samples (volume 100-400 mL) 

were filtered at a low vacuum onto cellulose nitrate membrane filters (0.2-µm pore size; 

45-mm ø) under low light conditions and stored frozen in the dark until analysis. 

Chlorophyll a was extracted into 90% acetone at 4°C in the dark for 18 to 24 hours 

before analysis and measured fluorometrically on a Turner Designs model 10-AU 

fluorometer (Welschmeyer, 1994). 

For DNA, 1 L were sequentially filtered onto 3 μm and 0.22 μm mixed nitrocellulose 

acetate membranes (EMD Millipore, Billerica, MA, USA) and stored at −20°C in 

RNAlater (Life Technologies, Grand Island, NY, USA) to capture particle-attached and 

free-living fractions of microorganisms. 
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Nutrient measurements 

Methods for Lake Baikal are described in Chapter One, and samples from Michigan 

lakes were analysed following those protocols. Minnesota and Wisconsin lakes were 

processed using similar techniques, as described below. 

TP and TN analyses were conducted on duplicate whole water samples from each 

sampling depth. After collection, water for TP and TN analyses were transferred to 60-

ml acid-washed plastic bottles and frozen until analysis. TP was determined 

spectrophotometrically by the molybdate blue method on Shimadzu UV-1800 

spectrophotometer following a potassium persulfate oxidation at high temperature 

(Murphy & Riley, 1962). TN samples were acidified prior to analysis with 40 µL of 6N 

HCl. Samples were run on the Shimadzu TOC-VSH total carbon/nitrogen analyzer, 

where both total carbon and total nitrogen were quantified. 

Duplicate samples for Soluble Reactive Phosphorus (SRP), NO3- and NH4+ were 

filtered through 0.22 µm cellulose nitrate membrane filters into separate 60 ml acid-

washed plastic bottles and frozen until analysis. SRP concentrations were determined 

after adding color reagent and read on a Shimadzu UV Spectrophotometer UV-1800 at 

880 nm. NO3- analysis was carried out on a QuickChem 8000 Lachat FIA Automated 

Ion Analyzer where the nitrate was reduced to nitrite by a copperized cadmium column 

and determined spectrophotometrically using the Low Flow method (Wendt, 2001). 

NH4+ was analyzed fluorometrically (Holmes et al., 1999) on a Turner Designs 10-AU 

fluorometer at low light-conditions. Final NH4+ concentrations were calculated based on 

Taylor et al (Taylor et al., 2007). 
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DNA extraction and amplicon sequencing 

Genomic DNA was extracted using the Mo-Bio PowerSoil Kit (Mo-Bio Laboratories, 

Carlsbad, CA), following manufacturer’s protocol. Then, the V4 region of the 16S rRNA 

gene was sequenced using dual-index primers as described previously (Kozich et al., 

2013). After PCR amplification, the products were normalized and pooled. The pool was 

loaded on an Illumina MiSeq v2 flow cell and sequenced with a standard 500 cycle 

reagent kit for paired-end 250 bp reads (PE250). Base calls were done with Real Time 

Analysis software v1.18.54. Output of RTA was demultiplexed and converted to FastQ 

with Illumina Bcl2Fastq v1.8.4. 

 

Amplicon sequence processing 

The FastQ output files were processed using mothur, following general MiSeq 

protocol and the options below (Kozich et al., 2013; Schloss et al., 2009). Sequences 

were aligned to a full SILVA v.123 database. Chimeras were removed with UCHIME in 

mothur (version 1.36) environment. The remaining sequences were classified with a 

naïve Bayesian RDP classifier (Wang et al., 2007) and the Greengenes (August 2013 

release) database. Sequences classified as Mitochondria, Chloroplasts and Eukaryota 

were removed, resulting in 197,738 unique sequences that were clustered into OTUs at 

97% similarity. Consensus taxonomy for each OTU was determined following mothur 

protocol. Coverage for sequenced samples was rarefied to the lowest coverage sample 

at 27005 reads. 
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Statistical analyses 

All analyses were performed in the R (3.2.2) environment. Temperature values at 

collection sites were estimated from YSI instruments sonde profiles. The YSI sonde 

profiled temperature at each station down to between 40 m to 50 m. For each station, 

high-order polynomial functions were fit to the data, and point estimates were used to 

infer temperature values at exact depths used for water sample collection (Fig. 2.1). For 

Lake Baikal sites samples collected at 75 m, 300 m and 500 m, temperature was 

assigned a value of 4°C, based on literature values (Kozhov, 1963). 

Distance matrices, ordinations, and correlations with environmental variables we 

calculated with vegan (Oksanen et al., 2016) and phyloseq (McMurdie & Holmes, 2013) 

packages. For consistency of comparing the effect of environmental covariates, we 

used only stations sampled in both seasons. The per sample gene content was 

calculated using PICRUSt (Langille et al., 2013) with a quality cutoff NSTI<0.15. 

PICRUSt coverage varied between 54-87% of non-singleton OTUs and was well-

represented across phylogenetic clades (Fig. S2.13). In other words, PICRUSt 

estimation did not introduce phylogenetic gaps in metagenomic estimates. 

Estimated gene (KO) abundances were normalized to abundance of recA (K03553) 

in each sample, and the ratios were scaled linearly to a 0 to 1 range across all samples. 

Because recA is a single copy universal marker, functional KO to recA ratios 

represented abundances of genes per average cell in a community. And while different 

genes have highly variable baseline abundances, scaling of each gene across all 

samples allowed comparing different genes in the same normalized abundance range. 
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Results 

Abiotic parameters 

The abiotic parameters differed significantly between the seasons in all lakes (Fig. 

2.2a, Fig. S2.10a, p<0.01). As expected, winter samples were at the low temperature 

position in multivariate space. Additionally, winter samples were also at the low end of 

the TN and TP gradients. The oxygen gradient was defined primarily by the lower 

saturation levels in hypoxic hypolimnia. 

 

 
 
Figure 2.2: Abiotic differences between lakes in winter and summer seasons. Sample 
depths (m) are indicated below each point. 

 

Beta dispersion of winter samples was significantly lower than that of summer 

samples (Fig. S2.10a, p<0.03), indicating lower variability of abiotic conditions in the 

winter season, with exceptions of lakes Portsmouth and La Salle, which had poor 
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seasonal mixing. Winter samples collected in the hypolimnia of those lakes were 

warmer, less oxygenated, and contained higher P, compared to all other samples, 

suggesting stratification in the winter season at those sites. Conversely, the summer 

epilimnia of those lakes were oligotrophic, with N and P levels approaching the lowest P 

concentrations in Lake Baikal samples (Fig. 2.2C). Interestingly, the winter Gull Lake, 

MI samples, while clustered together, differed markedly from all other locations, mostly 

due to high N content (Fig 2.2). 

 

Microbial community composition and environmental covariates 

At a depth of 27005 sequences per sample, we detected 133185 OTUs in the 

combined 3.0 μm (particle-attached) and the 0.22 μm (free-living) fractions. Of those, 

42688 were non-singletons on 3.0 μm, and 49786 on the 0.22 μm. The non-singletons 

across the two fractions were classified into 63 phyla. Free-living samples were 

dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria, and 

Verrucomicrobia (surface sample composition in Fig. 2.3, 2.4). Sediminibacterium, 

Limnohabitans and Synechococcus were the most abundant taxa in the dataset. 

However, our study design was explicitly aimed to cover diverse environments (Fig. 

2.1), and the relative abundances of individual taxa, as well as each phylum, varied 

widely between locations and seasons. For example, the hypolimnion of Portsmouth 

lake in both seasons was dominated by an obligate anaerobe in the Verruco-5 class, 

sulfur-reducing taxa Desulfococcus, members of the Desulfobulbaceae family and 
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sulfur-reducing Parvarchaea. To compare taxonomic community composition across 

lakes and seasons, we first considered ordinations of Bray-Curtis dissimilarities. 

 

 
 
Figure 2.3: Taxonomic composition of free-living microorganisms in summer. 
 

At the broadest scale, the communities showed significant differences in the 

centroids (p<1x10-4) between summer and winter (Fig. 2.5, S2.10B) in ordination space. 

A substantial overlap occurred between winter samples and those from summer lake 

hypolimnia, while epilimnetic samples separated almost completely. In both winter and 

summer, Lake Baikal occupied one extreme of the community dissimilarity space (Fig. 

2.5B,C). At the other extreme were samples collected from below the thermo- and 

chemocline of the deep meromictic Portsmouth lake in Minnesota. Communities most 

similar to Lake Baikal were collected in Lake Superior in both seasons. In the summer, 

additional samples similar to Baikal included the epilimnia of lakes LaSalle and 
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Portsmouth in Minnesota, and Gull Lake in Michigan, which were all oligotrophic in that 

season. 

 

 
 
Figure 2.4: Taxonomic composition of free-living microorganisms in winter. 
 

Considering two seasons separately, total nitrogen was the strongest environmental 

covariate separating community composition in the winter (R2=0.81) and a significant 

one in the summer (R2=0.58), with dissolved and total P also significant in both seasons 

(Fig. 2.4). Temperature was only significant in summer, where it was a strong covariate 

(R2=0.55). 

A closer look at summer epilimnia revealed that oxygen did not correlate with 

microbial community structure in those systems (Fig. S2.12). TN was still the most 

significant covariate (R2=0.63), while total P was not, and dissolved nitrogen had greater 

explanatory power than dissolved phosphorus (R2=0.50, R2=0.36). Our next step was to 



 

 94 

examine the functional repertoire of samples the most productive season and region 

i.e., summer epilimnia, through the lens of N availability. 

 

 
 
Figure 2.5: Biotic dissimilarities in winter and summer. Only stations sampled in both 
seasons were included for consistency. Numbers below points are sample depths (m). 
 

Nitrogen assimilation strategies 

The PICRUSt-derived estimates of nitrogenase gene abundance were higher under 

lower N availability in the summer mixed layer (ML) samples. This trend was consistent 

across all lakes and was significant against both TDN (Fig. 2.6, R2=0.30, p<1.1x10-5) 

and TN/TP ratios (Fig. S2.14, R2=0.23, p<3x10-4). Because PICRUSt metagenome 

estimates are reflections of the functional community structure, these results indicate 

community shifts towards taxa capable of N fixation. The nitrogenase enrichment in the 

summer epilimnia also correlated with TN but not with any other measured 
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environmental variable. This signal also became non-significant when winter samples 

(Fig. S2.14) and the summer hypolimnion were included, suggesting a decreased 

selective pressure for nitrogen fixation or presence of limiting resources other than 

nitrogen in those environments. 

Inorganic nitrogen transporter genes (Nrt) followed the nitrogenase abundance 

trends, showing a significant decrease in the per sample abundance with increasing N 

availability, as estimated by TDN (Fig. 2.6, R2=0.38, p<3.7x10-7), as well as TN/TP 

ratios (Fig. S2.15, R2=0.32, p<3.7x10-6), in summer ML across all sites. The trend was 

noticeably stronger at the low end of N availability, represented by the Lake Baikal 

samples. Indeed, at higher N availability, lakes Superior in Minnesota and Gull and 

Lawrence lakes in Michigan showed a large variability in community-wide Nrt 

prevalence at similar TDN values (Fig. 2.6), with Nrt abundance in Lake Superior almost 

as high as in many Lake Baikal samples and the Lawrence Lake samples had Nrt 

content near zero. Importantly, just as in case of nitrogenase, the trends were absent in 

the winter, and the addition of winter samples to the analyses eliminated significance 

(Fig. S2.15). For Baikal summer epilimnion, N co-limitation was experimentally shown at 

the same time with the same water samples as those used in this report (O’Donnell et 

al., 2017). Altogether, these observations revealed an association between N availability 

and N acquisition strategy, but only in systems that are expected to experience N 

limitation. 

In the metabolic machinery for inorganic nitrogen reduction to ammonia and 

assimilation of ammonia into glutamate, ferredoxin (Fd)-dependent N assimilation 
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enzymes showed a clear trade-off with NADH-dependent isoforms, with respect to 

available nitrogen, but, again, only in the summer epilimnion samples from Lake Baikal 

(Fig. 2.7), which exclusively comprised the low end of the TDN gradient (Fig. 2.6). 

NADH-dependent forms of nitrate reductase, nitrite reductase, and glutamate synthase 

all reached a plateau with increasing dissolved nitrogen in the Lake Baikal epilimnion 

samples. This was matched by a decrease in the FD-dependent forms in the same 

samples in similar but not exactly opposite amounts. These results reflected shifts 

community composition away from the organisms that rely on photosynthesis-

dependent N assimilation in the presence of greater available nitrogen, as measured by 

TDN. At the high end of the TDN gradient, occupied by summer mixed layers of lakes 

other than Bakal, the trade-off remained at high (for NADH) and low (for Fd) plateaus. 

 

Discussion 

We present a survey of microbial communities in diverse northern lakes, including 

the planet’s most voluminous, deepest and most ancient Lake Baikal in Siberia, the 

world’s largest (by surface area) Lake Superior, a meromictic former iron pit mine i.e., 

Portsmouth Lake, and the classic “Wetzel lakes” Gull, Lawrence, and Wintergreen in 

southwest Michigan, familiar to most aquatic ecologists. We reveal seasonal differences 

in environmental drivers of microbial community structure, generalized across wide 

spatial scales. We are also, to our knowledge, first to report shifts in microbial 

community composition that result in a nitrogen-dependent functional trade-off of 
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nitrogen assimilation strategies and hypothesize that the trade-off is based on 

availability of electron sources and is manifested only during N limitation. 

 

 
 
Figure 2.6: Regression of transporters and nitrogen assimilation genes with log 
dissolved nitrogen 
 

The dominant phyla were generally consistent with findings from other freshwater 

temperate lakes (Newton et al., 2011; Logue et al., 2012), with notable exceptions, such 

as the hypolimnion of likely meromictic Portsmouth Lake, MN. While the communities in 

the Portsmouth Lake’s epilimnion appeared similar to other small oligotrophic lakes, 
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such as LaSalle Lake in Minnesota, and Gull and Lawrence lakes in Michigan, below 

the chemocline at 25 m the environment became completely anoxic (Fig. S2.9). In that 

environment, communities were markedly different, dominated by sulfur-reducing 

bacteria and archaea (see Results). Parvarchea, present in Portsmouth Lake’s 

hypolimnion, have been found in anoxic environments of arctic drained lake basins 

(Kao-Kniffin et al., 2015) and marine sediment mats (Wong et al., 2017), and members 

of the Desulfobulbaceae family, including Desulfococcus, are known sulfate reducers 

(Almstrand et al., 2016; Rosenberg, 2014). Similarly, the bottom hypolimnion in lake La 

Salle were differentially abundant in Methylotenera mobilis, which has been 

methylamine oxidation in lake sediments (Kalyuzhnaya et al., 2006) and members of 

the obligately anaerobic Phycisphaerales family (Fukunaga et al., 2009). These 

Portsmouth hypolimnion communities were remarkably similar between summer and 

winter (Fig. 2.5A). 

Summer communities were structured along a strong temperature gradient (Fig. 

2.5C), with nutrients, including TN/TP ratios also significant in the epilimnia. Although 

oxygen was a significant covariate in summer samples, it varied greatly with depth, 

owing to lake stratification, which was present in most lakes at the time of summer 

sampling. This prompted us to analyze of the epilimnetic and hypolimnetic samples 

separately, which revealed, as expected, that oxygen was a significant covariate only in 

the hypolimnia but had no effect on microbial community structure in the epilimnia (Fig. 

S2.12). 
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In contrast to summer, oxygen saturation, TN, and TP were significant 

environmental covariates in the ice-covered season (Fig. 2.5B). The multivariate trends 

held even with exclusion of lakes stratified in the winter season (Portsmouth and La 

Salle, Fig. S2.13) and retaining samples from Lake Baikal, which is oxygenated at all 

depths year-round. The absence of temperature significance was expected, because it 

is less variable across lakes and depths in the winter season. Furthermore, TN/TP 

ratios were not significant covariates in winter either. This is noteworthy because it 

indicated a possibly diminished role of nitrogen limitation during the ice-covered period. 

Thus, our findings highlight the importance of heterotrophy under the ice, suggesting 

that oxygen availability, rather than temperature or nutrient limitation, is a key force in 

structuring communities in the winter season, as well as the hypoxic hypolimnia of deep 

lakes in the summer. 

 

Nitrogen assimilation machinery reflected resource limitation 

Correlation of the per-sample gene abundances with environmental variables 

indicated that N availability during possible N limitation had consistent effects on its 

assimilation mechanism. O’Donnell et al. (2017) experimentally established N co-

limitation in Lake Baikal in the summer using water from the samples presented in the 

current report. Extending analyses to the rest of the lakes, we use TN/TP ratios and 

TDN as a proxy for N availability. 

Nitrogenase and inorganic nitrogen transporters (Fig. 2.6) were enriched in low N 

availability samples, but only in the summer and not in winter (Fig. S2.14, S2.15). We 
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propose that the absence of nitrogenase and Nrt trends in winter is due to the lack of N 

limitation in that season, where microbial communities could be limited by other 

environmental factors, such as light, carbon, or oxygen. The relative importance of 

oxygen reserves in the ice-covered period, when lakes’ gas exchange with the air is 

made impossible, has long been known (Hampton et al., 2017). Our multivariate 

analyses, when separated by season and stratification layers, confirm that oxygen is 

only important in structuring microbial communities in winter and only in the hypolimnia 

of summer lakes. It is important to point out that in the case of nitrogenase, depletion 

was only observed with respect to TN/TP ratios and not TDN, even in the summer ML. 

This suggests a greater association between intracellular nitrogen reserves and the 

competitive advantage of having nitrogen fixing capabilities. Thus, our results highlight 

the larger role of nutrient limitation in the mixed layer during the summer season, which 

is reflected in community structure that favors different ways of assimilating N. 

 

 
 
Figure 2.7: Apparent trade-off between Fd- and NADH-dependent N assimilation 
enzyme isoforms in Lake Baikal 
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Among our most intriguing findings is the apparent nitrogen-dependent trade-off 

between Fd- and NADH- cofactor isoforms of enzymes in the N assimilation pathway 

(Fig. 2.6). In these downstream steps of N assimilation, where N species get reduced to 

ammonia and then assimilated into glutamate, N limitation appears to favor Fd-

dependent enzymatic isoforms. The N-limited Lake Baikal samples got progressively 

depleted in Fd-dependent enzymes with increasing nitrogen availability, in an apparent 

trade-off with NADH-dependent enzymes, which got enriched. Analogous trade-offs 

have long been known in higher plants, where Fd-dependent nitrate reductase and GS 

are active in the leaves, and are thus associated with photosynthesis, while NADH-

dependent isoforms are active in the roots (Lea & Miflin, 2003). Classic protein studies 

of germinating seeds recorded a switch from NADH- to Fd- dependent isoforms, once 

cotyledons emerge (Matoh & Takahashi, 1982) and pointed to light as an activator of 

Fd-GS (Hecht et al., 1988). Indeed, in our dataset, the relative abundance of 

cyanobacteria increased with decreasing available nitrogen (Fig. S2.16), and all 

sequenced cyanobacteria, including Prochlorococcus have the Fd-dependent GS; 

however, some also carry the NADH isoforms (Temple et al., 1998; Muro-Pastor et al., 

2005). We offer two explanations for the observed trade-off in our study. The first has to 

do with intracellular nitrogen conservation. 

It is possible that in a N-limited system, organisms that use N conserving cofactors 

to assimilate nitrogen become more competitive. NADH is a nitrogen-rich molecule, 

containing 7 N atoms (and a 7/2 N/P atomic ratio), while Ferredoxin only contains four N 

atoms on its four cysteine residues. Various strategies of N conservation pursued by 
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hallmark marine oligotrophic prokaryotes, have been widely reported, and include 

reduced G-C content, substitution of N-rich amino acid residues, even at the cost of 

creating overall bulkier proteins, and losses of entire pathways, such as the absence of 

DNA repair mechanisms in Prochlorococcus (Grzymski & Dussaq, 2012). While 

nitrogen and phosphorus concentrations in lakes are usually positively correlated 

(Sterner, 2008), our observed gene trends did not manifest in analyses with TP and 

TDP, further implying an important role of nitrogen. However, the Fd-NADH trade-off still 

existed, albeit more weakly, even at the high end of the N availability gradient, where 

many lakes presumably are no longer N-limited. Our second explanation deals with the 

energetics of heterotrophy, as opposed to autotrophy, as electron sources. 

Enrichment in Fd-dependent N assimilation genes could indicate increased 

competitiveness of photosynthetic taxa in low N environments. Clearly, that is the 

strategy followed by nitrogen-fixing cyanobacteria, such as some members of 

Anabaena. In other words, the oligotrophic locations in Lake Baikal, where TDN is at its 

lowest, may simply not support enough heterotrophy to make the downstream NADH-

based N assimilation competitive. 

Combining our two proposed explanations, it is possible that Fd-based assimilation 

of N becomes more advantageous under N limitation and high light in summer 

epilimnia. In the winter season and in the summer hypolimnia either or both of these 

conditions are relaxed, and the N dependent Fd-NADH cofactor tradeoff is no longer 

detectable. 
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Conclusion 

Our study identifies major environmental factors structuring temperate freshwater 

microbial communities across extensive spatial scale and between seasons. We show 

that different abiotic factors were associated with the community structure in the winter, 

compared to the summer season. We highlight how N limitation shapes the functional 

composition of microbial communities by selecting for species capable of N fixation or 

with the nitrogen assimilation genes that rely on N-free Fd cofactors (in a trade-off with 

NADH-dependent N-rich isoforms) that draw reducing power from photosynthesis, 

presumably from the abundant light available in summer epilimnia. Our results show 

what abiotic factors structure pelagic microbial communities in a diverse set of 

temperate lakes in two different seasons and underscore the importance of N 

availability in determining the functional repertoire of these communities. 
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APPENDIX 
 

SUPPLEMENTARY INFORMATION FOR CHAPTER TWO 
 
 

 
 
Figure S2.8: Temperature profiles each surveyed station, as recorded by a YSI sonde 
(solid black circles), fitted polynomial functions (colored lines), and estimated 
temperatures at depths, from which microbial samples were collected (large black 
outline circles).  



 

 106 

 
 
Figure S2.9: Oxygen profiles each surveyed station, as recorded by a YSI sonde (solid 
black circles), fitted polynomial functions (colored lines), and estimated temperatures at 
depths, from which microbial samples were collected (large black outline circles).  
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Figure S2.10: Principal Coordinate Analysis of sampled stations, based on abiotic (A) 
and biotic (B) measurements. 
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Figure S2.11: Beta dispersion around the centroid of measured abiotic variables for 
each lake, compared between summer and winter seasons. All lakes showed significant 
differences in abiotic conditions (centroids) between the two seasons. Also, all lakes, 
except Pike, Burntside, La Salle, and Portsmouth showed greater abiotic variation 
(dispersion) in summer, compared to winter. 
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Figure S2.12: Microbial community similarity across lakes for summer epilimnetic 
samples. Total N was the most significant covariate, while total P was not, and 
dissolved nitrogen had greater explanatory power than dissolved phosphorus. Oxygen 
did not predict microbial community structure in these samples. 
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Figure S2.13: PICRUSt coverage expressed as percentage of PICRUSt-compatible 
OTUs in each sample (54-87%). The differential abundances of the same set of 
PICRUSt-compatible OTUs across samples and the estimated copy number of each 
functional gene (KEGG Orthologs, KOs) in the PICRUSt-compatible OTU genomes that 
was used to produce the bulk per-sample KO abundances. 
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Figure S2.14: Nitrogenase per-sample content in combined winter and summer surface 
samples (left), and winter and summer seasons. Nitrogenase  abundance decreased 
with log TN/TP only in the summer mixed layer, reflecting community shifts towards 
greater N2 fixation under N-limiting conditions. 
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Figure S2.15: Nitrate and nitrite transporter gene (Nrt) per-sample abundance vs. log 
(TN/TP) in A) Both winter and summer samples. B) Winter samples, C) Summer 
samples 
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Figure S2.16: Cyanobacteria increased with more limiting N 
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CHAPTER THREE 
 

METAGENOME ASSEMBLED GENOMES OF NOVEL MICROBIAL LINEAGES 
FROM LAKE BAIKAL IN SUMMER AND WINTER SEASONS 

 
 
Abstract 

Microorganisms are the essential agents of biogeochemical cycling in aquatic systems. 

Recent -omic advances uncovered their immense taxonomic diversity and functional 

repertoire. However, the connection between taxonomy and function remains elusive. 

This is in large part due to the narrow phylogenetic breadth of sequenced microbial 

genomes, brought on by difficulties in cultivating microorganisms from natural, in 

particular oligotrophic, environments. Here we present 369 high quality draft 

metagenome assembled genomes (MAGs) from Lake Baikal, Siberia. They were binned 

from assemblies comprising 22 sites with wide spatial and depth coverage of the lake in 

summer, and two samples collected from shallow and deep waters in the winter season. 

Baikal is the world’s most ancient, deep, and voluminous freshwater body. It is a 

biodiversity hotspot that we hope will contribute important evolutionary insights to 

genome collections. Our MAGs are culture-independent and span the archaea domain 

and 15 bacterial phyla, four of which have no previously sequenced representatives 

from the lake. Most genomes are small but with large variation. At the same time, the 

most stable, aseasonal, and resource poor sites in the Lake Baikal hypolimnion 

harbored the smallest genomes with remarkably little size variation. These results could 

reflect Baikal’s overall oligotrophic environment, where millions of years allowed 

microorganisms to maximize occupancy of available resource niches. We hope this 
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report will set the stage for future model-based work on relationships between 

phylogenetic diversity and metabolic function in this and other natural systems. 

 

Introduction 

Microorganisms in aquatic systems play a key role in nutrient cycling and energy 

transfer. In the last two decades, environmental meta -omic studies revealed incredible 

taxonomic and functional diversity, inferred distributions of phylogenetic lineages, and 

associated gene abundances with environmental gradients. However, sequenced 

genomes of microorganisms commonly found in those environments remain the critical 

and often missing piece in understanding microbial ecology in a way that unifies 

information about environmental factors, metabolic strategies, evolutionary 

relationships, and biotic interactions. This is because biochemical processes take place 

inside living cells, where genes are organized into controlled metabolic pathways, and 

knowledge of gene duplication or loss in those pathways is critical in understanding their 

function. For these and other reasons, complete genomes are also necessary for acting 

as references in high-throughput environmental transcriptomic and proteomic studies of 

novel and poorly characterized natural systems. Thus, while bulk gene content in 

environmental samples provides insights on the metabolic potential of a community, 

complete genomes are needed for understanding of function, ecology, and evolution of 

cells. 

Current technologies allow three main ways of obtaining complete microbial 

genomes: from cultured isolates, physically sorted single cell genomes (SAGs), and 
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using bioinformatic approaches to construct metagenome assembled genomes (MAGs) 

(Bowers et al., 2017). Genomes obtained from isolates benefit from possible field 

addition experiments and controlled laboratory assays that can experimentally associate 

genes and regulatory elements with functional responses. However, lineages 

characteristic of oligotrophic environments (the “uncultivated majority”) are notoriously 

difficult or impossible to culture (Bowers et al., 2017; Margesin, 2017; Gilbert & Dupont, 

2011). SAGs circumvent this limitation by using high throughput flow cytometry or 

dilution-to-extinction to isolate single cells. Genomes are then obtained after amplifying 

the single cell genomic content, most commonly with multiple displacement 

amplification (MDA). This culture-independent method has generated thousands of 

novel genomes from diverse environments, and has been used to characterize common 

freshwater lineages, including Actinobacteria (Garcia et al., 2013; Kang et al., 2017) and 

Verrucomicrobia (Martinez-Garcia et al., 2012). An additional advantage of SAGs is the 

certainty in the absence of contamination. However, SAGs generally suffer from poor 

completion rates, and amplification biases introduced by MDA can skew information on 

gene copy numbers and miss some elements altogether. 

MAGs are an effective alternative. They are generated by processing a 

metagenomic assembly of contigs and grouping some of those contigs into bins, based 

on matching tetranucleotide composition and coverage-based contig co-occurrence 

patterns across samples (Kang et al., 2015). The bins are then evaluated for completion 

and contamination based on presence of an expected set of single copy markers, and 

those that pass a set threshold are then considered MAGs (Parks et al., 2015). The 
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quality of MAGs has rapidly improved with recent developments in assembly and 

binning computational tools, surpassing completion rates of most SAGs (Hugerth et al., 

2015; Bowers et al., 2017; Parks et al., 2017). It is important to keep in mind that each 

MAGs is an average of a population. While this warrants caution in interpreting 

nucleotide polymorphisms in the averaged features, mapping of short reads from 

multiple environments onto the MAG reference can reveal which polymorphisms across 

short reads are candidate local adaptations within a population represented by a MAG. 

More MAGs have recently been obtained from different environments (Parks et al., 

2017), many important ecosystems still lack adequate characterization of the functional 

diversity of microbial communities, such as Lake Baikal and other ancient freshwater 

lakes. 

Lake Baikal, Siberia is the world’s deepest (1642 m), largest (volume 23,000 km3), 

and oldest (25-30 mya) lake, holding approximately 20% of the world’s unfrozen 

freshwater (Moore et al., 2009). Likely owing to its size and age, Baikal is an island of 

biodiversity and endemism; of the roughly 2600 plant and animal species that inhabit 

the lake, approximately two-thirds are not found anywhere else (Moore et al., 2009; 

Kozhov, 1963; Soma et al., 2001), earning it a place among UNESCO world heritage 

sites. 

Lake Baikal spans diverse environments. Its water column gets briefly stratified in 

late July to mid August and has two major phytoplankton bloom periods: the late winter 

and early spring season, and during summer stratification. In winter, the under-ice 

planktonic community remains active, and a dense layer of diatoms and other algae 
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develops at the ice-water interphase (Osipova et al., 2010; Bondarenko et al., 2012; 

Katz et al., 2015). Although historically cold year-round, the lake waters are 

experiencing rapid warming, accompanied by a decline in endemic zoo- and 

phytoplankton species and a rise of cosmopolitan competitors (Moore et al., 2009; 

Hampton et al., 2008; Katz et al., 2015). However, although Baikal’s zoo- and 

phytoplankton have been monitored for over 70 years, relatively little is known of its 

bacterioplankton community diversity and function. The microbial plankton has been 

investigated with 16S amplicon sequencing (Denisova et al., 1999; Kurilkina et al., 

2016). However, studies based on the 16S rRNA gene carry a PCR amplification bias 

and only provide information on the taxonomic makeup without directly capturing 

functional genes (but see Chapter One and Chapter Two). 

Here we present 369 high quality MAGs from Lake Baikal, assembled and binned 

using shotgun sequencing across 24 samples, collected in summer and winter under 

the ice. Our sampling plan was designed to maximize coverage of environmental 

diversity and includes all three Baikal basins, a 0-500 m depth profile of the Southern 

Basin, the eutrophic Proval Bay and Selenga River plume, mesotrophic Barguzin Bay 

and Maloe More, and a eutrophic-oligotrophic gradient from inner to outer Chivirkuy 

Bay. In addition, two (out of 24) samples were collected from Southern Basin in the 

winter from under the ice at 0 and 250 m. We expand phylogenetic diversity of 

sequenced genomes from Lake Baikal by approximately ten fold, including 15 MAGs in 

4 phyla with no to-date sequenced representatives from the lake. We show that the 

majority of genomes are small, but the the high size variability suggests possible niches 
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for generalist and specialist taxa. We also emphasize that the hypolimnion stands out 

as harboring by far the smallest and least variable in size MAGs, possibly reflecting the 

most constant conditions of any of the sampled environments. 

 

Materials and Methods 

We sequenced 24 samples using two HiSeq lanes. Many of the DNA samples 

contained low concentration of DNA, and the alternative low input DNA prep kit was 

used. Libraries were prepared using the Rubicon Genomics ThruPLEX DNA-Seq Kit, 

following the manufacturer's protocol. After completion of library prep whey were QC'd 

and quantified using a combination of Qubit dsDNA HS, Caliper LabChip HS DNA and 

Kapa Biosystems Illumina Quantification qPCR assays. Libraries were pooled in 

equimolar proportions for multiplexed sequencing. This pool was loaded on two lanes of 

an Illumina HiSeq 2500 Rapid Run flow cell (v2) and sequencing was carried out using 

HiSeq SBS reagents (v2) in a 2x250bp format. Base calling was done by Illumina Real 

Time Analysis (RTA) v1.18.64 and output of RTA was demultiplexed and converted to 

FastQ format with Illumina Bcl2fastq v1.8.4. All computational steps were performed on 

the Michigan State University High Performance Computing Cluster (HPCC). 

 

Raw read assessment 

Each of the two HiSeq 2500 lanes produced a forward R1 and a reverse R2 read for 

each sample. The the two R1 reads were concatenated, as were the two R2 reads, 

producing one R1 and one R2 collection of short reads per sample. Raw read 
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properties, including distribution of read lengths, per base position quality, and presence 

of adapters, were assessed with FastQC package. 

 

 
 
Figure 3.1: Sampling stations (left), with multiple depths per station. The choice of 
shotgun samples was motivated by the amplicon survey in Chapter 1 (right). Numbers 
below samples indicate depths (m). 
 

Trimming and QC of Raw Sequences 

Trimming of the Illumina adapters is required to avoid confusing the assembler. 

Additional options aim to improve overall sequence quality. A common approach is to 

use a sliding window to track specified base quality, trim when necessary, and keep the 

sequence if its final length exceeds a cutoff value. We used Trimmomatic to remove 

adapters, short reads, and reads with poor quality sliding windows. Other programs will 

do this, too; however, Trimmomatic has speed and low memory use to its credit. 
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Trimming parameter values dictate how many sequences we discard, where lower 

values of Q are more permissive and higher ones more stringent. We explored a few 

options and ultimately chose the lowest cutoff value Q10 to make sure we had enough 

sequences to provide adequate coverage (see Results). FastQC was used again to 

check post-trimmed sequences. 

 
 
Figure 3.2: Raw sequence length distribution. 
 

Minhash diagnostics for sample co-assembly 

Based on a number of trial assemblies involving individual samples, preliminary 

contigs suffered from low coverage. This was due to the shortage of reverse reads that 

did not pass the trimming step, even when using a relatively permissive quality cut-off 

(see above). Pooling multiple samples for co-assembly can increase coverage of the 

assembled contigs. However, if co-assembled samples are drawn from sources with 

substantially dissimilar community composition, excessive variation in the to-be-

assembled features the can result in few features reaching consensus and therefore 

failing to assemble. The solution is to identify groups of samples with similar enough 

composition to warrant pooling. In order to achieve this, we compared sample sequence 
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composition using sourmash software, developed by Dr. Titus Brown. It first 

decomposes each dataset into k-mers of a specified size and then performs principal 

coordinate analysis based on pairwise Jaccard dissimilarities (Ondov et al., 2016). We 

chose k77 and k99 for sourmash k-mer parameters because three trial assemblies of 

individual samples using the metaSPAdes assembler (see methods below) had the 

greatest N50 at k77 but the greatest number of long contigs at k99. Results suggested 

pooling our 24 samples into twelve groups of sample pairs (Fig. 3.4). 

 

Assembly 

A number of research groups are actively developing competing assemblers (e.g. 

metaVelvet, megahit, metaSPAdes), each one offering advantages in ease of use, 

speed, low memory usage, or quality of results. For preliminary trials, as shown in later 

sections, we used megahit for its speed. For final assemblies, we used metaSPAdes 

because it is known to produce longer contigs, at the expense of speed and memory 

footprint, with the options listed below. Assembly evaluation was done with 

metaQUAST. 

MetaSPAdes assembler options 

• `-12` and `-s`: use both paired and unpaired reads. 

• `--meta` option changes scoring and penalty schemes. 

• `-k 21,33,55,77,99,127` directs to include more k-mer length to assemble. The 

manual recommends this approach with low coverage datasets. 
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Figure 3.3: Sequence length distribution after filtering using: (A) q10 and 50 minimum 
length, (B) q20 and 50 minimum length, and (C) Q30 
Short read mapping 

Alignment of short reads onto each of the twelve assemblies was done with bowtie2 

in local mode using the very-sensitive threshold. The default end-to-end alignment was 

designed to work with single genomes, not considering SNPs. However, when dealing 
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with metagenomic datasets, local alignment is preferable because it allows multiple 

feature variants to exist on different contigs. 

 

 
 
Figure 3.4: Similarity of samples, based on k-mer decomposed short reads. Specific 
pairs of samples showed consistent similarity at all investigated k-mer values. 
 

Binning 

We used the metaBAT2 software suite, maintained by Lawrence Berkeley National 

Laboratory, which matches tetranucleotide composition and contig co-occurrence 

patterns to create contig bins (Kang et al., 2015). It has been previously shown that 

different microbial genomes have distinct tetranucleotide composition biases (Saeed et 

al., 2012; Mrázek, 2009; Teeling et al., 2004; Pride et al., 2003). MetaBAT has 

calculated empirical intra- and inter-species frequency distances by analyzing 1,414 

unique, completed bacterial genomes from the NCBI database. Contig co-occurrences 

were determined based on coverage of each contig from the previous step. Information 
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on tetranucleotide composition and contig co-occurrences is then combined for each 

contig pair, and putative bins are formed iteratively from the distance matrix. 

 

Checking bins for completeness and contamination 

We used CheckM software (Parks et al., 2015) to assess bin completion and 

contamination. For each putative contig bin, CheckM first uses HMM searches to 

identify a minimum 10 out of the 43 phylogenetically informative markers, as identified 

by Brown et al (Brown et al., 2015), to place a bin into a reference phylogenetic tree, 

which is based on the Lawrence Berkeley database, using pplacer (Matsen et al., 

2010). Next, for each bin checkM uses its placement in the reference tree and the gene 

composition of the 2052 finished IMG reference genomes, which are also part of the 

reference tree, to determine a set of lineage-specific single copy markers expected to 

be contained in the putative MAGs. A suitable set of marker genes for assessing a 

genome includes the distance of the putative MAG relative to the surrounding reference 

genomes and the amount of variation in these genomes. The degree of completion is 

simply the number of single copy markers present in a bin divided by the number 

expected. Contamination results from multiple copies of the same single-copy marker 

present in the same bin. 

 

MAG tree construction 

HMMer 3.1.2b was used to search for 139 bacterial single copy core genes, 

identified by Campbell et al., within each genome (Campbell et al., 2013). To create this 
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collection, Campbell et al. analyzed the occurrence of protein families in 1516 complete 

bacterial genomes distributed around bacterial tree of life, and identified protein families 

that occurred only once in at least 90% of all genomes. Then, MUSCLE package was 

used to align each detected example of all core genes (Edgar, 2004). For each genome, 

the final alignment of all of the detected and aligned single copy core genes of the 

possible 139 were then concatenated together. Gblocks was then used to trim the 

alignment to remove universal gaps (Talavera & Castresana, 2007). This trimmed and 

concatenated alignment served as the final alignment which was used to build the 

phylogenomic tree. Fasttree was then used to construct an approximate-maximum 

likelihood tree, using the JTT model of protein evolution and the CAT model of site-

varying evolution (Price et al., 2010). 

 

Results and Discussion 

We assembled 369 high quality bacterial and archaeal genomes from Lake Baikal, 

comprising four 100 percent complete genomes with zero contamination, 16 additional 

genomes at >99% completion and 0-2.5% contamination, with the rest at >80% 

completion and <10% contamination. Their phylogeny spans 15 phyla, of which four 

phyla have never been described in Baikal. Owing to the high quality of our assemblies 

and the abundance of coverage-based contig co-occurrence information available 

across 24 samples (Fig. 3.1), even our lowest quality MAGs were more than twice as 

complete as those reported previously by Cabello-Yeves et al. (Cabello-Yeves et al., 
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2018), while maintaining low contamination levels, which were not accounted for in the 

aforementioned study. 

 

Sequence quality filtering 

The HiSeq 2500 produced 749,587,488 raw paired-end reads. Although the output 

was within specifications, quality assessment (Fig. 3.2, Table 3.1) indicated that the 

reverse run had substantially lower base quality at the longer end of the reverse reads. 

This is a common indicator of polymerase degradation on the reverse run. However, by 

the time the deviation was discovered, the sequencing center no longer retained the 

DNA samples for possible re-sequencing. The resulting shortage of reverse reads 

dictated the downstream bioinformatic choices. 

We used a permissive quality cutoff at the trimming step to maximize the amount of 

available data. The FastQC sequence quality control software suggests three threshold 

levels at Q10, Q20, and Q30, corresponding to low, medium, and high quality (Fig. 3, 

Table 3.1). However, having high quality inputs is becoming less relevant because 

modern assemblers, including megahit and metaSPAdes used here, integrate base 

quality in their scoring and penalty schemes (Li et al., 2015; Bankevich et al., 2012). At 

the same time, the most stringent cutoff at Q30 resulted in letting through only 13.47% 

of the original reads (Table 3.1). To further test the effects of available data on 

assembly quality, we co-assembled all samples with megahit using data from the four 

different trimming levels shown in Table 3.1. Assembly using the lowest cutoff level 

(Q10) produced the largest overall assembly with longest maximum length contig and 
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an N50 that was comparable to assemblies using Q20 datasets (Table 3.2). Assembly 

using Q30 cutoff data was inferior by all metrics. Lastly, the final deciding factor in using 

Q10 data instead of Q20 was making more short read data available for mapping to the 

assembly. A greater range of possible feature coverage provides increased statistical 

power for detection of enriched or depleted features and associating them with 

environmental conditions. Likewise, a larger range of contig coverage values is 

important for calculating accurate contig co-occurrences in contig binning procedures. 

 
Table 3.1: Raw and trimmed sequence statistics. Quality statistics for four Trimmomatic 
quality cutoff thresholds. The most stringent cutoff at Q30 had the lowest percentage of 
passing reads. 
 

quality 
cutoff minlen raw R1+R2 

passed 
paired 

passed 
orphaned 

% passed 
paired 

% passed 
total 

10 50 749,587,488 432,210,262 315,498,176 57.66 99.75 

20 50 749,587,488 392,794,042 340,852,470 52.4 97.87 

20 91 749,587,488 377,131,618 167,332,423 50.31 72.64 

30 135 749,587,488 68,394,718 32,576,450 9.12 13.47 

 

Minhash k-mer decomposition and diagnostics 

To maximize coverage in our assemblies, we identified samples with similar k-mer 

composition that could be effectively pooled together for co-assembly. The initial step 

requires decomposition of short reads from each sample into k-mers of determined 

length, and the best k-mer length is that which will be used for the co-assemblies. To 

cover the range of possible k-mer lengths, we used sourmash to decompose samples at 
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k-mer 33, 55, 77, and 99, generate a pairwise Jaccard dissimilarity matrix for each k-

mer decomposition, run principal coordinate analysis on each matrix, and construct a 

hierarchical tree of sample dissimilarities (Fig. 3.4). 

 
Table 3.2: Preliminary co-assemblies using all samples with sequences filtered at 
various cutoff schemes. Results indicated that sequences filtered at Q10 and Q20 
produced similar results. We chose to proceed with Q10 to maximize coverage. 
 

trim megahit ver k-mer #contigs total bp max length N50 

Q10 1.1.1 k141 8,637,252 6,034,799,935 268,764 794 

Q10 1.3 k141 8,640,384 6,034,582,651 244,377 793 

Q20 1.1.1 k141 7,950,994 5,588,730,087 198,422 808 

Q20_k91 1.1.1 k91 7,900,803 5,541,374,810 249,687 804 

Q30 1.1.1 k99 8,448,240 4,610,404,357 114,443 607 
 

At all k-mer lengths, the lowest level sample pairs clearly showed the greatest 

pairwise correlation, compared with higher levels, which showed little clustering, as 

indicated by shallow branch lengths (Fig. 3.4). For smaller k-mer values, samples 

showed overall greater pairwise correlation scores. The smaller k-mer value heatmaps 

also revealed additional larger areas of sample similarity correlation. For example, at 

k=31 there there is a detectable large block of 8 samples between samples 384 and 398 

(Fig. 3.4, k=31). However, cautious interpretation is advised for these correlation blocks 

at low k-mer values because shorter k-mers are more likely to give false positives, as is 

mentioned in the sourmash manual. 

Based on these results, we chose to co-assemble in 12 groups of sample pairs, as 

identified by sourmash hierarchical clustering (Fig. 3.4, all k-mers), for two reasons. 
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First, branch lengths indicated a strong pairwise correlation signal. Second, this was a 

robust approach because the lowest level pairs were consistent between all 

investigated k-mer values, in contrast with variable higher level hierarchies. In addition, 

the clustering reflected biological meaning. For first example, although at all k-mer 

lengths, samples 409 and 411 appear as outgroups, and they were the only two Winter 

samples in our entire dataset. These two samples comprised assembly Group 12 (Table 

3.3, Table 3.4). For second examples, samples 384 and 376 (Group 10, Table 3.3, 

Table 3.4) were clustered as pairs at all k-mer values, and they were the deep water 

samples, collected at 300 and 500 meters in the Summer. 

 

Assembly and Coverage 

We used metaSPAdes (Bankevich et al., 2012) to assemble contigs from 12 groups 

of paired samples (Table 3.3) and bowtie2 to map short reads from each sample onto 

each of the 12 assemblies. In this process, we aimed to maximize two metrics: contig 

length and short read coverage. While assembly quality in many respects varied 

between groups, we achieved the goal of N50>1kb for every sample group assembly. 

This was biologically meaningful because average bacterial genes are roughly 1kb in 

length, and N50>1kb meant that most contigs in each of our assemblies were longer 

than an average gene. 

We used the -very-sensitive-local option in bowtie2 (Langmead & Salzberg, 2012), 

which increased accuracy of short read alignment at the cost of computational 

resources and time. It was important to maximize coverage information for the contigs  
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Table 3.3: Comparison of final metaSPAdes assemblies for the twelve grouped sample 
pairs. 
 

Assembly 
Group 

Total length Total length 
(>= 50000 
bp) 

Largest 
contig 

# contigs 
(>= 50000 
bp) 

N50 L50 

1 761,274,632 363,43,909 363,770 390 1,284 118,234 

2 760,276,931 18,014,213 323,679 227 1,298 122,582 

3 846,614,893 19,542,259 330,799 242 1,250 146,058 

4 756,660,347 21,085,508 301,636 262 1,345 116,081 

5 676,115,055 21,625,468 301,770 261 1,398 95,819 

6 725,831,599 32,246,503 462,599 373 1,502 94,013 

7 824,889,360 19,290,219 365,495 241 1,190 148,647 

8 861,341,705 15,669,593 244,004 197 1,101 182,195 

9 740,759,481 12,441,279 237,269 162 1,207 135,339 

10 590,193,777 6,420,465 274,265 81 1,144 117,228 

11 1,199,453,315 13,792,993 679,166 185 1,187 228,282 

12 598,244,224 13,117,212 305,660 161 1,066 124,331 
 
because contig binning partly relies on contig co-occurrences, and those co-

occurrences are calculated based on their differential coverage coverage across 

different samples. Short read mapping showed a variable number of reads from each 

sample recruited by the assemblies. As expected, reads from samples which were part 

of the co-assembled groups in the first place aligned best with those assemblies at 77-

96%. Groups 12 and 10 produced overall smallest assemblies, with the shortest 

maximum contigs, lowest N50, and they recruited the lowest number of reads across 

many samples. This is interesting because group 10 comprised deep water samples 
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collected at 500 and 300 meters, and group 12 was composed of the only two Winter 

samples, collected at 5 and 250 meters. It is important to note that the amplicon survey 

in Chapter One established that deep water samples in Baikal had the highest Pielou 

Evenness. Is it possible that the high evenness effectively diluted the sequencing effort 

for group 10, spreading coverage across many similarly distributed species and 

therefore hindering deep sequencing of any of particular organism or any particular 

gene feature, preventing assembly of long continuous stretches. 

 

Binning and bin refinement into mags 

We used metabat2 (Kang et al., 2015), which processes tetranucleotide composition 

and coverage-based contig co-occurrence information to assign contigs into bins. Each 

group produced between 590 and 611 bins. Next, we used CheckM software (Parks et 

al., 2015) to assess bin completion and contamination (see Methods) and discard bins 

below 80% completion and over 10% contamination. Only about 5% of the original bins 

passed this cutoff, and those that did were renamed MAGs. Each assembly produced 

between 26 and 44 high quality MAGs (Table 3.4), with the notable exception of group 

10, which yielded 13 MAGs, likely due to the relatively lower quality of the group 10 

assembly (Table 3.3). Nonetheless, all MAGs were composed of notably long contigs, 

indicated by large mean N50 values for each group (Table 3.4), which were more than 

an order of magnitude larger than those for the bulk contigs (Table 3.3). The number of 

predicted genes indicated coding density in the 0.9-0.96 range. This was noteworthy  
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Table 3.4: Summary properties of final MAGs (>80% completion, <10% contamination), 
evaluated for each group. The deep water Group 10 had the lowest number of MAGs, 
which were, in turn, on average composed of the shortest contigs, possibly directly 
contributing to having the least mean number of predicted genes per MAG. 
 

Group # 
Bins 

Complet. 
Mean 
(CV) 

Contam. 
Mean 
(CV) 

Genome Size 
Mean (CV) 

Contig N50 
Mean (CV) 

Predicted 
Genes 
Mean (CV) 

1 34 92.8 
(0.05) 

2 
(1) 

2,546,612 
(0.49) 

42,583 
(0.9) 

2,495 
(0.46) 

2 39 90.1 
(0.07) 

1.9 
(1.05) 

2,261,156 
(0.46) 

26,064 
(0.83) 

2,215 
(0.38) 

3 35 91.9 
(0.05) 

2.1 
(0.95) 

2,518,436 
(0.39) 

27,225 
(0.75) 

2,466 
(0.34) 

4 35 88.8 
(0.07) 

1.6 
(0.62) 

1,938,059 
(0.35) 

27,011 
(0.73) 

1,945 
(0.32) 

5 34 90.5 
(0.08) 

1.8 
(1.11) 

2,013,669 
(0.37) 

32,005 
(0.68) 

2,007 
(0.34) 

6 44 91.5 
(0.07) 

1.9 
(1.05) 

2,213,990 
(0.4) 

34,763 
(0.91) 

2,162 
(0.35) 

7 26 88.5 
(0.07) 

2.3 
(0.87) 

2,068,900 
(0.37) 

32,096 
(0.81) 

2,037 
(0.33) 

8 27 87.9 
(0.07) 

1.8 
(0.56) 

1,946,160 
(0.36) 

23,692 
(0.8) 

1,962 
(0.31) 

9 26 88.9 
(0.07) 

1.8 
(0.56) 

1,884,547 
(0.35) 

21,701 
(0.61) 

1,888 
(0.29) 

10 13 85.6 
(0.05) 

2 
(0.5) 

1,562,828 
(0.21) 

17,742 
(0.31) 

1,576 
(0.18) 

11 30 90.5 
(0.07) 

2.8 
(0.71) 

2,739,712 
(0.51) 

22,798 
(0.97) 

2,729 
(0.44) 

12 26 89.6 
(0.07) 

1.6 
(0.62) 

2,353,846 
(0.4) 

25,432 
(0.72) 

2,262 
(0.36) 
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because it reflected the expected bacterial coding density (85-95%) (Land et al., 2015), 

further validating our MAGs as high quality draft genomes. 

Abundance of small genomes in an oligotrophic environment 

Most of the reconstructed genomes reported here are smaller than average 

(Giovannoni et al., 2014); however, the substantial variation in genome sizes could 

reflect large physiological diversity of microbiota in Lake Baikal. While most genomes 

were indeed small (approximately 1.5-2.5 Mb), MAGs from each assembly group, with 

the exception of Group 10, showed a notable second mode at around twice the size of 

their respective group mean (Fig. 3.5). For Groups 1-9 and 12, the larger MAGs 

averaged approximately 4 Mb, and even larger at about 6 Mb for group 11. Such large 

differences between the two genome size categories (CV approx. 0.4 across groups) 

was not explained by variation in completeness (CV approx. 0.06 across groups). The 

MAG sizes were also not correlated with contamination levels in any group. Because 

small genomes are usually associated with streamlined metabolisms, often seen in 

oligotrophic environments (Swan et al., 2013; Lynch, 2006; García-Fernández et al., 

2004; Giovannoni et al., 2005; Tripp et al., 2010), we suggest that the majority of Baikal 

microbiota are specialists, adapted to an environment with low resource diversity. 

However, the large MAGs could indicate presence of microbial generalists. Of particular 

interest is the absence of the large MAG mode in Group 10, which comprised samples 

from Lake Baikal hypolimnion, collected at 500 and 300 m. This group also contains the 

smallest MAGs, potentially indicating that the constant conditions of the hypolimnion of 



 

 140 

the world’s most ancient lake have effectively excluded microbial generalists, while 

selecting for small genomes that specialize on processing the few available resources. 

 

New MAG phylogenetic lineages 

In this report we substantially expand knowledge of phylogenetic diversity of 

sequenced microorganisms from Lake Baikal, based on alignments of 139 

phylogenetically informative core genes, identified by Campbell et al., within each MAG 

(Campbell et al., 2013). Our MAG phylogeny comprises the Archaea domain, which we 

used as root (outgroup) and 15 bacterial phyla. The most represented bacterial phyla 

included Actinobacteria, Verrucomicrobia, Bacteroidetes, and Betaproteobacteria, 

reflecting diversity captured in our 16S V4 amplicon survey (Chapter One). However, 

MAGs revealed 13 lineages of Archaea that have been overlooked by the amplicon 

survey, possibly due to PCR primer amplification biases. We also detected numerous 

deep clades within every phylum, which were missed by Cabello-Yeves et al. (2018), 

including four entire phyla, e.g., Chloroflexi, Gammaproteobacteria, Ignavibacterium, 

and the superphylum group CPR, which do not have any previously reported 

representatives. This was likely a consequence of our study assembling approximately 

ten times the number of MAGs as the previous study. For example, there appear to be 

16 distinct taxa in Betaproteobacteria (Fig. 3.6), of which Cabello-Yeves et al. (2018) 

only detected one, and similar ratios of currently reported to known lineages can be 

made for other phyla. Of the newly characterized lineages, Chloroflexi, Ignavibacteria 

and CPR are all poorly understood and are largely uncultured. 
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We did not detect the Chloroflexi CL-500-11 in the current study. Chloroflexi 

members have been found in diverse environments, including oxygenated (its type 

genus) and anoxic (Overmann, 2001) hot springs. However, of particular interest is the 

CL500-11 clade (class Anaerolineae), where numerous studies cast it as a key 

constituent of oxygenated hypolimnia of diverse lakes on global scale (Mehrshad et al., 

2018), including Crater Lake (Urbach et al., 2001, 2007), Lake Biwa (Okazaki et al., 

2013) and the Laurentian Great Lakes (Denef et al., 2015; Fujimoto et al., 2016). 

However, our results indicate CL500-11 levels below detection limits of the current 

study. This warrants discussion because we are reporting the most comprehensive 

metagenomic survey of Lake Baikal microbiota to date. These results are also 

consistent with our amplicon survey in Chapter One, where three Chloroflexi 16S V4 

amplicon OTUs were detected across 54 investigated samples in Lake Baikal, but two 

OTUs were from the Chloroflexi class and the remaining OTU was from the 

Roseiflexales order, and all appeared to prefer shallower and warmer environments in 

the lake. Furthermore, we could not find evidence of CL500-11 in Lake Baikal in any 

other study. Although a meta-study by He et al. (2017) included a figure indicating a 

small (<2%) presence of CL500-11 in Baikal at 0 m and 20 m, it does not include a 

reference in the main text or the Supplement. The only to-date published Lake Baikal 

study to include samples from exclusively 0 and 20 m is that of Cabello-Yeves et al., 

and the authors are missing the entire Chloroflexi phylum altogether (Fig. 3.6). Thus, we 

must emphasize a conspicuous absence of CL500-11 in Lake Baikal, including summer 

epilimnion, summer hypolimnion and winter under-ice samples, collected from 0 and 
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250 meters. This is intriguing, considering the high abundance of the CL500-11 

Chloroflexi clade in oxygenated hypolimnia of other lakes, documented by numerous 

other independent studies. We speculate that sources of nitrogen could differ between 

Baikal and other lakes. Indeed, genomic reconstruction of CL500-11 by Denef et al. 

(2015) showed that the clade preferentially relies on catabolism on high molecular 

weight, nitrogen-rich compounds. However, in contrast to the established paradigm, 

where lakes are generally considered P-limited, Baikal is N and P co-limited, at least in 

the summer season (O’Donnell et al., 2017). In such system, N-rich compounds may be 

scarce and thus not favor a specialist, such as CL500-11. It is our hope that future field 

and laboratory studies will help to further quantify the mechanism for CL500-11 

environmental preferences. 

 

 
 
Figure 3.5: MAG genome size distribution was skewed to the left with a smaller second 
mode at larger values in every group, except Group 10. 
 

We also report diverse lineages of Actinobacteria and Verrucomicrobia MAGs, which 

agrees with the high abundance of both phyla in Baikal in our amplicon study (Chapter 
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One). Actinobacteria are some of the most abundant aquatic microbial taxa (Newton et 

al., 2011). Recent genomic studies reveal that members of the most typical freshwater 

clade acI have particularly streamlined genomes, often unable to synthesize certain 

vitamins, amino acids, and reduced sulphur compounds (Neuenschwander et al., 2018). 

 

 

 

Figure 3.6: Phylogenetic tree of our MAGs, combined with those reported by Cabello-
Yeves et al. (2018), indicated by the longer labels at tree tips. Phylogeny key starts with 
the Archaea domain and proceeds clockwise. 
 

These deficiencies are not only enabled but can be evolutionarily favored where certain 

“leaky” common goods unavoidably become available in the shared environment. What 

results are increased dependencies on co-occurring organisms. The evolutionary 
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mechanism for creating these scenarios is known as the Black Queen hypothesis 

(Morris et al., 2012). Previous genomic analyses of Verrucomicrobia revealed their 

potential role as polysaccharide degraders in freshwater systems (Martinez-Garcia et 

al., 2012), but with significant differences between functional profiles, possibly reflecting 

differences in processing autochthonous (internally derived) and terrestrial carbon (He 

et al., 2017). The functional potential of novel taxa in Baikal could be investigated in 

comparative studies with publicly available genomes. 

 

Conclusions and future directions 

Whether taxonomically diverse microorganisms pursue different metabolic strategies in 

response to environmental conditions, such as temperature, light, and nutrient levels, 

has been a subject of many large scale analyses and discussion (Louca et al., 2016; 

Martiny et al., 2015). Reconstructed high quality MAGs from Lake Baikal (369 in total) 

provide a perspective on the phylogeny, metabolism, and distribution of 15 Phyla, 

including 4 previously uncharacterized phyla in the world’s most ancient freshwater 

system, unraveling remarkable genomic diversity of pelagic freshwater MAGs in the 

summer and winter seasons. Although the high level phylogenetic makeup resembles 

many freshwater environments, at least one taxon hailed as hallmark (CL500-11) is 

missing from the hypolimnion. We further report the small size of most constructed 

MAGs, including those with high completion and low contamination rates, and highlight 

the variability and bimodality of MAG size distributions in all environments, except 

arguably the most aseasonal and ancient - the Lake Baikal hypolimnion. These results 



 

 145 

will lead to further investigations in comparative phylogenetics, functional genomics, and 

ecology. 

Future directions in phylogenetics will certainly include curation by collapsing 

shallow MAG clades, especially if those clades were assembled from different sample 

groups e.g. the 10 clades shown in Fig. 3.7. The curated MAGs will need to be 

compared with more publicly available sequenced genomes from multiple 

environments, such as the Baltic Sea (Hugerth et al., 2015) and other environments 

(Parks et al., 2017), for more comprehensive inference on their worldwide distribution 

and possible specificity to Lake Baikal. 

Future functional analyses will focus on genomic content of Lake Baikal MAGs. One 

goal would be detection of various signatures of cold adaptation, including GC content, 

protein isoelectric points, and enrichment of functional genes and regulatory elements 

previously associated with success in cold environments (Rodrigues et al., 2009; 

Bakermans et al., 2009). An additional approach would determine intra-population 

variability of genomic features within each MAG. Because MAGs are population 

averages, alignment of short reads will identify polymorphism sites. The resulting SNP 

analyses from the different sampled sites in Lake Baikal could associate variability in 

genomic features with differences in environmental conditions. 
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Figure 3.7: MAGs within shallow clades that come from different assembly groups are 
candidates for merging. 
 

Future ecological modeling will use single-copy markers, such as recA, to determine 

coverage-based abundances of MAGs across sampled sites in Baikal. Then, the 

knowledge of MAGs genomic content can be combined with measured environmental 

conditions across sampled sites to model MAG abundances with genes and 

environment as predictors. Such ecological models have been used as tools for 

calculating the so-called fourth corner matrix, which identifies genes-by-environment 

interactions that significantly impact MAG abundance (Brown et al., 2014). We believe 

this approach promises significant advances, especially in the framework of traits and 

abiotic factors. By quantifying the relationships between traits and different 

environments, it answers the question how microbes, in an ancient and diverse place 

like Lake Baikal, use genes to process the environment to increase their fitness. 
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etermining a set of “fitness relevant genes” gets us one step closer to understanding the 

context-dependent basis for distribution of life on earth. 
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