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ABSTRACT

STATISTICAL INFERENCE WITH HIGH-DIMENSIONAL DEPENDENT DATA

By

Shawn M. Santo

High-dimensional time dependent data appear in practice when a large number of variables

are repeatedly measured for a relatively small number of experimental units. The number

of repeated measurements can range from two to hundreds depending on the application.

Advances in technology have made the process of gathering and storing data such as these

relatively low-cost and efficient. Demand to analyze such complex data arises in genetics,

microbiology, neuroscience, finance, and meteorology. In this dissertation, we first intro-

duce and investigate a novel solution to a classical problem that involves high-dimensional

time dependent data. In addition, we propose a new approach to analyze high-dimensional

dependent genomics data.

First, we consider detecting and identifying change points among covariance matrices

of high-dimensional longitudinal data and high-dimensional functional data. The proposed

methods are applicable under general temporospatial dependence. A new test statistic is

introduced for change point detection, and its asymptotic distribution is established under

two different asymptotic settings. If a change point is detected, an estimate for the lo-

cation is provided. We investigate the rate of convergence for the change point estimator

and study how it is impacted by dimensionality and temporospatial dependence in each

asymptotic framework. Binary segmentation is applied to estimate the locations of possibly

multiple change points, and the corresponding estimator is shown to be consistent under

mild conditions for each asymptotic setting. Simulation studies demonstrate the empirical

size and power of the proposed test and accuracy of the change point estimator. We apply

our procedures on a time-course microarray data set and a task-based fMRI data set.

In the second part of this dissertation we consider a hierarchical high-dimensional de-



pendent model in the context of genomics. Our model analyzes RNA sequencing data to

identify polymorphisms with allele-specific expression that are correlated with phenotypic

variation. Through simulation, we demonstrate that our model can consistently select sig-

nificant predictors among a large number of possible predictors. We apply our model to an

RNA sequencing and phenotypic data set derived from a sounder of swine.
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CHAPTER 1

INTRODUCTION

1.1 Technology and the field of statistics

Technology is one of the chief drivers of growth and innovation in society, and its impact

on the field of statistics cannot be understated. For much of the twentieth century, statisti-

cians concentrated on solving problems in a classical setting, where the number of subjects,

observations, or experimental units, exceeded the number of variables or features measured.

If p is the number of variables or features, and n is the number of experimental units, then

this classical setting is the so-called ‘small p, large n’ setting. The demand to develop robust

theoretical procedures under the ‘small p, large n’ setting was due in large part to the data

and resources available at the time. Computers were not efficient, data recording was not

automated, and the scope of technology was limited; thus, there was little motivation to

consider situations in which p far exceeded n. In fact, even as late as 1981, it was considered

poor practice to have a study in which n/p < 5 (Huber 1981).

The past thirty years have been an era of accelerated technological progress in many

fields in society. Biology, finance, economics, computer science, meteorology, and others, all

have the available resources to gather massive amounts of information. The need to filter,

understand, and analyze this information continues to grow. Data sets in numerous domain

specific fields now often have more variables recorded than experimental units. This ‘large

p, small n’ setting is what is referred to as high-dimensional data. As technology and data

recording processes improve, statisticians will play an integral role in developing theoretically

robust and computationally efficient statistical methods to analyze such complex data.
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1.2 Low to high-dimensional data

The research in high-dimensional data has seen a shift over the past two decades from es-

timation to more complex forms of inference. Estimation is often an initial step in inference,

but it does not allow us to quantify uncertainty. Much of the focus with regards to estimation

in a high-dimensional framework has been geared towards parameter estimation in general-

ized linear models and graphical models (Bühlmann and van de Geer 2011). Donoho and

Johnstone (1994) pioneered parameter estimation in a linear model when p = n. To obtain

sparse estimation, Tibshirani (1996) proposed an `1-norm penalization procedure known

as least absolute shrinkage and selection operator (Lasso). Under a sparsity assumption

and other regularization conditions, Lasso simultaneously performs parameter estimation

and variable selection. Tibshirani’s seminal paper resulted in an extensive study of Lasso’s

theoretical properties and paved a way for valuable `1-norm and `2-norm penalization ex-

tensions. For example, Zou and Hastie (2005) introduced the elastic net to address some

short-comings with regards to the number of covariates selected via Lasso. Tibshirani et

al. (2005) and Yuan and Lin (2006) proposed fused Lasso and group Lasso, respectively. In

2006, Zou (2006) introduced adaptive Lasso. Fu and Knight (2000) and Zhao and Yu (2006)

investigated the asymptotic behavior of Lasso-type estimates and proved under certain con-

ditions that when the true parameter is 0, there exists non-zero probability mass at 0 for

the estimator’s limiting distribution. From a computation standpoint, Osborne et al. (2000)

studied the primal and dual problem of Lasso, and as a result, developed a fast and efficient

algorithm to obtain Lasso estimates. There is a long list of literature on regularization es-

timation for high-dimensional parameters. Since the main focus of this dissertation is not

estimation, we do not enumerate all of them. Some important works include: Fan and Li

(2001), Candes and Tao (2007), and Zhang (2010).

Inference as it relates to hypothesis testing or confidence intervals allows researchers to

make scientific discoveries and improve decision making. However, statistical inference of

these forms in high-dimensional data are not simple extensions of the classical inference

2



procedures, where the number of sample subjects exceeds the number of variables measured.

As was noted by Johnstone and Titterington (2009),

It should not, of course, be imagined that the ‘large p’ scenarios are mere al-

ternative cases to be explored in the same spirit as their ‘small p’ forebears. A

better analogy would lie in the distinction between linear and nonlinear models

and methods — the unbounded variety and complexity of departures from linear-

ity is a metaphor (and in some cases a literal model) for the scope of phenomena

that can arise as the number of parameters grows without limit.

In terms of inference for high-dimensional mean vectors, Dempster (1958) first considered

a two-sample test in a p > n setting. Bai and Saranadasa (1996), Chen and Qin (2010),

and Cai and Xia (2014) proposed test statistics to extend the novel work of Dempster in

1958. Fujikoshi et al. (2010) provides an overview and details on testing high-dimensional

mean vectors. The work on testing high-dimensional covariance matrices can be traced

back to Ledoit and Wolf (2002), where they assumed p/n converges to some constant, and

proved under a normality assumption that their test statistics are normal. Methodology

building off Ledoit and Wolf include: Chen et al. (2010) and Cai and Ma (2013). Schott

(2007), Srivastava and Yanagihara (2010), Li and Chen (2012), and Cai et al. (2013) all

investigated the problem of testing the equality of high-dimensional covariance matrices for

two or multiple groups. More recently, Ahmad (2017) and Zhang et al. (2018) generalized

the work of Li and Chen (2012).

Some testing and confidence interval procedures with regards to Lasso estimates and

generalized linear models were established by Bach (2008), Meinshausen and Bühlmann

(2010), and Zhang and Zhang (2013).

To elucidate one of the challenges brought about in a high-dimensional framework, con-

sider a classical test with regards to covariance matrices under the ‘small p, large n’ setting.

Muirhead (2005) details a few of these tests, along with some tests for mean vectors. Suppose

3



we are interested in testing

H0 : Σ1 = · · · = ΣT versus

H1 : Not all are equal, (1.1)

where we assume Xit (i = 1, . . . , n; t = 1, . . . , T ) is a p-dimensional random vector from a

multivariate normal distribution with mean µt and covariance Σt. Let, xit be a realization

of Xit from the tth population. Assume that the T populations are independent and the

random sample of n vectors from each of the T populations are independent. The likelihood

ratio test can be used to develop an α-level test for (1.1). The likelihood function is given

by

L(µt,Σt) =
T∏
t=1

(2π)−pn/2|Σt|−n/2 exp

{
− 1

2

n∑
i=1

(xit − µt)TΣ−1
t (xit − µt)

}
.

For observed data, L(µt,Σt) is a function of µt and Σt for all t. To obtain the likelihood

criterion we maximize L(µt,Σt) under the restricted parameter space of the null hypothesis

and also under the unrestricted parameter space. Let Ω = {(µt,Σt) : t = 1, . . . , T} and

Ω0 = {(µt,Σt) : Σ1 = · · · = ΣT } denote the unrestricted and restricted parameter spaces,

respectively. Thus, the likelihood criterion is defined as

λn =
supΩ0

L(µt,Σt)

supΩL(µt,Σt)
.

Let N = Tn, and let A =
∑T
t=1At, where At =

∑n
i=1(xit − x̄t)(xit − x̄t)

T. For the

parameter space Ω, the maximum likelihood estimators are µ̂t,Ω = x̄t and Σ̂t,Ω = At/n, for

µt and Σt, respectively. For the parameter space Ω0, the maximum likelihood estimators

are µ̂t,Ω0
= x̄t and Σ̂Ω0

= A/N , for µt and Σt, respectively. Therefore, substituting these

values back into λn and taking the logarithm,

Λn = −2 log(λn) = N log

(
|Σ̂Ω0

|
)
−

T∑
t=1

n log

(
|Σ̂t,Ω|

)
.

Hence, an α-level test rejects H0 of (1.1) whenever Λn < Λα. Under an asymptotic setting

when n diverges and p is fixed, the null distribution of Λn can be derived. Furthermore, as
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n → ∞, At/(n − 1) → Σt in probability. Thus, the standard asymptotic results hold for

likelihood ratios, Λn → χ2 in distribution with degrees of freedom (T − 1)p(p+ 1)/2, under

the ‘small p, large n’ setting. However, breakdowns occur if we consider a ‘large p, small n’

framework.

Under a ‘large p, small n’ setting, Λn can no longer be computed and the asymptotic

results are not easily extended. If p > n, then we can no longer compute log(|Σ̂Ω0
|) due to At

and A being singular. Furthermore, the asymptotic distribution under the null hypothesis

is not well defined for when p diverges. In a high-dimensional framework with p > n, the

convergence in probability of At/(n − 1) → Σt no longer holds as demonstrated through

spectral analysis by Bai and Yin (1993), Johnstone (2001), and others. As a result, testing

(1.1) is not possible via a likelihood ratio test. This is just one example in which breakdowns

in the classical methods occur due to an increase in data dimension. This phenomena is

known as the “curse of dimensionality”.

An increase in data dimension can produce extra noise, computation challenges, and a

failure in many of the existing classical statistical procedures. However, in certain situations

an increase in dimensionality may be a blessing (Donoho 2000). For further challenges

associated with high-dimensional data we encourage readers to see Fan and Li (2006) and

Fan et al. (2014a).

1.3 Independent to dependent data

The likelihood ratio test for (1.1) as described in Section 1.2 further breaks down if the

T groups are not independent. In this dissertation, measurements of a sample that are

repeatedly recorded will be referred to as longitudinal data when the number of repeated

measurements is small. If the number of repeated measurements is large, or dense, we will

refer to it as functional data. Measurements taken over time allow researchers to understand

the evolution of the sample subjects, detect and identify changes in certain variables across

time, and study sequences of events. In longitudinal or functional data sets, temporal depen-
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dence exists among measurements from the same subject, and adds a layer of complexity to

the theoretical and computational analysis. Methodology developed under a T -independent

sample framework is not applicable for a T -dependent sample. For example, Chen and

Qin (2010) and Li and Chen (2012) considered an independent two-sample high-dimensional

test for mean vectors and covariance matrices, respectively. However, their methods are

not applicable in a temporal dependent setting. There are two types of dependence in the

data: temporal and spatial. If these dependencies are ignored, then inference procedures are

invalid and misleading. Currently, there is no existing work accounting for the aforemen-

tioned dependencies in high-dimensional covariance testing and change point detection and

identification. The asymptotic analysis is more complicated when both dependencies are

considered. Generalizing to an asymptotic framework for high-dimensional functional data

further increases complexity.

1.4 Change point detection and identification

Given (1.1) for time dependent data, two questions naturally arise. First: Can we detect

changes among T dependent covariance matrices? Second: Can we identify the time points

for where those changes occur? These questions have profound effects for time dependent

data. Their answers can provide critical information to individuals in the fields of finance,

genetics, neuroscience, climatology, and more.

Change point detection is a classical problem in time series analysis. Numerous supervised

and unsupervised machine learning algorithms are used in various change point detection

applications. Aminikhanghahi and Cook (2016) detail a few multi-class supervised learning

algorithms such as Gaussian mixture models, hidden Markov models, and decision trees.

Their work also highlights likelihood ratios, probabilistic models, graphs, and clustering as

further approaches to the change point detection problem. One of the most common tech-

niques in change point detection is the cumulative sum (CUSUM) method by Page (1954).

Measurements in a process are cumulatively summed according to a weighted procedure. A
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change point is identified once the cumulative sum quantity exceeds a threshold value. Cher-

noff and Zacks (1964) laid the groundwork for change point detection with regards to the

mean of normal random variables. Accordingly, a series of methodologies were developed in

independent univariate and multivariate settings. Some of these works include: Kander and

Zacks (1966), Yao and Davis (1986), Sen and Srivastava (1973), and Srivastava and Worsley

(1986). Chapter 2 in both Csörgö and Horváth (1997) and Brodsky and Darkhovsky (1993)

detail nonparametric change point detection methods based on Wilcoxon-type statistics, U-

type statistics, and M-estimators. Johnson and Bagshaw (1974), Brown et al. (1975), and

Horváth and Kokoszka (1997) introduced methods to address the change point problem for

dependent data. For further details on classical change point detection and identification

procedures, we refer readers to Basseville and Nikiforov (1993) and Brodsky (2017).

In terms of a classical procedure for testing (1.1) with T dependent groups, there is

none. A multivariate procedure to test (1.1) was proposed by Aue et al. (2009). Assume

Xt (t = 1, . . . , T ) are p-dimensional temporal dependent random vectors from a multivariate

distribution with mean µ and covariance Σt. Thus, xt is an observation at the tth time

point. To test (1.1), Aue et al. (2009) considered the quantity, Sk (k = 1, . . . , T ) such that

Sk =
1√
T

{ k∑
j=1

vech(xjx
T
j )− k

T

T∑
j=1

vech(xjx
T
j )

}
,

where for any p × p symmetric matrix M , vech(M) represents the stacked columns of the

lower triangular region of M in the form of a p(p − 1)/2 vector. The quantity Sk was

motivated by the fact that under H0 of (1.1), E{vech(xjx
T
j )} = E{vech(xix

T
i )} for all

i, j ∈ {1, . . . , T}. Based on Sk, they introduced a test statistic ΩT = T−1∑T
k=1 S

T
k Σ̂−1

T Sk,

where Σ̂T is an estimator such that |Σ̂T − ΣT |E = op(1) as T diverges, and for any matrix

A, |A|E = supx 6=0|Ax|/|x|. They derived the test statistic’s asymptotic distribution under

the null hypothesis with T � p.

However, Aue et al. (2009)’s method fails in a high-dimensional framework since Σ̂T is

not invertible if p � T . In addition, Aue et al. did not consider a setting in which n > 1,
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and thus, their methodology does not permit multiple-subject inference. In Section 1.2 we

highlighted the fact that recent research has addressed the high-dimensional challenges for

testing (1.1) but not dependence. In this section we detailed a procedure that incorporates

dependence but not a ‘large p, small n’ framework. Therefore, a gap exists. How can we

test (1.1) for high-dimensional time dependent data?

1.5 High-dimensional time dependent data

High-dimensional longitudinal data appear in practice when a large number of variables,

p, are repeatedly measured for a relatively small number of experimental units, n. The

number of repeated measurements, T , can range from two to hundreds depending on the

application. Throughout this dissertation, longitudinal data will refer to settings when T is

small. High-dimensional functional data will refer to settings in which T is large or dense.

For details on functional data analysis we refer readers to Ramsay and Silverman (2005).

Consider an experiment where patients have their gene expressions measured throughout

the course of a treatment regimen. Doctors and clinicians may be interested in understand-

ing how these gene expressions are regulated over time. In studies such as this, the number

of gene expressions, p, measured is anywhere from a few hundred to a few thousand, and

the number of patients, n, along with the number of repeated measurements, T , is small.

We will refer to this as high-dimensional longitudinal data. As another example, consider a

functional magnetic resonance imaging (fMRI) study where patients have their brain activ-

ity measured while performing various tasks. Thousands of blood-oxygen-level dependent

(BOLD) responses are recorded, hundreds of times during the duration of a scan, for voxels

corresponding to regions of interest in the patient’s brain. For this single patient, radiologists

may be interested in identifying and understanding significant spatial and temporal changes.

The BOLD data from an fMRI experiment are considered high-dimensional functional data.
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1.6 Dissertation outline

In Chapters 2 and 3 of this dissertation we develop and evaluate a procedure to test

(1.1) for high-dimensional longitudinal and high-dimensional functional data, respectively.

To visualize our objective in a high-dimensional longitudinal setting, consider Figure 1.1.

Each sub-plot represents the covariance matrix at the respective time point. From Figure

1.1 it is clear that the covariance is homogeneous between time points one through three;

there is a different covariance structure at t = 4; for time points five and six the covariance

structure is homogeneous again.

Figure 1.1: Population covariance heat maps at six time points. Change points exist at
time t = 3 and at time t = 4.

Our statistical test will first detect the presence of any change points among the T covariance

matrices. If we can conclude that change points exist, we further identify the time points

at which changes occur. The procedures we propose are pioneering with regards to (1.1) for

high-dimensional longitudinal and high-dimensional functional data. As is discussed in detail

in Chapters 2 and 3, some research has provided a solution to test (1.1) in a high-dimensional
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framework, but no method has been developed for high-dimensional time dependent data.

In addition to the theoretical challenges, we also address the natural computation challenges

that arise with such massive time dependent data. We ensure our method is practical and

accessible to the end users in biology, neuroscience, and other fields via an R package.

In Chapter 4 we consider a different type of high-dimensional dependent data, where

we propose a novel hierarchical model for genomics applications. Our interest is to link a

phenotypic response with single nucleotide polymorphisms (SNPs) that have allele-specific

expression (ASE). To account for dependence among the latent genotype and ASE status

combination, we consider a hidden Markov model and incorporate regularized regression to

address the high-dimensionality. Our problem can be depicted with the graphical model

in Figure 1.2 for the ith individual with five SNPs. Let Xil, Gil, δil be the RNA read

counts, genotype and ASE status, and allele-specific expression ratio, respectively for the ith

individual at the lth SNP. Let Yi be an observed phenotypic response. Given the relationships

between X, G, and δ we first aim to estimate the latent variables Gil and δil given X and an

assumed Markov structure for G. For an observed phenotypic response, Y , we use regularized

regression to select the significant δs.

Gi1

Xi1

δi1

Gi2

Xi2

δi2

Gi3

Xi3

δi3

Gi4

Xi4

δi4

Gi5

Xi5

δi5

Yi

Figure 1.2: A small graphical model for the problem considered in Chapter 4. Grey circles
represent observed values. White circles represent latent variables.

In, Chapter 5, we discuss possible theoretical and computational extensions to the results

of Chapters 2 – 4.
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All proofs to lemmas and theorems are provided in the sections titled “Technical details”

of the respective chapter.
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CHAPTER 2

HOMOGENEITY TESTS OF COVARIANCE MATRICES WITH
HIGH-DIMENSIONAL LONGITUDINAL DATA

2.1 Introduction

In a typical time-course microarray data set, thousands of gene expression values are

measured repeatedly from the same subject at different stages in a developmental process (Tai

and Speed, 2006). As a motivating example, Taylor et al. (2007) conducted a longitudinal

study on 69 patients infected with hepatitis C virus. Their gene expression values were

measured once before treatment and five times during the treatment regimen of pegylated

alpha interferon and ribavirin. One purpose of the study was to identify which genes were

regulated by treatment. The repeated measurements enable researchers to understand gene

regulation over time. An important task in genomic studies is to identify gene sets with

significant temporal changes (Storey et al., 2005). Much evidence has shown that gene

interaction and co-regulation play a critical role in the etiology of various diseases (Shedden

and Taylor, 2005). One application of our methods is to identify gene sets with significant

changes in their covariance matrices, because the covariance matrix or its inverse can be

used for quantifying interaction and co-regulation among genes (Danaher et al., 2015).

Assume that Yit = (Yit1, . . . , Yitp)
T is a p-dimensional random vector with mean µt and

covariance Σt. In the aforementioned applications, Yit (i = 1, . . . , n; t = 1, . . . , T ) represents

gene expressions for p genes in a gene set measured from the ith individual at the tth

developmental stage, where n is the sample size and T is the total number of finite stages.

The number of genes, p, in a given gene set ranges from a hundred to a few thousand, as

illustrated by the histogram in Figure 2.2 in Section 2.6, but n and T are small in the study.

Thus, p can be much larger than n and T . We focus on testing the homogeneity of covariance
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matrices:

H0 : Σ1 = · · · = ΣT versus H1 : Σk 6= Σl (2.1)

for some 1 ≤ k 6= l ≤ T . The alternative in (2.1) can be written as a change point type

alternative:

H1 : Σ1 = · · · = Σk1
6= Σk1+1 = · · · = Σkq 6= Σkq+1 = · · · = ΣT , (2.2)

where 1 ≤ k1 < · · · < kq < T are unknown locations of change points. This alternative is

of interest in practice because it specifies the locations of changes. For example, researchers

are often interested in understanding dynamic gene regulation. By identifying the change

points, we can infer the change pattern of gene regulation, which is important for developing

diagnostic and preventive tools for some diseases (Koh et al., 2014).

Testing the homogeneity of covariance matrices is a classical problem in multivariate

analysis. Classical methods for testing (2.1) include the likelihood ratio test (Muirhead,

2005) and Box’s M test (Box, 1949). Some resampling methods have also been proposed

by Zhang and Boos (1992) and Zhu et al. (2002). However, these methods are not valid for

the aforementioned applications for the following reasons. First, these methods require n to

be much larger than p. Thus, they are not applicable under the large p, small n paradigm.

Second, these methods are only valid for independent samples without temporal dependence,

but the independence assumption is not valid for high-dimensional longitudinal data because

the repeated measurements obtained from the same individual are temporally dependent.

There is some existing research on testing (2.1) in the large p, small n scenario for

independent samples. Li and Chen (2012) considered testing the equality of two covariance

matrices for two independent samples. Schott (2007) and Srivastava & Yanagihara (2010)

proposed test statistics for (2.1) based on estimators of the summation of the weighted pair-

wise Frobenius norm distances between any two covariance matrices. Zheng et al. (2015)

and Yang and Pan (2017) applied random matrix theory to test the equality of two large-

dimensional covariance matrices.
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Some methods have also been developed in neuroscience literature under the large p and

large T setup with T > p, which is different from our large p, small n and T setup. For exam-

ple, Barnett & Onnela (2016) proposed a sieve bootstrap covariance change point detection

method that requires removing both boundaries of a time series with length greater than

p to avoid ill-conditioned covariance matrices. Laumann et al. (2017) discussed a method

for detecting changes in covariances by assessing the stability of multivariate kurtosis us-

ing a simulation approach. Their methods also require T > p to ensure the existence of

an inverse of a sample covariance matrix. In addition to the aforementioned multivariate

detection procedures, a marginal pair-wise testing procedure was developed by Zalesky et

al. (2014). Their approach relies on a sliding window to detect changes in correlation coef-

ficients between a pair of coordinates. The p-value for each pair is obtained by resampling

residuals after fitting vector autoregressive models. It is then applied to test the homogene-

ity of covariance matrices using multiple testing. Despite the above advances, no existing

multivariate method can be applied directly to test (2.1) for temporal dependent data under

the large p, small n and T setup.

This chapter proposes a new method for testing the equality of covariance matrices with

high-dimensional longitudinal data under the large p, small n and T scenario. The proposed

method considers both spatial and temporal dependence. Spatial dependence refers to the

dependence among different components of Yit, and temporal dependence refers to the de-

pendence between Yit and Yis for any two time points t 6= s. The asymptotic distribution

of the proposed test statistic is derived under mild conditions on dependence without any

explicit requirement on the relationships between p, n and T .

We also propose a method for estimating the location of change points k1, . . . , kq among

covariance matrices. There exists some work on identifying change points in high-dimensional

means, but the literature for high-dimensional covariances is very small. Aue et al. (2009)

laid groundwork by considering a p-dimensional multivariate, possibly high-dimensional,

time series setup where T diverges, n = 1 and p < T . Their test statistic involves the inverse
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of a p × p sample covariance matrix, which is singular if p > T . Thus, their method is

not applicable to high-dimensional longitudinal data. In the case with finite p and n but

diverging T , one major concern is that the change point estimator is not consistent (Hinkley,

1970) and only the ratios ki/T (i = 1, . . . , q) are consistent. When p is finite but n→∞, it

has been shown that change points can be estimated consistently. However, it is not clear

how the data dimension affects the rate of convergence. We study the rate of convergence

of our proposed change point estimator and find that it depends on the data dimension,

sample size, noise level and signal strength. Consistency of the change point estimator is

possible even in the high-dimensional case. Furthermore, we propose a binary segmentation

procedure for identifying the locations of multiple change points, whose consistency is also

established.

Our work is related to, but different from, that of Li and Chen (2012), who considered

a test for the equality of two covariance matrices with two independent samples. First, we

consider a general homogeneity test of covariance matrices with more than two populations,

while Li and Chen only considered a two-sample case. Second, Li and Chen considered the

test for two independent samples, but our proposal can accommodate both temporal and

spatial dependence. Moreover, our method is designed to test for the existence of change

points among high-dimensional covariance matrices for longitudinal data. Therefore, the

test procedure considered in this chapter is different from that in Li and Chen (2012).

This chapter makes the following contributions. From a methodology perspective, the

proposed test procedure provides a novel solution for change point detection problems in

the large p, small n and T scenario. The test statistic combines the strength of maximal

and Frobenius norms, and is powerful against the alternative. Second, we propose a method

for estimating locations of change points among high-dimensional covariance matrices. The

proposed change point detection and identification procedures are widely applicable without

any sparsity assumption. We establish the asymptotic distribution of a test statistic for data

with general temporal and spatial dependence. The identification procedure for multiple
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change points is shown to be consistent. Our results reveal the impact of data dimension,

sample size, and signal-to-noise ratio on the rate of convergence of the change point estimator.

The proposed methods formally address two challenges that are unsolved in the existing

covariance change point literature: the large p, small n and T issue, and spatial and temporal

dependence.

The remaining sections of this chapter are organized as follows. Section 2.2 details our

basic settings with regards to covariance testing. In Section 2.3 we introduce our testing pro-

cedure and test statistics along with their asymptotic distributions. Section 2.4 introduces

an estimator for change point identification. Moreover, binary segmentation is proposed to

identify multiple change points. Sections 2.5 and 2.6 demonstrate the finite sample perfor-

mance of our procedures via simulation and analysis of a time-course microarray data set,

respectively. All proofs of theorems and necessary lemmas are available in Section 2.7.

2.2 Basic setting

Let Yit = (Yit1, . . . , Yitp)
T be the observed p-dimensional random vector for the ith

individual at time point t = 1, . . . , T , where T ≥ 2, and i = 1, . . . , n. Assume that Yit

follows the model

Yit = µt + εit, (2.3)

where µt is a p-dimensional unknown mean vector and εit = (εit1, . . . , εitp)
T is a multivariate

normally distributed random error vector with mean zero and covariance var(εit) = Σt. A

generalization to the non-Gaussian setup is given in Section 2.5. In addition, it is assumed

that εit = ΓtZi for a p×m matrix Γt, where m ≥ pT , and Zi is an m-dimensional standard

multivariate normally distributed random vector so that cov(εis, εjt) = ΓsΓ
T
t = Cst if i =

j ∈ {1, . . . , n} and is 0 if i 6= j. The random errors {εit}ni=1 are independent, but {εit}Tt=1

depend on each other. Of interest is to test whether any change points among covariances

occur at some time points t ∈ {1, . . . , T − 1}. We test the hypothesis H0 versus H1 specified

in (2.1) and (2.2). If H0 is rejected, we further estimate the locations of change points.
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2.3 Homogeneity tests of covariance matrices

At each t ∈ {1, . . . , T − 1}, we define a measure Dt = w−1(t)
∑t
s1=1

∑T
s2=t+1 tr{(Σs1 −

Σs2)2}, where w(t) = t(T − t). Measure Dt characterizes the differences among the covari-

ances before t and after t. Clearly, Dt = 0 for all t ∈ {1, . . . , T − 1} under H0, and Dt 6= 0

for any t under H1. Therefore, max1≤t≤T−1Dt = 0 under H0, and max1≤t≤T−1Dt > 0

under H1. Thus, Dt is useful for distinguishing the null and alternative hypotheses.

Measure Dt is different from measure S1,T =
∑T−1
s1=1

∑T
s2=s1+1 tr{(Σs1 − Σs2)2} used

in Schott (2007), who applied S1,T in constructing a homogeneity test specified in (2.1) for

independent samples. In fact, for any t ∈ {1, . . . , T − 1}, Dt = S1,T − (S1,t+St+1,T ), where

S1,t and St+1,T quantify the differences among covariances only before time t and only after

time t, respectively. These are not useful for measuring the differences among covariances

before and after time t. Measure Dt removes both S1,t and St+1,T from S1,T .

To construct an unbiased estimator of Dt, we need an unbiased estimator of tr(Σs1Σs2).

We make use of U-statistic type estimators because they avoid bias that is not ignorable in

a high- dimensional setup (Bai & Saranadasa, 1996; Chen & Qin, 2010). Otherwise, bias

correction could be a challenge and require conditions on the data dimension and sample size

that limit the scope of applications. Let
∼∑

denote summation over mutually different in-

dices of sample subjects. For example,
∼∑
i,j,k means summation over {(i, j, k) ∈ {1, . . . , n} :

i 6= j, j 6= k, k 6= i}. For any s1, s2 ∈ {1, . . . , T}, define Us1s2,0 = (1/P 2
n)
∑n
i6=j(Y

T
is1
Yjs2)2

as an unbiased estimator of tr(Σs1Σs2) + µT
s1

Σs2µs1 + µT
s2

Σs1µs2 + (µT
s1
µs2)2 where P kn =

n!/(n − k)!. To remove the nuisance terms µT
s1

Σs2µs1 and (µT
s1
µs2)2, we define Us1s2,1 =

(1/P 3
n)
∼∑
i,j,k Y T

is1
Yjs2Y

T
js2

Yks1 as an unbiased estimator of µT
s1

Σs2µs1 + (µT
s1
µs2)2 and,

similarly, Us2s1,1 is an unbiased estimator of µT
s2

Σs1µs2 + (µT
s1
µs2)2. To remove the nui-

sance term (µT
s1
µs2)2, we define Us1s2,2 = (1/P 4

n)
∼∑
i,j,k,l Y

T
is1
Yjs2Y

T
ks1

Yls2 as an unbiased

estimator of (µT
s1
µs2)2. A computation efficient formulation of Us1s2,1 and Us1s2,2 is given
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in the Appendix. Finally, we define an unbiased estimator for tr(Σs1Σs2) as

Us1s2 = Us1s2,0 − Us1s2,1 − Us2s1,1 + Us1s2,2. (2.4)

The estimator Us1s2 is a generalization of the estimator for the trace of the covariance given

by Chen et al. (2010) and Li and Chen (2012). For t = 1, . . . , T − 1, an unbiased estimator

of Dt is

D̂nt =
1

w(t)

t∑
s1=1

T∑
s2=t+1

(Us1s1 + Us2s2 − Us1s2 − Us2s1). (2.5)

To study the asymptotic variance of D̂nt for t = 1, . . . , T − 1, define

V0t =
∗∑

s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

(−1)|u−v|+|k−l|tr2(Csuhk
CT
svhl

)

and

V1t =
∗∑

s1,s2,
h1,h2

∑
u,k∈{1,2}

(−1)|u−k|tr{(Σs1 − Σs2)Csuhk
(Σh1

− Σh2
)CT
suhk
},

where
∑∗

s1,s2,
h1,h2

=
∑t
s1=1

∑T
s2=t+1

∑t
h1=1

∑T
h2=t+1 . If no temporal dependence exists, then

Csuhk
= 0 for any su 6= hk, and V0t =

∑∗
s1,s2

∑
u,v∈{1,2} tr2(ΣsuΣsv) where

∑∗
s1,s2

=∑t
s1=1

∑T
s2=t+1. Up to a scale factor, this V0t is the part of the variance of D̂nt for the case

with independent samples under H0 .

The asymptotic setting considered in this chapter is p(n) → ∞ as n → ∞, where p is

considered to be a function of n. We do not require a specific relationship between p and n.

Instead, for any t ∈ {1, . . . , T − 1}, we have two regularity conditions. For any matrix A,

denote A⊗2 = AAT. Then:

Condition 1. tr{(ΓT
s2
Cs1h1

Γh2
)⊗2} = o(V0t) for any s1, s2, h1, h2 ∈ {1, . . . , T};

Condition 2. tr
[
{(Γs1 + Γs2)T(Σs1 − Σs2)(Γs1 − Γs2)}⊗2

]
= o(nV1t) for s1 ∈ {1, . . . , t}

and s2 ∈ {t+ 1, . . . , T}.

Condition 1 generalizes Condition 2 imposed by Li and Chen (2012) to a T -sample test

with temporal dependence. If there is no temporal dependence, Condition 1 can be simplified
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to tr(Σs2Σs1Σh2
Σs1) = o(V0t). In general, the left-hand side of the equality in Condition

1 is bounded by {tr(Σh2
Σh1

Σh2
Σh1

)tr(Σs2Σs1Σs2Σs1)}1/2, which is of order O(p) if all

the eigenvalues of Σt are bounded. If the temporal dependence is not overwhelming so

that V0t � pδ for any δ > 1, then Condition 1 holds. To appreciate this point, consider a

null hypothesis case with Cst = (1 − rst,n)Σ for s, t ∈ {1, . . . , T}. Here 1 − rst,n measures

the temporal correlation. If rst,n is small for all s, t, then the temporal dependence among

{Yit}Tt=1 is strong. Let rn =
∑∗
s1,s2,h1,h2

∑
u,v,k,l∈{1,2}(−1)|u−v|+|k−l|rsuhk,nrsvhl,n. If

rst,n → 0 for all s, t, then V0t � rntr2(Σ2) � rnp
2 provided all the eigenvalues of Σ are

bounded. If the temporal dependence is not too strong so that 1/p = o(rn), then Condition

1 holds as p → ∞. Intuitively, Condition 1 implies that spatial and temporal dependence

cannot be too strong.

Condition 2 is automatically true under H0 because its left-hand side equals zero. Hence,

it is not needed under H0. If there is no temporal dependence, it can be shown that the left-

hand side of Condition 2 is tr
{

(Σ2
s1
−Σ2

s2
)2
}

, whose order is not larger than V1t. Therefore,

Condition 2 is not needed for data without temporal dependence. This condition implies

that the alternatives should not be too far away from the null hypothesis. Otherwise, the

alternatives are easy to detect because the test statistics would diverge to infinity.

Theorem 1 states the mean and variance of D̂nt. The proof is given in Section 2.7.

Theorem 1. The expectation of D̂nt is E(D̂nt) = Dt. Under Condition 1, the leading order

variance of D̂nt is σ2
nt = w−2(t)

(
4V0t/n

2 + 8V1t/n
)
.

Based on Theorem 1, we observe that E(D̂nt) = Dt = 0 under H0. Under alternative H1

in (2.2), it is clear that E(D̂nt) > 0 for all t under H1. Therefore, D̂nt is able to distinguish

the null and alternative hypotheses in (2.1) and (2.2).

If T = 2 and no temporal dependence exists, V0t and V1t are, respectively, simplified

to V01 = tr2(Σ2
1) + 2tr2(Σ1Σ2) + tr2(Σ2

2) and V11 =
∑∗
s1,s2

∑2
u=1 tr

[
{Σsu(Σs1 − Σs2)}2

]
,

which are the same as those obtained by Li and Chen (2012). For a general case with

temporal dependence, V01 = tr2(Σ2
1)+2tr2(Σ1Σ2)+tr2(Σ2

2)−4{tr2(Σ1C21)+tr2(Σ2C12)}+
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2{tr2(C12C
T
12) + tr2(C12C12)}. The last four terms in V01, due to the temporal dependence,

are not included in Li and Chen’s test. However, in general, these four terms are not

ignorable. Therefore, Li and Chen’s procedure is not suitable for temporal dependent data

even in the two-sample case.

We now study the asymptotic distribution of D̂nt. The following theorem establishes the

asymptotic normality of D̂nt. The proof is given in Section 2.7.

Theorem 2. Under Conditions 1–2, σ−1
nt (D̂nt −Dt) → N(0, 1) in distribution as n → ∞,

where σ2
nt is defined in Theorem 1.

We do not require explicit conditions on p and n in Theorem 2. The asymptotic normality

holds provided Conditions 1–2 hold. In particular, we only need Condition 1 under the null

hypothesis. Thus, our test is valid under Condition 1 without Condition 2, which is needed

only for studying the power of the test. The normality assumption in model (2.3) is not

essential and can be relaxed to a multivariate model as considered in Chen et al. (2010) and

Li and Chen (2012). See Subsection 2.3.1 for the generalization to the non-Gaussian case.

Under H0, Dt = 0 for all t ∈ {1, . . . , T−1}. Theorem 2 indicates that σ−1
nt,0D̂nt converges

to N(0, 1) in distribution where σ2
nt,0 = 4V0t/{nw(t)}2 is the variance of D̂nt under H0. An

asymptotic α-level rejection region is Rt = {σ−1
nt,0D̂nt > zα}, where zα is the upper α quantile

of the standard normal distribution. For each t ∈ {1, . . . , T − 1}, one can use Rt to test

for the hypothesis in (2.1). Provided that one test based on D̂nt rejects the null hypothesis,

one may suspect that change points could exist among covariance matrices. Accordingly, t,

in D̂nt, could be considered as a tuning parameter, and it is hard to decide which t should

be used for testing in practice. To make the proposed method free of any tuning parameter

and adaptive to unknown change points, we propose the following statistic for testing the

hypothesis in (2.1):

Mn = max
1≤t≤T−1

σ̂−1
nt,0D̂nt, (2.6)

where σ̂2
nt,0 = 4V̂0t/{nw(t)}2. The estimator V̂0t can be constructed by replacing
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tr(Csuhk
CT
svhl

) in V0t with Ususv,hkhl
, an unbiased estimator of tr(Csuhk

CT
svhl

). Define

Ususv,hkhl
= Ususv,hkhl,0

−Ususv,hkhl,1−Usvsu,hlhk,1 +Ususv,hkhl,2
, where Ususv,hkhl,0

=

(1/P 2
n)
∑n
i6=j=1 Y

T
isu
YjsvY

T
ihk
Yjhl

is an unbiased estimator of tr(Csuhk
CT
svhl

)+µT
svCsuhk

µhl
+

µT
suCsvhl

µhk
+ µT

suµsvµ
T
hk
µhl

, Ususv,hkhl,1
= (1/P 3

n)
∼∑
i,j,g Y

T
isu
YjsvY

T
ihk
Yghl

is an unbiased

estimator of µT
svCsuhk

µhl
+ µT

suµsvµ
T
hk
µhl

and an unbiased estimator of µT
suµsvµ

T
hk
µhl

is

Ususv,hkhl,2
= (1/P 4

n)
∼∑
i,j,g,f Y

T
isu
YjsvY

T
ghk

Yfhl
. A computation efficient formulation of the

estimators Ususv,hkhl,q
, q = 1, 2, is similar to that for Us1,s2,q defined in (2.4).

Under H0 and Condition 1, similar to the derivation in Lemma 4 in Section 2.7, the

leading order of the cov(D̂nt, D̂nq) is Qn,tq, where

Qn,tq =
t∑

s1=1

q∑
h1=1

T∑
s2=t+1

T∑
h2=q+1

Vn0(s1, s2, h1, h2)/{w(t)w(q)}

and Vn0(s1, s2, h1, h2) = (4/n2)
∑
u,v,k,l∈{1,2}(−1)|u−v|+|k−l|tr2(Csuhk

CT
svhl

). Then the co-

variance between σ−1
nq,0D̂nt and σ−1

nq,0D̂nq is Qn,ts/
√

(Qn,ttQn,ss), which is the correlation

between D̂nt and D̂nq.

Let VnD be a correlation matrix whose (t, s) component is Qn,ts/
√

(Qn,ttQn,ss) for t, s ∈

{1, . . . , T−1}. Assume that VnD converges to VD as n→∞. The following theorem provides

the asymptotic distribution of Mn.

Theorem 3. Under Condition 1, we have that under H0,Mn→W in distribution as n→∞,

where W = max1≤t≤T−1 Zt and Z = (Z1, . . . , ZT−1)T is a multivariate normally distributed

random vector with mean 0 and covariance VD.

According to Theorem 3, an α-level test for (2.1) rejects the null hypothesis ifMn > Wα,

where Wα is the α-quantile of W such that pr(W > Wα) = α. Let Zn be a N(0, V̂nD) dis-

tributed random vector with the (t, s) component of V̂nD estimated by Q̂n,ts/
√

(Q̂n,ttQ̂n,ss),

where

Q̂n,ts =
4

n2w(t)w(s)

t∑
s1=1

s∑
h1=1

T∑
s2=t+1

T∑
h2=s+1

∑
u,v,k,l∈{1,2}

(−1)|u−v|+|k−l|U2
susv,hkhl

,
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and Ususv,hkhl
is defined just below (2.6). Simulations suggest that the plug-in estimates

of the correlation matrix V̂nD are reliable when the sample size is approximate 40 or above.

See Section 2.7 for a detailed comparison between V̂nD and VnD. The quantile Wα can be

approximated by Wn,α obtained from the multivariate normal distribution by finding the

quantile wn,α = (Wn,α, . . . ,Wn,α)T satisfying pr(Zn < wn,α) = 1 − α. The quantile wn,α

can be computed using the R package mvtnorm (Genz et al., 2018), and no simulation is

needed to find quantile Wn,α.

The lower bound for power based on Mn is

pr(Mn > Wα) ≥ max
1≤t≤T−1

pr(σ̂−1
nt,0D̂nt > Wα) = max

1≤t≤T−1
Φ
(
−
σnt,0
σnt

Wα +
Dt
σnt

)
, (2.7)

where Φ(·) is the standard normal cumulative distribution function. If Dt/σnt dominates

Wα, the right-hand side of (2.7) is the maximum power of the test using Rt constructed on

a single D̂nt, so the test based onMn is more powerful than any test based on a single D̂nt.

2.3.1 Non-Gaussian random errors

To relax the Gaussian assumption, we assume the following data generation model for εi =

(εT
i1, . . . , ε

T
iT )T and εi = ΓZi where Γ = (ΓT

1 , . . . ,Γ
T
T )T is a Tp × m matrix with m ≥ Tp

such that Σ = ΓΓT and ΓsΓ
T
t = Cst. We assume Z1, . . . , Zn are independent and identically

distributed m-dimensional random vectors such that E(Z1) = 0 and var(Z1) = Im. Write

Z1 = (Z11, ..., Z1m)T. We assume that each Z1l has a uniformly bounded 8th moment. Also,

we assume there exists a finite constant such that for l = 1, . . . ,m, E(Z4
1l) = 3 + ∆ and

for any integers lv ≥ 0 with
∑q
v=1 lv = 8, E(Z

l1
1i1
· · ·Zlq1iq) = E(Z

l1
1i1

) · · ·E(Z
lq
1iq

), whenever

i1, . . . , iq are distinct indices.

Under Condition 1 and the above setup, it can be shown that the leading order of the
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variance of D̂nt is

var(D̂nt) =
4

n2w2(t)

∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

(−1)|u−v|+|k−l|tr2(Csuhk
CT
svhl

)

+
8

nw2(t)

∗∑
s1,s2,
h1,h2

∑
u,k∈{1,2}

(−1)|u−k|
[
tr{(Σs1 − Σs2)Csuhk

(Σh1
− Σh2

)CT
suhk
}

+ ∆tr{ΓT
su(Σs1 − Σs2)Γsu ◦ ΓT

hk
(Σh1

− Σh2
)Γhk

}
]
.

Under the null hypothesis, var(D̂nt) = 4V0t/{n2w2(t)}. The variance V0t can be estimated

using the formula given below equation (2.6). The results in Theorems 2 and 3 can be

established in a similar way.

2.3.2 Power-enhanced test for sparse alternatives

The proposed test statistic, Mn, is powerful for alternatives with small absolute differences

in many components of Σt. However, it might not be very powerful for sparse alternatives

with the differences among Σt only residing in a few components. To enhance the power of

the proposed test for sparse alternatives, we include an additional term withMn, as an idea

in Fan et al. (2015).

Let Ȳs1v =
∑n
i=1 Yis1v/n be the sample mean of the vth component measured at time

s1, and define σ̂s1,uv =
∑n
i=1(Yis1u − Ȳs1u)(Yis1v − Ȳs1v)/(n− 1) as the sample covariance

between components u, v ∈ {1, . . . , p} at time s1. Define D̂nt,uv =
∑t
s1=1

∑T
s2=t+1(σ̂s1,uv−

σ̂s2,uv)
2 as an estimator of Dnt,uv =

∑t
s1=1

∑T
s2=t+1(σs1,uv − σs2,uv)

2. The estimator

D̂nt,uv is a consistent estimator of Dnt,uv. Let C
(uv)
skht

be the (u, v) component of Cskht
and

σ
(uv)
ht

is the (u, v) component of Σht . To define the variance of D̂nt,uv, define the following
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notation:

F
(uv)
skslhths

= σ
(uv)
sl

σ
(uv)
ht
{C(vu)

hssk
C

(uv)
skhs

+ C
(vv)
hssk

C
(uu)
skhs
}

+ σ
(uv)
sl

σ
(uv)
hs
{C(vu)

htsk
C

(uv)
skht

+ C
(vv)
htsk

C
(uu)
skht
}

+ σ
(uv)
sk

σ
(uv)
ht
{C(vu)

hssl
C

(uv)
slhs

+ C
(vv)
hssl

C
(uu)
slhs
}

+ σ
(uv)
sk

σ
(uv)
hs
{C(vu)

htsl
C

(uv)
slht

+ C
(vv)
htsl

C
(uu)
slht
},

G
(uv)
skslhths

= {C(vu)
skhs

C
(uv)
skhs

+ C
(vv)
skhs

C
(uu)
skhs
}{C(vu)

slht
C

(uv)
slht

+ C
(vv)
slht

C
(uu)
slht
}

+ {C(vu)
skht

C
(uv)
skht

+ C
(vv)
skht

C
(uu)
skht
}{C(vu)

slhs
C

(uv)
slhs

+ C
(vv)
slhs

C
(uu)
slhs
}.

The leading order term of the variance of D̂nt,uv is

σ2
nt,uv =

1

w2(t)

∗∑
s1,s2,
h1,h2

∑
k,l,

s,t∈{1,2}

(−1)|k−l|+|s−t|{n−1F
(uv)
skslhths

+ n−2G
(uv)
skslhths

}. (2.8)

Under H0, the first term in (2.8) is 0. Namely,

∗∑
s1,s2,
h1,h2

∑
k,l,

s,t∈{1,2}

(−1)|k−l|+|s−t|F (uv)
skslhths

= 0.

The leading term in the variance of D̂nt,uv under H0 is

σ2
nt,uv0 =

∗∑
s1,s2,
h1,h2

∑
k,l,

s,t∈{1,2}

(−1)|k−l|+|s−t|G(uv)
skslhths

/n2.

Let Ĝ
(uv)
skslhths

be a sample plug-in estimate of G
(uv)
skslhths

, and σ̂2
nt,uv0 be the corresponding

sample estimate of σ2
nt,uv0. Then, the power-enhanced test statistic is

M∗n = max
1≤t≤T−1

{
σ̂−1
nt,0D̂nt + λn

∑
u≤v

I(D̂nt,uv > δn,pσ̂nt,uv0)
}
,

where δn,p and λn are tuning parameters. The tuning parameters are chosen such that the

second part of M∗n equals zero with probability tending to one under H0, and it converges

to a large number under sparse alternatives.
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We now discuss the choices for tuning parameters for the above power-enhanced test

statistic. Let R = (ρij) be the correlation matrix corresponding to the common covariance

Σ1 under H0. Define Nj(α) = card{i : |ρij | > (log p)−1−α} and Λ(r) = {i : |ρij | >

r for some j 6= i}. We assume the following condition used in Cai et al. (2013).

Condition 3. Suppose that there exists a α and a set π ⊂ {1, . . . , p} whose size is o(p) such

that max1≤j≤p,j 6∈π Nj(α) = o(pγ) for all γ > 0. In addition, there exists a r < 1 and a

sequence of numbers Λp,r = o(p) so that card{Λ(r)} ≤ Λp,r.

Define ls1s2 = max1≤u≤v≤p(σ̂s1,uv−σ̂s2,uv)
2/σns1s2,uv0 where σ2

ns1s2,uv0 = var{(σ̂s1,uv−

σ̂s2,uv)
2} under H0. Similar to the proof of Theorem 1 in Cai et al. (2013), under Condition

3 and H0, we can show that

pr{ls1s2 − 4 log(p) + log log(p) ≤ t} → exp{− exp(−t/2)/
√

(8π)}. (2.9)

Define Luv = D̂nt,uv/σ̂nt,uv0 and Ln = max1≤u≤v≤p Luv. Denote the second term in M∗n

as M∗n1 = λn
∑
u≤v I(D̂nt,uv > δn,pσ̂nt,uv0). Because

∑t
s1=1

∑T
s2=t+1 σns1s2,uv0/σnt,uv0 ≤

K, uniformly for all u, v for a constant K > 0, and uniform consistency of σ̂nt,uv0 to σnt,uv0,

we have, under H0,

pr(M∗n1 = 0) ≥ pr
(
Ln ≤ δn,p) = pr( max

1≤u≤v≤p
D̂nt,uv/σ̂nt,uv0 ≤ δn,p

)
= pr

{
max

1≤u≤v≤p

t∑
s1=1

T∑
s2=t+1

(σ̂s1,uv − σ̂s2,uv)
2

σns1s2,uv0

σns1s2,uv0

σnt,uv0
≤ δn,p

}

≥ pr

{
max

1≤u≤v≤p
max

1≤s1≤t,
t+1≤s2≤T

(σ̂s1,uv − σ̂s2,uv)
2

σns1s2,uv0

t∑
s1=1

T∑
s2=t+1

σns1s2,uv0

σnt,uv0
≤ δn,p

}

≥ pr
{

max
1≤u≤v≤p

max
1≤s1≤t,
t+1≤s2≤T

(σ̂s1,uv − σ̂s2,uv)
2/σns1s2,uv0 ≤ δn,p/K

}

≥ 1−
t∑

s1=1

T∑
s2=t+1

pr
(
ls1s2 > δn,p/K

)
.

Applying the result in (2.9), if δn,p/K − 4 log(p) + log log(p)→∞, then pr(M∗n1 = 0)→ 1.

We suggest choose δn,p at the order of log(n) log(p) and λn to be a constant based on our
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numerical experiments. In summary, the tuning parameters δn,p and λn ensure that, under

the null hypothesis, M∗n1 converges to zero with probability one.

2.4 Change point identification

If H0 is rejected, then there exist change points among the covariances Σt. We first

consider an alternative with one change point:

H∗1 : Σ1 = · · · = Σk1
6= Σk1+1 = · · · = ΣT , (2.10)

where k1 is the true change point, whose location is estimated by

k̂1 = arg max
1≤t≤T−1

D̂nt. (2.11)

Define the weight function

r(t; k) =

 (T − k)/(T − t), 1 ≤ t ≤ k,

k/t, k + 1 ≤ t ≤ T − 1.

For any fixed value k ∈ {1, . . . , T − 1}, the function r(t; k) achieves its maximum value at

t = k. Let βn = max1≤t≤T−1 max {
√
V0t,

√
(nV1t)} and ∆n = tr{(Σ1 − ΣT )2}. The next

theorem establishes the rate of convergence of the change point estimator k̂1 obtained by

(2.11) under the alternative H∗1 .

Theorem 4. Under the alternative H∗1 in (2.10), E(D̂nt) = Dt = r(t; k1)∆n and Dt attains

its maximum at t = k1. Moreover, k̂1 − k1 = Op{βn/(n∆n)}.

Since r(t; k1) achieves its maximum at t = k1, the first part of Theorem 4 indicates that

t = k1 maximizes E(D̂nt) as a function of t. This is the rationale for estimating k1 through

(2.11). When the data dimension is fixed, k̂1−k1 = Op(1/
√
n). The effect of data dimension

is reflected both in βn and ∆n. Here βn can be considered as noise and ∆n can be viewed as

signal. If the signal level is larger than the noise level, the rate of convergence of k̂1 is faster

than Op(1/
√
n). On the other hand, if βn is not smaller than n∆n, k̂1 is not consistent.

26



Next, we consider the alternative, H1, with multiple change points k1 < · · · < kq, as

specified in (2.2). Under H∗1 , we have shown in Theorem 4 that the maximum of Dt is

attained at change point k1.

Theorem 5. Under H1 in (2.2), the maximum value of Dt is attained at one of the change

points among k1 < · · · < kq.

If we estimate the multiple change points by repeatedly applying estimation methods in

(2.11) to the population version Dt to all sub-sequences with non-zero Dt, Theorem 5 ensures

that we find all the true change points. This property is important for applying the binary

segmentation method to identify multiple change points as demonstrated by Venkatraman

(1992) in an unpublished technical report.

To describe the proposed binary segmentation method, we first define some notation.

Let [It] represent the quantities computed based on the data within the time interval It,

a subset of [1, T ]. For example, Mn[t1, t2] is the test statistic defined in (2.6) calculated

based on Y [t1, t2], the data collected between time t = t1 and t = t2 for t1 < t2. Namely,

Mn[t1, t2] = maxt1≤t<t2 σ̂
−1
nt,0[t1, t2]D̂nt[t1, t2].

The binary segmentation method can be summarized as follows. Let αn be a number

specified in Theorem 6. In the first step, computeMn[1, T ]. IfMn[1, T ] < Wαn [1, T ], where

Wαn [1, T ] is the cut-off quantile estimated based on Y [1, T ], we accept the null hypothesis

and stop. Otherwise, we identify the change point, say k̂1, using (2.11). Next, we compute

Mn for both subsequences Y [1, k̂1] and Y [k̂1 + 1, T ]. For each subsequence, we repeat the

first step until no change points can be identified or the number of repeated measurements

in the subsequence is less than two.

Let It be any interval of the form [kf +1, kg] with f +1 < g where f ∈ {0, . . . , q−1} and

g ∈ {2, . . . , q+ 1} that contains at least one change point kj for j ∈ {1, . . . , q}, where k0 = 0

and kq+1 = T . Denote mSNR = minIt maxks∈It σ
−1
nks,0

[It]Dks [It] as the smallest maximum

signal-to-noise ratio among all segmentations It.
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Theorem 6. Assume αn → 0 and mSNR diverges so that Wαn = o(mSNR). For all It,

if βn[It] = o(nDks [It]) for some change points ks ∈ It, we have, limn→∞ pr(q̂ = q; k̂j =

kj , j = 1, . . . , q) = 1.

The first assumption, with Wαn = o(mSNR), is a very mild condition, which ensures

the consistency of the proposed test at each step of the binary segmentation. The second

assumption βn[It] = o(nDks [It]) is needed to ensure the consistency of the change point

estimators. Theorem 6 implies that the proposed binary segmentation procedure consistently

estimates the number and locations of the change points.

2.5 Simulation studies

In this section, we present multiple simulation studies to demonstrate the finite sample

performance of the proposed method. The data were generated from the model

Yit = µt +
L∑
h=0

At,hηi(t−h) (i = 1, . . . , n; t = 1, . . . , T ),

where At,h is a p × p matrix, µt = 0 and ηit are p-dimensional multivariate normally dis-

tributed random vectors with mean 0 and covariance Ip. Let t ≥ s. This implies that

cov(Yit, Yis) =
∑L
h=t−sAt,hA

T
s,h−(t−s) if t − s ≤ L and cov(Yit, Yis) = 0 if t − s > L, and

allows dependence among components within the vector Yit and dependence among {Yit}Tt=1

at different time points. In the simulation studies, we set n = 40, 50 and 60, p = 500, 750

and 1000, T,= 5 and 8, and L = 3. The simulation results reported in Tables 2.1 and

2.2 were based on 500 replications. The results in Table 2.3 were based on 100 simulation

replications.

Let k1 = [T/2] be the largest integer no greater than T/2. For t ∈ {1, . . . , k1}, we set

At,h = A(1) for h ∈ {0, . . . , L}. For t ∈ {k1 + 1, . . . , T} and h ∈ {0, . . . , L}, At,h = A(2).

Two simulation settings were used for the generation of the A matrices. In setting (I),

we set A(1) =
{

0.6|i−j|I(|i − j| < p/5)
}

, and A(2) =
{

(0.6 + δ)|i−j|I(|i − j| < p/5)
}

.

If δ = 0, A(1) and A(2) are the same and the covariances of Yit are the same for all t.
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Hence, the null hypothesis, H0, is true. If δ 6= 0, the null hypothesis is false and k1 is

the true change point. In setting (II), we set A(1) =
{(
|i− j|+ 1

)−2
I(|i − j| < p/5)

}
and A(2) =

{(
|i− j|+ δ + 1

)−2
I(|i − j| < p/5)

}
. Similar to setting (I), a value of δ = 0

corresponds to the null hypothesis being true. If δ 6= 0, k1 is the underlying true change

point for the covariance matrices.

Table 2.1 demonstrates the empirical size and power of the proposed test for the homo-

geneity of covariance matrices under setting (I) at nominal level 0.05. We observe that the

size of the proposed test is reasonably close to the nominal level. The power increases as n

increases, as δ increases, and as T increases. Table 2.1 also provides the empirical size and

power of the proposed test under simulation setting (II). The phenomena in setting (II) are

very similar to those in setting (I).

Table 2.1: Empirical size and power of the proposed test, percentages of simulation
replications that reject the null hypothesis under settings (I) and (II)

T = 5 T = 8
p p

Setting δ n 500 750 1000 500 750 1000
(I) 40 4.6 4.8 6.4 4.8 4.8 4.4

0(size) 50 4.6 5.2 5.4 4.4 5.8 4.6
60 6.0 4.4 4.2 5.4 4.2 3.6
40 21.4 27.6 24.8 35.6 34.6 34.2

0.05 50 37.0 36.0 36.0 49.8 48.8 52.0
60 45.6 49.2 46.2 59.6 65.6 65.0
40 99.6 100 99.8 100 100 100

0.10 50 100 100 100 100 100 100
60 100 100 100 100 100 100

(II) 40 4.4 5.4 5.0 4.4 4.0 4.8
0(size) 50 5.6 4.6 4.8 6.0 5.2 5.6

60 4.8 4.6 4.2 3.6 5.6 5.0
40 33.4 35.8 38.2 50.2 52.0 51.6

0.10 50 44.2 48.6 47.0 68.4 70.6 74.0
60 65.4 63.6 60.4 87.0 89.6 88.0
40 99.8 99.8 99.6 100 100 100

0.20 50 99.8 100 100 100 100 100
60 100 100 100 100 100 100

The percentages of correct identification are summarized in Table 2.2 when the null
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hypothesis is false under settings (I) and (II). The percentages of correct identification are

the percentages of simulation replications that estimate the location of the change point

correctly among all those that reject the null hypothesis. When T = 5, the true change

point is k1 = 2, and when T = 8, the true change point is k1 = 4. In both settings, for

almost all the cases, the percentages increase as n and δ increase.

Table 2.2: Percentages of correct change point identification among all rejected hypotheses
under settings (I) and (II)

T = 5 T = 8
p p

Setting δ n 500 750 1000 500 750 1000
(I) 40 41.12 37.96 40.65 30.18 29.88 37.58

0.05 50 51.35 45.81 43.33 39.52 39.34 41.54
60 52.63 53.28 52.17 49.33 49.70 55.08
40 93.17 96.60 95.19 93.79 93.80 96.40

0.10 50 98.00 98.60 98.20 98.40 97.20 99.00
60 99.20 99.80 99.40 99.80 98.60 99.00

(II) 40 49.10 45.51 55.50 43.12 47.15 47.10
0.10 50 65.00 61.51 55.98 53.80 61.19 58.65

60 72.78 69.72 64.57 67.59 72.99 75.23
40 90.58 90.98 89.16 95.80 96.00 95.60

0.20 50 93.37 92.60 93.20 98.60 98.20 99.40
60 97.00 96.20 96.40 99.80 99.80 99.80

To demonstrate the performance of the proposed binary segmentation procedure for

identifying multiple change points, we generated data using simulation setup (II) with two

change points, k1 and k2. When T = 5, k1 = 2 and k2 = 4. When T = 8, k1 = 4 and

k2 = 6. For t ∈ {kj−1 + 1, . . . , kj}, we set At,h = A(j) for h ∈ {0, . . . , L} and j = 1, 2, 3 with

k0 = 0 and k3 = T . Here, A(1) and A(2) were set to be the same as those in setting (II),

and we set A(3) = A(1). The values of δ were chosen to be 0.15 and 0.25. The average true

positives and the average true negatives are summarized in Table 2.3. The true positives are

the correctly-identified change points, and the true negatives are the correctly-identified time

points where no covariance change exists. For T = 5, the maximum number of true positives

and true negatives for each is 2. For T = 8, the maximum number of true positives and true

negatives is 2 and 5, respectively. The results in Table 2.3 show that the proposed binary

30



segmentation procedure performs well as the sample size, n, increases and as the signal, δ,

increases.

Table 2.3: Average true positives and average true negatives for identifying multiple
change points using the proposed binary segmentation method. Standard errors are
included after each number. For T = 5, the maximum number of true positives and true
negatives for each is 2. For T = 8, the maximum number of true positives and true
negatives is 2 and 5, respectively

δ=0.15 δ=0.25
T p n ATP SE ATN SE ATP SE ATN SE

5

500
40 1.10 0.36 1.90 0.30 1.81 0.39 1.92 0.27
50 1.36 0.48 1.87 0.37 1.94 0.24 1.98 0.14
60 1.57 0.50 1.92 0.27 2.00 0.00 1.92 0.28

750
40 1.11 0.37 1.82 0.41 1.76 0.43 1.94 0.24
50 1.38 0.49 1.92 0.27 2.00 0.00 1.96 0.24
60 1.47 0.50 1.90 0.30 2.00 0.00 1.98 0.14

1000
40 1.15 0.36 1.90 0.30 1.87 0.34 1.95 0.22
50 1.22 0.42 1.96 0.20 1.96 0.20 1.96 0.20
60 1.54 0.50 1.96 0.20 2.00 0.00 1.98 0.14

8

500
40 1.40 0.49 4.84 0.40 1.91 0.29 4.90 0.30
50 1.62 0.49 4.85 0.36 1.97 0.17 4.92 0.27
60 1.78 0.42 4.89 0.32 2.00 0.00 4.95 0.22

750
40 1.52 0.50 4.82 0.39 1.90 0.30 4.85 0.36
50 1.67 0.47 4.83 0.38 1.97 0.17 4.94 0.24
60 1.81 0.40 4.90 0.34 2.00 0.00 4.90 0.30

1000
40 1.43 0.50 4.82 0.44 1.88 0.33 4.92 0.27
50 1.68 0.47 4.80 0.40 1.99 0.10 4.96 0.25
60 1.84 0.37 4.92 0.27 2.00 0.00 4.94 0.24

2.5.1 Power-enhanced test statistic

We conducted a numerical simulation to illustrate the performance of the power-enhanced

test statistic under sparse alternatives. The data were generated according to setting (I),

except for a sparse alternative design. Specifically, let k1 = [T/2] be the largest integer

no greater than T/2. For t ∈ {1, . . . , k1}, we set At,h = A(1) for h ∈ {0, . . . , L}. For

t ∈ {k1 + 1, . . . , T}, we set At,h = A(2), where A
(1)
h =

{
0.6|i−j|I(|i− j| < p/5)

}
. Under the

null hypothesis, A
(2)
h was set equal to A

(1)
h . Under the sparse alternative hypothesis, A

(2)
h

was the same as A
(1)
h except the components within {|i− j| < 2, i < p/25} were set to 1.4.
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Table 2.4: Empirical size and power, percentages of simulation replications that reject the
null hypothesis for the test statistic Mn and the power-enhanced test statistic M∗n

Mn M∗n
n p Null Alternative Null Alternative
40 500 5.2 35.4 6.0 67.6
40 750 3.2 34.6 3.6 62.8
40 1,000 4.6 36.4 4.6 62.4
50 500 5.2 47.8 5.6 91.6
50 750 6.4 47.2 6.6 94.2
50 1,000 3.4 52.6 3.4 97.0
60 500 3.8 56.8 4.4 98.8
60 750 4.8 65.8 5.6 99.2
60 1,000 4.2 66.4 4.2 99.8
80 500 4.0 81.2 4.0 100
80 750 3.2 86.4 3.8 100
80 1,000 4.6 84.8 4.6 100

Table 2.4 reports the empirical size and power of the test based onMn andM∗n. In the

simulation, the tuning parameter δn,p was set to 0.5log(n) log(p), and λn was set to 0.15.

We observe that both tests can control the type I error, and the power-enhanced test does

not inflate the type I error. More importantly, the power-enhanced test statistic has greater

power under the sparse alternative setting.

2.5.2 Non-Gaussian random errors

To illustrate the numerical performance of the proposed method under the non-Gaussian

setup, we generated data from the linear process model Yit = µt +
∑L
h=0At,hηi(t−h) for

i = 1, . . . , n and t = 1, . . . , T , where At,h is a p× p matrix, µt = 0 and ηit are p-dimensional

random vectors with each element independently generated from a standardized Gamma

distribution with shape parameter 4 and scale parameter 0.5.

Let k1 = [T/2] be the largest integer no greater than T/2. For t ∈ {1, . . . , k1}, we set

At,h = A(1) =
{

0.6|i−j|I(|i − j| < p/5)
}

. For t ∈ {k1 + 1, . . . , T}, we set At,h = A(2) ={
(0.6+δ)|i−j|I(|i−j| < p/5)

}
. If δ = 0, A(1) and A(2) are the same. Hence, the covariances,

Σt, are the same for all t ∈ {1, . . . , T} and H0 is true. If δ 6= 0, the null hypothesis is not

32



true and k1 is the underlying true covariance change point.

In the simulation studies, we set n = 40, 50 and 60, with p = 500, 750 and 1000. The

number of repeated measurements, T , was set to be 5 and 8 and set L = 3. The simulation

results reported in Tables 2.5 and 2.6 were based on 500 simulation replications.

Table 2.5: Empirical size and power of the proposed test, percentages of simulation
replications that reject the null hypothesis for data generated from a standardized Gamma
distribution under the nominal level 5%

T = 5 T = 8
p p

δ n 500 750 1000 500 750 1000
40 3.6 4.0 4.4 4.0 3.6 4.6

0(size) 50 4.2 5.2 4.4 5.2 4.8 4.8
60 4.6 3.8 4.6 5.0 5.0 5.6
40 23.4 21.4 28.2 35.2 38.6 31.2

0.05 50 38.2 36.2 33.4 47.8 50.4 47.8
60 46.4 46.8 46.2 64.6 67.2 66.4
40 99.8 99.8 100 100 100 100

0.10 50 100 100 100 100 100 100
60 100 100 100 100 100 100

Table 2.5 reports the empirical size and power of the proposed test under the null and

alternative hypotheses. We observe that Type I error is well controlled with the empirical

sizes close to the nominal level of 5%. The results demonstrate the robustness of the pro-

posed method for non-Gaussian distributed random vectors. When the differences between

covariance matrices increase, the power of the proposed test increases accordingly. Table

2.6 reports the performance of the proposed change point identification procedure under

the non-Gaussian distributed random vectors. We observe that the percentages of correct

identification with non-Gaussian random vectors are similar to those under the Gaussian

setup.

2.5.3 Accuracy of correlation matrix estimator of VnD

This section aims to evaluate the numerical performance of the correlation matrix estimator,

V̂nD, proposed immediately following Theorem 3. To measure the difference between V̂nD
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Table 2.6: Percentages of correct change point identification among all rejected hypotheses
for data generated from a standardized Gamma distribution

T = 5 T = 8
p p

δ n 500 750 1000 500 750 1000
40 32.48 42.99 35.46 26.70 30.05 30.13

0.05 50 50.26 52.49 46.71 40.17 42.06 46.86
60 49.14 55.56 57.58 48.30 50.00 52.41
40 93.79 96.79 95.80 95.20 94.60 95.00

0.10 50 98.80 99.40 99.00 98.60 97.00 97.20
60 99.60 99.20 99.80 99.60 99.20 99.20

and VnD, we used the average component-wise quadratic distance, namely, (T −1)−2‖V̂nD−

VnD‖2F . Figure 2.1 illustrates the average of (T−1)−2‖V̂nD−VnD‖2F based on 500 simulation

replications conducted in setting (I) under the null hypothesis with T = 5. We observe that

the correlation matrix estimator, V̂nD, is reliable when n = 40. The performance further

improves as the sample size increases.

Figure 2.1: The average component-wise quadratic distance between V̂nD and VnD. The
top solid line is for n = 40; the middle dashed line is for n = 50; the bottom dotted line is
for n = 60. The scale of the y-axis is 10−5.
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2.5.4 Comparison with a pair-wise based method

In this section, we compare our proposed method with a pair-wise based method that is

similar to the method proposed by Zalesky et al. (2014). In the pair-wise based method,

we first obtain a p-value for testing the homogeneity of each component of the covariance

matrix for every pair of coordinates (u, v) with u ≤ v and u, v ∈ {1, . . . , p}, and then apply

the Bonferroni correction to all the p-values to control the family-wise error rate.

In the first step, for each pair (u, v) with u ≤ v and u, v ∈ {1, . . . , p}, we test the following

hypothesis

H0,uv : σ1,uv = · · · = σT,uv,

versus

H1,uv : σ1,uv = · · · = σk1,uv
6= σk1+1,uv = · · · = σkq,uv 6= σkq+1,uv = · · · = σT,uv.

To test H0,uv, we apply the statistic D̂nt,uv defined in Section 4, and define D̂n,uv =

n
∑T−1
t=1 D̂nt,uv. Under H0,uv, the asymptotic distribution of D̂n,uv is

∑∞
l=1 λlχ

2
l , where

χ2
l are independent chi-square distributions with degree of freedom 1, and λl’s are the eigen-

values of the kernel of D̂n,uv. In practice, one can approximate the weighted chi-square

distribution using a scaled chi-square distribution. Thus, we approximate the distribution

of D̂n,uv by bχ2
ν , where b = σ2

uv/(2µuv) and ν = 2µ2
uv/σ

2
uv. Here µuv and σ2

uv are the mean

and variance of D̂n,uv under H0,uv, respectively. The variance of D̂n,uv under H0,uv is

σ2
uv =

T−1∑
t=1

T−1∑
q=1

t∑
s1=1

q∑
h1=1

T∑
s2=t+1

T∑
h2=q+1

∑
k,l,

s,t∈{1,2}

(−1)|k−l|+|s−t|G(uv)
skslhths

,

where G
(uv)
skslhths

is defined in Section 4. The mean of D̂n,uv under the null H0,uv is

µuv =
T−1∑
t=1

t∑
s1=1

T∑
s2=t+1

∑
a,b∈{1,2}

(−1)|a−b|{C(uu)
sasb

C
(vv)
sasb

+ C
(uv)
sasb

C
(vu)
sasb
}.

We then approximate the distribution of D̂n,uv by b̂χ2
ν̂ where b̂ = σ̂2

uv/(2µ̂uv) and ν̂ =

2µ̂2
uv/σ̂

2
uv. The p-value for the (u, v) pair is computed as puv = pr(b̂χ2

ν̂ > D̂n,uv).
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In the second step, we apply the Bonferroni correction to control the family-wise error

rate. Define pmin = minu≤v puv as the minimum of all the pair-wise p-values. If pmin <

2α/{p(p+ 1)}, then we reject the null hypothesis on the homogeneity of covariance matrices

at the α level.

To compare the proposed methods with the pair-wise based method, we conducted a

simulation study using the simulation setup given in Subsection 2.5.1. The simulation re-

sults are summarized in Table 2.7. We observe that the pair-wise based method has very

conservative size under the null hypothesis when sample size is less than 80, but it improves

as sample size increases. Under the alternatives, the power of the pair-wise based method is

low for the small sample cases, but it increases as sample size increases to 80. However, in

all the cases, our proposed power-enhanced method has superior power than the pair-wise

based method.

Table 2.7: Empirical size and power, percentages rejecting the null hypotheses in the
simulations, for the pair-wise based test and the power-enhanced test statistic M∗n

Pair-wise based test M∗n
n p Null Alternative Null Alternative
40 500 0.2 0.2 6.0 67.6
40 750 0.0 0.4 3.6 62.8
40 1000 0.0 0.0 4.6 62.4
50 500 0.4 0.4 5.6 91.6
50 750 0.2 0.0 6.6 94.2
50 1000 0.2 0.2 3.4 97.0
60 500 0.6 12.2 4.4 98.8
60 750 0.2 4.8 5.6 99.2
60 1000 0.6 1.0 4.2 99.8
80 500 0.4 97.6 4.0 100
80 750 2.4 98.8 3.8 100
80 1000 2.0 96.8 4.6 100

2.6 An empirical study

In this section, we apply our proposed method to a time-course gene expressions data set

collected by Taylor et al. (2007). The goal was to identify gene sets with significant changes
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in covariances over time and estimate their respective change points, should any exist. The

data correspond to a study where peripheral blood mononuclear cells were collected from 69

patients with hepatitis C virus. The cells were collected once before treatment, day 0, and

five times during treatment: days 1, 2, 7, 14 and 28. The treatment consisted of pegylated

alpha interferon and ribavirin. More information about the experiment can be found in

Taylor et al. (2007).

Prior to the application of our methodology, the data were pre-processed. The gene

expressions with low quality measurements were removed if the corresponding Microarray

Suite 5.0 signal transcript was classified as absent. We only kept individuals with gene

expression arrays at all six time points. After pre-processing, our data set consisted of 46

individuals with gene expression arrays at days 0, 1, 2, 7, 14 and 28. The original data set

can be obtained at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7123.

The genes were grouped into gene sets that were defined by gene ontology, which classifies

genes according to attributes of the gene in three biological domains: molecular function,

biological process, and cellular component (Ashburner et al., 2000). For instance, the gene

ontology term labeled 0006468 is related to introducing a phosphate group onto a protein.

Hence, this gene ontology term would consist of all the genes that have a role in the afore-

mentioned biological process. A given gene can be a member of multiple gene ontologies.

For example, in our processed data set, gene ontology 0006468 consists of 221 genes and gene

ontology 0007155 consists of 134 genes, with 64 genes in common. After filtering the data

set according to the procedure above, 159 gene ontology terms were analyzed. We applied

our method to gene ontology terms with a minimum of 100 genes. Figure 2.2 illustrates the

number of genes in the 159 gene ontology terms. Each gene set analyzed had a gene count

much larger than the sample size of 46 patients.
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Figure 2.2: Histogram of the number of genes among the 159 gene ontology terms analyzed.

Let Y
(g)
it (i = 1, . . . , 46; t = 1, . . . , 6) be the gene expression data for the gth gene ontology

term of the ith individual at time t, where t = 1 represents day 0, before treatment, and

t = 2, 3, 4, 5, 6 represent the times during the treatment of hepatitis C virus with pegylated

alpha interferon and ribavirin. Assume model (2.3) for each gene ontology term, Y
(g)
it =

µ
(g)
t + ε

(g)
it for g = 1, . . . , 159, where µ

(g)
t is an unknown mean vector and var(ε

(g)
it ) = Σ

(g)
t .

The assumptions on ε
(g)
it in model (2.3) incorporate temporal dependence so that {ε(g)

it }
T
t=1

are dependent over time. For each gene ontology term, we tested whether the covariance

matrices, Σ
(g)
t , are the same across all t. In addition, the change points were identified for

those gene ontology terms found to be significant.

For the gth gene ontology term, we computed D̂
(g)
nt /σ̂(g),nt,0 for t = 1, . . . , 5 and the

covariance matrix estimation V̂
(g)
n,D. Let M̃(g)

n be the maximum of the standardized test

statistics {V̂ (g)
n,D}

−1/2{σ̂−1
(g),n1,0

D̂
(g)
n1 , . . . , σ̂

−1
(g),n5,0

D̂
(g)
n5 }

T . For each gene ontology term, the

local false discovery rate was estimated using {M̃(g)
n }159

g=1 based on the method proposed by

Efron (2007). As suggested in Efron (2007), a cutoff value of 0.20 was used for the local
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false discovery rate procedure. There were 10 gene ontology terms that had a local false

discovery rate less than or equal to 0.20. These 10 significant gene ontology terms and their

corresponding number of genes, test statistic value, estimated change points, and local false

discovery rate are listed in Table 2.8. Among those gene ontology terms listed in Table

2.8, term 0008285 is associated with the reduction or stoppage of cell proliferation. This

is of interest, as Kannan et al. (2011) had noted that the hepatitis C virus reduces cell

proliferation. Thus, the results here suggest that treatment using pegylated alpha interferon

and ribavirin has some effect on the covariances of those genes that play a role in cellular

proliferation.

Table 2.8: Significant gene ontology terms, test statistic values, number of genes in each
gene ontology term, identified change points and estimated local false discovery rates

GO Number of Genes Test Statistic Value Change Points Local FDR
0006511 132 11.10 4, 5 0.012
0030054 136 9.92 1, 4, 5 0.044
0042493 128 9.54 5 0.064
0008219 122 9.34 4, 5 0.076
0006357 167 9.13 1, 4 0.090
0005765 116 8.93 4 0.103
0019904 117 8.87 4, 5 0.106
0008285 148 8.75 1, 2, 5 0.115
0048471 263 8.04 1, 4, 5 0.168
0005739 661 8.04 4, 5 0.168

After identifying ten significant gene ontology terms, we applied binary segmentation to

identify all change points. We discovered that eight terms have a change point at t = 5,

day 14, eight have a change point at t = 4, day 7, and four terms have a change point at

t = 1, day 0. Recall that a change point at time t = 5 implies the covariance matrix at

time t = 5 is not equal to that at time t = 6. Hence, most of the identified changes in the

covariance matrices occurred by the initial day of treatment or later in the treatment cycle.

These findings complement those of Taylor et al. (2007), who observed that the majority

of the genes that were altered in expression occurred at the early days of treatment and

again, marginally, between treatment days 7 and 28. To illustrate the changes in covariance
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matrices, Figure 2.3 demonstrates the correlation networks of gene ontology term 0030054

at the six time points. We see that the correlation networks change at time points 1, 4 and

5, which is consistent with the identified change points reported in Table 2.8.

Figure 2.3: Correlation network map for gene ontology term 0030054. Each dot represents
a gene within the gene ontology. A link between dots indicates a strong correlation
between genes.

2.7 Technical details

2.7.1 Proofs of lemmas

In this section, we present the proofs to some lemmas used in the proofs of the main theorems.

Without loss of generality, assume that µt = 0 in our proofs for each t ∈ {1, . . . , T} because

the test statistic, D̂nt, is invariant with respect to µt.

Lemma 1. (i) For any symmetric matrices A and B with appropriate dimensions, we have

tr2(AB) ≤ tr(A2)tr(B2); (ii) for any square matrix A, |tr(A2)| ≤ tr(AAT); and (iii) for any

square matrix A, ‖A2‖2F ≤ ‖A
TA‖2F where ‖B‖2F = tr(BTB) is the Frobenius norm of B.
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Proof. (i) Let A = (aij) and B = (bij). By the Cauchy-Schwarz inequality,

tr(AB) =
∑
i

∑
j

aijbij ≤
∑
i

(∑
j

a2
ij

)1/2(∑
j

b2ij

)1/2
≤
(∑

i

∑
j

a2
ij

)1/2(∑
i

∑
j

b2ij

)1/2
.

Since A and B are symmetric, the right-hand side of the above inequality is the square root

of tr(A2)tr(B2).

(ii) Assume that A = (aij) is any p×p matrix. If tr(A2) ≥ 0, because tr{(AT−A)(AT−

A)T} ≥ 0 and tr{(AT−A)(AT−A)T} = 2tr(ATA)− 2tr(A2), we have |tr(A2)| ≤ tr(AAT).

If tr(A2) < 0, because tr{(AT + A)(AT + A)T} ≥ 0 and tr{(AT + A)(AT + A)T} =

2tr(ATA) + 2tr(A2) = 2tr(ATA)− 2|tr(A2)|, we have |tr(A2)| ≤ tr(AAT).

(iii) By definition, ‖A2‖2F = tr(ATATAA) = tr(ATAAAT). Since ATA and AAT are

symmetric matrices, it follows by using part (i) that

tr(ATAAAT) ≤ ‖ATA‖F ‖AAT‖F = ‖ATA‖2F ,

and this completes the proof. �

Lemma 2. Define Us1s2,0 = {n(n− 1)}−1∑n
i6=j=1(Y T

is1
Yjs2)2 for any s1, s2 ∈ {1, . . . , T}.

Under Condition 1, the leading order term of the covariance between Us1s2,0 and Uh1h2,0
is

Gn(s1, s2, h1, h2) = cov(Us1s2,0, Uh1h2,0
), where

Gn(s1, s2, h1, h2) =
2

n(n− 1)
tr2(Cs1h1

CT
s2h2

) +
2

n(n− 1)
tr2(Cs1h2

CT
s2h1

)

+
2(n− 2)

n(n− 1)

∑
u,v∈{1,2}

tr(ΣsucCsuhvΣhvc
CT
suhv

).

Denote uc as the complement set of {u}. That is, uc = {1, 2}/{u}.
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Proof. Using the notation
∼∑

defined in Section 2.3, we define

L1 =
1

(P 2
n)2

n∑
i 6=j=1

E
[{

(Y T
is1
Yjs2)2 − tr(Σs1Σs2)

}{
(Y T
ih1
Yjh2

)2 − tr(Σh1
Σh2

)
}]
,

L2 =
1

(P 2
n)2

n∑
i 6=j=1

E
[
{(Y T

is1
Yjs2)2 − tr(Σs1Σs2)}{(Y T

jh1
Yih2

)2 − tr(Σh1
Σh2

)}
]
,

L3 =
1

(P 2
n)2

∼∑
i,j,l E

[
{(Y T

is1
Yjs2)2 − tr(Σs1Σs2)}{(Y T

ih1
Ylh2

)2 − tr(Σh1
Σh2

)}
]
,

L4 =
1

(P 2
n)2

∼∑
i,j,l E

[
{(Y T

is1
Yjs2)2 − tr(Σs1Σs2)}{(Y T

lh1
Yih2

)2 − tr(Σh1
Σh2

)}
]
,

L5 =
1

(P 2
n)2

∼∑
i,j,l E

[
{(Y T

is1
Yjs2)2 − tr(Σs1Σs2)}{(Y T

jh1
Ylh2

)2 − tr(Σh1
Σh2

)}
]
,

L6 =
1

(P 2
n)2

∼∑
i,j,l E

[
{(Y T

is1
Yjs2)2 − tr(Σs1Σs2)}{(Y T

lh1
Yjh2

)2 − tr(Σh1
Σh2

)}
]
,

L7 =
1

(P 2
n)2

∼∑
i,j,k,l E

[
{(Y T

is1
Yjs2)2 − tr(Σs1Σs2)}{(Y T

kh1
Ylh2

)2 − tr(Σh1
Σh2

)}
]
.

Then cov(Us1s2,0, Uh1h2,0
) = L1 + · · ·+ L7 since E{(Y T

is1
Yjs2)2} = tr(Σs1Σs2). Applying

standard results in multivariate analysis, we obtain

E{(Y T
is1
Yjs2)2(Y T

ih1
Yjh2

)2} = 2tr(Ch1s1
Cs2h2

Ch1s1
Cs2h2

) + 2tr(Σs1C
T
s2h2

Σh1
Cs2h2

)

+ 2tr2(Cs2h2
Ch1s1

) + 2tr(Σs2Cs1h1
Σh2

CT
s1h1

) + tr(Σs2Σs1)tr(Σh2
Σh1

).

This implies that

L1 + L2 =
2

n(n− 1)

[
tr{(Cs2h2

Ch1s1
)2}+ tr{(Cs2h1

Ch2s1
)2}+ tr2(Cs2h2

Ch1s1
)

+ tr2(Cs2h1
Ch2s1

) + tr(Σs1Cs2h2
Σh1

CT
s2h2

) + tr(Σs2Cs1h1
Σh2

CT
s1h1

)

+ tr(Σs1Cs2h1
Σh2

CT
s2h1

) + tr(Σs2Cs1h2
Σh1

CT
s1h2

)
]
.

Furthermore, L7 = 0 and

6∑
i=3

Li =
2(n− 2)

n(n− 1)

∑
u,v∈{1,2}

tr(ΣsucCsuhvΣhvc
CT
suhv

),

This with Condition 1 implies that Lemma 2 is valid. �
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Lemma 3. Define Us1s2,1 = (1/P 3
n)
∼∑
i,j,k Y T

is1
Yjs2Y

T
js2

Yks1. The leading term in the

covariance between Us1s2,1 and Uh1h2,1
is

cov(Us1s2,1, Uh1h2,1
) =

4

n3

∑
u,v∈{1,2}

tr2(CsuhvC
T
suchvc

)

+
2

n2

∑
u,v∈{1,2}

tr(ΣsucCsuhvΣhvc
CT
suhv

),

where uc is the complement set of {u}. That is, uc = {1, 2}/{u}. In addition, var(D̂nt,1) =

o{var(D̂nt,0)}.

Proof. Because E(Us1s2,1) = 0, cov(Us1s2,1, Uh1h2,1
) = E(Us1s2,1Uh1h2,1

). By definition,

Us1s2,1Uh1h2,1
=

1

(P 3
n)2

∼∑
i,j,k

∼∑
i1,j1,k1

(Y T
is1
Yjs2Y

T
js2

Yks1 + Y T
is2
Yjs1Y

T
js1

Yks2)

× (Y T
i1h1

Yj1h2
Y T
j1h2

Yk1h1
+ Y T

i1h2
Yj1h1

Y T
j1h1

Yk1h2
).

According to the number of equivalent indices among two sets {i, j, k} and {i1, j1, k1}, we

decompose Us1s2,1Uh1h2,1
into three terms. Let Ic = {i, j, k}∪{i1, j1, k1} where c represents

the number of indices that are equivalent to each other in two sets {i, j, k} and {i1, j1, k1}.

If there is one index equivalent,

I1 = {(i = i1, j, k, j1, k1), (i = j1, j, k, i1, k1), (i, j, k = i1, i1, j1),

(i, j = i1, k, j1, k1), (i, j = j1, k, i1, k1), (i, j = k1, k, i1, j1),

(i, j, k = i1, j1, k1), (i, j, k = j1, i1, k1), (i, j, k = k1, i1, j1)}.

For each case within I1, the expectation of corresponding summand in Us1s2,1Uh1h2,1
is 0.

If there are two indices equivalent,

I2 = {(i = i1, j = j1, k, k1), (i = j1, j = i1, k, k1), (i = i1, k = k1, j, j1),

(i = k1, k = i1, j, j1), (j = j1, k = k1, i, i1), (j = k1, k = j1, i, i1),

(i = i1, j = k1, k, j1), (i = j1, j = k1, k, i1), (i = i1, k = j1, j, k1),

(i = k1, k = j1, j, i1), (j = j1, k = i1, i, k1), (j = k1, k = i1, i, j1)}.
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Among all the cases in I2, there exist two cases {(i = i1, k = k1, j, j1), (i = k1, k = i1, j, j1)}

whose expectations of the summand in Us1s2,1Uh1h2,1
are not zero. Similarly, if there are

three indices equivalent,

I3 = {(i = i1, j = j1, k = k1), (i = j1, j = i1, k = k1), (i = k1, j = j1, k = i1),

(i = k1, j = i1, k = j1), (i = i1, j = k1, k = j1), (i = j1, j = k1, k = i1)}.

Among all the cases in I3, there are two cases (i = i1, j = j1, k = k1) and (i = k1, j =

j1, k = i1) that have non-zero expectation.

In summary,

E(Us1s2,1Uh1h2,1
) =

2

(P 3
n)2

E
{ ∼∑

i,k,j,j1
(Y T
is1
Yjs2Y

T
js2

Yks1 + Y T
is2
Yjs1Y

T
js1

Yks2)

× (Y T
ih1
Yj1h2

Y T
j1h2

Ykh1
+ Y T

ih2
Yj1h1

Y T
j1h1

Ykh2
)
}

+
2

(P 3
n)2

E
{ ∼∑

i,k,j (Y T
is1
Yjs2Y

T
js2

Yks1 + Y T
is2
Yjs1Y

T
js1

Yks2)

× (Y T
ih1
Yjh2

Y T
jh2

Ykh1
+ Y T

ih2
Yjh1

Y T
jh1

Ykh2
)
}

=
2

P 3
n

∑
u,v∈{1,2}

[
(n− 3)tr(ΣsucCsuhvΣhvc

CT
suhv

) + tr2(CsuhvC
T
suchvc

)

+ tr{(CsuhvC
T
suchvc

)2}+ tr(ΣsucCsuhvΣhvc
CT
suhv

)
]
.

This completes the proof. �

Lemma 4. Define Us1s2,2 = (1/P 4
n)
∼∑
i,j,k,l (Y T

is1
Yjs2)(Y T

ks1
Yls2). For any fixed u, v, k, l ∈

{1, 2}, the covariance between Ususv,2 and Uhkhl,2
is

cov(Ususv,2, Uhkhl,2
) =

2

P 4
n
{tr2(Csuhk

CT
svhl

) + tr(Csuhk
CT
svhl

Csuhk
CT
svhl

)

+ 2tr(Csvhk
CT
svhl

Csuhl
CT
suhk

) + 2tr(Csvhk
CT
svhl

Csuhk
CT
suhl

)

+ 3tr(Csvhk
CT
suhl

Csvhl
CT
suhk

) + 3tr(Csvhk
CT
suhl

)tr(Csvhl
CT
suhk

)}.

Moreover, var(D̂nt,2) = o{var(D̂nt,0)}.
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Proof. Because E(Ususv,2) = 0, cov(Ususv,2, Uhkhl,2
) = E(Ususv,2Uhkhl,2

). Therefore, let

R = E{(Y T
isu
Yjsv)(Y T

ksu
Ylsv)(Y T

i1hk
Yj1hl

)(Y T
k1hk

Yl1hl
)}, so

cov(Ususv,2, Uhkhl,2
) =

1

(P 4
n)2

∼∑
i,j,k,l

∼∑
i1,j1,k1,ll

R

=
2

P 4
n
{tr2(Csuhk

CT
svhl

) + tr(Csuhk
CT
svhl

Csuhk
CT
svhl

)

+ 2tr(Csvhk
CT
svhl

Csuhl
CT
suhk

) + 2tr(Csvhk
CT
svhl

Csuhk
CT
suhl

)

+ 3tr(Csvhk
CT
suhl

Csvhl
CT
suhk

) + 3tr(Csvhk
CT
suhl

)tr(Csvhl
CT
suhk

)}.

This completes the proof of the first part.

For the second part, write D̂nt,2 = w−1(t)
∑t
s1=1

∑T
s2=t+1

∑
u,v∈{1,2}(−1)|u−v|Ususv,2.

It follows by the first part that

var(D̂nt,2) =
1

w2(t)

2

n4

∗∑
s1,s2,h1,h2

∑
u,v,k,l∈{1,2}

(−1)|u−v|+|k−l|{tr2(Csuhk
CT
svhl

)

+ tr(Csuhk
CT
svhl

Csuhk
CT
svhl

) + 2tr(Csvhk
CT
svhl

Csuhl
CT
suhk

)

+ 2tr(Csvhk
CT
svhl

Csuhk
CT
suhl

) + 3tr(Csvhk
CT
suhl

Csvhl
CT
suhk

)

+ 3tr(Csvhk
CT
suhl

)tr(Csvhl
CT
suhk

)}.

Applying the inequalities given in Lemma 1, we can show that var(D̂nt,2) = o{var(D̂nt,0)}.

This completes the proof of this Lemma. �

Lemma 5. Let Z be an m-dimensional multivariate normally distributed random vector

with mean 0 and covariance Im. Define M = ZZT − I. Assume A,B,C,D are matrices
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with appropriate dimensions. Then E{tr(AMATBMBT)} = tr2(ATB) + tr{(ATB)2} and

cov{tr(AMATBMBT), tr(CMCTDMDT)}

= 2tr(ATB)tr(CTD)tr{(ATB +BTA)(CTD +DTC)}

+
1

2
tr2{(ATB +BTA)(CTD +DTC)}+ tr

[
{(ATB +BTA)(CTD +DTC)}2

]
+ 2tr(ATB)tr{(ATB +BTA)(CTDCTD +DTCDTC)}

+ 2tr(CTD)tr{(CTD +DTC)(ATBATB +BTABTA)}

+ 2tr{(ATBATB +BTABTA)(CTDCTD +DTCDTC)}.

In particular,

var{tr(AMATBMBT)} = 2tr2(ATB)tr{(ATB +BTA)2}+
1

2
tr2{(ATB +BTA)2}

+ 4tr(ATB)tr{(ATB +BTA)(ATBATB +BTABTA)}

+ 2tr{(ATBATB +BTABTA)2}+ tr{(ATB +BTA)4}.

Moreover, var{tr(AMATBMBT)} ≤ K
[
tr4(ATB)+tr2{(ATB)⊗2}

]
for a constant K > 0.

Proof. We first consider E{tr(AMATBMBT)}. Because M = ZZT − I, we have

tr(AMATBMBT) = (ZTATBZ)2 − ZTATBBTAZ − ZTBTAATBZ + tr(ATBBTA).

(2.12)

Taking expectation of the both sides of equation (2.12), we have

E{tr(AMATBMBT)} = tr2(ATB) + tr{(ATB)2}+ tr(ATBBTA)− tr(ATBBTA)

= tr2(ATB) + tr{(ATB)2}.
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Next, we consider the covariance part. Using equation (2.12), we have

tr(AMATBMBT)tr(CMCTDMDT) = (ZTATBZ)2(ZTCTDZ)2

− (ZTATBZ)2ZTCTDDTCZ − (ZTATBZ)2ZTDTCCTDZ

− (ZTATBZ)2tr(CTDDTC)− ZTBTAATBZ(ZTCTDZ)2

+ (ZTBTAATBZ)(ZTCTDDTCZ) + (ZTBTAATBZ)(ZTDTCCTDZ)

− (ZTBTAATBZ)tr(CTDDTC)− ZTATBBTAZ(ZTCTDZ)2

+ ZTATBBTAZ(ZTCTDDTCZ) + ZTATBBTAZ(ZTDTCCTDZ)

− ZTATBBTAZtr(CTDDTC) + tr(ATBBTA)(ZTCTDZ)2

− tr(ATBBTA)(ZTCTDDTCZ)− tr(ATBBTA)(ZTDTCCTDZ)

− tr(ATBBTA)tr(CTDDTC).

Define the terms in the above expression as J1, . . . , J16. We consider the expectation of each

Ji for i = 1, . . . , 16. We have the following:

E(J4) = [tr2(ATB) + tr{(ATB)2}+ tr(ATBBTA)]tr(CTDDTC),

E(J6) = tr(BTAATB)tr(CTDDTC) + 2tr(BTAATBCTDDTC),

E(J7) = tr(BTAATB)tr(DTCCTD) + 2tr(BTAATBDTCCTD),

E(J8) = E(J12) = E(J14) = −tr(BTAATB)tr(CTDDTC),

E(J10) = tr(ATBBTA)tr(CTDDTC) + 2tr(ATBBTACTDDTC),

E(J11) = tr(ATBBTA)tr(DTCCTD) + 2tr(ATBBTADTCCTD),

E(J13) = tr(ATBBTA)[tr2(CTD) + tr{(CTD)2}+ tr(CTDDTC)].

In addition, we can show that, for any matrices A,B,C of appropriate dimensions,

E(ZTAZZTBZZTCZ) = tr(A)tr(B)tr(C) + tr(A){tr(BC) + tr(BTC)}

+ tr(B){tr(AC) + tr(ATC)}+ tr(C){tr(AB) + tr(ATB)}

+ tr{(A+ AT)(B +BT)(C + CT)}.
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Applying the above formula to J2, J3, J5 and J9, we obtain

−E(J2) = tr2(ATB)tr(CTDDTC) + tr(ATB){tr(ATBCTDDTC) + tr(BTACTDDTC)}

+ tr(ATB){tr(ATBCTDDTC) + tr(BTATCTDDTC)}

+ tr(CTDDTC){tr(ATBATB) + tr(BTAATB)}

+ 2tr{(ATB +BTA)2CTDDTC}.

The expectation of J3 is the same asE(J2) above except for changing CTDDTC toDTCCTD.

Similarly,

−E(J5) = tr2(CTD)tr(BTAATB) + tr(CTD){tr(CTDBTAATB) + tr(DTCBTAATB)}

+ tr(CTD){tr(CTDBTAATB) + tr(DTCTBTAATB)}

+ tr(BTAATB){tr(CTDCTD) + tr(DTCCTD)}

+ 2tr{(CTD +DTC)2BTAATB},

and E(J9) is the same as E(J5) with replacing BTAATB with ATBBTA. Finally, we can

show that

E(J1) = tr2(ATB)tr2(CTD) + tr2(ATB)[tr{(CTD)2}+ tr(CTDDTC)]

+ tr2(CTD)[tr{(ATB)2}+ tr(ATBBTA)]

+ 4tr(ATB)tr(CTD){tr(ATBCTD) + tr(BTACTD)}

+ [tr{(ATB)2}+ tr(ATBBTA)][tr{(CTD)2}+ tr(CTDDTC)]

+ 2{tr(ATBCTD) + tr(BTACTD)}2

+ 2tr(ATB)tr{(ATB +BTA)(CD +DTCT)2}

+ 2tr(CTD)tr{(ATB +BTA)2(CD +DTCT)}

+ tr{(ATB +BTA)2(CD +DTCT)2}+ tr[{(ATB +BTA)(CD +DTCT)}2].

Summarizing the above E(Ji)’s, we obtain E{tr(AMATBMBT)tr(CMCTDMDT)}. From

this result and (2.12), we can obtain the covariance between tr(AMATBMBT) and
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tr(CMCTDMDT). The variance is a special case of the covariance. This completes the first

part of the Lemma.

Next, we prove the inequality given in the second part. Using the Cauchy-Schwarz

inequality and Lemma 1,

2tr2(ATB)tr{(ATB +BTA)2} ≤ Ktr2(ATB)tr{(ATB)⊗2}

and

2tr(ATB)tr{(ATB +BTA)(ATBATB +BTABTA)}

≤ 2tr(ATB)tr1/2{(ATB +BTA)2}tr1/2{(ATBATB +BTABTA)2}

≤ Ktr(ATB)tr1/2{(ATB)⊗2}tr1/2{(ATBATB)⊗2}

≤ Ktr(ATB)tr1/2{(ATB)⊗2}tr
[
{(ATB)T(ATB)}2

]
≤ Ktr(ATB)tr3/2{(ATB)⊗2}.

Moreover, tr{(ATB +BTA)4} ≤ tr2{(ATB +BTA)2} ≤ Ktr2{(ATB)⊗2}. In summary,

var{tr(AMATBMBT)} ≤ K
[
tr(ATB)tr1/2{(ATB)⊗2}+ tr{(ATB)⊗2}

]2
≤ K

[
tr4(ATB) + tr2{(ATB)⊗2}

]
.

This finishes the proof of this Lemma. �

Define

Vn0(s1, s2, h1, h2) =
4

n(n− 1)

∑
u,v,k,l∈{1,2}

(−1)−|u−v|−|k−l|tr2(Csuhk
CT
svhl

),

Vn1(s1, s2, h1, h2) =
8(n− 2)

n(n− 1)

∑
u,v∈{1,2}

(−1)|u−v|tr{(Σs1 − Σs2)Csuhv(Σh1
− Σh2

)CT
suhv
}.

Lemma 6. Let Ws1s2 = Us1s1,0 + Us2s2,0 − Us1s2,0 − Us2s1,0. The covariance between

Ws1s2 and Wh1h2
is Vu(s1, s2, h1, h2), where Vu(s1, s2, h1, h2) = Vn0(s1, s2, h1, h2)

+Vn1(s1, s2, h1, h2) and Vn0(s1, s2, h1, h2) is the covariance between Ws1s2 and Wh1h2
under

H0.
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Proof. Let Gn(·) be the function defined in Lemma 2. It then follows,

Vu(s1, s2, h1, h2) =
∑

u,v,k,l∈{1,2}
(−1)−|u−v|−|k−l|Gn(su, sv, hk, hl).

Applying Lemma 2, we have

Vu(s1, s2, h1, h2) =
2

n(n− 1)

∑
u,v,k,l∈{1,2}

(−1)−|u−v|−|k−l|
{

tr2(Csuhk
CT
svhl

)

+ tr2(Csuhl
CT
svhk

)
}

+
2(n− 2)

n(n− 1)

∑
u,v,k,l∈{1,2}

(−1)−|u−v|−|k−l|
{

tr(ΣsuCsvhl
Σhk

CT
svhl

)

+ tr(ΣsvCsuhk
Σhl

CT
suhk

) + tr(ΣsuCsvhk
Σhl

CT
svhk

) + tr(ΣsvCsuhl
Σhk

CT
suhl

)
}
.

Hence,

Vu(s1, s2, h1, h2) =
4

n(n− 1)

∑
u,v,k,l∈{1,2}

(−1)−|u−v|−|k−l|tr2(Csuhk
CT
svhl

)

+
8(n− 2)

n(n− 1)

∑
u,v,k,l∈{1,2}

(−1)−|u−v|−|k−l|tr(ΣsuCsvhlΣhkC
T
svhl

).

After some algebra, one can show the second term in the above expression is equivalent to

Vn1(s, h, h1, h2).

Under H0, Vn1(s, h, h1, h2) = 0. Therefore, Vu(s, h, h1, h2) = V0(s, h, h1, h2) is the co-

variance under H0. This completes the proof of Lemma 6. �

2.7.2 Proofs of main results

In this section, we present proofs for the main results of Chapter 2. By definition, D̂nt can

be expressed as D̂nt = D̂nt,0 − 2D̂nt,1 + D̂nt,2, where for k = 0, 1 and 2,

D̂nt,k =
1

t(T − t)

t∑
s1=1

T∑
s2=t+1

(Us1s1,k + Us2s2,k − Us1s2,k − Us2s1,k). (2.13)

Here Us1s2,k was defined in Section 2.3.
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Proof of Theorem 1. Based on the definition of D̂nt, the expectation of D̂nt is

E(D̂nt) =
1

t

t∑
s=1

tr(Σ2
s) +

1

T − t

T∑
h=t+1

tr(Σ2
h)− 2

t(T − t)

t∑
s=1

T∑
h=t+1

tr(ΣsΣh) = Dt.

We next calculate the order of the variance of D̂nt. By using the definition of D̂nt, write D̂nt

as D̂nt = D̂nt,0− 2D̂nt,1 + D̂nt,2. By Lemmas 3 and 4, it follows that D̂nt,1 = op(D̂nt,0) and

D̂nt,2 = op(D̂nt,0). Therefore, it suffices to compute the variance of D̂nt,0. Using Lemma 6,

σ2
nt = w−2(t)

∗∑
s1,s2,
h1,h2

cov(Ws1s2 ,Wh1h2
) = w−2(t)

∗∑
s1,s2,
h1,h2

Vu(s1, s2, h1, h2).

This completes the proof of Theorem 1. �

Proof of Theorem 2. By Theorem 1, it is sufficient to establish the asymptotic normality

of D̂nt,0. We first write D̂nt,0 into a martingale. Define Ajsu = YjsuY
T
jsu
− Σsu , and

Gnj =
1

t(T − t)

t∑
s1=1

T∑
s2=t+1

∑
u,v∈{1,2}

(−1)|u−v|
{
Y T
isu
AjsvYisu − tr(ΣsuAjsv)

}
,

Qni =
1

t(T − t)

t∑
s1=1

T∑
s2=t+1

∑
u,v∈{1,2}

(−1)|u−v|{Y T
isu

ΣsvYisu − tr(ΣsuΣsv)}.

Let Zni = Z
(1)
ni + Z

(2)
ni , where Z

(1)
ni = 2

∑i−1
j=1Gnj/{n(n − 1)} and Z

(2)
ni = 4Qni/n. Then,

D̂nt,0 −Dt =
∑n
i=1 Zni,

Let Fk be the σ-algebra generated by σ{Y1, . . . , Yk} where Yi = {Yi1, . . . , YiT } is the

collection of Y for the i-th sample. It follows that E(Znk|Fk−1) = 0. Therefore, Znk is a

sequence of martingale difference with respect to Fk.

Let σ2
ni = E(Z2

ni|Fi−1). To prove the asymptotic normality, we check two following

conditions (Hall and Hedye, 1980):

Condition (a)
∑n
i=1 σ

2
ni/var(D̂nt)

p→ 1;

Condition (b)
∑n
i=1E(Z4

ni)/var2(D̂nt)→ 0.
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We first prove Condition (a). Consider E(
∑n
i=1 σ

2
ni) =

∑n
i=1E(Z2

ni) =
∑n
i=1 var(Zni).

Furthermore, var(D̂nt) =
∑n
i=1E(Z2

ni) + 2E{
∑
i<j ZniE(Znj |Fj−1)} =

∑n
i=1E(Z2

ni).

Thus, we have E(
∑n
i=1 σ

2
ni) = var(D̂nt). It suffices to show var(

∑n
i=1 σ

2
ni) = o{var2(D̂nt)}.

Now we obtain σ2
ni as

σ2
ni = E(Z2

ni|Fi−1) =

(
n

2

)−2 i−1∑
j=1

i−1∑
j1=1

E(GnjGnj1 |Fi−1) +
4

n2
E(Q2

ni|Fi−1)

+
1

n

4(n
2

)E(Qni i−1∑
j=1

Gnj |Fi−1
)

= Rni,1 +Rni,2 +Rni,3.

Recall that Ajs1 = Yjs1Y
T
js1
− Σs1 . We can further show that Rni,2 is a constant and has

no impact on var(
∑n
i=1 σ

2
ni). Moreover,

Rni,1 =
2(n

2

)2
w2(t)

i−1∑
j=1

i−1∑
j1=1

∗∑
s1,s2,
h1,h2

∑
u,v,k,l∈{1,2}

(−1)|u−v|+|k−l|tr(AjsvCsuhkAj1hlC
T
suhk

)

= R
(0)
ni,1 +R

(1)
ni,1,

where R
(0)
ni,1 corresponds to summation of the terms where j = j1 and R

(1)
ni,1 is the summation

of the terms where j 6= j1. To prove Condition (a), it suffices to show that

(a1) var(
∑n
i=1R

(0)
ni,1) = o(σ4

nt),

(a2) var(
∑n
i=1R

(1)
ni,1) = o(σ4

nt) and

(a3) var(
∑n
i=1Rni,3) = o(σ4

nt).

We first show (a1). We have

var
( n∑
i=1

R
(0)
ni,1

)
≤ C

w4(t)n5
var
{ ∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

(−1)|u−v|+|k−l|tr(AjsvCsuhkAjhlC
T
suhk

)
}

≤ Cw−4(t)n−5
∗∑

s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

var
{

tr(AjsvCsuhk
Ajhl

CT
suhk

)
}
.
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Applying Lemma 5 and using the fact

tr(AjsvCsuhk
Ajhl

CT
suhk

) = tr{ΓT
suΓsv(ZjZ

T
j − I)ΓT

svΓsuΓT
hk

Γhl
(ZjZ

T
j − I)ΓT

hl
Γhk
},

we have

var{tr(AjsvCsuhkAjhlC
T
suhk

)} ≤ C
[
tr4(Csuhk

CT
svhl

) + tr2{(ΓT
svCsuhk

Γhl
)⊗2}

]
.

Under Condition 1, var(
∑n
i=1R

(0)
ni,1) = o(σ4

nt). This completes the proof of (a1).

We next show (a2). Because of j 6= j1, E{tr(AjsvCsuhkAj1hlC
T
suhk

)} = 0. It follows

that

var(
n∑
i=1

R
(1)
ni,1) ≤ C

w4(t)n4
var
{ ∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

(−1)|u−v|+|k−l|tr(AjsvCsuhkAj1hlC
T
suhk

)
}

≤ Cn−4w−4(t)
∗∑

s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

var
{

tr(AjsvCsuhk
Aj1hl

CT
suhk

)
}
.

Similar to Lemma 5, we obtain

var{tr(AjsvCsuhkAj1hlC
T
suhk

)} = 2tr2{(ΓT
svCsuhk

Γhl
)⊗2}+ 6tr{(ΓT

svCsuhk
Γhl

)⊗4}

− 4tr{(ΓT
svCsuhk

Γhl
ΓT
svCsuhk

Γhl
)⊗2} ≤ Ctr2{(ΓT

svCsuhk
Γhl

)⊗2},

where Q⊗2 = QQT and Q⊗4 = QQTQQT. By Condition 1, we have var(
∑n
i=1R

(1)
ni,1) =

o(σ4
nt), which proves (a2).

For proving (a3), a direct computation shows that

n∑
i=1

Rni,3 =
16

n
(n

2

) n∑
j=1

(n− j)
w2(t)

∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

(−1)|u−v|+|k−l|tr(CsuhkΣhl
CT
suhk

Ajsv)

=
16

n
(n

2

) n∑
j=1

(n− j)
w2(t)

∗∑
s1,s2,
h1,h2

∑
u,k∈{1,2}

(−1)|u−k|tr{(Ajs1 − Ajs2)Csuhk
(Σh1

− Σh2
)CT
suhk
}.
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Then,

var(
n∑
i=1

Rni,3) ≤ C

n3w4(t)

∗∑
s1,s2,
h1,h2

∑
u,k∈{1,2}

E
[
tr2{(Ajs1 − Ajs2)Csuhk

(Σh1
− Σh2

)CT
suhk
}
]

=
C

n3w4(t)

∗∑
s1,s2,
h1,h2

∑
u,k∈{1,2}

tr
{

(
2∑
v=1

(−1)vΓT
svCsuhk

(Σh1
− Σh2

)CT
suhk

Γsv)2
}
.

Therefore, by Condition 2, var(
∑n
i=1Rni) = o(σ4

nt). Thus, Condition (a) is valid.

To check Condition (b), we compute

E(Z4
ni) = E{E(Z4

ni|Fi−1)} ≤ Cn−8E
[
E
{( i−1∑

j=1

Gnj

)4
|Fi−1

}]
+Cn−4E(Q4

ni) = J1i + J2i,

where E
{(∑i−1

j=1Gnj
)4|Fi−1

}
=
∑i−1
j=1E(G4

nj |Fi−1) +
∑i−1
j 6=j1

E(G2
njG

2
nj1
|Fi−1). Using

the definition of Gnj , one obtain

G2
nj =

1

w2(t)

∗∑
s1,s2,
h1,h2

∑
u,v,k,l∈{1,2}

(−1)|u−v|+|k−l|tr(AisuAjsv)tr(Aihk
Ajhl

).

For any two symmetric matrices A and B, E[{ZTAZ − tr(A)}2{ZTBZ − tr(B)}2] =

4{tr(A2)tr(B2) + 2tr2(AB)} + 16{2tr(A2B2) + tr(ABAB)} and tr[{ZTAZ − tr(A)}4] ≤

Ctr2(A2). Accordingly,

J1i ≤
C

w4(t)n8

i−1∑
j=1

∗∑
s1,s2

∑
u,v∈{1,2}

E
{

tr4(AisuAjsv)
}

+
C

w4(t)n8

i−1∑
j 6=j1

∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

E
{

tr2(AisuAjsv)tr2(Aihk
Aj1hl

)
}
≤

5∑
k=1

J
(k)
1i ,
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where

J
(1)
1i =

C

w4(t)n8

i−1∑
j=1

∗∑
s1,s2

∑
u,v∈{1,2}

E
{

tr2(ΣsuAjsvΣsuAjsv)
}
,

J
(2)
1i =

C

w4(t)n8

i−1∑
j 6=j1

∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

E
{

tr(AjsvΣsuAjsvΣsu)tr(Aj1hl
Σhk

Aj1hl
Σhk

)
}
,

J
(3)
1i =

C

w4(t)n8

i−1∑
j 6=j1

∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

E
{

tr2(AjsvCsuhk
Aj1hl

CT
suhk

)
}
,

J
(4)
1i =

C

w4(t)n8

i−1∑
j 6=j1

∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

E
{

tr(ΓT
suAjsvΓsuΓT

suAjsv×

ΓsuΓT
hk
Aj1hl

Γhk
ΓT
hk
Aj1hl

Γhk
)
}
,

J
(5)
1i =

C

w4(t)n8

i−1∑
j 6=j1

∗∑
s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

E
{

tr(AjsvCsuhk
Aj1hl

CT
suhk

AjsvCsuhk
Aj1hl

CT
suhk

)
}
.

Consider the first term, J
(1)
1i , in the above inequality. By Lemma 5,

var{tr(AjsvΣsuAjsvΣsu)} ≤ C
[
tr4(ΣsuΣsv) + 4tr2(ΣsuΣsvΣsuΣsv)

+ tr{(ΓT
svΣsuΓsv)4}+ tr{(ΓT

svΣsuΓsvΓT
svΣsuΓsv)⊗2}

]
,

and E
[
tr(ΣsuAjsvΣsuAjsv)

]
= tr2(ΣsuΣsv) + tr(ΣsuΣsvΣsuΣsv). Thus,

E{tr2(AjsvΣsuAjsvΣsu)} ≤ C
[
tr4(ΣsuΣsv) + tr2{(ΣsuΣsv)2}+ tr{(ΣsvΣsu)4}

]
≤ Ctr4(ΣsuΣsv).

Therefore,

n∑
i=1

J
(1)
1i ≤

C

w4(t)n8

n∑
i=1

i−1∑
j=1

∗∑
s1,s2

∑
u,v∈{1,2}

tr4(ΣsuΣsv) = o(σ4
nt). (2.14)

For the second and third terms, J
(2)
1i and J

(3)
1i , consider the following inequality:

tr2(AjsvCsuhk
Aj1hl

CT
suhk

) ≤ tr(AjsvΣsuAjsvΣsu)tr(Aj1hl
Σhk

Aj1hl
Σhk

).
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Thus, we have

n∑
i=1

(J
(2)
1i + J

(3)
1i ) ≤ C

w4(t)n8

n∑
i=1

i−1∑
j 6=j1

[ ∗∑
s1,s2

∑
u,v∈{1,2}

{tr2(ΣsuΣsv) + tr{(ΣsuΣsv)2}
]2

≤ C

w4(t)n8

n∑
i=1

i−1∑
j 6=j1

{ ∗∑
s1,s2

∑
u,v∈{1,2}

tr2(ΣsuΣsv)
}2

= o(σ4
nt). (2.15)

Next, we consider the fourth term J
(4)
1i . We first note the following results

E[tr{A(Z1Z
T
1 − I)ATC(Z1Z

T
1 − I)CTD(Z2Z

T
2 − I)DTF (Z2Z2 − I)FT}]

= tr(ATC)tr(DTF )tr(DFTACT) + tr(ATC)tr(FDTFDTACT)

+ tr(DTF )tr(CATCATDFT) + tr(FDTFDTCATCAT)

for matrices A,C,D and F with appropriate dimensions. Then we can obtain

E
{

tr(ΓT
suAjsvΓsuΓT

suAjsvΓsuΓT
hk
Aj1hl

Γhk
ΓT
hk
Aj1hl

Γhk
)
}

= tr(ΣsvΣsu){tr(ΣhlΣhk)tr(Csuhk
Σhl

CT
suhk

Σsv) + tr(Σhl
Σhk

Σhl
CT
suhk

ΣsvCsuhk
)}

+ tr(Σhl
Σhk

)tr(ΣsvΣsuΣsvCsuhk
Σhl

CT
suhk

) + tr(Σhl
Σhk

Σhl
CT
suhk

ΣsvΣsuΣsvCsuhk
)

≤ tr3/2(ΣsvΣsu)tr3/2(Σhl
Σhk

) + tr3/2(ΣsvΣsu)tr1/2{(ΣhkΣhl
)4}

+ tr3/2(Σhl
Σhk

)tr1/2{(ΣsuΣsv)4}+ tr1/2{(ΣhkΣhl
)4}tr1/2{(ΣsuΣsv)4}.

It follows that

n∑
i=1

J
(4)
1i ≤

C

w4(t)n8

n∑
i=1

i−1∑
j 6=j1

{ ∗∑
s1,s2

∑
u,v∈{1,2}

tr2(ΣsuΣsv)
}2

= o(σ4
nt). (2.16)
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By Lemma 5,

E
[
tr{(CT

suhk
AjsvCsuhk

Aj1hl
)2}
]

= E
[
tr2(ΓT

svCsuhk
Aj1hl

CT
suhk

Γsv)

+ tr{(ΓT
svCsuhk

Aj1hl
CT
suhk

Γsv)2}
]

= {ZT
j ΓT

hl
CT
suhk

ΣsvCsuhk
Γhl

Zj

− tr(Σhl
CT
suhk

ΣsvCsuhk
)}2

+ tr(Csuhk
Aj1hl

CT
suhk

ΣsvCsuhk
Aj1hl

CT
suhk

Σsv)

= 3tr{(ΓT
hl
CT
suhk

Γsv)⊗4}+ tr2{(ΓT
hl
CT
suhk

Γsv)⊗2}.

This along with Condition 1 together implies
∑n
k=1 J

(5)
1k = o(σ4

nt), and further with equations

(2.14) and (2.15) implies
∑n
k=1 J1k = o(σ4

nt).

Finally, we consider J2i. We write Qni as

Qni =
1

w(t)

∗∑
s1,s2

[
ZT
i

{ 2∑
u=1

(−1)u−1ΓT
su(Σs1 −Σs2)Γsu

}
ZT
i − tr{(Σs1 −Σs2)(Σs1 + Σs2)}

]
,

where
∑2
u=1(−1)u−1ΓT

su(Σs1 − Σs2)Γsu = (Γs1 + Γs2)T(Σs1 − Σs2)(Γs1 − Γs2). Using

Proposition A.1 in Chen et al. (2010),

J2i ≤
C

n4w2(t)

t∑
s1=1

T∑
s2=t+1

tr2
[
{(Γs1 + Γs2)T(Σs1 − Σs2)(Γs1 − Γs2)}⊗2

]
.

As a result,
∑n
i=1 J2i = o(σ4

nt). Condition (b) is valid. This completes the proof of the

asymptotic normality of D̂nt. �

Proof of Theorem 3. Using the continuous mapping theorem, we only need to prove the

joint multivariate normality of {D̂nt}T−1
t=1 . Let a = (a1, . . . , aT−1)T be any non-zero constant

vector of length T − 1. By the Cramér-Wold device, it suffices to show that
∑T−1
t=1 atD̂nt

is asymptotically normal under H0. By Lemma 6, the variance of
∑T−1
t=1 atD̂nt is σ2

0T =

var(
∑T−1
t=1 atD̂nt) =

∑T−1
t=1

∑T−1
q=1 ataqQn,tq. Then we wish to show σ−1

0T

∑T−1
t=1 atD̂nt →

N(0, 1) in distribution. The asymptotic normality of
∑T−1
t=1 atD̂nt can be shown by using the
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martingale central limit theory, which is very similar to the proof of Theorem 2. Therefore,

we omit the details. �

Proof of Theorem 4. Assume that the alternative H∗1 is true. First, for t ∈ {1, . . . k1−1},

E(D̂nt) = tr(Σ2
1) +

1

T − t

k1∑
h=t+1

tr(Σ2
h) +

1

T − t

T∑
h=k1+1

tr(Σ2
h)

− 2

t(T − t)

t∑
s=1

{ k1∑
h=t+1

tr(ΣsΣh) +
T∑

h=k1+1

tr(ΣsΣh)
}

=
{

1 +
k1 − t
T − t

− 2t(k1 − t)
t(T − t)

}
tr(Σ2

1) +
T − k1

T − t
tr(Σ2

T )− 2t(T − k1)

t(T − t)
tr(Σ1ΣT )

=
T − k1

T − t
tr
{

(Σ1 − ΣT )2}.
Similarly, if k1 ≤ t, then E(D̂nt) = k1tr

{
(Σ1 − ΣT )2

}
/t.

Define B(C) = {t ∈ {1, . . . , T − 1} : |t − k1| ≥ Cβn/(n∆n)} for some constant C. To

establish the rate of convergence of the change point estimator k̂1, we need to show, for any

ε > 0, there exist a constant C such that pr{|k̂1−k1| > Cβn/(n∆n)} < ε. This is equivalent

to show that pr{k̂1 ∈ B(C)} < ε. Since the event {k̂1 ∈ B(C)} ⊂ {maxt∈B(C) D̂nt > D̂nk1
},

pr{k̂1 ∈ B(C)} ≤ pr{maxt∈B(C) D̂nt > D̂k1
}. Thus, it suffices to show, for any ε > 0, there

exist a constant C such that

pr{ max
t∈B(C)

D̂nt > D̂k1
} ≤

∑
t∈B(C)

pr(D̂nt −Dk1
> D̂nk1

−Dk1
) < ε. (2.17)

Under H∗1 , we have

D̂nt −Dk1
= D̂nt −Dt +Dt −Dk1

= D̂nt −Dt + {r(t; k1)− 1}tr{(Σ1 − ΣT )2}

= D̂nt −Dt − |t− k1|G(t; k1)tr{(Σ1 − ΣT )2},
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where G(t; k1) = {1/(T − t)}I(1 ≤ t ≤ k1)+(1/t)I(k1 +1 ≤ t ≤ T −1). Then, for t ∈ B(C),

pr(D̂nt > D̂nk1
) ≤ pr{|D̂nt −Dt| > |t− k1|G(t; k1)∆n/2}

+ pr{|D̂nk1
−Dk1

| > |t− k1|G(t; k1)∆n/2}

≤ pr{|σ−1
nt (D̂nt −Dt)| > CβnG(t; k1)/

√
(4V0t + 8nV1t)}

+ pr{|σ−1
nk1

(D̂nk1
−Dk1

)| > CβnG(t; k1)/
√

(4V0k1
+ 8nV1k1

)}.

For any t and some constant C1, βn > C1

√
(4V0t + 8nV1t). Furthermore, w(t) and G(t; k1)

are bounded away from zero for t ∈ B(C). Thus, by Chebyshev’s inequality,

pr(D̂nt > D̂nk1
) ≤ pr{|σ−1

nt (D̂nt −Dt)| > C}+ pr{|σ−1
nk1

(D̂nk1
−Dk1

)| > C} ≤ 2

C2
<

ε

T
,

for large enough C. Therefore, (2.17) is true. This finishes the proof of Theorem 4. �

Proof of Theorem 5. Let k0 = 0 and kq+1 = T . Denote the common covariances between

the change points kj and kj+1 as Σ̃j for j = 0, . . . , q. To show that maxtDt is at one of

the change points, it is enough to show that maxtDt cannot be attained at any time points

except change points k1, . . . , kq. Thus, we need to show that the maximum of Dt is not

attainable for t in the following sets: (1) t ∈ {1, . . . , k1− 1}; (2) t ∈ {kq + 1, . . . , T − 1}; and

(3) t ∈ {kl + 1, . . . , kl+1 − 1} for some l ∈ {1, . . . , q − 1}. We do not need to consider case

(1) if k1 = 1 or case (3) if kq = T − 1. Without loss of generality, we assume k1 > 1 and

kq < T − 1 in the following proof.

First, if t ∈ {1, . . . , k1 − 1}, then using the definition of Dt, we have

Dt =
1

t(T − t)

t∑
s1=1

k1∑
s2=t+1

‖Σs1 − Σs2‖
2
F +

1

t(T − t)

t∑
s1=1

T∑
s2=k1+1

‖Σs1 − Σs2‖
2
F

=
1

T − t

T∑
s2=k1+1

‖Σ̃0 − Σs2‖
2
F

which is an increasing function of t in this scenario. Therefore, the maximum value of Dt

will not be at any t ∈ {1, . . . , k1 − 1}.
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Second, if t ∈ {kq + 1, . . . , T − 1}, then

Dt =
1

t(T − t)

kq∑
s1=1

T∑
s2=t+1

‖Σs1 − Σs2‖
2
F +

1

t(T − t)

t∑
s1=kq+1

T∑
s2=t+1

‖Σs1 − Σs2‖
2
F

=
1

t

kq∑
s1=1

‖Σ̃q − Σs1‖
2
F

which is a decreasing function of t. Therefore, the maximum value of Dt will not be at any

t ∈ {kq + 1, . . . , T − 1}.

At last, let us consider the third case with t ∈ {kl + 1, . . . , kl+1 − 1} for some l ∈

{1, . . . , q − 1}. We rewrite Dt as

Dt =
1

t(T − t)

{ l−1∑
i=0

q∑
j=l+1

(ki+1 − ki)(kj+1 − kj)‖Σ̃i − Σ̃j‖2F

+ (t− kl)
q∑

j=l+1

(kj+1 − kj)‖Σ̃l − Σ̃j‖2F + (kl+1 − t)
l−1∑
i=0

(ki+1 − ki)‖Σ̃i − Σ̃l‖2F
}
.

Since ‖Σ̃i − Σ̃j‖2F = ‖Σ̃i − Σ̃l‖2F + ‖Σ̃l − Σ̃j‖2F + 2tr{(Σ̃i − Σ̃l)(Σ̃l − Σ̃j)}, we further write

Dt as

Dt =
1

t(T − t)
{

2∆ + tA+ (T − t)B
}
,

where

∆ =
l−1∑
i=0

q∑
j=l+1

(ki+1 − ki)(kj+1 − kj)tr{(Σ̃i − Σ̃l)(Σ̃l − Σ̃j)},

A =
∑q
j=l+1(kj+1− kj)‖Σ̃l− Σ̃j‖2F and B =

∑l−1
i=0(ki+1− ki)‖Σ̃i− Σ̃l‖2F . Then we can use

the fact that 1/{t(T − t)} = (1/T ){1/t+ 1/(T − t)} to further write Dt as

Dt =
1

t

(
A+

2∆

T

)
+

1

T − t

(
B +

2∆

T

)
.

We will consider four cases, (a)-(d), according to the signs of A+ 2∆/T and B + 2∆/T .

(a) If A + 2∆/T ≥ 0 and B + 2∆/T ≤ 0, then Dt is a decreasing function of t. In this

case, the maximum of Dt will not be at any t for t ∈ {kl + 1, . . . , kl+1 − 1}.
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(b) If A + 2∆/T ≤ 0 and B + 2∆/T ≥ 0, then Dt is an increasing function of t. In this

case, the maximum of Dt will not be at any t for t ∈ {kl + 1, . . . , kl+1 − 1}.

(c) If A+ 2∆/T > 0 and B + 2∆/T > 0, then the derivative of Dt with respect to t is

D′t =
1

t2(T − t)2
{(B − A)t2 + 2(A+

2∆

T
)Tt− (A+

2∆

T
)T 2}.

The denominator of D′t is always positive for t ∈ {kl + 1, . . . , kl+1 − 1}. Thus, to determine

the sign of D′t, we only need to know the sign of the numerator of D′t.

The numerator of D′t is a quadratic form of t. To know the sign of the numerator of

D′t, we consider two cases: (i) B > A and (ii) B < A. In the case (i) with B > A, one

of the solution of t2(T − t)2D′t = 0 is less than 0, another solution t0 is greater than 0. If

t0 ∈ (kl, kl+1), then D′t is negative for kl < t < t0 and positive for t0 < t < kl+1. This implies

that the function Dt decreases for kl < t < t0 and increases for t0 < t < kl+1. Therefore,

Dt attains its minimum at t0 and the maximum of Dt will not be attained within (kl, kl+1).

If t0 6∈ (kl, kl+1), then D′t is either always negative or always positive for t ∈ (kl, kl+1). In

this case, Dt is a monotonic function of t and hence the maximum of Dt will not be attained

within (kl, kl+1).

In the case (ii) with B < A, it can be shown that t2(T − t)2D′t = 0 has two solutions,

t1, t2 = T
[
(A + 2∆/T )/(A − B) ±

√
{(A+ 2∆/T )/(A−B)− 1/2}2 − 1/4

]
. Here, t1, t2

corresponds to the positive and negative sign, respectively. Because B + 2∆/T > 0, (A +

2∆/T )/(A−B) > 1. It follows that t2 > T . Similar to the case of B > A, if t1 ∈ (kl, kl+1),

the function Dt decreases for kl < t < t1 and increases for t1 < t < kl+1. Therefore, Dt

attains its minimum at t0 and the maximum of Dt will not be attained within (kl, kl+1).

If t1 6∈ (kl, kl+1), Dt is a monotone function of t and hence the maximum of Dt will not

be attained within (kl, kl+1). In summary, the maximum of Dt will not be attained within

(kl, kl+1) if A+ 2∆/T > 0 and B + 2∆/T > 0.

(d) If A + 2∆/T < 0 and B + 2∆/T < 0, then 2∆/T < 0 because A > 0 and B > 0.
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Thus, A− 2|∆|/T < 0. Using the Cauchy-Schwarz inequality, we have

A < 2|∆|/T ≤
l−1∑
i=0

q∑
j=l+1

(ki+1 − ki)(kj+1 − kj)(‖Σ̃i − Σ̃l‖2F + ‖Σ̃l − Σ̃j‖2F )/T

= {(T − kl+1)A+ klB}/T.

The above inequality implies that A/B < kl/kl+1 < 1. On the other hand, B < 2|∆|/T ≤

{(T − kl+1)A + klB}/T, which implies that A/B > (T − kl)/(T − kl+1) > 1. This is a

contradiction. Therefore, case (d) is not possible.

By the results of (a)-(d), the maximum of Dt will not attain within {kl+1, . . . , kl+1−1}

for case (3). Thus, the proof is completed. �

Proof of Theorem 6. At the beginning of the binary segmentation algorithm, we have

Mn[1, T ] > Wαn [1, T ] with probability one because, for any t ∈ {1, . . . , T − 1},

pr(Mn[1, T ] > Wαn [1, T ]) ≥ pr(σ−1
nt,0[1, T ]D̂nt[1, T ] > Wαn [1, T ])

= pr
{
σ−1
nt [1, T ](D̂nt[1, T ]−Dt[1, T ]) > σ−1

nt [1, T ](σnt,0[1, T ]Wαn [1, T ]−Dt[1, T ])
}

= 1− Φ
{
σ−1
nt [1, T ](σnt,0[1, T ]Wαn [1, T ]−Dt[1, T ])

}
→ 1,

where we used the condition Wαn = o(mSNR) in Theorem 6. Therefore, using Theorems

4 and 5, one change point in {k1, . . . , kq} will be detected and estimated with probability

1 because βn[1, T ] = o(nDks [1, T ]) for some s ∈ {1, . . . , q}. Each subsequence satisfies the

condition Wαn = o(mSNR) in Theorem 6 and hence the detection continues.

Suppose we have detected less than q change points. By the assumptions in this theorem,

there exists a segment, {l1 + 1, . . . , l2}, that contains a change point, ks, such that Wαn =

o(mSNR) and βn[(l1 + 1), l2] = o{nDks [(l1 + 1), l2]} hold. Therefore, by similar arguments

as above, a change point will be detected and estimated consistently in the segment. Thus,

q̂ ≥ q. Once q̂ reaches q, all subsequent segments have end points at the change points

and two boundary points 1, k1, . . . , kq, T . Then, by Theorem 3, Mn[l1, l2] < Wαn with

probability one as αn → 0. This implies that no additional change point will be detected.

The proof is completed. �
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CHAPTER 3

COVARIANCE CHANGE POINT DETECTION AND IDENTIFICATION
WITH HIGH-DIMENSIONAL FUNCTIONAL DATA

3.1 Introduction

Access to high-dimensional data has exploded in recent years due to technological im-

provements and cost reductions. High throughput technology has facilitated the collection

of genomics data, with more variables being measured than ever before. In addition, the

reductions in cost have allowed measurements to be taken over time, as is the case in time-

course microarray studies. Similarly, functional neuroimaging studies repeatedly measure a

massive number of variables throughout the duration of a medical experiment. Time-course

microarray data and functional neuroimaging data are just two examples of applications

that beget high-dimensional longitudinal, or functional, data, where a large number of vari-

ables are repeatedly measured on a small number of experimental units. Throughout this

chapter we focus on high-dimensional dense functional data, where the number of repeated

measurements is large (Ramsay 1982).

Functional magnetic resonance image (fMRI) data is an important example of high-

dimensional functional data. In a task-based fMRI study, individuals perform various tasks

while the fMRI machine records blood-oxygen-level dependent (BOLD) signals throughout

their brain. These tasks may be passive or active. For example, subjects may be shown a

movie, a sequence of pictures, or asked to respond to questions. In contrast, a resting-state

fMRI does not involve any subject engagement, but aims to investigate the brain’s functional

organization through the BOLD signal measurements. In the course of an fMRI study, the

human brain is partitioned into small uniform cubes, also known as voxels, that are about

the size of 1–3mm3. For each voxel, a BOLD measurement is recorded at each time point.

A cluster of voxels is known as a node or region of interest, where clusters can be defined for
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anatomical region of interest analysis or spherical region of interest analysis. BOLD signal

measurements are repeatedly recorded for each of about 100,000 brain voxels between 100

to 2000 times for a single subject. The number of repeated measurements typically depends

on the fMRI scanner and duration of the task-based or resting-state experiment. To enable

population inference, multiple subjects are included in an fMRI study. Rather than analyze

all 100,000 voxels, doctors may be interested in specific anatomical regions of the brain.

However, a region of interest will still have voxel BOLD signal measurements at the order

of 100. In addition to the sheer size of the data, fMRI data exhibit complex spatiotemporal

dependence. For a given subject, BOLD measurements in neighboring voxels are correlated,

as are BOLD measurements for a given voxel but across time points. The high-dimensional

and dependent structure make statistical modeling, testing, and analysis a challenge.

One major interest in neuroscience is to understand functional connectivity or dynamic

functional connectivity at an individual or group level across time points (Kundu et al.

2018). We refer to dynamic functional connectivity as the changing relationships between

spatially separated brain regions across experimental time points. In particular, we are inter-

ested in studying dynamic functional connectivity across individuals. Traditional functional

connectivity assumes stationary relationships between nodes throughout the experiment. To

characterize the functional connectivity at a given time point, the covariance matrix, or

precision matrix, of BOLD signals serve as a proxy for the within and between brain node

neural activity. As a result, dynamic functional connectivity of the brain can be explored

via a procedure that assesses covariance matrix stationarity.

The purpose of this chapter is to develop a robust statistical procedure to detect and iden-

tify change points among covariance matrices in high-dimensional functional data. Assume

Yit = (Yit1, . . . , Yitp)
T is a p-dimensional random vector with mean vector µt and covariance

matrix Σt. In the context of an fMRI study, Yit (i = 1, . . . , n; t = 1, . . . , T ) represents

the p BOLD signal measurements for the ith individual at the tth time point, where p, T ,

and n are typically at the order of 100,000, 100, and 10, respectively. For a specific region
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of interest in the brain or for region of interest network analysis, p may be at the order of

100. Our proposed procedure aims to answer two questions. First, does a temporal change

exist among covariance matrices? This corresponds to a covariance change point detection

problem that can be posed in the form of a statistical hypothesis test

H0 : Σ1 = · · · = ΣT versus

H1 : Σ1 = · · · = Στ1 6= Στ1+1 = · · · = Στq 6= Στq+1 = · · · = ΣT , (3.1)

where τk < T (k = 1, . . . , q < ∞) are the unknown change point locations. Second, if a

temporal change does exist, can we determine its location and the locations of all possible

changes? This suggests a change point identification problem that aims to estimate the

unknown locations of τks. Although we consider a high-dimensional setting, we do not

require a sparsity assumption for Σt, and we allow the complex spatiotemporal dependence

present in high-dimensional functional data. In the context of fMRI studies, our proposed

procedure will first determine if functional connectivity is stationary. If not, our change

point identification procedure will partition the functional data into stationary sequences

with regards to the covariance matrices.

Testing covariance matrices is a classical problem in multivariate statistical analysis.

Muirhead (2005) and Anderson (2003) detailed multivariate tests for covariance matrices,

including testing the homogeneity of several covariance matrices. However, these tests rely

on likelihood ratios, and they require the sample size to exceed the number of variables

measured. Recent work done by Schott (2007), Srivastava and Yanagihara (2010), and Li

and Chen (2012) addressed the lack of an appropriate testing procedure for covariance ma-

trices in a high-dimensional setting. More recently, Ahmad (2017) and Zhang et al. (2018)

generalized aspects of the aforementioned works to an independent multi-sample test for

high-dimensional covariance matrices. All of the research in testing high-dimensional covari-

ance matrices since Schott’s 2007 pioneering procedure have addressed the high-dimensional

challenges. However, none have focused on how to incorporate temporal dependence in a
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high-dimensional setting. Therefore, none of the previously mentioned methods are applica-

ble to high-dimensional functional data.

Researchers in neuroscience have developed a few methods to study the dynamic func-

tional brain connectivity for single patients and populations. However, in general, their

methods are ad hoc and lack the theoretical rigor to ensure a robust inference procedure.

Some neuroscience approaches were detailed in Chapter 2. Most of the existing work stud-

ies dynamic functional connectivity for an individual. For example, Monti et al. (2014)

developed a sliding window approach based on pair-wise correlations to study the dynamic

functional connectivity. Their approach was based off a single subject and is not directly

applicable to study the common dynamic functional connectivity for a population. Kundu

et al. (2018) developed a procedure to test (3.1) with the aim of studying group level brain

dynamic functional connectivity in a task-based fMRI experiment. To detect and identify

change points, Kundu et al. (2018) first compute all pair-wise correlations between p nodes

at each time point. Thus, at each time point they obtain p(p− 1)/2 sample pair-wise corre-

lations that they stack as a vector. Next, they apply a generalized fused Lasso (Tibshirani

et al. 2005) approach to the multivariate time series of sample correlations. The fused

Lasso was developed for an ordered set of covariates, and as is the case with Lasso, it also

involves a penalty parameter. To tune the penalty parameter they use a lowess fit, which

also depends on a smoothing parameter. Based on the fused Lasso, the number of change

points is a function of the penalty parameter’s value. A small value leads to more identified

change points, whereas a large value leads to a fewer number of identified change points.

In order to accurately identify all change points, they first fit the model where the tuning

parameter’s value is small, and subsequently apply screening criteria to remove any false

positive change points. In their approach they did not derive any theoretical results with

regards to change point identification consistency. Nor did they investigate the size or power

of their proposed change point detection procedure. Furthermore, their method is heavily

dependent on the choice of parameters. Our proposed procedure is free of tuning parameters
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and is theoretically rigorous.

While no methods in the existing literature are applicable to test (3.1) for high-dimensional

functional data, it is also the case that the methods developed in Chapter 2 are not appli-

cable for a few reasons. First, in Chapter 2 it was assumed that the number of repeated

measurements is small. Numerical studies considered the finite sample performance when

T = 5 and 8. A real data application was conducted where T = 6. Second, the asymptotic

distribution of the test statistic and rate of convergence for the change point estimator were

derived under an asymptotic setting in which p and n diverge but with T finite. For a

large number of repeated measurements, as is the case with dense functional data, it will be

more appropriate to consider an asymptotic setting in which p, n, and T diverge. Numerical

simulation and real data applications should be based on theoretical results derived under

this new asymptotic setting and not that considered in Chapter 2. Third, the computation

complexity of the proposed procedure in Chapter 2 was not a concern for small values of n

and T . The overall computation complexity of the change point detection procedure detailed

in Chapter 2 is O(pn4T 6). To directly apply the procedure from Chapter 2 would be com-

putationally impractical, if not impossible. Thus, in this chapter we aim to address these

theoretical and computational challenges so our procedure is applicable to high-dimensional

functional data.

In addition to testing the hypotheses of (3.1), we also develop a method to estimate

unknown change points. In Chapter 2, the rate of convergence was established under an

asymptotic setting where p and n diverge but with T finite. In this chapter we investigate

the rate of convergence of the change point estimator where p, n, and T all diverge. Much of

the research in change point identification considers the scenario with n = 1. For instance,

Aue et al. (2009) considered a p-dimensional multivariate time series where T diverges but

under the assumption that p < T . Wang et al. (2017) considered covariance matrix change

point identification for T independent p-dimensional sub-Gaussian random vectors. They

also require p < T . Dette et al. (2018) proposed a two-stage covariance change point
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identification procedure based on T independent sub-Gaussian random vectors. Their first

step involves dimension reduction governed by a regularization parameter. In step two,

they use a CUSUM-type statistic to estimate the locations of change points. Despite these

recent advances, none of the aforementioned methods are applicable to identify change points

among covariance matrices in high-dimensional functional data.

This chapter provides both theoretical and computational contributions to the field of

statistics. From a theoretical perspective, a new asymptotic setting is considered, a setting

suitable for high-dimensional functional data, in which n, p, and T diverge. For T diverg-

ing, the test statistic forms a stochastic process. The convergence of the finite-dimensional

distributions is not sufficient for weak convergence of a stochastic process. Thus, we extend

the finite-dimensional result to establish weak convergence of our proposed test statistic.

Furthermore, the rate of convergence with respect to the change point estimator is now im-

pacted by n, p, and T , as opposed to just n and p in Chapter 2. Our investigation reveals

that the rate of convergence depends on the data dimension, sample size, number of repeated

measurements, and signal-to-noise ratio. The change point identification estimator is shown

to be consistent, provided the signal strength exceeds the noise. To our knowledge, the

asymptotic framework in which n, p, and T all diverge has not previously been investigated

with regards to change point identification among high-dimensional covariance matrices.

From a computation perspective, we improve the efficiency of methods developed in Chap-

ter 2. This chapter considers T to be dense, so much of our attention is focused towards

computation efficiency for those statistics that have high orders of T . We introduce two

recursive relationships and computation efficient formulae to reduce the computation com-

plexity from O(pn4T 6) to O(pn2T 4). A quantile approximation technique is shown to further

decrease the complexity to the order of pn2T 3. The approximation accuracy is demonstrated

through simulation. These improvements are included in an R package, tecoma, which also

affords an option for parallel computing. In the absence of these modifications, it would

be impossible to apply our methods to fMRI data, or any high-dimensional data set with a
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large number of repeated measurements.

The remaining sections of this chapter are organized as follows. Section 3.2 details the

statistical model and our basic setting. Section 3.3 introduces the measure from Chapter

2 along with the unbiased estimator that is a linear combination of U-type statistics. The

test statistic’s asymptotic distribution is derived under the asymptotic framework in which

n, p, and T diverge. Computation consideration with regards to the statistics is provided in

Section 3.4. Section 3.5 introduces an estimator to identify the locations of change points

should we reject H0 of (3.1). The estimator’s rate of convergence is studied, and two pro-

cedures are detailed to estimate the locations of multiple change points. Sections 3.6 and

3.7 demonstrate the finite sample performance via simulation and investigate the brain’s

functional connectivity through a task-based fMRI data set, respectively. All proofs and

technical details are provided in Section 3.8.

3.2 Model

Suppose we have n independent individuals that have p variables recorded at each of

T identical time points. Let Yit = (Yit1, . . . , Yitp)
T be an observed p-dimensional random

vector, where Yit (i = 1, . . . , n; t = 1, . . . , T ) is independently and identically distributed for

all n individuals. Assume Yit follows a general factor model, where

Yit = µt + ΓtZi, (3.2)

and µt is a p-dimensional unknown mean vector, Γt is an unknown p×m matrix such that

m ≥ pT , and Zi’s are independent m-dimensional multivariate standard normal random

vectors. Since var(Zi) = Im, it follows that for the ith individual, cov(ΓsZi,ΓtZi) = ΓsΓ
T
t .

We define ΓsΓ
T
t as Cst for different time points, s and t, and define ΓtΓ

T
t as Σt. Thus, for

the ith individual,

cov(Yis, Yit) =

 Cst, s 6= t,

Σt, s = t,
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for all s, t ∈ {1, . . . , T}. For individuals i 6= j, cov(Yis, Yjt) = 0. By definition, Cst and Σt

are p × p matrices for all s, t ∈ {1, . . . , T}. No specific structure is required on covariance

matrices Cst and Σt. Their generality allows us to capture the spatiotemporal dependence

in and among the random vectors Yit (i = 1, . . . , n; t = 1, . . . , T ). In the context of fMRI

data, spatial dependence is present among neighboring voxels or nodes and is captured in

both Cst and Σt. Temporal dependence exists for the same voxel or node across time points

and is captured in matrix Cst.

3.3 Change point detection

We consider the measure, Dt (t = 1, . . . , T − 1), defined in Chapter 2, where

Dt =
1

t(T − t)

t∑
s1=1

T∑
s2=t+1

tr{(Σs1 − Σs2)2}. (3.3)

To simplify notation, let t(T − t) be defined as w(t). The choice of Dt is motivated by the

fact that we can distinguish between H0 and H1 based on the maximum value of Dt for all

t ∈ {1, . . . , T − 1}. Let T = {1, . . . , T − 1}. Under H0 of (3.1), maxt∈T Dt = 0, and under

H1, maxt∈T Dt > 0.

Our test statistic is constructed in the same manner as detailed in Chapter 2. We

use a linear combination of U-type statistic estimators to create an unbiased estimator of

Dt. Quantity Dt can be expressed as Dt = w−1(t)
∑t
s1=1

∑T
s2=t+1{tr(Σ2

s1
) + tr(Σ2

s2
) −

tr(Σs1Σs2)− tr(Σs2Σs1)}. An unbiased estimator for tr(Σs1Σs2) is given by Us1s2 , where

Us1s2 = Us1s2,0 − Us1s2,1 − Us2s1,1 + Us1s2,2, (3.4)
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and

P 2
nUs1s2,0 =

∼∑
i,j

(Y T
is1
Yjs2)2,

P 3
nUs1s2,1 =

∼∑
i,j,k

Y T
is1
Yjs2Y

T
js2

Yks1 ,

P 3
nUs2s1,1 =

∼∑
i,j,k

Y T
is2
Yjs1Y

T
js1

Yks2 ,

P 4
nUs1s2,2 =

∼∑
i,j,k,l

Y T
is1
Yjs2Y

T
ks1

Yls2 .

In the above expressions, quantity P kn = n!/(n− k)!, and the ∼ summation notation repre-

sents the summation over mutually different indices. Thus,
∑∼
i,j,k is defined as the summa-

tion over i, j, and k, such that i 6= j, j 6= k, and k 6= i. Therefore, an unbiased estimator of

Dt is

D̂nt =
1

w(t)

t∑
s1=1

T∑
s2=t+1

(Us1s1 + Us2s2 − Us1s2 − Us2s1)

=
1

w(t)

t∑
s1=1

T∑
s2=t+1

2∑
a,b=1

(−1)|a−b|Usasb . (3.5)

In this chapter we consider a different asymptotic framework than that of Chapter 2.

Chapter 2 considered p(n) → ∞ as n → ∞, where p is a function of n. We now consider

p(n) → ∞ and T (n) → ∞ as n → ∞, where p and T are both functions of n. No specific

functional form is required, and we do not require any specific relationships between p, T ,

and n. Thus, we allow for p > n and p > T . To establish the limiting distribution of D̂nt, we

assume Conditions 1 – 2 introduced in Section 2.3 along with the following two conditions.

The notation
∑∗

s1,s2,
h1,h2

is defined as
∑t
s1=1

∑T
s2=t+1

∑t
h1=1

∑T
h2=t+1, and quantity V0t is

given by (3.6).

Condition 4.
∑∗

s1,s2,
h1,h2

tr4(Csuhk
CT
svhl

) = o(V 2
0t), for any u, k, v, l ∈ {1, 2}.

Condition 5. There exists a function ψ(k) such that ψ(k) > 0 and
∑∞
k=1 ψ(k) < ∞. For

any s1, s2 ∈ {1, . . . , T}, tr2(Cs1s2Cs2s1) � ψ(|s1 − s2|)tr2(Σs1Σs2).
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In Condition 5, � means of the same order. Thus, f(s) � g(s) implies there exists a con-

stant c1 such that |f(s)| ≤ c1|g(s)|, and there exists a constant c2 such that |g(s)| ≤ c2|f(s)|

for all s in the real numbers. Condition 5 imposes mild requirements on the spatiotem-

poral structure. Condition 4 is also a mild condition. If no temporal dependence exists,

then V0t =
∑t
s1=1

∑T
s2=t+1

∑
u,v∈{1,2} tr2(ΣsuΣsv). Similarly, the left-hand side of Condi-

tion 4 is
∑t
s1=1

∑T
s2=t+1

∑
u,v∈{1,2} tr4(ΣsuΣsv). Furthermore, if all eigenvalues of Σt are

bounded for all t ∈ {1, . . . , T}, then V 2
0t � {t(T − t)p

2}2. In comparison, the left-hand side

of Condition 4 is of the order t(T − t)p4. As a result, Condition 4 holds.

In Chapter 2, we derived the leading order variance of D̂nt, that is var(D̂nt) = σ2
nt{1 +

o(1)}, where σ2
nt = w−2(t)(4V0t/n

2 + 8V1t/n), and

V0t =
∗∑

s1,s2,
h1,h2

∑
u,v,

k,l∈{1,2}

(−1)|u−v|+|k−l|tr2(Csuhk
CT
svhl

), (3.6)

V1t =
∗∑

s1,s2,
h1,h2

∑
u,k∈{1,2}

(−1)|u−k|tr{(Σs1 − Σs2)Csuhk
(Σh1

− Σh2
)CT
suhk
}. (3.7)

The below theorem establishes the asymptotic distribution of D̂nt under the asymptotic

setting considered in this chapter.

Theorem 7. Under Conditions 1 – 2, and 4, as n→∞,

σ−1
nt

(
D̂nt −Dt

)
d→ N(0, 1),

where σ2
nt = w−2(t)(4V0t/n

2 + 8V1t/n) and V0t and V1t are given in (3.6) and (3.7), respec-

tively.

Under the null hypothesis, it follows that σ−1
nt,0D̂nt → N(0, 1) in distribution, where

σ2
nt,0 = w−2(t)(4V0t/n

2) and only Conditions 1 and 4 are required. To formulate an appro-

priate test procedure free of tuning parameters, consider the test statistic, Mn, of Chapter

2, where

Mn = max
t∈T

σ̂−1
nt,0D̂nt, (3.8)
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and σ̂nt,0 is a plug-in estimator for σnt,0. Methods to construct σ̂nt,0 were detailed in Chapter

2. The following theorem establishes the asymptotic distribution of Mn under the setting

where n, p, and T all diverge.

Theorem 8. Under Conditions 1, 4, and 5, H0 of (3.1), and as n→∞,Mn
d→ maxt∈T Zt,

where Zt is a Gaussian process with mean 0 and covariance Rz.

We assume that as n→∞, Rn,z converges to Rz, where Rn,z is a correlation matrix with

(t, q) component defined as Rn,tq = corr(D̂nt, D̂nq). The leading order of the cov(D̂nt, D̂nq)

is w−1(t)w−1(q)(4V0,tq/n
2), where

V0,tq =
t∑

s1=1

T∑
s2=t+1

q∑
h1=1

T∑
h2=q+1

∑
u,v,

k,l∈{1,2}

(−1)|u−v|+|k−l|tr2(Csuhk
CT
svhl

). (3.9)

In order to perform an α-level hypothesis test for (3.1), we must approximate Rn,z and thus

require an estimator for V0,tq. In Chapter 2, an unbiased estimator for tr(Csuhk
CT
svhl

) was

given as a linear combination of U-type statistics. Let R̂n,tq be an estimator for the (t, q)

component of Rn,z.

Let W = maxt∈T Zt, where Zt is a Gaussian process with mean 0 and covariance Rz,

and define Wα as the quantity such that pr(W > Wα) = α. By Theorem 8, Mn→W in

distribution, and an α-level test rejects the null hypothesis in (3.1) if Mn > Wα. However,

there is no simple and computation efficient approach to obtain Wα. The random variable

W depends on Rz. Chapter 2 proposed a procedure to approximate quantile Wα on the basis

of computing R̂n,tq for each t, q ∈ {1, . . . , T − 1}. However, the computation complexity of

this approach, in terms of T , is at the order of T 4 for each component. Therefore, total

complexity is at the order of T 6 to compute R̂n,z. As a result, it is not feasible to compute

all components when T is large.

As an attempt to alleviate this burden, we can further approximate the distribution of

W by a Gumbel distribution. Under additional assumptions and if T diverges, then

pr(Mn ≤
√

2 log(T )− log{log(T )}+ x)→ exp{−(2
√
π)−1 exp(−x/2)}.
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Accordingly, an α-level quantile is defined as
√

2 log(T )− log{log(T )}+ xα, where xα =

−2 log{−2
√
π log(1−α)}. However, the rate of convergence is at the order of log(T ), which

is slow. In addition, our simulation experiments demonstrated that the size of the test was

not well controlled at the nominal level. Moreover, using an extreme value-type distribution

does not eliminate the need to compute σ̂nt,0 for all t ∈ T . That overall cost in terms of T

is at the order T 5. Hence, we carefully consider an approximation procedure in Section 3.4

that improves efficiency and maintains accuracy.

3.4 Computation of the proposed statistics

The computation complexity for the change point detection procedure is at the order

of pn4T 6. To reduce the complexity, we re-formulate some of the statistics introduced in

Section 3.3 in a computation optimal manner.

The computation complexity of Us1s2 is at the order of n4 due to term Us1s2,2. In

addition, term Us1s2,1 has computation complexity at the order of n3. To save computation

cost, we can rewrite Us1s2,1 and Us1s2,2 defined in (2.4) in a computation efficient form as

follows. First, we consider Us1s2,1, which can be rewritten as

P 3
nUs1s2,1 =

n∑
j=1

( n∑
i=1

Y T
is1
Yjs2

)2
−

n∑
i,j=1

(Y T
is1
Yjs2)2 − 2

n∑
k 6=j=1

Y T
js1

Yjs2Y
T
js2

Yks1 . (3.10)

Therefore, the computation complexity of Us1s2,1 regarding the sample subjects is at the

order of n2, not n3. To write Us1s2,2 in a computation efficient form, we first define Vs1s2,1 =

(1/P 3
n)
∼∑
i,j,k Y

T
is1
Yjs2Y

T
js1

Yks2 . Similar to Us1s2,1, we can write Vs1s2,1 as

P 3
nVs1s2,1 =

n∑
j=1

( n∑
i=1

Y T
is1
Yjs2

)( n∑
i=1

Y T
is2
Yjs1

)
−

n∑
i,j=1

Y T
is1
Yjs2Y

T
js1

Yis2

−
n∑

k 6=j=1

Y T
js1

Yjs2Y
T
js1

Yks2 −
n∑

i 6=j=1

Y T
is1
Yjs2Y

T
js1

Yjs2 .

The computation complexity of Vs1s2,1 regarding the sample subjects is also at the order of
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n2. Finally, we can write Us1s2,2 as

P 4
nUs1s2,2 =

( n∑
i 6=j=1

Y T
is1
Yjs2

)2
− P 3

n(Us1s2,1 + Us2s1,1 + 2Vs1s2,1)− P 2
nUs1s2,0

−
n∑

i 6=j=1

(Y T
is1
Yjs2)(Y T

is2
Yjs1). (3.11)

Based on the above expression for P 4
nUs1s2,2, we can also see that the computation com-

plexity of Us1s2,2 regarding the sample subjects is at the order of n2. In summary, the

computation cost of the proposed statistic Us1s2 with regard to sample subjects is at the

order of n2. These computation efficient expressions can be derived in a similar manner for

Ususv,hkhl
, the term used as a plug-in estimator to primarily compute R̂n,tq.

The computation complexity of D̂nt in (3.5) in terms of T is at the order T 3. To reduce

the complexity in terms of T , we write D̂nt recursively. Let f(s1, s2) = (Us1s1 + Us2s2 −

Us1s2 − Us2s1) such that s1, s2 ∈ {1, . . . , T}. By definition, it follows that for t ≥ 2,

D̂nt =
w(t− 1)

w(t)
D̂n(t−1) − w

−1(t)
t−1∑
k=1

f(k, t) + w−1(t)
T∑

k=t+1

f(t, k). (3.12)

When t = 1, the computation complexity of D̂n1 is at the order of T . Therefore by (3.12),

for each t ∈ {1, . . . , T − 1} the computation complexity in terms of T is at the order T .

Since we compute D̂nt for all t ∈ {1, . . . , T − 1}, the total computation complexity in terms

of T is at the order of T 2 rather than T 3. As a result, the overall computation complexity

to compute D̂nt for all t ∈ {1, . . . , T − 1} is at the order of pn2T 2. Parallel computing can

further decrease the computation time.

The greatest cost in terms of computation is due to R̂n,tq for all t, q ∈ T , where the

complexity is at the order of pn2T 6 provided (3.10) and (3.11) are applied. To reduce the
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complexity, we express R̂n,tq recursively. Let

g(s1, h1, s2, h2) =
∑
u,v,

k,l∈{1,2}

(−1)|u−v|+|k−l|U2
susvhkhl

,

h(t, q) =
t∑

s1=1

T∑
s2=t+1

q∑
h1=1

T∑
h2=q+1

g(s1, h1, s2, h2).

Thus, n2w(t)w(q)V̂0,tq/4 = h(t, q). Suppose the quantity h(t, q − 1) is known for t ∈

{1, . . . , T − 2} and q ∈ {2, . . . , 2− 1}. For a fixed t,

h(t, q) = h(t, q − 1)−
q−1∑
j=t

T∑
k=t+1

g(t, j, k, q) +
T∑

j=t+1

T∑
k=q+1

g(t, q, j, k). (3.13)

An analogous recursive formula can be derived to traverse a fixed column where h(t− 1, q)

is known and we want to compute h(t, q). Based on the recursive formula in (3.13), the

computation complexity in terms of T is at T 2. By the definition of R̂n,tq, R̂n,1,1, R̂n,1,T−1,

R̂n,T−1,T−1 can each be computed at the computation complexity in terms of T at the order

T 2. Therefore, based on (3.13) and the fact that we must compute R̂n,tq for all t < q, the

overall computation complexity for R̂n,z is at the order np2T 4. Despite this reduction, the

complexity can further be improved via linear interpolation on a sparse form of R̂n,z.

Rather than compute R̂n,tq for all t, q ∈ {1, . . . , T − 1}, we can compute h = (b + I)

off-diagonals of the matrix and interpolate the remaining values. Let b be the number of

consecutive off-diagonals immediately following the main diagonal, and let I be the num-

ber of off-diagonals computed at a fixed interval after the b consecutive off-diagonals. Let

diag(R̂n,1,d+1) be the dth off-diagonal, where d ∈ {1, . . . , T − 2}. For an efficient approx-

imation of R̂n,z, first compute R̂n,1,1. Next, apply (3.13) to compute diag(R̂n,1,2), . . . ,

diag(R̂n,1,b) for the corresponding b off-diagonals. Lastly, apply formula (3.13) to compute

diag(R̂n,1,I1), . . . , diag(R̂n,1,II
) that correspond to the I off-diagonals at a fixed interval.

Each of these I off-diagonals has an initial computation in terms of T at the order T 3.

Parallel processing can be utilized to start each off-diagonal’s computation independently.

The overall complexity in terms of T , will be at order hT 3 to obtain a sparse version of
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R̂n,z. Linear interpolation is then used to estimate the components not computed. Based

on our simulations, linear interpolation results in a negligible loss in power, and the size

remains near the nominal level. Full simulation results for the linear interpolation method

are available in Section 3.6.

Figure 3.1: Accuracy of linear interpolation for R̂n,tq. Black circles represent R̂n,1q for all
q ∈ {1, . . . , T − 1}. Red triangles represent the corresponding interpolated values.

Figure 3.1 illustrates R̂n,1,q for all q ∈ {1, . . . , T − 1} and the corresponding interpolated

values based on parameters b = 20 and I = 8. The fixed interval for off-diagonals was set

to ten. The accuracy of the linear interpolation is evident under the null and alternative

hypotheses. Therefore, the computation complexity in terms of T for R̂n,tq can be reduced

from T 4 to hT 3. In Chapter 2, the overall computation complexity to approximate the quan-

tile was at the order pn4T 6. From the recursive formulae and estimation procedure via linear

interpolation, the overall computation complexity to estimate Rn,z is reduced to pn2T 3, and

thus, making our change point detection procedure applicable to high-dimensional functional

data.
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3.5 Change point identification

If the data leads us to the conclusion to reject H0 of (3.1), then a second task is to identify

the time points where changes exist among the T high-dimensional covariance matrices.

First, consider the case with only one change point. Let τ be the time point where the single

change point exists. Define τ̂ as an estimator for the change point’s location, where

τ̂ = arg max
t∈T

D̂nt, (3.14)

and T = {1, . . . , T − 1}. The form of the estimator is motivated by Theorem 4, which

states that Dt is maximized at the time point t = τ when a single change point exists at τ .

Consider the hypotheses

H0 : Σ1 = · · · = ΣT versus

H∗1 : Σ1 = · · · = Στ 6= Στ+1 = · · · = ΣT . (3.15)

The following theorem establishes the rate of convergence for τ̂ .

Theorem 9. Assume that H∗1 of (3.15) is true. Also, assume that as T →∞, τ/T → ω, a

constant. Under Conditions 1 – 2, and 4, it follows that as n→∞,

τ̂ − τ = Op

{νmax
√

log(T )

n∆p

}
, (3.16)

where νmax = maxt∈T max
(√

V0t,
√
nV1t

)
and ∆p = tr{(Σ1 − ΣT )2}.

Theorem 9 demonstrates that the change point estimator, τ̂ , is consistent for high-

dimensional functional data, provided that ∆p/νmax �
√

log(T )/n. Quantity ∆p can

be interpreted as the signal, and quantity νmax can be interpreted as the noise. Thus,

if νmax
√

log(T )/(n∆p)→ 0, τ̂ is a consistent estimator for τ .

To investigate the impact of n, p, and T on the rate of convergence of τ̂ we consider each

in turn. Assume p and T are fixed as n→∞. As a result, the rate of convergence for τ̂ − τ

is Op(1/
√
n) since ∆p,

√
log(T ),

√
V0t, and

√
V1t are held constant. If we assume T is fixed
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as n and p diverge, then the rate of convergence is the same as that proved in Theorem 4.

This rate can be faster than 1/
√
n depending on the contributions of ∆p and νmax. Next, if

we assume p is fixed as n and T diverge, then τ̂ − τ = Op

{
νmax

√
log(T )/

√
n
}

. Depending

on the relationship between ∆p and νmax, the rate of convergence can be much faster than√
log(T )/

√
n as p, T , and n all diverge. As p increases, Σ1 − ΣT can possibly contain

more nonzero components, so ∆p could get larger. However, as p and T increase, νmax

increases. Therefore, if νmax does not dominate ∆p, we obtain a faster rate of convergence

than
√

log(T )/
√
n. Despite the fact that the estimator in (3.14) is the same as that proposed

in Chapter 2, the rate of convergence for the estimator is very different with regards to the

asymptotic framework in which n→∞, p→∞, T →∞.

Assume H1 of (3.1) is true for multiple change points. First, we introduce two procedures

to identify the locations of multiple change points, and then introduce a theorem with regards

to the consistency of estimating multiple change points.

Let Q = {1 ≤ τ1 < · · · < τq < T} be the collection of all the true q change points,

and let Q̂ be the estimated set of change points. We make use of the notation in Chapter 2

and define for time points t1 < t2, S[t1, t2] is the statistic S calculated based on the data in

time interval t1 through t2. For example, νmax[t1, t2] is the quantity based on data between

t1 and t2. To identify multiple change points we apply binary segmentation (Venkatraman

1992). The binary segmentation algorithm is detailed follows.

Step 1: Compute Mn and compare it with Wα. If Mn > Wα, then κ̂ = arg maxt∈T D̂nt

is the estimated change point, and set κ̂ = τ̂1 so Q̂ = {τ̂1}. Partition the full data set

into two intervals: [1, κ̂] and [κ̂+ 1, T ] and proceed to step 2. However, if Mn ≤ Wα,

then no change points exist.

Step 2: Perform the detection procedure to test (3.1) using Y [1, κ̂] and Y [κ̂+1, T ]. If H0 is

rejected based on Y [1, κ̂], then identify κ̂1 = arg maxt∈[1,κ̂] D̂nt[1, κ̂] as a change point.

Since κ̂1 < τ̂1, set τ̂1 = κ̂1 and τ̂2 = κ̂ so Q̂ = {τ̂1, τ̂2}. Partition the data Y [1, κ̂] into
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two intervals: [1, κ̂1] and [κ̂1 + 1, κ̂]. If H0 is not rejected, then no change points exist

in the interval [1, κ̂]. Repeat this procedure for the data based on interval [κ̂ + 1, T ].

Set Q̂ is then updated to contain the ordered change points. If no change points are

detected in either interval, then stop, as κ̂ is the only change point that exists.

Step 3: If a change point is identified in at least one interval in step 2, repeat step 2 until

no further change points are detected. At each step update and order set Q̂.

At the conclusion of the binary segmentation procedure we can partition the interval [1, T ] so

each sub-interval will consist of end points from the set {1, Q̂, T}. For example, if no change

point is identified, then the single interval is [1, T ]. If a single change point is identified at

τ̂ , then two intervals where no change points exist are [1, τ̂ ] and [τ̂ , T ].

The computation time to identify multiple change points exceeds the time to detect

the existence of change points. If parallel computing is available, then the computation time

required to identify multiple change points can be improved via a more efficient identification

procedure when compared to the steps outlined for binary segmentation. The improvement

stems from the fact that the time to compute D̂nt is less than the time required to test (3.1)

for a given time interval. An efficient parallel procedure is detailed below.

Step 1: Perform binary segmentation by partitioning at arg maxt∈It D̂nt[It], where It is

the considered time interval of data. Change point detection is not performed at this

step. Binary segmentation continues until all intervals are either of the form [a, a] or

[a, a + 1], where a ∈ T . Suppose there exist N total intervals at the conclusion of

binary segmentation.

Step 2: For all N intervals of length at least one, apply the change point detection procedure

to test (3.1) in parallel. If H0 is rejected for a given interval, then a change point exists

and is estimated at the point arg maxt∈It D̂nt[It] from step 1. Update Q̂ for each

identified change point.
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Hence, the computation time required to identify multiple change points will only slightly

exceed the time to perform change point detection on the longest interval [1, T ].

To establish the consistency of Q̂ we first define some notation. Let It be a time interval

such that It = [τa+1, τb], where a+1 < b such that a ∈ {0, . . . , q−1} and b ∈ {2, . . . , q+1}.

Define τ0 = 0 and τq+t = T . Thus, It is an interval with at least one change point. Assume

the smallest maximum signal-to-noise ratio among all segments It is as defined in Chapter

2, where minIt maxτs∈It σ
−1
nτs,0

[It]Dτs [It] is denoted as mSNR.

Theorem 10. Assume that τk/T converges to ωk as T diverges, Wαn = o(mSNR), and for

any interval It, νmax[It]
√

log(T )/(n∆p[It])→ 0. Furthermore, assume αn → 0. Therefore,

under Conditions 1 – 2, and 4, as n→∞, Q̂ → Q in probability.

In the existence of change points, the assumption that Wαn = o(mSNR) ensures the con-

sistency of the proposed test at each phase of binary segmentation. In the absence of change

points, the assumption that αn → 0 ensures no change points will be detected and binary seg-

mentation will stop on the given interval. The assumption that νmax[It]
√

log(T )/(n∆p[It])→

0 ensures that in the existence of change points, the estimator is consistent.

3.6 Simulation studies

In this section, we present multiple simulation studies to demonstrate the performance

of the change point detection and identification procedures in a large p, large T , and small

n setting. All data were generated from a multivariate linear process,

Yit =
L∑
h=0

At,hξi(t−h) (i = 1, . . . , n; t = 1, . . . , T ), (3.17)

where At,h is a p×p matrix, and ξi(t−h) are p-dimensional multivariate normally distributed

random vectors with mean 0 and covariance Ip. The data generation scheme given by (3.17)
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permits spatial and temporal dependence. Let t ≥ s. By definition of Yit in (3.17),

cov(Yit, Yis) =


L∑

h=t−s
At,hA

T
s,h−(t−s), t− s ≤ L;

0, t− s > L.

Spatial dependence occurs among the vector Yit for a given time point t. Temporal de-

pendence exists among {Yit}Tt=1 at different time points and is governed by the simulation

parameter L.

In the simulation studies, we set n = 40, 50 and 60, and p = 500, 750 and 1000. The num-

ber of repeated measurements, T, was set to be 50 and 100. For change point identification

we considered an additional case with T = 150. The simulation parameter L = 3.

Simulation results reported in Tables 3.1 – 3.4 were based on 500 simulation replications,

and simulation results in Tables 3.5 and 3.6 were based on 100 simulation replications.

The spatial and temporal dependence incorporated in (3.17) depends on the choice of

matrices At,h. First, we define matrices At,h for the testing simulation to demonstrate the

size and power of the proposed test procedure. Later, matrices At,h will be defined for the

change point identification simulation.

Let τ1 be the true underlying change point among the covariance matrices such that

τ1 = bT/2c, where bxc is the floor function. Define two matrices, B1 and B2, such that

B1 =
{

(0.6)|i−j|I(|i− j| < p/5)
}
,

B2 =
{

(0.6 + δ)|i−j|I(|i− j| < p/5)
}
,

where (i, j) represents the ith row and jth column of the p× p matrices B1 and B2. Thus,

for h ∈ {0, . . . , 3}

At,h =

 B1, t ∈ {1, . . . , τ1};

B2, t ∈ {τ1 + 1 . . . , T}.

Parameter δ in B2 governs the signal strength in terms of how different the covariance

matrices are before and after the change point at time τ1. When δ = 0, B1 = B2 and At,h
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is the same for all t, and the null hypothesis is true. If δ > 0, then the null hypothesis is

false, and τ1 is the true covariance change point. For the change point detection simulation,

δ was set to 0.00, 0.025, 0.05 and 0.10.

Table 3.1: Empirical size and power of the proposed test, percentages of simulation
replications that reject the null hypothesis

T = 50 T = 100
p p

δ n 500 750 1000 500 750 1000
40 4.4 4.6 3.8 3.6 5.4 4.4

0(size) 50 4.8 4.0 3.6 2.0 4.6 4.0
60 3.8 4.2 2.8 5.4 3.6 5.6
40 13.4 13.4 10.8 18.0 19.0 18.0

0.025 50 17.0 19.2 17.0 30.6 27.2 30.4
60 26.4 26.0 27.4 47.0 41.6 41.6
40 96.0 97.0 98.0 100 100 100

0.05 50 100 100 100 100 100 100
60 100 100 100 100 100 100
40 100 100 100 100 100 100

0.10 50 100 100 100 100 100 100
60 100 100 100 100 100 100

Table 3.1 demonstrates the empirical size and power of the proposed test procedure.

The size is well controlled at the nominal level of 0.05 for all values of n, p, and T . For a

fixed p and T , as n increases the power increases. Likewise, as δ increases, the power of the

change point detection procedure increases. For a fixed n and p, the power increases as T

increases. These relationships are further elucidated when simulation results from Table 2.1

under Setting (I) in Section 2.5 are considered. For example, when n = 40, p = 500, and

δ = 0.05, we observe that the power of the test is 21.4, 35.6, 96.0, and 100 as T is 5, 8, 50,

and 100, respectively.
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Table 3.2: Empirical size and power of the proposed test for T = 100, percentages of
simulation replications that reject the null hypothesis, quantile computed from a
correlation matrix that used linear interpolation. The first 5 off-diagonals were computed
exactly as well as the last w components for each row

w = 5 w = 10 w = 20
p p p

δ n 500 750 1000 500 750 1000 500 750 1000
40 3.4 4.8 4.2 3.4 4.8 4.2 3.4 5.2 4.2

0(size) 50 2.0 4.6 3.8 2.0 4.6 4.0 2.0 4.6 4.0
60 4.8 3.2 5.0 4.8 3.2 5.0 5.2 3.8 5.6
40 17.8 19.0 17.6 17.8 19.0 17.6 17.8 19.0 17.6

0.025 50 30.8 26.2 30.2 30.8 26.6 30.2 30.8 26.6 30.2
60 46.6 40.8 41.0 46.6 40.8 41.0 46.6 41.2 41.0
40 100 100 100 100 100 100 100 100 100

0.05 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100

0.10 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100

Table 3.3: Empirical size and power of the proposed test for T = 100, percentages of
simulation replications that reject the null hypothesis, quantile computed from a
correlation matrix that used linear interpolation. The first 10 off-diagonals were computed
exactly as well as the last w components for each row

w = 5 w = 10 w = 20
p p p

δ n 500 750 1000 500 750 1000 500 750 1000
40 3.4 5.0 4.2 3.4 5.0 4.2 3.4 5.2 4.2

0(size) 50 2.0 4.6 4.0 2.0 4.6 4.0 2.0 4.6 4.0
60 4.8 3.2 5.0 4.8 3.4 5.0 5.2 3.8 5.6
40 18.0 19.0 17.6 18.0 19.0 17.6 18.0 19.0 17.6

0.025 50 30.8 26.6 30.2 30.8 26.6 30.2 30.8 26.8 30.2
60 46.6 40.8 41.0 46.6 40.8 41.0 46.6 41.2 41.0
40 100 100 100 100 100 100 100 100 100

0.05 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100

0.10 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100
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Table 3.4: Empirical size and power of the proposed test for T = 100, percentages of
simulation replications that reject the null hypothesis, quantile computed from a
correlation matrix that used linear interpolation. The first 20 off-diagonals were computed
exactly as well as the last w components for each row

w = 5 w = 10 w = 20
p p p

δ n 500 750 1000 500 750 1000 500 750 1000
40 3.6 5.2 4.2 3.6 5.2 4.4 3.6 5.2 4.4

0(size) 50 2.0 4.6 4.0 2.0 4.6 4.0 2.0 4.6 4.0
60 5.2 3.4 5.6 5.2 3.4 5.6 5.2 3.8 5.6
40 18.0 19.0 17.6 18.0 19.0 17.8 18.0 19.0 18.0

0.025 50 30.6 26.8 30.2 30.6 26.8 30.4 30.6 27.0 30.4
60 46.8 40.8 41.0 47.0 41.4 41.4 46.6 41.4 41.6
40 100 100 100 100 100 100 100 100 100

0.05 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100

0.10 50 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100

Tables 3.2 – 3.4 demonstrate the empirical size and power of the proposed test procedure

using a modification of the quantile approximation procedure introduced in Section 3.4.

Rather than compute R̂n,tq for all t, q ∈ {1, . . . , T − 1}, we compute the first b off-diagonals

and the last w columns of R̂n,tq. The remaining values were imputed via linear interpolation.

Figure 3.1 demonstrates the accuracy of this linear interpolation procedure. Simulations

considered b = 5, 10 and 20, and w = 5, 10 and 20. Based on our simulation results,

there is only a minimal loss in power when compared to computing all components of R̂n,tq.

Furthermore, the size of the test is well maintained at the nominal level of 0.05.

To evaluate the performance of the change point identification procedure through binary

segmentation, consider two change points: τ1 and τ2. Let τ1 = bT/2c, and let τ2 = τ1 + 2.
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Define three matrices, B1, B2, and B3, such that

B1 =
{

(|i− j|+ 1)−2I(|i− j| < p/5)
}
,

B2 =
{

(|i− j|+ δ + 1)−2I(|i− j| < p/5)
}
,

B3 =
{

(|i− j|+ 2δ + 1)−2I(|i− j| < p/5)
}
,

where (i, j) represents the ith row and jth column of the p × p matrices B1, B2, and B3.

Thus, for h ∈ {0, . . . , 3}

At,h =


B1, t ∈ {1, . . . , τ1};

B2, t ∈ {τ1 + 1 . . . , τ2};

B3, t ∈ {τ2 + 1 . . . , T}.

When δ = 0, the null hypothesis is true, and At,h is the same for all t ∈ {1, . . . , T}. Since

our purpose is to demonstrate the finite sample accuracy of change point identification, we

do not consider a null hypothesis setting in which δ = 0. The values of δ were selected to be

0.15, 0.25, and 0.35.

Two measures were considered to evaluate the change point identification procedure’s

efficacy: average true positives and average true negatives. For each simulation replication

there exists two true change points at time points τ1 and τ2, and there exists T − 3 time

points where no change point exists. The average true positives are defined as the average

number of correctly-identified change points among 100 simulation replications. Similarly,

the average true negatives are defined as the average number of correctly-identified time

points where no covariance change exists among 100 simulation replications.

Table 3.5 provides the efficacy of the binary segmentation procedure in the large p, large

T , and small n setting. For fixed p, n, and T , the average true positives and average true

negatives approach two and T − 3, respectively, as δ increases. As the sample size increases,

the average true positives and average true negatives approach their optimal values. Table

3.6 contains the corresponding standard errors for the measures in Table 3.5.
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Table 3.5: Average true positives and average true negatives for identifying multiple change
points using the proposed binary segmentation method. The maximum number of true
positives for a given replication is 2. The maximum number of true negatives for a given
replication is T − 3

δ=0.15 δ=0.25 δ=0.35
T p n ATP ATN ATP ATN ATP ATN

50

500
40 1.20 46.76 1.68 46.48 1.97 46.62
50 1.41 46.68 1.91 46.42 2.00 46.63
60 1.57 46.58 1.98 46.52 2.00 46.61

750
40 1.30 46.78 1.77 46.51 2.00 46.59
50 1.33 46.66 1.95 46.53 2.00 46.70
60 1.57 46.58 1.99 46.53 2.00 46.64

1000
40 1.27 46.76 1.81 46.61 1.95 46.59
50 1.48 46.67 1.95 46.58 2.00 46.76
60 1.65 46.51 1.99 46.69 2.00 46.59

100

500
40 1.27 96.75 1.74 96.56 1.98 96.54
50 1.31 96.67 1.92 96.54 2.00 96.44
60 1.62 96.70 1.99 96.56 2.00 96.46

750
40 1.22 96.76 1.85 96.59 1.98 96.54
50 1.33 96.59 1.96 96.51 2.00 96.54
60 1.60 96.59 1.99 96.55 2.00 96.42

1000
40 1.20 96.80 1.74 96.52 1.98 96.59
50 1.34 96.64 1.90 96.50 2.00 96.49
60 1.59 96.50 2.00 96.58 2.00 96.44

150

500
40 1.19 146.76 1.73 146.53 1.97 146.48
50 1.34 146.68 1.95 146.55 2.00 146.40
60 1.54 146.51 2.00 146.57 2.00 146.53

750
40 1.16 146.84 1.73 146.58 1.97 146.46
50 1.42 146.64 1.97 146.55 2.00 146.52
60 1.56 146.45 1.98 146.42 2.00 146.55

1000
40 1.20 146.80 1.72 146.49 1.97 146.51
50 1.46 146.70 1.92 146.50 2.00 146.47
60 1.53 146.56 1.99 146.56 2.00 146.51
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Table 3.6: Standard errors for average true positives and average true negatives given in
Table 3.5. The maximum number of true positives for a given replication is 2. The
maximum number of true negatives for a given replication is T − 3

δ=0.15 δ=0.25 δ=0.35
T p n ATP SE ATN SE ATP SE ATN SE ATP SE ATN SE

50

500
40 0.40 0.62 0.47 0.52 0.17 0.49
50 0.49 0.53 0.29 0.52 0.00 0.49
60 0.50 0.55 0.14 0.50 0.00 0.55

750
40 0.46 0.42 0.42 0.50 0.00 0.61
50 0.47 0.48 0.22 0.50 0.00 0.46
60 0.50 0.55 0.10 0.56 0.00 0.50

1000
40 0.45 0.55 0.39 0.51 0.22 0.50
50 0.50 0.47 0.22 0.50 0.00 0.43
60 0.48 0.63 0.10 0.47 0.00 0.67

100

500
40 0.45 0.50 0.44 0.50 0.14 0.52
50 0.47 0.47 0.27 0.50 0.00 0.50
60 0.49 0.48 0.10 0.52 0.00 0.54

750
40 0.42 0.50 0.36 0.51 0.14 0.50
50 0.47 0.55 0.20 0.50 0.00 0.50
60 0.49 0.49 0.10 0.50 0.00 0.78

1000
40 0.40 0.43 0.44 0.50 0.14 0.55
50 0.48 0.50 0.30 0.52 0.00 0.50
60 0.49 0.61 0.00 0.50 0.00 0.61

150

500
40 0.39 0.43 0.45 0.56 0.17 0.56
50 0.48 0.47 0.22 0.50 0.00 0.53
60 0.50 0.52 0.00 0.50 0.00 0.52

750
40 0.37 0.40 0.45 0.50 0.17 0.58
50 0.50 0.50 0.17 0.52 0.00 0.56
60 0.50 0.58 0.14 0.52 0.00 0.56

1000
40 0.40 0.40 0.45 0.50 0.18 0.52
50 0.50 0.46 0.27 0.67 0.00 0.63
60 0.50 0.54 0.10 0.52 0.00 0.50

3.7 An empirical study

Human memory has been studied through fMRI experiments in the context of discrete

and continuous activities. One goal of neurologists is to better understand perception and

memory processes in humans as they experience continuous real-world events (Baldassano

et al. 2017). Event segmentation theory, posited by Zacks et al. (2007), poses that under

certain conditions, humans generate event boundaries in memory during continuous percep-
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tion events. Thus, humans may partition a continuous experience into a series of segmented

discrete events. Baldassano et al. (2017) investigated event boundary detection and con-

cluded that long-term memory in humans is structured as a series of hierarchical discrete

events. Moreover, Schapiro et al. (2013) suggested that event boundaries are formed around

changes in functional connectivity. In this section, we apply our method to the task-based

fMRI data set analyzed in Baldassano et al. (2017) and Chen et al. (2017) in order to

study the brain’s dynamic functional connectivity. In the presence of brain dynamic func-

tional activity, points of change may represent these event boundaries as suggested in the

aforementioned neuroscience literature.

We apply our proposed method to a task-based fMRI data set collected by Chen et al.

(2017), where they investigated the effects of memories across different individuals. The

experiment involved 17 participants that each watched the same 48-minute segment of the

BBC television series Sherlock while undergoing an fMRI scan. The 48-minute segment was

the first 48-minutes of the first episode in the television series. None of the participants

had watched the series Sherlock prior to the study. Chen et al. partitioned the television

episode into a 23-minute segment and a 25-minute segment. Each segment was prepended

by a 30-second cartoon to allow the brain time to adjust to new audio and visual stimuli.

Including an unrelated cartoon prior to studies such as this is common practice as it reduces

statistical noise. Subjects were instructed to watch the television episode as they would

watch a typical television episode in their own home. The fMRI data were gathered from

a Siemens Skyra 3T full-body scanner. More details about the experiment and processes of

acquiring functional and anatomical images are provided in Chen et al. (2017).

The 48-minute segment of Sherlock resulted in 1,976 time point measurements of data.

For each participant, the fMRI machine acquired an image the participant’s brain every 1.5

seconds. To demonstrate our proposed method, we analyzed the first 100 time points which

equates to the first 150 seconds of the Sherlock episode. Let Yit be the BOLD random vector

for the 268 nodes of the ith individual at time t. Thus, Yit (i = 1, . . . , 17; t = 1, . . . , 100)
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is a 268-dimensional random vector. A node, or region of interest, represents a collection

of voxels. The 268 node parcellation was performed according to Shen et al. (2013), where

voxels groupings ensure functional homogeneity within each node, making it ideal for node

network and dynamic functional connectivity analysis. Figure 3.2 illustrates the 268 Shen

node parcellation along with large-scale node groupings. Node-level analysis decreases the

data dimensional and allows for more interpretable results. For further details on the benefits

and processes of Shen node parcellation, we refer readers to Shen et al. (2013).

Figure 3.2: Shen 268 node parcellation. This image was obtained from Finn et al. (2015).

In our analysis n = 17, p = 268, and T = 100. Based on (3.1) – (3.2), we assume

that at each time point there exists a common population covariance matrix among all 17

individuals. Our assumption is not unrealistic given this task-based fMRI experiment. In

Chen et al. (2017) and Baldassano et al. (2017), they found that an across-subject design

was appropriate due to consistent stimulus-response across patients for a given brain region.

Under model (3.2), we applied our procedure to test (3.1). Based on the test statistic

value, Mn = 3.6596, we rejected H0 of (3.1) as the p-value was less than 0.001. Hence, we

rejected the claim that the covariance matrices were stationary for all T = 100 time points.

Accordingly, we applied binary segmentation to identify all significant change points among
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99 possible points of change. Our proposed method identified 17 locations of significance.

Change points were located at time points 2, 25, 36, 39, 40, 41, 42, 58, 60, 61, 63, 81, 83,

88, 89, 91, and 92. A change point at time two implies that Σ1 = Σ2 6= Σ3.

Table 3.7: Identified change points in the Sherlock fMRI data set. Range of time points
preceding the identified change point where the covariance matrices are temporally
homogeneous. An interval ID provides a reference to Figure 3.3

Change point Interval Homogeneous interval
2 1 [1, 2]
25 2 [3, 25]
36 3 [26, 36]
39 4 [37, 39]
40 5 [40, 40]
41 6 [41, 41]
42 7 [42, 42]
58 8 [43, 58]
60 9 [59, 60]
61 10 [61, 61]
63 11 [62, 63]
81 12 [64, 81]
83 13 [82, 83]
88 14 [84, 88]
89 15 [89, 89]
91 16 [90, 91]
92 17 [92, 92]

Figures (3.3) illustrates these temporal changes among covariance matrices around the

identified change points listed in Table 3.7. Each subplot is the average correlation between

nodes across the time interval where the covariance matrices are homogeneous. Thus, in

Figure 3.3, Interval 1 represents the correlation network based on the average correlations

between nodes over time interval [1, 2]. Interval 2 represents the correlation network based

on the average correlations between nodes over time interval [3, 25]. Table 3.7 details the

time interval corresponding to the temporal homogeneous covariance matrices preceding

each identified change point. Therefore, given that a change point was located at t = 2,

the correlation network of Interval 1 compared to Interval 2 should be significantly different.

Correlation network layouts are structured according to the eight large-scale node groupings
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illustrated in Figure 3.2. The top-centered circle consists of nodes within the medial frontal

group. Moving clockwise on a given sub-plot, the remaining circles represent frontoparietal,

default mode, subcortical-cerebellum, motor, visual I, visual II, and visual association.

The identified change points in Table 3.7 coincide with interesting events in the television

episode Sherlock. For example, the first change point at t = 2 may be a reaction to initial

stimuli of the cartoon. The brain must process this initial video and audio stimuli. At

approximately 37 to 38 seconds into the series Sherlock the cartoon ends, and a graphic

war scene commences. Guns are fired, casualties are shown, but there is no distinguishable

dialect. The transition point from cartoon clip to battle scene coincides with the change point

identified at t = 25. After this war scene a period of quiet ensues. The first understandable

dialect from actors occurs at approximately two minutes and 11 seconds into the episode. At

this time, a therapist inquires about a patient’s well-being as the viewer learns the opening

war scene was a flashback. Change points identified at 88, 89, 91, and 92 equate to the start

of this conversation.

92



Figure 3.3: Correlation networks based on an average over a time interval in which the
covariance matrices are homogeneous. Each circle is comprised of 67 Shen nodes. Solid
lines represent a positive correlation, and dashed lines represent a negative correlation. The
darker the line the stronger the correlation between nodes. A correlation threshold value of
0.70 in absolute values was used.
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3.8 Technical details

This section contains proofs of lemmas and the main theorems. Some of the expressions

are rather long. Thus, for readability, an equation will not always be aligned with the initial

equality sign.

3.8.1 Proofs of lemmas

First, we provide proofs for some lemmas that will be used in the proofs corresponding to

the main theorems.

Lemma 7. Let Yisak = γT
sak

zi, where zi is a standard multivariate normal random vector,

and γT
sak

is known. Then
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where Σlksa = γT
sal
γsak and C

pq
uexg = γT

ueqγxgq.

Proof. Let A1, A2, A3, and A4 be any matrices of appropriate dimensions. Assume zi is a

94



standard multivariate normal random vector. By the results of multivariate analysis

E
(
zTi A1ziz

T
i A2ziz

T
i A3ziz

T
i A4zi

)
= tr(A1)tr(A2)tr(A3)tr(A4)

+
[
tr(A1)tr(A2)tr(A3A4 + A3A

T
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T
4 )

+ tr(A1)tr(A4)tr(A2A3 + A2A
T
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T
4 )
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By the definition of Yi··, E
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. Thus, making the appropriate

substitutions for A1, A2, A3, and A4, it follows that
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Lemma 8. Let Vsasb(i, j) = (Y TisaYjsb)
2, where sa, sb, rc, rd, ue, uf , xg, xh ∈ {1 . . . T − 1}

and i 6= j. Then

E
{
Vsasb(i, j)Vrcrd(i, j)Vueuf (i, j)Vxgxh(i, j)

}
= H1 +H2 +H3 +H4 +H5 +H6

+H7 +H8 +H9 +H10 +H11 +H12

+H13 +H14 +H15 +H16 +H17

where Hk, k ∈ {1, . . . , 17} is given below.

H1 =
[
tr4(Σ2) + tr2(Σ2)tr(ΣCufxhΣCxhuf ) + tr2(Σ2)tr(ΣCrdxhΣCxhrd)

+ tr2(Σ2)tr(ΣCrdufΣCuf rd) + tr2(Σ2)tr(ΣCsbxhΣCxhsb)

+ tr2(Σ2)tr(ΣCsbufΣCuf sb) + tr2(Σ2)tr(ΣCsbrdΣCrdsb)

+ tr(ΣCsbrdΣCrdsb)tr(ΣCufxhΣCxhuf ) + tr(ΣCsbufΣCuf sb)tr(ΣCrdxhΣCxhrd)

+ tr(ΣCsbxhΣCxhsb)tr(ΣCrdufΣCuf rd) + tr(Σ2)tr(ΣCrdxhΣCxhufΣCuf rd)

+ tr(Σ2)tr(ΣCsbxhΣCxhufΣCuf sb) + tr(Σ2)tr(ΣCsbxhΣCxhrdΣCrdsb)

+ +tr(Σ2)tr(ΣCsbufΣCuf rdΣCrdsb) + tr(ΣCsbxhΣCxhufΣCuf rdΣCrdsb)

+ tr(ΣCsbufΣCufxhΣCxhrdΣCrdsb) + tr(ΣCsbxhΣCxhrdΣCrdufΣCuf sb)
]

H2 =
[
tr2(Σ2)tr(ΣCuexgΣCxgue) + tr2(Σ2)tr2(CuexgCxhuf )

+ tr(Σ2)tr(ΣCrdxhCxgueΣCuexgCxhrd)

+ tr(Σ2)tr(ΣCrdufCuexgΣCxgueCuf rd) + tr(Σ2)tr(ΣCsbxhCxgueΣCuexgCxhsb)

+ tr(Σ2)tr(ΣCsbufCuexgΣCxgueCuf sb) + tr(ΣCsbrdΣCrdsb)tr(ΣCuexgΣCxgue)

+ tr(ΣCsbrdΣCrdsb)tr
2(CuexgCxhuf )

+ tr(ΣCsbufCuexgCxhrdΣCrdxhCxgueCuf sb)

+ tr(ΣCsbxhCxgueCuf rdΣCrdufCuexgCxhsb)

+ tr(Σ2)tr(ΣCrdxhCxgueCuf rd)tr(CuexgCxhuf )
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+ tr(Σ2)tr(ΣCsbxhCxgueCuf sb)tr(CuexgCxhuf )

+ tr(ΣCsbxhCxgueΣCuexgCxhrdΣCrdsb)

+ tr(ΣCsbufCuexgΣCxgueCuf rdΣCrdsb)

+ tr(ΣCsbxhCxgueCrdufΣCrdsb)tr
2(CuexgCxhuf )

+ tr(ΣCsbufCuexgCxhrdΣCrdsb)tr
2(CuexgCxhuf )

+ tr(ΣCsbxhCxgueCuf sb)tr(ΣCrdufCuexgCxhrd)
]

H3 =
[
tr2(Σ2)tr(ΣCrcxgΣCxgrc) + tr2(Σ2)tr2(CrcxgCxhrd)

+ tr(Σ2)tr(ΣCufxhCxgrcΣCrcxgCxhuf )

+ tr(Σ2)tr(ΣCuf rdCrcxgΣCxgrcCrduf ) + tr(Σ2)tr(ΣCsbxhCxgrcΣCrcxgCxhsb)

+ tr(Σ2)tr(ΣCsbrdCrcxgΣCxgrcCrdsb) + tr(ΣCsbufΣCuf sb)tr(ΣCrcxgΣCxgrc)

+ tr(ΣCsbufΣCuf sb)tr
2(CrcxgCxhrd)

+ tr(ΣCsbrdCrcxgCxhufΣCufxhCxgrcCrdsb)

+ tr(ΣCsbxhCxgrcCrdufΣCuf rdCrcxgCxhsb)

+ tr(Σ2)tr(ΣCufxhCxgrcCrduf )tr(CrcxgCxhrd)

+ tr(Σ2)tr(ΣCsbxhCxgrcCrdsb)tr(CrcxgCxhrd)

+ tr(ΣCsbxhCxgrcΣCrcxgCxhufΣCuf sb)

+ tr(ΣCsbrdCrcxgΣCxgrcCrdufΣCuf sb)

+ tr(ΣCsbxhCxgrcCuf rdΣCuf sb)tr
2(CrcxgCxhrd)

+ tr(ΣCsbrdCrcxgCxhufΣCuf sb)tr
2(CrcxgCxhrd)

+ tr(ΣCsbxhCxgrcCrdsb)tr(ΣCuf rdCrcxgCxhuf )
]

H4 =
[
tr2(Σ2)tr(ΣCrcueΣCuerc) + tr2(Σ2)tr2(CrcueCuf rd)
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+ tr(Σ2)tr(ΣCxhufCuercΣCrcueCufxh)

+ tr(Σ2)tr(ΣCxhrdCrcueΣCuercCrdxh) + tr(Σ2)tr(ΣCsbufCuercΣCrcueCuf sb)

+ tr(Σ2)tr(ΣCsbrdCrcueΣCuercCrdsb) + tr(ΣCsbxhΣCxhsb)tr(ΣCrcueΣCuerc)

+ tr(ΣCsbxhΣCxhsb)tr
2(CrcueCuf rd) + tr(ΣCsbrdCrcueCufxhΣCxhufCuercCrdsb)

+ tr(ΣCsbufCuercCrdxhΣCxhrdCrcueCuf sb)

+ tr(Σ2)tr(ΣCxhufCuercCrdxh)tr(CrcueCuf rd)

+ tr(Σ2)tr(ΣCsbufCuercCrdsb)tr(CrcueCuf rd)

+ tr(ΣCsbufCuercΣCrcueCufxhΣCxhsb)

+ tr(ΣCsbrdCrcueΣCuercCrdxhΣCxhsb)

+ tr(ΣCsbufCuercCxhrdΣCxhsb)tr
2(CrcueCuf rd)

+ tr(ΣCsbrdCrcueCufxhΣCxhsb)tr
2(CrcueCuf rd)

+ tr(ΣCsbufCuercCrdsb)tr(ΣCxhrdCrcueCufxh)
]

H5 =
[
tr2(Σ2)tr(ΣCsaxgΣCxgsa) + tr2(Σ2)tr2(CsaxgCxhsb)

+ tr(Σ2)tr(ΣCufxhCxgsaΣCsaxgCxhuf )

+ tr(Σ2)tr(ΣCuf sbCsaxgΣCxgsaCsbuf ) + tr(Σ2)tr(ΣCrdxhCxgsaΣCsaxgCxhrd)

+ tr(Σ2)tr(ΣCrdsbCsaxgΣCxgsaCsbrd) + tr(ΣCrdufΣCuf rd)tr(ΣCsaxgΣCxgsa)

+ tr(ΣCrdufΣCuf rd)tr2(CsaxgCxhsb)

+ tr(ΣCrdsbCsaxgCxhufΣCufxhCxgsaCsbrd)

+ tr(ΣCrdxhCxgsaCsbufΣCuf sbCsaxgCxhrd)

+ tr(Σ2)tr(ΣCufxhCxgsaCsbuf )tr(CsaxgCxhsb)

+ tr(Σ2)tr(ΣCrdxhCxgsaCsbrd)tr(CsaxgCxhsb)

+ tr(ΣCrdxhCxgsaΣCsaxgCxhufΣCuf rd)
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+ tr(ΣCrdsbCsaxgΣCxgsaCsbufΣCuf rd)

+ tr(ΣCrdxhCxgsaCuf sbΣCuf rd)tr2(CsaxgCxhsb)

+ tr(ΣCrdsbCsaxgCxhufΣCuf rd)tr2(CsaxgCxhsb)

+ tr(ΣCrdxhCxgsaCsbrd)tr(ΣCuf sbCsaxgCxhuf )
]

H6 =
[
tr2(Σ2)tr(ΣCsaueΣCuesa) + tr2(Σ2)tr2(CsaueCuf sb)

+ tr(Σ2)tr(ΣCxhufCuesaΣCsaueCufxh)

+ tr(Σ2)tr(ΣCxhsbCsaueΣCuesaCsbxh) + tr(Σ2)tr(ΣCrdufCuesaΣCsaueCuf rd)

+ tr(Σ2)tr(ΣCrdsbCsaueΣCuesaCsbrd) + tr(ΣCrdxhΣCxhrd)tr(ΣCsaueΣCuesa)

+ tr(ΣCrdxhΣCxhrd)tr2(CsaueCuf sb)

+ tr(ΣCrdsbCsaueCufxhΣCxhufCuesaCsbrd)

+ tr(ΣCrdufCuesaCsbxhΣCxhsbCsaueCuf rd)

+ tr(Σ2)tr(ΣCxhufCuesaCsbxh)tr(CsaueCuf sb)

+ tr(Σ2)tr(ΣCrdufCuesaCsbrd)tr(CsaueCuf sb)

+ tr(ΣCrdufCuesaΣCsaueCufxhΣCxhrd)

+ tr(ΣCrdsbCsaueΣCuesaCsbxhΣCxhrd)

+ tr(ΣCrdufCuesaCxhsbΣCxhrd)tr2(CsaueCuf sb)

+ tr(ΣCrdsbCsaueCufxhΣCxhrd)tr2(CsaueCuf sb)

+ tr(ΣCrdufCuesaCsbrd)tr(ΣCxhsbCsaueCufxh)
]

H7 =
[
tr2(Σ2)tr(ΣCsarcΣCrcsa) + tr2(Σ2)tr2(CsarcCrdsb)

+ tr(Σ2)tr(ΣCxhrdCrcsaΣCsarcCrdxh)

+ tr(Σ2)tr(ΣCxhsbCsarcΣCrcsaCsbxh) + tr(Σ2)tr(ΣCuf rdCrcsaΣCsarcCrduf )
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+ tr(Σ2)tr(ΣCuf sbCsarcΣCrcsaCsbuf ) + tr(ΣCufxhΣCxhuf )tr(ΣCsarcΣCrcsa)

+ tr(ΣCufxhΣCxhuf )tr2(CsarcCrdsb) + tr(ΣCuf sbCsarcCrdxhΣCxhrdCrcsaCsbuf )

+ tr(ΣCuf rdCrcsaCsbxhΣCxhsbCsarcCrduf )

+ tr(Σ2)tr(ΣCxhrdCrcsaCsbxh)tr(CsarcCrdsb)

+ tr(Σ2)tr(ΣCuf rdCrcsaCsbuf )tr(CsarcCrdsb)

+ tr(ΣCuf rdCrcsaΣCsarcCrdxhΣCxhuf )

+ tr(ΣCuf sbCsarcΣCrcsaCsbxhΣCxhuf )

+ tr(ΣCuf rdCrcsaCxhsbΣCxhuf )tr2(CsarcCrdsb)

+ tr(ΣCuf sbCsarcCrdxhΣCxhuf )tr2(CsarcCrdsb)

+ tr(ΣCuf rdCrcsaCsbuf )tr(ΣCxhsbCsarcCrdxh)
]

H8 =
[
tr(ΣCsarcΣCrcsa)tr(ΣCuexgΣCxgue) + tr(ΣCsarcΣCrcsa)tr2(CuexgCxhuf )

+ tr(ΣCsarcCrdxhCxgueΣCuexgCxhrdCrcsa)

+ tr(ΣCsarcCrdufCuexgΣCxgueCuf rdCrcsa)

+ tr(ΣCrcsaCsbxhCxgueΣCuexgCxhsbCsarc)

+ tr(ΣCrcsaCsbufCuexgΣCxgueCuf sbCsarc)

+ tr(ΣCuexgΣCxgue)tr
2(CsarcCrdsb) + tr2(CsarcCrdsb)tr

2(CuexgCxhuf )

+ tr2(CsarcCrdxhCxgueCuf sb) + tr2(CsarcCrdufCuexgCxhsb)

+ tr(ΣCsarcCrdufCuexgCxhrdCrcsa)tr(CuexgCxhuf )

+ tr(ΣCrcsaCsbufCuexgCxhsbCsarc)tr(CuexgCxhuf )

+ tr(ΣCuexgCxhsbCsarcCrdxhCxgue)tr(CsarcCrdsb)

+ tr(ΣCxgueCuf sbCsarcCrdufCuexg)tr(CsarcCrdsb)

+ tr(CrcsaCsbxhCxgueCuf rd)tr(CsarcCrdsb)tr(CuexgCxhuf )
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+ tr(CrcsaCsbufCuexgCxhrd)tr(CsarcCrdsb)tr(CuexgCxhuf )

+ tr(CsarcCrdufCuexgCxhrdCrcsaCsbxhCxgueCuf sb)
]

H9 =
[
tr(ΣCsaueΣCuesa)tr(ΣCrcxgΣCxgrc) + tr(ΣCsaueΣCuesa)tr2(CrcxgCxhrd)

+ tr(ΣCsaueCufxhCxgrcΣCrcxgCxhufCuesa)

+ tr(ΣCsaueCuf rdCrcxgΣCxgrcCrdufCuesa)

+ tr(ΣCuesaCsbxhCxgrcΣCrcxgCxhsbCsaue)

+ tr(ΣCuesaCsbrdCrcxgΣCxgrcCrdsbCsaue)

+ tr(ΣCrcxgΣCxgrc)tr
2(CsaueCuf sb) + tr2(CsaueCuf sb)tr

2(CrcxgCxhrd)

+ tr2(CsaueCufxhCxgrcCrdsb) + tr2(CsaueCuf rdCrcxgCxhsb)

+ tr(ΣCsaueCuf rdCrcxgCxhufCuesa)tr(CrcxgCxhrd)

+ tr(ΣCuesaCsbrdCrcxgCxhsbCsaue)tr(CrcxgCxhrd)

+ tr(ΣCrcxgCxhsbCsaueCufxhCxgrc)tr(CsaueCuf sb)

+ tr(ΣCxgrcCrdsbCsaueCuf rdCrcxg)tr(CsaueCuf sb)

+ tr(CuesaCsbxhCxgrcCrduf )tr(CsaueCuf sb)tr(CrcxgCxhrd)

+ tr(CuesaCsbrdCrcxgCxhuf )tr(CsaueCuf sb)tr(CrcxgCxhrd)

+ tr(CsaueCuf rdCrcxgCxhufCuesaCsbxhCxgrcCrdsb)
]

H10 =
[
tr(ΣCsaxgΣCxgsa)tr(ΣCrcueΣCuerc) + tr(ΣCsaxgΣCxgsa)tr2(CrcueCuf rd)

+ tr(ΣCsaxgCxhufCuercΣCrcueCufxhCxgsa)

+ tr(ΣCsaxgCxhrdCrcueΣCuercCrdxhCxgsa)

+ tr(ΣCxgsaCsbufCuercΣCrcueCuf sbCsaxg)

+ tr(ΣCxgsaCsbrdCrcueΣCuercCrdsbCsaxg)
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+ tr(ΣCrcueΣCuerc)tr
2(CsaxgCxhsb)

+ tr2(CsaxgCxhsb)tr
2(CrcueCuf rd)

+ tr2(CsaxgCxhufCuercCrdsb) + tr2(CsaxgCxhrdCrcueCuf sb)

+ tr(ΣCsaxgCxhrdCrcueCufxhCxgsa)tr(CrcueCuf rd)

+ tr(ΣCxgsaCsbrdCrcueCuf sbCsaxg)tr(CrcueCuf rd)

+ tr(ΣCrcueCuf sbCsaxgCxhufCuerc)tr(CsaxgCxhsb)

+ tr(ΣCuercCrdsbCsaxgCxhrdCrcue)tr(CsaxgCxhsb)

+ tr(CxgsaCsbufCuercCrdxh)tr(CsaxgCxhsb)tr(CrcueCuf rd)

+ tr(CxgsaCsbrdCrcueCufxh)tr(CsaxgCxhsb)tr(CrcueCuf rd)

+ tr(CsaxgCxhrdCrcueCufxhCxgsaCsbufCuercCrdsb)
]

H11 =
[
tr(Σ2)tr(ΣCrcxgΣCxgueΣCuerc) + tr(Σ2)tr(CuexgCxhuf )tr(ΣCrcxgCxhufCuerc)

+ tr(Σ2)tr(CrcxgCxhrd)tr(ΣCuercCrdxhCxgue)

+ tr(Σ2)tr(CrcueCuf rd)tr(ΣCxgueCuf rdCrcxg)

+ tr(ΣCsbxhCxgrcΣCrcueΣCuexgCxhsb)

+ tr(ΣCsbufCuexgΣCxgrcΣCrcueCuf sb)

+ tr(ΣCsbrdCrcueΣCuexgΣCxgrcCrdsb)

+ tr(ΣCsbrdCrcueCufxhCxgrcCrdsb)tr(CuexgCxhuf )

+ tr(ΣCsbufCuexgCxhrdCrcueCuf sb)tr(CrcxgCxhrd)

+ tr(ΣCsbxhCxgrcCrdufCuexgCxhsb)tr(CrcueCuf rd)

+ tr(Σ2)tr(CrcueCuf rd)tr(CuexgCxhuf )tr(CrcxgCxhrd)

+ tr(ΣCsbxhCxgrcΣCrcueCuf sb)tr(CuexgCxhuf )

+ tr(ΣCsbxhCxgrcCrdsb)tr(ΣCuercCrdxhCxgue)
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+ tr(ΣCsbufCuexgΣCxgrcCrdsb)tr(CrcueCuf rd)

+ tr(ΣCsbxhCxgrcCrdsb)tr(CrcueCuf rd)tr(CuexgCxhuf )

+ tr(ΣCsbufCuexgCxhrdCrcueCufxhCxgrcCrdsb)

+ tr(ΣCsbxhCxgrcCrdufCuexgCxhrdCrcueCuf sb)
]

H12 =
[
tr(Σ2)tr(ΣCsaxgΣCxgueΣCuesa) + tr(Σ2)tr(CuexgCxhuf )tr(ΣCsaxgCxhufCuesa)

+ tr(Σ2)tr(CsaxgCxhsb)tr(ΣCuesaCsbxhCxgue)

+ tr(Σ2)tr(CsaueCuf sb)tr(ΣCxgueCuf sbCsaxg)

+ tr(ΣCrdxhCxgsaΣCsaueΣCuexgCxhrd) + tr(ΣCrdufCuexgΣCxgsaΣCsaueCuf rd)

+ tr(ΣCrdsbCsaueΣCuexgΣCxgsaCsbrd)

+ tr(ΣCrdsbCsaueCufxhCxgsaCsbrd)tr(CuexgCxhuf )

+ tr(ΣCrdufCuexgCxhsbCsaueCuf rd)tr(CsaxgCxhsb)

+ tr(ΣCrdxhCxgsaCsbufCuexgCxhrd)tr(CsaueCuf sb)

+ tr(Σ2)tr(CsaueCuf sb)tr(CuexgCxhuf )tr(CsaxgCxhsb)

+ tr(ΣCrdxhCxgsaΣCsaueCuf rd)tr(CuexgCxhuf )

+ tr(ΣCrdxhCxgsaCsbrd)tr(ΣCuesaCsbxhCxgue)

+ tr(ΣCrdufCuexgΣCxgsaCsbrd)tr(CsaueCuf sb)

+ tr(ΣCrdxhCxgsaCsbrd)tr(CsaueCuf sb)tr(CuexgCxhuf )

+ tr(ΣCrdufCuexgCxhsbCsaueCufxhCxgsaCsbrd)

+ tr(ΣCrdxhCxgsaCsbufCuexgCxhsbCsaueCuf rd)
]

H13 =
[
tr(Σ2)tr(ΣCsaxgΣCxgrcΣCrcsa) + tr(Σ2)tr(CrcxgCxhrd)tr(ΣCsaxgCxhrdCrcsa)

+ tr(Σ2)tr(CsaxgCxhsb)tr(ΣCrcsaCsbxhCxgrc)
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+ tr(Σ2)tr(CsarcCrdsb)tr(ΣCxgrcCrdsbCsaxg)

+ tr(ΣCufxhCxgsaΣCsarcΣCrcxgCxhuf ) + tr(ΣCuf rdCrcxgΣCxgsaΣCsarcCrduf )

+ tr(ΣCuf sbCsarcΣCrcxgΣCxgsaCsbuf )

+ tr(ΣCuf sbCsarcCrdxhCxgsaCsbuf )tr(CrcxgCxhrd)

+ tr(ΣCuf rdCrcxgCxhsbCsarcCrduf )tr(CsaxgCxhsb)

+ tr(ΣCufxhCxgsaCsbrdCrcxgCxhuf )tr(CsarcCrdsb)

+ tr(Σ2)tr(CsarcCrdsb)tr(CrcxgCxhrd)tr(CsaxgCxhsb)

+ tr(ΣCufxhCxgsaΣCsarcCrduf )tr(CrcxgCxhrd)

+ tr(ΣCufxhCxgsaCsbuf )tr(ΣCrcsaCsbxhCxgrc)

+ tr(ΣCuf rdCrcxgΣCxgsaCsbuf )tr(CsarcCrdsb)

+ tr(ΣCufxhCxgsaCsbuf )tr(CsarcCrdsb)tr(CrcxgCxhrd)

+ tr(ΣCuf rdCrcxgCxhsbCsarcCrdxhCxgsaCsbuf )

+ tr(ΣCufxhCxgsaCsbrdCrcxgCxhsbCsarcCrduf )
]

H14 =
[
tr(Σ2)tr(ΣCsaueΣCuercΣCrcsa) + tr(Σ2)tr(CrcueCuf rd)tr(ΣCsaueCuf rdCrcsa)

+ tr(Σ2)tr(CsaueCuf sb)tr(ΣCrcsaCsbufCuerc)

+ tr(Σ2)tr(CsarcCrdsb)tr(ΣCuercCrdsbCsaue)

+ tr(ΣC∗ufCuesaΣCsarcΣCrcueCuf ∗) + tr(ΣC∗rdCrcueΣCuesaΣCsarcCrd∗)

+ tr(ΣC∗sbCsarcΣCrcueΣCuesaCsb∗)

+ tr(ΣC∗sbCsarcCrdufCuesaCsb∗)tr(CrcueCuf rd)

+ tr(ΣC∗rdCrcueCuf sbCsarcCrd∗)tr(CsaueCuf sb)

+ tr(ΣC∗ufCuesaCsbrdCrcueCuf ∗)tr(CsarcCrdsb)

+ tr(Σ2)tr(CsarcCrdsb)tr(CrcueCuf rd)tr(CsaueCuf sb)

104



+ tr(ΣC∗ufCuesaΣCsarcCrd∗)tr(CrcueCuf rd)

+ tr(ΣC∗ufCuesaCsb∗)tr(ΣCrcsaCsbufCuerc)

+ tr(ΣC∗rdCrcueΣCuesaCsb∗)tr(CsarcCrdsb)

+ tr(ΣC∗ufCuesaCsb∗)tr(CsarcCrdsb)tr(CrcueCuf rd)

+ tr(ΣC∗rdCrcueCuf sbCsarcCrdufCuesaCsb∗)

+ tr(ΣC∗ufCuesaCsbrdCrcueCuf sbCsarcCrd∗)
]

H15 =
[
tr(ΣCsaxxΣCxgueΣCuercΣCrcsa) + tr(CuexgCxhuf )tr(ΣCsaxgCxhufCuercΣCrcsa)

+ tr(ΣCsaxgCxhrdCrcsa)tr(ΣCuercCrdxhCxgue)

+ tr(CrcueCuf rd)tr(ΣCsaxgΣCxgueCuf rdCrcsa)

+ tr(CsaxgCxhsb)tr(ΣCrcsaCsbxhCxgueΣCuerc)

+ tr(ΣCrcsaCsbufCuerc)tr(ΣCxgueCuf sbCsaxg)

+ tr(CsarcCrdsb)tr(ΣCuercCrdsbCsaxgΣCxgue)

+ tr(CsarcCrdsb)tr(CuexgCxhuf )tr(CrcueCufxhCxgsaCsbrd)

+ tr(CsarcCrdxhCxgsaCsbufCuexgCxhrdCrcueCuf sb)

+ tr(CrcueCuf rd)tr(CsaxgCxhsb)tr(CsarcCrdufCuexgCxhsb)

+ tr(CrcueCuf rd)tr(CuexgCxhuf )tr(ΣCsaxgCxhrdCrcsa)

+ tr(CsaxgCxhsb)tr(CuexgCxhuf )tr(ΣCrcsaCsbufCuerc)

+ tr(CsarcCrdsb)tr(CsaxgCxhsb)tr(ΣCuercCrdxhCxgue)

+ tr(CsarcCrdsb)tr(CrcueCuf rd)tr(ΣCxgueCuf sbCsaxg)

+ tr(CsarcCrdsb)tr(CrcueCuf rd)tr(CuexgCxhuf )tr(CxgsaCsbxh)

+ tr(CsarcCrdsb)tr(CrcueCufxhCxgsaCsbufCuexgCxhrd)

+ tr(CsaxgCxhsb)tr(CsarcCrdufCuexgCxhrdCrcueCuf sb)
]
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H16 =
[
tr(ΣCsaxxΣCuexgΣCxgrcΣCrcsa) + tr(CxgueCufxh)tr(ΣCsaueCufxhCxgrcΣCrcsa)

+ tr(ΣCsaueCuf rdCrcsa)tr(ΣCxgrcCrdufCuexg)

+ tr(CrcxgCxhrd)tr(ΣCsaueΣCuexgCxhrdCrcsa)

+ tr(CsaueCuf sb)tr(ΣCrcsaCsbufCuexgΣCxgrc)

+ tr(ΣCrcsaCsbxhCxgrc)tr(ΣCuexgCxhsbCsaue)

+ tr(CsarcCrdsb)tr(ΣCxgrcCrdsbCsaueΣCuexg)

+ tr(CsarcCrdsb)tr(CxgueCufxh)tr(CrcxgCxhufCuesaCsbrd)

+ tr(CsarcCrdufCuesaCsbxhCxgueCuf rdCrcxgCxhsb)

+ tr(CrcxgCxhrd)tr(CsaueCuf sb)tr(CsarcCrdxhCxgueCuf sb)

+ tr(CrcxgCxhrd)tr(CxgueCufxh)tr(ΣCsaueCuf rdCrcsa)

+ tr(CsaueCuf sb)tr(CxgueCufxh)tr(ΣCrcsaCsbxhCxgrc)

+ tr(CsarcCrdsb)tr(CsaueCuf sb)tr(ΣCxgrcCrdufCuexg)

+ tr(CsarcCrdsb)tr(CrcxgCxhrd)tr(ΣCuexgCxhsbCsaue)

+ tr(CsarcCrdsb)tr(CrcxgCxhrd)tr(CxgueCufxh)tr(CuesaCsbuf )

+ tr(CsarcCrdsb)tr(CrcxgCxhufCuesaCsbxhCxgueCuf rd)

+ tr(CsaueCuf sb)tr(CsarcCrdxhCxgueCuf rdCrcxgCxhsb)
]

H17 =
[
tr(ΣCsaxxΣCxgrcΣCrcueΣCuesa) + tr(CrcxgCxhrd)tr(ΣCsaxgCxhrdCrcueΣCuesa)

+ tr(ΣCsaxgCxhufCuesa)tr(ΣCrcueCufxhCxgrc)

+ tr(CuercCrduf )tr(ΣCsaxgΣCxgrcCrdufCuesa)

+ tr(CsaxgCxhsb)tr(ΣCuesaCsbxhCxgrcΣCrcue)

+ tr(ΣCuesaCsbrdCrcue)tr(ΣCxgrcCrdsbCsaxg)
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+ tr(CsaueCuf sb)tr(ΣCrcueCuf sbCsaxgΣCxgrc)

+ tr(CsaueCuf sb)tr(CrcxgCxhrd)tr(CuercCrdxhCxgsaCsbuf )

+ tr(CsaueCufxhCxgsaCsbrdCrcxgCxhufCuercCrdsb)

+ tr(CuercCrduf )tr(CsaxgCxhsb)tr(CsaueCuf rdCrcxgCxhsb)

+ tr(CuercCrduf )tr(CrcxgCxhrd)tr(ΣCsaxgCxhufCuesa)

+ tr(CsaxgCxhsb)tr(CrcxgCxhrd)tr(ΣCuesaCsbrdCrcue)

+ tr(CsaueCuf sb)tr(CsaxgCxhsb)tr(ΣCrcueCufxhCxgrc)

+ tr(CsaueCuf sb)tr(CuercCrduf )tr(ΣCxgrcCrdsbCsaxg)

+ tr(CsaueCuf sb)tr(CuercCrduf )tr(CrcxgCxhrd)tr(CxgsaCsbxh)

+ tr(CsaueCuf sb)tr(CuercCrdxhCxgsaCsbrdCrcxgCxhuf )

+ tr(CsaxgCxhsb)tr(CsaueCuf rdCrcxgCxhufCuercCrdsb)
]
.
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Proof. By definition of Vsasb(i, j),

E
{
Vsasb(i, j)Vrcrd(i, j)Vueuf (i, j)Vxgxh(i, j)

}

= E
{

(Y TisaYjsb)
2(Y TircYjrd)2(Y TiueYjuf )2(Y TixgYjxh)2

}

= E
{

(
∑
k

YisakYjsbk
)2(
∑
m

YircmYjrdm)2(
∑
o

YiueoYjuf o)
2(
∑
q

YixgqYjxhq)
2
}

=
∑
C
E
{
YisakYjsbk

YisalYjsbl
YircmYjrdmYircnYjrdnYiueoYjuf oYiuepYjuf p

× YixgqYjxhqYixgwYjxhw
}

=
∑
C
E
{
YisakYisalYircmYircnYiueoYiuepYixgqYixgw

}
× E

{
Yjsbk

Yjsbl
YjrdmYjrdnYjuf oYjuf pYjxhqYjxhw

}
, (3.18)

where C represents the summation over the p components of the vector Y.. for k, l,m, n, o, p, q,

and w. For each of the expectation terms in (3.18) we apply lemma 7 and sum over the set

C. After some tedious algebra it follows that

E
{
Vsasb(i, j)Vrcrd(i, j)Vueuf (i, j)Vxgxh(i, j)

}
= H1 +H2 +H3 +H4 +H5 +H6

+H7 +H8 +H9 +H10 +H11 +H12

+H13 +H14 +H15 +H16 +H17.

�

3.8.2 Proofs of theorems

In this section we provide proofs for the theorems given in Chapter 3. Without loss of

generality, assume µt = 0 for all t ∈ {1, . . . , T}, since the test statistic, D̂nt, is invariant
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with respect to µt.

Proof of Theorem 7. With the addition of Condition 4 as an assumption, the proof is

similar to the proof of Theorem 2. Condition (a) and Condition (b) hold in the proof of

Theorem 2, and the martingale central limit theorem holds as all required terms are smaller

order with T diverging. �

Proof of Theorem 8. To establish the asymptotic distribution ofMn under H0, we must

show convergence of the finite-dimensional distributions and the tightness of the stochastic

process maxt∈T σ
−1
nt,0D̂nt. The joint asymptotic normality of (σ−1

nt1,0
D̂nt1 , . . . , σ

−1
ntc,0

D̂ntc)
T

for t1 < · · · < tc is nearly identical to the proof in 2.7 when T is considered finite. Thus, it

remains for us to show the tightness of maxt∈T σ
−1
nt,0D̂nt so as to concludeMn converges to

maxt∈T Zt, where Zt is a Gaussian process with mean 0 and correlation Rz

By definition, D̂nt = D̂nt,0 + D̂nt,2 − 2D̂nt,1, where

D̂nt,k =
t∑

s1=1

T∑
s2=t+1

(
Us1s1,k + Us2s2,k − Us1s2,k − Us2s1,k

)

for k ∈ {0, 1, 2}. Furthermore, by Lemmas 3 and 4 in 2.7.1, D̂nt,1 = op(D̂nt,0) and D̂nt,2 =

op(D̂nt,0). Therefore, to show the tightness of max1≤t<T σ
−1
nt,0D̂nt we can focus on the term

D̂nt,0 where

D̂nt,0 =
t∑

s1=1

T∑
s2=t+1

(
Us1s10 + Us2s20 − Us1s20 − Us2s10

)
. (3.19)

Let t = [Tν], where ν = j/T (j = 1, . . . , T − 1). Define Gn(ν) as follows:

Gn(ν) =

√
n(n− 1)

tr(Σ2)T
3
2

D̂n[Tν],0 (3.20)

where the term preceding D̂n[Tν],0 is the order of σ−1
nt,0 in terms of n, p, and T . Thus, to

show the tightness of maxt∈T σ
−1
nt,0D̂nt it is equivalent to show the tightness of (3.20).
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Consider the difference Gn(η)−Gn(ν), such that η > ν. Let η = i/T (i = 1, . . . , T − 1).

By definition, Us1s10 = {n(n− 1)}−1∑
i6=j(Y

T
is1
Yjs1)2. Thus, for η, ν ∈ (0, 1),

Gn(η)−Gn(ν) =

√
n(n− 1)

tr(Σ2)T
3
2

( [Tη]∑
s1=1

T∑
s2=[Tη]+1

Ws1s2 −
[Tν]∑
s1=1

T∑
s2=[Tν]+1

Ws1s2

)
,

=

√
n(n− 1)

tr(Σ2)T
3
2

( [Tη]∑
s1=[Tν]+1

T∑
s2=[Tη]+1

Ws1s2 −
[Tν]∑
s1=1

[Tη]∑
s2=[Tν]+1

Ws1s2

)
,

=

√
n(n− 1)

tr(Σ2)T
3
2

[ [Tη]∑
s1=[Tν]+1

T∑
s2=[Tη]+1

{ 1

n(n− 1)

n∑
i6=j

W̃s1s2

}

−
[Tν]∑
s1=1

[Tη]∑
s2=[Tν]+1

{ 1

n(n− 1)

n∑
i6=j

W̃s1s2

}]
,

=
1√

n(n− 1)tr(Σ2)T
3
2

n∑
i6=j

( [Tη]∑
s1=[Tν]+1

T∑
s2=[Tη]+1

W̃s1s2−

[Tν]∑
s1=1

[Tη]∑
s2=[Tν]+1

W̃s1s2

)
,

=
1√

n(n− 1)tr(Σ2)T
3
2

n∑
i6=j

f(i, j), (3.21)

where W̃s1s2 = (Y Tis1
Yjs1)2 + (Y Tis2

Yjs2)2 − (Y Tis1
Yjs2)2 − (Y Tis2

Yjs1)2, and

f(i, j) =
∑[Tη]
s1=[Tν]+1

∑T
s2=[Tη]+1 W̃s1s2 −

∑[Tν]
s1=1

∑[Tη]
s2=[Tν]+1

W̃s1s2 . We will bound the

fourth moment of (3.21) to ultimately show the tightness of (3.20). First, we compute some

moments of f for various indices.
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Under the null hypothesis and for i 6= j,

E
{
f(i, j)

}
= E

( [Tη]∑
s1=[Tν]+1

T∑
s2=[Tη]+1

W̃s1s2 −
[Tν]∑
s1=1

[Tη]∑
s2=[Tν]+1

W̃s1s2

)
,

=

[Tη]∑
s1=[Tν]+1

T∑
s2=[Tη]+1

[
tr(Σ2

s1
) + tr(Σ2

s2
)− 2tr(Σs1Σs2)

]

−
[Tν]∑
s1=1

[Tη]∑
s2=[Tν]+1

[
tr(Σ2

s1
) + tr(Σ2

s2
)− 2tr(Σs1Σs2)

]
,

= 0, (3.22)

since tr(Σ2
s1

) + tr(Σ2
s2

) − 2tr(Σs1Σs2) = tr(Σ2) + tr(Σ2) − 2tr(Σ2) = 0. Define the fol-

lowing notation for the double summation:
∑
S1 ≡

∑[Tη]
s1=[Tν]+1

∑T
s2=[Tη]+1;

∑
R1 ≡∑[Tη]

r1=[Tν]+1

∑T
r2=[Tη]+1;

∑
S2 ≡

∑[Tν]
s1=1

∑[Tη]
s2=[Tν]+1

;
∑
R2 ≡

∑[Tν]
r1=1

∑[Tη]
r2=[Tν]+1

. The

second moment under the null hypothesis is given by

E
{
f(i, j)f(i, j)

}
= E

{(∑
S1

W̃s1s2 −
∑
S2

W̃s1s2

)(∑
R1

W̃s1s2 −
∑
R2

W̃s1s2

)}
,

=
2∑

x,y=1

(−1)|x−y|
∑
Sx

∑
Ry

E
[
W̃s1s2W̃r1r2

]
,

=
2∑

x,y=1

(−1)|x−y|
∑
Sx

∑
Ry

2∑
a,b,c,d=1

(−1)|a−b|+|c−d|E
[
Vsasb(i, j)Vrcrd(i, j)

]
,

where Vsasb(i, j) = (Y TisaYjsb)
2. Under the null hypothesis,

E
[
Vsasb(i, j)Vrcrd(i, j)

]
= 2tr2(CsbrdCrcsa) + 2tr(CrcsaCsbrdCrcsaCsbrd)

+ 2tr(ΣCrdsbΣCsbrd) + 2tr(ΣCrcsaΣCsarc) + tr2(Σ2).
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Therefore, under Condition 1,

E
{
f(i, j)f(i, j)

}
= C

2∑
x,y=1

(−1)|x−y|
∑
Sx

∑
Ry

2∑
a,b,c,d=1

(−1)|a−b|+|c−d|tr2(CsbrdCrcsa)

(3.23)

for some constant C.

Next, consider mutually different indices i, j, k. Thus,

E
{
f(i, j)f(i, k)

}
=

2∑
x,y=1

(−1)|x−y|
∑
Sx

∑
Ry

2∑
a,b,c,d=1

(−1)|a−b|+|c−d|E
[
Vsasb(i, j)Vrcrd(i, k)

]
.

(3.24)

Under the null hypothesis,

E
[
Vsasb(i, j)Vrcrd(i, k)

]
= tr2(Σ2) + 2tr(ΣCrcsaΣCsarc).

Hence,

2∑
a,b,c,d=1

(−1)|a−b|+|c−d|
{

tr2(Σ2) + 2tr(ΣCrcsaΣCsarc)
}

= 0. (3.25)

Therefore, E
{
f(i, j)f(i, k)

}
= 0. Lastly, if we consider the mutually different indices i, j, k, l,

then E
{
f(i, j)f(k, l)

}
= 0 due to independence and the fact that E

{
f(i, j)

}
= 0.

Consider the difference Gn(η)−Gn(ν) squared.

{Gn(η)−Gn(ν)}2 = {n(n− 1)tr2(Σ2)T 3}−1
{∑
i6=j

f(i, j)

}2

,

= 2{n(n− 1)tr2(Σ2)T 3}−1
∑
i6=j

f(i, j)f(i, j)

+ 4{n(n− 1)tr2(Σ2)T 3}−1
∑
i6=j 6=k

f(i, j)f(i, k)

+ {n(n− 1)tr2(Σ2)T 3}−1
∑

i6=j 6=k 6=l
f(i, j)f(k, l).
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For any real numbers a, b, and c, (a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2. Thus,

{Gn(η)−Gn(ν)}4 ≤ 16{n2(n− 1)2tr4(Σ2)T 6}−1
{∑
i6=j

f(i, j)f(i, j)

}2

+ 64{n2(n− 1)2tr4(Σ2)T 6}−1
{ ∑
i 6=j 6=k

f(i, j)f(i, k)

}2

+ 2{n2(n− 1)2tr4(Σ2)T 6}−1
{ ∑
i 6=j 6=k 6=l

f(i, j)f(k, l)

}2

.

Taking the expectation of both sides of the above inequality it follows that

E

[
{Gn(η)−Gn(ν)}4

]
≤ 16{n2(n− 1)2tr4(Σ2)T 6}−1E

[{∑
i6=j

f(i, j)f(i, j)

}2]

+ 64{n2(n− 1)2tr4(Σ2)T 6}−1E

[{ ∑
i6=j 6=k

f(i, j)f(i, k)

}2]

+ 2{n2(n− 1)2tr4(Σ2)T 6}−1E

[{ ∑
i6=j 6=k 6=l

f(i, j)f(k, l)

}2]
,

≡ I1 + I2 + I3. (3.26)

To bound the expectation in (3.26) we need the order of I1, I2, and I3. Thus, we need to

expand multiple summations where the summation is across multiple non-identical indices.

First, consider the possible indices for expanding the term inside the expectation for I1 in

(3.26). Consider

{∑
i6=j

f(i, j)f(i, j)
}2

=
∑
i 6=j

∑
i1 6=j1

f(i, j)f(i, j)f(i1, j1)f(i1, j1). (3.27)

Let Dc = {i, j} ∪ {i1, j1} be the set of indices that are not equivalent to each other where

c represents the number of indices that are equivalent to each other in two sets {i, j} and

{i1, j1}. If there are no equivalent indices, then

D0 = {(i, j, i1, j1)}.
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Hence, the summation over D0 is given by

∑
i 6=i1 6=j 6=j1

f(i, j)f(i, j)f(i1, j1)f(i1, j1) (3.28)

If there is one equivalent index, then

D1 = {(i = i1, j, j1), (i = j1, j, i1), (i, j = i1, j1), (i, j = j1, i1)}.

Let D̃1 be the set with one equivalent index that produces a unique combination of

f(i, j)f(i, j)f(i1, j1)f(i1, j1).

D̃1 = {(i = i1, j, j1)}.

Hence, the summation over D1 is equivalent to

∑
i 6=j 6=j1

4f(i, j)f(i, j)f(i, j1)f(i, j1) (3.29)

If there are two equivalent indices, then

D2 = {(i = i1, j = j1), (i = j1, j = i1)}.

Hence, the summation over D2 is given by

∑
i6=j

2f(i, j)f(i, j)f(i, j)f(i, j). (3.30)

As a result, from (3.28) – (3.30),

E

[{∑
i6=j

f(i, j)f(i, j)

}2]
= E

{ ∑
i6=i1 6=j 6=j1

f(i, j)f(i, j)f(i1, j1)f(i1, j1)

}
(3.31)

+ 4E

{ ∑
i6=j 6=j1

f(i, j)f(i, j)f(i, j1)f(i, j1)

}

+ 2E

{∑
i6=j

f(i, j)f(i, j)f(i, j)f(i, j)

}
.
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Thus,

I1 = 16{n2(n− 1)2tr4(Σ2)T 6}−1E

[{∑
i6=j

f(i, j)f(i, j)

}2]

= 16{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=i1 6=j 6=j1

f(i, j)f(i, j)f(i1, j1)f(i1, j1)

}
(3.32)

+ 64{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i 6=j 6=j1

f(i, j)f(i, j)f(i, j1)f(i, j1)

}

+ 32{n2(n− 1)2tr4(Σ2)T 6}−1E

{∑
i6=j

f(i, j)f(i, j)f(i, j)f(i, j)

}

≡ R1 +R2 +R3. (3.33)

We now show the order for each of R1, R2, and R3 in terms of n, p, and T . For R1, consider

the order for E{f(i, j)f(i, j)f(i1, j1)f(i1, j1)} for the mutually different indices.

E
{
f(i, j)f(i, j)f(i1, j1)f(i1, j1)

}
= E

{
f(i, j)f(i, j)

}
E
{
f(i1, j1)f(i1, j1)

}

=

[
C

2∑
x,y=1

(−1)|x−y|
∑
Sx

∑
Ry

×
2∑

a,b,c,d=1

(−1)|a−b|+|c−d|tr2(CsbrdCrcsa)

]2

� C

[
tr2(Σ2)

{
T 2([Tη]− [Tν])

}]2

. (3.34)

for some constant C. Therefore,

R1 �
C[n2(n− 1)2]

n2(n− 1)2tr4(Σ2)T 6

[
tr2(Σ2)

{
T 2([Tη]− [Tν])

}]2

,

� C
([Tη]− [Tν])2

T 2
, (3.35)
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for some constant C. Next, consider the term R3. From lemma 7,

E{Vsasb(i, j)Vrcrd(i, j)Vueuf (i, j)Vxgxh(i, j)} was calculated up to a constant. Thus,

E
{
f(i, j)f(i, j)f(i, j)f(i, j)

}
is given by

2∑
w,x,y,z=1

(−1)|w−x|+|y−z|
∑
Sw

∑
Rx

∑
Uy

∑
X z

×
2∑

a,b,c,d,e,f,g,h=1

(−1)|a−b|+|c−d|+|e−f |+|g−h|E
{
Vsasb(i, j)Vrcrd(i, j)

× Vueuf (i, j)Vxgxh(i, j)
}
.

Under the null hypothesis,

E
{
f(i, j)f(i, j)f(i, j)f(i, j)

}
� C

[
tr2(Σ2)

{
T 2([Tη]− [Tν])

}]2

.

Therefore,

R3 �
C

[n(n− 1)]tr4(Σ2)T 6

[
tr2(Σ2)

{
T 2([Tη]− [Tν])

}]2

,

and thus R3 = o(R1). For the final term in I1, R2, consider the order of

E{f(i, j)f(i, j)f(i, j1)f(i, j1)}. By the Cauchy-Schwarz inequality

E
{
f(i, j)f(i, j)f(i, j1)f(i, j1)

}
≤
[
E
{
f(i, j)f(i, j)f(i, j)f(i, j)

}]1/2

×
[
E
{
f(i, j1)f(i, j1)f(i, j1)f(i, j1)

}]1/2

� O
(
E
{
f(i, j)f(i, j)f(i, j)f(i, j)

})
. (3.36)

Therefore, based on the above results for R3 it follows that R2 = o(R1). As a result,

I1 ≤ C
([Tη]− [Tν])2

T 2
, (3.37)

for some constant C.
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Next, we investigate the order of I2. Consider the possible indices for expanding

{ ∑
i6=j 6=k

f(i, j)f(i, k)
}2

=
∑
i6=j 6=k

∑
i1 6=j1 6=k1

f(i, j)f(i, k)f(i1, j1)f(i1, k1). (3.38)

Let Ec = {i, j, k} ∪ {i1, j1, k1} be the set of indices that are not equivalent to each other,

where c represents the number of indices that are equivalent to each other in two sets {i, j, k}

and {i1, j1, k1}. If there are no equivalent indices, then

E0 = {(i, j, k, i1, j1, k1)}.

Hence, the summation over E0 is given by

∑
i6=i1 6=j 6=j1 6=k 6=k1

f(i, j)f(i, k)f(i1, j1)f(i1, k1). (3.39)

If there is one equivalent index, then

E1 = {(i = i1, j, k, j1, k1), (i = j1, j, k, i1, k1), (i = k1, j, k, i1, j1),

(i, j = i1, k, j1, k1), (i, j = j1, k, i1, k1), (i, j = k1, k, i1, j1),

(i, j, k = i1, j1, k1), (i, j, k = j1, i1, k1), (i, j, k = k1, i1, j1)}.

Let Ẽ1 be the set with one equivalent index that produces a unique combination of

f(i, j)f(i, k)f(i1, j1)f(i1, k1), such that

Ẽ1 = {(i = i1, j, k, j1, k1), (i = j1, j, k, i1, k1), (i, j = j1, k, i1, k1)}.

Hence, the summation over E1 is equivalent to

∑
i 6=j 6=j1 6=k 6=k1

f(i, j)f(i, k)f(i, j1)f(i, k1) (3.40)

+
∑

i6=i1 6=j 6=k 6=k1

4f(i, j)f(i, k)f(i1, i)f(i1, k1)

+
∑

i6=i1 6=j 6=k 6=k1

4f(i, j)f(i, k)f(i1, j)f(i1, k1)
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If there are two equivalent indices, then

E2 = {(i = i1, j = j1, k, k1), (i = i1, j = k1, k, j1), (i = j1, j = i1, k, k1),

(i = j1, j = k1, k, i1), (i = k1, j = i1, k, j1), (i = k1, j = j1, k, i1),

(i = i1, k = j1, j, k1), (i = i1, k = k1, j, j1), (i = j1, k = i1, j, k1),

(i = j1, k = k1, k, i1), (i = k1, k = i1, j, j1), (i = k1, k = j1, j, i1),

(j = i1, k = j1, i, k1), (j = i1, k = k1, i, j1), (j = j1, k = i1, i, k1),

(j = j1, k = k1, i, i1), (j = k1, k = i1, i, j1), (j = k1, k = j1, i, i1)}.

Let Ẽ2 be the set with two equivalent indices that produces a unique combination of

f(i, j)f(i, k)f(i1, j1)f(i1, k1).

Ẽ2 = {(i = i1, j = j1, k, k1), (i = j1, j = i1, k, k1), (i = j1, j = k1, k, i1), (j = j1, k = k1, i, i1)}.

Hence, the summation over E2 is equivalent to∑
i6=j 6=k 6=k1

4f(i, j)f(i, k)f(i, j)f(i, k1) (3.41)

+
∑

i6=j 6=k 6=k1

4f(i, j)f(i, k)f(j, i)f(j, k1)

+
∑

i6=i1 6=j 6=k
8f(i, j)f(i, k)f(i1, i)f(i1, j)

+
∑

i6=i1 6=j 6=k
2f(i, j)f(i, k)f(i1, j)f(i1, k).

Lastly, if there are three equivalent indices, then

E3 = {(i = i1, j = j1, k = k1), (i = i1, j = k1, k = j1), (i = j1, j = i1, k = k1),

(i = j1, j = k1, k = i1), (i = k1, j = j1, k = i1), (i = k1, j = i1, k = j1)}.

Let Ẽ3 be the set with two equivalent indices that produces a unique combination of

f(i, j)f(i, k)f(i1, j1)f(i1, k1) such that

Ẽ3 = {(i = i1, j = j1, k = k1), (i = j1, j = i1, k = k1)}.
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Hence, the summation over E3 is equivalent to

∑
i6=j 6=k

2f(i, j)f(i, k)f(i, j)f(i, k) (3.42)

+
∑
i6=j 6=k

4f(i, j)f(i, k)f(j, i)f(j, k)

As a result, from (3.39) – (3.42),

E

[{ ∑
i6=j 6=k

f(i, j)f(i, k)

}2]
= E

{ ∑
i6=i1 6=j 6=j1 6=k 6=k1

f(i, j)f(i, k)f(i1, j1)f(i1, k1)

}
(3.43)

+ E

{ ∑
i 6=j 6=j1 6=k 6=k1

f(i, j)f(i, k)f(i, j1)f(i, k1)

}

+ 4E

{ ∑
i6=i1 6=j 6=k 6=k1

f(i, j)f(i, k)f(i1, i)f(i1, k1)

}

+ 4E

{ ∑
i6=i1 6=j 6=k 6=k1

f(i, j)f(i, k)f(i1, j)f(i1, k1)

}

+ 4E

{ ∑
i6=j 6=k 6=k1

f(i, j)f(i, k)f(i, j)f(i, k1)

}

+ 4E

{ ∑
i6=j 6=k 6=k1

f(i, j)f(i, k)f(j, i)f(j, k1)

}

+ 8E

{ ∑
i6=i1 6=j 6=k

f(i, j)f(i, k)f(i1, i)f(i1, j)

}

+ 2E

{ ∑
i6=i1 6=j 6=k

f(i, j)f(i, k)f(i1, j)f(i1, k)

}

+ 2E

{ ∑
i6=j 6=k

f(i, j)f(i, k)f(i, j)f(i, k)

}

+ 4E

{ ∑
i6=j 6=k

f(i, j)f(i, k)f(j, i)f(j, k)

}
.
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Thus,

I2 = 64{n2(n− 1)2tr4(Σ2)T 6}−1E

[{ ∑
i6=j 6=k

f(i, j)f(i, k)

}2]
,

= 64{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=i1 6=j 6=j1 6=k 6=k1

f(i, j)f(i, k)f(i1, j1)f(i1, k1)

}

+ 64{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i 6=j 6=j1 6=k 6=k1

f(i, j)f(i, k)f(i, j1)f(i, k1)

}

+ 256{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i 6=i1 6=j 6=k 6=k1

f(i, j)f(i, k)f(i1, i)f(i1, k1)

}

+ 256{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i 6=i1 6=j 6=k 6=k1

f(i, j)f(i, k)f(i1, j)f(i1, k1)

}

+ 256{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i 6=j 6=k 6=k1

f(i, j)f(i, k)f(i, j)f(i, k1)

}

+ 256{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=k 6=k1

f(i, j)f(i, k)f(j, i)f(j, k1)

}

+ 512{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=i1 6=j 6=k

f(i, j)f(i, k)f(i1, i)f(i1, j)

}

+ 128{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=i1 6=j 6=k

f(i, j)f(i, k)f(i1, j)f(i1, k)

}

+ 128{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=k

f(i, j)f(i, k)f(i, j)f(i, k)

}

+ 256{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=k

f(i, j)f(i, k)f(j, i)f(j, k)

}
,

≡ S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10. (3.44)

Under the null hypothesis, S1, S2, S3, and S4 are all zero. Terms S9 and S10 are of the same

order as R2. Thus, S9 = o(I1) and S10 = o(I1). Terms S5, S6, S7, and S8 are all of the same

order in terms of n as term R1. Additionally, using two iterations of the Cauchy Schwarz

inequality, these terms will be the same as R3 in terms of n and p. Thus, S5, S6, S7, and S8
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are all smaller order terms in comparison to I1. As a result, for some constant C,

I2 ≤ C
([Tη]− [Tν])2

T 2
. (3.45)

Finally, we show the order of I3. Consider the possible indices for expanding{ ∑
i6=j 6=k 6=l

f(i, j)f(k, l)
}2

=
∑

i6=j 6=k 6=l

∑
i1 6=j1 6=k1 6=l1

f(i, j)f(k, l)f(i1, j1)f(k1, l1). (3.46)

Let Fc = {i, j, k, l} ∪ {i1, j1, k1, l1} be the set of indices that are not equivalent to each

other, where c represents the number of indices that are equivalent to each other in two sets

{i, j, k, l} and {i1, j1, k1, l1}. If there are no equivalent indices, then

F0 = {(i, j, k, l, i1, j1, k1, l1)}.

Hence, the summation over F0 is given by∑
i6=i1 6=j 6=j1 6=k 6=k1 6=l 6=l1

f(i, j)f(k, l)f(i1, j1)f(k1, l1). (3.47)

If there is one equivalent index, then

F1 = {(i = i1, j, k, l, j1, k1, l1), (i = j1, j, k, l, i1, k1, l1), (i = k1, j, k, l, i1, j1, l1),

(i = l1, j, k, l, i1, j1, k1), (i, j = i1, k, l, j1, k1, l1), (i, j = j1, k, l, i1, k1, l1),

(i, j = k1, k, l, i1, j1, l1), (i, j = l1, k, l, i1, j1, k1)(i, j, k = i1, l, j1, k1, l1),

(i, j, k = j1, l, i1, k1, l1), (i, j, k = k1, l, i1, j1, l1), (i, j, k = l1, l, i1, j1, k1)

(i, j, k, l = i1, j1, k1, l1), (i, j, k, l = j1, i1, k1, l1), (i, j, k, l = k1, i1, j1, l1),

(i, j, k, l = l1, i1, j1, k1)}.

The summation over F1 is equivalent to∑
i6=j 6=j1 6=k 6=k1 6=l 6=l1

16f(i, j)f(k, l)f(i, j1)f(k1, l1). (3.48)

If there are two equivalent indices, then

F2 = {(i = i1, j = j1, k, l, k1, l1), (i = i1, j = k1, k, l, j1, l1), (i = i1, j = l1, k, l, j1, k1),
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(i = j1, j = i1, k, l, k1, l1), (i = j1, j = k1, k, l, i1, l1), (i = j1, j = l1, k, l, i1, k1),

(i = k1, j = i1, k, l, j1, l1), (i = k1, j = j1, k, l, i1, l1), (i = k1, j = l1, k, l, i1, j1),

(i = l1, j = i1, k, l, j1, k1), (i = l1, j = j1, k, l, i1, k1), (i = l1, j = k1, k, l, i1, j1),

(i = i1, k = j1, j, l, k1, l1), (i = i1, k = k1, j, l, j1, l1), (i = i1, k = l1, j, l, j1, k1),

(i = j1, k = i1, j, l, k1, l1), (i = j1, k = k1, j, l, i1, l1), (i = j1, k = l1, j, l, i1, k1),

(i = k1, k = i1, j, l, j1, l1), (i = k1, k = j1, j, l, i1, l1), (i = k1, k = l1, j, l, i1, j1),

(i = l1, k = i1, j, l, j1, k1), (i = l1, k = j1, j, l, i1, k1), (i = l1, k = k1, j, l, i1, j1),

(i = i1, l = j1, j, k, k1, l1), (i = i1, l = k1, j, k, j1, l1), (i = i1, l = l1, j, k, j1, k1),

(i = j1, l = i1, j, k, k1, l1), (i = j1, l = k1, j, k, i1, l1), (i = j1, l = l1, j, k, i1, k1),

(i = k1, l = i1, j, k, j1, l1), (i = k1, l = j1, j, k, i1, l1), (i = k1, l = l1, j, k, i1, j1),

(i = l1, l = i1, j, k, j1, k1), (i = l1, l = j1, j, k, i1, k1), (i = l1, l = k1, j, k, i1, j1),

(j = i1, k = j1, i, l, k1, l1), (j = i1, k = k1, i, l, j1, l1), (j = i1, k = l1, i, l, j1, k1),

(j = j1, k = i1, i, l, k1, l1), (j = j1, k = k1, i, l, i1, l1), (j = j1, k = l1, i, l, i1, k1),

(j = k1, k = i1, i, l, j1, l1), (j = k1, k = j1, i, l, i1, l1), (j = k1, k = l1, i, l, i1, j1),

(j = l1, k = i1, i, l, j1, k1), (j = l1, k = j1, i, l, i1, k1), (j = l1, k = k1, i, l, i1, j1),

(j = i1, l = j1, i, k, k1, l1), (j = i1, l = k1, i, k, j1, l1), (j = i1, l = l1, i, k, j1, k1),

(j = j1, l = i1, i, k, k1, l1), (j = j1, l = k1, i, k, i1, l1), (j = j1, l = l1, i, k, i1, k1),

(j = k1, l = i1, i, k, j1, l1), (j = k1, l = j1, i, k, i1, l1), (j = k1, l = l1, i, k, i1, j1),

(j = l1, l = i1, i, k, j1, k1), (j = l1, l = j1, i, k, i1, k1), (j = l1, l = k1, i, k, i1, j1),

(k = i1, l = j1, i, j, k1, l1), (k = i1, l = k1, i, j, j1, l1), (k = i1, l = l1, i, j, j1, k1),

(k = j1, l = i1, i, j, k1, l1), (k = j1, l = k1, i, j, i1, l1), (k = j1, l = l1, i, j, i1, k1),

(k = k1, l = i1, i, j, j1, l1), (k = k1, l = j1, i, j, i1, l1), (k = k1, l = l1, i, j, i1, j1),

(k = l1, l = i1, i, j, j1, k1), (k = l1, l = j1, i, j, i1, k1), (k = l1, l = k1, i, j, i1, j1)}.
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The summation over F2 is equivalent to∑
i6=j 6=k 6=k1 6=l 6=l1

4f(i, j)f(k, l)f(i, j)f(k1, l1)

+
∑

i 6=j 6=j1 6=k 6=l 6=l1

28f(i, j)f(k, l)f(i, j1)f(j, l1)

+
∑

i 6=j 6=j1 6=k 6=l 6=l1

32f(i, j)f(k, l)f(i, j1)f(k, l1). (3.49)

If there are three equivalent indices, then

F3 = {(i = i1, j = j1, k = k1, l, l1), (i = i1, j = j1, k = l1, l, k1), (i = i1, j = k1, k = j1, l, l1),

(i = i1, j = k1, k = l1, l, j1), (i = i1, j = l1, k = j1, l, k1), (i = i1, j = l1, k = k1, l, j1),

(i = j1, j = i1, k = k1, l, l1), (i = j1, j = i1, k = l1, l, k1), (i = j1, j = k1, k = i1, l, l1),

(i = j1, j = k1, k = l1, l, i1), (i = j1, j = l1, k = i1, l, k1), (i = j1, j = l1, k = k1, l, i1),

(i = k1, j = i1, k = j1, l, l1), (i = k1, j = i1, k = l1, l, j1), (i = k1, j = j1, k = i1, l, l1),

(i = k1, j = j1, k = l1, l, i1), (i = k1, j = l1, k = i1, l, j1), (i = k1, j = l1, k = j1, l, i1),

(i = l1, j = i1, k = j1, l, k1), (i = l1, j = i1, k = k1, l, j1), (i = l1, j = j1, k = i1, l, k1),

(i = l1, j = j1, k = k1, l, i1), (i = l1, j = k1, k = i1, l, j1), (i = l1, j = k1, k = j1, l, i1),

(i = i1, j = j1, l = k1, k, l1), (i = i1, j = j1, l = l1, k, k1), (i = i1, j = k1, l = j1, k, l1),

(i = i1, j = k1, l = l1, k, j1), (i = i1, j = l1, l = j1, k, k1), (i = i1, j = l1, l = k1, k, j1),

(i = j1, j = i1, l = k1, k, l1), (i = j1, j = i1, l = l1, k, k1), (i = j1, j = k1, l = i1, k, l1),

(i = j1, j = k1, l = l1, k, i1), (i = j1, j = l1, l = i1, k, k1), (i = j1, j = l1, l = k1, k, i1),

(i = k1, j = i1, l = j1, k, l1), (i = k1, j = i1, l = l1, k, j1), (i = k1, j = j1, l = i1, k, l1),

(i = k1, j = j1, l = l1, k, i1), (i = k1, j = l1, l = i1, k, j1), (i = k1, j = l1, l = j1, k, i1),

(i = l1, j = i1, l = j1, k, k1), (i = l1, j = i1, l = k1, k, j1), (i = l1, j = j1, l = i1, k, k1),

(i = l1, j = j1, l = k1, k, i1), (i = l1, j = k1, l = i1, k, j1), (i = l1, j = k1, l = j1, k, i1),

(i = i1, k = j1, l = k1, j, l1), (i = i1, k = j1, l = l1, j, k1), (i = i1, k = k1, l = j1, j, l1),

(i = i1, k = k1, l = l1, j, j1), (i = i1, k = l1, l = j1, j, k1), (i = i1, k = l1, l = k1, j, j1),
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(i = j1, k = i1, l = k1, j, l1), (i = j1, k = i1, l = l1, j, k1), (i = j1, k = k1, l = i1, j, l1),

(i = j1, k = k1, l = l1, j, i1), (i = j1, k = l1, l = i1, j, k1), (i = j1, k = l1, l = k1, j, i1),

(i = k1, k = i1, l = j1, j, l1), (i = k1, k = i1, l = l1, j, j1), (i = k1, k = j1, l = i1, j, l1),

(i = k1, k = j1, l = l1, j, i1), (i = k1, k = l1, l = i1, j, j1), (i = k1, k = l1, l = j1, j, i1),

(i = l1, k = i1, l = j1, j, k1), (i = l1, k = i1, l = l1, j, j1), (i = l1, k = j1, l = i1, j, k1),

(i = l1, k = j1, l = l1, j, i1), (i = l1, k = k1, l = i1, j, j1), (i = l1, k = k1, l = j1, j, i1),

(j = i1, k = j1, l = k1, i, l1), (j = i1, k = j1, l = l1, i, k1), (j = i1, k = k1, l = j1, i, l1),

(j = i1, k = k1, l = l1, i, j1), (j = i1, k = l1, l = j1, i, k1), (j = i1, k = l1, l = k1, i, j1),

(j = j1, k = i1, l = k1, i, l1), (j = j1, k = i1, l = l1, i, k1), (j = j1, k = k1, l = i1, i, l1),

(j = j1, k = k1, l = l1, i, i1), (j = j1, k = l1, l = i1, i, k1), (j = j1, k = l1, l = k1, i, i1),

(j = k1, k = i1, l = j1, i, l1), (j = k1, k = i1, l = l1, i, j1), (j = k1, k = j1, l = i1, i, l1),

(j = k1, k = j1, l = l1, i, i1), (j = k1, k = l1, l = i1, i, j1), (j = k1, k = l1, l = j1, i, i1),

(j = l1, k = i1, l = j1, i, k1), (j = l1, k = i1, l = k1, i, j1), (j = l1, k = j1, l = i1, i, k1),

(j = l1, k = j1, l = k1, i, i1), (j = l1, k = k1, l = i1, i, j1), (j = l1, k = k1, l = j1, i, i1)}.

The summation over F3 is equivalent to

∑
i6=j 6=k 6=l 6=l1

32f(i, j)f(k, l)f(i, j)f(k, l1) +
∑

i6=j 6=k 6=l 6=l1

64f(i, j)f(k, l)f(i, k)f(j, l1). (3.50)

Lastly, if there are four equivalent indices, then

F4 = {(i = i1, j = j1, k = k1, l = l1), (i = i1, j = j1, k = l1, l = k1),

(i = i1, j = k1, k = j1, l = l1), (i = i1, j = k1, k = l1, l = j1),

(i = i1, j = l1, k = j1, l = k1), (i = i1, j = l1, k = k1, l = j1),

(i = j1, j = i1, k = k1, l = l1), (i = j1, j = i1, k = l1, l = k1),

(i = j1, j = k1, k = i1, l = l1), (i = j1, j = k1, k = l1, l = i1),

(i = j1, j = l1, k = i1, l = k1), (i = j1, j = l1, k = k1, l = i1),
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(i = k1, j = i1, k = j1, l = l1), (i = k1, j = i1, k = l1, l = j1),

(i = k1, j = j1, k = i1, l = l1), (i = k1, j = j1, k = l1, l = i1),

(i = k1, j = l1, k = i1, l = j1), (i = k1, j = l1, k = j1, l = i1),

(i = l1, j = i1, k = j1, l = k1), (i = l1, j = i1, k = k1, l = j1),

(i = l1, j = j1, k = i1, l = k1), (i = l1, j = j1, k = k1, l = i1),

(i = l1, j = k1, k = i1, l = j1), (i = l1, j = k1, k = j1, l = i1)}.

The summation over F4 is equivalent to

∑
i6=j 6=k 6=l

6f(i, j)f(k, l)f(i, j)f(k, l) +
∑

i6=j 6=k 6=l
18f(i, j)f(k, l)f(i, k)f(j, l). (3.51)

As a result from (3.47) – (3.51),

E

[{ ∑
i 6=j 6=k 6=l

f(i, j)f(k, l)
}2
]

= E

{ ∑
i6=i1 6=j 6=j1 6=k 6=k1 6=l 6=l1

f(i, j)f(k, l)f(i1, j1)f(k1, l1)

}

+ 16E

{ ∑
i 6=j 6=j1 6=k 6=k1 6=l 6=l1

f(i, j)f(k, l)f(i, j1)f(k1, l1)

}

+ 4E

{ ∑
i 6=j 6=k 6=k1 6=l 6=l1

f(i, j)f(k, l)f(i, j)f(k1, l1)

}

+ 28E

{ ∑
i 6=j 6=j1 6=k 6=l 6=l1

f(i, j)f(k, l)f(i, j1)f(j, l1)

}

+ 32E

{ ∑
i 6=j 6=j1 6=k 6=l 6=l1

f(i, j)f(k, l)f(i, j1)f(k, l1)

}

+ 32E

{ ∑
i6=j 6=k 6=l 6=l1

f(i, j)f(k, l)f(i, j)f(k, l1)

}

+ 64E

{ ∑
i6=j 6=k 6=l 6=l1

f(i, j)f(k, l)f(i, k)f(j, l1)

}

+ 6E

{ ∑
i6=j 6=k 6=l

f(i, j)f(k, l)f(i, j)f(k, l)

}

+ 18E

{ ∑
i6=j 6=k 6=l

f(i, j)f(k, l)f(i, k)f(j, l)

}
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Thus,

I3 = 2{n2(n− 1)2tr4(Σ2)T 6}−1E

[{ ∑
i6=j 6=k 6=l

f(i, j)f(k, l)

}2]
,

= 2{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i 6=i1 6=j 6=j1 6=k 6=k1 6=l 6=l1

f(i, j)f(k, l)f(i1, j1)f(k1, l1)

}

+ 32{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=j1 6=k 6=k1 6=l 6=l1

f(i, j)f(k, l)f(i, j1)f(k1, l1)

}

+ 8{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=k 6=k1 6=l 6=l1

f(i, j)f(k, l)f(i, j)f(k1, l1)

}

+ 56{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=j1 6=k 6=l 6=l1

f(i, j)f(k, l)f(i, j1)f(j, l1)

}

+ 64{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=j1 6=k 6=l 6=l1

f(i, j)f(k, l)f(i, j1)f(k, l1)

}

+ 64{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=k 6=l 6=l1

f(i, j)f(k, l)f(i, j)f(k, l1)

}

+ 128{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=k 6=l 6=l1

f(i, j)f(k, l)f(i, k)f(j, l1)

}

+ 12{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=k 6=l

f(i, j)f(k, l)f(i, j)f(k, l)

}

+ 36{n2(n− 1)2tr4(Σ2)T 6}−1E

{ ∑
i6=j 6=k 6=l

f(i, j)f(k, l)f(i, k)f(j, l)

}
,

≡ Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 +Q8 +Q9. (3.52)

Due to the mutually different indices, Q1, Q2, Q3, Q4 all equal zero since E
{
f(i, j)

}
= 0 for

i different than j. Furthermore, under the null hypothesis, Q5, Q6, and Q7 all equal zero.

For Q5, consider E
{
f(i, j)f(k, l)f(i, j1)f(k, l1)

}
. Due to the mutually different indices

E
{
f(i, j)f(k, l)f(i, j1)f(k, l1)

}
= E

{
f(i, j)f(i, j1)

}
E
{
f(k, l)f(k, l1)

}
. By (3.25), each of

the expectation terms is zero and thus Q5 = 0. Similarly, for
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Q6, E
{
f(i, j)f(k, l)f(i, j)f(k, l1)

}
= E

{
f(i, j)f(i, j)

}
E
{
f(k, l)f(k, l1)

}
. Again, by (3.25)

the term E
{
f(k, l)f(k, l1)

}
is zero. Thus, Q6 = 0. To see that Q7 is zero, consider

E
{
f(i, j)f(k, l)f(i, k)f(j, l1)

}
= E

{(∑
S1

W̃s1s2(i, j)−
∑
S2

W̃s1s2(i, j)
)

×
(∑
R1

W̃r1r2(k, l)−
∑
R2

W̃r1r2(k, l)
)

×
(∑
U1

W̃u1u2(i, k)−
∑
U2

W̃u1u2(i, k)
)

×
(∑
X1

W̃x1x2(j, l1)−
∑
X2

W̃x1x2(j, l1)
)}

,

=
2∑

a,b,c,d=1

(−1)|a−b|+|c−d|
∑
Sa

∑
Rb

∑
Uc

∑
Xd

× E
{
W̃s1s2(i, j)W̃r1r2(k, l)W̃u1u2(i, k)W̃x1x2(j, l1)

}
.

Accordingly, E
{
W̃s1s2(i, j)W̃r1r2(k, l)W̃u1u2(i, k)W̃x1x2(j, l1)

}
can be expressed as

2∑
a,b,c,d,e,f,g,h=1

(−1)|a−b|+|c−d|+|e−f |+|g−h|E
{
Vsasb(i, j)Vrcrd(k, l)Vueuf (i, k)Vxgxh(j, l1)

}
.

Under the null hypothesis,

E
{
Vsasb(i, j)Vrcrd(k, l)Vueuf (i, k)Vxgxh(j, l1)

}
= tr(Σ4) + 2tr2(Σ2)tr(ΣCsbxgΣCxgsb)

+ 2tr2(Σ2)tr(ΣCsaueΣCuesa) + 2tr2(Σ2)tr(ΣCrcufΣCuf rc)

+ 4tr(Σ2)tr(ΣCuesaCsbxgΣCxgsbCsaue) + 4tr(Σ2)tr(ΣCrcufCuesaΣCsaueCuf rc)

+ 4tr(ΣCrcufΣCuf rc)tr(ΣCsbxgΣCxgsb)

+ 8tr(ΣCrcufCuesaCsbxgΣCxgsbCsaueCuf rc).

The summation of the above expression over a, b, c, d, e, f, g, h ∈ {1, 2} is zero. Hence,

Q7 = 0. Terms Q8 and Q9 are at most the order of R1. Term Q8 has the same order up to a
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constant as R1 due to the four mutually different indices. By the Cauchy-Schwarz inequality,

the E
{
f(i, j)f(k, l)f(i, k)f(j, l)

}
with respect to Q9 can be expressed as

E
{
f(i, j)f(k, l)f(i, k)f(j, l)

}
≤
[
E
{
f(i, j)f(k, l)f(i, j)f(k, l)

}]1/2

×
[
E
{
f(i, k)f(j, l)f(i, k)f(j, l)

}]1/2

,

� O
(
E
{
f(i, j)f(i, j)f(k, l)f(k, l)

})
.

Therefore,

Q9 ≤ Q8 � R1 � C
([Tη]− [Tν])2

T 2
.

As a result,

I3 ≤ C
([Tη]− [Tν])2

T 2
, (3.53)

for some constant C. In summary, E[{Gn(η)−Gn(ν)}4] ≤ C([Tη]− [Tν])2/T 2.

Let 0 ≤ i ≤ j ≤ T . By the definitions of η and ν, (3.37), (3.45), (3.53), and Markov’s

inequality, it follows that for any λ > 0,

pr
(
|Gn(i/T )−Gn(j/T )| ≥ λ

)
≤
E
{
|Gn(i/T )−Gn(j/T )|4

}
λ4

≤ C

[
(j − i)
λ2T

]2

=
C

λ4β

(
1

T

∑
i<l≤j

ul

)2α

,

where we set α = 1, β = 1, and ul = l − (l − 1) = 1. By Theorem 10.2 in Billingsley (1999)

pr
{

max
t∈T
|Gn(i/T )| ≥ λ

}
≤ KC

λ4β

(
1

T

∑
0<l≤T

ul

)2α

,

=
KC

λ4
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For λ large, above probability is less than any ε > 0. As a result, maxt∈T |Gn(i/T )| is tight,

and thus maxt∈T σ
−1
nt,0D̂nt is also tight. Therefore, by the tightness of the stochastic process

and convergence of the finite dimensional distributions, it follows that Mn converges to a

Gaussian process with mean zero and correlation Rz. �

Proof of Theorem 9. Assume that one change point exists at time τ . Thus, we assume

alternative H∗1 as defined in (3.15). Let ∆p = tr{(Σ1 − ΣT )2} and

νt,max = maxt∈T max
(√

V0t/w2(t),
√
nV1t/w2(t)

)
such that T = {1, . . . , T − 1}.

Define a set, E(C), such that E(C) = {t ∈ {1, . . . , T − 1} : |t − τ | ≥ CΘ}, where C

is some constant and Θ is a function of p, n, and T . The value Θ is chosen to show the

rate of convergence of the change point estimator under the asymptotic setting where p,

n, and T diverge. Thus, to establish this rate of convergence we must show that for some

C, pr(|τ̂ − τ | ≥ CΘ) < ε. It is sufficient to show that pr(maxt∈E(C) D̂nt > D̂nτ ) < ε

since pr(|τ̂ − τ | ≥ CΘ) = pr(τ̂ ∈ E(C)) ≤ pr(maxt∈E(C) D̂nt > D̂nτ ) for {τ̂ ∈ E(C)} ⊂

{maxt∈E(C) D̂nt > D̂nτ}. Thus,

pr
(

max
t∈E(C)

D̂nt > D̂nτ

)
≤

∑
t∈E(C)

pr
(
D̂nt > D̂nτ

)
=

∑
t∈E(C)

pr
(
D̂nt −Dt +Dt −Dτ > D̂nτ −Dτ

)
=

∑
t∈E(C)

pr
[
{D̂nt −Dt}+ {−(D̂nτ −Dτ )} > −{Dt −Dτ}

]
≤

∑
t∈E(C)

pr
[
|{D̂nt −Dt}+ {−(D̂nτ −Dτ )}| > −{Dt −Dτ}

]
.

The term −(Dt −Dτ ) can be expressed as |t− τ |G(t; τ)∆p, where

G(t; τ) =



1

T − t
, 1 ≤ t ≤ τ,

1

t
, τ + 1 ≤ t < T.

In terms of T , the function G is of the order 1/T .
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Recall that for two random variables, X and Y ,

pr(|X + Y | > ε) ≤ pr(|X| > ε/2) + pr(|Y | > ε/2).

Hence,

pr
(

max
t∈E(C)

D̂nt > D̂nτ

)
≤

∑
t∈E(C)

pr
[
|{D̂nt −Dt}+ {−(D̂nτ −Dτ )}| > −{Dt −Dτ}

]
≤

∑
t∈E(C)

pr

{
|D̂nt −Dt| >

|t− τ |G(t; τ)∆p

2

}

+
∑

t∈E(C)

pr

{
|D̂nτ −Dτ | >

|t− τ |G(t; τ)∆p

2

}

=
∑

t∈E(C)

pr

{
|D̂nt −Dt|

σnt
>
|t− τ |G(t; τ)∆p

2σnt

}

+
∑

t∈E(C)

pr

{
|D̂nτ −Dτ |

σnτ
>
|t− τ |G(t; τ)∆p

2σnτ

}

=
∑

t∈E(C)

pr

{
|D̂nt −Dt|

σnt
>
|t− τ |G(t; τ)n∆p

2
√

4Ṽ0t + 8nṼ1t

}

+
∑

t∈E(C)

pr

{
|D̂nτ −Dτ |

σnτ
>
|t− τ |G(t; τ)n∆p

2
√

4Ṽ0τ + 8nṼ1τ

}

≤
∑

t∈E(C)

pr

{
|D̂nt −Dt|

σnt
>
C1|t− τ |G(t; τ)n∆p

2νt,max

}

+
∑

t∈E(C)

pr

{
|D̂nτ −Dτ |

σnτ
>
C1|t− τ |G(t; τ)n∆p

2νt,max

}

≤
∑

t∈E(C)

pr

{
|D̂nt −Dt|

σnt
>
CΘG(t; τ)n∆p

νt,max

}

+
∑

t∈E(C)

pr

{
|D̂nτ −Dτ |

σnτ
>
CΘG(t; τ)n∆p

νt,max

}
,

for some constants C1 and C. Choose Θ = νt,maxT
√

log T/n∆p. By the choice of Θ, order

130



of G(t; τ), and the fact that both (D̂nt−Dt)/σnt, (D̂nτ −Dτ )/σnτ ∼ N(0, 1), it follows that

∑
t∈E(C)

pr

{
|D̂nt −Dt|

σnt
>
CΘG(t; τ)n∆p

νt,max

}
≤

∑
t∈E(C)

pr

(
|Z| >

√
C log T

)
, (3.54)

∑
t∈E(C)

pr

{
|D̂nτ −Dτ |

σnτ
>
CΘG(t; τ)n∆p

νt,max

}
≤

∑
t∈E(C)

pr

(
|Z| >

√
C log T

)
, (3.55)

where Z ∼ N(0, 1) and C is some constant.

Recall that for a standard normal random variable, Z, and for any k > 0, pr(|Z| > k) ≤

2 exp{−x2/2}. For a large enough C, the summation terms in (3.54) and (3.55) can be

expressed as

∑
t∈E(C)

pr

(
|Z| >

√
C log T

)
≤

∑
t∈E(C)

2T−
C
2 < ε.

For large C, the series is convergent as T →∞. Therefore, pr(maxt∈E(C) D̂nt > D̂nτ ) < ε,

and

τ̂ − τ = Op

(
νt,maxT

√
log T

n∆p

)
for ∆p = tr{(Σ1 − ΣT )2} and νt,max = maxt∈T max

(√
V0t/w2(t),

√
nV1t/w2(t)

)
. The

rate of convergence can be simplified further. The function w−1(t) is minimized at T/2.

Therefore,

τ̂ − τ = Op

(
νmax

√
log T

n∆p

)
for ∆p = tr{(Σ1 − ΣT )2} and νmax = maxt∈T max

(√
V0t,
√
nV1t

)
. �

Proof of Theorem 10. Recall Theorem 5: Under the alternativeH1 of (3.1), the maximum

value of Dt is attained at one of the q change points. We will make use of this theorem in

the proof that follows.

We will first show that provided change points exist, we can detect their existence with

probability one, and we can the locations of the change points with probability one. Assume
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at least one change point exists in the interval It and that the cardinality of Q̂ is less than

the cardinality of Q. To show we can detect the existence of change points with probability

one in the interval It we must show that pr(Mn[It] > Wαn [It]) = 1.

pr(Mn[It] > Wαn [It]) ≥ pr
(
σ−1
nt,0[It]D̂nt[It] > Wαn [It]

)

= 1− pr
(
σ−1
nt,0[It]D̂nt[It] ≤ Wαn [It]

)

= 1− pr

(
D̂nt[It]−Dt[It]

σ−1
nt [It]

≤
σnt,0[It]Wαn [It]−Dt[It]

σ−1
nt [It]

)

= 1− pr

(
Z ≤

σnt,0[It]

σ−1
nt [It]

Wαn [It]−
Dt[It]

σ−1
nt [It]

)

→ 1,

where Z is a standard normal random variable. The pr

(
Z ≤

σnt,0[It]

σ−1
nt [It]

Wαn [It] −
Dt[It]

σ−1
nt [It]

)
goes to zero by our premise that Wαn = o(mSNR) for any It. Therefore, it follows that we

can detect the existence of a change point with probability one. Furthermore, by Theorem

5, Theorem 9 and our premise that νmax[It]
√

log(T )/n∆p[It] → 0, we can also correctly

identify a change point with probability one. The above derivations do not depend on It

since each subsequence satisfies the premises of this Theorem.

We also need to demonstrate that no change points will be identified that are not true

change points. Thus, consider the case where Q̂ = Q. It is sufficient to demonstrate that

no change point will be detected among the remaining time interval segments. Under H0 of

(3.1), as αn → ∞, it follows that by Theorem 8 pr(Mn[It] > Wαn [It]) = αn → 0 for some

interval It with no change points. Therefore, no change points will be incorrectly-identified

at any stage of the binary segmentation procedure. As a result Q̂ → Q in probability. �
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CHAPTER 4

A HIDDEN MARKOV APPROACH FOR QTL MAPPING USING
ALLELE-SPECIFIC EXPRESSION SNPS

4.1 Introduction

Allele-specific expression (ASE) is part of the foundation for genetic diversity and is

paramount to programming and development of biological cells (Ferguson-Smith 2001). ASE

serves as a proxy for differential expression of two alleles at the same location within an

organism (Gu & Wang 2015). For example, allele-specific expression can be characterized as

the ratio between allele A and allele T. Differential expression is primarily explained by three

factors: cis-acting modification, post transcription modification, and epigenetic modification

(Ferguson-Smith 2001). Cis-effects correspond to the allele-specific variation, and thus, by

quantifying ASE it is possible to identify cis-acting effects on an inter-individual basis among

heterozygous individuals (Buckland 2004). The presence of ASE implies one or multiple

variants have cis-acting effects on gene expression levels that could be directly correlated

to phenotypic variation (Skelly et al. 2011). In fact, the phenomena of ASE has become

a focal point in identifying predispositions towards certain diseases (de la Chapelle 2009).

Due to the importance of understanding ASE, two natural questions arise with regards

to its influence on phenotypic traits. What is the relationship between single nucleotide

polymorphisms (SNPs) with ASE and a phenotypic trait? Which SNPs with ASE are have

an effect on phenotypic variation? Our focus in Chapter 4 is to develop a procedure using a

novel hierarchical model to answer the second question.

Quantitative trait loci (QTL) mapping is the statistical process of identifying locations in

the genome that have an association with a complex phenotypic trait. For example, geneti-

cists may be interested in understanding which genes affect cholesterol. Their understanding

of this association can provide insight towards disease prevention and susceptibility. An effec-
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tive QTL mapping procedure can also provide researchers a better understanding of breeding

and appropriate techniques, and permit altered genetic variation within a population (Cheng

et al. 2015). Studying SNPs with ASE and phenotypic variation was shown to be successful

by Cheng et al. (2015). By applying multiple Bayesian approaches, Cheng et al. (2015)

identified genetic markers in chickens associated with a resistance to Marek’s disease. This

disease is highly contagious and results in paralysis of the animal. The potential to eradi-

cate Marek’s disease through superior breeding techniques would be valuable to farmers and

individuals within the animal science community. Cheng et al. (2015) discovered that 83%

of the genetic variance in Marek’s disease resistance was explained by the selected SNPs

exhibiting ASE. These results were validated through a progeny study that found a 22%

difference in the occurrence of Marek’s disease after one generation of bidirectional selection

(Cheng et al. 2015). The profound discovery by Cheng et al. (2015) gives credence to the

fact that gene expression explains a large portion of phenotypic variation.

Next generation RNA sequencing data is now being widely used to investigate the pres-

ence of ASE. However, inference with regards to ASE remains a challenge along with map-

ping quantitative trait loci in the presence of only RNA sequencing data (Skelly et al. 2011).

Skelly et al. (2011) proposed a three-stage hierarchical Bayesian model to test ASE gene ex-

pression and study cis-regulatory variation. However, their procedure requires genomic DNA

data to establish prior probabilities. Similarly, Nariai et al. (2016) established a Bayesian

framework with variational inference for estimating allele-specific expression. Their tech-

nique also relied on diploid DNA data and did not link any phenotypic response. Hu et

al. (2015) proposed a unified maximum likelihood approach combining two models based

on ASE and total RNA read counts. Their approach involved cis-expression QTL mapping

with RNA sequencing data via a beta-binomial distribution.

In this chapter we present a novel two-step approach to perform QTL mapping using

SNPs with allele-specific expression. In the first step, we predict the ASE ratios from RNA

sequencing data. In step two, we use the predicted ASE ratios to identify SNPs with cis-
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acting effects as it relates to a phenotypic response variable. We elicit a hierarchical model

for analysis of RNA sequence data to discover polymorphisms in expressed sequences whose

allele-specific expression is correlated with observed phenotypic variation. In our hierarchical

model, we first implement a hidden Markov approach to impute the underlying genotype and

ASE status combinations based on the RNA read count data and simultaneously predict ASE

ratios for heterozygous SNP locations. Second, we apply regularized regression to identify

SNPs with ASE ratios that significantly impact an observed phenotypic response. Ordinary

least squares is then applied for refinement. Our proposed hierarchical model and procedure

has several advantages over existing methods. First, the hidden Markov model allows us to

model dependence among SNPs and affords accurate genotype-ASE status imputation given

RNA read counts (Steibel et al. 2015). Second, our procedure obtains an ASE ratio estimate

in the absence of genetic DNA data. Many of the existing techniques required genetic DNA

data for ASE estimation. Third, our proposed model integrates RNA sequencing data and

phenotypic data to make inferences about the ASE status and cis-acting affects on phenotypic

data. Fourth, our proposed method is easy to implement, where parameter estimation for

the hidden Markov model is performed using the expectation-maximization (EM) algorithm.

Variable selection via cyclic coordinate descent allows us to identify significant SNPs quickly

and accurately, given an adequate signal-to-noise ratio. Lastly, our hierarchical model offers

flexibility with regards to the phenotypic response model of interest, mapping error, spatial

dependency, and individual variation in ASE ratios (Steibel et al. 2015).

Chapter 4 is organized as follows. In Section 4.2 we introduce the first layer of our

proposed model. A hidden Markov model and genotype-ASE status with ASE prediction

is recited based on the results of Steibel et al. (2015). In Section 4.3 we propose our

method to identify SNPs with ASE that have cis-acting effects on a phenotypic variable of

interest. Simulation results and a comparison with two competing procedures are detailed in

Section 4.4. Our procedure is applied to a real data example that combines RNA sequencing

data and phenotypic data from a sounder of swine in Section 4.5. The swim data set and a
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procedure to implement the hidden Markov approach is available in the R package HMMASE

at http://www.stt.msu.edu/users/pszhong/HMMASE.html.

4.2 A hidden Markov model for SNP genotype calling

In this Section we introduce the basic setting and proposed model in Steibel et al. (2015).

We introduce the salient features of their model, HMM-ASE, before we concentrate on ASE

prediction and quantitative trait loci mapping in Section 4.3.

Let Xil = (Xil1, Xil2, Xil3, Xil4)T be a random vector of RNA read counts at the lth

SNP for the ith individual. Denote xil (l = 1, . . . , L; i = 1, . . . , n) as the observed RNA

read counts, where xil1, xil2, xil3, xil4 represent observed counts for alleles A, C, G, and T,

respectively. Define the total RNA read counts at SNP l for individual i as nil =
∑4
j=1 xilj .

Below we provide a set-up for a hidden Markov model with only two possible alleles: A

or T. The procedure can easily be extended to consider a non-bi-allelic SNP. Let Gil be a

latent variable that describes the genotype-ASE status with five possible hidden states. For

each individual i at SNP l let

Gil =



1 for “AA”,

2 for “AT-NASE”,

3 for “AT-ASE-HIGH”,

4 for “AT-ASE-LOW”,

5 for “TT”.

(4.1)

Two homozygous hidden states are represented by AA and TT, and three heterozygous

states are classified according to a relative ASE level. The variable Gil is latent and we

assume that Gil(l = 1, . . . , L) follows a Markov process. Let A be the probability transition

matrix for the Markov process Gil. Define the transition probabilities as

pr(Gil = k′|Gi(l−1) = k) = akk′ k, k′ = 1, . . . , 5. (4.2)

Let πik (i = 1, . . . , n; k = 1, . . . , 5) be the the initial probabilities of Gil1 being a specific

state in (4.1) such that pr(Gi1 = k) = πik.
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We assume that the RNA read counts are generated by a hierarchical model conditional

on the underlying state of Gil and ASE ratios. Let δil be a random variable for ASE ratios

conditional on Gil. Thus,

δil|Gil = k ∼



I{δil=1} for k = 1,

I{δil=0.5} for k = 2,

Beta(0.5,1](α1, β1) for k = 3,

Beta[0,0,5)(α2, β2) for k = 4,

I{δil=0} for k = 5.

(4.3)

If the underlying genotype is homozygous, then the corresponding ASE ratio is either zero or

one with probability one. If the underlying genotype is heterozygous, but without ASE, then

the corresponding ASE ratio is 0.5 with probability one. For the two remaining heterozygous

states, it follows that the ASE ratio is defined as Beta(0.5,1](α1, β1) and Beta[0,0,5)(α2, β2),

where each represent scaled beta distributions with scale and shape parameters being α1,

α2 and β1, β2, respectively. Conditional on Gil, we assume that δil are independent.

The first layer of the hierarchical model is conditional on a latent genotype-ASE status. In

the second layer of the hierarchical model we define the probability distribution for RNA read

counts conditional on 4.3. gives us the distribution of the RNA read counts. Here we assume

that Xil = (Xil1, Xil2, Xil3, Xil4)T conditional on δil follows a multinomial distribution such

that

Xil|δil ∼Multinomial(nil, p(δil, e)), (4.4)

where p(δil, e) =
((

1− 4e
3

)
δil + e

3 ,
e
3 ,

e
3 ,
(

4e
3 − 1

)
δil + 1− e

)
is the probability vector in

the multinomial distribution for A, C, G, and T, respectively. We assume that all reads

are observable via a mapping error parameter denoted as e. If e = 0, then p(δil, 0) =

(δil, 0, 0, 1− δil) represents the probabilities for observing A, C, G, and T, respectively.

Figure 4.1 illustrates our hidden Markov model specification for the ith individual when

L = 5. The hidden variables Gil are dependent via a Markov process. The variables δil are
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conditional on Gil and independent among each other. RNA read counts are conditional on

Gil, but through δil.

Gi1

Xi1

δi1

Gi2

Xi2

δi2

Gi3

Xi3

δi3

Gi4

Xi4

δi4

Gi5

Xi5

δi5

Figure 4.1: A graphical model for illustrating the hidden Markov model for SNP genotype
calling. Grey circles represent observed values. White circles represent latent variables.

Given observed RNA read counts, xil, we can predict the underlying genotype-ASE

status, Gil, via the expectation-maximization (EM) algorithm and forward-backward proce-

dure. In addition, and more importantly, given observed RNA read counts and underlying

genotype-ASE statuses, we can derive the distribution for allele-specific expression ratios

and use the posterior mode of the distribution as an estimate for the ratio of ASE.

4.3 Phenotypic model specification

Our ultimate goal is to identify significant SNPs and understand their affects on pheno-

typic variation. Let Yi be a phenotypic response of interest, where

Yi∼fYi(yi|τi, φ) = exp

[
yiτi − b(τi)

a(φ)
+ c(yi, φ)

]
, i = 1, . . . , n. (4.5)

We assume the distribution of Yi is in the form of a known exponential family. Let τ be

the canonical parameter and let φ be the dispersion parameter. For example, suppose the

phenotypic trait is eye color. If eye color is binary, such as the case for blue eyes or not blue

eyes, then we assume (4.5) follows a Bernoulli distribution. However, if the phenotype is

continuous one may consider the distribution of (4.5) to be Gaussian or Exponential. Fur-

thermore, let η(δi) =
∑L
l=1 δilγl, where γ is an L-dimensional vector of unknown parameters

that represent the effects of gene expression to the phenotypic response Yi and δi is an L-
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dimensional vector of ASE ratios. In order to relate the parameters of the distribution to

the various predictors we denote E[Yi] = µi. Thus, for a canonical link function, h, it is the

case that η(δi) = h(µi) = τi. In particular, if we assume Yi follows a normal distribution,

then h is the identity link; whereas if Yi follows a Bernoulli distribution, then h could be the

logit link.

4.3.1 Prediction of ASE ratios

ASE ratios are unknown random variables. If we want to use them as predictors with regards

to modeling a phenotypic response, then we need an estimation procedure. We consider two

posterior probabilities that will be useful in our ultimate goal of identifying significant SNPs.

Calculation of these two posterior distributions is dependent on an unknown parameter

vector θ = (α1, β1, α2, β2, e, A). Details to obtain maximum likelihood estimates via the EM

algorithm are provided in Steibel et al. (2015). Our first posterior probability of interest is

pr(Gil = gil|X), which will be used for predicting the underlying genotype-ASE status of the

lth SNP in the ith individual. Here X represents the RNA read counts for all n individuals

at all L SNP positions. Given the states of Gil as defined in (4.1), we will also be able

to deduce the ASE status for the respective individual and SNP. The posterior probability

pr(Gil|X) can be computed by Bayes’ formula. Let Gi = (Gi1, · · · , GiL)T represent all the

possible genotype-ASE status combinations. Then the posterior probability is

Li,k(l) := pr(Gil = k|X) =
∑
Gi

pr(Gi|X)I(Gil = k) =
∑
Gi

pr(X,Gi)

pr(X)
I(Gil = k). (4.6)

In order to estimate the hidden state of Gil (i = 1, . . . , n; l = 1, . . . , L) we compute

maxk Li,k(l) for each individual and SNP combination. The quantity Li,k(l) is computed

from the EM algorithm. By the definition of the random variable δil, we aim to use the

estimated state of Gil to obtain an estimate for the ratio of ASE. This leads to our second

posterior probability of interest.
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Let θ∗ be the updated parameter vector upon convergence of the EM algorithm. Consider

f(δil|Xil, Gil = k; θ∗) such that

f(δil|Xil, Gil = k; θ∗) =
f(Xil|δil; θ∗)f(δil|Gil = k; θ∗)∫
f(Xil|δil; θ∗)f(δil|Gil = k; θ∗)dδil

, (4.7)

where the distributions of f(Xil|δil; θ∗) and f(δil|Gil = k; θ∗) are defined in (4.4) and

(4.3), respectively. It follows that the denominator of (4.7) can be expressed as

f(Xil|Gil = k; θ∗) =



( nl
Xil

)
(1− e)Xil1(e3)nil−Xil1 for k = 1,

( nl
Xil

)
(0.5− e

3)Xil1+Xil4(e3)Xil2+Xil3 for k = 2,

( nl
Xil

)
(e3)Xil2+Xil3

C0(θ∗;Xil1,Xil4)

0.5α1+β1−1B(α1,β1)
for k = 3,

( nl
Xil

)
(e3)Xil2+Xil3

C1(θ∗;Xil1,Xil4)

0.5α2+β2−1B(α2,β2)
for k = 4,

( nl
Xil

)
(1− e)Xil4(e3)nil−Xil4 for k = 5

(4.8)

where
( nl
Xil

)
=

nl!
Xil1!Xil2!Xil3!Xil4! , and

C0 =

∫ 1

0.5
((1− 4e

3
)δil +

e

3
)Xil1((

4e

3
− 1)δil + 1− e)Xil4(1− δil)α1−1(δil − 0.5)β1−1dδil,

C1 =

∫ 0.5

0
((1− 4e

3
)δil +

e

3
)Xil1((

4e

3
− 1)δil + 1− e)Xil4δα2−1

il (0.5− δil)β2−1dδil.

If Gil = 3 or Gil = 4, then we know that the heterozygous genotype has ASE with the

quantity determined by a rescaled beta distribution. Thus, we only consider these estimated
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states when computing an estimate for δil. Hence, for Gil = 3 and Gil = 4 it follows that

f(δil|Xil, Gil = k; θ∗) =


M0(δil, Xil1, Xil4, θ

∗)(δil − 0.5)α1−1(1− δil)β1−1 for k = 3,

M1(δil, Xil1, Xil4, θ
∗)(δil)

α2−1(0.5− δil)β2−1 for k = 4,

(4.9)

where

M0 = ((1− 4e

3
)δil +

e

3
)Xil1((

4e

3
− 1)δil + 1− e)Xil4C0(θ∗;Xil1, Xil4)

M1 = ((1− 4e

3
)δil +

e

3
)Xil1((

4e

3
− 1)δil + 1− e)Xil4C1(θ∗;Xil1, Xil4),

with C0 and C1 as defined above.

We define our ASE ratio estimate as δ̂il (i = 1, . . . , n; l = 1, . . . , L), where δ̂il is the

mode of the posterior distribution in (4.9).

4.3.2 Identification of quantitative trait loci

In order to quantify the impact of ASE on phenotypic variation we utilize δ̂il as estimated in

Section 4.3.1. For L large, we aim to find a sparse solution for the L-dimensional parameter

vector γ. In order to accomplish this task we apply a Lasso penalty. A sparse solution is

computed via cyclical coordinate descent and k-fold cross validation. For Yi as defined in

(4.5) an estimated vector γ̂ is given by

γ̂ = arg min
γ

{
−

n∑
i=1

[
yi
∑L
l=1 δ̂ilγl − b(

∑L
l=1 δ̂ilγl)

a(φ)
+ c(yi, φ)

]
+ λ∗||γ||1

}
, (4.10)

where λ∗ is a non-negative regularization parameter. If Yi has a Binomial distribution, then

a solution for γ̂ is given by

γ̂ = arg min
γ̂

{
−

n∑
i=1

(yiδ̂i
T
γ̃ − log(1 + eδ̂i

T
γ)) + λ∗||γ||1

}
. (4.11)
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Similarly, if Yi has as Gaussian distribution, then a solution for γ̂ is given by

γ̂ = arg min
γ̂

{
n∑
i=1

(yi − δ̂i
T
γ)2 + λ∗||γ||1

}
. (4.12)

A cyclic coordinate descent algorithm can be used to solve (4.10) – (4.12) (Friedman et al.

2010). Solutions are provided across a range of λ∗ values, so to determine an optimal sparse

solution we perform k-fold cross validation as a way to extract SNPs that have non-zero

coefficients for a specific value of λ∗. Our choice of λ∗ is based on the “one-standard error”

rule as it provides the most parsimonious model whose error is no more than one standard

error above the error of the best model. Details on cyclic coordinate descent and how it can

be applied to specific exponential families is available in Friedman et al. (2010).

After identifying a sparse solution for γ̃ we apply ordinary least squares using the phe-

notypic response and filtered δ̂ to obtain estimates and standard errors for the non-zero γs.

Ordinary least squares estimates are given by

γ̂∗ = arg min
γ∗

{
n∑
i=1

(
yi − δ̂i

∗T
γ∗
)2
}
, (4.13)

where ∗ denotes a filtered set of predictors and parameters after (4.10).

We summarize our procedure as follows. First, obtain ASE ratio estimates given RNA

read counts and imputed genotype-ASE statuses. Second, apply variable selection to deter-

mine the SNPs with ASE that influence phenotypic variation. Third, model the relationship

between SNPs with ASE and the response using ordinary least squares. Figure 4.2 illustrates

the relationships between Gil, Xil, δil, and Yi for the ith individual and L = 5.
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Figure 4.2: Grey circles represent observed values. White circles represent latent variables.

4.4 Simulation studies

In this section we demonstrate the performance of our proposed two-stage model in

identifying significant SNPs with ASE ratios as they relate to a phenotype. We consider

a simplified version of (4.1) for the simulation by ignoring an extended classification of

heterozygous genotype-ASE states. Hence, we assume

Gil =


1 for “AA”,

2 for “AT-ASE”,

3 for “TT”,

(4.14)

follows a three-state Markov process. Our data generation process consisted of the following

steps. First, two independent haplotypes were generated to form genotypes. The sequences

for each of the haplotypes were created using linkage disequilibrium information. For each

individual and SNP, total RNA read counts were generated from a negative binomial distri-

bution with parameter λ and probability parameter p = .40. RNA read counts of A, C, G,

and T were then generated according to the total number of RNA read counts and (4.14) –
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(4.15). From (4.14) it follows that

δil|Gil = k ∼


I{δil=1} for k = 1,

Beta(α, β) for k = 2,

I{δil=0} for k = 3.

(4.15)

Let δ be an n × L matrix that represents the true allele-specific expression ratios given

the true underlying genotype-ASE statuses. For a given individual and SNP, where the

underlying genotype is homozygous, the corresponding value in the matrix δ is represented

by zero. We set these values to zero because our interest is only in exploring the cis-acting

genetic effects on phenotypic variation.

In the next step we generate the phenotypic response by the following linear model, where

yi =
L∑
l=1

δT
ilγl + εi, i = 1, . . . , n, (4.16)

and γ is an L-dimensional parameter vector. We assume γ is sparse and only allow the first

four elements to be non-zero. Thus, γ = (γ1, γ2, γ3, γ4, 0, . . . , 0)T such that γ1 = γ2 = γ3 =

γ4. Under this set-up, the first four SNPs have cis-acting effects while the remaining L− 4

SNPs have no cis-acting effects on yi.

In the simulation studies we set n = 50 and 100, and L = 8, 15, and 50. The parameter

λ defined in the negative binomial distribution to simulate total RNA read counts was set

to 16 and 24. The signal strength used in generation of the continuous phenotypic data,γ,

was set to 2, 3, 5, and 7. Lastly, we set e = 0.07, α = 3, β = 3 for the mapping parameter

and Beta distribution parameters, respectively; and the linkage disequilibrium information

was set to 0.30. The simulation results presented in the Tables are figures were based off 100

replications.

To evaluate the performance of our proposed method considered the false positive rate

and false negative rate. For a given parameter combination, the false positive and false

negative rates were averaged over the 100 replications. The false positive rate and false
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negative rate are defined as follows:

False Positive Rate =
# coefficents falsely identified as non-zero

# non-zero coefficients

False Negative Rate =
# coefficents falsely identified as zero

# zero coefficients

(4.17)

Figure 4.3: Average false negative rates and average false positive rates for the proposed
method. Facets in row 1 are for n = 50. Facets in row 2 are for n = 100.

The simulation results for a single test at significance level 0.01 are illustrated in Figure

4.3. As the heritability, or value of γ increases, the average false negative rate decrease. The

same relationship holds for the average false positive rates. As the number of SNPs increases

for a given γ, the average false positive rate increases whereas the average false negative rate

decreases. As the sample size increases both average rates decrease. The top row of plots

corresponds to the setting in which n = 50, and the bottom row of plots corresponds to the

setting in which n = 100. Lastly, all else held constant, a larger value of λ generally results in

smaller false negative and false positive rates. A larger value of λ means a larger number of

RNA read counts, and thus, more information. From a practical perspective, a low average
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false negative rate implies significant SNPs will not fail to be identified. Similar trends exist

when we consider a simultaneous test. Average rate values are displayed in Table 4.1 and

Table 4.2 for the single and simultaneous test, respectively.

Table 4.1: Average false positive and average false negative rates for the single test with
significance level 0.01. Average false positive rate is top value

n = 50 n = 100
L λ γ = 2 γ = 3 γ = 5 γ = 7 γ = 2 γ = 3 γ = 5 γ = 7
8 16 0.0074 0.0138 0.0120 0.0078 0.0085 0.0060 0.0020 0.0060

0.2633 0.0828 0.0240 0.0085 0.0678 0.0040 0.0000 0.0000
8 24 0.0182 0.0040 0.0073 0.0060 0.0093 0.0060 0.0040 0.0133

0.2105 0.0573 0.0040 0.0020 0.0220 0.0000 0.0000 0.0000
15 16 0.0357 0.0217 0.0145 0.0290 0.0308 0.0278 0.0060 0.0093

0.1240 0.0515 0.0099 0.0052 0.0184 0.0034 0.0000 0.0000
15 24 0.0160 0.0120 0.0185 0.0073 0.0120 0.0020 0.0133 0.0080

0.1062 0.0328 0.0042 0.0017 0.0117 0.0000 0.0000 0.0000
50 16 0.0977 0.1021 0.0650 0.0642 0.0676 0.0716 0.0486 0.0330

0.0345 0.0138 0.0021 0.0021 0.0051 0.0002 0.0000 0.0000
50 24 0.1062 0.1337 0.0549 0.0562 0.0610 0.0545 0.0463 0.0420

0.0288 0.0086 0.0011 0.0004 0.0034 0.0002 0.0000 0.0000

Table 4.2: Average false positive and average false negative rates for the simultaneous test
with nominal level 0.05. Average false positive rate is top value

n = 50 n = 100
L λ γ = 2 γ = 3 γ = 5 γ = 7 γ = 2 γ = 3 γ = 5 γ = 7
8 16 0.0718 0.0726 0.0702 0.0603 0.0512 0.0433 0.0293 0.0343

0.0668 0.0213 0.0040 0.0020 0.0120 0.0000 0.0000 0.0000
8 24 0.0756 0.0854 0.0762 0.0450 0.0548 0.0400 0.0326 0.0363

0.0440 0.0040 0.0000 0.0000 0.0065 0.0000 0.0000 0.0000
15 16 0.1233 0.1132 0.1177 0.1146 0.0975 0.0709 0.0378 0.0360

0.0436 0.0106 0.0008 0.0009 0.0025 0.0000 0.0000 0.0000
15 24 0.1348 0.1141 0.0861 0.0885 0.0543 0.0273 0.0352 0.0327

0.0350 0.0077 0.0027 0.0000 0.0025 0.0000 0.0000 0.0000
50 16 0.2033 0.2445 0.2238 0.2001 0.1544 0.1528 0.0925 0.0905

0.0178 0.0043 0.0011 0.0013 0.0017 0.0002 0.0000 0.0000
50 24 0.2433 0.2884 0.1923 0.1848 0.1403 0.1264 0.1080 0.0884

0.0124 0.0020 0.0004 0.0002 0.0015 0.0000 0.0000 0.0000

We evaluated the performance of our proposed method with two alternative procedures.
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Alternative procedure 1 used an exact binomial test based on the simulated RNA read counts

in order to estimate the unknown genotype-ASE status. Our test was performed under the

null hypothesis p = 0.50 with alternatives p > 0.50 and p < 0.50 corresponding to geno-

types AA and TT, respectively. Following genotype-ASE state imputation, we performed

an ordinary least squares post Lasso technique using the simulated phenotypic data as the

response and the estimated genotype-ASE statuses as predictors. Thus, we did not consider

ASE estimation in this alternative procedure. The average false positive and average false

negative rates were calculated under the same parameter scenarios as our proposed method.

Figure 4.4: Average false negative rates and average false positive rates for alternative
procedure 1. Facets in row 1 are for n = 50. Facets in row 2 are for n = 100.

Figure 4.4 depicts the average false positive and average false negative rates. When n

increases from 50 to 100, the average false negative rate decreases slightly. However, we

do not see the precipitous decline in average false negative rates as heritability increases,

compared to our proposed method. Likewise, the average false positive rate decreases as

the sample size increases. As the number of SNPs increases, the average false positive rate
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increases and is much higher than the average rates in Figure 4.3. Table 4.3 provides the

raw values for all parameter combinations.

Table 4.3: Alternative method 1, average false positive and average false negative rates for
the single test with significance level 0.01. Average false positive rate is top value

n = 50 n = 100
L λ γ = 2 γ = 3 γ = 5 γ = 7 γ = 2 γ = 3 γ = 5 γ = 7
8 16 0.0312 0.1750 0.0000 0.0500 0.0000 0.0309 0.0714 0.0333

0.4864 0.4869 0.4867 0.4843 0.4864 0.4726 0.4752 0.4746
8 24 0.0714 0.1190 0.0476 0.1136 0.0294 0.1250 0.0000 0.0750

0.4886 0.4884 0.4845 0.4850 0.4876 0.4776 0.4674 0.4578
15 16 0.2500 0.0000 0.1000 0.2304 0.1190 0.1133 0.0808 0.0469

0.2592 0.2577 0.2587 0.2579 0.2528 0.2513 0.2434 0.2469
15 24 0.2564 0.1667 0.1369 0.1591 0.0526 0.0000 0.0778 0.0783

0.2608 0.2555 0.2519 0.2538 0.2509 0.2493 0.2447 0.2424
50 16 0.3646 0.5370 0.4674 0.2978 0.2892 0.2179 0.3053 0.2048

0.0778 0.0782 0.0763 0.0753 0.0767 0.0740 0.0757 0.0719
50 24 0.4769 0.3833 0.4031 0.3476 0.2325 0.1471 0.2546 0.1333

0.0782 0.0775 0.0750 0.0760 0.0762 0.0757 0.0714 0.0723

The weak performance of alternative method 1 comes from two sources. First, the bino-

mial test results in less accurate genotype predictions compared to (4.6). Assuming genotypes

follow a Markov process and using a hidden Markov model to impute their state provides ex-

tra information that results in accurate predictions (Ferguson-Smith 2001). Second, correctly

predicted heterozygous states do not consider ASE.

For alternative method 2 we estimated an allele-specific expression ratio directly from

the simulated RNA read counts. Let ˆASEil be an estimated quantity for ASE such that

ˆASEil =
Xilref

Xilref
+Xilalt

i = 1, . . . , n; l = 1, . . . , L, (4.18)

where we define A to be the reference allele and T to be the alternative allele. Again, we

performed an ordinary least squares post-Lasso procedure in conjunction. The average false

positive and average false negative rates were calculated under the same parameter scenarios

as our proposed method and alternative method 1. Figure 4.5 and Table 4.4 illustrate that
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the performance is similar to alternative method 1 and inferior to our proposed method with

regards to false positive and false negative metrics.

Figure 4.5: Average false negative rates and average false positive rates for alternative
procedure 2. Facets in row 1 are for n = 50. Facets in row 2 are for n = 100.
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Table 4.4: Alternative method 2, average false positive and average false negative rates for
the single test with significance level 0.01. Average false positive rate is top value

n = 50 n = 100
L λ γ = 2 γ = 3 γ = 5 γ = 7 γ = 2 γ = 3 γ = 5 γ = 7
8 16 0.0938 0.2111 0.1522 0.1391 0.0000 0.0185 0.0455 0.0095

0.4875 0.4917 0.4867 0.4817 0.4860 0.4738 0.4710 0.4680
8 24 0.1250 0.0000 0.1190 0.1481 0.1667 0.0962 0.0556 0.0000

0.4876 0.4850 0.4861 0.4832 0.4924 0.4793 0.4716 0.4623
15 16 0.3000 0.3148 0.1618 0.1458 0.0702 0.0938 0.0500 0.1000

0.2628 0.2614 0.2552 0.2552 0.2529 0.2443 0.2490 0.2455
15 24 0.1154 0.3182 0.1746 0.2283 0.0000 0.0909 0.1496 0.0208

0.2591 0.2626 0.2521 0.2562 0.2598 0.2517 0.2399 0.2499
50 16 0.3968 0.4011 0.4141 0.4429 0.2083 0.1607 0.1865 0.2033

0.0787 0.0756 0.0770 0.0778 0.0773 0.0773 0.0746 0.0745
50 24 0.4009 0.4190 0.5042 0.5198 0.2633 0.2333 0.2646 0.1470

0.0771 0.0777 0.0773 0.0758 0.0765 0.0737 0.0732 0.0720

Figure 4.6 characterizes the discrepancy between an ASE estimate from RNA read counts

defined in (4.18) and an ASE estimate using our proposed hierarchical model. For values

less than 0.50, the hidden Markov model ASE estimate is greater than our naive estimate in

(4.18). Above 0.50 the hidden Markov model ASE estimate is less than our naive estimate.

Figure 4.6: ASE estimates from the hidden Markov model compared to simulated raw
allele count ratios. Hidden Markov model imputed ASE ratios with value less than 0.50 are
marked as red, and values above 0.50 are marked as blue.
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Through our simulation analysis, our hierarchical model appears to perform better than

two alternative procedures at identifying SNPs with cis-acting effects on phenotypic varia-

tion.

4.5 An empirical study

The following paragraph provides some of the data gathering and processing details as

explained in Steibel et al. (2015). RNA sequence data was obtained from 24 female pigs

from an F2 cross of Duroc and Pietrain breeds (Choi et al. 2012, Choi et al. 2011, Edwards

et al. 2008a, Edwards et al. 2008b, Steibel et al. 2011). Protocols for RNA sequencing

and the accuracy of genotype calling using a hidden Markov-ASE model have already been

established in Steibel et al. (2015). To summarize the process, RNA from each sample was

reverse transcribed, fragmented, barcode-labeled and sequenced on an Illumina HiSeq 2000

(100 bp, paired-end reads). After quality control filtering, sequence reads were aligned to

reference genome (Sus scrofa 10.2.69 retrieved from the Ensembl database) using Tophat

(Trapnell et al. 2009). Coding SNP discovery and genotyping were done with VarScan

(Trapnell et al. 2009). We focused on chromosome 13 and extracted counts of reads agreeing

with reference (R) or alternative (A) allele with respect to the reference genome at putative

5364 cSNP and we retained read counts on 65 SNPs that could be independently validated

using a SNP chip (Steibel et al. 2015). In addition to the RNA sequence data, 45 minute

post-mortem meat pH was recorded in these animals (Edwards et al. 2008b) and served as

our phenotypic response variable for analyses.

The RNA sequence data we analyzed is available in the HMMASE R package which is

available at http://www.stt.\msu.edu/users/pszhong/HMMASE.html. The data set was

partitioned so that the minimum number of SNPs in a segment is 30. Our proposed proce-

dure was applied to each segment of RNA sequence data. Figure 4.7 depicts estimates for

significant SNPs along with their SNP ID number. For example, the second segmented data

set produced four significant SNPs: 12256008, 12400307, 12403644, and 12404379.
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Figure 4.7: Estimates for SNPs. Significant SNPs are displayed with their respective ID
provided in the real data set. IDs correspond to the ordered locations.

We investigated the effects of an estimated ASE ratio from the hidden Markov model

compared to the naive estimate defined in (4.18). Figure 4.8 depicts the relationship between

the two estimates, and reveals a shrinkage around each Beta distribution’s mode of 0.25 and

0.75, respectively. For values below the respective mode, the hidden Markov ASE estimate

is less than the raw allele count ratio, and for values above the respective mode, the hidden

Markov ASE estimate is greater than the raw allele count ratio.
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Figure 4.8: ASE estimates from the hidden Markov model compared to real raw allele
count ratios. Hidden Markov imputed ASE values conditional on Gil = 3 and Gil = 4 are
marked as blue and red, respectively.

Figure 4.9: ASE estimates from the hidden Markov model compared to real raw allele
count ratios. Hidden Markov imputed ASE values conditional on Gil = 3 and Gil = 4 are
marked as blue and red, respectively.
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CHAPTER 5

CONCLUSION

5.1 Introduction

In this chapter we summarize the salient contributions to the field of Statistics based on

the content of Chapters 2 through 4. We also introduce details to new and exciting research

challenges.

5.2 Summary of contributions

In Chapter 2, we proposed a novel nonparametric test procedure for testing the temporal

homogeneity of covariance matrices with high-dimensional longitudinal data. The proce-

dure aims to detect and identify change points among a temporally dependent collection

of covariance matrices. In Chapter 2, a new test statistic was introduced, and theoretical

results were derived under an asymptotic setting in which n and p diverge and T is finite.

The test statistic’s asymptotic distribution was derived under mild dependence assumptions

but with no assumption of sparsity and no requirement on the relationship between n and

p. We also proposed a procedure to identify the locations of change points through binary

segmentation. The corresponding change point identification estimator’s rate of convergence

was investigated and shown to be consistent provided an adequate signal-to-noise ratio ex-

ists. Numerical studies demonstrated the finite sample performance of our procedure. These

developments expanded the field of Statistics by pioneering a robust procedure to detect

and identify change points among covariance matrices in the presence of high-dimensional

longitudinal data.

In Chapter 3, we widened the scope of applicability with regards to the procedure de-

veloped in Chapter 2. Theoretical results were derived under an asymptotic framework in

which n, p, and T all diverge. We established the test statistic’s asymptotic distribution and
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demonstrated that the change point identification estimator’s rate of convergence depends

on n, p, T , and the signal-to-noise ratio. Therefore, the estimator was also shown to be con-

sistent in a diverging T setting, provided an adequate signal-to-noise ratio exists. Numerical

studies demonstrated the finite sample performance for a large T setting. Chapter 3 also

addressed computation challenges. Recursive formulae were derived as were computation effi-

cient forms of U-type statistics. In addition, we proposed an accurate quantile approximation

procedure to via an estimated correlation matrix. The overall computation complexity was

reduced from the order pn4T 6 to the order of pn2T 3. These theoretical and computational

developments of Chapter 3 made our procedure applicable to high-dimensional functional

data and allowed us to demonstrate our method using a task-based fMRI data set. Thus, the

contribution to Statistics in Chapter 3 is an expanded scope of the cutting-edge procedures

introduced in Chapter 2.

In Chapter 4, we developed a hierarchical model to understand the relationship between

allele-specific expression and phenotypic variation. Our hierarchical model was able to use

RNA sequence data and identify SNPs with ASE that have a cis-acting effect on a phenotypic

response. The performance is accurate and can quickly be applied through a combination of

the EM algorithm and Lasso procedure.

5.3 Future research

The procedures established in Chapter 2 and extended in Chapter 3 required mild as-

sumptions but did not allow much flexibility in terms of n and T . For example, in many

longitudinal studies patients drop out, measurements are missing at random or non-random

time points, and the sample size can be extremely small or even one. The methods de-

veloped in Chapters 2 and 3 will not be applicable to data under these settings. More

work is necessary to accommodate a wider domain of real-world data and problems. One

valuable extension of our work will be to develop a procedure for single-subject inference

in high-dimensional longitudinal data and high-dimensional functional data. In terms of
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a homogeneity test for covariance matrices, this setting will allow for an increase in scope

of applications due to more realistic assumptions, and a sample size requirement of only

one. For genetic or fMRI data, an effectively developed procedure will invoke a personalized

medicine approach and have a greater benefit to the individual patient. Other potential

applications of this work would include real estate and financial data, and motion sensor

data for activities.

From a computation standpoint, accurate and fast approximations could be developed

to handle situations where T is of the order 1000. Even with a high-performance computing

cluster, it is not practical to apply our proposed procedure for massive values of T . However,

as technology improves and longitudinal studies expand, the demand to address massive

high-dimensional longitudinal data will increase. It is paramount that statistical methods

can produce accurate and fast results for practitioners.

A natural extension to the model proposed in Chapter 4 is to develop a unified likeli-

hood approach in a hierarchical framework. Rather than only use RNA read count data to

predict the underlying genotype with ASE status, we could perform this prediction given

phenotypic data and RNA read counts. The additional information should improve predic-

tion accuracy. From a theoretical perspective, a unified likelihood approach would allow

for statistical inference, and under certain conditions consistency and asymptotic normality

could be proved. From a computation perspective, we could investigate a procedure that

performs variable selection and parameter estimation through a penalized EM algorithm or

penalized variational EM algorithm.
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Indian Journal of Statistics: Series A, 48(3), 339–353.

Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B, 68(1):49–67.

Zacks, J., Speer, N., Swallow, K., Braver, T., & Reynolds, J. (2007). Event
perception: A mind-brain perspective. Psychological Bulletin, 133(2), 273–293.

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., & Breakspear, M. (2014).
Time-resolved resting-state brain networks. Proceedings of the National Academy of Sci-
ences, 111, 10341–10346.

Zhang, C. (2010). Nearly unbiased variable selection under minimax concave penalty. An-
nals of Statistics, 38(2), 894–942.

Zhang, C., Bai, Z., Hu, J., & Wang, C. (2018). Multi-sample test for high-dimensional
covariance matrices. Communications in Statistics - Theory and Methods, 47:13, 3161–
3177.

Zhang, J. & Boos, D. D. (1992). Bootstrap critical values for testing homogeneity of
covariance matrices. Journal of the American Statistical Association, 87, 425–429.

Zhang, C. & Zhang, S. (2013). Confidence intervals for low dimensional parameters in
high dimensional linear models. Journal of The Royal Statistical Society: Series B, 76(1),
217–242.

Zhao, P. & Yu, B. (2006). On Model Selection Consistency of Lasso. Journal of Machine
Learning Research, 2541–2563.

Zheng, S., Bai, Z., & Yao, J. (2015). Substitution principle for CLT of linear spectral
statistics of high-dimensional sample covariance matrices with applications to hypothesis
testing. Annals of Statistics, 43, 546–591.

Zhu, L.-X., Ng, K., & Jing, P. (1992). Resampling methods for homogeneity tests of
covariance matrices. Statistica Sinica, 12, 769–783.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association, 101(476):1418–1429.

164



Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B, 67(2):301–320.

165


	List of Tables
	List of Figures
	Key to Abbreviations
	Introduction
	Technology and the field of statistics
	Low to high-dimensional data
	Independent to dependent data
	Change point detection and identification
	High-dimensional time dependent data
	Dissertation outline

	Homogeneity tests of covariance matrices with high-dimensional longitudinal data
	Introduction
	Basic setting
	Homogeneity tests of covariance matrices
	Non-Gaussian random errors
	Power-enhanced test for sparse alternatives

	Change point identification
	Simulation studies
	Power-enhanced test statistic
	Non-Gaussian random errors
	Accuracy of correlation matrix estimator of VnD
	Comparison with a pair-wise based method

	An empirical study
	Technical details
	Proofs of lemmas
	Proofs of main results


	Covariance Change point detection and identification with high-dimensional functional data
	Introduction
	Model
	Change point detection
	Computation of the proposed statistics
	Change point identification
	Simulation studies
	An empirical study
	Technical details
	Proofs of lemmas
	Proofs of theorems


	A hidden Markov approach for QTL mapping using allele-specific expression SNPs
	Introduction
	A hidden Markov model for SNP genotype calling
	Phenotypic model specification
	Prediction of ASE ratios
	Identification of quantitative trait loci

	Simulation studies
	An empirical study

	Conclusion
	Introduction
	Summary of contributions
	Future research

	Bibliography

