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ABSTRACT 
 

HIGHLY ACCURATE POTENTIAL ENERGY SURFACES FOR THE He–H2 
INTERACTING SYSTEM 

 
By 

 
Janelle A. Bradley 

 
In this thesis numerical values are presented for the energies of the ground state of the He– 

H2 system, obtained with coupled-cluster1 (CC) methods at ~ 20,000 nuclear geometries. 

Approximately 68,000 ab initio calculations have been performed for the ground and first excited 

singlet state of He–H2. In these calculations, the H–H bond lengths range from 0.942 to 5.70 a0 (at 

14 different values), the intermolecular separations R range from 0.25 to 20.0 a0 (usually at 74 

different R values), and the angle θ between r and R ranges from 0° to 90° in steps of 5 degrees.  

Characteristics of the potentials, the bound vibrational state, and the intersection between the states 

are investigated.   

The CCSD(T)2 method is known to yield unreliable results when internuclear separations 

are far from their equilibrium values, whereas the CR-CC(2,3)3 method has been shown to treat 

stretched bonds more accurately, the CR-CC(2,3) method was chosen for this work, because 

regions of the H2–He potential energy surface having stretched H–H bonds are desired with greater 

accuracy than in the earlier work. The calculations performed in this work also test the CR-CC(2,3) 

method for van der Waals molecules. The CR-CC(2,3) results in this work are compared with 

CCSD(T) results obtained in this work, and with CCSD(T) results in the scientific literature (where 

available). The parts of the potential surface corresponding to H2–He, H–H–He, H–He–H, HHe–

H, H–HHe, HeH+–H- and the conical intersection between the ground and excited state have been 

calculated. 
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CHAPTER 1: Introduction 

1.1 Overview  

In this thesis numerical values are presented for the energies of the ground state and the 

first excited singlet state of the He–H2 system, obtained with coupled-cluster (CC) methods1 at 

~20,000 nuclear geometries. Approximately 68,000 ab initio calculations have been performed for 

these two states of He–H2.  In these calculations, the H–H bond lengths range from 0.942 to 5.70 

a0 (at 14 different values), the intermolecular separations R range from 0.25 to 20.0 a0 (usually at 

74 different R values), and the angle θ between r and R ranges from 0° to 90° in steps of 5 degrees.  

The ground state was treated with the CR-CC(2,3)2 method and the excited state was treated with 

the CR-EOMCCSD(T)3 method.  All calculations employed one of the aug-cc-pVXZ basis sets of 

Dunning and co-workers.4 Characteristics of the potentials, the bound vibrational state, and the 

intersection between the states have been investigated.   

The CCSD(T)5 method employs an exponential operator to generate all single and double 

excitations from a reference state (typically the Hartree-Fock ground state) and then adds a non-

iterative, perturbative correction for triple excitations. The CR-CC(2,3) method is based on the 

method of moments of coupled-cluster equations (MMCC).6 The CR-CC(2,3) method is one of a 

class of completely renormalized methods that are denoted generally by CR-CC(mA, mB), where 

mA gives the excitation level of the results that we wish to correct, and mB gives the excitation 

level for the correction. The CCSD(T) method is known to yield unreliable results when 

internuclear separations are far from their equilibrium values, or bonds are breaking in diatomics 

such as HF and N2. The CCST(T) energy may even diverge when the internuclear separations are 

far from equilibrium. The CR-CC(2,3) method has been shown to treat stretched bonds more 

accurately. The CR-CC(2,3) methods were chosen for this thesis, because regions of the H2–He 

potential energy surface having stretched H–H bonds are desired with greater accuracy than in the 

previous work.  The calculations also test the CR-CC(2,3) method for van der Waals molecules. 

The CR-CC(2,3) results in this work are compared with CCSD(T) results obtained in this work, 

and with CCSD(T) results in the scientific literature (where available).  For regions of the potential 
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energy surface where the bond length of the H2 molecule is not too far from the equilibrium, the 

CCSD(T) and CR-CC(2,3) results are expected to be comparable. As the distance between the H 

atoms is increased, the difference between results obtained with the two methods is expected to 

increase. For selected geometries, full configuration-interaction (FCI) calculations have been 

performed with the same basis set as in the CR-CC(2,3) and CCSD(T) work, to allow for further 

comparisons. The CR-CC(2,3) and CCSD(T) energy values are also compared with highly 

accurate calculations of the H2–He potential energy surface by the Patkowski group.7 However, 

Patkowski et al. did not carry out calculations for bond lengths greater than 1.75 a0.  Parts of the 

potential surface corresponding to H2–He, H–H–He, H–He–H, HHe–H, H–HHe, HeH+–H- and the 

conical intersection between the ground and excited state have been calculated. 

Since hydrogen and helium are the most abundant chemical species in the Universe, 

detailed information about their interactions is desirable.  An accurate understanding of the system 

is attainable with existing ab initio electronic structure methods. The calculations in this thesis 

cover parts of the H2–He potential surfaces that have not been treated in previous work and should 

be useful in modeling spectra at higher temperatures than previously accessible. For example, ab 

initio results are provided that can be used to study transitions up to vibrational quantum number 

n = 8.  The results are needed in order to model the radiative profiles of cool white dwarf stars, 

with temperatures between 3500 K and 7000 K.8  
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1.2 Review of Experimental Results for H2–He Interactions Obtained From Molecular Beam  

Studies  

Experimental data on interactions in the H2–He system comes primarily from molecular 

beam studies. In a molecular beam study of this system in 1962, Harrison9 estimated the overall 

cross section as σ = 58-62 Å2. In 1967, Moore, Datz, and van der Valk10 measured the total 

collision cross section for collisions of H2 with 3He and 4He and for D2 with 3He. The hydrogen 

and deuterium beams were scattered into helium at temperatures from 77 K to 600 K, with the 

helium at 77 K. The relative velocities ranged from 1.3 . 105 cm s−1 to 2.6 . 105 cm s−1. They found 

an overall cross section for H2
4He collisions of σ = 43 ± 1 Å2. Both Harrison and Moore et al. used 

beams produced by effusion.  Harrison used a tungsten-foil furnace with a small hole as the beam 

source, and Moore used a copper block with a hole for the beam.  Later Skofronick11 introduced a 

supersonic nozzle source that gave beams 100 to 1000 times more intense than beams produced 

by effusion, with a smaller velocity range as well. His measured cross section was 49.4 ± 5 Å2. 

Cantini, Cavallini, Dondi, and Scoles12 found a cross section of 46.6 Å2 in beam studies at room 

temperature. 

In 1971 Gengenbach, Strunck, and Toennies13 determined absolute integral cross sections 

for H2 scattering from helium gas, for relative velocities in the range from 2000 to 20000 m s−1. 

Relative velocities of this magnitude are too high, however, to probe anything but the repulsive 

region of the potential.  They compared their results with predictions based on a potential obtained 

by Slater, a composite Born-Mayer-Morse-Lennard-Jones potential, and three other ab initio 

potentials available at that time. Two of the ab initio potentials were derived from self-consistent 

field calculations and the third came from configuration interaction calculations by Gordon and 

Secrest14 who fit the short-range exponential repulsion. In order to study the potential well, 

Gengenbach and Hahn15 determined absolute effective cross sections for lower relative velocities, 

namely, from 140 to 1200 m s−1. In contrast to the earlier experiments by Gengenbach, Strunck, 

and Toennies, Gengenbach and Hahn scattered the helium atoms from H2 at a temperature of 15 
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K. The best fit of their isotropic potential to a Morse potential suggested that there was one bound 

state for 3He or 4He interacting with any of the H2 isotopic pairs (i.e., H2, D2, and T2). 

Grace and Skofronick16 fit available beam data for relative velocities between 2000 and 

3000 m s−1.  Their results were sensitive primarily to the region of the potential between 2.7 and 

3.3 Å. Within that range, these authors found a good fit to a Lennard-Jones potential, obtaining a 

potential minimum of ε = 0.7 meV located at Re = 3.5 Å.  Lilenfeld, Kinsey, Lang, and Parks17 

measured the total scattering cross section for 4He-D2 for relative velocities from 760 to 2600 m  

s-1. In order to fit their data, they used a piecewise potential constructed from ab initio data at short 

range joined to the form C6 R-6 at long range. From this fit, these authors also obtained good values 

for diffusion coefficients. 

In 2004, the Toennies research group found the first experimental evidence for a bound 

state of the H2–He van der Waals molecule in a molecular beam study using free-jet expansion of 

a He/H2 mixture at T0 = 24.7 K and a total pressure of 7 bar.18  They used a small percentage of 

H2 relative to He to differentiate the 4HeH2 complex from the more strongly bound (H2)2 dimer. 

The beam velocity was ~500 m s−1, with a variation of about 1%. The beam was collimated by two 

slits and then diffracted by a transmission grating, according to Bragg's law. The beam components 

that diffracted at different angles passed through a collimator, and then were analyzed with an 

electron-impact ionization mass spectrometer, as shown in Figure 1.1.    

The diffraction angle is normally given by Bragg’s law, nλ = 2d sin θ, where n is the 

diffraction order, d is the lattice spacing, and λ is the deBroglie wavelength of the molecules. This    

standard version describes the diffraction when the angle of the incident beam relative to the 

surface is θ and the angle of the diffracted beam relative to the surface is also θ.  Since the Toennies 

group used a transmission diffract grating, they determined the deflection of the beam relative to 

the direction of the incident beam. The measured deflection angle is effective 2θ, relative to the 

Bragg angle.  For small angles θ, sin θ ≈ θ.  So, the Toennies group used the equation θ = nλ/d to 

relate the deflection angle to the deBroglie wavelength λ of the species in the beam.  The deBroglie 
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wavelength is λ = h/mv, where h is Planck’s constant, m is the mass of the molecule or complex, 

and v is its velocity. 
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Figure 1.1. From R. E. Grisenti, W. Schöllkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from 
nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A 61, 1345033608 (2000). This figure shows the general 
set-up of the experiment used to detect bound H2–He. The beam passes through two collimators to reach the transmission grating, which 
has a spacing of d = 100 nm. The diffracted beam is detected with a mass spectrometer that can be positioned at a precise angle relative 
to the incident beam. 
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In the experiment, the deflection angle is determined by the diffraction of the neutral 

species. The angular resolution of the experiment was reported as 55 µrad, and the mass 

spectrometer detector could be positioned to 10−3 rad. The peaks detected by the mass spectrometer 

are determined by the masses of the ion fragments formed from the neutral.  The resolution of the 

mass spectrometer is m/∆m ≈ 40.  The first-order peak due to diffraction of the He atoms occurs 

at −2.0 ⋅ 10−3 rad, or 0.115°.  The peak locations are shown as a function of deflection angle in 

Figure 1.2, with separate plots for ion masses of 4 amu, 3 amu, 5 amu, and 6 amu. 

The deBroglie wavelengths for each of the species observed by the Toennies group were 

calculated in this thesis research, using the velocity v = 500.0 m s−1, given in the paper by the 

Toennies group. In Table 1.1, the deBroglie wavelengths are listed, and the calculated deflection 

angles are compared with the observed deflection angles, showing excellent agreement.   

Three signals corresponding to H2–He were observed, all at the correct deflection angle for 

H2–He, as shown in Figure 1.2.  These appear at ion masses 4 amu, 5 amu, and 6 amu. The peak 

at 4 amu and a deflection angle of 1.33 ⋅ 10−3 rad comes from He+ formed from H2–He. The peak 

at 5 amu and 1.33 ⋅ 10−3 rad comes from HeH+ formed from H2–He, and the peak at mass 6 amu 

and a deflection angle of 1.33 ⋅10−3 rad comes from HeH2
+ that did not fragment. 
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Figure 1.2.  From A. Kalinin, O. Kornilov, L. Y. Rusin, and J. P. Toennies, “Evidence for a bound 
HeH2 halo molecule by diffraction from a transmission grating,” J. Chem. Phys. 121, 625 (2004). 
The figure shows the ion signal detected by the mass spectrometer as a function of the deflection 
angle in mrad, for four different masses of the fragment ions: a) 4 amu, b) 3 amu, c) 5 amu, and d) 
6 amu. Peaks due to fragments from H2He are found at a deflection angle near 1.33 mrad (as 
predicted by calculations based on the deBroglie wavelength of the neutral species and the spacing 
of the diffraction grating (d = 100 nm). The experiments were run with gas mixtures containing 
1% H2 and 99% He to minimize interferences from H2 clusters that are more strongly bound than 
H2He. The large, bold peaks in the 4 amu plot come from pure He. 
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Table 1.1.  Species detected by the Toennies group. The isotopic masses are listed in amu and kg.  The deBroglie wavelengths λ have 
been calculated based on a particle velocity of 500.0 m/s. The diffraction angles θcalc were determined from λ = d sin θ, with a diffraction 
grating spacing of d = 100.0 nm. Observed diffraction angles θobs were read approximately from the figure in the Toennies group paper.  
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In order to provide additional evidence that the He+ detected at 1.33 ⋅ 10−3 rad was formed 

by ionization and fragmentation of H2–He, the same experiment was run with helium alone.  Peaks 

corresponding to neutral masses 4, 8, and 12 amu were essentially the same as the peaks from the 

H2/He gas mixture, with one exception: A small peak at 1.33 ⋅ 10−3 rad was seen in the experiments 

with pure He and attributed to second-order diffraction of 4He3. This peak was higher by ~7.5 

counts per second for the H2/He mixture than for He alone. 

The experiment was also run with H2 alone. In this case, relatively intense signals were 

seen at 3 amu, due to H3
+, at deflection angles for (H2)2, (H2)3, and (H2)4, but no signals at 4, 5, or 

6 amu were observed in the experiments with pure H2.  A deflection angle of 1.33 ⋅ 10−3 rad might 

possibly be produced by (H2)3, but since pure H2 gas gives no peaks at 5 or 6 amu, this supports 

the claim that these peaks in the experiments with H2/He mixtures are due to H2–He+. One 

additional peak at mass 5 amu in the experiments with H2/He mixtures has the right deflection 

angle for a neutral mass of 10 amu. This suggests that the peak is due to HeH+ formed by 

fragmentation of the neutral He2H2. 

In 2008, Tejeda, Thibault, Fernández, and Montero19 determined the rate constants for 

rotational transitions of J = 2 to J = 0 in collisions of para-H2 with He, and for J = 3 to J = 1 in 

collisions of ortho-H2 with He.  They measured the intensities of the vibrational Raman lines in 

supersonic jets of He/H2 mixtures at temperatures from 22 K to 180 K, and analyzed the results 

for the state populations. This is the most recent molecular beam study of H2–He that cited the 

2004 paper from the Toennies group.   

1.3 Other Sources of Experimental Data on H2–He Interactions  

In addition to molecular beam scattering studies, measurements of thermal conductivities, 

NMR relaxation rates, stimulated Raman scattering, and shock wave phenomena have also 

provided information on the H2–He potential.  Clifford, Colling, Dickinson, and Gray20 determined 

the thermal conductivities of mixtures of He with each of the three hydrogen isotopes, as functions 

of the composition of the mixtures, at temperatures of 77.6 K and 283.2 K.  They examined fits to 

Lennard-Jones potentials, and empirical potential derived from molecular beam studies, and an ab 
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initio potential.  Later, Clifford, Fleeter, Kestin, and Wakeham21 measured thermal conductivities 

of He/H2 mixtures as a function of pressure in the range from 2 to 14 MPa have been reported, at 

27.C°. 

Audibert, Joffrin, and Ducuing22 used Raman techniques to look at changes in the 

translational energy of molecules when H2 collided with 3He or 4He and lost vibrational energy. 

They found large discrepancies from theoretical predictions, but the predictions were based on 

collinear semi classical scattering calculations and an early ab initio potential calculated by Krauss 

and Mies.23 Dove, Jones, and Teitelbaum24 studied the vibrational relaxation of H2 in shock waves 

occurring in H2/He mixtures, for temperatures in the range from 1350 to 3000 K.   

NMR studies that measure the T1 relaxation rates yield information on the anisotropy of 

the potential because this relaxation time is governed by the torques at play on the interacting 

systems. The T1 relaxation rates are determined by two contributions:  The first contribution comes 

from spin-rotation interactions.  A magnetic field is generated by the moving charges in the rotating 

molecule; this field acts on the nuclear spins. When a pulse is applied, the spins can transfer some 

of their energy into rotation via the spin-rotation coupling. The second contribution to T1 relaxation 

comes from magnetic-dipole-magnetic dipole interactions.    

Riehl, Kinsey, Waugh, and Rugheimer25 measured the T1 relaxation time of He/H2 

mixtures at temperatures from 77 to 300 K. Computing cross sections from their measured 

relaxation times as a function of temperature and comparing with theoretical values allowed these 

authors to report approximate anisotropic parameters for the He–H2 potential. In a later study, 

Riehl, Fisher, Baloga, and Kinsey26 measured the spin relaxation times in the temperature range 

from 15.7 to 136 K.  They assumed a potential of the form V = V0(R) + V2(R) P2(cos θ), where R 

is the distance from the center of mass of H2 to He, V0(R) is the isotropic term in the potential, and 

V2(R) gives the anisotropy that goes as the second Legendre polynomial of the cosine of the angle 

between the H2 bond vector and the vector from the center of mass of H2 to He.  They also assumed 

that the exponential repulsions in V2(R) and V0(R) would fall off at the same rate, when R 

increases.  They looked at four different possible fitting potentials and concluded that a piecewise 
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potential was the best. They could not find a single potential that fit both their measured T1 

relaxation times and the rotational relaxation rates. 

The most recent NMR experiment of relevance to the H2–He potential was done by 

Wagner, Armstrong, Bissonnette, and McCourt,27 who studied the relaxation of hydrogen and 

deuteron nuclear spin magnetizations in He–HD mixtures at temperatures from 90 to 300 K.  These 

authors compared their results for the temperature dependence with predictions based on ab initio 

potential surface calculations by Schaefer and Köhler28 and by Meyer, Hariharan, and 

Kutzelnigg.29 They found quantitative agreement between the experimental and theoretical results 

for the H nucleus, but only semi-quantitative agreement for the D nucleus. 

Riehl, Kinsey, Waugh, and Rugheimer also noted that the anisotropic part of the potential 

can be probed in experiments on sound absorption in gases, spectroscopic line broadening, 

molecular libration in solids, and the dependence of transport coefficients on magnetic fields. 
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CHAPTER 2: Methodology 

 In this chapter, the methodologies used for the ground-state calculations in this thesis are 

described. These include traditional coupled-cluster methods that include triple excitations 

approximately or exactly, coupled-cluster methods with approximate quadruple excitations, 

completely renormalized coupled-cluster approaches, and configuration-interaction methods. 

2.1 Coupled-Cluster Methods  

In the original coupled-cluster (CC) methods,1 the wave function is written as 

 |   = eT | 0      (2.1) 

where | 0  is an independent-particle model reference determinant, usually the Hartree-Fock 

determinant. In Eq. (2.1), T is the cluster operator of CC theory, which can be written in terms of 

its many-body components for an N electron system as 

 T = T1 + T2 + T3 + . . . TN,    (2.2) 

where T1 performs all single excitations from occupied i, j, k, …  to unoccupied a, b, c, … orbitals, 

T2 performs all double excitations, . . .  and TN performs all N-tuple excitations. If the cluster 

operator contains up to N-body terms and there are N electrons in the system, then we obtain the 

exact solution of the Schrodinger equation within the basis set. The series in Eq. (2.2) must 

terminate because electrons must be moved from occupied to unoccupied orbitals and there are 

only N occupied orbitals in the reference wave function and a finite number of total orbitals in the 

basis set. The T1 operator, which generates all single excitations from the reference determinant, 

is given by 

 T1 = i{occ}, a{unocc} ti
a  a†

a ai .    (2.3) 

In this equation and below a†
a is the creation operator that places an electron in the unoccupied 

orbital a, and ai is the annihilation operator that removes an electron from occupied orbital i. The 

coupled-cluster operators that generate all double and triple excitations are given, respectively, by 

  T2 = i > j{occ}, a > b{unocc} tij
ab  a†

a ai a†
b aj   (2.4) 

 T3 = i<j<k{occ}, a<b<c{unocc} tijk
abc  a†

a ai a†
b aj a†

c ak  (2.5) 

and similarly for the higher-order Tn operators. 
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 In approximate CC methods, excitations relative to | 0  are truncated at some level mA < 

N, so that the cluster operator for an approximate CC method A is given by 
   mA       

 T(A) =       Ti
(A) .     (2.6) 

i = 1 

In this equation, the notation Ti
(A) reflects the fact that the cluster amplitudes ti

a, tij
ab, tijk

abc . . . are 

different for different levels of truncation, but the structure of each excitation operator Tn is the 

same for all of the approximate CC methods regardless of the truncation level.  For mA = 2, we 

have the CCSD2 method; for mA = 3, we have the CCSDT3 method; for mA = 4 we have the 

CCSDTQ4 method, which is the highest level currently available. Here we note that the CCSDTQ 

method, which includes all single, double, triple, and quadruple excitations, is exact for the case 

of H2–He.  

In more detail, for mA = 2 we have the CCSD method2 which has the cluster operator 

T(CCSD) = T1 + T2     (2.7) 

whose amplitudes are determined from the system of CC equations obtained by projecting the 

equations for the CCSD method onto all singly- and doubly-excited configurations relative to             

| 0 . In the CCSDT approach,3 the cluster operator is truncated at mA = 3 so that we have 

T(CCSDT) = T1 + T2 + T3.     (2.8) 

Similarly, CCSDTQ4 arises from truncating at the mA = 4 level of excitation to yield the cluster 

operator given by 

T(CCSDTQ) = T1 + T2 + T3 + T4.      (2.9) 

The CCSD method scales as n0
3 nu

3 with n0 the number of occupied orbitals and nu the number of 

unoccupied orbitals in the basis set.7 The CCSDT and CCSDTQ methods have even worse scaling 

with the size of the basis set. 

 The Schrödinger equation for the coupled-cluster wave function is    

  H eT | 0  = E | 0  .     (2.10) 
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Multiplying on the left by the “bra” reference configuration  0 | and moving the energy to the 

left hand-side, for the equation involving all single excitations from the reference determinant we 

have 

(Φ i
 a | e-T H eT | Φ ⟩ − E ⟨ Φ | Φ ⟩ = 0              (2.11) 

Thus, the equations that are solved to determine the cluster operator amplitudes ti are the 

projections of the equations onto all excited determinants relative to | 0 . This gives the projection 

equations of CC theory.1,11 

From an analysis of the results occurring in the fifth order of perturbation theory and their 

comparison with the CC expansion in terms of the cluster operators, a missing (connected) triples 

term to CCSD was determined5 and it is this connected triples correction which is based on 

perturbation theory that, when applied to the CCSD result, yields the CCSD(T)5 one. This 

connected triples correction arises from T1 and T2 and needs only to be computed once (i.e., in a 

non-iterative fashion) to correct the CCSD energy and arrive at the CCSD(T) result. The triples 

correction that is computed in the CCSD(T) method can be written as 

∆Et  =  ( ∑ s
S  + ∑s

D ) ∑ t
T  ∑ uD  ( E0 – Et ) –1 as Vst Vtu au    (2.12) 

Thus, the CCSD(T) method involves the calculation of all singles and doubles and accounts for 

the disconnected triples via Eq. (2.12) which involves only the triples that arise from T1 and T2. 

2.2 The Method of Moments of Coupled-Cluster Equations Formalism 

The methods of moments of coupled-cluster (MMCC) equations, referred to generally as 

the MMCC(mA, mB) methods,6 are based on a correction that when added to the result of an 

approximate method A, yields the exact correlation energy, given by 

ΔE = E − ⟨ Φ | H | Φ ⟩ .    (2.13) 

The MMCC corrections are given generally by 

𝛿 =  ΔE − ΔE(A)    (2.14) 

where ΔE is the exact correlation energy and ΔE(A) is the correlation energy of approximate method 

A. Thus, 𝛿 represents the error between the correlation energy obtained with approximate method 

A and the exact value.  
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In the biorthogonal MMCC formalism,7 the corrections 𝛿 are given by 

𝛿଴
(A)

= ∑ ∑ ℓiభ⋯in

aభ⋯ann
iభழ⋯ழin

aభழ⋯ழan

ℳaభ⋯an

iభ⋯in (mA)NA
nୀmAାଵ   (2.15) 

where the ℳa1⋯an

i1⋯in (mA) are the generalized moments of CC equations and the coefficients,  

ℓ i1⋯in

a1⋯an =  ർ Ψ ቚ eT(A)
 ቚ Φ i1⋯in

a1⋯an  ඀    (2.16) 

are those of the de-excitation operator ℒ of CC theory7 which gives the exact ⟨Ψ|, i.e., 

⟨ Ψ | = ⟨ Φ | ℒ eିT(A)
    (2.17) 

In order for the correction 𝛿଴
(A) to correspond to the difference between the correlation energy 

computed with approximate CC method A, ΔE(A), and the exact result, ΔE, the wavefunction ⟨ Ψ | 

must be normalized such that 

ൻ Ψ ห Ψ(A) ൿ  =  ർ Ψ ቚ eT(A)
 ቚ Φ ඀ = 1,    (2.18) 

where eT(A)
 | Φ ⟩ is the CC wavefunction for approximate CC method A. Then, the cluster operator 

T(A) is determined by solving the CC equations 

ൻ Φi1⋯in

a1⋯an  ห H (A) ห Φ ൿ = 0,    (2.19) 

projected on all singly, doubly, …, up to n-tuply excited configurations with n = 1, … , mA and  

H
(A)

=  eିT(A)
 H eT(A)

 =  ቀH eT(A)
ቁ

C 
,    (2.20) 

where the subscript C means only connected diagrams contribute to this operator product, is the 

similarity transformed Hamiltonian of CC method A. The similarity transformed Hamiltonian 

H
(A)

includes only connected contributions by the connected cluster theorem.1,11  

The generalized moments ℳa1⋯an

i1⋯in (mA) appearing in Eqn. (2.15) are the projections of the 

CC equations for method A onto all the excited determinants that are ignored in CC method A,7 

i.e., 

ℳa1⋯aj

i1⋯ij ( mA )  =  ∑ ർ Φi1⋯ij

a1⋯aj
 ቚ H

(A)
 ቚ Φ ඀ ,   (2.21) 

where j ≥ mA + 1. Thus, all generalized moments that are net set to zero when solving the CC 

equations for method A are considered within the biorthogonal MMCC formalism.7  

In the completely-renormalized CC methods based on the biorthogonal MMCC formalism 

[CR-CC( mA , mB )8], the energy is computed via the equation 

E(mA, mB)ℒ  =  E(A)  +  𝛿(mA, mB)ℒ    (2.22) 
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where the correction 𝛿(mA, mB)ℒ is given by 

𝛿(mA, mB)ℒ  =  ∑  ∑ 𝑙ሚ i1⋯in

 a1⋯an  ℳ a1⋯an

 i1⋯in (mA)i1<⋯<in
a1<⋯<an

mB
n ୀ mAାଵ .  (2.23) 

For example, in the CR-CC(2,3) approach,8 mA = 2 and mB = 3, and one must find ℳଷ(2) in 

order to compute the correction to the CCSD result given by 

𝛿(2, 3)ℒ  =  ∑ ℓ෨  ijk
 abc(CCSD)  ℳ abc

 ijk (2)i ழ j ழ k
a ழ b ழ c

    (2.24) 

where  

ℳଷ(2) =  ℳabc
ijk (2)  =  ർ Φ ijk

 abc ቚ ቀH eT(A)
ቁ

C
 ቚ Φ ඀ ,   (2.25) 

is the generalized moment of the CCSD equations corresponding to projections on to all triply 

excited configurations (this moment is not considered in the CCSD calculation where it is set to 

zero) and the coefficients, ℓ෨  ijk
 abc, are amplitudes of the many-body Λ operator of the analytic 

gradient CCSD theory,9 often expressed as 

ℓ෨  ijk
 abc (CCSD)  =   

ൽ Φ ቤ Λ(CCSD) H
 (CCSD)

 ቤ Φ ijk
 abc ඁ

D
 abc
 ijk

 (CCSD)
 .   (2.26) 

In the case of the CCSD method, the Λ operator is given as 

Λ(CCSD)  =  Λଵ
(CCSD)  +  Λଶ

(CCSD).   (2.27) 

(The amplitudes ℓ෨  ijk
 abc contain both connected and disconnected contributions). The denominator 

in Eqn. (2.26) is given by 

D abc
 ijk (CCSD)  =  E(CCSD)  − ൻ Φ ijk

 abc ห H ห Φ ijk
 abc ൿ .   (2.28) 

The expression above involves all n-body components of the similarity transformed Hamiltonian 

up to three-body, so we have for the generalized moment characterizing the CR-CC(2,3) method8 

ℳabc
ijk (2) = ർ Φijk

abc ቚ H ቀ Tଶ + Tଵ Tଶ +
ଵ

ଶ
 Tଶ

ଶ +
ଵ

ଶ
 Tଵ

ଶ Tଶ +
ଵ

ଶ
 Tଵ Tଶ

ଶ +
ଵ

଺
 Tଵ

଺ Tଶቁ
C

ቚ Φ ඀ . 

 (2.29) 

The CR-CC(2,3) energy can then be computed as follows: 

E(CR-CC(2,3))  =  E(CCSD)  +  ∑ ℓ෨  ijk
 abc(CCSD) ℳ abc

 ijk (2) i ழ j ழ k
a ழ b ழ c

.  (2.30) 

There have been various variants of the CR-CC(2,3) approach, labeled as variants A, B, C, 

and D,8 developed based on the form of the denominator Dabc
ijk (CCSD) employed. The variant CR-
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CC(2,3), A involves replacing the Dabc
ijk  denominator (approximated only by its 1-body 

contribution) by the orbital energy difference i + j + k – a – b – c. The CR-CC(2,3), B approach 

is obtained when the denominator Dabc
ijk  includes only the one-body contribution. If the three-body 

term is not included in Dabc
ijk , variant C results. The most complete form of the Dabc

ijk  denominator is 

that given by Eqn. (2.28) and is termed the CR-CC(2,3), D approach. In this thesis, the results 

presented for HeH2 were obtained with the most complete variant of the CR-CC(2,3) method, i.e., 

the CR-CC(2,3), D method. The CR-CC(2,3), D variant keeps the entire triples-triples section of 

the matrix representing the similarity transformed Hamiltonian whereas variants A – C involve 

setting parts of the triples block to zero.  

2.3 Configuration Interaction and its Relation to Coupled Cluster Theory 

One of the most widely used methods in computational chemistry is the configuration-

interaction (CI)10 method. In CI, the wave function for an N-electron system is written as 

| Ψ  = (1 + C) | 0      (2.31) 

where the excitation operator of CI theory C is composed of a sum of its many-body components 

ranging from the 1-body term (all single excitations) up to the N-body term (all N-tuple 

excitations), i.e.,  
 
 
 
j = N    

C = Σ Cj           (2.32) 
j = 1  

Thus, the wave function is written as a linear combination of Slater determinants within the CI 

formalism. The CI excitation operators Cj are related to the coupled-cluster excitation operators Ti 

by the following relations: 

C1 = T1, 

C2 = T2 + 1/2 (T1) 
2, 

C3 = T3 + T1T2 + 1/6 (T1) 2, 

C4 = T4 + 1/2 (T2) 2 + 1/2 (T1) 2 T2 + 1/24 (T1) 4 + T1 T3, 
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etc.11 In practical implementations, the sum in Eq. (2.32) must be truncated at some (usually low) 

level of excitation. For example, truncating the series at j = 2 gives the CISD10 (configuration-

interaction with all single and double excitations) method characterized by the wave function 

| Ψ CISD  = (1 + C1 + C2) | 0     (2.33) 

If the sum in Eq. (2.32) is not truncated so that it includes all terms up to j = N, then the full 

configuration interaction10 (FCI) method is obtained. FCI calculations yield the exact solution to 

the Schrödinger equation for a given basis set.  
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CHAPTER 3: Earlier Theoretical Studies of H2–He in the Ground Electronic State 

The He–H2 system in the ground electronic state has been studied by numerous authors 

using various self-consistent field and configuration interaction (CI) methods. The potential energy 

surfaces available for the ground state prior to the current work (reported in this thesis) covered a 

much smaller region of the nuclear configuration space. A few earlier studies have employed the 

CCSD(T) method; these are discussed briefly below. When this work was initiated, the CR-

CC(2,3) method had not been used in any study of weakly bound van der Waals  complexes, to the 

best of our knowledge. The results obtained here allow an assessment of the applicability of this 

method to van der Waals molecules. They should also make it possible to determine whether the 

CR-CC(2,3) method is superior to CCSD(T) for weakly interacting systems, particularly when the 

bond in one of the interacting molecules is stretched away from equilibrium. 

The geometry of the He–H2 system is specified by three variables: the H2 bond length r, 

the distance from the center of mass of the H2 molecule R to the helium nucleus, and the angle θ 

between the bond vector r and the vector R from the H2 center of mass to the helium nucleus, as 

shown in Figure 3.1. The system is planar, so we can set ϕ = 0. Thus, each point on the potential 

energy surface is characterized by an ordered set of three coordinates, (R, r, θ). The distances R 

and r are given in atomic units of length (bohr, 1 a0 = 5.2917721092 ⋅ 10−11 m = 0.52917721092 

Å), the angle θ is given in degrees, and energies are given in the atomic unit of energy, the Hartree 

(1 Eh = 4.359744417 ⋅ 10−18 J = 27.211385 eV, corresponding to 627.509 kcal mol−1), unless 

otherwise noted.  

The energy of the ground-state of the H2 molecule as a function of the bond length r is used 

with the energy of an isolated helium atom to locate the dissociation limit for the H2–He system. 

Table 3.1 shows the computed CCSD energy of the hydrogen molecule ground-state, H2 (X 1Σg
+), 

obtained with the aug-cc-pVXZ (X = 4, 5)1,2 basis sets at several values of the internuclear distance.  
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Figure 3.1. Geometry employed for the He–H2 system. The separation R is between the center of 
mass of the two H nuclei and the He nucleus, and the angle θ is between the H–H vector and the z 
axis. The He atom is located along the z axis.  
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Table 3.1. Energy (in Eh) of the H2 ground state, H2(X 1Σg
+), at the CCSD level of theory using the 

aug-cc-pVQZ and aug-ccpV5Z basis sets; energy as a function of the internuclear distance r. 
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Figure 3.2. Ground state energy curve of H2 computed with the CCSD method and the aug-cc-pV5Z basis set. 
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3.1 Early Theoretical Studies of the Ground State Potential Energy Surface  

The first theoretical study of the H2−He ground state was carried out in 1963 by Roberts,3 

using a valence bond approach, with the H–H bond length r = 1.406 a0, R in the range from 3.8 to 

5.2 a0, and θ between 0 and 90°. In addition, Roberts reported energies for the bond length r = 

1.486 a0.  As in other early calculations on this system,4-8 only a small number of H2 bond lengths 

were investigated, all fairly close to the equilibrium bond length. Gordon and Secrest9 performed 

the first approximate configuration interaction calculations on H2−He in 1970.   

The ground-state van der Waals minimum was first obtained in 1973 by Tsapline and 

Kutzelnigg10 who used the IEPA-PNO (i.e., independent electron pair approximation using pair 

natural orbitals) approach. The energy was calculated for three r values, three angles, and for R 

from 3 to 20 a0. Tsapline and Kutzelnigg obtained a ground-state van der Waals minimum of depth 

~ 66.5 μEh located near R = 6.5 a0 for the linear (θ = 0°) geometry, and for the T-shaped (θ = 90°) 

arrangement, a minimum of ~ 44.3 μEh near R ~ 6.29 a0. The surface of Tsapline and Kutzelnigg 

was later extended by Raczkowski and Lester11 to include geometries within the repulsive region 

of the potential energy surface.  

In the late 1970’s, Römelt, Peyerimhoff, and Buenker12 (RPB) performed calculations for 

the ground-state and the six lowest-lying excited-states of H2−He using standard SCF and 

Buenker’s MRD-CI13 (multiple reference single- and double-excitation configuration interaction) 

methods. They found the van der Waals well to be slightly deeper for the linear geometry than for 

the T-shaped arrangement, i.e., ε(C∞v) > ε(C2v), where ε denotes the well-depth as a positive 

number. A few years later, Meyer, Hariharan, and Kutzelnigg14 (MHK) reported ab initio results 

from CI calculations for geometries having intermolecular separations R = 1.5 a0 to R = ∞ and H2 

bond lengths between r = 0.9 a0 and 2.0 a0, for three angles. For r = 1.449 a0, the ground-state 

minimum for the linear structure was found at R = 6.50 a0 with a depth of ε = 45.6 μEh, while the 

minimum for the T-shaped geometry was determined to be at R = 6.35 a0 with a depth ε = 41.2 

μEh.  
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3.2 More Recent Theoretical Studies for Comparison  

The previous theoretical studies of the H2–He ground-state of primary interest for 

comparisons with the results presented in this thesis are those by Tao,15 Lee,16 Boothroyd, Martin, 

and Peterson17 (BMP), and Bakr, Smith, and Patkowski18 (BSP). In 1994 Tao15 published 69 

ground-state energies calculated with the complete fourth-order Møller-Plesset perturbation 

theory19 (MP4) for the linear, bent, and T-shaped nuclear arrangements (θ = 0°, 45°, and 90°, 

respectively) for r = 1.449 a0 at 15 values of R ranging from 2.0 to 15.0 a0. For R = 3.0, 5.0, 6.5, 

and 8.0 a0, calculations were also reported for H–H separations of r = 1.128 and 1.618 a0. (Note 

that both of these additional r values are far from the vibrationally averaged H2 bond length, r = 

1.449 a0). For r = 1.449 a0, a ground-state van der Waals minimum of depth ε = 47.19 μEh at R = 

6.5 a0 and θ = 0° was reported by Tao. These results cover much less of the nuclear configuration 

space than the current work.  

In 2001 Lee16 computed the CCSD(T) ground-state interaction energy at the complete basis 

set limit, with a correction to bring the result closer to that which would be obtained in an FCI 

calculation. Lee performed calculations only for ground-state van der Waals minimum, using the 

aug-cc-pV5Z and aug-ccpV6Z basis sets.1,2 A two-point 1/ (X – 1)3 extrapolation scheme20 was 

used to determine the CCSD(T) energy values at the complete basis set limit. Lee obtained an 

estimated FCI/complete basis set limit value for the CCSD(T) interaction energy at the ground-

state van der Waals minimum of – 49.8 μEh.  

In the 2003 study by Boothroyd, Martin, and Peterson17 (BMP), energies of the ground and 

first two excited singlet states were determined using Buenker’s MRD-CI method.13 In total, 

23,703 energies were considered for “He–H2 geometries where the interaction energy was 

expected to be non-negligible.” A ground-state van der Waals minimum of depth ε ~ 47 μEh 

located near R ~ 6.50 a0 for r = 1.449 a0 and linear H2−He may be inferred from the results reported 

by BMP. For the ground state with the three nuclei in the T-shaped arrangement, a minimum was 

located at R ~ 6.35 a0 for r = 1.449 a0, and an interaction energy of approximately – 41.50 μEh may 

be inferred from the BMP results. 
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The most recent ab initio potential energy surface study for the ground-state He–H2 system 

was carried out in 2013 by Bakr, Smith, and Patkowski18 (BSP). These authors found the energies 

for 1,900 ground-state geometrical points, specifically, those having r between 1.1 and 1.75 a0, R 

from 3.5 to 15.0 a0, and θ from 0° to 90° in ten-degree increments. This work is highly accurate, 

because it starts with the CCSD(T) method, but includes corrections for quadruple excitations, 

relativistic effects, and diagonal Born-Oppenheimer effects.  

The calculations that we have carried out cover a greatly enlarged range of H–H bond 

lengths compared to both the BMP17 and BSP18 studies, ranging from r = 0.942 to 5.70 a0, as well 

as an enlarged range of the separation R between the center of mass of the two H nuclei and the 

He nucleus, down to R = 0.25 a0 out to 20.0 a0 for most of the 14 r values studied. Having results 

for large r values is important in astrophysical applications, where transitions up to the H2 

vibrational quantum number v = 8 need to be included.  Our angular step size (Δθ = 5°) was smaller 

than that of both BMP (usually Δθ = 15°) and BSP (Δθ = 10°). This allows us to determine high-

order anisotropies in the H2−He potential. Bakr, Smith, and Patkowski provided results only for 

the isotropic potential V0(R) and the leading anisotropy V2(R).  

We define two characteristic points as (R, r, θ) = (6.40 a0, 1.448736 a0, 0°) and (R, r, θ) = 

(6.30 a0, 1.448736 a0, 90°), the same points considered by BSP.18 These two points are the linear 

(L) and T-shaped (T) arrangements, respectively. Table 3.2 gives the interaction energies obtained 

for these two characteristic points with the CCSD(T) and CR-CC(2,3) methods and the aug-cc-

pVXZ (X = 4, 5)1,2 basis sets. From Table 3.2 we see that the extension of the basis set has an 

opposite effect on the calculated interaction energies of these two points, for both the CCSD(T) 

and CR-CC(2,3). In both the L and T geometries the CR-CC(2,3) energies are lower than the 

CCSD(T) energies (i.e., they have larger negative values).  
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Table 3.2. Interaction energies obtained with the a4Z and a5Z bases for the two characteristic points (both r = 1.448736 a0).  
Distances in a0; energies in μEh. 
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 Tables 3.3 and 3.4 summarize results obtained for the ground-state minima occurring for 

the C∞v (the van der Waals minimum) and the C2v (i.e., T-shaped) nuclear geometries computed 

with the CR-CC(2,3) method and the aug-cc-pVXZ (X = 4, 5) basis sets. All results presented here 

were obtained with codes available in GAMESS.21Also included in Tables 3.3 and 3.4 are 

previously reported values from the literature for these two geometrical arrangements of H2–He to 

allow comparisons with the results obtained in the current work. From Tables 3.3 and 3.4, it is 

evident that the linear geometry is favored over the T-shaped one near the van der Waals minimum 

of the ground-state, i.e., ε(C∞v) > ε(C2v). Whether the linear or the T-shaped nuclear geometry is 

the one of lower energy at and near the minimum has been a subject of dispute in the past.  
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Table 3.3. Depth, εvdW, and location of the van der Waals well for the linear (θ = 0°) case.      
(Results obtained in this thesis are printed in bold-faced type). 

 
[1] Empirical minimum of the spherically averaged potential of Ref. 22. 
[2] Ref. [23]. 
[3] From an empirical potential that fir the experimental and theoretical data available at that 

time, Ref. [24]. 
[4] IEPA-PNO method of Ref. [10]. 
[5] Ref. [6]. 
[6] MRD-CI of Ref. [12]. 
[7] CI method of Ref. [14]. 
[8] SCF-(PNOCI-CEPA2) method of Ref. [25] 
[9] MP4 of Ref. [15]. 
[10] CCSD(T) with a6Z basis. Counterpoise corrected. Uncorrected value: 48 μEh. Ref. [16]. 
[11] Estimated CBS limit CCSD(T) interaction energy. Counterpoise corrected. Uncorrected 

value: 47 μEh. Ref. [16]. 
[12] CCSD(T) with a5Z basis. Counterpoise corrected. Uncorrected value: 49 μEh. Ref. [16]. 
[13] Estimated from the MRD-CI results presented in Ref. [17]. 
[14] 2-Body IE obtained with the “best” basis set combination used in Ref. [18]. 
[15] Obtained with the “production level” basis of Ref. [18].  
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Table 3.4. Location of the potential minimum for the T-shaped (θ = 0°) nuclear arrangement.  
(Our results are in bold). 

 
[1] Ref. [22]. 
[2] Ref. [23]. 
[3] IEPA-PNO method of Ref.[10]. 
[4] Ref. [ 6]. 
[5] MRD-CI result of Ref. [12]. 
[6] Ref. [14].  
[7] SCF-(PNOCI-CEPA2) result of Ref. [25]. 
[8] MP4 result of Ref. [15].  
[9] Estimated from the MRD-CI results presented in Ref. [17].  
[10] 2-Body IE obtained with the “best” basis used in Ref. [18]. 
[11] Obtained with the “production level” basis set of Ref. [18].   
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CHAPTER 4: Electronic Ground-State Potential of H2−He for rH−H = 1.449 a.u.  

In this chapter, the CR-CC(2,3)1 results for the ground-state potential energy of H2–He are 

presented and analyzed for r = 1.449 a.u., the average H–H separation in the ground vibrational 

state. The results presented here have been obtained with an aug-cc-pV5Z basis,2 although results 

have also been obtained with an aug-cc-pvQZ2 basis to permit an extrapolation to the full basis set 

limit in the future.  

The geometry used in the calculations on the H2−He system has been specified in Figure 

3.1. The vector R between the center of mass of the H2 molecule and the He nucleus defines the z 

axis of the system. Points on the potential surface are identified by three variables: the H2 bond 

length r (which is fixed at 1.449 a.u. in this chapter) the distance R from the center of mass of the 

H2 molecule to the helium nucleus, and the angle θ between R and a vector r along the H2 bond 

vector. Thus, a point on the potential energy surface can be characterized by an ordered set of three 

coordinates, (R, r, θ), and we will use this notation henceforth. The distances R and r are given in 

atomic units of length (bohr, a0 = 5.2917721067 . 10−11 m = 0.52917721067 Å), the angle θ in 

degrees, and the energies in atomic units (Hartree, Eh = 4.35974417 . 10−18 J = 27.211385 eV). An 

energy of one Hartree corresponds to 627.509 kcal mol−1. 

The computed energies for 49 values of R, ranging from 2.20 a.u. to 20.0 a.u. are listed in 

Table 4.1, as a function of θ from 0º to 90º in intervals of 5º. The R values start when the distance 

between the He nucleus and the nearest H nucleus exceeds the H–H distance of 1.449 a.u. The 

energies have also been computed for smaller R values, which corresponds to H−HHe, and at R 

values such that the helium nucleus lands between the H nuclei.  In the course of analyzing the 

potential, additional sets of energy values were determined as a function of θ for R = 13.0 a.u., 

15.0 a.u.,16.0 a.u., 30.0 a.u., and 60.0 a.u. 
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Table 4.1.  CR-CC(2,3) energies of H2–He for rH–H = 1.449 a0 obtained with an aug-cc-pV5Z basis, as a function of the separation R 
between the center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom 
is located along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a 
function of the angle θ for each R value.  
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Table 4.1 (cont’d). 
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Table 4.1 (cont’d).  
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Table 4.1 (cont’d).  

 



44 

Table 4.1 (cont’d).  
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Table 4.1 (cont’d).  
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Table 4.1 (cont’d).  
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Table 4.1 (cont’d).  
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Table 4.1 (cont’d).  
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Table 4.1 (cont’d).  
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The Patkowski group3 has previously computed the energies at 10º intervals and 

determined the isotropic potential V0(R) and the leading term in the anisotropy V2(R). The 

inclusion of more angles in the current study permits us to obtain higher anisotropies in the 

potential. 

From the results in Table 4.1, we determined the isotropic potential and the anisotropies of 

the potential, as characterized by their dependence on the Legendre polynomials of the cosine of 

the angle θ. We expressed the potential as a series in the spherical harmonics of the orientation 

angles of H2 and the orientation angles of the intermolecular vector R, which is fixed along the z 

axis in the current case. There are two potential sources of angular momentum that need to be 

coupled at the current stage of the calculation: rotation of the H2 molecule about its center of mass 

and rotation of the vector R. The Clebsch-Gordan coefficient  j1 m1 j2 m2 | j3 m3 accomplishes 

the coupling of the systems 1 and 2 with angular momentum quantum numbers j1 and j2, and 

projections m1 and m2 of the angular momentum on the z axis, to give the net angular momentum 

quantum number j3 and projection m3. The two angular momenta must be coupled to give a scalar, 

since the energy is a scalar. Therefore, j3 = m3 = 0, and the potential can be cast in the form 

    

V(R, θ) =   j1 m1 j2 m2 | 0 0  cj(R) Yj1
m1(θ, ) Yj2

m2(θR, R) .    (4.1)     
j1 , j2,      

m1, m2 = 0 

The complex is planar, so  = R = 0.  The vector R runs along the z axis, so θR is also zero for the 

spherical harmonic of the angles of R. The spherical harmonic Yj2
m2 (θR, R) is non-zero only if m2 

= 0. Since (j1, m1) and (j2, m2) couple to give (0, 0), we must have m1 = −m2. Therefore, m1 = 0 

also. Additionally, we must have j1 = j2. This simplifies the series in the spherical harmonics to the 

form 

   

V(R, θ) =   j 0 j 0 | 0 0  cj(R) Yj
0(θ, ) Yj

0 (0, 0) .     (4.2)     
j = 0 

In Eq. (4.2), θ,  refer to the orientation angles of H2 relative to the z axis in the complex. 

Additionally, because of the symmetry of H2, the angular momentum quantum numbers j must be 
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even. The coefficient c0(R) characterizes the isotropic potential, c2(R) gives the leading anisotropy, 

and c4(R), c6(R), c8(R) . . . give the higher-order anisotropies. In this work we have truncated the 

series at j = 10 and determined the cj coefficients using a Mathematica4 fitting routine. A sample 

program is provided in the Appendix. 

 The results for the cj coefficients for r = 1.449 a.u. are listed as functions of R in Table 4.2. 

As expected, the isotropic coefficients c0 are the largest, and the c2 coefficients are the next largest. 

The coefficients c10 are the smallest, also as expected.  

First, we analyzed the isotropic potential V0(R), which is derived from the spherical 

expansion coefficients c0(R).  The Clebsch-Gordan coefficient   0 0 0 0 | 0 0  = 1, and the spherical 

harmonics Y0
0(θ, ) are both equal to 1/(4)1/2.  Therefore, the isotropic potential is given by V0(R) 

= c0(R)/(4).  We used the Mathematica4 command Interpolation to generate the isotropic potential 

V0(R) from the values of c0(R)/(4), for each intermolecular separation R. The isotropic potential 

V0(R) is plotted in Figure 4.1, along with the original ab initio points.  

We tested the use of a Lennard-Jones potential as an approximation for V0(R).  It is worth 

emphasizing that this potential has no arbitrary adjustable parameters. The Lennard-Jones potential 

is given by 

VLJ(R) = 4 [ (/R)12 – (/R)6 ] ,     (4.3) 

where  is the well depth (with a positive sign) and  is the R value of the intermolecular separation 

where the potential is equal to zero.   
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Table 4.2. Spherical harmonic coefficients from the Mathematica fit to the ground-state potential of H2–He with an H–H separation r = 
1.449 a0. 
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Table 4.2 (cont’d).  
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Table 4.2 (cont’d).  
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Table 4.2 (cont’d).  
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Table 4.2 (cont’d).  
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Figure 4.1. Isotropic potential V0(R) in a.u. vs. the H2–He separation R in a.u. The values of c0(R)/(4π) are plotted in red. These were 
derived from ab initio calculations at fixed R values, for 19 orientation angles of the H2 bond axis ranging from 0 to 90 in intervals of 
5. The blue curve is the Mathematica interpolation. 
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We obtained the values of  and  by using the Mathematica4 command FindMinimum for 

 and the FindRoot command to see where the potential crosses zero. Our values are  = 4.48132 

. 10−5 a.u. and  = 5.6328 a.u. The Lennard-Jones potential is plotted in Figure 4.2 and compared 

with the actual isotropic potential in Figure 4.3. The agreement is surprisingly good. 

 Next, we explored the level of agreement between a Morse potential and the isotropic 

potential V0(R). The Morse potential is designed to include the anharmonicity of the vibration of 

the complex (the relative motion of H2 and He), and it has the form 

VM(R) = De {1 – exp[−(R – R0)]}2 ,     (4.4) 

where R0 is the location of the potential minimum, De is the well depth, and  is given by 

 = [k/(2De)]1/2.        (4.5) 

In Eq. (4.5), k is the second derivative of the potential at the minimum R0.  

The potential minimum R0 and the well depth De are easily obtained with Mathematica.4 

We found R0 = 6.3465 a.u. and De = 4.48132 . 10−5 a.u.  To determine the second derivative of the 

potential at the minimum (the harmonic force constant), we first explored a fit of the calculated 

potential points near the minimum to a quadratic polynomial, but then subsequently used 

numerical differentiation of the interpolated potential function to find k = 8.09959 . 10−5 a.u. The 

result for our approximate Morse potential based on V0(R) is plotted in Figure 4.4 and it is 

compared with the interpolated isotropic potential in Figure 4.5. Again, the agreement is quite 

good.  

Next, we analyzed the anisotropic potential V2(R), which is given by 51/2/(4) c2(R), since 

 2 0 2 0 | 0 0  = 1/51/2, Y2
0 (0, 0) = [5/(4)]1/2, and Y2

0 (θ, ) = [5/(4)]1/2 P2(cos θ).  The function 

V2(R) generated by Mathematica interpolation of 51/2/(4) c2(R) is plotted in Figure 4.6. At the 

minimum of the isotropic potential, V2 (R) is about 10% of V0 (R), De = 4.48132 . 10−5 a.u. The 
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Figure 4.2. Isotropic Lennard-Jones potential V0(R) in a.u. vs. the H2–He separation R in a.u. The parameters for the Lennard-Jones 
potential were obtained from the interpolation function V0(R) generated by Mathematica from the ab initio data. The potential crosses 
zero at  = 5.6325 a.u. and the well depth is  = 4.48132 . 10−5.  
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Figure 4.3. Isotropic Lennard-Jones potential in red, for comparison with V0(R) obtained by interpolating the ab initio data directly (in 
blue). Potentials in a.u. vs. the H2–He separation R in a.u. The parameters for the Lennard-Jones potential are  = 5.6325 a.u. and  = 
4.48132 . 10−5 a.u. The fit is surprisingly good.   
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Figure 4.4. Isotropic Morse potential in a.u. vs. the H2–He separation R in a.u. The parameters for the Morse potential were obtained 
from the Mathematica interpolation of the ab initio V0(R) data values. The parameters are: the location of the minimum at R0 = 6.3465 
a.u., the well depth of 4.48132 . 10−5 a.u., and the curvature at the potential minimum, found by numerical differentiation of the 
interpolated function. 
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Figure 4.5. Isotropic Morse potential in green, for comparison with V0(R) obtained by interpolating the ab initio data directly (in blue). 
Potentials in a.u. vs. the H2–He separation R in a.u. The parameters for the Morse potential are the same as in Figure 4.4. Although the 
fit is reasonably good, it is not as good as the fit of the isotropic Lennard-Jones potential.  
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Figure 4.6. Anisotropy of the potential V2(R) in a.u. vs. the H2–He separation R in a.u. The V2(R) anisotropy has been found from an 
interpolation of the results for the coefficients c2(R) multiplied by 51/2/(4π).  
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minimum of V0(R) occurs at R0 = 6.3465 a.u., while the minimum of V2(R) is a little further out, 

at R2 ~ 6.75 a.u., with a depth of about 5.5 . 10–6 a.u.  A Lennard-Jones potential is also found to 

fit V2(R) surprisingly well. In early work on the potential energy surface of H2−He, the V2 

component of the potential was approximated as a multiple of V0.  The ratio of V2(R) to V0(R) is 

plotted versus R in Figure 4.7. Over a range of intermediate R values, the ratio is roughly constant.  

Finally, the anisotropic potential V4(R) was determined. It is derived from the c4(R) coefficients 

multiplied by 3/(4), since  4 0 4 0 | 0 0  = 1/3, Y4
0 (0, 0) = 3/(4)1/2, and Y2

0(θ, ) = 3/(4)1/2 

P4(cos θ).  The anisotropic potential V4(R) from a Mathematica interpolation is plotted in Figure 

4.8.  

To see whether H2 might be viewed as rotating freely within the complex, we found the 

energy differences between the minima and maxima of the potential at the potential minimum and 

near the zero-crossing at shorter range.  The values are 2.30 K at the minimum, 1.18 K at R = 6.05 

a.u., 0.25 K at R = 6.00 a.u., and 12.4 K at 5.50 a.u., smaller than Toennies experimental 

temperature of 24.7 K.  To lowest order, we approximated H2 as free to rotate within the complex. 

Then we worked to determine the bound vibrational state energy, based on our isotropic potential 

V0(R). The existence of a potential well does not guarantee that it can support a bound state.  

Previous calculations have given different results for the binding energy of the H2−He molecule, 

because it is so small.  These earlier theoretical results are listed in Table 4.3.  
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Figure 4.7. Ratio of the anisotropy V2(R) to V0(R) vs. the H2–He separation R in a.u. In early explorations of the H2–He potential, this 
ratio had been approximated as constant. The ratio varies considerably because V2(R) crosses zero at a different R value (6.0251 a.u.) 
from V0(R) (5.6328 a.u.). Nevertheless, there is a broad range of R values where the ratio is approximately constant, running from R ~ 
7.3 a.u. to 16.3 a.u.  
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Figure 4.8. Anisotropy of the potential V4(R), multiplied by 106, in a.u. vs. the H2–He separation R in a.u. The V4(R) anisotropy has 
been found from an interpolation of the results for the coefficients c4(R) multiplied by 3/(4π).  
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Table 4.3. Earlier theoretical results for the bound-state energy of H2–He and the average intermolecular distance R in the bound state. 

Reference E (in a.u.) R (in a.u.) 

Forrey, Kharchenko, Balakrishnan, and Dalgarno5 – 1.36 . 10–7 27.4 

Barnett and Whaley6 – 7.79 . 10–8 34.2 

Gianturco, González-Lezana, Delgado-Barrio, and Villarreal7 – 1.66 . 10–7 25.3 
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We have tried four different approaches to locate a bound state and to determine its energy. 

First, we used the Numerov method, in an attempt to solve the Schrödinger equation numerically. 

Initially, V0(R) had been determined in these calculations out to R = 20.0 a.u.; but H2−He appears 

to be a “halo” molecule, with a ground state vibrational wave function that extends to 

intermolecular separations well beyond 20.0 a.u., and the attempt did not work. The Numerov 

method would work with a potential that is about 10 times deeper than V0(R) in the well region.  

Second, we employed the WKB (Wentzel-Kramers-Brillouin) approximation. The condition that 

determines the energy of the ground vibrational state of the complex in the WKB approximation 

is  

t2   

/2 =    p(E) dR .       (4.6) 
t1 

In Eq. (4.6), t1 is the R value at the inner classical turning point and t2 is the R value at the outer 

classical turning point. Both are functions of E for a known potential V(R). The integrand is the 

classical momentum, determined by the energy E, the reduced mass m of the complex, and the 

isotropic potential V0(R) as 

p(E) = {2μ [E − V0(R)]}1/2 .      (4.7) 

The WKB method was implemented by first checking that the integral in Eq. (4.7) with E = 0 is 

greater than /2, which guarantees the existence of a bound state in the WKB approximation. Then 

we selected a trial energy, determined the inner and outer turning points at that energy and 

evaluated the integral numerically. Successive estimates of the energy were based on the values of 

the integral, to bring it closer to /2, which is approximately 1.5708.  Using the WKB method, we 

found an energy of −7.4 · 10−7 a.u. for the vibrational ground state.  Values of the inner and outer 

turning points as functions of E, the integral in Eq. (4.7) for several different E values, and the 

final bound-state energy from the WKB approximation are listed in Table 4.4.  
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Table 4.4. WKB study of the potential V0(R) for bond length r = 1.449 a0.  
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Next, we investigated the bound-state energy of the Morse potential that we fit to V0(R). 

The bound-state energies of the Morse oscillator are known, and they take the for  

E(n) = h0 (n + 1/2) – [h0 (n + 1/2)]2/(4De) − De,     (4.8) 

for vibrational quantum number n, which is zero for the lowest vibrational state, and the frequency 

0 is given by 

0 = (/2) (2De/μ)1/2,      (4.9) 

and we have taken μ as the reduced mass of the H2–He complex, just based on the masses of H2 

and He. The result for the energy of the bound state is E = −1.0968 . 10−8 a.u., which is higher than  

the result from the WKB approximation. This may be due to the omission of dispersion effects 

from the Morse potential, which means that the Morse potential rises too fast at long range.  

 The exact solution of the Schrödinger equation for the Lennard-Jones potential was derived 

by Sesma8 in 2013. This offers another possible means of determining the bound-state energy for 

H2–He, based on the Lennard-Jones fit of the isotropic potential. Sesma has cast the Lennard-Jones 

potential for two-body interactions in terms of an intensity parameter λ as 

V(R) = ħ2λ/(2μRe
2) [(Re/R)12 – 2 (Re/R)6].      (4.10) 

In this equation μ is the reduced mass of the interacting species, and Re is the separation at the 

minimum of the potential. The solution of the Schrödinger equation for the complex has the form 

Ψ(R, θ, ) = ψ(R) YL
M(θ, ), where YL

M(θ, ) is a spherical harmonic with angular momentum 

quantum number L for the rotation of the entire complex, and ψ(R) is the solution of the radial 

equation,  

− (ħ2/2μ) (d2 ψ(R)/dR2 – L (L + 1) ψ(R)/R2 + V(R) ψ(R) = E ψ(R).  (4.11) 

Sesma has provided the critical values of the intensity parameter λ that determine how many bound 

states are found for the potential V(R) and how high the angular momentum L can become before 

a bound state can no longer be found.  

 Sesma remarked that the Schrödinger equation for the Lennard-Jones potential has two 

irregular singular points, “one of rank 5 at the origin, and another of rank 1 at infinity.” He 
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expressed the condition for a continuous solution that is regular at both singular points in terms of 

a connection formula,  

T1,4 T2,6 – T2,4 T1,6  =  0  .      (4.12) 

The quantity T1,4T2,6 – T2,4T1,6 is a function of E, and the roots of Eq. (4.12) give the energies of 

the bound states. T1,4, T2,4, T1,6, and T2,6 have expressions in terms of ratios of the Wronskians of 

the two solutions of the Schrödinger equation as z →  and the two solutions as z → 0. The 

Wronskian of two functions is given by 

W[f(z), g(z)] = f(z) dg(z)/dz – g(z) df(z)/dz .    (4.13) 

All together, we need six Wronskians to find T1,4T2,6 – T2,4T1,6 = 0 as a function of E, in order to 

determine the bound-state energies. Two of the Wronskians are simple, with values of − 2 λ1/2 and 

2(2μRe
2E/ħ2)1/2. The other four Wronskians are more challenging to compute. Their evaluation 

requires an integration in the complex plane around the unit circle centered on R = 0. Work to 

determine the Wronskians for our version of the Lennard-Jones potential is still in progress. 

However, we can use the results in the Sesma paper to gain information on the number of bound 

state solutions and the maximum possible angular momentum quantum number L for the Lennard 

Jones potential that we have fit to V0(R) with Mathematica.  

 We have worked with a Lennard-Jones potential in the form V(R) = 4 [(/r)12 – (/r)6]. 

The point  where the potential crosses zero is related to Re by Re = 21/6 , if the Lennard-Jones 

potential is accurate. The Mathematica4 interpolation of the isotropic potential V0(R) for the bond 

length r = 1.449 a.u. gives  = 5.6328 a.u. and Re = 6.3465 a.u. Their ratio is 1.12670 versus 21/6 

= 1.12246, the ratio for an exact Lennard-Jones potential.  The difference is less than half a percent. 

We have used our value of  and the location of the actual minimum at Re = 6.3465 a.u. in order 

to determine the values of Sesma’s intensity parameter λ. The relationship is λ = 2μRe
2 / ħ2. In 

place of μRe
2, we plan to use the moment of inertia of the complex, obtained as an isotropic average 

over the orientations of the H2 in the complex. For the current work, we have calculated μ for 

various isotopic forms of H2–He and H2 isotopes by simply taking the reduced mass of the pair 

and converting to atomic units by dividing by the mass of the electron. The well depth  and the 
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location of the minimum are already in atomic units. The intensity parameter λ is dimensionless. 

The reduced masses and the resulting numerical values of λ are listed in Table 4.5.  

 Sesma has tabulated the lowest values of λ for which a new bound state of angular 

momentum L appears in the solution of the Schrödinger equation for the Lennard-Jones potential. 

A bound state with angular momentum quantum number L = 0 exists, provided that λ  7.04314. 

All of the He–H2 isotopic species meet the condition for the existence of at least one bound state. 

The lowest value of λ for a second bound state with L = 0 to exist (a vibrationally excited state of 

the complex, in effect) is 46.61703; and none of the pairs have sufficiently high λ to have a second 

L = 0 level. A bound state of the complex in the lowest vibrational state, but with L = 1 exists if λ 

 13.29573. Our Lennard-Jones potential (as treated above) gives an L = 1 bound state for DT–

4He and T2–4He, but not for the other species. The asterisks in Table 4.5 indicate species where λ 

is close to the cut-off for the existence of a state with L = 1.   
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Table 4.5. Values of the reduced mass, intensity parameter λ, and the number of bound states of 
the Lennard-Jones potential for various isotopes of H2–He. 
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Modification of the isotropic potential based on a perturbative treatment of the effect of the 

anisotropies may show that bound states with L = 1 exist for T2–3He, HT–4He, and D2–4He. This 

will be investigated in the future. A bound state with L = 2 exists if λ  21.48500, but none of the 

H2–He isotopes have a sufficiently large value of λ for an L = 2 state.  All other states require even 

higher values of λ to exist.  

 Since we have determined the anisotropy of the potential, we can estimate its effects on the 

energy of the J = 0 state of H2 in the complex, using perturbation theory. In this approximation, 

the unperturbed energy at any R is given by V0(R). The first-order correction to the energy 

vanishes, and the second-order correction is determined by a sum over excited rotational states of 

H2. The energies of the rotational states of H2 are approximated as Be J (J + 1) in atomic units. The 

second-order perturbation result for H2 in the rotational state Y0
0(θ, ) takes the form 

E(2) = −    Y0
0(θ, ) | Va | YJ

M(θ, )   YJ
M(θ, ) | Va | Y0

0(θ, ) /(EJ − E0)     (4.14) 

J, M 

At this stage, of the work, E(2) has been evaluated only at the minimum of the isotropic potential. 

The value of is comparatively small, but because the ground-state energy is so close to zero, the 

effect may be significant.  This will be explored in future work.  

 We have also analyzed the long-range behavior of the potentials V0(R), V2(R), and V4(R) 

for r = 1.449 a.u. Results are given in the next chapter, where they are compared with the long-

range forms of the potential found for r = 1.111 a.u. and r = 2.463 a.u. 
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APPENDIX  
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APPENDIX 
 
 

Sample Mathematica program of the fitting routine used to determine the spherical expansion 
coefficients cj(R):  
In[ ]:=  

f0[theta_] :=  
Chop[N[(ClebschGordan[{0, 0}, {0, 0}, {0, 0}]  

SphericalHarmonicY[0, 0, theta, 0] SphericalHarmonicY[0, 0, 0, 0])]] 
In[ ]:= 

f2[theta_] :=  
Chop[N[(ClebschGordan[{2, 0}, {2, 0}, {0, 0}]  

SphericalHarmonicY[2, 0, theta, 0] SphericalHarmonicY[2, 0, 0, 0])]] 
In[ ]:= 

f4[theta_] :=  
Chop[N[(ClebschGordan[{4, 0}, {4, 0}, {0, 0}]  

SphericalHarmonicY[4, 0, theta, 0] SphericalHarmonicY[4, 0, 0, 0])]] 
In[ ]:= 

f6[theta_] :=  
Chop[N[(ClebschGordan[{6, 0}, {6, 0}, {0, 0}]  

SphericalHarmonicY[6, 0, theta, 0] SphericalHarmonicY[6, 0, 0, 0])]] 
In[ ]:= 

f8[theta_] :=  
Chop[N[(ClebschGordan[{8, 0}, {8, 0}, {0, 0}] 

SphericalHarmonicY[8, 0, theta, 0] SphericalHarmonicY[8, 0, 0, 0])]] 
In[ ]:= 

f10[theta_] :=  
Chop[N[(ClebschGordan[{10, 0}, {10, 0}, {0, 0}] 

SphericalHarmonicY[10, 0, theta, 0] SphericalHarmonicY[10, 0, 0, 0])]] 
In[ ]:=  

energy[theta_, eval_] :=  
{f0[theta], f2[theta], f4[theta], f6[theta], f8[theta], f10[theta], eval} 

In[ ]:=  
eval[1]= -4.0770579976  
eval[2]= -4.0770579928  
eval[3]= -4.0770579803  
eval[4]= -4.0770579611  
eval[5]= -4.0770579369  
eval[6]= -4.0770579093  
eval[7]= -4.0770578798  
eval[8]= -4.0770578498  
eval[9]= -4.0770578196  
eval[10]= -4.0770577898  
eval[11]= -4.0770577608  
eval[12]= -4.0770577327  
eval[13]= -4.0770577057  
eval[14]= -4.077057681  
eval[15]= -4.0770576588  
eval[16]= -4.0770576401  
eval[17]= -4.077057626  
eval[18]= -4.0770576172  
eval[19]= -4.0770576144 

Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
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Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.07706  
Out[ ]=  -4.077060 
Out[ ]=  -4.07706  
In[ ]:=  b = 4.0770562645  
Out[ ]=   4.07706  
In[ ]:=  e1 = energy[0, eval[1] + b]  

e2 = energy[5  2Pi / 360, eval[2] + b]  
e3 = energy[10  2Pi / 360, eval[3] + b]  
e4 = energy[15  2Pi / 360, eval[4] + b]  
e5 = energy[20  2Pi / 360, eval[5] + b]  
e6 = energy[25  2Pi / 360, eval[6] + b]  
e7 = energy[30  2Pi / 360, eval[7] + b]  
e8 = energy[35  2Pi / 360, eval[8] + b]  
e9 = energy[40  2Pi / 360, eval[9] + b]  
e10 = energy[45  2Pi / 360, eval[10] + b]  
e11 = energy[50  2Pi / 360, eval[11] + b]  
e12 = energy[55  2Pi / 360, eval[12] + b]  
e13 = energy[60  2Pi / 360, eval[13] + b]  
e14 = energy[65  2Pi / 360, eval[14] + b]  
e15 = energy[70  2Pi / 360, eval[15] + b]  
e16 = energy[75  2Pi / 360, eval[16] + b]  
e17 = energy[80  2Pi / 360, eval[17] + b]  
e18 = energy[85  2Pi / 360, eval[18] + b]  
e19 = energy[90  2Pi / 360, eval[19] + b]  

Out[ ]= {0.0795775,  0.177941,  0.238732,  0.286921,  0.328106,  0.36467, -1.7331 × 10-6} 
Out[ ]= {0.0795775,  0.175913,  0.229725,  0.264425,  0.284635,  0.292183, -1.7283 × 10-6}  
Out[ ]= {0.0795775,  0.169892,  0.203689,  0.202127, 0.171221,  0.117218, -1.7158 × 10-6}  
Out[ ]= {0.0795775, 0.160061, 0.163459, 0.114282, 0.0315587, -0.0601909, -1.6966 × 10-6}  
Out[ ]= {0.0795775, 0.146718, 0.113393, 0.0206305, -0.0826301, -0.146331, -1.6724 × 10-6}  
Out[ ]= {0.0795775, 0.130269, 0.0588552, -0.0585267, -0.133286, -0.111311, -1.6448 × 10-6}  
Out[ ]= {0.0795775, 0.111213, 0.00559529, -0.107315, -0.111154, -0.00256659, -1.6153 × 10-6}  
Out[ ]= {0.0795775, 0.0901296, -0.0409245, -0.118053, -0.0378764, 0.0926843, -1.5853 × 10-6}  
Out[ ]= {0.0795775, 0.0676595, -0.0761567, -0.0928391, 0.0454843, 0.108433, -1.5551 × 10-6}  
Out[ ]= {0.0795775, 0.0444852, -0.096985, -0.0425898, 0.0978872, 0.041978, -1.5253 × 10-6}  
Out[ ]= {0.0795775, 0.0213109, -0.102066, 0.0161761, 0.0966871, -0.0503658, -1.4963 × 10-6}  
Out[ ]= {0.0795775, -0.0011593, -0.0919566, 0.0659123, 0.0466458, -0.0981705, 

-1.4682 × 10-6}  
Out[ ]= {0.0795775, -0.0222426, -0.0690086, 0.0927449, -0.0241614, -0.0686413, 

-1.4412 × 10-6} 
Out[ ]= {0.0795775, -0.0412984, -0.0370537, 0.0900435, -0.0791208, 0.0117871, 
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-1.4165 × 10-6}  
Out[ ]= {0.0795775, -0.0577477, -0.000907193, 0.0599311, -0.0912185, 0.0799688, 

-1.3943 × 10-6}  
Out[ ]= {0.0795775, -0.0710907, 0.0342413, 0.0123664, -0.0558502, 0.0844685, -1.3756 × 10-6}  
Out[ ]= {0.0795775, -0.080922, 0.0634793, -0.0379083, 0.00764745, 0.0235876, -1.3615 × 10-6}  
Out[ ]= {0.0795775, -0.0869428, 0.0827845, -0.075684, 0.0661942, -0.0546621, -1.3527 × 10-6}  
Out[ ]= {0.0795775, -0.0889703, 0.0895247, -0.0896627, 0.0897166, -0.089743, -1.3499 × 10-6} 
In[ ]:= data ={e1, e2, e3, e4, e5, e6, e7, e8,  

e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19}  
Out[ ]={ {0.0795775, 0.177941, 0.238732, 0.286921, 0.328106, 0.36467, -1.7331 × 10-6}, 

{0.0795775, 0.175913, 0.229725, 0.264425, 0.284635, 0.292183, -1.7283 × 10-6},  
{0.0795775, 0.169892, 0.203689, 0.202127, 0.171221, 0.117218, -1.7158 × 10-6},  
{0.0795775, 0.160061, 0.163459, 0.114282, 0.0315587, -0.0601909, -1.6966 × 10-6},  
{0.0795775, 0.146718, 0.113393, 0.0206305, -0.0826301, -0.146331, -1.6724 × 10-6},  
{0.0795775, 0.130269, 0.0588552, -0.0585267, -0.133286, -0.111311, -1.6448 × 10-6},  
{0.0795775, 0.111213, 0.00559529, -0.107315, -0.111154, -0.00256659, -1.6153 × 10-6},  
{0.0795775, 0.0901296, -0.0409245, -0.118053, -0.0378764, 0.0926843, -1.5853 × 10-6},  
{0.0795775, 0.0676595, -0.0761567, -0.0928391, 0.0454843, 0.108433, -1.5551 × 10-6},  
{0.0795775, 0.0444852, -0.096985, -0.0425898, 0.0978872, 0.041978, -1.5253 × 10-6},  
{0.0795775, 0.0213109, -0.102066, 0.0161761, 0.0966871, -0.0503658, -1.4963 × 10-6},  
{0.0795775, -0.0011593, -0.0919566, 0.0659123, 0.0466458, -0.0981705, -1.4682 × 10-6},  
{0.0795775, -0.0222426, -0.0690086, 0.0927449, -0.0241614, -0.0686413, -1.4412 × 10-6},  
{0.0795775, -0.0412984, -0.0370537, 0.0900435, -0.0791208, 0.0117871, -1.4165 × 10-6},  
{0.0795775, -0.0577477, -0.000907193, 0.0599311, -0.0912185, 0.0799688, -1.3943 × 10-6},  
{0.0795775, -0.0710907, 0.0342413, 0.0123664, -0.0558502, 0.0844685, -1.3756 × 10-6},  
{0.0795775, -0.080922, 0.0634793, -0.0379083,  0.00764745, 0.0235876, -1.3615 × 10-6},  
{0.0795775, -0.0869428, 0.0827845, -0.075684, 0.0661942, -0.0546621, -1.3527 × 10-6},  
{0.0795775, -0.0889703, 0.0895247, -0.0896627, 0.0897166, -0.089743, -1.3499 × 10-6}} 

In[ ]:=  Fit [data, {c0, c2, c4, c6, c8, c10}, {c0, c2, c4, c6, c8, c10}]  
Out[ ]= - 0.0000184734 c0 - 1.38374 × 10-9 c10 - 1.34948 × 10-6 c2 -  

3.54446 × 10-8 c4 - 4.18219 × 10-8 c6 - 4.92215 × 10-9 c8 
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CHAPTER 5: Comparison of Potentials for Different H2 Bond Lengths 

In this chapter, results are presented for the potential energy of H2 interacting with He for 

bond lengths r = 1.111 a.u. and 2.463 a.u., for comparison with the results at r = 1.449 a.u., the 

expectation value of the bond length in the ground vibrational state of H2. 

For r = 1.111 a.u., points on the potential energy surface for H2–He were computed for a 

H2–He separations R from 2.1 a.u. to 20.0 a.u. and for angles of the H2 bond axis (relative to 

vector from the center of mass of H2 to the He nucleus) ranging from 0 to 90 in intervals of 5.  

The results are listed in Table 5.1. 

The results at r = 1.111 a.u. in Table 5.1 were analyzed as before, to determine the 

coefficients in the spherical tensor expansion of the potential (Equation 4.1), and then converted 

to the coefficients for P0(cos ), P2(cos ), and P4(cos ) to permit later comparisons with previous 

calculations.  The cj(R) coefficients are listed for various R values in Table 5.2.  A Lennard-Jones 

potential was derived from the minimum and zero of the potential V0(R) for r = 1.111 a.u.  The 

Lennard-Jones potential fits V0(R) in the potential well, but it rises a little too sharply for R ~ 5.0 

a.u. and smaller, as shown in Figure 5.1.  

Points on the H2–He potential energy surface at r = 2.463 a.u. were computed for a range 

of H2He separations R out to 20.0 a.u. and angles of the H2 bond axis from 0 to 90 in intervals 

of 5.  As before, values were also determined for smaller R (down to 0.25 a.u.), covering points 

on the HHHe surface and geometrical configurations with the He nucleus between the two H 

nuclei.  Those results are not included in the current chapter.  The numerical values of the energy 

for R from 4.0 a.u. to 20.0 a.u. and the full  range are provided in Table 5.3.  These results were 

also analyzed to determine the cj(R) coefficients, which are listed in Table 5.4.  The isotropic 

potential V0(R) for r = 2.463 a0 is reasonably well described by the corresponding Lennard-Jones  
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Table 5.1. CR-CC(2,3) energies of H2–He for rH–H = 1.111 a0 with an aug-cc-pV5Z basis, as a function of the separation R between the 
center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom is located 
along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a function of the 
angle θ for each value of R.  
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Table 5.1 (cont’d).  
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Table 5.1 (cont’d).  
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Table 5.1 (cont’d).  
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Table 5.1 (cont’d).  
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Table 5.1 (cont’d).  
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Table 5.1 (cont’d).  
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Table 5.1 (cont’d).  
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Table 5.1 (cont’d).  
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Table 5.1 (cont’d).  
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Table 5.2. Spherical harmonic coefficients from the Mathematica fit to the ground-state potential of H2–He with an H–H separation r 
= 1.111 a0. 
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Table 5.2 (cont’d).  
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Table 5.2 (cont’d).  
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Table 5.2 (cont’d).  
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Table 5.2 (cont’d).  
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Figure 5.1. Isotropic potential V0(R) in a.u. multiplied by 104, for H2–He at an H2 bond length of r = 1.111 a.u. (in blue), compared 
with Lennard-Jones potential (in red), and the ab initio data points for V0(R), shown in green. The Lennard-Jones parameters are   = 
0.000443057 a.u. and  = 5.43316 a.u. The minimum of the isotropic potential is located at re = 6.14089 a.u. 
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Table 5.3. CR-CC(2,3) energies of H2–He for rH–H = 2.463 a0 obtained with an aug-cc-pV5Z basis, as a function of the separation R 
between the center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom 
is located along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a 
function of the angle θ for each R value. 
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Table 5.3 (cont’d).  
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Table 5.3 (cont’d).  
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Table 5.3 (cont’d).  
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Table 5.3 (cont’d).  
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Table 5.3 (cont’d).  
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Table 5.3 (cont’d).  
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Table 5.3 (cont’d). 
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Table 5.3 (cont’d).  
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Table 5.3 (cont’d).  
 

 



108 

Table 5.3 (cont’d).  
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Table 5.3 (cont’d).  
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Table 5.4.  Spherical harmonic coefficients from the Mathematica fit to the ground-state potential of H2–He with an H–H separation r 
= 2.463 a0. 
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Table 5.4 (cont’d).  
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Table 5.4 (cont’d).  
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Table 5.4 (cont’d).  
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Table 5.4 (cont’d).  
 

 



115 

potential, though this fit is probably the most approximate.  The Lennard-Jones potential and V0(R) 

are plotted in Figure 5.2.  Discrepancies are apparent in the range from R = 8.0 a.u. to R = 16.0 

a.u. where the Lennard-Jones potential is detectably below the ab initio points and the interpolated 

potential V0(R). 

In Figure 5.3, the isotropic He–H2 potentials V0(R) are plotted versus R for r = 1.111 a.u., 

r = 1.449 a.u., and r = 2.463 a.u.  Of these three bond lengths, r = 1.449 a.u. gives the deepest 

minimum, slightly deeper than the minimum on the curve for r = 1.111 a.u. but significantly deeper 

than the minimum for r = 2.463 a.u.  The Re value at the minimum is smallest when r = 1.111 and 

largest when r = 2.463, as expected.  When r = 2.463 a.u., the repulsive wall rises at R > 6.0 a.u., 

where the other potentials are still attractive.   

 In Figure 5.4, the anisotropic component V2(R) of the potential is plotted versus R for r = 

1.111 a.u., r = 1.449 a.u., and r = 2.463 a.u.  The anisotropy V2(R) has the deepest well for r = 

2.463 a.u., and the Re values at the minima of V2(R) increase as r increases. 

 In Figure 5.5, the anisotropic component V4(R) of the potential is plotted versus R for r = 

1.111 a.u., r = 1.449 a.u., and r = 2.463 a.u.  The potential V4(R) shows a clear minimum near R = 

7.6 a.u. when r = 2.463 a.u., but the V4(R) potentials entirely repulsive for r = 1.111 a.u. and r = 

1.449 a.u., within the accuracy of the calculations.  For the smaller r values, numerical noise 

becomes apparent in the results for V4(R) that are near to zero, if the vertical scale is expanded 

considerably.       

 At long distances between H2 and He, exchange-repulsion and orbital overlap effects drop 

off exponentially.  Then the potential is determined by van der Waals dispersion and quadrupolar 

induction effects.  The leading van der Waals dispersion term varies as R6. The coefficients of 

this term are given by integrals over imaginary frequencies of the product of the polarizability
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Figure 5.2. Isotropic potential V0(R) in a.u. multiplied by 105, for H2–He at an H2 bond length of r = 2.463 a.u. (in blue), compared 
with Lennard-Jones potential (in red), and the ab initio data points for V0(R), shown in green. The Lennard-Jones parameters are   = 
0.000405536 a.u. and  = 6.16679 a.u. The minimum of the isotropic potential is located at re = 6.94495 a.u.  
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Figure 5.3. Isotropic potentials V0(R) in a.u. multiplied by 105, for H2–He at H2 bond lengths of r = 1.111 a.u. (red), 1.449 a.u. (blue), 
and 2.463 a.u. (green). 
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Figure 5.4. Anisotropic potential V2(R) in a.u. multiplied by 105, for H2–He at H2 bond lengths of r = 1.111 a.u. (red), r = 1.449 a.u. 
(blue), and r = 2.463 a.u. (green).   
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
 
Figure 5.5. Anisotropic potential V4(R) in a.u. multiplied by 105, for H2–He at H2 bond lengths of r = 1.111 a.u. (red), r = 1.449 a.u. 
(blue), and r = 2.463 a.u. (green).   
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(i) of H2 and (i) of He. The polarizability (i) of He is isotropic, and the polarizability 

(i) of H2 is a symmetric Cartesian tensor of rank 2.  Therefore, the C6 dispersion coefficient has 

an isotropic component C6
(0) and an anisotropic component C6

(2).  It has no anisotropic component 

C6
(4).  At order R8, the H2–He potential is affected both by van der Waals dispersion and by 

quadrupolar induction. The van der Waals dispersion coefficient depends on the integral over 

imaginary frequencies of the product of the quadrupole polarizability C(i) of H2 with the dipole 

polarizability (i) of He, and it also depends on the integral over imaginary frequencies of the 

product of the dipole polarizability (i) of H2 with the quadrupole polarizability C(i) of He.  

The quadrupole polarizability is a fourth-rank Cartesian tensor.  For He, it is isotropic; and for H2, 

it has spherical tensor components of ranks 0, 2, and 4.  Therefore, the C8 dispersion coefficient 

has components C8
(0), C8

(2), and C8
(4).   

 Quadrupolar induction also affects the long-range energy at order R8.  The permanent 

quadrupole of H2 produces an electric field that acts on He, inducing a dipole in He that is 

proportional to R4.  The induced dipole of He produces a reaction field gradient at H2 that modifies 

the energy of the pair, due to its effect on the permanent quadrupole of H2.  Quadrupolar induction 

contributes to both the isotropic and anisotropic potentials of H2–He.  The contribution to the 

isotropic potential is V0 = 32R8, where  is the polarizability of He and  is the zz 

component of the permanent quadrupole of H2 (where z is the bond axis).  We plan to examine the 

contribution to the anisotropic potential in future work.  

 The permanent quadrupole of H2 is known as a function of bond length from calculations 

by Miliordos and Hunt.1 The dispersion energy coefficients C6
(0), C6

(2), C8
(0), C8

(2), and C8
(4) for 

He–H2 have all been determined with very high accuracy by Bishop and Pipin3 for r = 1.449 a.u.  

The ab initio results obtained in this work are sufficiently accurate that it seemed worthwhile to fit 

the values V0(R), V2(R), and V4(R) at long range to C6
(0) R6  C8

(0) R8, C6
(2) R6  C8

(2) R8, 

and C8
(4) R8  C10

(4) R10, respectively.  It is possible to fit the long-range values quite well to 

these forms, but the coefficients obtained from the fit are sensitive to the range of R values included 

in the fit.        
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 For r = 1.449 a.u., our initial fit to C6
(0) and C8

(0) was based on the ab initio results for V0(R) 

at R = 9.0 a.u., 9.5 a.u., 10.0 a.u., 10.5 a.u., 11.0 a.u., 12.0 a.u., 14.0 a.u., 17.0 a.u., and 20.0 a.u.  

We found C6
(0) = 4.07134 a.u. and C8

(0) = 57.3655 a.u., in very good agreement with the dispersion 

energy coefficients that have been calculated directly by Bishop and Pipin, C6
(0) = 4.0128132 a.u. 

and C8
(0) = 55.381453 a.u.  The error is about 1.5% in C6

(0) and ~ 2% in C8
(0), taking into account 

the quadrupolar induction term that is not included in the dispersion energy calculations of Bishop 

and Pipin.  Subsequently, additional ab initio calculations of the energy as a function of the angle 

were run for R values of 13.0 a.u., 15.0 a.u., and 16.0 a.u. and the additional cj(R) coefficients 

were found.  The added values improved the smoothness of the V0(R) interpolation generated by 

Mathematica.  New fits to C6
(0) R6  C8

(0) R8 at long range gave C6
(0) = 3.9987 a.u. and C8

(0) = 

63.677 a.u., with results shown in Figure 5.6.  The error in C6
(0) is about 0.25% in this fit, relative 

to the values given by Bishop and Pipin.  The agreement with C8
(0) (corrected for quadrupolar 

induction, which contributes approximately 1 a.u. to C8
(0) at r = 1.449 a.u.) is not as good as in 

the initial fit, which was based on fewer long-range data points.  The new error of ~20% is a better 

estimate of the uncertainty in the C8
(0) coefficient derived in this way. The next term in the series 

for the isotropic dispersion energy is C10
(0) R10.  Since the fitted C8

(0) was too large relative to the 

result given by Bishop and Pipin, we tested whether adding a C10
(0) term to the fit would improve 

the results, allowing all three values C6
(0), C8

(0), and C10
(0) to be determined from the fit.  The results 

for the C10 coefficient were aphysical (positive in one attempt when it must be negative, and 

essentially the same negative value as C6 and C8 in another).   

The bond lengths r = 1.111 a.u. and r = 2.463 a.u. were not covered in the work of Bishop 

and Pipin (BP).  We have calculated the isotropic dispersion coefficients C6
(0) and C8

(0) by fitting 

V0(R) at these bond lengths, with the results C6
(0) = 3.2876 a.u. and C8

(0) = 45.4450 a.u. at r = 1.111 

a.u., and C6
(0) = 6.43383 a.u. and C8

(0) = 76.3722 a.u. at r = 2.463 a.u.  
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Figure 5.6. Ab initio results for V0(R) at long range (red points) and the Mathematica fit to V0(R) in the form –C6

(0) R−6 – C8
(0) R−8, with 

C6
(0) = 3.9987 a.u. and C8

(0) = 63.677 a.u. (blue curve). 
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 For the anisotropic coefficients C6
(2) and C8

(2) at r = 1.449 a.u., the agreement between the 

fit of the ab initio results for V2(R) the direct calculations of BP were not as good.  Fitting V2(R) 

to C6
(2) R6  C8

(2) R8 in the range from 12.0 a.u. to 20.0 a.u. gave C6
(2) = 0.639204 a.u. and C8

(2) 

= 5.27924 a.u. vs. the values published by BP, values C6
(2) = 0.37739 a.u. and C8

(2) = 17.0588 a.u.  

The results for C6
(2) and C8

(2) might be strongly correlated with each other, since C6
(2) from the fit 

is greater than C6
(2) from BP, but C8

(2) from the fit was less than C8
(2) from BP.  An alternative 

possibility was suggested by the plot of the BP curve (green), the ab initio data points (red), and 

our fit (blue), shown in Figure 5.7.  The BP curve falls above the data points, which appear to 

behave smoothly as a function of R.  It is possible that the ab initio results are picking up 

correlation effects beyond C8
(2) R8.  To test this possibility, we fit the  C6

(2) R6  C8
(2) R8  C10

(2) 

R10 to the ab initio results, using the BP values for C6
(2) and C8

(2) and fitting only C10
(2).  This gave 

the curve in purple in Figure 5.7, which fits the data much better.  (The same strategy has not yet 

been implemented successfully for the isotropic coefficients.)          

 The potential V4(R) was sufficiently stable at long range to fit C8
(4) only for r = 2.463 a.u.  

A fit based on  C8
(2) R8  C10

(2) R10 is shown in Figure 5.8.   

 Points on the potential energy surface for H2He have also been calculated for other bond 

lengths r of H2 (in a.u.) including 0.942, 1.280, 1.787, 2.125, 2.43, 2.463, 2.801, 3.730, and 5.700, 

plus 1.100, 1.448736, and 1.75 chosen for comparison with the work of the Patkowski group.4  The 

results for 0.942, 1.280, 1.787, 2.125, 2.43, 2.801, 3.730, and 5.700 a.u. with the aug-cc-pV5Z 

basis set are tabulated in the Appendix.  The coefficients cj(R) will be determined for these R 

values. 
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Figure 5.7. Ab initio results for V2(R) at long range (red points), scaled by 107. The blue curve shows the Mathematica fit to V2(R) 
based on the form –C6

(2) R−6 – C8
(2) R−8, with C6

(2) = 0.639204 a.u. and C8
(2) = 5.27924 a.u. The green curve shows the Bishop and Pipin 

function, with C6
(2) = 0.37739 a.u. and C8

(2) = 17.0588 a.u. The purple curve shows the fitted function –C6
(2) R−6 – C8

(2) R−8 – C10
(2) R−10 

with the BP values for C6
(2) and C8

(2) and the C10
(2) value taken from the Mathematica fit, C10

(2) = − 4691.54 a.u. This improves the 
agreement noticeably.  
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Figure 5.8. Ab initio results for V4(R) at long range (red points) scaled by 10, with r = 1.449 a.u. The blue curve is the Mathematica fit 
to V4(R) based on the form –C8

(4) R−8 – C10
(4) R−8.  
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APPENDIX 
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Table A.1. CR-CC(2,3) energies of H2–He for rH–H = 0.942 a0 with an aug-cc-pV5Z basis, as a function of the separation R between the 
center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom is located 
along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a function of the 
angle θ for each value of R. 
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Table A.1 (cont’d).  
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Table A.1 (cont’d).  
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Table A.1 (cont’d).  
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Table A.1 (cont’d).  
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Table A.1 (cont’d).  
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Table A.1 (cont’d).  
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Table A.1 (cont’d).  
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Table A.2. CR-CC(2,3) energies of H2–He for rH–H = 1.280 a0 with an aug-cc-pV5Z basis, as a function of the separation R between the 
center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom is located 
along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a function of the 
angle θ for each value of R.  
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Table A.2 (cont’d).  
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Table A.2 (cont’d).  
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Table A.2 (cont’d).  
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Table A.2 (cont’d).  
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Table A.2 (cont’d).  
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Table A.2 (cont’d).  

 



142 

Table A.2 (cont’d). 

 



143 

Table A.2 (cont’d).  
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Table A.3. CR-CC(2,3) energies of H2–He for rH–H = 1.787 a0 with an aug-cc-pV5Z basis, as a function of the separation R between the 
center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom is located 
along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a function of the 
angle θ for each value of R.  
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Table A.3 (cont’d).  
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Table A.3 (cont’d).  
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Table A.3 (cont’d).  
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Table A.3 (cont’d).  
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Table A.3 (cont’d).  
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Table A.3 (cont’d).  
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Table A.3 (cont’d).  
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Table A.4. CR-CC(2,3) energies of H2–He for rH–H = 2.125 a0 with an aug-cc-pV5Z basis, as a function of the separation R between the 
center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom is located 
along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a function of the 
angle θ for each value of R. 
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.4 (cont’d).  
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Table A.5. CR-CC(2,3) energies of H2–He for rH–H = 2.801 a0 with an aug-cc-pV5Z basis, as a function of the separation R between the 
center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom is located 
along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a function of the 
angle θ for each value of R. 
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Table A.5 (cont’d).  
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Table A.5 (cont’d).  
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Table A.5 (cont’d).  
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Table A.5 (cont’d).  
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Table A.5 (cont’d).  

 

  



170 

Table A.5 (cont’d).  
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Table A.5 (cont’d).  
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Table A.5 (cont’d).  
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Table A.5 (cont’d).  
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Table A.5 (cont’d).  
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Table A.5 (cont’d).  
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Table A.6. CR-CC(2,3) energies of H2–He for rH–H = 3.730 a0 with an aug-cc-pV5Z basis, as a function of the separation R between the 
center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom is located 
along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a function of the 
angle θ for each value of R.  
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Table A.6 (cont’d).  
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Table A.6 (cont’d).  
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Table A.6 (cont’d).  

 

  



180 

Table A.6 (cont’d).  
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Table A.6 (cont’d).  
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Table A.6 (cont’d).  
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Table A.6 (cont’d).  
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Table A.6 (cont’d).  
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Table A.6 (cont’d).  
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Table A.7. CR-CC(2,3) energies of H2–He for rH–H = 5.70 a0 with an aug-cc-pV5Z basis, as a function of the separation R between the 
center of mass of the two H nuclei and the He nucleus, and the angle θ between the H–H vector and the z axis. The He atom is located 
along the z axis. Entries in blue denote the maximum and entries in bold black denote the minimum of the potential, as a function of the 
angle θ for each value of R.  
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Table A.7 (cont’d).  
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Table A.7 (cont’d).  
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Table A.7 (cont’d).  
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Table A.7 (cont’d).  
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Table A.7 (cont’d).  
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Table A.7 (cont’d).  
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Table A.7 (cont’d).  
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Table A.7 (cont’d).  
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Table A.7 (cont’d).  
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CHAPTER 6: Conclusions and Future Work 

In this thesis I have computed the energies of the ground and first excited singlet state of 

the  He–H2  system using the coupled-cluster1 (CC)  methods at over  ~ 20,000  nuclear geometries.  

A total of approximately ~ 68,000 calculations have been carried out.  The geometries included 

cover H–H bond lengths,  r,  ranging from 0.942 to 5.70 a0 (at 14 values), intermolecular 

separations R from 0.25 to 20.0 a0 (generally, at 74 values for each r value), and an angle between 

r and R, θ, from  0 to  90 degrees in increments of 5 (yielding 19 angular points for a given r 

and R).  The ground state was treated with the CR-CC(2,3)2 approach and the excited state with 

the CR-EOMCCSD(T)3 method, with all calculations employing the aug-cc-pVXZ basis sets of 

Dunning and co-workers.4  All calculations for the first-excited singlet state I have finished, and  

the results have been tabulated, however, a complete analysis of the data is ongoing, as is the  

analysis of the results obtained for the intersection between the ground and first-excited singlet 

electronic state.  

The calculations reported in this thesis cover parts of the H2–He potential energy surfaces 

that have not been explored in previous work and should be useful in modeling spectra at higher 

temperatures than previously accessible.  For example, ab initio results have been provided that 

may be used to study transitions of H2 up to vibrational quantum number n = 8.   These results are 

needed to model the radiative profiles of cool white dwarf stars, with temperatures between 3500 

K and 7000 K.  In addition, the results in this thesis have a smaller angular step size (for a given r 

and R) than done in any previous study that covered a wide range of the nuclear configuration 

space and yielded highly accurate ground-state energies.  The inclusion of more angles allowed us 

to obtain higher anisotropies in the potential than earlier studies have reported.  Calculations have 

been performed for all the nuclear geometries outlined above with both the aug-cc-pVQZ and aug-

cc-pV5Z basis sets (for both the ground and first-excited singlet state) so that an extrapolation to 

the complete basis set limit via a two-point scheme may be performed with the results obtained in 

this thesis.  
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The numerical results in this thesis are only a portion of the total results that have been 

computed in this work. Points on the potential energy surface for H2−He  (not reported in this 

thesis) have been calculated for bond lengths r of H2 (in a.u.) 1.280, 1.787, 2.125,  2.43,  2.463,  

2.801, 3.730, and 5.700, plus 1.100,  1.448736, and 1.75 a.u. at the geometries not used for 

comparison with the results of Patkowski and co-workers5 in Chapter 3 of this thesis.  I am 

currently working on computing the spherical expansion coefficients cj(R) for these r values from 

the tables of computed ground-state energies.  The isotropic potentials and the anisotropies for 

these r values are also being determined as is an analysis similar to that given in Chapter 5  for  r   

=  1.110,  1.449, and 2.463 a.u. 

Using perturbation theory, we have estimated the effect of the anisotropy on the energy of 

the J = 0 state of H2 in the complex. The value at the minimum of the isotropic potential was found 

to be relatively small, but because the ground-state energy is so close to zero, the effect may be 

significant for other regions of the potential.  This will be a focus of future work. Modification of 

the isotropic potential based on a perturbative treatment of the effect of the anisotropies may show 

that bound states with L = 1 exist for T2–3He, HT–4He, and D2–4He.  

The contribution of quadrupolar induction to the isotropic potential for r = 1.449 a.u. has 

been calculated and reported in this thesis. The contribution to the leading anisotropic potential 

will be determined in future work. 

Since the bound state energy levels of a Lennard-Jones potential are known and have been given 

by Sesma,6 we are planning to perform the integrations in the complex plane that are required in 

order to determine the Wronskians for our version of the Lennard-Jones potential so that we can 

report a value for the binding energy. Modification of the isotropic potential based on a 

perturbative treatment of the effect of the anisotropies may show that bound states with L = 1 

exist for T2–3He, HT–4He, and D2–4He.  This is an additional focus of work that we are planning 

to conduct in the near future.   
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