EFFECTS OF FLOW REDUCTION ON THERMAL DYNAMICS OF STREAMS:
IMPROVING AN IMPORTANT LINK IN MICHIGAN’S WATER WITHDRAWAL
ASSESSMENT TOOL (WWAT)

By

Ryan Andrews

A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
Fisheries and Wildlife—Master of Science

2018



ABSTRACT
EFFECTS OF FLOW REDUCTION ON THERMAL DYNAMICS OF STREAMS:
IMPROVING AN IMPORTANT LINK IN MICHIGAN’S WATER WITHDRAWAL
ASSESSMENT TOOL (WWAT)
By
Ryan Andrews

The response of fish to human alterations of habitat conditions is of critical management
and policy importance. For example, withdrawal of groundwater from stream ecosystems can
result in altered thermal regimes, and changes in fish populations. Many streams are fed
groundwater inputs that help maintain in-stream hydraulic conditions by stabilizing discharge as
well as stream temperature. However, groundwater withdrawal through high-capacity wells is
also important to the agricultural industry. Withdrawal can cause reductions in streamflow and
typically results in increased stream temperature, and can initiate shifts in aquatic community
assemblage. In Michigan, the Water Withdrawal Assessment Tool (WWAT) is used to estimate
ecological impacts associated with water withdrawal. The model uses flow-fish response
relationships to estimate the effects of flow reduction on downstream warming for Michigan
streams, and subsequently estimates the degree of impact of on stream fish communities.

The chapters of this thesis investigate potential improvements to the mechanisms of
Michigan’s WWAT used to set policy regarding water withdrawal throughout the state. In the
first chapter, | investigate the use of several benchmark detection methods for setting thermal
benchmarks for stream fishes. The second chapter includes the development and analysis of

several models which attempt to predict downstream warming rates within 24 streams located

throughout Michigan’s Upper and Lower Peninsulas.
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CHAPTER 1
Application of benchmark detection methods to identify thermal thresholds of stream fishes

along a thermal gradient

Introduction

Stream thermal regimes are critical determinants of fish migration, growth, and survival.
Stream temperature has been found to be a limiting factor in fish distribution and production
(Wehrly et al., 2003), and for highly-valued stream fishes, such as trout, high water temperatures
in summer can limit the ability to persist and thrive (Wehrly et al., 2007). Excessive water
temperature limits migration, health, and performance of salmonids and can create competitive
disadvantages (Mantua et al., 2010). The thermal regime of a stream also influences processes
underlying lower trophic levels in aquatic ecosystems, and is subject to influences of local
environmental characteristics such as riparian shading, groundwater input, and streamflow.
Consequently, warming waters due to changing environmental conditions can create conditions
unsuitable for coldwater stream fishes.

Characterizing the response of stream fish communities to stream thermal characteristics
is valuable for both watershed and fisheries resource management. Distinguishing patterns of
population or community response to environmental conditions can help to establish action
points or benchmarks associated with significant changes in species abundance or community
composition. Ecological thresholds are used to describe transitions between alternative stable
states once breakpoints along an environmental gradient are breached (Andersen et al., 2009).
Alternative states can represent shifts in community assemblage or crossing of an extinction
threshold where effects of a changing environmental gradient reduce reproduction or survival
rates beyond a population’s capacity (Huggett, 2005). Given the current state of anthropogenic
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stressors, threshold analysis has value in its ability to quantitatively assess species requirements
and identify targets for conservation efforts (Groffman et al., 2006), and leverage this
information as an early detection system to prevent crossing thresholds. There remains a need to
define specific ecological benchmarks to aid in setting regulations for resource management.
Accurate detection methods are not only necessary to avoid exceeding thresholds, but also to
reduce scenarios that unnecessarily impose limitations when actual threshold responses may not
exist.

A particular challenge for water resources and fisheries managers in defining action
points is the difficulty in maintaining a proper balance between natural streamflow regimes and
artificial water withdrawals. Natural flow regimes are important for maintaining in-stream
hydraulic conditions that support native aquatic communities, and disruption of flow variations
can have immediate and long-term consequences for aquatic organisms. When flows are
reduced, stream temperatures may more quickly equilibrate with ambient air temperatures.
Decreased flows cause reductions in water velocity, water depth, and wetted width of the river,
all of which can increase residence time of water and exposure to solar radiation which
subsequently raises stream temperature. Changes in stream conditions associated with flow
reduction in streams may result in loss of habitat volume, reduced connectivity, and water quality
impairment (Labbe and Fausch, 2000; Richter et al., 2003). Under conditions of extreme flow
restriction, summer stream warming rates can increase to the extent that they will no longer
support coldwater fishes. Artificial water withdrawal can exacerbate flow reduction by removing
groundwater that helps maintain the natural flow and thermal characteristics that coldwater
species require. Water withdrawal can also create less favorable conditions for fluvial specialists,

and in turn lead to conditions more favorable for macrohabitat generalists (Kanno and VVokoun,



2010). As such, altering natural streamflow processes can change thermal regimes resulting in a
shift in aquatic community composition. A major challenge for managers is the regulation of
withdrawals to minimize impacts on stream quality while allowing water usage for important
human needs.

As concerns over the impacts of climate and land use change on aquatic environments
grows, it is important to focus efforts towards conserving cold- and coolwater species most
vulnerable to temperature increases. Previous research has led to classifying species into thermal
guilds based on temperature requirements (i.e., July mean water temperature) for efficient
management practices (Lyons et al., 2009; Webhrly et al., 2003) as needs may vary between
thermal regimes. There is notable concern over the management of coolwater streams because
the response of fish assemblages occupying coolwater streams differs from that of coldwater or
warmwater streams. In addition, coolwater streams provide an overlap in thermal habitat for both
cold- and warmwater species. In conjunction with thermal guild association, it is important to
estimate the upper thermal limit where cold- and coolwater fish assemblages begin to dissociate.
Doing so will further support the efforts of Lyons et al. (2009) in providing managers with a
clearer definition of how fish assemblages relate to stream thermal regimes. When regulating
water withdrawal, successful water resources and fisheries management must consider the needs
of coldwater game fish that provide significant economic benefits, but cannot overlook the value
groundwater provides to other stakeholders.

Groundwater is an important resource for irrigation, supporting the agricultural industry
in Michigan, and is a major source of drinking water for the state of Michigan (Groundwater
Conservation Advisory Council, 2006). In 2010, the United States Geological Survey (Maupin et

al., 2010) estimated 693 Mgal/d (~1,072 cfs) of groundwater were withdrawn in Michigan.



Groundwater pumping can reduce the contributions of baseflow which would typically enter the
stream by lowering the water table and consequently the hydraulic head. Recent efforts in
Michigan have been aimed to manage rivers and streams to maintain urban and agricultural
production, while also providing sufficient baseflow to preserve ecological flow requirements
(Zorn et al, 2008). Baseflow inputs stabilize minimum stream flows and temperatures that define
coldwater streams and the coldwater fish communities that occupy these waters. Hamilton and
Seelbach (2011) reported that flow depletions between 2-4% in cold-transitional streams (July
mean water temperatures > 63.5 °F and < 67 °F) and small rivers in the Kalamazoo River
Watershed met the threshold for potential ecosystem alteration. Management of coldwater
fisheries has gained attention following the predicted decline in coldwater fish species and the
high sensitivity of cold-transitional streams to reductions in baseflow (Zorn et al. 2008). Under
anticipation of increased thermal stressors due to climate change and increased reliance upon
groundwater resources, and the potential for ecosystem degradation, identification of optimal
habitat conditions and benchmarks along thermal gradients is critical for fisheries biologists in
order to protect aquatic communities.

In order to fulfill requirements of the 2001 Annex to the Great Lakes Charter
(Anonymous, 2001), which committed Great Lakes states and provinces to protection of water
resources, Zorn et al. (2008) developed Michigan’s Water Withdrawal Assessment Tool
(WWAT) to determine the potential for high-volume (>100,000 gal/d) water withdrawals to
create adverse resource impacts to characteristic fish populations of Michigan streams. The
development of Michigan’s WWAT required an assessment of species optimum for several
characteristics (July mean water temperature, drainage area, and August 50% exceedance flow

(or index flow) of in-stream habitat and an assessment of ecological responses to flow depletion.



This led to the creation of a dose-response model to relate the dynamics of fish populations with
in-stream habitat conditions. The model is useful in predicting degradation patterns of individual
species as well as community assemblages representative of the various thermal regimes of
Michigan rivers. The model is used to set regional flow standards, but Zorn et al. (2008)
recognize limitations in the determination of species optimum for the variables of interest.

Since the development of the WWAT, new threshold detection methods have emerged
that have been applied to numerous environmental and disturbance gradients (Baker and King,
2010; Brenden et al., 2008; Qian et al., 2003), and have been used to propose environmental
regulations and legislation (Adams and Greeley, 2000; Richardson and Qian, 1999). Threshold
detection methods operate on various assumptions regarding the distribution and other properties
of empirical data, and are trained to identify disturbance thresholds. In an effort to identify
thresholds of individual taxa along an environmental gradient, Baker and King (2010) developed
Threshold Indicator Taxa ANalysis (TITAN), an analytical method to identify abrupt changes in
abundance. TITAN incorporates occurrence frequency, abundance, and directionality of response
to best capture the strength-of-association of a taxon to a particular location along an
environmental gradient, and is particularly useful in identifying thresholds of rarer taxa.
Classification and regression trees (CART) are another recent method for exploring ecological
relationships by modeling relationships between response and explanatory variables (Qian and
Anderson, 1999; Guisan and Zimmermann, 2000). CART uses splitting rules such that
homogeneity is maximized, and enables researchers to identify the most influential predictor
variable(s) on distribution (Prasad et al., 2006). Although these tools are intended to aide in
estimating benchmarks to predict potentially detrimental effects associated with changes in

environment, there also exists the possibility that detected benchmarks are statistical artifacts



rather than abrupt changes in species abundance. As an alternative, LOESS regressions are
useful to represent the mean response of species abundance along an environmental gradient
without the presumption of a threshold response. It is important to validate the presence of a
threshold response using visual cues because threshold detection methods are designed to detect
abrupt ecological changes along an environmental gradient, and in some cases a threshold may
not be well defined and change is gradual (Qian et al., 2003).

Additionally, the WWAT geographically stratifies data to reduce variation in describing
optimal habitat conditions. Partitioning of data into subsets can reduce variation caused by
intrinsic characteristics of distinct geographic regions. Individual taxa may show particular
associations with distinct sub-regions that may be ignored when pooling data for analysis.
However, data becomes sparser with an increasing degree of stratification, and may ignore rarer
species that are often sensitive to changes and occupy a narrow range of environmental
conditions. Further research is necessary to explore evidence supporting justification of using
regional subsets in model development. For example, when estimating thermal niches of aquatic
vertebrates Huff et al (2011) found that more local factors (ecoregion) are better predictors of
aquatic assemblage than broad scale regional factors, although the appropriate scale and extent
should be evaluated on a case-by-case basis.

In 2006, the state of Michigan enacted a water law (2006 PA 33; Michigan Legislature
2006) to monitor large scale water withdrawals such that no adverse resource impacts (ARIs) are
created. ARIs are characterized as the point beyond which a stream’s ability to support
characteristic fish species becomes impaired. Fish assemblage structure and characteristic fish
assemblages are predicted using habitat suitability criteria such as July mean water temperature.

Fish response curves were developed to describe how fish assemblages respond to temperature



changes caused by incremental streamflow reductions and identify flows resulting in ARIs, but
there is no clear establishment of a threshold beyond which population structure begins to
deteriorate. As such, an investigation into thermal thresholds of Michigan stream fishes using
WWAT and recently developed methods will improve the management of Michigan rivers.
Thermal classifications of stream reaches provide a framework for understanding stream
temperature as a limiting factor for stream fish community assemblages (Wehrly et al., 2003), as
well as a common language for communication among managers, researchers, and stakeholders
(Hudson et al., 1992). The purposes of this study were to (1) compare benchmark detection
methods between WWAT, TITAN, and CART, (2) explore evidence supporting the need for
regional stratification of data, and (3) discuss policy implications associated with incorporating
alternative benchmark detection methods into the WWAT. A challenge for policy makers and
managers is the high degree of variability in fish population data and varying responses of fish to

habitat conditions.

Methods

Data collection

Field data used to evaluate methods for threshold detection values were collected by the
Michigan Department of Natural Resources Fisheries Division, the United States Forestry
Service Hiawatha National Forest, and University of Michigan (Zorn et al., 2008). This large
dataset consisted of samples from 1,389 fish assemblage surveys and 331 salmonid surveys at
1,119 unique stream reaches between 1980 and 2006. Most fish surveys were conducted using a
backpack or towbarge electrofisher, but included rotenone surveys on large rivers. Catch data
were reported as number of fish per lineal foot of stream sampled during electrofishing surveys.

In order to make data comparable between survey types, fish catch data from non-single-pass



electrofishing (rotenone, multiple-pass depletion, and mark-recapture) surveys were corrected for
sampling efficiency or effort.

Zorn et al. (2008) did not explicitly identify a threshold beyond which species
distribution and abundance or fish assemblages are reduced. Therefore, it was necessary to
establish an appropriate threshold value based on the method for determining optimal habitat in
the development of Michigan’s WWAT. Given the abundance scoring system developed by Zorn
et al. (2008) where habitat conditions supporting characteristic species are within 1.5 standard
deviations of species’ optimum, a value of 1.75 standard deviations from optimal habitat
conditions was determined as the threshold (personal communication with Zorn).

This study focused on July mean water temperature (°F) as the primary habitat variable.
July mean water temperature has previously been identified as a critical determinant of stream
fish distribution and production in Michigan (Wehrly et al., 2003; Zorn et al., 2004). July mean
water temperature was estimated for each stream reach using a predictive model that combines
both regression modeling and geostatistical kriging of water temperature data from 830 streams

throughout Michigan (Zorn et al., 2008).

WWAT model development and threshold determination

Zorn et al. (2008) used the top 20% of sites based on catch per unit effort for each species
in order to calculate optimal and upper thermal threshold values of July mean water temperature
for species occurring in 50 or more sites. Therefore, threshold values were calculated for those
species occurring at 50 or more sites. The mean of July mean water temperature for sites in the
upper 20% of catch rates was used to define the optimal thermal condition for each species.

Zorn et al. (2008) regionally stratified the dataset used to assign species-specific optima

to the Southern Lower Peninsula (SLP) and Northern Lower Peninsula-Upper Peninsula



(NLPUP) to represent distinct ecoregions as determined by Albert et al. (1986). The resulting
region-specific optima were viewed as more accurate descriptions of optimal conditions for each
species by reducing the coefficient of variation of summarized habitat variables (i.e. July mean
water temperature). As part of my analysis, species-specific optima were calculated for all sites
(ALL) in order to determine whether regional stratification limits benchmark detection methods
and whether benchmarks vary significantly compared with those determined by examination of

the entire dataset.

Threshold Indicator Taxa Analysis (TITAN)

Baker and King (2010) developed TITAN in order to identify and detect change points in
both species occurrence frequency and relative abundance. TITAN uses indicator value analysis
(Dufréne and Legendre, 1997) to create indicator value (IndVal) scores specific to each taxon.
IndVal scores are used to associate taxa with a positive or negative response along an
environmental gradient. IndVal scores are computed as the product of cross-group relative
abundance (proportion of abundance among all sample units belonging to group i) and within-
group occurrence frequency (proportion of sample units in group i with a positive abundance
value). IndVal scores are computed using equation (1) as follows:

IndVal;; = A;j x B;j x 100 (1)
where A;jj = Number of individuals;/Number of individuals;, and Bj; = Number of sites;;/Number
of sites;. Taxa are partitioned into negative (decreaser) or positive (increaser) response groups
after comparing IndVal scores above and below each candidate change point. The magnitude of
IndVal scores on each side of a candidate change point determines whether a taxon shows

greater association with a negative or positive response (Baker and King, 2010).



TITAN’s ability to estimate thresholds for rarer taxa is based on the methods of Dufréne
and Legendre (1997) which assigns higher IndVal scores to locations along an environmental
gradient where species show strong presence at the majority of sites at one point along the
gradient. TITAN is able to mitigate bias by group size by integrating occurrence frequency and
relative abundance. For this reason, TITAN requires only a minimum of three occurrences for
threshold detection. In this analysis, all taxa with less than five occurrences were removed from
the dataset.

TITAN quantifies uncertainty in change point identification using bootstrap resampling
in order to estimate synchrony in TITAN’s ability to replicate species-specific change points.
Purity and reliability are two measures of quality assurance and are measured using 500
bootstrap replicates. Using randomly distributed data, indicator purity measures the proportion of
response directions (positive or negative) associated with a change point for each taxon in
relation to the observed change point (i.e., high purity results in 95% of bootstrap runs resulting
in same response direction). Indicator reliability provides an estimate of how substantial the
probability of obtaining an equal or larger IndVal score differs when comparing the observed
dataset to a randomly distributed dataset. For example, if 95% or more of bootstrap replicates
result in a P-value less than a predetermined probability level of 0.05, then that indicator is

reliable.

Classification and regression tree

Classification and regression trees (CART) are often used in ecology to describe the
relationship of an outcome using a set of explanatory variables (Qian and Anderson 1999; Prasad
et al., 2006; Steen et al., 2008). Both the response and explanatory variables may consist of a

continuous gradient or discrete compartments. Beginning with a single node or root,
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classification and regression trees expand downward based on splitting rules that partition
explanatory variables based on the likelihood of outcome. Variables and splits are chosen such
that the impurity of the outcome is minimized, and the tree will continue to grow until a terminal
node is reached, or recursive partitioning creates no additional nodes. In order to avoid such
errors, trees are pruned to meet tests of independence and/or cross-validation, as well as meeting
a minimum error rate. Splitting rules are used to minimize impurity of each node of the
regression tree (Moisen, 2008). Change points are used to specify impurities below which a node
will not be split to avoid situations of overfitting. In this model, the explanatory variable used

was July mean water temperature (°F).

LOESS regression

Loess, or locally weighted regression, fits a regression line to data through univariate
smoothing (Cleveland, 1979) based on weighted averages. A LOESS regression was fit to
equation (2),

yi=9g)+ € (2)

where y; = species abundance, g = smooth function, x; = July mean water temperature, and ¢ =
random errors with mean 0 and constant scale. | used a LOESS regression to obtain a smoothed
representation of the data to visually identify apparent thresholds, if any exist. For example,
Figure 1.1 is a graphical representation of a simulated dataset following a logistic function with a
known threshold of 68 °F. The vertical line is located at the inflection point representing a true

threshold response.

Stratified dataset simulation
The current WWAT procedure calls for stratification of fish distribution and abundance
data into NLPUP and SLP sub-regions to reduce the coefficient of variation used to describe
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species-specific optimal thermal habitat. Regional stratification can also capture variation in
regional factors that can dictate fish assemblage structure (Huff et al., 2011) which is potentially
overlooked when pooling data over large scales. However, stratification potentially limits the
WWAT in its ability to detect benchmarks for rarer species which do not meet the required
number of occurrences to estimate habitat optima and subsequent benchmarks. There also
remains a possibility where region-specific benchmarks are biased due to differing thermal
conditions in the different regions without any difference in the species-gradient function. I used
a logistic function to simulate fish abundance with a known threshold to test for significant
differences in benchmark detection between the NLPUP and SLP regions when compared with
the ALL dataset.

Simulated abundance across a thermal gradient was simulated using the logistic function

in equation (3),

fO)=—Fmmt e ()
where L = the curve’s maximum value, e = the natural logarithm base, k = the steepness of the
curve, and Xo = the sigmoid’s midpoint. For each simulation, the values of x (i.e., stream
temperature) were taken from the observed data in each region. A random error term was
introduced to create random abundances associated with each of the stream reaches included in
the dataset. Ten datasets were simulated where a known threshold was defined as Xo, each with a
different set of randomly assigned error terms, and benchmark detection methods were then

applied to examine the variance within and between regions.

Results
Data was subset representing three geographic regions of Michigan (ALL, NLPUP, and

SLP) with 1119 unique stream reaches total, 576 located in the NLPUP, and 543 located in the
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SLP, and ALL is a statewide pooled dataset. July mean water temperatures ranged from 50.9 °F
to 77.2 °F across all sites. Temperatures tended to be warmer in the SLP with a median July
mean water temperature of 69.3 °F, whereas the median temperature was 63.5 °F in the NLPUP.
Across all sites, the median July mean water temperature was 65.3 °F.

When examining the pooled ALL dataset which combines all stream reaches throughout
Michigan, benchmarks were identified using WWAT, TITAN, and CART methods for 49
species in total. Of these 49 species, only the 12 species for which TITAN identified a decreasing
association (z-) with the thermal gradient were examined to focus on cold or coolwater fishes as
they are of primary regulatory interest (although Brook Stickleback was identified as a decreaser
by TITAN, but the identified threshold (56.7 °F) was far below the WWAT optima (65.9 °F),
and was therefore not included in further analysis). Table 1.1 presents the predicted thresholds
for decreaser species of each of the three methods as well as the apparent visual threshold
detected using the LOESS regression. Mean differences between detected thresholds of each
method were calculated and are shown in Table 1.2. The mean difference between TITAN and
CART benchmarks was 2.0 °F with more conservative estimates for CART, although CART
predicted higher benchmarks for Rainbow Trout and Chinook Salmon. A minimum difference of
0.0 °F was calculated for Northern Redbelly Dace and a maximum difference of 8.2 F ° for
Brook Trout (Table 1.2). Mean differences between TITAN and WWAT were 2.0 °F with
TITAN providing more conservative estimates. A minimum difference of 0.2 °F was calculated
for Blacknose Dace and a maximum difference of 4.4 F ° for Brook Trout (Table 1.2). The mean
difference between WWAT and CART was 4.0 °F as CART estimated more conservative
benchmarks. A minimum difference of 0.3 °F was calculated for Rainbow Trout and a maximum

difference of 12.6 °F for Brook Trout (Table 1.2). The WWAT nearly always identified a higher
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threshold when compared with TITAN and CART (both TITAN and CART identified higher
thresholds for Chinook Salmon at 0.70 °F and 2.80 °F above WWAT, respectively).

Thresholds were visually apparent via LOESS regression for eight of the 13 species with
upper thermal thresholds (see supplemental files). Table 1.1 presents results of the identified
thermal thresholds of each of the three methods along with the visually identified thresholds,
where apparent. Visual thresholds were apparent for Brook Trout, Blacknose Dace, Brown
Trout, Chinook Salmon, Coho Salmon, Longnose Dace, Mottled Sculpin, and Slimy Sculpin.
Visual thresholds were not apparent for Burbot, Northern Brook Lamprey, and Northern
Redbelly Dace (see supplemental files). The LOESS regression for Burbot showed a slight
incline where CART identified a threshold, but gained little separation from the x-axis and
showed a very gradual downward trend, with no clear downward inflection. Northern Brook
Lamprey achieved a slight separation from the x-axis, but showed a gradual downward trend.
Northern Redbelly Dace also showed a slight separation from the x-axis, and also displayed a
gradual downward trend as opposed to a clear threshold response.

Predicted thresholds of each method were plotted against each other with linear
regressions (Figures 1.3 — 1.5). TITAN and CART (Figure 1.3) thresholds showed similarities of
a near 1:1 relationship (slope = 1.08; R? = 0.37), but CART thresholds tended to be more
conservative as the regression was shifted below the 1:1 regression line towards TITAN. When
compared with WWAT (Figure 1.4), TITAN thresholds tended to be more conservative at the
lower range of temperatures, but thresholds began to converge at higher temperatures as the
fitted regression converged with the 1:1 regression line (slope 0.50; R? = 0.48). Thresholds of

CART and WWAT (Figure 1.5) were the least comparable between each of the three methods as
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even at the upper range of temperatures WWAT predicted thresholds were consistently higher
(slope = 0.65; R* = 0.07). Regression equations are displayed in Figures 1.3 — 1.5.

Species abundances for sites were plotted along the gradient of July mean temperatures.
Figure 1.2 is an example of how Brook Trout abundance varied along the thermal gradient with
benchmarks representing detected thresholds for each of the three methods overlain on the plots
along with the LOESS regression. Plots for all species are available in the supplemental files.
Table 1.3 shows information on the optimum temperature calculated by WWAT along with the
lower and upper temperatures of the top 20% of optimal sites, and the predicted thresholds of all
50 species that met the minimum criteria required by WWAT. WWAT thresholds were
consistently at the upper range of the thermal gradient of observed species densities used to
calculate optimum temperature. WWAT predicted thresholds for 28 species above their
respective maximum temperatures used in optimum temperature calculation (i.e., WWAT
predicted threshold for Coho Salmon was 1.6 °F above the upper temperature of 67.5 °F as seen

in Table 1.3), whereas TITAN and CART had 5 and 1 occurrences, respectively.

Regional comparison

Following regional subsetting, of the 49 species for which benchmarks were detected by
the three methods in the ALL dataset, detection ability was limited to 45 (90%), 46 (94%), and
32 (65%) species in the NLPUP for TITAN, CART, and WWAT, respectively. In the SLP,
detection ability was limited to 45 (90%), 45 (92%), and 40 (82%) species for TITAN, CART,
and WWAT, respectively. For 8 (16%), 7 (14%), and 24 (49%) species, abundance data did not
meet the minimum number of sites required to detect benchmarks for one or both regions for

TITAN, CART, and WWAT, respectively (Table 1.4).
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Species-specific benchmarks were analyzed to compare benchmark detections between
regions. Regional differences in benchmark estimates for each method were compared using the
13 species from the overall comparison if species were identified as decreasers by TITAN in
each of the NLPUP and SLP regions. Table 1.5 contains region-specific benchmarks of the three
species (Brook Trout, Brown Trout, and Mottled Sculpin) which met the criteria for inclusion in
the regional comparison, while the remaining 10 species included in the overall analysis either
did not show a decreasing response (z-) for both regions or benchmarks were only detected in
one or no sub-regions. On average, temperature thresholds differed by 1.5 °F, 0.7 °F, and 1.1 °F
for TITAN, CART, and WWAT, respectively (Table 1.5). Estimated benchmarks were higher in
the SLP subregion for both TITAN (Figure 1.6) and WWAT (Figure 1.8), while CART (Figure
1.7) had higher estimated benchmarks for the NLPUP subregion.

Estimated benchmarks using TITAN were compared between each of the three regional
datasets and are presented in Table 1.8. Results varied between region for the number of
benchmarks detected for each region, directionality of response, purity, and reliability (Table
1.6). In ALL, TITAN detected significant benchmarks for 12 species, but only ten and seven
species for NLPUP and SLP, respectively. TITAN failed to detect significant benchmarks for
five species in either one or both subregions (Burbot, Chinook Salmon, Northern Brook
Lamprey, Northern Red Dace, and Slimy Sculpin). Each of the 12 species in ALL showed a
negative response with the thermal gradient. In the NLPUP, of the ten species with significant
benchmarks, four species (Brook Trout, Brown Trout, Coho Salmon, and Mottled Sculpin)
showed negative responses along the thermal gradient, and the remaining six (Blacknose Dace,
Burbot, Longnose Dace, Northern Brook Lamprey, Northern Red Dace, and Rainbow Trout) had

a positive threshold response. In the SLP, all seven species for which TITAN identified a
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significant threshold showed a negative threshold response (Burbot, Chinook Salmon, Northern
Brook Lamprey, Northern Red Dace, and Slimy Sculpin did not have a significant threshold

response).

Regional subset simulation

A logistic function was used to simulate abundance data with a known threshold (68 °F)
in order to examine the differences in detected thresholds using TITAN, CART, and WWAT
when data were regionally divided. Detected thresholds were 1.4 °F, 0.6 °F, and 1.0 °F higher in
the SLP compared to the NLPUP for TITAN, CART, and WWAT, respectively (Table 1.7).
Maximum thresholds detected were 70.1 °F, 68.3 °F, and 68.2 °F for TITAN, CART, and
WWAT, respectively, and occurred within the SLP for each method (Figure 1.9). For each of the
three datasets, TITAN identified average thresholds 1.2 °F and 1.5 °F higher than CART and
WWAT, respectively (Table 1.7). Additionally, TITAN identified an average threshold response
at or beyond the known threshold for each region (ALL =69.3 °F; NLPUP = 68.0 °F; SLP =
69.4 °F). Table 1.8 consists of results of a two-way ANOVA comparing the mean response
between region and method. Results indicate highly significant differences exist between

detected benchmarks of each region, method, and region:method combination.

Discussion

Overall comparison of detected benchmarks

Accurate determination of temperature benchmarks and identification of habitat available
to fish is critical to the improvement of water and fisheries resource management. Using a robust
fish abundance and stream temperature dataset, | was able to apply three benchmark detection
methods that use different features of abundance and distribution data to detect and compare

benchmarks specific to Michigan stream fish species. LOESS regressions also were useful in
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providing visual cues to validate the presence of an estimated threshold. Applying the benchmark
detection methods to the cumulative dataset allowed for comparisons over a broader range of
species due to the minimum amount of occurrences required to provide unbiased benchmarks.
Employing various methods allowed for comparing estimated benchmarks from an approach
which assumes normally distributed (WWAT) abundances along a habitat gradient with
approaches that do not (TITAN and CART). The WWAT always assigned upper thermal
benchmarks as it was developed to relate the effects of baseflow reduction to increased water
temperatures during summer conditions, and subsequently, the effects of increased water
temperatures on fish assemblage. However, TITAN and CART identified lower thermal
benchmarks for some species, and upper thermal benchmarks for other species. This is due in
part to their abilities to incorporate directionality of response along the environmental gradient.
Moreover, the LOESS smoother indicated that many species did not respond to temperature with
a clear threshold response suggesting that each method may assign statistical change points
which do not necessarily indicate the presence of an actual threshold.

Estimates from Michigan’s WWAT, which is currently in use, generally were higher than
estimates from TITAN and CART, which showed greater similarity than when compared with
the WWAT. Benchmark estimation using the WWAT is the result of modeling fish responses to
flow reduction. The WWAT assigns benchmarks as a function of species-specific optimal
thermal habitat and assumptions of a normal distribution of abundance along a habitat gradient.
For this reason, WWAT benchmarks can be assigned independent of an actual break point or
inflection in the relationship between abundance and the thermal gradient. WWAT benchmark
detection is useful in its ability to detect sub-optimal habitat because it predicts reduced

abundance with changes in habitat conditions associated with water withdrawal. Thus, WWAT
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can identify the point at which species are more likely to display abundance characteristics
related to changes in habitat quality. However, this is not the same concept as an abrupt change,
or threshold, in species abundance as related to the thermal gradient, which is better described by
methods which distinguish linear patterns from nonlinear patterns (Ficetola and Denoél, 2009).

The WWAT model is based on the assumption that water withdrawal will shift fish
abundances to more closely represent that of another fish assemblage at a location with increased
water temperature. The WWAT further assumes the breakpoint between statistical outliers and
those within the general population is a fixed distance (mean + 1.75 std). Issues arise when
anomalously high values of abundance occur at extreme temperatures relative to the species in
question since the WWAT uses the thermal conditions of the top 20% of sites where abundance
was the highest. These extreme values, often considered outliers, lie in the tails of the normal
distribution, and theoretically would lie at or beyond the proposed threshold. However, statistical
outliers typically belong to a different population because they originate from another process or
source (Hampel et al., 1986). Incorporating extreme temperatures into the determination of the
optimal temperature inherently biases the estimate because the statistical outliers are derived
from a second (contaminating) distribution (Reimann et al., 2005) and are potentially influenced
more so by other environmental variables.

Currently, the WWAT operates under an assumption such that a threshold exists at the
mid-point between 1.5 and 2.0 standard deviations from the optimal temperature which
distinguishes thriving and/or characteristic populations (i.e. high abundance, multiple age
classes, and good reproduction) from those at poorer, less suitable habitat conditions. As such, a
threshold of the mean + 1.75 std was investigated for this analysis. However, as Characteristic

populations are described as having an upper range of mean + 1.5 standard deviations the true
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threshold should lie at the upper range of characteristic populations. Beyond this threshold,
species should immediately begin to show declining trends in abundance similar to those at sites
with sub-optimal habitat characteristics.

Application of benchmark detection methodology to the statewide dataset allowed me to
identify notable variations among thermal benchmarks of various stream fish. Of the 54 total
species for which each method was able to detect a significant benchmark, only 13 of those
species were found to have an upper thermal benchmark among all three methods. As TITAN
and CART are able to distinctly identify directionality of response along an environmental
gradient, it becomes difficult to apply these tools specifically for the purpose of identifying upper
thermal benchmarks associated with the overall goals of Michigan’s WWAT. However, large
differences in benchmarks existed among those 13 species, most notable of which was the nearly
2 °F and 4 °F average difference between WWAT and TITAN and WWAT and CART,
respectively. WWAT estimates were often beyond the inflection points of the LOESS regression
and sometimes occurred at or even beyond habitat conditions suitable for cold- or cool-water
species. For example, WWAT identified an upper thermal benchmark of 69.3 °F for Brook Trout
using the statewide dataset. Brook Trout acclimation temperatures, beyond which reduced
feeding and growth of salmonids begin to occur, have typically been observed between 46 — 68
°F (Selong et al., 2001). Results are similar for Slimy Sculpin. With previously identified
acclimation temperatures in the range of 41 — 68 °F (Otto and Rice, 1977), WWAT’s estimate of
68.7 °F is potentially beyond the range of preferred thermal habitat for some cold- and coolwater
species.

Although the goal of the WWAT is to assess the effects of increased stream temperatures

on fish abundance for all stream fishes in Michigan, it is important to recognize that warmwater
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species may not encounter temperatures near their upper thermal limit, and an upper threshold
may not exist for these species in Michigan. A major advantage of TITAN and CART is the
capability of assigning either a lower or upper thermal threshold. It is critical for fisheries
management to identify upper thermal limits for those cold- and coolwater species which are
particularly susceptible to increasing thermal stress. Lyons et al. (2009) developed water
temperature criteria for coolwater streams to help differentiate them from cold- and warmwater
streams and reassigned widespread species to thermal classes based on indicator species analysis.
When comparing thermal guild classifications of Lyons et al. (2009) with estimated thermal
thresholds, TITAN was able to detect upper thermal thresholds for all species showing
significant associations with coldwater streams. TITAN also detected upper thermal thresholds
for species associated with cold-transitional and warm-transitional streams. Additionally, there
were no upper thermal thresholds detected for any species which Lyons et al. (2009) classified as
a warmwater species. These findings highlight TITAN’s potential for identifying thresholds
relevant to the goals of Michigan’s WWAT. Effective water resources and fisheries management
not only relies on protecting against fish assemblage degradation, but also avoiding unnecessary
restrictions on allowable water withdrawal which many stakeholders rely upon for economic
purposes.

In the cases of coldwater fishes such as Brook Trout and Coho Salmon, CART identified
thermal benchmarks well below the optimal thermal habitat estimated by WWAT. Furthermore,
LOESS regressions of these species provide visual evidence of multiple inflection points
indicative of thermal thresholds, suggesting that more than one threshold or transition point can
exist. Presence of multiple thresholds throughout a broad environmental gradient, such as the

thermal gradient investigated in this study, can indicate the presence of multiple stable states in
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which changes in environmental parameters influence the behavior of state variables (population
abundance) (Beisner et al., 2003). Thus, population dynamics can fluctuate variably along an
environmental gradient. For managers, it is critical to understand the consequences associated
with crossing each threshold when multiple thresholds exist. Consideration must be given to
biological processes such as growth, reproduction, and survival, each of which are susceptible to

change at various points and ranges along an environmental gradient.

Detection of region-specific benchmarks

Stratification is potentially useful to minimize variability often attributed to local and
regional factors such as competition, climate, land use, and biogeographical history (Huff et al.,
2011). The field data used in my analysis was limited to only three species for which each
method identified an upper thermal benchmark within both regions. Regional stratification
affected each method differently in the detection of region-specific benchmarks. Subsetting the
data decreased the number of sites available with which to calculate optimal habitat values
according to the criteria required by the WWAT. In the case of TITAN, stratification reduced
measures of purity and reliability which TITAN relies upon to ensure the quality of indicator
response for each taxon. Variable directionality of response between regions was also a major
factor contributing to the regional differences for each species.

When considering decreaser species, stratification of the dataset resulted in reduced
benchmark detection for each method. In comparison to the cumulative ALL dataset, benchmark
detection was reduced by 15.4 % and 38.5% for TITAN, 0% and 30.8% for CART, and 0% and
61.6% for WWAT, in the NLPUP and SLP, respectively. Reduced detection of benchmarks by
TITAN resulted from an inability to detect a significant threshold (P < 0.05). Significant

thresholds result when an IndVal score for a particular change point (location along the
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environmental gradient, or in this case thermal gradient) is distinguishable as the maximum
IndVal score when confidence intervals for taxon-specific change points do not overlap.
Although significant thresholds are identified for some species, measures of purity and reliability
can be used as diagnostic measures to measure the quality of indicator response for taxa (Baker
and King, 2010). Table 1.6 contains measures of purity and reliability for each of the decreaser
species among each of the three data subsets. Following regional stratification, the number of
significant thresholds detected by TITAN decreased from nine species in ALL which met all
three criteria of a significant P-value, purity, and reliability (< 0.05), to five in the NLPUP, and
six in the SLP. Inability to detect thresholds by CART is the result of a failure to branch or split
from a single node, and thus, no significant threshold is estimated. As stated previously, WWAT
requires a minimum of 50 sites with abundance data in order to calculate optimal thermal habitat
and, therefore, a thermal threshold. As salmonids and other species typically associated with
coldwater streams such as slimy sculpin comprise a majority of the species included in our
analysis, it is not surprising that the SLP region is most affected by data stratification. The SLP
region (69.3 °F) had a median July mean water temperature 5.8 °F higher when compared to the
NLPUP region (63.5 °F). TITAN relies upon the relative magnitude of each IndVal score on
each side of potential change points along the environmental gradient to determine whether a
specific taxon shows greater association with reductions or increases in the gradient variable. In
our analysis, TITAN identified an upper thermal benchmark more often in the SLP, perhaps
suggesting fish species in the SLP more often encounter streams near an upper thermal threshold
and exhibit a response indicative of an actual threshold.

Temperature is a critical factor in determining the life history of fish, but distribution is

often influenced by other environmental variables (Shrode et al., 1982) and thus causes
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intraspecific variation in thermal optima among regions, thereby complicating our ability to
detect the true thermal threshold. Species-specific thermal optima and associated benchmarks are
related to regional stream temperature (Christie and Smol, 1993). Huff et al. (2011) found such
phenomenon in their comparison of taxon-specific thermal niches of aquatic vertebrates between
basin and ecoregion where some species showed differences in thermal niches among regions
where median temperatures varied in a similar way. Evidence from the simulation analysis
presents similar trends when applying benchmark detection methods to thermal gradients
characteristic of each region and using a known thermal threshold. Estimated thresholds for each
method were highest for the SLP (median July mean water temperature = 69.3 °F) and lowest for
the NLPUP (median July mean water temperature = 63.5 °F), while thresholds for ALL were
consistently in between (median July mean water temperature = 65.3 °F). As the data for this
analysis were simulated, the differences are purely artifacts of each method. Greater variation in
temperatures of streams between regions allows for increased likelihood that regional
temperature will play an important role in determining available habitat for taxa. The similarity
in trends of increasing threshold temperature with median July mean water temperature are
perhaps suggestive of a situation where the greater presence of warmer streams results in a shift

in the estimated threshold for each method.

Policy implications

Our results suggest that current WWAT methods may be overestimating upper thermal
benchmarks for coldwater species and assigning potentially spurious thresholds for warmwater
species. A more conservative estimate of the upper limit of optimal thermal habitat would likely
require further restriction on total allowable withdrawals, but there remains an issue of how to

implement restrictions since the effects of flow reduction vary among each of Michigan’s four
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thermal stream classes (Zorn et al., 2008). It is important to recognize that trout species typically
associated with coldwater streams (Lyons et al., 2009) had upper thermal thresholds in our
analysis near the equivalent of warm-transitional streams. This is also true of other species with
upper thermal thresholds, however Blacknose Dace, Burbot, and Northern Brook Lamprey had
upper thermal thresholds within warm streams, but these species either show significant
association with warmer thermal guilds or have no strong association with one particular thermal
guild. In the case that further restrictions are required on cold-transitional streams which are
most sensitive to flow reductions, perhaps lighter regulations on warm streams will mitigate the
loss in water availability to commercial and recreational water withdrawals. Although further
research is necessary to understand the upper thermal limits of warmwater fish species, further
refinement of thermal habitat requirements of stream fish can lead to more efficient water
resources management.

Further withdrawal restrictions placed on cold-transitional streams will likely handicap
stakeholders who rely upon these streams because of their sensitivity to reductions in index flow.
Under current legislation, just 2-4% reductions in index flow are predicted to cause adverse
resource impacts to the stream ecosystem. However, estimates of the upper thermal thresholds
for Brook Trout, Brown Trout, and Slimy Sculpin using TITAN or CART are within cold-
transitional streams as opposed to estimates from WWAT which are in the range of warm-
transitional streams. Using these more conservative estimates could restrict water withdrawal
within cold-transitional basins completely, or require case-by-case investigations for all cold
transitional streams to assess a stream reach’s resilience to withstanding large quantity
withdrawals and avoiding adverse resource impacts. It is worth mentioning that this could also

affect total allowable withdrawal in circumstances where cold transitional streams are
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downstream of cold stream withdrawals. In any case, it is crucial to the development of water
withdrawal policy implementation to distinguish the point where coldwater and warmwater
species overlap to properly enforce restrictions that maximize optimal thermal habitat and avoid
unnecessarily restricting withdrawals to streams able to withstand a substantial amount of water
withdrawal.

Another confounding factor in setting water withdrawal regulations is the issue arising
when species do not exhibit a true threshold response, but rather a more gradual response to
increasing stream temperatures. The magnitude of change may not be indicative of a clear
threshold due to insufficient data, or threshold behavior may be the response to an interaction of
more than one causal agent (Huggett, 2005), some of which are not easily controlled by
management measures. Other investigations caution against implementing regulation to prevent
crossing the threshold of a single species (Huggett 2005; Lindenmayer and Luck, 2005) because
not all species conform to the same landscape and habitat patterns. It may be more effective to
set thresholds for specific threats such as habitat deterioration or connectivity for a guild of
species. The WWAT currently employs a similar strategy by constructing zones corresponding
to the magnitude of impact that flow reduction will have on fish populations (Steinman et al.,
2011) for each of the 11 stream size-thermal classification combinations throughout Michigan.
By applying thresholds based on thermal guilds, management can avoid the use of species-based
thresholds, and instead group species based on similarities in optimal habitat preferences to
preserve and create specific habitat types. As many of the warmwater species in this analysis did
not show evidence of a true threshold, but instead showed a more gradual decline in abundance
beyond a certain point on the thermal gradient, it may be reasonable to manage warm streams

without adhering to the same assumptions regarding thresholds in cold transitional streams.
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Doing so could potentially create water availability for those stakeholders who may be affected
by further restrictions protecting against adverse resource impacts in coldwater streams.

The implementation of a water resources management strategy based around threshold
analysis requires an understanding of species and thermal guild responses to flow reduction to
most efficiently and effectively regulate water withdrawal such that ecological effects are
minimized and allowable withdrawal is properly allocated to all stakeholders. Adjustments to the
current impact zones used by the WWAT will require careful consideration for stakeholders who
will be affected, and mitigating factors must be given thought. If possible, actions which are
most cost effective and which have strong feedbacks to the rest of the system should be
prioritized as long as protection goals are being met (Suding et al., 2004). For example, as stream
temperature can be regulated in this case by regulating flow reduction, management can control
for species whose distributions are limited more so by flow requirements. Effective water
resources management requires a balance of science-based decision-making and broad
stakeholder involvement to encourage buy-in and eventual implementation of new regulations
aimed towards proper allocation of resources in the event of increased demand (Steinman et al.,

2011).

Conclusion
Michigan’s WWAT was created to aid in the protection of aquatic ecosystems such that
artificial water withdrawal does not cause ecological functional impairment or harm a stream’s
ability to support characteristic fish populations (Steinman et al., 2011). Such changes in stream
health and fish assemblage composition can be characterized by an ecological regime shift
caused by breaching of ecological thresholds. As such, applying threshold detection methods to

estimate important benchmarks related to fish abundance distribution along a thermal gradient
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can be used to set action points to avoid degradation of optimal thermal habitat. By comparing
WWAT’s previously determined species-specific thresholds with those estimated using methods
which do not assume a normal distribution, we estimated more conservative benchmarks for fish
species typically associated with coldwater streams and were able to distinguish between true
threshold responses and spurious upper thermal thresholds detected for warmwater species.
Current water withdrawal legislation may be overestimating the upper thermal limit of coldwater
fish and assigning false upper thermal limits to many warmwater species due to assumptions that
fish abundance and distribution data is normally distributed and that upper thermal limits exist
for all species.

Alternative threshold detection methods like TITAN and CART can distinguish between
lower and upper thresholds and also provide diagnostic measures to estimate uncertainty and
protect against overfitting. However, CART requires subjective interpretation of directionality of
response and may also provide multiple splits or branches which can complicate the detection of
a single threshold. While these methods can estimate thermal thresholds, many models will
identify a single threshold independent of the nature of the relationship or the amount of
thresholds which actually exist (Clements et al., 2010). LOESS regressions are a valuable tool
for examining species-specific relationships between fish abundance and environmental
gradients.

For the purposes of determining available thermal habitat in regards to the relationship
between increasing thermal stressors and fish populations, 1 recommend using TITAN as it
provides an enhanced ability to assign more accurate ecological benchmarks that are critical to
the successful management of Michigan’s natural resources. With the use of IndVal scores which

incorporate aspects of distribution such as occurrence and abundance, TITAN is able to detect
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thresholds of rarer species. TITAN also provides diagnostic measures such as purity and
reliability that measure the quality of indicator response for any taxon. TITAN provides an
ability to further distinguish thermal guild associations of some highly-desired coldwater species
which may occupy coolwater streams that are difficult to manage due to the degree in overlap of
cold- and warmwater fishes. I also suggest the use of LOESS regressions to supplement

threshold detection as a visual aid to verify the existence of a true threshold response.
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CHAPTER 2
Quantifying downstream warming rates of Michigan streams and assessing effects of baseflow

reduction on thermal dynamics

Introduction

Water temperature plays a critical role in biotic and abiotic processes in stream
ecosystems. Temperature influences organismal physiology (Fry, 1971), is a limiting factor for
species distributions throughout river reaches (Caissie, 2006), and can also affect rates of
biological processes (Mantua et al., 2010). Stream temperature is susceptible to change due to
alterations in streamflow through both direct, surface withdrawals and groundwater pumping,
potentially leading to changes in ecosystem processes and community composition. Investigation
of flow reduction on the thermal dynamics of streams is necessary in order for natural resource
managers to successfully regulate water uses while maintaining the ecological services of
streams.

Groundwater discharge sustains streamflows during low-flow periods (Kendy and
Bredehoeft, 2006) and helps stabilize stream temperature during summer by providing consistent
inputs of cool groundwater reserves (average groundwater temperatures vary from about 10.0° C
in southern Lower Michigan to about 5.5° C in northern Lower Michigan). While groundwater
serves as a critical component in maintaining aquatic habitat, it is also a valuable resource in
areas with limited or fully allocated surface-water supplies. Withdrawal from wells can affect the
rate of baseflow input to streams by creating a cone of depression which can lower the water
table, and subsequently reduce baseflows to the stream reach, potentially leading to lower
streamflow (Leake et al., 2008). Flow modification through water withdrawal has been shown to

impact the spatial and temporal variability of water temperature (Sinokrot and Gulliver, 2000).
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Sustainability of coldwater streams in Michigan is dependent upon a consistent input of
baseflows from aquifers that provide the thermal habitat required by valuable coldwater fish
species.

Effects of water withdrawal can vary on a seasonal basis. Summertime streamflows are of
particular concern to managers as reductions in flows can cause water temperatures to more
quickly equilibrate with ambient air temperatures, reducing habitat quality and availability for
stream fish (Zorn et al., 2002; Wehrly et al., 2006). Further, demand for water for irrigation and
cooling uses is highest during summer months, and is expected to increase with climate change.
As a response to the development of Instream Flow Incremental Methodology (Bovee, 1982),
which examines the impacts of flow reductions on fish and habitat, Nuhfer and Baker (2004)
examined the effects of reduced summer streamflows on brook trout population levels in Hunt
Creek, Michigan. As the study reach was relatively short (602 m), and the coldwater stream was
near the thermal optimum for brook trout, effects of downstream warming had little impact on
brook trout populations. However, through additional work, Nuhfer et al. (2017) reported that
maximum daily temperatures would be predicted to increase to temperatures potentially
uninhabitable by many trout species throughout Midwestern streams based on the results
observed in Hunt Creek.

Prompted by the findings of Nuhfer and Baker (2004), Zorn et al. (2008) developed a
single physical process model to estimate the impact of reduced summer baseflows (identified as
50% exceedance flow of August, typically the lowest flow month of the year in Michigan) on the
downstream warming rates of Michigan rivers. Michigan streams are classified into four types

according to July mean water temperature (JMT) (cold (C) = JMT <17.5 °C (63.5 °F), cold-

transitional (CT) = 17.5 °C (63.5 °F) < JMT <19.5 °C (67 °F), warm-transitional (WT) =19.5
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°C (67 °F) < JMT < 21.0 °C (70 °F), warm (W) = JMT > 21.0 °C (70 °F)). The stream classes
provide useful predictions of fish assemblages, and differ in their predicted response to
incremental reductions in baseflow. Michigan streams are also classified based on catchment
area, but this variable was not a focus of this analysis. Through development of dose-response
relationships, fish assemblage responses to decreased baseflows were predicted to aid in
determining percentages of baseflow reduction leading to adverse resource impacts to
characteristic fish populations. However, the rate of heating model was unable to replicate the
magnitude of warming observed in the Hunt Creek experimental stream reach. The uncertainty
associated with the physical process model and lack of data for other stream types led to the
recommendation of further study of downstream temperature flux (Zorn et al., 2008).

There are many models capable of predicting stream temperature (Sinokrot and Stefan,
1993; Mohseni et al., 1998; Caissie et al., 2001; Caissie et al., 2007; Cheng and Wiley, 2016);
however, few studies exist for estimating factors that influence downstream temperature change
rates (Rutherford et al., 2004; Magnusson et al., 2012; Davis et al., 2016). As demands for
groundwater increase due to effects of climate and land use change, there is a need to understand
the impacts of withdrawal on thermal dynamics of streams. Stream temperatures are driven by a
suite of both natural and anthropogenic variables. Meteorological features such as components of
heat flux including solar radiation, longwave radiation, evaporation, and conduction/convection,
and air temperature have an established influence on stream temperature change (Webb et al.,
2008). Hydrological features including discharge, depth, and width, (Webb and Nobilis, 2007;
Magnusson et al., 2012) as well as groundwater inputs (Mohseni and Stefan, 1999) and
connections with hyporheic zones (Hannah et al., 2009) are also known drivers of stream

temperature change. There remains a gap in the quantification and modeling of relationships
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between meteorological variables, stream discharge, and downstream warming rates; however,
achieving predictability in the physical processes governing reach-scale downstream temperature
response to baseflow reduction is an important step in understanding thermal dynamics of
streams (Bustillo et al., 2014).

Methods for predicting downstream temperature flux vary depending on the types of
available data. Deterministic or physical models use meteorological forcing variables and
hydrological processes to solve heat budget equations between the river and surrounding
environment (Webb et al., 2008). Magnusson et al. (2012) implemented an energy balance model
to describe downstream temperature change in proglacial stream reaches to better understand
influential processes of longitudinal temperature increases. However, forcing data can be
expensive to acquire and requires sophisticated technology to observe in situ, and can be difficult
to manage and maintain. Additionally, weather stations and other sources of data can be
unreliable and produce variability in estimates dependent upon location and time period, and are
often unavailable near the study location (Caissie et al., 2001). Methods for deriving components
of heat flux are often challenging, and are dependent upon input parameters such as relative
humidity, wind speed, and cloud cover that can be highly localized. While a deterministic
modeling approach is useful when conducting scenario analysis and understanding cause-and-
effect responses, it can be highly complex and require input parameters that may not be available
for use by models at large geographical scales (e.g., statewide models).

Alternatively, empirical or regression models rely on observed relations between weather
parameters and catchment characteristics to make predictions on associated temperature flux
(Neumann et al., 2003; Benyahya et al., 2007). Using regression-based analysis, stream

temperature change can be quantified and predicted at various spatial and temporal scales
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(Mohseni et al., 1998; Caldwell et al., 2013). Empirical models can be less computationally
intensive than process-based models, and are able to be easily implemented and validated.
However, there remains a need to collect hydrological data to describe empirical responses to
flow reductions and air temperatures, and the models developed to date typically are site specific

Although the examination of Hunt Creek by Nuhfer et al. (2017) did not reveal
considerable effects of water withdrawal on brook trout populations, flow reduction did have
significant downstream effects on stream temperature. Reductions in flow increased the warming
rate to extremes which would likely have negatively impacted growth or survival of salmonids in
downstream reaches. Although Zorn et al. (2008) were able to approximate observed
downstream warming rates of the Hunt Creek study, further examination of processes
influencing longitudinal temperature change is warranted given that no other warming rate data
were available for assessing the model’s applicability to other stream types. As the Hunt Creek
stream reach is groundwater dominated, temperature change in other stream thermal classes may
be difficult to simulate without in situ data to accurately parameterize models. Improved
modeling of temperature change rates is critical to improving the predictive power of the flow-
fish response model used to establish flow reduction thresholds, an essential component in
managing water resources for both human purposes and fish habitat.

The impetus for this research is defined by a general lack of data available for
understanding stream flow and temperature relationships. Further understanding of whether
warming rates vary by stream type will improve habitat and fisheries management, as managers
and ecologists have already begun identifying significant relationships between stream types and
fish community composition (Zorn et al., 2002, Wehrly et al., 2003, Zorn et al., 2008).

Furthermore, whether warming rates are predictable for differing stream types using a single
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model will help identify potential improvements to current management tools. The objectives of
this study are to (1) collect streamflow and temperature data to quantify and model relationships
between meteorological variables, streamflow variables, and downstream temperature flux rates
among different stream thermal classes; (2) evaluate process-based and regression-based models
to predict downstream warming rates; (3) use model selection criteria to identify models that best
fit data; (4) assess differences in model accuracy and determine whether downstream flux rates
differ significantly between stream thermal classes; (5) compare estimates from developed
models to the physical process model used by the Water Withdrawal Assessment Tool (WWAT);

and (6) evaluate implications for improving the downstream warming module.

Methods

Study sites

Six streams within each of the four WWAT thermal classes (C, CT, WT, and W) were
strategically chosen to provide geographical representation of stream types across Michigan and,
if possible, to obtain data for streams potentially affected by existing water withdrawal activities.
As such, stream reach selection was guided by input from local fish managers and water
withdrawal staff with the Michigan Department of Environmental Quality. Table 2.1 displays
site information for each stream chosen for the study site including a priori thermal class (from
the WWAT database), latitude and longitude, reach length, and elevations of upstream and
downstream locations. The a priori thermal classifications were based on predicted July mean
temperatures using regression modeling and geostatistical kriging methods described in Zorn et
al. (2008). Stream reaches were located in one of three regions throughout Michigan: southern
Lower Peninsula (SLP), northern Lower Peninsula (NLP), and Upper Peninsula (UP). Of the 24

streams chosen, eleven were located in the SLP, six in the NLP, and seven in the UP. Figure 2.1
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displays the locations of each of the 24 streams at which stream gauges were installed to collect
water temperature (and pressure) and discharge measurements, as well as air temperature and

barometric pressure.

Data collection

Thermal, hydrological, and weather data were recorded over the summers of 2015 and
2016. In 2015, data were collected from 15 streams beginning in July and extending to early
November. In 2016, data were collected from 21 streams beginning in May and extending
through October. Paired stream gauges were installed at upstream and downstream locations
within each stream. Stream gauges were built using PVC piping attached to a fence post driven
into the stream bed. Staff rulers were attached to gauges to record water level for use in
developing stage-discharge curves. HOBO® U20 Water Level Loggers measuring temperature
and pressure at 15-minute intervals were housed in stream gauges. Numerous holes were drilled
into the bottom of the stream gauges to allow water to flow through. Mesh lining was placed
around the drilled holes to prevent sediment build up within the housing. Data loggers were
calibrated against each other by placing loggers in an ice bath that slowly warmed to room
temperature. All sensors agreed within + 0.18 °C and were corrected for observed constant
offsets. Air temperature and barometric pressure were also collected at 15-minute intervals using
Monarch® Track-It data loggers. Measurements were ultimately averaged to hourly intervals.

Discharge measurements were taken at each of the upstream and downstream locations
for each of the 24 streams using a SonTek® Flowtracker. Discharge was determined three to five
times each year to collect a wide range of river stages. Stage-discharge curves were developed
using stage readings from staff rulers and discharge measurements. Barometric pressure readings

were used to adjust the pressure readings from water level loggers which measured total pressure
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from air and water. The true water pressure was obtained by subtracting barometric pressure
from the total pressure recorded by the water level loggers. The true water pressure was then
converted to inches of water, which was then aligned with staff gauge measurements when
discharge measurements were conducted. Gauge adjustments were then used to convert inches of
water to reflect an estimated gauge reading for each pressure observation recorded by the water
level loggers. Discharges were then calculated for each observation using equation (1):

Q=aG” (1)
where Q = discharge (m*s™), and G = gauge reading (in), while a and b are parameters estimated
by a power function relating discharge to stream stage. Power functions (equations 2-4) were
also developed to estimate widths, depths, and velocities as a function of discharge for use in

water temperature modeling:

w=cQ® (2
d=fQ" @
V=iQ (4)

where w = stream width (m), d = stream depth (m), V = velocity (m®s™), and c, e, f, h, i, and j are

parameters estimated using a power function.

Model hypotheses

A series of physical process (termed here a forcing model) and statistical models based
on hypothesized mechanisms that affect stream temperature dynamics were used to predict
downstream temperature change. Table 2.2 lists the models and parameters within each model
that were included in the model selection procedure. Models were parameterized using nonlinear
optimization (R Core Team, 2013) for each process contributing to temperature change, and

were individually fit to each stream. The forcing model used processes influencing stream
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warming described below. All parameters of the models were considered unknown coefficients,
including an intercept and the various components contributing to temperature change, thus
nonlinear optimization was used to estimate values for each, maximizing the fit between

observed and predicted water temperature flux.

Processes influencing stream warming

An energy balance equation similar to the methods of Magnusson et al. (2012) was used
to calculate downstream temperature change using meteorological forcing variables as well as
hydrologic data. Downstream temperature change A7 (°C) over a stream reach of length L (m)

and average width w (m) can be predicted using equation (5):

t)w(t)L A
AT(R) = L DE+ EE 4 AT (1) (5)

Here, g (W m™) is the heat flux across the stream surface, ¢ (J kg™ K™ is the specific heat
capacity of water, p (kg m) is the density of water, 4z (m) is the change in elevation between
the up- and downstream ends of the reach, g (m s?) is the gravitational acceleration constant, and
AT, (°C) is residual temperature change. The first term of equation (5) can also be calculated
using surface area A (m?), volume V (m®), and mean residence time of water 7 (s) by (0 4 7)/(V ¢
p). The second term represents frictional heating.

Equation (5) predicts downstream temperature change as a result of heat flux across the
stream surface and frictional heating due to dissipation of gravitational energy. Surface heat
transfer accounted for 88 — 91% of the variance in temperature increase in most stream reaches
studied by Magnusson et al. (2012). The exchange rate of heat at the stream surface resulting in
cooling or warming is proportional to heat flux, length of the stream reach, and average width of
the stream reach, while also being inversely proportional to the discharge. Equation (5) also

assumes that available potential gravitational energy dissipates into heat. The residual
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temperature change term represents heat that cannot be accounted for due to surface heat flux or
frictional heating. Additional heat sources of the residual temperature change include
groundwater advection and overland flow advection.

Surface heat flux is accounted for through the following four components included in
equation (6):

q=SWyee + LWyoe + LE + H (6)

where SWe is net shortwave radiation (W m), LW, is net longwave radiation (W m™), LE is
latent heat of evaporation (W m™), and H is sensible heat (W m™). Each of the other components

of q is described below.

Latent heat flux
Latent heat flux was calculated using the methods of Brocard and Harleman (1976) and is
shown in equation (7):
LE=39XV X (es—ey) (7)
where V is wind velocity (m s™), e, is surface vapor pressure (mb), and e, is air vapor pressure
(mb). Vapor pressure for both the water surface and air were calculated using water temperature

and the saturation pressure function in equation (8):

. 17.27XT
e* =6.11 X exp (?3;3) (8)

where T is the water temperature (°C) for e;, and dew point temperature (°C) for e,. The vapor
pressure of air was determined by multiplying an optimal value for relative humidity obtained
through nonlinear optimization methods (discussed below) with the measured air temperatures.

A value for wind speed was also obtained through nonlinear optimization.
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Sensible heat flux
Sensible heat flux was also calculated using the methods of Brocard and Harleman

(1976) and is shown in equation (9):

+273.16)—(Ty+273.16)

€s—€q

H=LEx61x10"*x P x (&

) (9)
where P is atmospheric pressure (mb), T, is water temperature (°C), and T, is air temperature

°C).

Shortwave radiation
Net shortwave radiation was calculated as follows in equation (10):
SWyet = (1 —a) X (1 —sf) x SW;, (10)
where « is the surface albedo set at a fixed value of 0.03 (dimensionless) (Sinokrot and Stefan,
1993), sf is a shading factor, and SW;, is the incoming solar radiation (W m™). The shading factor
was another term for which an optimal value was obtained for each site using nonlinear
optimization. Appendix 2.1 describes in full detail the methods used for deriving the net

shortwave radiation.

Longwave radiation
Longwave radiation was calculated using methods described in Magnusson et al (2012)
where clear-sky emissivity &, (dimensionless) was calculated (see equation 12) using the clear-

sky longwave radiation Lg, (W m™) calculated in equation (11):

6
Loy = 5938+ 1137 x (222) 49696 x_[W/p5 (1)
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where w is precipitable water (cm) given by w = 4650 X €q X 0.1/(T +273.16)" Clear-sky
a :

emissivity was then estimated using equation (12):

_La
€ar = r/(a x (T, +273.16))* (12)

where ¢ is the Stefan-Boltzmann constant (5.67 x 10%W m™ K. Effective atmospheric
emissivity e, (dimensionless) was then estimated using cloud cover Cgouq (%) in equation (13):
€q = (1 — 0.84ccioua) X €cpr + 0.84¢10uq (13)
Cloud cover was estimated as a function of the air vapor pressure in equation (14):
Ceroua = 1 — (0.095 — 0.06 X e,) X 0.9 — (0.66 — 0.44 X e,) X 0.5  (14)
Net longwave radiation was calculated using equation 14 as follows (Morin and Couillard,
1990):

LWyr = 0.97 X 0 X [e4 X (T, + 273.16)* — (T,, + 273.16)*]  (15)

Computing heat energy of various flows

In order to account for the heat energy from flows contributing to total discharge, a
method was used to weight the heat energy contributions based on flow temperature and flow
discharge. Water temperature is a measure of heat energy concentration in a stream. Water
temperature is proportional to the heat energy divided by water volume, or in other words, the
heat load divided by the flow rate. Increases or decreases in heat load affect stream temperature
by altering the amount of heat energy in the system (Poole and Berman, 2000). In this analysis it
was necessary to create parameters for both groundwater and overland flow because they have

different thermal patterns that affect stream temperature differently. Change in water temperature
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as a function of upstream water temperature A47,, (°C) and the difference in upstream and

downstream discharge was calculated using equation (16):

(Qup'Tup)
Qdown

ATy = Typ — (16)

where Qyp is the upstream discharge (m®s™?), Typ is the upstream water temperature (°C), and
Quown is the downstream discharge (m* s™). Baseflow gain within each stream section (denoted
by Qpase (M* 5™1)) was estimated for each stream by determining the gain in discharge from the
upstream gauge to the downstream gauge for the lowest 7-day flow period for each year.
Contributions of baseflow heat energy A7hase (°C) to downstream temperature flux were

calculated using equation (17) as follows:

ATbase — Tup _ (Qbase Thase) (17)

Qdown

where Qpase IS the baseflow discharge (m3 s'l) and Tyase IS the baseflow temperature (°C).
Baseflow temperature was set as a constant particular to each of the three regions where streams
are located throughout Michigan (UP = 5.6 °C; NLP = 8.3 °C; SLP =11.1 °C (USEPA, 2016)).
Finally, heat energy of overland flow AT (°C) was determined using equation (18),

ATover — Tup _ [(Qdown‘%t;z;;ibase)'Tatr] (18)

where overland flow discharge was estimated as the remaining flow after subtracting upstream
and baseflow discharges from the downstream discharge. Temperature of the overland flow was
determined using a moving air temperature average T,,,- (°C) where air temperature was
averaged over a 12-hour period for each observation. As water temperature is proportional to the
heat load divided by discharge, the downstream change in water temperature caused by heat

energy inputs can be accounted for through the ATg,, variable. Equation (19) combines equations
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(16 — 18) and creates a variable ATso, (°C) which describes the cumulative heat energy due to
each of the flow components:

[(Qup 'Tup)+(Qbase'Tgw)+(Qd0wn_Qup_Qbase)'m (19)

ATflow = Tup -

Qdown

Statistical models

Models were built in a hierarchical fashion sequentially incorporating parameters for
processes judged to be dominant in influencing downstream temperature flux. As such, the base
model (Model 1) was the simplest and subsequent models became progressively complex. As
water temperature is influenced by heat energy and water volume, parameters included in the
models were based on hydrologic and meteorological principles known to have an influence on

water temperature heating dynamics as described above.

Air temperature — water temperature differential (Model 1)

A major heat exchange process occurs at the air-water interface. As the rate of heating
depends on the magnitude of temperature difference between ambient air temperature and water
temperature, incorporating the air-water temperature differential into the model was a first step to
model downstream temperature change. The following model was used as a base model and
consisted of an intercept and beta coefficient associated with the differential between the air

temperature and upstream water temperature:

AT = Bo + p1(Ta — Tw) [1]

Discharge ratio (Model 2)
Discharge ratio was incorporated into the base model to reflect the amount of discharge
gained between the upstream and downstream gauges. A baseline value of 1:1 can be used to

evaluate the thermal dynamics of streams in situations where there is no loss or gain in
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discharge. However, each additional source of discharge may alter the thermal inertia of the
stream. Sources of additional discharge may include baseflow gain, overland flow, or
precipitation directly into the stream channel. Model 2 incorporated the upstream-downstream

discharge ratio into the base model as follows:

AT = fo+BiTa =T+ Bo(g)  [2]

Flow temperature change and upstream discharge (Model 3)

Variations in stream temperature have been shown to be inversely proportional to stream
discharge (Magnusson et al., 2012). Incorporating a variable accounting for the upstream
discharge may explain some of the variation in downstream temperature flux since reductions in
stream discharge can lead to increased residence times of water within stream reaches, leading to
increased exposure to elements of surface heat flux. A parameter was also added to describe the
cumulative heat energy of the stream reach using the 4T, variable. Fluctuations in stream
temperature are the result of altering the amount of heat energy added to the stream (Poole and
Berman, 2001). Model 3 included a parameter for upstream discharge, as well as a parameter for

the heat load of the three sources of discharge:

AT = Bo + ﬁ1(Ta - Tw) + ﬁ3(Qup) + ﬂ4(ATflow) [3]

Downstream — upstream discharge differential (Model 4)

As another measure of the gain in discharge, the downstream — upstream discharge
differential was added to account for the potential effects of different sources of discharge on
downstream temperature change. The discharge differential between the downstream and

upstream locations was incorporated into model 4 as follows:

AT = By + B (T, — Tw) + B3(Qup) + Ba(ATr10w) + Bs(Quown — Qup)  [4]
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Day length (Model 5)

To account for the effects of solar radiation without having direct measurements of solar
heat flux, day length was used as a proxy. Day lengths specific to each stream reach and day of
year were calculated using equations 20 — 22 below (Meeus, 1991), and incorporated into model
5!

AT = Bo + By (Ta = Tw) + B3(Qup) + Ba(BTr10w) + Bs(Quown = Qup) + Be(S) [5]
Day length S (hr) was derived using equation (20):
S==-"2 (20
where 7 is the local hour angle of the sun and derived by equation (21),
T = arccos [—tan(lat) * tan(A)] (21)
where lat is the geographical latitude. A is the declination angle of the sun calculated using
equation (22)

A= 23.5 - sin [(ﬁ) 1360 (22)

where x is the number of days since the vernal equinox (March 21).

Altitude angle (Model 6):

Solar radiation is a driver of heat flux occurring at the stream surface. The sun altitude
angle was used as a measure of the sun’s intensity at any given hour throughout the day. This
allowed for differentiating between diurnal variation in downstream temperature change, as well
as the sun’s intensity throughout the day. Altitude angle o was used as a measure of the sun’s
intensity based on the hour of day and day of year. Using equations 23 — 26 below (Meeus,

1991), sun altitude angle was implemented to create model 6:

AT = By + B (Ty — Tw) + B3(Qup) + Ba(AT10w) + Bs(Qaown — Qup) + B7(a) [6]
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Altitude angle was derived using equation (23) as follows:
a = arcsin [cos(lat) - cos(A) - cos(h) + sin(lat) - sin(A)] (23)

where h is the hour angle derived by equation (24)

h= (No.of minutes past 1.nidnight,AST)—720 min (24)
4 min/deg
Equation (25) calculates the apparent solar time AST :
AST = LST + (4 Z‘TZ) (LSTM — long) + ET (25)

where LST is the local standard time (hr; adjusted for daylight savings time DST, if necessary,

such that LST = DST — 1 hr), long is the geographical longitude, LSTM is the local longitude of

long

standard time meridian where LSTM = 15° - o

and ET is the equation of time in minutes
approximated by equation (26)
ET = 9.87 - sin(2D) — 7.53 - cos(D) — 1.5 - sin (D) (26)

where D = 360° - (

1\;_6?), and N is the day of year.

Including day length and sun altitude angle (Model 7)
An additional model was created to determine whether inclusion of both day length and

sun altitude angle improved model fit.

AT = ﬁO + Bl (Ta - Tw) + ,83(Qup) + ﬁzl-(ATflow) + ﬁS (Qdown - Qup) + 36 (S) + ,37(05) [7]

Differential effects of flow sources (Models 8, 9, and 10)

Additional models were developed by creating separate parameters for the heat load of
upstream flow, baseflow, and overland flow. Groundwater and overland flow have different
thermal patterns, so individual parameters were included for each. Although Model 3 included a

parameter evaluating the effects of cumulative heat energy of the three components of flow,
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Models 8, 9, and 10 include coefficients to describe the individual contributions of upstream,
baseflow, and overland flow from equations (14 — 16), respectively, to downstream temperature
change to evaluate whether reductions in sums of squared errors outweighs increased
parameterization. These models include either one or both of the day length and altitude angle

variables to predict downstream temperature change.
AT = Bo + B1(Ty — T) + B3(Qup) + Bs(Qaown — Qup) + Bs(S) + B7(a) + Bg(AT,) +
Bo(ATpase) + Bro(AToper)  [8]
AT = By + By (Ta = Ty) + B3(Qup) + Bs(Qaown — Qup) + B7(@) + Ba(ATop) + Bo(ATpqse) +
Bro(BTover) [0
AT = By + By (Ta = Ty) + B3(Qup) + Bs(Quown — Qup) + B6(S) + B7 (@) + Bs(AT,,p) +

:89 (ATbase) + ﬁlO(ATover) [10]

Incorporating components of surface heat exchange into a statistical model (Model 11)

A hybrid model was developed that incorporated aspects of the forcing model described
above, into a statistical model with coefficients to describe the influence of drivers of heat flux
on downstream temperature flux. The components of heat flux were modified to remove values
considered as constants (p, ¢, L, W, and frictional heating) or approximations obtained through
nonlinear optimization (s, dew point temperature, sf, a). As sensible heat flux H is dependent
upon latent heat flux, the sensible heat flux term was not included in the hybrid model. In
addition to the drivers of heat flux, the air — water temperature differential, baseflow heat load,
and overland flow heat load were also included. When considering the shortwave radiation,

altitude angle was used as a proxy for shortwave heat flux at the stream surface.
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AT = Bo + B1 + Bo(BThase) + Bro(BTover) + Brz[5— (Ta +273.16)* + (T, + 273.16)1)] +
ﬁlg[(%up- (™ — eTa)] + ﬁm(oéw @) [11]

Forcing model (Model 12)

The deterministic forcing model was developed based on the methods of Magnusson et al
(2012) using the principles of heat flux and processes influencing downstream warming
described above. As mentioned previously, downstream temperature flux is dependent upon
changes in discharge. Changes in stream temperature are directly related to the mean residence
time of water in a stream reach, meaning that increased residence times lead to increases in
downstream temperature flux. Furthermore, additional heat input to the stream channel through
other sources of discharge can alter the thermal dynamics of the stream. In this case, it is
important to account for the heat energy of baseflow and overland flow. Surface heat flux
components were derived using in situ and site information data (i.e., elevation, latitude), as well
as parameters obtained through nonlinear optimization for required variables which were not
collected (wind velocity, relative humidity, shading). Using equation (5) which describes the
components of heat flux influencing longitudinal stream temperature change, and equations (16)
and (17) to account for the temperature change due heat loads of baseflow and overland flow, the

forcing model in equation (27) was developed:

t)w(t)L A
AT () = 2% 4 022 4 ATy + Aper 27)

Model fitting, selection, and prediction

Nonlinear optimization methods were used to parameterize unknown components of each
of the aforementioned models in order to minimize the residual sums of squares between
modeled and observed AT (equation (28)):
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RSS = Y.(Observed(AT) — Modeled(AT)) (28)
As all parameters in the statistical and hybrid models were considered free fitting coefficients, no
constraints were placed on the possible values. However, when using nonlinear optimization to
parameterize unknown variables in the forcing model, constraints were placed on the variables
such that lower and upper bounds limited parameterization to realistic values. For example,
values for shading factor and relative humidity are proportions between 0 — 100, thus, these were
the constraining values used for these variables.

In order to assess each model’s accuracy in predicting AT, model selection was applied
using Akaike’s Information Criterion (Akaike, 1973) (AIC), and models were prioritized using
the weighting method of Buckland et al. (1997). AIC is one of many model selection methods
that prioritize models based on fitting ability and level of parsimony (e.g., Thayer et al., 2007).
Equations (29) and (30) display the AIC and likelihood L (Seber and Wild, 1989), respectively,
for finite sample size:

AIC = 2k — 2In (L(parameters|data)) (29)
L(parameters|data) = —(g) -log.(RSS) (30)

where k is the number of unknown parameters, and n is the sample size (number of hourly
observations; varied for each stream). Using the above criteria, the models with the lowest AIC
score fit the observed data best.

Models were then weighted following equation (31) below:

N
exp (-3)

 SMexp(—3)

(31)

w;
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where M is the total number of models and Ai is the difference in AIC. of an individual model
compared to the best model. Model weights determined one model’s fitting ability relative to

another.

Partial influence

Partial regression analysis was used to assess the influence of each of the variables
included in the best statistical model on downstream temperature flux. Partial R? values are
useful for understanding the residual variation accounted for by a predictor variable that cannot

be explained by a constrained model. In order to determine the partial R? of a particular predictor

SSR—-SSE
SSR '

variable, the proportion of residual variance can be accounted for by where SSR is the

sums of squared errors of the reduced model, and SSE is the sums of squared errors of the full

model.
Model performance

N —0:
Root mean square error (RMSE) which is given by: RMSE = fzi:l(PT‘o‘)z with P; and

O being the predicted and observed values, respectively, was used to compare relative
performance among the three best models. The RMSE was calculated on a monthly, annual, and

overall basis.

Pooling data

All of the above models were developed on a site-by-site basis, and as such, provide
estimates specific to the sites studied. In order to determine if flux rates could be successfully
modeled at a more aggregated level, | used a mixed general linear model (e.g., Littell et al.
2006), to determine whether streams among the a priori thermal classes exhibited significantly

different flux rates and should be modeled separately. The structure of the mixed model was
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based on model 10 above with the exception that data from each stream was treated as a random
effect, and thermal class was treated as a fixed effect. The results of the mixed model were
evaluated by comparing observed and predicted values for each stream reach. LOESS
regressions (Cleveland, 1979) were then used to provide a smoothed graphical depiction of
observed downstream temperature flux with predictions made using the best model
parameterized specific to each pooled dataset. Summary statistics were also calculated for each

stream and averaged over thermal classes.

Model comparison with WWAT

A critical component of this analysis was to compare the downstream warming rates
predicted by the statistical models developed in this study, and those predicted by the
downstream warming rate model developed by Zorn et al. (2008) that informed the fish
assemblage response curves which provided the four management zones (A, B, C and D) used in
the WWAT. The Zorn et al. (2008) downstream warming rate model uses components of a
physical process model. Without the use of site-specific inputs such as shading factors,
groundwater inputs, and land use/land cover, the formula is based on aspects of the energy
balance equation and Newton’s Law of Cooling/Heating such that T,, can be derived using
equation (32) as follows:

Ty =Tg+ (T;—Tp)- e (32)

where T is the equilibrium temperature (°C), T; is the initial water temperature (°C), and t is the
travel time of water (hours) in each stream segment. The heat exchange coefficient (1/h) k is

determined using equation (33):

0.0085
k =

(33)
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where d is the depth (m). For the purposes of scenario analysis of incremental baseflow
reductions, hydraulic geometry relationships were used to estimate depths and velocities at
selected levels of baseflow reduction to determine downstream warming rates. Equation (34) was
used to calculate depth using Qpase as the input variable:

d = exp [(In (Qpase) - 0.282941) — 0.8594]-0.3031  (34)
Equation (35) was then used as a function to adjust velocity at the same rate as depth. The
predicted velocity is scaled to the initial velocity V; using the initial depth d; as follows:

V =V;-(0.0146 - In(Qpase) + 0.0998/d; (35)

Downstream warming rates between the two models were predicted for the month of
August since the WWAT uses the August 50% exceedance flow (referred to as the Index Flow)
as one of the key habitat variables important to fish metabolism, survival, reproductive success,
distribution, and abundance. Average values for the month of August were used. Downstream
warming rates were compared between the overall best model based upon model weight, and the
Zorn et al. (2008) downstream warming module. Scenario analyses were conducted to project the
impact of reduced baseflow on downstream temperature change. Impacts of baseflow reduction
on downstream warming rates used the best model, as determined by model weight, by
dynamically reducing the amount of baseflow input such that reductions in baseflow ultimately
reduced the downstream discharge. Downstream warming rates were scaled to reflect

downstream temperature flux per kilometer of stream reach AT/L (°C/km).

Results

Site information
Hydrological data were successfully collected from 21 of the 24 streams from Table 2.1.

For each of the East Branch Waiska River, Hemingway Lake Outlet, and Unnamed Gun River
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Tributary reaches, stream gauges were unable to be recovered or became dislodged during
deployments. In 2015, the East Branch Waiska River was heavily inundated and discharge
measurements were unable to be taken as water levels overtopped the stream gauge, which was
ultimately lost. The Hemingway Lake Outlet stream reach was dammed by beavers leading to
inaccurate flow measurements for the 2016 field season. Additionally, during the 2016 field
season, the Unnamed Gun River Tributary experienced a flooding event that dislodged the
stream gauges at both upstream and downstream locations, and the gauges were eventually
reinstalled. After reinstallation, the downstream gauge was eventually lost, possibly due to
another flooding event, or human removal. Over the 2015 and 2016 field seasons, two years of
data were successfully collected for 10 streams, while the remaining 11 streams had one year of
data.

When selecting stream reaches for this study, streams were chosen based upon the a
priori thermal classification predicted using the regression model developed by Zorn et al.
(2008). Streams were selected to provide an even distribution from each of the four thermal
classifications (C, CT, WT, and W). Table 2.3 displays the a priori and a posteriori thermal
classes of each of the 21 streams in this study. July mean water temperatures (°C) were averaged
across years if data was collected across two years. The a priori thermal classifications were
correct for 11 of the 21 streams. Based upon the a posteriori thermal classifications, the final
number of stream thermal classifications was 3, 10, 5, and 3 for cold, cold-transitional, warm-

transitional, and warm streams, respectively.

Observed flux rates
Analyzing downstream temperature flux in comparison with stream discharges provides

information about flow conditions under which streams display greater temperature fluctuation
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rates. Figure 2.2 shows downstream temperature flux rates compared to the upstream discharge
(m* s™) for representative stream reaches amongst each of the four thermal classes. Observed
temperature fluctuations displayed a strong response to discharge. Downstream temperature flux
rates appeared to be inversely related to discharge (Figure 2.2-2.3). Variation in flux rates among
each stream were typically reduced as discharges increased (see supplemental files). These
trends were similar when comparing flux rates with discharges among thermal classes as a whole

(Figure 2.3).

Model selection

Models were fit to predict downstream temperature change at hourly intervals for the 21
streams with at least one year of data. Predicting downstream temperature change using the
forcing model (model 12) provided a poor fit to the data (Table 2.4), and so was not considered
in the model selection process. Results using the forcing model led to extremely high sums of
squared errors and low correlation for nearly all stream reaches. However, the SSE using Model
12 was the lowest among the models for the East Branch Black River, although the correlation
was not particularly notable. Parameterization of each of the shading, wind speed, and relative
humidity variables resulted in values that were outside of the range of realistic values. For
example, the shading coefficient of each stream was optimized to approximately 90%. While
some smaller streams may show 90% shading, higher order streams were unlikely to reflect this
amount of stream cover.

Hourly observations of downstream temperature flux rates are displayed in Figure 2.4 for
example streams (one stream from each thermal class). The vertical and horizontal scatter of
hourly observations is indicative of diurnal and seasonal patterns in temperature change. A

LOESS regression was used to provide a smoothed representation of the hourly data, and display
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general seasonal patterns. Downstream warming rates typically peaked in summer, while values
were often lowest during spring and late fall. The hourly observations indicate that streams
experience warming and cooling events diurnally, and the extent of each varies by stream. The
LOESS regressions were also useful for visually comparing model fit with observed data
(Figures 2.5 - 2.8).

The models ultimately selected for ranking were statistical models developed using
hydrological and meteorological processes contributing to heat flux. Of all the models tested,
only four models (Models 8, 9, 10, and 11) received consideration for best fit by model weight
(Table 2.5). However, two models (Models 10 and 11) provided the best overall fit by model
weight to any of the streams. The top ranked models contained separate parameters controlling
for each of the individual components of stream heat load (upstream flow, baseflow, and
overland flow). Additionally, these models controlled for at least one of the components of heat
flux at the stream surface (e.g. day length and/or sun altitude angle).

The best model (Model 10, Table 2.5) included both day length and sun altitude angle to
account for the effects of solar heat flux at the stream surface. This model tracked overall trends
well (r = 0.62), but would occasionally underestimate peak periods of downstream warming and
cooling (Figure 2.5). For some streams, this model predicted peak downstream temperature
change events earlier or later than observed (see supplemental files). This model provided the
best fit for 76% (16/21) of streams (Table 2.6). Model 10 tracked trends the best for streams with
both one (r = 0.66) and two (r = 0.58) years of data (Table 2.7). Average model weight for Model
10 was 0.74 (Table 2.5), far greater than the second best model (Model 11) with an average

weight of 0.24.

55



The second best model (Model 11, Table 2.5) was a statistical model developed to
incorporate the effects of heat flux at the stream surface. Instead of including a parameter to
control for the effects of the upstream heat load, this model included parameters to emulate
evaporative, solar, and longwave heat flux along the downstream gradient. Additionally, this
model included parameters for the overland flow and base flow components of heat load. Model
11 did not match trends as well (r = 0.50) as the best model (Figure 2.6). Model 11 also failed to
match peak downstream heat flux timing and values for many streams (see supplemental files).
This model did not perform better for any particular stream thermal class, but instead was
identified as the best model for at least one stream in each of CT, WT, and W thermal classes.
Model 9 provided the best fit by model weight for 5 of the 21 streams with an average model
weight of 0.24 (Table 2.5).

The third best model (Model 9, Table 2.5) included sun altitude angle as a substitute for
solar heat flux. This model captured trends nearly as well as the best model (r = 0.56), but more
often failed to accurately predict peak downstream temperature fluxes (Figure 2.7). This model
also failed to capture the full range of downstream temperature fluxes of some streams (see
supplemental files). Model 9 did not provide the best overall fit for any of streams, but received
consideration for the best fit by model weight in four streams. Model 9 had the third highest
average weight at 0.024.

The fourth best model (Model 8, Table 2.5) included day length as a substitute for solar
heat flux. This model captured trends nearly as well as the best model (r = 0.59), but failed to
fully capture the range of peak downstream temperature fluxes (Figure 2.8; see supplemental

files). Model 8 did not provide the best overall fit for any of the streams, and had a very low
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model weight of 0.001. Model 8 received support by model weight in just one stream (Table

2.6).

Seasonal patterns

Model fit varied seasonally and yearly in each of the best models (Figures 2.5 — 2.8).
Predictions of downstream temperature change were less accurate at the beginning and ends of
each year. Using correlation as a measure of how well models tracked trends, models tended to
track better in streams for which there was only one year of data collected compared to streams
with two years of data (Table 2.7). Each of the three models presented issues in the timing of
peak downstream temperature flux for both downstream warming and cooling.

The seasonality of errors between observed downstream temperature fluxes and those
predicted using the best models identified by model selection criteria are depicted in Figure 2.9.
The differences that occur between the four different models are small (see supplemental files).
Summertime downstream temperature fluxes tend to be underestimated by each of the four best
models. Estimations of fall downstream temperature flux are more variable; models tended to
underestimate the downstream cooling effects experienced by streams beginning in early fall.

When using the RMSE of the four best models to evaluate performance across all
streams, all models had similar overall RMSE (Table 2.8). Models 8, 9, and 10 performed best
with an RMSE of 0.12 °C, while Model 11 performed similarly with an RMSE of 0.13 °C. Each
of the four models performed best in October (M8 = 0.10 °C; M9 = 0.11 °C; M10 = 0.10 °C; and
M11 = 0.11 °C) and worst in July (M8 = 0.13 °C; M9 = 0.13 °C; M10 =0.13 °C; and M11 =
0.14 °C) (Table 2.9). Table 2.10 displays the performance based on RMSE of each of the models

among the four thermal classifications. Models performed best in cold streams (M8 = 0.06 °C;
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M9 =0.06 °C; M10 = 0.06 °C; and M11 = 0. 065 °C) and worst in warm-transitional streams

(M8 =0.16 °C; M9 = 0.16 °C; M10 = 0.16 °C; and M11 = 0.17 °C).

Peak events

The maximum and minimum downstream temperature fluxes of both the observed and
predicted values of each of the four best models are displayed in Table 2.11. The highest
downstream temperature warming rate of 1.74 °C/km was observed in Squaw Creek, while the
highest rate of downstream cooling of -1.43 °C/km occurred in Morgan Creek. The average
maximum and minimum downstream temperature flux rates across all streams were 0.17 °C/km
and -0.14 °C/km, respectively. Model 11 had both the highest average maximum value at 0.14
°C/km, and lowest average minimum value at -0.09 °C/km. Models were occasionally unable to
capture the directionality of downstream temperature flux. For example, Nottawa Creek
experienced a maximum downstream temperature flux of 0.03 °C/km, however, none of the
models predicted a downstream temperature flux greater than -0.01 °C/km (Model 10; Table
2.11). A similar situation occurred for the East Branch Black River which had a minimum
downstream temperature flux of -0.10 °C/km, but only one model (Model 9; Table 2.11)
predicted a negative downstream temperature flux at any point.

In order to examine each model’s ability to capture peaks and troughs of downstream
temperature flux, the residuals between observed and model predictions of the 1% and 99"
percentiles were compared (Table 2.12). Models performed similarly in their abilities to estimate
peaks and troughs of downstream temperature flux. Models tended to underestimate peak
downstream warming and cooling events, such that models were unable to fully capture the
range of downstream temperature changes experienced by the streams. Model 10 most closely

captured downstream temperature fluxes in both the 1% and 99™ percentiles.
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Quantifying influence on downstream temperature flux

The influence of each variable included in Model 10 on the rate of downstream
temperature flux was examined through partial regression analysis. On an overall basis, day
length had the most influence on the flux rate with a partial R? of 0.09, while the discharge
differential between upstream and downstream gauges had the least at 0.02 (Table 2.13). When
averaging partial R? values over thermal classes, the variables with the greatest influence over
flux rates was dependent upon stream thermal class (Table 2.14). Day length remained the most
influential variable for both cold and cold-transitional streams, while baseflow heat load and
altitude angle provide the greatest influence for warm-transitional and warm streams,

respectively.

Comparison of pooled datasets

The GLM used to compare the differences in temperature flux rates revealed that
incorporating the effects of individual stream reaches (i.e., thermal dynamics unique to each
stream reach) as random effects improved model performance as indicated by the model R
When accounting for the variance between individual stream reaches, R increases from 0.30 to
0.57 (Table 2.15). Incorporating the random effects shows evidence for stream to stream
variation in thermal flux rates. Although significant differences exist in the downstream thermal
flux rates of thermal classes (Table 2.15; 2.17), flux rates are also significantly different between
individual stream reaches (Table 2.16 — 2.17). Random effects of individual streams should be
taken into consideration when modeling downstream flux rates. The results from the GLM show
that individual streams should be assessed relative to other streams within the same thermal

class.
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Pooling data allowed for comparing model accuracy across streams of similar thermal
classes and across the entire set of streams sampled. Using LOESS regressions to visually
compare fit among the example streams in Figure 2.10, the pooled data set which provides the
best fit based on model optimization varies between thermal classes. Results are similar among
the rest of the streams within the study streams (see supplemental files). Summary statistics
including r, SSE, and RMSE tended to improve for individual stream reaches (Table 2.18) and
overall thermal classes (Table 2.19) when optimizing Model 10 for each thermal class as
compared to the pooled data set. Using the pooled data set, cold streams had the best RMSE at
0.16 °C, while warm streams had the worst RMSE at 0.35 °C. Trends were tracked best based
upon r in warm streams (r = 0.52), while trends in warm-transitional streams tracked worst (r =
0.12) When parameterizing Model 10 specific to each thermal class, RMSE improved across all
thermal classes. Based on RMSE, the model performed best in cold streams (RMSE = 0.12 °C),
while performing worst in warm-transitional streams (RMSE = 0.34 °C). Based on r, the model
performed similarly in warm (r = 0.45) and cold (r = 0.45), and most poorly in cold-transitional

streams (r = 0.19).

Baseflow reduction scenarios

Downstream temperature flux rates show a dynamic response to baseflow reduction
where effects vary by season and reduction scenario (Table 2.20; Figure 2.11; see supplemental
files). In the model, as baseflow is reduced, so are each of the downstream discharge and
downstream — upstream discharge differential variables. The dynamic effects lead to interesting
results where some streams actually show downstream cooling in the 90% reduction scenario,
and downstream warming in the 0% reduction scenario (e.g.., Fish Creek; Figure 2.11). More

interestingly, Fish Creek also appears to show a greater degree of downstream cooling later in
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the year under the 90% reduction scenario when compared with the 0% reduction scenario (i.e.,
October; Figure 2.11; Table 2.20). This is potentially due to the lesser volume of water in the
stream channel, which becomes more susceptible to a greater cooling due to air temperature.
Cedar Creek is estimated to experience a similar phenomenon under the 90% reduction scenario,
where the flux rate is projected to cool at 0.46 °C/km. The reduced volume of water combined
with the shaded study reach of Cedar Creek may provide a unique scenario allowing for
increased cooling, although this may require additional inputs of cool groundwater somewhere
further along the reach.

Occasionally, streams displayed an increase in downstream warming rates following
baseflow reduction. Cedar River, for example, was predicted to show an increase in monthly
downstream warming for each of the reduction scenarios listed in Table 2.20. This trend also
held true for several other streams within the study. Butterfield Creek was one stream
particularly susceptible to reductions in baseflow. Under baseflow conditions, Butterfield Creek
was predicted and observed to experience downstream cooling; however, under the most extreme
reduction scenario, the flux rate shifted to downstream warming. Given these results, it is clear
that individual streams show complex responses to baseflow reductions throughout the year.

Thermal class responses to baseflow reduction varied by month and among each class.
The warm thermal class was predicted to experience downstream cooling under a 0% reduction
scenario for each month, while the other three classes were predicted to warm with downstream
flow (Table 2.21). These results suggest that thermal sensitivity varies by thermal class. Cold
streams showed the least thermal sensitivity between the 0% and 90% reduction scenarios, with
the greatest difference in downstream flux rates of 0.12 °C occurring in October. The greatest

rates of downstream warming under each flow reduction scenario examined were projected for
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October within warm-transitional streams. Interestingly, warming rates were projected to
decrease as baseflow reduction increased. When focusing on summer months, the greatest impact
of baseflow reduction on downstream flux rates occurred within the warm thermal class. The
downstream flux rates in warm streams were projected to increase by 0.59 °C and 0.30 °C in July

and August, respectively.

Comparison with the Zorn et al. (2008) downstream warming rate model.

As part of this analysis, longitudinal downstream temperature flux rates (°C/km) for
August were estimated using Model 10 and were compared to rates estimated by the Zorn et al.
(2008) downstream warming rate model. August is often the lowest flow month of the year, and
water temperature can peak during this time having a dominant effect on fish physiology,
growth, and survival. Mean values used to parameterize Model 10 (Table 2.22) and the Zorn et
al. (2008) model (Table 2.23) were calculated for August. The greatest downstream temperature
flux rate was observed in Squaw Creek at 0.77 °C/km (Table 2.24), while Hasler Creek
experienced the greatest cooling rate at -0.26 °C/km. On average, cold streams experienced the
greatest gain in downstream temperature change of 0.14 °C, while warm streams experienced an
average downstream temperature change of -0.11 °C (Table 2.25). During August baseflow
conditions, Model 10 most accurately reflected the average downstream temperature flux of each
thermal class (Table 2.24). The Zorn et al. (2008) model severely overestimated downstream
temperature flux for both downstream warming and cooling events during baseline scenarios
with no baseflow reduction for individual stream reaches and for stream thermal classes as a
whole.

Potential effects of incremental baseflow reduction on August downstream temperature

flux rates were compared using both Model 10 and the Zorn et al. (2008) model. Incremental
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reductions in baseflow using Model 10 resulted in concurrent reductions in downstream
discharge. Using Model 10, the impact of simulated baseflow reduction was variable between
individual stream reaches (Table 2.26). The flux rates of many streams were predicted to remain
relatively unchanged following reductions in baseflow on average throughout the study period
(Figure 2.12). For example, 15 streams were estimated to experience £+ 0.10 °C/km. Although the
flux rates were predicted to change following baseflow reduction for most streams, the response
for nearly all streams was predicted to be less than 0.50 °C/km in the most extreme reduction
scenario (Table 2.26). Cedar Creek was predicted to cool by an additional 0.57 °C/km at 90%
baseflow reduction. The flux rates of eight streams were predicted to decrease following
baseflow reduction, while nine streams were predicted to experience an increase in downstream
flux rates. The greatest increase in downstream temperature flux rate was predicted in Squaw
Creek which was predicted to gain 0.80 °C/km following a 10% reduction, ultimately resulting
in a gain of 1.20 °C/km in the most extreme scenario of 90% baseflow reduction. The predicted
flux rates in response to baseflow reduction for Butterfield Creek are notable, as it is predicted to
experience downstream cooling, but following baseflow reduction it is predicted to experience
downstream warming beginning at an 80% baseflow reduction scenario; however, this is the only
stream predicted to experience this phenomenon.

When using the Zorn et al. (2008) model to estimate downstream temperature flux under
baseflow conditions, the magnitude of change was much greater than observed fluxes (Table
2.24). In addition, the Zorn et al. (2008) model predicted much greater rates of downstream
temperature flux than those predicted using Model 10 under baseflow reduction scenarios. The
rates of longitudinal temperature flux were heavily influenced by the air-water temperature

differential such that the rate of heating or cooling was directly related to the difference between
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air temperature and water temperature. For example, each stream for which the air temperature
was warmer than water temperature was predicted to experience downstream warming, and the
opposite was true for those streams where the water temperature was greater than air temperature
(Table 2.23 — 2.24). There were also some streams for which the downstream temperature flux
rate was beyond the range of the air-water temperature differential. For example, the East Branch
Black River was predicted to gain 11.67 °C/km although the air-water temperature differential
was 5.07 °C. This trend held true for 13 of 21 (62%) stream reaches in the study. Estimations of
downstream temperature flux rates for the North Branch Thunder Bay River and King Creek
were likely affected by the large differential between air and water temperatures of -9.31 °C and
-8.15 °C, respectively. The large differential, as well as low depths and slow velocities likely
contributed to the extreme flux rates for these two streams.

Predicting the response of downstream temperature flux rates to baseflow reductions
using the Zorn et al. (2008) model was a dynamic process whereby stream depth, velocity, and
discharge were reduced with each incremental reduction in baseflow. The downstream
temperature flux rate of streams displayed an exponential response to baseflow reduction (Figure
2.13). The rates for King Creek and Squaw Creek were omitted to maintain an appropriate scale
on the y-axis. The flux rate of the North Branch Thunder Bay River experienced the greatest
response of -0.73 °C/km to an initial 10% reduction in baseflow, while the flux rate of the Carp
River was initially resistant to the 10% baseflow reduction. The stream most affected by the 90%
reduction scenario was Hasler Creek, which had a predicted flux rate of -28.67 °C/km, while the

Carp River was the least affected with a flux rate of 0.18 °C/km.

64



Discussion

As water use throughout the United States steadily increases (Kenny et al., 2009), the
resulting alteration of hydrologic conditions pose threats to aquatic ecosystems (Arthington et al.,
2006). Demands for groundwater for agricultural, commercial, and public usage are expected to
rise due to land use change and increasing thermal stressors through climate change. In response
to increasing demands, it is important to understand stream thermal behavior in order to project
the response of streams to hydrologic alteration. Michigan has devoted significant conservation
efforts in an attempt to balance the needs between ecosystem function and economic benefit by
developing the WWAT to estimate the potential effects of baseflow depletion on stream ecology.

The primary objective of this analysis was to fill in a major data gap in the understanding
of effects of flow reduction on downstream temperature flux rates. Data collection on small
streams allowed for the design and comparison of models used to estimate downstream
temperature flux rates and subsequently project stream thermal response to reductions in
baseflow. While it was clear that thermal flux rates showed an inverse relationship with
discharge (Figure 2.2; 2.3), it was important to determine whether flux rates differed between
Michigan stream thermal classifications. Although results indicate that the thermal dynamics of
different stream classes differed significantly, the greatest variability lies within the specific
characteristics of individual stream reaches (Table 2.17). As such, the similarity in thermal
dynamics within a stream class provides some level of predictive capability, however accounting
for the random effects of individual reaches implies that site-specific measurements may be

needed for accurate and precise predictions.
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Model comparison

The objectives of this analysis were to design and compare models that incorporate
hydrological and meteorological processes to estimate downstream temperature flux rates, and to
project the influence of baseflow reduction on flux rates. | also sought to compare these results
with the Zorn et al. (2008) model that informed the fish assemblage response curves that
underpin Michigan’s WWAT. Using a network of stream gauges throughout Michigan, a suite of
statistical models were developed and compared using AIC model selection to identify the best
model based on parsimony and goodness of fit. AIC was useful in identifying processes most
influential in fitting observed data, while also considering the least amount of parameterization.
Interestingly, the model identified as providing the best overall fit also contained the greatest
number of parameters (Table 2.5); however, the reduction in sums of squared errors outweighed
the penalties incurred through overparameterization.

The multi-model selection approach was useful in this analysis given the hierarchical
approach in model development where models became increasingly more complex, and often
contained many of the same or similar parameters. Given the simultaneous incorporation of
goodness of fit and parsimony in model selection, AIC was able to distinguish the best model
from other similar models that may have gone unnoticed simply relying on other performance-
based metrics such as RMSE, and visual comparisons using LOESS regressions. This method
also proved to be useful in highlighting the importance of processes which may have been
underestimated (Thayer et al., 2007). For example, although day length and sun altitude angle are
similar variables, the inclusion of both in the best model was ultimately important in providing
the best fit to the observed data at the fine level of temporal granularity (i.e., 1 hr intervals) used

in modeling.
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Model performance

After identifying the four models that best predicted downstream temperature change,
model accuracy and precision were examined through a series of model performance criteria.
The models performed similarly in their accuracy of overall and peak estimations (Tables 2.8 —
2.12). The measure which likely separated the best model (Model 10) from the others in the suite
was the ability to better match daily and seasonal trends due to the inclusion of variables
representing day length and sun altitude angle. Comparing sums of squared errors of each of the
models, the reduction using Model 10 indicates a greater fit to hourly observations. Based on
LOESS regressions, Model 10 appears to provide a greater fit than other models throughout the
study periods indicating a greater ability to match seasonal trends (Figures 2.5 — 2.8). Including
both variables into the model helped account for the variability associated with fluctuations of
solar radiation at the sub-daily time scale.

An important consideration beyond the scope of this investigation is the temporal
granularity of data collection and modeling, and the implications of the resolution of data
collection. In this work, I collected environmental measurements at a 15-minute interval, but
averaged data on an hourly interval to smooth out measurement variability. Thus, the results
provided represent temperature flux at a fine temporal scale. Other investigators have commonly
used daily means to represent stream temperature, particularly when relating temperature to
biological responses. While neither temporal scale is inherently “correct”, interpretation of
modelling results are somewhat dependent on the scale. For example, sun angle was found to be
an important contributor to temperature flux at the hourly scale, but would not be a factor that

could be included at a daily time resolution. As such, | recommend caution in interpreting and
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comparing data and modeling results that have different temporal granularity or that cover
different time periods (e.g., summer only, versus spring through fall data collection).

One main issue associated with Model 10 and its ability to estimate downstream
temperature change rates was the failure to fully capture downstream warming and cooling
peaks. Using residuals of the 1% and 99" percentiles, Model 10 underestimated peak downstream
warming and cooling by 0.11 °C/km and 0.09 °C/km, respectively (Table 2.12). The failure to
capture peaks of downstream temperature flux is noteworthy when attempting to estimate the
effects of baseflow reduction on downstream temperature flux rates. Underestimations of the
effects of baseflow reduction on flux rates can be a complicating factor when establishing
withdrawal limits. Failure to accurately estimate the impacts of water withdrawal on downstream
warming rates may lead to underestimating the consequences on fish habitat loss. The range of
predictability would likely be improved by direct readings of solar heat flux. Solar heating is a
primary influencer of stream warming, while wind speed and evaporative heat flux could
influence downstream cooling (Keith et al., 1998). There also remains the possibility that greater
influxes of baseflow than were predicted could cool streams more so than was predicted using
the best model. Furthermore, the spatial distribution of the baseflow would likely influence
downstream temperature flux. If baseflow entered the stream primarily at the beginning of the
study reach, the segment would be more susceptible to warming than if baseflow inputs occurred
throughout the reach. Hyporheic exchange has also been hypothesized as a source of stream
cooling (Moore et al., 2003) and an influence on creek temperature overall (Poole and Berman,
2001).

Currently, common models used for representing stream temperature dynamics are based

on concepts related to physical processes that incorporate energy and water balance equations to
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estimate heat flux at the stream bed and stream surface (Sinokrot and Stefan, 1993; Caissie et al.,
2005; Caissie et al., 2007). One of the main drawbacks to physical process models is that they
rely upon sophisticated technology and intensive data processing to estimate surface/streambed
heat exchange. Issues arise when estimating sub-daily downstream temperature flux across
multiple seasons using optimized parameters that result from lack of data on wind speed, shading
factors, and other components used to derive heat flux. Without these data, relying upon
empirical formulas and nonlinear optimization methods to derive the components of heat flux led
to inaccurate estimates of stream temperature dynamics. For example, constant values of shading
— estimated through calibration — fail to accurately reflect seasonal trends in vegetative cover.
Furthermore, using constant values for relative humidity and wind speed can under- and
overestimate the amount of heat flux occurring at the stream surface, causing inaccurate
estimates of downstream temperature change. Relative humidity is required to derive all
components of heat flux but shortwave radiation. As values fluctuate diurnally, and since this
study used hourly observations throughout different seasons, constant values fail to capture this
variation.

The value of the shading parameter used to buffer the amount of solar radiation reaching
the stream surface in streams with significant vegetative cover is likely to fluctuate throughout
the year due to seasonal transitions. When examining the effects of patchy shade on the rate of
change of daily maximum temperatures among second order streams, Rutherford et al. (2004)
highlighted a strong linear relationship between heating/cooling rates and change of shade.
Riparian shading has been shown to have an effect on the microclimate of the stream corridor
such as increases in air temperature, and decreases in relative humidity (Chen et al., 1995).

Additionally, values for wind speed are influential in estimating evaporative heat flux. As with
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estimating solar radiation at the air-water interface, wind speed, and thus evaporative heat flux, is
buffered by vegetative cover and is dependent upon seasonality. Finally, estimating longitudinal
temperature change using physical process models becomes difficult during low flow periods as
surface heat exchange warms or cools streams at a rate proportional to the mean residence time
of water in the stream reach, extending exposure time of the stream surface to elements of heat
flux. Assuming a constant rate of heating without mitigation from shading or inputs from cooler

subsurface flows can lead to inaccurate predictions of downstream temperature flux.

Factors influencing flux rates

The present analysis showed that it was possible to use site location, air temperature,
stream temperature, and stream discharge data to estimate longitudinal rates of downstream
temperature flux. Although flux rates displayed evidence of diurnal, seasonal, and yearly
variation, the best statistical model was able to accurately capture trends in sub-daily
observations across a wide range of stream thermal regimes. Downstream temperature flux rates
are dependent upon various factors across differing temporal scales. While the inclusion of both
day length and sun altitude angle was important in estimating heat flux at the sub-daily time
scale, air temperature has been shown to be an adequate predictor of stream temperature at the
weekly time scale (Stefan and Preud’homme, 1993; Mohseni et al., 1998). The results of this
analysis, however, indicate that the effects of baseflow reduction can have an impact on stream
temperature at the hourly time scale. The analysis of factors influencing downstream temperature
flux on a finer scale was important in predicting the response of stream thermal dynamics to
baseflow reduction. Although many of the factors used to estimate the effects of baseflow
reduction on sub-daily downstream flux rates were critical to the empirical model developed in

this analysis, some may be less important when looking at effects of flow reductions on changes
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in July mean temperatures as the WWAT does. At longer time scales, simpler models may be
able to adequately capture enough variability to be useful to natural resource managers.

Although many models have been developed attempting to relate air temperatures
(Erickson and Stefan, 2000; Caissie et al., 2001; Stefan and Preud’homme, 2003) and stream
discharge (Sinokrot and Gulliver, 2000) to stream temperature dynamics, few have analyzed the
impacts of groundwater withdrawal on longitudinal fluxes in stream temperature (Risley et al.,
2010). In order to do so it was important to understand the influences of baseflow heat energy on
the thermal regimes of streams. For this analysis, a simple mass balance method was used to
predict the baseflow contributions to each stream reach where the difference in discharge
between upstream and downstream gauges during the lowest seven-day flow period
corresponded to the average baseflow input to each stream reach. This value was assumed to be
representative of constant baseflow input to the stream reach between upstream and downstream
locations. The location(s) at which baseflow enters the stream reach can have an important effect
on stream thermal dynamics. Peak daytime energy inputs from solar radiation often have the
potential to reduce the cooling effects of groundwater inputs (Story et al., 2003). Groundwater
inputs would have the greatest impact on reducing downstream warming in shaded stream
reaches, or when solar radiation is minimal (i.e., nighttime).

The parameters included in Model 10 were significant predictors of longitudinal stream
temperature change across many of the streams. Overall, the most influential variable as
determined by partial R? was day length followed closely by sun altitude angle (Table 2.13). Sun
altitude angle and day length were used as proxies for estimating the intensity of solar radiation,
or sunlight, acting on the stream surface. When focusing only on summer months (July and

August; often the warmest months of the year in Michigan) results were similar. Altitude angle
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accounted for the most variability (Table 2.30) overall (partial R = 0.08), and among three of the
four thermal classes (baseflow heat energy accounted for the most variability within warm-
transitional streams; partial R? = 0.13; Table 2.31). Similar findings have been reported when
examining the influences on energy input into streams to estimate both longitudinal stream
temperature changes (LeBlanc et al., 1997; Magnusson et al., 2012) and stream temperatures
(Caissie et al., 2007) using deterministic models. Day length was identified as a strong predictor
of stream temperatures in a previous study by Risley et al. (2010) to assess the impacts of
groundwater pumping on stream temperatures. When examining the factors influencing river
heat budgets, Evans et al. (1998) estimated that net shortwave radiation dominated total energy
gains, and on average, over 82% of total energy transfers occurred at the air-water interface.
Sinokrot and Gulliver (2000) posited that shallow streams are more sensitive to solar heat flux.
Thus, reductions in baseflow and overall discharge can have a stronger effect on the downstream
temperature flux of small streams.

Overland flow, or surface runoff, and its thermal components ranked as having the third
most influence on downstream temperature flux in the study streams. Many factors, including
increased impervious area (Leopold, 1968; Tong and Chen, 2002) and agricultural/forestry
practices (Hidayat et al., 2012), have been shown to influence the amount of surface runoff
entering stream channels. Impervious surfaces can store significant amounts of thermal energy
that may transfer to streams during runoff events. Overland flow has the potential to warm more
quickly to surrounding air temperature when compared to stream discharge. These characteristics
of urbanization and surface runoff have been shown to have a direct response on average stream
temperatures (Galli, 1990). As many of the streams in this study were located in proximity to

agricultural fields and road crossings with the potential to allow surface runoff into the stream
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channel, it is not surprising that overland flow was a highly ranked influencer of downstream
temperature change.

Heat energy contributions from baseflow inputs ranked as a moderately influential
variable on downstream temperature change (Table 2.13). In regards to daily maximum stream
temperatures, groundwater has been suggested to be a prerequisite for daytime cooling in
forested stream reaches downstream of forest clearings (Story et al., 2003). However, Story et al.
(2003) were able to account for only 40% of downstream cooling due to groundwater. Hyporheic
exchange and bed heat conduction were responsible for the remaining 60% of variation in
downstream cooling events. These results suggest that, although groundwater inputs are
important in offsetting the effects of solar radiation and other warming factors, bed heat
conduction and hyporheic flow have been speculated as significant sources of energy exchanges
in the moderation of daily temperature extremes (Sinokrot and Stefan, 1993; Poole and Berman,
2001).

Air temperature has been used extensively as a predictor for water temperatures (Stefan
and Preud’homme, 1993; Pilgrim and Stefan, 1995; Mohseni et al., 1998; Ozaki et al., 2003). In
this analysis, the air-water temperature differential proved to be another variable which
explained moderate variation in downstream temperature fluxes. The rate of downstream
temperature change is influenced by the magnitude of difference between air temperature and
water temperature. Ozaki et al. (2003) showed that, while stream temperature was dependent on
air temperature, other parameters such as solar radiation are also driving factors, especially in
summer months.

Upstream discharge and the heat energy associated with it ranked equally among

variables responsible for variations in downstream temperature flux. The impact of discharge and
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thermal inertia on water temperatures occurs primarily through increases in depth of the river

(Sinokrot and Gulliver, 2000). This means that at higher discharges, water temperature variation
is decreased, and also increases the frequency of lower water temperatures as solar radiation has
less of an influence in deeper streams. When stream discharge is reduced, the decreased depth of
the river is associated with more influence from solar radiation, and therefore more rapid rates of

heating and cooling due to high surface area to volume ratio.

Pooling data

Model 10 was parameterized using different pooled data sets in order to determine the
potential of using hydrologic and meteorological data to predict downstream temperature flux in
streams without site-specific data. Results indicate that pooling data based on thermal classes
(Table 2.19) has the potential to track seasonal trends in downstream temperature flux (Figure
2.10), although the accuracy of sub-daily observations is highly variable (Table 2.18). The
model’s accuracy and ability to track trends is variable within and between thermal classes, but
given the improvement over the composite data set, there exists the potential for pooled data to
provide reasonable predictions of downstream temperature flux within ungaged streams. Data
collection across additional years and streams could improve the model’s predictive power in
streams without site-specific data. Compared with the current warming rate module used within
the WWAT, Model 10 would provide a more accurate predictive model of downstream
temperature change rates. Calibrating empirical models with statewide observational data
captures widespread variability in trends in longitudinal stream temperature fluctuation rates,
particularly so for the small streams examined in this analysis. The results in Table 2.24

highlight the limitations of the Zorn et al. (2008) model’s ability in estimating thermal flux rates

74



of small Michigan streams. However, future work should compare temperature flux rates across
larger streams within these thermal classes.

Although pooling data within thermal classes generally provided a better fit than the
GLM that used data from all streams combined, some of the thermal classes showed variable
responses to driving parameters included in the model. In particular, poor correlation between
predicted and observed thermal flux was observed for the pooled model for the cold-transitional
thermal class. This may be the result of an overall negative relationship between downstream
temperature flux and baseflow heat energy, even though many of the individual cold-transitional
streams show a positive relationship between the two variables. Since calibrating models specific
to stream thermal class provided an improved fit, collecting data over a broader range of streams
within each thermal class would likely parse out the true overall response of thermal class flux
rates to atmospheric and hydrologic changes. Additionally, future investigations could group
streams based on similarities in basin characteristics known to influence hydrologic patterns
which may be able to capture greater variance when estimating downstream warming rates.
Similar methods have been developed to estimate exceedance flows of Oregon streams (Cooper,
2002). The same factors which drive hydrologic patterns in basins having similar catchment
characteristics may also control the response in downstream temperature flux rates to

fluctuations in flow.

Effects of baseflow reduction

The development of the statistical models served two purposes in the present analysis.
First, the robust hydrological dataset and stream gauge network allowed for a determination of
the dominant factors affecting downstream temperature flux among each stream thermal regime.

When examining parameter influence on downstream temperature flux within thermal classes,
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results were similar with one exception; in warm-transitional streams baseflow heat load was
identified as the most influential variable (Table 2.14). Second, by identifying the model which
fits observed data and follows trends best, it was possible to simulate future behavior of stream
thermal dynamics following reductions in baseflow. This becomes evident when examining the
effects of baseflow reduction on thermal dynamics among the four thermal classifications.
Although the downstream temperature flux rates of warm-transitional streams are nearly
negligible during baseflow conditions, they become the most affected by each 10% reduction in
baseflow. During the most extreme reduction scenario of 90% reduction, warm-transitional
streams were predicted to gain 0.69 °C/km on average, much greater than the 0.22 °C/km
predicted for cold streams which was the next highest rate. The influence of baseflow heat loads
on temperature flux within warm-transitional streams suggests that the thermal inertia provided
by baseflow within this thermal class may be an important balancing factor of the heat energy
provided from upstream and overland flow. As stream temperatures increase, groundwater-
related cooling processes would tend to operate at higher rates (Story et al., 2003).

Effects of baseflow reduction on downstream temperature flux rates varied between
seasons (Figure 2.11; Table 2.20). As incremental reduction in baseflow was projected to peak
downstream warming events during summer months, streams were occasionally projected to
experience downstream cooling during the fall, whereby effects became more pronounced at the
more extreme reduction scenarios (Figure 2.11; see supplemental files). These projections are
reasonable given that surface heat exchange warms or cools streams at a rate inversely
proportional to discharge. Similar results were found by Magnusson et al. (2012) when
investigating processes influencing stream warming. When investigating the effects of baseflow

reduction across thermal classes based on July mean water temperatures, colder streams had a
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natural tendency to experience greater downstream warming during the 0% reduction simulation

when compared to warmer streams.

Comparisons with the Zorn et al. (2008) model

As mentioned previously, using physical process models to estimate stream temperature
flux becomes increasingly difficult during low-flow periods in small stream systems. The Zorn et
al. (2008) model used a rate of heating model based on physical relationships and a heat transfer
coefficient. The stream temperature change from upstream to downstream is largely dependent
on the travel time of water within each stream segment. Additionally, the heating coefficient is
inversely proportional to stream depth, so as stream depth decreases, the heating coefficient
increases as does estimated stream temperature. Estimating downstream temperature flux rates
given average August conditions (often the lowest flow summer month in Michigan) using the
Zorn et al. (2008) model resulted in unrealistic values for several streams (Table 2.24). These
predictions largely occur from a lack of boundary conditions whereby heating or cooling ceases
at a pre-defined condition such as maximum or minimum air temperature. Additionally, streams
with very low velocities and discharges are highly susceptible to extreme rates of downstream
temperature flux given the heating module implemented in the Zorn et al. (2008) model.

An issue with implementing physical process models in the absence of shading factors is
that the modules do not consider cooling effects from riparian shading, or hyporheic and
groundwater flows that may provide an offset to warming effects of air temperature and solar
radiation. When using the Zorn et al. (2008) model to estimate downstream temperature flux in
this study, predictions of warming or cooling were directly related to the air — water temperature
gradient. Although this was shown to be an important factor in determining downstream

temperature flux, it was not the most significant factor (Table 2.13). The difference in which
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variables primarily contribute to fluctuations in downstream warming rates could have played a
major role in the apparent differences predicted by each model in stream responses to baseflow
reduction based on July mean temperature (Figures 2.12 — 2.13).

Based on my results, streams have been shown to experience downstream warming even
when air temperatures were cooler than water temperatures (Table 22; Table 24). This could
potentially be the result of two factors: either the temperature of baseflow entering the stream
reach was greater than air temperature, or the heat input via solar radiation was greater than the
cooling force of the air — water temperature differential and baseflow inputs. Given that scenario
analyses for comparisons of Model 10 and the Zorn et al. (2008) model were conducted for
August, the lowest mean August air temperatures were 10.34 °C for King Creek and North
Branch Thunder Bay River (Table 2.23) located in the NLPUP (Table 2.1), where groundwater
temperatures were set at 8.3 °C (Methods; Computed heat energy of various flows). When air
temperature is greater than stream temperature, sensible heat fluxes towards the stream, and the
opposite is true when air temperature is cooler than water temperature. This means that it is more
likely that solar radiation heat flux was the primary cause of downstream warming, as evidenced

by partial regression analysis (Table 2.13).

Implications and recommendations of findings

Resource managers employ a variety of modeling techniques to simulate stream
temperature dynamics. Models are useful to investigate influences on thermal dynamics and to
examine effects of varying parameters on changes to stream thermal regimes. As the effects of
downstream temperature flux vary on a seasonal and yearly basis, sufficient data must be
collected on a wide range of streamflow and weather conditions to account for within- and

between-year variation in order to properly calibrate models to ensure accurate predictions.
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Accurate predictions are necessary when conducting scenario analyses so that managers and
policy makers can confidently rely on projections when implementing restrictions on water usage
rates. As shown in this analysis, model correlation decreased in streams with more than one year
of data. Although this was expected, it highlights the importance of multi-year data collection
periods as stream thermal dynamics do not respond precisely the same from year to year.

When conducting baseflow reduction scenarios using the Zorn et al. (2008) model, it was
clear that this physical process model had difficulties in predicting downstream warming rates of
small streams, even under 0% reduction scenarios. Many of the streams selected within this
analysis had discharges (min = 2™ m%™; max = 1.75 m®™; mean = 0.49 m%™; sd = 0.49 m*s™)
similar to those used to develop the Zorn et al. (2008) warming model (min = 0.01 m*s™; max =
1.93 m%s!; mean = 0.47 m3s™; sd = 0.45 m*s™). Predicted and projected flux rates were often
extreme, and could severely restrict water withdrawal in management units in close proximity to
these types of stream basins. For such small streams, baseflow reduction itself may be the critical
limiting factor before increased temperatures becomes an issue. The downstream warming
module of the Zorn et al. (2008) model is used to relate the effects of baseflow reduction on
temperature increases in order to predict corresponding changes to the stream fish community on
streams and rivers of greater size. Since the findings of this analysis show that the Zorn et al.
(2008) model may be overestimating downstream warming rates for Michigan streams of
comparable baseflow yield in this study, it is recommended to conduct this type of study on a set
of larger streams or rivers that would more clearly reflect the thermal properties of rivers
originally chosen to calibrate the physical process model used in the WWAT.

There remains a question of how to assess the impacts of baseflow reduction in the

absence of site-specific data. The findings of previous research regarding the impacts of shading
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on temperature flux rates within streams shows that riparian corridors can mitigate the effects of
reduced flows and heat flux at the stream surface (Moore et al., 2003; Story et al., 2003). The
statistical models developed in this analysis partly account for the effects of shading along the
stream reach. This could explain the much lower observed downstream warming rates, and those
predicted using Model 10, in comparison with those predicted by the Zorn et al. (2008) model,
absent baseflow reduction. Although measures of model accuracy and correlation with observed
temperatures were reduced following pooling of data by thermal classes, predictions were much
better than those using the Zorn et al. (2008) model; however this is likely due to differences in
the mechanics of each model. The accuracy of the model should be further examined when
information on overland flow and downstream — upstream discharge differential are not readily
available. In addition, the model should be calibrated with data across additional years and
streams, although the possibility of estimating temperature flux in the absence of site-specific
data remains promising.

In the case that streams are not warming at a constant rate, as assumed by the physical
process model, implementation of riparian shade corridors may significantly mitigate the
warming effects associated with water withdrawal. Clear-cut stream reaches are more vulnerable
to climatic impacts such as increased solar heat flux at the stream surface, increased wind speed,
and advection of warm air from forest clearings. Although riparian shade buffers can reduce the
magnitude of downstream warming, there are still gaps in our knowledge of the extent of stream
cooling after flowing through shaded environments (Moore et al., 2005). It has been speculated
that downstream cooling under shaded stream reaches still requires inputs of groundwater or

hyporheic flows (Beschta et al., 1987; Story et al., 2003). In any case, riparian shade buffers can
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provide relief from the previously mentioned drivers of stream temperature increases, and could

potentially contribute to downstream cooling.

Conclusion

This study used model selection criteria to compare a suite of statistical models in order
to determine the most important processes influencing downstream temperature flux in Michigan
streams. The development and comparison of progressively complex models with many of the
same parameters highlighted the importance of including variables related to solar heat flux, and
the heat energy inputs of different sources of discharge. These variables were important in
accounting for sub-daily variation of downstream temperature fluxes across 21 Michigan streams
with differing thermal properties. This study provides new data on effects of discharge and air
and water temperatures on downstream temperature flux rates in small Michigan streams.

Comparisons of the best statistical model developed in this analysis with those of the
Zorn et al. (2008) model showed substantial differences in the estimations and influencing
factors of downstream temperature flux. The Zorn et al. (2008) physical process model had
difficulties predicting downstream temperature flux rates in small streams, which likely led to
inaccurate projections of flux rates following baseflow reduction. This was likely the result of
this model’s failure to account for influences from riparian shading and intermittent groundwater
inputs along the stream reach, which can act as an offset to heating factors. Using empirical
relationships, the statistical models developed in this study were able to inherently capture these
mitigating factors which physical process models may not be able to fully capture.

Furthermore, by including a parameter which estimated the influence of baseflow inputs
on downstream temperature flux rates, it was possible to conduct scenario analyses within

individual stream reaches. Baseflow reduction scenarios allowed for comparisons of the impacts
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of groundwater withdrawal on the thermal dynamics of a wide range of streams. Results of
groundwater abstraction simulations presented a wide range of projections including increased
downstream warming and cooling under extreme reduction scenarios. These results indicate that
shallow streams such as those included in this analysis are vulnerable to sources of heating and
cooling such that flux rates of streams with shallow depths show a rapid response to elements of
heating and cooling.

Research presented here shows the importance of understanding driving factors of stream
temperature change, and stream thermal response to changes in flow regime. Although the
present study showed the strong influence of several factors on stream temperature change,
previous research shows that there are other variables critical in driving changes in stream
temperature. Further examination of drivers of stream temperature change would be useful in
improving the predictive range of temperature flux, which would subsequently provide a
stronger projection of stream thermal response to baseflow reduction. However, increased
collection of hydrological data on small streams would refine the best thermal flux model
developed within this analysis through calibration, and improve predictive power across a robust

range of stream types.
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APPENDIX 1.0

Supporting tables and figures for Chapter 1: Application of benchmark detection methods to identify thermal thresholds of
stream fishes along a thermal gradient.

Table 1.1: Table of temperature thresholds (°F) of species with upper thermal thresholds identified by each of the three analytical
threshold detection methods, as well as visually estimated threshold interpreted from LOESS line.

WWAT
Species SNW AT TITAN CART upper LOESS
ptimum
threshold
Brook Trout 62.3 64.9 56.8 69.3 65.0
Coho Salmon 62.9 67.7 60.5 69.1 68.0
Slimy Sculpin 63.1 65.4 65.4 68.7 65.0
Chinook Salmon 63.6 68.5 70.6 67.8 68.0
Brown Trout 64.1 65.9 64.7 69.4 70.0
Northern Redbelly Dace 64.1 67.7 67.7 71.8 Not apparent
Rainbow Trout 64.2 68.3 68.8 69.0 65.0
Mottled Sculpin 64.5 68.8 68.8 71.2 69.0
Northern Brook Lamprey 65.3 70.0 66.7 72.4 Not apparent
Longnose Dace 65.4 68.9 68.8 70.8 68.0
Blacknose Dace 65.9 71.0 68.8 71.2 69.0
Burbot 66.2 72.5 68.3 73.0 Not apparent
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Table 1.2: Table of differences between detected thresholds of each method.

Species TITAN — CART | TITAN-WWAT | CART - WWAT
Brook Trout 8.2 -4.4 -12.6
Blacknose Dace 2.3 -0.2 -2.5
Brown Trout 1.2 -3.5 -4.7
Burbot 4.3 -0.5 -4.7
Chinook Salmon -2.1 0.7 2.8
Coho Salmon 7.2 -1.4 -8.6
Longnose Dace 0.1 -1.9 -2.0
Mottled Sculpin 0.1 -2.4 -2.5
Northern Brook Lamprey 3.7 -2.1 -5.7
Northern Redbelly Dace 0.0 -4.1 -4.1
Rainbow Trout -0.5 -0.7 -0.3
Slimy Sculpin 0.1 -3.3 -3.3
Average difference 1.9 -2.0 -3.8
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Table 1.3: Information of the upper 20% of abundances of each decreaser species including, number of optimal sites (N), WWAT
optimum temperature (mean), minimum (Lower) and maximum (Upper) July mean water temperatures for optimum temperature
calculation, standard deviation, and predicted WWAT threshold (temperatures in °F).

Species N Tgnfgg'::trﬂre Lower | Upper | Std. | WWAT | TITAN | CART
Brook Trout 128 62.3 50.9 69.1 4.0 69.3 64.9 56.8
Black Bullhead 21 69.6 63.7 73.9 2.6 74.1 67.6 71.4
Black Crappie 24 72.2 67.1 76.4 2.5 76.5 71.5 75.0
Blacknose Dace 118 65.9 59.5 71.0 3.1 71.2 71.0 68.8
Blackside Darter 74 70.4 63.4 75.2 2.5 74.7 66.4 68.8
Bluegill 69 70.2 61.1 76.4 2.9 75.3 66.4 68.8
Bluntnose Minnow 69 71.9 61.6 77.2 2.8 76.8 69.2 76.3
Brown Trout 152 64.1 53.8 70.9 3.0 69.4 65.9 64.7
Brook Stickleback 37 65.9 50.9 72.9 4.2 73.2 56.7 71.2
Burbot 32 66.2 58.7 72.4 3.9 73.0 72.5 68.3
Central Mudminnow 128 66.5 56.6 74.5 3.4 72.4 62.6 70.6
Central Stoneroller 29 69.7 61.7 76.6 3.0 75.0 67.4 68.8
Channel Catfish 10 73.2 71.9 75.1 0.9 4.7 71.9 71.9
Chinook Salmon 12 63.6 59.8 67.5 2.4 67.7 68.5 70.6
Coho Salmon 17 62.9 56.9 67.5 3.5 69.1 67.7 60.5
Common Carp 38 73.2 67.3 76.6 2.0 76.6 71.0 72.4
Common Shiner 101 69.7 63.5 76.1 2.8 74.5 67.3 69.4
Creek Chub 174 67.4 56.7 74.8 3.2 73.0 63.8 67.7
Fathead Minnow 10 69.3 62.7 74.5 3.1 74.7 68.6 74.5
Golden Redhorse 23 73.4 67.2 76.1 2.1 77.1 70.7 75.9
Golden Shiner 14 67.4 58.3 73.7 5.0 76.1 71.8 71.9
Grass Pickerel 37 68.8 61.1 73.5 3.0 74.0 65.5 72.4
Green Sunfish 88 70.5 63.7 77.2 2.9 75.6 68.2 76.3
Greenside Darter 12 73.9 67.8 77.2 2.8 78.8 73.9 75.9
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Table 1.3: (cont’d)

Hornyhead Chub 43 68.5 60.3 76.6 3.3 74.3 69.2 66.0
Johnny Darter 130 68.6 61.1 76.4 2.9 73.7 66.5 68.0
Largemouth Bass 67 69.3 63.4 76.4 3.3 75.1 68.0 69.4
Log Perch 31 69.3 60.3 75.7 4.0 76.2 66.1 72.8
Longnose Dace 42 65.4 58.7 72.4 3.1 70.8 68.9 68.8
Mottled Sculpin 105 64.5 55.8 71.1 3.9 71.2 68.8 68.8
Northern Brook Lamprey | 10 65.3 59.7 69.4 4.0 72.4 70.3 66.7
Northern Hog Sucker 64 71.6 64.2 77.2 3.0 76.8 69.6 76.3
Northern Redbelly Dace | 18 64.1 56.6 72.9 4.4 71.8 67.7 67.7
Northern Pike 49 71.3 61.1 76.6 3.2 76.8 70.4 71.4
Pumpkinseed 64 71.5 61.0 76.6 3.5 77.6 71.4 71.6
Rainbow Darter 48 69.2 61.3 74.7 2.6 73.8 67.7 68.1
Rainbow Trout 87 64.2 58.8 71.5 2.8 69.0 68.3 68.8
Redhorse Sucker 13 74.0 71.9 75.8 1.1 75.9 73.2 74.3
Rock Bass 84 72.1 62.3 77.2 3.0 77.3 68.3 73.4
Rosyface Shiner 18 71.7 68.4 76.1 2.2 75.5 69.3 75.9
Shorthead Redhorse 12 71.8 67.2 75.1 2.3 75.9 71.7 715
Slimy Sculpin 10 63.1 59.1 69.9 3.2 68.7 65.4 65.4
Smallmouth Bass 48 73.2 69.1 77.2 2.1 76.9 70.5 76.3
Spotfin Shiner 15 73.5 68.5 76.6 2.0 77.0 71.5 76.3
Stonecat 29 72.9 67.6 77.2 2.6 77.4 70.2 73.8
Walleye 12 72.8 67.7 75.8 2.5 77.1 72.4 74.8
White Sucker 190 68.8 60.4 77.2 3.2 74.4 64.5 69.9
Yellow Bullhead 34 71.5 63.2 76.4 3.0 76.7 70.4 71.3
Yellow Perch 37 67.6 58.3 73.7 4.4 75.3 68.6 715
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Table 1.4: Detected benchmarks of all 49 species of each of the three datasets (ALL, NLPUP, and SLP). NA indicates that no
benchmark was estimated due to lack of minimum data requirements.

TITAN CART WWAT
Species ALL | NLPUP | SLP | ALL | NLPUP | SLP | ALL | NLPUP |SLP
Brook Trout 64.9 62.4 66.3 | 56.8 56.8 59.4 | 69.3 69.4 67.3
Black Bullhead 67.6 68.9 719 | 714 69.2 71.4 74.1 NA 74.6
Black Crappie 71.5 70.7 749 | 75.0 71.2 75.0 76.5 NA 76.6
Blacknose Dace 71.0 62.9 71.0 | 68.8 66.4 711 | 71.2 69.0 72.2
Blackside Darter 66.4 65.3 69.4 | 68.8 69.1 68.8 | 74.7 73.5 75.0
Bluegill 66.4 70.4 69.4 | 68.8 69.1 69.4 | 75.3 72.6 75.1
Bluntnose Minnow 69.2 68.3 69.5 | 76.3 70.5 76.3 | 76.8 71.7 76.6
Brown Trout 65.9 69.6 69.3 | 64.7 69.4 64.4 | 69.4 68.3 70.9
Brook Stickleback 56.7 56.6 716 | 71.2 72.8 71.2 | 73.2 71.6 72.6
Burbot 725 70.3 NA | 68.3 71.8 69.6 | 73.0 73.4 NA

Central Mudminnow 62.6 62.7 725 | 70.6 64.8 70.6 72.4 70.1 73.2
Central Stoneroller 67.4 66.7 68.7 | 68.8 66.8 68.8 75.0 NA 74.5

Channel Catfish 71.9 NA 728 | 71.9 NA 71.9 4.7 NA 75.8
Chinook Salmon 68.5 NA NA | 70.6 65.4 NA 67.7 67.7 NA
Coho Salmon 67.7 67.5 61.1 | 60.5 60.5 60.5 | 69.1 69.1 NA
Common Carp 71.0 66.3 705 | 724 67.3 76.3 | 76.6 NA 76.4
Common Shiner 67.3 64.7 69.2 | 69.4 70.7 75.9 | 745 73.0 74.8
Creek Chub 63.8 63.9 71.4 | 67.7 62.9 71.3 | 73.0 71.3 725
Fathead Minnow 68.6 65.2 68.6 | 745 62.7 745 | 74.7 NA NA
Golden Redhorse 70.7 70.5 715 | 75.9 71.2 759 | 771 NA 76.9
Golden Shiner 71.8 72.4 705 | 719 67.6 71.9 76.1 NA 75.8
Grass Pickerel 65.5 NA 736 | 724 NA 724 | 74.0 NA 73.7
Green Sunfish 68.2 67.3 69.4 | 76.3 71.8 76.3 | 75.6 73.6 75.7
Greenside Darter 73.9 NA 743 | 75.9 NA 759 | 78.8 NA 79.0
Hornyhead Chub 69.2 67.0 69.4 | 66.0 65.9 68.4 | 74.3 71.0 74.8
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Table 1.4: (cont’d)

Johnny Darter 66.5 64.7 67.8 | 68.0 65.8 68.0 | 73.7 71.9 73.3
Largemouth Bass 68.0 70.4 68.4 | 694 70.4 69.4 | 751 71.1 75.3
Log Perch 66.1 66.9 722 | 72.8 68.5 72.8 | 76.2 72.9 76.3
Longnose Dace 68.9 64.6 68.4 | 68.8 64.6 68.4 | 70.8 70.7 NA
Mottled Sculpin 68.8 70.3 71.0 | 68.8 68.6 68.8 | 71.2 69.2 72.0
Northern Brook Lamprey | 70.3 67.0 NA | 66.7 67.1 NA 72.4 70.7 NA
Northern Hog Sucker 69.6 66.6 71.1 | 76.3 69.6 76.3 | 76.8 72.2 77.1
Norther Redbelly Dace | 67.7 70.5 NA | 67.7 64.6 NA | 7138 71.7 NA
Northern Pike 70.4 70.7 711 | 714 71.8 714 | 76.8 75.7 76.1
Pumpkinseed 71.4 70.7 69.4 | 716 65.1 716 | 77.6 724 76.5
Rainbow Darter 67.7 67.4 68.1 | 68.1 69.6 68.1 | 73.8 72.6 74.4
Rainbow Trout 68.3 58.7 63.2 | 68.8 68.2 63.2 | 69.0 68.4 71.2
Redhorse Sucker 73.2 67.3 73.1 | 74.3 66.5 743 | 75.9 NA NA
Rock Bass 68.3 67.2 705 | 734 69.1 734 | 77.3 74.8 77.2
Rosyface Shiner 69.3 70.4 69.4 | 75.9 70.7 75.9 | 755 NA 76.1
Shorthead Redhorse 71.7 70.5 722 | 715 71.2 72.8 | 75.9 NA 75.1
Slimy Sculpin 65.4 NA NA | 654 66.1 NA | 68.7 68.3 NA
Smallmouth Bass 70.5 67.0 71.1 | 76.3 70.4 76.3 | 76.9 73.0 77.4
Spotfin Shiner 71.5 68.1 714 | 76.3 68.2 76.3 | 77.0 NA 76.5
Stonecat 70.2 67.5 70.7 | 73.8 68.2 738 | 774 NA 77.4
Walleye 72.4 70.5 748 | 74.8 72.4 748 | 771 NA 77.3
White Sucker 64.5 64.2 65.7 | 69.9 59.4 69.9 | 744 71.2 74.4
Yellow Bullhead 70.4 69.5 711 | 71.3 70.4 71.3 | 76.7 NA 76.5
Yellow Perch 68.6 68.1 704 | 715 68.6 715 | 75.3 72.7 75.2
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Table 1.5: Table of detected benchmarks of species which were classified as decreasers in both the NLPUP and SLP subregions.

Average differences were calculated between the two subregions for each method.

TITAN CART WWAT
Species/Region NLPUP | SLP | NLPUP | SLP | NLPUP | SLP
Brook Trout 624 |66.3| 56.8 |59.4| 694 |67.3
Brown Trout 696 |[69.3| 694 |644| 683 |70.9
Mottled Sculpin 703 |71.0| 686 |68.8| 69.2 |720
Average difference -1.5 0.7 -1.1
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Table 1.6: Purity, reliability, and directionality of threshold response for those species identified as decreasers in the ALL dataset. P-
values are significant at P < 0.05. Purity (Pur) is the proportion of responses detected by TITAN among bootstrap replicates that agree
with the observed response. Reliability (Rel) is an estimate using the proportion of responses using bootstrap replicates whose IndVal
scores that correspond to a probability level of P < 0.05. Directionality of response indicates whether species show a negative
(decreaser; -) or positive (increaser; +) threshold response along the thermal gradient.

ALL NLPUP SLP

Species +/- P Pur Rel | +/- P Pur Rel | +/- P Pur Rel
Brook Trout - 10.004 | 1.000 | 1.000 | - | 0.004 | 1.000 | 1.000 | - | 0.004 | 1.000 | 1.000
Blacknose Dace - 10.004 0998 |0.998 | + | 0.004 | 1.000 | 1.000 | - | 0.004 | 1.000 | 1.000
Brown Trout - 10.004 | 1.000 | 1.000 | - | 0.008 | 0.828 | 0.804 | - | 0.004 | 1.000 | 1.000
Burbot - 10.024 10578 | 0.436 | + | 0.004 | 1.000 | 1.000 | NA | NA NA NA
Chinook Salmon - 1 0.004 | 0.948 | 0.904 | NA | NA NA NA | NA | NA NA NA
Coho Salmon - | 0.004 | 1.000 | 1.000 | - | 0.028 | 0.936 | 0.904 | - | 0.004 | 1.000 | 0.98
Longnose Dace - 10.004|0.998 | 0.998 | + | 0.004 | 1.000 | 1.000 | - | 0.008 | 0.994 | 0.916
Mottled Sculpin - 1 0.004 | 1.000 | 1.000 | - | 0.048 | 0.702 | 0.64 - | 0.004 | 1.000 | 1.000
Northern Brook Lamprey | - | 0.016 | 0.894 | 0.888 | + | 0.004 | 0.966 | 0.952 | NA | NA NA NA
Northern Red Dace - 1 0.008 0986 |0.962| + | 0.024 | 0.922 | 0.828 | NA | NA NA NA
Rainbow Trout - 10.004 |1.000 | 1.000 | + | 0.016 | 0.658 | 0.658 | - | 0.004 | 1.000 | 1.000
Slimy Sculpin - 1 0.004 | 1.000 | 1.000 | NA | NA NA NA |NA| NA NA NA
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Table 1.7: Table of means of detected thresholds using logistic function to simulate abundances (10 simulations) with a known
threshold at 68 °F.

Method/Region ALL NLPUP SLP Average
TITAN 69.30 68.00 69.40 68.92
CART 67.80 67.40 68.00 67.71

WWAT 67.3.0 67.00 68.00 67.41
Average 68.13 67.50 68.40 68.01
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Table 1.8: Two-way ANOVA (o = 0.05) examining differences between region and method of detected benchmarks using logistic
function to simulate abundances with a known threshold at 68 °F.

P-value Significant?
Method 2.00e-16 Yes
Region 3.70e-16 Yes
Method:Region 1.49e-4 Yes
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Figure 1.1: LOESS regression of logistically simulated data with a known threshold of 68 °F.
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Figure 1.2: Distribution of Brook Trout abundances along a July mean water temperature thermal gradient. Vertical lines correspond
to identified benchmarks of TITAN, CART, and WWAT benchmark detection methods. The LOESS regression is depicted by the
solid red regression line and is used in visual identification of inflection points.
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Figure 1.3: Linear regression of TITAN and CART identified thresholds. Dashed line represents 1:1 relationship. Axis units are July

mean water temperature (°F).
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Figure 1.4: Linear regression of TITAN and WWAT identified thresholds. Dashed line represents 1:1 relationship. Axis units are July
mean water temperature (°F).
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Figure 1.5: Linear regression of CART and WWAT identified thresholds. Dashed line represents 1:1 relationship. Axis units are July
mean water temperature (°F).
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Figure 1.6: Linear regression of TITAN identified thresholds for NLPUP and SLP regions. Dashed line represents 1:1 relationship.
AXis units are July mean water temperature (°F).
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Figure 1.7: Linear regression of CART identified thresholds for NLPUP and SLP regions. Dashed line represents 1:1 relationship.
AXis units are July mean water temperature (°F).

100



WWAT
Regional Comparison

K o
~
y=196.4 - 1.83x
----- 129
od — Fit
o
a8
o //
© A%
///
///
v ,,”/
w0 ’
- T T T 1
55 60 65 70 5

NLPUP

Figure 1.8: Linear regression of WWAT identified thresholds for NLPUP and SLP regions. Dashed line represents 1:1 relationship.
AXis units are July mean water temperature (°F).
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Figure 1.9: Box plot showing results of threshold detection methods applied to the July mean temperature gradients of the NLPUP and
SLP regions with abundance data simulated using a logistic function.
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Supporting tables and figures for Chapter 2: Quantifying downstream warming rates of Michigan streams: Improving an

Table 2.1: Site information specific to each stream segment. Streams marked with an asterisk are those for which data was collected

APPENDIX 2.0

important link in Michigan’s Water Withdrawal Assessment Tool.

over both the 2015 and 2016 field seasons. Up and down refer to upstream and downstream locations.

Reach Up Down
Stream Region Thermal L_Jp Up qun D0\_/vn Length | Elevation | Elevation
Class Latitude | Longitude | Latitude | Longitude

(m) (m) (m)

Pokagon | ¢ C 89 8 803 | -8 9 9

Crastor LP 41.89517 | -86.162632 | 41.915803 | -86.17567 4050 224 21

Fish Creek* | SLP C | 43.245992 | -84.964747 | 43.242022 | -84.915223 | 5186 240 234

E‘i%‘z?ﬂ SLP | CT |42.932887 | -86.081828 | 42.91636 | -86.146075 | 6550 186 180
Unnamed

GunRiver | SLP CT | 42.537894 | -85.593867 | 42.530494 | -85.562968 | 3131 231 226
Tributary
Nottawa

Cresks SLP | WT | 42.192564 | -85.060415 | 42.195998 | -85.104618 | 3758 279 276

Hemingway | o o | \wT | 43.32678 | -85.124515 | 43.330136 | -85.154513 | 3197 277 273
Lake Outlet

Hocng‘l’(ey SLP WT | 43.433623 | -84.701648 | 43.379136 | -84.705982 | 6638 230 224
Middle
Branch

Tobacen | SLP | WT | 43909194 | -84.697312 | 43.929905 | -84.666327 | 4091 258 249
River

'g";‘:'ee; SLP W | 43.042332 | -83.423206 | 43.083594 | -83.442947 | 7586 250 233

gi"\"/gr'i SLP W | 41.801832 | -85.116614 | 41.832568 | -85.165065 | 5863 287 284
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Table 2.1: (cont’d)

Swan Creek | SLP W | 41.90477 | -85.297885 | 41.921249 | -85.312047 | 2539 263 262
8?32& NLP C | 44.375846 | -85.972647 | 44.369588 | -85.999598 | 2551 232 225
F%f/‘i?i NLP C | 44.956875 | -85.132748 | 44.968664 | -85.138993 | 1454 232 214

BastBranch | 1 p | ¢ | 45070651 | -84.283728 | 45.089439 | -84.284929 | 2879 277 272

Black River

B‘gﬁzg‘lﬁ'd NLP | CT | 44273249 | -85.094087 | 44.256377 | -85.03362 | 5978 359 352

King Creek | NLP | WT | 45.018848 | -83.650705 | 45.047993 | -83.634655 | 5822 223 211
North
Branch
Thunder | NLP W | 45.179007 | -83.923148 | 45.191635 | -83.891476 | 4630 241 237
Bay River
Morgan 2 2 2
il UpP C | 46519698 | -87.504502 | 46.521351 | -87.49478 1106 368 366
S@fé‘:ﬁk up CT | 46.354843 | -86.946771 | 46.350637 | -86.928918 | 1564 252 249
gfggl‘(% up CT | 46512909 | -90.156133 | 46.513418 | -90.177011 | 1681 360 358
AP ] UP | CT | 46500131 | -87.418924 | 46510534 | -87.388497 | 2614 237 189
Middle
Branch

upP WT | 46.420206 | -87.797962 | 46.398398 | -87.770883 | 6131 432 426

Escanaba
River

East Branch
Waiska up W | 46.418818 | -84.474418 | 46.406065 | -84.499266 | 3623 186 185
River
Squaw
Chook up W | 46.057035 | -87.18974 | 45.985396 | -87.140559 | 1676 283 249
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Table 2.2: Model numbers and the parameters included within each model denoted with an X. T, = air temperature (°C); T,, = water
temperature (°C); Qup = upstream discharge (cms); Qgown = downstream discharge; S = day length (hr); ATq.w = cumulative heat
energy (°C); AT,y = upstream heat energy (°C); ATpase = baseflow heat energy (°C); ATover = overland flow heat energy (°C); o = sun
altitude angle (°)

Parameter M1 | M2|M3|M4|M5|M6|M7|M8|M9|MI0 | M1l
Intercept X | X | X[ X | X | X | X | X | X X X
Ta-Tw X [ X | X[ X | X[ X|X|X|X] X | X
S X X | X X
o X | X X | X
Qup X | X | X[ X | X[ X]|X] X
Qdown'Qup X X X X X
Qdown/Qup X
ATiiow X | X | X[ X]| X
ATy X | X | X
ATpase X | X | X | X
AT over X | X | X | X
(1/Qup)(Ty + 273.16)" X
(L/Qu)I(Tw + 273.16)" - (T, + 273.16)"] X
(1/Qup)() X
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Table 2.3: Comparison of a priori thermal classes and a posteriori thermal classes based upon July mean water temperatures. For
those streams with two years of data (denoted by *), July mean water temperatures and overall discharges were averaged across both
years. C=<175°C;CT=>175°Cand<19.5°C; WT =>19.5°Cand <21.0 °C; W=>21.0 °C.

Stream a priori a posteriori July Mean . 3 1

Therrflal Class Theprmal Class Tempe):ature (°C) Discharge (m"s)
Cedar Creek C C 15.7 0.12
Cedar River* C C 14.5 1.34
East Branch Black River C C 16.5 0.83
Pokagon Creek* C CT 19.1 0.42
Fish Creek* C CT 19.5 0.86
Morgan Creek* C WT 20.8 0.11
Pigeon River* CT CT 18.7 0.48
Butterfield Creek* CT CT 18.8 0.09
Slapneck Creek CT CT 18.4 0.33
Carp River* CT CT 19.2 1.79
Spring Creek* CT WT 20.1 0.12
Middle Branch Tobacco River WT CT 18.5 0.52
Middle Branch Escanaba River WT CT 18.6 0.99
Honeyoey Creek WT WT 20.4 0.06
King Creek WT WT 20.1 0.01
Nottawa Creek* WT W 23.1 0.55
Prairie River* w CT 18.4 0.21
Squaw Creek w CT 18.7 0.04
Swan Creek W WT 20.9 0.38
Hasler Creek W w 23.0 0.04
North Branch Thunder Bay River W W 21.8 0.43
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Table 2.4: Goodness of fit components for individual stream reaches using the forcing model
(Model 12).

Name r SSE
Cedar Creek -0.60 9473
Cedar River 0.02 8375
East Branch Black River 0.35 112
Pigeon River 0.00 16510
Pokagon Creek -0.06 2948
Prairie River -0.02 | 3.30e+11
Fish Creek -0.16 42096
Middle Branch Tobacco River 0.63 588
Butterfield Creek 0.26 | 110782
Slapneck Creek -0.07 | 11788
Squaw Creek 0.07 56711
Middle Branch Escanaba River 0.03 | 4.59%+6
Carp River 0.01 2790
Swan Creek 0.00 5820
Honeyoey Creek 0.01 | 1.43e+18
King Creek -0.11 | 7.32e+8
Morgan Creek -0.24 | 30168
Spring Creek 0.09 | 215297
Nottawa Creek 0.09 85116
Hasler Creek 0.11 | 758770
North Branch Thunder Bay River | 0.50 3390

107



Table 2.5: Models and their goodness of fit components. Results are averages over each stream
reach. K = number of parameters; SSE = sums of squared errors; r = correlation between
predicted and observed temperature change; L = log likelihood component of AIC; AIC =
Akaike Information Criteria; ; = Akaike weight. Count is the total number of streams for which
each model was identified as providing the best fit. Models with the smallest SSE, L, or AIC are
best fitting.

Model no. | K | Ave. SSE Ave. r Ave. L | Ave. AIC | Ave.® | Count
1 2 225 0.21 -10875 21753 0.000 0
2 3 202 0.32 -10661 21328 0.000
3 4 196 0.40 -10499 21006 0.000 0
4 5 183 0.45 -10368 20746 0.000 0
5 6 173 0.54 -10128 20264 0.000 0
6 6 173 0.50 -10224 20461 0.000 0
7 7 168 0.58 -9971 19957 0.000 0
8 8 161 0.59 -9911 19838 0.001 0
9 8 164 0.56 -9990 19996 0.024 0
10 9 156 0.62 -9745 19508 0.737 16
11 7 184 0.50 -10130 20274 0.238 5
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Table 2.6: Model weights for each stream and the total count for which each model provided the best fit.

Name T?j;g;a' ML | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11
Cedar Creek C 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
Cedar River C 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
East Branch C 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
Black River
Pigeon River CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
Pokagon Creek CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
Prairie River CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
Fish Creek CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.026 | 0.974 | 0.000

Middle Branch CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.998 | 0.000
Tobacco River

Butterfield Creek CT 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

Slapneck Creek CT 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000

Squaw Creek CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
.!Li?,'aebfﬁ?ffr CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
Carp River CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
Swan Creek WT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
Honeyoey Creek | WT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
King Creek WT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000

Morgan Creek WT 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.479 | 0.505 | 0.000

Spring Creek WT 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000

Nottawa Creek w 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.998 | 0.000
Hasler Creek w 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
North Branch
Thunder Bay w 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000

River
Count 0 0 0 0 0 0 0 0 0 16 5
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Table 2.7: Models and average r for streams with one and two years of data.

Years of data Model 10 Model 11 Model 9 Model 8
1 0.66 0.55 0.61 0.62
2 0.58 0.44 0.52 0.55
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Table 2.8: Overall root-mean-square error (RMSE) (°C) between observed and predicted values
of downstream temperature flux for each of the four best models (M8, M9, M10, and M11)
across each of the 21 streams over 2015 and 2016.

RMSE
Stream M10 | M11 | M9 | M8
Cedar Creek 0.07 | 0.07 | 0.07 | 0.07
Cedar River 0.19 | 0.22 | 0.21 | 0.20
East Branch Black River 0.09 | 0.09 | 0.09 | 0.09
Pigeon River 0.07 | 0.07 | 0.07 | 0.07
Pokagon Creek 0.08 | 0.10 | 0.10 | 0.09
Prairie River 0.15 | 0.17 | 0.15| 0.15
Fish Creek 0.04 | 0.04 | 0.04 | 0.05
Middle Branch Tobacco River 0.07 | 0.07 | 0.07 | 0.10
Butterfield Creek 0.12 |{ 0.13 | 0.13 | 0.12
Slapneck Creek 0.22 | 0.25 | 0.22 | 0.22
Squaw Creek 0.46 | 0.47 | 0.46 | 0.46
Middle Branch Escanaba River | 0.07 | 0.13 | 0.11 | 0.08
Carp River 0.06 | 0.07 | 0.06 | 0.06
Swan Creek 0.38 | 0.42 1 0.39 | 0.40
Honeyoey Creek 0.12 | 0.13 | 0.12 | 0.12
King Creek 0.10 | 0.11 | 0.10 | 0.10
Morgan Creek 0.34 | 0.37 | 0.34 | 0.34
Spring Creek 0.30 { 0.30 | 0.30 | 0.31
Nottawa Creek 0.08 | 0.09 | 0.08 | 0.08
Hasler Creek 0.07 | 0.07 | 0.07 | 0.08
North Branch Thunder Bay River | 0.08 | 0.07 | 0.08 | 0.08
Average 0.12 | 0.13 | 0.12 | 0.12
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Table 2.9: Compared performances of the four best models using root-mean-square error
(RMSE) (°C) between observed and predicted values of downstream temperature flux across
each of the 21 streams.

Model | May | June | July | August | September | October | November | 2015 | 2016
M10 |0.14 |0.12 {0.13| 0.11 0.11 0.10 0.09 0.10 | 0.12
M11 |0.15|0.14|0.14| 0.12 0.11 0.11 0.11 0.11 | 0.13
M9 |0.15/0.13|0.13| 0.12 0.11 0.11 0.10 0.11 | 0.12
M8 |0.15/0.13|0.13| 0.12 0.11 0.10 0.09 0.10 | 0.12
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Table 2.10: Overall root-mean-square error (RMSE) (°C) between observed and predicted values
of downstream temperature flux for each of the four best models (M8, M9, M10 and M11) across
each of the four thermal classes.

RMSE
Thermal Class | M10 | M11 | M9 M8
C 0.06 | 0.06 | 0.06 | 0.06
CT 0.11 | 0.13 | 0.12 | 0.12
WT 0.16 | 0.17 | 0.16 | 0.16
w 0.10 | 0.10 | 0.10 | 0.10
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Table 2.11: Maximum and minimum values of downstream temperature flux rates (°C/km) for observed and predicted values of each
of the four best models.

Observed Model 10 Model 11 Model 9 Model 8
Stream Max Min Max Min Max Min Max Min Max Min
Cedar Creek 0.14 | -0.19 0.09 -0.07 0.11 -0.07 0.08 -0.09 0.10 -0.07
Cedar River 0.66 | -0.41 0.47 -0.15 0.30 0.03 0.32 -0.15 0.38 -0.12
East Bg‘ir\‘/‘;? Black | 514 | 010 | 0.09 000 | 009 0.01 009 | -001 | 007 0.00
Pigeon River 0.04 | -0.06 0.01 -0.03 0.01 -0.03 0.01 -0.03 0.01 -0.02
Pokagon Creek 0.19 | -0.12 0.05 -0.01 0.04 -0.02 0.04 -0.02 0.05 -0.01
Prairie River 0.08 | -0.08 0.06 -0.05 0.04 -0.07 0.05 -0.04 0.06 -0.05
Fish Creek 0.06 | -0.03 0.03 -0.01 0.07 -0.01 0.03 -0.01 0.03 -0.02

Middle Branch | 14 | 905 | 011 | -003 | 013 | 001 | 011 | -003 | 010 | -004
Tobacco River

Butterfield Creek 0.04 | -0.13 0.07 -0.10 0.05 -0.07 0.05 -0.08 0.07 -0.09
Slapneck Creek 0.65 | -0.51 0.56 -0.19 1.50 -0.11 0.51 -0.17 0.58 0.09

Squaw Creek 174 | 053 | 081  -029 | 208 | -098 | 080 | -029 | 080 | -0.27
Middle Branch | 5 | 506 | 004 | -005 | 001 | -004 | 002 | -005 | 003 | -004
Escanaba River

Carp River 014 | 009 | 006 | -002 | 008 | 003 | 006 | -002 | 006 | -0.02
Swan Creek 052 | 035 | 030 | -022 | 021 | 010 | 025 | 047 | 028 | -0.16
Honeyoey Creek | 0.09 | -0.04 | 009 | -0.03 | 010 | 002 | 009 | 003 | 009 | -0.03
King Creek 007 | 007 | 004 | -002 | 011 | 010 | 004 | 0.03 | 004 | -003

Morgan Creek 151 | -1.43 0.41 -0.68 0.39 -1.14 0.42 -0.70 0.39 -0.68

Spring Creek 052 | 08 | 017 | -020 | 023 | 021 | 018 | 020 | 017 | -0.20
Nottawa Creek | 0.03 | -013 | -001 | -010 | -0.03 | -011 | -002 | -010 | -0.01 | -0.09

Hasler Creek 002 | -008 | 001 | -006 | 002 | -0.06 | 001 | -006 | 002 | -0.05

North Branch
Thunder Bay River

Average 0.17 | -0.14 0.10 -0.07 0.14 -0.08 0.09 -0.06 0.09 -0.06

0.09 | -0.05 0.06 -0.03 0.09 -0.02 0.05 -0.03 0.07 -0.03

114



Table 2.12: Residuals of observed downstream temperature fluxes and model predictions of the 1% and 99" percentiles.

Observed - Predicted

Model 10 Model 11 Model 9 Model 8
Stream PO1 P99 PO1 PO1 PO1 P99 PO1 PO1
Cedar Creek -0.07 0.05 -0.07 0.05 -0.07 0.05 -0.07 0.05
Cedar River -0.39 0.30 -0.40 0.38 -0.42 0.34 -0.40 0.33
East Branch Black River -0.09 0.07 -0.09 0.07 -0.09 0.07 -0.10 0.07
Pigeon River -0.03 0.03 -0.03 0.03 -0.03 0.03 -0.03 0.03
Pokagon Creek -0.07 0.09 -0.07 0.09 -0.07 0.09 -0.07 0.09
Prairie River -0.05 0.05 -0.06 0.07 -0.05 0.05 -0.05 0.05
Fish Creek -0.02 0.02 -0.02 0.01 -0.02 0.02 -0.02 0.02
Middle Branch Tobacco River -0.04 0.04 -0.04 0.03 -0.04 0.04 -0.04 0.05
Butterfield Creek -0.06 0.01 -0.06 0.02 -0.06 0.01 -0.10 0.03
Slapneck Creek -0.41 0.28 -0.49 0.28 -0.44 0.29 -0.40 0.29
Squaw Creek -0.65 0.93 -0.73 0.77 -0.65 0.93 -0.65 0.93
Middle Branch Escanaba River -0.01 0.03 -0.04 0.05 -0.03 0.04 -0.02 0.03
Carp River -0.06 0.06 -0.06 0.07 -0.06 0.06 -0.06 0.07
Swan Creek -0.26 0.35 -0.31 0.38 -0.28 0.36 -0.28 0.37
Honeyoey Creek -0.04 0.01 -0.04 0.02 -0.04 0.01 -0.04 0.02
King Creek -0.06 0.03 -0.05 0.04 -0.06 0.04 -0.06 0.03
Morgan Creek -0.77 0.87 -0.86 0.91 -0.77 0.87 -0.78 0.86
Spring Creek -0.61 0.47 -0.60 0.44 -0.61 0.47 -0.60 0.48
Nottawa Creek -0.36 0.11 -0.36 0.12 -0.36 0.11 -0.36 0.11
Hasler Creek -0.02 0.01 -0.02 0.01 -0.02 0.02 -0.02 0.01
North Branch Thunder Bay River | -0.05 0.04 -0.04 0.03 -0.04 0.04 -0.05 0.04
Average -0.11 0.09 -0.12 0.10 -0.11 0.10 -0.11 0.10
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Table 2.13: Partial R? values of each variable included in Model 10. Values reflect the influence of each variable on downstream
temperature flux rates. T, = air temperature (°C); T\, = water temperature (°C); Qup = upstream discharge (cms); Qgown = downstream
discharge; S = day length (hr); ATy, = upstream heat energy (°C); ATpase = baseflow heat energy (°C); ATover = Overland flow heat
energy (°C); a = sun altitude angle (°).

Partial R
Variable Ta B TW Qup Qdown - Qup S ATup ATbase AToverland a
Overall 0.04 0.03 0.02 0.09 | 0.03 | 0.04 0.05 0.07

Table 2.14: Partial R? values averaged over thermal class. T, = air temperature (°C); T, = water temperature (°C); Qup = upstream
discharge (cms); Qqown = downstream discharge; S = day length (hr); AT, = upstream heat energy (°C); ATyase = baseflow heat energy
(°C); ATover = Overland flow heat energy (°C); o = sun altitude angle (°).

Partial Regression
Thermal Class | Ta-Tw | Qup | Qdown - Qup S ATy | ATpase | AToverland o
C 0.02 0.01 0.00 0.14 | 0.01 | 0.01 0.02 0.06
CT 0.04 0.05 0.02 0.12 | 0.04 | 0.04 0.05 0.10
WT 0.08 0.01 0.05 0.04 | 0.02 | 0.09 0.07 0.02
W 0.01 0.02 0.01 0.04 | 0.00 | 0.02 0.02 0.08
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Table 2.15: Type 111 sums of squared errors for a model testing only for thermal class as a fixed effect on downstream temperature

flux rates using GLM.

Source DF | Type 11 SS | Mean Square | F Value | Pr>F
Thermal Class | 3 210.10 70.03 1004.89 | <.0001
Ta-Tw 1 157.48 157.48 2259.62 | <.0001
Qup 1 3.79 3.79 54.37 |<.0001
Qdown - Qup 1 20.06 20.06 287.89 | <.0001
S 1 96.01 96.01 1377.65 | <.0001

o 1 55.80 55.80 800.70 | <.0001

AT 1 24.24 24.24 347.83 | <.0001
ATpase 1 13.23 13.23 189.79 | <.0001

AT overland 1 103.18 103.18 1480.57 | <.0001
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Table 2.16: Type 111 sums of squared errors for a model testing for both thermal class as a fixed effect and individual stream reach as a
random effect on downstream temperature flux rates using GLM.

Source DF | Type 11 SS | Mean Square | F Value | Pr>F
Thermal Class | 0 0.00 : : :
Stream 16 1744.81 109.05 2102.80 | <.0001
Ta-Tw 1 56.51 56.51 1089.75 | <.0001
Qup 1 0.03 0.03 0.53 | 0.4668
Qdown - Qup 1 22.42 22.42 432.23 | <.0001
S 1 19.70 19.70 379.78 | <.0001
o 1 19.46 19.46 375.25 | <.0001
AT 1 63.86 63.86 1231.38 | <.0001
ATpase 1 48.73 48.73 939.66 | <.0001
AT overland 1 31.69 31.69 611.04 | <.0001

118




Table 2.17: Variance accounted for by each model from Tables 2.15 and 2.16.

r | Coeff Var | Root MSE | AT Mean
Thermal Class | 0.30 | 1129.90 0.26 0.02
Stream 057 | 974.69 0.23 0.02
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Table 2.18: Diagnostics comparing observed values of downstream temperature flux (°C/km) with predicted values using Model 10
optimized specifically across thermal classes and across the stream network as a whole. Observed and Predicted refer to mean values
of downstream temperature flux across the entire study period for each stream reach.

Composite Thermal Class
Stream Observed | Predicted r SSE | RMSE | Predicted r SSE | RMSE
Cedar Creek 0.02 003 | 006 | 55 | 0.12 002 | 074 | 19 | 007
Cedar River 0.22 009 | 049 | 405 | 024 022 | 047 | 277 | 020 | ©
East Bg‘ir\‘/‘;rr‘ Black 0.09 0.15 017 | 38 | 012 0.09 014 | 26 | 010 | =
Pigeon River -0.06 0.01 042 | 72 | 010 001 | 037 | 74 | o011
Pokagon Creek 0.07 0.06 0.19 74 0.11 0.06 0.29 65 0.10
Prairie River 0.04 000 | 023 | 182 | 017 000 | 019 | 191 | 018
Fish Creek 0.04 001 | 011 | 53 | 009 002 | -024| 61 | 010 | Q
Middle Branch 0.13 009 | 009 | 88 | 016 009 | 016 | 83 | 015 | =
Tobacco River o
Butterfield Creek 011 002 | 063 | 257 | 0.19 003 | 055 | 258 | 019 | &
Slapneck Creek 0.17 0.14 | 017 | 260 | 030 016 | 021 | 245 | 029 | &
Squaw Creek 0.57 000 | 012 | 1620 | 0.77 007 | 020 | 1411 | 072 | 2
Middle Branch 0.01 002 | 034 | 49 | 012 | -002 | 036 | 49 | 012
Escanaba River
Carp River 0.02 000 | 023 | 108 | 013 002 | 024 | 8 | 012
Swan Creek 0.10 004 | 031 | 598 | 043 0.00 | 027 | 621 | 043 | _
Honeyoey Creek 0.18 0.01 027 | 192 | 024 010 | 065 | 8 | 016 |5 <
King Creek 0.07 0.01 024 | 53 | 013 002 | 039 | 44 | 012 |28
Morgan Creek 017 002 | -036 | 1973 | 058 013 | 000 | 1894 | 056 |3 7
Spring Creek -0.04 009 | 013 | 625 | 0.34 013 | 008 | 906 | 042
Nottawa Creek 0.71 000 | 030 | 3899 | 0.79 017 | 025 | 2632 | 0.65
Hasler Creek 0.17 005 | 072 | 80 | 0.16 016 | 076 | 23 | 009 | £
North Branch Thunder |, 002 | 055 | 37 | 011 003 | 033 | 43 | 012 | 3
Bay River
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Table 2.19: Diagnostics comparing observed values of downstream temperature flux (°C/km) with predicted values using Model 10
optimized specifically across thermal classes and across the stream network as a whole. Results are averaged among streams within
thermal classes.

Composite Thermal Class
Thermal . .
Class Observed | Predicted r SSE RMSE | Predicted r SSE RMSE
C 0.11 0.07 0.24 166 0.16 0.11 0.45 107 0.12
CT 0.09 0.03 0.19 276 0.22 0.04 0.19 252 0.21
WT 0.03 0.00 0.12 688 0.34 0.08 0.28 711 0.34
wW -0.27 -0.01 0.52 1339 0.35 -0.10 0.45 900 0.28
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Table 2.20: Average monthly downstream temperature flux rates (°C/km) for baseflow reduction scenarios using Model 10.

July August September October
Stream 0% 50% | 90% 0% 50% | 90% 0% 50% | 90% 0% 50% | 90%
Cedar Creek 0.08 | -0.10 | -0.46 | 0.07 | -0.112 | -051 ] -0.04 | -0.19 | -0.47 | -0.10 | -0.21 | -0.36
Cedar River 025 | 029 | 040 | 020 | 024 | 033 ] 014 | 021 | 0.25 | 0.07 | 0.12 | 0.13

EaStBE;r\‘/‘;TB'aCK 012 | 012 | 0.2 | 010 | 0.0 | 010 | 0.07 | 007 | 007 | 0.05 | 005 | 0.05

Pigeon River -0.04 | -0.06 | -0.07 | -0.05 | -0.06 | -0.06 | -0.08 | -0.08 | -0.06 | -0.06 | -0.06 | -0.06

Pokagon Creek 013 | 012 | 0.12 | 0.10 | 0.10 | 0.10 |} 0.06 | 0.06 | 0.05 | 0.01 | 0.01 | 0.00

Prairie River 011 | 012 | 0.13 | 006 | 0.09 | 0.12 J 0.00 | 0.00 | 0.06 | 0.01 | 0.01 | 0.03

Fish Creek 0.08 | 003 | -0.02 | 0.06 | 0.00 | -0.02 } 0.01 | -0.02 | -0.03 | 0.01 | -0.01 | -0.03

Miadle Branch | o 15 | 16 | 015 | 015 | 014 | 013 | 012 | 011 | 011 | 008 | 0.07 | 006
Tobacco River

Butterfield Creek | -0.16 | -0.05 | 0.08 | -0.18 | -0.08 | 0.06 | -0.13 | -0.07 | 0.04 | -0.01 | 0.04 | 0.10

Slapneck Creek 031 | 029 | 028 | 0.14 | 0.13 | 0.12 | 006 | 0.04 | 0.02 | -0.01 | -0.04 | -0.05

Squaw Creek 08 | 109 | 116 | 0.76 | 098 | 1.20 | 0.62 | 0.71 | 0.80 | 042 | 045 | 047

Middle Branch | 559 | 016 | 017 | 001 | 007 | 009 | 012 | -008 | 005 | 020 | 015 | -0.12
Escanaba River

Carp River 0.01 | 0.00 | -0.01 | 002 | 0.01 | 0.02 J 002 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07

Swan Creek 027 | 025 | 024 | 0.16 | 0.16 | 0.16 | 0.08 | 0.06 | 0.05 | 0.00 | -0.01 | 0.00

Honeyoey Creek 026 | 024 | 023 | 0.22 | 022 | 025 | 0.16 | 0.18 | 042 | 0.00 | -0.06 | -0.14

King Creek 0.15 | 0.14 | 0.13 | 0.11 | 0.10 | 0.09 | 0.0/ | 0.07 | 0.07 | 0.02 | 0.02 | 0.02

Morgan Creek -0.31 | -0.49 | -0.62 | -0.20 | -0.44 | -0.63 | -0.05 | -0.25 | -0.54 | -0.15 | -0.35 | -0.62

Spring Creek -0.10 | -0.10 | -0.09 | -0.12 | -0.10 | -0.03 | -0.05 | -0.01 | 0.01 | 0.07 | 0.09 | 0.10

Nottawa Creek -0.23 | -0.21 | -0.19 | -0.19 | -0.18 | -0.17 | -0.20 | -0.19 | -0.18 | -0.14 | -0.13 | -0.13

Hasler Creek -0.26 | -0.25 | -0.16 | -0.26 | -0.26 | -0.11 | -0.19 | -0.18 | -0.03 | -0.08 | -0.08 | 0.04

North Branch | 15 | 015 | 045 | 0.13 | 013 | 0.13 | 006 | 0.06 | 006 | 0.05 | 005 | 0.04
Thunder Bay River
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Table 2.21: Average monthly downstream temperature flux rates (°C/km) of thermal classes for baseflow reduction scenarios using
Model 10.

July August September October
Thermal Class 0% 50% | 90% 0% 50% | 90% 0% 50% | 90% 0% 50% | 90%
Cold 050 | 033 | 055 | 048 | 032 | 053 | 045 | 035 | 041 | 042 | 0.34 | 0.30

Cold-transitional 0.22 0.33 0.41 0.05 0.16 0.25 | -0.06 | 0.00 0.07 | -0.11 | -0.08 | -0.04
Warm-transitional 0.33 0.32 0.40 0.47 0.52 0.59 0.67 0.68 0.81 1.85 1.74 1.68

Warm -0.84 | -057 | -0.25 | -0.65 | -053 | -0.35 | -0.80 | -0.69 | -0.43 | -0.77 | -0.69 | -0.58
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Table 2.22: August mean values used for predicting downstream temperature flux using Model 10. T, = air temperature (°C); Ty =
water temperature (°C); Qup = upstream discharge (cms); Qqown = downstream discharge; S = day length (hr); AT, = upstream heat
energy (°C); ATpase = baseflow heat energy (°C); ATover = overland flow heat energy (°C); o = sun altitude angle (°).

Reach
Site Iength Ta - TW (C) Qup Qdown = Qup S o ATbase ATover ATup
(km)

Cedar Creek 255 507 | 009 | 036 | 1432 | 20.28 | -9.81 | -13.92 | -12.56
Cedar River 193 650 | 133 | 042 | 1438 | 19.98 | -10.96 | -13.19 | -3.38
East Branch Black River 2.88 5.07 0.68 -0.04 1438 | 19.86 | -1.51 -1.50 -0.01
Pigeon River 6.55 314 | 044 | 015 | 1420 | 20.26 | -11.69 | -12.11 | -4.25
Pokagon Creek 4.05 295 | 045 | 000 | 1413 | 20.66 | -4.14 | -354 | -0.73
Prairie River 5.86 325 | 047 | 006 | 1412 | 20.58 | -11.31 | -13.79 | -6.28
Fish Creek 5.19 186 | 095 | 011 | 1423 | 20.33 | -11.65 | -15.74 | -4.95
Middle Branch Tobacco | 4.9 476 | 051 | 002 | 1429 | 2017 | -1014 | -9.47 | -0.78
Butterfield Creek 6.01 259 | 006 | 010 | 1431 | 20.00 | -13.02 | -15.04 | -11.57
Slapneck Creek 156 154 | 027 | 103 | 1427 | 19.08 | -1650 | -8.74 | -13.43
Squaw Creek 1.4 192 | 002 | 003 | 1426 | 18.91 | -16.83 | -11.47 | -851
Middle Branch Escanaba |~ 6.13 212 | 070 | 030 | 1450 | 1959 | -1456 | -19.05 | -6.47
Carp River 2.61 083 | 162 | 023 | 1450 | 1948 | 590 | 6.20 | -0.86
Swan Creek 2.54 054 | 040 | 000 | 13.98 | 19.82 | -15.07 | -14.90 | -0.37
Honeyoey Creek 6.64 228 | 004 | 003 | 1425 | 20.24 | -6.84 | -19.32 | -1052
King Creek 5.82 815 | 000 | 000 | 1437 | 1988 | -7.53 | -803 | -2.01
Morgan Creek 0.91 014 | 010 | 003 | 1451 | 1949 | -1557 | -16.54 | -4.56
Spring Creek 153 046 | 006 | 009 | 1448 | 1950 | -14.61 | -17.73 | -12.76
Nottawa Creek 3.76 084 | 068 | 005 | 1413 | 2054 | -5.77 | -8.96 | -3.94
Hasler Creek 759 091 | 002 | 005 | 1399 | 2098 | -13.34 | -22.79 | -16.45
North Branch Thunder | 53 931 | 034 | 006 | 1439 | 1985 | -007 | -0.07 | 0.00

Bay River
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Table 2.23: August mean values used for predicting downstream temperature flux using the Zorn et al. (2008) model.

Site Ienzft?(élr:m) Qup (cms) | Ta(°C) | Tw (°C) | Depth (m) | Velocity (m/s)
Cedar Creek 2.55 0.09 20.86 15.79 0.17 0.16
Cedar River 1.93 1.33 20.43 13.93 0.42 0.36
East Branch Black River 2.88 0.68 21.64 16.57 0.60 0.15
Pigeon River 6.55 0.44 21.47 18.34 0.48 0.10
Pokagon Creek 4.05 0.45 21.45 18.50 0.44 0.15
Prairie River 5.86 0.17 21.25 18.00 0.20 0.09
Fish Creek 5.19 0.95 20.99 19.13 0.46 0.13
Middle Branch Tobacco 4,00 051 | 2272 | 17.96 | 029 0.33
Butterfield Creek 6.01 0.06 20.33 17.74 0.31 0.04
Slapneck Creek 1.56 0.27 19.68 18.14 0.29 0.17
Squaw Creek 1.44 0.02 19.63 17.71 0.28 0.02
Middle Branch Escanaba 6.13 070 | 1693 | 19.05 | 042 0.13
Carp River 2.61 1.62 18.98 18.14 0.33 0.53
Swan Creek 2.54 0.40 21.93 21.39 0.39 0.11
Honeyoey Creek 6.64 0.04 22.41 20.13 0.33 0.04
King Creek 5.82 3.95e-03 10.34 18.49 0.13 0.01
Morgan Creek 0.91 0.10 18.98 19.12 0.21 0.11
Spring Creek 1.53 0.06 18.76 19.21 0.29 0.03
Nottawa Creek 3.76 0.68 21.55 22.39 0.28 0.21
Hasler Creek 7.59 0.02 22.14 23.05 0.22 0.02
North Bra”;?vz:]“”der Bay 4.63 034 | 1034 | 1965 | 0.37 0.10
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Table 2.24: Observed August downstream temperature flux rates (°C/km) for each of the stream
reaches and the predicted rates of Model 10 and the Zorn et al. (2008) model under a 0%
reduction scenario.

°C/km
Stream Observed | M10 Zom et al. (2008)
model
Cedar Creek 0.07 0.07 4.21
Cedar River 0.24 0.20 1.81
East Branch Black River 0.11 0.10 11.67
Pigeon River -0.04 -0.05 5.48
Pokagon Creek 0.11 0.10 3.59
Prairie River 0.06 0.06 2.53
Fish Creek 0.06 0.06 1.65
Middle Branch Tobacco River 0.16 0.15 0.65
Butterfield Creek -0.15 -0.18 17.74
Slapneck Creek 0.16 0.14 2.45
Squaw Creek 0.77 0.76 106.64
Middle Branch Escanaba River -0.01 0.01 -1.77
Carp River 0.03 0.02 0.05
Swan Creek 0.21 0.16 1.52
Honeyoey Creek 0.24 0.22 13.48
King Creek 0.12 0.11 -221.41
Morgan Creek -0.19 -0.20 -0.79
Spring Creek -0.07 -0.12 -12.06
Nottawa Creek -0.22 -0.19 -0.22
Hasler Creek -0.26 -0.26 -8.93
North Branch Thunder Bay River 0.16 0.13 -15.85
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Table 2.25: Average August downstream temperature flux rates (°C/km) experienced by each of
the four stream thermal classifications and the estimated rates using Model 10 and the Zorn et al.
(2008) model (King Creek and Squaw Creek excluded from Zorn et al. (2008) model estimates).

Thermal Class | Observed | M10 | Zorn et al. (2008) model
C 0.14 0.12 5.90
CT 0.11 0.11 3.60
WT 0.06 0.03 0.54
W -0.11 -0.11 -8.33
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Table 2.26: Predicted downstream temperature flux rates (°C/km) following scenario analysis of baseflow reductions of 10%
increments using Model 10.

°C/km
Stream 0% 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
Cedar Creek 0.07 | 004 | 001 | -0.02 | -0.06 | -0.11 | -0.17 | -0.25 | -0.36 | -0.51
Cedar River 020 | 021 | 021 | 022 | 023 | 0.24 | 0.26 | 0.28 | 0.30 | 0.33
East Branch Black River 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Pigeon River -0.05 | -0.05 | -0.05 | -0.06 | -0.06 | -0.06 | -0.07 | -0.06 | -0.06 | -0.06
Pokagon Creek 0.10 | 0.10 | 0.10 | 010 | 0.10 | O.10 | 0.10 | 0.20 | 0.10 | 0.10
Prairie River 0.06 | 0.06 | 0.07 | 0.07 | 0.08 | 0.09 | 0.09 | 0.10 | 0.11 | 0.12
Fish Creek 0.06 | 005 | 005 | 0.03 | 0.01 | 0.00 | 0.00 | 0.00 | -0.01 | -0.02
Middle Branch Tobacco River 015 | 015 | 014 | 014 | 014 | 014 | 0.14 | 013 | 0.13 | 0.13
Butterfield Creek -0.18 | -0.17 | -0.15 | -0.13 | -0.11 | -0.08 | -0.05 | -0.03 | 0.01 | 0.06
Slapneck Creek 014 | 014 | 014 | 013 | 013 | 013 | 0.13 | 013 | 0.12 | 0.12
Squaw Creek 0.76 | 080 | 0.84 | 0.88 | 093 | 0.98 1.03 1.08 1.14 | 1.20
Middle Branch Escanaba River 0.01 | 002 | 003 | 0.04 | 0.06 | 007 | 0.08 | 0.08 | 0.09 | 0.09
Carp River 0.02 | 002 | 002 | 002 | 0.01 | 001 | 0.01 | 0.01 | 0.02 | 0.02
Swan Creek 0.16 | 016 | 0.16 | 0.16 | 0.16 | 0.16 | 0.15 | 0.16 | 0.16 | 0.16
Honeyoey Creek 022 | 024 | 026 | 026 | 025 | 0.22 | 0.22 | 024 | 0.24 | 0.25
King Creek 0.11 | 0.10 | 0.10 | 010 | 0.10 | 0.10 | 0.10 | 0.20 | 0.09 | 0.09
Morgan Creek -0.20 | -0.24 | -0.28 | -0.33 | -0.38 | -0.44 | -0.52 | -0.55 | -0.59 | -0.63
Spring Creek -0.12 | -0.12 | -0.12 | -0.11 | -0.11 | -0.10 | -0.08 | -0.07 | -0.05 | -0.03
Nottawa Creek -0.19 | -0.19 | -0.19 | -0.19 | -0.19 | -0.18 | -0.18 | -0.18 | -0.18 | -0.17
Hasler Creek -0.26 | -0.26 | -0.26 | -0.26 | -0.26 | -0.26 | -0.24 | -0.22 | -0.18 | -0.11
North Branch Thunder Bay River | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13
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Table 2.27: Predicted downstream temperature flux rates (°C/km) following scenario analysis of baseflow reductions of 10%
increments using the Zorn et al. (2008) model.

River

°C/km
Stream 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Cedar Creek 4.21 4.48 4.81 5.21 5.72 6.39 7.32 8.74 11.25 17.45
Cedar River 1.81 1.91 2.03 2.18 2.37 2.61 2.95 3.45 4.33 6.43
East Branch 11.67 | 1221 | 1285 | 1360 | 1451 | 1566 | 17.17 19.28 22.59 29.15
Black River
Pigeon River 5.48 5.71 5.97 6.27 6.64 7.09 7.66 8.45 9.64 11.96
Pokagon Creek | 3.59 3.77 3.98 4.23 4.54 4.94 5.46 6.20 7.39 9.85
Prairie River 2.53 2.67 2.83 3.02 3.26 3.57 3.98 4.57 5.54 7.64
Fish Creek 1.65 1.74 1.83 1.94 2.08 2.26 2.49 2.82 3.35 4.45
Middle Branch | e | 069 | 073 | o079 | 086 | 096 | 1.09 1.30 1.66 2.56
Tobacco River
Butterfield Creek | 17.74 | 1824 | 18.82 | 1952 | 2040 | 2154 | 23.12 25.53 29.92 42.38
Slapneck Creek | 2.45 2.59 2.75 2.95 3.21 3.53 3.98 4.63 5.74 8.26
Squaw Creek | 106.64 | 110.40 | 114.92 | 12052 | 127.70 | 137.38 | 151.43 | 17444 | 22196 | 41544
Middle Branch |~ ;77 | 186 | -1.06 | -208 | -223 | -242 | 267 | -302 | -358 | -472
Escanaba River
Carp River 0.05 0.05 0.05 0.06 0.06 0.07 0.08 0.09 0.12 0.18
Swan Creek 1.52 1.59 1.67 1.77 1.89 2.04 2.24 2.51 2.94 3.80
Honeyoey Creek | 13.48 13.89 14.39 14.98 15.74 16.73 18.13 20.31 24.47 37.64
King Creek | -221.41 | -240.91 | -267.21 | -304.95 | -364.37 | -473.47 | -747.38 | -2940.45 | -2.E+148 | -6.E+56
Morgan Creek -0.79 -0.83 -0.88 -0.95 -1.02 -1.12 -1.25 -1.44 -1.75 -2.46
Spring Creek | -12.06 | -12.40 | -12.80 | -13.28 | -13.88 | -14.66 | -1574 | -17.38 -20.39 -28.97
Nottawa Creek -0.22 -0.23 -0.25 -0.26 -0.29 -0.32 -0.36 -0.42 -0.53 -0.78
Hasler Creek 893 | -925 | 964 | -1013 | -10.75 | -11.59 | -12.82 | -14.85 -19.12 -37.60
North Branch
Thunder Bay | -15.85 | -16.58 | -17.43 | -18.44 | -19.65 | -21.18 | -23.17 | -25.94 -30.24 | -38.84
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Table 2.28: Parameterized beta coefficients associated with each stream reach to estimate downstream temperature flux using Model
10. T, = air temperature (°C); T\, = water temperature (°C); Qyp = upstream discharge (cms); Qgown = downstream discharge; S = day
length (hr); ATy, = upstream heat energy (°C); ATpase = baseflow heat energy (°C); ATover = overland flow heat energy (°C); o = sun
altitude angle (°).

Cedar Creek C -2.732 -0.008 4.463 0.107 0.107 0.001 | 0128 0.128 | -0.045
Cedar River C -0.672 0.014 -0.277 0.076 0.128 0 605 0.025 | -0.003 | 0.029
East Bg‘ir\‘/‘;? Black C 0105 | -0011 | -0241 | -0361 | 0.033 |0.006|0823 | -0912 | 0.905
Pigeon River CT -1.248 0.042 0.127 0.145 0.089 0.006 | 0.048 0.106 | -0.051
Pokagon Creek CT -1.747 0.005 0.000 -0.345 0.155 0.005 | 0.084 0.021 | -0.019
Prairie River CT -2.263 -0.033 -2.910 1.156 0.309 0 0'13 0.080 | 0.002 0.029
Fish Creek CT -0.335 0.009 0.059 0.038 0.002 | 0.005 0 622 0.053 | -0.059
Middle Branch -
Tobacco River CT 0.681 0.032 -1.350 0.405 0.006 | 0.019 0.334 0.286 | -0.278
Butterfield Creek CT -0.440 0.048 -3.320 -0.286 0.244 0 0-06 0.169 | 0.024 0.112
Slapneck Creek CT -0.661 -0.017 -2.451 0.195 0.122 | 0.003 | 0.020 | 0.015 | -0.010
Squaw Creek CT 0.918 0.011 -14.190 0.576 -0.025 0 603 0.201 | -0.235 | 0.119
Middle Branch -
Escanaba River CT -7.020 -0.011 -0.312 -0.301 0.545 0.010 0.021 | 0.001 0.010
Carp River CT 0.283 0.014 -0.029 -0.112 -0.017 0.001 | 0.056 0.028 | -0.026
Swan Creek WT -2.471 0.155 -0.179 -1.988 0.249 0.016 | 0.397 0.384 | -0.359

130



Table 2.28: (cont’d)

River

Honeyoey Creek WT -0.056 0.101 -4.613 1.750 0.135 0 607 0.071 | 0.159 | -0.078
King Creek WT -1.905 -0.012 0.883 -3.095 0.178 0.004 | 0015 0.148 | -0.127
Morgan Creek WT -0.910 0.019 1.666 8.136 0.018 0.002 | 0.008 0.077 | -0.075
Spring Creek WT 0.433 -0.032 -0.040 0.597 -0.024 | 0.003 | 0.009 | 0.006 0.011
Nottawa Creek W 0.447 0.002 -0.037 -0.288 -0.073 0 605 0.006 | 0.038 | -0.024
Hasler Creek W 0.663 0.000 2.294 5.003 -0.038 | 0.015 | 0.035 | 0.063 0.058
North Branch
Thunder Bay W -0.784 0.026 -0.369 0.131 0.115 | 0.005 | 0.085 | 0.231 | -0.232
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Table 2.29: Parameterized beta coefficients specific to each thermal class and across all streams to estimate downstream temperature
flux using Model 10. T, = air temperature (°C); Ty, = water temperature (°C); Qup = upstream discharge (cms); Qgown = downstream
discharge; S = day length (hr); ATy, = upstream heat energy (°C); ATpase = baseflow heat energy (°C); ATover = Overland flow heat
energy (°C); a = sun altitude angle (°).

Thermal Class intercept | Ta— Ty Qup Qdown — Qup S o ATy AThase | ATover
C -1.163 0.005 0.112 0.117 0.098 | 0.002 0.018 | 0.046 | -0.039

CT -0.748 0.016 -0.140 0.111 0.090 | -0.002 | 0.049 | -0.017 | 0.027

WT -1.514 0.019 -0.084 0.795 0.159 | -0.002 | 0.014 | 0.070 | -0.034

W 0.044 -0.042 -0.279 0.880 -0.014 | 0.008 | 0.091 | 0.016 | 0.007
Composite -0.677 0.020 -0.141 0.211 0.088 | -0.003 | 0.045 | 0.003 | 0.016
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Table 2.30: Partial R? values of each variable included in Model 10 for summer months (July and August). Values reflect the influence
of each variable on downstream temperature flux rates. T, = air temperature (°C); T, = water temperature (°C); Qup = upstream
discharge (cms); Qqown = downstream discharge; S = day length (hr); ATy, = upstream heat energy (°C); ATyase = baseflow heat energy
(°C); ATover = overland flow heat energy (°C); o = sun altitude angle (°).

Partial R?
Variable | T,-Ty Qup | Qdown - Qup S ATy | ATpase | AToverland o
Overall 0.04 0.04 0.01 0.04 | 0.03 0.05 0.05 0.08

Table 2.31: Partial R* values averaged over thermal class for summer months (July and August). T, = air temperature (°C); T,, = water
temperature (°C); Qup = upstream discharge (cms); Qgown = downstream discharge; S = day length (hr); AT, = upstream heat energy
(°C); ATpase = baseflow heat energy (°C); ATover = overland flow heat energy (°C); o = sun altitude angle (°).

Partial Regression

Thermal Class | Ta-Tw | Qup | Qdown - Qup S ATy | AThase | AToverland o
C 0.02 0.06 0.00 0.04 | 0.02 0.02 0.01 0.07
CT 0.05 0.04 0.01 0.06 | 0.03 0.04 0.06 0.11
WT 0.04 0.02 0.01 0.02 | 0.03 0.13 0.09 0.02
W 0.02 0.08 0.00 0.04 | 0.00 0.00 0.00 0.09
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Figure 2.1: Stream gauge locations.
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Figure 2.2: Downstream temperature flux rates (°C/km) compared to upstream discharge (m®/s)
for representative stream reaches among each of the four thermal classes.
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North Branch Thunder Bay River (W).

138



Cedar River

Cold
S 04-
F
Gé-"E‘DS_ /\
5
EH—~02-/ !
X2
m
® =01-
]
w2
C = _
= 00
(o]
0

1 1 I 1 1 1
15-07 15-10 16-01 16-04 16-07 16-10
Date

Honeyoey Creek
Warm-transitional

m)
=
w
|

(=) [
- ra
| |

Downstream temperature
flux rate (C/
L
(=]
|

| 1 | 1 |
16-06 16-07 16-08 16-09 16-10
Date

= Observed

Fish Creek
Cold-transitional

]

]

oo
I

f

/ ]

I I I 1 I I
1507 15-10 16-01 16-04 16-07 16-10
Date

]
L]
]
|
-

flux ratg(C;‘kmj
--__\
y -

Downstream temperature

North Branch Thunder Bay River

Warm

o

= _

Eﬁmﬁ

25

J]Ejgo_m—

£Z

[iv]

S 005 \/\

e

w2

EU—

£ o0o00- N

D | | | 1

15-08 1500 1510  15-11

Date

Model 11
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North Branch Thunder Bay River (W).
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Figure 2.8: Model 8 predictions of downstream temperature flux rates (°C/km) compared with
LOESS smoothed observed downstream temperature change for four different streams, one in
each of the four thermal classes: Cedar River (C), Fish Creek (CT), Honeyoey Creek (WT),
North Branch Thunder Bay River (W).
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Figure 2.9: Seasonal structures of error (Obs — Sim) of downstream temperature flux represented
using LOESS regression for each of the four best models identified using model selection
criteria. One stream from each of the four thermal classifications is represented: Cedar River (C),
Fish Creek (CT), Honeyoey Creek (WT), North Branch Thunder Bay River (W).
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Figure 2.10: Comparison of model fit using a LOESS regression. Using nonlinear optimization,
Model 10 was parameterized using a composite dataset of the entire stream network, and also
specific to each thermal class. Model fit was then compared to observed values.
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Figure 2.11: Baseflow reduction scenarios for example streams. Scenarios of 0%, 50%, and 90%
baseflow reduction are plotted using LOESS regressions, along with observed values. LOESS
regressions track seasonal and yearly trends of downstream temperature flux.
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Figure 2.12: Downstream temperature flux rates in response to baseflow reductions.
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Figure 2.13: Downstream temperature flux rates in response to baseflow reductions. Rates were
omitted for King Creek and Squaw Creek to maintain an appropriate scale on the y-axis.
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APPENDIX 2.1

Derivation of net incoming shortwave radiation (Meeus, 1991).

N
lo = Isc[1 + 0.033cos (5=x360°)

lo = solar irradiation values throughout the year (W/m?)
lsc = solar constant (1353 W/m?)

N = day of year

N + 284
6 = 23.45%in |

Wx360 ]

0 = declination angle
AST = LST + (4 min/deg)(LSTM — Long) + ET
LST = local standard time for time zone (adjusted for daylight savings time; LST = DST - 1)
Long = longitude
LSTM = local longitude of standard time meridian

Long
LSTM = 15°x

15° round to integer
ET = 9.87sin(2D) — 7.53 cos(D) — 1.5sin (D)
ET = equation of time in minutes

(N —81)

D =360 365

. (No.of minutes past midnight, AST) — 720 mins

4 min/deg
H = hour angle (azimuth angle of sun’s rays caused by earth’s rotation)
cos(6,) = sin(B;) = cos(L) cos(6) cos(H) + sin(L) sin (&)
6, = zenith angle
[ = altitude angle
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L = latitude

sin(B,) sin(L) — sin (6)

cos(ay) = cos(p;) cos (L)
a1 = solar azimuth angle
oy = Aexp (-2
=Aexp (———=
N P Po sin(f5;)

lon = direct normal irradiance to the ground (W/m?)
A = apparent extraterrestrial solar intensity (W/m?)
B = atmospheric extinction coefficient

p/po = pressure at location of interest (atm)

pﬁ = exp(—0.0000361z)
0

z = altitude above sea level (ft)

Hy = (1 = SF)(1-)lpy
Hs = net solar heat flux (W/m?)
SF = shading factor (%)

a = surface albedo (.1)
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