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ABSTRACT 

 

EFFECTS OF FLOW REDUCTION ON THERMAL DYNAMICS OF STREAMS: 

IMPROVING AN IMPORTANT LINK IN MICHIGAN’S WATER WITHDRAWAL 

ASSESSMENT TOOL (WWAT) 

 

By 

 

Ryan Andrews 

 

The response of fish to human alterations of habitat conditions is of critical management 

and policy importance.  For example, withdrawal of groundwater from stream ecosystems can 

result in altered thermal regimes, and changes in fish populations. Many streams are fed 

groundwater inputs that help maintain in-stream hydraulic conditions by stabilizing discharge as 

well as stream temperature. However, groundwater withdrawal through high-capacity wells is 

also important to the agricultural industry. Withdrawal can cause reductions in streamflow and 

typically results in increased stream temperature, and can initiate shifts in aquatic community 

assemblage. In Michigan, the Water Withdrawal Assessment Tool (WWAT) is used to estimate 

ecological impacts associated with water withdrawal. The model uses flow-fish response 

relationships to estimate the effects of flow reduction on downstream warming for Michigan 

streams, and subsequently estimates the degree of impact of on stream fish communities. 

 The chapters of this thesis investigate potential improvements to the mechanisms of 

Michigan’s WWAT used to set policy regarding water withdrawal throughout the state. In the 

first chapter, I investigate the use of several benchmark detection methods for setting thermal 

benchmarks for stream fishes. The second chapter includes the development and analysis of 

several models which attempt to predict downstream warming rates within 24 streams located 

throughout Michigan’s Upper and Lower Peninsulas.  
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CHAPTER 1 

 

Application of benchmark detection methods to identify thermal thresholds of stream fishes 

along a thermal gradient 

Introduction 

 

 Stream thermal regimes are critical determinants of fish migration, growth, and survival. 

Stream temperature has been found to be a limiting factor in fish distribution and production 

(Wehrly et al., 2003), and for highly-valued stream fishes, such as trout, high water temperatures 

in summer can limit the ability to persist and thrive (Wehrly et al., 2007). Excessive water 

temperature limits migration, health, and performance of salmonids and can create competitive 

disadvantages (Mantua et al., 2010). The thermal regime of a stream also influences processes 

underlying lower trophic levels in aquatic ecosystems, and is subject to influences of local 

environmental characteristics such as riparian shading, groundwater input, and streamflow. 

Consequently, warming waters due to changing environmental conditions can create conditions 

unsuitable for coldwater stream fishes.  

 Characterizing the response of stream fish communities to stream thermal characteristics 

is valuable for both watershed and fisheries resource management. Distinguishing patterns of 

population or community response to environmental conditions can help to establish action 

points or benchmarks associated with significant changes in species abundance or community 

composition. Ecological thresholds are used to describe transitions between alternative stable 

states once breakpoints along an environmental gradient are breached (Andersen et al., 2009). 

Alternative states can represent shifts in community assemblage or crossing of an extinction 

threshold where effects of a changing environmental gradient reduce reproduction or survival 

rates beyond a population’s capacity (Huggett, 2005). Given the current state of anthropogenic 
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stressors, threshold analysis has value in its ability to quantitatively assess species requirements 

and identify targets for conservation efforts (Groffman et al., 2006), and leverage this 

information as an early detection system to prevent crossing thresholds. There remains a need to 

define specific ecological benchmarks to aid in setting regulations for resource management. 

Accurate detection methods are not only necessary to avoid exceeding thresholds, but also to 

reduce scenarios that unnecessarily impose limitations when actual threshold responses may not 

exist. 

 A particular challenge for water resources and fisheries managers in defining action 

points is the difficulty in maintaining a proper balance between natural streamflow regimes and 

artificial water withdrawals. Natural flow regimes are important for maintaining in-stream 

hydraulic conditions that support native aquatic communities, and disruption of flow variations 

can have immediate and long-term consequences for aquatic organisms. When flows are 

reduced, stream temperatures may more quickly equilibrate with ambient air temperatures. 

Decreased flows cause reductions in water velocity, water depth, and wetted width of the river, 

all of which can increase residence time of water and exposure to solar radiation which 

subsequently raises stream temperature. Changes in stream conditions associated with flow 

reduction in streams may result in loss of habitat volume, reduced connectivity, and water quality 

impairment (Labbe and Fausch, 2000; Richter et al., 2003). Under conditions of extreme flow 

restriction, summer stream warming rates can increase to the extent that they will no longer 

support coldwater fishes. Artificial water withdrawal can exacerbate flow reduction by removing 

groundwater that helps maintain the natural flow and thermal characteristics that coldwater 

species require. Water withdrawal can also create less favorable conditions for fluvial specialists, 

and in turn lead to conditions more favorable for macrohabitat generalists (Kanno and Vokoun, 
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2010). As such, altering natural streamflow processes can change thermal regimes resulting in a 

shift in aquatic community composition. A major challenge for managers is the regulation of 

withdrawals to minimize impacts on stream quality while allowing water usage for important 

human needs. 

As concerns over the impacts of climate and land use change on aquatic environments 

grows, it is important to focus efforts towards conserving cold- and coolwater species most 

vulnerable to temperature increases. Previous research has led to classifying species into thermal 

guilds based on temperature requirements (i.e., July mean water temperature) for efficient 

management practices (Lyons et al., 2009; Wehrly et al., 2003) as needs may vary between 

thermal regimes. There is notable concern over the management of coolwater streams because 

the response of fish assemblages occupying coolwater streams differs from that of coldwater or 

warmwater streams. In addition, coolwater streams provide an overlap in thermal habitat for both 

cold- and warmwater species.  In conjunction with thermal guild association, it is important to 

estimate the upper thermal limit where cold- and coolwater fish assemblages begin to dissociate. 

Doing so will further support the efforts of Lyons et al. (2009) in providing managers with a 

clearer definition of how fish assemblages relate to stream thermal regimes. When regulating 

water withdrawal, successful water resources and fisheries management must consider the needs 

of coldwater game fish that provide significant economic benefits, but cannot overlook the value 

groundwater provides to other stakeholders. 

 Groundwater is an important resource for irrigation, supporting the agricultural industry 

in Michigan, and is a major source of drinking water for the state of Michigan (Groundwater 

Conservation Advisory Council, 2006). In 2010, the United States Geological Survey (Maupin et 

al., 2010) estimated 693 Mgal/d (~1,072 cfs) of groundwater were withdrawn in Michigan. 
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Groundwater pumping can reduce the contributions of baseflow which would typically enter the 

stream by lowering the water table and consequently the hydraulic head. Recent efforts in 

Michigan have been aimed to manage rivers and streams to maintain urban and agricultural 

production, while also providing sufficient baseflow to preserve ecological flow requirements 

(Zorn et al, 2008). Baseflow inputs stabilize minimum stream flows and temperatures that define 

coldwater streams and the coldwater fish communities that occupy these waters. Hamilton and 

Seelbach (2011) reported that flow depletions between 2-4% in cold-transitional streams (July 

mean water temperatures > 63.5 °F and  67 °F) and small rivers in the Kalamazoo River 

Watershed met the threshold for potential ecosystem alteration. Management of coldwater 

fisheries has gained attention following the predicted decline in coldwater fish species and the 

high sensitivity of cold-transitional streams to reductions in baseflow (Zorn et al. 2008). Under 

anticipation of increased thermal stressors due to climate change and increased reliance upon 

groundwater resources, and the potential for ecosystem degradation, identification of optimal 

habitat conditions and benchmarks along thermal gradients is critical for fisheries biologists in 

order to protect aquatic communities. 

 In order to fulfill requirements of the 2001 Annex to the Great Lakes Charter 

(Anonymous, 2001), which committed Great Lakes states and provinces to protection of water 

resources, Zorn et al. (2008) developed Michigan’s Water Withdrawal Assessment Tool 

(WWAT) to determine the potential for high-volume (>100,000 gal/d) water withdrawals to 

create adverse resource impacts to characteristic fish populations of Michigan streams. The 

development of Michigan’s WWAT required an assessment of species optimum for several 

characteristics (July mean water temperature, drainage area, and August 50% exceedance flow 

(or index flow) of in-stream habitat and an assessment of ecological responses to flow depletion. 
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This led to the creation of a dose-response model to relate the dynamics of fish populations with 

in-stream habitat conditions. The model is useful in predicting degradation patterns of individual 

species as well as community assemblages representative of the various thermal regimes of 

Michigan rivers. The model is used to set regional flow standards, but Zorn et al. (2008) 

recognize limitations in the determination of species optimum for the variables of interest. 

 Since the development of the WWAT, new threshold detection methods have emerged 

that have been applied to numerous environmental and disturbance gradients (Baker and King, 

2010; Brenden et al., 2008; Qian et al., 2003), and have been used to propose environmental 

regulations and legislation (Adams and Greeley, 2000; Richardson and Qian, 1999). Threshold 

detection methods operate on various assumptions regarding the distribution and other properties 

of empirical data, and are trained to identify disturbance thresholds. In an effort to identify 

thresholds of individual taxa along an environmental gradient, Baker and King (2010) developed 

Threshold Indicator Taxa ANalysis (TITAN), an analytical method to identify abrupt changes in 

abundance. TITAN incorporates occurrence frequency, abundance, and directionality of response 

to best capture the strength-of-association of a taxon to a particular location along an 

environmental gradient, and is particularly useful in identifying thresholds of rarer taxa. 

Classification and regression trees (CART) are another recent method for exploring ecological 

relationships by modeling relationships between response and explanatory variables (Qian and 

Anderson, 1999; Guisan and Zimmermann, 2000). CART uses splitting rules such that 

homogeneity is maximized, and enables researchers to identify the most influential predictor 

variable(s) on distribution (Prasad et al., 2006). Although these tools are intended to aide in 

estimating benchmarks to predict potentially detrimental effects associated with changes in 

environment, there also exists the possibility that detected benchmarks are statistical artifacts 
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rather than abrupt changes in species abundance. As an alternative, LOESS regressions are 

useful to represent the mean response of species abundance along an environmental gradient 

without the presumption of a threshold response. It is important to validate the presence of a 

threshold response using visual cues because threshold detection methods are designed to detect 

abrupt ecological changes along an environmental gradient, and in some cases a threshold may 

not be well defined and change is gradual (Qian et al., 2003). 

Additionally, the WWAT geographically stratifies data to reduce variation in describing 

optimal habitat conditions. Partitioning of data into subsets can reduce variation caused by 

intrinsic characteristics of distinct geographic regions. Individual taxa may show particular 

associations with distinct sub-regions that may be ignored when pooling data for analysis. 

However, data becomes sparser with an increasing degree of stratification, and may ignore rarer 

species that are often sensitive to changes and occupy a narrow range of environmental 

conditions. Further research is necessary to explore evidence supporting justification of using 

regional subsets in model development. For example, when estimating thermal niches of aquatic 

vertebrates Huff et al (2011) found that more local factors (ecoregion) are better predictors of 

aquatic assemblage than broad scale regional factors, although the appropriate scale and extent 

should be evaluated on a case-by-case basis. 

In 2006, the state of Michigan enacted a water law (2006 PA 33; Michigan Legislature 

2006) to monitor large scale water withdrawals such that no adverse resource impacts (ARIs) are 

created. ARIs are characterized as the point beyond which a stream’s ability to support 

characteristic fish species becomes impaired. Fish assemblage structure and characteristic fish 

assemblages are predicted using habitat suitability criteria such as July mean water temperature. 

Fish response curves were developed to describe how fish assemblages respond to temperature 
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changes caused by incremental streamflow reductions and identify flows resulting in ARIs, but 

there is no clear establishment of a threshold beyond which population structure begins to 

deteriorate. As such, an investigation into thermal thresholds of Michigan stream fishes using 

WWAT and recently developed methods will improve the management of Michigan rivers. 

Thermal classifications of stream reaches provide a framework for understanding stream 

temperature as a limiting factor for stream fish community assemblages (Wehrly et al., 2003), as 

well as a common language for communication among managers, researchers, and stakeholders 

(Hudson et al., 1992). The purposes of this study were to (1) compare benchmark detection 

methods between WWAT, TITAN, and CART, (2) explore evidence supporting the need for 

regional stratification of data, and (3) discuss policy implications associated with incorporating 

alternative benchmark detection methods into the WWAT. A challenge for policy makers and 

managers is the high degree of variability in fish population data and varying responses of fish to 

habitat conditions. 

Methods 

Data collection 

 Field data used to evaluate methods for threshold detection values were collected by the 

Michigan Department of Natural Resources Fisheries Division, the United States Forestry 

Service Hiawatha National Forest, and University of Michigan (Zorn et al., 2008).  This large 

dataset consisted of samples from 1,389 fish assemblage surveys and 331 salmonid surveys at 

1,119 unique stream reaches between 1980 and 2006. Most fish surveys were conducted using a 

backpack or towbarge electrofisher, but included rotenone surveys on large rivers. Catch data 

were reported as number of fish per lineal foot of stream sampled during electrofishing surveys. 

In order to make data comparable between survey types, fish catch data from non-single-pass 
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electrofishing (rotenone, multiple-pass depletion, and mark-recapture) surveys were corrected for 

sampling efficiency or effort. 

Zorn et al. (2008) did not explicitly identify a threshold beyond which species 

distribution and abundance or fish assemblages are reduced. Therefore, it was necessary to 

establish an appropriate threshold value based on the method for determining optimal habitat in 

the development of Michigan’s WWAT. Given the abundance scoring system developed by Zorn 

et al. (2008) where habitat conditions supporting characteristic species are within 1.5 standard 

deviations of species’ optimum, a value of 1.75 standard deviations from optimal habitat 

conditions was determined as the threshold (personal communication with Zorn). 

 This study focused on July mean water temperature (°F) as the primary habitat variable. 

July mean water temperature has previously been identified as a critical determinant of stream 

fish distribution and production in Michigan (Wehrly et al., 2003; Zorn et al., 2004). July mean 

water temperature was estimated for each stream reach using a predictive model that combines 

both regression modeling and geostatistical kriging of water temperature data from 830 streams 

throughout Michigan (Zorn et al., 2008). 

WWAT model development and threshold determination 

Zorn et al. (2008) used the top 20% of sites based on catch per unit effort for each species 

in order to calculate optimal and upper thermal threshold values of July mean water temperature 

for species occurring in 50 or more sites. Therefore, threshold values were calculated for those 

species occurring at 50 or more sites. The mean of July mean water temperature for sites in the 

upper 20% of catch rates was used to define the optimal thermal condition for each species.  

 Zorn et al. (2008) regionally stratified the dataset used to assign species-specific optima 

to the Southern Lower Peninsula (SLP) and Northern Lower Peninsula-Upper Peninsula 
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(NLPUP) to represent distinct ecoregions as determined by Albert et al. (1986). The resulting 

region-specific optima were viewed as more accurate descriptions of optimal conditions for each 

species by reducing the coefficient of variation of summarized habitat variables (i.e. July mean 

water temperature). As part of my analysis, species-specific optima were calculated for all sites 

(ALL) in order to determine whether regional stratification limits benchmark detection methods 

and whether benchmarks vary significantly compared with those determined by examination of 

the entire dataset. 

Threshold Indicator Taxa Analysis (TITAN) 

 Baker and King (2010) developed TITAN in order to identify and detect change points in 

both species occurrence frequency and relative abundance. TITAN uses indicator value analysis 

(Dufrêne and Legendre, 1997) to create indicator value (IndVal) scores specific to each taxon. 

IndVal scores are used to associate taxa with a positive or negative response along an 

environmental gradient. IndVal scores are computed as the product of cross-group relative 

abundance (proportion of abundance among all sample units belonging to group i) and within-

group occurrence frequency (proportion of sample units in group i with a positive abundance 

value). IndVal scores are computed using equation (1) as follows: 

                         (1) 

where Aij = Number of individualsij/Number of individualsi, and Bij = Number of sitesij/Number 

of sitesi. Taxa are partitioned into negative (decreaser) or positive (increaser) response groups 

after comparing IndVal scores above and below each candidate change point. The magnitude of 

IndVal scores on each side of a candidate change point determines whether a taxon shows 

greater association with a negative or positive response (Baker and King, 2010). 
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TITAN’s ability to estimate thresholds for rarer taxa is based on the methods of Dufrêne 

and Legendre (1997) which assigns higher IndVal scores to locations along an environmental 

gradient where species show strong presence at the majority of sites at one point along the 

gradient. TITAN is able to mitigate bias by group size by integrating occurrence frequency and 

relative abundance. For this reason, TITAN requires only a minimum of three occurrences for 

threshold detection. In this analysis, all taxa with less than five occurrences were removed from 

the dataset. 

 TITAN quantifies uncertainty in change point identification using bootstrap resampling 

in order to estimate synchrony in TITAN’s ability to replicate species-specific change points. 

Purity and reliability are two measures of quality assurance and are measured using 500 

bootstrap replicates. Using randomly distributed data, indicator purity measures the proportion of 

response directions (positive or negative) associated with a change point for each taxon in 

relation to the observed change point (i.e., high purity results in 95% of bootstrap runs resulting 

in same response direction). Indicator reliability provides an estimate of how substantial the 

probability of obtaining an equal or larger IndVal score differs when comparing the observed 

dataset to a randomly distributed dataset. For example, if 95% or more of bootstrap replicates 

result in a P-value less than a predetermined probability level of 0.05, then that indicator is 

reliable. 

 Classification and regression tree 

Classification and regression trees (CART) are often used in ecology to describe the 

relationship of an outcome using a set of explanatory variables (Qian and Anderson 1999; Prasad 

et al., 2006; Steen et al., 2008). Both the response and explanatory variables may consist of a 

continuous gradient or discrete compartments. Beginning with a single node or root, 
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classification and regression trees expand downward based on splitting rules that partition 

explanatory variables based on the likelihood of outcome. Variables and splits are chosen such 

that the impurity of the outcome is minimized, and the tree will continue to grow until a terminal 

node is reached, or recursive partitioning creates no additional nodes. In order to avoid such 

errors, trees are pruned to meet tests of independence and/or cross-validation, as well as meeting 

a minimum error rate. Splitting rules are used to minimize impurity of each node of the 

regression tree (Moisen, 2008). Change points are used to specify impurities below which a node 

will not be split to avoid situations of overfitting. In this model, the explanatory variable used 

was July mean water temperature (°F). 

LOESS regression 

Loess, or locally weighted regression, fits a regression line to data through univariate 

smoothing (Cleveland, 1979) based on weighted averages. A LOESS regression was fit to 

equation (2), 

             (2) 

where yi = species abundance, g = smooth function, xi = July mean water temperature, and ϵi = 

random errors with mean 0 and constant scale. I used a LOESS regression to obtain a smoothed 

representation of the data to visually identify apparent thresholds, if any exist. For example, 

Figure 1.1 is a graphical representation of a simulated dataset following a logistic function with a 

known threshold of 68 °F. The vertical line is located at the inflection point representing a true 

threshold response. 

Stratified dataset simulation 

 The current WWAT procedure calls for stratification of fish distribution and abundance 

data into NLPUP and SLP sub-regions to reduce the coefficient of variation used to describe 
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species-specific optimal thermal habitat. Regional stratification can also capture variation in 

regional factors that can dictate fish assemblage structure (Huff et al., 2011) which is potentially 

overlooked when pooling data over large scales. However, stratification potentially limits the 

WWAT in its ability to detect benchmarks for rarer species which do not meet the required 

number of occurrences to estimate habitat optima and subsequent benchmarks. There also 

remains a possibility where region-specific benchmarks are biased due to differing thermal 

conditions in the different regions without any difference in the species-gradient function. I used 

a logistic function to simulate fish abundance with a known threshold to test for significant 

differences in benchmark detection between the NLPUP and SLP regions when compared with 

the ALL dataset. 

 Simulated abundance across a thermal gradient was simulated using the logistic function 

in equation (3), 

     
 

               (3) 

where L = the curve’s maximum value, e = the natural logarithm base, k = the steepness of the 

curve, and x0 = the sigmoid’s midpoint. For each simulation, the values of x (i.e., stream 

temperature) were taken from the observed data in each region. A random error term was 

introduced to create random abundances associated with each of the stream reaches included in 

the dataset. Ten datasets were simulated where a known threshold was defined as x0, each with a 

different set of randomly assigned error terms, and benchmark detection methods were then 

applied to examine the variance within and between regions. 

Results 

 

Data was subset representing three geographic regions of Michigan (ALL, NLPUP, and 

SLP) with 1119 unique stream reaches total, 576 located in the NLPUP, and 543 located in the 
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SLP, and ALL is a statewide pooled dataset. July mean water temperatures ranged from 50.9 °F 

to 77.2 °F across all sites. Temperatures tended to be warmer in the SLP with a median July 

mean water temperature of 69.3 °F, whereas the median temperature was 63.5 °F in the NLPUP. 

Across all sites, the median July mean water temperature was 65.3 °F. 

When examining the pooled ALL dataset which combines all stream reaches throughout 

Michigan, benchmarks were identified using WWAT, TITAN, and CART methods for 49 

species in total. Of these 49 species, only the 12 species for which TITAN identified a decreasing 

association (z-) with the thermal gradient were examined to focus on cold or coolwater fishes as 

they are of primary regulatory interest (although Brook Stickleback was identified as a decreaser 

by TITAN, but the identified threshold (56.7 °F) was far below the WWAT optima (65.9 °F), 

and was therefore not included in further analysis). Table 1.1 presents the predicted thresholds 

for decreaser species of each of the three methods as well as the apparent visual threshold 

detected using the LOESS regression. Mean differences between detected thresholds of each 

method were calculated and are shown in Table 1.2. The mean difference between TITAN and 

CART benchmarks was 2.0 °F with more conservative estimates for CART, although CART 

predicted higher benchmarks for Rainbow Trout and Chinook Salmon. A minimum difference of 

0.0 °F was calculated for Northern Redbelly Dace and a maximum difference of 8.2 F ° for 

Brook Trout (Table 1.2). Mean differences between TITAN and WWAT were 2.0 °F with 

TITAN providing more conservative estimates. A minimum difference of 0.2 °F was calculated 

for Blacknose Dace and a maximum difference of 4.4 F ° for Brook Trout (Table 1.2). The mean 

difference between WWAT and CART was 4.0 °F as CART estimated more conservative 

benchmarks. A minimum difference of 0.3 °F was calculated for Rainbow Trout and a maximum 

difference of 12.6 °F for Brook Trout (Table 1.2). The WWAT nearly always identified a higher 
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threshold when compared with TITAN and CART (both TITAN and CART identified higher 

thresholds for Chinook Salmon at 0.70 °F and 2.80 °F above WWAT, respectively). 

 Thresholds were visually apparent via LOESS regression for eight of the 13 species with 

upper thermal thresholds (see supplemental files). Table 1.1 presents results of the identified 

thermal thresholds of each of the three methods along with the visually identified thresholds, 

where apparent. Visual thresholds were apparent for Brook Trout, Blacknose Dace, Brown 

Trout, Chinook Salmon, Coho Salmon, Longnose Dace, Mottled Sculpin, and Slimy Sculpin. 

Visual thresholds were not apparent for Burbot, Northern Brook Lamprey, and Northern 

Redbelly Dace (see supplemental files). The LOESS regression for Burbot showed a slight 

incline where CART identified a threshold, but gained little separation from the x-axis and 

showed a very gradual downward trend, with no clear downward inflection. Northern Brook 

Lamprey achieved a slight separation from the x-axis, but showed a gradual downward trend. 

Northern Redbelly Dace also showed a slight separation from the x-axis, and also displayed a 

gradual downward trend as opposed to a clear threshold response. 

Predicted thresholds of each method were plotted against each other with linear 

regressions (Figures 1.3 – 1.5). TITAN and CART (Figure 1.3) thresholds showed similarities of 

a near 1:1 relationship (slope = 1.08; R
2
 = 0.37), but CART thresholds tended to be more 

conservative as the regression was shifted below the 1:1 regression line towards TITAN. When 

compared with WWAT (Figure 1.4), TITAN thresholds tended to be more conservative at the 

lower range of temperatures, but thresholds began to converge at higher temperatures as the 

fitted regression converged with the 1:1 regression line (slope 0.50; R
2
 = 0.48). Thresholds of 

CART and WWAT (Figure 1.5) were the least comparable between each of the three methods as 
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even at the upper range of temperatures WWAT predicted thresholds were consistently higher 

(slope = 0.65; R
2
 = 0.07). Regression equations are displayed in Figures 1.3 – 1.5. 

 Species abundances for sites were plotted along the gradient of July mean temperatures. 

Figure 1.2 is an example of how Brook Trout abundance varied along the thermal gradient with 

benchmarks representing detected thresholds for each of the three methods overlain on the plots 

along with the LOESS regression. Plots for all species are available in the supplemental files. 

Table 1.3 shows information on the optimum temperature calculated by WWAT along with the 

lower and upper temperatures of the top 20% of optimal sites, and the predicted thresholds of all 

50 species that met the minimum criteria required by WWAT. WWAT thresholds were 

consistently at the upper range of the thermal gradient of observed species densities used to 

calculate optimum temperature. WWAT predicted thresholds for 28 species above their 

respective maximum temperatures used in optimum temperature calculation (i.e., WWAT 

predicted threshold for Coho Salmon was 1.6  °F above the upper temperature of 67.5 °F as seen 

in Table 1.3), whereas TITAN and CART had 5 and 1 occurrences, respectively. 

Regional comparison 

 Following regional subsetting, of the 49 species for which benchmarks were detected by 

the three methods in the ALL dataset, detection ability was limited to 45 (90%), 46 (94%), and 

32 (65%) species in the NLPUP for TITAN, CART, and WWAT, respectively. In the SLP, 

detection ability was limited to 45 (90%), 45 (92%), and 40 (82%) species for TITAN, CART, 

and WWAT, respectively. For 8 (16%), 7 (14%), and 24 (49%) species, abundance data did not 

meet the minimum number of sites required to detect benchmarks for one or both regions for 

TITAN, CART, and WWAT, respectively (Table 1.4). 
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 Species-specific benchmarks were analyzed to compare benchmark detections between 

regions. Regional differences in benchmark estimates for each method were compared using the 

13 species from the overall comparison if species were identified as decreasers by TITAN in 

each of the NLPUP and SLP regions. Table 1.5 contains region-specific benchmarks of the three 

species (Brook Trout, Brown Trout, and Mottled Sculpin) which met the criteria for inclusion in 

the regional comparison, while the remaining 10 species included in the overall analysis either 

did not show a decreasing response (z-) for both regions or benchmarks were only detected in 

one or no sub-regions. On average, temperature thresholds differed by 1.5 °F, 0.7 °F, and 1.1 °F 

for TITAN, CART, and WWAT, respectively (Table 1.5). Estimated benchmarks were higher in 

the SLP subregion for both TITAN (Figure 1.6) and WWAT (Figure 1.8), while CART (Figure 

1.7) had higher estimated benchmarks for the NLPUP subregion. 

 Estimated benchmarks using TITAN were compared between each of the three regional 

datasets and are presented in Table 1.8. Results varied between region for the number of 

benchmarks detected for each region, directionality of response, purity, and reliability (Table 

1.6). In ALL, TITAN detected significant benchmarks for 12 species, but only ten and seven 

species for NLPUP and SLP, respectively. TITAN failed to detect significant benchmarks for 

five species in either one or both subregions (Burbot, Chinook Salmon, Northern Brook 

Lamprey, Northern Red Dace, and Slimy Sculpin). Each of the 12 species in ALL showed a 

negative response with the thermal gradient. In the NLPUP, of the ten species with significant 

benchmarks, four species (Brook Trout, Brown Trout, Coho Salmon, and Mottled Sculpin) 

showed negative responses along the thermal gradient, and the remaining six (Blacknose Dace, 

Burbot, Longnose Dace, Northern Brook Lamprey, Northern Red Dace, and Rainbow Trout) had 

a positive threshold response. In the SLP, all seven species for which TITAN identified a 
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significant threshold showed a negative threshold response (Burbot, Chinook Salmon, Northern 

Brook Lamprey, Northern Red Dace, and Slimy Sculpin did not have a significant threshold 

response). 

Regional subset simulation 

 A logistic function was used to simulate abundance data with a known threshold (68 °F) 

in order to examine the differences in detected thresholds using TITAN, CART, and WWAT 

when data were regionally divided. Detected thresholds were 1.4 °F, 0.6 °F, and 1.0 °F higher in 

the SLP compared to the NLPUP for TITAN, CART, and WWAT, respectively (Table 1.7). 

Maximum thresholds detected were 70.1 °F, 68.3 °F, and 68.2 °F for TITAN, CART, and 

WWAT, respectively, and occurred within the SLP for each method (Figure 1.9). For each of the 

three datasets, TITAN identified average thresholds 1.2 °F and 1.5 °F higher than CART and 

WWAT, respectively (Table 1.7). Additionally, TITAN identified an average threshold response 

at or beyond the known threshold for each region (ALL = 69.3 °F; NLPUP = 68.0 °F; SLP = 

69.4 °F). Table 1.8 consists of results of a two-way ANOVA comparing the mean response 

between region and method. Results indicate highly significant differences exist between 

detected benchmarks of each region, method, and region:method combination. 

Discussion 

Overall comparison of detected benchmarks 

 Accurate determination of temperature benchmarks and identification of habitat available 

to fish is critical to the improvement of water and fisheries resource management. Using a robust 

fish abundance and stream temperature dataset, I was able to apply three benchmark detection 

methods that use different features of abundance and distribution data to detect and compare 

benchmarks specific to Michigan stream fish species. LOESS regressions also were useful in 
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providing visual cues to validate the presence of an estimated threshold. Applying the benchmark 

detection methods to the cumulative dataset allowed for comparisons over a broader range of 

species due to the minimum amount of occurrences required to provide unbiased benchmarks. 

Employing various methods allowed for comparing estimated benchmarks from an approach 

which assumes normally distributed (WWAT) abundances along a habitat gradient with 

approaches that do not (TITAN and CART). The WWAT always assigned upper thermal 

benchmarks as it was developed to relate the effects of baseflow reduction to increased water 

temperatures during summer conditions, and subsequently, the effects of increased water 

temperatures on fish assemblage. However, TITAN and CART identified lower thermal 

benchmarks for some species, and upper thermal benchmarks for other species. This is due in 

part to their abilities to incorporate directionality of response along the environmental gradient. 

Moreover, the LOESS smoother indicated that many species did not respond to temperature with 

a clear threshold response suggesting that each method may assign statistical change points 

which do not necessarily indicate the presence of an actual threshold.  

Estimates from Michigan’s WWAT, which is currently in use, generally were higher than 

estimates from TITAN and CART, which showed greater similarity than when compared with 

the WWAT. Benchmark estimation using the WWAT is the result of modeling fish responses to 

flow reduction. The WWAT assigns benchmarks as a function of species-specific optimal 

thermal habitat and assumptions of a normal distribution of abundance along a habitat gradient. 

For this reason, WWAT benchmarks can be assigned independent of an actual break point or 

inflection in the relationship between abundance and the thermal gradient. WWAT benchmark 

detection is useful in its ability to detect sub-optimal habitat because it predicts reduced 

abundance with changes in habitat conditions associated with water withdrawal. Thus, WWAT 
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can identify the point at which species are more likely to display abundance characteristics 

related to changes in habitat quality. However, this is not the same concept as an abrupt change, 

or threshold, in species abundance as related to the thermal gradient, which is better described by 

methods which distinguish linear patterns from nonlinear patterns (Ficetola and Denoël, 2009). 

The WWAT model is based on the assumption that water withdrawal will shift fish 

abundances to more closely represent that of another fish assemblage at a location with increased 

water temperature. The WWAT further assumes the breakpoint between statistical outliers and 

those within the general population is a fixed distance (mean + 1.75 std). Issues arise when 

anomalously high values of abundance occur at extreme temperatures relative to the species in 

question since the WWAT uses the thermal conditions of the top 20% of sites where abundance 

was the highest. These extreme values, often considered outliers, lie in the tails of the normal 

distribution, and theoretically would lie at or beyond the proposed threshold. However, statistical 

outliers typically belong to a different population because they originate from another process or 

source (Hampel et al., 1986). Incorporating extreme temperatures into the determination of the 

optimal temperature inherently biases the estimate because the statistical outliers are derived 

from a second (contaminating) distribution (Reimann et al., 2005) and are potentially influenced 

more so by other environmental variables. 

Currently, the WWAT operates under an assumption such that a threshold exists at the 

mid-point between 1.5 and 2.0 standard deviations from the optimal temperature which 

distinguishes thriving and/or characteristic populations (i.e. high abundance, multiple age 

classes, and good reproduction) from those at poorer, less suitable habitat conditions. As such, a 

threshold of the mean + 1.75 std was investigated for this analysis. However, as Characteristic 

populations are described as having an upper range of mean + 1.5 standard deviations the true 
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threshold should lie at the upper range of characteristic populations. Beyond this threshold, 

species should immediately begin to show declining trends in abundance similar to those at sites 

with sub-optimal habitat characteristics. 

 Application of benchmark detection methodology to the statewide dataset allowed me to 

identify notable variations among thermal benchmarks of various stream fish. Of the 54 total 

species for which each method was able to detect a significant benchmark, only 13 of those 

species were found to have an upper thermal benchmark among all three methods. As TITAN 

and CART are able to distinctly identify directionality of response along an environmental 

gradient, it becomes difficult to apply these tools specifically for the purpose of identifying upper 

thermal benchmarks associated with the overall goals of Michigan’s WWAT. However, large 

differences in benchmarks existed among those 13 species, most notable of which was the nearly 

2 °F and 4 °F average difference between WWAT and TITAN and WWAT and CART, 

respectively. WWAT estimates were often beyond the inflection points of the LOESS regression 

and sometimes occurred at or even beyond habitat conditions suitable for cold- or cool-water 

species. For example, WWAT identified an upper thermal benchmark of 69.3 °F for Brook Trout 

using the statewide dataset. Brook Trout acclimation temperatures, beyond which reduced 

feeding and growth of salmonids begin to occur, have typically been observed between 46 – 68 

°F (Selong et al., 2001). Results are similar for Slimy Sculpin. With previously identified 

acclimation temperatures in the range of 41 – 68 °F (Otto and Rice, 1977), WWAT’s estimate of 

68.7 °F is potentially beyond the range of preferred thermal habitat for some cold- and coolwater 

species. 

Although the goal of the WWAT is to assess the effects of increased stream temperatures 

on fish abundance for all stream fishes in Michigan, it is important to recognize that warmwater 
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species may not encounter temperatures near their upper thermal limit, and an upper threshold 

may not exist for these species in Michigan. A major advantage of TITAN and CART is the 

capability of assigning either a lower or upper thermal threshold. It is critical for fisheries 

management to identify upper thermal limits for those cold- and coolwater species which are 

particularly susceptible to increasing thermal stress. Lyons et al. (2009) developed water 

temperature criteria for coolwater streams to help differentiate them from cold- and warmwater 

streams and reassigned widespread species to thermal classes based on indicator species analysis. 

When comparing thermal guild classifications of Lyons et al. (2009) with estimated thermal 

thresholds, TITAN was able to detect upper thermal thresholds for all species showing 

significant associations with coldwater streams. TITAN also detected upper thermal thresholds 

for species associated with cold-transitional and warm-transitional streams. Additionally, there 

were no upper thermal thresholds detected for any species which Lyons et al. (2009) classified as 

a warmwater species. These findings highlight TITAN’s potential for identifying thresholds 

relevant to the goals of Michigan’s WWAT. Effective water resources and fisheries management 

not only relies on protecting against fish assemblage degradation, but also avoiding unnecessary 

restrictions on allowable water withdrawal which many stakeholders rely upon for economic 

purposes. 

In the cases of coldwater fishes such as Brook Trout and Coho Salmon, CART identified 

thermal benchmarks well below the optimal thermal habitat estimated by WWAT. Furthermore, 

LOESS regressions of these species provide visual evidence of multiple inflection points 

indicative of thermal thresholds, suggesting that more than one threshold or transition point can 

exist. Presence of multiple thresholds throughout a broad environmental gradient, such as the 

thermal gradient investigated in this study, can indicate the presence of multiple stable states in 



22 

 

which changes in environmental parameters influence the behavior of state variables (population 

abundance) (Beisner et al., 2003). Thus, population dynamics can fluctuate variably along an 

environmental gradient. For managers, it is critical to understand the consequences associated 

with crossing each threshold when multiple thresholds exist. Consideration must be given to 

biological processes such as growth, reproduction, and survival, each of which are susceptible to 

change at various points and ranges along an environmental gradient. 

Detection of region-specific benchmarks 

 Stratification is potentially useful to minimize variability often attributed to local and 

regional factors such as competition, climate, land use, and biogeographical history (Huff et al., 

2011). The field data used in my analysis was limited to only three species for which each 

method identified an upper thermal benchmark within both regions. Regional stratification 

affected each method differently in the detection of region-specific benchmarks. Subsetting the 

data decreased the number of sites available with which to calculate optimal habitat values 

according to the criteria required by the WWAT. In the case of TITAN, stratification reduced 

measures of purity and reliability which TITAN relies upon to ensure the quality of indicator 

response for each taxon. Variable directionality of response between regions was also a major 

factor contributing to the regional differences for each species.  

 When considering decreaser species, stratification of the dataset resulted in reduced 

benchmark detection for each method. In comparison to the cumulative ALL dataset, benchmark 

detection was reduced by 15.4 % and 38.5% for TITAN, 0% and 30.8% for CART, and 0% and 

61.6% for WWAT, in the NLPUP and SLP, respectively. Reduced detection of benchmarks by 

TITAN resulted from an inability to detect a significant threshold (P  0.05). Significant 

thresholds result when an IndVal score for a particular change point (location along the 
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environmental gradient, or in this case thermal gradient) is distinguishable as the maximum 

IndVal score when confidence intervals for taxon-specific change points do not overlap. 

Although significant thresholds are identified for some species, measures of purity and reliability 

can be used as diagnostic measures to measure the quality of indicator response for taxa (Baker 

and King, 2010). Table 1.6 contains measures of purity and reliability for each of the decreaser 

species among each of the three data subsets. Following regional stratification, the number of 

significant thresholds detected by TITAN decreased from nine species in ALL which met all 

three criteria of a significant P-value, purity, and reliability ( 0.05), to five in the NLPUP, and 

six in the SLP. Inability to detect thresholds by CART is the result of a failure to branch or split 

from a single node, and thus, no significant threshold is estimated. As stated previously, WWAT 

requires a minimum of 50 sites with abundance data in order to calculate optimal thermal habitat 

and, therefore, a thermal threshold. As salmonids and other species typically associated with 

coldwater streams such as slimy sculpin comprise a majority of the species included in our 

analysis, it is not surprising that the SLP region is most affected by data stratification. The SLP 

region (69.3 °F) had a median July mean water temperature 5.8 °F higher when compared to the 

NLPUP region (63.5 °F). TITAN relies upon the relative magnitude of each IndVal score on 

each side of potential change points along the environmental gradient to determine whether a 

specific taxon shows greater association with reductions or increases in the gradient variable. In 

our analysis, TITAN identified an upper thermal benchmark more often in the SLP, perhaps 

suggesting fish species in the SLP more often encounter streams near an upper thermal threshold 

and exhibit a response indicative of an actual threshold. 

 Temperature is a critical factor in determining the life history of fish, but distribution is 

often influenced by other environmental variables (Shrode et al., 1982) and thus causes 
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intraspecific variation in thermal optima among regions, thereby complicating our ability to 

detect the true thermal threshold. Species-specific thermal optima and associated benchmarks are 

related to regional stream temperature (Christie and Smol, 1993). Huff et al. (2011) found such 

phenomenon in their comparison of taxon-specific thermal niches of aquatic vertebrates between 

basin and ecoregion where some species showed differences in thermal niches among regions 

where median temperatures varied in a similar way. Evidence from the simulation analysis 

presents similar trends when applying benchmark detection methods to thermal gradients 

characteristic of each region and using a known thermal threshold. Estimated thresholds for each 

method were highest for the SLP (median July mean water temperature = 69.3 °F) and lowest for 

the NLPUP (median July mean water temperature = 63.5 °F), while thresholds for ALL were 

consistently in between (median July mean water temperature = 65.3 °F). As the data for this 

analysis were simulated, the differences are purely artifacts of each method. Greater variation in 

temperatures of streams between regions allows for increased likelihood that regional 

temperature will play an important role in determining available habitat for taxa. The similarity 

in trends of increasing threshold temperature with median July mean water temperature are 

perhaps suggestive of a situation where the greater presence of warmer streams results in a shift 

in the estimated threshold for each method. 

Policy implications 

 Our results suggest that current WWAT methods may be overestimating upper thermal 

benchmarks for coldwater species and assigning potentially spurious thresholds for warmwater 

species. A more conservative estimate of the upper limit of optimal thermal habitat would likely 

require further restriction on total allowable withdrawals, but there remains an issue of how to 

implement restrictions since the effects of flow reduction vary among each of Michigan’s four 
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thermal stream classes (Zorn et al., 2008). It is important to recognize that trout species typically 

associated with coldwater streams (Lyons et al., 2009) had upper thermal thresholds in our 

analysis near the equivalent of warm-transitional streams. This is also true of other species with 

upper thermal thresholds, however Blacknose Dace, Burbot, and Northern Brook Lamprey had 

upper thermal thresholds within warm streams, but these species either show significant 

association with warmer thermal guilds or have no strong association with one particular thermal 

guild. In the case that further restrictions are required on cold-transitional streams which are 

most sensitive to flow reductions, perhaps lighter regulations on warm streams will mitigate the 

loss in water availability to commercial and recreational water withdrawals. Although further 

research is necessary to understand the upper thermal limits of warmwater fish species, further 

refinement of thermal habitat requirements of stream fish can lead to more efficient water 

resources management. 

 Further withdrawal restrictions placed on cold-transitional streams will likely handicap 

stakeholders who rely upon these streams because of their sensitivity to reductions in index flow. 

Under current legislation, just 2-4% reductions in index flow are predicted to cause adverse 

resource impacts to the stream ecosystem. However, estimates of the upper thermal thresholds 

for Brook Trout, Brown Trout, and Slimy Sculpin using TITAN or CART are within cold-

transitional streams as opposed to estimates from WWAT which are in the range of warm-

transitional streams. Using these more conservative estimates could restrict water withdrawal 

within cold-transitional basins completely, or require case-by-case investigations for all cold 

transitional streams to assess a stream reach’s resilience to withstanding large quantity 

withdrawals and avoiding adverse resource impacts. It is worth mentioning that this could also 

affect total allowable withdrawal in circumstances where cold transitional streams are 
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downstream of cold stream withdrawals. In any case, it is crucial to the development of water 

withdrawal policy implementation to distinguish the point where coldwater and warmwater 

species overlap to properly enforce restrictions that maximize optimal thermal habitat and avoid 

unnecessarily restricting withdrawals to streams able to withstand a substantial amount of water 

withdrawal. 

Another confounding factor in setting water withdrawal regulations is the issue arising 

when species do not exhibit a true threshold response, but rather a more gradual response to 

increasing stream temperatures. The magnitude of change may not be indicative of a clear 

threshold due to insufficient data, or threshold behavior may be the response to an interaction of 

more than one causal agent (Huggett, 2005), some of which are not easily controlled by 

management measures. Other investigations caution against implementing regulation to prevent 

crossing the threshold of a single species (Huggett 2005; Lindenmayer and Luck, 2005) because 

not all species conform to the same landscape and habitat patterns. It may be more effective to 

set thresholds for specific threats such as habitat deterioration or connectivity for a guild of 

species. The WWAT currently employs a similar strategy by constructing zones corresponding 

to the magnitude of impact that flow reduction will have on fish populations (Steinman et al., 

2011) for each of the 11 stream size-thermal classification combinations throughout Michigan. 

By applying thresholds based on thermal guilds, management can avoid the use of species-based 

thresholds, and instead group species based on similarities in optimal habitat preferences to 

preserve and create specific habitat types. As many of the warmwater species in this analysis did 

not show evidence of a true threshold, but instead showed a more gradual decline in abundance 

beyond a certain point on the thermal gradient, it may be reasonable to manage warm streams 

without adhering to the same assumptions regarding thresholds in cold transitional streams. 
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Doing so could potentially create water availability for those stakeholders who may be affected 

by further restrictions protecting against adverse resource impacts in coldwater streams. 

 The implementation of a water resources management strategy based around threshold 

analysis requires an understanding of species and thermal guild responses to flow reduction to 

most efficiently and effectively regulate water withdrawal such that ecological effects are 

minimized and allowable withdrawal is properly allocated to all stakeholders. Adjustments to the 

current impact zones used by the WWAT will require careful consideration for stakeholders who 

will be affected, and mitigating factors must be given thought. If possible, actions which are 

most cost effective and which have strong feedbacks to the rest of the system should be 

prioritized as long as protection goals are being met (Suding et al., 2004). For example, as stream 

temperature can be regulated in this case by regulating flow reduction, management can control 

for species whose distributions are limited more so by flow requirements. Effective water 

resources management requires a balance of science-based decision-making and broad 

stakeholder involvement to encourage buy-in and eventual implementation of new regulations 

aimed towards proper allocation of resources in the event of increased demand (Steinman et al., 

2011). 

Conclusion 

 

 Michigan’s WWAT was created to aid in the protection of aquatic ecosystems such that 

artificial water withdrawal does not cause ecological functional impairment or harm a stream’s 

ability to support characteristic fish populations (Steinman et al., 2011). Such changes in stream 

health and fish assemblage composition can be characterized by an ecological regime shift 

caused by breaching of ecological thresholds. As such, applying threshold detection methods to 

estimate important benchmarks related to fish abundance distribution along a thermal gradient 
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can be used to set action points to avoid degradation of optimal thermal habitat. By comparing 

WWAT’s previously determined species-specific thresholds with those estimated using methods 

which do not assume a normal distribution, we estimated more conservative benchmarks for fish 

species typically associated with coldwater streams and were able to distinguish between true 

threshold responses and spurious upper thermal thresholds detected for warmwater species. 

Current water withdrawal legislation may be overestimating the upper thermal limit of coldwater 

fish and assigning false upper thermal limits to many warmwater species due to assumptions that 

fish abundance and distribution data is normally distributed and that upper thermal limits exist 

for all species. 

 Alternative threshold detection methods like TITAN and CART can distinguish between 

lower and upper thresholds and also provide diagnostic measures to estimate uncertainty and 

protect against overfitting. However, CART requires subjective interpretation of directionality of 

response and may also provide multiple splits or branches which can complicate the detection of 

a single threshold. While these methods can estimate thermal thresholds, many models will 

identify a single threshold independent of the nature of the relationship or the amount of 

thresholds which actually exist (Clements et al., 2010). LOESS regressions are a valuable tool 

for examining species-specific relationships between fish abundance and environmental 

gradients. 

 For the purposes of determining available thermal habitat in regards to the relationship 

between increasing thermal stressors and fish populations, I recommend using TITAN as it 

provides an enhanced ability to assign more accurate ecological benchmarks that are critical to 

the successful management of Michigan’s natural resources. With the use of IndVal scores which 

incorporate aspects of distribution such as occurrence and abundance, TITAN is able to detect 
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thresholds of rarer species. TITAN also provides diagnostic measures such as purity and 

reliability that measure the quality of indicator response for any taxon. TITAN provides an 

ability to further distinguish thermal guild associations of some highly-desired coldwater species 

which may occupy coolwater streams that are difficult to manage due to the degree in overlap of 

cold- and warmwater fishes. I also suggest the use of LOESS regressions to supplement 

threshold detection as a visual aid to verify the existence of a true threshold response. 
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CHAPTER 2 

 

Quantifying downstream warming rates of Michigan streams and assessing effects of baseflow 

reduction on thermal dynamics 

Introduction 

 

 Water temperature plays a critical role in biotic and abiotic processes in stream 

ecosystems. Temperature influences organismal physiology (Fry, 1971), is a limiting factor for 

species distributions throughout river reaches (Caissie, 2006), and can also affect rates of 

biological processes (Mantua et al., 2010). Stream temperature is susceptible to change due to 

alterations in streamflow through both direct, surface withdrawals and groundwater pumping, 

potentially leading to changes in ecosystem processes and community composition. Investigation 

of flow reduction on the thermal dynamics of streams is necessary in order for natural resource 

managers to successfully regulate water uses while maintaining the ecological services of 

streams. 

 Groundwater discharge sustains streamflows during low-flow periods (Kendy and 

Bredehoeft, 2006) and helps stabilize stream temperature during summer by providing consistent 

inputs of cool groundwater reserves (average groundwater temperatures vary from about 10.0
o
 C 

in southern Lower Michigan to about 5.5
o
 C in northern Lower Michigan). While groundwater 

serves as a critical component in maintaining aquatic habitat, it is also a valuable resource in 

areas with limited or fully allocated surface-water supplies. Withdrawal from wells can affect the 

rate of baseflow input to streams by creating a cone of depression which can lower the water 

table, and subsequently reduce baseflows to the stream reach, potentially leading to lower 

streamflow (Leake et al., 2008). Flow modification through water withdrawal has been shown to 

impact the spatial and temporal variability of water temperature (Sinokrot and Gulliver, 2000). 
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Sustainability of coldwater streams in Michigan is dependent upon a consistent input of 

baseflows from aquifers that provide the thermal habitat required by valuable coldwater fish 

species. 

 Effects of water withdrawal can vary on a seasonal basis. Summertime streamflows are of 

particular concern to managers as reductions in flows can cause water temperatures to more 

quickly equilibrate with ambient air temperatures, reducing habitat quality and availability for 

stream fish (Zorn et al., 2002; Wehrly et al., 2006). Further, demand for water for irrigation and 

cooling uses is highest during summer months, and is expected to increase with climate change. 

As a response to the development of Instream Flow Incremental Methodology (Bovee, 1982), 

which examines the impacts of flow reductions on fish and habitat, Nuhfer and Baker (2004) 

examined the effects of reduced summer streamflows on brook trout population levels in Hunt 

Creek, Michigan. As the study reach was relatively short (602 m), and the coldwater stream was 

near the thermal optimum for brook trout, effects of downstream warming had little impact on 

brook trout populations. However, through additional work, Nuhfer et al. (2017) reported that 

maximum daily temperatures would be predicted to increase to temperatures potentially 

uninhabitable by many trout species throughout Midwestern streams based on the results 

observed in Hunt Creek.  

 Prompted by the findings of Nuhfer and Baker (2004), Zorn et al. (2008) developed a 

single physical process model to estimate the impact of reduced summer baseflows (identified as 

50% exceedance flow of August, typically the lowest flow month of the year in Michigan) on the 

downstream warming rates of Michigan rivers. Michigan streams are classified into four types 

according to July mean water temperature (JMT) (cold (C) = JMT  17.5 °C (63.5 °F), cold-

transitional (CT) = 17.5 °C (63.5 °F) < JMT  19.5 °C (67 °F), warm-transitional (WT) = 19.5 
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°C (67 °F) < JMT  21.0 °C (70 °F), warm (W) = JMT > 21.0 °C (70 °F)). The stream classes 

provide useful predictions of fish assemblages, and differ in their predicted response to 

incremental reductions in baseflow. Michigan streams are also classified based on catchment 

area, but this variable was not a focus of this analysis. Through development of dose-response 

relationships, fish assemblage responses to decreased baseflows were predicted to aid in 

determining percentages of baseflow reduction leading to adverse resource impacts to 

characteristic fish populations. However, the rate of heating model was unable to replicate the 

magnitude of warming observed in the Hunt Creek experimental stream reach. The uncertainty 

associated with the physical process model and lack of data for other stream types led to the 

recommendation of further study of downstream temperature flux (Zorn et al., 2008).  

 There are many models capable of predicting stream temperature (Sinokrot and Stefan, 

1993; Mohseni et al., 1998; Caissie et al., 2001; Caissie et al., 2007; Cheng and Wiley, 2016); 

however, few studies exist for estimating factors that influence downstream temperature change 

rates (Rutherford et al., 2004; Magnusson et al., 2012; Davis et al., 2016). As demands for 

groundwater increase due to effects of climate and land use change, there is a need to understand 

the impacts of withdrawal on thermal dynamics of streams. Stream temperatures are driven by a 

suite of both natural and anthropogenic variables. Meteorological features such as components of 

heat flux including solar radiation, longwave radiation, evaporation, and conduction/convection, 

and air temperature have an established influence on stream temperature change (Webb et al., 

2008). Hydrological features including discharge, depth, and width, (Webb and Nobilis, 2007; 

Magnusson et al., 2012) as well as groundwater inputs (Mohseni and Stefan, 1999) and 

connections with hyporheic zones (Hannah et al., 2009) are also known drivers of stream 

temperature change. There remains a gap in the quantification and modeling of relationships 
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between meteorological variables, stream discharge, and downstream warming rates; however, 

achieving predictability in the physical processes governing reach-scale downstream temperature 

response to baseflow reduction is an important step in understanding thermal dynamics of 

streams (Bustillo et al., 2014). 

 Methods for predicting downstream temperature flux vary depending on the types of 

available data. Deterministic or physical models use meteorological forcing variables and 

hydrological processes to solve heat budget equations between the river and surrounding 

environment (Webb et al., 2008). Magnusson et al. (2012) implemented an energy balance model 

to describe downstream temperature change in proglacial stream reaches to better understand 

influential processes of longitudinal temperature increases. However, forcing data can be 

expensive to acquire and requires sophisticated technology to observe in situ, and can be difficult 

to manage and maintain. Additionally, weather stations and other sources of data can be 

unreliable and produce variability in estimates dependent upon location and time period, and are 

often unavailable near the study location (Caissie et al., 2001). Methods for deriving components 

of heat flux are often challenging, and are dependent upon input parameters such as relative 

humidity, wind speed, and cloud cover that can be highly localized. While a deterministic 

modeling approach is useful when conducting scenario analysis and understanding cause-and-

effect responses, it can be highly complex and require input parameters that may not be available 

for use by models at large geographical scales (e.g., statewide models). 

Alternatively, empirical or regression models rely on observed relations between  weather 

parameters and catchment characteristics to make predictions on associated temperature flux 

(Neumann et al., 2003; Benyahya et al., 2007). Using regression-based analysis, stream 

temperature change can be quantified and predicted at various spatial and temporal scales 
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(Mohseni et al., 1998; Caldwell et al., 2013). Empirical models can be less computationally 

intensive than process-based models, and are able to be easily implemented and validated. 

However, there remains a need to collect hydrological data to describe empirical responses to 

flow reductions and air temperatures, and the models developed to date typically are site specific 

 Although the examination of Hunt Creek by Nuhfer et al. (2017) did not reveal 

considerable effects of water withdrawal on brook trout populations, flow reduction did have 

significant downstream effects on stream temperature. Reductions in flow increased the warming 

rate to extremes which would likely have negatively impacted growth or survival of salmonids in 

downstream reaches. Although Zorn et al. (2008) were able to approximate observed 

downstream warming rates of the Hunt Creek study, further examination of processes 

influencing longitudinal temperature change is warranted given that no other warming rate data 

were available for assessing the model’s applicability to other stream types. As the Hunt Creek 

stream reach is groundwater dominated, temperature change in other stream thermal classes may 

be difficult to simulate without in situ data to accurately parameterize models. Improved 

modeling of temperature change rates is critical to improving the predictive power of the flow-

fish response model used to establish flow reduction thresholds, an essential component in 

managing water resources for both human purposes and fish habitat. 

The impetus for this research is defined by a general lack of data available for 

understanding stream flow and temperature relationships. Further understanding of whether 

warming rates vary by stream type will improve habitat and fisheries management, as managers 

and ecologists have already begun identifying significant relationships between stream types and 

fish community composition (Zorn et al., 2002, Wehrly et al., 2003, Zorn et al., 2008). 

Furthermore, whether warming rates are predictable for differing stream types using a single 
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model will help identify potential improvements to current management tools. The objectives of 

this study are to (1) collect streamflow and temperature data to quantify and model relationships 

between meteorological variables, streamflow variables, and downstream temperature flux rates 

among different stream thermal classes; (2) evaluate process-based and regression-based models 

to predict downstream warming rates; (3) use model selection criteria to identify models that best 

fit data; (4) assess differences in model accuracy and determine whether downstream flux rates 

differ significantly between stream thermal classes; (5) compare estimates from developed 

models to the physical process model used by the Water Withdrawal Assessment Tool (WWAT); 

and (6) evaluate implications for improving the downstream warming module. 

Methods 

Study sites 

 Six streams within each of the four WWAT thermal classes (C, CT, WT, and W) were 

strategically chosen to provide geographical representation of stream types across Michigan and, 

if possible, to obtain data for streams potentially affected by existing water withdrawal activities. 

As such, stream reach selection was guided by input from local fish managers and water 

withdrawal staff with the Michigan Department of Environmental Quality. Table 2.1 displays 

site information for each stream chosen for the study site including a priori thermal class (from 

the WWAT database), latitude and longitude, reach length, and elevations of upstream and 

downstream locations. The a priori thermal classifications were based on predicted July mean 

temperatures using regression modeling and geostatistical kriging methods described in Zorn et 

al. (2008). Stream reaches were located in one of three regions throughout Michigan: southern 

Lower Peninsula (SLP), northern Lower Peninsula (NLP), and Upper Peninsula (UP). Of the 24 

streams chosen, eleven were located in the SLP, six in the NLP, and seven in the UP. Figure 2.1 
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displays the locations of each of the 24 streams at which stream gauges were installed to collect 

water temperature (and pressure) and discharge measurements, as well as air temperature and 

barometric pressure. 

Data collection 

 Thermal, hydrological, and weather data were recorded over the summers of 2015 and 

2016. In 2015, data were collected from 15 streams beginning in July and extending to early 

November. In 2016, data were collected from 21 streams beginning in May and extending 

through October. Paired stream gauges were installed at upstream and downstream locations 

within each stream. Stream gauges were built using PVC piping attached to a fence post driven 

into the stream bed. Staff rulers were attached to gauges to record water level for use in 

developing stage-discharge curves. HOBO
®

 U20 Water Level Loggers measuring temperature 

and pressure at 15-minute intervals were housed in stream gauges. Numerous holes were drilled 

into the bottom of the stream gauges to allow water to flow through. Mesh lining was placed 

around the drilled holes to prevent sediment build up within the housing. Data loggers were 

calibrated against each other by placing loggers in an ice bath that slowly warmed to room 

temperature. All sensors agreed within  0.18 °C and were corrected for observed constant 

offsets. Air temperature and barometric pressure were also collected at 15-minute intervals using 

Monarch
®

 Track-It data loggers. Measurements were ultimately averaged to hourly intervals. 

 Discharge measurements were taken at each of the upstream and downstream locations 

for each of the 24 streams using a SonTek
®
 Flowtracker. Discharge was determined three to five 

times each year to collect a wide range of river stages. Stage-discharge curves were developed 

using stage readings from staff rulers and discharge measurements. Barometric pressure readings 

were used to adjust the pressure readings from water level loggers which measured total pressure 
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from air and water. The true water pressure was obtained by subtracting barometric pressure 

from the total pressure recorded by the water level loggers. The true water pressure was then 

converted to inches of water, which was then aligned with staff gauge measurements when 

discharge measurements were conducted. Gauge adjustments were then used to convert inches of 

water to reflect an estimated gauge reading for each pressure observation recorded by the water 

level loggers. Discharges were then calculated for each observation using equation (1): 

      (1) 

where Q = discharge (m
3
 s

-1
), and G = gauge reading (in), while a and b are parameters estimated 

by a power function relating discharge to stream stage.   Power functions (equations 2-4) were 

also developed to estimate widths, depths, and velocities as a function of discharge for use in 

water temperature modeling: 

      (2) 

      (3) 

      (4) 

where w = stream width (m), d = stream depth (m), V = velocity (m
3
 s

-1
), and c, e, f, h, i, and j are 

parameters estimated using a power function. 

Model hypotheses 

 A series of physical process (termed here a forcing model) and statistical models based 

on hypothesized mechanisms that affect stream temperature dynamics were used to predict 

downstream temperature change. Table 2.2 lists the models and parameters within each model 

that were included in the model selection procedure. Models were parameterized using nonlinear 

optimization (R Core Team, 2013) for each process contributing to temperature change, and 

were individually fit to each stream. The forcing model used processes influencing stream 
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warming described below. All parameters of the models were considered unknown coefficients, 

including an intercept and the various components contributing to temperature change, thus 

nonlinear optimization was used to estimate values for each, maximizing the fit between 

observed and predicted water temperature flux. 

Processes influencing stream warming 

 An energy balance equation similar to the methods of Magnusson et al. (2012) was used 

to calculate downstream temperature change using meteorological forcing variables as well as 

hydrologic data. Downstream temperature change ΔT (°C) over a stream reach of length L (m) 

and average width w (m) can be predicted using equation (5): 

      
           

         
 

    

 
        (5) 

Here, q (W m
-2

) is the heat flux across the stream surface, c (J kg
-1

 K
-1

) is the specific heat 

capacity of water, ρ (kg m
-3

) is the density of water, Δz (m) is the change in elevation between 

the up- and downstream ends of the reach, g (m s
-2

) is the gravitational acceleration constant, and 

ΔTr (°C) is residual temperature change. The first term of equation (5) can also be calculated 

using surface area A (m
2
), volume V (m

3
), and mean residence time of water τ (s) by (Q A τ)/(V c 

p). The second term represents frictional heating. 

 Equation (5) predicts downstream temperature change as a result of heat flux across the 

stream surface and frictional heating due to dissipation of gravitational energy. Surface heat 

transfer accounted for 88 – 91% of the variance in temperature increase in most stream reaches 

studied by Magnusson et al. (2012). The exchange rate of heat at the stream surface resulting in 

cooling or warming is proportional to heat flux, length of the stream reach, and average width of 

the stream reach, while also being inversely proportional to the discharge. Equation (5) also 

assumes that available potential gravitational energy dissipates into heat. The residual 
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temperature change term represents heat that cannot be accounted for due to surface heat flux or 

frictional heating. Additional heat sources of the residual temperature change include 

groundwater advection and overland flow advection. 

 Surface heat flux is accounted for through the following four components included in 

equation (6): 

                   (6) 

where SWnet is net shortwave radiation (W m
-2

), LWnet is net longwave radiation (W m
-2

), LE is 

latent heat of evaporation (W m
-2

), and H is sensible heat (W m
-2

). Each of the other components 

of q is described below. 

Latent heat flux 

 Latent heat flux was calculated using the methods of Brocard and Harleman (1976) and is 

shown in equation (7): 

                 (7) 

where V is wind velocity (m s
-1

), es is surface vapor pressure (mb), and ea is air vapor pressure 

(mb). Vapor pressure for both the water surface and air were calculated using water temperature 

and the saturation pressure function in equation (8): 

             
       

       
  (8) 

where T is the water temperature (°C) for es, and dew point temperature (°C) for ea. The vapor 

pressure of air was determined by multiplying an optimal value for relative humidity obtained 

through nonlinear optimization methods (discussed below) with the measured air temperatures. 

A value for wind speed was also obtained through nonlinear optimization. 
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Sensible heat flux 

 Sensible heat flux was also calculated using the methods of Brocard and Harleman 

(1976) and is shown in equation (9): 

                 
                       

     
  (9) 

where P is atmospheric pressure (mb), Tw is water temperature (°C), and Ta is air temperature 

(°C). 

Shortwave radiation 

 Net shortwave radiation was calculated as follows in equation (10): 

                        (10) 

where α is the surface albedo set at a fixed value of 0.03 (dimensionless) (Sinokrot and Stefan, 

1993), sf is a shading factor, and SWin is the incoming solar radiation (W m
-2

). The shading factor 

was another term for which an optimal value was obtained for each site using nonlinear 

optimization. Appendix 2.1 describes in full detail the methods used for deriving the net 

shortwave radiation. 

Longwave radiation 

 Longwave radiation was calculated using methods described in Magnusson et al (2012) 

where clear-sky emissivity εclr (dimensionless) was calculated (see equation 12) using the clear-

sky longwave radiation Lclr (W m
-2

) calculated in equation (11): 

 

                  
         

      
 
 

         
    (11) 
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where w is precipitable water (cm) given by   
           

            . Clear-sky 

emissivity was then estimated using equation (12): 

     
    

                  (12) 

where σ is the Stefan-Boltzmann constant (5.67 x 10
-8 

W m
-2

 K
-4

). Effective atmospheric 

emissivity εa (dimensionless) was then estimated using cloud cover ccloud (%) in equation (13): 

                                  (13) 

Cloud cover was estimated as a function of the air vapor pressure in equation (14): 

                                                (14) 

Net longwave radiation was calculated using equation 14 as follows (Morin and Couillard, 

1990): 

                                            (15) 

Computing heat energy of various flows 

 In order to account for the heat energy from flows contributing to total discharge, a 

method was used to weight the heat energy contributions based on flow temperature and flow 

discharge. Water temperature is a measure of heat energy concentration in a stream. Water 

temperature is proportional to the heat energy divided by water volume, or in other words, the 

heat load divided by the flow rate. Increases or decreases in heat load affect stream temperature 

by altering the amount of heat energy in the system (Poole and Berman, 2000). In this analysis it 

was necessary to create parameters for both groundwater and overland flow because they have 

different thermal patterns that affect stream temperature differently. Change in water temperature 



42 

 

as a function of upstream water temperature ΔTup (°C) and the difference in upstream and 

downstream discharge was calculated using equation (16): 

         
         

     
 (16) 

where Qup is the upstream discharge (m
3
 s

-1
), Tup is the upstream water temperature (°C), and 

Qdown is the downstream discharge (m
3
 s

-1
). Baseflow gain within each stream section (denoted 

by Qbase (m
3
 s

-1
)) was estimated for each stream by determining the gain in discharge from the 

upstream gauge to the downstream gauge for the lowest 7-day flow period for each year. 

Contributions of baseflow heat energy ΔTbase (°C) to downstream temperature flux were 

calculated using equation (17) as follows: 

           
             

     
 (17) 

where Qbase is the baseflow discharge (m
3
 s

-1
) and Tbase is the baseflow temperature (°C). 

Baseflow temperature was set as a constant particular to each of the three regions where streams 

are located throughout Michigan (UP = 5.6 °C; NLP = 8.3 °C; SLP = 11.1 °C (USEPA, 2016)). 

Finally, heat energy of overland flow ΔTover (°C) was determined using equation (18), 

           
                              

     
 (18) 

where overland flow discharge was estimated as the remaining flow after subtracting upstream 

and baseflow discharges from the downstream discharge. Temperature of the overland flow was 

determined using a moving air temperature average     
      (°C) where air temperature was 

averaged over a 12-hour period for each observation. As water temperature is proportional to the 

heat load divided by discharge, the downstream change in water temperature caused by heat 

energy inputs can be accounted for through the ΔTflow variable. Equation (19) combines equations 
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(16 – 18) and creates a variable ΔTflow (°C) which describes the cumulative heat energy due to 

each of the flow components: 

           
                                                   

     
  (19) 

Statistical models 

 Models were built in a hierarchical fashion sequentially incorporating parameters for 

processes judged to be dominant in influencing downstream temperature flux. As such, the base 

model (Model 1) was the simplest and subsequent models became progressively complex. As 

water temperature is influenced by heat energy and water volume, parameters included in the 

models were based on hydrologic and meteorological principles known to have an influence on 

water temperature heating dynamics as described above.  

Air temperature – water temperature differential (Model 1) 

A major heat exchange process occurs at the air-water interface. As the rate of heating 

depends on the magnitude of temperature difference between ambient air temperature and water 

temperature, incorporating the air-water temperature differential into the model was a first step to 

model downstream temperature change. The following model was used as a base model and 

consisted of an intercept and beta coefficient associated with the differential between the air 

temperature and upstream water temperature: 

                [1] 

Discharge ratio (Model 2) 

Discharge ratio was incorporated into the base model to reflect the amount of discharge 

gained between the upstream and downstream gauges. A baseline value of 1:1 can be used to 

evaluate the thermal dynamics of streams in situations where there is no loss or gain in 
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discharge. However, each additional source of discharge may alter the thermal inertia of the 

stream. Sources of additional discharge may include baseflow gain, overland flow, or 

precipitation directly into the stream channel. Model 2 incorporated the upstream-downstream 

discharge ratio into the base model as follows: 

                   
   

     
   [2] 

Flow temperature change and upstream discharge (Model 3) 

Variations in stream temperature have been shown to be inversely proportional to stream 

discharge (Magnusson et al., 2012). Incorporating a variable accounting for the upstream 

discharge may explain some of the variation in downstream temperature flux since reductions in 

stream discharge can lead to increased residence times of water within stream reaches, leading to 

increased exposure to elements of surface heat flux. A parameter was also added to describe the 

cumulative heat energy of the stream reach using the ΔTflow variable. Fluctuations in stream 

temperature are the result of altering the amount of heat energy added to the stream (Poole and 

Berman, 2001). Model 3 included a parameter for upstream discharge, as well as a parameter for 

the heat load of the three sources of discharge: 

                                   [3] 

Downstream – upstream discharge differential (Model 4) 

As another measure of the gain in discharge, the downstream – upstream discharge 

differential was added to account for the potential effects of different sources of discharge on 

downstream temperature change. The discharge differential between the downstream and 

upstream locations was incorporated into model 4 as follows: 

                                                 [4] 
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Day length (Model 5) 

To account for the effects of solar radiation without having direct measurements of solar 

heat flux, day length was used as a proxy. Day lengths specific to each stream reach and day of 

year were calculated using equations 20 – 22 below (Meeus, 1991), and incorporated into model 

5: 

                                                       [5] 

Day length S (hr) was derived using equation (20): 

  
 

  
   (20) 

where τ is the local hour angle of the sun and derived by equation (21), 

                            (21) 

where lat is the geographical latitude. Δ is the declination angle of the sun calculated using 

equation (22) 

            
 

   
       (22) 

where x is the number of days since the vernal equinox (March 21). 

Altitude angle (Model 6): 

Solar radiation is a driver of heat flux occurring at the stream surface. The sun altitude 

angle was used as a measure of the sun’s intensity at any given hour throughout the day. This 

allowed for differentiating between diurnal variation in downstream temperature change, as well 

as the sun’s intensity throughout the day. Altitude angle α was used as a measure of the sun’s 

intensity based on the hour of day and day of year. Using equations 23 – 26 below (Meeus, 

1991), sun altitude angle was implemented to create model 6: 

                                                       [6] 
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Altitude angle was derived using equation (23) as follows: 

                                                   (23) 

where h is the hour angle derived by equation (24) 

  
                                         

         
  (24) 

Equation (25) calculates the apparent solar time AST :  

          
   

   
                (25) 

where LST is the local standard time (hr; adjusted for daylight savings time DST, if necessary, 

such that LST = DST – 1 hr), long is the geographical longitude, LSTM is the local longitude of 

standard time meridian where          
    

   
, and ET is the equation of time in minutes 

approximated by equation (26) 

                                        (26) 

where         
    

   
 , and N is the day of year. 

Including day length and sun altitude angle (Model 7) 

An additional model was created to determine whether inclusion of both day length and 

sun altitude angle improved model fit. 

                                                             [7] 

Differential effects of flow sources (Models 8, 9, and 10) 

Additional models were developed by creating separate parameters for the heat load of 

upstream flow, baseflow, and overland flow. Groundwater and overland flow have different 

thermal patterns, so individual parameters were included for each. Although Model 3 included a 

parameter evaluating the effects of cumulative heat energy of the three components of flow, 
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Models 8, 9, and 10 include coefficients to describe the individual  contributions of upstream, 

baseflow, and overland flow from equations (14 – 16), respectively, to downstream temperature 

change to evaluate whether reductions in sums of squared errors outweighs increased 

parameterization. These models include either one or both of the day length and altitude angle 

variables to predict downstream temperature change.  

                                                           

                       [8] 

                                                                

            [9] 

                                                           

                       [10] 

Incorporating components of surface heat exchange into a statistical model (Model 11) 

A hybrid model was developed that incorporated aspects of the forcing model described 

above, into a statistical model with coefficients to describe the influence of drivers of heat flux 

on downstream temperature flux. The components of heat flux were modified to remove values 

considered as constants (ρ, c, L, W, and frictional heating) or approximations obtained through 

nonlinear optimization (s, dew point temperature, sf, α). As sensible heat flux H is dependent 

upon latent heat flux, the sensible heat flux term was not included in the hybrid model. In 

addition to the drivers of heat flux, the air – water temperature differential, baseflow heat load, 

and overland flow heat load were also included. When considering the shortwave radiation, 

altitude angle was used as a proxy for shortwave heat flux at the stream surface. 
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     [11] 

Forcing model (Model 12) 

The deterministic forcing model was developed based on the methods of Magnusson et al 

(2012) using the principles of heat flux and processes influencing downstream warming 

described above. As mentioned previously, downstream temperature flux is dependent upon 

changes in discharge. Changes in stream temperature are directly related to the mean residence 

time of water in a stream reach, meaning that increased residence times lead to increases in 

downstream temperature flux. Furthermore, additional heat input to the stream channel through 

other sources of discharge can alter the thermal dynamics of the stream. In this case, it is 

important to account for the heat energy of baseflow and overland flow. Surface heat flux 

components were derived using in situ and site information data (i.e., elevation, latitude), as well 

as parameters obtained through nonlinear optimization for required variables which were not 

collected (wind velocity, relative humidity, shading). Using equation (5) which describes the 

components of heat flux influencing longitudinal stream temperature change, and equations (16) 

and (17) to account for the temperature change due heat loads of baseflow and overland flow, the 

forcing model in equation (27) was developed: 

      
           

         
 

    

 
                (27) 

Model fitting, selection, and prediction 

  Nonlinear optimization methods were used to parameterize unknown components of each 

of the aforementioned models in order to minimize the residual sums of squares between 

modeled and observed ΔT (equation (28)): 
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                                (28) 

As all parameters in the statistical and hybrid models were considered free fitting coefficients, no 

constraints were placed on the possible values. However, when using nonlinear optimization to 

parameterize unknown variables in the forcing model, constraints were placed on the variables 

such that lower and upper bounds limited parameterization to realistic values. For example, 

values for shading factor and relative humidity are proportions between 0 – 100, thus, these were 

the constraining values used for these variables. 

 In order to assess each model’s accuracy in predicting ΔT, model selection was applied 

using Akaike’s Information Criterion (Akaike, 1973) (AIC), and models were prioritized using 

the weighting method of Buckland et al. (1997). AIC is one of many model selection methods 

that prioritize models based on fitting ability and level of parsimony (e.g., Thayer et al., 2007). 

Equations (29) and (30) display the AIC and likelihood L (Seber and Wild, 1989), respectively, 

for finite sample size: 

                                (29) 

                     
 

 
            (30) 

where k is the number of unknown parameters, and n is the sample size (number of hourly 

observations; varied for each stream). Using the above criteria, the models with the lowest AIC 

score fit the observed data best. 

 Models were then weighted following equation (31) below: 

   
      

  

 
 

       
  

 
  

 

 (31) 
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where M is the total number of models and Δi is the difference in AICc of an individual model 

compared to the best model. Model weights determined one model’s fitting ability relative to 

another. 

Partial influence 

 Partial regression analysis was used to assess the influence of each of the variables 

included in the best statistical model on downstream temperature flux. Partial R
2
 values are 

useful for understanding the residual variation accounted for by a predictor variable that cannot 

be explained by a constrained model. In order to determine the partial R
2
 of a particular predictor 

variable, the proportion of residual variance can be accounted for by 
       

   
, where SSR is the 

sums of squared errors of the reduced model, and SSE is the sums of squared errors of the full 

model. 

Model performance 

Root mean square error (RMSE) which is given by:       
        

  
   

 
 with Pi and 

Oi being the predicted and observed values, respectively, was used to compare relative 

performance among the three best models. The RMSE was calculated on a monthly, annual, and 

overall basis. 

Pooling data 

All of the above models were developed on a site-by-site basis, and as such, provide 

estimates specific to the sites studied.  In order to determine if flux rates could be successfully 

modeled at a more aggregated level, I used a mixed general linear model (e.g., Littell et al. 

2006), to determine whether streams among the a priori thermal classes exhibited significantly 

different flux rates and should be modeled separately. The structure of the mixed model was 
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based on model 10 above with the exception that data from each stream was treated as a random 

effect, and thermal class was treated as a fixed effect.  The results of the mixed model were 

evaluated by comparing observed and predicted values for each stream reach. LOESS 

regressions (Cleveland, 1979) were then used to provide a smoothed graphical depiction of 

observed downstream temperature flux with predictions made using the best model 

parameterized specific to each pooled dataset. Summary statistics were also calculated for each 

stream and averaged over thermal classes.  

Model comparison with WWAT 

 A critical component of this analysis was to compare the downstream warming rates 

predicted by the statistical models developed in this study, and those predicted  by the 

downstream warming rate model developed by Zorn et al. (2008) that informed the fish 

assemblage response curves which provided the four management zones (A, B, C and D) used in 

the WWAT. The Zorn et al. (2008) downstream warming rate model uses components of a 

physical process model. Without the use of site-specific inputs such as shading factors, 

groundwater inputs, and land use/land cover, the formula is based on aspects of the energy 

balance equation and Newton’s Law of Cooling/Heating such that Tw can be derived using 

equation (32) as follows: 

                   (32) 

where TE is the equilibrium temperature (°C), Ti is the initial water temperature (°C), and t is the 

travel time of water (hours) in each stream segment. The heat exchange coefficient (1/h) k is 

determined using equation (33): 

  
      

 
 (33) 
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where d is the depth (m). For the purposes of scenario analysis of incremental baseflow 

reductions, hydraulic geometry relationships were used to estimate depths and velocities at 

selected levels of baseflow reduction to determine downstream warming rates. Equation (34) was 

used to calculate depth using Qbase as the input variable:  

                                            (34) 

Equation (35) was then used as a function to adjust velocity at the same rate as depth. The 

predicted velocity is scaled to the initial velocity Vi using the initial depth di as follows: 

                                 (35) 

Downstream warming rates between the two models were predicted for the month of 

August since the WWAT uses the August 50% exceedance flow (referred to as the Index Flow) 

as one of the key habitat variables important to fish metabolism, survival, reproductive success, 

distribution, and abundance. Average values for the month of August were used. Downstream 

warming rates were compared between the overall best model based upon model weight, and the 

Zorn et al. (2008) downstream warming module. Scenario analyses were conducted to project the 

impact of reduced baseflow on downstream temperature change. Impacts of baseflow reduction 

on downstream warming rates used the best model, as determined by model weight, by 

dynamically reducing the amount of baseflow input such that reductions in baseflow ultimately 

reduced the downstream discharge. Downstream warming rates were scaled to reflect 

downstream temperature flux per kilometer of stream reach ΔT/L (°C/km). 

Results 

Site information 

 Hydrological data were successfully collected from 21 of the 24 streams from Table 2.1. 

For each of the East Branch Waiska River, Hemingway Lake Outlet, and Unnamed Gun River 
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Tributary reaches, stream gauges were unable to be recovered or became dislodged during 

deployments. In 2015, the East Branch Waiska River was heavily inundated and discharge 

measurements were unable to be taken as water levels overtopped the stream gauge, which was 

ultimately lost. The Hemingway Lake Outlet stream reach was dammed by beavers leading to 

inaccurate flow measurements for the 2016 field season. Additionally, during the 2016 field 

season, the Unnamed Gun River Tributary experienced a flooding event that dislodged the 

stream gauges at both upstream and downstream locations, and the gauges were eventually 

reinstalled. After reinstallation, the downstream gauge was eventually lost, possibly due to 

another flooding event, or human removal. Over the 2015 and 2016 field seasons, two years of 

data were successfully collected for 10 streams, while the remaining 11 streams had one year of 

data. 

 When selecting stream reaches for this study, streams were chosen based upon the a 

priori thermal classification predicted using the regression model developed by Zorn et al. 

(2008). Streams were selected to provide an even distribution from each of the four thermal 

classifications (C, CT, WT, and W). Table 2.3 displays the a priori and a posteriori thermal 

classes of each of the 21 streams in this study. July mean water temperatures (°C) were averaged 

across years if data was collected across two years. The a priori thermal classifications were 

correct for 11 of the 21 streams. Based upon the a posteriori thermal classifications, the final 

number of stream thermal classifications was 3, 10, 5, and 3 for cold, cold-transitional, warm-

transitional, and warm streams, respectively. 

Observed flux rates 

 Analyzing downstream temperature flux in comparison with stream discharges provides 

information about flow conditions under which streams display greater temperature fluctuation 
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rates. Figure 2.2 shows downstream temperature flux rates compared to the upstream discharge 

(m
3
 s

-1
) for representative stream reaches amongst each of the four thermal classes. Observed 

temperature fluctuations displayed a strong response to discharge. Downstream temperature flux 

rates appeared to be inversely related to discharge (Figure 2.2-2.3). Variation in flux rates among 

each stream were typically reduced as discharges increased (see supplemental files). These 

trends were similar when comparing flux rates with discharges among thermal classes as a whole 

(Figure 2.3).  

Model selection 

 Models were fit to predict downstream temperature change at hourly intervals for the 21 

streams with at least one year of data. Predicting downstream temperature change using the 

forcing model (model 12) provided a poor fit to the data (Table 2.4), and so was not considered 

in the model selection process. Results using the forcing model led to extremely high sums of 

squared errors and low correlation for nearly all stream reaches. However, the SSE using Model 

12 was the lowest among the models for the East Branch Black River, although the correlation 

was not particularly notable. Parameterization of each of the shading, wind speed, and relative 

humidity variables resulted in values that were outside of the range of realistic values. For 

example, the shading coefficient of each stream was optimized to approximately 90%. While 

some smaller streams may show 90% shading, higher order streams were unlikely to reflect this 

amount of stream cover.  

 Hourly observations of downstream temperature flux rates are displayed in Figure 2.4 for 

example streams (one stream from each thermal class). The vertical and horizontal scatter of 

hourly observations is indicative of diurnal and seasonal patterns in temperature change. A 

LOESS regression was used to provide a smoothed representation of the hourly data, and display 
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general seasonal patterns. Downstream warming rates typically peaked in summer, while values 

were often lowest during spring and late fall. The hourly observations indicate that streams 

experience warming and cooling events diurnally, and the extent of each varies by stream. The 

LOESS regressions were also useful for visually comparing model fit with observed data 

(Figures 2.5 – 2.8).  

 The models ultimately selected for ranking were statistical models developed using 

hydrological and meteorological processes contributing to heat flux. Of all the models tested, 

only four models (Models 8, 9, 10, and 11) received consideration for best fit by model weight 

(Table 2.5). However, two models (Models 10 and 11) provided the best overall fit by model 

weight to any of the streams. The top ranked models contained separate parameters controlling 

for each of the individual components of stream heat load (upstream flow, baseflow, and 

overland flow). Additionally, these models controlled for at least one of the components of heat 

flux at the stream surface (e.g. day length and/or sun altitude angle). 

 The best model (Model 10, Table 2.5) included both day length and sun altitude angle to 

account for the effects of solar heat flux at the stream surface. This model tracked overall trends 

well (r = 0.62), but would occasionally underestimate peak periods of downstream warming and 

cooling (Figure 2.5). For some streams, this model predicted peak downstream temperature 

change events earlier or later than observed (see supplemental files). This model provided the 

best fit for 76% (16/21) of streams (Table 2.6). Model 10 tracked trends the best for streams with 

both one (r = 0.66) and two (r = 0.58) years of data (Table 2.7). Average model weight for Model 

10 was 0.74 (Table 2.5), far greater than the second best model (Model 11) with an average 

weight of 0.24. 
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 The second best model (Model 11, Table 2.5) was a statistical model developed to 

incorporate the effects of heat flux at the stream surface. Instead of including a parameter to 

control for the effects of the upstream heat load, this model included parameters to emulate 

evaporative, solar, and longwave heat flux along the downstream gradient. Additionally, this 

model included parameters for the overland flow and base flow components of heat load. Model 

11 did not match trends as well (r = 0.50) as the best model (Figure 2.6). Model 11 also failed to 

match peak downstream heat flux timing and values for many streams (see supplemental files). 

This model did not perform better for any particular stream thermal class, but instead was 

identified as the best model for at least one stream in each of CT, WT, and W thermal classes. 

Model 9 provided the best fit by model weight for 5 of the 21 streams with an average model 

weight of 0.24 (Table 2.5). 

The third best model (Model 9, Table 2.5) included sun altitude angle as a substitute for 

solar heat flux. This model captured trends nearly as well as the best model (r = 0.56), but more 

often failed to accurately predict peak downstream temperature fluxes (Figure 2.7). This model 

also failed to capture the full range of downstream temperature fluxes of some streams (see 

supplemental files). Model 9 did not provide the best overall fit for any of streams, but received 

consideration for the best fit by model weight in four streams. Model 9 had the third highest 

average weight at 0.024. 

The fourth best model (Model 8, Table 2.5) included day length as a substitute for solar 

heat flux. This model captured trends nearly as well as the best model (r = 0.59), but failed to 

fully capture the range of peak downstream temperature fluxes (Figure 2.8; see supplemental 

files). Model 8 did not provide the best overall fit for any of the streams, and had a very low 
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model weight of 0.001. Model 8 received support by model weight in just one stream (Table 

2.6). 

Seasonal patterns 

Model fit varied seasonally and yearly in each of the best models (Figures 2.5 – 2.8). 

Predictions of downstream temperature change were less accurate at the beginning and ends of 

each year. Using correlation as a measure of how well models tracked trends, models tended to 

track better in streams for which there was only one year of data collected compared to streams 

with two years of data (Table 2.7). Each of the three models presented issues in the timing of 

peak downstream temperature flux for both downstream warming and cooling. 

 The seasonality of errors between observed downstream temperature fluxes and those 

predicted using the best models identified by model selection criteria are depicted in Figure 2.9. 

The differences that occur between the four different models are small (see supplemental files). 

Summertime downstream temperature fluxes tend to be underestimated by each of the four best 

models. Estimations of fall downstream temperature flux are more variable; models tended to 

underestimate the downstream cooling effects experienced by streams beginning in early fall. 

When using the RMSE of the four best models to evaluate performance across all 

streams, all models had similar overall RMSE (Table 2.8). Models 8, 9, and 10 performed best 

with an RMSE of 0.12 °C, while Model 11 performed similarly with an RMSE of 0.13 °C. Each 

of the four models performed best in October (M8 = 0.10 °C; M9 = 0.11 °C; M10 = 0.10 °C; and 

M11 = 0.11 °C) and worst in July (M8 = 0.13 °C; M9 = 0.13 °C; M10 = 0.13 °C; and M11 = 

0.14 °C) (Table 2.9). Table 2.10 displays the performance based on RMSE of each of the models 

among the four thermal classifications. Models performed best in cold streams (M8 = 0.06 °C; 
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M9 = 0.06 °C; M10 = 0.06 °C; and M11 = 0. 065 °C) and worst in warm-transitional streams 

(M8 = 0.16 °C; M9 = 0.16 °C; M10 = 0.16 °C; and M11 = 0.17 °C). 

Peak events 

The maximum and minimum downstream temperature fluxes of both the observed and 

predicted values of each of the four best models are displayed in Table 2.11. The highest 

downstream temperature warming rate of 1.74 °C/km was observed in Squaw Creek, while the 

highest rate of downstream cooling of -1.43 °C/km occurred in Morgan Creek. The average 

maximum and minimum downstream temperature flux rates across all streams were 0.17 °C/km 

and -0.14 °C/km, respectively. Model 11 had both the highest average maximum value at 0.14 

°C/km, and lowest average minimum value at -0.09 °C/km. Models were occasionally unable to 

capture the directionality of downstream temperature flux. For example, Nottawa Creek 

experienced a maximum downstream temperature flux of 0.03 °C/km, however, none of the 

models predicted a downstream temperature flux greater than -0.01 °C/km (Model 10; Table 

2.11). A similar situation occurred for the East Branch Black River which had a minimum 

downstream temperature flux of -0.10 °C/km, but only one model (Model 9; Table 2.11) 

predicted a negative downstream temperature flux at any point.  

In order to examine each model’s ability to capture peaks and troughs of downstream 

temperature flux, the residuals between observed and model predictions of the 1
st
 and 99

th
 

percentiles were compared (Table 2.12). Models performed similarly in their abilities to estimate 

peaks and troughs of downstream temperature flux. Models tended to underestimate peak 

downstream warming and cooling events, such that models were unable to fully capture the 

range of downstream temperature changes experienced by the streams. Model 10 most closely 

captured downstream temperature fluxes in both the 1
st
 and 99

th
 percentiles. 
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Quantifying influence on downstream temperature flux 

 The influence of each variable included in Model 10 on the rate of downstream 

temperature flux was examined through partial regression analysis. On an overall basis, day 

length had the most influence on the flux rate with a partial R
2
 of 0.09, while the discharge 

differential between upstream and downstream gauges had the least at 0.02 (Table 2.13). When 

averaging partial R
2
 values over thermal classes, the variables with the greatest influence over 

flux rates was dependent upon stream thermal class (Table 2.14). Day length remained the most 

influential variable for both cold and cold-transitional streams, while baseflow heat load and 

altitude angle provide the greatest influence for warm-transitional and warm streams, 

respectively. 

Comparison of pooled datasets 

 The GLM used to compare the differences in temperature flux rates revealed that 

incorporating the effects of individual stream reaches (i.e., thermal dynamics unique to each 

stream reach) as random effects improved model performance as indicated by the model R
2
. 

When accounting for the variance between individual stream reaches, R
2
 increases from 0.30 to 

0.57 (Table 2.15). Incorporating the random effects shows evidence for stream to stream 

variation in thermal flux rates. Although significant differences exist in the downstream thermal 

flux rates of thermal classes (Table 2.15; 2.17), flux rates are also significantly different between 

individual stream reaches (Table 2.16 – 2.17). Random effects of individual streams should be 

taken into consideration when modeling downstream flux rates. The results from the GLM show 

that individual streams should be assessed relative to other streams within the same thermal 

class. 
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Pooling data allowed for comparing model accuracy across streams of similar thermal 

classes and across the entire set of streams sampled.  Using LOESS regressions to visually 

compare fit among the example streams in Figure 2.10, the pooled data set which provides the 

best fit based on model optimization varies between thermal classes. Results are similar among 

the rest of the streams within the study streams (see supplemental files). Summary statistics 

including r, SSE, and RMSE tended to improve for individual stream reaches (Table 2.18) and 

overall thermal classes (Table 2.19) when optimizing Model 10 for each thermal class as 

compared to the pooled data set. Using the pooled data set, cold streams had the best RMSE at 

0.16 °C, while warm streams had the worst RMSE at 0.35 °C. Trends were tracked best based 

upon r in warm streams (r = 0.52), while trends in warm-transitional streams tracked worst (r = 

0.12) When parameterizing Model 10 specific to each thermal class, RMSE improved across all 

thermal classes. Based on RMSE, the model performed best in cold streams (RMSE = 0.12 °C), 

while performing worst in warm-transitional streams (RMSE = 0.34 °C). Based on r, the model 

performed similarly in warm (r = 0.45) and cold (r = 0.45), and most poorly in cold-transitional 

streams (r = 0.19). 

Baseflow reduction scenarios 

 Downstream temperature flux rates show a dynamic response to baseflow reduction 

where effects vary by season and reduction scenario (Table 2.20; Figure 2.11; see supplemental 

files). In the model, as baseflow is reduced, so are each of the downstream discharge and 

downstream – upstream discharge differential variables. The dynamic effects lead to interesting 

results where some streams actually show downstream cooling in the 90% reduction scenario, 

and downstream warming in the 0% reduction scenario (e.g.., Fish Creek; Figure 2.11). More 

interestingly, Fish Creek also appears to show a greater degree of downstream cooling later in 
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the year under the 90% reduction scenario when compared with the 0% reduction scenario (i.e., 

October; Figure 2.11; Table 2.20). This is potentially due to the lesser volume of water in the 

stream channel, which becomes more susceptible to a greater cooling due to air temperature. 

Cedar Creek is estimated to experience a similar phenomenon under the 90% reduction scenario, 

where the flux rate is projected to cool at 0.46 °C/km. The reduced volume of water combined 

with the shaded study reach of Cedar Creek may provide a unique scenario allowing for 

increased cooling, although this may require additional inputs of cool groundwater somewhere 

further along the reach.  

 Occasionally, streams displayed an increase in downstream warming rates following 

baseflow reduction. Cedar River, for example, was predicted to show an increase in monthly 

downstream warming for each of the reduction scenarios listed in Table 2.20. This trend also 

held true for several other streams within the study. Butterfield Creek was one stream 

particularly susceptible to reductions in baseflow. Under baseflow conditions, Butterfield Creek 

was predicted and observed to experience downstream cooling; however, under the most extreme 

reduction scenario, the flux rate shifted to downstream warming. Given these results, it is clear 

that individual streams show complex responses to baseflow reductions throughout the year. 

 Thermal class responses to baseflow reduction varied by month and among each class. 

The warm thermal class was predicted to experience downstream cooling under a 0% reduction 

scenario for each month, while the other three classes were predicted to warm with downstream 

flow (Table 2.21). These results suggest that thermal sensitivity varies by thermal class. Cold 

streams showed the least thermal sensitivity between the 0% and 90% reduction scenarios, with 

the greatest difference in downstream flux rates of 0.12 °C occurring in October. The greatest 

rates of downstream warming under each flow reduction scenario examined were projected for 
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October within warm-transitional streams. Interestingly, warming rates were projected to 

decrease as baseflow reduction increased. When focusing on summer months, the greatest impact 

of baseflow reduction on downstream flux rates occurred within the warm thermal class. The 

downstream flux rates in warm streams were projected to increase by 0.59 °C and 0.30 °C in July 

and August, respectively. 

Comparison with the Zorn et al. (2008) downstream warming rate model. 

 As part of this analysis, longitudinal downstream temperature flux rates (°C/km) for 

August were estimated using Model 10 and were compared to rates estimated by the Zorn et al. 

(2008) downstream warming rate model. August is often the lowest flow month of the year, and 

water temperature can peak during this time having a dominant effect on fish physiology, 

growth, and survival. Mean values used to parameterize Model 10 (Table 2.22) and the Zorn et 

al. (2008) model (Table 2.23) were calculated for August. The greatest downstream temperature 

flux rate was observed in Squaw Creek at 0.77 °C/km (Table 2.24), while Hasler Creek 

experienced the greatest cooling rate at -0.26 °C/km. On average, cold streams experienced the 

greatest gain in downstream temperature change of 0.14 °C, while warm streams experienced an 

average downstream temperature change of -0.11 °C (Table 2.25). During August baseflow 

conditions, Model 10 most accurately reflected the average downstream temperature flux of each 

thermal class (Table 2.24). The Zorn et al. (2008) model severely overestimated downstream 

temperature flux for both downstream warming and cooling events during baseline scenarios 

with no baseflow reduction for individual stream reaches and for stream thermal classes as a 

whole. 

 Potential effects of incremental baseflow reduction on August downstream temperature 

flux rates were compared using both Model 10 and the Zorn et al. (2008) model. Incremental 
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reductions in baseflow using Model 10 resulted in concurrent reductions in downstream 

discharge. Using Model 10, the impact of simulated baseflow reduction was variable between 

individual stream reaches (Table 2.26). The flux rates of many streams were predicted to remain 

relatively unchanged following reductions in baseflow on average throughout the study period 

(Figure 2.12). For example, 15 streams were estimated to experience  0.10 °C/km. Although the 

flux rates were predicted to change following baseflow reduction for most streams, the response 

for nearly all streams was predicted to be less than 0.50 °C/km in the most extreme reduction 

scenario (Table 2.26). Cedar Creek was predicted to cool by an additional 0.57 °C/km at 90% 

baseflow reduction. The flux rates of eight streams were predicted to decrease following 

baseflow reduction, while nine streams were predicted to experience an increase in downstream 

flux rates. The greatest increase in downstream temperature flux rate was predicted in Squaw 

Creek which was predicted to gain 0.80 °C/km following a 10% reduction, ultimately resulting 

in a gain of 1.20 °C/km in the most extreme scenario of 90% baseflow reduction. The predicted 

flux rates in response to baseflow reduction for Butterfield Creek are notable, as it is predicted to 

experience downstream cooling, but following baseflow reduction it is predicted to experience 

downstream warming beginning at an 80% baseflow reduction scenario; however, this is the only 

stream predicted to experience this phenomenon. 

 When using the Zorn et al. (2008) model to estimate downstream temperature flux under 

baseflow conditions, the magnitude of change was much greater than observed fluxes (Table 

2.24). In addition, the Zorn et al. (2008) model predicted much greater rates of downstream 

temperature flux than those predicted using Model 10 under baseflow reduction scenarios. The 

rates of longitudinal temperature flux were heavily influenced by the air-water temperature 

differential such that the rate of heating or cooling was directly related to the difference between 
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air temperature and water temperature. For example, each stream for which the air temperature 

was warmer than water temperature was predicted to experience downstream warming, and the 

opposite was true for those streams where the water temperature was greater than air temperature 

(Table 2.23 – 2.24). There were also some streams for which the downstream temperature flux 

rate was beyond the range of the air-water temperature differential. For example, the East Branch 

Black River was predicted to gain 11.67 °C/km although the air-water temperature differential 

was 5.07 °C. This trend held true for 13 of 21 (62%) stream reaches in the study. Estimations of 

downstream temperature flux rates for the North Branch Thunder Bay River and King Creek 

were likely affected by the large differential between air and water temperatures of -9.31 °C and 

-8.15 °C, respectively. The large differential, as well as low depths and slow velocities likely 

contributed to the extreme flux rates for these two streams. 

 Predicting the response of downstream temperature flux rates to baseflow reductions 

using the Zorn et al. (2008) model was a dynamic process whereby stream depth, velocity, and 

discharge were reduced with each incremental reduction in baseflow. The downstream 

temperature flux rate of streams displayed an exponential response to baseflow reduction (Figure 

2.13). The rates for King Creek and Squaw Creek were omitted to maintain an appropriate scale 

on the y-axis. The flux rate of the North Branch Thunder Bay River experienced the greatest 

response of -0.73 °C/km to an initial 10% reduction in baseflow, while the flux rate of the Carp 

River was initially resistant to the 10% baseflow reduction. The stream most affected by the 90% 

reduction scenario was Hasler Creek, which had a predicted flux rate of -28.67 °C/km, while the 

Carp River was the least affected with a flux rate of 0.18 °C/km. 
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Discussion 

 

 As water use throughout the United States steadily increases (Kenny et al., 2009), the 

resulting alteration of hydrologic conditions pose threats to aquatic ecosystems (Arthington et al., 

2006). Demands for groundwater for agricultural, commercial, and public usage are expected to 

rise due to land use change and increasing thermal stressors through climate change. In response 

to increasing demands, it is important to understand stream thermal behavior in order to project 

the response of streams to hydrologic alteration. Michigan has devoted significant conservation 

efforts in an attempt to balance the needs between ecosystem function and economic benefit by 

developing the WWAT to estimate the potential effects of baseflow depletion on stream ecology. 

The primary objective of this analysis was to fill in a major data gap in the understanding 

of effects of flow reduction on downstream temperature flux rates. Data collection on small 

streams allowed for the design and comparison of models used to estimate downstream 

temperature flux rates and subsequently project stream thermal response to reductions in 

baseflow. While it was clear that thermal flux rates showed an inverse relationship with 

discharge (Figure 2.2; 2.3), it was important to determine whether flux rates differed between 

Michigan stream thermal classifications. Although results indicate that the thermal dynamics of 

different stream classes differed significantly, the greatest variability lies within the specific 

characteristics of individual stream reaches (Table 2.17). As such, the similarity in thermal 

dynamics within a stream class provides some level of predictive capability, however accounting 

for the random effects of individual reaches implies that site-specific measurements may be 

needed for accurate and precise predictions. 
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Model comparison 

 The objectives of this analysis were to design and compare models that incorporate 

hydrological and meteorological processes to estimate downstream temperature flux rates, and to 

project the influence of baseflow reduction on flux rates. I also sought to compare these results 

with the Zorn et al. (2008) model that informed the fish assemblage response curves that 

underpin Michigan’s WWAT. Using a network of stream gauges throughout Michigan, a suite of 

statistical models were developed and compared using AIC model selection to identify the best 

model based on parsimony and goodness of fit. AIC was useful in identifying processes most 

influential in fitting observed data, while also considering the least amount of parameterization. 

Interestingly, the model identified as providing the best overall fit also contained the greatest 

number of parameters (Table 2.5); however, the reduction in sums of squared errors outweighed 

the penalties incurred through overparameterization. 

 The multi-model selection approach was useful in this analysis given the hierarchical 

approach in model development where models became increasingly more complex, and often 

contained many of the same or similar parameters. Given the simultaneous incorporation of 

goodness of fit and parsimony in model selection, AIC was able to distinguish the best model 

from other similar models that may have gone unnoticed simply relying on other performance-

based metrics such as RMSE, and visual comparisons using LOESS regressions. This method 

also proved to be useful in highlighting the importance of processes which may have been 

underestimated (Thayer et al., 2007). For example, although day length and sun altitude angle are 

similar variables, the inclusion of both in the best model was ultimately important in providing 

the best fit to the observed data at the fine level of temporal granularity (i.e., 1 hr intervals) used 

in modeling. 
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Model performance 

 After identifying the four models that best predicted downstream temperature change, 

model accuracy and precision were examined through a series of model performance criteria. 

The models performed similarly in their accuracy of overall and peak estimations (Tables 2.8 – 

2.12). The measure which likely separated the best model (Model 10) from the others in the suite 

was the ability to better match daily and seasonal trends due to the inclusion of variables 

representing day length and sun altitude angle. Comparing sums of squared errors of each of the 

models, the reduction using Model 10 indicates a greater fit to hourly observations. Based on 

LOESS regressions, Model 10 appears to provide a greater fit than other models throughout the 

study periods indicating a greater ability to match seasonal trends (Figures 2.5 – 2.8). Including 

both variables into the model helped account for the variability associated with fluctuations of 

solar radiation at the sub-daily time scale. 

 An important consideration beyond the scope of this investigation is the temporal 

granularity of data collection and modeling, and the implications of the resolution of data 

collection.  In this work, I collected environmental measurements at a 15-minute interval, but 

averaged data on an hourly interval to smooth out measurement variability.  Thus, the results 

provided represent temperature flux at a fine temporal scale.  Other investigators have commonly 

used daily means to represent stream temperature, particularly when relating temperature to 

biological responses.  While neither temporal scale is inherently “correct”, interpretation of 

modelling results are somewhat dependent on the scale.  For example, sun angle was found to be 

an important contributor to temperature flux at the hourly scale, but would not be a factor that 

could be included at a daily time resolution.  As such, I recommend caution in interpreting and 
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comparing data and modeling results that have different temporal granularity or that cover 

different time periods (e.g., summer only, versus spring through fall data collection).  

 One main issue associated with Model 10 and its ability to estimate downstream 

temperature change rates was the failure to fully capture downstream warming and cooling 

peaks. Using residuals of the 1
st
 and 99

th
 percentiles, Model 10 underestimated peak downstream 

warming and cooling by 0.11 °C/km and 0.09 °C/km, respectively (Table 2.12). The failure to 

capture peaks of downstream temperature flux is noteworthy when attempting to estimate the 

effects of baseflow reduction on downstream temperature flux rates. Underestimations of the 

effects of baseflow reduction on flux rates can be a complicating factor when establishing 

withdrawal limits. Failure to accurately estimate the impacts of water withdrawal on downstream 

warming rates may lead to underestimating the consequences on fish habitat loss. The range of 

predictability would likely be improved by direct readings of solar heat flux. Solar heating is a 

primary influencer of stream warming, while wind speed and evaporative heat flux could 

influence downstream cooling (Keith et al., 1998). There also remains the possibility that greater 

influxes of baseflow than were predicted could cool streams more so than was predicted using 

the best model. Furthermore, the spatial distribution of the baseflow would likely influence 

downstream temperature flux. If baseflow entered the stream primarily at the beginning of the 

study reach, the segment would be more susceptible to warming than if baseflow inputs occurred 

throughout the reach. Hyporheic exchange has also been hypothesized as a source of stream 

cooling (Moore et al., 2003) and an influence on creek temperature overall (Poole and Berman, 

2001). 

 Currently, common models used for representing stream temperature dynamics are based 

on concepts related to physical processes that incorporate energy and water balance equations to 
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estimate heat flux at the stream bed and stream surface (Sinokrot and Stefan, 1993; Caissie et al., 

2005; Caissie et al., 2007). One of the main drawbacks to physical process models is that they 

rely upon sophisticated technology and intensive data processing to estimate surface/streambed 

heat exchange. Issues arise when estimating sub-daily downstream temperature flux across 

multiple seasons using optimized parameters that result from lack of data on wind speed, shading 

factors, and other components used to derive heat flux. Without these data, relying upon 

empirical formulas and nonlinear optimization methods to derive the components of heat flux led 

to inaccurate estimates of stream temperature dynamics. For example, constant values of shading 

– estimated through calibration – fail to accurately reflect seasonal trends in vegetative cover. 

Furthermore, using constant values for relative humidity and wind speed can under- and 

overestimate the amount of heat flux occurring at the stream surface, causing inaccurate 

estimates of downstream temperature change. Relative humidity is required to derive all 

components of heat flux but shortwave radiation. As values fluctuate diurnally, and since this 

study used hourly observations throughout different seasons, constant values fail to capture this 

variation. 

The value of the shading parameter used to buffer the amount of solar radiation reaching 

the stream surface in streams with significant vegetative cover is likely to fluctuate throughout 

the year due to seasonal transitions. When examining the effects of patchy shade on the rate of 

change of daily maximum temperatures among second order streams, Rutherford et al. (2004) 

highlighted a strong linear relationship between heating/cooling rates and change of shade. 

Riparian shading has been shown to have an effect on the microclimate of the stream corridor 

such as increases in air temperature, and decreases in relative humidity (Chen et al., 1995). 

Additionally, values for wind speed are influential in estimating evaporative heat flux. As with 
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estimating solar radiation at the air-water interface, wind speed, and thus evaporative heat flux, is 

buffered by vegetative cover and is dependent upon seasonality. Finally, estimating longitudinal 

temperature change using physical process models becomes difficult during low flow periods as 

surface heat exchange warms or cools streams at a rate proportional to the mean residence time 

of water in the stream reach, extending exposure time of the stream surface to elements of heat 

flux. Assuming a constant rate of heating without mitigation from shading or inputs from cooler 

subsurface flows can lead to inaccurate predictions of downstream temperature flux. 

Factors influencing flux rates 

 The present analysis showed that it was possible to use site location, air temperature, 

stream temperature, and stream discharge data to estimate longitudinal rates of downstream 

temperature flux. Although flux rates displayed evidence of diurnal, seasonal, and yearly 

variation, the best statistical model was able to accurately capture trends in sub-daily 

observations across a wide range of stream thermal regimes. Downstream temperature flux rates 

are dependent upon various factors across differing temporal scales. While the inclusion of both 

day length and sun altitude angle was important in estimating heat flux at the sub-daily time 

scale, air temperature has been shown to be an adequate predictor of stream temperature at the 

weekly time scale (Stefan and Preud’homme, 1993; Mohseni et al., 1998). The results of this 

analysis, however, indicate that the effects of baseflow reduction can have an impact on stream 

temperature at the hourly time scale. The analysis of factors influencing downstream temperature 

flux on a finer scale was important in predicting the response of stream thermal dynamics to 

baseflow reduction. Although many of the factors used to estimate the effects of baseflow 

reduction on sub-daily downstream flux rates were critical to the empirical model developed in 

this analysis, some may be less important when looking at effects of flow reductions on changes 
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in July mean temperatures as the WWAT does. At longer time scales, simpler models may be 

able to adequately capture enough variability to be useful to natural resource managers.  

 Although many models have been developed attempting to relate air temperatures 

(Erickson and Stefan, 2000; Caissie et al., 2001; Stefan and Preud’homme, 2003) and stream 

discharge (Sinokrot and Gulliver, 2000) to stream temperature dynamics, few have analyzed the 

impacts of groundwater withdrawal on longitudinal fluxes in stream temperature (Risley et al., 

2010). In order to do so it was important to understand the influences of baseflow heat energy on 

the thermal regimes of streams. For this analysis, a simple mass balance method was used to 

predict the baseflow contributions to each stream reach where the difference in discharge 

between upstream and downstream gauges during the lowest seven-day flow period 

corresponded to the average baseflow input to each stream reach. This value was assumed to be 

representative of constant baseflow input to the stream reach between upstream and downstream 

locations. The location(s) at which baseflow enters the stream reach can have an important effect 

on stream thermal dynamics. Peak daytime energy inputs from solar radiation often have the 

potential to reduce the cooling effects of groundwater inputs (Story et al., 2003). Groundwater 

inputs would have the greatest impact on reducing downstream warming in shaded stream 

reaches, or when solar radiation is minimal (i.e., nighttime). 

 The parameters included in Model 10 were significant predictors of longitudinal stream 

temperature change across many of the streams. Overall, the most influential variable as 

determined by partial R
2
 was day length followed closely by sun altitude angle (Table 2.13). Sun 

altitude angle and day length were used as proxies for estimating the intensity of solar radiation, 

or sunlight, acting on the stream surface. When focusing only on summer months (July and 

August; often the warmest months of the year in Michigan) results were similar. Altitude angle 
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accounted for the most variability (Table 2.30) overall (partial R
2
 = 0.08), and among three of the 

four thermal classes (baseflow heat energy accounted for the most variability within warm-

transitional streams; partial R
2
 = 0.13; Table 2.31). Similar findings have been reported when 

examining the influences on energy input into streams to estimate both longitudinal stream 

temperature changes (LeBlanc et al., 1997; Magnusson et al., 2012) and stream temperatures 

(Caissie et al., 2007) using deterministic models. Day length was identified as a strong predictor 

of stream temperatures in a previous study by Risley et al. (2010) to assess the impacts of 

groundwater pumping on stream temperatures. When examining the factors influencing river 

heat budgets, Evans et al. (1998) estimated that net shortwave radiation dominated total energy 

gains, and on average, over 82% of total energy transfers occurred at the air-water interface. 

Sinokrot and Gulliver (2000) posited that shallow streams are more sensitive to solar heat flux. 

Thus, reductions in baseflow and overall discharge can have a stronger effect on the downstream 

temperature flux of small streams. 

 Overland flow, or surface runoff, and its thermal components ranked as having the third 

most influence on downstream temperature flux in the study streams. Many factors, including 

increased impervious area (Leopold, 1968; Tong and Chen, 2002) and agricultural/forestry 

practices (Hidayat et al., 2012), have been shown to influence the amount of surface runoff 

entering stream channels. Impervious surfaces can store significant amounts of thermal energy 

that may transfer to streams during runoff events. Overland flow has the potential to warm more 

quickly to surrounding air temperature when compared to stream discharge. These characteristics 

of urbanization and surface runoff have been shown to have a direct response on average stream 

temperatures (Galli, 1990). As many of the streams in this study were located in proximity to 

agricultural fields and road crossings with the potential to allow surface runoff into the stream 
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channel, it is not surprising that overland flow was a highly ranked influencer of downstream 

temperature change. 

 Heat energy contributions from baseflow inputs ranked as a moderately influential 

variable on downstream temperature change (Table 2.13). In regards to daily maximum stream 

temperatures, groundwater has been suggested to be a prerequisite for daytime cooling in 

forested stream reaches downstream of forest clearings (Story et al., 2003). However, Story et al. 

(2003) were able to account for only 40% of downstream cooling due to groundwater. Hyporheic 

exchange and bed heat conduction were responsible for the remaining 60% of variation in 

downstream cooling events. These results suggest that, although groundwater inputs are 

important in offsetting the effects of solar radiation and other warming factors, bed heat 

conduction and hyporheic flow have been speculated as significant sources of energy exchanges 

in the moderation of daily temperature extremes (Sinokrot and Stefan, 1993; Poole and Berman, 

2001). 

 Air temperature has been used extensively as a predictor for water temperatures (Stefan 

and Preud’homme, 1993; Pilgrim and Stefan, 1995; Mohseni et al., 1998; Ozaki et al., 2003). In 

this analysis, the air-water temperature differential proved to be another variable which 

explained moderate variation in downstream temperature fluxes. The rate of downstream 

temperature change is influenced by the magnitude of difference between air temperature and 

water temperature. Ozaki et al. (2003) showed that, while stream temperature was dependent on 

air temperature, other parameters such as solar radiation are also driving factors, especially in 

summer months. 

 Upstream discharge and the heat energy associated with it ranked equally among 

variables responsible for variations in downstream temperature flux. The impact of discharge and 
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thermal inertia on water temperatures occurs primarily through increases in depth of the river 

(Sinokrot and Gulliver, 2000). This means that at higher discharges, water temperature variation 

is decreased, and also increases the frequency of lower water temperatures as solar radiation has 

less of an influence in deeper streams. When stream discharge is reduced, the decreased depth of 

the river is associated with more influence from solar radiation, and therefore more rapid rates of 

heating and cooling due to high surface area to volume ratio. 

Pooling data 

 Model 10 was parameterized using different pooled data sets in order to determine the 

potential of using hydrologic and meteorological data to predict downstream temperature flux in 

streams without site-specific data. Results indicate that pooling data based on thermal classes 

(Table 2.19) has the potential to track seasonal trends in downstream temperature flux (Figure 

2.10), although the accuracy of sub-daily observations is highly variable (Table 2.18). The 

model’s accuracy and ability to track trends is variable within and between thermal classes, but 

given the improvement over the composite data set, there exists the potential for pooled data to 

provide reasonable predictions of downstream temperature flux within ungaged streams. Data 

collection across additional years and streams could improve the model’s predictive power in 

streams without site-specific data. Compared with the current warming rate module used within 

the WWAT, Model 10 would provide a more accurate predictive model of downstream 

temperature change rates. Calibrating empirical models with statewide observational data 

captures widespread variability in trends in longitudinal stream temperature fluctuation rates, 

particularly so for the small streams examined in this analysis. The results in Table 2.24 

highlight the limitations of the Zorn et al. (2008) model’s ability in estimating thermal flux rates 
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of small Michigan streams. However, future work should compare temperature flux rates across 

larger streams within these thermal classes. 

Although pooling data within thermal classes generally provided a better fit than the 

GLM that used data from all streams combined, some of the thermal classes showed variable 

responses to driving parameters included in the model.  In particular, poor correlation between 

predicted and observed thermal flux was observed for the pooled model for the cold-transitional 

thermal class. This may be the result of an overall negative relationship between downstream 

temperature flux and baseflow heat energy, even though many of the individual cold-transitional 

streams show a positive relationship between the two variables. Since calibrating models specific 

to stream thermal class provided an improved fit, collecting data over a broader range of streams 

within each thermal class would likely parse out the true overall response of thermal class flux 

rates to atmospheric and hydrologic changes. Additionally, future investigations could group 

streams based on similarities in basin characteristics known to influence hydrologic patterns 

which may be able to capture greater variance when estimating downstream warming rates. 

Similar methods have been developed to estimate exceedance flows of Oregon streams (Cooper, 

2002). The same factors which drive hydrologic patterns in basins having similar catchment 

characteristics may also control the response in downstream temperature flux rates to 

fluctuations in flow. 

Effects of baseflow reduction 

The development of the statistical models served two purposes in the present analysis. 

First, the robust hydrological dataset and stream gauge network allowed for a determination of 

the dominant factors affecting downstream temperature flux among each stream thermal regime. 

When examining parameter influence on downstream temperature flux within thermal classes, 
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results were similar with one exception; in warm-transitional streams baseflow heat load was 

identified as the most influential variable (Table 2.14). Second, by identifying the model which 

fits observed data and follows trends best, it was possible to simulate future behavior of stream 

thermal dynamics following reductions in baseflow. This becomes evident when examining the 

effects of baseflow reduction on thermal dynamics among the four thermal classifications. 

Although the downstream temperature flux rates of warm-transitional streams are nearly 

negligible during baseflow conditions, they become the most affected by each 10% reduction in 

baseflow. During the most extreme reduction scenario of 90% reduction, warm-transitional 

streams were predicted to gain 0.69 °C/km on average, much greater than the 0.22 °C/km 

predicted for cold streams which was the next highest rate. The influence of baseflow heat loads 

on temperature flux within warm-transitional streams suggests that the thermal inertia provided 

by baseflow within this thermal class may be an important balancing factor of the heat energy 

provided from upstream and overland flow. As stream temperatures increase, groundwater-

related cooling processes would tend to operate at higher rates (Story et al., 2003).  

Effects of baseflow reduction on downstream temperature flux rates varied between 

seasons (Figure 2.11; Table 2.20). As incremental reduction in baseflow was projected to peak 

downstream warming events during summer months, streams were occasionally projected to 

experience downstream cooling during the fall, whereby effects became more pronounced at the 

more extreme reduction scenarios (Figure 2.11; see supplemental files). These projections are 

reasonable given that surface heat exchange warms or cools streams at a rate inversely 

proportional to discharge. Similar results were found by Magnusson et al. (2012) when 

investigating processes influencing stream warming. When investigating the effects of baseflow 

reduction across thermal classes based on July mean water temperatures, colder streams had a 
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natural tendency to experience greater downstream warming during the 0% reduction simulation 

when compared to warmer streams. 

Comparisons with the Zorn et al. (2008) model 

As mentioned previously, using physical process models to estimate stream temperature 

flux becomes increasingly difficult during low-flow periods in small stream systems. The Zorn et 

al. (2008) model used a rate of heating model based on physical relationships and a heat transfer 

coefficient. The stream temperature change from upstream to downstream is largely dependent 

on the travel time of water within each stream segment. Additionally, the heating coefficient is 

inversely proportional to stream depth, so as stream depth decreases, the heating coefficient 

increases as does estimated stream temperature. Estimating downstream temperature flux rates 

given average August conditions (often the lowest flow summer month in Michigan) using the 

Zorn et al. (2008) model resulted in unrealistic values for several streams (Table 2.24). These 

predictions largely occur from a lack of boundary conditions whereby heating or cooling ceases 

at a pre-defined condition such as maximum or minimum air temperature. Additionally, streams 

with very low velocities and discharges are highly susceptible to extreme rates of downstream 

temperature flux given the heating module implemented in the Zorn et al. (2008) model. 

An issue with implementing physical process models in the absence of shading factors is 

that the modules do not consider cooling effects from riparian shading, or hyporheic and 

groundwater flows that may provide an offset to warming effects of air temperature and solar 

radiation. When using the Zorn et al. (2008) model to estimate downstream temperature flux in 

this study, predictions of warming or cooling were directly related to the air – water temperature 

gradient. Although this was shown to be an important factor in determining downstream 

temperature flux, it was not the most significant factor (Table 2.13). The difference in which 
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variables primarily contribute to fluctuations in downstream warming rates could have played a 

major role in the apparent differences predicted by each model in stream responses to baseflow 

reduction based on July mean temperature (Figures 2.12 – 2.13). 

Based on my results, streams have been shown to experience downstream warming even 

when air temperatures were cooler than water temperatures (Table 22; Table 24). This could 

potentially be the result of two factors: either the temperature of baseflow entering the stream 

reach was greater than air temperature, or the heat input via solar radiation was greater than the   

cooling force of the air – water temperature differential and baseflow inputs. Given that scenario 

analyses for comparisons of Model 10 and the Zorn et al. (2008) model were conducted for 

August, the lowest mean August air temperatures were 10.34 °C for King Creek and North 

Branch Thunder Bay River (Table 2.23) located in the NLPUP (Table 2.1), where groundwater 

temperatures were set at 8.3 °C (Methods; Computed heat energy of various flows). When air 

temperature is greater than stream temperature, sensible heat fluxes towards the stream, and the 

opposite is true when air temperature is cooler than water temperature. This means that it is more 

likely that solar radiation heat flux was the primary cause of downstream warming, as evidenced 

by partial regression analysis (Table 2.13). 

Implications and recommendations of findings 

 Resource managers employ a variety of modeling techniques to simulate stream 

temperature dynamics. Models are useful to investigate influences on thermal dynamics and to 

examine effects of varying parameters on changes to stream thermal regimes. As the effects of 

downstream temperature flux vary on a seasonal and yearly basis, sufficient data must be 

collected on a wide range of streamflow and weather conditions to account for within- and 

between-year variation in order to properly calibrate models to ensure accurate predictions. 
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Accurate predictions are necessary when conducting scenario analyses so that managers and 

policy makers can confidently rely on projections when implementing restrictions on water usage 

rates. As shown in this analysis, model correlation decreased in streams with more than one year 

of data. Although this was expected, it highlights the importance of multi-year data collection 

periods as stream thermal dynamics do not respond precisely the same from year to year. 

 When conducting baseflow reduction scenarios using the Zorn et al. (2008) model, it was 

clear that this physical process model had difficulties in predicting downstream warming rates of 

small streams, even under 0% reduction scenarios. Many of the streams selected within this 

analysis had discharges (min = 2e
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similar to those used to develop the Zorn et al. (2008) warming model (min = 0.01 m
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). Predicted and projected flux rates were often 

extreme, and could severely restrict water withdrawal in management units in close proximity to 

these types of stream basins. For such small streams, baseflow reduction itself may be the critical 

limiting factor before increased temperatures becomes an issue. The downstream warming 

module of the Zorn et al. (2008) model is used to relate the effects of baseflow reduction on 

temperature increases in order to predict corresponding changes to the stream fish community on 

streams and rivers of greater size. Since the findings of this analysis show that the Zorn et al. 

(2008) model may be overestimating downstream warming rates for Michigan streams of 

comparable baseflow yield in this study, it is recommended to conduct this type of study on a set 

of larger streams or rivers that would more clearly reflect the thermal properties of rivers 

originally chosen to calibrate the physical process model used in the WWAT. 

 There remains a question of how to assess the impacts of baseflow reduction in the 

absence of site-specific data. The findings of previous research regarding the impacts of shading 
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on temperature flux rates within streams shows that riparian corridors can mitigate the effects of 

reduced flows and heat flux at the stream surface (Moore et al., 2003; Story et al., 2003). The 

statistical models developed in this analysis partly account for the effects of shading along the 

stream reach. This could explain the much lower observed downstream warming rates, and those 

predicted using Model 10, in comparison with those predicted by the Zorn et al. (2008) model, 

absent baseflow reduction. Although measures of model accuracy and correlation with observed 

temperatures were reduced following pooling of data by thermal classes, predictions were much 

better than those using the Zorn et al. (2008) model; however this is likely due to differences in 

the mechanics of each model. The accuracy of the model should be further examined when 

information on overland flow and downstream – upstream discharge differential are not readily 

available. In addition, the model should be calibrated with data across additional years and 

streams, although the possibility of estimating temperature flux in the absence of site-specific 

data remains promising. 

In the case that streams are not warming at a constant rate, as assumed by the physical 

process model, implementation of riparian shade corridors may significantly mitigate the 

warming effects associated with water withdrawal. Clear-cut stream reaches are more vulnerable 

to climatic impacts such as increased solar heat flux at the stream surface, increased wind speed, 

and advection of warm air from forest clearings. Although riparian shade buffers can reduce the 

magnitude of downstream warming, there are still gaps in our knowledge of the extent of stream 

cooling after flowing through shaded environments (Moore et al., 2005). It has been speculated 

that downstream cooling under shaded stream reaches still requires inputs of groundwater or 

hyporheic flows (Beschta et al., 1987; Story et al., 2003). In any case, riparian shade buffers can 
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provide relief from the previously mentioned drivers of stream temperature increases, and could 

potentially contribute to downstream cooling. 

Conclusion 

 

 This study used model selection criteria to compare a suite of statistical models in order 

to determine the most important processes influencing downstream temperature flux in Michigan 

streams. The development and comparison of progressively complex models with many of the 

same parameters highlighted the importance of including variables related to solar heat flux, and 

the heat energy inputs of different sources of discharge. These variables were important in 

accounting for sub-daily variation of downstream temperature fluxes across 21 Michigan streams 

with differing thermal properties. This study provides new data on effects of discharge and air 

and water temperatures on downstream temperature flux rates in small Michigan streams. 

 Comparisons of the best statistical model developed in this analysis with those of the 

Zorn et al. (2008) model showed substantial differences in the estimations and influencing 

factors of downstream temperature flux. The Zorn et al. (2008) physical process model had 

difficulties predicting downstream temperature flux rates in small streams, which likely led to 

inaccurate projections of flux rates following baseflow reduction. This was likely the result of 

this model’s failure to account for influences from riparian shading and intermittent groundwater 

inputs along the stream reach, which can act as an offset to heating factors. Using empirical 

relationships, the statistical models developed in this study were able to inherently capture these 

mitigating factors which physical process models may not be able to fully capture. 

 Furthermore, by including a parameter which estimated the influence of baseflow inputs 

on downstream temperature flux rates, it was possible to conduct scenario analyses within 

individual stream reaches. Baseflow reduction scenarios allowed for comparisons of the impacts 
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of groundwater withdrawal on the thermal dynamics of a wide range of streams. Results of 

groundwater abstraction simulations presented a wide range of projections including increased 

downstream warming and cooling under extreme reduction scenarios. These results indicate that 

shallow streams such as those included in this analysis are vulnerable to sources of heating and 

cooling such that flux rates of streams with shallow depths show a rapid response to elements of 

heating and cooling. 

 Research presented here shows the importance of understanding driving factors of stream 

temperature change, and stream thermal response to changes in flow regime. Although the 

present study showed the strong influence of several factors on stream temperature change, 

previous research shows that there are other variables critical in driving changes in stream 

temperature. Further examination of drivers of stream temperature change would be useful in 

improving the predictive range of temperature flux, which would subsequently provide a 

stronger projection of stream thermal response to baseflow reduction. However, increased 

collection of hydrological data on small streams would refine the best thermal flux model 

developed within this analysis through calibration, and improve predictive power across a robust 

range of stream types.  
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APPENDIX 1.0 

Supporting tables and figures for Chapter 1: Application of benchmark detection methods to identify thermal thresholds of 

stream fishes along a thermal gradient. 

 

Table 1.1: Table of temperature thresholds (°F) of species with upper thermal thresholds identified by each of the three analytical 

threshold detection methods, as well as visually estimated threshold interpreted from LOESS line. 

 

Species 
WWAT 

Optimum 
TITAN CART 

WWAT 

upper 

threshold 

LOESS 

Brook Trout 62.3 64.9 56.8 69.3 65.0 

Coho Salmon 62.9 67.7 60.5 69.1 68.0 

Slimy Sculpin 63.1 65.4 65.4 68.7 65.0 

Chinook Salmon 63.6 68.5 70.6 67.8 68.0 

Brown Trout 64.1 65.9 64.7 69.4 70.0 

Northern Redbelly Dace 64.1 67.7 67.7 71.8 Not apparent 

Rainbow Trout 64.2 68.3 68.8 69.0 65.0 

Mottled Sculpin 64.5 68.8 68.8 71.2 69.0 

Northern Brook Lamprey 65.3 70.0 66.7 72.4 Not apparent 

Longnose Dace 65.4 68.9 68.8 70.8 68.0 

Blacknose Dace 65.9 71.0 68.8 71.2 69.0 

Burbot 66.2 72.5 68.3 73.0 Not apparent 
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Table 1.2: Table of differences between detected thresholds of each method. 

 

Species TITAN – CART TITAN – WWAT CART – WWAT 

Brook Trout 8.2 -4.4 -12.6 

Blacknose Dace 2.3 -0.2 -2.5 

Brown Trout 1.2 -3.5 -4.7 

Burbot 4.3 -0.5 -4.7 

Chinook Salmon -2.1 0.7 2.8 

Coho Salmon 7.2 -1.4 -8.6 

Longnose Dace 0.1 -1.9 -2.0 

Mottled Sculpin 0.1 -2.4 -2.5 

Northern Brook Lamprey 3.7 -2.1 -5.7 

Northern Redbelly Dace 0.0 -4.1 -4.1 

Rainbow Trout -0.5 -0.7 -0.3 

Slimy Sculpin 0.1 -3.3 -3.3 

Average difference 1.9 -2.0 -3.8 
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Table 1.3: Information of the upper 20% of abundances of each decreaser species including, number of optimal sites (N), WWAT 

optimum temperature (mean), minimum (Lower) and maximum (Upper) July mean water temperatures for optimum temperature 

calculation, standard deviation, and predicted WWAT threshold (temperatures in °F). 

 

Species N 
Optimum 

Temperature 
Lower Upper Std. WWAT TITAN CART 

Brook Trout 128 62.3 50.9 69.1 4.0 69.3 64.9 56.8 

Black Bullhead 21 69.6 63.7 73.9 2.6 74.1 67.6 71.4 

Black Crappie 24 72.2 67.1 76.4 2.5 76.5 71.5 75.0 

Blacknose Dace 118 65.9 59.5 71.0 3.1 71.2 71.0 68.8 

Blackside Darter 74 70.4 63.4 75.2 2.5 74.7 66.4 68.8 

Bluegill 69 70.2 61.1 76.4 2.9 75.3 66.4 68.8 

Bluntnose Minnow 69 71.9 61.6 77.2 2.8 76.8 69.2 76.3 

Brown Trout 152 64.1 53.8 70.9 3.0 69.4 65.9 64.7 

Brook Stickleback 37 65.9 50.9 72.9 4.2 73.2 56.7 71.2 

Burbot 32 66.2 58.7 72.4 3.9 73.0 72.5 68.3 

Central Mudminnow 128 66.5 56.6 74.5 3.4 72.4 62.6 70.6 

Central Stoneroller 29 69.7 61.7 76.6 3.0 75.0 67.4 68.8 

Channel Catfish 10 73.2 71.9 75.1 0.9 74.7 71.9 71.9 

Chinook Salmon 12 63.6 59.8 67.5 2.4 67.7 68.5 70.6 

Coho Salmon 17 62.9 56.9 67.5 3.5 69.1 67.7 60.5 

Common Carp 38 73.2 67.3 76.6 2.0 76.6 71.0 72.4 

Common Shiner 101 69.7 63.5 76.1 2.8 74.5 67.3 69.4 

Creek Chub 174 67.4 56.7 74.8 3.2 73.0 63.8 67.7 

Fathead Minnow 10 69.3 62.7 74.5 3.1 74.7 68.6 74.5 

Golden Redhorse 23 73.4 67.2 76.1 2.1 77.1 70.7 75.9 

Golden  Shiner 14 67.4 58.3 73.7 5.0 76.1 71.8 71.9 

Grass Pickerel 37 68.8 61.1 73.5 3.0 74.0 65.5 72.4 

Green Sunfish 88 70.5 63.7 77.2 2.9 75.6 68.2 76.3 

Greenside Darter 12 73.9 67.8 77.2 2.8 78.8 73.9 75.9 
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Table 1.3: (cont’d) 

 

Hornyhead Chub 43 68.5 60.3 76.6 3.3 74.3 69.2 66.0 

Johnny Darter 130 68.6 61.1 76.4 2.9 73.7 66.5 68.0 

Largemouth Bass 67 69.3 63.4 76.4 3.3 75.1 68.0 69.4 

Log Perch 31 69.3 60.3 75.7 4.0 76.2 66.1 72.8 

Longnose Dace 42 65.4 58.7 72.4 3.1 70.8 68.9 68.8 

Mottled Sculpin 105 64.5 55.8 71.1 3.9 71.2 68.8 68.8 

Northern Brook Lamprey 10 65.3 59.7 69.4 4.0 72.4 70.3 66.7 

Northern Hog Sucker 64 71.6 64.2 77.2 3.0 76.8 69.6 76.3 

Northern Redbelly Dace 18 64.1 56.6 72.9 4.4 71.8 67.7 67.7 

Northern Pike 49 71.3 61.1 76.6 3.2 76.8 70.4 71.4 

Pumpkinseed 64 71.5 61.0 76.6 3.5 77.6 71.4 71.6 

Rainbow Darter 48 69.2 61.3 74.7 2.6 73.8 67.7 68.1 

Rainbow Trout 87 64.2 58.8 71.5 2.8 69.0 68.3 68.8 

Redhorse Sucker 13 74.0 71.9 75.8 1.1 75.9 73.2 74.3 

Rock Bass 84 72.1 62.3 77.2 3.0 77.3 68.3 73.4 

Rosyface Shiner 18 71.7 68.4 76.1 2.2 75.5 69.3 75.9 

Shorthead Redhorse 12 71.8 67.2 75.1 2.3 75.9 71.7 71.5 

Slimy Sculpin 10 63.1 59.1 69.9 3.2 68.7 65.4 65.4 

Smallmouth Bass 48 73.2 69.1 77.2 2.1 76.9 70.5 76.3 

Spotfin Shiner 15 73.5 68.5 76.6 2.0 77.0 71.5 76.3 

Stonecat 29 72.9 67.6 77.2 2.6 77.4 70.2 73.8 

Walleye 12 72.8 67.7 75.8 2.5 77.1 72.4 74.8 

White Sucker 190 68.8 60.4 77.2 3.2 74.4 64.5 69.9 

Yellow Bullhead 34 71.5 63.2 76.4 3.0 76.7 70.4 71.3 

Yellow Perch 37 67.6 58.3 73.7 4.4 75.3 68.6 71.5 
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Table 1.4: Detected benchmarks of all 49 species of each of the three datasets (ALL, NLPUP, and SLP). NA indicates that no 

benchmark was estimated due to lack of minimum data requirements. 

 

 
TITAN CART WWAT 

Species ALL NLPUP SLP ALL NLPUP SLP ALL NLPUP SLP 

Brook Trout 64.9 62.4 66.3 56.8 56.8 59.4 69.3 69.4 67.3 

Black Bullhead 67.6 68.9 71.9 71.4 69.2 71.4 74.1 NA 74.6 

Black Crappie 71.5 70.7 74.9 75.0 71.2 75.0 76.5 NA 76.6 

Blacknose Dace 71.0 62.9 71.0 68.8 66.4 71.1 71.2 69.0 72.2 

Blackside Darter 66.4 65.3 69.4 68.8 69.1 68.8 74.7 73.5 75.0 

Bluegill 66.4 70.4 69.4 68.8 69.1 69.4 75.3 72.6 75.1 

Bluntnose Minnow 69.2 68.3 69.5 76.3 70.5 76.3 76.8 71.7 76.6 

Brown Trout 65.9 69.6 69.3 64.7 69.4 64.4 69.4 68.3 70.9 

Brook Stickleback 56.7 56.6 71.6 71.2 72.8 71.2 73.2 71.6 72.6 

Burbot 72.5 70.3 NA 68.3 71.8 69.6 73.0 73.4 NA 

Central Mudminnow 62.6 62.7 72.5 70.6 64.8 70.6 72.4 70.1 73.2 

Central Stoneroller 67.4 66.7 68.7 68.8 66.8 68.8 75.0 NA 74.5 

Channel Catfish 71.9 NA 72.8 71.9 NA 71.9 74.7 NA 75.8 

Chinook Salmon 68.5 NA NA 70.6 65.4 NA 67.7 67.7 NA 

Coho Salmon 67.7 67.5 61.1 60.5 60.5 60.5 69.1 69.1 NA 

Common Carp 71.0 66.3 70.5 72.4 67.3 76.3 76.6 NA 76.4 

Common Shiner 67.3 64.7 69.2 69.4 70.7 75.9 74.5 73.0 74.8 

Creek Chub 63.8 63.9 71.4 67.7 62.9 71.3 73.0 71.3 72.5 

Fathead Minnow 68.6 65.2 68.6 74.5 62.7 74.5 74.7 NA NA 

Golden Redhorse 70.7 70.5 71.5 75.9 71.2 75.9 77.1 NA 76.9 

Golden  Shiner 71.8 72.4 70.5 71.9 67.6 71.9 76.1 NA 75.8 

Grass Pickerel 65.5 NA 73.6 72.4 NA 72.4 74.0 NA 73.7 

Green Sunfish 68.2 67.3 69.4 76.3 71.8 76.3 75.6 73.6 75.7 

Greenside Darter 73.9 NA 74.3 75.9 NA 75.9 78.8 NA 79.0 

Hornyhead Chub 69.2 67.0 69.4 66.0 65.9 68.4 74.3 71.0 74.8 



89 

 

Table 1.4: (cont’d) 

 

Johnny Darter 66.5 64.7 67.8 68.0 65.8 68.0 73.7 71.9 73.3 

Largemouth Bass 68.0 70.4 68.4 69.4 70.4 69.4 75.1 71.1 75.3 

Log Perch 66.1 66.9 72.2 72.8 68.5 72.8 76.2 72.9 76.3 

Longnose Dace 68.9 64.6 68.4 68.8 64.6 68.4 70.8 70.7 NA 

Mottled Sculpin 68.8 70.3 71.0 68.8 68.6 68.8 71.2 69.2 72.0 

Northern Brook Lamprey 70.3 67.0 NA 66.7 67.1 NA 72.4 70.7 NA 

Northern Hog Sucker 69.6 66.6 71.1 76.3 69.6 76.3 76.8 72.2 77.1 

Norther Redbelly Dace 67.7 70.5 NA 67.7 64.6 NA 71.8 71.7 NA 

Northern Pike 70.4 70.7 71.1 71.4 71.8 71.4 76.8 75.7 76.1 

Pumpkinseed 71.4 70.7 69.4 71.6 65.1 71.6 77.6 72.4 76.5 

Rainbow Darter 67.7 67.4 68.1 68.1 69.6 68.1 73.8 72.6 74.4 

Rainbow Trout 68.3 58.7 63.2 68.8 68.2 63.2 69.0 68.4 71.2 

Redhorse Sucker 73.2 67.3 73.1 74.3 66.5 74.3 75.9 NA NA 

Rock Bass 68.3 67.2 70.5 73.4 69.1 73.4 77.3 74.8 77.2 

Rosyface Shiner 69.3 70.4 69.4 75.9 70.7 75.9 75.5 NA 76.1 

Shorthead Redhorse 71.7 70.5 72.2 71.5 71.2 72.8 75.9 NA 75.1 

Slimy Sculpin 65.4 NA NA 65.4 66.1 NA 68.7 68.3 NA 

Smallmouth Bass 70.5 67.0 71.1 76.3 70.4 76.3 76.9 73.0 77.4 

Spotfin Shiner 71.5 68.1 71.4 76.3 68.2 76.3 77.0 NA 76.5 

Stonecat 70.2 67.5 70.7 73.8 68.2 73.8 77.4 NA 77.4 

Walleye 72.4 70.5 74.8 74.8 72.4 74.8 77.1 NA 77.3 

White Sucker 64.5 64.2 65.7 69.9 59.4 69.9 74.4 71.2 74.4 

Yellow Bullhead 70.4 69.5 71.1 71.3 70.4 71.3 76.7 NA 76.5 

Yellow Perch 68.6 68.1 70.4 71.5 68.6 71.5 75.3 72.7 75.2 
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Table 1.5: Table of detected benchmarks of species which were classified as decreasers in both the NLPUP and SLP subregions. 

Average differences were calculated between the two subregions for each method. 

 

 
TITAN CART WWAT 

Species/Region NLPUP SLP NLPUP SLP NLPUP SLP 

Brook Trout 62.4 66.3 56.8 59.4 69.4 67.3 

Brown Trout 69.6 69.3 69.4 64.4 68.3 70.9 

Mottled Sculpin 70.3 71.0 68.6 68.8 69.2 72.0 

Average difference -1.5 0.7 -1.1 
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Table 1.6: Purity, reliability, and directionality of threshold response for those species identified as decreasers in the ALL dataset. P-

values are significant at P  0.05. Purity (Pur) is the proportion of responses detected by TITAN among bootstrap replicates that agree 

with the observed response. Reliability (Rel) is an estimate using the proportion of responses using bootstrap replicates whose IndVal 

scores that correspond to a probability level of P  0.05. Directionality of response indicates whether species show a negative 

(decreaser; -) or positive (increaser; +) threshold response along the thermal gradient. 

 

 
ALL NLPUP SLP 

Species +/- P Pur Rel +/- P Pur Rel +/- P Pur Rel 

Brook Trout - 0.004 1.000 1.000 - 0.004 1.000 1.000 - 0.004 1.000 1.000 

Blacknose Dace - 0.004 0.998 0.998 + 0.004 1.000 1.000 - 0.004 1.000 1.000 

Brown Trout - 0.004 1.000 1.000 - 0.008 0.828 0.804 - 0.004 1.000 1.000 

Burbot - 0.024 0.578 0.436 + 0.004 1.000 1.000 NA NA NA NA 

Chinook Salmon - 0.004 0.948 0.904 NA NA NA NA NA NA NA NA 

Coho Salmon - 0.004 1.000 1.000 - 0.028 0.936 0.904 - 0.004 1.000 0.98 

Longnose Dace - 0.004 0.998 0.998 + 0.004 1.000 1.000 - 0.008 0.994 0.916 

Mottled Sculpin - 0.004 1.000 1.000 - 0.048 0.702 0.64 - 0.004 1.000 1.000 

Northern Brook Lamprey - 0.016 0.894 0.888 + 0.004 0.966 0.952 NA NA NA NA 

Northern Red Dace - 0.008 0.986 0.962 + 0.024 0.922 0.828 NA NA NA NA 

Rainbow Trout - 0.004 1.000 1.000 + 0.016 0.658 0.658 - 0.004 1.000 1.000 

Slimy Sculpin - 0.004 1.000 1.000 NA NA NA NA NA NA NA NA 
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Table 1.7: Table of means of detected thresholds using logistic function to simulate abundances (10 simulations) with a known 

threshold at 68 °F. 

 

Method/Region ALL NLPUP SLP Average 

TITAN 69.30 68.00 69.40 68.92 

CART 67.80 67.40 68.00 67.71 

WWAT 67.3.0 67.00 68.00 67.41 

Average 68.13 67.50 68.40 68.01 
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Table 1.8: Two-way ANOVA (α = 0.05) examining differences between region and method of detected benchmarks using logistic 

function to simulate abundances with a known threshold at 68 °F. 

 

 P-value Significant? 

Method 2.00e-16 Yes 

Region 3.70e-16 Yes 

Method:Region 1.49e-4 Yes 
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Figure 1.1: LOESS regression of logistically simulated data with a known threshold of 68 °F. 
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Figure 1.2: Distribution of Brook Trout abundances along a July mean water temperature thermal gradient. Vertical lines correspond 

to identified benchmarks of TITAN, CART, and WWAT benchmark detection methods. The LOESS regression is depicted by the 

solid red regression line and is used in visual identification of inflection points. 
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Figure 1.3: Linear regression of TITAN and CART identified thresholds. Dashed line represents 1:1 relationship. Axis units are July 

mean water temperature (°F). 
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Figure 1.4: Linear regression of TITAN and WWAT identified thresholds. Dashed line represents 1:1 relationship. Axis units are July 

mean water temperature (°F). 
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Figure 1.5: Linear regression of CART and WWAT identified thresholds. Dashed line represents 1:1 relationship. Axis units are July 

mean water temperature (°F). 
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Figure 1.6: Linear regression of TITAN identified thresholds for NLPUP and SLP regions. Dashed line represents 1:1 relationship. 

Axis units are July mean water temperature (°F).  
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Figure 1.7: Linear regression of CART identified thresholds for NLPUP and SLP regions. Dashed line represents 1:1 relationship. 

Axis units are July mean water temperature (°F). 
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Figure 1.8: Linear regression of WWAT identified thresholds for NLPUP and SLP regions. Dashed line represents 1:1 relationship. 

Axis units are July mean water temperature (°F). 
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Figure 1.9: Box plot showing results of threshold detection methods applied to the July mean temperature gradients of the NLPUP and 

SLP regions with abundance data simulated using a logistic function. 
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APPENDIX 2.0 

Supporting tables and figures for Chapter 2: Quantifying downstream warming rates of Michigan streams: Improving an 

important link in Michigan’s Water Withdrawal Assessment Tool. 

 

Table 2.1: Site information specific to each stream segment. Streams marked with an asterisk are those for which data was collected 

over both the 2015 and 2016 field seasons. Up and down refer to upstream and downstream locations. 

 

Stream Region 
Thermal 

Class 

Up 

Latitude 

Up 

Longitude 

Down 

Latitude 

Down 

Longitude 

Reach 

Length 

(m) 

Up 

Elevation 

(m) 

Down 

Elevation 

(m) 

Pokagon 

Creek* 
SLP C 41.89517 -86.162632 41.915803 -86.175679 4050 224 219 

Fish Creek* SLP C 43.245992 -84.964747 43.242022 -84.915223 5186 240 234 

Pigeon 

River* 
SLP CT 42.932887 -86.081828 42.91636 -86.146075 6550 186 180 

Unnamed 

Gun River 

Tributary 

SLP CT 42.537894 -85.593867 42.530494 -85.562968 3131 231 226 

Nottawa 

Creek* 
SLP WT 42.192564 -85.060415 42.195998 -85.104618 3758 279 276 

Hemingway 

Lake Outlet 
SLP WT 43.32678 -85.124515 43.330136 -85.154513 3197 277 273 

Honeyoey 

Creek 
SLP WT 43.433623 -84.701648 43.379136 -84.705982 6638 230 224 

Middle 

Branch 

Tobacco 

River 

SLP WT 43.909194 -84.697312 43.929905 -84.666327 4091 258 249 

Hasler 

Creek 
SLP W 43.042332 -83.423206 43.083594 -83.442947 7586 250 233 

Prairie 

River* 
SLP W 41.801832 -85.116614 41.832568 -85.165065 5863 287 284 
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Table 2.1: (cont’d) 

 

Swan Creek SLP W 41.90477 -85.297885 41.921249 -85.312047 2539 263 262 

Cedar 

Creek 
NLP C 44.375846 -85.972647 44.369588 -85.999598 2551 232 225 

Cedar 

River* 
NLP C 44.956875 -85.132748 44.968664 -85.138993 1454 232 214 

East Branch 

Black River 
NLP C 45.070651 -84.283728 45.089439 -84.284929 2879 277 272 

Butterfield 

Creek* 
NLP CT 44.273249 -85.094087 44.256377 -85.03362 5978 359 352 

King Creek NLP WT 45.018848 -83.650705 45.047993 -83.634655 5822 223 211 

North 

Branch 

Thunder 

Bay River 

NLP W 45.179007 -83.923148 45.191635 -83.891476 4630 241 237 

Morgan 

Creek* 
UP C 46.519698 -87.504502 46.521351 -87.494782 1106 368 366 

Slapneck 

Creek 
UP CT 46.354843 -86.946771 46.350637 -86.928918 1564 252 249 

Spring 

Creek* 
UP CT 46.512909 -90.156133 46.513418 -90.177011 1681 360 358 

Carp 

River* 
UP CT 46.509131 -87.418924 46.510534 -87.388497 2614 237 189 

Middle 

Branch 

Escanaba 

River 

UP WT 46.420206 -87.797962 46.398398 -87.770883 6131 432 426 

East Branch 

Waiska 

River 

UP W 46.418818 -84.474418 46.406065 -84.499266 3623 186 185 

Squaw 

Creek 
UP W 46.057035 -87.18974 45.985396 -87.140559 1676 283 249 
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Table 2.2: Model numbers and the parameters included within each model denoted with an X. Ta = air temperature (°C); Tw = water 

temperature (°C); Qup = upstream discharge (cms); Qdown = downstream discharge; S = day length (hr); ΔTflow = cumulative heat 

energy (°C); ΔTup = upstream heat energy (°C); ΔTbase = baseflow heat energy (°C); ΔTover = overland flow heat energy (°C); α = sun 

altitude angle (°) 

 

Parameter M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 

Intercept X X X X X X X X X X X 

Ta - Tw X X X X X X X X X X X 

S     X  X X  X  

α      X X  X X  

Qup   X X X X X X X X  

Qdown - Qup    X X X X X X X  

Qdown/Qup  X          

ΔTflow   X X X X X     

ΔTup        X X X  

ΔTbase        X X X X 

ΔTover        X X X X 

(1/Qup)(Tw + 273.16)
4
           X 

(1/Qup)[(Tw + 273.16)
4
 - (Ta + 273.16)

4
]           X 

(1/Qup)(α)           X 
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Table 2.3: Comparison of a priori thermal classes and a posteriori thermal classes based upon July mean water temperatures. For 

those streams with two years of data (denoted by *), July mean water temperatures and overall discharges were averaged across both 

years. C =  17.5 °C; CT = > 17.5 °C and  19.5 °C; WT = > 19.5 °C and  21.0 °C; W = > 21.0 °C. 
 

Stream a priori 

Thermal Class 

a posteriori 

Thermal Class 

July Mean 

Temperature (°C) 
Discharge (m

3
 s

-1
) 

Cedar Creek C C 15.7 0.12 

Cedar River* C C 14.5 1.34 

East Branch Black River C C 16.5 0.83 

Pokagon Creek* C CT 19.1 0.42 

Fish Creek* C CT 19.5 0.86 

Morgan Creek* C WT 20.8 0.11 

Pigeon River* CT CT 18.7 0.48 

Butterfield Creek* CT CT 18.8 0.09 

Slapneck Creek CT CT 18.4 0.33 

Carp River* CT CT 19.2 1.79 

Spring Creek* CT WT 20.1 0.12 

Middle Branch Tobacco River WT CT 18.5 0.52 

Middle Branch Escanaba River WT CT 18.6 0.99 

Honeyoey Creek WT WT 20.4 0.06 

King Creek WT WT 20.1 0.01 

Nottawa Creek* WT W 23.1 0.55 

Prairie River* W CT 18.4 0.21 

Squaw Creek W CT 18.7 0.04 

Swan Creek W WT 20.9 0.38 

Hasler Creek W W 23.0 0.04 

North Branch Thunder Bay River W W 21.8 0.43 
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Table 2.4: Goodness of fit components for individual stream reaches using the forcing model 

(Model 12). 

 

Name r SSE 

Cedar Creek -0.60 9473 

Cedar River 0.02 8375 

East Branch Black River 0.35 112 

Pigeon River 0.00 16510 

Pokagon Creek -0.06 2948 

Prairie River -0.02 3.30e+11 

Fish Creek -0.16 42096 

Middle Branch Tobacco River 0.63 588 

Butterfield Creek 0.26 110782 

Slapneck Creek -0.07 11788 

Squaw Creek 0.07 56711 

Middle Branch Escanaba River 0.03 4.59e+6 

Carp River 0.01 2790 

Swan Creek 0.00 5820 

Honeyoey Creek 0.01 1.43e+18 

King Creek -0.11 7.32e+8 

Morgan Creek -0.24 30168 

Spring Creek 0.09 215297 

Nottawa Creek 0.09 85116 

Hasler Creek 0.11 758770 

North Branch Thunder Bay River 0.50 3390 
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Table 2.5: Models and their goodness of fit components. Results are averages over each stream 

reach. K = number of parameters; SSE = sums of squared errors; r = correlation between 

predicted and observed temperature change; L = log likelihood component of AIC; AIC = 

Akaike Information Criteria; ωi = Akaike weight. Count is the total number of streams for which 

each model was identified as providing the best fit. Models with the smallest SSE, L, or AIC are 

best fitting. 

 

Model no. K Ave. SSE Ave. r Ave. L Ave. AIC Ave. ω Count 

1 2 225 0.21 -10875 21753 0.000 0 

2 3 202 0.32 -10661 21328 0.000 0 

3 4 196 0.40 -10499 21006 0.000 0 

4 5 183 0.45 -10368 20746 0.000 0 

5 6 173 0.54 -10128 20264 0.000 0 

6 6 173 0.50 -10224 20461 0.000 0 

7 7 168 0.58 -9971 19957 0.000 0 

8 8 161 0.59 -9911 19838 0.001 0 

9 8 164 0.56 -9990 19996 0.024 0 

10 9 156 0.62 -9745 19508 0.737 16 

11 7 184 0.50 -10130 20274 0.238 5 
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Table 2.6: Model weights for each stream and the total count for which each model provided the best fit. 

 

Name 
Thermal 

Class 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 

Cedar Creek C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Cedar River C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

East Branch 

Black River 
C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Pigeon River CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Pokagon Creek CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Prairie River CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

Fish Creek CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.974 0.000 

Middle Branch 

Tobacco River 
CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.998 0.000 

Butterfield Creek CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

Slapneck Creek CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Squaw Creek CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Middle Branch 

Escanaba River 
CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Carp River CT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

Swan Creek WT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

Honeyoey Creek WT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

King Creek WT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Morgan Creek WT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.479 0.505 0.000 

Spring Creek WT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Nottawa Creek W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.998 0.000 

Hasler Creek W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

North Branch 

Thunder Bay 

River 

W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Count 
 

0 0 0 0 0 0 0 0 0 16 5 
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Table 2.7: Models and average r for streams with one and two years of data. 

 

Years of data Model 10 Model 11 Model 9 Model 8 

1 0.66 0.55 0.61 0.62 

2 0.58 0.44 0.52 0.55 
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Table 2.8: Overall root-mean-square error (RMSE) (°C) between observed and predicted values 

of downstream temperature flux for each of the four best models (M8, M9, M10, and M11) 

across each of the 21 streams over 2015 and 2016. 

 

 
RMSE 

Stream M10 M11 M9 M8 

Cedar Creek 0.07 0.07 0.07 0.07 

Cedar River 0.19 0.22 0.21 0.20 

East Branch Black River 0.09 0.09 0.09 0.09 

Pigeon River 0.07 0.07 0.07 0.07 

Pokagon Creek 0.08 0.10 0.10 0.09 

Prairie River 0.15 0.17 0.15 0.15 

Fish Creek 0.04 0.04 0.04 0.05 

Middle Branch Tobacco River 0.07 0.07 0.07 0.10 

Butterfield Creek 0.12 0.13 0.13 0.12 

Slapneck Creek 0.22 0.25 0.22 0.22 

Squaw Creek 0.46 0.47 0.46 0.46 

Middle Branch Escanaba River 0.07 0.13 0.11 0.08 

Carp River 0.06 0.07 0.06 0.06 

Swan Creek 0.38 0.42 0.39 0.40 

Honeyoey Creek 0.12 0.13 0.12 0.12 

King Creek 0.10 0.11 0.10 0.10 

Morgan Creek 0.34 0.37 0.34 0.34 

Spring Creek 0.30 0.30 0.30 0.31 

Nottawa Creek 0.08 0.09 0.08 0.08 

Hasler Creek 0.07 0.07 0.07 0.08 

North Branch Thunder Bay River 0.08 0.07 0.08 0.08 

Average 0.12 0.13 0.12 0.12 
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Table 2.9: Compared performances of the four best models using root-mean-square error 

(RMSE) (°C) between observed and predicted values of downstream temperature flux across 

each of the 21 streams. 

 

Model May June July August September October November 2015 2016 

M10 0.14 0.12 0.13 0.11 0.11 0.10 0.09 0.10 0.12 

M11 0.15 0.14 0.14 0.12 0.11 0.11 0.11 0.11 0.13 

M9 0.15 0.13 0.13 0.12 0.11 0.11 0.10 0.11 0.12 

M8 0.15 0.13 0.13 0.12 0.11 0.10 0.09 0.10 0.12 
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Table 2.10: Overall root-mean-square error (RMSE) (°C) between observed and predicted values 

of downstream temperature flux for each of the four best models (M8, M9, M10 and M11) across 

each of the four thermal classes. 

 

 
RMSE 

Thermal Class M10 M11 M9 M8 

C 0.06 0.06 0.06 0.06 

CT 0.11 0.13 0.12 0.12 

WT 0.16 0.17 0.16 0.16 

W 0.10 0.10 0.10 0.10 
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Table 2.11: Maximum and minimum values of downstream temperature flux rates (°C/km) for observed and predicted values of each 

of the four best models. 

 

 
Observed Model 10 Model 11 Model 9 Model 8 

Stream Max Min Max Min Max Min Max Min Max Min 

Cedar Creek 0.14 -0.19 0.09 -0.07 0.11 -0.07 0.08 -0.09 0.10 -0.07 

Cedar River 0.66 -0.41 0.47 -0.15 0.30 0.03 0.32 -0.15 0.38 -0.12 

East Branch Black 

River 
0.14 -0.10 0.09 0.00 0.09 0.01 0.09 -0.01 0.07 0.00 

Pigeon River 0.04 -0.06 0.01 -0.03 0.01 -0.03 0.01 -0.03 0.01 -0.02 

Pokagon Creek 0.19 -0.12 0.05 -0.01 0.04 -0.02 0.04 -0.02 0.05 -0.01 

Prairie River 0.08 -0.08 0.06 -0.05 0.04 -0.07 0.05 -0.04 0.06 -0.05 

Fish Creek 0.06 -0.03 0.03 -0.01 0.07 -0.01 0.03 -0.01 0.03 -0.02 

Middle Branch 

Tobacco River 
0.14 -0.05 0.11 -0.03 0.13 -0.01 0.11 -0.03 0.10 -0.04 

Butterfield Creek 0.04 -0.13 0.07 -0.10 0.05 -0.07 0.05 -0.08 0.07 -0.09 

Slapneck Creek 0.65 -0.51 0.56 -0.19 1.50 -0.11 0.51 -0.17 0.58 0.09 

Squaw Creek 1.74 -0.53 0.81 -0.29 2.08 -0.98 0.80 -0.29 0.80 -0.27 

Middle Branch 

Escanaba River 
0.06 -0.06 0.04 -0.05 0.01 -0.04 0.02 -0.05 0.03 -0.04 

Carp River 0.14 -0.09 0.06 -0.02 0.08 -0.03 0.06 -0.02 0.06 -0.02 

Swan Creek 0.52 -0.35 0.30 -0.22 0.21 -0.10 0.25 -0.17 0.28 -0.16 

Honeyoey Creek 0.09 -0.04 0.09 -0.03 0.10 -0.02 0.09 -0.03 0.09 -0.03 

King Creek 0.07 -0.07 0.04 -0.02 0.11 -0.10 0.04 -0.03 0.04 -0.03 

Morgan Creek 1.51 -1.43 0.41 -0.68 0.39 -1.14 0.42 -0.70 0.39 -0.68 

Spring Creek 0.52 -0.86 0.17 -0.20 0.23 -0.21 0.18 -0.20 0.17 -0.20 

Nottawa Creek 0.03 -0.13 -0.01 -0.10 -0.03 -0.11 -0.02 -0.10 -0.01 -0.09 

Hasler Creek 0.02 -0.08 0.01 -0.06 0.02 -0.06 0.01 -0.06 0.02 -0.05 

North Branch 

Thunder Bay River 
0.09 -0.05 0.06 -0.03 0.09 -0.02 0.05 -0.03 0.07 -0.03 

Average 0.17 -0.14 0.10 -0.07 0.14 -0.08 0.09 -0.06 0.09 -0.06 
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Table 2.12: Residuals of observed downstream temperature fluxes and model predictions of the 1
st
 and 99

th
 percentiles. 

 

 
Observed - Predicted 

 
Model 10 Model 11 Model 9 Model 8 

Stream P01 P99 P01 P01 P01 P99 P01 P01 

Cedar Creek -0.07 0.05 -0.07 0.05 -0.07 0.05 -0.07 0.05 

Cedar River -0.39 0.30 -0.40 0.38 -0.42 0.34 -0.40 0.33 

East Branch Black River -0.09 0.07 -0.09 0.07 -0.09 0.07 -0.10 0.07 

Pigeon River -0.03 0.03 -0.03 0.03 -0.03 0.03 -0.03 0.03 

Pokagon Creek -0.07 0.09 -0.07 0.09 -0.07 0.09 -0.07 0.09 

Prairie River -0.05 0.05 -0.06 0.07 -0.05 0.05 -0.05 0.05 

Fish Creek -0.02 0.02 -0.02 0.01 -0.02 0.02 -0.02 0.02 

Middle Branch Tobacco River -0.04 0.04 -0.04 0.03 -0.04 0.04 -0.04 0.05 

Butterfield Creek -0.06 0.01 -0.06 0.02 -0.06 0.01 -0.10 0.03 

Slapneck Creek -0.41 0.28 -0.49 0.28 -0.44 0.29 -0.40 0.29 

Squaw Creek -0.65 0.93 -0.73 0.77 -0.65 0.93 -0.65 0.93 

Middle Branch Escanaba River -0.01 0.03 -0.04 0.05 -0.03 0.04 -0.02 0.03 

Carp River -0.06 0.06 -0.06 0.07 -0.06 0.06 -0.06 0.07 

Swan Creek -0.26 0.35 -0.31 0.38 -0.28 0.36 -0.28 0.37 

Honeyoey Creek -0.04 0.01 -0.04 0.02 -0.04 0.01 -0.04 0.02 

King Creek -0.06 0.03 -0.05 0.04 -0.06 0.04 -0.06 0.03 

Morgan Creek -0.77 0.87 -0.86 0.91 -0.77 0.87 -0.78 0.86 

Spring Creek -0.61 0.47 -0.60 0.44 -0.61 0.47 -0.60 0.48 

Nottawa Creek -0.36 0.11 -0.36 0.12 -0.36 0.11 -0.36 0.11 

Hasler Creek -0.02 0.01 -0.02 0.01 -0.02 0.02 -0.02 0.01 

North Branch Thunder Bay River -0.05 0.04 -0.04 0.03 -0.04 0.04 -0.05 0.04 

Average -0.11 0.09 -0.12 0.10 -0.11 0.10 -0.11 0.10 
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Table 2.13: Partial R
2
 values of each variable included in Model 10. Values reflect the influence of each variable on downstream 

temperature flux rates. Ta = air temperature (°C); Tw = water temperature (°C); Qup = upstream discharge (cms); Qdown = downstream 

discharge; S = day length (hr); ΔTup = upstream heat energy (°C); ΔTbase = baseflow heat energy (°C); ΔTover = overland flow heat 

energy (°C); α = sun altitude angle (°). 

 

 
Partial R

2
 

Variable Ta - Tw Qup Qdown - Qup S ΔTup ΔTbase ΔToverland α 

Overall 0.04 0.03 0.02 0.09 0.03 0.04 0.05 0.07 

 

Table 2.14: Partial R
2
 values averaged over thermal class. Ta = air temperature (°C); Tw = water temperature (°C); Qup = upstream 

discharge (cms); Qdown = downstream discharge; S = day length (hr); ΔTup = upstream heat energy (°C); ΔTbase = baseflow heat energy 

(°C); ΔTover = overland flow heat energy (°C); α = sun altitude angle (°). 

 

 
Partial Regression 

Thermal Class Ta - Tw Qup Qdown - Qup S ΔTup ΔTbase ΔToverland α 

C 0.02 0.01 0.00 0.14 0.01 0.01 0.02 0.06 

CT 0.04 0.05 0.02 0.12 0.04 0.04 0.05 0.10 

WT 0.08 0.01 0.05 0.04 0.02 0.09 0.07 0.02 

W 0.01 0.02 0.01 0.04 0.00 0.02 0.02 0.08 
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Table 2.15: Type III sums of squared errors for a model testing only for thermal class as a fixed effect on downstream temperature 

flux rates using GLM. 

 

 

 

  

Source DF Type III SS Mean Square F Value Pr > F 

Thermal Class 3 210.10 70.03 1004.89 <.0001 

Ta - Tw 1 157.48 157.48 2259.62 <.0001 

Qup 1 3.79 3.79 54.37 <.0001 

Qdown - Qup 1 20.06 20.06 287.89 <.0001 

S 1 96.01 96.01 1377.65 <.0001 

α 1 55.80 55.80 800.70 <.0001 

ΔTup 1 24.24 24.24 347.83 <.0001 

ΔTbase 1 13.23 13.23 189.79 <.0001 

ΔToverland 1 103.18 103.18 1480.57 <.0001 
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Table 2.16: Type III sums of squared errors for a model testing for both thermal class as a fixed effect and individual stream reach as a 

random effect on downstream temperature flux rates using GLM. 

 

 

 

  

Source DF Type III SS Mean Square F Value Pr > F 

Thermal Class 0 0.00 . . . 

Stream 16 1744.81 109.05 2102.80 <.0001 

Ta - Tw 1 56.51 56.51 1089.75 <.0001 

Qup 1 0.03 0.03 0.53 0.4668 

Qdown - Qup 1 22.42 22.42 432.23 <.0001 

S 1 19.70 19.70 379.78 <.0001 

α 1 19.46 19.46 375.25 <.0001 

ΔTup 1 63.86 63.86 1231.38 <.0001 

ΔTbase 1 48.73 48.73 939.66 <.0001 

ΔToverland 1 31.69 31.69 611.04 <.0001 
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Table 2.17: Variance accounted for by each model from Tables 2.15 and 2.16. 

 

  r Coeff Var Root MSE ΔT Mean 

Thermal Class 0.30 1129.90 0.26 0.02 

Stream 0.57 974.69 0.23 0.02 
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Table 2.18: Diagnostics comparing observed values of downstream temperature flux (°C/km) with predicted values using Model 10 

optimized specifically across thermal classes and across the stream network as a whole. Observed and Predicted refer to mean values 

of downstream temperature flux across the entire study period for each stream reach. 

 

  
Composite Thermal Class 

Stream Observed Predicted r SSE RMSE Predicted r SSE RMSE 

Cedar Creek 0.02 -0.03 0.06 55 0.12 0.02 0.74 19 0.07 

C
o
ld

 

Cedar River 0.22 0.09 0.49 405 0.24 0.22 0.47 277 0.20 

East Branch Black 

River 
0.09 0.15 0.17 38 0.12 0.09 0.14 26 0.10 

Pigeon River -0.06 0.01 0.42 72 0.10 0.01 0.37 74 0.11 

C
o
ld

-tran
sitio

n
al 

Pokagon Creek 0.07 0.06 0.19 74 0.11 0.06 0.29 65 0.10 

Prairie River 0.04 0.00 0.23 182 0.17 0.00 0.19 191 0.18 

Fish Creek 0.04 -0.01 -0.11 53 0.09 -0.02 -0.24 61 0.10 

Middle Branch 

Tobacco River 
0.13 0.09 0.09 88 0.16 0.09 0.16 83 0.15 

Butterfield Creek -0.11 -0.02 0.63 257 0.19 -0.03 0.55 258 0.19 

Slapneck Creek 0.17 0.14 0.17 260 0.30 0.16 0.21 245 0.29 

Squaw Creek 0.57 0.00 0.12 1620 0.77 0.07 0.20 1411 0.72 

Middle Branch 

Escanaba River 
-0.01 -0.02 0.34 49 0.12 -0.02 0.36 49 0.12 

Carp River 0.02 0.00 -0.23 108 0.13 0.02 -0.24 86 0.12 

Swan Creek 0.10 0.04 0.31 598 0.43 0.00 0.27 621 0.43 

W
arm

-

tran
sitio

n
al 

Honeyoey Creek 0.18 0.01 0.27 192 0.24 0.10 0.65 86 0.16 

King Creek 0.07 0.01 0.24 53 0.13 0.02 0.39 44 0.12 

Morgan Creek -0.17 0.02 -0.36 1973 0.58 0.13 0.00 1894 0.56 

Spring Creek -0.04 -0.09 0.13 625 0.34 0.13 0.08 906 0.42 

Nottawa Creek -0.71 0.00 0.30 3899 0.79 -0.17 0.25 2632 0.65 W
arm

 

Hasler Creek -0.17 -0.05 0.72 80 0.16 -0.16 0.76 23 0.09 

North Branch Thunder 

Bay River 
0.08 0.02 0.55 37 0.11 0.03 0.33 43 0.12 
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Table 2.19: Diagnostics comparing observed values of downstream temperature flux (°C/km) with predicted values using Model 10 

optimized specifically across thermal classes and across the stream network as a whole. Results are averaged among streams within 

thermal classes. 

 

  
Composite Thermal Class 

Thermal 

Class 
Observed Predicted r SSE RMSE Predicted r SSE RMSE 

C 0.11 0.07 0.24 166 0.16 0.11 0.45 107 0.12 

CT 0.09 0.03 0.19 276 0.22 0.04 0.19 252 0.21 

WT 0.03 0.00 0.12 688 0.34 0.08 0.28 711 0.34 

W -0.27 -0.01 0.52 1339 0.35 -0.10 0.45 900 0.28 
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Table 2.20: Average monthly downstream temperature flux rates (°C/km) for baseflow reduction scenarios using Model 10. 

 

 
July August September October 

Stream 0% 50% 90% 0% 50% 90% 0% 50% 90% 0% 50% 90% 

Cedar Creek 0.08 -0.10 -0.46 0.07 -0.11 -0.51 -0.04 -0.19 -0.47 -0.10 -0.21 -0.36 

Cedar River 0.25 0.29 0.40 0.20 0.24 0.33 0.14 0.21 0.25 0.07 0.12 0.13 

East Branch Black 

River 
0.12 0.12 0.12 0.10 0.10 0.10 0.07 0.07 0.07 0.05 0.05 0.05 

Pigeon River -0.04 -0.06 -0.07 -0.05 -0.06 -0.06 -0.08 -0.08 -0.06 -0.06 -0.06 -0.06 

Pokagon Creek 0.13 0.12 0.12 0.10 0.10 0.10 0.06 0.06 0.05 0.01 0.01 0.00 

Prairie River 0.11 0.12 0.13 0.06 0.09 0.12 0.00 0.00 0.06 0.01 0.01 0.03 

Fish Creek 0.08 0.03 -0.02 0.06 0.00 -0.02 0.01 -0.02 -0.03 0.01 -0.01 -0.03 

Middle Branch 

Tobacco River 
0.16 0.16 0.15 0.15 0.14 0.13 0.12 0.11 0.11 0.08 0.07 0.06 

Butterfield Creek -0.16 -0.05 0.08 -0.18 -0.08 0.06 -0.13 -0.07 0.04 -0.01 0.04 0.10 

Slapneck Creek 0.31 0.29 0.28 0.14 0.13 0.12 0.06 0.04 0.02 -0.01 -0.04 -0.05 

Squaw Creek 0.85 1.09 1.16 0.76 0.98 1.20 0.62 0.71 0.80 0.42 0.45 0.47 

Middle Branch 

Escanaba River 
0.09 0.16 0.17 0.01 0.07 0.09 -0.12 -0.08 -0.05 -0.20 -0.15 -0.12 

Carp River 0.01 0.00 -0.01 0.02 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.07 

Swan Creek 0.27 0.25 0.24 0.16 0.16 0.16 0.08 0.06 0.05 0.00 -0.01 0.00 

Honeyoey Creek 0.26 0.24 0.23 0.22 0.22 0.25 0.16 0.18 0.42 0.00 -0.06 -0.14 

King Creek 0.15 0.14 0.13 0.11 0.10 0.09 0.07 0.07 0.07 0.02 0.02 0.02 

Morgan Creek -0.31 -0.49 -0.62 -0.20 -0.44 -0.63 -0.05 -0.25 -0.54 -0.15 -0.35 -0.62 

Spring Creek -0.10 -0.10 -0.09 -0.12 -0.10 -0.03 -0.05 -0.01 0.01 0.07 0.09 0.10 

Nottawa Creek -0.23 -0.21 -0.19 -0.19 -0.18 -0.17 -0.20 -0.19 -0.18 -0.14 -0.13 -0.13 

Hasler Creek -0.26 -0.25 -0.16 -0.26 -0.26 -0.11 -0.19 -0.18 -0.03 -0.08 -0.08 0.04 

North Branch 

Thunder Bay River 
0.15 0.15 0.15 0.13 0.13 0.13 0.06 0.06 0.06 0.05 0.05 0.04 
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Table 2.21: Average monthly downstream temperature flux rates (°C/km) of thermal classes for baseflow reduction scenarios using 

Model 10. 

 

 July August September October 

Thermal Class 0% 50% 90% 0% 50% 90% 0% 50% 90% 0% 50% 90% 

Cold 0.50 0.33 0.55 0.48 0.32 0.53 0.45 0.35 0.41 0.42 0.34 0.30 

Cold-transitional 0.22 0.33 0.41 0.05 0.16 0.25 -0.06 0.00 0.07 -0.11 -0.08 -0.04 

Warm-transitional 0.33 0.32 0.40 0.47 0.52 0.59 0.67 0.68 0.81 1.85 1.74 1.68 

Warm -0.84 -0.57 -0.25 -0.65 -0.53 -0.35 -0.80 -0.69 -0.43 -0.77 -0.69 -0.58 
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Table 2.22: August mean values used for predicting downstream temperature flux using Model 10. Ta = air temperature (°C); Tw = 

water temperature (°C); Qup = upstream discharge (cms); Qdown = downstream discharge; S = day length (hr); ΔTup = upstream heat 

energy (°C); ΔTbase = baseflow heat energy (°C); ΔTover = overland flow heat energy (°C); α = sun altitude angle (°). 

 

Site 

Reach 

length 

(km) 

Ta – Tw (C) Qup Qdown - Qup S α ΔTbase ΔTover ΔTup 

Cedar Creek 2.55 5.07 0.09 0.36 14.32 20.28 -9.81 -13.92 -12.56 

Cedar River 1.93 6.50 1.33 0.42 14.38 19.98 -10.96 -13.19 -3.38 

East Branch Black River 2.88 5.07 0.68 -0.04 14.38 19.86 -1.51 -1.50 -0.01 

Pigeon River 6.55 3.14 0.44 0.15 14.20 20.26 -11.69 -12.11 -4.25 

Pokagon Creek 4.05 2.95 0.45 0.00 14.13 20.66 -4.14 -3.54 -0.73 

Prairie River 5.86 3.25 0.17 0.06 14.12 20.58 -11.31 -13.79 -6.28 

Fish Creek 5.19 1.86 0.95 0.11 14.23 20.33 -11.65 -15.74 -4.95 

Middle Branch Tobacco 

River 
4.09 4.76 0.51 0.02 14.29 20.17 -10.14 -9.47 -0.78 

Butterfield Creek 6.01 2.59 0.06 0.10 14.31 20.00 -13.02 -15.04 -11.57 

Slapneck Creek 1.56 1.54 0.27 1.03 14.27 19.08 -16.50 -8.74 -13.43 

Squaw Creek 1.44 1.92 0.02 0.03 14.26 18.91 -16.83 -11.47 -8.51 

Middle Branch Escanaba 

River 
6.13 -2.12 0.70 0.30 14.50 19.59 -14.56 -19.05 -6.47 

Carp River 2.61 0.83 1.62 -0.23 14.50 19.48 -5.90 -6.20 -0.86 

Swan Creek 2.54 0.54 0.40 0.00 13.98 19.82 -15.07 -14.90 -0.37 

Honeyoey Creek 6.64 2.28 0.04 0.03 14.25 20.24 -6.84 -19.32 -10.52 

King Creek 5.82 -8.15 0.00 0.00 14.37 19.88 -7.53 -8.03 -2.01 

Morgan Creek 0.91 -0.14 0.10 0.03 14.51 19.49 -15.57 -16.54 -4.56 

Spring Creek 1.53 -0.46 0.06 0.09 14.48 19.50 -14.61 -17.73 -12.76 

Nottawa Creek 3.76 -0.84 0.68 -0.05 14.13 20.54 -5.77 -8.96 -3.94 

Hasler Creek 7.59 -0.91 0.02 0.05 13.99 20.98 -13.34 -22.79 -16.45 

North Branch Thunder 

Bay River 
4.63 -9.31 0.34 -0.06 14.39 19.85 -0.07 -0.07 0.00 



125 

 

Table 2.23: August mean values used for predicting downstream temperature flux using the Zorn et al. (2008) model. 

 

Site 
Reach 

length (km) 
Qup (cms) Ta (°C) Tw (°C) Depth (m) Velocity (m/s) 

Cedar Creek 2.55 0.09 20.86 15.79 0.17 0.16 

Cedar River 1.93 1.33 20.43 13.93 0.42 0.36 

East Branch Black River 2.88 0.68 21.64 16.57 0.60 0.15 

Pigeon River 6.55 0.44 21.47 18.34 0.48 0.10 

Pokagon Creek 4.05 0.45 21.45 18.50 0.44 0.15 

Prairie River 5.86 0.17 21.25 18.00 0.20 0.09 

Fish Creek 5.19 0.95 20.99 19.13 0.46 0.13 

Middle Branch Tobacco 

River 
4.09 0.51 22.72 17.96 0.29 0.33 

Butterfield Creek 6.01 0.06 20.33 17.74 0.31 0.04 

Slapneck Creek 1.56 0.27 19.68 18.14 0.29 0.17 

Squaw Creek 1.44 0.02 19.63 17.71 0.28 0.02 

Middle Branch Escanaba 

River 
6.13 0.70 16.93 19.05 0.42 0.13 

Carp River 2.61 1.62 18.98 18.14 0.33 0.53 

Swan Creek 2.54 0.40 21.93 21.39 0.39 0.11 

Honeyoey Creek 6.64 0.04 22.41 20.13 0.33 0.04 

King Creek 5.82 3.95 e-03 10.34 18.49 0.13 0.01 

Morgan Creek 0.91 0.10 18.98 19.12 0.21 0.11 

Spring Creek 1.53 0.06 18.76 19.21 0.29 0.03 

Nottawa Creek 3.76 0.68 21.55 22.39 0.28 0.21 

Hasler Creek 7.59 0.02 22.14 23.05 0.22 0.02 

North Branch Thunder Bay 

River 
4.63 0.34 10.34 19.65 0.37 0.10 
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Table 2.24: Observed August downstream temperature flux rates (°C/km) for each of the stream 

reaches and the predicted rates of Model 10 and the Zorn et al. (2008) model under a 0% 

reduction scenario. 

 

 
°C/km 

Stream Observed M10 
 Zorn et al. (2008) 

model 

Cedar Creek 0.07 0.07 4.21 

Cedar River 0.24 0.20 1.81 

East Branch Black River 0.11 0.10 11.67 

Pigeon River -0.04 -0.05 5.48 

Pokagon Creek 0.11 0.10 3.59 

Prairie River 0.06 0.06 2.53 

Fish Creek 0.06 0.06 1.65 

Middle Branch Tobacco River 0.16 0.15 0.65 

Butterfield Creek -0.15 -0.18 17.74 

Slapneck Creek 0.16 0.14 2.45 

Squaw Creek 0.77 0.76 106.64 

Middle Branch Escanaba River -0.01 0.01 -1.77 

Carp River 0.03 0.02 0.05 

Swan Creek 0.21 0.16 1.52 

Honeyoey Creek 0.24 0.22 13.48 

King Creek 0.12 0.11 -221.41 

Morgan Creek -0.19 -0.20 -0.79 

Spring Creek -0.07 -0.12 -12.06 

Nottawa Creek -0.22 -0.19 -0.22 

Hasler Creek -0.26 -0.26 -8.93 

North Branch Thunder Bay River 0.16 0.13 -15.85 
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Table 2.25: Average August downstream temperature flux rates (°C/km) experienced by each of 

the four stream thermal classifications and the estimated rates using Model 10 and the Zorn et al. 

(2008) model (King Creek and Squaw Creek excluded from Zorn et al. (2008) model estimates). 

 

Thermal Class Observed M10 Zorn et al. (2008) model 

C 0.14 0.12 5.90 

CT 0.11 0.11 3.60 

WT 0.06 0.03 0.54 

W -0.11 -0.11 -8.33 
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Table 2.26: Predicted downstream temperature flux rates (°C/km) following scenario analysis of baseflow reductions of 10% 

increments using Model 10. 

 

 
°C/km 

Stream 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Cedar Creek 0.07 0.04 0.01 -0.02 -0.06 -0.11 -0.17 -0.25 -0.36 -0.51 

Cedar River 0.20 0.21 0.21 0.22 0.23 0.24 0.26 0.28 0.30 0.33 

East Branch Black River 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Pigeon River -0.05 -0.05 -0.05 -0.06 -0.06 -0.06 -0.07 -0.06 -0.06 -0.06 

Pokagon Creek 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Prairie River 0.06 0.06 0.07 0.07 0.08 0.09 0.09 0.10 0.11 0.12 

Fish Creek 0.06 0.05 0.05 0.03 0.01 0.00 0.00 0.00 -0.01 -0.02 

Middle Branch Tobacco River 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 

Butterfield Creek -0.18 -0.17 -0.15 -0.13 -0.11 -0.08 -0.05 -0.03 0.01 0.06 

Slapneck Creek 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.12 0.12 

Squaw Creek 0.76 0.80 0.84 0.88 0.93 0.98 1.03 1.08 1.14 1.20 

Middle Branch Escanaba River 0.01 0.02 0.03 0.04 0.06 0.07 0.08 0.08 0.09 0.09 

Carp River 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 

Swan Creek 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.16 0.16 0.16 

Honeyoey Creek 0.22 0.24 0.26 0.26 0.25 0.22 0.22 0.24 0.24 0.25 

King Creek 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.09 

Morgan Creek -0.20 -0.24 -0.28 -0.33 -0.38 -0.44 -0.52 -0.55 -0.59 -0.63 

Spring Creek -0.12 -0.12 -0.12 -0.11 -0.11 -0.10 -0.08 -0.07 -0.05 -0.03 

Nottawa Creek -0.19 -0.19 -0.19 -0.19 -0.19 -0.18 -0.18 -0.18 -0.18 -0.17 

Hasler Creek -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.24 -0.22 -0.18 -0.11 

North Branch Thunder Bay River 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 
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Table 2.27: Predicted downstream temperature flux rates (°C/km) following scenario analysis of baseflow reductions of 10% 

increments using the Zorn et al. (2008) model. 

 

 
°C/km 

Stream 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Cedar Creek 4.21 4.48 4.81 5.21 5.72 6.39 7.32 8.74 11.25 17.45 

Cedar River 1.81 1.91 2.03 2.18 2.37 2.61 2.95 3.45 4.33 6.43 

East Branch 

Black River 
11.67 12.21 12.85 13.60 14.51 15.66 17.17 19.28 22.59 29.15 

Pigeon River 5.48 5.71 5.97 6.27 6.64 7.09 7.66 8.45 9.64 11.96 

Pokagon Creek 3.59 3.77 3.98 4.23 4.54 4.94 5.46 6.20 7.39 9.85 

Prairie River 2.53 2.67 2.83 3.02 3.26 3.57 3.98 4.57 5.54 7.64 

Fish Creek 1.65 1.74 1.83 1.94 2.08 2.26 2.49 2.82 3.35 4.45 

Middle Branch 

Tobacco River 
0.65 0.69 0.73 0.79 0.86 0.96 1.09 1.30 1.66 2.56 

Butterfield Creek 17.74 18.24 18.82 19.52 20.40 21.54 23.12 25.53 29.92 42.38 

Slapneck Creek 2.45 2.59 2.75 2.95 3.21 3.53 3.98 4.63 5.74 8.26 

Squaw Creek 106.64 110.40 114.92 120.52 127.70 137.38 151.43 174.44 221.96 415.44 

Middle Branch 

Escanaba River 
-1.77 -1.86 -1.96 -2.08 -2.23 -2.42 -2.67 -3.02 -3.58 -4.72 

Carp River 0.05 0.05 0.05 0.06 0.06 0.07 0.08 0.09 0.12 0.18 

Swan Creek 1.52 1.59 1.67 1.77 1.89 2.04 2.24 2.51 2.94 3.80 

Honeyoey Creek 13.48 13.89 14.39 14.98 15.74 16.73 18.13 20.31 24.47 37.64 

King Creek -221.41 -240.91 -267.21 -304.95 -364.37 -473.47 -747.38 -2940.45 -2.E+148 -6.E+56 

Morgan Creek -0.79 -0.83 -0.88 -0.95 -1.02 -1.12 -1.25 -1.44 -1.75 -2.46 

Spring Creek -12.06 -12.40 -12.80 -13.28 -13.88 -14.66 -15.74 -17.38 -20.39 -28.97 

Nottawa Creek -0.22 -0.23 -0.25 -0.26 -0.29 -0.32 -0.36 -0.42 -0.53 -0.78 

Hasler Creek -8.93 -9.25 -9.64 -10.13 -10.75 -11.59 -12.82 -14.85 -19.12 -37.60 

North Branch 

Thunder Bay 

River 

-15.85 -16.58 -17.43 -18.44 -19.65 -21.18 -23.17 -25.94 -30.24 -38.84 
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Table 2.28: Parameterized beta coefficients associated with each stream reach to estimate downstream temperature flux using Model 

10. Ta = air temperature (°C); Tw = water temperature (°C); Qup = upstream discharge (cms); Qdown = downstream discharge; S = day 

length (hr); ΔTup = upstream heat energy (°C); ΔTbase = baseflow heat energy (°C); ΔTover = overland flow heat energy (°C); α = sun 

altitude angle (°). 

 

Site Thermal Class intercept Ta – Tw Qup Qdown – Qup S α ΔTup ΔTbase ΔTover 

Cedar Creek C -2.732 -0.008 4.463 0.107 0.107 
-

0.001 

-

0.128 
0.128 -0.045 

Cedar River C -0.672 0.014 -0.277 0.076 0.128 
-

0.005 
0.025 -0.003 0.029 

East Branch Black 

River 
C -0.105 -0.011 -0.241 -0.361 0.033 0.006 0.823 -0.912 0.905 

Pigeon River CT -1.248 0.042 0.127 0.145 0.089 
-

0.006 

-

0.048 
0.106 -0.051 

Pokagon Creek CT -1.747 0.005 0.000 -0.345 0.155 
-

0.005 

-

0.084 
0.021 -0.019 

Prairie River CT -2.263 -0.033 -2.910 1.156 0.309 
-

0.013 
0.080 0.002 0.029 

Fish Creek CT -0.335 0.009 0.059 0.038 0.002 0.005 
-

0.022 
0.053 -0.059 

Middle Branch 

Tobacco River 
CT 0.681 0.032 -1.350 0.405 0.006 0.019 

-

0.334 
0.286 -0.278 

Butterfield Creek CT -0.440 0.048 -3.320 -0.286 0.244 
-

0.006 
0.169 0.024 0.112 

Slapneck Creek CT -0.661 -0.017 -2.451 0.195 0.122 0.003 0.020 0.015 -0.010 

Squaw Creek CT 0.918 0.011 -14.190 0.576 -0.025 
-

0.003 
0.201 -0.235 0.119 

Middle Branch 

Escanaba River 
CT -7.020 -0.011 -0.312 -0.301 0.545 

-

0.010 
0.021 0.001 0.010 

Carp River CT 0.283 0.014 -0.029 -0.112 -0.017 
-

0.001 

-

0.056 
0.028 -0.026 

Swan Creek WT -2.471 0.155 -0.179 -1.988 0.249 
-

0.016 

-

0.397 
0.384 -0.359 
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Table 2.28: (cont’d) 

 

Honeyoey Creek WT -0.056 0.101 -4.613 1.750 0.135 
-

0.007 
0.071 0.159 -0.078 

King Creek WT -1.905 -0.012 0.883 -3.095 0.178 
-

0.004 

-

0.015 
0.148 -0.127 

Morgan Creek WT -0.910 0.019 1.666 8.136 0.018 
-

0.002 

-

0.008 
0.077 -0.075 

Spring Creek WT 0.433 -0.032 -0.040 0.597 -0.024 0.003 0.009 0.006 0.011 

Nottawa Creek W 0.447 0.002 -0.037 -0.288 -0.073 
-

0.005 
0.006 0.038 -0.024 

Hasler Creek W 0.663 0.000 2.294 5.003 -0.038 0.015 0.035 0.063 0.058 

North Branch 

Thunder Bay 

River 

W -0.784 0.026 -0.369 0.131 0.115 0.005 0.085 0.231 -0.232 

   



132 

 

Table 2.29: Parameterized beta coefficients specific to each thermal class and across all streams to estimate downstream temperature 

flux using Model 10. Ta = air temperature (°C); Tw = water temperature (°C); Qup = upstream discharge (cms); Qdown = downstream 

discharge; S = day length (hr); ΔTup = upstream heat energy (°C); ΔTbase = baseflow heat energy (°C); ΔTover = overland flow heat 

energy (°C); α = sun altitude angle (°). 

 

Thermal Class intercept Ta – Tw Qup Qdown – Qup S α ΔTup ΔTbase ΔTover 

C -1.163 0.005 0.112 0.117 0.098 0.002 0.018 0.046 -0.039 

CT -0.748 0.016 -0.140 0.111 0.090 -0.002 0.049 -0.017 0.027 

WT -1.514 0.019 -0.084 0.795 0.159 -0.002 0.014 0.070 -0.034 

W 0.044 -0.042 -0.279 0.880 -0.014 0.008 0.091 0.016 0.007 

Composite -0.677 0.020 -0.141 0.211 0.088 -0.003 0.045 0.003 0.016 
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Table 2.30: Partial R
2
 values of each variable included in Model 10 for summer months (July and August). Values reflect the influence 

of each variable on downstream temperature flux rates. Ta = air temperature (°C); Tw = water temperature (°C); Qup = upstream 

discharge (cms); Qdown = downstream discharge; S = day length (hr); ΔTup = upstream heat energy (°C); ΔTbase = baseflow heat energy 

(°C); ΔTover = overland flow heat energy (°C); α = sun altitude angle (°). 

 

 
Partial R

2
 

Variable Ta - Tw Qup Qdown - Qup S ΔTup ΔTbase ΔToverland α 

Overall 0.04 0.04 0.01 0.04 0.03 0.05 0.05 0.08 

 

Table 2.31: Partial R
2
 values averaged over thermal class for summer months (July and August). Ta = air temperature (°C); Tw = water 

temperature (°C); Qup = upstream discharge (cms); Qdown = downstream discharge; S = day length (hr); ΔTup = upstream heat energy 

(°C); ΔTbase = baseflow heat energy (°C); ΔTover = overland flow heat energy (°C); α = sun altitude angle (°). 

 

 
Partial Regression 

Thermal Class Ta - Tw Qup Qdown - Qup S ΔTup ΔTbase ΔToverland α 

C 0.02 0.06 0.00 0.04 0.02 0.02 0.01 0.07 

CT 0.05 0.04 0.01 0.06 0.03 0.04 0.06 0.11 

WT 0.04 0.02 0.01 0.02 0.03 0.13 0.09 0.02 

W 0.02 0.08 0.00 0.04 0.00 0.00 0.00 0.09 
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Figure 2.1: Stream gauge locations. 



135 

 

 

 
 

Figure 2.2: Downstream temperature flux rates (°C/km) compared to upstream discharge (m
3
/s) 

for representative stream reaches among each of the four thermal classes. 
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Figure 2.3: Downstream temperature flux rates (
°
C/km) compared to upstream discharge (m

3
/s) 

for all stream reaches within of each of the four thermal classes combined.  
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Figure 2.4: Hourly downstream temperature flux (°C) (Tdown – Tup) represented with individual 

points and overlain by a LOESS regression to provide a smoothed representation of downstream 

temperature flux over time. 
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Figure 2.5: Model 10 predictions of downstream temperature flux rates (°C/km) compared with 

LOESS smoothed observed downstream temperature change for four different streams, one in 

each of the four thermal classes: Cedar River (C), Fish Creek (CT), Honeyoey Creek (WT), 

North Branch Thunder Bay River (W). 
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Figure 2.6: Model 11 predictions of downstream temperature flux rates (°C/km) compared with 

LOESS smoothed observed downstream temperature change for four different streams, one in 

each of the four thermal classes: Cedar River (C), Fish Creek (CT), Honeyoey Creek (WT), 

North Branch Thunder Bay River (W). 
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Figure 2.7: Model 9 predictions of downstream temperature flux rates (°C/km) compared with 

LOESS smoothed observed downstream temperature change for four different streams, one in 

each of the four thermal classes: Cedar River (C), Fish Creek (CT), Honeyoey Creek (WT), 

North Branch Thunder Bay River (W). 
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Figure 2.8: Model 8 predictions of downstream temperature flux rates (°C/km) compared with 

LOESS smoothed observed downstream temperature change for four different streams, one in 

each of the four thermal classes: Cedar River (C), Fish Creek (CT), Honeyoey Creek (WT), 

North Branch Thunder Bay River (W). 
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Figure 2.9: Seasonal structures of error (Obs – Sim) of downstream temperature flux represented 

using LOESS regression for each of the four best models identified using model selection 

criteria. One stream from each of the four thermal classifications is represented: Cedar River (C), 

Fish Creek (CT), Honeyoey Creek (WT), North Branch Thunder Bay River (W). 
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Figure 2.10: Comparison of model fit using a LOESS regression. Using nonlinear optimization, 

Model 10 was parameterized using a composite dataset of the entire stream network, and also 

specific to each thermal class. Model fit was then compared to observed values. 
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Figure 2.11: Baseflow reduction scenarios for example streams. Scenarios of 0%, 50%, and 90% 

baseflow reduction are plotted using LOESS regressions, along with observed values. LOESS 

regressions track seasonal and yearly trends of downstream temperature flux.  
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Figure 2.12: Downstream temperature flux rates in response to baseflow reductions.
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Figure 2.13: Downstream temperature flux rates in response to baseflow reductions. Rates were 

omitted for King Creek and Squaw Creek to maintain an appropriate scale on the y-axis. 
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APPENDIX 2.1 

 

Derivation of net incoming shortwave radiation (Meeus, 1991). 

 

                   
 

   
       

 

I0 = solar irradiation values throughout the year (W/m
2
) 

 

ISC = solar constant (1353 W/m
2
) 

 

N = day of year 

 

             
     

   
       

 

δ = declination angle 

 

                                  
 

LST = local standard time for time zone (adjusted for daylight savings time; LST = DST - 1) 

 

Long = longitude 

 

LSTM = local longitude of standard time meridian 

 

         
    

                   
 

 

                                     
 

ET = equation of time in minutes 

 

      
      

   
 

 

  
                                          

         
 

 

H = hour angle (azimuth angle of sun’s rays caused by earth’s rotation) 

 

                                                 
 

θz = zenith angle 

 

β1 = altitude angle 
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L = latitude 

 

        
                     

              
 

 

α1 = solar azimuth angle 

 

            
 

  

 

       
  

 

IDN = direct normal irradiance to the ground (W/m
2
) 

 

A = apparent extraterrestrial solar intensity (W/m
2
) 

 

B = atmospheric extinction coefficient 

 

p/p0 = pressure at location of interest (atm) 

 
 

  
                  

 

z = altitude above sea level (ft) 

 

                  
 

Hs = net solar heat flux (W/m
2
) 

 

SF = shading factor (%) 

 

α = surface albedo (.1) 
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