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ABSTRACT

APPLICATION OF EARTH OBSERVATION AND RELATED TECHNOLOGY IN AGRO
HYDROLOGICAL MODELING

By
Matthew RianHerman
Freshwater is vital for life on Earth, and as the human population continues to grow so
doesthe demand for this limited resource. However, anthropogenic activitiediematechange
will continue to alter freshwater systenitiereforethere is a need tonderstandhow the
hydrological cycle is changing across the landscape. Traditionaijhdhbeen dondy single
point monitoringstations;however, these stations do not have the spatial variatalitgpture
different aspects dhe hydrologiccyclerequired for detailed analysiSherefore, hydrological
modelsare traditionally calibra&dand validated against a single or a few monitoring stations.
One solution to this issue is the incorporation of remote sensing data. Hotievemper use of
these productéias notbeen well documented hydrological models-urthermore, witlawide
variety of different remote sensirdptasetsit is challenging to know which datasets/products

shouldbe usedvhen.

To address these knowledge gdpsee studiesvere conductedThe firststudy was
performed teexamine whether the incorporation of rentyptEnsed and spatially distributed
datasets can improve the overall model performance. In this stwedgpplicability otwo
remote sensing actual evapotranspora(ETa) products (the Simplified Surface Energy Balance
(SSEBop) and the Atmospheltand Exchaange Inverse (ALEXI)) werexamined to improvéhe
performance of a hydrologic model usitvgp different calibration techniques (genetic algorithm

and multtvariable). Results from this study showed ttie inclusion of ETa remote sensing



data along wth the multivariable calibration technigumuld improve the overall performance

of a hydrological model

The second studgvaluate thespatial and temporal perfoance of eighETa remote
sensingoroductsn a region that lacks observed data. The retgyaensed datasets were further
compared with ETa results from a physicdigsed hydrologic model to examine the differences
and describe discrepancy among them. All of these datasets were compared tieasghaf
the Generalized Leas$quare estimatinwith Autoregressive modeteat comparetheETa
datasets on temporal (i.e., monthly and seasonal basis) and spatlah(@esg scales at both
watershed andubbasirevels.Results showed a lack oftperns among the datasets when
evaluating the mnthly ETa variations; however, the seasonal aggregated data presented a better
pattern andewervariancesandstatistical difference at the 0.05 level during spring and summer
compare to fall and winter maths. Meanwhile, spatial analysis of the datmséowed that the
MOD16A2 500 m ETa product was the most versatile of the tested datasets, being able to
differentiate betweelandusesluring all seasong:inally, the ETa output of the model was
found to besimilar to several of the ETa products (MODIBA kn, NLDAS-2: Noah, and
NLDAS-2: VIC).

Thethird studybuilt upon the first study by expanding the use of remotely sernBad E
productsfrom two to eight whileexamininga newcalibrationtechnique whichwasthe many
objectiveoptimization The resultof this analysis show that the mutibjective calibration still
resulted in better performing models compared to the rohjgctive calibration. Furthermore,
the ensemble of all of tieTaproductsproduced the best performing modehsidering both

streanflow and evapotranspiration
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1. INTRODUCTION

As we adwance into the Zicentury the Earth and human civilizat are facedvith
numeous globakhallenges. One of the most pressing cha#terigglobal watersecurityandthe
first step to address this challengéasinderstand telements othe hydrologrcal cycle that
directly or indirectly impacts global watsecurity.Historically, streamfbw was the only
element othe hydrologicalcycle thathas been measureat large scale. This hasbeen done
through the use of monitorirgjations; in fact, the Uted States Geological Survey (USGS)
operate®verl.5 million monitoring sites@oss the Wited States (USGS, 2016a). However,
these sttons are often expensive to tab and maintain and often are too spread out across the
landscape to provideigh reslution data for stakeholders, policy makers, aledisionmakers
(Wanders et al 2014).This has led to the development of modelinght@ques that are fast,
inexpensie, and carstimate different elements thfe hydrologicalcycle beyond the sitesf
streamflow monitoring station&siri et al., 2016)However since the hydrologa cycleis
complex with many linked processessitvery challenging to accurately sirtate all of ther
elementgGuerrero et al., 2013). Thereégithe first step in modsktup is taassurghatthose
elementsare accuraly representedby the modelThiswill be done throughhe model
calibration process which the model parameteaseadjusedto simulate bettethe natural
systems they areyting to describe (Rajibtal., 2016). Typically, hydrological modeling
calibration & performed by only ewidering s'eamflow since it can be measured more
accuraely than the other componentsitnerzeel and Droogers, 2008; Rajib et al., 2016).
However,since streamflow is juone component of the much larger, complex hydrological
cycle, considering just stiamflow inmodel calibration could result in poor simutets of other

hydrologic componets lowering the overall model performance (Wanders €2@l14). One



solution tothiswould be to include additional hydrological componenthacalibration
process (Crow etl., 2003).In this regardevapotranspiratio(ET) would be an important
addtion to the calibration process since it accountsvi@rthirdsof the water ona&thand plays
a major role in the cycling of water from landd ocean surface sa@es into tle atmosphere
(Hanson, 1991). However, very festudies explore the addition Bff to hydrological model

calibration in addition to the tditional streamflow calbration.

Remote sensing definedas the science of identihg, observing, and easuring an
object without physical contact (Graham, 1R9/ith the advancements in siiite technology,
remotely sensed satellite ddtasbecomea common source of castent monitoring for the
entire globe, with applications raing from crop yieldsd water resurces assessments (Graham,
1999; Long et al.2014).Meanwhile, in the pasefv decades, many remotely sensed ET
products have become aadble at different spgal and temporal resolutionklowever, it is
important to nat that while remote ssing datasolves the issue of data quantity, the acouadc
this data is lower compared on the ground monitoring stations and often has a higher of
uncertainty asogated with it(Zhangetal., 2016. The limitationsassocated with the remotely
sensediata makethe implantation ofemotely sensed Eproductsn hydrological modelig a
challenging taskTherefore, thislissertatioraims to avance understandirgf the following

knowledge gaps:

Knowledge Gap 170 understantheapplicabilityof different cdibration techniques in a

hydrologic model whe both remotely sensed ET antesimflow data are involved.

KnowledgeGap2: To exanine thespatial and temporal sensity of different ET

productsn regard tdanduse/landoger and seasonal clireavariabilties



To addresshe knowledge gap the following objectives were developgd) determine
the performance of a calibrated hgtirgic madel in estimating ET agaihspatially distributed
time series ET products obtainedrh remote sensing; \2leterminehe impact of ET parameter
calibration on seamflow estimation; and (3) ewalte the performances of different calibration

tecmiques fo streamflow and ET estimans

To address the knowledge gap 2 the following obyestivereaxamined (1) explore tte
temporal performance of individual aadersemble remotely sens&l datasés; (2) evaluate
the spatial performance of individual aatensemble remotely sensed datasets;3) compare
the performance of individual restely sensed&T datasés to the asemble and hydrological

model 6s. output s



2. LITERATURE REVIEW

2.10verview

With the continued growth of the human population,demand for freshwater has
increased exponentially, this increase has stressed freshr@sources and led their
degradation (Walters et al., 2009: Young andli@eol 2009; Dos Santos et alQP1; Gri et al.,
2012; Pander and Geist, 2013). This degtiath not only impacts thenvironmenbut also the
humans who rely on these fresherasystems. Furthermmras globbtemperatures rise and the
climate changesuyfther stressors will impact fsewate resources, amplifying the demands and
degradationsmthese limited resourceliéyer et al., 1999; Ridoutt and Pfister, 2010)order
to mitigate the impactsf degradtions andnsurethe sustainability of freshver resources.

However freshwderisj ust a small part of AbdinerddE®@r t hos
truly undestand what is happening within one part of ttysle, it is important to know ow all
thedifferent components interact with each othtéowever with 71% of the Eartlcovered in
water (USGS, 201§, it can be challenging to mitar all parts of the hydiogical cycle.Thisis
where the use of remote sensing barbeneficial. Remotsensing clbects data for the entire
world, from the cormpositionof the atmospheretogh t ype of vegetation on
(Graham, 1999)Another benefit of remoteegsing data is that providesa time series that
allowsfor the evaluation opatterns ad trends that occur over time. The goal o§teviewis to
explore the apptiations of remote sensing in hydrology and identify knowdeglaps within the
field.
2.2 Remote Sensing

Back in 1946, V2 missiles carrying camas were launched intbe atmospére and

captured the first photographs of tharth from space (Reichhardt,38). While the images



captured had poorresolution; they fiered scientists a chante observe the Earth remotely
from spaceThiswas the daw of remote sensingdm space (@ham, 1999)However it was

not until the adent of satellites and the teaflagical advancements made in this field that led to
the exposion ofspacebasedemotk sensing. Today there are dozens of satellites orbiteng t
Earth recording howand wherdhe Earth is changing. From observing weataterns to
monitoring deforesteon, remote sensing has become a vital link in understgriiw
anthropogenic activas shape the surface of the Earth.

Remote sensing is deéd as the science thdentifies observes, and measures an object
without physical contact (Graham, 1999)his means that the earliest forms of remote sensing
began wih the development of camsardHowever, in the modern age, remote sensing utilizes the
entire electromagnetispectrunand not just visible light used in photograg@&raham, 1999).
Everything witha temperature greater than absolute z&83°C) constanglreflects, absorbs,
and enits energy or electromagnetic radiation (Graham, 1999)lé/fidividual compodions
influence how electromagnetic radiation interadth whe object, its temperatuhas the greatest
influence on the emission of electromagoe#diation. As the tempdtae increases, the
wavelength of emitted electromagneatdiation decreasesnd vice vesa (Graham, 1999). The
entire range of electneagnetic wavelengths is knownthg electromagnetic spectrum.

Due to the wide range of walengths found within theectromagnetic spectrum, several
intervalswere definedthese include gammays, xrays,ultraviolet, visible, infrared,
microwaves, ad radio waves (Graham, 1999)ittWgammarays having the smallest wavelength
(measured inipometers) and radio wavlaving the longest wavelength (measured in meters)
(Graham 1999). Of this ent& range, th human eye can only detect wavelengths @dbwithin

the visible categoryNASA, 2010a). Another importarcharacteristiof electromgnetic waves



istheirabilt y t o pass through t he F@raham_ag99arhemos pher ¢

transmissiity is dependent on the atmospheric compasisimce different gasses absorb
different wavelengthslhis createsa setof absorption bargland atmospheric windowlsatt
describe which forms of electromagnetic radiation gass through the atmuasere andnteract
with the surface (Graham, 1999). Bysalving how these sources of iettbn interact with the
atmosphere and the surface of tlatk it is possible to meare the levels of specific gasses or
identifiesregions ofvegetation.

By takinginto accoumt more than just the visible electromagne#idiation, remote
sensings abk toprovide more detailed information about the Earth amal i is changingThis
allows us to surpass the limitations of the human eye arehabpatterns from ghal trendgo
changes within a single farfied (Graham,1999). Furthermore, by colleng repeated time
series of images of the Earth, it is potsito preformtemporal anafsis. This allows us to track
how the Earth is changing evtime and can be u$¢o develp more accurate adaptation
strategies.

2.21 Types of Remote Sensing Insinents

As technology has advanced, a variety of instrumeansleen integratethto remote
sensing. These instruments dandividedinto two cdegories: passive arattive (Gréam,
1999).

Passive remote sensing instrumer@asure the electromagneticiedmn reflected or
emitted by t he Ead999)hlbese ae a vafiety difeererft Gassavéh a m,
instruments used for rertesensingncluding:radiometersimaging raliometers, spectrometers,
and spectroradiomate(Graham, 1999). Radiometeirsaging radiometers, and

spectroradiometers all measure itensity of a specific bahof electromagnetic radiation;



however, whilea radiometeonly measures thetensity, imaging radiometers have the ability to

developa twodimensional array of pixslthat represent the electromagnetic radiation intensity

of the surface it was obsergrandspectroradiometers measure the intgnsiitmultiple

wavelength bands (@ham, 1999)A spectrometer observes the wavelengthsrgoféby

particular surfaces talentify what they are; this is possible since all objeatsract with

electromagneti radiation differently (NASA, 2010b). All dhese instrments are used to

idertifywhatis pr esent on the Eesphere.6s surface or i n
In contrast, active reate sensing instruments emit specific frequencies of

electronagnetic radiation and theneasure the electromagnetic radiatsntis reflectedback

to the instrumen{Graham, 999). There are a variety of different actimstruments used for

remote senang including:radar, scatterometers, Light Detection anddrag (Lidar), and laser

altimeters (4). Radar utilizes the emissionadip or micowaves to determine ofar awayan

object is (Graham, 1999); this can be usedbserve the topography of tkarth as well as track

how surface featurarechanging. Ascatterometer is similar tadar in the sense it uses emitted

microwavesbut is degned to measure badedter radation and can be used to measure winds

over tre oceans (Naderi et al., 1991IraBGam, 1999). Lidar utilizes the emissionadgerpulses

and backscattering/reflectioof the pulses to determine the location dfedent objets such as

aerosols ad clouds Graham, 1999). A laser altimeter utilizersalighowever instead of

determinngthe compositions of what the laser passes through itdietes the height of the

instrument from t he E®)Thikidvery smilar foradarand i€ &sused a m, 1 ¢

to observe t he Ed4dastthardgss thatoquw suchieepldss/of gasiersw e |



2.2.2 Current Remote Sensing Projects

With so many different typeof instruments that carebised for remoteensing, it § no
surprise that the are als@ great number of different remote sensingjguts. Each project has
different primary purposes that can range frimactking the composon on the atmosphere or
measuring the loss of glaciers and ice shddts.following sections describe i@ of thebetter
knownremote sensing projecti$.is important to note that for this disrtationthe remote
sensing products are referred to amydurcts that used remote serg in a direct or indirect

manner to calcuta values sth as potential evapainspiratia.

2.2.2.1 Aqua

The Aqua Eartrobserving sallite mission, launched by thi¢ational Aeronautics and
Space Administration (NASA) in 20020ollects information orhie hydrological cycle of the
Earth as well agadiative eergy fluxes, aerosolsggetatiorcover on the land, phytoplankton
and dissolvd organic matter in the oceams\d air, land, and water temperatures (NASA,
2017Db). In ordeto collect all of this iformation Aqua utilizes an array of six ingtnents: the
Atmospheric Infrared Smder (AIRS, the Advanced Microwave Sounding Unit (AMSA), the
Humidity Sounder for Bral (HSB), the Advanced Microwave Scanning Radiometer foSEO
(AMSR-E), the ModeratdResolution Imaging Spectroradiometer (MODIS)dahe Cloudsand
the Earth's Radid Energy $stem (CERES) (NASA, 2017j). The AIRS instrumhés used to
observe and mapraand surface temperatures, water vapor, and cloud prap@®ASA,
20050. Furthermoe, AIRS can measure trace levels of greenh@asses inhe atmosphere
(NASA, 2005h. TheAMSU-A instrument is used to not only to caltedata on upper
atmosphere tengpatures but also to collect data on atmospheric W84, 20053. The HSB

instrumen is used to collected humidity profiles thghout the ahosphere (NASA, 2017iBy



combiring the observations of the AIRS, AMSA] andHSB it is possible to collect huidity
profiles even when clouds are present (NASA, 20Ttg AMSRE instrument is wed to
collect data on precipitation rates, utbwater, weer vapor, sea surfaegnds, seasurface
temperatures, ice, snow, and soil store (NASA, 2017a)Thiswas dme by observing the
intensity of emitted microwaves fromtkear t hé s s ur f7a).cTke MODNIS S A, 201
instrument is used to collechysical proprties of the atmosphe, oceansand land as well as
biological properties athe oceans and land (NASA, 20hJaThe CERES instrumensused to
collect information ontte electromagneticradiatio r ef | ect ed and emitted f
surface (NASA, 2A.7f). This data can bgsed to ealuate the thermal radiation budget of the
Eartth. The combined observationstbése instruments provide highly detailed information that
is useful tgpolicy makerssince it provides maps of how the Earth is changing ahps hdentify
which regons requie immediate mitigation projects.
2.2.2.2 Aquaius

The Aquarius Project prodedworldwidedata about ocean salinithASA, 20179. This
data was used by scienisb advance our understanding of how changes in thetgadinihe
ocean affead by the fidrological cycle as well as ocean curreN&EA, 20179. Aquarius was
launched on June 10 2011, and remained in operation until J8fe2015 NASA, 2017K.
Throughout its time of operation, Aquarius produced a néwisamap for the wold every
sevendays NASA, 2017adl. To evaluate the sality, three passive microwave iatheters were
used to detect minute changes in the ocedaciemissions that corEmded to the levels of
salt within the waterNASA, 20179. Overall this missionvas succesul in the fact that it

provided more datthanhad been collected before aaitbwed for the advancement of our



understanding of how fsb and salt water interaas well as how the ocean currents and

circulations occur.

2.2.2.3CBERS Series
The CBERSor China BrazilEarth Resource Satellites araseries of satellites developed
jointly between China and Brazil (INPE, 2011@)rrently, three satellitesGBERS1, CBERS
2, and CBERSB) are in orbit capturing images oeth Ear t h 6 shagebeemisadtee t ha't
track deforestation and monitor watesources and urban growth (INP11e). These
satellitesare equippedvith high-resolutionchargecoupled device caenas, an infrared
multispectral scanner (replaced in thBERS2B with a highresolution pachromatic camera),
and a wide field imagerIPE, 2011b). These instrumentspt ur e i mages of 't he
from multiple spectrabands with resolutions rgimg from 260 to 2.7 m(INPE, 2011a)This
allows for veryprecise measuremerdéthe Ealh 6 s s ur f ace fpolcymakersear cher
Given the success of these Hdgs, two additional satellitesOBERS3 andCBERS4) are

secluded tde launchedh the near futur¢NPE, 2011c).

2.2.2.4 CryoSat Series

The mission of the Cyra8 Satellies is to monitor the thickness of the polasisheets
as well as identify gions where the ice sheets are changing (ESA, 2017k). HuSar project
was initiatel in 1999 by the European Space Agency (E®Ajlthe firstsatellitewas launche
in 2005 ESA, 2017k). However, this satelliteas destwyedduring launch. Therefore,rgoSat
2 was built and successfully launched in 2010 (E®A,7R).In order forthis nev satellite to
collect the desiredata it must cover thelistance between 8&drees noht and 88 degrees
south on every orbiiThisis averyunique orbit and requidespecial consideration during the

design process (ESA, 20d)7 The main payload for éhCryoSa® is the Synthetic Aperture
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Interferometric RadaAltimeter, which waspeciallydesigned to detect changes in ice sheets
(ESA, 2017K). In fact, this instrumehcanmeasure changes in ice sheets at an accuracy of 1.5
cm/year over the open ocedBSA, 2017c)Thisprovides researchers with detailed imh@tion

about howthe & r t h Gphereis being affected by seasonal and tiinriabilities.

2.2.2.5 ENVISAT

Launched by the ESA in 2002, the Environmental SagebitENVISAT was the
succesor to European Remote Sensing (ERS) satellites launchibedd 0 (ESA, 201%). The
mainobjective of this satellitevasto continue ad expand the observatiomgingcollectedby
the ERS satellited5SA, 2017). Thiswas dondyy expanding the range observed parameters
to allow for observations of notonlyh e E a r t h dbat alfods mabans, srnywplsere, and
atmosphereThiswould allow researcherstobebett abl e t o understand Eal
monitorthe Eatt 6 s r e s o u r clhasehjectifedhe satellte veas designed and mounted
with tendifferent sensorthat allowit to collect environmental monitoring dateim a wide
range of spectral argpatial resolutionsHSA, 2017g; ESA, 201JhThese sensoisclude: the
Advanced Alog-Track Scanning Radiometer (AATSR), Advanced SynthetierApe Radar
(ASAR), Doppler Orbiography and Radipositioning Integrated byeBelite (DORIS), Global
Ozone Monitoring by Occultation of Stars (GOMOS), Laser Retro Réfie(LRR), Medium
Resoluton Visible and NealR Spectrometer (MERIS), Michelson énferometer for Passv
Atmospherc Sounding (MIPAS), Microwave Radiometer (MWWHRRadar Altimeter 2 (RA2),
andScanning Imaging Absorption Spectrometer for Atmospheritogeaphy (SCIAMACHY)

(ESA, 20179).
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2.2.2.6 GEDI

The Global Ecosystem Dynamics Intigation or GEDI willutilize light detection and
ranging (lidar) to produckigh-resolution3D images ofthe&r t hés sur face ( NASA,
These images will be used telp improve current undeestding and monitoring of major focus
areas including forésnanagement and cambaycling,water resources, weather prediction, and
topogaphy and surface deformatioDNASA, 2019. In order todevelop these 3D images, GEDI
will fire a total of 726 laser ses per secondNASA, 2019. GEDI is expected to be lacimed

in 2019 by NASA ad will beattached to the International Space StatioA$N, 2017g).

2.2.2.7 GOCE
The Gravity field and steadgtate Ocean Circulation Explorettasiite or GOCE,was
launcted in 2009 by the ESA to advance our understanding &the t h6s dJESA Vi ty f i €
2017).Inordertome as ur e ¢ h a n g #gasiondl freld, EQCEvas égsippdwittathie
Electrostatic Gravity Gradiometer (EGG), whichswwomposed of set of six3-axis
accelerometer€SA, 2017). Thismade it the mosensitive gradiometever flownin space
and allowed GOCE to measure gragtadients across the gloleSA, 20179. While the
GOCE mission ended in 2013, the dataexikd by GOCE atinues tadoe utilizedin a wide
range of fields including oceanogfap solid Earth physk; and geoglsy and setevel research
(ESA, 2017).
2.2.28 GOSAT
The Greenhouse Gaseb@ er vi ng Satellite Al BUKI O or GO
Japa Aerospace Expration Agency (JAXA) in 2009 with the sole focus of observing carbon
dioxide and methanedm spaceNIES, 2017b)Thismade it the first satelliteo focus on

greenhouse gas mappg. GOSAT utilizes a thermal and néanfrared sensor to easure
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atmosphec greenhoge gases, which is composed of two components: 1) a Fouaiesform
Spectromaedr that tagets 02, CO2, CH4, and H20 in the atmosphatk2) a Cloud and
Aerosol Imagetargets clouds and aerosols in the atmosphere (NIES, 201#adlata colleted
by these sensors have allowed researchers to map global disin€bof carbon dioxie and

methane as well as identify how these concentratiohange over time (NIES, 2017b)

2.2.2.9 Jason Series
Following in the steps of early éhrocean topogmhy missiors the Jason series of
satellites each focus on the congdumonitoring of thedpography® t he Eart hds oce:
providing scientists wit detailed information about chges in the depths of the oceans. The first
of the three Jam satellites, @sonl, waslaunched in 2001 and continued to provide information
abaut ocean topography tih2013 (NASA, 2017x). Jasoil was used not only to maar the
t opogr ap hysaedanstis b Benitotthe tass distributions of theaih, which
coudbeusedd monitor changes in t hel).Emenatsadadlitgr avi t
was the OFM/Jasor2 andwas launcheth 2008 (NASA, 20Tab). The goals for this satédi
were to continue the data collection of the JaBNASA, 2017ac). Andinally, the Jasor3
satellite is planned for launch in 2015 and wdhtinue the data celttion of @ean topography
like the Jasorl and OSTM/Jase2 (NASA, 2017m). Each of thesatellitesprovides data
necessary to monitor how the ocsame changing and can leadforecasting ofarge-scale
weather systems such asMifio.
2.2.2.10 LandsatSeries
Another series of satellites launched by NAS#g tandsat series consists cftang of
eight satblites (NASA, 2017h), with the first lanched in 1972 (NASA, 2017m@nd the most

recentaunched in 2013 (NASA, 2017u). Thea and focus of thesatelliteshave been to
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provide detailed records of hdand cover changes across thebg (NASA, 2017v). Andsat 1
was launched in 1972 and wase fiirst Earthobserving satllite to focus solely on monitoring
changes iriace NASAL 2017 s). Gsipped wih a camera (Return Beam Vidicon
(RBV)) and a naltispectral scanner (MSS), Lasat 1 continued tauhction until 1978 and
collectedover30, 000 i ma g e surfacé (NASA201Frg. Landsdt 8 was launched in
1975 andemained in servicentil 1983 and was almost identical to Landsat 1 (NASA120).
Following the success ofandsat 1 and 2, Lardt 3 was launched in 1978 and remaiined
service until 1983 and amtained the use of the RBV and MSS (NASA, 2017p). Howeve
Landsat 3 had an ipnoved spaal resolution that allowed for more accurateges of the
Eart hoés ASA 2007a)cLandgadNvas launched in 1982 and remainedrinit until

2001 (NASA, 20Xq). Unlike previous Landsat satellites, Landsat 4 didusetthe RBV camera
and instead dcused on expanding the spectral and spasalutions through the use okth
Thematic Mapper (M) and MSS (NASA, 2017q). Landsat 5 wasnched in 1984 and
remaired operable until 2012 (NASA, 2017r). Landsat 5 was venjlay to Landsat 4 aheven
utilized the same sensors (MSS and TM) (NASA, 2pDT1andsat 6 was planned to lregse in
1993,however, due to a disastrous launch, nevexda itto orbit (NASA, 2018). After the
failure of Landsat 6, Landsat 7 was sucadstaunched in 199@nd is stil in operation today
(NASA, 2017t). In continung with the trend on improvingach successive sHite, Landsat 7
again improved the spial and spatial resolutisof the collected data through the use of the
Enhanced Tématic Mapper Plus (BM+), whichreplaced the TM used in previous satellites
(NASA, 2017t). Unfortunately, in@3 a hardware faile on Landsat 7 resulted in gaps in the
collected images that redeithe usefulness of the collected data (NASA, 2017t).d¢ain8 was

launched 2013 ands still functional today (NASA, 2017u). Givehe advancements in
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technology hat have occurred dndsat 8s equippedvith two new sensat 1) the Operational
LandImager (OLI) and 2) the Thermal Infrared Sensor (TIRS) $4A2017u). These sems
still cover the spectral regions that were coveretheyETM+ on Landsat 7 balsoimprovethe
spectrakesolution by addingivo new spectral &dds and divide the ETM+dhmal infrared band
into two spate bands (NASA, 2017u).i@bined the Landsat ses represets the longest lasting
set of Earth observatns, which makes this data vitalunderstanding o the planet has

changed over the padd years (NASA, 2017v).

2.22.11 METEOSAT Series

The Meteosat satellites are geostadry meteorologicadatellitedaunched by the
European Organization for tl&xploitation of Meteorological &ellites (EUMETSAT)
(EUMESAT, 2017b). These satellites aiged to monitor weather cditions across the globe
and provide vital information fadaily life as well agarly warmngs of severe weather
conditions (EUMESAT, 207b). Currently, EUMETSAT has tw Metosatsatellites in orbit
(Metosat8, Metosat9, Metosd-10, andVietosatll). However, only Metosat8, Metosat9, and
Metosat10 are currety in use over Européifrica, ard the Indian Ocean (EUMESAT, 2017b).
EachMetosatsatelliteis equippedvith three main componentamely the Spinning Enhanced
Visible ard Infrared Imager, the Getagionary Earth Radiation Budget scanning radiometer, and
the Mission Communicetn PayloadEUMESAT, 2017a). These instruments allow khetosat
satellites to help detéand forecast a we range of weather amtimosphereondtions

including thunderstans, fog, dust storms, and volcanic ash clouds (EUMESAT7R)

2.2.2.12 METOP &ries
The Meteorological Operational Satellite Program(ivietop) is a set of three sditds

(Metop-A, Metop-B, and Metop_C) launched by the ESAtonitor meteorological vables
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across the globe, including temperature, moistame, interactionsvithin the atmophere and
between the atmosphere and the od&AMESAT, 2017c; EUMESAT, 2017&EUMESAT,
2017e).In order to observe all of these variahleach Metop satellite équipped with eleven
scientific instruments including tHafrared Atmospheric @&inding Inerferometer, the Global
Ozone Monitoring Expement2, the Advanced Very HigResolution Radiomet£, the
Advanced Scatterometer, the G Navigation Satellite Syem Receiver for Atmospheric
Sounding, the High Resoluhdnfrared Radiation @&inder/4,he Advanced Microwave
Sounding Unit A1 and AZzhe Microwave Humidity Soundethe Advanced Datadllection
System/2, the Search and Res@atelliteAided TrackingSystem, and the Space Environment
Monitor (EUMESAT, 2017c)The data collectedyithese insuments makes the Metop series of
satellitesa valuable resource for meteargists and climatolgist around the globe.
2.2.2.13 Sentiel Series
Comprising of aat of seven satellites (Sentirk| Sentinel2, Sentinel3, Sentinel4,
Sentinel5, Sentiné5 Precursor, and Sentir@), the Sentinelaellite fleet launched by the
European Space Agen¢iSA) focus on providing a varietyofema s ur e ment s of t he
surface, ranging from land cover identification to atmespltondition monitong (ESA,
2017b). Sentinell utilizes an advanced radasilh r ument t o mweathetaswellt he Ea
asmap the Eart hoés s u ddtaxalected by SeAtingélcambelugediora T h e
variety of applications including thmonitoring of sea icéESA, 20171), the observation of
changing land uses (ES2017a), and the mapping ofri@ins after naturalisasters (ESA,
2017f). Sentinel utilizes a higkresolution mults pect r al i mager to monit ol
(ESA, 20170 This supplies scigists withi mages of t he Eart hwhish sur f ac

can be used for a variety purposes, suchsanonitoring plant health, changing lanavater
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bodies, and naturdisaster (ESA, 2017n). Sentir@lutilizes several inatiments to collect data
on oceandpography, surface temperatures, and surfale(ESA, 20170). The instrumis
used by Sentined include a Sea and Land Surface Terapee Radiometer (SLSTR)n&cean
and Land Colour Instrument (OLCI), and a Synthéperture Radar Altimer (SRAL)(ESA,
20170). The Sentinel, Sentinels, andSentinel5 Precursor mission®¢us on monitoringhe
at mospher ebs c¢ ompThsedata cotentedthEolBihese satdllites car) be used
to monitor changes in greleouse gasses well aonitor chaiges in the ozone layers (ESA,
2017r). And findly, Sentinel6 focuses solelyromonitoring ocearopography, producing new
global images the oceans every ten da§sSA, 2017s). This data is vital to monitoring how
theo@ ands c urpeads ansvave height vhry EESA, 2017s). All of the datalected
by the Sentinel Sergeprovide scientiswith a global view of how interconnectéite Earth is as
well as manitor how conditions are changing golicymakerscan makenformed decisions to
implementmitigation strategies in the region that néleel most help.
2.2.2.14 SMOS

The Soil Moisture an@cean Salinity (SMOS) missiomaslauncted by the ESA in
2009, withtwo main objectives monitor the soil moisture of the land the salinity oftte
oceansESA, 2017, both of which have major impaats the hydrological cycle. Theutput of
these obsemations are sets of global maps3adayincrementsESA, 2017}; this supplies
scientist with a steady time series of datinfs that can be uséd monitorchanges in both
salinity and soil moisturevertime Furthermore, these seiEmaps can be useohd integrated
with other hydrological learacteristics to better darstand how changes in soil moisture and
salinityare comectedo the bigger fdrologicalcycle. This can lead to more accurate weather

predictions, better monitoringf the cryosphere nal improve water management proje&sA,
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2017Y. To create thesmaps the SMOS utilizes a 2D interferometric radiomehés is unique
since itis currenty the only satellite to utilize this instrumen apolarorbiting alignment(ESA,

2017p.

2.2.2.15 SWOT

The Surface Water Ocean Topaggng or SWOT satellite is @int project between
NASA and Fr anc e 0 éudds SpatialesswitiNrassian ® imgrdve chrrent
understanding of global hyology (NASA, 2017ae)Thiswill be a vital resource for monitoring
and maintainingthe Eaibhs | i mi t e d Quarartly 8WQT és £xpectectee saunched
within the nexidecade (NASA, 2017ae)
2.2.2.16Terra

The Terra Earttobserving satellite msson, launched by NASA in 1998o¢llects
information on Eart how,ice ainthenergytbedgddASA, a0d#&/)a n ,
In order to collect all of this informatioherra utilizes an arsaof five instruments: the
Advanced Spaceborne Thermal Esion and Reflection Radiomet&STER), Clouds and
Earthés Radi ant E Maltr-angle IffagisgtSeentradio@deR (MISR),
Moderateresolution Imaging Spectroramneter (MODIS), and Masurementsf Pollution in
the Troposphere (MOPITT) (NASAR017af). The ASTER instrumeistused to observe and
map land surface temperature, emisggjweflectance, and eletian (NASA, 2017d). The
CERES instrumentsused to collecinformation on the lectromagngc radiation reflected and
emitted fromthe Br t hds s ur f a cusefdtoméasuce lthe total radiation budgetsof
the Earth (NAA, 2017e).The MISR instruemt is used tobservehow electromagnetic
radiation fromthe sun interacts witthe atmoghere (NASA, 2017w)This allows scientists to

gather information about the mposition of the atmosphere as well as what type of clowds a
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present and even landudearacteristics (NASA, 2017w). The MODIS instrument isdis
collect physicapropertiesof the atmosphere, oceans, and land as wdli@ogical properties of
the a@eans and land (NASA, 2017z). The MOPITT instrument is tsetdserve how the lower
amosphere interacts wit hrfochsepladedon thdobesnensaiir f ac e
carbon monoxide (NASA, 2017ab). All of thasstruments, like those in thegfa satellite, can
provide scientists with highly detaile@t@ and maps for monitorirfigow the Earth is changing.
Furthermore, this data alsd@aks scientists to eVaate the elationships between the different
spheres (szth as the atmosphere and biosehef the Earth expanding our knowledge of how
different pocesses respond to climateanges, enhancing future predictions of whathean
expedced.
2.2.2.17 TOPEX/Pseidon

The TOPEX/Poseidon mission was launched by NABA$92 and collected data until
2006 (NASA, 2017ag). During this time the TOPEX/Poseidoellgatcollected data on ¢éh
topography of the oceans (NASA, 2017al)iswas the fist satellitebasedcean topogrphy
mission and opened areas of reseavith respect tdhe interactions of@an circulation and
large-scaleweather systems, such asMifio (NASA, 2017ag). Oceaopography measurements
observed were accurate to 4.2 (NWASA, 2017ag), thisllbowed sciatiststo understand better
how ocean circul&n occurred and how it influees the rest of the Earth system processes, such
as weather atterns.
2.2.2.18 TRMM

TheTropical Rainfall Measuring Mission or TRMM was a joimbject between NASA
and the Japaerospace Exploration Agency that was launtime1997 and collected data iint

2015 (NASA, 2017aj). The main goal of TRMM was to monggecipitation for the trogal and
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subtropical regions of the Earth to determine dlistribution and vaability of precipitation
across this region (NASA, 201iJaTRMM accomplished this godhrough the use of five
instruments, namely the Visible lafted Radiometer, the TRMM iktowave Imager, the
Precipitation Radar, the Cloud andrtBaRadiant Energy Seor, and tk Lightning Imaging
Sensor (NASA, 2017ah). The instruments allowed TRMM tmltect 3D images of storm
systems that continue to be usednprove our understandimg climatological events in the
tropics.
2.3 The Hydrologic Cycle

We are surronded by weer, from water vapor in the air to oceans glatiers.In fact
about 71% othe planet is covered in water (USGS, 20)1&lowever, we ted to focus only on
freshwader sources that are needed for drinking agidculture ad impact our lives dby.
Freshvater is a very limited resource (USGS, 2€)1@nd with current population gnth trends
and changes brought on by climate change, iblasme vital tansurethe sustainability of
these resources. The amoohfreshwate available is dependé on how vater is circulated
through the atmosphere, ass the ground, through the druend everthroughthe biosphere in
a process known as th&ter cycle or the hydrolagal circle (USGS, 2017a). And the impacts
that occur in oe sector of the cycleave casade effects in other sectol8léxwell and Koll,
2008; Stampoulis et al., 20L& hereforejn order toinsurethat the hydrological cycleontinues
to function, itis important to evaluate and monitor the amwithin dlcomponents of the
hydrologicalcycle.However with such a large amount ofdlsurface covered imater, this can
be a daunting task. Furthermore, the process of cioiiedata from monitoring ations would

only provideinformationat a fixed number gboints making it dificult to deermine how the
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hydrological cycle is changind et with the technological adncements in satellitechnology
remote sensing data caelp fill this data gap.

Thehydrological cycle can bleroken down into the followingomponents:
evapotrangiration, goundwater, oceans, precipitation, snow armg $oil moisture, surface
water,and water vapor. Within each of the following sectionsheamnponent of the
hydrologcal cycle will be brieflyexplained
2.3.1 Evapotranspation

Evapotranspirabn descriles the amount of water thattransferredrom the surface to
the atmospher@JSGS, 2018). Thisincludes both the water thaistevapoates from the
E ar t h @esas wel astha waterdiofrom plants (transpirationJSGS, 2016). This praess
is reponsible for weather patterns by supplying\weger vapor needed to drive tiveather
systems that return water to the land (USGS, 80Tdherefore understandinge levels and
changes inapotranspiration for a regiofi@vs us to monitor hew much wateloss occurs and
can be used to figure outwanuch water remain3.hisis epecially vital for agricultural lands
where it can be used tletermine if there is engh water to maintain cropelds or if irrigation

is neead.

2.3.2 Groundwater

While graundwater only accounts for about 0.8% of thetewv found on Earth, it
represets about 30.1% of all the freshwater (USGS, 2DTkhis makes it a vital source of the
limited freshwater, espéaly for regions where there et enough rainfall osurface vater to
supply the needs of anthropogenicatgs. This has led to the inatlation and use of pumps
and wells used to pull water uppm the groundwater aquifeos reservoirsHowever this is still

a limitedresourceand can become depldté too much is removed too quickly (USGS, 2@))6

21



Thisis easily evident in the shrinkg of the Ogallala Aquifer in the great plains of the United

States (Terrell et al., 2Q).

2.3.3 Oceans

Oceanx over about 7 ké&andaccoubtdar abth96.5% ofaluwateran
earth USGS, 2016). Furthermoreall of the water in the ocearsscalled saltwater due to the
significant levels of dissgkd salts found within itYSGS, 2016). Thismakes d the water in
the oceans unubke for either drinkig or agriclture use without removing the salts. And vehil
desalination processes thahqaurify saltwater exist, they are often expensive and redugh
energy inputsn order tobe useful to largpopulations ySGS, 201H. And with current efforts
focusing on lhe availability of freshwater, the oceans aften left out of consideration.
However, while the water in the oceans is not easily aittess# is estimated th&0% of all
water vapor irthe air comes from the oceat$SGS, 2016). This shows thatoceans, while
seemingo only hold unusable watdrave major impacts on weathegstems and drive much
of the hydrological USGS, 2018). Futhermore, the constant mement of water botthrough
circulation in the water columand across the glolblerough oean currents alter the
temperatures of the wat USGS, 2018). This, in turn,affects the evaporation rates across the
globe and drives wather cycles worldwide. Enefore several difirent remote sensing projects
have foused on monitoring theharactestics of the ocearia order todetermine howhe
oceans impact the rest okthydrological cycle.
2.3.4 Precipitation

The process by lich water vapor condensasd falls backtoBat hés sur face i s
as precipitatia (USGS, 2018. And while preciptation can have many forms depending on the

conditions of the atmospherejstthe other main process (like evapotranspiration) the¢sithe
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water cycle (USGS016§). Therefore uderstanding how the rates of precipia change over
the surface of he Earth allows us to determine which regiwmiis have access to water or wiee
water will be sparselhisis especially vital for agridtural lands where it cangbused to
determinehow much water is returning to thelfls. When combined witevapotraspiration, it
can be used to estimate how mudter is present at farm fieldsnd help determine if pumps or

irrigation systems are need to maintain crop yields

2.3.5 Snow and Ice

Snow and ice, also known as the cplosre, represent anethsource bfreshwater
similar to groundwateidowever there is more than double the @t of groundwater that can
befound n t he wo dicaréssrves 8nowandiaccountfor aboutl.7% of all water
and 68.7% of all frehwater (USGS, 20k%. However, wile this is a much larger source of
freshwate, it is harder access with mast it being foundn glaciers and the ice sheets at the
poles.Yet, while most of thisstored freshwatesinotaccessiblgit plays an importatrole in
influencingt h e Eclimate Y8GS, 201B). Due to the highly redictive nature of snow and
ice, much of the incoming electromagnetic radiation from theisueflectedbackinto space
This helps slow tlk rate at which the Earth absorbs heatvever with the reant risesn global
temperatures glaciers and ice sheeésrapidly disappearing, thigs turn,results in more energy
and heabeing absorbeby the Earth and further melgrof the snow and & USGS, 201K).
Furthermoreas thismeltingoccurs it alters other prts of the hydrological cycle such as rising
ocean levels (NSIDC, 2015). Aiff these factoreave made it vital to monitor the global ahges

in the cryosphere.
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2.3.6 Soil Moisture
Soil moisture is similar to groundwaterthe fact tlat bothgroundwate and soil
moisture are measures of waterhie groundHowever unlike grourwater, soil moisture
describes the amount of water foundhai the top layersofthEar t hés sur face ( NA:
Thismakes it vital tadhe agricultural process sice this ighe water that agricultural plants can
draw from during their growing phas®lASA, 1999; USGS, 204). Soil moisture is highly
dependenbn the temperature as wal evapotranspiration and precipitation (NIDIS, 2013).
With the need to mintainorevenic r ease t he wor |l dés gowingp product
population, understana how soil moisture levels vary across agricultural lamasbe used to
estimate cropields and lead to the implementation of mitigation messu
2.3.7 Surbce Waer
Surfacewater is used to describe all other sourddsashwater ortheE a r tsunfates
Thisincludes rivers, lakes, and swamps; and is thesa®rm of freshwater taccess.
However, surface water only accounts for abou®% 2f all freskvater o the EartHUSGS,
2014). And due to their ease of acegsurface waters are often ingpad by anthropogenic
activities (USGS, 2018). This has ledo an increase in the fosygut on these freshwater
systems with the goals of mitityag anthropogeic impacts andnsurethe sustainability of these
systems foruture generations (Walters et,&009: Young and Collier, 2009; Dos Santos et al.,
2011; Gri et al., 2012; Pander drGeist, 2013). Therefore, it has become important to tmoni

these systas

2.3.8 Water Vaor
When waterevaporatest becomes waterapor and enters the atmosph&ace in the

atmosphergt interacts with electromagneticdiation; as the most abunaegreenhouse gas,
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water vapor traps the electromagneétidiation emittd by Eath (NASA, 2008).This drives the
warming trends seen necent years. Furthermore, watipor is vital to the weather of the
world, wind currents nove water vapor across tgwbe and as the temperature of the
atmosphere changester vapor condeses tadorm clouds the source of all precipitation
(USGS, 2016). Thereforeby monitoring thewvater vapor levels in th@mosphergt is possible
to tradkk the movement of water axss the globe as well as determine how much global

temperaures will increase.

2.4 Monitori ng Water Resources

Given the importance of ier resources and the increastieggnand on these limited
resourcesit has become vital tensuretheir sustainabilityor future generations. However,
given the complexity ofite hydrologicatycle, this can le challenging. Traditionally monitoring
statins are used to measure differeamponentsed.g, streamflow and ET) of the hydrological
cycle (Deser et al., 2000; N\, 2017a; USGS, 2017) In fact, when considering ETthe MSU
Enviro-weather PRsgram has 4 stations within the state of Michigan alahat providevaluable
data for esearcher@Bishop, 2010)However,compared to the size dfichigan that is roughly
one station every 3,914 KmAnd sice ET is a spatially disbuted property, haug a resaltion
like this would result in models thateaunable to account for the valoility in ET that exists in
the landscapélhisis true forother hydrological cycleamponents as well, for whidiigher
spatial resolutionare often needelly resarchers (Waders et al., 2014). At the same time, it is
not feasible to install monitorqstations every few hundred yards due to installation and
maintenance costs. One sadut to thisissueis the use ofamote sensing-hisis even more
evident giverthe vast nmber of remote sensing projects that wereuwdised earlier in this

review. In fact,remote sensing has even been used to develop stathakts for hydrological
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cycle components such as EHite and Droogers, 20Q00Thefollowing sections desibe a few
on the more welknown remote sensing ET dagds and how thegre calculated
2.4.1 MOD16

MOD16 or MODIS Global Evapotranspiration Reof calculates-8ay, monthy, and
annual ET by using an algthm developed by Mu etl. (2011), whichs basedn thre Penman

Monteith equation. Below the PenmBtonteith equation is shown:

_ 0 — 2.1)

wherea- Es the latent heat fluxgis the latent heat ofvaporation;sis the $ope of thecurve
relating saturated water vapor presqig) to temperatureA is the available energy partitioned
between sensible heat, latéwtat and soil heat fluxesidandsurfacesj is the air densityCp is
the specificheat capacity of aira is the &rodynamic resistance;is the surface redmsnce; and
2is the psychrmetric constant (Mu et al., 201This equation serves as thecklbone for
MOD16 6s &idns.ldosvéver,iMOD16 divides the total ET into three maomponents as
follows:

_o0_o _o _0 (2.2)
where & &t c IS the evaporation from wet canopy surfa@@$ns is the pant transpiration; and
& EaL is the actual soil evaporation (Mu et al., 20T)is allows for the use ahore specit
equations to describe how watstostfrom different surfaces. Equahs2.3 through2.5 show

the individual equations used for eadmponent of the total ETE(.2.2):

& et ¢

o (2.3)
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where Ac is theavailable energy partitioned between sendilglat, latent heat and sbiat
fluxes allocated to the canofy; is the vegetation coverdction;Fuwetis the water cover

fraction; Pa is the atmospheric pressurec is the wet canopy resistaeplis theemissivity of

the atmospheréisoiis the avdable energy partitionedetween sensible heat, latent heat and

soil heat fluxes allocateth the soil surfaceyPD is the vapopressure deficitrasis the
aerodynamic resignce at the soil surfacrq is the total aerodynamic resistance to vapor
transport; andRH s the relave humidity (Mu et al., 2011).

From these equations, it is edsysee the influence of the Penmdonteith equation on the

MOD16 ET estimations. Heever, these equations dot indcate what input data is required to

calculateMOD16 ET. The following thle (Table 2.1)ists the datasets that were used to perform

the @ove calculations:

Table2.1. List ofdatasets used to calculate MOD16 ET

Dataset Remotely Sensed
GMAO meteagologicd data YES
MODIS FPAR/LAI YES
MODIS landcove type 2 YES
MODIS albedo YES
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2.4.2 ALEXI
ALEXI or the Atmospherd.and Exchange Inverseddel calculates daily ET by relating
changes in morning surface temperatures tomass (Anderson et ak007). To do this,
ALEXI utilizes a twosource energydlance model that dividdesh e Ear t ihtdteo sur f ace
components, sodndcanopy (Andersoet al., 2007). By dointhis, it is possible to solve for the
ET of each componeltvefore combining them agato ddermine the overall ET. The first step
is to extract the individual compeent temperaturesdm the satellite datahisis done using the
following equation:
Y —e QY p 0—"Y (2.6)
where, Trapis the compositéirectional surface radiometric temperature( islthe fractional
cover;Tsis the soil temperature; afid is the canopy temperature (Anderson et al., 2007). After
this, individualsurface energy balance equations can be sébrdabth the soil (EqR.7) and
canopy (Eg2.8) as follows:
YO O _0O0 O (2.7)
YO O _0©O (2.8)
where RNis the net radiatiorti is the ®nsible heate- &s the latent heatindG is the soil heat
corduction flux. For thesequationst he s u3s @@bidpdi® noot e soi |l and can
respectively (Anderson et al., 2007). In these equations, observed net radiation and surface
temperature aresed to solvedr ET. Howeverin order todetermine the ovelleET the
individual commnent ETs need to be summed akofes:

_0_0 _0O (2.9)
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where_ Ois the ET of the soil and Ois the ET of the canopyAnderson eal., 2007) Similar

to MOD16 a variety of input datasets are required to perform these calculations2Zable

presents theseathses:

Table2.2. List of datasets used to calculate ALEXI ET

Dataset

Remotely Sensed

ASOS/AWOS wind data

GOES ¢oud cover

GOES net radiation

GOES surface temperatures
MODIS LAI

Radiosonde lapse rate profile
Radiosmde atnospheric corrections
STATSGO soll texture

UMD global landcover

NO

YES
YES
YES
YES
YES
YES
NO

YES

2.4.3 SSEBop

SSEBopor the Operational Sinified Surface Energy Balance Model calculates monthly

and annual ET by combining ET fractions derived from remotely sensed $1®binal

imagery and reference ET (Senay et al., 201Bis is doneby using the following equation:

OY®H 0"Y'QQO"Yé

(2.10)

whereETfis the ET fractionETois the grass reference ET for the location obtained from global

weather datasgtandk is a coefficient that scales the grass reference ET into the level of a

maximum ET experiencdaly an aerodynamically ugher cop (Senay et al., 2013h order to

calculate the ET fraction the following equatisrused

0°Y0

(2.11)

where,Tsis the satelliteobserved land surface temperature of the pixel wkdges being

evaluatedor a giventime period This the estimatedsa

t

t

he

i deal

i zed

condition of the pixel for giventime period andTc is the estimatedl'sat the idealized
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reference fcol do c on dimeperiodilhisnfakes tihealetgominateon of f o r
ThandTckey for estimating ETIn order toestimateTc the following equatiors used

Yo w Yo (2.12)
where,Tais the neassurface maximum air temperature for the gitiere periodandcis a

correction &ctor that relate$ato Tsfor a wellwatered, vegetation surface (Senay et al., 2013).

OnceTcwas determined, it was ub#o ®lve for Th as follows:

QYO —— (2.13)

where,R, is the net radiatiorC; is the specific heat of air at constant pressugés the density

of air; andran is the aerodynamic resistance to heat flomrfia hyothetical bare and dry surface

(Senay et al., 2013). After determining these hot and cold temperatures, ET costichbéee.
Again several input datasets are required to perform these calculations2 Bghiesents

these datasets:

Table2.3. List of datasets used to calculate SSEBop ET

Dataset Remotely Sensed
GDAS Reference ET NO

MODIS albedo YES

MODIS landsurface temperature YES

MODIS NDVI YES

PRISM air temperature NO

PRISM temperature correction coefficie NO

SRTM elevation YES

2.5 Hydrological Modeling

While the advancements in remote sensing have improved our ability of monitor the
Ear t h 6 sandsallowell mrahe development of datasets for individual components of the
hydrological cycle, it is not yet possible to monitor tinére hydrological model for any given
region. Therefore, hydrological models are often used to simulate all compoh#res

hydrological cycle. The use e modelis also an inexpensive, effective, and fast alternative to
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extensive environmental moaitng, which can be used to test as many scenarios as are desired

by either researchers policymakers

2.5.1 Soiland Water Assessment Tool

One of the more common hydrological models is the Soil and Water Assessment Tool or
SWAT (Neitsch et al., 20)1SWAT is a semdistributed physically based watershed scale
model developed by the USDA Agricultural Research Serand Texas A&M AgriLife
Research that utilizes several layers of data, such as topography, soil charactendtiosey
and climatologcal dhta, to simulate the natural environmeNe(tsch et al., 2001 There have
been manypeerreviewedpublicatins that have used SWAT models to evaluate different
components of the hydrological cycle (Sun et al., 2084arkovic and Koch, 2015/erma ¢ al.,
2015; Cuceloglu et al., 2017; Saha et al., 2017).

In order tosimulate the hydrological cycle in a regiohe SWAT model utilizes a water
balance which cahe seermelow (Eq.2.14):
Yo Yo B Y 0 0 U 0 (2.14)
where,SW s the final soil water conterf§W is the initial soil water content on day is the
time in daysRuday is the amount of precipitation on dayQsurt is the amount of surface runoff on
dayi, Ea is the amount of evapotranspiration on dayseepis the amount of water entering the
valose zone from the soil profile on dgyndQgywis the amount of return flow on dayNeitch
et al., 2011)Each of these components is ttether provided as in input or calculated based on
variousequations and relationshipehe following sections deribe the equations, models, and
relationships utilized by the SWAT model concerning surface runoff, evaigpiration, soil

water, and groundwater.
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2.5.1.1 Surface Runoff Equations

The SWAT model can utilize two different techniques: 1) the Soil Conservation Service
(SCS) curve number and 2) the Green and Ampt infiltration method (Neitch et al., 2011). The
SCScurve number method is an empirical model that describes raiafalff rdationships for a
varietyof different landuses and soils, and can be calculated with the following equation (Eq.

2.195:

0 - (2.15

where,Qsurt is the runoff Ryay is the daily rainfall)a is the initial dstractions such as surface
storage, interception, and soil infiltration before runoff oceundis often assumed to be &2
andSis the retention parartee which is based on local characteristics such as soil properties,

landuseand slope ant calcdatedwith Eq.2.16(Neitch et al., 2011).

Y ¢@& — pT (2.19

where CNis the curve number which is dependent on the soil properties and can be adjusted by
the user to better match local characteristics (Neitch et al., 2011). Meanwhile, the Green and
Ampt infiltration methodcalculatesurface runoff by first determining hawuchwater

infiltrated into the soil and then considering all rainfall over that amount tarizgf. The

amount of infiltration that occurs is calculated with the following equationZBq):

Yy

Qp O p (2.17

A
where,fint IS the infitration rate for a given timg Ke is the effective hydraulic conductivity,
is the wetting front matric potentiaf— is the change in vametric moisture content across the

wetting front, and=inf is the cumulative infiltration for a given tint€Neitch et al., 201)1 Here
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againthe curve number is used to adjust the equation for local characteristics by influencing the

calculation ofKe, which can be seen in Exj18

. 8 8
] 3 3 q (2.18

where Ksatis the saturated hydraulic conductivagdCN is the curve numbelNgitch et al.,

2011). In addition to these two techniques for calculating surface runoff, the SWOAEI also
calculates the peak runaffich provides a measurement of how erosive runoff from a storm is
to a region and takes into account time of concentration and rainfall intensity @aldulatedy

using the following equation:

n — (2.19
where,gpeaxiS the peak runoff ratey is the fraction of daily rainfall that occurs during the time
of concentrationQsurt is the surface runoffireais the area of the region, atighcis the time of

concentration for the regiomNéitch et al., 201)1 Table2.4lists the parameters and their

definitions within the SWAT model that affect the surface runoff calculations.
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Table2.4. A list of the parameters used in SWAT surfaseoff calalations

Parameter Definition
CH_K(1) Effective hydraulicconductvity
CH_L(2) Longest tributary channel length sabbain
CH_N(1) Manningds n value for tributar)
CH_S(2) The averageslope of tributary channels
CH_W(1) The arergge width of thetributarychannel
CLAY Percent clay content
CN2 Moisture condition Il curve number
CNCOEF Weighting coefficient used to calculate the retention coefficient for de
curve number calculations dependent on plant evapotranspiration
CNOP Moisture condtion Il curve number
HRU_FR The fractionof total subb&in area contained in HRU
HRU_SLP Averace slope steepness
ICN Daily curve number calculation method
IDT Length of thetime step
IEVENT Rainfall, runoff, routing option
OV_N Ma n n i nvgue forthe overlandflow
PRECIPITATION Precipitation during time step
SAND Percent sand content
SLSUBBSN Average slope length
SOL_BD Moist bulk density
SOL _K The saturatedchydraulic conductivity othefirst layer
SUB_KM Area of thesubbain in km?
SURLAG Surface runoff lag coefficient

2.5.1.2 Evapotranspiration Equations

In order tosimulate evapotranspiration, the SWAT model has to take into account a
variety of differentfactors includingcanopy storage, potential evapotranspiration,agtchl
evapdranspiration (Neitch et al., 201 Begarding canopstoragepr the amount of rafall
trapped by plants from reaching the Earthos
technique was selected. If the SCS curve numbazirgy usedcan@y storagdas considereds
part of the initial abstractions; however, it the Green and Angpinigue is being used an

additional calculation for canopy storage is needed ZE2§) (Neitch et al., 2011).

OWOE WOHE— (2.20
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where,canay is the amount of water trapped by the canapywmyxis the amount of water that can
be trapped when the canoipyully developed Al is the leaf area index for a given dagda
LAImxis the maximum leaf area index for the given landuse (Neitch eDAall) 2This value is
importantin calculating evapotranspiration, which regardless of the surface runoff technique the
first step is calculating potential evapotranspiratiorthtaXSWAT model, three different methods
for calculating potential evapotransgtion are available, namely the Penaionteith method,
the PriestleyTaylor method, and the Hargreaves method (Neitch et al., 2B0adh. of these
techniques requires differemputs, with PenmaiMonteith being the most complex requiring
solar radiationair temperature, relative humidity, and wind speed; Prid&ljor requiring

solar radiation, air temperature, and relative humidity; and Hargreaves being the simplest
requiring only air temperature (Neitch et al., 201Hs2.21, 2.22 and2.23are usd by SWAT

to calculatepotential evapotranspiration via the PenAvionteith method, the Priestl€aylor

method, and the Hargreaves method, respectively.

_0 5 (2.29)

where,_ Os the latent heat flux densitl,is the depth rate evaporatianis the slope of the
saturation vapopressurdemperatureurveHnetis the net radiatior(; is the heat flux density to
the ground; is the air densityg is the specific heatt@onstant pressur€ is the saturation
pressure of air at heighte; is the water pressure of air at heigfit is the psychrometric
constantr. is the plant canopy resistance, and the diffusion resistance of the air layer
(Neitch et al., 2011 It is important to note that the SWAT model udses PenmaiMonteith

method by default, however, this can berded by the user.

O |

3—20 O (2.29
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where,_is the latent heat of vaporization, I8 the potential evapotranspiration, is a
coefficient,3-is the slope of the saturation vapor pressamperature urve,’ is the
psychrometric constaritnetis the net radiation, and is the heat flux dasity to the ground
(Neitch et al., 2011)t is important to note that the Priestliaylor method assumes that
advection is low, which makes it less ideal for sammdi or arid regions for which it will

underestimate potential evapotranspiratidei{ch et al., 2011).
0O ®Wincd®OY Y B2 po® (2.23

where,_is the latent heat of vaporizatids, is the potential ey@otranspiration, HO is the
extraterrestrial radiation, Tmx is the maximum air temperature for a give aayis the
minimum air temperature for a given day, ad is the average temperature for a given day

(Neitch et al., 2011

After potentialevapotranspiratiors calculatedthe SWAT model can then calculate
actual evapotranspiratiomhisis done bytaking into account the potential evapotranspiration
method and value in addition to the evaporation of intercepted rainfall, transpiration, and
sublimation and evaporation from the soil (Neitch et al., 2011). Evaporation of intercepted
rainfall describelie evaporation of water found in canopy storage and is dependent on the level
of potential evapotranspiration possible and the amount of rdiofal given day. If potential
evapotranspiratiors less tlan or equal tohe initial water storage the actwalapotranspiration is
equal to the potential evapotranspiration (Neitch et al., 26dyever, if the potential
evapotranspiration is greatinan the initial water storagactual evapotranspiration exhausts the
water held in the canopy before movingtorthe plants and soil (Neitch et al., 2011). The

transpiration calculation utilized by the SWAT model is dependent on the potential
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evapotrangiration technique used. If the Pendonteith methods used transpirationis
already calculatechowever, ifany other potential evapotranspiration technique is selected,

transpiration is calculated as follows (R4 (Neitch et al., 2011):

o) . o
0 3 T UL 0 Oo8rt (2.24
(0] 0 0 Oa8rt

where,E: is the maximum transpiratiolQ is the potential evapotranspiration adjusted for
evaporation of free water in the canopypdLAl is theleaf area index. lanwhile sublimation
and evaporation from the soil is calculated based on the following eqatjaa25:

0O 'O3ED (2.25

where,Es is the maximum sublimation/soil evaporation for a specific @ays the potential

evapotranspiration adjusted for evaporation of free water in the canopypands the soil

cover index Neitch et al., 2011 Therefore, the final calculation of actual evapotranspiration is

the sum of Egs. 11 and 1Pable2.5liststhe parameters and their definitions within the SWAT

model that affect the evapotranspiration calculations.

Table2.5. Alist of the parameters used in SWAVapotranspirationalculations

Parameter Definition
CANMX Maximum canopy storage
CO2 Carbaon dioxide concentration
ESCO Soil evaporation compensation coefficient

FRGMAX The fractionof maximum leaf conductance achieved at the vapor pressure
deficit specified bywPDFR

GSI Maximum leaf conductance

IPET Potential evapotranspiration method

MAX TEMP Daily maximum temperature

MIN TEMP  Daily minimum temperature

VPDFR Vaporpressure deficit corresponding to value given for FRGMX

WND_SP Daily wind speed
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2.5.1.3 Soil Water Equations

In order tosimulate soil wateor the movement of watéinoughthe soil layersthe
SWAT model has to take into account a variety of diffefaators including soil structure,
percolation, bypass flow, perched water table, and lateral flow (Neitch et al., 30il1).
propertiesare suppliedo the SWAT modethoughuser input from which the SWAT modd
able todetermine several characteristgtgch as density and soil compositidhis allows the
SWAT modelto more accurately replicate soil water contamd how water would move
through the soils for the region oftérest (Neitch et al., 2011). Meanwhile, percolation or the
movement of waterdm one layer of soil tanotherjs determined through the use of a couple
of equationsFirst, the volume of water available for percolatiorcédculatedhroughthe

following set ofequations

Yo 08 QWe 08 -
m VWo 08 (229

Yo
where,"Yw j Is the drainable volume of water in the soil lafera specific daySW, is the
water content of the soil layer in question for a given day Fhgdis the water content of the

soil layer at field capacityNeitch et al., 2011 After determining the amount of water that is

present the following equan is used to determine how much water actually transfers to the next

layer of soil down:
O « Yor Op Qok— (2.27

where,0  j isthe amount of water percolating to the underlying soil layer for a given day,
YO g is the drainable volume of watierthe soil layer for a specific daypis the length of

the time step, an@Tyercis the travel time for percolatiomNgitch et al., 2011
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Bypasdlow is acondition caused by the swelling and shrinking of soils, rmastmonly
Vertisols, which resultsy deep cracks ithe sirface of the soithat can promote soil water
movement eitch et al., 2011 SWAT handles thee soils be calculating the volume of the crack
within the soil and then using that volume as a compinesurface storagealcdations The

equation used to determine this volume is as follows:

Ol R O Qp o (2.29

where,crky,i is the initial crack volume calculated for the soil layer on a given day expressed as a
depth,crkmaxlyis the maxinum crack volume possible for the soil layeoet: is an adjustment
coefficient for crack flowFCy is the water content of the soilykr at field capacity, an8W is

the water content of the soil layer in question for a given Najyt¢h et al., 201).

SWAT provides users the ability to define a perched water table, which happleeas in
regionwith a high seasonal water tablenis results in pondingvithin the soil layers and affects
thedownwardmovement of water through the soil columie calclate the height of the

perched table, SWAT utilizes the following equation:

o) —— 0 0QiRs (2.29

where,hww is the height of the water tablBWis the water content of the soil profileC is the
water content of the soil profile at field capac”)Ris the porosity of the soil profilg, is
the airfilled porosity expressed as a fraction, aegthnp is the depth to the impervious layer

(Neitch et al., 20111

The final compoant of soil water calculations for the SWAT model is lateral flow,

which describes the horizontal movement ofevatith in the soil column. SWAT utilizes and
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kinematic storage model for subsurface flow to simulate this process which is showR.80Eq

(Neitch et al., 2011

(2.30

where,Qiat is the lateral flow;Y® j; is the drainable volume of water in the soil layer for a

specific dayKsatis the saturated hydulic conductivity slpis the slope of the region, abd is
the hill slope lengthNeitch et al., 201)1 Table2.6lists the parameters and their definitions

within the SWAT model that affect trsmil watercalculations.

Table2.6. A list of the parareters used in SWASoil watercalculations

Paramete Definition
CLAY Percent clay content
DEP_IMP Depth totheimperviouslayer
DEPIMP_BSN Depth totheimperviouslayer
GDRAIN Drain tile lag time
HRU_SLP The averageslope on thesubbain
ICRK Bypassflow code

IWATABLE High water table code
LAT_TTIME  Lateral flow travel time

SLSOIL Hillslope length

SOL_AWC Available water capacity

SOL_BD Bulk density

SOL_CRK Potential crack volume for soil profil
SOL K Saturated hydraulic conductivity

2.5.14 Groundwater Equations

In order tosimulate groundwater movement and storage, the SWAT model has to take
into account shallow and deep aquifers (Neitch et al., 2011). Shallow acanéegroundwater
systems that contribute water to the locatérsvanddkes, while deep aquifers can cabtite
water b regionsoutside of thesubbain or local area (Neitch et al., 2011). SWAT simulates
shallow aquifersvith the following water balance (E8.31):

ONF ONQF 0 E 0 0 0 B (2.3)
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where,agsh,is the water stored in the shallow aquifer on dagen i1 is the water stored in the
shallow aquifer on the previous da¥cnrg,shiS recharge during dayQgw is the groundwater
flowintother e gi onds mapia thecamaunohvetermovingup into the soil layers
on dayi, andwpump,shiS the amount of water pumped out of the shallow aquifer om @gitch
et al., 2011)Each of these components danfurther describelly additbnal equationsvhich
are provide below.

Therecharge to the shallow aquifer or the water that enters the aquifer for any given day
is calculated with the following equation (E432):
O & p Qanpi Q)] Qonpit D (2.39
where Wichrg,i IS the amount of water recharge entering the aquifer om ay is the delay time
or drainage time of the overlaying gegic formationsyseepis the total amount of water exiting
the soil layers and entering the aquifer, angg,i is the previais days rechargdéeitch et al.,
2011)

Groundwater flow or base flow, describes the water that leaves the shallow aquifer and
reenters the main channel of the region, and in the SWAT model can be calculated for both

steadystate (Eq. B3) and norsteadystate (Eq. B34) conditions:

¥ o]
V)

3Q (2.33

where,Qqwis the groundwater flonKsatis the hydraulic conductivity of the aquiféiwis the
distance from the ridge or subbasin divide forghmindwatersystem to the main charlnand
hwiol is the water table height (Neitch et al., 2011).

v 0 5 Mol Do 0 FOp Qonl ¥ Q@R On g

m 0 O (239
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where,Qqu; is the groundwater flow on dayQgw,i1 is the groundwater flow on the previous

day,| is the baseflow recession constafiijs the timestep,wrchrg.shis the amount of

recharge occurring on dayacsh is the amount of water stored in the shallow aquifer at the
beginning of day, andacsnr,qis the threshold water level on the shallaquifer for
groundwater contribution to the mainasinel to occurNeitch et al., 2011

Revapdescribes the water in the shallow aquifer that moves upward insaitle®lumn
to fill unsaturatedzones, which for the SWAT model is modeled as a funafomater demand

for evapotranspiration and utilizése following set of conditional equations (E¢39):

] QaQn wn
0 I 0 ol j QQn g wn wn 5 I 0 (239
I 30 Qa@n on p 1 0

where Wrevap, IS the actuahmount of water moving into the soil laydrs, is the revap
coefficient,E, is the potential evapotranspirati@tsn is the amount of water stored in the
shallow aquifer at the beginning of the dagdadsntnr,vpis the threshold water level the
shallow aquifer for revap to occur (Neitch et al., 2011).

Regarding deep aquifelSWAT simulates deep aquifers with the following water
balancesquation
O 0Ny 0 0 R (2.36)
where agp,iis the amount of water stored in the deep aquifer om, @ayp,-1 is the previous
dayos wat e rseepagufer, &g the amountoewater percolating from the shallow
aquifer to the deep aquifer, angumpdp Is the amount of water being pyedform the deep
aquifer (Neitch et al., 2011Df these term®veepiS calculated using the following equation (Eq.
2.37):

0 e (2.37)
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where,WadeepiS the amount of water percolating from the shallow aquifer to the deep aquifer,
I is the aquifer percolation coefficient, awdnrg is the amount of recharge entering both
shallow and deep aquifers for a given dilgi(ch et al., 2011 Table2.7 lists the parameters and
their definitions within the SWAT model that affect iq@undwatercalculations.

Table2.7. Alist of the parameters used in SW#4iloundwatercalcuktions

Parameter Definition
GW_DELAY Delay time for aquifer recharge
GWQMN Threshold water level in shallow aquifers for base flow

ALPHA BF Baseflow recession constant

REVAPMN  Threshold water level in shallow aquifers fervap
GW_REVAP Revapcoeffident

RCHRG_DP Aquifer percolation coefficient

GW_SPYLD Specific yield of the shallow aquifer

2.52 Model Calibration

While SWAT modelapplications ar@aried, one vital step in the model development
process is calibration and validatidn.fact, thisis a reeded step for all hydrological models
since itinsuresthat the modeis able tocapture local variabilitiesSanthiet al., 2001; White and
Chaubg, 2005;Sahoo et al., 2006; Troy et al., 20@8nold et al., 2012). During thigrocess
SWAT modeloutpus are compared toollectedobserved data and the ability of the model to
replicate the observed dasadeterminedhrough the use of statisticaiteria. For SWAT
models there are three main criteria that are recommended for use, name§uthia
efficiency (NSE) which represented the ratio of residual variance to the actual data variance,
percent bias (PBIAS) which measured the tendencyilated results to be larger or smaller
than observed values, and the ratioauft-meansquareerrorto ob®rved standard deviation
ratio (RSR). These statistical criteria were initially recommended by Moriasi et al. (2007) with
the following ranges foratisfactory model calibration and validation, NSE >0.5, PBIAS +25%,

and RSR <0.7Thisgoes to showthe SWATmodel performance is limited by the availability of
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reliable dataWhich means that hydrological model development suffers from the same issues
tha monitoring water resources has.
2.53 Remote Sensing in Hydrological Modeling

One approach to adeksingthe issues of data availability and reliability for hydrological
modeling is the use of remotely sensed dathgurmans et al., 2008y et al., 204). As
discussed previously, remote sensing provides a source of continuous, spatially distatauted d
tha canbe usedor regional analysisThis makes remote sensing data ideal for use in
hydrological modelingNeverthelesshere are still limitations to the use of remotely sensed data
such as the spectral, spatial, and temporal resolutions obitbeted images Lillesand et al.,
2014. Howeve, as long as these limitatioage takennto accountit is possible to develop
reliable datasets that cae incorporateéhto hydrological models (Xu et al., 2014).factin
recent yearseveral studiebave boked at the use of remotely sensed Efadathe
hydrological model calibration process (Immerzeel and Droogers, 2008; Schuurmans et al.,
2011; Qin et al., 2013; Sousa et al., 2015; Mendiguren et al., 2017). In the study by Immerzeel
and Drooger$2008)bi-weekly actual evapotranspiration (EThgta, obtained from the Surface
Energy Balance Algorithm (SEBAL), were integrated into the calibration of a SWAT model.
This calibration process modified SWAT parameters that were related to land use soil
characterstics, groundwater, and weather (Immeizend Droogers, 2008). The results of this
study showed that the incorporation of remotely sensed data could significantly improve the
model calibration process and result in more accurate model ETa sonslétimerzeel and
Droogers, 2008). In the studby Schuurmans et al. (2011) SEBAL ETa datasets derived from
data collected by two different satellites (ASTER and MODIS) were integrated into a coupled

groundwater and unsaturated zone model (MetaSWAP}itoaesoil moisture. The result of
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this studyshowed that the inclusion of the remotely sensed ETa data was able to improve the
spatial simulation of soil moisture levels (Schuurmans et al., 2011) This not only shows how
remotely sensed datauld improvethe maleling process but also the interconndatature of

the hydrological cycle. In the study by Sousa et al. (2015) an ETa dataset based on MODIS
imagery was developed and incorporated into a SWAT model. The results of this integration
showed that bydding he remotely sensed ETa, the SWAT model maproved streamflow
estimates, especially in ungagged catchments (Sousa et al., PlisZ)gain shows that the
addition of remotely sensed data in the model calibration process is quite beneficiaktirdthe
by Mendiguren et al. (2017) remotely sed€ETa was used to improve the simulation of
spatially distributed ETa. Results from this study indicated that the use of remotely sensed ETa
was able to improve model simulations of the spatially distribEfEal fa the region

(Mendiguren et al.; 2017 .hisagain highlights the benefits of including remotely sensed data in
hydrological model development. All of these studies show that the incorporation of remotely
sensed data can improve the overall hydralwignadel performance. However, very few stuslie
consider a multbbjective calibration approach during the model calibration plastead most
studies focus on a single component of the hydrological model during the calibration process
(Immerzeel anddrooges, 2008; Schuurmans et al., 2011; Sousal.e2015; Mendiguren et al.;
2017). However, studies that have considered several hydrological components during the
calibration process indicate that adding a rrolttlective calibration can improve ovénaodd
performance and reduce the uncertaaggociated with the final models (Crow et al., 2003;
Rajib et al., 2016; Franco and Bonum4, 2017) However, no studies cotmpapplicability of
different calibration techniques when performing a muoltlective cibration. This shows that

there is a ned to perform further research in this area.
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2.6 Modeling Uncertainty

While hydrological models and remote sensing data allow for regide analysis and
monitoring, it is important to note that these tegeis hae increased levels of error and
uncertainty compared to monitoring stations. These errors and uncertainties are often grouped
into three main categories, namely data uncertainty, model structure uncertainty, and parameter
uncertainty (Jin et al.,(.0; Bigode et al., 2012; Zhang et &Q16). The following sections

describe these categories in more detalil.

2.6.1 Data Uncertainty

Data uncertainty is a way to quantify the amount of noise within a dataset (Jin et al.,
2010).Thiscanbe causetby a \arietyof sources from environmental facs tothelimitations
of data collection equipment (Benz et al., 2004jis can have a major impact on models since
they are dependent on the quantity and quality of input data. And any noise or uncertainty within
the daaset will be passed into the neautputs as the daimusedn different calculations. This
is of particular importance to remotely sensed data, which needs to account for noise from
sources such as surface properties (topographic variabititiaadsurface directional
reflectance perties), atmospheric effects (spatial and temporal variations), and sensor design
(spectral, spatial, and radiometric properties) (Kustas and Norman, 1996; Friedl et al., 2001,
Long et al., 2014). For example, wheonsderingremotelysensed evapotragpisation datasets,
uncertainty caused by variability surface properties (landcover ¢godd result in inaccurate
evapotranspiration datasets, which would increase the uncertainty of any hydrological model that
uses thisevapotranspiration dataset asiaput (Long et al., 2014; Yang et al., 2015). One way to
address this would be to perform accuracy assessments by comparing the evapotranspiration

products to different lanbdased evapotranspiration station datadifferent landcovertypes.In
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fact, seveal studies have focused solely on this task (Kim et al., 2012; Senay et al., 2014; Xia et
al., 2015; Bhattarai et al., 2016). The results of these studies provide a look into the overall
accuracy of different remdiesen®gd evapotranspiration datasetis allows researchers,

policy makersand stakeholders to make educated decisions about which datasets to use for

further analysis based on thewn ranges of acceptable uncertainty.

2.6.2 Model Structure Uncertaity

Model structure uncertaintyisawayo quanti fy a model s robus:
(Brigode et al., 2012). Due to the complexity of natural systems, simplifications are used to
streamline models. However, it is possible to oversimplify a model, whichags uncertainty
associated with iby ignoring key factors and interconnected processes within the environment
(Refsgaard et al., 2006; Qin et al., 2018)tact, this has been identified by many studies as a
major source of uncertainty (Usunoffat, 192; Dubus et al., 2003; Linkov drBurmistrov,
2003; Brigode et al., 2012). However, it is often challenging to reduce this uncertainty without
developing a new model. Refsgaard et al. (2006) reviewed a variety of strategies for assessing
model streture uncertainties and proposedix-stepprotocol to examine conceptual
uncertainty. These steps are: 1) formulate a conceptual model; 2) set up and calibrate the model;
3) repeat steps 1 and 2 until a sufficient number of conceptual nveelesievelopd 4)
perform validation tests and aaut/reject models; 5) evaluatee tenabilityand completeness of
remaining conceptual models; and 6) make model predictions and assess uncertainty (Refsgaard
et al., 2006). This approach allows researchers to saketies model possible for each study

andinsurethat the model used captures the necessary processes of thelmisggmodeled
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2.6.3 Parameter Uncertainty

Parameter uncertainty is used to describe how well model parameter values perform
when simulahg modd outputs (Brigode et al., 2012However, minimizing this uncertainty is
often challenging since hydrological models require a large number of parameters to simulate the
complexity of hydrological system$o address thjsnodel calibration is thérst step in model
development in with parameter valuese alteredn an attempto betterimprové he model 6s
ability to represent the conditions in the area of study. The calibration process compares
simulated model outputs to observed data andstaéisical analysis to determine howose the
datasets are to each other (Immerzeel and Droogers, 2008; Golmohammadi et al., 2014). Within
hydrological modeling, three statistical criteria are often used to determine if a model was
successfully calibrate naméy NashSutcliffe model efficieny coefficient (NSE), roetnean
squared erreobservations standard deviation ratio (RSR), and percent bias (Pbias) (Moriasi et
al., 2007). However, while NSE, RSR, and Pbias can be used to determine if the calbastio
successful; knowing which paranees need the changegrovides a unique challenge of its
own. One way to address this would be to perfasansitivitya nal ysi s on t he mode
parameters. This can be done through different software packages SWWasCUP, which
allows modelers to parm sensitivity analysis, calibration, validation, and uncertainty analysis
of SWAT models based on Sequential Uncertainty Fitting (SUFI2), Particle Swarm Optimization
(PSO), Generalized Likelihood Uncertainty Estiroa (GLUE), Parameter Solution (Pardo
and Markov Chain Monte Carlo (MCMC) procedures (Abbaspour, 2007). By using SSU&T
it is possible to identify which parameters should be altered as well ensure that the calibration
process was successful at reithg the model output uncertainties. Ather aspect of parameter

uncertainty iequifinality, which describes the case in which a model calibration process
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identifies multiple parameter sets that yield similar model performances (Lu et al., 2009; Jin et
al., 2010Q. And while this is expected tmccur within hydrological modeling calibration (Beven,
1996; Savenije, 2001), it can still impact a mé@dekefulness. One approach that can help

reduce the impact afquifinality within hydrological models is theomplexty of the objective

function, shce as objective functions become more comprehensive the chance of having multiple
calibrations performing the same is reduced (Abbaspour, 2007). By quantifying and minimizing
parameter uncertainties, model perform@nanbe improved which in turn resudt in better

model outputs for researchepslicymakersand stakeholders.

2.7 Summary

Overall, advancements in remote sensing technology have resulted in a wide variety of
satellitebasedsensors that have greatijproedour abi |l ity t o monitor th
recent years have seen an increase in the amount of research #es nditiotely sensed data. In
particular, the field of hydrological modeling cha greatly improvedy the incorporation of
satelite data and the subsequently developed remotely sensed datasets. However, while studies
have already shown the benefits aé thcorporation of this data in the area of model calibration;
few studies have expanded the use of remotely sensed data tolyadtive model calibration.
Furthermore, conducting studies that explore the impacts of remotely sensed data on different
multi-objective hydrological model calibration techniques will advance the field of hydrological

modeling and allow for the develomt ofmodels that more accurately simulate the real world.
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3. INTRODUCTION TO METHODOLOGY AND RESULTS

Thisthesisisintheofr m of t hree research papers. The f
Role of Evapotranspiration Remote Sensing Data in ImpgpMydological Modeling
Predictabilityo explores the use of remotely
modeling.As the global demands for the use of freshwater resoooregsueto rise, it has
become increasingly importantéasurethe sstaindility of this resourceThisis accomplished
through the use of management strategies that often utilize monitoring and the use of
hydrological models. However, monitoring at large scales is not feasidkberefore model
applications are becomirapallenging, especially when spatially distributedtasets, such as
evapotranspiration, are needed to understand the model performances. Due to these limitations,
most of the hydrological modetse only calibratefbr data obtained from site/point
obsevationrs, such as streamflow. Therefore, the marufof this paper is to examine whether
the incorporation of remotely sensed and spatially distributed datasets can improve the overall
performance of the model. In this study, actual evapotranspiratica) (Eia was obtainedrom
the two different setsfesatellitebasedemote sensing data. One dataset estimates ETa based on
the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa
based on the Atmosphekand Exchange Invees(ALEXI) model. The hydrological model used
in this study is the Soil and Water Assessment Tool (SWAT), whascalibrate@gainst
spatially distributed ETa and single point streamflow records for the HoneyoeyEireek
Creek Watershed, located in Mighn,USA. Two different techniques, muliariable(NSGA-
Il) and genetic algorithm, were used to calibrate the SWAT mabldehg the aforementioned

datasetsthe performance of the hydrological models evaluatedly calculating Nastsutcliffe
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efficiency(NSE),percent bias (PBIAS), and romteansquarecerrorobservations standard
deviation ratio (RSR).

The second [(ewjaingthe $patialiaridTengoraf Variability of Remote
Sensing and Hydrologic Model Evapotranspiration Producte v athewsptial ansl temporal
performance of eight ETaathsetsAdvancedn satellite technology he led to the availability
of global remote sensing datasets that can be used to supplement gaps in observed hydrological
data. However, it is often challengitmidentify the right dataset for different spatehd
temporal scales. Therefore, the goal of this paper is to statistically explore the spatial and
temporal performance of remotely sensed ETa datasets in a region that lacks observed data. The
remotely enseddatasets were further compared with ETa fissubm a physicalhbased
hydrologic model to examine the differences and describe discrepancy among them. All of these
datasetsvere comparethrough the use dbeneralized Leas$quare estimations thebmpaed
ETa datasets on temporal (i.e., monthlg aeasonal basis) and spatial (i.e., landuse) scales at
both watershed arglbbasirevels.

I n the third papeaMany®©bjdctiveaOptienzationEehaiquecat i o n
Improve thePerformancef a Hydrologic ModelUsing Evapotranspiration Remote Sensing
Datad we combine streamflow and remotely sensed evapotranspiration data for hydrological
model calibration with the goal of identifying the improvement level achieved by introducing
spatially explicit data.Thisis similar to the first study; however, while the first study was limited
to just two objective functions (multibjective) in the calibration process, this study selected an
improved technique that allows maalgjective (more than two @dxtive functions) calibraon.
Furthermore, while the first study considered two evapotranspiration datasets (ALEXI and

SSEBop), this study considers eight evapotranspiration datasets, namely: the USGS Simplified
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Surface Energy Balance (SSEBop), the USRASA Atmospherd_and Exchage Inverse
(ALEXI), the MODIS Global Evapotranspiration Project (MOD16A2) 500m, the MOD16A2 1
km, the North American Land Data Assimilation Systems 2 Evapotranspiration (NH2DAS
Mosaic, the NLDAS2 Noah, the NLDAS VIC, and firally TerraClimate. In addion to these
datasets, aiknsemblewas also developemhd used. Regarding the calibration processes, the
Non-dominated Sorting Genetic Algorithm, the Third Version (NSIBAwas linkedto SWAT)

to preformten different calibratins. Atotal of 18 SWAT paametersvere considereduring
calibrations thaimpactthe model outputs regard tdoth streamflow and evapotranspiration.
The first eight calibrations utilized a mutibjective approach and used obsersttedamflowand
an ezapotianspiration datasetsahe objective functions. The ninth calibration was another multi
objective calibration utilizing observed stream flow and the evapotranspiEatsemble. And
finally, the tenth calibration wasmaany-objectivecalibrationutilizing observed stream flownd
all of the evapotranspiration datasets. Again, NSE, Pbias, andve@Ruseds the statistical

calibration criteria and a measuretloé overall model performance
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4. EVALUATING THE ROLE OF EVAPOTRANSPIRATION REMOTE SENS ING
DATA IN IMPROVING HYDROLOGICAL MODELING PREDICTABILITY
4.2 Introduction

As extreme climate conditions and anthropogenic activities continue to impact
environmental systems, mitigation and restoration related projects have become common.
Furthermore, erironmental systems, such as watersheds, are very complex with many
relationships and interlocking process8wékumar and Singh, 2012; Guerrero et al., 2013
Therefore, it can be challenging to determine which management solution(s) should be selected
and imgemened (Herman et al., 2015; Sabbaghian et al., 2016). This has led to the development
of many different modeling techniques that can simulate a variety of options and identify the best
solution(s), based on the criteria put forth mostly by stakiein®and pdicy makers (Chen et al.,
2012;Beven and Smith, 2014Giri et al., 2016).

Meanwhile, the first step in a model implementation is parameter calibration. Parameter
calibration in model applications is used to adjust model performanmettersimulde the
natural systemthey are trying to describ&(errero et al., 2013; Zhan et al., 2013; Rajib et al.,
2016. While parameter calibration improves the ability of models to more accurately represent
natural syst ems, arestlldnatedbyihe gualityfard guaetity of engut data
and their availabilities (Nejadhashemi et al., 2011). Today, most hydrological studies rely on
data collected at monitoring stations across the wbrlthct, the United States Geological
Survey (USGS) hmabow 1.5 million monitoring sites from which data can be obtained (USGS,
2016a). However, even with the existence of all these monitoring sites, there are times where
higher spatial resolutions are needed by researchers, stakehatdhrslicymakerdo more

precisely evaluate the hydrologic conditions and to determine the best place to implement
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mitigation and restoration projectd/anders et al., 20340ne way to address this issue is the
use of remotely sensed data. Remote sefnsidgfinedas thesciene of identifying, observing,
and measuring an object without physical contact (Graham, 1999). With the advancements in
satellite technology, remotely sensed satellite Hatdbbecome a source of consistent monitoring
for the entire globe, with appltionsrangng from crop yields to water resources assessments
(Graham, 1999% ong et al., 2011

In order tomodel water resources more accurately, it is importaexamire different
components of the hydrologic cycle, including water movement pree€sg., evaporation and
streamflow) and water storage.q, soil moisture, water vapor, groundwater, and surface water
bodies). While hydrological models simulate all components of the hydrological cycle,
streamflow is often the only component that th@deloutputs are compared against during the
calibration process since it can be measured more accurately than the other components
(Immerzeel and Droogers, 2008anders et al., 2014&ajib et al., 201p6 Thiscan result in poor
simulations of other hydtogic compaments, which ultimately lowers the model performance
(Wanders et al., 2014, Rajib et al., 2DIbBherefore, including additional hydrological
components in the parameter calibration process could allow the toduster represerail
procesccuring inthe environment (Crow et al., 2003). In particular, evapotranspiration (ET)
could be considered an important hydrological component added to the calibration process since
it describes the moisture lost to the atmosphere from both beogicdlants) andabiotic .9,
soils) sourcesHanson, 1991ySGS,2016&). Meanwhile, ET plays a major role in the cycling of
water from land and ocean surface sources into the atmosphere, which in turn drives
precipitation (Pan et al., 2015). Furthermoremenzeé and Droogers (2008) found that

calibrating a hydrological madl for ET significantly improved ET simulations; and that ET
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simulation values were more sensitive to groundwater and meteorological parameters compared
to soil and landuse parameters.

Thisindicates that including additional parameters in a model céfdoraan improve the
overall model performance. However, tgplicablyof different calibration techniques has not
been exploreavhen both remotely sensed ET and streamflow data artva@didn addition this
study is unique ithe sensdhat the perforrance of a hydrologic model for estimating
streamflow was evaluated using different remotely sensed ET products. Therefore, the objectives
for this paper are to (1) determine the perforosaofa calibrated hydrologic model in
estimating ET against spatialistributed time series ET products obtained from remote
sensing; (2) determine the impact of ET parameter calibration on streamflow estimation; and (3)
evaluate the performances offdientcalibration techniques for streamflow and ET estimations.

4.3 Materials and Methods

4.3.1 Study Area

The study area is the Honeyoey Crédke Creek Watershed (Hydrologic Unit Code
0408020203), whicls locatedwithin the Saginaw Bay Watershed indligan6 s L ower
Peninsula (Figurd.1l). The US Environmental Protemti Agency (EPA) identified the Saginaw
Bay Watershed as an area of concern due to the presence of contaminated soils and degradation
of fisheries within the region (EPA, 2017). These dtows were causelly the addition of both
point and norpoint sourcepollutants from a variety of sources such as industrial waste and
agricultural runoff (EPA, 2016). The final outlet for this watershed is Lake Huron via the
Saginaw River. Out of the appximately 1,100 krd within the HoneyoeyWatershed, agriculture
is the dominant landuse (~52%) followed by forests (~23%), wetlands (~17%) and pasturelands

(~5%). The remaining lang classifiedas urban (~3%). ThidoneyoeyCreekPine Creek
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watershed halseen gynificantly altered by anthropogenic activities as evidengeithd landuse
change (agricultural lands and urban area are dominant in the region), which in turn impacts the

natural environment, especially water quality and quantity.
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Figure 4.1 The stuly area HoneyoeyCreekPine Creekvatershed)

4.3.2 DataCollection
4.3.2.1 Physiographic Data

Several spatial and temporal input datasets were needed to describe the study area in a
hydrological model. These datasets describe characteristics stiogogaphy, landuse, soil
properties, climate, and crop managmt practices. Data from the USGS were obtained to
represent the topography of the regimingtheir 30 m spatial resolution National Elevation
Dataset (NED, 2014). Landuse informatigas aquiredfrom the 30 m spatial resolution
Cropland Data Layer developed by the United States Department of AgrieNHtiomal

Agricultural Statistics Service (USDNASS) (NASS, 2012). The Natural Resources
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Conservation Service (NRCS) Soil Survey GeografB®lUR50) Database was used to
describe the soil properties for the region at a scale of 1:250,000 (NRCS, 2014). National
Climatic Data Center (NCDC) weather stations (two precipitation stations and two temperature
stations) were used to obtain daily ppetEdtion and temperature data for the time span of 2003 to
2014. A widely used stochastic weather generator called WXGEN was employed (Sharpley and
Williams, 1990; Wallis and Griffiths, 1995), whiech embeddedh the Soil Water Assessment
Tool (SWAT), tocreateclimate time series for other climatologicatords €.9. relative
humidity, solar radiation, and wind speed) that are required for SWAT to operate (Neitsch et al.,
2011). Predefined crop management operations, schedules, and rotations wereftahopted
previous studies performed in the same region (Love and Nejadhashemi, 2011; Giri et al., 2015).
Due tothelimitation of SWAT in simulating up to 250 different landuse, the subwatershed map
that was provided by the National Hydrology Datd3as (NHDPIus)and the Michigan Institute
for Fisheries Research at a scale of 1:24,000 were modified to accommodate this limitation
(Einheuser et al., 2013)
4.3.2.2 Remote Sensing Data

In order toevaluate the role of ET remote sensing data in improwihgdologic model
predictability, twosatellitebasedET datasets were obtainéa the period 02003 to 2014 for
the study area. One dataset was created based on the Simplified Surface Energy Balance
(SSEBop) model while the other omas basedn the AtmospereLand Exchange Inverse
(ALEXI) model.

The USGS dataset reportabnthly actuakvapotranspiration (ETa) using the SSEBop
model (Senay et al., 201FTa is limited by the amount of water presaha site since it refers

to the actual amount of watiratis lostthrough both evaporation and transpiration (NOAA,
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201D). This model utilizes ET fractions derived from 1 km Moderate Resolution Imaging
Spectroradiometer (MODIS) thermal imagery collected eegaglgtdays to develop a 1 km
monthly ETa datasdobr the Conterminous U.S. (Senay et al., 2008lpuri et al, 2013). Data
were obtainedrom this dataset for each subwatershed in the studylareeder toprovide an
overall ETa for each subwatershed, a¢ré SSEBoOp
averagedwith respect tahe areato generate the overall area weighted ETa average values for
each month (USGS, 2046

The second ETa dataset is created based on the ALEXI model, which was sponsored by
the USDA and U3ational Aeronautics and Spa&dministration (NASA). TheALEXI model
utilizes remotely sensed morning land surface temperatures to determine ETa by relating the
observed change in temperature to changes in surface moisture anghB&es¢n et al., 1997,
Anderson et al., 20Q7For ths study, 4 km thermal images were obtained from Geostationary
Operational Environmental Satellites (GOES) and used as to develop a daily 4 km ETa dataset
for the Conterminous U.SH#in et al., 201p In order tomake the second set of ETa data
comparableo thefirst set, the daily ETa values from the ALEXI model were averaged to create
monthly ETa values. Next, these valwesre averagetbr each subwatershedth respect to

area.

4.3.3 Hydrological Model: SWAT

The ETa outputs of both the ALEXI anéEBop modelswere usedor the evaluationof
SWAT models for the study region. SWAT is a widely used, contintioes semidistributed,
hydrological model that was developed by the USDA Agricultural Research Service (USDA
ARS) and Texas A&M AgriLife Reseah (Texas A&M University, 2017). By taking into

account different spatiotemporal layers of information (Section 2.2.1), such as topography,
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landuse, and climate, SWAT modele able tesimulate a variety of hydrologicaroceses,
such as runoff, sedimetransport, and ET Gassman et al., 20R7This makes it a very useful

tool for both researchers apdlicymakers

4.34 Calibration Approaches

For this study, all of the collected physiographic deds incorporatethto a SWAT
model. However, there amany default parameters in a SWAT model that represent an average
or more probable condition that may or may not be true for the region of study (Arnold et al.,
2012). Therefore, the SWAT model used in this study underwent a series of calibration and
validaton processeslo do this all observed time series davare dividednto calibration (2003
to 2008) and validation (2009 to 2014) periods. This process is simply referred to as calibration
in the rest of the paper.

Three different types of model cal#tion were usedn this study. The first was solely a
streamflow calibration. In this approach, individual SWAT parameters that influence the
streamflow calculations were tested to find their rogatimal value through the comparison of
simulated streamdlwsto observed streamflows. Observed streamflow data was obtained from a
USGS streamflow station on the Pine River at the outlet of the study area (USGS), Z0&6
next two calibration approaches, muléiriable and genetic algorithm, were used to inaptbe
ETa estimation for the study region. For these sets of calibrations, SWAT parameters used in
ETa calculations at the subwatershed level were altered to replicate the values obtained from the
ALEXI and SSEBop ETa datasets.order toexamine the r@ d these remotely sensed data on
the performance of SWAT for estimating ETa, the genetic algorithm appweaschsedince it
is able tooptimize the system for a single variable. Meanwhile, a mraliiable calibration

approach was selected to deterntimeimpact of add ETa calibration on the SWAT model
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performance for both ETa and streamflow estimation. Detailed descriptions of these calibration

approacheare providedelow.

4.34.1 SWAT Parameters

As mentioned above, during the SWAT model calibratibe SWAT parameter values
were altered. The selection of these variablas donghrough the use of literature review and
sensitivity analysis (Woznickand Nejadhashemi, 2012). With respect to streamflow, 15 SWAT
parameters were identified and altedeoling the calibration process including: baseflow
recession constant (ALPHA_BF), biological mixing efficiency (BIOMIX), maximum canopy
storage CANMX),eff ect i ve hydraulic conductivity of cheé
the main channel (CH_N2),arsture condition Il curve number (CN2), plant uptake
compensation factor (EPCO), soil evaporation compensation coefficient (ESCO), delay time for
aquifer echarge (GW_DELAY)revapcoefficient (GW_REAP), threshold water level in
shallow aquifer for basédw (GWQMN), aquifer percolation coefficient (RCHRG_DP),
threshold water level in shallow aquifer fevap(REVAPMN), available water capacity
(SOL_AWC), ad surface runoff lag coefficient (SURLAG). These parameters were selected
based on the informatigerovided by the SWAT developer (Arnold et al., 2012). Tablke
presents the minimum, maximum, default, and calibrated values for all of these parameters fo

the Honeyoey watershed.
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Table 4.1 Streamflow calibration parameters used in this study

Parameter Mini mum Maximum Default Calibrated
ALPHA BF 0 1 0.048 0.55
BIOMIX 0 1 0.2 0.01
CANMX 0 100 0 1
CH_k2 -0.01 500 0 65
CH_N2 -0.01 0.3 0.014 0.025
CN2 -25% 25% NA -0.22%
EPCO 0 1 1 0.37
ESCO 0 1 0.95 0.97
GW_DELAY 0 500 31 9
GW_REVAP 0.02 0.2 0.02 0.055
GWQMN 0 5000 1000 1000
RCHRG _DP 0 1 0.05 0.35
REVAPMN 0 1000 750 900
SOL _AWC 0 1 NA 20%
SURLAG 1 24 4 1

In regards to the ETa calibration, another set of 10 SWakarpeers was identified as
being influential to the ETa calculatiorsdjtsch et al., 2001 These included: maximum canopy
storage CANMX), carbon dioxide concentration (CO2), soil evaporation compensation
coefficient (ESCO), fraction of maximum stomatahdiwctance corresponding to the second
point on the stomatal conductance curve (FRGMAX), maximum stomatal conductance (GSI),
potental evapotranspiration method (IPET), daily maximum temperature (MAX TEMP), daily
minimum temperature (MIN TEMP), vapor gseiredeficit corresponding to the fraction given
by FRGMAX (VPDFR), and daily wind speed (WND_SP). However, some of these parameters
could notbe alteredsince theywere providedy either observed data or the weather generator
used in this study, includg MAX TEMP, MIN TEMP, and WND_SHn addition since climate
charge was not a factor for this study, CO2 was also not altered. Furthermore, in an attempt to
limit the impact of the ETa calibration on streamflow, any SWAT parameters already used in the
streamflow calibration, CANMX and ESCO, were also not used during=fha calibration

processThisreduced the initial set of ETa parameters from 10 to four. Of this set of four
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parameters, three are crop properties and have ranges of 0.001 to 0.1 foro@3qr0
FRGMAX, and 1.5 to 6 fo’PDFR The last parameter usedthis study, IPET, indicates which
method to use when calculating potential evapotranspiration (ETp). Within SWAT three
different ETp methods are available: namely the Perkbameith metlod, the PriestleyTaylor
method, and the Hargreaves methlédi{sch et al., 2011 All three methodsvere includedn

the ETa calibration process; howeveryds foundhat the Penmahllonteith method produced

the best results for the study area.

4.34.2 Initial Streamflow Calibration

A streamflow calibration was perfoed to generate a base condition to which the ETa
calibrations couldoe comparedin order toevaluate the performance of a hydrological model,
three statistical criteria that were suggestgdloriasi et al. (2007), were used in this study. These
criteriainclude: 1) NastButcliffe efficiency (NSE) representing the ratio of residual variance and
observed data variance (Nash and Sutcliffe, 1970); 2) Percent bias (PBIAS) evaluating how much
larger/snaller simulated data are than their corresponding obserated(Gupta et al., 1999); and
3) Root mean squared error (RMS&hservations standard deviation ratio (RSR), reporting the
ratio of RMSE and standard deviation of measured data (Legate$la@dbe 1999). For
evaluating the performance of a hydrologic mamesimulating monthly streamflow values, NSE
values above 0.5, PBIAS values within £25%, and RSR values belowar®.considereds
satisfactory (Moriasi et al., 2007ln addition we al® repated RMSE to examine the error

associated with the simulatédta in which lower values represent the better model performance.

4.3.4.3 Multi-variable Calibration
A multi-variable calibration procedure, based on Monte Carlo simulation and an

evolutionaryagorithm, was applied to the SWAT model using both remotely sensed ETa
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datasets and observed streamflow from the study @hegrocedure aimetb identify the
Paeto optimal frontier and the best traolé solution.

A solution is classified as Rao opgtimal (also known as nedominated) when the value
of anyobjective function cannot be improved without decreasing the performance of at least one
other objectivedinction (Chankong and Haimes, 1993; Tang et al., 2006). In-waultble
calibration,thereis at least one objective function per observed variable. For this study, the
minimization objective function (OF) for each variable.[ETa and streamflowyasbasedon
the NSE.

OF =1 -NSE (4.1)

The objective function foETawas computed using the area weighted average of the
monthly simulated from the hydrologic model and satebised ETa time series for each

subwatershed, which wagtermined as follows:

= (4.2)
where, 0 “Ys the average ETa for monf6 is the total surface area of the waterslieds the
surface area of subwatersh@@'Y is the ETa for subwatersh&nd monthiQandz is the
number of subwatersheds. Therefore, one pair aflatedtobserved ETa series for the whole
watershed was obtained to determine a unique NSE for this variable. This process was not
employed for seamflow since there is only one gauging station at the outlet of the study area
(Figure4.1).

The general outhe ofthe multivariable calibration, whicls further explainedh the
following sections, is as follows: A Monte Carlo simulation is performeegnderstand the

SWAT model performance for ETa and streamfleith respect tdhe selected calibration

63



parangeters.Thus, 5,000 parameter setere randomly generateda uniform sampling, which

were then evaluatday executing the SWAT model for eachngeated parameter set. The results
were used to define, if possible, narrower calibration parameter ranges, @itain multi

objective scatter plots to identify preliminarily Pareto Optimal solutions. The next step consists
of the application of a mulbbjective evolutionary algorithm known as the Nondominated
Sorted Genetic Algorithm Il (NSGA) (Deb et al.,2002)to determine the optimal Pareto
population. Finally, the decisiamaking methodknown aghe Compromis&rogramming (Deb,
2001), using a Eelidean distance metric, was employed to select the final optimatdafade

solution from the resulting Pare@ptima population.

4.34.3.1 Monte Carlo Simulation

A total of 5,000 runs for Monte Carlo simulation were performed using MATLAB®,
with randomlygenerated corresponding parameter sets selected from uniform distributions.
Ranges for calibration parametevsre dfined as follows: 0.001 to 0.1 for GSI, 0 to 1 for
FRGMAX, and 1.5 to 6 fo’PDFR A SWAT model rurwas executetbr each parameter
combiration, computing NSE for both ETa and streamflow. Dotty plots relating each OF with
parameter valuesereobtaned toanalyze parameter identifiability, and if possible, narrower
calibration ranges tbe exploredvith the NSGAII algorithm. Likewise, multiobjective plots
relating ETa and streamflow OF valugsre generatefbr preliminary Pareto frontiers
identification
4.34.3.2 Multiobjective Evolutionary Algorithm: NSGAI

The NSGAII is a multiobjective genetic algorithm that has been widely used in various
disciplines and haseen successfully implementadother SWAT applications (Zhang et al.,

2010; Luet al., 2014; Zhang et al., 2016). The NS@lAs a populatiorbasel algorithm thats
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comprisedf a nondominated ranking process, a crowded distance calculation, an elitist selection
method, and offspring reproduction operations (Deb, 2001). For thig, sttealcoded NSGA

Il with simulated binary crossover (SBX) apdlynomial mutation (Baskar et al., 2015) was

applied, requiring the prior definition of distribution indexes for each operation (defined as 20

for crossover and mutation each). Other inmarangters include the population size (defined as
100), the maxiram number of generations as stopping criteria (defined as 50), and the mutation

probability (defined as the reciprocal of the number of calibration parameters).

4.34.3.3 Compromis@rogramming Approach
The compromis@rogranming approach using th@ metic (which becomes the

Euclidean distance metric) is used to select the optimal Pareto population member that is closest
to a reference point (Deb, 2001). In this case, the ideal pdiithis unfeasible and is not
located on the Pareto frontier, is sgéel as the reference point and it is comprised by the best
objective function values (Deb, 2001). Before computing the distance between each Pareto point
and the ideal point, the objeat function values are normalized employing a Euclidian-non
dimensiomlization (Sayyaadi and Mehrabipour, 2012):
OF'=—1— (4.3)

4 OF?

i=1
where,i is the index for each point in the Pareto fronijiés,the index for each ORjis the btal
number of the Pareto population,amd uper s cr i p tdimensibnedrThe distanc&d n o n

between each Pareto point and the ideal puihich is thed metric, is calculated as follows:

N 2
|2 - \/a (C)l:IJ _OI:I] |deal) (4.4)
=1

where,N derotes the total number of objective functions.
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In the compromise programming approach, the point with the minimum distance metric

valueis choseras the best tradeaff solution.

4.3.4.4 Genetic Algorithm Calibration

The other approach used to cadile the SWAT modelswith respect tahe ETa datasets
was a genetic algorithm (GAA GA is an optimization technique that imitates biological process
to refine a population of potential solutions to identify the best final or set of final solutions
(Goldberg, 1989; Conn et al., 1991; Conn et al., 1997). For this study, a GA was used to guide ETa
calibrations by changing the values of three parameters within the SWAT model, namely GSI,
FRGMAX, andVPDFR These are the same parameterswegie modifiedn the multi-variable
optimization approach, and thus the same ranges were used for this optimization. With each
successive set of parameter values, a series of MATLZfBles were used to update and run the
SWAT model (Abouali 2017). First, the parameter vesuwee accepted by the code, which
checked the values to the defined ranges and then applied the valuesutwallershedwithin
the region. After thisvas completedthe code executed the SWAT model and stored thmutsut
for further analysis. In sumary, the SWAT modeivas run904,900 times. While executing these
runs will not necessarily develop an ideal model, it will generate a landscape of how ET changes
for each subwatershed based on the specified parameteeadfoset of parameter values, the
SWAT ETa outputavere comparetb the ALEXIandSSEBop datasets and NSE and RM&te
calculatedfor each subwatershed. The parameter set that had the largest NSE was considered to
be the besandthe lowest RMSEvas useds the tiebreakethis allowed r theidentification of
the best parameter values for each subwatershed, which then ysedretrizéhe best model
that maximizes the ETa calibratioh.should be noted that this is only possible based on the

assumpbn that the ETa calculation fone subvatershed is not affected by the ETa calculation
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for another subwatershed, otherwise it would not be possible to create the mosaic landscape of
parameter values used in the best model, which to the best of our dgevias not been done in

other SWA studes.Furthermore, after the best parameters for each subwatershed were identified
and applied within the SWAT models, the simulated ETa values were area averaged to produce a
single ETa value for the entire watersh&tis set of ETa values was thesed b calculate the

NSE, PBIAS, RSR, and RSME for the entire region, just like was done in thevauittble

calibration.Thiswas done to allow for a watershed level evaluation of the calibration approaches.

4.35 Statistical Analysis

To further evalate the streamflow and ETa outputs from the calibrated models and ETa
datasets, a mixeeffects model was used to compare the mean difference between each of the
outputs (Kuznetsova et al., 201%his process was perfoed twice, once for the streamflow
datases (observed, initial streamflow calibrated model, ALEXI muwddiriable calibrated model,
ALEXI genetic algorithm calibrated model, SSEBop mwbriable calibrated model, and
SSEBop genetic algorithm calibrated det) and once for the ETa datasets EXI, SSEBop,
ALEXI multi-variable calibrated model, ALEXI genetic algorithm calibrated model, SSEBop
multi-variable calibrated model, and SSEBop genetic algorithm calibrated mibaislallowed
for the determinationfasignificant mean differences betwethe datasets with a 95%
confidence level.

4.4 Results and Discussion

4.4.1 Initial Streamflow Calibration
Daily streamflow was calibrated and validated for ay&ar period (6 years calibration and
6 years validationjrom 2003 to 2014 for the region. Bla 4.2 shows the NSE, Pbias, RSR, and

RSME values achieved for the calibrated model. As shown in the table, all criteria (NSE, PBIAS,
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and RSR) are in their respective satisfactory ranges (Metiasj 2007) indicatng that the model

was successfully ¢drated and can be used to simulate streamflow values for the region.
Furthermore, while the overall RSME was 6.522, the calibration period had a smaller RSME
compared to the validation period, indicating a better rniitdéuring the calibration periochan

the validation period.The temporal variability of observed and simulated streamfbowlso
presentedn Figure 4.2. Overall, the SWAT model representsabservediow variations very
accurately.

Table 4.2. Calimtion and validation criteria
NSE PBIAS (%) RSR RSME

Overall (20032014) 0.612 -0.965 0.623 6.522
Calibration (20022008) 0.611 4.303 0.624 5.996
Validation (20092014) 0.613 -5.856 0.622 7.009

——observed ----- simulated

120

100

%
3

Streamflow (m3/s)

1/1/2003 1/1/2004 1/1/2005 1/1/2006 1/1/2007 1/1/2008 1/1/2009 1/1/2010 1/1/2011 1/1/2012

Date

Figure 4.2 Comparison of observed and simulated daily streamflow

The results of this section present the performance of the SWAT model in replicating the
spatially distributed ETa data obtained from two remote sensing products (SSEBop and ALEXI

datasets). Tabl&.3 shows the SWAT model performance for the overall, cafibn, and
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validation periods based on NSE, PBIAS, RSR, and RMSE of the ETa for the condition in which
only the streamflow calibratiowas performedThese calculations followed the same procedure

that was discussed in the mulariable and GA calibratiosectons, in which ETa values were

area averaged across the watershed and then used to calculate watershed level statistical criteria.
When considering the entitene period the streamflow calibtad SWAT model was able to

replicate the SSEBop ETa dsgamae accurately than the ALEXI ETa datasétis canbe seen

by the fact that the statistical criteria for the SSEBGd@a were better than those for the ALEXI

ETa. Similar resultsvere ser for the calibration and validation periods. Overall, this shihat

the SWAT model can better replicate the SSEBop ETa data compared to the ALEXI data.

Table 43. Statistical crieriaETawhentheresults frombase streamflow calibrated SWAT
modelwas used

Statistical Measure

Period Variable/Dataset NSE PBIAS (%) RSR RMSE
Overall @00014)  Gefmota  oaL 4012  0ds 1820
catbaton Govaoos) SE0ET 0% T 0 A
waideion oozoie) AT B8 T os

4.4.2 Multi-variable Calibration

A combination of 5,000 Monte Carlo simulations @andNSGA-1l evolutionary
algorithm were used to identify the Pareto frontiers for the SWAT modbratons for both
the ALEXI and SSEBop ETa datasets. Figdizzshows both the entire Monte Carlo population
as well as the Pareto frontiers identified by the NSGé&volutionary algorithm for each ETa
datasetThis shows that Pareto frontiers were ataéeidentified from the Monte Carlo
simulations run for each ETa datasets, which indicates the first phase of theanalile
optimization was successful for balhtasets. However, the SSEBop Pareto frontier was able to

further minimize streamflowrad ETaOFs compared to the ALEXI Pareto frontier. Therefore,
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calibrating the SWAT model using the SSEBop ETa data was able to produce a more accurate
model performancelhis canbe seemore clearly in Figurd.4, which shows the Pareto

frontiers for boththe SEEBop and ALEXI datasets. This figure also highlights the optimal Pareto
population member selected by the compromiegranming method, which shows the optimal
model calibration for each datas&hisreinforces the conclusions that the SSEBop @atas

performed better than the ALEXI dataset and achieved a model calibration that was able to better
simulate both streamflow and ET values for the entire re¢iioaddtion, the results showed that

the multivariable calibration was able to identify adlrcalibrated model for each dataset that

improved both streamflow and ET simulations.

Figure 4.3. Monte Carlo populations and Pareto frontiers for a) ALEX| aB8bBBopdatasets
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