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ABSTRACT

GRID-CONNECTED ENERGY STORAGE SYSTEMS — BENEFITS, PLANNING AND
OPERATION

By

Yuting Tian

Deployment of energy storage systems (ESSs) is gaining significant momentum due to eco-

nomic incentives, power system regulation requirements, and integration of renewable energy re-

sources. This dissertation covers three aspects of grid-connected ESSs: benefits, planning, and

operation. First, the benefits and use cases of ESSs are reviewed and a comprehensive evaluation

method for estimating stacked revenue of ESSs is proposed. The stacked revenue from an ESS

cannot be calculated by merely aggregating the benefits from various applications (e.g., energy

arbitrage, frequency regulation, and outage mitigation) as the ESS may not be available for all

types of applications during the same time interval. A model incorporating component reliabil-

ity, power system operation constraints, and storage system operation constraints is developed to

evaluate the composite revenue generated from the applications. Second, for planning purposes,

a model to estimate the capacity value of ESSs is developed and a sensitivity guided approach to

ESS siting is proposed. In contrast to conventional generators with the capability to provide energy

upon demand, ESSs are energy-limited resources. In addition, it is possible that the availability of

an ESS is low when it is needed to provide its capacity to maintain system reliability due to low

state of charge. Thus, the work presented here proposes a method to evaluate the actual capacity

contribution of ESSs, considering the energy-limited characteristic and the availability uncertainty.

Also, it is necessary to determine suitable locations so as to maximize the benefit of ESSs. This

dissertation proposes a sensitivity guided approach which aims at finding the optimal location of

ESSs to reduce the peak hour generation cost. The last part of this dissertation proposes a model

to determine the operation strategy of battery ESSs. This algorithm not only attempts to maximize

the financial benefits but also considers the cycling behavior and its impact on the longevity of

battery energy storage systems.
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Chapter 1

Introduction

1.1 Motivation

Deployment of energy storage systems (ESSs) is gaining significant momentum due to economic

incentives, power system regulation requirements, and integration of renewable energy resources.

An energy storage device can be considered as a device that mediates between energy generation

and energy consumption [1]. The power balance constraint imposes the condition that generation

must always equal consumption (including losses). This is challenging, especially after the in-

tegration of renewable energy sources. Hence, the deployment of an ESS provides a reserve of

electric power which can be used judiciously when the need arises.

Large storage facilities, including pumped hydro storage (PHS) and compressed air energy

storage (CAES) have been developed for decades. Battery energy storage systems (BESSs) are

also available for grid-scale applications. Sodium-sulfur batteries, vanadium-redox flow batteries,

lithium-ion batteries, and lead-acid batteries have been used in grid level applications. For instance,

a 200 MW, 800 MWh vanadium redox flow battery storage project is under construction in Dalian,

China which will become the world’s largest battery storage facility when completed [2]. Also,

according to the DOE Energy Storage Database [2], lithium-ion batteries are widely used and

applied in most of the grid-scale battery storage projects.
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ESSs can provide several services, such as bulk energy services (electric energy time-shift and

electric supply capacity), ancillary services (regulation, voltage support, etc.), transmission and

distribution (T&D) infrastructure services (T&D upgrade deferral, transmission congestion relief,

etc.) and customer energy management services (power quality, demand charge management,

etc.) [1,3,4]. Despite steadily decreasing costs, the capital cost of an ESS is still considerable, and

very few applications of ESSs are directly related to economic incentives. Hence, a comprehensive

study is needed to estimate the potential benefits, to guide the planning and to investigate the

optimal operating strategy of ESSs.

1.2 Objectives and Challenges

The objectives and challenges of this research work are,

1. Benefits: The first objective is to estimate the maximum revenue that an energy storage

system can generate. The stacked revenue from an ESS cannot be calculated by simply

aggregating the benefits from individual applications. This is because a quantity committed

to one market may not be committed to another during the same time interval. Thus it is

necessary to build a comprehensive model which is able to estimate the stacked revenue

and the results can be utilized by industries including utilities and manufacturers to build

business cases when they want to install an ESS for their facilities.

2. Planning: The second objective is to develop an approach which helps the system planners

to better understand and estimate the actual capacity contribution of an ESS, especially

when the ESS is expected to provide multiple services. When performing system capacity

expansion studies, the reliability target should be first met. The capacity value of a generat-

ing unit can reflect the contribution of a unit to meet the desired reliability level. However,

the ESS availability uncertainty and the energy-limited characteristic make the estimating

process complicated. This part also proposes a sensitivity guided approach to determine the

optimal location of ESSs which aims at minimizing the peak hour generation cost.
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3. Operation: The task for operation is to build a model which provides optimal operating

strategy in electricity markets. This strategy should consider not only the operating policies

and system constraints, but also the cycling behavior of the ESS and its impact on longevity.

This is because participating in certain markets can result in significant cyclings of the ESSs

and deep cycles can have large negative impact on the longevity for some types of battery

ESSs, such as Lithium-ion batteries.

1.3 Contributions

The contributions of this dissertation are as follows,

• Developing a mathematical model to evaluate the stacked revenue of ESSs.

• Co-optimizing the ESSs applications, including energy arbitrage, frequency regulation and

outage mitigation.

• Developing a mathematical model to evaluate the system reliability improvement with ESSs.

• Proposing the model to estimate the capacity value of ESSs considering the availability

uncertainty of ESSs when providing multiple services.

• Proposing a sensitivity-guided approach to determine the optimal location of ESSs.

• Modeling the effect of battery degradation in determining the optimal operating strategies.

• Investigating the impacts of battery operating policies on the longevity of the battery ESSs.

1.4 Organization of the Thesis

This thesis presents the proposed approaches, case studies and results, which are organized as

follows.

Chapter 2 introduces several types of grid-scale energy storage systems and briefly discussed

the application and benefits of ESSs in the power grid.

Chapter 3 describes the proposed model to evaluate the stacked revenue of grid-connected

energy storage systems.
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Chapter 4 presents the model and procedure to estimate the capacity value of an ESS when it

is expected to provide multiple services.

Chapter 5 proposes a sensitivity guided approach to determine the optimal location of ESSs

which aims at reducing the peak generation cost.

Chapter 6 provides the method to determine optimal operating strategies of Lithium-ion battery

ESSs considering the battery degradation.

Chapter 7 describes concluding remarks of this dissertation.
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Chapter 2

Background and Literature Review

The first chapter of the dissertation includes a literature review of existing and near-term energy

storage technologies, engineering and materials. This chapter also introduced the potential appli-

cations of the energy storage on the power systems, such as peak shaving, frequency regulation,

outage mitigation, transmission & distribution upgrade deferral, etc.

2.1 Types of Energy Storage Systems

The energy storage systems introduced in this section are: pumped storage hydro, compressed

air energy storage systems, and battery energy storage systems (BESS). Several types of BESSs

are also discussed, such as Lithium-ion batteries, Sodium-sulfur batteries, Lead-acid batteries,

Vanadium Redox Flow batteries, etc.

2.1.1 Pumped Storage Hydro

Pumped Storage Hydro (PSH) is one of the largest energy storage technologies currently applied

around the world. This technology is mature and has been applied since 1880s. The first PSH

plant in the U.S was the Rocky River pumped storage plant, which is constructed in the late 1920s

in Connecticut. PSH is one of the most cost-effective ESSs and currently accounts for 95% of all
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utility-scale energy storage in the US. The total rated power of PSH is more than 185 GW world

wide [2].

A typical conventional PSH project consists of two interconnected reservoirs with different

elevations [5]. The PSH store and generate power by moving water between two reservoirs through

tunnels. For example, PSH can employs off-peak energy to pump water from the lower reservoir up

to the upper reservoir. Also, it can release water from the upper reservoir into the lower reservoir

to generate electricity when the electricity demand is high.

2.1.2 Compressed Air Energy Storage

Compressed Air Energy Storage (CAES) typically has underground cavern or aboveground pipes

or vessels. It is another type of ESSs which has large capacity other than PSH. The CAES systems

can compress air and store it in a reservoir during periods of excess power. When the electricity is

required, the stored high-pressure air is heated, expanded and returned to the surface and applied

to generate electricity.

There are two operating large CAES systems. One is a 290 MW, 4 hours in-ground natural gas

combustion compressed air project in Germany built in 1978 and another one is the 110 MW, 26

hours project in Alabama, US, built in 1991 [2]. Another noteworthy project is the Bethel Energy

Center which is a planned 317 MW CAES facility that will be located in Anderson County, within

Texas ERCOT power market. This facility can provide power for over 300,000 homes and has

the energy capacity of 30,000 MWh when completed (anticipated commercial operation date is

Summer 2020) [6].

2.1.3 Vanadium Redox Flow Battery

Vanadium redox flow battery (VRFB) is a relatively mature type of flow battery. The power of flow

batteries is defined by the size and design of the electrochemical cell while the energy depends on

the size of the tanks [7]. Like other redox-flow batteries, vanadium redox flow batteries have high

energy efficiency, short response time, long cycle life (more than 10,000 cycles), independently

6



tunable power rating and energy capacity, and consistently stable performance [8]. VRFB uses

ions of the same metal on both sides and this attribute prevents cross contamination and resulting

in electrolytes with a potentially unlimited life. These batteries are also inherently safe, with no

thermal runaway, since the electrolyte is aqueous and non-flammable.

VRFB has already been used in various stationary applications and the number of VRFB

projects is increasing. Vanadium redox flow batteries are mostly used for applications such as

renewable capacity firming, renewable energy time shift, onsite renewable generation shifting, fre-

quency regulation, electric energy time shift and voltage support. The size of the VRFB can be

expanded to more than 100 MW. For instance, a 200 MW, 800 MWh vanadium redox flow battery

storage project is under construction in Dalian, China which will become the world’s largest flow

battery storage facility when completed [2].

2.1.4 Lithium-ion batteries

Lithium-ion (Li-ion) batteries were first commercialized in the early 1990s and now have become

one of the most preferred storage technologies in many applications, due to their high energy

density, high voltage ratings, high efficiency, low self-discharge, and fast response. In addition,

the Li-ion battery market is expanding and a lot of manufactures are available, for example, Tesla,

A123, LG Chem, BYD, SAFT, etc. However, Li-ion batteries have some disadvantages, such as

high cost, heat management issues and narrow operating temperatures [7] and the biggest issue for

Li-ion batteries is safety due to flammability.

Li-ion batteries have several subtypes based on cathode material, including Lithium Manganese

Oxide (LMO), Lithium Iron Phosphate (LFP), Lithium Nickel Cobalt Aluminum (NCA), Lithium

Titanate (LTO) , Lithium Nickel Manganese Cobalt (NMC), etc. In general, LFP is the most

popular type for power grid in terms of the number of projects installed.

The largest Li-ion battery available today is the one installed by Tesla in the Hornsdale Wind

Farm in South Australia [9]. This 100 MW, 129 MWh battery is used to store renewable energy and

provide back-up power. The number of Li-ion batteries is increasing rapidly. Among the projects
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that are under-construction, announced and contracted, more than half of the projects are Li-ion

batteries. Li-ion batteries are mostly applied for renewable capacity firming, frequency regulation,

electric energy time shift, and so on.

2.1.5 Sodium-Sulfur Battery

Sodium-sulfur (NaS) battery technology was first invented in the 1960s by Ford Motor Company.

After decades of development and support, nowadays there are many operational NaS projects

worldwide and it has been applied to many applications such as, electric utility distribution grid

support, wind power integration, and high-value grid services [1]. The advantages of NaS batteries

are long discharge period, relatively high energy densities, fast response and commercial maturity.

Moreover, the NaS battery uses inexpensive, non-toxic materials leading to high recyclability [10].

NaS battery normally requires a temperature of 300◦C to 350◦C to ensure the electrodes in liquid

states, so each unit has a build-in heating element. Therefore, one of the drawbacks of NaS battery

is that the internal heating unit uses the batterys own stored energy and thus reduces the battery

performance. Another downside is the risk of fire, since it uses materials such as metallic sodium

which is combustible if exposed to water.

2.1.6 Lead-Acid Battery

Lead-acid (LA) batteries have been commonly used in many industry application including sta-

tionary and mobile applications [7]. There are two main types of lead acid batteries which are

carbon lead acid technologies and advanced lead-acid technologies. Lead-acid batteries have ad-

vantages such as fast recharge rates, simple charging technology, long cycle lives in deep discharge

applications, favorable cost/performance ratio [7, 11]. Lead-acid batteries have high commercial

maturity and relatively low disposal cost, total installed cost and relocation cost [11]. However,

the Lead-acid batteries have a hazardous material prohibited or restricted in various jurisdictions,

could cause harmful impacts on the environment and may need high maintenance cost [7].
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2.1.7 Other Types of Battery Sotrage

Nickel-Based Batteries

Nickel cadmium (NiCd) and nickel metal hybrid (NiMH) batteries are the two main members

in the nickel-based family. All nickel-based batteries utilize nickel hydroxide as the cathode. NiCd

uses a metallic anodecadmium, while NiMH has anode that store hydrogen.

a. Nickel Cadmium Battery

Nickel cadmium (NiCd) has been in the commercial market since 1915, which is a relatively

mature technology, but few grid-scale deployments exist. This type of battery is capable of per-

forming well even at low temperatures. Vented Ni-Cd batteries can operate on a scale similar to

lead-acid batteries, and compared to lead acid batteries, nickel-based batteries have a higher power

density, a slightly greater energy density, and the number of cycles is higher [7]. Despite the many

advantages, NiCd batteries also pose several disadvantages. The material cadmium is prohibited

for customer use, since it is very toxic and dangerous to the environment.

b. Nickel Metal Hydride Battery

Nickel metal hydride (NiMH) Battery was developed as an alternative for NiCd because of the

toxicity of cadmium and became available around 1995. Although NiMH batteries share almost

all the advantages of NiCd batteries, the maximal nominal capacity is still ten times less when

compared to NiCd and lead acid [7]. Furthermore, it charges slower than NiCd and does not

withstand very low operating temperatures.

Sodium-Nickel-Chloride Battery

Sodium nickel chloride (NaNiCl) batteries are also known as ZEBRA (Zero Emission Battery

Research Activities). They are high-temperature batteries like sodium-sulfur batteries, but they

use nickel chloride for the positive electrode instead of sulfur. NaNiCl batteries has several advan-

tages, such as low environmental impact, fast response, long cycle life, tolerance of short circuits,

constant performance and cycle life in harsh operating environments, and high energy density [1].

It has proven to present relatively low intrinsic risks during normal operation.
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Zinc-Bromine Battery

The Zinc-bromine battery (ZBB) is a type of hybrid flow batteries (HFB) which is developed in

the early 1970s. This battery is still in an early stage of field deployment and demonstration trials

for utility applications. ZBB is a promising and emerging technology. It combines the features of a

conventional battery and flow battery, and thus allows higher power and energy densities than other

types of flow batteries. It also has long estimated lifetimes as 20 years, since the active materials

themselves do not degrade and the lifetime is not strongly dependent on the number of cycles or

the depth of discharge [1].

Zinc-Air Battery

Zinc-air is one type of metal-air batteries. Metal-air batteries consist of the anode made from

pure metal and the cathode connected to an inexhaustible supply of air [7]. This type of batteries

should be able to offer low material cost and high specific energy. However, it is still in early stage

for utility application.

Iron-Chromium Battery

Iron-chromium (Fe-Cr) battery is the first developed technology of flow batteries in 1970s by

NASA. The Fe-Cr type batteries has safety advantage as other redox flow batteries due to the

separation of power and energy. They also have design flexibility, since the power capacity (stack

size) can be specifically tailored to the applications load or generation profile [12]. Moreover,

they use abundant and low-cost materials and have no volume change during cycling, results in

a less-complex design and simpler control compared to Li-ion, lead-acid, NaS, Zinc-bromine and

others [1]. They are also environmental benign, since the utilized iron and chromium species are

low toxic. However, this technology is still in R&D phase for grid services markets. Once it

becomes commercially mature, it would be an advancing option for time shift on either the utility

or customer side of the meters and also frequency regulation services.
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2.2 Applications of Energy Storage System

ESSs can provide several services, such as bulk energy services (electric energy time-shift and

electric supply capacity), ancillary services (regulation, voltage support, etc.), transmission and

distribution (T&D) infrastructure services (T&D upgrade deferral, transmission congestion relief,

etc.) and customer energy management services (power quality, demand charge management,

etc.) [1, 3, 4]. This section focuses on describing outage mitigation, energy arbitrage, frequency

regulation, and other technical benefits of ESSs.

2.2.1 Mitigation of Outages

Numerous factors may affect system reliability, such as failures of generating units, system faults

and equipment failures. All these factors may lead to loss of load. In such situations, an ESS

can effectively support customer loads when partial or complete loss of power from the source

utility takes place. Sometimes, due to the capacity constraint, it might not be possible for the

ESS to completely mitigate the outage. However, for such an event, it can shorten the interruption

duration or reduce the number of interrupted customers.

The ESS can be installed at the transmission level, distribution level, or close to a customer

site. The closer the location of the ESS to a customer, the more helpful it is. If the ESS is owned

by a utility with a large capacity, it can be treated as a dispatchable resource (subject to its energy

limit) in improving the reliability in the interconnected area. It can also serve the customer needs

at an outage event, especially in some critical locations such as hospitals and correctional facilities,

which can significantly benefit from using an ESS. This support may require the ESS and customer

loads to island during the outage and re-synchronize with the utility when power is restored.

2.2.2 Energy Arbitrage

An energy storage system can be utilized to store energy during off-peak hours and then discharge

at peak demand period for peak shaving or load following. This helps to reduce the generation cost
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and postpone the need for peaking units. It is also profitable for the ESS owners as they can take

advantage of the energy price difference. The Locational Marginal Price (LMP) is usually used

for wholesale electricity price, which indicates the value of energy at a particular location at any

given point of time. To gain maximum benefit from this application, the ESS should be charged

with less expensive energy at off-peak hours and discharged during the peak hours when LMPs are

high. Therefore, locations with large variability in LMPs can be considered as ideal locations.

2.2.3 Frequency Regulation

Frequency regulation is another service for which energy storage is well suited. Frequency regula-

tion helps to maintain the grid frequency within specified limits and to comply with the Real Power

Balancing Control Performance (BAL001) and Disturbance Control Performance (BAL002) Stan-

dards of the North American Electric Reliability Council (NERC) [13].

The frequency of any system may deviate from the specified value if there is an unforeseen im-

balance between the generation and the load. Several generator actions are needed at this moment

to restore the frequency back to the normal operating range. These include primary, secondary, and

tertiary frequency control and may range from a few seconds to several minutes. A fast-acting ESS

can help in such a situation, which helps to restore the frequency very quickly. The response of an

ESS can be twice as effective compared to conventional fossil fuels generators, which includes coal

units and combustion turbines (CTs) [14]. This property of the storage devices has been utilized

by several utilities.

2.2.4 Other Technical Benefits

ESSs can also be used in a variety of other technical applications (not directly related to monetary

benefits) that are crucial to the power grid operation and equipment lifetime. These applications

can be classified according to the customers that are being served, e.g., residential, commercial, or

industrial customers. Some of these applications are described in this section.
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Voltage Flicker Mitigation

In power distribution systems, voltage flicker is often a problem that needs to be addressed. It

is harmful for all types of customers. Voltage flicker may damage electrical devices ranging from

the most common appliances used in a household to large equipment used in the industry. It may

also lead to spoilage from semi-finished products in an industry. However, if an ESS is installed

in the system, it helps to stabilize the voltage by ramping up or down within a very short period of

time, thus protecting the customer equipment.

Power Factor Improvement

The requirements of power factor improvement can be seen mostly among industrial customers

who use a significant amount of reactive power for their daily operation. In most of the cases, they

are charged with a penalty from the utility serving them if the power factor drops below a pre-

specified limit. Those customers will be greatly benefited if they already have an ESS installed at

their facilities.

Upgrade Deferral

An ESS can also be used for the deferral of transmission/distribution system upgrades. It can

help in delaying investments that would otherwise be necessary to maintain the transmission and

distribution capacity in accordance with the load demand. For example, purchase of a new trans-

former with a high capacity may be avoided by using an ESS instead.

Voltage-regulator Lifetime Extension

The deployment of distributed generators, such as photo-voltaic (PV) and wind power at the

distribution system level, may decrease the lifetime of voltage regulators due to the increase in

voltage fluctuations (e.g., the number of tap-changes increases). If ESSs are used at the distribu-

tion system level, (e.g., at a feeder) to reduce voltage fluctuations, the number of tap-changes of

the regulator can be reduced, thus extending its lifetime.
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Emission Reduction

Climate change and global warming are matters of concern nowadays and they are mostly re-

lated to emissions from fossil-fueled power plants. Thermal power plants across the world are

among the largest consumers of fossil fuels. Since the peak power generated from renewable

energy sources may not coincide with the system peak, integration of ESSs with these sources

will reduce the peak time and level and therefore significantly reduce emissions from fossil-fueled

power plants [15]. In other words, ESSs can store clean energy at off-peak hours (e.g., when

wind power generation is high at night while load demand is low) and then discharge it at peak

hours [16].

Black Start

Black Start service is needed to energize transmission and distribution lines and provide sta-

tion power to bring power plants on-line following blackout events. NERC defines a Black Start

Resource as, “A generating unit(s) and its associated set of equipment which has the ability to be

started without support from the System or is designed to remain energized without connection to

the remainder of the System, with the ability to energize a bus, meeting the Transmission Opera-

tors restoration plan needs for Real and Reactive Power capability, frequency and voltage control,

and that has been included in the Transmission Operators restoration plan.” Storage systems can

provide an active reserve of power and energy within the grid and can be applied for providing

black start service. For example, Golden Valley Electric Association uses the battery system in

Fairbanks for this service when there is an outage of the transmission intertie with Anchorage.
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Chapter 3

Evaluation of Stacked Revenue

This chapter proposes a comprehensive evaluation of stacked revenue generated from grid-connected

energy storage systems (ESSs). The stacked revenue from an ESS cannot be calculated by merely

aggregating the benefits from various applications (e.g., energy arbitrage, frequency regulation,

and outage mitigation) as the ESS may not be available for all types of applications during the

same time intervals. This is because a quantity committed to one market may not be committed to

another. In this study, different types of applications for grid-connected ESSs are identified, and a

model incorporating component reliability, power system operation constraints, and storage system

operation constraints is developed to evaluate the composite revenue generated from these appli-

cations. In this model, the types of applications of ESSs are prioritized according to their intended

contributions and system operating conditions. Sequential Monte Carlo simulation is used for

evaluating the reliability improvement and a quadratically constrained linear programming model

is built for estimating the maximum revenue from arbitrage and regulation markets. The proposed

method is demonstrated on the IEEE reliability test system (IEEE-RTS) using historical PJM price

data.
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3.1 Introduction

Deployment of energy storage systems (ESSs) is gaining significant momentum due to economic

incentives, power system regulation requirements, and integration of renewable energy sources.

The ESSs have several applications in power systems including peak load shaving, power outage

mitigation, and frequency regulation. Despite steadily decreasing costs, the capital cost of an ESS

is still considerable, and a few applications of ESSs are directly related to economic incentives.

Hence, a cost-benefit analysis is necessary to evaluate the profit and justify the investment. This

study investigates the economics of the system when several applications of the ESS are stacked

together to generate a cumulative revenue. Benefits from reliability improvement, energy arbitrage,

and regulation are considered in estimating the stacked revenue from ESSs.

An energy storage device can be considered as a device that mediates between energy gen-

eration and energy consumption [1]. The power balance constraint imposes the condition that

generation must always equal consumption (including losses). This is not always feasible, espe-

cially after the integration of renewable energy sources. Hence, the deployment of an ESS provides

a reserve of electric power which can be used judiciously when the need arises. Utilities and re-

search organizations have performed comprehensive research on the applications of ESSs in power

systems [1, 3]. A number of studies have been dedicated to identifying individual use cases and

generating revenues from ESSs [17, 18]. A co-operation scheme for wind power and battery stor-

age to bid into electricity market in providing frequency regulation, in terms of monetary income,

has been described in [19]. Also, estimation of maximum potential revenue of grid connected

ESSs based on the arbitrage and regulation markets has been presented in [20–22]. However, in

these studies, the benefits of outage mitigation are not considered. A quantitative method to de-

termine the size of ESSs to meet specified reliability targets was proposed by one of the authors

in [23, 24]. The method presented in [23, 24] was extended in [25] to quantify the size of the re-

quired energy storage to firm up wind power and improve system reliability to a specific target.

Although the prior work presented in [23–25] shows the benefits of an energy storage system from

the point view of improving system reliability and firming up wind generation, the cost-benefit
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from improving reliability and other merits is not presented.

Different types of ESSs are being used nowadays. Large storage facilities, including pumped

hydro storage (PHS) and compressed air energy storage (CAES) have been developed for decades.

Battery energy storage systems (BESSs) are also available for grid-scale applications. Sodium-

sulfur batteries, vanadium-redox flow batteries, lithium-ion batteries, and lead-acid batteries have

been used in grid level applications. For instance, a 200 MW, 800 MWh vanadium redox flow bat-

tery storage project is under construction in Dalian, China which will become the world’s largest

battery storage facility when completed [2]. Also, according to the Energy Storage Database of the

Department of Energy [2], lithium-ion batteries are widely used and applied in a significant major-

ity of grid-scale battery storage projects. The work presented in this chapter considers the potential

benefits for different types of applications from fast-acting ESSs, such as batteries, flywheels, etc;

determination of the type of storage to be used is beyond the scope of this work.

The stacked revenue from an ESS cannot be calculated by simply aggregating the benefits

from individual applications because a quantity committed to one market may not be committed to

another during the same time interval. Hence, they have to be prioritized based on several factors

such as customer satisfaction and economic viability. In this chapter, improving system reliability

is prioritized along with generating revenues from energy arbitrage and frequency regulation. Also,

the cost-benefit analysis for each individual application of ESSs is studied and stacked with other

applications for estimating the possible maximum revenue. In this study, service continuity is

considered with the highest priority. This means that in the event of an outage, the ESS should

discharge in an attempt to minimize the downtime at the load, even though participating in the

energy or regulation market may bring higher profit.

Sequential Monte Carlo simulation (MCS) is used to track the state of charge (SOC) of the ESS

and the outage events in the system while evaluating the reliability indices and interruption cost.

Also, the same sequence of failures is used for the tested cases to provide a common base for the

comparisons. The variable behavior of load and the forced outages of generators are also captured

by the sequential simulation. For estimating the revenue from electricity market, a quadratically
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constrained linear programming optimization problem is developed. In this model, the control

strategy for the ESS not only considers the energy storage capacity and charging/discharging power

limits, but also includes the market mechanism constraints and application priority.

The remainder of this chapter is organized as follows. Section 3.2 explains the mathematical

models that are developed to calculate the revenue generated from each use case. Section 3.3

describes the ESS operation strategy and managing concerns. Section 3.4 presents case studies on

evaluating the contribution of ESSs. Section 3.5 provides concluding remarks.

3.2 Mathematical Modeling

In this section, the mathematical models for evaluating revenue from mitigating outages, partici-

pating in energy arbitrage, and regulation market are presented.

3.2.1 Value from Mitigating Outages

When a contingency occurs, such as a generation loss or a transmission line tripping, the load

demand may not be satisfied. In the sequential MCS, random component failures are simulated.

For each hour, the system state is defined by the component states and capacities. The sufficiency

of power supply to each load is the combined effect of operation and generation and transmission

adequacy. Then, a feasible dispatch is sought by solving an optimization problem, subject to the

equality and inequality constraints of the power system operation limits and the availability of

system components [26, 27].

Customer damage functions (CDFs) are usually applied to display customer interruption costs,

which can be determined for a given customer type and aggregated to produce section customer

damage function for the various classes of customers [28]. The value of CDF depends on the type

of customer served (e.g., the interruption cost for an industrial user is higher than a residential

or an agricultural user). Composite customer damage function (CCDF) at each load point can be

calculated by aggregating the weighted individual sector CDF at that load point. The CCDF can
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be converted into another index, i.e., the interrupted energy assessment rate (IEAR) in $/kWh to

evaluate the monetary loss as a function of the energy not supplied. The equations below show

how to evaluate the system reliability indices and interruption cost.

Minimize Costint =

Nb∑
i=1

Ci × IEARi

 (3.1)

subject to

P (V, δ)− PD + C = 0

Q(V, δ)−QD + CQ = 0

Pmin
G ≤ PG ≤ Pmax

G

Qmin
G ≤ QG ≤ Qmax

G

Vmin ≤ V ≤ Vmax

|F (V, δ)| ≤ Fmax

−π ≤ δ ≤ π

(3.2)

where Ci is the load curtailment at bus i, IEARi is the Interrupted Energy Assessment Rate at

bus i, C is the vector of load curtailments
(
Nb × 1

)
, CQ is the vector of reactive load curtailments(

Nb × 1
)
, V is the vector of bus voltage magnitudes

(
Nb × 1

)
, δ is the vector of bus voltage angles(

Nb × 1
)
, PD and QD are the vectors of real and reactive power loads

(
Nb × 1

)
, PG and QG are

the vectors of real and reactive power outputs of the generators
(
Ng × 1

)
, Pmin
G , Pmax

G , Qmin
G

and Qmax
G are the vectors of real and reactive power limits of the generators

(
Ng × 1

)
, Vmax and

Vmin are the vectors of maximum and minimum allowed voltage magnitudes
(
Nb × 1

)
, F (V, δ)

is the vector of power flows in the lines
(
N` × 1

)
, and Fmax is the vector of power rating limits

of the transmission lines
(
N` × 1

)
. In the foregoing description, Nb is the number of buses, N` is

the number of transmission lines, and Ng is the number of generators.

The above model implies that for any encountered scenario (generation and transmission avail-
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ability and load state) power will be routed through the network in such a manner so as to minimize

the system interruption cost.

(a) Loss of load probability (LOLP): The LOLP is a widely used reliability index and it can be

estimated as follows [27].

LOLP = E[θ̂] (3.3)

where

θ̂ =
1

T

Nc∑
i=1

Tdown
i (3.4)

and Tdown
i is the duration of an interruption encountered during the sequential MCS. Nc is the

total number of simulated cycles and T is the total period of simulation.

(b) Expected demand not supplied (EDNS): The EDNS is the sum of the products of probabil-

ities of failure states and the corresponding load curtailments, which can be estimated as follows.

EDNS = E[d̂] (3.5)

where

d̂ =
1

T

Nc∑
i=1

(Tdown
i

Nb∑
j=1

Cj) (3.6)

(3) Interruption Cost: The interruption cost in this study is defined as the annual interrupted

energy cost and can be calculated as follows.

Interruption Cost = E[φ̂] (3.7)

where

φ̂ =
1

T

Nc∑
i=1

(Tdown
i

Nb∑
j=1

Cj × IEARj) (3.8)

(4) Value From Outage Mitigation: The value of reliability provided by the ESS is calculated by

comparing the interruption cost with and without an ESS. The ESS is operated with the objective
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of maximizing the revenue from the arbitrage and regulation market at normal operating states

where the SOC varies with time. The integration of an ESS can be modeled by a multistate model

to capture the varying behavior. For each state, if the SOC value and its corresponding probability

is provided, then the value from this use case can be expressed as follows:

Valuerel = E[φ̂base]−
Nsoc∑
n=1

E[φ̂n]psoc
n (3.9)

where Nsoc is the total number of SOC states and psoc
n is the corresponding probability. E[φ̂n] is

the interruption cost when the initial SOC of an outage event is at the nth state and E[φ̂base] is the

interruption cost for the base case without an ESS.

3.2.2 Revenue from Arbitrage Market

In this section, a model for calculating the revenue from energy arbitrage is defined. If the ESS is

operated for a period of time Tm, the total revenue from the arbitrage market can be calculated as:

Incomearb =

Tm∑
t=1

(R
lmp
t E

arbd
t −Rlmp

t Earbc
t ) (3.10)

where Rlmp
t is the locational marginal price ($/MWh) of the system at time t; E

arbd
t and Earbc

t

are the quantities of energy sold (discharged) and purchased (charged) at time t, respectively.

3.2.3 Revenue from Regulation Market

Independent System Operators (ISOs) and utilities purchase frequency regulation service from

ESSs to compensate area control error (ACE) and to maintain frequency stability. According to

the Federal Energy Regulatory Commission (FERC) order 755, market operators are required to

apply pay-for-performance mechanism which should reflect the speed and accuracy of the device.

ESSs are able to respond rapidly while following the regulation signal and therefore are motivated
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to participate in the regulation market. In PJM market, two different regulation signals are applied,

i.e., RegA and RegD. RegA is mostly designed for traditional regulating resources, which is a

low-pass filtered ACE signal [29]. On the other hand, RegD is generally used for faster responding

resources like energy storage, which is a high pass filtered ACE signal.

Different ISOs implement pay-for-performance using different models. In this study, the esti-

mation method is developed based on a method used by PJM Interconnection. PJM implements

frequency regulation by using a payment method that consists of two parts; a capability payment

based on regulation market capability clearing price (RMCCP) and a performance payment using

regulation market performance clearing price (RMPCP). These two parts are added up to obtain

the total revenue from regulation market. Both the capacity and performance payments employ

an actual performance score. Also, the performance credit includes a mileage ratio. The calcula-

tions are shown in the following equations [29]. The capability credit for a particular hour can be

calculated as follows.

Capability Credit = P
reg
t × St ×R

rmccp
t (3.11)

where P reg
t is the hourly-integrated regulation capacity (MW), St is the actual performance score,

and Rrmccp
t is the RMCCP at time t. Similarly, the performance credit is calculated as follows.

Performance Credit = P
reg
t × St × βt ×R

rmpcp
t (3.12)

where βt is the mileage ratio for that hour and Rrmpcp
t is the RMPCP at time t. Here mileage

represents the absolute sum of the movement of the regulation signal in a given period and is the

proxy metric for the amount of work performed. In this case, the mileage ratio is the ratio between

the requested mileages of RegD signal and the referenced traditional regulation signal (RegA),

which is defined as follows.

Mileage Ratio =
Mileage RegD

Mileage RegA
(3.13)
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The total income from the regulation market is the total of capability credit and performance

credit and is expressed as follows.

Incomereg =

Tm∑
t=1

[St(R
rmccp
t + βtR

rmpcp
t )P

reg
t ] (3.14)

3.3 Energy Storage System Operation Strategy

In this section, the optimization model to estimate the maximum stacked revenue from improving

system reliability and participating in energy and regulation markets is presented.

3.3.1 Objective

The objective of this problem is to estimate the maximum benefit from an ESS in the grid which is

equal to the summation of value from outage mitigation (Valuerel), income from the arbitrage and

regulation markets (Incomearb and Incomereg) as stated in (3.15).

Benefit = Valuerel + Incomearb + Incomereg (3.15)

In this study, the reliability is given a higher priority than monetary benefits, which implies that

in the event of an outage, the ESS should discharge to minimize the downtime of service to the

load, no matter which use case brings more monetary benefits. During the periods when there is

no outage event, the storage system is operated to maximize the revenue from the arbitrage or the

regulation market. The value from outage mitigation can be evaluated by calculating the reduction

in the interruption cost, which is presented in section III.

To estimate the income from the arbitrage and regulation, a quadratically constrained linear

programming model is developed. In this optimization model, the variables are P
arbd
t , Parbc

t

and P reg
t , where P

arbd
t , Parbc

t are the capacities sold and purchased in the arbitrage market at

time t; P reg
t is the committed regulation capacity at time t, which can be utilized for regulation up
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or down based on the regulation signal. The objective is to maximize the income from the energy

and regulation markets as follows.

Maximize

Tm∑
t=1

[
R

lmp
t P

arbd
t τ/γd −R

lmp
t Parbc

t τγc

+St(R
rmccp
t + βtR

rmpcp
t )P

reg
t

] (3.16)

where τ is the duration of the energy market dispatch time interval and it is considered to be one

hour in this study, γc and γd are the charging and discharging efficiencies (%). Rlmp
t P

arbd
t τ/γd

represents the revenue by selling the energy and Rlmp
t Parbc

t τγc is the cost of purchasing energy

from arbitrage market; St(R
rmccp
t + βtR

rmpcp
t )P

reg
t represents the revenue from the regulation

market.

3.3.2 Constraints

The operation of an ESS can be modeled by its energy storage capacity, charging and discharging

power limits, charging and discharging efficiencies. The state of charge of an ESS reflects the ratio

of the current capacity to the rated capacity, which depends on the SOC of the previous period and

the current charging/discharging operation. The state of charge at time t is represented as follows.

SOCt = SOCt−1 +
4Et
Er (3.17)

where Er is the rated energy capacity, and4Et is calculated as below.

4Et = Earbc
t − E

arbd
t + E

regc
t − E

regd
t (3.18)

where Earbc
t and E

arbd
t are the charged and discharged energy in the arbitrage market; Eregc

t

and E
regd
t are the charged and discharged energy in the regulation market, respectively. They are
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calculated as follows.

Earbc
t = Parbc

t τγc

E
arbd
t = P

arbd
t τ/γd

E
regc
t =

−P
reg
t η

reg
t τγc, if η

reg
t < 0

0, otherwise

E
regd
t =

P
reg
t η

reg
t τ/γd, if η

reg
t > 0

0, otherwise

(3.19)

where ηreg
t is the RegD signal at time t. The positive/negative sign of the RegD signal implies that

the power system needs regulation up/down service and the ESS is required to discharge/charge

accordingly.

The operation is subject to the following constraints.

SOCmin ≤ SOCt ≤ SOCmax, ∀t ∈ Tm (3.20)

0 ≤ P
arbd
t , Parbc

t , P
reg
t ≤ Pmax,∀t ∈ Tm (3.21)

(P
arbd
t + Parbc

t )× P reg
t = 0, ∀t ∈ Tm (3.22)

P
arbd
t × Parbc

t = 0, ∀t ∈ Tm (3.23)

P
arbd
t , Parbc

t , P
reg
t = 0,∀t ∈ Tdown (3.24)

SOCt = SOCdown
t ,∀t ∈ Tdown (3.25)

Tm∑
t=1

(E
arbd
t + E

regd
t ) ≤ ηcyc(SOCmax − SOCmin) (3.26)

where Tdown is the set of all intervals when the system has an outage event and the system is

in a down state. SOCdown
t is the state of charge at the time when the system is in the down
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state. Tdown and SOCdown
t are obtained from the sequential MCS. SOC is constrained with

lower and upper bounds by SOCmin and SOCmax as shown in (3.20). Charging and discharging

power limits are represented by (3.21). The quadratic constraint in (3.22) indicates that during

each period, the ESS is assumed to participate in one market at most. Besides, it is assumed that

the ESS cannot sell and buy energy in the arbitrage market simultaneously as stated in (3.23).

Equation (3.24) shows that when an outage event occurs, the ESS should discharge to mitigate the

outage and (3.25) implies the SOC should be equal to the SOC value at the down states.

The life of ESSs is a vital concern for the operators and utilities, which is determined by its

calendar life and cycle life. Calendar life of an ESS captures its aging and degradation over time

and is affected by several factors such as temperature and humidity. This implies that the battery

degrades even though it is stored and unused. On the other hand, cycle life depends on cycle aging,

which not only includes the number of cycles, but may also depend on the depth of discharge and

the mean SOC of cycles. For example, deep cycles can reduce the life span of lithium-ion batteries

significantly, but the cycle life of vanadium redox flow battery is not dependent on the depth of

discharge [1]. To extend the lifetime of the ESS, (3.26) is included to limit the number of discharge

cycles (ηcyc) [30].

3.4 Case Studies and Results

In this study, the IEEE Reliability Test System (IEEE-RTS), which has been extensively used for

power system reliability studies, is utilized for estimating the profit from mitigating outages by an

ESS. This system consists of 24 buses, 33 transmission lines, 5 transformers, and 32 generating

units. The system data, including generation capacities, transmission limits, load profile and relia-

bility parameters, are provided in [31] and the single line diagram of this test system is shown in

Fig. 3.1. Also, the IEAR values for this test system is presented in table 3.1 [32].

PJM historical data is utilized for evaluating the revenue from participating in energy and reg-

ulation markets [33–35]. The historical data, including the LMP, RMPCP, RMCCP, mileage ratio,
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Figure 3.1: Single line diagram for IEEE RTS

and RegD signal are available on the PJM website. Data from June, 2016 to May, 2017 are used in

this study. In the PJM regulation market, the regulation up and down signals are considered as one
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Table 3.1: IEEE RTS-24 IEAR Values

Bus IEAR Bus IEAR Bus IEAR
No. ($/kWh) No. ($/kWh) No. ($/kWh)

1 6.20 9 2.30 17 –
2 4.89 10 4.14 18 3.75
3 5.30 11 – 19 2.29
4 5.62 12 – 20 3.64
5 6.11 13 5.39 21 –
6 5.50 14 3.41 22 –
7 5.41 15 3.01 23 –
8 5.40 16 3.54 24 –

signal. The RegD regulation signal is normalized so that the values lie between −1 and 1, where

the negative and positive signs represent for regulation down and up, respectively. All data used

here are converted to hourly data.

3.4.1 ESS Size and Location

While determining the location and size of an ESS, several aspects need to be considered. First, the

land availability needs to be given importance. The utility or the investor needs to make sure that

there is enough space for an ESS. An alternative is to use a mobile trailer which provides a flexible

solution for smaller ESSs. Other concerns, such as noise regulations, customer types and existing

system performance should also be taken into consideration. Locations which require system

upgrades, have larger LMP fluctuations or inferior reliability may be better candidate locations

than others. In this study, the candidate locations are evaluated based on the amount of reliability

improvement it can bring to the system, i.e., the extent to which an ESS at a candidate location can

improve the system EDNS and reduce the interruption cost. The power and energy capacity of the

ESS are set as 20 MW and 20 MWh, and it is assumed that this chosen size is not sufficiently large

to impact the market price.

The SOC is constrained between 15% and 95% to avoid very low or very high values. The
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charging and discharging efficiencies are both 85%. Redox flow batteries are considered for the

demonstration, since they are suitable for grid-scale applications and have large cycle life [36,37].

The ESS parameters are shown in table 3.2.

Table 3.2: ESS Parameters

Parameter Value

Power Capacity 20 MW
Energy Capacity 20 MWh

SOCmin 15%
SOCmax 95%

γc 85%
γd 85%

3.4.2 Solution Procedure

The results are obtained by following the three steps as shown in figure 3.2.

Step I

Estimate the distribution of the SOC and develop the multi-state model for the reliability analy-

sis. The annual hourly SOC can be obtained by solving the optimization problem with the objective

function (3.16) and subject to constraints (3.20)–(3.23) and (3.26).

Step II

Calculate the reliability indices and value from outage mitigation by solving the model repre-

sented by (3.1)–(3.9). Also, track the time interval when system is in down state (Tdown) and

the SOC at that time (SOCdown) for the next step, since the same sequence of failures is used to

provide a common base for the comparisons.

Step III

Solve the optimization problem given in (3.16)–(3.26). The revenue from arbitrage and regu-

lation market with market mechanism constraints and application priority is obtained.

The optimization problems in step I and III are solved by General Algebraic Modeling System
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(GAMS).
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Figure 3.2: Proposed solution procedure

3.4.3 Results

3.4.3.1 Histogram of Annual SOC

In this section, the histogram of hourly SOC for a year is presented. The histogram is shown in

figure 3.3. The average value of each bin and the corresponding probability is given in table 3.3.

3.4.3.2 Reliability Improvement

First, the sequential MCS is performed on the base case (without ESS) to estimate the reliability

indices and the interruption cost. The results are shown in table 3.4.
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Figure 3.3: Histogram of SOC for a year

Table 3.3: ESS SOC Value and State Probability

State No. 1 2 3 4 5

Average SOC (%) 19 27 35 43 51
Probability 0.0337 0.0381 0.0783 0.1572 0.3692

State No. 6 7 8 9 10
Average SOC (%) 59 67 75 83 91

Probability 0.1332 0.0715 0.0402 0.0296 0.0491

Table 3.4: Reliability Indices of the Base case

Base LOLP EDNS Interruption
Case (MW/year) cost ($/year)
Value 0.0026 0.23504 4,719,762

The evaluation of a 20 MW, 20 MWh ESS at five selected load buses (bus 6, 9, 10, 13 and 18)

are performed; the system reliability improves more when the ESS is installed on these buses [25].
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Table 3.5: Reliability Improvement with the ESS

Bus LOLP EDNS Interruption
No. (MW/year) cost ($/year)

6 0.0026 0.22895 4,597,234
9 0.0026 0.22905 4,599,175
10 0.0026 0.22904 4,599,133
13 0.0026 0.22915 4,601,397
18 0.0026 0.22907 4,599,724

The SOC value at the beginning of the outage event is represented by the multi-state model as

given in table 3.3. The results for these five cases are shown in table 3.5. The improvement on the

other buses are very small. The reliability indices and interruption costs are almost the same as in

the base case, therefore, they are not displayed here. From the results, we can see that the LOLP

is not improved and the EDNS and interruption costs are reduced. This happens as the ESS does

not have enough capacity to compensate the loss of load. Thus, the ESS cannot reduce the number

of outage events. However, it is still significant in improving system reliability, since it can reduce

the number of interrupted customers and the interruption cost.

3.4.3.3 Revenue from Arbitrage and Regulation Markets

The simulation runs on a daily base (Tm = 24), and an additional constraint: SOC24−SOC0 = 0

is considered to ensure that the initial and the final states are consistent [38], i.e., SOC at the

beginning of a day is the same as the SOC at the end of the previous day. The SOC0 is assumed

to be 50% for the case studies.

Figure 3.4 illustrates the optimal amount of capacity participated in the arbitrage and regulation

markets and the variation of SOC for one day with no outage event.

The outage events and durations are tracked in the sequential MCS. For these hours, the ESS

is unavailable to generate revenue from the arbitrage or the regulation market. The results for each

day are obtained by solving the quadratically constrained linear programming. The revenue for

each month and the whole year are calculated and listed in table 3.6.
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Figure 3.4: Capacity and SOC for an example day

Table 3.6: Revenue from Arbitrage and Regulation Market

Month Arbitrage Market ($) Regulation Market ($)

January 5,423 178,075
February 2,790 134,877
March 11,242 132,593
April 4,466 132,593
May 5,771 204,478
June 8,461 183,584
July 8,460 250,559
August 10,189 232,081
September 5,010 246,339
October 4,967 231,261
November 3,826 197,093
December 6,970 160,945

Annual 77,575 2,300,486
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3.4.3.4 Stacked Revenue

Table 3.7 presents the stacked revenue for a year. From the results, it can be concluded that the

regulation market generates more revenue than the arbitrage market since the ESS purchases energy

from the arbitrage market but sells most of the energy to the regulation market, where the revenue

is higher.

Table 3.7: Stacked Revenue for a Year

Bus Outage Arbitrage Regulation Stacked
No. Mitigation ($) Market ($) Market ($) Revenue ($)

6 122,528 77,575 2,300,486 2,500,589
9 120,587 77,575 2,300,486 2,498,648
10 120,629 77,575 2,300,486 2,498,690
13 118,365 77,575 2,300,486 2,496,426
18 120,038 77,575 2,300,486 2,498,099

3.4.4 Estimated Income

This part discusses the total estimated income an ESS can generate. The total expenditure for an

ESS can be broken down into capital and operation and maintenance (O&M) costs. Typically,

the capital cost and O&M costs for a Redox flow BESS can be assumed to be $900/kWh and

$5.7/kWh per year [36], respectively. The cost for O&M has been considered as an average value

since it changes over the years. The cost increases as the battery ages, since more maintenance is

required to keep the performance of the degrading battery at a constant level. Hence, for the BESS

considered in this study, the installation cost is estimated to be $18 M with an additional $0.114

M (average) per year for operation and maintenance. Table 3.8 below summarizes the cycle life,

capital cost and O&M cost of redox flow batteries [1, 36].

In this study, the number of discharge cycles (ηcyc) is restricted to 3.5 cycles per day, thus it

can be used for 10 years. Then the approximate stacked income can be calculated by subtracting

the installation and O&M cost from the total stacked revenue of the 10 years. Table 3.9 tabulates
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Table 3.8: Parameters of Redox Flow Battery

Parameter Calendar Cycle Capital Cost O&M Cost
Life [1] Life [36] ($/kWh) [36] ($/kWh/yr) [1]

Value 10 years 13,000 900 5.7

the estimated income when an ESS is installed at bus 6.

Table 3.9: Estimated Income

Parameter Value

Annual Stacked Revenue (M$) 2.5
Lifespan (year) 10
Total Revenue (M$) 25
Total Installation and O&M (M$) 19.14
Total Income (M$ ) 5.86

3.4.5 Discussion

From the results of the case studies, it can be observed that the ESS generates the majority of its

profit from the regulation market. However, participating in the regulation market also leads to

frequent cycling. Operators need to consider the cycling constraint when they make decisions for

bidding. In addition, the prices for the regulation markets have declined over the years and as the

trend continues, the utilities should keep in mind this factor while estimating their revenue from

the applications of an ESS.

Although the value derived from the mitigation of outages is smaller than revenues from the

markets, it bears an intangible but significant value in terms of customer satisfaction. It helps the

utility to build positive reputation among its customers by providing a reliable power supply. The

value of improving reliability can be higher if the ESS is able to serve some critical loads, such as

schools and hospitals. Also, the results presented in the previous section applied only one year as

the example. The reliability value of an ESS may vary with time, as in some years the number of

outage events can be much higher than the others, due to weather conditions or natural disasters.
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Figure 3.5: Histogram of simulation results

Here, the impact of simulating 100 sample paths of one year’s operation of the ESS has been

studied. The maximum and average value of outage mitigation are $10,760,504 and $266,118 in
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this simulation. Figure 3.5 (a) presents the histogram of the result. As is evident from the figure,

only a small number of years have the interruption cost reduction larger than $1,000,000. Figure

3.5 (b) shows the histogram of the results where the value is between zero and one million dollars.

3.5 Conclusion

This chapter has presented a method for quantifying the benefits of stacking up the applications of

an ESS. Three applications (outage mitigation, energy arbitrage, and frequency regulation) were

considered. Several case studies were performed to evaluate the reliability indices and the cost

benefits. Sequential MCS was used to track the charging and discharging performance of the ESS

and also the outage events in the system while evaluating the reliability indices and interruption

cost. The variable behavior of load demand and the forced outages of generators are also captured

by the sequential MCS. A quadratically constrained linear programming model was established to

estimate the potential revenue from arbitrage and regulation markets. The study presents several

benefits from installing an ESS and utilizing it for the applications stated above. The approach

described in this study can be utilized by industries including utilities and manufacturers to build

business cases when they want to install an ESS for their facilities. Future work includes the

development of a more comprehensive framework and converting the benefits from other applica-

tions to monetary profits and stacking them up to estimate the maximum revenue. Also, a detailed

and comprehensive methodology on the revenue generated over a longer period of time, e.g., ten

years, considering the improvement of the ESS technology, the variability of market price and the

trade-off between cycle life and profit, is under development.
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Chapter 4

Estimating the Capacity Value of ESSs

4.1 Introduction

Since the energy demand may increase and some power supply resources may retire over time, it is

necessary for utilities and ISO/RTOs to make plans to ensure long-term grid reliability by procur-

ing the appropriate amount of generation capacity needed to meet predicted energy demand in the

future. Although energy storage systems do not produce energy by themselves, the abilities to

discharge and shift energy make them one solution to meet the demand and thus can be considered

as a generation capacity resource. However, unlike the conventional generators with the capa-

bility to provide energy upon demand, almost all the energy storage systems are energy-limited

resources. In addition, as aforementioned, ESSs can provide multiple services to the grid. It is

possible that the available energy of an ESS reaches its lower bound when needed due to low state

of charge. Participating in different markets or providing different services place an uncertainty on

the availability of the ESSs. Therefore, due to the energy-limited characteristic and the availability

uncertainty, it is essential to conduct the research to evaluate the actual capacity contribution of

ESSs.

Reliability methods for power system adequacy assessment play a significant role in assessing

the contribution of intermittent resources such as wind and PV systems to the power grids. The
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term capacity value is usually used to measure the capacity contribution of variables resources to

power system capacity planning. The evaluation process in this manner is carried out to make

sure that the system reliability will be maintained when the intermittent resources are introduced

to the power grid. In this chapter, a methodology to estimate the capacity value of energy storage

systems is presented. The ESS is assumed to participate in the energy market at normal operating

conditions and to mitigate outage when contingencies occur. The capacity value of different sizes

of the ESS is evaluated. The proposed framework and results can be applied to conduct the capacity

planning.

Capacity value is a commonly used metric to evaluate the contribution of renewable generation,

such as PV and wind power. It measures the capacity of conventional generation units that can

be replaced or the amount of extra load demand that can be supplied while maintaining the same

reliability level. The methods to evaluate the capacity value have been investigated in many studies.

For instance, Monte Carlo simulation technique has been used in [39] for reliability assessment

of a hybrid system of wind and PV systems. A combination of deterministic and probabilistic

techniques has been used in the reliability evaluation of these systems. In [40], the hourly mean

solar radiation data has been used as the primary input, and Monte Carlo simulation technique was

implemented to evaluate the system reliability. In [41], the reliability of a wind and solar system

has been evaluated using the Monte Carlo simulation technique. In [42], the work introduces an

analytical method to calculate the capacity credit of PV system in a manner that considers both

the effect of input uncertainty and system components availability. The IEEE Power and Energy

Society Task Force on the capacity value of wind power has described a preferred method for

calculation of the capacity value of wind [43]. It also discussed some approximate methods for

the calculation with their limitations highlighted. In [44], authors identified the capacity value

and capacity factor of wind power with the historical data in Ireland. In [45], authors applied the

composite system reliability analysis to evaluate the capacity value of wind power, which is able

to capture the effects of transmission constraints. However, a few studies have been applied to

estimate the effect of ESS, especially considering the ESSs providing multiple services. Reference
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[46] proposed a method to estimate the capacity value of storage and it used a dynamic program

to model the effect of power system outages on the operation and state of charge of storage in

subsequent periods. In [47], a framework was proposed to assess the capacity credit of electrical

energy storage and demand response.

The remainder of this chapter is organized as follows. Section 4.2 discusses the different ap-

proaches to evaluate the capacity value. Section 4.3 explains the evaluation of power system re-

liability using Monte Carlo Simulations. Section 4.4 explains the mathematical models that are

applied to evaluate the reliability indices. Section 4.5 describes the ESS operation strategy and

developed the model to estimate the capacity value of the ESSs. Section 4.6 presents case studies

on evaluating the capacity contribution of ESSs. Section 4.7 provides concluding remarks of this

chapter.

4.2 Capacity Value Evaluation Approaches

In this section, the normally applied capacity value evaluation approaches are briefly discussed.

The approaches are effective load carrying capability (ELCC), equivalent firm power (EFP), and

equivalent conventional power (ECP).

4.2.1 Equivalent Load Carrying Capability

The Equivalent Load Carrying Capability of a generator is defined as the amount of load can be

increased when a new generator is added, while keeping the same reliability level. The reliabil-

ity level can be represented by the Loss of Load Probability (LOLP), Loss of Load Expectation

(LOLE), Expected Demand Not Supplied (EDNS) or the Expected Energy Not Supplied (EENS).

4.2.2 Equivalent Firm Capability

The equivalent firm capability of a generating resource is the capacity of a 100% reliable generator

that can be replaced. ELCC defines the capacity contribution a resource from the load perspective,
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while EFC is described from the point of view of the generation side.

4.2.3 Equivalent Conventional Capability

Similar to EFC, the equivalent conventional capability determines the capacity value of a generator

by comparing the generator under investigation and a benchmark generator. The difference is that

the selected benchmark unit is not assumed to be perfectly reliable, the failure rate of this unit is

considered when evaluating ECC.

4.3 Monte Carlo Simulation

In power system, the reliability indices can be estimated by collecting data on the occurrence of

failures and the time to repair. The Monte Carlo Simulation (MCS) can be applied to mimic the

failure and repair history of the components and the system. In MCS, a complex system can be

decomposed into several components and the behavior of each component can be represented by

deterministic or probability distributions. The MCS can be effectively used to assess the reliability

of composite power systems and it is a more practical approach than the analytical methods. MCS

methods that are used for power system reliability studies can be classified into two categories:

sequential or non-sequential.

4.3.1 Sequential Monte Carlo Simulation

When time-dependent issues are considered, the sequential MCS is more suitable to imitate the

component or system behavior over time. The mathematical model of the system is allowed to

generate an artificial chronological history, and appropriate statistical inferences are drawn from

this information. In this study, the sequential MCS has been applied, since the time-varying behav-

ior of energy storage SOC should be considered in the estimation. There are two kinds of method

to represent time in the simulation process: the fixed time interval method and the next event

method [27]. A brief introduction on these two types MCS is presented here for completeness.
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4.3.1.1 Fixed Time Interval Method

The fixed time interval method, also known as synchronous timing method, is a two-step method.

When applying the fixed time interval method, the basic time interval ∆t will first be chosen

depending upon the operating characteristics of the system. Starting in the initial state, time is

advanced by ∆t and the program then checks if an event has occurred. The system is then updated

by determining the resulting state of the system. If no event has occurred then the system stays in

the same state. These two steps may be repeated as many times as desired.

4.3.1.2 Next event method

The next event method is also called the asynchronous timing method. Unlike the fixed time

interval method, in this method, the simulated time is advanced by a variable amount rather than

a fixed amount each time. The computer proceeds by keeping a record of the next few simulated

events scheduled to occur. The most imminent event is assumed to occur and the simulated time is

advanced to the point of occurrence of the event. The cycle is repeated as many times as desired.

The general procedure of the algorithm is described as follows:

Step 1: Read failure rate and duration data for all components;

Step 2: Assume that all the component are available at the beginning, that is to set the initial states

of all component as UP;

Step 3: For each component, draw a random number and compute the time to the next event;

Step 4: Find the minimum time and change the state of the corresponding component; and update

the total time;

Step 5: Check if there is a change in system status. If yes, update reliability indices; otherwise, go

to step 3;

Step 6: Check if the simulation converges. If yes, terminate the calculation, otherwise; go to step

3.

The distributions assumed for up and down times are exponential in this work, then the time to

the next transition can be calculated as follows [48],
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Tttci = − 1

ρi
ln(ri) (4.1)

where Tttci is the time to the next transition for component i. ρi is the failure rate when the

component is at the up state, and is the repair rate at the down state of the ith component; ri is the

generated random number for component i.

4.3.2 Non-sequential Monte Carlo Simulation

In the non-sequential simulation, the states are sampled from the state space proportional to their

probabilities. This technique is suitable when component failures and repairs are independent. This

can be achieved simply by sampling states of individual components to construct system states and

repeat until an adequate number of system state samples are generated [49]. This approach does

not memorize sampling component up and down cycles and store chronological history on the

system state.

4.4 Reliability Evaluation

Similar to the reliability model presented in Section 3.3, a composite system reliability model with

the objective to minimize the loss of load is applied. The mathematical modeling and the definition

of the reliability indices are presented here for completeness.

4.4.1 System Modeling

For each hour, the system state is defined by the component states and capacities. The output

of wind power is determined by the corresponding wind turbine states and hourly output power.

Then, a feasible dispatch is sought by solving the following minimization problem [26].
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Loss of Load = min

Nb∑
i=1

Ci

 (4.2)

subject to

P (V, δ)− PD + C = 0

Q(V, δ)−QD + CQ = 0

Pmin
G ≤ PG ≤ Pmax

G

Qmin
G ≤ QG ≤ Qmax

G

Vmin ≤ V ≤ Vmax

|F (V, δ)| ≤ Fmax

−π ≤ δ ≤ π

(4.3)

where Ci is the load curtailment at bus i, C is the vector of load curtailments
(
Nb × 1

)
, CQ is the

vector of reactive load curtailments
(
Nb × 1

)
, V is the vector of bus voltage magnitudes

(
Nb × 1

)
,

δ is the vector of bus voltage angles
(
Nb × 1

)
, PD and QD are the vectors of real and reactive

power loads
(
Nb × 1

)
, PG and QG are the vectors of real and reactive power outputs of the

generators
(
Ng × 1

)
, Pmin
G , Pmax

G , Qmin
G and Qmax

G are the vectors of real and reactive power

limits of the generators
(
Ng × 1

)
, Vmax and Vmin are the vectors of maximum and minimum

allowed voltage magnitudes
(
Nb × 1

)
, F (V, δ) is the vector of power flows in the lines

(
N` × 1

)
,

and Fmax is the vector of power rating limits of the transmission lines
(
N` × 1

)
. In the foregoing

description, Nb is the number of buses, N` is the number of transmission lines, and Ng is the

number of generators.

The above model implies that for any encountered scenario (generation and transmission avail-

ability and load state) power will be routed through the network in such a manner so as to minimize

the system load curtailment.
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4.4.2 Calculation of Reliability Indices

In order to capture interruption times and temporal relationships such as state of charge of the

storage system, all indices are determined from sequential Monte Carlo simulation [27, 50].

1) Loss of load probability (LOLP): The LOLP is a widely used reliability index and it can be

estimated as follows,

LOLP = E[θ̂] (4.4)

where

θ̂ =
1

T

Nc∑
i=1

Tdown
i (4.5)

and Tdown
i is the duration of an interruption encountered during the sequential MCS. Nc is the

total number of simulated cycles and T is the total period of simulation.

2) Expected demand not supplied (EDNS): The EDNS is the sum of the products of probabili-

ties of failure states and the corresponding load curtailments, which can be estimated as follows.

EDNS = E[d̂] (4.6)

where

d̂ =
1

T

Nc∑
i=1

(Tdown
i

Nb∑
j=1

Cj) (4.7)

3) Expected energy not supplied (EENS): The EENS is also known as Expected Unserved

Energy (EUE) or Loss of Energy Expectation (LOEE), which measure the amount of energy ex-

pected to be lost when demand exceeds the available generation. This metric can be calculated as

ENDS×8760.

4.4.3 Stopping Criterion

In using Monte Carlo simulation to estimate power system reliability indices, a convergence crite-

rion should be applied to stop the algorithm if there is not much change in the reliability indices.

45



In this study, the stopping criterion is applied on the reliability indices as follows:

COV =

√
Var(ρNc)

E[ρNc ]
≤ εm (4.8)

where COV is the coefficient of variation, Var(·) is the variance function, ρNc is the value of the

estimate of the reliability index of interest (such as LOLP or EDNS) at the end of Nc cycles, and

ε is a predefined tolerance. At intervals of several cycles, the COV is calculated. If this amount

is less than or equal to the specified tolerance εm, the algorithm is terminated; otherwise, the

simulation continues.

4.5 Proposed Solution

The models utilized here include a) an optimization model for determining the optimal operation

strategies of the ESS, b) k-means clustering to build the multi-state model of the ESSs, and c) a

reliability evaluation model solved by the sequential Monte Carlo Simulation.

4.5.1 Operating Strategy for the ESS

In this section, the optimization model to estimate the maximum revenue from the energy market is

presented. This model is similar to the model presented in the previous chapter, but only the energy

arbitrage benefit is considered her for simplicity to illustrate the framework. Other use cases can

be easily included in this model when needed.

4.5.1.1 Revenue from the Energy Market

An ESS can be used to accumulate energy by charging the battery when the electricity prices

are low, i.e., during the off-peak hours, and then by discharging during the peak hours, when

the demand and energy prices are higher. This application also contributes to the reduction of

generation costs and defers the installation of peaking units. The energy price difference can be
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used as an advantage by the ESS owners in earning profits. The locational marginal price (LMP)

is a metric used for representing wholesale electricity price, and it indicates the value of energy at

a particular location at a given point of time. Hence, locations with a high variation in their LMPs

can be considered as ideal for this application.

The total income from the energy market can be calculated as follows.

Incomearb =
T∑
t=1

(R
lmp
t E

arbd
t −Rlmp

t Earbc
t ) (4.9)

where Rlmp
t is the LMP ($/MWh) of the system at time t; E

arbd
t and Earbc

t are the quantities of

energy sold (discharged) and purchased (charged) at time t, respectively. The ESS is operated for

a period of time T .

4.5.1.2 Objective

To maximize the revenue from the energy market, a quadratically constrained linear programming

model has been developed. In this model, the variables are P
arbd
t and Parbc

t , which are the power

levels sold and purchased in the arbitrage market at time t. The objective function is represented

as follows [51].

Max
T∑
t=1

(
R

lmp
t P

arbd
t τ −Rlmp

t Parbc
t τ

)
(4.10)

where τ is the duration of the energy market dispatch time interval and it is considered to be one

hour in this study. Rlmp
t P

arbd
t τ represents the revenue by selling the energy and Rlmp

t Parbc
t τ

is the cost of purchasing energy from arbitrage market.

4.5.1.3 Constraints

The operation of an ESS can be modeled by its energy storage capacity, charging and discharging

power limits and efficiencies. The SOC of an ESS represents the ratio of the current to the rated
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capacity. It depends on the SOC of the previous period and the current operating state of the ESS,

i.e., whether it is charging or discharging. The SOC at time t is represented as follows.

SOCt = SOCt−1 +
4Et
Er ,∀t ∈ T (4.11)

where Er is the rated energy capacity, and4Et is calculated as below.

4Et = Earbc
t − E

arbd
t (4.12)

where Earbc
t and E

arbd
t are the charged and discharged energy in the arbitrage market and are

calculated as follows.

Earbc
t = Parbc

t τγc, E
arbd
t = P

arbd
t τ/γd (4.13)

where γc and γd are the charging and discharging efficiencies (%).

The operation is subject to the following constraints.

SOCmin ≤ SOCt ≤ SOCmax, ∀t ∈ T (4.14)

0 ≤ P
arbd
t , Parbc

t ≤ Pmax,∀t ∈ T (4.15)

P
arbd
t × Parbc

t = 0, ∀t ∈ T (4.16)

SOC is constrained with lower and upper bounds by SOCmin and SOCmax as shown in (4.14).

Different operating strategies mainly depend on this constraint. Charging and discharging power

limits are represented by (4.15). The quadratic constraint in (4.16) indicates that during each

period, the ESS cannot buy and sell energy in the arbitrage market simultaneously.
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4.5.2 K-means Clustering

K-means clustering is a well-known and popular partitioning clustering method, which aims to

segment several observations into k groups defined by centroids [52]. The result of the clustering

analysis brings insight into the observations by dividing and grouping the data into several clusters

of similar data. The goal is that the data in the same group be similar to each other and be different

from the objects in other groups. In a standard K-means clustering, the similarity can be repre-

sented with the sum of squared Euclidean distance. Then the objective is to minimize the total sum

of squared errors, which can be represented as below.

Minimize ||d||2 =
N∑
i=1

K∑
j=1

rij ||xi − cj ||
2 (4.17)

where N is the number of data points, c1, ..., cj are the centroids of k clusters, rij is the indicator

denoting whether point xi belongs to cluster j, rij = 0 or 1.

4.5.2.1 General Procedures

The overall procedures to perform k-means clustering is as follows:

Step 1: Randomly assign k initial cluster centers (centroids).

Step 2: Compute point-to-cluster-centroid distances of all observations to each centroid.

Step 3: Assign each observation to the cluster with the closest centroid

Step 4: Compute the average of the observations in each cluster and update the new center for each

cluster.

Step 5: Repeat steps 2 through 4 until the cluster centroids do not change, or the maximum number

of iterations is reached. The final cluster assignments constitute the clustering solution.
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Figure 4.1: Identification of elbow point

4.5.2.2 Optimal Number of Clusters

K-means method is a useful and simple unsupervised machine learning method to divide data into

several clusters. However, since the number of clusters k is determined by the user and this number

may not be the correct one. For instance, the user may set a relatively small k, but k clusters cannot

represent the dataset closely enough, and it may also be not necessary to assign a large k to a dataset

with only a very limited number of unique values. Therefore, finding the appropriate number of

clusters in a dataset is essential.

The Elbow method is a commonly used method to determine the optimal number of cluster,

which uses the turning point in the curve of within-cluster sums of point-to-centroid distance as the

optimal point for k. Figure 4.1 illustrates the elbow point in the curve. The turning point is chosen

because increasing the number of k does not lead to a much better representation of the data. In

this method, the clustering method is firstly applied for different value of k, for example, from one

to ten. Then within-cluster sum of point-to-centroid distance is evaluated for each clustering result

with different k. After all the ks are examined, the algorithm can determine the elbow point.
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4.5.3 Capacity Value Evaluation

The work proposed here applied the EDNS as the reliability index. Since the ESS may not in a large

size in power or energy, the effect on improving LOLP or LOLE is not significant. Therefore, to

avoid underestimating the contribution of ESSs, EDNS is applied to estimate the capacity value of

the ESSs. The ELCC method is applied here for the capacity value evaluation. For each iteration,

the added virtual load (VL) (Pvl) is updated as shown in equation (4.18).

Pvl
i = Pvl

i−1 + ∆Pvl (4.18)

This process stops when the difference between the reliability indices of the original system and the

system with the ESS and added virtual load is smaller than a specified tolerance εc. The stopping

criteria is as follows,

|EDNSbase − EDNSvl| ≤ ε (4.19)

where EDNSbase is the EDNS of the base case and EDNSvl is EDNS of the system with ESS

and VL.

Then the capacity value of the ESS can be determined by the following equation,

Capacity Value =
Pvl

P ess × 100% (4.20)

where P ess is the power capacity of the ESS.

4.6 Case Studies and Results

In this study, the IEEE Reliability Test System (IEEE-RTS) is utilized for estimating the capacity

value of ESSs. PJM historical data is utilized for evaluating the revenue from participating in the
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Table 4.1: Description of Six Cases

Case Power Energy SOC
No. Capacity Capacity Uncertainty

Case 1 10 10 Y
Case 2 10 40 Y
Case 3 10 80 Y
Case 4 10 10 N
Case 5 10 40 N
Case 6 10 80 N

energy market [34]. The historical data, including the LMPs and the load profile, is available on

the PJM website. Data from July 1st, 2017 to June 30th, 2018 at the Dominion Energy area is used

in this study. The load data at this location is also applied to modify the load profile provided by

the test system. The correlation between the LMPs and the load profile is 0.5614.

In this study, six different cases are studied for capacity value estimation as shown in Table

4.1. Three ESS sizes are considered, the power capacity is set as 10 MW for all the cases, but the

energy capacity is different. The capacity value is also investigated with and without considering

the SOC uncertainty. When the ESS availability is considered, the SOC can be represented by the

multi-state model obtained by the k-means clustering method. While the SOC uncertainty is not

considered, the ESS is assumed to serve as a backup resource only and it is not participating in any

market. In this case, only the energy-limited characteristic is considered, and the SOC of the ESS

is assumed to be 100% when an outage event occurs.

4.6.1 SOC Multi-state Model

When the SOC uncertainty is considered, the multi-state model for ESSs with different energy

capacities is built for each hour, i.e., for each case, the SOC is represented by
∑24
h=1N

k
h states,

where Nkh is the number of SOC clusters at hour h. The SOCs are clustered for each hour sepa-

rately, because the SOC of ESSs has different patterns for each period. The SOC is normally high

at the beginning of each day as it gets charged at night, and is commonly low after the peak hours
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Table 4.2: Number of Clusters in Case 1 – 3

Hour Case 1 Case 2 Case 3
Nk

h ||d||2 Nk
h ||d||2 Nk

h ||d||2
1 3 0 3 345.77 3 573.28
2 3 0 4 510.55 5 1223.26
3 3 0 4 541.04 6 1982.51
4 3 0 4 364.88 5 1644.36
5 3 0 4 142.53 5 1919.99
6 3 0 3 642.01 5 1147.12
7 2 0 3 515.04 4 1667.90
8 2 0 3 807.38 4 2806.40
9 2 0 3 3326.90 4 4576.65

10 2 0 4 317.49 4 6986.90
11 2 0 3 2236.77 4 7096.23
12 2 0 4 534.11 4 5514.97
13 2 0 4 567.98 4 6571.82
14 2 0 4 699.84 5 3501.99
15 2 0 4 685.55 5 5338.08
16 2 0 4 714.24 5 3214.65
17 2 0 4 719.01 5 3790.92
18 2 0 4 617.78 5 5711.13
19 2 0 4 668.71 5 6129.84
20 2 0 4 839.63 5 2285.72
21 3 0 4 764.51 5 2878.24
22 3 0 4 426.87 4 1339.16
23 3 0 3 227.49 3 54.70
24 1 0 1 0 1 0

as it discharges when the LMPs are high at peak hours. Also, the probability that a power outage

event occurs at the time when the demand is high is larger than the other hours. Therefore, it is

necessary to perform clustering for the SOC at each hour, as ignoring the time-dependent fact may

lead to inaccurate results.

Table 4.2 lists the number of clusters at each hour for cases 1, 2 and 3. The table also presents

the total sum of squared errors for each case.Table 4.3 gives an example of the SOC multi-state of

Case 1 at each hour.
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Table 4.3: Case 1: SOC States

(%) State (%) State
Hour 1 2 3 Hour 1 2 3

1 34.8 42.5 22.7 13 51.8 0.0 48.2
2 55.6 22.7 21.6 14 52.6 0.0 47.4
3 53.7 15.6 30.7 15 49.0 0.0 51.0
4 27.1 5.2 67.7 16 39.2 0.0 60.8
5 14.2 1.4 84.4 17 37.0 0.0 63.0
6 15.1 0.3 84.7 18 46.6 0.0 53.4
7 20.0 0.0 80.0 19 57.0 0.0 43.0
8 28.2 0.0 71.8 20 67.9 0.0 32.1
9 33.4 0.0 66.6 21 77.8 0.3 21.9
10 36.4 0.0 63.6 22 91.0 1.1 7.9
11 41.1 0.0 58.9 23 86.0 10.1 3.8
12 43.0 0.0 57.0 24 0.0 100.0 0.0

4.6.2 Reliability Evaluation

First, the reliability indices are evaluated for the base case. The ENDS and EENS of the base

case are 0.04574 MW/yr and 408.12 MWh/yr, respectively. Then the reliability is evaluated for

different sizes of ESSs with and without the SOC uncertainty considered.

When the SOC uncertainty is included, the time when a contingency occurs is first determined

and then the corresponding clusters of SOC for that hour are applied to represent the availability

of ESSs. For instance, if a power shortage event occurs at 6 pm, then the SOC model for hour 18

will be applied. While the SOC is assumed as 100% if the uncertainty is not counted.

The results are shown in tables 4.4. Considering the SOC uncertainty, the system reliability

can be improved by 1.83%, 3.79%, and 5.01% for case 1, 2 and 3, respectively. Results also show

that the system reliability can be improved by 2.33%, 4.93%, and 5.90% in Case 1, 2, and 3, if the

ESS serves as a backup resource only.

4.6.3 Capacity Value

At last, the capacity value of the ESS in each case is estimated by the ELCC method. While

maintaining the same reliability level, the load can be increased by 2.14 MW, 4.65 MW, and 5.75
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Table 4.4: Reliability Improvement with ESSs

EDNS EENS Reduction
(MW/yr) (MWh/yr)

Base 0.04659 408.12 -
Case 1 0.04574 400.66 1.83%
Case 2 0.04483 392.66 3.79%
Case 3 0.04426 387.68 5.01%
Case 4 0.04550 398.60 2.33%
Case 5 0.04429 388.00 4.93%
Case 6 0.04384 384.05 5.90%

MW with the ESSs in cases 1 to 3, respectively, when the ESS is also participating in the energy

market. When the SOC serves as a backup resource only, the ESS can carry 2.64 MW, 5.75 MW,

and 6.96 MW additional load in cases 4 to 6. Table 4.5 summarizes the capacity value of ESSs for

all the cases with and without considering the SOC variation.

Table 4.5: Capacity Value of ESSs

EDNS EENS CV
(MW/yr) (MWh/yr)

Case 1 0.04667 408.82 21.4%
Case 2 0.04659 408.10 46.5%
Case 3 0.04659 408.14 57.5%
Case 4 0.04659 408.13 26.4%
Case 5 0.04663 408.50 57.5%
Case 6 0.04659 408.11 69.6%

Figures 4.2 – 4.4 present the results for the three cases with and without taken the SOC un-

certainty into consideration. In these figures, the EDNS of the base case is represented by the red

horizontal line and the orange horizontal line represents the EDNS of the system when an ESS

is connected to the system. The blue line shows the change of EDNS when an additional load is

added to the system with the ESS connected.
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Figure 4.2: Capacity value of an ESS: Case 1
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Figure 4.3: Capacity value of an ESS: Case 2
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Figure 4.4: Capacity value of an ESS: Case 3

0 1 2 3 4 5 6 7 8 9 10

Additional Load (MW)

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

E
D

N
S

 (
M

W
/y

r)

Base+ESS+VL

Base

Base+ESS

Figure 4.5: Capacity value of an ESS: Case 4
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Figure 4.6: Capacity value of an ESS: Case 5
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Figure 4.7: Capacity value of an ESS: Case 6

Figure 4.8 shows the comparison of capacity value of the ESS with and without the SOC

uncertainty considered. It can been seen that, if the SOC uncertainty is considered, the CVs of

cases 1 to 3 are lower than the CVs when the SOC variation is not considered. In the real world,

if power system planners do not consider the ESS availability in the planning stage, while the ESS
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actually performs other functions, then the power system may face unforeseen power shortage

events. This is because the ESSs may not be able to release enough energy as the planners expected.

Therefore, to avoid overestimating the ESS capacity contribution, it is essential to consider the ESS

availability when evaluating the capacity value of the ESS as the SOC can be fluctuating.
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Figure 4.8: Comparison of CV with and without the SOC uncertainty considered

4.7 Conclusion

This chapter proposed a methodology to evaluate the capacity value of the energy storage system

considering the SOC uncertainty. The SOC is fluctuating when the ESS participants in the energy

market seeking for arbitrage opportunities or provides multiple services to the grid. The capacity

value of ESSs with different energy capacity sizes are estimated. It is important to consider the

SOC uncertainty, since it is unlikely that the ESS remains unused all the time and is scheduled

to perform as a backup resource only in the real world. This is because the capital cost of the

ESS is still relatively high and it is not cost-effective to utilize the ESS only as a backup resource.

Thus, the work presented here suggested to use a multi-state model to represent the SOC with the

k-means clustering method to capture the variation. In this work, the number of states for each
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hour is determined by the elbow method. The results indicate that the longer the duration that

an ESS can be used, the larger capacity contribution can be made. The results can provide the

system planners an estimation of the ESSs capacity value with and without considering the SOC

fluctuation. More importantly, the framework and method proposed here can be applied in the

capacity planning process to evaluate the actual capacity contribution of energy storage systems

considering the uncertainty of the storage available capacity.
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Chapter 5

Sensitivity Guided Approach to ESS Siting

This chapter introduces an enhanced Genetic Algorithm (GA) which can be applied to determine

the optimal location of an ESS. The proposed method uses sensitivity analysis concepts to develop

an encoding strategy for improving the computational efficiency of the search process. The objec-

tive is to determine the optimal placement of ESSs for generation cost reduction and transmission

congestion relief. Locational Marginal Price (LMP) is employed as an indicator to quantify the

need for additional units at candidate locations. LMP at each node is determined from Lagrange

multipliers associated with the power balance equation at that node. By renumbering and encoding

the locations based on their LMP ranks, desired candidate locations are gathered and encoded to

share more common genes. Then the genetic algorithm is utilized jointly with the AC optimal

power flow model to search for the optimal locations for ESSs with varied sizes. The method is

demonstrated on several test systems, including IEEE 14, 30, 57 and 118 bus test systems. The

placement of ESSs with minimum generation costs of these systems are found and the results also

validate the improvement in convergence speed.

5.1 Introduction

The global movements toward the deployment of energy storage facilities and renewable energy

resources are notable because of the need to reduce dependence on fossil fuels, environmental
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concerns, avoidance of the time and cost of transmission and distribution (T&D) expansion, and

government subsidies. Planned expansion through optimization of location and size of ESSs fur-

ther increases their benefits, such as reducing the overall generating cost.

One straightforward way to search for the optimal placement with the objective of minimizing

the generation cost is exclusively evaluating the combinatorial possibilities; calculate the genera-

tion cost for all the possible solutions and then determine the best solution. However, this approach

is quite time-consuming and computationally expensive even for an off-line planning problem. Al-

though brute-force methods have been applied in smaller systems, there has been considerable

research on systematic means of optimizing location, or sizes, or both. Reference [53] uses dy-

namic programming, while others use intelligent methods such as simulated annealing [54, 55],

particle swarm optimization [56], and genetic algorithm [57–62]. Although these methods have

improved the computational efficiency, the need remains to develop methods that can be applied to

larger and more complex systems.

A factor which is often overlooked is that an appropriate encoding strategy of variables may

enhance the efficiency of intelligent methods. In this work, sensitivity analysis is used to develop

an encoding strategy to increase the convergence speed for determining the optimal placement of

the ESSs. Sensitivity analysis has been amply used in several disciplines to determine the change

in an objective function with respect to problem constraints. It has been used in [63] to forecast the

short-term transmission congestion. It has also been used in the evaluation of some construction

projects and management [64]. Lagrange multipliers have been used in enhancing power system

reliability in [65, 66].

In this work, a sensitivity guided genetic algorithm (SGGA) is proposed. The locational

marginal price (LMP) which is given by the Lagrange multipliers that is associated with power

balance equations is used as an indicator to help determine the optimal placement problem [67].

First, the sensitivity analysis is applied to determine the potential candidate locations. The loca-

tions which have high LMPs are considered as good candidates for ESSs. Since these locations

are supplied by relatively more expensive generators or these areas are more congested than other
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locations. This implies that installation of ESSs on these locations would benefit the system by

reducing the congestion and generation cost. An optimal power flow with an objective function of

minimizing the generation cost is solved for the base case (no ESSs). From the dual solution of

the optimization problem, the LMPs are determined for all the locations. The LMPs are ranked

in a descending order and the locations are numbered by their ranks instead of their original bus

numbers. After renumbering the buses, the genetic algorithm is utilized and combined with op-

timal power flow model to find the optimal placement for the ESSs with respect to the minimum

generation cost. There is nothing sacrosanct about the use of GA; the sensitivity analysis based

approach can be combined with any intelligent search method.

This chapter is organized as follows. Section 5.2 describes the importance of encoding strat-

egy of the genetic algorithm and analyzes the benefit of the desired search space regarding to the

convergence performance. Section 5.3 presents the mathematical model of the optimization prob-

lem, describes the sensitivity analysis, and provides definition for the local marginal cost. Section

5.4 describes the problem and solving process. Section 5.5 demonstrates the effectiveness of the

proposed method on several test cases. Finally, a conclusion of the whole contribution is given in

Section 5.6.

5.2 Encoding Strategy in Genetic Algorithm

Genetic algorithm is an effective and widely used population based method for solving optimiza-

tion problems, which mimics the process of natural selection and reproduction [68]. In Genetic

Algorithm, the variables are represented as chromosomes which are composed of genes. The evo-

lution leads to the survival of chromosomes with higher fitness value and eliminates the worse

chromosomes. At the end, all the chromosomes will be evolved to share the same genes with

highest fitness value, which is the optimal solution of the problem. The steps of a typical genetic

algorithm is as follows [68, 69].

Step 1: Choose a coding to represent problem parameters, a selection operator a crossover oper-
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ator, and a mutation operator. Choose population size n, crossover probability pc , and mutation

probability pm . Initialize a random population of strings of size `. Choose a maximum allowable

generation number tmax . Set t = 0.

Step 2: Evaluate each string in the population.

Step 3: If t > tmax or other termination criteria is satisfied, Terminate.

Step 4: Perform reproduction on the population.

Step 5: perform crossover on random pairs of strings.

Step 6: Perform mutation on every string.

Step 7: Evaluate strings in the new population. Set t = t+ 1 and go to Step 3.

5.2.1 Coding Strategy

There are two aspects of intrinsic characteristics of the evolution: (1) the initial chromosomes

evolve to the optimal chromosomes iteratively and gradually. During several generations of evo-

lution, some randomly generated chromosomes alter to sub-optimal chromosomes and then to the

optimal. The probability of evolution from the initial population directly to the best solution is ex-

tremely low. (2) The sub-optimal chromosomes and the optimal chromosome usually share some

common genes. After the selection operation, the good genes are kept and meanwhile the bad

ones are abandoned; by doing so, the population is able to evolve to contain the optimal chromo-

some [70].

Fig. 5.1 exhibits three examples of search spaces with different coding strategies [71]. In Fig.

5.1 (a) and (b), the search space is not in a desirable form, while (c) is a preferred search space

which is the scenario we endeavor to approach by our coding strategy. In this figure, the optimal

solution is represented by a black triangle, the gray dots stand for the sub-optimal solutions and the

white area shows the rest of solutions in the search space. In Fig. 5.1 (a), sub-optimal solutions and

the optimal solution are spread out randomly in the solution space. In this case, the sub-optimal

solutions and optimal solution only share limited common genes. It is troublesome for GA to

converge to the optimal solution. Hence, it is inefficient, time-consuming and undesired. In Fig.
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5.1 (b), the optimal solution is outside the region of good solutions. It is highly likely that the final

population will be trapped into the sub-optimal region and end up with a local optimum instead

of the global optimal solution. Fig. 5.1 (c) is a preferred search space. Initially, the population is

arbitrarily distributed over the solution space; after several generations, the population will reach to

the sub-optimal solutions region and finally evolve to the optimal point inside this area. Therefore,

our assumption is that if sub-optimal and optimal solutions are coded to share more common genes,

they are more likely to be gathered and thus speed up the convergence.

(a)

(b)

(c)

Search space 

Optimal solution

Sub-optimal solutions

Figure 5.1: Three examples of search space.

In this optimal placement problem, if the variables are represented by their bus numbers, the op-

timal solution and other solutions are spread out randomly in the search space as shown in Fig. 5.1

(a), since the bus numbers do not have mathematical meaning regarding to the optimization prob-

lem. The optimal solution may not share several genes corresponding to sub-optimal solutions.

However, after renumbering the locations based on their LMPs, candidate locations with smaller
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total generation cost are aggregated and encoded to share more common genes with smaller dis-

tance. In this way, the optimal solution should be surrounded by some sub-optimal solutions and

the convergence performance can be improved.

5.2.2 Reproduction

Reproduction, also known as selection operator. Reproduction selects good strings in a population

and forms a mating pool [23]. Roulette-wheel selection and tournament selection are often used to

form mating pool. In this work, tournament selection is applied. First, pick s individuals from the

population, then choose the best among them to the mating pool. A binary tournament selection

with s = 2 is used in this work. After forming the mating pool, stings in mating pool are going to

the next step: crossover.

5.2.3 Crossover

In a crossover operator, new strings are created by exchanging information among strings of the

mating pool [23]. This step is mainly responsible for the search of new strings. In order to create

new strings, two strings are selected randomly from the mating pool, and these two strings are

called parent strings, the newly created strings are known as children strings. After randomly

selecting the parent strings from the mating pool, a single-point crossover is applied. First, a

crossing point is randomly chosen. Then exchange all the bits on the right side of the crossing

point. Not all the old strings are used in crossover, a crossover probability pc is used in order

to preserve some of the good strings. Only 100pc percent of old strings are used in crossover

operation.

5.2.4 Mutation

Mutation of gene happens with low probability in nature. In GAs, a mutation operation is applied

to mimic this change. The mutation operator changes 1 to 0 and vice versa for each bit of every
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string with a small mutation probability pm . This step allows the algorithm to a local search

around current solutions.

5.3 Sensitivity Analysis

A typical optimization problem with an objective function, equality constraints and inequality

constraints is shown in 5.3.

Min: F (x,u) (5.1)

Subject to: gi=1,2,3...,m(x,u) ≤ 0 (5.2)

hj=1,2,3...,n(x,u) = 0 (5.3)

where F (x,u) is the objective function; gi(x,u) is the inequality constraint; hj(x,u) is the equality

constraint.

From the optimization point of view, Lagrange multipliers can be interpreted as the rate of

change in the objective function for an infinitesimal change in the right-hand side of the linear/non-

linear programming problem. From a geometric perspective, Lagrange multipliers can be under-

stood as the sub-gradients of the objective function along the dimension of resource provisioning

changes. The Lagrangian function can be expressed as:

L = F (x,u) +
m∑
i=1

µigi(x,u) +
n∑
j=1

λjhj(x,u) (5.4)

where µ and λ are Lagrange multipliers for inequality and equality constraints respectively and λ

is called marginal cost of the equality constraint. It reflects the change of objective function when

changing the constant of equality constraint slightly.

In economic dispatch studies, power flow analysis is usually carried out in solving optimization

problems for minimum generation cost. In this work, the AC optimal power flow model is used

to solve for minimum generation cost and to determine the value of Lagrange multiplies. The
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objective function is subject to equality and inequality constraints of the power system operation

limits. The equality constraints include the power balance at each bus and the inequality constraints

are the capacity limits of generating units, power carrying capabilities of transmission lines, voltage

limits at the nodes and reactive power capability limits. The objective is formulated as follows [26].

F = min

Ng∑
i=1

Fi
(
PGi

)
(5.5)

where F is the generation cost function, PGi is the generated power of unit i and and Ng is the

number of generators. Locational marginal cost is the marginal cost of the equality constraint of

the economic dispatch problem, which can be obtained by solving the dual problem.

5.4 Solution Approach

In this proposed method, the AC optimal power flow model with an objective function of mini-

mizing the generation cost for the base case is first solved by MATPOWER [72]. From the dual

solution of the optimization problem, the LMPs are determined for all the locations and are ranked

in a descending order. Locations with high LMPs are considered as good candidates for additional

generations. Since these locations are supported by higher cost generators or are more congested

areas, they should have more significant drops in LMP once the ESSs are installed. Then the lo-

cations are numbered by their ranks instead of their original bus numbers and then translated to

binary strings. By renumbering and encoding the locations based on their LMPs, the locations with

good fitness values are gathered and encoded to share more common genes. For example, in the

IEEE 14 test system, the locations for three different sizes ESSs are represented by three binary

strings. [0011 1110 1010] represents that bus 3, 14 and 10 are the best locations for the ESSs.

After encoding the locations, the GA is utilized jointly with AC-OPF model to search for the

optimal locations and sizes for the ESSs. In this minimization problem, the fitness function is

defined in terms of the generation cost function F which can be obtained by the AC power flow
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model. The expression of the fitness function is shown below and Fig. 5.2 shows the flowchart of

the whole process.

Fitness =
1

1 + F
(5.6)

5.5 Case Studies and Simulation Results

To validate the effectiveness of the proposed encoding strategy and determine the optimal place-

ment of DERs, the method is applied on several systems including IEEE 14, 30, 57 and 118 bus

systems [73]. The system data is presented in table 5.1.

Take the test on IEEE 30 bus system as an example. There are 30 buses, 6 generating units and

41 transmission lines in this test system. Total installed generating capacity is 335 MW and three

ESSs are planned to support the system. We assume that all the 30 buses are possible locations

for the storage facilities. Then a 5-bit binary string can be used to represent the bus number, since

it is capable of representing 25 − 1 = 31 different locations. Suppose there are three ESSs with

different capacities (30 MW/ 30 MWh, 20 MW/ 20 MWh and 10 MW/ 10 MWh) under scheduling.

A 3 × 5 = 15 bits binary string is applied to represent the locations for the three ESSs. The first

five bits represent the location of the 30 MW/ 30 MWh ESS and the last five bits represent the

location of the 10 MW/ 10 MWh ESS. Then the optimal placement problem is solved as follows.

The discharged power from ESSs are treated as negative loads with zero fuel cost. The stochas-

tic nature is not considered, but it should not be difficult to include this consideration, which can

be implemented by applying a multi-state model as described in the previous chapter. The case

studies are performed based on peak-load scenario, but hourly load data or clustered load data for

a study period can be applied to this framework when necessary, by simply changing the fitness

value to an average or weighted value.

First of all, an AC-OPF problem is solved for the base case without any added ESSs. LMPs

at buses are determined from the Lagrange multipliers associated with the power balance equation
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Run the OPF for the base case

Encode the bus numbers by binary coding and 

initialize a random population of strings

Stop

No

Yes

Rank the LMP of the buses and renumber the 

buses with their LMP ranks

Evaluate each string in the population with new 

renewable energy sources by running OPF

Termination criteria

 satisfied?

Start

Perform reproduction on the population;

Perform crossover on random pairs of strings;

Perform mutation on every string

Evaluate string in the new population with new 

renewable energy sources by running OPF

Figure 5.2: Flowchart of the proposed method.
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Table 5.1: System Sizes of Test Cases

Test
System

Number of
Generating

Units

Number of
Transmission

Lines

Total
Generation

(MW)

Added Energy
Storage
(MW)

IEEE 14 bus 5 20 772.4 60
IEEE 30 bus 6 41 335 60
IEEE 57 bus 7 80 1975.9 150
IEEE 118 bus 54 186 9966.2 150

at the buses and are obtained from the dual solution. Then, rank the LMPs of all the buses in

a descending order and rename the buses by their ranking numbers instead of their original bus

numbers and then code the variables by binary stings as shown in table 5.2. Second, genetic

algorithm is applied to find the optimal solution. The population size is set as 50 and the maximum

iteration number is set as 150. The crossover probability pc and mutation probability pm are

0.85 and 0.05, respectively. The proposed method converged after around 30 iterations, but the

simple genetic algorithm converges after around 60 iterations. It shows that the proposed encoding

strategy is helpful to enhance the convergence performance of the genetic algorithm. Besides, the

generation cost at peak hour for the base case is $8,909 at peak hour. After adding the ESSs, the

generation cost at peak hour drops to $6,488 with around 27% reduction.

Table 5.5 shows the comparison of convergence speed between the proposed sensitivity guided

genetic algorithm (SGGA) method and the simple genetic algorithm without enhanced encoding

strategy for all the case studies. The number of iterations needed to converge is used to compare the

convergence speed, instead of a actual computational time, since the computational time depends

not only on the algorithm, but also on the features of a computer and many other factors. Therefore,

the number of generations is considered as an appropriate indicator to show the improvement of

computational speed. Fig. 5.3 depicts the convergence performance on IEEE 118 bus system. The

red line and the blue line represent the average value of the population for the enhanced genetic

algorithm and the simple genetic algorithm, respectively. These results prove that renumbering

the locations based on their LMPs is helpful to increase the convergence speed, since candidate
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Table 5.2: Renamed Bus Numbers

Original
Bus Number

LMP
($/MWh))

Renamed
Bus Number

Binary-coded
String

1 36.31 30 11110
2 38.11 29 11101
3 38.82 28 11100
4 39.56 27 11011
5 40.58 10 01010
6 40.08 24 11000
7 40.56 11 01011
8 40.25 18 10010
9 40.08 22 10110
10 40.09 21 10101
11 40.08 23 10111
12 39.65 25 11001
13 39.65 26 11010
14 40.31 17 10001
15 40.50 14 01110
16 40.10 20 10100
17 40.24 19 10011
18 40.93 6 00110
19 41.03 5 00101
20 40.82 8 01000
21 40.52 12 01100
22 40.50 13 01101
23 40.87 7 00111
24 41.03 4 00100
25 40.78 9 01001
26 41.54 2 00010
27 40.31 16 10000
28 40.32 15 01111
29 41.45 3 00011
30 42.23 1 00001
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Table 5.3: Optimal Locations and Sizes Using the Proposed SGGA and Traditional Sensitivity
Analysis Methods

System
Location and Size

SGGA TSA

IEEE 14 bus
Bus 3 14 10 4 10 12

Size (MW) 30 20 10 30 20 10

IEEE 30 bus
Bus 5 19 30 4 16 24

Size (MW) 30 20 10 30 20 10

IEEE 57 bus
Bus 12 38 36 15 35 55

Size (MW) 60 50 40 60 50 40

IEEE 118 bus
Bus 41 112 53 30 60 90

Size (MW) 60 50 40 60 50 40

Table 5.4: Comparison of Generation Cost among Different Placements

System
Cost ($/hr)

Base Case TSA SGGA
IEEE 14 bus 8,171 5,724 5,687
IEEE 30 bus 8,906 6,553 6,488
IEEE 57 bus 41,737 35,379 35,279
IEEE 118 bus 129,660 123,860 123,567

locations with high potential are gathered and encoded to share more common genes. The number

of iterations can be reduced by around 35% by applying the proposed coding strategy.

Besides, the results obtained by SGGA and traditional sensitivity analysis (TSA) methods are

compared. The traditional sensitivity analysis methods are based on determining the Lagrange

multiplier values from the current operating point and do not consider the range of validity of the

Lagrange multipliers [74]. The optimal locations and sizes using the proposed SGGA and the

traditional sensitivity analysis are presented in Table 5.3 and Table 5.4.

From the case studies, we can see that compared with the traditional sensitivity analysis meth-

ods, the proposed SGGA obtained better results in determining the optimal locations and sizes

of ESSs for reducing generation cost. Although the simple GA receives the same results as the
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Table 5.5: Comparison of Convergence Speed

System
Number of iterations

Reduction
Simple GA SGGA

IEEE 14 bus 45 30 33 %
IEEE 30 bus 60 30 50 %
IEEE 57 bus 150 90 40 %

IEEE 118 bus 90 60 33 %����������	�
�����
�
Figure 5.3: Convergence performance on IEEE 118 bus system.

proposed SGGA, the proposed method is less computationally expensive, since it converges faster.

5.6 Conclusion

This work has introduced the use of sensitivity analysis and locational marginal price to enhance

the computational efficiency and speed of the genetic algorithm in determining the optimal place-

ment of ESSs. The proposed algorithm is demonstrated on several test systems, including IEEE 14,
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30, 57 and 118 bus systems. For each case, economic dispatch and genetic algorithm are applied

to search for the optimal solution. The objective function used in the tested systems is the genera-

tion cost function. Therefore, the best locations for different size ESSs are deployed according to

the saving in generation production cost. Also the convergence performances to find the optimal

solution with and without the proposed encoding strategy are compared. The results demonstrated

that the computational efficiency and speed are improved by the sensitivity analysis-based encod-

ing approach. The use of sensitivity analysis is not restricted to GA. In the future, we will apply

the sensitivity analysis to other intelligent methods and will also test it on problems not only at

distribution level, but also in generation or transmission systems.
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Chapter 6

Optimal Operating Strategies for ESSs

Batteries are increasingly becoming a more viable form of grid-level energy storage as time pro-

gresses. Among the different types of batteries present, Li-ion batteries have particularly gained

widespread popularity due to their high energy density, high efficiency and decreasing costs. This

chapter presents a detailed study on maximizing the monetary benefits from a Li-ion Battery En-

ergy Storage System (BESS) for a number of applications, considering the BESS degradation

process. The BESS is assumed to be participating in the energy market and is also being applied

to supply critical loads when outage events occur to improve the resilience and reliability of the

power system. Different operating strategies are tested and the results can be summarized into

several suggestions on how to optimally operate the battery while performing energy arbitrage,

enhancing system resilience and reliability, and also inhibiting the degradation of the battery.

6.1 Introduction

Battery energy storage systems (BESS) are becoming inseparable parts of the modern day power

grid due to the increasing penetration of renewable resources. The intermittent behavior of renew-

able resources like wind and solar encourages the application of BESS which can restore normalcy

to the grid by performing a number of applications. In addition to these, BESS can also be used

for improving the resilience and reliability of the grid. Grid resilience has drawn a lot of attention
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in recent years since the number of outages caused by severe weather and natural disasters have

occurred quite frequently. For instance, hurricanes Sandy, Harvey, and Irma, have left millions

of people without power. Also, component failures and other issues may affect system reliability.

When a power outage event occurs, a BESS can be utilized to support the loads and help enhance

the grid resilience and reliability. BESS also has other applications, such as shaving the peak load,

providing frequency regulation service, and deferring the distribution system upgrades.

However, the degradation of batteries is an issue that must be taken into account while utilizing

a BESS for grid-level applications. This study investigates the decay of life of Lithium ion (Li-

ion) batteries under different operating strategies while being used for improving system resilience,

reliability and for participating in the energy market. A relationship is then established considering

the trade-off between maximizing the revenue from markets, restoring loads, and prolonging the

life of the BESS.

A number of battery technologies are in use today for grid-level applications, including lithium-

ion, lead-acid, vanadium redox, sodium-nickel-chloride to mention a few [1, 75]. Among these,

Li-ion batteries are the most widely used [2] due to their high energy density, high efficiency and

decreasing costs [76]. The different types of Li-ion batteries commercially established include

lithium-cobalt oxide, lithium-titanate, lithium-iron phosphate, lithium-nickel manganese cobalt

and lithium manganese oxide. The type of Li-ion battery to be used depends on the application

itself, while the size can vary from a few hundred kilowatts to several megawatts. The largest

Li-ion battery available today is the one installed by Tesla in the Hornsdale Wind Farm in South

Australia [9]. This 100 MW, 129 MWh battery is used to store renewable energy and provide back-

up power. The battery project in Sterling, MA, USA, is another noteworthy Li-ion installation.

This 2 MW, 3.9 MWh battery is used as a back-up for the Sterling police station and is designed to

support critical infrastructure during grid outages. It can island from the grid during an outage and

can provide up to 12 days of back-up power with the help of solar generation [77]. The detailed

value proposition for this project can be found in [78].

BESS can be used for several grid level applications as shown by the authors in [1]. They can be
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used for participating in the energy and ancillary markets [17,21,79–81]. Reference [82] discusses

the operation of a grid-connected Li-ion BESS for primary frequency regulation and also takes

into account the battery lifetime, while [83] discusses the optimal sizing of a BESS for primary

frequency control. Energy storage can also be used for improving the reliability of the grid [4, 16,

84]. Different operating strategies for operation of energy storage with wind farms for reliability

improvement have been discussed in [85]. The authors in [23–25] proposed a quantitative method

to determine the size of the energy storage systems to meet specified reliability targets. Reference

[86] discusses the improvement in reliability of bulk power system achieved by the utilization

of an energy storage integrated with renewable energy generation. However, the degradation of

batteries is a pressing issue which must be addressed while planning for long-term energy storage

applications. The authors in [87] proposes a semi-empirical model for assessing battery cell life

loss from operating profiles. Reference [88] discusses the effects of battery degradation on multi-

service portfolios and revenue of distributed energy storage plants providing multiple services.

Research has also been performed involving the combination of all the above-mentioned factors to

produce an optimal strategy for operating the battery storage [89]. In [90], the authors propose an

optimal bidding strategy of battery storage in power markets considering the battery cycle life.

In this work, the lifespan benefits of a Li-ion BESS has been examined. The BESS is assumed

to participate in the energy market for peak shaving and be able to gain profit by selling energy

at peak hours when the energy prices are high, and purchasing energy at off-peak hours when

the prices are low. The price-taker model is applied for evaluating this revenue. The BESS is

also assumed to be able to provide energy to the connected consumers when power outage events

occur. A multi-state model is used for modeling the availability of battery during outages and the

expected avoided interruption cost is evaluated. This study also considers the degradation of the

BESS, and the lifespan benefits under different operating strategies.

The remainder of this chapter is organized as follows. Section II discusses the operation strat-

egy of the BESS for maximizing the energy arbitrage revenue. Section III explains how the degra-

dation of Li-ion batteries takes place and is quantitatively measured. Section IV describes the value
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from outage mitigation incorporating the stochastic availability of the BESS and the model of in-

terruption cost reduced by using the BESS. Section V presents case studies with different operating

polices and provides their results. Section VI provides concluding remarks.

6.2 Operating Strategy for the BESS

In this section, the optimization model for estimating the maximum revenue from the energy mar-

ket is presented.

6.2.1 Energy Market

A BESS can be used to accumulate energy by charging when the electricity prices are low, i.e.,

during the off-peak hours, and then by discharging during the peak hours, when the energy prices

are higher. This application also contributes to the reduction of generation costs and defers the

installation of peaking units.

Two types of energy trading settlements prevalent in the U.S. energy market, viz., the day-ahead

and the real-time settlements. Here, the day-ahead market is used for investigation of the optimal

operating strategy of the BESS. Day-ahead and real-time settlements are the two types of energy

trading settlements prevalent in the US energy market. Here, we use the day-ahead market as an

example for investigation of the optimal operating strategy of the BESS. In this market, suppliers

can submit supply bids and consumers can submit demand bids. Also, participants can choose to

submit only quantity bids, or both quantity and price bids. If the participants submit a quantity bid

only, it implies that they will always accept the market clearing price. On the other hand, if the

participants submit both quantity and price bids, it implies that the supplier will sell only when the

clearing price is higher than the price bids and the buyer will purchase the energy only when the

clearing price is lower than the price bids.
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The money received by selling energy can be expressed as:

1(Rbd
t ≤ R

lmp
t )R

lmp
t Ebd

t (6.1)

while, the money spent by buying energy can be expressed as:

1(R
lmp
t ≤ Rbc

t )R
lmp
t Ebc

t (6.2)

where Rlmp
t is the cleared market price at time t; Rbd

t and Rbc
t are the price bids for selling

(discharge) and purchasing (charge); 1(Rbd
t ≤ R

lmp
t ) = 1 when the clearing price is higher than

the price bids of sell and 1(R
lmp
t ≤ Rbc

t ) = 1 when the clearing price is lower than the price bid

of purchase. Ebd
t = Pbd

t τ and Ebc
t = Pbc

t τ are the energy sold and purchased, where Pbd
t and

Pbc
t are the quantity bids of supply and demand at time t, respectively.

6.2.2 Objective

The difference between selling and purchasing prices can be used as an advantage by the BESS

owners in earning profits. Thus, a BESS owner needs to determine the supply or demand bids

properly to maximize the profit. In this work, we assume that the BESS is not large enough to affect

the energy price and thus it is represented as a price-taker. Before submitting the bids, operators

will normally forecast the price in advance based on historical data or other factors. Considering

the price uncertainty, the operation strategy can be obtained by solving the following stochastic

programming problem, which aims at maximizing the expected profit from the day-ahead market.

.

Maximize

T∑
t=1

K∑
k=1

p
lmp
k

R
lmp
t,k

(
1(Rbd

t ≤ R
lmp
t,k

)Pbd
t τ

−1(R
lmp
t,k
≤ Rbc

t )Pbc
t τ

) (6.3)
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where T is the operation time and T has been considered to be 24 in this study as the model is built

for determining the operating strategy for the next day; K is the number of price scenarios. plmp
k

is the probability of the scenario k; τ is the duration of the energy market dispatch time interval

and it is considered to be one hour in this study.

Battery degradation is an essential factor which affects the total value of the BESS. To avoid

overuse of the battery, degradation cost has been included in the objective function as a penalty.

The degradation cost is represented by a linear function of the discharged energy. The objective

function of (6.3) can now be modified by the following expression. The details of battery degrada-

tion are discussed in section 6.3.

Maximize

T∑
t=1

K∑
k=1

p
lmp
k

R
lmp
t,k

(
1(Rbd

t ≤ R
lmp
t,k

)Pbd
t τ

−1(R
lmp
t,k
≤ Rbc

t )Pbc
t τ

)

−ω
T∑
t=1

(
β11(Rbd

t ≤ R
lmp
t,k

)Pbd
t τ/Erγd + β0

)
(6.4)

where ω is the degradation cost weight (DCW) and it varies from 0 to 1. When ω = 0, the

degradation cost model is not considered and as ω increases, more importance is given to the

degradation cost model. β1 and β0 are the coefficients of the linearized degradation cost function,

Er is the rated energy capacity, and γd is the discharging efficiency.

6.2.3 Constraints

The state of charge (SOC) of a battery represents the ratio of the current to the rated capacity.

It depends on the SOC of the previous period and the current operating state of the BESS, i.e.,

whether it is charging or discharging. The SOC at time t is represented as follows.
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SOCt = SOCt−1 +
4Et
Er , ∀t ∈ T (6.5)

where4Et is calculated as below.

4Et = Ec
t − E

d
t (6.6)

where Ec
t and Ed

t represent the actual energy charged and discharged from the battery respec-

tively. They are different from the bidding quantities Ebc
t and Ebd

t , as charging and discharging

efficiencies are not 100%. Ec
t and Ed

t are calculated as follows.

Ec
t = 1(R

lmp
t,k
≤ Rbc

t )Pbc
t τγc (6.7)

Ed
t = 1(Rbd

t ≤ R
lmp
t,k

)Pbd
t τ/γd (6.8)

where γc and γd are the charging and discharging efficiencies (%).

The operation of a BESS is constrained by its energy storage capacity, charging and discharging

power limits, etc. The constraints are represented by the following equations.

SOCmin ≤ SOCt ≤ SOCmax, ∀t ∈ T (6.9)

0 ≤ Pd
t , P

c
t ≤ Pmax, ∀t ∈ T (6.10)

Pd
t × P

c
t = 0, , ∀t ∈ T (6.11)

SOCt = SOCc, for t = 0 (6.12)

SOCt = SOCc, for t = T (6.13)

SOC is constrained with lower and upper bounds by SOCmin and SOCmax as shown in (6.9).

Different operating strategies mainly depend on this constraint as the SOCmin and the SOCmax

are varied for different scenarios. Charging and discharging power limits are represented by (6.10).

The quadratic constraint in (6.11) indicates that during each period, the BESS cannot buy and sell
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energy in the arbitrage market simultaneously. Equations (6.12) and (6.13) indicate that the SOC

at the end of the day is equal to the SOC at the beginning of the day. In this study, SOCc is set

as 50%. It is worth-noting that as the capacity loss increases, the SOCmax decreases. Hence, it

should be updated based on the remaining capacity of the battery.

6.3 Degradation of Lithium-ion Batteries

The lifetime of a BESS is crucial for utilities and operators. Two quantities, viz., the cycle life

and the calendar life are used for determining the lifetime of a BESS. The cycle life is affected

by cycle aging, which includes, besides the number of cycles, depth of discharge (DOD), mean

SOC of cycles and several other factors. Calendar life, on the other hand, represents the aging and

degradation of a BESS over time, and is affected by weather conditions such as temperature and

humidity. This implies that the degradation of the battery continues even though it is stored and

unused. In this section, the methodologies for counting the cycles and evaluating the life of Li-ion

battery are discussed.

6.3.1 Degradation Model of Li-ion Battery

A battery life assessment model with a linearized degradation rate is applied here. According

to [87], the linearized degradation rate depends on the number of cycles, the SOC, the depth of

discharge (DOD), cell temperature, C-rate and the elapsed time. The state of health (SOH) is

normally used to represent the remaining capacity of the battery, which can be estimated from the

ratio of its remaining capacity Erem to its rated capacity as represented below.

SOH = Erem/Er × 100% (6.14)

The degradation model used here is capable of evaluating the capacity loss (L). The SOH can

then be calculated as 1 − L. For a new battery, L = 0 and SOH = 100%. In this study, it is
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assumed that the battery reaches its end of life (EOL) when it can provide only 80% of its rated

energy capacity at most, i.e, when L = 0.2 and SOH = 80%. The degradation assessment model

can be represented as follows.

L = 1− α1e
(−α2fd) − (1− α1)e(−fd) (6.15)

where fd is the linearized degradation rate as expressed in (6.16). It is the sum of fcyc and fcal,

which reflect the cycle and calendar aging, respectively. α1 and α2 are coefficients of the solid

electrolyte interphase (SEI) model [87].

fd = fcyc + fcal (6.16)

fcyc =
Ncyc∑
i=1

fD(DODi)× fS(SOCi)× fC(Ci)× fT (Ti) (6.17)

fcal = kt × t× fS(SOC)× fT (T ) (6.18)

where fD(DOD), fS(SOC), fC(C) and fT (T ) are the aging models associated with the DOD,

SOC, C-rate and temperature stress, respectively. The constant kt represents the time stress coef-

ficient, t the test time (s), SOC the average SOC, T the average cell temperature, and Ncyc the

number of cycles. The aging models are calculated as follows [91].

fD(DOD) = (kD1DOD
kD2 + kD3)−1 (6.19)

fS(SOC) = ekS(SOC−SOCref ) (6.20)

fC(C) = ekC(C−Cref ) (6.21)

fT (T ) = e
kT (T−Tref )

Tref
T (6.22)

where KD1, KD2, KD3, KS,KC , and KT are coefficients, and SOCref , Cref , and Tref are
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reference values in the stress factor model.

0 20 40 60 80 100
0

2

4

6

8

N
um

be
r 

of
 C

yc
le

s 
to

 E
O

L

104

SEI Model

0 20 40 60 80 100
0

200

400

600

800

1000

1200

D
eg

ra
da

tio
n 

C
os

t (
$/

cy
cl

e) Linear Model
SEI Model

DOD (%)
(a) Number of Cycles vs DOD

DOD (%)

(b) Degradation Cost vs DOD

Figure 6.1: BESS degradation performance

6.3.2 Degradation Cost

Based on the aforementioned degradation model (SEI model), the number of cycles at different

DODs up to the end of life (EOL), i.e., 80% of its rated capacity, is illustrated in Figure 6.1(a). The

degradation cost per cycle is calculated based on the number of cycles and the replacement cost of

the BESS, which is assumed to be 300,000 $/MWh [92]. For example, if a 1 MW, 1MWh BESS
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can operate 30,000 cycles at 20% DOD, then the degradation cost of a 20% cycle is calculated as

300, 000$/MWh× 1MWh

30, 000 cycles
= 10$/cycle (6.23)

The degradation cost per cycle for different levels of DOD is illustrated in fig. 6.1(b). Since deep

cycles degrade the battery faster, the DOD of the BESS is normally restricted above a certain

boundary, e.g, 80% of the rated capacity. Thus, the cycle cost can be represented by a linear model

when the DOD of the battery is restricted within 0% and 80%. The fitted model obtained by linear

regression for this range is also plotted in fig. 6.1(b). Then the degradation cost can be calculated

as (β1DOD + β0), where β0 and β1 are the coefficients of the degradation cost linear model.

6.3.3 Rainflow Counting Method

As mentioned in the end of section II, the SOCmax is changing and although the degradation cost

has been added to the objective function, the actual SOH remains unknown without a degradation

assessment. Therefore, it is necessary to check the SOH and update the SOCmax periodically.

The rainflow counting method is applied in this study, which has been extensively used in fatigue

analysis [93–95], including the battery technology field [82, 87]. It can be used to determine

number of cycles, cycle mean and cycle amplitude of the BESS. In this work, it has been used to

count the number of cycles for evaluating the battery degradation. The information regarding the

cycling of the BESS, including its SOC profile, is obtained by solving the optimization problem

described in section II. Thus, the rainflow counting method is used to count the cycles and assess

the SOH jointly with the model presented in III.A.

6.4 Resilience and Reliability Improvement

In this section, the methodology to evaluate the benefit of the BESS from improving the resilience

and reliability is discussed. The uncertainty of the BESS is addressed and the equations for calcu-
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lating the interruption cost are presented.

6.4.1 Value from Mitigating Outages

In recent times, severe weather and natural disasters have been the leading causes for several

power outage events. For instance, hurricanes Sandy, Harvey and Irma have caused power outage

events affecting millions of people [96]. In addition to these, numerous other factors may affect

system reliability, such as failures of generating units, large variations in demand, and scheduled

maintenance. All these factors may lead to loss of load. In such situations, a BESS can effectively

support customer loads when partial or complete loss of power from the source utility takes place.

Thus, grid resilience and reliability can be improved by utilizing energy storage systems.

A BESS can be installed at the transmission or distribution level, or directly at a customer

location. It can contribute to the reliability improvement of an interconnected area by acting as

a dispatchable resource, if it is owned by a utility with a large capacity. It can also serve the

customer needs during an outage event, especially in some critical locations such as hospitals and

correctional facilities, which can significantly benefit from using a BESS. For instance, the 2 MW,

3.9 MWh battery storage system at Sterling, MA, USA, supports critical infrastructure during grid

outages. During a power outage, the BESS can provide up to 12 days of backup power to the police

station and dispatch center with the support of existing solar generation [77].

For each power outage event, if the BESS can discharge Pmax power to mitigate the outage,

then the resilience value that a BESS can be calculated as follows.

RL ×min(HL, HB)× Pmax (6.24)

whereRL is the interruption cost ($kWh),HL is the outage duration of the contingency (hour), and

HB is the duration that a BESS can be deployed to mitigate the outage, which equals SOC/Pmax.

The equation indicates that the resilience value of a BESS depends on the outage event duration

and the availability of the battery.
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6.4.2 Uncertainty of Battery Availability

Although the BESS is considered to be a controllable device, the availability of the BESS at an

unpredictable outage event is unforeseeable since the BESS is participating in the energy market

at normal operating states and thus the SOC of the BESS is always fluctuating. The integration

of the BESS can be represented by a multi-state model which captures this stochastic nature. In

this multi-state model, the SOC and its corresponding probability are calculated for all the Nsoc

states. The BESS resilience value can then be evaluated as follows.

RLPmax
Nsoc∑
n=1

psoc
n min(HL,

SOCn
Pmax ) (6.25)

where SOCn and psoc
n are the SOC value and the corresponding probability at the nth state,

respectively.

Then the total resilience value of a BESS for a year with Nevt outage events can be calculated

as follows.
Nevt∑
m=1

RL
mP

max
(Nsoc∑
n=1

psoc
n min(HL

m,
SOCn
Pmax )

)
(6.26)

where RL
m is the interruption cost of event m. HL

m is the outage duration of event m (hour).

6.5 Case Studies and Results

In this section, several case studies are performed with different operating strategies, results are

compared and findings are discussed.

Historical data from the PJM Interconnection is utilized for evaluating the revenue from partic-

ipating in the energy markets [33, 34]. One year of real time energy prices, from January 1, 2017

to December 31, 2017, has been used for this study. Historical data has been used in this study as

the focus of this work is not on price forecasting.

Lithium manganese oxide (LMO), a type of Li-ion battery, has been considered in this work.
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Data related to the degradation of this type of battery can be found in [87]. The simulation is

performed on a daily basis for one year. Some previous studies have performed the optimization

for a longer periods of time, e.g. one month [21], to estimate the revenue from the energy market.

This method can prove to be beneficial in the planning stage as it provides a larger estimate of the

revenue that the BESS can generate. However, at the operation stage, it is not always possible to

predict the energy prices one month in advance, and hence it is more practical to use day-ahead

energy prices to optimize the operation. Thus, T is set as 24 and the optimization is performed for

a 24-hour period.

The battery size is assumed to be 1 MW, 1 MWh with the calendar life as ten years. The charg-

ing and discharging efficiencies are assumed to be 95% for all the cases. The BESS parameters

are shown in Table 6.1. Table 6.2 summarizes the operating range for all the cases. A total of

4 × 11 cases with different operating strategies are studied. The lower and upper bounds of the

SOC are different for these cases, and the DCW varies from zero to one. Also, we assume that the

BESS is a price-taker participant and the operator submits supply quantity bids in this study, i.e.,

1(Rbd
t ≤ R

lmp
t,k

) = 1 and 1(R
lmp
t,k
≤ Rbc

t ) = 1 for all the cases.

Table 6.1: BESS Parameters

Parameter Value

Battery Type LMO
Power Capacity 1 MW
Energy Capacity 1 MWh
Calendar life 10 years
SOCc 50%
γc 95%
γd 95%
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Table 6.2: Operating Policies

SOCmin (%) SOCmax (%)

Case 1 20 80
Case 2 30 90
Case 3 10 90
Case 4 15 95

6.5.1 Solution Procedure

Results are obtained by following the four steps mentioned below for each case with different

DCWs.

Step I

Solve the optimization problem given in (6.4)–(6.13). In this study, the optimization problem

is solved by the General Algebraic Modeling System (GAMS) software. In this step, revenue from

the energy market and the annual SOC of battery can be obtained.

Step II

Estimate the distribution of the annual SOC and develop the multi-state model for resilience

and reliability analysis. Then evaluate the reduced interruption cost.

Step III

Investigate the battery cycling behavior with rainflow counting method and the degradation

model to assess the SOH.

Step IV

Update the SOCmax in (6.9) as SOCmax = min(SOCmax
op , SOH) and go to Step I. Repeat

until SOH ≤ 80% or the simulation time reaches to the BESS calendar life.

Here the SOCmax
op is the maximum SOC value determined by the operator. For instance, in

case 3, the operator has initially set the maximum SOC as 100%. However, after a period of time,

the SOH of the battery decreases to 90%, so the maximum SOC also decreases to 90%.
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Figure 6.2: Revenue from the energy market

6.5.2 Results

Results from all the above cases, including the resilience value, battery life, profit from energy

market, and stacked benefits are presented in this section and compared. The degradation weight

is varied from zero to one for all cases.
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6.5.2.1 Profit from the Energy Market

The revenue from the energy arbitrage application for different values of DCW are shown in figure

6.2. From these figures, it can be concluded that more revenue can be generated if the BESS is

operated at a larger SOC range. Hence, the BESS generates more revenue for cases 3 and 4 than in

cases 1 and 2. It is also evident that the revenue for a single year increases with decreasing DCW.

However, the lifetime revenue does not follow this trend and the highest profit for most of the cases

can be obtained when ω = 0.2.
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Figure 6.3: SOC states of Case 1 at year 1

6.5.2.2 SOC Multi-state

The multi-state model of battery based on the hourly SOC for each year, for different DCWs are

evaluated for all cases. Figure 6.3 shows an example of the change in the multi-state model for

case 1 at year one. There are three SOC states for case 1: 20% for state 1, 50% for state 2, and

80% for state 3. As the DCW increases, the probabilities of occurrence of state 1 and 3 decreases,
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while that of state 2 increases. This implies that if degradation carries more penalty, then the BESS

should decrease the number of cycles and idle at state 2 most of the time.

Table 6.3: Interruption Cost

Interruption Large and Medium Small C&I
Duration C&I Customer ($/kWh) Customer ($/kWh)

30 minutes 37.3 474.1
1 Hour 21.8 295
4 Hours 12.1 214.3
8 Hours 12.9 267.3
16 Hours 12,7 258

6.5.2.3 Resilience Value

The value from outage mitigation is calculated based on existing survey results regarding interrup-

tion costs in the U.S. Two types of customer data are utilized in this study: the large and medium

commercial and industrial (C&I) customer (Type 1) and the small C&I customer (type 2). The data

is presented in Table 6.3 [97, 98].

Figures 6.4 and 6.5 show the value from outage mitigation for all the cases as ω is varied. From

the figure, it can be concluded that the BESS has higher average annual resilience value when the

minimum and maximum SOC are both higher. For instance, the value from outage mitigation is

the highest for cases 2 and 4 as shown in figures 6.4 (a) and 6.5 (a). However, the total lifespan

resilience value, as presented in figures 6.4 (b) and 6.5 (b), is the highest for case 1 and 2 when the

ω is properly assigned.

6.5.2.4 Battery Life

Figures 6.7 and 6.8 illustrate the degradation process of the BESS for ten years of usage when the

DCW is set as one and zero, respectively. When DCW equals one, the BESS can be utilized for ten

years for all four operating ranges. However, when DCW equals zero, the life of the BESS is in the

range of four to six years. Figure 6.6 illustrates the SOH of the BESS over ten years of usage with

93



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Degradation Cost Weight

(a)

7500

8000

8500

9000

9500

$
/y

e
a
r

Average Annual Resilience Value (Type 1)

Case 1: [20% 80%]

Case 2: [30% 90%]

Case 3: [10% 90%]

Case 4: [15% 95%]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Degradation Cost Weight

(b)

3

4

5

6

7

8

9

$

104 Lifespan Resilience Value (Type 1)

Case 1: [20% 80%]

Case 2: [30% 90%]

Case 3: [10% 90%]

Case 4: [15% 95%]

Figure 6.4: Resilience value for large and medium C&I customer

different DCWs for each case. The SOH of cases with ω > 0.6 is not presented since the SOH for

all the cases is higher than 80% at year ten. The results also show that if the DCW is less than 0.4,

the BESS cannot last till the end of its calendar life, i.e., ten years, for any of the four cases.

6.5.2.5 Stacked Benefit

Figures 6.9 and 6.10 summarize the stacked value of the BESS from the energy market and outage

mitigation before it reaches its EOL for the two types of customers. For large and medium C&I
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Figure 6.5: Resilience value for small C&I customer

customers, it can be observed that the BESS has the highest value when the DCW is set to 0.4 for

all the four cases. This is more pronounced when the BESS operates between 10% and 90% SOC.

For small C&I customers, the BESS has the highest value when operated between 30% and 90%

SOC with the DCW being set to 0.5. The BESS also generates a relatively higher revenue when

it is operated between 20% and 80% SOC and with the DCW being set as 0.4. Tables 6.4 and 6.5

present the highest values of BESS for the two types of customers.
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Figure 6.6: Degradation process with different ω
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Figure 6.7: SOH with ω = 0
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Figure 6.8: SOH with ω = 1

6.5.3 Discussion

From the results of the case studies, it can be observed that,
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Figure 6.10: Stacked value for small C&I

1. The annual revenue from the energy market increases as ω decreases, i.e., as the importance

on the degradation model decreases. The revenue is also higher for cases 3 and 4, where
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Table 6.4: Stacked Value for Large and Medium C&I with ω = 0.4: Case 3

Year Energy Arbitrage Resilience Value Stacked Value

1 8079.18 8737.69 16816.87
2 8079.18 8737.69 16816.87
3 8079.18 8737.69 16816.87
4 7958.44 8698.16 16656.60
5 7762.54 8634.03 16396.57
6 7574.23 8572.37 16146.61
7 7392.60 8512.91 15905.51
8 7216.97 8455.41 15672.38
9 7046.98 8399.75 15446.74
10 0 0 0

Total 69189.3 77485.7 146675

Table 6.5: Stacked Value for Small C&I with ω = 0.5: Case 2

Year Energy Arbitrage Resilience Value Stacked Value

1 5583.12 143051.92 148635.03
2 5583.12 143051.92 148635.03
3 5583.12 143051.92 148635.03
4 5544.76 142868.23 148412.99
5 5390.54 142129.63 147520.17
6 5241.41 141415.42 146656.83
7 5096.27 140720.33 145816.60
8 4954.82 140042.91 144997.73
9 4816.88 139382.28 144199.16
10 4682.28 138737.67 143419.96

Total 52476.32 1414452.22 1466928.54

higher capacities of the BESS have been committed to the market and hence the results are

quite obvious.

2. The BESS has higher resilience value for one year when the maximum and minimum SOC

are both high. For instance, in figures 6.4 and 6.5, case 2 has the highest value from outage

mitigation. Also, the BESS has higher lifespan resilience value when the DCW is between

0.4 and 0.5.
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3. From Figure 6.6, it can be observed that when ω < 0.4, the battery never lasts for ten years.

If 0.4 ≤ ω ≤ 0.6, then for some cases it lasts for ten years, while if ω > 0.6, the battery

lasts for ten years for all the cases. This gives a lot of flexibility to the operators of the

BESS who can choose ω according to their requirements.

It is worth mentioning that the optimal value of DCW depends on the planning horizon, the

battery technology, and the BESS uses cases. As the battery cost is decreasing, operators may set

different planning horizon based on their prediction of BESS replacement cost of their battery type.

Also, the degradation process is different for different types of battery technologies. The BESS

operators should apply the specified degradation model of their own to develop the degradation

cost function. Moreover, the use cases of BESS also affect the choice of DCW. For instance,

the BESS may experience deeper cycles when seeking for arbitrage opportunities than when it is

providing frequency regulation service for most of the time.

6.6 Conclusion

In this chapter, an attempt has been made at optimizing the operating strategy of a BESS with

the aim of maximizing its value by striking a balance between the revenue generated from its

applications and the longevity of the battery. Several scenarios have been considered where the

operating ranges of the BESS and the DCW have been varied to understand the merits of the BESS.

The observations from the results underline the importance of the DCW metric, as the variation of

DCW yields a significant effect on the value of the BESS. Extreme values of the DCW might not

maximize the BESS value, and hence should be chosen wisely. It can also be observed from the

results hat although the revenue from energy arbitrage is maximum when the degradation cost is not

considered, the battery life is shortened and thus the overall value of the BESS is decreased. Also,

the total stacked value is higher when the SOC is constrained properly with a wisely chosen DCW.

The optimal operating strategy can be different for different types of customers. Therefore, it is

necessary for the operators to conduct analyses based on their batteries and interruption costs. This
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study framework and its results can be utilized by utilities and other BESS owners and operators for

determining the capacity and operating strategy for their BESS, based on its applications. Future

work involves the consideration of other applications of the BESS, including participation in the

ancillary services market.

101



Chapter 7

Conclusion

In this dissertation, three aspects of studies are performed for grid-scale energy storage systems. A

method for quantifying the benefits of stacking up the applications of an ESS is firstly presented.

Three applications (outage mitigation, energy arbitrage, and frequency regulation) were consid-

ered. Several case studies were performed to evaluate the reliability indices and the cost benefits.

Sequential MCS was used to track the charging and discharging performance of the ESS and also

the outage events in the system while evaluating the reliability indices and interruption cost. The

variable behavior of load demand and the forced outages of generators are also captured by the

sequential MCS. A quadratically constrained linear programming model was established to esti-

mate the potential revenue from arbitrage and regulation markets. It presents several benefits from

installing an ESS and utilizing it for the applications stated above. The approach described in this

part can be utilized by industries including utilities and manufacturers to build business cases when

they want to install an ESS for their facilities.

Second, a methodology to evaluate the capacity value of the energy storage system when it is

also participating in the energy market seeking arbitrage opportunities is proposed. The capac-

ity value of ESSs with different energy capacity sizes are estimated. The results indicate that the

longer the duration that an ESS can be used, the larger capacity contribution can be made. The

results can provide the system planners estimations of the ESSs capacity value. More importantly,
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the framework proposed here can be applied in the real world capacity planning process to evalu-

ate the actual capacity contribution of energy storage systems when they are involved in multiple

services. For planning purposes, this work has also introduced the use of sensitivity analysis and

locational marginal price to determine the optimal placement of ESSs. The objective function used

in the tested systems is the generation cost function. The best locations for different size ESSs are

deployed according to the saving in generation production cost. The proposed algorithm is demon-

strated on several test systems. For each case, economic dispatch and genetic algorithm are applied

to search for the optimal solution. Also, the convergence performances to find the optimal solu-

tion with and without the proposed encoding strategy are compared. The results demonstrated that

the computational efficiency and speed are improved by the sensitivity analysis-based encoding

approach.

Finally, a battery ESS is considered to participate in the energy market for energy arbitrage,

and also helps to improve system reliability and resilience. An optimal strategy is proposed for the

operation of the BESS which aims at maximizing the value of the BESS by balancing the revenue

from the applications and the longevity of the facility. The operation of the BESS is considered un-

der several operating ranges with different degradation cost weights. The degradation cost weight

is an important metric for the operation strategy. Very large or very small values of the weight

might not maximize the value of a BESS, and hence should be chosen wisely based on the plan-

ning horizon, ESS applications and the battery technology. The results of case studies show that

although the energy arbitrage revenue is maximum when the degradation cost is not considered,

the battery life is shortened and thus the overall value of the BESS is decreased. The BESS has

larger stacked value when a lower capacity of the battery is committed to the energy market with

a reasonable degradation cost weight. This study framework and its results can be utilized by util-

ities and other BESS owners and operators for determining the capacity and operating strategy for

their BESS, based on its applications.

The work developed in this dissertation presents studies on ESS cost-benefit analysis, capacity

valuation, optimal siting, and operating strategy. For all the three aspects: benefits, planning, and
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operation, it is necessary to consider the uncertainty of ESS availability as it is suitable to provide

several services to the power grid, but with limited capability. This is because a quantity commit-

ted to one service may not be committed to another due to its energy-limited characteristic. Also,

for some types of ESSs, i.e., battery ESSs, the degradation process needs to be included in the

analysis as different applications have different levels of effect on the ESS longevity. The work

presented in this dissertation could have potential improvements if more aspects are considered.

For instance, other ESS applications can be incorporated into the cost-benefit framework. Also,

different clustering methods can be investigated and compared for building the multi-state model

of ESSs for different ESS applications. For instance, the SOC variation pattern of ESSs should be

different when it is participating in the energy market and providing the frequency regulation ser-

vice. Moreover, the degradation process for other types of batteries or ESSs could be investigated

to present a more comprehensive study of ESS operating strategies.
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