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ABSTRACT 

APPLICATION OF EARTH OBSERVATION AND RELATED TECHNOLOGY IN AGRO-

HYDROLOGICAL MODELING 

By 

Matthew Ryan Herman 

Freshwater is vital for life on Earth, and as the human population continues to grow so 

does the demand for this limited resource. However, anthropogenic activities and climate change 

will continue to alter freshwater systems. Therefore, there is a need to understand how the 

hydrological cycle is changing across the landscape. Traditionally, this has been done by single 

point monitoring stations; however, these stations do not have the spatial variability to capture 

different aspects of the hydrologic cycle required for detailed analysis. Therefore, hydrological 

models are traditionally calibrated and validated against a single or a few monitoring stations. 

One solution to this issue is the incorporation of remote sensing data. However, the proper use of 

these products has not been well documented in hydrological models. Furthermore, with a wide 

variety of different remote sensing datasets, it is challenging to know which datasets/products 

should be used when. 

To address these knowledge gaps, three studies were conducted. The first study was 

performed to examine whether the incorporation of remotely sensed and spatially distributed 

datasets can improve the overall model performance. In this study, the applicability of two 

remote sensing actual evapotranspiration (ETa) products (the Simplified Surface Energy Balance 

(SSEBop) and the Atmosphere-Land Exchange Inverse (ALEXI)) were examined to improve the 

performance of a hydrologic model using two different calibration techniques (genetic algorithm 

and multi-variable). Results from this study showed that the inclusion of ETa remote sensing 



   

 

 

 

data along with the multi-variable calibration technique could improve the overall performance 

of a hydrological model. 

The second study evaluated the spatial and temporal performance of eight ETa remote 

sensing products in a region that lacks observed data. The remotely sensed datasets were further 

compared with ETa results from a physically-based hydrologic model to examine the differences 

and describe discrepancy among them. All of these datasets were compared through the use of 

the Generalized Least-Square estimation with Autoregressive models that compared the ETa 

datasets on temporal (i.e., monthly and seasonal basis) and spatial (i.e., landuse) scales at both 

watershed and subbasin levels. Results showed a lack of patterns among the datasets when 

evaluating the monthly ETa variations; however, the seasonal aggregated data presented a better 

pattern and fewer variances, and statistical difference at the 0.05 level during spring and summer 

compared to fall and winter months. Meanwhile, spatial analysis of the datasets showed that the 

MOD16A2 500 m ETa product was the most versatile of the tested datasets, being able to 

differentiate between landuses during all seasons. Finally, the ETa output of the model was 

found to be similar to several of the ETa products (MOD16A2 1 km, NLDAS-2: Noah, and 

NLDAS-2: VIC). 

The third study built upon the first study by expanding the use of remotely sensed ETa 

products from two to eight while examining a new calibration technique, which was the many-

objective optimization. The results of this analysis show that the multi-objective calibration still 

resulted in better performing models compared to the many-objective calibration. Furthermore, 

the ensemble of all of the ETa products produced the best performing model considering both 

streamflow and evapotranspiration.   
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1. INTRODUCTION  

As we advance into the 21st century, the Earth and human civilization are faced with 

numerous global challenges. One of the most pressing challenges is global water security and the 

first step to address this challenge is to understand the elements of the hydrological cycle that 

directly or indirectly impacts global water security. Historically, streamflow was the only 

element of the hydrological cycle that has been measured at large scales. This has been done 

through the use of monitoring stations; in fact, the United States Geological Survey (USGS) 

operates over 1.5 million monitoring sites across the United States (USGS, 2016a). However, 

these stations are often expensive to install and maintain and often are too spread out across the 

landscape to provide high resolution data for stakeholders, policy makers, and decision makers 

(Wanders et al., 2014). This has led to the development of modeling techniques that are fast, 

inexpensive, and can estimate different elements of the hydrological cycle beyond the sites of 

streamflow monitoring stations (Giri et al., 2016). However, since the hydrological cycle is 

complex with many linked processes, it is very challenging to accurately simulate all of their 

elements (Guerrero et al., 2013). Therefore, the first step in model setup is to assure that those 

elements are accurately represented by the model. This will be done through the model 

calibration process in which the model parameters are adjusted to simulate better the natural 

systems they are trying to describe (Rajib et al., 2016). Typically, hydrological modeling 

calibration is performed by only considering streamflow since it can be measured more 

accurately than the other components (Immerzeel and Droogers, 2008; Rajib et al., 2016). 

However, since streamflow is just one component of the much larger, complex hydrological 

cycle, considering just streamflow in model calibration could result in poor simulations of other 

hydrologic components lowering the overall model performance (Wanders et al., 2014). One 
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solution to this would be to include additional hydrological components in the calibration 

process (Crow et al., 2003). In this regard, evapotranspiration (ET) would be an important 

addition to the calibration process since it accounts for two-thirds of the water on earth and plays 

a major role in the cycling of water from land and ocean surface sources into the atmosphere 

(Hanson, 1991). However, very few studies explore the addition of ET to hydrological model 

calibration in addition to the traditional streamflow calibration.  

Remote sensing is defined as the science of identifying, observing, and measuring an 

object without physical contact (Graham, 1999). With the advancements in satellite technology, 

remotely sensed satellite data has become a common source of consistent monitoring for the 

entire globe, with applications ranging from crop yields to water resources assessments (Graham, 

1999; Long et al., 2014). Meanwhile, in the past few decades, many remotely sensed ET 

products have become available at different spatial and temporal resolutions. However, it is 

important to note that while remote sensing data solves the issue of data quantity, the accuracy of 

this data is lower compared to on the ground monitoring stations and often has a higher level of 

uncertainty associated with it (Zhang et al., 2016). The limitations associated with the remotely 

sensed data make the implantation of remotely sensed ET products in hydrological modeling a 

challenging task. Therefore, this dissertation aims to advance understanding of the following 

knowledge gaps: 

Knowledge Gap 1: To understand the applicability of different calibration techniques in a 

hydrologic model when both remotely sensed ET and streamflow data are involved. 

Knowledge Gap 2: To examine the spatial and temporal sensitivity of different ET 

products in regard to landuse/landcover and seasonal climate variabilities  
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To address the knowledge gap 1 the following objectives were developed: (1) determine 

the performance of a calibrated hydrologic model in estimating ET against spatially distributed 

time series ET products obtained from remote sensing; (2) determine the impact of ET parameter 

calibration on streamflow estimation; and (3) evaluate the performances of different calibration 

techniques for streamflow and ET estimations. 

To address the knowledge gap 2 the following objectives were examined: (1) explore the 

temporal performance of individual and an ensemble remotely sensed ET datasets; (2) evaluate 

the spatial performance of individual and an ensemble remotely sensed ET datasets; (3) compare 

the performance of individual remotely sensed ET datasets to the ensemble and hydrological 

modelôs outputs.  
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2. LITERATURE REVIEW  

2.1 Overview 

With the continued growth of the human population, the demand for freshwater has 

increased exponentially, this increase has stressed freshwater resources and led to their 

degradation (Walters et al., 2009: Young and Collier, 2009; Dos Santos et al., 2011; Giri et al., 

2012; Pander and Geist, 2013). This degradation not only impacts the environment but also the 

humans who rely on these freshwater systems. Furthermore, as global temperatures rise and the 

climate changes, further stressors will impact freshwater resources, amplifying the demands and 

degradations on these limited resources (Meyer et al., 1999; Ridoutt and Pfister, 2010). In order 

to mitigate the impacts of degradations and insure the sustainability of freshwater resources.  

However, freshwater is just a small part of the Earthôs hydrological cycle. And in order to 

truly understand what is happening within one part of this cycle, it is important to know how all 

the different components interact with each other. However, with 71% of the Earth covered in 

water (USGS, 2016b), it can be challenging to monitor all parts of the hydrological cycle. This is 

where the use of remote sensing can be beneficial. Remote sensing collects data for the entire 

world, from the composition of the atmosphere to the type of vegetation on the Earthôs surface 

(Graham, 1999). Another benefit of remote sensing data is that it provides a time series that 

allows for the evaluation of patterns and trends that occur over time. The goal of this review is to 

explore the applications of remote sensing in hydrology and identify knowledge gaps within the 

field. 

2.2 Remote Sensing 

Back in 1946, V-2 missiles carrying cameras were launched into the atmosphere and 

captured the first photographs of the Earth from space (Reichhardt, 2006). While the images 
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captured had a poor resolution; they offered scientists a chance to observe the Earth remotely 

from space. This was the dawn of remote sensing from space (Graham, 1999). However, it was 

not until the advent of satellites and the technological advancements made in this field that led to 

the explosion of space-based remote sensing. Today there are dozens of satellites orbiting the 

Earth recording how and where the Earth is changing. From observing weather patterns to 

monitoring deforestation, remote sensing has become a vital link in understanding how 

anthropogenic activates shape the surface of the Earth. 

Remote sensing is defined as the science that identifies, observes, and measures an object 

without physical contact (Graham, 1999). This means that the earliest forms of remote sensing 

began with the development of cameras. However, in the modern age, remote sensing utilizes the 

entire electromagnetic spectrum and not just visible light used in photography (Graham, 1999). 

Everything with a temperature greater than absolute zero (-273ºC) constantly reflects, absorbs, 

and emits energy or electromagnetic radiation (Graham, 1999). While individual compositions 

influence how electromagnetic radiation interacts with the object, its temperature has the greatest 

influence on the emission of electromagnetic radiation. As the temperature increases, the 

wavelength of emitted electromagnetic radiation decreases; and vice versa (Graham, 1999). The 

entire range of electromagnetic wavelengths is known as the electromagnetic spectrum.  

Due to the wide range of wavelengths found within the electromagnetic spectrum, several 

intervals were defined; these include gamma-rays, x-rays, ultraviolet, visible, infra-red, 

microwaves, and radio waves (Graham, 1999). With gamma-rays having the smallest wavelength 

(measured in picometers) and radio waves having the longest wavelength (measured in meters) 

(Graham, 1999). Of this entire range, the human eye can only detect wavelengths that fall within 

the visible category (NASA, 2010a). Another important characteristic of electromagnetic waves 
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is their ability to pass through the Earthôs atmosphere or transmissivity (Graham, 1999). The 

transmissivity is dependent on the atmospheric composition since different gasses absorb 

different wavelengths. This creates a set of absorption bands and atmospheric windows that 

describe which forms of electromagnetic radiation can pass through the atmosphere and interact 

with the surface (Graham, 1999). By observing how these sources of radiation interact with the 

atmosphere and the surface of the Earth it is possible to measure the levels of specific gasses or 

identifies regions of vegetation. 

By taking into account more than just the visible electromagnetic radiation, remote 

sensing is able to provide more detailed information about the Earth and how it is changing. This 

allows us to surpass the limitations of the human eye and observe patterns from global trends to 

changes within a single farm filed (Graham, 1999). Furthermore, by collecting repeated time 

series of images of the Earth, it is possible to preform temporal analysis. This allows us to track 

how the Earth is changing over time and can be used to develop more accurate adaptation 

strategies.    

2.2.1 Types of Remote Sensing Instruments 

As technology has advanced, a variety of instruments have been integrated into remote 

sensing. These instruments can be divided into two categories: passive and active (Graham, 

1999).  

Passive remote sensing instrument measure the electromagnetic radiation reflected or 

emitted by the Earthôs surface (Graham, 1999). There are a variety of different passive 

instruments used for remote sensing including: radiometers, imaging radiometers, spectrometers, 

and spectroradiometers (Graham, 1999). Radiometers, imaging radiometers, and 

spectroradiometers all measure the intensity of a specific band of electromagnetic radiation; 
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however, while a radiometer only measures the intensity, imaging radiometers have the ability to 

develop a two-dimensional array of pixels that represent the electromagnetic radiation intensity 

of the surface it was observing, and spectroradiometers measure the intensity of multiple 

wavelength bands (Graham, 1999). A spectrometer observes the wavelengths given off by 

particular surfaces to identify what they are; this is possible since all objects interact with 

electromagnetic radiation differently (NASA, 2010b). All of these instruments are used to 

identify what is present on the Earthôs surface or in the atmosphere. 

In contrast, active remote sensing instruments emit specific frequencies of 

electromagnetic radiation and then measure the electromagnetic radiation as it is reflected back 

to the instrument (Graham, 1999). There are a variety of different active instruments used for 

remote sensing including: radar, scatterometers, Light Detection and Ranging (Lidar), and laser 

altimeters (4). Radar utilizes the emission of radio or microwaves to determine how far away an 

object is (Graham, 1999); this can be used to observe the topography of the Earth as well as track 

how surface feature are changing. A scatterometer is similar to radar in the sense it uses emitted 

microwaves, but is designed to measure backscatter radiation and can be used to measure winds 

over the oceans (Naderi et al., 1991; Graham, 1999). Lidar utilizes the emission of laser pulses 

and backscattering/reflection of the pulses to determine the location of different objects such as 

aerosols and clouds (Graham, 1999). A laser altimeter utilizers lidar, however instead of 

determining the compositions of what the laser passes through it determines the height of the 

instrument from the Earthôs surface (Graham, 1999). This is very similar to radar and is also used 

to observe the Earthôs topography as well as changes that occur such as the loss of glaciers. 
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2.2.2 Current Remote Sensing Projects 

With so many different types of instruments that can be used for remote sensing, it is no 

surprise that there are also a great number of different remote sensing projects. Each project has 

different primary purposes that can range from tracking the composition on the atmosphere or 

measuring the loss of glaciers and ice sheets. The following sections describe some of the better-

known remote sensing projects. It is important to note that for this dissertation the remote 

sensing products are referred to any products that used remote sensing in a direct or indirect 

manner to calculate values such as potential evapotranspiration.  

2.2.2.1 Aqua 

 The Aqua Earth-observing satellite mission, launched by the National Aeronautics and 

Space Administration (NASA) in 2002, collects information on the hydrological cycle of the 

Earth as well as radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton 

and dissolved organic matter in the oceans, and air, land, and water temperatures (NASA, 

2017b). In order to collect all of this information Aqua utilizes an array of six instruments: the 

Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the 

Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS 

(AMSR-E), the Moderate-Resolution Imaging Spectroradiometer (MODIS), and the Clouds and 

the Earth's Radiant Energy System (CERES) (NASA, 2017j). The AIRS instrument is used to 

observe and map air and surface temperatures, water vapor, and cloud properties (NASA, 

2005b). Furthermore, AIRS can measure trace levels of greenhouse gasses in the atmosphere 

(NASA, 2005b). The AMSU-A instrument is used to not only to collect data on upper 

atmosphere temperatures but also to collect data on atmospheric water (NASA, 2005a). The HSB 

instrument is used to collected humidity profiles throughout the atmosphere (NASA, 2017i). By 
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combining the observations of the AIRS, AMSU-A, and HSB it is possible to collect humidity 

profiles even when clouds are present (NASA, 2017i). The AMSR-E instrument is used to 

collect data on precipitation rates, cloud water, water vapor, sea surface winds, sea surface 

temperatures, ice, snow, and soil moisture (NASA, 2017a). This was done by observing the 

intensity of emitted microwaves from the Earthôs surface (NASA, 2017a). The MODIS 

instrument is used to collect physical properties of the atmosphere, oceans, and land as well as 

biological properties of the oceans and land (NASA, 2017aa). The CERES instrument us used to 

collect information on the electromagnetic radiation reflected and emitted from the Earthôs 

surface (NASA, 2017f). This data can be used to evaluate the thermal radiation budget of the 

Earth. The combined observations of these instruments provide highly detailed information that 

is useful to policy makers since it provides maps of how the Earth is changing and helps identify 

which regions require immediate mitigation projects.  

2.2.2.2 Aquarius 

 The Aquarius Project provided worldwide data about ocean salinity (NASA, 2017c). This 

data was used by scientists to advance our understanding of how changes in the salinity of the 

ocean affected by the hydrological cycle as well as ocean currents (NASA, 2017c). Aquarius was 

launched on June 10th, 2011, and remained in operation until June 8th, 2015 (NASA, 2017k). 

Throughout its time of operation, Aquarius produced a new salinity map for the world every 

seven days (NASA, 2017ad). To evaluate the salinity, three passive microwave radiometers were 

used to detect minute changes in the ocean surface emissions that corresponded to the levels of 

salt within the water (NASA, 2017c). Overall this mission was successful in the fact that it 

provided more data than had been collected before and allowed for the advancement of our 
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understanding of how fresh and salt water interact as well as how the ocean currents and 

circulations occur.  

2.2.2.3 CBERS Series 

 The CBERS or China Brazil Earth Resource Satellites are a series of satellites developed 

jointly between China and Brazil (INPE, 2011d). Currently, three satellites (CBERS-1, CBERS-

2, and CBERS-2B) are in orbit capturing images of the Earthôs surface that have been used to 

track deforestation and monitor water resources and urban growth (INPE, 2011e). These 

satellites are equipped with high-resolution charge-coupled device cameras, an infra-red 

multispectral scanner (replaced in the CBERS-2B with a high-resolution panchromatic camera), 

and a wide field imager (INPE, 2011b). These instruments capture images of the Earthôs surface 

from multiple spectral bands with resolutions ranging from 260 to 2.7 m2 (INPE, 2011a). This 

allows for very precise measurements of the Earthôs surface for researchers and policy makers. 

Given the success of these satellites, two additional satellites (CBERS-3 and CBERS-4) are 

secluded to be launched in the near future (INPE, 2011c).  

2.2.2.4 CryoSat Series 

 The mission of the CyroSat Satellites is to monitor the thickness of the polar ices sheets 

as well as identify regions where the ice sheets are changing (ESA, 2017k). The CryoSat project 

was initiated in 1999 by the European Space Agency (ESA), and the first satellite was launched 

in 2005 (ESA, 2017k). However, this satellite was destroyed during launch. Therefore, CryoSat-

2 was built and successfully launched in 2010 (ESA, 2017k). In order for this new satellite to 

collect the desired data, it must cover the distance between 88 degrees north and 88 degrees 

south on every orbit. This is a very unique orbit and required special consideration during the 

design process (ESA, 2017d). The main payload for the CryoSat-2 is the Synthetic Aperture 
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Interferometric Radar Altimeter, which was specially designed to detect changes in ice sheets 

(ESA, 2017k). In fact, this instrument can measure changes in ice sheets at an accuracy of 1.5 

cm/year over the open ocean (ESA, 2017c). This provides researchers with detailed information 

about how the Earthôs cryosphere is being affected by seasonal and climate variabilities.   

2.2.2.5 ENVISAT 

 Launched by the ESA in 2002, the Environmental Satellite or ENVISAT was the 

successor to European Remote Sensing (ERS) satellites launched in the 90ôs (ESA, 2017v). The 

main objective of this satellite was to continue and expand the observations being collected by 

the ERS satellites (ESA, 2017i). This was done by expanding the range of observed parameters 

to allow for observations of not only the Earthôs landmasses but also its oceans, cryosphere, and 

atmosphere. This would allow researchers to be better able to understand Earthôs processes and 

monitor the Earthôs resources. To achieve this objective, the satellite was designed and mounted 

with ten different sensors that allow it to collect environmental monitoring data from a wide 

range of spectral and spatial resolutions (ESA, 2017g; ESA, 2017h). These sensors include: the 

Advanced Along-Track Scanning Radiometer (AATSR), Advanced Synthetic Aperture Radar 

(ASAR), Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), Global 

Ozone Monitoring by Occultation of Stars (GOMOS), Laser Retro Reflector (LRR), Medium-

Resolution Visible and Near-IR Spectrometer (MERIS), Michelson Interferometer for Passive 

Atmospheric Sounding (MIPAS), Microwave Radiometer (MWR), Radar Altimeter 2 (RA-2), 

and Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) 

(ESA, 2017g). 
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2.2.2.6 GEDI 

 The Global Ecosystem Dynamics Investigation or GEDI will utilize light detection and 

ranging (lidar) to produce high-resolution 3D images of the Earthôs surface (NASA, 2017g). 

These images will be used to help improve current understanding and monitoring of major focus 

areas including forest management and carbon cycling, water resources, weather prediction, and 

topography and surface deformation (NASA, 2016). In order to develop these 3D images, GEDI 

will f ire a total of 726 laser pulses per second (NASA, 2016).  GEDI is expected to be launched 

in 2019 by NASA and will be attached to the International Space Station (NASA, 2017g).  

2.2.2.7 GOCE 

 The Gravity field and steady-state Ocean Circulation Explorer satellite or GOCE, was 

launched in 2009 by the ESA to advance our understanding of the Earthôs gravity field (ESA, 

2017l). In order to measure changes in Earthôs gravitational field, GOCE was equipped with the 

Electrostatic Gravity Gradiometer (EGG), which was composed of a set of six 3-axis 

accelerometers (ESA, 2017j). This made it the most sensitive gradiometer ever flown in space 

and allowed GOCE to measure gravity gradients across the globe (ESA, 2017e). While the 

GOCE mission ended in 2013, the data collected by GOCE continues to be utilized in a wide 

range of fields including oceanography, solid Earth physics, and geodesy and sea-level research 

(ESA, 2017l). 

2.2.2.8 GOSAT 

 The Greenhouse Gases Observing Satellite ñIBUKIò or GOSAT was launched by the 

Japan Aerospace Exploration Agency (JAXA) in 2009 with the sole focus of observing carbon 

dioxide and methane from space (NIES, 2017b). This made it the first satellite to focus on 

greenhouse gas mapping. GOSAT utilizes a thermal and near ïinfrared sensor to measure 
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atmospheric greenhouse gases, which is composed of two components: 1) a Fourier Transform 

Spectrometer that targets O2, CO2, CH4, and H2O in the atmosphere and 2) a Cloud and 

Aerosol Imager targets clouds and aerosols in the atmosphere (NIES, 2017a). The data collected 

by these sensors have allowed researchers to map global distributions of carbon dioxide and 

methane as well as identify how these concentrations change over time (NIES, 2017b).  

2.2.2.9 Jason Series 

 Following in the steps of early earth ocean topography missions the Jason series of 

satellites each focus on the continued monitoring of the topography of the Earthôs oceans, 

providing scientists with detailed information about changes in the depths of the oceans. The first 

of the three Jason satellites, Jason-1, was launched in 2001 and continued to provide information 

about ocean topography until 2013 (NASA, 2017x). Jason-1 was used not only to monitor the 

topography of the Earthôs oceans but also to monitor the mass distributions of the Earth, which 

could be used to monitor changes in the Earthôs gravity field (NASA, 2017l). The next satellite 

was the OSTM/Jason-2 and was launched in 2008 (NASA, 2017ab). The goals for this satellite 

were to continue the data collection of the Jason-1 (NASA, 2017ac). And finally, the Jason-3 

satellite is planned for launch in 2015 and will continue the data collection of ocean topography 

like the Jason-1 and OSTM/Jason-2 (NASA, 2017m). Each of these satellites provides data 

necessary to monitor how the oceans are changing and can lead to forecasting of large-scale 

weather systems such as El Niño. 

2.2.2.10 Landsat Series 

 Another series of satellites launched by NASA, the Landsat series consists of a string of 

eight satellites (NASA, 2017h), with the first launched in 1972 (NASA, 2017n) and the most 

recent launched in 2013 (NASA, 2017u). The goal and focus of these satellites have been to 
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provide detailed records of how land cover changes across the globe (NASA, 2017v). Landsat 1 

was launched in 1972 and was the first Earth-observing satellite to focus solely on monitoring 

changes in Earthôs surface (NASA, 2017n). Equipped with a camera (Return Beam Vidicon 

(RBV)) and a multispectral scanner (MSS), Landsat 1 continued to function until 1978 and 

collected over 300,000 images of the Earthôs surface (NASA, 2017n). Landsat 2 was launched in 

1975 and remained in service until 1983 and was almost identical to Landsat 1 (NASA, 2017o). 

Following the success of Landsat 1 and 2, Landsat 3 was launched in 1978 and remained in 

service until 1983 and maintained the use of the RBV and MSS (NASA, 2017p). However, 

Landsat 3 had an improved spatial resolution that allowed for more accurate images of the 

Earthôs surface (NASA, 2017p). Landsat 4 was launched in 1982 and remained in orbit until 

2001 (NASA, 2017q). Unlike previous Landsat satellites, Landsat 4 did not use the RBV camera 

and instead focused on expanding the spectral and spatial resolutions through the use of the 

Thematic Mapper (TM) and MSS (NASA, 2017q). Landsat 5 was launched in 1984 and 

remained operable until 2012 (NASA, 2017r). Landsat 5 was very similar to Landsat 4 and even 

utilized the same sensors (MSS and TM) (NASA, 2017r). Landsat 6 was planned to begin use in 

1993, however, due to a disastrous launch, never made it to orbit (NASA, 2017s). After the 

failure of Landsat 6, Landsat 7 was successfully launched in 1999 and is still in operation today 

(NASA, 2017t). In continuing with the trend on improving each successive satellite, Landsat 7 

again improved the spectral and spatial resolutions of the collected data through the use of the 

Enhanced Thematic Mapper Plus (ETM+), which replaced the TM used in previous satellites 

(NASA, 2017t). Unfortunately, in 2003 a hardware failure on Landsat 7 resulted in gaps in the 

collected images that reduce the usefulness of the collected data (NASA, 2017t).  Landsat 8 was 

launched in 2013 and is still functional today (NASA, 2017u). Given the advancements in 
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technology that have occurred, Landsat 8 is equipped with two new sensors: 1) the Operational 

Land Imager (OLI) and 2) the Thermal Infrared Sensor (TIRS) (NASA, 2017u). These sensors 

still cover the spectral regions that were covered by the ETM+ on Landsat 7 but also improve the 

spectral resolution by adding two new spectral bands and divide the ETM+ thermal infrared band 

into two spate bands (NASA, 2017u). Combined the Landsat series represents the longest lasting 

set of Earth observations, which makes this data vital to understanding how the planet has 

changed over the past 50 years (NASA, 2017v).  

2.2.2.11 METEOSAT Series 

 The Meteosat satellites are geostationary meteorological satellites launched by the 

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 

(EUMESAT, 2017b). These satellites are used to monitor weather conditions across the globe 

and provide vital information for daily life as well as early warnings of severe weather 

conditions (EUMESAT, 2017b). Currently, EUMETSAT has four Metosat satellites in orbit 

(Metosat-8, Metosat-9, Metosat-10, and Metosat-11). However, only Metosat-8, Metosat-9, and 

Metosat-10 are currently in use over Europe, Africa, and the Indian Ocean (EUMESAT, 2017b). 

Each Metosat satellite is equipped with three main components namely the Spinning Enhanced 

Visible and Infrared Imager, the Geostationary Earth Radiation Budget scanning radiometer, and 

the Mission Communication Payload (EUMESAT, 2017a). These instruments allow the Metosat 

satellites to help detect and forecast a wide range of weather and atmosphere conditions 

including thunderstorms, fog, dust storms, and volcanic ash clouds (EUMESAT, 2017b). 

2.2.2.12 METOP Series 

 The Meteorological Operational Satellite Programme (Metop) is a set of three satellites 

(Metop-A, Metop-B, and Metop_C) launched by the ESA to monitor meteorological variables 
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across the globe, including temperature, moisture, and interactions within the atmosphere and 

between the atmosphere and the ocean (EUMESAT, 2017c; EUMESAT, 2017d; EUMESAT, 

2017e). In order to observe all of these variables, each Metop satellite is equipped with eleven 

scientific instruments including the Infrared Atmospheric Sounding Interferometer, the Global 

Ozone Monitoring Experiment-2, the Advanced Very High Resolution Radiometer/3, the 

Advanced Scatterometer, the Global Navigation Satellite System Receiver for Atmospheric 

Sounding, the High Resolution Infrared Radiation Sounder/4, the Advanced Microwave 

Sounding Unit A1 and A2, the Microwave Humidity Sounder, the Advanced Data Collection 

System/2, the Search and Rescue Satellite-Aided Tracking System, and the Space Environment 

Monitor (EUMESAT, 2017c). The data collected by these instruments makes the Metop series of 

satellites a valuable resource for meteorologists and climatologist around the globe.   

2.2.2.13 Sentinel Series 

Comprising of a set of seven satellites (Sentinel-1, Sentinel-2, Sentinel-3, Sentinel-4, 

Sentinel-5, Sentinel-5 Precursor, and Sentinel-6), the Sentinel satellite fleet launched by the 

European Space Agency (ESA) focus on providing a variety of measurements of the Earthôs 

surface, ranging from land cover identification to atmosphere condition monitoring (ESA, 

2017b). Sentinel-1 utilizes an advanced radar instrument to monitor the Earthôs weather as well 

as map the Earthôs surface (ESA, 2017m). The data collected by Sentinel-1 can be used for a 

variety of applications including the monitoring of sea ice (ESA, 2017q), the observation of 

changing land uses (ESA, 2017a), and the mapping of terrains after natural disasters (ESA, 

2017f). Sentinel-2 utilizes a high-resolution multispectral imager to monitor the Earthôs surface 

(ESA, 2017n). This supplies scientists with images of the Earthôs surface every five days, which 

can be used for a variety of purposes, such as monitoring plant health, changing lands, water 
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bodies, and natural disaster (ESA, 2017n). Sentinel-3 utilizes several instruments to collect data 

on ocean topography, surface temperatures, and surface colors (ESA, 2017o). The instruments 

used by Sentinel-3 include a Sea and Land Surface Temperature Radiometer (SLSTR), an Ocean 

and Land Colour Instrument (OLCI), and a Synthetic Aperture Radar Altimeter (SRAL) (ESA, 

2017o).  The Sentinel-4, Sentinel-5, and Sentinel-5 Precursor missions focus on monitoring the 

atmosphereôs composition (ESA, 2017r). The data collected through these satellites can be used 

to monitor changes in greenhouse gasses well as monitor changes in the ozone layers (ESA, 

2017r). And finally, Sentinel-6 focuses solely on monitoring ocean topography, producing new 

global images of the oceans every ten days (ESA, 2017s). This data is vital to monitoring how 

the oceanôs currents, wind speeds, and wave height vary (ESA, 2017s). All of the data collected 

by the Sentinel Series provide scientist with a global view of how interconnected the Earth is as 

well as monitor how conditions are changing so policymakers can make informed decisions to 

implement mitigation strategies in the region that need the most help. 

2.2.2.14 SMOS 

 The Soil Moisture and Ocean Salinity (SMOS) mission was launched by the ESA in 

2009, with two main objectives monitor the soil moisture of the land and the salinity of the 

oceans (ESA, 2017p), both of which have major impacts on the hydrological cycle. The output of 

these observations are sets of global maps at 3-day increments (ESA, 2017t); this supplies 

scientist with a steady time series of data points that can be used to monitor changes in both 

salinity and soil moisture overtime. Furthermore, these sets of maps can be used and integrated 

with other hydrological characteristics to better understand how changes in soil moisture and 

salinity are connected to the bigger hydrological cycle. This can lead to more accurate weather 

predictions, better monitoring of the cryosphere, and improve water management projects (ESA, 
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2017u). To create these maps the SMOS utilizes a 2D interferometric radiometer; this is unique 

since it is currently the only satellite to utilize this instrument in a polar-orbiting alignment (ESA, 

2017p). 

2.2.2.15 SWOT 

 The Surface Water Ocean Topography or SWOT satellite is a joint project between 

NASA and Franceôs Centre National D'études Spatiales with a mission to improve current 

understanding of global hydrology (NASA, 2017ae). This will be a vital resource for monitoring 

and maintaining the Earthôs limited water resources. Currently SWOT is expected to be launched 

within the next decade (NASA, 2017ae).  

2.2.2.16 Terra 

The Terra Earth-observing satellite mission, launched by NASA in 1999, collects 

information on Earthôs atmosphere, ocean, land, snow, ice, and energy budget (NASA, 2017y). 

In order to collect all of this information Terra utilizes an array of five instruments: the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and 

Earthôs Radiant Energy System (CERES), Multi -angle Imaging Spectroradiometer (MISR), 

Moderate-resolution Imaging Spectroradiometer (MODIS), and Measurements of Pollution in 

the Troposphere (MOPITT) (NASA, 2017af). The ASTER instrument is used to observe and 

map land surface temperature, emissivity, reflectance, and elevation (NASA, 2017d). The 

CERES instrument us used to collect information on the electromagnetic radiation reflected and 

emitted from the Earthôs surface; which in turn is used to measure the total radiation budget of 

the Earth (NASA, 2017e).The MISR instrument is used to observer how electromagnetic 

radiation from the sun interacts with the atmosphere (NASA, 2017w). This allows scientists to 

gather information about the composition of the atmosphere as well as what type of clouds are 
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present and even landuse characteristics (NASA, 2017w). The MODIS instrument is used to 

collect physical properties of the atmosphere, oceans, and land as well as biological properties of 

the oceans and land (NASA, 2017z). The MOPITT instrument is used to observe how the lower 

atmosphere interacts with the Earthôs surface with particular focus placed on the movement of 

carbon monoxide (NASA, 2017ab). All of these instruments, like those in the Aqua satellite, can 

provide scientists with highly detailed data and maps for monitoring how the Earth is changing. 

Furthermore, this data also allows scientists to evaluate the relationships between the different 

spheres (such as the atmosphere and biosphere) of the Earth expanding our knowledge of how 

different processes respond to climate changes, enhancing future predictions of what can be 

expected. 

2.2.2.17 TOPEX/Poseidon 

 The TOPEX/Poseidon mission was launched by NASA in 1992 and collected data until 

2006 (NASA, 2017ag). During this time the TOPEX/Poseidon satellite collected data on the 

topography of the oceans (NASA, 2017ag). This was the first satellite-based ocean topography 

mission and opened areas of research with respect to the interactions of ocean circulation and 

large-scale weather systems, such as El Niño (NASA, 2017ag). Ocean topography measurements 

observed were accurate to 4.2 cm (NASA, 2017ag), this allowed scientists to understand better 

how ocean circulation occurred and how it influences the rest of the Earth system processes, such 

as weather patterns. 

2.2.2.18 TRMM 

 The Tropical Rainfall Measuring Mission or TRMM was a joint project between NASA 

and the Japan Aerospace Exploration Agency that was launched in 1997 and collected data until 

2015 (NASA, 2017aj). The main goal of TRMM was to monitor precipitation for the tropical and 
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sub-tropical regions of the Earth to determine the distribution and variability of precipitation 

across this region (NASA, 2017ai). TRMM accomplished this goal through the use of five 

instruments, namely the Visible Infrared Radiometer, the TRMM Microwave Imager, the 

Precipitation Radar, the Cloud and Earth Radiant Energy Sensor, and the Lightning Imaging 

Sensor (NASA, 2017ah). These instruments allowed TRMM to collect 3D images of storm 

systems that continue to be used to improve our understanding of climatological events in the 

tropics.  

2.3 The Hydrologic Cycle 

We are surrounded by water, from water vapor in the air to oceans and glaciers. In fact 

about 71% of the planet is covered in water (USGS, 2016b). However, we tend to focus only on 

freshwater sources that are needed for drinking and agriculture and impact our lives daily. 

Freshwater is a very limited resource (USGS, 2016c); and with current population growth trends 

and changes brought on by climate change, it has become vital to insure the sustainability of 

these resources. The amount of freshwater available is dependent on how water is circulated 

through the atmosphere, across the ground, through the crust, and even through the biosphere in 

a process known as the water cycle or the hydrological circle (USGS, 2017a). And the impacts 

that occur in one sector of the cycle have cascade effects in other sectors (Maxwell and Kollet, 

2008; Stampoulis et al., 2016). Therefore, in order to insure that the hydrological cycle continues 

to function, it is important to evaluate and monitor the changes within all components of the 

hydrological cycle. However, with such a large amount of the surface covered in water, this can 

be a daunting task. Furthermore, the process of collecting data from monitoring stations would 

only provide information at a fixed number of points making it difficult to determine how the 
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hydrological cycle is changing. Yet with the technological advancements in satellite technology, 

remote sensing data can help fill this data gap. 

The hydrological cycle can be broken down into the following components: 

evapotranspiration, groundwater, oceans, precipitation, snow and ice, soil moisture, surface 

water, and water vapor. Within each of the following sections, each component of the 

hydrological cycle will be briefly explained.  

2.3.1 Evapotranspiration 

 Evapotranspiration describes the amount of water that is transferred from the surface to 

the atmosphere (USGS, 2016d). This includes both the water that just evaporates from the 

Earthôs surface as well as the water lost from plants (transpiration) (USGS, 2016d). This process 

is responsible for weather patterns by supplying the water vapor needed to drive the weather 

systems that return water to the land (USGS, 2016e). Therefore understanding the levels and 

changes in evapotranspiration for a region allows us to monitor how much water loss occurs and 

can be used to figure out how much water remains. This is especially vital for agricultural lands 

where it can be used to determine if there is enough water to maintain crop yields or if irrigation 

is needed.  

2.3.2 Groundwater 

 While groundwater only accounts for about 0.8% of the water found on Earth, it 

represents about 30.1% of all the freshwater (USGS, 2016f). This makes it a vital source of the 

limited freshwater, especially for regions where there is not enough rainfall or surface water to 

supply the needs of anthropogenic activities. This has led to the installation and use of pumps 

and wells used to pull water up from the groundwater aquifers or reservoirs. However, this is still 

a limited resource and can become depleted if too much is removed too quickly (USGS, 2016g). 
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This is easily evident in the shrinking of the Ogallala Aquifer in the great plains of the United 

States (Terrell et al., 2002). 

2.3.3 Oceans 

 Oceans cover about 71% of Earthôs surface and account for about 96.5% of all water on 

earth (USGS, 2016b). Furthermore, all of the water in the oceans is called saltwater due to the 

significant levels of dissolved salts found within it (USGS, 2016h). This makes all the water in 

the oceans unusable for either drinking or agriculture use without removing the salts. And while 

desalination processes that can purify saltwater exist, they are often expensive and require high 

energy inputs in order to be useful to large populations (USGS, 2016i). And with current efforts 

focusing on the availability of freshwater, the oceans are often left out of consideration. 

However, while the water in the oceans is not easily accessible, it is estimated that 90% of all 

water vapor in the air comes from the oceans (USGS, 2016h). This shows that oceans, while 

seeming to only hold unusable water, have major impacts on weathers systems and drive much 

of the hydrological (USGS, 2016h). Furthermore, the constant movement of water both through 

circulation in the water column and across the globe through ocean currents alter the 

temperatures of the water (USGS, 2016h). This, in turn, affects the evaporation rates across the 

globe and drives weather cycles worldwide. Therefore several different remote sensing projects 

have focused on monitoring the characteristics of the oceans in order to determine how the 

oceans impact the rest of the hydrological cycle.  

2.3.4 Precipitation 

 The process by which water vapor condenses and falls back to Earthôs surface is known 

as precipitation (USGS, 2016j). And while precipitation can have many forms depending on the 

conditions of the atmosphere, it is the other main process (like evapotranspiration) that drives the 
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water cycle (USGS, 2016j). Therefore understanding how the rates of precipitation change over 

the surface of the Earth allows us to determine which regions will have access to water or where 

water will be sparse. This is especially vital for agricultural lands where it can be used to 

determine how much water is returning to the fields. When combined with evapotranspiration, it 

can be used to estimate how much water is present at farm fields, and help determine if pumps or 

irrigation systems are needed to maintain crop yields. 

2.3.5 Snow and Ice 

 Snow and ice, also known as the cryosphere, represent another source of freshwater 

similar to groundwater. However, there is more than double the amount of groundwater that can 

be found in the worldôs snow and ice reserves. Snow and ice account for about 1.7% of all water 

and 68.7% of all freshwater (USGS, 2016k). However, while this is a much larger source of 

freshwater, it is harder access with most of it being found in glaciers and the ice sheets at the 

poles. Yet, while most of this stored freshwater is not accessible, it plays an important role in 

influencing the Earthôs climate (USGS, 2016k). Due to the highly reflective nature of snow and 

ice, much of the incoming electromagnetic radiation from the sun is reflected back into space. 

This helps slow the rate at which the Earth absorbs heat; however with the recent rises in global 

temperatures glaciers and ice sheets are rapidly disappearing, this, in turn, results in more energy 

and heat being absorbed by the Earth and further melting of the snow and ice (USGS, 2016k). 

Furthermore, as this melting occurs, it alters other parts of the hydrological cycle such as rising 

ocean levels (NSIDC, 2015). All of these factors have made it vital to monitor the global changes 

in the cryosphere. 
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2.3.6 Soil Moisture 

 Soil moisture is similar to groundwater in the fact that both groundwater and soil 

moisture are measures of water in the ground. However, unlike groundwater, soil moisture 

describes the amount of water found within the top layers of the Earthôs surface (NASA, 1999). 

This makes it vital to the agricultural process since this is the water that agricultural plants can 

draw from during their growing phase (NASA, 1999; USGS, 2016g). Soil moisture is highly 

dependent on the temperature as well as evapotranspiration and precipitation (NIDIS, 2013). 

With the need to maintain or even increase the worldôs crop production to feed the growing 

population, understanding how soil moisture levels vary across agricultural lands can be used to 

estimate crop yields and lead to the implementation of mitigation measures. 

2.3.7 Surface Water 

 Surface water is used to describe all other sources of freshwater on the Earthôs surface. 

This includes rivers, lakes, and swamps; and is the easiest form of freshwater to access. 

However, surface water only accounts for about 0.29% of all freshwater on the Earth (USGS, 

2016l). And due to their ease of access, surface waters are often impacted by anthropogenic 

activities (USGS, 2016m). This has led to an increase in the focus put on these freshwater 

systems with the goals of mitigating anthropogenic impacts and insure the sustainability of these 

systems for future generations (Walters et al., 2009: Young and Collier, 2009; Dos Santos et al., 

2011; Giri et al., 2012; Pander and Geist, 2013). Therefore, it has become important to monitor 

these systems. 

2.3.8 Water Vapor 

 When water evaporates, it becomes water vapor and enters the atmosphere. Once in the 

atmosphere, it interacts with electromagnetic radiation; as the most abundant greenhouse gas, 
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water vapor traps the electromagnetic radiation emitted by Earth (NASA, 2008). This drives the 

warming trends seen in recent years. Furthermore, water vapor is vital to the weather of the 

world, wind currents move water vapor across the globe and as the temperature of the 

atmosphere changes water vapor condenses to form clouds, the source of all precipitation 

(USGS, 2016n). Therefore, by monitoring the water vapor levels in the atmosphere, it is possible 

to track the movement of water across the globe as well as determine how much global 

temperatures will increase. 

2.4 Monitori ng Water Resources 

 Given the importance of water resources and the increasing demand on these limited 

resources, it has become vital to ensure their sustainability for future generations. However, 

given the complexity of the hydrological cycle, this can be challenging. Traditionally monitoring 

stations are used to measure different components (e.g., streamflow and ET) of the hydrological 

cycle (Deser et al., 2000; NOAA, 2017a; USGS, 2017b). In fact, when considering ET, the MSU 

Enviro-weather Program has 64 stations within the state of Michigan alone that provide valuable 

data for researchers (Bishop, 2010). However, compared to the size of Michigan that is roughly 

one station every 3,914 km2. And since ET is a spatially distributed property, having a resolution 

like this would result in models that are unable to account for the variability in ET that exists in 

the landscape. This is true for other hydrological cycle components as well, for which higher 

spatial resolutions are often needed by researchers (Wanders et al., 2014). At the same time, it is 

not feasible to install monitoring stations every few hundred yards due to installation and 

maintenance costs. One solution to this issue is the use of remote sensing. This is even more 

evident given the vast number of remote sensing projects that were discussed earlier in this 

review. In fact, remote sensing has even been used to develop spatial datasets for hydrological 
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cycle components such as ET (Kite and Droogers, 2000). The following sections describe a few 

on the more well-known remote sensing ET datasets and how they are calculated.  

2.4.1 MOD16 

MOD16 or MODIS Global Evapotranspiration Project calculates 8-day, monthly, and 

annual ET by using an algorithm developed by Mu et al. (2011), which is based on the Penman-

Monteith equation. Below the Penman-Monteith equation is shown: 

‗Ὁ
Ⱦ

ϳ
         (2.1) 

where ɚE is the latent heat flux; ɚ is the latent heat of evaporation; s is the slope of the curve 

relating saturated water vapor pressure (esat) to temperature; A is the available energy partitioned 

between sensible heat, latent heat and soil heat fluxes on land surfaces; ɟ is the air density; Cp is 

the specific heat capacity of air; ra is the aerodynamic resistance; rs is the surface resistance; and 

ɔ is the psychrometric constant (Mu et al., 2011). This equation serves as the backbone for 

MOD16ôs ET estimations. However, MOD16 divides the total ET into three main components as 

follows: 

‗Ὁ ‗Ὁ ͺ ‗Ὁ ‗Ὁ         (2.2) 

where, ɚEwet_C is the evaporation from wet canopy surfaces; ɚEtrans is the plant transpiration; and 

ɚESOIL is the actual soil evaporation (Mu et al., 2011). This allows for the use of more specific 

equations to describe how water is lost from different surfaces. Equations 2.3 through 2.5 show 

the individual equations used for each component of the total ET (Eq. 2.2): 

ɚEwet_C: 

‗Ὁ ͺ
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      (2.3) 
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ɚEtrans: 

‗Ὁ
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ϳ
      (2.4) 

 

ɚESOIL: 
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  (2.5) 

  

where AC is the available energy partitioned between sensible heat, latent heat and soil heat 

fluxes allocated to the canopy; FC is the vegetation cover fraction; Fwet is the water cover 

fraction; Pa is the atmospheric pressure; rvc is the wet canopy resistance; Ů is the emissivity of 

the atmosphere; ASOIL is the available energy partitioned between sensible heat, latent heat and 

soil heat fluxes allocated to the soil surface; VPD is the vapor pressure deficit; ras is the 

aerodynamic resistance at the soil surface; rtot is the total aerodynamic resistance to vapor 

transport; and RH is the relative humidity (Mu et al., 2011). 

From these equations, it is easy to see the influence of the Penman-Monteith equation on the 

MOD16 ET estimations. However, these equations do not indicate what input data is required to 

calculate MOD16 ET. The following table (Table 2.1) lists the datasets that were used to perform 

the above calculations: 

Table 2.1. List of datasets used to calculate MOD16 ET 

Dataset Remotely Sensed 

GMAO meteorological data YES 

MODIS FPAR/LAI  YES 

MODIS landcover type 2 YES 

MODIS albedo YES 
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2.4.2 ALEXI 

ALEXI or the Atmosphere-Land Exchange Inverse Model calculates daily ET by relating 

changes in morning surface temperatures to water loss (Anderson et al., 2007). To do this, 

ALEXI utilizes a two-source energy balance model that divides the Earthôs surface into two 

components, soil and canopy (Anderson et al., 2007). By doing this, it is possible to solve for the 

ET of each component before combining them again to determine the overall ET. The first step 

is to extract the individual component temperatures from the satellite data. This is done using the 

following equation: 

Ὕ —ḙὪ—Ὕ ρ Ὢ— Ὕ        (2.6) 

where, TRAD is the composite directional surface radiometric temperature; f(ɗ) is the fractional 

cover; TS is the soil temperature; and TC is the canopy temperature (Anderson et al., 2007). After 

this, individual surface energy balance equations can be solved for both the soil (Eq. 2.7) and 

canopy (Eq. 2.8) as follows: 

Ὑὔ Ὄ ‗Ὁ Ὃ          (2.7) 

Ὑὔ Ὄ ‗Ὁ          (2.8) 

where, RN is the net radiation; H is the sensible heat; ɚE is the latent heat; and G is the soil heat 

conduction flux. For these equations, the subscript óSô and óCô denote soil and canopy, 

respectively (Anderson et al., 2007). In these equations, observed net radiation and surface 

temperature are used to solve for ET. However, in order to determine the overall ET the 

individual component ETs need to be summed as follows: 

‗Ὁ ‗Ὁ ‗Ὁ          (2.9) 
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where ‗Ὁ is the ET of the soil and ‗Ὁ is the ET of the canopy (Anderson et al., 2007). Similar 

to MOD16 a variety of input datasets are required to perform these calculations. Table 2.2 

presents these datasets: 

Table 2.2. List of datasets used to calculate ALEXI ET 

Dataset Remotely Sensed 

ASOS/AWOS wind data  NO 

GOES cloud cover YES 

GOES net radiation YES 

GOES surface temperatures YES 

MODIS LAI YES 

Radiosonde lapse rate profile YES 

Radiosonde atmospheric corrections YES 

STATSGO soil texture NO 

UMD global landcover YES 

 

2.4.3 SSEBop 

SSEBop or the Operational Simplified Surface Energy Balance Model calculates monthly 

and annual ET by combining ET fractions derived from remotely sensed MODIS thermal 

imagery and reference ET (Senay et al., 2013). This is done by using the following equation: 

ὉὝὥ ὉὝὪὯὉὝέ          (2.10)  

where ETf is the ET fraction; ETo is the grass reference ET for the location obtained from global 

weather datasets; and k is a coefficient that scales the grass reference ET into the level of a 

maximum ET experienced by an aerodynamically rougher crop (Senay et al., 2013). In order to 

calculate the ET fraction the following equation is used: 

ὉὝὪ            (2.11) 

where, Ts is the satellite-observed land surface temperature of the pixel whose ETf is being 

evaluated for a given time period; Th is the estimated Ts at the idealized reference ñhotò 

condition of the pixel for a given time period; and Tc is the estimated Ts at the idealized 
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reference ñcoldò condition of the pixel for a given time period. This makes the determination of 

Th and Tc key for estimating ET. In order to estimate Tc the following equation is used: 

Ὕὧ ὧ Ὕὥ           (2.12) 

where, Ta is the near-surface maximum air temperature for the given time period and c is a 

correction factor that relates Ta to Ts for a well-watered, vegetation surface (Senay et al., 2013). 

Once Tc was determined, it was used to solve for Th as follows: 

ὝὬ Ὕὧ           (2.13) 

where, Rn is the net radiation; Cp is the specific heat of air at constant pressure; ”a is the density 

of air; and rah is the aerodynamic resistance to heat flow from a hypothetical bare and dry surface 

(Senay et al., 2013). After determining these hot and cold temperatures, ET could be estimated. 

Again several input datasets are required to perform these calculations. Table 2.3 presents 

these datasets: 

Table 2.3. List of datasets used to calculate SSEBop ET 

Dataset Remotely Sensed 

GDAS Reference ET NO 

MODIS albedo YES 

MODIS land surface temperature YES 

MODIS NDVI YES 

PRISM air temperature NO 

PRISM temperature correction coefficient NO 

SRTM elevation YES 

 

2.5 Hydrological Modeling 

 While the advancements in remote sensing have improved our ability of monitor the 

Earthôs surface and allowed for the development of datasets for individual components of the 

hydrological cycle, it is not yet possible to monitor the entire hydrological model for any given 

region. Therefore, hydrological models are often used to simulate all components of the 

hydrological cycle. The use of the model is also an inexpensive, effective, and fast alternative to 
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extensive environmental monitoring, which can be used to test as many scenarios as are desired 

by either researchers or policymakers. 

2.5.1 Soil and Water Assessment Tool  

 One of the more common hydrological models is the Soil and Water Assessment Tool or 

SWAT (Neitsch et al., 2011). SWAT is a semi-distributed physically based watershed scale 

model developed by the USDA Agricultural Research Service and Texas A&M AgriLife 

Research that utilizes several layers of data, such as topography, soil characteristics, landcover, 

and climatological data, to simulate the natural environment (Neitsch et al., 2011). There have 

been many peer-reviewed publications that have used SWAT models to evaluate different 

components of the hydrological cycle (Sun et al., 2014; Markovic and Koch, 2015; Verma et al., 

2015; Cuceloglu et al., 2017; Saha et al., 2017).  

 In order to simulate the hydrological cycle in a region, the SWAT model utilizes a water 

balance which can be seen below (Eq. 2.14): 

Ὓὡ Ὓὡ В Ὑ ὗ Ὁ ύ ὗ      (2.14) 

where, SWt is the final soil water content, SW0 is the initial soil water content on day i, t is the 

time in days, Rday is the amount of precipitation on day i, Qsurf is the amount of surface runoff on 

day i, Ea is the amount of evapotranspiration on day i, wseep is the amount of water entering the 

valose zone from the soil profile on day i, and Qgw is the amount of return flow on day i (Neitch 

et al., 2011). Each of these components is then either provided as in input or calculated based on 

various equations and relationships. The following sections describe the equations, models, and 

relationships utilized by the SWAT model concerning surface runoff, evapotranspiration, soil 

water, and groundwater. 



   

 

32 

 

2.5.1.1 Surface Runoff Equations 

The SWAT model can utilize two different techniques: 1) the Soil Conservation Service 

(SCS) curve number and 2) the Green and Ampt infiltration method (Neitch et al., 2011). The 

SCS curve number method is an empirical model that describes rainfall-runoff relationships for a 

variety of different landuses and soils, and can be calculated with the following equation (Eq. 

2.15):  

ὗ            (2.15) 

where, Qsurf is the runoff, Rday is the daily rainfall, Ia is the initial abstractions such as surface 

storage, interception, and soil infiltration before runoff occurs and is often assumed to be 0.2S, 

and S is the retention parameter which is based on local characteristics such as soil properties, 

landuse, and slope and is calculated with Eq. 2.16 (Neitch et al., 2011). 

Ὓ ςυȢτ ρπ          (2.16) 

where, CN is the curve number which is dependent on the soil properties and can be adjusted by 

the user to better match local characteristics (Neitch et al., 2011). Meanwhile, the Green and 

Ampt infiltration method calculates surface runoff by first determining how much water 

infiltrated into the soil and then considering all rainfall over that amount to be runoff. The 

amount of infiltration that occurs is calculated with the following equation (Eq. 2.17): 

Ὢ ȟ ὑ ρ
Ў

ȟ
         (2.17)  

where, finf is the infiltration rate for a given time t, Ke is the effective hydraulic conductivity,    

is the wetting front matric potential, Ў— is the change in volumetric moisture content across the 

wetting front, and Finf is the cumulative infiltration for a given time t (Neitch et al., 2011). Here 
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again the curve number is used to adjust the equation for local characteristics by influencing the 

calculation of Ke, which can be seen in Eq 2.18. 

ὑ
Ȣ Ȣ

Ȣ Ȣ
ς        (2.18) 

where, Ksat is the saturated hydraulic conductivity and CN is the curve number (Neitch et al., 

2011). In addition to these two techniques for calculating surface runoff, the SWAT model also 

calculates the peak runoff which provides a measurement of how erosive runoff from a storm is 

to a region and takes into account time of concentration and rainfall intensity and is calculated by 

using the following equation:  

ή
Ȣ

         (2.19) 

where, qpeak is the peak runoff rate, atc is the fraction of daily rainfall that occurs during the time 

of concentration, Qsurf is the surface runoff, Area is the area of the region, and tconc is the time of 

concentration for the region (Neitch et al., 2011). Table 2.4 lists the parameters and their 

definitions within the SWAT model that affect the surface runoff calculations. 

 

 

 

 

 

 

 

 

 

 



   

 

34 

 

Table 2.4. A list of the parameters used in SWAT surface runoff calculations 

Parameter Definition  

CH_K(1) Effective hydraulic conductivity 

CH_L(1) Longest tributary channel length in subbasin 

CH_N(1) Manningôs n value for tributary channels 

CH_S(1) The average slope of tributary channels 

CH_W(1) The average width of the tributary channel 

CLAY Percent clay content 

CN2 Moisture condition II curve number 

CNCOEF Weighting coefficient used to calculate the retention coefficient for daily 

curve number calculations dependent on plant evapotranspiration 

CNOP Moisture condition II curve number 

HRU_FR The fraction of total subbasin area contained in HRU 

HRU_SLP Average slope steepness 

ICN Daily curve number calculation method 

IDT Length of the time step 

IEVENT Rainfall, runoff, routing option 

OV_N Manningôs n value for the overland flow 

PRECIPITATION Precipitation during time step 

SAND Percent sand content 

SLSUBBSN Average slope length 

SOL_BD Moist bulk density  

SOL_K The saturated hydraulic conductivity of the first layer 

SUB_KM Area of the subbasin in km2 

SURLAG Surface runoff lag coefficient 

 

2.5.1.2 Evapotranspiration Equations 

In order to simulate evapotranspiration, the SWAT model has to take into account a 

variety of different factors including canopy storage, potential evapotranspiration, and actual 

evapotranspiration (Neitch et al., 2011). Regarding canopy storage, or the amount of rainfall 

trapped by plants from reaching the Earthôs surface, it depends on which surface runoff 

technique was selected. If the SCS curve number is being used, canopy storage is considered as 

part of the initial abstractions; however, it the Green and Ampt technique is being used an 

additional calculation for canopy storage is needed (Eq. 2.20) (Neitch et al., 2011). 

ὧὥὲ ὧὥὲ          (2.20) 
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where, canday is the amount of water trapped by the canopy, canmx is the amount of water that can 

be trapped when the canopy if  fully developed, LAI is the leaf area index for a given day, and 

LAImx is the maximum leaf area index for the given landuse (Neitch et al., 2011). This value is 

important in calculating evapotranspiration, which regardless of the surface runoff technique the 

first step is calculating potential evapotranspiration. In the SWAT model, three different methods 

for calculating potential evapotranspiration are available, namely the Penman-Monteith method, 

the Priestley-Taylor method, and the Hargreaves method (Neitch et al., 2011). Each of these 

techniques requires different inputs, with Penman-Monteith being the most complex requiring 

solar radiation, air temperature, relative humidity, and wind speed; Priestly-Taylor requiring 

solar radiation, air temperature, and relative humidity; and Hargreaves being the simplest 

requiring only air temperature (Neitch et al., 2011). Eqs 2.21, 2.22, and 2.23 are used by SWAT 

to calculate potential evapotranspiration via the Penman-Monteith method, the Priestley-Taylor 

method, and the Hargreaves method, respectively. 

‗Ὁ
Ͻ Ͻ Ͻ ϳ

Ў Ͻ ϳ
        (2.21) 

where, ‗Ὁ is the latent heat flux density, E is the depth rate evaporation, ɝ is the slope of the 

saturation vapor pressure-temperature curve Hnet is the net radiation, G is the heat flux density to 

the ground, ”  is the air density, cp is the specific heat at constant pressure, Ὡ is the saturation 

pressure of air at height z, ez is the water pressure of air at height z, ‎ is the psychrometric 

constant, rc is the plant canopy resistance, and ra is the diffusion resistance of the air layer 

(Neitch et al., 2011). It is important to note that the SWAT model uses the Penman-Monteith 

method by default, however, this can be changed by the user. 

‗Ὁ ‌ Ͻ
Ў
ϽὌ Ὃ        (2.22) 
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where, ‗ is the latent heat of vaporization, E0 is the potential evapotranspiration, ‌  is a 

coefficient, ɝ is the slope of the saturation vapor pressure-temperature curve, ‎ is the 

psychrometric constant, Hnet is the net radiation, and G is the heat flux density to the ground 

(Neitch et al., 2011). It is important to note that the Priestly-Taylor method assumes that 

advection is low, which makes it less ideal for semiarid or arid regions for which it will 

underestimate potential evapotranspiration (Neitch et al., 2011). 

‗Ὁ πȢππςσϽὌ ϽὝ Ὕ ȢϽὝ ρχȢψ      (2.23) 

where, ‗ is the latent heat of vaporization, E0 is the potential evapotranspiration, H0 is the 

extraterrestrial radiation, Tmx is the maximum air temperature for a given day, Tmn is the 

minimum air temperature for a given day, and Ὕ  is the average temperature for a given day 

(Neitch et al., 2011). 

After potential evapotranspiration is calculated, the SWAT model can then calculate 

actual evapotranspiration. This is done by taking into account the potential evapotranspiration 

method and value in addition to the evaporation of intercepted rainfall, transpiration, and 

sublimation and evaporation from the soil (Neitch et al., 2011). Evaporation of intercepted 

rainfall describe the evaporation of water found in canopy storage and is dependent on the level 

of potential evapotranspiration possible and the amount of rainfall for a given day. If potential 

evapotranspiration is less than or equal to the initial water storage the actual evapotranspiration is 

equal to the potential evapotranspiration (Neitch et al., 2011). However, if the potential 

evapotranspiration is greater than the initial water storage, actual evapotranspiration exhausts the 

water held in the canopy before moving on to the plants and soil (Neitch et al., 2011). The 

transpiration calculation utilized by the SWAT model is dependent on the potential 
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evapotranspiration technique used. If the Penman-Monteith method is used, transpiration is 

already calculated; however, if any other potential evapotranspiration technique is selected, 

transpiration is calculated as follows (Eq. 2.24) (Neitch et al., 2011): 

Ὁ
Ͻ

Ȣ
        π ὒὃὍσȢπ

Ὁ                     ὒὃὍ σȢπ
         (2.24)  

where, Et is the maximum transpiration, Ὁ is the potential evapotranspiration adjusted for 

evaporation of free water in the canopy, and LAI is the leaf area index. Meanwhile, sublimation 

and evaporation from the soil is calculated based on the following equation (Eq. 2.25): 

Ὁ ὉϽὧέὺ          (2.25) 

where, Es is the maximum sublimation/soil evaporation for a specific day, Ὁ is the potential 

evapotranspiration adjusted for evaporation of free water in the canopy, and covsol is the soil 

cover index (Neitch et al., 2011). Therefore, the final calculation of actual evapotranspiration is 

the sum of Eqs. 11 and 12. Table 2.5 lists the parameters and their definitions within the SWAT 

model that affect the evapotranspiration calculations. 

Table 2.5. A list of the parameters used in SWAT evapotranspiration calculations 

Parameter Definition  

CANMX Maximum canopy storage 

CO2 Carbon dioxide concentration 

ESCO Soil evaporation compensation coefficient 

FRGMAX The fraction of maximum leaf conductance achieved at the vapor pressure 
deficit specified by VPDFR 

GSI Maximum leaf conductance 

IPET Potential evapotranspiration method 

MAX TEMP Daily maximum temperature 

MIN TEMP Daily minimum temperature 

VPDFR Vapor pressure deficit corresponding to value given for FRGMX 

WND_SP Daily wind speed 
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2.5.1.3 Soil Water Equations 

In order to simulate soil water or the movement of water though the soil layers, the 

SWAT model has to take into account a variety of different factors including soil structure, 

percolation, bypass flow, perched water table, and lateral flow (Neitch et al., 2011). Soil 

properties are supplied to the SWAT model though user input from which the SWAT model is 

able to determine several characteristics such as density and soil composition. This allows the 

SWAT model to more accurately replicate soil water content and how water would move 

through the soils for the region of interest (Neitch et al., 2011). Meanwhile, percolation or the 

movement of water from one layer of soil to another, is determined through the use of a couple 

of equations. First, the volume of water available for percolation is calculated through the 

following set of equations: 

Ὓὡȟ
Ὓὡ Ὂὅ    ὭὪ Ὓὡ Ὂὅ

         π               ὭὪ Ὓὡ Ὂὅ
        (2.26) 

where, Ὓὡȟ  is the drainable volume of water in the soil layer for a specific day, SWly is the 

water content of the soil layer in question for a given day, and FCly is the water content of the 

soil layer at field capacity (Neitch et al., 2011). After determining the amount of water that is 

present the following equation is used to determine how much water actually transfers to the next 

layer of soil down: 

ύ ȟ Ὓὡȟ Ͻρ Ὡὼὴ
Ў

       (2.27) 

where, ύ ȟ  is the amount of water percolating to the underlying soil layer for a given day, 

Ὓὡȟ  is the drainable volume of water in the soil layer for a specific day, Ўὸ is the length of 

the time step, and TTperc is the travel time for percolation (Neitch et al., 2011).  
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Bypass flow is a condition caused by the swelling and shrinking of soils, most commonly 

Vertisols, which results in deep cracks in the surface of the soil that can promote soil water 

movement (Neitch et al., 2011). SWAT handles thee soils be calculating the volume of the crack 

within the soil and then using that volume as a component in surface storage calculations. The 

equation used to determine this volume is as follows: 

ὧὶὯȟ ὧὶὯȟ Ͻ
Ͻ

Ͻ
       (2.28) 

where, crkly,i is the initial crack volume calculated for the soil layer on a given day expressed as a 

depth, crkmax,ly is the maximum crack volume possible for the soil layer, coefcrk is an adjustment 

coefficient for crack flow, FCly is the water content of the soil layer at field capacity, and SWly is 

the water content of the soil layer in question for a given day (Neitch et al., 2011). 

 SWAT provides users the ability to define a perched water table, which happens in the 

region with a high seasonal water table. This results in ponding within the soil layers and affects 

the downward movement of water through the soil columns. To calculate the height of the 

perched table, SWAT utilizes the following equation: 

Ὤ
Ͻ ᶮ

ϽὨὩὴὸὬ         (2.29) 

where, hwtbl is the height of the water table, SW is the water content of the soil profile, FC is the 

water content of the soil profile at field capacity, POR is the porosity of the soil profile, ɲ  is 

the air-filled porosity expressed as a fraction, and depthimp is the depth to the impervious layer 

(Neitch et al., 2011).  

The final component of soil water calculations for the SWAT model is lateral flow, 

which describes the horizontal movement of water with in the soil column. SWAT utilizes and 
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kinematic storage model for subsurface flow to simulate this process which is shown in Eq 2.30 

(Neitch et al., 2011). 

ὗ πȢπςτϽ
Ͻ ȟ Ͻ Ͻ

ᶮϽ
        (2.30) 

where, Qlat is the lateral flow, Ὓὡȟ  is the drainable volume of water in the soil layer for a 

specific day, Ksat is the saturated hydraulic conductivity, slp is the slope of the region, and Lhill is 

the hill slope length (Neitch et al., 2011). Table 2.6 lists the parameters and their definitions 

within the SWAT model that affect the soil water calculations. 

Table 2.6. A list of the parameters used in SWAT soil water calculations 

Parameter  Definition  

CLAY Percent clay content 

DEP_IMP Depth to the impervious layer 

DEPIMP_BSN Depth to the impervious layer 

GDRAIN Drain tile lag time 

HRU_SLP The average slope on the subbasin 

ICRK Bypass flow code 

IWATABLE  High water table code 

LAT_TTIME Lateral flow travel time 

SLSOIL Hillslope length 

SOL_AWC Available water capacity 

SOL_BD Bulk density 

SOL_CRK Potential crack volume for soil profile 

SOL_K Saturated hydraulic conductivity 

 

2.5.1.4 Groundwater Equations 

In order to simulate groundwater movement and storage, the SWAT model has to take 

into account shallow and deep aquifers (Neitch et al., 2011). Shallow aquifers are groundwater 

systems that contribute water to the local rivers and lakes, while deep aquifers can contribute 

water to regions outside of the subbasin or local area (Neitch et al., 2011). SWAT simulates 

shallow aquifers with the following water balance (Eq. 2.31): 

ὥήȟ ὥήȟ ύ ȟ ὗ ύ ύ ȟ      (2.31) 
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where, aqsh,i is the water stored in the shallow aquifer on day i, aqsh,i-1 is the water stored in the 

shallow aquifer on the previous day, wrchrg,sh is recharge during day i, Qgw is the groundwater 

flow into the regionôs main channel, wrevap is the amount of water moving up into the soil layers 

on day i, and wpump,sh is the amount of water pumped out of the shallow aquifer on day i (Neitch 

et al., 2011). Each of these components can be further described by additional equations which 

are provided below. 

The recharge to the shallow aquifer or the water that enters the aquifer for any given day 

is calculated with the following equation (Eq. 2.32): 

ύ ȟ ρ Ὡὼὴρ‏ϳ Ͻύ Ὡὼὴρ‏ϳ Ͻύ ȟ    (2.32) 

where, wrchrg,i is the amount of water recharge entering the aquifer on day i, ‏  is the delay time 

or drainage time of the overlaying geologic formations, wseep is the total amount of water exiting 

the soil layers and entering the aquifer, and wrchrg,i is the previous days recharge (Neitch et al., 

2011). 

 Groundwater flow or base flow, describes the water that leaves the shallow aquifer and 

reenters the main channel of the region, and in the SWAT model can be calculated for both 

steady-state (Eq. 2.33) and non-steady-state (Eq. 2.34) conditions: 

 ὗ
Ͻ
ϽὬ          (2.33) 

where, Qgw is the groundwater flow, Ksat is the hydraulic conductivity of the aquifer, Lgw is the 

distance from the ridge or subbasin divide for the groundwater system to the main channel, and 

hwtbl is the water table height (Neitch et al., 2011). 

ὗ ȟ
ὗ ȟ ϽὩὼὴ‌ ϽЎὸ ύ ȟ Ͻρ Ὡὼὴ‌ ϽЎὸ ὭὪ ὥή ὥή ȟ

π                                                                                                             ὭὪὥή ὥή ȟ
  (2.34) 
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where, Qgw,i is the groundwater flow on day i, Qgw,i-1 is the groundwater flow on the previous 

day, ‌  is the baseflow recession constant, Ўὸ is the time step, wrchrg,sh is the amount of 

recharge occurring on day i, aqsh is the amount of water stored in the shallow aquifer at the 

beginning of day i, and aqshthr,q is the threshold water level on the shallow aquifer for 

groundwater contribution to the main channel to occur (Neitch et al., 2011).  

Revap describes the water in the shallow aquifer that moves upward into the soil column 

to fill unsaturated zones, which for the SWAT model is modeled as a function of water demand 

for evapotranspiration and utilizes the following set of conditional equations (Eq. 2.35): 

ύ

π                                             ὭὪ ὥή ὥή ȟ                                                   

‍ ϽὉ ὥή ȟ       ὭὪ ὥή ȟ ὥή ὥή ȟ ‍ ϽὉ

‍ ϽὉ                               ὭὪ ὥή ὥή ȟ ‍ ϽὉ                           

 (2.35) 

where, wrevap, is the actual amount of water moving into the soil layers, ‍  is the revap 

coefficient, Eo is the potential evapotranspiration, aqsh is the amount of water stored in the 

shallow aquifer at the beginning of the day, and aqshthr,rvp is the threshold water level in the 

shallow aquifer for revap to occur (Neitch et al., 2011). 

Regarding deep aquifers, SWAT simulates deep aquifers with the following water 

balance equation:  

ὥήȟ ὥήȟ ύ ύ ȟ        (2.36) 

where, aqdp,i is the amount of water stored in the deep aquifer on day i, aqdp,i-1 is the previous 

dayôs water storage in the seep aquifer, wdeep is the amount of water percolating from the shallow 

aquifer to the deep aquifer, and wpump,dp is the amount of water being pumped form the deep 

aquifer (Neitch et al., 2011). Of these terms wdeep is calculated using the following equation (Eq. 

2.37): 

ύ ‍ Ͻύ          (2.37) 
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where, wdeep is the amount of water percolating from the shallow aquifer to the deep aquifer, 

‍  is the aquifer percolation coefficient, and wrchrg is the amount of recharge entering both 

shallow and deep aquifers for a given day (Neitch et al., 2011). Table 2.7 lists the parameters and 

their definitions within the SWAT model that affect the groundwater calculations. 

Table 2.7. A list of the parameters used in SWAT groundwater calculations 

Parameter Definition  

GW_DELAY Delay time for aquifer recharge 

GWQMN Threshold water level in shallow aquifers for base flow 

ALPHA_BF Baseflow recession constant 

REVAPMN Threshold water level in shallow aquifers for revap 

GW_REVAP Revap coefficient 

RCHRG_DP Aquifer percolation coefficient  

GW_SPYLD Specific yield of the shallow aquifer 

 

2.5.2 Model Calibration 

While SWAT model applications are varied, one vital step in the model development 

process is calibration and validation. In fact, this is a needed step for all hydrological models 

since it insures that the model is able to capture local variabilities (Santhi et al., 2001; White and 

Chaubey, 2005; Sahoo et al., 2006; Troy et al., 2008; Arnold et al., 2012). During this process, 

SWAT model outputs are compared to collected observed data and the ability of the model to 

replicate the observed data is determined through the use of statistical criteria. For SWAT 

models there are three main criteria that are recommended for use, namely Nash-Sutcliffe 

efficiency (NSE) which represented the ratio of residual variance to the actual data variance, 

percent bias (PBIAS) which measured the tendency of simulated results to be larger or smaller 

than observed values, and the ratio of root-mean-square error to observed standard deviation 

ratio (RSR). These statistical criteria were initially recommended by Moriasi et al. (2007) with 

the following ranges for satisfactory model calibration and validation, NSE >0.5, PBIAS ±25%, 

and RSR <0.7. This goes to show the SWAT model performance is limited by the availability of 
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reliable data. Which means that hydrological model development suffers from the same issues 

that monitoring water resources has.  

2.5.3 Remote Sensing in Hydrological Modeling 

One approach to addressing the issues of data availability and reliability for hydrological 

modeling is the use of remotely sensed data (Schuurmans et al., 2003; Xu et al., 2014). As 

discussed previously, remote sensing provides a source of continuous, spatially distributed data 

that can be used for regional analysis. This makes remote sensing data ideal for use in 

hydrological modeling. Nevertheless, there are still limitations to the use of remotely sensed data 

such as the spectral, spatial, and temporal resolutions of the collected images (Lillesand et al., 

2014). However, as long as these limitations are taken into account, it is possible to develop 

reliable datasets that can be incorporated into hydrological models (Xu et al., 2014). In fact in 

recent years several studies have looked at the use of remotely sensed ET data in the 

hydrological model calibration process (Immerzeel and Droogers, 2008; Schuurmans et al., 

2011; Qin et al., 2013; Sousa et al., 2015; Mendiguren et al., 2017). In the study by Immerzeel 

and Droogers (2008) bi-weekly actual evapotranspiration (ETa) data, obtained from the Surface 

Energy Balance Algorithm (SEBAL), were integrated into the calibration of a SWAT model. 

This calibration process modified SWAT parameters that were related to land use soil 

characteristics, groundwater, and weather (Immerzeel and Droogers, 2008). The results of this 

study showed that the incorporation of remotely sensed data could significantly improve the 

model calibration process and result in more accurate model ETa simulations (Immerzeel and 

Droogers, 2008). In the study by Schuurmans et al. (2011) SEBAL ETa datasets derived from 

data collected by two different satellites (ASTER and MODIS) were integrated into a coupled 

groundwater and unsaturated zone model (MetaSWAP) to estimate soil moisture. The result of 
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this study showed that the inclusion of the remotely sensed ETa data was able to improve the 

spatial simulation of soil moisture levels (Schuurmans et al., 2011) This not only shows how 

remotely sensed data could improve the modeling process but also the interconnected nature of 

the hydrological cycle. In the study by Sousa et al. (2015) an ETa dataset based on MODIS 

imagery was developed and incorporated into a SWAT model. The results of this integration 

showed that by adding the remotely sensed ETa, the SWAT model had improved streamflow 

estimates, especially in ungagged catchments (Sousa et al., 2015). This again shows that the 

addition of remotely sensed data in the model calibration process is quite beneficial. In the study 

by Mendiguren et al. (2017) remotely sensed ETa was used to improve the simulation of 

spatially distributed ETa. Results from this study indicated that the use of remotely sensed ETa 

was able to improve model simulations of the spatially distributed ETa for the region 

(Mendiguren et al.; 2017). This again highlights the benefits of including remotely sensed data in 

hydrological model development. All of these studies show that the incorporation of remotely 

sensed data can improve the overall hydrological model performance. However, very few studies 

consider a multi-objective calibration approach during the model calibration phase. Instead, most 

studies focus on a single component of the hydrological model during the calibration process 

(Immerzeel and Droogers, 2008; Schuurmans et al., 2011; Sousa et al., 2015; Mendiguren et al.; 

2017). However, studies that have considered several hydrological components during the 

calibration process indicate that adding a multi-objective calibration can improve overall model 

performance and reduce the uncertainty associated with the final models (Crow et al., 2003; 

Rajib et al., 2016; Franco and Bonumá, 2017) However, no studies compare the applicability of 

different calibration techniques when performing a multi-objective calibration. This shows that 

there is a need to perform further research in this area. 
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2.6 Modeling Uncertainty 

While hydrological models and remote sensing data allow for region-wide analysis and 

monitoring, it is important to note that these techniques have increased levels of error and 

uncertainty compared to monitoring stations. These errors and uncertainties are often grouped 

into three main categories, namely data uncertainty, model structure uncertainty, and parameter 

uncertainty (Jin et al., 2010; Brigode et al., 2012; Zhang et al., 2016). The following sections 

describe these categories in more detail. 

2.6.1 Data Uncertainty 

Data uncertainty is a way to quantify the amount of noise within a dataset (Jin et al., 

2010). This can be caused by a variety of sources from environmental factors to the limitations 

of data collection equipment (Benz et al., 2004). This can have a major impact on models since 

they are dependent on the quantity and quality of input data. And any noise or uncertainty within 

the dataset will be passed into the model outputs as the data is used in different calculations. This 

is of particular importance to remotely sensed data, which needs to account for noise from 

sources such as surface properties (topographic variability and land surface directional 

reflectance properties), atmospheric effects (spatial and temporal variations), and sensor design 

(spectral, spatial, and radiometric properties) (Kustas and Norman, 1996; Friedl et al., 2001; 

Long et al., 2014). For example, when considering remotely sensed evapotranspiration datasets, 

uncertainty caused by variability surface properties (landcover type) could result in inaccurate 

evapotranspiration datasets, which would increase the uncertainty of any hydrological model that 

uses this evapotranspiration dataset as an input (Long et al., 2014; Yang et al., 2015). One way to 

address this would be to perform accuracy assessments by comparing the evapotranspiration 

products to different land-based evapotranspiration station data for different landcover types. In 
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fact, several studies have focused solely on this task (Kim et al., 2012; Senay et al., 2014; Xia et 

al., 2015; Bhattarai et al., 2016). The results of these studies provide a look into the overall 

accuracy of different remotely sensed evapotranspiration datasets. This allows researchers, 

policy makers, and stakeholders to make educated decisions about which datasets to use for 

further analysis based on their own ranges of acceptable uncertainty.  

2.6.2 Model Structure Uncertainty 

Model structure uncertainty is a way to quantify a modelôs robustness and structure 

(Brigode et al., 2012). Due to the complexity of natural systems, simplifications are used to 

streamline models. However, it is possible to oversimplify a model, which increases uncertainty 

associated with it by ignoring key factors and interconnected processes within the environment 

(Refsgaard et al., 2006; Qin et al., 2013). In fact, this has been identified by many studies as a 

major source of uncertainty (Usunoff et al., 1992; Dubus et al., 2003; Linkov and Burmistrov, 

2003; Brigode et al., 2012). However, it is often challenging to reduce this uncertainty without 

developing a new model. Refsgaard et al. (2006) reviewed a variety of strategies for assessing 

model structure uncertainties and proposed a six-step protocol to examine conceptual 

uncertainty. These steps are: 1) formulate a conceptual model; 2) set up and calibrate the model; 

3) repeat steps 1 and 2 until a sufficient number of conceptual models were developed; 4) 

perform validation tests and accept/reject models; 5) evaluate the tenability and completeness of 

remaining conceptual models; and 6) make model predictions and assess uncertainty (Refsgaard 

et al., 2006). This approach allows researchers to select the best model possible for each study 

and insure that the model used captures the necessary processes of the system being modeled.   
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2.6.3 Parameter Uncertainty 

Parameter uncertainty is used to describe how well model parameter values perform 

when simulating model outputs (Brigode et al., 2012). However, minimizing this uncertainty is 

often challenging since hydrological models require a large number of parameters to simulate the 

complexity of hydrological systems. To address this, model calibration is the first step in model 

development in which parameter values are altered in an attempt to better improve the modelôs 

ability to represent the conditions in the area of study. The calibration process compares 

simulated model outputs to observed data and uses statistical analysis to determine how close the 

datasets are to each other (Immerzeel and Droogers, 2008; Golmohammadi et al., 2014). Within 

hydrological modeling, three statistical criteria are often used to determine if a model was 

successfully calibrated, namely Nash-Sutcliffe model efficiency coefficient (NSE), root-mean-

squared error-observations standard deviation ratio (RSR), and percent bias (Pbias) (Moriasi et 

al., 2007). However, while NSE, RSR, and Pbias can be used to determine if the calibration was 

successful; knowing which parameters need to be changed provides a unique challenge of its 

own. One way to address this would be to perform a sensitivity analysis on the modelôs 

parameters. This can be done through different software packages such as SWAT-CUP, which 

allows modelers to perform sensitivity analysis, calibration, validation, and uncertainty analysis 

of SWAT models based on Sequential Uncertainty Fitting (SUFI2), Particle Swarm Optimization 

(PSO), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), 

and Markov Chain Monte Carlo (MCMC) procedures (Abbaspour, 2007). By using SWAT-CUP, 

it is possible to identify which parameters should be altered as well ensure that the calibration 

process was successful at reducing the model output uncertainties. Another aspect of parameter 

uncertainty is equifinality, which describes the case in which a model calibration process 
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identifies multiple parameter sets that yield similar model performances (Lu et al., 2009; Jin et 

al., 2010). And while this is expected to occur within hydrological modeling calibration (Beven, 

1996; Savenije, 2001), it can still impact a modelôs usefulness. One approach that can help 

reduce the impact of equifinality within hydrological models is the complexity of the objective 

function, since as objective functions become more comprehensive the chance of having multiple 

calibrations performing the same is reduced (Abbaspour, 2007). By quantifying and minimizing 

parameter uncertainties, model performance can be improved, which in turn results in better 

model outputs for researchers, policymakers, and stakeholders. 

2.7 Summary 

 Overall, advancements in remote sensing technology have resulted in a wide variety of 

satellite-based sensors that have greatly improved our ability to monitor the Earthôs surface. And 

recent years have seen an increase in the amount of research that utilizes remotely sensed data. In 

particular, the field of hydrological modeling can be greatly improved by the incorporation of 

satellite data and the subsequently developed remotely sensed datasets. However, while studies 

have already shown the benefits of the incorporation of this data in the area of model calibration; 

few studies have expanded the use of remotely sensed data to multi-objective model calibration. 

Furthermore, conducting studies that explore the impacts of remotely sensed data on different 

multi-objective hydrological model calibration techniques will advance the field of hydrological 

modeling and allow for the development of models that more accurately simulate the real world. 
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3. INTRODUCTION TO METHODOLOGY AND RESULTS  

This thesis is in the form of three research papers. The first paper, entitled ñEvaluating the 

Role of Evapotranspiration Remote Sensing Data in Improving Hydrological Modeling 

Predictabilityò explores the use of remotely sensed evapotranspiration data in hydrological 

modeling. As the global demands for the use of freshwater resources continue to rise, it has 

become increasingly important to ensure the sustainability of this resource. This is accomplished 

through the use of management strategies that often utilize monitoring and the use of 

hydrological models. However, monitoring at large scales is not feasible and therefore model 

applications are becoming challenging, especially when spatially distributed datasets, such as 

evapotranspiration, are needed to understand the model performances. Due to these limitations, 

most of the hydrological models are only calibrated for data obtained from site/point 

observations, such as streamflow. Therefore, the main focus of this paper is to examine whether 

the incorporation of remotely sensed and spatially distributed datasets can improve the overall 

performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from 

the two different sets of satellite-based remote sensing data. One dataset estimates ETa based on 

the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa 

based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used 

in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against 

spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine 

Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable (NSGA-

II) and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned 

datasets, the performance of the hydrological model was evaluated by calculating Nash-Sutcliffe 



   

 

51 

 

efficiency (NSE), percent bias (PBIAS), and root mean squared error-observations standard 

deviation ratio (RSR). 

The second paper, entitled ñEvaluating the Spatial and Temporal Variability of Remote 

Sensing and Hydrologic Model Evapotranspiration Productsò evaluates the spatial and temporal 

performance of eight ETa datasets. Advances in satellite technology have led to the availability 

of global remote sensing datasets that can be used to supplement gaps in observed hydrological 

data. However, it is often challenging to identify the right dataset for different spatial and 

temporal scales. Therefore, the goal of this paper is to statistically explore the spatial and 

temporal performance of remotely sensed ETa datasets in a region that lacks observed data. The 

remotely sensed datasets were further compared with ETa results from a physically-based 

hydrologic model to examine the differences and describe discrepancy among them. All of these 

datasets were compared through the use of Generalized Least-Square estimations that compared 

ETa datasets on temporal (i.e., monthly and seasonal basis) and spatial (i.e., landuse) scales at 

both watershed and subbasin levels.  

In the third paper, entitled ñEvaluation of a Many-Objective Optimization Technique to 

Improve the Performance of a Hydrologic Model Using Evapotranspiration Remote Sensing 

Dataò, we combine streamflow and remotely sensed evapotranspiration data for hydrological 

model calibration with the goal of identifying the improvement level achieved by introducing 

spatially explicit data. This is similar to the first study; however, while the first study was limited 

to just two objective functions (multi-objective) in the calibration process, this study selected an 

improved technique that allows many-objective (more than two objective functions) calibration. 

Furthermore, while the first study considered two evapotranspiration datasets (ALEXI and 

SSEBop), this study considers eight evapotranspiration datasets, namely: the USGS Simplified 
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Surface Energy Balance (SSEBop), the USDA/NASA Atmosphere-Land Exchange Inverse 

(ALEXI), the MODIS Global Evapotranspiration Project (MOD16A2) 500m, the MOD16A2 1 

km, the North American Land Data Assimilation Systems 2 Evapotranspiration (NLDAS-2) 

Mosaic, the NLDAS-2 Noah, the NLDAS-2 VIC, and finally TerraClimate. In addition to these 

datasets, an Ensemble was also developed and used. Regarding the calibration processes, the 

Non-dominated Sorting Genetic Algorithm, the Third Version (NSGA-III) was linked to SWAT) 

to preform ten different calibrations. A total of 18 SWAT parameters were considered during 

calibrations that impact the model outputs in regard to both streamflow and evapotranspiration. 

The first eight calibrations utilized a multi-objective approach and used observed streamflow and 

an evapotranspiration dataset as the objective functions. The ninth calibration was another multi-

objective calibration utilizing observed stream flow and the evapotranspiration Ensemble. And 

finally, the tenth calibration was a many-objective calibration utilizing observed stream flow and 

all of the evapotranspiration datasets. Again, NSE, Pbias, and RSR were used as the statistical 

calibration criteria and a measure of the overall model performance.  
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4. EVALUATING THE ROLE OF EVAPOTRANSPIRATION REMOTE SENS ING 

DATA IN IMPROVING HYDROLOGICAL MODELING PREDICTABILITY  

4.2 Introduction 

As extreme climate conditions and anthropogenic activities continue to impact 

environmental systems, mitigation and restoration related projects have become common. 

Furthermore, environmental systems, such as watersheds, are very complex with many 

relationships and interlocking processes (Sivakumar and Singh, 2012; Guerrero et al., 2013). 

Therefore, it can be challenging to determine which management solution(s) should be selected 

and implemented (Herman et al., 2015; Sabbaghian et al., 2016). This has led to the development 

of many different modeling techniques that can simulate a variety of options and identify the best 

solution(s), based on the criteria put forth mostly by stakeholders and policy makers (Chen et al., 

2012; Beven and Smith, 2014; Giri et al., 2016).  

Meanwhile, the first step in a model implementation is parameter calibration. Parameter 

calibration in model applications is used to adjust model performance to better simulate the 

natural systems they are trying to describe (Guerrero et al., 2013; Zhan et al., 2013; Rajib et al., 

2016). While parameter calibration improves the ability of models to more accurately represent 

natural systems, modelsô performances are still limited by the quality and quantity of input data 

and their availabilities (Nejadhashemi et al., 2011). Today, most hydrological studies rely on 

data collected at monitoring stations across the world. In fact, the United States Geological 

Survey (USGS) has about 1.5 million monitoring sites from which data can be obtained (USGS, 

2016a). However, even with the existence of all these monitoring sites, there are times where 

higher spatial resolutions are needed by researchers, stakeholders, and policymakers to more 

precisely evaluate the hydrologic conditions and to determine the best place to implement 
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mitigation and restoration projects (Wanders et al., 2014). One way to address this issue is the 

use of remotely sensed data. Remote sensing is defined as the science of identifying, observing, 

and measuring an object without physical contact (Graham, 1999). With the advancements in 

satellite technology, remotely sensed satellite data has become a source of consistent monitoring 

for the entire globe, with applications ranging from crop yields to water resources assessments 

(Graham, 1999; Long et al., 2014).   

In order to model water resources more accurately, it is important to examine different 

components of the hydrologic cycle, including water movement processes (e.g., evaporation and 

streamflow) and water storage (e.g., soil moisture, water vapor, groundwater, and surface water 

bodies). While hydrological models simulate all components of the hydrological cycle, 

streamflow is often the only component that the model outputs are compared against during the 

calibration process since it can be measured more accurately than the other components 

(Immerzeel and Droogers, 2008; Wanders et al., 2014; Rajib et al., 2016). This can result in poor 

simulations of other hydrologic components, which ultimately lowers the model performance 

(Wanders et al., 2014; Rajib et al., 2016). Therefore, including additional hydrological 

components in the parameter calibration process could allow the model to better represent all 

process occurring in the environment (Crow et al., 2003). In particular, evapotranspiration (ET) 

could be considered an important hydrological component added to the calibration process since 

it describes the moisture lost to the atmosphere from both biotic (e.g., plants) and abiotic (e.g., 

soils) sources (Hanson, 1991; USGS, 2016d). Meanwhile, ET plays a major role in the cycling of 

water from land and ocean surface sources into the atmosphere, which in turn drives 

precipitation (Pan et al., 2015). Furthermore, Immerzeel and Droogers (2008) found that 

calibrating a hydrological model for ET significantly improved ET simulations; and that ET 
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simulation values were more sensitive to groundwater and meteorological parameters compared 

to soil and landuse parameters.  

This indicates that including additional parameters in a model calibration can improve the 

overall model performance. However, the applicably of different calibration techniques has not 

been explored when both remotely sensed ET and streamflow data are involved. In addition, this 

study is unique in the sense that the performance of a hydrologic model for estimating 

streamflow was evaluated using different remotely sensed ET products. Therefore, the objectives 

for this paper are to (1) determine the performance of a calibrated hydrologic model in 

estimating ET against spatially distributed time series ET products obtained from remote 

sensing; (2) determine the impact of ET parameter calibration on streamflow estimation; and (3) 

evaluate the performances of different calibration techniques for streamflow and ET estimations.  

4.3 Materials and Methods 

4.3.1 Study Area 

The study area is the Honeyoey Creek-Pine Creek Watershed (Hydrologic Unit Code 

0408020203), which is located within the Saginaw Bay Watershed in Michiganôs Lower 

Peninsula (Figure 4.1). The US Environmental Protection Agency (EPA) identified the Saginaw 

Bay Watershed as an area of concern due to the presence of contaminated soils and degradation 

of fisheries within the region (EPA, 2017). These conditions were caused by the addition of both 

point and non-point source pollutants from a variety of sources such as industrial waste and 

agricultural runoff (EPA, 2016). The final outlet for this watershed is Lake Huron via the 

Saginaw River. Out of the approximately 1,100 km2 within the Honeyoey Watershed, agriculture 

is the dominant landuse (~52%) followed by forests (~23%), wetlands (~17%) and pasturelands 

(~5%). The remaining land is classified as urban (~3%). The Honeyoey Creek-Pine Creek 
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watershed has been significantly altered by anthropogenic activities as evidenced by the landuse 

change (agricultural lands and urban area are dominant in the region), which in turn impacts the 

natural environment, especially water quality and quantity.  

 
Figure 4.1. The study area (Honeyoey Creek-Pine Creek watershed) 

 

4.3.2 Data Collection 

4.3.2.1 Physiographic Data 

Several spatial and temporal input datasets were needed to describe the study area in a 

hydrological model. These datasets describe characteristics such as topography, landuse, soil 

properties, climate, and crop management practices. Data from the USGS were obtained to 

represent the topography of the region using their 30 m spatial resolution National Elevation 

Dataset (NED, 2014). Landuse information was acquired from the 30 m spatial resolution 

Cropland Data Layer developed by the United States Department of Agriculture-National 

Agricultural Statistics Service (USDA-NASS) (NASS, 2012). The Natural Resources 
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Conservation Service (NRCS) Soil Survey Geographic (SSURGO) Database was used to 

describe the soil properties for the region at a scale of 1:250,000 (NRCS, 2014). National 

Climatic Data Center (NCDC) weather stations (two precipitation stations and two temperature 

stations) were used to obtain daily precipitation and temperature data for the time span of 2003 to 

2014. A widely used stochastic weather generator called WXGEN was employed (Sharpley and 

Williams, 1990; Wallis and Griffiths, 1995), which is embedded in the Soil Water Assessment 

Tool (SWAT), to create climate time series for other climatological records (e.g. relative 

humidity, solar radiation, and wind speed) that are required for SWAT to operate (Neitsch et al., 

2011). Predefined crop management operations, schedules, and rotations were adopted from 

previous studies performed in the same region (Love and Nejadhashemi, 2011; Giri et al., 2015). 

Due to the limitation of SWAT in simulating up to 250 different landuse, the subwatershed map 

that was provided by the National Hydrology Dataset Plus (NHDPlus) and the Michigan Institute 

for Fisheries Research at a scale of 1:24,000 were modified to accommodate this limitation 

(Einheuser et al., 2013).    

4.3.2.2 Remote Sensing Data 

In order to evaluate the role of ET remote sensing data in improving a hydrologic model 

predictability, two satellite-based ET datasets were obtained for the period of 2003 to 2014 for 

the study area. One dataset was created based on the Simplified Surface Energy Balance 

(SSEBop) model while the other one was based on the Atmosphere-Land Exchange Inverse 

(ALEXI) model.  

The USGS dataset reported monthly actual evapotranspiration (ETa) using the SSEBop 

model (Senay et al., 2013). ETa is limited by the amount of water present at a site since it refers 

to the actual amount of water that is lost through both evaporation and transpiration (NOAA, 



   

 

58 

 

2017b). This model utilizes ET fractions derived from 1 km Moderate Resolution Imaging 

Spectroradiometer (MODIS) thermal imagery collected every eight days to develop a 1 km 

monthly ETa dataset for the Conterminous U.S. (Senay et al., 2013; Velpuri et al., 2013). Data 

were obtained from this dataset for each subwatershed in the study area. In order to provide an 

overall ETa for each subwatershed, all SSEBopôs ETa pixels within each subwatershed were 

averaged with respect to the area to generate the overall area weighted ETa average values for 

each month (USGS, 2016o).  

The second ETa dataset is created based on the ALEXI model, which was sponsored by 

the USDA and US National Aeronautics and Space Administration (NASA). The ALEXI model 

utilizes remotely sensed morning land surface temperatures to determine ETa by relating the 

observed change in temperature to changes in surface moisture and ETa (Anderson et al., 1997; 

Anderson et al., 2007). For this study, 4 km thermal images were obtained from Geostationary 

Operational Environmental Satellites (GOES) and used as to develop a daily 4 km ETa dataset 

for the Conterminous U.S. (Hain et al., 2015). In order to make the second set of ETa data 

comparable to the first set, the daily ETa values from the ALEXI model were averaged to create 

monthly ETa values. Next, these values were averaged for each subwatershed with respect to 

area.     

4.3.3 Hydrological Model: SWAT 

The ETa outputs of both the ALEXI and SSEBop models were used for the evaluation of 

SWAT models for the study region. SWAT is a widely used, continuous-time, semi-distributed, 

hydrological model that was developed by the USDA Agricultural Research Service (USDA-

ARS) and Texas A&M AgriLife Research (Texas A&M University, 2017). By taking into 

account different spatiotemporal layers of information (Section 2.2.1), such as topography, 
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landuse, and climate, SWAT models are able to simulate a variety of hydrological processes, 

such as runoff, sediment transport, and ET (Gassman et al., 2007). This makes it a very useful 

tool for both researchers and policymakers.  

4.3.4 Calibration Approaches 

For this study, all of the collected physiographic data was incorporated into a SWAT 

model. However, there are many default parameters in a SWAT model that represent an average 

or more probable condition that may or may not be true for the region of study (Arnold et al., 

2012). Therefore, the SWAT model used in this study underwent a series of calibration and 

validation processes. To do this, all observed time series data were divided into calibration (2003 

to 2008) and validation (2009 to 2014) periods. This process is simply referred to as calibration 

in the rest of the paper. 

Three different types of model calibration were used in this study. The first was solely a 

streamflow calibration. In this approach, individual SWAT parameters that influence the 

streamflow calculations were tested to find their near-optimal value through the comparison of 

simulated streamflows to observed streamflows. Observed streamflow data was obtained from a 

USGS streamflow station on the Pine River at the outlet of the study area (USGS, 2016p). The 

next two calibration approaches, multi-variable and genetic algorithm, were used to improve the 

ETa estimation for the study region. For these sets of calibrations, SWAT parameters used in 

ETa calculations at the subwatershed level were altered to replicate the values obtained from the 

ALEXI and SSEBop ETa datasets. In order to examine the role of these remotely sensed data on 

the performance of SWAT for estimating ETa, the genetic algorithm approach was used since it 

is able to optimize the system for a single variable. Meanwhile, a multi-variable calibration 

approach was selected to determine the impact of add ETa calibration on the SWAT model 
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performance for both ETa and streamflow estimation. Detailed descriptions of these calibration 

approaches are provided below.  

4.3.4.1 SWAT Parameters 

As mentioned above, during the SWAT model calibration, the SWAT parameter values 

were altered. The selection of these variables was done through the use of literature review and 

sensitivity analysis (Woznicki and Nejadhashemi, 2012). With respect to streamflow, 15 SWAT 

parameters were identified and altered during the calibration process including: baseflow 

recession constant (ALPHA_BF), biological mixing efficiency (BIOMIX), maximum canopy 

storage (CANMX), effective hydraulic conductivity of channel (CH_K2), Manningôs n value for 

the main channel (CH_N2), moisture condition II curve number (CN2), plant uptake 

compensation factor (EPCO), soil evaporation compensation coefficient (ESCO), delay time for 

aquifer recharge (GW_DELAY), revap coefficient (GW_REAP), threshold water level in 

shallow aquifer for base flow (GWQMN), aquifer percolation coefficient (RCHRG_DP), 

threshold water level in shallow aquifer for revap (REVAPMN), available water capacity 

(SOL_AWC), and surface runoff lag coefficient (SURLAG). These parameters were selected 

based on the information provided by the SWAT developer (Arnold et al., 2012). Table 4.1 

presents the minimum, maximum, default, and calibrated values for all of these parameters for 

the Honeyoey watershed. 
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Table 4.1. Streamflow calibration parameters used in this study  

Parameter  Mini mum  Maximum   Default  Calibrated  

ALPHA_BF  0  1  0.048  0.55  

BIOMIX   0  1  0.2  0.01  

CANMX  0  100  0  1  

CH_k2  -0.01  500  0  65  

CH_N2  -0.01  0.3  0.014  0.025  

CN2  -25%  25%  NA  -0.22%  

EPCO  0  1  1  0.37  

ESCO  0  1  0.95  0.97  

GW_DELAY  0  500  31  9  

GW_REVAP  0.02  0.2  0.02  0.055  

GWQMN  0  5000  1000  1000  

RCHRG_DP  0  1  0.05  0.35  

REVAPMN  0  1000  750  900  

SOL_AWC  0  1  NA  20%  

SURLAG  1  24  4  1  

 

In regards to the ETa calibration, another set of 10 SWAT parameters was identified as 

being influential to the ETa calculations (Neitsch et al., 2011). These included: maximum canopy 

storage (CANMX), carbon dioxide concentration (CO2), soil evaporation compensation 

coefficient (ESCO), fraction of maximum stomatal conductance corresponding to the second 

point on the stomatal conductance curve (FRGMAX), maximum stomatal conductance (GSI), 

potential evapotranspiration method (IPET), daily maximum temperature (MAX TEMP), daily 

minimum temperature (MIN TEMP), vapor pressure deficit corresponding to the fraction given 

by FRGMAX (VPDFR), and daily wind speed (WND_SP). However, some of these parameters 

could not be altered since they were provided by either observed data or the weather generator 

used in this study, including MAX TEMP, MIN TEMP, and WND_SP. In addition, since climate 

change was not a factor for this study, CO2 was also not altered. Furthermore, in an attempt to 

limit the impact of the ETa calibration on streamflow, any SWAT parameters already used in the 

streamflow calibration, CANMX and ESCO, were also not used during the ETa calibration 

process. This reduced the initial set of ETa parameters from 10 to four. Of this set of four 
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parameters, three are crop properties and have ranges of 0.001 to 0.1 for GSI, 0 to 1 for 

FRGMAX, and 1.5 to 6 for VPDFR. The last parameter used in this study, IPET, indicates which 

method to use when calculating potential evapotranspiration (ETp). Within SWAT three 

different ETp methods are available: namely the Penman-Monteith method, the Priestley-Taylor 

method, and the Hargreaves method (Neitsch et al., 2011). All three methods were included in 

the ETa calibration process; however, it was found that the Penman-Monteith method produced 

the best results for the study area. 

4.3.4.2 Initial  Streamflow Calibration 

A streamflow calibration was performed to generate a base condition to which the ETa 

calibrations could be compared. In order to evaluate the performance of a hydrological model, 

three statistical criteria that were suggested by Moriasi et al. (2007), were used in this study. These 

criteria include: 1) Nash-Sutcliffe efficiency (NSE) representing the ratio of residual variance and 

observed data variance (Nash and Sutcliffe, 1970); 2) Percent bias (PBIAS) evaluating how much 

larger/smaller simulated data are than their corresponding observed data (Gupta et al., 1999); and 

3) Root mean squared error (RMSE)-observations standard deviation ratio (RSR), reporting the 

ratio of RMSE and standard deviation of measured data (Legates and McCabe, 1999). For 

evaluating the performance of a hydrologic model on simulating monthly streamflow values, NSE 

values above 0.5, PBIAS values within ±25%, and RSR values below 0.7 are considered as 

satisfactory (Moriasi et al., 2007). In addition, we also reported RMSE to examine the error 

associated with the simulated data in which lower values represent the better model performance.  

4.3.4.3 Multi-variable Calibration  

A multi-variable calibration procedure, based on Monte Carlo simulation and an 

evolutionary algorithm, was applied to the SWAT model using both remotely sensed ETa 
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datasets and observed streamflow from the study area. The procedure aimed to identify the 

Pareto optimal frontier and the best trade-off solution. 

A solution is classified as Pareto optimal (also known as non-dominated) when the value 

of any objective function cannot be improved without decreasing the performance of at least one 

other objective function (Chankong and Haimes, 1993; Tang et al., 2006). In multi-variable 

calibration, there is at least one objective function per observed variable. For this study, the 

minimization objective function (OF) for each variable (i.e. ETa and streamflow) was based on 

the NSE. 

1OF NSE= -            (4.1) 

The objective function for ETa was computed using the area weighted average of the 

monthly simulated from the hydrologic model and satellite-based ETa time series for each 

subwatershed, which was determined as follows: 
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where, ὉὝ is the average ETa for month Ὦ; ὃ  is the total surface area of the watershed; ὃ is the 

surface area of subwatershed Ὥ; ὉὝ  is the ETa for subwatershed Ὥ and month Ὦ; and ὲ is the 

number of subwatersheds. Therefore, one pair of simulated-observed ETa series for the whole 

watershed was obtained to determine a unique NSE for this variable. This process was not 

employed for streamflow since there is only one gauging station at the outlet of the study area 

(Figure 4.1). 

The general outline of the multi-variable calibration, which is further explained in the 

following sections, is as follows: A Monte Carlo simulation is performed to understand the 

SWAT model performance for ETa and streamflow with respect to the selected calibration 
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parameters. Thus, 5,000 parameter sets were randomly generated via uniform sampling, which 

were then evaluated by executing the SWAT model for each generated parameter set. The results 

were used to define, if possible, narrower calibration parameter ranges, and to obtain multi-

objective scatter plots to identify preliminarily Pareto Optimal solutions. The next step consists 

of the application of a multi-objective evolutionary algorithm known as the Nondominated 

Sorted Genetic Algorithm II (NSGA-II) (Deb et al., 2002) to determine the optimal Pareto 

population. Finally, the decision-making method known as the Compromise Programming (Deb, 

2001), using a Euclidean distance metric, was employed to select the final optimal trade-off 

solution from the resulting Pareto Optimal population. 

4.3.4.3.1 Monte Carlo Simulation 

A total of 5,000 runs for Monte Carlo simulation were performed using MATLAB®, 

with randomly generated corresponding parameter sets selected from uniform distributions. 

Ranges for calibration parameters were defined as follows: 0.001 to 0.1 for GSI, 0 to 1 for 

FRGMAX, and 1.5 to 6 for VPDFR. A SWAT model run was executed for each parameter 

combination, computing NSE for both ETa and streamflow. Dotty plots relating each OF with 

parameter values were obtained to analyze parameter identifiability, and if possible, narrower 

calibration ranges to be explored with the NSGA-II algorithm. Likewise, multi-objective plots 

relating ETa and streamflow OF values were generated for preliminary Pareto frontiers 

identification.  

4.3.4.3.2 Multi-objective Evolutionary Algorithm: NSGA-II  

The NSGA-II is a multi-objective genetic algorithm that has been widely used in various 

disciplines and has been successfully implemented in other SWAT applications (Zhang et al., 

2010; Lu et al., 2014; Zhang et al., 2016). The NSGA-II is a population-based algorithm that is 
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comprised of a nondominated ranking process, a crowded distance calculation, an elitist selection 

method, and offspring reproduction operations (Deb, 2001). For this study, a real-coded NSGA-

II with simulated binary crossover (SBX) and polynomial mutation (Baskar et al., 2015) was 

applied, requiring the prior definition of distribution indexes for each operation (defined as 20 

for crossover and mutation each). Other input parameters include the population size (defined as 

100), the maximum number of generations as stopping criteria (defined as 50), and the mutation 

probability (defined as the reciprocal of the number of calibration parameters). 

4.3.4.3.3 Compromise Programming Approach 

The compromise programming approach using the ὰ metric (which becomes the 

Euclidean distance metric) is used to select the optimal Pareto population member that is closest 

to a reference point (Deb, 2001). In this case, the ideal point, which is unfeasible and is not 

located on the Pareto frontier, is selected as the reference point and it is comprised by the best 

objective function values (Deb, 2001). Before computing the distance between each Pareto point 

and the ideal point, the objective function values are normalized employing a Euclidian non-

dimensionalization (Sayyaadi and Mehrabipour, 2012): 
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where, i is the index for each point in the Pareto frontier, j is the index for each OF, m is the total 

number of the Pareto population, and n superscript refers to ñnon-dimensionalò. The distance Ὠ 

between each Pareto point and the ideal point, which is the ὰ metric, is calculated as follows: 
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where, N denotes the total number of objective functions.  
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In the compromise programming approach, the point with the minimum distance metric 

value is chosen as the best trade-off solution.   

4.3.4.4 Genetic Algorithm Calibration 

The other approach used to calibrate the SWAT models with respect to the ETa datasets 

was a genetic algorithm (GA). A GA is an optimization technique that imitates biological process 

to refine a population of potential solutions to identify the best final or set of final solutions 

(Goldberg, 1989; Conn et al., 1991; Conn et al., 1997). For this study, a GA was used to guide ETa 

calibrations by changing the values of three parameters within the SWAT model, namely GSI, 

FRGMAX, and VPDFR. These are the same parameters that were modified in the multi-variable 

optimization approach, and thus the same ranges were used for this optimization. With each 

successive set of parameter values, a series of MATLAB® codes were used to update and run the 

SWAT model (Abouali, 2017). First, the parameter values were accepted by the code, which 

checked the values to the defined ranges and then applied the values to all subwatersheds within 

the region. After this was completed, the code executed the SWAT model and stored the outputs 

for further analysis. In summary, the SWAT model was run 904,900 times. While executing these 

runs will not necessarily develop an ideal model, it will generate a landscape of how ET changes 

for each subwatershed based on the specified parameters. For each set of parameter values, the 

SWAT ETa outputs were compared to the ALEXI and SSEBop datasets and NSE and RMSE were 

calculated for each subwatershed. The parameter set that had the largest NSE was considered to 

be the best and the lowest RMSE was used as the tiebreaker. This allowed for the identification of 

the best parameter values for each subwatershed, which then used to parametrize the best model 

that maximizes the ETa calibration. It should be noted that this is only possible based on the 

assumption that the ETa calculation for one subwatershed is not affected by the ETa calculation 
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for another subwatershed, otherwise it would not be possible to create the mosaic landscape of 

parameter values used in the best model, which to the best of our knowledge has not been done in 

other SWAT studies. Furthermore, after the best parameters for each subwatershed were identified 

and applied within the SWAT models, the simulated ETa values were area averaged to produce a 

single ETa value for the entire watershed. This set of ETa values was then used to calculate the 

NSE, PBIAS, RSR, and RSME for the entire region, just like was done in the multi-variable 

calibration. This was done to allow for a watershed level evaluation of the calibration approaches.  

4.3.5 Statistical Analysis 

To further evaluate the streamflow and ETa outputs from the calibrated models and ETa 

datasets, a mixed-effects model was used to compare the mean difference between each of the 

outputs (Kuznetsova et al., 2015). This process was performed twice, once for the streamflow 

datasets (observed, initial streamflow calibrated model, ALEXI multi-variable calibrated model, 

ALEXI genetic algorithm calibrated model, SSEBop multi-variable calibrated model, and 

SSEBop genetic algorithm calibrated model) and once for the ETa datasets (ALEXI, SSEBop, 

ALEXI multi -variable calibrated model, ALEXI genetic algorithm calibrated model, SSEBop 

multi-variable calibrated model, and SSEBop genetic algorithm calibrated model). This allowed 

for the determination of significant mean differences between the datasets with a 95% 

confidence level. 

4.4 Results and Discussion 

4.4.1 Initial Streamflow Calibration 

Daily streamflow was calibrated and validated for a 12-year period (6 years calibration and 

6 years validation) from 2003 to 2014 for the region. Table 4.2 shows the NSE, Pbias, RSR, and 

RSME values achieved for the calibrated model. As shown in the table, all criteria (NSE, PBIAS, 
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and RSR) are in their respective satisfactory ranges (Moriasi et al., 2007) indicating that the model 

was successfully calibrated and can be used to simulate streamflow values for the region. 

Furthermore, while the overall RSME was 6.522, the calibration period had a smaller RSME 

compared to the validation period, indicating a better model fit during the calibration period than 

the validation period. The temporal variability of observed and simulated streamflow is also 

presented in Figure 4.2. Overall, the SWAT model represents the observed flow variations very 

accurately. 

Table 4.2. Calibration and validation criteria 
  NSE  PBIAS (%)   RSR  RSME  

Overall (2003-2014)  0.612  -0.965  0.623  6.522  

Calibration (2003-2008)  0.611  4.303  0.624  5.996  

Validation (2009-2014)  0.613  -5.856  0.622  7.009  

 

 
Figure 4.2. Comparison of observed and simulated daily streamflow  

 

The results of this section present the performance of the SWAT model in replicating the 

spatially distributed ETa data obtained from two remote sensing products (SSEBop and ALEXI 

datasets). Table 4.3 shows the SWAT model performance for the overall, calibration, and 
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validation periods based on NSE, PBIAS, RSR, and RMSE of the ETa for the condition in which 

only the streamflow calibration was performed. These calculations followed the same procedure 

that was discussed in the multi-variable and GA calibration sections, in which ETa values were 

area averaged across the watershed and then used to calculate watershed level statistical criteria. 

When considering the entire time period, the streamflow calibrated SWAT model was able to 

replicate the SSEBop ETa dataset more accurately than the ALEXI ETa dataset. This can be seen 

by the fact that the statistical criteria for the SSEBop ETa were better than those for the ALEXI 

ETa. Similar results were seen for the calibration and validation periods. Overall, this shows that 

the SWAT model can better replicate the SSEBop ETa data compared to the ALEXI data.   

Table 4.3. Statistical criteria ETa when the results from base streamflow calibrated SWAT 

model was used  

Period  Variable/Dataset  
Statistical Measure  

NSE  PBIAS (%)   RSR  RMSE  

Overall (2003-2014)  
ALEXI  ETa  0.62  27.82  0.62  21.79  

SSEBop ETa  0.81  -10.12  0.44  18.28  

Calibration (2003-2008)  
ALEXI  ETa  0.62  27.83  0.62  21.48  

SSEBop ETa  0.81  -8.46  0.44  18.13  

Validation (2009-2014)  
ALEXI  ETa  0.62  27.80  0.61  22.10  

SSEBop ETa  0.80  -11.78  0.44  18.42  

 

4.4.2 Multi-variable Calibration 

A combination of 5,000 Monte Carlo simulations and an NSGA-II  evolutionary 

algorithm were used to identify the Pareto frontiers for the SWAT model calibrations for both 

the ALEXI and SSEBop ETa datasets. Figure 4.3 shows both the entire Monte Carlo population 

as well as the Pareto frontiers identified by the NSGA-II  evolutionary algorithm for each ETa 

dataset. This shows that Pareto frontiers were able to be identified from the Monte Carlo 

simulations run for each ETa datasets, which indicates the first phase of the multi-variable 

optimization was successful for both datasets. However, the SSEBop Pareto frontier was able to 

further minimize streamflow and ETa OFs compared to the ALEXI Pareto frontier. Therefore, 
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calibrating the SWAT model using the SSEBop ETa data was able to produce a more accurate 

model performance. This can be seen more clearly in Figure 4.4, which shows the Pareto 

frontiers for both the SSEBop and ALEXI datasets. This figure also highlights the optimal Pareto 

population member selected by the compromise programming method, which shows the optimal 

model calibration for each dataset. This reinforces the conclusions that the SSEBop dataset 

performed better than the ALEXI dataset and achieved a model calibration that was able to better 

simulate both streamflow and ET values for the entire region. In addition, the results showed that 

the multi-variable calibration was able to identify a final calibrated model for each dataset that 

improved both streamflow and ET simulations.  

 
Figure 4.3. Monte Carlo populations and Pareto frontiers for a) ALEXI and b) SSEBop datasets  

  












































































































































































































































































































































