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ABSTRACT 

 

DEVELOPING ACTIVITY DATA FROM REMOTE SENSING FOR REDD+ MONITORING 

IN TROPICAL MIOMBO WOODLANDS 

 

By 

 

Daniel J. Zelenak 

 

The country of Malawi is experiencing some of the highest rates of deforestation in Africa.  Of 

particular concern are the country’s Miombo woodlands—a unique type of dry woodland that is 

made up from a mosaic of upper and lower canopy species.  Miombo woodlands are threatened 

by expanding agriculture and demand for fuel wood, which is the primary energy source for the 

majority of Malawi’s population.  Efforts to map areas of Miombo degradation can be assisted 

by remote sensing technologies and data sets, which can be much more cost efficient than in-situ 

measurements.  An effort was made to map the locations of deforestation and degradation of 

Malawi’s Miombo woodlands by comparing time-series Landsat data.  NDVI and fractional 

cover were used to quantify the presence of vegetation throughout time, and a change algorithm 

is used to identify areas of vegetation loss.  This information can be used to develop activity data 

which guides REDD+ efforts in the country of Malawi.      
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Chapter 1: Introduction 
 

 

I. Remote Sensing of Forests and Woodlands 

Remote sensing is the science of collecting observational data on a phenomena using an 

instrument which is not in direct contact with the phenomena being observed.  Since the early 

1970s remote sensing has been used to map and monitor the earth’s surface, and considerable 

emphasis has been focused on monitoring the land surface. Such instruments have been deployed 

in aircraft or on earth orbiting satellites and have used active and passive sources of energy for 

detection and measurement of surface properties.  Some forms of active remote sensing include 

RADAR and SONAR, in which the instrument provides the source of energy that is being 

emitted to interact with a target surface and measured as a reflected signal.  Passive remote 

sensing refers to instruments that use a natural source of energy to collect information about a 

target.  For example, a satellite that measures the radiant energy from solar output reflected from 

the earth surface is considered a passive instrument; such instruments measure the interactions of 

the sun’s energy with the surface of the earth.  The radiant energy, or electromagnetic energy, 

that strikes the earth is absorbed or reflected by different surface objects to varying degrees 

according a specific spectral response of the surface material, allowing measurements of the 

surface properties across different parts of the electromagnetic spectrum.  This allows materials 

to be identified based on their unique spectral signatures (Lillesand, Kiefer, and Chipman 2008).  

One of the most important earth observations is that of land used and land cover change 

(LULCC) monitoring using optical sensors on polar orbiting satellites, such as the Landsat series 

which has been continuously operating through a series of platforms since 1973. 
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The use of remote sensing to identify different types of land use and land-cover as well as 

monitor change has been well established as a body of theory and application in the remote 

sensing technical communities. One of the great advantages of routine repeat observations from 

orbital systems is the ability to consistently monitor change by comparing imagery throughout 

time for the same areas of the earth.  As such satellite remote sensing has also been demonstrated 

as an effective means for determining the extent of deforestation and forest degradation, which 

are forms of LULCC (Goetz and Dubaya 2011; Skole and Tucker 1993).  Forests are of 

particular interest in the field of LULCC because they play a significant role in many important 

environmental processes and problems, such as the global carbon cycle (Bonan 2008), surface-

climate interactions, quantification of richness of biodiversity, and information on human 

systems including livelihoods and food security (UNFAO 2010). 

Much work has been done using satellite data for measuring forest cover and forest cover 

loss in the tropics (Broich, et al. 2011; Broich, et al. 2011; Hansen, et al. 2008; Hansen, Stehman, 

et al. 2008; Hansen et al. 2003; Hansen, et al. 2010; Hansen et al. 2009; Navratil 2013; Skole and 

Tucker 1993; Matricardi et al. 2007; Matricardi et al. 2010).  The abundance of research focused 

on tropical deforestation shows how important the tropical forest ecosystems are to the rest of the 

biosphere, and it also highlights how serious the problem of forest loss is in these regions.   

Although far less studied than closed canopy tropical forests, LULCC in tropical 

woodlands and savannas around the world is also an important agent of the global environment.  

There is particular concern for the woodlands of Africa, especially the Miombo woodlands and 

the rich biodiversity that they contain. These ecosystems cover approximately 2.7 million km2 

and constitute the largest area of tropical seasonal woodlands globally (Frost 1996).  However, as 

elsewhere (e.g. South America), much of the remote sensing monitoring work in Africa has 
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focused on tropical rainforests (e.g. Matthew C. Hansen, Roy, et al. 2008).  Miombo woodlands 

have not been studied as extensively with remote sensing, but some country-specific work has 

been done to examine the potential conversion land supporting Miombo.   

The woodlands referred to as Miombo are a mosaic of over 8,500 different species.  The 

most prevalent canopy species are from the family Fabaceae, subfamily Caesalpinioideae, and 

include the genera Brachystegia, Julbernardia, and Isoberlinia.  While Miombo can occur as a 

closed-canopy woodland, most places in which it occurs are open canopy systems with an 

abundance of under-canopy flora that thrive due to the ability of sunlight to pass through the 

upper canopy layer.  The geographic distribution of Miombo in Africa includes the region north 

of the Equator extending south of the Tropic of Capricorn.  This includes Tanzania, the 

Democratic Republic of the Congo, Angola, Zambia, Malawi, Zimbabwe, and Mozambique.  A 

distinction can be made between wet and dry Miombo, which is based upon the amount of 

rainfall that a particular region receives.  However, all Miombo is characterized by a warm 

seasonal wet season (Frost 1996; Ribeiro et al. 2012; Desanker et al. 1997).   

Miombo experiences seasonal variation which makes certain times of the year more ideal 

for remote sensing observations.  There are 5 distinguishable phenology periods: a warm and dry 

pre-rain season in September and October, an early rainy season in November and December, a 

mid-rainy season in January and February, a late rainy season in March and April, and a cool 

early dry season from May to August.  The majority of Miombo species lose their leaves in the 

dry season from August to October.  New leaves begin forming in the warm and dry period 

before the rainy season begins (Chidumayo and Frost 1996).  An ideal time to use remote 

sensing for monitoring Miombo is during the early dry season before significant leaf-loss has 

begun (Hudak and Wessman 2000).  Furthermore, the minimum canopy cover for a land area to 
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be defined as a forest is 10% and must cover a minimum of 0.5 hectares according to a definition 

used by the United Nations Food and Agriculture Organization (UNFAO 2015).  Using leaf-on 

imagery makes it possible to detect forest cover at the Landsat resolution of 30-meters. 

 

II. Climate Change, REDD+, and Malawi 

Human activities, such as the burning of fossil fuels, cause the release of carbon dioxide 

(CO2) to the atmosphere.  CO2 is one of the gaseous forms that carbon takes in the global carbon 

cycle. The global carbon cycle includes processes that cycle carbon between biological and 

geochemical forms:  carbon enters the biosphere via primary production (i.e. photosynthesis) and 

is transferred to the hydrosphere and atmosphere via chemical reactions or physical processes. 

Respiration returns carbon to the atmosphere. Removals from the atmosphere to the oceans occur 

through both biological production and physical-chemical diffusion. The oceans return carbon to 

the atmosphere through biological and physical-chemical process. CO2 is a GHG because its 

molecular structure readily absorbs radiation and radiates heat energy to the earth’s surface that 

would otherwise escape into space.  This is the greenhouse effect, which as a naturally occurring 

process is important because this trapped heat allows the earth to be warm enough to support life.  

CO2 is just one of several radiatively-active gasses (e.g. chlorofluorocarbons, methane (CH4) and 

nitrous oxide (N2O)) that are released by human activities.  CO2 is an important GHG when 

discussing the human role in climate change because it is capable of remaining in the atmosphere 

for long periods of time, which allows for a net accumulation if total emissions of CO2 are 

greater than sinks over time.  Studies have shown that the burning of fossil fuels has caused a 

steady and quantifiable increase in the concentration of atmospheric CO2 since the industrial 

revolution (Keeling et al. 1976; IPCC 1990); from 1750 to 2011 there was approximately 2,040 
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GtCO2 in emissions, of which 40% still remains in the atmosphere (IPCC 2014a).  GHGs are 

known to be responsible for the majority of the observed increase in global average surface 

temperatures by 0.5°C from 1951 to 2010.  (IPCC 2014a; IPCC 2014b). 

Deforestation and forest degradation are significant contributors to the total amount of 

anthropogenic GHG emissions.  These forms of LULCC represent emissions of CO2 because 

they diminish or entirely remove the capacity of the land to assimilate carbon from the 

atmosphere via primary production, and they reduce the overall stock of carbon stored on land.  

When stocks of carbon in ecosystems are reduced by deforestation and degradation, carbon in 

transferred to the atmosphere through biological decomposition or rapid oxidation (e.g. fires). 

Regeneration of ecosystems provide removals of carbon from the atmosphere when stocks of 

carbon increase. Coupled with increasing amounts of CO2 emissions from burning fossil fuels, 

these forms of LULCC represent a net flux of CO2 to the atmosphere.  Globally the Agriculture, 

Forestry, and Other Land Use (AFOLU) sector contributed approximately 10-12 GtCO2eq/yr 

(Gigatons of CO2 equivalents per year) between 1970 and 2010 representing about a quarter of 

all anthropogenic GHG emissions (Smith et al. 2014).  Of these emissions, a significant portion 

originated from the sub-sector of Forestry and Other Land Use (FOLU) which includes Land Use 

Change (LUC, also referred to as land use and land-cover change using the abbreviation 

LULCC).  It is estimated that deforestation and degradation of forests contributed about 12% of 

all anthropogenic GHG emissions between 1980 and 2010 (van der Werf et al. 2009). 

It is widely accepted in the scientific community that avoiding the most catastrophic 

repercussions of climate change will require keeping the increase in global surface temperature 

below 2°C (IPCC 2014a).  In the ‘business as usual’ scenario (i.e. continued positive flux of 

GHG emissions), the increase in temperature will likely exceed 4°C by the year 2100.  
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Therefore, any effective climate change mitigation policies and measures must include 

mechanisms to actively reduce emissions and increase sinks in the AFOLU sector, which must 

focus on reducing deforestation and forest degradation.  Remote sensing presents an efficient and 

accurate means to detect deforestation and forest degradation over   large areas.  In many cases 

this allows for monitoring of forests at a scale that would be impractical with ground-based 

observations and measurements. 

The UNFAO definition of forest requires a minimum 10% canopy cover and a minimum 

area of 0.5 Ha, with trees reaching a height of 5 meters or greater.  Deforestation is defined as the 

conversion of forest to some other form of land use, which includes a permanent reduction in 

canopy cover to below 10%.    Forest degradation is more difficult to define succinctly; it 

involves long term reduction of canopy cover due to human or natural activities but keeps the 

requirements for land cover classification of forest (i.e. the canopy cover remains above 10%).  

Forest degradation also implies a long-term reduction in the capacity of a forest to sustain 

biodiversity, provide resources, and sequester carbon from the atmosphere (UNFAO 2015). 

The need to accurately measure activity data as related to forest clearing and degradation 

is essential for the implementation of REDD+ (Reduced Emissions from Deforestation and 

Degradation with the ‘plus’ symbolizing efforts to promote conservation, sustainable forestry, 

and enhancement of carbon stocks) (Corbera and Schroeder 2011).  The IPCC defines activity 

data as a magnitude of the emissions or removals due to some human activity in a particular 

sector over a certain period of time.  In the forestry sector, activity data may refer to 

measurements of area or area change of forested land. Overall emissions are calculated by 

multiplying an emission factor coefficient by the activity data.  An emission factor coefficient 
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therefore is some value which relates the activity data to a physical measurement of emissions 

(Houghton et al. 1997). 

Miombo woodlands are the dominant forest type in Malawi.  They are an ecosystem of 

particular concern due to recent increased rates of deforestation, which in turn drives GHG 

emissions as well as biodiversity loss.  In the country of Malawi, Miombo woodlands are 

essential to the local population as a source of domestic energy (Abbot and Homewood 1999).  

The demand for fuelwood has driven encroachment of wood harvesting into Malawi’s protected 

forests as other sources have become depleted.  As local sources become depleted, those 

responsible for collecting fuel wood for their households must travel increasingly farther abroad 

into the wilderness to find good quality wood (Brouwer, Hoorweg, and van Liere 1997). 

In addition to mitigating greenhouse gases, forests and woodlands in Malawi play an 

essential role in water quality and soil retention.  Expanding agriculture contributes to increased 

run-off, which in turn increases the amount of suspended solids and nutrients entering water 

bodies.  Studies have been done using remote sensing products to quantify the relationship 

between conversion of Miombo to negative impacts on water supplies. To provide improved 

information for land management practices in the Upper Shire River Catchment Palamuleni et al 

used Landsat data to map land cover change.  Imagery from 1989 and 2002 was processed using 

a maximum likelihood classifier to identify land cover types spatially.  The authors used these 

data to show that cultivated land increased while savanna, shrubs, and woodlands showed a 

decrease in cover area.  These changes in land cover were found to directly contribute to 

negative water impacts in the Upper Shire river catchment, such as increased run-off and 

degradation of ground-water supplies during the dry season (Palamuleni et al. 2011). 
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In Malawi, deforestation occurred at a rate of 3.5% from the mid 1970’s to the mid 

1980’s driven by expanding agriculture.  Fuel wood use was also a major contributing factor 

during this time period.  A study using AVHRR and MODIS NDVI to determine which land 

cover types were being converted to agriculture in the time period of the 1980’s to 2005 

(Chavula, Brezonik, and Bauer 2011).  The study found that savanna and woodland experienced 

significant loss due to agricultural expansion from 1982-1995, but then a slight increase in this 

land cover type was observed from 1995 to 2005.  They did concede the caveat of comparing 

AVHRR and MODIS due to the difference in resolutions (8km resolution for AVHRR compared 

to 500m resolution for MODIS).  These large differences in resolution make it difficult to make 

meaningful comparison in vegetation cover at the smaller MODIS scale. 

Other remote sensing work has been done to map land cover for the entire country of 

Malawi.  One such study compared the efforts of 4 separate methodologies carried out by 

different teams to map land cover and land use change in Malawi to assist with greenhouse gas 

reporting (Haack, Mahabir, and Kerkering 2015).  This review showed that each of the 

individual assessments produced different results in land cover change, due to differences in 

methods. This highlights the challenge of developing significant and reproducible remote sensing 

analysis of forest cover in Malawi. 

Hudak and Wessman used NDVI derived from 4 Landsat MSS imagery and field 

measurements to estimate changes in woody canopy cover from the satellite data.  A mean NDVI 

value from one of the dates was used to normalize NDVI for the other imagery to enable 

meaningful comparison between the different images.   Overall, they found a 1.8% reduction in 

woody canopy between 1981 and 1992 (Hudak and Wessman 2000). 
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There has been very little work on measuring degradation of open canopy woodlands and 

specifically Miombo woodlands in Malawi at the national scale.  Most of the remote sensing 

work to date has focused on closed canopy forests; this work has been shown to be both accurate 

and effective for detecting change in these types of forests.  Open canopy woodlands are more 

difficult to observe change in due to the presence of background soil signal in remote sensing 

data and other factors such as seasonality (e.g. differences in canopy during wet vs. dry seasons).  

Detecting change in open canopy woodlands is vital to REDD+ efforts which require activity 

data for these regions, especially in countries such as Malawi whose forest lands are dominated 

by this type of vegetation.  Furthermore, detecting change within open canopy woodlands in 

which the land cover itself does not change is also important for developing activity data.  This 

change is referred to as forest degradation and in countries such as Malawi represents a decrease 

in the woodland’s ability to conduct primary production and sequester carbon, which is why it is 

vital to national REDD+ efforts.  The aim of the research of this thesis has been to use Landsat 

data to demonstrate the feasibility of mapping of degradation and deforestation in sparse 

woodland systems at the national scale to support Malawi’s nation REDD+ Program.  

Furthermore, this research seeks to demonstrate a technique for detecting forest degradation at 

the national level, which could be deployed by nations using freely available data and 

technologies.  REDD+ efforts in Malawi will be better informed by an accurate method to 

provide reliable woodland degradation monitoring and mapping.  These methods could then 

inform efforts to produce national estimates of emissions and removals from activity data, as one 

component of a National Forest Monitoring System.  The goals of this thesis are therefore to 

provide the technical groundwork for conducting analysis of degradation of Miombo woodlands, 

demonstrate the usefulness of using freely available Landsat imagery as the source of analysis 
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data, and to provide spatial locations and area estimates of degraded or deforested Miombo in 

Malawi.  The techniques and data produced by this study will provide actionable scientific data 

and methodologies for the Malawi PERFORM project, which is a mechanism for assisting 

Malawi with preparing for REDD+.  The areas of interest for this study are specifically those 

gazetted as protected forest lands in the country of Malawi.   
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Chapter 2: Methods 
 

 

I:  Using Landsat Medium Resolution Data 

 

The Landsat data archive provides an invaluable source of earth observations which are 

ideal for studying land cover change for various reasons.  Landsat satellites have acquired 

imagery for most of the earth’s landmasses on a regular basis from 1972 up to the present day.  

Imagery is collected and made available to the public free of charge via the USGS Earth 

Resources Observation and Science Center (EROS) (Wulder et al. 2012; Woodcock et al. 2008).  

All Landsat data used in this study were acquired from the USGS EROS data archive using the 

Global Visualization Viewer (GLOVIS) Tool (http://glovis.usgs.gov).   

 
Landsat 5 Landsat 7 Landsat 8 

Sensor Thematic Mapper Enhanced 

Thematic 

Mapper Plus 

Operational Land 

Imager and Thermal 

Infrared Sensor 

Beginning Date of 

Operation 

March 1984 April 1999 April 2013 

End Date of Operation November 2011 Still in 

Operation1 

Still in Operation 

Repeat Time 16 days 16 days2 16 days2 

Table 1: Descriptive information for the Landsat satellites used for this study. 

1 Landsat 7 ETM+ imagery collected since May 2013 has gaps of missing data due to the failure 

of an on-board mechanism responsible for correcting the forward motion of the spacecraft. 

2The repeat times for Landsat 8 and Landsat 7 are 16 days, but they are in a staggered orbit 

allowing for a scene to be visited every 8 days 

 

The Thematic Mapper (TM) sensor was deployed on Landsat 5 in March 1984, and was 

operational until November 2011.  The Enhanced Thematic Mapper Plus (ETM+) sensor was 

deployed on Landsat 7 (Landsat 6 was launched in October 1993 but failed to reach orbit) in 

April 1999.  On May 31, 2003 the scan-line corrector (SLC) on Landsat 7, which adjusted the 
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instrument for the forward motion of the spacecraft, experienced a failure that causes all imagery 

collected since to have missing strips of data.  Although the data collected after the SLC failure 

is still radiometrically useful, it is difficult to use in change studies due to the significant areas of 

imagery missing (Wulder et al. 2008; Williams, Goward, and Arvidson 2006).  For this reason 

imagery categorized as “SLC-off” was avoided when possible.  Most recently, the Operational 

Land Imager (OLI) deployed on-board the Landsat 8 platform was launched in February 2013 

and is fully operational (Irons, Dwyer, and Barsi 2012).   

The spatial resolutions for the TM sensor, ETM+ sensor, and OLI sensor are all 30 

meters.  This medium-scale resolution provides a consistent spatial measurement over time that 

is adequate for landscape-scale studies (Woodcock and Strahler 1987; Skole and Tucker 1993; 

Matthew C. Hansen and Loveland 2012). 

Global coverage is provided by Landsat instruments on a 16-day period, so any given 

area of the earth is imaged once every 16 days by a single sensor, with the Landsat 7 ETM+ and 

Landsat 8 OLI sensors being the two that are currently active.  Furthermore, Landsat 7 and 

Landsat 8 orbits are staggered by 8 days meaning that any area of the earth is imaged once every 

8 days by these two platforms.  Therefore, the temporal resolution of 16 days—and in some 

cases 8 days when the missing scan-line corrector data are acceptable—makes the Landsat data 

archive incredibly useful for earth monitoring. 

The radiometric resolution of the sensors refers to the bit-depth which in turn gives an 

idea of how detailed the imagery is, or how many unique gray-levels are present in a single band 

of the image.  TM and ETM+ sensors collect data at 8 bits meaning that each band can have a 

maximum of 256 gray levels, while OLI collects data at 12-bits giving it 4096 maximum gray 

levels per band.  The 12-bit imagery is ideal due to its greater signal-to-noise ratio which is a 
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result of the greater bit depth, but data from the OLI is only available since 2013, which is only 

part of the historical record of this study.   

The spectral resolution of the TM, ETM+, and OLI sensors provide coverage in the 

visible, near-infrared (NIR), and short-wave infrared (SWIR) wavelengths.  Each Landsat 

platform contains a thermal infrared imaging sensor, but these products are not used in this 

study.  The visible, NIR, and SWIR portions of the electromagnetic spectrum are extremely 

useful for detecting different types of land cover (cf. vegetation, water, solid earth, snow and 

ice).  This study focuses on vegetation cover, and the visible and NIR portions of the spectrum 

provide the most useful information and the coverage provided by all Landsat instruments is 

ideal for this purpose.  Furthermore, radiometric calibrations have been well documented and 

this allows for the comparative analyses of imagery acquired from different Landsat platforms. 

The consistency of data acquisition and the ability to perform radiometric calibration allows for 

comparisons of imagery to accurately detect changes over space and time.   

We use Landsat data for a specific application that involves measuring a parameter 

referred to as vegetation fractional cover—the percentage of canopy vegetation to bare substrate 

within a given pixel (Matricardi et al. 2007; Matricardi et al. 2010; Matricardi et al. 2013).  The 

readily-available medium resolution satellite data from Landsat sensors represents a well-known 

and widely used tool for measuring forest cover change and also forest carbon stocks. 

 

II: Data Acquisition for Malawi 

The country of Malawi is covered by 11 nominal WRS-2 Landsat scenes from three paths 

and 6 rows of the Landsat World Reference System (Figure 1).  Landsat imagery was acquired 

for each of the path/row combinations covering Malawi, resulting in full national coverage at 

three different general time periods – 2000 (+2), 2009 (+1) and 2015 (+1) (Tables 2, 3, & 4)).  In 
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order to perform a change analysis of Miombo woodlands, three epochs were selected for which 

to compare the fraction of vegetation cover over time.  The use of epochal datasets comprising 

imagery that spans + 2-3 years rather than single date acquisitions was necessary.  There are a 

few reasons for this: cloud cover limits the availability of usable imagery at any given time, the 

coverage provided by Landsat sensors is periodic and clouds, haze, or smoke may severely limit 

the number of usable acquisitions, and in some instances scenes may not be available in the 

archive if they were not delivered to EROS from their original ground receiving stations.  Three 

mosaic datasets were created covering the early dry season phenological period to study 

degradation and deforestation on the national scale for Malawi.  This early phenological period 

of the dry season lasts from approximately May through the end of August.  However, leaf 

senescence in some locations begins as early as July and reaches a maximum in August, so we 

target acquisitions between May and June.  Imagery were selected with the aim of using the most 

temporally similar day-of-year (DOY) sets.  All Landsat data were projected to the WGS 84 

datum and UTM Zone 36 South projection, and clipped using a national boundary shapefile.  

This boundary shapefile was obtained from the Malawi Spatial Data Platform website 

(MASDAP 2013). 

Images were organized in terms of individual paths, and the country of Malawi is covered 

by three WRS-2 paths: 167, 168 and 169.  Paths correspond to the North-South direction of the 

satellite in orbit and therefore represent data that were collected in a single flyby.  This means 

that scenes within an individual path can be collected on the same day of year with north and 

south adjacent scenes being acquired sequentially.  This is advantageous because these data can 

be more seamlessly mosaicked and processed as a single path dataset due to the uniformity of 

atmospheric conditions and sun-earth-sensor geometry. 
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Table 2: Landsat scenes used to create the 1998-2002 mosaic.   

A note on naming conventions in the image IDs: ‘L’ refers to Landsat and the proceeding two 

characters represent the sensor.  ‘E7’ represents the enhanced thematic mapper plus (ETM+) 

sensor onboard Landsat 7, ‘T5’ represents the thematic mapper (TM) onboard Landsat 5, and  

‘C8’ represents the combined operational land imager (OLI) and thermal infrared sensor (TIRS) 

onboard Landsat 8.  The next 6 digits represent the path and row in the format PPPRRR.  The 

next 4 digits represent the year, and the next 3 digits represent the Julian day of year.  The final 

characters in the image ID represent the receiving station and archive version number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Path/Row Image ID Acquisition Date 

169/67 LE71690672002128SGS00 5/8/2002 

169/68 LE71690682002128SGS00 5/8/2002 

169/69 LE71690692002128SGS00 5/8/2002 

169/70 LE71690702002128SGS00 5/8/2002 

169/70 LE71690702001125SGS00 5/5/2001 

168/68 LT51680681998134JSA00 5/14/1998 

168/68 LE71680682002153SGS00 6/2/2002 

168/68 LT51680682001126JSA00 6/6/2001 

168/69 LT51680691998134JSA00 5/14/1998 

168/70 LT51680701998134JSA00 5/14/1998 

168/71 LT51680711998134JSA00 5/14/1998 

167/70 LE71670702002146SGS00 5/26/2002 

167/71 LE71670712002146SGS00 5/26/2002 

167/72 LE71670722002146SGS00 5/26/2002 
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Path/Row Image ID Acquisition Date 

169/67 LT51690672009155JSA02 6/4/2009 

169/68 LT51690682009155JSA02 6/4/2009 

169/69 LT51690692009155JSA02 6/4/2009 

169/70 LT51690702009155JSA02 6/4/2009 

168/68 LT51680682009164MLK00 6/13/2009 

168/68 LT51680682008146JSA00 5/25/2008 

168/68 LT51680682009148JSA02 5/28/2009 

168/69 LT51680692009164MLK00 6/13/2009 

168/69 LT51680692008178JSA00 6/26/2008 

168/69 LT51680692009148JSA02 5/28/2009 

168/69 LT51680692009180JSA02 6/29/2009 

168/70 LT51680702009164MLK00 6/13/2009 

168/70 LT51680702009148JSA02 5/28/2009 

168/70 LT51680702009180JSA02 6/29/2009 

168/71 LT51680712009148JSA02 5/28/2009 

168/71 LT51680712008130JSA00 5/9/2008 

167/70 LT51670702008155JSA01 6/3/2008 

167/70 LT51670702009173JSA03 6/22/2009 

167/71 LT51670712009157JSA02 6/6/2009 

167/72 LT51670722008139MLK00 5/18/2008 

167/72 LT51670722010128JSA00 5/8/2010 

167/72 LT51670722008123JSA00 5/2/2008 

167/72 LE71670722009149ASN00 5/29/2009 

     

 Table 3: Landsat scenes used to create the 2008-2010 mosaic. 
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Table 4: Landsat scenes used to create the 2014-2015 mosaic. 

 

Paths adjacent to the east and west correspond to different flyby dates.  Therefore the 

imagery of adjacent paths across a given East-West row will be slightly different in terms of 

reflectance due to differences in atmospheric conditions, climate conditions such as temperature 

and precipitation, and sun-earth-sensor geometry.  Normalization of these differences was 

necessary to reduce patch-work results in the mosaic datasets.  Normalization of an image is 

accomplished by using a simple linear regression model to relate one image to another image.   

Path/Row Image ID (gap-fill order) Acquisition Date 

169/67 LC81690672015156LGN00 6/5/2015 

169/67 LC81690672014137LGN00 5/17/2014 

169/68 LC81690682015156LGN00 6/5/2015 

169/68 LC81690682014137LGN00 5/17/2014 

169/69 LC81690692015156LGN00 6/5/2015 

169/70 LC81690702015156LGN00 6/5/2015 

168/68 LC81680682014178LGN00 6/27/2014 

168/68 LC81680682014130LGN00 5/10/2014 

168/69 LC81680692015165LGN00 6/14/2015 

168/69 LC81680692015133LGN00 5/13/2015 

168/70 LC81680702015165LGN00 6/14/2015 

168/70 LC81680702015133LGN00 5/13/2015 

168/71 LC81680712015165LGN00 6/14/2015 

168/71 LC81680712015133LGN00 5/13/2015 

168/72 LC81680722015165LGN00 6/14/2015 

167/70 LC81670702014155LGN00 6/14/2014 

167/70 LC81670702015158LGN00 6/7/2015 

167/71 LC81670712014155LGN00 6/14/2014 

167/71 LC81670712015158LGN00 6/7/2015 

167/72 LC81670722014155LGN00 6/14/2014 

167/72 LC81670722015158LGN00 6/7/2015 
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Figure 1: Malawi Path/Row Scenes.  Malawi is covered by 11 nominal WRS-2 path/row scenes 

which are shown here overlaid onto the Malawi international border for reference. 

 



19 
 

Ideally these two images will overlap and cover some similar ground features that remain 

static between the two acquisitions.  Reference points selected over these static areas can be used 

to generate the linear regression model that is used to estimate the normalization between the two 

input images (Elvidge et al. 1995; Matricardi et al. 2013).  Epoch 1 for the early dry season 

mosaic consists of imagery acquired in May of 1998 and 2002, epoch 2 was comprised of 

imagery collected in May and June of 2008 and 2010, and epoch 3 is comprised of imagery 

acquired in May 2014 and 2015.     

 

III: Workflow 

Raw Landsat data were acquired using the USGS GLOVIS online tool 

(http://glovis.usgs.gov).  Individual path/row scene multispectral datasets were first converted to 

at-sensor-radiance from the raw digital numbers (DNs), and then converted to top of atmosphere 

(TOA) reflectance by using the scene specific gain/offsets, scene specific solar elevation angles 

and sun-earth distance along with sensor-specific exoatmospheric spectral irradiances using the 

following equations (Chander, Markham, and Helder 2009):   

Convert raw DNs to spectral radiance: 

L
λ = (

LMAXλ−LMINλ
Qcalmax−Qcalmin

)
∗ (Qcal − Qcalmin) +  LMIN𝜆 

Convert spectral radiance to TOA reflectance: 

𝜌
𝜆 =  

𝜋∗𝐿𝜆∗𝑑2

ESUNλ∗cosθs

 

Clouds, cloud shadows, and water were detected and masked for each scene by using the 

fmask algorithm.  Fmask, which stands for function of mask, is a completely self-contained 

algorithm that uses an input Landsat scene to generate a thematic product which identifies each 

pixel as clear land, water, cloud, cloud shadow, or snow.  This is advantageous since no other 
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ancillary data or scene-specific parameterization is required to generate the mask, allowing for a 

more streamlined and efficient method of cloud and cloud-shadow detection.  Fmask works by 

taking advantage of known physical and spectral properties of clouds to identify potential cloud 

pixels.  Cloud shadows are identified using spectral characteristics with the near infrared band 

and the satellite viewing angle to accurately estimate shadow placement (Zhu and Woodcock 

2012).  Each mask was applied to its parent Landsat scene to recode as 0 any pixels that were 

flagged as cloud, cloud shadow, or water.  Furthermore, a buffer of 10 pixels surrounding any 

flagged pixel was used to remove any potentially undetected “boundary” pixels.  A serious 

caveat of using 10 pixels as a buffer is that there is a very likely increase in commission error 

causing usable clear-land pixels to be ignored.  This was mostly relevant for detected cloud and 

cloud shadow pixels, since clouds can have hazy pixels immediately surrounding them that are 

not detected by the algorithm, which themselves can cast a shadow that lowers the reflectance in 

the vicinity of the corresponding cloud-shadow.  The 10-pixel buffer helps to minimize the 

inclusion of contaminated pixels in the final masked products.   

The TOA reflectance conversion corrects for differences in sensor offsets and gains, solar 

zenith angles, sun-earth distance, and solar irradiances at the different times of acquisition.  

However, the TOA reflectance data still suffer from atmospheric interference that causes 

scattering, absorption, and refraction of light between the earth surface and the satellite sensor.  

There are numerous atmospheric correction methods which exist in varying degrees of 

complexity.  A radiative transfer model such as the 6S (Second Simulation of the Satellite Signal 

in the Solar Spectrum) attempts to account for this atmospheric interference to obtain a true 

surface reflectance (Vermote et al. 1997).  Models such as these are incredibly complex and 

oftentimes require image-specific ancillary data such as the aerosol optical thickness (AOT) to 
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produce accurate results. AOT is measured by ground-based weather stations and is not available 

at the necessary spatial or temporal distribution required to cover a single Landsat image due to 

the highly variable nature of the atmosphere—both over space and time.  A highly detailed and 

complex AOT correction was therefore not used for this study.   

On the other hand, other methods exist that approximate an atmospheric correction.  Such 

methods are not as accurate but are much simpler to apply to such a large dataset as was used in 

this study.  A dark object subtraction (DOS) technique was therefore employed to account for the 

additive nature of atmospheric interference (Chavez Jr. 1988).  Using the information within 

each individual image, it is possible to identify this effect and minimize it by calculating band-

specific correction factors.  A starting band value in the visible spectrum was selected first, and 

then the accompanying band correction factors were calculated from this starting value based on 

a relative scattering model (Chavez 1996).  The DOS technique can be easily applied to the 

imagery and was therefore chosen to produce the surface reflectance data for this study. 

Surface reflectance datasets for each epoch were then mosaicked by path, and gap-filling 

of masked pixels was accomplished where multiple seasonally homogenous images were 

available.  All of the images used for this process are listed in Tables 2, 3, and 4.  The 3 path 

datasets for each epoch were combined into a national mosaic using an averaging function for 

overlap areas to minimize contrast between adjacent paths.  The averaging function was a 

method of normalization by which a simple linear regression is applied to the overlap region of 

two adjacent scenes.  These mosaic datasets were then clipped to the Malawi national boundary 

to produce the final multispectral national mosaic for each epoch.   

A Normalized Difference Vegetation Index (see Chapter 3 Section II for description of 

this calculation) was calculated from the multispectral path mosaics rather than from the national 
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mosaics due to differences between adjacent paths that become apparent when combining them 

into a single dataset.  As mentioned above, adjacent paths do not mosaic seamlessly due to 

slightly different levels of greenness resulting from differences in acquisition dates.  This can 

have deleterious effects for the national mosaic change algorithm results by causing an unnatural 

patch-working effect.  To reduce this variability a scaling process was applied to the vegetation 

index path datasets to minimize false change detection owing to variations in pixel values for 

adjacent paths.  The scaling process mentioned here is the normalization by means of regression 

modeling using sample points of static surface targets that are present in the two input scenes or 

mosaics. 

A built-in random point generator for ArcMap (ArcGIS for Desktop (version 10.2.2) 

2015) was used to generate 1000 random sample points with a minimum spacing of 120 meters.  

The location of all points was constrained using a polygon boundary that covered the spatial 

extent of each path-overlap area.  This polygon was manually digitized using ArcMap.  The 

vegetation index pixel values were extracted at each point location from the path datasets and 

added to the attribute table of the random points vector file.  A column of pixel values was 

created for each path, and the values in each row represent the pixel values for an identical 

location shared by each path dataset allowing for the values at each location to be analyzed.  The 

columns were copied from the ArcMap attribute table into an Excel spreadsheet to perform 

regression analysis.  Path-to-path scaling was accomplished by identifying areas within the 

overlap of adjacent paths for which no the NDVI change was less than 20 percent.  This was 

done to filter out areas where the change in NDVI was more likely to be the result of an actual 

land-cover change, rather than the result from atmospheric effects.  It can be assumed that the 

vegetation index values for these areas should be nearly identical and that any difference is the 
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result of differing conditions at the time of acquisition rather than differences in vegetation cover 

(Hudak and Wessman 2000).  Mosaicking the scaled path dataset with the reference path dataset 

allowed for a visual inspection of the success of the scaling effort.  The 3 paths were then 

mosaicked together and clipped to the Malawi national boundary to create the national NDVI 

datasets for each time period. 

The NDVI was used in the calculation of vegetation fractional cover (fC).  The fractional 

cover un-mixes the NDVI pixels between two pure components: vegetation and bare soil.  

Therefore, the final result is a continuous fields raster dataset in which each pixel represents the 

proportion of pure vegetation on a scale from 0-1.  This is then rescaled to 0-100 to represent 

percentage vegetation cover by multiplying the fC by 100. 

NDVI provide a relative abundance of vegetation within each pixel as compared to other 

signal contributors (e.g. soil) within the pixel.  Vegetation indices such as NDVI therefore don’t 

provide a physical measurement of vegetation, but rather are representations of the ratios 

between particular bands of remote sensing data (Carlson and Ripley 1997).  Spectral mixture 

analysis (SMA) has been shown to provide a more accurate representation of vegetation on the 

ground than simply using NDVI (Elmore, et al. 2000).  A continuous fields product that 

quantifies a gradient of vegetation abundance across space and is comparable over time is the 

proposed product for the detection of miombo degradation in this thesis.  To achieve this, a 

spectral un-mixing method similar to SMA was employed to determine the percent abundance of 

vegetation in each pixel.  This improves upon the information provided by NDVI by separating 

out the signal components within a pixel and provides continuous fields data that estimate the 

physical abundance of vegetation as a percentage within each pixel. The usefulness of these data 

for detecting degradation is that percentage quantities can be compared over time to determine if 
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the relative abundance of vegetation at a given pixel has decreased.  This is an improvement over 

simply classifying the spectral data into thematic cover types and comparing classes for a given 

pixel over time (i.e. a methodology useful for the detection of closed canopy deforestation).  As 

described earlier, degradation occurs when there is a negative impact on a forest’s capacity for 

primary production while still maintaining the same land cover type.  This type of change would 

not be apparent when comparing thematic class types across time; rather it would be measurable 

when comparing the percentage abundance of vegetation over time.  Therefore, NDVI was used 

as an input to a two-endmember SMA to generate continuous fields products that provide the 

abundance of vegetation as a percentage within each pixel.  The two-endmember approach uses 

NDVI to separate the signal components of the NDVI value into a vegetation and non-vegetation 

percentage.  This process is described in greater detail in Chapter 3 Section III. 

Visual analysis was used to generate endmember sample areas for each path that 

represented pure Miombo and pure bare substrate pixels that remained consistent across all time 

periods and seasons.  Areas of interest (AOIs) were drawn in ERDAS Imagine (ERDAS Imagine 

2014) for these endmember sample areas.  The pixel values were then collected from the AOIs 

using the Spectral Signature tool in ERDAS Imagine.  The values sampled for each endmember 

were combined to calculate the average national dataset endmember values.  These values were 

then entered into the fractional cover model to calculate fC at the national scale for each time 

period. 
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Figure 2: Flowchart showing the workflow used to generate the national-scale datasets and 

change results 
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Chapter 3: Results 
 

 

I.  National Multispectral Mosaics 

 

 A national multispectral mosaic was generated for each of the three time periods.  The 

purpose of these is more for reference purposes, but they were also used for some of the change 

detection assessment.  The mosaics were stitched together using an averaging function, wherein 

the mean value of overlapping pixels in adjacent paths of images was used in order to reduce the 

patchwork effect between adjacent paths.  Histogram matching was also employed to further 

normalize the multispectral imagery by using path 169 as the reference dataset.  Also, the surface 

reflectance datasets calculated with the DOS technique were used as the source of the mosaic 

components. 
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Figure 3: The 1998-2002 multispectral mosaic.  The image is comprised of TM and ETM+ 

images stitched together using an averaging function for overlap areas and path to path histogram 

matching to reduce seamlines. 
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Figure 4: The 2008-2011 multispectral mosaic is composed almost entirely of TM imagery due 

to the SLC-off error on the ETM+ sensor for this time period.  One ETM+ SLC-off image was 

used for gap-filling path/row 167/72.  An averaging function was applied to overlap areas and no 

histogram matching was required. 
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Figure 5: The 2014-2015 multispectral mosaic is composed entirely of OLI imagery.  An 

averaging function was used for overlap areas and no histogram matching was required. 
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II. National NDVI Mosaics 

Plant physiology has unique properties which allows remote sensing of plant 

characteristics.  Photosynthesis causes plant leaves to be highly absorptive of the visible red 

portion of the electromagnetic spectrum.  Also, the physical structure of plant leaves makes them 

highly reflective of the near infrared portion of the electromagnetic spectrum.  A healthy tree 

canopy will therefore absorb most of the red visible light it receives for use in primary 

production while simultaneously reflecting much of the near-infrared light that also strikes it 

(Tucker 1979).  These spectral characteristics are nearly unique to plants and photosynthesis and 

can be used to easily detect the presence of vegetation, measure the extent of plant coverage, or 

even estimate primary production via remote sensing.  The red and near-infrared (NIR) 

reflectances of a surface can be plotted on an orthogonal axis to create what is referred to as a 

feature space image.  This plot visualizes the similarity and variation between two bands.  Since 

the red visible and near-infrared bands are sensitive to vegetation, portions of the plot between 

these bands correlate to either the presence of vegetation or bare soil.  This helps explain the 

basis for vegetation indices and how they utilize the unique spectral characteristics of vegetation 

in the red-visible and near-infrared portions of the electromagnetic spectrum (Lillesand, Kiefer, 

and Chipman 2008).   

A widely used vegetation index is the normalized difference vegetation index (NDVI).  

NDVI has historically been used as the index of choice for the study of vegetation dynamics in 

the field of remote sensing for decades.  It is easily calculated from the red and near-infrared 

bands of satellite imagery, such as that acquired by Landsat, using the following equation: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
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NIR and RED here refer to the reflectance values of the near-infrared and red bands respectively.  

NDVI has been shown to be directly correlated to biophysical characteristics of vegetation via a 

linear relationship with leaf area index (LAI) up to a particular value—generally between an LAI 

of 3 and 4 (Carlson and Ripley 1997).  NDVI becomes insensitive to increases in LAI beyond a 

certain value, and therefore cannot measure differences in very dense canopies once LAI 

saturation has been reached (Tucker 1979).  Therefore, NDVI may not be the best vegetation 

index for regions consisting of dense tropical canopies.  Miombo, however, has characteristically 

open canopy making NDVI suitable for detecting the presence and vitality of Miombo 

woodlands (Frost 1996). 

The NDVI mosaic datasets were calculated directly from the multispectral mosaic 

datasets using a graphical model in ERDAS Imagine.  The goal of these was to represent a high 

quality record in time of the abundance of vegetation at the national scale.  The values of NDVI 

range from -1 to 1, with 1 representing a higher abundance of “greenness”.  These datasets are 

displayed below in grayscale with darker regions corresponding to lower NDVI values and 

therefore lower abundances of vegetation.  These datasets were used as direct inputs into the 

model used to calculate fC at the national scale using a simple two-endmember linear un-mixing 

algorithm.   
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Figure 6: The national NDVI mosaic for the 1998-2002 time period. 
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Figure 7: The national NDVI mosaic for the 2008-2010 time period. 
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Figure 8: The national NDVI mosaic for the 2014-2015 time period. 
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III. National fC Datasets 

The spatial resolution of Landsat is 30 meters, which provides a default minimum 

mapping unit that is ideal for regional studies.  However, the area within a Landsat pixel, which 

is about 900 m2, is relatively large for representing the measurement of a heterogenous land 

cover.  Each pixel is potentially a mixture of land covers (e.g. canopy or soil) or land cover 

components (e.g. soil, green vegetation, shadow, stems and branches), all contributing to the 

overall reflectance signal.  Thus, the reflectance signal for a given pixel is the sum of its land-

covers or cover components.  These sub-pixel land-cover elements can therefore be quantified at 

the pixel-scale using a measure of fractional cover, i.e. the percent for which each land cover 

type contributes to the pixel’s reflectance signal for a particular wavelength, or range of 

wavelengths when speaking in terms of individual Landsat bands.  Quantification of these land 

cover types across a landscape consistently is integral to the use of satellite imagery to measure 

change across time (Adams et al. 1995).  There are a number of methods available for calculating 

fractional cover. 

Spectral mixture analysis (SMA) is the process by which the fraction components within 

a pixel are calculated for a given band with given endmember values that are unique to each land 

cover type for each band.  An endmember is simply the reflectance value for a particular 

homogenous land cover type at a particular wavelength or Landsat band.  Therefore, SMA 

requires knowledge of not only the land cover types present within a pixel, but also each land 

cover type’s endmember value at the given band.  Also referred to as a linear spectral mixture 

analysis (LSMA), a typical scenario is separating vegetation such as forest from non-

photosynthetic vegetation (NPV) and non-vegetation or bare soil (Cochrane and Souza 1998).  

An equation can then be used to describe the fraction component of each land cover type within 



36 
 

the pixel and solved by combining a least-square estimator with the constraining factor that all 

fractions must sum to 1 for each pixel (Lillesand, Kiefer, and Chipman 2008).   

Multiple endmember spectral mixture analysis (MESMA) builds upon SMA by charging 

that endmember values are variable throughout a satellite image (Roberts et al. 1998).  MESMA 

therefore accounts for this extra variation in an attempt to generate a more accurate fractional 

cover, but requires more field data measurements to model the variation of endmember types 

across the landscape.  MESMA is therefore a much more labor and computationally intensive 

algorithm best suited for very specialized scenarios for which extensive knowledge of the 

component reflectance characteristics exists. 

These two methods – SMA and MESMA -- were employed to calculate the fraction of 

land cover types for multispectral data.  This requires a great deal of computing and also requires 

determining several endmember values for each of the different land cover types.  The number of 

bands in the image typically determines the maximum number of endmembers required 

(Lillesand, Kiefer, and Chipman 2008).  The SMA approach used with multispectral imagery can 

be simplified by applying a linear un-mixing model to a vegetation index (Qi et al. 2000; Xiao 

and Moody 2005; Matricardi et al. 2010).  As described previously, vegetation indices take 

advantage of the unique spectral characteristics of vegetation—generally in the visible red and 

near infrared portions of the electromagnetic spectrum—to describe the level of “greenness” 

present in an image.  A linear un-mixing model uses a pure vegetation endmember and a pure 

bare soil endmember to calculate the fraction of vegetation present in each pixel with the 

following formula: 

𝑓𝐶 =  
𝑉𝐼 − 𝑉𝐼𝑏𝑎𝑟𝑒

𝑉𝐼𝑣𝑒𝑔 − 𝑉𝐼𝑏𝑎𝑟𝑒
∗ 100 
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Where VI is the value of the input vegetation index, VIbare is the endmember vegetation index for 

bare substrate, and VIveg is the endmember vegetation index for vegetation. The result is a raster 

file of continuous-.   

Selecting the best representative endmembers for pure land-cover types is essential for 

correctly un-mixing the materials of interest within each pixel.  There may be many different 

vegetation types within a Landsat scene.  However, the location of Miombo in the study area is 

well documented.  This allowed for accurately selecting pure pixels for determining endmembers 

associated with Miombo vegetation.  To ensure consistency between fractional cover datasets, 

endmember samples were taken from identical areas of interest (AOIs) for both time periods.  

This was done to minimize the effects of atmospheric scattering due to haze and effects due to 

phenology as a result of meteorological or atmospheric differences across the two dates.  This 

was because while both time periods are consistent in terms of seasonality and day of year 

(DOY) they may still exhibit slight differences due to these aforementioned factors.  Similarly, 

for bare substrate endmembers, samples were taken from the same AOIs across both time 

periods for areas that were consistently bare, such as roads and large barren agriculture fields.  

Endmembers were sampled from each of the paths of Landsat imagery in or around the three 

principle study areas identified by the Malawi PERFORM project.  These are the Perekezi, 

Ntchisi, and Liwonde forest reserves.   

The three national fC datasets were produced directly from the national NDVI mosaic 

datasets.  Endmembers were selected from each NDVI mosaic which represented pure vegetation 

and pure bare soil land cover types.  These were found by selecting areas of the image that 

represented these pure land covers by drawing polygons around the areas of interest.  The 

signature editor tool in ERDAS was then used to collect the NDVI values within each polygon.  
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The signature editor tool allowed for the calculation of the overall mean for each endmember 

value by combining the area of interest samples associated with each land cover type.  The tool 

also allowed for the verification of quality samples by the use of histograms to ensure samples 

had a normal distribution.  Once the endmembers were determined, they were input into an 

ERDAS graphical model which calculated the fC directly from the NDVI mosaic dataset.  This 

produced a national fC dataset for each time period.   
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Figure 9: The national fC dataset for the time period of 1998-2002. 
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Figure 10: The national fC dataset for the time period of 2008-2010. 
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Figure 11: The national fC dataset for the time period 2014-2015. 
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IV. Accuracy Assessment Using High-Resolution Imagery 

 

High resolution satellite imagery (spatial resolution of 1 m or less) was purchased from 

Apollo Mapping to support an accuracy assessment and validation of the fC results.  A search 

was performed for imagery with minimal cloud cover and ideal nadir conditions for coverage of 

the 3 study areas.  After searching, three images were selected for purchase that covered the 

forest reserves Perekezi and Liwonde.  These images were also selected based on their close 

temporal proximity to the Landsat imagery used in the early dry season analysis.  The Perekezi 

scene was a GeoEye-1 50 cm pan-sharpened orthorectified 4-band image acquired on May 31, 

2014.  Parts of Liwonde were covered by two images covering the east and west portions of the 

protected forest area.  The west scene was a WorldView-3 50 cm pan-sharpened orthorectified 4-

band image acquired on May 7, 2015, and the east scene was a WorldView-2 50 cm pan-

sharpened orthorectified 4-band image acquired on April 28, 2015.   

 

 

 

 

Table 5: High resolution satellite images used for the purpose of accuracy assessment of the 

fractional cover product 

 

High resolution imagery was obtained to create a classification of forest cover as a GIS 

layer which could be used as a reference layer surrogate to ground validation (i.e. ground truth).  

The reasoning behind this is that the high-resolution data represents an unmixed land cover 

image depicting spatial objects, usually individual trees, without mixed spectral responses. Thus, 

high resolution data directly portray what the models using medium-resolution Landsat imagery 

Image Target Sensor Acquisition Date 

Perekezi GeoEye-1 5/31/2014 

Liwonde (west) WorldView-

3 

5/7/2015 

Liwonde (east) WorldView-

2 

4/28/2015 
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predict.  However, classification of high-resolution imagery using traditional statistical classifiers 

is rather difficult because the sensor detects a much higher degree of spatial and spectral 

variation within each land cover type.  Therefore, it is necessary to introduce other decision 

factors or to altogether reduce the spectral variation to avoid over-abundant “noise” in the 

classified product.  In high-resolution imagery, the spatial distribution of pixels can be combined 

with the spectral characteristics of pixels to aid in developing contiguous groups of land cover 

classes in what is known as object-based classification.  Alternatively, unsupervised 

classification can be used to first partition the multispectral image into a pre-determined number 

of classes based on the spectral characteristics of the image.  Then, these classes can be manually 

combined into the desired final classified product.  Accuracy assessment was performed on the 

final classified product to determine the validity for further use.   

Classification and accuracy assessment of high-resolution imagery was performed using 

ERDAS Imagine.  For this workflow, the Advanced RGB clustering tool was used to first 

convert the DNs into a thematic layer of several hundred classes based on their spectral values.  

These classes were then grouped together manually by using the Grouping Tool to recode their 

class values to values corresponding to either vegetation or non-vegetation.  The Neighborhood 

Majority Function with a 3x3 moving window size was applied to the original classified products 

to remove noise.  The Accuracy Assessment tool was used to generate 100 randomly placed 

reference points.  The original high-resolution images with the false-color near-infrared band 

combination were then used as reference layers to code each sample point as vegetation, non-

vegetation, or background.  These reference classes corresponded to the classes present in the 

high-resolution classified image.  The final overall accuracy was 79%, 86%, and 89% for the 

Perekezi GeoEye-1 image, the Liwonde Worldview-3 image, and Liwonde Wordlview-3 image 
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respectively.  Based on the Kappa Statistic, the level of agreement for the classification is 

considered moderate for the Perekezi scene and substantial for the two Liwonde scenes (Landis 

and Koch 1977). 

 

 

 

Confusion Matrix – Perekezi GeoEye-1 Image 

  Reference Data 

Classified Data     Other Bare Soil Vegetation  Row Total 

Other 2 0 0 2 

Bare Soil 0 33 11 44 

Vegetation 0 10 44 54 

Column Total 2 43 55 100 

Table 6: The confusion matrix generated for the Perekezi GeoEye-1 high resolution 

vegetation/non-vegetation thematic layer. 

 

Accuracy Totals – Perekezi GeoEye-1 Image 

Class 

Name 

 Reference 

Totals 

Classified 

Totals 

Number 

Correct 

Producers 

Accuracy 

Users 

Accuracy 

Other 2 2 2 --- --- 

Bare Soil 43 44 33 76.74% 75.00% 

Vegetation 55 54 44 80.00% 81.48% 

Totals 100 100 79   
Overall Classification Accuracy =     

79.00%       

Table 7: Accuracy totals for the Perekezi GeoEye-1 high resolution vegetation/non-vegetation 

thematic layer. 
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Kappa (K^) Statistics – Perekezi GeoEye-1 

Image 

Overall Kappa Statistics = 0.5910 

Conditional Kappa for each Category 

Class Name Kappa 

Other 1 

Bare Soil 0.5614 

Vegetation 0.5885 

Table 8: Conditional kappa statistics for the individual classes, as well as the overall kappa 

statistic for the Perekezi GeoEye-1 classification. 

 

Confusion Matrix – Liwonde Worldview-3 Image 

  Reference Data 

Classified Data     Other Bare Soil Vegetation 

 Row 

Total 

Other 3 0 0 3 

Bare Soil 0 38 1 39 

Vegetation 0 13 45 58 

Column Total 3 51 46 100 

Table 9 : The confusion matrix generated for the Liwonde Worldview-3 high resolution 

vegetation/non-vegetation thematic layer. 

 

Accuracy Totals – Liwonde Worldview-3 Image 

Class Name 
 Reference 

Totals 

Classified 

Totals 

Number 

Correct 

Producers 

Accuracy 

Users 

Accuracy 

Other 3 3 3       ---   --- 

Bare Soil 51 39 38 74.51% 97.44% 

Vegetation 46 58 45 97.83% 77.59% 

Totals 100 100 86     

Overall Classification Accuracy =     

86.00%       

Table 10: Accuracy totals for the Liwonde Worldview-3 high resolution vegetation/non-

vegetation thematic layer. 
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Kappa (K^) Statistics – Liwonde Worldview-3 

Image 

Overall Kappa Statistics = 0.7375 

Conditional Kappa for each Category 

Class Name Kappa 

Other 1 

Bare Soil 0.9477 

Vegetation 0.5849 

Table 11: Conditional kappa statistics for the individual classes, as well as the overall kappa 

statistic for the Liwonde Worldview-3 classification. 

 

Confusion Matrix - Liwonde Worldview-2 Image 

  Reference Data 

Classified Data     Other Bare Soil Vegetation  Row Total 

         Other 1 0 0 1 

Bare Soil 0 50 11 61 

     Vegetation 0 0 38 38 

Column Total 1 50 49 100 

Table 12: The confusion matrix generated for the Liwonde Worldview-2 high resolution 

vegetation/non-vegetation thematic layer. 

 

Accuracy Totals - Liwonde Worldview-2 Image 

 Class 

Name 

 Reference 

Totals 

Classified 

Totals 

Number 

Correct 

Producers 

Accuracy 

Users 

Accuracy 

Other 1 1 1       ---   --- 

Bare Soil 50 61 50 100.00% 81.97% 

     

Vegetation 49 38 38 77.55% 100.00% 

         

Totals 100 100 89     

Overall Classification Accuracy =     

89.00%       

Table 13: Accuracy totals for the Liwonde Worldview-2 high resolution vegetation/non-

vegetation thematic layer. 
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Kappa (K^) Statistics – Liwonde Worldview-

2 Image 

Overall Kappa Statistics = 0.7838 

Conditional Kappa for each Category 

      Class Name Kappa 

      Other 1.00 

  Non-Vegetation 0.6393 

      Vegetation 1.00 

Table 14: Conditional kappa statistics for the individual classes, as well as the overall kappa 

statistic for the Liwonde Worldview-2 classification. 

 

 

Figure 12: Perekezi GeoEye-1 Imagery.  The multispectral image is on the left with the random 

sample points overlaid.  The thematic vegetation/non-vegetation image is on the right. 
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Figure 13: Liwonde Worldview-3 Imagery.  The multispectral image is on the left with the 

random sample points overlaid.  The thematic vegetation/non-vegetation image is on the right. 

 

 

Figure 14: Liwonde Worldview-2 Imagery.  The multispectral image is on the left with the 

random sample points overlaid.  The thematic vegetation/non-vegetation image is on the right. 
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V. Accuracy Assessment of the Landsat-based fC Product 

All GIS-related operations for this purpose were executed using ArcMap with the Spatial 

Analysis extension enabled.  Determining the accuracy of the fractional cover product was 

carried out using the previously created high-resolution vegetation/non-vegetation classification 

map.  This accuracy assessment was therefore done for the study areas of Perekezi and Liwonde 

due to the high-resolution imagery purchased for those sites.  First, subsets of the study areas 

were generated from the national fractional cover dataset early dry season time period 2014-

2015, which matched the high-resolution imagery acquisition dates and phenology most closely.   

To relate 30 meter Landsat-derived fractional cover to the high-resolution 0.5 meter 

vegetation/non-vegetation classification, it was necessary to generate a standardized sampling 

grid.  It was first decided to sample the fractional cover value for a randomly generated selection 

of 100 Landsat pixels.  The extent of the high-resolution image area was digitized, and a grid of 

30x30 meter squares was generated in this extent, along with the center point for each grid cell.  

The generated grid was edited so that it aligned with the extent of the Landsat pixels.  A random 

selection of 100 center points was made.  The center points were utilized to extract the value of 

fC at each Landsat pixel.  The intersecting square polygons from the sampling grid were 

extracted for each of the 100 points as well and saved as a new polygon shapefile resulting in 

100 square polygons.  The result was a quantity of 100 center points and 100 square cells aligned 

with the Landsat fractional cover grid cells. 

The utility of these two separate shapefiles is as follows:  The point shapefile was used to 

extract the Landsat fractional cover value for each pixel that was intersected by a point feature, 

and then those values were entered into the attribute table of the point shapefile so that each row 

now had a corresponding fractional cover value.  The point features were then related to the 
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square cell polygon features using a spatial join, so that each row of the point attribute table had 

a corresponding square cell ID.  Therefore, the points could then be grouped together within the 

attribute table based on the ID from each of the 100 corresponding square cells.   

The square cell polygon shapefile was used to calculate the high-resolution fractional 

cover.  This was performed by tabulating pixel counts by area.  For each square cell, the number 

of pixels from each class of the high-resolution thematic image was counted and sorted based on 

class value.  The fractional cover was then calculated for each cell as the sum of vegetation class 

pixels divided by the sum of all pixels per cell and multiplied by 100.  The results of the 

tabulation were then joined to the attribute table of the point shapefile based on the square cell 

polygon ID field.  These results were copied into a comma separated values (.csv) file and 

opened in R for statistical analysis (R Development Core Team 2008).  The Landsat fractional 

cover could then be compared to the high-resolution fractional cover based on the ID of the 

square cell polygon. 

   
 

Figure 15: Comparison of the same spatial area shown in both the 30m fC product derived from 

Landsat data (left image) and the 0.5m thematic classification of vegetation and non-vegetation 

(right image). 
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Figure 16: Perekezi regression of Landsat fC and HiRes fC.  Simple linear regression plot 

between the Landsat fC (independent variable) and the hi-resolution fC (dependent variable) 

using the Perekezi Geoeye-1 imagery. 

 

Perekezi SLR Results 

  Dependent variable: Hi-Res fC 

Landsat fC 0.7734*** (0.7734) 

Constant 14.585*** (4.050) 

Observations 220 

R2 0.477 

Adjusted R2 0.475 

Residual Std. 

Error 5.927 (df = 219) 

F Statistic 199.137*** (df=1; 219) 

Note:  *p<0.1; **p<0.05; ***p<0.01 

Table 15: Perekezi SLR results.  Simple linear regression results from the comparison of the 

Landsat derived fC (the independent variable) and the high resolution GeoEye-1 fC (the 

dependent variable). 
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Figure 17: Liwonde (West) regression of Landsat fC and HiRes fC.  Simple linear regression plot 

between the Landsat fC (independent variable) and the hi-resolution fC (dependent variable) 

using the Liwonde Worldview-3 imagery. 

 

 

 

 

 

 

 

 

Table 16: Liwonde (West) SLR results.  Simple linear regression results from the comparison of 

the Landsat derived fC (the independent variable) and the high resolution Worldview-3 fC (the 

dependent variable). 

Liwonde (West) SLR Results 

  Dependent variable: Hi-Res fC 

Landsat fC 0.8555*** (0.0353) 

Constant 10.696***(2.870) 

Observations 290 

R2 0.670 

Adjusted R2 0.669 

Residual Std. 

Error 6.273 (df = 289) 

F Statistic 588.049*** (df=1; 289) 

Note:  *p<0.1; **p<0.05; ***p<0.01 
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Figure 18: Liwonde (east) regression of Landsat fC and HiRes fC.  Simple linear regression plot 

between the Landsat fC (independent variable) and the hi-resolution fC (dependent variable) 

using the Liwonde Worldview-2 imagery. 

 

Liwonde (East) SLR Results 

  Dependent variable: Hi-Res fC 

Landsat fC 0.8906*** (0.0303) 

Constant 5.2009***(2.3503) 

Observations 165 

R^2 0.8405 

Adjusted R^2 0.8340 

Residual Std. 

Error 5.572 (df = 164) 

F Statistic 864.485*** (df=1; 164) 

Note:  *p<0.1; **p<0.05; ***p<0.01 

Table 17: Liwonde (East) SLR results.  Simple linear regression results from the comparison of 

the Landsat derived fC (the independent variable) and the high-resolution Worldview-2 fC (the 

dependent variable). 
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VI. Change Detection Algorithm 

The usefulness of time series satellite imagery is that it provides measurements which 

directly record how a given landscape has been altered over time—both by anthropogenic and 

natural forces.  Multispectral imagery such as Landsat contains a large amount of information 

that is difficult to quantify in n-dimensions where n is the number of bands present.  Hence, 

classification techniques can be used to quantify targeted land cover types, or as is used in this 

study, vegetation indices and fractional cover analysis can be used to directly measure 

biophysical characteristics of vegetation.  This can then be used to measure changes in 

vegetation such as Miombo woodlands over time. 

A graphical model was built in ERDAS Imagine to process change detection between 

two spatially related periods of time using the national fC datasets as inputs.  The change model 

had 3 main functions.  A minimum change detection threshold of 10 was used as a filter because 

it was assumed that any reduction in fC of less than this was both negligible and likely 

temporary.   

The first function in the model calculated the difference between the earlier date fC and 

the later date fC (fC2 – fC1) so that a decrease in fC across time yielded a negative value.  A 

conditional statement was included in this difference function to ignore any results that were 

greater than or equal to 0, which means any positive or null changes in fC were ignored.  In other 

words, only decreases in vegetation are being examined in this study.  Two simultaneous 

functions were also applied to the individual fC inputs.  These functions binned the fC datasets 

into 6 categories based on the actual fC values.  The binned fC datasets were used as inputs along 

with the results of the differencing function into the last function of the model.  This function 

compared the binned classes of fC1 and fC2 to determine if a pixel was either degradation or 
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deforestation.  The differencing results were used to only accept change that was at least a 

magnitude of 10 or greater, meaning that minimum decrease of 10 in fC was enforced here.  

Deforestation and degradation were categorized based on how a pixel changed between fC 

classes, and also whether or not that pixel met the minimum change requirement.  This minimum 

requirement was enforced for both degradation and deforestation.   

A land cover dataset was used to mask out non-forest areas.  This meant that changes in 

fC would only be examined in areas designated broadly as protected forest areas.   

 

 

Figure 19: ERDAS graphical model used to carry out the change detection between two fC 

datasets. 
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VII: Change Detection Algorithm Results 

 

 Between the epochs of 2000 and 2009 a total of 248,007 Ha of forest land was degraded, 

but remained forest, while 16,202 Ha of forest land was deforested based on the comparison of 

fC values for the two datasets corresponding to these dates.  Between the years of 2010 and 2015 

a total of 254,257 Ha of forest land was degraded and 9,037 Ha of forest land was deforested 

based on the comparison of fC values for the two datasets corresponding to these dates.   

For the time period of 2010 to 2015, of the 254,257 Ha of forest that was degraded, 

36,159 Ha was in forest that were further degraded from forest degraded in 2000-2009 was 

further degraded. Also, between 2010 and 2015, of the 9,037 Ha of deforested land, 5,547 Ha of 

that occurred on forested land that was previously degraded between 2002 and 2010.  Likewise, 

between 2010 and 2015 218,097 Ha of the 254,257 Ha of degradation occurred on forest land 

that had not been previously degraded.  Similarly, 3,490 Ha of the total 9,037 Ha that were 

deforested between 2010 and 2015 occurred on land that was not previously degraded between 

2002 and 2010. 

 The total area of protected forests in Malawi, as determined from the available land-cover 

dataset, is 2,399,381 Ha.   Between 2002 and 2010, 10.34% of protected forests were degraded 

and 0.68% of protected forests were deforested.  Between 2010 and 2015, 10.59% of protected 

forests were degraded and 0.38% of protected forests were deforested. 

 Figure 20 shows the mapped results of the change detection algorithm.  Three insets are 

provided in addition to the national scale map; each inset shows a protected forest area.  Two of 

these protected forest areas were also used for the validation of the fC product via the use of 

high-resolution imagery.  Inset A shows Perekezi forest reserve, inset B shows Ntchisi forest 

reserve, and inset C shows Liwonde forest reserve.  Areas of degradation for the 2 change 
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periods are clearly visible in each reserve.  A number of previously identified drivers is likely 

responsible, however there may be a few caveats to these results.  Primarily, orchards were not 

considered in the change algorithm.  All land within the protected forest reserves was considered 

to be forest.  However, orchards are present for example in southeastern Perekezi, and it is 

possible that these could contribute to false positives in the change results. 

 

2002 to 2010 Change Results 

Change Type Area (ha) 

% of Total Forest 

Area 

Degradation 248,007 10.34 % 

Deforestation 16,202 0.68 % 

Total Forest 

Area 2,399,381 11.01 % 

Table 18: 2002 to 2010 change results.  Area in hectares of each change category for the time 

period from 2002 to 2010.  The percent of total forest area for each change category is also 

shown. 

 

2010 to 2015 Change Results 

Change Type Area (ha) 

% of Total Forest 

Area 

Degradation 254,257 10.59 % 

Deforestation 9,037 0.38 % 

Total Forest 

Area 2,399,381 10.97 % 

Table 19: 2010 to 2015 change results.  Area in hectares of each change category for the time 

period from 2010 to 2015.  The percent of total forest area for each change category is also 

shown.   

 

  



58 
 

 

  

Figure 20: The change algorithm results are shown here for the two lengths of time 2002-2010 and 
2010-2015.  The types of change that occurred in each period are color coded.  Inset A shows the detail 
area around Perekezi Forest Reserve which includes a western portion of the South Viphya Forest 
Reserve.  Inset B shows the detailed area around Ntchisi Forest Reserve.  Inset C shows the detailed area 
around Liwonde Forest Reserve, which also includes the southern portion of Liwonde National Park and 
the northern portion of the Zomba-Malosa Forest.  All protected forests are indicated by the green areas 
on the main map and insets. 
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VIII: Validation of Change Detection Algorithm Results 

The accuracy assessment for the results of the change algorithm was carried out by 

calculating a confusion matrix from a set of stratified random sample points.  The GeoEye-1 

image acquired for the area covering the Perekezi forest reserve was used as a reference layer to 

confirm the presence of the classified change types.  For this scenario, 100 stratified random 

points were generated and the parameter for a minimum number of points per class was set to 10 

to ensure deforestation was sampled due to its relatively smaller area compared to the other two 

change classes.  Google Earth imagery was also used as a reference for earlier time period high-

resolution imagery by spatially-linking an ERDAS viewer to the Google Earth user interface.  

However, earlier time period high-resolution imagery was not available for most sample points 

so inferences had to be made as to the nature and time period for areas of forest that were cleared 

or degraded in the purchased high resolution imagery due to a lack of reference.  If a sample 

point fell within an open agricultural field in the more recent high resolution image, then Google 

Earth was referenced to confirm whether or not that clearing was made within the time period 

measured by the Landsat imagery.  If the clearing was made prior to the Landsat imagery 

acquisition, then it should be considered an area of no change.  The Landsat multispectral mosaic 

images from the two time periods were used as a reference as well to observe the source of any 

potentially detected change directly.  The purchased high resolution imagery was however used 

as the primary deciding factor in assigning reference classes to the sample points.  If no earlier 

reference point was available, then areas that were obviously cleared for agriculture or that had 

sparse canopy cover and proximity to agriculture or settlements were assigned degradation and 

deforestation values depending on the openness of the land where the sample points were 

located.  This was suitable for testing the accuracy of the Landsat-derived change detection 
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because it was shown earlier that the high-resolution classified percent vegetation cover 

correlated fairly well to the Landsat fractional cover.   

 

Confusion Matrix for Change Detection 

  Reference 

Classified 

    No 

Change Degradation Deforestation 

 Row 

Total 

         No Change 46 7 1 54 

Degradation 4 21 3 28 

     Deforestation 1 1 16 18 

Column Total 51 29 20 100 

Table 20: Confusion matrix for change detection.  The confusion matrix that was created as part 

of the accuracy assessment of the change algorithm.  The rows represent the classified change 

algorithm product, and the columns represent the ground-truth reference totals.  The diagonal of 

the table represents correctly labeled change classes. 

 

Accuracy Totals for Change Detection 

Class Name 
Reference 

Totals 

Classified 

Totals 

Number 

Correct 

Producers 

Accuracy 

Users 

Accuracy 

       No 

Change 51 54 46 90.2% 85.2% 

Degradation 29 28 21 72.41% 75% 

Deforestation 20 18 16 80.0% 88.89% 

         Totals 100 100 83     

Overall Classification Accuracy  =  

83%       

Table 21: Accuracy totals for change detection.  The accuracy totals are shown for the 

producer's, user's, and overall accuracies. 
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Kappa (K^) Statistics for Change Detection 

Overall Kappa Statistics = 0.7201 

Conditional Kappa for each Category 

Class Name Kappa 

No Change 0.6977 

Degradation 0.6479 

Deforestation 0.8611 

Table 22: Kappa (K^) statistics for change detection.  Conditional kappa values calculated for 

each individual class as well as the kappa value for the overall classification.   

 

Tables 20-22 show the results of the accuracy assessment.  The confusion matrix was 

built first to determine the number of correctly or incorrectly assigned change categories (table 

20).  From this, the producer’s, user’s and overall accuracies were calculated (table 21).  Finally, 

these accuracies were used to calculate the overall kappa statistic (table 22).  The overall kappa 

statistic equaled 0.7201, which is a substantial result indicating the success of the change 

algorithm for detecting degradation and deforestation (Landis and Koch 1977). 

IX: Discussion and Conclusion 

  

Three Malawi national-scale Landsat multispectral mosaics representing unique epochs 

of time were generated.  A continuous fields fractional cover of vegetation was calculated from 

each of these Landsat mosaics.  A technique was successfully demonstrated which uses the fC 

product to detect changes in vegetation cover over time.  Negative change in vegetation cover 

within protected forest lands represents forest degradation from one epoch to the next.  This type 

of change detection is particularly important for the forestry sector due to the proliferation of 

both high and low impact forest use.  It is necessary for REDD+ efforts in Malawi to be able to 

accurately quantify current levels of forest degradation to generate reference emission levels.  

The fC products allowed for a robust and accurate method of directly locating areas where 

degradation and deforestation have occurred.  Therefore, it is a recommendation that the 
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technique demonstrated here be implemented as part of a measurement, reporting, and 

verification (MRV) tool, which is a requirement of UNFCCC and IPCCC for REDD+ in Malawi 

and other countries. 

The actual quantification of biomass removal may be estimated based on the fC change 

results, but it should be verified and recalibrated with extensive on-the-ground measurements.  

Other forms of remote sensing such as LiDAR and high-resolution satellite imagery may provide 

a means of further calibrating the Landsat-derived fractional cover and allow for a more accurate 

biomass measurement.  Mapping the locations of degradation and deforestation with Landsat 

imagery as shown in this study is an effective means to direct REDD+ mitigation strategies and 

can also help to inform afforestation activities for Malawi’s protected forests.  These change 

products can also be used to develop remote sensing-based activity data to assist with calculating 

reference emission levels for REDD+. 

Both degradation and deforestation were observed across the entire national extent of 

Malawi.  Based on the analysis of Landsat data, the extent of these areas was quantified.  

Similarly, the use of remote sensing data allowed for locating the hotspots of deforestation and 

forest degradation across the country of Malawi.  It is not surprising that these areas coincide 

with locations of protected forest areas.  This is likely due to the fact that much of the country 

has already been extensively deforested.  The remaining areas of Miombo woodland are 

therefore primarily located within these protected forests.  The protected forest status may 

prevent land cover change from forest to agriculture which prevents deforestation.  However, 

forest degradation may still occur because these remaining woodlands represent a source of fuel 

wood and other wood-based resources, which is driven by the extensive poverty and lack of 

alternative energy resources for the majority of Malawians.   
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 Between 2002 and 2010 248,007 Ha of Miombo woodlands were degraded, and between 

2010 and 2015 254,257 Ha of Miombo woodlands were degraded based on the analysis 

presented here.  Deforestation of Miombo woodlands between 2002 and 2010 totaled 16,202 Ha 

and between 2010 and 2015 totaled 9,037 Ha.  This supports the conclusion that much of Malawi 

is already deforested, and that the remaining protected forests are still susceptible to exploitation 

that results in forest degradation. 

One caveat to the national fC datasets is the use of static endmembers.  Because the fC 

algorithm works by taking in a single endmember value for each of the two cover-types, it may 

not be the most accurate depiction of vegetation cover across a large area (Johnson, Tateishi, and 

Kobayashi 2012).  This is due to the variation in land cover types, predominant forms of 

vegetation, and distribution of micro-climates across a large region such as Malawi.  Despite 

atmospheric corrections and image normalization, differences may still exist between adjacent 

and gap-fill Landsat scenes which could necessitate individual scene-specific endmembers.  This 

could mean that scene-specific endmembers might be more effective for measuring fC at the 

scale of individual forest reserves.  Spatial interpolation of endmembers is one theoretical 

solution to this problem (Johnson, Tateishi, and Kobayashi 2012).  More work should be done on 

which type of spatial interpolation is more effective, and how accurately the endmembers of 

target land cover types can be modeled in such a way as to generate a more meaningful fC over a 

large area.  However, despite this caveat, the technique demonstrated of using a two-endmember 

SMA was sufficient for accurately measuring the presence of vegetation across the landscape at a 

30-meter resolution. 

There is potential for more remote sensing work to be done in Malawi.  By adding more 

dates to the analysis, a higher temporal resolution could be obtained.  This would allow for a 
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clearer picture to emerge which indicates when and where Miombo woodlands are being 

degraded.  This can certainly help to inform mitigation and outreach efforts with local 

communities.  Furthermore, the ability to quantify biomass directly from Landsat satellite 

observations would allow for a robust and efficient method to develop activity data necessary for 

developing REDD+ in Malawi.   

A technique for using fC to map change in open canopy Miombo woodlands has been 

demonstrated.  Specific locations of degradation and deforestation within Malawi protected 

forest areas have been produced.  The usefulness of the freely available Landsat data archive has 

also been demonstrated as a reliable and scientifically robust data source for generating 

vegetation cover maps.  Activity data related to forest loss and degradation can be acquired by 

comparing fC across time to calculate delta fC values.  These delta values have been shown in 

this study to be a promising method for estimating forest degradation in Malawi, and these 

methods have potential for reproducibility to develop activity data for other countries.  These 

efforts have also assisted with the Malawi PERFORM project by providing actionable scientific 

data describing locations and magnitudes of Miombo degradation in Malawi.  PERFORM is a 

capacity building project to assist Malawi with developing a framework to prepare for REDD+ 

and increase forest conservation.  PERFORM was designed as a primary mechanism between the 

United States Government and Government of Malawi to promote lowering emissions via 

conservation and sustainable forestry practices.   
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