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ABSTRACT

DATA-DRIVEN SINGLE-/MULTI-DOMAIN SPECTRAL METHODS FOR STOCHASTIC
FRACTIONAL PDES

By

Ehsan Kharazmi

Fractional derivatives are integro-differential convolution type operators with power law kernels,

which seamlessly generalize the notion of standard integer order differentiation to their fractional

counter parts. In such operators, the order of differentiation is a non-integer number, which in

the limiting cases of integer numbers recovers the standard derivatives. The fractional differential

equations (FDEs) particularly, have been shown in the literature to provide a rigorous mathematical

tool that can be used to describe the anomalous behavior in a wide range of physical phenomenon.

They introduce however, the order of fractional derivatives as an additional set of model parameter,

whose values are essentially obtained from experimental observations. The inherent randomness in

measurements, incomplete sets of data, significant approximations and assumptions upon which the

model is built, and the random nature of quantities being modeled pervade uncertainty in the corre-

sponding mathematical formulations. This renders the model parameters, including the fractional

orders, random and thus, the fractional model stochastic. We develop proper data-driven math-

ematical frameworks to efficiently infuse experimental observations/data into the corresponding

mathematical models in the context of stochastic fractional partial differential equations.

We extend the fractional order derivatives to the distributed order ones, where the differential

orders are distributed over a range of values rather than being just a fixed integer/fraction as it is in

standard/fractional ODEs/PDEs. Such distributed operators can also be considered as expectation

of fractional derivative with random orders in the context of stochastic modeling. We develop two

spectrally-accurate schemes, namely a Petrov-Galerkin spectral method and a spectral collocation

method for distributed order fractional differential equations. In both methods, we employ the

fractional (non-polynomial) functions, called Jacobi poly-fractonomials, which are the analytical

eigenfunctions of the fractional Strum-Liouville eigenvalue problem of first and second kind. We



also define the underlying distributed Sobolev space and the associated norms, where we carry out

the corresponding discrete stability and error analyses of the proposed scheme.

We develop a fractional sensitivity equation method, where we obtain the new set of adjoint

fractional sensitivity equations, in which we introduce another fractional integor-differential op-

erator, associated with logarithmic-power law kernel, for the first time in the context of fractional

sensitivity analysis. We show that the developed sensitivity analysis provides a machine learning

tool, which build a bridge between experiments and mathematical models to gear observable data

via proper optimization techniques. We also develop an operator-based uncertainty quantification

framework in the context of stochastic fractional partial differential equations, in which we char-

acterize different sources of uncertainties and further propagate the associated randomness to the

fractional model output quantity of interest.

We further apply the developed mathematical tools to investigate the nonlinear vibration of a

viscoelastic cantilever beam. In the absence of external excitation, the response amplitude of free

vibration reveals a super-sensitivity with respect to the fractional order. Primary resonance of the

beam subject to base excitation also discloses a softening behavior in the frequency response of

the beam. These unique features can be used further to build a vibration-based health monitoring

platform.
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history matrices Ŝ(ε,e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2.10: PG SEM with local basis/test functions. Plotted is the error with respect to
the polynomial degree of each element (spectral order). . . . . . . . . . . . . . 43

Figure 2.11: Schematic of global matrices corresponding to the case of singular solutions.
(left): left boundary singularity, (right): left and right boundary singular-
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CHAPTER 1

INTRODUCTION

The scientist does not study nature because it is useful;

he studies it because he delights in it, and he delights in it because it is beautiful.

Henri Poincaré

1.1 Fractional Models

Understanding and predicting behavior of natural phenomena, and innovative design inten-

tions have always been an encouraging motivation for scientists progress. Physical phenomena,

in general, are characterized as a system, whose behavior is understood via couple of state vari-

ables, such as position/velocity of particles that collectively constitute the system. Mathematical

models construct proper tools to study time/space evolution of the states of system-of-interest,

where the validity range of such models are essentially investigated by comparison of their output

(simulations) with observed experiments. A vast range of experimental observations, conducted

on complex systems, however, demonstrates the discrepancy of existing mathematical models in

properly describing and predicting the ubiquitous anomalies in behavior of such systems, raising

the demand to accrete more capable models. Fractional partial differential equations (FPDEs),

as a seamless extension of their standard integer order counterparts [90, 134, 146], open up new

possibilities for developing robust mathematical tools with the ability to more accurately predict the

anomalous behaviors. They put the existing PDEs into a subset of this larger family of mathematical

models, and are recently being extensively studied and recognized as most tractable mathematical

framework for description of anomalous processes with nonlocal interactions, self-similar struc-

tures, long memory dependence, and power-law behavior. These critical interpretative features

of complex physical systems are consolidated in the order of fractional derivatives, resulting in a

more compliant simulations with experimental tests. Examples of employing fractional modeling

stretch over the range of applications including: viscoelasticity in structural vibrations [8], tissue
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mechanics and biological phenomena [72, 113], non-Newtonian fluids and rheology [74, 126],

non-Brownian transport phenomena in porous and disordered materials [19, 120], non-Markovian

processes in multi-scale complex fluids and multi-phase applications [76], non-Gaussian (Lévy

flights) processes in turbulent flows [36, 78, 153], and earth system dynamics [198].

1.1.1 Fractional Rheology: Viscoelastic Modeling

Viscoelastic bodies is a class of materials with properties that exhibits both viscous and elastic

characteristics when undergoing deformation or loading. The energy dissipation feature of viscous

part results in non fully-responsive behavior of suchmaterial. In general, the response characteristics

of viscoelastic bodies are understood by studying their response to stress and strain inputs in “creep”

and “relaxation” test. We denote by J(t), creep compliance, i.e. the strain response to the unit

step of stress, and by G(t), relaxation modulus, i.e. the stress response to a unit step of strain.

The two functions J(t) and G(t) are usually referred to as the material functions of the body. The

constitutive relation of linear viscoelastic models, i.e. stress-strain relation, can be represented by

a Volterra equation through Boltzmann superposition principle [116]. When the specimen is under

loading, the material instantaneously react elastically and then, immediately starts to relax, where

dissipation takes place [59]. Thus, as a step increase in elongation (from the stretch λ = 1 to some

λ) is imposed, the developed stress in the material will be a function of time and the stretch:

K(λ, t) = G(t)σ(e)(λ), (1.1)

where G(t) is the reduced relaxation function and σ(e) is the elastic response (in absence of

any viscosity). σ(e) can be also interpreted as tensile stress response in a sufficiently high rate

loading experiment. The Boltzmann superposition principle states that the stresses from different

small deformations are additive, meaning that the total tensile stress of the specimen at time t is

obtained from the superposition of infinitesimal changes in stretch at some prior time τj , given as
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G(t − τj)
∂σ(e)[λ(τj )]

∂λ δλ(τj). Therefore,

σ(t) =
∑
τj<t

G(t − τj)
∂σ(e)[λ(τj)]

∂λ

δλ(τj)

δτj
δτj, (1.2)

where in the limiting case δτj → 0 gives the integral form of the equation as

σ(t) =
∫ t

−∞
G(t − τ)

∂σ(e)[λ(τ)]

∂λ

∂λ

∂τ
dτ =

∫ t

−∞
G(t − τ) Ûσ(e) dτ. (1.3)

• Exponential Relaxation, Classical Models: The relaxation function G(t) is traditionally ana-

lyzed into the summation of exponential functions with different exponents and constants as

G(t) =
∑

Cie−t/τi∑
Ci

. (1.4)

For the simple case of single exponential term (Maxwell model), we have G(t) = e−t/τ. Thus, in

the case of zero initial strain we have

σ(t) =
∫ t

0
e−(t−t̃)/τ E Ûε dt̃, (1.5)

which solves the integer-order differential equation Ûε = 1
E Ûσ +

1
ησ, where relaxation time constant

τ = η/E , obtained from experimental observations. The Maxwell model is in fact a combination of

pure elastic and viscous element in series, see Fig. 8.4. Other different combinations of pure elastic

and viscous elements in series and parallel give rise to various rheological models with distinctive

properties, each of which can be used to model different types of material. The key issue is that the

complex hereditary behavior of material requires complicated combinations of elastic and viscous

elements, yet they can not be fully captured as the building block elements do not reflect any

memory dependence in the material response. Moreover, the complicated combinations introduce

relatively big number of model parameter, which adverse the condition of ill-posed inverse problem

of model fitting (parameter estimation).

• Power-Law Relaxation, Fractional Models: The mechanical stress appeared at the deformation

of viscoelastic materials decreases as power-type functions in time, suggesting that relaxation of

stress obeys a power law behavior and the relaxation time can not be described with single time
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Figure 1.1: Classical visco-elastic models as combination of a spring (pure elastic) and a dash-pot
(pure viscous) elements. Kelvin-Voigt (top) and Maxwell (bottom) rheological model.

scale anymore [116]. Therefore, by letting the kernel in (8.13) to have power-type form, the tensile

stress takes the form of

σ(t) =
∫ t

−∞

g(α)

( t − τ )α
E Ûε dτ = E g(α)

∫ t

−∞

Ûε

( t − τ )α
dτ, (1.6)

where the elastic response σ(e) = Eε. If we choose g(α) = 1
Γ(1−α) , then the integro-differential

operator (8.16) gives the Liouville-Weyl fractional derivative. Under the hypothesis of causal

histories, stating that the viscoelastic body is quiescent for all time prior to some starting instant

t = 0, the equation (8.16) can be written as

σ(t) = ε(0+)
E g(α)

tα
+ E g(α)

∫ t

0

Ûε

( t − τ )α
dτ, (1.7)

= ε(0+)
E g(α)

tα
+ E C

0D
α
t ε,

= RL
0D

α
t ε,

where C
0D

α
t and RL

0D
α
t are the Caputo and Riemann-Liouville fractional derivatives, defined later.

The constitutive equation (8.17) is the Scott Blair element [75, 138], which can be though of as an

interpolation between a pure elastic (spring) and a pure viscous (dash pot) elements [115, 116, 160],

see Fig. 1.2.

• Distributed-Order Fractional Models: In a more general sense, where the material contain a

spectrum of power-type relaxation, the single order fractional constitutive model can be extended

to the distributed-order one [8, 87]. Thus, we let the relaxation function G(t) in (8.13) not be only a

single order power-law as in (8.16), but rather be distributed over a range. This leads to a distributed
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Figure 1.2: Schematic of a fractional model element (Scott Blair element): in the limiting cases of
α = 0 and α = 1, converges to spring and dash-pot element, respectively.

form of constitutive equations expressed as∫ βmax

βmin
Φ(β) 0D

β
t σ(t) dβ =

∫ αmax

αmin
Ψ(α) 0D

α
t ε(t) dα, (1.8)

whereΦ(β) andΨ(α) are distribution functions that can confine the theoretical terminals βmin, βmax ,

αmin, andαmax according to the physical realization of problem (see [87] and the references therein).

We see that in distributed order fractional operators, the differential order is distributed over a range

of values rather than being just a fixed fraction as it is in standard/fractional ODEs/PDEs. Thus,

they offer a rigorous tool for mathematical modeling of multi-rates multi-physics phenomena, such

as ultra slow to super diffusive processes [85, 114, 143], and distributed order form of viscoelastic

models [7, 20, 21, 34].

If we let the distribution functions be delta functions, the distributed order model becomes the

following multi-term model:(
1 +

pσ∑
k=1

ak 0D
βk
t

)
σ(t) =

(
c +

pε∑
k=1

bk 0D
αk
t

)
ε(t). (1.9)

We note that in viscoelastic modeling, one can design distinctive rheological model (constitutive

equations) to get different types of behavior by choosing different distribution functions Φ(β) and

Ψ(α). For example, by considering Φ(β) = δ(β) and Ψ(α) = E∞δ(α)+ Eαδ(α − α0), we show that

we recover the fractional Kelvin-Voigt model as

σ(t) = E∞ ε(t) + Eα0
RL

0D
α0
t ε(t), (1.10)
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where α0 ∈ (0,1). Other fractional viscoelastic models such as standard linear solid model and

generalizedMaxwell model, shown in (1.11) can also be obtained by choosing different distribution

functions in the distributed-order models [10, 22, 23, 97, 140, 164, 195].

J0(σ + τ
α
ε D

ασ) = ε + τασ D
αε, (1.11)

J∞(σ + ταε D
ασ) = τασ D

αε .

• Structural Dissipation: The internal dissipative mechanisms in structural deformations are

usually modeled by viscoelasticity. The interaction of systems with an energy sink (e.g. non-

Newtonian viscous friction and robber made foundations) also induces a dissipative behavior in the

overall response of interactive system. A common example is the problem of fluid solid interaction,

which mainly happen in structures immersed in viscous media such as wind turbine blades [1–3]

and pipe conveying fluids [182]. In the case of viscoelastic materials in non-Newtonian fluid

media, the internal and external dissipation mechanisms can be modeled by fractional constitutive

equations. Thus, the corresponding governing equation takes the general form of(
∂2

∂t2 + Lq
t,x

)
u(t,x) = f(t,x), t,x ∈ Ω, (1.12)

where u(t,x) : Ω → R denotes the displacement, Ω is the physical domain, Lq
t,x is a (nonlinear)

operator with set of parameters q, and f(t,x) is the external force, which includes the dissipative

coupling terms. Extensive derivation and investigation of nonlinear vibration of a viscoelastic

cantilever beam is given in the following chapters.

1.1.2 Anomalous Diffusion

Several experimental observations have revealed that the standard diffusion process, in which the

mean square displacement of the particles is proportional to elapsed time, is only a subset of

a lager classification of phenomena, called anomalous diffusion. In this case, the mean square

displacement changes nonlinearly in time (see Fig. 1.3) and thus, the anomalous diffusive process

6



Figure 1.3: Normal and anomalous diffusion process: the means square displacement of particles
in a diffusive process is nonlinearly proportional to time, i.e. r2 ∝ Dτα. α = 1: standard diffusion
(blue line), α > 1: super-diffusion (red curve), and α < 1: sub-diffusion (green curve).

is described by a power law, i.e. r2 ∝ Dτα, where D is the diffusion coefficient and τ is the elapsed

time. The normal diffusion process takes place for α = 1. If α > 1 (α < 1), the rate of diffusion

increases (decreases), resulting in a super- (sub-) diffusive process (see e.g., [91] and references

therein). For such anomalous processes, the non-Markovian and/or non-Gaussian jump distribution

of the particles, is modeled by continuous time random walk (CTRW), where the continuous limit

for such models leads to a temporal and/or spatial fractional diffusion equation [89, 123, 135],

given as follows. Let Ω = [0,T] × [a1, b1] × [a2, b2] × · · · × [ad, bd] be the computational domain

for some positive integer d, and u(t,x;q) : Q ×Ω→ R, where q is the vector of model parameters

containing the fractional indices and model coefficients. Then, the linear two-sided FPDE, subject

to Dirichlet initial and boundary conditions, takes the form

0D
α
t u(t,x;q) −

d∑
j=1

k j

[
aj
D
β j
x j + x j

D
β j
b j

]
u(t,x;q) = f (t,x;q), (1.13)

in whichD is a fractional operator, α ∈ (0,1), β j ∈ (1,2), k j are real positive constant coefficients.

1.1.3 Fractional Calculus: Definitions and Useful Properties

We briefly give definition of fractional integral and derivative of different senses and some of their

useful properties. Let ξ ∈ [−1,1]. Then, the left-sided and right-sided Riemann-Liouville integral

7



of order σ, n − 1 < σ ≤ n, n ∈ N, are defined (see e.g., [122, 134]) respectively as

(RL
−1I

σ
ξ )u(ξ) =

1
Γ(σ)

∫ ξ

−1

u(s)ds
(ξ − s)n−σ

, ξ > −1, (1.14)

(RL
ξI

σ
1 )u(ξ) =

1
Γ(σ)

∫ 1

ξ

u(s)ds
(s − ξ)n−σ

, ξ < 1. (1.15)

The corresponding left-sided and right-sided fractional derivative of order σ are then defined, as

(RL
−1D

σ
ξ )u(ξ) =

dn

dξn (
RL
−1I

n−σ
ξ u)(ξ) =

1
Γ(n − σ)

dn

dξn

∫ ξ

−1

u(s)ds
(ξ − s)σ+1−n

, ξ > −1, (1.16)

(RL
ξD

σ
1 )u(ξ) =

(−d)n

dξn (
RL
ξI

n−σ
1 u)(ξ) =

1
Γ(n − σ)

(−d)n

dξn

∫ 1

ξ

u(s)ds
(s − ξ)σ+1−n

, ξ < 1, (1.17)

respectively. We recall a useful property of the Riemann-Liouville fractional derivatives [134].

Assume that 0 < p < 1 and 0 < q < 1 and g(xL) = 0 x > xL , then

xL
D

p+q
x g(x) =

(
xL
D

p
x xL
D

q
x g

)
(x) =

(
xL
D

q
x xL
D

p
x g

)
(x). (1.18)

An alternative approach in defining the fractional derivatives is to begin with the left-sided Caputo

derivatives of order σ, n − 1 < σ ≤ n, n ∈ N, defined, as

( C
−1D

σ
ξ u)(ξ) = (

−1I
n−σ
ξ

dnu
dξn )(ξ) =

1
Γ(n − σ)

∫ ξ

−1

u(n)(s)ds
(ξ − s)σ+1−n

, ξ > −1, (1.19)

(CξD
σ
1 u)(ξ) = (ξI

n−σ
1

dnu
dξn )(ξ) =

1
Γ(n − σ)

∫ 1

ξ

u(n)(s)ds
(s − ξ)σ+1−n

, ξ < 1. (1.20)

By performing an affine mapping from the standard domain [−1,1] to the interval t ∈ [a, b], we

obtain

RL
aD

σ
t u = (

2
b − a

)σ(RL
−1D

σ
ξ u)(ξ), C

aD
σ
t u = (

2
b − a

)σ( C
−1D

σ
ξ u)(ξ). (1.21)

Hence, in developing numerical methods, we can perform the operations in the standard domain

only once for any given σ and efficiently utilize them on any arbitrary interval without resorting

to repeating the calculations. Moreover, the corresponding relationship between the Riemann-

Liouville and Caputo fractional derivatives in [a, b] for any σ ∈ (0,1) is given by

(RL
aD

σ
t u)(t) =

u(a)
Γ(1 − σ)(t − a)σ

+ (CaD
σ
t u)(t). (1.22)
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1.2 Data-Driven Fractional Modeling

The inherent non-local nature of fractional operators makes them excellent choice in accurately

predicting the non-locality and memory effect in anomalous behavior of complex physical systems.

The exponent of singular power-law kernel in these operators defines the fractional derivative order

or fractional index, which is an essential parameter in characterizing the underlying anomaly (e.g.,

the region of sub-/super-diffusion in an anomalous transport process is characterized by the orders

of fractional derivatives, see Fig. 1.3). The values of fractional orders are introduced as new set

of parameters in physical systems modeled by fractional operators, and their values are strongly

tied to the experimental data in practice. The sensitivity assessment of fractional models with

respect to the fractional indecis can build a bridge between experiments and mathematical models

to gear observable data via proper optimization techniques. The sensitivity analysis provides

a machine learning tool which exploit given experimental/synthetic data to iteratively estimate

the parameters and thus construct the fractional model. However, the inherent randomness in

measured experimental data, lack of information about true values of parameters (incomplete data),

significant approximations as part of assumptions upon which the model is built, and random nature

of quantities being modeled pervade uncertainty in the corresponding mathematical formulations.

This renders the model parameters, including the fractional indices, random and thus, the fractional

model stochastic, in which the novelty is to introduce the order of fractional derivative as random

variable.

We consider stochastic fractional PDEs and develop the following useful mathematical and

computational frameworks for them. They are mainly listed as follows (see also Fig. 1.4) and are

briefly introduced afterwards:

• Distributed-Order fractional differential equations

• Fractional sensitivity analysis with application to fractional model construction

• Forward uncertainty quantification of stochastic fractional PDEs subject to additive noise
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● Proper Numerical Method

● Fractional Sensitivity Equation Method
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Τ𝜕 𝜕𝛼 FPDE
Τ𝜕 𝜕𝛽 FPDE
Τ𝜕 𝜕𝑘 FPDE

FPDE
+

● Model Error

● Iterative Parameter Estimation

Uncertainty Quantification

● Fractional Derivative with Random 

Orders

● Forward Uncertainty Propagation

● Operator-Based UQ

● Probabilistic Collocation Method

● Smolyak Sparse Grids

Distributed-Order Operators
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● Expectation of Random Fractional 

Derivatives

● Distributed Sobolev Spaces

● PG Spectral Method
● Spectral Collocation Method

● Pseudo-Spectral Method

Data-Driven Fractional Modeling

● Multi-Rate Physical Phenomena

Figure 1.4: Schematic outline of this thesis with main focus on developing proper data-driven com-
putational frameworks for stochastic fractional PDEs. Distributed-Order operators are considered
as an extension of fractional operators to the case where the kernel is comprised of a distribution of
power-laws; also as expectation of fractional derivative with random orders. Fractional sensitivity
analysis provides a tool to study the sensitivity of model output with respect to fractional derivative
orders; thus, leads to a machine learning tool to construct the fractional models from available
sets of data. They also introduce new type of operators with logarithmic-power law kernels in this
context. The randomness of fractional orders is propagated to model output via an operator-based
UQ framework. Fast numerical methods with spectral rate of convergence are developed to back
up the simulations in each case, where the stability and convergence are mathematically proven in
the discrete function spaces.

• Application to nonlinear vibration of viscoelastic cantilever beams

The extensive discussion on developing and implementation of each framework is given later in the

corresponding chapters.

1.2.1 Distributed Order Differential Equations

There is a rapidly growing interest in the use of fractional derivatives in the construction of

mathematical models, which contain distributed order terms of the form∫ α2

α1
φ(α) aD

α
t u(t)dα = f (t), t > a, (1.23)

in the field of uncertainty quantification as the inherent uncertainty of experimental data can be

directly incorporated into the differential operators. In this setting, distributed order derivative

is considered as the expectation of fractional derivate of random order α(ω) with respect to the
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probability density function φ(α), where ω is the notion of randomness in the parameter α. This

provides a new operator in assessing the uncertainties associated with the randomness of derivative

order in the context of stochastic fractional modeling; see [6, 12, 47, 87, 114, 154] for some work

on numerical methods. We note that while numerical treatment of fractional operator are costly

due to non-local kernel, the distributed order operators will excessively increase the computational

expense by requiring additional discretization of integral in the distributed order. Most of the

numerical studies have followed a two-stages approach, where in the first stage, the distributed

order differentiation term was approximated using a quadrature rule, and in the second stage, a

suitable multi-term numerical method was employed. We develop two spectrally-accurate schemes

to treat linear/nonlinear distributed order fractional differential equations, which are constructed

based on the recently developed spectral theory for fractional Sturm-Liouville problems in [186].

The list of main contributions are listed below:

• Introducing distributed sobolev spaces for the first time in the literature

• Developing spectrally/exponentially accurate quadrature rule for distributed-order derivatives

• Developing Petrov-Galerking spectral method and fractional collocation method

• Performing stability and error analysis of PG scheme

• Extension to temporally-distributed order PDEs

1.2.2 Fractional Sensitivity Equation Method: Application to Model Construction

We extend the continuum derivative technique to develop a fractional sensitivity equation method

(FSEM) in the context of fractional partial differential equations (FPDEs). We then, construct an

iterative algorithm in order to exploit the obtained sensitivity field in parameter estimation. In this

setting, we introduce a new fractional operator, associated with the logarithmic-power law kernel,

which to best of our knowledge has been presented for the first time here in the context of fractional

sensitivity analysis. The key property of derived fractional sensitivity equations (FSEs) is that they

11



preserve the structure of original FPDE. Thus, similar discretization scheme and forward solver can

be readily applied with minimal required changes. By extending the mathematical framework in

[145] and accommodating extra required regularity in the underlying function spaces, we formulate

a numerical scheme in solving coupled system of FPDE and adjoint FSEs. We prove that the

coupled system is mathematically well-posed, further develop a fast solver to efficiently solve

the equations and perform the stability and error analysis of the proposed numerical scheme.

Moreover, we build our machine learning tool based on the developed FSEM. We estimate the

fractional indices and thus, construct the fractional model from available experimental data in an

inverse problem setting. The optimization problem is formulated by defining objective functions

as two types of model error that measures the difference in computed output/input of fractional

model with true output/input in an L2-norm sense. The parameters are obtained by minimizing

the errors via a gradient-based minimizer, which uses the developed FSEM. We note that generally

the inverse problem of parameter estimation is an ill-posed problem [25]. By numerical evaluation

of introduced model errors on a coarse grid over the parameter space, we show that there exists a

unique minimum in the objective function, which leads to unique values of fractional orders α and

β. The list of main contributions are listed below:

• Sensitivity analysis of fractional models with respect to derivative orders

• A new fractional operator with logarithmic-power law kernel

• Accommodating extra regularity in function spaces due to new operator

• PG spectral method to solve coupled system of FPDE and adjoint FSEs

• Model errors as objective functions in parameter estimation

• Fractional model construction
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1.2.3 Operator Based Uncertainty Quantification (UQ) in Stochastic FPDEs

In order to assess the uncertainty in output of fractional model associated with the randomness

of model parameters including fractional order derivatives, we develop an operator-based com-

putational forward UQ framework in the context of stochastic fractional PDEs. Assuming the

mathematical model under consideration is well-posed and accounts in principle for all features of

underlying phenomena, we identify three main sources of uncertainty, i) parametric uncertainty,

including fractional indices as new set of random parameters appeared in the operator, ii) addi-

tive noises, which incorporates all intrinsic/extrinsic unknown forcing sources as lumped random

inputs, and iii) numerical approximations (see also Fig. 1.5). Unlike the classical approach in

modeling random inputs, which considers them as some idealized uncorrelated processes (white

noises), we model the random inputs as more/fully correlated random processes (colored noises),

and parametrize them via Karhunen-Loève (KL) expansion by finite-dimensional noise assump-

tion. This yields the problem in finite dimensional random space. To propagate the parametric

uncertainties into the system response, we employ Monte Carlo sampling (MCS) and a high-order

probabilistic collocation methods (PCM). MCS enjoys from being embarrassingly parallelizable

and can be implement quite readily on high dimensional random spaces but has slow rate of conver-

gence. PCM uses the idea of interpolation/collocation in the random spaces and limits the sample

points to an efficient subset of random space. Compare to MCS, PCM has the benefit of easily

sampling at nodal points and the rate of convergence is relatively higher. In each simulation of

stochastic model, we need to solve the deterministic counterpart in the physical domain, for which

we formulate a fast and stable forward solver by developing a high-order Petrov-Galerkin (PG)

spectral method. The list of main contributions are listed below:

• Rendering the fractional derivatives as random operator

• Operator-Based UQ framework

• Probabilistic collocation method and Monte Carlo simulation

13



Experimental Observations

with Inherent Randomness

Stochastic

Mathematical Modeling

Numerical 

Simulations

QoI

Uncertainty Propagation 

to Quantity of Interest

E

M S

Figure 1.5: Uncertainty propagation toward the model output quantity of interest due to inherent
randomness of measurements, incomplete sets of data, significant approximation in models, and
numerical errors. The gray clouds show the associate uncertainties with each source and arrows
show flow of information between them. Experimental observations feed into the construction of
form of mathematical model and estimation of its parameters. The mathematical models are then
numerically solved and the simulation results are verified and validated again by the experimental
observation, making the two-way flow back to the experiments.

• PG spectral method as deterministic forward solver

1.3 Single/Multi-Domain Numerical Methods

The analytical solution of fractional models are mainly limited to very specific cases, and thus,

in almost all practical problems, we need to formulate a proper numerical scheme. A key challenge

in developing such scheme, however, is the inherent non-locality of fractional operators, which

imposes extra computational costs. This becomes even more important as data-infused inverse

problem of model construction and uncertainty frameworks usually instruct several numerical

simulation of fractionalmodels, predominating the urge of efficient numericalmethods for fractional

differential equations (FDEs). The immanent power-law singularity of the kernel, which essentially

transmits to the output of model, also demand a numerical method that can capture the existing

singularity of solution while yielding a fast, accurate, and stable scheme. Over the past two

decades, an extensive amount of work has been done developing numerical schemes for fractional

differential equations such as variational iteration method [71], homotopy perturbation method

[162], Adomian’s decomposition method [73], homotopy analysis method [68] and collocation
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method [136]. While most of the attention has been devoted to the finite difference methods

(FDMs), [33, 48, 65, 70, 93, 103, 111, 112, 121, 148, 158, 159, 167, 172, 192, 196] with fixed

algebraic accuracy and significant memory allocation and history calculation, less effort has been

put in developing global methods such as spectral schemes for discretizing FPDEs, see e.g.,

[28, 39, 83, 84, 99, 100, 103, 136, 158, 170].

1.3.1 Petrov-Galerkin Spectral Method and Spectral Collocation Method

Two new spectral theories on fractional Sturm-Liouville problems (FSLPs) have been recently

developed by Zayernouri et al. in [183, 186]. This approach fractionalizes the well-known

theory of Sturm-Liouville eigen-problems, where the explicit eigenfunctions of FSLPs are ana-

lytically obtained in terms of Jacobi poly-fractonomials. Recently, in [185, 187, 188], Jacobi

poly-fractonomials are successfully employed in developing a series of high-order and efficient

Petrov-Galerkin spectral and discontinuous spectral element methods of Galerkin and Petrov-

Galerkin projection type for fractional ODEs.

We develop different high-order accurate spectral schemes to numerically solve linear/non-linear

single-order and distributed order FPDEs. Petrov-Galerkin (PG) spectral methods approximate the

solution by using a modal expansion in the weak form of problem, where the modes are called

basis/trial functions and weak form is obtained via inner production by proper test functions. We

develop a PG spectral method by following [186] and employing Jacobi poly-fractonomials of first

and second kind as temporal basis and test functions, given in the standard domain [−1,1] as

(1)P µ
n (x) = (1 + x)µP−µ,+µn−1 (x), n = 1,2, · · · (1.24)

(2)P µ
k (x) = (1 − x)µPµ,−µk−1 (x), k = 1,2, · · · (1.25)

respectively, where µ > 0, and P−µ,µn−1 (x) and Pµ,−µk−1 (x) denote Jacobi polynomials. We see that

they have the property to vanish at the left and right boundaries, respectively, i.e. (1)P µ
n (−1) =
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(2)P µ
k (1) = 0. We later prove that their RL-fractional derivatives preserve structure, i.e.

RL
xD

σ
1
(2)Pµn (x) =

Γ(n + µ)
Γ(n + µ − σ)

(2)P µ−σ
n (x), (1.26)

RL
−1D

σ
x
(1)Pµn (x) =

Γ(n + µ)
Γ(n + µ − σ)

(1)P µ−σ
n (x)

where σ > 0. Extensive properties of Jacobi poly-fractonomials can be found in [186]. We also

note that Jacobi poly-fractonomials are non-polynomial functions, comprised of a fractional part

multiplied by a polynomial, where the fractional exponent in the former can play the role of a

tunning knob to accurately capture the solution singularity, while the latter approximates smooth

part of solution. In developing PG spectral method for problems involving derivatives in space

direction, we additionally consider Legendre polynomials as spatial basis/test functions. While the

nonlocal nature of the fractional operators generally leads to non-symmetric full linear system, we

symmetrize the corresponding mass/stiffness matrices in our method by embedding smart choices

of coefficients in the constructions of function spaces. This further helps us formulate a fast

solver to obtain the solution of resulting linear system. The excellence of developed PG method

become more pronounced when used in inverse problem of data-driven model construction and

also uncertainty quantification frameworks. The numerical analysis and computer implementation

of each PG spectral method is discussed in detail in the corresponding chapter.

Spectral methods generally lead to high arithmetic complexity in treating nonlinearity due to

cross terms of modal expansion. For fast treatment of nonlinear and multi-term fractional PDEs,

a new spectral method, called fractional spectral collocation method, is developed in [189]. This

new class of collocation schemes introduces a new family of fractional Lagrange interpolants,

mimicking the structure of Jacobi poly-fractonomials. They are given as

hµj (ξ) =
( ξ − x1

x j − x1

) µ N∏
k=1
k, j

( ξ − xk
x j − xk

)
, j = 2,3, · · · ,N, (1.27)

where x j’s are the interpolation points and µ is the parameter to be adjusted to capture solution

singularity. We note that fractional Lagrange interpolants satisfy the Kronecker delta property, i.e.,

hµj (ξk ) = δ j k , at interpolation points, however they vary as a poly-fractonomial between interpola-
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tion points. This makes it possible to efficiently treat the algebraic and differential nonlinearities

such as in nonlinear reaction diffusion and Burger’s equations. We extend the existing setting in

[189] to develop a spectral collocation method for distributed-order differential equations. We

properly modify the number of interpolation points in construction of interpolants to accommodate

enough regularity in the approximation solution and derive the fractional differentiation matrices

for different ranges of derivative order.

To relax the required high regularity of solution in the strong form of problem, yet preserving

spectral rate of convergence, we combine the two modal and nodal expansion methods, i.e. PG

spectral and collocation methods and thus, develop a pseudo-spectral method. We construct

two separate sets of fractional Lagrange interpolants of first and second kind as basis and test

functions, respectively, and plug into the weak form of the problem to obtain the corresponding

weak distributed differentiation matrices. We further study the effect of distribution function

and interpolation points on the condition number of the resulting linear system and also design

distributed pre-conditioners, based on the distribution function. We show the better conditioning

of the resulting linear system compare to the case that we solely use fractional spectral collocation

method, which employs similar expansions but in the strong form of problem.

1.3.2 Petrov-Galerkin Spectral Element Method

Almost all numerical time integrators that march in time (e.g. finite difference method) instruct

solving the resulting boundary value problem in each time step. The overall convergence of time

integration and computational cost are then bounded by the spatial solver, requiring accurate and fast

schemes in spatial directions. The existing complexity in geometry of spatial domain over which

high-dimensional boundary value problems are defined usually imposes specific regularity/property

over the underlying function spaces, which makes expansion over single domain approximation

impractical to use. A common example is the effect of shock singularities in three dimensional fluid

flows. Such complexity can be overcome via domain decomposition into sub-domains with simpler

geometries, and thus less regularities, where the use of high-order accurate methods such as spectral
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elementmethod (SEM) is feasible. The SEMdiscretization has the benefit of domain decomposition

into non-overlapping elements, where high-order approximations within each element yield a

fast rate of convergence even in the cases of non-smooth and/or rapid transients in the solution.

Therefore, a tractable computational cost of themethod can be achieved by a successful combination

of h-refinement, where the solution is rough, and p-refinement, where the solution is smooth. We

note that the approximate solution inside each element in SEM is expanded using locally defined

basis functions. This locality becomes a serious challenge in developing SEM for fractional

operators as their non-local kernel requires a globally definition of solution approximation. This

leads to construction of extra history matrices, which do not happen to be needed in integer-order

problems. We develop a new high-order C0-continuous Petrov–Galerkin spectral element method

for a one-dimensional space-fractional Helmholtz equation of fractional order (1 < α ≤ 2), subject

to homogeneous boundary conditions. We can use the standard polynomial modal basis functions

in the weak formulation of problem by transferring the fractional portion of derivative order onto

some proper non-polynomial test functions. We compute all elemental matrices, and then formulate

a new non-local assembling procedure to construct the global linear system from the elemental

mass, stiffness, and history matrices. We show that the proposed schemes can accurately capture

boundary and interior singularities of solution by minimal number of domain decompositions.
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CHAPTER 2

A PETROV-GALERKIN SPECTRAL ELEMENT METHOD FOR FRACTIONAL
ELLIPTIC PROBLEMS

2.1 Background

A number of local numerical methods, prominently finite difference methods (FDMs), have

been developed for solving fractional partial differential equations (FPDEs) [33, 48, 65, 70, 93, 103,

111, 112, 121, 148, 158, 159, 167, 172, 191, 196]. Fix and Roop [55] developed the first theoretical

framework for the least-square finite element method (FEM) approximation of a fractional-order

differential equation, where optimal error estimates are proven for piecewise linear elements.

However, Roop [139] later showed that the main hurdle to overcome in the FEM is the non-local

nature of the fractional operator, which leads to large dense matrices; he showed that even the

construction of such matrices presents difficulties. Ervin and Roop [52] presented a theoretical

framework for the variational solution of the steady state fractional advection dispersion equation

based on FEM and proved the existence and uniqueness of the results. Jin et al. [80] proved

the existence and uniqueness of a weak solution to the space-fractional parabolic equation using

FEM; they showed an enhanced regularity of the solution and derived the error estimate for

both semidiscrete and fully discrete solution. Well-posedness, regularity of the weak solution,

stability of the discrete variational formulation and error estimate of the FEM approximation were

investigated for fractional elliptic problems in [79]. Wang and Yang [168] generalized the analysis

to the case of fractional elliptic problems with variable coefficient, analyzed the regularity of

the solution in HÜolder spaces, and established the well-posedness of proposed Petrov-Galerkin

formulation. Wang and Zhang [170] developed a high-accuracy preserving spectral Galerkin

method for the Dirichlet boundary-value problem of one-sided variable-coefficient conservative

fractional diffusion equations. Wang et al. [171] later used the discontinuous Petrov-Galerkin

framework to develop a Petrov-Galerkin FEM for a class of variable-coefficient conservative one-
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dimensional FPDEs, where they also proved the error estimates of the scheme. Moreover, Wang et

al. [169] developed an indirect FEM for the Dirichlet boundary-value problems of Caputo FPDEs

showing the reduction in the computational work for numerical solution and memory requirements.

There has been recently more attention and effort put on developing global and high-order

approximations, which are capable of efficiently capturing the inherent non-local effects. A Cheby-

shev spectral element method (SEM) for fractional-order transport was adopted by Hanert [67] and

later on, the idea of least-square FEM was extended to SEM by Carella [35]. More recently, Deng

and Hesthevan [44] and Xu and Hesthaven [178] developed local discontinuous Galerkin (DG)

methods for solving space-fractional diffusion and convection-diffusion problems.

Two new spectral theories on fractional and tempered fractional Sturm-Liouville problems (TF-

SLPs) have been developed by Zayernouri et al. in [183, 186]. This approach first fractionalizes

and then tempers the well-known theory of Sturm-Liouville eigen-problems. The explicit eigen-

functions of TFSLPs are analytically obtained in terms of tempered Jacobi poly-fractonomials.

These poly-fractonomials have been successfully employed in developing a series of high-order

and efficient Petrov-Galerkin spectral and discontinuous spectral element methods [184, 187, 190].

In [188], Zayernouri and Karniadakis developed a spectral and spectral element method for FODEs

with an exponential accuracy. They also developed a highly accurate discontinuous SEM for time-

and space- fractional advection equation in [187]. Dehghan et al. [42] considered Legendre SEM

in space and FDM in time for solving time-fractional sub-diffusion equation. Su [157] provided a

parallel spectral element method for the fractional Lorenz system and a comparison of the method

with FEM and FDM.

The SEMdiscretization has the benefit of domain decomposition into non-overlapping elements,

which potentially provide a geometrical flexibility, especially for adaptivity as well as complex

domains. Moreover, high-order approximations within each element yield a fast rate of convergence

even in the cases of non-smooth and/or rapid transients in the solution. Therefore, a tractable

computational cost of the method can be achieved by a successful combination of h-refinement,

where the solution is rough, and p-refinement, where the solution is smooth.
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In this chapter, we consider the one-dimensional space-fractional Helmholtz equation of order

α ∈ (1,2], subject to homogeneous boundary conditions. We formulate a weak form, in which

the fractional portion µ ∈ (0,1] is transfered onto some proper fractional order test functions

via integration-by-parts. This setting enables us to employ the standard polynomial modal basis

functions, used in SEM [81]. Subsequently, we develop a new C 0-continuous Petrov-Galerkin

SEM, following the recent spectral theory of fractional Sturm-Liouville problem, where the test

functions are of Jacobi poly-fractonomials of second kind [186]. We investigate two distinct

choices of basis/test functions: i) local basis/test functions, and ii) local basis with global test

functions, which enables the construction of elemental mass/stiffness matrices in the standard

domain [−1,1]. We explicitly compute the elemental stiffness matrices using the orthogonality

of Jacobi polynomials. Moreover, we efficiently obtain the non-local (history) stiffness matrices,

in which the non-locality is presented analytically. On one hand, we formulate a new non-local

assembling procedure in order to construct the global linear system from the local (elemental)

mass/stiffness matrices and history matrices. On the other hand, we formulate a procedure for non-

local scattering to obtain the elemental expansion coefficients from the global degrees of freedom.

We demonstrate the efficiency of the Petrov-Galerkin methods and show that the choice of local

bases/test functions leads to a better accuracy and conditioning. Moreover, for uniform grids, we

compute the history matrices off-line. The stored history matrices can be retrieved later in the

construction of the global linear system. We show the great improvement in the computational

cost by performing the retrieval procedure compared to on-line computation. We also introduce a

non-uniform kernel-based grid generation in addition to geometrically progressive grid generation

approaches. Furthermore, we investigate the performance of the developed schemes by considering

two cases of smooth and singular solutions, where the singularity can occur at boundary points

or the interior domain. Finally, we study the effect of history fading via a systematic analysis,

where we consider the history up to some specific element and let the rest fade. This results in less

computational cost, while we show that the accuracy is still preserved. The main contributions of

this work are listed in the following:
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• Development of a new fast and accurate C 0-continuous Petrov-Galerkin spectral element

method, employing local basis/test functions, where the test functions are Jacobi poly-

fractonomials.

• Reducing the number of historymatrix calculation from Nel (Nel−1)
2 to (Nel−1) for a uniformly

partitioned domain.

• Analytical expressions of non-local effects in uniform grids leading to fast computation of

the history matrices.

• A new procedure for the assembly of the global linear system.

• Performing off-line computation of history matrices and on-line retrieval of the stored ma-

trices.

• Non-uniform “kernel-based" grid generation for resolving steep gradients and singularities.

The organization of this chapter is as follows: section 2.2 provides problem definition, derivation

of the weak form and expressions for the local basis and local/global test functions. In section

2.3, we present a Petrov-Galerkin method, employing the local basis/test functions in addition to

formulating the non-local assembling and non-local scattering procedures, followed by a discussion

on how to compute the history matrices off-line. We also present the two non-uniform grid

generation approaches. In section 2.4, we present a Petrov-Galerkin method, employing the local

basis with global test functions. In section 2.5, we demonstrate the computational efficiency of

the two proposed schemes by considering several numerical examples of smooth and singular

solutions. Finally, we perform the off-line computation and retrieval procedure of history matrices

and a systematic history fading analysis.
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2.2 Definitions

2.2.1 Problem Definition

We study the following fractional Helmholtz equation of order α = 1 + µ, µ ∈ (0,1]:

RL
0D

α
x u(x) − λu(x) = f (x), ∀x ∈ Ω (2.1)

u(0) = u(L) = 0, ∀x ∈ ∂Ω, (2.2)

where Ω = [0, L]. We multiply both sides of (2.1) by some proper test function v(x) and transfer

the fractional portion, µ, of derivative onto the test function by taking the fractional integration-

by-parts, following the proof of Lemma 2.4 in [87]. Therefore, we obtain the following bilinear

form:

a(u, v) = l(v), (2.3)

in which

a(u, v) =
(du

dx
, RL

xD
µ
L v

)
Ω
− λ

(
u , v

)
Ω
, (2.4)

l(v) =
(

f , v
)
Ω
, (2.5)

where (· , ·)Ω denotes the usual L2 inner product.

2.2.2 Local Basis Functions

We partition the computational domain into Nel non-overlapping elements Ωe = [xe−1, xe] such

that Ω = ∪Nel
e=1Ωe, see Fig. 2.1. Therefore, the bilinear form (2.4) can be written as

a(u, v) ≈ a(uδ, vδ) =
Nel∑
e=1

(du(e)N
dx

, RL
xD

µ
L vδ

)
Ωe
− λ

Nel∑
e=1

(
u(e)N , vδ

)
Ωe
, (2.6)

where u(e)N is the approximation solution in each element, which is given by

u(e)N (x) =
P∑

p=0
û(e)p ψp(x), x ∈ Ωe, (2.7)
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Figure 2.1: Domain partitioning

using the basis functions ψp(x)’s in the element. Thus, the approximated solution over the whole

domain can be written as

u ≈ uδ(x) =
Nel∑
e=1

P∑
p=0

û(e)p ψp(x). (2.8)

The modal bases ψp(x) are defined in the standard (reference) domain [-1,1] as:

ψp(x(ζ)) =



1−ζ
2 , p = 0,

(
1−ζ

2 )(
1+ζ

2 )P
1,1
p−1(ζ), p = 1,2, · · · ,P − 1,

1+ζ
2 , p = P.

(2.9)

The choice of basis functions is the same as in standard spectral element methods for integer-order

PDEs (see e.g., [81]).

2.2.3 Test Functions: Local vs. Global

We choose two types of test functions vδ: i) local test functions, and ii) global test functions, given

for ε = 1,2, · · · ,Nel as follows:

v local
k (x) = vεk (x) =


(2)Pµk+1(x

ε), ∀x ∈ Ωε,

0, otherwise,
, k = 0,1, · · · ,P, (2.10)
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in which (2)Pµk+1(x
ε) represents the Jacobi poly-fractonomial of second kind, defined in the

corresponding intervals Ωε = [xε−1, xε]; and

v
global
k (x) = vεk (x) =


(2)Pµk+1(x

1∼ε), ∀x ∈ [0, xε],

0, otherwise
, k = 0,1, · · · ,P, (2.11)

where (2)Pµk+1(x
1∼ε) represents the Jacobi poly-fractonomial of second kind, defined in the corre-

sponding intervals [0, xε]. The structure of Jacobi poly-fractonomial are given in (1.25). It should

be noted that for each element ε, the corresponding local test function has nonzero value only in

the element and vanishes elsewhere, unlike the corresponding global test function, which vanishes

only where x > xε.

2.3 Petrov-Galerkin Method with Local Test Functions

We develop the Petrov-Galerkin scheme by substituting (2.7) and (2.10) into (2.6) to obtain:
Nel∑
e=1

( P∑
p=0

û(e)p
dψp(x)

dx
, RL

xD
µ
L vεk (x)

)
Ωe
− λ

Nel∑
e=1

( P∑
p=0

û(e)p ψp(x) , vεk (x)
)
Ωe

=
(

f , vεk (x)
)
Ω
, ε = 1,2, · · · ,Nel, k = 0,1, · · · ,P. (2.12)

Since the local test function vanishes ∀x ∈ Ωe , Ωε, we have

λ

Nel∑
e=1

( P∑
p=0

û(e)p ψp(x) , vεk (x)
)
Ωe
= λ

( P∑
p=0

û(ε)p ψp(x) , vεk (x)
)
Ωε
,(

f , vεk (x)
)
Ω
=

(
f , vεk (x)

)
Ωε
.

Moreover, for every ε, the right-sided fractional derivative,

RL
xD

µ
L vεk (x) =

−1
Γ(1 − µ)

d
dx

∫ L

x

vεk (s)

(s − x)µ
ds, x ∈ Ωe,

is taken from x ∈ Ωe to x = L, where e = 1,2, · · · ,Nel through the summation over the elements

and s varies from x ∈ Ωe to L. The local test function vanishes ∀x ∈ Ωe , Ωε, thus if e > ε

(x > xε, see Fig. 2.2 top), then

RL
xD

µ
L vεk (x) =

−1
Γ(1 − µ)

d
dx

∫ L

x

0
(s − x)µ

ds = 0, (2.13)
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Figure 2.2: Location of the (dummy) element number, e, with respect to the current element, ε. If
e > ε, (top), then RL

xD
µ
L vεk (x) = 0. If e = ε, (middle), then RL

xD
µ
L vεk (x) =

RL
xD

µ
xε

[
(2)Pµk+1(x)

]
.

If e < ε, (bottom), then RL
xD

µ
L vεk (x) = H(ε)k (x).

and if e < ε (x < xε−1, see Fig. 2.2 bottom), then

RL
xD

µ
L vεk (x) =

−1
Γ(1 − µ)

d
dx

∫ xε

xε−1

(2)Pµk+1(s)

(s − x)µ
ds ≡ H(ε)k (x), (2.14)

and if e = ε, (xε−1 < x < xε, see Fig. 2.2 middle), then

RL
xD

µ
L vεk (x) =

−1
Γ(1 − µ)

d
dx

∫ xε

x

(2)Pµk+1(s)

(s − x)µ
ds = RL

xD
µ
xε

[
(2)Pµk+1(x)

]
. (2.15)

Hence, for ε = 1,2, · · · ,Nel and k = 0,1, · · · ,P,

RL
xD

µ
L vεk (x) =



0, ∀x ∈ Ωe, e > ε,

RL
xD

µ
xε

[
(2)Pµk+1(x)

]
, ∀x ∈ Ωe, e = ε,

H(ε)k (x), ∀x ∈ Ωe, e < ε.

(2.16)

Therefore, the bilinear form (2.12) can be written as

ε−1∑
e=1

P∑
p=0

û(e)p

(dψp(x)
dx

, H(ε)k (x)
)
Ωe
+

P∑
p=0

û(ε)p

(dψp(x)
dx

, RL
xD

µ
xε

[
(2)Pµk+1(x)

] )
Ωε

−λ

P∑
p=0

û(ε)p

(
ψp(x) , (2)P

µ
k+1(x)

)
Ωε
=

(
f , (2)Pµk+1(x)

)
Ωε
, (2.17)
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and the weak form is obtained as

ε−1∑
e=1

P∑
p=0

û(e)p Ŝ(e,ε)kp +
P∑

p=0
û(ε)p

[
S(ε)kp − λ M(ε)kp

]
= f(ε)k ,


ε = 1,2, · · · ,Nel,

k = 0,1, · · · ,P,
(2.18)

in which

Ŝ(e,ε)kp =
(dψp

dx
, H(ε)k (x)

)
Ωe
, e = 1,2, · · · , ε − 1, (2.19)

S(ε)kp =
(dψp

dx
, RL

xD
µ
xε

[
(2)Pµk+1(x)

] )
Ωε
,

M(ε)kp =
(
ψp(x) , (2)P

µ
k+1(x)

)
Ωε
,

f(ε)k =
(

f , (2)Pµk+1(x)
)
Ωε
,

are respectively the history, local stiffness, local mass matrices, and local force vector.

2.3.1 Elemental (Local) Operations: the construction of local matrices S(ε) and M(ε), and
vector f(ε)

Here, we provide the analytically obtained expressions of the local stiffness matrix as well as

the proper quadrature rules to construct the local mass matrix and force vector for all elements

ε = 1,2, · · · ,Nel .

Elemental (Local) Stiffness Matrix S(ε) : given the structure of the basis functions and using

(1.26), we first obtain the first (p = 0) and last column (p = P) of the the local stiffness matrix S(ε),

and then, the rest of entries corresponding to the interior modes. Hence,

S(ε)k0 =

∫ xε

xε−1

dψ0
dx

RL
xD

µ
xε

[
(2)Pµk+1(x)

]
dx, (2.20)

= Jac(ε, µ)
∫ 1

−1
(
−1
2
)(

dζ
dx
)
Γ[1 + k + µ]
Γ[1 + k]

Pk (ζ)(
dx
dζ
)dζ,

= −Jac(ε, µ)
Γ(1 + k + µ)
2 Γ(1 + k)

∫ 1

−1
Pk (ζ)dζ,

= −Jac(ε, µ)
Γ(1 + k + µ)
Γ(1 + k)

δk,0, (by the orthogonality)
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in which the Jacobian constant, associated with the element ε and the fractional order µ, is

Jac(ε, µ) = ( 2
xε−xε−1

)µ. Thus, the first column of the local stiffness matrix is obtained as

S(ε)k0 = −(
2

xε − xε−1
)µ
Γ(1 + k + µ)
Γ(1 + k)

δk,0, k = 0,1, · · · ,P. (2.21)

Similarly, we can obtain the last column of the local stiffness matrix S(ε)kP as

S(ε)kP = (
2

xε − xε−1
)µ
Γ(1 + k + µ)
Γ(1 + k)

δk,0 = −S
(ε)
k0 , k = 0,1, · · · ,P. (2.22)

In order to obtain the rest of entries of S(ε)kp (k = 0,1, · · · ,P and p = 1,2, · · · ,P − 1), we carry out

the integration-by-parts and transfer another derivative onto the test function, taking into account

that the interior modes vanish at the boundary points xε and xε−1. Therefore,

S(ε)kp =

∫ xε

xε−1

dψp

dx
RL

xD
µ
xε

[
(2)Pµk+1(x)

]
dx, (2.23)

= −

∫ xε

xε−1
ψp(x)

d
dx

RL
xD

µ
xε

[
(2)Pµk+1(x)

]
dx,

= −

∫ 1

−1
ψp(ζ)

d
dζ

dζ
dx

Jac(ε, µ) RL
ζD

µ
1

[
(2)Pµk+1(ζ)

] dx
dζ

dζ,

= −Jac(ε, µ)
Γ(1 + k + µ)
4 Γ(1 + k)

∫ 1

−1
(1 − ζ)(1 + ζ)P1,1

p−1(ζ)
d
dζ

[
Pk (ζ)

]
dζ,

= −Jac(ε, µ)
Γ(1 + k + µ)
4 Γ(1 + k)

k + 1
2

∫ 1

−1
(1 − ζ)(1 + ζ)P1,1

p−1(ζ) P1,1
k−1(ζ)dζ .

Hence, for ε = 1,2, · · · ,Nel ,

S(ε)kp = −(
2

xε − xε−1
)µ
Γ(1 + k + µ)(k + 1)

8 Γ(1 + k)
C1,1

k−1δk,p,
k = 0, · · · ,P,

p = 1, · · · ,P − 1,
(2.24)

where C1,1
k−1 represents the corresponding orthogonality constant of Jacobi polynomials of order

k − 1 with parameters α = β = 1. We note that the entries of S(ε)kp are obtained analytically, using

the orthogonality of Jacobi polynomial. Also, the interior modes lead to a diagonal matrix due to

δk,p. Fig. 2.3 shows the sparsity of the local stiffness matrix.
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Figure 2.3: Sparsity of local stiffness matrix

Elemental (Local) Mass Matrix M(ε) : given the structure of basis functions and definition

(2.19), we first obtain the corresponding first (p = 0) and last column (p = P) of the local mass

matrix M(ε), and then, we compute the rest of entries associated with the interior modes, using

proper quadrature rules. Therefore,

M(ε)k0 = (
xε − xε−1

4
)

Q∑
q=1

w
1+µ,0
q Pµ,−µk ( z1+µ,0

q ),

M(ε)kP = (
xε − xε−1

4
)

Q∑
q=1

w
µ,1
q Pµ,−µk ( zµ,1q ),

M(ε)kp = (
xε − xε−1

8
)

Q∑
q=1

w
1+µ,1
q Pµ,−µk ( z1+µ,1

q ),

where k = 0,1, · · · ,P and {wα,βq , zα,βq }
Q
q=1 are the Gauss-Lobatto-Jacobi weights and points

corresponding to the parameters α and β.

Elemental (Local) Load Vector f(ε) : the local load vector is obtained as:

f(ε)k =

∫ xε

xε−1
f (x) (2)Pµk+1(x)dx = (

xε − xε−1
2

)

∫ 1

−1
(1 − ζ)µ f (x(ζ)) Pµ,−µk (ζ) dζ .

Hence, for ε = 1,2, · · · ,Nel ,

f(ε)k = (
xε − xε−1

2
)

Q∑
q=1

w
µ,0
q f ( xε(ζq) ) P

µ,−µ
k ( zµ,0q ), k = 0,1, · · · ,P,
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where {wµ,0q , zµ,0q }
Q
q=1 are the Gauss-Lobatto-Jacobi weights and points corresponding to the

parameters α = µ and β = 0.

2.3.2 Non-Local Operation: the construction of history matrix Ŝ(e,ε)

The most challenging part of constructing the linear system is to compute the global history

matrix Ŝ(e,ε). The history matrix relates the current element ε = 1,2, · · · ,Nel to its past elements

e = 1,2, · · · , ε − 1 by

Ŝ(e,ε)kp =

∫ xe

xe−1

dψp

dx
H(ε)k (x) dx, k = 0, · · · ,P, p = 1, · · · ,P − 1, (2.25)

where H(ε)k (x) is given in (2.14) as

H(ε)k (x) =
−1

Γ(1 − µ)
d
dx

∫ xε

xε−1

(2)Pµk+1(s)

(s − x)µ
ds,

=
−µ

Γ(1 − µ)

∫ xε

xε−1

(2)Pµk+1(s)

(s − x)1+µ
ds,

in which, x ∈ Ωe = [xe−1, xe] and s ∈ Ωε = [xε−1, xε]. By performing the following affine

mappings

s =
xε + xε−1

2
+

xε − xε−1
2

ζ,

x =
xe + xe−1

2
+

xe − xe−1
2

ξ,

fromΩe andΩε to the standard domain [−1,1], the history function H(ε,e)k (ξ) = H(ε)k (x) is obtained

as

H(ε,e)k (ξ) (2.26)

= (
xε − xε−1

2
)
−µ

Γ(1 − µ)

∫ 1

−1

(2)Pµk+1(ζ)dζ[
(xε+xε−1)−(xe+xe−1)

2 +
xε−xε−1

2 ζ −
xe−xe−1

2 ξ
]1+µ .

If the mesh is “uniform”, then

xε + xε−1
2

=
2ε − 1

2
∆x,

xe + xe−1
2

=
2e − 1

2
∆x,

xε − xε−1
2

=
xe − xe−1

2
=
∆x
2
, (2.27)
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and thus,

H(ε,e)k (ξ) =
∆x
2

−µ

Γ(1 − µ)

∫ 1

−1

(2)Pµk+1(ζ)[
(2ε−1)−(2e−1)

2 ∆x + ∆x
2 (ζ − ξ)

]1+µ dζ,

=
−µ

Γ(1 − µ)
(

2
∆x
)µ

∫ 1

−1

(2)Pµk+1(ζ)[
2(ε − e) + ζ − ξ

]1+µ dζ,

=
−µ

Γ(1 − µ)
(

2
∆x
)µ

∫ 1

−1

(2)Pµk+1(ζ)[
2∆ε + ζ − ξ

]1+µ dζ, (2.28)

where ∆ε = ε − e > 0, denotes the element difference between the current element ε and the e-th

element. Next, we expand the poly-fractonomials (2)Pµk+1(ζ) in terms of fractonomials (1− ζ)µ+m

as

(2)Pµk+1(ζ) = (1 − ζ)
µPµ,−µk (ζ) =

k∑
m=0

Ckm(1 − ζ)µ+m, (2.29)

in which Ckm =
(k+m

m
) ( k+µ

k−m
)
(−1

2 )
m is a lower-triangle matrix. Therefore, (2.28) can be written as

H(ε,e)k (ξ) =
−µ

Γ(1 − µ)
(

2
∆x
)µ

k∑
m=0

Ckmh(ε,e)m (ξ), (2.30)

where we call

h(ε,e)m (ξ) ≡

∫ 1

−1

(1 − ζ)µ+m

[2∆ε + ζ − ξ]1+µ
dζ, m = 0,1, · · · , k, (2.31)

the (modal) memory mode. Also, h(ε,e)m (ξ) can be obtained analytically as

h(ε,e)m (ξ) =
2−µ(∆ε − ξ/2)−µ

1 + m + µ

[
hm,I (ξ,∆ε) + hm,I I (ξ,∆ε) + hm,I I I (ξ,∆ε)

]
, (2.32)

in which

hm,I (ξ,∆ε) = −ZI (ξ,∆ε) 2F1
(
1 , 1 + m , 2 + m + µ , ZI (ξ,∆ε)

)
, (2.33)

hm,I I (ξ,∆ε) =
(1 − 2∆ε + ξ
−2∆ε + ξ

)−µ
(2m+µ) ZI I (ξ,∆ε)2F1

(
1 , 1 + m , 2 + m + µ , ZI I (ξ,∆ε)

)
,

hm,I I I (ξ,∆ε) = −ZI I I (ξ,∆ε)2F1
(
1 , 1 + m , 2 + m + µ , ZI I I (ξ,∆ε)

)
,
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and the group variables are ZI (ξ,∆ε) =
1

1+2∆ε−ξ , ZI I (ξ,∆ε) =
−2

−1−2∆ε+ξ , and ZI I I (ξ,∆ε) =

1
−2∆ε+ξ . Therefore, by (2.30) and obtaining the derivative of basis function in the standard domain,

the entries of the history matrix can be efficiently computed, using a Gauss quadrature. Hence:

Ŝ(ε,e)kp ≡ Ŝ(∆ε)kp =

∫ 1

−1

dψp

dξ
Hk (ξ,∆ε)dξ, k, p = 0,1, · · · ,P. (2.34)

Remark 2.3.1. We note that when a uniform mesh is employed, the history function H(ε,e)k (ξ) ≡

Hk (ξ,∆ε), defined in the standard domain, only depends on the “element difference”, ∆ε = ε − e.

This is significant since one only needs to construct Nel − 1 history function, and thus, history

matrices Ŝ(e,ε).

2.3.3 Assembling the Global System with Local Test Functions

We generalize the notion of global linear system assembly by taking into account the presence of

the history stiffness matrices and recalling that the corresponding local mass matrix M(ε) or the

local load vector f(ε) do not contribute to any history calculations. We impose the C0 − continuity

by employing the “mapping arrays”, map[e][p], defined as

map[e][p] = P(e − 1) + p, p = 1,2, · · · ,P, e = 1,2, · · · ,Nel, (2.35)

as for instance in Mathematica, the first entry of a vector is labelled by 1 rather than 0 as in C++.

Then, the corresponding (P+1)×(P+1) “local" linear system, which is associated with the element

Ωε, is obtained as

M(ε) = S(ε) − λM(ε). (2.36)

We assemble the corresponding global linear matrixMG and the global load vector FG as follows:
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do ε = 1,Nel

do k = 1,P + 1

FG

[
map[ε][k]

]
= f(ε)[k]

do p = 1,P + 1

MG

[
map[ε][k]

] [
map[ε][p]

]
= MG

[
map[ε][k]

] [
map[ε][p]

]
+M(ε)[k][p]

do e = 1, ε − 1

MG

[
map[ε][k]

] [
map[e][p]

]
= MG

[
map[ε][k]

] [
map[e][p]

]
+ Ŝ(∆ε)[k][p]

End

This global operation leads to the following linear system:

MG ûG = FG, (2.37)

in which ûG denotes the global degrees of freedom. The homogeneous Dirichlet boundary condi-

tions require the first and last entries of the global degree of freedom to be zero, i.e. û1
0 = û

Nel
P = 0.

This is enforced by removing the first and last rows as well as the first and last columns of the global

matrix, in addition to removing the first and last entries of the load vector. We also note that the

C0-continuity and decomposition of basis functions into boundary and interior modes lead to the

standard scattering process from the global to local degrees of freedom (see e.g., [81]).

2.3.4 Off-Line Computation of History Matrices and History Retrieval

As mentioned in remark 2.3.1 (on uniform grid generation), the history matrices solely depend on

the element difference, ∆ε = ε − e. Thus, for all local elements ε, where ε = 1,2, · · · ,Nel , the

history matrices corresponding to the past element e with similar element difference, are the same.

See Fig. 2.4, where similarly-colored blocks represent the same history matrix and one can see that,

for example, all the history matrices adjacent to the local stiffness matrices have the same element

difference, ∆ε = 1, and thus are in the same color. Therefore, given number of element Nel , we

only need to construct the total number of Nel − 1 history matrices.
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Figure 2.4: The assembled global matrix corresponding to a uniform grid with Nel = 9. In this
global matrix,M(ε) = S(ε) − λM(ε), ε = 1,2, · · · ,Nel , represents the local matrix, associated with
the element Ωε. To fill the lower-triangular block matrices, we construct only (Nel − 1) history
matrices Ŝ(∆ε), where ∆ε = 1,2, ..,Nel − 1, rather than Nel (Nel−1)

2 matrices.

For a maximum number of elements, Nel |max , and a maximum number of modes, P |max , we

can compute off-line and store the total Nel |max−1 historymatrices of size (P |max+1)×(P |max+1),

which we can fetch later for any specific Nel ≤ Nel |max and P ≤ P |max .

2.3.5 Non-Uniform Kernel-Based Grids

We present a non-uniform grid generation based on the power-law kernel in the definition of

fractional derivative. There are different sources of singularity in the proposed problem that can

be caused mainly due to the force function f (x). However, even if the force term is smooth the

underlying kernel of a fractional derivative leads to formation of singularities at the boundaries.

Herein, we propose a new kernel-based grid generation method that considers a sufficiently small

boundary layer at the vicinity of singular point and partitions that particular region non-uniformly. In
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Figure 2.5: History computation and retrieval.

this approach, we treat the kernel of the form 1
xσ as a density function and then, we construct the grid

such that the integral of kernel function over each elementΩe ∈ [xe−1, xe] (in the boundary layer) is

constant. Since the operator is a left sided fractional derivative, we represent the non-uniform grid

Figure 2.6: Kernel-based non-uniform grid in the boundary layer; Lb and Nb are the length of and
the number of elements in the boundary layer, respectively.

refinement at the left boundary. Let Lb be the length of boundary layer and
∫ Lb
0

1
xσ dx =

L1−σ
b

1−σ = A.

Then, the integral over each element is

1
A

∫ xe

xe−1

1
xσ

dx =
1

L1−σ
b

[
(xe−1 + ∆xe)

1−σ − x1−σ
e−1

]
= C,

where ∆xe = xe − xe−1 and C is a constant. Thus,

∆xe =
[
x1−σ

e−1 + C L1−σ
b

] 1
1−σ − xe−1.

Starting from x0 = 0 and calculating the rest of grid locations successively, we obtain

xe = δ e
1

1−σ , e = 1,2, · · · ,Nb, element numbers, (2.38)
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in which δ = Lb C
1

1−σ and Nb is the number of elements in the boundary layer. The constant C is

obtained by the constraint
∑Nb

e=1 ∆xe = Lb and hence,

C =
©­«

Nb∑
e=1

[
e

1
1−σ − (e − 1)

1
1−σ

]ª®¬
σ−1

.

We consider σ = 1 − µ and thus when µ = 1, we recover the uniform grid xe =
Lb
Nb

e, where the

kernel is 1, C = 1
Nb

, δ = Lb
Nb

. We note that in the boundary layer, where the grid is non-uniform,

equations (2.27)-(2.31) no longer hold. Thus, using (2.38), we obtain

H(ε,e)k (ξ) =
−µ

Γ(1 − µ)
δ

2

(
ε

1
µ − (ε − 1)

1
µ

) ∫ 1

−1

(2)Pµk+1(ζ)dζ

Z
, (2.39)

in which,

Z =

(
δ

2

)1+µ [ (
ε

1
µ + (ε − 1)

1
µ

)
−

(
e

1
µ + (e − 1)

1
µ

)
+

(
ε

1
µ − (ε − 1)

1
µ

)
ζ −

(
e

1
µ − (e − 1)

1
µ

)
ξ
]1+µ

.

Therefore, by (2.25), the entries of the history matrix for the boundary layer elements, where

ε = 1,2, · · · ,Nb and e = 1,2, · · · , ε − 1, can be numerically obtained as

Ŝ(ε,e)kp =

∫ 1

−1

dψp

dξ
H(ε,e)k (ξ) dξ, k, p = 0,1, · · · ,P, (2.40)

Thesematrices are the small squares in the upper left corner of Fig. 2.7 (interaction of boundary layer

elements e and ε). For the interior elements, ε = Nb+ 1,Nb+ 2, · · · ,Nel , when Nb+ 1 ≤ e ≤ ε − 1,

the grid is uniform and therefore, we use (2.34) to obtain the history matrices. These matrices are

shown as the big squares in Fig. 2.7 (interaction of interior elements e and ε). However, when

1 ≤ e ≤ Nb, the grid is non-uniform and we use (2.40) to obtain the history matrices. These

matrices are shown as skinny rectangles in Fig. 2.7 (interaction of interior elements with boundary

layer elements).

In uniform grid generation, the history function (2.28) only depends on element difference ∆ε ,

which leads to a fast and efficient construction of history matrices (see Remark 2.3.1). However, in
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Figure 2.7: The assembled global matrix corresponding to Nel = 11 with Nb = 4 non-uniform
boundary elements and 7 uniform interior elements. In this global matrix,M(ε) = S(ε) − λM(ε),
ε = 1,2, · · · ,Nel , represents the local matrix, associated with the element Ωε. The lower-triangle
consists of three parts: 1) The small square Nb(Nb−1)

2 history matrices (interaction of boundary
elements, ε = 1,2, · · · ,Nb). 2) The big square history matrices (interaction of interior elements,
ε = Nb + 1, · · · ,Nel). 3) The skinny rectangular (Nel − Nb)Nb history matrices (interaction of
boundary elements with interior elements).

non-uniform kernel-based grid generation, this is not the case anymore and construction of history

matrices is computationally expensive. Improving the history construction on non-uniform grids

requires further investigations, to be done in our future works.

2.3.6 Non-Uniform Geometrically Progressive Grids

In addition to the non-uniform grid generation based on the kernel of fractional derivative, we

consider a non-uniform grid using geometrically progressive series [4, 15]. In this case, the length

of elements are increased by a constant factor r (see Fig. 2.8). By considering the length of first

element to be δ, we construct the grid as x0 = 0, x1 = δ, x2 = δ(1 + r), x3 = δ(1 + r + r2) and so
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Figure 2.8: Non-uniform geometrically progressive grid.

on. Hence,

xe = δ
e−1∑
i=0

ri = δ
re − 1
r − 1

, e = 1,2, · · · ,Nb. (2.41)

Choosing r and Nb, the constant δ is obtained by the constraint xNb = Lb, which gives δ = Lb
r−1

rNb−1
.

Since the grid is non-uniform, equations (2.27)-(2.31) do not hold anymore. Thus, using (2.41),

we obtain

H(ε,e)k (ξ) =
−µ

Γ(1 − µ)
(
2
δ
)µr∆ε−µ(e−1)

∫ 1

−1

(2)Pµk+1(ζ)dζ[
r+1
r−1 (r

∆ε − 1) + (ζ − r∆εξ)
]1+µ , (2.42)

where ∆ε = ε − e > 0, denotes the element difference between the current element ε and the e-th

element. Using the same expansion as in (2.29), we can write (2.42) as

H(ε,e)k (ξ) =
−µ

Γ(1 − µ)
(
2
δ
)µr∆ε−µ(e−1)

k∑
m=0

Ckm h̃(ε,e)m (ξ), (2.43)

where the (modal) memory mode

h̃(ε,e)m (ξ) =

∫ 1

−1

(1 − ζ)µ+m

[r+1
r−1 (r

∆ε − 1) + (ζ − r∆εξ)]1+µ
dζ, m = 0,1, · · · , k, (2.44)

can be obtained analytically using hypergeometric functions. Therefore, by (2.43), the entries of the

historymatrix can be efficiently computed using theGauss quadrature in (2.34). The construction of

the assembled global linear system is the same as kernel-based grid generation approach. We note

that similar to uniform grid, in the non-uniform grid generation using the geometrical progression,

the history functions depend on the element difference ∆ε = ε − e, leading to a fast and efficient

construction of history matrices.
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2.4 Petrov-Galerkin Method with Global Test Functions

In this section, similar to the case of local test functions, we develop the Petrov-Galerkin scheme

by substituting (2.7) into (2.6) and considering the global test function, given in (2.11) to obtain:

Nel∑
e=1

( P∑
p=0

û(e)p
dψp(x)

dx
, RL

xD
µ
L vεk (x)

)
Ωe
− λ

Nel∑
e=1

( P∑
p=0

û(e)p ψp(x) , vεk (x)
)
Ωe

=

Nel∑
e=1

(
f , vεk (x)

)
Ωe
, ε = 1,2, · · · ,Nel, k = 0,1, · · · ,P. (2.45)

Since the test function vanishes only ∀x ∈ Ωe , Ωε and e > ε, (2.45) reduces to

ε∑
e=1

P∑
p=0

û(e)p

(dψp

dx
, RL

xD
µ
xε v

ε
k (x)

)
Ωe
− λ

ε∑
e=1

P∑
p=0

û(e)p

(
ψp(x) , vεk (x)

)
Ωe

=

ε∑
e=1

(
f , vεk (x)

)
Ωe
.

By substituting (2.11), we obtain

ε∑
e=1

P∑
p=0

û(e)p

(dψp

dx
, RL

xD
µ
xε
(2)Pµk+1(x

1∼ε)
)
Ωe
− λ

ε∑
e=1

P∑
p=0

û(e)p

(
ψp(x) , (2)P

µ
k+1(x

1∼ε)
)
Ωe

=

∫ xε

0
f (x) (2)Pµk+1(x

1∼ε)dx, ε = 1,2, · · · ,Nel, k = 0,1, · · · ,P,

which can be written in the matrix form as

ε∑
e=1

P∑
p=0

û(e)p

[
Ŝ(ε,e)kp − λ M̂(ε,e)kp

]
= f(ε)k , ε = 1,2, · · · ,Nel, k = 0,1, · · · ,P, (2.46)

where

Ŝ(ε,e)kp =
(dψεp

dx
, RL

xD
µ
xε

[
(2)Pµk+1(x

1∼ε)
] )
Ωε
, (2.47)

M̂(ε,e)kp =
(
ψεp(x) ,

(2)Pµk+1(x
1∼ε)

)
Ωε
, (2.48)

f(ε)k =

∫ xε

0
f (2)Pµk+1(x

1∼ε)dx. (2.49)
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Remark 2.4.1. The benefit of choosing such global test functions is now clear since we can

analytically evaluate RL
xD

µ
xε
(2)Pµk+1(x

1∼ε). However, we note that this choice of test functions

introduces “extra” work associated with the construction of the “history mass matrix” M̂(ε,e),

∀e = 1,2, · · · , ε − 1, when λ , 0.

Remark 2.4.2. The choice of global test functions leads to extra cost of quadrature carried out

over the increasing-in-length domains of integration in (2.49). Depending on the behaviour of the

force-term f (x), this approach might require adaptive/multi-element quadrature rules to obtain the

corresponding entries of the desired precision.

2.4.1 Elemental (Local) Operations: the construction of f(ε)

Here, the construction of the load vector is the only operation that could be regarded as “local

operations”. Hence,

f(ε)k =

∫ xε

0
f (x) (2)Pµk+1(x

1∼ε)dx

= (
xε
2
)

∫ 1

−1
(1 − ζ)µ f ( x1∼ε(ζ) ) Pµ,−µk (ζ)dζ,

and thus,

f(ε)k = (
xε
2
)

Q∑
q=1

w
µ,0
q f ( x1∼ε(ζq) ) P

µ,−µ
k ( zµ,0q ),

where {wµ,0q , zµ,0q }
Q
q=1 are the Gauss-Lobatto-Jacobi weights and points corresponding to the

parameters α = µ and β = 0.

2.4.2 Global Operations: the construction of Ŝ(ε,e) and M̂(ε,e)

The corresponding stiffness and mass matrices are global in nature and we obtain their entries using

proper Gauss quadrature rules.
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2.4.3 Assembling the Global System with Global Test Functions

We extend the notion of global linear system assembly by taking into account the presence of the

history stiffness and mass matrices. We similarly impose the C0 − continuity by employing the

same “mapping arrays”, map[e][p], defined in (2.35). Let us define the (P + 1) × (P + 1) matrix

M̂(ε,e) = Ŝ(ε,e) − λM̂(ε,e), (2.50)

∀ε, e fixed. Then, we assemble the corresponding global linear matrix MG and the global load

vector FG as follows:

do ε = 1,Nel

do k = 1,P + 1

FG

[
map[ε][k]

]
= f(ε)[k]

do p = 1,P + 1

do e = 1, ε

MG

[
map[ε][k]

] [
map[e][p]

]
= MG

[
map[ε][k]

] [
map[e][p]

]
+ M̂(ε,e)[k][p]

End

This leads to a linear system similar to that in (2.37), shown in Fig. 2.9, where the homogeneous

Dirichlet boundary conditions are enforced in a similar fashion as before. We note that the scattering

operation from global to local degrees of freedom is similar to the standard scattering process.

2.5 Numerical Examples

We consider numerical examples of the two PG schemes we have proposed. We provide

examples of smooth and singular solutions with singularities at boundary points and in the interior

domain, where we show the efficiency of developed schemes in capturing the singularities. We also

perform the off-line computation of history matrices and show the improvement of computational

cost. Moreover, we construct non-uniform kernel-based and geometrically progressive grids and

present the success of the two approaches in capturing singular solutions. Furthermore, we
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Figure 2.9: The assembled global matrix corresponding to Nel = 5 elements when global test
functions are employed. In this global matrix,M(ε) = Ŝ(ε) − λM̂(ε), ε = 1,2, · · · ,Nel , represents
the local matrix, associated with the element Ωε. To fill the lower-triangular block matrices, we
must construct Nel (Nel−1)

2 history matrices Ŝ(ε,e).

investigate the non-local effects for different cases of history fading. In this section, we consider

the computational domain L = 1.

2.5.1 Smooth Problems

In the proposed schemes, the choice of basis functions are polynomials, enabling the scheme to

accurately and efficiently approximate the smooth solutions over the whole domain. We consider

two smooth solutions of the form uext = x7 − x6 and uext = x6 sin(2πx). The corresponding force

functions are obtained by substituting the exact solutions into (2.1) (with λ = 0). By employing PG

SEM, using local basis/test functions and local basis with global test functions (developed in Sec.

2.3 and Sec. 2.4, respectively), we observe that the former leads to a better approximability and

condition number. Fig. 2.10 presents the L2-norm error of the PG SEM, employing local basis/test

functions, where we show the exponential convergence of the scheme in approximating the two
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smooth solutions. The condition number of the resulting assembled global matrix, using the two

developed schemes are also presented in Table 2.1. We show that the choice of local bases/test

functions leads to a better conditioning for different number of elements and modes.

Figure 2.10: PG SEM with local basis/test functions. Plotted is the error with respect to the
polynomial degree of each element (spectral order).

Table 2.1: Condition number of the resulting assembled global matrix for the two choices of local
bases/test functions (left) and local bases with global test functions (right) for different number of
elements and modes.

(Local Test Functions)

P Nel = 2 Nel = 10

3 7.13 86.13

5 13.21 153.86

10 35.39 420.24

(Global Test Function)

P Nel = 2 Nel = 10

3 3.46 ×104 1.84 ×1016

5 4.3 ×107 7.2 ×1016

10 2.73 ×1015 5.1 ×1017

2.5.2 History Retrieval

As discussed in Sec. 2.3.4, a large number of history matrices can be computed off-line, stored,

and retrieved for later use. The retrieval process, compared to on-line construction of the history

matrices, leads to higher computational efficiency. In this section, by considering 1000 elements,

we compute and store 999 history matrices for different number of modes, P = 2,3, and 4 (here

µ = 1
2 ). Then, for different number of elements, we compute the CPU time required for constructing

and solving the linear system, obtained by retrieving the stored history matrices from hard drive.
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We also compute the CPU time required for constructing and solving the linear system, obtained

by on-line computation of the history matrices. Table 2.2 shows that in the case of p = 4 and for

Nel = 10, Nel = 100, Nel = 500, and Nel = 1000, the retrieval process is almost 4, 5, and 10 times

faster, respectively. Thus, the higher p is, the faster and more efficient the retrieval becomes.

Table 2.2: CPU time of constructing and solving the linear system based on off-line retrieval and
on-line calculation of history matrices.

CPU Time

Nel = 10 Nel = 100 Nel = 500 Nel = 1000

P Off-line On-line Off-line On-line Off-line On-line Off-line On-line
retrieval computation retrieval computation retrieval computation retrieval computation

2 2.6520 7.2540 24.7105 83.5229 141.3525 429.3147 370.6895 790.3478

3 4.7580 18.9073 46.0826 161.8042 266.0441 1308.8327 746.4959 4423.7671

4 8.8140 32.2922 84.8645 499.9988 485.7715 5599.4062 1392.8705 14709.4902

2.5.3 Singular Problems

The developed PG spectral element method, compared to single-domain spectral methods, further

leads to accurate solutions even in the presence of singularities via hp-refinements at the vicinity

of singularities, while still employing smooth polynomial bases. The error in the boundary layer

is controlled by considering sufficient number of modes in the boundary layer elements. The error

in the interior domain is then improved by performing p-refinement in those elements. In order

to investigate the performance of the scheme in capturing a singularity, we consider three types

of singularities, including: i) single-boundary singularity, ii) full-boundary singularity, and iii)

interior singularity (when discontinuous force functions are applied).

I) Single-Boundary Singularity: we consider two singular solutions of the form uext =

(1 − x)x2+µ and uext = (1 − x)x5+µ with left boundary singularity. We partition the domain

into two non-overlapping elements, including one boundary element of length Lb at the vicinity

of singular point in addition to an interior element for the rest of computational domain. The

schematic of corresponding global system is shown in Fig. 2.11 (left). Table 2.3 shows the

exponential convergence of L2-norm error in the interior domain. The error in the boundary layer
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element is then controlled by choosing sufficient number of modes in the boundary element. The

results are obtained for the two cases of Lb = 10−2L and Lb = 10−4L.

Table 2.3: Single-Boundary Singularity: L2-norm error in the boundary and interior elements
using PG SEMwith local basis/test functions. Here, Lb represents the size of left boundary element,
Pb and PI denote the number of modes in the boundary and interior elements respectively.

uext = (1 − x)x2+µ, µ = 1/2

Boundary Element Error

Pb Lb = 10−1L Lb = 10−2L Lb = 10−4L

6 1.29387 × 10−7 1.29634 × 10−10 1.19525 × 10−16

10 1.46601 × 10−8 1.4193 × 10−11 4.07955 × 10−18

Interior Element Error, Pb = 10

PI Lb = 10−1L Lb = 10−2L Lb = 10−4L

6 5.49133 × 10−6 2.6893 × 10−5 3.38957 × 10−5

10 9.39045 × 10−8 1.08594 × 10−6 1.91087 × 10−6

14 8.27224 × 10−8 1.13249 × 10−7 3.02065 × 10−7

uext = (1 − x)x5+µ, µ = 1/2

Boundary Element Error

Pb Lb = 10−1L Lb = 10−2L Lb = 10−4L

6 3.94221 × 10−11 2.96862 × 10−17 4.8243 × 10−29

10 7.07024 × 10−13 2.54089 × 10−18 2.26939 × 10−29

Interior Element Error, Pb = 10

PI Lb = 10−1L Lb = 10−2L Lb = 10−4L

6 1.73622 × 10−5 3.80264 × 10−5 4.13249 × 10−5

10 1.3122 × 10−9 8.76951 × 10−9 1.10139 × 10−8

14 4.39611 × 10−12 1.07775 × 10−10 1.66044 × 10−10

II) Full-Boundary Singularity: we consider the solution of the form uext = (1− x)3+µ1 x3+µ2

with singular points at two ends, i.e. x = 0 and x = 1. Herein, we partition the domain into three

non-overlapping elements including two boundary elements of length Lb in the vicinity of singular

points, and one interior element for the rest of domain. The schematic of corresponding global

system is shown in Fig. 2.11 (right). Similar to previous example, the PG SEM can accurately

capture the singularities at both ends, where increasing the number of modes in the interior element

results in exponential convergence. Table 2.4 shows the L2-norm error in the boundary layers and

interior elements with two choices of Pb = 6 , 10 and Lb = 10−2L , 10−4L.
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Table 2.4: Full-Boundary Singularity: L2-norm error in the boundary element (BE) and interior
element (IE) by PG SEM with local basis/test functions. Here, uext = (1 − x)3+µ1 x3+µ2 with
µ1 =

1
4, µ2 =

2
3 , Lb represents the size of left and right boundary elements, Pb and PI denote the

number of modes in the boundary and interior elements respectively.

Lb = 10−2L Lb = 10−4L

Pb = 6

PI Left BE Error IE Error Right BE Error

6 2.73893 × 10−7 6.52605 × 10−5 3.51075 × 10−6

10 2.46964 × 10−11 1.52215 × 10−7 2.2902 × 10−9

14 3.08719 × 10−12 9.30483 × 10−9 2.69541 × 10−10

Pb = 10

PI Left BE Error IE Error Right BE Error

6 2.73892 × 10−7 6.52605 × 10−5 3.51075 × 10−6

10 2.48058 ×10−11 1.52215 × 10−7 2.29003 × 10−9

14 3.19684 × 10−12 9.30511 × 10−9 2.69506 × 10−10

Pb = 6

PI Left BE Error IE Error Right BE Error

6 3.61679 × 10−10 5.85397 × 10−5 4.60538 × 10−8

10 1.2676 × 10−10 2.43295 × 10−7 1.62151 × 10−10

14 1.53993 × 10−13 2.09933 × 10−8 1.97677 × 10−11

Pb = 10

PI Left BE Error IE Error Right BE Error

6 3.61679 × 10−10 5.85397 × 10−5 4.60538 × 10−8

10 1.2676 × 10−12 2.43295 × 10−7 1.62151 × 10−10

14 1.53993 × 10−13 2.09933 × 10−8 1.97677 × 10−11

Figure 2.11: Schematic of global matrices corresponding to the case of singular solutions. (left):
left boundary singularity, (right): left and right boundary singularities. Ŝ(bI), Ŝ(Ib), and Ŝ(bb)

denote the interaction of boundary/interior, interior/boundary and boundary/boundary elements,
respectively.

III) Interior Singularity (Discontinuous Force Function): we consider the solutions with

singularity in the middle of domain. The force function, obtained by substituting the solution into

(2.1), is considered to be discontinuous at the point of singularity. Fig. 2.12 shows the two exact

solutions of the form uext
1 = x2 (1− x)2 |x − 1

2 | (top) and uext
2 = sin(3π x) x (1− x) |x − 1

2 | (bottom)

and their corresponding force functions. We partition the domain at the vicinity of singular point

using two non-overlapping interior elements, in which the solution is smooth. The PG scheme with

local basis/test functions is shown to be able to accurately capture the singularity in the middle of

the domain. In the case of uext
1 , we approximate the solution in the range of machine precision with
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(a) (b)

(c) (d)

Figure 2.12: Interior Singularity. (left): exact solutions, (right): the corresponding force functions.

P = 5 within each element. We also show the exponential rate of convergence in the case of uext
2

by increasing the number of modes, P, in each element. The results are shown in Fig. 2.13.

Figure 2.13: Interior Singularity: PG SEM with local basis/test functions. Plotted is the error with
respect to spectral order in each element.

2.5.4 Non-Uniform Grids

We consider a singular solution of the form uext = (1 − x)x1+µ (here µ = 1
10 and λ = 0) with

singularity at the left boundary. In order to solve the problem, we consider three grid generation

approaches with similar degrees of freedom, including one uniform and two non-uniform grids
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over the computational domain. The non-uniform grids are generated based on the power-law

kernel in the definition of fractional derivative and the geometric progression series (discussed in

Sec.2.3.5 and Sec.2.3.6, respectively). Here, we choose Lb = L. Table 2.5 shows the L2-norm

error considering the uniform and non-uniform grids. We keep the total degrees of freedom fixed,

but we increase the polynomial order P in each simulation. The success of the non-uniform grid

in providing more accurate results is observed, where fewer number of elements are used, while

higher order polynomial are employed. We recall that the size of boundary layer has been set to its

maximum possible length, i.e. Lb = L. Clearly, one can obtain even more accurate results when

Lb is set to much smaller length (e.g. 10−1L, 10−3L, etc.).

Table 2.5: L2-norm error, using uniform and non-uniform grids. The exact singular solution is
uext = (1 − x)x1+µ with µ = 1/10.

Uniform Grid Kernel-Based Non-Uniform Grid Geometrically Progressive Non-Uniform Grid

Nel = 50, P = 2 5.83943 × 10−4 2.33461 × 10−5 3.93956 × 10−4

Nel = 25, P = 4 3.04739 × 10−5 1.77458 × 10−7 1.38755 × 10−6

Nel = 10, P = 10 1.39586 × 10−5 2.10813 × 10−9 1.45695 × 10−9

2.5.5 A Systematic Memory Fading Analysis

In order to investigate the effect of truncating the history matrices, we perform a systematic memory

fading analysis.

In fullmemory fading, we fade the memory by truncating the history matrices, i.e., we consider

the full history matrices up to some specific number and then truncate the rest of history. For

instance, we consider up to the first 4 history matrices for each element and thus compute Ŝ1, Ŝ2,

Ŝ3 and Ŝ4, and truncate the rest Nel − 1 − 4 matrices; see Fig. 2.4 for better visualization.

In partial memory fading, we fade the memory by partially computing the history matrices.

Similar to the fullmemory fading, we consider the full history matrices up to some specific number,

however, for the rest of history matrices we partially compute the entries of matrices. In partial

memory fading, we consider three different cases as follows.
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(a) : Case I (b) : Case II (c) : Case III

Figure 2.14: Memory fading: (a) B-B interaction, the corner entries (b) B-B and B-I interaction, the
boundary entries (c) B-B, B-I and S-I interaction, boundary and diagonal entries

• Case I:Boundary-Boundary (B-B) interaction. In this case, we only consider the interactions

of boundary mode and boundary test functions, i.e., p = 0,P and k = 0,P, and thus, only

compute the corner entries (See Fig. 2.14a).

• Case II: Boundary-Boundary (B-B) and Boundary-Interior (B-I) interaction. In addition to

the corner entries, here we also consider the interaction of boundary mode/test functions with

the interior test/mode functions, i.e.,
k = 0, p = 0,1, · · · ,P, and k = P, p = 0,1, · · · ,P

p = 0, k = 0,1, · · · ,P, and p = P, k = 0,1, · · · ,P,

and thus, we compute the boundary entries (See Fig. 2.14b).

• Case III: Boundary-Boundary (B-B), Boundary-Interior (B-I), Self-Interior (S-I) interac-

tion. In addition to the last two cases, we consider the interaction of each mode with its

corresponding test function and thus, we compute the boundaries as well as the diagonal

entries (See Fig. 2.14c).

Tables 2.6 and 2.7 show the L2-norm error for cases of full and partial memory fading. It is

clear from the computed norms that even in the case of fading memory, we can still accurately

obtain the approximation solution, however with a proportional loss of accuracy depending on the

lack of modal interaction.
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Table 2.6: Full history fading: L2-norm error using PG SEMwith local basis/test functions, where
uext = x7 − x6, Nel = 19, P = 6. The first column in the table shows the number of fully faded
history matrices.

Full fading
# faded history matrices µ = 1/10 µ = 1/2 µ = 9/10

0 9.26034 × 10−12 2.31391 × 10−11 4.24903 × 10−9

2 7.8905 × 10−11 1.26365 × 10−10 4.25456 × 10−9

5 1.42423 × 10−8 6.39474 × 10−8 1.95976 × 10−8

8 2.69431 × 10−7 2.47423 × 10−6 8.45001 × 10−7

11 2.09737 × 10−6 3.19995 × 10−5 1.37959 × 10−5

14 9.07427 × 10−6 2.44911 × 10−4 1.40684 × 10−4

17 2.94001 × 10−5 1.39043 × 10−3 1.6001 × 10−3

Table 2.7: Partial history fading: L2-norm error using PG SEM with local basis/test functions,
where uext = x7 − x6, Nel = 19, P = 6. The first column in the tables shows number of partially
faded history matrices.

Partial fading case I
# faded history matrices µ = 1/10 µ = 1/2 µ = 9/10

0 9.26034 × 10−12 2.31391 × 10−11 4.24903 × 10−9

2 7.8905 × 10−11 1.26365 × 10−10 4.25456 × 10−9

5 1.42423 × 10−8 6.39474 × 10−8 1.95976 × 10−8

8 2.69431 × 10−7 2.47423 × 10−6 8.45001 × 10−7

11 2.09737 × 10−6 3.19995 × 10−5 1.37959 × 10−5

14 9.07427 × 10−6 2.44911 × 10−4 1.40684 × 10−4

17 2.94001 × 10−5 1.39043 × 10−3 1.6001 × 10−3

Partial fading case II
# faded history matrices µ = 1/10 µ = 1/2 µ = 9/10

0 9.26034 × 10−12 2.31391 × 10−11 4.24903 × 10−9

2 9.27241 × 10−12 2.34361 × 10−11 4.2491 × 10−9

5 3.37716 × 10−11 6.6476 × 10−10 4.44832 × 10−9

8 3.8092 × 10−10 1.99961 × 10−8 1.36941 × 10−8

11 1.47228 × 10−9 2.2715 × 10−7 1.47786 × 10−7

14 1.15821 × 10−8 1.64103 × 10−6 1.47098 × 10−6

17 5.06103 × 10−7 7.87929 × 10−6 1.85274 × 10−5

Partial fading case III
# faded history matrices µ = 1/10 µ = 1/2 µ = 9/10

0 9.26034 × 10−12 2.31391 × 10−11 4.24903 × 10−9

2 9.26023 × 10−12 2.3113 × 10−11 4.24903 × 10−9

5 1.18462 × 10−11 7.7854 × 10−11 4.23683 × 10−9

8 1.60656 × 10−10 3.38055 × 10−9 3.65689 × 10−9

11 1.32413 × 10−9 4.35421 × 10−8 8.84638 × 10−9

14 7.10271 × 10−9 3.87096 × 10−7 1.7226 × 10−7

17 2.87023 × 10−8 3.71057 × 10−6 5.12104 × 10−6
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CHAPTER 3

DISTRIBUTED-ORDER FRACTIONAL ODES: PETROV-GALERKIN AND SPECTRAL
COLLOCATION METHOD

3.1 Background

Distributed order fractional operators offer a rigorous tool for mathematical modeling of multi-

physics phenomena. In this case, the differential order is distributed over a range of values rather

than being just a fixed fraction as it is in standard/fractional ODEs/PDEs. There is a rapidly

growing interest in the use of fractional derivatives in the construction of mathematical models,

which contain distributed order terms of the form∫ σ2

σ1
φ(σ) ∗aD

σ
t u(t)dσ = f (t), t > a,

in the field of uncertainty quantification as the inherent uncertainty of experimental data can be

directly incorporated into the differential operators; see [6, 12, 47, 114, 154], for some work on

numerical methods. Almost all of the numerical schemes developed for such models are finite-

difference methods. While the treatment of fractional differential equations with a fixed fractional

order could be memory demanding due to the locality of these methods and their low-accuracy, the

main challenge remains the additional effect of the discretization of the distributed order model,

which may lead to exceeding computational cost of numerical simulations.

To the best of our knowledge, the first numerical study of distributed order differential equations

(DODEs) was performed by Diethelm and Ford in [46], where a two-stage basic framework was

developed. In the first stage, the distributed order differentiation term was approximated using a

quadrature rule, and in the second stage, a suitable multi-term numerical method was employed.

They later performed the corresponding error analysis of the method in [49]. Subsequently, most of

the numerical studies have followed the same approach yet they vary in the discretization method in

the second stage. The distributed order time-fractional diffusion equation was numerically studied

in [57] and the corresponding stability and convergence study of the scheme was provided in
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[58]. Adding a nonlinear source, [124] studied the distributed order reaction diffusion equation

following the same scheme. In [98], the second stage of the distributed order diffusion equation was

established using a reproducing kernel method. The distributed order time fractional diffusion-wave

equation was investigated by developing a compact difference scheme in [179]. Other numerical

studies include: an implicit numerical method of a temporal distributed order and two-sided space-

fractional advection-dispersion equation in [69], high-order difference schemes in [60], alternating

direction implicit (ADI) difference schemes with the extrapolation method for one-dimensional

case in [62] and two-dimensional problem in [61], and an operational matrix technique in [50].

Two new spectral theories on fractional and tempered fractional Sturm-Liouville problems

(TFSLPs) have been recently developed by Zayernouri et al. in [183, 186]. This approach first

fractionalizes and then tempers the well-known theory of Sturm-Liouville eigen-problems. The

explicit eigenfunctions of TFSLPs are analytically obtained in terms of tempered Jacobi poly-

fractonomials. Recently, in [185, 187, 188], Jacobi poly-fractonomials were successfully employed

in developing a series of high-order and efficient Petrov-Galerkin spectral and discontinuous spectral

element methods of Galerkin and Petrov-Galerkin projection type for fractional ODEs. To treat

nonlinear problems the collocation schemes are relatively easy to implement. Khader in [83]

presented a Chebyshev collocation method for the discretization of the space-fractional diffusion

equation. More recently, Khader and Hendy [84] developed a Legendre pseudospectral method

for fractional-order delay differential equations. For fast treatment of nonlinear and multi-term

fractional PDEs such as the fractional Burgers’ equation, a new spectral method, called fractional

spectral collocation method, was developed in [189]. This new class of collocation schemes

introduces a new family of fractional Lagrange interpolants, mimicking the structure of the Jacobi

poly-fractonomials. For variable-order fractional PDEs, a fast and spectrally accurate collocation

method was developed and implemented in [190].

In this chapter, we first introduce the distributed Sobolev spaces and their associated norms.

We show their equivalence to the defined left-side and right-side norms as well. By employing

Riemann-Liouville derivatives, we define the distributed order differential equation and then obtain
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its variational form. We develop a Petrov-Galerkin (PG) spectral method following the recent the-

ory of fractional Sturm-Liouville eigen-problems (FSLP) in [186] and employ the corresponding

eigenfunctions, namely the Jacobi Poly-fractonomials of first kind as the bases and the Jacobi Poly-

fractonomials of second kind as test functions. We develop a spectrally accurate Gauss-Legendre

quadrature rule in the construction of the linear system, where we investigate the stability and

error analysis of the scheme. In addition, we construct a spectrally-accurate fractional spectral

collocation scheme, where we employ fractional Lagrange interpolants satisfying the Kronecker

delta property at the collocation points, and then, we obtain the corresponding fractional differenti-

ation matrices. We demonstrate the computational efficiency of both schemes considering several

numerical examples and distribution functions.

The organization of this chapter is as follows: section 3.2 provides preliminary definitions along

with useful lemmas. We recall fractional Sobolev spaces, and then, introduce their generalization to

so called distributed Sobolev space and associated norms, which provides the natural setting of our

problem in this study. We furthermore obtain some equivalent norms to facilitate the corresponding

analysis of our methods. In section 3.3, we derive and discretize the corresponding variational

form of the problem and subsequently we prove the stability and convergence rate of the scheme.

In addition, we develop a fractional collocation method in section 3.5 and test the performance of

the two methods in section 3.6.

3.2 Preliminaries

Lemma 3.2.1. Let σ, µ > 0. The fractional derivative of the Jacobi poly-fractonomials, [186], of

first (i = 1) and second kind (i = 2) are given by

RLDσ
{
(i)P

µ
n (ξ)

}
=

Γ(n + µ)
Γ(n + µ − σ)

(i)P
µ−σ
n (ξ), (3.1)

and are also of Jacobi poly-fractonomial type, where RLDσ ≡ RL
−1D

σ
x when i = 1, RLDσ ≡ RL

xD
σ
1

when i = 2.

Proof. See section (3.7.1).
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Remark 3.2.2. Lemma 3.2.1 shows that the structure of Jacobi poly-fractonomials is preserved

under the action of fractional derivatives. Moreover, we note that when σ = µ in Lemma 3.2.1, the

fractional derivatives of Jacobi poly-fractonomials are obtained in terms of Legendre polynomials,

which has been reported in [186].

3.2.1 Fractional Sobolev Spaces

By Hs(R), s ≥ 0, we denote the fractional Sobolev space on R, defined as

Hs(R) = {v ∈ L2(R)| (1 + |ω|2)
s
2F (v)(ω) ∈ L2(R)}, (3.2)

which is endowed with the norm

‖ · ‖s,R = ‖(1 + |ω |2)
s
2F (·)(ω)‖L2(R), (3.3)

where F (v) represents the Fourier transform of v. Subsequently, we denote by Hs(I), s ≥ 0 the

fractional Sobolev space on any finite closed interval I, defined as

Hs(I) = {v ∈ L2(I)| ∃ṽ ∈ Hs(R) s.t. ṽ |I = v}, (3.4)

with the norm

‖ · ‖s,I = inf
ṽ∈Hs(R),ṽ |I=(·)

‖ṽ‖s,R. (3.5)

We note that the definition of Hs(I) and the corresponding norm relies on the Fourier transformation

of the function. Other useful norms associated with Hs(I), e.g., when I = [xL, xR], have been also

introduced in [99],

‖ · ‖l,s,I =
(
‖ · ‖2

L2(I)
+ ‖ RL

xL
D
µ
x (·)‖

2
L2(I)

) 1
2 , (3.6)

‖ · ‖r,s,I =
(
‖ · ‖2

L2(I)
+ ‖ RL

xD
µ
xR(·)‖

2
L2(I)

) 1
2 , (3.7)

such that the left-side ‖ · ‖l,s,I , the right-sided ‖ · ‖r,s,I , and ‖ · ‖s,I are shown to be equivalent.
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Next, let φ ∈ L1( [αmin, αmax] ), 0 ≤ αmin < αmax , be nonnegative. By φH(R), we denote the

distributed fractional Sobolev space on R, defined as

φH(R) = {v ∈ L2(R)|
∫ αmax

αmin

[
φ(α)(1 + |ω|2)α

] 1
2 F (v)(ω) dα ∈ L2(R)}, (3.8)

which is endowed with the norm

‖ · ‖φ,R =

(∫ αmax

αmin
φ(α)




 (1 + |ω|2)α2 F (·)(ω) 


2

L2(R)
dα

) 1
2
. (3.9)

3.2.2 Distributed Fractional Sobolev Spaces

We denote by φH(I) the distributed fractional Sobolev space on the finite closed interval I, defined

as
φH(I) = {v ∈ L2(I)| ∃ṽ ∈ φH(R) s.t. ṽ |I = v}, (3.10)

with the norm

‖ · ‖φ,I = inf
ṽ∈φH(R),ṽ |I=(·)

‖ṽ‖φ,R. (3.11)

Moreover, we introduce the following useful norms, associated with φH(I):

‖ · ‖l,φ,I =

(
‖ · ‖2

L2(I)
+

∫ αmax

αmin
φ(α)




 RL
xL
Dα

x (·)



2

L2(I)
dα

) 1
2
, (3.12)

and

‖ · ‖r,φ,I =

(
‖ · ‖2

L2(I)
+

∫ αmax

αmin
φ(α)




 RL
xL
Dα

x (·)



2

L2(I)
dα

) 1
2
. (3.13)

We note that when φ > 0 is continuous in I, φH(R) is equivalent to Hαmax (R). However,

in general, the choice of φ can arbitrarily confine the domain of integration in practice. In other

words, αmin and αmax are only the theoretical lower and upper terminals in the definition of

distributed order fractional derivative. For instance, in a distributed sub-diffusion problem, the

temporal derivative is associated with αmin = 0 and αmax = 1, and in a super-diffusion problem,

the theoretical upper terminal αmax = 2. In this study we particularly aim to let φ be defined in any

possible subset of the interval [αmin, αmax]. Hence, in each realization of a physical process (e.g.
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Figure 3.1: Schematic of distributed fractional Sobolev space φH(R): (left) φ = δ(α − αmax) hence
φH(R) = Hαmax (R); (middle) φ defined on a compact support in [αmin, αmax], hence, φH(R) ⊃
Hαmax (R); (right) φ = δ(α − αmin), where φH(R) = Hαmin(R).

sub- or super-diffusion) φ can be obtained from data, where the theoretical setting of the problem

remains invariant yet requiring the solution to have less regularity (since φH(R) ⊃ Hαmax (R) in

general, see Fig.3.1).

In the following theorem, we prove the equivalence (shown by the notation ∼) of the aforemen-

tioned norms.

Theorem 3.2.3. Let φ ∈ L1( [αmin, αmax] ) be non-negative. Then, the norms ‖ · ‖φ,I , ‖ · ‖l,φ,I , and

‖ · ‖r,φ,I are equivalent.

Proof. See section (3.7.2).

Lemma 3.2.4. [99]: For all 0 < α ≤ 1, if u ∈ H1([a, b]) such that u(a) = 0, and w ∈ Hα/2([a, b]),

then

(aD
α

s u,w)Ω = ( aD
α/2

s u , sD
α/2

b w )Ω, (3.14)

where (·, ·)Ω represents the standard inner product in Ω = [a, b].

Lemma 3.2.5. Let 1/2 < µ < 1, a and b be arbitrary finite or infinite real numbers. Assume

u ∈ H2µ(a, b) such that u(a) = 0, also xD
µ
bv is integrable in (a, b) such that v(b) = 0. Then

(aD
2µ
x u , v) = (aD

µ
x u , xD

µ
bv). (3.15)
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Proof. See section (3.7.3).

Remark 3.2.6. Unlike other existing proofs (e.g., see Proposition 1 in [197]), our proof requires

v(x) to only vanish at the right boundary (note that v(a) can be non-zero), moreover, we only

require the µ-th derivative (rather than the first derivative) of v(x) to be integrable in (a, b).

3.3 Distributed-Order Differential Equations: Problem Definition

Following [11], let α 7→ φ(α) be a continuous mapping in [αmin, αmax]. Then, we define the

distributed order fractional derivative as

DDφu(t) =
∫ αmax

αmin
φ(α) ∗aD

α
t u(t)dα, t > a, (3.16)

where ∗aDα
t denotes Riemann-Liouville fractional derivative of order α. Next, we aim to solve the

following differential equation of distributed order:

DDφu(t) = f (t; u), ∀t ∈ (0,T], (3.17)

u(0) = 0, (αmax) ∈ (0,1], (3.18)

u(0) =
du
dt
|t=0 = 0, (αmax) ∈ (1,2]. (3.19)

In the sequel, we present different approaches to discretize the aforementioned differential operator.

Due to (1.22), the Caputo and Riemann-Liouville fractional derivatives of order α ∈ (0,1) coincide

with each other when u(a) = 0. Therefore, in this study, we employ the definition of the distributed

fractional derivatives of Riemann-Liouville sense and remove the pre-superscript RL for simplicity.

3.3.1 Variational Formulation

In order to obtain the variational form we multiply (4.6) by a proper test function v (defined later)

and integrate over the computational domain:

∫
Ω

DDφu(t) v(t) dΩ =
∫
Ω

f (t; u) v(t) dΩ. (3.20)
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Using the definition of distributed order fractional derivatives defined in (5.7) we get

∫ αmax

αmin
φ(α)

∫
Ω

0D
α
t u(t) v(t) dΩ dα =

∫
Ω

f (t; u) v(t) dΩ, (3.21)

where

∀α ∈ (αmin, αmax),

∫
Ω

0D
α
t u v dΩ =

(
0D

α
t u, v

)
Ω

denotes the well-known L2-inner product. Given the initial conditions (4.7) and/or (4.8) and by

Lemmas (7.3.3), we define the bilinear form associated with α ∈ (αmin, αmax) as

a(α)(u, v) =
(
0D

α
t u, v

)
Ω
= (0D

α/2
t u, tD

α/2
T v)Ω. (3.22)

We choose v such that v(T) = 0 and tD
α/2
T v is integrable in Ω ∀α ∈ (αmin, αmax). Moreover, let

U be the solution space, defined as

U = {u ∈ L2(Ω) :

√∫ αmax

αmin
φ(α)




0D
α/2
t u




2

L2(Ω)
dα < ∞ (3.23)

s.t.
u(0) = 0 if αmax ∈ (0,1]

u(0) = du
dt |t=0 = 0 if αmax ∈ (1,2]

}

and let V be the test function space given by

V = {v ∈ L2(Ω) :

√∫ αmax

αmin
φ(α)




tD
α/2
T v




2

L2(Ω)
dα < ∞ s.t. v(T) = 0}. (3.24)

The problem thus reads as: find u ∈ U such that a(u, v) = l(v), ∀v ∈ V where

a(u, v) :=
∫ αmax

αmin
φ(α) a(α)(u, v) dα (3.25)

denotes the distributed bilinear form and l(v) := ( f , v)Ω.
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3.4 Petrov-Galerkin Method: Modal Expansion

In the Petrov-Galerkin (PG) method, we follow the recent theory of fractional Sturm-Liouville

eigen-problems (FSLP) in [186] and employ the corresponding eigenfunctions, known as the Jacobi

Poly-fractonomials (of first kind) given in the standard domain [−1,1] by

(1)P µ
n (ξ) = (1 + ξ)µP−µ,µn−1 (ξ), ξ ∈ [−1,1], (3.26)

as non-polynomial basis functions consisting of a fractional term multiplied by the Jacobi polyno-

mial P−µ,µn−1 (ξ), hence we employ (3.26) in construction of a basis to formulate a projection type

scheme, namely modal expansion. We represent the solution in terms of the elements of the basis

space UN given as follows

UN = span
{
(1)Pµn (ξ), ξ ∈ [−1,1], n = 1,2, · · · ,N

}
, (3.27)

via the poly-fractonomial modal expansion as

uN (ξ) =
N∑

n=1
cn
(1)Pµn (ξ), (3.28)

in which µ is to be fixed as a fractional parameter a priori depending on the range of distribution

order interval, i.e. µ ∈ (0,1) if αmax ∈ (0,1] and µ ∈ (1,2) if αmax ∈ (1,2]. It can also be tunned

to capture possible singularities in the exact solution if some knowledge about that is available.

Moreover, in the PG scheme, we employ another space of test functions VN , however of the

same dimension, given by

VN = span
{
(2)Pµk (ξ), ξ ∈ [−1,1], k = 1,2, · · · ,N

}
, (3.29)

in which (2)Pµk (ξ) = (1− ξ)
µPµ,−µk−1 (ξ) denotes the Jacobi poly-fractonomial of second kind, which

is the explicit eigenfunction of fractional Sturm-Liouville problem of second kind in [186].

It should be noted that since φ(α) ≥ 0 and
∫ αmax
αmin

φ(α) dα = 1 it is not difficult to see that

UN ⊂ U and VN ⊂ V when µ is chosen properly. Therefore, the bilinear form (7.28) reduces to the

discrete bilinear form
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aαh (uN, vN ) = (0D
α/2
t uN, tD

α/2
T vN )Ω (3.30)

and thus the problem reads as: find uN ∈ UN such that

ah(uN, vN ) = lh(vN ), ∀vN ∈ VN, (3.31)

where ah(uN, vN ) :=
∫ αmax
αmin

φ(α) aαh (uN, vN ) dα denotes the discrete distributed bilinear form and

lh(vN ) := ( f , vN )Ω represents the load vector.

By substituting the expansion (3.28), choosing vN =
(2)Pµk (ξ) ∈ VN , k = 1,2, · · · ,N and using

(1.21), the discrete distributed bilinear form in (4.23) can be written as

∫ αmax

αmin
φ(α)

N∑
n=1

cn(
2
T
)α

(
−1D

α/2
ξ
[(1)Pµn (ξ)] , ξD

α/2
1 [(2)Pµk (ξ)]

)
Ω

dα. (3.32)

From Lemma 3.2.1, we have

−1D
α/2
ξ
[(1)Pµn (ξ)] =

Γ(n + µ)
Γ(n + η)

(1)Pηn(ξ) (3.33)

RL
ξD

α/2
1 [(2)Pµk (ξ)], =

Γ(k + µ)
Γ(k + η)

(2)Pηk (ξ), (3.34)

where η = µ − α/2. Thus, by changing the order of summation, the integral (3.32) takes the form

N∑
n=1

cn

∫ αmax

αmin
φ(α) (

2
T
)α
Γ(n + µ)
Γ(n + η)

Γ(k + µ)
Γ(k + η)

(
(1)Pηn(ξ) ,

(2)Pηk (ξ)
)
Ω

dα (3.35)

=

N∑
n=1

cn

∫ αmax

αmin
φ(α) (

2
T
)α
Γ(n + µ)
Γ(n + η)

Γ(k + µ)
Γ(k + η)

∫ 1

−1
(1)Pηn(ξ)

(2)Pηk (ξ) dξ dα,

where by changing the order of integrations we get

ah(uN, vN ) (3.36)

=

N∑
n=1

cn

∫ 1

−1

[∫ αmax

αmin
φ(α) (

2
T
)α
Γ(n + µ)
Γ(n + η)

Γ(k + µ)
Γ(k + η)

(1)Pηn(ξ)
(2)Pηk (ξ) dα

]
dξ.
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Theorem 3.4.1 (Spectrally/Exponentially Accurate Quadrature Rule in α-Dimension). Part A:

∀ξ = ξ0 ∈ [−1,1] fixed, and ∀n ∈ � ∪ {0}, the Jacobi polynomial P±α,∓αn (ξ0) is a polynomial of

order n in α.

Part B: Let φ ∈ Hr ([αmin, αmax]), r > 0. Then ∀µ ≥ αmax/2���� ∫ αmax

αmin
φ(α) (

2
T
)α
Γ(n + µ)
Γ(n + η)

Γ(k + µ)
Γ(k + η)

(1)Pηn(ξ)
(2)Pηk (ξ) dα −

Q∑
q=1

w̃q φ(αq) (
2
T
)αq Γ(n + µ)

Γ(n + ηq)

Γ(k + µ)
Γ(k + ηq)

(1)P
ηq
n (ξ)

(2)P
ηq
k (ξ)

���� ≤ C Q−r ‖φ‖Hr ([αmin,αmax]) ,

whereC > 0, φN (α) =
∑N

n=0 ρ̃n Pn(α) denotes the polynomial expansion of φ(α), and {αq, w̃q}

����Q
q=1

represents the set of Gauss-Legendre quadrature points and weights.

Part C: If φ(α) is smooth, the quadrature rule in α-dimension becomes exponentially accurate in

Q.

Proof. See section (3.7.4).

By theorem (4.3.2) and performing an affine mapping from [α ∈ αmin, αmax] to the standard

domain αst ∈ [−1,1], the inner integral in (3.36) can be evaluated with spectral accuracy by

employing a Gauss-Legendre quadrature rule. Then by changing the order of summation and

integral ah(uN, vN ) = lh(vN ) can be written as:

N∑
n=1

Q∑
j=1

cn Jα w j φ j (
2
T
)
α j Γ(n + µ)
Γ(n + η j)

Γ(k + µ)
Γ(k + η j)

∫ 1

−1
(1)P

η j
n (ξ)

(2)P
η j
k (ξ) dξ (3.37)

=
(

f , (2)Pµk (ξ)
)
Ω
, k = 1,2, ...,N,

where Jα = dα
dαst

=
(αmax−αmin)

2 is constant and α j = α(αst j ), φ j = φ(α(αst j )), η j = µ − α j/2

and αst j and w j are the quadrature points and weights respectively. The linear system is then

constructed as

S®c = ®F , (3.38)
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in which the entries of the stiffness matrix S and force vector ®F are given by

Skn =

Q−1∑
j=0

Jα w j φ j (
2
T
)
α j Ckn

∫ 1

−1
(1)P

η j
n (ξ)

(2)P
η j
k (ξ)dξ (3.39)

and

Fk =

∫ 1

−1
f (ξ) (2)Pµk (ξ) dξ (3.40)

respectively, where

Ckn ≡
Γ(n + µ)
Γ(n + η j)

Γ(k + µ)
Γ(k + η j)

.

Remark 3.4.2. For each fixed j and given the structure of (1)P
η j
n (ξ) and (2)P

η j
k (ξ), the above

integrations take the form∫ 1

−1
(1)P

η j
n (ξ)

(2)P
η j
k (ξ)dξ =

∫ 1

−1
(1 − ξ)η j (1 + ξ)η j P

η j ,−η j
k−1 (ξ) P

−η j ,η j
n−1 (ξ) dξ,∫ 1

−1
f (ξ) (2)Pµk (ξ) dξ =

∫ 1

−1
(1 − ξ)µ f (ξ) Pµ,−µk−1 (ξ) dξ,

and therefore, the full stiffness matrix S and vector ®F can be constructed accurately using a proper

Gauss-Lobatto-Jacobi rule corresponding to the weight function (1 − ξ)η j (1 + ξ)η j and (1 − ξ)µ

respectively.

3.4.1 Discrete Stability Analysis

In this section, we investigate the stability of the numerical scheme, developed based on the

aforementioned choice of solution and test function space considering the bilinear form in (4.23).

Theorem 3.4.3. The scheme (4.23) is stable and the following inequality holds

in f
uN∈UN

sup
vN∈VN

ah(uN, vN )

‖uN ‖UN
‖vN ‖VN

≥ β.

Proof. Recalling from (4.15)

ah(uN, vN ) =

∫ αmax

αmin
φ(α)aαh (uN, vN ) dα,
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where, by lemma (3.2.1),

aαh (uN, vN ) = aαh (
N∑

n=1
an
(1)Pµn (ξ),

N∑
k=1

ak
(2)Pµk (ξ)), ∀α ∈ (αmin, αmax),

=

N∑
n=1

N∑
k=1

anakCµ,α
n,k

∫ 1

−1
(1 − ξ)µ̃(1 + ξ)−µ̃(1 + ξ)2µ̃P µ̃,−µ̃k−1 (ξ) P−µ̃,µ̃n−1 (ξ) dξ,

in which, µ̃ = µ−α/2, Cµ,α
n,k =

Γ(n+µ)
Γ(n+µ̃)

Γ(k+µ)
Γ(k+µ̃) and (1+ ξ)

µ̃ is replaced by (1+ ξ)−µ̃(1+ ξ)2µ̃. We let

µ̃ > −1/2, hence the function (1 + ξ)2µ̃ is nonnegative, nondecreasing, continuous and integrable

in the integration domain. Therefore,

aαh (uN, vN ) ≥
N∑

n=1

N∑
k=1

anakCµ,α
n,k C0

∫ 1

−1
(1 − ξ)µ̃(1 + ξ)−µ̃P µ̃,−µ̃k−1 (ξ)P

−µ̃,µ̃
n−1 (ξ) dξ.

Moreover, the Jacobi polynomial P−µ̃,µ̃n−1 (ξ) can be expanded as:

P−µ̃,µ̃n−1 (ξ) =
n−1∑
j=0

(
n − 1 + j

j

) (
n − 1 + µ̃
n − 1 − j

)
(−1) j−n+1(

1
2
) j(1 + ξ) j .

By multiplying and dividing each term within the summation by
(n−1−µ̃
n−1− j

)
we get

P−µ̃,µ̃n−1 (ξ) =
n−1∑
j=0
A
µ̃
n,j

(
n − 1 + j

j

) (
n − 1 − µ̃
n − 1 − j

)
(−1) j−n+1(

1
2
) j(1 + ξ) j,

where A µ̃
n,j =

(n−1+µ̃
n−1− j

)
/
(n−1−µ̃
n−1− j

)
is nondecreasing, positive and bounded ∀n, j, µ̃. Therefore, there

exists C1 = C1(n) > 0 such that

aαh (uN, vN ) ≥
N∑

n=1

N∑
k=1

anak Cµ,α
n,k C0 C1(n)

∫ 1

−1
(1 − ξ)µ̃(1 + ξ)−µ̃P µ̃,−µ̃k−1 (ξ)P

µ̃,−µ̃
n−1 (ξ) dξ

≥ C0

N∑
k=1

a2
k Cµ,α

k,k C1(n) ε
µ̃,−µ̃
k−1 ,

in which ε µ̃,−µ̃k−1 =
2

2k−1
Γ(k+µ) Γ(k−µ)
(k−1)! Γ(k) . Hence,

ah(uN, vN ) ≥ C0

∫ αmax

αmin
φ(α)

N∑
k=1

a2
k Cµ,α

k,k C1(n) ε
µ̃,−µ̃
k−1 dα. (3.41)
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Moreover, we have

‖vN ‖
2
VN
=

∫ αmax

αmin
φ(α)




−1D
α/2
x vN




2

L2(Ω)
dα,

where by considering vn =
∑N

k=1 ak
(2)Pµk (ξ), we can write ∀α ∈ (αmin, αmax),


−1D

α/2
x vN




2

L2(Ω)
=

∫ 1

−1
(

N∑
k=1

ak
Γ(k + µ)
Γ(k + µ̃)

(1 − ξ)µ̃P µ̃,−µ̃k−1 (ξ))
2dξ,

≤

∫ 1

−1

N∑
k=1

a2
k

(
Γ(k + µ)
Γ(k + µ̃)

)2
(1 − ξ)2µ̃(P µ̃,−µ̃k−1 (ξ))

2dξ,

(By Jensen Inequality).

By multiplying the integrand by (1 + ξ)−µ̃(1 + ξ)µ̃ and changing the order of summation and

integration, we obtain


−1D
α/2
x vN




2

L2(Ω)
≤

N∑
k=1

a2
k

(
Γ(k + µ)
Γ(k + µ̃)

)2 ∫ 1

−1
(1 − ξ)µ̃(1 + ξ)−µ̃(1 − ξ2)µ̃P µ̃,−µ̃k−1 (ξ) P µ̃,−µ̃k−1 (ξ) dξ,

≤

N∑
k=1

a2
k

(
Γ(k + µ)
Γ(k + µ̃)

)2
C2

∫ 1

−1
(1 − ξ)µ̃(1 + ξ)−µ̃P µ̃,−µ̃k−1 (ξ) P µ̃,−µ̃k−1 (ξ) dξ,

since µ̃ > −1/2 and consequently (1 − ξ2)µ̃ is a nonnegative and integrable in the domain of

integration. By the orthogonality of Jacobi polynomials, we get


−1D
α/2
x vN




2

L2(Ω)
≤ C2

N∑
k=1

a2
k

(
Γ(k + µ)
Γ(k + µ̃)

)2
ε
µ̃,−µ̃
k−1 ,

and thus

‖vN ‖VN
≤

√√√
C2

∫ αmax

αmin
φ(α)

N∑
k=1

a2
k

(
Γ(k + µ)
Γ(k + µ̃)

)2
ε
µ̃,−µ̃
k−1 dα. (3.42)

Similarly for ‖uN ‖
2
UN

:

‖uN ‖
2
UN
=

∫ αmax

αmin
φ(α)




−1D
α/2
x uN




2

L2(Ω)
dα,

where ∀α ∈ (αmin, αmax):


−1D
α/2
x uN




2

L2(Ω)
=

∫ 1

−1
(

N∑
n=1

an
Γ(n + µ)
Γ(n + µ̃)

(1 + ξ)µ̃P−µ̃,µ̃n−1 (ξ))
2dξ,

≤

∫ 1

−1

N∑
n=1

a2
n

(
Γ(n + µ)
Γ(n + µ̃)

)2
(1 + ξ)2µ̃(P−µ̃,µ̃n−1 (ξ))

2dξ,

By Jensen Inequality.
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Following similar steps, and by multiplying the integrand by (1 − ξ)−µ̃(1 − ξ)µ̃ and changing the

order of summation and integration, we obtain


−1D
α/2
x uN




2

L2(Ω)
,

≤

N∑
n=1

a2
n

(
Γ(n + µ)
Γ(n + µ̃)

)2 ∫ 1

−1
(1 − ξ)−µ̃(1 + ξ)µ̃(1 − ξ2)µ̃P−µ̃,µ̃n−1 (ξ) P−µ̃,µ̃n−1 (ξ) dξ,

≤

N∑
n=1

a2
n

(
Γ(n + µ)
Γ(n + µ̃)

)2
C3

∫ 1

−1
(1 − ξ)−µ̃(1 + ξ)µ̃P−µ̃,µ̃n−1 (ξ) P−µ̃,µ̃n−1 (ξ) dξ,

since (1− ξ2)µ̃ is a nonnegative and integrable in the domain of integral. Next, by the orthogonality

of Jacobi polynomials,


−1D
α/2
x uN




2

L2(Ω)
≤ C3

N∑
n=1

a2
n

(
Γ(n + µ)
Γ(n + µ̃)

)2
ε
−µ̃,µ̃
n−1 .

Therefore,

‖uN ‖UN
≤

√√√
C3

∫ αmax

αmin
φ(α)

N∑
n=1

a2
n

(
Γ(n + µ)
Γ(n + µ̃)

)2
ε
µ̃,−µ̃
n−1 dα, (3.43)

where ε−µ̃,µ̃n−1 = ε
µ̃,−µ̃
n−1 .

Therefore, using (3.41), (3.42) and (3.43),

in f
uN∈UN

sup
vN∈VN

ah(uN, vN )

‖uN ‖UN
‖vN ‖VN

≥
C0 C1min√

C2 C3
= β.

3.4.2 Projection Error Analysis

In this section, we investigate the error due to the projection of the true solution onto the defined

set of basis functions.

Theorem 3.4.4. Let dru
dtr ∈ U, that is,

∫ αmax
αmin

φ(α)



0D

r+α/2
t u




2

L2(Ω)
dα < ∞ and uN denotes the

projection of the exact solution u. Then,

‖u − uN ‖
2
U ≤ C N−2r

∫ αmax

αmin
φ(α)




0D
r+α/2
t u




2

L2(Ω)
dα. (3.44)
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Proof. By performing an affine mapping from t ∈ [0,T] to the standard domain ξ ∈ [−1,1], we

expand the exact solution u in terms of the following infinite series of Jacobi poly-fractonomials

u(ξ) =
∞∑

n=1
cn
(1)Pµn (ξ). (3.45)

Then, we note that by using (3.2.1) and (1.21),

0D
r+α/2
t u(ξ(t)) = (

2
T
)r+α/2

−1I
µ−α/2
ξ

dr

dξr −1D
µ
ξ

u(ξ),

= (
2
T
)r+α/2

∞∑
n=1

cn

(
Γ(n + µ)
Γ(n)

)
−1I

µ−α/2
ξ

dr

dξr [Pn−1(ξ)],

where,

dr

dξr [Pn−1(ξ)] =


(n−1+r)!
2r(n−1)! Pr,r

n−1−r (ξ) r < n,

0 r ≥ n.

Thus, by multiplying with a proper weight function, w(ξ) = (1 + ξ)r/2−µ+α/2 (1 − ξ)r/2, the

right-hand-side of (3.44) takes the form∫ αmax

αmin
φ(α) (

2
T
)2r+α/2

��������(1 + ξ)r/2−µ+α/2 (1 − ξ)r/2 (3.46)

∞∑
n=r+1

cn

(
Γ(n + µ)
Γ(n)

)
(n − 1 + r)!
2r(n − 1)! −1I

µ−α/2
ξ

Pr,r
n−1−r (ξ)

��������2
L2(Ω)

dα.

By expanding the Jacobi polynomial as

Pr,r
n−1−r (ξ) = (−1)n−1−r

n−1−r∑
j=0

(
n − 1 + r + j

j

) (
n − 1

n − 1 − r − j

)
(
−1
2
) j (1 + ξ) j,

and changing the order of summation and the integration, we obtain the fractional integral as

−1I
µ−α/2
ξ

Pr,r
n−1−r (ξ), (3.47)

= (−1)n−1−r (1 + ξ)µ−α/2
n−1−r∑

j=0

(
n − 1 + r + j

j

) (
n − 1

n − 1 − r − j

)
(
−1
2
) j

Γ(1 + j)
Γ(1 + j + µ − α/2)

(1 + ξ) j,

= (−1)n−1−r (1 + ξ)µ−α/2
n−1−r∑

q=0
c̃q(α) Pr,r

q (ξ),
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where, the coefficient, c̃q(α), can be obtained using the orthogonality of Jacobi polynomials. Hence,

by taking Cn = cn (−1)n−1 Γ(n+µ)
Γ(n) , (3.46) takes the form

∫ αmax

αmin
φ(α)(

2
T
)2r+α







(1 + ξ)r/2(1 − ξ)r/2 ∞∑
n=r+1

Cn
(n − 1 + r)!
2r(n − 1)!

(−1)−r
n−1−r∑

q=0
c̃q(α)P

r,r
q (ξ)








2

L2(Ω)

dα,

(3.48)

=

∫ αmax

αmin
φ(α)(

2
T
)2r+α


∫ 1

−1
(1 + ξ)r (1 − ξ)r ©­«

∞∑
n=r+1

Cn
(n − 1 + r)!
2r(n − 1)!

n−1−r∑
q=0

c̃q(α)P
r,r
q (ξ)

ª®¬
2

dξ
 dα.

Then, we change the order of two summations in order to use the orthogonality of Jacobi polynomials

and obtain∫ αmax

αmin
φ(α)(

2
T
)2r+α


∫ 1

−1
(1 + ξ)r (1 − ξ)r ©­«

∞∑
q=0

∞∑
n=r+1+q

Cn
(n − 1 + r)!
2r(n − 1)!

c̃q(α)P
r,r
q (ξ)

ª®¬
2

dξ
 dα,

(3.49)

=

∫ αmax

αmin
φ(α)(

2
T
)2r+α


∫ 1

−1
(1 + ξ)r (1 − ξ)r

∞∑
q=0

©­«
∞∑

n=r+1+q
Cn
(n − 1 + r)!
2r(n − 1)!

ª®¬
2

c̃2
q(α)(P

r,r
q (ξ))

2dξ
 dα,

=

∞∑
q=0

©­«
∞∑

n=r+1+q
Cn
(n − 1 + r)!
2r(n − 1)!

ª®¬
2 ∫ 1

−1
(1 + ξ)r (1 − ξ)r (Pr,r

q (ξ))
2dξ

∫ αmax

αmin
φ(α)(

2
T
)2r+α c̃2

q(α)dα,

=

∞∑
q=0

©­«
∞∑

n=r+1+q
Cn
(n − 1 + r)!
2r(n − 1)!

ª®¬
2

22r+1

2q + 2r + 1
((q + 1)!)2

q!(q + 2r)!

∫ αmax

αmin
φ(α)(

2
T
)2r+α c̃2

q(α)dα,

=
22r+1( 2T )

2r

(2r)2

∞∑
q=0

©­«
∞∑

n=r+1+q
Cn
(n − 1 + r)!
(n − 1)!

ª®¬
2

(q + 1)2 q!
(2q + 2r + 1)(q + 2r)!

∫ αmax

αmin
φ(α)(

2
T
)α c̃2

q(α)dα.

Moreover, using the approximation of the solution given in (3.28) and by multiplying with the

proper weight functions, the left-hand-side of (3.44) takes the form


(1 + ξ)−µ+α/2 (u − uN )



2

U
, (3.50)

=

∫ αmax

αmin
φ(α) (

2
T
)α

��������(1 + ξ)−µ+α/2 ∞∑
n=N+1

cn

(
Γ(n + µ)
Γ(n)

)
−1I

µ−α/2
ξ

Pn−1(ξ)

��������2
L2(Ω)

dα,
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in which,
−1D

α/2
ξ
=
−1D

α/2−µ+µ
ξ

=
−1I

µ−α/2
ξ −1D

µ
ξ
and the fractional derivative is taken using

(3.2.1). By expanding the Legendre polynomial as

Pn−1(ξ) = (−1)n−1
n−1∑
j=0

(
n − 1 + j

j

) (
n − 1

n − 1 − j

)
(
−1
2
) j (1 + ξ) j,

and following similar steps as in (3.47), we obtain the fractional integral as

−1I
µ−α/2
ξ

Pn−1(ξ) = (−1)n−1 (1 + ξ)µ−α/2
n−1∑
q=0

ãq(α) Pq(ξ), (3.51)

where the coefficient, ãq(α), can be obtained using the orthogonality of Legendre polynomials.

Hence, (3.50) takes the form


(1 + ξ)−µ+α/2 (u − uN )



2

U
=

∫ αmax

αmin
φ(α) (

2
T
)α

∫ 1

−1

©­«
∞∑

n=N+1
Cn

n−1∑
q=0

ãq(α) Pq(ξ)
ª®¬

2

dξ dα,

(3.52)

in which, Cn = cn (−1)n−1 Γ(n+µ)
Γ(n) . We change the order of two summations to use the orthogonality

of Legendre polynomials and obtain∫ αmax

αmin
φ(α) (

2
T
)α

∫ 1

−1

©­«
N∑

q=0

∞∑
n=q+1

Cn ãq(α) Pq(ξ) +
∞∑

q=N+1

∞∑
n=q+1

Cn ãq(α) Pq(ξ)
ª®¬

2

dξ dα,

=

∫ αmax

αmin
φ(α) (

2
T
)α

( N∑
q=0

©­«
∞∑

n=q+1
Cn

ª®¬
2

ã2
q(α)

∫ 1

−1
(Pq(ξ))

2 dξ

+

∞∑
q=N+1

©­«
∞∑

n=q+1
Cn

ª®¬
2

ã2
q(α)

∫ 1

−1
(Pq(ξ))

2 dξ

)
dα,

≤

∞∑
q=N+1

©­«
∞∑

n=q+1
Cn

ª®¬
2

2
2q + 1

∫ αmax

αmin
φ(α) (

2
T
)α ã2

q(α) dα,

≤

(
N!

(N − r)!

)2 ∞∑
q=N+1

©­«
∞∑

n=q+1
Cn
(n − 1 + r)!
(n − 1)!

ª®¬
2

2
2q + 1

(q + 1)2 q!
(2q + 2r + 1)(q + 2r)!

∫ αmax

αmin
φ(α) (

2
T
)α ã2

q(α) dα,

≤

(
N!

(N − r)!

)2 ∫ αmax

αmin
φ(α) (

2
T
)2r+α




(1 + ξ)r/2−µ+α/2 (1 − ξ)r/2 −1D
r+α/2
ξ

u



2

L2(Ω)
dα,

≤

(
N!

(N − r)!

)2 ∫ αmax

αmin
φ(α)




0D
r+α/2
t u




2

L2(Ω)
dα. (3.53)
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Therefore,

‖u − uN ‖
2
U ≤




(1 + ξ)−µ+α/2 (u − uN )



2

U
≤ C N−2r

∫ αmax

αmin
φ(α)




0D
r+α/2
t u




2

L2(Ω)
dα.

Remark 3.4.5. Since the inf-sup condition holds (see Theorem (3.4.3)), by the Banach-Nec̆as-

Babus̆ka theorem [51], the error in the numerical scheme is less that or equal to a constant times

the projection error. Choosing the projection uN in Theorem (3.4.4), we infer the spectral accuracy

of the scheme.

3.5 Fractional Collocation Method: Nodal Expansion

Next, we represent the solution via the following poly-fractonomial nodal expansion as

uN (ξ) =
N∑

j=1
uN (ξ j) h

µ
j (ξ), (3.54)

where hµj (ξ) represent fractional Lagrange interpolants FLIs, which are all of fractional order

(N + µ − 1) and constructed using the aforementioned interpolations points −1 = ξ1 < ξ2 < · · · <

ξN = 1 as:

hµj (ξ) =
( ξ − x1

x j − x1

) µ N∏
k=1
k, j

( ξ − xk
x j − xk

)
, j = 2,3, · · · ,N . (3.55)

Because of the homogeneous Dirichlet boundary condition(s) in (4.7) and (4.8), uN (−1) = 0, and

thus we only construct hµj (ξ) for j = 2,3, · · · ,N . We note that FLIs satisfy the Kronecker delta

property, i.e., hµj (ξk ) = δ j k , at interpolation points, however they vary as a poly-fractonomial

between ξk ’s.

3.5.1 Differentiation Matrices Dα and D1+α, α ∈ (0,1)

By breaking the domain of integration in α, (5.7) takes the form∫ 1

αmin
φ(α) 0D

α
t u(t)dα +

∫ αmax

1
φ(α) 0D

α
t u(t)dα = f (t; u), ∀t ∈ (0,T]. (3.56)
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Following [189], we obtain the corresponding fractional differentiation matrices Dα and D1+α,

α ∈ (0,1) by substituting (3.55) in (3.54) and taking the α-th order fractional derivative. These

matrices are given as:

Dαi j =
1

(ξ j + 1)µ
N∑

n=1
β

j
n

n−1∑
q=dα−µe

bnq (ξi + 1)q+µ−α, (3.57)

and

D1+α
i j =

1
(ξ j + 1)µ

[ N∑
n=1

β
j
n

n−1∑
q=dα−µe

bnq(q + µ − α) (ξi + 1)q+µ−α−1
]
, (3.58)

in which dα − µe denotes the ceiling of α − µ and

bnq = (−1)n+q−1(
1
2
)q

©­­«
n − 1 + q

q

ª®®¬
©­­«
n − 1 + µ

n − 1 − q

ª®®¬
Γ(q + µ + 1)

Γ(q + µ − α + 1)
. (3.59)

The coefficients, β j
n, are the coefficients in expansion of the polynomial p j(ξ) =

∏N
k=1
k, j

(
ξ−ξk
ξ j−ξk

)
in

terms of Jacobi polynomials as

N∏
k=1
k, j

( ξ − ξk
x j − xk

)
=

N∑
n=1

β
j
nP−µ,µn−1 (ξ). (3.60)

Due to the orthogonality of the Jacobi poly-fractonomials P−µ,µn−1 (ξ) with respect to the weight

function w(ξ) = (1 − ξ)−µ(1 + ξ)−µ, these coefficients can be computed efficiently only once by

employing a proper Guass-Lobatto-Jacobi quadrature rule.

Therefore, by substituting the nodal expansion (3.55) into (3.56), performing an affine mapping

from [αmin, αmax] to the standard domain [−1,1], and employing a proper quadrature rule in

α-domain, (3.56) can be written as

N∑
j=2


Q∑
q

wq φ(αq) (
2
T
)αq

(
Dαq

i j + D
1+αq
i j

) uN (ξ j) = f (ξi), (3.61)

N∑
j=2

Di,j uN (ξ j) = f (ξi), i = 2,3, · · · ,N .
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Remark 3.5.1. Multi-term problems can be generalized to the distributed order counterparts

through the definition of distribution function φ(α). For instance, if the operator consists of

multiple fractional orders 0 < α1 < α2 < · · · < αP ≤ 2, the corresponding multi-term problem

p=P∑
p=1

0D
αp
t u(t) = f (t)

can be represented as a distributed order problem of the form (5.7), in which φ(α) =
∑p=P

p=1 δ(α −

αp). We note that in this case, the distributed fractional Sobolev space, φH(R), coincides with

the fractional Sobolev space ,HαP (R). The choice of collocation/interpolation points is the key to

construct well-conditioned linear systems with optimal approximability. In the present work, we

leave µ in expansion (3.54) as a free interpolation parameter to capture possible singularities and

employ the zeros of Legendre polynomials as the interpolation collocation/interpolation points.

3.6 Numerical Simulations

In order to examine the convergence of the schemes with modal and nodal expansions, we

consider problems with smooth and non-smooth solutions.

3.6.1 Smooth Solutions

Let α ∈ [0,2] and consider the following two cases:

• Case I: uext = t5, φ(α) = Γ(6 − α)/5! , f (t) = (t
5−t3)

log(t)

• Case II: uext = t3, φ(α) = Γ(4 − α) sinh(α), f (t) = 6t(t2−cosh(2)−sinh(2) log(t))
(log(t)2−1)

.

By taking the simulation time T = 2 and for different choices of µ, we provide the convergence

study in L∞-norm, L2-norm, Hµ1-norm and φH -norm using the PG scheme and in L∞-norm

using the collocation scheme. It is observed that the choice of µ has an important effect on the

convergence behaviour of the scheme. For instance, since the exact solution is a polynomial, as

µ→ 1, we recover the exponential convergence in capturing the exact solution.
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Table 3.1: Case-I; PG scheme convergence study in L∞-norm, L2-norm, Hµ1-norm and φH -norm,
where T = 2.

µ1 = 1 + 10−4

N L∞-Error L2-Error Hµ1-Error φH -Error
2 9.49784 3.38063 20.604 6.52507
4 0.163486 0.0823368 0.802757 0.187176
6 9.71043 × 10−8 6.7433 × 10−8 8.37613 × 10−7 1.70551 × 10−7

8 2.9053 × 10−9 2.32457 × 10−9 3.53574 × 10−8 6.59486 × 10−9

10 2.27748 × 10−10 2.01002 × 10−10 3.67074 × 10−9 6.38469 × 10−10

µ1 = 1.1
N L∞-Error L2-Error Hµ1-Error φH -Error
2 9.6776 3.2898 23.3004 6.38693
4 0.160434 0.0661304 0.872809 0.157957
6 0.0000947942 0.0000589784 0.00107458 0.00015822
8 3.10668 × 10−6 2.19939 × 10−6 0.0000507737 6.59429 × 10−6

10 2.48519 × 10−7 1.9822 × 10−7 5.5753 × 10−6 6.61409 × 10−7

µ1 = 1.5
N L∞-Error L2-Error Hµ1-Error φH -Error
2 9.8476 3.10681 35.8457 5.96161
4 0.102534 0.0264974 0.949183 0.0718496
6 0.000584995 0.00015106 0.0117235 0.000524729
8 0.0000272655 7.37649 × 10−6 0.000989158 0.0000306404

10 2.75271 × 10−6 7.75346 × 10−7 0.000158823 3.72512 × 10−6

Tables 3.1 and 3.2 show the convergence behaviour of the simulation results based on the

PG scheme for the two case-I and II respectively. Tables 3.3 shows the convergence behaviour

of the simulation results based on the collocation scheme for the two cases I and II. Table 3.4

shows the convergence behaviour of the simulation results based on the collocation scheme for

the case where the exact solution is the same as case-I but the distribution function is φ(α) =∑4
p=1 δ(α − αp) with the fractional orders {1/10,1/2,13/10,19/10} and the forcing function is

f (t) =
∑4

p=1
120

Γ(6−αp)
t5−αp .

3.6.2 Non-Smooth Solutions

Since the exact solution is not always known and in contrast to the standard fractional ODEs where

the forcing term gives some regularity information about the exact solution, in distributed order

problems such a prediction is rather difficult to make. Hence, the fractional parameter µ can play

the role of a fine-tuning knob giving the possibility of searching for the best/optimal case, where the

highest rate can be achieved with minimal degrees of freedom. Here, we let α ∈ [0,1] and consider
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Table 3.2: Case-II; PG scheme convergence study in L∞-norm, L2-norm, Hµ1-norm and φH -
norm, where T = 2.

µ1 = 1 + 10−4

N L∞-Error L2-Error Hµ1-Error φH -Error
2 0.379134 0.325253 1.44392 1.86897
4 6.80222 × 10−7 6.33141 × 10−7 4.61395 × 10−6 5.29606 × 10−6

6 5.22608 × 10−8 4.52071 × 10−8 4.80236 × 10−7 5.08899 × 10−7

8 1.27547 × 10−8 9.98313 × 10−9 1.0532 × 10−7 1.049 × 10−7

10 7.31142 × 10−9 7.21402 × 10−9 3.44882 × 10−8 3.39574 × 10−8

µ1 = 1.1
N L∞-Error L2-Error Hµ1-Error φH -Error
2 0.369682 0.263829 1.45384 1.62458
4 0.000646557 0.000569995 0.00548608 0.00499413
6 0.0000458334 0.0000438926 0.000636023 0.000511403
8 7.74333 × 10−6 7.36329 × 10−6 0.000147177 0.000107932
10 2.02013 × 10−6 1.84714 × 10−6 0.000048212 0.0000327428

µ1 = 1.5
N L∞-Error L2-Error Hµ1-Error φH -Error
2 0.288508 0.114871 1.25471 0.848595
4 0.00403916 0.00163979 0.0511667 0.0190804
6 0.000406095 0.000169817 0.0106909 0.00268063
8 0.0000789352 0.0000336939 0.00358698 0.000671243
10 0.0000219275 9.49574 × 10−6 0.00153771 0.000228446

Table 3.3: Case-I and II; collocation scheme convergence study in L∞-norm, where T = 2.
µ = 1 − 10−10 µ = 7/10 µ = 1/10

N Case-I Case-II Case-I Case-II Case-I Case-II
2 2.59 × 10+1 5.74 3.0 × 10+1 8.84 4.3 × 10+1 19.91
4 6.81 × 10−1 5.30 × 10−12 1.10 × 10+1 2.58 × 10−1 2.51 × 10+1 1.01 × 10−1

6 3.87 × 10−13 2.15 × 10−13 1.43 × 10−3 1.52 × 10−3 3.48 × 10−3 8.03 × 10−3

8 1.10 × 10−14 2.68 × 10−14 3.10 × 10−5 3.34 × 10−4 8.38 × 10−5 1.83 × 10−3

10 8.75 × 10−15 7.01 × 10−15 2.12 × 10−6 1.12 × 10−4 1.0 × 10−5 6.25 × 10−4

Table 3.4: Multi-term case; collocation scheme convergence study in L∞-norm, where T = 2.

N µ = 1 − 10−10 µ = 7/10 µ = 1/10
6 2.99596 × 10−4 1.93088 × 103 7.10859 × 10−2

10 4.40056 × 10−7 7.90916 × 10−6 1.95735 × 10−4

14 9.35031 × 10−9 3.39228 × 10−7 7.99603 × 10−6

18 9.15918 × 10−10 3.53369 × 10−8 8.27226 × 10−7

the following two cases of singular solution, where by the proper choice of µ we can easily capture

the singularity of the solution.

• Case III: uext = tµ0 , φ(α) = Γ(1 + µ0 − α)/(µ0)!, µ0 = 1/10,9/10,

• Case IV: uext = tµ0 sin(t), φ(α), µ0 = 75/100,25/100.

In case-III, we are able to obtain the exact solution only with one term by choosing µ = µ0. In
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case-IV, we take µ = µ0 and expand sin(t) using Taylor series. Table 3.5 shows the L2-norm

convergence of the PG scheme for two different distribution functions.

Table 3.5: Case-IV; PG scheme convergence study in L2-norm, where T = 2.
µ = 75/100 µ = 25/100

N φ(α) = 1 φ(α) = Normal φ(α) = 1 φ(α) = Normal
2 1.56682 × 10−1 1.62765 × 10−1 1.5773 × 10−1 1.548 × 10−1

4 3.13043 × 10−3 3.3898 × 10−3 3.4228 × 10−3 3.28626 × 10−3

6 2.55359 × 10−5 2.81522 × 10−5 2.8956 × 10−5 2.76729 × 10−5

8 1.13562 × 10−7 1.2512 × 10−7 4.24126 × 10−7 1.40114 × 10−7

10 2.60471 × 10−9 7.84647 × 10−10 3.9524 × 10−7 5.49882 × 10−8

3.6.3 Condition Number

The condition number of the constructed linear system is obtained for different distribution func-

tions, φ(α). Tables 3.6 and 3.7 show, respectively, the condition number of the constructed linear

system for case-I and II based on PG and collocation scheme for the aforementioned distribution

functions.

Table 3.6: Case-I and II; PG scheme condition number of the constructed linear system, where
T = 2.

µ = 2 − 10−8 µ = 2 − 10−1 µ = 1 + 1/2 µ = 1 + 1/10
N Case-I Case-II Case-I Case-II Case-I Case-II Case-I Case-II
6 29706.682 4863.50 14319.465 2168.87 661.70145 70.1081 51.928935 7.19267
10 240000.55 33494.8 90197.388 11817.9 1339.2855 130.925 42.754111 9.35597
14 882010.62 118283 279501.78 35395.6 1941.9838 190.309 47.335770 13.0337
18 2.2811229 × 106 301479 633307.06 79324.0 2505.5107 247.627 50.713428 16.7944

Table 3.7: Case-I and II; collocation scheme condition number of the constructed linear system,
where T = 2.

µ = 1 − 10−8 µ = 1 − 10−1 µ = 1/2 µ = 1/10
N Case-I Case-II Case-I Case-II Case-I Case-II Case-I Case-II
6 67.5606 345.045 60.3467 302.74 43.6649 191.058 36.0056 340.539
10 386.339 2781.51 325.037 2309.25 214.935 1515.11 202.826 3554.95
14 1330.11 10646.1 1076.14 8518.56 685.166 5435.91 713.002 16539.5
18 3388.95 28619.5 2665.32 22290.4 1661.16 13964.9 3397.2 50911.1

Moreover, three cases for the distribution function are considered: 1) the distribution is more

biased toward the left of domain, 2) the distribution is symmetric and 3) the distribution is more

biased toward the right of domain, namely left biased, symmetric and right biased respectively.

The distribution functions are well-known normal, exponential, log-normal, Cauchy, Laplace, Beta
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and Maxwell distributions, however, they are truncated and normalized, see Fig.4.5. For these

distributions, the condition number of the constructed linear system based on the two methods is

computed and provided in Tables 3.8, 3.9 and 3.10.

(a) (b) (c)

Figure 3.2: Distribution functions: (a) Left biased (b) Symmetric (c) Right biased

Table 3.8: Left biased distribution function; PG (top) and collocation (bottom) scheme condition
number of the constructed linear system, where T = 2.

N LogNormal Exponential Normal Laplace Cauchy Beta
µ = 2 − 1/10

6 62101.5 130227 85410.4 21714.7 31361 70458.4
10 1.28119 × 106 2.62266 × 106 2.15167 × 106 186527 294630 1.51681 × 106

14 9.84911 × 106 1.61563 × 107 1.98724 × 107 668178 1.04066 × 106 1.22216 × 106

18 4.48721 × 107 5.34428 × 107 1.0748 × 108 1.62018 × 106 2.41399 × 106 5.86944 × 106

µ = 1 + 1/10
6 200.626 505.679 300.643 71.5348 100.504 233.849
10 654.259 1397.74 1309.12 91.8644 140.467 816.254
14 1322.63 1969.15 3437.72 64.4093 98.4193 1780.96
18 2145.61 2178 7037.99 70.7541 91.8767 3134.64

N LogNormal Exponential Normal Laplace Cauchy Beta
µ = 1 − 1/10

6 20.1001 9.42989 13.3574 51.9103 39.5064 16.8765
10 48.3364 25.6229 26.2852 237.89 169.114 38.3283
14 91.0866 55.5712 46.5097 714.563 503.229 65.4666
18 143.171 126.19 73.3388 1672.61 1185.15 97.5852

µ = 1/10
6 15.7319 5.67323 11.4277 33.4341 26.3924 13.3573
10 40.2359 18.0958 22.8619 150.375 102.285 30.7949
14 71.0054 37.1664 35.1324 435.867 309.089 52.9303
18 110.725 80.9506 48.0051 1032.88 742.025 81.7202
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Table 3.9: Symmetric distribution function; PG (left) and collocation (right) scheme condition
number of the constructed linear system, where T = 2.

N Uniform Normal Cauchy Laplace Beta
µ = 2 − 1/10

6 3104.6331 16261.6 9328.53 6969.22 13404.7
10 17244.219 220205 80110.2 51304.3 157767
14 52095.460 1.28827 × 106 308549 179737 817268
18 117338.89 4.86517 × 106 803362 441628 2.77821 × 106

µ = 1 + 1/10
6 9.5451677 44.0857 27.6858 17.9872 37.4224
10 11.211269 85.3822 30.0092 21.361 64.2331
14 12.360897 127.844 30.9343 20.1997 87.2794
18 15.900925 172.888 34.2126 22.1982 107.403

N Uniform Normal Cauchy Laplace Beta
µ = 1 − 1/10

6 219.733 81.9543 118.433 140.922 95.0983
10 1592.05 284.171 598.247 798.174 375.673
14 5769.24 620.056 1788.85 2549.17 905.972
18 14944.9 1097.37 4122.7 6115.65 1737.18

µ = 1/10
6 183.984 55.8908 72.0876 78.4252 62.069
10 1854.46 198.226 360.943 506.994 248.186
14 8678.37 439.316 1113.83 1595.84 589.611
18 26873.1 786.655 2600.56 3954.72 1171.64

Table 3.10: Right biased distribution function; PG (left) and collocation (right) scheme condition
number of the constructed linear system, where T = 2.

N Normal Laplace Cauchy Beta
µ = 2 − 1/10

6 2985.08 2274.39 2368.82 2105.03
10 23439.3 13948.9 15471.9 13474.7
14 92925.7 45201.4 52626.9 45325.7
18 259993 107082 129454 110813

µ = 1 + 1/10
6 6.99801 6.60933 6.54308 6.18762
10 10.8049 9.81523 10.0861 10.1067
14 15.1563 14.2958 14.0265 14.6423
18 19.4415 18.4003 18.8445 18.8791

N Normal Laplace Cauchy Beta
µ = 1 − 1/10

6 329.01 328.433 333.499 360.053
10 2022.09 2330.68 2275.43 2501.41
14 6299.73 8170.64 7736.87 8579.48
18 14429.7 20615.9 19067.6 21250

µ = 1/10
6 278.525 333.384 322.187 378.704
10 1539.25 2647.09 2246.71 2727.03
14 4701.38 10365.3 8041.12 9884.8
18 10622.6 28764.7 20895.4 25800.8

3.7 Proof of Lemmas and Theorems

3.7.1 Proof of Lemma (3.2.1)

Proof. Following [5] and for σ > 0, α > −1, β > −1, and ∀x ∈ [−1,1] we have

(1 + x)β+σ
Pα−σ,β+σn (x)

Pα−σ,β+σn (−1)
=

Γ(β + σ + 1)

Γ(β + 1)Γ(σ)Pα,βn (−1)

∫ x

−1

(1 + s)β Pα,βn (s)
(x − s)1−σ

ds, (3.62)

and

(1 − x)α+σ
Pα+σ,β−σn (x)

Pα+σ,β−σn (+1)
=

Γ(α + σ + 1)

Γ(α + 1)Γ(σ)Pα,βn (+1)

∫ 1

x

(1 − s)α Pα,βn (s)
(s − x)1−σ

ds. (3.63)

By the definition of the left-sided Riemann-Liouville integral RL
−1I

σ
x and evaluating the special

end-values Pα−σ,β+σn (−1) and Pα,βn (−1), we can re-write (3.62) as

RL
−1I

σ
x

{
(1 + x)βPα,βn (x)

}
=

Γ(n + β + 1)
Γ(n + β + σ + 1)

(1 + x)β+σ Pα−σ,β+σn (x),

where, by taking the fractional derivative RL
−1D

σ
x on the both sides, we obtain

RL
−1D

σ
x

{
(1 + x)β+σPα−σ,β+σn (x)

}
=
Γ(n + β + σ + 1)
Γ(n + β + 1)

(1 + x)βPα,βn (x). (3.64)
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Hence, taking β + σ = µ, α − σ = −µ in (3.64), and shifting from n to n − 1, we obtain

RL
−1D

σ
x

{
(1)Pµn (x)

}
=

Γ(n + µ)
Γ(n + µ − σ)

(1 + x)µ−σPσ−µ,µ−σn−1 (x), (3.65)

=
Γ(n + µ)

Γ(n + µ − σ)
(1 + x)ηP−η,ηn−1 (x),

=
Γ(n + µ)

Γ(n + µ − σ)
(1)Pηn(x),

where η = µ−σ. Moreover, by the definition of the right-sided Riemann-Liouville integral RL
xI

σ
1

and evaluating the special end-values Pα−σ,β+σn (+1) and Pα,βn (+1), we can re-write (3.63) as

RL
xI

σ
1

{
(1 − x)αPα,βn (x)

}
=

Γ(n + α + 1)
Γ(n + α + σ + 1)

(1 − x)α+σPα+σ,β−σn (x).

In a similar fashion, by taking the fractional derivative RL
xD

σ
−1 on the both sides, we obtain

RL
xD

σ
1

{
(1 − x)α+σPα+σ,β−σn (x)

}
=
Γ(n + α + σ + 1)
Γ(n + α + 1)

(1 − x)αPα,βn (x). (3.66)

Next, by taking α + σ = µ, β − σ = −µ in (3.66), and again shifting from n to n − 1 we have

RL
xD

σ
1

{
(2)Pµn (x)

}
=

Γ(n + µ)
Γ(n + µ − σ)

(1 − x)µ−σPµ−σ,σ−µn−1 (x). (3.67)

=
Γ(n + µ)

Γ(n + µ − σ)
(1 − x)ηPη,−ηn−1 (x),

=
Γ(n + µ)

Γ(n + µ − σ)
(2)Pηn(x),

and that completes the proof.

3.7.2 Proof of Theorem (3.2.3)

Proof. Let φ be bounded in (αmin, αmax). Then,

C1φmin A ≤ ‖ · ‖2l,φ,I ≤ C2φmax A,

(3.68)

C3φminB ≤ ‖ · ‖2r,φ,I ≤ C4φmax B,
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where

A = ‖ · ‖2
L2(I)

+

∫ αmax

αmin




 RL
xL
Dα

x (·)



2

L2(I)
dα,

B = ‖ · ‖2
L2(I)

+

∫ αmax

αmin




 RL
xD

α
xR
(·)




2

L2(I)
dα,

and C1, C2, C3, and C4 are positive constants. From [99], we know that ∀α = s fixed, ‖ · ‖l,s,I ∼

‖ · ‖r,s,I that is



 RL

xL
Ds

x(·)



2

L2(I)
∼




 RL
xD

s
xR
(·)




2

L2(I)
, hence let ®s = {s1, s2, · · · , sQ}, and similarly

∀s = sq the aforementioned equivalence holds. Therefore, any linear combination of

Q∑
q=1

wq




 RL
xL
Ds

x(·)



2

L2(I)
∼

Q∑
q=1

wq




 RL
xD

s
xR
(·)




2

L2(I)
.

Taking Q −→ ∞ and assuming {wq, sq} to be Riemann integral weights and points in [αmin, αmax],∫ αmax

αmin




 RL
xL
Ds

x(·)



2

L2(I)
∼

∫ αmax

αmin




 RL
xD

s
xR
(·)




2

L2(I)
.

By adding ‖ · ‖2
L2(I)

to the both sides of the above equivalence, we obtain A ∼ B; and by (3.68),

‖ · ‖l,φ,I ∼ ‖ · ‖r,φ,I .

In addition, from [99], we know that ∀α = s fixed, ‖ · ‖2s,I ∼ ‖ · ‖
2
l,s,I . Let ®s = {s1, s2, · · · , sQ}

thus ∀s = sq ∈ ®s, ‖ · ‖2sq,I
∼ ‖ · ‖2l,sq,I

. Therefore, for any linear combination of
∑Q

q=1 wq ‖ · ‖
2
sq,I
∼∑Q

q=1 wq ‖ · ‖
2
l,sq,I

. Taking Q −→ ∞, we obtain:∫ αmax

αmin
‖ · ‖2α,I dα ∼

∫ αmax

αmin
‖ · ‖2l,α,I dα,

where the right hand side of the equivalence is∫ αmax

αmin

(
‖ · ‖2

L2(I)
+




 RL
xL
Dα

x (·)



2

L2(I)

)
dα = (αmax − αmin)‖ · ‖

2
L2(I)

+

∫ αmax

αmin




 RL
xL
Dα

x (·)



2

L2(I)
dα,

∼ ‖ · ‖2l,φ,I ∼ ‖ · ‖
2
r,φ,I .

Therefore, ∫ αmax

αmin
‖ · ‖2α,I dα ∼ ‖ · ‖2l,φ,I ∼ ‖ · ‖

2
r,φ,I . (3.69)

We can also show that

φmin

∫ αmax

αmin




 (1 + |ω |2)α2 F (·)(ω) 


2

L2(R)
dα ≤ ‖ · ‖2φ,R ≤ φmax

∫ αmax

αmin




 (1 + |ω|2)α2 F (·)(ω) 


2

L2(R)
dα.
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Because of the non-negativity of the norms, we have

φmin inf
ṽ∈φH(R),ṽ |I=(·)

∫ αmax
αmin




 (1 + |ω|2)α2 F (ṽ)(ω) 


2

L2(R)
dα

≤ inf
ṽ∈φH(R),ṽ |I=(ṽ)

‖ · ‖2
φ,R
≤ (3.70)

φmax inf
ṽ∈φH(R),ṽ |I=(·)

∫ αmax
αmin




 (1 + |ω |2)α2 F (ṽ)(ω) 


2

L2(R)
dα.

In general, φH(R) ⊂ Hαmax (R), ∀α ∈ [αmin, αmax]. Therefore, we have:

inf
ṽ∈φH(R),ṽ |I=(·)

∫ αmax

αmin




 (1 + |ω|2)α2 F (ṽ)(ω) 


2

L2(R)
dα,

=

∫ αmax

αmin
inf

ṽ∈φH(R),ṽ |I=(·)




 (1 + |ω|2)α2 F (ṽ)(ω) 


2

L2(R)
dα,

≤ C

∫ αmax

αmin
inf

ṽ∈Hα(R),ṽ |I=(·)




 (1 + |ω |2)α2 F (ṽ)(ω) 


2

L2(R)
dα,

= C

∫ αmax

αmin
‖ · ‖2α,I dα.

However, for some choices of φ = δ(α − αmin) and thus φH(R) ⊃ Hαmax (R), ∀α ∈ [αmin, αmax].

Therefore, ∫ αmax

αmin
inf

ṽ∈φH(R),ṽ |I=(·)




 (1 + |ω|2)α2 F (ṽ)(ω) 


2

L2(R)
dα,

≥ C̃

∫ αmax

αmin
inf

ṽ∈Hα(R),ṽ |I=(·)




 (1 + |ω |2)α2 F (ṽ)(ω) 


2

L2(R)
dα,

= C̃

∫ αmax

αmin
‖ · ‖2α,I dα,

which by (3.70) and (3.5), we get ∫ αmax

αmin
‖ · ‖2α,I dα ∼ ‖ · ‖2φ,I . (3.71)

Comparing (3.69) and (3.71), we have

‖ · ‖2φ,I ∼ ‖ · ‖
2
l,φ,I ∼ ‖ · ‖

2
r,φ,I .
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Remark 3.7.1. We note that if φ = δ(α − s), we recover the standard RL
xL
Ds

x(u) = f , where the

equivalence between the corresponding ‖ · ‖l,s,I , ‖ · ‖r,s,I , and ‖ · ‖s,I has been already established.

Moreover, we note that for the case φ ∈ L1( [αmin, αmax ) containing finitely many singularities at

α1, α2, · · · , αm, the whole interval [αmin, αmax] and the integration can be written as∫ α1

αmin
φ(α) RL

xL
Ds

x(u) dα +
∫ α2

α1
φ(α) RL

xL
Ds

x(u) dα + · · · +
∫ αmax

αm
φ(α) RL

xL
Ds

x(u) dα,

where all the previous steps in the proof can apply in each interval.

3.7.3 Proof of Lemma (7.3.4)

Proof. Since u(a) = 0, by (1.18) aD
2µ
x u = aD

µ
x (aD

µ
x u). Taking ũ(x) = aD

µ
x u, we have

(aD
2µ
x u , v) = (aD

µ
x ũ , v),

=
1

Γ(1 − µ)

∫ b

a

[ d
dx

∫ x

a

ũ(s)ds
(x − s)µ

]
v(x)dx,

=
{ v(x)
Γ(1 − µ)

∫ x

a

ũ(s)ds
(x − s)µ

}x=b

x=a

−
1

Γ(1 − µ)

∫ b

a

[ ∫ x

a

ũ(s)ds
(x − s)µ

] dv(x)
dx

dx, by v(b) = 0,

= −v(a) lim
x→a aI

1−µ
x ũ −

1
Γ(1 − µ)

∫ b

a

∫ b

s

dv(x)
dx dx

(x − s)µ
ũ(s)ds, (3.72)

which make sense when the interior term
∫ b

s

dv(x)
dx dx
(x−s)µ is integrable in (a, b). Taking into account

that v(a) is bounded, we can show that the boundary term v(a) limx→a aI
1−µ
x ũ also vanishes as

lim
x→a

��� aI
1−µ
x ũ

��� = lim
x→a

1
Γ(1 − µ)

��� ∫ x

a

ũ(s)ds
(x − s)µ

���, (3.73)

≤ lim
x→a

1
Γ(1 − µ)

��� ∫ x

a

ds
(x − s)µ

���‖ũ‖L∞,
= lim

x→a

1
Γ(1 − µ)

(x − a)1−µ

1 − µ
‖ũ‖L∞ = 0.
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Moreover, it is easy to check that

d
ds

∫ b

s

v(x)dx
(x − s)µ

=
d
ds

{v(x)(x − s)1−µ

1 − µ

���x=b

x=s
−

1
1 − µ

∫ b

s

dv(x)
dx
(x − s)1−µdx

}
,

=
d
ds

{
0 −

1
1 − µ

∫ b

s

dv(x)
dx
(x − s)1−µdx

}
,

=

∫ b

s

dv(x)
dx dx

(x − s)µ
. (3.74)

Now, by substituting (3.74) into (3.72), we obtain

(aD
2µ
x u , v) =

∫ b

a
ũ(s)

{ 1
Γ(1 − µ)

(
−d
ds
)

∫ b

s

v(x)dx
(x − s)µ

}
ds,

= (ũ , xD
µ
bv),

when xD
µ
bv is well-defined and is integrable in the interval [a, b].

3.7.4 Proof of Theorem (4.3.2)

Proof. Part A:

The Jacobi polynomials, Pα,βn (ξ), can be constructed via the three-term recursion relation. By

letting β = −α, the corresponding tree term recursion reduces to

Pα,−αn+1 (ξ) =
(2n + 1)
(n + 1)

ξ Pα,−αn (ξ) −
(n − α2)
n(n + 1)

ξ Pα,−αn−1 (ξ), (3.75)

and therefore, the Jacobi polynomials evaluated at ξ = ξ0 ∈ [−1,1] are obtained in the following

standard form

Pα,−α0 (ξ0) = �0(α) = 1, : zeroth order in α (3.76)

Pα,−α1 (ξ0) = �1(α) = α + ξ0, : linear in α

Pα,−α2 (ξ0) = �2(α) =
1
2
α2 +

3
2
ξ0 α +

3 ξ2
0 − 1
2

, : quadratic in α

Pα,−α3 (ξ0) = �3(α) =
1
6
α3 + ξ0 α

2 +
15 ξ2

0 − 4
6

α +
5 ξ3

0 − 3 ξ0
2

. : cubic in α

Now, let n = k, thus, Pα,−αk (ξ0) and Pα,−αk−1 (ξ0) are respectively polynomials of order k and k − 1 in

α. Using (3.75) for n = k + 1, we get

Pα,−αk+1 (ξ0) =
(2k + 1)
(k + 1)

ξ0 Pα,−αk (ξ0) −
(k − α2)
k(k + 1)

ξ0 Pα,−αk−1 (ξ0),
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which is a polynomials of order k+1 inα due to the second term. Hence, bymathematical induction,

Pα,−αn (ξ0) = �n(α) is a polynomial of order n in α ∀ξ0 ∈ [−1,1]. Similarly with the same argument,

we can show that P−α,αn (ξ0) = �n(−α) is also a polynomial of order n in α ∀ξ0 ∈ [−1,1].

Part B:

The inner integral of the discrete distributed bilinear form (3.36) can be written as∫ αmax

αmin
φ(α) (

2
T
)α
Γ(n + µ)
Γ(n + η)

Γ(k + µ)
Γ(k + η)

(1)Pηn(ξ)
(2)Pηk (ξ) dα = (3.77)

Γ(n + µ)Γ(k + µ)
∫ αmax

αmin
φ(α) (

2
T
)α
(1 + ξ)η

Γ(n + η)
(1 − ξ)η

Γ(k + η)
P−η,ηn−1 (ξ) Pη,−ηk−1 (ξ) dα,

in which η = µ−α/2. By theorem (4.3.2) part A, P
α
2−µ,µ−

α
2

n−1 (ξ) and P
µ−α2 ,

α
2−µ

k−1 (ξ) are polynomials

in α of order n − 1 and k − 1, respectively, ∀ξ ∈ [−1,1], and µ fixed. Thus,

P
α
2−µ,µ−

α
2

n−1 (ξ) =

n−1∑
r=0

σr Pr (α), (3.78)

P
µ−α2 ,

α
2−µ

k−1 (ξ) =

k−1∑
l=0

σ̃l Pl(α). (3.79)

By plugging (3.78) and (3.79) into (3.77), we obtain∫ αmax

αmin
φ(α) (

2
T
)α
(1 + ξ)η

Γ(n + η)
(1 − ξ)η

Γ(k + η)
P−η,ηn−1 (ξ) Pη,−ηk−1 (ξ) dα =∫ αmax

αmin
φ(α) W

ξ,µ
kn (α)

n−1∑
r=0

σr Pr (α)
k−1∑
l=0

σ̃l Pl(α) dα, (3.80)

in which

W
ξ,µ

kn (α) = (
2
T
)α
(1 − ξ)µ−α

Γ(n + µ − α)
(1 + ξ)µ−α

Γ(k + µ − α)

is smooth in any compact support in [αmin, αmax] and its polynomial expansion W ξ,µ
kn

��
N (α) =

WN (α) =
∑N

q=0 ρq Pq(α) converges exponentially i.e.,


W ξ,µ
kn (α) −WN (α)




 ≤ c1 exp(−c2Nc3), (3.81)

inwhich ‖.‖ denotes the L2-norm in [αmin, αmax]. If the distribution function φ ∈ Hr ([αmin, αmax]),

r > 0, we have the following projection error:

‖φ(α) − φN (α)‖ ≤ c4 N−r ‖φ‖Hr ([αmin,αmax]) , (3.82)
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where φN (α) =
∑N

n=0 ρ̃n Pn(α). Consequently, the integrand in (3.80) can be well-approximated

via

φ(α) W
ξ,µ

kn (α)
n−1∑
r=0

σr Pr (α)
k−1∑
l=0

σ̃l Pl(α) ≈ φN (α) WN (α)
n−1∑
r=0

σr Pr (α)
k−1∑
l=0

σ̃l Pl(α).

(3.83)

Next, let

I =

∫ αmax

αmin
φ(α) W

ξ,µ
kn (α)

n−1∑
r=0

σr Pr (α)
k−1∑
l=0

σ̃l Pl(α) dα, (3.84)

IN =

∫ αmax

αmin
φN (α) WN (α)

n−1∑
r=0

σr Pr (α)
k−1∑
l=0

σ̃l Pl(α) dα,

where IN can be accurately calculated via

IN =

Q∑
q=1

w̃q φN (αq)WN (αq)
n−1∑
r=0

σr Pr (αq)
k−1∑
l=0

σ̃l Pl(αq), (3.85)

employing a Gauss-Legendre quadrature rule, provided Q = 2N . Thus by Cauchy-schwarz in-

equality,

|I − IN | ≤
√
αmin − αmax






φWξ,µ
kn

n−1∑
r=0

σr Pr

k−1∑
l=0

σ̃l Pl − φNWN

n−1∑
r=0

σr Pr

k−1∑
l=0

σ̃l Pl






 , (3.86)
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in which





(
φW

ξ,µ
kn

n−1∑
r=0

σr Pr

k−1∑
l=0

σ̃l Pl

)
−

(
φNWN

n−1∑
r=0

σr Pr

k−1∑
l=0

σ̃l Pl

)




 , (3.87)

≤






n−1∑
r=0

σr Pr

k−1∑
l=0

σ̃l Pl






 


φW ξ,µ
kn − φNWN




 , (by HÜolder inequality),

≤ c5



φW ξ,µ

kn − φNWN




 ,
≤ c5




[(φ − φN ) + φN
] [
(W

ξ,µ
kn −WN ) +WN

]
− φNWN




 ,
≤ c5




(φ − φN )(W
ξ,µ

kn −WN ) + φN (W
ξ,µ

kn −WN ) + (φ − φN )WN + φNWN − φNWN




 ,
≤ c5

(


(φ − φN )(W
ξ,µ

kn −WN )



 + 


φN (W

ξ,µ
kn −WN )




 + ‖(φ − φN )WN ‖
)
, (by triangle inequality),

≤ c5
(
‖(φ − φN )‖




(W ξ,µ
kn −WN )




 + ‖φN ‖



(W ξ,µ

kn −WN )



 + ‖(φ − φN )‖ ‖WN ‖

)
,

≤ c5
(
c4 N−r ‖φ‖Hr ([αmin,αmax]) . c1 exp(−c2Nc3) + ‖φN ‖ c1 exp(−c2Nc3)

+ ‖WN ‖ c4 N−r ‖φ‖Hr ([αmin,αmax])
)
, (by (3.81) and (3.82)),

≤ c6 N−r ‖φ‖Hr ([αmin,αmax]) .

Hence, by (3.86) and (3.87) we can show

|I − IN | ≤ C N−r ‖φ‖Hr ([αmin,αmax]) , (3.88)

and therefore, by (3.78), (3.79), (3.84) and (3.85), we obtain���� ∫ αmax

αmin
φ(α) (

2
T
)α
Γ(n + µ)
Γ(n + η)

Γ(k + µ)
Γ(k + η)

(1)Pηn(ξ)
(2)Pηk (ξ) dα

−

Q∑
q=1

w̃q φN (αq) (
2
T
)αq Γ(n + µ)

Γ(n + ηq)

Γ(k + µ)
Γ(k + ηq)

(1)P
ηq
n (ξ)

(2)P
ηq
k (ξ)

����
≤ C Q−r ‖φ‖Hr ([αmin,αmax]) .

Part C:

If φ(α) is smooth, then the approximation φN (α), in (3.82), converges with an exponential

accuracy and so does the norm in (3.87). Thus,

|I − IN | ≤ C1 exp(−C2 NC3), (3.89)

84



and therefore, the quadrature rule becomes exponentially accurate in Q.
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CHAPTER 4

DISTRIBUTED-ORDER FRACTIONAL PDES: FRACTIONAL PSEUDO-SPECTRAL
METHODS

4.1 Background

In comparison to single order fractional operator, distributive character of DODEs increases

the computational costs due to integration in the domain of derivative order, requiring efficient and

accurate numerical schemes. Diethelm and Ford in [46], as one of the first numerical studies of

DODEs, developed a two-stage basic frame-work, where in the first stage, the distributed order

differentiation term was approximated using a quadrature rule, and in the second stage, a suitable

multi-term numerical method was employed. Most of the subsequent numerical studies have

followed the same approach yet they vary in the discretization method in the second stage, see

e.g., distributed-order time-fractional diffusion equation [57], distributed-order reaction diffusion

equation [124], distributed-order diffusion equation using a reproducing kernel method [98], and

distributed-order time fractional diffusion-wave equation based on a compact difference scheme

[179]. Other numerical studies include: multi-term and distributed order problems in half-line

[106], an implicit numerical method of a temporal distributed order and two-sided space-fractional

advection-dispersion equation in [69], high-order difference schemes in [60], alternating direction

implicit (ADI) difference schemes with the extrapolation method for one-dimensional case in [62]

and two-dimensional problem in [61], and an operational matrix technique in [50].

More recently, Kharazmi et al. [87] have developed a Petrov-Galerkin spectral method for

DODEs, following the recent theory of FSLP in [186] and by employing Jacobi Poly-fractonomials

as the bases and test functions, where they introduced the distributed Sobolev spaces and their

associated equivalent norms, and investigated the stability and error analysis of the scheme. More

importantly, they have developed a spectrally accurate Gauss-Legendre quadrature rule in the

construction of linear system. We extend their developed scheme by proposing a pseudo-spectral
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method in order to efficiently treat the nonlinear DODEs.

In this chapter, we propose a Petrov-Galerkin (PG) pseudo-spectral method for DODEs. We

construct fractional Lagrange interpolants of first and second kind as basis and test functions,

respectively. We obtain the corresponding weak distributed differentiation matrices for distributed-

order operators with one- and two-sided fractional derivatives. We further study the effect of

distribution function and interpolation points on the condition number of the resulting linear system

and also design distributed pre-conditioners, based on the distribution function. We show the better

conditioning of the resulting linear system by comparing the proposed method with the fractional

spectral collocation method, developed in [87], which employs similar expansions but in a strong

sense of problem. Moreover, the fractional Lagrange interpolants are comprised of a fractional order

term multiplied by standard Lagrange interpolants, where we show that the interpolation parameter

in the fractional part can be tunned properly to accurately capture any singularity of the solution.

In addition, these fractional interpolants enjoy the property of Kronecker delta at the interpolation

points, which makes it possible to efficiently treat the algebraic and differential nonlinearities such

as in nonlinear reaction diffusion and Burgers equations. We demonstrate the efficiency of the

proposed schemes by considering several numerical examples including nonlinearity, in which we

show the spectral convergence of the approximate solution.

The organization of this chapter is as follows: In section (4.2), we provide preliminary definitions

along with useful lemmas, and then define the initial and boundary value problems and obtain the

weak formulation. In section (4.3), we implement the pseudo-spectral method and derive the weak

distributed differentiation matrices. We further study the condition number of the linear system

and design the pre-conditioner. We provide numerical examples in section (4.4).

4.2 Definitions

4.2.1 Distributed Fractional Sobolev Spaces

We first recall the fractional Sobolev space. By Hs(R), s ≥ 0, we denote the Fractional Sobolev

space on R, defined as Hs(R) = {v ∈ L2(R)| (1 + |ω |2)
s
2F (v)(ω) ∈ L2(R)}, which is endowed
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with the norm ‖ · ‖s,R = ‖(1 + |ω|2)
s
2F (·)(ω)‖L2(R), where F (v) represents the Fourier transform

of v. Subsequently, we denote by Hs(I), s ≥ 0 the Fractional Sobolev space on the finite

closed interval I, defined as Hs(I) = {v ∈ L2(R)| ∃ṽ ∈ Hs(R) s.t. ṽ |I = v} with the norm

‖ · ‖s,I = inf ṽ∈Hs(R),ṽ |I=(·)
‖ṽ‖s,R. We note that the definition of Hs(I) and the corresponding

norm relies on the Fourier transformation of the function. Other left-sided ‖ · ‖l,s,I and right-

sided ‖ · ‖r,s,I useful norms, associated with Hs(I), e.g., when I = [xL, xR], are also given as

‖ · ‖l,s,I =
(
‖ · ‖2

L2(I)
+ ‖ RL

xL
D
µ
x (·)‖

2
L2(I)

) 1
2 , and ‖ · ‖r,s,I =

(
‖ · ‖2

L2(I)
+ ‖ RL

xD
µ
xR(·)‖

2
L2(I)

) 1
2 , which

are shown in [52, 53] that are equivalent to ‖ · ‖s,I .

Definition 4.2.1. Distributed Fractional Sobolev Space [87]: Let φ ∈ L1( [αmin, αmax] ), 0 ≤

αmin < αmax be nonnegative. Then, the distributed fractional Sobolev space onR and its associated

norm are

φH(R) = {v ∈ L2(R)|
∫ αmax

αmin

[
φ(α)(1 + |ω|2)α

] 1
2 F (v)(ω) dα ∈ L2(R)}, (4.1)

‖ · ‖φ,R =

(∫ αmax

αmin
φ(α)




 (1 + |ω|2)α2 F (·)(ω) 


2

L2(R)
dα

) 1
2
. (4.2)

Subsequently, the distributed fractional Sobolev space on the finite closed interval I, i.e. φH(I), is

defined as
φH(I) = {v ∈ L2(R)| ∃ṽ ∈ φH(R) s.t. ṽ |I = v}, (4.3)

with the norm ‖ · ‖φ,I = inf
ṽ∈φH(R),ṽ |I=(·)

‖ṽ‖φ,R. Moreover, the following useful norms, associated

with φH(I) are introduced as:

‖ · ‖l,φ,I =

(
‖ · ‖2

L2(I)
+

∫ αmax

αmin
φ(α)




 RL
xL
Dα

x (·)



2

L2(I)
dα

) 1
2

(4.4)

‖ · ‖r,φ,I =

(
‖ · ‖2

L2(I)
+

∫ αmax

αmin
φ(α)




 RL
xD

α
xR
(·)




2

L2(I)
dα

) 1
2
, (4.5)

which are proven in [87] to be equivalent to the norm ‖ · ‖φ,I .

Remark 4.2.2. The lower and upper limits {αmin, αmax} are only the theoretical terminals. How-

ever, for any realization of physical process, the range of derivative orders are not exactly equal
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to the these theoretical terminals. Moreover, the choice of φ can arbitrarily confine the domain of

integration in practice, see for example Fig. 4.1 in the following sections, and if φ > 0 is continuous

in (αmin, αmax), then φH is equivalent to Hαmax−ε , for some small ε .

Lemma 4.2.3. [99]: For all 0 < α ≤ 1, if u ∈ H1([a, b]) such that u(a) = 0, and w ∈ Hα/2([a, b]),

then (aD α
s u,w)Ω = ( aD

α/2
s u , sD

α/2
b w )Ω, where (·, ·)Ω represents the standard inner product

in Ω = [a, b].

Lemma 4.2.4. [87]: Let 1/2 < µ < 1, a and b be arbitrary finite or infinite real numbers.

Assume u ∈ H2µ(a, b) such that u(a) = 0, xD
µ
bv is integrable in (a, b), and v(b) = 0. Then

(aD
2µ
x u , v) = (aD

µ
x u , xD

µ
bv).

4.2.2 Problem Definition: Initial/Boundary Value Problem

We consider the following distributed-order fractional differential equation, subject to the proper

initial conditions

DDφu(t) = f (t; u), ∀t ∈ (0,T], (4.6)

u(0) = 0, αmax ∈ (0,1], (4.7)

u(0) =
du
dt
|t=0 = 0, αmax ∈ (1,2], (4.8)

in which the distributed-order fractional derivative is defined in [87], as

DDφu(t) =
∫ αmax

αmin
φ(α) ∗aD

α
t u(t)dα, t > a, (4.9)

where α 7→ φ(α) is a continuous mapping in [αmin, αmax] and ∗aDα
t denotes Riemann-Liouville

fractional derivative of order α. Due to (1.22), the Caputo and Riemann-Liouville fractional

derivatives of order α ∈ (0,1) coincide with each other when u(0) = 0. Therefore, in this study,

we employ the definition of the distributed fractional derivatives of Riemann-Liouville sense and

remove the pre-superscript RL for simplicity.
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Borrowing the same idea as in definition of distributed-order fractional derivative, we define

the following distributed-order fractional derivative in space.

DDφu(x) =
∫ αmax

αmin
φ(α) ∗aD

α
x u(x)dα, a < x < b. (4.10)

By performing an affine mapping from any confined domain [a, b] to the standard domain [−1,1],

we define the boundary value problem, subject to homogeneous Dirichlet boundary conditions as

DDφu(x) = f (x; u), ∀x ∈ (−1,1), (4.11)

u(−1) = u(1) = 0, 1 < αmin < αmax ≤ 2. (4.12)

4.2.3 Weak Formulation

In order to obtain the weak form of the IVP (4.6) and BVP (4.11), we multiply the equations with

proper test functions, and then integrate over the corresponding computational domain. Here, we

show the weak form derivation only for the IVP. However, the formulation is similar for the BVP

as well. Thus, ∫
Ω

DDφu(t) v(t) dΩ =
∫
Ω

f (t; u) v(t) dΩ. (4.13)

Using the definition of distributed order fractional derivatives defined in (5.7), we get∫ αmax

αmin
φ(α)

(
0D

α
t u, v

)
Ω

dα =
∫
Ω

f (t; u) v(t) dΩ, (4.14)

where
(
0D

α
t u, v

)
Ω
=

∫
Ω 0D

α
t u v dΩ, ∀α ∈ (αmin, αmax), denotes the well-known L2-inner prod-

uct. Given the initial conditions (4.7) and/or (4.8) and by Lemmas (7.3.3) and (7.3.4), we define the

bilinear form associated with α ∈ (αmin, αmax) as a(α)(u, v) =
(
0D

α
t u, v

)
Ω
= (0D

α/2
t u, tD

α/2
T v)Ω,

in which we choose v such that v(T) = 0 and tD
α/2
T v is integrable in Ω ∀α ∈ (αmin, αmax).

Moreover, let U and V be the solution and test spaces, respectively defined as

U =
{
u ∈ φH(Ω) : u(0) = 0 if αmax ∈ (0,1], u(0) =

du
dt
|t=0 = 0 if αmax ∈ (1,2]

}
,

V =
{
v ∈ φH(Ω) : v(T) = 0

}
,
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in which φ : (αmin, αmax) → R. The problem thus reads as: find u ∈ U such that a(u, v) =

l( f ), ∀v ∈ V where

a(u, v) :=
∫ αmax

αmin
φ(α) a(α)(u, v) dα (4.15)

denotes the distributed bilinear form and l( f ) := ( f , v)Ω.

We note that by defining the following solution and test spaces, we obtain the same distributed

bilinear form for the BVP as well, where the solution and test spaces are

U =
{
u ∈ φH(Ω) : u(−1) = u(1) = 0

}
, V =

{
v ∈ φH(Ω) : v(1) = 0

}
. (4.16)

4.3 Fractional Pseudo-Spectral Method

4.3.1 Initial Value Problem

We consider the weak form a(u, v) = l( f ), ∀v ∈ V , associated with the IVP, and perform an affine

mapping from [0,T] to the standard domain [−1,1]. Following [186], we employ the fractional

Lagrange interpolants, given in the standard domain [−1,1] by

(1)hµj (ξ) =
( ξ − x1

x j − x1

) µ N+1∏
k=1
k, j

( ξ − xk
x j − xk

)
, j = 1,3, · · · ,N + 1, (4.17)

in which, µ ∈ (0,1), the interpolation parameter, is used as a tunable parameter for capturing

possible singularities in the solution. We construct N + 1 fractional Lagrange interpolants of order

N + µ by defining N + 1 “ basis interpolating points" (1)W = {x j | x1 = −1, x j ∈ (−1,1), j =

2,3, · · · ,N + 1}, of which, we assign the first degree of freedom (the first point, x1 = −1) to

the fractional part. Because of homogeneous initial condition, we only need to construct the

interpolants, (1)hµj (ξ), j = 2,3, · · · ,N + 1, thus, we seek the solution

uN ∈ UN = span
{
(1)hµj (ξ), ξ ∈ [−1,1], j = 2,3, · · · ,N + 1

}
, (4.18)

of the form

uN (ξ) =
N+1∑
j=2

u j
(1)hµj (ξ), (4.19)
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where, u j = uN (ξ j). We note that in the construction of fractional interpolants (4.17), we include

the left boundary x1 = −1 and start from k = 1. Therefore, we have a regularity of order 1 + µ at

x1 = −1, which ensures satisfying the initial conditions, where αmax ∈ (1,2).

Moreover, we construct another N+1 fractional Lagrange interpolants of order N+µ by defining

a new set of N + 1 “test interpolating points" (2)W = { x̃i | x̃N+1 = 1, x̃i ∈ (−1,1), i = 1,2, · · · ,N},

of which, we assign the last degree of freedom (the last point, xN+1 = 1) to the fractional part.

Therefore,

(2)hµi (ξ) =
( x̃N+1 − ξ

x̃N+1 − x̃i

) µ N+1∏
k=1
k,i

( ξ − x̃k
x̃1 − x̃k

)
, i = 1,2, · · · ,N . (4.20)

Hence, we define the space of test functions VN , of same dimension as the solution space, by

VN = span
{
(2)hµi (ξ), ξ ∈ [−1,1], i = 1,2, · · · ,N

}
, (4.21)

where including xN+1 = 1 ensures vanishing test functions at the right boundary.

4.3.2 Boundary Value Problem

In this case due to the boundary conditions, we add one extra interpolation point and consider N +2

points. Therefore, we consider the following two sets of interpolation points (1)W = {x j | x1 =

−1, xN+2 = 1, x j ∈ (−1,1), j = 2,3, · · · ,N + 1} and (2)W = { x̃i | x̃1 = −1, x̃N+2 = 1, x̃i ∈

(−1,1), i = 2, · · · ,N + 1}, and use (4.17) and (4.20) to construct the corresponding interpolants,

where k = 1,2, · · · ,N + 2.

Remark 4.3.1. Such a construction has two benefits: (i) due to the homogeneousDirichlet boundary

conditions, we only need to construct the intrerpolants for j = 2,3, · · · ,N + 1 (and not for j = 1

and j = N + 2). Therefore, the discrete solution space and the expansion (4.18) remain invariant.

Moreover, the size of discrete test space does not change neither, however its elements shift from

i = 1,2, · · · ,N for IVP to i = 2,3, · · · ,N + 1 for BVP; (ii) the mathematical framework of the

proposed scheme (derivation of the differentiation matrix) also remains invariant. Therefore, one

can use the same derivation for the two cases IVP and BVP to construct the linear system, as will
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be discussed later, by properly changing the limits of iterator i on number of test functions. We also

should note that inclusion of −1 and 1, in addition to letting k to take vales 1 and N + 2, imposes

extra regularity to the solution at the boundaries, making its first derivative to vanish as well as the

solution itself.

For either case of IVP or BVP, since φ(α) ≥ 0 and
∫ αmax
αmin

φ(α) dα is finite, it is straight forward

to check thatUN ⊂ U andVN ⊂ V when µ is chosen properly. Therefore, the bilinear form a(α)(u, v)

reduces to the discrete bilinear form

aαh (uN, vN ) = (aD
α/2
x uN, xD

α/2
b vN )Ω, ∀x ∈ [a, b] (4.22)

and thus, the problem reads as: find uN ∈ UN such that

ah(uN, vN ) = lh( f ), ∀vN ∈ VN, (4.23)

where ah(uN, vN ) :=
∫ αmax
αmin

φ(α) aαh (uN, vN ) dα denotes the discrete distributed bilinear form and

lh( f ) := ( f , vN )Ω represents the load vector.

4.3.3 Weak Distributed Differentiation Matrix

Here, we derive the corresponding differentiation matrix for IVP. As mentioned earlier, the same

procedure can be readily used for BVP by changing the limits of iterator i, once proper interpolants

are constructed (See subsections 4.3.1 and 4.3.2). By substituting (4.19), choosing vN =
(2)hµi (ξ) ∈

VN , i = 1,2, · · · ,N and using (1.21), the discrete distributed bilinear form (4.23) can be written as

ah(uN, vN ) =

∫ αmax

αmin
φ(α) (

2
T
)α

N+1∑
j=2

u j

(
−1D

α/2
ξ
[(1)hµj (ξ)] , ξD

α/2
1 [(2)hµi (ξ)]

)
Ω

dα, (4.24)

=

N+1∑
j=2

u j

∫ αmax

αmin
φ(α) (

2
T
)α

(
−1D

α/2
ξ
[(1)hµj (ξ)] , ξD

α/2
1 [(2)hµi (ξ)]

)
Ω

dα =
N+1∑
j=2

Di,j u j,

where

Di,j =

∫ αmax

αmin
φ(α) (

2
T
)α Dαi,j dα (4.25)
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is the weak distributed differentiation matrix, and the integrand

Dαi,j =
(
−1D

α/2
ξ
[(1)hµj (ξ)] , ξD

α/2
1 [(2)hµi (ξ)]

)
Ω

is derived as follows. Given the definition of fractional Lagrange interpolants in (4.17) and (4.20),

we have

Dαi,j =
(
a j −1D

α/2
ξ
[(1 + ξ)µ Gj(ξ)] , ãi ξD

α/2
1 [(1 − ξ)µ G̃i(ξ)]

)
Ω
,

i = 1,2, · · · ,N,

j = 2,3, · · · ,N + 1,
(4.26)

where, a j =
1

(x j+1)µ , ãi =
1

(1−x̃i)
µ , and

Gj(ξ) =
N+1∏
k=1
k, j

( ξ − xk
x j − xk

)
, G̃i(ξ) =

N+1∏
k=1
k,i

( ξ − x̃k
x̃1 − x̃k

)
. (4.27)

The functions Gj(ξ) and G̃i(ξ) are polynomials of order N and thus, can be expanded in terms of

Jacobi polynomials as

Gj(ξ) =
N+1∑
n=1

(1)β j
n p−µ,µn−1 (ξ) , j = 2,3, · · · ,N + 1, (4.28)

G̃i(ξ) =
N+1∑
m=1

(2)βi
m pµ,−µm−1 (ξ) , i = 1,2, · · · ,N, (4.29)

for which the coefficients (1)β j
n and (2)βi

m are obtained analytically, using the orthogonality of

Jacobi polynomials, see section (4.5.1). Therefore,

Dαi,j =
(
a j

N+1∑
n=1

(1)β j
n −1D

α/2
ξ
[(1 + ξ)µ p−µ,µn−1 (ξ)] , ãi

N+1∑
m=1

(2)βi
m ξD

α/2
1 [(1 − ξ)µ pµ,−µm−1 (ξ)]

)
Ω
,

(4.30)

=
(
a j

N+1∑
n=1

(1)β j
n −1D

α/2
ξ
[(1)Pµn (ξ)] , ãi

N+1∑
m=1

(2)βi
m ξD

α/2
1 [(2)Pµm(ξ)]

)
Ω
,

where (1)Pµn (ξ) and (2)P
µ
m(ξ) are Jacobi poly-fractonomials of first and second kind, respectively,

of which the fractional derivatives are

−1D
α/2
ξ
[(1)Pµn (ξ)] =

Γ(n + µ)
Γ(n + µ − α/2)

(1)Pµ−α/2n (ξ), (4.31)

RL
ξD

α/2
1 [(2)Pµm(ξ)] =

Γ(m + µ)
Γ(m + µ − α/2)

(2)Pµ−α/2m (ξ), (4.32)
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using (3.1). Let

LD
α/2,µ
ξ,j (ξ) = a j

N+1∑
n=1

(1)β j
n

Γ(n + µ)
Γ(n + µ − α/2)

p−µ+α/2, µ−α/2n−1 (ξ), (4.33)

RD
α/2,µ
ξ,i (ξ) = ãi

N+1∑
m=1

(2)βi
m

Γ(m + µ)
Γ(m + µ − α/2)

pµ−α/2,−µ+α/2m−1 (ξ). (4.34)

Hence,

Dαi,j =
(
−1D

α/2
ξ
[(1)hµj (ξ)] , ξD

α/2
1 [(2)hµi (ξ)]

)
Ω
, (4.35)

=
(
(1 + ξ)µ−α/2 LD

α/2,µ
ξ,j (ξ) , (1 − ξ)µ−α/2 RD

α/2,µ
ξ,i (ξ)

)
Ω
.

The expression in (4.35) is also used later in the section of numerical results to obtain the corre-

sponding system of ODEs in solving Burgers equation.

Theorem 4.3.2. Spectrally/Exponentially Accurate Quadrature Rule in α-Dimension [87]:

Part A: ∀ξ = ξ0 ∈ [−1,1] fixed, and ∀n ∈ � ∪ {0}, the Jacobi polynomial P±α,∓αn (ξ0) is a

polynomial of order n in α.

Part B: Let φ ∈ Hr ([αmin, αmax]), r > 0. Then ∀µ ≥ αmax/2���� ∫ αmax

αmin
φ(α) (

2
T
)α
Γ(n + µ)
Γ(n + η)

Γ(k + µ)
Γ(k + η)

(1)Pηn(ξ)
(2)Pηk (ξ) dα −

Q∑
q=1

w̃q φ(αq) (
2
T
)αq Γ(n + µ)

Γ(n + ηq)

Γ(k + µ)
Γ(k + ηq)

(1)P
ηq
n (ξ)

(2)P
ηq
k (ξ)

���� ≤ C Q−r ‖φ‖Hr ([αmin,αmax]) ,

whereC > 0, φN (α) =
∑N

n=0 ρ̃n Pn(α) denotes the polynomial expansion of φ(α), and {αq, w̃q}
��Q
q=1

represents the set of Gauss-Legendre quadrature points and weights.

Part C: If φ(α) is smooth, the quadrature rule in α-dimension becomes exponentially accurate in

Q.

The construction of weak distributed differentiation matrix Di,j requires two stages of quadra-

ture rule. The first stage is in the domain of α, following Theorem 4.3.2, where we obtain the

quadrature points and corresponding weights {αq,wq}
��Q
q=0 by performing an affine mapping from
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α ∈ [αmin, αmax] to the standard domain αst ∈ [−1,1]with Jacobian Jα =
(αmax−αmin)

2 . Therefore,

Di,j =

Q∑
q=0

Jα wq φ(αq) (
2
T
)αq D

αq
i,j (4.36)

In the second stage, for each quadrature point αq, we obtain the proper set of quadrature points in

ξ, corresponding to the weight functions (1 + ξ)µ−αq/2 and (1 − ξ)µ−αq/2 and thus, we carry out

the integral (4.35) to compute the entry Dαq
i,j .

4.3.4 Construction of Linear System

The bilinear form ah(uN, vN ) = lh(vN ) can be recast as:

N+1∑
j=2

Di,j u j = fi ,
i = 1,2, · · · ,N, IVP

i = 2,3, · · · ,N + 1, BVP
(4.37)

where Di,j are given in (4.36) and

fi =
(
f , (2)hµi (ξ)

)
Ω
= ãi

∫ 1

−1
(1 − ξ)µ f (ξ) G̃(ξ) dξ, (4.38)

are computed by employing a proper quadrature rule based on the regularity of force function f .

Thus, the linear system is constructed as

D ®u = ®F , (4.39)

where ®u = {u2,u3, · · · ,uN+1}. In the section of numerical results, we use the obtained differen-

tiation matrix to solve non-linear equations as well, where we provide the corresponding system

of ODEs for each problem. We follow the steps below to construct the liner system, and then,

perform time integration in time dependent problems (The following interpolation matrixM and
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nonlinear-induced matrix N are defined later in section 4.4).

(i) Choose the proper sets of interpolation points : (1)W, (2)W

(ii) Form the basis and test functions : (1)hµj (ξ),
(2)hµi (ξ)

(iii) Obtain the quadrature points in α domain integal : αq,wq

(iv) Obtain the quadrature points in space integral

(v) Construct the corresponding interpolation, differentiation, and nonlniear-induced matrices :M,D,N

(vi) 2nd-order Adams Bashforth time integration

4.3.5 Condition Number of Linear System

We consider different choices of interpolation points and study the condition number of the resulting

linear system. Also, based on the distribution function φ(α), we develop several pre-conditioning

matrices, corresponding to the choice of interpolation points, and investigate their efficiency.

4.3.5.1 Interpolation Points

Fractional operators in general lead to full and asymmetric linear systems, of which the condition

number significantly grows with the number of modes, thus, requiring developing effective and

easy to construct pre-conditioners. In addition, the distribution function φ(α) and the choice of

interpolation points are other major factors affecting the condition number of the resulting linear

system. In the distributed order fractional operators, for each realization of a physical process,

the distribution function φ(α) can be obtained from observable data and arbitrarily confine the

theoretical lower and upper terminals αmin and αmax in practice. For example, in a super-diffusive

process, the distribution can be more biased toward the upper bound αmax = 2. Therefore, the

choice of φ(α) has a direct effect on the properties of resulting linear system. To illustrate, we

consider φ(α) to be left- and right-biased normal distribution function with various mean and

variance, shown in Fig. 4.1 (left). We construct the corresponding differentiation matrices for

interpolation parameters µ = {0.1,0.9} , where we use choice (ii) of interpolation points. The
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Figure 4.1: Initial/Boundary value problem: condition number of the resulting linear system for left-
and right-biased normal distributions (left), where µ = 0.1 (middle), µ = 0.9 (right), and choice (ii) of
interpolation points is used.

condition number of resulting linear system is shown in Fig. 4.1 (middle) and (right). We observe

that for the right-biased distributions, which have the mean values closer to the upper terminal,

the choice of µ does not have a significant effect on the condition number of the linear system.

However, this is not the case for left-sided distributions, where we observe that the choice of

µ = 0.1, closer to mean value of distribution, results in better condition number. Moreover, the

results in Fig. 4.1 suggests that distributions with larger variance, which include a wider range of

derivative orders, lead to higher condition number; and this situation becomes even more adverse

when the distribution is also left-biased.

The constructed fractional Lagrange interpolants are all of same order and do not form a set of

hierarchical basis. Thus, for each set of interpolation points, we need to reconstruct the interpolants

as well as the differentiation matrix. Therefore, the corresponding linear system highly depends

on the choice of interpolation points. Here, we examine four methods that yield different sets of

interpolation/collocation points. In each case, we form two sets of N points in the open range (−1,1)

and append −1 to obtain (1)W as the first set of interpolations points to construct the interpolants,
(1)hµj (ξ), j = 2,3, · · · ,N + 1, and 1 to obtain (2)W as the second set of interpolations points to

construct the interpolants, (2)hµi (ξ), 1 = 1,2, · · · ,N . We refer to the aforementioned points as

follows:

Equidistant points: this choice is inspired by the well-known Fourier collocation points. We

form the two similar set of N points by considering ξq = −1 + 2q
N+1, q = 1,2, · · · ,N , and

then, obtain (1)W and (2)W.

(i)
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Roots of Jacobi polynomials: we form the two different set of N points by considering

the zeros of p−µ,µN (ξ) and pµ,−µN (ξ), which are essentially the Gauss-Jacobi points. Then,

we obtain (1)W and (2)W by appending −1 and 1 to the first and second set, respectively.

Indeed, the obtained interpolation points are the Gauss-Radau points as the zeros of Jacobi

polyfractonomials (1)PµN+1(ξ) and
(2)PµN+1(ξ).

(ii)

Roots of Chebyshev polynomials: we form the two similar set of N points by considering

ξq = − cos
(

2q+1
N

π
2

)
, q = 0,1, · · · ,N−1 as the roots of Chebyshev polynomialTN (ξ), which

are also Gauss points. Hence, we obtain (1)W and (2)W by adding −1 and 1.

(iii)

Roots of derivative of Chebyshev polynomials: we form the two similar set of N points by

considering ξq = − cos
(

πq
Ntot+1

)
, q = 1,2, · · · ,N as the roots d

dξTN+1(ξ) and then, obtain

the two sets.

(iv)

In order to examine the efficiency of each choice of interpolation points, we consider the linear

distributed-order initial value problem (4.6), where we let uext = t5, φ(α) = Γ(6−α)
Γ(6) , α ∈ (0,2),

and f (t) =
t3

(
t2−1

)
log(t) . We solve the problem, using the developed scheme, in which we consider

the aforementioned four choices of interpolation points and then, compute error and condition

number of the resulting linear system for µ = {1 − 10−4,0.1,0.5,0.9}. Due to the uniqueness of

polynomials, we observe that the choice of different points does not affect the rate of convergence,

however, has a great effect on the condition number of the constructed linear system. We see in Fig.

4.2 that for the given φ(α), roots of Jacobi polynomials p−µ,µN (ξ) and pµ,−µN (ξ) (choice (ii)) leads to

the lowest condition number, and for relatively small and large values of µ, improves the condition

number by almost two orders of magnitude. In the next section, we design a set of pre-conditioners,

which can further improve the condition number for this choice of interpolation points.

4.3.5.2 Pre-Conditioning

We introduce a distributed pre-conditioner matrix M−1, whose entries are given by:

M−1
lr =

∫ σmax

σmin
ϕ(σ) (2)Pσr (ξl) dσ, l,r = 1,2, · · · ,N, (4.40)
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Figure 4.2: Initial/Boundary value problem: condition number of the resulting linear system for different
choices of interpolation points for different interpolation parameter, (left to right) µ = 1 − 10−4, 0.1, 0.5,
and 0.9, where φ(α) = Γ(6−α)

Γ(6) and α ∈ (0,2).

where we consider {σmin, σmax} = {αmin, αmax} and ξl
��N
l=1 to be the zeros of P

σ0,−σ0
N . Different

choices of σ0 and also ϕ(σ) result in different matrices M . We consider the following choices to

construct the pre-conditioning matrix:

(i) ϕ = δ(σ − σ0) σ0 = µ

(ii) ϕ = φ σ0 = µ
where µ is the interpolation parameter and δ is the kronecker delta function.

In order to investigate the efficiency of introduced pre-conditioner, we apply them to the linear

system, obtained in the previous section for choice (ii) of interpolation points. Thus, we let

φ(α) =
Γ(6−α)
Γ(6) , α ∈ (0,2). We show in Fig. 4.3 that the designed pre-conditioner (ii) improves the

condition number of the linear system more efficiently and at least. Furthermore, we consider the

same problem but with a right-biased distribution function, and show in Fig. 4.4 that the designed

pre-conditioner (i) is more effective. We also note that in both cases of φ(α), either choices of

pre-conditioners have almost similar performance.
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Figure 4.3: Condition number of the original linear system with φ(α) =
Γ(6−α)
Γ(6) (left), and the pre-

conditioned one for µ = 1/10 (middle), and µ = 9/10 (right).

Figure 4.4: Condition number of the linear system for right-biased normal distribution. The original linear
system (black lines) and the pre-conditioned one (red and blue lines) for µ = 1/10 (left), µ = 5/10 (middle),
and µ = 9/10 (right).

4.3.6 Weak Distributed Differentiation Matrix: Two-Sided Distributed-Order BVPs

We extend our formulation to the two-sided space distributed-order derivative (in Riemann-

Liouville sense) in BVPs and consider the following problem

DDφu(x) =
∫ αmax

αmin
φ(α)

(
κl −1D

α
x u(x) + κr xD

α
1 u(x)

)
dα = f (x; u), (4.41)

u(−1) = u(1) = 0, 1 < αmin < αmax ≤ 2 ∀x ∈ (−1,1),

for which the discrete bilinear form can be written as: aαh (uN, vN ) = κl (−1D
α/2
x uN, xD

α/2
1 vN )Ω +

κr (xD
α/2
1 uN,−1D

α/2
x vN )Ω. We follow the derivation in implementing the pseudo-spectral scheme,

where we need to construct two sets of fractional interpolants. The challenge in such problem is

to consider the interpolation points such that we can take the two sided derivative of the resulting

interpolant with no extra cost and thus, respect the formulation of weak distributed differentiation

matrix. By picking the interpolation parameter µ to be zero, the two sets of interpolation points

coincide. Therefore, the fractional interpolants become the standard Lagrange interpolants, which
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can be expanded in terms of Legendre polynomial, and we can readily take their right- and left-sided

derivatives. Hence,

(1)hµj (ξ)
���
µ=0
= h j(ξ) =

N+2∏
k=1
k, j

( ξ − xk
x j − xk

)
=

N+1∑
n=1

β
j
n Pn(ξ), j = 2,3, · · · ,N + 1,

(2)hµi (ξ)
���
µ=0
= hi(ξ) =

N+2∏
k=1
k,i

( ξ − xk
xi − xk

)
=

N+1∑
m=1

βi
m Pm(ξ), i = 2,3, · · · ,N + 1,

where Pn(ξ) and Pm(ξ) are the Legendre polynomial. We follow similar derivation as in Sec. 4.3.3

and let

Dαi,j =
( N+1∑

n=1
β

j
n −1D

α/2
ξ
[Pn(ξ)],

N+1∑
m=1

βi
m ξD

α/2
1 [Pm(ξ)]

)
Ω

=
(
(1 + ξ)−α/2 LD

α/2
ξ,j (ξ) , (1 − ξ)

−α/2
RD

α/2
ξ,i (ξ)

)
Ω
,

which can be taken by a proper quadrature rule with the corresponding weights (1 + ξ)−α/2 and

(1 − ξ)−α/2, where

LD
α/2
ξ,j (ξ) =

N+1∑
n=1

β
j
n

Γ(n + 1)
Γ(n − α/2 + 1)

P α/2,−α/2
n (ξ) (1 + ξ)−α/2,

RD
α/2
ξ,i (ξ) =

N+1∑
m=1

βi
m

Γ(m + 1)
Γ(m − α/2 + 1)

P −α/2,α/2m (ξ) (1 − ξ)−α/2.

Thus, the discrete bilinear can be written as aαh (uN, vN ) =
(
κl D

α
i,j + κr D

α
j,i

)
and the two-sided

weak distributed differentiation matrix takes the form

Di,j =

∫ αmax

αmin
φ(α)

(
κl D

α
i,j + κr D

α
j,i

)
dα. (4.42)

We note that if κl = κr , then the obtained differentiation matrix is symmetric.

4.4 Numerical Simulations

In order to examine the efficiency of proposed numerical schemes, we consider several numerical

examples as follows.
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4.4.1 Distributed-Order IVP

We recall the IVP (4.6) here DDφu(t) = f (t), ∀t ∈ (0,T], subject to zero initial conditions, which

we solve for two smooth and non-smooth test cases:

• Case I: uext = t5, φ(α) = Γ(6−α)
Γ(6) , f (t) =

t3
(
t2−1

)
log(t) ,

• Case II: uext = t5+µ, φ(α) = Γ(6+µ−α)
Γ(6+µ) , f (t) =

t3+µ
(
t2−1

)
log(t) ,

where α ∈ (0,2). following the procedure, we construct the linear system (4.39). By taking the

simulation time T = 2 and for different choices of µ, we investigate the convergence of the solution

in L2-norm. It is observed that the choice of µ has an important effect on the accuracy of scheme.

But the exact solution is not always known in distributed-order problems. Hence, the fractional

parameter µ can play the role of a fine-tuning knob giving the possibility of searching for the

best/optimal case, where the highest rate can be achieved with minimal degrees of freedom. As

shown in Fig. 4.5 (a) for the case of smooth solution, the error reaches machine precision much

faster by tunning the parameter µ to be close to 1, where the nodal basis resemble the standard

Lagrange behavior and thus, more efficient to capture the smooth solution. Moreover, in the case

of singular solution, we can readily capture the singularity by tunning the interpolation parameter

such that the singularity is captured by the fractional part of the nodal basis and the smooth part is

captured by choosing enough number of interpolation points. In both cases, decreasing the value

of µ leads to a better conditioned resulting linear system, see Table. 4.1.

Table 4.1: Pseudo-spectral method: condition number of the resulting linear system, Case-I (left),
Case-II (right).

N µ = 1 − 10−4 µ = 9/10 µ = 5/10 µ = 1/10
5 165.846 118.412 14.519 23.5263
9 582.666 381.589 43.1632 122.499
13 1400.63 853.817 109.051 358.571
17 2701.79 1607.76 222.974 796.262

N µ = 1 − 10−4 µ = 9/10 µ = 5/10 µ = 1/10
2 28.8334 22.2707 4.61492 3.03315
3 71.0737 56.0664 8.03363 6.21275
4 119.133 92.2287 6.85646 12.7772
5 184.823 136.858 15.935 22.9091

Table 4.2 shows the condition number of the resulting linear system for case-I, constructed by

fractional collocation method for distributed-order differential equations, developed in [87] and the

current pseudo-spectral method, and we observe that the proposed scheme wins.
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Figure 4.5: Pseudo-spectral method: L2-norm error of the approximate solution, (left) Case I (right) Case
II

Table 4.2: Condition number of the resulting linear system. The comparison between fractional
collocationmethod (employing fractional interpolants in the strong sense [87]), and pseudo-spectral
method (employing fractional interpolants in the weak sense).

µ = 9/10 µ = 5/10 µ = 1/10
N Strong Weak Strong Weak Strong Weak
6 60.3467 118.412 43.6649 14.519 36.0056 23.5263
10 325.037 381.589 214.935 43.1632 202.826 122.499
14 1076.14 853.817 685.166 109.051 713.002 358.571
18 2665.32 1607.76 1661.16 222.974 3397.2 796.262

4.4.2 (1+1)-Dimensions Space Distributed-Order Burgers Equation

Let u : Ω → R, where Ω = [−1,1] × [0,T]. We consider the following space distributed-order

fractional Burgers equation with nonlinear reaction term

∂u(x, t)
∂t

= κ DDφu(x, t) − γ u3(x, t) − β u
−1D

σ
x u(x, t) + f (x, t), (4.43)

subject to homogeneous Dirichlet boundary conditions u(−1, t) = u(1, t) = 0, and initial condition

u(x,0) = uext(x,0), where κ = 10−4 is the diffusion coefficient, γ and β are constant coefficients.

The distributed-order operator DDφ is defined in (5.7), in which φ(α) : (1,2) → R. The singu-

lar exact solution is uext(x, t) = e−0.2t
(
(1 + x)3+µ − 1

2 (1 + x)4+µ
)
, and the force term f (x, t) is

computed by substituting the exact solution in (4.43), in which we take the integral in α-domain

using the same quadrature rule as in the weak distributed differentiation matrix. We use the pro-

posed scheme to approximate the solution in space and then, by employing proper time integration

method, we march in time. To this end, we first take the weak form of the problem by multiplying

test functions and integrate over the spatial computational domain. We form two proper sets of
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N + 2 interpolation points to construct the nodal basis (1)hµj (x) and test functions (2)hµi (x), as

discussed in section 4.3.2. Then, similar to (4.19), we approximate the solution in space as

uN (ξ, t) =
N+1∑
j=2

u j(t)
(1)hµj (ξ), (4.44)

where u j(t) = u(ξ j, t), andwe only need to construct N interpolants due to zero boundary conditions.

Thus, we obtain the linear system of ODEs

M
d
dt

U(t) = κ D U(t) − γ N(t) − β D(t) + f(t), (4.45)

where U(t) is the vector of u j(t), j = 2,3, · · · ,N + 1, Mi j is the interpolation matrix, D is the weak

distributed differentiation matrix in (4.25), f(t) is the force vector, N(t) is the vector associated

with the cubic non-linear reaction term, and D(t) is the vector associated with the weak form of

non-linear term. For i, j = 2,3, · · · ,N +1, we employ proper quadrature rules by following Remark

4.4.1, and compute the entries of each matrices and vectors, which are defined as:

Mi j =

∫ 1

−1
(1)hµj (x)

(2)hµi (x) dx, (4.46)

fi(t) =
∫ 1

−1
f (x, t) (2)hµi (x) dx, (4.47)

Ni(t) = ãi

N+1∑
q=2

Wq a3
q G̃i(xq) uq(t)3 (4.48)

Di(t) = ãi

N+1∑
q=2

Wq

(N+1∑
r=2

ur (t) ar LD
σ,µ
x,r (xq)

)
G̃i(xq) uq(t), (4.49)

where ãi, aq, and G̃i(x) are given in section 4.3.3. See also section 4.5.2 on derivation of vectors

(4.48) and (4.49) corresponding to the nonlinear terms.

Remark 4.4.1. The difficulty in obtaining the system of ODEs is to efficiently compute the integral

for the non-linear terms N(t) and D(t), which we overcome by using the property of fractional

Lagrange interpolants that satisfy the Kronecker delta at the interpolation points. Thus, we let

the quadrature points in taking the integral of non-linear terms to coincide with the first set of

interpolation points, i.e. (1)W, which we use to construct the nodal basis. Therefore, for the case
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that we only have cubic non-linearity, i.e. β = 0, we show that Gauss-Lobatto-Jacobi formula with

weights {µ,3µ} is the proper quadrature rule in taking the integral of non-linear term. Hence,

we choose (1)W to be the zeros of pµ,3µN+2(ξ). In the case that γ = 0, however, by considering the

order of fractional derivative in the non-linear term, we find that Gauss-Lobatto-Jacobi formula

with weights {µ,2µ − σ} is the proper quadrature rule in taking the integral of non-linear term.

Thus, we choose (1)W to be the zeros of pµ,2µ−σN+2 (ξ).

The obtained linear system of ODE (4.45) is then integrated in time, using a 2nd-order Adams

Bashforth method with time step ∆t = 10−4 for different values of γ, β, and left- and right-biased

distribution functions φ(α), as shown in Fig. 4.6 (left). We consider γ = 1 and β = 0, where

we recover the linear system corresponding to the distribute-order diffusion reaction equation, for

which we show the convergence of numerical solution in L∞-norm in Fig. 4.6 (middle). Moreover,

we consider γ = 0 and β = 1, and recover the linear system corresponding to the distribute-order

Burgers equation, where we show the convergence of numerical solution in L∞-norm in Fig. 4.6

(right). We note that the exact solution in space is a power law type with highest order 4 + µ

and singularity of order µ, to which the interpolation parameter is tunned. The exact solution is

well-approximated up to the order of 10−9 with N = 4 in the case of distributed-order diffusion

reaction equation. However, in the case of distributed-order Burgers equation, the single order

fractional derivative shifts the singularity and thus, postpone convergence to N = 9. We also note

that in both cases, we observe a plateau in the convergence of solution after reaching error level

10−9, which is due to the inaccuracy in integrations involved with Gamma functions.

4.4.3 (1+2)-Dimensions Two-Sided Space Distributed-Order Diffusion Reaction Equation

Let u(t, x, y) : Ω → R, where Ω = [0,T] × [−1,1] × [−1,1]. We use the definition of two-sided

distributed-order derivative, given in (4.41) and consider the following 1 + 2-D two-sided space
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Figure 4.6: (1+1)-D space distributed-order Burgers equation, pseudo-spectral in space and 2nd-order
Adams Bashforth in time. (left): The left- and right-biased normal distribution functions (mean 1.3 and 1.7,
respectively with variance 0.1) in the distributed-order operator. (middle) : L∞-norm error v.s. N for β = 0
and γ = 1. (right):L∞-norm error v.s. N for β = 1 and γ = 0.

distributed-order diffusion equation with nonlinear reaction term

∂u
∂t
=

∫ αmax

αmin
φx(α)

(
κlx −1D

α
x + κrx xD

α
1

)
u dα (4.50)

+

∫ αmax

αmin
φy(α)

(
κly −1D

α
y + κry yD

α
1

)
u dα − u3 + f

subject to proper initial and boundary conditions, in which κlx , κrx , κly , and κry are the diffusion

coefficients. We obtain the weak form of the problem by multiplying proper test functions and

integrating over the whole computational domain. As discussed in section 4.3.6 for two-sided

operators, we form two sets of N + 2 interpolation points for each dimension and construct the

corresponding interpolants. Then, we approximate the solution using nodal expansion as

uN (t, x, y) =
N+1∑
j=2

N+1∑
j=2

u j,s(t) h j(x) hs(y). (4.51)

By considering the test function v(x, y) = hi(x) hr (y) and substituting (4.51) into (4.50), we obtain

the corresponding linear system as

Mx dU(t)
dt
MyT

= D x U(t)MyT
+Mx U(t)D yT

− N(t) + F (t), (4.52)

whereU(t) is thematrix of u js(t), j, s = 2,3, · · · ,N+2. Theweak distributed differentiationmatrices

in x and y directions are D x and D y, respectively, and have similar structures, given in (4.42).

The diagonal matricesMx andMy are the interpolation matrices in x and y directions, defined as∫ 1
−1 h j(x) hi(x) dx and

∫ 1
−1 hs(y) hr (y) dy, respectively. F (t) =

∫ 1
−1

∫ 1
−1 f (t, x, y) hi(x) hr (y) dx is
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Figure 4.7: (1 + 2)-D two-sided space distributed-order diffusion reaction equation, pseudo-spectral in
space and 2nd-order Adams Bashforth in time. (left): L∞-norm error v.s. N . (right): Time evolution of the
solution.

the force therm. MatrixN(t), associated with the weak form of cubic nonlinearity can be efficiently

computed using the property of Lagrange interpolants as discussed in previous sections. Thus,

Nir (t) = wi wr uir (t)3, where wi and wr are the Jacobi quadrature weights.

To investigate the performance of developed scheme in higher dimensional problems, we solve

(4.50), subject to homogeneous Dirichlet boundary condition u(t, x, y) = 0
��
∂Ω and initial condition

u(0, x, y) = uext(0, x, y), for left- and right- biased φ(α) (shown in Fig. 4.6 (left)), where in each

case we consider similar distributions in both directions x and y, i.e. φx(α) = φy(α) = φ(α).

Moreover, we consider isotropic diffusivity with κlx = κrx = κly = κry = 10−4, and a smooth

exact solution of the form uext(t, x, y) = e−0.2t sin(π2 (x − 1)) sin(π2 (y − 1)). To obtain the force

term f (t, x, y), we substitute uext into (4.50) and take the integral in α-domain using the same

quadrature rule as in the weak distributed differentiation matrices, where we need to take the right-

and left- sided derivatives of the exact solution for each quadrature point in α-domain. To obtain

these fractional derivatives, we first accurately project the exact solution in each direction x and y

on the Legendre polynomials Pl+1(x) − Pl−1(x) and Pl+1(y) − Pl−1(y), respectively, considering

sufficient number of polynomials, and then, by using (3.1) with µ = 0, we obtain the derivatives.

We also use a 2nd-order Adams Bashforth method with time step ∆t = 10−4 to march in time. In

Fig. 4.7, we show the convergence of numerical solution in L∞-norm (left), in which we observe

that the choice of right-biased distribution function results in slightly larger error. Moreover, in

Fig. 4.7 (right) we show the time evolution and diffusion of the solution, where the force term is

adjusted such that the exponential decay in time is of order −0.2.
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4.5 Detailed Derivations

4.5.1 Polynomials Expansions In Terms Of Jacobi Polynomials

In order to obtain the coefficient (1)β j
n in (4.28), we multiply the both side of equation by p−µ,µk−1 and

the proper weights (1 − ξ)−µ and (1 + ξ)µ. Then, we integrate over the whole domain to obtain∫ 1

−1
(1 − ξ)−µ (1 + ξ)µ Gj(ξ) p

−µ,µ
k−1 dξ =

N+1∑
n=1

(1)β j
n

∫ 1

−1
(1 − ξ)−µ (1 + ξ)µ p−µ,µk−1 p−µ,µn−1 dξ,

(4.53)

=

N+1∑
n=1

(1)β j
n

2
2n − 1

Γ(n − µ) Γ(n + µ)
Γ(n) (n − 1)!

δnk by orthogonality of Jacobi polynomials.

Therefore, (1)β j
k =

1
γk

∫ 1
−1 (1 − ξ)

−µ (1 + ξ)µ Gj(ξ) p
−µ,µ
k−1 dξ, j = 2,3, · · · ,N + 1, in which γk =

2
2k−1

Γ(k−µ) Γ(k+µ)
Γ(k) (k−1)! .

Similarly, to obtain the coefficient (2)βi
m in (4.29), we multiply both side of the equation by

pµ,−µk−1 and the proper weights (1 − ξ)µ and (1 + ξ)−µ, and then integrate over the whole domain.

Thus,∫ 1

−1
(1 − ξ)µ (1 + ξ)−µ G̃j(ξ) p

µ,−µ
k−1 dξ =

N+1∑
m=1

(2)βi
m

∫ 1

−1
(1 − ξ)µ (1 + ξ)−µ pµ,−µk−1 pµ,−µm−1 dξ,

(4.54)

=

N+1∑
m=1

(2)βi
m

2
2m − 1

Γ(m + µ) Γ(m − µ)
Γ(m) (m − 1)!

δmk by orthogonality of Jacobi polynomials.

Therefore, (2)βi
k =

1
γk

∫ 1
−1 (1 − ξ)

µ (1 + ξ)−µ G̃j(ξ) p
µ,−µ
k−1 dξ, i = 1,2, · · · ,N , in which γk has the

same definition as above.
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4.5.2 Efficient Computation of Non-linear Terms

The vector N(t) is associated with the non-linear reaction term and is computed following Remark

4.4.1 as:

N(t) =
(
u3

N,
(2)hµi (x)

)
Ωx

i = 2,3, · · · ,N + 1, (4.55)

=

N+1∑
j=2

N+1∑
r=2

N+1∑
s=2

u j ur us

∫ 1

−1
(1)hµj (x)

(1)hµr (x)
(1)hµs (x)

(2)hµi (x) dx,

=

N+1∑
j=2

N+1∑
r=2

N+1∑
s=2
(u j ur us)(a j ar as ãi)

∫ 1

−1
(1 − x)µ(1 + x)3µ Gj(x) Gr (x) Gs(x) G̃i(x) dx,

=

N+1∑
q=2

Wq

N+1∑
j=2

N+1∑
r=2

N+1∑
s=2
(u j ur us)(a j ar as ãi) Gj(xq) Gr (xq) Gs(xq) G̃i(xq),

=

N+1∑
q=2

Wq

N+1∑
j=2

N+1∑
r=2

N+1∑
s=2
(u j ur us)(a j ar as ãi) δ jq δrq δsq G̃i(xq),

=

N+1∑
q=2

Wq (aq uq)
3ãi G̃i(xq) i = 2,3, · · · ,N + 1,

where {xq,Wq}|
N+1
q=2 are theGauss-Lobatto-Jacobi points andweights associated toweight functions

(1 − x)µ and (1 + x)3µ. We note that since u1 = uN+2 = 0, we do not consider q = 1,N + 2 in the

above quadrature rule.
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Moreover, following the same Remark 4.4.1 and using (4.35), we compute the vector D(t) as:

D(t) =
(
u(x, t)

−1D
σ
x u(x, t) , (2)hµi (x)

)
Ωx

i = 2,3, · · · ,N + 1, (4.56)

=

N+1∑
j=2

N+1∑
r=2

u j ur

∫ 1

−1
(1)hµj (x)

(
−1D

σ
x
(1)hµr (x)

)
(2)hµi (x) dx,

=

N+1∑
j=2

N+1∑
r=2

u j ur a j ãi

∫ 1

−1
(1 − x)µ(1 + x)2µ−σ Gj(x) LD

σ,µ
x,r (x) G̃i(x) dx,

=

N+1∑
q=2

Wq

N+1∑
j=2

N+1∑
r=2

u j ur a j ãi Gj(xq) LD
σ,µ
x,r (xq) G̃i(xq),

=

N+1∑
q=2

Wq

N+1∑
j=2

N+1∑
r=2

u j ur a j ãi δ jq LD
σ,µ
x,r (xq) G̃i(xq),

=

N+1∑
q=2

Wq uq ãi

(N+1∑
r=2

ur ar LD
σ,µ
x,r (xq)

)
G̃i(xq), i = 2,3, · · · ,N + 1,

where {xq,Wq}|
N+1
q=2 are theGauss-Lobatto-Jacobi points andweights associated toweight functions

(1 − x)µ and (1 + x)2µ−σ. We note that since u1 = uN+2 = 0, we do not consider q = 1,N + 2 in

the above quadrature rule.
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CHAPTER 5

TEMPORALLY-DISTRIBUTED FRACTIONAL PDES: PETROV-GALERKIN
SPECTRAL METHOD

5.1 Background

Weconstruct Petrov-Galerkin spectralmethodswith a unified fast solver for a class of temporally-

distributed FPDEs with constant coefficients subject to Dirichlet boundary/initial conditions. We

develop the fast linear solver based on the eigensolutions of the corresponding temporal/spatial

mass and stiffness matrices. We carry out the discrete stability and error analysis of the PG method

for the two-dimensional case. Eventually, we illustrate the spectral convergence and the efficiency

of the method by performing several numerical simulations.

This chapter is organized as follows: in section 5.2, we introduce the preliminaries on fractional

calculus, define the distributed fractional Sobolev spaces, the problem, and the corresponding

variational form. In section 5.3, we construct the PG methods, formulate the fast solver, and carry

out the discrete stability and error analysis. In section 5.4, we provide some numerical tests.

5.2 Definitions

Following [118], we denote the left- and right-sided Reimann-Liouville fractional derivatives

by RL
aD

ν
x f (x) and RL

xD
ν
bg(x), respectively, in which g(x) ∈ Cn[a, b]. We recall from [5] that

RL
aD

ν
xg(x) =

C
aD

ν
xg(x) = aD

ν
xg(x), ν ∈ (0,1), when homogeneous Dirichlet initial and boundary

conditions are enforced. Following [87], we analytically obtain the fractional derivatives of the

Jacobi poly-fractonomials [194], which are later used in developing the numerical scheme, as

RL
−1D

σ
ξ

{
(1 + ξ)µP−µ,µn−1 (ξ)

}
=

Γ(n + µ)
Γ(n + µ − σ)

(1 + ξ)µ−σP−µ+σ,µ−σn−1 (ξ) (5.1)

RL
ξD

σ
1

{
(1 − ξ)µPµ,−µn−1 (ξ)

}
=

Γ(n + µ)
Γ(n + µ − σ)

(1 − ξ)µ−σPµ−σ,−µ+σn−1 (ξ) (5.2)
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in which µ,σ > 0 and Pµ,−µn−1 (ξ) is the standard Jacobi polynomial of order n − 1. Similarly, the

µ-th order fractional derivatives of the Legendre polynomials are given as

−1D
µ
x Pn(x) =

Γ(n + 1)
Γ(n − µ + 1)

P µ,−µ
n (x) (1 + x)−µ, xD

µ
1 Pn(x) =

Γ(n + 1)
Γ(n − µ + 1)

P −µ,µn (x) (1 − x)−µ,

in which Pn(x) represents the Legendre polynomial of order n.

5.2.1 Distributed Fractional Sobolev Spaces

According to [101], the usual Sobolev space associated with the real index ν1 on bounded interval

Λ1 = (a1, b1), is denoted by Hν1(Λ1). Due to Lemma 2.6 in [101], ‖ · ‖Hν1 (Λ1)
≡ ‖ · ‖cHν1 (Λ1)

,

where ‖ · ‖cHν1 (Λ1)
=

(
‖ x1D

ν1
b1
(·)‖2

L2(Λ1)
+ ‖ a1D

ν1
x1 (·)‖

2
L2(Λ1)

+ ‖ · ‖2
L2(Λ1)

) 1
2 . LetΛi = (ai, bi)×

Λi−1 for i = 2, · · · , d, and X1 = H
ν1
0 (Λ1), which is associated with the norm ‖ · ‖cHν1 (Λ1)

.

Therefore, Xd is constructed such that Xd = H
νd
0

(
(ad, bd); L2(Λd−1)

)
∩ L2(I;Xd−1), associated

with norm ‖ · ‖Xd =

{
‖ · ‖2

L2(Λd )
+

∑d
i=1

(
‖ xi
D
νi
bi
(·)‖2

L2(Λd )
+ ‖ ai

D
νi
xi (·)‖

2
L2(Λd )

)} 1
2
, where

Xd−1 = H
νd−1
0

(
(ad−1, bd−1); L2(Λd−2)

)
∩ L2(I;Xd−2),

...

X2 = H
ν2
0

(
(a2, b2); L2(Λ1)

)
∩ L2(I;X1). (5.3)

Following [87], we denote by Hϕ(R) the distributed fractional Sobolev space on R , which is

endowed with the following norm ‖ · ‖Hϕ(R) =
(∫ α2
α1

ϕ(α) ‖ (1 + |ω|2)
α
2 F (·)(ω)‖2

L2(R)
dα

) 1
2
,

where ϕ ∈ L1( [α1, α2] ), 0 ≤ α1 < α2. Subsequently, we denote by Hϕ(I) the distributed

fractional Sobolev space on the finite closed interval I = (0,T), which is defined as Hϕ(I) = {v ∈

L2(I)| ∃ṽ ∈ Hϕ(R) s.t. ṽ |I = v},with the the equivalent norms ‖ · ‖l Hϕ(I) and ‖ · ‖r Hϕ(I) in [87],

where

‖ · ‖l Hϕ(I) =

(
‖ · ‖2

L2(I)
+

∫ α2

α1
ϕ(α) ‖ RL

0D
α
t (·)‖

2
L2(I)

dα

) 1
2
,

‖ · ‖r Hϕ(I) =

(
‖ · ‖2

L2(I)
+

∫ α2

α1
ϕ(α) ‖ RL

tD
α
T (·)‖

2
L2(I)

dα

) 1
2
. (5.4)
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Let Ω = I × Λd . We define

l
0Hϕ

(
I; L2(Λd)

)
:=

{
u | ‖u(t, ·)‖L2(Λd )

∈ Hϕ(I),u|t=0 = u|x=ai = u|x=bi = 0, i = 1, · · · , d
}
,

which is equipped with the norm

‖u‖l Hτ(I;L2(Λd ))
=




 ‖u(t, ·)‖L2(Λd )




l Hϕ(I)
=

(
‖u‖2

L2(Ω)
+

∫ α2

α1
ϕ(α) ‖ RL

0D
α
t (u)‖

2
L2(Ω)

dα

) 1
2
.

Similarly,

r
0Hϕ

(
I; L2(Λd)

)
:=

{
v | ‖v(t, ·)‖L2(Λd )

∈ Hϕ(I), v |t=T = v |x=ai = v |x=bi = 0, i = 1, · · · , d
}
,

which is equipped with the norm

‖v‖r Hϕ(I;L2(Λd ))
=




 ‖v(t, ·)‖L2(Λd )




r Hϕ(I)
=

(
‖v‖2

L2(Ω)
+

∫ α2

α1
ϕ(α) ‖ RL

tD
α
T (v)‖

2
L2(Ω)

dα

) 1
2
.

We define the solution space Bϕ,ν1,··· ,νd (Ω) := l
0Hτ

(
I; L2(Λd)

)
∩ L2(I;Xd), endowed with the

norm ‖u‖
B
ϕ,ν1,··· ,νd =

{
‖u‖2l Hϕ(I;L2(Λd ))

+ ‖u‖2
L2(I;Xd )

} 1
2 . Therefore,

‖u‖
B
ϕ,ν1,··· ,νd =

{
‖u‖2

L2(Ω)
+

∫ α2

α1
ϕ(α) ‖ RL

0D
α
t (u)‖

2
L2(Ω)

dα+
d∑

i=1

(
‖ xi
D
νi
bi
(u)‖2

L2(Ω)
+‖ ai

D
νi
xi (u)‖

2
L2(Ω)

)} 1
2 .

(5.5)

Likewise, we define the test space Bϕ,ν1,··· ,νd (Ω) := r Hϕ
(
I; L2(Λd)

)
∩ L2(I;Xd), endowed with

the norm ‖v‖
B
τ,ν1,··· ,νd =

{
‖v‖2r Hτ(I;L2(Λd ))

+ ‖v‖2
L2(I;Xd )

} 1
2 . Therefore,

‖v‖
B
ϕ,ν1,··· ,νd =

{
‖v‖2

L2(Ω)
+

∫ α2

α1
ϕ(α) ‖ RL

tD
α
T (v)‖

2
L2(Ω)

dα+
d∑

i=1

(
‖ xi
D
νi
bi
(v)‖2

L2(Ω)
+‖ ai

D
νi
xi (v)‖

2
L2(Ω)

)} 1
2 .

(5.6)

We note that in general, ϕ can be defined in any possible subset of the interval [α1, α2] and thus

arbitrarily confines the domain of integration, where the theoretical framework of the problem

remains invariant while requiring the solution to have less regularity. The following lemma is

useful in construction of the proposed numerical scheme.
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Lemma 5.2.1. [99]: For all 0 < α ≤ 1, if u ∈ H1([a, b]) such that u(a) = 0, and w ∈ Hα/2([a, b]),

then (aD α
s u,w)Ω = ( aD

α/2
s u , sD

α/2
b w )Ω, where (·, ·)Ω represents the standard inner product

in Ω = [a, b].

5.2.2 Problem Definition

Let α 7→ ϕ(α) be a continuous mapping in [α1, α2]. Then, we define the distributed order fractional

derivative as
DDϕu(t, x) =

∫ α2

α1
ϕ(α) ∗aD

α
t u(t, x) dα, t > a, (5.7)

where ∗aDα
t denotes the Riemann-Liouville fractional derivative of order α. Next, Let u ∈

Bϕ,ν1,··· ,νd (Ω) for some positive integer d and Ω = [0,T] × [a1, b1] × [a2, b2] × · · · × [ad, bd],

where

DDϕu +
d∑

j=1

[
cl j a j

D
2µ j
x j u + cr j x j

D
2µ j
b j

u
]
−

d∑
j=1

[
κl j a j

D
2ν j
x j u + κr j x j

D
2ν j
b j

u
]
+ γ u = f , (5.8)

in which all the coefficients γ, cl j , cr j , κl j , and κr j are constant, 2µ j ∈ (0,1), 2ν j ∈ (1,2) for

j = 1,2, · · · , d, and 0 < α1 < α2 ≤ 1. Problem (5.8) is subject to the Dirichlet initial and boundary

conditions, i.e. u|t=0 = 0 and u|x j=aj = u|x j=bj = 0 for j = 1,2, · · · , d. According to (5.5), the

norm associated with Bϕ,ν1,··· ,νd (Ω) can be reduced to

‖u‖
B
ϕ,ν1,··· ,νd (Ω) =

{ ∫ α2

α1
ϕ(α) ‖ 0D

α
t (u)‖

2
L2(Ω)︸              ︷︷              ︸

UϕI

dα +
d∑

j=1

[
‖ aj
D
ν j
x j (u)‖

2
L2(Ω)︸                 ︷︷                 ︸

U j
I I

+ ‖ x j
D
ν j
b j
(u)‖2

L2(Ω)︸                 ︷︷                 ︸
U j

I I I

]}1/2
,

and similarly, the norm, associated with Bϕ,ν1,··· ,νd (Ω), in (5.6) is equivalent to

‖v‖
B
ϕ,ν1,··· ,νd (Ω) =

{ ∫ α2

α1
ϕ(α) ‖ tD

α
T (v)‖

2
L2(Ω)︸              ︷︷              ︸

VϕI

dα +
d∑

j=1

[
‖ x j
D
ν j
b j
(v)‖2

L2(Ω)︸                 ︷︷                 ︸
V j

I I

+ ‖ aj
D
ν j
x j (v)‖

2
L2(Ω)︸                 ︷︷                 ︸

V j
I I I

]}1/2
.

In order to obtain the variational form of problem, we multiply (5.8) by a proper test function

v and integrate over the computational domain. The corresponding continuous bilinear form
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a : Bϕ,ν1,··· ,νd (Ω) ×Bϕ,ν1,··· ,νd (Ω) → R takes the form

aϕ(u, v) =
∫ α2

α1
ϕ(α) (0D

α/2
t u, tD

α/2
T v)Ω dα

+

d∑
j=1

[
cl j (aj

D
µ j
x j u, x j

D
µ j
b j

v)Ω + cr j (x j
D
µ j
a j u, aj

D
µ j
x j v)Ω

]
−

d∑
j=1

[
κl j (aj

D
ν j
x j u, x j

D
ν j
b j

v)Ω + κr j (x j
D
ν j
b j

u, aj
D
ν j
x j v)Ω

]
+ γ(u, v)Ω, (5.9)

where (·, ·)Ω represents the usual L2-product. Thus, the problem reads as: find u ∈ Bϕ,ν1,··· ,νd (Ω)

such that

aϕ(u, v) = ( f , v)Ω, ∀v ∈ B
ϕ,ν1,··· ,νd (Ω). (5.10)

Next, we choose proper finite-dimensional subspaces ofUN ⊂ B
ϕ,ν1,··· ,νd (Ω) andVN ⊂ B

ϕ,ν1,··· ,νd (Ω);

thus, the discrete problem reads as: find uN ∈ UN such that

aϕ(uN, vN ) = ( f , vN )Ω, ∀vN ∈ VN . (5.11)

5.3 Petrov Galerkin Mathematical Formulation

We construct a Petrov-Galerkin spectral method for the discrete problem uN ∈ UN , satisfying

the weak form (5.11). We first define the proper finite-dimensional basis/test spaces and then

implement the numerical scheme.

5.3.1 Space of Basis (UN ) and Test (VN ) Functions

We employ the Legendre polynomials as the spatial basis, given in the standard domain ξ ∈ [−1,1]

as φm(ξ) = σm
(
Pm+1(ξ) − Pm−1(ξ)

)
, m = 1,2, · · · . We also employ the poly-fractonomial of

first kind [183, 194] as the temporal basis function, given in the standard domain η ∈ [−1,1] as

ψτn (η) = σn(1 + η)τP−τ,τn−1 (η), n = 1,2, · · · . The coefficients σm are defined as σm = 2 + (−1)m.

Therefore, we construct the trial space as

UN = span
{(
ψ τ

n ◦ η
)
(t)

d∏
j=1

(
φmj
◦ ξ j

)
(x j) : n = 1,2, · · · ,N, m j = 1,2, · · · ,M j

}
,
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where η(t) = 2t/T − 1 and ξ j(s) = 2
s−aj

b j−aj
− 1. The temporal and spatial basis functions naturally

satisfy the initial and boundary conditions, respectively. Moreover, we define the temporal and

spatial test functions in the standard domain as Ψτr (η) = σ̃r (1 − η)τ Pτ,−τr−1 (η), r = 1,2, · · · (poly-

fractonomial of second kind) and Φµk (ξ) = σ̃k
(
Pk+1(ξ) − Pk−1(ξ)

)
, k = 1,2, · · · , respectively. The

coefficients σ̃k are defined as σ̃k = 2 (−1)k + 1. Hence, we construct the corresponding test space

as

VN = span
{(
Ψ
τ
r ◦ η

)
(t)

d∏
j=1

(
Φk j
◦ ξ j

)
(x j) : r = 1,2, · · · ,N, k j = 1,2, · · · ,M j

}
.

5.3.2 Implementation of PG Spectral Method

We represent the solution of (5.11) as a linear combination of elements of the solution space UN .

Therefore,

uN (x, t) =
N∑

n=1

M1∑
m1=1

· · ·

Md∑
md=1

ûn,m1,··· ,md

[
ψτn (t)

d∏
j=1

φmj
(x j)

]
(5.12)

in Ω. By substituting the expansion (7.38) into (5.11) and choosing vN = Ψ
τ
r (t)

∏d
j=1Φk j

(x j),

r = 1,2, . . . ,N , k j = 1,2, . . . ,M j , we obtain the following Lyapunov system(
Sϕτ ⊗ M1 ⊗ M2 · · · ⊗ Md +

d∑
j=1
[Mτ ⊗ M1 ⊗ · · · ⊗ Mj−1 ⊗ STot

j ⊗ Mj+1 · · · ⊗ Md]

+ γMτ ⊗ M1 ⊗ M2 · · · ⊗ Md

)
U = F, (5.13)

in which ⊗ represents the Kronecker product, F denotes the multi-dimensional load matrix whose

entries are given as

Fr,k1,··· ,kd =

∫
Ω

f (t, x1, · · · , xd)
(
Ψ
τ
r ◦ η

)
(t)

d∏
j=1

(
Φk j
◦ ξ j

)
(x j) dΩ, (5.14)

and S Tot
j = cl j × Sµ j ,l + cr j × Sµ j ,r − κl j × Sν j − κr j × Sν j ,r . The matrices Sϕτ and Mτ denote

the temporal stiffness and mass matrices, respectively; Sν j , Sµ j and M j denote the spatial stiffness

and mass matrices, respectively. The entries of spatial mass matrix Mj are computed analytically,
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while we employ proper quadrature rules to accurately compute the entries of spatial stiffness Sν j ,

Sµ j and temporal mass matrices Mτ. We note that due to the choices of basis/test functions, the

obtained mass and stiffness matrices are symmetric. Moreover, we accurately compute the entries

of temporal stiffness matrix, Sϕτ , using theorem (3.1) in [87].

5.3.3 Unified Fast FPDE Solver

We develop a unified fast solver in terms of the generalized eigensolutions in order to formulate a

closed-form solution to the Lyapunov system (7.39).

Theorem 5.3.1. Let {®e j
mj , λ

j
mj }
M j
mj=1 be the set of general eigen-solutions of the spatial stiffness

matrix STot
j with respect to the mass matrix Mj . Moreover, let {®e τ

n , λ
τ
n }
N
n=1 be the set of general

eigen-solutions of the temporal mass matrix Mτ with respect to the stiffness matrix Sϕτ . Then the

matrix of unknown coefficientsU is explicitly obtained as

U =

N∑
n=1

M1∑
m1=1

· · ·

Md∑
md=1

κn,m1,··· ,md ®e
τ

n ⊗ ®e
1
m1 ⊗ · · · ⊗ ®e

d
md
, (5.15)

where κn,m1,··· ,md is given by

κn,m1,··· ,md =
( ®e τ

n ®e
1
m1 · · · ®e

d
md
)F[

(®e τT
n Sϕτ ®e

τ
n )

∏d
j=1(®e

jT
mj M j ®e

j
mj )

]
Λn,m1,··· ,md

, (5.16)

in which the numerator represents the standard multi-dimensional inner product, and Λn,m1,··· ,md

is obtained in terms of the eigenvalues of all mass matrices as Λn,m1,··· ,md =
[
(1 + γ λτn) +

λτn
∑d

j=1(λ
j
mj )

]
.

Proof. Consider the following generalised eigenvalue problems as

S Tot
j ®e j

mj = λ
j
mj Mj ®e

j
mj , m j = 1,2, · · · ,M j, j = 1,2, · · · , d, (5.17)

Mτ ®e τ
n = λ

τ
n Sϕτ ®e

τ
n , n = 1,2, · · · ,N . (5.18)

Having the spatial and temporal eigenvectors determined in equations (5.18) and (5.17), we can

represent the unknown coefficient matrixU in (7.38) in terms of the aforementioned eigenvectors
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asU =
∑N

n=1
∑M1

m1=1 · · ·
∑Md

md=1 κn,m1,··· ,md ®e
τ

n ⊗ ®e
1
m1 ⊗· · ·⊗ ®e

d
md
,where κn,m1,··· ,md is obtained

as follows. Following [145], we substitute U in the corresponding Lyapunov equation and then,

take the inner product of both sides of equation by ®e τ
q ®e

1
p1 · · · ®e

d
pd
. Therefore, by rearranging the

terms, we obtain

κn,m1,··· ,md =
( ®e τ

n ®e
1
m1 · · · ®e

d
md
)F[

(®e τT
n Sϕτ ®e

τ
n )

∏d
j=1(®e

jT
mj Mj ®e

j
mj )

]
×

[
(1 + γ λτn) + λτn

∑d
j=1(λ

j
mj )

] .
Since the spatialMass M j and temporal stiffnessmatrices Sϕτ are diagonal, we have (®e τT

q Sϕτ ®e
τ

n ) = 0

if q , n, and also (®e jT
p j Mj ®e

j
mj ) = 0 if p j , m j , which completes the proof.

5.3.4 Stability Analysis

The following theorem provides the discrete stability analysis of the scheme for (1+1)-dimensional

temporally-distributed fractional diffusion problem. Such a stability analysis can be extended to

the problem of (1+d)-dimensional with both-sided derivatives, which we will be carried out in our

future work.

Theorem 5.3.2. The Petrov-Gelerkin spectral method for (1+1)-D temporally-distributed and

space-fractional diffusion problem aϕ(u, v) = l(v) is stable, i.e., the discrete inf-sup condition

inf
uN∈UN
uN,0

sup
vN∈VN
vN,0

|a(uN, vN )|

‖vN ‖Bϕ,ν1,··· ,νd (Ω)‖uN ‖Bϕ,ν1,··· ,νd (Ω)
≥ β > 0, (5.19)

holds with β > 0 and independent of N .

Proof. See section (5.5.1).

5.3.5 Error Analysis

Kharazmi et al. [87] performed the error analysis of the distributed order differential equations,

where they employed Jacobi polyfractonomials of first kind as the basis function. Following
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similar steps, we can show that the projection error in time and space takes the same form. Let

D(r)u = ∂ru
∂tr0 ∂x1

r1 ··· ∂xd
rd , where r =

∑d
i=0 ri. Thus, if D(r)u ∈ U for some integer r ≥ 1, that is,∫ α2

α1
ϕ(α)‖ 0D

α
2
t (D

(r)u)‖L2dα < ∞, and uN denotes the projection of the exact solution u, then

‖u − uN ‖U ≤ β M−r
{
‖D(r)u‖2

L2(Ω)
+

∫ α2

α1
ϕ(α) ‖ RL

0D
α
t (D

(r)u)‖2
L2(Ω)

dα

+

d∑
i=1

(
‖ xi
D
νi
bi
(D(r)u)‖2

L2(Ω)
+ ‖ ai

D
νi
xi (D

(r)u)‖2
L2(Ω)

)} 1
2 (5.20)

Since the inf-sup condition holds in theorem 5.3.2, by the Banach-Nečas-Babuška theorem in [51],

the error in the numerical scheme is less than or equal to a constant times the projection error.

5.4 Numerical Simulations

We provide numerical examples of the spectral scheme we have proposed. We consider the

exact solution of the form uext = ut
∏d

j=1 uξ j with finite regularity, where ut = tp1+τ, t ∈ [0,T],

and uξ j = (1 + ξ j)
p2+β(1 − ξ j)

p3+β, ξ j ∈ [−1,1]. We obtain the force function by substituting

uext into (5.8), where the advection and diffusion coefficients are considered to be unity in all

dimensions.

Figure 5.1 shows the convergence of error via spatial and temporal p-refinement for (1+2)-

D problem. In the left sub-figure, uext = t3+1/2 ∏2
j=1(1 + ξ j)

4+1/2(1 − ξ j)
4+1/2, for which

we choose N = 4 to control the error in time and perform p-refinement in space for different

values of fractional orders {2µ,2ν} = {0.5,1.1} and {2µ,2ν} = {0.5,1.9}. The results show

the expected spectral convergence. In the right sub-figure, we perform p-refinement in time for

uext = t3+τ ∏2
j=1(1 + ξ j)

4(1 − ξ j)
4, where τ = 0.1,0.9 and we chooseM1 =M2 = 8 to control

the error in space. The choice of ploy-fractonomials as the temporal basis enable the scheme to

accurately capture the singularity in time. The obtained results show the convergence of error to

machine precision with N = 4. Moreover, in Table 5.1, we show the CPU time (which includes

the construction of the linear system and load vector) as well as the computed L2-norm error for

the problems of (1+1)- to (1+3)-dimensions, where p1 = 3, τ = 0.5, p2 = p3 = 4, β = 0.5, 2µ =

0.5, 2ν = 1.5.
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Figure 5.1: PG spectral method, temporal and spatial p-refinement for (1+2)-D problem

Table 5.1: PG spectral method, CPU time (in min) and L2-norm error for multi-dimensional
problems.

(1+1)-D (1+2)-D (1+3)-D
N =M1 =M2 =M3 L2-norm Error CPU Time L2-norm Error CPU Time L2-norm Error CPU Time

2 6.2067 × 10−1 0.6 5.9428 × 10−1 1 5.1307 × 10−1 1.7
6 2.7852 × 10−2 1 2.9233 × 10−2 1.5 2.6720 × 10−2 4
10 6.7506 × 10−5 3.13 7.089 × 10−5 4.5 6.4714 × 10−5 27.9
14 1.7541 × 10−6 20.3 1.8463 × 10−6 27.5 1.6876 × 10−6 149

5.5 Proof of Lemmas and Theorems

5.5.1 Proof of Theorem (5.3.2)

Proof. Let ψτn (η) = (1 + η)τP−τ,τn (η), Ψτn (η) = (1 − η)τPτ,−τn (η), and uN =
∑N

n=1
∑M+1

m=0 ūn,m

ψτn (t)Pm(x), where uN ∈ UN . Hence,

Uϕ
I =

∫ +1

−1

∫ T

0

N∑
n=1

M+1∑
m=0

N∑
k=1

M+1∑
r=0

ūk,r ūn,m 0D
α/2
t ψτn (t) 0D

α/2
t ψτk (t)Pm(x)Pr (x)dtdx

=

N∑
n=1

M+1∑
m=0

N∑
k=1

M+1∑
r=0

ūk,r ūn,m

∫ +1

−1
Pm(x)Pr (x)dx︸                    ︷︷                    ︸
C0,0

m δm,r

(
T
2
)1−2τ1Γ

τ1,−τ1
n−1 Γ

τ1,−τ1
k−1 ×

∫ +1

−1
(1 + η)τ1P

−τ1,τ1
n−1 (η)(1 + η)τ1P

−τ1,τ1
k−1 (η)dη, (5.21)
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where Γτ1,−τ1n−1 = Γ
−τ1,τ1
n−1 =

Γ(n+τ1)
Γ(n) and τ1 = τ −

α
2 . Take P

−τ1,τ1
n (η) =

∑n
q=0 a

τ1,n
q P

0,2τ1
q (η) then,

Uϕ
I =

N∑
n=1

N∑
k=1

M+1∑
m=0

n∑
q3=1

r∑
q4=1

ūk,mūn,m C0,0
m (

T
2
)1−2τ1Γ

τ1,−τ1
n−1 Γ

τ1,−τ1
k−1 a

τ1,n
q3 a

τ1,r
q4∫ +1

−1
(1 + η)2τ1P

0,2τ1
q3 (η)P

0,2τ1
q4 (η)dη︸                                          ︷︷                                          ︸

C
0,2τ1
q3 δq3,q4

=

M+1∑
m=0

N∑
q3=1

(1)
ǔ2

q3,mC
0,2τ1
q3 C0,0

m (
T
2
)1−2τ1 =

M+1∑
m=0

N∑
n=1

(1)
ǔ2

n,m(
T
2
)1−2τ1 C

0,2τ1
n C0,0

m ,

in which (1)ǔn,m =
∑M+1−q

q=0 ūq,m a
τ1,q
n Γ

τ1,−τ1
q−1 . Besides,

U1
I I =

∫ +1

−1

∫ T

0

N∑
n=1

M+1∑
m=0

N∑
k=1

M+1∑
r=0

ūk,r ūn,mψ
τ
n (t)ψ

τ
k (t) −1D

ν
xPm(x) −1D

ν
xPr (x)dtdx

=

N∑
n=1

M+1∑
m=0

N∑
k=1

M+1∑
r=0

ūk,r ūn,m(
T
2
)

∫ +1

−1
(1 + η)2τP−τ,τn−1 (η)P

−τ,τ
k−1 (η)dη×∫ +1

−1
(1 + x)−2ν

Γ
ν
mΓ

ν
r Pν,−νm (x)Pν,−νr (x)dx, (5.22)

where Γνm = m+1
m−ν+1 . By substitutingPν,−νi (x) =

∑i
q=0 b2ν,i

q P−2ν,0
q (x) andP−τ,τn (η) =

∑n
q=0 aτ,nq P0,2τ

q (η)

into (5.22) and reorganizing, we obtain

U1
I I =

N∑
n=1

N∑
k=1

M+1∑
m=0

n∑
q3=1

k∑
q4=1

(2)ǔn,m
(2)ǔk,mC−2ν,0

m (
T
2
)aτ,nq3 aτ,kq4

∫ +1

−1
(1 + η)2τP0,2τ

q3 (η)P
0,2τ
q4 (η)dη︸                                      ︷︷                                      ︸

C0,2τ
q3 δq3,q4

=

M+1∑
m=0

N∑
q3=1

(L)
ǔ2

q3,mC0,2τ
q3 C−2ν,0

m (
T
2
) =

M+1∑
m=0

N∑
n=1

(L)
ǔ2

n,m(
T
2
)C0,2τ

n C−2ν,0
m , (5.23)

where (2)ǔn,m =
∑M+1−q

q=0 ūq b2ν,q
m Γνq and (L)ǔn,m =

∑N−n
q=1

(2)ǔq,maτ,qn . Let

vN =
N∑

k=1

M+1∑
n=0

ūk,r (−1)k+r
Ψ
τ
k (t)Pr (x).
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Following the same steps as in Uϕ
I , for the norm of the test function we have

Vϕ
I =

∫ +1

−1

∫ T

0

N∑
n=1

M+1∑
m=0

N∑
k=1

M+1∑
r=0

ūk,r ūn,m (−1)n+k
tD

α/2
T Ψ

τ
n (t) tD

α/2
T Ψ

τ
k (t)Pm(x) Pr (x)(−1)r+m dt dx

=

M+1∑
m=0

N∑
n=1

(1)
v̌2

n,m(
T
2
)1−2τ1C

0,2τ1
n C0,0

m , (5.24)

inwhichwe employ P
τ1,−τ1
n (η) =

∑n
q=0 a

−τ1,n
q P

2τ1,0
q (η) and (1)v̌n,m =

∑M+1−q
q=0 ūn,q a

−τ1,q
n Γ

τ1,−τ1
q .

Besides,

V1
I I =

∫ +1

−1

∫ T

0

N∑
n=1

M+1∑
m=0

N∑
k=1

M+1∑
r=0

ūk,r ūn,m (−1)n+k
Ψ
τ
n (t)Ψ

τ
k (t) (−1)r+m

−1D
ν
xPm(x) −1D

ν
xPr (x) dt dx

=

N∑
n=1

M+1∑
m=0

N∑
k=1

M+1∑
r=0

ūk,r ūn,m (
T
2
)(−1)n+k

∫ +1

−1
(1 − η)2τPτ,−τn−1 (η)P

τ,−τ
k−1 (η)dη×

(−1)m+r
∫ +1

−1
(1 + x)−2ν

Γ
ν
mΓ

ν
r Pν,−νm (x) Pν,−νr (x)dx,

=

N∑
n=1

N∑
k=1

M+1∑
m=0

n∑
q3=1

r∑
q4=1

(2)v̌n,m
(2)v̌k,mC−2ν,0

m (
T
2
)a−τ,nq3 a−τ,rq4 (−1)n+k×∫ +1

−1
(1 − η)2τP2τ,0

q3 (η)P
2τ,0
q4 (η)dη︸                                      ︷︷                                      ︸

C2τ,0
q3 δq3,q4=C0,2τ

q3 δq3,q4

=

M+1∑
m=0

N∑
q3=1

(L)
v̌2

q3,mC0,2τ
q3 C−2ν,0

m (
T
2
) =

N∑
n=1

M+1∑
m=0

(L)
v̌2

n,m(
T
2
)C0,2τ

n C−2ν,0
m , (5.25)

where (2)v̌n,m =
∑M+1−m

q=0 (−1)q ūn,q b2ν,q
m Γνq , (L)v̌n,m =

∑N−n
i=1

(2)v̌i,ma−τ, in (−1)i, and Pτ,−τn (η) =∑n
q=0 a−τ,nq P2τ,0

q (η). Let AϕI = (0D
α/2
t uN, tD

α/2
T vN )Ω and AI I = κl(−1D

ν
x uN, xD

ν
1 uN )Ω. By

employing P
τ1,−τ1
n−1 (x) =

∑n−1
q=0 a

2τ1,n
q P

τ1,τ1
q (x) and P

−τ1,τ1
k−1 (x) =

∑k−1
q=0(−1)q+ka

2τ1, k
q P

τ1,τ1
q (x), we
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obtain

AϕI =
∫ T

0

∫ +1

−1

N∑
n=1

N∑
k=1

M+1∑
m=0

M+1∑
r=0

ūn,m ūk,r (−1)k 0D
α/2
t ψτn (t) tD

α/2
T Ψ

τ
k (t)(−1)r Pm(x) Pr (x) dxdt

=

N∑
n=1

N∑
k=1

M+1∑
m=0

M+1∑
r=0

ūn,m ūk,r (−1)r
∫ +1

−1
Pm(x) Pr (x)dx︸                     ︷︷                     ︸
C0,0

m δm,r

(−1)k (
T
2
)1−2τ1Γ

τ1,−τ1
n−1 Γ

τ1,−τ1
k−1 ×

∫ 1

−1
(1 − η2)τ1P

−τ1,τ1
n−1 (η)P

τ1,−τ1
k−1 (η)dη =

N∑
n=1

M+1∑
m=0

(3)ǔ2
n,m (−1)m+k (

T
2
)1−2τ1 C0,0

m C
τ1,τ1
n ,

(5.26)

where (3)ǔn,m =
∑N

q=1 a
2τ1,q
n Γ

τ1,−τ1
q−1 ūq,m. Moreover, based on Pτ,−τn−1 (η) =

∑n−1
q=0 a2τ,n

q Pτ,τq (η),

P−τ,τk−1 (η) =
∑k−1

q=0(−1)q+ka2τ, k
q Pτ,τq (η), Pν,−νi (x) =

∑i
q=0 b2ν,i

q P−2ν,0
q (x), and P−ν,νi (x) =∑i

q=0(−1)i+qb2ν,i
q P−2ν,0

q (x), we get

AI I =

∫ T

0

∫ +1

−1

N∑
n=1

N∑
k=1

M+1∑
m=0

M+1∑
r=0

ūn,m ūk,r ψ
τ
n (t)Ψ

τ
k (t)(−1)r+k

−1D
ν
xPm(x) xD

ν
1Pr (x) dxdt

=

N∑
n=1

N∑
k=1

M+1∑
m=0

n∑
q3=1

r∑
q4=1

(1)ũn,m
(1)ũk,m(−1)mC−2ν,0

m (
T
2
)a2τ,n

q3 a2τ, k
q4 (−1)q4×∫ +1

−1
(1 + η)2τP0,2τ

q3 (η)P
0,2τ
q4 (η)dη︸                                      ︷︷                                      ︸

C0,2τ
q3 δq3,q4

,

which can be simplified to AI I =
∑M+1

m=0
∑N

n=1
(L)

ũ2
n,m(−1)n+m(T2 )C

0,2τ
n C−2ν,0

m , where (L)ũn,m =∑N−n
q3=1

(1)ũq3,ma
τ,q3
n and (1)ũn,m =

∑M+1
i=0 ūn,ib2ν,q. On the other hand, we have |a(uN, vN )| ≥

c̄
[ ∫ α2
α1

ϕ(α)|AϕI | + κl |AI I |
]
. To compare |a(uN, vN )| with ‖uN ‖Bϕ,ν1,··· ,νd (Ω)‖vN ‖Bϕ,ν1,··· ,νd (Ω),

|AϕI | = |
N∑

n=1

M+1∑
m=0
(−1)m+k

(3)ǔ2
n,m (Γ

τ1,−τ1
n−1 )2 C0,0

m C
τ1,τ1
n

(1)ǔ2
n,mC

0,2τ1
n C0,0

m︸                                ︷︷                                ︸
(1) β̃n,m

(
T
2
)1−2τ1 (1)ǔ2

n,mC
0,2τ1
n C0,0

m | ≥ α1
(1)
β̃Uϕ

I
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and

|AI I | = |
M+1∑
m=0

N∑
n=1
(−1)n+m

(L)
ũ2

n,m(
T
2 )C

τ,τ
n C−ν,−νm

(L)
ǔ2

n,m(
T
2 )C

0,2τ
n C−2ν,0

m︸                        ︷︷                        ︸
(2) β̃n,m

(L)
ǔ2

n,m(
T
2
)C0,2τ

n C−2ν,0
m | ≥ α2

(2)
β̃UI I,

where (2) β̃ = min{ (2) β̃n,m}. Besides, we can have

(α)V I =
M+1∑
m=0

(1)
v̌2

m
(1)

ǔ2
m

(1)
ǔ2

m C−2ν,0
m (

T
2
)C

0,2τ1
n =

M+1∑
m=0

(1)
β̌m
(1)

ǔ2
m C−2ν,0

m (
T
2
)C

0,2τ1
n ≤

(1)
β̌Uϕ

I ,

VI I =
M+1∑
m=0

(R)
v̌2

n,m
(R)

ǔ2
n,m

(R)
ǔ2

n,m(
T
2
)C0,2τ

n C−2ν,0
m =

M+1∑
m=0

(2)
β̌n,m

(R)
ǔ2

n,m C−2ν,0
m (

T
2
)C0,2τ

n ≤
(2)
β̌UI I,

where (1) β̌ = max{(1) β̌m} and
(2)
β̌ = max{(2) β̌n,m}. This results in

‖vN ‖
2
B
ϕ,ν1,··· ,νd (Ω)

≤ max{(2) β̌, (1) β̌}︸             ︷︷             ︸
β̃2

‖uN ‖
2
B
ϕ,ν1,··· ,νd (Ω)

.

u ∈ U, AϕI , and AI I has finite values, therefore

|a(uN, vN )| ≥ α
[
|AϕI | + κl |AI I | |

]
≥ α

[
α1
(1)
β̃Uϕ

I + α2
(2)
β̃κl UI I

]
(5.27)

≥ αmin{α1
(1)
β̃, α2

(2)
β̃κl}︸                            ︷︷                            ︸

α̃

‖uN ‖
2
B
ϕ,ν1,··· ,νd (Ω)

≥ α̃ β̃‖uN ‖Bϕ,ν1,··· ,νd (Ω) ‖vN ‖Bϕ,ν1,··· ,νd (Ω),

which shows that discrete inf-sup condition holds for the time-dependent fractional diffusion prob-

lem.

125



CHAPTER 6

FRACTIONAL SENSITIVITY EQUATION METHOD: APPLICATIONS TO
FRACTIONAL MODEL CONSTRUCTION

6.1 Background

The excellence of fractional operator in accurate prediction of non-locality and memory effects

is the inherent non-local nature of singular power-law kernel, whose order is defined as fractional

derivative order, i.e. fractional index. However, the key challenges of such models are the excessive

computational cost in numerically integrating the convolution operation, and more importantly,

introducing fractional derivative orders as extra model parameters, whose values are essentially

obtained from experimental data. The sensitivity assessment of fractional models with respect

to fractional indecis can build a bridge between experiments and mathematical models to gear

observable data via proper optimization techniques, and thus, systematically improve the existing

models in both analysis and design approaches. We formulate a mathematical framework by

developing a fractional sensitivity equation method, where we investigate the response sensitivity

of fractional differential equations with respect to model parameters including derivative orders,

and further construct an iterative algorithm in order to exploit the obtained sensitivity field in

parameter estimation.

Fractional Sensitivity Analysis. Sensitivity assessment approaches are commonly categorized as,

finite difference, continuum and discrete derivatives, and computational or automatic differentia-

tion, where the sensitivity coefficients are generally defined as partial derivative of corresponding

functions (model output) with respect to design/analysis parameters of interest. Finite differ-

ence schemes use a first order Taylor series expansion to approximate the sensitivity coefficients,

where accuracy depends strongly on step increment [117, 152]. Continuum and discrete deriva-

tive techniques however, differentiate the system response with respect to parameters, where the

former, which is also known as sensitivity equation method (SEM, see [107, 193] and references
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therein), directly computes the derivatives and obtain a set of (coupled) adjoint continuum sensi-

tivity equations; while the latter performs differentiation after discretization of original equation

[155]. Automatic differentiation method also refers to a differentiation of the computer code [29–

31]. Fig.2 in [166] provides a descriptive schematic of these different approaches. We extend the

continuum derivative technique to develop a fractional sensitivity equation method (FSEM) in the

context of fractional partial differential equations (FPDEs). To formulate the sensitivity analysis

framework, we let q be a set of model parameters including fractional indices and obtain the adjoint

fractional sensitivity equations (FSEs) by taking the partial derivative of FPDE with respect to q.

These adjoint equations introduce a new fractional operator, associated with the logarithmic-power

law kernel, which to best of our knowledge has been presented for the first time here in the context of

fractional sensitivity analysis. The key property of derived FSEs is that they preserve the structure

of original FPDE. Thus, similar discretization scheme and forward solver can be readily applied

with a minimal required changes.

Model Construction: Estimation of Fractional Indices. Several numerical methods have been

developed to solve inverse problem of model construction from available experimental observations

or synthetic data. They typically convert the problem of model parameter estimation into an

optimization problem, and then, formulate a suitable estimator byminimizing an objective function.

These methods are stretched over but no limited to perturbation methods [173], weighted least

squares approach [37, 40, 82], nonlinear regression [102], and Levenberg-Marquardt method

[38, 64, 180, 181]. We develop a bi-level FSEM-based parameter estimation method in order to

construct fractional models, in a sense that the method obtains model coefficients in one level, and

then searches for estimate of fractional indices in the next level. We formulate the optimization

problem by defining objective functions as two types of model error that measures the difference

in computed output/input of fractional model with true output/input in an L2-norm sense. We

further formulate a gradient-based minimizer, employing developed FSEM, and propose a two-

stage search algorithm, namely, coarse grid searching and nearby solution. The first stage construct

a crude manifold of model error over a coarse discretization of parameter space to locate a local
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neighborhood of minimum, and the second stage uses the gradient decent method in order to

converge to the minimum point.

Discretization Scheme. The iterative nature of parameter estimators instruct simulation of frac-

tional model at each iteration step of model parameters. Therefore, one of the major tasks in

computational model construction is to develop numerical methods that can efficiently discretize

the physical domain and accurately solve the fractional model. The sensitivity framework ad-

ditionally raise the complication by rendering coupled systems of FPDE and adjoint FSEs, and

thus, demanding more versatile schemes. In addition to numerous finite difference methods

[33, 65, 103, 159, 167, 172, 192, 196], recent works have elaborated efficient spectral schemes, for

discretizing FPDEs in physical domain, see e.g., [28, 39, 83, 84, 99, 100, 103, 136, 170]. More re-

cently, Zayernouri et al. [183, 186] developed two new spectral theories on fractional and tempered

fractional Sturm-Liouville problems, and introduced explicit corresponding eigenfunctions, namely

Jacobi poly-fractonomials of first and second kind. These eignefunctions are comprised of smooth

and fractional parts, where the latter can be tunned to capture singularities of true solution. They are

successfully employed in constructing discrete solution/test function spaces and developing a series

of high-order and efficient Petrov-Galerkin spectral methods, see [86–88, 106, 143–145, 160]. We

formulate a numerical scheme in solving coupled system of FPDE and adjoint FSEs by extending

the mathematical framework in [145] and accommodating extra required regularity in the underly-

ing function spaces. We employ Jacobi poly-fractonomials and Legendre polynomials as temporal

and spatial basis/test functions, respectively, to develop a Petrov-Galerkin (PG) spectral method.

The smart choice of coefficients in spatial basis/test functions yields symmetric property in the

resulting mass/stiffness matrices, which is then exploited to formulate a fast solver. Following

similar procedure as in [145], we also show that the coupled system is mathematically well-posed,

and the proposed numerical scheme is stable.

The rest of chapter is organized as follows. In section 6.2, we recall some preliminary definitions

in fractional calculus, define the problem using fractional models, introduce proper solution/test

spaces, provide some useful lemmas, and then obtain the weak form of the problem. We construct
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a Petrov-Galerkin spectral numerical scheme in section 6.3 and carry out discrete stability analysis.

We develop FSEM in section 6.4 for FIVP/FPDE and define the underlying mathematical frame

work for the coupled system of FPDE and FSEs. Moreover, we develop the FSEM based model

construction algorithm in section 6.5 and finally, provide the numerical results in section 6.6.

6.2 Definitions

Definition 6.2.1. We define the following left- and right-sided integro-differential operator with

logarithmic-power law kernel, namely Log-Pow integro-differential operator, given as,

RL−LP
aD

σ
x u(x) =

1
Γ(n − σ)

dn

dxn

∫ x

a

log(x − s) u(s)
(x − s)σ−n+1 ds, (6.1)

RL−LP
xD

σ
b u(x) =

1
Γ(n − σ)

(−d)n

dxn

∫ b

x

log(s − x) u(s)
(s − x)σ−n+1 ds, (6.2)

C−LP
aD

σ
x u(x) =

1
Γ(n − σ)

∫ x

a

log(x − s) u(n)(s)
(x − s)σ−n+1 ds, (6.3)

C−LP
xD

σ
b u(x) =

1
Γ(n − σ)

∫ b

x

log(s − x) u(n)(s)
(s − x)σ−n+1 ds, (6.4)

where RL−LP andC−LP stand for Log-Pow integro-differential operator, which partially resemble

the fractional derivative inRiemann-Liouville andCaputo sense, respectively. The following lemma

shows a useful relation between the two aforementioned operators.

Lemma 6.2.2. Let x ∈ [a, b]. Then, the following relation holds.

Part A: σ ∈ (0,1)

RL−LP
aD

σ
x u(x) =

u(a)
Γ(1 − σ)

log(x − a)
(x − a)σ

+ C−LP
aD

σ
x u(x). (6.5)

Part B: σ ∈ (1,2)

RL−LP
aD

σ
x u(x) =

u(a)
Γ(2 − σ)

1 + (1 − σ) log(x − a)
(x − a)σ

+
u′(a)

Γ(2 − σ)
log(x − a)
(x − a)σ−1 +

C−LP
aD

σ
x u(x).

(6.6)

Proof. See section 6.7.1 for proof.
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6.2.1 Problem Definition

Let Ω = (0,T] × (a1, b1) × (a2, b2) × · · · × (ad, bd) be the computational domain for some positive

integer d. We define u(t,x;q) : Ω ×Q→ R, where

q = {α, β1, β2, · · · , βd, k1, k2, · · · , kd}

is the vector of model parameters containing the fractional indices and model coefficients, and

Q = [0,1] × [1,2]d × Rd
+ is the space of parameters. Thus, for any q ∈ Q, the transport field

u(t,x;q) : Ω → R. We consider the FPDE of strong form Lq(u) = f , subject to Dirichlet initial

and boundary conditions, where L is a linear two-sided fractional operator, given as follows

0D
α
t u(t,x;q) −

d∑
j=1

k j

[
aj
D
β j
x j + x j

D
β j
b j

]
u(t,x;q) = f (t,x;q), (6.7)

u|t=0 = 0, (6.8)

u|x=aj = u|x=bj = 0, (6.9)

in which α ∈ (0,1), β j ∈ (1,2), k j are real positive constant coefficients, and the fractional

derivatives are taken in the Riemann-Liouville sense. In the rest of this chapter, we drop the

pre-superscript RL for the sake of simplicity and abbreviation; we state the type of derivative if

need be.

6.2.2 Mathematical Framework: Fractional Sobolev Spaces

We define some functional spaces and their associated norms [87, 99]. By Hσ(R) =
{
u(t)|u ∈

L2(R); (1 + |ω|2)
σ
2 F (u)(ω) ∈ L2(R)

}
, σ ≥ 0, we denote the fractional Sobolev space on R,

endowed with norm ‖u‖Hσ
R
= ‖(1 + |ω|2)

σ
2 F (u)(ω)‖L2(R), where F (u) represents the Fourier

transform of u. Subsequently, we denote by Hσ(Λ) =
{
u ∈ L2(Λ) | ∃ũ ∈ Hσ(R) s.t. ũ|Λ = u

}
,

σ ≥ 0, the fractional Sobolev space on any finite closed interval, e.g. Λ = (a, b), with norm
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‖u‖Hσ(Λ) = inf
ũ∈Hσ
R
, ũ|Λ=u

‖ũ‖Hσ(R). We define the following useful norms as:

‖ · ‖l Hσ(Λ) =
(
‖ aD

σ
x (·)‖

2
L2(Λ)

+ ‖ · ‖2
L2(Λ)

) 1
2 ,

‖ · ‖r Hσ(Λ) =
(
‖ xD

σ
b (·)‖

2
L2(Λ)

+ ‖ · ‖2
L2(Λ)

) 1
2 ,

‖ · ‖cHσ(Λ) =
(
‖ xD

σ
b (·)‖

2
L2(Λ)

+ ‖ aD
σ
x (·)‖

2
L2(Λ)

+ ‖ · ‖2
L2(Λ)

) 1
2 ,

where the equivalence of ‖ · ‖l Hσ(Λ) and ‖ · ‖r Hσ(Λ) are shown in [53, 99, 100]. We show the

equivalence of these two norms with ‖ · ‖cHσ(Λ) in the following lemma.

Lemma 6.2.3. Letσ ≥ 0 andσ , n− 1
2 . Then, the norms ‖ · ‖l Hσ(Λ) and ‖ · ‖r Hσ(Λ) are equivalent

to ‖ · ‖cHσ(Λ).

Proof. See section 6.7.2 for proof.

We also define C∞0 (Λ) as the space of smooth functions with compact support in (a, b). We

denote by l Hσ
0 (Λ),

r Hσ
0 (Λ), and

cHσ
0 (Λ) as the closure of C∞0 (Λ) with respect to the norms

‖ · ‖l Hσ(Λ), ‖ · ‖r Hσ(Λ), and ‖ · ‖cHσ(Λ).

Lemma 6.2.4 ([53, 100]). The Sobolev spaces l Hσ
0 (Λ),

r Hσ
0 (Λ), and

cHσ
0 (Λ) are equal and their

seminorms are equivalent to | · |∗Hσ(Λ) =
�� (

aD
σ
x (·), xD

σ
b (·)

) ��12
Λ

Based on Lemma 6.2.4, and assuming that
��(aDσ

x u, xD
σ
b v)

Λ

�� > 0 and
��(xDσ

b u, aD
σ
x v)

Λ

�� >
0, we can prove that

��(aDσ
x u, xD

σ
b v)

Λ

�� ≥ β1 |u|l Hσ(Λ) |v |r Hσ(Λ) and
��(xDσ

b u, aD
σ
x v)

Λ

�� ≥
β2 |u|r Hσ(Λ) |v |l Hσ(Λ), where β1 and β2 are positive constants. Following [145], we define

the corresponding solution and test spaces of our problem. Thus, by letting Λ1 = (a1, b1),

Λ j = (a j, b j)×Λ j−1 for j = 2, · · · , d, we defineX1 = H
β1
2

0 (Λ1), which is associated with the norm
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‖ · ‖
cH

β1
2 (Λ1)

, and accordingly, Xj, j = 2, · · · , d as

X2 = H
β2
2

0

(
(a2, b2); L2(Λ1)

)
∩ L2((a2, b2);X1), (6.10)

...

Xd = H
βd
2

0

(
(ad, bd); L2(Λd−1)

)
∩ L2((ad, bd);Xd−1), (6.11)

associatedwith norms ‖·‖Xj =

{
‖·‖2

H

β j
2

0

(
(aj ,bj );L2(Λ j−1)

)+‖·‖2L2
(
(aj ,bj );Xj−1

) } 1
2
, j = 2,3, · · · , d.

Lemma 6.2.5. Let β j ≥ 0 and β j , n − 1
2 for j = 1,2, · · · , d. Then,

‖ · ‖2
Xj
≡

j∑
i=1

(
‖ xi
D
βi/2
bi
(·)‖2

L2(Λ j )
+ ‖ ai

D
βi/2
xi (·)‖2

L2(Λ j )

)
+ ‖ · ‖2

L2(Λ j )
.

Proof. See section 6.7.3 for proof.

Moreover, by letting 0C∞(I) and C∞0 (I) be the space of smooth functions with compact support

in (0,T] and [0,T), respectively, we define l Hs(I) and r Hs(I) as the closure of 0C∞(I) and C∞0 (I)

with respect to the norms ‖ · ‖l Hs(I) and ‖ · ‖r Hs(I). We also define

l
0H

α
2
(
I; L2(Λd)

)
=

{
u
�� ‖u(t, ·)‖L2(Λd )

∈ H
α
2 (I),u|t=0 = u|x=aj = u|x=bj = 0, j = 1,2, · · · , d

}
,

r
0H

α
2
(
I; L2(Λd)

)
=

{
v
�� ‖v(t, ·)‖L2(Λd )

∈ H
α
2 (I), v |t=T = v |x=aj = v |x=bj = 0, j = 1,2, · · · , d

}
,

equipped with norms ‖u‖
l H

α
2 (I;L2(Λd ))

and ‖u‖
r H

α
2 (I;L2(Λd ))

, respectively, which take the follow-

ing forms

‖u‖
l H

α
2 (I;L2(Λd ))

=




 ‖u(t, ·)‖L2(Λd )





l H

α
2 (I)
=

(
‖ 0D

α
2
t (u)‖

2
L2(Ω)

+ ‖u‖2
L2(Ω)

) 1
2 , (6.12)

‖u‖
r H

α
2 (I;L2(Λd ))

=




 ‖u(t, ·)‖L2(Λd )





r H

α
2 (I)
=

(
‖ tD

α
2
T (u)‖

2
L2(Ω)

+ ‖u‖2
L2(Ω)

) 1
2 . (6.13)

Solution and Test Spaces. We define the solution space U and test space V , respectively, as

U = l
0H

α
2
(
I; L2(Λd)

)
∩ L2(I;Xd), V = r

0H
α
2
(
I; L2(Λd)

)
∩ L2(I;Xd), (6.14)
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endowed with norms

‖u‖U =
{
‖u‖2

l H
α
2 (I;L2(Λd ))

+ ‖u‖2
L2(I;Xd )

} 1
2 , ‖v‖V =

{
‖v‖2

r H
α
2 (I;L2(Λd ))

+ ‖v‖2
L2(I;Xd )

} 1
2 ,

(6.15)

Using Lemma 7.3.2, we can show that

‖u‖L2(I;Xd )
=




 ‖u(t, .)‖Xd





L2(I)

=
{
‖u‖2

L2(Ω)
+

d∑
j=1

(
‖ x j
D

β j
2

bj
u ‖2

L2(Ω)
+ ‖ aj

D

β j
2

x j u ‖2
L2(Ω)

)} 1
2 .

(6.16)

Therefore, by (7.24) we write (7.23) as

‖u‖U =
{
‖u‖2

L2(Ω)
+ ‖ 0D

α
2
t u ‖2

L2(Ω)
+

d∑
j=1

(
‖ x j
D

β j
2

bj
u ‖2

L2(Ω)
+ ‖ aj

D

β j
2

x j u ‖2
L2(Ω)

)} 1
2 , (6.17)

‖v‖V =
{
‖v‖2

L2(Ω)
+ ‖ tD

α
2
T v ‖2

L2(Ω)
+

d∑
j=1

(
‖ x j
D

β j
2

bj
v ‖2

L2(Ω)
+ ‖ aj

D

β j
2

x j v ‖2
L2(Ω)

)} 1
2 . (6.18)

The following lemmas help us obtain the weak formulation of our problem, construct the

numerical scheme and further prove the stability of our method.

Lemma 6.2.6 ([99]). For all α ∈ (0,1), if u ∈ H1([0,T]) such that u(0) = 0, and v ∈ Hα/2([0,T]),

then (0D
α

t u, v)Ω = ( 0D
α/2

t u , tD
α/2

T v )Ω, where (·, ·)Ω represents the standard inner product in

Ω = [0,T].

Lemma 6.2.7 ([87]). Let 1 < β < 2, a and b be arbitrary finite or infinite real numbers. Assume

u ∈ Hβ(a, b) such that u(a) = 0, also xD
β/2
b v is integrable in Ω = (a, b) such that v(b) = 0. Then,

(aD
β
x u , v)Ω = (aD

β/2
x u , xD

β/2
b v)Ω.

We generalize Lemma 7.3.4 to the two-sided (1 + d)-dimensional case (see section 6.7.4 for

proof).

Lemma 6.2.8. Let 1 < β j < 2 for j = 1,2, · · · , d, and u, v ∈ Xd . Then,

(
aj
D
β j
x j u, v

)
Λd
=

(
aj
D

β j
2

x j u, x j
D

β j
2

bj
v
)
Λd
,

(
x j
D
β j
b j

u, v
)
Λd
=

(
x j
D

β j
2

bj
u, aj
D

β j
2

x j v
)
Λd
.
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6.2.3 Weak Formulation

For any set of model parameter q, we obtain the weak system, i.e. the variational form of the

problem (6.7) subject to the given initial/boundary conditions, by multiplying the equation with

proper test functions and integrate over the whole computational domain Ω. Therefore, using

Lemmas 7.3.3-7.3.5, the bilinear form can be written as

a(u, v) = (0D
α
2
t u, tD

α
2
T v)Ω −

d∑
j=1

k j

[
(aj
D

β j
2

x j u, x j
D

β j
2

bj
v)Ω + (x j

D

β j
2

bj
u, aj
D

β j
2

x j v)Ω

]
, (6.19)

and thus, by letting Ũ and Ṽ be the proper solution/test spaces, the problem reads as: find u ∈ Ũ

such that

a(u, v) = ( f , v)Ω, ∀v ∈ Ṽ . (6.20)

6.3 Petrov-Galerkin Spectral Method

We define the following finite dimensional solution and test spaces. We employ Legendre

polynomials φmj (ξ), j = 1,2, · · · , d, and Jacobi poly-fractonomial of first kind ψτn (η) [183, 186],

as the spatial and temporal bases, respectively, given in their corresponding standard domain as

φmj
(ξ) = σmj

(
Pmj+1(ξ) − Pmj−1(ξ)

)
, ξ ∈ [−1,1] m j = 1,2, · · · , (6.21)

ψτn (η) = σn
(1)P τ

n (η) = σn(1 + η)τP−τ,τn−1 (η), η ∈ [−1,1] n = 1,2, · · · , (6.22)

inwhichσmj = 2+(−1)mj . Therefore, by performing affinemappings η = 2 t
T−1 and ξ = 2

x−aj
b j−aj

−1

from the computational domain to the standard domain, we construct the solution space UN as

UN = span
{ (
ψ τ

n ◦ η
)
(t)

d∏
j=1

(
φmj
◦ ξ

)
(x j) : n = 1,2, · · · ,N, m j = 1,2, · · · ,M j

}
. (6.23)

We note that the choice of temporal and spatial basis functions naturally satisfy the initial and

boundary conditions, respectively. The parameter τ in the temporal basis functions plays a role of

fine tunning parameter, which can be chosen properly to capture the singularity of exact solution.
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Moreover, we employLegendre polynomialsΦr j (ξ), j = 1,2, · · · , d, and Jacobi poly-fractonomial

of second kind Ψτk (η), as the spatial and temporal test functions, respectively, given in their corre-

sponding standard domain as

Φr j (ξ) = σ̃r j
(
Pr j+1(ξ) − Pr j−1(ξ)

)
, ξ ∈ [−1,1] r j = 1,2, · · · , (6.24)

Ψ
τ
k (η) = σ̃k

(2)P τ
k (η) = σ̃k (1 − η)τ Pτ,−τk−1 (η), η ∈ [−1,1] k = 1,2, · · · , (6.25)

where σ̃r j = 2 (−1)r j + 1. Therefore, by similar affine mapping we construct the test space VN as

VN = span
{ (
Ψ
τ
k ◦ η

)
(t)

d∏
j=1

(
Φr j
◦ ξ j

)
(x j) : k = 1,2, · · · ,N, r j = 1,2, · · · ,M j

}
. (6.26)

We can show that our choice of basis/test functions satisfy the extra regularity imposed by the

Log-Pow integro-differential operator. Thus, since UN ⊂ Ũ ⊂ U and VN ⊂ Ṽ ⊂ V , the problems

(6.59) and (6.60) read as: find uN ∈ UN such that

ah(uN, vN ) = l(vN ), ∀vN ∈ VN, (6.27)

where l(vN ) = ( f , vN ); and find SuN ∈ UN such that

ah(SuN,wN ) = l(wN ), ∀wN ∈ VN, (6.28)

where l(wN ) = (fqi ,wN ). Also, the discrete bilinear form ah(uN, vN ) can be written as

ah(uN, vN ) = (0D
α
2
t uN, tD

α
2
T vN )Ω (6.29)

−

d∑
j=1

k j

[
(aj
D

β j
2

x j uN, x j
D

β j
2

bj
vN )Ω + (x j

D

β j
2

bj
uN, aj

D

β j
2

x j vN )Ω

]
.

We expand the approximate solution uN ∈ UN , satisfying the discrete bilinear form (7.37), in the

following form

uN (t,x) =
N∑

n=1

M1∑
m1=1

· · ·

Md∑
md=1

ûn,m1,··· ,md

[
ψτn (t)

d∏
j=1

φmj
(x j)

]
, (6.30)
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and obtain the corresponding Lyapunov system by substituting (7.38) into (7.37) by choosing

vN (t,x) = Ψτk (t)
∏d

j=1Φr j
(x j), k = 1,2, . . . ,N , r j = 1,2, . . . ,M j . Therefore,

[
ST ⊗ M1 ⊗ M2 · · · ⊗ Md +

d∑
j=1

MT ⊗ M1 ⊗ · · · ⊗ M j−1 ⊗ Sj ⊗ M j+1 · · · ⊗ Md

]
U = F, (6.31)

in which ⊗ represents the Kronecker product, F denotes the multi-dimensional load matrix whose

entries are given as

Fk,r1,··· ,rd =

∫
Ω

f (t,x)
(
Ψ
τ
k ◦ η

)
(t)

d∏
j=1

(
Φr j
◦ ξ j

)
(x j) dΩ, (6.32)

andU is the matrix of unknown coefficients. The matrices ST and MT denote the temporal stiffness

and mass matrices, respectively; and the matrices Sj and Mj denote the spatial stiffness and mass

matrices, respectively. We obtain the entries of spatial mass matrix Mj analytically and employ

proper quadrature rules to accurately compute the entries of other matrices ST , MT and Sj .

We note that the choices of basis/test functions, employed in developing the PG scheme leads to

symmetric mass and stiffness matrices, providing useful properties to further develop a fast solver.

The following Theorem 7.3.6 provides a unified fast solver, developed in terms of the generalized

eigensolutions in order to obtain a closed-form solution to the Lyapunov system (7.39).

Theorem 6.3.1 (Unified Fast FPDE Solver [143, 145]). Let {®emj , λmj
}
M j
mj=1 be the set of general

eigen-solutions of the spatial stiffness matrix Sj with respect to the mass matrix M j . Moreover, let

{®e τ
n , λ

τ
n }
N
n=1 be the set of general eigen-solutions of the temporal mass matrix MT with respect to

the stiffness matrix ST . Then, the matrix of unknown coefficientsU is explicitly obtained as

U =

N∑
n=1

M1∑
m1=1

· · ·

Md∑
md=1

κn,m1,··· ,md ®e
τ

n ⊗ ®em1 ⊗ · · · ⊗ ®emd
, (6.33)

where κn,m1,··· ,md is given by

κn,m1,··· ,md =
( ®e τ

n ®em1 · · · ®emd
)F[

(®e τT
n ST ®e τ

n )
∏d

j=1(®e
T
mj M j ®emj )

]
Λn,m1,··· ,md

, (6.34)
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in which the numerator represents the standard multi-dimensional inner product, and Λn,m1,··· ,md

is obtained in terms of the eigenvalues of all mass matrices as

Λn,m1,··· ,md =
[
(1 + γ λτn) + λτn

∑d
j=1(λmj

)

]
.

6.3.1 Stability Analysis

We show the well-posedness of defined problem and prove the stability of proposed numerical

scheme.

Lemma 6.3.2. Let α ∈ (0,1), Ω = I × Λd , and u ∈ l
0Hα/2(I; L2(Λd)). Then,�� (

0D
α/2
t u, tD

α/2
T v

)
Ω

�� ≡ ‖u‖l Hα/2(I;L2(Λd ))
‖v‖r Hα/2(I;L2(Λd ))

, ∀v ∈ r
0Hα/2(I; L2(Λd)).

Proof. See section 6.7.5 for proof.

By equivalence of function spaces l Hσ
0 (Λ),

r Hσ
0 (Λ), and

cHσ
0 (Λ) and also their associated

norms ‖ · ‖l Hσ(Λ), ‖ · ‖r Hσ(Λ), and ‖ · ‖cHσ(Λ); and also by following similar steps as in Lemma

7.3.7, we can also prove that

|
(

ad
D
βd/2
xd

u, xd
D
βd/2
bd

v
)
Λd
| ≡ |u|

cHβd/2
(
(ad,bd );L2(Λd−1)

) |v |
cHβd/2

(
(ad,bd );L2(Λd−1)

) ,
(6.35)

|
(

xd
D
βd/2
bd

u, ad
D
βd/2
xd

v
)
Λd
| ≡ |u|

cHβd/2
(
(ad,bd );L2(Λd−1)

) |v |
cHβd/2

(
(ad,bd );L2(Λd−1)

) .
(6.36)

Lemma 6.3.3 (Continuity). The bilinear form (7.28) is continuous, i.e.,

∀u ∈ U, ∃ β > 0, s.t. |a(u, v)| ≤ β ‖u‖U ‖v‖V , ∀v ∈ V . (6.37)

Proof. The proof directly concludes from (7.43), (7.44) and Lemma 7.3.7.

Theorem 6.3.4 (Stability). The following inf-sup condition holds for the bilinear form (7.28), i.e.,

inf
0,u∈U

sup
0,v∈V

|a(u, v)|
‖v‖V ‖u‖U

≥ β > 0, (6.38)

where Ω = I × Λd and sup
u∈U
|a(u, v)| > 0.

137



Proof. See section 6.7.6 for proof.

Theorem 6.3.5 (well-posedness). For all 0 < α < 1, α , 1, and 1 < β j < 2, and j = 1, · · · , d,

there exists a unique solution to (7.29), continuously dependent on f , which belongs to the dual

space of U.

Proof. Lemmas 7.3.8 (continuity) and 7.3.9 (stability) yield the well-posedness of weak form (7.29)

in (1+d)-dimension due to the generalized Babuška-Lax-Milgram theorem.

Since the defined basis and test spaces are Hilbert spaces, and UN ⊂ U and VN ⊂ V , we can

prove that the developed Petrov-Gelerkin spectral method is stable and the following condition

holds

inf
0,uN∈UN

sup
0,v∈VN

|a(uN, vN )|

‖vN ‖V ‖uN ‖U
≥ β > 0, (6.39)

with β > 0 and independent of N , where sup
uN∈UN

|a(uN, vN )| > 0, ∀vN ∈ VN .

We recall again here that the adjoint FSEs have similar bilinear form; and since Ũ ⊂ U and

Ṽ ⊂ V , the obtained results are also applicable to them.

6.4 Fractional Sensitivity Equation Method (FSEM)

We define the sensitivity coefficients as the partial derivative of transport field u with respect

to the model parameters qi, i.e.

Su,qi =
∂ u
∂ qi

, i = 1,2, · · · ,2d + 1, (6.40)

assuming that the partial derivative is well-defined. To obtain the governing equation of evolution

of sensitivity fields, i.e. FSEs, we first take the partial derivative of left- and right-sided fractional

derivative (1.16) and (1.17) with respect to their orders. Therefore, by letting σ ∈ (n − 1,n],

x ∈ [a, b], An(σ) = Γ(n − σ) ∂∂σ
1

Γ(n−σ) , we have

∂

∂σ
(aD

σ
x u) = aD

σ
x Su,σ +An(σ) aD

σ
x u − LP

aD
σ
x u, (6.41)

∂

∂σ
(xD

σ
b u) = xD

σ
b Su,σ +An(σ) xD

σ
b u − LP

xD
σ
b u. (6.42)
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ℒ𝑞 𝑢𝑠 = 𝑓 ℒ𝑞 𝑆𝑢𝑠,𝑞
𝑠 = f𝑞(𝑢

𝑠)

𝑎 𝑆𝑢𝑠,𝑞
𝑤 , 𝑣 = (f𝑞(𝑢

𝑠), 𝑣)Ω

𝜕

𝜕𝑞

(I-1)

𝑢𝑠

ℒ𝑞 𝑢𝑠 = 𝑓

𝑎 𝑢𝑤, 𝑣 = (𝑓, 𝑣)Ω

ℒ𝑞 𝑆𝑢𝑠,𝑞
𝑠 = f𝑞(𝑢

𝑠)

𝑎 ሚ𝑆𝑢𝑠,𝑞
𝑤 , 𝑣 = (f𝑞(𝑢

𝑤), 𝑣)Ω

𝜕

𝜕𝑞

W
ea

k
 F

o
rm

(I-2)

𝑢𝑤

𝜕

𝜕𝑞

ℒ𝑞 𝑢𝑠 = 𝑓

𝑎 𝑢𝑤, 𝑣 = (𝑓, 𝑣)Ω 𝑎 𝑆𝑢𝑤,𝑞
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Level
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Level

Figure 6.1: Schematic of strategies in deriving the weak form of FSEs. (I-1): first take ∂
∂q and

then obtain the weak formulation, fed by strong solution us. (I-2): first take ∂
∂q and then obtain the

weak formulation, fed by weak solution uw. (II): first obtain the weak formulation and then take
∂
∂q , fed by weak solution uw.

The pre-super script LP stands for the Log-Pow integro-differential operator, given in (6.1)-(6.4),

which we introduce here, for the first time in the context of FSEs.

Remark 6.4.1. In the sequel, we only use the RL − LP operator and thus, for the sake of simplicity,

we drop the pre-super script RL and C and only use them when it is necessary to distinguish

between the two senses of derivatives.

We derive the adjoint FSEs by pursuing two different strategies I and II, shown schematically

in Fig. 6.1. We adopt the notation of us and uw to distinguish the solution to strong and weak form

of the problem for ease of describing the two following strategies. In the first strategy, we first take

the partial derivative of FPDE with respect to the model parameters q, and then, obtain the weak

form of problem. If us is known, then we follow I-1 (left figure), otherwise we formulate and solve

the weak form of FPDE to obtain weak solution uw and follow I-2 (middle figure).

I-1: Lq(us) = f

∂
∂q
−−−−→ Lq(Ss

us,q) = fq(us)
weak form
−−−−−−−−−→ a(Swus,q, v) = (fq(u

s), v)Ω (6.43)

I-2: Lq(us) = f

∂
∂q
−−−−→ Lq(Ss

us,q) = fq(us)
weak form
−−−−−−−−−→ a(S̃wus,q, v) = (fq(u

w), v)Ω (6.44)

Via proper construction of the corresponding subspaces, we discretize and solve a(Swus,q, v) =

(fq(us), v)Ω and a(S̃wus,q, v) = (fq(u
w), v)Ω in I-1 and I-2, respectively. We can show that ‖S̃wus,q −

139



Swus,q‖L2 → 0 as uw → us by stability/error analysis of employed numerical scheme, where the

solution space has the extra regularity required by the Log-Pow integro-differential operator in fq.

Remark 6.4.2. The solution to strong form of FPDE, i.e. us can be analytically/numerically

computed (by Laplace transform and finite difference method for example), or may be available as

prior experimental data, and thus, can be fed directly to construct fq in FSEs (see left sub-figure in

Fig. 6.1). This is used in parameter estimation for model construction, section 6.5.

In the second strategy, we first obtain the weak form of FPDE, and then take the partial derivative

with respect to the model parameters q. In this case, we procure (h(uw), v) as the right hand side of

weak formulation, which is fed by the weak solution uw. In this case, the function h requires less

regularity for the solution space due to the Log-Pow integro-differential operator, since the order

of kernel is less compare to the first strategy.

II: Lq(us) = f
weak form
−−−−−−−−−→ a(uw, v) = ( f , v)Ω

∂
∂q
−−−−→ a(Swuw,q, v) = (h(u

w), v)Ω (6.45)

In the next subsection, we adopt the two strategies to derive adjoint FSE to a fractional initial

value problem, where we show the corresponding right-hand-side and the imposed extra regularity

in each case. We then, extend the derivation to the case FPDE, in which we adopt strategy I-2.

6.4.1 FSEM (FIVP)

Let Ω = (0,T] be the computational time domain and define u(t;α) : Ω × (0,1) → R. We consider

the case of fractional initial value problem (FIVP) by letting the coefficients k j’s to be zero in (6.7),

and thus obtain the following FIVP, subject to Dirichlet initial condition, as 0D
α
t u(t;α) = f (t;α),

u(0) = 0. By taking the partial derivative with respect to α, we obtain the adjoint FSE in the strong

form as 0D
α
t Su,α = fα, Su,q |(t=0) = 0, where fα = S f ,α − A1(α) 0D

α
t u + LP

0D
α
t u. Following

strategy I, we obtain

a(Su,α, v)Ω = (fα, v)Ω, (6.46)

(fα, v)Ω = (S f ,α, v)Ω − A1(α) (0D
α
2
t u, tD

α
2
T v)Ω + (

LP
0D

α
t u, v)Ω. (6.47)
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In this case, constructing the right-hand-side imposes extra strong regularity of ‖ LP
0D

α
t u‖L2 < ∞

to the solution of FIVP. However, by following startegy II, we obtain

a(Su,α, v)Ω = h(v), (6.48)

h(v) = (S f ,α, v)Ω + ( f ,Sv,α)Ω − A1(
α

2
) (0D

α
2
t u, tD

α
2
T v)Ω − (0D

α
2
t u, tD

α
2
T Sv,α)Ω (6.49)

+
1
2
(LP

0D
α
2
t u, tD

α
2
T v)Ω +

1
2
(0D

α
2
t u, LP

tD
α
2
T v)Ω,

where, the function h imposes extra weak regularity of ‖ LP
0D

α
2
t u‖L2 < ∞ and ‖ LP

tD
α
2
T v‖L2 < ∞

to the solution. We computationally study and make sure that the solution to (6.46) converges to

(6.48).

6.4.2 FSEM (FPDE)

We consider the problem (6.7)-(7.3). We adopt strategy I-2 and derive the adjoint FSEs and their

corresponding weak form, where to construct the right-hand-side, we also obtain the weak form of

FPDE. Thus, we solve a coupled system of FPDE and FSEs. By taking the partial derivatives of

(6.7) with respect to model parameters qi, i = 1,2, · · · ,2d + 1, we obtain the corresponding adjoint

FSEs as

Lq Su,α = fα , Lq Su,β j = fβ j , L
q Su,k j = fk j , j = 1,2, · · · , d , (6.50)

in which

Lq(·) = 0D
α
t (·) −

d∑
j=1

k j

[
−aj
D
β j
x j + x j

D
β j
b j

]
(·) (6.51)

fα = S f ,α − A1(α) 0D
α
t u + LP

0D
α
t u (6.52)

fβ j = S f ,β j + k j A2(β j)

[
ak
D
β j
x j + x j

D
β j
bk

]
u − k j

[
LP
ak
D
β j
x j +

LP
xj
D
β j
bk

]
u, (6.53)

fk j = S f ,k j +

[
−aj
D
β j
x j + x j

D
β j
b j

]
u. (6.54)

Moreover, by taking the partial derivative of initial and boundary conditions (7.2) and (7.3), respec-

tively, with respect to model parameters, we obtain the following conditions for i = 1,2, · · · ,2d+1,
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as

Su,qi

��
t=0 =

∂Su,qi
∂t

��
t=0 = 0, Su,qi

��
x=aj

= Su,qi

��
x=bj

= 0, j = 1,2, · · · , d. (6.55)

6.4.3 Mathematical Framework: Coupled System of The FPDE and Derived FSEs

We extend the solution/test spaces, defined in (7.22) by imposing the “extra regularities" due to

the right-hand-side of adjoint FSEs (6.50), and define the proper underlying spaces for solving the

coupled system of adjoint FSEs and FPDE.

Solution/Test Spaces. Let

H

β j
2

0 (Λ j) =
{
u ∈ H

β j
2

0 (Λ j)
���√‖ LP

aj
D
β j
x j u‖2

L2(Λ j )
+ ‖ LP

xj
D
β j
b j

u‖2
L2(Λ j )

< ∞
}
, j = 1,2, · · · , d,

associated with the norm ‖ · ‖
cH

β j
2 (Λ j )

. We define X1 = H
β1
2

0 (Λ1), and accordingly, Xj, j =

2, · · · , d as

X2 = H
β2
2

0 ((a2, b2); L2(Λ1)) ∩ L2((a2, b2);X1), (6.56)
...

Xd = H

βd
2

0 ((ad, bd); L2(Λd−1)) ∩ L2((ad, bd);Xd−1), (6.57)

associated with the similar norm ‖ · ‖Xd . Thus, we define the corresponding “solution space" Ũ

and “test space" Ṽ , respectively, as

Ũ = l
0H

α
2
(
I; L2(Λd)

)
∩ L2(I;Xd), Ṽ = r

0H
α
2
(
I; L2(Λd)

)
∩ L2(I;Xd), (6.58)

endowed with similar norms (7.26) and (7.27), where

l
0H

α
2
(
I; L2(Λd)

)
={

u
�� ‖u(t, ·)‖L2(Λd )

∈ H
α
2 (I), ‖ LP

0D
α
t u‖L2(I) < ∞,u|t=0 = u|x=aj = u|x=bj = 0, j = 1,2, · · · , d

}
,

r
0H

α
2
(
I; L2(Λd)

)
={

v
�� ‖v(t, ·)‖L2(Λd )

∈ H
α
2 (I), ‖ LP

tD
α
T u‖L2(I) < ∞, v |t=T = v |x=aj = v |x=bj = 0, j = 1,2, · · · , d

}
,
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equipped with norms ‖u‖
l H

α
2 (I;L2(Λd ))

and ‖u‖
r H

α
2 (I;L2(Λd ))

, respectively.

Weak Formulation. Since derived FSEs (6.50) preserve the structure of FPDE (6.7), the bilinear

form of corresponding weak formulation takes the same form as (7.28). Therefore, By letting Ũ

and Ṽ be the solution/test spaces, defined in (6.58), the problem reads as: find u ∈ Ũ such that

a(u, v) = ( f , v)Ω, ∀v ∈ Ṽ, (6.59)

and find Su,qi ∈ U, 1 = 1,2, · · · ,2d + 1 such that

a(Su,qi ,w) = (fqi ,w)Ω ∀w ∈ V, (6.60)

where U and V are defined in (7.22).

6.5 Fractional Model Construction

We employ the developed FSEM in order to construct an iterative algorithm to estimate model

parameters from known solution (or available sets of data). We formulate the iterative algorithm

by minimizing an objective model error function. We recall again here that in our fractional model,

the set of model parameters is q = {α, β1, β2, · · · , βd, k1, k2, · · · , kd}, and here, we mainly focus

on estimation of fractional indices. Thus, assuming the model coefficients {k1, k2, · · · , kd} to be

given/known, we reduce the model parameter set to q = {α, β1, β2, · · · , βd} ∈ Q ⊂ R1+d .

6.5.1 Model Error

The fractional model can be simply visualized as Fig. 6.2, where Lqu = f . We denote by the

superscript (∗) as the exact values of quantities. Therefore, Lq∗u∗ = f ∗, where u∗, f ∗ are the exact

solution and force functions, respectively, and q∗ is the set of exact model parameters. Obviously,

by choosing different values of model parameters (fractional indices), the fractional model observes

the input differently, and thus, results in a different output. This leads to two types of model error,

namely, type-I and type-II, described as follows. We note that the introduced model errors are zero

at the exact values q∗, by definition.
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Figure 6.2: Schematic of fractional model

(a) (b)

Figure 6.3: Schematic of variation of fractional model based on (a) model error type-I and (b)
model error type-II.

6.5.1.1 Model Error: Type-I

In model error type-I, we consider the output of model to be fixed, i.e, f = f ∗, however, changing

parameters makes the fractional model to observe the variated input uq as opposed to u∗. Therefore,

we define the model error as the difference between variated and exact inputs, i.e. E(q) =

| |uq − u∗ | |L2 . The schematic of variation of model from the exact model is shown in Fig. 6.3

(a). For each variated model, we accurately compute the numerical approximation, uq
N , by solving

(6.7), where by increasing the number of terms in the approximate solution, we make sure that the

function E(q) = | |uq
N − u∗ | |L2 solely describes the model error with minimum discretization error.

The proposed iterative algorithm, as will be discussed later, involves the gradient of model error

with respect to the model parameters. Thus, we take the partial derivative of E with respect to q, as

SE,q =
∂E
∂q
=

∫
Ω

Suq,q (u
q
N − u∗) dΩ

E
(6.61)

where Suq,q denotes the sensitivity fields, which is numerically obtained by solving FSEs (6.50).

We note that in this case, since f is fixed and therefore, not sensitive to any parameter, we exclude

the first term in the definition of force functions fα and fβ.
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6.5.1.2 Model Error: type-II

In model error type-II, we consider the input of model to be fixed, i.e, u = u∗, however, changing

parameters makes the fractional model to result in the variated output f q as opposed to f ∗.

Therefore, we define the model error as the difference between variated and exact outputs, i.e.

E(q) = | | f q − f ∗ | |L2 . The schematic of variation of model from the exact model is shown in Fig.

6.3 (b). In this case, unlike model error type-I, the model error and its gradient can be expressed

analytically. Therefore, they do not contain any discretization error.

6.5.2 Model Error Minimization: Iterative Algorithm

We minimize the model error by formulating a two-stages algorithm. Since we do not have prior

information about the variated solution/force function, it is difficult to analytically predict the

behavior of introduced model error. However, in every example, we numerically study the behavior

of a low resolution model error manifold on a coarse grid, and then, perform the local minimization.

The minimization problem is written as:

min
q ∈Q

(
E(q)

)
, (6.62)

in which E(q) : Q → R, and we assume that the problem is solvable, i.e. there exist a minimum

point q∗ ∈ Q. Proper choice of initial guess in local minimization is of great importance, where a

wrong initial guess, not falling within small enough adjacency of minimum, may never converge.

Therefore, the iterative convergence in a hypercube space of parameters is highly connected to an

optimal initial guess for each parameter. In the sequel, we delineate the two stages of our algorithm,

namely, stage I: coarse grid searching, and stage II: nearby solution.

In stage I, we progressively divide the hypercube parameter space into subspaces to narrow

down the objective search region into a smaller region. This division process is not necessarily

unique and can be done in different ways, among which we discuss the easy-to-implement one here,

where in each progression step, we choose the subspace with minimum error at its corner. We carry

out the coarse grid searching till we reach a small enough region, in which the nearby solution (stage
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α
β

Figure 6.4: Iterative algorithm: coarse grid searching for (1+1)-D parameter space, where α∗ = 0.3
and β∗ = 0.8.

II) is valid. As an example, we consider a (1+1)-D fractional model with q∗ = {α∗, β∗} = {0.3,0.8}

as the exact fractional indices in the parameter surface, shown in Fig. 6.4. We divide the parameter

space into four equal subspaces and by computing the error at corner points of each subsurface

(black dots), we shrink the search region (to the labeled subsurface 3). We progress further once

again in a similar fashion, divide the subsurface, and compute the error at corner points (red dots).

We finally, narrow down the search region into labeled subsurface 31. We see that in this case, with

computing the error only at 14 points, we can efficiently narrow down the parameter space into a

small enough search region, in which we can perform stage II of the algorithm.

In stage II of the algorithm, we employ a gradient decent method, in which by starting from

an initial guess q0 = {α0, β0
1, β

0
2, · · · , β

0
d} in the obtained search region from stage I, we produce a

minimizing sequence qi, i = 1,2, · · · , where

qi+1 = qi + ∆qi, (6.63)

and the increment ∆qi = si pi contains both the step size si and normalized step direction pi. The

superscript i indicates the iteration index. We obtain the normalized direction pi by computing

the gradient of model error with respect to the parameters. The step size is usually computed by

performing a line search such that E(qi + s pi) is minimized over ∀s ∈ R. However, in our case

the method does not produce well-scaled search directions, and we need to approximate the current
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step size, using the previous one. Thus,

pi = −
∇E(qi)

‖∇E(qi)‖
, si = si−1∇E(qi−1)

T
pi−1

∇E(qi)
T pi

, (6.64)

where the first iteration size is obtained, using the Taylor expansion of model error about q0.

6.5.3 Fractional Model Construction: FSEM-based Iterative Algorithm

Let Ω = [0,T] × [−1,1] be the computational domain. We consider the (1 + 1)-D case of FPDE

(6.7), subject to the initial and boundary conditions (7.2) and (7.3), respectively, where the adjoint

FSEs are given in (6.50). Assuming that the exact transport field u∗(t, x) and force function f ∗(t, x)

are given, then,

0D
α∗
t u∗ − k

(
−1D

β∗

x + xD
β∗

1

)
u∗ = f ∗ (6.65)

in which {α∗, β∗} are the exact fractional indices and the coefficient k is known.

By considering the two types of model error, we use the developed iterative formulation and

follow the steps below to obtain the optimal model parameters. In each iteration, the increments

are obtained, using (6.64).

For each model error we follow different steps, given below. Based on the model error I, we

follow

1. Initial guess q0 = {α0, β0}

2. Do i = 0,1, · · ·
3. Solve for uqi

N : FPDE
4. Compute the model error E = | |uqi

N − u∗ | |L2
5. If E < tolerance, Then Break, Otherwise Continue
6. Solve for sensitivity fields: FSEs
7. Compute the model error gradient using sensitivity field
8. Compute the iteration increment ∆qi

9. March in parameter space qi+1 = qi + ∆qi

10. End
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and based on the model error II, we follow

1. Initial guess q0 = {α0, β0}

2. Do i = 0,1, · · ·
3. Compute the model error E = | |Lqi

u∗ − Lq∗u∗ | |L2
4. If E < tolerance, Then Break, Otherwise Continue
5. Compute the model error gradient using sensitivity field (analytically available)
6. Compute the iteration increment ∆qi

7. March in parameter space qi+1 = qi + ∆qi

8. End

Remark 6.5.1. In the first iteration, we compute the step size, using the Taylor expansion of the

model error about the initial guess {α0, β0}, which we separate into two directions as

E
���
{α∗,β∗}

≈ E
���
{α0,β0}

+ SE,α

���
{α0,β0}

(α∗ − α0), E
���
{α∗,β∗}

≈ E
���
{α0,β0}

+ SE,β

���
{α0,β0}

(β∗ − β0).

(6.66)

Knowing that E
���
{α∗,β∗}

= 0, we obtain the parameters at next iterations as α1 = α0 + ∆α0 and

β1 = β0 + ∆β0, in which

∆α0 ≈ −
E
���
{α0,β0}

SE,α

���
{α0,β0}

, ∆β0 ≈ −
E
���
{α0,β0}

SE,β

���
{α0,β0}

. (6.67)

6.6 Numerical Results

In the first part of numerical results, we investigate the performance of developed PG scheme

in solving FPDE and the adjoint FSEs. We consider the coupled (1 + 1)-d FPDE and FSEs with

one-sided fractional derivative and k = 1, as

0D
α
t u −

−1D
β
x u = f , (6.68)

0D
α
t Su,α − −1D

β
x Su,α = S f ,α − A1(α) 0D

α
t u + LP

0D
α
t u, (6.69)

0D
α
t Su,β − −1D

β
x Su,β = S f ,β +A2(β) −1D

β
x u − LP

−1D
β
x u. (6.70)

We consider two cases of exact solution as
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Figure 6.5: Plot of exact functions for case I with α/2 = 0.25 and β/2 = 0.75: exact solution
uext (left), exact sensitivity field Suext,α =

∂uext
∂α (middle), exact sensitivity field Suext,β =

∂uext
∂β

(right).

Figure 6.6: Plot of exact functions for case II with α/2 = 0.25 and β/2 = 0.75: exact solution uext

(left), exact sensitivity field Suext,α (middle), exact sensitivity field Suext,β (right).

• Case I: uext(t, x) = t3+α/2
(
(1 + x)3+β/2 − 1

2 (1 + x)4+β/2
)
,

• Case II: uext(t, x) = t3+α/2(t − 0.4)(t − 0.9)
(
(1 + x)3+β/2 − 1

2 (1 + x)4+β/2
)
.

where α/2 = 0.25, and β/2 = 0.75. The exact solution and sensitivity fields, obtained by taking ∂
∂α

and ∂
∂β of the exact solutions, are shown in Fig. 6.5 and 6.6 for the two cases I and II, respectively.

We employ the developed PG method to solve FPDE (6.68) and obtain uN , which we use to

construct the right hand side of adjoint FSEs. Then, we again employ the developed PG method

to solve FSEs (6.69) and (6.70) and obtain the numerical sensitivity fields, SNu,α, SNu,β . We study

the L2-norm convergence of our proposed method by increasing the number of basis functions, as

shown in Fig. 6.7.

• Fractional Model Construction. The second part of numerical results is dedicated to

study the efficiency of developed iterative algorithm in obtaining the set of model parameters q
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Figure 6.7: PG spectral method, L2-norm convergence study: (1 + 1)-d FPDE adjoint to corre-
sponding FSEs with one-sided fractional derivative, k = 1, α/2 = 0.25, and β/2 = 0.75, for Case
I (left) and Case II (right), where N = M .

(fractional indices) and thus, construct the fractional model. We test our developed scheme by

method of fabricated solution, assuming a given set of input (exact solution) and output (force

term) for our fractional model.

We begin with a fractional IVP of the form 0D
α
t u(t) = f (t), α ∈ (0,1), and assume that the

exact solution and force function are given as,

u∗(t) = sin(5π α∗/2) t3+α∗/2,

f ∗(t) = sin(5π α∗/2)
Γ(4 + α∗/2)
Γ(4 − α∗/2)

t3−α∗/2,

and the fractional order α is the unknown model parameter. We start from an initial guess α0 and

use the developed iterative algorithm to converge to the true value of fractional index α. We also

consider a fractional BVP of the form
−1D

β
x u(x) = f (x), β ∈ (1,2), and assume that the exact

solution and force function are given as,

u∗(x) = (1 + x)3+β
∗/2 −

1
2
(1 + x)4+β

∗/2

f ∗(x) =
Γ(4 + β∗/2)
Γ(4 − β∗/2)

(1 + x)3+β
∗/2 −

1
2
Γ(5 + β∗/2)
Γ(5 − β∗/2)

(1 + x)4+β
∗/2

and the fractional order β is the unknown model parameter. We again use the developed iterative

algorithm to capture the true value of fractional index β, starting from an initial guess β0.
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Table 6.1: Fractional model construction for the two cases of fractional IVP.
Iteration Index 0D

α
t u(t) = f (t)

i αi αi

initial guess 0.300000 0.900000
1 0.971980 0.320520
2 0.900418 0.300068
3 0.900000 0.300000

True Value 0.9 0.3

Table 6.2: Fractional model construction for the two cases of fractional BVP.
Iteration Index

−1D
β
x u(x) = f (x)

i βi βi

initial guess 1.100000 1.9000000
1 1.882020 1.228040
2 1.708120 1.106096
3 1.700020 1.100016
4 1.700000 1.100000

True Value 1.7 1.1

Tables 6.1 and 6.2 show two examples for each case of fractional IVP and BVP, where the true

values of fractional orders are α∗ = 0.3, α∗ = 0.9, β∗ = 1.1, and β∗ = 1.7. We observe that

the proposed iterative formulation converges accurately to the exact values with in few numbers of

iterations. We note that in the case of fractional IVP and BVP, the search region is already small

enough so that the nearby solution is valid, and therefore, we only need to perform the second stage

of iterative algorithm.

Moreover, we consider FPDE of the form 0D
α
t u− k

−1D
β
x u = f . We assume the exact solution

u∗ = t1+α∗/2
(
(1 + x)3+β

∗/2 − 1
2 (1 + x)4+β

∗/2
)
and plug it into the FPDE with given {α∗, β∗} to

obtain the exact force function f ∗. We study the example, in which, {α∗, β∗} = {0.1,1.64}. We

perform the two stages of iterative algorithm, where in the first stage, we shrink down the search

region 16 time smaller than the original size, by computing the model error at 8 points (See Fig. 6.8,

right). Then, in the next stage, we start from the initial guess {α0, β0} = {0.125,1.75}, and observe

that the developed iterative method converges to a close neighborhood of true values {0.1,1.64}

within 10−3 tolerance.
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Coarse Grid Searching

𝟎 𝟎. 𝟐 𝟎. 𝟒 𝟎. 𝟔 𝟎. 𝟖 𝟏
𝟏

𝟏
.𝟐

𝟏
.𝟒

𝟏
.𝟔

𝟏
.𝟖

𝟐

Nearby Solution

𝛽
𝛼

Figure 6.8: Fractionalmodel construction for the case FPDE, using FSEMbased iterative algorithm.
The true values of fractional indices are {α∗, β∗} = {0.1,1.64}.

The developed model construction method can also be applied in formulating fractional models

to study complex time-varying nonlinear fluid-solid interaction phenomena [2, 3, 9] and also the

effect of damping in structural vibrations [182].
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6.7 Proof of Lemmas and Theorems

6.7.1 Proof of Lemma 6.2.2

Part A: σ ∈ (0,1). We start from the RL − PL definition, given in (6.1).

RL−LP
aD

σ
x u =

1
Γ(1 − σ)

d
dx

∫ x

a
(x − s)−σ log(x − s) u(s) ds, (integrate by parts) (6.71)

=
1

Γ(1 − σ)
d
dx

{u(s) (x − s)1−σ

(−σ + 1)2
(1 − (−σ + 1) log(x − s))

�����s=x

s=a

−

∫ x

a

(x − s)−σ+1

(−σ + 1)2
(1 − (−σ + 1) log(x − s)) u′(s) ds

}
,

=
1

Γ(1 − σ)
d
dx

{u(a) (x − a)1−σ

(−σ + 1)2
(1 − (−σ + 1) log(x − a))

−

∫ x

a

(x − s)−σ+1

(−σ + 1)2
(1 − (−σ + 1) log(x − s)) u′(s) ds

}
,

=
u(a)

Γ(1 − σ)
log(x − a)
(x − a)σ

+
1

Γ(1 − σ)

∫ x

a

log(x − s)
(x − s)−σ

u′(s) ds, (by Leibnitz rule)

=
u(a)

Γ(1 − σ)
log(x − a)
(x − a)σ

+ C−LP
aD

σ
x u
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Part B: σ ∈ (1,2). Similarly, we start from the RL − PL definition, given in (6.1).

RL−LP
aD

σ
x u =

1
Γ(2 − σ)

d2

dx2

∫ x

a
(x − s)−σ+1 log(x − s) u(s) ds, (integrate by parts twice)

(6.72)

=
1

Γ(2 − σ)
d2

dx2

{u(s) (x − s)−σ+2

(−σ + 2)2
(1 − (−σ + 2) log(x − s))

�����s=x

s=a

−
u′(s) (x − s)−σ+3

(−σ + 2)2(−σ + 3)2
(1 − 2(−σ + 3) + (−σ + 3)(−σ + 2) log(x − s))

�����s=x

s=a

+

∫ x

a

(x − s)−σ+3

(−σ + 2)2(−σ + 3)2
(1 − 2(−σ + 3) + (−σ + 3)(−σ + 2) log(x − s)) u′′(s) ds

}
,

=
1

Γ(2 − σ)
d2

dx2

{u(a) (x − a)−σ+2

(−σ + 2)2
(1 − (−σ + 2) log(x − a))

−
u′(a) (x − a)−σ+3

(−σ + 2)2(−σ + 3)2
(1 − 2(−σ + 3) + (−σ + 3)(−σ + 2) log(x − a))

+

∫ x

a

(x − s)−σ+3

(−σ + 2)2(−σ + 3)2
(1 − 2(−σ + 3) + (−σ + 3)(−σ + 2) log(x − s)) u′′(s) ds

}
,

=
u(a)

Γ(2 − σ)
1 + (−σ + 1) log(x − a)

(x − a)σ
+

u′(a)
Γ(2 − σ)

log(x − a)
(x − a)σ−1

+
1

Γ(2 − σ)

∫ x

a
(x − s)−σ+1 log(x − s) u′′(s) ds, (by Leibnitz rule)

=
u(a)

Γ(1 − σ)
1 + (−σ + 1) log(x − a)

(x − a)σ
+

u′(a)
Γ(1 − σ)

log(x − a)
(x − a)σ−1 +

C−PL
aD

σ
x u.

6.7.2 Proof of Lemma 7.3.1

In Lemma 2.1 in [100] and also in [53], it is shown that ‖ · ‖l Hσ(Λ) and ‖ · ‖r Hσ(Λ) are equivalent.

Therefore, for u ∈ Hσ(Λ), there exist positive constants C1 and C2 such that

‖u‖Hσ(Λ) ≤ C1‖u‖l Hσ(Λ), ‖u‖Hσ(Λ) ≤ C2‖u‖r Hσ(Λ), (6.73)
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which leads to

‖u‖2Hσ(Λ) ≤ C2
1 ‖u‖

2
l Hσ(Λ)

+ C2
2 ‖u‖

2
r Hσ(Λ),

= C2
1 ‖ aD

σ
x (u)‖

2
L2(Λ)

+ C2
2 ‖ xD

σ
b (u)‖

2
L2(Λ)

+ (C2
1 + C2

2 ) ‖u‖
2
L2(Λ)

,

≤ C̃1 ‖u‖
2
cHσ(Λ), (6.74)

where C̃1 is a positive constant. Similarly, we can show that ‖u‖2cHσ(Λ) ≤ C̃2 ‖u‖Hσ(Λ), where C̃2

is a positive constant.

6.7.3 Proof of Lemma 7.3.2

X1 is endowed with the norm ‖ · ‖X1 , where ‖ · ‖X1 ≡ ‖ · ‖cHβ1/2(Λ1)
by Lemma 7.3.1. Moreover,

X2 is associated with the norm

‖ · ‖X2 ≡

{
‖ · ‖2

cH
β2/2
0

(
(a2,b2);L2(Λ1)

) + ‖ · ‖2
L2

(
(a2,b2);X1

) } 1
2
, (6.75)

where

‖u‖2
cH

β2/2
0

(
(a2,b2);L2(Λ1)

) (6.76)

=

∫ b1

a1

( ∫ b2

a2
| a2D

β2/2
x2 u|2 dx2 +

∫ b2

a2
| x2D

β2/2
b2

u|2 dx2 +
∫ b2

a2
|u|2 dx2

)
dx1

=

∫ b1

a1

∫ b2

a2
| a2D

β2/2
x2 u|2 dx2dx1 +

∫ b1

a1

∫ b2

a2
| x2D

β2/2
b2

u|2 dx2dx1 +
∫ b1

a1

∫ b2

a2
|u|2 dx2dx1

= ‖ x2D
β2/2
b2
(u)‖2

L2(Λd )
+ ‖ a2D

β2/2
x2 (u)‖2

L2(Λd )
+ ‖u‖2

L2(Λd )
, (6.77)

and

‖u‖2
L2

(
(a2,b2);X1

)
=

∫ b2

a2

( ∫ b1

a1
| a1D

β1/2
x1 u|2 dx1 +

∫ b1

a1
| x1D

β1/2
b1

u|2 dx1 +
∫ b1

a1
|u|2 dx1

)
dx2

=

∫ b2

a2

∫ b1

a1
| a1D

β1/2
x1 u|2dx1dx2 +

∫ b2

a2

∫ b1

a1
| x1D

β1/2
b1

u|2dx1dx2 +
∫ b2

a2

∫ b1

a1
|u|2dx1dx2

= ‖ x1D
β1/2
b1

u‖2
L2(Λ2)

+ ‖ a1D
β1/2
x1 u‖2

L2(Λ2)
+ ‖u‖2

L2(Λ2)
. (6.78)
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We use the mathematical induction to carry out the proof. Therefore, we assume the following

equality holds

‖ · ‖Xk−1 ≡

{ k−1∑
i=1

(
‖ xi
D
βi/2
bi
(·)‖2

L2(Λk−1)
+ ‖ ai

D
βi/2
xi (·)‖2

L2(Λk−1)

)
+ ‖ · ‖2

L2(Λk−1)

} 1
2
. (6.79)

Since,

‖u‖2
cH

βk/2
0

(
(ak ,bk );L2(Λk−1)

)
=

∫
Λk−1

( ∫ bk

ak
| ak
D
βk/2
xk

u|2 dxk +

∫ bk

ak
| xk
D
βk/2
bk

u|2 dxk +

∫ bk

ak
|u|2 dxk

)
dΛk−1

=

∫
Λk−1

∫ bk

ak
| ak
D
βk/2
xk

u|2 dxk dΛk−1 +
∫
Λk−1

∫ bk

ak
| xk
D
βk/2
bk

u|2 dxk dΛk−1

+

∫
Λk−1

∫ bk

ak
|u|2 dxk dΛk−1

= ‖ xk
D
βk/2
bk
(u)‖2

L2(Λk )
+ ‖ ak

D
βk/2
xk
(u)‖2

L2(Λk )
+ ‖u‖2

L2(Λk )
,

and

‖u‖2
L2

(
(ak ,bk );Xk−1

)
=

∫ bk

ak

(k−1∑
i=1

(∫
Λk−1

| ai
D
βi/2
xi u|2dΛk−1 +

∫
Λk−1

| xi
D
βi/2
bi

u|2dΛk−1

)
+

∫
Λk−1

|u|2dΛk−1

)
dxk

=

k−1∑
i=1

( ∫
Λk
| ai
D
βi/2
xi u|2dΛk +

∫
Λk
| xi
D
βi/2
bi

u|2dΛk

)
+

∫
Λk
|u|2dΛk

=

k−1∑
i=1

(
‖ xi
D
βi/2
bi

u‖2
L2(Λk )

+ ‖ ai
D
βi/2
xi u‖2

L2(Λk )

)
+ ‖u‖2

L2(Λk )
,

we can show that

‖ · ‖Xk ≡

{ k∑
i=1

(
‖ xi
D
βi/2
bi
(·)‖2

L2(Λk )
+ ‖ ai

D
βi/2
xi (·)‖2

L2(Λk )

)
+ ‖ · ‖2

L2(Λk )

} 1
2
. (6.80)
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6.7.4 Proof of Lemma 7.3.5

According to [87], we have ai
D
βi
xi u = ai

D
βi/2
xi (ai

D
βi/2
xi u) and xi

D
βi/2
bi

u = xi
D
βi/2
bi
(xi
D
βi/2
bi

u).

Let ū = ai
D
βi/2
xi u. Then,

(ai
D
βi
xi u, v)Λd = (ai

D
βi/2
xi ū, v)Λd =

∫
Λd

1
Γ(1 − βi/2)

[ d
dxi

∫ xi

ai

ū(s) ds

(xi − s)βi /2

]
v dΛd

=
{ v

Γ(1 − βi/2)
∫ xi
ai

ūds
(xi−s)βi/2

}bi

xi=ai
−

∫
Λd

1
Γ(1 − βi/2)

∫ xi

ai

ū(s) ds

(xi − s)βi/2
dv
dxi

dΛd . (6.81)

Based on the homogeneous boundary conditions,
{

v

Γ(1−βi/2)
∫ xi
ai

ūds
(xi−s)βi/2

}bi

xi=ai
= 0. Therefore,

(ai
D
βi
xi u, v)Λd = −

∫
Λi

1
Γ(1 − βi/2)

∫ xi

ai

ū(s) ds

(xi − s)βi/2
dv
dxi

dΛi . (6.82)

Moreover, we find that

d
ds

∫ bi

ai

u

(xi − s)βi/2
dxi =

d
ds

{
{
v (xi − s)1−βi/2

1 − βi/2
}

bi
xi=si −

1
1 − βi/2

∫ bi

s

dv
dxi
(xi − s)1−βi/2dxi

}
= −

1
1 − βi/2

∫ bi

s

dv
dxi
(xi − s)1−βi/2 dxi =

∫ bi

s

dv
dxi

(xi − s)βi/2
dxi . (6.83)

Therefore, we get

(ai
D
βi/2
xi ū, v)Λd = −

∫
Λd

1
Γ(1 − ν)i

ū(s)
(
−

d
ds

∫ bi

s

v

(xi − s)βi/2
dxi

)
ds = (ū, xi

D
βi/2
bi

v)Λd .

6.7.5 Proof of Lemma 7.3.7

We know that �� (
0D

α/2
t u, tD

α/2
T v

)
Ω

�� = ( ∫
Λd

∫ T

0
| 0D

α/2
t u tD

α/2
T v |2 dtdΛd

) 1
2 .
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Therefore, by Hölder inequality�� (
0D

α/2
t u, tD

α/2
T v

)
Ω

��
≤

( ∫
Λd

∫ T

0
| 0D

α/2
t u|2 dtdΛd

) 1
2

( ∫
Λd

∫ T

0
| tD

α/2
T v |2 dtdΛd

) 1
2

≤

( ∫
Λd

∫ T

0
| 0D

α/2
t u|2 dtdΛd +

∫
Λd

∫ T

0
|u|2 dtdΛd

) 1
2×( ∫

Λd

∫ T

0
| tD

α/2
T v |2 dtdΛd +

∫
Λd

∫ T

0
|v |2 dtdΛd

) 1
2

= ‖ 0D
α/2
t u‖L2(Ω) ‖ tD

α/2
T v‖L2(Ω) = ‖u‖l Hα/2(I;L2(Λd ))

‖v‖r Hα/2(I;L2(Λd ))
.

Moreover, by equivalence of | · |Hs(I) ≡ | · |
∗
Hs(I) = | · |

1/2
l Hs(I)

| · |
1/2
r Hs(I) we have

|(0D
α/2
t u, tD

α/2
T v)I | =

∫ T

0
| 0D

α/2
t u tD

α/2
T v |2 dt

≥

∫ T

0
| 0D

α/2
t u|2dt

∫ T

0
| tD

α/2
T v |2 dt (6.84)

≥ β̃1‖u‖l Hs(I)‖v‖r Hs(I),

where 0 < β̃1 ≤ 1. Therefore,

|(0D
α/2
t u, tD

α/2
T v)Ω |

2 =

∫
Λd

∫ T

0
| 0D

α/2
t u tD

α/2
T v |2 dt dΛd

≥

∫
Λd

( ∫ T

0
| 0D

α/2
t u|2dt

∫ T

0
| tD

α/2
T v |2 dt

)
dΛd

≥ β̄

∫
Λd

∫ T

0
| 0D

α/2
t u|2dtdΛd

∫
Λd

∫ T

0
| tD

α/2
T v |2 dt Λd

≥ β̄ β̃2‖u‖l Hs(I)‖v‖r Hs(I), (6.85)

where 0 < β̃2 ≤ 1 and 0 < β̄.
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6.7.6 Proof of The Stability Theorem 7.3.9

Part A: d = 1. It is evident that u and v are in Hilbert spaces (see [53, 100]). For 0 < β̃ ≤ 1, we

have

|a(u, v)|

= |(0D
α/2
t (u), tD

α/2
T (v))Ω + (a1D

β1/2
x1 (u), x1D

β1/2
b1
(v))Ω (6.86)

+ (a1D
β1/2
x1 (u), x1D

β1/2
b1
(v))Ω + (u, v)Ω |

≥ β̃
(
|(0D

α/2
t (u), tD

α/2
T (v))Ω | + |(a1D

β1/2
x1 (u), x1D

β1/2
b1
(v))Ω | (6.87)

+ |(a1D
β1/2
x1 (u), x1D

β1/2
b1
(v))Ω | + |(u, v)Ω |

)
,

since sup
u∈U
|a(u, v)| > 0. Next, by equivalence of spaces and their associated norms, (7.43), and

(7.44), we obtain

|(0D
α/2
t (u), tD

α/2
T (v))Ω | ≥ C1‖ 0D

α/2
t u‖L2(Ω) ‖ tD

α/2
T v‖L2(Ω),

|(a1D
β1/2
x1 (u), x1D

β1/2
b1
(v))Ω | ≥ C2‖ a1D

β1/2
x1 u‖L2(Ω) ‖ x1D

β1/2
b1

v‖L2(Ω),

and

|(x1D
β1/2
b1
(u), a1D

β1/2
x1 (v))Ω | ≥ C3‖ x1D

β1/2
b1

u‖L2(Ω) ‖ a1D
β1/2
x1 v‖L2(Ω), (6.88)

where C1, C2, and C3 are positive constants. Therefore,

|a(u, v)| ≥ C̃ β̃
{
‖ 0D

α/2
t u‖L2(Ω) ‖ tD

α/2
T v‖L2(Ω) + ‖ a1D

β1/2
x1 u‖L2(Ω) ‖ x1D

β1/2
b1

v‖L2(Ω)

+‖ a1D
β1/2
x1 u‖L2(Ω) ‖ x1D

β1/2
b1

v‖L2(Ω)

}
, (6.89)

where C̃ is min{C1, C2, C3}. Also, the norm ‖u‖U ‖v‖V is equivalent to the right hand side of

inequality (6.89). Therefore, |a(u, v)| ≥ C ‖u‖U ‖v‖V .

Part B: d > 1. Similarly, we have

|a(u, v)| ≥ (6.90)

β

(
|(0D

α/2
t (u), tD

α/2
T (v))Ω | +

d∑
i=1

(
|(ai
D
βi/2
xi (u), xi

D
βi/2
bi
(v))Ω | + |(ai

D
βi/2
xi (u), xi

D
βi/2
bi
(v))Ω |

))
,
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where 0 < β ≤ 1. Recalling that as the direct consequences of (7.43), we obtain

|(ai
D
βi/2
xi (u), xi

D
βi/2
bi
(v))Ω | ≡ ‖ ai

D
βi/2
xi (u)‖L2(Ω) ‖ xi

D
βi/2
bi
(v)‖L2(Ω),

|(xi
D
βi/2
bi
(u), ai

D
βi/2
xi (v))Ω | ≡ ‖ xi

D
βi/2
bi
(u)‖L2(Ω) ‖ ai

D
βi/2
xi (v)‖L2(Ω).

Thus,

d∑
i=1

(
|(ai
D
βi/2
xi (u), xi

D
βi/2
bi
(v))Ω | + |(xi

D
βi/2
bi
(u), ai

D
βi/2
xi (v))Ω |

)
, (6.91)

≥ C̃
d∑

i=1

(
‖ ai
D
βi/2
xi (u)‖L2(Ω) ‖ xi

D
βi/2
bi
(v)‖L2(Ω) + ‖ xi

D
βi/2
bi
(u)‖L2(Ω) ‖ ai

D
βi/2
xi (v)‖L2(Ω)

)
,

≥ C̃1 β̃
d∑

i=1

(
‖ ai
D
βi/2
xi (u)‖L2(Ω) + ‖ xi

D
βi/2
bi
(u)‖L2(Ω)

)
×

d∑
j=1

(
‖ x j
D
ν j
b j
(v)‖L2(Ω),+‖ aj

D
ν j
x j (v)‖L2(Ω)

)
,

for u, v ∈ L2(I;Xd), where 0 < C̃ and 0 < β̃ ≤ 1. Furthermore, Lemma 7.3.7 yields

|(0D
α/2
t (u), tD

α/2
T (v))Ω | ≡ ‖u‖r Hα/2(I;L2(Λd ))

‖v‖l Hα/2(I;L2(Λd ))
. (6.92)

Therefore, from (6.91) and (6.92) we have

|a(u, v)| ≥ β
(
‖u‖r Hα/2(I;L2(Λd ))

‖v‖l Hα/2(I;L2(Λd ))
+ ‖u‖L2(I;Xd )

‖v‖L2(I;Xd )

)
, (6.93)

where

‖u‖r Hα/2(I;L2(Λd ))
‖v‖l Hα/2(I;L2(Λd ))

+ ‖u‖L2(I;Xd )
‖v‖L2(I;Xd )

≥ C̃2
(
‖u‖r Hα/2(I;L2(Λd ))

+ ‖u‖L2(I;Xd )

) (
‖v‖l Hα/2(I;L2(Λd ))

+ ‖v‖L2(I;Xd )

)
(6.94)

for u ∈ U, v ∈ U and 0 < C̃2 ≤ 1. By considering (6.93) and (6.94), we get

|a(u, v)| ≥ C ‖u‖U ‖v‖V . (6.95)
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CHAPTER 7

OPERATOR-BASED UNCERTAINTY QUANTIFICATION FOR STOCHASTIC
FRACTIONAL PDES

7.1 Background

Significant approximations as inherent part of assumptions upon which the model is built, lack

of information about true values of parameters (incomplete data), and random nature of quantities

being modeled pervade uncertainty in the corresponding mathematical formulations [41, 142]. In

this work, we develop an uncertainty quantification (UQ) framework in the context of stochastic

fractional partial differential equations (SFPDEs), in which we characterize different sources of

uncertainties and further propagate the associated randomness to the system response quantity of

interest (QoI). The intention of this work is not to introduce new mathematical theories or methods

for UQ, but rather to bring forward practical solutions using existing theories in an attempt to

overcome the computational challenges of UQ in fractional models.

Types and Sources of Uncertainty. The model uncertainties are in general being classified

as aleatory and epistemic according to their fundamental essence. It is important to retain the

separation between these two sources in order to assess the predictive efficiency of model [45, 125].

Aleatory uncertainty impacts output of interest due to natural variation of inputs and parameters; it is

irreducible and commonly treated with probability theory. Epistemic uncertainty, however, results

from lack of knowledge about the system of interest and can be reduced by obtaining additional

information. The epistemic uncertainties are broadly characterized as i) model uncertainties,

occurring inmodel inputs, numerical approximation errors, andmodel form uncertainty; and ii) data

uncertainties due to measurement inaccuracy and sparse or imprecise data. The model uncertainty

encompasses all model parameters coming from geometry, constitutive laws, and fields equation,

while also pertaining surrounding interactions, such as boundary conditions and random forcing

sources (noise). Numerical approximations, which are an essence of differential equations since
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they generally do not lend themselves to analytical solutions, introduce uncertainty by imposing

different sources of discretization error, iterative convergence error, and round off error. In this

work, we only consider the epistemic uncertainty in our fractional model and thus, introduce the

fractional derivative orders as new set of model parameters in addition to model coefficients. We

note that the values of these new parameters are strongly tied to the distribution of underlying

stochastic process and their statistics are estimated from experimental observations in practice, see

e.g. [18, 26].

Uncertainty Framework. Conventional approaches in parametric UQ of differential equations is

based aroundMonte Carlo sampling (MCS) [54], which performs ensemble of forward calculations

to map the uncertain input space to the uncertain output space. This method enjoys from being

embarrassingly parallelizable and can be implement quite readily on high dimensional random

spaces. However, the key issue is the slow rate of convergence ∼ 1/
√

N with N number of

realization, which consequently imposes exhaustively so many operations of forward solver, makes

it not practical for expensive simulations. Othermethods such as sequentialMCS [43] andmultilevel

sequential MSC [27] are also developed and recently used in [77] to improve the parametric

uncertainty assessment in elliptic nonlocal equations. An alternative to expensive MCS is to build

surrogate models. An extensive comparison of two widely used ones, namely polynomial chaos

and Gaussian process, are provided in a recent work [133]. Polynomial chaos, in which the output

of stochastic model is represented as a series expansion of input parameters, was initially applied

in [63], and later extended and used in [92, 127, 165, 176, 177]. It is also generalized and used

in constructing stochastic Galerkin methods [16, 17, 94, 95] for problems with higher-dimensional

random spaces. Other non-sampling numerical methods, including but not limited to perturbation

method [13, 149, 163, 174] and moment equation method [108, 109] are also developed, however

their applications are restricted to stochastic systems with relatively low-dimensional random space.

These so-called “intrusive" approaches typically do not treat the forward solver as a black-box, rather

require some knowledge and reformulation of the governing equations and thus, may not be practical

in many problems with complex codes.
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A wide range of “non-intrusive" techniques mostly stretch over sampling, quadrature, and re-

gression, see [133] and references therein. More recently, high-order probabilistic collocation

methods (PCM), employing the idea of interpolation/collocation in the random spaces, are devel-

oped in [14, 129, 175]. These methods limit the sample points to an efficient subset of random

space, while adequately sampling the necessary range. The excellence in use of PCM is twofold; it

has the benefit of easily sampling at nodal points that naturally leads to independent realizations of

the problem as inMCS, and the advantage of fast convergence rate. The challenging post processing

of solution statistics, which can essentially be described as a high-dimensional integration problem,

can also be resolved by adopting sparse grid generators, such as Smolyak algorithm [129, 151]. The

use of sparse grids, as opposed to full tensor product construction from one-dimensional quadrature

rules, will effectively reduce the number of sampling, while preserving a fast convergence rate to

high level of accuracy.

Forward Solver. A core task in computational forward UQ is to form an efficient numerical

method, which for each realizations of random variables can accurately solves and simulates the

deterministic counterpart of stochastic model in the physical domain. Such numerical method is

usually called “forward solver" or “simulator". In the case of FPDEs, the excessive cost of numerical

approximations due to the inherent nonlocal nature of fractional differential equations additionally

become more challenging when generally most of uncertainty propagation techniques instruct

operations of forward solver many times. This requires implementation of more efficient numerical

schemes, which can manage increasing computational costs while maintaining sufficiently low

error level in mitigating the corresponding uncertainties. In addition to numerous finite difference

methods for solving FPDEs [33, 65, 103, 159, 167, 172, 192, 196], recent works have elaborated

efficient spectral schemes, for discretizing FPDEs in physical domain, see e.g., [28, 39, 83, 84,

99, 100, 103, 136, 170]. More recently, Zayernouri et al. [183, 186] developed two new spectral

theories on fractional and tempered fractional Sturm-Liouville problems, and introduced explicit

corresponding eigenfunctions, namely Jacobi poly-fractonomials of first and second kind. These

eignefunctions are comprised of smooth and fractional parts, where the latter can be tunned to

163



capture singularities of true solution. They are successfully employed in constructing discrete

solution/test function spaces and developing a series of high-order and efficient Petrov-Galerkin

spectral methods, see [86–88, 106, 143–145, 160].

The main focus of this work is to develop an operator-based computational forward UQ frame-

work in the context of stochastic fractional partial differential equation. Assuming that the math-

ematical model under consideration is well-posed and accounts in principle for all features of

underlying phenomena, we identify three main sources of uncertainty, i) parametric uncertainty,

including fractional indices as new set of random parameters appeared in the operator, ii) addi-

tive noises, which incorporates all intrinsic/extrinsic unknown forcing sources as lumped random

inputs, and iii) numerical approximations. Computational challenges arise when the admissible

space of random inputs is infinite-dimensional, e.g. problems subject to additive noise [137], and

thus, the framework involves uncertainty parametrization via a finite number of random space basis.

Unlike the classical approach in modeling random inputs, which considers idealized uncorrelated

processes (white noises), we model the random inputs as more/fully correlated random processes

(colored noises), and parametrize them via Karhunen-Loève (KL) expansion by assuming finite-

dimensional noise assumption. This yields the problem in finite dimensional random space. We

then, propagate the parametric uncertainties into the system response by applying PCM. We obtain

the corresponding deterministic FPDE for each realization of random variables, using the Smolyak

sparse grid generators for low to moderately high dimensions. In order to formulate the forward

solver, we follow [145] and develop a high-order Petrov-Galerkin (PG) spectral method to solve for

each realization of SFPDE in the physical domain, employing Jacobi poly-fractonomials in addi-

tion to Legendre polynomials as temporal and spatial basis/test functions, respectively. The smart

choice of coefficients in construction of spatial basis/test functions yields symmetric properties in

the resulting mass/stiffness matrix, which is then exploited to formulate an efficient fast solver. We

also show that for each realization of random variables, the deterministic problem is mathematically

well-posed and the proposed forward solver is stable. By adopting sufficient number of basis in the

physical domain, we eliminate the epistemic uncertainty associated with numerical approximation
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and isolate the impact of parametric uncertainty on system response QoI.

The organization of this chapter is as follows. We formulate the stochastic system in section

7.2, and parametrize the random inputs. We also develop the stochastic sampling, namely PCM

and MCS for our stochastic problem. We further construct the deterministic solver in section 7.3,

and provide the numerical results in section 7.4.

7.2 Forward Uncertainty Framework

7.2.1 Formulation of Stochastic FPDE

Let D = [0,T] × [a1, b1] × [a2, b2] × · · · × [ad, bd] be the physical computational domain for some

positive integer d and stochastic function u(t,x;ω) : D×Ω→ R, where ω ∈ Ω denotes the random

inputs of the system in a properly defined complete probability space (Ω,F ,P). We consider

the following SFPDE, subject to certain homogeneous Dirichlet initial/boundary conditions and

stochastic process as additional force function, given as

Lq(ω) u(t,x;ω) = F(t,x;ω) (7.1)

ut=0 = 0, (7.2)

ux=aj
= ux=bj

= 0, (7.3)

such that for P-almost everywhere ω ∈ Ω the equation holds. The stochastic fractional operator

and force term, are given respectively as:

Lq(ω) = 0D
α(ω)
t −

d∑
j=1

k j

[
aj
D
β j (ω)
x j + x j

D
β j (ω)
bj

]
(7.4)

F(t,x;ω) = h(t,x) + f (t;ω), (7.5)

where the fractional indices α(ω) ∈ (0,1) and β j(ω) ∈ (1,2), j = 1,2, · · · d are mutually inde-

pendent random variables, k j are real positive constant coefficients, and the fractional derivatives

are taken in the Riemann-Liouville sense. We assume that the driving terms h and f are properly

posed, such that Eqns. (7.1)-(7.3) is well-posed P-a.e. ω ∈ Ω, and also the solution in physical
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domainD is smooth enough such that we can construct a numerical scheme to solve each realization

of SFPDE. As an extension to future works, the stochastic operator Eqn. (7.4) can be extended to

α(ω) ∈ (1,2) for the case of wave equations, and thus applied in formulating fractional models

to study complex time-varying nonlinear fluid-solid interaction phenomena [2, 3, 9] and also the

effect of damping in structural vibrations [182].

7.2.2 Representation of the Noise: Dimension Reduction

We approximate the additional random forcing term by representing f (t;ω) into its finite dimen-

sional version and thus, reduce the infinite-dimensional probability space to a finite-dimensional

space. This is achieved via truncatingKarhunen-Loève (KL) expansionwith the desired accuracy[110].

Let (Ω,F ,P) be a complete probability space, where Ω is the space of events, F ⊂ 2Ω

denotes the σ-algebra of sets in Ω, and P is the probability measure. The random field f (t;ω)

has the ensemble mean E{ f (t;ω)} = f̄ (t), finite variance E{[ f (t;ω) − f̄ (t)]2} and covariance

C f (t1, t2) = E{[ f (t1;ω) − f̄ (t1)][ f (t2;ω) − f̄ (t2)]}. The KL expansion of f (t;ω) takes the form

f (t;ω) = f̄ (t) +
∞∑

k=1

√
λk ψk (t)Qk (ω), (7.6)

where Q(ω) = {Qk (ω)}
��k=∞
k=1 is a set of mutually uncorrelated random variables with zero mean

and unit variance, while ψk (t) and λk are the eigenfunction and eigenvalues of the covariance

kernel C f (t1, t2). We obtain the covariance kernel C f and its eigenvalues and eigenfunctions,

following [156] and by solving a stochastic Helmholtz equation

4 f (t;ω) − m2 f (t;ω) = g(t;ω), (7.7)

where the random forcing g(t;ω) is a white-noise process with zero mean and unit variance. The

eigenvalues and eigenvectors of Eqn. (7.7) form a Fourier series, so that the KL expansion Eqn. (7.6)

is replaced with its sine Fourier series version

f (t;ω) = f̄ (t;ω) +
∞∑

k=1
ak sin

(
2kπ t

T

)
Qk (ω), (7.8)
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in which the random variablesQk (ω) are chosen to be uniformly distributed with probability density

function ρk (qk ). T is the length of the process along the t-axis, and the coefficients

ak =
2
√

T`2

[
1 +

(
2πk
T`

)2
]−1

, (7.9)

where ` = T/A and A is the correlation length of f (t;ω). To ensure that the random variables

Qk (ω) have zero mean and unit variance, we define them on Qk (ω) ∈ [−
√

3,
√

3]. We note that

this process is consistent to the zero-Dirichlet initial condition given in Eqn. (7.2). Next, in

order to render Eqn. (7.8) computable, we truncate the infinite series with a prescribed (≈ 90%)

fraction of the energy of the process, following the finite-dimensional noise assumption in stochastic

computations. To this end, we set T = 1, the correlation length A = T/2, and consider only the

first four terms in the KL expansion. Let fM (t;ω) = 1
µ

∑M
k=1 ak sin

(
2kπ t

T

)
Qk (ω) denote the

normalized truncated expansion, assuming f̄M (t;ω) = 0, where µ = maxt
{
σ fM

}
and σ fM is the

standard deviation of fM (t;ω). Thus, we represent the random process to be employed in Eqn. (7.1)

as

f (t;ω) = ε fM (t;ω) (7.10)

where ε is the amplitude of process.

Therefore, the formulation of SFPDE Eqn. (7.1) can be posed as follows: Find u(t,x;ω) :

D ×Ω→ R such that ∀t,x ∈ D

0D
α(ω)
t u(t,x;ω) −

d∑
j=1

k j

[
aj
D
β j (ω)
x j + x j

D
β j (ω)
bj

]
u(t,x;ω)

= h(t,x) + f (t; Q1(ω),Q2(ω), · · · ,QM (ω)) (7.11)

holds P-a.s. for ω ∈ Ω, subject to the homogeneous initial and boundary conditions.
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7.2.3 Input Parametrization

Let Z : Ω→ RN be the set of N = 1 + d + M independent random parameters, given as

Z =
{

Zi

}N
i=1

=
{
α(ω), β1(ω), β2(ω), · · · , βd(ω),Q1(ω),Q2(ω), · · · ,QM (ω)

}
with probability density functions ρi : Γi → R, i = 1,2, · · · ,N , where their images Γi ≡ Zi(Ω) are

bounded intervals in R. The joint probability density function (PDF)

ρ(ξ) =
N∏

i=1
ρi(Zi), ∀ξ ∈ Γ (7.12)

with the support Γ =
∏N

i=1 Γi ⊂ R
N constitutes a mapping of the sample space Ω onto the target

space Γ. Therefore, a random vector ξ = (ξ1, ξ2, . . . , ξN ) ∈ Γ denote an arbitrary point in the

parametric space.

According to theDoob-Dynkin lemma [132], the solution u(t,x;ω) can be expressed as u(t,x; ξ),

which provides a very useful tool to work in the target space rather than the abstract sample space.

Thus, the formulation of SFPDE Eqn. (7.1) can be posed as: Find u(t,x; ξ) : D× Γ→ R such that

∀t,x ∈ D

0D
α(ξ)
t u(t,x; ξ) −

d∑
j=1

k j

[
aj
D
β j (ξ)
x j + x j

D
β j (ξ)
bj

]
u(t,x; ξ)

= h(t,x) + f (t; ξ) (7.13)

holds ρ-a.s. for ξ(ω) ∈ Γ and ∀t,x ∈ D, subject to proper initial and boundary conditions.

7.2.4 Stochastic Sampling

We expound the two sampling methods, MCS and PCM to sample from random space and, then

propagate the associated uncertainties by computing the statistics of stochastic solutions via post

processing.

Monte Carlo Sampling: MCS. The general procedure in statistical Monte Carlo sampling is

the three following steps.
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1. Generating a set of randomvariables ξ i, i = 1,2, · · · ,K for a prescribed number of realizations

K .

2. Solving the deterministic problem Eqn. (7.13) and obtaining the solution ui = u(t,x; ξ i) for

each i = 1,2, · · · ,K .

3. Computing the solution statistics, e.g. E[u] = 1
M

∑M
i=1 ui.

We note that step 1 and 3 are pre- and post- processing steps, respectively. Step 2 requires repetitive

simulation of deterministic counterpart of the problem, which we obtain by developing a Petrov-

Galerkin spectral method in the physical domain. Although MCS is relatively easy to implement

once a deterministic forward solver is developed, it requires too many samplings for the solution

statistics to converge, and yet the extra numerical cost due to non-locality and memory effect in

fractional operators are still remained. In addition, the number of required sampling also grows

rapidly as the dimension of problem increases, resulting in an exhaustively long run time for the

statistics to converge.

Probability Collocation Method: PCM. We employ a high-order stochastic discretization

in the random space following [56, 175] in order to construct a probabilistic collocation method

(PCM), which yields a high convergence rate with much fewer number of sampling. The idea of

PCM is based on polynomial interpolation, however in the random space. Let ΘN =
{
ξi

}J
i=1 be

a set of prescribed sampling points. By employing the Lagrange interpolation polynomials Li, the

polynomial approximation I of the stochastic solution u in the random space can be expressed as:

û(t,x; ξ) = Iu(t,x; ξ) =
J∑

i=1
u(t,x; ξi)Li(ξ). (7.14)

Therefore, the collocation procedure of solving Eqn. (7.13) to obtain the stochastic solution u is:

R (û(t,x; ξ))
���
ξi
=

(
Lq(ξ) û(t,x; ξ)) − F(t,x; ξ)

) ���
ξi
= 0, (7.15)
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for i = 1,2, · · · ,J , whereLq is given in Eqn. (7.4). By using the property of Lagrange interpolants

that satisfy the Kronecker delta at the interpolation points, we obtain:

Lq(ξi) u(t,x; ξi)) = F(t,x; ξi), i = 1,2, · · · ,J , (7.16)

subject to proper initial/boundary conditions. Thus, the probabilistic collocation procedure is equiv-

alent to solving J deterministic problems Eqn. (7.16) with conditions Eqn. (7.2) and Eqn. (7.3).

Once the deterministic solutions are obtained at each sampling point, the numerical stochastic

solution is interpolated, using Eqn. (7.14) to construct a global approximate û(t,x; ξ). We then

obtain the solution statistics as

E[û] =
∫
Γ

û(t,x; ξ) ρ(ξ) dξ, σ[u] =
√
E[û2] − E[û]2. (7.17)

The above integrals can be computed efficiently by letting the interpolation/collocation points to

be the same as a set of cubature rules ΘN =
{
ξi

}J
i=1 on the parametric space with integration

weights {wi}
J

i=1, which are employed in computing the integral. By property of Kronecker delta

of Lagrange interpolant and use of any quadrature rule over the above integral yields

E[û(t,x : ξ)] ≈
J∑

i=1
wi u(t,x; ξi). (7.18)

Choice of Collocation/Interpolation Points. A natural choice of the sampling points is the

tensor-product of one-dimensional sets, which is efficients for low-dimensional random spaces.

However, in high-dimensional multivariate case, where N > 6, the tensor-product interpolation

operators are computationally expensive due to the increasing nested summation loops. In addition,

the total number of sampling points grows rapidly by increase of dimension by JN , where J is

the number of points in each direction.

Another choice that provides an alternative to the more costly full tensor product rule is the

isotropic Smolyak sparse grid operator A(w,N) [129, 151] with two input parameters dimension

size N and the level of grid w. The Smolyak algorithm significantly reduces the total number of

sampling points; see Fig. 7.1 for comparison of A(2,2), A(4,2), and A(6,2) with full tensor product

rule for a two-dimensional random spaces. The total number of sampling points for each case is
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Figure 7.1: Illustration of sampling nodal points in two-dimensional random space, using Smolyak
sparse grid generator (a) A(2,2), (b) A(4,2) ,(c) A(6,2); and (d) full tensor product rule with
50 points in each direction. The total number of points in each case is, 25, 161, 837, and 2500,
respectively.

Space dimensionality Full tensor product Smolyak sparse grid generator A(w,N)
N w = 2 w = 4 w = 6 w = 8 w = 10
2 102 25 161 837 4105 19469
5 105 131 3376 45458 440953 3542465
15 1015 1066 197176 15480304
25 1025 2901 1445975
55 1055 87780

Table 7.1: The total number of nodal points in random space sampling, using Smolyak sparse grid
generator and full tensor product with 10 points in each direction.

also listed in Tab.7.1. More research has also been devoted to the analysis and construction of

Smolyak sparse grids [24, 130, 131, 175].

7.3 Forward Deterministic Solver

For each realization of random variables in the employed sampling methods, the stochastic

model yields a deterministic FPDE, left to be solved in the physical domain. We recall that for

every ξ i, i = 1,2, · · · in SFPDE Eqn. (7.13), the deterministic problem is recast as:

0D
α
t u(t,x) −

d∑
j=1

k j

[
aj
D
β j
x j + x j

D
β j
b j

]
u(t,x) = h(t,x) + f (t), (7.19)

subject to the same initial/boundary conditions as Eqn. (7.2) and Eqn. (7.3). In the sequel, we

develop a Petrov-Galerkin spectral method to numerically solve the deterministic problem in the

physical domain. We also show the wellposedness of deterministic problem in a weak sense and
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further investigate the stability of proposed numerical scheme.

7.3.1 Mathematical Framework

We define the useful functional spaces and their associated norms [87, 99]. By Hσ(R) =
{
u(t)|u ∈

L2(R); (1 + |ω|2)
σ
2 F (u)(ω) ∈ L2(R)

}
, σ ≥ 0, we denote the fractional Sobolev space on R,

endowed with norm ‖u‖Hσ
R
= ‖(1 + |ω|2)

σ
2 F (u)(ω)‖L2(R), where F (u) represents the Fourier

transform of u. Subsequently, we denote by Hσ(Λ) =
{
u ∈ L2(Λ) | ∃ ũ ∈ Hσ(R) s.t. ũ|Λ = u

}
,

σ ≥ 0, the fractional Sobolev space on any finite closed interval, e.g. Λ = (a, b), with norm

‖u‖Hσ(Λ) = inf
ũ∈Hσ
R
, ũ|Λ=u

‖ũ‖Hσ(R). We define the following useful norms as:

‖ · ‖l Hσ(Λ) =
(
‖ aD

σ
x (·)‖

2
L2(Λ)

+ ‖ · ‖2
L2(Λ)

) 1
2 ,

‖ · ‖r Hσ(Λ) =
(
‖ xD

σ
b (·)‖

2
L2(Λ)

+ ‖ · ‖2
L2(Λ)

) 1
2 ,

‖ · ‖cHσ(Λ) =
(
‖ xD

σ
b (·)‖

2
L2(Λ)

+ ‖ aD
σ
x (·)‖

2
L2(Λ)

+ ‖ · ‖2
L2(Λ)

) 1
2 ,

where the equivalence of ‖ · ‖l Hσ(Λ) and ‖ · ‖r Hσ(Λ) are shown in [53, 99, 100].

Lemma 7.3.1. Letσ ≥ 0 andσ , n− 1
2 . Then, the norms ‖ · ‖l Hσ(Λ) and ‖ · ‖r Hσ(Λ) are equivalent

to ‖ · ‖cHσ(Λ).

We also define C∞0 (Λ) as the space of smooth functions with compact support in (a, b). We denote

by l Hσ
0 (Λ),

r Hσ
0 (Λ), and

cHσ
0 (Λ) as the closure of C∞0 (Λ) with respect to the norms ‖ · ‖l Hσ(Λ),

‖ · ‖r Hσ(Λ), and ‖ · ‖cHσ(Λ). It is shown in [53, 100] that these Sobolev spaces are equal and their

seminorms are also equivalent to | · |∗Hσ(Λ) =
�� (

aD
σ
x (·), xD

σ
b (·)

) ��12
Λ
. Therefore, we can prove that��(aDσ

x u, xD
σ
b v)

Λ

�� ≥ β |u|l Hσ(Λ) |v |r Hσ(Λ) and
��(xDσ

b u, aD
σ
x v)

Λ

�� ≥ β |u|r Hσ(Λ) |v |l Hσ(Λ), in

which β is a positive constant.

Moreover, by letting 0C∞(I) and C∞0 (I) be the space of smooth functions with compact support

in (0,T] and [0,T), respectively, we define l Hs(I) and r Hs(I) as the closure of 0C∞(I) and C∞0 (I)

with respect to the norms ‖ · ‖l Hs(I) and ‖ · ‖r Hs(I). Other equivalent useful semi-norms associated
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with Hs(I) are also introduced in [53, 99], as | · |l Hs(I) = ‖ 0D
s
t (·)‖L2(I), | · |r Hs(I) = ‖ tD

s
T (·)‖L2(I),

| · |∗Hs(I) =
�� (

0D
s
t (·), tD

s
T (·)

)
I

��12 , where | · |∗Hs(I) ≡ | · |
1
2
l Hs(I)

| · |

1
2
r Hs(I).

Borrowing definitions from [145], we define the following spaces, which we use later in

construction of corresponding solution and test spaces of our problem. Thus, by letting Λ1 =

(a1, b1), Λ j = (a j, b j) ×Λ j−1 for j = 2, · · · , d, we define X1 = H
β1
2

0 (Λ1), which is associated with

the norm ‖ · ‖
cH

β1
2 (Λ1)

, and accordingly, Xj, j = 2, · · · , d as

X2 = H
β2
2

0

(
(a2, b2); L2(Λ1)

)
∩ L2((a2, b2);X1), (7.20)

...

Xd = H
βd
2

0

(
(ad, bd); L2(Λd−1)

)
∩ L2((ad, bd);Xd−1), (7.21)

associated with norms

‖ · ‖Xj =

{
‖ · ‖2

H

β j
2

0

(
(aj ,bj );L2(Λ j−1)

) + ‖ · ‖2L2
(
(aj ,bj );Xj−1

) } 1
2
,

for j = 2,3, · · · , d.

Lemma 7.3.2. Let β j ≥ 0 and β j , n − 1
2 . Then, for j = 1,2, · · · , d

‖ · ‖Xj ≡{ j∑
i=1

(
‖ xi
D
βi/2
bi
(·)‖2

L2(Λ j )
+ ‖ ai

D
βi/2
xi (·)‖2

L2(Λ j )

)
+ ‖ · ‖2

L2(Λ j )

} 1
2
.

Solution and Test Spaces

We define the “solution space" U and “test space" V , respectively, as

U = l
0H

α
2
(
I; L2(Λd)

)
∩ L2(I;Xd),

V = r
0H

α
2
(
I; L2(Λd)

)
∩ L2(I;Xd), (7.22)
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endowed with norms

‖u‖U =
{
‖u‖2

l H
α
2 (I;L2(Λd ))

+ ‖u‖2
L2(I;Xd )

} 1
2 ,

‖v‖V =
{
‖v‖2

r H
α
2 (I;L2(Λd ))

+ ‖v‖2
L2(I;Xd )

} 1
2 , (7.23)

where I = [0,T], and

l
0H

α
2
(
I; L2(Λd)

)
={

u
�� ‖u(t, ·)‖L2(Λd )

∈ H
α
2 (I),u|t=0 = u|x=aj = u|x=bj = 0

}
,

r
0H

α
2
(
I; L2(Λd)

)
={

v
�� ‖v(t, ·)‖L2(Λd )

∈ H
α
2 (I), v |t=T = v |x=aj = v |x=bj = 0

}
,

equipped with norms ‖u‖
l H

α
2 (I;L2(Λd ))

and ‖u‖
r H

α
2 (I;L2(Λd ))

, respectively. We can show that

these norms take the following forms

‖u‖
l H

α
2 (I;L2(Λd ))

=




 ‖u(t, ·)‖L2(Λd )





l H

α
2 (I)

=
(
‖ 0D

α
2
t (u)‖

2
L2(Ω)

+ ‖u‖2
L2(Ω)

) 1
2 ,

‖u‖
r H

α
2 (I;L2(Λd ))

=




 ‖u(t, ·)‖L2(Λd )





r H

α
2 (I)

=
(
‖ tD

α
2
T (u)‖

2
L2(Ω)

+ ‖u‖2
L2(Ω)

) 1
2 . (7.24)

Also, using Lemma 7.3.2, we can show that

‖u‖L2(I;Xd )
=




 ‖u(t, .)‖Xd





L2(I)

(7.25)

=
{
‖u‖2

L2(Ω)
+

d∑
j=1

(
‖ x j
D

β j
2

bj
(u)‖2

L2(Ω)
+ ‖ aj

D

β j
2

x j (u)‖
2
L2(Ω)

)} 1
2 .
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Therefore, Eqn. (7.23) can be written as

‖u‖U =
{
‖u‖2

L2(Ω)
+ ‖ 0D

α
2
t (u)‖

2
L2(Ω)

+

d∑
j=1

(
‖ x j
D

β j
2

bj
(u)‖2

L2(Ω)
+ ‖ aj

D

β j
2

x j (u)‖
2
L2(Ω)

)} 1
2 , (7.26)

‖v‖V =
{
‖v‖2

L2(Ω)
+ ‖ tD

α
2
T (v)‖

2
L2(Ω)

+

d∑
j=1

(
‖ x j
D

β j
2

bj
(v)‖2

L2(Ω)
+ ‖ aj

D

β j
2

x j (v)‖
2
L2(Ω)

)} 1
2 . (7.27)

7.3.2 Weak Formulation

The following lemmas help us obtain the weak formulation of deterministic problem in the physical

domain and construct the numerical scheme.

Lemma 7.3.3. [99]: For all α ∈ (0,1), if u ∈ H1([0,T]) such that u(0) = 0, and v ∈ Hα/2([0,T]),

then (0D
α

t u, v)Ω = ( 0D
α/2

t u , tD
α/2

T v )Ω, where (·, ·)Ω represents the standard inner product in

Ω = [0,T].

Lemma 7.3.4. [87]: Let 1 < β < 2, a and b be arbitrary finite or infinite real numbers. Assume

u ∈ Hβ(a, b) such that u(a) = 0, also xD
β/2
b v is integrable in (a, b) such that v(b) = 0. Then,

(aD
β
x u , v) = (aD

β/2
x u , xD

β/2
b v).

Lemma 7.3.5. Let 1 < β j < 2 for j = 1,2, · · · , d, and u, v ∈ Xd . Then,

(
aj
D
β j
x j u, v

)
Λd
=

(
aj
D

β j
2

x j u, x j
D

β j
2

bj
v
)
Λd
,

(
x j
D
β j
b j

u, v
)
Λd
=

(
x j
D

β j
2

bj
u, aj
D

β j
2

x j v
)
Λd
.

For any realization of Eqn. (7.13), we obtain the weak system, i.e. the variational form of

the deterministic counterpart of the problem, subject to the given initial/boundary conditions, by

multiplying the equation with proper test functions and integrate over the whole computational
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domain D. Using Lemmas 7.3.3-7.3.5, the bilinear form can be written as

a(u, v) =(0D
α
2
t u, tD

α
2
T v)D (7.28)

−

d∑
j=1

k j

[
(aj
D

β j
2

x j u, x j
D

β j
2

bj
v)D + (x j

D

β j
2

bj
u, aj
D

β j
2

x j v)D

]
,

and thus, by letting U and V be the proper solution/test spaces, the problem reads as: find u ∈ U

such that

a(u, v) = (f, v)D, ∀v ∈ V, (7.29)

where f = h(t,x) + f (t).

7.3.3 Petrov-Galerkin Spectral Method

We define the following finite dimensional solution and test spaces. We employ Legendre polyno-

mials φmj (ξ), j = 1,2, · · · , d, and Jacobi poly-fractonomial of first kind ψτn (η) [183, 186], as the

spatial and temporal bases, respectively, given in their corresponding standard domain as

φmj
(ξ) = σmj

(
Pmj+1(ξ) − Pmj−1(ξ)

)
, (7.30)

ψτn (η) = σn
(1)P τ

n (η) = σn(1 + η)τP−τ,τn−1 (η), (7.31)

in which ξ ∈ [−1,1], m j = 1,2, · · · , σmj = 2+(−1)mj , η ∈ [−1,1], n = 1,2, · · · , andσn = 2+(−1)n.

Therefore, by performing affine mappings η = 2 t
T − 1 and ξ = 2

x−aj
b j−aj

− 1 from the computational

domain to the standard domain, we construct the solution space UN as

UN = span
{ (
ψ τ

n ◦ η
)
(t)

d∏
j=1

(
φmj
◦ ξ

)
(x j) (7.32)

: n = 1,2, · · · ,N, m j = 1,2, · · · ,M j

}
.

We note that the choice of temporal and spatial basis functions naturally satisfy the initial and

boundary conditions, respectively. The parameter τ in the temporal basis functions plays a role of

fine tunning parameter, which can be chosen properly to capture the singularity of exact solution.
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Moreover, we employLegendre polynomialsΦr j (ξ), j = 1,2, · · · , d, and Jacobi poly-fractonomial

of second kind Ψτk (η), as the spatial and temporal test functions, respectively, given in their corre-

sponding standard domain as

Φr j (ξ) = σ̃r j
(
Pr j+1(ξ) − Pr j−1(ξ)

)
, (7.33)

Ψ
τ
k (η) = σ̃k

(2)P τ
k (η) = σ̃k (1 − η)τ Pτ,−τk−1 (η), (7.34)

where ξ ∈ [−1,1], r j = 1,2, · · · , σ̃r j = 2 (−1)r j +1, η ∈ [−1,1], k = 1,2, · · · , and σ̃k = 2 (−1)k +1.

Therefore, by similar affine mapping we construct the test space VN as

VN = span
{ (
Ψ
τ
k ◦ η

)
(t)

d∏
j=1

(
Φr j
◦ ξ j

)
(x j) (7.35)

: k = 1,2, · · · ,N, r j = 1,2, · · · ,M j

}
.

Thus, since UN ⊂ U and VN ⊂ V , the problems Eqn. (7.29) read as: find uN ∈ UN such that

ah(uN, vN ) = l(vN ), ∀vN ∈ VN, (7.36)

where l(vN ) = (f, vN ). The discrete bilinear form ah(uN, vN ) can be written as

ah(uN, vN ) = (0D
α
2
t uN, tD

α
2
T vN )D (7.37)

−

d∑
j=1

k j

[
(aj
D

β j
2

x j uN, x j
D

β j
2

bj
vN )D + (x j

D

β j
2

bj
uN, aj

D

β j
2

x j vN )D

]
.

We expand the approximate solution uN ∈ UN , satisfying the discrete bilinear form Eqn. (7.37), in

the following form

uN (t,x) = (7.38)

N∑
n=1

M1∑
m1=1

· · ·

Md∑
md=1

ûn,m1,··· ,md

[(
ψ τ

n ◦ η
)
(t)

d∏
j=1

(
φmj
◦ ξ

)
(x j)

]
,
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and obtain the corresponding Lyapunov system by substituting Eqn. (7.38) into Eqn. (7.37) by

choosing

vN (t,x) =(
Ψ
τ
k ◦ η

)
(t)

d∏
j=1

(
Φr j
◦ ξ j

)
(x j), k = 1,2, . . . ,N, r j = 1,2, . . . ,M j .

Therefore, [
ST ⊗ M1 ⊗ M2 · · · ⊗ Md (7.39)

+

d∑
j=1

MT ⊗ M1 ⊗ · · · ⊗ Mj−1 ⊗ Sj ⊗ Mj+1 · · · ⊗ Md

]
U = F,

in which ⊗ represents the Kronecker product, F denotes the multi-dimensional load matrix whose

entries are given as

Fk,r1,··· ,rd =

∫
D
f(t,x)

(
Ψ
τ
k ◦ η

)
(t)

d∏
j=1

(
Φr j
◦ ξ j

)
(x j) dD, (7.40)

andU is the matrix of unknown coefficients. The matrices ST and MT denote the temporal stiffness

and mass matrices, respectively; and the matrices Sj and Mj denote the spatial stiffness and mass

matrices, respectively. We obtain the entries of spatial mass matrix Mj analytically and employ

proper quadrature rules to accurately compute the entries of other matrices ST , MT and Sj .

We note that the choices of basis/test functions, employed in developing the PG scheme leads to

symmetric mass and stiffness matrices, providing useful properties to further develop a fast solver.

The following Theorem 7.3.6 provides a unified fast solver, developed in terms of the generalized

eigensolutions in order to obtain a closed-form solution to the Lyapunov system Eqn. (7.39).

Theorem 7.3.6 (Unified Fast FPDE Solver [145]). Let {®emj , λmj
}
M j
mj=1 be the set of general eigen-

solutions of the spatial stiffness matrix Sj with respect to the mass matrix M j . Moreover, let

{®e τ
n , λ

τ
n }
N
n=1 be the set of general eigen-solutions of the temporal mass matrix MT with respect to

the stiffness matrix ST . Then, the matrix of unknown coefficientsU is explicitly obtained as

U =

N∑
n=1

M1∑
m1=1

· · ·

Md∑
md=1

κn,m1,··· ,md ®e
τ

n ⊗ ®em1 ⊗ · · · ⊗ ®emd
, (7.41)
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where κn,m1,··· ,md is given by

κn,m1,··· ,md =
( ®e τ

n ®em1 · · · ®emd
)F[

(®e τT
n ST ®e τ

n )
∏d

j=1(®e
T
mj M j ®emj )

]
Λn,m1,··· ,md

, (7.42)

in which the numerator represents the standard multi-dimensional inner product, and Λn,m1,··· ,md

is obtained in terms of the eigenvalues of all mass matrices as

Λn,m1,··· ,md =
[
1 + λτn

∑d
j=1(λmj

)

]
.

7.3.4 Stability Analysis

We show the well-posedness of deterministic problem and prove the stability of proposed PG

scheme.

Lemma 7.3.7. Let α ∈ (0,1), Ω = I × Λd , and u ∈ l
0Hα/2(I; L2(Λd)). Then,�� (

0D
α/2
t u, tD

α/2
T v

)
Ω

��
≡ ‖u‖l Hα/2(I;L2(Λd ))

‖v‖r Hα/2(I;L2(Λd ))
, ∀v ∈ r

0Hα/2(I; L2(Λd)).

Moreover,

|
(

ad
D
βd/2
xd

u, xd
D
βd/2
bd

v
)
Λd
| (7.43)

≡ |u|
cHβd/2

(
(ad,bd );L2(Λd−1)

) |v |
cHβd/2

(
(ad,bd );L2(Λd−1)

) ,
and

|
(

xd
D
βd/2
bd

u, ad
D
βd/2
xd

v
)
Λd
| (7.44)

≡ |u|
cHβd/2

(
(ad,bd );L2(Λd−1)

) |v |
cHβd/2

(
(ad,bd );L2(Λd−1)

) .
Lemma 7.3.8 (Continuity). The bilinear form Eqn. (7.28) is continuous, i.e.,

∀u ∈ U, ∃ β > 0, s.t. |a(u, v)| ≤ β ‖u‖U ‖v‖V , ∀v ∈ V . (7.45)

Proof. The proof directly concludes from Eqn. (7.43) and Lemma 7.3.7.
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Theorem 7.3.9 (Stability). The following inf-sup condition holds for the bilinear form Eqn. (7.28),

i.e.,

inf
u,0∈U

sup
v,0∈V

|a(u, v)|
‖v‖V ‖u‖U

≥ β > 0, (7.46)

where Ω = I × Λd and sup
u∈U
|a(u, v)| > 0.

Theorem 7.3.10 (well-posedness). For all 0 < α < 1, α , 1, and 1 < β j < 2, and j = 1, · · · , d,

there exists a unique solution to Eqn. (7.29), continuously dependent on f , where f belongs to the

dual space of U.

Proof. Lemmas 7.3.8 (continuity) and 7.3.9 (stability) yield the well-posedness of weak form

Eqn. (7.29) in (1+d)-dimension due to the generalized Babuška-Lax-Milgram theorem.

Since the defined basis and test spaces are Hilbert spaces, and UN ⊂ U and VN ⊂ V , we can

prove that the developed Petrov-Gelerkin spectral method is stable and the following condition

holds

inf
uN,0∈UN

sup
v,0∈VN

|a(uN, vN )|

‖vN ‖V ‖uN ‖U
≥ β > 0, (7.47)

with β > 0 and independent of N , where sup
uN∈UN

|a(uN, vN )| > 0.

7.4 Numerical Results

We investigate the performance of developed numerical methods by considering couple of

numerical simulations. We compare MCS and PCM in random space discretization while using

PG method in physical domain. We note that by several numerical examples, we make sure that

the developed PG method is stable and accurate in solving each deterministic problem; the results

are not provided here.

7.4.1 Low-Dimensional Random Inputs

As the first case, we consider a stochastic fractional initial value problem (IVP) with random

fractional index by letting the diffusion coefficient to be zero, and also ignoring the additional
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Figure 7.2: L2-norm convergence rate of MCM and PCM for stochastic fractional IVP Eqn. (7.48).

random input and only taking h(t) as the external forcing term. Therefore, we obtain

0D
α(ξ)
t u(t; ξ) = h(t), (7.48)

subject to zero initial condition, where u(t, ξ) : (0,T] × Λ → R. We let uext(t) = α
2 t3+α2 ,

h(t) = 0D
α(ξ)
t uext(t) for each realization of α. In this case, by choosing the tunning parameter τ

in the temporal basis function to be α
2 , we can efficiently employ PG numerical scheme and also

obtain the exact expectation by rendering the exact solution to be random with similar distribution

as the random fractional index. Fig. 7.2 shows the L2-norm convergence rate of MCS and PCM in

comparison of solution expectation with Eext[u] = E[uext]. The results confirms converges rate of

0.5 for MCS, while in PCM, the statistics of solution converges accurately very fast, using only few

numbers of realizations. In this example, by ignoring the additional random input to the system,

we take the advantage of having the exact random solution to be available.

As another example, we also consider Eqn. (7.48) with additional random input, expanded by

KL expansion with M = 4, as:

0D
α(ξ)
t u(t; ξ) = h(t) +

M∑
k=1

ak sin
(
2kπ t

T

)
ξk, (7.49)

with two cases h(t) = t2 and h(t) = sin(πt). Fig. 7.3 shows the mean value and variance of solution

for 104 sampling of MCS compared to 625 realizations in PCM.

Moreover, we consider (1+1)-D one-sided SFPDE given in Eqn. (7.13), where d = 1 and the

diffusion coefficient is kl . We ignore the additional random input and consider h(t, x) as the only
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Figure 7.3: Expectation of solution to Eqn. (7.49) with uncertainty (standard deviation) bounds,
employing MCS and PCM for (left) h(t) = t2 and (right) h(t) = sin(πt).

0.02 x
0.5

Monte Carlo

PCM

5 10 100 1000

10
-7

10
-5

10
-3

# Realization



M
C
[u
]
-


e
x
t
[u
]
 L
2

Figure 7.4: L2-norm convergence rate of MCM and PCM for SFPDE Eqn. (7.50).

external forcing term. Therefore, we obtain

0D
α(ξ1)
t u(t, x; ξ) − kl −1D

β(ξ2)
x u(t, x; ξ) = h(t, x), (7.50)

subject to zero initial/boundary conditions, where u(t, x; ξ) : (0,T] × (−1,1) ×Λ→ R, and the only

randomvariables are the fractional indicesα and β. We letuext(t, x) = t3+τ
(
(1 + x)3+µ − 1

2 (1 + x)4+µ
)
,

and choose τ = α/2 and µ = β/2. For each realization of α and β, we obtain the force function

h(t, x) by substituting the corresponding uext to Eqn. (7.50). Defining Eext[u] = E[uext], Fig. 7.4

shows the L2-norm convergence of solution expectation as compared to the exact expectation. We

observe that PCM converges accurately with only few number of realizations.

Considering additional random input, expanded by KL expansion with M = 4, the problem can
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Figure 7.5: Expectation of solution to Eqn. (7.51), employingMCS and PCMat t = 0.125, 0.625, 1.

be recast as

0D
α(ξ)
t u(t, x; ξ) − kl −1D

β(ξ)
x u(t, x; ξ) (7.51)

= h(t, x) +
M∑

k=1
ak sin

(
2kπ t

T

)
ξk

subject to zero initial/boundary conditions. Fig. 7.5 shows the mean value and variance of solution

for MCS and PCM at different times.

Remark 7.4.1. We note that generally use of the sparse grid operators in obtaining solution

statistics is more effective when dimension of the random space is higher than 6. Thus, in the

numerical examples for low-dimensional random inputs, we employ the easy-to-implement tensor

product nodal sets.

7.4.2 Moderate- to High-Dimensional Random Inputs

We render the problemwith higher number of terms inKL expansion of random inputs in Eqn. (7.51)

by choosing M = 10 and M = 20. This yields the dimension of random spaceN = 12 andN = 22,

respectively. As mentioned in Remark 7.4.1, in the case of high-dimensional random space

constructing grid based on tensor product rule results in very expensive computation of solution

statistics due to exhaustive increase of forward solver instruction. Table 7.1 shows the comparison

between different level of Smolyak algorithm and tensor product rule. Therefore, to obtain the
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solution statistics, we employ the Smolyak sparse grid generator in the developed PCM. For each

cases of KL expansion, we generate the sparse grid on two levels w = 1 and w = 2, i.e. A(1,12),

A(2,12), A(1,22), and A(2,22), where we let the higher resolution case be a benchmark value to

the solution statistics, based on which we compute and normalize the error. We observe that for

both cases N = 12 and N = 22, the normalized error in computing the expectation and standard

deviation of solution are of orders O(10−7) and O(10−3), respectively.
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CHAPTER 8

NONLINEAR VIBRATION OF FRACTIONAL VISCOELASTIC CANTILEVER BEAM:
APPLICATION TO STRUCTURAL HEALTHMONITORING

8.1 Background

We investigate the nonlinear vibration of a viscoelastic cantilever beam with fractional constitu-

tive relation, subject to base excitation. We consider the general form of distributed-order fractional

differential equation and use extended Hamilton’s principle to derive the governing equations of

motion for fractional Kelvin-Voigt viscoelastic model, which is then solved via a spectral decompo-

sition in space. By direct numerical integration of resulting temporal fractional ODE, we observe

an anomalous power-law decay rate of amplitude in the linearized model. The nonlinear equation

is solved by perturbation analysis, where we replace the expensive numerical time integration with

a cubic algebraic equation to solve for frequency response of the system. We report the super

sensitivity of response amplitude to the fractional element parameters at free vibration, and bifur-

cation in steady-state amplitude at primary resonance. We further use the observed vibration-based

features of system response for different values of fractional derivative order to develop a parameter

estimation framework, which can be used to assess the heath of considered beam by assuming a

threshold in the model parameters.

8.2 Mathematical Formulation

We formulate the mathematical model of the considered physical system. We discuss the

main assumptions and theorems, used to derive the equation of motion. We employ spectral

decomposition to discretize the problem and further use the perturbation method to solve the

resulting nonlinear equations.
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8.2.1 Nonlinear In-Plane Vibration of a Visco-Elastic Cantilever Beam

We consider the nonlinear response of a slender isotropic visco-elastic cantilever beamwith lumped

mass M at the tip, subject to harmonic transverse base excitation, Vb. We use the nonlinear Euler-

Bernoulli beam theory to obtain the governing equations, where the geometric nonlinearities in a

cantilever beam with symmetric cross section is included in the equations of motion. We assume

that the beam is idealized as an inextensional one, i.e., stretching of the neutral axis is insignificant,

and the effects of warping and shear deformation are ignored. We also assume that the considered

slender beamwith symmetrical cross section undergoes purely planar flexural vibration. Therefore,

we consider the in-plane transverse vibration of the beam and reduce the problem to 1-dimension.

Fig. 8.1 shows the lateral deformation of the cantilever beam with cross section area A and mass

per unit length m, where the axial displacement along length of beam and the lateral displacement

are denoted by u(s, t) and v(s, t), respectively. As the beam deforms, we let the inertial coordinate

system (x, y, z) rotates about the z axis by the rotation angle ψ(s, t) to the coordinate system (ξ, η, ζ),

where 
eξ

eη

eζ


=

©­­­­­«
cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

ª®®®®®¬

ex

ey

ez


,

and ei is the unit vector of i coordinate. Thus, angular velocity and curvature of the beam at any

point along the length of the beam s and any time t can be written as

ω(s, t) = Ûψez, ρ(s, t) = ψ′ez, (8.1)

where over dot and prime denote the derivative with respect to time and space, respectively.

The total displacement and velocity of an arbitrary point along the y axis takes the form:

r = (u − η sin(ψ)) ex + (v + Vb + η cos(ψ)) ey, (8.2)

Ûr = ( Ûu − η Ûψ cos(ψ)) ex + (Ûv + ÛVb − η Ûψ sin(ψ)) ey . (8.3)

We also let an arbitrary element CD of the beam’s neutral axis, which is of length ds and located

at a distance s from the origin O, move to the element C∗D∗, see Fig. 8.3. The displacement
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Figure 8.1: In-plane lateral deformation of a slender isotropic cantilever beam. u(s, t) and v(s, t)
are the axial and lateral displacements, and ψ(s, t) is the rotation angle about z axis.
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Figure 8.2: Detailed in-plane lateral deformation of a slender isotropic cantilever beam. The figure
shows total deformation of an arbitrary point (the red point) as the beam undergoes deformation.
This deformation is comprised of the axial displacement of the beam u, the lateral displacement of
beam in addition to the base motion v + Vb, and the displacement due to rotation ψ.

components of points C and D are denoted by (u, v) and (u + du, v + dv), respectively. The strain

e(s, t) at the arbitrary point C is then given by

e =
ds∗ − ds

ds
=

√
(ds + du)2 + dv2 − ds

ds
=

√
(1 + u′)2 + v′2 − 1. (8.4)

The inextensionality constraint, i.e. e = 0, becomes

1 + u′ = (1 − v′2)1/2. (8.5)
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Figure 8.3: Deformation of an arbitrary element of the beam. CD extends, traverses, and rotates to
C∗D∗.

Moreover, based on the assumption of no transverse shear deformation and using (8.5), we have

ψ = tan−1 v′

1 + u′
= tan−1 v′

(1 − v′2)1/2
. (8.6)

Using the expansion tan−1(x) = x − 1
3 x3 + · · · , the curvature can be approximated up to cubic term

as

ψ = v′(1 − v′2)−1/2 −
1
3
v′3(1 − v′2)−3/2 + · · · (8.7)

' v′(1 +
1
2
v′2) −

1
3
v′3 ' v′ +

1
6
v′3

Therefore, the angular velocity and curvature of the beam, i.e. Ûψ and ψ′, respectively, can be

approximated as:

Ûψ ' Ûv′ +
1
2
Ûv′v′2 ' Ûv′(1 +

1
2
v′2), (8.8)

ψ′ ' v′′ +
1
2
v′′v′2 ' v′′(1 +

1
2
v′2). (8.9)

By the Euler-Bernoulli beam assumptions a slender, no-transverse-shear with no strains in the plane

of cross sectional plane, the strain-curvature relation takes the form

ε(s, t) = −η ψ′(s, t) (8.10)

8.2.2 Viscoelasticity: Boltzmann Superposition Principle

Many experimental observations in the literature show viscoelastic behavior of material in different

environmental/boundary conditions, meaning that they do not behave purely elastic and there exists
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some internal dissipation mechanism. In such cases, the resulting stress has a memory depending

on the velocity of all earlier deformations, which can be described by the Boltzmann superposition

principle. When the specimen is under loading, the material instantaneously reacts elastically

and then, immediately starts to relax, where dissipation takes place. Thus, as a step increase in

elongation (from the stretch λ = 1 to some λ) is imposed, the developed stress in the material will

be a function of time and the stretch:

K(λ, t) = G(t)σ(e)(λ), (8.11)

where G(t) is the reduced relaxation function and σ(e) is the elastic response (in absence of

any viscosity). σ(e) can also be interpreted as tensile stress response in a sufficiently high rate

loading experiment. The Boltzmann superposition principle states that the stresses from different

small deformations are additive, meaning that the total tensile stress of the specimen at time t is

obtained from the superposition of infinitesimal changes in stretch at some prior time τj , given as

G(t − τj)
∂σ(e)[λ(τj )]

∂λ δλ(τj). Therefore,

σ(t) =
∑
τj<t

G(t − τj)
∂σ(e)[λ(τj)]

∂λ

δλ(τj)

δτj
δτj, (8.12)

where in the limiting case δτj → 0 gives the integral form of the equation as

σ(t) =
∫ t

−∞
G(t − τ)

∂σ(e)[λ(τ)]

∂λ

∂λ

∂τ
dτ =

∫ t

−∞
G(t − τ) Ûσ(e) dτ. (8.13)

Exponential Relaxation, Classical Models: The relaxation function G(t) is traditionally analyzed

into the summation of exponential functions with different exponents and constants as

G(t) =
∑

Cie−t/τi∑
Ci

. (8.14)

For the simple case of a single exponential term (Maxwell model), we have G(t) = e−t/τ. Thus, in

the case of zero initial strain we have

σ(t) =
∫ t

0
e−(t−t̃)/τ E Ûε dt̃, (8.15)
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Figure 8.4: Classical visco-elastic models as a combination of spring (purely elastic) and dash-pot
(purely viscous) elements. Kelvin-Voigt (top) and Maxwell (bottom) rheological models.

which solves the integer-order differential equation Ûε = 1
E Ûσ+

1
ησ, where the relaxation time constant

τ = η/E , is obtained from experimental observations. The Maxwell model is in fact a combination

of purely elastic and viscous elements in series, see Fig. 8.4. Other different combinations of

purely elastic and viscous elements in series and parallel give rise to various rheological models

with distinctive properties, each of which can be used to model different types of material. The

key issue is that they require complicated combinations of elastic and viscous elements in order to

model the complex hereditary behavior of material, yet they cannot fully capture it as the building

blocks do not reflect any memory dependence in the material response. Moreover, they introduce

a relatively large number of model parameters, which adverse the condition of ill-posed inverse

problem of model fitting.

Power-Law Relaxation, Fractional Models: The mechanical stress appeared at the deformation

of viscoelastic materials decreases as power-law functions in time, suggesting that relaxation of

stress obeys a power law behavior and the relaxation time can not be described with single time

scale anymore [116]. Therefore, by letting the kernel in (8.13) have a power-law form, the tensile

stress takes the form of

σ(t) =
∫ t

−∞

g(α)

( t − τ )α
E Ûε dτ = E g(α)

∫ t

−∞

Ûε

( t − τ )α
dτ, (8.16)

where the elastic response σ(e) = Eε. If we choose g(α) = 1
Γ(1−α) , then the integro-differential

operator (8.16) gives the Liouville-Weyl fractional derivative. Under the hypothesis of causal

histories, stating that the viscoelastic body is quiescent for all time prior to some starting point

190



t = 0, the equation (8.16) can be written as

σ(t) = ε(0+)
E g(α)

tα
+ E g(α)

∫ t

0

Ûε

( t − τ )α
dτ, (8.17)

= ε(0+)
E g(α)

tα
+ E C

0D
α
t ε,

= RL
0D

α
t ε,

where C
0D

α
t and RL

0D
α
t are the Caputo and Riemann-Liouville fractional derivatives. The consti-

tutive equation (8.17) introduces the Scott Blair element [115, 116, 138, 160], which can be though

of as an interpolation between a pure elastic (spring) and a pure viscous (dash pot) elements.

In a more general sense, where the material contain a spectrum of power-law relaxation, the

single order fractional constitutive model can be extended to the distributed-order one. Thus, we

let the relaxation function G(t) in (8.13) not be only a single order power-law as in (8.16), but rather

be distributed over a range. This leads to a distributed form of constitutive equations expressed as∫ βmax

βmin
Φ(β) 0D

β
t σ(t) dβ =

∫ αmax

αmin
Ψ(α) 0D

α
t ε(t) dα, (8.18)

where Φ(β) and Ψ(α) are distribution functions that can confine the theoretical terminals βmin,

βmax , αmin, and αmax according to the physical realization of problem. By choosing different

distribution functionsΦ(β) and Ψ(α), one can design distinctive rheological models to get different

types of behavior. We note that if we let the distribution functions be delta functions, the distributed

order model becomes the following multi-term model:(
1 +

pσ∑
k=1

ak 0D
βk
t

)
σ(t) =

(
c +

pε∑
k=1

bk 0D
αk
t

)
ε(t). (8.19)

Here, we let Φ(β) = δ(β) and Ψ(α) = E∞δ(α) + Eαδ(α − α0), and thus, recover the fractional

Kelvin-Voigt model as

σ(t) = E∞ ε(t) + Eα RL
0D

α
t ε(t), (8.20)

where α ∈ (0,1). Since we only have one single derivative order α, we drop the subscript zero for

the sake of simplification.
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8.2.3 Extended Hamilton’s Principle

We derive the equations of motion by employing the extended Hamilton’s principle∫ t2

t1
(δT − δW) dt = 0,

where δT and δW are the variations of kinetic energy and total work [119]. The only source of

external input to the our system of interest is the base excitation, which superposes base velocity to

the beam velocity, and thus contributes to the kinetic energy. Hence, the total work only includes

the internal work done by the induced stresses and its variation can be expressed in the general

form as [32]

δW =
∫
V
σ δε dv, (8.21)

where the integral is taken over the whole system volume V. The volumetric stress σ includes

both the conservative part, σc, due to elastic and the non-conservative part, σnc, due to viscous

deformation, where the former constitutes the potential energy of the system. There has been

some attempts in the literature to separate the conservative and non-conservative parts of fractional

constitutive equations to define the free energy of the system [105]. We note that as this separation

is not trivial for sophisticated fractional constitutive equations, and as we do not deal with free

energy of our system, we would rather leave the total work not separated and thus do not compute

the potential energy and work done by non-conservative forces separately. In the considered

cantilever beam with symmetric constant cross sections, we recast the integral (8.21) as δW =∫ L
0

∫
A σ δε dA ds. We obtain the variation of strain as δε = −η δψ′, using (8.10). Therefore, by

assuming the constitutive equation (8.20), the variation of total work is expressed as

δw =

∫ L

0

∫
A

(
−η E∞ ψ′ − η Eα RL

0D
α
t ψ
′
)
(−η δψ′) dA ds (8.22)

=

∫ L

0

(
E∞

(∫
A
η2dA

)
ψ′ + Eα

(∫
A
η2dA

)
RL

0D
α
t ψ
′

)
δψ′ ds

=

∫ L

0

(
E∞ I ψ′ + Eα I RL

0D
α
t ψ
′
)
δψ′ ds
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where I =
∫

A η
2 dA. By approximation (8.9), we write the variation of curvature as

δψ′ = (1 +
1
2
v′2) δv′′ + v′′ v′ δv′. (8.23)

Therefore, the variation of total energy becomes

δw =

∫ L

0

(
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2) δv′′ ds (8.24)

+

∫ L

0

(
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
v′′ v′ δv′ ds

By expanding the terms and integrating by parts, we have

δw =

∫ L

0

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2)

)′′
δv ds (8.25)

−

∫ L

0

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
v′′ v′

)′
δv ds

+

(
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2) δv′

�����L
0

−

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2)

)′
δv

�����L
0

+

(
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
v′′ v′ δv

�����L
0

The prescribed geometry boundary conditions at the base of the beam, s = 0, allow the variation

of deflection and its first derivative to be zero at s = 0, i.e. δv(0, t) = δv′(0, t) = 0. Therefore,

δw =

∫ L

0

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2)

)′′
δv ds (8.26)

−

∫ L

0

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
v′′ v′

)′
δv ds

+

(
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2)

�����
s=L

δv′(L, t)

−

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2)

)′ �����
s=L

δv(L, t)

+

(
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
v′′ v′

�����
s=L

δv(L, t)
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Let % be mass per unit volume of the beam, M and J be the mass and rotatory inertia of the lumped

mass at the tip of beam. By considering the displacement and velocity of the beam given in (8.2)

and (8.3), respectively, the kinetic energy is obtained as

T =
1
2

∫ L

0

∫
A
% Ûr2 dA ds +

1
2

M
(
Ûu2 + (Ûv + ÛVb)

2
) ���

s=L
+

1
2

J Ûψ2
���
s=L

, (8.27)

=
1
2

∫ L

0

∫
A
%
{
( Ûu − η Ûψ cos(ψ))2 + (Ûv + ÛVb − η Ûψ sin(ψ))2

}
dA ds

+
1
2

M
(
Ûu2 + (Ûv + ÛVb)

2
) ���

s=L
+

1
2

J Ûψ2
���
s=L

,

=
1
2

∫ L

0

∫
A
%
{
Ûu2 − 2η Ûu Ûψ cos(ψ) + η2 Ûψ2 cos2(ψ) + Ûv2 + ÛV2

b + 2Ûv ÛVb

− 2η (Ûv2 + ÛVb) Ûψ sin(ψ) + η2 Ûψ2 sin2(ψ)
}

dA ds

+
1
2

M
(
Ûu2 + (Ûv + ÛVb)

2
) ���

s=L
+

1
2

J Ûψ2
���
s=L

,

=
1
2

∫ L

0

∫
A
%
{
Ûu2 + Ûv2 + ÛV2

b + 2Ûv ÛVb − 2η Ûu Ûψ cos(ψ) + η2 Ûψ2

− 2η (Ûv2 + ÛVb) Ûψ sin(ψ)
}

dA ds +
1
2

M
(
Ûu2 + (Ûv + ÛVb)

2
) ���

s=L
+

1
2

J Ûψ2
���
s=L

.

Let

ρ =

∫
A
%dA, J1 =

∫
A
% η dA, J2 =

∫
A
% η2dA.

ρ is the mass per unit length of the beam, J1 is the first moment of inertia and is zero because the

reference point of coordinate system attached to the cross section coincides with the mass centroid,

and J2 is the second moment of inertia, which is very small for slender beam and can be ignored

[66]. Assuming that the velocity along the length of the beam, Ûu, is relatively small compared to

the lateral velocity Ûv + ÛVb, the kinetic energy of the beam can be reduced to

T =
1
2
ρ

∫ L

0
(Ûv + ÛVb)

2 ds +
1
2

M(Ûv + ÛVb)
2
���
s=L
+

1
2

J Ûψ2
���
s=L

, (8.28)

where its variation can be taken as

δT = ρ
∫ L

0
(Ûv + ÛVb) δ Ûv ds + M(Ûv + ÛVb) δ Ûv

���
s=L
+ J Ûψ δ Ûψ

���
s=L

, (8.29)
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in which Ûψ is given in (8.8) and δ Ûψ can be obtained as δ Ûψ ' (1 + 1
2v
′2)δ Ûv′ + v′ Ûv′δv′. Therefore,

δT = ρ
∫ L

0
(Ûv + ÛVb) δ Ûv ds + M(Ûv + ÛVb) δ Ûv

���
s=L
+ J

(
Ûv′(1 + v′2)δ Ûv′ + v′ Ûv′

2
δv′

) ���
s=L

. (8.30)

The time integration of δT takes the following form through integration by parts∫ t2

t1
δT dt (8.31)

=

∫ t2

t1

{
ρ

∫ L

0
(Ûv + ÛVb) δ Ûv ds + M(Ûv + ÛVb) δ Ûv

���
s=L

+ J
(
Ûv′(1 + v′2)δ Ûv′ + v′ Ûv′

2
δv′

) ���
s=L

}
dt

=

∫ t2

t1
ρ

∫ L

0
(Ûv + ÛVb) δ Ûv ds dt + M

∫ t2

t1
(Ûv + ÛVb) δ Ûv

���
s=L

dt

+ J
∫ t2

t1

(
Ûv′(1 + v′2)δ Ûv′ + v′ Ûv′

2
δv′

) ���
s=L

dt

=ρ

∫ L

0

∫ t2

t1
(Ûv + ÛVb) δ Ûv dt ds + M

∫ t2

t1
(Ûv + ÛVb) δ Ûv dt

���
s=L

+ J
∫ t2

t1

(
Ûv′(1 + v′2)δ Ûv′ + v′ Ûv′

2
δv′

)
dt

���
s=L

=ρ

∫ L

0

[
(Ûv + ÛVb) δv

���t2
t1
−

∫ t2

t1
(Üv + ÜVb) δv dt

]
ds

+ M(Ûv + ÛVb) δv
���
s=L

���t2
t1
− M

∫ t2

t1
(Üv + ÜVb) δv dt

���
s=L

+ J Ûv′(1 + v′2)δv′
���
s=L

���t2
t1
− J

∫ t2

t1

(
Üv′(1 + v′2) + v′ Ûv′2

)
δv′ dt

���
s=L

= −

∫ t2

t1

{
ρ

∫ L

0
(Üv + ÜVb) δv ds + M(Üv + ÜVb) δv

���
s=L

+ J
(
Üv′(1 + v′2) + v′ Ûv′2

)
δv′

���
s=L

}
dt,
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where we consider that δv = δv′ = 0 at t = t1 and t = t2. Therefore, the extended Hamilton’s

principle takes the form∫ t2

t1

{
(8.32)∫ L

0

[
− ρ(Üv + ÜVb) −

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2)

)′′
+

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
v′′ v′

)′ ]
δv ds

− M(Üv + ÜVb)
���
s=L

δv(L, t) − J
(
Üv′(1 + v′2) + v′ Ûv′2

) ���
s=L

δv′(L, t)

−

(
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2)

�����
s=L

δv′(L, t)

+

((
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
(1 +

1
2
v′2)

)′ �����
s=L

δv(L, t)

−

(
E∞ I v′′(1 +

1
2
v′2) + Eα I RL

0D
α
t v′′(1 +

1
2
v′2)

)
v′′ v′

�����
s=L

δv(L, t)

}
dt = 0.

Invoking the arbitrariness of virtual displacement δv, we obtain the strong form of the equation of

motion as:

ρ Üv + E∞ I
(
v′′(1 +

1
2
v′2)2

)′′
+ Eα I

(
(1 +

1
2
v′2) RL

0D
α
t v′′(1 +

1
2
v′2)

)′′
(8.33)

− E∞ I
(
v′ v′′2(1 +

1
2
v′2)

)′
− Eα I

(
v′ v′′ RL

0D
α
t v′′(1 +

1
2
v′2)

)′
= −ρ ÜVb,

which is subject to the following natural boundary conditions:

J
(
Üv′(1 + v′2) + v′ Ûv′2

)
+ E∞ I v′′(1 +

1
2
v′2)2 (8.34)

+ Eα I (1 +
1
2
v′2) RL

0D
α
t v′′(1 +

1
2
v′2)

�����
s=L

= 0,

M(Üv + ÜVb) −

(
E∞ I v′′(1 +

1
2
v′2)2 + Eα I (1 +

1
2
v′2) RL

0D
α
t v′′(1 +

1
2
v′2)

)′
+

(
E∞ I v′ v′′2(1 +

1
2
v′2) + Eα I v′ v′′ RL

0D
α
t v′′(1 +

1
2
v′2)

) �����
s=L

= 0.

Following a similar approach as in (8.9) in deriving the beam curvature, we obtain the approxi-

mations below, where we only consider up to third order terms and remove the higher order terms
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(HOTs).

v′′(1 +
1
2
v′2)2 = v′′ + v′′v′2 + HOTs

(1 +
1
2
v′2) RL

0D
α
t v′′(1 +

1
2
v′2) = RL

0D
α
t v′′(1 +

1
2
v′2) +

1
2
v′2 RL

0D
α
t v′′ + HOTs

v′ v′′2(1 +
1
2
v′2) = v′ v′′2 + HOTs

v′ v′′ RL
0D

α
t v′′(1 +

1
2
v′2) = v′ v′′ RL

0D
α
t v′′ + HOTs

Therefore, the strong form can be approximated up to the third order and the problem then reads

as: find v ∈ V such that

m Üv +
(
v′′ + v′′v′2

)′′
−

(
v′ v′′2

)′
+ Er

(
RL

0D
α
t v′′(1 +

1
2
v′2) +

1
2
v′2 RL

0D
α
t v′′

)′′
(8.35)

− Er

(
v′ v′′ RL

0D
α
t v′′

)′
= −m ÜVb,

m Üv +
(
v′′ + v′′v′2 + Er

RL
0D

α
t v′′(1 +

1
2
v′2) +

1
2

Erv
′2 RL

0D
α
t v′′

)′′
(8.36)

−

(
v′ v′′2 + Erv

′ v′′ RL
0D

α
t v′′

)′
= −m ÜVb,

subject to the following boundary conditions:

v
���
s=0
= v′

���
s=0
= 0, (8.37)

Jm
ρ

(
Üv′(1 + v′2) + v′ Ûv′2

)
+

(
v′′ + v′′v′2 + Er

RL
0D

α
t v′′(1 +

1
2
v′2) +

1
2

Er v
′2 RL

0D
α
t v′′

) �����
s=L

= 0,

Mm
ρ
(Üv + ÜVb) −

(
v′′ + v′′v′2 + Er

RL
0D

α
t v′′(1 +

1
2
v′2) +

1
2

Er v
′2 RL

0D
α
t v′′

)′
+

(
v′ v′′2 + Er v

′ v′′ RL
0D

α
t v′′

) �����
s=L

= 0,

where m = ρ
E∞ I and Er =

Eα
E∞

.
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8.2.4 Nondimensionalization

Let the dimensionless variables

s∗ =
s
L
, v∗ =

v

L
, t∗ = t

(
1

mL4

)1/2
, E∗r = Er

(
1

mL4

)α/2
, (8.38)

J∗ =
J
ρL3 , M∗ =

M
ρL
, V∗b =

Vb
L
.

We obtain the following dimensionless equation by substituting the above dimensionless variables.

m
L

mL4
∂2v∗

∂t∗2
(8.39)

+
1

L2
∂2

∂s∗2

[
L
L2

∂2v∗

∂s∗2
+

L
L2

∂2v∗

∂s∗2
(
L
L
∂v∗

∂s∗
)2 +

E∗r (mL4)α/2

2
1

(mL4)α/2
L
L2 (

L
L
)2 RL

0D
α
t∗
∂2v∗

∂s∗2
(
∂v∗

∂s∗
)2

+ E∗r (mL4)α/2
1

(mL4)α/2
L
L2

RL
0D

α
t∗
∂2v∗

∂s∗2
+

1
2

E∗r (mL4)α/2(
L
L
∂v∗

∂s∗
)2

1
(mL4)α/2

L
L2

RL
0D

α
t∗
∂2v∗

∂s∗2

]
−

1
L

∂

∂s∗

[
L
L
∂v∗

∂s∗
(

L
L2

∂2v∗

∂s∗2
)2 + E∗r (mL4)α/2

L
L
∂v∗

∂s∗
L
L2

∂2v∗

∂s∗2
1

(mL4)α/2
L
L2

RL
0D

α
t∗
∂2v∗

∂s∗2

]
= −m

L
mL4

∂2V∗b
∂t∗2

,

which can be simplified to

∂2v∗

∂t∗2
+

∂2

∂s∗2

[
∂2v∗

∂s∗2
+
∂2v∗

∂s∗2
(
∂v∗

∂s∗
)2 +

E∗r
2

RL
0D

α
t∗
∂2v∗

∂s∗2
(
∂v∗

∂s∗
)2 + E∗r

RL
0D

α
t∗
∂2v∗

∂s∗2
(8.40)

+
1
2

E∗r (
∂v∗

∂s∗
)2 RL

0D
α
t∗
∂2v∗

∂s∗2

]
−

∂

∂s∗

[
∂v∗

∂s∗
(
∂2v∗

∂s∗2
)2 + E∗r

∂v∗

∂s∗
∂2v∗

∂s∗2
RL

0D
α
t∗
∂2v∗

∂s∗2

]
= −

∂2V∗b
∂t∗2

,
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The dimensionless boundary conditions are also obtained by substituting dimensionless variables

in (8.37). We can show similarly that they preserve their structure as:

v∗
���
s∗=0

=
∂v∗

∂s∗

���
s∗=0

= 0,

J∗ρL3m
ρ

1
mL4

[
∂3v∗

∂t∗∂2s∗

(
1 +

(
∂v∗

∂s∗

)2
)
+
∂v∗

∂s∗

(
∂2v∗

∂t∗∂s∗

)2 ]
+

1
L

[
∂2v∗

∂s∗2
+
∂2v∗

∂s∗2
(
∂v∗

∂s∗
)2 +

E∗r
2

RL
0D

α
t∗
∂2v∗

∂s∗2
(
∂v∗

∂s∗
)2 + E∗r

RL
0D

α
t∗
∂2v∗

∂s∗2

+
1
2

E∗r (
∂v∗

∂s∗
)2 RL

0D
α
t∗
∂2v∗

∂s∗2

] �����
s∗=1

= 0,

M∗ρLm
ρ

L
mL4

(
∂2v∗

∂2t∗
+
∂2V∗b
∂2t∗

)
−

1
L2

∂v∗

∂s∗

[
∂2v∗

∂s∗2
+
∂2v∗

∂s∗2
(
∂v∗

∂s∗
)2 +

E∗r
2

RL
0D

α
t∗
∂2v∗

∂s∗2
(
∂v∗

∂s∗
)2

+ E∗r
RL

0D
α
t∗
∂2v∗

∂s∗2
+

1
2

E∗r (
∂v∗

∂s∗
)2 RL

0D
α
t∗
∂2v∗

∂s∗2

]
+

1
L2

[
∂v∗

∂s∗
(
∂2v∗

∂s∗2
)2 + E∗r

∂v∗

∂s∗
∂2v∗

∂s∗2
RL

0D
α
t∗
∂2v∗

∂s∗2

] �����
s∗=1

= 0,

Therefore, the dimensionless equation of motion becomes (after dropping ∗ for the sake of simplic-

ity)

Üv +

(
v′′ + v′′v′2 + Er

RL
0D

α
t v′′(1 +

1
2
v′2) +

1
2

Erv
′2 RL

0D
α
t v′′

)′′
(8.41)

−

(
v′ v′′2 + Erv

′ v′′ RL
0D

α
t v′′

)′
= − ÜVb,

which is subject to the following dimensionless boundary conditions

v
���
s=0
= v′

���
s=0
= 0, (8.42)

J
(
Üv′(1 + v′2) + v′ Ûv′2

)
+

(
v′′ + v′′v′2 + Er

RL
0D

α
t v′′(1 +

1
2
v′2) +

1
2

Er v
′2 RL

0D
α
t v′′

) �����
s=1
= 0,

M(Üv + ÜVb) −

(
v′′ + v′′v′2 + Er

RL
0D

α
t v′′(1 +

1
2
v′2) +

1
2

Er v
′2 RL

0D
α
t v′′

)′
+

(
v′ v′′2 + Er v

′ v′′ RL
0D

α
t v′′

) �����
s=1
= 0,
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8.2.5 Weak Formulation

We obtain the weak form of the problem by multiplying the equation with proper test functions

ṽ(s) ∈ Ṽ and integrating over the dimensionless spatial computational domainΩs = [0,1]. The test

function satisfies the geometric boundary conditions, i.e. ṽ(0) = ṽ′(0) = 0. Therefore, by changing

the order of integral and temporal derivatives, and through integration by parts, the weak form of

problem can be written as∫ 1

0
Üv ṽ ds +

∫ 1

0

(
v′′ + v′′v′2 + Er

RL
0D

α
t v′′(1 +

1
2
v′2) +

1
2

Erv
′2 RL

0D
α
t v′′

)′′
ṽ ds (8.43)

−

∫ 1

0

(
v′ v′′2 + Erv

′ v′′ RL
0D

α
t v′′

)′
ṽ ds = −

∫ 1

0
ÜVb ṽ ds,

where we transfer the spatial derivative load to the test function through integration by parts as

∂2

∂t2

∫ 1

0
v ṽ ds +

∫ 1

0

(
v′′ + v′′v′2 + Er

RL
0D

α
t v′′(1 +

1
2
v′2) +

1
2

Erv
′2 RL

0D
α
t v′′

)
ṽ′′ ds (8.44)

+

∫ 1

0

(
v′ v′′2 + Erv

′ v′′ RL
0D

α
t v′′

)
ṽ′ ds + M(Üv + ÜVb)ṽ

���
s=1

+ J
(
Üv′(1 + v′2) + v′ Ûv′2

)
ṽ′

���
s=1
= − ÜVb

∫ L

0
ṽ ds.

By rearranging the terms, we get

∂2

∂t2

(∫ 1

0
v ṽ ds + M v ṽ

���
s=1
+ J v′ ṽ′

���
s=1

)
+ J

(
Üv′v′2 + v′ Ûv′2

)
ṽ′

���
s=1

(8.45)

+

∫ 1

0
v′′ ṽ′′ ds + Er

∫ 1

0
RL

0D
α
t v′′ ṽ′′ ds

+

∫ 1

0
v′′v′2 ṽ′′ ds +

∫ 1

0
v′ v′′2 ṽ′ ds +

Er
2

∫ 1

0
RL

0D
α
t v′′v′2 ṽ′′ ds +

Er
2

∫ 1

0
v′2 RL

0D
α
t v′′ ṽ′′ ds

+ Er

∫ 1

0
v′ v′′ RL

0D
α
t v′′ ṽ′ ds = − ÜVb

(∫ 1

0
ṽ ds + M ṽ

���
s=1

)
.
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8.2.6 Assumed Mode: A Spectral Galerkin Approximation In Space

We employ the following modal discretization to obtain a reduced-order model of the beam.

Therefore,

v(s, t) ' vN (s, t) =
N∑

n=1
qn(t) φn(s), (8.46)

where the spatial functions φn(s), n = 1,2, · · · ,N are assumed a priori and the temporal functions

qn(t), n = 1,2, · · · ,N are the unknownmodal coordinates. The assumed modes φn(s) in discretiza-

tion (8.46) are obtained in section 8.5 by solving the corresponding eigenvalue problem of linear

counterpart of our model. Hence, we construct the proper finite dimensional spaces of basis/test

functions as:

VN = ṼN = span
{
φn(x) : n = 1,2, · · · ,N

}
. (8.47)

Thus, since VN = ṼN ⊂ V = Ṽ , problem (8.45) read as: find vN ∈ VN such that

∂2

∂t2

(∫ 1

0
vN ṽN ds + M vN ṽN

���
s=1
+ J v′N ṽ′N

���
s=1

)
(8.48)

+ J
(
Üv′Nv
′
N

2
+ v′N Ûv

′
N

2
)
ṽ′N

���
s=1
+

∫ 1

0
v′′N ṽ′′N ds

+ Er

∫ 1

0
RL

0D
α
t v′′N ṽ′′N ds +

∫ 1

0
v′′Nv
′
N

2 ṽ′′N ds

+

∫ 1

0
v′N v′′N

2 ṽ′N ds +
Er
2

∫ 1

0
RL

0D
α
t v′′Nv

′
N

2 ṽ′′N ds

+
Er
2

∫ 1

0
v′N

2 RL
0D

α
t v′′N ṽ′′N ds + Er

∫ 1

0
v′N v′′N

RL
0D

α
t v′′N ṽ′N ds

= − ÜVb

(∫ 1

0
ṽN ds + M ṽN

���
s=1

)
,

for all ṽN ∈ ṼN .

8.2.7 Single Mode Approximation

We assume that the only active mode of vibration is the primary one, which encapsulates most of the

fundamental dynamics of our complex system. Therefore, we start with a unimodal discretization
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vN = q(t) φ(s), where we let N = 1 in (8.46) and drop subscript 1 for simplicity. Upon substituting,

we obtain

M Üq + J( Üq q2 + q Ûq2) +Kl q + Er Cl
RL

0D
α
t q + 2Knl q3 (8.49)

+
Er Cnl

2

(
RL

0D
α
t q3 + 3 q2 RL

0D
α
t q

)
= −Mb ÜVb,

in which

M =

∫ 1

0
φ2 ds + M φ2(1) + J φ′2(1), J = J φ′4(1), (8.50)

Kl = Cl =

∫ 1

0
φ′′2 ds, Knl = Cnl =

∫ 1

0
φ′2 φ′′2 ds,

Mb =

∫ 1

0
φ ds + M φ(1).

8.3 Linearized Equation: Direct Numerical Time Integration

We linearize the obtained equation, governing the time evolution of the first vibration mode

by removing the nonlinear terms. Therefore, in the absence of base excitation, (8.49) takes the

following form

Üq + Er cl
RL

0D
α
t q + kl q = 0 (8.51)

in which the coefficients cl =
Cl
M

and kl =
Kl
M

are given in (8.50). The linearized equation (8.51)

can be thought of as a fractionally damped oscillator, shown schematically in Fig. 8.5 (right). This

setting describes the vibration of a lumped fractional Kelvin-Voigt model. By letting Er = 1, the

dimensionless parameters cl = kl = 1.24 with a unit mass at the tip, i.e. M = 1. We find the time

response of the linearized model (8.51) using a direct finite difference time integration scheme,

which employs L1 scheme [96, 104] and Newmark method to approximate the fractional derivative

and the inertial term, respectively. The Newmark method is of second order accuracy and thus the

overall accuracy of the developed scheme is governed by the error level of L1 scheme, which is of

order 2 − α.
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Fig. 8.5 (left) shows the time response of free vibration of a fractionally damped oscillator. The

absolute value of q(t) versus time for different values of α is plotted in Log-Log scale. We observe

that in the long time, the amplitude of oscillation decays with a power-law, whose rate is governed

by the order of fractional derivative α and increases by increasing α (see blue lines in the figure).

By replacing the fractional damper with a classical integer-order one, we see that the amplitude

decays exponentially and not anymore by a power-law (see the dotted red line in the figure). These

results are in perfect agreement with the power-law and exponential relaxation kernel, described

in Sec. 8.2.2. We note that since the fractional element is inherently a viscoelastic element that

interpolates between the two spring and dash-pot elements (see Sec. 8.2.2 for more discussion and

references), it contributes both in the stiffness and damping ratio of the system. As α increases,

the fractional element converges to purely viscous element, and thus the system becomes softer

(less stiff), resulting in frequency reduction. This frequency shift can be seen from the drift of

consecutive amplitude peaks to the right as α is increased. The fractional linear oscillators are also

considered in [161] as a case of systems with memory, where their interaction with a fluctuating

environment causes the time evolution of the system to be intermittent. The authors in [161] apply

the Koopman operator theory to the corresponding integer order system and then make a Lèvy

transformation in time to recover long-term memory effects; they observe a power-law behavior

in the amplitude decay of the system’s response. Such an anomalous decay rate has also been

investigated in [150] for an extended theory of decay of classical vibrational models brought into

nonlinear resonances. The authors report a “non-exponential" decay in variables describing the

dynamics of the system in the presence of dissipation and also a sharp change in the decay rate

close to resonance.

Remark 8.3.1. The change in fractional derivative order, α, is a notion of stiffening/softening of

a viscoelastic material modeled via fractional constitutive equations. As shown in Fig. 8.5 (left),

the value of α directly affects the decay rate of free vibration. This strong relation can be used to

develop a prediction framework, which takes time series of free vibrations as an input, and returns

an estimation of the level of material stiffness as a reflection of the health of the system of interest.
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Figure 8.5: Power-Law Decay: Time response of linear fractionally damped oscillator using
Newmark and L1 scheme. The fractional damper has two constants Er cl and α as the coefficient
and derivative order of fractional operator.

8.4 Perturbation Analysis of Nonlinear Equation

Nonlinear terms in equation (8.49) give rise to expensive time integration schemes. We use

perturbation analysis to investigate the behavior of a nonlinear system, where we reduce the

nonlinear fractional differential equation to an algebraic equation to solve for the steady state

amplitude and phase of vibration.

8.4.1 Method of Multiple Scales

To investigate the dynamics of the system described by (8.49), we use the method of multiple scales

[128, 141]. The new independent time scales and the integer-order derivative with respect to them

are defined as

Tm = ε
m t, Dm =

∂

∂Tm
, m = 0,1,2, · · · . (8.52)

It is also convenient to utilize another representation of the fractional derivative as in equation

(5.82) in [147], which according to the Riemann-Liouville fractional derivative, is equivalent to the
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fractional power of the operator of conventional time-derivative, i.e. RL
0D

α
t = (

d
dt )

α. Therefore,

d
dt
= D0 + εD1 + · · · , (8.53)

d2

dt2 = D2
0 + 2εD0D1 + · · · ,

RL
0D

α
t = (

d
dt
)α = Dα

0 + εαDα−1
0 D1 + · · · ,

The solution q(t) can then be represented in terms of series

q(T0,T1, · · · ) = q0(T0,T1, · · · ) + εq1(T0,T1, · · · ) + ε
2q2(T0,T1, · · · ) + · · · (8.54)

We assume that the coefficients in the equation of motion has the following scaling

J

M
= ε mnl,

Kl
M
= kl = ω

2
0,
Cl
M
= ε cl,

Knl
M
= ε knl,

Cnl
M
= ε cnl, (8.55)

and the base excitation −Mb
M
ÜVb is a harmonic function of form ε F cos(Ω t). Thus, (8.49) can be

expanded as

(D2
0 + 2εD0D1 + · · · )(q0 + εq1 + · · · ) (8.56)

+ ε mnl(D
2
0 + 2εD0D1 + · · · )(q0 + εq1 + · · · ) × (q0 + εq1 + · · · )

2

+ ε mnl(q0 + εq1 + · · · ) × ((D0 + εD1 + · · · )(q0 + εq1 + · · · ))
2

+ ω2
0 (q0 + εq1 + · · · )

+ ε Er cl (D
α
0 + εαDα−1

0 D1 + · · · )(q0 + εq1 + · · · )

+ 2ε knl (q0 + εq1 + · · · )
3

+
1
2
ε Er cnl (D

α
0 + εαDα−1

0 D1 + · · · )(q0 + εq1 + · · · )
3

+
3
2
ε Er cnl (q0 + εq1 + · · · )

2
[
(Dα

0 + εαDα−1
0 D1 + · · · )(q0 + εq1 + · · · )

]
= ε F cos(ΩT0).
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By collecting similar coefficients of zero-th and first orders of ε , we obtain the following equations

O(ε0) : D2
0q0 + ω

2
0q0 = 0, (8.57)

O(ε1) : D2
0q1 + ω

2
0q1 = − 2D0D1q0 − mnl

(
q2

0 D2
0q0 + q0(D0q0)

2
)

− Er cl Dα
0 q0 − 2 knl q3

0 −
1
2

Er cnl Dα
0 q3

0

−
3
2

Er cnl q2
0 Dα

0 q0 + F cos(ΩT0). (8.58)

The solution to (8.57) is of the form

q0(T0,T1) = A(T1) e
iω0 T0 + c.c (8.59)

where “c.c" denotes the complex conjugate. By substituting (8.59) into the right-hand-side of (8.58),

we observe that different resonance cases are possible. In each case, we obtain the corresponding

solvability conditions by removing the secular terms, i.e. the terms that grow in time unbounded.

Then, we write A in the polar form A = 1
2a ei ϕ, where the real valued functions a and ϕ are the

amplitude and phase lag of time response, respectively. Thus, the solution q(t) becomes

q(t) = a(ε t) cos(ω0 t + ϕ(ε t)) + O(ε), (8.60)

where the governing equations of a and ϕ are obtained by separating the real and imaginary parts.

8.4.1.1 Case 1: No Lumped Mass At The Tip

In this case, M = J = 0, and thus, given the functions ϕ1(x) in section 8.5, the coefficients are

computed as M = 1, Kl = Cl = 12.3624, Mb = 0.782992, and Knl = Cnl = 20.2203. We

consider the following cases:

• Free Vibration, F = 0: Super Sensitivity to α

In this case, the beam is not externally excited and thus, F = 0. By removing the secular terms

that are the coefficients of eiω0 T0 in the solvability condition, we find the governing equations of
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solution amplitude and phase as

da
dT1
= −Er ω

α−1
0 sin(α

π

2
)

(
1
2

cl a +
3
8

cnl a3
)
, (8.61)

dϕ
dT1
=

1
2

cl Er ω
α−1
0 cos

(πα
2

)
+

3
4

cnl Er ω
α−1
0 cos

(πα
2

)
a2 +

3
4
ω−1

0 knl a2. (8.62)

We can see from the first equation (8.61) that the amplitude of free vibration decays out, where the

decay rate τd = cl Er ω
α−1
0 sin(α π2 ) directly depends on values of the fractional derivative α and

the coefficients Er (see Fig. 8.6). We introduce the sensitivity index Sτd,α as the partial derivative

α = 0.1
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Figure 8.6: Free vibration of the viscoelastic cantilever beam with no lumped mass at the tip. The
rate of decay of amplitude strongly depends on the fractional derivative order α and the coefficient
Er . The left figure (log-linear scale) shows the rapid increase in amplitude decaying as α is
increased and Er = 0.1. The right figure (linear scale) shows the phase lag ϕ(ε t), where its increase
rate decreases as α is increased.

of decay rate with respect to α, i.e.

Sτd,α =
dτd
dα
=
π

2
cl Er ω

α−1
0 cos(α

π

2
) + cl Er ω

α−1
0 sin(α

π

2
) log(ω0). (8.63)

The sensitivity index is computed and plotted in Fig. 8.7 for the same set of parameters as in Fig.

8.6. There exists a critical value

αcr = −
2
π

tan−1
(

π

2 log(ω0)

)
, (8.64)

where Sτd,α = 0. We observe in Fig. 8.7 that by increasing α when α < αcr , i.e. introducing more

viscosity to the system, the dissipation rate, and thus decay rate, increases; this can be thought of

as a softening (stiffness-decreasing) region. Further increasing α when α > αcr , will reversely
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results in decrease of decay rate; this can be thought of as a hardening (more stiffening) region. We

also note that αcr solely depends on value of ω0, given in (8.55), and even though the value of Er

affects decay rate, it does not change the value of αcr .

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6

α

S
τ
d
,α

Figure 8.7: Free vibration of the viscoelastic cantilever beam with no lumped mass at the tip.
This graph shows sensitivity of the decay rate τd with respect to change of α. Increasing α when
α < αcr leads to higher dissipation and decay rate. The reverse effect is observedwhen α > αcr . By
softening and hardening we reflect to the regions where increasing α (introducing extra viscosity)
leads to higher and lower decay rate, respectively.

• Primary Resonance Case, Ω ≈ ω0

In the case of primary resonance, the excitation frequency is close to the natural frequency of the

system. We let Ω = ω0 + ε ∆, where ∆ is called the detuning parameter and thus, write the force

function as 1
2 F ei ∆T1 eiω0 T0 + c.c . In this case, the force function also contributes to the secular

terms. Therefore, we find the governing equations of solution amplitude and phase as

da
dT1
= −Er ω

α−1
0 sin(α

π

2
)

(
1
2

cl a +
3
8

cnl a3
)
+

1
2

f ω−1
0 sin(∆T1 − ϕ), (8.65)

a
dϕ
dT1
=

1
2

cl Er ω
α−1
0 cos(

πα

2
) a +

3
4

cnl Er ω
α−1
0 cos(

πα

2
) a3 +

3
4
ω−1

0 knl a3 (8.66)

−
1
2

f ω−1
0 cos(∆T1 − ϕ),

in which the four parameters {α,Er, f ,∆}mainly change the frequency response of the system. The

equations (8.65) and (8.66) can be transformed into an autonomous system, where the T1 does not

appear explicitly, by letting

γ = ∆T1 − ϕ.
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The steady state solution occur when da
dT1
=

dϕ
dT1
= 0, that gives

Er ω
α−1
0 sin(

πα

2
)

(
cl
2

a +
3cnl

8
a3

)
=

f
2ω0

sin(γ), (8.67)(
∆ −

cl
2

Er ω
α−1
0 cos(

πα

2
)

)
a −

3
4

(
cnl Er ω

α−1
0 cos(

πα

2
) + ω−1

0 knl

)
a3 =

f
2ω0

cos(γ), (8.68)

and thus, by squaring and adding these two equations, we get[
cl
2

Er ω
α−1
0 sin(

πα

2
) a +

3cnl
8

Er ω
α−1
0 sin(

πα

2
) a3

]2
(8.69)

+

[(
∆ −

cl
2

Er ω
α−1
0 cos(

πα

2
)

)
a −

3
4

(
cnl Er ω

α−1
0 cos(

πα

2
) + ω−1

0 knl

)
a3

]2
=

f 2

4ω2
0
.

This can be written in a simpler way as[
A1 a + A2 a3

]2
+

[
B1 a + B2 a3

]2
= C, (8.70)

where

A1 =
cl
2

Er ω
α−1
0 sin(

πα

2
), A2 =

3cnl
8

Er ω
α−1
0 sin(

πα

2
), C =

f 2

4ω2
0
,

B1 = ∆ −
cl
2

Er ω
α−1
0 cos(

πα

2
), B2 = −

3
4

(
cnl Er ω

α−1
0 cos(

πα

2
) + ω−1

0 knl

)
.

Hence, the steady state response amplitude is the admissible root of

(A2
2 + B2

2)a
6 + (2A1 A2 + 2B1B2)a

4 + (A2
1 + B2

1)a
2 − C = 0, (8.71)

which is a cubic equation in a2. The discriminant of a cubic equation of the form ax3+bx2+cx+d =

0 is given as ϑ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2. The cubic equation (8.71) has one real

root when ϑ < 0 and three distinct real roots when ϑ > 0. The main four parameters {α,Er, f ,∆}

dictate the value of coefficients {A1, A2,B1,B2,C}, the value of discriminant ϑ, and thus the number

of admissible steady state amplitudes. We see that for fixed values of {α,Er, f }, by sweeping the

detuning parameter ∆ from lower to higher excitation frequency, the stable steady state amplitude

bifurcates into two stable branches and one unstable branch, where they converge back to a stable

amplitude by further increasing ∆. Fig. 8.8 (left) shows the bifurcation diagram by sweeping the
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detuning parameter ∆ and for different values of α when Er = 0.3 and f = 1. The solid and

dashed black lines are the stable and unstable amplitudes, respectively. The blue lines connect the

bifurcation points (red dots) for each value of α. We see that the bifurcation points are strongly

related to the value of α, meaning that by introducing extra viscosity to the system, i.e. increasing

the value of α, the amplitudes bifurcate and then converge back faster. The right panel of Fig. 8.8

shows the frequency response of the system, i.e. the magnitude of steady state amplitudes versus

excitation frequency. As the excitation frequency is swept to the right, the steady state amplitude

increases, reaches a peak value, and then jumps down (see e.g. red dashed line for α = 0.4). The

peak amplitude and the jump magnitude decreases as α is increased.

Figure 8.8: Primary resonance of the viscoelastic cantilever beam with no lumped mass at the tip.
Steady state amplitude (right) and its bifurcation diagram (left) by changing the detuning parameter
∆ for different values of α and Er = 0.3, f = 1.

The coefficient Er =
E∞
Eα

is the proportional contribution of fractional and pure elastic element.

At a certain value while increasing this parameter, we see that the bifurcation disappears and the

frequency response of system slightly changes. Fig. 8.9 shows the frequency response of the system

for different values of {α,Er } when f = 0.5. In each sub-figure, we let α be fixed and then plot the

frequency response for Er = {0.1,0.2, · · · ,1}; the amplitude peak moves down as Er is increased.

For higher values of Er , we see that as α is increased, the amplitude peaks drift back to the left,

showing a softening behavior in the system response.
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Figure 8.9: Frequency-Response curve for the case of primary resonance in the viscoelastic can-
tilever beam with no lumped mass at the tip. Each sub-figure corresponds to a fixed value of α and
f when Er = {0.1,0.2, · · · ,1}. As effect of fractional element becomes more pronounced, i.e. α
and Er increase, the curve moves down and drift to left.

8.4.1.2 Case 2: Lumped Mass At The Tip

In this case, M = J = 1, and thus, given the functions φ1(x) in section 8.5, the coefficients

are computed as M = 1 + 70.769J + 7.2734M , J = 5008.25, Kl = Cl = 98.1058, Mb =

−0.648623 − 2.69692M , and Knl = Cnl = 2979.66. Similar to Case 1, we consider the following

cases:

• Free Vibration, F = 0

Following the same steps as in Case 1, we see that the equation governing amplitude preserve its

structure, but the governing equation of phase contains an extra term accommodating the mnl .

da
dT1
= −Er ω

α−1
0 sin(α

π

2
)

(
1
2

cl a +
3
8

cnl a3
)
, (8.72)

dϕ
dT1
=

1
2

cl Er ω
α−1
0 cos

(πα
2

)
+

3
4

cnl Er ω
α−1
0 cos

(πα
2

)
a2 (8.73)

+
3
4
ω−1

0 knl a2 −
1
4

mnl ω0 a2.

This extra term does not significantly alter the behavior of phase and the whole system.
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• Primary Resonance Case, Ω ≈ ω0

Similar to the free vibration, we see that the equation governing amplitude preserves its structure

while the governing equation of phase contains an extra term accommodating the mnl

da
dT1
= −Er ω

α−1
0 sin(α

π

2
)

(
1
2

cl a +
3
8

cnl a3
)
+

1
2

f ω−1
0 sin(∆T1 − ϕ), (8.74)

a
dϕ
dT1
=

1
2

cl Er ω
α−1
0 cos(

πα

2
) a +

3
4

cnl Er ω
α−1
0 cos(

πα

2
) a3 +

3
4
ω−1

0 knl a3 (8.75)

−
1
2

f ω−1
0 cos(∆T1 − ϕ) −

1
4

mnl ω0 a3.

Transforming the equations into an autonomous system by letting γ = ∆T1 − ϕ, we obtain the

governing equation of steady state solution as[
cl
2

Er ω
α−1
0 sin(

πα

2
) a +

3cnl
8

Er ω
α−1
0 sin(

πα

2
) a3

]2
(8.76)[(

∆ −
cl
2

Er ω
α−1
0 cos(

πα

2
)

)
a −

3
4

(
cnl Er ω

α−1
0 cos(

πα

2
) + ω−1

0 knl +
1
3

mnl ω0

)
a3

]2
=

f 2

4ω2
0
,

which, similar to Case 1, can be written as

(A2
2 + B2

2)a
6 + (2A1 A2 + 2B1B2)a

4 + (A2
1 + B2

1)a
2 − C = 0,

where all the A1, A2, B1, and C are the same as in Case 1, but

B2 = −
3
4

(
cnl Er ω

α−1
0 cos(

πα

2
) + ω−1

0 knl +
1
3

mnl ω0

)
.

The corresponding cubic equation can be solved to obtain the bifurcation diagram and also the

frequency response of the system. However, in addition to Case 1, we have an extra parameter mnl

which affects the response of the system.

Remark 8.4.1. The model parameters in fact describe the properties of the system of interest. As

the system undergoes cyclic loading, the development of damage due to initial imperfections and

defects inside the material changes the system properties, and thus, it’s response. This can be used

to develop a machine learning tool that takes the observed experimental data as input and then,

predicts the system health by inferring model parameters. The developed framework here provides

a forward simulation to construct many cases of training sets for the learning tool.
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8.5 Eigenvalue Problem of Linear Model

The assumed modes φi(s) in discretization (8.46) are obtained by solving the corresponding

eigenvalue problem of free vibration of undamped linear counterparts to our model. Thus, the

dimensionless linearized undamped equation of motion takes the form

∂2

∂t2 v(s, t) +
∂4

∂s4 v(s, t) = 0. (8.77)

subject to linearized boundary conditions:

v(0, t) = 0, v′′(1, t) = −J Üv′(1, t), (8.78)

v′(0, t) = 0, v′′′(1, t) = M Üv(1, t),

where Û( ) = d
dt and ( )

′
= d

ds . We derive the corresponding eigenvalue problem by applying the

separation of variables, i.e. v(x, t) = X(s)T(t) to (8.77). Therefore,

ÜT(t)X(s) + T(t)X
′′′′
(s) = 0, (8.79)

ÜT(t)
T(t)
+

X
′′′′
(s)

X(s)
= 0,

ÜT(t)
T(t)

= −
X
′′′′
(s)

X(s)
= λ,

which gives the following equations

ÜT(t) + ω2T(t) = 0, (8.80)

X′′′′(s) − β4X(s) = 0, (8.81)

where β4 = ω2 and the boundary conditions are

X(0) = 0, X′′(1) = J ω2 X′(1),

X′(0) = 0, X′′′(1) = −M ω2 X(1).

the solution to (8.81) is of the form X(s) = A sin(βs)+ B cos(βs)+C sinh(βs)+D cosh(βs), where

C = −A and D = −B, using the boundary conditions at s = 0. Therefore,

X(s) = A (sin(βs) − sinh(βs)) + B (cos(βs) − cosh(βs)) .
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Applying the first bondary condition at s = 1, i.e. X′′(1) = J ω2 X′(1) gives

B = −
sin(β) + sinh(β) + Jβ3(cos(β) − cosh(β))
cos(β) + cosh(β) − Jβ3(sin(β) − sinh(β))

A,

that results in

X(s) = A

[
(sin(βs) − sinh(βs)) −

sin(β) + sinh(β) + Jβ3(cos(β) − cosh(β))
cos(β) + cosh(β) − Jβ3(sin(β) − sinh(β))

(cos(βs) − cosh(βs))

]
.

Finally, using the second boundary condition at s = 1 gives the following transcendental equation

to solve for β’s for the case that M = J = 1 :

−

(
1 + β4 + cos(β) cosh(β)

)
+ β (sin(β) cosh(β) − cos(β) sinh(β)) (8.82)

+ β3 (sin(β) cosh(β) − sinh(β) cosh(β)) + β4 (sin(β) sinh(β) + cos(β) cosh(β)) = 0. (8.83)

The first eigenvalue is computed as β2
1 = ω1 = 1.38569, which results to the following first

normalized eigenfunction, given in Fig. 8.10.

X1(s) = 5.50054 sin(β1s) − 0.215842 cos(β1s) − 5.50054 sinh(β1s) + 0.215842 cosh(β1s),

Figure 8.10: The first eigenfunctions, X1(s), of the undamped linear counterpart of our model. It
is used as the spatial functions in the single mode approximation.

We note that (8.82) reduces to 1 + cos(β) cosh(β) = 0 for the case that there is no lumped mass

at the tip of beam; this in fact gives the natural frequencies of a linear cantilever beam. In this

case, the first eigenvalue is computed as β2
1 = ω1 = 3.51602, which results to the following first

normalized eigenfunction, given in Fig. 8.11.
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X1(s) = 0.734096 sin(β1s) − cos(β1s) − 0.734096 sinh(β1s) + cosh(β1s).

Figure 8.11: The first eigenfunctions, X1(s), of the undamped linear counterpart of our model with
no lumped mass at the tip. It is used as the spatial functions in the single mode approximation.
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CHAPTER 9

SUMMARY AND FUTUREWORKS

Fractional PDEs are the proper mathematical models to describe the anomalous behavior in a wide

range of physical phenomenon. The order of fractional derivatives in these equations are consid-

ered as an additional set of model parameter, whose values are strongly tied to the experimental

observations. Estimation of parameters in fractional models is not a trivial procedure since the

main parameters, i.e. fractional derivatives appear as the order of derivatives. This imposes an

extra challenge in developing proper mathematical frameworks, which are computationally efficient

to handle such inverse problems. More importantly, the inherent randomness of experimental ob-

servations introduce uncertainty in the order of derivatives and thus model output; such uncertainty

demands an out-of-box thinking to be assessed. Theses challenges even become more important

to resolve as the inherent bottleneck of non-locality in fractional PDEs leads to expensive com-

putations with excessive computer-memory storage requirements and insufficient computational

accuracy. Utilization of local numerical methods, such as finite difference method can take long

time on ordinary computers even for one dimensional problems with a single derivative orders.

These lead to more serious issue in higher dimensional nonlinear problems with distributed order

derivatives, where the problem os defined over a complex geometry.

To overcome these challenges, we first develop a Petrov-Galerkin spectral element method,

which can solve fractional boundary value problems in each time step of numerical time integration

techniques. In chapter 2, we developed a new C 0-continuous Petrov-Galerkin spectral element

method for the one-sided space-fractional Helmholtz equation 0D
α
x u(x)−λu(x) = f (x), α ∈ (1,2),

subject to homogeneous boundary conditions. We obtained a weak form, in which the entire

fractional derivative load was transferred onto the test functions, allowing us to efficiently employ

the standard modal spectral element bases while incorporating Jacobi poly-fractonomials as the test

functions. We seamlessly extended the standard procedure of assembling to non-local assembling

in order to construct the global linear system from local (elemental) mass/stiffness matrices and
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non-local history matrices. The key to the efficiency of the developed PG method is twofold: i)

our formulation allows the construction of elemental mass and stiffness matrices in the standard

domain [−1,1] once, and ii) we efficiently obtain the non-local (history) stiffness matrices, in

which the non-locality is presented analytically. We also investigated local basis/test functions

in addition to local basis with global test functions. We demonstrated that the former choice

leads to a better-conditioned system and approximability in the spectral element formulation when

higher polynomial orders are needed. Moreover, we showed the exponential rate of convergence

considering smooth solutions as well as singular solutions with interior singularity; also, the

spectral (algebraic) rate of convergence in singular solutions with singularities at boundaries. We

also presented the retrieval process of history matrices on uniform grids, which results in faster and

more efficient construction and solution of the linear system compared to the on-line computation.

In addition, we constructed two non-uniform grids over the computational domain (namely, kernel-

driven and geometrically progressive grids), and demonstrated the effectiveness of the non-uniform

grids in accurately capturing singular solutions, using fewer number of elements and higher order

polynomials. We finally performed a systematic numerical study of non-local effects via both full

and partial (history) fading in order to better enhance the computational efficiency of the scheme.

In chapter 3, we developed two spectrally-accurate schemes, namely the Petrov-Galerkin spectral

method and the fractional spectral collocation method for distributed order fractional differential

equations. The two schemes were constructed based on the recently developed spectral theory

for fractional Sturm-Liouville problems (FSLPs). In the Petrov-Galerkin method, we employed

the Jacobi poly-fractonomials as the bases, which are the eigenfunctions of FSLP-I, and the poly-

fractonomial eigenfunctions of FSLP-II as the test functions. We carried out the discrete stability

analysis of the proposed scheme employing some equivalent/bilinear-induced norms based on

the defined distributed Sobolev spaces and their associated norms. In addition, we performed a

convergence study of the proposed scheme. In the collocation method, we employed fractional

Lagrange interpolants satisfying the Kronecker delta property at the collocation points, and then

we obtained the corresponding distributed differentiation matrices to discretize the strong problem.
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The existing schemes in the literature are mostly employing finite difference methods. The

main challenge in these methods, in comparison to spectral methods, is the history calculation

as well as extensive memory allocation while they deliver fixed algebraic accuracies. The recent

spectral theory on fractional Sturm-Liouville problems (FSLPs) in [186] naturally motivates the

use of Petrov-Galerkin spectral methods, where the arising bilinear forms are comprised of left- and

right-sided fractional derivatives. The eigen-functions of FSLPs can be employed naturally as the

bases and test spaces, where their left- and right-sided derivatives are obtained analytically. These

functions consist of a polynomial part and a fractional part, where the former leaves the fractional

order, µ, as a free parameter to capture solution singularities, hence, to tune up the accuracy of

the scheme from being algebraically convergent to exponential convergent. In fact, the Case-III of

numerical examples demonstrated how a proper choice of fractional part of the bases provides the

exact solution with only one term expansion. Furthermore, we proved that the distributed bilinear

form can be approximated with a spectral/exponential accuracy using a proper quadrature rule.

The PG spectral method treats the nonlocal effects efficiently through a global spectral method

and provides a nice mathematical framework for performing theoretical studies, however, treating

nonlinear problems remains a challenge. To this end, we constructed a spectrally accurate fractional

spectral collocation method employing fractional Lagrange interpolants, where for linear problems

the two developed schemes become equivalent in terms of the rate of convergence.

The distribution function, φ(α), defined the distribution of the differentiation fractional-order,

α, and it could arbitrarily confine the domain over which the fractional differentiation is taken. If

φ was integrable in a compact support in [αmin, αmax], then Hαmin(R) ⊇ φH(R) ⊇ Hαmax (R).

Hence, φ could play a crucial rule in defining the underlying solution space properly. In anomalous

physical processes, the distribution function can be obtained from experimental data, where the

inherent data uncertainty can be incorporated through the φ obtained from the observed data, hence,

leading to a robust data-driven simulation framework for multi-physics problems.

In chapter 4, we combined the twomodal and nodal expansions, and developed a pseudo-spectral

accurate scheme based where we employed two types of fractional Lagrange interpolants as the
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nodal basis and test functions in the weak sense of problem and obtained the corresponding weak

distributed differentiation matrix. We further investigated the condition number of the resulting

linear system for different choices of distribution function and interpolation points. We showed that

among the considered choices, the roots of Jacobi polynomials leads to better condition number.

Moreover, we introduced a set of distributed pre-conditioners based on the distribution function in

the DODEs and Jacobi poly-fractonomials of second kind. We showed that applying the designed

pre-conditioners can further improve the condition number of the linear system. The constructed

basis functions are comprised of a polynomial part and a fractional part, where the former leaves

the fractional order, µ, as a free parameter to capture solution singularities. We showed in the

example of initial value problems that by tunning the interpolation parameter, we can achieve the

highest rate of convergence with minimal degrees of freedom.

The developed Petrov-Galerkin (PG) spectral method in chapter 3 has also the benefit of spectral

accuracy in solvingDODEs. However, the remaining challengewas to treat nonlinear problems. We

showed through several examples of (1+1)-D and (1+2)-D time dependent space distributed-order

nonlinear problems, that the proposed pseudo-spectral scheme can efficiently treat nonlinearity,

while keeping the same rate of convergence. We computed the associated nonlinear vectors with

less complexity, using the Kronecker delta property of the basis and test functions. Moreover, in

comparison to fractional collocation methods, we showed that the proposed scheme leads to a better

conditioning, yet still requires performing additional quadrature integration in spatial domain. The

current scheme also benefits from the well-established mathematical framework of Babus̆ka-Lax-

Milgram theorem, which can be used along with the defined underlying distributed sobolev space

and the sharp estimates, provided by the equivalent/bilinear-induced associated norms, to perform

the analysis of scheme. We intent to carry out and report these analysis in our future works.

In chapter 5, we extended the derivation to fractional PDEs and developed a Petrov-Galerkin

spectral method for high dimensional temporally-distributed fractional partial differential equations

with two-sided derivatives in a space-time hypercube. We employed Jacobi poly-fractonomials and

Legendre polynomials as the temporal and spatial basis/test functions, respectively. To solve the
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corresponding Lyapunov linear system, we further formulated a fast linear solver and performed

the corresponding discrete stability and error analysis. We also carried out several numerical

simulations to examine the performance of the method.

In order to formulate a sensitivity frame work, in chapter 6, we developed a fractional sensitivity

equation method (FSEM) in order to analyze the sensitivity of fractional models (FIVPs, FBVPs,

and FPDEs) with respect to their parameters. We derived the adjoint governing dynamics of

sensitivity coefficients, i.e. fractional sensitivity equations (FSEs), by taking the partial derivative

of FDE with respect to the model parameters, and showed that they preserve the structure of

original FDE. We also introduced a new fractional operator, associated with logarithmic-power

law kernel, for the first time in the context of FSEM. We extended the existing proper underlying

function spaces to respect the extra regularities imposed by FSEs and proved the well-posedness

of problem. Moreover, we developed a Petrov-Galerkin (PG) spectral method by employing Jacobi

polyfractonomials and Legendre polynomials as basis/test functions, and proved its stability. We

further used the developed FSEM to formulate an optimization problem in order to construct the

fractional model by estimating the model parameters. We defined two types of model error as

objective functions and proposed a two-stages search algorithm to minimize them. We presented

the steps of iterative algorithm in a pseudo code. Finally, we examined the performance of proposed

numerical scheme in solving coupled FPDE and FSEs, where we numerically study the convergence

rate of error. We also investigated the efficiency of developed iterative algorithm in estimating the

derivative order for different cases of fractional models.

In chapter 7, we developed a mathematical framework to numerically quantify the solution

uncertainty of a stochastic FPDE, associated with the randomness of model parameters. The

stochastic FPDE is reformulated by rendering the problem with random fractional indices, subject

to additional random noise. We used the truncated Karhunen-Loéve expansion to parametrize

the additive noise. Then, by employing a non-intrusive probabilistic collocation method (PCM),

we propagated the associated randomness to the system response, by using Smolyak sparse grid

generator to construct the set of sample point in the random space. We also formulated a forward
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solver to simulate the deterministic counterpart of the stochastic problem for each realization of

random variables. We showed that the deterministic problem is mathematically well-posed in a

weak sense. Furthermore, by employing Jacobi poly-fractonomials and Legendre polynomials as

the temporal and spatial basis/test functions, respectively, we developed a Petrove-Galerkin spectral

method to solve the deterministic problem in the physical domain. We also proved that the inf-sup

condition holds for the proposed numerical scheme, and thus, it is stable. By considering several

numerical examples with low- to high-dimensional random spaces, we examined the performance

of our stochastic discretization. We showed that in each case, PCM converges very fast to a very

high level of accuracy with very few number of sampling.

Finally, in chapter 8, we further apply the developed mathematical tools to investigate the

nonlinear vibration of a viscoelastic cantilever beam. In the absence of external excitation, the

response amplitude of free vibration reveals a super-sensitivity with respect to the fractional order.

Primary resonance of the beam subject to base excitation also discloses a softening behavior in the

frequency response of the beam. These unique features can be used further to build a vibration-based

health monitoring platform.

9.0.1 Future Works

Many open issues remain in this field to be addressed in our future work. Here, we list some of

them as follows:

• PG spectral element method for two sided derivatives: The one-sided Helmholtz equation in

chapter 2 can be extended to its two-sided version. However, in that case due to the presence of the

left- and right-sided derivatives, the corresponding integration-by-parts require the test functions

to vanish at both boundaries. Therefore, the introduced choices of test functions in this work would

not form a proper test space for the two-sided version. This requires further investigation as future

work.

• Fractional operator with logarithmic power-law kernel: The sensitivity analysis of fractional

differential equations introduced new class of integro-differential operators with weaker singular
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kernel of logarithmic power-law type. Proper development of calculus for these operators is needed

to efficiently deal with computation of sensitivity fields. Following the same derivation as in chapter

6, we can take the derivative of fractional Strum-Liouville eigenvalue problem to obtain a new class

of eigenvalue problems for these operators. This is still an open problem to be investigated further.

• Application to bio-tissue mechanics: Many application of viscoelastic modeling are in bio-

engineering and bio-tissue mechanics. They also include problems, where human body undergoes

certain dynamical loading due to environmental/work conditions. The excessive body motion can

adversely induce undesired vibration to vital organs such as human brain, leading to irrecoverable

damages. Fractional models provide a tool to model and study the viscoelastic behavior of human

organs. The developed framework in this thesis can be further employed to find accurate param-

eters of these model, and thus calculating safe operating regions, within which, the organ would

experience less damage. Such application requires the extension of developed parameter estimation

and uncertainty framework to the case with limited real data sets as they are not largely available

for human bodies.

•Modal analysis of fractional viscoelasticity: The eigenfunctions of fractional time derivatives

are not exponential functions anymore. For linear fractional oscillator, the Mittag Leffler functions

can be used as they incorporate memory dependence. But, in more complex viscoelastic modeling,

which lead to nonlinearity in fractional differential equation, it is not very clear ho we can use

these functions. The extension of modal analysis for viscoelastic materials as well as interactive

systems with viscoelastic behavior (such as elastic solid immersed in viscous fluid) can be further

investigated in future works.

•Variable order fractionalmodel: The order of fractional models directly relates to the distinctive

characteristics of underlying physical phenomena. Over a course of time, these properties changes,

and thus the fractional models should be re-calibrated. Instead, a variable order model can be

developed, where the evolution of fractional orders are such that they comply with the time

evolution of physical properties. This will requires additional dynamics, which models/describe

the change of derivative orders in time.
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• Application of real data in the developed fractional model construction framework: In

general, the inverse problem of parameter estimation is an ill-posed problem. Even though we

showed computationally that the introduced model errors as the objective function to minimize

has solely one minimum, we should extent the analysis to mathematically prove the existence

of minimum(s). More importantly, the method should be examined by real data sets, as their

incompleteness imposes extra challenge in minimizing the objective function.
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