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ABSTRACT 
 

MODELING AGE-DEPENDENT GENE EXPRESSION VARIABILITY IN ACUTE 
MYELOID LEUKEMIA USING A LINEAR MODEL 

 
By 

 
Raeuf Roushangar 

 
In 2018 alone, an estimated 20,000 new acute myeloid leukemia (AML) patients were 

diagnosed, in the United States, and over 10,000 of them are expected to die from the 

disease. Although AML can occur in people of all ages, AML is primarily diagnosed 

among the elderly (median 68 years old at diagnosis) and its age-specific incidence and 

prevalence increases exponentially after 50 years of age. Prognoses have significantly 

improved for younger patients, but in patients older than 60 years old, prognoses remain 

grim: with current treatments, as much as 70% of patients will die within a year of 

diagnosis. Reassessment of early diagnosis and treatment approaches therefore should be 

considered, since relapse after complete remission is still the main obstacle. In this study, 

we conducted stratified computational meta-analysis of 2,213 AML patients compared to 

548 healthy individuals, using curated publicly available data. We carried out analysis of 

variance of normalized batch corrected data, including considerations for disease, age, 

tissue and sex. We identified 964 differentially expressed unique genes genes and 4 

associated significant pathways involved in AML. Additionally, we have identified 69 

sex- and 372 age-related gene expression signatures relevant to AML. Finally, we used a 

machine learning model (KNN model) to classify AML patients compared to healthy 

individuals with > 90% achieved accuracy. Overall our findings provide a new reanalysis 

of public datasets, that enabled the identification of potential new gene sets relevant to 



		

AML that can potentially be used in future experiments and possible stratified disease 

diagnostics. 
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Acute Myeloid Leukemia 
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Historical 

 Cancer was first identified and described in Egypt, where evidence from ancient 

Egyptian mummies and manuscripts date back more than 3,500 years 1. It was the Greek 

physician Hippocrates (460-370 BC) however, who coined the word, “cancer” 

( καρκίνος  in Greek) 1. According to Gordon Piller 2, blood malignancies were hard to 

diagnose since microscopic examination of the blood was not possible until Robert 

Hooke published work on microscopy in 1665 3. In 1674, Anton van Leeuwenhoek was 

the first to describe human red blood cells, and in 1749, white blood cells (including 

lymphocytes) were described by Joseph Lieutaud 2,4. 

 

In 1845, John Hughes Bennett, then pathologist at the Royal Infirmary of Edinburgh, 

carried out the post mortem of a patient and reported that the patient’s blood was affected 

throughout his system 5. Around the same time, other cases with blood abnormality were 

reported by Rudolf Virchow in Berlin and Henry Fuller in London 6,7. The findings of 

Bennett, Virchow, and Fuller led to the recognition of leukemia as a distinct disease 2. 

The earliest recorded case of acute leukemia, a form of leukemia, took place in 1857 

when the German pathologist Nikolaus Friedreich observed mass leukocytes formed in 

his 46-year-old patient’s thorax 6 weeks before her death 8. 

 

In 1880, Paul Ehrlich developed staining methods to stain and trace blood cells – his 

work led to the classification of myeloid and lymphoid leukemia subtypes 2,9. One of the 

earliest recorded epidemiological studies was of 154 cases of leukemia, which took place 

in 1879 when W. R. Gowers and others speculated that the disease might be due to 
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exposure to malaria 10. In 1894, the work of Dr. Richard Cabot, then a physician in 

Boston, was vital to the recognition of acute leukemia where he published his work on 34 

patients that had an average survival of 4.5 weeks after their diagnosis 11. And In 1909 

Dr. Robert J. M. Buchanan clinically described acute myeloid leukemia (AML), its onset 

and rapid progression 2,12. 

 

AML statistics and incidences 

Each year, cancer affects millions of people in the United States (US) and around the 

world 13-15. Within the US, cancer is the second leading cause of death after heart disease 

with 1,735,350 new cases and 609,640 deaths projected for 2018 14. Leukemia is a cancer 

of the blood and is currently the 9th most common type of cancer and the 6th leading cause 

of death in males and 7th in females in the US 14. Myeloid leukemia is the most common 

type of leukemia, and AML accounts for 70% of myeloid leukemia and nearly 80% of 

acute leukemia cases, making it the most common form of both myeloid and acute 

leukemia 14,16,17. The number of new AML cases is increasing each year – in 2018 alone, 

there have been an estimated 60,300 new diagnosed leukemia patients. About 20,000 of 

these are AML cases, over 10,000 of which will die from the disease 18. In fact, AML has 

the highest mortality rate of all leukemia related disease 19. 

 

AML characteristics 

AML is a blood cancer that best described as several heterogeneous diseases with many 

complex genetic abnormalities. Specifically, AML is a multifactorial cancer of the 

myeloid cell lineage of the hematopoietic system that begins in the bone marrow. AML is 
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characterized by terminal differentiation of normal blood cells and excessive proliferation 

and release of abnormally differentiated myeloid cells (leukemia cells) at various stages 

of myeloid hematopoiesis 20. This faster than normal and uncontrolled growth leads to 

abnormal accumulation and buildup of leukemic cells in the bone marrow and peripheral 

blood, frequently resulting in suppression of healthy myeloid precursors of the 

hematopoietic system and hematopoiesis insufficiency 20. 

 

AML classification 

According to the 2016 World Health Organization (WHO) newly revised myeloid 

neoplasms and acute leukemia classification system, there are a number of major disease 

categories of AML and many subtypes (Table 1) 21. This classification system is based on 

factors that affect AML prognosis, including cytogenetic abnormalities, molecular 

genetic alterations, morphologic features, immunophenotypic, and biological and clinical 

information 16,21. The major categories of AML classification are, 1) ‘AML with recurrent 

genetic abnormalities’, 2) ‘AML with myelodysplasia-related changes’, 3) ‘Therapy-

related myeloid neoplasms’, and 4) ‘AML not otherwise specified’, described below. 

 

AML with recurrent genetic abnormalities 

Hereafter abbreviated AML-RGA. Chromosomal abnormalities including deletions, 

duplications, translocations, inversions, and gene fusion occur frequently in AML 22. 

AML-RGA encompasses a number of different AML subgroups with specific distinctive 

chromosomal abnormalities that include we list here, and further discuss below: 

• ‘AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1’ 
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• ‘AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11’ 

• ‘Acute promyelocytic leukemia with PML-RARA’ 

• ‘AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A’ 

• ‘Acute myelogenous leukemia with t(6;9)(p23;q34.1);DEK-NUP214’ 

• ‘AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM’ 

• ‘Acute megakaryoblastic leukemia with t(1;22)(p13.3;q13.3);RBM15-MKL1’ 

• ‘AML with BCR-ABL1’ 

• ‘AML with mutated NPM1’ 

• ‘AML with biallelic mutations of CEBPA’ 

• and ‘AML with mutated RUNX1’ 16,21. 

 

• AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 

Hereafter abbreviated AML with t(8;21). Translocation in chromosomes 8 and 21, 

t(8;21), is one of the most common AML chromosomal abnormalities and is associated 

with 12% of all AML cases 23. In 1973, Dr. Janet Rowley was first to discover the 

translocation and breaks at q22;q22 in chromosomes 8 and 21 in a female patient with 

acute leukemia 24. In early 1990, the location of RUNX1 and RUNX1T1 were identified 

to be at the translocation site 23. In 1993 Miyoshi et al. (1993) 25 reported that the t(8;21) 

translocation in AML results in the RUNX1-RUNX1T1 fusion protein. RUNX1 is a gene 

encoding DNA-binding transcription factor that binds to DNA using its runt-homology 

domain and interacts with CBFB, a common heterodimeric partner 26. 
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• AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 

Hereafter abbreviated AML with inv(16) or t(16;16). The inversion and/or translocation 

of chromosome 16, inv(16) or t(16;16), is among the most frequently observed 

chromosomal abnormalities found in AML and is detected in about 16% of AML cases 

27.  In 1983, Le Beau et al. (1983) 28 were first to report inv(16) in leukemic cells from 

newly diagnosed AML patients with abnormal bone marrow. In 1993 Dr. Paul Liu 

identified the two genes, CBFB and MYH11, located at the inversion breakpoints, that 

resulted in chimeric mRNA formation, which generates CBFB-MYH1 a fusion protein 

product resulting from inv(16) in AML 29,30. CBFB, located at 16q22, encodes the beta 

subunit of the core binding transcription factor, whereas MYH11, located at 16p13.1, 

encodes the smooth muscle myosin heavy chain 11. 

 

RUNX1 and CBFB are both crucial to transcriptional regulation of healthy hematopoiesis 

development 26,31. Chromosomal abnormalities and mutations in RUNX1 and CBFB 

result in terminal differentiation of healthy myeloid cells and uncontrolled proliferation 

of leukemia cells at various stages of hematopoiesis, which ultimately leads to 

hematological malignancies 26,32. AML with t(8;21) and AML with inv(16) or t(16;16) 

are classified as core binding factor (CBF) AML and together they account for 

approximately 20% of all adult AML cases 31. These AML subtypes are commonly 

associated with favorable prognosis and response to conventional therapy 33. 

 

 

 



7  

• Acute promyelocytic leukemia with PML-RARA 

Acute promyelocytic leukemia (APL) is a subtype of AML that has distinct and clear 

biological features. APL accounts for approximately 10% of all AML cases 34,35. In 1957 

Dr. Leif Hillestad was first to identify APL and characterized its clinical features 36. In 

1977 Rowley et al. (1977) 37 identified the APL cytogenetic signature as the reciprocal 

translocation between chromosome 15 and 17, t(15;17), which results in fusion of the 

PML and RARA genes 38. RARA is involved in transcriptional regulation, gene 

expression, and various other biological processes, including its function as a ligand-

dependent receptor for retinoic acid binding 39-41. The PML-RARA fusion protein 

represses the retinoic acid downstream response, and targets gene expression, resulting in 

abnormal and uncontrolled cell proliferation and suppression of normal cellular process 

42,43. 

 

• AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A 

Hereafter abbreviated AML with t(9;11). Chromosomal abnormalities that lead to the 

translocation between chromosome 9 and 11, t(9;11), result in fusion of the KMT2A gene 

(also known as MLL, MLL1, ALL1) with the MLLT3 gene (also known as AF9). AML 

patients with MLLT3-KMT2A fusion as a result of translocation (9;11) usually have 

short survival rate, frequent disease relapse, and poor clinical outcome 44-47. KMT2A 

gene rearrangement has been reported in approximately 10% of all acute leukemia cases 

48. KMT2A, located at 11q23, encodes a transcription factor that is involved in gene 

expression regulation essential to chromatin remodeling, development, and hematopoiesis 

49. 
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• Acute myelogenous leukemia with t(6;9)(p23;q34.1);DEK-NUP214 

Hereafter abbreviated AMGL with t(6;9). AMGL with chromosomal aberration 

t(6;9)(p23;q34.1) is a rare form of AML and is observed in about 0.5% to 4% of all AML 

patients 50. In 1976, Dr. Janet Rowley and Dr. David Potter studied bone marrow samples 

obtained from 50 adult patients and reported the translocation between chromosome 6 

and 9 in AMGL 51. The translocation between chromosome 6 and 9, t(6;9), results in 

fusion of the DEK gene (located at 6p23) with the NUP214 gene (located at 9q34) 50,52. 

AML patients with the chimeric DEK-NUP214 fusion gene have poor prognosis and only 

50% achieve complete remission (CR) with conventional chemotherapy 52. 

 

• AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 

Hereafter abbreviated AML with inv(3) or t(3;3). Chromosomal abnormalities that lead to 

inversion and/or translocation in the chromosome 3 long arm have been detected in 

approximately 1% to 2% of all AML cases 53. In particular, inv(3) abnormalities have 

been the most frequently observed chromosomal abnormalities in this group and are 

associated with poor prognosis, treatment response, and median survival rate of less than 

1 year 53-56. The GATA2 gene encodes for transcription factor GATA binding protein 2, 

an important regulator of hematopoietic cell differentiation 57, whereas the MECOM gene 

(also known as EV1, MDS1) encodes for the transcriptional regulator MDS1 and EVI1 

complex locus, which is involved in cell differentiation essential to development and 

hematopoiesis 58.  
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Recently, Gröschel et al. (2014) 59 and Yamazaki et al. (2014) 60 revealed inv(3) biology 

in AML: they discovered that in inv(3), the GATA2 enhancer is repositioned from 3q21 

to be in close proximity with the MECOM gene at 3q26. This rearrangement in turn 

activates MECOM gene expression and causes GATA2 haploinsufficiency at its original 

location, which ultimately leads to leukemogenesis 59,60. 

 

• Acute megakaryoblastic leukemia with t(1;22)(p13.3;q13.3);RBM15-MKL1 

Hereafter abbreviated AMKL with t(1;22). AMKL is a rare hematologic malignant 

disease that is detected in <1% of all AML patients 61. AMKL is closely associated (high 

incidence) with infants and young children 62-64. In 1991, the translocation between 

chromosome 1 and 22, t(1;22), was first reported as the principal nonrandom cytogenetic 

signature in infants with AMKL 65,66. In 2001 Ma et al. (2001) 67 reported that this 

chromosomal translocation fuses two novel genes, RBM15 gene (also known as OTT), 

located at 1p13, and MKL1, located at 22q13, which generates the RBM15-MKL1 

chimeric protein product. 

 

The RBM15 gene encodes three RNA-recognition motifs involved in modulating Hox 

homeotic function, which regulates the Ras/MAP kinase signaling essential to cell 

differentiation and proliferation 68. The MKL1 gene encodes an SAP DNA binding 

domain that is involved in transcription regulation, chromatin remodeling, and 

extracellular signaling pathways 67,69,70. AMKL patients with RBM15-MKL1 fusion as a 

result of the t(1;22) translocation have poor prognosis and clinical course with less than 1 

year survival time from diagnosis 63. 
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• AML with BCR-ABL1 

Chromosomal abnormalities leading to the translocation between chromosome 9 and 22 

result in the BCR-ABL1 fusion gene, commonly referred to as the Philadelphia 

chromosome. It is most frequently associated with chronic myeloid leukemia (CML) and 

acute lymphoblastic leukemia (ALL). AML with BCR-ABL1 accounts for 0.5% to 3% of 

all AML cases 71-74. Because of recent improvement in the reliability and standardization 

of diagnosis for this rare disease, AML with BCR-ABL1 was recently added as a 

provisional entity in the 2016 WHO newly revised myeloid neoplasms and acute 

leukemia classification system 21. 

 

The ABL1 gene encodes the ABL protooncogene non-receptor tyrosine kinase protein 

involved in cell division and apoptosis 75. The function of the BCR gene product is 

complex, however, Duejmann et al. (1991) 76 and Maru et al. (1991) 77 showed the 

participation of BCR in eukaryotic intracellular signaling via phosphorylation and GTP-

binding 78. Since BCR-ABL1 fusion affects the regulation of hematopoietic cells 78, AML 

patients with the aberrant BCR-ABL1 fusion gene have unfavorable prognosis and are 

among AML poor risk group 79. 

 

• AML with mutated NPM1 

Mutations in the NPM1 gene are the most common and frequent mutations found in 

AML patients – they are detected in approximately 30% and 60% of all AML patients 

and AML patients with normal karyotype, respectively 80,81. The NPM1 gene encodes the 

nucleophosmin 1 protein, which is a member of the nucleophosmin/nucleoplasmin 
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proteins family 82. Under normal conditions, the NPM1 protein is mainly restricted to the 

nucleolus, but shuttles between the nucleus, where it modulates pre-ribosomal protein 

nuclear export, and the cytoplasm, where it regulates centrosome duplication, during the 

cell cycle 81,83. 

 

In 2005 Brunangelo et al (2005) 80 examined bone marrow specimens from 591 primary 

AML patients and found that 208 (35.2%) of the 591 AML patients have NPM1 gene 

mutations and cytoplasmic dislocation of the NPM1 protein, and suggested that NPM1 

gene mutations that cause changes in the NPM1 protein are responsible for the 

translocation of the NPM1 protein from the nucleus to the cytosol. Cytoplasmic 

dislocation of the NPM1 protein as a result of NPM1 genetic mutations is thought to play 

a major role in leukemogenesis 81. 

 

NPM1 is important in many cellular processes, including DNA repair and cell survival 84, 

ribosome biogenesis 85, chromatin remodeling 86, protein chaperoning 87, and regulation 

of the ARF–tumor suppressors p53 pathway 80,88,89. AML patients with NPM1 gene 

mutations, with normal karyotype and absence of Fms related tyrosine kinase 3 internal 

tandem duplication (FLT3 ITD) mutations, continue to be associated with favorable 

AML prognosis, response to conventional therapy, achieve CR, and are among an AML 

favorable risk group 80,81,90. 
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• AML with biallelic mutations of CEBPA 

Hereafter abbreviated AML with bi-CEBPA. The presence of mutations in the CEBPA 

gene ranges from 10% to 15% of all AML cases, and these are closely associated with 

AML patients who have cytogenetically normal karyotype 91,92. The CEBPA gene is a 

transcription factor involved in and is upregulated during progenitor cell differentiation 

and proliferation 93,94. Mutations in the CEBPA gene lead to terminal or abnormal cell 

differentiation, and ultimately to leukemogenesis 94,95. 

 

The CEBPA gene has two hotspots where mutations cluster: the N-terminal, where 

frame-shift (insertions/deletions) mutations affect the CEBPA transactivation domains, 

and the C-terminal, where in-frame mutations (insertions/deletions) in the DNA-binding 

motif affect protein dimerization and DNA binding 95-97. AML patients with biallelic 

mutations of CEBPA (bi-CEBPA) – mutations on both CEBPA alleles – have mutations 

on both hotspots: Frame-shift and in-frame mutations on the N- and C- terminus, 

respectively 98. Furthermore, only AML with bi-CEBPA patients are uniquely associated 

with favorable clinical outcome and improved survival, but AML patients with single 

CEBPA mutations or wild-type CEBPA are not 99,100. 

 

• AML with mutated RUNX1 

RUNX1 is a transcription factor that is expressed in healthy hematopoietic cells essential 

to the hematopoietic system. In adults, mutations in the RUNX1 gene lead to AML 101,102. 

AML with mutated RUNX1 accounts for approximately 10% of all AML cases and is 

associated with newly-diagnosed (de novo) AML patients 103-105. Gaidzik et al. (2016) 
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investigated the RUNX1 gene mutation frequency and prognosis in 2439 de novo AML 

patients and reported that 245 (10%) of the 2439 AML patients had RUNX1 gene 

mutations with almost no chromosomal abnormalities 105. The disease was recently added 

as a provisional entity in the 2016 WHO newly revised myeloid neoplasms and acute 

leukemia classification system, since AML patients with mutated RUNX1 have distinct 

biological features including poor disease prognosis with worse overall survival (OS) 

compared to other AML types 21. 

 

AML with myelodysplasia-related changes 

AML with myelodysplasia-related changes (AML-MRC) is a heterogeneous disease that 

is closely associated with myelodysplastic syndromes (MDS), 

myelodysplastic/myeloproliferative neoplasms (MDS/MPN), poor prognosis, and elderly 

patients 21. AML-MRC cases account for approximately 20% to 30% of all AML cases 

and are among an AML poor risk group 21,106. Cell morphology, cytogenetic 

abnormalities, and clinical features are important factors for AML-MRC prognosis 21. 

 

According to the 2016 WHO newly-revised ‘myeloid neoplasms and acute leukemia’ 

classification system, AML-MRC classification criteria include: 1) presence of 50% or 

more multilineage dysplasia (two or more cell lines) with no presence of NPM1 gene 

mutations or biallelic mutated CEBPA and 2) presence	of	at	least	20%	blast	cells in the 

bone marrow or peripheral blood, and/or 3) previous history of MDS or MDS/MPN, or 

presence of MDS or MDS/MPN related cytogenetic abnormalities (Table 2) -- excluding 

abnormalities associated with NPM1 gene mutations or biallelic mutated CEBPA 
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(del(9q)), or related to AML-RGA, or to prior cytotoxic therapy used for unrelated 

disease 107-111. 

 

Therapy-related myeloid neoplasms 

Therapy-related myeloid neoplasms (t-MN) encompass a number of therapy-related 

malignant diseases (therapy-related AML (t-AML), MDS (t-MDS), and MDS/MPN (t-

MDS/MPN)) occurring as a function of prior cytotoxic therapy (radiation, chemo, or 

both) where the therapy used is independent of diseases (malignant or not) 112. 

 

There are two major clinical subtypes of t-MD 113. The first subtype is approximately 

70% of all t-MN and is associated with chromosomal abnormalities that result in the 

deletion of part of chromosome 5 (del(5q)) and/or part or all of chromosome 7 (del(75q)/-

7) 114. Furthermore, this subtype is associated with patients who received prior 

alkylating/radiation therapy, have poor prognosis, and initially diagnosed with MDS that 

progresses to AML 114. Finally, the median survival of patients with this subtype is 8 

months. The second subtype of t-MN is associated with chromosomal abnormalities that 

results in the translocation of the KMT2A gene (located at 11q23) or the RUNX1 gene 

(located 21q22) 113,114. Moreover, this subtype is associated with patients who received 

prior topoisomerase II inhibitors therapy, diagnosed as leukemia with absence of MDS, 

and have favorable clinical outcomes with standard treatment 114. 
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AML not otherwise specified 

AML not otherwise specified (AML-NOS) encompasses a number of heterogenous 

AML subtypes (not classified in any of the other three AML categories (AML-RGA, 

AML-MRC, and t-MN)) 21. According to the WHO, AML-NOS subtypes include, ‘AML 

with minimal differentiation’, ‘AML without maturation’, ‘AML with maturation’, ‘acute 

myelomonocytic leukemia’, ‘acute monoblastic/monocytic leukemia’, ‘pure erythroid 

leukemia’, ‘acute megakaryoblastic leukemia’, ‘acute basophilic leukemia’, and ‘acute 

panmyelosis with myelofibrosis’ 21,115. Since AML-NOS patients have intermediate 

prognosis and lacks consistent diagnostic criteria such as clinical features or cytogenetic 

abnormalities, AML-NOS patients are often classified based on cell morphology, 

pancytopenia and/or bone marrow dysfunction 115. 

 

AML complex genetic abnormalities suggests that AML evolves over time 

AML is typically diagnosed through microscopic, cytogenetics, and molecular genetic 

analyses of patients’ blood and bone marrow samples. Microscopic examination is used 

to detect distinctive features (e.g. Auer rods) in cell morphology, cytogenetic analysis to 

identify chromosomal structural aberrations (e.g., t(8;21), inv(16) or t(16;16), t(9;11)), 

and molecular genetic analysis to identify mutations in genes frequently mutated in AML 

(e.g., NPM1, RUNX1, FLT3) 116-118. 

 

Cytogenetic and molecular genetic analyses are used to identify prognosis markers that 

can be used to classify AML patients into three risk categories: favorable, intermediate, 

and unfavorable. The largest group of AML patients (almost 50%) however, present 
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normal karyotype and lack genetic abnormalities 117-121. These patients are classified as 

intermediate risk, and often have heterogeneous clinical outcome with standard therapy 

with risk of AML relapse 122,123. Further complicating, AML has multiple driver 

mutations and competing clones that evolve over time, making it a very dynamic disease 

124-126. 

 

In 2013 The Cancer Genome Atlas (TCGA) et al. (2013) 124 published a study entitled 

“Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia”, 

and generated a catalogue of 23 genes that are significantly mutated in AML (Fig. 1). 

Building upon previous findings, these discoveries are expanding our knowledge of AML 

as well as revealing how biologically complex AML is, but the extent of their utility in 

disease prognosis, clinical practice, and patients’ clinical outcomes are as yet unclear 127. 

 

AML standard treatments 

Briefly, AML standard treatments consist of two phases: Remission induction therapy to 

eradicate as many leukemia cells as possible and to produce a CR in the bone marrow, 

followed by an intensive consolidation phase (post-remission) to prevent AML relapse 

22,116. Generally, treatments employ a 7 + 3 regiment that consists of two chemo drugs: A 

7-day continuous infusion of standard-dose cytarabine, and 3 days of anthracycline, 

daunorubicin or idarubicin, followed by the consolidation phase if CR is achieved 

(otherwise a second induction course can be considered) 116,128. 
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Cytarabine, typically used in AML treatment, inhibits polymerase activity and damages 

DNA during the cell cycle, while daunorubicin, another chemotherapy medication, 

intercalates between base pairs of DNA/RNA strands, which prevents DNA replication 

and inhibits the enzyme topoisomerase II from relaxing supercoiled DNA. With current 

standard treatments, 40% of younger patients have 5-year OS. The majority of AML 

cases are elder patients (> 60 years) and they have no standard treatment option, which is 

reflected in a much lower 5-year OS: 10% to 20% 22,116. This is because older AML 

patients have poor clinical outcomes, decreased sensitivity to chemotherapy, and adverse 

cytogenetic abnormalities due to their lack of tolerability to the ideal dose of 

chemotherapy 22,129-134. While other treatments, including intensive chemotherapy and 

immunotherapies for younger patients, and hematopoietic stem cell transplantation 

(HSCT) 133-135, AML remains a major therapeutic challenge since relapse after CR is still 

the main obstacle and is difficult to manage due to patients’ nonrandom heterogenous 

response to stereotypical treatment 128,136. 

 

The nature of AML changes with patients age 

AML can occur in people of all age. However, AML is primarily diagnosed among 

patients older than 60 years of age, with a median age of 68 years at diagnosis in the US 

18. Recent advances in AML biology that expanded our understanding of its complex 

genetic landscape and led to significant improvement in AML prognoses for younger 

patients. However, therapeutic strategies for AML patients have been nearly the same for 

more than 30 years 116,137, with almost no treatment options for patients older than 60 

years of age 129,130. Approximately 70% of patients older than 65 years of age die within 
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one year from diagnosis with current treatment138.Additionaly, AML prognosis worsens 

as age increases due to increase in adverse cytogenetic abnormalities. Furthermore, 

response to treatments also worsens with age, with older patients respond less to 

treatments, with poorer clinical outcomes. 

 

It is therefore unquestionable that the nature of AML changes with age, but despite this, 

little is known about the extent of these associations and how they vary with AML 

patient’s age22,129,139. Thus, in the present study we seek to identify AML age-dependent 

and sex-related gene expression signatures by exploring the age-related gene expression 

patterns in AML. 
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Conclusion 

In this dissertation, we aimed to establish sex-linked and age-dependent biomarkers from 

genes with similar alteration in gene expression level and associated signaling pathway in 

AML. The approach utilized machine learning, which led to the development of a 

graphical user interface to facilitate model training and classification, (Chapter 2). 

Subsequently, meta-analyses of publicly available data were used to study the effects of 

age and sex in AML (Chapter 3). In particular, three analyses were performed to help us 

reach our aims Analysis 1: “Gene expression meta-analysis and associated signaling 

pathways of AML disease state compared to healthy individuals”, to identify 

differentially expressed (DE) genes in AML disease state, followed by gene enrichment 

analysis on the identified DE genes to find singling pathway associated with AML. 

Analysis 2a: “Sex-relevance differential gene expression meta-analysis and 

associated signaling pathways in AML”, to explore the relevance of patients’ sex on 

gene expression and to identify sex-linked genes and associated signaling pathways in 

AML. Analysis 2b: “Age-dependent gene expression meta-analysis and associated 

signaling pathways in AML”, to identify common set of age-dependent genes and 

associated signaling pathways and to explore age-dependent trends in AML gene 

expression. Finally, using our results and combined with a machine learning model (KNN 

model), we were able to classify AML patients compared to healthy individuals with > 

90% achieved accuracy. Overall our findings provide a new reanalysis of public datasets, 

that enabled the identification of potential new gene sets relevant to AML that can 

potentially be used in future experiments and possible stratified disease diagnostics. 
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APPENDIX 

 

Figure 1. Genes frequently mutated in AML according to TCGA 

The Cancer Genome Atlas Research Network (TCGA) analyzed the genomes of 200 de-

novo AML patients. Analysis revealed a total of 23 genes (shown) that are frequently and 

significantly mutated in AML with 237 genes (not shown) were mutated in 2 or more 

samples in de novo AML. (data from reference 124) 
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Table 1. Classification of AML according to the WHO acute myeloid leukemia and 

related neoplasms classification system. 

1: AML with recurrent genetic abnormalities 
    AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 
    AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 
    APL with PML-RARA 
    AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A 
    AML with t(6;9)(p23;q34.1);DEK-NUP214 
    AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 
    AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1 
    Provisional entity: AML with BCR-ABL1 
    AML with mutated NPM1 
    AML with biallelic mutations of CEBPA 
    Provisional entity: AML with mutated RUNX1 
2: AML with myelodysplasia-related changes 
3: Therapy-related myeloid neoplasms 
4: AML, NOS 
    AML with minimal differentiation 
    AML without maturation 
    AML with maturation 
    Acute myelomonocytic leukemia 
    Acute monoblastic/monocytic leukemia 
    Pure erythroid leukemia 
    Acute megakaryoblastic leukemia 
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Table 2. Cytogenetic abnormalities sufficient for the diagnosis of AML with 

myelodysplasia-related changes (AML-MRC). 

Complex karyotype (3 or more abnormalities) 
    None included in AML with recurrent genetic 
    abnormalities 
Unbalanced abnormalities 
    -7/del(7q) 
    del(5q)/t(5q) 
    i(17q)/t(17p) 
    -13/del(13q) 
    del(11q) 
    del(12p)/t(12p) 
    idic(X)(q13) 
Balanced abnormalities 
    t(11;16)(q23;p13.3) 
    t(3;21)(q26.2;q21.2) 
    t(1;3)(p36.3;q21.1) 
    t(2;11)(p21;q23) 
    t(5;12)(q32;p13.2) 
    t(5;7)(q32;q11.2) 
    t(5;17)(q32;p13.2) 
    t(5;10)(q32;q21.2) 
    t(3;5)(q25.3;q35.1) 
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Abstract 

Machine learning methods are being used routinely by scientists in many research areas, 

typically requiring significant statsistical and programing knowledge. Here we present 

ClassificaIO, an open-source Python graphical user interface for machine learning 

classification for the scikit-learn Python library. ClassificaIO provides an interactive way 

to train, validate, and test data on a range of classification algorithms. ClassificaIO’s core 

aim is to provide a point and click graphical user interface to enable fast comparisons 

within and across classifiers, and facilitates uploading and exporting of trained models, 

and both validation and testing data results to maximize machine learning utility in a 

shorter time instead of to writing a script for each task. ClassificaIO can also be an 

educational tool that can enable biomedical and other researchers with minimal machine 

learning background to apply machine learning algorithms to their research in an 

interactive point-and-click way. For this thesis, the primary motivation for creating and 

utilizing ClassificaIO was to address missing annotations in AML publicly available 

microarray data. Our aim was to train multiple machine learning classifiers and use them 

to predict such missing annotations, including sex and sample source (tissue type), from 

curated publicly available AML gene expression data that could be used in a meta-

analysis of a large cohort of studies on AML (Chapter 3) 

 

The ClassificaIO package is available for download and installation through the Python 

Package Index (PyPI) (http://pypi.python.org/pypi/ClassificaIO) and it can be deployed 

using the “import” function in Python once the package is installed. The application is 

distributed under an MIT license and the source code is publicly available for download 
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(for Mac OS X, Linux and Microsoft Windows) through PyPI and GitHub 

(http://github.com/gmiaslab/ClassificaIO, and https://doi.org/10.5281/zenodo.1320465). 

 

A version of this chapter and results has been submitted for publication. 
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Introduction 

Recent advances in high-throughput technologies, especially in genomics, have led to an 

explosion of large-scale structured data (e.g. RNA-sequencing and microarray data) 1. 

Machine learning methods (classification, regression, clustering, etc.) are routinely used 

in mining such big data to extract biological insights in a range of areas within genetics 

and genomics 2. For example, using unsupervised machine learning classification 

methods to predict the sex of gene expression microarrays donor samples 3, using genome 

sequencing data to train machine learning models to identify transcription start sites 4, 

splice sites 5, transcriptional promoters and enhancers regions 6. Recent examples of 

using machine learning classification methods include their use to detect neurofibromin 1 

tumor suppressor gene inactivation in glioblastoma 7, and to identify reliable gene 

markers for drug sensitivity in acute myeloid leukemia 8. Many advanced machine 

learning algorithms have been developed in the recent years. Scikit-learn 9 is one of the 

most popular machine learning libraries in Python with a plethora of thoroughly tested 

and well-maintained machine learning algorithms. However, these algorithms are 

primarily aimed at users with computational and statistical backgrounds, which may 

discourage many biologists, biomedical scientists or beginning students (who may have 

minimal machine learning background but still want to explore its application in their 

research) from using machine learning. Ching et al (2018) recently highlighted the role of 

deep learning (a class of machine learning algorithms) currently plays in biology, and 

how such algorithms present new opportunities and obstacles for a data-rich field such as 

biology 10. 

 



41  

Several open source machine learning applications, such as KNIME 11 and Weka 12 

written in Java and Orange 13 written in Python, have been developed with graphical user 

interfaces. The dataflow process for most of these applications is generally graphically 

constructed by the user, in the form of placing and connecting widgets by drag-and-drop. 

Such graphical workflow and representation of data input, processing and output is 

visually appealing, but can be computationally demanding (memory, storage, processing, 

etc.) and limiting in algorithm comparison, since each machine learning algorithm can 

have many different parameters. These tools are very mature with numerous algorithms, 

and well documented. However, they can be intimidating for machine learning beginners 

and students that want to preform simple tasks such as data classification. Also, scikit-

learn has comprehensive documentation 14, and many online resources, including though 

Kaggle 15 and Stack Overflow 16, and a large online user base, which make scikit-learn a 

very popular package for machine learning beginners learning using Python. 

 

Here, we present ClassificaIO, an open-source Python graphical user interface (GUI) for 

supervised machine learning classification for the scikit-learn library. To our knowledge, 

no standalone GUI exists for the scikit-learn machine learning library. The core aim of 

ClassificaIO is to provide our research group with point and click graphical user interface 

to enable fast comparisons within and across different machine learning classifiers to 

predict/classify missing annotations, including sex and sample source, from our curated 

microarray data (for more details, see Chapter 3 section, “Classification of missing 

metadata annotation”). 805 and 737 arrays were missing for sex and sample source 

annotations from our curated data respectively. Since these arrays correspond to AML 
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patients and healthy individuals, the prediction of the missing annotations for these arrays 

was essential to our study for the statistical power and sample size. 

 

ClassificaIO can also serve as a software tool for teaching and educational tool that is 

visually minimalistic and computationally light interactive interface, that can give access 

to a range of state-of-the-art classification algorithms to machine learning beginners with 

some basic knowledge of Python and using a terminal, and with broad background in 

machine learning, allowing them to use machine learning and apply it to their research. 

What distinguishes ClassificaIO from other similar applications is: 

1. Cross-platform implementation for Mac OS X, Linux, and Windows operating 

systems 

2. Interactive point-and-click GUI to 25 supervised classification algorithms in 

scikit-learn 

3. Accessible clickable links, to scikit-learn’s well-written online documentation for 

each implemented classification algorithms 

4. Simple upload of all data files with dedicated buttons; with robust CSV reader, 

and a displayed history-log to track uploaded files, files names and directories 

5. Fast comparisons within and across classifiers to train, validate, and test data 

6. Upload and export of ClassificaIO trained models (for future of a trained model 

without the need to retrain), and export of both validated, and tested data results 

7. Small application footprint in terms of disk space usage (<2 MB) 
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ClassificaIO implementation 

ClassificaIO has been developed using the standard Python interface Tkinter module to 

the Tk GUI toolkit 17, for Mac OS X (using High Sierra ³ 10.13), Linux (using Ubuntu 

18.04-64 bit), and Windows (using Windows 10 64-bit). It uses external packages 

including: Tkinter, Pillow, Pandas 18, NumPy 19, scikit-learn and SciPy 20. To avoid any 

system errors, crashes, and crude fonts, we recommend not to install ClassificaIO using 

integrated environment package installers – instead, native installation of ClassificaIO 

and dependencies (using pip for Mac and Windows, and pip3 and apt-get for Linux) is 

encouraged. Once installed, ClassificaIO can be deployed using the ‘import’ function. A 

ClassificaIO installation instruction and step by step working examples is distributed with 

ClassificaIO GUI and can be accessed directly through the ‘HELP’ button at the upper 

left of the GUI, that points the user’s default browser to ClassificaIO’s online user 

manual on GitHub. Some basic knowledge of Python and accessing it through a terminal 

are required for installation and running the software. Link to all supplementary files and 

additional ClassificaIO software information is provided in Table 3. 

 

ClassificaIO backend 

ClassificaIO implements 25 scikit-learn classification algorithms for supervised machine 

learning. A list of all these algorithms, their corresponding scikit-learn functions, and 

immutable (unchangeable) parameters with their default values are presented in Table 4, 

and ClassificaIO’s workflow is outlined in Figure 2. Once training and testing data are 

uploaded to the front-end as described below, a classifier selection is made and 

submitted, ClassificaIO’s backend calls the scikit-learn selected classifier, including any 
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values from manually set parameters to create the model. Otherwise, the default 

parameters values are used instead. For example, for “LogisticRegression”, the model is 

defined in the scikit-learn library as a class, in terms of Python code used in the backend, 

the details are outlined in the scikit-learn documentation: 

sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, f

it_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver

=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=) 

 

The inputs to the class, within the parentheses, such as “penalty”, “dual”, “tol”, etc., 

correspond to the model parameters, followed by an equal sign assigning the default 

values for these parameters. Rather than typing the values, the ClassificaIO GUI displays 

these parameters with input fields and radio buttons, for each classifier, initially 

populated by the default values. More information is available for all the parameters in 

the GUI, through a link for each classifier in the interface named “Learn More”. The link 

directs the default browser to the scikit-learn online documentation of the selected 

classifier, and connects to the underlying backend documentation, and online parameter 

descriptions. The details and code complexity of the backend implementation are 

effectively hidden from the user, who can interact with the ClassificaIO GUI to set the 

relevant parameters, or leave them unchanged as default values. On the training data, 

ClassificaIO fits the estimator for classification using the scikit-learn ‘fit’ method, e.g. 

fit(x_train, y_train), to train (learn from the model), and uses the scikit-learn ‘predict’ 

method, e.g. predict(x_validation), to validate the model. Finally, ClassificaIO predicts 

new values using the scikit-learn ‘predict’ method again but on the testing data, e.g. 



45  

predict(testing_X), for implementing the model on new data that have not been used in 

model training. 

 

ClassificaIO functionalities 

ClassificaIO’s GUI consists of three windows: ‘Main’, ‘Use My Own Training Data’, and 

‘Already Trained My Model’. Each window is actually implemented within the code as a 

class with several functions/methods that are dynamically connected to provide the GUI. 

ClassificaIO’s Main window (Fig. 2) has two buttons: (i) the ‘Use My Own Training 

Data’ button, which when clicked allows the user to train and test classifiers using their 

own training and testing data, (ii) the ‘Already Trained My Model’ button, which when 

clicked allows the user to use their own already ClassificaIO trained model and testing 

data. 

 

• Data input 

For the ‘Use My Own Training Data’ window (Fig 4a) by clicking the corresponding 

buttons in the ‘UPLOAD TRAINING DATA FILES’ and ‘UPLOAD TESTING DATA 

FILE’ panels, a file selector directs the user to upload all required comma-separated 

values (CSV) data files (‘Dependent and Target’ or ‘Dependent, Target and Features’ and 

‘Testing Data’) (Fig. 5). A history of all uploaded data files (file name and directory) is 

automatically saved in the ‘CURRENT DATA UPLOAD’ panel (Fig. 6). Briefly, the 

dependent data represent the data on which the model will depend on for learning, and 

the target data is the annotation, i.e. what is going to be predicted. The dependent data 

have attributes (also known as features) that take values (measurements/results) for each 
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contained object (i.e. each sample). Further details on data files formats and examples are 

provided in the Figures 7(a, b) and S2-S5. 

 

• Classifier selection 

After the data is uploaded, the user can select between all 25 different widely used 

classification algorithms (Table 4) (including logistic regression, perceptron, support 

vector machines, k-nearest neighbors, decision tree, random forest, neural network multi-

layer perceptron, and more). The algorithms are integrated from the scikit-learn library, 

and allow the user to train and test models using their own uploaded data. Each classifier 

can be easily selected by clicking the corresponding classifier name in the ‘CLASSIFER 

SELECTION’ panel. Once classifier selection is completed, a brief description for the 

classifier with an underlined clickable link that reads “Learn more” right next to the 

classifier name (Fig. 8a) and the classifier parameters will populate. If “Learn more” is 

clicked, the link directs the default web browser to open scikit-learn’s online well-written 

documentation that explains the specific classifier parameters, with explanation for each 

parameter and its use, and how to tune/optimize each parameter to get the best 

performance. ClassificaIO provides the user with an interactive point-and-click interface 

to set, modify, and test the influence of each parameter on their data (Fig. 8c). The user 

can switch between classifiers and parameters through point-and-click, which enables 

fast comparisons within and across classifier models. 
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• Model training 

Both train-validate split and cross-validation methods (which are necessary to 

prevent/minimize overfitting) will populate with each classifier that can be used for data 

training (Fig. 8b). Training, validating and testing are all performed after pressing the 

submit button. 

 

• Results output 

After model training and testing is completed, the confusion matrix, classifier accuracy 

and error are displayed in the ‘CONFUSION MATRIX, MODEL ACCURACY & 

ERROR’ panel, bottom of (Fig. 9a). Model validation data results are displayed in the 

‘TRAINING RESULT: ID – ACTUAL – PREDICTION’ panel (Fig. 9b), and testing 

data results are displayed in the ‘TESTING RESULT: ID – PREDICTION’ panel (Fig. 

10b). 

 

• Model export 

By clicking on the ‘Export Model’ button, Figure 10 bottom left, the user can export 

trained models to save for future use without having to retrain. A previously exported 

ClassificaIO model can then be used for testing of new data in the ‘Already Trained My 

Model’ window (Fig. 4b) by clicking the ‘Model file’ button in the ‘UPLOAD 

TRAINING MODEL FILE’ panel (Fig 11a). 

 

 



48  

• Results export 

Full results (trained models, both validated and tested data, and uploaded files names and 

directories) for both windows (Fig 4a&b), can be exported as CSV files for further 

analysis for publication, sharing, or later use (for more details on the exported trained 

model and data file formats, see S7 and S8). 

 

Results: illustrative examples and data used 

To illustrate the use of the interface and classification, we have used in this manuscript 

the following two examples. 

 

• Iris prediction using Iris dataset 

To demonstrate the interface and classification, we used the so-called Fisher/Anderson 

iris dataset 21,22. This dataset is used widely as a prototype to illustrate classification 

algorithms, not only of biological data but in general machine learning implementations. 

The dataset consists of fifty samples each for three different species of iris flowers 

(Setosa, Versicolor and Viginica), with sepal length and width, and petal length and 

width provided as measurements. For more details on the iris data files format (Fig 4a&b 

and S2-S5). 

 

• Sex prediction using microarray gene expression data 

In this example, provided  we used raw microarray gene expression data, from Gene 

Expression Omnibus (GEO) 23 to predict each sample donor’s sex. This is often necessary 
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in metadata analyses, using publicly available gene expression datasets for reanalysis, as 

samples annotations on GEO may be missing information, including sample donor’s sex. 

To illustrate the classification/sex prediction we used two datasets, GSE99039 24 (training 

data) and GSE18781 25 (testing data). In both GSE99039 and GSE18781 datasets, we 

used 121 and 25 samples respectively, for which RNA from peripheral blood 

mononuclear cells was assayed using Affymetrix Human Genome U133 Plus 2.0 Array 

(accession GPL570). The Y chromosome gene expression values were used in 

ClassificaIO as training and testing data to predict samples donor’s sex. Using the ‘Linear 

SVC’ model with “k-fold cross validation” (10-fold), resulted into a model with 99% 

accuracy for sample donor’s sex prediction (in the displayed example). For more details 

on the pre-processing of the raw gene expression data, files format, and Y chromosome 

probes ids, and final result see Ex2, “Gene expression sex prediction using linear 

support vector classifier” and Figures 10 &11. 

 

Discussion 

We have presented ClassificaIO, a GUI that implements the scikit-learn supervised 

machine learning classification algorithms. The scikit-learn package is one of the most 

popular in Python with well-written documentation, and many of its machine leaning 

algorithms are currently used for analyzing large and complex data sets in genomics. Our 

interface aims to provide an interactive machine learning research, teaching and 

educational tool to do machine learning analysis without the requirement of advanced 

computational and machine learning knowledge using scikit-learn. ClassificaIO is 

provided as an open source software, and its back-end classes and functions allow for 
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rapid development. We anticipate further development, aided by the scikit-learn library 

developer community to integrate additional classification algorithms, and extend 

ClassificaIO to include other machine leaning methods such as regression, clustering, and 

anomaly detection, to name but a few. 
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ClassificaIO: setup, dependencies, installation, instruction, and, step by step 

working examples 

 

Summary 

ClassificaIO is an open-source Python graphical user interface (GUI) for supervised 

machine learning classification for the scikit-learn module 9. ClassificaIO aims to provide 

an easy-to-use interactive way to train, validate, and test data on a range of classification 

algorithms. The GUI enables fast comparisons within and across classifiers, and 

facilitates uploading and exporting of trained models, and both validated, and tested data 

results. 

 

Dependencies 

ClassificaIO is a Python package with the following external dependencies: 

• Tkinter ≥ 8.6.7, Pillow ≥ 5.3.0, pandas ≥ 0.23.3, numpy == 1.15.3, scikit-learn ≥ 

0.20.0, and scipy ≥ 1.1.0 

 

Prerequisites 

ClassificaIO requires Python version 3.6 or higher and can be used on Mac OS X High 

Sierra, Linux (tested on Ubuntu), and Windows 10 operating systems. To avoid any 

system errors, crashes, and crude fonts, we recommend to not install ClassificaIO using 

integrated environment package installers – i.e. native installation of ClassificaIO is 

highly encouraged using pip. In case you do not have pip installed, you must install it 

first. 
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Installation instructions 

1. Mac or Windows 

• To install the current release use pip in the terminal: 

$ pip install ClassificaIO 

• Alternatively, you can install directly from GitHub using: 

$ pip install git+https://github.com/gmiaslab/ClassificaIO/ 

2. Linux 

• First install the current release of tkinter and pip:  

$ sudo apt-get install python3-tk 

$ sudo apt-get install python3-pip 

• To install the current ClassificaIO release use pip: 

$ pip3 install ClassificaIO 

• Alternatively, you can install directly from GitHub using: 

$ pip install git+https://github.com/gmiaslab/ClassificaIO/ 

After installing ClassificaIO, please run it from the terminal using Python: 

$ python3 

>>> from ClassificaIO import ClassificaIO 

>>> ClassificaIO.gui()   

We note here the name is case sensitive (i.e. the ‘IO’ is capitalized). Once ClassificaIO’s 

main window appears on your screen, you can click on ‘Use My Own Training Data’ 

button and start your supervised machine learning classification project. 
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Iris dataset prediction using a logistic regression classifier 

 

• Training data input 

You first need to select (either ‘Dependent and Target’ or ‘Dependent, Target and 

Features’) from the ‘UPLOAD TRAINING DATA FILES’ panel to upload training data 

files. For this example, we select the ‘Dependent and Target’ button. 

 

To begin uploading data files, click the corresponding buttons in the ‘UPLOAD 

TRAINING DATA FILES’ panel: a file selector (Fig. 5) directs you to upload both, 

dependent or target data file. Once a file is uploaded to ClassificaIO, the file name and 

directory are automatically saved in the ‘CURRENT DATA UPLOAD’ panel (Fig. 6). 

Dependent data file (e.g. Fig. 7a) and target data file (e.g. Fig. 8b). This updatable log 

allows for tracking current data files in-use, and maintains a history of all files uploaded 

to the software. 

 

• Data format 

Data formats are shown in Figure 7a for dependent data and Figure 7b for target data. 

The dependent data represent the data on which the model will depend on for learning 

and the target data is the annotation, i.e. what is going to be predicted. In this example, 

the dependent data have 4 rows and 105 columns. For the dependent data, each row is an 

attribute (also known as feature) and each column is an object (also known as an 

observation or a sample). Thus, the header row enumerates the objects, and the header 

column names the attributes. The values in the file represent the measurement made for 
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each of the objects(columns) for each of the attributes (rows). For the target data, we 

have 105 rows and 2 columns (note: for the target data, the rows correspond to the 

objects and column is the class per object). The values in the “ids” column in the target 

data must much the Objects header row in the dependent data, the columns headers must 

match, otherwise an error will occur. Hence, the number of columns (i.e. objects) in the 

dependent data must also match the number of rows in the target data (i.e. each object has 

a unique “id” and must be assigned a target class for training). Finally, the “target” 

column in the target data must be numerically-valued. 

 

• Classifier selection 

Once you have uploaded all required training data files, you can select between 25 

different machine learning classification algorithms in the ‘CLASSIFER SELECTION’ 

panel (Table 4). Here are all classification algorithms in order of appearance in the 

‘CLASSIFER SELECTION’ panel. Immutable (unchangeable) parameters with their 

default values are also listed for each classifier in the parentheses: 

Linear_model 

LogisticRegression. (class_weight = None) 

PassiveAggressiveClassifier. (class_weight = None, n_iter= None) 

Perceptron. (class_weight = None) 

RidgeClassifier. (class_weight = None) 

Stochastic Gradient Descent (SGDClassifier). 

Discriminant_analysis 

LinearDiscriminantAnalysis. (shrinkage= None, priors = None) 
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QuadraticDiscriminantAnalysis. (store_covariances = None, priors = None) 

Support vector machines (SVMs) 

LinearSVC. (class_weight = None) 

NuSVC. (class_weight = None) 

SVC. (class_weight = None) 

Neighbors 

KNeighborsClassifier. (metric_params = None) 

NearestCentroid. 

RadiusNeighborsClassifier. (metric_params = None)\ 

Gaussian_process 

GaussianProcessClassifier. (kernel = None) 

Naive_bayes 

BernoulliNB. (class_prior = None) 

GaussianNB. (class_prior = None) 

MultinomialNB. (class_prior = None) 

Trees 

DecisionTreeClassifier. (class_weight = None) 

ExtraTreeClassifier . (min_impurity_split = None, class_weight = None) 

Ensemble 

AdaBoostClassifier. (base_estimator = None) 

BaggingClassifier. (base_estimator = None) 

ExtraTreesClassifier. (class_weight = None) 

RandomForestClassifier. (class_weight = None) 
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Semi_supervised 

LabelPropagation. 

Neural_network 

MLPClassifier. 

 

The following will populate once you make a classifier selection: 
 
Figure 8a: The classifier definition with a clickable underlined link “learn more” in blue, 

which, when clicked opens an external web-browser to the scikit-learn documentation for 

the selected classifier. 

Figure 8b: Interactive way to select between train-validate split and cross-validation 

methods (radio buttons), which are necessary to prevent/minimize training model 

overfitting. 

Figure 8c: Classifier parameters, to provide you with a point-and-click interface to set, 

modify, and test the influence of each parameter on your data 

 
• Model training, evaluation, validation and result output 

You can now click ‘submit’ to train your classifier using the uploaded training data files 

‘Dependent and Target’ in this example, and evaluate your result. Or, alternatively you 

can upload testing data first, and then click ‘submit’ to train and test a classifier on your 

uploaded data at the same time. For this example, first: we train a selected classifier, 

‘LogisticRegression’, using its default parameters, and default train-validate split method 

‘Train Sample Size (%)’, and then, second: we upload testing data to test the trained 

model. After clicking ‘submit’, our selected classifier, ‘LogisticRegression’ for this 
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example, is trained using the loaded training data, ‘Dependent and Target’ for this 

example. 

 

Notes: ClassificaIO always shuffles your training data before splitting to eliminate mini 

batch effects. 

Internally, when ‘Train Sample Size (%)’ method is selected, ClassificaIO uses the scikit-

learn train_test_split method, to allow for fast training data split into training and 

validation subsets. With this method the parameter set is train_size, which takes the train 

sample size set by you (e.g. Train Sample Size (%): set to 75% means train_size = 0.75 

and test_size = 0.25). If the ‘K-fold Cross-Validation’ method is selected instead, 

ClassificaIO uses the scikit-learn cross_val_predict method where the training data is 

split into k-sets. The model is trained on k-1 of the folds followed by a validation step on 

the remaining part of the data. This will be repeated for each of the k-folds. 

After training is completed, the confusion matrix, classifier accuracy and error are 

displayed in the ‘CONFUSION MATRIX, MODEL ACCURACY & ERROR’ panel 

(Fig. 9a). Model validation data results are displayed in the ‘TRAINING RESULT: ID – 

ACTUAL – PREDICTION’ panel (Fig. 6b) with each data point ID is the 1st value, 

actual target value is displayed 2nd, and predicted target value 3rd , where the predictions 

correspond to the iris flower species, with 0=setosa, 1=versicolor, and 2=virginica. 

 

• Testing data input and result output 

To test your trained model, first upload the testing data file by clicking the ‘Testing Data’ 

button in the ‘UPLOAD TESTING DATA FILE’ panel (Fig. 10a). Once clicked, a file 
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selector directs you to upload the testing data file, the file name is automatically saved in 

the ‘CURRENT DATA UPLOAD’ panel (outlined in the red box in the figure) to 

indicate that your file has been uploaded. The Testing Data file format is the same as for 

the dependent data file. 

 

After clicking ‘Submit’, testing results are displayed in the ‘TESTING RESULT: ID – 

PREDICTION’ panel (Fig 7b) with each data point ID shown 1st, and the corresponding 

predicted target value displayed after it 2nd, separated by a hyphen. 

 

• Result export 

Now you are ready to export your trained model to preserve it for future use without 

having to retrain. Simply, click the ‘Export Model’ button (Fig 6a) and save your model. 

Your exported ClassificaIO model can then be used for future testing on new data in the 

‘Already Trained My Model’ window in ClassificaIO, shown below. 

 

• ClassificaIO model input 

You will need to upload ClassificaIO model by clicking the ‘Model File’ button in the 

‘UPLOAD TRAINING MODEL FILE’ panel (Fig. 11a). Once clicked, a file selector 

directs you to upload a ClassificaIO trained model. Also, you will need to upload a 

testing data file (the testing data file format is the same as explained above), by clicking 

the ‘Testing Data’ button in the “UPLOAD TESTING DATA FILE” panel (Fig. 11b). 

Once a ClassificaIO model and testing data files are uploaded, files names are 

automatically displayed in the ‘CURRENT DATA UPLOAD’ panel (Fig. 11c). 
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After clicking ‘submit’, the uploaded model preset parameters will populate (Fig. 11d) to 

show the classifier used to originally train the uploaded model. The confusion matrix, 

classifier accuracy and error of trained model are then displayed in the ‘CONFUSION 

MATRIX, MODEL ACCURACY & ERROR’ panel (Fig. 11e). Testing data results are 

displayed in the ‘Testing RESULT: ID – PREDICTION’ panel (Fig. 11f) with the data 

point ID shown 1st, followed by a hyphen and the predicted value displayed right after it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60  

APPENDIX 
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APPENDIX 

 

Figure 2. Workflow summary of ClassificaIO. 

 

The diagram summarizes of the graphical user interface and backend 

functionality/workflow for ClassificaIO Use My Own Training Data window and 

Already Trained My Model window. 
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Figure 3. ClassificaIO main window. 

ClassificaIO main window appears on the screen after typing ‘ClassificaIO.gui()’ in a 

terminal or a Python interpreter. 
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Figure 4. ClassificaIO user interface (Mac OS shown). 

As described in ClassificaIO implementation section, a. an example Use My Own 

Training Data window with uploaded training and testing data files, selected logistic 

regression classifier, populated classifier parameters, and output classification results.  

a 

b 
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Figure 4. (cont’d) 

b. A corresponding Already Trained My Model window with uploaded ClassificaIO 

logistic regression trained model and testing data file, and output classification result. 
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Figure 5. Graphical control element dialog box. 

 

 

 

 

 

 

 

 

 

	
a. Dependent data file selected for upload. b. Selected target data file to upload. N.B. 

each file selection has to be done one at a time. 
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Figure 6. Current data upload panel.	

	

	

	

 

 

 

 

 

 

 

 

Both dependent and target data file names shown (red boxes). Scroll down for uploaded 

data files directories. 
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Figure 7.	Gene expression sex prediction using linear support vector classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Dependent data, example of partial dependent data file format. Testing data (not 

shown) uses the same format. b. Example of partial target data file format where the 

targets correspond to setosa = 0, versicolor = 1, and virginica = 2. Versicolor and 

virginica are not visible in this screenshot. 
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Figure 8. Selected logistic regression classifier. 

The interface for each selected classifier, has uniform features. a. Classifier definition is 

displayed, together with an underlined clickable link that reads “Learn more” next to the 

classifier name. b. Training methods with ‘Train Sample Size (%)’ method selected. c. 

The classifier parameters set to their default values. 
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Figure 9. Trained logistic regression classifier. 

a. Trained model using 78 data points (75% of 105 data points), classifier evaluation 

(confusion matrix, model accuracy and error). b. Model validated using 27 data points 

(25% of 105 data points). 
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Figure 10. Tested logistic regression classifier. 

a. Upload testing data panel. b. Model tested using 45 data points. 
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Figaure 11. ‘Already Trained My Model’ window. 

a. Upload ClassificaIO trained model panel. b. Upload testing data panel. c. Current data 

upload panel with both model and testing data files names shown (red boxes). d. Model 

preset parameters. e. Trained model result and model evaluation (confusion matrix, 

model accuracy and error). f. Model testing result. 
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Figure 12. Training and testing using gene expression data. 

a. selected k-nearest neighbors’ classifier with trained and tested the data using the 

default parameters values, b. Same classifier selected with trained and tested data but 

using different parameters values. 
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Figure 13. Trained linear support vector machine classifier. 

Trained model using GSE99039 121 data points and k-fold cross validation, classifier 

evaluation (confusion matrix, model accuracy and error). Model validated and tested 

model using GSE18781 25 data points. 
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Figure 14. Features data.  

 

 

 

 

 

 

 

 

 

 

Example of partial features data file format where each Affymetrix probe id correspond 

to a Y chromosome gene. 
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Table 3. ClassificaIO software information.	

ClassificaIO is provided as open source software, and distributed on GitHub and PyPI. 

Up-to-date code, manuals and supplementary example material will be maintained on 

GitHub. 

	

 

 

 

 

 

 

 

 

 

 

Current 
ClassificaIO 
Version 

1.1.5 

Public Links to 
Executables 

PyPI: https://pypi.org/project/ClassificaIO/ 
GitHub: https://github.com/gmiaslab/ClassificaIO 

Distribution 
License MIT license (MIT) 

Operating Systems Mac OS X, Linux, and Microsoft Windows 
Software 
Installation 
Dependencies 

Python 3 and Python libraries: Tkinter, Pillow, Pandas, NumPy, 
scikit-learn and SciPy 

Supplementary 
Data Online 
Availability 

https://github.com/gmiaslab/manuals/tree/master/ClassificaIO/Su
pplementary%20Files 

Contact E-mail gmiaslab@gmail.com 
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Table 4. Classification algorithms included in ClassificaIO. 

A list of all 25 classification algorithms, their corresponding scikit-learn functions, and 

immutable (unchangeable) parameters with their default values. 
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Abstract 

In 2018 alone, an estimated 20,000 new acute myeloid leukemia (AML) patients were 

diagnosed, in the United States, and over 10,000 of them are expected to die from the 

disease. AML is primarily diagnosed among the elderly (median 68 years old at 

diagnosis). Prognoses have significantly improved for younger patients, but in patients 

older than 60 years old as much as 70% of patients will die within a year of diagnosis. In 

this study, we conducted stratified computational meta-analysis of 2,213 acute myeloid 

leukemia patients compared to 548 healthy individuals, using curated publicly available 

data. We carried out analysis of variance of normalized batch corrected data, including 

considerations for disease, age, tissue and sex. We identified 964 DE unique genes (974 

DEPS) differentially expressed genes and 4 associated significant pathways involved in 

AML. Additionally, we have identified 70 DEPS with 69 unique sex- and 372 age-

dependent DE gene signatures relevant to AML. Finally, we used a machine learning 

model (KNN model) to classify AML patients compared to healthy individuals with > 

90% achieved accuracy. Overall our findings provide a new reanalysis of public datasets, 

that enabled the identification of potential new gene sets relevant to AML that can 

potentially be used in future experiments and possible stratified disease diagnostics. 

 

 

A version of this chapter and results has been submitted for publication. 
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Introduction 

Acute myeloid leukemia (AML) is a heterogeneous malignant disease of the 

hematopoietic system myeloid cell lineage. AML is best characterized by the terminal 

differentiation in normal blood cells and excessive production and release of cells at 

various stages of incomplete maturation (leukemia cells). As a result of this faster than 

normal and uncontrolled growth of leukemia cells, healthy myeloid precursors involved 

in hematopoiesis are suppressed, and ultimately, can soar to death within months from 

diagnosis if untreated1,2. AML accounts for 70% of myeloid leukemia and nearly 80% of 

acute leukemia cases, making it the most common form of both myeloid and acute 

leukemia2,3. The number of new AML cases is increasing each year – in 2018 alone, there 

have been an estimated about 20,000 new diagnosed AML patients, over 10,000 of them 

will die from the disease4. 

 

AML can occur in people of all ages but is primarily diagnosed among the elderly (>60 

years), with a median age of 68 year at diagnosis4. Recent advances in AML biology 

expanded our understanding of its complex genetic landscape and led to significant 

improvement in prognoses and therapeutic strategy for younger patients5,6. However, in 

patients older than 60 years old, prognoses remain grim and therapeutic strategy has been 

nearly the same for more than 30 years2,5-8. Approximately 70% of patients 65 years of 

age or older die within one year from diagnosis9. While it is apparent that the nature of 

AML changes with age, still little is known about the extent of these associations and 

how they vary with patient’s age6,10,11. Taking into consideration age considerations in 
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the identification of changes in AML global gene expression can lead to improved early 

diagnosis and improvement in treatment approaches for elderly patients. 

 

AML prognosis is highly dependent on cytogenetic analysis since chromosome 

abnormalities including translocations, deletion, duplication and inversions occur 

frequently in AML 6. Cytogenetic analysis, as a prognostic approach, is used to classify 

AML patients that carry distinctive chromosomal abnormality into either favorable, 

intermediate, or unfavorable risk group. However, approximately 50% of AML patients 

lack genetic abnormalities and present normal karyotype12-15. In the last decade, many 

frequently mutated genes in AML were identified including NPM1, CEBPA, RUNX1, 

FLT3 -- and many studies have reported sets of genes and gene panels that can be used to 

improve the prognostication of AML8,12,13. However, the impact of these findings to help 

improve AML prognosis in the current clinical practice is still unclear8. 

 

Gene expression profiling is a powerful prognostic method for the detection of changes in 

gene expression due to genetic abnormalities, gene fusion and/or mutations in AML 

patients. In the past, gene expression biomarkers were used to classify myeloid leukemia 

as compared to lymphoid leukemia including many subtypes within each of the two 

diseases16-18. Multiple gene expression analyses of AML have been carried out, 25 of 

these have been systematically compared by Miller and Stamatoyannopoulos19, who 

analyzed information on 4,918 genes, and identified 25 genes reported across multiple, 

with potential prognostic features. In this study, we performed comprehensive meta-

analysis of 2,213 acute myeloid leukemia patients and 548 healthy subjects using 34 
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publicly available gene expression microarray datasets (following strict inclusion criteria) 

to identify disease, sex- and age-related gene expression changes and signaling pathways 

associated with AML. We identified sex- and age-related gene expression signatures that 

show similar alteration in gene expression levels and associated signaling pathways in 

AML and have used our results (gene sets) to predict AML or healthy status. We believe 

that our results may lead to improved AML early detection and diagnostic testing with 

target genes, as well as the identification of new targets for treatment with mechanisms of 

action different from those used in conventional chemotherapy. To our knowledge, 

provided the body of published AML gene expression studies, our approach of joining 

multi-study gene expression datasets for meta-analysis to identify disease-, sex- and age-

related signatures in AML has not been implemented before. 

 

Results 

• Data curation and gene expression preprocessing 

By navigating the Gene Expression Omnibus (GEO) public repositories according to our 

systematic workflow and inclusion criteria (Fig. 15a&b), 34 age-annotated gene 

expression datasets from 32 different studies covering 2,213 AML patients and 548 

healthy individuals were curated and selected for gene expression meta-analysis and 

functional pathway enrichment analysis. Table 5 provides a description on each dataset 

with a sub-table summary of all curated data used in our current study. After pre-

processing each individual data set separately according to Figure 15b, we performed 

analysis on 44,754 probe sets which were common across all samples (arrays). 
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• Classification of missing metadata annotation 

After the data curation step, 805 arrays (802 AML and 3 healthy) of 2,761 curated data 

were missing sex annotation, and 737 arrays (all AML patients) were missing 

information regarding sample source (i.e. tissue, either bone marrow [BM] or peripheral 

blood [PB] annotation). Classification for the missing annotations for these arrays (1,542 

in total) was essential in our study, to increase the sample size, and statistical power 20. 

To predict the missing sex and sample source meta-data, we trained and validated various 

machine learning supervised models, including logistic regression (LR) and k-nearest 

neighbor (KNN) classification models. The models were trained and verified using our 

annotated preprocessed expression data. Model training, parameters used in training, 

validation for this analysis are discussed in the method section. Results from model 

training, including confusion matrix, model accuracy, and error can be viewed in 

Supplementary Table S1 online and results from classification for missing annotation are 

presented in Supplement file 1&2. 

 

• Batch correction 

Our pre-processed data, AML and healthy, was subjected to “dataset-wise correction” 

(for more details and further explanation, see method section, presented in sub-section 

“Dataset-wise correction for batch effects”. We used ComBat21 to correct for 

confounding batch effects. Our datasets used in this study did not include within-study 

healthy controls, which would limit variance analysis, and the ability to separate 

biological from batch effects. To address this, we implemented an iterative batch effect 

correction approach, essentially employing a weight-based method for correcting batch 
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effects. Assuming the batch effects due to each data set is a function of the number of 

samples in the data set (weight), normalizing sets of unevenly sized datasets may lead to 

unbalanced batch correction. We used 5 additional datasets as a reference set, which we 

refer to as “covariate” hereafter. Each of the covariate datasets included within study 

healthy controls. All 5 datasets together consisted of a total 613 arrays (455 AML and 

158 healthy) (Table 5), and pre-processed exactly as our curated data sets. These were 

used together with each of the remaining datasets to batch correct each dataset with 

respect the covariate reference using ComBat22. After this dataset-wise correction, 

covariate datasets were removed, and our expression data were clustered using principal 

component analysis (PCA) to visually examine the effect of covariate datasets on 

distributing the batch weight during batch correction. Figure 16 shows the results for 

batch effects correction, including batch corrected data without covariate datasets (Fig. 

16 a&b), as well as batch corrected data with covariate datasets (Fig. 16 c&d). 

 

• Analysis 1: Gene expression meta-analysis and enrichment analysis of AML 

disease state compared to healthy individuals 

 

o Gene expression meta-analysis of AML disease state 

Following batch correction, we performed an analysis of differential gene expression 

(DGE) on 34 data sets including 2,213 AML patients and 548 healthy controls. Analysis 

of Variance (ANOVA)23-25 was performed according to a linear model (see method 

section “Meta-analysis”). 974 Statistically significant differentially expressed probe sets 

(DEPS) (with genes corresponding to 964 unique gene symbols) for AML versus healthy 
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were selected based on a Bonferroni26 adjusted p-value < 0.01 (accounting for multiple 

hypothesis testing), in conjunction with a two-tailed 5% quantile selection27 based on the 

mean difference distribution between AML-healthy group comparisons (post-hoc 

analyses using Tukey’s Honestly Significant Difference (HSD)). The heatmap (Fig. 17a) 

shows the gene expression with hierarchical clustering of the 974 DEPS, including 487 

up- and 487 down-regulated with respect to AML as compared to healthy. The clustering 

did not reveal any sub-clustering or structure indicative of a grouping or possible 

classification in the AML subjects (that would also be suggestive of necessary additional 

blocking design for a per-class analysis). From this analysis, WT1 (Wilms tumor 1) with 

mean difference of 0.26 and adjusted p-value < 4.11E-11 was the most DE up-regulated 

gene while CRISP3 (cysteine-rich secretory protein 3) with mean difference of -0.52 and 

adjusted p-value < 4.11E-11 was the least DE gene. Figure 17b shows the top 10 up- and 

down-regulated DEPS with corresponding gene symbols, that resulted from this analysis 

(also listed in Table 6, including mean difference and Bonferroni p-adjusted values from 

post-hoc analysis using Tukey’s HSD tests). The entire list of all 974 DEPS can be found 

as Supplementary Table S2 online. 

 

o Gene enrichment analysis AML disease state DE genes. 

To identify signaling pathways associated DEPS in AML, gene enrichment analysis was 

performed on all 974 DEPS combined. Signaling pathways from the Kyoto Encyclopedia 

of Genes and Genomes (KEGG)28-30 and Gene Ontology (GO) terms31,32 were analyzed 

for over-representation analysis of biological function in Database for Annotation, 

Visualization and Integrated Discovery (DAVID)33,34. Using Benjamini and Hochberg35 
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adjusted p-value < 0.05, 4 KEGG signaling pathways were identified, including 

Hematopoietic cell lineage,  Cell cycle, p53 signaling pathway, and  Transcriptional 

misregulation in cancer (Fig. 17c). The 4 KEGG signaling pathways and associated DE 

genes are summarized in Table 7, including unadjusted p-values and Benjamini and 

Hochberg35 adjusted p-values. 56 DEPS including 27 up- and 29 down-regulated were 

associated with these signaling pathways, and the heatmap of their mean differences is 

shown in Figure 17d. Additionally, 61 DEPS were enriched by 6 other KEGG signaling 

pathways known to be involved in AML (Fig. 17e). From our gene enrichment analysis 

for overrepresented biological GO terms, 21 GO terms were statistically significant with 

727 DEPS (335 up- and 392 down-regulated). GO terms included protein and 

microtubule binding for the molecular function (MF) category, inflammatory and 

immune responses, mitotic nuclear division, and cell proliferation response for the 

biological process (BP) category, and finally, cytoplasm, extracellular exosome, cytosol, 

extracellular space, integral component of plasma membrane immune response, and 

others, for the cellular component (CC) category (Fig. 17f). The entire list of our 

enrichment analysis results (statistically significant over-representation in KEGG and GO 

terms) can be found as Supplementary Table S3 online. 

 

• Analysis 2: gene expression meta-analysis and enrichment analysis of sex- 

and age-related DE genes in AML 

Further analysis of gene expression and pathways enrichment were conducted in order to 

characterize sex- and age-specific gene expression changes in AML patients compared to 

healthy individuals, Analysis 2a: “Sex-relevance differential gene expression meta-
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analysis and associated signaling pathways in AML”, and Analysis 2b: “Age-

dependent differential gene expression meta-analysis and associated signaling 

pathways in AML”. We used the same filtering criteria in both analyses as those used in 

analysis 1 for significant DE genes and signaling pathways between AML patients and 

healthy controls. In addition, DE genes were regarded to be covariates statistically 

significantly (up- or down-regulated) for each factor, sex and age, if displayed Bonferroni 

adjusted p-value from Tukey’s HSD < 2.2x10-7 (=0.01/(44,754 probe sets used)). 

 

o Analysis 2a. Sex-relevance differential gene expression meta-analysis and 

associated signaling pathways in AML 

Gene expression meta-analysis was also used to identify DEPS that show sex relevance 

with respect to male AML patients as compared to female AML patients. 266 DEPS were 

regarded statistically significant (p-value < 2.2x10-7). A list of all 266 DEPS (including 

up- and down-regulated, gene title and symbol, male-female mean difference, and 

Bonferroni corrected p-value) can be found as Supplementary Table S4 online. 70 DEPS 

with 69 unique DE genes were found to overlap between analysis 1 (AML disease state) 

and analysis 2a (Fig. 18a). Figure 18b shows these 70 DEPS with gene symbol 

annotations, and their mean difference values in the heatmap, which displays differences 

in significance for a common DEPS in both analyses 1 and 2. The top 10 up- and down 

regulated DEPS from this analysis are shown in Figure 18c. Figure 18d shows the gene 

expression heatmap with a hierarchical clustering of the 70 DEPS (rows) on sex and 

disease state of all 2,213 AML and 548 healthy subjects (columns) indicated by color 

bars above the heatmap. 
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For enrichment analysis, we searched for common DEPS between the 70 DEPS from this 

meta-analysis and the 974 DEPS from AML disease state meta-analysis, for KEGG 

pathways and GO terms. 4 sex-relevant DE genes were found in 3 different signaling 

pathways (Table 8), including, (3 up- and 1 down-regulated). Up-regulated genes and 

pathway memberships included, FLT3 and CD34 in Hematopoietic cell lineage, FLT3 in 

Transcriptional misregulation in cancer, and PMAIP1 in p53 signaling pathway, and 

down-regulated gene MS4A1 in Hematopoietic cell lineage (Fig. 18e). 

 

Figure 18f shows GO analysis results, where 15 overrepresented biological GO terms 

were overlapped, including terms GO:0005615~extracellular space, 

GO:0006955~immune response, GO:0005515~protein binding, GO:0005819~spindle, 

and GO:0030496~midbody. The entire list of our enrichment analysis (statistically 

significant KEGG and GO terms) can be found as Supplementary Table S3. 

 

o Analysis 2b. Age-dependent differential gene expression meta-analysis and 

associated signaling pathways in AML 

Here we refer to the “age-group” to indicate AML patients and healthy individuals in the 

same age range assigned in our study. The subjects were binned in 8 groups: 0-19, 20-29, 

30-39, 40-49, 50-59, 60-69, 70-79, and 80-100 years old. From this meta-analysis, 1395 

probsets across all age-groups were identified as statistically significant (Bonferroni 

adjusted p-value < 2.2x10-7) (Supplementary Table S5). From these 372 DE unique age-

dependent genes (375 DEPS) were found to overlap with the 964 DE unique genes (974 
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DEPS) from our AML disease state meta-analysis (Fig. 19a), with 137 up- and 238 

down- regulated. The entire list of 375 DEPS can be found as Supplementary Table S6 

online. Figure 19b shows the heatmap of the 375 DEPS (rows) across 18 age-groups 

(columns) that were deemed statistically significant according to Bonferroni adjusted p-

value < 2.2x10-7 (these age-groups including all 2,761 arrays (2,213 AML patients and 

548 healthy individuals)). The top 10 up- and down- regulated DE genes from this 

analysis are shown in Figure 19c. Figure 19d shows 75 DE genes identified to have 

appeared specifically in one age-group. 

 

To investigate further, pairwise correlations between age-groups were computed (Fig. 

19e). The “0 to 19” age-group was used as a common comparison reference with respect 

to other groups (Fig. 19f). Using this “0 to 19” group as a baseline, Figure 19g shows the 

mean difference of 25 genes that are DE with respect to the “0 to 19” baseline across all 

other groups and the mean difference values between AML and healthy are shown in the 

right-most column of Figure 19a-g for reference. Utilizing results for KEGG analysis for 

signaling pathways from analysis 1, Figure 19 shows 17 DE genes identified in all 4 

KEGG pathways according to age groups (also listed in Table 9). 

 

o Age-dependent genes analysis for drug to gene interaction 

We carried out two analysis in The Drug Gene Interaction Database (DGIdb)36 to identify 

druggable genes or gene products from our results with known drug to gene interaction 

(where available) for a potential therapeutic in AML. According to DGIdb, druggable 

genes are defined as “genes or gene products that are known or predicted to interact with 
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drugs, ideally with a therapeutic benefit to the patient”. The two analyses were performed 

in DGIdb using two different gene sets, (i) 25 DE genes common across the baseline (0 to 

19) age-group (Fig. 19g) and, (ii) 75 genes identified to be specific to one age-group (Fig. 

19d). Table 10 lists all the genes and their corresponding associated druggable gene 

categories. 

 

Discussion 

According to the 2016 World Health Organization (WHO) newly revised myeloid 

neoplasms and acute leukemia classification system37, AML prognosis criteria for 

classification is highly dependent on the presence of chromosomal abnormalities, 

including chromosomal deletions, duplications, translocations, inversions, and gene 

fusion. Mostly, AML is diagnosed through microscopic, cytogenetics, and molecular 

genetic analyses of patients’ blood and/or bone marrow samples. Microscopic 

examination is used to detect distinctive features (e.g. Auer rods) in cell morphology, 

cytogenetic analysis to identify chromosomal structural aberrations (e.g., t(8;21), inv(16), 

t(16;16), or t(9;11)), and molecular genetic analysis to identify gene fusion (e.g., 

RUNX1-RUNX1T1 and CBFB-MYH11), and mutations in genes frequently mutated in 

AML (e.g., NPM1, CEBPA, RUNX1, FLT3)8,12,13. These cytogenetic and molecular 

genetic analyses are used to identify prognosis markers that can be used to classify AML 

patients into three risk categories: favorable, intermediate, and unfavorable. The largest 

group of AML patients (almost 50%) however, present normal karyotype and lack 

genetic abnormalities12-15. These patients are classified as intermediate risk, and often 

have heterogeneous clinical outcome with standard therapy with risk of AML relaps38. 
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Additionally, AML prognosis worsens as age increases, and older patients respond less to 

current treatments with poorer clinical outcomes than their younger counterparts5,39. 

Further complicating, AML has multiple driver mutations and competing clones that 

evolve over time, making it a very dynamic disease40,41. Identifying differentially 

expressed genes and associated signaling pathways based on our analysis, that 

incorporates disease state, sex- and age-dependent meta-analysis, can provide global gene 

expression signatures, which collectively can potentially serve as sex- and age-dependent 

biomarkers for AML prognosis compared to healthy. 

 

In the present study, we aimed to establish, disease sex-linked and age-dependent 

biomarkers from genes with similar alteration in gene expression level and associated 

signaling pathways in AML. Utilizing microarray gene expression data and combined 

with various machine learning models, respectively, our biomarkers were indicative of 

prognostic signature for AML prediction compared to healthy with > 90% achieved 

accuracy. We took advantage of 34 publicly available microarray gene expression data 

sets covering 2213 AML patients and 548 healthy individuals to identify changes in 

AML gene expression associated with disease state (AML compared to healthy), sex-

linked (male compared to female), and age-dependent (across age-groups compared to 

baseline). We performed 3 differential gene expression and gene enrichment analyses:  

 

Analysis 1: Gene expression meta-analysis and associated signaling pathways of 

AML disease state compared to healthy individuals, was carried out to identify DE 

genes in AML disease state, followed by gene enrichment analysis on the identified DE 
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genes to find singling pathway associated with AML. The results from this analysis were 

then used as baseline indicator for AML disease state.  

 

Analysis 2a: Sex-dependent gene expression meta-analysis and associated signaling 

pathways in AML compared to healthy individuals, was performed to explore the 

relevance of patients’ sex on gene expression and to identify sex-linked genes and 

associated signaling pathways in AML.  

 

Analysis 2b: Age-dependent gene expression meta-analysis and associated signaling 

pathways in AML compared to healthy individuals, was carried out to identify 

common set of age-dependent genes and associated signaling pathways and to explore 

age-dependent trends in gene expression in AML. 

 

• Analysis 1 discussion: Gene expression meta-analysis of AML disease state 

From our meta-analysis for AML disease state 964 DE unique genes (974 DEPS) (487 

overexpressed and 487 underexpressed) were identified as significantly differentially 

expressed between AML patients and healthy individuals (Bonferroni adjusted p-value < 

0.01). Among these 6 genes are known to be involved in AML functional pathways, 

including 4 up-regulated, JUP (junction plakoglobin), CCNA1 (cyclin A1), FLT3 (fms-

related tyrosine kinase 3), PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1 

(alpha)), and 2 down-regulated, CD14 (CD14 molecule), CEBPE (CCAAT/enhancer 

binding protein (C/EBP), epsilon). The top 10 up- and down-regulated genes from this 

analysis are listed in Table 6 with their respected Tukey’s HSD mean difference and 
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Bonferroni p-adjusted values. As shown in Figure 17b of the top 10 up- and down-

regulated DEPS -- WT1 (Wilms tumor 1) was found to be the most expressed and 

CRISP3 (cysteine-rich secretory protein 3) was the most under-expressed gene. From our 

gene enrichment analysis for overrepresented biological GO terms, WT1 is identified 

with protein binding and cytoplasm in the molecular function (MF) and cellular 

component (CC) categories respectively. WT1 is a transcriptional regulatory protein 

essential to cellular development and cell survival, and it has been known to be highly 

expressed with an oncogenic role in AML42,43, in agreement with our findings. However, 

CRISP3’s direct role in AML is still under investigation. CRISP3 is a member of the 

cysteine-rich secretory protein CRISP family with major role in female and male 

reproductive tract, and is mainly expressed in salivary gland and bone marrow44. 

Recently in 2017, 80 genes were reported as “extracellular matrix specific genes” in 

leukemia, and CRISP3 was among the downregulated DE genes reported.45 In GO terms 

from our gene enrichment analysis, CRISP3 is associated with the extracellular space, 

specific granule, and extracellular exosome GO terms, all in the cellular component (CC) 

category. These findings suggest that CRISP3 could be a potential candidate as a 

prognostic biomarker in AML. CRISP3 associations with these cellular components in 

AML have not been previously reported, to the best of our knowledge and merit further 

investigation. 

 

The enrichment analysis for overrepresented biological GO terms of the 974 DEPS (up- 

and down-regulated combined) is shown in Figure 17f. 727 DEPS (335 up- and 392 

down-regulated) were enriched for 21 GO terms. 592 of which (257 up- and 335 down-
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regulated) were enriched in the cellular component (CC) category and were mainly 

associated with cytoplasm, extracellular exosome, cytosol, and extracellular space. 

Possible explanations to the relatively high number of DEPS associated with these GO 

terms might reflect the bone marrow or immunosuppressive microenvironment which is 

inevitable to AML development and progression46,47. On the biological process (BP) 

category, GO term were associated with inflammatory and immune responses, and cell 

proliferation. This is reflective of AML characteristics. AML is characterized by terminal 

differentiation of normal blood cells and excessive proliferation and release of 

abnormally differentiated myeloid cells. This faster than normal cell proliferation and 

uncontrolled growth leads to accumulation of genetic abnormalities that very likely can 

affect many signaling pathways essential to the immune system.  

 

Figure 17c shows the four statistically significant KEGG pathways identified in the 

pathway enrichment analysis with the number of DEPS enriched by each pathway, which 

encompassed 56 DE unique genes (Table 7). Specifically, Figure 17c indicates that 

Transcriptional misregulation in cancer was the most up-regulated pathway in AML (13 

up-regulated DE genes), while Hematopoietic cell lineage, and Cell cycle pathways were 

mostly down-regulated, and the p53 signaling pathway was balanced in terms of 

up/down-regulated DE genes. The enriched pathways Figure 17e shows the mean 

difference values of the 56 DE pathway-associated genes, including 27 genes up- and 29 

down-regulated. 61 DEPS from our AML disease state meta-analysis were also 

associated by 6 other KEGG signaling pathways that are known to be involved in AML 

(Fig. 17e). All these 10 KEGG pathways are known to be involved in tumorigenesis. 
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Additionally, the majority of the associated DE genes from AML meta-analysis with the 

identified signaling pathways are known to be abnormally expressed in AML. These 

findings are consistent with findings from other studies and our current understanding of 

AML pathogenesis. 

 

• Analysis 2a discussion 

To identify DE genes associated with sex in AML, we used post-hoc Tukey’s HSD tests 

for comparison between male and female subjects. A total of 266 genes were found 

statistically significant in this analysis. 70 of there were also found to overlap with the 

DE genes from analysis 1, AML disease state meta-analysis (Fig 18a&b). Figure 18c 

shows the top 10 up- and down-regulated DE genes with respect sex – DDX3Y (DEAD-

Box Helicase 3 Y-Linked), EIF1AY (Eukaryotic Translation Initiation Factor 1A Y-

Linked), KDM5D (Lysine Demethylase 5D), RPS4Y1 (Ribosomal Protein S4 Y-Linked 

1) were the most expressed genes and XIST (X Inactive Specific Transcript), TSIX 

(TSIX Transcript, XIST Antisense RNA), and PRKX (Protein Kinase X-Linked) were 

the most down-regulated genes. These genes are known to be sex-specific and show such 

differences and sex separation within the AML and the healthy groups respectively (Fig. 

18d). The role of these genes as positive controls in studies with AML needs to be 

investigated further. We also reported sex and AML known genes that were statistically 

significant in our analysis, including FLT3 and MAL. 
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• Analysis 2b discussion 

The age-dependent meta-analysis in AML using ANOVA, identified 1,381 genes as 

statistically significant based on Bonferroni adjusted p-value <0.01. We then evaluated 

the overlap of DE genes from this analysis to our findings of 964 DE unique genes (974 

DEPS) in AML disease state (analysis 1) to identify age-related DE genes in AML (Fig. 

19a). We identified an overlap of 372 DE unique age-dependent genes (375 DEPS), 

including 137 up- and 238-down regulated, of age-related genes and AML-associated 

genes (Bonferroni adjusted p.value <0.01). As shown in Figure 19c, the top 10 most and 

least expressed age-associate genes in AML according to the mean difference values 

conducted using Tukey’s HSD in seven age-groups, including their corresponding values 

from AML disease state in column “AML - healthy” for comparisons. Interestingly, 

CRISP3 (cysteine-rich secretory protein 3) was among the down regulated genes 

specifically associated with younger age groups, 20 to 49 years of age as compared to 0 

to 19 years old. These finding providing our previous finding, are suggestive of 

CRISP3’s role in AML as well as association with certain age-groups. The Figure 19b 

also shows a number of up-regulated genes known to be involved in AML, including 

HOXA3, HOXA5 and HOXA10-HOXA9, which belong to the homeobox genes (HOX) 

family of transcription factors, essential to embryonic development and hematopoiesis, 

and associated with chromosomal abnormalities translocation and over-expression in 

AML48,49. Interestingly, ORM1 (Orosomucoid 1), which was deemed significant for 

down-regulation for both of our previous analyses. In fact, in analysis 1, ORM1 was 

among the top-10 most underexpressed genes, and was also among the 70 DEPS from 

analysis 2a. These results suggest that ORM1 role in AML is independent of sex or age. 
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ORM1’s direct role in AML also merit’s further investigation, given ORM1 involvement 

in immunosuppression and inflammation50.  

 

From the 25 DE genes found across the “0 to 19” age-group as a baseline (Fig. 19g), 15 

genes were identified as “druggable genome” from our DGIdb36 analysis (i), including 

TFF3, ORM1, CA4, CYP4F2, CYP4F3, CEACAM1, FLT3, CHIT1, OLR1, KCNJ15, 

CAMP, CRISP2, CAPN3, SLC37A3, FCRL1 (Table 10). From these 15 genes, CA4 

(carbonic anhydrase 4) showed an interaction record with drug Topiramate, which is an 

anticancer drug known to act as an inhibiter to CD451. Additionally, we have identified 

75 statistically significantly DE genes that show association with only one age-group, 

exclusively from all other age-groups, suggestive of potential age-specific DGE. Finally, 

our DGIdb36 analysis (ii) results for the 75 DE genes, 24 genes were categorized for 

“druggable genome” including CDH1, GPX3, CD14, DYRK2, SLPI, CCNA2, TGFBR3, 

UGCG, FCN1, GZMA, TCN1, BPI, S100A12, CDK6, IL12A, P2RY13, ADGRG3, 

DNMT3B, GUCY1A3, FGFBP2, PTPRJ, LRRK2, BCL2L15, STYX (Table 10). 

 

In summary, our study successfully integrated multiple datasets to perform a study of 

gene expression in AML, across multiple factors that included disease, sex and age 

considerations, and identified interesting genes, both known and not previously reported 

as differentially expressed in each factor. We identified 964 DE unique genes (974 

DEPS) and 4 associated significant pathways involved in AML, and 69 DE unique sex-

relevant genes (70 DEPS) and 372 DE unique age-related genes (375 DEPS). Using the 

964 DE genes, a KNN model allowed for classification of AML patients with >90% 
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accuracy. We hope that these findings may provide additional relevant targets for further 

experimental mechanistic studies, and to help identify new markers and therapeutic 

targets for AML. 

 

• Future research possibilities and study limitations 

We note that our study identified multiple potentially significant DE genes, associated 

with age and sex related differences associated with AML as compared to healthy, as 

discussed above for analyses 1 and 2. While our results and analyses have identified 

important expression relevant to AML, and many potential new gene targets, we need to 

acknowledge the limitations of our data: primarily the analysis of AML and healthy 

subjects involved bone-marrow and blood samples respectively in each group. We tried 

to account for this disparity in the tissues, by utilizing tissue (sample source) directly as a 

factor in our linear model, and including its binary interactions with all other factors. 

Other limitations included an unbalanced AML/healthy ratio, as well as the lack of in-

study healthy controls. To address these, we attempted to account for batch effects using 

a dataset-wise iterative batch correction transformation, as discussed in the method 

section, presented in sub-section titled, “Dataset-wise correction for batch effects”. 

Finally, a general limitation of utilizing publicly available data is the lack of uniform 

annotation: the majority of sample data provided have no information on the 

chromosomal abnormalities, AML classification, and retrospective outcome information. 

While we accounted for lack of annotations for sex and tissue information using machine 

learning, which greatly increased our sample size, we would recommend stricter, more 
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extensive reporting requirements for metadata of publicly available data, deposited in 

public databases. 

 

Our findings may generate further data-driven investigations including, i) associations 

between age-groups and changes in gene expression across different AML subgroups to 

help improve AML risk stratification, ii) age-dependent pseudo time-series models to 

identify changes in gene expression with more specific AML patients age and sex 

however such an analysis would require many more well annotated samples that are 

currently unavailable, particularly given the heterogeneity of the disease, and we hope 

new studies will address this in the future. Additionally, the use of microarray data is 

limiting, in that the transcriptome is not fully probed. The availability of more RNA-

sequencing data can address this in future expression analyses, additionally involving 

considerations of allele-specific expression or alternative splicing. Finally, we hope our 

study will be a resource for the AML research community, as a starting for new 

hypothesis-driven investigations, that can further probe the mechanistic details of the 

genes identified as involved in AML, including their possible use as prognostic markers. 
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Methods 

The generalized workflow consisted of five main steps: i) Curation of microarray gene 

expression data, ii) Preprocessing of raw data files followed by batch effect correction, 

iii) Predictions of missing annotation data using supervised machine learning, iv) 

Differential gene expression analysis, and v) Gene enrichment for pathway analysis that 

includes gene annotation, and finally gene expression-based prediction of AML (Fig. 

15a). 

 

• Gene expression data curation and screening criteria 

Datasets used in this study were selected from the GEO database, maintained by the 

National Center for Biotechnology Information (NCBI)52 

(https://www.ncbi.nlm.nih.gov/geo/). GEO is a public database repository at the NCBI 

that function as a hub for high-throughput gene expression datasets storage and retrieval 

to promote data sharing between researchers. To facilitate speed of search and keep up-

to-date with possible new and relevant datasets, as soon as they were released, a Python 

script was used that utilized functions from the Entrez Utilities from Biopython53. The 

script navigated GEO public database, and downloaded publicly available microarray 

gene expression datasets. We additionally utilized Python packages, including Pandas, 

NumPy, and Matplotlib for data structure, numerical computing for data processing, and 

data visualization respectively. We used strict inclusion criteria to maintain consistency 

in each dataset selection, screen for availability of both raw and meta-data annotation 

files provided, human samples used from untreated subjects, and that the sample source 
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was from either bone marrow (BM) and/or peripheral blood (PB). Inclusion criteria and 

the data curation workflow are illustrated in Figure 15a-b. 

 

• Gene expression data sets used in our analysis 

For our analysis we included 34 age-dependent datasets from 32 different studies, 16 

included AML and 18 healthy subjects respectively. From the 34 datasets, 32 were 

produced from Affymetrix GeneChip Human Genome U133 Plus 2.0 (GPL570) and 2 

conducted on Affymetrix GeneChip Human Genome U133 Array Set (GPL96 & GPL97) 

arrays. Table 5 provides detailed information about each data set, including the number 

of samples used from each dataset, sample tissue source, as well as the total number of 

AML patients and healthy subjects. Two studies, GSE1241754 and GSE3764255-58, were 

originally conducted on two different Affymetrix array types (GPL570 and GPL96 & 

GPL97), so each was separated into two subgroups and each subgroup was considered as 

individual dataset in our meta-analysis, data set GSE12417: (i) subgroup 1 included 73 

BM and 5 PB samples, and (ii) subgroup 2 included 160 BM and 2PB. For dataset 

GSE37642 (i) subgroup 1 included 140 BM and (ii) subgroup 2 422 BM samples (Table 

5). 

 

• Datasets annotation and preprocessing 

Figure 15b outlines the workflow of our preliminary data analysis including 

preprocessing. For each dataset used in our analysis, raw microarray CEL files were 

downloaded from GEO, metadata was reviewed, and the data was manually curated to 

guarantee that and each array, which corresponded to either an AML patient or healthy 
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individual, was verified and correctly annotated for sample source (BM or PB), platform 

technology used, age, sex, and disease state (AML or healthy). Raw CEL files from 

individual datasets were individually pre-processed using the RMA (Robust Multi-Array 

Average) algorithm59-61. Datasets with mixed sample source, i.e both BM and PB, were 

pre-processed together irrespective of sample source. Preprocessing consisted of 

correction for background noise using RMA background correction on perfect match 

(PM) raw intensities, quantile normalization to obtain the same empirical distribution of 

intensities for each array, median polish summarization of probes into probe sets to 

estimate gene-level expression value, and logarithm base-2 transformations of gene 

expression values to facilitate data interpretation (normal distributions) and comparisons 

between arrays. Additionally, our expression data were first reduced to 44,754 probe sets 

that are common to and appeared in all data. Data sets were z-score standardized across 

all probe sets and arrays. Finally, each pre-processed dataset was visualized with box-

whisker plots to ensure similar gene expression data distribution across all datasets. 

 

• Prediction of missing sex- and sample source annotations from curated 

datasets 

805 arrays (802 from AML patients and 3 were healthy subjects) of curated data were not 

annotated for sex, while 737 arrays (all AML patients) were missing sample source 

information. Without these metadata, we would have to discard the data, which in turn 

would limit the statistical power for the study, and our ability to correct for biases 

stemming from individual datasets20. To address this, we used supervised machine 

learning classifiers to predict metadata. For all prediction, we used ClassificaIO62, a 
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machine learning for classification user interface, which we recently developed, to carry 

out the machine learning classification analyses utilizing the sklearn package in Python63 

 

To predict sex and sample source, pre-processed data sets, 1956 arrays for 545 healthy 

and 1411 AML, that include 44,754 probe sets and their annotated sex and sample source 

information were used to train logistic regression (LR) and k-nearest neighbor (KNN) 

classification models.  

 

The supervised machine learning LR classifier we used with the following parameters: 

random_state = None, shuffle = True, penalty = l2, multi_class = ovr, solver = liblinear, 

max_iter= 100, tol = 0.0001, intercept_scaling = 1.0, verbose = 0, n_jobs = 1, C = 1.0, 

fit_intercept = True, dual = False, warm_start = False, class_weight = None 

 

The trained models for classification of missing sex and sample source annotation from 

curated data achieved > 95% classification accuracy with ~ 3-5% classification errors. 

Confusion matrix details, model accuracy and error for training and testing are presented 

in Supplementary Table S1 online, and results in Supplement file 1&2. To account for 

training overfitting, we used 10-fold cross-validation on all 1,956 gene expression data 

arrays for training and validation. 

 

• Dataset-wise correction approach for batch effects correction 

Batch correction was done using a dataset-wise correction. Here we refer to the term 

“dataset-wise correction,” to indicate performing batch correction iteratively on one 
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dataset at a time, against a reference set of datasets chosen to account for variability. We 

used this approach to account for the lack within-study healthy controls in the curated 

gene expression datasets. To address this issue, we used 5 additional datasets the included 

within-study controls, GEO accessions: GSE107968, GSE6817264, GSE1705465, 

GSE3322366, and GSE1506167 (Table 5). We refer to the latter datasets hereafter as 

“covariate datasets”, as they were as the reference datasets in the batch correction. Our 

approach aimed to balance/distribute the weight of batch effects exerted by each dataset, 

as this is dependent on the number of observations within a given dataset. Combined, the 

covariate datasets included 613 total arrays, totaling 455 AML and 158 healthy controls. 

We used ComBat22 to correct for study batch effects, as its empirical Bayes-based 

algorithm uses both scale and mean center based methods, providing an appropriate 

algorithm22. Covariate datasets were treated as the covariate for batch during batch 

correction, to improve performance in correcting for batch effects rather than biological 

variation. After batch correction, we used principal component analysis (PCA), 

visualizing components in both 2 and 3 dimensions, to compare the clustering results for 

corrections. Covariate data sets were removed after the batch correction step and were not 

part of our downstream meta-analysis. (Fig. 16a-d). 

 

• Gene expression meta-analysis 

After batch correction step, we performed gene expression meta-analysis for differential 

expression on the merged datasets (34 data sets, 16 AML and 18 healthy), where the 

expression values for all 44,754 common probe sets were aggregated. The effects of 

patients’ age, sex, and sample source, including their pairwise interactions were 
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investigated using an analysis of variance (ANOVA)13,68 . The linear model of probe set i 

is then written as: 

For each gene i, where i=[1,…44,754], the gene expression 

Probeset Yi was modeled computationally as a linear model: 

Yi ~ (a + s + d + t) + (a:s + a:d + a:t) + (s:d + s:t) + (d:t) + ε 

 

Where d is the disease state (AML or healthy), a is age (between 0 to 100 years), s is sex 

(female or male), t is sample source (BM or PB), and ε is a random error term. We note 

that the model includes sample source and its interactions to address comparisons 

involving different tissues in AML and healthy subjects (BM or PB respectively). 

 

From the ANOVA analysis, genes were deemed to be disease state statistically 

significant (differentially expressed) if they displayed ANOVA Bonferroni-adjusted p-

value < 0.01. Post-hoc analysis for significant genes was conducted for comparisons 

(between groups) using Tukey’s Honestly Significant Difference (HSD) tests. 

Additionally, we performed a quantile-based effect filter, were genes were deemed to 

show biological effects in our analysis if they displayed mean difference values in the 

<5% and/or > 95% quantiles of the mean difference distributions of the binary group 

comparisons. Based on the post-hoc analysis, genes were deemed to be statistically 

significantly (up- or down-regulated) if they displayed Tukey HSD using a Bonferroni 

adjusted cutoff for p-value < 0.01/44,754. 
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• Functional and pathway enrichment analysis 

We carried our enrichment analysis for differentially expressed genes using the Database 

DAVID33,34, the KEGG database28-30 for signaling pathways, GO terms functional 

annotation for over representation of biological function 31,32 were utilized and signaling 

pathways were deemed significant based on Benjamini- Hochberg adjusted p-value < 

0.05. 

 

• Using k-nearest neighbor to predict AML 

Before gene expression data passed to the k-nearest neighbor (KNN) algorithm to train, 

gene expression signatures resulted from our meta-analysis were used to extract 

expression values. KNN in ClassificaIO62 was used to carry out this analysis. All 34 data 

sets (16 AML and 18 healthy) were used for training, and testing was done on all 5 

covariate data sets, include AML and healthy subjects. Dependent, target , and testing 

data files were prepared in accordance with ClassificaIO62 user guide. The KNN model 

used the following parameters: 

 

random_state = None, shuffle = True, metric = minkowski, weights = uniform, algorithm 

= auto, n_neighbors = 5, leaf_size = 30, n_jobs = 1, p = 2, metric_params = None 

 

• Online data availability 

Supplementary data, tables, figures and files are available online at 

https://www.zenodo.org/record/1492796#.XA7iUC3Mw_U. 
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APPENDIX 

 

Figure 15. General approach, data curation, and analysis workflow summary. 
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Figure 15. (cont’d) 

a. The five main steps that summarize our method of approach for our study. b. The 

curation and screening criteria for raw gene expression and annotation data files curation, 

data pre-processing, supervised machine learning for missing metadata prediction, and 

batch effects correction. c. Meta-analysis, using linear model in Analysis of Variance 

(ANOVA) coupled with Post-hoc comparison tested by Tukey’s Honestly Significant 

Difference (HSD), and KEGG enrichment and GO term ontology for signaling pathway 

and biological function annotations. Finally, classification of AML based on our results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



112  

Figure 16. Principal component analysis of all 2,761 subjects before and after batch 

correction. 
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 Figure 16 (cont’d) 
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Figure 16 (cont’d) 
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Figure 16 (cont’d) 
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Figure 16 (cont’d) 

For all panels, the first two principal components are at the top and the first three 

principal components are at the bottom. The data shown in all panels represent gene 

expression data from 2,761 subjects (2,213 AML patients and 548 healthy individuals) 

with 44,754 probe sets that has been pre-processed, logarithm base-2 transformed, z-

score standardized across all data sets. Panels a and b show the principal component 

analysis (PCA) of batch corrected data not including “covariate” datasets, while panels c 

and d show the same batch corrected data but including the 5 “covariate” datasets. a. 

Visualizations of the first two and three principal components of gene expression data 

before batch correction. b. The data was corrected without covariate datasets resulting to 

loss of biological effect information due to lack of within-study controls. c. Shows the 

first two and three principal components of gene expression data including 5 “covariate” 

data sets (see legend: last 5 labels) that include within-study controls (455 AML and 158 

healthy), and d. the first two and three principal components of the same data post 

“dataset-wise correction” for batch effect using ComBat as descripted in the methods 

section. 
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Figure 17. Functional classification of DEPS from AML disease state meta-analysis 

and associated KEGG and GO enrichment analysis. 

  

a



118  

Figure 17 (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

b



119  

Figure 17 (cont’d) 

 

  

c



120  

Figure 17 (cont’d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

d



121  

Figure 17 (cont’d) 
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Figure 17 (cont’d) 

 

For heatmaps, normalized values are represented in with blue for down-regulation and 

red for up-regulation, while light red/gray represents no reported specific direction. And 

for horizontal bar plot, same values are represented in with orange for down-regulation 

and blue for up-regulation. Heatmap of 974 DEPS (964 unique gene) in rows on 2,761 

arrays (columns) including 2,213 AML patients and 548 healthy individuals from AML 

meta-analysis, using unsupervised hierarchical clustering and Euclidean distance for 

clustering. The age range of each age-groups is displayed in the legend and illustrated in 

the color bar on the top (labeled Age-group). The disease state (AML vs healthy) and sex 

of each subject are also represented in color bars on the top. b. Horizontal bar plot of the 

top 10 DEPS (gene symbols on vertical axis) from AML meta-analysis with mean 

difference values between AML and healthy (horizontal axis). c. Shows 4 KEGG 

signaling pathways deemed significant for our AML disease state enrichment analysis 

with number of up- and down-regulated DEPS enriched by each signaling pathway 

(horizontal axis), also visualized as a heatmap (d) of DEPS mean difference values with 

gene names (rows) identified in these 4 KEGG signaling pathways (columns). e. Shows  

f
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Figure 17 (cont’d) 

the mean difference values with gene names (rows) of 61 DEPS enriched by 6 other 

KEGG signaling pathways (columns) pathways that are known to be involved in AML. 

Finally, the GO enrichment analysis results are summarized in (f). 
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Figure 18. Sex-related gene expression meta-analysis in AML. 
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Figure 18 (cont’d) 
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Figure 18 (cont’d) 
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Figure 18 (cont’d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a. the Venn diagram shows 70 DEPS identified (69 unique DE genes) to overlap with the 

DE genes from analysis 1, AML disease state meta-analysis. b. The heatmap of mean 

difference values comparison between the 70 DEPS overlapping genes between Analysis 

1 and Analysis 2a. c. Horizontal bar plot of the top 10 DE genes from the 70 genes; genes 

are positioned at the y-axis, and x-axis represents mean difference values. d. Heatmap the 

70 DEPS expression (rows) on 2,761 arrays (columns) including 2,213 AML patients and  

f
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Figure 18 (cont’d) 

548 healthy individuals from Analysis 2a of sex-relevance in AML (using unsupervised 

hierarchical clustering and Euclidean distance for clustering). The disease state (AML vs 

healthy) and sex of each subject are indicated in color bars at the top. The disease state 

(AML vs healthy) and sex of each subject are indicated in color bars at the top. e. 

Pathway enrichment analysis using KEGG shows 3 signaling pathways were found 

enriched by 4 unique genes from this meta-analysis. f. Enrichment analysis for 

statistically significant overrepresented biological GO terms on the 70 DEPS genes. 
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Figure 19. Age-related gene expression meta-analysis in AML. 
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Figure 19 (cont’d) 
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Figure 19 (cont’d) 
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Figure 19 (cont’d) 
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Figure 19 (cont’d) 
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Figure 19 (cont’d) 
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Figure 19 (cont’d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For all heatmaps, normalized values are represented in with blue for down-regulation and 

red for up-regulation, while light red/gray represents no reported specific direction.  

h
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Figure 19. (cont’d) 

Unsupervised hierarchical clustering and Euclidean distance was done for clustering on 

DEPS (vertical axis) mean difference values between each age-group comparison 

(horizontal axis). a. The Venn diagram shows 375 DEPS identified (372 unique DE 

genes) to overlap with the DE genes from analysis 1, AML disease state meta-analysis. b. 

Heatmap of 375 DEPS (rows) across 18 age-groups (columns) that were deemed 

statistically significant with mean difference values pf the 375 DEPS on vertical axis and 

age-groups on horizontal axis. c. Heatmap of the top 10 DE age-dependent genes (rows) 

mean difference values clustered on 7 age-groups (columns) with some genes appears in 

multiple age-groups while others appear only in one age-group. d. Shows 75 DEPS that 

are specific to a single age-group comparison. e. Age-group to age-group correlation 

matrix shows strong correlation direction between age-groups compared to the “0 to 19” 

age-group as a common reference. f. Shows the heatmap of 375 DEPS (rows) mean 

difference values across the “0 to 19” age-group (columns) as a common comparison 

reference for baseline analysis. g. Shows heatmap the mean difference values of 25 DE 

genes common across the baseline (0 to 19) age-group compared to 7 other age-groups 

that progress in age to illustrate gene expression changes with aging. We note that the 

mean difference values between AML and healthy cohorts from analysis 1 are shown in 

the right-most column of panels (b-d), (f), (g) for reference comparisons. h. Overlaps 

over KEGG pathways of 17 DE genes identified in 4 KEGG pathways according to age 

groups. 
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Table 5. Summary table of all 34 gene expression data sets used in our study. 

Author, Year GEO 
accession id AML/Healthy 

Affymetrix platform id: 
Number of samples 

used& Sample source 
Refs. 

Zatkova et al, 2009 GSE10258 AML GPL570: 8 BM 69 
Tomasson et al, 2008 GSE10358 AML GPL570: 300 BM 70 

Metzeler et al, 2008 GSE12417 AML 
GPL570: 73 BM & 5 PB 
GPL96/97: 160 BM & 

2PB 
54 

Wouters et al, 2009, 
Taskesen et al, 2011 GSE14468 AML GPL570: 482 BM & 43 

PB 
71,72 

Figueroa et al, 2009 GSE14479 AML GPL570: 16 BM 73 

Klein et al, 2009 GSE15434 AML GPL570: 231 BM & 20 
PB 

74 

Lück et al, 2011 GSE29883 AML GPL570: 10 BM & 2 PB 75 
Li et al, 2013, 
Herold et al, 2014, 
Janke et al, 2014, 
Jiang et al, 2016 

GSE37642 AML GPL570: 140 BM 
GPL96/97: 422 BM 

55-58 

Bullinger et al, 2014 GSE39363 AML GPL570: 11 BM & 2 PB NYP 
Opel et al, 2015 GSE46819 AML GPL570: 8 BM & 4 PB 76 
TCGA et al, 2015 GSE68833 AML GPL570: 183 BM NYP 
Cao et al, 2016 GSE69565 AML GPL570: 12 PB 77 
Bohl et al, 2016 GSE84334 AML GPL570: 25 BM & 20 PB NYP 
Li et al, 2011 GSE23025 AML GPL570: 21 BM & 13 PB 78 
Warren et al, 2009 GSE11375 Healthy GPL570: 26 PB 79 
Green et al, 2009 GSE14845 Healthy GPL570: 1 PB NYP 
Wu et al, 2012 GSE15932 Healthy GPL570: 8 PB NYP 
Karlovich et al, 2009 GSE16028 Healthy GPL570: 22 PB 80 
Krug et al, 2011 GSE17114 Healthy GPL570: 14 PB NYP 
Kong et al, 2012 GSE18123 Healthy GPL570: 17 PB 81 
Sharma et al, 2009 GSE18781 Healthy GPL570: 25 PB 82 
Rosell et al, 2011 GSE25414 Healthy GPL570: 12 PB 83 
Schmidt et al, 2006 GSE2842 Healthy GPL570: 2 PB 84 
Meng et al, 2015 GSE71226 Healthy GPL570: 3 PB NYP 
Tasaki et al, 2017 GSE84844 Healthy GPL570: 30 PB 85 
Leday et al, 2018 GSE98793 Healthy GPL570: 64 PB 86 
Shamir et al, 2017 GSE99039 Healthy GPL570: 121 PB 87 
Tasaki et al, 2018 GSE93272 Healthy GPL570: 35 PB 68 
Clelland et al, 2013 GSE46449 Healthy GPL570: 24 PB 88 
Lauwerys et al, 2013 
Ducreux et al, 2016 GSE39088 Healthy GPL570: 46 PB 89,90 

Xiao et al, 2011 GSE36809 Healthy GPL570: 35 PB 91 
Zhou et al, 2010 GSE19743 Healthy GPL570: 63 PB 92 
Jiang et al, 2018 GSE107968* 2 AML 1 Healthy GPL570: 3 BM NYP 
Greiner et al, 2015 GSE68172* 20 AML 5 Healthy GPL570: 25 PB 64 
Majeti et al, 2009 GSE17054* 9 AML 4 Healthy GPL570: 13 BM 65 
Bacher et al, 2012 GSE33223* 20 AML 10 Healthy GPL570: 30 PB 66 
Mills et al, 2009 GSE15061* 404 AML 138 Healthy GPL570: 542 BM 67 
Meta-analysis data sets summary 

Disease state Sample source Affymetrix platform id Unique probesets 

AML Healthy BM PB GPL570 GPL96/97 GPL57
0 

GPL96/9
7 

2213 548 2090 671 2177 584 54,675 44,760 
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Table 5. (cont’d) 

GEO, Gene Expression Omnibus; AML, acute myeloid leukemia; Ref. reference; NYP, 

not yet published, GPL570, Affymetrix Human Genome U133 Plus 2.0 Array; GPL96, 

Affymetrix Human Genome U133A Array; GPL97, Affymetrix Human Genome U133B 

Array; BM, Bone Marrow; PB, Peripheral Blood.  A summary table of all our data sets 

using in our meta-analysis and disease classification. *“Covariate data sets,” 5 data sets 

that were used during the batch correction step., data sets used only during the batch 

correction step to balance/account for batch in our curated data. 
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Table 6. Top 10 up- and down-regulated of DE genes in AML from disease state 

meta-analysis. 

Up-regulated 

DEG name DEG 
Symbol 

Tukey’s HSD 
Mean 

difference 

Bonferroni 
(p-adjusted) 

Wilms tumor 1 WT1 0.255353 < 4.11E-11 
MAM domain containing 2 MAMDC2 0.248983 5.47E-09 
X inactive specific transcript (non-protein coding) XIST 0.230331 < 4.11E-11 
homeobox A3 HOXA3 0.195790 1.1E-06 
fms-related tyrosine kinase 3 FLT3 0.193420 < 4.11E-11 
cyclin A1 CCNA1 0.185050 1.35E-07 
mex-3 RNA binding family member B MEX3B 0.181068 < 4.11E-11 
collagen, type IV, alpha 5 COL4A5 0.177721 1.7E-05 
neurexin 2 NRXN2 0.166598 < 4.11E-11 
ATPase, Na+/K+ transporting, beta 1 polypeptide ATP1B1 0.165197 5.47E-09 

Down-regulated 
cysteine-rich secretory protein 3 CRISP3 -0.51965625 < 4.11E-11 
olfactomedin 4 OLFM4 -0.489845396 < 4.11E-11 
orosomucoid 1 ORM1 -0.465232864 < 4.11E-11 
cytochrome P450, family 4, subfamily F, 
polypeptide 3 CYP4F3 -0.453467442 < 4.11E-11 

chitinase 3-like 1 (cartilage glycoprotein-39) CHI3L1 -0.421520435 < 4.11E-11 
annexin A3 ANXA3 -0.390688999 < 4.11E-11 
oxidized low density lipoprotein (lectin-like) 
receptor 1 OLR1 -0.35525472 < 4.11E-11 

carcinoembryonic antigen-related cell adhesion 
molecule 8 CEACAM8 -0.351181264 < 4.11E-11 

orosomucoid 1 ORM1 -0.336303304 < 4.11E-11 
tumor-associated calcium signal transducer 2 TACSTD2 -0.323939961 < 4.11E-11 

From the Post-hoc Tukey’s test, gene expression means difference value < 5% or > 95% 

between AML and healthy (AML - healthy) were deemed statistically significant for 

AML. Genes were considered disease state statistically significant from the analysis of all 

2761 cases (2213 AML patients and 548 healthy controls) using. The p-values were 

adjusted based on Bonferroni correction for false discovery rate (FDR). Significant DE 

genes are listed in descending order of the mean difference value comparisons for disease 

state.  
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Table 7. KEGG functional analysis of 974 DEPS from meta-analysis of 34 gene 

expression data sets. 

Pathway No. of 
genes 

Down- 
regulated 

Up- 
regulated 

p-value 
(unadjusted) 

Benjamini 
(p-adjusted) 

Hematopoietic 
cell lineage 11, 6 

IL1R2, 
CD59, 
GYPA, 
MS4A1, 
EPOR, 
CD24, 
CD14, 
EPOR, 
IL1R1, 
MME, 
CR1 

ITGA4, 
FLT3, 
CD34, 
IL3RA, 
ITGA5, 
CD44 

2.3E-5 5.8E-3 

Cell cycle 12, 6 

CDC7, 
CDC6, 

CCNB1, 
CDC20, 
CCNA2, 
CCNE2, 

TTK, 
CDC14B, 

CDK1, 
BUB1, 

CCNB2, 
BUB1B 

6 RB1, 
CCNA1, 
CDK6, 
ATM, 

TFDP2, 
CDKN2A 

1.4E-4 1.2E-2 

p53 signaling 
pathway 6, 7 

THBS1, 
CCNB1, 
CCNE2, 
CDK1, 
RRM2, 
CCNB2 

SIAH1, 
CDK6, 
ATM, 

SERPINE1, 
CDKN2A, 
PMAIP1, 
ZMAT3 

1.0E-4 1.3E-2 

Transcriptional 
misregulation in 

cancer 
7, 13 

IL1R2, 
GZMB, 
CD14, 

ELANE, 
MMP9, 
CEBPE, 
PBX1 

WT1, 
RUNX2, 
ETV5, 
MEIS1, 
 JUP, 

EWSR1, 
ATM, 

HOXA10, 
MLF1, 
FLT3, 

CCNT2, 
MEF2C, 

SLC45A3 

6.5E-4 4.1E-2 

974 DEPS (487 overexpressed and 487 underexpressed) from analysis 1 were enriched 

by 4 statistically significant KEGG pathways. Signaling pathways were deemed  
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Table 7. (cont’d) 

significant based on Benjamini- Hochberg adjusted p-value < 0.05. The two numbers in 

each cell in “No. of genes” column indicate the down-regulated (first) and up-regulated 

(second) DE genes that enriched by each pathway. Pathways are listed in descending 

order using of Benjamini- Hochberg adjusted p-value. 
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Table 8. AML sex relevance (male - female) DE genes & associated signaling 

pathways. 

Pathway No. of 
genes High in Females  High in Males 

Hematopoietic 
cell lineage 1, 2 MS4A1 FLT3, CD34 

p53 signaling 
pathway –, 1 – PMAIP1 

Transcriptional 
misregulation 

in cancer 
–, 1 – FLT3  

Common DEPS between the 70 DEPS from analysis 2a and the 974 DEPS from AML 

disease state meta-analysis for KEGG pathways and GO terms. 4 sex-relevant unique DE 

genes in AML were found in 3 different signaling pathways, including, 1 highly 

expressed in females and 3 highly expressed in males. 
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Table 9. AML age-dependent (AML - healthy) DE genes & associated signaling 

pathways. 

Pathway No. of 
genes 

Down-regulated 
Age-group 

Up-regulated 
Age-group 

Hematopoiet
ic cell 

lineage 
4, 1 

CD14 
(30 to 39) - (0 to 19) 

FLT3 
(20 to 29) - (0 to 19), 
(30 to 39) - (0 to 19), 
(40 to 49) - (0 to 19), 
(50 to 59) - (0 to 19), 
(60 to 69) - (0 to 19), 
(70 to 79) - (0 to 19), 
(80 to 100) - (0 to 19) 

MME 
(30 to 39) - (0 to 19), (40 to 49) - (0 to 19), 

(50 to 59) - (0 to 19) 
CD24 

(30 to 39) - (0 to 19), (40 to 49) - (0 to 19), 
(50 to 59) - (0 to 19) 

MS4A1 
(40 to 49) - (0 to 19), (50 to 59) - (0 to 19), 
(60 to 69) - (0 to 19), (70 to 79) - (0 to 19), 

(80 to 100) - (0 to 19) 

Cell cycle 3, 2 

CCNA2 
(50 to 59) - (0 to 19) 

CCNA1 
(30 to 39) - (0 to 19), 
(40 to 49) - (0 to 19), 
(50 to 59) - (0 to 19), 
(60 to 69) - (0 to 19) 

CDK6 
(60 to 69) - (30 to 39) 

CDC14B 
(30 to 39) - (0 to 19), 
(40 to 49) - (0 to 19), 
(50 to 59) - (0 to 19), 
(60 to 69) - (0 to 19), 
(70 to 79) - (0 to 19) 

CDKN2A 
(40 to 49) - (0 to 19) 

p53 
signaling 
pathway 

1, 1 CDK6 
(60 to 69) - (30 to 39) 

CDKN2A 
(40 to 49) - (0 to 19) 

Transcriptio
nal 

misregulatio
n in cancer 

5, 4 

CD14 
(30 to 39) - (0 to 19) 

MEIS1 
(50 to 59) - (0 to 19), 
(50 to 59) - (20 to 29), 
(60 to 69) - (0 to 19), 
(60 to 69) - (20 to 29), 
(70 to 79) - (0 to 19) 

MMP9 
(20 to 29) - (0 to 19), (30 to 39) - (0 to 19), 
(40 to 49) - (0 to 19), (50 to 59) - (0 to 19), 
(60 to 69) - (0 to 19), (70 to 79) - (0 to 19) 

EWSR1 
(60 to 69) - (50 to 59), 
(70 to 79) - (50 to 59) 

WT1 
(20 to 29) - (0 to 19), 
(30 to 39) - (0 to 19), 
(40 to 49) - (0 to 19), 
(50 to 59) - (0 to 19), 
(60 to 69) - (0 to 19), 
(70 to 79) - (0 to 19) 

CEBPE 
(20 to 29) - (0 to 19), (30 to 39) - (0 to 19), 
(40 to 49) - (0 to 19), (50 to 59) - (0 to 19), 
(50 to 59) - (20 to 29), (60 to 69) - (0 to19), 
(70 to 79) - (0 to 19), (70 to 79) - (20 to29), 

(80 to 100) - (0 to 19) 

FLT3 
(20 to 29) - (0 to 19), 
(30 to 39) - (0 to 19), 
(40 to 49) - (0 to 19), 
(50 to 59) - (0 to 19), 
(60 to 69) - (0 to 19), 
(70 to 79) - (0 to 19), 
(80 to 100) - (0 to 19) 

CCNT2 
(60 to 69) - (30 to 39), 
(70 to 79) - (30 to 39), 
(60 to 69) - (50 to 59) 

HOXA10 
(40 to 49) - (0 to 19), 
(50 to 59) - (0 to 19), 
(50 to 59) - (20 to 29), 
(60 to 69) - (0 to 19), 
(60 to 69) - (20 to 29), 
(70 to 79) - (0 to 19) 
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Table 9. (cont’d) 

Common DE genes between the 375 DEPS from analysis 2b and the 974 DEPS from 

analysis 1 for KEGG pathways and GO terms. 17 age-dependent unique DE genes in 

AML were found in 4 different signaling pathways. DE genes are listed according to 

associated age-groups for each signaling pathway. 
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Table 10. Age-dependent genes show drug to gene interaction. 

Druggable Gene 
Category 

Matching 
gene count 

Matching genes(s) 
DGIdb analysis 1 

Matching genes(s) 
DGIdb analysis 2 

DRUGGABLE GENOME 15, 24 

TFF3, ORM1, CA4, 
CYP4F2, CYP4F3, 
CEACAM1, FLT3, 

CHIT1, OLR1, KCNJ15, 
CAMP, CRISP2, CAPN3, 

SLC37A3, FCRL1 

CDH1, GPX3, CD14, 
DYRK2, SLPI, CCNA2, 
TGFBR3, UGCG, FCN1, 

GZMA, TCN1, BPI, 
S100A12, CDK6, IL12A, 

P2RY13, ADGRG3, 
DNMT3B, GUCY1A3, 

FGFBP2, PTPRJ, 
LRRK2, BCL2L15, 

STYX 

KINASE 3, 12 CEACAM1, FLT3, 
TCL1A 

DYRK2, CCNA2, 
TGFBR3, S100A12, 
CDKN2A, CDK6, 
DIRAS3, GTPBP4, 
DEPTOR, PTPRJ, 

NME7, LRRK2 

SERINE THREONINE 
KINASE 2, 10 FLT3, TCL1A 

DYRK2, CCNA2, 
TGFBR3, S100A12, 
CDKN2A, CDK6, 
DIRAS3, GTPBP4, 

PTPRJ, LRRK2 

TUMOR SUPPRESSOR –, 8 – 

CTDSPL, CCNA2, 
CDKN2A, CDK6, 
IL12A, DIRAS3, 
GTPBP4, CCPG1 

CELL SURFACE 2, 5 CA4, CEACAM1 CD14, TGFBR3, FCN1, 
MYH10, PTPRJ 

PROTEASE –, 6 – 
SLPI, FCN1, GZMA, 

ASPH, IGKV1-17, 
NRIP3 

CLINICALLY 
ACTIONABLE 1, 4 FLT3 CDH1, CDKN2A, 

CDK6, DNMT3B 

TRANSPORTER 4, – CEACAM1, KCNJ15, 
SLC37A3, RBP7 – 

TRANSCRIPTION 
FACTOR COMPLEX –, 4 – SMAD6, GFI1B, 

HOXA11, HOXB9 
EXTERNAL SIDE OF 

PLASMA MEMBRANE 1, 3 CA4 CD14, TGFBR3, FCN1 

HISTONE 
MODIFICATION –, 3 – CCNA2, GFI1B, 

DNMT3B 
CYTOCHROME P450 2, – CYP4F2, CYP4F3 – 
DRUG METABOLISM –, 1 CYP4F2 – 

EXCHANGER –, 1 SLC37A3 – 
Two analysis were carried using DGIdb, (i) 25 DE genes common across the baseline (0 

to 19) age-group and (ii) 75 genes identified to be specific to one age-group were used to 

carry out drug-gene interaction analysis using DGIdb. Functional classes for both  
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Table 10. (cont’d) 

analyses are shown here. “Matching gene count” column, which indicates the matching 

genes between from analysis (i) (first number) and matching genes from DGIdb analysis 

(ii) (second number) DE genes that enriched by each pathway. 
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Chapter 4 – 

Summary and Outlook
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Conclusion 

In this dissertation, we aimed to establish sex-related and age-dependent DE genes with 

related gene expression patterns and associated signaling pathways as biomarkers in 

AML. Our approach utilized machine learning methods, which led to the development of 

a graphical user interface to facilitate model training and testing for classification, 

(Chapter 2). Subsequently, we carried 3 gene expression meta-analyses and gene 

enrichment analyses on publicly available gene expression data, accumulated from 2,761 

subjects (2,213 AML patients and 548 healthy individuals). We analyzed a total of 

44,754 probe sets (corresponding to multiple genes) per subject. We used multiple 

statistical methods for microarray analysis were used to pre-process raw data, and also 

implemented a “data-wise” batch effect correction. The latter was used to correct for 

batch effects caused by study variability and sample processing. Following normalization 

and batch effect correction across arrays, we used a statistical linear model to study the 

effects of age and sex on gene expression in AML patients as compared to healthy 

individuals (Chapter 3). Three downstream differential gene expression analyses were 

carried out: 

Analysis 1: Gene expression meta-analysis and associated signaling pathways of 

AML disease state compared to healthy individuals. From this analysis we identified 

964 DE unique genes (974 DEPS) including 56 DE unique genes (27 up- and 29 down-

regulated) that were associated with 4 statistically significant KEGG pathways including 

Hematopoietic cell lineage, Cell cycle, p53 signaling pathway, and Transcriptional 

misregulation in cancer. Multiple genes identified do not have known associations with 
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AML and signaling pathways and can provide new avenues of investigation and novel 

hypothesis-driven mechanistic studies. 

 

Analysis 2a: Sex-dependent gene expression meta-analysis and associated signaling 

pathways in AML compared to healthy individuals, from this analysis we identified 

70 DEPS with 69 unique DE genes that overlapped between analysis 1 (AML disease 

state), and 4 sex-relevant DE genes were found in 3 different signaling pathways, 

including FLT3 and CD34 in Hematopoietic cell lineage, FLT3 in Transcriptional 

misregulation in cancer, and PMAIP1 in p53 signaling pathway, and down-regulated 

gene MS4A1 in Hematopoietic cell lineage. 

 

Analysis 2b: Age-dependent gene expression meta-analysis and associated signaling 

pathways in AML compared to healthy individuals, from this analysis we found 372 

DE unique age-dependent genes (375 DEPS) overlap with the 964 DE unique genes (974 

DEPS) from our AML disease state meta-analysis (chapter 3 Fig. 19a), with 137 up- and 

238 down- regulated. We also found 25 DE genes common across a baseline (0 to 19) 

age-group (chapter 3 Fig. 19g) with 15 genes were identified as potential therapeutic for 

drug target and 75 genes identified to be specific to one age-group (Fig. 19d) with 24 

genes were categorized for “druggable genome”. 

 

Finally, we used our results combined with a machine learning model (KNN model), and 

implemented supervised machine learning for classification training. We were able to test 

our model using 5 independent gene expression datasets (613 AML and healthy). Using 
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our trained model, we were able to classify AML patients compared to healthy 

individuals with > 90% achieved accuracy. Overall our findings provide a new reanalysis 

of public datasets, that enabled the identification of potential new gene sets relevant to 

AML that can potentially be used in future experiments and possible stratified disease 

diagnostics. 

 

Outlook 

While our results and analyses have identified important gene expression signatures 

relevant to AML, and many potential new drug-gene targets, our findings may generate 

more questions that should be considered in the future including, i) associations between 

age-groups and changes in gene expression across different AML subgroups to help 

improve AML risk stratification, ii) age-dependent pseudo time-series models to identify 

changes in gene expression with more specific AML patients age and sex. However, 

these questions and analysis would require many more well annotated AML patient’s 

gene expression data that are currently unavailable, particularly given the heterogeneity 

of the disease. We hope new studies will address this in the future, and that our findings 

will lead to new findings that will help our understanding of AML, and ultimately 

improve disease diagnosis, prognosis and treatment. 


