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ABSTRACT

STATISTICAL INFERENCE WITH HIGH-DIMENSIONAL DEPENDENT DATA
By
Shawn M. Santo

High-dimensional time dependent data appear in practice when a large number of variables
are repeatedly measured for a relatively small number of experimental units. The number
of repeated measurements can range from two to hundreds depending on the application.
Advances in technology have made the process of gathering and storing data such as these
relatively low-cost and efficient. Demand to analyze such complex data arises in genetics,
microbiology, neuroscience, finance, and meteorology. In this dissertation, we first intro-
duce and investigate a novel solution to a classical problem that involves high-dimensional
time dependent data. In addition, we propose a new approach to analyze high-dimensional
dependent genomics data.

First, we consider detecting and identifying change points among covariance matrices
of high-dimensional longitudinal data and high-dimensional functional data. The proposed
methods are applicable under general temporospatial dependence. A new test statistic is
introduced for change point detection, and its asymptotic distribution is established under
two different asymptotic settings. If a change point is detected, an estimate for the lo-
cation is provided. We investigate the rate of convergence for the change point estimator
and study how it is impacted by dimensionality and temporospatial dependence in each
asymptotic framework. Binary segmentation is applied to estimate the locations of possibly
multiple change points, and the corresponding estimator is shown to be consistent under
mild conditions for each asymptotic setting. Simulation studies demonstrate the empirical
size and power of the proposed test and accuracy of the change point estimator. We apply
our procedures on a time-course microarray data set and a task-based fMRI data set.

In the second part of this dissertation we consider a hierarchical high-dimensional de-



pendent model in the context of genomics. Our model analyzes RNA sequencing data to
identify polymorphisms with allele-specific expression that are correlated with phenotypic
variation. Through simulation, we demonstrate that our model can consistently select sig-
nificant predictors among a large number of possible predictors. We apply our model to an

RNA sequencing and phenotypic data set derived from a sounder of swine.
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CHAPTER 1

INTRODUCTION

1.1 Technology and the field of statistics

Technology is one of the chief drivers of growth and innovation in society, and its impact
on the field of statistics cannot be understated. For much of the twentieth century, statisti-
cians concentrated on solving problems in a classical setting, where the number of subjects,
observations, or experimental units, exceeded the number of variables or features measured.
If p is the number of variables or features, and n is the number of experimental units, then
this classical setting is the so-called ‘small p, large n’ setting. The demand to develop robust
theoretical procedures under the ‘small p, large n’ setting was due in large part to the data
and resources available at the time. Computers were not efficient, data recording was not
automated, and the scope of technology was limited; thus, there was little motivation to
consider situations in which p far exceeded n. In fact, even as late as 1981, it was considered
poor practice to have a study in which n/p < 5 (Huber 1981).

The past thirty years have been an era of accelerated technological progress in many
fields in society. Biology, finance, economics, computer science, meteorology, and others, all
have the available resources to gather massive amounts of information. The need to filter,
understand, and analyze this information continues to grow. Data sets in numerous domain
specific fields now often have more variables recorded than experimental units. This ‘large
p, small n’ setting is what is referred to as high-dimensional data. As technology and data
recording processes improve, statisticians will play an integral role in developing theoretically

robust and computationally efficient statistical methods to analyze such complex data.



1.2 Low to high-dimensional data

The research in high-dimensional data has seen a shift over the past two decades from es-
timation to more complex forms of inference. Estimation is often an initial step in inference,
but it does not allow us to quantify uncertainty. Much of the focus with regards to estimation
in a high-dimensional framework has been geared towards parameter estimation in general-
ized linear models and graphical models (Biithlmann and van de Geer 2011). Donoho and
Johnstone (1994) pioneered parameter estimation in a linear model when p = n. To obtain
sparse estimation, Tibshirani (1996) proposed an ¢1-norm penalization procedure known
as least absolute shrinkage and selection operator (Lasso). Under a sparsity assumption
and other regularization conditions, Lasso simultaneously performs parameter estimation
and variable selection. Tibshirani’s seminal paper resulted in an extensive study of Lasso’s
theoretical properties and paved a way for valuable /1-norm and fo-norm penalization ex-
tensions. For example, Zou and Hastie (2005) introduced the elastic net to address some
short-comings with regards to the number of covariates selected via Lasso. Tibshirani et
al. (2005) and Yuan and Lin (2006) proposed fused Lasso and group Lasso, respectively. In
2006, Zou (2006) introduced adaptive Lasso. Fu and Knight (2000) and Zhao and Yu (2006)
investigated the asymptotic behavior of Lasso-type estimates and proved under certain con-
ditions that when the true parameter is 0, there exists non-zero probability mass at 0 for
the estimator’s limiting distribution. From a computation standpoint, Osborne et al. (2000)
studied the primal and dual problem of Lasso, and as a result, developed a fast and efficient
algorithm to obtain Lasso estimates. There is a long list of literature on regularization es-
timation for high-dimensional parameters. Since the main focus of this dissertation is not
estimation, we do not enumerate all of them. Some important works include: Fan and Li
(2001), Candes and Tao (2007), and Zhang (2010).

Inference as it relates to hypothesis testing or confidence intervals allows researchers to
make scientific discoveries and improve decision making. However, statistical inference of

these forms in high-dimensional data are not simple extensions of the classical inference



procedures, where the number of sample subjects exceeds the number of variables measured.

As was noted by Johnstone and Titterington (2009),

It should not, of course, be imagined that the ‘large p’ scenarios are mere al-
ternative cases to be explored in the same spirit as their ‘small p’ forebears. A
better analogy would lie in the distinction between linear and monlinear models
and methods — the unbounded variety and complexity of departures from linear-
ity is a metaphor (and in some cases a literal model) for the scope of phenomena

that can arise as the number of parameters grows without limit.

In terms of inference for high-dimensional mean vectors, Dempster (1958) first considered
a two-sample test in a p > n setting. Bai and Saranadasa (1996), Chen and Qin (2010),
and Cai and Xia (2014) proposed test statistics to extend the novel work of Dempster in
1958. Fujikoshi et al. (2010) provides an overview and details on testing high-dimensional
mean vectors. The work on testing high-dimensional covariance matrices can be traced
back to Ledoit and Wolf (2002), where they assumed p/n converges to some constant, and
proved under a normality assumption that their test statistics are normal. Methodology
building off Ledoit and Wolf include: Chen et al. (2010) and Cai and Ma (2013). Schott
(2007), Srivastava and Yanagihara (2010), Li and Chen (2012), and Cai et al. (2013) all
investigated the problem of testing the equality of high-dimensional covariance matrices for
two or multiple groups. More recently, Ahmad (2017) and Zhang et al. (2018) generalized
the work of Li and Chen (2012).

Some testing and confidence interval procedures with regards to Lasso estimates and
generalized linear models were established by Bach (2008), Meinshausen and Biithlmann
(2010), and Zhang and Zhang (2013).

To elucidate one of the challenges brought about in a high-dimensional framework, con-
sider a classical test with regards to covariance matrices under the ‘small p, large n’ setting.

Muirhead (2005) details a few of these tests, along with some tests for mean vectors. Suppose



we are interested in testing

Hy:Y¥1=---=%p Versus
Hi : Not all are equal, (1.1)
where we assume X;; (1 = 1,...,n; t = 1,...,T) is a p-dimensional random vector from a

multivariate normal distribution with mean p; and covariance ;. Let, x;; be a realization
of X+ from the tth population. Assume that the T' populations are independent and the
random sample of n vectors from each of the T populations are independent. The likelihood

ratio test can be used to develop an a-level test for (1.1). The likelihood function is given
by

T 1 n

Ly, Bp) = [ [ (2m) P2 |my /2 eXP{ ~3 Z(%‘t — ) 2 (i — ut)}-

t=1 i=1
For observed data, L(u¢,>t) is a function of py and ¥y for all ¢. To obtain the likelihood
criterion we maximize L(p¢, X¢) under the restricted parameter space of the null hypothesis
and also under the unrestricted parameter space. Let Q@ = {(u,2¢) : t = 1,...,T} and
Qo = {(w,2¢) = X1 = -+ = X} denote the unrestricted and restricted parameter spaces,
respectively. Thus, the likelihood criterion is defined as

supoy L, ¥t)
supo L(fit, Xt) -

Let N = Tn, and let A = Zthl Ay, where Ay = Y71 (2 — &) (wyy — ft)T. For the
parameter space {2, the maximum likelihood estimators are fi; o = 7y and it,Q = A¢/n, for
¢ and Y, respectively. For the parameter space (), the maximum likelihood estimators
are /lt’QO = T4 and f]QO = A/N, for puy and ¥4, respectively. Therefore, substituting these

values back into \,, and taking the logarithm,

T
Ap = —2log(An) = Nlog (|XA390]> — anog (’ijt,Q‘)
t=1

Hence, an a-level test rejects Hy of (1.1) whenever A, < Ay. Under an asymptotic setting

when n diverges and p is fixed, the null distribution of A;, can be derived. Furthermore, as



n — oo, A¢/(n — 1) — X4 in probability. Thus, the standard asymptotic results hold for
likelihood ratios, A, — x? in distribution with degrees of freedom (T'— 1)p(p + 1)/2, under
the ‘small p, large n’ setting. However, breakdowns occur if we consider a ‘large p, small n’
framework.

Under a ‘large p, small n’ setting, A, can no longer be computed and the asymptotic
results are not easily extended. If p > n, then we can no longer compute log(|290 ) due to Ay
and A being singular. Furthermore, the asymptotic distribution under the null hypothesis
is not well defined for when p diverges. In a high-dimensional framework with p > n, the
convergence in probability of A;/(n — 1) — 3 no longer holds as demonstrated through
spectral analysis by Bai and Yin (1993), Johnstone (2001), and others. As a result, testing
(1.1) is not possible via a likelihood ratio test. This is just one example in which breakdowns
in the classical methods occur due to an increase in data dimension. This phenomena is
known as the “curse of dimensionality”.

An increase in data dimension can produce extra noise, computation challenges, and a
failure in many of the existing classical statistical procedures. However, in certain situations
an increase in dimensionality may be a blessing (Donoho 2000). For further challenges
associated with high-dimensional data we encourage readers to see Fan and Li (2006) and

Fan et al. (2014a).

1.3 Independent to dependent data

The likelihood ratio test for (1.1) as described in Section 1.2 further breaks down if the
T groups are not independent. In this dissertation, measurements of a sample that are
repeatedly recorded will be referred to as longitudinal data when the number of repeated
measurements is small. If the number of repeated measurements is large, or dense, we will
refer to it as functional data. Measurements taken over time allow researchers to understand
the evolution of the sample subjects, detect and identify changes in certain variables across

time, and study sequences of events. In longitudinal or functional data sets, temporal depen-



dence exists among measurements from the same subject, and adds a layer of complexity to
the theoretical and computational analysis. Methodology developed under a T-independent
sample framework is not applicable for a T-dependent sample. For example, Chen and
Qin (2010) and Li and Chen (2012) considered an independent two-sample high-dimensional
test for mean vectors and covariance matrices, respectively. However, their methods are
not applicable in a temporal dependent setting. There are two types of dependence in the
data: temporal and spatial. If these dependencies are ignored, then inference procedures are
invalid and misleading. Currently, there is no existing work accounting for the aforemen-
tioned dependencies in high-dimensional covariance testing and change point detection and
identification. The asymptotic analysis is more complicated when both dependencies are
considered. Generalizing to an asymptotic framework for high-dimensional functional data

further increases complexity.

1.4 Change point detection and identification

Given (1.1) for time dependent data, two questions naturally arise. First: Can we detect
changes among T dependent covariance matrices? Second: Can we identify the time points
for where those changes occur? These questions have profound effects for time dependent
data. Their answers can provide critical information to individuals in the fields of finance,
genetics, neuroscience, climatology, and more.

Change point detection is a classical problem in time series analysis. Numerous supervised
and unsupervised machine learning algorithms are used in various change point detection
applications. Aminikhanghahi and Cook (2016) detail a few multi-class supervised learning
algorithms such as Gaussian mixture models, hidden Markov models, and decision trees.
Their work also highlights likelihood ratios, probabilistic models, graphs, and clustering as
further approaches to the change point detection problem. One of the most common tech-
niques in change point detection is the cumulative sum (CUSUM) method by Page (1954).

Measurements in a process are cumulatively summed according to a weighted procedure. A



change point is identified once the cumulative sum quantity exceeds a threshold value. Cher-
noff and Zacks (1964) laid the groundwork for change point detection with regards to the
mean of normal random variables. Accordingly, a series of methodologies were developed in
independent univariate and multivariate settings. Some of these works include: Kander and
Zacks (1966), Yao and Davis (1986), Sen and Srivastava (1973), and Srivastava and Worsley
(1986). Chapter 2 in both Csérgé and Horvath (1997) and Brodsky and Darkhovsky (1993)
detail nonparametric change point detection methods based on Wilcoxon-type statistics, U-
type statistics, and M-estimators. Johnson and Bagshaw (1974), Brown et al. (1975), and
Horvéth and Kokoszka (1997) introduced methods to address the change point problem for
dependent data. For further details on classical change point detection and identification
procedures, we refer readers to Basseville and Nikiforov (1993) and Brodsky (2017).

In terms of a classical procedure for testing (1.1) with 7' dependent groups, there is
none. A multivariate procedure to test (1.1) was proposed by Aue et al. (2009). Assume
Xt (t=1,...,T) are p-dimensional temporal dependent random vectors from a multivariate
distribution with mean g and covariance Y. Thus, z¢ is an observation at the tth time

point. To test (1.1), Aue et al. (2009) considered the quantity, S;. (k= 1,...,T) such that

k T
1 T k T
- E vech(z.xz: __E vech(x. 3
St \/_{] 1 ec (x]x]) 2 ec (a:]xj)},

where for any p X p symmetric matrix M, vech(M) represents the stacked columns of the
lower triangular region of M in the form of a p(p — 1)/2 vector. The quantity S was
motivated by the fact that under Hy of (1.1), E{Vech(:vjx?)} = E{Vech(xixiT)} for all
i,j € {1,...,T}. Based on Sy, they introduced a test statistic Qp = 71 Z%:l S,{Ti}lsk,
where Y7 is an estimator such that |Sp — Sp|p = op(1) as T diverges, and for any matrix
A, |Alg = supgo|Az|/|z[. They derived the test statistic’s asymptotic distribution under
the null hypothesis with 7" > p.

However, Aue et al. (2009)’s method fails in a high-dimensional framework since S is

not invertible if p > T'. In addition, Aue et al. did not consider a setting in which n > 1,



and thus, their methodology does not permit multiple-subject inference. In Section 1.2 we
highlighted the fact that recent research has addressed the high-dimensional challenges for
testing (1.1) but not dependence. In this section we detailed a procedure that incorporates
dependence but not a ‘large p, small n’ framework. Therefore, a gap exists. How can we

test (1.1) for high-dimensional time dependent data?

1.5 High-dimensional time dependent data

High-dimensional longitudinal data appear in practice when a large number of variables,
p, are repeatedly measured for a relatively small number of experimental units, n. The
number of repeated measurements, 7', can range from two to hundreds depending on the
application. Throughout this dissertation, longitudinal data will refer to settings when 7' is
small. High-dimensional functional data will refer to settings in which T is large or dense.
For details on functional data analysis we refer readers to Ramsay and Silverman (2005).

Consider an experiment where patients have their gene expressions measured throughout
the course of a treatment regimen. Doctors and clinicians may be interested in understand-
ing how these gene expressions are regulated over time. In studies such as this, the number
of gene expressions, p, measured is anywhere from a few hundred to a few thousand, and
the number of patients, n, along with the number of repeated measurements, 7', is small.
We will refer to this as high-dimensional longitudinal data. As another example, consider a
functional magnetic resonance imaging (fMRI) study where patients have their brain activ-
ity measured while performing various tasks. Thousands of blood-oxygen-level dependent
(BOLD) responses are recorded, hundreds of times during the duration of a scan, for voxels
corresponding to regions of interest in the patient’s brain. For this single patient, radiologists
may be interested in identifying and understanding significant spatial and temporal changes.

The BOLD data from an fMRI experiment are considered high-dimensional functional data.



1.6 Dissertation outline

In Chapters 2 and 3 of this dissertation we develop and evaluate a procedure to test
(1.1) for high-dimensional longitudinal and high-dimensional functional data, respectively.
To visualize our objective in a high-dimensional longitudinal setting, consider Figure 1.1.
Each sub-plot represents the covariance matrix at the respective time point. From Figure
1.1 it is clear that the covariance is homogeneous between time points one through three;
there is a different covariance structure at ¢t = 4; for time points five and six the covariance

structure is homogeneous again.

Figure 1.1: Population covariance heat maps at six time points. Change points exist at
time ¢ = 3 and at time t = 4.

Our statistical test will first detect the presence of any change points among the T" covariance
matrices. If we can conclude that change points exist, we further identify the time points
at which changes occur. The procedures we propose are pioneering with regards to (1.1) for
high-dimensional longitudinal and high-dimensional functional data. As is discussed in detail

in Chapters 2 and 3, some research has provided a solution to test (1.1) in a high-dimensional



framework, but no method has been developed for high-dimensional time dependent data.
In addition to the theoretical challenges, we also address the natural computation challenges
that arise with such massive time dependent data. We ensure our method is practical and
accessible to the end users in biology, neuroscience, and other fields via an R package.

In Chapter 4 we consider a different type of high-dimensional dependent data, where
we propose a novel hierarchical model for genomics applications. Our interest is to link a
phenotypic response with single nucleotide polymorphisms (SNPs) that have allele-specific
expression (ASE). To account for dependence among the latent genotype and ASE status
combination, we consider a hidden Markov model and incorporate regularized regression to
address the high-dimensionality. Our problem can be depicted with the graphical model
in Figure 1.2 for the ith individual with five SNPs. Let X;;, G;;, 0;; be the RNA read
counts, genotype and ASE status, and allele-specific expression ratio, respectively for the ith
individual at the {th SNP. Let Y; be an observed phenotypic response. Given the relationships
between X, GG, and  we first aim to estimate the latent variables G;; and d;; given X and an
assumed Markov structure for GG. For an observed phenotypic response, Y, we use regularized

regression to select the significant ds.

)

GGG
G G Gy G ()

Figure 1.2: A small graphical model for the problem considered in Chapter 4. Grey circles
represent observed values. White circles represent latent variables.

In, Chapter 5, we discuss possible theoretical and computational extensions to the results

of Chapters 2 — 4.
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All proofs to lemmas and theorems are provided in the sections titled “Technical details”

of the respective chapter.
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CHAPTER 2

HOMOGENEITY TESTS OF COVARIANCE MATRICES WITH
HIGH-DIMENSIONAL LONGITUDINAL DATA

2.1 Introduction

In a typical time-course microarray data set, thousands of gene expression values are
measured repeatedly from the same subject at different stages in a developmental process (Tai
and Speed, 2006). As a motivating example, Taylor et al. (2007) conducted a longitudinal
study on 69 patients infected with hepatitis C virus. Their gene expression values were
measured once before treatment and five times during the treatment regimen of pegylated
alpha interferon and ribavirin. One purpose of the study was to identify which genes were
regulated by treatment. The repeated measurements enable researchers to understand gene
regulation over time. An important task in genomic studies is to identify gene sets with
significant temporal changes (Storey et al., 2005). Much evidence has shown that gene
interaction and co-regulation play a critical role in the etiology of various diseases (Shedden
and Taylor, 2005). One application of our methods is to identify gene sets with significant
changes in their covariance matrices, because the covariance matrix or its inverse can be
used for quantifying interaction and co-regulation among genes (Danaher et al., 2015).

Assume that Yy = (Y, - - - ,Yitp)T is a p-dimensional random vector with mean j; and
covariance ;. In the aforementioned applications, Yj; (i = 1,...,n;t =1,...,T) represents
gene expressions for p genes in a gene set measured from the ¢th individual at the tth
developmental stage, where n is the sample size and T is the total number of finite stages.
The number of genes, p, in a given gene set ranges from a hundred to a few thousand, as
illustrated by the histogram in Figure 2.2 in Section 2.6, but n and 7" are small in the study.

Thus, p can be much larger than n and T'. We focus on testing the homogeneity of covariance

12



matrices:

Hy:¥X1=---=%p versus Hj:Yp#2% (2.1)

for some 1 < k # | < T. The alternative in (2.1) can be written as a change point type

alternative:

where 1 < k1 < --- < kg < T are unknown locations of change points. This alternative is
of interest in practice because it specifies the locations of changes. For example, researchers
are often interested in understanding dynamic gene regulation. By identifying the change
points, we can infer the change pattern of gene regulation, which is important for developing
diagnostic and preventive tools for some diseases (Koh et al., 2014).

Testing the homogeneity of covariance matrices is a classical problem in multivariate
analysis. Classical methods for testing (2.1) include the likelihood ratio test (Muirhead,
2005) and Box’s M test (Box, 1949). Some resampling methods have also been proposed
by Zhang and Boos (1992) and Zhu et al. (2002). However, these methods are not valid for
the aforementioned applications for the following reasons. First, these methods require n to
be much larger than p. Thus, they are not applicable under the large p, small n paradigm.
Second, these methods are only valid for independent samples without temporal dependence,
but the independence assumption is not valid for high-dimensional longitudinal data because
the repeated measurements obtained from the same individual are temporally dependent.

There is some existing research on testing (2.1) in the large p, small n scenario for
independent samples. Li and Chen (2012) considered testing the equality of two covariance
matrices for two independent samples. Schott (2007) and Srivastava & Yanagihara (2010)
proposed test statistics for (2.1) based on estimators of the summation of the weighted pair-
wise Frobenius norm distances between any two covariance matrices. Zheng et al. (2015)
and Yang and Pan (2017) applied random matrix theory to test the equality of two large-

dimensional covariance matrices.
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Some methods have also been developed in neuroscience literature under the large p and
large T" setup with T' > p, which is different from our large p, small n and T" setup. For exam-
ple, Barnett & Onnela (2016) proposed a sieve bootstrap covariance change point detection
method that requires removing both boundaries of a time series with length greater than
p to avoid ill-conditioned covariance matrices. Laumann et al. (2017) discussed a method
for detecting changes in covariances by assessing the stability of multivariate kurtosis us-
ing a simulation approach. Their methods also require T' > p to ensure the existence of
an inverse of a sample covariance matrix. In addition to the aforementioned multivariate
detection procedures, a marginal pair-wise testing procedure was developed by Zalesky et
al. (2014). Their approach relies on a sliding window to detect changes in correlation coef-
ficients between a pair of coordinates. The p-value for each pair is obtained by resampling
residuals after fitting vector autoregressive models. It is then applied to test the homogene-
ity of covariance matrices using multiple testing. Despite the above advances, no existing
multivariate method can be applied directly to test (2.1) for temporal dependent data under
the large p, small n and T setup.

This chapter proposes a new method for testing the equality of covariance matrices with
high-dimensional longitudinal data under the large p, small n and 7" scenario. The proposed
method considers both spatial and temporal dependence. Spatial dependence refers to the
dependence among different components of Yj;, and temporal dependence refers to the de-
pendence between Yj; and Yjg for any two time points t # s. The asymptotic distribution
of the proposed test statistic is derived under mild conditions on dependence without any
explicit requirement on the relationships between p, n and T

We also propose a method for estimating the location of change points k1, ..., k; among
covariance matrices. There exists some work on identifying change points in high-dimensional
means, but the literature for high-dimensional covariances is very small. Aue et al. (2009)
laid groundwork by considering a p-dimensional multivariate, possibly high-dimensional,

time series setup where 7" diverges, n = 1 and p < T". Their test statistic involves the inverse
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of a p X p sample covariance matrix, which is singular if p > 7. Thus, their method is
not applicable to high-dimensional longitudinal data. In the case with finite p and n but
diverging 7', one major concern is that the change point estimator is not consistent (Hinkley,
1970) and only the ratios k; /T (i = 1,...,q) are consistent. When p is finite but n — oo, it
has been shown that change points can be estimated consistently. However, it is not clear
how the data dimension affects the rate of convergence. We study the rate of convergence
of our proposed change point estimator and find that it depends on the data dimension,
sample size, noise level and signal strength. Consistency of the change point estimator is
possible even in the high-dimensional case. Furthermore, we propose a binary segmentation
procedure for identifying the locations of multiple change points, whose consistency is also
established.

Our work is related to, but different from, that of Li and Chen (2012), who considered
a test for the equality of two covariance matrices with two independent samples. First, we
consider a general homogeneity test of covariance matrices with more than two populations,
while Li and Chen only considered a two-sample case. Second, Li and Chen considered the
test for two independent samples, but our proposal can accommodate both temporal and
spatial dependence. Moreover, our method is designed to test for the existence of change
points among high-dimensional covariance matrices for longitudinal data. Therefore, the
test procedure considered in this chapter is different from that in Li and Chen (2012).

This chapter makes the following contributions. From a methodology perspective, the
proposed test procedure provides a novel solution for change point detection problems in
the large p, small n and T scenario. The test statistic combines the strength of maximal
and Frobenius norms, and is powerful against the alternative. Second, we propose a method
for estimating locations of change points among high-dimensional covariance matrices. The
proposed change point detection and identification procedures are widely applicable without
any sparsity assumption. We establish the asymptotic distribution of a test statistic for data

with general temporal and spatial dependence. The identification procedure for multiple
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change points is shown to be consistent. Our results reveal the impact of data dimension,
sample size, and signal-to-noise ratio on the rate of convergence of the change point estimator.
The proposed methods formally address two challenges that are unsolved in the existing
covariance change point literature: the large p, small n and T issue, and spatial and temporal
dependence.

The remaining sections of this chapter are organized as follows. Section 2.2 details our
basic settings with regards to covariance testing. In Section 2.3 we introduce our testing pro-
cedure and test statistics along with their asymptotic distributions. Section 2.4 introduces
an estimator for change point identification. Moreover, binary segmentation is proposed to
identify multiple change points. Sections 2.5 and 2.6 demonstrate the finite sample perfor-
mance of our procedures via simulation and analysis of a time-course microarray data set,

respectively. All proofs of theorems and necessary lemmas are available in Section 2.7.

2.2 Basic setting

Let Yy = (Y, --- ,Y;tp)T be the observed p-dimensional random vector for the ith
individual at time point t = 1,...,7T, where T" > 2, and ¢ = 1,...,n. Assume that Y}
follows the model

Yit = pt + €it, (2.3)

where pi4 is a p-dimensional unknown mean vector and ;¢ = (€541, - - - 75itp)T is a multivariate
normally distributed random error vector with mean zero and covariance var(g;;) = X¢. A
generalization to the non-Gaussian setup is given in Section 2.5. In addition, it is assumed
that g;; = I'1Z; for a p x m matrix I't, where m > pT', and Z; is an m-dimensional standard
multivariate normally distributed random vector so that cov(e;s, €jt) = FsFtT =Cq ifi =
j€{1,...,n} and is 0 if 7 # j. The random errors {g;};" ; are independent, but {5“};:1
depend on each other. Of interest is to test whether any change points among covariances
occur at some time points t € {1,...,7 — 1}. We test the hypothesis Hy versus H; specified

in (2.1) and (2.2). If Hy is rejected, we further estimate the locations of change points.
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2.3 Homogeneity tests of covariance matrices

Ateacht € {1,...,T — 1}, we define a measure D; = w™1(¢) 21:1 Zg:t_ﬂ tr{(¥s; —
X 52)2}, where w(t) = t(T" —t). Measure Dy characterizes the differences among the covari-
ances before t and after ¢. Clearly, Dy =0 for all ¢t € {1,...,7 — 1} under Hy, and Dy # 0
for any ¢ under Hy. Therefore, maxj<;<7_1 Dy = 0 under Hy, and maxj<z<p_1 D¢ > 0
under Hj. Thus, Dy is useful for distinguishing the null and alternative hypotheses.

Measure Dy is different from measure S p = Zsl 1 ZSQ s1+1 tr{(¥s; — 252)2} used
in Schott (2007), who applied S1 7 in constructing a homogeneity test specified in (2.1) for
independent samples. In fact, for any ¢ € {1,...,T =1}, Dt = S 7 — (51t +S¢41,1), where
51, and Sy 1 p quantify the differences among covariances only before time ¢ and only after
time t, respectively. These are not useful for measuring the differences among covariances
before and after time ¢. Measure Dy removes both S ¢ and S; 1 7 from Sy 7.

To construct an unbiased estimator of Dy, we need an unbiased estimator of tr(Xs; Xss).
We make use of U-statistic type estimators because they avoid bias that is not ignorable in
a high- dimensional setup (Bai & Saranadasa, 1996; Chen & Qin, 2010). Otherwise, bias
correction could be a challenge and require conditions on the data dimension and sample size
that limit the scope of applications. Let i denote summation over mutually different in-
dices of sample subjects. For example, ii,j,k means summation over {(4,j,k) € {1,...,n} :

i # 7,7 # k,k#i}. For any s1,s9 € {1,...,T}, define Uy (1/P?) Z;J,QJ(YT Vi )2

152:0 — is1 " Js2

as an unbiased estimator of tr(EleSQ) + usTl Ysohsy + ,u;r2251u52 + (usTlu52) where P,]f =

n!/(n — k)!. To remove the nuisance terms ,LLSTlESQ,usl and (usTlu52)2, we define Ug5y1 =
(1/P3) ZZ ok ZSlY]SQYJSQY;CS1 as an unbiased estimator of u;f1232,u81 + (;LSTluS2)2 and,

similarly, Us,s, 1 is an unbiased estimator of /1’52231 [isg + (MsTl M52)2. To remove the nui-

sance term (uglu32)2, we define Ug = (1/P Zm, k1Y, y,L Vs, as an unbiased

1522 zsl 352 ksq

estimator of (usTl ,u32)2. A computation efficient formulation of U, s189,1 and U, s189,2 1S given
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in the Appendix. Finally, we define an unbiased estimator for tr(X 512 52) as

U81$2 = U51$2,0 - U8152,1 - U8251,1 + U8152,2' (24)

The estimator Uy, s, is a generalization of the estimator for the trace of the covariance given

by Chen et al. (2010) and Li and Chen (2012). For ¢t = 1,...,T — 1, an unbiased estimator

of Dy is
t T
. 1
Pt =30 D D WUspsy +Usysy = Usysy = Usgsy): (2:5)
=1 s9=t+1

To study the asymptotic variance of Dyt fort =1,...,T — 1, define

Vor = Z > Dl e (O, O )

51,52,
hl h2 k lE{l 2}

and
k T
Vlt = Z Z |u ‘tr{( ESQ)CS’U,hk(Eh]_ — Ehz)csuhk},
51:52, u,ke{1,2}
hi, h2
* t T .
where 2211,222, = 1 1 232 41 Zhlzl Zh2=t+1 . If no temporal dependence exists, then

Csyhy = 0 for any sy # hy, and Vo = 221,52 Zu,ve{l,Q} tr2(g, X5, ) Where 2:1’52 =
7; =1 Zg:t +1- Up to a scale factor, this V{ is the part of the variance of Dy for the case
with independent samples under Hy .
The asymptotic setting considered in this chapter is p(n) — oo as n — oo, where p is
considered to be a function of n. We do not require a specific relationship between p and n.

Instead, for any ¢t € {1,...,7 — 1}, we have two regularity conditions. For any matrix A,

denote A®2 = AAT. Then:
Condition 1. tr{(F3T2081h1Fh2>®2} = O(VOt) Jor any s1,s9,hy,ho € {1’ s 7T};

Condition 2. tr[{(Fsl + FSQ)T(Esl — Yso)(Lsy — FSQ)}@’Q} = o(nVyy) for sy € {1,...,t}
and sop € {t+1,...,T}.

Condition 1 generalizes Condition 2 imposed by Li and Chen (2012) to a T-sample test

with temporal dependence. If there is no temporal dependence, Condition 1 can be simplified
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t0 tr(XsgXs; XpyBsy) = o(Vor). In general, the left-hand side of the equality in Condition
1 is bounded by {tr(2h22h12h22h1)tr(252251252251)}1/2, which is of order O(p) if all
the eigenvalues of ¥; are bounded. If the temporal dependence is not overwhelming so
that Vi < p5 for any 0 > 1, then Condition 1 holds. To appreciate this point, consider a
null hypothesis case with Cgy = (1 — rg,)% for s,t € {1,...,T}. Here 1 — rg p, measures
the temporal correlation. If rg 5, is small for all s, ¢, then the temporal dependence among
{Yiehy is strong. Tet rn = %5 o pono Suwsteqroy (D g gy e T
rstyn — 0 for all s,t, then Vp; < rntrQ(EQ) = r,p® provided all the eigenvalues of ¥ are
bounded. If the temporal dependence is not too strong so that 1/p = o(ry,), then Condition
1 holds as p — oo. Intuitively, Condition 1 implies that spatial and temporal dependence
cannot be too strong.

Condition 2 is automatically true under H( because its left-hand side equals zero. Hence,
it is not needed under Hy. If there is no temporal dependence, it can be shown that the left-
hand side of Condition 2 is tr{(Egl — 222)2}, whose order is not larger than V7;. Therefore,
Condition 2 is not needed for data without temporal dependence. This condition implies
that the alternatives should not be too far away from the null hypothesis. Otherwise, the
alternatives are easy to detect because the test statistics would diverge to infinity.

Theorem 1 states the mean and variance of Dnt- The proof is given in Section 2.7.

Theorem 1. The expectation of Dnt 18 E(ﬁnt) = D¢. Under Condition 1, the leading order
variance of Dyy is o2, = w2(t) (4V0t/n2 +8V1t/n).

A

Based on Theorem 1, we observe that E(Dy;) = Dy = 0 under Hy. Under alternative H
in (2.2), it is clear that £ (Dnt) > 0 for all ¢ under Hy. Therefore, D, is able to distinguish
the null and alternative hypotheses in (2.1) and (2.2).

If T'= 2 and no temporal dependence exists, V; and Vq; are, respectively, simplified
to Vor = tr?(S3) + 2tr%(S15g) + tr%(53) and Vi = 355, St [{ ey (B — Tsy) )],
which are the same as those obtained by Li and Chen (2012). For a general case with

temporal dependence, V(1 = trQ(Z%) +2tr2 (X1 X9) +tr2(23) —4{tr?(21C91) +tr2(29C19) } +
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2{tr2(01201T2) + tI'Q(OlQClQ)}. The last four terms in V{1, due to the temporal dependence,
are not included in Li and Chen’s test. However, in general, these four terms are not
ignorable. Therefore, Li and Chen’s procedure is not suitable for temporal dependent data
even in the two-sample case.

We now study the asymptotic distribution of Dpt. The following theorem establishes the

asymptotic normality of Dy The proof is given in Section 2.7.

Theorem 2. Under Conditions 1-2, agtl (Dpt — Dy) — N(0,1) in distribution as n — oo,

2

= 18 defined in Theorem 1.

where o

We do not require explicit conditions on p and n in Theorem 2. The asymptotic normality
holds provided Conditions 1-2 hold. In particular, we only need Condition 1 under the null
hypothesis. Thus, our test is valid under Condition 1 without Condition 2, which is needed
only for studying the power of the test. The normality assumption in model (2.3) is not
essential and can be relaxed to a multivariate model as considered in Chen et al. (2010) and
Li and Chen (2012). See Subsection 2.3.1 for the generalization to the non-Gaussian case.

Under Hy, Dy =0 forallt € {1,...,T—1}. Theorem 2 indicates that O';&Of)nt converges
to N(0,1) in distribution where U’rQLt,O = 4V /{nw(t)}? is the variance of D,; under Hy. An
asymptotic a-level rejection region is Ry = {U;&Oﬁnt > zq }, where 2 is the upper a quantile
of the standard normal distribution. For each ¢ € {1,...,T — 1}, one can use R; to test
for the hypothesis in (2.1). Provided that one test based on [)nt rejects the null hypothesis,
one may suspect that change points could exist among covariance matrices. Accordingly, ,
in Dnt, could be considered as a tuning parameter, and it is hard to decide which ¢ should
be used for testing in practice. To make the proposed method free of any tuning parameter
and adaptive to unknown change points, we propose the following statistic for testing the
hypothesis in (2.1):

A

1
M, = 1<Iirl<aj}“(—1 Unt,ODnt’ (2.6)

where 6%25’0 = 4V /{nw(t)}2. The estimator Vj; can be constructed by replacing
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an unbiased estimator of tr(Cy

uSv,hkhl’ uhk

tr(CSuhkO;l;,hl) in Vo with Uy C'ST hl). Define
Ususvhghy = Ususwhphy,0 = Usysyhphyl = Usysyhphy, 1 T Usysy hyhy,20 Where Ug g nng 0

(1/P2?) Z#J 1 stuYJSszh Y]hl is an unbiased estimator of tr(C’SuhkC’T hl)—l—uSvC’Suhkuhl +
13y Csyhylhy, +usuusUuhkuhl7 Usyso,hyhyl = (1/53) e Y, e Yis i Yo, is an unbiased
estimator of “;FUCSuhk“hl + ,uSTuusqu Ly and an unbiased estimator of MSuusv“Ek“hl is

Uy = (1/P3) ZZJ af Vi wu jSngh thl' A computation efficient formulation of the

usvﬁkhl»?

estimators U

susv.hyhy,g 4 = 1,2, 1s similar to that for Us, sy ¢ defined in (2.4).

Under Hy and Condition 1, similar to the derivation in Lemma 4 in Section 2.7, the

leading order of the cov(ﬁnt, ﬁnq) is Qn,tq, where

Qntqg = Z Z Z Z Vio(s1, 82, h1, he) /{w(t)w(q)}

s1=1 hy=1s9=t+1 hg=q+1
and Vio(s1, 52, b1, hg) = (4/n?) Zu,v,k,le{LQ}(_1)|U7v‘+|kil|tr2(08uhkC;l;hl)' Then the co-
variance between agql’of)nt and o, q{of)nq is Qnts /\/m , which is the correlation
between [)mg and an.

Let V,,p be a correlation matrix whose (¢, s) component is Qp, ¢/ \/W fort,s €
{1,...,T—1}. Assume that V,,p converges to Vp as n — oo. The following theorem provides

the asymptotic distribution of M,,.

Theorem 3. Under Condition 1, we have that under Hy, My—W in distribution asn — oo,
where W = maxj<i<7_1 Z¢ and Z = (21, . . ., ZT_l)T 1s a multivariate normally distributed

random vector with mean 0 and covariance Vp.

According to Theorem 3, an a-level test for (2.1) rejects the null hypothesis if M, > W,
where Wy, is the a-quantile of W such that pr(W > Wy) = a. Let Z, be a N(0,V,,p) dis-
tributed random vector with the (¢, s) component of VnD estimated by Qn,ts/ (thth,SS),

where

Qnts =~y Z 5 Z Z S (e

81 lhl 1s89= t+1h2 s+1luwkle{l,2}
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and U

SuSv,

hihy is defined just below (2.6). Simulations suggest that the plug-in estimates
of the correlation matrix Vn p are reliable when the sample size is approximate 40 or above.
See Section 2.7 for a detailed comparison between Vn p and V,,p. The quantile W, can be
approximated by W, o obtained from the multivariate normal distribution by finding the
quantile wy o = Wpa, .- -, Wn,a)T satisfying pr(Z, < wpn,a) = 1 — «. The quantile wy, o
can be computed using the R package mvtnorm (Genz et al., 2018), and no simulation is
needed to find quantile W, 4.

The lower bound for power based on M, is

( _ It Oy ﬂ), (2.7)

pr(My, > W,) > max pr(&%lof?m >Wy) = max @
’ Ont Ont

1<t<T—-1 1<t<T—-1

where ®(+) is the standard normal cumulative distribution function. If D;/cy: dominates
W, the right-hand side of (2.7) is the maximum power of the test using R; constructed on

a single [)nt, so the test based on M, is more powerful than any test based on a single Dnt-

2.3.1 Non-Gaussian random errors

To relax the Gaussian assumption, we assume the following data generation model for ¢; =
(5}1, o ,5iTT)T and ¢; = I'Z; where I' = (FT, .. ,F%)T is a Tp X m matrix with m > Tp
such that ¥ = I'TT and FSF;F = Cg4. We assume 71, ..., Zy are independent and identically
distributed m-dimensional random vectors such that F(Z1) = 0 and var(Zy) = I,,. Write
Z1 = (211, Zlm)T. We assume that each Z7; has a uniformly bounded 8th moment. Also,
we assume there exists a finite constant such that for [ = 1,... ,m, E(Zfl) =3+ A and
for any integers I, > 0 with >7_ 1, =8, E(ZE1 e Zi%q) = E(Zgl> e E(Zi%q), whenever
i1, ...,1q are distinct indices.

Under Condition 1 and the above setup, it can be shown that the leading order of the
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variance of Dy is

Var(D”t) Z Z |u v l|tr (Csuhk:csvhl)
51,8
hl h2 k 16{1 2}

T
|u k| tr{<281 - ZSQ)CSuhk(Eh]_ - EhQ)Osuhk}
) sTs, u,ke{l, 2}
hy;ho

T T
+ Atr{FSu(Esl — ESZ)FSU @) Fhk<2hl — Eh2)rhk}].

Under the null hypothesis, var(Dy;) = 4Vp¢/{n?w?(t)}. The variance Vj; can be estimated
using the formula given below equation (2.6). The results in Theorems 2 and 3 can be

established in a similar way.

2.3.2 Power-enhanced test for sparse alternatives

The proposed test statistic, My, is powerful for alternatives with small absolute differences
in many components of ;. However, it might not be very powerful for sparse alternatives
with the differences among >+ only residing in a few components. To enhance the power of
the proposed test for sparse alternatives, we include an additional term with M,,, as an idea
in Fan et al. (2015).

Let Y;lv = Yisyv /m be the sample mean of the vth component measured at time
s1, and define 651’1“, = > i1 Yisgu — Yslu)(Yz‘slv — Ysy0)/(n — 1) as the sample covariance
between components u,v € {1,...,p} at time s;. Define ZA?mg,uv = 221:1 ZZ;:tJrl(&SLuv —
(3'52,u11)2 as an estimator of Dpyyy = 221:1 ZZ;:tJrl(oslﬂw — 0'52’1“})2. The estimator

Dntﬂu} is a consistent estimator of Dy 4. Let Cé:;?t be the (u,v) component of Cj and

Kt

a}(;tw) is the (u,v) component of ¥, .- To define the variance of Dnt’uv, define the following
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notation:

Fpanghs = 7ty (O ot + Chay Copi)
roy l<z {Chigk skh)tJFCi(zts,)CCéZZi}
+ask o3 ki o + Cha Cogh
e Sk ’(l {Chigz Slht) +C’(lt$1) CS(;L’Z)}
ngzihths { Sk s© )+C hs Skhs}{oslt 81h2+0§1h205?fz)}
+{Cszzt «§:U1+Oszvt sgh t}{c;us 5;“2 +C§§’“§C§?,§2 b

The leading order term of the variance of ZA?mg’uU is

2 _ k—l|+|s—t| g, —1 ppluv) —2 ~(uv)
Unt,uv_ Z Z | I+l |{ SkShths+n Gskslhths}‘ (2.8)

81 52, kil
hi.ho ste{1,2}

Under Hy, the first term in (2.8) is 0. Namely,

Z Z )le=ll+ls=tl (w)
Skslhths

51,525
h1.ho s te{l 2}

The leading term in the variance of [)nt,uv under H is

k 1[+|s—t] oy (uv) 2

51,52kl
hi:ho ste{1,2}

(uv)

Let G(W) be a sample plug-in estimate of Gskslhth ;

~2 .
spsphihs and o, .0 be the corresponding

sample estimate of o2 o- Then, the power-enhanced test statistic is

nt,uv

P . R
M’;‘; = 1<Itrl<aj)1(71 {Unt,ODnt + )\TZ, Z [(Dnt’uv > 5n’pant,uvo)}’
T u<v

where 0y, p and Ay, are tuning parameters. The tuning parameters are chosen such that the
second part of M} equals zero with probability tending to one under Hp, and it converges

to a large number under sparse alternatives.
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We now discuss the choices for tuning parameters for the above power-enhanced test
statistic. Let R = (p;;) be the correlation matrix corresponding to the common covariance
Y1 under Hy. Define Nj(a) = card{i : |p;;| > (logp)~ 1=} and A(r) = {i : pij| >

r for some j # i}. We assume the following condition used in Cai et al. (2013).

Condition 3. Suppose that there exists a o and a set m C {1,...,p} whose size is o(p) such
that maxq<j<p je¢x Nj(a) = o(p7) for all v > 0. In addition, there exists ar < 1 and a

sequence of numbers Ap = o(p) so that card{A(r)} < Ay ;.

_ - A 2 2 _ A
Define s, s, = maxy<y<y<p(Fsq,uv—0s9,u0)"/Onsy sg,uv0 Where Tnsy sgun) = var{(Gs uv—

552,uv)2} under Hy. Similar to the proof of Theorem 1 in Cai et al. (2013), under Condition

3 and Hy, we can show that

pr{ls;sy —4log(p) +loglog(p) <t} — exp{—exp(—t/2)/+/(87)}. (2.9)
Define Ly = ﬁnt v /Ot aw0 and Lp = maxj<y<y<p Luy. Denote the second term in M

as M* nl = = Zu<v ( nt,uv > 5n7p0nt qu) Because Z s1= 1232 =t+1 0n5132,uv0/0nt,u00 <

K, uniformly for all u, v for a constant K > 0, and uniform consistency of 6y 40 t0 Ont uv0,

we have, under H,

=0)> r( =pr( max D o <4 )
r(M 1 Z P =b <1<u<v<p nt,uv/ nt,uv0 = On,p
(G100 = Fsguw)® 0 0
{ Z Z $1,uv sguv)” Insysgund . }
1< P > On,p
- 31 1 sg=t+1 Onsqysg,uv nt,uv0
(0sy,uv = Osguv) Onsy s9,uv0
o g,y Cstenl s 3 dmameg, )
lsusvsp lss1<t, Ons1s9,uv0 s1=1s9=t+1 Ont,uv0
1+1<59<T 1=1s9=
5 A 2
r max max o — & o <§ K}
p{ I<u<ov<p 1<s1<t, ( §1,uv 82auv> / ns1s9,uvl = n,p/
1+1<59<T
t T
1= > pr<l3182 > 5n,p/K)-
s1=1s9=t+1

Applying the result in (2.9), if 6y p/K — 4log(p) + loglog(p) — oo, then pr(M}; = 0) — 1.

We suggest choose d;,, at the order of log(n)log(p) and A, to be a constant based on our
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numerical experiments. In summary, the tuning parameters o, and A\, ensure that, under

the null hypothesis, M, converges to zero with probability one.

2.4 Change point identification

If Hy is rejected, then there exist change points among the covariances ;. We first

consider an alternative with one change point:
H:T: 21:”.221'(11#2]{314-1:...:21—‘7 (210)

where kq is the true change point, whose location is estimated by

A

ki = ar max Dpt. 2.11
1 glgthfl nt ( )

Define the weight function

T—k/(T—1t), 1<t<k,
e | @=PIT=D
k/t, k+1<t<T—1.

For any fixed value k € {1,...,T — 1}, the function r(¢; k) achieves its maximum value at
t = k. Let B, = maxq<j<r_1 max {vVor, /(nVi)} and Ay, = tr{(X; — Z7)?}. The next
theorem establishes the rate of convergence of the change point estimator 1%1 obtained by

(2.11) under the alternative H7'.

Theorem 4. Under the alternative HY in (2.10), E(Dyt) = Dy = r(t: k1) A and Dy attains

its mazimum at t = ky. Moreover, ki — ky = Op{Bn/(nAp)}.

Since r(t; k1) achieves its maximum at ¢ = kq, the first part of Theorem 4 indicates that
t = k1 maximizes E(Dy;) as a function of ¢. This is the rationale for estimating k1 through
(2.11). When the data dimension is fixed, k1 —k = Op(1/4/n). The effect of data dimension
is reflected both in 3,, and A,,. Here 3, can be considered as noise and A,, can be viewed as

signal. If the signal level is larger than the noise level, the rate of convergence of kj is faster

than Op(1/4y/n). On the other hand, if 3, is not smaller than nAy, k1 is not consistent.
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Next, we consider the alternative, Hy, with multiple change points k1 < --- < kg, as
specified in (2.2). Under Hj, we have shown in Theorem 4 that the maximum of D; is

attained at change point k.

Theorem 5. Under Hy in (2.2), the mazimum value of Dy is attained at one of the change

points among k1 < -+ < kgq.

If we estimate the multiple change points by repeatedly applying estimation methods in
(2.11) to the population version Dy to all sub-sequences with non-zero Dy, Theorem 5 ensures
that we find all the true change points. This property is important for applying the binary
segmentation method to identify multiple change points as demonstrated by Venkatraman
(1992) in an unpublished technical report.

To describe the proposed binary segmentation method, we first define some notation.
Let [I¢] represent the quantities computed based on the data within the time interval Iy,
a subset of [1,T]. For example, My[t1,t2] is the test statistic defined in (2.6) calculated
based on Y[t1,to], the data collected between time ¢t = t; and ¢t = to for t; < t9. Namely,
Mty ta] = maxy <i<t, 67;170[’517 to] Ditlt1, o).

The binary segmentation method can be summarized as follows. Let «;, be a number
specified in Theorem 6. In the first step, compute My, [1, T]. If My, [1,T] < Wy, [1,T], where
Wap[1,T] is the cut-off quantile estimated based on Y[1,T], we accept the null hypothesis
and stop. Otherwise, we identify the change point, say 1%1, using (2.11). Next, we compute
M,, for both subsequences Y1, /%1] and Y[l%l + 1,T]. For each subsequence, we repeat the
first step until no change points can be identified or the number of repeated measurements
in the subsequence is less than two.

Let I; be any interval of the form [k +1, kg] with f+1 < g where f € {0,...,¢—1} and
g €1{2,...,q+1} that contains at least one change point k; for j € {1,...,q}, where kg = 0
and kg1 =T Denote mSNR = miny, max e, agkl&OUt]Dks [I;] as the smallest maximum

signal-to-noise ratio among all segmentations I;.
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Theorem 6. Assume oy, — 0 and mSNR diverges so that Wy,, = o(mSNR). For all Iy,
if Bnllt] = o(nDy[lt]) for some change points ks € Iy, we have, limp—00 pr(q = ¢; l%j =

kjvj=1,...,q) =1

The first assumption, with W,,, = o(mSNR), is a very mild condition, which ensures
the consistency of the proposed test at each step of the binary segmentation. The second
assumption By [lt] = o(nDy[I¢]) is needed to ensure the consistency of the change point
estimators. Theorem 6 implies that the proposed binary segmentation procedure consistently

estimates the number and locations of the change points.

2.5 Simulation studies

In this section, we present multiple simulation studies to demonstrate the finite sample
performance of the proposed method. The data were generated from the model

L

Yie=pm+ Y Agpmigony (=1,...nmt=1,..T),
h=0

where A; 5, is a p X p matrix, uz = 0 and 7;; are p-dimensional multivariate normally dis-
tributed random vectors with mean 0 and covariance I. Let ¢ > s. This implies that
cov(Yj, Yis) = Zﬁ:t—s AtﬁAZh—(t—s) ift —s < L and cov(Yj,Ys) =0if t —s > L, and
allows dependence among components within the vector Y;; and dependence among {Y;t}z;l
at different time points. In the simulation studies, we set n = 40,50 and 60, p = 500, 750
and 1000, T,= 5 and 8, and L = 3. The simulation results reported in Tables 2.1 and
2.2 were based on 500 replications. The results in Table 2.3 were based on 100 simulation
replications.

Let k1 = [T/2] be the largest integer no greater than 7/2. For t € {1,...,k1}, we set
App = AW for h € {0,...,L}. Fort € {ky +1,...,T} and h € {0,...,L}, A;j, = AP,
Two simulation settings were used for the generation of the A matrices. In setting (I),
we set AL = {O.6|Z'_j|](|i —j| < p/5)}, and AR = {(0.6 + Hi=ilri —j| < p/5)}.

Ifo =0, A and A®?) are the same and the covariances of Y+ are the same for all ¢.

28



Hence, the null hypothesis, Hy, is true. If § # 0, the null hypothesis is false and ki is
the true change point. In setting (II), we set A1) = {(li —jl+ 1)_2[(\2' —j| < p/5)}
and A = {(li—j]+0+ 1)_21(|i — j| < p/5)}. Similar to setting (I), a value of § = 0
corresponds to the null hypothesis being true. If § # 0, kq is the underlying true change
point for the covariance matrices.

Table 2.1 demonstrates the empirical size and power of the proposed test for the homo-
geneity of covariance matrices under setting (I) at nominal level 0.05. We observe that the
size of the proposed test is reasonably close to the nominal level. The power increases as n
increases, as ¢ increases, and as T  increases. Table 2.1 also provides the empirical size and
power of the proposed test under simulation setting (II). The phenomena in setting (II) are

very similar to those in setting (I).

Table 2.1: Empirical size and power of the proposed test, percentages of simulation
replications that reject the null hypothesis under settings (I) and (II)

p p
Setting o n o500 750 1000 500 750 1000
(1) 40 46 48 64 48 48 44

O(size) 50 4.6 52 54 44 58 46
60 6.0 44 42 54 42 36

40 214 27.6 248 356 34.6 342

0.05 50 37.0 36.0 36.0 498 488 52.0
60 456 492 462 59.6 65.6 65.0

40 99.6 100 99.8 100 100 100

0.10 50 100 100 100 100 100 100
60 100 100 100 100 100 100

(I1) 40 44 54 50 44 40 48
O(size) 50 5.6 46 48 60 52 56
60 48 46 42 36 56 5.0

40 334 358 382 50.2 520 516

0.10 50 44.2 486 47.0 684 70.6 74.0
60 654 636 604 87.0 89.6 88.0

40 99.8 99.8 99.6 100 100 100

020 50 99.8 100 100 100 100 100
60 100 100 100 100 100 100

The percentages of correct identification are summarized in Table 2.2 when the null
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hypothesis is false under settings (I) and (II). The percentages of correct identification are
the percentages of simulation replications that estimate the location of the change point
correctly among all those that reject the null hypothesis. When T" = 5, the true change
point is k1 = 2, and when T = 8, the true change point is k&; = 4. In both settings, for

almost all the cases, the percentages increase as n and ¢ increase.

Table 2.2: Percentages of correct change point identification among all rejected hypotheses
under settings (I) and (II)

T =5 T=38
p p
Setting  d n 500 750 1000 500 750 1000
(1) 40 41.12 3796 40.65 30.18 29.88 37.58

0.05 50 51.35 4581 43.33 39.52 39.34 41.54
60 52.63 53.28 52.17 49.33 49.70 55.08

40 93.17 96.60 95.19 93.79 93.80 96.40
0.10 50 98.00 98.60 98.20 98.40 97.20 99.00
60 99.20 99.80 99.40 99.80 98.60 99.00

(1I1) 40 49.10 45.51 55.50 43.12 47.15 47.10
0.10 50 65.00 61.51 55.98 53.80 61.19 58.65
60 7278 69.72 64.57 67.59 72.99 75.23

40 90.58 90.98 89.16 95.80 96.00 95.60
0.20 50 93.37 92.60 93.20 98.60 98.20 99.40
60 97.00 96.20 96.40 99.80 99.80 99.80

To demonstrate the performance of the proposed binary segmentation procedure for
identifying multiple change points, we generated data using simulation setup (II) with two
change points, k1 and k9. When T"' = 5, k1 = 2 and k9 = 4. When T' = 8, k; = 4 and
ko =06. Fort € {kj_1+1,...,k;}, weset A; p, = AU for h € {0,...,L} and j = 1,2,3 with
ko = 0 and kg = T. Here, A() and A2 were set to be the same as those in setting (1),
and we set AB) = A1) The values of § were chosen to be 0.15 and 0.25. The average true
positives and the average true negatives are summarized in Table 2.3. The true positives are
the correctly-identified change points, and the true negatives are the correctly-identified time
points where no covariance change exists. For 7' = 5, the maximum number of true positives
and true negatives for each is 2. For T = 8, the maximum number of true positives and true

negatives is 2 and 5, respectively. The results in Table 2.3 show that the proposed binary
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segmentation procedure performs well as the sample size, n, increases and as the signal, 9,
increases.

Table 2.3: Average true positives and average true negatives for identifying multiple
change points using the proposed binary segmentation method. Standard errors are
included after each number. For 7' = 5, the maximum number of true positives and true
negatives for each is 2. For 7" = 8, the maximum number of true positives and true
negatives is 2 and 5, respectively

0=0.15 0=0.25

T D n ATP SE ATN SE ATP SE ATN SE
40 1.10 036 190 030 1.81 039 192 0.27

500 50 1.36 048 1.87 037 194 024 198 0.14

60 1.57 0.50 192 0.27 200 0.00 1.92 0.28

40 1.11 037 182 041 1.76 043 194 0.24

) 750 50 1.38 0.49 192 0.27 2.00 0.00 1.96 0.24
60 1.47 050 190 0.30 2.00 0.00 1.98 0.14

40 1.15 036 1.90 030 1.87 034 1.95 0.22

1000 50 1.22 0.42 196 020 196 020 196 0.20

60 1.54 0.50 196 0.20 200 0.00 198 0.14

40 140 049 484 040 191 029 490 0.30

500 50 1.62 049 485 036 197 0.17 4.92 0.27

60 1.78 042 489 0.32 200 0.00 495 0.22

40 1.52 050 4.82 039 190 0.30 4.85 0.36

8 750 50 1.67 047 483 038 197 0.17 494 0.24
60 1.81 0.40 490 0.34 2.00 0.00 4.90 0.30

40 1.43 050 482 044 1.88 033 492 0.27

1000 50 1.68 0.47 480 040 199 0.10 496 0.25

60 1.84 037 492 027 200 000 494 0.24

2.5.1 Power-enhanced test statistic

We conducted a numerical simulation to illustrate the performance of the power-enhanced
test statistic under sparse alternatives. The data were generated according to setting (I),
except for a sparse alternative design. Specifically, let k1 = [T/2] be the largest integer
no greater than 7/2. For t € {1,...,k1}, we set A; ) = AW for h € {0,...,L}. For
te{kr+1,...,T} weset Ay, = A@) | where A;Ll) = {0.6|i*j|l(|i —jl <p/5)}. Under the

null hypothesis, Agf) was set equal to Agll). Under the sparse alternative hypothesis, Ag)

(1)

was the same as A, except the components within {|i — j| < 2,7 < p/25} were set to 1.4.
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Table 2.4: Empirical size and power, percentages of simulation replications that reject the
null hypothesis for the test statistic M;, and the power-enhanced test statistic M;,

My, M,
n P Null Alternative Null Alternative
40 500 5.2 35.4 6.0 67.6
40 750 3.2 34.6 3.6 62.8
40 1,000 4.6 36.4 4.6 62.4
50 500 5.2 47.8 5.6 91.6
50 750 6.4 47.2 6.6 94.2
50 1,000 3.4 52.6 3.4 97.0
60 500 3.8 56.8 4.4 98.8
60 750 4.8 65.8 5.6 99.2
60 1,000 4.2 66.4 4.2 99.8
80 500 4.0 81.2 4.0 100
80 750 3.2 86.4 3.8 100
80 1,000 4.6 84.8 4.6 100

Table 2.4 reports the empirical size and power of the test based on M, and M. In the
simulation, the tuning parameter &, j; was set to 0.5log(n)log(p), and A\, was set to 0.15.
We observe that both tests can control the type I error, and the power-enhanced test does
not inflate the type I error. More importantly, the power-enhanced test statistic has greater

power under the sparse alternative setting.

2.5.2 Non-Gaussian random errors

To illustrate the numerical performance of the proposed method under the non-Gaussian
setup, we generated data from the linear process model Yj;; = us + Zﬁ:o At,hm’(t—h) for
i=1,...,nandt =1,...,T, where A; , is a p X p matrix, uz = 0 and 7;; are p-dimensional
random vectors with each element independently generated from a standardized Gamma
distribution with shape parameter 4 and scale parameter 0.5.

Let k1 = [T/2] be the largest integer no greater than 7/2. For t € {1,...,k1}, we set
A = AW = {0617911(ji — j| < p/5)}. Fort € {ky +1,...,T}, we set Ay = A?) =
{(0.6+5)|i_j|l(|i—j| <p/5)}. If§=0, AW and A®@) are the same. Hence, the covariances,

Y, are the same for all ¢ € {1,..., 7T} and Hy is true. If § # 0, the null hypothesis is not
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true and kj is the underlying true covariance change point.
In the simulation studies, we set n = 40,50 and 60, with p = 500, 750 and 1000. The
number of repeated measurements, T', was set to be 5 and 8 and set L = 3. The simulation

results reported in Tables 2.5 and 2.6 were based on 500 simulation replications.

Table 2.5: Empirical size and power of the proposed test, percentages of simulation
replications that reject the null hypothesis for data generated from a standardized Gamma
distribution under the nominal level 5%

T=5 T=8

p p
o n 500 750 1000 500 750 1000

40 36 40 44 40 3.6 4.6

O(size) 50 4.2 52 44 52 48 48
60 46 38 46 50 50 56

40 234 214 282 352 38.6 312

0.05 50 382 36.2 334 478 504 478
60 46.4 46.8 46.2 64.6 67.2 664

40 99.8 99.8 100 100 100 100

0.10 50 100 100 100 100 100 100
60 100 100 100 100 100 100

Table 2.5 reports the empirical size and power of the proposed test under the null and
alternative hypotheses. We observe that Type I error is well controlled with the empirical
sizes close to the nominal level of 5%. The results demonstrate the robustness of the pro-
posed method for non-Gaussian distributed random vectors. When the differences between
covariance matrices increase, the power of the proposed test increases accordingly. Table
2.6 reports the performance of the proposed change point identification procedure under
the non-Gaussian distributed random vectors. We observe that the percentages of correct
identification with non-Gaussian random vectors are similar to those under the Gaussian

setup.

2.5.3 Accuracy of correlation matrix estimator of V,,p

This section aims to evaluate the numerical performance of the correlation matrix estimator,

A

VD, proposed immediately following Theorem 3. To measure the difference between Vn D
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Table 2.6: Percentages of correct change point identification among all rejected hypotheses

for data generated from a standardized Gamma distribution

n
40
50
60
40
50
60

500
32.48
20.26
49.14
93.79
98.80
99.60

T =5
p
750
42.99
52.49
95.56
96.79
99.40
99.20

1000
35.46
46.71
57.58
95.80
99.00
99.80

500
26.70
40.17
48.30
95.20
98.60
99.60

T=28
p
750
30.05
42.06
50.00
94.60
97.00
99.20

1000
30.13
46.86
52.41
95.00
97.20
99.20

and V,,p, we used the average component-wise quadratic distance, namely, (T'— 1)_2||‘7n D—
VnD”%?- Figure 2.1 illustrates the average of (T'—1)~2||V,,p — VoD H% based on 500 simulation
replications conducted in setting (I) under the null hypothesis with 7" = 5. We observe that
the correlation matrix estimator, Vn D, is reliable when n = 40. The performance further

improves as the sample size increases.
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Figure 2.1: The average component-wise quadratic distance between Vn p and V,,p. The

top solid line is for n = 40; the middle dashed line is for n = 50; the bottom dotted line is
for n = 60. The scale of the y-axis is 107°.
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2.5.4 Comparison with a pair-wise based method

In this section, we compare our proposed method with a pair-wise based method that is
similar to the method proposed by Zalesky et al. (2014). In the pair-wise based method,
we first obtain a p-value for testing the homogeneity of each component of the covariance
matrix for every pair of coordinates (u,v) with u < v and u,v € {1,...,p}, and then apply
the Bonferroni correction to all the p-values to control the family-wise error rate.

In the first step, for each pair (u,v) with u < v and u,v € {1,...,p}, we test the following

hypothesis
HO,uv P0luw = 0 = 0T s
Versus
Hl,uv “O0luv = " = Ok # Oki4+1luv = " = Okguw # Okg+luv = " = 0T uv-

To test Hyuy, we apply the statistic Dnt,uv defined in Section 4, and define ZA)Mw =
an:jl Dnt’w. Under Hg ), the asymptotic distribution of Dnﬂw is > 72 /\le27 where
X% are independent chi-square distributions with degree of freedom 1, and \;’s are the eigen-
values of the kernel of IA)Ww. In practice, one can approximate the weighted chi-square
distribution using a scaled chi-square distribution. Thus, we approximate the distribution
of ﬁn,uv by bx2, where b = 02, /(2uu) and v = 242, /o2,,. Here piyy and o2, are the mean

and variance of Dy, yy under Hy ), respectively. The variance of Dy, 4 under H 4y is

T-1T-1 q

555555 55 S SD DD SRS EEE Copotighs:

t
t=1 q=1 s1=1 hy=1 so=t+1hg=q+1 k|,
site{1,2}

where GS:;; hihs is defined in Section 4. The mean of ﬁn’uv under the null H 4, is
- XY Y Y e {Chasy Crasy + CramCrasg -
t=1 s1=1s9=t+1q,be{1,2}
We then approximate the distribution of Dy, 4, by i)xg where b = 62,/(2fuw) and © =

2412, /52,. The p-value for the (u,v) pair is computed as pyy = pr(lA)Xl% > Dn,uv)-
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In the second step, we apply the Bonferroni correction to control the family-wise error
rate. Define ppi, = ming<y pyy as the minimum of all the pair-wise p-values. If pyi, <
2a/{p(p+ 1)}, then we reject the null hypothesis on the homogeneity of covariance matrices
at the a level.

To compare the proposed methods with the pair-wise based method, we conducted a
simulation study using the simulation setup given in Subsection 2.5.1. The simulation re-
sults are summarized in Table 2.7. We observe that the pair-wise based method has very
conservative size under the null hypothesis when sample size is less than 80, but it improves
as sample size increases. Under the alternatives, the power of the pair-wise based method is
low for the small sample cases, but it increases as sample size increases to 80. However, in
all the cases, our proposed power-enhanced method has superior power than the pair-wise

based method.

Table 2.7: Empirical size and power, percentages rejecting the null hypotheses in the
simulations, for the pair-wise based test and the power-enhanced test statistic M,

Pair-wise based test M,
n p  Null Alternative  Null Alternative
40 500 0.2 0.2 6.0 67.6
40 750 0.0 0.4 3.6 62.8
40 1000 0.0 0.0 4.6 62.4
50 500 0.4 0.4 5.6 91.6
50 750 0.2 0.0 6.6 94.2
50 1000 0.2 0.2 3.4 97.0
60 500 0.6 12.2 4.4 98.8
60 750 0.2 4.8 5.6 99.2
60 1000 0.6 1.0 4.2 99.8
80 500 04 97.6 4.0 100
80 750 24 98.8 3.8 100
80 1000 2.0 96.8 4.6 100

2.6 An empirical study

In this section, we apply our proposed method to a time-course gene expressions data set

collected by Taylor et al. (2007). The goal was to identify gene sets with significant changes
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in covariances over time and estimate their respective change points, should any exist. The
data correspond to a study where peripheral blood mononuclear cells were collected from 69
patients with hepatitis C virus. The cells were collected once before treatment, day 0, and
five times during treatment: days 1, 2, 7, 14 and 28. The treatment consisted of pegylated
alpha interferon and ribavirin. More information about the experiment can be found in
Taylor et al. (2007).

Prior to the application of our methodology, the data were pre-processed. The gene
expressions with low quality measurements were removed if the corresponding Microarray
Suite 5.0 signal transcript was classified as absent. We only kept individuals with gene
expression arrays at all six time points. After pre-processing, our data set consisted of 46
individuals with gene expression arrays at days 0, 1, 2, 7, 14 and 28. The original data set
can be obtained at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7123.

The genes were grouped into gene sets that were defined by gene ontology, which classifies
genes according to attributes of the gene in three biological domains: molecular function,
biological process, and cellular component (Ashburner et al., 2000). For instance, the gene
ontology term labeled 0006468 is related to introducing a phosphate group onto a protein.
Hence, this gene ontology term would consist of all the genes that have a role in the afore-
mentioned biological process. A given gene can be a member of multiple gene ontologies.
For example, in our processed data set, gene ontology 0006468 consists of 221 genes and gene
ontology 0007155 consists of 134 genes, with 64 genes in common. After filtering the data
set according to the procedure above, 159 gene ontology terms were analyzed. We applied
our method to gene ontology terms with a minimum of 100 genes. Figure 2.2 illustrates the
number of genes in the 159 gene ontology terms. Each gene set analyzed had a gene count

much larger than the sample size of 46 patients.
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Figure 2.2: Histogram of the number of genes among the 159 gene ontology terms analyzed.

Let Y;ig) (1=1,...,46;t =1,...,6) be the gene expression data for the gth gene ontology
term of the ith individual at time ¢, where ¢ = 1 represents day 0, before treatment, and

t = 2,3,4,5,6 represent the times during the treatment of hepatitis C virus with pegylated
(9)

alpha interferon and ribavirin. Assume model (2.3) for each gene ontology term, Y/ =

(9) | _(9) (9) (9)) _ Zgg)'

py’ +egy’ for g =1,...,159, where ;" is an unknown mean vector and var(e;;

(9)

The assumptions on ¢;;” in model (2.3) incorporate temporal dependence so that {6§tg )}tT:I

are dependent over time. For each gene ontology term, we tested whether the covariance

(9)

matrices, 3,7, are the same across all . In addition, the change points were identified for
those gene ontology terms found to be significant.

For the gth gene ontology term, we computed lA)?(Igt) /6(9)71%’0 for t = 1,...,5 and the
(9) (9)

covariance matrix estimation Vn - Let M,?’ be the maximum of the standardized test

statistics {Vé%}’l/Q{&@%ynLoﬁqgﬁ), . ,6&§’n5’0ﬁ£%)}T . For each gene ontology term, the
159

g=1

Efron (2007). As suggested in Efron (2007), a cutoff value of 0.20 was used for the local

local false discovery rate was estimated using {./\;17(19 )} based on the method proposed by
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false discovery rate procedure. There were 10 gene ontology terms that had a local false
discovery rate less than or equal to 0.20. These 10 significant gene ontology terms and their
corresponding number of genes, test statistic value, estimated change points, and local false
discovery rate are listed in Table 2.8. Among those gene ontology terms listed in Table
2.8, term 0008285 is associated with the reduction or stoppage of cell proliferation. This
is of interest, as Kannan et al. (2011) had noted that the hepatitis C virus reduces cell
proliferation. Thus, the results here suggest that treatment using pegylated alpha interferon
and ribavirin has some effect on the covariances of those genes that play a role in cellular

proliferation.

Table 2.8: Significant gene ontology terms, test statistic values, number of genes in each
gene ontology term, identified change points and estimated local false discovery rates

GO Number of Genes Test Statistic Value Change Points Local FDR

0006511 132 11.10 4,5 0.012
0030054 136 9.92 1,4,5 0.044
0042493 128 9.54 ) 0.064
0008219 122 9.34 4,5 0.076
0006357 167 9.13 1,4 0.090
0005765 116 8.93 4 0.103
0019904 117 8.87 4,5 0.106
0008285 148 8.75 1,2,5 0.115
0048471 263 8.04 1,4,5 0.168
0005739 661 8.04 4,5 0.168

After identifying ten significant gene ontology terms, we applied binary segmentation to
identify all change points. We discovered that eight terms have a change point at ¢t = 5,
day 14, eight have a change point at ¢ = 4, day 7, and four terms have a change point at
t = 1, day 0. Recall that a change point at time ¢ = 5 implies the covariance matrix at
time t = 5 is not equal to that at time t = 6. Hence, most of the identified changes in the
covariance matrices occurred by the initial day of treatment or later in the treatment cycle.
These findings complement those of Taylor et al. (2007), who observed that the majority
of the genes that were altered in expression occurred at the early days of treatment and

again, marginally, between treatment days 7 and 28. To illustrate the changes in covariance
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matrices, Figure 2.3 demonstrates the correlation networks of gene ontology term 0030054
at the six time points. We see that the correlation networks change at time points 1, 4 and

5, which is consistent with the identified change points reported in Table 2.8.

Figure 2.3: Correlation network map for gene ontology term 0030054. Each dot represents
a gene within the gene ontology. A link between dots indicates a strong correlation
between genes.

2.7 Technical details

2.7.1 Proofs of lemmas

In this section, we present the proofs to some lemmas used in the proofs of the main theorems.
Without loss of generality, assume that py = 0 in our proofs for each ¢t € {1,...,T} because

the test statistic, ﬁnt; is invariant with respect to .

Lemma 1. (i) For any symmetric matrices A and B with appropriate dimensions, we have
tr2(AB) < tr(A2)tr(B2); (i) for any square matriz A, [tr(A%)| < tr(AAY); and (iii) for any

square matriz A, HAzH%7 < HATAH%7 where HBH% — tr(BT B) is the Frobenius norm of B.
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Proof. (i) Let A = (a;;) and B = (b;;). By the Cauchy-Schwarz inequality,

tr(AB) = ;Zazjbij < ; (Za?j>l/2<zb§j>l/2 < (;Zafj)l/2<;zb?j>

J J

1/2

Since A and B are symmetric, the right-hand side of the above inequality is the square root
of tr(A?)tr(B?).

(ii) Assume that A = (a;;) is any p X p matrix. If tr(A2) > 0, because tr{(AT — A)(AT —
AT} > 0 and tr{(AT — A)(AT — A)TY = 2tr(AT A) — 2tr(A?), we have |tr(A2)| < tr(AAT).

If tr(A2%) < 0, because tr{(AT + A)(AT + )T} > 0 and tr{(AT + A)(AT + )T} =
2tr(ATA) + 2tr(A2) = 2tr(AT A) — 2|tr(A?)|, we have [tr(A42)] < tr(AAT).

(iii) By definition, [|42% = tr(ATATAA) = tr(ATAAAT). Since ATA and AAT are

symmetric matrices, it follows by using part (i) that
tr(ATAAAT) < | ATA| | AAT||p = AT A,
and this completes the proof. 0

Lemma 2. Define Usysy0 = {n(n — H}t Z?#jzl(}/;rsrl}/j%ﬂ for any s1,s9 € {1,...,T}.

Under Condition 1, the leading order term of the covariance between Us, s, 0 and Uh1h2,0 i8

Gn(s1,s9,h1,ho) = cov(UslsZ,o, Uhth,O)a where

2 2 T 2 2 T
Gn(slv s9, h1, h2) = mtr <051h10$2h2> + mtr <031h2082h1)
2(n —2)
+ —n(n _ 1) Z tr(ESUCCSuthhvccihv)'
u,we{l,2}

Denote u® as the complement set of {u}. That is, u® = {1,2}/{u}.
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Proof. Using the notation i defined in Section 2.3, we define

Ly = (pj%)Q Z E[{(}/;31Y782) — (X Xsp) H{ (] h1 ]hg) —tr(EhlE;Q)H,

Lo = (P1)2 ;1E[{(nglyjsz)2 — tr(Xsy o) H( jh1Y;'h2)2 - tr(zhlzw)}}’
(Fa¥)

T 2
2 ) ,]l 231 152) _tr(251282)}{(yihlylh2) _tr(zhlth)H’

!—‘31\3

Ly = (Pj%ﬁ S E[{<14511952> — (S S HOGE, Ying)? — (S, Sy,
Ls= ;2 5 S it BT Vo) = (S Dag) HOVR Yiny)® — (S5, D)),
Lg = P2 3 Ot BV Yisg)? = tr(Se; D) HOVGE, Ying)® — tx(Zy Sy},
L7 = W Zi,j,k,l E[{(Yig,Yisy)? = (S Sy ) HYVi, Ying)® — tr(Sn, Sng) ).
Then cov(Us, 59,0, Upyhy,0) = L1 4+ + L7 since E{(Y:L isy 352)2} = tr(XsXs,). Applying

standard results in multivariate analysis, we obtain

T T
E{O/zslyvjsg) (Y7,h1Y7h2) } = 2tr(0h181082h20h181082h2) + Qtr(281032h22h1082h2)

+ 2tr (OSQhQOhlsl) + 2tr(232051h12h20T

Slhl) + tr(ZSQEsl)tr(EhQEhl)-

This implies that

2
Ll + L2 = m tr{(082h20h181)2} + tr{(CSth Ch281)2} + t1"2(082h20h181)

5 T

+ tr <082h1 Ch251) + tr(231032h22h1 Cs2h2
T T

+ (B Coony Bhg Cgny) + tr(282081h22h1081h2)] ’

T

Furthermore, L7 = 0 and

6 2(n—2) T
ZLi - n(n——l Z tr(EsucCSUhth cCs uhv)

1=3 u,ve{l,2}

This with Condition 1 implies that Lemma 2 is valid. [l
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Lemma 3. Define Us 5,1 = (1/P3) > ik }/2313952}/]?;2}//681. The leading term in the
covariance between U, 59,1 and Uhihg,1 1
4 2 T
COU(U8152,17 Uh1h2,1) = ﬁ Z tr (Csuhvcsuchvc)
u,ve{1,2}
2 T
+ =5 D t1(Ds,eCauhy Sy Coyny )
u,ve{l,2}
where u® is the complement set of {u}. That is, u¢ = {1,2}/{u}. In addition, var(f)nt’l) =

A

ofvar(Dni,0)}-

Proof. Because E(U5152,1) =0, cov(U515271, Uh1h2,1) = E(U3152a1Uh1h2,1)' By definition,

1 T T T T
Usys9,1Unyhg,1 = (P3)2 Z%J}kziwlvkl (Vi) YisgVisy Yhsy + YisyYisy Vjs) Yesy)
n

x (YL, Vi vE

, T
ith1 ' J1ha* j1ho Y;

T
Yk‘lhl + sz'1h2yvjlh1 jlhlykth)‘

According to the number of equivalent indices among two sets {i,j, k} and {i1, ji,k1}, we
decompose U5152’1Uh1h2’1 into three terms. Let I. = {i, 7, k}U{i1, j1, k1} where ¢ represents
the number of indices that are equivalent to each other in two sets {4, 7, k} and {iy, ji, k1}-

If there is one index equivalent,

I ={(i=1i1,7,k, 51, k1), (¢ = J1,7, ki1, k1), (4,4, k = 11,11, J1),
(717(] :Z17k7jl7k1>7(z7j :jl7k77[17k1>7(/’/7.] - k17k7117j1)7
(i, 4,k =i1,71, k1), (4,4, k = J1,i1, k1), (4,7, k = k1,11, J1) }-

For each case within I7, the expectation of corresponding summand in U, 51 32’1U hyho,1 is 0.

If there are two indices equivalent,

In={(i=11,j=J1,k k1), (i = j1,7 = i1, k, k1), (¢ = i1,k = k1, 4, j1),
(i =k k=11,7,51),(J = g1, k = k1,4,41), ( = k1, k = j1,1,41),
(i=11,7 =k1,k,51), (0 = j1,5 = k1, k,i1), (i = i1,k = j1, 7, k1),

(i =k, k=71.7,11),(J =71,k =i1,1,k1),(j = k1,k =i1,4,71) }-
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Among all the cases in I, there exist two cases {(i = i1,k = k1,J4,71), (i = ki1, k =1i1,7,j1)}
whose expectations of the summand in U, s159,1 Uhl ho,1 aTe 1Ot zero. Similarly, if there are

three indices equivalent,

Ii={(i=1,j=j1,k=Fk),(i=71,7=11,k=k1),(i =k1,j =1,k =11),

(i=k,j=1i1,k=j1),(i=1d1, =k1,k=j1),(i =7j1,] = k1, k =i1)}.

Among all the cases in I3, there are two cases (i = i1,j = ji,k = k1) and (i = k1,5 =
J1,k =i1) that have non-zero expectation.

In summary,

2 T T T T
EUsysg1Unyg,0) = s B Dty (Vs Vg Y Vesy + Yisg Yoy Vi Veso)
n

T T
Yihy + Ying Viihy lehlykhQ)}

2 T T T T
T (p%)QE{ Ziakvj <1/i811/js2}932yk51 + YiszyjslyjslylﬂSQ)

T T
X (Y'Z'hl Y}l ho }/jl ho

T T T T
X (Yiny YingYing Yihy + Ying Yiny thlykhg)}
2 T 2 T
=55 2 |1 = (s Couny Enye Coopy) + % Con, O o)
" uwe{1,2}

(g CF o %)+ 18(Se e Cany T o O ).

This completes the proof. O

Lemma 4. Define Us, s, 2 = (1/PY) D ikl (32311982)(3/]2;1}%2). For any fized u,v, k,l €

{1,2}, the covariance between Uy, s,

o and UhkhlaQ 8

) T T T
COU<USUSU,27 Uhkhl,Q) = ﬁ{tr (CsuhkCSUhl) + tr<CsuhkOSUthSuhszvhl)
n

CT

+ QtI'(CS uhk Suhl)

T T
vhszUhZCSuhlcsuhk

T T T T

)+ 2tr(Cy

T
vhszvhl CS

+ 3tr(Cy

A ~

Moreover, var(Dyg o) = o{var(Dp o)}
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Proof. Because E(Us,s,.2) = 0, COV(US,LLSwQ,Uhkth) = E(USUSU;QUhkhl,2)‘ Therefore, let

R = E{(Y;3,Yjsw) Vg, Yiso) Vign, Yigh) Vg, Yign) b 50

1
COV(U5u5U72’ Uhkhl’z) - W Zi,j,k,lZ:il,jl,kl,ll R
n
_ 2 tr2(C. » CF tr(Cy 1, CL, Cy p CF
_ﬁ{ I'( Suhk S hl)+ I'( Suhk Svhl Suhk S’Uhl)
n
+26¢(Cayy, Oy Couty Coy )+ 263(Cayy O Clagiy, Ctp)
+3tr(CSUhkC'S thSUths hk)—l—?)tr(CSUhkCS hl)tr(CSUthihk)}.

This completes the proof of the first part.

For the second part, write [)nt’g = w (1) 1 1 282 i1 ZU,UE{l,Q}(_l)‘u—U|U5u51},2'

It follows by the first part that

R 2 * B -
var(Dnt,2) = oy ot 2 > eyl O )

517527h13h2 U,U,k,l6{1,2}

CT

C 8uhk>

T
+ tr(CSUhkCSUthSUhkOS'Uhl) + Qtr(Cs Svhl

ct

T T

vhp

+ 3tr(CsUhkC;Eth)tr(Csvhl CsTuhk>}'

Applying the inequalities given in Lemma 1, we can show that VGT(ﬁnt’g) = o{var(ﬁnw)}.

This completes the proof of this Lemma. 0J

Lemma 5. Let Z be an m-dimensional multivariate normally distributed random wvector

with mean 0 and covariance I,,. Define M = 27T — 1. Assume A,B,C,D are matrices
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with appropriate dimensions. Then E{tr(AMATBMB™)} = tr2(ATB) + tr{(ATB)?} and

cov{tr(AMATBMBY) tr(cMCTDMDT)}

= 2tr(AT B)tr(CTD)tr{ (AT B+ BYA)(CTD + DT C)}
+ %trQ{(ATB +BTA) T D + Do)} + e [{(ATB + BT A)(cTD + DTC)}?
+2tr(ATB)tr{(ATB + BT A)(cTDCTD + DTCDTC)}
+ 2tr(CTDYer{(CTD + DTC)(ATBATB + BTABT A)}

+2t0{(ATBATB + BT ABTA)(cTDC"D + DTcDTO)}.
In particular,
var{tr(AMATBMBY)} = 2u2(ATB)tr{(AYB + BT A2} + %trQ{(ATB + BTA))

+ 4tr(ATB)tr{(ATB + BT A)(ATBATB + BTABT A)}

+2tr{(ATBATB + BTABT 4)%} + tr{(ATB + BT4)*}.
Moreover, var{tr(AMATBMB™)} < K |tr*(AT B) + tr?{ (AT B)®?}| for a constant K > 0.
Proof. We first consider E{tr(AMATBMBT)}. Because M = ZZ" — I, we have

tr(AMATYBMBY) = (ZTATB2)? — 2V ATBBTAZ — ZTBTAATBZ + t+(ATBBT A).
(2.12)
Taking expectation of the both sides of equation (2.12), we have
E{tr(AMATBMBT)} = tr>(ATB) + tr{(ATB)?} + tr(ATBBT A) — tr(ATBBT 4)

= tr2(ATB) + tr{ (4T B)?}.
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Next, we consider the covariance part. Using equation (2.12), we have

tr(AMATBM B ytr(CMCTDMDT) = (ZYATB2)* (2T T D2)?
—(ZTAYB2)?Z " DD Yz — (ZTATB2)?ZTDTCcCc D2z
—(ZYATB2)?te(CTDDTC) — ZTBTAATBZ(ZY T D Z)?
+(ZTBTAATBZ)(zYcTDDTCZ) + (2T BY AATBZ) (2T DY CCT D 2)
— (ZYBTaATB2)yw(ctDDYC) - 2T ATBBY AZ(Z1 T D2)?
+ztAYBBYAZ(Zz ¢ DD YC7Z) + 2t AT BBY AZ(Zz DY CCt D 2)

— ZYATBBYAztr(CTDDTC) + tr(AYBBY A)(ZTCT D Zz)?
—tr(ATBBTA)(ZTcTDDYCZ) — r(ATBBT A) (2 DTCCT D7)

—tr(ATBBT A)tr(CTDDTC).

Define the terms in the above expression as Jy, ..., Jig. We consider the expectation of each

J; for i =1,...,16. We have the following:

E(Jy) = [tr?(ATB) + tr{(ATB)?} + tr(ATBBT A)|tr(CTDDTC),
E(Jg) = tr(BYAATB)tr(CTDDTC) + 2tr(BYAATBCT DD ),
E(J7) = tr(BYAAT B)tr (DY CCT D) + 2tx (BT 4ATBDTCCT D),
E(Jg) = E(J12) = E(J14) = —tr(BTAATB)tx(CTDDT ),
E(Jy) = tr(AYBBT A)tr (CTDDTC) + 2tr(ATBBTACTDDT ),
E(J11) = tr(ATBBT A)tr(DTCCT D) + 2tr(ATBBT ADTCCT D),

E(J13) = tr(ATBBT A)[tr?(CT D) + tr{(CTD)?} + tr(CTDDTC)].
In addition, we can show that, for any matrices A, B, C' of appropriate dimensions,

E(ZYAzZTYBZZ2YCZ) = tr(A)tx(B)tr(C) + tr(A){tr(BC) + tr(BTC)}
+ tr(B){tr(AC) 4 tr(ATC)} + tr(C){tr(AB) + tr(A1 B)}

+tr{(A+ AYYB+ BY)(C+ ).

47



Applying the above formula to Jo, J3, J5 and Jg, we obtain

—E(Jy) = tr>(ATB)tr(CTDDTC) 4 tr(AT B){tr(ATBCTDDTC) + tr(BTACT DD )}
+tr(ATB){tr(ATBCTDDTC) + tr(BTATCTDDT )}
+tr(CTDDTC){tr(ATBAT B) + tr(BT AATB)}

+2ur{(ATB+ BT4)2cT DD Y.

The expectation of J3 is the same as E(Jy) above except for changing c¢TppTcto DT D.

Similarly,

—E(Js5) = tr2(CTD)tr(BTAATB) + tr(CT D) {tr(CT DBTAATB) + tr(DTC BT AAT B)}
+tr(CTDY{tr(CTDBTAATB) + tr(DTCT BT AAT B)}
+tr(BYAAT BY{tr(CT DCT D) + tr(DTCCT D)}

+2tr{(CTD + DTC)?BT AAT B},

and E(Jg) is the same as E(J5) with replacing BT AATB with ATBBT A. Finally, we can

show that

E(J1) = 2 (ATB)?(CT D) + tr?(AT B)[tr{(CT D)} + tx(CTDDT )]
+tr2(CTD)[tr{ (AT B)?} + tr(AT BBT 4)]
+ 4tr(ATB)tr(CTD){tr(AYBCT D) + tr(BTACT D)}
+ [tr{(ATB)?} + tr(AT BBT A)|[tr{(CTD)*} + tr(CTDDTC)]
+ 2{tr(ATBCT D) + tr(BTACT D)}?
+2tr(ATB)tr{(ATB + BT A)(CD + DTCT)?}
+2tr(CT DY {(ATB + BTA)?(CD + DTCT)}

+tr{(ATB + BTA?(CD + DTCTY2y + tr[{(ATB + BT A)(CD + DTCT)?.

Summarizing the above E(J;)’s, we obtain E{tr(AMATBMBT)tr(CMCTDMDT)}. From

this result and (2.12), we can obtain the covariance between tr(AMATBMBT) and
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tr(CMCTDMDT). The variance is a special case of the covariance. This completes the first
part of the Lemma.

Next, we prove the inequality given in the second part. Using the Cauchy-Schwarz

inequality and Lemma 1,
2tr? (AT B)tr{(AT B+ BT4)%} < Ktr? (AT B)tr{(AT B)®?}
and
21r(ATB)tr{(ATB + BTA)(ATBATB + BT ABTA)}
< 2tr(AT Bt 2{(ATB + BT A)2}tr'/2{(ATBAT B + BT ABT 4)%}
< Ktr(AT B)tr1/2{(AT B)#2}:1/2{ (AT BAT B)®?}
< Ktr(ATB)tet/2{(AT B)* 2}t [{ (AT B)T (AT B)}?]

< Ktr(AYB)tr?/2{ (AT B)®21,

Moreover, tr{(ATB + BTA)4} < tr?{(ATB + BTA)?} < Ktr*{(ATB)®?2}. In summary,

2
var{te(AMATBMBT)} < K [tr(ATB)trlm{(ATB)@} + tr{(ATB)®2}]
<K [tr4(ATB) + trQ{(ATB)®2}] .
This finishes the proof of this Lemma. 0
Define
4 el ——

Vao(s1,s2, b1, he) = nln—1) Z (—1)~fumvl=lk l|tr2(05uhszthl)v

uw,k,le{1,2}
8(n — 2 _

Vni(s1,s2, b1, he) = ﬁ Z (=1l ”'tr{(Zs1 — %59)Cohy (Eny — Ehg)CsTuhv}-

u,ve{1,2}

Lemma 6. Let Wy 5, = U5151a0 + U525270 — U515270 — U3251,0- The covariance between
Wisg and Wiy is Viu(st, s2, b1, ha), where Viy(s1, s2, b1, he) = Vao(s1, s2, b, ha)
+Vn1(s1, 82, h1, he) and Viyo(s1, 52, hi, ho) is the covariance between W, s, and Whihg under

Hy.
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Proof. Let Gp(+) be the function defined in Lemma 2. It then follows,
Vulsi,sg,hi,ho) = > (=)~ === (su, 50, b, ).
u,v,k,le{1,2}
Applying Lemma 2, we have
2 —fu—v|— k=1 § .2 T
VU(SL 2, h1, hZ) = n<n—_1 Z <_1) fu=ol=| |{t1‘ (Csuhkcsq;hl)
uw,k,le{1,2}

2(n — 2) | — [k
+ tr2(05uth£]hk)} + m Z (_1) fu—vl—|k ”{tr(ESquvhlEhkc;rvhl)
uw,k,le{1,2}

T T T
+ 00y Oy By Csny) + 050 Csyy By oy ) + tr(zsvcsmlzhko%hl)}.

Hence,
4 ] —f—
Vu(817327h17h2>:m Z (_1) fu=vl=[k l‘trQ(Csuhkcgjhl)
u,,k,1€{1,2}
8(n —2) ~Ju—v|—|k—1 T
+m DY lu—v|—| |tr(25uC’Svh12hszUhl).
u,w,k,le{1,2}

After some algebra, one can show the second term in the above expression is equivalent to
an(S, h7 h17 h2)
Under Hy, Vy1(s, h,hy,ho) = 0. Therefore, Vi (s, h, hi,ho) = Vy(s, h, hi,h) is the co-

variance under Hg. This completes the proof of Lemma 6. U

2.7.2 Proofs of main results

In this section, we present proofs for the main results of Chapter 2. By definition, Dy can

be expressed as Dy = Dnt,O — 2Dnt71 + bnt,?; where for £ = 0,1 and 2,

t T
- 1
Dnt,k = t(T — t) Z Z (Uslslvk + USQSQ,]C - U8182,k - USQSl,k)' (213)
s1=1s9=t+1
Here Uy s, . Was defined in Section 2.3.
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Proof of Theorem 1. Based on the definition of bnt; the expectation of Ent is

T t

Ztr (22) )+ tr(X3) — Z Z tr(sXy,) = Dy

h=t+1 s=1 h=t+1

We next calculate the order of the variance of Dy, By using the definition of ﬁnt, write Dy

as Dy = lA)mg,o - 2Dnt,1 + f)nt,2- By Lemmas 3 and 4, it follows that Dnt,l = op(lA)nmo) and

A~

Dyt o = op(f)m,o). Therefore, it suffices to compute the variance of Dntﬁ. Using Lemma 6,

*

*
UTQLt - w_2(t) Z COV(W$1527 Whth) = w_z(t) Z Vu(817 2, h, h2)
51,59, 51,5925
h1:hg h1,hg

This completes the proof of Theorem 1. O

Proof of Theorem 2. By Theorem 1, it is sufficient to establish the asymptotic normality

of Dnt,o- We first write [)nt,() into a martingale. Define A;s =Y} vt — Y, and

Jsu~ jsy

T

~+

DIy T A Vi, — t1(Zsy Aje,) s

Em YED)

1
Cnj = 7 =

s1=1 so=t+1u,we{1,2}
T

Qni = t(Tl_ ) Z Z Z |u U'{ 250 Yisy — tr(Xs, Xsy) }-

s1=1so=t+1u,we{1,2}

~+

Let Z,; = ZT(L ) 4 ZT(”), where Z = 22 1Gnj/{n(n — 1)} and Zﬁ) = 4Qp;/n. Then,
Dyto— Dy = 301 Zni,

Let % be the o-algebra generated by o{Y7,...,Y.} where Y; = {Yj1,...,Y;r} is the
collection of Y for the i-th sample. It follows that E(Z,|-%#r_1) = 0. Therefore, Z,,;. is a
sequence of martingale difference with respect to %;..

Let Ugn- = E(Z?Mﬁi,l). To prove the asymptotic normality, we check two following

conditions (Hall and Hedye, 1980):
Condition (a) > 1 4 U,Qw-/Val"(Dnt) 5,

Condition (b) Y14 E(Zgi)/vaﬂ(f)nt) — 0.
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We first prove Condition (a). Consider E(> 1 4 02 D=2 E(Z2-) = Y1 var(Zy;).

Furthermore, Var( nt) = Yo ( )+ QE{ZK] Znil(Zni|Fj-1)} = > ( i)

Thus, we have E(Y_1 Jn ) = var(Dy;). It suffices to show var(d_ 1, J%i) = ofvar®(Dpt)}.

Now we obtain JTQLZ. as

—21—1 —1
n 4
= BZEF) = (3) X 3 BGuGuy | Fi) + 5B QRF)

2
j=1j1=1
1 1—1
n ( ) Qm Z Gn]‘ffz 1) Rm’,l + Rm’,2 + Rm',?)'
2 1
J=

Recall that A js = YJS1Y331 Ys,. We can further show that R;; 2 is a constant and has

no impact on var(> i ¢ a ;). Moreover,

i—1 i—1 *
Rm'71 = Z Z ( )|u vk l|tr(A]3vCSuh]€Aj1th;[;Lhk>
(2 ] 1j1=1 $1:52> uw,k,le{1,2}
hi,ho
_ pl0) (1)
R 1,1 + Rm 1

(1)

where R( )1 corresponds to summation of the terms where j = j; and R, i is the summation

of the terms where j # j;. To prove Condition (a), it suffices to show that

(a1) var(X0y RY)) = o(aty),

ni,1

(a2) var( 1R( ) ) = o(o},) and

nt,1

(a3) var(3271 Ryi3) = o(opy)-

We first show (al). We have

n C *
var( SRV < w4(t)n5var{ S Ay, oy Ajn G )
=1

51,592, u,v,

Wiy kle(12)

*

<Cu ™ Y > var{tr(As, Cony Ay Cony) |

817327 u,v,

hi,ho kle{1,2}
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Applying Lemma 5 and using the fact

CT

tr(A;y C

jsvCsuhy, ) = tr{T§,Ts,(Z;Z} — DT, Ts, Ty Ty (Z; 23 — [)rTrhk}

Jhy
we have
var{tr(Ajs, Cs,n, Ajny Suhk)} < Cltr? (CsUhkCSthl) +tr2{(F;fU08uhthl)®2}}-

Under Condition 1, var(} 7 RY ) = o(c},). This completes the proof of (al).

ni,1

We next show (a2). Because of j # jq, E{tr(AJSUCSuhkAjlth;l;hk) = 0. It follows
that
~ gl
Var(Zijl) § Var{ Z Z Iu v|+|k— lltr(AjSUCSuhkAjlth;Emk)}
=1

51,8
hyhy k 16{1 2}

*
SC’n_4w_4(t) Z Z Var{tr(AjSvCSuhkAjlthguhk)}'

51,5925 u,v,
hy,hy kle{1,2}

Similar to Lemma 5, we obtain

T T T 4
Var{tr(AJSUCsuhkAjlhlosuhk)} = 2tr2{<FSvC’Suth‘hl)®2} + 6tr{(FSUC'Suhthl)® }

—4tr{(TT C

T 2 2 T 2
suhkrhlrsvcsuhkrhl)® }S CtI‘ {(Fsvcsuhk.rhl)® }7

where Q®% = QQT and Q®* = QQTQQT. By Condition 1, we have var(3or an)l)
o(o,), which proves (a2).
For proving (a3), a direct computation shows that
S Ry = 0 i z Sy, 53, A
ST n(G) o w? ul = suhy s

j=1
hl h2 kie(12)

16 < (n — j L T
n(n U) Z Z |u |t1‘{( jsl - Aj82>csuhk<2h1 - Eh2>Csuhk}‘
2/ j=1 §1:525 u,ke{1,2}
hy,hg
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Then,

n
Var(z Rm'73 351 - AjSQ)Csuhk(Ehl - Zhg)CTuhk }]
=1

) i3, Jke{1,2
h1h2u { }

2
{ Z )vrgvcsuhk(zhl - EhQ)OsuhkFS”U) }

81 59> u,ke{1,2} v=1
hy,hg

Therefore, by Condition 2, var(3>1; Ry;) = o(ot,). Thus, Condition (a) is valid.

To check Condition (b), we compute
4 1)z -8 N Yo —4 g
E(Zy;) = B{B(Z3| Fi 1)} < Cn 8B B{(D2 Guy) 171 }] + Cn B(@QR) = i+ o

where E{(Y/_] G Guj) | i1} = > E(G), WHHZE% E(G3;Gh | Fi1). Using

the definition of G, one obtain

(=)l R (A, A, tr(Agn, Aj)-

S1 52 uw,k,le{l1,2}

hl,h2
For any two symmetric matrices A and B, E[{ZTAZ — tr(A)Y?{ZTBZ — tx(B)}?] =
4{tr(A%)tr(B2?) + 2tr2(AB)} + 16{2tr(A?B?) + tr(ABAB)} and tr[{ZTAZ — tr(A)}}] <
Ctr?(A?). Accordingly,

*

C
S T Y B )

J=151,52 u,ve{l,2}

5

C k

+ w4(t)n8 Z Z Z E{tr sy Ajsy )t (AlhkAjlhz < Z‘]l(i)’
k=1

S 82
j#jl hl h2 k lE{l 2}
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where

M w4 8 Z Z Z E{tl‘ ESUAJSUESUAJSU)}

J=151%2 uwe{l1,2}
i—1 *

(2__C¢C
N =g D D D B{tr(Ays, Beu Ajay Bsu (A Sy Ajy g Sy

S 82 u,v,
TR kietlay

le A8 n8 Z Z Z E{tr AJSvCSuhkAthlCSUhk)}

51,89, U,
T kel

Jh. 82 Z Z B{tr(TT A, T, T1 Ajg x

$1,89, U0,
TR kietlay

T T
FSurhkAjlhlrhkrhkAjlhlrhk)},

T
Jli n8 Z Z Z E{tr Jsv Suhk thlCsuhkAJSUOSuhkAjlthsuhk)}‘

5 52
TR kel

Consider the first term, Jl(;), in the above inequality. By Lemma 5,

var{tr(Ajs, Ysy Ajs,Ysy)} < C’[tr4(23u23@) + 4t1%(Bs, Dsy Dsy Dy )

+ tr{(FsTUZSuPsU>4} + tr{(FrSI;;ESUFSUFT Esursv)®2}]
and B |tr(Ss, Ajs, Ssy Ajs, )| = 02Ty D) + (S, Ty B Ty )- Thus,

E{tr* (Ajsy sy AjsyZsy)t < C [tr4(28u28v) + 07 {(Zy sy )2} + tr{ (S Dy )1}

< Ot (T, D5y )

Therefore,

S < s> S ST — ook (214)

=1 j=151,52 u,ve{1,2}

N
Il

—

-

For the second and third terms, Jl(?) and Jl(?), consider the following inequality:

CT

tr2(A;5,C

YED) Suhk ) S tr(AjS'UZSUA]SUZsu)tr(AjlhthkAjlhlzhk)

J1h
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Thus, we have

n

S+ 1) < s > Y Y 2 s

i=1 1= 1]#]1 51,52 u,wef{1,2}

< w4g)n8 > Z { Z oot zsuzsv)}Q =o(cd). (215
J7#0

i=1 51,52 u,ve{l,2}

Next, we consider the fourth term Jl(;l). We first note the following results

E[tr{A(Z12] — NATC(Z, 2] — 1)CYD(Z923 — 1)DYF(Z9Zy — I)F1}]
= tr(ATO)tr(DT F)tr(DFTACT) + tr(ATC) e (FDTFDT ACT)

+tr(DTF)tr(CATCATDFT) + tr(FDTFDTCATCAT)
for matrices A, C, D and F with appropriate dimensions. Then we can obtain

T T
E{tr(Lg, Ajs,Ts, s AJSUFSthkAJIhZFhthkAjlthhk)}
= tr(zsﬂzsu){tr(zhl Ehk)tr(csuhkzhlo 252}) + tr<2hlzhk2hlcs hkzsvcsuhk)}
+ tI‘(Ehthk_>tr(ZSv ESuESv Csuhkzhl Csuhk) + tr(Zhlzthth ZSUESUESUCSuhk)
< 4632 (35, B, Y 2(Sp, By, ) + 032 (S, B Jrt (S, T )}
+ t1%/2(5, T o 2{(Ss, D)} + 628, Ty ) 2 (8, 5, ) 1)

It follows that

n

> < w4gn822{2 Y w2m S} —olel).  (216)

=1 j#j1  $1:52 u,we{l,2}
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By Lemma 5,

T 2 2T
E[tr{(csuhkA]SvCSuhkAjlhl) }] = E[tr (FS'UCSuhkAjlthSuhszU>

T T
={Z]T},C 1, EsoCsuny 'y 2

- tI‘(Zhl Cs hkzsvcsuhk)}Q

+ 0(Clayny Ajy by Oy s Coug, Ajy iy Co iy Ssv)

J1hy uhp i1l

4 2 2
= 3tr{(FthSUhkFSU)® b+ tr {(Fhlcsmkrs@)@ b

uhy,

This along with Condition 1 together implies > ;_4 ‘]1(2) = o(aﬁt), and further with equations

(2.14) and (2.15) implies >-7_; Jiz = o(cs,).
Finally, we consider Jo;. We write (),; as

* 2

ST ZE S (1) (5 = ST, J2E = 0{(Sey — By (S + S}
51,59 u=1

1

Qm’ - w(t)

where 22 (=1)""ITT (25, — Z6y)Tsy, = (Ts; + Tsy)T(Zs; — ) (s — Lsy). Using

Proposition A.1 in Chen et al. (2010),

t T
C
Jo; < Ty > Y w? [{(rsl + D) T (Z; — By)(Tsy — D)}
s1=1s9=t+1

As a result, Y 1 Jo; = o(a ¢). Condition (b) is valid. This completes the proof of the

asymptotic normality of Dnt- O

Proof of Theorem 3. Using the continuous mapping theorem, we only need to prove the
joint multivariate normality of {Dm}tT:_ll. Let a = (aq,..., aT_l)T be any non-zero constant
vector of length T — 1. By the Cramér-Wold device, it suffices to show that ZtT:_11 at[)mf
is asymptotically normal under Hy. By Lemma 6, the variance of Z%F__ll a;Dpy is 0(2)T =
Var(thzfll atﬁnt) Z ZT 1 atagQn tq- Then we wish to show O’OT Zt 1 atDnt —

N(0,1) in distribution. The asymptotic normality of thl atDmg can be shown by using the
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martingale central limit theory, which is very similar to the proof of Theorem 2. Therefore,

we omit the details. O

Proof of Theorem 4. Assume that the alternative H} is true. First, fort € {1,... k1 —1},

k:l T
. 1
E(Dpt) = tx(5]) + — tr(E%)—i——t > (=)
h=t+1 h=k1+1
9 t k1 T
_t(T_t)Z S oaEs)+ Y tr(EsEh)}
s=1  h=t+1 h=kq+1
ky—t  2t(ky — 1) 9 k1 9 2t(T — ky)
=1 — tr(2 tr(Z tr(2; 2
{ R t(T—t)} (1) + 1) t(T —t) )
T =k 2
tr{(T] — %
T r{(Z1 - 27)%}

Similarly, if ky < ¢, then E(Dy) = kitr{(31 — X7)2}/t.

Define B(C) = {t € {1,..., T — 1} : |t — k1| > CBn/(nAp)} for some constant C. To
establish the rate of convergence of the change point estimator /2;1, we need to show, for any
€ > 0, there exist a constant C' such that pr{|k; — k1| > CBn/(nAn)} < e. This is equivalent
to show that pr{k; € B(C)} < e. Since the event {k; € B(C)} C {max;cp(c) Dyt > bnkl},
pr{ki € B(C)} < pr{max;cp () Dyt > bkl} Thus, it suffices to show, for any € > 0, there
exist a constant C' such that

Pr{ter%a(é) Dyt > Dkl} < te%(:o) pr(Dpt — Dy, > anl — Dy,) <e. (2.17)

Under HY, we have

Dyt — Dyy = Dot = D+ Dt — Dy = Dy — Dy + {r(t; k1) — 1}6r{(Z1 — 57)*}

= Dyy — Dy — [t — k1|G(t; by )tr{ (21 — S7)2},
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where G(t; k1) = {1/(T—t) (1 <t <ky)+(1/t)I[(k1+1 <t <T—1). Then, for t € B(C),

pr(Dyt > Dypy) < pr{|Dnt — Di| > [t — k1|G(t; k1) An/2}

+pr{|Dpjey — Dy | > [t — k1|G(t; k1) An /2}

< pr{|o, }(Dnt — Dy)| > CBaG(t; k1)// (4Vir + 8nVig)}

+ pr{loy} (Duky = Dip)l > CBaGlEs k1) [/ (4Vigy +8nVig )}

For any ¢ and some constant Cy, 3, > C1+/(4Vyt + 8nVyy). Furthermore, w(t) and G(¢; k1)

are bounded away from zero for t € B(C'). Thus, by Chebyshev’s inequality,

2
pr(Dut > Dugy) < prllon (Dt = Do)l > €+ prlloggl (D, = Dip)l > € < 55 < =,

for large enough C'. Therefore, (2.17) is true. This finishes the proof of Theorem 4. U

Proof of Theorem 5. Let ky = 0 and kg4 1 = T. Denote the common covariances between
the change points k; and kj;q as ij for j = 0,...,q. To show that maxy D; is at one of
the change points, it is enough to show that max; Dy cannot be attained at any time points
except change points k1,...,kq. Thus, we need to show that the maximum of D; is not
attainable for ¢ in the following sets: (1)t € {1,...,k; —1}; (2) t € {kg+1,...,T —1}; and
B)te{k+1,..., ki q — 1} for some [ € {1,...,¢ —1}. We do not need to consider case
(1) if k&1 = 1 or case (3) if ky = T — 1. Without loss of generality, we assume k1 > 1 and
kq <T — 1 in the following proof.

First, if t € {1,...,k; — 1}, then using the definition of Dy, we have

135 — 282”F+ T—1) Z Z X5y — ESQHF
Sl 182 t+1 81 182 k?1+1
1 T
< 2
=73 >0 - Sl
so=kq1+1

which is an increasing function of ¢ in this scenario. Therefore, the maximum value of Dy

will not be at any ¢t € {1,...,k; — 1}.
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Second, if t € {kq+1,...,T — 1}, then

2 2
125 — Zsqll 7 Ty Z Z 155 — Zsq I
81 1s9=t+1 51 kq+1 sog=t+1

1
=5 2 IR =2 lE
s1=1
which is a decreasing function of t. Therefore, the maximum value of Dy will not be at any
te{kg+1,...,7 -1}
At last, let us consider the third case with t € {k; +1,... k1 — 1} for some [ €

{1,...,q9— 1}. We rewrite D; as

-1 q
1 - -
Dy = m{ D0 (kigr — ki) (kjn — kp)II% = 3501
=0 j=111
q ] -1 ]
=k Y (B — kIS = S5 + (g — 1) > (ki — k)| — Ez||%}-
j=l+1 1=0

Since ||%; — ZNIJH% =% — il”% + 1% - EJH% + 2tr{ (X — X))(2; — ZN]j)}, we further write
Dy as

Dy = t){2A+tA+(T—t)B},

(T —

where

A= ZZ ki1 — ki) (kj1 — k(S — £)(5 - S5},

1=0 j=I+1
.. -1 ..
A= Zg:1+1(kj+1 — kj)||§]l — Zj||% and B = .~ (kig1 —k)[|2; — Zl“%- Then we can use
the fact that 1/{t(T" —t)} = (1/T){1/t + 1/(T —t)} to further write D; as

D= (a4 F) 4 (04 )

We will consider four cases, (a)-(d), according to the signs of A+ 2A/T and B + 2A/T.
(a) If A+2A/T >0 and B +2A/T < 0, then Dy is a decreasing function of ¢. In this

case, the maximum of Dy will not be at any ¢ for t € {k;+1,... k1 —1}.
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(b) If A4+2A/T <0 and B+ 2A/T > 0, then Dy is an increasing function of ¢. In this
case, the maximum of D; will not be at any ¢ for t € {k; +1,...,kj1q — 1}

(¢) If A+2A/T > 0 and B + 2A/T > 0, then the derivative of Dy with respect to t is

D} = @{(B — A%+ 2(A + %)Tt — (A + %)TQ}.

The denominator of D} is always positive for ¢ € {k; +1,..., k1 — 1}. Thus, to determine
the sign of Dj, we only need to know the sign of the numerator of Dj.

The numerator of Dj is a quadratic form of ¢. To know the sign of the numerator of
Dj, we consider two cases: (i) B > A and (ii) B < A. In the case (i) with B > A, one
of the solution of t2(T — t)QDI’f = 0 is less than 0, another solution ¢ is greater than 0. If
to € (ky, kyo 1), then Dj is negative for k; < t < to and positive for ¢y < ¢ < k; 1. This implies
that the function Dy decreases for k; < t < t( and increases for t) < t < kj; 1. Therefore,
Dy attains its minimum at ¢y and the maximum of D; will not be attained within (kj, k4 1).
If tg & (k;, kjo1), then Dj is either always negative or always positive for ¢ € (kj, kjyq). In
this case, D; is a monotonic function of ¢t and hence the maximum of D; will not be attained
within (kg kjy1).

In the case (i) with B < A, it can be shown that t>(T — )2D} = 0 has two solutions,

t1,ty = T[(A +2A/T) /(A — B) + V{(A+2A/T)/(A— B) —1/2}2 — 1/4]. Here, 11,19
corresponds to the positive and negative sign, respectively. Because B + 2A/T > 0, (A +
2A/T)/(A— B) > 1. It follows that to > T'. Similar to the case of B > A, if t1 € (kj, kj11),
the function D; decreases for k; < ¢t < t1 and increases for t1 <t < kj; 1. Therefore, Dy
attains its minimum at ¢y and the maximum of D; will not be attained within (k, k4 1).
If t1 & (k;,k;11), Dy is a monotone function of ¢ and hence the maximum of D; will not
be attained within (k;, ;1 1). In summary, the maximum of D; will not be attained within
(kp, kyjq) if A+2A/T >0 and B+ 2A/T > 0.

(d) If A+2A/T < 0 and B +2A/T < 0, then 2A/T < 0 because A > 0 and B > 0.
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Thus, A — 2|A|/T < 0. Using the Cauchy-Schwarz inequality, we have
S SHI S S
A<2|A|/T<Z Z (kip1 — ki) (kjar — k) (1% — Slle + 115 = 251 %)/T
1=0 j=I+1

— {(T ~ kyp1)A + kyBYT.

The above inequality implies that A/B < k;/k;y; < 1. On the other hand, B < 2|A|/T <
{(T" — kj41)A + k;B}/T, which implies that A/B > (T — k;)/(T — kj;1) > 1. This is a
contradiction. Therefore, case (d) is not possible.

By the results of (a)-(d), the maximum of D; will not attain within {k;+1,...,k;, 1 —1}

for case (3). Thus, the proof is completed. O

Proof of Theorem 6. At the beginning of the binary segmentation algorithm, we have

My [1,T) > W, [1,T] with probability one because, for any ¢ € {1,...,T — 1},
Pr(Mn[1,T] > W, [1, ) > (o, [1, T1Dpi[1, T] > Way, [1,71)
= pr{op (L TN (D1, T) = Di[1,T)) > 0,1 (1, T)or,0[1, TIWay, [1, T] = Di[1, T)) }
= 1= @{0' [1, T)(ont,0[1, TIWay[1,T] = Di[1, T} — 1,

where we used the condition W,,, = o(mSNR) in Theorem 6. Therefore, using Theorems
4 and 5, one change point in {k1,...,kq} will be detected and estimated with probability
1 because B,[1,T] = o(nDy/[1,T]) for some s € {1,...,q}. Each subsequence satisfies the
condition W,, = o(mSNR) in Theorem 6 and hence the detection continues.

Suppose we have detected less than g change points. By the assumptions in this theorem,
there exists a segment, {l1 + 1,...,l2}, that contains a change point, kg, such that W, =
o(mSNR) and By[(l1 +1),l2] = o{nDy[(I1 + 1), 2]} hold. Therefore, by similar arguments
as above, a change point will be detected and estimated consistently in the segment. Thus,
G > q. Once q reaches ¢, all subsequent segments have end points at the change points
and two boundary points 1,k1,...,kg,T. Then, by Theorem 3, My[l1,la] < Wy, with
probability one as ay,, — 0. This implies that no additional change point will be detected.

The proof is completed. 0J

62



CHAPTER 3

COVARIANCE CHANGE POINT DETECTION AND IDENTIFICATION
WITH HIGH-DIMENSIONAL FUNCTIONAL DATA

3.1 Introduction

Access to high-dimensional data has exploded in recent years due to technological im-
provements and cost reductions. High throughput technology has facilitated the collection
of genomics data, with more variables being measured than ever before. In addition, the
reductions in cost have allowed measurements to be taken over time, as is the case in time-
course microarray studies. Similarly, functional neuroimaging studies repeatedly measure a
massive number of variables throughout the duration of a medical experiment. Time-course
microarray data and functional neuroimaging data are just two examples of applications
that beget high-dimensional longitudinal, or functional, data, where a large number of vari-
ables are repeatedly measured on a small number of experimental units. Throughout this
chapter we focus on high-dimensional dense functional data, where the number of repeated
measurements is large (Ramsay 1982).

Functional magnetic resonance image (fMRI) data is an important example of high-
dimensional functional data. In a task-based fMRI study, individuals perform various tasks
while the fMRI machine records blood-oxygen-level dependent (BOLD) signals throughout
their brain. These tasks may be passive or active. For example, subjects may be shown a
movie, a sequence of pictures, or asked to respond to questions. In contrast, a resting-state
fMRI does not involve any subject engagement, but aims to investigate the brain’s functional
organization through the BOLD signal measurements. In the course of an fMRI study, the
human brain is partitioned into small uniform cubes, also known as voxels, that are about
the size of 1-3mm?. For each voxel, a BOLD measurement is recorded at each time point.

A cluster of voxels is known as a node or region of interest, where clusters can be defined for
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anatomical region of interest analysis or spherical region of interest analysis. BOLD signal
measurements are repeatedly recorded for each of about 100,000 brain voxels between 100
to 2000 times for a single subject. The number of repeated measurements typically depends
on the fMRI scanner and duration of the task-based or resting-state experiment. To enable
population inference, multiple subjects are included in an fMRI study. Rather than analyze
all 100,000 voxels, doctors may be interested in specific anatomical regions of the brain.
However, a region of interest will still have voxel BOLD signal measurements at the order
of 100. In addition to the sheer size of the data, fMRI data exhibit complex spatiotemporal
dependence. For a given subject, BOLD measurements in neighboring voxels are correlated,
as are BOLD measurements for a given voxel but across time points. The high-dimensional
and dependent structure make statistical modeling, testing, and analysis a challenge.

One major interest in neuroscience is to understand functional connectivity or dynamic
functional connectivity at an individual or group level across time points (Kundu et al.
2018). We refer to dynamic functional connectivity as the changing relationships between
spatially separated brain regions across experimental time points. In particular, we are inter-
ested in studying dynamic functional connectivity across individuals. Traditional functional
connectivity assumes stationary relationships between nodes throughout the experiment. To
characterize the functional connectivity at a given time point, the covariance matrix, or
precision matrix, of BOLD signals serve as a proxy for the within and between brain node
neural activity. As a result, dynamic functional connectivity of the brain can be explored
via a procedure that assesses covariance matrix stationarity.

The purpose of this chapter is to develop a robust statistical procedure to detect and iden-
tify change points among covariance matrices in high-dimensional functional data. Assume
Yite = (Yirt, -+ - Yitp)T is a p-dimensional random vector with mean vector p; and covariance
matrix Xy In the context of an fMRI study, Y;; (i = 1,...,n; t = 1,...,T) represents
the p BOLD signal measurements for the ith individual at the tth time point, where p, T,

and n are typically at the order of 100,000, 100, and 10, respectively. For a specific region

64



of interest in the brain or for region of interest network analysis, p may be at the order of
100. Our proposed procedure aims to answer two questions. First, does a temporal change
exist among covariance matrices? This corresponds to a covariance change point detection

problem that can be posed in the form of a statistical hypothesis test

Hy:¥X1=---=%p versus
Hy Y= =S #8yq1=" =Yy #3541 ==X, (3.1)
where 7. < T (k = 1,...,q9 < 00) are the unknown change point locations. Second, if a

temporal change does exist, can we determine its location and the locations of all possible
changes? This suggests a change point identification problem that aims to estimate the
unknown locations of 75s. Although we consider a high-dimensional setting, we do not
require a sparsity assumption for ¥, and we allow the complex spatiotemporal dependence
present in high-dimensional functional data. In the context of fMRI studies, our proposed
procedure will first determine if functional connectivity is stationary. If not, our change
point identification procedure will partition the functional data into stationary sequences
with regards to the covariance matrices.

Testing covariance matrices is a classical problem in multivariate statistical analysis.
Muirhead (2005) and Anderson (2003) detailed multivariate tests for covariance matrices,
including testing the homogeneity of several covariance matrices. However, these tests rely
on likelihood ratios, and they require the sample size to exceed the number of variables
measured. Recent work done by Schott (2007), Srivastava and Yanagihara (2010), and Li
and Chen (2012) addressed the lack of an appropriate testing procedure for covariance ma-
trices in a high-dimensional setting. More recently, Ahmad (2017) and Zhang et al. (2018)
generalized aspects of the aforementioned works to an independent multi-sample test for
high-dimensional covariance matrices. All of the research in testing high-dimensional covari-
ance matrices since Schott’s 2007 pioneering procedure have addressed the high-dimensional

challenges. However, none have focused on how to incorporate temporal dependence in a
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high-dimensional setting. Therefore, none of the previously mentioned methods are applica-
ble to high-dimensional functional data.

Researchers in neuroscience have developed a few methods to study the dynamic func-
tional brain connectivity for single patients and populations. However, in general, their
methods are ad hoc and lack the theoretical rigor to ensure a robust inference procedure.
Some neuroscience approaches were detailed in Chapter 2. Most of the existing work stud-
ies dynamic functional connectivity for an individual. For example, Monti et al. (2014)
developed a sliding window approach based on pair-wise correlations to study the dynamic
functional connectivity. Their approach was based off a single subject and is not directly
applicable to study the common dynamic functional connectivity for a population. Kundu
et al. (2018) developed a procedure to test (3.1) with the aim of studying group level brain
dynamic functional connectivity in a task-based fMRI experiment. To detect and identify
change points, Kundu et al. (2018) first compute all pair-wise correlations between p nodes
at each time point. Thus, at each time point they obtain p(p — 1)/2 sample pair-wise corre-
lations that they stack as a vector. Next, they apply a generalized fused Lasso (Tibshirani
et al. 2005) approach to the multivariate time series of sample correlations. The fused
Lasso was developed for an ordered set of covariates, and as is the case with Lasso, it also
involves a penalty parameter. To tune the penalty parameter they use a lowess fit, which
also depends on a smoothing parameter. Based on the fused Lasso, the number of change
points is a function of the penalty parameter’s value. A small value leads to more identified
change points, whereas a large value leads to a fewer number of identified change points.
In order to accurately identify all change points, they first fit the model where the tuning
parameter’s value is small, and subsequently apply screening criteria to remove any false
positive change points. In their approach they did not derive any theoretical results with
regards to change point identification consistency. Nor did they investigate the size or power
of their proposed change point detection procedure. Furthermore, their method is heavily

dependent on the choice of parameters. Our proposed procedure is free of tuning parameters
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and is theoretically rigorous.

While no methods in the existing literature are applicable to test (3.1) for high-dimensional
functional data, it is also the case that the methods developed in Chapter 2 are not appli-
cable for a few reasons. First, in Chapter 2 it was assumed that the number of repeated
measurements is small. Numerical studies considered the finite sample performance when
T =5 and 8. A real data application was conducted where T = 6. Second, the asymptotic
distribution of the test statistic and rate of convergence for the change point estimator were
derived under an asymptotic setting in which p and n diverge but with T finite. For a
large number of repeated measurements, as is the case with dense functional data, it will be
more appropriate to consider an asymptotic setting in which p, n, and T diverge. Numerical
simulation and real data applications should be based on theoretical results derived under
this new asymptotic setting and not that considered in Chapter 2. Third, the computation
complexity of the proposed procedure in Chapter 2 was not a concern for small values of n
and T'. The overall computation complexity of the change point detection procedure detailed
in Chapter 2 is O(pn4T6). To directly apply the procedure from Chapter 2 would be com-
putationally impractical, if not impossible. Thus, in this chapter we aim to address these
theoretical and computational challenges so our procedure is applicable to high-dimensional
functional data.

In addition to testing the hypotheses of (3.1), we also develop a method to estimate
unknown change points. In Chapter 2, the rate of convergence was established under an
asymptotic setting where p and n diverge but with 7T finite. In this chapter we investigate
the rate of convergence of the change point estimator where p, n, and T" all diverge. Much of
the research in change point identification considers the scenario with n = 1. For instance,
Aue et al. (2009) considered a p-dimensional multivariate time series where 7" diverges but
under the assumption that p < 7. Wang et al. (2017) considered covariance matrix change
point identification for 7" independent p-dimensional sub-Gaussian random vectors. They

also require p < T. Dette et al. (2018) proposed a two-stage covariance change point
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identification procedure based on 7' independent sub-Gaussian random vectors. Their first
step involves dimension reduction governed by a regularization parameter. In step two,
they use a CUSUM-type statistic to estimate the locations of change points. Despite these
recent advances, none of the aforementioned methods are applicable to identify change points
among covariance matrices in high-dimensional functional data.

This chapter provides both theoretical and computational contributions to the field of
statistics. From a theoretical perspective, a new asymptotic setting is considered, a setting
suitable for high-dimensional functional data, in which n, p, and T diverge. For T' diverg-
ing, the test statistic forms a stochastic process. The convergence of the finite-dimensional
distributions is not sufficient for weak convergence of a stochastic process. Thus, we extend
the finite-dimensional result to establish weak convergence of our proposed test statistic.
Furthermore, the rate of convergence with respect to the change point estimator is now im-
pacted by n, p, and T', as opposed to just n and p in Chapter 2. Our investigation reveals
that the rate of convergence depends on the data dimension, sample size, number of repeated
measurements, and signal-to-noise ratio. The change point identification estimator is shown
to be consistent, provided the signal strength exceeds the noise. To our knowledge, the
asymptotic framework in which n, p, and T all diverge has not previously been investigated
with regards to change point identification among high-dimensional covariance matrices.

From a computation perspective, we improve the efficiency of methods developed in Chap-
ter 2. This chapter considers T" to be dense, so much of our attention is focused towards
computation efficiency for those statistics that have high orders of T. We introduce two
recursive relationships and computation efficient formulae to reduce the computation com-
plexity from O(pn*T0) to O(pn®T*). A quantile approximation technique is shown to further
decrease the complexity to the order of pn?T3. The approximation accuracy is demonstrated
through simulation. These improvements are included in an R package, tecoma, which also
affords an option for parallel computing. In the absence of these modifications, it would

be impossible to apply our methods to fMRI data, or any high-dimensional data set with a
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large number of repeated measurements.

The remaining sections of this chapter are organized as follows. Section 3.2 details the
statistical model and our basic setting. Section 3.3 introduces the measure from Chapter
2 along with the unbiased estimator that is a linear combination of U-type statistics. The
test statistic’s asymptotic distribution is derived under the asymptotic framework in which
n, p, and T diverge. Computation consideration with regards to the statistics is provided in
Section 3.4. Section 3.5 introduces an estimator to identify the locations of change points
should we reject Hy of (3.1). The estimator’s rate of convergence is studied, and two pro-
cedures are detailed to estimate the locations of multiple change points. Sections 3.6 and
3.7 demonstrate the finite sample performance via simulation and investigate the brain’s
functional connectivity through a task-based fMRI data set, respectively. All proofs and

technical details are provided in Section 3.8.

3.2 Model

Suppose we have n independent individuals that have p variables recorded at each of
T identical time points. Let Y;; = (Y, ... ,Y;tp)T be an observed p-dimensional random
vector, where Yj; (i =1,...,n; t =1,...,T) is independently and identically distributed for

all n individuals. Assume Yj; follows a general factor model, where
Yie = e + T2, (3.2)

and p is a p-dimensional unknown mean vector, I'; is an unknown p x m matrix such that
m > pT, and Z;’s are independent m-dimensional multivariate standard normal random
vectors. Since var(Z;) = I, it follows that for the ith individual, cov(I'sZ;, 't Z;) = FSFtT.
We define FSF;F as Cg for different time points, s and ¢, and define FtF? as >¢. Thus, for

the 7th individual,

CStv S 7é ta
COV(Y;'& Y;t) =
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for all s,¢ € {1,...,T}. For individuals i # j, cov(Yjs, Yj;) = 0. By definition, Cs¢ and ¥y
are p X p matrices for all s,t € {1,...,T}. No specific structure is required on covariance
matrices Cg¢ and Y;. Their generality allows us to capture the spatiotemporal dependence
in and among the random vectors Yj; (i = 1,...,n; t =1,...,7T). In the context of fMRI
data, spatial dependence is present among neighboring voxels or nodes and is captured in
both Cg; and ¥;. Temporal dependence exists for the same voxel or node across time points

and is captured in matrix Cg;.

3.3 Change point detection

We consider the measure, D; (t =1,...,T — 1), defined in Chapter 2, where

t T
Dy = ﬁ YooY u{(Ss; — By (3.3)

s1=1 sg=t+1

To simplify notation, let (T — t) be defined as w(t). The choice of Dy is motivated by the
fact that we can distinguish between Hy and H; based on the maximum value of Dy for all
te{l,..., T —1}. Let T ={1,...,T — 1}. Under Hy of (3.1), max;c7 D¢ = 0, and under
Hy, maxye7 Dy > 0.

Our test statistic is constructed in the same manner as detailed in Chapter 2. We
use a linear combination of U-type statistic estimators to create an unbiased estimator of
Dy. Quantity D; can be expressed as Dy = w™1(t) 21:1 Zg;:Hl{tr(Egl) + tr(Z%Q) -

tr(ZSl 232) — tr(ZSQEsl)}. An unbiased estimator for tr(251252) is given by Us,s,, where

U8182 = U515270 - U5152,1 - U5251,1 + U5152,27 (34)
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and

~

2 T 2
PnU8132,0 - Z()/iSI)/jSQ) )

i,J
3 _ T+, +T
PrUsysg1 = Z Yis) YisoYjsyYesy
0,5k
3 _ T+, /T
FpUsysy 1 = Z YisoYisy Vis) Yisy:
0,5,k
4 _ Tv. T
PaUsys9,2 = Z YiS1 .782Y/~c81Yl$2'
i,5,k,!

In the above expressions, quantity P,lf =n!/(n — k)!, and the ~ summation notation repre-
sents the summation over mutually different indices. Thus, ZZNJ i 1s defined as the summa-

tion over ¢, 7, and k, such that ¢ # j, j # k, and k # 1. Therefore, an unbiased estimator of

Dy is
1 t T
Dnt = W Z Z (Uslsl + U5282 - U3182 - USZSl)
s51=1s9=t+1
1 t T 2
_ _1)la—b]
= o > (=D U,s,- (3.5)

In this chapter we consider a different asymptotic framework than that of Chapter 2.
Chapter 2 considered p(n) — oo as n — oo, where p is a function of n. We now consider
p(n) — oo and T'(n) — oo as n — oo, where p and T are both functions of n. No specific
functional form is required, and we do not require any specific relationships between p, T,
and n. Thus, we allow for p > n and p > T'. To establish the limiting distribution of f)nt, we

assume Conditions 1 — 2 introduced in Section 2.3 along with the following two conditions.

: : t T ¢ T : :

The notation Ziil,?, is defined as 231:1 252:t+1 Zhlzl ZhQ:t—i—lv and quantity Vp; is
1,742

given by (3.6).

CT

Condition 4. 221,52, tr4<csuhk suhy

hi,ho
Condition 5. There exists a function (k) such that ¥(k) > 0 and Y 7o ¥(k) < co. For

) =o(V@), for any u, k,v,1 € {1,2}.
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In Condition 5, < means of the same order. Thus, f(s) < g(s) implies there exists a con-
stant ¢ such that |f(s)| < c1]g(s)|, and there exists a constant ¢ such that |g(s)| < ca| f(s)]
for all s in the real numbers. Condition 5 imposes mild requirements on the spatiotem-
poral structure. Condition 4 is also a mild condition. If no temporal dependence exists,
then Vo = 251 1 232 — i1 2uwe{1,2) tr?(2g, Vs, ). Similarly, the left-hand side of Condi-
tion 4 is % s1=1 252 —ti1 Zu,ve{LQ} tr4(2g, X5, ). Furthermore, if all eigenvalues of ¥y are
bounded for all t € {1,...,T}, then V02t = {t(T — t)p®}%. In comparison, the left-hand side
of Condition 4 is of the order t(T — t)p*. As a result, Condition 4 holds.

In Chapter 2, we derived the leading order variance of Dy, that is var(ﬁnt) = agt{l +
o(1)}, where 02, = w=2(t)(4Vy/n? + 8Viy/n), and

Vor = Z Z \u vl +k—1l4 2 (CsUhszthl)v (3.6)
h11 h2 kle{l 2}

Vi = Z S leFlerf (s, — zsz)c%hk(zhl—z@)c;hk}. (3.7)
51,52> u,ke{1,2}
hi,hg

The below theorem establishes the asymptotic distribution of Dnt under the asymptotic

setting considered in this chapter.
Theorem 7. Under Conditions 1 — 2, and 4, as n — oo,
—1/( 7 d
Ont <Dnt — Dt) — N(O, 1),

where 02, = w™2(t)(4Vyy /n? +8Viy/n) and Viy and Viy are given in (3.6) and (3.7), respec-

tively.

Under the null hypothesis, it follows that J;tloﬁmg — N(0,1) in distribution, where
072115 0= w™?(t)(4Vpt /n?) and only Conditions 1 and 4 are required. To formulate an appro-
priate test procedure free of tuning parameters, consider the test statistic, M,,, of Chapter

2, where

~

M, = rtréa%m it ODTLta (3.8)
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and 0y () is a plug-in estimator for o, . Methods to construct 6;,¢ o were detailed in Chapter
2. The following theorem establishes the asymptotic distribution of M,, under the setting

where n, p, and T all diverge.

Theorem 8. Under Conditions 1, 4, and 5, Hy of (3.1), and asn — oo, My i) maxXeeT Zt,

where Zy is a Gaussian process with mean 0 and covariance R, .

We assume that as n — oo, Ry » converges to R, where I, » is a correlation matrix with
(t,q) component defined as Ry, 4 = corr(f?mg, ﬁnq). The leading order of the cov(ﬁnt, an)
is w_l(t)w_l(q)(4V0,tq/n2), where

t T q T
V=3 > > Y ¥ (—1)|“—“|+|’f—l|tr2(08uhkcgvhl). (3.9)

s1=1s :t+1h =1 ho= —|—1 u,v,
1=1s2 1=l hy=atl

In order to perform an a-level hypothesis test for (3.1), we must approximate R, » and thus
require an estimator for Vj ;4. In Chapter 2, an unbiased estimator for tr(CSUhk C’STU hl> was
given as a linear combination of U-type statistics. Let Rn,tq be an estimator for the (¢, q)
component of Ry, ..

Let W = maxycT Zt, where Z; is a Gaussian process with mean 0 and covariance R,
and define W, as the quantity such that pr(W > W,) = a. By Theorem 8, M,—W in
distribution, and an a-level test rejects the null hypothesis in (3.1) if M,, > W,. However,
there is no simple and computation efficient approach to obtain W,. The random variable
W depends on R,. Chapter 2 proposed a procedure to approximate quantile W, on the basis
of computing Rn,tq for each t,q € {1,...,T — 1}. However, the computation complexity of
this approach, in terms of T, is at the order of T* for each component. Therefore, total
complexity is at the order of 76 to compute fin’z. As a result, it is not feasible to compute
all components when 7' is large.

As an attempt to alleviate this burden, we can further approximate the distribution of

W by a Gumbel distribution. Under additional assumptions and if T" diverges, then

pr(My < v/21og(T) — log{log(T)} + x) — exp{—(2v7) L exp(—x/2)}.
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Accordingly, an a-level quantile is defined as /2log(T) — log{log(T)} + o, where xo =
—2log{—2/mlog(1l — ) }. However, the rate of convergence is at the order of log(T), which
is slow. In addition, our simulation experiments demonstrated that the size of the test was
not well controlled at the nominal level. Moreover, using an extreme value-type distribution
does not eliminate the need to compute 7, for all £ € 7. That overall cost in terms of T
is at the order T°. Hence, we carefully consider an approximation procedure in Section 3.4

that improves efficiency and maintains accuracy.

3.4 Computation of the proposed statistics

The computation complexity for the change point detection procedure is at the order
of pn4T6. To reduce the complexity, we re-formulate some of the statistics introduced in
Section 3.3 in a computation optimal manner.

The computation complexity of Us s, 1s at the order of n? due to term Us In

1522
addition, term U, 5189,1 has computation complexity at the order of n3. To save computation
cost, we can rewrite Uy, 55,1 and Uy s, 2 defined in (2.4) in a computation efficient form as

follows. First, we consider Ug which can be rewritten as

159,1
n n 92 n n
3 T T 2 T T
FpUsy sy = Z (ZYiﬂYJSz) - Z (YiﬂYJ’SQ) —2 Z Yis) YisoYjsoYhsy- (3.10)
g=1 =1 i,j=1 k#j=1
Therefore, the computation complexity of U, s19,1 regarding the sample subjects is at the

order of n2, not n3. To write U, s189,2 I @ computation efficient form, we first define Vsis9,1 =

(1/P3) D ik Yl;fl jSQ}/;lekS2. Similar to Us, 5,1, We can write Vs, 5,1 as
n n n n
3 _ T v, T /. _ T v . T v,
PiVigsya = D (D Vit iy ) (D0 YingYisy ) = D Yin Yisg ¥, Visy
J=1 =1 i=1 ij=1
n n
T v T Ty T v
- Z }981%32}/}81Yk52 - Z }281%32}/}81}952'
k=1 i#i=1

The computation complexity of V. s, 1 regarding the sample subjects is also at the order of

1525
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n“. Finally, we can write Us|s9,2 a8

P4 8182 2 = < Z 151 j82> - Pr?z)(U8182,1 + U8281,1 + 2‘/8182,1) - PT%USISQ,O

1#j=1
n
T T
- Z (1/;51}/?]82)(}/2521{781) (3'11)
i#j=1

Based on the above expression for PT%U s we can also see that the computation com-

152,2
plexity of Usysy,2 regarding the sample subjects is at the order of n2. In summary, the
computation cost of the proposed statistic Us;s, with regard to sample subjects is at the
order of n2. These computation efficient expressions can be derived in a similar manner for
Usy svhphy the term used as a plug-in estimator to primarily compute Rn,tq-

The computation complexity of Dy in (3.5) in terms of T is at the order T° 3. To reduce

the complexity in terms of T', we write Dy recursively. Let f(s1,52) = (Usysy + Usgsg —

Usysy — Usgsy) such that s1,s9 € {1,...,T}. By definition, it follows that for ¢ > 2,

- wt—1) - P
szwD n(t—1) — W kat +wTl () Y ftk). (3.12)
k=t+1

When ¢ = 1, the computation complexity of D, is at the order of T. Therefore by (3.12),
for each t € {1,...,T — 1} the computation complexity in terms of 7" is at the order T.
Since we compute Dnt for all t € {1,...,T — 1}, the total computation complexity in terms
of T is at the order of T2 rather than T2. As a result, the overall computation complexity
to compute D,y for all t € {1,...,T — 1} is at the order of pn2T2. Parallel computing can
further decrease the computation time.

The greatest cost in terms of computation is due to Rn,tq for all t,q € T, where the

complexity is at the order of pn®T® provided (3.10) and (3.11) are applied. To reduce the
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complexity, we express Rn,tq recursively. Let

k=1l7r2
g(817h17827h2) = Z ( )|u U|+| |U8u81}hkhl
u’”?
kJle{1,2}
t T q T
La)=> >, >, > glst.hisaho).
s1=1s9=t+1 h1=1ho=q+1
Thus, n2w(t)w(q)f/07tq/4 = h(t,q). Suppose the quantity h(t,q — 1) is known for ¢ €
{1,...,T =2} and g € {2,...,2 — 1}. For a fixed t,

-1 T
h(t,q) = h(t,q — 1) Z Z g(t,j, k,q) + Z Z (t,q,7,k). (3.13)

j=t k=t+1 j=t+1k=q+1

An analogous recursive formula can be derived to traverse a fixed column where h(t — 1, q)
is known and we want to compute h(t,q). Based on the recursive formula in (3.13), the
computation complexity in terms of T is at T2. By the definition of Rn,tqa le’l, Rn,l,T—lv
}A‘Zn,T,l’T,l can each be computed at the computation complexity in terms of 7" at the order
T2 Therefore, based on (3.13) and the fact that we must compute Z%nﬂgq for all ¢t < ¢, the
overall computation complexity for Rn, . is at the order np?T*. Despite this reduction, the
complexity can further be improved via linear interpolation on a sparse form of }?n’ 2

Rather than compute ]A%n,tq for all t,q € {1,...,T — 1}, we can compute h = (b + I)
off-diagonals of the matrix and interpolate the remaining values. Let b be the number of
consecutive off-diagonals immediately following the main diagonal, and let I be the num-
ber of off-diagonals computed at a fixed interval after the b consecutive off-diagonals. Let
diag(ﬁ’ml’cﬂ_l) be the dth off-diagonal, where d € {1,...,7 — 2}. For an efficient approx-
imation of f%nﬂz, first compute Rn,l,l- Next, apply (3.13) to compute diag(f%n’l,g),...,
diag(f%n’l’b) for the corresponding b off-diagonals. Lastly, apply formula (3.13) to compute
diag(f%ml’ ) ,diag(RmL II) that correspond to the I off-diagonals at a fixed interval.
Each of these I off-diagonals has an initial computation in terms of T at the order T3.
Parallel processing can be utilized to start each off-diagonal’s computation independently.

The overall complexity in terms of T, will be at order hT® to obtain a sparse version of
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}A%n,z. Linear interpolation is then used to estimate the components not computed. Based
on our simulations, linear interpolation results in a negligible loss in power, and the size
remains near the nominal level. Full simulation results for the linear interpolation method

are available in Section 3.6.

Null hypothesis Alternative hypothesis
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Figure 3.1: Accuracy of linear interpolation for ]:En,tq. Black circles represent leq for all
g€ {l,...,T —1}. Red triangles represent the corresponding interpolated values.

Figure 3.1 illustrates anl,q for all ¢ € {1,...,7 — 1} and the corresponding interpolated
values based on parameters b = 20 and / = 8. The fixed interval for off-diagonals was set
to ten. The accuracy of the linear interpolation is evident under the null and alternative
hypotheses. Therefore, the computation complexity in terms of 71" for Rn,tq can be reduced
from T to hT3. In Chapter 2, the overall computation complexity to approximate the quan-
tile was at the order pn*T%. From the recursive formulae and estimation procedure via linear
interpolation, the overall computation complexity to estimate R, , is reduced to pn2T3, and
thus, making our change point detection procedure applicable to high-dimensional functional

data.
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3.5 Change point identification

If the data leads us to the conclusion to reject Hy of (3.1), then a second task is to identify
the time points where changes exist among the 7' high-dimensional covariance matrices.
First, consider the case with only one change point. Let 7 be the time point where the single

change point exists. Define 7 as an estimator for the change point’s location, where
# = argmax D , 3.14
g e nt ( )

and 7 = {1,...,T — 1}. The form of the estimator is motivated by Theorem 4, which
states that Dy is maximized at the time point ¢ = 7 when a single change point exists at 7.

Consider the hypotheses

Hy: Y1=---=Xp versus

Hf: Y11= =3:#%41=--=2. (3.15)
The following theorem establishes the rate of convergence for 7.

Theorem 9. Assume that H{ of (3.15) is true. Also, assume that as T — oo, 7/T — w, a

constant. Under Conditions 1 — 2, and 4, it follows that as n — oo,

Tog(T
For= Op{—”maXnA;’g( ) 3 (3.16)

where Vmax = Maxyc7 Max («/V() ,\/nvlt) and Ay = tr{(X1 — Yr)2}.

Theorem 9 demonstrates that the change point estimator, 7, is consistent for high-
dimensional functional data, provided that Ap/vmax > +/log(T)/n. Quantity A, can
be interpreted as the signal, and quantity vmpmax can be interpreted as the noise. Thus,
if Ymaxy/10g(T)/(nAp) — 0, 7 is a consistent estimator for 7.

To investigate the impact of n, p, and T" on the rate of convergence of 7 we consider each

in turn. Assume p and T are fixed as n — co. As a result, the rate of convergence for 7 — 7

is Op(1/y/n) since Ay, \/1og(T'), v/Vor, and /Vi¢ are held constant. If we assume T is fixed
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as n and p diverge, then the rate of convergence is the same as that proved in Theorem 4.
This rate can be faster than 1/4/n depending on the contributions of Ap and vmax. Next, if
we assume p is fixed as n and 7" diverge, then 7 — 7 = Op{umax\/m / \/ﬁ} Depending
on the relationship between A;, and vmax, the rate of convergence can be much faster than
m /v/n as p, T, and n all diverge. As p increases, Y1 — Yp can possibly contain
more nonzero components, so A, could get larger. However, as p and T' increase, Vmax
increases. Therefore, if vmax does not dominate A;, we obtain a faster rate of convergence
than \/log(T)/v/n. Despite the fact that the estimator in (3.14) is the same as that proposed
in Chapter 2, the rate of convergence for the estimator is very different with regards to the
asymptotic framework in which n — oo, p — oo, T' — o0.

Assume Hj of (3.1) is true for multiple change points. First, we introduce two procedures
to identify the locations of multiple change points, and then introduce a theorem with regards
to the consistency of estimating multiple change points.

Let @ = {1 <7 <--- < 73 < T} be the collection of all the true ¢ change points,
and let O be the estimated set of change points. We make use of the notation in Chapter 2
and define for time points t1 < to, S[t1, t2] is the statistic S calculated based on the data in
time interval ¢1 through to. For example, vmax[t1, t2] is the quantity based on data between
t1 and t9. To identify multiple change points we apply binary segmentation (Venkatraman

1992). The binary segmentation algorithm is detailed follows.

Step 1: Compute Mj, and compare it with W,. If M, > W, then & = argmax;c1 Dnt
is the estimated change point, and set & = 71 so Q = {71}. Partition the full data set
into two intervals: [1, 4] and [k + 1, T] and proceed to step 2. However, if M,, < W,
then no change points exist.

Step 2: Perform the detection procedure to test (3.1) using Y'[1,4] and Y|4 +1,T]. If Hy is
rejected based on Y1, ], then identify &1 = arg maxe(q 4] ﬁnt[l, k] as a change point.

Since k] < 71, set 71 = &1 and 79 = & so O = {71, T9}. Partition the data Y'[1, ] into
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two intervals: [1, /1] and [&1 + 1, &]. If Hy is not rejected, then no change points exist
in the interval [1,k]. Repeat this procedure for the data based on interval [& + 1, 7.
Set Q is then updated to contain the ordered change points. If no change points are

detected in either interval, then stop, as & is the only change point that exists.

Step 3: If a change point is identified in at least one interval in step 2, repeat step 2 until

no further change points are detected. At each step update and order set 0.

At the conclusion of the binary segmentation procedure we can partition the interval [1,T] so
each sub-interval will consist of end points from the set {1, o,T }. For example, if no change
point is identified, then the single interval is [1,7T]. If a single change point is identified at
7, then two intervals where no change points exist are [1, 7] and |7, T.

The computation time to identify multiple change points exceeds the time to detect
the existence of change points. If parallel computing is available, then the computation time
required to identify multiple change points can be improved via a more efficient identification
procedure when compared to the steps outlined for binary segmentation. The improvement
stems from the fact that the time to compute Dnt is less than the time required to test (3.1)

for a given time interval. An efficient parallel procedure is detailed below.

Step 1: Perform binary segmentation by partitioning at argmax;c I Dnt[[t], where [ is
the considered time interval of data. Change point detection is not performed at this
step. Binary segmentation continues until all intervals are either of the form [a,a] or
la,a 4+ 1], where a € T. Suppose there exist N total intervals at the conclusion of

binary segmentation.

Step 2: For all N intervals of length at least one, apply the change point detection procedure
to test (3.1) in parallel. If Hy is rejected for a given interval, then a change point exists
and is estimated at the point argmaxey, Dyy[ly] from step 1. Update Q for each

identified change point.
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Hence, the computation time required to identify multiple change points will only slightly
exceed the time to perform change point detection on the longest interval [1, 7.

To establish the consistency of O we first define some notation. Let I; be a time interval
such that Iy = [, +1, 7], where a+1 < bsuch that a € {0,...,g—1}and b€ {2,...,¢+1}.
Define 79 = 0 and 744+ = T'. Thus, I} is an interval with at least one change point. Assume
the smallest maximum signal-to-noise ratio among all segments I; is as defined in Chapter

2, where miny, max ey, 0';7_18 ollt] Drg[I¢] is denoted as mSNR.

Theorem 10. Assume that 1./T converges to wy, as T diverges, W, = o(mSNR), and for
any interval It, vmax[It]\/1og(T)/(nAp[lt]) — 0. Furthermore, assume oy — 0. Therefore,

under Conditions 1 — 2, and 4, asn — 0o, QO — Q in probability.

In the existence of change points, the assumption that Wy,, = o(mSNR) ensures the con-
sistency of the proposed test at each phase of binary segmentation. In the absence of change
points, the assumption that a,, — 0 ensures no change points will be detected and binary seg-
mentation will stop on the given interval. The assumption that vmax[I¢]/log(T)/(nAp[I]) —

0 ensures that in the existence of change points, the estimator is consistent.

3.6 Simulation studies

In this section, we present multiple simulation studies to demonstrate the performance
of the change point detection and identification procedures in a large p, large T', and small

n setting. All data were generated from a multivariate linear process,

L
Yie= > Apbigony (i=1...,n; t=1,....T), (3.17)
h=0

where A; p, is a p X p matrix, and fi(t— p) are p-dimensional multivariate normally distributed

random vectors with mean 0 and covariance I,. The data generation scheme given by (3.17)
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permits spatial and temporal dependence. Let t > s. By definition of Yj; in (3.17),
L
SRR R N I
0, t—s> L.
Spatial dependence occurs among the vector Yj; for a given time point t. Temporal de-
pendence exists among {Y;-t}?zl at different time points and is governed by the simulation
parameter L.

In the simulation studies, we set n = 40, 50 and 60, and p = 500, 750 and 1000. The num-
ber of repeated measurements, 7', was set to be 50 and 100. For change point identification
we considered an additional case with 7" = 150. The simulation parameter L = 3.

Simulation results reported in Tables 3.1 — 3.4 were based on 500 simulation replications,
and simulation results in Tables 3.5 and 3.6 were based on 100 simulation replications.

The spatial and temporal dependence incorporated in (3.17) depends on the choice of
matrices Ay j,. First, we define matrices 4 j, for the testing simulation to demonstrate the
size and power of the proposed test procedure. Later, matrices A, will be defined for the
change point identification simulation.

Let 71 be the true underlying change point among the covariance matrices such that

71 = |T/2], where |x] is the floor function. Define two matrices, By and Bo, such that

B ={(06)" (i - | <p/5)},
By = {(0.6+8) (i - 5l < p/5)}.

where (i, 7) represents the ith row and jth column of the p x p matrices By and Bs. Thus,

for h € {0,...,3}

By, te{l,...,m};
App =
Bs, te{rn+1...,T}
Parameter § in B9 governs the signal strength in terms of how different the covariance

matrices are before and after the change point at time 7;. When 0 =0, By = By and A;
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is the same for all ¢, and the null hypothesis is true. If 6 > 0, then the null hypothesis is
false, and 7 is the true covariance change point. For the change point detection simulation,

0 was set to 0.00,0.025,0.05 and 0.10.

Table 3.1: Empirical size and power of the proposed test, percentages of simulation
replications that reject the null hypothesis

T =50 T =100
p p

§ m 500 750 1000 500 750 1000
40 44 46 38 36 54 44
O(size) 50 4.8 40 36 20 46 4.0
60 3.8 42 28 54 36 56

40 134 134 108 180 19.0 18.0

0.025 50 17.0 19.2 17.0 30.6 27.2 304
60 26.4 26.0 274 47.0 41.6 416

40 96.0 97.0 98.0 100 100 100

0.05 50 100 100 100 100 100 100
60 100 100 100 100 100 100

40 100 100 100 100 100 100

0.10 50 100 100 100 100 100 100
60 100 100 100 100 100 100

Table 3.1 demonstrates the empirical size and power of the proposed test procedure.
The size is well controlled at the nominal level of 0.05 for all values of n, p, and T'. For a
fixed p and T, as n increases the power increases. Likewise, as ¢ increases, the power of the
change point detection procedure increases. For a fixed n and p, the power increases as T’
increases. These relationships are further elucidated when simulation results from Table 2.1
under Setting (I) in Section 2.5 are considered. For example, when n = 40, p = 500, and
0 = 0.05, we observe that the power of the test is 21.4, 35.6, 96.0, and 100 as T is 5, 8, 50,

and 100, respectively.
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Table 3.2: Empirical size and power of the proposed test for 7" = 100, percentages of
simulation replications that reject the null hypothesis, quantile computed from a
correlation matrix that used linear interpolation. The first 5 off-diagonals were computed
exactly as well as the last w components for each row

w=2>5 w =10 w = 20
p p p

) n 500 750 1000 500 750 1000 500 750 1000
40 34 438 42 34 48 42 34 5.2 4.2
O(size) 50 2.0 4.6 3.8 20 4.6 40 20 46 4.0
60 48 3.2 50 4.8 3.2 50 52 38 5.6
40 178 190 176 178 19.0 176 178 19.0 17.6
0.025 50 30.8 26.2 30.2 30.8 26.6 30.2 30.8 26.6 30.2
60 46.6 40.8 41.0 46.6 40.8 41.0 46.6 41.2 41.0
40 100 100 100 100 100 100 100 100 100
0.05 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100
0.10 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100

Table 3.3: Empirical size and power of the proposed test for 7" = 100, percentages of
simulation replications that reject the null hypothesis, quantile computed from a
correlation matrix that used linear interpolation. The first 10 off-diagonals were computed
exactly as well as the last w components for each row

w=2>5 w =10 w = 20
p p p

0 n 500 750 1000 500 750 1000 500 750 1000
40 34 5.0 42 34 5.0 42 34 5.2 4.2
O(size) 50 2.0 4.6 40 20 4.6 40 20 4.6 4.0
60 4.8 3.2 50 48 34 50 5.2 3.8 5.6
40 180 19.0 176 180 19.0 176 180 19.0 17.6
0.025 50 30.8 26.6 30.2 30.8 26.6 30.2 30.8 26.8 30.2
60 46.6 40.8 41.0 46.6 40.8 41.0 46.6 41.2 41.0
40 100 100 100 100 100 100 100 100 100
0.0 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100
0.10 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100
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Table 3.4: Empirical size and power of the proposed test for 7' = 100, percentages of
simulation replications that reject the null hypothesis, quantile computed from a
correlation matrix that used linear interpolation. The first 20 off-diagonals were computed
exactly as well as the last w components for each row

w=2>5 w =10 w = 20
p p p

) n 500 750 1000 500 750 1000 500 750 1000
40 3.6 5.2 42 36 52 44 36 5.2 4.4
O(size) 50 2.0 4.6 40 20 46 40 20 46 4.0
60 52 34 56 52 3.4 56 52 38 5.6
40 18.0 19.0 176 180 19.0 17.8 180 19.0 18.0
0.025 50 30.6 26.8 30.2 30.6 26.8 304 30.6 27.0 304
60 46.8 40.8 41.0 47.0 414 414 466 414 41.6
40 100 100 100 100 100 100 100 100 100
0.05 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100
0.10 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100

Tables 3.2 — 3.4 demonstrate the empirical size and power of the proposed test procedure
using a modification of the quantile approximation procedure introduced in Section 3.4.
Rather than compute Rn,tq forall t,q € {1,...,T — 1}, we compute the first b off-diagonals
and the last w columns of Rn,tq- The remaining values were imputed via linear interpolation.
Figure 3.1 demonstrates the accuracy of this linear interpolation procedure. Simulations
considered b = 5, 10 and 20, and w = 5, 10 and 20. Based on our simulation results,
there is only a minimal loss in power when compared to computing all components of Rn,tq-
Furthermore, the size of the test is well maintained at the nominal level of 0.05.

To evaluate the performance of the change point identification procedure through binary

segmentation, consider two change points: 71 and 19. Let 71 = |T/2], and let 79 = 71 + 2.
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Define three matrices, By, B9, and Bj, such that

By = {(li= 3l + ) 721(i = jl < p/5)},

By = { (i —jl+0+ 1) 21(i — j| < p/5) },

By = {(li—jl+ 20+ 1) 21(li = jl < p/5) },

where (7, j) represents the ith row and jth column of the p x p matrices By, Bo, and Bsj.

Thus, for h € {0,...,3}

By, t e {1,...,7’1};
Atph=19 B2, te{m+1...,m}
By, te{m+1....T}

When ¢ = 0, the null hypothesis is true, and A; j, is the same for all t € {1,...,T}. Since
our purpose is to demonstrate the finite sample accuracy of change point identification, we
do not consider a null hypothesis setting in which § = 0. The values of § were selected to be
0.15, 0.25, and 0.35.

Two measures were considered to evaluate the change point identification procedure’s
efficacy: average true positives and average true negatives. For each simulation replication
there exists two true change points at time points 7 and 79, and there exists T — 3 time
points where no change point exists. The average true positives are defined as the average
number of correctly-identified change points among 100 simulation replications. Similarly,
the average true negatives are defined as the average number of correctly-identified time
points where no covariance change exists among 100 simulation replications.

Table 3.5 provides the efficacy of the binary segmentation procedure in the large p, large
T, and small n setting. For fixed p, n, and T, the average true positives and average true
negatives approach two and 7' — 3, respectively, as ¢ increases. As the sample size increases,
the average true positives and average true negatives approach their optimal values. Table

3.6 contains the corresponding standard errors for the measures in Table 3.5.
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Table 3.5: Average true positives and average true negatives for identifying multiple change
points using the proposed binary segmentation method. The maximum number of true
positives for a given replication is 2. The maximum number of true negatives for a given
replication is 7' — 3

0=0.15 0=0.25 0=0.35

T D n ATP ATN ATP ATN ATP ATN
40 1.20 46.76 1.68 46.48 197 46.62

500 50 1.41 46.68 191 46.42 2.00 46.63

60 1.57 46.58 1.98 46.52 2.00 46.61

40 1.30 46.78 1.77 46.51 2.00 46.59

50 750 50 1.33 46.66 1.95 46.53 2.00 46.70
60 1.57 46.58 1.99 46.53 2.00 46.64

40 1.27 46.76 1.81 46.61 195 46.59

1000 50 1.48 46.67 195 46.58 2.00 46.76

60 1.65 46.51 1.99 46.69 2.00 46.59

40 1.27  96.75 1.74 96.56 198 96.54

500 50 1.31 96.67 1.92 96.54 2.00 96.44

60 1.62 96.70 1.99 96.56 2.00 96.46

40 1.22 96.76 1.85 96.59 198 96.54

100 70 50 1.33 96.59 196 96.51 2.00 96.54
60 1.60 96.59 1.99 96.55 2.00 96.42

40 1.20 96.80 1.74 96.52 198  96.59

1000 50 1.34 96.64 1.90 96.50 2.00 96.49

60 1.59 96.50 2.00 96.58 2.00 96.44

40 1.19 146.76 1.73 146.53 1.97 146.48

500 50 1.34 146.68 195 146.55 2.00 146.40

60 1.54 146.51 2.00 146.57 2.00 146.53

40 1.16 146.84 1.73 146.58 197 146.46

150 750 50 142 146.64 1.97 146.55 2.00 146.52
60 1.56 146.45 1.98 146.42 2.00 146.55

40 1.20 146.80 1.72 146.49 1.97 146.51

1000 50 1.46 146.70 1.92 146.50 2.00 146.47

60 1.53 146.56 1.99 146.56 2.00 146.51
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Table 3.6: Standard errors for average true positives and average true negatives given in
Table 3.5. The maximum number of true positives for a given replication is 2. The
maximum number of true negatives for a given replication is 7" — 3

0=0.15 0=0.25 0=0.35
T D n ATP SE ATN SE ATP SE ATN SE ATP SE ATN SE
40 0.40 0.62 0.47 0.52 0.17 0.49
500 50 0.49 0.53 0.29 0.52 0.00 0.49
60 0.50 0.55 0.14 0.50 0.00 0.55
40 0.46 0.42 0.42 0.50 0.00 0.61
20 750 50 0.47 0.48 0.22 0.50 0.00 0.46
60 0.50 0.55 0.10 0.56 0.00 0.50
40 0.45 0.55 0.39 0.51 0.22 0.50
1000 50 0.50 0.47 0.22 0.50 0.00 0.43
60 0.48 0.63 0.10 0.47 0.00 0.67
40 0.45 0.50 0.44 0.50 0.14 0.52
500 50 0.47 0.47 0.27 0.50 0.00 0.50
60 0.49 0.48 0.10 0.52 0.00 0.54
40 0.42 0.50 0.36 0.51 0.14 0.50
100 750 50 0.47 0.55 0.20 0.50 0.00 0.50
60 0.49 0.49 0.10 0.50 0.00 0.78
40 0.40 0.43 0.44 0.50 0.14 0.55
1000 50 0.48 0.50 0.30 0.52 0.00 0.50
60 0.49 0.61 0.00 0.50 0.00 0.61
40 0.39 0.43 0.45 0.56 0.17 0.56
500 50 0.48 0.47 0.22 0.50 0.00 0.53
60 0.50 0.52 0.00 0.50 0.00 0.52
40 0.37 0.40 0.45 0.50 0.17 0.58
150 750 50 0.50 0.50 0.17 0.52 0.00 0.56
60 0.50 0.58 0.14 0.52 0.00 0.56
40 0.40 0.40 0.45 0.50 0.18 0.52
1000 50 0.50 0.46 0.27 0.67 0.00 0.63
60 0.50 0.54 0.10 0.52 0.00 0.50

3.7 An empirical study

Human memory has been studied through fMRI experiments in the context of discrete
and continuous activities. One goal of neurologists is to better understand perception and
memory processes in humans as they experience continuous real-world events (Baldassano
et al. 2017). Event segmentation theory, posited by Zacks et al. (2007), poses that under

certain conditions, humans generate event boundaries in memory during continuous percep-
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tion events. Thus, humans may partition a continuous experience into a series of segmented
discrete events. Baldassano et al. (2017) investigated event boundary detection and con-
cluded that long-term memory in humans is structured as a series of hierarchical discrete
events. Moreover, Schapiro et al. (2013) suggested that event boundaries are formed around
changes in functional connectivity. In this section, we apply our method to the task-based
fMRI data set analyzed in Baldassano et al. (2017) and Chen et al. (2017) in order to
study the brain’s dynamic functional connectivity. In the presence of brain dynamic func-
tional activity, points of change may represent these event boundaries as suggested in the
aforementioned neuroscience literature.

We apply our proposed method to a task-based fMRI data set collected by Chen et al.
(2017), where they investigated the effects of memories across different individuals. The
experiment involved 17 participants that each watched the same 48-minute segment of the
BBC television series Sherlock while undergoing an fMRI scan. The 48-minute segment was
the first 48-minutes of the first episode in the television series. None of the participants
had watched the series Sherlock prior to the study. Chen et al. partitioned the television
episode into a 23-minute segment and a 25-minute segment. Each segment was prepended
by a 30-second cartoon to allow the brain time to adjust to new audio and visual stimuli.
Including an unrelated cartoon prior to studies such as this is common practice as it reduces
statistical noise. Subjects were instructed to watch the television episode as they would
watch a typical television episode in their own home. The fMRI data were gathered from
a Siemens Skyra 3T full-body scanner. More details about the experiment and processes of
acquiring functional and anatomical images are provided in Chen et al. (2017).

The 48-minute segment of Sherlock resulted in 1,976 time point measurements of data.
For each participant, the fMRI machine acquired an image the participant’s brain every 1.5
seconds. To demonstrate our proposed method, we analyzed the first 100 time points which
equates to the first 150 seconds of the Sherlock episode. Let Yj; be the BOLD random vector

for the 268 nodes of the ith individual at time t. Thus, Y;; (i = 1,...,17; t = 1,...,100)
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is a 268-dimensional random vector. A node, or region of interest, represents a collection
of voxels. The 268 node parcellation was performed according to Shen et al. (2013), where
voxels groupings ensure functional homogeneity within each node, making it ideal for node
network and dynamic functional connectivity analysis. Figure 3.2 illustrates the 268 Shen
node parcellation along with large-scale node groupings. Node-level analysis decreases the
data dimensional and allows for more interpretable results. For further details on the benefits

and processes of Shen node parcellation, we refer readers to Shen et al. (2013).

1. Medial frontal

Figure 3.2: Shen 268 node parcellation. This image was obtained from Finn et al. (2015).

In our analysis n = 17, p = 268, and T" = 100. Based on (3.1) — (3.2), we assume
that at each time point there exists a common population covariance matrix among all 17
individuals. Our assumption is not unrealistic given this task-based fMRI experiment. In
Chen et al. (2017) and Baldassano et al. (2017), they found that an across-subject design
was appropriate due to consistent stimulus-response across patients for a given brain region.

Under model (3.2), we applied our procedure to test (3.1). Based on the test statistic
value, M,, = 3.6596, we rejected Hy of (3.1) as the p-value was less than 0.001. Hence, we
rejected the claim that the covariance matrices were stationary for all 7' = 100 time points.

Accordingly, we applied binary segmentation to identify all significant change points among
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99 possible points of change. Our proposed method identified 17 locations of significance.
Change points were located at time points 2, 25, 36, 39, 40, 41, 42, 58, 60, 61, 63, 81, 83,

88, 89, 91, and 92. A change point at time two implies that 1 = X9 #£ 33,

Table 3.7: Identified change points in the Sherlock fMRI data set. Range of time points
preceding the identified change point where the covariance matrices are temporally
homogeneous. An interval ID provides a reference to Figure 3.3

Change point Interval Homogeneous interval

2 1 1, 2]

25 2 3, 25
36 3 26, 36]
39 4 37, 39]
40 5 [40, 40]
41 6 [41, 41]
42 7 42, 42]
58 8 [43, 58]
60 9 [59, 60]
61 10 [61, 61]
63 11 62, 63]
81 12 64, 81]
83 13 82, 83]
88 14 34, 88
89 15 89, 89)]
91 16 90, 91]
92 17 92, 92]

Figures (3.3) illustrates these temporal changes among covariance matrices around the
identified change points listed in Table 3.7. Each subplot is the average correlation between
nodes across the time interval where the covariance matrices are homogeneous. Thus, in
Figure 3.3, Interval 1 represents the correlation network based on the average correlations
between nodes over time interval [1,2]. Interval 2 represents the correlation network based
on the average correlations between nodes over time interval [3,25]. Table 3.7 details the
time interval corresponding to the temporal homogeneous covariance matrices preceding
each identified change point. Therefore, given that a change point was located at t = 2,
the correlation network of Interval 1 compared to Interval 2 should be significantly different.

Correlation network layouts are structured according to the eight large-scale node groupings
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illustrated in Figure 3.2. The top-centered circle consists of nodes within the medial frontal
group. Moving clockwise on a given sub-plot, the remaining circles represent frontoparietal,
default mode, subcortical-cerebellum, motor, visual I, visual II, and visual association.

The identified change points in Table 3.7 coincide with interesting events in the television
episode Sherlock. For example, the first change point at ¢t = 2 may be a reaction to initial
stimuli of the cartoon. The brain must process this initial video and audio stimuli. At
approximately 37 to 38 seconds into the series Sherlock the cartoon ends, and a graphic
war scene commences. Guns are fired, casualties are shown, but there is no distinguishable
dialect. The transition point from cartoon clip to battle scene coincides with the change point
identified at t = 25. After this war scene a period of quiet ensues. The first understandable
dialect from actors occurs at approximately two minutes and 11 seconds into the episode. At
this time, a therapist inquires about a patient’s well-being as the viewer learns the opening
war scene was a flashback. Change points identified at 88, 89, 91, and 92 equate to the start

of this conversation.
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Interval 2

Interval 13 Interval 15

Interval 4

Interval 16

Figure 3.3: Correlation networks based on an average over a time interval in which the
covariance matrices are homogeneous. Each circle is comprised of 67 Shen nodes. Solid
lines represent a positive correlation, and dashed lines represent a negative correlation. The
darker the line the stronger the correlation between nodes. A correlation threshold value of

0.70 in absolute values was used.
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3.8 Technical details

This section contains proofs of lemmas and the main theorems. Some of the expressions
are rather long. Thus, for readability, an equation will not always be aligned with the initial

equality sign.

3.8.1 Proofs of lemmas

First, we provide proofs for some lemmas that will be used in the proofs corresponding to

the main theorems.

Lemma 7. Let Yig . = ’ysTakzi, where z; is a standard multivariate normal random vector,

and 7;rak 1s known. Then

- vk 0 W lk
E(YisakyésalY%rch%rcnY%ueOY%uepYimqu;xgw) -~ ESQEﬁfzgezz5+E E;LCmeq Cor

Sa UeZqg Tgue

+xlkshocnd, cwm sk sidone ob + Simehl Ol Ok

Sa Tcxg .’I}g’l“c TcUue Saxg .’I}gSa

+ xpmypdclo

k 0 \~WQ k
c g Sau605esa+2562$gom Cr,

SaTc~TcSa

+Clm an C«ggxgcwo

Salc~TecSa LUgUe

lo pk ng wm lg wk  ~mo  ~PM lk ~mo pq wm
+ Csauecuesacrciﬂgcmgrc + CSangngsaCrcueCUeTc + ESGOTCueOuengWC

+ynmclo

Sale

ol cwk _'_Eﬁgclm cna - cwk +le1/gclm C«;Lcouecrpk

Uel’g xgsa SaTc Tcl’g -rgsa Sare UeSq

ka +Clm qu CU)O Cpk +CZO

Sare T’ch l‘g'LLe UeSq SqlUe

+Clm Cno Cpq

pm nq wk
Sarec >~ Tclue ’U,e:l?g {EgSa Cuercc C

Tcl’g SUgSa’
lk T T
where ZSa = Vol Ysak and Cﬁgxg = YueqVrgq-

Proof. Let A1, Ag, A3, and Ay be any matrices of appropriate dimensions. Assume z; is a
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standard multivariate normal random vector. By the results of multivariate analysis

E(ZZT ArzizT AgzizT AgziT AM) — tr(Aq)tr(Ag)tr(As)tr(Ag)
+ [tr(An)tr(Ag)tr(Ag A + AgAT) + tr(A1)x(Ag)tr(As Ay + Ao AT)
+tr(Ap)tr(Ag)tr(Ag Az + A9 ALY + tr(Ag)tr(Ag)tr(A1 Ay + A1 AT)
+tr(Ag)tr(Ag)tr(Ar Az + A1 AF) + tr(Ag)tr(Ag)tr(Ar Ag + Alfg)]
+ [tr<A1A2 + A1 AT )tr(AgAy + AgA]) + tr(A1 Az + AL A )tr(Ag Ay + A AY)
(A Ag + AL A] (A Ag + ApAT)| + [bx(Av)er{(As + AT)(4g + A)(Ag + A])}
+tr(Ag)tr{(Ay + A )(As + A3)(Ag + A])}
+tr(Ag)tr{(Ay + Af )(Ag + A3)(Ag + A])}
+ tr(Ag)er{(Ar + AD)(As + D) (A5 + A])} ]
+ [tr{(A1 + A])(Ag + AD) (A3 + AD)(As + A])}
+tr{(A1 + A7) (Ag + AT)(Ag + A]) (A3 + A])}

+ tr{(Ay + AT)(Ag + AT)(4g + D) (Ag + AT} ).

By the definition of Yj.., E{Yisak‘YisalY;T‘cmyircnyiueoyiuepyixgqyizgw} =
E {zinyS akvglziszrcmvg nziziT’yueO’yg epzizfyxgqygngi}. Thus, making the appropriate

substitutions for Ay, Ao, Ag, and Ay, it follows that

(Eg a ’U,e.I'g xgue

Ik <po ~ngq wm Ik vwWq ~mo  ~pm nms-po ~lq wk

+xmmeydcle bk, +shosydctm cnk oclm onk obt, o

SaTc ~TcSa SaTc ~TcSa ’U,exg SCg’LL@

+ Ol Ol O, CBm 1 O, Wk omo, oh, + sk one, ohd, cum

’I“c.’l?g LEQT‘C Sal‘g IgSa Tcue Tcue ’U,exg SCgTC

nm ~lo Pq wk PO ~lm  ~ng wk wq ~lm  ~no pk
+ St Ohly k4 shoctm, opd, cwk + spdclm one, Ch,

Im ,mo g wk Im ~nq wo Pk lo oM ~NG  ~wk
+ CsarcOTcue Ouel‘goa:gsa + Csarccrcwgcxguecuesa + Osaueouercorciﬁgoa:gsm
lk _ T Pq _ 7T
where g = 7, 175,k and Cuerg = YueqVrgq- O
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Lemma 8. Let Vs,s, (i,5) = (Y1 Y,

sa jsb)2’ where sq, Sy, Te, T, Ue, Uf, Tg, vy, € {1...T — 1}

and i # j. Then

E{Vsasb(iaj)vrcrd(iaj)VueUf(iaj)Vachh(iaj)} = Hl + 7'[2 + H3 + H4 + HS + H6
+Hr+Hs +Hg+Hig+ Hi1 + Hio

+ Hig + Hia + His + Hig + Hir
where Hy, k € {1,...,17} is given below.

My = [tr4(22) + 2 (St (DC0 g, DCpu ) + 12 (B2 00(SCr g SCiy )
+ (S 0(EC gu B Cu pry) + 01 (52)00(ECs2, £C0 5,)
+ 7 (22)tr(2Clsy 7ZCussy) + 2 (82)tr(ECsyr, Cr 1)
+ tr(EC’SbrdEC’rdsb)tr(ECuthZthuf) + tr(EC’SbufZC’ufsb)tr(ECrdththrd)
+ tr(SCsyay, £Cay )1 (ECr qu ¢ ECu ) + t0(E2)0(ECh gy, ECapu s £ Cu pry)
+tr(S3)tr(SCsyzy, XCoy u 75Cupsy) + tr(2%)tr(ECsy 2y, BCo 1y ECrs,)
+ +tr(22)tr (DCsu $5Cu g =Crysy) + t1(SCsyap, BCapu s ECu 41y =Crys,)

Hy — [trZ(EZ)tr(EC’uexgEC’xgue) + 1 (Z3) 1 (Cugag Capyu )
+ t2(5%)tr(ZCr 4y, Crguie ZCucing Cyry)
+tr(Z%)tr(2Cr yu CuuergECagueCupry) + tr(52)tr(SCsy ), Corgue SCuciyCuy )
+tr(2%)tr(2Clyu Cucag=CagucCussy) + tr(ECsyr ECr s )1 (ECucag ECrguc )
+ t1(SCsyr 2Cr sy i1 (Cugarg Capu )
+ t1(8Csu ; Cuerg Cryr g BCr gy, Crgue Cu psy)
+ t1(XCsp), Crgue CufrdZCrduf CueagCurysp)

+tr(S%)tr(2Cr i, Cir gue C 1) (CueagCopu )
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+ tr(5%)tr(ECsy), Crgue Cu g5, )88 (Cugarg Corpu )
+ tr(SCsy2;, Cague ZCuerg Cyyry =Crysy)

+ t1(SCsyu s Cuerg ECague Cu prg ECrysy)

+ t2(ECsy Crgue Crqu s ECr sy, )0 (CucargCanpu )
+ t1(ZCsu Cuerg Oy g =Cr sy, )00 (Cugrg Crpu ;)

+ tr<ECsbxh C:z:gue Cufsb)tr(zcrdujc Cuel’g Cashrd)

My = [trQ(ZQ)tr(ECrcngngrc) + tr2(52)6e (Crgag Capry)
+ tr(E%)t2(SCu pay, Cagre ECreag Capu )
+ tr(22)tr(2Cy, $74CreagECagreCruy) + tr(52)tr(SCsyz, Corgre SCreay Cary )
+tr(2%)tr(2Clyry Creag 2CrgreCrgsy) + tr(SCsu 12Cu15,)01(ECrcag ECrgre)
+ t1(ECs5u, £ Cu g5y )1 (Crearg Cayrg)
+ tr(SCsyry Creag Cayu  ECu pay, CagreCrysy)
+ tr(SCsyay, CagreCrgu s £Cu pryCreag Cayys)
+ tr(S%)tr(ECu gy, CagreCrgu )61 (Creag Crpry)
+ te(E)tr(ECs,a, CagreCrysy )1 (Creag Cayry)
+ tr(2Cs, CagreECreag Cryu  ECu ps))
+ tr(ECsry Creag ECagreCryu  SC0u s,
+ 12(ECsy, CagreCuprg ECu psy)11* (Creag Ciryryg)
+ 63(2Csyry Creag Capup ECu g5y )0 (Creag Cnyry)

+ tr<ECsbxhngrccrdsb)tr(ECUfrdCTcosnghuf)]
7_[4 - [trQ(ZQ)tr(ECrcuez]Cuerc) + tr2<22)tr2(CrCu6 Cufrd)
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+ tr(S%) 6 (ECapu ; Cuere ECrcuc Cu gy,

+tr(S2)tr(2C 1y Croue SCuere Crgay ) + t1(52)tr(SCspu $CuereSCrcucCuysy)
+tr(S%)tr(2Csyry Creue SCuereCrysy) + 11(ECsz; DC:, 5 ) (SCroue SCuere)
+ tr(SCsya;, £Cay 51 (Croue Cu prg) + 1 (ECsyry Creue Cu gy, ECau  Cuer Crgsy,)
+tr(XCspu ¢ CuercCrgay, 2Cprg Creue Cu ps)

+ tr(S?)6(2Cau s CuereCrgay, 1 (Creue Cu pry)

+ tr(EZ)tr(EC’Sbuf CuereCrygsy 1t (Creue Cufrd)

+ tr(SCsyu s Cuere SCrcue Cu gy, ECay 5,)

+ tr(ECsyr s Cretie SCuereCr gy ©Cy )

+ tr(SCsyu s CuereCayrg £z, )0 (Creue Cu gy

+ t1(SCsyry Creue Cu pa, EC0p, 3,/ (Creue Cu gy

+ (S Cayu f CuereCrgoy 1 (Cpry CreueCupay,)|

Hs — [trQ(ZQ)tr(ZCsaxgEngsa) + tr2(52) 0 (Cugg Cirp )
+ tr(S%) 6 (ECu g, Cargsa ZCsqmg Carpu )
+ tr(S%)6r(2Cu g5, Csag ECagsaCsyu ) + tr(E2)6(ECr o, Cagsa ECsqag Cayry)
+tr(S2)tr(SCh 5, Coarg SCigsa Csyry) + tr(ECru $5Cu 1 )10 (ECsq2g 2 Crgsg)
+ t1(SCr gu ECu 1)1 (Cisgarg Oy s
+t1(2Cr g5, Csag Crpu s ECu pay, Crgsa Cisprg)
+ 1 (EC gy, Cirgsa Csyu p ZCu g5 Csirg Cyrg)
+ tr(22)tr(2Cy, s CgsaCsyu ) tr(CoazgCrysy)
+tr(S2)(SCr yay, Cgsa Coyrg 11 (Coqrg Ciry sy

+ tr(ZCrdxhngsaECSGngxhufECufrd)
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+ tr<20rdsbcsaxg ch‘gSa Osbuf Zoufrd)
+ t1(SCr gay, Crgsa Cu g5y ZCu 1)1 (Csarg Oy sy)
+ tr(SCr g5, Csaag Crpyu s ECu 1)1 (Caag Cry s

+ tr(zcrdxhC:cgsaCsbrd)tr(zcufsbcsamgcmhuf)

He = [trQ(ZQ)tr(EC’SaueECuesa) + tr2(5%)tr(Coque Cu )
+tr(S%)tr(2Cy u 1 Cuesa¥CsqueCupay,)
+tr(S2)tr(SC;, 5, Csque DCuesq Csyay, ) + (St (SC, 1y CuesaSCsqucCusry)
+tr(S%)tr(2Cr g5, Csque SCuesa Csyry) + tr(ECr gzy SCop r W (ECsque ECuesq)
+ tr(SCr gay, ECor )1 (Csque Cu p5,)
+ tr(SCr g5, Csque Cu gy, ECopu s Cuesa Csyry)
+ t2(ECrgu ;s Cuesa Csyay, ECay 5 Csaue Cugry)
+tr(2%)tr(2C u #CucsaCsyr tr(CqueCusy)
+ tr(EQ)tr(ZCrduf CuesqCsyrg) 1t (Csque CUfsb)
+ t1(ZCh gu s Cuesa Csque Cu oy, ECry)
+t1(2Ch 15 Csque BCucsq Csyry, SCip )
+ tr(2Cr gu ; Cuesa Oy ECaprg )1 (Cique Cu sy
+ tr(SC g5, Csque Cu gy, ECaprg )1 (Csque Cu p5,)

+ tr(EOrduf OuesaCsbrd>tr(20xh3b05aueOuth)
o — [UQ(z?)tr(zosmchcsa) + ()02 (CogreCrysy)
+tr(Z%)tr(2Cy r g Cresa ECsqreCryay,)

+tr(S%)tr(2Chy, s, CsareDCresa Csyay, ) + tr(Z3)tr(EC,, 74Cresa™CsarcCryuy)
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+ tr(2?)tr(2C, 4CsareECresaCsyup) + 11(ZC0u pay, S0z )0(ECsqre ECresq)

+ t1(SCu pay, ECru f)tr2(CSaTCCT a56) + t1(ECu 5, CsareCrgay, £y CresaCsyu )
+ tr(SCu pryCresa Csyey, ECap sy CsarcCryu )

+ tr(ZQ)tr(ECa?hrdCTcsa Cspa Jir(CsgreCrysy)

+ tr(22)tr(20ufrdcrc5a Csbuf )tr(CsgreCrysy)

+t1(ECu pry Cresa 2CsareCrgay, 2Cejyu )

+t1(2C 5, CsareXCresa Oy, DCepyu )

+ t1(SCu pry Cresa Cay 5 ECapu )11 (CsareCrysy)

+ t1(SC0u 5, CsareCryay, ECxpup 6 (CoareCrrgsy)

+ tr(ECufrdCrcsaCSbuf)tr(ZthSszarCOrd(Eh)

Hg = [tr(EC’sarcECrcsa)tr(ZC’uexgEngue) + t8(SClsqreZCrosa)t1? (Cugrg Cau )
+ t1(2Cs4rCr gy, Crgue ECuerg CiryyryCresa)
+ t1(SCsqreCrgu  Cucrg SCzgue Cu 1y Cresa)
+t1(2Cesq Csyry, Crgue SCug Cry sy Csare)
+ t1(ECresa Csyu  Cucag ECogue Cu 5y Csare)
+ t1(SCucay ECorgue )1 (CsarcCrysy) + 1 (CsarcCrysy tr*(Cucag Capu )
+ tr* (CsqreCrgay, Cague Cu psy) + 1 (CoareCrgu ¢ Cueag Cryys)
+ t1(SCsareCrgu s Cucrg Cayrg Cresa) 1 Cuearg Crppu )
+ tr(ECresq Csyu s Cuearg Crp s Csare 1 (Cuearg Crpu )
+t1(SCueg Cp 5y CsareCr gy, Crgue )1(CsareCrysy )
+ t1(SCzgue Cu ps, Csare Crgu s Cucag)t1(CsarcCrysy)

+ tr(Crcsa Osbxh Oa:gue Cujrrd)tr(CsarCOrdsb)tr(Ouemg Ca:huf)
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+ tr(crcsa Osbuf Ouea:g thrd)tr(osarccrdsb)tr(ouemg thuf)

+ tr<CSaTCC’I‘de C’LL@II?g thrdcrcsaObeh Cl’gUg C’LLbe)

Ho = [tr(ECsaueZC’uesa)tr(ZCergZngrC) + t1(SCsgue SCuesa) T (Croag Cay )
+ tr(XCsque Cu pay, CrgreXCreag Crpu p Cuesa)
1 (XCsque Cu pry CreagXCagreCrgu y Cuesa)
+ 60(2Cue 50 Csyry CirgreXCreg Cary 3y Csaue)
+ t1(2Cuesq Csyr g Creag “CugreCrysy Csque)
+8(SCh ey DC0 gre )11 (Csque Cu ssp) T tr?(Csyue Cu fsb)tr2(Crcg;nghr )
+ tTQ(Osaue C’uthngrCCrdsb) + tTQ(CSaUe Cuf?“dcrcl"g Caysp)
CugryCregCopu s Cuesa) 1 (Crezy Cayry)

+ tr<20uesa Osbrdcrcacg thsbosaue)tr(crcxg thrd)

+ tr(XCsque
+ tr(zcrcxg thsbcsaue Cufach ngrc)tr(osaue Cufsb)

+ tr(ECerCCrdstsau@ Cufrdcrcxg)tr(csaue Cufsb)

+ tr<Cuesa C’beh Oxgrccrduf>tr(csaue Cufsb)tr(crcasg Oxhrd)
+ tr(Cuesa Csbrdcrcxg thuf )tr(csaue Cufsb)tr(orcxg thrd)

+ tr<CSaUe CUfT’dC’I"C{Eg CIh’lLf C’LLeSa CSbl’h CZZ?gT’CCT’dSb)

H1p = [6(ZCiqig SCigsa) (= Creue ZCuere) + 1(ECiqig SCrgsa) 1 (Creue Cupry)
+ t1(XCsq2 Oxh“f CuereX2Creue Cuth Cgsq)
+ t1(2Cs29Cayr g Creue ZCuercCr yay Cargsa)
+ t1(2Cugsq Csyu  Cuere XCreue Cu sy Csazg)

+ tr(ECaﬁgsa Csbrdcrcue Ecuerccrdsbosaxg)
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+ tr<207“cuezcue7"c)tr2(Csal“g Capsp)

+ tr*(Csqag Cay sy (Creue Cuu gy

+ t1*(Cisqag Crpyu CuercCrgsy) + 8% (Csqag Capry Creue Cupsy)
+ tr(XCsqmg Cayrg Oreue Cu pry, Cgsa )1 (Creue Cupry)
(X050 Csyrg Creue Cu psy Csawg )1 (Creue Cu gry)

0 (ECrcue Cu gy, Csaug Capu s Cuere 00(Csqag Cay )

+ (X Cuere Cr sy Csqug Capry Creue 11 (Csgag Caysp)
+tr(ngsaCsbquuercCrdxh)tr(CSaxgthsb)tr(orcuecufrd)
+t0(Crgsq Csyr g Oreue Cu gy, 1 (Csqag Cay s )0 (Creue Cu pry)

+ tr<08al‘g Cﬂ?hT’dOTcUe C’I,foh C.I?gSa CSbUf CUe’I"COTdSb)

Hip = [tr(22)tr(2C’,~CIgEngueEC’uerc) + tr(S)tr(Cuarg Crpu )0 Creng Copu s Cuere)
+tr(S)t0(Creay Coy g )0 (SCuereCryry, Crgue)
+ tr(S%) 60 (Creue Cu prg )0 (ECague Cu gry Creay)
+ t1(SCsyz;, Crgre ECreue XCuery Cry s5p)
+ t1(2Csyu f Cuerg DCagreZCreuc Cupsy)
+t1(0Cs;r, Croue SCucg SCogreCrysy)
+ t(SCsyrg Creue Cu pay, CrgreCrysn )tr(Cucag Capu )
+ t1(2Csyu s Cuerg CryryCreue Cupsy) 11(Creag Capry)
+ t(SCsyay, CrgreCrgu s Cucrg Crpysy W (Creue Cupry)
+ tr(S%) 60 (Creue Cu prg )00 (Cugng Carpu )61 (Crearg Cinpry)
+t1(3Cs2;, CrgreSCreue Cu psy) 11 (Cucarg Capu )

+ tr(zcsbxh ngrccrdsb)tr(zcuerccrdxh Cacgu@)
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‘|‘tr<208bufOuea:gZcxgrcordsb)tr(crcueCufrd)
+ tr(zcsbxh ngrccrdsb)tr(crcue Cufrd)tr(cuemg Oxhuf)
+ tr(ECSbUf CUeJ?g CJ?hT‘dCT'cUe CUfIh Cl‘chCTdSb)

+ tr(ZCbeh ngrCCrd’u,f C’LLel‘g CZCthC’f'0Ue CUbe)]

Hiz = [6(Z)t(ECs009 ZCrgueXCuesa) + (St (Cugarg Capu ) (ECiqirg Copu f Cuesa)
+tr(S%)tr(Csqag Cry )11 (ECugisq sy, Crgue)
+ tr(S%)6r(Csque Cu )1 (ECingue Cu 5, Csaag)
+ t(SCr 4y, Cngsa ECsque ECueirg Crprg) + 1 (ECrju p Cueing SCagsa ECsque Cupry)
+t1(2C s Csquie ECupirg “Cirgsa Csyry)
+ 13(2Cr g3, Csque Cu oy Cngsa Csyr gt Cueing Cayu )
+ t2(SCrgu  Cuearg Caysy Csatie Cu pr g tr(Csqng Cays)
+ 63(2Cr gay, Cagsa Cyu s CucagCanyrg)tr(Cisque Cupsy)
+ tr(EZ)tr<03aU6 OUbe)tr(CUel'g Oxhuf )11 (CsyagCrpysp)
+ 12(SCh oy, CrgsaZCsatie Cu 1)t (Cuearg Cayu )
+t0(SCr 2y Crgsa Csyrg (2 Cugsq Csyey Crgue)
+ t0(S5Chgu f Cueing ©Cingsa Csyrg)tr(Coque Cu psy)
+ tr(SCr gay, Crgsa Csyrg)tr(Csque Cuu syt (Cugrg Capu )
+ 62(2Cr gu s Cuerg Ciopsy Csauue Cu pay, Crgsa Ciyry)

—+ tr(EOngghCa;gsaCSbuf CuexgcthbOSauecu]ch)

H13 = [tr(EQ)tr(ECSaIQECIgTCZCTcSa) + tr(22)tr(CrngC:phrd)tr(ECSaxgthrdCrcsa)

+tr(S%)tr(Csqurg Cry 11 (ECresq Csyry, Cargre)
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+ tr(22)tr(03arc07“dsb)tr(zcxgrccrdsb(]s@xg)

+ 0 (2Cu iy, Cagsa XCsre 2Crcag Capu ) + t0(5Cu g1y Creag X Cgsa XCsqrCrqu p)
+ 0(SCu 5y CoareECrergSCgsa )

+ tr(XCu 5, Csare Crgary, Cagsa Csyu )01 (Creag Cayry)

+ 0 (XCu 1y OreagCay sy CsarcCrgu )t (Csqag Oy, )

+ 0 (XCu gy, Cagsa Csyrg COreag Cayu )1 (CsareCrys),)

+ t(22)tr(Csare Cr sy 1(Creag Copr g1 (Csarg Cary )
+ 00(XCu pz), Crgsa X Csqre Or gu p )0 (Creag Cayrg)

+ 0 (XCu pay, Cagsa Csyu )08 (ECresq Csyay, Cagre)
+0(SCh ry Creary ¥CogsaCoyu 1 (Coare Crgsy)

+ tr(EC’uthngsaC’Sbuf)tr(CsarCC’rdsb)tr(Crcngxhrd)
+ 0 (ECu 1y CreagCuy 5y, CsarcCrgay, Cagsa Csyup)

+ tr(ZCfoh C.’L‘gsa CSdeCTC.%‘g CLL‘thCSaTCCTde)

Hiy = [tT(ZQ)tT(ZOSaueZCUecmCrcsa) + tr(22)tr(0rcueCufrd)tT(ZCSaueCUfrdCrcSa)
(D Cague Oy Cros Copy Crere)
+ tr(EZ)tr(OSarcOrdsb)tT(ECUercCTdSbCSaue)
(S Csu Cuesa 2CsareSCrene Cu ) + (S CrCrene ECuesgSCsqr Crge)
+ t1(XC%s; Csre ECrcue 2Cuesq Csyx)
+ (X, CsareCrgu  Cuesa Cspe ) 1 (Creue Cupry)
+ 00 (XCsr Creue Cu psy Csare Cr g )1 (Csque Cu psp )
+ 0 (XChu p Cuesa Csyrg COrcue Cu p )t (CsareCrys),)

+tr(S%)tr(Cisgre Cr gy Jr(Creue Cu 7)1 (CsqueCuysy)
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+ (X Chu Cuesa XCsqreCr )t (Creue Cupry)

+ tr(EC*uf Cuesq Csb*)tr(ECTCSCL CSbUf Cuere)

+ tr(SChry Creue ECuesq Csy I (CigreCrygsy)

o+ t8(SCu f Cuesa Coy 1 (CoareCrgin 1 (Creue Cu pryg)
+ (2 Cury Cretie Cu 15, CsareCrgu p CuesaCoy)

+ tr<EC>I<’LLf CUeSa CSbT‘dCTCuB C’LLbeCSaT’CC’I‘d*)]

H15 - [tr(zcsaxxEngUEECuerCECrCSQ) + tr(Cuexg thuf)tr<205amgcl'huf CuerCECfrCsa)
+ tr(zcsaxg thrdcrcsa)tr(ECuercCrdxh Ca?gue)
+ tr(CrCue Oufrd)tr(ECSGxgEOxgueCufrdCrcsa)

+ tr(Csang’

I’th)tr(EC’l"cSa CSbZZ?h CSCgUQECUerc)

085 Ces Ot Cutere 0 (EC g1 Oy Cisgrg)

- 60(CareCrysp) (3 CugreCr sy Cairg ¥Co gue)

+ 00 (CsareCrysy 00 (Cueag Crpyu )00 (Creue Cu g, Cagsa Csyry)
+ 0 (CsareCr gy, Crgsa Csyu p Cueag Caprg COreue Cupsy)

+ t0(Creue Cu pr g 0(Csqag Cay sy (Csare Cr qu p Cuewg Oy sp)
- 08(Crene Cu pr )1 (Cotgrg Ot V0 (5Cogg Capry Cres)

+ t1(Csgag Crpsp )11 (Cueag thUf Jtr(XCresq CSbUf Cuere)

+ t1(Csgre Cr g5y 1(Csgag Cp sy i1 (ECuerc Cr gy, Cargue)
68(Cgre Crgy )00 (Crne Co r (g iy g

- 8(CagreCrgi 1 (Crang G prg) 1 (Cutgrg O )11 (Cagg Coyry)
+ 00 (CsqreCrysy )0 (Creue Cu gy, Crgsa Osyu s Cueag Capyry)

+ tr(Csamg Oxhsb>tr(csarccrduf Ouexg thrdCrcue Cufsb)
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M6 = (60500 S0y 2Cagre Cresa) + 1(Crguie O g (S0t Oy Corgre ECrcs)
+tr(ECsque Cu pry Cresa 1 (5Cagre Crgu  Cueag)
+ 41 (Creag Crpr )0 (ECsque ZCuen g Crpry Cresq)
+68(Caquie Cu 308 (ECres Conp  Cugarg SCorgre)
(5 C Cayi )5 Ctny Corpy o)
+ t2(Coqre COrgsy H1(ECgr e Cr s, Csque ECucay)
+ 0 (Csgre Cr sy J00(Cague Cu gy, )0 (Creag Crpyu p Cuesa Csyry)
+ 00 (CsareCrqu p Cuesa Osyay, Cogue Cupry Creag Cay sp)
+t0(Creag Caprg 10 (Csque Cu )11 (Csare Cr gy, Cague Cupsy )
60y o)1 (Cargue Gt g 00 (SCsquie Ca g Cros)
+ t1(Csque CUfsb)tr(ngUe Cuth)tr(ECrcsa Csyzy, Cagre)
+ t1(CoqreCr sy 1(Csque CUfsb)tr(ZngrcCTde Cuezg)
+ t1(Csgre Cr g5y 1 (Creag Capyr g 81 (ECueag Capy 5, Csque)
+ 0 (Csqre COrgsy P(Creag Oy r )11 (Crgue Outh)tr(cueSa Csbuf)
+ 0 (CsgreCr sy )00 (Creag Crpu p Cuesa Csyay, Caogue Cupry)

+ tr<Csaue Cufsb)tr(csarccrdxhcxgue Cufrdcrcxg thsb)

Hiz = [06(Z a0 ZCrgreCreue Cuesa) + (Crog Cnyr ) (ECisqag Coprg Crene XCucsa)
+ tr(ZCsqg Capu s Cuesa)t(ECreue Cu pay, Crgre)
+ t0(CugreCrgu 1) (ECs1g 2CurgreCrgu s Cuesa)
+1(Clsgrg Cry s )0 (DCuesa Cisyay, Cargre XCreue)

+ tr(ECuesa,CSbfrdCrcue)tr(ZC;L'ngCrdSbCSQ:Eg)

106



00 Caguie Co ) 01(2Cre O 3y Oy SCorgre)

+ 0 (Csque Cu gy )1 (Creag Capyr )0 (Cuere Cryay, Crgsa Csyu )

+ 0 (Csque Cu g, Crgsa Csyry Creag Capu s Cuerc Crysy)

+ tf(CuercCTduf )0 (CogagCapy st (Coque CUfrdCTcxg Crpsy)

+ 0 (CuercCr gu p )0 (Creag Oy 00 (X Cs g9 Cpyu p Cuesa)
+t1(CsqagCrp sy W1 (Creag Capr )1 (ECucsq Csyr y Creue )

00 Cagure Co sy 1 (Cogrg Ca sy (ECraie Ca sy Corgre)
+tr(Csque CUfsb)tr(CUercCrde)tf(zcccgrccrdstSawg)

+ t1(Csque OUfsb)tT(CUeTcOrduf)tr(Orcxg Copr)t1(Crgsg Cspay)
+ t01(Csque Cu gy )t (Cuere Or gy, Cagsa Csyrg COreag Capu )

+ tr<Csaxg thsb>tr(osau@ C’LLf’I"dCT‘cSCg thu]c Cuerccrdsb) .
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Proof. By definition of Vs, (4, 1),

E{Vaasy (i) Veerg i )WVaeu 0, )Vegay () }

1Sq " J e ] e~ J

= B{ (VY PO Y P Ol Vi (Vi i )
= E{ (Z Yisakyjjsbky(z Y;'rchjrdm)2(Z Yiueoyjufo)Q(Z Yia:quja?hq)2}
k m 0 q

= Z E{Y;sakY}Sbk}/;salYjsblyércmerdeircanrdnY;ueOYjUfoYiueijUfp
c

XY,

ixqu'

jmthixngj:vhw }

= Z E{Y%sakyésalYz'rcmyircnyiueomuepnxgqymgw}
C

X E{YjsbkYjsblYrjrdmyjjrdnyjjufoyjufpy?jxhqnxhw } ) (3~ 18)

where C represents the summation over the p components of the vector Y. for k,l,m,n,o0,p,q,
and w. For each of the expectation terms in (3.18) we apply lemma 7 and sum over the set

C. After some tedious algebra it follows that
+H7+Hs +Hg+Hio+ Hi1 + Hio

+ Hig + Higa + His + Hig + Hi7r-

3.8.2 Proofs of theorems

In this section we provide proofs for the theorems given in Chapter 3. Without loss of

generality, assume pu; = 0 for all t € {1,...,T}, since the test statistic, [)nt, is invariant
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with respect to .

Proof of Theorem 7. With the addition of Condition 4 as an assumption, the proof is
similar to the proof of Theorem 2. Condition (a) and Condition (b) hold in the proof of
Theorem 2, and the martingale central limit theorem holds as all required terms are smaller

order with T" diverging. 0

Proof of Theorem 8. To establish the asymptotic distribution of M,, under H(, we must
show convergence of the finite-dimensional distributions and the tightness of the stochastic
process maxXsc T O-’I;tl,oﬁnt' The joint asymptotic normality of (Ur:tll,of)ntp . ’Ugtlc,o EntC)T
for t; < --- < t. is nearly identical to the proof in 2.7 when T is considered finite. Thus, it
remains for us to show the tightness of max;c7 J;tfof?nt so as to conclude M, converges to

maxyc7 Zt, where Z; is a Gaussian process with mean 0 and correlation 12,

By definition, Dyt = an + Dntg — 2Dnt71, where

t T
Dnt,k: Uss,k+Uss,k_Uss,k_Uss,k
181 252 152 251
s1=1s9=t+1

for k € {0, 1,2}. Furthermore, by Lemmas 3 and 4 in 2.7.1, ﬁnt,l = Op(Dnt,O) and lA)nm =

Op(Dnt,O)- Therefore, to show the tightness of maxj<y.7 U;tlof)m we can focus on the term

lA)an where

t T
Dnt,O - Z Z <U51310 + U82820 - U51320 - U52310>~ (3'19)
s51=1s9=t+1

Let t = [Tv], where v = j/T (j =1,...,T — 1). Define Gy, (v) as follows:

_ 1 R
Gulr) = Y=V p (3:20)

tr(X2)T2
where the term preceding Dn[Tu],O is the order of U;tlo in terms of n, p, and T. Thus, to

show the tightness of max;c7 O',;tlobmf it is equivalent to show the tightness of (3.20).
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Consider the difference Gy, (n) — Gp(v), such that n > v. Let n =14¢/T (i=1,...,T —1).

By definition, Us; 5,0 = {n(n — 1)}~ ZZ#]( is 331) . Thus, for n,v € (0, 1),

(T [Tv]

Gutn) ~ Gul) = Y= (5 Z Wy — 3 2 Wopsy ).
tr(22)T§ s§1= 152 —|—1 s$1= 152 +1
n(n —1) I r ]
:—3< Z Z Wy — Z Z W8182)
tr(52)T2 N gy =[Tv]+1 sg=[Tn]+1 s1=1 s9=[Tv]+1
(T T
_ Vnn—1) $ ZW
tr(EQ)T% slz[TV]—HSQZ[Tr]]—H{ (n=1) 'L#J 12}
[Tv]  [Tn]
-2 > {w DI
51=1 s9=| z;«éj
[T7]

- : 32”3(5 Z Z W8182

n(n — Dtr(32)T2 i#j N s;=[Tv]+1 so=[Tn]+1
[Tv]

[Tn)
Z Z Wslsz) ’

s1=1s9=[Tv]+1

1 S
- = > fli, ), (3.21)
n(n — Dtr(X2)T2 i#j
T T T T 2
where W3152 <}/;51Y781) (3/252}/_'782) (}/;51}/?782) (}/;32}/381) ) and
.. Tn]
f(laj) = Z[ 77 +1 Z T77 1W8182 Zsl 1 Z W3132 We will bound the

fourth moment of (3.21) to ultimately show the tlghtness of (3.20). First, we compute some

moments of f for various indices.
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Under the null hypothesis and for i # 7,

[Tn] [Tv]

E{f(iaj)}—E( > Z Wapsg = D Z W5132)

s1=[Tv]+1 s9=[Tn]+1 s1=1 sp=[Tv]+1

_ Z Z [tr(Zgl) + tr(222) — 2tr(Sg, 252)]

s1=[Tv]+1 s9=[Tn|+1

(Tv]  [Tn)]
-3 ¥ [tr(zﬁl) +u(s2) - 2tr(231252)],
S1= 1 S9= [ ]+1
—0, (3.22)

since tr(ZZl) + tr(ZEQ) —2tr(Xs Xsy) = tr(22) + tr(22) — 2tr(X2) = 0. Define the fol-
lowing notation for the double summation: Z gl = Z[TU 7] +1Z [Ty 41 dopl =

[ _ Tn

second moment under the null hypothesis is given by

E{f(z I } {(ZWsm ZW3152><ZW3152 ZWSm)}v

Z |$ y|zz Z |a bl+[c— d‘E’[ Sb<i7j)v7‘crd<i,j) :

z,y=1 ST RY a,b,c,d=1
where Vs,s, (4,7) = (YT Y33b> . Under the null hypothesis,

E V8a8b<i7j)‘/7‘c7"d(i>j)i| = Qtrz(csbrdcrcsa> + Qtr(crcsaOsbrdcrcsacsbrd)

+ 261(2Ch 5, DCsrg) + 27(2C 5 DCs0re) + tr?(52).
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Therefore, under Condition 1,

B} =0 S (OIS S (et )

Z,Yy= 1 S‘T Ry a,b,Cd 1
(3.23)

for some constant C.

Next, consider mutually different indices i, j, k. Thus,

E{ 1.7 k) } = Z LY Z Dot BV s, (60 3) Vierg (5, )|

z,y=1 ST RY a,b,c,d=1
(3.24)

Under the null hypothesis,

B [Vaasy (1,3 Viery i, £)| = r%(22) + 260(2Crs0 ZCsarec):
Hence,

2
> (=)l e 42(52) 4 24(2Ch5,DCs0rc) | = 0. (3.25)
a,b,c,d=1

Therefore, E{f(z, J)f, k)} = 0. Lastly, if we consider the mutually different indices 7, j, k, [,
then E{f(z',j)f(k, l)} = 0 due to independence and the fact that E{f(?,,j)} = 0.
Consider the difference Gy, (n) — Gy (v) squared.

(Gnln) — Cn()}2 = {n(n — D523}~ {qu}
i#j

= 2{n(n — DX(EHT3 S f(i5) £ (i, )

i#]
+4{n(n - (ST Y0 f ) f 6 k)
i#j7#k
+{nln = D ()T D f(05) f (kD).
i#jFkFl
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For any real numbers a, b, and ¢, (a + b+ 0)2 < 4a? + 462 + 2¢%. Thus,

2
{%w—%w#sm#<1wrﬁﬁ}{zfu }

i#]
2
+ 64{n%(n — 1)%tr*(x2)10}~ { Z fl, ) f }
i#j#k
2
+2{n?(n — 1)%tr*(x2)1%) - { Z fl, ) f } :
iFj7kFl

Taking the expectation of both sides of the above inequality it follows that

E{Gn(n) — Gu()}!] <16{n*(n — 1)2r"(5)T%}~ Hzf” F]

i#]
2
+ 64{n%(n — 1)%tr*(xH)10} - 1E[{Zﬁz#kf i } 1
+2{n%(n — 124 (x%)15) Hﬁ%ﬁf i j)f } ]
=1+ 1)+ I3. (3.26)

To bound the expectation in (3.26) we need the order of I1, I, and I3. Thus, we need to
expand multiple summations where the summation is across multiple non-identical indices.

First, consider the possible indices for expanding the term inside the expectation for I in

(3.26). Consider

2
{Zf(i,j)f(i,j)} =3 > @A) 1) f i ). (3.27)
i#] i#J 11791
Let De = {i,j} U {i1, j1} be the set of indices that are not equivalent to each other where

¢ represents the number of indices that are equivalent to each other in two sets {i,j} and

{i1,71}. If there are no equivalent indices, then

DO = {<Z7]>217]1)}
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Hence, the summation over Dy is given by

> FGFG ) i) f (i) (3.28)
i#i1£5791

If there is one equivalent index, then

Dy ={(t=1i1,7,71), (i = j1,J,%1), (4,5 = i1, 1), (i, j = j1,11)}-

Let Dy be the set with one equivalent index that produces a unique combination of

FG ) f@,5) f(ins g1) f (s 1)
Dy = {(i = 1.5, 71)}-
Hence, the summation over D is equivalent to

i#JF#51
If there are two equivalent indices, then
Dy ={(i =11,j = j1), (i = j1.j = i1)}.
Hence, the summation over D is given by
> 2, 4) G 4) f (i 5) F (0 5). (3.30)
i#]
As a result, from (3.28) — (3.30),
2
s{Tsaisiaf |- ¥ seamiaraafaa) 63
i#] iFi FIFI1

rapf Y 006D
i#JFI

+28{ 3 16166010
i#]
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Thus,

I = 16{n®(n — 1% (%) 70}~ 1E[{§f i)f }T
i#]

1602 - 2T B Y f<z',j>f<z',j>f<z'1,j1>f<z'1,j1>} (3:32)

iy £
+64{n*(n - 1>2tr4<22>T6}—1E{ > f(z,j>f<z',j>f(z',j1>f<z‘,m}
Gk
#3202 = 2219 B 16,000,006, 5)5.) |
i#]
= R, + Ry + Rs. (3.33)

We now show the order for each of Rq, R, and Rj3 in terms of n, p, and T'. For Rp, consider

the order for E{f(i,)f(i,7)f(i1,41)f(i1,71)} for the mutually different indices.

B £ 3) G ) f i) fin i) § = BLFG D160 pE F g0 £ |

- [c 22: (-plvyTN

z,y=1 ST RY
2 2
x Y <—1>'a—b'+C—d'tr%%rdorcsa)]
a,b,c,d=1
2
xc[tr2(22){T2([Tn]—[Ty])}] . (3.34)

for some constant C'. Therefore,

Cn?(n —1)?]

Ry =
172020 — 1)2rd(22) 76

{tr%z%{ﬂ([m - [Tun}} ;

_ T =110

= — (3.35)

115



for some constant C'. Next, consider the term Rs. From lemma 7,
E{Vsasb(z’,j)Vrcrd(i,j)Vueuf (4, 7)Vaga, (i, 4)} was calculated up to a constant. Thus,
E{£(3,3)£(,3) (0. j)f(i,5) } s given by

22: (_1)|w*xl+|y*Z| ZZZZ
w,z,Y,2=1 SW RY YY X%

2
y 3 (_1)Iafb|+\cfd|+|6*f\+\9*h\E{Vsasb(z’,j)Vrcrd(i,j)
a7b7c7d,e7f7g’h:1

X Vit (i) Vagay, (1:9) |
Under the null hypothesis,
B{516.0516.06.9516.9 ) = 0wt {22 - )]

Therefore,

C

B = T DA () 7

[tr2<z2>{T2<[Tn1 - [Tu])}} ;

and thus Rg = o(Rq). For the final term in I, Rs, consider the order of

E{f(i,7)f(i,7)f(i,51)f(i,51)}. By the Cauchy-Schwarz inequality
1/2
E{£6,3) £, 3) (i 1) f ) | < {E{f(zpj)f(m)f(z',j)f(@j)ﬂ

< B{stanstnansan)] "

S V) R CED

Therefore, based on the above results for R3 it follows that Ro = o(Ry). As a result,

(ITn) — [Tv))?

IISC T2 )

(3.37)

for some constant C.
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Next, we investigate the order of I5. Consider the possible indices for expanding
2
{ X raram} =3 3 SGDIGRS G50 k). (3.38)
i#j7#k i#jFk 117517k
Let E. = {i,j,k} U{i1,71,k1} be the set of indices that are not equivalent to each other,

where ¢ represents the number of indices that are equivalent to each other in two sets {4, 7, k}

and {i1, j1,k1}. If there are no equivalent indices, then

E() - {(%]7 kailajlv kl)}

Hence, the summation over Ej is given by
> FGiy 3)F (k) f(in, 1) f(in, k). (3.39)
iFi) Fj 7)1 7kF k1

If there is one equivalent index, then

Ey={(i=11,7,kJ1,k1), (i = J1, 7, k, i1, k1), (0 = k1,4, k, i1, 1),
(4,7 =1, k, j1, k1), (4,7 = j1, ki1, k1), (4,5 = k1, k, i1, 51),

(4,7, k =1i1,71, k1), (4, . k = J1,91, k1), (4, 5, k = k1,41, 71) }-

Let E] be the set with one equivalent index that produces a unique combination of
S, 5) f (i, k) f (i1, 1) f (i1, k1), such that

E1 ={(i="11,7,k, 51, k1), (i = J1,4, ki1, k1), (4,5 = J1, k.41, k1) }

Hence, the summation over Ej is equivalent to

Yo GG R)FG ) fG k) (3.40)
i#j#1#k#k

+ Y Af(L ) (k) f G, D) f (i k)
ity Akt

+ Y AL SR ) f i k)
iFi #jFkFR
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If there are two equivalent indices, then

By ={(i=11,7=j1. k., k1), (i = i1,5 = k1, k, j1), (i = j1,J = i1, k, k1),
(i=J1,J = k1, k,i1), (i = k1, j = i1, k, j1), (i = k1,7 = j1, k,41),
(i =11,k = j1, 5, k1), (i = i1,k = k1,4, 51), (i = j1, k = i1, 5, k1),
(i =J1,k = k1, k,i1), (0 = k1, k =1, 4, 51), (i = k1, k = j1,4,71),
(J=i1,k =j1,4,k1), (J = i1,k = k1,4, 51), (J = j1, k = i1,4, k1),
(J = g1,k =k1,0,01), ( = k1, k = i1,4,51), (J = k1, k = j1,4,491) }-

Let Ey be the set with two equivalent indices that produces a unique combination of

fGsg) f(as k) f(ix, g1) f (i, k).

Ey={(i=11,j=7j1.k k1), (i = j1,5 = i1, k, k1), (i = j1,J = k1, k, 1), (J = j1, k = k1, 1,41) }.

Hence, the summation over FEs9 is equivalent to
> AfGG) k)G 5) (k) (3.41)
i#j7#k# k]

+ D AfGDIRFGDSG k)
i#j#k#ky

+ ) 8F(,4)f i k) f(in, i) f (i1, )
ity Atk

+ Y 2f (6 4) (0 k) fGin ) f (i k).
i#FiFIFk
Lastly, if there are three equivalent indices, then
Ey={(t=1i1,j=J1,k=Fk1),(i="11,) =k, k=71), (i =j1,] =i1.k = k1),
(i=Jj1.J=kik=1d1),@=k,j=j1.k=1),(i=k,j=1ik=7)}
Let E3 be the set with two equivalent indices that produces a unique combination of

f(i,3)f(i, k) f(i1, j1) f (i1, k1) such that

Es={(i=1i1,7=Jj1,k=k1),(i=71,] = i1,k =k1)}.
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Hence, the summation over F3 is equivalent to

> 2fG k)G i R) (3.42)
i#j7k

=3 AN RIGIGE)
i#j#k

As a result, from (3.39) — (3.42),

29> f(z',j>f<¢,k>}2]=E{ > DGR Gk | G

i#j4k i#0 FJFI1FhFR

> f(z',j)f(i,k)f(i,h)f(i,h)}
i#j#j1#k#k1

+4E{ )£ k)f(z'l,z')f(z'l,kl)}
zs«éq#y#k#kl

+4E{ )£ k)f(il,ﬁfm,kl)}
2#21#3#16#1

R S >f<z',j>f<z',k1>}
i#j#kF#k

+4E{ Jk1}
Z#J#k#l

—|—8E{ 217 Zla }
Z#H#J#k

+2E{ fli1, 4) fGg, k }
z#zm#k

v26{ 3 flias >f<z',k>}
i#Fj#k

4] 3 5607601656

i#j#k
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Thus,

I = 64{n’(n

= 64{n’(n

— 1)2tri(sH16)

— 12 EH1Y 1 E

off 5 o))

i#j7k

S DGRk
i i #J1 #FkFk

+64{n2<n—1>2tr4<22>T6}-1E{ 3 f<zyj>f<z',k)f(z',mf@,kl)}

+256{n>(n

+256{n>(n

— 126t (sHT10 -

—1)2tr4 (2?10}

+256{n*(n — D> (SHTOY 1B > fL4) G, )f(i,j)f(i,lﬁ)}

+ 256{n>(n
+512{n%(n
+128{n%(n
+128{n%(n

+ 256{n>(n

=951+ 5 + 53+ 54+ S5+ 5S¢+ S7+ Sg + S9 + S1p-

Under the null hypothesis, S1, S2, 53, and Sy are all zero. Terms Sg and Sy are of the same
order as Ry. Thus, Sg = o(11) and S19 = o(I1). Terms S5, Sg, S7, and Sg are all of the same
order in terms of n as term Rj.

inequality, these terms will be the same as Rg in terms of n and p. Thus, S5, Sg, S7, and Sg

—1)%tr4 (2?10}~
—1)2tr4(x2)70) -
— 126 (210
—1)2tr4 (2?10}

— 1)2tr4(x2)70) -

e

Bl Y e
(FaA R avkalvaliy|

E{ '>f<i,k>f<¢1,j>f<i1,k1>}
i #jFkFky

{z#J#k#kl

E{ ST F@ Gk m}
it ARty

E{ ST SR i D) G, g }
i#i1#IFk

E{ £, 3£ k) £ (i1, ) i, & }
iFiFI7Fk

E{ S FL )R GG, ks)}

i#)#k

{ £l )G R G )f(y,k)},

i#JFk

Additionally, using two iterations of the Cauchy Schwarz
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are all smaller order terms in comparison to 1. As a result, for some constant C

() - [Tv))?

Iy <Oy

(3.45)

Finally, we show the order of I3. Consider the possible indices for expanding

2
S FaEfkRDY = Y ST FG DG (k). (3.46)
i Akl iZj#kA i1£i1 k1 21

Let F. = {i,j,k, 1} U{i1,j1,k1,01} be the set of indices that are not equivalent to each
other, where ¢ represents the number of indices that are equivalent to each other in two sets

{i,4,k,1} and {iq, j1, k1,11 }. If there are no equivalent indices, then

FO = {(iajakal7i17j17k17l1)}'

Hence, the summation over Fj is given by

> fC ) f(R O f G, ) f (K1, ). (3.47)
it A Ak A

If there is one equivalent index, then
By ={(i =114,k 1, g1, k1, 11), (0 = j1, 4, K, Lin, ke, ), (6= ks g,k L, s D),
(i =11, 5,k Lin, g1, k), (6, = dn, ks 1 g, k), (6,5 = g1, ks L, ks D),
(1,5 = k1, k, L, g1, ), (6,5 = D, ks L, g, k) (2, 5, k=i, 1 g, ks D),
(4,5, k = j1, i1, by, 1), (4,5, k = Ky, Lin, g, ), (6,4, ko= 1, L dgs g, )
(4,4, k, L= i1, 41, k1, 10), (4,5, k, U= Jusin, kn, ), (6,5, Ky U= ki, s D),

(4,7, k= ly,11, 51, k1) }-

The summation over Fj is equivalent to

> 16£ (i, ) f (k, 1) £ (i, 1) £ (K1, 1) (3.48)
iFjFi1 kAR A

If there are two equivalent indices, then

Fo={(i=1i1,5=j1,kLk1,l1), (0 = i1,5 = k1, k, 1, j1,10), (i = 41,5 = U1, k, 1, j1, k1),
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(i =J1,J = i1,k Lk, 1), (0= g1, 5 = k1, b Lin, ), (6= g1, 5 = U,k L, k),
(i = k1,5 = i1,k 1,51, 00), (0 = Ky, J = g1, b, Lin, ), (6= K, g = I,k L, ),
(i =1l1,5 =1,k 1,1, k1), (i = 11, = j1, k, i1, k1), (8 = 11, 5 =k, K L, ),
(i =11,k =415, L, k1, ), (i = i1, k= k1, 4,5 g ), (6= in, b =1, 4,0 g k),
(i = g1 k=1, 5,0 k1, 1), (i = ji, k = k1, 4, Ldn ), (6= g1, k=, g, L k),
(i = k1, k =i1,5,0,j1,00), (i = k1, kb = j1, 5,41, 1), (0 = ky k= 1a, 4, 14, ),
(i=l,k=1i1,5,0,j1,k1), (i = li, k = j1, 5,001, k1), (i = [, b = K, 5, 1,41, 1),
(i =1, 0= j1,5,k, k1, 00), (i = i1, 0 = k1, 3, k, 51, 1), (@ = ia, 0= 11, 4, K, g, K ),
(i = g1, 0 = i1, 4,k k1, 10), (8 = j1, 0 =k, g, kydn, ), (8= g1, 0= 1, 4, ki, k),
(i = k1,0 = i1, 5,k j1,00), (8 = k1, U= g1, 5, kyin, ), (8= ey, U= 1, 4, ki, ),
(i =Uh,l=1i1,5,k j1,k1), (i = I, L = j1, 4, ki1, k), (0 = 10, L= K, 4, ki, ),
(J=i1,k =j1,4, L, k1, 10), (G = i1,k = k14,1, 51, 00), (5 = i1, k = 11,4, 1, j1, k1),
(G =1,k =1i1,4,L k1, 11), (5 = j1,k = k1,4, 101, 10), (5 = j1, k= 11,4, 1,41, k),
(U =k, k=11,4,0,51,00), (G = k1, k= j1,4, 101, 1), (5 = k1, k = I, 4, 1,1, 1),
(=l k=1i1,4,01j1,k1), (G =l, k= j1,0, 1,01, k1), (G = I, k = k1,1, 1,1, 1),
(=i, 0 =714,k k1, 10), (G = i1, 0 = k1,4, k, 51, 10), (5 = i1, 0 = 11,4, k, j1, k1),
(J=Jul =114,k k1, 10), (G = 1,0 = k1,4, ki1, 00), (5 = g1, 0 = 11,4, k, i1, ky),
(J =k l=vir,d,k, 51, 00), (G = k1, U= g, is kyin, ), (5 = Ky, U= Dds kg, ),
(=l l=r1,4,kj1, k1), (G =1, L= jr,ds kyin, ka), (5 = 0, U= ks kg, ),
(k=10 =j1,0, 4, k1, 0), (b = i1, 0 = k1,4, 5, 51, 1), (K = i1, 1 = 11,4, §, 1, k),
(k= J1,0 =114, 4, k1,00), (k = j1, 1 = k1,4, 5,41, 1), (k = j1, 1 = 1,4, j, i1, k1),
(k= k1,0l =11,4,5,51,0), (k = k1,1 = j1,4, 5,11, 1), (k = k1,0 = 11,4, 5,41, J1),

(k=11,l=11,4,7,j1, k1), (k =11, = j1,4, 5,01, k1), (k = 11,0 = k1,4, 5,91, 71) }-

122



The summation over Fj is equivalent to

Yoo AR DF(G) f (k)
i Ak AlAD

+ ) BGHFRDIG )G )
i#jF 1 #RAFED

+ Y 32f () f(k D F(E 1) f (R ). (3.49)
i#j#N #hAAD

If there are three equivalent indices, then

B={(i=0,j=j,k=Fk,Lh), (=14, =51, k=1,1k), (0 =i1,5 =k, k= j1,1, 1),
(i =d1, =k, k=1,0,51), (i =d1,5 = li,k = j1, 1, k1), (i = i1, = U1, k = k1,1, 1),
(i=j1,J =i,k =k, L0h), (i = j1,5 = i1, k =1, L k1), (i = j1, 5 = k1, k= i1, 1, 1),
(i=j1,) =k, k=10,li1),(i=j1,5 =l, k=1, k1), (i = j1, 5 = I, k = k1, 1,41),
(i=k1,j=d1,k=71,10), (i =k, j =101,k =1,l,j1), (@ = k1,5 = j1. k= i1,1,11),
(i=kij=j1,k=0,lLi1),(i=kj=lk=1,l71),0@=k,j=1lk=j1l11),
(i=lh,j=1i1,k=7j1,0k), (i =1l1,5 =i,k =k1,l,j1), (i = 11,5 = j1, k = i1, 1, ky),
(i=Uh,j=j1,k=Fk,li1), (i =115 =k, k=i1,1,51), (i =11, = k1, k = j1,1,01),
(i =d1,5 = j1, 0 = k1, k,10), (i = i1,5 = j1, L = I,k k), (i = i, 5 = k1,1 = g, b, 1),
(i =d1,5 = k1,0 =11, k,51), (0 = i1,5 = 11,1 = j1, kb, kr), (i = iy, 5 = I, L= Ky, ke, 1),
(i =J1,d = i1, 0 = k1, k,10), (i = j1,J = i1, L =11,k ky), (i = j1,5 = k1, L =i, b, 1),
(1= 1,0 = k1, L =11, k,d1), (i = j1,j = l, L =1, k, k), (i = j1, 7 = I, 1 = k1, K, 41),
(i =k1,j=i1,l =741,k 1), (i = k1,5 = i1, 0 =11, k,j1), (0 = k1, j = j1, 1 = i1, k, 1),
(1 =Fk1,j=j1.0 =l kir), (i =k, j =l 0 =d1, k1), (i = k1,5 =I5, 1 = j1,k,d1),
(i=1l,j=1i1,l=7j1,k k1), (i =l,j =11, 0 = k1, k, 1), (i = I, 5 = ju, L =i, k, ka)),
(i=Uh,j=j1,0 =k, k1), (i = 11,5 = k1,1 = i1, k, j1), (i = 11,5 = k1,1 = j1, k, i1),
(i =d1,k=g1,l = k1,5,1), (i = i1,k = j1, L = I, 5, k1), (i = i1, k = k1,1 = j1,5,11),

(i=i1,k=k,l=1U,7,71), =i, k=1,l=71,5,k1), (i =1,k = 11,1 = k1, j, j1),
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(i =Jj1,k =i, =k, 5,11), (i = j1,k = i1, =11, j, k1), (0 = j1, k = k1,1 = i1, 4, 1),
(i =Jj1,k =k, l=1,4,41), (0 = j1,k = 1,0 = i1, j, k1), (i = j1, k = 1,1 = k1,4, 41),
(i = k1, k=i, =71,5,0), (i = k1, k =i1,l = 11,4, 71), (i = k1, kb = j1,1 = i1, 5, 1),
(i =k k=j1,0=1l,5.01), (i = ki, k =11, L=y, 4, 1), (0 = k1, kb = 11,1 = j1, ], i1),
(1=l k=id1,l=71,5,k1), (i = l1,k =iy, 0 = 11,5, 1), (0 = lh, k = j1, 1 = i1, j, k1),
(i=Uh,k=7j1,l=1,5,i1), (i =l,k =k, =11,5,51), (i = ln, k = k1,1 = j1, ], 1),
=i,k =7j1,l=k1,i, 1), (G =1,k =j1, 0 = l1,i, k1), (G = i1,k = k1,1 = j1,i, 1),
=itk =k, l=10,171), =i1,k =11, = j1,i, k1), G = i1,k = l1, 1 = k1,4, 51),
=1k =i,l=Fk,il), [ =j1,k=i1,l=l,i,k1), (§ = j1, kb = k1,1 = i1,4,11),
(=g, k=kil=10,44), (0 =j1.k=h,l=1i1,4, k1), = j1,k = l1,1 = k1,4, 11),
=k k=1d1,0=71,0,010), (G = k1, k=11, =l1,i,51), G = k1, k= j1, 1 = i1,3, 1),
=k k=j1,0=1,i,91), (G =k, k=l,l =11,i,51), G = k1, k =11, = j1,4,71),
U=l k=11,l =714, k1), =l k=11, = ky,i,51), G = o, k = j1, 1 = 11,1, k1),

G=lhk=g,l=k,i0),(=0Uk=Fk,l=1,i/1), =l,k=Fk,l=j1,4,i1)}

The summation over Fj is equivalent to

Yo RFEHFERDGNR D)+ Y 64f (5 (kDS R)F( ). (3.50)
i#jARAA i#jAhAIAY

Lastly, if there are four equivalent indices, then

Fy={(i=1d1.j=j1,k=k,l=0),(i=1i1,j=7j.k=1U,1=k),
(i=i1,j=ki,k=7j1,l=0),(i=1i1,) =k, k=U,l=j),
(i=1di1,j=l,k=j1,l=Fk1),(i=1i1,5 =l k=k,l=j),
(i=Jj1.J=i,k=Fk,l=0),(i=j1,]=1i1k=0U1=k),
(l=g1,0=ki,k=ii,l="0),(i=75,]=k,k=h,1l=1u),

(t=J1g =l k=i, l=Fk),@=7j1,7 =l k=k,l=i1),
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(i=Fk,j=i,k=5,l=h),(i=k,j=1i,k=1,l=71),

(i=ki,j=Jj1,k=1i1,l=U),(i=k,j=Jj1.k=1,1=1),

(i=Fky,j=lhk="i1,l=j1),((=k,j=Ul,k=7,l=1),

(i=h,j=1,k=71,1=Fk),(i=11,) =11,k =k1,l = j1),

(Z =, =J1,k=11,l= k1)7(7' =l,]=J1,k=k,l= il)?

(i=lh,j=k,k=i1,l=71),(0=0,]=Fk,k=J1,l=1)}

The summation over Fj is equivalent to

> 6N RO+ Y 18F G 4) f (kD F (k) F (D). (3.51)

iFjFk#l
As a result from (3.47) — (3.51),

o {{ > f(z’,j)f(k,z)}Q] _

iAi#hA

i) kA

E{ > f(i,j)f(/fal)f(il,jl)f(’ﬁ,11)}
it i1 PR AL

U2 D S (TN CONNRCAS]
#FjFNFRFRFIFD

paE{ S DAt}
i#jFkFk1 #l#l

I SR VY VIEAYA):
i AR

RS SR TN YA
i1 AR AA

rapf S G060
i AR

voap{ S iR DGRIG )
i AhALA

#oB{ XSG DARDGID]
i#jFkFl

188l S s 0GRIGD)
i

125



Thus,

=20 - 1Pty e S s z>}2],

i £kl
=2{n*(n - 1)2r*(2H10)E > £ ) Fk, ) fiv, 1) f R, m}
i1 £i£5 #hAR A
+32{n*(n — 12t (2270} 1 E > £, 5) f(k, ) f i gn) f (R, m}
i A5 ARtk A

=Q1+Q2+0Q3+0Qs+ Q5+ Qs+ Q7+ Qs+ Q.

+8{n2<n—1>%r4<22>T6}1E{ 3 f(z',j>f<k,z>f<z',j>f<k1,zl>}

i iAkAR A

+56{n2<n—1>2tr4<22>T6}—1E{ 3 f(i,j)f(k,l)f(i,h)f(j,h)}

i ARl

+64{n2(n—1)2157“4(22)T6}_1E{ > f(z,m(k,l)f(z',mf(k,zl)}

i#iARFRAED

+64{n2<n—1>2tr4<22>T6}—1E{ T f(z',j>f<k,nf(z',j)f(k,zl)}

iAIERAAY

+128{n2<n—1>2tr4<22>T6}—1E{ 3 f(zpj)f(k,Z>f<z',k:>f<j,z1>}

i#i AR

+12{n2<n—1>2tr4<22>7’6}1E{ 3 f(i,j)f(kal)f(i,j)f(k,l)}

ik

+36{n2<n—1>2tr4<22>T6}—1E{ 3 f(i,j)f(k,l)f(ak)f(j,l)},

i#j#hA]

(3.52)

Due to the mutually different indices, @1, Q2, @3, Q4 all equal zero since £ { £, j)} =0 for

1 different than j. Furthermore, under the null hypothesis, 05, Qg, and Q)7 all equal zero.

For @5, consider E{f(i,j)f(k;,l)f(z',jl)f(k,ll)}. Due to the mutually different indices
B{LIG, )k, f i) 1) § = BLIG )G d) pE{F( D (k1) | By (3.25), each of

the expectation terms is zero and thus Q)5 = 0. Similarly, for
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Qs B{f(0.3) (kD F (i) F (k1) } = B £ )£, 5) B £k, D f (k1) . Again, by (3.25)
the term E{f(k:, ) f(k, ll)} is zero. Thus, Qg = 0. To see that Q)7 is zero, consider

B £ ) F (kD £ R) (1) } = {(Zwsls2 )= 2 Mo )
(Zwmw Zerrgw)
R2

X <zl: Wulug (i, k?) - Z Wulug (i> k))
U

_ Z (_1)|a—b\+|0—d| ZZZZ

a,b,c,d=1 Se »b UC yd

X E{Wslsg (i, ) Wiy rg (ks DWoaryug (i, k) Wy 2o (4, ll)}-

Accordingly, E{W5152(i,j)Wr1T2(l€, l)VT/ulu2 (4, k)lexQ (7, ll)} can be expressed as
2

Z (—1)|a—b|+|c—d‘+|€_f|+|g_h|E{Vsasb(z’, )WVrerg (k. Z)Vueujc (i, k) Vargar, (4. ll)}-
a7b’c7d7e7f7g7h:1

Under the null hypothesis,

E{Vaasy i )Wrerg (6 DViu (5 })Vagay, (. 1) } = tr(54) + 2072 (52)00(SCoprg BCirgy)
+ 2tr2 (St (2Cs gue XCupsq) + 262 (St (2Cr e s2Cugre)
+ 4tr(S2)tr(SCugsq Csyrg SCugsy Csaue) + 4r(S2)tr(ECh ey Cucsa®CsqueCure)
+ 4t0(SCrou  £Cu pro)t1(ECs0g ECgs,)
+ 8tr(ECru f Cuesa Csprg ECags, Csaue Cu gre)-

The summation of the above expression over a,b,c,d,e, f,g,h € {1,2} is zero. Hence,

Q7 = 0. Terms (Yg and Qg are at most the order of Ry. Term (Jg has the same order up to a

127



constant as Ry due to the four mutually different indices. By the Cauchy-Schwarz inequality,

the E{f(z',j)f(k, DG k) f(7, l)} with respect to Qg can be expressed as

E{ £(6.3) (kD F (i k) FGLD | < [E{f(i,j)f(kal)f(i,j)f(k,l)}}1/2

[p{sensinmmmn]

=0 B{ .01 70 0} ).

Therefore,

(7] — [Tv])?
™

Qo <Qs=xRy=<C

As a result,

(ITn) — [Tv))?

2 , (3.53)

I3 <C

for some constant C. In summary, E[{Gn(n) — Gn(v)}Y] < C([Tn] — [Tv])?/T2.

Let 0 < i < j <T. By the definitions of  and v, (3.37), (3.45), (3.53), and Markov’s

inequality, it follows that for any A > 0,

pr(IGn(i/T) = GulG/T)| = 1) < ¥
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For A large, above probability is less than any € > 0. As a result, max;c7|Gp(i/T)| is tight,
and thus max;c7 a;tloﬁmg is also tight. Therefore, by the tightness of the stochastic process
and convergence of the finite dimensional distributions, it follows that M, converges to a

Gaussian process with mean zero and correlation R . U

Proof of Theorem 9. Assume that one change point exists at time 7. Thus, we assume
alternative H; as defined in (3.15). Let A, = tr{(31 — 7)?} and
Vt,max = MaXycT Max <\/V0t/w2(t), \/nvlt/w2(t)> such that 7 ={1,...,7 — 1}.

Define a set, E(C'), such that E(C) = {t € {1,...,T =1} : |t — 7| > CO}, where C

is some constant and © is a function of p, n, and 7. The value O is chosen to show the
rate of convergence of the change point estimator under the asymptotic setting where p,
n, and T diverge. Thus, to establish this rate of convergence we must show that for some
C, pr(|7 — 7| =2 €O) < e. It is sufficient to show that pr(max;ep e Dpt > Dpy) < €
since pr(|7 — 7| = CO) = pr(7 € E(C)) < pr(max;cp(c) Dyt > Dpy) for {7 € E(O)} C

{maxteE(C) Dyt > ﬁnT} Thus,

pr( max Dnt > DTLT) < pr<ﬁnt > Dm’)
teE(C)

pr(Dnt —Dt+ Dy — D7 > ﬁm' - DT>

m m a
M =M =M =
GGG

pr|{Dut = Di} + {~(Dur = D)} > —{Ds = D}

<

pr|[{Dnt = Dt} +{~(Dar = Do)} > ~{Ds = Dr}].
teE(C)

The term —(D¢ — D) can be expressed as |t — 7|G(t;7)Ap, where

- 1<t<T,

G(t;7)

1
z, T+1§t<T

In terms of T, the function G is of the order 1/7".
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Recall that for two random variables, X and Y,

pr(| X + Y] >e¢) <pr(|X]| >¢e/2) + pr(|]Y]| > £/2).

Hence,
pr( max Duy > Dur) < pr|[{Dnt = Di} + {~(Dur = D7)} > ~{D; = Dy}
€E(C) teE(C)
- t—T1|G(t;7)A
S L e
teE(C)
. t—71|G(t;7)A
+ Z pr{lDTlT_DT| > | | 2( .7) p}
teE(C)
Dyt — — T)A
_ pr{\ nt = Dy _ [t = 7|G(t57) p}
teE(C) ont 20nt
n Z pr{mm—DH - |t—T|G(t;T)Ap}
teB(C) ont 20nr
Dyt — D t — 7|G(t; T)nA
_ Z pr{‘ nt t|>’ 7"~ (7T)n~p}
tEE(C) Ont 2 4V()t + 8nV1t

A B _ A
.S pr{mm Dl _ |t=rlG(t:)n p}
Onrt

2v/4Vyr + 8nVi -

pr{ |Dpt — Dy - Chlt — T|G(75;T)”Ap}

Ont 2Vt,max

X Z pr{ |f)n7' — Dr| N Chlt — 7|G(t; T)nAP}

Ont 2Vt,max

or { |Dyi — Dy N C’@G(t;T)nAp}

Ont Ut max

N or { |Dyr — Dyl N O@G(t;T)nAp}’
te B(C) Onrt Vt max

for some constants C7 and C. Choose © = vy maxTv/log T /nA,. By the choice of ©, order
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of G(t;7), and the fact that both (Dyps — Dy)/ont, (Dpr — D7) Jons ~ N(0, 1), it follows that

3 pr{mm& — Dy - C@G(t;T)nAp} < pr(\Z\ - W) (3.54)

Ont Ut max

te E(C) teE(C)
Dnr — Dy|  COG(t;T)nA
Z pr{‘ T 7| > (t;7)n p} < Z pr(|Z| > \/C’logT), (3.55)
Ont Vt max
teB(C) teB(C)

where Z ~ N(0,1) and C' is some constant.

Recall that for a standard normal random variable, Z, and for any k£ > 0, pr(|Z] > k) <
2exp{—x2/2}. For a large enough C, the summation terms in (3.54) and (3.55) can be
expressed as

> pr(|Z|> OlogT) > oot g e

teE(C) teE(C)

For large C, the series is convergent as 7' — oo. Therefore, pr(max; . E(C) Dyt > ﬁnT) <e,

and

N Vt,maxTV log T
7T—7=0) A,

for Ap = tr{(XZ1 — 27)?} and v max = max;c max (\/VOt/wQ(t), \/nvlt/wQ(t)>. The
rate of convergence can be simplified further. The function w™!(¢) is minimized at 7/2.

Therefore,

. VmaxV1ogT
T—17=0, —nAp

for Ap = tr{(X1 — B7)?} and vmax = max;c7 max <\/VO ,\/nVu). O

Proof of Theorem 10. Recall Theorem 5: Under the alternative Hq of (3.1), the maximum
value of Dy is attained at one of the ¢ change points. We will make use of this theorem in
the proof that follows.

We will first show that provided change points exist, we can detect their existence with

probability one, and we can the locations of the change points with probability one. Assume
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at least one change point exists in the interval I} and that the cardinality of Q is less than
the cardinality of Q. To show we can detect the existence of change points with probability

one in the interval Iy we must show that pr(My[l] > Wa,,[[i]) = 1.

pr(MulTe) > Wa [1]) 2 pr (0720 1] Dt 1] > W [11])

=1~ pr (o, g L) Dt 1] < W, 1)

11— Dpt[It] — De[ly] ot o[l Wap [1t] — Dy[1]
-y ( ot [IH] = o I )
1o ont,01t] _ Dy[h]

=1—-p <Z < 0’7;1 ] Wan[ ] —U;tl [Iﬂ)

— 1,

where Z is a standard normal random variable. The pr (Z < It 0[[1 ]] Way, [ 1t] — %)
goes to zero by our premise that Wy,, = o(mSNR) for any I;. Thgiefore, it follows ‘:ﬁattwe
can detect the existence of a change point with probability one. Furthermore, by Theorem
5, Theorem 9 and our premise that vmax[I¢]\/log(T)/nAp[I;] — 0, we can also correctly
identify a change point with probability one. The above derivations do not depend on I
since each subsequence satisfies the premises of this Theorem.

We also need to demonstrate that no change points will be identified that are not true
change points. Thus, consider the case where Q = Q. It is sufficient to demonstrate that
no change point will be detected among the remaining time interval segments. Under H( of
(3.1), as ayp, — 00, it follows that by Theorem 8 pr(My[l;] > Wa,,[l¢]) = an — 0 for some

interval Iy with no change points. Therefore, no change points will be incorrectly-identified

at any stage of the binary segmentation procedure. As a result Q— Qin probability. U
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CHAPTER 4

A HIDDEN MARKOV APPROACH FOR QTL MAPPING USING
ALLELE-SPECIFIC EXPRESSION SNPS

4.1 Introduction

Allele-specific expression (ASE) is part of the foundation for genetic diversity and is
paramount to programming and development of biological cells (Ferguson-Smith 2001). ASE
serves as a proxy for differential expression of two alleles at the same location within an
organism (Gu & Wang 2015). For example, allele-specific expression can be characterized as
the ratio between allele A and allele T. Differential expression is primarily explained by three
factors: cis-acting modification, post transcription modification, and epigenetic modification
(Ferguson-Smith 2001). Cis-effects correspond to the allele-specific variation, and thus, by
quantifying ASE it is possible to identify cis-acting effects on an inter-individual basis among
heterozygous individuals (Buckland 2004). The presence of ASE implies one or multiple
variants have cis-acting effects on gene expression levels that could be directly correlated
to phenotypic variation (Skelly et al. 2011). In fact, the phenomena of ASE has become
a focal point in identifying predispositions towards certain diseases (de la Chapelle 2009).
Due to the importance of understanding ASE, two natural questions arise with regards
to its influence on phenotypic traits. What is the relationship between single nucleotide
polymorphisms (SNPs) with ASE and a phenotypic trait? Which SNPs with ASE are have
an effect on phenotypic variation? Our focus in Chapter 4 is to develop a procedure using a
novel hierarchical model to answer the second question.

Quantitative trait loci (QTL) mapping is the statistical process of identifying locations in
the genome that have an association with a complex phenotypic trait. For example, geneti-
cists may be interested in understanding which genes affect cholesterol. Their understanding

of this association can provide insight towards disease prevention and susceptibility. An effec-

133



tive QTL mapping procedure can also provide researchers a better understanding of breeding
and appropriate techniques, and permit altered genetic variation within a population (Cheng
et al. 2015). Studying SNPs with ASE and phenotypic variation was shown to be successful
by Cheng et al. (2015). By applying multiple Bayesian approaches, Cheng et al. (2015)
identified genetic markers in chickens associated with a resistance to Marek’s disease. This
disease is highly contagious and results in paralysis of the animal. The potential to eradi-
cate Marek’s disease through superior breeding techniques would be valuable to farmers and
individuals within the animal science community. Cheng et al. (2015) discovered that 83%
of the genetic variance in Marek’s disease resistance was explained by the selected SNPs
exhibiting ASE. These results were validated through a progeny study that found a 22%
difference in the occurrence of Marek’s disease after one generation of bidirectional selection
(Cheng et al. 2015). The profound discovery by Cheng et al. (2015) gives credence to the
fact that gene expression explains a large portion of phenotypic variation.

Next generation RNA sequencing data is now being widely used to investigate the pres-
ence of ASE. However, inference with regards to ASE remains a challenge along with map-
ping quantitative trait loci in the presence of only RNA sequencing data (Skelly et al. 2011).
Skelly et al. (2011) proposed a three-stage hierarchical Bayesian model to test ASE gene ex-
pression and study cis-regulatory variation. However, their procedure requires genomic DNA
data to establish prior probabilities. Similarly, Nariai et al. (2016) established a Bayesian
framework with variational inference for estimating allele-specific expression. Their tech-
nique also relied on diploid DNA data and did not link any phenotypic response. Hu et
al. (2015) proposed a unified maximum likelihood approach combining two models based
on ASE and total RNA read counts. Their approach involved cis-expression QTL mapping
with RNA sequencing data via a beta-binomial distribution.

In this chapter we present a novel two-step approach to perform QTL mapping using
SNPs with allele-specific expression. In the first step, we predict the ASE ratios from RNA

sequencing data. In step two, we use the predicted ASE ratios to identify SNPs with cis-
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acting effects as it relates to a phenotypic response variable. We elicit a hierarchical model
for analysis of RNA sequence data to discover polymorphisms in expressed sequences whose
allele-specific expression is correlated with observed phenotypic variation. In our hierarchical
model, we first implement a hidden Markov approach to impute the underlying genotype and
ASE status combinations based on the RNA read count data and simultaneously predict ASE
ratios for heterozygous SNP locations. Second, we apply regularized regression to identify
SNPs with ASE ratios that significantly impact an observed phenotypic response. Ordinary
least squares is then applied for refinement. Our proposed hierarchical model and procedure
has several advantages over existing methods. First, the hidden Markov model allows us to
model dependence among SNPs and affords accurate genotype-ASE status imputation given
RNA read counts (Steibel et al. 2015). Second, our procedure obtains an ASE ratio estimate
in the absence of genetic DNA data. Many of the existing techniques required genetic DNA
data for ASE estimation. Third, our proposed model integrates RNA sequencing data and
phenotypic data to make inferences about the ASE status and cis-acting affects on phenotypic
data. Fourth, our proposed method is easy to implement, where parameter estimation for
the hidden Markov model is performed using the expectation-maximization (EM) algorithm.
Variable selection via cyclic coordinate descent allows us to identify significant SNPs quickly
and accurately, given an adequate signal-to-noise ratio. Lastly, our hierarchical model offers
flexibility with regards to the phenotypic response model of interest, mapping error, spatial
dependency, and individual variation in ASE ratios (Steibel et al. 2015).

Chapter 4 is organized as follows. In Section 4.2 we introduce the first layer of our
proposed model. A hidden Markov model and genotype-ASE status with ASE prediction
is recited based on the results of Steibel et al. (2015). In Section 4.3 we propose our
method to identify SNPs with ASE that have cis-acting effects on a phenotypic variable of
interest. Simulation results and a comparison with two competing procedures are detailed in
Section 4.4. Our procedure is applied to a real data example that combines RNA sequencing

data and phenotypic data from a sounder of swine in Section 4.5. The swim data set and a

135



procedure to implement the hidden Markov approach is available in the R package HMMASE

at http://www.stt.msu.edu/users/pszhong/HMMASE.html.

4.2 A hidden Markov model for SNP genotype calling

In this Section we introduce the basic setting and proposed model in Steibel et al. (2015).
We introduce the salient features of their model, HMM-ASE, before we concentrate on ASE
prediction and quantitative trait loci mapping in Section 4.3.

Let X;; = (X1, Xiz9: Xir3» Xia) T be a random vector of RNA read counts at the Ith
SNP for the ith individual. Denote z;; (I = 1,...,L; i = 1,...,n) as the observed RNA
read counts, where x;;1, z;9, ;13, ;14 represent observed counts for alleles A, C, G, and T,
respectively. Define the total RNA read counts at SNP [ for individual ¢ as n;; = 2321 T

Below we provide a set-up for a hidden Markov model with only two possible alleles: A
or T. The procedure can easily be extended to consider a non-bi-allelic SNP. Let G;; be a
latent variable that describes the genotype-ASE status with five possible hidden states. For
each individual ¢ at SNP [ let
( 1 for “AA”,

2 for “AT-NASE”,
Gy =4 3 for “AT-ASE-HIGH”, (4.1)
4 for “AT-ASE-LOW”|

[ 5 for “TT".
Two homozygous hidden states are represented by AA and TT, and three heterozygous
states are classified according to a relative ASE level. The variable Gj; is latent and we

assume that G (I =1,..., L) follows a Markov process. Let A be the probability transition

matrix for the Markov process G;;. Define the transition probabilities as
pr(Gy = K'|Gi_q) = k) = ay kK =1,...,5. (4.2)

Let . (i = 1,...,n; k=1,...,5) be the the initial probabilities of G;;; being a specific

state in (4.1) such that pr(G;; = k) = ;.
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We assume that the RNA read counts are generated by a hierarchical model conditional
on the underlying state of GG;; and ASE ratios. Let d;; be a random variable for ASE ratios

conditional on G;;. Thus,

]{5il=1} for k = 1,
0itlGlig =k ~ § Beta(51(a1, 1) for k=3, (4.3)

Beta[070’5)(a2, Ba) for k=4,

I{(SZ.Z:O} for k = 5.

If the underlying genotype is homozygous, then the corresponding ASE ratio is either zero or
one with probability one. If the underlying genotype is heterozygous, but without ASE, then
the corresponding ASE ratio is 0.5 with probability one. For the two remaining heterozygous
states, it follows that the ASE ratio is defined as Beta(o.g)?l](al,ﬁl) and Beta[070’5)(a2, Ba),
where each represent scaled beta distributions with scale and shape parameters being aq,
a9 and [, [o, respectively. Conditional on G;;, we assume that §;; are independent.

The first layer of the hierarchical model is conditional on a latent genotype-ASE status. In
the second layer of the hierarchical model we define the probability distribution for RNA read
counts conditional on 4.3. gives us the distribution of the RNA read counts. Here we assume
that X;; = (X1, Xiz9, Xiz3, Xi4) T conditional on §;; follows a multinomial distribution such

that

Xi116;1 ~ Multinomial(n;;, p(d;;,€)), (4.4)

where p(d;;,¢e) = << - 4—36) oq+5%5.5,5%5, (% — 1) O +1— e) is the probability vector in
the multinomial distribution for A, C, G, and T, respectively. We assume that all reads
are observable via a mapping error parameter denoted as e. If e = 0, then p(d;;,0) =
(0;1,0,0,1 — 9;;) represents the probabilities for observing A, C, G, and T, respectively.
Figure 4.1 illustrates our hidden Markov model specification for the ith individual when

L = 5. The hidden variables (G;; are dependent via a Markov process. The variables ¢;; are

137



conditional on G;; and independent among each other. RNA read counts are conditional on

G, but through d;;.

Figure 4.1: A graphical model for illustrating the hidden Markov model for SNP genotype
calling. Grey circles represent observed values. White circles represent latent variables.

Given observed RNA read counts, x;;, we can predict the underlying genotype-ASE
status, Gy, via the expectation-maximization (EM) algorithm and forward-backward proce-
dure. In addition, and more importantly, given observed RNA read counts and underlying
genotype-ASE statuses, we can derive the distribution for allele-specific expression ratios

and use the posterior mode of the distribution as an estimate for the ratio of ASE.

4.3 Phenotypic model specification

Our ultimate goal is to identify significant SNPs and understand their affects on pheno-

typic variation. Let Y; be a phenotypic response of interest, where

‘ o yiTi — b(m) ‘ .
}/;Nf}/'i(yz|727¢) = exp a(9) +c(yi, @) | i=1,...,n. (4.5)

We assume the distribution of Y; is in the form of a known exponential family. Let 7 be
the canonical parameter and let ¢ be the dispersion parameter. For example, suppose the
phenotypic trait is eye color. If eye color is binary, such as the case for blue eyes or not blue
eyes, then we assume (4.5) follows a Bernoulli distribution. However, if the phenotype is
continuous one may consider the distribution of (4.5) to be Gaussian or Exponential. Fur-
thermore, let 7(d;) = Zlel d;171, where 7y is an L-dimensional vector of unknown parameters

that represent the effects of gene expression to the phenotypic response Y; and ¢; is an L-
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dimensional vector of ASE ratios. In order to relate the parameters of the distribution to
the various predictors we denote E[Y;] = p;. Thus, for a canonical link function, A, it is the
case that n(d;) = h(p;) = 7;. In particular, if we assume Y; follows a normal distribution,
then h is the identity link; whereas if Y; follows a Bernoulli distribution, then h could be the

logit link.

4.3.1 Prediction of ASE ratios

ASE ratios are unknown random variables. If we want to use them as predictors with regards
to modeling a phenotypic response, then we need an estimation procedure. We consider two
posterior probabilities that will be useful in our ultimate goal of identifying significant SNPs.
Calculation of these two posterior distributions is dependent on an unknown parameter
vector 0 = (a1, B1, a9, B2, e, A). Details to obtain maximum likelihood estimates via the EM
algorithm are provided in Steibel et al. (2015). Our first posterior probability of interest is
pr(Gj; = g;11X), which will be used for predicting the underlying genotype-ASE status of the
[th SNP in the ith individual. Here X represents the RNA read counts for all n individuals
at all L SNP positions. Given the states of G;; as defined in (4.1), we will also be able
to deduce the ASE status for the respective individual and SNP. The posterior probability
pr(Gj|X) can be computed by Bayes’ formula. Let G; = (G4, -+ ,G;z)T represent all the

possible genotype-ASE status combinations. Then the posterior probability is
pr(X, G;
Lial1) = pi(Ga = HX) = S pr(GilX) Gy = 1) = S P16 = . 00
Gi Gi

In order to estimate the hidden state of G; (i = 1,...,n; | = 1,...,L) we compute
maxy, L; (1) for each individual and SNP combination. The quantity L; j(I) is computed
from the EM algorithm. By the definition of the random variable ¢;;, we aim to use the
estimated state of G;; to obtain an estimate for the ratio of ASE. This leads to our second

posterior probability of interest.
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Let 6% be the updated parameter vector upon convergence of the EM algorithm. Consider

f(6:11 X1, Gip = k;0%) such that

f( zz!ddﬁ*) (0:1|Giyp = k;6%)
S F(X3103:0%) f(054|Giy = k; 0%)doy’

where the distributions of f(X;;]6;;;0%) and f(6;;|G;; = k;0%) are defined in (4.4) and

[0 X1, Gy = k3 0%) = (4.7)

(4.3), respectively. It follows that the denominator of (4.7) can be expressed as

(

Y (1 — )X (&) —Xin for k=1
(le)( ) (3) !

<an'z)(0'5 — XX () Xiat Xz for k =2,
1

Xil2+Xil3 CO(Q*;XNLXNZL) for k =3
) 0.5°1P1=1B(ay.,5;) or ) (4.8)

Wl

f(XilG =k 60%) = (;leﬂ

k
(x! 1)(3) 0.5°2+52-1 B(agy,89) ’

n X g—X;
\ (Xﬁl)(l — e)Nild(§)"il T Rild for k=5
where (nl) = g n,l! ~—7, and
Xi X' X0 X3 X 4!

1
de de , _ _
o= /05<(1 — 300+ 3)X (5 — Doy +1- e)Xild (1 = 5;)*171 (6 — 0.5)17 oy,

0.5 4e e.vy..  4de . -1 —
0 = /0 (1= )0+ )N ((5 = Dy +1 = e)¥il46y> (0.5 - 6)2 7 oy,

If G;; = 3 or G;; = 4, then we know that the heterozygous genotype has ASE with the

quantity determined by a rescaled beta distribution. Thus, we only consider these estimated
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states when computing an estimate for 9;;. Hence, for G;; = 3 and G;; = 4 it follows that
Mo(6i1, Xigr» Xita: %) (85 — 0.5)*17H(1 = 6;)1 71 for k =3,
F0u) X, Gy = k;07) =

My (851, X1, Xia, 07)(6)271(0.5 — 5;y)P2 1 for k =4,

(4.9)
where
de €. x..,, 4 X *
My = ((1— g)f%z + g) ”1((5 —1)6; +1 =€) ildCo(0%; Xy11, Xj14)
4de

e.y. 4e .
— )61 + g)X’”((g — )3 + 1 — e)KildCy(0%; Xy, X)),

with Cy and C as defined above.
We define our ASE ratio estimate as 51'[ (t=1,...,n; L =1,...,L), where 51-1 is the

mode of the posterior distribution in (4.9).

4.3.2 Identification of quantitative trait loci

In order to quantify the impact of ASE on phenotypic variation we utilize 5” as estimated in
Section 4.3.1. For L large, we aim to find a sparse solution for the L-dimensional parameter
vector . In order to accomplish this task we apply a Lasso penalty. A sparse solution is
computed via cyclical coordinate descent and k-fold cross validation. For Y; as defined in
(4.5) an estimated vector ¥ is given by

- v e i — b du)
R

A4 = arg min

N + C(yi7 ¢)

+A*H’V|\1}, (4.10)

1=1
where \* is a non-negative regularization parameter. If Y; has a Binomial distribution, then

a solution for 4 is given by

n

. . T o T

7 = argmin {— > “(yid; 7 —log(1+e% 7))+ A*||7||1} - (4.11)
=1
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Similarly, if Y; has as Gaussian distribution, then a solution for 4 is given by
n
g = argmjﬂ{Z(yz‘ —52'T7)2+)\*H7\|1}- (4.12)
7o li=
A cyclic coordinate descent algorithm can be used to solve (4.10) — (4.12) (Friedman et al.
2010). Solutions are provided across a range of \* values, so to determine an optimal sparse
solution we perform k-fold cross validation as a way to extract SNPs that have non-zero
coefficients for a specific value of A*. Our choice of A* is based on the “one-standard error”
rule as it provides the most parsimonious model whose error is no more than one standard
error above the error of the best model. Details on cyclic coordinate descent and how it can
be applied to specific exponential families is available in Friedman et al. (2010).

After identifying a sparse solution for 4 we apply ordinary least squares using the phe-
notypic response and filtered § to obtain estimates and standard errors for the non-zero vs-
Ordinary least squares estimates are given by

n 2
A* = arg min {Z <yZ - 52‘*T7*> } , (4.13)
T li=1
where * denotes a filtered set of predictors and parameters after (4.10).

We summarize our procedure as follows. First, obtain ASE ratio estimates given RNA
read counts and imputed genotype-ASE statuses. Second, apply variable selection to deter-
mine the SNPs with ASE that influence phenotypic variation. Third, model the relationship
between SNPs with ASE and the response using ordinary least squares. Figure 4.2 illustrates

the relationships between G;;, X;;, 9;;, and Y; for the ¢th individual and L = 5.
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Figure 4.2: Grey circles represent observed values. White circles represent latent variables.

4.4 Simulation studies

In this section we demonstrate the performance of our proposed two-stage model in
identifying significant SNPs with ASE ratios as they relate to a phenotype. We consider
a simplified version of (4.1) for the simulation by ignoring an extended classification of

heterozygous genotype-ASE states. Hence, we assume

1 for “AA”,
Gy =14 2 for “AT-ASE”, (4.14)
3 for “TT”,

follows a three-state Markov process. Our data generation process consisted of the following
steps. First, two independent haplotypes were generated to form genotypes. The sequences
for each of the haplotypes were created using linkage disequilibrium information. For each
individual and SNP, total RNA read counts were generated from a negative binomial distri-
bution with parameter A and probability parameter p = .40. RNA read counts of A, C, G,

and T were then generated according to the total number of RNA read counts and (4.14) —
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(4.15). From (4.14) it follows that

]{52.1:1} for k = 1,
0i1|Gyt =k ~ ¢ Beta(a,8) for k=2, (4.15)

I{éilzo} for k = 3.

Let 0 be an n x L matrix that represents the true allele-specific expression ratios given
the true underlying genotype-ASE statuses. For a given individual and SNP, where the
underlying genotype is homozygous, the corresponding value in the matrix ¢ is represented
by zero. We set these values to zero because our interest is only in exploring the cis-acting
genetic effects on phenotypic variation.

In the next step we generate the phenotypic response by the following linear model, where

L
yi225;l;71+52-, 1=1,...,n, (4.16)
=1

and 7 is an L-dimensional parameter vector. We assume 7 is sparse and only allow the first
four elements to be non-zero. Thus, v = (v1,72,73,74,0, . .. ,O)T such that v = v =3 =
v4. Under this set-up, the first four SNPs have cis-acting effects while the remaining L — 4
SNPs have no cis-acting effects on ;.

In the simulation studies we set n = 50 and 100, and L = 8,15, and 50. The parameter
A defined in the negative binomial distribution to simulate total RNA read counts was set
to 16 and 24. The signal strength used in generation of the continuous phenotypic data,v,
was set to 2, 3, 5, and 7. Lastly, we set e = 0.07, o = 3, § = 3 for the mapping parameter
and Beta distribution parameters, respectively; and the linkage disequilibrium information
was set to 0.30. The simulation results presented in the Tables are figures were based off 100
replications.

To evaluate the performance of our proposed method considered the false positive rate
and false negative rate. For a given parameter combination, the false positive and false

negative rates were averaged over the 100 replications. The false positive rate and false
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negative rate are defined as follows:

# coeflicents falsely identified as non-zero
# non-zero coeflicients

False Positive Rate =

(4.17)
. coefficents falsely identified as zero
False Negative Rate = # Y e
# zero coeflicients
L ]
2oz + 202
5 2
= o A
2 2 =
0. A T Jo.  J .
& 2 ]
2 A . »
2 ] 8 % | [ .
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g e
[
L ]
[ ] » T “
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Figure 4.3: Average false negative rates and average false positive rates for the proposed
method. Facets in row 1 are for n = 50. Facets in row 2 are for n = 100.

The simulation results for a single test at significance level 0.01 are illustrated in Figure
4.3. As the heritability, or value of v increases, the average false negative rate decrease. The
same relationship holds for the average false positive rates. As the number of SNPs increases
for a given v, the average false positive rate increases whereas the average false negative rate
decreases. As the sample size increases both average rates decrease. The top row of plots
corresponds to the setting in which n = 50, and the bottom row of plots corresponds to the
setting in which n = 100. Lastly, all else held constant, a larger value of A generally results in
smaller false negative and false positive rates. A larger value of A means a larger number of

RNA read counts, and thus, more information. From a practical perspective, a low average
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false negative rate implies significant SNPs will not fail to be identified. Similar trends exist
when we consider a simultaneous test. Average rate values are displayed in Table 4.1 and

Table 4.2 for the single and simultaneous test, respectively.

Table 4.1: Average false positive and average false negative rates for the single test with
significance level 0.01. Average false positive rate is top value

n = 50 n = 100
L N =2 ~=3 ~v=5 =7 y7=2 =3 =5 =17
8§ 16 0.0074 0.0138 0.0120 0.0078 0.0085 0.0060 0.0020 0.0060
0.2633 0.0828 0.0240 0.0085 0.0678 0.0040 0.0000 0.0000
8§ 24 0.0182 0.0040 0.0073 0.0060 0.0093 0.0060 0.0040 0.0133
0.2105 0.0573 0.0040 0.0020 0.0220 0.0000 0.0000 0.0000
15 16 0.0357 0.0217 0.0145 0.0290 0.0308 0.0278 0.0060 0.0093
0.1240 0.0515 0.0099 0.0052 0.0184 0.0034 0.0000 0.0000
15 24 0.0160 0.0120 0.0185 0.0073 0.0120 0.0020 0.0133 0.0080
0.1062 0.0328 0.0042 0.0017 0.0117 0.0000 0.0000 0.0000
50 16 0.0977 0.1021 0.0650 0.0642 0.0676 0.0716 0.0486 0.0330
0.0345 0.0138 0.0021 0.0021 0.0051 0.0002 0.0000 0.0000
50 24 0.1062 0.1337 0.0549 0.0562 0.0610 0.0545 0.0463 0.0420
0.0288 0.0086 0.0011 0.0004 0.0034 0.0002 0.0000 0.0000

Table 4.2: Average false positive and average false negative rates for the simultaneous test
with nominal level 0.05. Average false positive rate is top value

n = 50 n = 100
L AN =2 ~=3 ~v=5 ~v=7 =2 =3 =5 =17
8§ 16 0.0718 0.0726 0.0702 0.0603 0.0512 0.0433 0.0293 0.0343
0.0668 0.0213 0.0040 0.0020 0.0120 0.0000 0.0000 0.0000
8 24 0.0756 0.0854 0.0762 0.0450 0.0548 0.0400 0.0326 0.0363
0.0440 0.0040 0.0000 0.0000 0.0065 0.0000 0.0000 0.0000
15 16 0.1233 0.1132 0.1177 0.1146 0.0975 0.0709 0.0378 0.0360
0.0436 0.0106 0.0008 0.0009 0.0025 0.0000 0.0000 0.0000
15 24 0.1348 0.1141 0.0861 0.0885 0.0543 0.0273 0.0352 0.0327
0.0350 0.0077 0.0027 0.0000 0.0025 0.0000 0.0000 0.0000
50 16 0.2033 0.2445 0.2238 0.2001 0.1544 0.1528 0.0925 0.0905
0.0178 0.0043 0.0011 0.0013 0.0017 0.0002 0.0000 0.0000
50 24 0.2433 0.2884 0.1923 0.1848 0.1403 0.1264 0.1080 0.0884
0.0124 0.0020 0.0004 0.0002 0.0015 0.0000 0.0000 0.0000

We evaluated the performance of our proposed method with two alternative procedures.
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Alternative procedure 1 used an exact binomial test based on the simulated RNA read counts
in order to estimate the unknown genotype-ASE status. Our test was performed under the
null hypothesis p = 0.50 with alternatives p > 0.50 and p < 0.50 corresponding to geno-
types AA and TT, respectively. Following genotype-ASE state imputation, we performed
an ordinary least squares post Lasso technique using the simulated phenotypic data as the
response and the estimated genotype-ASE statuses as predictors. Thus, we did not consider
ASE estimation in this alternative procedure. The average false positive and average false

negative rates were calculated under the same parameter scenarios as our proposed method.
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Figure 4.4: Average false negative rates and average false positive rates for alternative
procedure 1. Facets in row 1 are for n = 50. Facets in row 2 are for n = 100.

Figure 4.4 depicts the average false positive and average false negative rates. When n
increases from 50 to 100, the average false negative rate decreases slightly. However, we
do not see the precipitous decline in average false negative rates as heritability increases,
compared to our proposed method. Likewise, the average false positive rate decreases as

the sample size increases. As the number of SNPs increases, the average false positive rate
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increases and is much higher than the average rates in Figure 4.3. Table 4.3 provides the

raw values for all parameter combinations.

Table 4.3: Alternative method 1, average false positive and average false negative rates for
the single test with significance level 0.01. Average false positive rate is top value

n = 50 n = 100
L N =2 ~=3 ~v=5 =7 =2 =3 =5 =7
8 16 0.0312 0.1750 0.0000 0.0500 0.0000 0.0309 0.0714 0.0333
0.4864 0.4869 0.4867 0.4843 0.4864 0.4726 0.4752 0.4746
8 24 0.0714 0.1190 0.0476 0.1136 0.0294 0.1250 0.0000 0.0750
0.4886 0.4884 0.4845 0.4850 0.4876 0.4776 0.4674 0.4578
15 16 0.2500 0.0000 0.1000 0.2304 0.1190 0.1133 0.0808 0.0469
0.2592 0.2577 0.2587 0.2579 0.2528 0.2513 0.2434 0.2469
15 24 0.2564 0.1667 0.1369 0.1591 0.0526 0.0000 0.0778 0.0783
0.2608 0.2555 0.2519 0.2538 0.2509 0.2493 0.2447 0.2424
50 16 0.3646 0.5370 0.4674 0.2978 0.2892 0.2179 0.3053 0.2048
0.0778 0.0782 0.0763 0.0753 0.0767 0.0740 0.0757 0.0719
50 24 04769 0.3833 0.4031 0.3476 0.2325 0.1471 0.2546 0.1333
0.0782 0.0775 0.0750 0.0760 0.0762 0.0757 0.0714 0.0723

The weak performance of alternative method 1 comes from two sources. First, the bino-
mial test results in less accurate genotype predictions compared to (4.6). Assuming genotypes
follow a Markov process and using a hidden Markov model to impute their state provides ex-
tra information that results in accurate predictions (Ferguson-Smith 2001). Second, correctly
predicted heterozygous states do not consider ASE.

For alternative method 2 we estimated an allele-specific expression ratio directly from
the simulated RNA read counts. Let ASE; be an estimated quantity for ASE such that

Xilref
+ Xi

ASE;; = i=1,...,n;1=1,...,L, (4.18)

Xi lalt

lre f
where we define A to be the reference allele and T to be the alternative allele. Again, we
performed an ordinary least squares post-Lasso procedure in conjunction. The average false

positive and average false negative rates were calculated under the same parameter scenarios

as our proposed method and alternative method 1. Figure 4.5 and Table 4.4 illustrate that
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the performance is similar to alternative method 1 and inferior to our proposed method with

regards to false positive and false negative metrics.
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Figure 4.5: Average false negative rates and average false positive rates for alternative
procedure 2. Facets in row 1 are for n = 50. Facets in row 2 are for n = 100.
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Table 4.4: Alternative method 2, average false positive and average false negative rates for
the single test with significance level 0.01. Average false positive rate is top value

n = 50 n = 100
L N =2 ~=3 ~v=5 =7 =2 =3 yv=5 =17
8§ 16 0.0938 0.2111 0.1522 0.1391 0.0000 0.0185 0.0455 0.0095
0.4875 0.4917 0.4867 0.4817 0.4860 0.4738 0.4710 0.4680
8§ 24 0.1250 0.0000 0.1190 0.1481 0.1667 0.0962 0.0556 0.0000
0.4876 0.4850 0.4861 0.4832 0.4924 0.4793 0.4716 0.4623
15 16 0.3000 0.3148 0.1618 0.1458 0.0702 0.0938 0.0500 0.1000
0.2628 0.2614 0.2552 0.2552 0.2529 0.2443 0.2490 0.2455
15 24 0.1154 0.3182 0.1746 0.2283 0.0000 0.0909 0.1496 0.0208
0.2591 0.2626 0.2521 0.2562 0.2598 0.2517 0.2399 0.2499
50 16 0.3968 0.4011 0.4141 0.4429 0.2083 0.1607 0.1865 0.2033
0.0787 0.0756 0.0770 0.0778 0.0773 0.0773 0.0746 0.0745
50 24 04009 0.4190 0.5042 0.5198 0.2633 0.2333 0.2646 0.1470
0.0771 0.0777 0.0773 0.0758 0.0765 0.0737 0.0732 0.0720

Figure 4.6 characterizes the discrepancy between an ASE estimate from RNA read counts
defined in (4.18) and an ASE estimate using our proposed hierarchical model. For values
less than 0.50, the hidden Markov model ASE estimate is greater than our naive estimate in

(4.18). Above 0.50 the hidden Markov model ASE estimate is less than our naive estimate.

b
~

Sirmulated Raw Allele Count Ratio

o
P

0.25 0.50 075
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Figure 4.6: ASE estimates from the hidden Markov model compared to simulated raw
allele count ratios. Hidden Markov model imputed ASE ratios with value less than 0.50 are
marked as red, and values above 0.50 are marked as blue.
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Through our simulation analysis, our hierarchical model appears to perform better than
two alternative procedures at identifying SNPs with cis-acting effects on phenotypic varia-

tion.

4.5 An empirical study

The following paragraph provides some of the data gathering and processing details as
explained in Steibel et al. (2015). RNA sequence data was obtained from 24 female pigs
from an F2 cross of Duroc and Pietrain breeds (Choi et al. 2012, Choi et al. 2011, Edwards
et al. 2008a, Edwards et al. 2008b, Steibel et al. 2011). Protocols for RNA sequencing
and the accuracy of genotype calling using a hidden Markov-ASE model have already been
established in Steibel et al. (2015). To summarize the process, RNA from each sample was
reverse transcribed, fragmented, barcode-labeled and sequenced on an Illumina HiSeq 2000
(100 bp, paired-end reads). After quality control filtering, sequence reads were aligned to
reference genome (Sus scrofa 10.2.69 retrieved from the Ensembl database) using Tophat
(Trapnell et al. 2009). Coding SNP discovery and genotyping were done with VarScan
(Trapnell et al. 2009). We focused on chromosome 13 and extracted counts of reads agreeing
with reference (R) or alternative (A) allele with respect to the reference genome at putative
5364 ¢cSNP and we retained read counts on 65 SNPs that could be independently validated
using a SNP chip (Steibel et al. 2015). In addition to the RNA sequence data, 45 minute
post-mortem meat pH was recorded in these animals (Edwards et al. 2008b) and served as
our phenotypic response variable for analyses.

The RNA sequence data we analyzed is available in the HMMASE R, package which is
available at http://www.stt.\msu.edu/users/pszhong/HMMASE.html. The data set was
partitioned so that the minimum number of SNPs in a segment is 30. Our proposed proce-
dure was applied to each segment of RNA sequence data. Figure 4.7 depicts estimates for
significant SNPs along with their SNP ID number. For example, the second segmented data
set produced four significant SNPs: 12256008, 12400307, 12403644, and 12404379.
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Figure 4.7: Estimates for SNPs. Significant SNPs are displayed with their respective 1D
provided in the real data set. IDs correspond to the ordered locations.

We investigated the effects of an estimated ASE ratio from the hidden Markov model
compared to the naive estimate defined in (4.18). Figure 4.8 depicts the relationship between
the two estimates, and reveals a shrinkage around each Beta distribution’s mode of 0.25 and
0.75, respectively. For values below the respective mode, the hidden Markov ASE estimate
is less than the raw allele count ratio, and for values above the respective mode, the hidden

Markov ASE estimate is greater than the raw allele count ratio.
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Figure 4.8: ASE estimates from the hidden Markov model compared to real raw allele
count ratios. Hidden Markov imputed ASE values conditional on G;; = 3 and G;; = 4 are
marked as blue and red, respectively.

1.00-

0.75-

0.50-

Raw Allele Count Ratio

0.25-

0.00-

0.00 025 050 075 1.00
HMM ASE Estimate

Figure 4.9: ASE estimates from the hidden Markov model compared to real raw allele
count ratios. Hidden Markov imputed ASE values conditional on G;; = 3 and G;; = 4 are
marked as blue and red, respectively.
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CHAPTER 5

CONCLUSION

5.1 Introduction

In this chapter we summarize the salient contributions to the field of Statistics based on
the content of Chapters 2 through 4. We also introduce details to new and exciting research

challenges.

5.2 Summary of contributions

In Chapter 2, we proposed a novel nonparametric test procedure for testing the temporal
homogeneity of covariance matrices with high-dimensional longitudinal data. The proce-
dure aims to detect and identify change points among a temporally dependent collection
of covariance matrices. In Chapter 2, a new test statistic was introduced, and theoretical
results were derived under an asymptotic setting in which n and p diverge and T is finite.
The test statistic’s asymptotic distribution was derived under mild dependence assumptions
but with no assumption of sparsity and no requirement on the relationship between n and
p. We also proposed a procedure to identify the locations of change points through binary
segmentation. The corresponding change point identification estimator’s rate of convergence
was investigated and shown to be consistent provided an adequate signal-to-noise ratio ex-
ists. Numerical studies demonstrated the finite sample performance of our procedure. These
developments expanded the field of Statistics by pioneering a robust procedure to detect
and identify change points among covariance matrices in the presence of high-dimensional
longitudinal data.

In Chapter 3, we widened the scope of applicability with regards to the procedure de-
veloped in Chapter 2. Theoretical results were derived under an asymptotic framework in

which n, p, and T all diverge. We established the test statistic’s asymptotic distribution and
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demonstrated that the change point identification estimator’s rate of convergence depends
on n, p, T, and the signal-to-noise ratio. Therefore, the estimator was also shown to be con-
sistent in a diverging T setting, provided an adequate signal-to-noise ratio exists. Numerical
studies demonstrated the finite sample performance for a large T setting. Chapter 3 also
addressed computation challenges. Recursive formulae were derived as were computation effi-
cient forms of U-type statistics. In addition, we proposed an accurate quantile approximation
procedure to via an estimated correlation matrix. The overall computation complexity was
reduced from the order pn4T6 to the order of pn2T3. These theoretical and computational
developments of Chapter 3 made our procedure applicable to high-dimensional functional
data and allowed us to demonstrate our method using a task-based fMRI data set. Thus, the
contribution to Statistics in Chapter 3 is an expanded scope of the cutting-edge procedures
introduced in Chapter 2.

In Chapter 4, we developed a hierarchical model to understand the relationship between
allele-specific expression and phenotypic variation. Our hierarchical model was able to use
RNA sequence data and identify SNPs with ASE that have a cis-acting effect on a phenotypic
response. The performance is accurate and can quickly be applied through a combination of

the EM algorithm and Lasso procedure.

5.3 Future research

The procedures established in Chapter 2 and extended in Chapter 3 required mild as-
sumptions but did not allow much flexibility in terms of n and 7. For example, in many
longitudinal studies patients drop out, measurements are missing at random or non-random
time points, and the sample size can be extremely small or even one. The methods de-
veloped in Chapters 2 and 3 will not be applicable to data under these settings. More
work is necessary to accommodate a wider domain of real-world data and problems. One
valuable extension of our work will be to develop a procedure for single-subject inference

in high-dimensional longitudinal data and high-dimensional functional data. In terms of
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a homogeneity test for covariance matrices, this setting will allow for an increase in scope
of applications due to more realistic assumptions, and a sample size requirement of only
one. For genetic or fMRI data, an effectively developed procedure will invoke a personalized
medicine approach and have a greater benefit to the individual patient. Other potential
applications of this work would include real estate and financial data, and motion sensor
data for activities.

From a computation standpoint, accurate and fast approximations could be developed
to handle situations where 7' is of the order 1000. Even with a high-performance computing
cluster, it is not practical to apply our proposed procedure for massive values of T'. However,
as technology improves and longitudinal studies expand, the demand to address massive
high-dimensional longitudinal data will increase. It is paramount that statistical methods
can produce accurate and fast results for practitioners.

A natural extension to the model proposed in Chapter 4 is to develop a unified likeli-
hood approach in a hierarchical framework. Rather than only use RNA read count data to
predict the underlying genotype with ASE status, we could perform this prediction given
phenotypic data and RNA read counts. The additional information should improve predic-
tion accuracy. From a theoretical perspective, a unified likelihood approach would allow
for statistical inference, and under certain conditions consistency and asymptotic normality
could be proved. From a computation perspective, we could investigate a procedure that
performs variable selection and parameter estimation through a penalized EM algorithm or

penalized variational EM algorithm.
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