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ABSTRACT 

AN EVOLUTIONARY MULTI-OBJECTIVE APPROACH TO  
SUSTAINABLE AGRICULTURAL WATER AND NUTRIENT OPTIMIZATION  

By 

Ian Meyer Kropp 

One of the main problems that society is facing in the 21st century is that agricultural production 

must keep pace with a rapidly increasing global population in an environmentally sustainable 

manner. One of the solutions to this global problem is a system approach through the application 

of optimization techniques to manage farm operations. However, unlike existing agricultural 

optimization research, this work seeks to optimize multiple agricultural objectives at once via 

multi-objective optimization techniques. Specifically, the algorithm Unified Non-dominated 

Sorting Genetic Algorithm-III (U-NSGA-III) searched for irrigation and nutrient management 

practices that minimized combinations of environmental objectives (e.g., total irrigation applied, 

total nitrogen leached) while maximizing crop yield for maize. During optimization, the crop 

model named the Decision Support System for Agrotechnology Transfer (DSSAT) calculated the 

yield and nitrogen leaching for each given management practices. This study also developed a 

novel bi-level optimization framework to improve the performance of the optimization algorithm, 

employing U-NSGA-III on the upper level and Monte Carlo optimization on the lower level. The 

multi-objective optimization framework resulted in groups of equally optimal solutions that each 

offered a unique trade-off among the objectives. As a result, producers can choose the one that 

best addresses their needs among these groups of solutions, known as Pareto fronts. In addition, 

the bi-level optimization framework further improved the number, performance, and diversity of 

solutions within the Pareto fronts. 
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1. INTRODUCTION 

One of the major challenges that the world is facing in the coming decades is how to meet growing 

food demand without compromising the integrity of our environment (Mueller et al., 2012). An 

estimate suggests that global food production needs to be increased by 60-110% between 2005 

and 2050 (Pradhan et al., 2015). Even so, by closing the yield gaps, which is the difference between 

attainable yield and actual yield in a region, most countries are expected to meet food self-

sufficiency or to improve their current food self-sufficiency levels (Pradhan et al., 2015). Water 

and nutrient availability are the major production limiting abiotic factors in the regions where the 

yield gaps are high (Hengsdijk and Langeveld, 2009) and thus effective water and nutrient 

management plays a crucial role in food security by closing the yield gaps. In addition, optimizing 

water and nutrient management not only improves crop yield, but also reduces production cost, 

conserves resources, and protects the environment. However, the presence of multiple conflicting 

criteria, expensive simulation routines, nonlinearities in objective functions, and constraints make 

the optimization of such a system very difficult.  Here, we are proposing to evaluate the 

performance of evolutionary multi-objective optimization methods as an alternative approach for 

addressing these types of socio-economic problems. To test this hypothesis, this thesis seeks to 

address the following research objectives through the utilization of evolutionary multi-objective 

optimization methods: 1) identification of the best irrigation practices to achieve high crop yields 

at minimum water usage, 2) identification of the best irrigation and nutrient management practices 

to achieve high crop yields at lowest environmental cost, 3) evaluate the importance of the number, 

time, and amount of irrigation and fertilizer applications on crop yields.  
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2. LITERATURE REVIEW 

The application of optimization in agricultural intensification has a long and rich history. 

Researchers have applied classic single objective optimization techniques (e.g., linear 

programming, dynamic programming, and genetic algorithms) to a wide range of applications 

since the 1960s (Flinn and Musgrave, 1967). But within the last 25 years, agricultural engineers 

have embraced a new and powerful class of optimization algorithms know as multi-objective 

optimization (MO).  

This literature review seeks to aggregate and analyze the current state of the art applications of 

MO algorithms within the concept of agricultural intensification. In this literature review we first 

introduce nutrient and water management in Nutrient and Water Management in Agricultural 

Intensification, and then we summarize currently ubiquitous applications for MO algorithms in 

agricultural intensification in the Optimization Objectives section. In the following section 

Optimization Techniques, the literature review then describes and analyzes optimization 

techniques within the literature and covers case studies of algorithms and their applications in 

agricultural intensification.  

2.1 Nutrient and Water Management in Agricultural Intensification  

As water and nutrients are the limiting abiotic factor in agricultural intensification, they are the 

decision variables in focus in this review. For water specifically, as the sustainability of 

agricultural water use is affected by competition from non-agricultural water use and climate 

change, there is an increasing interest in minimizing agricultural water use through improving 

water productivity (Morison et al., 2008). Water productivity is defined as crop yield per volume 

of water applied (Kijne et al., 2003). Water applied to the cropped fields can be lost either as a 

productive (transpiration) or as an unproductive (soil evaporation, infiltration, and runoff) water. 

Increasing water productivity entails increasing the productive water use while minimizing the 
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unproductive water losses. By optimizing the irrigation schedule and increasing the water 

productivity, more amount of crop can be harvested with the same amount of irrigation water. In 

dry areas where cultivated land is limited by the lack of sufficient water, optimizing water 

productivity at a farm scale would help bring more area under cultivation by increasing water 

availability. In addition, optimizing the operation of regional water systems (e.g., irrigation 

networks, reservoirs) can increase the area of land under cultivation by assuaging water shortages 

in arid regions and regions with non-agricultural competition.   

Similarly, fertilization is essential for increasing crop productivity; however, over-application or 

incorrect timing of fertilization may lead to contamination of surface and groundwater 

(Adesemoye et al., 2008). Focusing on a single nutrient, such as nitrogen, and its over-application 

causes nutrient imbalance, economic loss, and environmental pollution (Goulding et al., 2008), 

while under application leads to poor crop yield. Nutrient management involves managing the 

amount, source, timing and method of nutrient application to minimize nutrient loss and maximize 

plant uptake (Gaskin and Wilson, 2009). Nutrient management optimization synchronizes 

fertilization application with plant nutrient utilization, which maximizes crop yield and quality, 

increases profit, conserves resources and enhances soil quality and productivity. This is important 

to ensure long-term food security through a proper balance between increased food production, 

soil health and environmental quality (Lamessa, 2016). 

Furthermore, water and nutrient management together have an even greater impact on agricultural 

intensification. Under a limited water supply, plant nutrient plays an important role in enhancing 

water productivity (Waraich et al., 2011). Under normal water supply condition, transpiration rate 

is increased by fertilization; however, under dry condition, fertilization has been found to result in 

depressed plant growth and higher seedling mortality rate (Li et al., 2009; Rahimi et al., 2013). 

Effective water management improves nutrient availability and helps the transformation of 
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nutrients in the soil (Li et al., 2009). Hence, in the regions where both nutrient and water 

availability are constraints to crop yield, combined water and nutrient management is essential in 

increasing crop production. Therefore, optimizing nutrient and water management help improve 

food security by closing the yield gap, especially in the developing world. For example, for maize 

in Sub-Saharan Africa, closing the yield gap to 50% of the attainable yield can be achieved through 

nutrient management, but to close the yield gap to 75% of the attainable yield, simultaneous 

nutrient and water management is required (Mueller et al., 2012). 

To computationally optimize agricultural intensification, it is necessary to develop efficient 

computation models for these agricultural systems. The arrival of physiologically based crop 

growth models allowed researchers to simulate plant growth and yield under varying irrigation and 

fertilizer supply. Some of the widely used model such as GOSSYM (Baker et al., 1983), 

CROPGRO (Boote et al., 1998), CERES-Maize (Jones et al., 1986), CERES-Wheat (Ritchie, 

1985), SOYGRO (Wilkerson et al., 1983), PNUTGRO (Boote et al., 1992), AquaCrop (Steduto et 

al., 2009) and CropWat (Smith, 1992) have been used and improved in the past few decades. 

Hydrological models such as SWAT (Arnold et al., 2012, Neitsch et al., 2011), TOPMODEL 

(Kirkby, 1975), and MIKE SHE (DHI, 2003) allow researchers to evaluate the environmental 

impact, agricultural productivity and economic productivity of agricultural practices on entire 

regions. 

2.2 Optimization Objectives 

MO algorithms are currently applied to two broad categories: micro agricultural management and 

macro agricultural management. Micro agricultural management attempts to optimize the 

performance in a single agricultural unit (e.g., a single field or a single farm enterprise), where 

macro agricultural management attempts to optimize the performance multiple individual 

agricultural units at the watershed, county, or regional scales. 
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2.2.1 Micro Agricultural Management Applications 

The less ubiquitous micro agricultural management applications of MO include irrigation 

management (Akbari et al., 2018; García-Vila et al., 2009), and crop planning (Groot et al., 2012; 

Mello Jr et al., 2013; Sarker and Ray, 2009). Even at a smaller scale, agricultural intensification 

problems still pose multiple conflicting objectives at the micro agricultural management scale and 

are therefore are ideal for MO techniques. For example, trying to minimize the levels of nitrogen 

loss in a given field will conflict with the overall yield of the crop (Hengsdijk and Langeveld, 

2009).   

2.2.2 Macro Agricultural Management Applications  

There are abundant examples of MO being applied to macro agricultural management objectives, 

such nutrient tax policy (Whittaker et al., 2017), irrigation network operation (Ashofteh et al., 

2015; Fernández García et al., 2014), land use (Groot et al., 2007), and regional crop planning 

(Sarker and Ray, 2009, 2005; Tan et al., 2017; Wang et al., 2012). MO is a popular choice in macro 

agricultural management because there are large numbers of conflicting objectives on a regional 

scale. For example, producers near a river may over apply nutrients to maximize their output, 

where regional governments may seek to minimize consequent algal blooms in a local reservoir. 

Or perhaps the consistent hydrologic head required for hydroelectric power generation is 

interrupted by high irrigation demands in the tropical dry season (Quinn et al., 2018). In addition 

to being multi-objective, macro agricultural management applications are ideal for evolutionary 

algorithms (section 2.3.1). Irrigation scheduling, for example, is an NP-hard problem (Anwar and 

Haq, 2013). The set of NP-hard problems is defined as the set of problems that have not been 

solved by algorithms in polynomial time, and are possibly be unsolvable in polynomial time 

(Cormen et al., 2009). The difficulty of such irrigation problems renders most simple brute force 

algorithms unrealistic, and evolutionary algorithms are therefore popular choices in the literature.  
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2.3 Optimization Techniques  

2.3.1 Classical and Evolutionary Single Objective Optimization Approaches 

In general terms, optimization algorithms search for optimal solutions within a decision variable 

space. Decision variable space is the space containing all the possible choices that a decision-

maker can implement. One example decision space in agriculture would contain all the possible 

combinations of irrigation dates and amounts (between 0 and 50 mm) for a 120-day growing 

season. With 51120 or 8.09 ∙ 10'()  different solutions, this decision space is too large for a human 

to reasonably evaluate in its entirety. Under these types of conditions, optimization algorithms can 

be useful tools. Optimization problems are typically defined by one or more decision variables 

(e.g., when to irrigate) and by one or more objective functions that numerically define the 

performance of a given solution (e.g., the seasonal yield for a single irrigation scheme).  

Classical optimization techniques, for this paper, optimize only a single objective function and are 

fully deterministic (Deb, 2009). This class of algorithms typically has excellent performance with 

a certain subset of optimization problems (e.g., a differentiable, linear, or unimodal objective 

function), and includes, among others, Quasi-Newton, gradient descent, linear programming, and 

golden search section search (Deb, 2009). But outside their narrow scopes of high performance, 

classical optimization techniques struggle to search for optimal solutions in highly non-linear, non-

differentiable, multi-modal, and/or multi-objective problems (Goldberg, 1989).  

Evolutionary optimization techniques offer a less specialized, and more flexible approach to 

optimization. Where classical methods solve problems deterministically, evolutionary algorithms 

traverse search spaces with stochastic heuristics inspired by the phenomenon of evolution. Genetic 

algorithms (GA), a widely used subset of evolutionary algorithms, mimic evolution by creating an 

initial random “population” of solutions that evolve towards more and more ideal solutions after 

each generation (Gen and Cheng, 2000). Each individual of a population has a set of “genes” that 
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represent the specific decision variables for that given solution, and each solution in a population 

is evaluated and ranked using a fitness function (i.e., objective function). The fittest solutions are 

paired with each other, and their genes are recombined into offspring solutions. Mutation operators 

create further diversity in the population. Ideally, the population as a whole will converge on an 

optimal solution, though there is no way to guarantee a solution is the true optimal solution. Similar 

to DNA, the genes can be coded as binary strings that can br crossed over with the genes of a mate 

solution (Holland, 1975). Alternatively, in real coded GA, genes can also be coded as arrays of 

real numbers and genes are crossed over using a process known as simulated binary crossover 

(Deb and Agrawal, 1995).  

2.3.2 Multi-Objective Optimization  

What differentiates single objective algorithms and MO algorithms is the number of and nature of 

objectives. Single objective algorithms on the one hand search for a solution that satisfies a single 

objective, and MO algorithms on the other hand search for solutions that satisfy multiple 

conflicting objectives. Conflicting objectives are objectives that cannot be satisfied with a single 

solution. For example, a hypothetical producer wants to optimize his or her urea application 

practices to a) maximize crop yield and b) minimize nitrogen application totals. The ideal solution 

that maximized crop yield would require generous amounts of urea, while the ideal solution that 

minimized total urea applied would use no urea at all. Therefore, this example has at least two 

equally optimal solutions: a solution that maximizes yield and a solution that minimizes total urea 

application. In other words, an optimization problem with two conflicting objectives will have a 

two-dimensional set of equally optimal solutions, and an optimization problem with n conflicting 

objectives would have an n-dimensional set of equally optimal solutions (Goldberg, 1989).  These 

sets of solutions are known as Pareto fronts, and each member of the Pareto front are known as a 

non-dominated solution (Tamaki et al., 1996). Non-dominated solutions are solutions in a 
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population that are not dominated by any other solution, where dominance is defined as 

outperforming a solution in every single objective. In summary, algorithms that can effectively 

search through multi-objective solution space are highly applicable to outstanding agricultural 

engineering problems with conflicting multiple objectives. 

2.3.2.1 Classical Multi-Objective Approaches  

During the naissance of the MO field, algorithms resolved conflicting objectives by reducing 

multiple objectives to a single objective. Once reduced to a single objective, a single objective 

optimization technique will find the optimum. These “classical” MO algorithms reduce the search 

space into a smaller region of the Pareto front. Subsequently, MO algorithms often allow for search 

within different regions of the Pareto front. The family of classical MO algorithms includes 

weighted sum, Tchebyshev (Miettinen, 2012), Benson’s (Benson, 1978), and ε-constraint methods 

(Haimes, 1971). 

Several papers in the literature employ the weighted sum approach. In its most common form, the 

weighted sum approach multiplies an objective vector O of n objectives by a weight vector w, and 

then sums the items of the product vector together into a single objective. 

*+,-./00 = 2*343
356
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With the multi-objective vector reduced to a single value, a classical single objective technique 

(e.g., GA or Linear Programming) will then use Ooverall as an objective function. The weight vector 

represents the importance given to each objective by a human decision-maker, and relatively 

higher weights endow a given objective more impact on the fitness of a solution.  

There are several applications of the weighted sum method (WSM) in agricultural engineering. 

Nixon et al. (2001) applied the WSM to solve off-farm irrigation channel delivery schedules. 
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Nixon’s framework maximizes “the number of orders that are scheduled to be delivered at the 

requested time” and minimizes “…variations in the channel flow rate.” Behind the WSM lies a 

single objective genetic algorithm. Tan et al. (2017) reduced a multi-objective problem to a single 

objective fuzzy-robust linear programming problem, using relative membership grades as the 

weights. Sarker and Ray (2009) also used the WSM to validate the results of an evolutionary multi-

objective optimization (EMO) algorithm, the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II), in a crop planning problem. Using WSM is a common validation tool in EMO research 

(Deb, 2009). 

The epsilon constraint method (Haimes, 1971) also converts a multi-objective problem into a 

single objective problem but instead uses constraints to reduce the number of objectives. In an n 

objective problem, (n – 1) of the objectives are constrained to a single value, and the remaining 

objective is solved using a single objective method. Consoli et al. (2008) translated a two objective 

problem down into a single objective non-linear programming problem. The researchers, trying to 

1) minimize irrigation deficit and 2) maximize net economic benefits, constrained the second 

objective function while minimizing the first objective function. Sarker and Ray (2009) used the 

epsilon constraint method to validate their NSGA-II crop planning optimization.  

Other classical approaches include Genetic Programming, as used by Ashofteh et al. (2015) to 

minimize regional vulnerability to irrigation deficits and to maximize reservoir reliability. Two 

optimization scenarios, one in recent past and one in the near future, produced unique solutions to 

two unique climate scenarios.  

2.3.2.2 Evolutionary Multi-Objective Optimization 

During the 1990s and 2000s, EMO techniques grew in popularity. Evolutionary algorithms (EA) 

are powerful tools for solving MO problems because EAs search for populations of optimal 
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solutions each generation. Therefore, a population-based approach allows an algorithm to search 

for an entire Pareto set of solutions. 

2.3.2.2.1 Non-Dominated Sorting Evolutionary Multi-Objective Optimizations 

In MO problems, non-dominated sorting is an effective means of ranking solutions in a population 

based on their convergence. Suggested by David Goldberg (1989), non-dominated sorting groups 

solutions into increasingly better non-dominated fronts (Figure 1) in terms of convergence. A non-

dominated front contains solutions that are all non-dominated (i.e., no solution in the set dominates 

another solution within the set). The process starts by finding all of the non-dominated solutions 

in a population. These solutions become the first and highest ranked non-dominated front. The 

front is then removed from the rest of the population, and the second highest ranked front is 

identified. The process is repeated until all solutions are categorized into ranked non-dominated 

fronts. Once so ranked, an algorithm can quickly identify the dominance relationship between 

members in a population. For example, all solutions in the third highest ranked non-dominated 

front would automatically be chosen for the next generation over a solution from the fourth highest 

ranked non-dominated front.  
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Figure 1. Example of non-dominated sorting in a two objective minimization problem 

Agricultural researchers have employed members of the NSGA-II family of algorithms 

consistently since the mid-2000s. NSGA-II is a powerful, quick, and simple EMO algorithm 

developed by Deb et al. (Deb et al., 2002), which uses a combination of non-dominated sorting 

(Goldberg, 1989) and crowding distance to rank the fitness of a population of solutions. The 

algorithm balances the goals of convergence through non-dominated ranking, and then population 

diversity through crowding distance ranking. NSGA-II performs best with one and two objectives, 

decently with three objectives, and poorly four or more (or “many”) objective problems. NSGA-

II also implements the concept of elitism, in which the parents in one generation, instead of being 

removed from the population after their given generation, have the opportunity to be carried on to 

the following generation (Deb et al., 2002).  
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NSGA-II appears in a wide breadth of papers in the agricultural engineering literature. Its 

popularity mainly stems from its ease of use, simple parameters, and balance of population 

convergence and diversity. In two papers, Sarker and Ray (2009, 2005) developed and employed 

a variant on NSGA-II to optimize crop-planning practices. Both studies examined an agricultural 

region containing multiple farms and sought to assign crops to each farm optimally. In the first 

paper, the total economic investment in the region was minimized while the regional profit was 

maximized (Sarker and Ray, 2005). For the second paper, the total gross margin was maximized 

while the total cultivation cost was minimized (Sarker and Ray, 2009).  Another research group, 

Darshana et al. (2012), attempted to maximize gross economic output and minimize water usage 

in a region in Ethiopia by changing the cultivars of three different farms in Ethiopia. NSGA-II 

optimized two objectives: an objective to maximize net benefits for farmers and an objective to 

minimize the water requirements from the crops. The research of Perea et al. (2016) optimizes 

pressurized irrigation, specifically sectoring operations. Using a customized version of NSGA-II, 

Perea et al. (2016) minimized the cost of running pumping stations while maximizing farmer’s 

profit in a region in Spain. In another application of NSGA-II, Lalehzari et al. (2016) studied the 

optimal allocation of groundwater and surface water for deficit irrigation. Lalehzari et al. (2016) 

aimed to minimize the total water allocated and maximize the profit relative to the production 

costs. The authors then ran the same multi-objective optimization problem using particle swarm 

optimization.  Most recently, Whittaker et al. (2017) developed a unique bi-level optimization 

routine to determine the optimal fertilizer tax on a watershed. Inspired by the Stackelberg game 

(Von Stackelberg, 2010), they first optimized the spatial distribution of a proposed fertilizer tax 

from the perspective of a policymaker, using NSGA-II to maximize the agricultural output of the 

region and to minimize the environmental impact. This is the upper level of optimization. In the 

lower level of optimization, farmers react to the fertilizer tax and optimize their profits with linear 
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programming. The process then repeats with the upper level. A hybrid of chaos algorithm (Jiang 

and Weisun, 1998) and two MO algorithms (NSGA-II and MODE) appears in the work of 

Arunkumar and Jothiprakash (2017). They applied their modified algorithms to optimize crop 

planning in a multi-reservoir system spanning multiple basins and aim to maximize the net benefits 

and crop production.  

There are many examples that use other algorithms based off of non-dominated sorting. ε-NSGA-

II, a modified version of NSGA-II developed by Kollat and Reed (2006), incorporated the concepts 

of ε-dominance archiving into the NSGA-II. The goal of ε-dominance archiving is to perform a 

more uniform and spread out search within the objective space (Laumanns et al., 2002). ε-NSGA-

II searches for watershed best management practices (BMP) in Liu et al. (2013). The objectives of 

the run are to minimize the cost of the BMP while maximizing the reduction in phosphorus load. 

The Soil and Water Assessment Tool (SWAT) model predicted the phosphorus load for a given 

BMP practice (Arnold et al., 2012, Neitsch et al., 2011). Zhang et al. (2017) also employ ε-NSGA-

II to minimize agricultural water shortages while simultaneously optimizing other competition 

water requirements in a watershed and minimizing environmental impact. The algorithm 

developed by Groot et al. (2012) incorporates Non-dominated sorting into differential evolution to 

optimize overall farm management. The objectives included minimizing nitrogen 

leached/denitrified and labor requirements, as well as maximizing economic benefit and organic 

matter balance.  

2.3.2.2.2 Other Evolutionary Multi-Objective Optimization Algorithms  

There are other examples of EMOs applications in the agricultural intensification optimization 

literature. For example, differential evolution (DE) (Storn and Price, 1997) is a popular variant of 

evolutionary algorithms in the agricultural management optimization literature, and a multi-

objective version of DE (Lampinen et al., 2000; Xue et al., 2003) appears in Groot et al. (2007). 
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The study by Groot et al. (2007) optimized land use and hedgerow placement with respects to area 

yield, biodiversity and nutrient loss.  

Some papers use swarm-intelligence-based algorithms. First coined by Beni and Wang (1993), 

swarm intelligence mimics the behavior of swarms of autonomous biological agents (e.g., birds, 

ants, wolves). Wang et al. (2012) employed a variant swarm intelligence technique known as 

particle swarm optimization (PSO), which searches optimal solutions with a “swarm” of particles 

that act like a flock of birds (Eberhart and Kennedy, 1995). With each iteration, each “individual” 

of the swarm moves to a new position based on its current velocity, its personal best location at 

that time, and a global best location of the entire swarm. However, the variant of PSO, multi-

objective chaos particle swarm optimization (MOCPSO), incorporates a dynamic weighted sum 

optimization within each particle of the swarm to optimize crop planning and water resources in a 

region in China. The objectives included maximizing the regional agricultural output, total grain 

yield, environmental benefit, and water efficiency.  

Genetic Programming (GP) is another family of algorithms that follow evolutionary principles. 

Unlike GAs, which optimize binary strings representing possible solutions, GP optimizes 

computer programs (i.e., mathematical functions) in the form of parse trees (Koza, 1992). Ashofteh 

et al. (2015) employed a bi-objective MO version of GP to maximize the reliability of reservoir 

irrigation responses and minimize regional vulnerability to irrigation deficits.  

Melody Search (Ashrafi and Dariane, 2013), a variant of Harmony Search (Geem et al., 2007) 

appears in the work of Karami and Dariane (2018). Both Melody and Harmony Search attempts 

to mimic how musicians improvise melodies within a musical ensemble. In Karami and Dariane, 

a Melody Search framework simultaneously optimizes multiple climate scenarios with respects to 

maximizing municipal, instream requirement, agricultural and hydropower reliability.  
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2.3.2.2.3  Many-Objective Optimization  

Many objective problems are multi-objective algorithms that have more than three objectives. 

Many of the first generation of multi-objective algorithms perform poorly after three objectives, 

though a number of many objective algorithms have cropped up in the last ten years, such as 

MOEA/D (Zhang and Li, 2007), Borg (Hadka and Reed, 2013), and NSGA-III (Deb and Jain, 

2014). Many-objective problems have not significantly appeared in the agricultural intensification 

optimization literature. Among the few are Gurav and Regulwar (2012), who used a Multi-

objective Fuzzy Linear Programming algorithm (MOFLP) to solve a four objective irrigation 

planning problem. With MOFLP, irrigation planning in a region in India is optimized with respects 

to maximizing manure utilization, crop production, job creation, and the overall economic benefit. 

The research of Wang et al. (2012), mentioned earlier for their PSO algorithm MOCPSO, 

optimizes a four objective crop planning and water resource problem. In another publication, 

Karami and Dariane (2018) overcame the difficulties of many-objective optimization by 

combining Melody Search (Ashrafi and Dariane, 2013) with the concepts of social choice (Arrow, 

1951; de Borda, 1781). With their hybrid optimization algorithm, Karami and Dariane (2018) 

simultaneously maximize reliability for regional municipalities, instream conditions, agricultural 

production, and hydropower operations under four different climate scenarios. Four NSGA-III 

runs, one for each climate scenario, is also used to optimize the aforementioned four objectives 

and to validate the results of the combined melody search and social choice algorithm. Zhang et 

al. (2017) employed ε-NSGA-II (Kollat and Reed, 2006) to solve a five objective regional water 

planning problem, which optimized against the water demands of businesses, agriculture, and the 

environment.  
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2.4 Literature gaps 

There are several gaps in the agricultural intensification optimization literature. Firstly, and to the 

best of our knowledge, there are no micro agricultural management applications that combine both 

nutrient and water management. As mentioned earlier, simultaneously optimizing nutrient 

management and water management outperforms optimizing each objective individually (Waraich 

et al., 2011). Therefore, micro-managing nutrient and irrigation applications on farms would move 

forward the use of state-of-the-art techniques in agricultural intensification. 

Furthermore, optimizing only irrigation and nutrient applications would ignore the basic 

requirement to make any management practice economically viable. Therefore, simultaneously 

optimizing irrigation management, nutrient management, and crop yield would balance three 

highly significant objectives in agricultural intensification. Finally, including an objective for 

environmental impact would add a powerful perspective on how certain agricultural practices 

affect the environment as a whole. Adding environmental objectives would determine whether or 

not a practice could be sustainably applied throughout regions.  

Also, there is a lack of good applications of many objective algorithms in the agricultural 

intensification optimization literature. Agriculture, with its many conflicting objectives, would be 

an excellent case study for many objective problems. Agricultural systems are highly complex and 

non-linear and could serve to better define the strengths and weakness of the current state of the 

art many objective algorithms.  
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3. MATERIALS AND METHODS 

3.1 Modeling process 

To maximize crop yield and simultaneously optimize water and fertilizer use efficiency with 

limited environmental impacts, we needed to integrate a crop model with an optimization 

technique. The chosen crop model was the Decision Support System for Agrotechnology Transfer 

(DSSAT). DSSAT is a computer model capable of simulating crop growth for various cultivars 

and species. DSSAT considers the full cycle of soil-plant-atmosphere dynamics, irrigation 

scheduling, and nutrient management planning. The aforementioned characteristics along with the 

speed of the model (the whole growing season simulations taking few seconds) make this model 

ideal for this study. DSSAT can act as the evaluator within a bi-level evolutionary optimization 

framework.  

In the bi-level optimization, one optimization problem is embedded (nested) in another. The outer 

and inner optimization problems are commonly referred to as upper- and lower-level optimization 

problems, respectively. Consequently, the variables of these problems are referred to as upper- and 

lower-level variables. The decision variables include two time-independent and two sets of time-

dependent variables. The time-independent variables (xi, 8 ∈ {1, 2}) represent the number of 

necessary irrigation and nutrient applications within a growing and are usually decided by an 

Irrigation Association and producers, respectively. The time-dependent variables (yj(t), 1 ≤ ? ≤

∑A3, 1 < C < 365) determine the amount of irrigation water and nutrient application for each date. 

We then evaluate the solution for a number of objectives: 1) maximizing crop yield, 2) minimizing 

irrigation water used, 3) minimizing the amount of nutrients applied, and 4) minimizing the 

nutrient loss (through leaching to shallow/groundwater and surface runoff).  

Figure 2 illustrates the linking of the bi-level optimization, decision variables, and DSSAT crop 

model. The procedure starts with referencing the two time-independent/upper-level variables 
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(number of irrigation and number of nutrient application events) in the bi-level optimization. A 

Monte Carlo optimizer uses these predefined variables to generate a series of uniformly distributed 

random day combinations within the growing season. For example, given three irrigation and two 

nutrient application events, one of the uniformly distributed random day combinations can be May 

15th, July 18th, and August 1st for irrigation and May 30th and July 18th for nutrient applications. 

From the series of uniformly distributed random day combinations, one will be selected and 

incorporated into the lower level of the bi-level optimization. The lower level consists of the EMO 

algorithm Unified Non-dominated Sorting Genetic Algorithm-III (U-NSGA-III) (Seada and Deb, 

2015). The algorithm U-NSGA-III can be used for single, multiple, and many-objective 

optimization problems alike, thereby allowing us to optimize systematically by starting with the 

most critical objective and then adding other objectives. The incorporated day combination will 

be used to initialize a population of time-dependent variables (irrigation and nutrient application 

amounts). These variables will be assigned to the dates identified in the upper level. For each 

solution in the population, the objective functions (O1 to O4) will evaluate these dates and amounts 

by calling the DSSAT model and retrieving the results. The population will be tested against 

termination criteria (e.g., predefined threshold values and maximum number of allowed iterations). 

If the termination criteria are not met, the population (the time-dependent variables) are evolved 

and re-evaluated. This procedure is repeated until the termination criteria are met, which then the 

local Pareto-front for the selected day combination will be stored. After each iteration of the upper-

level of optimization, the new local Pareto is combined with a global Pareto front. In the next step, 

if there are any day combinations left, the above procedure would be repeated for each new day 

combination until all the generated random day combinations are processed.  



19 

 

Figure 2. Proposed integrated bi-level and DSSAT framework 

In order to compare the results from this study with an actual field experiment, the study consisted 

of two phases. In the first phase, we evaluated the efficacy of the lower-level optimization by 

examining the irrigation and nitrogen fertilizer application amounts for a fixed set of dates. The 

fixed set of dates followed the best management practice for high irrigation and high nitrogen 

fertilizer applications for a field experiment conducted at the Irrigation Research Park in 

Gainesville, Florida. Using the same application dates as best practices enabled accurate 

comparisons between the performance of the optimization and current best practices. In the second 

phase of the study, we tried to examine whether changing application dates and amounts from the 

fixed dates can further improve the overall performance of the farm considering the predefined 

objectives.    



20 

3.2 Study area 

The study area is located at the University of Florida (UF) Experimental Station (29° 37.8', -82° 

22.2') known as the Irrigation Research Park in Grasonville, Florida, USA (Figure 3). The study 

area is in a humid subtropical region of southeast of United States, with a wet season starting in 

May and ending in October (Lascody, 2002). The long-term (30 years) average, minimum, and 

maximum temperature of 20.7°C, 27.3 °C, and 14.6 °C, respectively. Meanwhile, the long-term 

total annual precipitation is 1,286 mm (“30-yr Normal Maximum Temperature: Annual,” 2015, 

“30-yr Normal Mean Temperature: Annual,” 2015, “30-yr Normal Minimum Temperature: 

Annual,” 2015, “30-yr Normal Precipitation: Annual,” 2015). In 1982 between February 16 and 

May 7, the mean daily maximum temperature was 26.96 C, the mean daily minimum temperature 

was 13.40 C, and the average daily rainfall was 5.07 mm. The dominant soil type of the field is 

Millhopper Fine Sand, which is moderately well drained. The experiment was conducted to 

evaluate the impacts of best management practices for irrigation and nitrogen fertilizer application 

on maximizing maize production (Hoogenboom et al., 2017). The study period occurs over one 

growing season during the spring and summer of 1982. Maize (McCurdy 84aa) was planted on 

February 16 and harvested at maturity on May 7. Among the six treatments in the experiment, we 

focused on treatment 4, which used irrigation and relatively high levels of nitrogen. Given the 

weather of 1982, the best practices from treatment 4 prescribed 16 days of furrow irrigation, 

totaling to 264 mm over the season. Nitrogen best practices from treatment 4 prescribed 

broadcasting ammonium nitrate incorporated at a depth of 10 cm depth six times over the growing 

season, totaling to 401 kg. This simulated experiment yields 11,298 kg/ha of Maize in DSSAT. 

The total seasonal yield, irrigation applied, and nitrogen applied, all act as benchmarks for current 

best practices during the optimization phase of this study.  



21 

Figure 3. Location of the field of study 

3.3 Optimization Platform 

3.3.1 Objective Function  

Optimization problems alter one or more variables to maximize or minimize one or more problem 

objectives. In the case of crop production, producers alter agricultural variables (e.g., irrigation, 

fertilizer) to maximize their profits. This study focuses on the decisions of when to apply irrigation 

and/or nitrogen on a field, and how much irrigation and/or nitrogen to apply.  

Summing the total seasonal irrigation and nitrogen applications provides simple assessments of 

environmental impact but estimating the expected seasonal yield is a more complex challenge. In 

fact, since researchers have dedicated years of research to developing software that can effectively 

model the performance (e.g. yield, nutrient leaching) of cereals and other agricultural staples (e.g. 

CROPGRO model (Boote et al., 1998), CERES-Maize (Jones et al., 1986), CERES-Wheat 

(Ritchie, 1985), SOYGRO (Wilkerson et al., 1983), PNUTGRO (Boote et al., 1992)) ,  instead of 

reinventing the wheel and redeveloping a mathematical model for crop yield, it is smarter to use 

an existing crop model as an objective function for yield in an optimization platform.  
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There are numerous existing crop models that could act as an optimization objective function. The 

DSSAT model is the clear best choice because it is fast, well validated, and easy to use (Chung et 

al., 2014; Hoogenboom et al., 2012). A user runs the model by defining the soil, weather, cultivar, 

and growing practices within a number of input files. The input files are then fed into the core of 

the DSSAT model, the crop simulation model (CSM). The CSM in return predicts a number of 

performance metrics for that hypothetical season (e.g., yield, nutrient usage, water use, nutrient 

leaching). The CSM itself consists of a highly modular system of sub-models that work together 

as a single unit. To name a few, DSSAT contains sub-models that handle the weather, soil 

(including nitrogen leaching), and numerous cultivars. And because researchers have validated the 

outputs of these sub-modules as a whole under numerous crop, climate, and soil conditions (Jones 

et al., 2003)  Finally, DSSAT has been calibrated to simulate McCurdy 84aa maize growth at our 

study site in Gainesville Florida, and by extension is calibrated for the region and climate of 

Florida.  

Using DSSAT, one can easily design a set of powerful crop production and/or environmental 

objective functions to use in an optimization algorithm, such as in our case:  

[HIA: K,H8L:	N] = PQQRST8U(, … , 8WX, 8Y(, … , 8ZX, [U(, … , [W\, [Y(, … , [Z\]	(1) 

H8L:	^ = 	∑ 8W7
X
75(    (2) 

H8L:	_ = 	∑ [W`\
`5(   (3) 

where, Y is yield, L is leaching, I is total irrigation, F is total fertilizer usage, iAn is the irrigation 

amount for date idn, fAm is the nitrogen application for date fdm, j is the total number of irrigation 

applications, and k is the total number of nitrogen applications. The optimization algorithms in this 

study contain combinations of these three objective functions.  



23 

All other variables (e.g., climate, soil, location), save irrigation application amount and nitrogen 

application amount, remained constant throughout the optimization. The units for irrigation 

applied was millimeter, the units for nitrogen applied was kilogram per hectare, and the units for 

nitrogen leaching is kg/ha. The total amounts of irrigation and nitrogen applied were assumed to 

be positive integers. Applications contained no upper bound as to allow the multi-objective 

optimization algorithm to find the full range of tradeoffs. Finally, all optimization runs used the 

same x1 and x2 values, or in other words, all strategies used the same number of irrigation and 

nitrogen applications. x1 and x2 both come from best field practices, in order to easily compare the 

performance of the optimization to best practices. However, often certain day values go to zero, 

which implicitly reduces x1 and x2 below best practices. 

3.3.2 Optimization Algorithm Choice and Setup 

This study optimizes crop management practices using multi-objective (MO) algorithms. MO 

algorithms are ideal for problems with conflicting objectives, such as minimizing irrigation and 

maximizing yield. The output of an n-objective MO algorithm is an n-dimensional Pareto set of 

solutions (Deb, 2009). These n-dimensional Pareto sets contain solutions that are all equally 

optimal and offer unique tradeoffs for each of the objectives. For example, one solution might 

maximize yield, but waste a lot of irrigation water. A second solution might minimize irrigation 

usage but yield very little product. These two solutions are both optimal with regards to separate 

objectives (irrigation or yield) and are equally optimal. A decision maker, such as a farmer or an 

environmental policy maker, would then choose the solution that best fits their need. 

Building on the concepts of MO algorithms, EMO algorithms incorporate the principles of 

evolutionary optimization with MO concepts. Evolutionary optimization algorithms solve 

problems by creating populations of solutions (or individuals), ranking the individuals, and then 

recombining the best solutions into a new and ideally improved generation of solutions. 
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Evolutionary algorithms excel at solving complex, nonlinear objectives (Sastry et al., 2014), and 

are therefore a powerful tool for plant and crop optimization. 

The EMO algorithm NSGA-II efficiently sorts individuals by dominance and then by diversity 

(Deb et al., 2002). Given enough generations, it yields maximum convergence (closeness of the 

Pareto front to one or more objectives) and diversity (the spread of the Pareto front) for the given 

problem and seed. NSGA-II’s prioritization of both performance metrics cuts it out among similar 

EMO algorithms. Most decision makers seek the most optimal solutions and equally seek diverse 

choices in their decision-making process. However, NSGA-II performs optimally between one to 

three objectives. Meanwhile, crop production usually requires meeting many objectives, so this 

study utilized the U-NSGA-III algorithm. U-NSGA-III works similarly to NSGA-II, but it 

improves the crowding distance calculations of NSGA-II to effectively calculate crowding in one- 

to many-dimensional objective spaces (Deb and Jain, 2014); (Seada and Deb, 2015). 

U-NSGA-III was set to optimize with real variables; however, because the variables in this 

agricultural optimization system are all integers, the variables were normalized between 0 and 1. 

Zero represented zero, and 1 represented the largest value of that variable type. Normalizing 

between these two relatively smaller values reduced the variable search space for U-NSGA-III. 

For example, for irrigation, 0 represented 0 mm of irrigation applied, and 1 represented 50 mm of 

irrigation applied. For nitrogen, 0 represented 0 kg/ha, and 1 represented 150 kg/ha. Software 

within the objective function scales these variables back up and rounds them to the nearest whole 

number for DSSAT.  

The COIN Laboratory at Michigan State University provided the Java U-NSGA-III 

implementation, named evolib (Seada, 2017). At the commencement of this research project, 

evolib was single threaded and to make use of the 24 core processor in our lab computer; we forked 
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evolib to include multithreaded evaluation of population (Seada and Kropp, 2018). Additional 

software development efforts included the project DSSAT4j (Kropp, 2018a). Since the DSSAT 

CSM is written in FORTRAN, much of the project focused on writing a Java wrapper for DSSAT 

CSM input and output. The wrapper provides abstracted DSSAT experiments in the form of Java 

objects. For example, a client of the DSSAT4j library might create an experiment object containing 

an array of dates and irrigation amounts. A simple call to a run method returns the yield and/or 

leaching for the given experiment. This allowed simple and elegant integration of DSSAT into a 

U-NSGA-III objective function. DSSAT4j also includes built-in multithreading, which enabled 

quick, multi-threaded U-NSGA-III. DSSAT4j ran DSSAT version 4.7.1 (Git commit d8a977d) 

(Hoogenboom et al., 2017). The final component of the software framework is software that tied 

it all together. This software, named CropOpt (Kropp, 2018b), is a prototype decision support 

framework and optimizes a crop growing scenario provided by a user. The user provides periods 

of irrigation and nitrogen application, along with constraints such as the number of irrigation and 

nitrogen application, maximum and minimum amounts applied per application, and so on. In 

return, the framework optimizes the scenario and returns the results to the user. All results can be 

found in the supplementary data in the DSI website (see data availability). 

3.3.3 Optimization Strategies and Configuration  

The study chose to use a bi-level optimization configuration over single-level optimization because 

of the complexity of the problem. The number of variables behind irrigation and nutrient 

scheduling are numerous and difficult to optimize. If a hypothetical growing season contains 120 

days, and a farmer has access to 0 to 50 mm of water every day, there are 51120 or 8.09 ∙ 10'(), 

different solutions. In its early stages, this study considered every day between February 16 and 

harvested the maize at maturity on May 7 a real variable in the optimization problem. However, 

the optimization runs with this single level optimization configuration failed to match the UF field 
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experiment benchmark yield. Therefore, the study sought to reduce the number of variables while 

still optimizing for the 120-day growing season with a bi-level optimization scheme. The upper 

level of the optimization was a Monte Carlo optimization algorithm, which generated random 

combinations of dates to irrigate and/or to apply nitrogen. For each of these combinations, U-

NSGA-III attempted to find the optimal application amounts for each fixed date combination. 

Formally, the algorithm ran as follows:  

Algorithm 1: Bi-Level Optimization for Agricultural Optimization 

Step 1: Determine the number of irrigation applications x1 

Step 2: Determine the number of nitrogen applications x2 

Step 3: Repeat 

Step 4:      Generate x1 random dates for irrigation application 

Step 5:      Generate x2 random dates for nitrogen application 

Step 6:      Run U-NSGA-III with the application amounts of given irrigation and nitrogen     

     dates as variables 

Step 7:      Combine the solutions from step 6 with solutions found in previous iterations 

Step 8:      Remove dominated solutions from the combined set of solutions 

 

Here we hypothesized that through bi-level optimization, better management practices could be 

implemented to not only improve crop yield, but to also minimize irrigation application rates, 

minimize fertilizer application rates, and minimize environmental impacts through leaching. To 

verify this hypothesis, different optimization strategies were formulated and evaluated based on 

their ability to improve current best management practices. As a result, each optimization strategy 

maximized yield while minimizing a different combination of environmental impacts, including 

total irrigation applied, total nitrogen applied, and total nitrogen leached. The first three 
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optimization strategies use single-level optimization with dates taken from UF best experimental 

field practices, and the last three use bi-level optimization. 

Table 1. Summary of the optimization strategies 
Strategy No. Optimization Type Application Dates Objectives 

1 Single Level  
(U-NSGA-III) 

16 fixed irrigation dates 
(dates from the UF field 
experiment) 

Max: Yield 
Min: Irrigation applied 

2 Single Level 
(U-NSGA-III) 

16 fixed irrigation dates 
AND 6 fixed nitrogen dates 
(all dates from the UF field 
experiment) 

Max: Yield 
Min: Irrigation applied  
Min: Nitrogen applied 

3 Single Level 
(U-NSGA-III) 

16 fixed irrigation dates 
AND 6 fixed nitrogen dates 
(all dates from the UF field 
experiment) 

Max: Yield 
Min: Irrigation applied  
Min: Nitrogen applied 
Min: Nitrogen leached 

4 Bi-Level  
(Monte Carlo for 
upper-lever & 
U-NSGA-III for 
lower-level) 

16 variable irrigation dates Max: Yield 
Min: Irrigation applied 

5 Bi-Level 
(Monte Carlo for 
upper-lever & 
U-NSGA-III for 
lower-level) 

16 variable irrigation dates 
6 variable nitrogen dates  

Max: Yield; 
Min: Irrigation 
Min: Nitrogen applied 

6 Bi-Level 
(Monte Carlo for 
upper-lever & 
U-NSGA-III for 
lower-level) 

16 variable irrigation dates 
6 variable nitrogen dates  

Max: Yield; 
Min: Irrigation  
Min: Nitrogen applied 
Min: Nitrogen leached 

 

The various strategies are as follows. Strategy 1 kept all parameters from the UF experiment 

constant, including the 16 irrigation dates, but changes the irrigation application rate for each date. 

Keeping all other parameters constant made the results easily comparable to current best practices. 

Strategy 2 similarly kept all parameters constant except for irrigation and nitrogen amounts. Like 

Strategy 1, Strategy 2 uses the same dates of irrigation application and dates of nitrogen application 

as best practices. Strategy 3 was a four-dimensional optimization problem, and contained the same 

variables as Strategy 2, but added an additional objective to minimize nitrogen leaching. Strategy 
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4, the first bi-level optimization run, tried to find both the dates for 16 irrigation applications and 

the amounts for each of those irrigation applications. The objectives of Strategy 4 mirror the 

objectives of Strategy 1. Strategy 5, which mirrors the objectives of Strategy 2, uses bi-level 

optimization to find the dates and amounts for 16 days of irrigation application and to find the 

dates and amounts for six days of nitrogen application. The final bi-level optimization strategy, 

Strategy 6, which mirrors the objectives from Strategy 3, has the same variables as Strategy 5 

while adding a leaching minimization objective to the problem.  

There are two main stopping criteria employed in the study. In the first stopping criteria, Strategies 

1 through 3 ran until their hypervolumes visually plateaued. A hypervolume is the volume of the 

Pareto front from a reference point (Emmerich et al., 2005). The reference point is typically a 

worst-case scenario value for each objective, and in this study, we chose the following worst-case 

values in our reference points: 1) Yield: 0 kg/ha 2) Irrigation: 1000 mm 3) Nitrogen: 1000 kg/ha 

4) Leaching: 500 kg/ha. Once the hypervolume plateaued, the value with the greatest hypervolume 

was chosen as the best solution. In the second stopping criteria, strategies 4 through 6 ran U-

NSGA-III until a fixed generation. The fixed generation is a predetermined generation at which 

the hypervolumes of Strategies 1 through 3 respectively stopped improving. The study used the 

hypervolume software developed by Walking Fish Group, which can calculate 1 to many 

dimension hypervolumes (Cox and While, 2016).   

3.4 Post-processing and visualizations 

Once validated, the study analyzes the solutions within the available Pareto fronts. The first step 

of analysis was to break the Pareto fronts into three clusters. Three clusters effectively break the 

data into three broad categories: high productivity, high environmental efficiency, and even trade-

off. All tradeoffs in every optimization scenario can be broken down in these categories because 

the tradeoffs are all essential bipolar. Yield maximization falls under the productivity pole, and 
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irrigation minimization, nitrogen minimization, and leaching minimization all fall under the 

environmental efficiency pole. The third category attempts to find solutions that are well balanced 

between these poles. This study employs the k-means clustering method to break down the fronts 

into three categories (Arthur and Vassilvitskii, 2007). For this study, the k-means algorithm 

separated the solutions based on their normalized objective values. However, other studies could 

weigh the objectives differently according to the needs of a decision maker.  

The study also developed a unique type of histogram to display the clustered data (section 3.3). 

Each bucket in the histogram contains stacked, color-coded bars for each of the clusters. This 

simultaneously represents the total distribution of the Pareto front as well as the distribution of the 

individual clusters in the same front. The application frequency analysis section uses this type of 

histogram.  

Regarding the visualization, Strategy 6 posed a challenge. A three-dimensional graph can 

effectively display the results of Strategies 1 through 5 because each strategy contains 2 to 3 

objectives. However, Strategy 6, on the other hand, attempted to optimize four objectives, which 

cannot exist as points on a three-dimensional space. To address this problem, a custom written 

MATLAB script first plots the first three dimensions of the four-dimensional solutions. Then, the 

script color-codes the three-dimensional points with the values of the fourth dimension. This 

method effectively conveys the four-dimensional objective space in a three-dimensional objective 

space.  
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4. RESULTS AND DISCUSSIONS 

4.1 Single-level optimization results 

4.1.1 Strategy 1: Single Level Irrigation Minimization and Yield Maximization 

Strategy 1 optimized the simplest set of objectives. It attempted to maximize yield and minimize 

irrigation applied. The optimization found a diverse set of solutions that required significantly less 

irrigation than the UF best practices. The solution with the highest yield matched the output of the 

best practices (11,298 kg/ha) while reducing the required irrigation amount by 45.5% (Table 2). 

However, this solution is arguably not properly Pareto efficient, because the tradeoff of irrigation 

to yield is heavy. Properly Pareto efficient solutions are solutions that are Pareto optimal and offer 

reasonable tradeoff compared to their peers (Geoffrion, 1968). For example, choosing between 

solution A (Figure 4), which yields 11,298 kg/ha with 136 mm of irrigation, and solution B, which 

yields 11,242kg/ha with 130 mm of irrigation, is intuitively simple. Moving from solution B to 

solution A gains just 0.49%  while increasing total irrigation by 4.4%. Therefore, solution A is 

arguably not properly Pareto efficient for many stakeholders. However, the final call of what is 

properly Pareto optimal or not belongs to the stakeholders themselves, and to a farmer who has no 

water use limit, both are arguably properly Pareto efficient. Meanwhile, the solution with the 

lowest yield produced 2,655 kg/ha with 0 mm of irrigation.  

The optimization also significantly reduced the number of irrigation applications. In fact, all 

solutions required 13 or fewer applications during the season. The highest yielding solution 

required 11 applications, which is a noticeable improvement over the best practices that required 

16 applications to achieve the same yield (11,298 kg/ha). Farmers with regional restricted temporal 

water access would benefit using solutions that reduce the number of applications while 

maintaining optimal yield (Sampath, 1992). This is an example of how the optimization can shape 
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management practices. The number of applications within the Pareto front (ranked in descending 

order by yield) non-monotonically decrease from 11 down to zero.  

Figure 4 illustrates this transition between high yielding solutions and highly water efficient 

solutions. The more water is conserved between solutions, the more yield decreases. Moving from 

low water solutions to high water solutions at first offers relatively high yield tradeoffs for low 

water tradeoffs. However, approximately halfway through the solutions, unit increases in total 

irrigation cease to offer equal increases in total yield (Figure 4). 
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Table 2. Top five (ranked by yield) optimal results compared to best practices (Strategy 1) 
Yield (kg/ha) Number of Applications Total Irrigation (mm) 

Reduction in 
 irrigation usage Best practices Optimized results Best practices EMO results Best practices 

EMO 
results 

11298 11298 16 11 264 136 48.5% 

 11267  11  130 50.8% 
 11242  11  129 51.1% 
 11204  11  125 52.7% 
 11128  13  119 54.9% 
 11075  11  115 56.4% 
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Figure 4. Pareto front for Strategy 1, which maximized yield and minimized irrigation amount  

4.1.2 Strategy 2: Single Level Irrigation Minimization, Nitrogen Minimization, and Yield 

Maximization 

Strategy 2 added an objective to minimize nitrogen usage to the objectives of Strategy 1 and 

obtained similar reductions in nitrogen and irrigation amounts (Table 3). The best solution with 

respect to yield (top row of Table 3) also matched the yield benchmark from the UF best practices, 

while reducing irrigation by 40.9% and nitrogen by 26.4%. The lowest ranked solution by yield 

applied 3 mm of irrigation and 7 kg/ha of nitrogen and reached 939 kg/ha of yield. This worse case 

(by yield) solution from Strategy 2 performs considerably worse with respect to yield than the 
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worst case from Strategy 1 because Strategy 1 used the nitrogen application dates and amounts 

from the best practices, and therefore does not use more or less than 401 kg/ha. Though the yield 

is lower than best practices, this yield is still optimal given harsh irrigation and fertilizer restrictions 

because it is Pareto optimal (Deb, 2009).  

Despite their relatively low yields, examining the lowest solutions by irrigation and nitrogen still 

provides valuable agricultural insights. The lowest ranked solution by nitrogen applied 3 kg/ha of 

nitrogen and 74 mm of irrigation to achieve 1566 kg/ha of yield. The two lowest ranked solutions 

by irrigation both apply 3 mm of irrigation, apply 7 kg/ha and 41 kg/ha of nitrogen respectively, 

and achieved 989 kg/ha and 1778 kg/ha in yield respectively. Both of these cases offer 

management practices to farmers under severe but common scenarios. A hypothetical farmer who 

wishes to sell organic maize may choose the solution that uses almost no nitrogen, and a farmer in 

an area with strict irrigation restrictions may choose a solution that uses almost no irrigation. In 

both cases, the Pareto front offers the optimal yield found in the optimization under such 

restrictions. 

The solutions that contain the highest irrigation and nitrogen usage also offer valuable tradeoffs. 

The highest ranked solution by nitrogen actually applied more total nitrogen (500 kg/ha) than the 

best practices (401 kg/ha) to produce 8,683 kg/ha of yield. However, the solution makes up for its 

heavy nitrogen usage by reducing the irrigation applied. A similarly yielding solution in Strategy 

2 (8,593 kg/ha) uses 68.9% more irrigation while using less nitrogen (123 kg/ha). Therefore, a 

stakeholder may choose to save a great deal of irrigation by choosing the management practice 

that uses a relatively large amount of nitrogen fertilizer. The highest solutions ranked by irrigation, 

using 385 mm of irrigation and 186 kg/ha of nitrogen to yield 10,870 kg/ha, offers a similarly 

unique trade-off. Compared to a similar solution in Strategy 1 that yields 10,859 kg/ha with 401 

kg/ha of nitrogen and 101 mm of irrigation, this solution from Strategy 2 decreases nitrogen usage 
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by 56.61% while sacrificing considerable quantities of water. These cases offer unique solutions 

for unique scenarios and give stakeholders the final judgment whether to sacrifice one objective 

to improve two or more other objectives. These results also demonstrate the broadening of options 

in optimizing both irrigation and nitrogen application within the same optimization run. With the 

third objective of nitrogen, stakeholders not only determine the appropriate amount of water but 

also the appropriate amount of nitrogen as well. 

The above tradeoffs are visually present in the Strategy 2 Pareto front in Figure 5. The top of the 

front, where water and nitrogen are highest, contains the highest yields, but as you conserve more 

nitrogen and water, the yield decreases at the skirts of the front.  

The number of nitrogen applications in Strategy 2 does not decrease as dramatically as the 

irrigation applications in Strategy 1. When the data is broken into high, medium and low yield 

clusters (using k-means clustering), all the high yield solutions were within 4 to 6 applications. 

Furthermore, the solutions using 4 to 5 applications were outside of the interquartile range of the 

high yield cluster. Even for the medium and low clusters, all solutions between the first quartile 

and the maximum were between 3 and 6 applications (Figure A.1 in the Supplementary Materials). 

This suggests that solutions using under three nitrogen application have a higher risk of being 

dominated by other solutions. Also, the fact that the median, the third quartile, and the maximum 

are all the same value in the high yield cluster (Figure A.1) suggest that solutions with more than 

six nitrogen applications may contain competitive contributions to the existing Pareto front. 

However, this paper focuses on the optimization problem using a maximum of six possible days 

to keep in line with the UF benchmarks field experiment and seeks to keep the nitrogen application 

count within realistic bounds. Until the economic impacts of increasing the number of nitrogen 

applications above 6 can be taken into account in future studies, we assume that the maximum 

number of nitrogen application is six.  
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The number of irrigation applications does not appear to directly affect yield as strongly as the 

number of nitrogen applications (Figure A.1). In fact, in the high yield cluster, the range is very 

wide (4 applications to 16 applications), though the middle 50% of the solutions fall between the 

narrower range of 9 to 14 applications. The medium yield cluster has slightly a wider range (3 

applications to 16 applications) and a higher middle 50% range (13 applications to 5 applications), 

and the low yield cluster has a similar range and inner quartile range (2 to 15 applications and 5 to 

12 applications respectively). These increasing ranges suggest that the effects of the number of 

irrigation applications have a diminishing effect on the yield as the target yield decreases.  

Similar to Strategy 1, the number of irrigation applications on the highest-ranking solution by yield 

uses fewer irrigation applications than best practices (14 instead of 16). However, 21 solutions still 

required 12 to 16 applications. The added complexity of six additional variables and one additional 

objective from Strategy 1 might explain the presence of these solutions with high application 

counts. Adding more variables increases the dimensionality of the decision space and adding more 

objectives increases the dimensionality of the objective space. Both cases increase the difficulty 

of finding optimal solutions (Deb, 2009). Alternatively, perhaps more irrigation applications are 

optimal when simultaneously optimizing nitrogen and irrigation.  

Another interesting finding in Figure 5 is that there is an upward trend in yield from low irrigation 

and nitrogen application to high irrigation and nitrogen application. The trend dictates that with 

every horizontal cut, along the yield axis, there is one trade-off solution that can be used to help 

farmers to make better decisions. For example, if we extract the green shade from the figure, we 

have a two-dimensional Pareto front with respects to irrigation and nitrogen. Along this Pareto 

front, there is a point known as the knee point, which offers a trade-off solution among irrigation 

and nitrogen application. Similar points can be created at different yield levels and can be presented 

to farmers to simplify the decision-making process.  



37 

 
Table 3. Top five (ranked by yield) optimal irrigation and nitrogen results compared to best 
practices (Strategy 2). 

Yield (kg/ha) Total Irrigation  
(mm) 

Irrigation 
Reduced 

Total Nitrogen 
(kg/ha) 

Nitrogen 
Reduced 

Best 
practices 

EMO 
results 

Best 
practices 

EMO 
results 

Best 
practices 

EMO 
results 

11298 11298 264 156 40.9% 401 295 26.4% 
 11208  223 15.5%  219 45.4% 
 11142  127 51.9%  325 19% 
 11106  291 -10.2%  203 49.4% 
 11102  164 37.9%  281 29.9% 
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Figure 5. Pareto front for Strategy 2. A surface was passed through the solutions to better 

visualize the shape of the front. The color of the surface represents the yield for that given region 

of the front. 

4.1.3 Strategy 3: Single Level Irrigation Minimization, Nitrogen Minimization, Leaching 

Minimization and Yield Maximization 

Strategy 3 includes the effects of a direct environmental impact: nitrogen leaching. Nitrogen 

leaching occurs when nitrogen-based fertilizers infiltrate the soil and ultimately the groundwater. 
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Figure 6. Pareto front for Strategy 3, which maximized yield, minimized nitrogen application, 

minimized irrigation application, and minimized nitrogen leaching.  The color of the surface 

represents the leaching of the solution 

 

To incorporate this environmental metric, Strategy 3 included four objectives: minimize nitrogen 

application, minimize irrigation application, minimize nitrogen leaching, and maximize yield.  

The optimization results accurately reflect the literature on leaching. The results with relatively 

high irrigation application and maximum nitrogen applications yielded the most maize, but also 

the most leaching. However, the results provide solutions that reduce dangerous leaching levels 

by simply reducing the yield by approximately 100 kg/ha. Knowing this information is important 
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for decision-makers to incentivize farmers to avoid over-fertilizing their fields, and thus reducing 

leached nitrogen in water supplies. 

The yield, water, and nutrient usage among high yielding solutions vary only slightly from 

Strategy 1 and Strategy 2. The best Pareto front of the run contained solutions yielding up to 

11,281 kg/ha (17 kg/ha lower than the highest yielding solutions from Strategy 1 and Strategy 2). 

Also, the same solution that achieved 11281 kg/ha used more considerably more irrigation than 

the highest yielding solutions in Strategy 1 and Strategy 2. Specifically, Strategy 1 and Strategy 

2 both yielded 11,298 kg/ha with 134 mm of irrigation and 156 mm respectively, where Strategy 

3 needed 180 mm of irrigation to achieve 11,281 kg/ha. The amount irrigation appears to trend 

upwards with each additional objective added, with the Strategy 3 solution using the most. 

However, neither the Strategy 1 solution nor the Strategy 2 solution dominates this Strategy 3 

solution because the Strategy 3 solution outperforms both of them in total nitrogen applied and 

leaching. Strategy 3 achieves 11,281 kg/ha, approximately the same yield as Strategy 1 and 

Strategy 2, but with only 285 kg/ha of nitrogen applied and 65. 6 kg of nitrogen leached. The 

corresponding solutions from Strategy 1 and Strategy 2 applied 401 kg/ha (from best practices) 

and 295 kg/ha of nitrogen respectively and leached 75.2 kg/ha and 92.6 kg/ha respectively. This 

demonstrates the utility in adding additional objectives to the optimization. The more objectives 

included in our optimization platform, the nuanced the possible management practices become.  

The remaining value ranges were in most ways similar to Strategies 1 and 2. Yield ranged from 

1,252 to 11,281 kg/ha. Leaching ranged from 21.99 to 119.5 kg/ha. Irrigation applications ranged 

from 8 mm to 276 mm, and nitrogen applications ranged from 9 kg/ha to 558 kg/ha. The number 

of irrigation applications ranged from 2 to 16 applications, but unlike Strategy 1 and 2, the number 

of nitrogen applications ranged from 4 applications to 6 applications. This suggests that when 
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treating leaching as an objective, solutions with 0 to 3 nitrogen applications are dominated by 

their 4 to 6 application counterparts.   

4.2 Bi-level optimization results 

4.2.1 Strategy 4: Bi-Level Irrigation Minimization and Yield Maximization 

Figure 7. Strategy 1 results compared to Strategy 4 results 

The combined Pareto front of the 372 separate optimization runs, consisting of 119 Pareto optimal 

solutions, outperformed the optimization from Strategy 1. Firstly, the hypervolume (using 0 kg/ha 

of yield and 1,000 mm of irrigation as a reference point) for the bi-level optimization was 

11,027,186, where the hypervolume for the single level was 10,998,189. The larger hypervolume 

suggests better overall convergence and diversity from the bi-level results over the single level 
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results (Deb, 2009). This improvement is visually present in Figure 7. Secondly, the middle 

segment of the Strategy 4 Pareto front is significantly more convergent than the middle of the 

Strategy 1 Pareto front. More convergence in a Pareto front means more points are closer to the 

ideal of maximizing irrigation and minimizing irrigation (Figure 7) (Rudolph, 1994).  However, it 

worth noting that Strategy 1 solutions dominate 10% of Strategy 4 solutions, and Strategy 4 

solutions dominate 88% of Strategy 1 solutions. But as Figure 7 illustrates, the dominated Strategy 

4 solutions only marginally derivate from their Strategy 1 neighbors.  

There are possible explanations to why Strategy 1 still dominates a few Strategy 4 solutions, and 

why Strategy 4 solutions dominate the vast majority of Strategy 1 solutions. The overall trend is 

that the single level run from Strategy 1 marginally dominates in high yielding areas of the front, 

where Strategy 4 solutions dominate the most dramatically in the middle of the front. Strategy 1 

holds out in high yielding areas of the Pareto front because Strategy 1 already has dates chosen by 

experts to maximize yield. Therefore, it excels in finding solutions in this reduced search space. 

On the other hand, Strategy 4 likely outperforms Strategy 1 in the middle of the front because it 

opens the search space to date combinations that better suit median yield values. Both Strategy 4 

and Strategy 1 performed similarly in the lower yielding solutions at the bottom of the Pareto 

because minimizing yield simply involves reducing irrigation levels to zero for every date. These 

runs clearly demonstrate the usefulness of this bi-level optimization strategy. The Monte Carlo 

optimization layer widens the narrow manual optimization of dates beyond yield maximization 

and provides stakeholders with more refined management practices to their particular cases, from 

low to high yield, and low to high irrigation availability. 
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4.2.2 Strategy 5: Bi-Level Irrigation Minimization, Nitrogen Minimization, and Yield 

Maximization 

Like Strategy 4, Strategy 5 found a better Pareto front than the single level optimization Pareto 

front. Firstly, the number of solutions in the front increased dramatically. Maintaining a running 

bank of non-dominated points after each generation and after each run resulted in a 2,971 solution 

Pareto front after 137 runs. This differs significantly from the 119 solutions found in Strategy 4 

and is due to the additional dimension in objective space (nitrogen application amount 

minimization). Offering more optimal solutions to decision makers allows them to make decisions 

that are more refined after optimization. Secondly, the solutions from Strategy 5 dominated the 

vast majority of single-level irrigation, nitrogen and yield optimization solutions from Strategy 2. 

In fact, 98% of solutions from Strategy 2 are dominated by Strategy 5, and only 0.2% of Strategy 

5 solutions were dominated by Strategy 2 solutions. Finally, the hypervolume of the single level 

optimization, with a reference point at 0 kg/ha of yield, 1,000 mm of irrigation, and 1000 kg/ha of 

nitrogen, is 1.01�1010. The hypervolume of the bi-level optimization, using the same reference 

points, is slightly larger at 1.03�1010, which suggests better over convergence and/or diversity of 

the front from Strategy 5 compared to the front from Strategy 2. 

An interesting difference between the two objective bi-level optimization run (Strategy 4) and the 

three objective bi-level optimization run (Strategy 5) is in how they respectively outperformed the 

single level optimization runs. The single level solutions from Strategy 1 that outperformed the bi-

level results from Strategy 4 were mainly focused on in the high yield region of the Pareto front. 

However, when an additional objective is added in Strategy 5, the only single level solutions from 

Strategy 2 that outperforms bi-level results from Strategy 5 are two seemingly random spots on 

the Pareto front. Another major difference between the performance of Strategy 4 and Strategy 5 

is the number of runs necessary to overcome their single level strategies. Strategy 5 was able to 



44 

dominate a greater amount of Strategy 2 with fewer runs (137 runs) than Strategy 4 did in 372 

runs. One explanation for these differences is that since Strategy 2 had one more objective than 

Strategy 1 and thus had a more complex objective space to traverse. Therefore, Strategy 2 struggled 

to converge on the potential optimum within a considerably large search space, and could not 

compete with the solutions from the bi-level optimization from Strategy 5. This demonstrates the 

power of the bi-level Monte Carlo and U-NSGA-III optimization that aids in avoiding local optima 

during optimization and increases the breadth of the Pareto front of management practices at the 

end of optimization. 

 

Figure 8. Strategy 2 versus Strategy 5 results. Non-dominated Strategy 5 results are the black 

circles and non-dominated Strategy 2 results are red stars 
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4.2.3 Strategy 6: Bi-Level Single Level Irrigation Minimization, Nitrogen Minimization, 

Leaching Minimization and Yield Maximization 

Strategy 6 continued the trend of Strategy 4 and 5: it took fewer runs (101) to dominate even more 

of its corresponding single level run (Strategy 3). Strategy 6 dominated all but one the solutions 

from Strategy 3, and the single non-dominated Strategy 3 solution only dominated 0.2% of the 

Strategy 6 solutions. Again, the single level optimization version of this four-objective problem 

(Strategy 3) was ill-equipped to converge on the full front found by Strategy 6. The addition of the 

fourth objective and the 6 additional variables for leaching (compared to Strategy 1 and 4) is the 

source of the additional complexity. One final benefit of Strategy 6 is even a greater number of 

solutions (6,198) found caused by the additional fourth dimension of objective space. The large 

number of solutions better defines the shape of the Pareto front than Strategy 3. Strategy 3 lacks a 

well-defined shape, but Strategy 6 reveals that the tradeoffs of the four-objective optimization 

problem are very similar to the tradeoffs of the three-objective problems in Strategy 2 and Strategy 

5. However, the shape of the Strategy 6 Pareto front adds additional insights into environmental 

agricultural optimization.  No solutions exist at the top of the front, where irrigation approximately 

exceeds 150 mm and nitrogen application roughly exceeds 250 kg/ha. The very sharp, near 90-

degree-shaped boundary suggests that past a certain amount of combined irrigation and nitrogen 

application, no optimal solutions exist. This piece of knowledge could aid farmers and 

policymakers in making decisions that avoid both adversely affecting the environment and 

adversely affecting the yield of the crop.  
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Figure 9. Non-dominated Strategy 6 results  

4.3 Application frequency analysis  

Once Strategies 4 through 6 found Pareto optimal fronts for their respective scenarios, the study 

categorized and analyzed trends within the results of each strategy. As discussed in section 2.4, 

the k-means clustering method partitioned the results into three regions: high yielding solutions, 

environmentally efficient solutions, and even trade-off solutions. The distribution of application 

counts required within each cluster is a powerful tool for developing management practices. For 

example, if a farmer only has access to five applications of irrigation in a season, he/she can 

estimate the expected yield in the season and how he/she can implement the practice. It can also 

help reduce the complexity of future optimization problems. For example, if a farmer seeks to 
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achieve a yield within the medium trade-off cluster, and still wants to optimize irrigation usage, a 

new optimization routine would only need 6 irrigation variables instead of 16. Reducing an 

optimization problem from 16 to 6 would significantly reduce the complexity and run time of an 

optimization routine (Deb, 2009). 

Figure 10. Application frequency analysis a) Histogram of irrigation application count among 

Strategy 4 solutions. Solutions are color-coded according to their respective yield cluster (see 

section 2.4). b) Box plots of the total irrigation applied in Strategy 4 solutions, divided by the 

number of applications applied along the x-axis. The data is further divided and color coded into 

the clusters as described in section 2.4. 

The results of the aforementioned frequency analysis on Strategy 4 appear in Figure 10. Figure 

10.a presents Strategy 4 application counts in the histogram format. The histogram at first appears 

to be bi-modal overall, but each of the three clusters actually has its own unique mode. The high 

yield cluster has a mode of 8 applications, the even trade-off solution cluster has a mode of 5 

applications, and the water efficient solutions have a mode of 4 applications. Again, knowing the 
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distribution of each cluster can aid farmers in developing best irrigation management practices by 

choosing the right number of irrigation applications to schedule in a season. Figure 10.b 

summarizes the statistics of the total amount of irrigation per season for each of the histogram 

buckets from Figure 10.a as boxplots. As Figure 10.b demonstrates, the variance of the water 

efficient solutions increases with the number of applications, and the variance of the even trade off 

cluster increases and then decreases as application count increases. Finally, the variance of the 

high yield solutions also initially increases with the number of applications, but then sharply 

decreases after 13 applications.  

The histogram in Figure 11 describes the total irrigation (upper figure) and nitrogen (lower figure) 

application count across the three clusters from Strategy 5. The irrigation histogram for Strategy 5 

is also bi-modal, with peaks at 4 applications and 6 applications. Individually, the high cluster has 

a mode at 7 applications, the even trade-off solutions have a mode of 4 applications, and the water 

efficient solution has a mode of 3 applications. This central tendency towards solutions between 4 

and 6 suggests that farmers restricted to 6 applications of irrigation in a season can still achieve 

high yielding solutions. This is another example of how EMO algorithms can help with developing 

management practices. The distribution of nitrogen applications is a bit more complicated. The 

histogram appears truncated at 6 days and cuts out of at the mode of the distribution.  This suggests 

that Pareto optimal solutions with more than 6 days of nitrogen application exist, and in future 

optimization routines, more than six nitrogen application variables may yield more optimal 

solutions. Finding more optimal solutions beyond 6 nitrogen application variables may develop 

new, better management practices for maize growth in the future.   
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Figure 11. a.) Histogram of irrigation application count among Strategy 5 solutions. b.) 

Histogram of nitrogen application count among Strategy 5 solutions. Solutions are color coded 

according to their respective yield cluster (see section 2.4).  
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5. CONCLUSIONS 

The EMO algorithm U-NSGA-III is thus proven to be a powerful and useful tool in developing 

agricultural best management practices. Strategy 1 can provide a wide Pareto front of possible 

management practices, which not only work contain optima by yield, but also optima by water 

usage. Therefore, decision-makers can find the exact optimum for their particular agricultural use 

case. Strategy 2 further refined the results from Strategy 1 by optimizing both irrigation and 

nitrogen application at the same time, which better equips decision makers with management 

practices for their particular access to irrigation and nitrogen supplies. Strategy 3 also added an 

objective that directly affects the environment, leaching. 

Meanwhile, bi-level optimization runs (Strategies 4 through 5) built upon the first three strategies 

by searching beyond the fixed set of days and found more convergent and diverse population. The 

bi-level optimization technique also provided more solutions, which enrich the options of decision 

makers. The bi-level method also broke out of local optima that thwarted Strategies 1 through 3. 

Finally, examining the Pareto results of the bi-level results produces useful knowledge on the 

nature of application counts and their effect on other objectives. 

One major limiting factor to note on this paper is the weather. The approximately 50% reduction 

in irrigation from Strategy 1 appears to be an extraordinary reduction in irrigation (Table 2), but 

these results present the optimal obtainable output possible in that given season. In order to 

generate viable solutions for farmers on the ground, a decision support tool would predict the 

weather of an incoming season, and the tool would then run a robustness analysis on the Pareto 

solutions generated. In MO, robustness describes as how sensitive a solution is to slight changes 

in variables such as weather (Deb and Gupta, 2005). In future research papers, prioritizing robust 

solutions that perform well over different weather scenarios would yield more realistic Pareto 

optimum sets for a given season. 
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Finally, optimizing agricultural practices entails optimizing conflicting objectives, such as total 

irrigation and total yield, against each other. EMO is a powerful tool that searches for sets, or 

Pareto fronts, of optima within conflicting objective space. Decision makers (e.g., farmers, 

policymakers) can then choose the particular optimum that offers the best trade-off in their use 

case. The EMO algorithm U-NSGA-III, using the crop-modeling suite DSSAT as the optimization 

objective function, found innovative and novel solutions to irrigation and nitrogen fertilizer 

application planning. In addition, a novel bi-level optimization scheme (U-NSGA-III and Monte 

Carlo optimization) mitigates the difficulties of the unmanageably large variable space. 
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6. CURRENT FINDINGS AND FUTURE RESEARCH  

In the coming century, societies must dramatically increase food production without furthering the 

irreversible damage to the environment. One means of balancing these two objectives is 

sustainable intensification. Sustainable intensification entails increasing the yield of existing 

agricultural lands while minimizing negative impacts on the environment. With these goals in 

mind, we sought to optimize irrigation and fertilizer scheduling on the farm level with respects to 

crop yield and environmental impact. Since no solution exists that maximizes yield and minimizes 

environmental impact, multi-objective optimization techniques were used to obtain a set of optimal 

solutions that collectively represent the tradeoffs between the conflicting objectives. Decision 

makers can then rank and select their optimal trade-off from the global set of optimal solutions. 

The following are the main conclusions from this research: 

• Multi-objective optimization can help with sustainable agricultural intensification process 

by identifying solutions to irrigation scheduling and nitrogen application that are 

significantly more efficient than current best practices.  

• Multi-objective optimization gives the power of prioritizing conflicting objectives into the 

hands of human decision makers by providing the Pareto front of optimal solutions  

• Examining the common traits among a group of Pareto optimal solutions allows producers 

to improve their existing management practices 

• Our bi-level optimization framework further improves the efficiency of solutions, as well 

as the number of Pareto optimal solutions by introducing the irrigation and nitrogen 

application dates in addition to the application amounts 
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7. FUTURE APPLICATIONS  

This study integrated U-NSGA-III based multi-objective optimization platform with DSSAT crop 

model. The objective function of U-NSGA-III enables the platform to optimize against a myriad 

of soil, crop, and climate types. With our platform, we were able to produce solutions that 

maximize yield while reducing water usage by 48.48%, nitrogen usage by 26.4%, and nitrogen 

leaching by 51.48%. Despite these promising results, more work needs to be done to improve the 

over processes in agricultural intensification. The following are areas that can be expanded from 

this work in future research: 

• The current research only used the climate information from one growing season. 

However, by quantifying the uncertainty of weather, future optimization will be able to 

find solutions that are more robust and applicable in the field 

• Running optimization under different conditions (e.g., management practices, crop types, 

soils) can identifying deeper universal characteristics among optimal agricultural solutions 

• Incorporating economic objectives (e.g., net profit) and economic uncertainty (e.g., market 

costs, materials costs) can help producers to identify more feasible solutions 

• A public online decision support tool that provides producers with highly accurate day-to-

day management recommendations against multiple agricultural objectives that can be a 

game changer by closing the yield gaps 
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Appendix 

 

Figure A.1. Cluster analysis for a) Nitrogen application counts and b) irrigation application 

counts 
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